1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 map->m_flags |= ext4_es_is_delayed(&es) ? 519 EXT4_MAP_DELAYED : 0; 520 retval = es.es_len - (map->m_lblk - es.es_lblk); 521 if (retval > map->m_len) 522 retval = map->m_len; 523 map->m_len = retval; 524 retval = 0; 525 } else { 526 BUG(); 527 } 528 529 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 530 return retval; 531 #ifdef ES_AGGRESSIVE_TEST 532 ext4_map_blocks_es_recheck(handle, inode, map, 533 &orig_map, flags); 534 #endif 535 goto found; 536 } 537 /* 538 * In the query cache no-wait mode, nothing we can do more if we 539 * cannot find extent in the cache. 540 */ 541 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 542 return 0; 543 544 /* 545 * Try to see if we can get the block without requesting a new 546 * file system block. 547 */ 548 down_read(&EXT4_I(inode)->i_data_sem); 549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 550 retval = ext4_ext_map_blocks(handle, inode, map, 0); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, 0); 553 } 554 if (retval > 0) { 555 unsigned int status; 556 557 if (unlikely(retval != map->m_len)) { 558 ext4_warning(inode->i_sb, 559 "ES len assertion failed for inode " 560 "%lu: retval %d != map->m_len %d", 561 inode->i_ino, retval, map->m_len); 562 WARN_ON(1); 563 } 564 565 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 568 !(status & EXTENT_STATUS_WRITTEN) && 569 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 573 map->m_pblk, status); 574 } 575 up_read((&EXT4_I(inode)->i_data_sem)); 576 577 found: 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 584 /* If it is only a block(s) look up */ 585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 586 return retval; 587 588 /* 589 * Returns if the blocks have already allocated 590 * 591 * Note that if blocks have been preallocated 592 * ext4_ext_get_block() returns the create = 0 593 * with buffer head unmapped. 594 */ 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 596 /* 597 * If we need to convert extent to unwritten 598 * we continue and do the actual work in 599 * ext4_ext_map_blocks() 600 */ 601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 602 return retval; 603 604 /* 605 * Here we clear m_flags because after allocating an new extent, 606 * it will be set again. 607 */ 608 map->m_flags &= ~EXT4_MAP_FLAGS; 609 610 /* 611 * New blocks allocate and/or writing to unwritten extent 612 * will possibly result in updating i_data, so we take 613 * the write lock of i_data_sem, and call get_block() 614 * with create == 1 flag. 615 */ 616 down_write(&EXT4_I(inode)->i_data_sem); 617 618 /* 619 * We need to check for EXT4 here because migrate 620 * could have changed the inode type in between 621 */ 622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 623 retval = ext4_ext_map_blocks(handle, inode, map, flags); 624 } else { 625 retval = ext4_ind_map_blocks(handle, inode, map, flags); 626 627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 628 /* 629 * We allocated new blocks which will result in 630 * i_data's format changing. Force the migrate 631 * to fail by clearing migrate flags 632 */ 633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 634 } 635 } 636 637 if (retval > 0) { 638 unsigned int status; 639 640 if (unlikely(retval != map->m_len)) { 641 ext4_warning(inode->i_sb, 642 "ES len assertion failed for inode " 643 "%lu: retval %d != map->m_len %d", 644 inode->i_ino, retval, map->m_len); 645 WARN_ON(1); 646 } 647 648 /* 649 * We have to zeroout blocks before inserting them into extent 650 * status tree. Otherwise someone could look them up there and 651 * use them before they are really zeroed. We also have to 652 * unmap metadata before zeroing as otherwise writeback can 653 * overwrite zeros with stale data from block device. 654 */ 655 if (flags & EXT4_GET_BLOCKS_ZERO && 656 map->m_flags & EXT4_MAP_MAPPED && 657 map->m_flags & EXT4_MAP_NEW) { 658 ret = ext4_issue_zeroout(inode, map->m_lblk, 659 map->m_pblk, map->m_len); 660 if (ret) { 661 retval = ret; 662 goto out_sem; 663 } 664 } 665 666 /* 667 * If the extent has been zeroed out, we don't need to update 668 * extent status tree. 669 */ 670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 671 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 672 if (ext4_es_is_written(&es)) 673 goto out_sem; 674 } 675 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 678 !(status & EXTENT_STATUS_WRITTEN) && 679 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 680 map->m_lblk + map->m_len - 1)) 681 status |= EXTENT_STATUS_DELAYED; 682 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 683 map->m_pblk, status); 684 } 685 686 out_sem: 687 up_write((&EXT4_I(inode)->i_data_sem)); 688 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 689 ret = check_block_validity(inode, map); 690 if (ret != 0) 691 return ret; 692 693 /* 694 * Inodes with freshly allocated blocks where contents will be 695 * visible after transaction commit must be on transaction's 696 * ordered data list. 697 */ 698 if (map->m_flags & EXT4_MAP_NEW && 699 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 700 !(flags & EXT4_GET_BLOCKS_ZERO) && 701 !ext4_is_quota_file(inode) && 702 ext4_should_order_data(inode)) { 703 loff_t start_byte = 704 (loff_t)map->m_lblk << inode->i_blkbits; 705 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 706 707 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 708 ret = ext4_jbd2_inode_add_wait(handle, inode, 709 start_byte, length); 710 else 711 ret = ext4_jbd2_inode_add_write(handle, inode, 712 start_byte, length); 713 if (ret) 714 return ret; 715 } 716 } 717 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 718 map->m_flags & EXT4_MAP_MAPPED)) 719 ext4_fc_track_range(handle, inode, map->m_lblk, 720 map->m_lblk + map->m_len - 1); 721 if (retval < 0) 722 ext_debug(inode, "failed with err %d\n", retval); 723 return retval; 724 } 725 726 /* 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 728 * we have to be careful as someone else may be manipulating b_state as well. 729 */ 730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 731 { 732 unsigned long old_state; 733 unsigned long new_state; 734 735 flags &= EXT4_MAP_FLAGS; 736 737 /* Dummy buffer_head? Set non-atomically. */ 738 if (!bh->b_page) { 739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 740 return; 741 } 742 /* 743 * Someone else may be modifying b_state. Be careful! This is ugly but 744 * once we get rid of using bh as a container for mapping information 745 * to pass to / from get_block functions, this can go away. 746 */ 747 old_state = READ_ONCE(bh->b_state); 748 do { 749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 750 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 751 } 752 753 static int _ext4_get_block(struct inode *inode, sector_t iblock, 754 struct buffer_head *bh, int flags) 755 { 756 struct ext4_map_blocks map; 757 int ret = 0; 758 759 if (ext4_has_inline_data(inode)) 760 return -ERANGE; 761 762 map.m_lblk = iblock; 763 map.m_len = bh->b_size >> inode->i_blkbits; 764 765 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 766 flags); 767 if (ret > 0) { 768 map_bh(bh, inode->i_sb, map.m_pblk); 769 ext4_update_bh_state(bh, map.m_flags); 770 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 771 ret = 0; 772 } else if (ret == 0) { 773 /* hole case, need to fill in bh->b_size */ 774 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 775 } 776 return ret; 777 } 778 779 int ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int create) 781 { 782 return _ext4_get_block(inode, iblock, bh, 783 create ? EXT4_GET_BLOCKS_CREATE : 0); 784 } 785 786 /* 787 * Get block function used when preparing for buffered write if we require 788 * creating an unwritten extent if blocks haven't been allocated. The extent 789 * will be converted to written after the IO is complete. 790 */ 791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 792 struct buffer_head *bh_result, int create) 793 { 794 int ret = 0; 795 796 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 797 inode->i_ino, create); 798 ret = _ext4_get_block(inode, iblock, bh_result, 799 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 800 801 /* 802 * If the buffer is marked unwritten, mark it as new to make sure it is 803 * zeroed out correctly in case of partial writes. Otherwise, there is 804 * a chance of stale data getting exposed. 805 */ 806 if (ret == 0 && buffer_unwritten(bh_result)) 807 set_buffer_new(bh_result); 808 809 return ret; 810 } 811 812 /* Maximum number of blocks we map for direct IO at once. */ 813 #define DIO_MAX_BLOCKS 4096 814 815 /* 816 * `handle' can be NULL if create is zero 817 */ 818 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 819 ext4_lblk_t block, int map_flags) 820 { 821 struct ext4_map_blocks map; 822 struct buffer_head *bh; 823 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 824 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 825 int err; 826 827 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 828 || handle != NULL || create == 0); 829 ASSERT(create == 0 || !nowait); 830 831 map.m_lblk = block; 832 map.m_len = 1; 833 err = ext4_map_blocks(handle, inode, &map, map_flags); 834 835 if (err == 0) 836 return create ? ERR_PTR(-ENOSPC) : NULL; 837 if (err < 0) 838 return ERR_PTR(err); 839 840 if (nowait) 841 return sb_find_get_block(inode->i_sb, map.m_pblk); 842 843 bh = sb_getblk(inode->i_sb, map.m_pblk); 844 if (unlikely(!bh)) 845 return ERR_PTR(-ENOMEM); 846 if (map.m_flags & EXT4_MAP_NEW) { 847 ASSERT(create != 0); 848 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 849 || (handle != NULL)); 850 851 /* 852 * Now that we do not always journal data, we should 853 * keep in mind whether this should always journal the 854 * new buffer as metadata. For now, regular file 855 * writes use ext4_get_block instead, so it's not a 856 * problem. 857 */ 858 lock_buffer(bh); 859 BUFFER_TRACE(bh, "call get_create_access"); 860 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 861 EXT4_JTR_NONE); 862 if (unlikely(err)) { 863 unlock_buffer(bh); 864 goto errout; 865 } 866 if (!buffer_uptodate(bh)) { 867 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 868 set_buffer_uptodate(bh); 869 } 870 unlock_buffer(bh); 871 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 872 err = ext4_handle_dirty_metadata(handle, inode, bh); 873 if (unlikely(err)) 874 goto errout; 875 } else 876 BUFFER_TRACE(bh, "not a new buffer"); 877 return bh; 878 errout: 879 brelse(bh); 880 return ERR_PTR(err); 881 } 882 883 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 884 ext4_lblk_t block, int map_flags) 885 { 886 struct buffer_head *bh; 887 int ret; 888 889 bh = ext4_getblk(handle, inode, block, map_flags); 890 if (IS_ERR(bh)) 891 return bh; 892 if (!bh || ext4_buffer_uptodate(bh)) 893 return bh; 894 895 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 896 if (ret) { 897 put_bh(bh); 898 return ERR_PTR(ret); 899 } 900 return bh; 901 } 902 903 /* Read a contiguous batch of blocks. */ 904 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 905 bool wait, struct buffer_head **bhs) 906 { 907 int i, err; 908 909 for (i = 0; i < bh_count; i++) { 910 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 911 if (IS_ERR(bhs[i])) { 912 err = PTR_ERR(bhs[i]); 913 bh_count = i; 914 goto out_brelse; 915 } 916 } 917 918 for (i = 0; i < bh_count; i++) 919 /* Note that NULL bhs[i] is valid because of holes. */ 920 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 921 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 922 923 if (!wait) 924 return 0; 925 926 for (i = 0; i < bh_count; i++) 927 if (bhs[i]) 928 wait_on_buffer(bhs[i]); 929 930 for (i = 0; i < bh_count; i++) { 931 if (bhs[i] && !buffer_uptodate(bhs[i])) { 932 err = -EIO; 933 goto out_brelse; 934 } 935 } 936 return 0; 937 938 out_brelse: 939 for (i = 0; i < bh_count; i++) { 940 brelse(bhs[i]); 941 bhs[i] = NULL; 942 } 943 return err; 944 } 945 946 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 947 struct buffer_head *head, 948 unsigned from, 949 unsigned to, 950 int *partial, 951 int (*fn)(handle_t *handle, struct inode *inode, 952 struct buffer_head *bh)) 953 { 954 struct buffer_head *bh; 955 unsigned block_start, block_end; 956 unsigned blocksize = head->b_size; 957 int err, ret = 0; 958 struct buffer_head *next; 959 960 for (bh = head, block_start = 0; 961 ret == 0 && (bh != head || !block_start); 962 block_start = block_end, bh = next) { 963 next = bh->b_this_page; 964 block_end = block_start + blocksize; 965 if (block_end <= from || block_start >= to) { 966 if (partial && !buffer_uptodate(bh)) 967 *partial = 1; 968 continue; 969 } 970 err = (*fn)(handle, inode, bh); 971 if (!ret) 972 ret = err; 973 } 974 return ret; 975 } 976 977 /* 978 * Helper for handling dirtying of journalled data. We also mark the folio as 979 * dirty so that writeback code knows about this page (and inode) contains 980 * dirty data. ext4_writepages() then commits appropriate transaction to 981 * make data stable. 982 */ 983 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 984 { 985 folio_mark_dirty(bh->b_folio); 986 return ext4_handle_dirty_metadata(handle, NULL, bh); 987 } 988 989 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 990 struct buffer_head *bh) 991 { 992 int dirty = buffer_dirty(bh); 993 int ret; 994 995 if (!buffer_mapped(bh) || buffer_freed(bh)) 996 return 0; 997 /* 998 * __block_write_begin() could have dirtied some buffers. Clean 999 * the dirty bit as jbd2_journal_get_write_access() could complain 1000 * otherwise about fs integrity issues. Setting of the dirty bit 1001 * by __block_write_begin() isn't a real problem here as we clear 1002 * the bit before releasing a page lock and thus writeback cannot 1003 * ever write the buffer. 1004 */ 1005 if (dirty) 1006 clear_buffer_dirty(bh); 1007 BUFFER_TRACE(bh, "get write access"); 1008 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1009 EXT4_JTR_NONE); 1010 if (!ret && dirty) 1011 ret = ext4_dirty_journalled_data(handle, bh); 1012 return ret; 1013 } 1014 1015 #ifdef CONFIG_FS_ENCRYPTION 1016 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1017 get_block_t *get_block) 1018 { 1019 unsigned from = pos & (PAGE_SIZE - 1); 1020 unsigned to = from + len; 1021 struct inode *inode = folio->mapping->host; 1022 unsigned block_start, block_end; 1023 sector_t block; 1024 int err = 0; 1025 unsigned blocksize = inode->i_sb->s_blocksize; 1026 unsigned bbits; 1027 struct buffer_head *bh, *head, *wait[2]; 1028 int nr_wait = 0; 1029 int i; 1030 1031 BUG_ON(!folio_test_locked(folio)); 1032 BUG_ON(from > PAGE_SIZE); 1033 BUG_ON(to > PAGE_SIZE); 1034 BUG_ON(from > to); 1035 1036 head = folio_buffers(folio); 1037 if (!head) 1038 head = create_empty_buffers(folio, blocksize, 0); 1039 bbits = ilog2(blocksize); 1040 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1041 1042 for (bh = head, block_start = 0; bh != head || !block_start; 1043 block++, block_start = block_end, bh = bh->b_this_page) { 1044 block_end = block_start + blocksize; 1045 if (block_end <= from || block_start >= to) { 1046 if (folio_test_uptodate(folio)) { 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (folio_test_uptodate(folio)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 folio_zero_segments(folio, to, 1067 block_end, 1068 block_start, from); 1069 continue; 1070 } 1071 } 1072 if (folio_test_uptodate(folio)) { 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ext4_read_bh_lock(bh, 0, false); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 folio_zero_new_buffers(folio, from, to); 1093 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1098 blocksize, bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 /* 1111 * To preserve ordering, it is essential that the hole instantiation and 1112 * the data write be encapsulated in a single transaction. We cannot 1113 * close off a transaction and start a new one between the ext4_get_block() 1114 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1115 * ext4_write_begin() is the right place. 1116 */ 1117 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1118 loff_t pos, unsigned len, 1119 struct page **pagep, void **fsdata) 1120 { 1121 struct inode *inode = mapping->host; 1122 int ret, needed_blocks; 1123 handle_t *handle; 1124 int retries = 0; 1125 struct folio *folio; 1126 pgoff_t index; 1127 unsigned from, to; 1128 1129 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1130 return -EIO; 1131 1132 trace_ext4_write_begin(inode, pos, len); 1133 /* 1134 * Reserve one block more for addition to orphan list in case 1135 * we allocate blocks but write fails for some reason 1136 */ 1137 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1138 index = pos >> PAGE_SHIFT; 1139 from = pos & (PAGE_SIZE - 1); 1140 to = from + len; 1141 1142 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1143 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1144 pagep); 1145 if (ret < 0) 1146 return ret; 1147 if (ret == 1) 1148 return 0; 1149 } 1150 1151 /* 1152 * __filemap_get_folio() can take a long time if the 1153 * system is thrashing due to memory pressure, or if the folio 1154 * is being written back. So grab it first before we start 1155 * the transaction handle. This also allows us to allocate 1156 * the folio (if needed) without using GFP_NOFS. 1157 */ 1158 retry_grab: 1159 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1160 mapping_gfp_mask(mapping)); 1161 if (IS_ERR(folio)) 1162 return PTR_ERR(folio); 1163 /* 1164 * The same as page allocation, we prealloc buffer heads before 1165 * starting the handle. 1166 */ 1167 if (!folio_buffers(folio)) 1168 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1169 1170 folio_unlock(folio); 1171 1172 retry_journal: 1173 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1174 if (IS_ERR(handle)) { 1175 folio_put(folio); 1176 return PTR_ERR(handle); 1177 } 1178 1179 folio_lock(folio); 1180 if (folio->mapping != mapping) { 1181 /* The folio got truncated from under us */ 1182 folio_unlock(folio); 1183 folio_put(folio); 1184 ext4_journal_stop(handle); 1185 goto retry_grab; 1186 } 1187 /* In case writeback began while the folio was unlocked */ 1188 folio_wait_stable(folio); 1189 1190 #ifdef CONFIG_FS_ENCRYPTION 1191 if (ext4_should_dioread_nolock(inode)) 1192 ret = ext4_block_write_begin(folio, pos, len, 1193 ext4_get_block_unwritten); 1194 else 1195 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1196 #else 1197 if (ext4_should_dioread_nolock(inode)) 1198 ret = __block_write_begin(&folio->page, pos, len, 1199 ext4_get_block_unwritten); 1200 else 1201 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1202 #endif 1203 if (!ret && ext4_should_journal_data(inode)) { 1204 ret = ext4_walk_page_buffers(handle, inode, 1205 folio_buffers(folio), from, to, 1206 NULL, do_journal_get_write_access); 1207 } 1208 1209 if (ret) { 1210 bool extended = (pos + len > inode->i_size) && 1211 !ext4_verity_in_progress(inode); 1212 1213 folio_unlock(folio); 1214 /* 1215 * __block_write_begin may have instantiated a few blocks 1216 * outside i_size. Trim these off again. Don't need 1217 * i_size_read because we hold i_rwsem. 1218 * 1219 * Add inode to orphan list in case we crash before 1220 * truncate finishes 1221 */ 1222 if (extended && ext4_can_truncate(inode)) 1223 ext4_orphan_add(handle, inode); 1224 1225 ext4_journal_stop(handle); 1226 if (extended) { 1227 ext4_truncate_failed_write(inode); 1228 /* 1229 * If truncate failed early the inode might 1230 * still be on the orphan list; we need to 1231 * make sure the inode is removed from the 1232 * orphan list in that case. 1233 */ 1234 if (inode->i_nlink) 1235 ext4_orphan_del(NULL, inode); 1236 } 1237 1238 if (ret == -ENOSPC && 1239 ext4_should_retry_alloc(inode->i_sb, &retries)) 1240 goto retry_journal; 1241 folio_put(folio); 1242 return ret; 1243 } 1244 *pagep = &folio->page; 1245 return ret; 1246 } 1247 1248 /* For write_end() in data=journal mode */ 1249 static int write_end_fn(handle_t *handle, struct inode *inode, 1250 struct buffer_head *bh) 1251 { 1252 int ret; 1253 if (!buffer_mapped(bh) || buffer_freed(bh)) 1254 return 0; 1255 set_buffer_uptodate(bh); 1256 ret = ext4_dirty_journalled_data(handle, bh); 1257 clear_buffer_meta(bh); 1258 clear_buffer_prio(bh); 1259 return ret; 1260 } 1261 1262 /* 1263 * We need to pick up the new inode size which generic_commit_write gave us 1264 * `file' can be NULL - eg, when called from page_symlink(). 1265 * 1266 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1267 * buffers are managed internally. 1268 */ 1269 static int ext4_write_end(struct file *file, 1270 struct address_space *mapping, 1271 loff_t pos, unsigned len, unsigned copied, 1272 struct page *page, void *fsdata) 1273 { 1274 struct folio *folio = page_folio(page); 1275 handle_t *handle = ext4_journal_current_handle(); 1276 struct inode *inode = mapping->host; 1277 loff_t old_size = inode->i_size; 1278 int ret = 0, ret2; 1279 int i_size_changed = 0; 1280 bool verity = ext4_verity_in_progress(inode); 1281 1282 trace_ext4_write_end(inode, pos, len, copied); 1283 1284 if (ext4_has_inline_data(inode) && 1285 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1286 return ext4_write_inline_data_end(inode, pos, len, copied, 1287 folio); 1288 1289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1290 /* 1291 * it's important to update i_size while still holding folio lock: 1292 * page writeout could otherwise come in and zero beyond i_size. 1293 * 1294 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1295 * blocks are being written past EOF, so skip the i_size update. 1296 */ 1297 if (!verity) 1298 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1299 folio_unlock(folio); 1300 folio_put(folio); 1301 1302 if (old_size < pos && !verity) 1303 pagecache_isize_extended(inode, old_size, pos); 1304 /* 1305 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1306 * makes the holding time of folio lock longer. Second, it forces lock 1307 * ordering of folio lock and transaction start for journaling 1308 * filesystems. 1309 */ 1310 if (i_size_changed) 1311 ret = ext4_mark_inode_dirty(handle, inode); 1312 1313 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1314 /* if we have allocated more blocks and copied 1315 * less. We will have blocks allocated outside 1316 * inode->i_size. So truncate them 1317 */ 1318 ext4_orphan_add(handle, inode); 1319 1320 ret2 = ext4_journal_stop(handle); 1321 if (!ret) 1322 ret = ret2; 1323 1324 if (pos + len > inode->i_size && !verity) { 1325 ext4_truncate_failed_write(inode); 1326 /* 1327 * If truncate failed early the inode might still be 1328 * on the orphan list; we need to make sure the inode 1329 * is removed from the orphan list in that case. 1330 */ 1331 if (inode->i_nlink) 1332 ext4_orphan_del(NULL, inode); 1333 } 1334 1335 return ret ? ret : copied; 1336 } 1337 1338 /* 1339 * This is a private version of folio_zero_new_buffers() which doesn't 1340 * set the buffer to be dirty, since in data=journalled mode we need 1341 * to call ext4_dirty_journalled_data() instead. 1342 */ 1343 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1344 struct inode *inode, 1345 struct folio *folio, 1346 unsigned from, unsigned to) 1347 { 1348 unsigned int block_start = 0, block_end; 1349 struct buffer_head *head, *bh; 1350 1351 bh = head = folio_buffers(folio); 1352 do { 1353 block_end = block_start + bh->b_size; 1354 if (buffer_new(bh)) { 1355 if (block_end > from && block_start < to) { 1356 if (!folio_test_uptodate(folio)) { 1357 unsigned start, size; 1358 1359 start = max(from, block_start); 1360 size = min(to, block_end) - start; 1361 1362 folio_zero_range(folio, start, size); 1363 write_end_fn(handle, inode, bh); 1364 } 1365 clear_buffer_new(bh); 1366 } 1367 } 1368 block_start = block_end; 1369 bh = bh->b_this_page; 1370 } while (bh != head); 1371 } 1372 1373 static int ext4_journalled_write_end(struct file *file, 1374 struct address_space *mapping, 1375 loff_t pos, unsigned len, unsigned copied, 1376 struct page *page, void *fsdata) 1377 { 1378 struct folio *folio = page_folio(page); 1379 handle_t *handle = ext4_journal_current_handle(); 1380 struct inode *inode = mapping->host; 1381 loff_t old_size = inode->i_size; 1382 int ret = 0, ret2; 1383 int partial = 0; 1384 unsigned from, to; 1385 int size_changed = 0; 1386 bool verity = ext4_verity_in_progress(inode); 1387 1388 trace_ext4_journalled_write_end(inode, pos, len, copied); 1389 from = pos & (PAGE_SIZE - 1); 1390 to = from + len; 1391 1392 BUG_ON(!ext4_handle_valid(handle)); 1393 1394 if (ext4_has_inline_data(inode)) 1395 return ext4_write_inline_data_end(inode, pos, len, copied, 1396 folio); 1397 1398 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1399 copied = 0; 1400 ext4_journalled_zero_new_buffers(handle, inode, folio, 1401 from, to); 1402 } else { 1403 if (unlikely(copied < len)) 1404 ext4_journalled_zero_new_buffers(handle, inode, folio, 1405 from + copied, to); 1406 ret = ext4_walk_page_buffers(handle, inode, 1407 folio_buffers(folio), 1408 from, from + copied, &partial, 1409 write_end_fn); 1410 if (!partial) 1411 folio_mark_uptodate(folio); 1412 } 1413 if (!verity) 1414 size_changed = ext4_update_inode_size(inode, pos + copied); 1415 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1416 folio_unlock(folio); 1417 folio_put(folio); 1418 1419 if (old_size < pos && !verity) 1420 pagecache_isize_extended(inode, old_size, pos); 1421 1422 if (size_changed) { 1423 ret2 = ext4_mark_inode_dirty(handle, inode); 1424 if (!ret) 1425 ret = ret2; 1426 } 1427 1428 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1429 /* if we have allocated more blocks and copied 1430 * less. We will have blocks allocated outside 1431 * inode->i_size. So truncate them 1432 */ 1433 ext4_orphan_add(handle, inode); 1434 1435 ret2 = ext4_journal_stop(handle); 1436 if (!ret) 1437 ret = ret2; 1438 if (pos + len > inode->i_size && !verity) { 1439 ext4_truncate_failed_write(inode); 1440 /* 1441 * If truncate failed early the inode might still be 1442 * on the orphan list; we need to make sure the inode 1443 * is removed from the orphan list in that case. 1444 */ 1445 if (inode->i_nlink) 1446 ext4_orphan_del(NULL, inode); 1447 } 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 /* 1453 * Reserve space for a single cluster 1454 */ 1455 static int ext4_da_reserve_space(struct inode *inode) 1456 { 1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 int ret; 1460 1461 /* 1462 * We will charge metadata quota at writeout time; this saves 1463 * us from metadata over-estimation, though we may go over by 1464 * a small amount in the end. Here we just reserve for data. 1465 */ 1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1467 if (ret) 1468 return ret; 1469 1470 spin_lock(&ei->i_block_reservation_lock); 1471 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1474 return -ENOSPC; 1475 } 1476 ei->i_reserved_data_blocks++; 1477 trace_ext4_da_reserve_space(inode); 1478 spin_unlock(&ei->i_block_reservation_lock); 1479 1480 return 0; /* success */ 1481 } 1482 1483 void ext4_da_release_space(struct inode *inode, int to_free) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1486 struct ext4_inode_info *ei = EXT4_I(inode); 1487 1488 if (!to_free) 1489 return; /* Nothing to release, exit */ 1490 1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1492 1493 trace_ext4_da_release_space(inode, to_free); 1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1495 /* 1496 * if there aren't enough reserved blocks, then the 1497 * counter is messed up somewhere. Since this 1498 * function is called from invalidate page, it's 1499 * harmless to return without any action. 1500 */ 1501 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1502 "ino %lu, to_free %d with only %d reserved " 1503 "data blocks", inode->i_ino, to_free, 1504 ei->i_reserved_data_blocks); 1505 WARN_ON(1); 1506 to_free = ei->i_reserved_data_blocks; 1507 } 1508 ei->i_reserved_data_blocks -= to_free; 1509 1510 /* update fs dirty data blocks counter */ 1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1512 1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1516 } 1517 1518 /* 1519 * Delayed allocation stuff 1520 */ 1521 1522 struct mpage_da_data { 1523 /* These are input fields for ext4_do_writepages() */ 1524 struct inode *inode; 1525 struct writeback_control *wbc; 1526 unsigned int can_map:1; /* Can writepages call map blocks? */ 1527 1528 /* These are internal state of ext4_do_writepages() */ 1529 pgoff_t first_page; /* The first page to write */ 1530 pgoff_t next_page; /* Current page to examine */ 1531 pgoff_t last_page; /* Last page to examine */ 1532 /* 1533 * Extent to map - this can be after first_page because that can be 1534 * fully mapped. We somewhat abuse m_flags to store whether the extent 1535 * is delalloc or unwritten. 1536 */ 1537 struct ext4_map_blocks map; 1538 struct ext4_io_submit io_submit; /* IO submission data */ 1539 unsigned int do_map:1; 1540 unsigned int scanned_until_end:1; 1541 unsigned int journalled_more_data:1; 1542 }; 1543 1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1545 bool invalidate) 1546 { 1547 unsigned nr, i; 1548 pgoff_t index, end; 1549 struct folio_batch fbatch; 1550 struct inode *inode = mpd->inode; 1551 struct address_space *mapping = inode->i_mapping; 1552 1553 /* This is necessary when next_page == 0. */ 1554 if (mpd->first_page >= mpd->next_page) 1555 return; 1556 1557 mpd->scanned_until_end = 0; 1558 index = mpd->first_page; 1559 end = mpd->next_page - 1; 1560 if (invalidate) { 1561 ext4_lblk_t start, last; 1562 start = index << (PAGE_SHIFT - inode->i_blkbits); 1563 last = end << (PAGE_SHIFT - inode->i_blkbits); 1564 1565 /* 1566 * avoid racing with extent status tree scans made by 1567 * ext4_insert_delayed_block() 1568 */ 1569 down_write(&EXT4_I(inode)->i_data_sem); 1570 ext4_es_remove_extent(inode, start, last - start + 1); 1571 up_write(&EXT4_I(inode)->i_data_sem); 1572 } 1573 1574 folio_batch_init(&fbatch); 1575 while (index <= end) { 1576 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1577 if (nr == 0) 1578 break; 1579 for (i = 0; i < nr; i++) { 1580 struct folio *folio = fbatch.folios[i]; 1581 1582 if (folio->index < mpd->first_page) 1583 continue; 1584 if (folio_next_index(folio) - 1 > end) 1585 continue; 1586 BUG_ON(!folio_test_locked(folio)); 1587 BUG_ON(folio_test_writeback(folio)); 1588 if (invalidate) { 1589 if (folio_mapped(folio)) 1590 folio_clear_dirty_for_io(folio); 1591 block_invalidate_folio(folio, 0, 1592 folio_size(folio)); 1593 folio_clear_uptodate(folio); 1594 } 1595 folio_unlock(folio); 1596 } 1597 folio_batch_release(&fbatch); 1598 } 1599 } 1600 1601 static void ext4_print_free_blocks(struct inode *inode) 1602 { 1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1604 struct super_block *sb = inode->i_sb; 1605 struct ext4_inode_info *ei = EXT4_I(inode); 1606 1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1608 EXT4_C2B(EXT4_SB(inode->i_sb), 1609 ext4_count_free_clusters(sb))); 1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1612 (long long) EXT4_C2B(EXT4_SB(sb), 1613 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1615 (long long) EXT4_C2B(EXT4_SB(sb), 1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1617 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1619 ei->i_reserved_data_blocks); 1620 return; 1621 } 1622 1623 /* 1624 * ext4_insert_delayed_block - adds a delayed block to the extents status 1625 * tree, incrementing the reserved cluster/block 1626 * count or making a pending reservation 1627 * where needed 1628 * 1629 * @inode - file containing the newly added block 1630 * @lblk - logical block to be added 1631 * 1632 * Returns 0 on success, negative error code on failure. 1633 */ 1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1635 { 1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1637 int ret; 1638 bool allocated = false; 1639 1640 /* 1641 * If the cluster containing lblk is shared with a delayed, 1642 * written, or unwritten extent in a bigalloc file system, it's 1643 * already been accounted for and does not need to be reserved. 1644 * A pending reservation must be made for the cluster if it's 1645 * shared with a written or unwritten extent and doesn't already 1646 * have one. Written and unwritten extents can be purged from the 1647 * extents status tree if the system is under memory pressure, so 1648 * it's necessary to examine the extent tree if a search of the 1649 * extents status tree doesn't get a match. 1650 */ 1651 if (sbi->s_cluster_ratio == 1) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { /* bigalloc */ 1656 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1657 if (!ext4_es_scan_clu(inode, 1658 &ext4_es_is_mapped, lblk)) { 1659 ret = ext4_clu_mapped(inode, 1660 EXT4_B2C(sbi, lblk)); 1661 if (ret < 0) 1662 return ret; 1663 if (ret == 0) { 1664 ret = ext4_da_reserve_space(inode); 1665 if (ret != 0) /* ENOSPC */ 1666 return ret; 1667 } else { 1668 allocated = true; 1669 } 1670 } else { 1671 allocated = true; 1672 } 1673 } 1674 } 1675 1676 ext4_es_insert_delayed_block(inode, lblk, allocated); 1677 return 0; 1678 } 1679 1680 /* 1681 * This function is grabs code from the very beginning of 1682 * ext4_map_blocks, but assumes that the caller is from delayed write 1683 * time. This function looks up the requested blocks and sets the 1684 * buffer delay bit under the protection of i_data_sem. 1685 */ 1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1687 struct ext4_map_blocks *map, 1688 struct buffer_head *bh) 1689 { 1690 struct extent_status es; 1691 int retval; 1692 sector_t invalid_block = ~((sector_t) 0xffff); 1693 #ifdef ES_AGGRESSIVE_TEST 1694 struct ext4_map_blocks orig_map; 1695 1696 memcpy(&orig_map, map, sizeof(*map)); 1697 #endif 1698 1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1700 invalid_block = ~0; 1701 1702 map->m_flags = 0; 1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1704 (unsigned long) map->m_lblk); 1705 1706 /* Lookup extent status tree firstly */ 1707 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1708 if (ext4_es_is_hole(&es)) 1709 goto add_delayed; 1710 1711 /* 1712 * Delayed extent could be allocated by fallocate. 1713 * So we need to check it. 1714 */ 1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1716 map_bh(bh, inode->i_sb, invalid_block); 1717 set_buffer_new(bh); 1718 set_buffer_delay(bh); 1719 return 0; 1720 } 1721 1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1723 retval = es.es_len - (iblock - es.es_lblk); 1724 if (retval > map->m_len) 1725 retval = map->m_len; 1726 map->m_len = retval; 1727 if (ext4_es_is_written(&es)) 1728 map->m_flags |= EXT4_MAP_MAPPED; 1729 else if (ext4_es_is_unwritten(&es)) 1730 map->m_flags |= EXT4_MAP_UNWRITTEN; 1731 else 1732 BUG(); 1733 1734 #ifdef ES_AGGRESSIVE_TEST 1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1736 #endif 1737 return retval; 1738 } 1739 1740 /* 1741 * Try to see if we can get the block without requesting a new 1742 * file system block. 1743 */ 1744 down_read(&EXT4_I(inode)->i_data_sem); 1745 if (ext4_has_inline_data(inode)) 1746 retval = 0; 1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1749 else 1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1751 if (retval < 0) { 1752 up_read(&EXT4_I(inode)->i_data_sem); 1753 return retval; 1754 } 1755 if (retval > 0) { 1756 unsigned int status; 1757 1758 if (unlikely(retval != map->m_len)) { 1759 ext4_warning(inode->i_sb, 1760 "ES len assertion failed for inode " 1761 "%lu: retval %d != map->m_len %d", 1762 inode->i_ino, retval, map->m_len); 1763 WARN_ON(1); 1764 } 1765 1766 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1767 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1768 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1769 map->m_pblk, status); 1770 up_read(&EXT4_I(inode)->i_data_sem); 1771 return retval; 1772 } 1773 up_read(&EXT4_I(inode)->i_data_sem); 1774 1775 add_delayed: 1776 down_write(&EXT4_I(inode)->i_data_sem); 1777 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1778 up_write(&EXT4_I(inode)->i_data_sem); 1779 if (retval) 1780 return retval; 1781 1782 map_bh(bh, inode->i_sb, invalid_block); 1783 set_buffer_new(bh); 1784 set_buffer_delay(bh); 1785 return retval; 1786 } 1787 1788 /* 1789 * This is a special get_block_t callback which is used by 1790 * ext4_da_write_begin(). It will either return mapped block or 1791 * reserve space for a single block. 1792 * 1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1794 * We also have b_blocknr = -1 and b_bdev initialized properly 1795 * 1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1798 * initialized properly. 1799 */ 1800 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1801 struct buffer_head *bh, int create) 1802 { 1803 struct ext4_map_blocks map; 1804 int ret = 0; 1805 1806 BUG_ON(create == 0); 1807 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1808 1809 map.m_lblk = iblock; 1810 map.m_len = 1; 1811 1812 /* 1813 * first, we need to know whether the block is allocated already 1814 * preallocated blocks are unmapped but should treated 1815 * the same as allocated blocks. 1816 */ 1817 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1818 if (ret <= 0) 1819 return ret; 1820 1821 map_bh(bh, inode->i_sb, map.m_pblk); 1822 ext4_update_bh_state(bh, map.m_flags); 1823 1824 if (buffer_unwritten(bh)) { 1825 /* A delayed write to unwritten bh should be marked 1826 * new and mapped. Mapped ensures that we don't do 1827 * get_block multiple times when we write to the same 1828 * offset and new ensures that we do proper zero out 1829 * for partial write. 1830 */ 1831 set_buffer_new(bh); 1832 set_buffer_mapped(bh); 1833 } 1834 return 0; 1835 } 1836 1837 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1838 { 1839 mpd->first_page += folio_nr_pages(folio); 1840 folio_unlock(folio); 1841 } 1842 1843 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1844 { 1845 size_t len; 1846 loff_t size; 1847 int err; 1848 1849 BUG_ON(folio->index != mpd->first_page); 1850 folio_clear_dirty_for_io(folio); 1851 /* 1852 * We have to be very careful here! Nothing protects writeback path 1853 * against i_size changes and the page can be writeably mapped into 1854 * page tables. So an application can be growing i_size and writing 1855 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1856 * write-protects our page in page tables and the page cannot get 1857 * written to again until we release folio lock. So only after 1858 * folio_clear_dirty_for_io() we are safe to sample i_size for 1859 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1860 * on the barrier provided by folio_test_clear_dirty() in 1861 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1862 * after page tables are updated. 1863 */ 1864 size = i_size_read(mpd->inode); 1865 len = folio_size(folio); 1866 if (folio_pos(folio) + len > size && 1867 !ext4_verity_in_progress(mpd->inode)) 1868 len = size & ~PAGE_MASK; 1869 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1870 if (!err) 1871 mpd->wbc->nr_to_write--; 1872 1873 return err; 1874 } 1875 1876 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1877 1878 /* 1879 * mballoc gives us at most this number of blocks... 1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1881 * The rest of mballoc seems to handle chunks up to full group size. 1882 */ 1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1884 1885 /* 1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1887 * 1888 * @mpd - extent of blocks 1889 * @lblk - logical number of the block in the file 1890 * @bh - buffer head we want to add to the extent 1891 * 1892 * The function is used to collect contig. blocks in the same state. If the 1893 * buffer doesn't require mapping for writeback and we haven't started the 1894 * extent of buffers to map yet, the function returns 'true' immediately - the 1895 * caller can write the buffer right away. Otherwise the function returns true 1896 * if the block has been added to the extent, false if the block couldn't be 1897 * added. 1898 */ 1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1900 struct buffer_head *bh) 1901 { 1902 struct ext4_map_blocks *map = &mpd->map; 1903 1904 /* Buffer that doesn't need mapping for writeback? */ 1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1907 /* So far no extent to map => we write the buffer right away */ 1908 if (map->m_len == 0) 1909 return true; 1910 return false; 1911 } 1912 1913 /* First block in the extent? */ 1914 if (map->m_len == 0) { 1915 /* We cannot map unless handle is started... */ 1916 if (!mpd->do_map) 1917 return false; 1918 map->m_lblk = lblk; 1919 map->m_len = 1; 1920 map->m_flags = bh->b_state & BH_FLAGS; 1921 return true; 1922 } 1923 1924 /* Don't go larger than mballoc is willing to allocate */ 1925 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1926 return false; 1927 1928 /* Can we merge the block to our big extent? */ 1929 if (lblk == map->m_lblk + map->m_len && 1930 (bh->b_state & BH_FLAGS) == map->m_flags) { 1931 map->m_len++; 1932 return true; 1933 } 1934 return false; 1935 } 1936 1937 /* 1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1939 * 1940 * @mpd - extent of blocks for mapping 1941 * @head - the first buffer in the page 1942 * @bh - buffer we should start processing from 1943 * @lblk - logical number of the block in the file corresponding to @bh 1944 * 1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1946 * the page for IO if all buffers in this page were mapped and there's no 1947 * accumulated extent of buffers to map or add buffers in the page to the 1948 * extent of buffers to map. The function returns 1 if the caller can continue 1949 * by processing the next page, 0 if it should stop adding buffers to the 1950 * extent to map because we cannot extend it anymore. It can also return value 1951 * < 0 in case of error during IO submission. 1952 */ 1953 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1954 struct buffer_head *head, 1955 struct buffer_head *bh, 1956 ext4_lblk_t lblk) 1957 { 1958 struct inode *inode = mpd->inode; 1959 int err; 1960 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1961 >> inode->i_blkbits; 1962 1963 if (ext4_verity_in_progress(inode)) 1964 blocks = EXT_MAX_BLOCKS; 1965 1966 do { 1967 BUG_ON(buffer_locked(bh)); 1968 1969 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1970 /* Found extent to map? */ 1971 if (mpd->map.m_len) 1972 return 0; 1973 /* Buffer needs mapping and handle is not started? */ 1974 if (!mpd->do_map) 1975 return 0; 1976 /* Everything mapped so far and we hit EOF */ 1977 break; 1978 } 1979 } while (lblk++, (bh = bh->b_this_page) != head); 1980 /* So far everything mapped? Submit the page for IO. */ 1981 if (mpd->map.m_len == 0) { 1982 err = mpage_submit_folio(mpd, head->b_folio); 1983 if (err < 0) 1984 return err; 1985 mpage_folio_done(mpd, head->b_folio); 1986 } 1987 if (lblk >= blocks) { 1988 mpd->scanned_until_end = 1; 1989 return 0; 1990 } 1991 return 1; 1992 } 1993 1994 /* 1995 * mpage_process_folio - update folio buffers corresponding to changed extent 1996 * and may submit fully mapped page for IO 1997 * @mpd: description of extent to map, on return next extent to map 1998 * @folio: Contains these buffers. 1999 * @m_lblk: logical block mapping. 2000 * @m_pblk: corresponding physical mapping. 2001 * @map_bh: determines on return whether this page requires any further 2002 * mapping or not. 2003 * 2004 * Scan given folio buffers corresponding to changed extent and update buffer 2005 * state according to new extent state. 2006 * We map delalloc buffers to their physical location, clear unwritten bits. 2007 * If the given folio is not fully mapped, we update @mpd to the next extent in 2008 * the given folio that needs mapping & return @map_bh as true. 2009 */ 2010 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2011 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2012 bool *map_bh) 2013 { 2014 struct buffer_head *head, *bh; 2015 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2016 ext4_lblk_t lblk = *m_lblk; 2017 ext4_fsblk_t pblock = *m_pblk; 2018 int err = 0; 2019 int blkbits = mpd->inode->i_blkbits; 2020 ssize_t io_end_size = 0; 2021 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2022 2023 bh = head = folio_buffers(folio); 2024 do { 2025 if (lblk < mpd->map.m_lblk) 2026 continue; 2027 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2028 /* 2029 * Buffer after end of mapped extent. 2030 * Find next buffer in the folio to map. 2031 */ 2032 mpd->map.m_len = 0; 2033 mpd->map.m_flags = 0; 2034 io_end_vec->size += io_end_size; 2035 2036 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2037 if (err > 0) 2038 err = 0; 2039 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2040 io_end_vec = ext4_alloc_io_end_vec(io_end); 2041 if (IS_ERR(io_end_vec)) { 2042 err = PTR_ERR(io_end_vec); 2043 goto out; 2044 } 2045 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2046 } 2047 *map_bh = true; 2048 goto out; 2049 } 2050 if (buffer_delay(bh)) { 2051 clear_buffer_delay(bh); 2052 bh->b_blocknr = pblock++; 2053 } 2054 clear_buffer_unwritten(bh); 2055 io_end_size += (1 << blkbits); 2056 } while (lblk++, (bh = bh->b_this_page) != head); 2057 2058 io_end_vec->size += io_end_size; 2059 *map_bh = false; 2060 out: 2061 *m_lblk = lblk; 2062 *m_pblk = pblock; 2063 return err; 2064 } 2065 2066 /* 2067 * mpage_map_buffers - update buffers corresponding to changed extent and 2068 * submit fully mapped pages for IO 2069 * 2070 * @mpd - description of extent to map, on return next extent to map 2071 * 2072 * Scan buffers corresponding to changed extent (we expect corresponding pages 2073 * to be already locked) and update buffer state according to new extent state. 2074 * We map delalloc buffers to their physical location, clear unwritten bits, 2075 * and mark buffers as uninit when we perform writes to unwritten extents 2076 * and do extent conversion after IO is finished. If the last page is not fully 2077 * mapped, we update @map to the next extent in the last page that needs 2078 * mapping. Otherwise we submit the page for IO. 2079 */ 2080 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2081 { 2082 struct folio_batch fbatch; 2083 unsigned nr, i; 2084 struct inode *inode = mpd->inode; 2085 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2086 pgoff_t start, end; 2087 ext4_lblk_t lblk; 2088 ext4_fsblk_t pblock; 2089 int err; 2090 bool map_bh = false; 2091 2092 start = mpd->map.m_lblk >> bpp_bits; 2093 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2094 lblk = start << bpp_bits; 2095 pblock = mpd->map.m_pblk; 2096 2097 folio_batch_init(&fbatch); 2098 while (start <= end) { 2099 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2100 if (nr == 0) 2101 break; 2102 for (i = 0; i < nr; i++) { 2103 struct folio *folio = fbatch.folios[i]; 2104 2105 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2106 &map_bh); 2107 /* 2108 * If map_bh is true, means page may require further bh 2109 * mapping, or maybe the page was submitted for IO. 2110 * So we return to call further extent mapping. 2111 */ 2112 if (err < 0 || map_bh) 2113 goto out; 2114 /* Page fully mapped - let IO run! */ 2115 err = mpage_submit_folio(mpd, folio); 2116 if (err < 0) 2117 goto out; 2118 mpage_folio_done(mpd, folio); 2119 } 2120 folio_batch_release(&fbatch); 2121 } 2122 /* Extent fully mapped and matches with page boundary. We are done. */ 2123 mpd->map.m_len = 0; 2124 mpd->map.m_flags = 0; 2125 return 0; 2126 out: 2127 folio_batch_release(&fbatch); 2128 return err; 2129 } 2130 2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2132 { 2133 struct inode *inode = mpd->inode; 2134 struct ext4_map_blocks *map = &mpd->map; 2135 int get_blocks_flags; 2136 int err, dioread_nolock; 2137 2138 trace_ext4_da_write_pages_extent(inode, map); 2139 /* 2140 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2141 * to convert an unwritten extent to be initialized (in the case 2142 * where we have written into one or more preallocated blocks). It is 2143 * possible that we're going to need more metadata blocks than 2144 * previously reserved. However we must not fail because we're in 2145 * writeback and there is nothing we can do about it so it might result 2146 * in data loss. So use reserved blocks to allocate metadata if 2147 * possible. 2148 * 2149 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2150 * the blocks in question are delalloc blocks. This indicates 2151 * that the blocks and quotas has already been checked when 2152 * the data was copied into the page cache. 2153 */ 2154 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2155 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2156 EXT4_GET_BLOCKS_IO_SUBMIT; 2157 dioread_nolock = ext4_should_dioread_nolock(inode); 2158 if (dioread_nolock) 2159 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2160 if (map->m_flags & BIT(BH_Delay)) 2161 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2162 2163 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2164 if (err < 0) 2165 return err; 2166 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2167 if (!mpd->io_submit.io_end->handle && 2168 ext4_handle_valid(handle)) { 2169 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2170 handle->h_rsv_handle = NULL; 2171 } 2172 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2173 } 2174 2175 BUG_ON(map->m_len == 0); 2176 return 0; 2177 } 2178 2179 /* 2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2181 * mpd->len and submit pages underlying it for IO 2182 * 2183 * @handle - handle for journal operations 2184 * @mpd - extent to map 2185 * @give_up_on_write - we set this to true iff there is a fatal error and there 2186 * is no hope of writing the data. The caller should discard 2187 * dirty pages to avoid infinite loops. 2188 * 2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2191 * them to initialized or split the described range from larger unwritten 2192 * extent. Note that we need not map all the described range since allocation 2193 * can return less blocks or the range is covered by more unwritten extents. We 2194 * cannot map more because we are limited by reserved transaction credits. On 2195 * the other hand we always make sure that the last touched page is fully 2196 * mapped so that it can be written out (and thus forward progress is 2197 * guaranteed). After mapping we submit all mapped pages for IO. 2198 */ 2199 static int mpage_map_and_submit_extent(handle_t *handle, 2200 struct mpage_da_data *mpd, 2201 bool *give_up_on_write) 2202 { 2203 struct inode *inode = mpd->inode; 2204 struct ext4_map_blocks *map = &mpd->map; 2205 int err; 2206 loff_t disksize; 2207 int progress = 0; 2208 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2209 struct ext4_io_end_vec *io_end_vec; 2210 2211 io_end_vec = ext4_alloc_io_end_vec(io_end); 2212 if (IS_ERR(io_end_vec)) 2213 return PTR_ERR(io_end_vec); 2214 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2215 do { 2216 err = mpage_map_one_extent(handle, mpd); 2217 if (err < 0) { 2218 struct super_block *sb = inode->i_sb; 2219 2220 if (ext4_forced_shutdown(sb)) 2221 goto invalidate_dirty_pages; 2222 /* 2223 * Let the uper layers retry transient errors. 2224 * In the case of ENOSPC, if ext4_count_free_blocks() 2225 * is non-zero, a commit should free up blocks. 2226 */ 2227 if ((err == -ENOMEM) || 2228 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2229 if (progress) 2230 goto update_disksize; 2231 return err; 2232 } 2233 ext4_msg(sb, KERN_CRIT, 2234 "Delayed block allocation failed for " 2235 "inode %lu at logical offset %llu with" 2236 " max blocks %u with error %d", 2237 inode->i_ino, 2238 (unsigned long long)map->m_lblk, 2239 (unsigned)map->m_len, -err); 2240 ext4_msg(sb, KERN_CRIT, 2241 "This should not happen!! Data will " 2242 "be lost\n"); 2243 if (err == -ENOSPC) 2244 ext4_print_free_blocks(inode); 2245 invalidate_dirty_pages: 2246 *give_up_on_write = true; 2247 return err; 2248 } 2249 progress = 1; 2250 /* 2251 * Update buffer state, submit mapped pages, and get us new 2252 * extent to map 2253 */ 2254 err = mpage_map_and_submit_buffers(mpd); 2255 if (err < 0) 2256 goto update_disksize; 2257 } while (map->m_len); 2258 2259 update_disksize: 2260 /* 2261 * Update on-disk size after IO is submitted. Races with 2262 * truncate are avoided by checking i_size under i_data_sem. 2263 */ 2264 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2265 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2266 int err2; 2267 loff_t i_size; 2268 2269 down_write(&EXT4_I(inode)->i_data_sem); 2270 i_size = i_size_read(inode); 2271 if (disksize > i_size) 2272 disksize = i_size; 2273 if (disksize > EXT4_I(inode)->i_disksize) 2274 EXT4_I(inode)->i_disksize = disksize; 2275 up_write(&EXT4_I(inode)->i_data_sem); 2276 err2 = ext4_mark_inode_dirty(handle, inode); 2277 if (err2) { 2278 ext4_error_err(inode->i_sb, -err2, 2279 "Failed to mark inode %lu dirty", 2280 inode->i_ino); 2281 } 2282 if (!err) 2283 err = err2; 2284 } 2285 return err; 2286 } 2287 2288 /* 2289 * Calculate the total number of credits to reserve for one writepages 2290 * iteration. This is called from ext4_writepages(). We map an extent of 2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2293 * bpp - 1 blocks in bpp different extents. 2294 */ 2295 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2296 { 2297 int bpp = ext4_journal_blocks_per_page(inode); 2298 2299 return ext4_meta_trans_blocks(inode, 2300 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2301 } 2302 2303 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2304 size_t len) 2305 { 2306 struct buffer_head *page_bufs = folio_buffers(folio); 2307 struct inode *inode = folio->mapping->host; 2308 int ret, err; 2309 2310 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2311 NULL, do_journal_get_write_access); 2312 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2313 NULL, write_end_fn); 2314 if (ret == 0) 2315 ret = err; 2316 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2317 if (ret == 0) 2318 ret = err; 2319 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2320 2321 return ret; 2322 } 2323 2324 static int mpage_journal_page_buffers(handle_t *handle, 2325 struct mpage_da_data *mpd, 2326 struct folio *folio) 2327 { 2328 struct inode *inode = mpd->inode; 2329 loff_t size = i_size_read(inode); 2330 size_t len = folio_size(folio); 2331 2332 folio_clear_checked(folio); 2333 mpd->wbc->nr_to_write--; 2334 2335 if (folio_pos(folio) + len > size && 2336 !ext4_verity_in_progress(inode)) 2337 len = size - folio_pos(folio); 2338 2339 return ext4_journal_folio_buffers(handle, folio, len); 2340 } 2341 2342 /* 2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2344 * needing mapping, submit mapped pages 2345 * 2346 * @mpd - where to look for pages 2347 * 2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2349 * IO immediately. If we cannot map blocks, we submit just already mapped 2350 * buffers in the page for IO and keep page dirty. When we can map blocks and 2351 * we find a page which isn't mapped we start accumulating extent of buffers 2352 * underlying these pages that needs mapping (formed by either delayed or 2353 * unwritten buffers). We also lock the pages containing these buffers. The 2354 * extent found is returned in @mpd structure (starting at mpd->lblk with 2355 * length mpd->len blocks). 2356 * 2357 * Note that this function can attach bios to one io_end structure which are 2358 * neither logically nor physically contiguous. Although it may seem as an 2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2360 * case as we need to track IO to all buffers underlying a page in one io_end. 2361 */ 2362 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2363 { 2364 struct address_space *mapping = mpd->inode->i_mapping; 2365 struct folio_batch fbatch; 2366 unsigned int nr_folios; 2367 pgoff_t index = mpd->first_page; 2368 pgoff_t end = mpd->last_page; 2369 xa_mark_t tag; 2370 int i, err = 0; 2371 int blkbits = mpd->inode->i_blkbits; 2372 ext4_lblk_t lblk; 2373 struct buffer_head *head; 2374 handle_t *handle = NULL; 2375 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2376 2377 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2378 tag = PAGECACHE_TAG_TOWRITE; 2379 else 2380 tag = PAGECACHE_TAG_DIRTY; 2381 2382 mpd->map.m_len = 0; 2383 mpd->next_page = index; 2384 if (ext4_should_journal_data(mpd->inode)) { 2385 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2386 bpp); 2387 if (IS_ERR(handle)) 2388 return PTR_ERR(handle); 2389 } 2390 folio_batch_init(&fbatch); 2391 while (index <= end) { 2392 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2393 tag, &fbatch); 2394 if (nr_folios == 0) 2395 break; 2396 2397 for (i = 0; i < nr_folios; i++) { 2398 struct folio *folio = fbatch.folios[i]; 2399 2400 /* 2401 * Accumulated enough dirty pages? This doesn't apply 2402 * to WB_SYNC_ALL mode. For integrity sync we have to 2403 * keep going because someone may be concurrently 2404 * dirtying pages, and we might have synced a lot of 2405 * newly appeared dirty pages, but have not synced all 2406 * of the old dirty pages. 2407 */ 2408 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2409 mpd->wbc->nr_to_write <= 2410 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2411 goto out; 2412 2413 /* If we can't merge this page, we are done. */ 2414 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2415 goto out; 2416 2417 if (handle) { 2418 err = ext4_journal_ensure_credits(handle, bpp, 2419 0); 2420 if (err < 0) 2421 goto out; 2422 } 2423 2424 folio_lock(folio); 2425 /* 2426 * If the page is no longer dirty, or its mapping no 2427 * longer corresponds to inode we are writing (which 2428 * means it has been truncated or invalidated), or the 2429 * page is already under writeback and we are not doing 2430 * a data integrity writeback, skip the page 2431 */ 2432 if (!folio_test_dirty(folio) || 2433 (folio_test_writeback(folio) && 2434 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2435 unlikely(folio->mapping != mapping)) { 2436 folio_unlock(folio); 2437 continue; 2438 } 2439 2440 folio_wait_writeback(folio); 2441 BUG_ON(folio_test_writeback(folio)); 2442 2443 /* 2444 * Should never happen but for buggy code in 2445 * other subsystems that call 2446 * set_page_dirty() without properly warning 2447 * the file system first. See [1] for more 2448 * information. 2449 * 2450 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2451 */ 2452 if (!folio_buffers(folio)) { 2453 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2454 folio_clear_dirty(folio); 2455 folio_unlock(folio); 2456 continue; 2457 } 2458 2459 if (mpd->map.m_len == 0) 2460 mpd->first_page = folio->index; 2461 mpd->next_page = folio_next_index(folio); 2462 /* 2463 * Writeout when we cannot modify metadata is simple. 2464 * Just submit the page. For data=journal mode we 2465 * first handle writeout of the page for checkpoint and 2466 * only after that handle delayed page dirtying. This 2467 * makes sure current data is checkpointed to the final 2468 * location before possibly journalling it again which 2469 * is desirable when the page is frequently dirtied 2470 * through a pin. 2471 */ 2472 if (!mpd->can_map) { 2473 err = mpage_submit_folio(mpd, folio); 2474 if (err < 0) 2475 goto out; 2476 /* Pending dirtying of journalled data? */ 2477 if (folio_test_checked(folio)) { 2478 err = mpage_journal_page_buffers(handle, 2479 mpd, folio); 2480 if (err < 0) 2481 goto out; 2482 mpd->journalled_more_data = 1; 2483 } 2484 mpage_folio_done(mpd, folio); 2485 } else { 2486 /* Add all dirty buffers to mpd */ 2487 lblk = ((ext4_lblk_t)folio->index) << 2488 (PAGE_SHIFT - blkbits); 2489 head = folio_buffers(folio); 2490 err = mpage_process_page_bufs(mpd, head, head, 2491 lblk); 2492 if (err <= 0) 2493 goto out; 2494 err = 0; 2495 } 2496 } 2497 folio_batch_release(&fbatch); 2498 cond_resched(); 2499 } 2500 mpd->scanned_until_end = 1; 2501 if (handle) 2502 ext4_journal_stop(handle); 2503 return 0; 2504 out: 2505 folio_batch_release(&fbatch); 2506 if (handle) 2507 ext4_journal_stop(handle); 2508 return err; 2509 } 2510 2511 static int ext4_do_writepages(struct mpage_da_data *mpd) 2512 { 2513 struct writeback_control *wbc = mpd->wbc; 2514 pgoff_t writeback_index = 0; 2515 long nr_to_write = wbc->nr_to_write; 2516 int range_whole = 0; 2517 int cycled = 1; 2518 handle_t *handle = NULL; 2519 struct inode *inode = mpd->inode; 2520 struct address_space *mapping = inode->i_mapping; 2521 int needed_blocks, rsv_blocks = 0, ret = 0; 2522 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2523 struct blk_plug plug; 2524 bool give_up_on_write = false; 2525 2526 trace_ext4_writepages(inode, wbc); 2527 2528 /* 2529 * No pages to write? This is mainly a kludge to avoid starting 2530 * a transaction for special inodes like journal inode on last iput() 2531 * because that could violate lock ordering on umount 2532 */ 2533 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2534 goto out_writepages; 2535 2536 /* 2537 * If the filesystem has aborted, it is read-only, so return 2538 * right away instead of dumping stack traces later on that 2539 * will obscure the real source of the problem. We test 2540 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2541 * the latter could be true if the filesystem is mounted 2542 * read-only, and in that case, ext4_writepages should 2543 * *never* be called, so if that ever happens, we would want 2544 * the stack trace. 2545 */ 2546 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2547 ret = -EROFS; 2548 goto out_writepages; 2549 } 2550 2551 /* 2552 * If we have inline data and arrive here, it means that 2553 * we will soon create the block for the 1st page, so 2554 * we'd better clear the inline data here. 2555 */ 2556 if (ext4_has_inline_data(inode)) { 2557 /* Just inode will be modified... */ 2558 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2559 if (IS_ERR(handle)) { 2560 ret = PTR_ERR(handle); 2561 goto out_writepages; 2562 } 2563 BUG_ON(ext4_test_inode_state(inode, 2564 EXT4_STATE_MAY_INLINE_DATA)); 2565 ext4_destroy_inline_data(handle, inode); 2566 ext4_journal_stop(handle); 2567 } 2568 2569 /* 2570 * data=journal mode does not do delalloc so we just need to writeout / 2571 * journal already mapped buffers. On the other hand we need to commit 2572 * transaction to make data stable. We expect all the data to be 2573 * already in the journal (the only exception are DMA pinned pages 2574 * dirtied behind our back) so we commit transaction here and run the 2575 * writeback loop to checkpoint them. The checkpointing is not actually 2576 * necessary to make data persistent *but* quite a few places (extent 2577 * shifting operations, fsverity, ...) depend on being able to drop 2578 * pagecache pages after calling filemap_write_and_wait() and for that 2579 * checkpointing needs to happen. 2580 */ 2581 if (ext4_should_journal_data(inode)) { 2582 mpd->can_map = 0; 2583 if (wbc->sync_mode == WB_SYNC_ALL) 2584 ext4_fc_commit(sbi->s_journal, 2585 EXT4_I(inode)->i_datasync_tid); 2586 } 2587 mpd->journalled_more_data = 0; 2588 2589 if (ext4_should_dioread_nolock(inode)) { 2590 /* 2591 * We may need to convert up to one extent per block in 2592 * the page and we may dirty the inode. 2593 */ 2594 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2595 PAGE_SIZE >> inode->i_blkbits); 2596 } 2597 2598 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2599 range_whole = 1; 2600 2601 if (wbc->range_cyclic) { 2602 writeback_index = mapping->writeback_index; 2603 if (writeback_index) 2604 cycled = 0; 2605 mpd->first_page = writeback_index; 2606 mpd->last_page = -1; 2607 } else { 2608 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2609 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2610 } 2611 2612 ext4_io_submit_init(&mpd->io_submit, wbc); 2613 retry: 2614 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2615 tag_pages_for_writeback(mapping, mpd->first_page, 2616 mpd->last_page); 2617 blk_start_plug(&plug); 2618 2619 /* 2620 * First writeback pages that don't need mapping - we can avoid 2621 * starting a transaction unnecessarily and also avoid being blocked 2622 * in the block layer on device congestion while having transaction 2623 * started. 2624 */ 2625 mpd->do_map = 0; 2626 mpd->scanned_until_end = 0; 2627 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2628 if (!mpd->io_submit.io_end) { 2629 ret = -ENOMEM; 2630 goto unplug; 2631 } 2632 ret = mpage_prepare_extent_to_map(mpd); 2633 /* Unlock pages we didn't use */ 2634 mpage_release_unused_pages(mpd, false); 2635 /* Submit prepared bio */ 2636 ext4_io_submit(&mpd->io_submit); 2637 ext4_put_io_end_defer(mpd->io_submit.io_end); 2638 mpd->io_submit.io_end = NULL; 2639 if (ret < 0) 2640 goto unplug; 2641 2642 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2643 /* For each extent of pages we use new io_end */ 2644 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2645 if (!mpd->io_submit.io_end) { 2646 ret = -ENOMEM; 2647 break; 2648 } 2649 2650 WARN_ON_ONCE(!mpd->can_map); 2651 /* 2652 * We have two constraints: We find one extent to map and we 2653 * must always write out whole page (makes a difference when 2654 * blocksize < pagesize) so that we don't block on IO when we 2655 * try to write out the rest of the page. Journalled mode is 2656 * not supported by delalloc. 2657 */ 2658 BUG_ON(ext4_should_journal_data(inode)); 2659 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2660 2661 /* start a new transaction */ 2662 handle = ext4_journal_start_with_reserve(inode, 2663 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2664 if (IS_ERR(handle)) { 2665 ret = PTR_ERR(handle); 2666 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2667 "%ld pages, ino %lu; err %d", __func__, 2668 wbc->nr_to_write, inode->i_ino, ret); 2669 /* Release allocated io_end */ 2670 ext4_put_io_end(mpd->io_submit.io_end); 2671 mpd->io_submit.io_end = NULL; 2672 break; 2673 } 2674 mpd->do_map = 1; 2675 2676 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2677 ret = mpage_prepare_extent_to_map(mpd); 2678 if (!ret && mpd->map.m_len) 2679 ret = mpage_map_and_submit_extent(handle, mpd, 2680 &give_up_on_write); 2681 /* 2682 * Caution: If the handle is synchronous, 2683 * ext4_journal_stop() can wait for transaction commit 2684 * to finish which may depend on writeback of pages to 2685 * complete or on page lock to be released. In that 2686 * case, we have to wait until after we have 2687 * submitted all the IO, released page locks we hold, 2688 * and dropped io_end reference (for extent conversion 2689 * to be able to complete) before stopping the handle. 2690 */ 2691 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2692 ext4_journal_stop(handle); 2693 handle = NULL; 2694 mpd->do_map = 0; 2695 } 2696 /* Unlock pages we didn't use */ 2697 mpage_release_unused_pages(mpd, give_up_on_write); 2698 /* Submit prepared bio */ 2699 ext4_io_submit(&mpd->io_submit); 2700 2701 /* 2702 * Drop our io_end reference we got from init. We have 2703 * to be careful and use deferred io_end finishing if 2704 * we are still holding the transaction as we can 2705 * release the last reference to io_end which may end 2706 * up doing unwritten extent conversion. 2707 */ 2708 if (handle) { 2709 ext4_put_io_end_defer(mpd->io_submit.io_end); 2710 ext4_journal_stop(handle); 2711 } else 2712 ext4_put_io_end(mpd->io_submit.io_end); 2713 mpd->io_submit.io_end = NULL; 2714 2715 if (ret == -ENOSPC && sbi->s_journal) { 2716 /* 2717 * Commit the transaction which would 2718 * free blocks released in the transaction 2719 * and try again 2720 */ 2721 jbd2_journal_force_commit_nested(sbi->s_journal); 2722 ret = 0; 2723 continue; 2724 } 2725 /* Fatal error - ENOMEM, EIO... */ 2726 if (ret) 2727 break; 2728 } 2729 unplug: 2730 blk_finish_plug(&plug); 2731 if (!ret && !cycled && wbc->nr_to_write > 0) { 2732 cycled = 1; 2733 mpd->last_page = writeback_index - 1; 2734 mpd->first_page = 0; 2735 goto retry; 2736 } 2737 2738 /* Update index */ 2739 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2740 /* 2741 * Set the writeback_index so that range_cyclic 2742 * mode will write it back later 2743 */ 2744 mapping->writeback_index = mpd->first_page; 2745 2746 out_writepages: 2747 trace_ext4_writepages_result(inode, wbc, ret, 2748 nr_to_write - wbc->nr_to_write); 2749 return ret; 2750 } 2751 2752 static int ext4_writepages(struct address_space *mapping, 2753 struct writeback_control *wbc) 2754 { 2755 struct super_block *sb = mapping->host->i_sb; 2756 struct mpage_da_data mpd = { 2757 .inode = mapping->host, 2758 .wbc = wbc, 2759 .can_map = 1, 2760 }; 2761 int ret; 2762 int alloc_ctx; 2763 2764 if (unlikely(ext4_forced_shutdown(sb))) 2765 return -EIO; 2766 2767 alloc_ctx = ext4_writepages_down_read(sb); 2768 ret = ext4_do_writepages(&mpd); 2769 /* 2770 * For data=journal writeback we could have come across pages marked 2771 * for delayed dirtying (PageChecked) which were just added to the 2772 * running transaction. Try once more to get them to stable storage. 2773 */ 2774 if (!ret && mpd.journalled_more_data) 2775 ret = ext4_do_writepages(&mpd); 2776 ext4_writepages_up_read(sb, alloc_ctx); 2777 2778 return ret; 2779 } 2780 2781 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2782 { 2783 struct writeback_control wbc = { 2784 .sync_mode = WB_SYNC_ALL, 2785 .nr_to_write = LONG_MAX, 2786 .range_start = jinode->i_dirty_start, 2787 .range_end = jinode->i_dirty_end, 2788 }; 2789 struct mpage_da_data mpd = { 2790 .inode = jinode->i_vfs_inode, 2791 .wbc = &wbc, 2792 .can_map = 0, 2793 }; 2794 return ext4_do_writepages(&mpd); 2795 } 2796 2797 static int ext4_dax_writepages(struct address_space *mapping, 2798 struct writeback_control *wbc) 2799 { 2800 int ret; 2801 long nr_to_write = wbc->nr_to_write; 2802 struct inode *inode = mapping->host; 2803 int alloc_ctx; 2804 2805 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2806 return -EIO; 2807 2808 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2809 trace_ext4_writepages(inode, wbc); 2810 2811 ret = dax_writeback_mapping_range(mapping, 2812 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2813 trace_ext4_writepages_result(inode, wbc, ret, 2814 nr_to_write - wbc->nr_to_write); 2815 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2816 return ret; 2817 } 2818 2819 static int ext4_nonda_switch(struct super_block *sb) 2820 { 2821 s64 free_clusters, dirty_clusters; 2822 struct ext4_sb_info *sbi = EXT4_SB(sb); 2823 2824 /* 2825 * switch to non delalloc mode if we are running low 2826 * on free block. The free block accounting via percpu 2827 * counters can get slightly wrong with percpu_counter_batch getting 2828 * accumulated on each CPU without updating global counters 2829 * Delalloc need an accurate free block accounting. So switch 2830 * to non delalloc when we are near to error range. 2831 */ 2832 free_clusters = 2833 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2834 dirty_clusters = 2835 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2836 /* 2837 * Start pushing delalloc when 1/2 of free blocks are dirty. 2838 */ 2839 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2840 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2841 2842 if (2 * free_clusters < 3 * dirty_clusters || 2843 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2844 /* 2845 * free block count is less than 150% of dirty blocks 2846 * or free blocks is less than watermark 2847 */ 2848 return 1; 2849 } 2850 return 0; 2851 } 2852 2853 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2854 loff_t pos, unsigned len, 2855 struct page **pagep, void **fsdata) 2856 { 2857 int ret, retries = 0; 2858 struct folio *folio; 2859 pgoff_t index; 2860 struct inode *inode = mapping->host; 2861 2862 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2863 return -EIO; 2864 2865 index = pos >> PAGE_SHIFT; 2866 2867 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2868 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2869 return ext4_write_begin(file, mapping, pos, 2870 len, pagep, fsdata); 2871 } 2872 *fsdata = (void *)0; 2873 trace_ext4_da_write_begin(inode, pos, len); 2874 2875 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2876 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2877 pagep, fsdata); 2878 if (ret < 0) 2879 return ret; 2880 if (ret == 1) 2881 return 0; 2882 } 2883 2884 retry: 2885 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2886 mapping_gfp_mask(mapping)); 2887 if (IS_ERR(folio)) 2888 return PTR_ERR(folio); 2889 2890 /* In case writeback began while the folio was unlocked */ 2891 folio_wait_stable(folio); 2892 2893 #ifdef CONFIG_FS_ENCRYPTION 2894 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2895 #else 2896 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2897 #endif 2898 if (ret < 0) { 2899 folio_unlock(folio); 2900 folio_put(folio); 2901 /* 2902 * block_write_begin may have instantiated a few blocks 2903 * outside i_size. Trim these off again. Don't need 2904 * i_size_read because we hold inode lock. 2905 */ 2906 if (pos + len > inode->i_size) 2907 ext4_truncate_failed_write(inode); 2908 2909 if (ret == -ENOSPC && 2910 ext4_should_retry_alloc(inode->i_sb, &retries)) 2911 goto retry; 2912 return ret; 2913 } 2914 2915 *pagep = &folio->page; 2916 return ret; 2917 } 2918 2919 /* 2920 * Check if we should update i_disksize 2921 * when write to the end of file but not require block allocation 2922 */ 2923 static int ext4_da_should_update_i_disksize(struct folio *folio, 2924 unsigned long offset) 2925 { 2926 struct buffer_head *bh; 2927 struct inode *inode = folio->mapping->host; 2928 unsigned int idx; 2929 int i; 2930 2931 bh = folio_buffers(folio); 2932 idx = offset >> inode->i_blkbits; 2933 2934 for (i = 0; i < idx; i++) 2935 bh = bh->b_this_page; 2936 2937 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2938 return 0; 2939 return 1; 2940 } 2941 2942 static int ext4_da_do_write_end(struct address_space *mapping, 2943 loff_t pos, unsigned len, unsigned copied, 2944 struct folio *folio) 2945 { 2946 struct inode *inode = mapping->host; 2947 loff_t old_size = inode->i_size; 2948 bool disksize_changed = false; 2949 loff_t new_i_size; 2950 2951 /* 2952 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2953 * flag, which all that's needed to trigger page writeback. 2954 */ 2955 copied = block_write_end(NULL, mapping, pos, len, copied, 2956 &folio->page, NULL); 2957 new_i_size = pos + copied; 2958 2959 /* 2960 * It's important to update i_size while still holding folio lock, 2961 * because folio writeout could otherwise come in and zero beyond 2962 * i_size. 2963 * 2964 * Since we are holding inode lock, we are sure i_disksize <= 2965 * i_size. We also know that if i_disksize < i_size, there are 2966 * delalloc writes pending in the range up to i_size. If the end of 2967 * the current write is <= i_size, there's no need to touch 2968 * i_disksize since writeback will push i_disksize up to i_size 2969 * eventually. If the end of the current write is > i_size and 2970 * inside an allocated block which ext4_da_should_update_i_disksize() 2971 * checked, we need to update i_disksize here as certain 2972 * ext4_writepages() paths not allocating blocks and update i_disksize. 2973 */ 2974 if (new_i_size > inode->i_size) { 2975 unsigned long end; 2976 2977 i_size_write(inode, new_i_size); 2978 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2979 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 2980 ext4_update_i_disksize(inode, new_i_size); 2981 disksize_changed = true; 2982 } 2983 } 2984 2985 folio_unlock(folio); 2986 folio_put(folio); 2987 2988 if (old_size < pos) 2989 pagecache_isize_extended(inode, old_size, pos); 2990 2991 if (disksize_changed) { 2992 handle_t *handle; 2993 2994 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 2995 if (IS_ERR(handle)) 2996 return PTR_ERR(handle); 2997 ext4_mark_inode_dirty(handle, inode); 2998 ext4_journal_stop(handle); 2999 } 3000 3001 return copied; 3002 } 3003 3004 static int ext4_da_write_end(struct file *file, 3005 struct address_space *mapping, 3006 loff_t pos, unsigned len, unsigned copied, 3007 struct page *page, void *fsdata) 3008 { 3009 struct inode *inode = mapping->host; 3010 int write_mode = (int)(unsigned long)fsdata; 3011 struct folio *folio = page_folio(page); 3012 3013 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3014 return ext4_write_end(file, mapping, pos, 3015 len, copied, &folio->page, fsdata); 3016 3017 trace_ext4_da_write_end(inode, pos, len, copied); 3018 3019 if (write_mode != CONVERT_INLINE_DATA && 3020 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3021 ext4_has_inline_data(inode)) 3022 return ext4_write_inline_data_end(inode, pos, len, copied, 3023 folio); 3024 3025 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3026 copied = 0; 3027 3028 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3029 } 3030 3031 /* 3032 * Force all delayed allocation blocks to be allocated for a given inode. 3033 */ 3034 int ext4_alloc_da_blocks(struct inode *inode) 3035 { 3036 trace_ext4_alloc_da_blocks(inode); 3037 3038 if (!EXT4_I(inode)->i_reserved_data_blocks) 3039 return 0; 3040 3041 /* 3042 * We do something simple for now. The filemap_flush() will 3043 * also start triggering a write of the data blocks, which is 3044 * not strictly speaking necessary (and for users of 3045 * laptop_mode, not even desirable). However, to do otherwise 3046 * would require replicating code paths in: 3047 * 3048 * ext4_writepages() -> 3049 * write_cache_pages() ---> (via passed in callback function) 3050 * __mpage_da_writepage() --> 3051 * mpage_add_bh_to_extent() 3052 * mpage_da_map_blocks() 3053 * 3054 * The problem is that write_cache_pages(), located in 3055 * mm/page-writeback.c, marks pages clean in preparation for 3056 * doing I/O, which is not desirable if we're not planning on 3057 * doing I/O at all. 3058 * 3059 * We could call write_cache_pages(), and then redirty all of 3060 * the pages by calling redirty_page_for_writepage() but that 3061 * would be ugly in the extreme. So instead we would need to 3062 * replicate parts of the code in the above functions, 3063 * simplifying them because we wouldn't actually intend to 3064 * write out the pages, but rather only collect contiguous 3065 * logical block extents, call the multi-block allocator, and 3066 * then update the buffer heads with the block allocations. 3067 * 3068 * For now, though, we'll cheat by calling filemap_flush(), 3069 * which will map the blocks, and start the I/O, but not 3070 * actually wait for the I/O to complete. 3071 */ 3072 return filemap_flush(inode->i_mapping); 3073 } 3074 3075 /* 3076 * bmap() is special. It gets used by applications such as lilo and by 3077 * the swapper to find the on-disk block of a specific piece of data. 3078 * 3079 * Naturally, this is dangerous if the block concerned is still in the 3080 * journal. If somebody makes a swapfile on an ext4 data-journaling 3081 * filesystem and enables swap, then they may get a nasty shock when the 3082 * data getting swapped to that swapfile suddenly gets overwritten by 3083 * the original zero's written out previously to the journal and 3084 * awaiting writeback in the kernel's buffer cache. 3085 * 3086 * So, if we see any bmap calls here on a modified, data-journaled file, 3087 * take extra steps to flush any blocks which might be in the cache. 3088 */ 3089 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3090 { 3091 struct inode *inode = mapping->host; 3092 sector_t ret = 0; 3093 3094 inode_lock_shared(inode); 3095 /* 3096 * We can get here for an inline file via the FIBMAP ioctl 3097 */ 3098 if (ext4_has_inline_data(inode)) 3099 goto out; 3100 3101 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3102 (test_opt(inode->i_sb, DELALLOC) || 3103 ext4_should_journal_data(inode))) { 3104 /* 3105 * With delalloc or journalled data we want to sync the file so 3106 * that we can make sure we allocate blocks for file and data 3107 * is in place for the user to see it 3108 */ 3109 filemap_write_and_wait(mapping); 3110 } 3111 3112 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3113 3114 out: 3115 inode_unlock_shared(inode); 3116 return ret; 3117 } 3118 3119 static int ext4_read_folio(struct file *file, struct folio *folio) 3120 { 3121 int ret = -EAGAIN; 3122 struct inode *inode = folio->mapping->host; 3123 3124 trace_ext4_read_folio(inode, folio); 3125 3126 if (ext4_has_inline_data(inode)) 3127 ret = ext4_readpage_inline(inode, folio); 3128 3129 if (ret == -EAGAIN) 3130 return ext4_mpage_readpages(inode, NULL, folio); 3131 3132 return ret; 3133 } 3134 3135 static void ext4_readahead(struct readahead_control *rac) 3136 { 3137 struct inode *inode = rac->mapping->host; 3138 3139 /* If the file has inline data, no need to do readahead. */ 3140 if (ext4_has_inline_data(inode)) 3141 return; 3142 3143 ext4_mpage_readpages(inode, rac, NULL); 3144 } 3145 3146 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3147 size_t length) 3148 { 3149 trace_ext4_invalidate_folio(folio, offset, length); 3150 3151 /* No journalling happens on data buffers when this function is used */ 3152 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3153 3154 block_invalidate_folio(folio, offset, length); 3155 } 3156 3157 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3158 size_t offset, size_t length) 3159 { 3160 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3161 3162 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3163 3164 /* 3165 * If it's a full truncate we just forget about the pending dirtying 3166 */ 3167 if (offset == 0 && length == folio_size(folio)) 3168 folio_clear_checked(folio); 3169 3170 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3171 } 3172 3173 /* Wrapper for aops... */ 3174 static void ext4_journalled_invalidate_folio(struct folio *folio, 3175 size_t offset, 3176 size_t length) 3177 { 3178 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3179 } 3180 3181 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3182 { 3183 struct inode *inode = folio->mapping->host; 3184 journal_t *journal = EXT4_JOURNAL(inode); 3185 3186 trace_ext4_release_folio(inode, folio); 3187 3188 /* Page has dirty journalled data -> cannot release */ 3189 if (folio_test_checked(folio)) 3190 return false; 3191 if (journal) 3192 return jbd2_journal_try_to_free_buffers(journal, folio); 3193 else 3194 return try_to_free_buffers(folio); 3195 } 3196 3197 static bool ext4_inode_datasync_dirty(struct inode *inode) 3198 { 3199 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3200 3201 if (journal) { 3202 if (jbd2_transaction_committed(journal, 3203 EXT4_I(inode)->i_datasync_tid)) 3204 return false; 3205 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3206 return !list_empty(&EXT4_I(inode)->i_fc_list); 3207 return true; 3208 } 3209 3210 /* Any metadata buffers to write? */ 3211 if (!list_empty(&inode->i_mapping->i_private_list)) 3212 return true; 3213 return inode->i_state & I_DIRTY_DATASYNC; 3214 } 3215 3216 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3217 struct ext4_map_blocks *map, loff_t offset, 3218 loff_t length, unsigned int flags) 3219 { 3220 u8 blkbits = inode->i_blkbits; 3221 3222 /* 3223 * Writes that span EOF might trigger an I/O size update on completion, 3224 * so consider them to be dirty for the purpose of O_DSYNC, even if 3225 * there is no other metadata changes being made or are pending. 3226 */ 3227 iomap->flags = 0; 3228 if (ext4_inode_datasync_dirty(inode) || 3229 offset + length > i_size_read(inode)) 3230 iomap->flags |= IOMAP_F_DIRTY; 3231 3232 if (map->m_flags & EXT4_MAP_NEW) 3233 iomap->flags |= IOMAP_F_NEW; 3234 3235 if (flags & IOMAP_DAX) 3236 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3237 else 3238 iomap->bdev = inode->i_sb->s_bdev; 3239 iomap->offset = (u64) map->m_lblk << blkbits; 3240 iomap->length = (u64) map->m_len << blkbits; 3241 3242 if ((map->m_flags & EXT4_MAP_MAPPED) && 3243 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3244 iomap->flags |= IOMAP_F_MERGED; 3245 3246 /* 3247 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3248 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3249 * set. In order for any allocated unwritten extents to be converted 3250 * into written extents correctly within the ->end_io() handler, we 3251 * need to ensure that the iomap->type is set appropriately. Hence, the 3252 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3253 * been set first. 3254 */ 3255 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3256 iomap->type = IOMAP_UNWRITTEN; 3257 iomap->addr = (u64) map->m_pblk << blkbits; 3258 if (flags & IOMAP_DAX) 3259 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3260 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3261 iomap->type = IOMAP_MAPPED; 3262 iomap->addr = (u64) map->m_pblk << blkbits; 3263 if (flags & IOMAP_DAX) 3264 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3265 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3266 iomap->type = IOMAP_DELALLOC; 3267 iomap->addr = IOMAP_NULL_ADDR; 3268 } else { 3269 iomap->type = IOMAP_HOLE; 3270 iomap->addr = IOMAP_NULL_ADDR; 3271 } 3272 } 3273 3274 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3275 unsigned int flags) 3276 { 3277 handle_t *handle; 3278 u8 blkbits = inode->i_blkbits; 3279 int ret, dio_credits, m_flags = 0, retries = 0; 3280 3281 /* 3282 * Trim the mapping request to the maximum value that we can map at 3283 * once for direct I/O. 3284 */ 3285 if (map->m_len > DIO_MAX_BLOCKS) 3286 map->m_len = DIO_MAX_BLOCKS; 3287 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3288 3289 retry: 3290 /* 3291 * Either we allocate blocks and then don't get an unwritten extent, so 3292 * in that case we have reserved enough credits. Or, the blocks are 3293 * already allocated and unwritten. In that case, the extent conversion 3294 * fits into the credits as well. 3295 */ 3296 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3297 if (IS_ERR(handle)) 3298 return PTR_ERR(handle); 3299 3300 /* 3301 * DAX and direct I/O are the only two operations that are currently 3302 * supported with IOMAP_WRITE. 3303 */ 3304 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3305 if (flags & IOMAP_DAX) 3306 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3307 /* 3308 * We use i_size instead of i_disksize here because delalloc writeback 3309 * can complete at any point during the I/O and subsequently push the 3310 * i_disksize out to i_size. This could be beyond where direct I/O is 3311 * happening and thus expose allocated blocks to direct I/O reads. 3312 */ 3313 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3314 m_flags = EXT4_GET_BLOCKS_CREATE; 3315 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3316 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3317 3318 ret = ext4_map_blocks(handle, inode, map, m_flags); 3319 3320 /* 3321 * We cannot fill holes in indirect tree based inodes as that could 3322 * expose stale data in the case of a crash. Use the magic error code 3323 * to fallback to buffered I/O. 3324 */ 3325 if (!m_flags && !ret) 3326 ret = -ENOTBLK; 3327 3328 ext4_journal_stop(handle); 3329 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3330 goto retry; 3331 3332 return ret; 3333 } 3334 3335 3336 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3337 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3338 { 3339 int ret; 3340 struct ext4_map_blocks map; 3341 u8 blkbits = inode->i_blkbits; 3342 3343 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3344 return -EINVAL; 3345 3346 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3347 return -ERANGE; 3348 3349 /* 3350 * Calculate the first and last logical blocks respectively. 3351 */ 3352 map.m_lblk = offset >> blkbits; 3353 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3354 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3355 3356 if (flags & IOMAP_WRITE) { 3357 /* 3358 * We check here if the blocks are already allocated, then we 3359 * don't need to start a journal txn and we can directly return 3360 * the mapping information. This could boost performance 3361 * especially in multi-threaded overwrite requests. 3362 */ 3363 if (offset + length <= i_size_read(inode)) { 3364 ret = ext4_map_blocks(NULL, inode, &map, 0); 3365 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3366 goto out; 3367 } 3368 ret = ext4_iomap_alloc(inode, &map, flags); 3369 } else { 3370 ret = ext4_map_blocks(NULL, inode, &map, 0); 3371 } 3372 3373 if (ret < 0) 3374 return ret; 3375 out: 3376 /* 3377 * When inline encryption is enabled, sometimes I/O to an encrypted file 3378 * has to be broken up to guarantee DUN contiguity. Handle this by 3379 * limiting the length of the mapping returned. 3380 */ 3381 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3382 3383 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3384 3385 return 0; 3386 } 3387 3388 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3389 loff_t length, unsigned flags, struct iomap *iomap, 3390 struct iomap *srcmap) 3391 { 3392 int ret; 3393 3394 /* 3395 * Even for writes we don't need to allocate blocks, so just pretend 3396 * we are reading to save overhead of starting a transaction. 3397 */ 3398 flags &= ~IOMAP_WRITE; 3399 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3400 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3401 return ret; 3402 } 3403 3404 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3405 ssize_t written, unsigned flags, struct iomap *iomap) 3406 { 3407 /* 3408 * Check to see whether an error occurred while writing out the data to 3409 * the allocated blocks. If so, return the magic error code so that we 3410 * fallback to buffered I/O and attempt to complete the remainder of 3411 * the I/O. Any blocks that may have been allocated in preparation for 3412 * the direct I/O will be reused during buffered I/O. 3413 */ 3414 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3415 return -ENOTBLK; 3416 3417 return 0; 3418 } 3419 3420 const struct iomap_ops ext4_iomap_ops = { 3421 .iomap_begin = ext4_iomap_begin, 3422 .iomap_end = ext4_iomap_end, 3423 }; 3424 3425 const struct iomap_ops ext4_iomap_overwrite_ops = { 3426 .iomap_begin = ext4_iomap_overwrite_begin, 3427 .iomap_end = ext4_iomap_end, 3428 }; 3429 3430 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3431 loff_t length, unsigned int flags, 3432 struct iomap *iomap, struct iomap *srcmap) 3433 { 3434 int ret; 3435 struct ext4_map_blocks map; 3436 u8 blkbits = inode->i_blkbits; 3437 3438 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3439 return -EINVAL; 3440 3441 if (ext4_has_inline_data(inode)) { 3442 ret = ext4_inline_data_iomap(inode, iomap); 3443 if (ret != -EAGAIN) { 3444 if (ret == 0 && offset >= iomap->length) 3445 ret = -ENOENT; 3446 return ret; 3447 } 3448 } 3449 3450 /* 3451 * Calculate the first and last logical block respectively. 3452 */ 3453 map.m_lblk = offset >> blkbits; 3454 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3455 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3456 3457 /* 3458 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3459 * So handle it here itself instead of querying ext4_map_blocks(). 3460 * Since ext4_map_blocks() will warn about it and will return 3461 * -EIO error. 3462 */ 3463 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3465 3466 if (offset >= sbi->s_bitmap_maxbytes) { 3467 map.m_flags = 0; 3468 goto set_iomap; 3469 } 3470 } 3471 3472 ret = ext4_map_blocks(NULL, inode, &map, 0); 3473 if (ret < 0) 3474 return ret; 3475 set_iomap: 3476 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3477 3478 return 0; 3479 } 3480 3481 const struct iomap_ops ext4_iomap_report_ops = { 3482 .iomap_begin = ext4_iomap_begin_report, 3483 }; 3484 3485 /* 3486 * For data=journal mode, folio should be marked dirty only when it was 3487 * writeably mapped. When that happens, it was already attached to the 3488 * transaction and marked as jbddirty (we take care of this in 3489 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3490 * so we should have nothing to do here, except for the case when someone 3491 * had the page pinned and dirtied the page through this pin (e.g. by doing 3492 * direct IO to it). In that case we'd need to attach buffers here to the 3493 * transaction but we cannot due to lock ordering. We cannot just dirty the 3494 * folio and leave attached buffers clean, because the buffers' dirty state is 3495 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3496 * the journalling code will explode. So what we do is to mark the folio 3497 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3498 * to the transaction appropriately. 3499 */ 3500 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3501 struct folio *folio) 3502 { 3503 WARN_ON_ONCE(!folio_buffers(folio)); 3504 if (folio_maybe_dma_pinned(folio)) 3505 folio_set_checked(folio); 3506 return filemap_dirty_folio(mapping, folio); 3507 } 3508 3509 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3510 { 3511 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3512 WARN_ON_ONCE(!folio_buffers(folio)); 3513 return block_dirty_folio(mapping, folio); 3514 } 3515 3516 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3517 struct file *file, sector_t *span) 3518 { 3519 return iomap_swapfile_activate(sis, file, span, 3520 &ext4_iomap_report_ops); 3521 } 3522 3523 static const struct address_space_operations ext4_aops = { 3524 .read_folio = ext4_read_folio, 3525 .readahead = ext4_readahead, 3526 .writepages = ext4_writepages, 3527 .write_begin = ext4_write_begin, 3528 .write_end = ext4_write_end, 3529 .dirty_folio = ext4_dirty_folio, 3530 .bmap = ext4_bmap, 3531 .invalidate_folio = ext4_invalidate_folio, 3532 .release_folio = ext4_release_folio, 3533 .direct_IO = noop_direct_IO, 3534 .migrate_folio = buffer_migrate_folio, 3535 .is_partially_uptodate = block_is_partially_uptodate, 3536 .error_remove_folio = generic_error_remove_folio, 3537 .swap_activate = ext4_iomap_swap_activate, 3538 }; 3539 3540 static const struct address_space_operations ext4_journalled_aops = { 3541 .read_folio = ext4_read_folio, 3542 .readahead = ext4_readahead, 3543 .writepages = ext4_writepages, 3544 .write_begin = ext4_write_begin, 3545 .write_end = ext4_journalled_write_end, 3546 .dirty_folio = ext4_journalled_dirty_folio, 3547 .bmap = ext4_bmap, 3548 .invalidate_folio = ext4_journalled_invalidate_folio, 3549 .release_folio = ext4_release_folio, 3550 .direct_IO = noop_direct_IO, 3551 .migrate_folio = buffer_migrate_folio_norefs, 3552 .is_partially_uptodate = block_is_partially_uptodate, 3553 .error_remove_folio = generic_error_remove_folio, 3554 .swap_activate = ext4_iomap_swap_activate, 3555 }; 3556 3557 static const struct address_space_operations ext4_da_aops = { 3558 .read_folio = ext4_read_folio, 3559 .readahead = ext4_readahead, 3560 .writepages = ext4_writepages, 3561 .write_begin = ext4_da_write_begin, 3562 .write_end = ext4_da_write_end, 3563 .dirty_folio = ext4_dirty_folio, 3564 .bmap = ext4_bmap, 3565 .invalidate_folio = ext4_invalidate_folio, 3566 .release_folio = ext4_release_folio, 3567 .direct_IO = noop_direct_IO, 3568 .migrate_folio = buffer_migrate_folio, 3569 .is_partially_uptodate = block_is_partially_uptodate, 3570 .error_remove_folio = generic_error_remove_folio, 3571 .swap_activate = ext4_iomap_swap_activate, 3572 }; 3573 3574 static const struct address_space_operations ext4_dax_aops = { 3575 .writepages = ext4_dax_writepages, 3576 .direct_IO = noop_direct_IO, 3577 .dirty_folio = noop_dirty_folio, 3578 .bmap = ext4_bmap, 3579 .swap_activate = ext4_iomap_swap_activate, 3580 }; 3581 3582 void ext4_set_aops(struct inode *inode) 3583 { 3584 switch (ext4_inode_journal_mode(inode)) { 3585 case EXT4_INODE_ORDERED_DATA_MODE: 3586 case EXT4_INODE_WRITEBACK_DATA_MODE: 3587 break; 3588 case EXT4_INODE_JOURNAL_DATA_MODE: 3589 inode->i_mapping->a_ops = &ext4_journalled_aops; 3590 return; 3591 default: 3592 BUG(); 3593 } 3594 if (IS_DAX(inode)) 3595 inode->i_mapping->a_ops = &ext4_dax_aops; 3596 else if (test_opt(inode->i_sb, DELALLOC)) 3597 inode->i_mapping->a_ops = &ext4_da_aops; 3598 else 3599 inode->i_mapping->a_ops = &ext4_aops; 3600 } 3601 3602 /* 3603 * Here we can't skip an unwritten buffer even though it usually reads zero 3604 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3605 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3606 * racing writeback can come later and flush the stale pagecache to disk. 3607 */ 3608 static int __ext4_block_zero_page_range(handle_t *handle, 3609 struct address_space *mapping, loff_t from, loff_t length) 3610 { 3611 ext4_fsblk_t index = from >> PAGE_SHIFT; 3612 unsigned offset = from & (PAGE_SIZE-1); 3613 unsigned blocksize, pos; 3614 ext4_lblk_t iblock; 3615 struct inode *inode = mapping->host; 3616 struct buffer_head *bh; 3617 struct folio *folio; 3618 int err = 0; 3619 3620 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3621 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3622 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3623 if (IS_ERR(folio)) 3624 return PTR_ERR(folio); 3625 3626 blocksize = inode->i_sb->s_blocksize; 3627 3628 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3629 3630 bh = folio_buffers(folio); 3631 if (!bh) 3632 bh = create_empty_buffers(folio, blocksize, 0); 3633 3634 /* Find the buffer that contains "offset" */ 3635 pos = blocksize; 3636 while (offset >= pos) { 3637 bh = bh->b_this_page; 3638 iblock++; 3639 pos += blocksize; 3640 } 3641 if (buffer_freed(bh)) { 3642 BUFFER_TRACE(bh, "freed: skip"); 3643 goto unlock; 3644 } 3645 if (!buffer_mapped(bh)) { 3646 BUFFER_TRACE(bh, "unmapped"); 3647 ext4_get_block(inode, iblock, bh, 0); 3648 /* unmapped? It's a hole - nothing to do */ 3649 if (!buffer_mapped(bh)) { 3650 BUFFER_TRACE(bh, "still unmapped"); 3651 goto unlock; 3652 } 3653 } 3654 3655 /* Ok, it's mapped. Make sure it's up-to-date */ 3656 if (folio_test_uptodate(folio)) 3657 set_buffer_uptodate(bh); 3658 3659 if (!buffer_uptodate(bh)) { 3660 err = ext4_read_bh_lock(bh, 0, true); 3661 if (err) 3662 goto unlock; 3663 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3664 /* We expect the key to be set. */ 3665 BUG_ON(!fscrypt_has_encryption_key(inode)); 3666 err = fscrypt_decrypt_pagecache_blocks(folio, 3667 blocksize, 3668 bh_offset(bh)); 3669 if (err) { 3670 clear_buffer_uptodate(bh); 3671 goto unlock; 3672 } 3673 } 3674 } 3675 if (ext4_should_journal_data(inode)) { 3676 BUFFER_TRACE(bh, "get write access"); 3677 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3678 EXT4_JTR_NONE); 3679 if (err) 3680 goto unlock; 3681 } 3682 folio_zero_range(folio, offset, length); 3683 BUFFER_TRACE(bh, "zeroed end of block"); 3684 3685 if (ext4_should_journal_data(inode)) { 3686 err = ext4_dirty_journalled_data(handle, bh); 3687 } else { 3688 err = 0; 3689 mark_buffer_dirty(bh); 3690 if (ext4_should_order_data(inode)) 3691 err = ext4_jbd2_inode_add_write(handle, inode, from, 3692 length); 3693 } 3694 3695 unlock: 3696 folio_unlock(folio); 3697 folio_put(folio); 3698 return err; 3699 } 3700 3701 /* 3702 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3703 * starting from file offset 'from'. The range to be zero'd must 3704 * be contained with in one block. If the specified range exceeds 3705 * the end of the block it will be shortened to end of the block 3706 * that corresponds to 'from' 3707 */ 3708 static int ext4_block_zero_page_range(handle_t *handle, 3709 struct address_space *mapping, loff_t from, loff_t length) 3710 { 3711 struct inode *inode = mapping->host; 3712 unsigned offset = from & (PAGE_SIZE-1); 3713 unsigned blocksize = inode->i_sb->s_blocksize; 3714 unsigned max = blocksize - (offset & (blocksize - 1)); 3715 3716 /* 3717 * correct length if it does not fall between 3718 * 'from' and the end of the block 3719 */ 3720 if (length > max || length < 0) 3721 length = max; 3722 3723 if (IS_DAX(inode)) { 3724 return dax_zero_range(inode, from, length, NULL, 3725 &ext4_iomap_ops); 3726 } 3727 return __ext4_block_zero_page_range(handle, mapping, from, length); 3728 } 3729 3730 /* 3731 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3732 * up to the end of the block which corresponds to `from'. 3733 * This required during truncate. We need to physically zero the tail end 3734 * of that block so it doesn't yield old data if the file is later grown. 3735 */ 3736 static int ext4_block_truncate_page(handle_t *handle, 3737 struct address_space *mapping, loff_t from) 3738 { 3739 unsigned offset = from & (PAGE_SIZE-1); 3740 unsigned length; 3741 unsigned blocksize; 3742 struct inode *inode = mapping->host; 3743 3744 /* If we are processing an encrypted inode during orphan list handling */ 3745 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3746 return 0; 3747 3748 blocksize = inode->i_sb->s_blocksize; 3749 length = blocksize - (offset & (blocksize - 1)); 3750 3751 return ext4_block_zero_page_range(handle, mapping, from, length); 3752 } 3753 3754 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3755 loff_t lstart, loff_t length) 3756 { 3757 struct super_block *sb = inode->i_sb; 3758 struct address_space *mapping = inode->i_mapping; 3759 unsigned partial_start, partial_end; 3760 ext4_fsblk_t start, end; 3761 loff_t byte_end = (lstart + length - 1); 3762 int err = 0; 3763 3764 partial_start = lstart & (sb->s_blocksize - 1); 3765 partial_end = byte_end & (sb->s_blocksize - 1); 3766 3767 start = lstart >> sb->s_blocksize_bits; 3768 end = byte_end >> sb->s_blocksize_bits; 3769 3770 /* Handle partial zero within the single block */ 3771 if (start == end && 3772 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3773 err = ext4_block_zero_page_range(handle, mapping, 3774 lstart, length); 3775 return err; 3776 } 3777 /* Handle partial zero out on the start of the range */ 3778 if (partial_start) { 3779 err = ext4_block_zero_page_range(handle, mapping, 3780 lstart, sb->s_blocksize); 3781 if (err) 3782 return err; 3783 } 3784 /* Handle partial zero out on the end of the range */ 3785 if (partial_end != sb->s_blocksize - 1) 3786 err = ext4_block_zero_page_range(handle, mapping, 3787 byte_end - partial_end, 3788 partial_end + 1); 3789 return err; 3790 } 3791 3792 int ext4_can_truncate(struct inode *inode) 3793 { 3794 if (S_ISREG(inode->i_mode)) 3795 return 1; 3796 if (S_ISDIR(inode->i_mode)) 3797 return 1; 3798 if (S_ISLNK(inode->i_mode)) 3799 return !ext4_inode_is_fast_symlink(inode); 3800 return 0; 3801 } 3802 3803 /* 3804 * We have to make sure i_disksize gets properly updated before we truncate 3805 * page cache due to hole punching or zero range. Otherwise i_disksize update 3806 * can get lost as it may have been postponed to submission of writeback but 3807 * that will never happen after we truncate page cache. 3808 */ 3809 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3810 loff_t len) 3811 { 3812 handle_t *handle; 3813 int ret; 3814 3815 loff_t size = i_size_read(inode); 3816 3817 WARN_ON(!inode_is_locked(inode)); 3818 if (offset > size || offset + len < size) 3819 return 0; 3820 3821 if (EXT4_I(inode)->i_disksize >= size) 3822 return 0; 3823 3824 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3825 if (IS_ERR(handle)) 3826 return PTR_ERR(handle); 3827 ext4_update_i_disksize(inode, size); 3828 ret = ext4_mark_inode_dirty(handle, inode); 3829 ext4_journal_stop(handle); 3830 3831 return ret; 3832 } 3833 3834 static void ext4_wait_dax_page(struct inode *inode) 3835 { 3836 filemap_invalidate_unlock(inode->i_mapping); 3837 schedule(); 3838 filemap_invalidate_lock(inode->i_mapping); 3839 } 3840 3841 int ext4_break_layouts(struct inode *inode) 3842 { 3843 struct page *page; 3844 int error; 3845 3846 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3847 return -EINVAL; 3848 3849 do { 3850 page = dax_layout_busy_page(inode->i_mapping); 3851 if (!page) 3852 return 0; 3853 3854 error = ___wait_var_event(&page->_refcount, 3855 atomic_read(&page->_refcount) == 1, 3856 TASK_INTERRUPTIBLE, 0, 0, 3857 ext4_wait_dax_page(inode)); 3858 } while (error == 0); 3859 3860 return error; 3861 } 3862 3863 /* 3864 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3865 * associated with the given offset and length 3866 * 3867 * @inode: File inode 3868 * @offset: The offset where the hole will begin 3869 * @len: The length of the hole 3870 * 3871 * Returns: 0 on success or negative on failure 3872 */ 3873 3874 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3875 { 3876 struct inode *inode = file_inode(file); 3877 struct super_block *sb = inode->i_sb; 3878 ext4_lblk_t first_block, stop_block; 3879 struct address_space *mapping = inode->i_mapping; 3880 loff_t first_block_offset, last_block_offset, max_length; 3881 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3882 handle_t *handle; 3883 unsigned int credits; 3884 int ret = 0, ret2 = 0; 3885 3886 trace_ext4_punch_hole(inode, offset, length, 0); 3887 3888 /* 3889 * Write out all dirty pages to avoid race conditions 3890 * Then release them. 3891 */ 3892 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3893 ret = filemap_write_and_wait_range(mapping, offset, 3894 offset + length - 1); 3895 if (ret) 3896 return ret; 3897 } 3898 3899 inode_lock(inode); 3900 3901 /* No need to punch hole beyond i_size */ 3902 if (offset >= inode->i_size) 3903 goto out_mutex; 3904 3905 /* 3906 * If the hole extends beyond i_size, set the hole 3907 * to end after the page that contains i_size 3908 */ 3909 if (offset + length > inode->i_size) { 3910 length = inode->i_size + 3911 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3912 offset; 3913 } 3914 3915 /* 3916 * For punch hole the length + offset needs to be within one block 3917 * before last range. Adjust the length if it goes beyond that limit. 3918 */ 3919 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3920 if (offset + length > max_length) 3921 length = max_length - offset; 3922 3923 if (offset & (sb->s_blocksize - 1) || 3924 (offset + length) & (sb->s_blocksize - 1)) { 3925 /* 3926 * Attach jinode to inode for jbd2 if we do any zeroing of 3927 * partial block 3928 */ 3929 ret = ext4_inode_attach_jinode(inode); 3930 if (ret < 0) 3931 goto out_mutex; 3932 3933 } 3934 3935 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3936 inode_dio_wait(inode); 3937 3938 ret = file_modified(file); 3939 if (ret) 3940 goto out_mutex; 3941 3942 /* 3943 * Prevent page faults from reinstantiating pages we have released from 3944 * page cache. 3945 */ 3946 filemap_invalidate_lock(mapping); 3947 3948 ret = ext4_break_layouts(inode); 3949 if (ret) 3950 goto out_dio; 3951 3952 first_block_offset = round_up(offset, sb->s_blocksize); 3953 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3954 3955 /* Now release the pages and zero block aligned part of pages*/ 3956 if (last_block_offset > first_block_offset) { 3957 ret = ext4_update_disksize_before_punch(inode, offset, length); 3958 if (ret) 3959 goto out_dio; 3960 truncate_pagecache_range(inode, first_block_offset, 3961 last_block_offset); 3962 } 3963 3964 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3965 credits = ext4_writepage_trans_blocks(inode); 3966 else 3967 credits = ext4_blocks_for_truncate(inode); 3968 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3969 if (IS_ERR(handle)) { 3970 ret = PTR_ERR(handle); 3971 ext4_std_error(sb, ret); 3972 goto out_dio; 3973 } 3974 3975 ret = ext4_zero_partial_blocks(handle, inode, offset, 3976 length); 3977 if (ret) 3978 goto out_stop; 3979 3980 first_block = (offset + sb->s_blocksize - 1) >> 3981 EXT4_BLOCK_SIZE_BITS(sb); 3982 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3983 3984 /* If there are blocks to remove, do it */ 3985 if (stop_block > first_block) { 3986 ext4_lblk_t hole_len = stop_block - first_block; 3987 3988 down_write(&EXT4_I(inode)->i_data_sem); 3989 ext4_discard_preallocations(inode); 3990 3991 ext4_es_remove_extent(inode, first_block, hole_len); 3992 3993 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3994 ret = ext4_ext_remove_space(inode, first_block, 3995 stop_block - 1); 3996 else 3997 ret = ext4_ind_remove_space(handle, inode, first_block, 3998 stop_block); 3999 4000 ext4_es_insert_extent(inode, first_block, hole_len, ~0, 4001 EXTENT_STATUS_HOLE); 4002 up_write(&EXT4_I(inode)->i_data_sem); 4003 } 4004 ext4_fc_track_range(handle, inode, first_block, stop_block); 4005 if (IS_SYNC(inode)) 4006 ext4_handle_sync(handle); 4007 4008 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4009 ret2 = ext4_mark_inode_dirty(handle, inode); 4010 if (unlikely(ret2)) 4011 ret = ret2; 4012 if (ret >= 0) 4013 ext4_update_inode_fsync_trans(handle, inode, 1); 4014 out_stop: 4015 ext4_journal_stop(handle); 4016 out_dio: 4017 filemap_invalidate_unlock(mapping); 4018 out_mutex: 4019 inode_unlock(inode); 4020 return ret; 4021 } 4022 4023 int ext4_inode_attach_jinode(struct inode *inode) 4024 { 4025 struct ext4_inode_info *ei = EXT4_I(inode); 4026 struct jbd2_inode *jinode; 4027 4028 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4029 return 0; 4030 4031 jinode = jbd2_alloc_inode(GFP_KERNEL); 4032 spin_lock(&inode->i_lock); 4033 if (!ei->jinode) { 4034 if (!jinode) { 4035 spin_unlock(&inode->i_lock); 4036 return -ENOMEM; 4037 } 4038 ei->jinode = jinode; 4039 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4040 jinode = NULL; 4041 } 4042 spin_unlock(&inode->i_lock); 4043 if (unlikely(jinode != NULL)) 4044 jbd2_free_inode(jinode); 4045 return 0; 4046 } 4047 4048 /* 4049 * ext4_truncate() 4050 * 4051 * We block out ext4_get_block() block instantiations across the entire 4052 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4053 * simultaneously on behalf of the same inode. 4054 * 4055 * As we work through the truncate and commit bits of it to the journal there 4056 * is one core, guiding principle: the file's tree must always be consistent on 4057 * disk. We must be able to restart the truncate after a crash. 4058 * 4059 * The file's tree may be transiently inconsistent in memory (although it 4060 * probably isn't), but whenever we close off and commit a journal transaction, 4061 * the contents of (the filesystem + the journal) must be consistent and 4062 * restartable. It's pretty simple, really: bottom up, right to left (although 4063 * left-to-right works OK too). 4064 * 4065 * Note that at recovery time, journal replay occurs *before* the restart of 4066 * truncate against the orphan inode list. 4067 * 4068 * The committed inode has the new, desired i_size (which is the same as 4069 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4070 * that this inode's truncate did not complete and it will again call 4071 * ext4_truncate() to have another go. So there will be instantiated blocks 4072 * to the right of the truncation point in a crashed ext4 filesystem. But 4073 * that's fine - as long as they are linked from the inode, the post-crash 4074 * ext4_truncate() run will find them and release them. 4075 */ 4076 int ext4_truncate(struct inode *inode) 4077 { 4078 struct ext4_inode_info *ei = EXT4_I(inode); 4079 unsigned int credits; 4080 int err = 0, err2; 4081 handle_t *handle; 4082 struct address_space *mapping = inode->i_mapping; 4083 4084 /* 4085 * There is a possibility that we're either freeing the inode 4086 * or it's a completely new inode. In those cases we might not 4087 * have i_rwsem locked because it's not necessary. 4088 */ 4089 if (!(inode->i_state & (I_NEW|I_FREEING))) 4090 WARN_ON(!inode_is_locked(inode)); 4091 trace_ext4_truncate_enter(inode); 4092 4093 if (!ext4_can_truncate(inode)) 4094 goto out_trace; 4095 4096 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4097 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4098 4099 if (ext4_has_inline_data(inode)) { 4100 int has_inline = 1; 4101 4102 err = ext4_inline_data_truncate(inode, &has_inline); 4103 if (err || has_inline) 4104 goto out_trace; 4105 } 4106 4107 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4108 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4109 err = ext4_inode_attach_jinode(inode); 4110 if (err) 4111 goto out_trace; 4112 } 4113 4114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4115 credits = ext4_writepage_trans_blocks(inode); 4116 else 4117 credits = ext4_blocks_for_truncate(inode); 4118 4119 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4120 if (IS_ERR(handle)) { 4121 err = PTR_ERR(handle); 4122 goto out_trace; 4123 } 4124 4125 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4126 ext4_block_truncate_page(handle, mapping, inode->i_size); 4127 4128 /* 4129 * We add the inode to the orphan list, so that if this 4130 * truncate spans multiple transactions, and we crash, we will 4131 * resume the truncate when the filesystem recovers. It also 4132 * marks the inode dirty, to catch the new size. 4133 * 4134 * Implication: the file must always be in a sane, consistent 4135 * truncatable state while each transaction commits. 4136 */ 4137 err = ext4_orphan_add(handle, inode); 4138 if (err) 4139 goto out_stop; 4140 4141 down_write(&EXT4_I(inode)->i_data_sem); 4142 4143 ext4_discard_preallocations(inode); 4144 4145 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4146 err = ext4_ext_truncate(handle, inode); 4147 else 4148 ext4_ind_truncate(handle, inode); 4149 4150 up_write(&ei->i_data_sem); 4151 if (err) 4152 goto out_stop; 4153 4154 if (IS_SYNC(inode)) 4155 ext4_handle_sync(handle); 4156 4157 out_stop: 4158 /* 4159 * If this was a simple ftruncate() and the file will remain alive, 4160 * then we need to clear up the orphan record which we created above. 4161 * However, if this was a real unlink then we were called by 4162 * ext4_evict_inode(), and we allow that function to clean up the 4163 * orphan info for us. 4164 */ 4165 if (inode->i_nlink) 4166 ext4_orphan_del(handle, inode); 4167 4168 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4169 err2 = ext4_mark_inode_dirty(handle, inode); 4170 if (unlikely(err2 && !err)) 4171 err = err2; 4172 ext4_journal_stop(handle); 4173 4174 out_trace: 4175 trace_ext4_truncate_exit(inode); 4176 return err; 4177 } 4178 4179 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4180 { 4181 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4182 return inode_peek_iversion_raw(inode); 4183 else 4184 return inode_peek_iversion(inode); 4185 } 4186 4187 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4188 struct ext4_inode_info *ei) 4189 { 4190 struct inode *inode = &(ei->vfs_inode); 4191 u64 i_blocks = READ_ONCE(inode->i_blocks); 4192 struct super_block *sb = inode->i_sb; 4193 4194 if (i_blocks <= ~0U) { 4195 /* 4196 * i_blocks can be represented in a 32 bit variable 4197 * as multiple of 512 bytes 4198 */ 4199 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4200 raw_inode->i_blocks_high = 0; 4201 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4202 return 0; 4203 } 4204 4205 /* 4206 * This should never happen since sb->s_maxbytes should not have 4207 * allowed this, sb->s_maxbytes was set according to the huge_file 4208 * feature in ext4_fill_super(). 4209 */ 4210 if (!ext4_has_feature_huge_file(sb)) 4211 return -EFSCORRUPTED; 4212 4213 if (i_blocks <= 0xffffffffffffULL) { 4214 /* 4215 * i_blocks can be represented in a 48 bit variable 4216 * as multiple of 512 bytes 4217 */ 4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4220 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4221 } else { 4222 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4223 /* i_block is stored in file system block size */ 4224 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4226 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4227 } 4228 return 0; 4229 } 4230 4231 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4232 { 4233 struct ext4_inode_info *ei = EXT4_I(inode); 4234 uid_t i_uid; 4235 gid_t i_gid; 4236 projid_t i_projid; 4237 int block; 4238 int err; 4239 4240 err = ext4_inode_blocks_set(raw_inode, ei); 4241 4242 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4243 i_uid = i_uid_read(inode); 4244 i_gid = i_gid_read(inode); 4245 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4246 if (!(test_opt(inode->i_sb, NO_UID32))) { 4247 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4248 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4249 /* 4250 * Fix up interoperability with old kernels. Otherwise, 4251 * old inodes get re-used with the upper 16 bits of the 4252 * uid/gid intact. 4253 */ 4254 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4255 raw_inode->i_uid_high = 0; 4256 raw_inode->i_gid_high = 0; 4257 } else { 4258 raw_inode->i_uid_high = 4259 cpu_to_le16(high_16_bits(i_uid)); 4260 raw_inode->i_gid_high = 4261 cpu_to_le16(high_16_bits(i_gid)); 4262 } 4263 } else { 4264 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4265 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4266 raw_inode->i_uid_high = 0; 4267 raw_inode->i_gid_high = 0; 4268 } 4269 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4270 4271 EXT4_INODE_SET_CTIME(inode, raw_inode); 4272 EXT4_INODE_SET_MTIME(inode, raw_inode); 4273 EXT4_INODE_SET_ATIME(inode, raw_inode); 4274 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4275 4276 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4277 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4278 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4279 raw_inode->i_file_acl_high = 4280 cpu_to_le16(ei->i_file_acl >> 32); 4281 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4282 ext4_isize_set(raw_inode, ei->i_disksize); 4283 4284 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4285 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4286 if (old_valid_dev(inode->i_rdev)) { 4287 raw_inode->i_block[0] = 4288 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4289 raw_inode->i_block[1] = 0; 4290 } else { 4291 raw_inode->i_block[0] = 0; 4292 raw_inode->i_block[1] = 4293 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4294 raw_inode->i_block[2] = 0; 4295 } 4296 } else if (!ext4_has_inline_data(inode)) { 4297 for (block = 0; block < EXT4_N_BLOCKS; block++) 4298 raw_inode->i_block[block] = ei->i_data[block]; 4299 } 4300 4301 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4302 u64 ivers = ext4_inode_peek_iversion(inode); 4303 4304 raw_inode->i_disk_version = cpu_to_le32(ivers); 4305 if (ei->i_extra_isize) { 4306 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4307 raw_inode->i_version_hi = 4308 cpu_to_le32(ivers >> 32); 4309 raw_inode->i_extra_isize = 4310 cpu_to_le16(ei->i_extra_isize); 4311 } 4312 } 4313 4314 if (i_projid != EXT4_DEF_PROJID && 4315 !ext4_has_feature_project(inode->i_sb)) 4316 err = err ?: -EFSCORRUPTED; 4317 4318 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4319 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4320 raw_inode->i_projid = cpu_to_le32(i_projid); 4321 4322 ext4_inode_csum_set(inode, raw_inode, ei); 4323 return err; 4324 } 4325 4326 /* 4327 * ext4_get_inode_loc returns with an extra refcount against the inode's 4328 * underlying buffer_head on success. If we pass 'inode' and it does not 4329 * have in-inode xattr, we have all inode data in memory that is needed 4330 * to recreate the on-disk version of this inode. 4331 */ 4332 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4333 struct inode *inode, struct ext4_iloc *iloc, 4334 ext4_fsblk_t *ret_block) 4335 { 4336 struct ext4_group_desc *gdp; 4337 struct buffer_head *bh; 4338 ext4_fsblk_t block; 4339 struct blk_plug plug; 4340 int inodes_per_block, inode_offset; 4341 4342 iloc->bh = NULL; 4343 if (ino < EXT4_ROOT_INO || 4344 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4345 return -EFSCORRUPTED; 4346 4347 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4348 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4349 if (!gdp) 4350 return -EIO; 4351 4352 /* 4353 * Figure out the offset within the block group inode table 4354 */ 4355 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4356 inode_offset = ((ino - 1) % 4357 EXT4_INODES_PER_GROUP(sb)); 4358 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4359 4360 block = ext4_inode_table(sb, gdp); 4361 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4362 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4363 ext4_error(sb, "Invalid inode table block %llu in " 4364 "block_group %u", block, iloc->block_group); 4365 return -EFSCORRUPTED; 4366 } 4367 block += (inode_offset / inodes_per_block); 4368 4369 bh = sb_getblk(sb, block); 4370 if (unlikely(!bh)) 4371 return -ENOMEM; 4372 if (ext4_buffer_uptodate(bh)) 4373 goto has_buffer; 4374 4375 lock_buffer(bh); 4376 if (ext4_buffer_uptodate(bh)) { 4377 /* Someone brought it uptodate while we waited */ 4378 unlock_buffer(bh); 4379 goto has_buffer; 4380 } 4381 4382 /* 4383 * If we have all information of the inode in memory and this 4384 * is the only valid inode in the block, we need not read the 4385 * block. 4386 */ 4387 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4388 struct buffer_head *bitmap_bh; 4389 int i, start; 4390 4391 start = inode_offset & ~(inodes_per_block - 1); 4392 4393 /* Is the inode bitmap in cache? */ 4394 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4395 if (unlikely(!bitmap_bh)) 4396 goto make_io; 4397 4398 /* 4399 * If the inode bitmap isn't in cache then the 4400 * optimisation may end up performing two reads instead 4401 * of one, so skip it. 4402 */ 4403 if (!buffer_uptodate(bitmap_bh)) { 4404 brelse(bitmap_bh); 4405 goto make_io; 4406 } 4407 for (i = start; i < start + inodes_per_block; i++) { 4408 if (i == inode_offset) 4409 continue; 4410 if (ext4_test_bit(i, bitmap_bh->b_data)) 4411 break; 4412 } 4413 brelse(bitmap_bh); 4414 if (i == start + inodes_per_block) { 4415 struct ext4_inode *raw_inode = 4416 (struct ext4_inode *) (bh->b_data + iloc->offset); 4417 4418 /* all other inodes are free, so skip I/O */ 4419 memset(bh->b_data, 0, bh->b_size); 4420 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4421 ext4_fill_raw_inode(inode, raw_inode); 4422 set_buffer_uptodate(bh); 4423 unlock_buffer(bh); 4424 goto has_buffer; 4425 } 4426 } 4427 4428 make_io: 4429 /* 4430 * If we need to do any I/O, try to pre-readahead extra 4431 * blocks from the inode table. 4432 */ 4433 blk_start_plug(&plug); 4434 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4435 ext4_fsblk_t b, end, table; 4436 unsigned num; 4437 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4438 4439 table = ext4_inode_table(sb, gdp); 4440 /* s_inode_readahead_blks is always a power of 2 */ 4441 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4442 if (table > b) 4443 b = table; 4444 end = b + ra_blks; 4445 num = EXT4_INODES_PER_GROUP(sb); 4446 if (ext4_has_group_desc_csum(sb)) 4447 num -= ext4_itable_unused_count(sb, gdp); 4448 table += num / inodes_per_block; 4449 if (end > table) 4450 end = table; 4451 while (b <= end) 4452 ext4_sb_breadahead_unmovable(sb, b++); 4453 } 4454 4455 /* 4456 * There are other valid inodes in the buffer, this inode 4457 * has in-inode xattrs, or we don't have this inode in memory. 4458 * Read the block from disk. 4459 */ 4460 trace_ext4_load_inode(sb, ino); 4461 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4462 blk_finish_plug(&plug); 4463 wait_on_buffer(bh); 4464 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4465 if (!buffer_uptodate(bh)) { 4466 if (ret_block) 4467 *ret_block = block; 4468 brelse(bh); 4469 return -EIO; 4470 } 4471 has_buffer: 4472 iloc->bh = bh; 4473 return 0; 4474 } 4475 4476 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4477 struct ext4_iloc *iloc) 4478 { 4479 ext4_fsblk_t err_blk = 0; 4480 int ret; 4481 4482 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4483 &err_blk); 4484 4485 if (ret == -EIO) 4486 ext4_error_inode_block(inode, err_blk, EIO, 4487 "unable to read itable block"); 4488 4489 return ret; 4490 } 4491 4492 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4493 { 4494 ext4_fsblk_t err_blk = 0; 4495 int ret; 4496 4497 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4498 &err_blk); 4499 4500 if (ret == -EIO) 4501 ext4_error_inode_block(inode, err_blk, EIO, 4502 "unable to read itable block"); 4503 4504 return ret; 4505 } 4506 4507 4508 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4509 struct ext4_iloc *iloc) 4510 { 4511 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4512 } 4513 4514 static bool ext4_should_enable_dax(struct inode *inode) 4515 { 4516 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4517 4518 if (test_opt2(inode->i_sb, DAX_NEVER)) 4519 return false; 4520 if (!S_ISREG(inode->i_mode)) 4521 return false; 4522 if (ext4_should_journal_data(inode)) 4523 return false; 4524 if (ext4_has_inline_data(inode)) 4525 return false; 4526 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4527 return false; 4528 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4529 return false; 4530 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4531 return false; 4532 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4533 return true; 4534 4535 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4536 } 4537 4538 void ext4_set_inode_flags(struct inode *inode, bool init) 4539 { 4540 unsigned int flags = EXT4_I(inode)->i_flags; 4541 unsigned int new_fl = 0; 4542 4543 WARN_ON_ONCE(IS_DAX(inode) && init); 4544 4545 if (flags & EXT4_SYNC_FL) 4546 new_fl |= S_SYNC; 4547 if (flags & EXT4_APPEND_FL) 4548 new_fl |= S_APPEND; 4549 if (flags & EXT4_IMMUTABLE_FL) 4550 new_fl |= S_IMMUTABLE; 4551 if (flags & EXT4_NOATIME_FL) 4552 new_fl |= S_NOATIME; 4553 if (flags & EXT4_DIRSYNC_FL) 4554 new_fl |= S_DIRSYNC; 4555 4556 /* Because of the way inode_set_flags() works we must preserve S_DAX 4557 * here if already set. */ 4558 new_fl |= (inode->i_flags & S_DAX); 4559 if (init && ext4_should_enable_dax(inode)) 4560 new_fl |= S_DAX; 4561 4562 if (flags & EXT4_ENCRYPT_FL) 4563 new_fl |= S_ENCRYPTED; 4564 if (flags & EXT4_CASEFOLD_FL) 4565 new_fl |= S_CASEFOLD; 4566 if (flags & EXT4_VERITY_FL) 4567 new_fl |= S_VERITY; 4568 inode_set_flags(inode, new_fl, 4569 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4570 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4571 } 4572 4573 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4574 struct ext4_inode_info *ei) 4575 { 4576 blkcnt_t i_blocks ; 4577 struct inode *inode = &(ei->vfs_inode); 4578 struct super_block *sb = inode->i_sb; 4579 4580 if (ext4_has_feature_huge_file(sb)) { 4581 /* we are using combined 48 bit field */ 4582 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4583 le32_to_cpu(raw_inode->i_blocks_lo); 4584 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4585 /* i_blocks represent file system block size */ 4586 return i_blocks << (inode->i_blkbits - 9); 4587 } else { 4588 return i_blocks; 4589 } 4590 } else { 4591 return le32_to_cpu(raw_inode->i_blocks_lo); 4592 } 4593 } 4594 4595 static inline int ext4_iget_extra_inode(struct inode *inode, 4596 struct ext4_inode *raw_inode, 4597 struct ext4_inode_info *ei) 4598 { 4599 __le32 *magic = (void *)raw_inode + 4600 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4601 4602 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4603 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4604 int err; 4605 4606 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4607 err = ext4_find_inline_data_nolock(inode); 4608 if (!err && ext4_has_inline_data(inode)) 4609 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4610 return err; 4611 } else 4612 EXT4_I(inode)->i_inline_off = 0; 4613 return 0; 4614 } 4615 4616 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4617 { 4618 if (!ext4_has_feature_project(inode->i_sb)) 4619 return -EOPNOTSUPP; 4620 *projid = EXT4_I(inode)->i_projid; 4621 return 0; 4622 } 4623 4624 /* 4625 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4626 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4627 * set. 4628 */ 4629 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4630 { 4631 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4632 inode_set_iversion_raw(inode, val); 4633 else 4634 inode_set_iversion_queried(inode, val); 4635 } 4636 4637 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4638 4639 { 4640 if (flags & EXT4_IGET_EA_INODE) { 4641 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4642 return "missing EA_INODE flag"; 4643 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4644 EXT4_I(inode)->i_file_acl) 4645 return "ea_inode with extended attributes"; 4646 } else { 4647 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4648 return "unexpected EA_INODE flag"; 4649 } 4650 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4651 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4652 return NULL; 4653 } 4654 4655 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4656 ext4_iget_flags flags, const char *function, 4657 unsigned int line) 4658 { 4659 struct ext4_iloc iloc; 4660 struct ext4_inode *raw_inode; 4661 struct ext4_inode_info *ei; 4662 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4663 struct inode *inode; 4664 const char *err_str; 4665 journal_t *journal = EXT4_SB(sb)->s_journal; 4666 long ret; 4667 loff_t size; 4668 int block; 4669 uid_t i_uid; 4670 gid_t i_gid; 4671 projid_t i_projid; 4672 4673 if ((!(flags & EXT4_IGET_SPECIAL) && 4674 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4675 ino == le32_to_cpu(es->s_usr_quota_inum) || 4676 ino == le32_to_cpu(es->s_grp_quota_inum) || 4677 ino == le32_to_cpu(es->s_prj_quota_inum) || 4678 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4679 (ino < EXT4_ROOT_INO) || 4680 (ino > le32_to_cpu(es->s_inodes_count))) { 4681 if (flags & EXT4_IGET_HANDLE) 4682 return ERR_PTR(-ESTALE); 4683 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4684 "inode #%lu: comm %s: iget: illegal inode #", 4685 ino, current->comm); 4686 return ERR_PTR(-EFSCORRUPTED); 4687 } 4688 4689 inode = iget_locked(sb, ino); 4690 if (!inode) 4691 return ERR_PTR(-ENOMEM); 4692 if (!(inode->i_state & I_NEW)) { 4693 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4694 ext4_error_inode(inode, function, line, 0, err_str); 4695 iput(inode); 4696 return ERR_PTR(-EFSCORRUPTED); 4697 } 4698 return inode; 4699 } 4700 4701 ei = EXT4_I(inode); 4702 iloc.bh = NULL; 4703 4704 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4705 if (ret < 0) 4706 goto bad_inode; 4707 raw_inode = ext4_raw_inode(&iloc); 4708 4709 if ((flags & EXT4_IGET_HANDLE) && 4710 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4711 ret = -ESTALE; 4712 goto bad_inode; 4713 } 4714 4715 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4716 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4717 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4718 EXT4_INODE_SIZE(inode->i_sb) || 4719 (ei->i_extra_isize & 3)) { 4720 ext4_error_inode(inode, function, line, 0, 4721 "iget: bad extra_isize %u " 4722 "(inode size %u)", 4723 ei->i_extra_isize, 4724 EXT4_INODE_SIZE(inode->i_sb)); 4725 ret = -EFSCORRUPTED; 4726 goto bad_inode; 4727 } 4728 } else 4729 ei->i_extra_isize = 0; 4730 4731 /* Precompute checksum seed for inode metadata */ 4732 if (ext4_has_metadata_csum(sb)) { 4733 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4734 __u32 csum; 4735 __le32 inum = cpu_to_le32(inode->i_ino); 4736 __le32 gen = raw_inode->i_generation; 4737 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4738 sizeof(inum)); 4739 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4740 sizeof(gen)); 4741 } 4742 4743 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4744 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4745 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4746 ext4_error_inode_err(inode, function, line, 0, 4747 EFSBADCRC, "iget: checksum invalid"); 4748 ret = -EFSBADCRC; 4749 goto bad_inode; 4750 } 4751 4752 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4753 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4754 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4755 if (ext4_has_feature_project(sb) && 4756 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4757 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4758 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4759 else 4760 i_projid = EXT4_DEF_PROJID; 4761 4762 if (!(test_opt(inode->i_sb, NO_UID32))) { 4763 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4764 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4765 } 4766 i_uid_write(inode, i_uid); 4767 i_gid_write(inode, i_gid); 4768 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4769 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4770 4771 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4772 ei->i_inline_off = 0; 4773 ei->i_dir_start_lookup = 0; 4774 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4775 /* We now have enough fields to check if the inode was active or not. 4776 * This is needed because nfsd might try to access dead inodes 4777 * the test is that same one that e2fsck uses 4778 * NeilBrown 1999oct15 4779 */ 4780 if (inode->i_nlink == 0) { 4781 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4782 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4783 ino != EXT4_BOOT_LOADER_INO) { 4784 /* this inode is deleted or unallocated */ 4785 if (flags & EXT4_IGET_SPECIAL) { 4786 ext4_error_inode(inode, function, line, 0, 4787 "iget: special inode unallocated"); 4788 ret = -EFSCORRUPTED; 4789 } else 4790 ret = -ESTALE; 4791 goto bad_inode; 4792 } 4793 /* The only unlinked inodes we let through here have 4794 * valid i_mode and are being read by the orphan 4795 * recovery code: that's fine, we're about to complete 4796 * the process of deleting those. 4797 * OR it is the EXT4_BOOT_LOADER_INO which is 4798 * not initialized on a new filesystem. */ 4799 } 4800 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4801 ext4_set_inode_flags(inode, true); 4802 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4803 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4804 if (ext4_has_feature_64bit(sb)) 4805 ei->i_file_acl |= 4806 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4807 inode->i_size = ext4_isize(sb, raw_inode); 4808 if ((size = i_size_read(inode)) < 0) { 4809 ext4_error_inode(inode, function, line, 0, 4810 "iget: bad i_size value: %lld", size); 4811 ret = -EFSCORRUPTED; 4812 goto bad_inode; 4813 } 4814 /* 4815 * If dir_index is not enabled but there's dir with INDEX flag set, 4816 * we'd normally treat htree data as empty space. But with metadata 4817 * checksumming that corrupts checksums so forbid that. 4818 */ 4819 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4820 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4821 ext4_error_inode(inode, function, line, 0, 4822 "iget: Dir with htree data on filesystem without dir_index feature."); 4823 ret = -EFSCORRUPTED; 4824 goto bad_inode; 4825 } 4826 ei->i_disksize = inode->i_size; 4827 #ifdef CONFIG_QUOTA 4828 ei->i_reserved_quota = 0; 4829 #endif 4830 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4831 ei->i_block_group = iloc.block_group; 4832 ei->i_last_alloc_group = ~0; 4833 /* 4834 * NOTE! The in-memory inode i_data array is in little-endian order 4835 * even on big-endian machines: we do NOT byteswap the block numbers! 4836 */ 4837 for (block = 0; block < EXT4_N_BLOCKS; block++) 4838 ei->i_data[block] = raw_inode->i_block[block]; 4839 INIT_LIST_HEAD(&ei->i_orphan); 4840 ext4_fc_init_inode(&ei->vfs_inode); 4841 4842 /* 4843 * Set transaction id's of transactions that have to be committed 4844 * to finish f[data]sync. We set them to currently running transaction 4845 * as we cannot be sure that the inode or some of its metadata isn't 4846 * part of the transaction - the inode could have been reclaimed and 4847 * now it is reread from disk. 4848 */ 4849 if (journal) { 4850 transaction_t *transaction; 4851 tid_t tid; 4852 4853 read_lock(&journal->j_state_lock); 4854 if (journal->j_running_transaction) 4855 transaction = journal->j_running_transaction; 4856 else 4857 transaction = journal->j_committing_transaction; 4858 if (transaction) 4859 tid = transaction->t_tid; 4860 else 4861 tid = journal->j_commit_sequence; 4862 read_unlock(&journal->j_state_lock); 4863 ei->i_sync_tid = tid; 4864 ei->i_datasync_tid = tid; 4865 } 4866 4867 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4868 if (ei->i_extra_isize == 0) { 4869 /* The extra space is currently unused. Use it. */ 4870 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4871 ei->i_extra_isize = sizeof(struct ext4_inode) - 4872 EXT4_GOOD_OLD_INODE_SIZE; 4873 } else { 4874 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4875 if (ret) 4876 goto bad_inode; 4877 } 4878 } 4879 4880 EXT4_INODE_GET_CTIME(inode, raw_inode); 4881 EXT4_INODE_GET_ATIME(inode, raw_inode); 4882 EXT4_INODE_GET_MTIME(inode, raw_inode); 4883 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4884 4885 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4886 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4887 4888 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4889 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4890 ivers |= 4891 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4892 } 4893 ext4_inode_set_iversion_queried(inode, ivers); 4894 } 4895 4896 ret = 0; 4897 if (ei->i_file_acl && 4898 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4899 ext4_error_inode(inode, function, line, 0, 4900 "iget: bad extended attribute block %llu", 4901 ei->i_file_acl); 4902 ret = -EFSCORRUPTED; 4903 goto bad_inode; 4904 } else if (!ext4_has_inline_data(inode)) { 4905 /* validate the block references in the inode */ 4906 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4907 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4908 (S_ISLNK(inode->i_mode) && 4909 !ext4_inode_is_fast_symlink(inode)))) { 4910 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4911 ret = ext4_ext_check_inode(inode); 4912 else 4913 ret = ext4_ind_check_inode(inode); 4914 } 4915 } 4916 if (ret) 4917 goto bad_inode; 4918 4919 if (S_ISREG(inode->i_mode)) { 4920 inode->i_op = &ext4_file_inode_operations; 4921 inode->i_fop = &ext4_file_operations; 4922 ext4_set_aops(inode); 4923 } else if (S_ISDIR(inode->i_mode)) { 4924 inode->i_op = &ext4_dir_inode_operations; 4925 inode->i_fop = &ext4_dir_operations; 4926 } else if (S_ISLNK(inode->i_mode)) { 4927 /* VFS does not allow setting these so must be corruption */ 4928 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4929 ext4_error_inode(inode, function, line, 0, 4930 "iget: immutable or append flags " 4931 "not allowed on symlinks"); 4932 ret = -EFSCORRUPTED; 4933 goto bad_inode; 4934 } 4935 if (IS_ENCRYPTED(inode)) { 4936 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4937 } else if (ext4_inode_is_fast_symlink(inode)) { 4938 inode->i_link = (char *)ei->i_data; 4939 inode->i_op = &ext4_fast_symlink_inode_operations; 4940 nd_terminate_link(ei->i_data, inode->i_size, 4941 sizeof(ei->i_data) - 1); 4942 } else { 4943 inode->i_op = &ext4_symlink_inode_operations; 4944 } 4945 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4946 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4947 inode->i_op = &ext4_special_inode_operations; 4948 if (raw_inode->i_block[0]) 4949 init_special_inode(inode, inode->i_mode, 4950 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4951 else 4952 init_special_inode(inode, inode->i_mode, 4953 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4954 } else if (ino == EXT4_BOOT_LOADER_INO) { 4955 make_bad_inode(inode); 4956 } else { 4957 ret = -EFSCORRUPTED; 4958 ext4_error_inode(inode, function, line, 0, 4959 "iget: bogus i_mode (%o)", inode->i_mode); 4960 goto bad_inode; 4961 } 4962 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4963 ext4_error_inode(inode, function, line, 0, 4964 "casefold flag without casefold feature"); 4965 ret = -EFSCORRUPTED; 4966 goto bad_inode; 4967 } 4968 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4969 ext4_error_inode(inode, function, line, 0, err_str); 4970 ret = -EFSCORRUPTED; 4971 goto bad_inode; 4972 } 4973 4974 brelse(iloc.bh); 4975 unlock_new_inode(inode); 4976 return inode; 4977 4978 bad_inode: 4979 brelse(iloc.bh); 4980 iget_failed(inode); 4981 return ERR_PTR(ret); 4982 } 4983 4984 static void __ext4_update_other_inode_time(struct super_block *sb, 4985 unsigned long orig_ino, 4986 unsigned long ino, 4987 struct ext4_inode *raw_inode) 4988 { 4989 struct inode *inode; 4990 4991 inode = find_inode_by_ino_rcu(sb, ino); 4992 if (!inode) 4993 return; 4994 4995 if (!inode_is_dirtytime_only(inode)) 4996 return; 4997 4998 spin_lock(&inode->i_lock); 4999 if (inode_is_dirtytime_only(inode)) { 5000 struct ext4_inode_info *ei = EXT4_I(inode); 5001 5002 inode->i_state &= ~I_DIRTY_TIME; 5003 spin_unlock(&inode->i_lock); 5004 5005 spin_lock(&ei->i_raw_lock); 5006 EXT4_INODE_SET_CTIME(inode, raw_inode); 5007 EXT4_INODE_SET_MTIME(inode, raw_inode); 5008 EXT4_INODE_SET_ATIME(inode, raw_inode); 5009 ext4_inode_csum_set(inode, raw_inode, ei); 5010 spin_unlock(&ei->i_raw_lock); 5011 trace_ext4_other_inode_update_time(inode, orig_ino); 5012 return; 5013 } 5014 spin_unlock(&inode->i_lock); 5015 } 5016 5017 /* 5018 * Opportunistically update the other time fields for other inodes in 5019 * the same inode table block. 5020 */ 5021 static void ext4_update_other_inodes_time(struct super_block *sb, 5022 unsigned long orig_ino, char *buf) 5023 { 5024 unsigned long ino; 5025 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5026 int inode_size = EXT4_INODE_SIZE(sb); 5027 5028 /* 5029 * Calculate the first inode in the inode table block. Inode 5030 * numbers are one-based. That is, the first inode in a block 5031 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5032 */ 5033 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5034 rcu_read_lock(); 5035 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5036 if (ino == orig_ino) 5037 continue; 5038 __ext4_update_other_inode_time(sb, orig_ino, ino, 5039 (struct ext4_inode *)buf); 5040 } 5041 rcu_read_unlock(); 5042 } 5043 5044 /* 5045 * Post the struct inode info into an on-disk inode location in the 5046 * buffer-cache. This gobbles the caller's reference to the 5047 * buffer_head in the inode location struct. 5048 * 5049 * The caller must have write access to iloc->bh. 5050 */ 5051 static int ext4_do_update_inode(handle_t *handle, 5052 struct inode *inode, 5053 struct ext4_iloc *iloc) 5054 { 5055 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5056 struct ext4_inode_info *ei = EXT4_I(inode); 5057 struct buffer_head *bh = iloc->bh; 5058 struct super_block *sb = inode->i_sb; 5059 int err; 5060 int need_datasync = 0, set_large_file = 0; 5061 5062 spin_lock(&ei->i_raw_lock); 5063 5064 /* 5065 * For fields not tracked in the in-memory inode, initialise them 5066 * to zero for new inodes. 5067 */ 5068 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5069 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5070 5071 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5072 need_datasync = 1; 5073 if (ei->i_disksize > 0x7fffffffULL) { 5074 if (!ext4_has_feature_large_file(sb) || 5075 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5076 set_large_file = 1; 5077 } 5078 5079 err = ext4_fill_raw_inode(inode, raw_inode); 5080 spin_unlock(&ei->i_raw_lock); 5081 if (err) { 5082 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5083 goto out_brelse; 5084 } 5085 5086 if (inode->i_sb->s_flags & SB_LAZYTIME) 5087 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5088 bh->b_data); 5089 5090 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5091 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5092 if (err) 5093 goto out_error; 5094 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5095 if (set_large_file) { 5096 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5097 err = ext4_journal_get_write_access(handle, sb, 5098 EXT4_SB(sb)->s_sbh, 5099 EXT4_JTR_NONE); 5100 if (err) 5101 goto out_error; 5102 lock_buffer(EXT4_SB(sb)->s_sbh); 5103 ext4_set_feature_large_file(sb); 5104 ext4_superblock_csum_set(sb); 5105 unlock_buffer(EXT4_SB(sb)->s_sbh); 5106 ext4_handle_sync(handle); 5107 err = ext4_handle_dirty_metadata(handle, NULL, 5108 EXT4_SB(sb)->s_sbh); 5109 } 5110 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5111 out_error: 5112 ext4_std_error(inode->i_sb, err); 5113 out_brelse: 5114 brelse(bh); 5115 return err; 5116 } 5117 5118 /* 5119 * ext4_write_inode() 5120 * 5121 * We are called from a few places: 5122 * 5123 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5124 * Here, there will be no transaction running. We wait for any running 5125 * transaction to commit. 5126 * 5127 * - Within flush work (sys_sync(), kupdate and such). 5128 * We wait on commit, if told to. 5129 * 5130 * - Within iput_final() -> write_inode_now() 5131 * We wait on commit, if told to. 5132 * 5133 * In all cases it is actually safe for us to return without doing anything, 5134 * because the inode has been copied into a raw inode buffer in 5135 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5136 * writeback. 5137 * 5138 * Note that we are absolutely dependent upon all inode dirtiers doing the 5139 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5140 * which we are interested. 5141 * 5142 * It would be a bug for them to not do this. The code: 5143 * 5144 * mark_inode_dirty(inode) 5145 * stuff(); 5146 * inode->i_size = expr; 5147 * 5148 * is in error because write_inode() could occur while `stuff()' is running, 5149 * and the new i_size will be lost. Plus the inode will no longer be on the 5150 * superblock's dirty inode list. 5151 */ 5152 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5153 { 5154 int err; 5155 5156 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5157 return 0; 5158 5159 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5160 return -EIO; 5161 5162 if (EXT4_SB(inode->i_sb)->s_journal) { 5163 if (ext4_journal_current_handle()) { 5164 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5165 dump_stack(); 5166 return -EIO; 5167 } 5168 5169 /* 5170 * No need to force transaction in WB_SYNC_NONE mode. Also 5171 * ext4_sync_fs() will force the commit after everything is 5172 * written. 5173 */ 5174 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5175 return 0; 5176 5177 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5178 EXT4_I(inode)->i_sync_tid); 5179 } else { 5180 struct ext4_iloc iloc; 5181 5182 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5183 if (err) 5184 return err; 5185 /* 5186 * sync(2) will flush the whole buffer cache. No need to do 5187 * it here separately for each inode. 5188 */ 5189 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5190 sync_dirty_buffer(iloc.bh); 5191 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5192 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5193 "IO error syncing inode"); 5194 err = -EIO; 5195 } 5196 brelse(iloc.bh); 5197 } 5198 return err; 5199 } 5200 5201 /* 5202 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5203 * buffers that are attached to a folio straddling i_size and are undergoing 5204 * commit. In that case we have to wait for commit to finish and try again. 5205 */ 5206 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5207 { 5208 unsigned offset; 5209 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5210 tid_t commit_tid = 0; 5211 int ret; 5212 5213 offset = inode->i_size & (PAGE_SIZE - 1); 5214 /* 5215 * If the folio is fully truncated, we don't need to wait for any commit 5216 * (and we even should not as __ext4_journalled_invalidate_folio() may 5217 * strip all buffers from the folio but keep the folio dirty which can then 5218 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5219 * buffers). Also we don't need to wait for any commit if all buffers in 5220 * the folio remain valid. This is most beneficial for the common case of 5221 * blocksize == PAGESIZE. 5222 */ 5223 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5224 return; 5225 while (1) { 5226 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5227 inode->i_size >> PAGE_SHIFT); 5228 if (IS_ERR(folio)) 5229 return; 5230 ret = __ext4_journalled_invalidate_folio(folio, offset, 5231 folio_size(folio) - offset); 5232 folio_unlock(folio); 5233 folio_put(folio); 5234 if (ret != -EBUSY) 5235 return; 5236 commit_tid = 0; 5237 read_lock(&journal->j_state_lock); 5238 if (journal->j_committing_transaction) 5239 commit_tid = journal->j_committing_transaction->t_tid; 5240 read_unlock(&journal->j_state_lock); 5241 if (commit_tid) 5242 jbd2_log_wait_commit(journal, commit_tid); 5243 } 5244 } 5245 5246 /* 5247 * ext4_setattr() 5248 * 5249 * Called from notify_change. 5250 * 5251 * We want to trap VFS attempts to truncate the file as soon as 5252 * possible. In particular, we want to make sure that when the VFS 5253 * shrinks i_size, we put the inode on the orphan list and modify 5254 * i_disksize immediately, so that during the subsequent flushing of 5255 * dirty pages and freeing of disk blocks, we can guarantee that any 5256 * commit will leave the blocks being flushed in an unused state on 5257 * disk. (On recovery, the inode will get truncated and the blocks will 5258 * be freed, so we have a strong guarantee that no future commit will 5259 * leave these blocks visible to the user.) 5260 * 5261 * Another thing we have to assure is that if we are in ordered mode 5262 * and inode is still attached to the committing transaction, we must 5263 * we start writeout of all the dirty pages which are being truncated. 5264 * This way we are sure that all the data written in the previous 5265 * transaction are already on disk (truncate waits for pages under 5266 * writeback). 5267 * 5268 * Called with inode->i_rwsem down. 5269 */ 5270 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5271 struct iattr *attr) 5272 { 5273 struct inode *inode = d_inode(dentry); 5274 int error, rc = 0; 5275 int orphan = 0; 5276 const unsigned int ia_valid = attr->ia_valid; 5277 bool inc_ivers = true; 5278 5279 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5280 return -EIO; 5281 5282 if (unlikely(IS_IMMUTABLE(inode))) 5283 return -EPERM; 5284 5285 if (unlikely(IS_APPEND(inode) && 5286 (ia_valid & (ATTR_MODE | ATTR_UID | 5287 ATTR_GID | ATTR_TIMES_SET)))) 5288 return -EPERM; 5289 5290 error = setattr_prepare(idmap, dentry, attr); 5291 if (error) 5292 return error; 5293 5294 error = fscrypt_prepare_setattr(dentry, attr); 5295 if (error) 5296 return error; 5297 5298 error = fsverity_prepare_setattr(dentry, attr); 5299 if (error) 5300 return error; 5301 5302 if (is_quota_modification(idmap, inode, attr)) { 5303 error = dquot_initialize(inode); 5304 if (error) 5305 return error; 5306 } 5307 5308 if (i_uid_needs_update(idmap, attr, inode) || 5309 i_gid_needs_update(idmap, attr, inode)) { 5310 handle_t *handle; 5311 5312 /* (user+group)*(old+new) structure, inode write (sb, 5313 * inode block, ? - but truncate inode update has it) */ 5314 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5315 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5316 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5317 if (IS_ERR(handle)) { 5318 error = PTR_ERR(handle); 5319 goto err_out; 5320 } 5321 5322 /* dquot_transfer() calls back ext4_get_inode_usage() which 5323 * counts xattr inode references. 5324 */ 5325 down_read(&EXT4_I(inode)->xattr_sem); 5326 error = dquot_transfer(idmap, inode, attr); 5327 up_read(&EXT4_I(inode)->xattr_sem); 5328 5329 if (error) { 5330 ext4_journal_stop(handle); 5331 return error; 5332 } 5333 /* Update corresponding info in inode so that everything is in 5334 * one transaction */ 5335 i_uid_update(idmap, attr, inode); 5336 i_gid_update(idmap, attr, inode); 5337 error = ext4_mark_inode_dirty(handle, inode); 5338 ext4_journal_stop(handle); 5339 if (unlikely(error)) { 5340 return error; 5341 } 5342 } 5343 5344 if (attr->ia_valid & ATTR_SIZE) { 5345 handle_t *handle; 5346 loff_t oldsize = inode->i_size; 5347 loff_t old_disksize; 5348 int shrink = (attr->ia_size < inode->i_size); 5349 5350 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5351 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5352 5353 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5354 return -EFBIG; 5355 } 5356 } 5357 if (!S_ISREG(inode->i_mode)) { 5358 return -EINVAL; 5359 } 5360 5361 if (attr->ia_size == inode->i_size) 5362 inc_ivers = false; 5363 5364 if (shrink) { 5365 if (ext4_should_order_data(inode)) { 5366 error = ext4_begin_ordered_truncate(inode, 5367 attr->ia_size); 5368 if (error) 5369 goto err_out; 5370 } 5371 /* 5372 * Blocks are going to be removed from the inode. Wait 5373 * for dio in flight. 5374 */ 5375 inode_dio_wait(inode); 5376 } 5377 5378 filemap_invalidate_lock(inode->i_mapping); 5379 5380 rc = ext4_break_layouts(inode); 5381 if (rc) { 5382 filemap_invalidate_unlock(inode->i_mapping); 5383 goto err_out; 5384 } 5385 5386 if (attr->ia_size != inode->i_size) { 5387 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5388 if (IS_ERR(handle)) { 5389 error = PTR_ERR(handle); 5390 goto out_mmap_sem; 5391 } 5392 if (ext4_handle_valid(handle) && shrink) { 5393 error = ext4_orphan_add(handle, inode); 5394 orphan = 1; 5395 } 5396 /* 5397 * Update c/mtime on truncate up, ext4_truncate() will 5398 * update c/mtime in shrink case below 5399 */ 5400 if (!shrink) 5401 inode_set_mtime_to_ts(inode, 5402 inode_set_ctime_current(inode)); 5403 5404 if (shrink) 5405 ext4_fc_track_range(handle, inode, 5406 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5407 inode->i_sb->s_blocksize_bits, 5408 EXT_MAX_BLOCKS - 1); 5409 else 5410 ext4_fc_track_range( 5411 handle, inode, 5412 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5413 inode->i_sb->s_blocksize_bits, 5414 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5415 inode->i_sb->s_blocksize_bits); 5416 5417 down_write(&EXT4_I(inode)->i_data_sem); 5418 old_disksize = EXT4_I(inode)->i_disksize; 5419 EXT4_I(inode)->i_disksize = attr->ia_size; 5420 rc = ext4_mark_inode_dirty(handle, inode); 5421 if (!error) 5422 error = rc; 5423 /* 5424 * We have to update i_size under i_data_sem together 5425 * with i_disksize to avoid races with writeback code 5426 * running ext4_wb_update_i_disksize(). 5427 */ 5428 if (!error) 5429 i_size_write(inode, attr->ia_size); 5430 else 5431 EXT4_I(inode)->i_disksize = old_disksize; 5432 up_write(&EXT4_I(inode)->i_data_sem); 5433 ext4_journal_stop(handle); 5434 if (error) 5435 goto out_mmap_sem; 5436 if (!shrink) { 5437 pagecache_isize_extended(inode, oldsize, 5438 inode->i_size); 5439 } else if (ext4_should_journal_data(inode)) { 5440 ext4_wait_for_tail_page_commit(inode); 5441 } 5442 } 5443 5444 /* 5445 * Truncate pagecache after we've waited for commit 5446 * in data=journal mode to make pages freeable. 5447 */ 5448 truncate_pagecache(inode, inode->i_size); 5449 /* 5450 * Call ext4_truncate() even if i_size didn't change to 5451 * truncate possible preallocated blocks. 5452 */ 5453 if (attr->ia_size <= oldsize) { 5454 rc = ext4_truncate(inode); 5455 if (rc) 5456 error = rc; 5457 } 5458 out_mmap_sem: 5459 filemap_invalidate_unlock(inode->i_mapping); 5460 } 5461 5462 if (!error) { 5463 if (inc_ivers) 5464 inode_inc_iversion(inode); 5465 setattr_copy(idmap, inode, attr); 5466 mark_inode_dirty(inode); 5467 } 5468 5469 /* 5470 * If the call to ext4_truncate failed to get a transaction handle at 5471 * all, we need to clean up the in-core orphan list manually. 5472 */ 5473 if (orphan && inode->i_nlink) 5474 ext4_orphan_del(NULL, inode); 5475 5476 if (!error && (ia_valid & ATTR_MODE)) 5477 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5478 5479 err_out: 5480 if (error) 5481 ext4_std_error(inode->i_sb, error); 5482 if (!error) 5483 error = rc; 5484 return error; 5485 } 5486 5487 u32 ext4_dio_alignment(struct inode *inode) 5488 { 5489 if (fsverity_active(inode)) 5490 return 0; 5491 if (ext4_should_journal_data(inode)) 5492 return 0; 5493 if (ext4_has_inline_data(inode)) 5494 return 0; 5495 if (IS_ENCRYPTED(inode)) { 5496 if (!fscrypt_dio_supported(inode)) 5497 return 0; 5498 return i_blocksize(inode); 5499 } 5500 return 1; /* use the iomap defaults */ 5501 } 5502 5503 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5504 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5505 { 5506 struct inode *inode = d_inode(path->dentry); 5507 struct ext4_inode *raw_inode; 5508 struct ext4_inode_info *ei = EXT4_I(inode); 5509 unsigned int flags; 5510 5511 if ((request_mask & STATX_BTIME) && 5512 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5513 stat->result_mask |= STATX_BTIME; 5514 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5515 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5516 } 5517 5518 /* 5519 * Return the DIO alignment restrictions if requested. We only return 5520 * this information when requested, since on encrypted files it might 5521 * take a fair bit of work to get if the file wasn't opened recently. 5522 */ 5523 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5524 u32 dio_align = ext4_dio_alignment(inode); 5525 5526 stat->result_mask |= STATX_DIOALIGN; 5527 if (dio_align == 1) { 5528 struct block_device *bdev = inode->i_sb->s_bdev; 5529 5530 /* iomap defaults */ 5531 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5532 stat->dio_offset_align = bdev_logical_block_size(bdev); 5533 } else { 5534 stat->dio_mem_align = dio_align; 5535 stat->dio_offset_align = dio_align; 5536 } 5537 } 5538 5539 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5540 if (flags & EXT4_APPEND_FL) 5541 stat->attributes |= STATX_ATTR_APPEND; 5542 if (flags & EXT4_COMPR_FL) 5543 stat->attributes |= STATX_ATTR_COMPRESSED; 5544 if (flags & EXT4_ENCRYPT_FL) 5545 stat->attributes |= STATX_ATTR_ENCRYPTED; 5546 if (flags & EXT4_IMMUTABLE_FL) 5547 stat->attributes |= STATX_ATTR_IMMUTABLE; 5548 if (flags & EXT4_NODUMP_FL) 5549 stat->attributes |= STATX_ATTR_NODUMP; 5550 if (flags & EXT4_VERITY_FL) 5551 stat->attributes |= STATX_ATTR_VERITY; 5552 5553 stat->attributes_mask |= (STATX_ATTR_APPEND | 5554 STATX_ATTR_COMPRESSED | 5555 STATX_ATTR_ENCRYPTED | 5556 STATX_ATTR_IMMUTABLE | 5557 STATX_ATTR_NODUMP | 5558 STATX_ATTR_VERITY); 5559 5560 generic_fillattr(idmap, request_mask, inode, stat); 5561 return 0; 5562 } 5563 5564 int ext4_file_getattr(struct mnt_idmap *idmap, 5565 const struct path *path, struct kstat *stat, 5566 u32 request_mask, unsigned int query_flags) 5567 { 5568 struct inode *inode = d_inode(path->dentry); 5569 u64 delalloc_blocks; 5570 5571 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5572 5573 /* 5574 * If there is inline data in the inode, the inode will normally not 5575 * have data blocks allocated (it may have an external xattr block). 5576 * Report at least one sector for such files, so tools like tar, rsync, 5577 * others don't incorrectly think the file is completely sparse. 5578 */ 5579 if (unlikely(ext4_has_inline_data(inode))) 5580 stat->blocks += (stat->size + 511) >> 9; 5581 5582 /* 5583 * We can't update i_blocks if the block allocation is delayed 5584 * otherwise in the case of system crash before the real block 5585 * allocation is done, we will have i_blocks inconsistent with 5586 * on-disk file blocks. 5587 * We always keep i_blocks updated together with real 5588 * allocation. But to not confuse with user, stat 5589 * will return the blocks that include the delayed allocation 5590 * blocks for this file. 5591 */ 5592 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5593 EXT4_I(inode)->i_reserved_data_blocks); 5594 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5595 return 0; 5596 } 5597 5598 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5599 int pextents) 5600 { 5601 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5602 return ext4_ind_trans_blocks(inode, lblocks); 5603 return ext4_ext_index_trans_blocks(inode, pextents); 5604 } 5605 5606 /* 5607 * Account for index blocks, block groups bitmaps and block group 5608 * descriptor blocks if modify datablocks and index blocks 5609 * worse case, the indexs blocks spread over different block groups 5610 * 5611 * If datablocks are discontiguous, they are possible to spread over 5612 * different block groups too. If they are contiguous, with flexbg, 5613 * they could still across block group boundary. 5614 * 5615 * Also account for superblock, inode, quota and xattr blocks 5616 */ 5617 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5618 int pextents) 5619 { 5620 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5621 int gdpblocks; 5622 int idxblocks; 5623 int ret; 5624 5625 /* 5626 * How many index blocks need to touch to map @lblocks logical blocks 5627 * to @pextents physical extents? 5628 */ 5629 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5630 5631 ret = idxblocks; 5632 5633 /* 5634 * Now let's see how many group bitmaps and group descriptors need 5635 * to account 5636 */ 5637 groups = idxblocks + pextents; 5638 gdpblocks = groups; 5639 if (groups > ngroups) 5640 groups = ngroups; 5641 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5642 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5643 5644 /* bitmaps and block group descriptor blocks */ 5645 ret += groups + gdpblocks; 5646 5647 /* Blocks for super block, inode, quota and xattr blocks */ 5648 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5649 5650 return ret; 5651 } 5652 5653 /* 5654 * Calculate the total number of credits to reserve to fit 5655 * the modification of a single pages into a single transaction, 5656 * which may include multiple chunks of block allocations. 5657 * 5658 * This could be called via ext4_write_begin() 5659 * 5660 * We need to consider the worse case, when 5661 * one new block per extent. 5662 */ 5663 int ext4_writepage_trans_blocks(struct inode *inode) 5664 { 5665 int bpp = ext4_journal_blocks_per_page(inode); 5666 int ret; 5667 5668 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5669 5670 /* Account for data blocks for journalled mode */ 5671 if (ext4_should_journal_data(inode)) 5672 ret += bpp; 5673 return ret; 5674 } 5675 5676 /* 5677 * Calculate the journal credits for a chunk of data modification. 5678 * 5679 * This is called from DIO, fallocate or whoever calling 5680 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5681 * 5682 * journal buffers for data blocks are not included here, as DIO 5683 * and fallocate do no need to journal data buffers. 5684 */ 5685 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5686 { 5687 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5688 } 5689 5690 /* 5691 * The caller must have previously called ext4_reserve_inode_write(). 5692 * Give this, we know that the caller already has write access to iloc->bh. 5693 */ 5694 int ext4_mark_iloc_dirty(handle_t *handle, 5695 struct inode *inode, struct ext4_iloc *iloc) 5696 { 5697 int err = 0; 5698 5699 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5700 put_bh(iloc->bh); 5701 return -EIO; 5702 } 5703 ext4_fc_track_inode(handle, inode); 5704 5705 /* the do_update_inode consumes one bh->b_count */ 5706 get_bh(iloc->bh); 5707 5708 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5709 err = ext4_do_update_inode(handle, inode, iloc); 5710 put_bh(iloc->bh); 5711 return err; 5712 } 5713 5714 /* 5715 * On success, We end up with an outstanding reference count against 5716 * iloc->bh. This _must_ be cleaned up later. 5717 */ 5718 5719 int 5720 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5721 struct ext4_iloc *iloc) 5722 { 5723 int err; 5724 5725 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5726 return -EIO; 5727 5728 err = ext4_get_inode_loc(inode, iloc); 5729 if (!err) { 5730 BUFFER_TRACE(iloc->bh, "get_write_access"); 5731 err = ext4_journal_get_write_access(handle, inode->i_sb, 5732 iloc->bh, EXT4_JTR_NONE); 5733 if (err) { 5734 brelse(iloc->bh); 5735 iloc->bh = NULL; 5736 } 5737 } 5738 ext4_std_error(inode->i_sb, err); 5739 return err; 5740 } 5741 5742 static int __ext4_expand_extra_isize(struct inode *inode, 5743 unsigned int new_extra_isize, 5744 struct ext4_iloc *iloc, 5745 handle_t *handle, int *no_expand) 5746 { 5747 struct ext4_inode *raw_inode; 5748 struct ext4_xattr_ibody_header *header; 5749 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5750 struct ext4_inode_info *ei = EXT4_I(inode); 5751 int error; 5752 5753 /* this was checked at iget time, but double check for good measure */ 5754 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5755 (ei->i_extra_isize & 3)) { 5756 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5757 ei->i_extra_isize, 5758 EXT4_INODE_SIZE(inode->i_sb)); 5759 return -EFSCORRUPTED; 5760 } 5761 if ((new_extra_isize < ei->i_extra_isize) || 5762 (new_extra_isize < 4) || 5763 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5764 return -EINVAL; /* Should never happen */ 5765 5766 raw_inode = ext4_raw_inode(iloc); 5767 5768 header = IHDR(inode, raw_inode); 5769 5770 /* No extended attributes present */ 5771 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5772 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5773 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5774 EXT4_I(inode)->i_extra_isize, 0, 5775 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5776 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5777 return 0; 5778 } 5779 5780 /* 5781 * We may need to allocate external xattr block so we need quotas 5782 * initialized. Here we can be called with various locks held so we 5783 * cannot affort to initialize quotas ourselves. So just bail. 5784 */ 5785 if (dquot_initialize_needed(inode)) 5786 return -EAGAIN; 5787 5788 /* try to expand with EAs present */ 5789 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5790 raw_inode, handle); 5791 if (error) { 5792 /* 5793 * Inode size expansion failed; don't try again 5794 */ 5795 *no_expand = 1; 5796 } 5797 5798 return error; 5799 } 5800 5801 /* 5802 * Expand an inode by new_extra_isize bytes. 5803 * Returns 0 on success or negative error number on failure. 5804 */ 5805 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5806 unsigned int new_extra_isize, 5807 struct ext4_iloc iloc, 5808 handle_t *handle) 5809 { 5810 int no_expand; 5811 int error; 5812 5813 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5814 return -EOVERFLOW; 5815 5816 /* 5817 * In nojournal mode, we can immediately attempt to expand 5818 * the inode. When journaled, we first need to obtain extra 5819 * buffer credits since we may write into the EA block 5820 * with this same handle. If journal_extend fails, then it will 5821 * only result in a minor loss of functionality for that inode. 5822 * If this is felt to be critical, then e2fsck should be run to 5823 * force a large enough s_min_extra_isize. 5824 */ 5825 if (ext4_journal_extend(handle, 5826 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5827 return -ENOSPC; 5828 5829 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5830 return -EBUSY; 5831 5832 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5833 handle, &no_expand); 5834 ext4_write_unlock_xattr(inode, &no_expand); 5835 5836 return error; 5837 } 5838 5839 int ext4_expand_extra_isize(struct inode *inode, 5840 unsigned int new_extra_isize, 5841 struct ext4_iloc *iloc) 5842 { 5843 handle_t *handle; 5844 int no_expand; 5845 int error, rc; 5846 5847 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5848 brelse(iloc->bh); 5849 return -EOVERFLOW; 5850 } 5851 5852 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5853 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5854 if (IS_ERR(handle)) { 5855 error = PTR_ERR(handle); 5856 brelse(iloc->bh); 5857 return error; 5858 } 5859 5860 ext4_write_lock_xattr(inode, &no_expand); 5861 5862 BUFFER_TRACE(iloc->bh, "get_write_access"); 5863 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5864 EXT4_JTR_NONE); 5865 if (error) { 5866 brelse(iloc->bh); 5867 goto out_unlock; 5868 } 5869 5870 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5871 handle, &no_expand); 5872 5873 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5874 if (!error) 5875 error = rc; 5876 5877 out_unlock: 5878 ext4_write_unlock_xattr(inode, &no_expand); 5879 ext4_journal_stop(handle); 5880 return error; 5881 } 5882 5883 /* 5884 * What we do here is to mark the in-core inode as clean with respect to inode 5885 * dirtiness (it may still be data-dirty). 5886 * This means that the in-core inode may be reaped by prune_icache 5887 * without having to perform any I/O. This is a very good thing, 5888 * because *any* task may call prune_icache - even ones which 5889 * have a transaction open against a different journal. 5890 * 5891 * Is this cheating? Not really. Sure, we haven't written the 5892 * inode out, but prune_icache isn't a user-visible syncing function. 5893 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5894 * we start and wait on commits. 5895 */ 5896 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5897 const char *func, unsigned int line) 5898 { 5899 struct ext4_iloc iloc; 5900 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5901 int err; 5902 5903 might_sleep(); 5904 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5905 err = ext4_reserve_inode_write(handle, inode, &iloc); 5906 if (err) 5907 goto out; 5908 5909 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5910 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5911 iloc, handle); 5912 5913 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5914 out: 5915 if (unlikely(err)) 5916 ext4_error_inode_err(inode, func, line, 0, err, 5917 "mark_inode_dirty error"); 5918 return err; 5919 } 5920 5921 /* 5922 * ext4_dirty_inode() is called from __mark_inode_dirty() 5923 * 5924 * We're really interested in the case where a file is being extended. 5925 * i_size has been changed by generic_commit_write() and we thus need 5926 * to include the updated inode in the current transaction. 5927 * 5928 * Also, dquot_alloc_block() will always dirty the inode when blocks 5929 * are allocated to the file. 5930 * 5931 * If the inode is marked synchronous, we don't honour that here - doing 5932 * so would cause a commit on atime updates, which we don't bother doing. 5933 * We handle synchronous inodes at the highest possible level. 5934 */ 5935 void ext4_dirty_inode(struct inode *inode, int flags) 5936 { 5937 handle_t *handle; 5938 5939 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5940 if (IS_ERR(handle)) 5941 return; 5942 ext4_mark_inode_dirty(handle, inode); 5943 ext4_journal_stop(handle); 5944 } 5945 5946 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5947 { 5948 journal_t *journal; 5949 handle_t *handle; 5950 int err; 5951 int alloc_ctx; 5952 5953 /* 5954 * We have to be very careful here: changing a data block's 5955 * journaling status dynamically is dangerous. If we write a 5956 * data block to the journal, change the status and then delete 5957 * that block, we risk forgetting to revoke the old log record 5958 * from the journal and so a subsequent replay can corrupt data. 5959 * So, first we make sure that the journal is empty and that 5960 * nobody is changing anything. 5961 */ 5962 5963 journal = EXT4_JOURNAL(inode); 5964 if (!journal) 5965 return 0; 5966 if (is_journal_aborted(journal)) 5967 return -EROFS; 5968 5969 /* Wait for all existing dio workers */ 5970 inode_dio_wait(inode); 5971 5972 /* 5973 * Before flushing the journal and switching inode's aops, we have 5974 * to flush all dirty data the inode has. There can be outstanding 5975 * delayed allocations, there can be unwritten extents created by 5976 * fallocate or buffered writes in dioread_nolock mode covered by 5977 * dirty data which can be converted only after flushing the dirty 5978 * data (and journalled aops don't know how to handle these cases). 5979 */ 5980 if (val) { 5981 filemap_invalidate_lock(inode->i_mapping); 5982 err = filemap_write_and_wait(inode->i_mapping); 5983 if (err < 0) { 5984 filemap_invalidate_unlock(inode->i_mapping); 5985 return err; 5986 } 5987 } 5988 5989 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 5990 jbd2_journal_lock_updates(journal); 5991 5992 /* 5993 * OK, there are no updates running now, and all cached data is 5994 * synced to disk. We are now in a completely consistent state 5995 * which doesn't have anything in the journal, and we know that 5996 * no filesystem updates are running, so it is safe to modify 5997 * the inode's in-core data-journaling state flag now. 5998 */ 5999 6000 if (val) 6001 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6002 else { 6003 err = jbd2_journal_flush(journal, 0); 6004 if (err < 0) { 6005 jbd2_journal_unlock_updates(journal); 6006 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6007 return err; 6008 } 6009 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6010 } 6011 ext4_set_aops(inode); 6012 6013 jbd2_journal_unlock_updates(journal); 6014 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6015 6016 if (val) 6017 filemap_invalidate_unlock(inode->i_mapping); 6018 6019 /* Finally we can mark the inode as dirty. */ 6020 6021 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6022 if (IS_ERR(handle)) 6023 return PTR_ERR(handle); 6024 6025 ext4_fc_mark_ineligible(inode->i_sb, 6026 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6027 err = ext4_mark_inode_dirty(handle, inode); 6028 ext4_handle_sync(handle); 6029 ext4_journal_stop(handle); 6030 ext4_std_error(inode->i_sb, err); 6031 6032 return err; 6033 } 6034 6035 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6036 struct buffer_head *bh) 6037 { 6038 return !buffer_mapped(bh); 6039 } 6040 6041 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6042 { 6043 struct vm_area_struct *vma = vmf->vma; 6044 struct folio *folio = page_folio(vmf->page); 6045 loff_t size; 6046 unsigned long len; 6047 int err; 6048 vm_fault_t ret; 6049 struct file *file = vma->vm_file; 6050 struct inode *inode = file_inode(file); 6051 struct address_space *mapping = inode->i_mapping; 6052 handle_t *handle; 6053 get_block_t *get_block; 6054 int retries = 0; 6055 6056 if (unlikely(IS_IMMUTABLE(inode))) 6057 return VM_FAULT_SIGBUS; 6058 6059 sb_start_pagefault(inode->i_sb); 6060 file_update_time(vma->vm_file); 6061 6062 filemap_invalidate_lock_shared(mapping); 6063 6064 err = ext4_convert_inline_data(inode); 6065 if (err) 6066 goto out_ret; 6067 6068 /* 6069 * On data journalling we skip straight to the transaction handle: 6070 * there's no delalloc; page truncated will be checked later; the 6071 * early return w/ all buffers mapped (calculates size/len) can't 6072 * be used; and there's no dioread_nolock, so only ext4_get_block. 6073 */ 6074 if (ext4_should_journal_data(inode)) 6075 goto retry_alloc; 6076 6077 /* Delalloc case is easy... */ 6078 if (test_opt(inode->i_sb, DELALLOC) && 6079 !ext4_nonda_switch(inode->i_sb)) { 6080 do { 6081 err = block_page_mkwrite(vma, vmf, 6082 ext4_da_get_block_prep); 6083 } while (err == -ENOSPC && 6084 ext4_should_retry_alloc(inode->i_sb, &retries)); 6085 goto out_ret; 6086 } 6087 6088 folio_lock(folio); 6089 size = i_size_read(inode); 6090 /* Page got truncated from under us? */ 6091 if (folio->mapping != mapping || folio_pos(folio) > size) { 6092 folio_unlock(folio); 6093 ret = VM_FAULT_NOPAGE; 6094 goto out; 6095 } 6096 6097 len = folio_size(folio); 6098 if (folio_pos(folio) + len > size) 6099 len = size - folio_pos(folio); 6100 /* 6101 * Return if we have all the buffers mapped. This avoids the need to do 6102 * journal_start/journal_stop which can block and take a long time 6103 * 6104 * This cannot be done for data journalling, as we have to add the 6105 * inode to the transaction's list to writeprotect pages on commit. 6106 */ 6107 if (folio_buffers(folio)) { 6108 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6109 0, len, NULL, 6110 ext4_bh_unmapped)) { 6111 /* Wait so that we don't change page under IO */ 6112 folio_wait_stable(folio); 6113 ret = VM_FAULT_LOCKED; 6114 goto out; 6115 } 6116 } 6117 folio_unlock(folio); 6118 /* OK, we need to fill the hole... */ 6119 if (ext4_should_dioread_nolock(inode)) 6120 get_block = ext4_get_block_unwritten; 6121 else 6122 get_block = ext4_get_block; 6123 retry_alloc: 6124 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6125 ext4_writepage_trans_blocks(inode)); 6126 if (IS_ERR(handle)) { 6127 ret = VM_FAULT_SIGBUS; 6128 goto out; 6129 } 6130 /* 6131 * Data journalling can't use block_page_mkwrite() because it 6132 * will set_buffer_dirty() before do_journal_get_write_access() 6133 * thus might hit warning messages for dirty metadata buffers. 6134 */ 6135 if (!ext4_should_journal_data(inode)) { 6136 err = block_page_mkwrite(vma, vmf, get_block); 6137 } else { 6138 folio_lock(folio); 6139 size = i_size_read(inode); 6140 /* Page got truncated from under us? */ 6141 if (folio->mapping != mapping || folio_pos(folio) > size) { 6142 ret = VM_FAULT_NOPAGE; 6143 goto out_error; 6144 } 6145 6146 len = folio_size(folio); 6147 if (folio_pos(folio) + len > size) 6148 len = size - folio_pos(folio); 6149 6150 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6151 if (!err) { 6152 ret = VM_FAULT_SIGBUS; 6153 if (ext4_journal_folio_buffers(handle, folio, len)) 6154 goto out_error; 6155 } else { 6156 folio_unlock(folio); 6157 } 6158 } 6159 ext4_journal_stop(handle); 6160 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6161 goto retry_alloc; 6162 out_ret: 6163 ret = vmf_fs_error(err); 6164 out: 6165 filemap_invalidate_unlock_shared(mapping); 6166 sb_end_pagefault(inode->i_sb); 6167 return ret; 6168 out_error: 6169 folio_unlock(folio); 6170 ext4_journal_stop(handle); 6171 goto out; 6172 } 6173