xref: /linux/fs/ext4/inode.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/pagemap.h>
33 #include <linux/quotaops.h>
34 #include <linux/string.h>
35 #include <linux/buffer_head.h>
36 #include <linux/writeback.h>
37 #include <linux/mpage.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "xattr.h"
41 #include "acl.h"
42 
43 /*
44  * Test whether an inode is a fast symlink.
45  */
46 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 {
48 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
49 		(inode->i_sb->s_blocksize >> 9) : 0;
50 
51 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
52 }
53 
54 /*
55  * The ext4 forget function must perform a revoke if we are freeing data
56  * which has been journaled.  Metadata (eg. indirect blocks) must be
57  * revoked in all cases.
58  *
59  * "bh" may be NULL: a metadata block may have been freed from memory
60  * but there may still be a record of it in the journal, and that record
61  * still needs to be revoked.
62  */
63 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
64 			struct buffer_head *bh, ext4_fsblk_t blocknr)
65 {
66 	int err;
67 
68 	might_sleep();
69 
70 	BUFFER_TRACE(bh, "enter");
71 
72 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
73 		  "data mode %lx\n",
74 		  bh, is_metadata, inode->i_mode,
75 		  test_opt(inode->i_sb, DATA_FLAGS));
76 
77 	/* Never use the revoke function if we are doing full data
78 	 * journaling: there is no need to, and a V1 superblock won't
79 	 * support it.  Otherwise, only skip the revoke on un-journaled
80 	 * data blocks. */
81 
82 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
83 	    (!is_metadata && !ext4_should_journal_data(inode))) {
84 		if (bh) {
85 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
86 			return ext4_journal_forget(handle, bh);
87 		}
88 		return 0;
89 	}
90 
91 	/*
92 	 * data!=journal && (is_metadata || should_journal_data(inode))
93 	 */
94 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
95 	err = ext4_journal_revoke(handle, blocknr, bh);
96 	if (err)
97 		ext4_abort(inode->i_sb, __FUNCTION__,
98 			   "error %d when attempting revoke", err);
99 	BUFFER_TRACE(bh, "exit");
100 	return err;
101 }
102 
103 /*
104  * Work out how many blocks we need to proceed with the next chunk of a
105  * truncate transaction.
106  */
107 static unsigned long blocks_for_truncate(struct inode *inode)
108 {
109 	unsigned long needed;
110 
111 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 
113 	/* Give ourselves just enough room to cope with inodes in which
114 	 * i_blocks is corrupt: we've seen disk corruptions in the past
115 	 * which resulted in random data in an inode which looked enough
116 	 * like a regular file for ext4 to try to delete it.  Things
117 	 * will go a bit crazy if that happens, but at least we should
118 	 * try not to panic the whole kernel. */
119 	if (needed < 2)
120 		needed = 2;
121 
122 	/* But we need to bound the transaction so we don't overflow the
123 	 * journal. */
124 	if (needed > EXT4_MAX_TRANS_DATA)
125 		needed = EXT4_MAX_TRANS_DATA;
126 
127 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
128 }
129 
130 /*
131  * Truncate transactions can be complex and absolutely huge.  So we need to
132  * be able to restart the transaction at a conventient checkpoint to make
133  * sure we don't overflow the journal.
134  *
135  * start_transaction gets us a new handle for a truncate transaction,
136  * and extend_transaction tries to extend the existing one a bit.  If
137  * extend fails, we need to propagate the failure up and restart the
138  * transaction in the top-level truncate loop. --sct
139  */
140 static handle_t *start_transaction(struct inode *inode)
141 {
142 	handle_t *result;
143 
144 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
145 	if (!IS_ERR(result))
146 		return result;
147 
148 	ext4_std_error(inode->i_sb, PTR_ERR(result));
149 	return result;
150 }
151 
152 /*
153  * Try to extend this transaction for the purposes of truncation.
154  *
155  * Returns 0 if we managed to create more room.  If we can't create more
156  * room, and the transaction must be restarted we return 1.
157  */
158 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 {
160 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
161 		return 0;
162 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
163 		return 0;
164 	return 1;
165 }
166 
167 /*
168  * Restart the transaction associated with *handle.  This does a commit,
169  * so before we call here everything must be consistently dirtied against
170  * this transaction.
171  */
172 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 {
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_delete_inode (struct inode * inode)
182 {
183 	handle_t *handle;
184 
185 	truncate_inode_pages(&inode->i_data, 0);
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 
190 	handle = start_transaction(inode);
191 	if (IS_ERR(handle)) {
192 		/*
193 		 * If we're going to skip the normal cleanup, we still need to
194 		 * make sure that the in-core orphan linked list is properly
195 		 * cleaned up.
196 		 */
197 		ext4_orphan_del(NULL, inode);
198 		goto no_delete;
199 	}
200 
201 	if (IS_SYNC(inode))
202 		handle->h_sync = 1;
203 	inode->i_size = 0;
204 	if (inode->i_blocks)
205 		ext4_truncate(inode);
206 	/*
207 	 * Kill off the orphan record which ext4_truncate created.
208 	 * AKPM: I think this can be inside the above `if'.
209 	 * Note that ext4_orphan_del() has to be able to cope with the
210 	 * deletion of a non-existent orphan - this is because we don't
211 	 * know if ext4_truncate() actually created an orphan record.
212 	 * (Well, we could do this if we need to, but heck - it works)
213 	 */
214 	ext4_orphan_del(handle, inode);
215 	EXT4_I(inode)->i_dtime	= get_seconds();
216 
217 	/*
218 	 * One subtle ordering requirement: if anything has gone wrong
219 	 * (transaction abort, IO errors, whatever), then we can still
220 	 * do these next steps (the fs will already have been marked as
221 	 * having errors), but we can't free the inode if the mark_dirty
222 	 * fails.
223 	 */
224 	if (ext4_mark_inode_dirty(handle, inode))
225 		/* If that failed, just do the required in-core inode clear. */
226 		clear_inode(inode);
227 	else
228 		ext4_free_inode(handle, inode);
229 	ext4_journal_stop(handle);
230 	return;
231 no_delete:
232 	clear_inode(inode);	/* We must guarantee clearing of inode... */
233 }
234 
235 typedef struct {
236 	__le32	*p;
237 	__le32	key;
238 	struct buffer_head *bh;
239 } Indirect;
240 
241 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 {
243 	p->key = *(p->p = v);
244 	p->bh = bh;
245 }
246 
247 static int verify_chain(Indirect *from, Indirect *to)
248 {
249 	while (from <= to && from->key == *from->p)
250 		from++;
251 	return (from > to);
252 }
253 
254 /**
255  *	ext4_block_to_path - parse the block number into array of offsets
256  *	@inode: inode in question (we are only interested in its superblock)
257  *	@i_block: block number to be parsed
258  *	@offsets: array to store the offsets in
259  *      @boundary: set this non-zero if the referred-to block is likely to be
260  *             followed (on disk) by an indirect block.
261  *
262  *	To store the locations of file's data ext4 uses a data structure common
263  *	for UNIX filesystems - tree of pointers anchored in the inode, with
264  *	data blocks at leaves and indirect blocks in intermediate nodes.
265  *	This function translates the block number into path in that tree -
266  *	return value is the path length and @offsets[n] is the offset of
267  *	pointer to (n+1)th node in the nth one. If @block is out of range
268  *	(negative or too large) warning is printed and zero returned.
269  *
270  *	Note: function doesn't find node addresses, so no IO is needed. All
271  *	we need to know is the capacity of indirect blocks (taken from the
272  *	inode->i_sb).
273  */
274 
275 /*
276  * Portability note: the last comparison (check that we fit into triple
277  * indirect block) is spelled differently, because otherwise on an
278  * architecture with 32-bit longs and 8Kb pages we might get into trouble
279  * if our filesystem had 8Kb blocks. We might use long long, but that would
280  * kill us on x86. Oh, well, at least the sign propagation does not matter -
281  * i_block would have to be negative in the very beginning, so we would not
282  * get there at all.
283  */
284 
285 static int ext4_block_to_path(struct inode *inode,
286 			long i_block, int offsets[4], int *boundary)
287 {
288 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
289 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
290 	const long direct_blocks = EXT4_NDIR_BLOCKS,
291 		indirect_blocks = ptrs,
292 		double_blocks = (1 << (ptrs_bits * 2));
293 	int n = 0;
294 	int final = 0;
295 
296 	if (i_block < 0) {
297 		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
298 	} else if (i_block < direct_blocks) {
299 		offsets[n++] = i_block;
300 		final = direct_blocks;
301 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
302 		offsets[n++] = EXT4_IND_BLOCK;
303 		offsets[n++] = i_block;
304 		final = ptrs;
305 	} else if ((i_block -= indirect_blocks) < double_blocks) {
306 		offsets[n++] = EXT4_DIND_BLOCK;
307 		offsets[n++] = i_block >> ptrs_bits;
308 		offsets[n++] = i_block & (ptrs - 1);
309 		final = ptrs;
310 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
311 		offsets[n++] = EXT4_TIND_BLOCK;
312 		offsets[n++] = i_block >> (ptrs_bits * 2);
313 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
314 		offsets[n++] = i_block & (ptrs - 1);
315 		final = ptrs;
316 	} else {
317 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
318 	}
319 	if (boundary)
320 		*boundary = final - 1 - (i_block & (ptrs - 1));
321 	return n;
322 }
323 
324 /**
325  *	ext4_get_branch - read the chain of indirect blocks leading to data
326  *	@inode: inode in question
327  *	@depth: depth of the chain (1 - direct pointer, etc.)
328  *	@offsets: offsets of pointers in inode/indirect blocks
329  *	@chain: place to store the result
330  *	@err: here we store the error value
331  *
332  *	Function fills the array of triples <key, p, bh> and returns %NULL
333  *	if everything went OK or the pointer to the last filled triple
334  *	(incomplete one) otherwise. Upon the return chain[i].key contains
335  *	the number of (i+1)-th block in the chain (as it is stored in memory,
336  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
337  *	number (it points into struct inode for i==0 and into the bh->b_data
338  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
339  *	block for i>0 and NULL for i==0. In other words, it holds the block
340  *	numbers of the chain, addresses they were taken from (and where we can
341  *	verify that chain did not change) and buffer_heads hosting these
342  *	numbers.
343  *
344  *	Function stops when it stumbles upon zero pointer (absent block)
345  *		(pointer to last triple returned, *@err == 0)
346  *	or when it gets an IO error reading an indirect block
347  *		(ditto, *@err == -EIO)
348  *	or when it notices that chain had been changed while it was reading
349  *		(ditto, *@err == -EAGAIN)
350  *	or when it reads all @depth-1 indirect blocks successfully and finds
351  *	the whole chain, all way to the data (returns %NULL, *err == 0).
352  */
353 static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
354 				 Indirect chain[4], int *err)
355 {
356 	struct super_block *sb = inode->i_sb;
357 	Indirect *p = chain;
358 	struct buffer_head *bh;
359 
360 	*err = 0;
361 	/* i_data is not going away, no lock needed */
362 	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
363 	if (!p->key)
364 		goto no_block;
365 	while (--depth) {
366 		bh = sb_bread(sb, le32_to_cpu(p->key));
367 		if (!bh)
368 			goto failure;
369 		/* Reader: pointers */
370 		if (!verify_chain(chain, p))
371 			goto changed;
372 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
373 		/* Reader: end */
374 		if (!p->key)
375 			goto no_block;
376 	}
377 	return NULL;
378 
379 changed:
380 	brelse(bh);
381 	*err = -EAGAIN;
382 	goto no_block;
383 failure:
384 	*err = -EIO;
385 no_block:
386 	return p;
387 }
388 
389 /**
390  *	ext4_find_near - find a place for allocation with sufficient locality
391  *	@inode: owner
392  *	@ind: descriptor of indirect block.
393  *
394  *	This function returns the prefered place for block allocation.
395  *	It is used when heuristic for sequential allocation fails.
396  *	Rules are:
397  *	  + if there is a block to the left of our position - allocate near it.
398  *	  + if pointer will live in indirect block - allocate near that block.
399  *	  + if pointer will live in inode - allocate in the same
400  *	    cylinder group.
401  *
402  * In the latter case we colour the starting block by the callers PID to
403  * prevent it from clashing with concurrent allocations for a different inode
404  * in the same block group.   The PID is used here so that functionally related
405  * files will be close-by on-disk.
406  *
407  *	Caller must make sure that @ind is valid and will stay that way.
408  */
409 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
410 {
411 	struct ext4_inode_info *ei = EXT4_I(inode);
412 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
413 	__le32 *p;
414 	ext4_fsblk_t bg_start;
415 	ext4_grpblk_t colour;
416 
417 	/* Try to find previous block */
418 	for (p = ind->p - 1; p >= start; p--) {
419 		if (*p)
420 			return le32_to_cpu(*p);
421 	}
422 
423 	/* No such thing, so let's try location of indirect block */
424 	if (ind->bh)
425 		return ind->bh->b_blocknr;
426 
427 	/*
428 	 * It is going to be referred to from the inode itself? OK, just put it
429 	 * into the same cylinder group then.
430 	 */
431 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
432 	colour = (current->pid % 16) *
433 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
434 	return bg_start + colour;
435 }
436 
437 /**
438  *	ext4_find_goal - find a prefered place for allocation.
439  *	@inode: owner
440  *	@block:  block we want
441  *	@chain:  chain of indirect blocks
442  *	@partial: pointer to the last triple within a chain
443  *	@goal:	place to store the result.
444  *
445  *	Normally this function find the prefered place for block allocation,
446  *	stores it in *@goal and returns zero.
447  */
448 
449 static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
450 		Indirect chain[4], Indirect *partial)
451 {
452 	struct ext4_block_alloc_info *block_i;
453 
454 	block_i =  EXT4_I(inode)->i_block_alloc_info;
455 
456 	/*
457 	 * try the heuristic for sequential allocation,
458 	 * failing that at least try to get decent locality.
459 	 */
460 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
461 		&& (block_i->last_alloc_physical_block != 0)) {
462 		return block_i->last_alloc_physical_block + 1;
463 	}
464 
465 	return ext4_find_near(inode, partial);
466 }
467 
468 /**
469  *	ext4_blks_to_allocate: Look up the block map and count the number
470  *	of direct blocks need to be allocated for the given branch.
471  *
472  *	@branch: chain of indirect blocks
473  *	@k: number of blocks need for indirect blocks
474  *	@blks: number of data blocks to be mapped.
475  *	@blocks_to_boundary:  the offset in the indirect block
476  *
477  *	return the total number of blocks to be allocate, including the
478  *	direct and indirect blocks.
479  */
480 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
481 		int blocks_to_boundary)
482 {
483 	unsigned long count = 0;
484 
485 	/*
486 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
487 	 * then it's clear blocks on that path have not allocated
488 	 */
489 	if (k > 0) {
490 		/* right now we don't handle cross boundary allocation */
491 		if (blks < blocks_to_boundary + 1)
492 			count += blks;
493 		else
494 			count += blocks_to_boundary + 1;
495 		return count;
496 	}
497 
498 	count++;
499 	while (count < blks && count <= blocks_to_boundary &&
500 		le32_to_cpu(*(branch[0].p + count)) == 0) {
501 		count++;
502 	}
503 	return count;
504 }
505 
506 /**
507  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
508  *	@indirect_blks: the number of blocks need to allocate for indirect
509  *			blocks
510  *
511  *	@new_blocks: on return it will store the new block numbers for
512  *	the indirect blocks(if needed) and the first direct block,
513  *	@blks:	on return it will store the total number of allocated
514  *		direct blocks
515  */
516 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
517 			ext4_fsblk_t goal, int indirect_blks, int blks,
518 			ext4_fsblk_t new_blocks[4], int *err)
519 {
520 	int target, i;
521 	unsigned long count = 0;
522 	int index = 0;
523 	ext4_fsblk_t current_block = 0;
524 	int ret = 0;
525 
526 	/*
527 	 * Here we try to allocate the requested multiple blocks at once,
528 	 * on a best-effort basis.
529 	 * To build a branch, we should allocate blocks for
530 	 * the indirect blocks(if not allocated yet), and at least
531 	 * the first direct block of this branch.  That's the
532 	 * minimum number of blocks need to allocate(required)
533 	 */
534 	target = blks + indirect_blks;
535 
536 	while (1) {
537 		count = target;
538 		/* allocating blocks for indirect blocks and direct blocks */
539 		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
540 		if (*err)
541 			goto failed_out;
542 
543 		target -= count;
544 		/* allocate blocks for indirect blocks */
545 		while (index < indirect_blks && count) {
546 			new_blocks[index++] = current_block++;
547 			count--;
548 		}
549 
550 		if (count > 0)
551 			break;
552 	}
553 
554 	/* save the new block number for the first direct block */
555 	new_blocks[index] = current_block;
556 
557 	/* total number of blocks allocated for direct blocks */
558 	ret = count;
559 	*err = 0;
560 	return ret;
561 failed_out:
562 	for (i = 0; i <index; i++)
563 		ext4_free_blocks(handle, inode, new_blocks[i], 1);
564 	return ret;
565 }
566 
567 /**
568  *	ext4_alloc_branch - allocate and set up a chain of blocks.
569  *	@inode: owner
570  *	@indirect_blks: number of allocated indirect blocks
571  *	@blks: number of allocated direct blocks
572  *	@offsets: offsets (in the blocks) to store the pointers to next.
573  *	@branch: place to store the chain in.
574  *
575  *	This function allocates blocks, zeroes out all but the last one,
576  *	links them into chain and (if we are synchronous) writes them to disk.
577  *	In other words, it prepares a branch that can be spliced onto the
578  *	inode. It stores the information about that chain in the branch[], in
579  *	the same format as ext4_get_branch() would do. We are calling it after
580  *	we had read the existing part of chain and partial points to the last
581  *	triple of that (one with zero ->key). Upon the exit we have the same
582  *	picture as after the successful ext4_get_block(), except that in one
583  *	place chain is disconnected - *branch->p is still zero (we did not
584  *	set the last link), but branch->key contains the number that should
585  *	be placed into *branch->p to fill that gap.
586  *
587  *	If allocation fails we free all blocks we've allocated (and forget
588  *	their buffer_heads) and return the error value the from failed
589  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
590  *	as described above and return 0.
591  */
592 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
593 			int indirect_blks, int *blks, ext4_fsblk_t goal,
594 			int *offsets, Indirect *branch)
595 {
596 	int blocksize = inode->i_sb->s_blocksize;
597 	int i, n = 0;
598 	int err = 0;
599 	struct buffer_head *bh;
600 	int num;
601 	ext4_fsblk_t new_blocks[4];
602 	ext4_fsblk_t current_block;
603 
604 	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
605 				*blks, new_blocks, &err);
606 	if (err)
607 		return err;
608 
609 	branch[0].key = cpu_to_le32(new_blocks[0]);
610 	/*
611 	 * metadata blocks and data blocks are allocated.
612 	 */
613 	for (n = 1; n <= indirect_blks;  n++) {
614 		/*
615 		 * Get buffer_head for parent block, zero it out
616 		 * and set the pointer to new one, then send
617 		 * parent to disk.
618 		 */
619 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
620 		branch[n].bh = bh;
621 		lock_buffer(bh);
622 		BUFFER_TRACE(bh, "call get_create_access");
623 		err = ext4_journal_get_create_access(handle, bh);
624 		if (err) {
625 			unlock_buffer(bh);
626 			brelse(bh);
627 			goto failed;
628 		}
629 
630 		memset(bh->b_data, 0, blocksize);
631 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
632 		branch[n].key = cpu_to_le32(new_blocks[n]);
633 		*branch[n].p = branch[n].key;
634 		if ( n == indirect_blks) {
635 			current_block = new_blocks[n];
636 			/*
637 			 * End of chain, update the last new metablock of
638 			 * the chain to point to the new allocated
639 			 * data blocks numbers
640 			 */
641 			for (i=1; i < num; i++)
642 				*(branch[n].p + i) = cpu_to_le32(++current_block);
643 		}
644 		BUFFER_TRACE(bh, "marking uptodate");
645 		set_buffer_uptodate(bh);
646 		unlock_buffer(bh);
647 
648 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
649 		err = ext4_journal_dirty_metadata(handle, bh);
650 		if (err)
651 			goto failed;
652 	}
653 	*blks = num;
654 	return err;
655 failed:
656 	/* Allocation failed, free what we already allocated */
657 	for (i = 1; i <= n ; i++) {
658 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
659 		ext4_journal_forget(handle, branch[i].bh);
660 	}
661 	for (i = 0; i <indirect_blks; i++)
662 		ext4_free_blocks(handle, inode, new_blocks[i], 1);
663 
664 	ext4_free_blocks(handle, inode, new_blocks[i], num);
665 
666 	return err;
667 }
668 
669 /**
670  * ext4_splice_branch - splice the allocated branch onto inode.
671  * @inode: owner
672  * @block: (logical) number of block we are adding
673  * @chain: chain of indirect blocks (with a missing link - see
674  *	ext4_alloc_branch)
675  * @where: location of missing link
676  * @num:   number of indirect blocks we are adding
677  * @blks:  number of direct blocks we are adding
678  *
679  * This function fills the missing link and does all housekeeping needed in
680  * inode (->i_blocks, etc.). In case of success we end up with the full
681  * chain to new block and return 0.
682  */
683 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
684 			long block, Indirect *where, int num, int blks)
685 {
686 	int i;
687 	int err = 0;
688 	struct ext4_block_alloc_info *block_i;
689 	ext4_fsblk_t current_block;
690 
691 	block_i = EXT4_I(inode)->i_block_alloc_info;
692 	/*
693 	 * If we're splicing into a [td]indirect block (as opposed to the
694 	 * inode) then we need to get write access to the [td]indirect block
695 	 * before the splice.
696 	 */
697 	if (where->bh) {
698 		BUFFER_TRACE(where->bh, "get_write_access");
699 		err = ext4_journal_get_write_access(handle, where->bh);
700 		if (err)
701 			goto err_out;
702 	}
703 	/* That's it */
704 
705 	*where->p = where->key;
706 
707 	/*
708 	 * Update the host buffer_head or inode to point to more just allocated
709 	 * direct blocks blocks
710 	 */
711 	if (num == 0 && blks > 1) {
712 		current_block = le32_to_cpu(where->key) + 1;
713 		for (i = 1; i < blks; i++)
714 			*(where->p + i ) = cpu_to_le32(current_block++);
715 	}
716 
717 	/*
718 	 * update the most recently allocated logical & physical block
719 	 * in i_block_alloc_info, to assist find the proper goal block for next
720 	 * allocation
721 	 */
722 	if (block_i) {
723 		block_i->last_alloc_logical_block = block + blks - 1;
724 		block_i->last_alloc_physical_block =
725 				le32_to_cpu(where[num].key) + blks - 1;
726 	}
727 
728 	/* We are done with atomic stuff, now do the rest of housekeeping */
729 
730 	inode->i_ctime = CURRENT_TIME_SEC;
731 	ext4_mark_inode_dirty(handle, inode);
732 
733 	/* had we spliced it onto indirect block? */
734 	if (where->bh) {
735 		/*
736 		 * If we spliced it onto an indirect block, we haven't
737 		 * altered the inode.  Note however that if it is being spliced
738 		 * onto an indirect block at the very end of the file (the
739 		 * file is growing) then we *will* alter the inode to reflect
740 		 * the new i_size.  But that is not done here - it is done in
741 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
742 		 */
743 		jbd_debug(5, "splicing indirect only\n");
744 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
745 		err = ext4_journal_dirty_metadata(handle, where->bh);
746 		if (err)
747 			goto err_out;
748 	} else {
749 		/*
750 		 * OK, we spliced it into the inode itself on a direct block.
751 		 * Inode was dirtied above.
752 		 */
753 		jbd_debug(5, "splicing direct\n");
754 	}
755 	return err;
756 
757 err_out:
758 	for (i = 1; i <= num; i++) {
759 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
760 		ext4_journal_forget(handle, where[i].bh);
761 		ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
762 	}
763 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
764 
765 	return err;
766 }
767 
768 /*
769  * Allocation strategy is simple: if we have to allocate something, we will
770  * have to go the whole way to leaf. So let's do it before attaching anything
771  * to tree, set linkage between the newborn blocks, write them if sync is
772  * required, recheck the path, free and repeat if check fails, otherwise
773  * set the last missing link (that will protect us from any truncate-generated
774  * removals - all blocks on the path are immune now) and possibly force the
775  * write on the parent block.
776  * That has a nice additional property: no special recovery from the failed
777  * allocations is needed - we simply release blocks and do not touch anything
778  * reachable from inode.
779  *
780  * `handle' can be NULL if create == 0.
781  *
782  * The BKL may not be held on entry here.  Be sure to take it early.
783  * return > 0, # of blocks mapped or allocated.
784  * return = 0, if plain lookup failed.
785  * return < 0, error case.
786  */
787 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
788 		sector_t iblock, unsigned long maxblocks,
789 		struct buffer_head *bh_result,
790 		int create, int extend_disksize)
791 {
792 	int err = -EIO;
793 	int offsets[4];
794 	Indirect chain[4];
795 	Indirect *partial;
796 	ext4_fsblk_t goal;
797 	int indirect_blks;
798 	int blocks_to_boundary = 0;
799 	int depth;
800 	struct ext4_inode_info *ei = EXT4_I(inode);
801 	int count = 0;
802 	ext4_fsblk_t first_block = 0;
803 
804 
805 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
806 	J_ASSERT(handle != NULL || create == 0);
807 	depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
808 
809 	if (depth == 0)
810 		goto out;
811 
812 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
813 
814 	/* Simplest case - block found, no allocation needed */
815 	if (!partial) {
816 		first_block = le32_to_cpu(chain[depth - 1].key);
817 		clear_buffer_new(bh_result);
818 		count++;
819 		/*map more blocks*/
820 		while (count < maxblocks && count <= blocks_to_boundary) {
821 			ext4_fsblk_t blk;
822 
823 			if (!verify_chain(chain, partial)) {
824 				/*
825 				 * Indirect block might be removed by
826 				 * truncate while we were reading it.
827 				 * Handling of that case: forget what we've
828 				 * got now. Flag the err as EAGAIN, so it
829 				 * will reread.
830 				 */
831 				err = -EAGAIN;
832 				count = 0;
833 				break;
834 			}
835 			blk = le32_to_cpu(*(chain[depth-1].p + count));
836 
837 			if (blk == first_block + count)
838 				count++;
839 			else
840 				break;
841 		}
842 		if (err != -EAGAIN)
843 			goto got_it;
844 	}
845 
846 	/* Next simple case - plain lookup or failed read of indirect block */
847 	if (!create || err == -EIO)
848 		goto cleanup;
849 
850 	mutex_lock(&ei->truncate_mutex);
851 
852 	/*
853 	 * If the indirect block is missing while we are reading
854 	 * the chain(ext4_get_branch() returns -EAGAIN err), or
855 	 * if the chain has been changed after we grab the semaphore,
856 	 * (either because another process truncated this branch, or
857 	 * another get_block allocated this branch) re-grab the chain to see if
858 	 * the request block has been allocated or not.
859 	 *
860 	 * Since we already block the truncate/other get_block
861 	 * at this point, we will have the current copy of the chain when we
862 	 * splice the branch into the tree.
863 	 */
864 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
865 		while (partial > chain) {
866 			brelse(partial->bh);
867 			partial--;
868 		}
869 		partial = ext4_get_branch(inode, depth, offsets, chain, &err);
870 		if (!partial) {
871 			count++;
872 			mutex_unlock(&ei->truncate_mutex);
873 			if (err)
874 				goto cleanup;
875 			clear_buffer_new(bh_result);
876 			goto got_it;
877 		}
878 	}
879 
880 	/*
881 	 * Okay, we need to do block allocation.  Lazily initialize the block
882 	 * allocation info here if necessary
883 	*/
884 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
885 		ext4_init_block_alloc_info(inode);
886 
887 	goal = ext4_find_goal(inode, iblock, chain, partial);
888 
889 	/* the number of blocks need to allocate for [d,t]indirect blocks */
890 	indirect_blks = (chain + depth) - partial - 1;
891 
892 	/*
893 	 * Next look up the indirect map to count the totoal number of
894 	 * direct blocks to allocate for this branch.
895 	 */
896 	count = ext4_blks_to_allocate(partial, indirect_blks,
897 					maxblocks, blocks_to_boundary);
898 	/*
899 	 * Block out ext4_truncate while we alter the tree
900 	 */
901 	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
902 				offsets + (partial - chain), partial);
903 
904 	/*
905 	 * The ext4_splice_branch call will free and forget any buffers
906 	 * on the new chain if there is a failure, but that risks using
907 	 * up transaction credits, especially for bitmaps where the
908 	 * credits cannot be returned.  Can we handle this somehow?  We
909 	 * may need to return -EAGAIN upwards in the worst case.  --sct
910 	 */
911 	if (!err)
912 		err = ext4_splice_branch(handle, inode, iblock,
913 					partial, indirect_blks, count);
914 	/*
915 	 * i_disksize growing is protected by truncate_mutex.  Don't forget to
916 	 * protect it if you're about to implement concurrent
917 	 * ext4_get_block() -bzzz
918 	*/
919 	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
920 		ei->i_disksize = inode->i_size;
921 	mutex_unlock(&ei->truncate_mutex);
922 	if (err)
923 		goto cleanup;
924 
925 	set_buffer_new(bh_result);
926 got_it:
927 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
928 	if (count > blocks_to_boundary)
929 		set_buffer_boundary(bh_result);
930 	err = count;
931 	/* Clean up and exit */
932 	partial = chain + depth - 1;	/* the whole chain */
933 cleanup:
934 	while (partial > chain) {
935 		BUFFER_TRACE(partial->bh, "call brelse");
936 		brelse(partial->bh);
937 		partial--;
938 	}
939 	BUFFER_TRACE(bh_result, "returned");
940 out:
941 	return err;
942 }
943 
944 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
945 
946 static int ext4_get_block(struct inode *inode, sector_t iblock,
947 			struct buffer_head *bh_result, int create)
948 {
949 	handle_t *handle = ext4_journal_current_handle();
950 	int ret = 0;
951 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
952 
953 	if (!create)
954 		goto get_block;		/* A read */
955 
956 	if (max_blocks == 1)
957 		goto get_block;		/* A single block get */
958 
959 	if (handle->h_transaction->t_state == T_LOCKED) {
960 		/*
961 		 * Huge direct-io writes can hold off commits for long
962 		 * periods of time.  Let this commit run.
963 		 */
964 		ext4_journal_stop(handle);
965 		handle = ext4_journal_start(inode, DIO_CREDITS);
966 		if (IS_ERR(handle))
967 			ret = PTR_ERR(handle);
968 		goto get_block;
969 	}
970 
971 	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
972 		/*
973 		 * Getting low on buffer credits...
974 		 */
975 		ret = ext4_journal_extend(handle, DIO_CREDITS);
976 		if (ret > 0) {
977 			/*
978 			 * Couldn't extend the transaction.  Start a new one.
979 			 */
980 			ret = ext4_journal_restart(handle, DIO_CREDITS);
981 		}
982 	}
983 
984 get_block:
985 	if (ret == 0) {
986 		ret = ext4_get_blocks_wrap(handle, inode, iblock,
987 					max_blocks, bh_result, create, 0);
988 		if (ret > 0) {
989 			bh_result->b_size = (ret << inode->i_blkbits);
990 			ret = 0;
991 		}
992 	}
993 	return ret;
994 }
995 
996 /*
997  * `handle' can be NULL if create is zero
998  */
999 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1000 				long block, int create, int *errp)
1001 {
1002 	struct buffer_head dummy;
1003 	int fatal = 0, err;
1004 
1005 	J_ASSERT(handle != NULL || create == 0);
1006 
1007 	dummy.b_state = 0;
1008 	dummy.b_blocknr = -1000;
1009 	buffer_trace_init(&dummy.b_history);
1010 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1011 					&dummy, create, 1);
1012 	/*
1013 	 * ext4_get_blocks_handle() returns number of blocks
1014 	 * mapped. 0 in case of a HOLE.
1015 	 */
1016 	if (err > 0) {
1017 		if (err > 1)
1018 			WARN_ON(1);
1019 		err = 0;
1020 	}
1021 	*errp = err;
1022 	if (!err && buffer_mapped(&dummy)) {
1023 		struct buffer_head *bh;
1024 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1025 		if (!bh) {
1026 			*errp = -EIO;
1027 			goto err;
1028 		}
1029 		if (buffer_new(&dummy)) {
1030 			J_ASSERT(create != 0);
1031 			J_ASSERT(handle != 0);
1032 
1033 			/*
1034 			 * Now that we do not always journal data, we should
1035 			 * keep in mind whether this should always journal the
1036 			 * new buffer as metadata.  For now, regular file
1037 			 * writes use ext4_get_block instead, so it's not a
1038 			 * problem.
1039 			 */
1040 			lock_buffer(bh);
1041 			BUFFER_TRACE(bh, "call get_create_access");
1042 			fatal = ext4_journal_get_create_access(handle, bh);
1043 			if (!fatal && !buffer_uptodate(bh)) {
1044 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1045 				set_buffer_uptodate(bh);
1046 			}
1047 			unlock_buffer(bh);
1048 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1049 			err = ext4_journal_dirty_metadata(handle, bh);
1050 			if (!fatal)
1051 				fatal = err;
1052 		} else {
1053 			BUFFER_TRACE(bh, "not a new buffer");
1054 		}
1055 		if (fatal) {
1056 			*errp = fatal;
1057 			brelse(bh);
1058 			bh = NULL;
1059 		}
1060 		return bh;
1061 	}
1062 err:
1063 	return NULL;
1064 }
1065 
1066 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1067 			       int block, int create, int *err)
1068 {
1069 	struct buffer_head * bh;
1070 
1071 	bh = ext4_getblk(handle, inode, block, create, err);
1072 	if (!bh)
1073 		return bh;
1074 	if (buffer_uptodate(bh))
1075 		return bh;
1076 	ll_rw_block(READ_META, 1, &bh);
1077 	wait_on_buffer(bh);
1078 	if (buffer_uptodate(bh))
1079 		return bh;
1080 	put_bh(bh);
1081 	*err = -EIO;
1082 	return NULL;
1083 }
1084 
1085 static int walk_page_buffers(	handle_t *handle,
1086 				struct buffer_head *head,
1087 				unsigned from,
1088 				unsigned to,
1089 				int *partial,
1090 				int (*fn)(	handle_t *handle,
1091 						struct buffer_head *bh))
1092 {
1093 	struct buffer_head *bh;
1094 	unsigned block_start, block_end;
1095 	unsigned blocksize = head->b_size;
1096 	int err, ret = 0;
1097 	struct buffer_head *next;
1098 
1099 	for (	bh = head, block_start = 0;
1100 		ret == 0 && (bh != head || !block_start);
1101 		block_start = block_end, bh = next)
1102 	{
1103 		next = bh->b_this_page;
1104 		block_end = block_start + blocksize;
1105 		if (block_end <= from || block_start >= to) {
1106 			if (partial && !buffer_uptodate(bh))
1107 				*partial = 1;
1108 			continue;
1109 		}
1110 		err = (*fn)(handle, bh);
1111 		if (!ret)
1112 			ret = err;
1113 	}
1114 	return ret;
1115 }
1116 
1117 /*
1118  * To preserve ordering, it is essential that the hole instantiation and
1119  * the data write be encapsulated in a single transaction.  We cannot
1120  * close off a transaction and start a new one between the ext4_get_block()
1121  * and the commit_write().  So doing the jbd2_journal_start at the start of
1122  * prepare_write() is the right place.
1123  *
1124  * Also, this function can nest inside ext4_writepage() ->
1125  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1126  * has generated enough buffer credits to do the whole page.  So we won't
1127  * block on the journal in that case, which is good, because the caller may
1128  * be PF_MEMALLOC.
1129  *
1130  * By accident, ext4 can be reentered when a transaction is open via
1131  * quota file writes.  If we were to commit the transaction while thus
1132  * reentered, there can be a deadlock - we would be holding a quota
1133  * lock, and the commit would never complete if another thread had a
1134  * transaction open and was blocking on the quota lock - a ranking
1135  * violation.
1136  *
1137  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1138  * will _not_ run commit under these circumstances because handle->h_ref
1139  * is elevated.  We'll still have enough credits for the tiny quotafile
1140  * write.
1141  */
1142 static int do_journal_get_write_access(handle_t *handle,
1143 					struct buffer_head *bh)
1144 {
1145 	if (!buffer_mapped(bh) || buffer_freed(bh))
1146 		return 0;
1147 	return ext4_journal_get_write_access(handle, bh);
1148 }
1149 
1150 /*
1151  * The idea of this helper function is following:
1152  * if prepare_write has allocated some blocks, but not all of them, the
1153  * transaction must include the content of the newly allocated blocks.
1154  * This content is expected to be set to zeroes by block_prepare_write().
1155  * 2006/10/14  SAW
1156  */
1157 static int ext4_prepare_failure(struct file *file, struct page *page,
1158 				unsigned from, unsigned to)
1159 {
1160 	struct address_space *mapping;
1161 	struct buffer_head *bh, *head, *next;
1162 	unsigned block_start, block_end;
1163 	unsigned blocksize;
1164 	int ret;
1165 	handle_t *handle = ext4_journal_current_handle();
1166 
1167 	mapping = page->mapping;
1168 	if (ext4_should_writeback_data(mapping->host)) {
1169 		/* optimization: no constraints about data */
1170 skip:
1171 		return ext4_journal_stop(handle);
1172 	}
1173 
1174 	head = page_buffers(page);
1175 	blocksize = head->b_size;
1176 	for (	bh = head, block_start = 0;
1177 		bh != head || !block_start;
1178 	    	block_start = block_end, bh = next)
1179 	{
1180 		next = bh->b_this_page;
1181 		block_end = block_start + blocksize;
1182 		if (block_end <= from)
1183 			continue;
1184 		if (block_start >= to) {
1185 			block_start = to;
1186 			break;
1187 		}
1188 		if (!buffer_mapped(bh))
1189 		/* prepare_write failed on this bh */
1190 			break;
1191 		if (ext4_should_journal_data(mapping->host)) {
1192 			ret = do_journal_get_write_access(handle, bh);
1193 			if (ret) {
1194 				ext4_journal_stop(handle);
1195 				return ret;
1196 			}
1197 		}
1198 	/*
1199 	 * block_start here becomes the first block where the current iteration
1200 	 * of prepare_write failed.
1201 	 */
1202 	}
1203 	if (block_start <= from)
1204 		goto skip;
1205 
1206 	/* commit allocated and zeroed buffers */
1207 	return mapping->a_ops->commit_write(file, page, from, block_start);
1208 }
1209 
1210 static int ext4_prepare_write(struct file *file, struct page *page,
1211 			      unsigned from, unsigned to)
1212 {
1213 	struct inode *inode = page->mapping->host;
1214 	int ret, ret2;
1215 	int needed_blocks = ext4_writepage_trans_blocks(inode);
1216 	handle_t *handle;
1217 	int retries = 0;
1218 
1219 retry:
1220 	handle = ext4_journal_start(inode, needed_blocks);
1221 	if (IS_ERR(handle))
1222 		return PTR_ERR(handle);
1223 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1224 		ret = nobh_prepare_write(page, from, to, ext4_get_block);
1225 	else
1226 		ret = block_prepare_write(page, from, to, ext4_get_block);
1227 	if (ret)
1228 		goto failure;
1229 
1230 	if (ext4_should_journal_data(inode)) {
1231 		ret = walk_page_buffers(handle, page_buffers(page),
1232 				from, to, NULL, do_journal_get_write_access);
1233 		if (ret)
1234 			/* fatal error, just put the handle and return */
1235 			ext4_journal_stop(handle);
1236 	}
1237 	return ret;
1238 
1239 failure:
1240 	ret2 = ext4_prepare_failure(file, page, from, to);
1241 	if (ret2 < 0)
1242 		return ret2;
1243 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1244 		goto retry;
1245 	/* retry number exceeded, or other error like -EDQUOT */
1246 	return ret;
1247 }
1248 
1249 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1250 {
1251 	int err = jbd2_journal_dirty_data(handle, bh);
1252 	if (err)
1253 		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1254 						bh, handle,err);
1255 	return err;
1256 }
1257 
1258 /* For commit_write() in data=journal mode */
1259 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1260 {
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	return ext4_journal_dirty_metadata(handle, bh);
1265 }
1266 
1267 /*
1268  * We need to pick up the new inode size which generic_commit_write gave us
1269  * `file' can be NULL - eg, when called from page_symlink().
1270  *
1271  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1272  * buffers are managed internally.
1273  */
1274 static int ext4_ordered_commit_write(struct file *file, struct page *page,
1275 			     unsigned from, unsigned to)
1276 {
1277 	handle_t *handle = ext4_journal_current_handle();
1278 	struct inode *inode = page->mapping->host;
1279 	int ret = 0, ret2;
1280 
1281 	ret = walk_page_buffers(handle, page_buffers(page),
1282 		from, to, NULL, ext4_journal_dirty_data);
1283 
1284 	if (ret == 0) {
1285 		/*
1286 		 * generic_commit_write() will run mark_inode_dirty() if i_size
1287 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1288 		 * into that.
1289 		 */
1290 		loff_t new_i_size;
1291 
1292 		new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1293 		if (new_i_size > EXT4_I(inode)->i_disksize)
1294 			EXT4_I(inode)->i_disksize = new_i_size;
1295 		ret = generic_commit_write(file, page, from, to);
1296 	}
1297 	ret2 = ext4_journal_stop(handle);
1298 	if (!ret)
1299 		ret = ret2;
1300 	return ret;
1301 }
1302 
1303 static int ext4_writeback_commit_write(struct file *file, struct page *page,
1304 			     unsigned from, unsigned to)
1305 {
1306 	handle_t *handle = ext4_journal_current_handle();
1307 	struct inode *inode = page->mapping->host;
1308 	int ret = 0, ret2;
1309 	loff_t new_i_size;
1310 
1311 	new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1312 	if (new_i_size > EXT4_I(inode)->i_disksize)
1313 		EXT4_I(inode)->i_disksize = new_i_size;
1314 
1315 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1316 		ret = nobh_commit_write(file, page, from, to);
1317 	else
1318 		ret = generic_commit_write(file, page, from, to);
1319 
1320 	ret2 = ext4_journal_stop(handle);
1321 	if (!ret)
1322 		ret = ret2;
1323 	return ret;
1324 }
1325 
1326 static int ext4_journalled_commit_write(struct file *file,
1327 			struct page *page, unsigned from, unsigned to)
1328 {
1329 	handle_t *handle = ext4_journal_current_handle();
1330 	struct inode *inode = page->mapping->host;
1331 	int ret = 0, ret2;
1332 	int partial = 0;
1333 	loff_t pos;
1334 
1335 	/*
1336 	 * Here we duplicate the generic_commit_write() functionality
1337 	 */
1338 	pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1339 
1340 	ret = walk_page_buffers(handle, page_buffers(page), from,
1341 				to, &partial, commit_write_fn);
1342 	if (!partial)
1343 		SetPageUptodate(page);
1344 	if (pos > inode->i_size)
1345 		i_size_write(inode, pos);
1346 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1347 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1348 		EXT4_I(inode)->i_disksize = inode->i_size;
1349 		ret2 = ext4_mark_inode_dirty(handle, inode);
1350 		if (!ret)
1351 			ret = ret2;
1352 	}
1353 	ret2 = ext4_journal_stop(handle);
1354 	if (!ret)
1355 		ret = ret2;
1356 	return ret;
1357 }
1358 
1359 /*
1360  * bmap() is special.  It gets used by applications such as lilo and by
1361  * the swapper to find the on-disk block of a specific piece of data.
1362  *
1363  * Naturally, this is dangerous if the block concerned is still in the
1364  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1365  * filesystem and enables swap, then they may get a nasty shock when the
1366  * data getting swapped to that swapfile suddenly gets overwritten by
1367  * the original zero's written out previously to the journal and
1368  * awaiting writeback in the kernel's buffer cache.
1369  *
1370  * So, if we see any bmap calls here on a modified, data-journaled file,
1371  * take extra steps to flush any blocks which might be in the cache.
1372  */
1373 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1374 {
1375 	struct inode *inode = mapping->host;
1376 	journal_t *journal;
1377 	int err;
1378 
1379 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1380 		/*
1381 		 * This is a REALLY heavyweight approach, but the use of
1382 		 * bmap on dirty files is expected to be extremely rare:
1383 		 * only if we run lilo or swapon on a freshly made file
1384 		 * do we expect this to happen.
1385 		 *
1386 		 * (bmap requires CAP_SYS_RAWIO so this does not
1387 		 * represent an unprivileged user DOS attack --- we'd be
1388 		 * in trouble if mortal users could trigger this path at
1389 		 * will.)
1390 		 *
1391 		 * NB. EXT4_STATE_JDATA is not set on files other than
1392 		 * regular files.  If somebody wants to bmap a directory
1393 		 * or symlink and gets confused because the buffer
1394 		 * hasn't yet been flushed to disk, they deserve
1395 		 * everything they get.
1396 		 */
1397 
1398 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1399 		journal = EXT4_JOURNAL(inode);
1400 		jbd2_journal_lock_updates(journal);
1401 		err = jbd2_journal_flush(journal);
1402 		jbd2_journal_unlock_updates(journal);
1403 
1404 		if (err)
1405 			return 0;
1406 	}
1407 
1408 	return generic_block_bmap(mapping,block,ext4_get_block);
1409 }
1410 
1411 static int bget_one(handle_t *handle, struct buffer_head *bh)
1412 {
1413 	get_bh(bh);
1414 	return 0;
1415 }
1416 
1417 static int bput_one(handle_t *handle, struct buffer_head *bh)
1418 {
1419 	put_bh(bh);
1420 	return 0;
1421 }
1422 
1423 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1424 {
1425 	if (buffer_mapped(bh))
1426 		return ext4_journal_dirty_data(handle, bh);
1427 	return 0;
1428 }
1429 
1430 /*
1431  * Note that we always start a transaction even if we're not journalling
1432  * data.  This is to preserve ordering: any hole instantiation within
1433  * __block_write_full_page -> ext4_get_block() should be journalled
1434  * along with the data so we don't crash and then get metadata which
1435  * refers to old data.
1436  *
1437  * In all journalling modes block_write_full_page() will start the I/O.
1438  *
1439  * Problem:
1440  *
1441  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1442  *		ext4_writepage()
1443  *
1444  * Similar for:
1445  *
1446  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1447  *
1448  * Same applies to ext4_get_block().  We will deadlock on various things like
1449  * lock_journal and i_truncate_mutex.
1450  *
1451  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1452  * allocations fail.
1453  *
1454  * 16May01: If we're reentered then journal_current_handle() will be
1455  *	    non-zero. We simply *return*.
1456  *
1457  * 1 July 2001: @@@ FIXME:
1458  *   In journalled data mode, a data buffer may be metadata against the
1459  *   current transaction.  But the same file is part of a shared mapping
1460  *   and someone does a writepage() on it.
1461  *
1462  *   We will move the buffer onto the async_data list, but *after* it has
1463  *   been dirtied. So there's a small window where we have dirty data on
1464  *   BJ_Metadata.
1465  *
1466  *   Note that this only applies to the last partial page in the file.  The
1467  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1468  *   broken code anyway: it's wrong for msync()).
1469  *
1470  *   It's a rare case: affects the final partial page, for journalled data
1471  *   where the file is subject to bith write() and writepage() in the same
1472  *   transction.  To fix it we'll need a custom block_write_full_page().
1473  *   We'll probably need that anyway for journalling writepage() output.
1474  *
1475  * We don't honour synchronous mounts for writepage().  That would be
1476  * disastrous.  Any write() or metadata operation will sync the fs for
1477  * us.
1478  *
1479  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1480  * we don't need to open a transaction here.
1481  */
1482 static int ext4_ordered_writepage(struct page *page,
1483 				struct writeback_control *wbc)
1484 {
1485 	struct inode *inode = page->mapping->host;
1486 	struct buffer_head *page_bufs;
1487 	handle_t *handle = NULL;
1488 	int ret = 0;
1489 	int err;
1490 
1491 	J_ASSERT(PageLocked(page));
1492 
1493 	/*
1494 	 * We give up here if we're reentered, because it might be for a
1495 	 * different filesystem.
1496 	 */
1497 	if (ext4_journal_current_handle())
1498 		goto out_fail;
1499 
1500 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1501 
1502 	if (IS_ERR(handle)) {
1503 		ret = PTR_ERR(handle);
1504 		goto out_fail;
1505 	}
1506 
1507 	if (!page_has_buffers(page)) {
1508 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1509 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1510 	}
1511 	page_bufs = page_buffers(page);
1512 	walk_page_buffers(handle, page_bufs, 0,
1513 			PAGE_CACHE_SIZE, NULL, bget_one);
1514 
1515 	ret = block_write_full_page(page, ext4_get_block, wbc);
1516 
1517 	/*
1518 	 * The page can become unlocked at any point now, and
1519 	 * truncate can then come in and change things.  So we
1520 	 * can't touch *page from now on.  But *page_bufs is
1521 	 * safe due to elevated refcount.
1522 	 */
1523 
1524 	/*
1525 	 * And attach them to the current transaction.  But only if
1526 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1527 	 * and generally junk.
1528 	 */
1529 	if (ret == 0) {
1530 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1531 					NULL, jbd2_journal_dirty_data_fn);
1532 		if (!ret)
1533 			ret = err;
1534 	}
1535 	walk_page_buffers(handle, page_bufs, 0,
1536 			PAGE_CACHE_SIZE, NULL, bput_one);
1537 	err = ext4_journal_stop(handle);
1538 	if (!ret)
1539 		ret = err;
1540 	return ret;
1541 
1542 out_fail:
1543 	redirty_page_for_writepage(wbc, page);
1544 	unlock_page(page);
1545 	return ret;
1546 }
1547 
1548 static int ext4_writeback_writepage(struct page *page,
1549 				struct writeback_control *wbc)
1550 {
1551 	struct inode *inode = page->mapping->host;
1552 	handle_t *handle = NULL;
1553 	int ret = 0;
1554 	int err;
1555 
1556 	if (ext4_journal_current_handle())
1557 		goto out_fail;
1558 
1559 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1560 	if (IS_ERR(handle)) {
1561 		ret = PTR_ERR(handle);
1562 		goto out_fail;
1563 	}
1564 
1565 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1566 		ret = nobh_writepage(page, ext4_get_block, wbc);
1567 	else
1568 		ret = block_write_full_page(page, ext4_get_block, wbc);
1569 
1570 	err = ext4_journal_stop(handle);
1571 	if (!ret)
1572 		ret = err;
1573 	return ret;
1574 
1575 out_fail:
1576 	redirty_page_for_writepage(wbc, page);
1577 	unlock_page(page);
1578 	return ret;
1579 }
1580 
1581 static int ext4_journalled_writepage(struct page *page,
1582 				struct writeback_control *wbc)
1583 {
1584 	struct inode *inode = page->mapping->host;
1585 	handle_t *handle = NULL;
1586 	int ret = 0;
1587 	int err;
1588 
1589 	if (ext4_journal_current_handle())
1590 		goto no_write;
1591 
1592 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1593 	if (IS_ERR(handle)) {
1594 		ret = PTR_ERR(handle);
1595 		goto no_write;
1596 	}
1597 
1598 	if (!page_has_buffers(page) || PageChecked(page)) {
1599 		/*
1600 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1601 		 * doesn't seem much point in redirtying the page here.
1602 		 */
1603 		ClearPageChecked(page);
1604 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1605 					ext4_get_block);
1606 		if (ret != 0) {
1607 			ext4_journal_stop(handle);
1608 			goto out_unlock;
1609 		}
1610 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1611 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1612 
1613 		err = walk_page_buffers(handle, page_buffers(page), 0,
1614 				PAGE_CACHE_SIZE, NULL, commit_write_fn);
1615 		if (ret == 0)
1616 			ret = err;
1617 		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1618 		unlock_page(page);
1619 	} else {
1620 		/*
1621 		 * It may be a page full of checkpoint-mode buffers.  We don't
1622 		 * really know unless we go poke around in the buffer_heads.
1623 		 * But block_write_full_page will do the right thing.
1624 		 */
1625 		ret = block_write_full_page(page, ext4_get_block, wbc);
1626 	}
1627 	err = ext4_journal_stop(handle);
1628 	if (!ret)
1629 		ret = err;
1630 out:
1631 	return ret;
1632 
1633 no_write:
1634 	redirty_page_for_writepage(wbc, page);
1635 out_unlock:
1636 	unlock_page(page);
1637 	goto out;
1638 }
1639 
1640 static int ext4_readpage(struct file *file, struct page *page)
1641 {
1642 	return mpage_readpage(page, ext4_get_block);
1643 }
1644 
1645 static int
1646 ext4_readpages(struct file *file, struct address_space *mapping,
1647 		struct list_head *pages, unsigned nr_pages)
1648 {
1649 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1650 }
1651 
1652 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1653 {
1654 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1655 
1656 	/*
1657 	 * If it's a full truncate we just forget about the pending dirtying
1658 	 */
1659 	if (offset == 0)
1660 		ClearPageChecked(page);
1661 
1662 	jbd2_journal_invalidatepage(journal, page, offset);
1663 }
1664 
1665 static int ext4_releasepage(struct page *page, gfp_t wait)
1666 {
1667 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1668 
1669 	WARN_ON(PageChecked(page));
1670 	if (!page_has_buffers(page))
1671 		return 0;
1672 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1673 }
1674 
1675 /*
1676  * If the O_DIRECT write will extend the file then add this inode to the
1677  * orphan list.  So recovery will truncate it back to the original size
1678  * if the machine crashes during the write.
1679  *
1680  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1681  * crashes then stale disk data _may_ be exposed inside the file.
1682  */
1683 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1684 			const struct iovec *iov, loff_t offset,
1685 			unsigned long nr_segs)
1686 {
1687 	struct file *file = iocb->ki_filp;
1688 	struct inode *inode = file->f_mapping->host;
1689 	struct ext4_inode_info *ei = EXT4_I(inode);
1690 	handle_t *handle = NULL;
1691 	ssize_t ret;
1692 	int orphan = 0;
1693 	size_t count = iov_length(iov, nr_segs);
1694 
1695 	if (rw == WRITE) {
1696 		loff_t final_size = offset + count;
1697 
1698 		handle = ext4_journal_start(inode, DIO_CREDITS);
1699 		if (IS_ERR(handle)) {
1700 			ret = PTR_ERR(handle);
1701 			goto out;
1702 		}
1703 		if (final_size > inode->i_size) {
1704 			ret = ext4_orphan_add(handle, inode);
1705 			if (ret)
1706 				goto out_stop;
1707 			orphan = 1;
1708 			ei->i_disksize = inode->i_size;
1709 		}
1710 	}
1711 
1712 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1713 				 offset, nr_segs,
1714 				 ext4_get_block, NULL);
1715 
1716 	/*
1717 	 * Reacquire the handle: ext4_get_block() can restart the transaction
1718 	 */
1719 	handle = ext4_journal_current_handle();
1720 
1721 out_stop:
1722 	if (handle) {
1723 		int err;
1724 
1725 		if (orphan && inode->i_nlink)
1726 			ext4_orphan_del(handle, inode);
1727 		if (orphan && ret > 0) {
1728 			loff_t end = offset + ret;
1729 			if (end > inode->i_size) {
1730 				ei->i_disksize = end;
1731 				i_size_write(inode, end);
1732 				/*
1733 				 * We're going to return a positive `ret'
1734 				 * here due to non-zero-length I/O, so there's
1735 				 * no way of reporting error returns from
1736 				 * ext4_mark_inode_dirty() to userspace.  So
1737 				 * ignore it.
1738 				 */
1739 				ext4_mark_inode_dirty(handle, inode);
1740 			}
1741 		}
1742 		err = ext4_journal_stop(handle);
1743 		if (ret == 0)
1744 			ret = err;
1745 	}
1746 out:
1747 	return ret;
1748 }
1749 
1750 /*
1751  * Pages can be marked dirty completely asynchronously from ext4's journalling
1752  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1753  * much here because ->set_page_dirty is called under VFS locks.  The page is
1754  * not necessarily locked.
1755  *
1756  * We cannot just dirty the page and leave attached buffers clean, because the
1757  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1758  * or jbddirty because all the journalling code will explode.
1759  *
1760  * So what we do is to mark the page "pending dirty" and next time writepage
1761  * is called, propagate that into the buffers appropriately.
1762  */
1763 static int ext4_journalled_set_page_dirty(struct page *page)
1764 {
1765 	SetPageChecked(page);
1766 	return __set_page_dirty_nobuffers(page);
1767 }
1768 
1769 static const struct address_space_operations ext4_ordered_aops = {
1770 	.readpage	= ext4_readpage,
1771 	.readpages	= ext4_readpages,
1772 	.writepage	= ext4_ordered_writepage,
1773 	.sync_page	= block_sync_page,
1774 	.prepare_write	= ext4_prepare_write,
1775 	.commit_write	= ext4_ordered_commit_write,
1776 	.bmap		= ext4_bmap,
1777 	.invalidatepage	= ext4_invalidatepage,
1778 	.releasepage	= ext4_releasepage,
1779 	.direct_IO	= ext4_direct_IO,
1780 	.migratepage	= buffer_migrate_page,
1781 };
1782 
1783 static const struct address_space_operations ext4_writeback_aops = {
1784 	.readpage	= ext4_readpage,
1785 	.readpages	= ext4_readpages,
1786 	.writepage	= ext4_writeback_writepage,
1787 	.sync_page	= block_sync_page,
1788 	.prepare_write	= ext4_prepare_write,
1789 	.commit_write	= ext4_writeback_commit_write,
1790 	.bmap		= ext4_bmap,
1791 	.invalidatepage	= ext4_invalidatepage,
1792 	.releasepage	= ext4_releasepage,
1793 	.direct_IO	= ext4_direct_IO,
1794 	.migratepage	= buffer_migrate_page,
1795 };
1796 
1797 static const struct address_space_operations ext4_journalled_aops = {
1798 	.readpage	= ext4_readpage,
1799 	.readpages	= ext4_readpages,
1800 	.writepage	= ext4_journalled_writepage,
1801 	.sync_page	= block_sync_page,
1802 	.prepare_write	= ext4_prepare_write,
1803 	.commit_write	= ext4_journalled_commit_write,
1804 	.set_page_dirty	= ext4_journalled_set_page_dirty,
1805 	.bmap		= ext4_bmap,
1806 	.invalidatepage	= ext4_invalidatepage,
1807 	.releasepage	= ext4_releasepage,
1808 };
1809 
1810 void ext4_set_aops(struct inode *inode)
1811 {
1812 	if (ext4_should_order_data(inode))
1813 		inode->i_mapping->a_ops = &ext4_ordered_aops;
1814 	else if (ext4_should_writeback_data(inode))
1815 		inode->i_mapping->a_ops = &ext4_writeback_aops;
1816 	else
1817 		inode->i_mapping->a_ops = &ext4_journalled_aops;
1818 }
1819 
1820 /*
1821  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1822  * up to the end of the block which corresponds to `from'.
1823  * This required during truncate. We need to physically zero the tail end
1824  * of that block so it doesn't yield old data if the file is later grown.
1825  */
1826 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1827 		struct address_space *mapping, loff_t from)
1828 {
1829 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1830 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1831 	unsigned blocksize, iblock, length, pos;
1832 	struct inode *inode = mapping->host;
1833 	struct buffer_head *bh;
1834 	int err = 0;
1835 	void *kaddr;
1836 
1837 	blocksize = inode->i_sb->s_blocksize;
1838 	length = blocksize - (offset & (blocksize - 1));
1839 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1840 
1841 	/*
1842 	 * For "nobh" option,  we can only work if we don't need to
1843 	 * read-in the page - otherwise we create buffers to do the IO.
1844 	 */
1845 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1846 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1847 		kaddr = kmap_atomic(page, KM_USER0);
1848 		memset(kaddr + offset, 0, length);
1849 		flush_dcache_page(page);
1850 		kunmap_atomic(kaddr, KM_USER0);
1851 		set_page_dirty(page);
1852 		goto unlock;
1853 	}
1854 
1855 	if (!page_has_buffers(page))
1856 		create_empty_buffers(page, blocksize, 0);
1857 
1858 	/* Find the buffer that contains "offset" */
1859 	bh = page_buffers(page);
1860 	pos = blocksize;
1861 	while (offset >= pos) {
1862 		bh = bh->b_this_page;
1863 		iblock++;
1864 		pos += blocksize;
1865 	}
1866 
1867 	err = 0;
1868 	if (buffer_freed(bh)) {
1869 		BUFFER_TRACE(bh, "freed: skip");
1870 		goto unlock;
1871 	}
1872 
1873 	if (!buffer_mapped(bh)) {
1874 		BUFFER_TRACE(bh, "unmapped");
1875 		ext4_get_block(inode, iblock, bh, 0);
1876 		/* unmapped? It's a hole - nothing to do */
1877 		if (!buffer_mapped(bh)) {
1878 			BUFFER_TRACE(bh, "still unmapped");
1879 			goto unlock;
1880 		}
1881 	}
1882 
1883 	/* Ok, it's mapped. Make sure it's up-to-date */
1884 	if (PageUptodate(page))
1885 		set_buffer_uptodate(bh);
1886 
1887 	if (!buffer_uptodate(bh)) {
1888 		err = -EIO;
1889 		ll_rw_block(READ, 1, &bh);
1890 		wait_on_buffer(bh);
1891 		/* Uhhuh. Read error. Complain and punt. */
1892 		if (!buffer_uptodate(bh))
1893 			goto unlock;
1894 	}
1895 
1896 	if (ext4_should_journal_data(inode)) {
1897 		BUFFER_TRACE(bh, "get write access");
1898 		err = ext4_journal_get_write_access(handle, bh);
1899 		if (err)
1900 			goto unlock;
1901 	}
1902 
1903 	kaddr = kmap_atomic(page, KM_USER0);
1904 	memset(kaddr + offset, 0, length);
1905 	flush_dcache_page(page);
1906 	kunmap_atomic(kaddr, KM_USER0);
1907 
1908 	BUFFER_TRACE(bh, "zeroed end of block");
1909 
1910 	err = 0;
1911 	if (ext4_should_journal_data(inode)) {
1912 		err = ext4_journal_dirty_metadata(handle, bh);
1913 	} else {
1914 		if (ext4_should_order_data(inode))
1915 			err = ext4_journal_dirty_data(handle, bh);
1916 		mark_buffer_dirty(bh);
1917 	}
1918 
1919 unlock:
1920 	unlock_page(page);
1921 	page_cache_release(page);
1922 	return err;
1923 }
1924 
1925 /*
1926  * Probably it should be a library function... search for first non-zero word
1927  * or memcmp with zero_page, whatever is better for particular architecture.
1928  * Linus?
1929  */
1930 static inline int all_zeroes(__le32 *p, __le32 *q)
1931 {
1932 	while (p < q)
1933 		if (*p++)
1934 			return 0;
1935 	return 1;
1936 }
1937 
1938 /**
1939  *	ext4_find_shared - find the indirect blocks for partial truncation.
1940  *	@inode:	  inode in question
1941  *	@depth:	  depth of the affected branch
1942  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1943  *	@chain:	  place to store the pointers to partial indirect blocks
1944  *	@top:	  place to the (detached) top of branch
1945  *
1946  *	This is a helper function used by ext4_truncate().
1947  *
1948  *	When we do truncate() we may have to clean the ends of several
1949  *	indirect blocks but leave the blocks themselves alive. Block is
1950  *	partially truncated if some data below the new i_size is refered
1951  *	from it (and it is on the path to the first completely truncated
1952  *	data block, indeed).  We have to free the top of that path along
1953  *	with everything to the right of the path. Since no allocation
1954  *	past the truncation point is possible until ext4_truncate()
1955  *	finishes, we may safely do the latter, but top of branch may
1956  *	require special attention - pageout below the truncation point
1957  *	might try to populate it.
1958  *
1959  *	We atomically detach the top of branch from the tree, store the
1960  *	block number of its root in *@top, pointers to buffer_heads of
1961  *	partially truncated blocks - in @chain[].bh and pointers to
1962  *	their last elements that should not be removed - in
1963  *	@chain[].p. Return value is the pointer to last filled element
1964  *	of @chain.
1965  *
1966  *	The work left to caller to do the actual freeing of subtrees:
1967  *		a) free the subtree starting from *@top
1968  *		b) free the subtrees whose roots are stored in
1969  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1970  *		c) free the subtrees growing from the inode past the @chain[0].
1971  *			(no partially truncated stuff there).  */
1972 
1973 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1974 			int offsets[4], Indirect chain[4], __le32 *top)
1975 {
1976 	Indirect *partial, *p;
1977 	int k, err;
1978 
1979 	*top = 0;
1980 	/* Make k index the deepest non-null offest + 1 */
1981 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1982 		;
1983 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1984 	/* Writer: pointers */
1985 	if (!partial)
1986 		partial = chain + k-1;
1987 	/*
1988 	 * If the branch acquired continuation since we've looked at it -
1989 	 * fine, it should all survive and (new) top doesn't belong to us.
1990 	 */
1991 	if (!partial->key && *partial->p)
1992 		/* Writer: end */
1993 		goto no_top;
1994 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1995 		;
1996 	/*
1997 	 * OK, we've found the last block that must survive. The rest of our
1998 	 * branch should be detached before unlocking. However, if that rest
1999 	 * of branch is all ours and does not grow immediately from the inode
2000 	 * it's easier to cheat and just decrement partial->p.
2001 	 */
2002 	if (p == chain + k - 1 && p > chain) {
2003 		p->p--;
2004 	} else {
2005 		*top = *p->p;
2006 		/* Nope, don't do this in ext4.  Must leave the tree intact */
2007 #if 0
2008 		*p->p = 0;
2009 #endif
2010 	}
2011 	/* Writer: end */
2012 
2013 	while(partial > p) {
2014 		brelse(partial->bh);
2015 		partial--;
2016 	}
2017 no_top:
2018 	return partial;
2019 }
2020 
2021 /*
2022  * Zero a number of block pointers in either an inode or an indirect block.
2023  * If we restart the transaction we must again get write access to the
2024  * indirect block for further modification.
2025  *
2026  * We release `count' blocks on disk, but (last - first) may be greater
2027  * than `count' because there can be holes in there.
2028  */
2029 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2030 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2031 		unsigned long count, __le32 *first, __le32 *last)
2032 {
2033 	__le32 *p;
2034 	if (try_to_extend_transaction(handle, inode)) {
2035 		if (bh) {
2036 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2037 			ext4_journal_dirty_metadata(handle, bh);
2038 		}
2039 		ext4_mark_inode_dirty(handle, inode);
2040 		ext4_journal_test_restart(handle, inode);
2041 		if (bh) {
2042 			BUFFER_TRACE(bh, "retaking write access");
2043 			ext4_journal_get_write_access(handle, bh);
2044 		}
2045 	}
2046 
2047 	/*
2048 	 * Any buffers which are on the journal will be in memory. We find
2049 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2050 	 * on them.  We've already detached each block from the file, so
2051 	 * bforget() in jbd2_journal_forget() should be safe.
2052 	 *
2053 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2054 	 */
2055 	for (p = first; p < last; p++) {
2056 		u32 nr = le32_to_cpu(*p);
2057 		if (nr) {
2058 			struct buffer_head *bh;
2059 
2060 			*p = 0;
2061 			bh = sb_find_get_block(inode->i_sb, nr);
2062 			ext4_forget(handle, 0, inode, bh, nr);
2063 		}
2064 	}
2065 
2066 	ext4_free_blocks(handle, inode, block_to_free, count);
2067 }
2068 
2069 /**
2070  * ext4_free_data - free a list of data blocks
2071  * @handle:	handle for this transaction
2072  * @inode:	inode we are dealing with
2073  * @this_bh:	indirect buffer_head which contains *@first and *@last
2074  * @first:	array of block numbers
2075  * @last:	points immediately past the end of array
2076  *
2077  * We are freeing all blocks refered from that array (numbers are stored as
2078  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2079  *
2080  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2081  * blocks are contiguous then releasing them at one time will only affect one
2082  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2083  * actually use a lot of journal space.
2084  *
2085  * @this_bh will be %NULL if @first and @last point into the inode's direct
2086  * block pointers.
2087  */
2088 static void ext4_free_data(handle_t *handle, struct inode *inode,
2089 			   struct buffer_head *this_bh,
2090 			   __le32 *first, __le32 *last)
2091 {
2092 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2093 	unsigned long count = 0;	    /* Number of blocks in the run */
2094 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2095 					       corresponding to
2096 					       block_to_free */
2097 	ext4_fsblk_t nr;		    /* Current block # */
2098 	__le32 *p;			    /* Pointer into inode/ind
2099 					       for current block */
2100 	int err;
2101 
2102 	if (this_bh) {				/* For indirect block */
2103 		BUFFER_TRACE(this_bh, "get_write_access");
2104 		err = ext4_journal_get_write_access(handle, this_bh);
2105 		/* Important: if we can't update the indirect pointers
2106 		 * to the blocks, we can't free them. */
2107 		if (err)
2108 			return;
2109 	}
2110 
2111 	for (p = first; p < last; p++) {
2112 		nr = le32_to_cpu(*p);
2113 		if (nr) {
2114 			/* accumulate blocks to free if they're contiguous */
2115 			if (count == 0) {
2116 				block_to_free = nr;
2117 				block_to_free_p = p;
2118 				count = 1;
2119 			} else if (nr == block_to_free + count) {
2120 				count++;
2121 			} else {
2122 				ext4_clear_blocks(handle, inode, this_bh,
2123 						  block_to_free,
2124 						  count, block_to_free_p, p);
2125 				block_to_free = nr;
2126 				block_to_free_p = p;
2127 				count = 1;
2128 			}
2129 		}
2130 	}
2131 
2132 	if (count > 0)
2133 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2134 				  count, block_to_free_p, p);
2135 
2136 	if (this_bh) {
2137 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2138 		ext4_journal_dirty_metadata(handle, this_bh);
2139 	}
2140 }
2141 
2142 /**
2143  *	ext4_free_branches - free an array of branches
2144  *	@handle: JBD handle for this transaction
2145  *	@inode:	inode we are dealing with
2146  *	@parent_bh: the buffer_head which contains *@first and *@last
2147  *	@first:	array of block numbers
2148  *	@last:	pointer immediately past the end of array
2149  *	@depth:	depth of the branches to free
2150  *
2151  *	We are freeing all blocks refered from these branches (numbers are
2152  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2153  *	appropriately.
2154  */
2155 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2156 			       struct buffer_head *parent_bh,
2157 			       __le32 *first, __le32 *last, int depth)
2158 {
2159 	ext4_fsblk_t nr;
2160 	__le32 *p;
2161 
2162 	if (is_handle_aborted(handle))
2163 		return;
2164 
2165 	if (depth--) {
2166 		struct buffer_head *bh;
2167 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2168 		p = last;
2169 		while (--p >= first) {
2170 			nr = le32_to_cpu(*p);
2171 			if (!nr)
2172 				continue;		/* A hole */
2173 
2174 			/* Go read the buffer for the next level down */
2175 			bh = sb_bread(inode->i_sb, nr);
2176 
2177 			/*
2178 			 * A read failure? Report error and clear slot
2179 			 * (should be rare).
2180 			 */
2181 			if (!bh) {
2182 				ext4_error(inode->i_sb, "ext4_free_branches",
2183 					   "Read failure, inode=%lu, block=%llu",
2184 					   inode->i_ino, nr);
2185 				continue;
2186 			}
2187 
2188 			/* This zaps the entire block.  Bottom up. */
2189 			BUFFER_TRACE(bh, "free child branches");
2190 			ext4_free_branches(handle, inode, bh,
2191 					   (__le32*)bh->b_data,
2192 					   (__le32*)bh->b_data + addr_per_block,
2193 					   depth);
2194 
2195 			/*
2196 			 * We've probably journalled the indirect block several
2197 			 * times during the truncate.  But it's no longer
2198 			 * needed and we now drop it from the transaction via
2199 			 * jbd2_journal_revoke().
2200 			 *
2201 			 * That's easy if it's exclusively part of this
2202 			 * transaction.  But if it's part of the committing
2203 			 * transaction then jbd2_journal_forget() will simply
2204 			 * brelse() it.  That means that if the underlying
2205 			 * block is reallocated in ext4_get_block(),
2206 			 * unmap_underlying_metadata() will find this block
2207 			 * and will try to get rid of it.  damn, damn.
2208 			 *
2209 			 * If this block has already been committed to the
2210 			 * journal, a revoke record will be written.  And
2211 			 * revoke records must be emitted *before* clearing
2212 			 * this block's bit in the bitmaps.
2213 			 */
2214 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2215 
2216 			/*
2217 			 * Everything below this this pointer has been
2218 			 * released.  Now let this top-of-subtree go.
2219 			 *
2220 			 * We want the freeing of this indirect block to be
2221 			 * atomic in the journal with the updating of the
2222 			 * bitmap block which owns it.  So make some room in
2223 			 * the journal.
2224 			 *
2225 			 * We zero the parent pointer *after* freeing its
2226 			 * pointee in the bitmaps, so if extend_transaction()
2227 			 * for some reason fails to put the bitmap changes and
2228 			 * the release into the same transaction, recovery
2229 			 * will merely complain about releasing a free block,
2230 			 * rather than leaking blocks.
2231 			 */
2232 			if (is_handle_aborted(handle))
2233 				return;
2234 			if (try_to_extend_transaction(handle, inode)) {
2235 				ext4_mark_inode_dirty(handle, inode);
2236 				ext4_journal_test_restart(handle, inode);
2237 			}
2238 
2239 			ext4_free_blocks(handle, inode, nr, 1);
2240 
2241 			if (parent_bh) {
2242 				/*
2243 				 * The block which we have just freed is
2244 				 * pointed to by an indirect block: journal it
2245 				 */
2246 				BUFFER_TRACE(parent_bh, "get_write_access");
2247 				if (!ext4_journal_get_write_access(handle,
2248 								   parent_bh)){
2249 					*p = 0;
2250 					BUFFER_TRACE(parent_bh,
2251 					"call ext4_journal_dirty_metadata");
2252 					ext4_journal_dirty_metadata(handle,
2253 								    parent_bh);
2254 				}
2255 			}
2256 		}
2257 	} else {
2258 		/* We have reached the bottom of the tree. */
2259 		BUFFER_TRACE(parent_bh, "free data blocks");
2260 		ext4_free_data(handle, inode, parent_bh, first, last);
2261 	}
2262 }
2263 
2264 /*
2265  * ext4_truncate()
2266  *
2267  * We block out ext4_get_block() block instantiations across the entire
2268  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2269  * simultaneously on behalf of the same inode.
2270  *
2271  * As we work through the truncate and commmit bits of it to the journal there
2272  * is one core, guiding principle: the file's tree must always be consistent on
2273  * disk.  We must be able to restart the truncate after a crash.
2274  *
2275  * The file's tree may be transiently inconsistent in memory (although it
2276  * probably isn't), but whenever we close off and commit a journal transaction,
2277  * the contents of (the filesystem + the journal) must be consistent and
2278  * restartable.  It's pretty simple, really: bottom up, right to left (although
2279  * left-to-right works OK too).
2280  *
2281  * Note that at recovery time, journal replay occurs *before* the restart of
2282  * truncate against the orphan inode list.
2283  *
2284  * The committed inode has the new, desired i_size (which is the same as
2285  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2286  * that this inode's truncate did not complete and it will again call
2287  * ext4_truncate() to have another go.  So there will be instantiated blocks
2288  * to the right of the truncation point in a crashed ext4 filesystem.  But
2289  * that's fine - as long as they are linked from the inode, the post-crash
2290  * ext4_truncate() run will find them and release them.
2291  */
2292 void ext4_truncate(struct inode *inode)
2293 {
2294 	handle_t *handle;
2295 	struct ext4_inode_info *ei = EXT4_I(inode);
2296 	__le32 *i_data = ei->i_data;
2297 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2298 	struct address_space *mapping = inode->i_mapping;
2299 	int offsets[4];
2300 	Indirect chain[4];
2301 	Indirect *partial;
2302 	__le32 nr = 0;
2303 	int n;
2304 	long last_block;
2305 	unsigned blocksize = inode->i_sb->s_blocksize;
2306 	struct page *page;
2307 
2308 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2309 	    S_ISLNK(inode->i_mode)))
2310 		return;
2311 	if (ext4_inode_is_fast_symlink(inode))
2312 		return;
2313 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2314 		return;
2315 
2316 	/*
2317 	 * We have to lock the EOF page here, because lock_page() nests
2318 	 * outside jbd2_journal_start().
2319 	 */
2320 	if ((inode->i_size & (blocksize - 1)) == 0) {
2321 		/* Block boundary? Nothing to do */
2322 		page = NULL;
2323 	} else {
2324 		page = grab_cache_page(mapping,
2325 				inode->i_size >> PAGE_CACHE_SHIFT);
2326 		if (!page)
2327 			return;
2328 	}
2329 
2330 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
2331 		return ext4_ext_truncate(inode, page);
2332 
2333 	handle = start_transaction(inode);
2334 	if (IS_ERR(handle)) {
2335 		if (page) {
2336 			clear_highpage(page);
2337 			flush_dcache_page(page);
2338 			unlock_page(page);
2339 			page_cache_release(page);
2340 		}
2341 		return;		/* AKPM: return what? */
2342 	}
2343 
2344 	last_block = (inode->i_size + blocksize-1)
2345 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2346 
2347 	if (page)
2348 		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2349 
2350 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2351 	if (n == 0)
2352 		goto out_stop;	/* error */
2353 
2354 	/*
2355 	 * OK.  This truncate is going to happen.  We add the inode to the
2356 	 * orphan list, so that if this truncate spans multiple transactions,
2357 	 * and we crash, we will resume the truncate when the filesystem
2358 	 * recovers.  It also marks the inode dirty, to catch the new size.
2359 	 *
2360 	 * Implication: the file must always be in a sane, consistent
2361 	 * truncatable state while each transaction commits.
2362 	 */
2363 	if (ext4_orphan_add(handle, inode))
2364 		goto out_stop;
2365 
2366 	/*
2367 	 * The orphan list entry will now protect us from any crash which
2368 	 * occurs before the truncate completes, so it is now safe to propagate
2369 	 * the new, shorter inode size (held for now in i_size) into the
2370 	 * on-disk inode. We do this via i_disksize, which is the value which
2371 	 * ext4 *really* writes onto the disk inode.
2372 	 */
2373 	ei->i_disksize = inode->i_size;
2374 
2375 	/*
2376 	 * From here we block out all ext4_get_block() callers who want to
2377 	 * modify the block allocation tree.
2378 	 */
2379 	mutex_lock(&ei->truncate_mutex);
2380 
2381 	if (n == 1) {		/* direct blocks */
2382 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2383 			       i_data + EXT4_NDIR_BLOCKS);
2384 		goto do_indirects;
2385 	}
2386 
2387 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2388 	/* Kill the top of shared branch (not detached) */
2389 	if (nr) {
2390 		if (partial == chain) {
2391 			/* Shared branch grows from the inode */
2392 			ext4_free_branches(handle, inode, NULL,
2393 					   &nr, &nr+1, (chain+n-1) - partial);
2394 			*partial->p = 0;
2395 			/*
2396 			 * We mark the inode dirty prior to restart,
2397 			 * and prior to stop.  No need for it here.
2398 			 */
2399 		} else {
2400 			/* Shared branch grows from an indirect block */
2401 			BUFFER_TRACE(partial->bh, "get_write_access");
2402 			ext4_free_branches(handle, inode, partial->bh,
2403 					partial->p,
2404 					partial->p+1, (chain+n-1) - partial);
2405 		}
2406 	}
2407 	/* Clear the ends of indirect blocks on the shared branch */
2408 	while (partial > chain) {
2409 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2410 				   (__le32*)partial->bh->b_data+addr_per_block,
2411 				   (chain+n-1) - partial);
2412 		BUFFER_TRACE(partial->bh, "call brelse");
2413 		brelse (partial->bh);
2414 		partial--;
2415 	}
2416 do_indirects:
2417 	/* Kill the remaining (whole) subtrees */
2418 	switch (offsets[0]) {
2419 	default:
2420 		nr = i_data[EXT4_IND_BLOCK];
2421 		if (nr) {
2422 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2423 			i_data[EXT4_IND_BLOCK] = 0;
2424 		}
2425 	case EXT4_IND_BLOCK:
2426 		nr = i_data[EXT4_DIND_BLOCK];
2427 		if (nr) {
2428 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2429 			i_data[EXT4_DIND_BLOCK] = 0;
2430 		}
2431 	case EXT4_DIND_BLOCK:
2432 		nr = i_data[EXT4_TIND_BLOCK];
2433 		if (nr) {
2434 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2435 			i_data[EXT4_TIND_BLOCK] = 0;
2436 		}
2437 	case EXT4_TIND_BLOCK:
2438 		;
2439 	}
2440 
2441 	ext4_discard_reservation(inode);
2442 
2443 	mutex_unlock(&ei->truncate_mutex);
2444 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2445 	ext4_mark_inode_dirty(handle, inode);
2446 
2447 	/*
2448 	 * In a multi-transaction truncate, we only make the final transaction
2449 	 * synchronous
2450 	 */
2451 	if (IS_SYNC(inode))
2452 		handle->h_sync = 1;
2453 out_stop:
2454 	/*
2455 	 * If this was a simple ftruncate(), and the file will remain alive
2456 	 * then we need to clear up the orphan record which we created above.
2457 	 * However, if this was a real unlink then we were called by
2458 	 * ext4_delete_inode(), and we allow that function to clean up the
2459 	 * orphan info for us.
2460 	 */
2461 	if (inode->i_nlink)
2462 		ext4_orphan_del(handle, inode);
2463 
2464 	ext4_journal_stop(handle);
2465 }
2466 
2467 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2468 		unsigned long ino, struct ext4_iloc *iloc)
2469 {
2470 	unsigned long desc, group_desc, block_group;
2471 	unsigned long offset;
2472 	ext4_fsblk_t block;
2473 	struct buffer_head *bh;
2474 	struct ext4_group_desc * gdp;
2475 
2476 	if (!ext4_valid_inum(sb, ino)) {
2477 		/*
2478 		 * This error is already checked for in namei.c unless we are
2479 		 * looking at an NFS filehandle, in which case no error
2480 		 * report is needed
2481 		 */
2482 		return 0;
2483 	}
2484 
2485 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2486 	if (block_group >= EXT4_SB(sb)->s_groups_count) {
2487 		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2488 		return 0;
2489 	}
2490 	smp_rmb();
2491 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2492 	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2493 	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2494 	if (!bh) {
2495 		ext4_error (sb, "ext4_get_inode_block",
2496 			    "Descriptor not loaded");
2497 		return 0;
2498 	}
2499 
2500 	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2501 		desc * EXT4_DESC_SIZE(sb));
2502 	/*
2503 	 * Figure out the offset within the block group inode table
2504 	 */
2505 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2506 		EXT4_INODE_SIZE(sb);
2507 	block = ext4_inode_table(sb, gdp) +
2508 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2509 
2510 	iloc->block_group = block_group;
2511 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2512 	return block;
2513 }
2514 
2515 /*
2516  * ext4_get_inode_loc returns with an extra refcount against the inode's
2517  * underlying buffer_head on success. If 'in_mem' is true, we have all
2518  * data in memory that is needed to recreate the on-disk version of this
2519  * inode.
2520  */
2521 static int __ext4_get_inode_loc(struct inode *inode,
2522 				struct ext4_iloc *iloc, int in_mem)
2523 {
2524 	ext4_fsblk_t block;
2525 	struct buffer_head *bh;
2526 
2527 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2528 	if (!block)
2529 		return -EIO;
2530 
2531 	bh = sb_getblk(inode->i_sb, block);
2532 	if (!bh) {
2533 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2534 				"unable to read inode block - "
2535 				"inode=%lu, block=%llu",
2536 				 inode->i_ino, block);
2537 		return -EIO;
2538 	}
2539 	if (!buffer_uptodate(bh)) {
2540 		lock_buffer(bh);
2541 		if (buffer_uptodate(bh)) {
2542 			/* someone brought it uptodate while we waited */
2543 			unlock_buffer(bh);
2544 			goto has_buffer;
2545 		}
2546 
2547 		/*
2548 		 * If we have all information of the inode in memory and this
2549 		 * is the only valid inode in the block, we need not read the
2550 		 * block.
2551 		 */
2552 		if (in_mem) {
2553 			struct buffer_head *bitmap_bh;
2554 			struct ext4_group_desc *desc;
2555 			int inodes_per_buffer;
2556 			int inode_offset, i;
2557 			int block_group;
2558 			int start;
2559 
2560 			block_group = (inode->i_ino - 1) /
2561 					EXT4_INODES_PER_GROUP(inode->i_sb);
2562 			inodes_per_buffer = bh->b_size /
2563 				EXT4_INODE_SIZE(inode->i_sb);
2564 			inode_offset = ((inode->i_ino - 1) %
2565 					EXT4_INODES_PER_GROUP(inode->i_sb));
2566 			start = inode_offset & ~(inodes_per_buffer - 1);
2567 
2568 			/* Is the inode bitmap in cache? */
2569 			desc = ext4_get_group_desc(inode->i_sb,
2570 						block_group, NULL);
2571 			if (!desc)
2572 				goto make_io;
2573 
2574 			bitmap_bh = sb_getblk(inode->i_sb,
2575 				ext4_inode_bitmap(inode->i_sb, desc));
2576 			if (!bitmap_bh)
2577 				goto make_io;
2578 
2579 			/*
2580 			 * If the inode bitmap isn't in cache then the
2581 			 * optimisation may end up performing two reads instead
2582 			 * of one, so skip it.
2583 			 */
2584 			if (!buffer_uptodate(bitmap_bh)) {
2585 				brelse(bitmap_bh);
2586 				goto make_io;
2587 			}
2588 			for (i = start; i < start + inodes_per_buffer; i++) {
2589 				if (i == inode_offset)
2590 					continue;
2591 				if (ext4_test_bit(i, bitmap_bh->b_data))
2592 					break;
2593 			}
2594 			brelse(bitmap_bh);
2595 			if (i == start + inodes_per_buffer) {
2596 				/* all other inodes are free, so skip I/O */
2597 				memset(bh->b_data, 0, bh->b_size);
2598 				set_buffer_uptodate(bh);
2599 				unlock_buffer(bh);
2600 				goto has_buffer;
2601 			}
2602 		}
2603 
2604 make_io:
2605 		/*
2606 		 * There are other valid inodes in the buffer, this inode
2607 		 * has in-inode xattrs, or we don't have this inode in memory.
2608 		 * Read the block from disk.
2609 		 */
2610 		get_bh(bh);
2611 		bh->b_end_io = end_buffer_read_sync;
2612 		submit_bh(READ_META, bh);
2613 		wait_on_buffer(bh);
2614 		if (!buffer_uptodate(bh)) {
2615 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2616 					"unable to read inode block - "
2617 					"inode=%lu, block=%llu",
2618 					inode->i_ino, block);
2619 			brelse(bh);
2620 			return -EIO;
2621 		}
2622 	}
2623 has_buffer:
2624 	iloc->bh = bh;
2625 	return 0;
2626 }
2627 
2628 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2629 {
2630 	/* We have all inode data except xattrs in memory here. */
2631 	return __ext4_get_inode_loc(inode, iloc,
2632 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2633 }
2634 
2635 void ext4_set_inode_flags(struct inode *inode)
2636 {
2637 	unsigned int flags = EXT4_I(inode)->i_flags;
2638 
2639 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2640 	if (flags & EXT4_SYNC_FL)
2641 		inode->i_flags |= S_SYNC;
2642 	if (flags & EXT4_APPEND_FL)
2643 		inode->i_flags |= S_APPEND;
2644 	if (flags & EXT4_IMMUTABLE_FL)
2645 		inode->i_flags |= S_IMMUTABLE;
2646 	if (flags & EXT4_NOATIME_FL)
2647 		inode->i_flags |= S_NOATIME;
2648 	if (flags & EXT4_DIRSYNC_FL)
2649 		inode->i_flags |= S_DIRSYNC;
2650 }
2651 
2652 void ext4_read_inode(struct inode * inode)
2653 {
2654 	struct ext4_iloc iloc;
2655 	struct ext4_inode *raw_inode;
2656 	struct ext4_inode_info *ei = EXT4_I(inode);
2657 	struct buffer_head *bh;
2658 	int block;
2659 
2660 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2661 	ei->i_acl = EXT4_ACL_NOT_CACHED;
2662 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2663 #endif
2664 	ei->i_block_alloc_info = NULL;
2665 
2666 	if (__ext4_get_inode_loc(inode, &iloc, 0))
2667 		goto bad_inode;
2668 	bh = iloc.bh;
2669 	raw_inode = ext4_raw_inode(&iloc);
2670 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2671 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2672 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2673 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2674 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2675 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2676 	}
2677 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2678 	inode->i_size = le32_to_cpu(raw_inode->i_size);
2679 	inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2680 	inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2681 	inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2682 	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2683 
2684 	ei->i_state = 0;
2685 	ei->i_dir_start_lookup = 0;
2686 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2687 	/* We now have enough fields to check if the inode was active or not.
2688 	 * This is needed because nfsd might try to access dead inodes
2689 	 * the test is that same one that e2fsck uses
2690 	 * NeilBrown 1999oct15
2691 	 */
2692 	if (inode->i_nlink == 0) {
2693 		if (inode->i_mode == 0 ||
2694 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2695 			/* this inode is deleted */
2696 			brelse (bh);
2697 			goto bad_inode;
2698 		}
2699 		/* The only unlinked inodes we let through here have
2700 		 * valid i_mode and are being read by the orphan
2701 		 * recovery code: that's fine, we're about to complete
2702 		 * the process of deleting those. */
2703 	}
2704 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2705 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2706 #ifdef EXT4_FRAGMENTS
2707 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2708 	ei->i_frag_no = raw_inode->i_frag;
2709 	ei->i_frag_size = raw_inode->i_fsize;
2710 #endif
2711 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2712 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2713 	    cpu_to_le32(EXT4_OS_HURD))
2714 		ei->i_file_acl |=
2715 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2716 	if (!S_ISREG(inode->i_mode)) {
2717 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2718 	} else {
2719 		inode->i_size |=
2720 			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2721 	}
2722 	ei->i_disksize = inode->i_size;
2723 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2724 	ei->i_block_group = iloc.block_group;
2725 	/*
2726 	 * NOTE! The in-memory inode i_data array is in little-endian order
2727 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2728 	 */
2729 	for (block = 0; block < EXT4_N_BLOCKS; block++)
2730 		ei->i_data[block] = raw_inode->i_block[block];
2731 	INIT_LIST_HEAD(&ei->i_orphan);
2732 
2733 	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2734 	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2735 		/*
2736 		 * When mke2fs creates big inodes it does not zero out
2737 		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2738 		 * so ignore those first few inodes.
2739 		 */
2740 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2741 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2742 		    EXT4_INODE_SIZE(inode->i_sb))
2743 			goto bad_inode;
2744 		if (ei->i_extra_isize == 0) {
2745 			/* The extra space is currently unused. Use it. */
2746 			ei->i_extra_isize = sizeof(struct ext4_inode) -
2747 					    EXT4_GOOD_OLD_INODE_SIZE;
2748 		} else {
2749 			__le32 *magic = (void *)raw_inode +
2750 					EXT4_GOOD_OLD_INODE_SIZE +
2751 					ei->i_extra_isize;
2752 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2753 				 ei->i_state |= EXT4_STATE_XATTR;
2754 		}
2755 	} else
2756 		ei->i_extra_isize = 0;
2757 
2758 	if (S_ISREG(inode->i_mode)) {
2759 		inode->i_op = &ext4_file_inode_operations;
2760 		inode->i_fop = &ext4_file_operations;
2761 		ext4_set_aops(inode);
2762 	} else if (S_ISDIR(inode->i_mode)) {
2763 		inode->i_op = &ext4_dir_inode_operations;
2764 		inode->i_fop = &ext4_dir_operations;
2765 	} else if (S_ISLNK(inode->i_mode)) {
2766 		if (ext4_inode_is_fast_symlink(inode))
2767 			inode->i_op = &ext4_fast_symlink_inode_operations;
2768 		else {
2769 			inode->i_op = &ext4_symlink_inode_operations;
2770 			ext4_set_aops(inode);
2771 		}
2772 	} else {
2773 		inode->i_op = &ext4_special_inode_operations;
2774 		if (raw_inode->i_block[0])
2775 			init_special_inode(inode, inode->i_mode,
2776 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2777 		else
2778 			init_special_inode(inode, inode->i_mode,
2779 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2780 	}
2781 	brelse (iloc.bh);
2782 	ext4_set_inode_flags(inode);
2783 	return;
2784 
2785 bad_inode:
2786 	make_bad_inode(inode);
2787 	return;
2788 }
2789 
2790 /*
2791  * Post the struct inode info into an on-disk inode location in the
2792  * buffer-cache.  This gobbles the caller's reference to the
2793  * buffer_head in the inode location struct.
2794  *
2795  * The caller must have write access to iloc->bh.
2796  */
2797 static int ext4_do_update_inode(handle_t *handle,
2798 				struct inode *inode,
2799 				struct ext4_iloc *iloc)
2800 {
2801 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2802 	struct ext4_inode_info *ei = EXT4_I(inode);
2803 	struct buffer_head *bh = iloc->bh;
2804 	int err = 0, rc, block;
2805 
2806 	/* For fields not not tracking in the in-memory inode,
2807 	 * initialise them to zero for new inodes. */
2808 	if (ei->i_state & EXT4_STATE_NEW)
2809 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2810 
2811 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2812 	if(!(test_opt(inode->i_sb, NO_UID32))) {
2813 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2814 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2815 /*
2816  * Fix up interoperability with old kernels. Otherwise, old inodes get
2817  * re-used with the upper 16 bits of the uid/gid intact
2818  */
2819 		if(!ei->i_dtime) {
2820 			raw_inode->i_uid_high =
2821 				cpu_to_le16(high_16_bits(inode->i_uid));
2822 			raw_inode->i_gid_high =
2823 				cpu_to_le16(high_16_bits(inode->i_gid));
2824 		} else {
2825 			raw_inode->i_uid_high = 0;
2826 			raw_inode->i_gid_high = 0;
2827 		}
2828 	} else {
2829 		raw_inode->i_uid_low =
2830 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2831 		raw_inode->i_gid_low =
2832 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2833 		raw_inode->i_uid_high = 0;
2834 		raw_inode->i_gid_high = 0;
2835 	}
2836 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2837 	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2838 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2839 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2840 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2841 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2842 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2843 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2844 #ifdef EXT4_FRAGMENTS
2845 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2846 	raw_inode->i_frag = ei->i_frag_no;
2847 	raw_inode->i_fsize = ei->i_frag_size;
2848 #endif
2849 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2850 	    cpu_to_le32(EXT4_OS_HURD))
2851 		raw_inode->i_file_acl_high =
2852 			cpu_to_le16(ei->i_file_acl >> 32);
2853 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2854 	if (!S_ISREG(inode->i_mode)) {
2855 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2856 	} else {
2857 		raw_inode->i_size_high =
2858 			cpu_to_le32(ei->i_disksize >> 32);
2859 		if (ei->i_disksize > 0x7fffffffULL) {
2860 			struct super_block *sb = inode->i_sb;
2861 			if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2862 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2863 			    EXT4_SB(sb)->s_es->s_rev_level ==
2864 					cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2865 			       /* If this is the first large file
2866 				* created, add a flag to the superblock.
2867 				*/
2868 				err = ext4_journal_get_write_access(handle,
2869 						EXT4_SB(sb)->s_sbh);
2870 				if (err)
2871 					goto out_brelse;
2872 				ext4_update_dynamic_rev(sb);
2873 				EXT4_SET_RO_COMPAT_FEATURE(sb,
2874 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2875 				sb->s_dirt = 1;
2876 				handle->h_sync = 1;
2877 				err = ext4_journal_dirty_metadata(handle,
2878 						EXT4_SB(sb)->s_sbh);
2879 			}
2880 		}
2881 	}
2882 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2883 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2884 		if (old_valid_dev(inode->i_rdev)) {
2885 			raw_inode->i_block[0] =
2886 				cpu_to_le32(old_encode_dev(inode->i_rdev));
2887 			raw_inode->i_block[1] = 0;
2888 		} else {
2889 			raw_inode->i_block[0] = 0;
2890 			raw_inode->i_block[1] =
2891 				cpu_to_le32(new_encode_dev(inode->i_rdev));
2892 			raw_inode->i_block[2] = 0;
2893 		}
2894 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2895 		raw_inode->i_block[block] = ei->i_data[block];
2896 
2897 	if (ei->i_extra_isize)
2898 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2899 
2900 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2901 	rc = ext4_journal_dirty_metadata(handle, bh);
2902 	if (!err)
2903 		err = rc;
2904 	ei->i_state &= ~EXT4_STATE_NEW;
2905 
2906 out_brelse:
2907 	brelse (bh);
2908 	ext4_std_error(inode->i_sb, err);
2909 	return err;
2910 }
2911 
2912 /*
2913  * ext4_write_inode()
2914  *
2915  * We are called from a few places:
2916  *
2917  * - Within generic_file_write() for O_SYNC files.
2918  *   Here, there will be no transaction running. We wait for any running
2919  *   trasnaction to commit.
2920  *
2921  * - Within sys_sync(), kupdate and such.
2922  *   We wait on commit, if tol to.
2923  *
2924  * - Within prune_icache() (PF_MEMALLOC == true)
2925  *   Here we simply return.  We can't afford to block kswapd on the
2926  *   journal commit.
2927  *
2928  * In all cases it is actually safe for us to return without doing anything,
2929  * because the inode has been copied into a raw inode buffer in
2930  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2931  * knfsd.
2932  *
2933  * Note that we are absolutely dependent upon all inode dirtiers doing the
2934  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2935  * which we are interested.
2936  *
2937  * It would be a bug for them to not do this.  The code:
2938  *
2939  *	mark_inode_dirty(inode)
2940  *	stuff();
2941  *	inode->i_size = expr;
2942  *
2943  * is in error because a kswapd-driven write_inode() could occur while
2944  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2945  * will no longer be on the superblock's dirty inode list.
2946  */
2947 int ext4_write_inode(struct inode *inode, int wait)
2948 {
2949 	if (current->flags & PF_MEMALLOC)
2950 		return 0;
2951 
2952 	if (ext4_journal_current_handle()) {
2953 		jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2954 		dump_stack();
2955 		return -EIO;
2956 	}
2957 
2958 	if (!wait)
2959 		return 0;
2960 
2961 	return ext4_force_commit(inode->i_sb);
2962 }
2963 
2964 /*
2965  * ext4_setattr()
2966  *
2967  * Called from notify_change.
2968  *
2969  * We want to trap VFS attempts to truncate the file as soon as
2970  * possible.  In particular, we want to make sure that when the VFS
2971  * shrinks i_size, we put the inode on the orphan list and modify
2972  * i_disksize immediately, so that during the subsequent flushing of
2973  * dirty pages and freeing of disk blocks, we can guarantee that any
2974  * commit will leave the blocks being flushed in an unused state on
2975  * disk.  (On recovery, the inode will get truncated and the blocks will
2976  * be freed, so we have a strong guarantee that no future commit will
2977  * leave these blocks visible to the user.)
2978  *
2979  * Called with inode->sem down.
2980  */
2981 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
2982 {
2983 	struct inode *inode = dentry->d_inode;
2984 	int error, rc = 0;
2985 	const unsigned int ia_valid = attr->ia_valid;
2986 
2987 	error = inode_change_ok(inode, attr);
2988 	if (error)
2989 		return error;
2990 
2991 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2992 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2993 		handle_t *handle;
2994 
2995 		/* (user+group)*(old+new) structure, inode write (sb,
2996 		 * inode block, ? - but truncate inode update has it) */
2997 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
2998 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
2999 		if (IS_ERR(handle)) {
3000 			error = PTR_ERR(handle);
3001 			goto err_out;
3002 		}
3003 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3004 		if (error) {
3005 			ext4_journal_stop(handle);
3006 			return error;
3007 		}
3008 		/* Update corresponding info in inode so that everything is in
3009 		 * one transaction */
3010 		if (attr->ia_valid & ATTR_UID)
3011 			inode->i_uid = attr->ia_uid;
3012 		if (attr->ia_valid & ATTR_GID)
3013 			inode->i_gid = attr->ia_gid;
3014 		error = ext4_mark_inode_dirty(handle, inode);
3015 		ext4_journal_stop(handle);
3016 	}
3017 
3018 	if (S_ISREG(inode->i_mode) &&
3019 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3020 		handle_t *handle;
3021 
3022 		handle = ext4_journal_start(inode, 3);
3023 		if (IS_ERR(handle)) {
3024 			error = PTR_ERR(handle);
3025 			goto err_out;
3026 		}
3027 
3028 		error = ext4_orphan_add(handle, inode);
3029 		EXT4_I(inode)->i_disksize = attr->ia_size;
3030 		rc = ext4_mark_inode_dirty(handle, inode);
3031 		if (!error)
3032 			error = rc;
3033 		ext4_journal_stop(handle);
3034 	}
3035 
3036 	rc = inode_setattr(inode, attr);
3037 
3038 	/* If inode_setattr's call to ext4_truncate failed to get a
3039 	 * transaction handle at all, we need to clean up the in-core
3040 	 * orphan list manually. */
3041 	if (inode->i_nlink)
3042 		ext4_orphan_del(NULL, inode);
3043 
3044 	if (!rc && (ia_valid & ATTR_MODE))
3045 		rc = ext4_acl_chmod(inode);
3046 
3047 err_out:
3048 	ext4_std_error(inode->i_sb, error);
3049 	if (!error)
3050 		error = rc;
3051 	return error;
3052 }
3053 
3054 
3055 /*
3056  * How many blocks doth make a writepage()?
3057  *
3058  * With N blocks per page, it may be:
3059  * N data blocks
3060  * 2 indirect block
3061  * 2 dindirect
3062  * 1 tindirect
3063  * N+5 bitmap blocks (from the above)
3064  * N+5 group descriptor summary blocks
3065  * 1 inode block
3066  * 1 superblock.
3067  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3068  *
3069  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3070  *
3071  * With ordered or writeback data it's the same, less the N data blocks.
3072  *
3073  * If the inode's direct blocks can hold an integral number of pages then a
3074  * page cannot straddle two indirect blocks, and we can only touch one indirect
3075  * and dindirect block, and the "5" above becomes "3".
3076  *
3077  * This still overestimates under most circumstances.  If we were to pass the
3078  * start and end offsets in here as well we could do block_to_path() on each
3079  * block and work out the exact number of indirects which are touched.  Pah.
3080  */
3081 
3082 int ext4_writepage_trans_blocks(struct inode *inode)
3083 {
3084 	int bpp = ext4_journal_blocks_per_page(inode);
3085 	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3086 	int ret;
3087 
3088 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3089 		return ext4_ext_writepage_trans_blocks(inode, bpp);
3090 
3091 	if (ext4_should_journal_data(inode))
3092 		ret = 3 * (bpp + indirects) + 2;
3093 	else
3094 		ret = 2 * (bpp + indirects) + 2;
3095 
3096 #ifdef CONFIG_QUOTA
3097 	/* We know that structure was already allocated during DQUOT_INIT so
3098 	 * we will be updating only the data blocks + inodes */
3099 	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3100 #endif
3101 
3102 	return ret;
3103 }
3104 
3105 /*
3106  * The caller must have previously called ext4_reserve_inode_write().
3107  * Give this, we know that the caller already has write access to iloc->bh.
3108  */
3109 int ext4_mark_iloc_dirty(handle_t *handle,
3110 		struct inode *inode, struct ext4_iloc *iloc)
3111 {
3112 	int err = 0;
3113 
3114 	/* the do_update_inode consumes one bh->b_count */
3115 	get_bh(iloc->bh);
3116 
3117 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3118 	err = ext4_do_update_inode(handle, inode, iloc);
3119 	put_bh(iloc->bh);
3120 	return err;
3121 }
3122 
3123 /*
3124  * On success, We end up with an outstanding reference count against
3125  * iloc->bh.  This _must_ be cleaned up later.
3126  */
3127 
3128 int
3129 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3130 			 struct ext4_iloc *iloc)
3131 {
3132 	int err = 0;
3133 	if (handle) {
3134 		err = ext4_get_inode_loc(inode, iloc);
3135 		if (!err) {
3136 			BUFFER_TRACE(iloc->bh, "get_write_access");
3137 			err = ext4_journal_get_write_access(handle, iloc->bh);
3138 			if (err) {
3139 				brelse(iloc->bh);
3140 				iloc->bh = NULL;
3141 			}
3142 		}
3143 	}
3144 	ext4_std_error(inode->i_sb, err);
3145 	return err;
3146 }
3147 
3148 /*
3149  * What we do here is to mark the in-core inode as clean with respect to inode
3150  * dirtiness (it may still be data-dirty).
3151  * This means that the in-core inode may be reaped by prune_icache
3152  * without having to perform any I/O.  This is a very good thing,
3153  * because *any* task may call prune_icache - even ones which
3154  * have a transaction open against a different journal.
3155  *
3156  * Is this cheating?  Not really.  Sure, we haven't written the
3157  * inode out, but prune_icache isn't a user-visible syncing function.
3158  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3159  * we start and wait on commits.
3160  *
3161  * Is this efficient/effective?  Well, we're being nice to the system
3162  * by cleaning up our inodes proactively so they can be reaped
3163  * without I/O.  But we are potentially leaving up to five seconds'
3164  * worth of inodes floating about which prune_icache wants us to
3165  * write out.  One way to fix that would be to get prune_icache()
3166  * to do a write_super() to free up some memory.  It has the desired
3167  * effect.
3168  */
3169 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3170 {
3171 	struct ext4_iloc iloc;
3172 	int err;
3173 
3174 	might_sleep();
3175 	err = ext4_reserve_inode_write(handle, inode, &iloc);
3176 	if (!err)
3177 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3178 	return err;
3179 }
3180 
3181 /*
3182  * ext4_dirty_inode() is called from __mark_inode_dirty()
3183  *
3184  * We're really interested in the case where a file is being extended.
3185  * i_size has been changed by generic_commit_write() and we thus need
3186  * to include the updated inode in the current transaction.
3187  *
3188  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3189  * are allocated to the file.
3190  *
3191  * If the inode is marked synchronous, we don't honour that here - doing
3192  * so would cause a commit on atime updates, which we don't bother doing.
3193  * We handle synchronous inodes at the highest possible level.
3194  */
3195 void ext4_dirty_inode(struct inode *inode)
3196 {
3197 	handle_t *current_handle = ext4_journal_current_handle();
3198 	handle_t *handle;
3199 
3200 	handle = ext4_journal_start(inode, 2);
3201 	if (IS_ERR(handle))
3202 		goto out;
3203 	if (current_handle &&
3204 		current_handle->h_transaction != handle->h_transaction) {
3205 		/* This task has a transaction open against a different fs */
3206 		printk(KERN_EMERG "%s: transactions do not match!\n",
3207 		       __FUNCTION__);
3208 	} else {
3209 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3210 				current_handle);
3211 		ext4_mark_inode_dirty(handle, inode);
3212 	}
3213 	ext4_journal_stop(handle);
3214 out:
3215 	return;
3216 }
3217 
3218 #if 0
3219 /*
3220  * Bind an inode's backing buffer_head into this transaction, to prevent
3221  * it from being flushed to disk early.  Unlike
3222  * ext4_reserve_inode_write, this leaves behind no bh reference and
3223  * returns no iloc structure, so the caller needs to repeat the iloc
3224  * lookup to mark the inode dirty later.
3225  */
3226 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3227 {
3228 	struct ext4_iloc iloc;
3229 
3230 	int err = 0;
3231 	if (handle) {
3232 		err = ext4_get_inode_loc(inode, &iloc);
3233 		if (!err) {
3234 			BUFFER_TRACE(iloc.bh, "get_write_access");
3235 			err = jbd2_journal_get_write_access(handle, iloc.bh);
3236 			if (!err)
3237 				err = ext4_journal_dirty_metadata(handle,
3238 								  iloc.bh);
3239 			brelse(iloc.bh);
3240 		}
3241 	}
3242 	ext4_std_error(inode->i_sb, err);
3243 	return err;
3244 }
3245 #endif
3246 
3247 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3248 {
3249 	journal_t *journal;
3250 	handle_t *handle;
3251 	int err;
3252 
3253 	/*
3254 	 * We have to be very careful here: changing a data block's
3255 	 * journaling status dynamically is dangerous.  If we write a
3256 	 * data block to the journal, change the status and then delete
3257 	 * that block, we risk forgetting to revoke the old log record
3258 	 * from the journal and so a subsequent replay can corrupt data.
3259 	 * So, first we make sure that the journal is empty and that
3260 	 * nobody is changing anything.
3261 	 */
3262 
3263 	journal = EXT4_JOURNAL(inode);
3264 	if (is_journal_aborted(journal) || IS_RDONLY(inode))
3265 		return -EROFS;
3266 
3267 	jbd2_journal_lock_updates(journal);
3268 	jbd2_journal_flush(journal);
3269 
3270 	/*
3271 	 * OK, there are no updates running now, and all cached data is
3272 	 * synced to disk.  We are now in a completely consistent state
3273 	 * which doesn't have anything in the journal, and we know that
3274 	 * no filesystem updates are running, so it is safe to modify
3275 	 * the inode's in-core data-journaling state flag now.
3276 	 */
3277 
3278 	if (val)
3279 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3280 	else
3281 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3282 	ext4_set_aops(inode);
3283 
3284 	jbd2_journal_unlock_updates(journal);
3285 
3286 	/* Finally we can mark the inode as dirty. */
3287 
3288 	handle = ext4_journal_start(inode, 1);
3289 	if (IS_ERR(handle))
3290 		return PTR_ERR(handle);
3291 
3292 	err = ext4_mark_inode_dirty(handle, inode);
3293 	handle->h_sync = 1;
3294 	ext4_journal_stop(handle);
3295 	ext4_std_error(inode->i_sb, err);
3296 
3297 	return err;
3298 }
3299