1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 519 ext4_es_lru_add(inode); 520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 521 map->m_pblk = ext4_es_pblock(&es) + 522 map->m_lblk - es.es_lblk; 523 map->m_flags |= ext4_es_is_written(&es) ? 524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 530 retval = 0; 531 } else { 532 BUG_ON(1); 533 } 534 #ifdef ES_AGGRESSIVE_TEST 535 ext4_map_blocks_es_recheck(handle, inode, map, 536 &orig_map, flags); 537 #endif 538 goto found; 539 } 540 541 /* 542 * Try to see if we can get the block without requesting a new 543 * file system block. 544 */ 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 down_read((&EXT4_I(inode)->i_data_sem)); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 int ret; 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 int ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 return retval; 600 601 /* 602 * Here we clear m_flags because after allocating an new extent, 603 * it will be set again. 604 */ 605 map->m_flags &= ~EXT4_MAP_FLAGS; 606 607 /* 608 * New blocks allocate and/or writing to uninitialized extent 609 * will possibly result in updating i_data, so we take 610 * the write lock of i_data_sem, and call get_blocks() 611 * with create == 1 flag. 612 */ 613 down_write((&EXT4_I(inode)->i_data_sem)); 614 615 /* 616 * if the caller is from delayed allocation writeout path 617 * we have already reserved fs blocks for allocation 618 * let the underlying get_block() function know to 619 * avoid double accounting 620 */ 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 623 /* 624 * We need to check for EXT4 here because migrate 625 * could have changed the inode type in between 626 */ 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 628 retval = ext4_ext_map_blocks(handle, inode, map, flags); 629 } else { 630 retval = ext4_ind_map_blocks(handle, inode, map, flags); 631 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 633 /* 634 * We allocated new blocks which will result in 635 * i_data's format changing. Force the migrate 636 * to fail by clearing migrate flags 637 */ 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 639 } 640 641 /* 642 * Update reserved blocks/metadata blocks after successful 643 * block allocation which had been deferred till now. We don't 644 * support fallocate for non extent files. So we can update 645 * reserve space here. 646 */ 647 if ((retval > 0) && 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 649 ext4_da_update_reserve_space(inode, retval, 1); 650 } 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 653 654 if (retval > 0) { 655 int ret; 656 unsigned int status; 657 658 if (unlikely(retval != map->m_len)) { 659 ext4_warning(inode->i_sb, 660 "ES len assertion failed for inode " 661 "%lu: retval %d != map->m_len %d", 662 inode->i_ino, retval, map->m_len); 663 WARN_ON(1); 664 } 665 666 /* 667 * If the extent has been zeroed out, we don't need to update 668 * extent status tree. 669 */ 670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 672 if (ext4_es_is_written(&es)) 673 goto has_zeroout; 674 } 675 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 678 ext4_find_delalloc_range(inode, map->m_lblk, 679 map->m_lblk + map->m_len - 1)) 680 status |= EXTENT_STATUS_DELAYED; 681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 682 map->m_pblk, status); 683 if (ret < 0) 684 retval = ret; 685 } 686 687 has_zeroout: 688 up_write((&EXT4_I(inode)->i_data_sem)); 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 690 int ret = check_block_validity(inode, map); 691 if (ret != 0) 692 return ret; 693 } 694 return retval; 695 } 696 697 /* Maximum number of blocks we map for direct IO at once. */ 698 #define DIO_MAX_BLOCKS 4096 699 700 static int _ext4_get_block(struct inode *inode, sector_t iblock, 701 struct buffer_head *bh, int flags) 702 { 703 handle_t *handle = ext4_journal_current_handle(); 704 struct ext4_map_blocks map; 705 int ret = 0, started = 0; 706 int dio_credits; 707 708 if (ext4_has_inline_data(inode)) 709 return -ERANGE; 710 711 map.m_lblk = iblock; 712 map.m_len = bh->b_size >> inode->i_blkbits; 713 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 715 /* Direct IO write... */ 716 if (map.m_len > DIO_MAX_BLOCKS) 717 map.m_len = DIO_MAX_BLOCKS; 718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 720 dio_credits); 721 if (IS_ERR(handle)) { 722 ret = PTR_ERR(handle); 723 return ret; 724 } 725 started = 1; 726 } 727 728 ret = ext4_map_blocks(handle, inode, &map, flags); 729 if (ret > 0) { 730 ext4_io_end_t *io_end = ext4_inode_aio(inode); 731 732 map_bh(bh, inode->i_sb, map.m_pblk); 733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 735 set_buffer_defer_completion(bh); 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 737 ret = 0; 738 } 739 if (started) 740 ext4_journal_stop(handle); 741 return ret; 742 } 743 744 int ext4_get_block(struct inode *inode, sector_t iblock, 745 struct buffer_head *bh, int create) 746 { 747 return _ext4_get_block(inode, iblock, bh, 748 create ? EXT4_GET_BLOCKS_CREATE : 0); 749 } 750 751 /* 752 * `handle' can be NULL if create is zero 753 */ 754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 755 ext4_lblk_t block, int create, int *errp) 756 { 757 struct ext4_map_blocks map; 758 struct buffer_head *bh; 759 int fatal = 0, err; 760 761 J_ASSERT(handle != NULL || create == 0); 762 763 map.m_lblk = block; 764 map.m_len = 1; 765 err = ext4_map_blocks(handle, inode, &map, 766 create ? EXT4_GET_BLOCKS_CREATE : 0); 767 768 /* ensure we send some value back into *errp */ 769 *errp = 0; 770 771 if (create && err == 0) 772 err = -ENOSPC; /* should never happen */ 773 if (err < 0) 774 *errp = err; 775 if (err <= 0) 776 return NULL; 777 778 bh = sb_getblk(inode->i_sb, map.m_pblk); 779 if (unlikely(!bh)) { 780 *errp = -ENOMEM; 781 return NULL; 782 } 783 if (map.m_flags & EXT4_MAP_NEW) { 784 J_ASSERT(create != 0); 785 J_ASSERT(handle != NULL); 786 787 /* 788 * Now that we do not always journal data, we should 789 * keep in mind whether this should always journal the 790 * new buffer as metadata. For now, regular file 791 * writes use ext4_get_block instead, so it's not a 792 * problem. 793 */ 794 lock_buffer(bh); 795 BUFFER_TRACE(bh, "call get_create_access"); 796 fatal = ext4_journal_get_create_access(handle, bh); 797 if (!fatal && !buffer_uptodate(bh)) { 798 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 799 set_buffer_uptodate(bh); 800 } 801 unlock_buffer(bh); 802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 803 err = ext4_handle_dirty_metadata(handle, inode, bh); 804 if (!fatal) 805 fatal = err; 806 } else { 807 BUFFER_TRACE(bh, "not a new buffer"); 808 } 809 if (fatal) { 810 *errp = fatal; 811 brelse(bh); 812 bh = NULL; 813 } 814 return bh; 815 } 816 817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 818 ext4_lblk_t block, int create, int *err) 819 { 820 struct buffer_head *bh; 821 822 bh = ext4_getblk(handle, inode, block, create, err); 823 if (!bh) 824 return bh; 825 if (buffer_uptodate(bh)) 826 return bh; 827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 828 wait_on_buffer(bh); 829 if (buffer_uptodate(bh)) 830 return bh; 831 put_bh(bh); 832 *err = -EIO; 833 return NULL; 834 } 835 836 int ext4_walk_page_buffers(handle_t *handle, 837 struct buffer_head *head, 838 unsigned from, 839 unsigned to, 840 int *partial, 841 int (*fn)(handle_t *handle, 842 struct buffer_head *bh)) 843 { 844 struct buffer_head *bh; 845 unsigned block_start, block_end; 846 unsigned blocksize = head->b_size; 847 int err, ret = 0; 848 struct buffer_head *next; 849 850 for (bh = head, block_start = 0; 851 ret == 0 && (bh != head || !block_start); 852 block_start = block_end, bh = next) { 853 next = bh->b_this_page; 854 block_end = block_start + blocksize; 855 if (block_end <= from || block_start >= to) { 856 if (partial && !buffer_uptodate(bh)) 857 *partial = 1; 858 continue; 859 } 860 err = (*fn)(handle, bh); 861 if (!ret) 862 ret = err; 863 } 864 return ret; 865 } 866 867 /* 868 * To preserve ordering, it is essential that the hole instantiation and 869 * the data write be encapsulated in a single transaction. We cannot 870 * close off a transaction and start a new one between the ext4_get_block() 871 * and the commit_write(). So doing the jbd2_journal_start at the start of 872 * prepare_write() is the right place. 873 * 874 * Also, this function can nest inside ext4_writepage(). In that case, we 875 * *know* that ext4_writepage() has generated enough buffer credits to do the 876 * whole page. So we won't block on the journal in that case, which is good, 877 * because the caller may be PF_MEMALLOC. 878 * 879 * By accident, ext4 can be reentered when a transaction is open via 880 * quota file writes. If we were to commit the transaction while thus 881 * reentered, there can be a deadlock - we would be holding a quota 882 * lock, and the commit would never complete if another thread had a 883 * transaction open and was blocking on the quota lock - a ranking 884 * violation. 885 * 886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 887 * will _not_ run commit under these circumstances because handle->h_ref 888 * is elevated. We'll still have enough credits for the tiny quotafile 889 * write. 890 */ 891 int do_journal_get_write_access(handle_t *handle, 892 struct buffer_head *bh) 893 { 894 int dirty = buffer_dirty(bh); 895 int ret; 896 897 if (!buffer_mapped(bh) || buffer_freed(bh)) 898 return 0; 899 /* 900 * __block_write_begin() could have dirtied some buffers. Clean 901 * the dirty bit as jbd2_journal_get_write_access() could complain 902 * otherwise about fs integrity issues. Setting of the dirty bit 903 * by __block_write_begin() isn't a real problem here as we clear 904 * the bit before releasing a page lock and thus writeback cannot 905 * ever write the buffer. 906 */ 907 if (dirty) 908 clear_buffer_dirty(bh); 909 ret = ext4_journal_get_write_access(handle, bh); 910 if (!ret && dirty) 911 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 912 return ret; 913 } 914 915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 916 struct buffer_head *bh_result, int create); 917 static int ext4_write_begin(struct file *file, struct address_space *mapping, 918 loff_t pos, unsigned len, unsigned flags, 919 struct page **pagep, void **fsdata) 920 { 921 struct inode *inode = mapping->host; 922 int ret, needed_blocks; 923 handle_t *handle; 924 int retries = 0; 925 struct page *page; 926 pgoff_t index; 927 unsigned from, to; 928 929 trace_ext4_write_begin(inode, pos, len, flags); 930 /* 931 * Reserve one block more for addition to orphan list in case 932 * we allocate blocks but write fails for some reason 933 */ 934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 935 index = pos >> PAGE_CACHE_SHIFT; 936 from = pos & (PAGE_CACHE_SIZE - 1); 937 to = from + len; 938 939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 941 flags, pagep); 942 if (ret < 0) 943 return ret; 944 if (ret == 1) 945 return 0; 946 } 947 948 /* 949 * grab_cache_page_write_begin() can take a long time if the 950 * system is thrashing due to memory pressure, or if the page 951 * is being written back. So grab it first before we start 952 * the transaction handle. This also allows us to allocate 953 * the page (if needed) without using GFP_NOFS. 954 */ 955 retry_grab: 956 page = grab_cache_page_write_begin(mapping, index, flags); 957 if (!page) 958 return -ENOMEM; 959 unlock_page(page); 960 961 retry_journal: 962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 963 if (IS_ERR(handle)) { 964 page_cache_release(page); 965 return PTR_ERR(handle); 966 } 967 968 lock_page(page); 969 if (page->mapping != mapping) { 970 /* The page got truncated from under us */ 971 unlock_page(page); 972 page_cache_release(page); 973 ext4_journal_stop(handle); 974 goto retry_grab; 975 } 976 /* In case writeback began while the page was unlocked */ 977 wait_for_stable_page(page); 978 979 if (ext4_should_dioread_nolock(inode)) 980 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 981 else 982 ret = __block_write_begin(page, pos, len, ext4_get_block); 983 984 if (!ret && ext4_should_journal_data(inode)) { 985 ret = ext4_walk_page_buffers(handle, page_buffers(page), 986 from, to, NULL, 987 do_journal_get_write_access); 988 } 989 990 if (ret) { 991 unlock_page(page); 992 /* 993 * __block_write_begin may have instantiated a few blocks 994 * outside i_size. Trim these off again. Don't need 995 * i_size_read because we hold i_mutex. 996 * 997 * Add inode to orphan list in case we crash before 998 * truncate finishes 999 */ 1000 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1001 ext4_orphan_add(handle, inode); 1002 1003 ext4_journal_stop(handle); 1004 if (pos + len > inode->i_size) { 1005 ext4_truncate_failed_write(inode); 1006 /* 1007 * If truncate failed early the inode might 1008 * still be on the orphan list; we need to 1009 * make sure the inode is removed from the 1010 * orphan list in that case. 1011 */ 1012 if (inode->i_nlink) 1013 ext4_orphan_del(NULL, inode); 1014 } 1015 1016 if (ret == -ENOSPC && 1017 ext4_should_retry_alloc(inode->i_sb, &retries)) 1018 goto retry_journal; 1019 page_cache_release(page); 1020 return ret; 1021 } 1022 *pagep = page; 1023 return ret; 1024 } 1025 1026 /* For write_end() in data=journal mode */ 1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1028 { 1029 int ret; 1030 if (!buffer_mapped(bh) || buffer_freed(bh)) 1031 return 0; 1032 set_buffer_uptodate(bh); 1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1034 clear_buffer_meta(bh); 1035 clear_buffer_prio(bh); 1036 return ret; 1037 } 1038 1039 /* 1040 * We need to pick up the new inode size which generic_commit_write gave us 1041 * `file' can be NULL - eg, when called from page_symlink(). 1042 * 1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1044 * buffers are managed internally. 1045 */ 1046 static int ext4_write_end(struct file *file, 1047 struct address_space *mapping, 1048 loff_t pos, unsigned len, unsigned copied, 1049 struct page *page, void *fsdata) 1050 { 1051 handle_t *handle = ext4_journal_current_handle(); 1052 struct inode *inode = mapping->host; 1053 int ret = 0, ret2; 1054 int i_size_changed = 0; 1055 1056 trace_ext4_write_end(inode, pos, len, copied); 1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1058 ret = ext4_jbd2_file_inode(handle, inode); 1059 if (ret) { 1060 unlock_page(page); 1061 page_cache_release(page); 1062 goto errout; 1063 } 1064 } 1065 1066 if (ext4_has_inline_data(inode)) { 1067 ret = ext4_write_inline_data_end(inode, pos, len, 1068 copied, page); 1069 if (ret < 0) 1070 goto errout; 1071 copied = ret; 1072 } else 1073 copied = block_write_end(file, mapping, pos, 1074 len, copied, page, fsdata); 1075 1076 /* 1077 * No need to use i_size_read() here, the i_size 1078 * cannot change under us because we hole i_mutex. 1079 * 1080 * But it's important to update i_size while still holding page lock: 1081 * page writeout could otherwise come in and zero beyond i_size. 1082 */ 1083 if (pos + copied > inode->i_size) { 1084 i_size_write(inode, pos + copied); 1085 i_size_changed = 1; 1086 } 1087 1088 if (pos + copied > EXT4_I(inode)->i_disksize) { 1089 /* We need to mark inode dirty even if 1090 * new_i_size is less that inode->i_size 1091 * but greater than i_disksize. (hint delalloc) 1092 */ 1093 ext4_update_i_disksize(inode, (pos + copied)); 1094 i_size_changed = 1; 1095 } 1096 unlock_page(page); 1097 page_cache_release(page); 1098 1099 /* 1100 * Don't mark the inode dirty under page lock. First, it unnecessarily 1101 * makes the holding time of page lock longer. Second, it forces lock 1102 * ordering of page lock and transaction start for journaling 1103 * filesystems. 1104 */ 1105 if (i_size_changed) 1106 ext4_mark_inode_dirty(handle, inode); 1107 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1109 /* if we have allocated more blocks and copied 1110 * less. We will have blocks allocated outside 1111 * inode->i_size. So truncate them 1112 */ 1113 ext4_orphan_add(handle, inode); 1114 errout: 1115 ret2 = ext4_journal_stop(handle); 1116 if (!ret) 1117 ret = ret2; 1118 1119 if (pos + len > inode->i_size) { 1120 ext4_truncate_failed_write(inode); 1121 /* 1122 * If truncate failed early the inode might still be 1123 * on the orphan list; we need to make sure the inode 1124 * is removed from the orphan list in that case. 1125 */ 1126 if (inode->i_nlink) 1127 ext4_orphan_del(NULL, inode); 1128 } 1129 1130 return ret ? ret : copied; 1131 } 1132 1133 static int ext4_journalled_write_end(struct file *file, 1134 struct address_space *mapping, 1135 loff_t pos, unsigned len, unsigned copied, 1136 struct page *page, void *fsdata) 1137 { 1138 handle_t *handle = ext4_journal_current_handle(); 1139 struct inode *inode = mapping->host; 1140 int ret = 0, ret2; 1141 int partial = 0; 1142 unsigned from, to; 1143 loff_t new_i_size; 1144 1145 trace_ext4_journalled_write_end(inode, pos, len, copied); 1146 from = pos & (PAGE_CACHE_SIZE - 1); 1147 to = from + len; 1148 1149 BUG_ON(!ext4_handle_valid(handle)); 1150 1151 if (ext4_has_inline_data(inode)) 1152 copied = ext4_write_inline_data_end(inode, pos, len, 1153 copied, page); 1154 else { 1155 if (copied < len) { 1156 if (!PageUptodate(page)) 1157 copied = 0; 1158 page_zero_new_buffers(page, from+copied, to); 1159 } 1160 1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1162 to, &partial, write_end_fn); 1163 if (!partial) 1164 SetPageUptodate(page); 1165 } 1166 new_i_size = pos + copied; 1167 if (new_i_size > inode->i_size) 1168 i_size_write(inode, pos+copied); 1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1171 if (new_i_size > EXT4_I(inode)->i_disksize) { 1172 ext4_update_i_disksize(inode, new_i_size); 1173 ret2 = ext4_mark_inode_dirty(handle, inode); 1174 if (!ret) 1175 ret = ret2; 1176 } 1177 1178 unlock_page(page); 1179 page_cache_release(page); 1180 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1181 /* if we have allocated more blocks and copied 1182 * less. We will have blocks allocated outside 1183 * inode->i_size. So truncate them 1184 */ 1185 ext4_orphan_add(handle, inode); 1186 1187 ret2 = ext4_journal_stop(handle); 1188 if (!ret) 1189 ret = ret2; 1190 if (pos + len > inode->i_size) { 1191 ext4_truncate_failed_write(inode); 1192 /* 1193 * If truncate failed early the inode might still be 1194 * on the orphan list; we need to make sure the inode 1195 * is removed from the orphan list in that case. 1196 */ 1197 if (inode->i_nlink) 1198 ext4_orphan_del(NULL, inode); 1199 } 1200 1201 return ret ? ret : copied; 1202 } 1203 1204 /* 1205 * Reserve a metadata for a single block located at lblock 1206 */ 1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1208 { 1209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1210 struct ext4_inode_info *ei = EXT4_I(inode); 1211 unsigned int md_needed; 1212 ext4_lblk_t save_last_lblock; 1213 int save_len; 1214 1215 /* 1216 * recalculate the amount of metadata blocks to reserve 1217 * in order to allocate nrblocks 1218 * worse case is one extent per block 1219 */ 1220 spin_lock(&ei->i_block_reservation_lock); 1221 /* 1222 * ext4_calc_metadata_amount() has side effects, which we have 1223 * to be prepared undo if we fail to claim space. 1224 */ 1225 save_len = ei->i_da_metadata_calc_len; 1226 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1227 md_needed = EXT4_NUM_B2C(sbi, 1228 ext4_calc_metadata_amount(inode, lblock)); 1229 trace_ext4_da_reserve_space(inode, md_needed); 1230 1231 /* 1232 * We do still charge estimated metadata to the sb though; 1233 * we cannot afford to run out of free blocks. 1234 */ 1235 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1236 ei->i_da_metadata_calc_len = save_len; 1237 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1238 spin_unlock(&ei->i_block_reservation_lock); 1239 return -ENOSPC; 1240 } 1241 ei->i_reserved_meta_blocks += md_needed; 1242 spin_unlock(&ei->i_block_reservation_lock); 1243 1244 return 0; /* success */ 1245 } 1246 1247 /* 1248 * Reserve a single cluster located at lblock 1249 */ 1250 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1251 { 1252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1253 struct ext4_inode_info *ei = EXT4_I(inode); 1254 unsigned int md_needed; 1255 int ret; 1256 ext4_lblk_t save_last_lblock; 1257 int save_len; 1258 1259 /* 1260 * We will charge metadata quota at writeout time; this saves 1261 * us from metadata over-estimation, though we may go over by 1262 * a small amount in the end. Here we just reserve for data. 1263 */ 1264 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1265 if (ret) 1266 return ret; 1267 1268 /* 1269 * recalculate the amount of metadata blocks to reserve 1270 * in order to allocate nrblocks 1271 * worse case is one extent per block 1272 */ 1273 spin_lock(&ei->i_block_reservation_lock); 1274 /* 1275 * ext4_calc_metadata_amount() has side effects, which we have 1276 * to be prepared undo if we fail to claim space. 1277 */ 1278 save_len = ei->i_da_metadata_calc_len; 1279 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1280 md_needed = EXT4_NUM_B2C(sbi, 1281 ext4_calc_metadata_amount(inode, lblock)); 1282 trace_ext4_da_reserve_space(inode, md_needed); 1283 1284 /* 1285 * We do still charge estimated metadata to the sb though; 1286 * we cannot afford to run out of free blocks. 1287 */ 1288 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1289 ei->i_da_metadata_calc_len = save_len; 1290 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1291 spin_unlock(&ei->i_block_reservation_lock); 1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1293 return -ENOSPC; 1294 } 1295 ei->i_reserved_data_blocks++; 1296 ei->i_reserved_meta_blocks += md_needed; 1297 spin_unlock(&ei->i_block_reservation_lock); 1298 1299 return 0; /* success */ 1300 } 1301 1302 static void ext4_da_release_space(struct inode *inode, int to_free) 1303 { 1304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1305 struct ext4_inode_info *ei = EXT4_I(inode); 1306 1307 if (!to_free) 1308 return; /* Nothing to release, exit */ 1309 1310 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1311 1312 trace_ext4_da_release_space(inode, to_free); 1313 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1314 /* 1315 * if there aren't enough reserved blocks, then the 1316 * counter is messed up somewhere. Since this 1317 * function is called from invalidate page, it's 1318 * harmless to return without any action. 1319 */ 1320 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1321 "ino %lu, to_free %d with only %d reserved " 1322 "data blocks", inode->i_ino, to_free, 1323 ei->i_reserved_data_blocks); 1324 WARN_ON(1); 1325 to_free = ei->i_reserved_data_blocks; 1326 } 1327 ei->i_reserved_data_blocks -= to_free; 1328 1329 if (ei->i_reserved_data_blocks == 0) { 1330 /* 1331 * We can release all of the reserved metadata blocks 1332 * only when we have written all of the delayed 1333 * allocation blocks. 1334 * Note that in case of bigalloc, i_reserved_meta_blocks, 1335 * i_reserved_data_blocks, etc. refer to number of clusters. 1336 */ 1337 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1338 ei->i_reserved_meta_blocks); 1339 ei->i_reserved_meta_blocks = 0; 1340 ei->i_da_metadata_calc_len = 0; 1341 } 1342 1343 /* update fs dirty data blocks counter */ 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1345 1346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1347 1348 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1349 } 1350 1351 static void ext4_da_page_release_reservation(struct page *page, 1352 unsigned int offset, 1353 unsigned int length) 1354 { 1355 int to_release = 0; 1356 struct buffer_head *head, *bh; 1357 unsigned int curr_off = 0; 1358 struct inode *inode = page->mapping->host; 1359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1360 unsigned int stop = offset + length; 1361 int num_clusters; 1362 ext4_fsblk_t lblk; 1363 1364 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1365 1366 head = page_buffers(page); 1367 bh = head; 1368 do { 1369 unsigned int next_off = curr_off + bh->b_size; 1370 1371 if (next_off > stop) 1372 break; 1373 1374 if ((offset <= curr_off) && (buffer_delay(bh))) { 1375 to_release++; 1376 clear_buffer_delay(bh); 1377 } 1378 curr_off = next_off; 1379 } while ((bh = bh->b_this_page) != head); 1380 1381 if (to_release) { 1382 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1383 ext4_es_remove_extent(inode, lblk, to_release); 1384 } 1385 1386 /* If we have released all the blocks belonging to a cluster, then we 1387 * need to release the reserved space for that cluster. */ 1388 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1389 while (num_clusters > 0) { 1390 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1391 ((num_clusters - 1) << sbi->s_cluster_bits); 1392 if (sbi->s_cluster_ratio == 1 || 1393 !ext4_find_delalloc_cluster(inode, lblk)) 1394 ext4_da_release_space(inode, 1); 1395 1396 num_clusters--; 1397 } 1398 } 1399 1400 /* 1401 * Delayed allocation stuff 1402 */ 1403 1404 struct mpage_da_data { 1405 struct inode *inode; 1406 struct writeback_control *wbc; 1407 1408 pgoff_t first_page; /* The first page to write */ 1409 pgoff_t next_page; /* Current page to examine */ 1410 pgoff_t last_page; /* Last page to examine */ 1411 /* 1412 * Extent to map - this can be after first_page because that can be 1413 * fully mapped. We somewhat abuse m_flags to store whether the extent 1414 * is delalloc or unwritten. 1415 */ 1416 struct ext4_map_blocks map; 1417 struct ext4_io_submit io_submit; /* IO submission data */ 1418 }; 1419 1420 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1421 bool invalidate) 1422 { 1423 int nr_pages, i; 1424 pgoff_t index, end; 1425 struct pagevec pvec; 1426 struct inode *inode = mpd->inode; 1427 struct address_space *mapping = inode->i_mapping; 1428 1429 /* This is necessary when next_page == 0. */ 1430 if (mpd->first_page >= mpd->next_page) 1431 return; 1432 1433 index = mpd->first_page; 1434 end = mpd->next_page - 1; 1435 if (invalidate) { 1436 ext4_lblk_t start, last; 1437 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1438 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1439 ext4_es_remove_extent(inode, start, last - start + 1); 1440 } 1441 1442 pagevec_init(&pvec, 0); 1443 while (index <= end) { 1444 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1445 if (nr_pages == 0) 1446 break; 1447 for (i = 0; i < nr_pages; i++) { 1448 struct page *page = pvec.pages[i]; 1449 if (page->index > end) 1450 break; 1451 BUG_ON(!PageLocked(page)); 1452 BUG_ON(PageWriteback(page)); 1453 if (invalidate) { 1454 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1455 ClearPageUptodate(page); 1456 } 1457 unlock_page(page); 1458 } 1459 index = pvec.pages[nr_pages - 1]->index + 1; 1460 pagevec_release(&pvec); 1461 } 1462 } 1463 1464 static void ext4_print_free_blocks(struct inode *inode) 1465 { 1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1467 struct super_block *sb = inode->i_sb; 1468 struct ext4_inode_info *ei = EXT4_I(inode); 1469 1470 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1471 EXT4_C2B(EXT4_SB(inode->i_sb), 1472 ext4_count_free_clusters(sb))); 1473 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1474 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1475 (long long) EXT4_C2B(EXT4_SB(sb), 1476 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1477 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1478 (long long) EXT4_C2B(EXT4_SB(sb), 1479 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1480 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1481 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1482 ei->i_reserved_data_blocks); 1483 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1484 ei->i_reserved_meta_blocks); 1485 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1486 ei->i_allocated_meta_blocks); 1487 return; 1488 } 1489 1490 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1491 { 1492 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1493 } 1494 1495 /* 1496 * This function is grabs code from the very beginning of 1497 * ext4_map_blocks, but assumes that the caller is from delayed write 1498 * time. This function looks up the requested blocks and sets the 1499 * buffer delay bit under the protection of i_data_sem. 1500 */ 1501 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1502 struct ext4_map_blocks *map, 1503 struct buffer_head *bh) 1504 { 1505 struct extent_status es; 1506 int retval; 1507 sector_t invalid_block = ~((sector_t) 0xffff); 1508 #ifdef ES_AGGRESSIVE_TEST 1509 struct ext4_map_blocks orig_map; 1510 1511 memcpy(&orig_map, map, sizeof(*map)); 1512 #endif 1513 1514 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1515 invalid_block = ~0; 1516 1517 map->m_flags = 0; 1518 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1519 "logical block %lu\n", inode->i_ino, map->m_len, 1520 (unsigned long) map->m_lblk); 1521 1522 /* Lookup extent status tree firstly */ 1523 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1524 ext4_es_lru_add(inode); 1525 if (ext4_es_is_hole(&es)) { 1526 retval = 0; 1527 down_read((&EXT4_I(inode)->i_data_sem)); 1528 goto add_delayed; 1529 } 1530 1531 /* 1532 * Delayed extent could be allocated by fallocate. 1533 * So we need to check it. 1534 */ 1535 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1536 map_bh(bh, inode->i_sb, invalid_block); 1537 set_buffer_new(bh); 1538 set_buffer_delay(bh); 1539 return 0; 1540 } 1541 1542 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1543 retval = es.es_len - (iblock - es.es_lblk); 1544 if (retval > map->m_len) 1545 retval = map->m_len; 1546 map->m_len = retval; 1547 if (ext4_es_is_written(&es)) 1548 map->m_flags |= EXT4_MAP_MAPPED; 1549 else if (ext4_es_is_unwritten(&es)) 1550 map->m_flags |= EXT4_MAP_UNWRITTEN; 1551 else 1552 BUG_ON(1); 1553 1554 #ifdef ES_AGGRESSIVE_TEST 1555 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1556 #endif 1557 return retval; 1558 } 1559 1560 /* 1561 * Try to see if we can get the block without requesting a new 1562 * file system block. 1563 */ 1564 down_read((&EXT4_I(inode)->i_data_sem)); 1565 if (ext4_has_inline_data(inode)) { 1566 /* 1567 * We will soon create blocks for this page, and let 1568 * us pretend as if the blocks aren't allocated yet. 1569 * In case of clusters, we have to handle the work 1570 * of mapping from cluster so that the reserved space 1571 * is calculated properly. 1572 */ 1573 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1574 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1575 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1576 retval = 0; 1577 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1578 retval = ext4_ext_map_blocks(NULL, inode, map, 1579 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1580 else 1581 retval = ext4_ind_map_blocks(NULL, inode, map, 1582 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1583 1584 add_delayed: 1585 if (retval == 0) { 1586 int ret; 1587 /* 1588 * XXX: __block_prepare_write() unmaps passed block, 1589 * is it OK? 1590 */ 1591 /* 1592 * If the block was allocated from previously allocated cluster, 1593 * then we don't need to reserve it again. However we still need 1594 * to reserve metadata for every block we're going to write. 1595 */ 1596 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1597 ret = ext4_da_reserve_space(inode, iblock); 1598 if (ret) { 1599 /* not enough space to reserve */ 1600 retval = ret; 1601 goto out_unlock; 1602 } 1603 } else { 1604 ret = ext4_da_reserve_metadata(inode, iblock); 1605 if (ret) { 1606 /* not enough space to reserve */ 1607 retval = ret; 1608 goto out_unlock; 1609 } 1610 } 1611 1612 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1613 ~0, EXTENT_STATUS_DELAYED); 1614 if (ret) { 1615 retval = ret; 1616 goto out_unlock; 1617 } 1618 1619 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1620 * and it should not appear on the bh->b_state. 1621 */ 1622 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1623 1624 map_bh(bh, inode->i_sb, invalid_block); 1625 set_buffer_new(bh); 1626 set_buffer_delay(bh); 1627 } else if (retval > 0) { 1628 int ret; 1629 unsigned int status; 1630 1631 if (unlikely(retval != map->m_len)) { 1632 ext4_warning(inode->i_sb, 1633 "ES len assertion failed for inode " 1634 "%lu: retval %d != map->m_len %d", 1635 inode->i_ino, retval, map->m_len); 1636 WARN_ON(1); 1637 } 1638 1639 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1640 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1641 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1642 map->m_pblk, status); 1643 if (ret != 0) 1644 retval = ret; 1645 } 1646 1647 out_unlock: 1648 up_read((&EXT4_I(inode)->i_data_sem)); 1649 1650 return retval; 1651 } 1652 1653 /* 1654 * This is a special get_blocks_t callback which is used by 1655 * ext4_da_write_begin(). It will either return mapped block or 1656 * reserve space for a single block. 1657 * 1658 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1659 * We also have b_blocknr = -1 and b_bdev initialized properly 1660 * 1661 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1662 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1663 * initialized properly. 1664 */ 1665 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1666 struct buffer_head *bh, int create) 1667 { 1668 struct ext4_map_blocks map; 1669 int ret = 0; 1670 1671 BUG_ON(create == 0); 1672 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1673 1674 map.m_lblk = iblock; 1675 map.m_len = 1; 1676 1677 /* 1678 * first, we need to know whether the block is allocated already 1679 * preallocated blocks are unmapped but should treated 1680 * the same as allocated blocks. 1681 */ 1682 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1683 if (ret <= 0) 1684 return ret; 1685 1686 map_bh(bh, inode->i_sb, map.m_pblk); 1687 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1688 1689 if (buffer_unwritten(bh)) { 1690 /* A delayed write to unwritten bh should be marked 1691 * new and mapped. Mapped ensures that we don't do 1692 * get_block multiple times when we write to the same 1693 * offset and new ensures that we do proper zero out 1694 * for partial write. 1695 */ 1696 set_buffer_new(bh); 1697 set_buffer_mapped(bh); 1698 } 1699 return 0; 1700 } 1701 1702 static int bget_one(handle_t *handle, struct buffer_head *bh) 1703 { 1704 get_bh(bh); 1705 return 0; 1706 } 1707 1708 static int bput_one(handle_t *handle, struct buffer_head *bh) 1709 { 1710 put_bh(bh); 1711 return 0; 1712 } 1713 1714 static int __ext4_journalled_writepage(struct page *page, 1715 unsigned int len) 1716 { 1717 struct address_space *mapping = page->mapping; 1718 struct inode *inode = mapping->host; 1719 struct buffer_head *page_bufs = NULL; 1720 handle_t *handle = NULL; 1721 int ret = 0, err = 0; 1722 int inline_data = ext4_has_inline_data(inode); 1723 struct buffer_head *inode_bh = NULL; 1724 1725 ClearPageChecked(page); 1726 1727 if (inline_data) { 1728 BUG_ON(page->index != 0); 1729 BUG_ON(len > ext4_get_max_inline_size(inode)); 1730 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1731 if (inode_bh == NULL) 1732 goto out; 1733 } else { 1734 page_bufs = page_buffers(page); 1735 if (!page_bufs) { 1736 BUG(); 1737 goto out; 1738 } 1739 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1740 NULL, bget_one); 1741 } 1742 /* As soon as we unlock the page, it can go away, but we have 1743 * references to buffers so we are safe */ 1744 unlock_page(page); 1745 1746 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1747 ext4_writepage_trans_blocks(inode)); 1748 if (IS_ERR(handle)) { 1749 ret = PTR_ERR(handle); 1750 goto out; 1751 } 1752 1753 BUG_ON(!ext4_handle_valid(handle)); 1754 1755 if (inline_data) { 1756 ret = ext4_journal_get_write_access(handle, inode_bh); 1757 1758 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1759 1760 } else { 1761 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1762 do_journal_get_write_access); 1763 1764 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1765 write_end_fn); 1766 } 1767 if (ret == 0) 1768 ret = err; 1769 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1770 err = ext4_journal_stop(handle); 1771 if (!ret) 1772 ret = err; 1773 1774 if (!ext4_has_inline_data(inode)) 1775 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1776 NULL, bput_one); 1777 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1778 out: 1779 brelse(inode_bh); 1780 return ret; 1781 } 1782 1783 /* 1784 * Note that we don't need to start a transaction unless we're journaling data 1785 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1786 * need to file the inode to the transaction's list in ordered mode because if 1787 * we are writing back data added by write(), the inode is already there and if 1788 * we are writing back data modified via mmap(), no one guarantees in which 1789 * transaction the data will hit the disk. In case we are journaling data, we 1790 * cannot start transaction directly because transaction start ranks above page 1791 * lock so we have to do some magic. 1792 * 1793 * This function can get called via... 1794 * - ext4_writepages after taking page lock (have journal handle) 1795 * - journal_submit_inode_data_buffers (no journal handle) 1796 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1797 * - grab_page_cache when doing write_begin (have journal handle) 1798 * 1799 * We don't do any block allocation in this function. If we have page with 1800 * multiple blocks we need to write those buffer_heads that are mapped. This 1801 * is important for mmaped based write. So if we do with blocksize 1K 1802 * truncate(f, 1024); 1803 * a = mmap(f, 0, 4096); 1804 * a[0] = 'a'; 1805 * truncate(f, 4096); 1806 * we have in the page first buffer_head mapped via page_mkwrite call back 1807 * but other buffer_heads would be unmapped but dirty (dirty done via the 1808 * do_wp_page). So writepage should write the first block. If we modify 1809 * the mmap area beyond 1024 we will again get a page_fault and the 1810 * page_mkwrite callback will do the block allocation and mark the 1811 * buffer_heads mapped. 1812 * 1813 * We redirty the page if we have any buffer_heads that is either delay or 1814 * unwritten in the page. 1815 * 1816 * We can get recursively called as show below. 1817 * 1818 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1819 * ext4_writepage() 1820 * 1821 * But since we don't do any block allocation we should not deadlock. 1822 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1823 */ 1824 static int ext4_writepage(struct page *page, 1825 struct writeback_control *wbc) 1826 { 1827 int ret = 0; 1828 loff_t size; 1829 unsigned int len; 1830 struct buffer_head *page_bufs = NULL; 1831 struct inode *inode = page->mapping->host; 1832 struct ext4_io_submit io_submit; 1833 1834 trace_ext4_writepage(page); 1835 size = i_size_read(inode); 1836 if (page->index == size >> PAGE_CACHE_SHIFT) 1837 len = size & ~PAGE_CACHE_MASK; 1838 else 1839 len = PAGE_CACHE_SIZE; 1840 1841 page_bufs = page_buffers(page); 1842 /* 1843 * We cannot do block allocation or other extent handling in this 1844 * function. If there are buffers needing that, we have to redirty 1845 * the page. But we may reach here when we do a journal commit via 1846 * journal_submit_inode_data_buffers() and in that case we must write 1847 * allocated buffers to achieve data=ordered mode guarantees. 1848 */ 1849 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1850 ext4_bh_delay_or_unwritten)) { 1851 redirty_page_for_writepage(wbc, page); 1852 if (current->flags & PF_MEMALLOC) { 1853 /* 1854 * For memory cleaning there's no point in writing only 1855 * some buffers. So just bail out. Warn if we came here 1856 * from direct reclaim. 1857 */ 1858 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1859 == PF_MEMALLOC); 1860 unlock_page(page); 1861 return 0; 1862 } 1863 } 1864 1865 if (PageChecked(page) && ext4_should_journal_data(inode)) 1866 /* 1867 * It's mmapped pagecache. Add buffers and journal it. There 1868 * doesn't seem much point in redirtying the page here. 1869 */ 1870 return __ext4_journalled_writepage(page, len); 1871 1872 ext4_io_submit_init(&io_submit, wbc); 1873 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1874 if (!io_submit.io_end) { 1875 redirty_page_for_writepage(wbc, page); 1876 unlock_page(page); 1877 return -ENOMEM; 1878 } 1879 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1880 ext4_io_submit(&io_submit); 1881 /* Drop io_end reference we got from init */ 1882 ext4_put_io_end_defer(io_submit.io_end); 1883 return ret; 1884 } 1885 1886 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1887 { 1888 int len; 1889 loff_t size = i_size_read(mpd->inode); 1890 int err; 1891 1892 BUG_ON(page->index != mpd->first_page); 1893 if (page->index == size >> PAGE_CACHE_SHIFT) 1894 len = size & ~PAGE_CACHE_MASK; 1895 else 1896 len = PAGE_CACHE_SIZE; 1897 clear_page_dirty_for_io(page); 1898 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1899 if (!err) 1900 mpd->wbc->nr_to_write--; 1901 mpd->first_page++; 1902 1903 return err; 1904 } 1905 1906 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1907 1908 /* 1909 * mballoc gives us at most this number of blocks... 1910 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1911 * The rest of mballoc seems to handle chunks up to full group size. 1912 */ 1913 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1914 1915 /* 1916 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1917 * 1918 * @mpd - extent of blocks 1919 * @lblk - logical number of the block in the file 1920 * @bh - buffer head we want to add to the extent 1921 * 1922 * The function is used to collect contig. blocks in the same state. If the 1923 * buffer doesn't require mapping for writeback and we haven't started the 1924 * extent of buffers to map yet, the function returns 'true' immediately - the 1925 * caller can write the buffer right away. Otherwise the function returns true 1926 * if the block has been added to the extent, false if the block couldn't be 1927 * added. 1928 */ 1929 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1930 struct buffer_head *bh) 1931 { 1932 struct ext4_map_blocks *map = &mpd->map; 1933 1934 /* Buffer that doesn't need mapping for writeback? */ 1935 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1936 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1937 /* So far no extent to map => we write the buffer right away */ 1938 if (map->m_len == 0) 1939 return true; 1940 return false; 1941 } 1942 1943 /* First block in the extent? */ 1944 if (map->m_len == 0) { 1945 map->m_lblk = lblk; 1946 map->m_len = 1; 1947 map->m_flags = bh->b_state & BH_FLAGS; 1948 return true; 1949 } 1950 1951 /* Don't go larger than mballoc is willing to allocate */ 1952 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1953 return false; 1954 1955 /* Can we merge the block to our big extent? */ 1956 if (lblk == map->m_lblk + map->m_len && 1957 (bh->b_state & BH_FLAGS) == map->m_flags) { 1958 map->m_len++; 1959 return true; 1960 } 1961 return false; 1962 } 1963 1964 /* 1965 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1966 * 1967 * @mpd - extent of blocks for mapping 1968 * @head - the first buffer in the page 1969 * @bh - buffer we should start processing from 1970 * @lblk - logical number of the block in the file corresponding to @bh 1971 * 1972 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1973 * the page for IO if all buffers in this page were mapped and there's no 1974 * accumulated extent of buffers to map or add buffers in the page to the 1975 * extent of buffers to map. The function returns 1 if the caller can continue 1976 * by processing the next page, 0 if it should stop adding buffers to the 1977 * extent to map because we cannot extend it anymore. It can also return value 1978 * < 0 in case of error during IO submission. 1979 */ 1980 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1981 struct buffer_head *head, 1982 struct buffer_head *bh, 1983 ext4_lblk_t lblk) 1984 { 1985 struct inode *inode = mpd->inode; 1986 int err; 1987 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1988 >> inode->i_blkbits; 1989 1990 do { 1991 BUG_ON(buffer_locked(bh)); 1992 1993 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1994 /* Found extent to map? */ 1995 if (mpd->map.m_len) 1996 return 0; 1997 /* Everything mapped so far and we hit EOF */ 1998 break; 1999 } 2000 } while (lblk++, (bh = bh->b_this_page) != head); 2001 /* So far everything mapped? Submit the page for IO. */ 2002 if (mpd->map.m_len == 0) { 2003 err = mpage_submit_page(mpd, head->b_page); 2004 if (err < 0) 2005 return err; 2006 } 2007 return lblk < blocks; 2008 } 2009 2010 /* 2011 * mpage_map_buffers - update buffers corresponding to changed extent and 2012 * submit fully mapped pages for IO 2013 * 2014 * @mpd - description of extent to map, on return next extent to map 2015 * 2016 * Scan buffers corresponding to changed extent (we expect corresponding pages 2017 * to be already locked) and update buffer state according to new extent state. 2018 * We map delalloc buffers to their physical location, clear unwritten bits, 2019 * and mark buffers as uninit when we perform writes to uninitialized extents 2020 * and do extent conversion after IO is finished. If the last page is not fully 2021 * mapped, we update @map to the next extent in the last page that needs 2022 * mapping. Otherwise we submit the page for IO. 2023 */ 2024 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2025 { 2026 struct pagevec pvec; 2027 int nr_pages, i; 2028 struct inode *inode = mpd->inode; 2029 struct buffer_head *head, *bh; 2030 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2031 pgoff_t start, end; 2032 ext4_lblk_t lblk; 2033 sector_t pblock; 2034 int err; 2035 2036 start = mpd->map.m_lblk >> bpp_bits; 2037 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2038 lblk = start << bpp_bits; 2039 pblock = mpd->map.m_pblk; 2040 2041 pagevec_init(&pvec, 0); 2042 while (start <= end) { 2043 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2044 PAGEVEC_SIZE); 2045 if (nr_pages == 0) 2046 break; 2047 for (i = 0; i < nr_pages; i++) { 2048 struct page *page = pvec.pages[i]; 2049 2050 if (page->index > end) 2051 break; 2052 /* Up to 'end' pages must be contiguous */ 2053 BUG_ON(page->index != start); 2054 bh = head = page_buffers(page); 2055 do { 2056 if (lblk < mpd->map.m_lblk) 2057 continue; 2058 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2059 /* 2060 * Buffer after end of mapped extent. 2061 * Find next buffer in the page to map. 2062 */ 2063 mpd->map.m_len = 0; 2064 mpd->map.m_flags = 0; 2065 /* 2066 * FIXME: If dioread_nolock supports 2067 * blocksize < pagesize, we need to make 2068 * sure we add size mapped so far to 2069 * io_end->size as the following call 2070 * can submit the page for IO. 2071 */ 2072 err = mpage_process_page_bufs(mpd, head, 2073 bh, lblk); 2074 pagevec_release(&pvec); 2075 if (err > 0) 2076 err = 0; 2077 return err; 2078 } 2079 if (buffer_delay(bh)) { 2080 clear_buffer_delay(bh); 2081 bh->b_blocknr = pblock++; 2082 } 2083 clear_buffer_unwritten(bh); 2084 } while (lblk++, (bh = bh->b_this_page) != head); 2085 2086 /* 2087 * FIXME: This is going to break if dioread_nolock 2088 * supports blocksize < pagesize as we will try to 2089 * convert potentially unmapped parts of inode. 2090 */ 2091 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2092 /* Page fully mapped - let IO run! */ 2093 err = mpage_submit_page(mpd, page); 2094 if (err < 0) { 2095 pagevec_release(&pvec); 2096 return err; 2097 } 2098 start++; 2099 } 2100 pagevec_release(&pvec); 2101 } 2102 /* Extent fully mapped and matches with page boundary. We are done. */ 2103 mpd->map.m_len = 0; 2104 mpd->map.m_flags = 0; 2105 return 0; 2106 } 2107 2108 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2109 { 2110 struct inode *inode = mpd->inode; 2111 struct ext4_map_blocks *map = &mpd->map; 2112 int get_blocks_flags; 2113 int err; 2114 2115 trace_ext4_da_write_pages_extent(inode, map); 2116 /* 2117 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2118 * to convert an uninitialized extent to be initialized (in the case 2119 * where we have written into one or more preallocated blocks). It is 2120 * possible that we're going to need more metadata blocks than 2121 * previously reserved. However we must not fail because we're in 2122 * writeback and there is nothing we can do about it so it might result 2123 * in data loss. So use reserved blocks to allocate metadata if 2124 * possible. 2125 * 2126 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2127 * in question are delalloc blocks. This affects functions in many 2128 * different parts of the allocation call path. This flag exists 2129 * primarily because we don't want to change *many* call functions, so 2130 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2131 * once the inode's allocation semaphore is taken. 2132 */ 2133 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2134 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2135 if (ext4_should_dioread_nolock(inode)) 2136 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2137 if (map->m_flags & (1 << BH_Delay)) 2138 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2139 2140 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2141 if (err < 0) 2142 return err; 2143 if (map->m_flags & EXT4_MAP_UNINIT) { 2144 if (!mpd->io_submit.io_end->handle && 2145 ext4_handle_valid(handle)) { 2146 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2147 handle->h_rsv_handle = NULL; 2148 } 2149 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2150 } 2151 2152 BUG_ON(map->m_len == 0); 2153 if (map->m_flags & EXT4_MAP_NEW) { 2154 struct block_device *bdev = inode->i_sb->s_bdev; 2155 int i; 2156 2157 for (i = 0; i < map->m_len; i++) 2158 unmap_underlying_metadata(bdev, map->m_pblk + i); 2159 } 2160 return 0; 2161 } 2162 2163 /* 2164 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2165 * mpd->len and submit pages underlying it for IO 2166 * 2167 * @handle - handle for journal operations 2168 * @mpd - extent to map 2169 * @give_up_on_write - we set this to true iff there is a fatal error and there 2170 * is no hope of writing the data. The caller should discard 2171 * dirty pages to avoid infinite loops. 2172 * 2173 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2174 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2175 * them to initialized or split the described range from larger unwritten 2176 * extent. Note that we need not map all the described range since allocation 2177 * can return less blocks or the range is covered by more unwritten extents. We 2178 * cannot map more because we are limited by reserved transaction credits. On 2179 * the other hand we always make sure that the last touched page is fully 2180 * mapped so that it can be written out (and thus forward progress is 2181 * guaranteed). After mapping we submit all mapped pages for IO. 2182 */ 2183 static int mpage_map_and_submit_extent(handle_t *handle, 2184 struct mpage_da_data *mpd, 2185 bool *give_up_on_write) 2186 { 2187 struct inode *inode = mpd->inode; 2188 struct ext4_map_blocks *map = &mpd->map; 2189 int err; 2190 loff_t disksize; 2191 2192 mpd->io_submit.io_end->offset = 2193 ((loff_t)map->m_lblk) << inode->i_blkbits; 2194 do { 2195 err = mpage_map_one_extent(handle, mpd); 2196 if (err < 0) { 2197 struct super_block *sb = inode->i_sb; 2198 2199 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2200 goto invalidate_dirty_pages; 2201 /* 2202 * Let the uper layers retry transient errors. 2203 * In the case of ENOSPC, if ext4_count_free_blocks() 2204 * is non-zero, a commit should free up blocks. 2205 */ 2206 if ((err == -ENOMEM) || 2207 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2208 return err; 2209 ext4_msg(sb, KERN_CRIT, 2210 "Delayed block allocation failed for " 2211 "inode %lu at logical offset %llu with" 2212 " max blocks %u with error %d", 2213 inode->i_ino, 2214 (unsigned long long)map->m_lblk, 2215 (unsigned)map->m_len, -err); 2216 ext4_msg(sb, KERN_CRIT, 2217 "This should not happen!! Data will " 2218 "be lost\n"); 2219 if (err == -ENOSPC) 2220 ext4_print_free_blocks(inode); 2221 invalidate_dirty_pages: 2222 *give_up_on_write = true; 2223 return err; 2224 } 2225 /* 2226 * Update buffer state, submit mapped pages, and get us new 2227 * extent to map 2228 */ 2229 err = mpage_map_and_submit_buffers(mpd); 2230 if (err < 0) 2231 return err; 2232 } while (map->m_len); 2233 2234 /* Update on-disk size after IO is submitted */ 2235 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2236 if (disksize > EXT4_I(inode)->i_disksize) { 2237 int err2; 2238 2239 ext4_wb_update_i_disksize(inode, disksize); 2240 err2 = ext4_mark_inode_dirty(handle, inode); 2241 if (err2) 2242 ext4_error(inode->i_sb, 2243 "Failed to mark inode %lu dirty", 2244 inode->i_ino); 2245 if (!err) 2246 err = err2; 2247 } 2248 return err; 2249 } 2250 2251 /* 2252 * Calculate the total number of credits to reserve for one writepages 2253 * iteration. This is called from ext4_writepages(). We map an extent of 2254 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2255 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2256 * bpp - 1 blocks in bpp different extents. 2257 */ 2258 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2259 { 2260 int bpp = ext4_journal_blocks_per_page(inode); 2261 2262 return ext4_meta_trans_blocks(inode, 2263 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2264 } 2265 2266 /* 2267 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2268 * and underlying extent to map 2269 * 2270 * @mpd - where to look for pages 2271 * 2272 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2273 * IO immediately. When we find a page which isn't mapped we start accumulating 2274 * extent of buffers underlying these pages that needs mapping (formed by 2275 * either delayed or unwritten buffers). We also lock the pages containing 2276 * these buffers. The extent found is returned in @mpd structure (starting at 2277 * mpd->lblk with length mpd->len blocks). 2278 * 2279 * Note that this function can attach bios to one io_end structure which are 2280 * neither logically nor physically contiguous. Although it may seem as an 2281 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2282 * case as we need to track IO to all buffers underlying a page in one io_end. 2283 */ 2284 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2285 { 2286 struct address_space *mapping = mpd->inode->i_mapping; 2287 struct pagevec pvec; 2288 unsigned int nr_pages; 2289 long left = mpd->wbc->nr_to_write; 2290 pgoff_t index = mpd->first_page; 2291 pgoff_t end = mpd->last_page; 2292 int tag; 2293 int i, err = 0; 2294 int blkbits = mpd->inode->i_blkbits; 2295 ext4_lblk_t lblk; 2296 struct buffer_head *head; 2297 2298 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2299 tag = PAGECACHE_TAG_TOWRITE; 2300 else 2301 tag = PAGECACHE_TAG_DIRTY; 2302 2303 pagevec_init(&pvec, 0); 2304 mpd->map.m_len = 0; 2305 mpd->next_page = index; 2306 while (index <= end) { 2307 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2308 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2309 if (nr_pages == 0) 2310 goto out; 2311 2312 for (i = 0; i < nr_pages; i++) { 2313 struct page *page = pvec.pages[i]; 2314 2315 /* 2316 * At this point, the page may be truncated or 2317 * invalidated (changing page->mapping to NULL), or 2318 * even swizzled back from swapper_space to tmpfs file 2319 * mapping. However, page->index will not change 2320 * because we have a reference on the page. 2321 */ 2322 if (page->index > end) 2323 goto out; 2324 2325 /* 2326 * Accumulated enough dirty pages? This doesn't apply 2327 * to WB_SYNC_ALL mode. For integrity sync we have to 2328 * keep going because someone may be concurrently 2329 * dirtying pages, and we might have synced a lot of 2330 * newly appeared dirty pages, but have not synced all 2331 * of the old dirty pages. 2332 */ 2333 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2334 goto out; 2335 2336 /* If we can't merge this page, we are done. */ 2337 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2338 goto out; 2339 2340 lock_page(page); 2341 /* 2342 * If the page is no longer dirty, or its mapping no 2343 * longer corresponds to inode we are writing (which 2344 * means it has been truncated or invalidated), or the 2345 * page is already under writeback and we are not doing 2346 * a data integrity writeback, skip the page 2347 */ 2348 if (!PageDirty(page) || 2349 (PageWriteback(page) && 2350 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2351 unlikely(page->mapping != mapping)) { 2352 unlock_page(page); 2353 continue; 2354 } 2355 2356 wait_on_page_writeback(page); 2357 BUG_ON(PageWriteback(page)); 2358 2359 if (mpd->map.m_len == 0) 2360 mpd->first_page = page->index; 2361 mpd->next_page = page->index + 1; 2362 /* Add all dirty buffers to mpd */ 2363 lblk = ((ext4_lblk_t)page->index) << 2364 (PAGE_CACHE_SHIFT - blkbits); 2365 head = page_buffers(page); 2366 err = mpage_process_page_bufs(mpd, head, head, lblk); 2367 if (err <= 0) 2368 goto out; 2369 err = 0; 2370 left--; 2371 } 2372 pagevec_release(&pvec); 2373 cond_resched(); 2374 } 2375 return 0; 2376 out: 2377 pagevec_release(&pvec); 2378 return err; 2379 } 2380 2381 static int __writepage(struct page *page, struct writeback_control *wbc, 2382 void *data) 2383 { 2384 struct address_space *mapping = data; 2385 int ret = ext4_writepage(page, wbc); 2386 mapping_set_error(mapping, ret); 2387 return ret; 2388 } 2389 2390 static int ext4_writepages(struct address_space *mapping, 2391 struct writeback_control *wbc) 2392 { 2393 pgoff_t writeback_index = 0; 2394 long nr_to_write = wbc->nr_to_write; 2395 int range_whole = 0; 2396 int cycled = 1; 2397 handle_t *handle = NULL; 2398 struct mpage_da_data mpd; 2399 struct inode *inode = mapping->host; 2400 int needed_blocks, rsv_blocks = 0, ret = 0; 2401 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2402 bool done; 2403 struct blk_plug plug; 2404 bool give_up_on_write = false; 2405 2406 trace_ext4_writepages(inode, wbc); 2407 2408 /* 2409 * No pages to write? This is mainly a kludge to avoid starting 2410 * a transaction for special inodes like journal inode on last iput() 2411 * because that could violate lock ordering on umount 2412 */ 2413 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2414 goto out_writepages; 2415 2416 if (ext4_should_journal_data(inode)) { 2417 struct blk_plug plug; 2418 2419 blk_start_plug(&plug); 2420 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2421 blk_finish_plug(&plug); 2422 goto out_writepages; 2423 } 2424 2425 /* 2426 * If the filesystem has aborted, it is read-only, so return 2427 * right away instead of dumping stack traces later on that 2428 * will obscure the real source of the problem. We test 2429 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2430 * the latter could be true if the filesystem is mounted 2431 * read-only, and in that case, ext4_writepages should 2432 * *never* be called, so if that ever happens, we would want 2433 * the stack trace. 2434 */ 2435 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2436 ret = -EROFS; 2437 goto out_writepages; 2438 } 2439 2440 if (ext4_should_dioread_nolock(inode)) { 2441 /* 2442 * We may need to convert up to one extent per block in 2443 * the page and we may dirty the inode. 2444 */ 2445 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2446 } 2447 2448 /* 2449 * If we have inline data and arrive here, it means that 2450 * we will soon create the block for the 1st page, so 2451 * we'd better clear the inline data here. 2452 */ 2453 if (ext4_has_inline_data(inode)) { 2454 /* Just inode will be modified... */ 2455 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2456 if (IS_ERR(handle)) { 2457 ret = PTR_ERR(handle); 2458 goto out_writepages; 2459 } 2460 BUG_ON(ext4_test_inode_state(inode, 2461 EXT4_STATE_MAY_INLINE_DATA)); 2462 ext4_destroy_inline_data(handle, inode); 2463 ext4_journal_stop(handle); 2464 } 2465 2466 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2467 range_whole = 1; 2468 2469 if (wbc->range_cyclic) { 2470 writeback_index = mapping->writeback_index; 2471 if (writeback_index) 2472 cycled = 0; 2473 mpd.first_page = writeback_index; 2474 mpd.last_page = -1; 2475 } else { 2476 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2477 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2478 } 2479 2480 mpd.inode = inode; 2481 mpd.wbc = wbc; 2482 ext4_io_submit_init(&mpd.io_submit, wbc); 2483 retry: 2484 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2485 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2486 done = false; 2487 blk_start_plug(&plug); 2488 while (!done && mpd.first_page <= mpd.last_page) { 2489 /* For each extent of pages we use new io_end */ 2490 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2491 if (!mpd.io_submit.io_end) { 2492 ret = -ENOMEM; 2493 break; 2494 } 2495 2496 /* 2497 * We have two constraints: We find one extent to map and we 2498 * must always write out whole page (makes a difference when 2499 * blocksize < pagesize) so that we don't block on IO when we 2500 * try to write out the rest of the page. Journalled mode is 2501 * not supported by delalloc. 2502 */ 2503 BUG_ON(ext4_should_journal_data(inode)); 2504 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2505 2506 /* start a new transaction */ 2507 handle = ext4_journal_start_with_reserve(inode, 2508 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2509 if (IS_ERR(handle)) { 2510 ret = PTR_ERR(handle); 2511 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2512 "%ld pages, ino %lu; err %d", __func__, 2513 wbc->nr_to_write, inode->i_ino, ret); 2514 /* Release allocated io_end */ 2515 ext4_put_io_end(mpd.io_submit.io_end); 2516 break; 2517 } 2518 2519 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2520 ret = mpage_prepare_extent_to_map(&mpd); 2521 if (!ret) { 2522 if (mpd.map.m_len) 2523 ret = mpage_map_and_submit_extent(handle, &mpd, 2524 &give_up_on_write); 2525 else { 2526 /* 2527 * We scanned the whole range (or exhausted 2528 * nr_to_write), submitted what was mapped and 2529 * didn't find anything needing mapping. We are 2530 * done. 2531 */ 2532 done = true; 2533 } 2534 } 2535 ext4_journal_stop(handle); 2536 /* Submit prepared bio */ 2537 ext4_io_submit(&mpd.io_submit); 2538 /* Unlock pages we didn't use */ 2539 mpage_release_unused_pages(&mpd, give_up_on_write); 2540 /* Drop our io_end reference we got from init */ 2541 ext4_put_io_end(mpd.io_submit.io_end); 2542 2543 if (ret == -ENOSPC && sbi->s_journal) { 2544 /* 2545 * Commit the transaction which would 2546 * free blocks released in the transaction 2547 * and try again 2548 */ 2549 jbd2_journal_force_commit_nested(sbi->s_journal); 2550 ret = 0; 2551 continue; 2552 } 2553 /* Fatal error - ENOMEM, EIO... */ 2554 if (ret) 2555 break; 2556 } 2557 blk_finish_plug(&plug); 2558 if (!ret && !cycled && wbc->nr_to_write > 0) { 2559 cycled = 1; 2560 mpd.last_page = writeback_index - 1; 2561 mpd.first_page = 0; 2562 goto retry; 2563 } 2564 2565 /* Update index */ 2566 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2567 /* 2568 * Set the writeback_index so that range_cyclic 2569 * mode will write it back later 2570 */ 2571 mapping->writeback_index = mpd.first_page; 2572 2573 out_writepages: 2574 trace_ext4_writepages_result(inode, wbc, ret, 2575 nr_to_write - wbc->nr_to_write); 2576 return ret; 2577 } 2578 2579 static int ext4_nonda_switch(struct super_block *sb) 2580 { 2581 s64 free_clusters, dirty_clusters; 2582 struct ext4_sb_info *sbi = EXT4_SB(sb); 2583 2584 /* 2585 * switch to non delalloc mode if we are running low 2586 * on free block. The free block accounting via percpu 2587 * counters can get slightly wrong with percpu_counter_batch getting 2588 * accumulated on each CPU without updating global counters 2589 * Delalloc need an accurate free block accounting. So switch 2590 * to non delalloc when we are near to error range. 2591 */ 2592 free_clusters = 2593 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2594 dirty_clusters = 2595 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2596 /* 2597 * Start pushing delalloc when 1/2 of free blocks are dirty. 2598 */ 2599 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2600 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2601 2602 if (2 * free_clusters < 3 * dirty_clusters || 2603 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2604 /* 2605 * free block count is less than 150% of dirty blocks 2606 * or free blocks is less than watermark 2607 */ 2608 return 1; 2609 } 2610 return 0; 2611 } 2612 2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2614 loff_t pos, unsigned len, unsigned flags, 2615 struct page **pagep, void **fsdata) 2616 { 2617 int ret, retries = 0; 2618 struct page *page; 2619 pgoff_t index; 2620 struct inode *inode = mapping->host; 2621 handle_t *handle; 2622 2623 index = pos >> PAGE_CACHE_SHIFT; 2624 2625 if (ext4_nonda_switch(inode->i_sb)) { 2626 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2627 return ext4_write_begin(file, mapping, pos, 2628 len, flags, pagep, fsdata); 2629 } 2630 *fsdata = (void *)0; 2631 trace_ext4_da_write_begin(inode, pos, len, flags); 2632 2633 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2634 ret = ext4_da_write_inline_data_begin(mapping, inode, 2635 pos, len, flags, 2636 pagep, fsdata); 2637 if (ret < 0) 2638 return ret; 2639 if (ret == 1) 2640 return 0; 2641 } 2642 2643 /* 2644 * grab_cache_page_write_begin() can take a long time if the 2645 * system is thrashing due to memory pressure, or if the page 2646 * is being written back. So grab it first before we start 2647 * the transaction handle. This also allows us to allocate 2648 * the page (if needed) without using GFP_NOFS. 2649 */ 2650 retry_grab: 2651 page = grab_cache_page_write_begin(mapping, index, flags); 2652 if (!page) 2653 return -ENOMEM; 2654 unlock_page(page); 2655 2656 /* 2657 * With delayed allocation, we don't log the i_disksize update 2658 * if there is delayed block allocation. But we still need 2659 * to journalling the i_disksize update if writes to the end 2660 * of file which has an already mapped buffer. 2661 */ 2662 retry_journal: 2663 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2664 if (IS_ERR(handle)) { 2665 page_cache_release(page); 2666 return PTR_ERR(handle); 2667 } 2668 2669 lock_page(page); 2670 if (page->mapping != mapping) { 2671 /* The page got truncated from under us */ 2672 unlock_page(page); 2673 page_cache_release(page); 2674 ext4_journal_stop(handle); 2675 goto retry_grab; 2676 } 2677 /* In case writeback began while the page was unlocked */ 2678 wait_for_stable_page(page); 2679 2680 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2681 if (ret < 0) { 2682 unlock_page(page); 2683 ext4_journal_stop(handle); 2684 /* 2685 * block_write_begin may have instantiated a few blocks 2686 * outside i_size. Trim these off again. Don't need 2687 * i_size_read because we hold i_mutex. 2688 */ 2689 if (pos + len > inode->i_size) 2690 ext4_truncate_failed_write(inode); 2691 2692 if (ret == -ENOSPC && 2693 ext4_should_retry_alloc(inode->i_sb, &retries)) 2694 goto retry_journal; 2695 2696 page_cache_release(page); 2697 return ret; 2698 } 2699 2700 *pagep = page; 2701 return ret; 2702 } 2703 2704 /* 2705 * Check if we should update i_disksize 2706 * when write to the end of file but not require block allocation 2707 */ 2708 static int ext4_da_should_update_i_disksize(struct page *page, 2709 unsigned long offset) 2710 { 2711 struct buffer_head *bh; 2712 struct inode *inode = page->mapping->host; 2713 unsigned int idx; 2714 int i; 2715 2716 bh = page_buffers(page); 2717 idx = offset >> inode->i_blkbits; 2718 2719 for (i = 0; i < idx; i++) 2720 bh = bh->b_this_page; 2721 2722 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2723 return 0; 2724 return 1; 2725 } 2726 2727 static int ext4_da_write_end(struct file *file, 2728 struct address_space *mapping, 2729 loff_t pos, unsigned len, unsigned copied, 2730 struct page *page, void *fsdata) 2731 { 2732 struct inode *inode = mapping->host; 2733 int ret = 0, ret2; 2734 handle_t *handle = ext4_journal_current_handle(); 2735 loff_t new_i_size; 2736 unsigned long start, end; 2737 int write_mode = (int)(unsigned long)fsdata; 2738 2739 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2740 return ext4_write_end(file, mapping, pos, 2741 len, copied, page, fsdata); 2742 2743 trace_ext4_da_write_end(inode, pos, len, copied); 2744 start = pos & (PAGE_CACHE_SIZE - 1); 2745 end = start + copied - 1; 2746 2747 /* 2748 * generic_write_end() will run mark_inode_dirty() if i_size 2749 * changes. So let's piggyback the i_disksize mark_inode_dirty 2750 * into that. 2751 */ 2752 new_i_size = pos + copied; 2753 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2754 if (ext4_has_inline_data(inode) || 2755 ext4_da_should_update_i_disksize(page, end)) { 2756 down_write(&EXT4_I(inode)->i_data_sem); 2757 if (new_i_size > EXT4_I(inode)->i_disksize) 2758 EXT4_I(inode)->i_disksize = new_i_size; 2759 up_write(&EXT4_I(inode)->i_data_sem); 2760 /* We need to mark inode dirty even if 2761 * new_i_size is less that inode->i_size 2762 * bu greater than i_disksize.(hint delalloc) 2763 */ 2764 ext4_mark_inode_dirty(handle, inode); 2765 } 2766 } 2767 2768 if (write_mode != CONVERT_INLINE_DATA && 2769 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2770 ext4_has_inline_data(inode)) 2771 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2772 page); 2773 else 2774 ret2 = generic_write_end(file, mapping, pos, len, copied, 2775 page, fsdata); 2776 2777 copied = ret2; 2778 if (ret2 < 0) 2779 ret = ret2; 2780 ret2 = ext4_journal_stop(handle); 2781 if (!ret) 2782 ret = ret2; 2783 2784 return ret ? ret : copied; 2785 } 2786 2787 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2788 unsigned int length) 2789 { 2790 /* 2791 * Drop reserved blocks 2792 */ 2793 BUG_ON(!PageLocked(page)); 2794 if (!page_has_buffers(page)) 2795 goto out; 2796 2797 ext4_da_page_release_reservation(page, offset, length); 2798 2799 out: 2800 ext4_invalidatepage(page, offset, length); 2801 2802 return; 2803 } 2804 2805 /* 2806 * Force all delayed allocation blocks to be allocated for a given inode. 2807 */ 2808 int ext4_alloc_da_blocks(struct inode *inode) 2809 { 2810 trace_ext4_alloc_da_blocks(inode); 2811 2812 if (!EXT4_I(inode)->i_reserved_data_blocks && 2813 !EXT4_I(inode)->i_reserved_meta_blocks) 2814 return 0; 2815 2816 /* 2817 * We do something simple for now. The filemap_flush() will 2818 * also start triggering a write of the data blocks, which is 2819 * not strictly speaking necessary (and for users of 2820 * laptop_mode, not even desirable). However, to do otherwise 2821 * would require replicating code paths in: 2822 * 2823 * ext4_writepages() -> 2824 * write_cache_pages() ---> (via passed in callback function) 2825 * __mpage_da_writepage() --> 2826 * mpage_add_bh_to_extent() 2827 * mpage_da_map_blocks() 2828 * 2829 * The problem is that write_cache_pages(), located in 2830 * mm/page-writeback.c, marks pages clean in preparation for 2831 * doing I/O, which is not desirable if we're not planning on 2832 * doing I/O at all. 2833 * 2834 * We could call write_cache_pages(), and then redirty all of 2835 * the pages by calling redirty_page_for_writepage() but that 2836 * would be ugly in the extreme. So instead we would need to 2837 * replicate parts of the code in the above functions, 2838 * simplifying them because we wouldn't actually intend to 2839 * write out the pages, but rather only collect contiguous 2840 * logical block extents, call the multi-block allocator, and 2841 * then update the buffer heads with the block allocations. 2842 * 2843 * For now, though, we'll cheat by calling filemap_flush(), 2844 * which will map the blocks, and start the I/O, but not 2845 * actually wait for the I/O to complete. 2846 */ 2847 return filemap_flush(inode->i_mapping); 2848 } 2849 2850 /* 2851 * bmap() is special. It gets used by applications such as lilo and by 2852 * the swapper to find the on-disk block of a specific piece of data. 2853 * 2854 * Naturally, this is dangerous if the block concerned is still in the 2855 * journal. If somebody makes a swapfile on an ext4 data-journaling 2856 * filesystem and enables swap, then they may get a nasty shock when the 2857 * data getting swapped to that swapfile suddenly gets overwritten by 2858 * the original zero's written out previously to the journal and 2859 * awaiting writeback in the kernel's buffer cache. 2860 * 2861 * So, if we see any bmap calls here on a modified, data-journaled file, 2862 * take extra steps to flush any blocks which might be in the cache. 2863 */ 2864 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2865 { 2866 struct inode *inode = mapping->host; 2867 journal_t *journal; 2868 int err; 2869 2870 /* 2871 * We can get here for an inline file via the FIBMAP ioctl 2872 */ 2873 if (ext4_has_inline_data(inode)) 2874 return 0; 2875 2876 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2877 test_opt(inode->i_sb, DELALLOC)) { 2878 /* 2879 * With delalloc we want to sync the file 2880 * so that we can make sure we allocate 2881 * blocks for file 2882 */ 2883 filemap_write_and_wait(mapping); 2884 } 2885 2886 if (EXT4_JOURNAL(inode) && 2887 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2888 /* 2889 * This is a REALLY heavyweight approach, but the use of 2890 * bmap on dirty files is expected to be extremely rare: 2891 * only if we run lilo or swapon on a freshly made file 2892 * do we expect this to happen. 2893 * 2894 * (bmap requires CAP_SYS_RAWIO so this does not 2895 * represent an unprivileged user DOS attack --- we'd be 2896 * in trouble if mortal users could trigger this path at 2897 * will.) 2898 * 2899 * NB. EXT4_STATE_JDATA is not set on files other than 2900 * regular files. If somebody wants to bmap a directory 2901 * or symlink and gets confused because the buffer 2902 * hasn't yet been flushed to disk, they deserve 2903 * everything they get. 2904 */ 2905 2906 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2907 journal = EXT4_JOURNAL(inode); 2908 jbd2_journal_lock_updates(journal); 2909 err = jbd2_journal_flush(journal); 2910 jbd2_journal_unlock_updates(journal); 2911 2912 if (err) 2913 return 0; 2914 } 2915 2916 return generic_block_bmap(mapping, block, ext4_get_block); 2917 } 2918 2919 static int ext4_readpage(struct file *file, struct page *page) 2920 { 2921 int ret = -EAGAIN; 2922 struct inode *inode = page->mapping->host; 2923 2924 trace_ext4_readpage(page); 2925 2926 if (ext4_has_inline_data(inode)) 2927 ret = ext4_readpage_inline(inode, page); 2928 2929 if (ret == -EAGAIN) 2930 return mpage_readpage(page, ext4_get_block); 2931 2932 return ret; 2933 } 2934 2935 static int 2936 ext4_readpages(struct file *file, struct address_space *mapping, 2937 struct list_head *pages, unsigned nr_pages) 2938 { 2939 struct inode *inode = mapping->host; 2940 2941 /* If the file has inline data, no need to do readpages. */ 2942 if (ext4_has_inline_data(inode)) 2943 return 0; 2944 2945 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2946 } 2947 2948 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2949 unsigned int length) 2950 { 2951 trace_ext4_invalidatepage(page, offset, length); 2952 2953 /* No journalling happens on data buffers when this function is used */ 2954 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2955 2956 block_invalidatepage(page, offset, length); 2957 } 2958 2959 static int __ext4_journalled_invalidatepage(struct page *page, 2960 unsigned int offset, 2961 unsigned int length) 2962 { 2963 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2964 2965 trace_ext4_journalled_invalidatepage(page, offset, length); 2966 2967 /* 2968 * If it's a full truncate we just forget about the pending dirtying 2969 */ 2970 if (offset == 0 && length == PAGE_CACHE_SIZE) 2971 ClearPageChecked(page); 2972 2973 return jbd2_journal_invalidatepage(journal, page, offset, length); 2974 } 2975 2976 /* Wrapper for aops... */ 2977 static void ext4_journalled_invalidatepage(struct page *page, 2978 unsigned int offset, 2979 unsigned int length) 2980 { 2981 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2982 } 2983 2984 static int ext4_releasepage(struct page *page, gfp_t wait) 2985 { 2986 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2987 2988 trace_ext4_releasepage(page); 2989 2990 /* Page has dirty journalled data -> cannot release */ 2991 if (PageChecked(page)) 2992 return 0; 2993 if (journal) 2994 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2995 else 2996 return try_to_free_buffers(page); 2997 } 2998 2999 /* 3000 * ext4_get_block used when preparing for a DIO write or buffer write. 3001 * We allocate an uinitialized extent if blocks haven't been allocated. 3002 * The extent will be converted to initialized after the IO is complete. 3003 */ 3004 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3005 struct buffer_head *bh_result, int create) 3006 { 3007 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3008 inode->i_ino, create); 3009 return _ext4_get_block(inode, iblock, bh_result, 3010 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3011 } 3012 3013 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3014 struct buffer_head *bh_result, int create) 3015 { 3016 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3017 inode->i_ino, create); 3018 return _ext4_get_block(inode, iblock, bh_result, 3019 EXT4_GET_BLOCKS_NO_LOCK); 3020 } 3021 3022 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3023 ssize_t size, void *private) 3024 { 3025 ext4_io_end_t *io_end = iocb->private; 3026 3027 /* if not async direct IO just return */ 3028 if (!io_end) 3029 return; 3030 3031 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3032 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3033 iocb->private, io_end->inode->i_ino, iocb, offset, 3034 size); 3035 3036 iocb->private = NULL; 3037 io_end->offset = offset; 3038 io_end->size = size; 3039 ext4_put_io_end(io_end); 3040 } 3041 3042 /* 3043 * For ext4 extent files, ext4 will do direct-io write to holes, 3044 * preallocated extents, and those write extend the file, no need to 3045 * fall back to buffered IO. 3046 * 3047 * For holes, we fallocate those blocks, mark them as uninitialized 3048 * If those blocks were preallocated, we mark sure they are split, but 3049 * still keep the range to write as uninitialized. 3050 * 3051 * The unwritten extents will be converted to written when DIO is completed. 3052 * For async direct IO, since the IO may still pending when return, we 3053 * set up an end_io call back function, which will do the conversion 3054 * when async direct IO completed. 3055 * 3056 * If the O_DIRECT write will extend the file then add this inode to the 3057 * orphan list. So recovery will truncate it back to the original size 3058 * if the machine crashes during the write. 3059 * 3060 */ 3061 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3062 const struct iovec *iov, loff_t offset, 3063 unsigned long nr_segs) 3064 { 3065 struct file *file = iocb->ki_filp; 3066 struct inode *inode = file->f_mapping->host; 3067 ssize_t ret; 3068 size_t count = iov_length(iov, nr_segs); 3069 int overwrite = 0; 3070 get_block_t *get_block_func = NULL; 3071 int dio_flags = 0; 3072 loff_t final_size = offset + count; 3073 ext4_io_end_t *io_end = NULL; 3074 3075 /* Use the old path for reads and writes beyond i_size. */ 3076 if (rw != WRITE || final_size > inode->i_size) 3077 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3078 3079 BUG_ON(iocb->private == NULL); 3080 3081 /* 3082 * Make all waiters for direct IO properly wait also for extent 3083 * conversion. This also disallows race between truncate() and 3084 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3085 */ 3086 if (rw == WRITE) 3087 atomic_inc(&inode->i_dio_count); 3088 3089 /* If we do a overwrite dio, i_mutex locking can be released */ 3090 overwrite = *((int *)iocb->private); 3091 3092 if (overwrite) { 3093 down_read(&EXT4_I(inode)->i_data_sem); 3094 mutex_unlock(&inode->i_mutex); 3095 } 3096 3097 /* 3098 * We could direct write to holes and fallocate. 3099 * 3100 * Allocated blocks to fill the hole are marked as 3101 * uninitialized to prevent parallel buffered read to expose 3102 * the stale data before DIO complete the data IO. 3103 * 3104 * As to previously fallocated extents, ext4 get_block will 3105 * just simply mark the buffer mapped but still keep the 3106 * extents uninitialized. 3107 * 3108 * For non AIO case, we will convert those unwritten extents 3109 * to written after return back from blockdev_direct_IO. 3110 * 3111 * For async DIO, the conversion needs to be deferred when the 3112 * IO is completed. The ext4 end_io callback function will be 3113 * called to take care of the conversion work. Here for async 3114 * case, we allocate an io_end structure to hook to the iocb. 3115 */ 3116 iocb->private = NULL; 3117 ext4_inode_aio_set(inode, NULL); 3118 if (!is_sync_kiocb(iocb)) { 3119 io_end = ext4_init_io_end(inode, GFP_NOFS); 3120 if (!io_end) { 3121 ret = -ENOMEM; 3122 goto retake_lock; 3123 } 3124 /* 3125 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3126 */ 3127 iocb->private = ext4_get_io_end(io_end); 3128 /* 3129 * we save the io structure for current async direct 3130 * IO, so that later ext4_map_blocks() could flag the 3131 * io structure whether there is a unwritten extents 3132 * needs to be converted when IO is completed. 3133 */ 3134 ext4_inode_aio_set(inode, io_end); 3135 } 3136 3137 if (overwrite) { 3138 get_block_func = ext4_get_block_write_nolock; 3139 } else { 3140 get_block_func = ext4_get_block_write; 3141 dio_flags = DIO_LOCKING; 3142 } 3143 ret = __blockdev_direct_IO(rw, iocb, inode, 3144 inode->i_sb->s_bdev, iov, 3145 offset, nr_segs, 3146 get_block_func, 3147 ext4_end_io_dio, 3148 NULL, 3149 dio_flags); 3150 3151 /* 3152 * Put our reference to io_end. This can free the io_end structure e.g. 3153 * in sync IO case or in case of error. It can even perform extent 3154 * conversion if all bios we submitted finished before we got here. 3155 * Note that in that case iocb->private can be already set to NULL 3156 * here. 3157 */ 3158 if (io_end) { 3159 ext4_inode_aio_set(inode, NULL); 3160 ext4_put_io_end(io_end); 3161 /* 3162 * When no IO was submitted ext4_end_io_dio() was not 3163 * called so we have to put iocb's reference. 3164 */ 3165 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3166 WARN_ON(iocb->private != io_end); 3167 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3168 ext4_put_io_end(io_end); 3169 iocb->private = NULL; 3170 } 3171 } 3172 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3173 EXT4_STATE_DIO_UNWRITTEN)) { 3174 int err; 3175 /* 3176 * for non AIO case, since the IO is already 3177 * completed, we could do the conversion right here 3178 */ 3179 err = ext4_convert_unwritten_extents(NULL, inode, 3180 offset, ret); 3181 if (err < 0) 3182 ret = err; 3183 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3184 } 3185 3186 retake_lock: 3187 if (rw == WRITE) 3188 inode_dio_done(inode); 3189 /* take i_mutex locking again if we do a ovewrite dio */ 3190 if (overwrite) { 3191 up_read(&EXT4_I(inode)->i_data_sem); 3192 mutex_lock(&inode->i_mutex); 3193 } 3194 3195 return ret; 3196 } 3197 3198 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3199 const struct iovec *iov, loff_t offset, 3200 unsigned long nr_segs) 3201 { 3202 struct file *file = iocb->ki_filp; 3203 struct inode *inode = file->f_mapping->host; 3204 ssize_t ret; 3205 3206 /* 3207 * If we are doing data journalling we don't support O_DIRECT 3208 */ 3209 if (ext4_should_journal_data(inode)) 3210 return 0; 3211 3212 /* Let buffer I/O handle the inline data case. */ 3213 if (ext4_has_inline_data(inode)) 3214 return 0; 3215 3216 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3218 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3219 else 3220 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3221 trace_ext4_direct_IO_exit(inode, offset, 3222 iov_length(iov, nr_segs), rw, ret); 3223 return ret; 3224 } 3225 3226 /* 3227 * Pages can be marked dirty completely asynchronously from ext4's journalling 3228 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3229 * much here because ->set_page_dirty is called under VFS locks. The page is 3230 * not necessarily locked. 3231 * 3232 * We cannot just dirty the page and leave attached buffers clean, because the 3233 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3234 * or jbddirty because all the journalling code will explode. 3235 * 3236 * So what we do is to mark the page "pending dirty" and next time writepage 3237 * is called, propagate that into the buffers appropriately. 3238 */ 3239 static int ext4_journalled_set_page_dirty(struct page *page) 3240 { 3241 SetPageChecked(page); 3242 return __set_page_dirty_nobuffers(page); 3243 } 3244 3245 static const struct address_space_operations ext4_aops = { 3246 .readpage = ext4_readpage, 3247 .readpages = ext4_readpages, 3248 .writepage = ext4_writepage, 3249 .writepages = ext4_writepages, 3250 .write_begin = ext4_write_begin, 3251 .write_end = ext4_write_end, 3252 .bmap = ext4_bmap, 3253 .invalidatepage = ext4_invalidatepage, 3254 .releasepage = ext4_releasepage, 3255 .direct_IO = ext4_direct_IO, 3256 .migratepage = buffer_migrate_page, 3257 .is_partially_uptodate = block_is_partially_uptodate, 3258 .error_remove_page = generic_error_remove_page, 3259 }; 3260 3261 static const struct address_space_operations ext4_journalled_aops = { 3262 .readpage = ext4_readpage, 3263 .readpages = ext4_readpages, 3264 .writepage = ext4_writepage, 3265 .writepages = ext4_writepages, 3266 .write_begin = ext4_write_begin, 3267 .write_end = ext4_journalled_write_end, 3268 .set_page_dirty = ext4_journalled_set_page_dirty, 3269 .bmap = ext4_bmap, 3270 .invalidatepage = ext4_journalled_invalidatepage, 3271 .releasepage = ext4_releasepage, 3272 .direct_IO = ext4_direct_IO, 3273 .is_partially_uptodate = block_is_partially_uptodate, 3274 .error_remove_page = generic_error_remove_page, 3275 }; 3276 3277 static const struct address_space_operations ext4_da_aops = { 3278 .readpage = ext4_readpage, 3279 .readpages = ext4_readpages, 3280 .writepage = ext4_writepage, 3281 .writepages = ext4_writepages, 3282 .write_begin = ext4_da_write_begin, 3283 .write_end = ext4_da_write_end, 3284 .bmap = ext4_bmap, 3285 .invalidatepage = ext4_da_invalidatepage, 3286 .releasepage = ext4_releasepage, 3287 .direct_IO = ext4_direct_IO, 3288 .migratepage = buffer_migrate_page, 3289 .is_partially_uptodate = block_is_partially_uptodate, 3290 .error_remove_page = generic_error_remove_page, 3291 }; 3292 3293 void ext4_set_aops(struct inode *inode) 3294 { 3295 switch (ext4_inode_journal_mode(inode)) { 3296 case EXT4_INODE_ORDERED_DATA_MODE: 3297 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3298 break; 3299 case EXT4_INODE_WRITEBACK_DATA_MODE: 3300 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3301 break; 3302 case EXT4_INODE_JOURNAL_DATA_MODE: 3303 inode->i_mapping->a_ops = &ext4_journalled_aops; 3304 return; 3305 default: 3306 BUG(); 3307 } 3308 if (test_opt(inode->i_sb, DELALLOC)) 3309 inode->i_mapping->a_ops = &ext4_da_aops; 3310 else 3311 inode->i_mapping->a_ops = &ext4_aops; 3312 } 3313 3314 /* 3315 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3316 * up to the end of the block which corresponds to `from'. 3317 * This required during truncate. We need to physically zero the tail end 3318 * of that block so it doesn't yield old data if the file is later grown. 3319 */ 3320 int ext4_block_truncate_page(handle_t *handle, 3321 struct address_space *mapping, loff_t from) 3322 { 3323 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3324 unsigned length; 3325 unsigned blocksize; 3326 struct inode *inode = mapping->host; 3327 3328 blocksize = inode->i_sb->s_blocksize; 3329 length = blocksize - (offset & (blocksize - 1)); 3330 3331 return ext4_block_zero_page_range(handle, mapping, from, length); 3332 } 3333 3334 /* 3335 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3336 * starting from file offset 'from'. The range to be zero'd must 3337 * be contained with in one block. If the specified range exceeds 3338 * the end of the block it will be shortened to end of the block 3339 * that cooresponds to 'from' 3340 */ 3341 int ext4_block_zero_page_range(handle_t *handle, 3342 struct address_space *mapping, loff_t from, loff_t length) 3343 { 3344 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3345 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3346 unsigned blocksize, max, pos; 3347 ext4_lblk_t iblock; 3348 struct inode *inode = mapping->host; 3349 struct buffer_head *bh; 3350 struct page *page; 3351 int err = 0; 3352 3353 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3354 mapping_gfp_mask(mapping) & ~__GFP_FS); 3355 if (!page) 3356 return -ENOMEM; 3357 3358 blocksize = inode->i_sb->s_blocksize; 3359 max = blocksize - (offset & (blocksize - 1)); 3360 3361 /* 3362 * correct length if it does not fall between 3363 * 'from' and the end of the block 3364 */ 3365 if (length > max || length < 0) 3366 length = max; 3367 3368 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3369 3370 if (!page_has_buffers(page)) 3371 create_empty_buffers(page, blocksize, 0); 3372 3373 /* Find the buffer that contains "offset" */ 3374 bh = page_buffers(page); 3375 pos = blocksize; 3376 while (offset >= pos) { 3377 bh = bh->b_this_page; 3378 iblock++; 3379 pos += blocksize; 3380 } 3381 if (buffer_freed(bh)) { 3382 BUFFER_TRACE(bh, "freed: skip"); 3383 goto unlock; 3384 } 3385 if (!buffer_mapped(bh)) { 3386 BUFFER_TRACE(bh, "unmapped"); 3387 ext4_get_block(inode, iblock, bh, 0); 3388 /* unmapped? It's a hole - nothing to do */ 3389 if (!buffer_mapped(bh)) { 3390 BUFFER_TRACE(bh, "still unmapped"); 3391 goto unlock; 3392 } 3393 } 3394 3395 /* Ok, it's mapped. Make sure it's up-to-date */ 3396 if (PageUptodate(page)) 3397 set_buffer_uptodate(bh); 3398 3399 if (!buffer_uptodate(bh)) { 3400 err = -EIO; 3401 ll_rw_block(READ, 1, &bh); 3402 wait_on_buffer(bh); 3403 /* Uhhuh. Read error. Complain and punt. */ 3404 if (!buffer_uptodate(bh)) 3405 goto unlock; 3406 } 3407 if (ext4_should_journal_data(inode)) { 3408 BUFFER_TRACE(bh, "get write access"); 3409 err = ext4_journal_get_write_access(handle, bh); 3410 if (err) 3411 goto unlock; 3412 } 3413 zero_user(page, offset, length); 3414 BUFFER_TRACE(bh, "zeroed end of block"); 3415 3416 if (ext4_should_journal_data(inode)) { 3417 err = ext4_handle_dirty_metadata(handle, inode, bh); 3418 } else { 3419 err = 0; 3420 mark_buffer_dirty(bh); 3421 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3422 err = ext4_jbd2_file_inode(handle, inode); 3423 } 3424 3425 unlock: 3426 unlock_page(page); 3427 page_cache_release(page); 3428 return err; 3429 } 3430 3431 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3432 loff_t lstart, loff_t length) 3433 { 3434 struct super_block *sb = inode->i_sb; 3435 struct address_space *mapping = inode->i_mapping; 3436 unsigned partial_start, partial_end; 3437 ext4_fsblk_t start, end; 3438 loff_t byte_end = (lstart + length - 1); 3439 int err = 0; 3440 3441 partial_start = lstart & (sb->s_blocksize - 1); 3442 partial_end = byte_end & (sb->s_blocksize - 1); 3443 3444 start = lstart >> sb->s_blocksize_bits; 3445 end = byte_end >> sb->s_blocksize_bits; 3446 3447 /* Handle partial zero within the single block */ 3448 if (start == end && 3449 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3450 err = ext4_block_zero_page_range(handle, mapping, 3451 lstart, length); 3452 return err; 3453 } 3454 /* Handle partial zero out on the start of the range */ 3455 if (partial_start) { 3456 err = ext4_block_zero_page_range(handle, mapping, 3457 lstart, sb->s_blocksize); 3458 if (err) 3459 return err; 3460 } 3461 /* Handle partial zero out on the end of the range */ 3462 if (partial_end != sb->s_blocksize - 1) 3463 err = ext4_block_zero_page_range(handle, mapping, 3464 byte_end - partial_end, 3465 partial_end + 1); 3466 return err; 3467 } 3468 3469 int ext4_can_truncate(struct inode *inode) 3470 { 3471 if (S_ISREG(inode->i_mode)) 3472 return 1; 3473 if (S_ISDIR(inode->i_mode)) 3474 return 1; 3475 if (S_ISLNK(inode->i_mode)) 3476 return !ext4_inode_is_fast_symlink(inode); 3477 return 0; 3478 } 3479 3480 /* 3481 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3482 * associated with the given offset and length 3483 * 3484 * @inode: File inode 3485 * @offset: The offset where the hole will begin 3486 * @len: The length of the hole 3487 * 3488 * Returns: 0 on success or negative on failure 3489 */ 3490 3491 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3492 { 3493 struct super_block *sb = inode->i_sb; 3494 ext4_lblk_t first_block, stop_block; 3495 struct address_space *mapping = inode->i_mapping; 3496 loff_t first_block_offset, last_block_offset; 3497 handle_t *handle; 3498 unsigned int credits; 3499 int ret = 0; 3500 3501 if (!S_ISREG(inode->i_mode)) 3502 return -EOPNOTSUPP; 3503 3504 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3505 /* TODO: Add support for bigalloc file systems */ 3506 return -EOPNOTSUPP; 3507 } 3508 3509 trace_ext4_punch_hole(inode, offset, length); 3510 3511 /* 3512 * Write out all dirty pages to avoid race conditions 3513 * Then release them. 3514 */ 3515 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3516 ret = filemap_write_and_wait_range(mapping, offset, 3517 offset + length - 1); 3518 if (ret) 3519 return ret; 3520 } 3521 3522 mutex_lock(&inode->i_mutex); 3523 /* It's not possible punch hole on append only file */ 3524 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3525 ret = -EPERM; 3526 goto out_mutex; 3527 } 3528 if (IS_SWAPFILE(inode)) { 3529 ret = -ETXTBSY; 3530 goto out_mutex; 3531 } 3532 3533 /* No need to punch hole beyond i_size */ 3534 if (offset >= inode->i_size) 3535 goto out_mutex; 3536 3537 /* 3538 * If the hole extends beyond i_size, set the hole 3539 * to end after the page that contains i_size 3540 */ 3541 if (offset + length > inode->i_size) { 3542 length = inode->i_size + 3543 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3544 offset; 3545 } 3546 3547 if (offset & (sb->s_blocksize - 1) || 3548 (offset + length) & (sb->s_blocksize - 1)) { 3549 /* 3550 * Attach jinode to inode for jbd2 if we do any zeroing of 3551 * partial block 3552 */ 3553 ret = ext4_inode_attach_jinode(inode); 3554 if (ret < 0) 3555 goto out_mutex; 3556 3557 } 3558 3559 first_block_offset = round_up(offset, sb->s_blocksize); 3560 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3561 3562 /* Now release the pages and zero block aligned part of pages*/ 3563 if (last_block_offset > first_block_offset) 3564 truncate_pagecache_range(inode, first_block_offset, 3565 last_block_offset); 3566 3567 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3568 ext4_inode_block_unlocked_dio(inode); 3569 inode_dio_wait(inode); 3570 3571 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3572 credits = ext4_writepage_trans_blocks(inode); 3573 else 3574 credits = ext4_blocks_for_truncate(inode); 3575 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3576 if (IS_ERR(handle)) { 3577 ret = PTR_ERR(handle); 3578 ext4_std_error(sb, ret); 3579 goto out_dio; 3580 } 3581 3582 ret = ext4_zero_partial_blocks(handle, inode, offset, 3583 length); 3584 if (ret) 3585 goto out_stop; 3586 3587 first_block = (offset + sb->s_blocksize - 1) >> 3588 EXT4_BLOCK_SIZE_BITS(sb); 3589 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3590 3591 /* If there are no blocks to remove, return now */ 3592 if (first_block >= stop_block) 3593 goto out_stop; 3594 3595 down_write(&EXT4_I(inode)->i_data_sem); 3596 ext4_discard_preallocations(inode); 3597 3598 ret = ext4_es_remove_extent(inode, first_block, 3599 stop_block - first_block); 3600 if (ret) { 3601 up_write(&EXT4_I(inode)->i_data_sem); 3602 goto out_stop; 3603 } 3604 3605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3606 ret = ext4_ext_remove_space(inode, first_block, 3607 stop_block - 1); 3608 else 3609 ret = ext4_free_hole_blocks(handle, inode, first_block, 3610 stop_block); 3611 3612 ext4_discard_preallocations(inode); 3613 up_write(&EXT4_I(inode)->i_data_sem); 3614 if (IS_SYNC(inode)) 3615 ext4_handle_sync(handle); 3616 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3617 ext4_mark_inode_dirty(handle, inode); 3618 out_stop: 3619 ext4_journal_stop(handle); 3620 out_dio: 3621 ext4_inode_resume_unlocked_dio(inode); 3622 out_mutex: 3623 mutex_unlock(&inode->i_mutex); 3624 return ret; 3625 } 3626 3627 int ext4_inode_attach_jinode(struct inode *inode) 3628 { 3629 struct ext4_inode_info *ei = EXT4_I(inode); 3630 struct jbd2_inode *jinode; 3631 3632 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3633 return 0; 3634 3635 jinode = jbd2_alloc_inode(GFP_KERNEL); 3636 spin_lock(&inode->i_lock); 3637 if (!ei->jinode) { 3638 if (!jinode) { 3639 spin_unlock(&inode->i_lock); 3640 return -ENOMEM; 3641 } 3642 ei->jinode = jinode; 3643 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3644 jinode = NULL; 3645 } 3646 spin_unlock(&inode->i_lock); 3647 if (unlikely(jinode != NULL)) 3648 jbd2_free_inode(jinode); 3649 return 0; 3650 } 3651 3652 /* 3653 * ext4_truncate() 3654 * 3655 * We block out ext4_get_block() block instantiations across the entire 3656 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3657 * simultaneously on behalf of the same inode. 3658 * 3659 * As we work through the truncate and commit bits of it to the journal there 3660 * is one core, guiding principle: the file's tree must always be consistent on 3661 * disk. We must be able to restart the truncate after a crash. 3662 * 3663 * The file's tree may be transiently inconsistent in memory (although it 3664 * probably isn't), but whenever we close off and commit a journal transaction, 3665 * the contents of (the filesystem + the journal) must be consistent and 3666 * restartable. It's pretty simple, really: bottom up, right to left (although 3667 * left-to-right works OK too). 3668 * 3669 * Note that at recovery time, journal replay occurs *before* the restart of 3670 * truncate against the orphan inode list. 3671 * 3672 * The committed inode has the new, desired i_size (which is the same as 3673 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3674 * that this inode's truncate did not complete and it will again call 3675 * ext4_truncate() to have another go. So there will be instantiated blocks 3676 * to the right of the truncation point in a crashed ext4 filesystem. But 3677 * that's fine - as long as they are linked from the inode, the post-crash 3678 * ext4_truncate() run will find them and release them. 3679 */ 3680 void ext4_truncate(struct inode *inode) 3681 { 3682 struct ext4_inode_info *ei = EXT4_I(inode); 3683 unsigned int credits; 3684 handle_t *handle; 3685 struct address_space *mapping = inode->i_mapping; 3686 3687 /* 3688 * There is a possibility that we're either freeing the inode 3689 * or it completely new indode. In those cases we might not 3690 * have i_mutex locked because it's not necessary. 3691 */ 3692 if (!(inode->i_state & (I_NEW|I_FREEING))) 3693 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3694 trace_ext4_truncate_enter(inode); 3695 3696 if (!ext4_can_truncate(inode)) 3697 return; 3698 3699 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3700 3701 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3702 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3703 3704 if (ext4_has_inline_data(inode)) { 3705 int has_inline = 1; 3706 3707 ext4_inline_data_truncate(inode, &has_inline); 3708 if (has_inline) 3709 return; 3710 } 3711 3712 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3713 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3714 if (ext4_inode_attach_jinode(inode) < 0) 3715 return; 3716 } 3717 3718 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3719 credits = ext4_writepage_trans_blocks(inode); 3720 else 3721 credits = ext4_blocks_for_truncate(inode); 3722 3723 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3724 if (IS_ERR(handle)) { 3725 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3726 return; 3727 } 3728 3729 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3730 ext4_block_truncate_page(handle, mapping, inode->i_size); 3731 3732 /* 3733 * We add the inode to the orphan list, so that if this 3734 * truncate spans multiple transactions, and we crash, we will 3735 * resume the truncate when the filesystem recovers. It also 3736 * marks the inode dirty, to catch the new size. 3737 * 3738 * Implication: the file must always be in a sane, consistent 3739 * truncatable state while each transaction commits. 3740 */ 3741 if (ext4_orphan_add(handle, inode)) 3742 goto out_stop; 3743 3744 down_write(&EXT4_I(inode)->i_data_sem); 3745 3746 ext4_discard_preallocations(inode); 3747 3748 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3749 ext4_ext_truncate(handle, inode); 3750 else 3751 ext4_ind_truncate(handle, inode); 3752 3753 up_write(&ei->i_data_sem); 3754 3755 if (IS_SYNC(inode)) 3756 ext4_handle_sync(handle); 3757 3758 out_stop: 3759 /* 3760 * If this was a simple ftruncate() and the file will remain alive, 3761 * then we need to clear up the orphan record which we created above. 3762 * However, if this was a real unlink then we were called by 3763 * ext4_delete_inode(), and we allow that function to clean up the 3764 * orphan info for us. 3765 */ 3766 if (inode->i_nlink) 3767 ext4_orphan_del(handle, inode); 3768 3769 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3770 ext4_mark_inode_dirty(handle, inode); 3771 ext4_journal_stop(handle); 3772 3773 trace_ext4_truncate_exit(inode); 3774 } 3775 3776 /* 3777 * ext4_get_inode_loc returns with an extra refcount against the inode's 3778 * underlying buffer_head on success. If 'in_mem' is true, we have all 3779 * data in memory that is needed to recreate the on-disk version of this 3780 * inode. 3781 */ 3782 static int __ext4_get_inode_loc(struct inode *inode, 3783 struct ext4_iloc *iloc, int in_mem) 3784 { 3785 struct ext4_group_desc *gdp; 3786 struct buffer_head *bh; 3787 struct super_block *sb = inode->i_sb; 3788 ext4_fsblk_t block; 3789 int inodes_per_block, inode_offset; 3790 3791 iloc->bh = NULL; 3792 if (!ext4_valid_inum(sb, inode->i_ino)) 3793 return -EIO; 3794 3795 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3796 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3797 if (!gdp) 3798 return -EIO; 3799 3800 /* 3801 * Figure out the offset within the block group inode table 3802 */ 3803 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3804 inode_offset = ((inode->i_ino - 1) % 3805 EXT4_INODES_PER_GROUP(sb)); 3806 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3807 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3808 3809 bh = sb_getblk(sb, block); 3810 if (unlikely(!bh)) 3811 return -ENOMEM; 3812 if (!buffer_uptodate(bh)) { 3813 lock_buffer(bh); 3814 3815 /* 3816 * If the buffer has the write error flag, we have failed 3817 * to write out another inode in the same block. In this 3818 * case, we don't have to read the block because we may 3819 * read the old inode data successfully. 3820 */ 3821 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3822 set_buffer_uptodate(bh); 3823 3824 if (buffer_uptodate(bh)) { 3825 /* someone brought it uptodate while we waited */ 3826 unlock_buffer(bh); 3827 goto has_buffer; 3828 } 3829 3830 /* 3831 * If we have all information of the inode in memory and this 3832 * is the only valid inode in the block, we need not read the 3833 * block. 3834 */ 3835 if (in_mem) { 3836 struct buffer_head *bitmap_bh; 3837 int i, start; 3838 3839 start = inode_offset & ~(inodes_per_block - 1); 3840 3841 /* Is the inode bitmap in cache? */ 3842 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3843 if (unlikely(!bitmap_bh)) 3844 goto make_io; 3845 3846 /* 3847 * If the inode bitmap isn't in cache then the 3848 * optimisation may end up performing two reads instead 3849 * of one, so skip it. 3850 */ 3851 if (!buffer_uptodate(bitmap_bh)) { 3852 brelse(bitmap_bh); 3853 goto make_io; 3854 } 3855 for (i = start; i < start + inodes_per_block; i++) { 3856 if (i == inode_offset) 3857 continue; 3858 if (ext4_test_bit(i, bitmap_bh->b_data)) 3859 break; 3860 } 3861 brelse(bitmap_bh); 3862 if (i == start + inodes_per_block) { 3863 /* all other inodes are free, so skip I/O */ 3864 memset(bh->b_data, 0, bh->b_size); 3865 set_buffer_uptodate(bh); 3866 unlock_buffer(bh); 3867 goto has_buffer; 3868 } 3869 } 3870 3871 make_io: 3872 /* 3873 * If we need to do any I/O, try to pre-readahead extra 3874 * blocks from the inode table. 3875 */ 3876 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3877 ext4_fsblk_t b, end, table; 3878 unsigned num; 3879 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3880 3881 table = ext4_inode_table(sb, gdp); 3882 /* s_inode_readahead_blks is always a power of 2 */ 3883 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3884 if (table > b) 3885 b = table; 3886 end = b + ra_blks; 3887 num = EXT4_INODES_PER_GROUP(sb); 3888 if (ext4_has_group_desc_csum(sb)) 3889 num -= ext4_itable_unused_count(sb, gdp); 3890 table += num / inodes_per_block; 3891 if (end > table) 3892 end = table; 3893 while (b <= end) 3894 sb_breadahead(sb, b++); 3895 } 3896 3897 /* 3898 * There are other valid inodes in the buffer, this inode 3899 * has in-inode xattrs, or we don't have this inode in memory. 3900 * Read the block from disk. 3901 */ 3902 trace_ext4_load_inode(inode); 3903 get_bh(bh); 3904 bh->b_end_io = end_buffer_read_sync; 3905 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3906 wait_on_buffer(bh); 3907 if (!buffer_uptodate(bh)) { 3908 EXT4_ERROR_INODE_BLOCK(inode, block, 3909 "unable to read itable block"); 3910 brelse(bh); 3911 return -EIO; 3912 } 3913 } 3914 has_buffer: 3915 iloc->bh = bh; 3916 return 0; 3917 } 3918 3919 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3920 { 3921 /* We have all inode data except xattrs in memory here. */ 3922 return __ext4_get_inode_loc(inode, iloc, 3923 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3924 } 3925 3926 void ext4_set_inode_flags(struct inode *inode) 3927 { 3928 unsigned int flags = EXT4_I(inode)->i_flags; 3929 3930 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3931 if (flags & EXT4_SYNC_FL) 3932 inode->i_flags |= S_SYNC; 3933 if (flags & EXT4_APPEND_FL) 3934 inode->i_flags |= S_APPEND; 3935 if (flags & EXT4_IMMUTABLE_FL) 3936 inode->i_flags |= S_IMMUTABLE; 3937 if (flags & EXT4_NOATIME_FL) 3938 inode->i_flags |= S_NOATIME; 3939 if (flags & EXT4_DIRSYNC_FL) 3940 inode->i_flags |= S_DIRSYNC; 3941 } 3942 3943 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3944 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3945 { 3946 unsigned int vfs_fl; 3947 unsigned long old_fl, new_fl; 3948 3949 do { 3950 vfs_fl = ei->vfs_inode.i_flags; 3951 old_fl = ei->i_flags; 3952 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3953 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3954 EXT4_DIRSYNC_FL); 3955 if (vfs_fl & S_SYNC) 3956 new_fl |= EXT4_SYNC_FL; 3957 if (vfs_fl & S_APPEND) 3958 new_fl |= EXT4_APPEND_FL; 3959 if (vfs_fl & S_IMMUTABLE) 3960 new_fl |= EXT4_IMMUTABLE_FL; 3961 if (vfs_fl & S_NOATIME) 3962 new_fl |= EXT4_NOATIME_FL; 3963 if (vfs_fl & S_DIRSYNC) 3964 new_fl |= EXT4_DIRSYNC_FL; 3965 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3966 } 3967 3968 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3969 struct ext4_inode_info *ei) 3970 { 3971 blkcnt_t i_blocks ; 3972 struct inode *inode = &(ei->vfs_inode); 3973 struct super_block *sb = inode->i_sb; 3974 3975 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3976 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3977 /* we are using combined 48 bit field */ 3978 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3979 le32_to_cpu(raw_inode->i_blocks_lo); 3980 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3981 /* i_blocks represent file system block size */ 3982 return i_blocks << (inode->i_blkbits - 9); 3983 } else { 3984 return i_blocks; 3985 } 3986 } else { 3987 return le32_to_cpu(raw_inode->i_blocks_lo); 3988 } 3989 } 3990 3991 static inline void ext4_iget_extra_inode(struct inode *inode, 3992 struct ext4_inode *raw_inode, 3993 struct ext4_inode_info *ei) 3994 { 3995 __le32 *magic = (void *)raw_inode + 3996 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3997 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3998 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3999 ext4_find_inline_data_nolock(inode); 4000 } else 4001 EXT4_I(inode)->i_inline_off = 0; 4002 } 4003 4004 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4005 { 4006 struct ext4_iloc iloc; 4007 struct ext4_inode *raw_inode; 4008 struct ext4_inode_info *ei; 4009 struct inode *inode; 4010 journal_t *journal = EXT4_SB(sb)->s_journal; 4011 long ret; 4012 int block; 4013 uid_t i_uid; 4014 gid_t i_gid; 4015 4016 inode = iget_locked(sb, ino); 4017 if (!inode) 4018 return ERR_PTR(-ENOMEM); 4019 if (!(inode->i_state & I_NEW)) 4020 return inode; 4021 4022 ei = EXT4_I(inode); 4023 iloc.bh = NULL; 4024 4025 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4026 if (ret < 0) 4027 goto bad_inode; 4028 raw_inode = ext4_raw_inode(&iloc); 4029 4030 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4031 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4032 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4033 EXT4_INODE_SIZE(inode->i_sb)) { 4034 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4035 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4036 EXT4_INODE_SIZE(inode->i_sb)); 4037 ret = -EIO; 4038 goto bad_inode; 4039 } 4040 } else 4041 ei->i_extra_isize = 0; 4042 4043 /* Precompute checksum seed for inode metadata */ 4044 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4045 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4046 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4047 __u32 csum; 4048 __le32 inum = cpu_to_le32(inode->i_ino); 4049 __le32 gen = raw_inode->i_generation; 4050 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4051 sizeof(inum)); 4052 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4053 sizeof(gen)); 4054 } 4055 4056 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4057 EXT4_ERROR_INODE(inode, "checksum invalid"); 4058 ret = -EIO; 4059 goto bad_inode; 4060 } 4061 4062 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4063 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4064 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4065 if (!(test_opt(inode->i_sb, NO_UID32))) { 4066 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4067 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4068 } 4069 i_uid_write(inode, i_uid); 4070 i_gid_write(inode, i_gid); 4071 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4072 4073 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4074 ei->i_inline_off = 0; 4075 ei->i_dir_start_lookup = 0; 4076 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4077 /* We now have enough fields to check if the inode was active or not. 4078 * This is needed because nfsd might try to access dead inodes 4079 * the test is that same one that e2fsck uses 4080 * NeilBrown 1999oct15 4081 */ 4082 if (inode->i_nlink == 0) { 4083 if ((inode->i_mode == 0 || 4084 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4085 ino != EXT4_BOOT_LOADER_INO) { 4086 /* this inode is deleted */ 4087 ret = -ESTALE; 4088 goto bad_inode; 4089 } 4090 /* The only unlinked inodes we let through here have 4091 * valid i_mode and are being read by the orphan 4092 * recovery code: that's fine, we're about to complete 4093 * the process of deleting those. 4094 * OR it is the EXT4_BOOT_LOADER_INO which is 4095 * not initialized on a new filesystem. */ 4096 } 4097 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4098 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4099 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4100 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4101 ei->i_file_acl |= 4102 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4103 inode->i_size = ext4_isize(raw_inode); 4104 ei->i_disksize = inode->i_size; 4105 #ifdef CONFIG_QUOTA 4106 ei->i_reserved_quota = 0; 4107 #endif 4108 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4109 ei->i_block_group = iloc.block_group; 4110 ei->i_last_alloc_group = ~0; 4111 /* 4112 * NOTE! The in-memory inode i_data array is in little-endian order 4113 * even on big-endian machines: we do NOT byteswap the block numbers! 4114 */ 4115 for (block = 0; block < EXT4_N_BLOCKS; block++) 4116 ei->i_data[block] = raw_inode->i_block[block]; 4117 INIT_LIST_HEAD(&ei->i_orphan); 4118 4119 /* 4120 * Set transaction id's of transactions that have to be committed 4121 * to finish f[data]sync. We set them to currently running transaction 4122 * as we cannot be sure that the inode or some of its metadata isn't 4123 * part of the transaction - the inode could have been reclaimed and 4124 * now it is reread from disk. 4125 */ 4126 if (journal) { 4127 transaction_t *transaction; 4128 tid_t tid; 4129 4130 read_lock(&journal->j_state_lock); 4131 if (journal->j_running_transaction) 4132 transaction = journal->j_running_transaction; 4133 else 4134 transaction = journal->j_committing_transaction; 4135 if (transaction) 4136 tid = transaction->t_tid; 4137 else 4138 tid = journal->j_commit_sequence; 4139 read_unlock(&journal->j_state_lock); 4140 ei->i_sync_tid = tid; 4141 ei->i_datasync_tid = tid; 4142 } 4143 4144 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4145 if (ei->i_extra_isize == 0) { 4146 /* The extra space is currently unused. Use it. */ 4147 ei->i_extra_isize = sizeof(struct ext4_inode) - 4148 EXT4_GOOD_OLD_INODE_SIZE; 4149 } else { 4150 ext4_iget_extra_inode(inode, raw_inode, ei); 4151 } 4152 } 4153 4154 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4155 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4156 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4157 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4158 4159 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4160 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4161 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4162 inode->i_version |= 4163 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4164 } 4165 4166 ret = 0; 4167 if (ei->i_file_acl && 4168 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4169 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4170 ei->i_file_acl); 4171 ret = -EIO; 4172 goto bad_inode; 4173 } else if (!ext4_has_inline_data(inode)) { 4174 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4175 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4176 (S_ISLNK(inode->i_mode) && 4177 !ext4_inode_is_fast_symlink(inode)))) 4178 /* Validate extent which is part of inode */ 4179 ret = ext4_ext_check_inode(inode); 4180 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4181 (S_ISLNK(inode->i_mode) && 4182 !ext4_inode_is_fast_symlink(inode))) { 4183 /* Validate block references which are part of inode */ 4184 ret = ext4_ind_check_inode(inode); 4185 } 4186 } 4187 if (ret) 4188 goto bad_inode; 4189 4190 if (S_ISREG(inode->i_mode)) { 4191 inode->i_op = &ext4_file_inode_operations; 4192 inode->i_fop = &ext4_file_operations; 4193 ext4_set_aops(inode); 4194 } else if (S_ISDIR(inode->i_mode)) { 4195 inode->i_op = &ext4_dir_inode_operations; 4196 inode->i_fop = &ext4_dir_operations; 4197 } else if (S_ISLNK(inode->i_mode)) { 4198 if (ext4_inode_is_fast_symlink(inode)) { 4199 inode->i_op = &ext4_fast_symlink_inode_operations; 4200 nd_terminate_link(ei->i_data, inode->i_size, 4201 sizeof(ei->i_data) - 1); 4202 } else { 4203 inode->i_op = &ext4_symlink_inode_operations; 4204 ext4_set_aops(inode); 4205 } 4206 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4207 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4208 inode->i_op = &ext4_special_inode_operations; 4209 if (raw_inode->i_block[0]) 4210 init_special_inode(inode, inode->i_mode, 4211 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4212 else 4213 init_special_inode(inode, inode->i_mode, 4214 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4215 } else if (ino == EXT4_BOOT_LOADER_INO) { 4216 make_bad_inode(inode); 4217 } else { 4218 ret = -EIO; 4219 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4220 goto bad_inode; 4221 } 4222 brelse(iloc.bh); 4223 ext4_set_inode_flags(inode); 4224 unlock_new_inode(inode); 4225 return inode; 4226 4227 bad_inode: 4228 brelse(iloc.bh); 4229 iget_failed(inode); 4230 return ERR_PTR(ret); 4231 } 4232 4233 static int ext4_inode_blocks_set(handle_t *handle, 4234 struct ext4_inode *raw_inode, 4235 struct ext4_inode_info *ei) 4236 { 4237 struct inode *inode = &(ei->vfs_inode); 4238 u64 i_blocks = inode->i_blocks; 4239 struct super_block *sb = inode->i_sb; 4240 4241 if (i_blocks <= ~0U) { 4242 /* 4243 * i_blocks can be represented in a 32 bit variable 4244 * as multiple of 512 bytes 4245 */ 4246 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4247 raw_inode->i_blocks_high = 0; 4248 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4249 return 0; 4250 } 4251 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4252 return -EFBIG; 4253 4254 if (i_blocks <= 0xffffffffffffULL) { 4255 /* 4256 * i_blocks can be represented in a 48 bit variable 4257 * as multiple of 512 bytes 4258 */ 4259 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4260 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4261 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4262 } else { 4263 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4264 /* i_block is stored in file system block size */ 4265 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4266 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4267 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4268 } 4269 return 0; 4270 } 4271 4272 /* 4273 * Post the struct inode info into an on-disk inode location in the 4274 * buffer-cache. This gobbles the caller's reference to the 4275 * buffer_head in the inode location struct. 4276 * 4277 * The caller must have write access to iloc->bh. 4278 */ 4279 static int ext4_do_update_inode(handle_t *handle, 4280 struct inode *inode, 4281 struct ext4_iloc *iloc) 4282 { 4283 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4284 struct ext4_inode_info *ei = EXT4_I(inode); 4285 struct buffer_head *bh = iloc->bh; 4286 int err = 0, rc, block; 4287 int need_datasync = 0; 4288 uid_t i_uid; 4289 gid_t i_gid; 4290 4291 /* For fields not not tracking in the in-memory inode, 4292 * initialise them to zero for new inodes. */ 4293 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4294 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4295 4296 ext4_get_inode_flags(ei); 4297 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4298 i_uid = i_uid_read(inode); 4299 i_gid = i_gid_read(inode); 4300 if (!(test_opt(inode->i_sb, NO_UID32))) { 4301 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4302 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4303 /* 4304 * Fix up interoperability with old kernels. Otherwise, old inodes get 4305 * re-used with the upper 16 bits of the uid/gid intact 4306 */ 4307 if (!ei->i_dtime) { 4308 raw_inode->i_uid_high = 4309 cpu_to_le16(high_16_bits(i_uid)); 4310 raw_inode->i_gid_high = 4311 cpu_to_le16(high_16_bits(i_gid)); 4312 } else { 4313 raw_inode->i_uid_high = 0; 4314 raw_inode->i_gid_high = 0; 4315 } 4316 } else { 4317 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4318 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4319 raw_inode->i_uid_high = 0; 4320 raw_inode->i_gid_high = 0; 4321 } 4322 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4323 4324 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4325 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4326 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4327 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4328 4329 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4330 goto out_brelse; 4331 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4332 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4333 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4334 cpu_to_le32(EXT4_OS_HURD)) 4335 raw_inode->i_file_acl_high = 4336 cpu_to_le16(ei->i_file_acl >> 32); 4337 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4338 if (ei->i_disksize != ext4_isize(raw_inode)) { 4339 ext4_isize_set(raw_inode, ei->i_disksize); 4340 need_datasync = 1; 4341 } 4342 if (ei->i_disksize > 0x7fffffffULL) { 4343 struct super_block *sb = inode->i_sb; 4344 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4345 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4346 EXT4_SB(sb)->s_es->s_rev_level == 4347 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4348 /* If this is the first large file 4349 * created, add a flag to the superblock. 4350 */ 4351 err = ext4_journal_get_write_access(handle, 4352 EXT4_SB(sb)->s_sbh); 4353 if (err) 4354 goto out_brelse; 4355 ext4_update_dynamic_rev(sb); 4356 EXT4_SET_RO_COMPAT_FEATURE(sb, 4357 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4358 ext4_handle_sync(handle); 4359 err = ext4_handle_dirty_super(handle, sb); 4360 } 4361 } 4362 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4363 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4364 if (old_valid_dev(inode->i_rdev)) { 4365 raw_inode->i_block[0] = 4366 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4367 raw_inode->i_block[1] = 0; 4368 } else { 4369 raw_inode->i_block[0] = 0; 4370 raw_inode->i_block[1] = 4371 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4372 raw_inode->i_block[2] = 0; 4373 } 4374 } else if (!ext4_has_inline_data(inode)) { 4375 for (block = 0; block < EXT4_N_BLOCKS; block++) 4376 raw_inode->i_block[block] = ei->i_data[block]; 4377 } 4378 4379 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4380 if (ei->i_extra_isize) { 4381 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4382 raw_inode->i_version_hi = 4383 cpu_to_le32(inode->i_version >> 32); 4384 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4385 } 4386 4387 ext4_inode_csum_set(inode, raw_inode, ei); 4388 4389 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4390 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4391 if (!err) 4392 err = rc; 4393 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4394 4395 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4396 out_brelse: 4397 brelse(bh); 4398 ext4_std_error(inode->i_sb, err); 4399 return err; 4400 } 4401 4402 /* 4403 * ext4_write_inode() 4404 * 4405 * We are called from a few places: 4406 * 4407 * - Within generic_file_write() for O_SYNC files. 4408 * Here, there will be no transaction running. We wait for any running 4409 * transaction to commit. 4410 * 4411 * - Within sys_sync(), kupdate and such. 4412 * We wait on commit, if tol to. 4413 * 4414 * - Within prune_icache() (PF_MEMALLOC == true) 4415 * Here we simply return. We can't afford to block kswapd on the 4416 * journal commit. 4417 * 4418 * In all cases it is actually safe for us to return without doing anything, 4419 * because the inode has been copied into a raw inode buffer in 4420 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4421 * knfsd. 4422 * 4423 * Note that we are absolutely dependent upon all inode dirtiers doing the 4424 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4425 * which we are interested. 4426 * 4427 * It would be a bug for them to not do this. The code: 4428 * 4429 * mark_inode_dirty(inode) 4430 * stuff(); 4431 * inode->i_size = expr; 4432 * 4433 * is in error because a kswapd-driven write_inode() could occur while 4434 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4435 * will no longer be on the superblock's dirty inode list. 4436 */ 4437 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4438 { 4439 int err; 4440 4441 if (current->flags & PF_MEMALLOC) 4442 return 0; 4443 4444 if (EXT4_SB(inode->i_sb)->s_journal) { 4445 if (ext4_journal_current_handle()) { 4446 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4447 dump_stack(); 4448 return -EIO; 4449 } 4450 4451 if (wbc->sync_mode != WB_SYNC_ALL) 4452 return 0; 4453 4454 err = ext4_force_commit(inode->i_sb); 4455 } else { 4456 struct ext4_iloc iloc; 4457 4458 err = __ext4_get_inode_loc(inode, &iloc, 0); 4459 if (err) 4460 return err; 4461 if (wbc->sync_mode == WB_SYNC_ALL) 4462 sync_dirty_buffer(iloc.bh); 4463 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4464 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4465 "IO error syncing inode"); 4466 err = -EIO; 4467 } 4468 brelse(iloc.bh); 4469 } 4470 return err; 4471 } 4472 4473 /* 4474 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4475 * buffers that are attached to a page stradding i_size and are undergoing 4476 * commit. In that case we have to wait for commit to finish and try again. 4477 */ 4478 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4479 { 4480 struct page *page; 4481 unsigned offset; 4482 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4483 tid_t commit_tid = 0; 4484 int ret; 4485 4486 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4487 /* 4488 * All buffers in the last page remain valid? Then there's nothing to 4489 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4490 * blocksize case 4491 */ 4492 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4493 return; 4494 while (1) { 4495 page = find_lock_page(inode->i_mapping, 4496 inode->i_size >> PAGE_CACHE_SHIFT); 4497 if (!page) 4498 return; 4499 ret = __ext4_journalled_invalidatepage(page, offset, 4500 PAGE_CACHE_SIZE - offset); 4501 unlock_page(page); 4502 page_cache_release(page); 4503 if (ret != -EBUSY) 4504 return; 4505 commit_tid = 0; 4506 read_lock(&journal->j_state_lock); 4507 if (journal->j_committing_transaction) 4508 commit_tid = journal->j_committing_transaction->t_tid; 4509 read_unlock(&journal->j_state_lock); 4510 if (commit_tid) 4511 jbd2_log_wait_commit(journal, commit_tid); 4512 } 4513 } 4514 4515 /* 4516 * ext4_setattr() 4517 * 4518 * Called from notify_change. 4519 * 4520 * We want to trap VFS attempts to truncate the file as soon as 4521 * possible. In particular, we want to make sure that when the VFS 4522 * shrinks i_size, we put the inode on the orphan list and modify 4523 * i_disksize immediately, so that during the subsequent flushing of 4524 * dirty pages and freeing of disk blocks, we can guarantee that any 4525 * commit will leave the blocks being flushed in an unused state on 4526 * disk. (On recovery, the inode will get truncated and the blocks will 4527 * be freed, so we have a strong guarantee that no future commit will 4528 * leave these blocks visible to the user.) 4529 * 4530 * Another thing we have to assure is that if we are in ordered mode 4531 * and inode is still attached to the committing transaction, we must 4532 * we start writeout of all the dirty pages which are being truncated. 4533 * This way we are sure that all the data written in the previous 4534 * transaction are already on disk (truncate waits for pages under 4535 * writeback). 4536 * 4537 * Called with inode->i_mutex down. 4538 */ 4539 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4540 { 4541 struct inode *inode = dentry->d_inode; 4542 int error, rc = 0; 4543 int orphan = 0; 4544 const unsigned int ia_valid = attr->ia_valid; 4545 4546 error = inode_change_ok(inode, attr); 4547 if (error) 4548 return error; 4549 4550 if (is_quota_modification(inode, attr)) 4551 dquot_initialize(inode); 4552 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4553 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4554 handle_t *handle; 4555 4556 /* (user+group)*(old+new) structure, inode write (sb, 4557 * inode block, ? - but truncate inode update has it) */ 4558 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4559 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4560 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4561 if (IS_ERR(handle)) { 4562 error = PTR_ERR(handle); 4563 goto err_out; 4564 } 4565 error = dquot_transfer(inode, attr); 4566 if (error) { 4567 ext4_journal_stop(handle); 4568 return error; 4569 } 4570 /* Update corresponding info in inode so that everything is in 4571 * one transaction */ 4572 if (attr->ia_valid & ATTR_UID) 4573 inode->i_uid = attr->ia_uid; 4574 if (attr->ia_valid & ATTR_GID) 4575 inode->i_gid = attr->ia_gid; 4576 error = ext4_mark_inode_dirty(handle, inode); 4577 ext4_journal_stop(handle); 4578 } 4579 4580 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4581 handle_t *handle; 4582 4583 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4585 4586 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4587 return -EFBIG; 4588 } 4589 if (S_ISREG(inode->i_mode) && 4590 (attr->ia_size < inode->i_size)) { 4591 if (ext4_should_order_data(inode)) { 4592 error = ext4_begin_ordered_truncate(inode, 4593 attr->ia_size); 4594 if (error) 4595 goto err_out; 4596 } 4597 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4598 if (IS_ERR(handle)) { 4599 error = PTR_ERR(handle); 4600 goto err_out; 4601 } 4602 if (ext4_handle_valid(handle)) { 4603 error = ext4_orphan_add(handle, inode); 4604 orphan = 1; 4605 } 4606 down_write(&EXT4_I(inode)->i_data_sem); 4607 EXT4_I(inode)->i_disksize = attr->ia_size; 4608 rc = ext4_mark_inode_dirty(handle, inode); 4609 if (!error) 4610 error = rc; 4611 /* 4612 * We have to update i_size under i_data_sem together 4613 * with i_disksize to avoid races with writeback code 4614 * running ext4_wb_update_i_disksize(). 4615 */ 4616 if (!error) 4617 i_size_write(inode, attr->ia_size); 4618 up_write(&EXT4_I(inode)->i_data_sem); 4619 ext4_journal_stop(handle); 4620 if (error) { 4621 ext4_orphan_del(NULL, inode); 4622 goto err_out; 4623 } 4624 } else 4625 i_size_write(inode, attr->ia_size); 4626 4627 /* 4628 * Blocks are going to be removed from the inode. Wait 4629 * for dio in flight. Temporarily disable 4630 * dioread_nolock to prevent livelock. 4631 */ 4632 if (orphan) { 4633 if (!ext4_should_journal_data(inode)) { 4634 ext4_inode_block_unlocked_dio(inode); 4635 inode_dio_wait(inode); 4636 ext4_inode_resume_unlocked_dio(inode); 4637 } else 4638 ext4_wait_for_tail_page_commit(inode); 4639 } 4640 /* 4641 * Truncate pagecache after we've waited for commit 4642 * in data=journal mode to make pages freeable. 4643 */ 4644 truncate_pagecache(inode, inode->i_size); 4645 } 4646 /* 4647 * We want to call ext4_truncate() even if attr->ia_size == 4648 * inode->i_size for cases like truncation of fallocated space 4649 */ 4650 if (attr->ia_valid & ATTR_SIZE) 4651 ext4_truncate(inode); 4652 4653 if (!rc) { 4654 setattr_copy(inode, attr); 4655 mark_inode_dirty(inode); 4656 } 4657 4658 /* 4659 * If the call to ext4_truncate failed to get a transaction handle at 4660 * all, we need to clean up the in-core orphan list manually. 4661 */ 4662 if (orphan && inode->i_nlink) 4663 ext4_orphan_del(NULL, inode); 4664 4665 if (!rc && (ia_valid & ATTR_MODE)) 4666 rc = ext4_acl_chmod(inode); 4667 4668 err_out: 4669 ext4_std_error(inode->i_sb, error); 4670 if (!error) 4671 error = rc; 4672 return error; 4673 } 4674 4675 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4676 struct kstat *stat) 4677 { 4678 struct inode *inode; 4679 unsigned long long delalloc_blocks; 4680 4681 inode = dentry->d_inode; 4682 generic_fillattr(inode, stat); 4683 4684 /* 4685 * If there is inline data in the inode, the inode will normally not 4686 * have data blocks allocated (it may have an external xattr block). 4687 * Report at least one sector for such files, so tools like tar, rsync, 4688 * others doen't incorrectly think the file is completely sparse. 4689 */ 4690 if (unlikely(ext4_has_inline_data(inode))) 4691 stat->blocks += (stat->size + 511) >> 9; 4692 4693 /* 4694 * We can't update i_blocks if the block allocation is delayed 4695 * otherwise in the case of system crash before the real block 4696 * allocation is done, we will have i_blocks inconsistent with 4697 * on-disk file blocks. 4698 * We always keep i_blocks updated together with real 4699 * allocation. But to not confuse with user, stat 4700 * will return the blocks that include the delayed allocation 4701 * blocks for this file. 4702 */ 4703 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4704 EXT4_I(inode)->i_reserved_data_blocks); 4705 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4706 return 0; 4707 } 4708 4709 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4710 int pextents) 4711 { 4712 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4713 return ext4_ind_trans_blocks(inode, lblocks); 4714 return ext4_ext_index_trans_blocks(inode, pextents); 4715 } 4716 4717 /* 4718 * Account for index blocks, block groups bitmaps and block group 4719 * descriptor blocks if modify datablocks and index blocks 4720 * worse case, the indexs blocks spread over different block groups 4721 * 4722 * If datablocks are discontiguous, they are possible to spread over 4723 * different block groups too. If they are contiguous, with flexbg, 4724 * they could still across block group boundary. 4725 * 4726 * Also account for superblock, inode, quota and xattr blocks 4727 */ 4728 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4729 int pextents) 4730 { 4731 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4732 int gdpblocks; 4733 int idxblocks; 4734 int ret = 0; 4735 4736 /* 4737 * How many index blocks need to touch to map @lblocks logical blocks 4738 * to @pextents physical extents? 4739 */ 4740 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4741 4742 ret = idxblocks; 4743 4744 /* 4745 * Now let's see how many group bitmaps and group descriptors need 4746 * to account 4747 */ 4748 groups = idxblocks + pextents; 4749 gdpblocks = groups; 4750 if (groups > ngroups) 4751 groups = ngroups; 4752 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4753 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4754 4755 /* bitmaps and block group descriptor blocks */ 4756 ret += groups + gdpblocks; 4757 4758 /* Blocks for super block, inode, quota and xattr blocks */ 4759 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4760 4761 return ret; 4762 } 4763 4764 /* 4765 * Calculate the total number of credits to reserve to fit 4766 * the modification of a single pages into a single transaction, 4767 * which may include multiple chunks of block allocations. 4768 * 4769 * This could be called via ext4_write_begin() 4770 * 4771 * We need to consider the worse case, when 4772 * one new block per extent. 4773 */ 4774 int ext4_writepage_trans_blocks(struct inode *inode) 4775 { 4776 int bpp = ext4_journal_blocks_per_page(inode); 4777 int ret; 4778 4779 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4780 4781 /* Account for data blocks for journalled mode */ 4782 if (ext4_should_journal_data(inode)) 4783 ret += bpp; 4784 return ret; 4785 } 4786 4787 /* 4788 * Calculate the journal credits for a chunk of data modification. 4789 * 4790 * This is called from DIO, fallocate or whoever calling 4791 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4792 * 4793 * journal buffers for data blocks are not included here, as DIO 4794 * and fallocate do no need to journal data buffers. 4795 */ 4796 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4797 { 4798 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4799 } 4800 4801 /* 4802 * The caller must have previously called ext4_reserve_inode_write(). 4803 * Give this, we know that the caller already has write access to iloc->bh. 4804 */ 4805 int ext4_mark_iloc_dirty(handle_t *handle, 4806 struct inode *inode, struct ext4_iloc *iloc) 4807 { 4808 int err = 0; 4809 4810 if (IS_I_VERSION(inode)) 4811 inode_inc_iversion(inode); 4812 4813 /* the do_update_inode consumes one bh->b_count */ 4814 get_bh(iloc->bh); 4815 4816 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4817 err = ext4_do_update_inode(handle, inode, iloc); 4818 put_bh(iloc->bh); 4819 return err; 4820 } 4821 4822 /* 4823 * On success, We end up with an outstanding reference count against 4824 * iloc->bh. This _must_ be cleaned up later. 4825 */ 4826 4827 int 4828 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4829 struct ext4_iloc *iloc) 4830 { 4831 int err; 4832 4833 err = ext4_get_inode_loc(inode, iloc); 4834 if (!err) { 4835 BUFFER_TRACE(iloc->bh, "get_write_access"); 4836 err = ext4_journal_get_write_access(handle, iloc->bh); 4837 if (err) { 4838 brelse(iloc->bh); 4839 iloc->bh = NULL; 4840 } 4841 } 4842 ext4_std_error(inode->i_sb, err); 4843 return err; 4844 } 4845 4846 /* 4847 * Expand an inode by new_extra_isize bytes. 4848 * Returns 0 on success or negative error number on failure. 4849 */ 4850 static int ext4_expand_extra_isize(struct inode *inode, 4851 unsigned int new_extra_isize, 4852 struct ext4_iloc iloc, 4853 handle_t *handle) 4854 { 4855 struct ext4_inode *raw_inode; 4856 struct ext4_xattr_ibody_header *header; 4857 4858 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4859 return 0; 4860 4861 raw_inode = ext4_raw_inode(&iloc); 4862 4863 header = IHDR(inode, raw_inode); 4864 4865 /* No extended attributes present */ 4866 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4867 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4868 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4869 new_extra_isize); 4870 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4871 return 0; 4872 } 4873 4874 /* try to expand with EAs present */ 4875 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4876 raw_inode, handle); 4877 } 4878 4879 /* 4880 * What we do here is to mark the in-core inode as clean with respect to inode 4881 * dirtiness (it may still be data-dirty). 4882 * This means that the in-core inode may be reaped by prune_icache 4883 * without having to perform any I/O. This is a very good thing, 4884 * because *any* task may call prune_icache - even ones which 4885 * have a transaction open against a different journal. 4886 * 4887 * Is this cheating? Not really. Sure, we haven't written the 4888 * inode out, but prune_icache isn't a user-visible syncing function. 4889 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4890 * we start and wait on commits. 4891 */ 4892 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4893 { 4894 struct ext4_iloc iloc; 4895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4896 static unsigned int mnt_count; 4897 int err, ret; 4898 4899 might_sleep(); 4900 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4901 err = ext4_reserve_inode_write(handle, inode, &iloc); 4902 if (ext4_handle_valid(handle) && 4903 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4904 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4905 /* 4906 * We need extra buffer credits since we may write into EA block 4907 * with this same handle. If journal_extend fails, then it will 4908 * only result in a minor loss of functionality for that inode. 4909 * If this is felt to be critical, then e2fsck should be run to 4910 * force a large enough s_min_extra_isize. 4911 */ 4912 if ((jbd2_journal_extend(handle, 4913 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4914 ret = ext4_expand_extra_isize(inode, 4915 sbi->s_want_extra_isize, 4916 iloc, handle); 4917 if (ret) { 4918 ext4_set_inode_state(inode, 4919 EXT4_STATE_NO_EXPAND); 4920 if (mnt_count != 4921 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4922 ext4_warning(inode->i_sb, 4923 "Unable to expand inode %lu. Delete" 4924 " some EAs or run e2fsck.", 4925 inode->i_ino); 4926 mnt_count = 4927 le16_to_cpu(sbi->s_es->s_mnt_count); 4928 } 4929 } 4930 } 4931 } 4932 if (!err) 4933 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4934 return err; 4935 } 4936 4937 /* 4938 * ext4_dirty_inode() is called from __mark_inode_dirty() 4939 * 4940 * We're really interested in the case where a file is being extended. 4941 * i_size has been changed by generic_commit_write() and we thus need 4942 * to include the updated inode in the current transaction. 4943 * 4944 * Also, dquot_alloc_block() will always dirty the inode when blocks 4945 * are allocated to the file. 4946 * 4947 * If the inode is marked synchronous, we don't honour that here - doing 4948 * so would cause a commit on atime updates, which we don't bother doing. 4949 * We handle synchronous inodes at the highest possible level. 4950 */ 4951 void ext4_dirty_inode(struct inode *inode, int flags) 4952 { 4953 handle_t *handle; 4954 4955 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4956 if (IS_ERR(handle)) 4957 goto out; 4958 4959 ext4_mark_inode_dirty(handle, inode); 4960 4961 ext4_journal_stop(handle); 4962 out: 4963 return; 4964 } 4965 4966 #if 0 4967 /* 4968 * Bind an inode's backing buffer_head into this transaction, to prevent 4969 * it from being flushed to disk early. Unlike 4970 * ext4_reserve_inode_write, this leaves behind no bh reference and 4971 * returns no iloc structure, so the caller needs to repeat the iloc 4972 * lookup to mark the inode dirty later. 4973 */ 4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4975 { 4976 struct ext4_iloc iloc; 4977 4978 int err = 0; 4979 if (handle) { 4980 err = ext4_get_inode_loc(inode, &iloc); 4981 if (!err) { 4982 BUFFER_TRACE(iloc.bh, "get_write_access"); 4983 err = jbd2_journal_get_write_access(handle, iloc.bh); 4984 if (!err) 4985 err = ext4_handle_dirty_metadata(handle, 4986 NULL, 4987 iloc.bh); 4988 brelse(iloc.bh); 4989 } 4990 } 4991 ext4_std_error(inode->i_sb, err); 4992 return err; 4993 } 4994 #endif 4995 4996 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4997 { 4998 journal_t *journal; 4999 handle_t *handle; 5000 int err; 5001 5002 /* 5003 * We have to be very careful here: changing a data block's 5004 * journaling status dynamically is dangerous. If we write a 5005 * data block to the journal, change the status and then delete 5006 * that block, we risk forgetting to revoke the old log record 5007 * from the journal and so a subsequent replay can corrupt data. 5008 * So, first we make sure that the journal is empty and that 5009 * nobody is changing anything. 5010 */ 5011 5012 journal = EXT4_JOURNAL(inode); 5013 if (!journal) 5014 return 0; 5015 if (is_journal_aborted(journal)) 5016 return -EROFS; 5017 /* We have to allocate physical blocks for delalloc blocks 5018 * before flushing journal. otherwise delalloc blocks can not 5019 * be allocated any more. even more truncate on delalloc blocks 5020 * could trigger BUG by flushing delalloc blocks in journal. 5021 * There is no delalloc block in non-journal data mode. 5022 */ 5023 if (val && test_opt(inode->i_sb, DELALLOC)) { 5024 err = ext4_alloc_da_blocks(inode); 5025 if (err < 0) 5026 return err; 5027 } 5028 5029 /* Wait for all existing dio workers */ 5030 ext4_inode_block_unlocked_dio(inode); 5031 inode_dio_wait(inode); 5032 5033 jbd2_journal_lock_updates(journal); 5034 5035 /* 5036 * OK, there are no updates running now, and all cached data is 5037 * synced to disk. We are now in a completely consistent state 5038 * which doesn't have anything in the journal, and we know that 5039 * no filesystem updates are running, so it is safe to modify 5040 * the inode's in-core data-journaling state flag now. 5041 */ 5042 5043 if (val) 5044 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5045 else { 5046 jbd2_journal_flush(journal); 5047 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5048 } 5049 ext4_set_aops(inode); 5050 5051 jbd2_journal_unlock_updates(journal); 5052 ext4_inode_resume_unlocked_dio(inode); 5053 5054 /* Finally we can mark the inode as dirty. */ 5055 5056 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5057 if (IS_ERR(handle)) 5058 return PTR_ERR(handle); 5059 5060 err = ext4_mark_inode_dirty(handle, inode); 5061 ext4_handle_sync(handle); 5062 ext4_journal_stop(handle); 5063 ext4_std_error(inode->i_sb, err); 5064 5065 return err; 5066 } 5067 5068 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5069 { 5070 return !buffer_mapped(bh); 5071 } 5072 5073 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5074 { 5075 struct page *page = vmf->page; 5076 loff_t size; 5077 unsigned long len; 5078 int ret; 5079 struct file *file = vma->vm_file; 5080 struct inode *inode = file_inode(file); 5081 struct address_space *mapping = inode->i_mapping; 5082 handle_t *handle; 5083 get_block_t *get_block; 5084 int retries = 0; 5085 5086 sb_start_pagefault(inode->i_sb); 5087 file_update_time(vma->vm_file); 5088 /* Delalloc case is easy... */ 5089 if (test_opt(inode->i_sb, DELALLOC) && 5090 !ext4_should_journal_data(inode) && 5091 !ext4_nonda_switch(inode->i_sb)) { 5092 do { 5093 ret = __block_page_mkwrite(vma, vmf, 5094 ext4_da_get_block_prep); 5095 } while (ret == -ENOSPC && 5096 ext4_should_retry_alloc(inode->i_sb, &retries)); 5097 goto out_ret; 5098 } 5099 5100 lock_page(page); 5101 size = i_size_read(inode); 5102 /* Page got truncated from under us? */ 5103 if (page->mapping != mapping || page_offset(page) > size) { 5104 unlock_page(page); 5105 ret = VM_FAULT_NOPAGE; 5106 goto out; 5107 } 5108 5109 if (page->index == size >> PAGE_CACHE_SHIFT) 5110 len = size & ~PAGE_CACHE_MASK; 5111 else 5112 len = PAGE_CACHE_SIZE; 5113 /* 5114 * Return if we have all the buffers mapped. This avoids the need to do 5115 * journal_start/journal_stop which can block and take a long time 5116 */ 5117 if (page_has_buffers(page)) { 5118 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5119 0, len, NULL, 5120 ext4_bh_unmapped)) { 5121 /* Wait so that we don't change page under IO */ 5122 wait_for_stable_page(page); 5123 ret = VM_FAULT_LOCKED; 5124 goto out; 5125 } 5126 } 5127 unlock_page(page); 5128 /* OK, we need to fill the hole... */ 5129 if (ext4_should_dioread_nolock(inode)) 5130 get_block = ext4_get_block_write; 5131 else 5132 get_block = ext4_get_block; 5133 retry_alloc: 5134 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5135 ext4_writepage_trans_blocks(inode)); 5136 if (IS_ERR(handle)) { 5137 ret = VM_FAULT_SIGBUS; 5138 goto out; 5139 } 5140 ret = __block_page_mkwrite(vma, vmf, get_block); 5141 if (!ret && ext4_should_journal_data(inode)) { 5142 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5143 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5144 unlock_page(page); 5145 ret = VM_FAULT_SIGBUS; 5146 ext4_journal_stop(handle); 5147 goto out; 5148 } 5149 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5150 } 5151 ext4_journal_stop(handle); 5152 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5153 goto retry_alloc; 5154 out_ret: 5155 ret = block_page_mkwrite_return(ret); 5156 out: 5157 sb_end_pagefault(inode->i_sb); 5158 return ret; 5159 } 5160