xref: /linux/fs/ext4/inode.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 		struct inode *inode, struct page *page, loff_t from,
139 		loff_t length, int flags);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		(inode->i_sb->s_blocksize >> 9) : 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_complete_transaction(journal, commit_tid);
214 			filemap_write_and_wait(&inode->i_data);
215 		}
216 		truncate_inode_pages(&inode->i_data, 0);
217 		ext4_ioend_shutdown(inode);
218 		goto no_delete;
219 	}
220 
221 	if (!is_bad_inode(inode))
222 		dquot_initialize(inode);
223 
224 	if (ext4_should_order_data(inode))
225 		ext4_begin_ordered_truncate(inode, 0);
226 	truncate_inode_pages(&inode->i_data, 0);
227 	ext4_ioend_shutdown(inode);
228 
229 	if (is_bad_inode(inode))
230 		goto no_delete;
231 
232 	/*
233 	 * Protect us against freezing - iput() caller didn't have to have any
234 	 * protection against it
235 	 */
236 	sb_start_intwrite(inode->i_sb);
237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 				    ext4_blocks_for_truncate(inode)+3);
239 	if (IS_ERR(handle)) {
240 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 		/*
242 		 * If we're going to skip the normal cleanup, we still need to
243 		 * make sure that the in-core orphan linked list is properly
244 		 * cleaned up.
245 		 */
246 		ext4_orphan_del(NULL, inode);
247 		sb_end_intwrite(inode->i_sb);
248 		goto no_delete;
249 	}
250 
251 	if (IS_SYNC(inode))
252 		ext4_handle_sync(handle);
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks)
261 		ext4_truncate(inode);
262 
263 	/*
264 	 * ext4_ext_truncate() doesn't reserve any slop when it
265 	 * restarts journal transactions; therefore there may not be
266 	 * enough credits left in the handle to remove the inode from
267 	 * the orphan list and set the dtime field.
268 	 */
269 	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 		err = ext4_journal_extend(handle, 3);
271 		if (err > 0)
272 			err = ext4_journal_restart(handle, 3);
273 		if (err != 0) {
274 			ext4_warning(inode->i_sb,
275 				     "couldn't extend journal (err %d)", err);
276 		stop_handle:
277 			ext4_journal_stop(handle);
278 			ext4_orphan_del(NULL, inode);
279 			sb_end_intwrite(inode->i_sb);
280 			goto no_delete;
281 		}
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= get_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	sb_end_intwrite(inode->i_sb);
309 	return;
310 no_delete:
311 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 }
313 
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 	return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320 
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328 		return ext4_ext_calc_metadata_amount(inode, lblock);
329 
330 	return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332 
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 					int used, int quota_claim)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 	struct ext4_inode_info *ei = EXT4_I(inode);
342 
343 	spin_lock(&ei->i_block_reservation_lock);
344 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 	if (unlikely(used > ei->i_reserved_data_blocks)) {
346 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 			 "with only %d reserved data blocks",
348 			 __func__, inode->i_ino, used,
349 			 ei->i_reserved_data_blocks);
350 		WARN_ON(1);
351 		used = ei->i_reserved_data_blocks;
352 	}
353 
354 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 			"with only %d reserved metadata blocks "
357 			"(releasing %d blocks with reserved %d data blocks)",
358 			inode->i_ino, ei->i_allocated_meta_blocks,
359 			     ei->i_reserved_meta_blocks, used,
360 			     ei->i_reserved_data_blocks);
361 		WARN_ON(1);
362 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 	}
364 
365 	/* Update per-inode reservations */
366 	ei->i_reserved_data_blocks -= used;
367 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369 			   used + ei->i_allocated_meta_blocks);
370 	ei->i_allocated_meta_blocks = 0;
371 
372 	if (ei->i_reserved_data_blocks == 0) {
373 		/*
374 		 * We can release all of the reserved metadata blocks
375 		 * only when we have written all of the delayed
376 		 * allocation blocks.
377 		 */
378 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379 				   ei->i_reserved_meta_blocks);
380 		ei->i_reserved_meta_blocks = 0;
381 		ei->i_da_metadata_calc_len = 0;
382 	}
383 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384 
385 	/* Update quota subsystem for data blocks */
386 	if (quota_claim)
387 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 	else {
389 		/*
390 		 * We did fallocate with an offset that is already delayed
391 		 * allocated. So on delayed allocated writeback we should
392 		 * not re-claim the quota for fallocated blocks.
393 		 */
394 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395 	}
396 
397 	/*
398 	 * If we have done all the pending block allocations and if
399 	 * there aren't any writers on the inode, we can discard the
400 	 * inode's preallocations.
401 	 */
402 	if ((ei->i_reserved_data_blocks == 0) &&
403 	    (atomic_read(&inode->i_writecount) == 0))
404 		ext4_discard_preallocations(inode);
405 }
406 
407 static int __check_block_validity(struct inode *inode, const char *func,
408 				unsigned int line,
409 				struct ext4_map_blocks *map)
410 {
411 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 				   map->m_len)) {
413 		ext4_error_inode(inode, func, line, map->m_pblk,
414 				 "lblock %lu mapped to illegal pblock "
415 				 "(length %d)", (unsigned long) map->m_lblk,
416 				 map->m_len);
417 		return -EIO;
418 	}
419 	return 0;
420 }
421 
422 #define check_block_validity(inode, map)	\
423 	__check_block_validity((inode), __func__, __LINE__, (map))
424 
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 				    unsigned int max_pages)
431 {
432 	struct address_space *mapping = inode->i_mapping;
433 	pgoff_t	index;
434 	struct pagevec pvec;
435 	pgoff_t num = 0;
436 	int i, nr_pages, done = 0;
437 
438 	if (max_pages == 0)
439 		return 0;
440 	pagevec_init(&pvec, 0);
441 	while (!done) {
442 		index = idx;
443 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 					      PAGECACHE_TAG_DIRTY,
445 					      (pgoff_t)PAGEVEC_SIZE);
446 		if (nr_pages == 0)
447 			break;
448 		for (i = 0; i < nr_pages; i++) {
449 			struct page *page = pvec.pages[i];
450 			struct buffer_head *bh, *head;
451 
452 			lock_page(page);
453 			if (unlikely(page->mapping != mapping) ||
454 			    !PageDirty(page) ||
455 			    PageWriteback(page) ||
456 			    page->index != idx) {
457 				done = 1;
458 				unlock_page(page);
459 				break;
460 			}
461 			if (page_has_buffers(page)) {
462 				bh = head = page_buffers(page);
463 				do {
464 					if (!buffer_delay(bh) &&
465 					    !buffer_unwritten(bh))
466 						done = 1;
467 					bh = bh->b_this_page;
468 				} while (!done && (bh != head));
469 			}
470 			unlock_page(page);
471 			if (done)
472 				break;
473 			idx++;
474 			num++;
475 			if (num >= max_pages) {
476 				done = 1;
477 				break;
478 			}
479 		}
480 		pagevec_release(&pvec);
481 	}
482 	return num;
483 }
484 
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487 				       struct inode *inode,
488 				       struct ext4_map_blocks *es_map,
489 				       struct ext4_map_blocks *map,
490 				       int flags)
491 {
492 	int retval;
493 
494 	map->m_flags = 0;
495 	/*
496 	 * There is a race window that the result is not the same.
497 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
498 	 * is that we lookup a block mapping in extent status tree with
499 	 * out taking i_data_sem.  So at the time the unwritten extent
500 	 * could be converted.
501 	 */
502 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503 		down_read((&EXT4_I(inode)->i_data_sem));
504 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
506 					     EXT4_GET_BLOCKS_KEEP_SIZE);
507 	} else {
508 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
509 					     EXT4_GET_BLOCKS_KEEP_SIZE);
510 	}
511 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 		up_read((&EXT4_I(inode)->i_data_sem));
513 	/*
514 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515 	 * because it shouldn't be marked in es_map->m_flags.
516 	 */
517 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518 
519 	/*
520 	 * We don't check m_len because extent will be collpased in status
521 	 * tree.  So the m_len might not equal.
522 	 */
523 	if (es_map->m_lblk != map->m_lblk ||
524 	    es_map->m_flags != map->m_flags ||
525 	    es_map->m_pblk != map->m_pblk) {
526 		printk("ES cache assertation failed for inode: %lu "
527 		       "es_cached ex [%d/%d/%llu/%x] != "
528 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
530 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
531 		       map->m_len, map->m_pblk, map->m_flags,
532 		       retval, flags);
533 	}
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536 
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560 		    struct ext4_map_blocks *map, int flags)
561 {
562 	struct extent_status es;
563 	int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565 	struct ext4_map_blocks orig_map;
566 
567 	memcpy(&orig_map, map, sizeof(*map));
568 #endif
569 
570 	map->m_flags = 0;
571 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
573 		  (unsigned long) map->m_lblk);
574 
575 	/* Lookup extent status tree firstly */
576 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578 			map->m_pblk = ext4_es_pblock(&es) +
579 					map->m_lblk - es.es_lblk;
580 			map->m_flags |= ext4_es_is_written(&es) ?
581 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582 			retval = es.es_len - (map->m_lblk - es.es_lblk);
583 			if (retval > map->m_len)
584 				retval = map->m_len;
585 			map->m_len = retval;
586 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587 			retval = 0;
588 		} else {
589 			BUG_ON(1);
590 		}
591 #ifdef ES_AGGRESSIVE_TEST
592 		ext4_map_blocks_es_recheck(handle, inode, map,
593 					   &orig_map, flags);
594 #endif
595 		goto found;
596 	}
597 
598 	/*
599 	 * Try to see if we can get the block without requesting a new
600 	 * file system block.
601 	 */
602 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603 		down_read((&EXT4_I(inode)->i_data_sem));
604 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
606 					     EXT4_GET_BLOCKS_KEEP_SIZE);
607 	} else {
608 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
609 					     EXT4_GET_BLOCKS_KEEP_SIZE);
610 	}
611 	if (retval > 0) {
612 		int ret;
613 		unsigned long long status;
614 
615 #ifdef ES_AGGRESSIVE_TEST
616 		if (retval != map->m_len) {
617 			printk("ES len assertation failed for inode: %lu "
618 			       "retval %d != map->m_len %d "
619 			       "in %s (lookup)\n", inode->i_ino, retval,
620 			       map->m_len, __func__);
621 		}
622 #endif
623 
624 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627 		    ext4_find_delalloc_range(inode, map->m_lblk,
628 					     map->m_lblk + map->m_len - 1))
629 			status |= EXTENT_STATUS_DELAYED;
630 		ret = ext4_es_insert_extent(inode, map->m_lblk,
631 					    map->m_len, map->m_pblk, status);
632 		if (ret < 0)
633 			retval = ret;
634 	}
635 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636 		up_read((&EXT4_I(inode)->i_data_sem));
637 
638 found:
639 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640 		int ret = check_block_validity(inode, map);
641 		if (ret != 0)
642 			return ret;
643 	}
644 
645 	/* If it is only a block(s) look up */
646 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 		return retval;
648 
649 	/*
650 	 * Returns if the blocks have already allocated
651 	 *
652 	 * Note that if blocks have been preallocated
653 	 * ext4_ext_get_block() returns the create = 0
654 	 * with buffer head unmapped.
655 	 */
656 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 		return retval;
658 
659 	/*
660 	 * Here we clear m_flags because after allocating an new extent,
661 	 * it will be set again.
662 	 */
663 	map->m_flags &= ~EXT4_MAP_FLAGS;
664 
665 	/*
666 	 * New blocks allocate and/or writing to uninitialized extent
667 	 * will possibly result in updating i_data, so we take
668 	 * the write lock of i_data_sem, and call get_blocks()
669 	 * with create == 1 flag.
670 	 */
671 	down_write((&EXT4_I(inode)->i_data_sem));
672 
673 	/*
674 	 * if the caller is from delayed allocation writeout path
675 	 * we have already reserved fs blocks for allocation
676 	 * let the underlying get_block() function know to
677 	 * avoid double accounting
678 	 */
679 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681 	/*
682 	 * We need to check for EXT4 here because migrate
683 	 * could have changed the inode type in between
684 	 */
685 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
687 	} else {
688 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
689 
690 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691 			/*
692 			 * We allocated new blocks which will result in
693 			 * i_data's format changing.  Force the migrate
694 			 * to fail by clearing migrate flags
695 			 */
696 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697 		}
698 
699 		/*
700 		 * Update reserved blocks/metadata blocks after successful
701 		 * block allocation which had been deferred till now. We don't
702 		 * support fallocate for non extent files. So we can update
703 		 * reserve space here.
704 		 */
705 		if ((retval > 0) &&
706 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 			ext4_da_update_reserve_space(inode, retval, 1);
708 	}
709 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711 
712 	if (retval > 0) {
713 		int ret;
714 		unsigned long long status;
715 
716 #ifdef ES_AGGRESSIVE_TEST
717 		if (retval != map->m_len) {
718 			printk("ES len assertation failed for inode: %lu "
719 			       "retval %d != map->m_len %d "
720 			       "in %s (allocation)\n", inode->i_ino, retval,
721 			       map->m_len, __func__);
722 		}
723 #endif
724 
725 		/*
726 		 * If the extent has been zeroed out, we don't need to update
727 		 * extent status tree.
728 		 */
729 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731 			if (ext4_es_is_written(&es))
732 				goto has_zeroout;
733 		}
734 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737 		    ext4_find_delalloc_range(inode, map->m_lblk,
738 					     map->m_lblk + map->m_len - 1))
739 			status |= EXTENT_STATUS_DELAYED;
740 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741 					    map->m_pblk, status);
742 		if (ret < 0)
743 			retval = ret;
744 	}
745 
746 has_zeroout:
747 	up_write((&EXT4_I(inode)->i_data_sem));
748 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749 		int ret = check_block_validity(inode, map);
750 		if (ret != 0)
751 			return ret;
752 	}
753 	return retval;
754 }
755 
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758 
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 			   struct buffer_head *bh, int flags)
761 {
762 	handle_t *handle = ext4_journal_current_handle();
763 	struct ext4_map_blocks map;
764 	int ret = 0, started = 0;
765 	int dio_credits;
766 
767 	if (ext4_has_inline_data(inode))
768 		return -ERANGE;
769 
770 	map.m_lblk = iblock;
771 	map.m_len = bh->b_size >> inode->i_blkbits;
772 
773 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774 		/* Direct IO write... */
775 		if (map.m_len > DIO_MAX_BLOCKS)
776 			map.m_len = DIO_MAX_BLOCKS;
777 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779 					    dio_credits);
780 		if (IS_ERR(handle)) {
781 			ret = PTR_ERR(handle);
782 			return ret;
783 		}
784 		started = 1;
785 	}
786 
787 	ret = ext4_map_blocks(handle, inode, &map, flags);
788 	if (ret > 0) {
789 		map_bh(bh, inode->i_sb, map.m_pblk);
790 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792 		ret = 0;
793 	}
794 	if (started)
795 		ext4_journal_stop(handle);
796 	return ret;
797 }
798 
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800 		   struct buffer_head *bh, int create)
801 {
802 	return _ext4_get_block(inode, iblock, bh,
803 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805 
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810 				ext4_lblk_t block, int create, int *errp)
811 {
812 	struct ext4_map_blocks map;
813 	struct buffer_head *bh;
814 	int fatal = 0, err;
815 
816 	J_ASSERT(handle != NULL || create == 0);
817 
818 	map.m_lblk = block;
819 	map.m_len = 1;
820 	err = ext4_map_blocks(handle, inode, &map,
821 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
822 
823 	/* ensure we send some value back into *errp */
824 	*errp = 0;
825 
826 	if (create && err == 0)
827 		err = -ENOSPC;	/* should never happen */
828 	if (err < 0)
829 		*errp = err;
830 	if (err <= 0)
831 		return NULL;
832 
833 	bh = sb_getblk(inode->i_sb, map.m_pblk);
834 	if (unlikely(!bh)) {
835 		*errp = -ENOMEM;
836 		return NULL;
837 	}
838 	if (map.m_flags & EXT4_MAP_NEW) {
839 		J_ASSERT(create != 0);
840 		J_ASSERT(handle != NULL);
841 
842 		/*
843 		 * Now that we do not always journal data, we should
844 		 * keep in mind whether this should always journal the
845 		 * new buffer as metadata.  For now, regular file
846 		 * writes use ext4_get_block instead, so it's not a
847 		 * problem.
848 		 */
849 		lock_buffer(bh);
850 		BUFFER_TRACE(bh, "call get_create_access");
851 		fatal = ext4_journal_get_create_access(handle, bh);
852 		if (!fatal && !buffer_uptodate(bh)) {
853 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854 			set_buffer_uptodate(bh);
855 		}
856 		unlock_buffer(bh);
857 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858 		err = ext4_handle_dirty_metadata(handle, inode, bh);
859 		if (!fatal)
860 			fatal = err;
861 	} else {
862 		BUFFER_TRACE(bh, "not a new buffer");
863 	}
864 	if (fatal) {
865 		*errp = fatal;
866 		brelse(bh);
867 		bh = NULL;
868 	}
869 	return bh;
870 }
871 
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873 			       ext4_lblk_t block, int create, int *err)
874 {
875 	struct buffer_head *bh;
876 
877 	bh = ext4_getblk(handle, inode, block, create, err);
878 	if (!bh)
879 		return bh;
880 	if (buffer_uptodate(bh))
881 		return bh;
882 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883 	wait_on_buffer(bh);
884 	if (buffer_uptodate(bh))
885 		return bh;
886 	put_bh(bh);
887 	*err = -EIO;
888 	return NULL;
889 }
890 
891 int ext4_walk_page_buffers(handle_t *handle,
892 			   struct buffer_head *head,
893 			   unsigned from,
894 			   unsigned to,
895 			   int *partial,
896 			   int (*fn)(handle_t *handle,
897 				     struct buffer_head *bh))
898 {
899 	struct buffer_head *bh;
900 	unsigned block_start, block_end;
901 	unsigned blocksize = head->b_size;
902 	int err, ret = 0;
903 	struct buffer_head *next;
904 
905 	for (bh = head, block_start = 0;
906 	     ret == 0 && (bh != head || !block_start);
907 	     block_start = block_end, bh = next) {
908 		next = bh->b_this_page;
909 		block_end = block_start + blocksize;
910 		if (block_end <= from || block_start >= to) {
911 			if (partial && !buffer_uptodate(bh))
912 				*partial = 1;
913 			continue;
914 		}
915 		err = (*fn)(handle, bh);
916 		if (!ret)
917 			ret = err;
918 	}
919 	return ret;
920 }
921 
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947 				struct buffer_head *bh)
948 {
949 	int dirty = buffer_dirty(bh);
950 	int ret;
951 
952 	if (!buffer_mapped(bh) || buffer_freed(bh))
953 		return 0;
954 	/*
955 	 * __block_write_begin() could have dirtied some buffers. Clean
956 	 * the dirty bit as jbd2_journal_get_write_access() could complain
957 	 * otherwise about fs integrity issues. Setting of the dirty bit
958 	 * by __block_write_begin() isn't a real problem here as we clear
959 	 * the bit before releasing a page lock and thus writeback cannot
960 	 * ever write the buffer.
961 	 */
962 	if (dirty)
963 		clear_buffer_dirty(bh);
964 	ret = ext4_journal_get_write_access(handle, bh);
965 	if (!ret && dirty)
966 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967 	return ret;
968 }
969 
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971 		   struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 			    loff_t pos, unsigned len, unsigned flags,
974 			    struct page **pagep, void **fsdata)
975 {
976 	struct inode *inode = mapping->host;
977 	int ret, needed_blocks;
978 	handle_t *handle;
979 	int retries = 0;
980 	struct page *page;
981 	pgoff_t index;
982 	unsigned from, to;
983 
984 	trace_ext4_write_begin(inode, pos, len, flags);
985 	/*
986 	 * Reserve one block more for addition to orphan list in case
987 	 * we allocate blocks but write fails for some reason
988 	 */
989 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990 	index = pos >> PAGE_CACHE_SHIFT;
991 	from = pos & (PAGE_CACHE_SIZE - 1);
992 	to = from + len;
993 
994 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 						    flags, pagep);
997 		if (ret < 0)
998 			return ret;
999 		if (ret == 1)
1000 			return 0;
1001 	}
1002 
1003 	/*
1004 	 * grab_cache_page_write_begin() can take a long time if the
1005 	 * system is thrashing due to memory pressure, or if the page
1006 	 * is being written back.  So grab it first before we start
1007 	 * the transaction handle.  This also allows us to allocate
1008 	 * the page (if needed) without using GFP_NOFS.
1009 	 */
1010 retry_grab:
1011 	page = grab_cache_page_write_begin(mapping, index, flags);
1012 	if (!page)
1013 		return -ENOMEM;
1014 	unlock_page(page);
1015 
1016 retry_journal:
1017 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018 	if (IS_ERR(handle)) {
1019 		page_cache_release(page);
1020 		return PTR_ERR(handle);
1021 	}
1022 
1023 	lock_page(page);
1024 	if (page->mapping != mapping) {
1025 		/* The page got truncated from under us */
1026 		unlock_page(page);
1027 		page_cache_release(page);
1028 		ext4_journal_stop(handle);
1029 		goto retry_grab;
1030 	}
1031 	wait_on_page_writeback(page);
1032 
1033 	if (ext4_should_dioread_nolock(inode))
1034 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035 	else
1036 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1037 
1038 	if (!ret && ext4_should_journal_data(inode)) {
1039 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040 					     from, to, NULL,
1041 					     do_journal_get_write_access);
1042 	}
1043 
1044 	if (ret) {
1045 		unlock_page(page);
1046 		/*
1047 		 * __block_write_begin may have instantiated a few blocks
1048 		 * outside i_size.  Trim these off again. Don't need
1049 		 * i_size_read because we hold i_mutex.
1050 		 *
1051 		 * Add inode to orphan list in case we crash before
1052 		 * truncate finishes
1053 		 */
1054 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055 			ext4_orphan_add(handle, inode);
1056 
1057 		ext4_journal_stop(handle);
1058 		if (pos + len > inode->i_size) {
1059 			ext4_truncate_failed_write(inode);
1060 			/*
1061 			 * If truncate failed early the inode might
1062 			 * still be on the orphan list; we need to
1063 			 * make sure the inode is removed from the
1064 			 * orphan list in that case.
1065 			 */
1066 			if (inode->i_nlink)
1067 				ext4_orphan_del(NULL, inode);
1068 		}
1069 
1070 		if (ret == -ENOSPC &&
1071 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1072 			goto retry_journal;
1073 		page_cache_release(page);
1074 		return ret;
1075 	}
1076 	*pagep = page;
1077 	return ret;
1078 }
1079 
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083 	int ret;
1084 	if (!buffer_mapped(bh) || buffer_freed(bh))
1085 		return 0;
1086 	set_buffer_uptodate(bh);
1087 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1088 	clear_buffer_meta(bh);
1089 	clear_buffer_prio(bh);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * We need to pick up the new inode size which generic_commit_write gave us
1095  * `file' can be NULL - eg, when called from page_symlink().
1096  *
1097  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1098  * buffers are managed internally.
1099  */
1100 static int ext4_write_end(struct file *file,
1101 			  struct address_space *mapping,
1102 			  loff_t pos, unsigned len, unsigned copied,
1103 			  struct page *page, void *fsdata)
1104 {
1105 	handle_t *handle = ext4_journal_current_handle();
1106 	struct inode *inode = mapping->host;
1107 	int ret = 0, ret2;
1108 	int i_size_changed = 0;
1109 
1110 	trace_ext4_write_end(inode, pos, len, copied);
1111 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1112 		ret = ext4_jbd2_file_inode(handle, inode);
1113 		if (ret) {
1114 			unlock_page(page);
1115 			page_cache_release(page);
1116 			goto errout;
1117 		}
1118 	}
1119 
1120 	if (ext4_has_inline_data(inode))
1121 		copied = ext4_write_inline_data_end(inode, pos, len,
1122 						    copied, page);
1123 	else
1124 		copied = block_write_end(file, mapping, pos,
1125 					 len, copied, page, fsdata);
1126 
1127 	/*
1128 	 * No need to use i_size_read() here, the i_size
1129 	 * cannot change under us because we hole i_mutex.
1130 	 *
1131 	 * But it's important to update i_size while still holding page lock:
1132 	 * page writeout could otherwise come in and zero beyond i_size.
1133 	 */
1134 	if (pos + copied > inode->i_size) {
1135 		i_size_write(inode, pos + copied);
1136 		i_size_changed = 1;
1137 	}
1138 
1139 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1140 		/* We need to mark inode dirty even if
1141 		 * new_i_size is less that inode->i_size
1142 		 * but greater than i_disksize. (hint delalloc)
1143 		 */
1144 		ext4_update_i_disksize(inode, (pos + copied));
1145 		i_size_changed = 1;
1146 	}
1147 	unlock_page(page);
1148 	page_cache_release(page);
1149 
1150 	/*
1151 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 	 * makes the holding time of page lock longer. Second, it forces lock
1153 	 * ordering of page lock and transaction start for journaling
1154 	 * filesystems.
1155 	 */
1156 	if (i_size_changed)
1157 		ext4_mark_inode_dirty(handle, inode);
1158 
1159 	if (copied < 0)
1160 		ret = copied;
1161 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162 		/* if we have allocated more blocks and copied
1163 		 * less. We will have blocks allocated outside
1164 		 * inode->i_size. So truncate them
1165 		 */
1166 		ext4_orphan_add(handle, inode);
1167 errout:
1168 	ret2 = ext4_journal_stop(handle);
1169 	if (!ret)
1170 		ret = ret2;
1171 
1172 	if (pos + len > inode->i_size) {
1173 		ext4_truncate_failed_write(inode);
1174 		/*
1175 		 * If truncate failed early the inode might still be
1176 		 * on the orphan list; we need to make sure the inode
1177 		 * is removed from the orphan list in that case.
1178 		 */
1179 		if (inode->i_nlink)
1180 			ext4_orphan_del(NULL, inode);
1181 	}
1182 
1183 	return ret ? ret : copied;
1184 }
1185 
1186 static int ext4_journalled_write_end(struct file *file,
1187 				     struct address_space *mapping,
1188 				     loff_t pos, unsigned len, unsigned copied,
1189 				     struct page *page, void *fsdata)
1190 {
1191 	handle_t *handle = ext4_journal_current_handle();
1192 	struct inode *inode = mapping->host;
1193 	int ret = 0, ret2;
1194 	int partial = 0;
1195 	unsigned from, to;
1196 	loff_t new_i_size;
1197 
1198 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1199 	from = pos & (PAGE_CACHE_SIZE - 1);
1200 	to = from + len;
1201 
1202 	BUG_ON(!ext4_handle_valid(handle));
1203 
1204 	if (ext4_has_inline_data(inode))
1205 		copied = ext4_write_inline_data_end(inode, pos, len,
1206 						    copied, page);
1207 	else {
1208 		if (copied < len) {
1209 			if (!PageUptodate(page))
1210 				copied = 0;
1211 			page_zero_new_buffers(page, from+copied, to);
1212 		}
1213 
1214 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1215 					     to, &partial, write_end_fn);
1216 		if (!partial)
1217 			SetPageUptodate(page);
1218 	}
1219 	new_i_size = pos + copied;
1220 	if (new_i_size > inode->i_size)
1221 		i_size_write(inode, pos+copied);
1222 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1223 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1224 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1225 		ext4_update_i_disksize(inode, new_i_size);
1226 		ret2 = ext4_mark_inode_dirty(handle, inode);
1227 		if (!ret)
1228 			ret = ret2;
1229 	}
1230 
1231 	unlock_page(page);
1232 	page_cache_release(page);
1233 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1234 		/* if we have allocated more blocks and copied
1235 		 * less. We will have blocks allocated outside
1236 		 * inode->i_size. So truncate them
1237 		 */
1238 		ext4_orphan_add(handle, inode);
1239 
1240 	ret2 = ext4_journal_stop(handle);
1241 	if (!ret)
1242 		ret = ret2;
1243 	if (pos + len > inode->i_size) {
1244 		ext4_truncate_failed_write(inode);
1245 		/*
1246 		 * If truncate failed early the inode might still be
1247 		 * on the orphan list; we need to make sure the inode
1248 		 * is removed from the orphan list in that case.
1249 		 */
1250 		if (inode->i_nlink)
1251 			ext4_orphan_del(NULL, inode);
1252 	}
1253 
1254 	return ret ? ret : copied;
1255 }
1256 
1257 /*
1258  * Reserve a metadata for a single block located at lblock
1259  */
1260 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1261 {
1262 	int retries = 0;
1263 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1264 	struct ext4_inode_info *ei = EXT4_I(inode);
1265 	unsigned int md_needed;
1266 	ext4_lblk_t save_last_lblock;
1267 	int save_len;
1268 
1269 	/*
1270 	 * recalculate the amount of metadata blocks to reserve
1271 	 * in order to allocate nrblocks
1272 	 * worse case is one extent per block
1273 	 */
1274 repeat:
1275 	spin_lock(&ei->i_block_reservation_lock);
1276 	/*
1277 	 * ext4_calc_metadata_amount() has side effects, which we have
1278 	 * to be prepared undo if we fail to claim space.
1279 	 */
1280 	save_len = ei->i_da_metadata_calc_len;
1281 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1282 	md_needed = EXT4_NUM_B2C(sbi,
1283 				 ext4_calc_metadata_amount(inode, lblock));
1284 	trace_ext4_da_reserve_space(inode, md_needed);
1285 
1286 	/*
1287 	 * We do still charge estimated metadata to the sb though;
1288 	 * we cannot afford to run out of free blocks.
1289 	 */
1290 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1291 		ei->i_da_metadata_calc_len = save_len;
1292 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293 		spin_unlock(&ei->i_block_reservation_lock);
1294 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1295 			cond_resched();
1296 			goto repeat;
1297 		}
1298 		return -ENOSPC;
1299 	}
1300 	ei->i_reserved_meta_blocks += md_needed;
1301 	spin_unlock(&ei->i_block_reservation_lock);
1302 
1303 	return 0;       /* success */
1304 }
1305 
1306 /*
1307  * Reserve a single cluster located at lblock
1308  */
1309 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1310 {
1311 	int retries = 0;
1312 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1313 	struct ext4_inode_info *ei = EXT4_I(inode);
1314 	unsigned int md_needed;
1315 	int ret;
1316 	ext4_lblk_t save_last_lblock;
1317 	int save_len;
1318 
1319 	/*
1320 	 * We will charge metadata quota at writeout time; this saves
1321 	 * us from metadata over-estimation, though we may go over by
1322 	 * a small amount in the end.  Here we just reserve for data.
1323 	 */
1324 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1325 	if (ret)
1326 		return ret;
1327 
1328 	/*
1329 	 * recalculate the amount of metadata blocks to reserve
1330 	 * in order to allocate nrblocks
1331 	 * worse case is one extent per block
1332 	 */
1333 repeat:
1334 	spin_lock(&ei->i_block_reservation_lock);
1335 	/*
1336 	 * ext4_calc_metadata_amount() has side effects, which we have
1337 	 * to be prepared undo if we fail to claim space.
1338 	 */
1339 	save_len = ei->i_da_metadata_calc_len;
1340 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1341 	md_needed = EXT4_NUM_B2C(sbi,
1342 				 ext4_calc_metadata_amount(inode, lblock));
1343 	trace_ext4_da_reserve_space(inode, md_needed);
1344 
1345 	/*
1346 	 * We do still charge estimated metadata to the sb though;
1347 	 * we cannot afford to run out of free blocks.
1348 	 */
1349 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1350 		ei->i_da_metadata_calc_len = save_len;
1351 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352 		spin_unlock(&ei->i_block_reservation_lock);
1353 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1354 			cond_resched();
1355 			goto repeat;
1356 		}
1357 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1358 		return -ENOSPC;
1359 	}
1360 	ei->i_reserved_data_blocks++;
1361 	ei->i_reserved_meta_blocks += md_needed;
1362 	spin_unlock(&ei->i_block_reservation_lock);
1363 
1364 	return 0;       /* success */
1365 }
1366 
1367 static void ext4_da_release_space(struct inode *inode, int to_free)
1368 {
1369 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1370 	struct ext4_inode_info *ei = EXT4_I(inode);
1371 
1372 	if (!to_free)
1373 		return;		/* Nothing to release, exit */
1374 
1375 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1376 
1377 	trace_ext4_da_release_space(inode, to_free);
1378 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1379 		/*
1380 		 * if there aren't enough reserved blocks, then the
1381 		 * counter is messed up somewhere.  Since this
1382 		 * function is called from invalidate page, it's
1383 		 * harmless to return without any action.
1384 		 */
1385 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1386 			 "ino %lu, to_free %d with only %d reserved "
1387 			 "data blocks", inode->i_ino, to_free,
1388 			 ei->i_reserved_data_blocks);
1389 		WARN_ON(1);
1390 		to_free = ei->i_reserved_data_blocks;
1391 	}
1392 	ei->i_reserved_data_blocks -= to_free;
1393 
1394 	if (ei->i_reserved_data_blocks == 0) {
1395 		/*
1396 		 * We can release all of the reserved metadata blocks
1397 		 * only when we have written all of the delayed
1398 		 * allocation blocks.
1399 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1400 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1401 		 */
1402 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1403 				   ei->i_reserved_meta_blocks);
1404 		ei->i_reserved_meta_blocks = 0;
1405 		ei->i_da_metadata_calc_len = 0;
1406 	}
1407 
1408 	/* update fs dirty data blocks counter */
1409 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1410 
1411 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1412 
1413 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1414 }
1415 
1416 static void ext4_da_page_release_reservation(struct page *page,
1417 					     unsigned long offset)
1418 {
1419 	int to_release = 0;
1420 	struct buffer_head *head, *bh;
1421 	unsigned int curr_off = 0;
1422 	struct inode *inode = page->mapping->host;
1423 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1424 	int num_clusters;
1425 	ext4_fsblk_t lblk;
1426 
1427 	head = page_buffers(page);
1428 	bh = head;
1429 	do {
1430 		unsigned int next_off = curr_off + bh->b_size;
1431 
1432 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1433 			to_release++;
1434 			clear_buffer_delay(bh);
1435 		}
1436 		curr_off = next_off;
1437 	} while ((bh = bh->b_this_page) != head);
1438 
1439 	if (to_release) {
1440 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1441 		ext4_es_remove_extent(inode, lblk, to_release);
1442 	}
1443 
1444 	/* If we have released all the blocks belonging to a cluster, then we
1445 	 * need to release the reserved space for that cluster. */
1446 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1447 	while (num_clusters > 0) {
1448 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1449 			((num_clusters - 1) << sbi->s_cluster_bits);
1450 		if (sbi->s_cluster_ratio == 1 ||
1451 		    !ext4_find_delalloc_cluster(inode, lblk))
1452 			ext4_da_release_space(inode, 1);
1453 
1454 		num_clusters--;
1455 	}
1456 }
1457 
1458 /*
1459  * Delayed allocation stuff
1460  */
1461 
1462 /*
1463  * mpage_da_submit_io - walks through extent of pages and try to write
1464  * them with writepage() call back
1465  *
1466  * @mpd->inode: inode
1467  * @mpd->first_page: first page of the extent
1468  * @mpd->next_page: page after the last page of the extent
1469  *
1470  * By the time mpage_da_submit_io() is called we expect all blocks
1471  * to be allocated. this may be wrong if allocation failed.
1472  *
1473  * As pages are already locked by write_cache_pages(), we can't use it
1474  */
1475 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1476 			      struct ext4_map_blocks *map)
1477 {
1478 	struct pagevec pvec;
1479 	unsigned long index, end;
1480 	int ret = 0, err, nr_pages, i;
1481 	struct inode *inode = mpd->inode;
1482 	struct address_space *mapping = inode->i_mapping;
1483 	loff_t size = i_size_read(inode);
1484 	unsigned int len, block_start;
1485 	struct buffer_head *bh, *page_bufs = NULL;
1486 	sector_t pblock = 0, cur_logical = 0;
1487 	struct ext4_io_submit io_submit;
1488 
1489 	BUG_ON(mpd->next_page <= mpd->first_page);
1490 	ext4_io_submit_init(&io_submit, mpd->wbc);
1491 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1492 	if (!io_submit.io_end)
1493 		return -ENOMEM;
1494 	/*
1495 	 * We need to start from the first_page to the next_page - 1
1496 	 * to make sure we also write the mapped dirty buffer_heads.
1497 	 * If we look at mpd->b_blocknr we would only be looking
1498 	 * at the currently mapped buffer_heads.
1499 	 */
1500 	index = mpd->first_page;
1501 	end = mpd->next_page - 1;
1502 
1503 	pagevec_init(&pvec, 0);
1504 	while (index <= end) {
1505 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1506 		if (nr_pages == 0)
1507 			break;
1508 		for (i = 0; i < nr_pages; i++) {
1509 			int skip_page = 0;
1510 			struct page *page = pvec.pages[i];
1511 
1512 			index = page->index;
1513 			if (index > end)
1514 				break;
1515 
1516 			if (index == size >> PAGE_CACHE_SHIFT)
1517 				len = size & ~PAGE_CACHE_MASK;
1518 			else
1519 				len = PAGE_CACHE_SIZE;
1520 			if (map) {
1521 				cur_logical = index << (PAGE_CACHE_SHIFT -
1522 							inode->i_blkbits);
1523 				pblock = map->m_pblk + (cur_logical -
1524 							map->m_lblk);
1525 			}
1526 			index++;
1527 
1528 			BUG_ON(!PageLocked(page));
1529 			BUG_ON(PageWriteback(page));
1530 
1531 			bh = page_bufs = page_buffers(page);
1532 			block_start = 0;
1533 			do {
1534 				if (map && (cur_logical >= map->m_lblk) &&
1535 				    (cur_logical <= (map->m_lblk +
1536 						     (map->m_len - 1)))) {
1537 					if (buffer_delay(bh)) {
1538 						clear_buffer_delay(bh);
1539 						bh->b_blocknr = pblock;
1540 					}
1541 					if (buffer_unwritten(bh) ||
1542 					    buffer_mapped(bh))
1543 						BUG_ON(bh->b_blocknr != pblock);
1544 					if (map->m_flags & EXT4_MAP_UNINIT)
1545 						set_buffer_uninit(bh);
1546 					clear_buffer_unwritten(bh);
1547 				}
1548 
1549 				/*
1550 				 * skip page if block allocation undone and
1551 				 * block is dirty
1552 				 */
1553 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1554 					skip_page = 1;
1555 				bh = bh->b_this_page;
1556 				block_start += bh->b_size;
1557 				cur_logical++;
1558 				pblock++;
1559 			} while (bh != page_bufs);
1560 
1561 			if (skip_page) {
1562 				unlock_page(page);
1563 				continue;
1564 			}
1565 
1566 			clear_page_dirty_for_io(page);
1567 			err = ext4_bio_write_page(&io_submit, page, len,
1568 						  mpd->wbc);
1569 			if (!err)
1570 				mpd->pages_written++;
1571 			/*
1572 			 * In error case, we have to continue because
1573 			 * remaining pages are still locked
1574 			 */
1575 			if (ret == 0)
1576 				ret = err;
1577 		}
1578 		pagevec_release(&pvec);
1579 	}
1580 	ext4_io_submit(&io_submit);
1581 	/* Drop io_end reference we got from init */
1582 	ext4_put_io_end_defer(io_submit.io_end);
1583 	return ret;
1584 }
1585 
1586 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1587 {
1588 	int nr_pages, i;
1589 	pgoff_t index, end;
1590 	struct pagevec pvec;
1591 	struct inode *inode = mpd->inode;
1592 	struct address_space *mapping = inode->i_mapping;
1593 	ext4_lblk_t start, last;
1594 
1595 	index = mpd->first_page;
1596 	end   = mpd->next_page - 1;
1597 
1598 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600 	ext4_es_remove_extent(inode, start, last - start + 1);
1601 
1602 	pagevec_init(&pvec, 0);
1603 	while (index <= end) {
1604 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605 		if (nr_pages == 0)
1606 			break;
1607 		for (i = 0; i < nr_pages; i++) {
1608 			struct page *page = pvec.pages[i];
1609 			if (page->index > end)
1610 				break;
1611 			BUG_ON(!PageLocked(page));
1612 			BUG_ON(PageWriteback(page));
1613 			block_invalidatepage(page, 0);
1614 			ClearPageUptodate(page);
1615 			unlock_page(page);
1616 		}
1617 		index = pvec.pages[nr_pages - 1]->index + 1;
1618 		pagevec_release(&pvec);
1619 	}
1620 	return;
1621 }
1622 
1623 static void ext4_print_free_blocks(struct inode *inode)
1624 {
1625 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 	struct super_block *sb = inode->i_sb;
1627 	struct ext4_inode_info *ei = EXT4_I(inode);
1628 
1629 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1630 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1631 			ext4_count_free_clusters(sb)));
1632 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1633 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1634 	       (long long) EXT4_C2B(EXT4_SB(sb),
1635 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1636 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1637 	       (long long) EXT4_C2B(EXT4_SB(sb),
1638 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1639 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1640 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1641 		 ei->i_reserved_data_blocks);
1642 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1643 	       ei->i_reserved_meta_blocks);
1644 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1645 	       ei->i_allocated_meta_blocks);
1646 	return;
1647 }
1648 
1649 /*
1650  * mpage_da_map_and_submit - go through given space, map them
1651  *       if necessary, and then submit them for I/O
1652  *
1653  * @mpd - bh describing space
1654  *
1655  * The function skips space we know is already mapped to disk blocks.
1656  *
1657  */
1658 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1659 {
1660 	int err, blks, get_blocks_flags;
1661 	struct ext4_map_blocks map, *mapp = NULL;
1662 	sector_t next = mpd->b_blocknr;
1663 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1664 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1665 	handle_t *handle = NULL;
1666 
1667 	/*
1668 	 * If the blocks are mapped already, or we couldn't accumulate
1669 	 * any blocks, then proceed immediately to the submission stage.
1670 	 */
1671 	if ((mpd->b_size == 0) ||
1672 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1673 	     !(mpd->b_state & (1 << BH_Delay)) &&
1674 	     !(mpd->b_state & (1 << BH_Unwritten))))
1675 		goto submit_io;
1676 
1677 	handle = ext4_journal_current_handle();
1678 	BUG_ON(!handle);
1679 
1680 	/*
1681 	 * Call ext4_map_blocks() to allocate any delayed allocation
1682 	 * blocks, or to convert an uninitialized extent to be
1683 	 * initialized (in the case where we have written into
1684 	 * one or more preallocated blocks).
1685 	 *
1686 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1687 	 * indicate that we are on the delayed allocation path.  This
1688 	 * affects functions in many different parts of the allocation
1689 	 * call path.  This flag exists primarily because we don't
1690 	 * want to change *many* call functions, so ext4_map_blocks()
1691 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1692 	 * inode's allocation semaphore is taken.
1693 	 *
1694 	 * If the blocks in questions were delalloc blocks, set
1695 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1696 	 * variables are updated after the blocks have been allocated.
1697 	 */
1698 	map.m_lblk = next;
1699 	map.m_len = max_blocks;
1700 	/*
1701 	 * We're in delalloc path and it is possible that we're going to
1702 	 * need more metadata blocks than previously reserved. However
1703 	 * we must not fail because we're in writeback and there is
1704 	 * nothing we can do about it so it might result in data loss.
1705 	 * So use reserved blocks to allocate metadata if possible.
1706 	 */
1707 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1708 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1709 	if (ext4_should_dioread_nolock(mpd->inode))
1710 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1711 	if (mpd->b_state & (1 << BH_Delay))
1712 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1713 
1714 
1715 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1716 	if (blks < 0) {
1717 		struct super_block *sb = mpd->inode->i_sb;
1718 
1719 		err = blks;
1720 		/*
1721 		 * If get block returns EAGAIN or ENOSPC and there
1722 		 * appears to be free blocks we will just let
1723 		 * mpage_da_submit_io() unlock all of the pages.
1724 		 */
1725 		if (err == -EAGAIN)
1726 			goto submit_io;
1727 
1728 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1729 			mpd->retval = err;
1730 			goto submit_io;
1731 		}
1732 
1733 		/*
1734 		 * get block failure will cause us to loop in
1735 		 * writepages, because a_ops->writepage won't be able
1736 		 * to make progress. The page will be redirtied by
1737 		 * writepage and writepages will again try to write
1738 		 * the same.
1739 		 */
1740 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1741 			ext4_msg(sb, KERN_CRIT,
1742 				 "delayed block allocation failed for inode %lu "
1743 				 "at logical offset %llu with max blocks %zd "
1744 				 "with error %d", mpd->inode->i_ino,
1745 				 (unsigned long long) next,
1746 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1747 			ext4_msg(sb, KERN_CRIT,
1748 				"This should not happen!! Data will be lost");
1749 			if (err == -ENOSPC)
1750 				ext4_print_free_blocks(mpd->inode);
1751 		}
1752 		/* invalidate all the pages */
1753 		ext4_da_block_invalidatepages(mpd);
1754 
1755 		/* Mark this page range as having been completed */
1756 		mpd->io_done = 1;
1757 		return;
1758 	}
1759 	BUG_ON(blks == 0);
1760 
1761 	mapp = &map;
1762 	if (map.m_flags & EXT4_MAP_NEW) {
1763 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1764 		int i;
1765 
1766 		for (i = 0; i < map.m_len; i++)
1767 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1768 	}
1769 
1770 	/*
1771 	 * Update on-disk size along with block allocation.
1772 	 */
1773 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1774 	if (disksize > i_size_read(mpd->inode))
1775 		disksize = i_size_read(mpd->inode);
1776 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1777 		ext4_update_i_disksize(mpd->inode, disksize);
1778 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1779 		if (err)
1780 			ext4_error(mpd->inode->i_sb,
1781 				   "Failed to mark inode %lu dirty",
1782 				   mpd->inode->i_ino);
1783 	}
1784 
1785 submit_io:
1786 	mpage_da_submit_io(mpd, mapp);
1787 	mpd->io_done = 1;
1788 }
1789 
1790 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1791 		(1 << BH_Delay) | (1 << BH_Unwritten))
1792 
1793 /*
1794  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1795  *
1796  * @mpd->lbh - extent of blocks
1797  * @logical - logical number of the block in the file
1798  * @b_state - b_state of the buffer head added
1799  *
1800  * the function is used to collect contig. blocks in same state
1801  */
1802 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1803 				   unsigned long b_state)
1804 {
1805 	sector_t next;
1806 	int blkbits = mpd->inode->i_blkbits;
1807 	int nrblocks = mpd->b_size >> blkbits;
1808 
1809 	/*
1810 	 * XXX Don't go larger than mballoc is willing to allocate
1811 	 * This is a stopgap solution.  We eventually need to fold
1812 	 * mpage_da_submit_io() into this function and then call
1813 	 * ext4_map_blocks() multiple times in a loop
1814 	 */
1815 	if (nrblocks >= (8*1024*1024 >> blkbits))
1816 		goto flush_it;
1817 
1818 	/* check if the reserved journal credits might overflow */
1819 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1820 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1821 			/*
1822 			 * With non-extent format we are limited by the journal
1823 			 * credit available.  Total credit needed to insert
1824 			 * nrblocks contiguous blocks is dependent on the
1825 			 * nrblocks.  So limit nrblocks.
1826 			 */
1827 			goto flush_it;
1828 		}
1829 	}
1830 	/*
1831 	 * First block in the extent
1832 	 */
1833 	if (mpd->b_size == 0) {
1834 		mpd->b_blocknr = logical;
1835 		mpd->b_size = 1 << blkbits;
1836 		mpd->b_state = b_state & BH_FLAGS;
1837 		return;
1838 	}
1839 
1840 	next = mpd->b_blocknr + nrblocks;
1841 	/*
1842 	 * Can we merge the block to our big extent?
1843 	 */
1844 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1845 		mpd->b_size += 1 << blkbits;
1846 		return;
1847 	}
1848 
1849 flush_it:
1850 	/*
1851 	 * We couldn't merge the block to our extent, so we
1852 	 * need to flush current  extent and start new one
1853 	 */
1854 	mpage_da_map_and_submit(mpd);
1855 	return;
1856 }
1857 
1858 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1859 {
1860 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1861 }
1862 
1863 /*
1864  * This function is grabs code from the very beginning of
1865  * ext4_map_blocks, but assumes that the caller is from delayed write
1866  * time. This function looks up the requested blocks and sets the
1867  * buffer delay bit under the protection of i_data_sem.
1868  */
1869 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1870 			      struct ext4_map_blocks *map,
1871 			      struct buffer_head *bh)
1872 {
1873 	struct extent_status es;
1874 	int retval;
1875 	sector_t invalid_block = ~((sector_t) 0xffff);
1876 #ifdef ES_AGGRESSIVE_TEST
1877 	struct ext4_map_blocks orig_map;
1878 
1879 	memcpy(&orig_map, map, sizeof(*map));
1880 #endif
1881 
1882 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1883 		invalid_block = ~0;
1884 
1885 	map->m_flags = 0;
1886 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1887 		  "logical block %lu\n", inode->i_ino, map->m_len,
1888 		  (unsigned long) map->m_lblk);
1889 
1890 	/* Lookup extent status tree firstly */
1891 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1892 
1893 		if (ext4_es_is_hole(&es)) {
1894 			retval = 0;
1895 			down_read((&EXT4_I(inode)->i_data_sem));
1896 			goto add_delayed;
1897 		}
1898 
1899 		/*
1900 		 * Delayed extent could be allocated by fallocate.
1901 		 * So we need to check it.
1902 		 */
1903 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1904 			map_bh(bh, inode->i_sb, invalid_block);
1905 			set_buffer_new(bh);
1906 			set_buffer_delay(bh);
1907 			return 0;
1908 		}
1909 
1910 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1911 		retval = es.es_len - (iblock - es.es_lblk);
1912 		if (retval > map->m_len)
1913 			retval = map->m_len;
1914 		map->m_len = retval;
1915 		if (ext4_es_is_written(&es))
1916 			map->m_flags |= EXT4_MAP_MAPPED;
1917 		else if (ext4_es_is_unwritten(&es))
1918 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1919 		else
1920 			BUG_ON(1);
1921 
1922 #ifdef ES_AGGRESSIVE_TEST
1923 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1924 #endif
1925 		return retval;
1926 	}
1927 
1928 	/*
1929 	 * Try to see if we can get the block without requesting a new
1930 	 * file system block.
1931 	 */
1932 	down_read((&EXT4_I(inode)->i_data_sem));
1933 	if (ext4_has_inline_data(inode)) {
1934 		/*
1935 		 * We will soon create blocks for this page, and let
1936 		 * us pretend as if the blocks aren't allocated yet.
1937 		 * In case of clusters, we have to handle the work
1938 		 * of mapping from cluster so that the reserved space
1939 		 * is calculated properly.
1940 		 */
1941 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1942 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1943 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1944 		retval = 0;
1945 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1946 		retval = ext4_ext_map_blocks(NULL, inode, map,
1947 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1948 	else
1949 		retval = ext4_ind_map_blocks(NULL, inode, map,
1950 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1951 
1952 add_delayed:
1953 	if (retval == 0) {
1954 		int ret;
1955 		/*
1956 		 * XXX: __block_prepare_write() unmaps passed block,
1957 		 * is it OK?
1958 		 */
1959 		/*
1960 		 * If the block was allocated from previously allocated cluster,
1961 		 * then we don't need to reserve it again. However we still need
1962 		 * to reserve metadata for every block we're going to write.
1963 		 */
1964 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1965 			ret = ext4_da_reserve_space(inode, iblock);
1966 			if (ret) {
1967 				/* not enough space to reserve */
1968 				retval = ret;
1969 				goto out_unlock;
1970 			}
1971 		} else {
1972 			ret = ext4_da_reserve_metadata(inode, iblock);
1973 			if (ret) {
1974 				/* not enough space to reserve */
1975 				retval = ret;
1976 				goto out_unlock;
1977 			}
1978 		}
1979 
1980 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1981 					    ~0, EXTENT_STATUS_DELAYED);
1982 		if (ret) {
1983 			retval = ret;
1984 			goto out_unlock;
1985 		}
1986 
1987 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1988 		 * and it should not appear on the bh->b_state.
1989 		 */
1990 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1991 
1992 		map_bh(bh, inode->i_sb, invalid_block);
1993 		set_buffer_new(bh);
1994 		set_buffer_delay(bh);
1995 	} else if (retval > 0) {
1996 		int ret;
1997 		unsigned long long status;
1998 
1999 #ifdef ES_AGGRESSIVE_TEST
2000 		if (retval != map->m_len) {
2001 			printk("ES len assertation failed for inode: %lu "
2002 			       "retval %d != map->m_len %d "
2003 			       "in %s (lookup)\n", inode->i_ino, retval,
2004 			       map->m_len, __func__);
2005 		}
2006 #endif
2007 
2008 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2009 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2010 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2011 					    map->m_pblk, status);
2012 		if (ret != 0)
2013 			retval = ret;
2014 	}
2015 
2016 out_unlock:
2017 	up_read((&EXT4_I(inode)->i_data_sem));
2018 
2019 	return retval;
2020 }
2021 
2022 /*
2023  * This is a special get_blocks_t callback which is used by
2024  * ext4_da_write_begin().  It will either return mapped block or
2025  * reserve space for a single block.
2026  *
2027  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2028  * We also have b_blocknr = -1 and b_bdev initialized properly
2029  *
2030  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2031  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2032  * initialized properly.
2033  */
2034 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2035 			   struct buffer_head *bh, int create)
2036 {
2037 	struct ext4_map_blocks map;
2038 	int ret = 0;
2039 
2040 	BUG_ON(create == 0);
2041 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2042 
2043 	map.m_lblk = iblock;
2044 	map.m_len = 1;
2045 
2046 	/*
2047 	 * first, we need to know whether the block is allocated already
2048 	 * preallocated blocks are unmapped but should treated
2049 	 * the same as allocated blocks.
2050 	 */
2051 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2052 	if (ret <= 0)
2053 		return ret;
2054 
2055 	map_bh(bh, inode->i_sb, map.m_pblk);
2056 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2057 
2058 	if (buffer_unwritten(bh)) {
2059 		/* A delayed write to unwritten bh should be marked
2060 		 * new and mapped.  Mapped ensures that we don't do
2061 		 * get_block multiple times when we write to the same
2062 		 * offset and new ensures that we do proper zero out
2063 		 * for partial write.
2064 		 */
2065 		set_buffer_new(bh);
2066 		set_buffer_mapped(bh);
2067 	}
2068 	return 0;
2069 }
2070 
2071 static int bget_one(handle_t *handle, struct buffer_head *bh)
2072 {
2073 	get_bh(bh);
2074 	return 0;
2075 }
2076 
2077 static int bput_one(handle_t *handle, struct buffer_head *bh)
2078 {
2079 	put_bh(bh);
2080 	return 0;
2081 }
2082 
2083 static int __ext4_journalled_writepage(struct page *page,
2084 				       unsigned int len)
2085 {
2086 	struct address_space *mapping = page->mapping;
2087 	struct inode *inode = mapping->host;
2088 	struct buffer_head *page_bufs = NULL;
2089 	handle_t *handle = NULL;
2090 	int ret = 0, err = 0;
2091 	int inline_data = ext4_has_inline_data(inode);
2092 	struct buffer_head *inode_bh = NULL;
2093 
2094 	ClearPageChecked(page);
2095 
2096 	if (inline_data) {
2097 		BUG_ON(page->index != 0);
2098 		BUG_ON(len > ext4_get_max_inline_size(inode));
2099 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2100 		if (inode_bh == NULL)
2101 			goto out;
2102 	} else {
2103 		page_bufs = page_buffers(page);
2104 		if (!page_bufs) {
2105 			BUG();
2106 			goto out;
2107 		}
2108 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2109 				       NULL, bget_one);
2110 	}
2111 	/* As soon as we unlock the page, it can go away, but we have
2112 	 * references to buffers so we are safe */
2113 	unlock_page(page);
2114 
2115 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2116 				    ext4_writepage_trans_blocks(inode));
2117 	if (IS_ERR(handle)) {
2118 		ret = PTR_ERR(handle);
2119 		goto out;
2120 	}
2121 
2122 	BUG_ON(!ext4_handle_valid(handle));
2123 
2124 	if (inline_data) {
2125 		ret = ext4_journal_get_write_access(handle, inode_bh);
2126 
2127 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2128 
2129 	} else {
2130 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2131 					     do_journal_get_write_access);
2132 
2133 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2134 					     write_end_fn);
2135 	}
2136 	if (ret == 0)
2137 		ret = err;
2138 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2139 	err = ext4_journal_stop(handle);
2140 	if (!ret)
2141 		ret = err;
2142 
2143 	if (!ext4_has_inline_data(inode))
2144 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2145 				       NULL, bput_one);
2146 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2147 out:
2148 	brelse(inode_bh);
2149 	return ret;
2150 }
2151 
2152 /*
2153  * Note that we don't need to start a transaction unless we're journaling data
2154  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2155  * need to file the inode to the transaction's list in ordered mode because if
2156  * we are writing back data added by write(), the inode is already there and if
2157  * we are writing back data modified via mmap(), no one guarantees in which
2158  * transaction the data will hit the disk. In case we are journaling data, we
2159  * cannot start transaction directly because transaction start ranks above page
2160  * lock so we have to do some magic.
2161  *
2162  * This function can get called via...
2163  *   - ext4_da_writepages after taking page lock (have journal handle)
2164  *   - journal_submit_inode_data_buffers (no journal handle)
2165  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2166  *   - grab_page_cache when doing write_begin (have journal handle)
2167  *
2168  * We don't do any block allocation in this function. If we have page with
2169  * multiple blocks we need to write those buffer_heads that are mapped. This
2170  * is important for mmaped based write. So if we do with blocksize 1K
2171  * truncate(f, 1024);
2172  * a = mmap(f, 0, 4096);
2173  * a[0] = 'a';
2174  * truncate(f, 4096);
2175  * we have in the page first buffer_head mapped via page_mkwrite call back
2176  * but other buffer_heads would be unmapped but dirty (dirty done via the
2177  * do_wp_page). So writepage should write the first block. If we modify
2178  * the mmap area beyond 1024 we will again get a page_fault and the
2179  * page_mkwrite callback will do the block allocation and mark the
2180  * buffer_heads mapped.
2181  *
2182  * We redirty the page if we have any buffer_heads that is either delay or
2183  * unwritten in the page.
2184  *
2185  * We can get recursively called as show below.
2186  *
2187  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2188  *		ext4_writepage()
2189  *
2190  * But since we don't do any block allocation we should not deadlock.
2191  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2192  */
2193 static int ext4_writepage(struct page *page,
2194 			  struct writeback_control *wbc)
2195 {
2196 	int ret = 0;
2197 	loff_t size;
2198 	unsigned int len;
2199 	struct buffer_head *page_bufs = NULL;
2200 	struct inode *inode = page->mapping->host;
2201 	struct ext4_io_submit io_submit;
2202 
2203 	trace_ext4_writepage(page);
2204 	size = i_size_read(inode);
2205 	if (page->index == size >> PAGE_CACHE_SHIFT)
2206 		len = size & ~PAGE_CACHE_MASK;
2207 	else
2208 		len = PAGE_CACHE_SIZE;
2209 
2210 	page_bufs = page_buffers(page);
2211 	/*
2212 	 * We cannot do block allocation or other extent handling in this
2213 	 * function. If there are buffers needing that, we have to redirty
2214 	 * the page. But we may reach here when we do a journal commit via
2215 	 * journal_submit_inode_data_buffers() and in that case we must write
2216 	 * allocated buffers to achieve data=ordered mode guarantees.
2217 	 */
2218 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2219 				   ext4_bh_delay_or_unwritten)) {
2220 		redirty_page_for_writepage(wbc, page);
2221 		if (current->flags & PF_MEMALLOC) {
2222 			/*
2223 			 * For memory cleaning there's no point in writing only
2224 			 * some buffers. So just bail out. Warn if we came here
2225 			 * from direct reclaim.
2226 			 */
2227 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2228 							== PF_MEMALLOC);
2229 			unlock_page(page);
2230 			return 0;
2231 		}
2232 	}
2233 
2234 	if (PageChecked(page) && ext4_should_journal_data(inode))
2235 		/*
2236 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2237 		 * doesn't seem much point in redirtying the page here.
2238 		 */
2239 		return __ext4_journalled_writepage(page, len);
2240 
2241 	ext4_io_submit_init(&io_submit, wbc);
2242 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2243 	if (!io_submit.io_end) {
2244 		redirty_page_for_writepage(wbc, page);
2245 		return -ENOMEM;
2246 	}
2247 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2248 	ext4_io_submit(&io_submit);
2249 	/* Drop io_end reference we got from init */
2250 	ext4_put_io_end_defer(io_submit.io_end);
2251 	return ret;
2252 }
2253 
2254 /*
2255  * This is called via ext4_da_writepages() to
2256  * calculate the total number of credits to reserve to fit
2257  * a single extent allocation into a single transaction,
2258  * ext4_da_writpeages() will loop calling this before
2259  * the block allocation.
2260  */
2261 
2262 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2263 {
2264 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2265 
2266 	/*
2267 	 * With non-extent format the journal credit needed to
2268 	 * insert nrblocks contiguous block is dependent on
2269 	 * number of contiguous block. So we will limit
2270 	 * number of contiguous block to a sane value
2271 	 */
2272 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2273 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2274 		max_blocks = EXT4_MAX_TRANS_DATA;
2275 
2276 	return ext4_chunk_trans_blocks(inode, max_blocks);
2277 }
2278 
2279 /*
2280  * write_cache_pages_da - walk the list of dirty pages of the given
2281  * address space and accumulate pages that need writing, and call
2282  * mpage_da_map_and_submit to map a single contiguous memory region
2283  * and then write them.
2284  */
2285 static int write_cache_pages_da(handle_t *handle,
2286 				struct address_space *mapping,
2287 				struct writeback_control *wbc,
2288 				struct mpage_da_data *mpd,
2289 				pgoff_t *done_index)
2290 {
2291 	struct buffer_head	*bh, *head;
2292 	struct inode		*inode = mapping->host;
2293 	struct pagevec		pvec;
2294 	unsigned int		nr_pages;
2295 	sector_t		logical;
2296 	pgoff_t			index, end;
2297 	long			nr_to_write = wbc->nr_to_write;
2298 	int			i, tag, ret = 0;
2299 
2300 	memset(mpd, 0, sizeof(struct mpage_da_data));
2301 	mpd->wbc = wbc;
2302 	mpd->inode = inode;
2303 	pagevec_init(&pvec, 0);
2304 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2305 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2306 
2307 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2308 		tag = PAGECACHE_TAG_TOWRITE;
2309 	else
2310 		tag = PAGECACHE_TAG_DIRTY;
2311 
2312 	*done_index = index;
2313 	while (index <= end) {
2314 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2315 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2316 		if (nr_pages == 0)
2317 			return 0;
2318 
2319 		for (i = 0; i < nr_pages; i++) {
2320 			struct page *page = pvec.pages[i];
2321 
2322 			/*
2323 			 * At this point, the page may be truncated or
2324 			 * invalidated (changing page->mapping to NULL), or
2325 			 * even swizzled back from swapper_space to tmpfs file
2326 			 * mapping. However, page->index will not change
2327 			 * because we have a reference on the page.
2328 			 */
2329 			if (page->index > end)
2330 				goto out;
2331 
2332 			*done_index = page->index + 1;
2333 
2334 			/*
2335 			 * If we can't merge this page, and we have
2336 			 * accumulated an contiguous region, write it
2337 			 */
2338 			if ((mpd->next_page != page->index) &&
2339 			    (mpd->next_page != mpd->first_page)) {
2340 				mpage_da_map_and_submit(mpd);
2341 				goto ret_extent_tail;
2342 			}
2343 
2344 			lock_page(page);
2345 
2346 			/*
2347 			 * If the page is no longer dirty, or its
2348 			 * mapping no longer corresponds to inode we
2349 			 * are writing (which means it has been
2350 			 * truncated or invalidated), or the page is
2351 			 * already under writeback and we are not
2352 			 * doing a data integrity writeback, skip the page
2353 			 */
2354 			if (!PageDirty(page) ||
2355 			    (PageWriteback(page) &&
2356 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2357 			    unlikely(page->mapping != mapping)) {
2358 				unlock_page(page);
2359 				continue;
2360 			}
2361 
2362 			wait_on_page_writeback(page);
2363 			BUG_ON(PageWriteback(page));
2364 
2365 			/*
2366 			 * If we have inline data and arrive here, it means that
2367 			 * we will soon create the block for the 1st page, so
2368 			 * we'd better clear the inline data here.
2369 			 */
2370 			if (ext4_has_inline_data(inode)) {
2371 				BUG_ON(ext4_test_inode_state(inode,
2372 						EXT4_STATE_MAY_INLINE_DATA));
2373 				ext4_destroy_inline_data(handle, inode);
2374 			}
2375 
2376 			if (mpd->next_page != page->index)
2377 				mpd->first_page = page->index;
2378 			mpd->next_page = page->index + 1;
2379 			logical = (sector_t) page->index <<
2380 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2381 
2382 			/* Add all dirty buffers to mpd */
2383 			head = page_buffers(page);
2384 			bh = head;
2385 			do {
2386 				BUG_ON(buffer_locked(bh));
2387 				/*
2388 				 * We need to try to allocate unmapped blocks
2389 				 * in the same page.  Otherwise we won't make
2390 				 * progress with the page in ext4_writepage
2391 				 */
2392 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2393 					mpage_add_bh_to_extent(mpd, logical,
2394 							       bh->b_state);
2395 					if (mpd->io_done)
2396 						goto ret_extent_tail;
2397 				} else if (buffer_dirty(bh) &&
2398 					   buffer_mapped(bh)) {
2399 					/*
2400 					 * mapped dirty buffer. We need to
2401 					 * update the b_state because we look
2402 					 * at b_state in mpage_da_map_blocks.
2403 					 * We don't update b_size because if we
2404 					 * find an unmapped buffer_head later
2405 					 * we need to use the b_state flag of
2406 					 * that buffer_head.
2407 					 */
2408 					if (mpd->b_size == 0)
2409 						mpd->b_state =
2410 							bh->b_state & BH_FLAGS;
2411 				}
2412 				logical++;
2413 			} while ((bh = bh->b_this_page) != head);
2414 
2415 			if (nr_to_write > 0) {
2416 				nr_to_write--;
2417 				if (nr_to_write == 0 &&
2418 				    wbc->sync_mode == WB_SYNC_NONE)
2419 					/*
2420 					 * We stop writing back only if we are
2421 					 * not doing integrity sync. In case of
2422 					 * integrity sync we have to keep going
2423 					 * because someone may be concurrently
2424 					 * dirtying pages, and we might have
2425 					 * synced a lot of newly appeared dirty
2426 					 * pages, but have not synced all of the
2427 					 * old dirty pages.
2428 					 */
2429 					goto out;
2430 			}
2431 		}
2432 		pagevec_release(&pvec);
2433 		cond_resched();
2434 	}
2435 	return 0;
2436 ret_extent_tail:
2437 	ret = MPAGE_DA_EXTENT_TAIL;
2438 out:
2439 	pagevec_release(&pvec);
2440 	cond_resched();
2441 	return ret;
2442 }
2443 
2444 
2445 static int ext4_da_writepages(struct address_space *mapping,
2446 			      struct writeback_control *wbc)
2447 {
2448 	pgoff_t	index;
2449 	int range_whole = 0;
2450 	handle_t *handle = NULL;
2451 	struct mpage_da_data mpd;
2452 	struct inode *inode = mapping->host;
2453 	int pages_written = 0;
2454 	unsigned int max_pages;
2455 	int range_cyclic, cycled = 1, io_done = 0;
2456 	int needed_blocks, ret = 0;
2457 	long desired_nr_to_write, nr_to_writebump = 0;
2458 	loff_t range_start = wbc->range_start;
2459 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2460 	pgoff_t done_index = 0;
2461 	pgoff_t end;
2462 	struct blk_plug plug;
2463 
2464 	trace_ext4_da_writepages(inode, wbc);
2465 
2466 	/*
2467 	 * No pages to write? This is mainly a kludge to avoid starting
2468 	 * a transaction for special inodes like journal inode on last iput()
2469 	 * because that could violate lock ordering on umount
2470 	 */
2471 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2472 		return 0;
2473 
2474 	/*
2475 	 * If the filesystem has aborted, it is read-only, so return
2476 	 * right away instead of dumping stack traces later on that
2477 	 * will obscure the real source of the problem.  We test
2478 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2479 	 * the latter could be true if the filesystem is mounted
2480 	 * read-only, and in that case, ext4_da_writepages should
2481 	 * *never* be called, so if that ever happens, we would want
2482 	 * the stack trace.
2483 	 */
2484 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2485 		return -EROFS;
2486 
2487 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2488 		range_whole = 1;
2489 
2490 	range_cyclic = wbc->range_cyclic;
2491 	if (wbc->range_cyclic) {
2492 		index = mapping->writeback_index;
2493 		if (index)
2494 			cycled = 0;
2495 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2496 		wbc->range_end  = LLONG_MAX;
2497 		wbc->range_cyclic = 0;
2498 		end = -1;
2499 	} else {
2500 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2501 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2502 	}
2503 
2504 	/*
2505 	 * This works around two forms of stupidity.  The first is in
2506 	 * the writeback code, which caps the maximum number of pages
2507 	 * written to be 1024 pages.  This is wrong on multiple
2508 	 * levels; different architectues have a different page size,
2509 	 * which changes the maximum amount of data which gets
2510 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2511 	 * forces this value to be 16 megabytes by multiplying
2512 	 * nr_to_write parameter by four, and then relies on its
2513 	 * allocator to allocate larger extents to make them
2514 	 * contiguous.  Unfortunately this brings us to the second
2515 	 * stupidity, which is that ext4's mballoc code only allocates
2516 	 * at most 2048 blocks.  So we force contiguous writes up to
2517 	 * the number of dirty blocks in the inode, or
2518 	 * sbi->max_writeback_mb_bump whichever is smaller.
2519 	 */
2520 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2521 	if (!range_cyclic && range_whole) {
2522 		if (wbc->nr_to_write == LONG_MAX)
2523 			desired_nr_to_write = wbc->nr_to_write;
2524 		else
2525 			desired_nr_to_write = wbc->nr_to_write * 8;
2526 	} else
2527 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2528 							   max_pages);
2529 	if (desired_nr_to_write > max_pages)
2530 		desired_nr_to_write = max_pages;
2531 
2532 	if (wbc->nr_to_write < desired_nr_to_write) {
2533 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2534 		wbc->nr_to_write = desired_nr_to_write;
2535 	}
2536 
2537 retry:
2538 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2539 		tag_pages_for_writeback(mapping, index, end);
2540 
2541 	blk_start_plug(&plug);
2542 	while (!ret && wbc->nr_to_write > 0) {
2543 
2544 		/*
2545 		 * we  insert one extent at a time. So we need
2546 		 * credit needed for single extent allocation.
2547 		 * journalled mode is currently not supported
2548 		 * by delalloc
2549 		 */
2550 		BUG_ON(ext4_should_journal_data(inode));
2551 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2552 
2553 		/* start a new transaction*/
2554 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2555 					    needed_blocks);
2556 		if (IS_ERR(handle)) {
2557 			ret = PTR_ERR(handle);
2558 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2559 			       "%ld pages, ino %lu; err %d", __func__,
2560 				wbc->nr_to_write, inode->i_ino, ret);
2561 			blk_finish_plug(&plug);
2562 			goto out_writepages;
2563 		}
2564 
2565 		/*
2566 		 * Now call write_cache_pages_da() to find the next
2567 		 * contiguous region of logical blocks that need
2568 		 * blocks to be allocated by ext4 and submit them.
2569 		 */
2570 		ret = write_cache_pages_da(handle, mapping,
2571 					   wbc, &mpd, &done_index);
2572 		/*
2573 		 * If we have a contiguous extent of pages and we
2574 		 * haven't done the I/O yet, map the blocks and submit
2575 		 * them for I/O.
2576 		 */
2577 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2578 			mpage_da_map_and_submit(&mpd);
2579 			ret = MPAGE_DA_EXTENT_TAIL;
2580 		}
2581 		trace_ext4_da_write_pages(inode, &mpd);
2582 		wbc->nr_to_write -= mpd.pages_written;
2583 
2584 		ext4_journal_stop(handle);
2585 
2586 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2587 			/* commit the transaction which would
2588 			 * free blocks released in the transaction
2589 			 * and try again
2590 			 */
2591 			jbd2_journal_force_commit_nested(sbi->s_journal);
2592 			ret = 0;
2593 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2594 			/*
2595 			 * Got one extent now try with rest of the pages.
2596 			 * If mpd.retval is set -EIO, journal is aborted.
2597 			 * So we don't need to write any more.
2598 			 */
2599 			pages_written += mpd.pages_written;
2600 			ret = mpd.retval;
2601 			io_done = 1;
2602 		} else if (wbc->nr_to_write)
2603 			/*
2604 			 * There is no more writeout needed
2605 			 * or we requested for a noblocking writeout
2606 			 * and we found the device congested
2607 			 */
2608 			break;
2609 	}
2610 	blk_finish_plug(&plug);
2611 	if (!io_done && !cycled) {
2612 		cycled = 1;
2613 		index = 0;
2614 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2615 		wbc->range_end  = mapping->writeback_index - 1;
2616 		goto retry;
2617 	}
2618 
2619 	/* Update index */
2620 	wbc->range_cyclic = range_cyclic;
2621 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2622 		/*
2623 		 * set the writeback_index so that range_cyclic
2624 		 * mode will write it back later
2625 		 */
2626 		mapping->writeback_index = done_index;
2627 
2628 out_writepages:
2629 	wbc->nr_to_write -= nr_to_writebump;
2630 	wbc->range_start = range_start;
2631 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2632 	return ret;
2633 }
2634 
2635 static int ext4_nonda_switch(struct super_block *sb)
2636 {
2637 	s64 free_clusters, dirty_clusters;
2638 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2639 
2640 	/*
2641 	 * switch to non delalloc mode if we are running low
2642 	 * on free block. The free block accounting via percpu
2643 	 * counters can get slightly wrong with percpu_counter_batch getting
2644 	 * accumulated on each CPU without updating global counters
2645 	 * Delalloc need an accurate free block accounting. So switch
2646 	 * to non delalloc when we are near to error range.
2647 	 */
2648 	free_clusters =
2649 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2650 	dirty_clusters =
2651 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2652 	/*
2653 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2654 	 */
2655 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2656 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2657 
2658 	if (2 * free_clusters < 3 * dirty_clusters ||
2659 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2660 		/*
2661 		 * free block count is less than 150% of dirty blocks
2662 		 * or free blocks is less than watermark
2663 		 */
2664 		return 1;
2665 	}
2666 	return 0;
2667 }
2668 
2669 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2670 			       loff_t pos, unsigned len, unsigned flags,
2671 			       struct page **pagep, void **fsdata)
2672 {
2673 	int ret, retries = 0;
2674 	struct page *page;
2675 	pgoff_t index;
2676 	struct inode *inode = mapping->host;
2677 	handle_t *handle;
2678 
2679 	index = pos >> PAGE_CACHE_SHIFT;
2680 
2681 	if (ext4_nonda_switch(inode->i_sb)) {
2682 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2683 		return ext4_write_begin(file, mapping, pos,
2684 					len, flags, pagep, fsdata);
2685 	}
2686 	*fsdata = (void *)0;
2687 	trace_ext4_da_write_begin(inode, pos, len, flags);
2688 
2689 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2690 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2691 						      pos, len, flags,
2692 						      pagep, fsdata);
2693 		if (ret < 0)
2694 			return ret;
2695 		if (ret == 1)
2696 			return 0;
2697 	}
2698 
2699 	/*
2700 	 * grab_cache_page_write_begin() can take a long time if the
2701 	 * system is thrashing due to memory pressure, or if the page
2702 	 * is being written back.  So grab it first before we start
2703 	 * the transaction handle.  This also allows us to allocate
2704 	 * the page (if needed) without using GFP_NOFS.
2705 	 */
2706 retry_grab:
2707 	page = grab_cache_page_write_begin(mapping, index, flags);
2708 	if (!page)
2709 		return -ENOMEM;
2710 	unlock_page(page);
2711 
2712 	/*
2713 	 * With delayed allocation, we don't log the i_disksize update
2714 	 * if there is delayed block allocation. But we still need
2715 	 * to journalling the i_disksize update if writes to the end
2716 	 * of file which has an already mapped buffer.
2717 	 */
2718 retry_journal:
2719 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2720 	if (IS_ERR(handle)) {
2721 		page_cache_release(page);
2722 		return PTR_ERR(handle);
2723 	}
2724 
2725 	lock_page(page);
2726 	if (page->mapping != mapping) {
2727 		/* The page got truncated from under us */
2728 		unlock_page(page);
2729 		page_cache_release(page);
2730 		ext4_journal_stop(handle);
2731 		goto retry_grab;
2732 	}
2733 	/* In case writeback began while the page was unlocked */
2734 	wait_on_page_writeback(page);
2735 
2736 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2737 	if (ret < 0) {
2738 		unlock_page(page);
2739 		ext4_journal_stop(handle);
2740 		/*
2741 		 * block_write_begin may have instantiated a few blocks
2742 		 * outside i_size.  Trim these off again. Don't need
2743 		 * i_size_read because we hold i_mutex.
2744 		 */
2745 		if (pos + len > inode->i_size)
2746 			ext4_truncate_failed_write(inode);
2747 
2748 		if (ret == -ENOSPC &&
2749 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2750 			goto retry_journal;
2751 
2752 		page_cache_release(page);
2753 		return ret;
2754 	}
2755 
2756 	*pagep = page;
2757 	return ret;
2758 }
2759 
2760 /*
2761  * Check if we should update i_disksize
2762  * when write to the end of file but not require block allocation
2763  */
2764 static int ext4_da_should_update_i_disksize(struct page *page,
2765 					    unsigned long offset)
2766 {
2767 	struct buffer_head *bh;
2768 	struct inode *inode = page->mapping->host;
2769 	unsigned int idx;
2770 	int i;
2771 
2772 	bh = page_buffers(page);
2773 	idx = offset >> inode->i_blkbits;
2774 
2775 	for (i = 0; i < idx; i++)
2776 		bh = bh->b_this_page;
2777 
2778 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2779 		return 0;
2780 	return 1;
2781 }
2782 
2783 static int ext4_da_write_end(struct file *file,
2784 			     struct address_space *mapping,
2785 			     loff_t pos, unsigned len, unsigned copied,
2786 			     struct page *page, void *fsdata)
2787 {
2788 	struct inode *inode = mapping->host;
2789 	int ret = 0, ret2;
2790 	handle_t *handle = ext4_journal_current_handle();
2791 	loff_t new_i_size;
2792 	unsigned long start, end;
2793 	int write_mode = (int)(unsigned long)fsdata;
2794 
2795 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2796 		return ext4_write_end(file, mapping, pos,
2797 				      len, copied, page, fsdata);
2798 
2799 	trace_ext4_da_write_end(inode, pos, len, copied);
2800 	start = pos & (PAGE_CACHE_SIZE - 1);
2801 	end = start + copied - 1;
2802 
2803 	/*
2804 	 * generic_write_end() will run mark_inode_dirty() if i_size
2805 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2806 	 * into that.
2807 	 */
2808 	new_i_size = pos + copied;
2809 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2810 		if (ext4_has_inline_data(inode) ||
2811 		    ext4_da_should_update_i_disksize(page, end)) {
2812 			down_write(&EXT4_I(inode)->i_data_sem);
2813 			if (new_i_size > EXT4_I(inode)->i_disksize)
2814 				EXT4_I(inode)->i_disksize = new_i_size;
2815 			up_write(&EXT4_I(inode)->i_data_sem);
2816 			/* We need to mark inode dirty even if
2817 			 * new_i_size is less that inode->i_size
2818 			 * bu greater than i_disksize.(hint delalloc)
2819 			 */
2820 			ext4_mark_inode_dirty(handle, inode);
2821 		}
2822 	}
2823 
2824 	if (write_mode != CONVERT_INLINE_DATA &&
2825 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2826 	    ext4_has_inline_data(inode))
2827 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2828 						     page);
2829 	else
2830 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2831 							page, fsdata);
2832 
2833 	copied = ret2;
2834 	if (ret2 < 0)
2835 		ret = ret2;
2836 	ret2 = ext4_journal_stop(handle);
2837 	if (!ret)
2838 		ret = ret2;
2839 
2840 	return ret ? ret : copied;
2841 }
2842 
2843 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2844 {
2845 	/*
2846 	 * Drop reserved blocks
2847 	 */
2848 	BUG_ON(!PageLocked(page));
2849 	if (!page_has_buffers(page))
2850 		goto out;
2851 
2852 	ext4_da_page_release_reservation(page, offset);
2853 
2854 out:
2855 	ext4_invalidatepage(page, offset);
2856 
2857 	return;
2858 }
2859 
2860 /*
2861  * Force all delayed allocation blocks to be allocated for a given inode.
2862  */
2863 int ext4_alloc_da_blocks(struct inode *inode)
2864 {
2865 	trace_ext4_alloc_da_blocks(inode);
2866 
2867 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2868 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2869 		return 0;
2870 
2871 	/*
2872 	 * We do something simple for now.  The filemap_flush() will
2873 	 * also start triggering a write of the data blocks, which is
2874 	 * not strictly speaking necessary (and for users of
2875 	 * laptop_mode, not even desirable).  However, to do otherwise
2876 	 * would require replicating code paths in:
2877 	 *
2878 	 * ext4_da_writepages() ->
2879 	 *    write_cache_pages() ---> (via passed in callback function)
2880 	 *        __mpage_da_writepage() -->
2881 	 *           mpage_add_bh_to_extent()
2882 	 *           mpage_da_map_blocks()
2883 	 *
2884 	 * The problem is that write_cache_pages(), located in
2885 	 * mm/page-writeback.c, marks pages clean in preparation for
2886 	 * doing I/O, which is not desirable if we're not planning on
2887 	 * doing I/O at all.
2888 	 *
2889 	 * We could call write_cache_pages(), and then redirty all of
2890 	 * the pages by calling redirty_page_for_writepage() but that
2891 	 * would be ugly in the extreme.  So instead we would need to
2892 	 * replicate parts of the code in the above functions,
2893 	 * simplifying them because we wouldn't actually intend to
2894 	 * write out the pages, but rather only collect contiguous
2895 	 * logical block extents, call the multi-block allocator, and
2896 	 * then update the buffer heads with the block allocations.
2897 	 *
2898 	 * For now, though, we'll cheat by calling filemap_flush(),
2899 	 * which will map the blocks, and start the I/O, but not
2900 	 * actually wait for the I/O to complete.
2901 	 */
2902 	return filemap_flush(inode->i_mapping);
2903 }
2904 
2905 /*
2906  * bmap() is special.  It gets used by applications such as lilo and by
2907  * the swapper to find the on-disk block of a specific piece of data.
2908  *
2909  * Naturally, this is dangerous if the block concerned is still in the
2910  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2911  * filesystem and enables swap, then they may get a nasty shock when the
2912  * data getting swapped to that swapfile suddenly gets overwritten by
2913  * the original zero's written out previously to the journal and
2914  * awaiting writeback in the kernel's buffer cache.
2915  *
2916  * So, if we see any bmap calls here on a modified, data-journaled file,
2917  * take extra steps to flush any blocks which might be in the cache.
2918  */
2919 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2920 {
2921 	struct inode *inode = mapping->host;
2922 	journal_t *journal;
2923 	int err;
2924 
2925 	/*
2926 	 * We can get here for an inline file via the FIBMAP ioctl
2927 	 */
2928 	if (ext4_has_inline_data(inode))
2929 		return 0;
2930 
2931 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2932 			test_opt(inode->i_sb, DELALLOC)) {
2933 		/*
2934 		 * With delalloc we want to sync the file
2935 		 * so that we can make sure we allocate
2936 		 * blocks for file
2937 		 */
2938 		filemap_write_and_wait(mapping);
2939 	}
2940 
2941 	if (EXT4_JOURNAL(inode) &&
2942 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2943 		/*
2944 		 * This is a REALLY heavyweight approach, but the use of
2945 		 * bmap on dirty files is expected to be extremely rare:
2946 		 * only if we run lilo or swapon on a freshly made file
2947 		 * do we expect this to happen.
2948 		 *
2949 		 * (bmap requires CAP_SYS_RAWIO so this does not
2950 		 * represent an unprivileged user DOS attack --- we'd be
2951 		 * in trouble if mortal users could trigger this path at
2952 		 * will.)
2953 		 *
2954 		 * NB. EXT4_STATE_JDATA is not set on files other than
2955 		 * regular files.  If somebody wants to bmap a directory
2956 		 * or symlink and gets confused because the buffer
2957 		 * hasn't yet been flushed to disk, they deserve
2958 		 * everything they get.
2959 		 */
2960 
2961 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2962 		journal = EXT4_JOURNAL(inode);
2963 		jbd2_journal_lock_updates(journal);
2964 		err = jbd2_journal_flush(journal);
2965 		jbd2_journal_unlock_updates(journal);
2966 
2967 		if (err)
2968 			return 0;
2969 	}
2970 
2971 	return generic_block_bmap(mapping, block, ext4_get_block);
2972 }
2973 
2974 static int ext4_readpage(struct file *file, struct page *page)
2975 {
2976 	int ret = -EAGAIN;
2977 	struct inode *inode = page->mapping->host;
2978 
2979 	trace_ext4_readpage(page);
2980 
2981 	if (ext4_has_inline_data(inode))
2982 		ret = ext4_readpage_inline(inode, page);
2983 
2984 	if (ret == -EAGAIN)
2985 		return mpage_readpage(page, ext4_get_block);
2986 
2987 	return ret;
2988 }
2989 
2990 static int
2991 ext4_readpages(struct file *file, struct address_space *mapping,
2992 		struct list_head *pages, unsigned nr_pages)
2993 {
2994 	struct inode *inode = mapping->host;
2995 
2996 	/* If the file has inline data, no need to do readpages. */
2997 	if (ext4_has_inline_data(inode))
2998 		return 0;
2999 
3000 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3001 }
3002 
3003 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3004 {
3005 	trace_ext4_invalidatepage(page, offset);
3006 
3007 	/* No journalling happens on data buffers when this function is used */
3008 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3009 
3010 	block_invalidatepage(page, offset);
3011 }
3012 
3013 static int __ext4_journalled_invalidatepage(struct page *page,
3014 					    unsigned long offset)
3015 {
3016 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3017 
3018 	trace_ext4_journalled_invalidatepage(page, offset);
3019 
3020 	/*
3021 	 * If it's a full truncate we just forget about the pending dirtying
3022 	 */
3023 	if (offset == 0)
3024 		ClearPageChecked(page);
3025 
3026 	return jbd2_journal_invalidatepage(journal, page, offset);
3027 }
3028 
3029 /* Wrapper for aops... */
3030 static void ext4_journalled_invalidatepage(struct page *page,
3031 					   unsigned long offset)
3032 {
3033 	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3034 }
3035 
3036 static int ext4_releasepage(struct page *page, gfp_t wait)
3037 {
3038 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3039 
3040 	trace_ext4_releasepage(page);
3041 
3042 	/* Page has dirty journalled data -> cannot release */
3043 	if (PageChecked(page))
3044 		return 0;
3045 	if (journal)
3046 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3047 	else
3048 		return try_to_free_buffers(page);
3049 }
3050 
3051 /*
3052  * ext4_get_block used when preparing for a DIO write or buffer write.
3053  * We allocate an uinitialized extent if blocks haven't been allocated.
3054  * The extent will be converted to initialized after the IO is complete.
3055  */
3056 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3057 		   struct buffer_head *bh_result, int create)
3058 {
3059 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3060 		   inode->i_ino, create);
3061 	return _ext4_get_block(inode, iblock, bh_result,
3062 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3063 }
3064 
3065 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3066 		   struct buffer_head *bh_result, int create)
3067 {
3068 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3069 		   inode->i_ino, create);
3070 	return _ext4_get_block(inode, iblock, bh_result,
3071 			       EXT4_GET_BLOCKS_NO_LOCK);
3072 }
3073 
3074 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3075 			    ssize_t size, void *private, int ret,
3076 			    bool is_async)
3077 {
3078 	struct inode *inode = file_inode(iocb->ki_filp);
3079         ext4_io_end_t *io_end = iocb->private;
3080 
3081 	/* if not async direct IO just return */
3082 	if (!io_end) {
3083 		inode_dio_done(inode);
3084 		if (is_async)
3085 			aio_complete(iocb, ret, 0);
3086 		return;
3087 	}
3088 
3089 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3090 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3091  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3092 		  size);
3093 
3094 	iocb->private = NULL;
3095 	io_end->offset = offset;
3096 	io_end->size = size;
3097 	if (is_async) {
3098 		io_end->iocb = iocb;
3099 		io_end->result = ret;
3100 	}
3101 	ext4_put_io_end_defer(io_end);
3102 }
3103 
3104 /*
3105  * For ext4 extent files, ext4 will do direct-io write to holes,
3106  * preallocated extents, and those write extend the file, no need to
3107  * fall back to buffered IO.
3108  *
3109  * For holes, we fallocate those blocks, mark them as uninitialized
3110  * If those blocks were preallocated, we mark sure they are split, but
3111  * still keep the range to write as uninitialized.
3112  *
3113  * The unwritten extents will be converted to written when DIO is completed.
3114  * For async direct IO, since the IO may still pending when return, we
3115  * set up an end_io call back function, which will do the conversion
3116  * when async direct IO completed.
3117  *
3118  * If the O_DIRECT write will extend the file then add this inode to the
3119  * orphan list.  So recovery will truncate it back to the original size
3120  * if the machine crashes during the write.
3121  *
3122  */
3123 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3124 			      const struct iovec *iov, loff_t offset,
3125 			      unsigned long nr_segs)
3126 {
3127 	struct file *file = iocb->ki_filp;
3128 	struct inode *inode = file->f_mapping->host;
3129 	ssize_t ret;
3130 	size_t count = iov_length(iov, nr_segs);
3131 	int overwrite = 0;
3132 	get_block_t *get_block_func = NULL;
3133 	int dio_flags = 0;
3134 	loff_t final_size = offset + count;
3135 	ext4_io_end_t *io_end = NULL;
3136 
3137 	/* Use the old path for reads and writes beyond i_size. */
3138 	if (rw != WRITE || final_size > inode->i_size)
3139 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3140 
3141 	BUG_ON(iocb->private == NULL);
3142 
3143 	/* If we do a overwrite dio, i_mutex locking can be released */
3144 	overwrite = *((int *)iocb->private);
3145 
3146 	if (overwrite) {
3147 		atomic_inc(&inode->i_dio_count);
3148 		down_read(&EXT4_I(inode)->i_data_sem);
3149 		mutex_unlock(&inode->i_mutex);
3150 	}
3151 
3152 	/*
3153 	 * We could direct write to holes and fallocate.
3154 	 *
3155 	 * Allocated blocks to fill the hole are marked as
3156 	 * uninitialized to prevent parallel buffered read to expose
3157 	 * the stale data before DIO complete the data IO.
3158 	 *
3159 	 * As to previously fallocated extents, ext4 get_block will
3160 	 * just simply mark the buffer mapped but still keep the
3161 	 * extents uninitialized.
3162 	 *
3163 	 * For non AIO case, we will convert those unwritten extents
3164 	 * to written after return back from blockdev_direct_IO.
3165 	 *
3166 	 * For async DIO, the conversion needs to be deferred when the
3167 	 * IO is completed. The ext4 end_io callback function will be
3168 	 * called to take care of the conversion work.  Here for async
3169 	 * case, we allocate an io_end structure to hook to the iocb.
3170 	 */
3171 	iocb->private = NULL;
3172 	ext4_inode_aio_set(inode, NULL);
3173 	if (!is_sync_kiocb(iocb)) {
3174 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3175 		if (!io_end) {
3176 			ret = -ENOMEM;
3177 			goto retake_lock;
3178 		}
3179 		io_end->flag |= EXT4_IO_END_DIRECT;
3180 		/*
3181 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3182 		 */
3183 		iocb->private = ext4_get_io_end(io_end);
3184 		/*
3185 		 * we save the io structure for current async direct
3186 		 * IO, so that later ext4_map_blocks() could flag the
3187 		 * io structure whether there is a unwritten extents
3188 		 * needs to be converted when IO is completed.
3189 		 */
3190 		ext4_inode_aio_set(inode, io_end);
3191 	}
3192 
3193 	if (overwrite) {
3194 		get_block_func = ext4_get_block_write_nolock;
3195 	} else {
3196 		get_block_func = ext4_get_block_write;
3197 		dio_flags = DIO_LOCKING;
3198 	}
3199 	ret = __blockdev_direct_IO(rw, iocb, inode,
3200 				   inode->i_sb->s_bdev, iov,
3201 				   offset, nr_segs,
3202 				   get_block_func,
3203 				   ext4_end_io_dio,
3204 				   NULL,
3205 				   dio_flags);
3206 
3207 	/*
3208 	 * Put our reference to io_end. This can free the io_end structure e.g.
3209 	 * in sync IO case or in case of error. It can even perform extent
3210 	 * conversion if all bios we submitted finished before we got here.
3211 	 * Note that in that case iocb->private can be already set to NULL
3212 	 * here.
3213 	 */
3214 	if (io_end) {
3215 		ext4_inode_aio_set(inode, NULL);
3216 		ext4_put_io_end(io_end);
3217 		/*
3218 		 * In case of error or no write ext4_end_io_dio() was not
3219 		 * called so we have to put iocb's reference.
3220 		 */
3221 		if (ret <= 0 && ret != -EIOCBQUEUED) {
3222 			WARN_ON(iocb->private != io_end);
3223 			ext4_put_io_end(io_end);
3224 			iocb->private = NULL;
3225 		}
3226 	}
3227 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3228 						EXT4_STATE_DIO_UNWRITTEN)) {
3229 		int err;
3230 		/*
3231 		 * for non AIO case, since the IO is already
3232 		 * completed, we could do the conversion right here
3233 		 */
3234 		err = ext4_convert_unwritten_extents(inode,
3235 						     offset, ret);
3236 		if (err < 0)
3237 			ret = err;
3238 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3239 	}
3240 
3241 retake_lock:
3242 	/* take i_mutex locking again if we do a ovewrite dio */
3243 	if (overwrite) {
3244 		inode_dio_done(inode);
3245 		up_read(&EXT4_I(inode)->i_data_sem);
3246 		mutex_lock(&inode->i_mutex);
3247 	}
3248 
3249 	return ret;
3250 }
3251 
3252 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3253 			      const struct iovec *iov, loff_t offset,
3254 			      unsigned long nr_segs)
3255 {
3256 	struct file *file = iocb->ki_filp;
3257 	struct inode *inode = file->f_mapping->host;
3258 	ssize_t ret;
3259 
3260 	/*
3261 	 * If we are doing data journalling we don't support O_DIRECT
3262 	 */
3263 	if (ext4_should_journal_data(inode))
3264 		return 0;
3265 
3266 	/* Let buffer I/O handle the inline data case. */
3267 	if (ext4_has_inline_data(inode))
3268 		return 0;
3269 
3270 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3271 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3272 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3273 	else
3274 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3275 	trace_ext4_direct_IO_exit(inode, offset,
3276 				iov_length(iov, nr_segs), rw, ret);
3277 	return ret;
3278 }
3279 
3280 /*
3281  * Pages can be marked dirty completely asynchronously from ext4's journalling
3282  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3283  * much here because ->set_page_dirty is called under VFS locks.  The page is
3284  * not necessarily locked.
3285  *
3286  * We cannot just dirty the page and leave attached buffers clean, because the
3287  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3288  * or jbddirty because all the journalling code will explode.
3289  *
3290  * So what we do is to mark the page "pending dirty" and next time writepage
3291  * is called, propagate that into the buffers appropriately.
3292  */
3293 static int ext4_journalled_set_page_dirty(struct page *page)
3294 {
3295 	SetPageChecked(page);
3296 	return __set_page_dirty_nobuffers(page);
3297 }
3298 
3299 static const struct address_space_operations ext4_aops = {
3300 	.readpage		= ext4_readpage,
3301 	.readpages		= ext4_readpages,
3302 	.writepage		= ext4_writepage,
3303 	.write_begin		= ext4_write_begin,
3304 	.write_end		= ext4_write_end,
3305 	.bmap			= ext4_bmap,
3306 	.invalidatepage		= ext4_invalidatepage,
3307 	.releasepage		= ext4_releasepage,
3308 	.direct_IO		= ext4_direct_IO,
3309 	.migratepage		= buffer_migrate_page,
3310 	.is_partially_uptodate  = block_is_partially_uptodate,
3311 	.error_remove_page	= generic_error_remove_page,
3312 };
3313 
3314 static const struct address_space_operations ext4_journalled_aops = {
3315 	.readpage		= ext4_readpage,
3316 	.readpages		= ext4_readpages,
3317 	.writepage		= ext4_writepage,
3318 	.write_begin		= ext4_write_begin,
3319 	.write_end		= ext4_journalled_write_end,
3320 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3321 	.bmap			= ext4_bmap,
3322 	.invalidatepage		= ext4_journalled_invalidatepage,
3323 	.releasepage		= ext4_releasepage,
3324 	.direct_IO		= ext4_direct_IO,
3325 	.is_partially_uptodate  = block_is_partially_uptodate,
3326 	.error_remove_page	= generic_error_remove_page,
3327 };
3328 
3329 static const struct address_space_operations ext4_da_aops = {
3330 	.readpage		= ext4_readpage,
3331 	.readpages		= ext4_readpages,
3332 	.writepage		= ext4_writepage,
3333 	.writepages		= ext4_da_writepages,
3334 	.write_begin		= ext4_da_write_begin,
3335 	.write_end		= ext4_da_write_end,
3336 	.bmap			= ext4_bmap,
3337 	.invalidatepage		= ext4_da_invalidatepage,
3338 	.releasepage		= ext4_releasepage,
3339 	.direct_IO		= ext4_direct_IO,
3340 	.migratepage		= buffer_migrate_page,
3341 	.is_partially_uptodate  = block_is_partially_uptodate,
3342 	.error_remove_page	= generic_error_remove_page,
3343 };
3344 
3345 void ext4_set_aops(struct inode *inode)
3346 {
3347 	switch (ext4_inode_journal_mode(inode)) {
3348 	case EXT4_INODE_ORDERED_DATA_MODE:
3349 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3350 		break;
3351 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3352 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3353 		break;
3354 	case EXT4_INODE_JOURNAL_DATA_MODE:
3355 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3356 		return;
3357 	default:
3358 		BUG();
3359 	}
3360 	if (test_opt(inode->i_sb, DELALLOC))
3361 		inode->i_mapping->a_ops = &ext4_da_aops;
3362 	else
3363 		inode->i_mapping->a_ops = &ext4_aops;
3364 }
3365 
3366 
3367 /*
3368  * ext4_discard_partial_page_buffers()
3369  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3370  * This function finds and locks the page containing the offset
3371  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3372  * Calling functions that already have the page locked should call
3373  * ext4_discard_partial_page_buffers_no_lock directly.
3374  */
3375 int ext4_discard_partial_page_buffers(handle_t *handle,
3376 		struct address_space *mapping, loff_t from,
3377 		loff_t length, int flags)
3378 {
3379 	struct inode *inode = mapping->host;
3380 	struct page *page;
3381 	int err = 0;
3382 
3383 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3384 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3385 	if (!page)
3386 		return -ENOMEM;
3387 
3388 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3389 		from, length, flags);
3390 
3391 	unlock_page(page);
3392 	page_cache_release(page);
3393 	return err;
3394 }
3395 
3396 /*
3397  * ext4_discard_partial_page_buffers_no_lock()
3398  * Zeros a page range of length 'length' starting from offset 'from'.
3399  * Buffer heads that correspond to the block aligned regions of the
3400  * zeroed range will be unmapped.  Unblock aligned regions
3401  * will have the corresponding buffer head mapped if needed so that
3402  * that region of the page can be updated with the partial zero out.
3403  *
3404  * This function assumes that the page has already been  locked.  The
3405  * The range to be discarded must be contained with in the given page.
3406  * If the specified range exceeds the end of the page it will be shortened
3407  * to the end of the page that corresponds to 'from'.  This function is
3408  * appropriate for updating a page and it buffer heads to be unmapped and
3409  * zeroed for blocks that have been either released, or are going to be
3410  * released.
3411  *
3412  * handle: The journal handle
3413  * inode:  The files inode
3414  * page:   A locked page that contains the offset "from"
3415  * from:   The starting byte offset (from the beginning of the file)
3416  *         to begin discarding
3417  * len:    The length of bytes to discard
3418  * flags:  Optional flags that may be used:
3419  *
3420  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3421  *         Only zero the regions of the page whose buffer heads
3422  *         have already been unmapped.  This flag is appropriate
3423  *         for updating the contents of a page whose blocks may
3424  *         have already been released, and we only want to zero
3425  *         out the regions that correspond to those released blocks.
3426  *
3427  * Returns zero on success or negative on failure.
3428  */
3429 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3430 		struct inode *inode, struct page *page, loff_t from,
3431 		loff_t length, int flags)
3432 {
3433 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3434 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3435 	unsigned int blocksize, max, pos;
3436 	ext4_lblk_t iblock;
3437 	struct buffer_head *bh;
3438 	int err = 0;
3439 
3440 	blocksize = inode->i_sb->s_blocksize;
3441 	max = PAGE_CACHE_SIZE - offset;
3442 
3443 	if (index != page->index)
3444 		return -EINVAL;
3445 
3446 	/*
3447 	 * correct length if it does not fall between
3448 	 * 'from' and the end of the page
3449 	 */
3450 	if (length > max || length < 0)
3451 		length = max;
3452 
3453 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3454 
3455 	if (!page_has_buffers(page))
3456 		create_empty_buffers(page, blocksize, 0);
3457 
3458 	/* Find the buffer that contains "offset" */
3459 	bh = page_buffers(page);
3460 	pos = blocksize;
3461 	while (offset >= pos) {
3462 		bh = bh->b_this_page;
3463 		iblock++;
3464 		pos += blocksize;
3465 	}
3466 
3467 	pos = offset;
3468 	while (pos < offset + length) {
3469 		unsigned int end_of_block, range_to_discard;
3470 
3471 		err = 0;
3472 
3473 		/* The length of space left to zero and unmap */
3474 		range_to_discard = offset + length - pos;
3475 
3476 		/* The length of space until the end of the block */
3477 		end_of_block = blocksize - (pos & (blocksize-1));
3478 
3479 		/*
3480 		 * Do not unmap or zero past end of block
3481 		 * for this buffer head
3482 		 */
3483 		if (range_to_discard > end_of_block)
3484 			range_to_discard = end_of_block;
3485 
3486 
3487 		/*
3488 		 * Skip this buffer head if we are only zeroing unampped
3489 		 * regions of the page
3490 		 */
3491 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3492 			buffer_mapped(bh))
3493 				goto next;
3494 
3495 		/* If the range is block aligned, unmap */
3496 		if (range_to_discard == blocksize) {
3497 			clear_buffer_dirty(bh);
3498 			bh->b_bdev = NULL;
3499 			clear_buffer_mapped(bh);
3500 			clear_buffer_req(bh);
3501 			clear_buffer_new(bh);
3502 			clear_buffer_delay(bh);
3503 			clear_buffer_unwritten(bh);
3504 			clear_buffer_uptodate(bh);
3505 			zero_user(page, pos, range_to_discard);
3506 			BUFFER_TRACE(bh, "Buffer discarded");
3507 			goto next;
3508 		}
3509 
3510 		/*
3511 		 * If this block is not completely contained in the range
3512 		 * to be discarded, then it is not going to be released. Because
3513 		 * we need to keep this block, we need to make sure this part
3514 		 * of the page is uptodate before we modify it by writeing
3515 		 * partial zeros on it.
3516 		 */
3517 		if (!buffer_mapped(bh)) {
3518 			/*
3519 			 * Buffer head must be mapped before we can read
3520 			 * from the block
3521 			 */
3522 			BUFFER_TRACE(bh, "unmapped");
3523 			ext4_get_block(inode, iblock, bh, 0);
3524 			/* unmapped? It's a hole - nothing to do */
3525 			if (!buffer_mapped(bh)) {
3526 				BUFFER_TRACE(bh, "still unmapped");
3527 				goto next;
3528 			}
3529 		}
3530 
3531 		/* Ok, it's mapped. Make sure it's up-to-date */
3532 		if (PageUptodate(page))
3533 			set_buffer_uptodate(bh);
3534 
3535 		if (!buffer_uptodate(bh)) {
3536 			err = -EIO;
3537 			ll_rw_block(READ, 1, &bh);
3538 			wait_on_buffer(bh);
3539 			/* Uhhuh. Read error. Complain and punt.*/
3540 			if (!buffer_uptodate(bh))
3541 				goto next;
3542 		}
3543 
3544 		if (ext4_should_journal_data(inode)) {
3545 			BUFFER_TRACE(bh, "get write access");
3546 			err = ext4_journal_get_write_access(handle, bh);
3547 			if (err)
3548 				goto next;
3549 		}
3550 
3551 		zero_user(page, pos, range_to_discard);
3552 
3553 		err = 0;
3554 		if (ext4_should_journal_data(inode)) {
3555 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3556 		} else
3557 			mark_buffer_dirty(bh);
3558 
3559 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3560 next:
3561 		bh = bh->b_this_page;
3562 		iblock++;
3563 		pos += range_to_discard;
3564 	}
3565 
3566 	return err;
3567 }
3568 
3569 int ext4_can_truncate(struct inode *inode)
3570 {
3571 	if (S_ISREG(inode->i_mode))
3572 		return 1;
3573 	if (S_ISDIR(inode->i_mode))
3574 		return 1;
3575 	if (S_ISLNK(inode->i_mode))
3576 		return !ext4_inode_is_fast_symlink(inode);
3577 	return 0;
3578 }
3579 
3580 /*
3581  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3582  * associated with the given offset and length
3583  *
3584  * @inode:  File inode
3585  * @offset: The offset where the hole will begin
3586  * @len:    The length of the hole
3587  *
3588  * Returns: 0 on success or negative on failure
3589  */
3590 
3591 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3592 {
3593 	struct inode *inode = file_inode(file);
3594 	struct super_block *sb = inode->i_sb;
3595 	ext4_lblk_t first_block, stop_block;
3596 	struct address_space *mapping = inode->i_mapping;
3597 	loff_t first_page, last_page, page_len;
3598 	loff_t first_page_offset, last_page_offset;
3599 	handle_t *handle;
3600 	unsigned int credits;
3601 	int ret = 0;
3602 
3603 	if (!S_ISREG(inode->i_mode))
3604 		return -EOPNOTSUPP;
3605 
3606 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3607 		/* TODO: Add support for bigalloc file systems */
3608 		return -EOPNOTSUPP;
3609 	}
3610 
3611 	trace_ext4_punch_hole(inode, offset, length);
3612 
3613 	/*
3614 	 * Write out all dirty pages to avoid race conditions
3615 	 * Then release them.
3616 	 */
3617 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3618 		ret = filemap_write_and_wait_range(mapping, offset,
3619 						   offset + length - 1);
3620 		if (ret)
3621 			return ret;
3622 	}
3623 
3624 	mutex_lock(&inode->i_mutex);
3625 	/* It's not possible punch hole on append only file */
3626 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3627 		ret = -EPERM;
3628 		goto out_mutex;
3629 	}
3630 	if (IS_SWAPFILE(inode)) {
3631 		ret = -ETXTBSY;
3632 		goto out_mutex;
3633 	}
3634 
3635 	/* No need to punch hole beyond i_size */
3636 	if (offset >= inode->i_size)
3637 		goto out_mutex;
3638 
3639 	/*
3640 	 * If the hole extends beyond i_size, set the hole
3641 	 * to end after the page that contains i_size
3642 	 */
3643 	if (offset + length > inode->i_size) {
3644 		length = inode->i_size +
3645 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3646 		   offset;
3647 	}
3648 
3649 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3650 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3651 
3652 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
3653 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
3654 
3655 	/* Now release the pages */
3656 	if (last_page_offset > first_page_offset) {
3657 		truncate_pagecache_range(inode, first_page_offset,
3658 					 last_page_offset - 1);
3659 	}
3660 
3661 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3662 	ext4_inode_block_unlocked_dio(inode);
3663 	ret = ext4_flush_unwritten_io(inode);
3664 	if (ret)
3665 		goto out_dio;
3666 	inode_dio_wait(inode);
3667 
3668 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3669 		credits = ext4_writepage_trans_blocks(inode);
3670 	else
3671 		credits = ext4_blocks_for_truncate(inode);
3672 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673 	if (IS_ERR(handle)) {
3674 		ret = PTR_ERR(handle);
3675 		ext4_std_error(sb, ret);
3676 		goto out_dio;
3677 	}
3678 
3679 	/*
3680 	 * Now we need to zero out the non-page-aligned data in the
3681 	 * pages at the start and tail of the hole, and unmap the
3682 	 * buffer heads for the block aligned regions of the page that
3683 	 * were completely zeroed.
3684 	 */
3685 	if (first_page > last_page) {
3686 		/*
3687 		 * If the file space being truncated is contained
3688 		 * within a page just zero out and unmap the middle of
3689 		 * that page
3690 		 */
3691 		ret = ext4_discard_partial_page_buffers(handle,
3692 			mapping, offset, length, 0);
3693 
3694 		if (ret)
3695 			goto out_stop;
3696 	} else {
3697 		/*
3698 		 * zero out and unmap the partial page that contains
3699 		 * the start of the hole
3700 		 */
3701 		page_len = first_page_offset - offset;
3702 		if (page_len > 0) {
3703 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3704 						offset, page_len, 0);
3705 			if (ret)
3706 				goto out_stop;
3707 		}
3708 
3709 		/*
3710 		 * zero out and unmap the partial page that contains
3711 		 * the end of the hole
3712 		 */
3713 		page_len = offset + length - last_page_offset;
3714 		if (page_len > 0) {
3715 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3716 					last_page_offset, page_len, 0);
3717 			if (ret)
3718 				goto out_stop;
3719 		}
3720 	}
3721 
3722 	/*
3723 	 * If i_size is contained in the last page, we need to
3724 	 * unmap and zero the partial page after i_size
3725 	 */
3726 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3727 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
3728 		page_len = PAGE_CACHE_SIZE -
3729 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3730 
3731 		if (page_len > 0) {
3732 			ret = ext4_discard_partial_page_buffers(handle,
3733 					mapping, inode->i_size, page_len, 0);
3734 
3735 			if (ret)
3736 				goto out_stop;
3737 		}
3738 	}
3739 
3740 	first_block = (offset + sb->s_blocksize - 1) >>
3741 		EXT4_BLOCK_SIZE_BITS(sb);
3742 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3743 
3744 	/* If there are no blocks to remove, return now */
3745 	if (first_block >= stop_block)
3746 		goto out_stop;
3747 
3748 	down_write(&EXT4_I(inode)->i_data_sem);
3749 	ext4_discard_preallocations(inode);
3750 
3751 	ret = ext4_es_remove_extent(inode, first_block,
3752 				    stop_block - first_block);
3753 	if (ret) {
3754 		up_write(&EXT4_I(inode)->i_data_sem);
3755 		goto out_stop;
3756 	}
3757 
3758 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3759 		ret = ext4_ext_remove_space(inode, first_block,
3760 					    stop_block - 1);
3761 	else
3762 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3763 					    stop_block);
3764 
3765 	ext4_discard_preallocations(inode);
3766 	up_write(&EXT4_I(inode)->i_data_sem);
3767 	if (IS_SYNC(inode))
3768 		ext4_handle_sync(handle);
3769 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3770 	ext4_mark_inode_dirty(handle, inode);
3771 out_stop:
3772 	ext4_journal_stop(handle);
3773 out_dio:
3774 	ext4_inode_resume_unlocked_dio(inode);
3775 out_mutex:
3776 	mutex_unlock(&inode->i_mutex);
3777 	return ret;
3778 }
3779 
3780 /*
3781  * ext4_truncate()
3782  *
3783  * We block out ext4_get_block() block instantiations across the entire
3784  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3785  * simultaneously on behalf of the same inode.
3786  *
3787  * As we work through the truncate and commit bits of it to the journal there
3788  * is one core, guiding principle: the file's tree must always be consistent on
3789  * disk.  We must be able to restart the truncate after a crash.
3790  *
3791  * The file's tree may be transiently inconsistent in memory (although it
3792  * probably isn't), but whenever we close off and commit a journal transaction,
3793  * the contents of (the filesystem + the journal) must be consistent and
3794  * restartable.  It's pretty simple, really: bottom up, right to left (although
3795  * left-to-right works OK too).
3796  *
3797  * Note that at recovery time, journal replay occurs *before* the restart of
3798  * truncate against the orphan inode list.
3799  *
3800  * The committed inode has the new, desired i_size (which is the same as
3801  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3802  * that this inode's truncate did not complete and it will again call
3803  * ext4_truncate() to have another go.  So there will be instantiated blocks
3804  * to the right of the truncation point in a crashed ext4 filesystem.  But
3805  * that's fine - as long as they are linked from the inode, the post-crash
3806  * ext4_truncate() run will find them and release them.
3807  */
3808 void ext4_truncate(struct inode *inode)
3809 {
3810 	struct ext4_inode_info *ei = EXT4_I(inode);
3811 	unsigned int credits;
3812 	handle_t *handle;
3813 	struct address_space *mapping = inode->i_mapping;
3814 	loff_t page_len;
3815 
3816 	/*
3817 	 * There is a possibility that we're either freeing the inode
3818 	 * or it completely new indode. In those cases we might not
3819 	 * have i_mutex locked because it's not necessary.
3820 	 */
3821 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3822 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3823 	trace_ext4_truncate_enter(inode);
3824 
3825 	if (!ext4_can_truncate(inode))
3826 		return;
3827 
3828 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3829 
3830 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3831 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3832 
3833 	if (ext4_has_inline_data(inode)) {
3834 		int has_inline = 1;
3835 
3836 		ext4_inline_data_truncate(inode, &has_inline);
3837 		if (has_inline)
3838 			return;
3839 	}
3840 
3841 	/*
3842 	 * finish any pending end_io work so we won't run the risk of
3843 	 * converting any truncated blocks to initialized later
3844 	 */
3845 	ext4_flush_unwritten_io(inode);
3846 
3847 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3848 		credits = ext4_writepage_trans_blocks(inode);
3849 	else
3850 		credits = ext4_blocks_for_truncate(inode);
3851 
3852 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3853 	if (IS_ERR(handle)) {
3854 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3855 		return;
3856 	}
3857 
3858 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3859 		page_len = PAGE_CACHE_SIZE -
3860 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3861 
3862 		if (ext4_discard_partial_page_buffers(handle,
3863 				mapping, inode->i_size, page_len, 0))
3864 			goto out_stop;
3865 	}
3866 
3867 	/*
3868 	 * We add the inode to the orphan list, so that if this
3869 	 * truncate spans multiple transactions, and we crash, we will
3870 	 * resume the truncate when the filesystem recovers.  It also
3871 	 * marks the inode dirty, to catch the new size.
3872 	 *
3873 	 * Implication: the file must always be in a sane, consistent
3874 	 * truncatable state while each transaction commits.
3875 	 */
3876 	if (ext4_orphan_add(handle, inode))
3877 		goto out_stop;
3878 
3879 	down_write(&EXT4_I(inode)->i_data_sem);
3880 
3881 	ext4_discard_preallocations(inode);
3882 
3883 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3884 		ext4_ext_truncate(handle, inode);
3885 	else
3886 		ext4_ind_truncate(handle, inode);
3887 
3888 	up_write(&ei->i_data_sem);
3889 
3890 	if (IS_SYNC(inode))
3891 		ext4_handle_sync(handle);
3892 
3893 out_stop:
3894 	/*
3895 	 * If this was a simple ftruncate() and the file will remain alive,
3896 	 * then we need to clear up the orphan record which we created above.
3897 	 * However, if this was a real unlink then we were called by
3898 	 * ext4_delete_inode(), and we allow that function to clean up the
3899 	 * orphan info for us.
3900 	 */
3901 	if (inode->i_nlink)
3902 		ext4_orphan_del(handle, inode);
3903 
3904 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3905 	ext4_mark_inode_dirty(handle, inode);
3906 	ext4_journal_stop(handle);
3907 
3908 	trace_ext4_truncate_exit(inode);
3909 }
3910 
3911 /*
3912  * ext4_get_inode_loc returns with an extra refcount against the inode's
3913  * underlying buffer_head on success. If 'in_mem' is true, we have all
3914  * data in memory that is needed to recreate the on-disk version of this
3915  * inode.
3916  */
3917 static int __ext4_get_inode_loc(struct inode *inode,
3918 				struct ext4_iloc *iloc, int in_mem)
3919 {
3920 	struct ext4_group_desc	*gdp;
3921 	struct buffer_head	*bh;
3922 	struct super_block	*sb = inode->i_sb;
3923 	ext4_fsblk_t		block;
3924 	int			inodes_per_block, inode_offset;
3925 
3926 	iloc->bh = NULL;
3927 	if (!ext4_valid_inum(sb, inode->i_ino))
3928 		return -EIO;
3929 
3930 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3931 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3932 	if (!gdp)
3933 		return -EIO;
3934 
3935 	/*
3936 	 * Figure out the offset within the block group inode table
3937 	 */
3938 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3939 	inode_offset = ((inode->i_ino - 1) %
3940 			EXT4_INODES_PER_GROUP(sb));
3941 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3942 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3943 
3944 	bh = sb_getblk(sb, block);
3945 	if (unlikely(!bh))
3946 		return -ENOMEM;
3947 	if (!buffer_uptodate(bh)) {
3948 		lock_buffer(bh);
3949 
3950 		/*
3951 		 * If the buffer has the write error flag, we have failed
3952 		 * to write out another inode in the same block.  In this
3953 		 * case, we don't have to read the block because we may
3954 		 * read the old inode data successfully.
3955 		 */
3956 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3957 			set_buffer_uptodate(bh);
3958 
3959 		if (buffer_uptodate(bh)) {
3960 			/* someone brought it uptodate while we waited */
3961 			unlock_buffer(bh);
3962 			goto has_buffer;
3963 		}
3964 
3965 		/*
3966 		 * If we have all information of the inode in memory and this
3967 		 * is the only valid inode in the block, we need not read the
3968 		 * block.
3969 		 */
3970 		if (in_mem) {
3971 			struct buffer_head *bitmap_bh;
3972 			int i, start;
3973 
3974 			start = inode_offset & ~(inodes_per_block - 1);
3975 
3976 			/* Is the inode bitmap in cache? */
3977 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3978 			if (unlikely(!bitmap_bh))
3979 				goto make_io;
3980 
3981 			/*
3982 			 * If the inode bitmap isn't in cache then the
3983 			 * optimisation may end up performing two reads instead
3984 			 * of one, so skip it.
3985 			 */
3986 			if (!buffer_uptodate(bitmap_bh)) {
3987 				brelse(bitmap_bh);
3988 				goto make_io;
3989 			}
3990 			for (i = start; i < start + inodes_per_block; i++) {
3991 				if (i == inode_offset)
3992 					continue;
3993 				if (ext4_test_bit(i, bitmap_bh->b_data))
3994 					break;
3995 			}
3996 			brelse(bitmap_bh);
3997 			if (i == start + inodes_per_block) {
3998 				/* all other inodes are free, so skip I/O */
3999 				memset(bh->b_data, 0, bh->b_size);
4000 				set_buffer_uptodate(bh);
4001 				unlock_buffer(bh);
4002 				goto has_buffer;
4003 			}
4004 		}
4005 
4006 make_io:
4007 		/*
4008 		 * If we need to do any I/O, try to pre-readahead extra
4009 		 * blocks from the inode table.
4010 		 */
4011 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4012 			ext4_fsblk_t b, end, table;
4013 			unsigned num;
4014 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4015 
4016 			table = ext4_inode_table(sb, gdp);
4017 			/* s_inode_readahead_blks is always a power of 2 */
4018 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4019 			if (table > b)
4020 				b = table;
4021 			end = b + ra_blks;
4022 			num = EXT4_INODES_PER_GROUP(sb);
4023 			if (ext4_has_group_desc_csum(sb))
4024 				num -= ext4_itable_unused_count(sb, gdp);
4025 			table += num / inodes_per_block;
4026 			if (end > table)
4027 				end = table;
4028 			while (b <= end)
4029 				sb_breadahead(sb, b++);
4030 		}
4031 
4032 		/*
4033 		 * There are other valid inodes in the buffer, this inode
4034 		 * has in-inode xattrs, or we don't have this inode in memory.
4035 		 * Read the block from disk.
4036 		 */
4037 		trace_ext4_load_inode(inode);
4038 		get_bh(bh);
4039 		bh->b_end_io = end_buffer_read_sync;
4040 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4041 		wait_on_buffer(bh);
4042 		if (!buffer_uptodate(bh)) {
4043 			EXT4_ERROR_INODE_BLOCK(inode, block,
4044 					       "unable to read itable block");
4045 			brelse(bh);
4046 			return -EIO;
4047 		}
4048 	}
4049 has_buffer:
4050 	iloc->bh = bh;
4051 	return 0;
4052 }
4053 
4054 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4055 {
4056 	/* We have all inode data except xattrs in memory here. */
4057 	return __ext4_get_inode_loc(inode, iloc,
4058 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4059 }
4060 
4061 void ext4_set_inode_flags(struct inode *inode)
4062 {
4063 	unsigned int flags = EXT4_I(inode)->i_flags;
4064 
4065 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4066 	if (flags & EXT4_SYNC_FL)
4067 		inode->i_flags |= S_SYNC;
4068 	if (flags & EXT4_APPEND_FL)
4069 		inode->i_flags |= S_APPEND;
4070 	if (flags & EXT4_IMMUTABLE_FL)
4071 		inode->i_flags |= S_IMMUTABLE;
4072 	if (flags & EXT4_NOATIME_FL)
4073 		inode->i_flags |= S_NOATIME;
4074 	if (flags & EXT4_DIRSYNC_FL)
4075 		inode->i_flags |= S_DIRSYNC;
4076 }
4077 
4078 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4079 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4080 {
4081 	unsigned int vfs_fl;
4082 	unsigned long old_fl, new_fl;
4083 
4084 	do {
4085 		vfs_fl = ei->vfs_inode.i_flags;
4086 		old_fl = ei->i_flags;
4087 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4088 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4089 				EXT4_DIRSYNC_FL);
4090 		if (vfs_fl & S_SYNC)
4091 			new_fl |= EXT4_SYNC_FL;
4092 		if (vfs_fl & S_APPEND)
4093 			new_fl |= EXT4_APPEND_FL;
4094 		if (vfs_fl & S_IMMUTABLE)
4095 			new_fl |= EXT4_IMMUTABLE_FL;
4096 		if (vfs_fl & S_NOATIME)
4097 			new_fl |= EXT4_NOATIME_FL;
4098 		if (vfs_fl & S_DIRSYNC)
4099 			new_fl |= EXT4_DIRSYNC_FL;
4100 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4101 }
4102 
4103 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4104 				  struct ext4_inode_info *ei)
4105 {
4106 	blkcnt_t i_blocks ;
4107 	struct inode *inode = &(ei->vfs_inode);
4108 	struct super_block *sb = inode->i_sb;
4109 
4110 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4111 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4112 		/* we are using combined 48 bit field */
4113 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4114 					le32_to_cpu(raw_inode->i_blocks_lo);
4115 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4116 			/* i_blocks represent file system block size */
4117 			return i_blocks  << (inode->i_blkbits - 9);
4118 		} else {
4119 			return i_blocks;
4120 		}
4121 	} else {
4122 		return le32_to_cpu(raw_inode->i_blocks_lo);
4123 	}
4124 }
4125 
4126 static inline void ext4_iget_extra_inode(struct inode *inode,
4127 					 struct ext4_inode *raw_inode,
4128 					 struct ext4_inode_info *ei)
4129 {
4130 	__le32 *magic = (void *)raw_inode +
4131 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4132 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4133 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4134 		ext4_find_inline_data_nolock(inode);
4135 	} else
4136 		EXT4_I(inode)->i_inline_off = 0;
4137 }
4138 
4139 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4140 {
4141 	struct ext4_iloc iloc;
4142 	struct ext4_inode *raw_inode;
4143 	struct ext4_inode_info *ei;
4144 	struct inode *inode;
4145 	journal_t *journal = EXT4_SB(sb)->s_journal;
4146 	long ret;
4147 	int block;
4148 	uid_t i_uid;
4149 	gid_t i_gid;
4150 
4151 	inode = iget_locked(sb, ino);
4152 	if (!inode)
4153 		return ERR_PTR(-ENOMEM);
4154 	if (!(inode->i_state & I_NEW))
4155 		return inode;
4156 
4157 	ei = EXT4_I(inode);
4158 	iloc.bh = NULL;
4159 
4160 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4161 	if (ret < 0)
4162 		goto bad_inode;
4163 	raw_inode = ext4_raw_inode(&iloc);
4164 
4165 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4167 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4168 		    EXT4_INODE_SIZE(inode->i_sb)) {
4169 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4170 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4171 				EXT4_INODE_SIZE(inode->i_sb));
4172 			ret = -EIO;
4173 			goto bad_inode;
4174 		}
4175 	} else
4176 		ei->i_extra_isize = 0;
4177 
4178 	/* Precompute checksum seed for inode metadata */
4179 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4180 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4181 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4182 		__u32 csum;
4183 		__le32 inum = cpu_to_le32(inode->i_ino);
4184 		__le32 gen = raw_inode->i_generation;
4185 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4186 				   sizeof(inum));
4187 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4188 					      sizeof(gen));
4189 	}
4190 
4191 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4192 		EXT4_ERROR_INODE(inode, "checksum invalid");
4193 		ret = -EIO;
4194 		goto bad_inode;
4195 	}
4196 
4197 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4198 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4199 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4200 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4201 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4202 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4203 	}
4204 	i_uid_write(inode, i_uid);
4205 	i_gid_write(inode, i_gid);
4206 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4207 
4208 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4209 	ei->i_inline_off = 0;
4210 	ei->i_dir_start_lookup = 0;
4211 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4212 	/* We now have enough fields to check if the inode was active or not.
4213 	 * This is needed because nfsd might try to access dead inodes
4214 	 * the test is that same one that e2fsck uses
4215 	 * NeilBrown 1999oct15
4216 	 */
4217 	if (inode->i_nlink == 0) {
4218 		if ((inode->i_mode == 0 ||
4219 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4220 		    ino != EXT4_BOOT_LOADER_INO) {
4221 			/* this inode is deleted */
4222 			ret = -ESTALE;
4223 			goto bad_inode;
4224 		}
4225 		/* The only unlinked inodes we let through here have
4226 		 * valid i_mode and are being read by the orphan
4227 		 * recovery code: that's fine, we're about to complete
4228 		 * the process of deleting those.
4229 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4230 		 * not initialized on a new filesystem. */
4231 	}
4232 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4233 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4234 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4235 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4236 		ei->i_file_acl |=
4237 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4238 	inode->i_size = ext4_isize(raw_inode);
4239 	ei->i_disksize = inode->i_size;
4240 #ifdef CONFIG_QUOTA
4241 	ei->i_reserved_quota = 0;
4242 #endif
4243 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4244 	ei->i_block_group = iloc.block_group;
4245 	ei->i_last_alloc_group = ~0;
4246 	/*
4247 	 * NOTE! The in-memory inode i_data array is in little-endian order
4248 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4249 	 */
4250 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4251 		ei->i_data[block] = raw_inode->i_block[block];
4252 	INIT_LIST_HEAD(&ei->i_orphan);
4253 
4254 	/*
4255 	 * Set transaction id's of transactions that have to be committed
4256 	 * to finish f[data]sync. We set them to currently running transaction
4257 	 * as we cannot be sure that the inode or some of its metadata isn't
4258 	 * part of the transaction - the inode could have been reclaimed and
4259 	 * now it is reread from disk.
4260 	 */
4261 	if (journal) {
4262 		transaction_t *transaction;
4263 		tid_t tid;
4264 
4265 		read_lock(&journal->j_state_lock);
4266 		if (journal->j_running_transaction)
4267 			transaction = journal->j_running_transaction;
4268 		else
4269 			transaction = journal->j_committing_transaction;
4270 		if (transaction)
4271 			tid = transaction->t_tid;
4272 		else
4273 			tid = journal->j_commit_sequence;
4274 		read_unlock(&journal->j_state_lock);
4275 		ei->i_sync_tid = tid;
4276 		ei->i_datasync_tid = tid;
4277 	}
4278 
4279 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4280 		if (ei->i_extra_isize == 0) {
4281 			/* The extra space is currently unused. Use it. */
4282 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4283 					    EXT4_GOOD_OLD_INODE_SIZE;
4284 		} else {
4285 			ext4_iget_extra_inode(inode, raw_inode, ei);
4286 		}
4287 	}
4288 
4289 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4290 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4291 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4292 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4293 
4294 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4295 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4296 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4297 			inode->i_version |=
4298 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4299 	}
4300 
4301 	ret = 0;
4302 	if (ei->i_file_acl &&
4303 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4304 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4305 				 ei->i_file_acl);
4306 		ret = -EIO;
4307 		goto bad_inode;
4308 	} else if (!ext4_has_inline_data(inode)) {
4309 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4310 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4311 			    (S_ISLNK(inode->i_mode) &&
4312 			     !ext4_inode_is_fast_symlink(inode))))
4313 				/* Validate extent which is part of inode */
4314 				ret = ext4_ext_check_inode(inode);
4315 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4316 			   (S_ISLNK(inode->i_mode) &&
4317 			    !ext4_inode_is_fast_symlink(inode))) {
4318 			/* Validate block references which are part of inode */
4319 			ret = ext4_ind_check_inode(inode);
4320 		}
4321 	}
4322 	if (ret)
4323 		goto bad_inode;
4324 
4325 	if (S_ISREG(inode->i_mode)) {
4326 		inode->i_op = &ext4_file_inode_operations;
4327 		inode->i_fop = &ext4_file_operations;
4328 		ext4_set_aops(inode);
4329 	} else if (S_ISDIR(inode->i_mode)) {
4330 		inode->i_op = &ext4_dir_inode_operations;
4331 		inode->i_fop = &ext4_dir_operations;
4332 	} else if (S_ISLNK(inode->i_mode)) {
4333 		if (ext4_inode_is_fast_symlink(inode)) {
4334 			inode->i_op = &ext4_fast_symlink_inode_operations;
4335 			nd_terminate_link(ei->i_data, inode->i_size,
4336 				sizeof(ei->i_data) - 1);
4337 		} else {
4338 			inode->i_op = &ext4_symlink_inode_operations;
4339 			ext4_set_aops(inode);
4340 		}
4341 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4342 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4343 		inode->i_op = &ext4_special_inode_operations;
4344 		if (raw_inode->i_block[0])
4345 			init_special_inode(inode, inode->i_mode,
4346 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4347 		else
4348 			init_special_inode(inode, inode->i_mode,
4349 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4350 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4351 		make_bad_inode(inode);
4352 	} else {
4353 		ret = -EIO;
4354 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4355 		goto bad_inode;
4356 	}
4357 	brelse(iloc.bh);
4358 	ext4_set_inode_flags(inode);
4359 	unlock_new_inode(inode);
4360 	return inode;
4361 
4362 bad_inode:
4363 	brelse(iloc.bh);
4364 	iget_failed(inode);
4365 	return ERR_PTR(ret);
4366 }
4367 
4368 static int ext4_inode_blocks_set(handle_t *handle,
4369 				struct ext4_inode *raw_inode,
4370 				struct ext4_inode_info *ei)
4371 {
4372 	struct inode *inode = &(ei->vfs_inode);
4373 	u64 i_blocks = inode->i_blocks;
4374 	struct super_block *sb = inode->i_sb;
4375 
4376 	if (i_blocks <= ~0U) {
4377 		/*
4378 		 * i_blocks can be represented in a 32 bit variable
4379 		 * as multiple of 512 bytes
4380 		 */
4381 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4382 		raw_inode->i_blocks_high = 0;
4383 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4384 		return 0;
4385 	}
4386 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4387 		return -EFBIG;
4388 
4389 	if (i_blocks <= 0xffffffffffffULL) {
4390 		/*
4391 		 * i_blocks can be represented in a 48 bit variable
4392 		 * as multiple of 512 bytes
4393 		 */
4394 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4395 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4396 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4397 	} else {
4398 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4399 		/* i_block is stored in file system block size */
4400 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4401 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4402 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4403 	}
4404 	return 0;
4405 }
4406 
4407 /*
4408  * Post the struct inode info into an on-disk inode location in the
4409  * buffer-cache.  This gobbles the caller's reference to the
4410  * buffer_head in the inode location struct.
4411  *
4412  * The caller must have write access to iloc->bh.
4413  */
4414 static int ext4_do_update_inode(handle_t *handle,
4415 				struct inode *inode,
4416 				struct ext4_iloc *iloc)
4417 {
4418 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4419 	struct ext4_inode_info *ei = EXT4_I(inode);
4420 	struct buffer_head *bh = iloc->bh;
4421 	int err = 0, rc, block;
4422 	int need_datasync = 0;
4423 	uid_t i_uid;
4424 	gid_t i_gid;
4425 
4426 	/* For fields not not tracking in the in-memory inode,
4427 	 * initialise them to zero for new inodes. */
4428 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4429 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4430 
4431 	ext4_get_inode_flags(ei);
4432 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4433 	i_uid = i_uid_read(inode);
4434 	i_gid = i_gid_read(inode);
4435 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4436 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4437 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4438 /*
4439  * Fix up interoperability with old kernels. Otherwise, old inodes get
4440  * re-used with the upper 16 bits of the uid/gid intact
4441  */
4442 		if (!ei->i_dtime) {
4443 			raw_inode->i_uid_high =
4444 				cpu_to_le16(high_16_bits(i_uid));
4445 			raw_inode->i_gid_high =
4446 				cpu_to_le16(high_16_bits(i_gid));
4447 		} else {
4448 			raw_inode->i_uid_high = 0;
4449 			raw_inode->i_gid_high = 0;
4450 		}
4451 	} else {
4452 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4453 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4454 		raw_inode->i_uid_high = 0;
4455 		raw_inode->i_gid_high = 0;
4456 	}
4457 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4458 
4459 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4460 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4461 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4462 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4463 
4464 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4465 		goto out_brelse;
4466 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4467 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4468 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4469 	    cpu_to_le32(EXT4_OS_HURD))
4470 		raw_inode->i_file_acl_high =
4471 			cpu_to_le16(ei->i_file_acl >> 32);
4472 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4473 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4474 		ext4_isize_set(raw_inode, ei->i_disksize);
4475 		need_datasync = 1;
4476 	}
4477 	if (ei->i_disksize > 0x7fffffffULL) {
4478 		struct super_block *sb = inode->i_sb;
4479 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4480 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4481 				EXT4_SB(sb)->s_es->s_rev_level ==
4482 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4483 			/* If this is the first large file
4484 			 * created, add a flag to the superblock.
4485 			 */
4486 			err = ext4_journal_get_write_access(handle,
4487 					EXT4_SB(sb)->s_sbh);
4488 			if (err)
4489 				goto out_brelse;
4490 			ext4_update_dynamic_rev(sb);
4491 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4492 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4493 			ext4_handle_sync(handle);
4494 			err = ext4_handle_dirty_super(handle, sb);
4495 		}
4496 	}
4497 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4498 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4499 		if (old_valid_dev(inode->i_rdev)) {
4500 			raw_inode->i_block[0] =
4501 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4502 			raw_inode->i_block[1] = 0;
4503 		} else {
4504 			raw_inode->i_block[0] = 0;
4505 			raw_inode->i_block[1] =
4506 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4507 			raw_inode->i_block[2] = 0;
4508 		}
4509 	} else if (!ext4_has_inline_data(inode)) {
4510 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4511 			raw_inode->i_block[block] = ei->i_data[block];
4512 	}
4513 
4514 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4515 	if (ei->i_extra_isize) {
4516 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4517 			raw_inode->i_version_hi =
4518 			cpu_to_le32(inode->i_version >> 32);
4519 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4520 	}
4521 
4522 	ext4_inode_csum_set(inode, raw_inode, ei);
4523 
4524 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4525 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4526 	if (!err)
4527 		err = rc;
4528 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4529 
4530 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4531 out_brelse:
4532 	brelse(bh);
4533 	ext4_std_error(inode->i_sb, err);
4534 	return err;
4535 }
4536 
4537 /*
4538  * ext4_write_inode()
4539  *
4540  * We are called from a few places:
4541  *
4542  * - Within generic_file_write() for O_SYNC files.
4543  *   Here, there will be no transaction running. We wait for any running
4544  *   transaction to commit.
4545  *
4546  * - Within sys_sync(), kupdate and such.
4547  *   We wait on commit, if tol to.
4548  *
4549  * - Within prune_icache() (PF_MEMALLOC == true)
4550  *   Here we simply return.  We can't afford to block kswapd on the
4551  *   journal commit.
4552  *
4553  * In all cases it is actually safe for us to return without doing anything,
4554  * because the inode has been copied into a raw inode buffer in
4555  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4556  * knfsd.
4557  *
4558  * Note that we are absolutely dependent upon all inode dirtiers doing the
4559  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4560  * which we are interested.
4561  *
4562  * It would be a bug for them to not do this.  The code:
4563  *
4564  *	mark_inode_dirty(inode)
4565  *	stuff();
4566  *	inode->i_size = expr;
4567  *
4568  * is in error because a kswapd-driven write_inode() could occur while
4569  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4570  * will no longer be on the superblock's dirty inode list.
4571  */
4572 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4573 {
4574 	int err;
4575 
4576 	if (current->flags & PF_MEMALLOC)
4577 		return 0;
4578 
4579 	if (EXT4_SB(inode->i_sb)->s_journal) {
4580 		if (ext4_journal_current_handle()) {
4581 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4582 			dump_stack();
4583 			return -EIO;
4584 		}
4585 
4586 		if (wbc->sync_mode != WB_SYNC_ALL)
4587 			return 0;
4588 
4589 		err = ext4_force_commit(inode->i_sb);
4590 	} else {
4591 		struct ext4_iloc iloc;
4592 
4593 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4594 		if (err)
4595 			return err;
4596 		if (wbc->sync_mode == WB_SYNC_ALL)
4597 			sync_dirty_buffer(iloc.bh);
4598 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4599 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4600 					 "IO error syncing inode");
4601 			err = -EIO;
4602 		}
4603 		brelse(iloc.bh);
4604 	}
4605 	return err;
4606 }
4607 
4608 /*
4609  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4610  * buffers that are attached to a page stradding i_size and are undergoing
4611  * commit. In that case we have to wait for commit to finish and try again.
4612  */
4613 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4614 {
4615 	struct page *page;
4616 	unsigned offset;
4617 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4618 	tid_t commit_tid = 0;
4619 	int ret;
4620 
4621 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4622 	/*
4623 	 * All buffers in the last page remain valid? Then there's nothing to
4624 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4625 	 * blocksize case
4626 	 */
4627 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4628 		return;
4629 	while (1) {
4630 		page = find_lock_page(inode->i_mapping,
4631 				      inode->i_size >> PAGE_CACHE_SHIFT);
4632 		if (!page)
4633 			return;
4634 		ret = __ext4_journalled_invalidatepage(page, offset);
4635 		unlock_page(page);
4636 		page_cache_release(page);
4637 		if (ret != -EBUSY)
4638 			return;
4639 		commit_tid = 0;
4640 		read_lock(&journal->j_state_lock);
4641 		if (journal->j_committing_transaction)
4642 			commit_tid = journal->j_committing_transaction->t_tid;
4643 		read_unlock(&journal->j_state_lock);
4644 		if (commit_tid)
4645 			jbd2_log_wait_commit(journal, commit_tid);
4646 	}
4647 }
4648 
4649 /*
4650  * ext4_setattr()
4651  *
4652  * Called from notify_change.
4653  *
4654  * We want to trap VFS attempts to truncate the file as soon as
4655  * possible.  In particular, we want to make sure that when the VFS
4656  * shrinks i_size, we put the inode on the orphan list and modify
4657  * i_disksize immediately, so that during the subsequent flushing of
4658  * dirty pages and freeing of disk blocks, we can guarantee that any
4659  * commit will leave the blocks being flushed in an unused state on
4660  * disk.  (On recovery, the inode will get truncated and the blocks will
4661  * be freed, so we have a strong guarantee that no future commit will
4662  * leave these blocks visible to the user.)
4663  *
4664  * Another thing we have to assure is that if we are in ordered mode
4665  * and inode is still attached to the committing transaction, we must
4666  * we start writeout of all the dirty pages which are being truncated.
4667  * This way we are sure that all the data written in the previous
4668  * transaction are already on disk (truncate waits for pages under
4669  * writeback).
4670  *
4671  * Called with inode->i_mutex down.
4672  */
4673 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4674 {
4675 	struct inode *inode = dentry->d_inode;
4676 	int error, rc = 0;
4677 	int orphan = 0;
4678 	const unsigned int ia_valid = attr->ia_valid;
4679 
4680 	error = inode_change_ok(inode, attr);
4681 	if (error)
4682 		return error;
4683 
4684 	if (is_quota_modification(inode, attr))
4685 		dquot_initialize(inode);
4686 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4687 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4688 		handle_t *handle;
4689 
4690 		/* (user+group)*(old+new) structure, inode write (sb,
4691 		 * inode block, ? - but truncate inode update has it) */
4692 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4693 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4694 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4695 		if (IS_ERR(handle)) {
4696 			error = PTR_ERR(handle);
4697 			goto err_out;
4698 		}
4699 		error = dquot_transfer(inode, attr);
4700 		if (error) {
4701 			ext4_journal_stop(handle);
4702 			return error;
4703 		}
4704 		/* Update corresponding info in inode so that everything is in
4705 		 * one transaction */
4706 		if (attr->ia_valid & ATTR_UID)
4707 			inode->i_uid = attr->ia_uid;
4708 		if (attr->ia_valid & ATTR_GID)
4709 			inode->i_gid = attr->ia_gid;
4710 		error = ext4_mark_inode_dirty(handle, inode);
4711 		ext4_journal_stop(handle);
4712 	}
4713 
4714 	if (attr->ia_valid & ATTR_SIZE) {
4715 
4716 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4717 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4718 
4719 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4720 				return -EFBIG;
4721 		}
4722 	}
4723 
4724 	if (S_ISREG(inode->i_mode) &&
4725 	    attr->ia_valid & ATTR_SIZE &&
4726 	    (attr->ia_size < inode->i_size)) {
4727 		handle_t *handle;
4728 
4729 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4730 		if (IS_ERR(handle)) {
4731 			error = PTR_ERR(handle);
4732 			goto err_out;
4733 		}
4734 		if (ext4_handle_valid(handle)) {
4735 			error = ext4_orphan_add(handle, inode);
4736 			orphan = 1;
4737 		}
4738 		EXT4_I(inode)->i_disksize = attr->ia_size;
4739 		rc = ext4_mark_inode_dirty(handle, inode);
4740 		if (!error)
4741 			error = rc;
4742 		ext4_journal_stop(handle);
4743 
4744 		if (ext4_should_order_data(inode)) {
4745 			error = ext4_begin_ordered_truncate(inode,
4746 							    attr->ia_size);
4747 			if (error) {
4748 				/* Do as much error cleanup as possible */
4749 				handle = ext4_journal_start(inode,
4750 							    EXT4_HT_INODE, 3);
4751 				if (IS_ERR(handle)) {
4752 					ext4_orphan_del(NULL, inode);
4753 					goto err_out;
4754 				}
4755 				ext4_orphan_del(handle, inode);
4756 				orphan = 0;
4757 				ext4_journal_stop(handle);
4758 				goto err_out;
4759 			}
4760 		}
4761 	}
4762 
4763 	if (attr->ia_valid & ATTR_SIZE) {
4764 		if (attr->ia_size != inode->i_size) {
4765 			loff_t oldsize = inode->i_size;
4766 
4767 			i_size_write(inode, attr->ia_size);
4768 			/*
4769 			 * Blocks are going to be removed from the inode. Wait
4770 			 * for dio in flight.  Temporarily disable
4771 			 * dioread_nolock to prevent livelock.
4772 			 */
4773 			if (orphan) {
4774 				if (!ext4_should_journal_data(inode)) {
4775 					ext4_inode_block_unlocked_dio(inode);
4776 					inode_dio_wait(inode);
4777 					ext4_inode_resume_unlocked_dio(inode);
4778 				} else
4779 					ext4_wait_for_tail_page_commit(inode);
4780 			}
4781 			/*
4782 			 * Truncate pagecache after we've waited for commit
4783 			 * in data=journal mode to make pages freeable.
4784 			 */
4785 			truncate_pagecache(inode, oldsize, inode->i_size);
4786 		}
4787 		ext4_truncate(inode);
4788 	}
4789 
4790 	if (!rc) {
4791 		setattr_copy(inode, attr);
4792 		mark_inode_dirty(inode);
4793 	}
4794 
4795 	/*
4796 	 * If the call to ext4_truncate failed to get a transaction handle at
4797 	 * all, we need to clean up the in-core orphan list manually.
4798 	 */
4799 	if (orphan && inode->i_nlink)
4800 		ext4_orphan_del(NULL, inode);
4801 
4802 	if (!rc && (ia_valid & ATTR_MODE))
4803 		rc = ext4_acl_chmod(inode);
4804 
4805 err_out:
4806 	ext4_std_error(inode->i_sb, error);
4807 	if (!error)
4808 		error = rc;
4809 	return error;
4810 }
4811 
4812 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4813 		 struct kstat *stat)
4814 {
4815 	struct inode *inode;
4816 	unsigned long delalloc_blocks;
4817 
4818 	inode = dentry->d_inode;
4819 	generic_fillattr(inode, stat);
4820 
4821 	/*
4822 	 * We can't update i_blocks if the block allocation is delayed
4823 	 * otherwise in the case of system crash before the real block
4824 	 * allocation is done, we will have i_blocks inconsistent with
4825 	 * on-disk file blocks.
4826 	 * We always keep i_blocks updated together with real
4827 	 * allocation. But to not confuse with user, stat
4828 	 * will return the blocks that include the delayed allocation
4829 	 * blocks for this file.
4830 	 */
4831 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4832 				EXT4_I(inode)->i_reserved_data_blocks);
4833 
4834 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4835 	return 0;
4836 }
4837 
4838 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4839 {
4840 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4841 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4842 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4843 }
4844 
4845 /*
4846  * Account for index blocks, block groups bitmaps and block group
4847  * descriptor blocks if modify datablocks and index blocks
4848  * worse case, the indexs blocks spread over different block groups
4849  *
4850  * If datablocks are discontiguous, they are possible to spread over
4851  * different block groups too. If they are contiguous, with flexbg,
4852  * they could still across block group boundary.
4853  *
4854  * Also account for superblock, inode, quota and xattr blocks
4855  */
4856 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4857 {
4858 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4859 	int gdpblocks;
4860 	int idxblocks;
4861 	int ret = 0;
4862 
4863 	/*
4864 	 * How many index blocks need to touch to modify nrblocks?
4865 	 * The "Chunk" flag indicating whether the nrblocks is
4866 	 * physically contiguous on disk
4867 	 *
4868 	 * For Direct IO and fallocate, they calls get_block to allocate
4869 	 * one single extent at a time, so they could set the "Chunk" flag
4870 	 */
4871 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4872 
4873 	ret = idxblocks;
4874 
4875 	/*
4876 	 * Now let's see how many group bitmaps and group descriptors need
4877 	 * to account
4878 	 */
4879 	groups = idxblocks;
4880 	if (chunk)
4881 		groups += 1;
4882 	else
4883 		groups += nrblocks;
4884 
4885 	gdpblocks = groups;
4886 	if (groups > ngroups)
4887 		groups = ngroups;
4888 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4889 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4890 
4891 	/* bitmaps and block group descriptor blocks */
4892 	ret += groups + gdpblocks;
4893 
4894 	/* Blocks for super block, inode, quota and xattr blocks */
4895 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4896 
4897 	return ret;
4898 }
4899 
4900 /*
4901  * Calculate the total number of credits to reserve to fit
4902  * the modification of a single pages into a single transaction,
4903  * which may include multiple chunks of block allocations.
4904  *
4905  * This could be called via ext4_write_begin()
4906  *
4907  * We need to consider the worse case, when
4908  * one new block per extent.
4909  */
4910 int ext4_writepage_trans_blocks(struct inode *inode)
4911 {
4912 	int bpp = ext4_journal_blocks_per_page(inode);
4913 	int ret;
4914 
4915 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4916 
4917 	/* Account for data blocks for journalled mode */
4918 	if (ext4_should_journal_data(inode))
4919 		ret += bpp;
4920 	return ret;
4921 }
4922 
4923 /*
4924  * Calculate the journal credits for a chunk of data modification.
4925  *
4926  * This is called from DIO, fallocate or whoever calling
4927  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4928  *
4929  * journal buffers for data blocks are not included here, as DIO
4930  * and fallocate do no need to journal data buffers.
4931  */
4932 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4933 {
4934 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4935 }
4936 
4937 /*
4938  * The caller must have previously called ext4_reserve_inode_write().
4939  * Give this, we know that the caller already has write access to iloc->bh.
4940  */
4941 int ext4_mark_iloc_dirty(handle_t *handle,
4942 			 struct inode *inode, struct ext4_iloc *iloc)
4943 {
4944 	int err = 0;
4945 
4946 	if (IS_I_VERSION(inode))
4947 		inode_inc_iversion(inode);
4948 
4949 	/* the do_update_inode consumes one bh->b_count */
4950 	get_bh(iloc->bh);
4951 
4952 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4953 	err = ext4_do_update_inode(handle, inode, iloc);
4954 	put_bh(iloc->bh);
4955 	return err;
4956 }
4957 
4958 /*
4959  * On success, We end up with an outstanding reference count against
4960  * iloc->bh.  This _must_ be cleaned up later.
4961  */
4962 
4963 int
4964 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4965 			 struct ext4_iloc *iloc)
4966 {
4967 	int err;
4968 
4969 	err = ext4_get_inode_loc(inode, iloc);
4970 	if (!err) {
4971 		BUFFER_TRACE(iloc->bh, "get_write_access");
4972 		err = ext4_journal_get_write_access(handle, iloc->bh);
4973 		if (err) {
4974 			brelse(iloc->bh);
4975 			iloc->bh = NULL;
4976 		}
4977 	}
4978 	ext4_std_error(inode->i_sb, err);
4979 	return err;
4980 }
4981 
4982 /*
4983  * Expand an inode by new_extra_isize bytes.
4984  * Returns 0 on success or negative error number on failure.
4985  */
4986 static int ext4_expand_extra_isize(struct inode *inode,
4987 				   unsigned int new_extra_isize,
4988 				   struct ext4_iloc iloc,
4989 				   handle_t *handle)
4990 {
4991 	struct ext4_inode *raw_inode;
4992 	struct ext4_xattr_ibody_header *header;
4993 
4994 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4995 		return 0;
4996 
4997 	raw_inode = ext4_raw_inode(&iloc);
4998 
4999 	header = IHDR(inode, raw_inode);
5000 
5001 	/* No extended attributes present */
5002 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5003 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5004 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5005 			new_extra_isize);
5006 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5007 		return 0;
5008 	}
5009 
5010 	/* try to expand with EAs present */
5011 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5012 					  raw_inode, handle);
5013 }
5014 
5015 /*
5016  * What we do here is to mark the in-core inode as clean with respect to inode
5017  * dirtiness (it may still be data-dirty).
5018  * This means that the in-core inode may be reaped by prune_icache
5019  * without having to perform any I/O.  This is a very good thing,
5020  * because *any* task may call prune_icache - even ones which
5021  * have a transaction open against a different journal.
5022  *
5023  * Is this cheating?  Not really.  Sure, we haven't written the
5024  * inode out, but prune_icache isn't a user-visible syncing function.
5025  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5026  * we start and wait on commits.
5027  */
5028 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5029 {
5030 	struct ext4_iloc iloc;
5031 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5032 	static unsigned int mnt_count;
5033 	int err, ret;
5034 
5035 	might_sleep();
5036 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5037 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5038 	if (ext4_handle_valid(handle) &&
5039 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5040 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5041 		/*
5042 		 * We need extra buffer credits since we may write into EA block
5043 		 * with this same handle. If journal_extend fails, then it will
5044 		 * only result in a minor loss of functionality for that inode.
5045 		 * If this is felt to be critical, then e2fsck should be run to
5046 		 * force a large enough s_min_extra_isize.
5047 		 */
5048 		if ((jbd2_journal_extend(handle,
5049 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5050 			ret = ext4_expand_extra_isize(inode,
5051 						      sbi->s_want_extra_isize,
5052 						      iloc, handle);
5053 			if (ret) {
5054 				ext4_set_inode_state(inode,
5055 						     EXT4_STATE_NO_EXPAND);
5056 				if (mnt_count !=
5057 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5058 					ext4_warning(inode->i_sb,
5059 					"Unable to expand inode %lu. Delete"
5060 					" some EAs or run e2fsck.",
5061 					inode->i_ino);
5062 					mnt_count =
5063 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5064 				}
5065 			}
5066 		}
5067 	}
5068 	if (!err)
5069 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5070 	return err;
5071 }
5072 
5073 /*
5074  * ext4_dirty_inode() is called from __mark_inode_dirty()
5075  *
5076  * We're really interested in the case where a file is being extended.
5077  * i_size has been changed by generic_commit_write() and we thus need
5078  * to include the updated inode in the current transaction.
5079  *
5080  * Also, dquot_alloc_block() will always dirty the inode when blocks
5081  * are allocated to the file.
5082  *
5083  * If the inode is marked synchronous, we don't honour that here - doing
5084  * so would cause a commit on atime updates, which we don't bother doing.
5085  * We handle synchronous inodes at the highest possible level.
5086  */
5087 void ext4_dirty_inode(struct inode *inode, int flags)
5088 {
5089 	handle_t *handle;
5090 
5091 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5092 	if (IS_ERR(handle))
5093 		goto out;
5094 
5095 	ext4_mark_inode_dirty(handle, inode);
5096 
5097 	ext4_journal_stop(handle);
5098 out:
5099 	return;
5100 }
5101 
5102 #if 0
5103 /*
5104  * Bind an inode's backing buffer_head into this transaction, to prevent
5105  * it from being flushed to disk early.  Unlike
5106  * ext4_reserve_inode_write, this leaves behind no bh reference and
5107  * returns no iloc structure, so the caller needs to repeat the iloc
5108  * lookup to mark the inode dirty later.
5109  */
5110 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5111 {
5112 	struct ext4_iloc iloc;
5113 
5114 	int err = 0;
5115 	if (handle) {
5116 		err = ext4_get_inode_loc(inode, &iloc);
5117 		if (!err) {
5118 			BUFFER_TRACE(iloc.bh, "get_write_access");
5119 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5120 			if (!err)
5121 				err = ext4_handle_dirty_metadata(handle,
5122 								 NULL,
5123 								 iloc.bh);
5124 			brelse(iloc.bh);
5125 		}
5126 	}
5127 	ext4_std_error(inode->i_sb, err);
5128 	return err;
5129 }
5130 #endif
5131 
5132 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5133 {
5134 	journal_t *journal;
5135 	handle_t *handle;
5136 	int err;
5137 
5138 	/*
5139 	 * We have to be very careful here: changing a data block's
5140 	 * journaling status dynamically is dangerous.  If we write a
5141 	 * data block to the journal, change the status and then delete
5142 	 * that block, we risk forgetting to revoke the old log record
5143 	 * from the journal and so a subsequent replay can corrupt data.
5144 	 * So, first we make sure that the journal is empty and that
5145 	 * nobody is changing anything.
5146 	 */
5147 
5148 	journal = EXT4_JOURNAL(inode);
5149 	if (!journal)
5150 		return 0;
5151 	if (is_journal_aborted(journal))
5152 		return -EROFS;
5153 	/* We have to allocate physical blocks for delalloc blocks
5154 	 * before flushing journal. otherwise delalloc blocks can not
5155 	 * be allocated any more. even more truncate on delalloc blocks
5156 	 * could trigger BUG by flushing delalloc blocks in journal.
5157 	 * There is no delalloc block in non-journal data mode.
5158 	 */
5159 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5160 		err = ext4_alloc_da_blocks(inode);
5161 		if (err < 0)
5162 			return err;
5163 	}
5164 
5165 	/* Wait for all existing dio workers */
5166 	ext4_inode_block_unlocked_dio(inode);
5167 	inode_dio_wait(inode);
5168 
5169 	jbd2_journal_lock_updates(journal);
5170 
5171 	/*
5172 	 * OK, there are no updates running now, and all cached data is
5173 	 * synced to disk.  We are now in a completely consistent state
5174 	 * which doesn't have anything in the journal, and we know that
5175 	 * no filesystem updates are running, so it is safe to modify
5176 	 * the inode's in-core data-journaling state flag now.
5177 	 */
5178 
5179 	if (val)
5180 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5181 	else {
5182 		jbd2_journal_flush(journal);
5183 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5184 	}
5185 	ext4_set_aops(inode);
5186 
5187 	jbd2_journal_unlock_updates(journal);
5188 	ext4_inode_resume_unlocked_dio(inode);
5189 
5190 	/* Finally we can mark the inode as dirty. */
5191 
5192 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5193 	if (IS_ERR(handle))
5194 		return PTR_ERR(handle);
5195 
5196 	err = ext4_mark_inode_dirty(handle, inode);
5197 	ext4_handle_sync(handle);
5198 	ext4_journal_stop(handle);
5199 	ext4_std_error(inode->i_sb, err);
5200 
5201 	return err;
5202 }
5203 
5204 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5205 {
5206 	return !buffer_mapped(bh);
5207 }
5208 
5209 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5210 {
5211 	struct page *page = vmf->page;
5212 	loff_t size;
5213 	unsigned long len;
5214 	int ret;
5215 	struct file *file = vma->vm_file;
5216 	struct inode *inode = file_inode(file);
5217 	struct address_space *mapping = inode->i_mapping;
5218 	handle_t *handle;
5219 	get_block_t *get_block;
5220 	int retries = 0;
5221 
5222 	sb_start_pagefault(inode->i_sb);
5223 	file_update_time(vma->vm_file);
5224 	/* Delalloc case is easy... */
5225 	if (test_opt(inode->i_sb, DELALLOC) &&
5226 	    !ext4_should_journal_data(inode) &&
5227 	    !ext4_nonda_switch(inode->i_sb)) {
5228 		do {
5229 			ret = __block_page_mkwrite(vma, vmf,
5230 						   ext4_da_get_block_prep);
5231 		} while (ret == -ENOSPC &&
5232 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5233 		goto out_ret;
5234 	}
5235 
5236 	lock_page(page);
5237 	size = i_size_read(inode);
5238 	/* Page got truncated from under us? */
5239 	if (page->mapping != mapping || page_offset(page) > size) {
5240 		unlock_page(page);
5241 		ret = VM_FAULT_NOPAGE;
5242 		goto out;
5243 	}
5244 
5245 	if (page->index == size >> PAGE_CACHE_SHIFT)
5246 		len = size & ~PAGE_CACHE_MASK;
5247 	else
5248 		len = PAGE_CACHE_SIZE;
5249 	/*
5250 	 * Return if we have all the buffers mapped. This avoids the need to do
5251 	 * journal_start/journal_stop which can block and take a long time
5252 	 */
5253 	if (page_has_buffers(page)) {
5254 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5255 					    0, len, NULL,
5256 					    ext4_bh_unmapped)) {
5257 			/* Wait so that we don't change page under IO */
5258 			wait_for_stable_page(page);
5259 			ret = VM_FAULT_LOCKED;
5260 			goto out;
5261 		}
5262 	}
5263 	unlock_page(page);
5264 	/* OK, we need to fill the hole... */
5265 	if (ext4_should_dioread_nolock(inode))
5266 		get_block = ext4_get_block_write;
5267 	else
5268 		get_block = ext4_get_block;
5269 retry_alloc:
5270 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5271 				    ext4_writepage_trans_blocks(inode));
5272 	if (IS_ERR(handle)) {
5273 		ret = VM_FAULT_SIGBUS;
5274 		goto out;
5275 	}
5276 	ret = __block_page_mkwrite(vma, vmf, get_block);
5277 	if (!ret && ext4_should_journal_data(inode)) {
5278 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5279 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5280 			unlock_page(page);
5281 			ret = VM_FAULT_SIGBUS;
5282 			ext4_journal_stop(handle);
5283 			goto out;
5284 		}
5285 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5286 	}
5287 	ext4_journal_stop(handle);
5288 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5289 		goto retry_alloc;
5290 out_ret:
5291 	ret = block_page_mkwrite_return(ret);
5292 out:
5293 	sb_end_pagefault(inode->i_sb);
5294 	return ret;
5295 }
5296