1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 138 struct inode *inode, struct page *page, loff_t from, 139 loff_t length, int flags); 140 141 /* 142 * Test whether an inode is a fast symlink. 143 */ 144 static int ext4_inode_is_fast_symlink(struct inode *inode) 145 { 146 int ea_blocks = EXT4_I(inode)->i_file_acl ? 147 (inode->i_sb->s_blocksize >> 9) : 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_complete_transaction(journal, commit_tid); 214 filemap_write_and_wait(&inode->i_data); 215 } 216 truncate_inode_pages(&inode->i_data, 0); 217 ext4_ioend_shutdown(inode); 218 goto no_delete; 219 } 220 221 if (!is_bad_inode(inode)) 222 dquot_initialize(inode); 223 224 if (ext4_should_order_data(inode)) 225 ext4_begin_ordered_truncate(inode, 0); 226 truncate_inode_pages(&inode->i_data, 0); 227 ext4_ioend_shutdown(inode); 228 229 if (is_bad_inode(inode)) 230 goto no_delete; 231 232 /* 233 * Protect us against freezing - iput() caller didn't have to have any 234 * protection against it 235 */ 236 sb_start_intwrite(inode->i_sb); 237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 238 ext4_blocks_for_truncate(inode)+3); 239 if (IS_ERR(handle)) { 240 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 241 /* 242 * If we're going to skip the normal cleanup, we still need to 243 * make sure that the in-core orphan linked list is properly 244 * cleaned up. 245 */ 246 ext4_orphan_del(NULL, inode); 247 sb_end_intwrite(inode->i_sb); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 ext4_handle_sync(handle); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) 261 ext4_truncate(inode); 262 263 /* 264 * ext4_ext_truncate() doesn't reserve any slop when it 265 * restarts journal transactions; therefore there may not be 266 * enough credits left in the handle to remove the inode from 267 * the orphan list and set the dtime field. 268 */ 269 if (!ext4_handle_has_enough_credits(handle, 3)) { 270 err = ext4_journal_extend(handle, 3); 271 if (err > 0) 272 err = ext4_journal_restart(handle, 3); 273 if (err != 0) { 274 ext4_warning(inode->i_sb, 275 "couldn't extend journal (err %d)", err); 276 stop_handle: 277 ext4_journal_stop(handle); 278 ext4_orphan_del(NULL, inode); 279 sb_end_intwrite(inode->i_sb); 280 goto no_delete; 281 } 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = get_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 sb_end_intwrite(inode->i_sb); 309 return; 310 no_delete: 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 312 } 313 314 #ifdef CONFIG_QUOTA 315 qsize_t *ext4_get_reserved_space(struct inode *inode) 316 { 317 return &EXT4_I(inode)->i_reserved_quota; 318 } 319 #endif 320 321 /* 322 * Calculate the number of metadata blocks need to reserve 323 * to allocate a block located at @lblock 324 */ 325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 326 { 327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 328 return ext4_ext_calc_metadata_amount(inode, lblock); 329 330 return ext4_ind_calc_metadata_amount(inode, lblock); 331 } 332 333 /* 334 * Called with i_data_sem down, which is important since we can call 335 * ext4_discard_preallocations() from here. 336 */ 337 void ext4_da_update_reserve_space(struct inode *inode, 338 int used, int quota_claim) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 341 struct ext4_inode_info *ei = EXT4_I(inode); 342 343 spin_lock(&ei->i_block_reservation_lock); 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 345 if (unlikely(used > ei->i_reserved_data_blocks)) { 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 347 "with only %d reserved data blocks", 348 __func__, inode->i_ino, used, 349 ei->i_reserved_data_blocks); 350 WARN_ON(1); 351 used = ei->i_reserved_data_blocks; 352 } 353 354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 355 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 356 "with only %d reserved metadata blocks " 357 "(releasing %d blocks with reserved %d data blocks)", 358 inode->i_ino, ei->i_allocated_meta_blocks, 359 ei->i_reserved_meta_blocks, used, 360 ei->i_reserved_data_blocks); 361 WARN_ON(1); 362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 363 } 364 365 /* Update per-inode reservations */ 366 ei->i_reserved_data_blocks -= used; 367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 368 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 369 used + ei->i_allocated_meta_blocks); 370 ei->i_allocated_meta_blocks = 0; 371 372 if (ei->i_reserved_data_blocks == 0) { 373 /* 374 * We can release all of the reserved metadata blocks 375 * only when we have written all of the delayed 376 * allocation blocks. 377 */ 378 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 379 ei->i_reserved_meta_blocks); 380 ei->i_reserved_meta_blocks = 0; 381 ei->i_da_metadata_calc_len = 0; 382 } 383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 384 385 /* Update quota subsystem for data blocks */ 386 if (quota_claim) 387 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 388 else { 389 /* 390 * We did fallocate with an offset that is already delayed 391 * allocated. So on delayed allocated writeback we should 392 * not re-claim the quota for fallocated blocks. 393 */ 394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 395 } 396 397 /* 398 * If we have done all the pending block allocations and if 399 * there aren't any writers on the inode, we can discard the 400 * inode's preallocations. 401 */ 402 if ((ei->i_reserved_data_blocks == 0) && 403 (atomic_read(&inode->i_writecount) == 0)) 404 ext4_discard_preallocations(inode); 405 } 406 407 static int __check_block_validity(struct inode *inode, const char *func, 408 unsigned int line, 409 struct ext4_map_blocks *map) 410 { 411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 412 map->m_len)) { 413 ext4_error_inode(inode, func, line, map->m_pblk, 414 "lblock %lu mapped to illegal pblock " 415 "(length %d)", (unsigned long) map->m_lblk, 416 map->m_len); 417 return -EIO; 418 } 419 return 0; 420 } 421 422 #define check_block_validity(inode, map) \ 423 __check_block_validity((inode), __func__, __LINE__, (map)) 424 425 /* 426 * Return the number of contiguous dirty pages in a given inode 427 * starting at page frame idx. 428 */ 429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 430 unsigned int max_pages) 431 { 432 struct address_space *mapping = inode->i_mapping; 433 pgoff_t index; 434 struct pagevec pvec; 435 pgoff_t num = 0; 436 int i, nr_pages, done = 0; 437 438 if (max_pages == 0) 439 return 0; 440 pagevec_init(&pvec, 0); 441 while (!done) { 442 index = idx; 443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 444 PAGECACHE_TAG_DIRTY, 445 (pgoff_t)PAGEVEC_SIZE); 446 if (nr_pages == 0) 447 break; 448 for (i = 0; i < nr_pages; i++) { 449 struct page *page = pvec.pages[i]; 450 struct buffer_head *bh, *head; 451 452 lock_page(page); 453 if (unlikely(page->mapping != mapping) || 454 !PageDirty(page) || 455 PageWriteback(page) || 456 page->index != idx) { 457 done = 1; 458 unlock_page(page); 459 break; 460 } 461 if (page_has_buffers(page)) { 462 bh = head = page_buffers(page); 463 do { 464 if (!buffer_delay(bh) && 465 !buffer_unwritten(bh)) 466 done = 1; 467 bh = bh->b_this_page; 468 } while (!done && (bh != head)); 469 } 470 unlock_page(page); 471 if (done) 472 break; 473 idx++; 474 num++; 475 if (num >= max_pages) { 476 done = 1; 477 break; 478 } 479 } 480 pagevec_release(&pvec); 481 } 482 return num; 483 } 484 485 #ifdef ES_AGGRESSIVE_TEST 486 static void ext4_map_blocks_es_recheck(handle_t *handle, 487 struct inode *inode, 488 struct ext4_map_blocks *es_map, 489 struct ext4_map_blocks *map, 490 int flags) 491 { 492 int retval; 493 494 map->m_flags = 0; 495 /* 496 * There is a race window that the result is not the same. 497 * e.g. xfstests #223 when dioread_nolock enables. The reason 498 * is that we lookup a block mapping in extent status tree with 499 * out taking i_data_sem. So at the time the unwritten extent 500 * could be converted. 501 */ 502 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 503 down_read((&EXT4_I(inode)->i_data_sem)); 504 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 505 retval = ext4_ext_map_blocks(handle, inode, map, flags & 506 EXT4_GET_BLOCKS_KEEP_SIZE); 507 } else { 508 retval = ext4_ind_map_blocks(handle, inode, map, flags & 509 EXT4_GET_BLOCKS_KEEP_SIZE); 510 } 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 512 up_read((&EXT4_I(inode)->i_data_sem)); 513 /* 514 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 515 * because it shouldn't be marked in es_map->m_flags. 516 */ 517 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 518 519 /* 520 * We don't check m_len because extent will be collpased in status 521 * tree. So the m_len might not equal. 522 */ 523 if (es_map->m_lblk != map->m_lblk || 524 es_map->m_flags != map->m_flags || 525 es_map->m_pblk != map->m_pblk) { 526 printk("ES cache assertation failed for inode: %lu " 527 "es_cached ex [%d/%d/%llu/%x] != " 528 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 529 inode->i_ino, es_map->m_lblk, es_map->m_len, 530 es_map->m_pblk, es_map->m_flags, map->m_lblk, 531 map->m_len, map->m_pblk, map->m_flags, 532 retval, flags); 533 } 534 } 535 #endif /* ES_AGGRESSIVE_TEST */ 536 537 /* 538 * The ext4_map_blocks() function tries to look up the requested blocks, 539 * and returns if the blocks are already mapped. 540 * 541 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 542 * and store the allocated blocks in the result buffer head and mark it 543 * mapped. 544 * 545 * If file type is extents based, it will call ext4_ext_map_blocks(), 546 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 547 * based files 548 * 549 * On success, it returns the number of blocks being mapped or allocate. 550 * if create==0 and the blocks are pre-allocated and uninitialized block, 551 * the result buffer head is unmapped. If the create ==1, it will make sure 552 * the buffer head is mapped. 553 * 554 * It returns 0 if plain look up failed (blocks have not been allocated), in 555 * that case, buffer head is unmapped 556 * 557 * It returns the error in case of allocation failure. 558 */ 559 int ext4_map_blocks(handle_t *handle, struct inode *inode, 560 struct ext4_map_blocks *map, int flags) 561 { 562 struct extent_status es; 563 int retval; 564 #ifdef ES_AGGRESSIVE_TEST 565 struct ext4_map_blocks orig_map; 566 567 memcpy(&orig_map, map, sizeof(*map)); 568 #endif 569 570 map->m_flags = 0; 571 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 572 "logical block %lu\n", inode->i_ino, flags, map->m_len, 573 (unsigned long) map->m_lblk); 574 575 /* Lookup extent status tree firstly */ 576 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 577 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 578 map->m_pblk = ext4_es_pblock(&es) + 579 map->m_lblk - es.es_lblk; 580 map->m_flags |= ext4_es_is_written(&es) ? 581 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 582 retval = es.es_len - (map->m_lblk - es.es_lblk); 583 if (retval > map->m_len) 584 retval = map->m_len; 585 map->m_len = retval; 586 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 587 retval = 0; 588 } else { 589 BUG_ON(1); 590 } 591 #ifdef ES_AGGRESSIVE_TEST 592 ext4_map_blocks_es_recheck(handle, inode, map, 593 &orig_map, flags); 594 #endif 595 goto found; 596 } 597 598 /* 599 * Try to see if we can get the block without requesting a new 600 * file system block. 601 */ 602 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 603 down_read((&EXT4_I(inode)->i_data_sem)); 604 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 605 retval = ext4_ext_map_blocks(handle, inode, map, flags & 606 EXT4_GET_BLOCKS_KEEP_SIZE); 607 } else { 608 retval = ext4_ind_map_blocks(handle, inode, map, flags & 609 EXT4_GET_BLOCKS_KEEP_SIZE); 610 } 611 if (retval > 0) { 612 int ret; 613 unsigned long long status; 614 615 #ifdef ES_AGGRESSIVE_TEST 616 if (retval != map->m_len) { 617 printk("ES len assertation failed for inode: %lu " 618 "retval %d != map->m_len %d " 619 "in %s (lookup)\n", inode->i_ino, retval, 620 map->m_len, __func__); 621 } 622 #endif 623 624 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 626 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 627 ext4_find_delalloc_range(inode, map->m_lblk, 628 map->m_lblk + map->m_len - 1)) 629 status |= EXTENT_STATUS_DELAYED; 630 ret = ext4_es_insert_extent(inode, map->m_lblk, 631 map->m_len, map->m_pblk, status); 632 if (ret < 0) 633 retval = ret; 634 } 635 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 636 up_read((&EXT4_I(inode)->i_data_sem)); 637 638 found: 639 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 640 int ret = check_block_validity(inode, map); 641 if (ret != 0) 642 return ret; 643 } 644 645 /* If it is only a block(s) look up */ 646 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 647 return retval; 648 649 /* 650 * Returns if the blocks have already allocated 651 * 652 * Note that if blocks have been preallocated 653 * ext4_ext_get_block() returns the create = 0 654 * with buffer head unmapped. 655 */ 656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 657 return retval; 658 659 /* 660 * Here we clear m_flags because after allocating an new extent, 661 * it will be set again. 662 */ 663 map->m_flags &= ~EXT4_MAP_FLAGS; 664 665 /* 666 * New blocks allocate and/or writing to uninitialized extent 667 * will possibly result in updating i_data, so we take 668 * the write lock of i_data_sem, and call get_blocks() 669 * with create == 1 flag. 670 */ 671 down_write((&EXT4_I(inode)->i_data_sem)); 672 673 /* 674 * if the caller is from delayed allocation writeout path 675 * we have already reserved fs blocks for allocation 676 * let the underlying get_block() function know to 677 * avoid double accounting 678 */ 679 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 680 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 681 /* 682 * We need to check for EXT4 here because migrate 683 * could have changed the inode type in between 684 */ 685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 686 retval = ext4_ext_map_blocks(handle, inode, map, flags); 687 } else { 688 retval = ext4_ind_map_blocks(handle, inode, map, flags); 689 690 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 691 /* 692 * We allocated new blocks which will result in 693 * i_data's format changing. Force the migrate 694 * to fail by clearing migrate flags 695 */ 696 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 697 } 698 699 /* 700 * Update reserved blocks/metadata blocks after successful 701 * block allocation which had been deferred till now. We don't 702 * support fallocate for non extent files. So we can update 703 * reserve space here. 704 */ 705 if ((retval > 0) && 706 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 707 ext4_da_update_reserve_space(inode, retval, 1); 708 } 709 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 710 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 711 712 if (retval > 0) { 713 int ret; 714 unsigned long long status; 715 716 #ifdef ES_AGGRESSIVE_TEST 717 if (retval != map->m_len) { 718 printk("ES len assertation failed for inode: %lu " 719 "retval %d != map->m_len %d " 720 "in %s (allocation)\n", inode->i_ino, retval, 721 map->m_len, __func__); 722 } 723 #endif 724 725 /* 726 * If the extent has been zeroed out, we don't need to update 727 * extent status tree. 728 */ 729 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 730 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 731 if (ext4_es_is_written(&es)) 732 goto has_zeroout; 733 } 734 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 735 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 736 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 737 ext4_find_delalloc_range(inode, map->m_lblk, 738 map->m_lblk + map->m_len - 1)) 739 status |= EXTENT_STATUS_DELAYED; 740 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 741 map->m_pblk, status); 742 if (ret < 0) 743 retval = ret; 744 } 745 746 has_zeroout: 747 up_write((&EXT4_I(inode)->i_data_sem)); 748 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 749 int ret = check_block_validity(inode, map); 750 if (ret != 0) 751 return ret; 752 } 753 return retval; 754 } 755 756 /* Maximum number of blocks we map for direct IO at once. */ 757 #define DIO_MAX_BLOCKS 4096 758 759 static int _ext4_get_block(struct inode *inode, sector_t iblock, 760 struct buffer_head *bh, int flags) 761 { 762 handle_t *handle = ext4_journal_current_handle(); 763 struct ext4_map_blocks map; 764 int ret = 0, started = 0; 765 int dio_credits; 766 767 if (ext4_has_inline_data(inode)) 768 return -ERANGE; 769 770 map.m_lblk = iblock; 771 map.m_len = bh->b_size >> inode->i_blkbits; 772 773 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 774 /* Direct IO write... */ 775 if (map.m_len > DIO_MAX_BLOCKS) 776 map.m_len = DIO_MAX_BLOCKS; 777 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 778 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 779 dio_credits); 780 if (IS_ERR(handle)) { 781 ret = PTR_ERR(handle); 782 return ret; 783 } 784 started = 1; 785 } 786 787 ret = ext4_map_blocks(handle, inode, &map, flags); 788 if (ret > 0) { 789 map_bh(bh, inode->i_sb, map.m_pblk); 790 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 791 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 792 ret = 0; 793 } 794 if (started) 795 ext4_journal_stop(handle); 796 return ret; 797 } 798 799 int ext4_get_block(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh, int create) 801 { 802 return _ext4_get_block(inode, iblock, bh, 803 create ? EXT4_GET_BLOCKS_CREATE : 0); 804 } 805 806 /* 807 * `handle' can be NULL if create is zero 808 */ 809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 810 ext4_lblk_t block, int create, int *errp) 811 { 812 struct ext4_map_blocks map; 813 struct buffer_head *bh; 814 int fatal = 0, err; 815 816 J_ASSERT(handle != NULL || create == 0); 817 818 map.m_lblk = block; 819 map.m_len = 1; 820 err = ext4_map_blocks(handle, inode, &map, 821 create ? EXT4_GET_BLOCKS_CREATE : 0); 822 823 /* ensure we send some value back into *errp */ 824 *errp = 0; 825 826 if (create && err == 0) 827 err = -ENOSPC; /* should never happen */ 828 if (err < 0) 829 *errp = err; 830 if (err <= 0) 831 return NULL; 832 833 bh = sb_getblk(inode->i_sb, map.m_pblk); 834 if (unlikely(!bh)) { 835 *errp = -ENOMEM; 836 return NULL; 837 } 838 if (map.m_flags & EXT4_MAP_NEW) { 839 J_ASSERT(create != 0); 840 J_ASSERT(handle != NULL); 841 842 /* 843 * Now that we do not always journal data, we should 844 * keep in mind whether this should always journal the 845 * new buffer as metadata. For now, regular file 846 * writes use ext4_get_block instead, so it's not a 847 * problem. 848 */ 849 lock_buffer(bh); 850 BUFFER_TRACE(bh, "call get_create_access"); 851 fatal = ext4_journal_get_create_access(handle, bh); 852 if (!fatal && !buffer_uptodate(bh)) { 853 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 854 set_buffer_uptodate(bh); 855 } 856 unlock_buffer(bh); 857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 858 err = ext4_handle_dirty_metadata(handle, inode, bh); 859 if (!fatal) 860 fatal = err; 861 } else { 862 BUFFER_TRACE(bh, "not a new buffer"); 863 } 864 if (fatal) { 865 *errp = fatal; 866 brelse(bh); 867 bh = NULL; 868 } 869 return bh; 870 } 871 872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 873 ext4_lblk_t block, int create, int *err) 874 { 875 struct buffer_head *bh; 876 877 bh = ext4_getblk(handle, inode, block, create, err); 878 if (!bh) 879 return bh; 880 if (buffer_uptodate(bh)) 881 return bh; 882 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 883 wait_on_buffer(bh); 884 if (buffer_uptodate(bh)) 885 return bh; 886 put_bh(bh); 887 *err = -EIO; 888 return NULL; 889 } 890 891 int ext4_walk_page_buffers(handle_t *handle, 892 struct buffer_head *head, 893 unsigned from, 894 unsigned to, 895 int *partial, 896 int (*fn)(handle_t *handle, 897 struct buffer_head *bh)) 898 { 899 struct buffer_head *bh; 900 unsigned block_start, block_end; 901 unsigned blocksize = head->b_size; 902 int err, ret = 0; 903 struct buffer_head *next; 904 905 for (bh = head, block_start = 0; 906 ret == 0 && (bh != head || !block_start); 907 block_start = block_end, bh = next) { 908 next = bh->b_this_page; 909 block_end = block_start + blocksize; 910 if (block_end <= from || block_start >= to) { 911 if (partial && !buffer_uptodate(bh)) 912 *partial = 1; 913 continue; 914 } 915 err = (*fn)(handle, bh); 916 if (!ret) 917 ret = err; 918 } 919 return ret; 920 } 921 922 /* 923 * To preserve ordering, it is essential that the hole instantiation and 924 * the data write be encapsulated in a single transaction. We cannot 925 * close off a transaction and start a new one between the ext4_get_block() 926 * and the commit_write(). So doing the jbd2_journal_start at the start of 927 * prepare_write() is the right place. 928 * 929 * Also, this function can nest inside ext4_writepage(). In that case, we 930 * *know* that ext4_writepage() has generated enough buffer credits to do the 931 * whole page. So we won't block on the journal in that case, which is good, 932 * because the caller may be PF_MEMALLOC. 933 * 934 * By accident, ext4 can be reentered when a transaction is open via 935 * quota file writes. If we were to commit the transaction while thus 936 * reentered, there can be a deadlock - we would be holding a quota 937 * lock, and the commit would never complete if another thread had a 938 * transaction open and was blocking on the quota lock - a ranking 939 * violation. 940 * 941 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 942 * will _not_ run commit under these circumstances because handle->h_ref 943 * is elevated. We'll still have enough credits for the tiny quotafile 944 * write. 945 */ 946 int do_journal_get_write_access(handle_t *handle, 947 struct buffer_head *bh) 948 { 949 int dirty = buffer_dirty(bh); 950 int ret; 951 952 if (!buffer_mapped(bh) || buffer_freed(bh)) 953 return 0; 954 /* 955 * __block_write_begin() could have dirtied some buffers. Clean 956 * the dirty bit as jbd2_journal_get_write_access() could complain 957 * otherwise about fs integrity issues. Setting of the dirty bit 958 * by __block_write_begin() isn't a real problem here as we clear 959 * the bit before releasing a page lock and thus writeback cannot 960 * ever write the buffer. 961 */ 962 if (dirty) 963 clear_buffer_dirty(bh); 964 ret = ext4_journal_get_write_access(handle, bh); 965 if (!ret && dirty) 966 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 967 return ret; 968 } 969 970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 971 struct buffer_head *bh_result, int create); 972 static int ext4_write_begin(struct file *file, struct address_space *mapping, 973 loff_t pos, unsigned len, unsigned flags, 974 struct page **pagep, void **fsdata) 975 { 976 struct inode *inode = mapping->host; 977 int ret, needed_blocks; 978 handle_t *handle; 979 int retries = 0; 980 struct page *page; 981 pgoff_t index; 982 unsigned from, to; 983 984 trace_ext4_write_begin(inode, pos, len, flags); 985 /* 986 * Reserve one block more for addition to orphan list in case 987 * we allocate blocks but write fails for some reason 988 */ 989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 990 index = pos >> PAGE_CACHE_SHIFT; 991 from = pos & (PAGE_CACHE_SIZE - 1); 992 to = from + len; 993 994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 996 flags, pagep); 997 if (ret < 0) 998 return ret; 999 if (ret == 1) 1000 return 0; 1001 } 1002 1003 /* 1004 * grab_cache_page_write_begin() can take a long time if the 1005 * system is thrashing due to memory pressure, or if the page 1006 * is being written back. So grab it first before we start 1007 * the transaction handle. This also allows us to allocate 1008 * the page (if needed) without using GFP_NOFS. 1009 */ 1010 retry_grab: 1011 page = grab_cache_page_write_begin(mapping, index, flags); 1012 if (!page) 1013 return -ENOMEM; 1014 unlock_page(page); 1015 1016 retry_journal: 1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1018 if (IS_ERR(handle)) { 1019 page_cache_release(page); 1020 return PTR_ERR(handle); 1021 } 1022 1023 lock_page(page); 1024 if (page->mapping != mapping) { 1025 /* The page got truncated from under us */ 1026 unlock_page(page); 1027 page_cache_release(page); 1028 ext4_journal_stop(handle); 1029 goto retry_grab; 1030 } 1031 wait_on_page_writeback(page); 1032 1033 if (ext4_should_dioread_nolock(inode)) 1034 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1035 else 1036 ret = __block_write_begin(page, pos, len, ext4_get_block); 1037 1038 if (!ret && ext4_should_journal_data(inode)) { 1039 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1040 from, to, NULL, 1041 do_journal_get_write_access); 1042 } 1043 1044 if (ret) { 1045 unlock_page(page); 1046 /* 1047 * __block_write_begin may have instantiated a few blocks 1048 * outside i_size. Trim these off again. Don't need 1049 * i_size_read because we hold i_mutex. 1050 * 1051 * Add inode to orphan list in case we crash before 1052 * truncate finishes 1053 */ 1054 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1055 ext4_orphan_add(handle, inode); 1056 1057 ext4_journal_stop(handle); 1058 if (pos + len > inode->i_size) { 1059 ext4_truncate_failed_write(inode); 1060 /* 1061 * If truncate failed early the inode might 1062 * still be on the orphan list; we need to 1063 * make sure the inode is removed from the 1064 * orphan list in that case. 1065 */ 1066 if (inode->i_nlink) 1067 ext4_orphan_del(NULL, inode); 1068 } 1069 1070 if (ret == -ENOSPC && 1071 ext4_should_retry_alloc(inode->i_sb, &retries)) 1072 goto retry_journal; 1073 page_cache_release(page); 1074 return ret; 1075 } 1076 *pagep = page; 1077 return ret; 1078 } 1079 1080 /* For write_end() in data=journal mode */ 1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1082 { 1083 int ret; 1084 if (!buffer_mapped(bh) || buffer_freed(bh)) 1085 return 0; 1086 set_buffer_uptodate(bh); 1087 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1088 clear_buffer_meta(bh); 1089 clear_buffer_prio(bh); 1090 return ret; 1091 } 1092 1093 /* 1094 * We need to pick up the new inode size which generic_commit_write gave us 1095 * `file' can be NULL - eg, when called from page_symlink(). 1096 * 1097 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1098 * buffers are managed internally. 1099 */ 1100 static int ext4_write_end(struct file *file, 1101 struct address_space *mapping, 1102 loff_t pos, unsigned len, unsigned copied, 1103 struct page *page, void *fsdata) 1104 { 1105 handle_t *handle = ext4_journal_current_handle(); 1106 struct inode *inode = mapping->host; 1107 int ret = 0, ret2; 1108 int i_size_changed = 0; 1109 1110 trace_ext4_write_end(inode, pos, len, copied); 1111 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1112 ret = ext4_jbd2_file_inode(handle, inode); 1113 if (ret) { 1114 unlock_page(page); 1115 page_cache_release(page); 1116 goto errout; 1117 } 1118 } 1119 1120 if (ext4_has_inline_data(inode)) 1121 copied = ext4_write_inline_data_end(inode, pos, len, 1122 copied, page); 1123 else 1124 copied = block_write_end(file, mapping, pos, 1125 len, copied, page, fsdata); 1126 1127 /* 1128 * No need to use i_size_read() here, the i_size 1129 * cannot change under us because we hole i_mutex. 1130 * 1131 * But it's important to update i_size while still holding page lock: 1132 * page writeout could otherwise come in and zero beyond i_size. 1133 */ 1134 if (pos + copied > inode->i_size) { 1135 i_size_write(inode, pos + copied); 1136 i_size_changed = 1; 1137 } 1138 1139 if (pos + copied > EXT4_I(inode)->i_disksize) { 1140 /* We need to mark inode dirty even if 1141 * new_i_size is less that inode->i_size 1142 * but greater than i_disksize. (hint delalloc) 1143 */ 1144 ext4_update_i_disksize(inode, (pos + copied)); 1145 i_size_changed = 1; 1146 } 1147 unlock_page(page); 1148 page_cache_release(page); 1149 1150 /* 1151 * Don't mark the inode dirty under page lock. First, it unnecessarily 1152 * makes the holding time of page lock longer. Second, it forces lock 1153 * ordering of page lock and transaction start for journaling 1154 * filesystems. 1155 */ 1156 if (i_size_changed) 1157 ext4_mark_inode_dirty(handle, inode); 1158 1159 if (copied < 0) 1160 ret = copied; 1161 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1162 /* if we have allocated more blocks and copied 1163 * less. We will have blocks allocated outside 1164 * inode->i_size. So truncate them 1165 */ 1166 ext4_orphan_add(handle, inode); 1167 errout: 1168 ret2 = ext4_journal_stop(handle); 1169 if (!ret) 1170 ret = ret2; 1171 1172 if (pos + len > inode->i_size) { 1173 ext4_truncate_failed_write(inode); 1174 /* 1175 * If truncate failed early the inode might still be 1176 * on the orphan list; we need to make sure the inode 1177 * is removed from the orphan list in that case. 1178 */ 1179 if (inode->i_nlink) 1180 ext4_orphan_del(NULL, inode); 1181 } 1182 1183 return ret ? ret : copied; 1184 } 1185 1186 static int ext4_journalled_write_end(struct file *file, 1187 struct address_space *mapping, 1188 loff_t pos, unsigned len, unsigned copied, 1189 struct page *page, void *fsdata) 1190 { 1191 handle_t *handle = ext4_journal_current_handle(); 1192 struct inode *inode = mapping->host; 1193 int ret = 0, ret2; 1194 int partial = 0; 1195 unsigned from, to; 1196 loff_t new_i_size; 1197 1198 trace_ext4_journalled_write_end(inode, pos, len, copied); 1199 from = pos & (PAGE_CACHE_SIZE - 1); 1200 to = from + len; 1201 1202 BUG_ON(!ext4_handle_valid(handle)); 1203 1204 if (ext4_has_inline_data(inode)) 1205 copied = ext4_write_inline_data_end(inode, pos, len, 1206 copied, page); 1207 else { 1208 if (copied < len) { 1209 if (!PageUptodate(page)) 1210 copied = 0; 1211 page_zero_new_buffers(page, from+copied, to); 1212 } 1213 1214 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1215 to, &partial, write_end_fn); 1216 if (!partial) 1217 SetPageUptodate(page); 1218 } 1219 new_i_size = pos + copied; 1220 if (new_i_size > inode->i_size) 1221 i_size_write(inode, pos+copied); 1222 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1223 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1224 if (new_i_size > EXT4_I(inode)->i_disksize) { 1225 ext4_update_i_disksize(inode, new_i_size); 1226 ret2 = ext4_mark_inode_dirty(handle, inode); 1227 if (!ret) 1228 ret = ret2; 1229 } 1230 1231 unlock_page(page); 1232 page_cache_release(page); 1233 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1234 /* if we have allocated more blocks and copied 1235 * less. We will have blocks allocated outside 1236 * inode->i_size. So truncate them 1237 */ 1238 ext4_orphan_add(handle, inode); 1239 1240 ret2 = ext4_journal_stop(handle); 1241 if (!ret) 1242 ret = ret2; 1243 if (pos + len > inode->i_size) { 1244 ext4_truncate_failed_write(inode); 1245 /* 1246 * If truncate failed early the inode might still be 1247 * on the orphan list; we need to make sure the inode 1248 * is removed from the orphan list in that case. 1249 */ 1250 if (inode->i_nlink) 1251 ext4_orphan_del(NULL, inode); 1252 } 1253 1254 return ret ? ret : copied; 1255 } 1256 1257 /* 1258 * Reserve a metadata for a single block located at lblock 1259 */ 1260 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1261 { 1262 int retries = 0; 1263 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1264 struct ext4_inode_info *ei = EXT4_I(inode); 1265 unsigned int md_needed; 1266 ext4_lblk_t save_last_lblock; 1267 int save_len; 1268 1269 /* 1270 * recalculate the amount of metadata blocks to reserve 1271 * in order to allocate nrblocks 1272 * worse case is one extent per block 1273 */ 1274 repeat: 1275 spin_lock(&ei->i_block_reservation_lock); 1276 /* 1277 * ext4_calc_metadata_amount() has side effects, which we have 1278 * to be prepared undo if we fail to claim space. 1279 */ 1280 save_len = ei->i_da_metadata_calc_len; 1281 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1282 md_needed = EXT4_NUM_B2C(sbi, 1283 ext4_calc_metadata_amount(inode, lblock)); 1284 trace_ext4_da_reserve_space(inode, md_needed); 1285 1286 /* 1287 * We do still charge estimated metadata to the sb though; 1288 * we cannot afford to run out of free blocks. 1289 */ 1290 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1291 ei->i_da_metadata_calc_len = save_len; 1292 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1293 spin_unlock(&ei->i_block_reservation_lock); 1294 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1295 cond_resched(); 1296 goto repeat; 1297 } 1298 return -ENOSPC; 1299 } 1300 ei->i_reserved_meta_blocks += md_needed; 1301 spin_unlock(&ei->i_block_reservation_lock); 1302 1303 return 0; /* success */ 1304 } 1305 1306 /* 1307 * Reserve a single cluster located at lblock 1308 */ 1309 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1310 { 1311 int retries = 0; 1312 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1313 struct ext4_inode_info *ei = EXT4_I(inode); 1314 unsigned int md_needed; 1315 int ret; 1316 ext4_lblk_t save_last_lblock; 1317 int save_len; 1318 1319 /* 1320 * We will charge metadata quota at writeout time; this saves 1321 * us from metadata over-estimation, though we may go over by 1322 * a small amount in the end. Here we just reserve for data. 1323 */ 1324 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1325 if (ret) 1326 return ret; 1327 1328 /* 1329 * recalculate the amount of metadata blocks to reserve 1330 * in order to allocate nrblocks 1331 * worse case is one extent per block 1332 */ 1333 repeat: 1334 spin_lock(&ei->i_block_reservation_lock); 1335 /* 1336 * ext4_calc_metadata_amount() has side effects, which we have 1337 * to be prepared undo if we fail to claim space. 1338 */ 1339 save_len = ei->i_da_metadata_calc_len; 1340 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1341 md_needed = EXT4_NUM_B2C(sbi, 1342 ext4_calc_metadata_amount(inode, lblock)); 1343 trace_ext4_da_reserve_space(inode, md_needed); 1344 1345 /* 1346 * We do still charge estimated metadata to the sb though; 1347 * we cannot afford to run out of free blocks. 1348 */ 1349 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1350 ei->i_da_metadata_calc_len = save_len; 1351 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1352 spin_unlock(&ei->i_block_reservation_lock); 1353 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1354 cond_resched(); 1355 goto repeat; 1356 } 1357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1358 return -ENOSPC; 1359 } 1360 ei->i_reserved_data_blocks++; 1361 ei->i_reserved_meta_blocks += md_needed; 1362 spin_unlock(&ei->i_block_reservation_lock); 1363 1364 return 0; /* success */ 1365 } 1366 1367 static void ext4_da_release_space(struct inode *inode, int to_free) 1368 { 1369 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1370 struct ext4_inode_info *ei = EXT4_I(inode); 1371 1372 if (!to_free) 1373 return; /* Nothing to release, exit */ 1374 1375 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1376 1377 trace_ext4_da_release_space(inode, to_free); 1378 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1379 /* 1380 * if there aren't enough reserved blocks, then the 1381 * counter is messed up somewhere. Since this 1382 * function is called from invalidate page, it's 1383 * harmless to return without any action. 1384 */ 1385 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1386 "ino %lu, to_free %d with only %d reserved " 1387 "data blocks", inode->i_ino, to_free, 1388 ei->i_reserved_data_blocks); 1389 WARN_ON(1); 1390 to_free = ei->i_reserved_data_blocks; 1391 } 1392 ei->i_reserved_data_blocks -= to_free; 1393 1394 if (ei->i_reserved_data_blocks == 0) { 1395 /* 1396 * We can release all of the reserved metadata blocks 1397 * only when we have written all of the delayed 1398 * allocation blocks. 1399 * Note that in case of bigalloc, i_reserved_meta_blocks, 1400 * i_reserved_data_blocks, etc. refer to number of clusters. 1401 */ 1402 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1403 ei->i_reserved_meta_blocks); 1404 ei->i_reserved_meta_blocks = 0; 1405 ei->i_da_metadata_calc_len = 0; 1406 } 1407 1408 /* update fs dirty data blocks counter */ 1409 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1410 1411 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1412 1413 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1414 } 1415 1416 static void ext4_da_page_release_reservation(struct page *page, 1417 unsigned long offset) 1418 { 1419 int to_release = 0; 1420 struct buffer_head *head, *bh; 1421 unsigned int curr_off = 0; 1422 struct inode *inode = page->mapping->host; 1423 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1424 int num_clusters; 1425 ext4_fsblk_t lblk; 1426 1427 head = page_buffers(page); 1428 bh = head; 1429 do { 1430 unsigned int next_off = curr_off + bh->b_size; 1431 1432 if ((offset <= curr_off) && (buffer_delay(bh))) { 1433 to_release++; 1434 clear_buffer_delay(bh); 1435 } 1436 curr_off = next_off; 1437 } while ((bh = bh->b_this_page) != head); 1438 1439 if (to_release) { 1440 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1441 ext4_es_remove_extent(inode, lblk, to_release); 1442 } 1443 1444 /* If we have released all the blocks belonging to a cluster, then we 1445 * need to release the reserved space for that cluster. */ 1446 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1447 while (num_clusters > 0) { 1448 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1449 ((num_clusters - 1) << sbi->s_cluster_bits); 1450 if (sbi->s_cluster_ratio == 1 || 1451 !ext4_find_delalloc_cluster(inode, lblk)) 1452 ext4_da_release_space(inode, 1); 1453 1454 num_clusters--; 1455 } 1456 } 1457 1458 /* 1459 * Delayed allocation stuff 1460 */ 1461 1462 /* 1463 * mpage_da_submit_io - walks through extent of pages and try to write 1464 * them with writepage() call back 1465 * 1466 * @mpd->inode: inode 1467 * @mpd->first_page: first page of the extent 1468 * @mpd->next_page: page after the last page of the extent 1469 * 1470 * By the time mpage_da_submit_io() is called we expect all blocks 1471 * to be allocated. this may be wrong if allocation failed. 1472 * 1473 * As pages are already locked by write_cache_pages(), we can't use it 1474 */ 1475 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1476 struct ext4_map_blocks *map) 1477 { 1478 struct pagevec pvec; 1479 unsigned long index, end; 1480 int ret = 0, err, nr_pages, i; 1481 struct inode *inode = mpd->inode; 1482 struct address_space *mapping = inode->i_mapping; 1483 loff_t size = i_size_read(inode); 1484 unsigned int len, block_start; 1485 struct buffer_head *bh, *page_bufs = NULL; 1486 sector_t pblock = 0, cur_logical = 0; 1487 struct ext4_io_submit io_submit; 1488 1489 BUG_ON(mpd->next_page <= mpd->first_page); 1490 ext4_io_submit_init(&io_submit, mpd->wbc); 1491 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1492 if (!io_submit.io_end) 1493 return -ENOMEM; 1494 /* 1495 * We need to start from the first_page to the next_page - 1 1496 * to make sure we also write the mapped dirty buffer_heads. 1497 * If we look at mpd->b_blocknr we would only be looking 1498 * at the currently mapped buffer_heads. 1499 */ 1500 index = mpd->first_page; 1501 end = mpd->next_page - 1; 1502 1503 pagevec_init(&pvec, 0); 1504 while (index <= end) { 1505 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1506 if (nr_pages == 0) 1507 break; 1508 for (i = 0; i < nr_pages; i++) { 1509 int skip_page = 0; 1510 struct page *page = pvec.pages[i]; 1511 1512 index = page->index; 1513 if (index > end) 1514 break; 1515 1516 if (index == size >> PAGE_CACHE_SHIFT) 1517 len = size & ~PAGE_CACHE_MASK; 1518 else 1519 len = PAGE_CACHE_SIZE; 1520 if (map) { 1521 cur_logical = index << (PAGE_CACHE_SHIFT - 1522 inode->i_blkbits); 1523 pblock = map->m_pblk + (cur_logical - 1524 map->m_lblk); 1525 } 1526 index++; 1527 1528 BUG_ON(!PageLocked(page)); 1529 BUG_ON(PageWriteback(page)); 1530 1531 bh = page_bufs = page_buffers(page); 1532 block_start = 0; 1533 do { 1534 if (map && (cur_logical >= map->m_lblk) && 1535 (cur_logical <= (map->m_lblk + 1536 (map->m_len - 1)))) { 1537 if (buffer_delay(bh)) { 1538 clear_buffer_delay(bh); 1539 bh->b_blocknr = pblock; 1540 } 1541 if (buffer_unwritten(bh) || 1542 buffer_mapped(bh)) 1543 BUG_ON(bh->b_blocknr != pblock); 1544 if (map->m_flags & EXT4_MAP_UNINIT) 1545 set_buffer_uninit(bh); 1546 clear_buffer_unwritten(bh); 1547 } 1548 1549 /* 1550 * skip page if block allocation undone and 1551 * block is dirty 1552 */ 1553 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1554 skip_page = 1; 1555 bh = bh->b_this_page; 1556 block_start += bh->b_size; 1557 cur_logical++; 1558 pblock++; 1559 } while (bh != page_bufs); 1560 1561 if (skip_page) { 1562 unlock_page(page); 1563 continue; 1564 } 1565 1566 clear_page_dirty_for_io(page); 1567 err = ext4_bio_write_page(&io_submit, page, len, 1568 mpd->wbc); 1569 if (!err) 1570 mpd->pages_written++; 1571 /* 1572 * In error case, we have to continue because 1573 * remaining pages are still locked 1574 */ 1575 if (ret == 0) 1576 ret = err; 1577 } 1578 pagevec_release(&pvec); 1579 } 1580 ext4_io_submit(&io_submit); 1581 /* Drop io_end reference we got from init */ 1582 ext4_put_io_end_defer(io_submit.io_end); 1583 return ret; 1584 } 1585 1586 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1587 { 1588 int nr_pages, i; 1589 pgoff_t index, end; 1590 struct pagevec pvec; 1591 struct inode *inode = mpd->inode; 1592 struct address_space *mapping = inode->i_mapping; 1593 ext4_lblk_t start, last; 1594 1595 index = mpd->first_page; 1596 end = mpd->next_page - 1; 1597 1598 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1599 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1600 ext4_es_remove_extent(inode, start, last - start + 1); 1601 1602 pagevec_init(&pvec, 0); 1603 while (index <= end) { 1604 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1605 if (nr_pages == 0) 1606 break; 1607 for (i = 0; i < nr_pages; i++) { 1608 struct page *page = pvec.pages[i]; 1609 if (page->index > end) 1610 break; 1611 BUG_ON(!PageLocked(page)); 1612 BUG_ON(PageWriteback(page)); 1613 block_invalidatepage(page, 0); 1614 ClearPageUptodate(page); 1615 unlock_page(page); 1616 } 1617 index = pvec.pages[nr_pages - 1]->index + 1; 1618 pagevec_release(&pvec); 1619 } 1620 return; 1621 } 1622 1623 static void ext4_print_free_blocks(struct inode *inode) 1624 { 1625 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1626 struct super_block *sb = inode->i_sb; 1627 struct ext4_inode_info *ei = EXT4_I(inode); 1628 1629 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1630 EXT4_C2B(EXT4_SB(inode->i_sb), 1631 ext4_count_free_clusters(sb))); 1632 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1633 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1634 (long long) EXT4_C2B(EXT4_SB(sb), 1635 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1636 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1637 (long long) EXT4_C2B(EXT4_SB(sb), 1638 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1639 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1640 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1641 ei->i_reserved_data_blocks); 1642 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1643 ei->i_reserved_meta_blocks); 1644 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1645 ei->i_allocated_meta_blocks); 1646 return; 1647 } 1648 1649 /* 1650 * mpage_da_map_and_submit - go through given space, map them 1651 * if necessary, and then submit them for I/O 1652 * 1653 * @mpd - bh describing space 1654 * 1655 * The function skips space we know is already mapped to disk blocks. 1656 * 1657 */ 1658 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1659 { 1660 int err, blks, get_blocks_flags; 1661 struct ext4_map_blocks map, *mapp = NULL; 1662 sector_t next = mpd->b_blocknr; 1663 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1664 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1665 handle_t *handle = NULL; 1666 1667 /* 1668 * If the blocks are mapped already, or we couldn't accumulate 1669 * any blocks, then proceed immediately to the submission stage. 1670 */ 1671 if ((mpd->b_size == 0) || 1672 ((mpd->b_state & (1 << BH_Mapped)) && 1673 !(mpd->b_state & (1 << BH_Delay)) && 1674 !(mpd->b_state & (1 << BH_Unwritten)))) 1675 goto submit_io; 1676 1677 handle = ext4_journal_current_handle(); 1678 BUG_ON(!handle); 1679 1680 /* 1681 * Call ext4_map_blocks() to allocate any delayed allocation 1682 * blocks, or to convert an uninitialized extent to be 1683 * initialized (in the case where we have written into 1684 * one or more preallocated blocks). 1685 * 1686 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1687 * indicate that we are on the delayed allocation path. This 1688 * affects functions in many different parts of the allocation 1689 * call path. This flag exists primarily because we don't 1690 * want to change *many* call functions, so ext4_map_blocks() 1691 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1692 * inode's allocation semaphore is taken. 1693 * 1694 * If the blocks in questions were delalloc blocks, set 1695 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1696 * variables are updated after the blocks have been allocated. 1697 */ 1698 map.m_lblk = next; 1699 map.m_len = max_blocks; 1700 /* 1701 * We're in delalloc path and it is possible that we're going to 1702 * need more metadata blocks than previously reserved. However 1703 * we must not fail because we're in writeback and there is 1704 * nothing we can do about it so it might result in data loss. 1705 * So use reserved blocks to allocate metadata if possible. 1706 */ 1707 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 1708 EXT4_GET_BLOCKS_METADATA_NOFAIL; 1709 if (ext4_should_dioread_nolock(mpd->inode)) 1710 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1711 if (mpd->b_state & (1 << BH_Delay)) 1712 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1713 1714 1715 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1716 if (blks < 0) { 1717 struct super_block *sb = mpd->inode->i_sb; 1718 1719 err = blks; 1720 /* 1721 * If get block returns EAGAIN or ENOSPC and there 1722 * appears to be free blocks we will just let 1723 * mpage_da_submit_io() unlock all of the pages. 1724 */ 1725 if (err == -EAGAIN) 1726 goto submit_io; 1727 1728 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1729 mpd->retval = err; 1730 goto submit_io; 1731 } 1732 1733 /* 1734 * get block failure will cause us to loop in 1735 * writepages, because a_ops->writepage won't be able 1736 * to make progress. The page will be redirtied by 1737 * writepage and writepages will again try to write 1738 * the same. 1739 */ 1740 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1741 ext4_msg(sb, KERN_CRIT, 1742 "delayed block allocation failed for inode %lu " 1743 "at logical offset %llu with max blocks %zd " 1744 "with error %d", mpd->inode->i_ino, 1745 (unsigned long long) next, 1746 mpd->b_size >> mpd->inode->i_blkbits, err); 1747 ext4_msg(sb, KERN_CRIT, 1748 "This should not happen!! Data will be lost"); 1749 if (err == -ENOSPC) 1750 ext4_print_free_blocks(mpd->inode); 1751 } 1752 /* invalidate all the pages */ 1753 ext4_da_block_invalidatepages(mpd); 1754 1755 /* Mark this page range as having been completed */ 1756 mpd->io_done = 1; 1757 return; 1758 } 1759 BUG_ON(blks == 0); 1760 1761 mapp = ↦ 1762 if (map.m_flags & EXT4_MAP_NEW) { 1763 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1764 int i; 1765 1766 for (i = 0; i < map.m_len; i++) 1767 unmap_underlying_metadata(bdev, map.m_pblk + i); 1768 } 1769 1770 /* 1771 * Update on-disk size along with block allocation. 1772 */ 1773 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1774 if (disksize > i_size_read(mpd->inode)) 1775 disksize = i_size_read(mpd->inode); 1776 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1777 ext4_update_i_disksize(mpd->inode, disksize); 1778 err = ext4_mark_inode_dirty(handle, mpd->inode); 1779 if (err) 1780 ext4_error(mpd->inode->i_sb, 1781 "Failed to mark inode %lu dirty", 1782 mpd->inode->i_ino); 1783 } 1784 1785 submit_io: 1786 mpage_da_submit_io(mpd, mapp); 1787 mpd->io_done = 1; 1788 } 1789 1790 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1791 (1 << BH_Delay) | (1 << BH_Unwritten)) 1792 1793 /* 1794 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1795 * 1796 * @mpd->lbh - extent of blocks 1797 * @logical - logical number of the block in the file 1798 * @b_state - b_state of the buffer head added 1799 * 1800 * the function is used to collect contig. blocks in same state 1801 */ 1802 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical, 1803 unsigned long b_state) 1804 { 1805 sector_t next; 1806 int blkbits = mpd->inode->i_blkbits; 1807 int nrblocks = mpd->b_size >> blkbits; 1808 1809 /* 1810 * XXX Don't go larger than mballoc is willing to allocate 1811 * This is a stopgap solution. We eventually need to fold 1812 * mpage_da_submit_io() into this function and then call 1813 * ext4_map_blocks() multiple times in a loop 1814 */ 1815 if (nrblocks >= (8*1024*1024 >> blkbits)) 1816 goto flush_it; 1817 1818 /* check if the reserved journal credits might overflow */ 1819 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) { 1820 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1821 /* 1822 * With non-extent format we are limited by the journal 1823 * credit available. Total credit needed to insert 1824 * nrblocks contiguous blocks is dependent on the 1825 * nrblocks. So limit nrblocks. 1826 */ 1827 goto flush_it; 1828 } 1829 } 1830 /* 1831 * First block in the extent 1832 */ 1833 if (mpd->b_size == 0) { 1834 mpd->b_blocknr = logical; 1835 mpd->b_size = 1 << blkbits; 1836 mpd->b_state = b_state & BH_FLAGS; 1837 return; 1838 } 1839 1840 next = mpd->b_blocknr + nrblocks; 1841 /* 1842 * Can we merge the block to our big extent? 1843 */ 1844 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1845 mpd->b_size += 1 << blkbits; 1846 return; 1847 } 1848 1849 flush_it: 1850 /* 1851 * We couldn't merge the block to our extent, so we 1852 * need to flush current extent and start new one 1853 */ 1854 mpage_da_map_and_submit(mpd); 1855 return; 1856 } 1857 1858 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1859 { 1860 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1861 } 1862 1863 /* 1864 * This function is grabs code from the very beginning of 1865 * ext4_map_blocks, but assumes that the caller is from delayed write 1866 * time. This function looks up the requested blocks and sets the 1867 * buffer delay bit under the protection of i_data_sem. 1868 */ 1869 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1870 struct ext4_map_blocks *map, 1871 struct buffer_head *bh) 1872 { 1873 struct extent_status es; 1874 int retval; 1875 sector_t invalid_block = ~((sector_t) 0xffff); 1876 #ifdef ES_AGGRESSIVE_TEST 1877 struct ext4_map_blocks orig_map; 1878 1879 memcpy(&orig_map, map, sizeof(*map)); 1880 #endif 1881 1882 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1883 invalid_block = ~0; 1884 1885 map->m_flags = 0; 1886 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1887 "logical block %lu\n", inode->i_ino, map->m_len, 1888 (unsigned long) map->m_lblk); 1889 1890 /* Lookup extent status tree firstly */ 1891 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1892 1893 if (ext4_es_is_hole(&es)) { 1894 retval = 0; 1895 down_read((&EXT4_I(inode)->i_data_sem)); 1896 goto add_delayed; 1897 } 1898 1899 /* 1900 * Delayed extent could be allocated by fallocate. 1901 * So we need to check it. 1902 */ 1903 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1904 map_bh(bh, inode->i_sb, invalid_block); 1905 set_buffer_new(bh); 1906 set_buffer_delay(bh); 1907 return 0; 1908 } 1909 1910 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1911 retval = es.es_len - (iblock - es.es_lblk); 1912 if (retval > map->m_len) 1913 retval = map->m_len; 1914 map->m_len = retval; 1915 if (ext4_es_is_written(&es)) 1916 map->m_flags |= EXT4_MAP_MAPPED; 1917 else if (ext4_es_is_unwritten(&es)) 1918 map->m_flags |= EXT4_MAP_UNWRITTEN; 1919 else 1920 BUG_ON(1); 1921 1922 #ifdef ES_AGGRESSIVE_TEST 1923 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1924 #endif 1925 return retval; 1926 } 1927 1928 /* 1929 * Try to see if we can get the block without requesting a new 1930 * file system block. 1931 */ 1932 down_read((&EXT4_I(inode)->i_data_sem)); 1933 if (ext4_has_inline_data(inode)) { 1934 /* 1935 * We will soon create blocks for this page, and let 1936 * us pretend as if the blocks aren't allocated yet. 1937 * In case of clusters, we have to handle the work 1938 * of mapping from cluster so that the reserved space 1939 * is calculated properly. 1940 */ 1941 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1942 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1943 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1944 retval = 0; 1945 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1946 retval = ext4_ext_map_blocks(NULL, inode, map, 1947 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1948 else 1949 retval = ext4_ind_map_blocks(NULL, inode, map, 1950 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1951 1952 add_delayed: 1953 if (retval == 0) { 1954 int ret; 1955 /* 1956 * XXX: __block_prepare_write() unmaps passed block, 1957 * is it OK? 1958 */ 1959 /* 1960 * If the block was allocated from previously allocated cluster, 1961 * then we don't need to reserve it again. However we still need 1962 * to reserve metadata for every block we're going to write. 1963 */ 1964 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1965 ret = ext4_da_reserve_space(inode, iblock); 1966 if (ret) { 1967 /* not enough space to reserve */ 1968 retval = ret; 1969 goto out_unlock; 1970 } 1971 } else { 1972 ret = ext4_da_reserve_metadata(inode, iblock); 1973 if (ret) { 1974 /* not enough space to reserve */ 1975 retval = ret; 1976 goto out_unlock; 1977 } 1978 } 1979 1980 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1981 ~0, EXTENT_STATUS_DELAYED); 1982 if (ret) { 1983 retval = ret; 1984 goto out_unlock; 1985 } 1986 1987 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1988 * and it should not appear on the bh->b_state. 1989 */ 1990 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1991 1992 map_bh(bh, inode->i_sb, invalid_block); 1993 set_buffer_new(bh); 1994 set_buffer_delay(bh); 1995 } else if (retval > 0) { 1996 int ret; 1997 unsigned long long status; 1998 1999 #ifdef ES_AGGRESSIVE_TEST 2000 if (retval != map->m_len) { 2001 printk("ES len assertation failed for inode: %lu " 2002 "retval %d != map->m_len %d " 2003 "in %s (lookup)\n", inode->i_ino, retval, 2004 map->m_len, __func__); 2005 } 2006 #endif 2007 2008 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 2009 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 2010 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2011 map->m_pblk, status); 2012 if (ret != 0) 2013 retval = ret; 2014 } 2015 2016 out_unlock: 2017 up_read((&EXT4_I(inode)->i_data_sem)); 2018 2019 return retval; 2020 } 2021 2022 /* 2023 * This is a special get_blocks_t callback which is used by 2024 * ext4_da_write_begin(). It will either return mapped block or 2025 * reserve space for a single block. 2026 * 2027 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2028 * We also have b_blocknr = -1 and b_bdev initialized properly 2029 * 2030 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2031 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2032 * initialized properly. 2033 */ 2034 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2035 struct buffer_head *bh, int create) 2036 { 2037 struct ext4_map_blocks map; 2038 int ret = 0; 2039 2040 BUG_ON(create == 0); 2041 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2042 2043 map.m_lblk = iblock; 2044 map.m_len = 1; 2045 2046 /* 2047 * first, we need to know whether the block is allocated already 2048 * preallocated blocks are unmapped but should treated 2049 * the same as allocated blocks. 2050 */ 2051 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2052 if (ret <= 0) 2053 return ret; 2054 2055 map_bh(bh, inode->i_sb, map.m_pblk); 2056 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2057 2058 if (buffer_unwritten(bh)) { 2059 /* A delayed write to unwritten bh should be marked 2060 * new and mapped. Mapped ensures that we don't do 2061 * get_block multiple times when we write to the same 2062 * offset and new ensures that we do proper zero out 2063 * for partial write. 2064 */ 2065 set_buffer_new(bh); 2066 set_buffer_mapped(bh); 2067 } 2068 return 0; 2069 } 2070 2071 static int bget_one(handle_t *handle, struct buffer_head *bh) 2072 { 2073 get_bh(bh); 2074 return 0; 2075 } 2076 2077 static int bput_one(handle_t *handle, struct buffer_head *bh) 2078 { 2079 put_bh(bh); 2080 return 0; 2081 } 2082 2083 static int __ext4_journalled_writepage(struct page *page, 2084 unsigned int len) 2085 { 2086 struct address_space *mapping = page->mapping; 2087 struct inode *inode = mapping->host; 2088 struct buffer_head *page_bufs = NULL; 2089 handle_t *handle = NULL; 2090 int ret = 0, err = 0; 2091 int inline_data = ext4_has_inline_data(inode); 2092 struct buffer_head *inode_bh = NULL; 2093 2094 ClearPageChecked(page); 2095 2096 if (inline_data) { 2097 BUG_ON(page->index != 0); 2098 BUG_ON(len > ext4_get_max_inline_size(inode)); 2099 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2100 if (inode_bh == NULL) 2101 goto out; 2102 } else { 2103 page_bufs = page_buffers(page); 2104 if (!page_bufs) { 2105 BUG(); 2106 goto out; 2107 } 2108 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2109 NULL, bget_one); 2110 } 2111 /* As soon as we unlock the page, it can go away, but we have 2112 * references to buffers so we are safe */ 2113 unlock_page(page); 2114 2115 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2116 ext4_writepage_trans_blocks(inode)); 2117 if (IS_ERR(handle)) { 2118 ret = PTR_ERR(handle); 2119 goto out; 2120 } 2121 2122 BUG_ON(!ext4_handle_valid(handle)); 2123 2124 if (inline_data) { 2125 ret = ext4_journal_get_write_access(handle, inode_bh); 2126 2127 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2128 2129 } else { 2130 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2131 do_journal_get_write_access); 2132 2133 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2134 write_end_fn); 2135 } 2136 if (ret == 0) 2137 ret = err; 2138 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2139 err = ext4_journal_stop(handle); 2140 if (!ret) 2141 ret = err; 2142 2143 if (!ext4_has_inline_data(inode)) 2144 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2145 NULL, bput_one); 2146 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2147 out: 2148 brelse(inode_bh); 2149 return ret; 2150 } 2151 2152 /* 2153 * Note that we don't need to start a transaction unless we're journaling data 2154 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2155 * need to file the inode to the transaction's list in ordered mode because if 2156 * we are writing back data added by write(), the inode is already there and if 2157 * we are writing back data modified via mmap(), no one guarantees in which 2158 * transaction the data will hit the disk. In case we are journaling data, we 2159 * cannot start transaction directly because transaction start ranks above page 2160 * lock so we have to do some magic. 2161 * 2162 * This function can get called via... 2163 * - ext4_da_writepages after taking page lock (have journal handle) 2164 * - journal_submit_inode_data_buffers (no journal handle) 2165 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2166 * - grab_page_cache when doing write_begin (have journal handle) 2167 * 2168 * We don't do any block allocation in this function. If we have page with 2169 * multiple blocks we need to write those buffer_heads that are mapped. This 2170 * is important for mmaped based write. So if we do with blocksize 1K 2171 * truncate(f, 1024); 2172 * a = mmap(f, 0, 4096); 2173 * a[0] = 'a'; 2174 * truncate(f, 4096); 2175 * we have in the page first buffer_head mapped via page_mkwrite call back 2176 * but other buffer_heads would be unmapped but dirty (dirty done via the 2177 * do_wp_page). So writepage should write the first block. If we modify 2178 * the mmap area beyond 1024 we will again get a page_fault and the 2179 * page_mkwrite callback will do the block allocation and mark the 2180 * buffer_heads mapped. 2181 * 2182 * We redirty the page if we have any buffer_heads that is either delay or 2183 * unwritten in the page. 2184 * 2185 * We can get recursively called as show below. 2186 * 2187 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2188 * ext4_writepage() 2189 * 2190 * But since we don't do any block allocation we should not deadlock. 2191 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2192 */ 2193 static int ext4_writepage(struct page *page, 2194 struct writeback_control *wbc) 2195 { 2196 int ret = 0; 2197 loff_t size; 2198 unsigned int len; 2199 struct buffer_head *page_bufs = NULL; 2200 struct inode *inode = page->mapping->host; 2201 struct ext4_io_submit io_submit; 2202 2203 trace_ext4_writepage(page); 2204 size = i_size_read(inode); 2205 if (page->index == size >> PAGE_CACHE_SHIFT) 2206 len = size & ~PAGE_CACHE_MASK; 2207 else 2208 len = PAGE_CACHE_SIZE; 2209 2210 page_bufs = page_buffers(page); 2211 /* 2212 * We cannot do block allocation or other extent handling in this 2213 * function. If there are buffers needing that, we have to redirty 2214 * the page. But we may reach here when we do a journal commit via 2215 * journal_submit_inode_data_buffers() and in that case we must write 2216 * allocated buffers to achieve data=ordered mode guarantees. 2217 */ 2218 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2219 ext4_bh_delay_or_unwritten)) { 2220 redirty_page_for_writepage(wbc, page); 2221 if (current->flags & PF_MEMALLOC) { 2222 /* 2223 * For memory cleaning there's no point in writing only 2224 * some buffers. So just bail out. Warn if we came here 2225 * from direct reclaim. 2226 */ 2227 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2228 == PF_MEMALLOC); 2229 unlock_page(page); 2230 return 0; 2231 } 2232 } 2233 2234 if (PageChecked(page) && ext4_should_journal_data(inode)) 2235 /* 2236 * It's mmapped pagecache. Add buffers and journal it. There 2237 * doesn't seem much point in redirtying the page here. 2238 */ 2239 return __ext4_journalled_writepage(page, len); 2240 2241 ext4_io_submit_init(&io_submit, wbc); 2242 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2243 if (!io_submit.io_end) { 2244 redirty_page_for_writepage(wbc, page); 2245 return -ENOMEM; 2246 } 2247 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 2248 ext4_io_submit(&io_submit); 2249 /* Drop io_end reference we got from init */ 2250 ext4_put_io_end_defer(io_submit.io_end); 2251 return ret; 2252 } 2253 2254 /* 2255 * This is called via ext4_da_writepages() to 2256 * calculate the total number of credits to reserve to fit 2257 * a single extent allocation into a single transaction, 2258 * ext4_da_writpeages() will loop calling this before 2259 * the block allocation. 2260 */ 2261 2262 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2263 { 2264 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2265 2266 /* 2267 * With non-extent format the journal credit needed to 2268 * insert nrblocks contiguous block is dependent on 2269 * number of contiguous block. So we will limit 2270 * number of contiguous block to a sane value 2271 */ 2272 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2273 (max_blocks > EXT4_MAX_TRANS_DATA)) 2274 max_blocks = EXT4_MAX_TRANS_DATA; 2275 2276 return ext4_chunk_trans_blocks(inode, max_blocks); 2277 } 2278 2279 /* 2280 * write_cache_pages_da - walk the list of dirty pages of the given 2281 * address space and accumulate pages that need writing, and call 2282 * mpage_da_map_and_submit to map a single contiguous memory region 2283 * and then write them. 2284 */ 2285 static int write_cache_pages_da(handle_t *handle, 2286 struct address_space *mapping, 2287 struct writeback_control *wbc, 2288 struct mpage_da_data *mpd, 2289 pgoff_t *done_index) 2290 { 2291 struct buffer_head *bh, *head; 2292 struct inode *inode = mapping->host; 2293 struct pagevec pvec; 2294 unsigned int nr_pages; 2295 sector_t logical; 2296 pgoff_t index, end; 2297 long nr_to_write = wbc->nr_to_write; 2298 int i, tag, ret = 0; 2299 2300 memset(mpd, 0, sizeof(struct mpage_da_data)); 2301 mpd->wbc = wbc; 2302 mpd->inode = inode; 2303 pagevec_init(&pvec, 0); 2304 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2305 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2306 2307 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2308 tag = PAGECACHE_TAG_TOWRITE; 2309 else 2310 tag = PAGECACHE_TAG_DIRTY; 2311 2312 *done_index = index; 2313 while (index <= end) { 2314 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2315 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2316 if (nr_pages == 0) 2317 return 0; 2318 2319 for (i = 0; i < nr_pages; i++) { 2320 struct page *page = pvec.pages[i]; 2321 2322 /* 2323 * At this point, the page may be truncated or 2324 * invalidated (changing page->mapping to NULL), or 2325 * even swizzled back from swapper_space to tmpfs file 2326 * mapping. However, page->index will not change 2327 * because we have a reference on the page. 2328 */ 2329 if (page->index > end) 2330 goto out; 2331 2332 *done_index = page->index + 1; 2333 2334 /* 2335 * If we can't merge this page, and we have 2336 * accumulated an contiguous region, write it 2337 */ 2338 if ((mpd->next_page != page->index) && 2339 (mpd->next_page != mpd->first_page)) { 2340 mpage_da_map_and_submit(mpd); 2341 goto ret_extent_tail; 2342 } 2343 2344 lock_page(page); 2345 2346 /* 2347 * If the page is no longer dirty, or its 2348 * mapping no longer corresponds to inode we 2349 * are writing (which means it has been 2350 * truncated or invalidated), or the page is 2351 * already under writeback and we are not 2352 * doing a data integrity writeback, skip the page 2353 */ 2354 if (!PageDirty(page) || 2355 (PageWriteback(page) && 2356 (wbc->sync_mode == WB_SYNC_NONE)) || 2357 unlikely(page->mapping != mapping)) { 2358 unlock_page(page); 2359 continue; 2360 } 2361 2362 wait_on_page_writeback(page); 2363 BUG_ON(PageWriteback(page)); 2364 2365 /* 2366 * If we have inline data and arrive here, it means that 2367 * we will soon create the block for the 1st page, so 2368 * we'd better clear the inline data here. 2369 */ 2370 if (ext4_has_inline_data(inode)) { 2371 BUG_ON(ext4_test_inode_state(inode, 2372 EXT4_STATE_MAY_INLINE_DATA)); 2373 ext4_destroy_inline_data(handle, inode); 2374 } 2375 2376 if (mpd->next_page != page->index) 2377 mpd->first_page = page->index; 2378 mpd->next_page = page->index + 1; 2379 logical = (sector_t) page->index << 2380 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2381 2382 /* Add all dirty buffers to mpd */ 2383 head = page_buffers(page); 2384 bh = head; 2385 do { 2386 BUG_ON(buffer_locked(bh)); 2387 /* 2388 * We need to try to allocate unmapped blocks 2389 * in the same page. Otherwise we won't make 2390 * progress with the page in ext4_writepage 2391 */ 2392 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2393 mpage_add_bh_to_extent(mpd, logical, 2394 bh->b_state); 2395 if (mpd->io_done) 2396 goto ret_extent_tail; 2397 } else if (buffer_dirty(bh) && 2398 buffer_mapped(bh)) { 2399 /* 2400 * mapped dirty buffer. We need to 2401 * update the b_state because we look 2402 * at b_state in mpage_da_map_blocks. 2403 * We don't update b_size because if we 2404 * find an unmapped buffer_head later 2405 * we need to use the b_state flag of 2406 * that buffer_head. 2407 */ 2408 if (mpd->b_size == 0) 2409 mpd->b_state = 2410 bh->b_state & BH_FLAGS; 2411 } 2412 logical++; 2413 } while ((bh = bh->b_this_page) != head); 2414 2415 if (nr_to_write > 0) { 2416 nr_to_write--; 2417 if (nr_to_write == 0 && 2418 wbc->sync_mode == WB_SYNC_NONE) 2419 /* 2420 * We stop writing back only if we are 2421 * not doing integrity sync. In case of 2422 * integrity sync we have to keep going 2423 * because someone may be concurrently 2424 * dirtying pages, and we might have 2425 * synced a lot of newly appeared dirty 2426 * pages, but have not synced all of the 2427 * old dirty pages. 2428 */ 2429 goto out; 2430 } 2431 } 2432 pagevec_release(&pvec); 2433 cond_resched(); 2434 } 2435 return 0; 2436 ret_extent_tail: 2437 ret = MPAGE_DA_EXTENT_TAIL; 2438 out: 2439 pagevec_release(&pvec); 2440 cond_resched(); 2441 return ret; 2442 } 2443 2444 2445 static int ext4_da_writepages(struct address_space *mapping, 2446 struct writeback_control *wbc) 2447 { 2448 pgoff_t index; 2449 int range_whole = 0; 2450 handle_t *handle = NULL; 2451 struct mpage_da_data mpd; 2452 struct inode *inode = mapping->host; 2453 int pages_written = 0; 2454 unsigned int max_pages; 2455 int range_cyclic, cycled = 1, io_done = 0; 2456 int needed_blocks, ret = 0; 2457 long desired_nr_to_write, nr_to_writebump = 0; 2458 loff_t range_start = wbc->range_start; 2459 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2460 pgoff_t done_index = 0; 2461 pgoff_t end; 2462 struct blk_plug plug; 2463 2464 trace_ext4_da_writepages(inode, wbc); 2465 2466 /* 2467 * No pages to write? This is mainly a kludge to avoid starting 2468 * a transaction for special inodes like journal inode on last iput() 2469 * because that could violate lock ordering on umount 2470 */ 2471 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2472 return 0; 2473 2474 /* 2475 * If the filesystem has aborted, it is read-only, so return 2476 * right away instead of dumping stack traces later on that 2477 * will obscure the real source of the problem. We test 2478 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2479 * the latter could be true if the filesystem is mounted 2480 * read-only, and in that case, ext4_da_writepages should 2481 * *never* be called, so if that ever happens, we would want 2482 * the stack trace. 2483 */ 2484 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2485 return -EROFS; 2486 2487 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2488 range_whole = 1; 2489 2490 range_cyclic = wbc->range_cyclic; 2491 if (wbc->range_cyclic) { 2492 index = mapping->writeback_index; 2493 if (index) 2494 cycled = 0; 2495 wbc->range_start = index << PAGE_CACHE_SHIFT; 2496 wbc->range_end = LLONG_MAX; 2497 wbc->range_cyclic = 0; 2498 end = -1; 2499 } else { 2500 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2501 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2502 } 2503 2504 /* 2505 * This works around two forms of stupidity. The first is in 2506 * the writeback code, which caps the maximum number of pages 2507 * written to be 1024 pages. This is wrong on multiple 2508 * levels; different architectues have a different page size, 2509 * which changes the maximum amount of data which gets 2510 * written. Secondly, 4 megabytes is way too small. XFS 2511 * forces this value to be 16 megabytes by multiplying 2512 * nr_to_write parameter by four, and then relies on its 2513 * allocator to allocate larger extents to make them 2514 * contiguous. Unfortunately this brings us to the second 2515 * stupidity, which is that ext4's mballoc code only allocates 2516 * at most 2048 blocks. So we force contiguous writes up to 2517 * the number of dirty blocks in the inode, or 2518 * sbi->max_writeback_mb_bump whichever is smaller. 2519 */ 2520 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2521 if (!range_cyclic && range_whole) { 2522 if (wbc->nr_to_write == LONG_MAX) 2523 desired_nr_to_write = wbc->nr_to_write; 2524 else 2525 desired_nr_to_write = wbc->nr_to_write * 8; 2526 } else 2527 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2528 max_pages); 2529 if (desired_nr_to_write > max_pages) 2530 desired_nr_to_write = max_pages; 2531 2532 if (wbc->nr_to_write < desired_nr_to_write) { 2533 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2534 wbc->nr_to_write = desired_nr_to_write; 2535 } 2536 2537 retry: 2538 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2539 tag_pages_for_writeback(mapping, index, end); 2540 2541 blk_start_plug(&plug); 2542 while (!ret && wbc->nr_to_write > 0) { 2543 2544 /* 2545 * we insert one extent at a time. So we need 2546 * credit needed for single extent allocation. 2547 * journalled mode is currently not supported 2548 * by delalloc 2549 */ 2550 BUG_ON(ext4_should_journal_data(inode)); 2551 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2552 2553 /* start a new transaction*/ 2554 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2555 needed_blocks); 2556 if (IS_ERR(handle)) { 2557 ret = PTR_ERR(handle); 2558 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2559 "%ld pages, ino %lu; err %d", __func__, 2560 wbc->nr_to_write, inode->i_ino, ret); 2561 blk_finish_plug(&plug); 2562 goto out_writepages; 2563 } 2564 2565 /* 2566 * Now call write_cache_pages_da() to find the next 2567 * contiguous region of logical blocks that need 2568 * blocks to be allocated by ext4 and submit them. 2569 */ 2570 ret = write_cache_pages_da(handle, mapping, 2571 wbc, &mpd, &done_index); 2572 /* 2573 * If we have a contiguous extent of pages and we 2574 * haven't done the I/O yet, map the blocks and submit 2575 * them for I/O. 2576 */ 2577 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2578 mpage_da_map_and_submit(&mpd); 2579 ret = MPAGE_DA_EXTENT_TAIL; 2580 } 2581 trace_ext4_da_write_pages(inode, &mpd); 2582 wbc->nr_to_write -= mpd.pages_written; 2583 2584 ext4_journal_stop(handle); 2585 2586 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2587 /* commit the transaction which would 2588 * free blocks released in the transaction 2589 * and try again 2590 */ 2591 jbd2_journal_force_commit_nested(sbi->s_journal); 2592 ret = 0; 2593 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2594 /* 2595 * Got one extent now try with rest of the pages. 2596 * If mpd.retval is set -EIO, journal is aborted. 2597 * So we don't need to write any more. 2598 */ 2599 pages_written += mpd.pages_written; 2600 ret = mpd.retval; 2601 io_done = 1; 2602 } else if (wbc->nr_to_write) 2603 /* 2604 * There is no more writeout needed 2605 * or we requested for a noblocking writeout 2606 * and we found the device congested 2607 */ 2608 break; 2609 } 2610 blk_finish_plug(&plug); 2611 if (!io_done && !cycled) { 2612 cycled = 1; 2613 index = 0; 2614 wbc->range_start = index << PAGE_CACHE_SHIFT; 2615 wbc->range_end = mapping->writeback_index - 1; 2616 goto retry; 2617 } 2618 2619 /* Update index */ 2620 wbc->range_cyclic = range_cyclic; 2621 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2622 /* 2623 * set the writeback_index so that range_cyclic 2624 * mode will write it back later 2625 */ 2626 mapping->writeback_index = done_index; 2627 2628 out_writepages: 2629 wbc->nr_to_write -= nr_to_writebump; 2630 wbc->range_start = range_start; 2631 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2632 return ret; 2633 } 2634 2635 static int ext4_nonda_switch(struct super_block *sb) 2636 { 2637 s64 free_clusters, dirty_clusters; 2638 struct ext4_sb_info *sbi = EXT4_SB(sb); 2639 2640 /* 2641 * switch to non delalloc mode if we are running low 2642 * on free block. The free block accounting via percpu 2643 * counters can get slightly wrong with percpu_counter_batch getting 2644 * accumulated on each CPU without updating global counters 2645 * Delalloc need an accurate free block accounting. So switch 2646 * to non delalloc when we are near to error range. 2647 */ 2648 free_clusters = 2649 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2650 dirty_clusters = 2651 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2652 /* 2653 * Start pushing delalloc when 1/2 of free blocks are dirty. 2654 */ 2655 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2656 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2657 2658 if (2 * free_clusters < 3 * dirty_clusters || 2659 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2660 /* 2661 * free block count is less than 150% of dirty blocks 2662 * or free blocks is less than watermark 2663 */ 2664 return 1; 2665 } 2666 return 0; 2667 } 2668 2669 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2670 loff_t pos, unsigned len, unsigned flags, 2671 struct page **pagep, void **fsdata) 2672 { 2673 int ret, retries = 0; 2674 struct page *page; 2675 pgoff_t index; 2676 struct inode *inode = mapping->host; 2677 handle_t *handle; 2678 2679 index = pos >> PAGE_CACHE_SHIFT; 2680 2681 if (ext4_nonda_switch(inode->i_sb)) { 2682 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2683 return ext4_write_begin(file, mapping, pos, 2684 len, flags, pagep, fsdata); 2685 } 2686 *fsdata = (void *)0; 2687 trace_ext4_da_write_begin(inode, pos, len, flags); 2688 2689 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2690 ret = ext4_da_write_inline_data_begin(mapping, inode, 2691 pos, len, flags, 2692 pagep, fsdata); 2693 if (ret < 0) 2694 return ret; 2695 if (ret == 1) 2696 return 0; 2697 } 2698 2699 /* 2700 * grab_cache_page_write_begin() can take a long time if the 2701 * system is thrashing due to memory pressure, or if the page 2702 * is being written back. So grab it first before we start 2703 * the transaction handle. This also allows us to allocate 2704 * the page (if needed) without using GFP_NOFS. 2705 */ 2706 retry_grab: 2707 page = grab_cache_page_write_begin(mapping, index, flags); 2708 if (!page) 2709 return -ENOMEM; 2710 unlock_page(page); 2711 2712 /* 2713 * With delayed allocation, we don't log the i_disksize update 2714 * if there is delayed block allocation. But we still need 2715 * to journalling the i_disksize update if writes to the end 2716 * of file which has an already mapped buffer. 2717 */ 2718 retry_journal: 2719 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2720 if (IS_ERR(handle)) { 2721 page_cache_release(page); 2722 return PTR_ERR(handle); 2723 } 2724 2725 lock_page(page); 2726 if (page->mapping != mapping) { 2727 /* The page got truncated from under us */ 2728 unlock_page(page); 2729 page_cache_release(page); 2730 ext4_journal_stop(handle); 2731 goto retry_grab; 2732 } 2733 /* In case writeback began while the page was unlocked */ 2734 wait_on_page_writeback(page); 2735 2736 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2737 if (ret < 0) { 2738 unlock_page(page); 2739 ext4_journal_stop(handle); 2740 /* 2741 * block_write_begin may have instantiated a few blocks 2742 * outside i_size. Trim these off again. Don't need 2743 * i_size_read because we hold i_mutex. 2744 */ 2745 if (pos + len > inode->i_size) 2746 ext4_truncate_failed_write(inode); 2747 2748 if (ret == -ENOSPC && 2749 ext4_should_retry_alloc(inode->i_sb, &retries)) 2750 goto retry_journal; 2751 2752 page_cache_release(page); 2753 return ret; 2754 } 2755 2756 *pagep = page; 2757 return ret; 2758 } 2759 2760 /* 2761 * Check if we should update i_disksize 2762 * when write to the end of file but not require block allocation 2763 */ 2764 static int ext4_da_should_update_i_disksize(struct page *page, 2765 unsigned long offset) 2766 { 2767 struct buffer_head *bh; 2768 struct inode *inode = page->mapping->host; 2769 unsigned int idx; 2770 int i; 2771 2772 bh = page_buffers(page); 2773 idx = offset >> inode->i_blkbits; 2774 2775 for (i = 0; i < idx; i++) 2776 bh = bh->b_this_page; 2777 2778 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2779 return 0; 2780 return 1; 2781 } 2782 2783 static int ext4_da_write_end(struct file *file, 2784 struct address_space *mapping, 2785 loff_t pos, unsigned len, unsigned copied, 2786 struct page *page, void *fsdata) 2787 { 2788 struct inode *inode = mapping->host; 2789 int ret = 0, ret2; 2790 handle_t *handle = ext4_journal_current_handle(); 2791 loff_t new_i_size; 2792 unsigned long start, end; 2793 int write_mode = (int)(unsigned long)fsdata; 2794 2795 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2796 return ext4_write_end(file, mapping, pos, 2797 len, copied, page, fsdata); 2798 2799 trace_ext4_da_write_end(inode, pos, len, copied); 2800 start = pos & (PAGE_CACHE_SIZE - 1); 2801 end = start + copied - 1; 2802 2803 /* 2804 * generic_write_end() will run mark_inode_dirty() if i_size 2805 * changes. So let's piggyback the i_disksize mark_inode_dirty 2806 * into that. 2807 */ 2808 new_i_size = pos + copied; 2809 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2810 if (ext4_has_inline_data(inode) || 2811 ext4_da_should_update_i_disksize(page, end)) { 2812 down_write(&EXT4_I(inode)->i_data_sem); 2813 if (new_i_size > EXT4_I(inode)->i_disksize) 2814 EXT4_I(inode)->i_disksize = new_i_size; 2815 up_write(&EXT4_I(inode)->i_data_sem); 2816 /* We need to mark inode dirty even if 2817 * new_i_size is less that inode->i_size 2818 * bu greater than i_disksize.(hint delalloc) 2819 */ 2820 ext4_mark_inode_dirty(handle, inode); 2821 } 2822 } 2823 2824 if (write_mode != CONVERT_INLINE_DATA && 2825 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2826 ext4_has_inline_data(inode)) 2827 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2828 page); 2829 else 2830 ret2 = generic_write_end(file, mapping, pos, len, copied, 2831 page, fsdata); 2832 2833 copied = ret2; 2834 if (ret2 < 0) 2835 ret = ret2; 2836 ret2 = ext4_journal_stop(handle); 2837 if (!ret) 2838 ret = ret2; 2839 2840 return ret ? ret : copied; 2841 } 2842 2843 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2844 { 2845 /* 2846 * Drop reserved blocks 2847 */ 2848 BUG_ON(!PageLocked(page)); 2849 if (!page_has_buffers(page)) 2850 goto out; 2851 2852 ext4_da_page_release_reservation(page, offset); 2853 2854 out: 2855 ext4_invalidatepage(page, offset); 2856 2857 return; 2858 } 2859 2860 /* 2861 * Force all delayed allocation blocks to be allocated for a given inode. 2862 */ 2863 int ext4_alloc_da_blocks(struct inode *inode) 2864 { 2865 trace_ext4_alloc_da_blocks(inode); 2866 2867 if (!EXT4_I(inode)->i_reserved_data_blocks && 2868 !EXT4_I(inode)->i_reserved_meta_blocks) 2869 return 0; 2870 2871 /* 2872 * We do something simple for now. The filemap_flush() will 2873 * also start triggering a write of the data blocks, which is 2874 * not strictly speaking necessary (and for users of 2875 * laptop_mode, not even desirable). However, to do otherwise 2876 * would require replicating code paths in: 2877 * 2878 * ext4_da_writepages() -> 2879 * write_cache_pages() ---> (via passed in callback function) 2880 * __mpage_da_writepage() --> 2881 * mpage_add_bh_to_extent() 2882 * mpage_da_map_blocks() 2883 * 2884 * The problem is that write_cache_pages(), located in 2885 * mm/page-writeback.c, marks pages clean in preparation for 2886 * doing I/O, which is not desirable if we're not planning on 2887 * doing I/O at all. 2888 * 2889 * We could call write_cache_pages(), and then redirty all of 2890 * the pages by calling redirty_page_for_writepage() but that 2891 * would be ugly in the extreme. So instead we would need to 2892 * replicate parts of the code in the above functions, 2893 * simplifying them because we wouldn't actually intend to 2894 * write out the pages, but rather only collect contiguous 2895 * logical block extents, call the multi-block allocator, and 2896 * then update the buffer heads with the block allocations. 2897 * 2898 * For now, though, we'll cheat by calling filemap_flush(), 2899 * which will map the blocks, and start the I/O, but not 2900 * actually wait for the I/O to complete. 2901 */ 2902 return filemap_flush(inode->i_mapping); 2903 } 2904 2905 /* 2906 * bmap() is special. It gets used by applications such as lilo and by 2907 * the swapper to find the on-disk block of a specific piece of data. 2908 * 2909 * Naturally, this is dangerous if the block concerned is still in the 2910 * journal. If somebody makes a swapfile on an ext4 data-journaling 2911 * filesystem and enables swap, then they may get a nasty shock when the 2912 * data getting swapped to that swapfile suddenly gets overwritten by 2913 * the original zero's written out previously to the journal and 2914 * awaiting writeback in the kernel's buffer cache. 2915 * 2916 * So, if we see any bmap calls here on a modified, data-journaled file, 2917 * take extra steps to flush any blocks which might be in the cache. 2918 */ 2919 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2920 { 2921 struct inode *inode = mapping->host; 2922 journal_t *journal; 2923 int err; 2924 2925 /* 2926 * We can get here for an inline file via the FIBMAP ioctl 2927 */ 2928 if (ext4_has_inline_data(inode)) 2929 return 0; 2930 2931 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2932 test_opt(inode->i_sb, DELALLOC)) { 2933 /* 2934 * With delalloc we want to sync the file 2935 * so that we can make sure we allocate 2936 * blocks for file 2937 */ 2938 filemap_write_and_wait(mapping); 2939 } 2940 2941 if (EXT4_JOURNAL(inode) && 2942 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2943 /* 2944 * This is a REALLY heavyweight approach, but the use of 2945 * bmap on dirty files is expected to be extremely rare: 2946 * only if we run lilo or swapon on a freshly made file 2947 * do we expect this to happen. 2948 * 2949 * (bmap requires CAP_SYS_RAWIO so this does not 2950 * represent an unprivileged user DOS attack --- we'd be 2951 * in trouble if mortal users could trigger this path at 2952 * will.) 2953 * 2954 * NB. EXT4_STATE_JDATA is not set on files other than 2955 * regular files. If somebody wants to bmap a directory 2956 * or symlink and gets confused because the buffer 2957 * hasn't yet been flushed to disk, they deserve 2958 * everything they get. 2959 */ 2960 2961 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2962 journal = EXT4_JOURNAL(inode); 2963 jbd2_journal_lock_updates(journal); 2964 err = jbd2_journal_flush(journal); 2965 jbd2_journal_unlock_updates(journal); 2966 2967 if (err) 2968 return 0; 2969 } 2970 2971 return generic_block_bmap(mapping, block, ext4_get_block); 2972 } 2973 2974 static int ext4_readpage(struct file *file, struct page *page) 2975 { 2976 int ret = -EAGAIN; 2977 struct inode *inode = page->mapping->host; 2978 2979 trace_ext4_readpage(page); 2980 2981 if (ext4_has_inline_data(inode)) 2982 ret = ext4_readpage_inline(inode, page); 2983 2984 if (ret == -EAGAIN) 2985 return mpage_readpage(page, ext4_get_block); 2986 2987 return ret; 2988 } 2989 2990 static int 2991 ext4_readpages(struct file *file, struct address_space *mapping, 2992 struct list_head *pages, unsigned nr_pages) 2993 { 2994 struct inode *inode = mapping->host; 2995 2996 /* If the file has inline data, no need to do readpages. */ 2997 if (ext4_has_inline_data(inode)) 2998 return 0; 2999 3000 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3001 } 3002 3003 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3004 { 3005 trace_ext4_invalidatepage(page, offset); 3006 3007 /* No journalling happens on data buffers when this function is used */ 3008 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3009 3010 block_invalidatepage(page, offset); 3011 } 3012 3013 static int __ext4_journalled_invalidatepage(struct page *page, 3014 unsigned long offset) 3015 { 3016 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3017 3018 trace_ext4_journalled_invalidatepage(page, offset); 3019 3020 /* 3021 * If it's a full truncate we just forget about the pending dirtying 3022 */ 3023 if (offset == 0) 3024 ClearPageChecked(page); 3025 3026 return jbd2_journal_invalidatepage(journal, page, offset); 3027 } 3028 3029 /* Wrapper for aops... */ 3030 static void ext4_journalled_invalidatepage(struct page *page, 3031 unsigned long offset) 3032 { 3033 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0); 3034 } 3035 3036 static int ext4_releasepage(struct page *page, gfp_t wait) 3037 { 3038 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3039 3040 trace_ext4_releasepage(page); 3041 3042 /* Page has dirty journalled data -> cannot release */ 3043 if (PageChecked(page)) 3044 return 0; 3045 if (journal) 3046 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3047 else 3048 return try_to_free_buffers(page); 3049 } 3050 3051 /* 3052 * ext4_get_block used when preparing for a DIO write or buffer write. 3053 * We allocate an uinitialized extent if blocks haven't been allocated. 3054 * The extent will be converted to initialized after the IO is complete. 3055 */ 3056 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3057 struct buffer_head *bh_result, int create) 3058 { 3059 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3060 inode->i_ino, create); 3061 return _ext4_get_block(inode, iblock, bh_result, 3062 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3063 } 3064 3065 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3066 struct buffer_head *bh_result, int create) 3067 { 3068 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3069 inode->i_ino, create); 3070 return _ext4_get_block(inode, iblock, bh_result, 3071 EXT4_GET_BLOCKS_NO_LOCK); 3072 } 3073 3074 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3075 ssize_t size, void *private, int ret, 3076 bool is_async) 3077 { 3078 struct inode *inode = file_inode(iocb->ki_filp); 3079 ext4_io_end_t *io_end = iocb->private; 3080 3081 /* if not async direct IO just return */ 3082 if (!io_end) { 3083 inode_dio_done(inode); 3084 if (is_async) 3085 aio_complete(iocb, ret, 0); 3086 return; 3087 } 3088 3089 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3090 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3091 iocb->private, io_end->inode->i_ino, iocb, offset, 3092 size); 3093 3094 iocb->private = NULL; 3095 io_end->offset = offset; 3096 io_end->size = size; 3097 if (is_async) { 3098 io_end->iocb = iocb; 3099 io_end->result = ret; 3100 } 3101 ext4_put_io_end_defer(io_end); 3102 } 3103 3104 /* 3105 * For ext4 extent files, ext4 will do direct-io write to holes, 3106 * preallocated extents, and those write extend the file, no need to 3107 * fall back to buffered IO. 3108 * 3109 * For holes, we fallocate those blocks, mark them as uninitialized 3110 * If those blocks were preallocated, we mark sure they are split, but 3111 * still keep the range to write as uninitialized. 3112 * 3113 * The unwritten extents will be converted to written when DIO is completed. 3114 * For async direct IO, since the IO may still pending when return, we 3115 * set up an end_io call back function, which will do the conversion 3116 * when async direct IO completed. 3117 * 3118 * If the O_DIRECT write will extend the file then add this inode to the 3119 * orphan list. So recovery will truncate it back to the original size 3120 * if the machine crashes during the write. 3121 * 3122 */ 3123 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3124 const struct iovec *iov, loff_t offset, 3125 unsigned long nr_segs) 3126 { 3127 struct file *file = iocb->ki_filp; 3128 struct inode *inode = file->f_mapping->host; 3129 ssize_t ret; 3130 size_t count = iov_length(iov, nr_segs); 3131 int overwrite = 0; 3132 get_block_t *get_block_func = NULL; 3133 int dio_flags = 0; 3134 loff_t final_size = offset + count; 3135 ext4_io_end_t *io_end = NULL; 3136 3137 /* Use the old path for reads and writes beyond i_size. */ 3138 if (rw != WRITE || final_size > inode->i_size) 3139 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3140 3141 BUG_ON(iocb->private == NULL); 3142 3143 /* If we do a overwrite dio, i_mutex locking can be released */ 3144 overwrite = *((int *)iocb->private); 3145 3146 if (overwrite) { 3147 atomic_inc(&inode->i_dio_count); 3148 down_read(&EXT4_I(inode)->i_data_sem); 3149 mutex_unlock(&inode->i_mutex); 3150 } 3151 3152 /* 3153 * We could direct write to holes and fallocate. 3154 * 3155 * Allocated blocks to fill the hole are marked as 3156 * uninitialized to prevent parallel buffered read to expose 3157 * the stale data before DIO complete the data IO. 3158 * 3159 * As to previously fallocated extents, ext4 get_block will 3160 * just simply mark the buffer mapped but still keep the 3161 * extents uninitialized. 3162 * 3163 * For non AIO case, we will convert those unwritten extents 3164 * to written after return back from blockdev_direct_IO. 3165 * 3166 * For async DIO, the conversion needs to be deferred when the 3167 * IO is completed. The ext4 end_io callback function will be 3168 * called to take care of the conversion work. Here for async 3169 * case, we allocate an io_end structure to hook to the iocb. 3170 */ 3171 iocb->private = NULL; 3172 ext4_inode_aio_set(inode, NULL); 3173 if (!is_sync_kiocb(iocb)) { 3174 io_end = ext4_init_io_end(inode, GFP_NOFS); 3175 if (!io_end) { 3176 ret = -ENOMEM; 3177 goto retake_lock; 3178 } 3179 io_end->flag |= EXT4_IO_END_DIRECT; 3180 /* 3181 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3182 */ 3183 iocb->private = ext4_get_io_end(io_end); 3184 /* 3185 * we save the io structure for current async direct 3186 * IO, so that later ext4_map_blocks() could flag the 3187 * io structure whether there is a unwritten extents 3188 * needs to be converted when IO is completed. 3189 */ 3190 ext4_inode_aio_set(inode, io_end); 3191 } 3192 3193 if (overwrite) { 3194 get_block_func = ext4_get_block_write_nolock; 3195 } else { 3196 get_block_func = ext4_get_block_write; 3197 dio_flags = DIO_LOCKING; 3198 } 3199 ret = __blockdev_direct_IO(rw, iocb, inode, 3200 inode->i_sb->s_bdev, iov, 3201 offset, nr_segs, 3202 get_block_func, 3203 ext4_end_io_dio, 3204 NULL, 3205 dio_flags); 3206 3207 /* 3208 * Put our reference to io_end. This can free the io_end structure e.g. 3209 * in sync IO case or in case of error. It can even perform extent 3210 * conversion if all bios we submitted finished before we got here. 3211 * Note that in that case iocb->private can be already set to NULL 3212 * here. 3213 */ 3214 if (io_end) { 3215 ext4_inode_aio_set(inode, NULL); 3216 ext4_put_io_end(io_end); 3217 /* 3218 * In case of error or no write ext4_end_io_dio() was not 3219 * called so we have to put iocb's reference. 3220 */ 3221 if (ret <= 0 && ret != -EIOCBQUEUED) { 3222 WARN_ON(iocb->private != io_end); 3223 ext4_put_io_end(io_end); 3224 iocb->private = NULL; 3225 } 3226 } 3227 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3228 EXT4_STATE_DIO_UNWRITTEN)) { 3229 int err; 3230 /* 3231 * for non AIO case, since the IO is already 3232 * completed, we could do the conversion right here 3233 */ 3234 err = ext4_convert_unwritten_extents(inode, 3235 offset, ret); 3236 if (err < 0) 3237 ret = err; 3238 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3239 } 3240 3241 retake_lock: 3242 /* take i_mutex locking again if we do a ovewrite dio */ 3243 if (overwrite) { 3244 inode_dio_done(inode); 3245 up_read(&EXT4_I(inode)->i_data_sem); 3246 mutex_lock(&inode->i_mutex); 3247 } 3248 3249 return ret; 3250 } 3251 3252 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3253 const struct iovec *iov, loff_t offset, 3254 unsigned long nr_segs) 3255 { 3256 struct file *file = iocb->ki_filp; 3257 struct inode *inode = file->f_mapping->host; 3258 ssize_t ret; 3259 3260 /* 3261 * If we are doing data journalling we don't support O_DIRECT 3262 */ 3263 if (ext4_should_journal_data(inode)) 3264 return 0; 3265 3266 /* Let buffer I/O handle the inline data case. */ 3267 if (ext4_has_inline_data(inode)) 3268 return 0; 3269 3270 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3272 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3273 else 3274 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3275 trace_ext4_direct_IO_exit(inode, offset, 3276 iov_length(iov, nr_segs), rw, ret); 3277 return ret; 3278 } 3279 3280 /* 3281 * Pages can be marked dirty completely asynchronously from ext4's journalling 3282 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3283 * much here because ->set_page_dirty is called under VFS locks. The page is 3284 * not necessarily locked. 3285 * 3286 * We cannot just dirty the page and leave attached buffers clean, because the 3287 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3288 * or jbddirty because all the journalling code will explode. 3289 * 3290 * So what we do is to mark the page "pending dirty" and next time writepage 3291 * is called, propagate that into the buffers appropriately. 3292 */ 3293 static int ext4_journalled_set_page_dirty(struct page *page) 3294 { 3295 SetPageChecked(page); 3296 return __set_page_dirty_nobuffers(page); 3297 } 3298 3299 static const struct address_space_operations ext4_aops = { 3300 .readpage = ext4_readpage, 3301 .readpages = ext4_readpages, 3302 .writepage = ext4_writepage, 3303 .write_begin = ext4_write_begin, 3304 .write_end = ext4_write_end, 3305 .bmap = ext4_bmap, 3306 .invalidatepage = ext4_invalidatepage, 3307 .releasepage = ext4_releasepage, 3308 .direct_IO = ext4_direct_IO, 3309 .migratepage = buffer_migrate_page, 3310 .is_partially_uptodate = block_is_partially_uptodate, 3311 .error_remove_page = generic_error_remove_page, 3312 }; 3313 3314 static const struct address_space_operations ext4_journalled_aops = { 3315 .readpage = ext4_readpage, 3316 .readpages = ext4_readpages, 3317 .writepage = ext4_writepage, 3318 .write_begin = ext4_write_begin, 3319 .write_end = ext4_journalled_write_end, 3320 .set_page_dirty = ext4_journalled_set_page_dirty, 3321 .bmap = ext4_bmap, 3322 .invalidatepage = ext4_journalled_invalidatepage, 3323 .releasepage = ext4_releasepage, 3324 .direct_IO = ext4_direct_IO, 3325 .is_partially_uptodate = block_is_partially_uptodate, 3326 .error_remove_page = generic_error_remove_page, 3327 }; 3328 3329 static const struct address_space_operations ext4_da_aops = { 3330 .readpage = ext4_readpage, 3331 .readpages = ext4_readpages, 3332 .writepage = ext4_writepage, 3333 .writepages = ext4_da_writepages, 3334 .write_begin = ext4_da_write_begin, 3335 .write_end = ext4_da_write_end, 3336 .bmap = ext4_bmap, 3337 .invalidatepage = ext4_da_invalidatepage, 3338 .releasepage = ext4_releasepage, 3339 .direct_IO = ext4_direct_IO, 3340 .migratepage = buffer_migrate_page, 3341 .is_partially_uptodate = block_is_partially_uptodate, 3342 .error_remove_page = generic_error_remove_page, 3343 }; 3344 3345 void ext4_set_aops(struct inode *inode) 3346 { 3347 switch (ext4_inode_journal_mode(inode)) { 3348 case EXT4_INODE_ORDERED_DATA_MODE: 3349 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3350 break; 3351 case EXT4_INODE_WRITEBACK_DATA_MODE: 3352 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3353 break; 3354 case EXT4_INODE_JOURNAL_DATA_MODE: 3355 inode->i_mapping->a_ops = &ext4_journalled_aops; 3356 return; 3357 default: 3358 BUG(); 3359 } 3360 if (test_opt(inode->i_sb, DELALLOC)) 3361 inode->i_mapping->a_ops = &ext4_da_aops; 3362 else 3363 inode->i_mapping->a_ops = &ext4_aops; 3364 } 3365 3366 3367 /* 3368 * ext4_discard_partial_page_buffers() 3369 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3370 * This function finds and locks the page containing the offset 3371 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3372 * Calling functions that already have the page locked should call 3373 * ext4_discard_partial_page_buffers_no_lock directly. 3374 */ 3375 int ext4_discard_partial_page_buffers(handle_t *handle, 3376 struct address_space *mapping, loff_t from, 3377 loff_t length, int flags) 3378 { 3379 struct inode *inode = mapping->host; 3380 struct page *page; 3381 int err = 0; 3382 3383 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3384 mapping_gfp_mask(mapping) & ~__GFP_FS); 3385 if (!page) 3386 return -ENOMEM; 3387 3388 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3389 from, length, flags); 3390 3391 unlock_page(page); 3392 page_cache_release(page); 3393 return err; 3394 } 3395 3396 /* 3397 * ext4_discard_partial_page_buffers_no_lock() 3398 * Zeros a page range of length 'length' starting from offset 'from'. 3399 * Buffer heads that correspond to the block aligned regions of the 3400 * zeroed range will be unmapped. Unblock aligned regions 3401 * will have the corresponding buffer head mapped if needed so that 3402 * that region of the page can be updated with the partial zero out. 3403 * 3404 * This function assumes that the page has already been locked. The 3405 * The range to be discarded must be contained with in the given page. 3406 * If the specified range exceeds the end of the page it will be shortened 3407 * to the end of the page that corresponds to 'from'. This function is 3408 * appropriate for updating a page and it buffer heads to be unmapped and 3409 * zeroed for blocks that have been either released, or are going to be 3410 * released. 3411 * 3412 * handle: The journal handle 3413 * inode: The files inode 3414 * page: A locked page that contains the offset "from" 3415 * from: The starting byte offset (from the beginning of the file) 3416 * to begin discarding 3417 * len: The length of bytes to discard 3418 * flags: Optional flags that may be used: 3419 * 3420 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3421 * Only zero the regions of the page whose buffer heads 3422 * have already been unmapped. This flag is appropriate 3423 * for updating the contents of a page whose blocks may 3424 * have already been released, and we only want to zero 3425 * out the regions that correspond to those released blocks. 3426 * 3427 * Returns zero on success or negative on failure. 3428 */ 3429 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3430 struct inode *inode, struct page *page, loff_t from, 3431 loff_t length, int flags) 3432 { 3433 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3434 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3435 unsigned int blocksize, max, pos; 3436 ext4_lblk_t iblock; 3437 struct buffer_head *bh; 3438 int err = 0; 3439 3440 blocksize = inode->i_sb->s_blocksize; 3441 max = PAGE_CACHE_SIZE - offset; 3442 3443 if (index != page->index) 3444 return -EINVAL; 3445 3446 /* 3447 * correct length if it does not fall between 3448 * 'from' and the end of the page 3449 */ 3450 if (length > max || length < 0) 3451 length = max; 3452 3453 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3454 3455 if (!page_has_buffers(page)) 3456 create_empty_buffers(page, blocksize, 0); 3457 3458 /* Find the buffer that contains "offset" */ 3459 bh = page_buffers(page); 3460 pos = blocksize; 3461 while (offset >= pos) { 3462 bh = bh->b_this_page; 3463 iblock++; 3464 pos += blocksize; 3465 } 3466 3467 pos = offset; 3468 while (pos < offset + length) { 3469 unsigned int end_of_block, range_to_discard; 3470 3471 err = 0; 3472 3473 /* The length of space left to zero and unmap */ 3474 range_to_discard = offset + length - pos; 3475 3476 /* The length of space until the end of the block */ 3477 end_of_block = blocksize - (pos & (blocksize-1)); 3478 3479 /* 3480 * Do not unmap or zero past end of block 3481 * for this buffer head 3482 */ 3483 if (range_to_discard > end_of_block) 3484 range_to_discard = end_of_block; 3485 3486 3487 /* 3488 * Skip this buffer head if we are only zeroing unampped 3489 * regions of the page 3490 */ 3491 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3492 buffer_mapped(bh)) 3493 goto next; 3494 3495 /* If the range is block aligned, unmap */ 3496 if (range_to_discard == blocksize) { 3497 clear_buffer_dirty(bh); 3498 bh->b_bdev = NULL; 3499 clear_buffer_mapped(bh); 3500 clear_buffer_req(bh); 3501 clear_buffer_new(bh); 3502 clear_buffer_delay(bh); 3503 clear_buffer_unwritten(bh); 3504 clear_buffer_uptodate(bh); 3505 zero_user(page, pos, range_to_discard); 3506 BUFFER_TRACE(bh, "Buffer discarded"); 3507 goto next; 3508 } 3509 3510 /* 3511 * If this block is not completely contained in the range 3512 * to be discarded, then it is not going to be released. Because 3513 * we need to keep this block, we need to make sure this part 3514 * of the page is uptodate before we modify it by writeing 3515 * partial zeros on it. 3516 */ 3517 if (!buffer_mapped(bh)) { 3518 /* 3519 * Buffer head must be mapped before we can read 3520 * from the block 3521 */ 3522 BUFFER_TRACE(bh, "unmapped"); 3523 ext4_get_block(inode, iblock, bh, 0); 3524 /* unmapped? It's a hole - nothing to do */ 3525 if (!buffer_mapped(bh)) { 3526 BUFFER_TRACE(bh, "still unmapped"); 3527 goto next; 3528 } 3529 } 3530 3531 /* Ok, it's mapped. Make sure it's up-to-date */ 3532 if (PageUptodate(page)) 3533 set_buffer_uptodate(bh); 3534 3535 if (!buffer_uptodate(bh)) { 3536 err = -EIO; 3537 ll_rw_block(READ, 1, &bh); 3538 wait_on_buffer(bh); 3539 /* Uhhuh. Read error. Complain and punt.*/ 3540 if (!buffer_uptodate(bh)) 3541 goto next; 3542 } 3543 3544 if (ext4_should_journal_data(inode)) { 3545 BUFFER_TRACE(bh, "get write access"); 3546 err = ext4_journal_get_write_access(handle, bh); 3547 if (err) 3548 goto next; 3549 } 3550 3551 zero_user(page, pos, range_to_discard); 3552 3553 err = 0; 3554 if (ext4_should_journal_data(inode)) { 3555 err = ext4_handle_dirty_metadata(handle, inode, bh); 3556 } else 3557 mark_buffer_dirty(bh); 3558 3559 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3560 next: 3561 bh = bh->b_this_page; 3562 iblock++; 3563 pos += range_to_discard; 3564 } 3565 3566 return err; 3567 } 3568 3569 int ext4_can_truncate(struct inode *inode) 3570 { 3571 if (S_ISREG(inode->i_mode)) 3572 return 1; 3573 if (S_ISDIR(inode->i_mode)) 3574 return 1; 3575 if (S_ISLNK(inode->i_mode)) 3576 return !ext4_inode_is_fast_symlink(inode); 3577 return 0; 3578 } 3579 3580 /* 3581 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3582 * associated with the given offset and length 3583 * 3584 * @inode: File inode 3585 * @offset: The offset where the hole will begin 3586 * @len: The length of the hole 3587 * 3588 * Returns: 0 on success or negative on failure 3589 */ 3590 3591 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3592 { 3593 struct inode *inode = file_inode(file); 3594 struct super_block *sb = inode->i_sb; 3595 ext4_lblk_t first_block, stop_block; 3596 struct address_space *mapping = inode->i_mapping; 3597 loff_t first_page, last_page, page_len; 3598 loff_t first_page_offset, last_page_offset; 3599 handle_t *handle; 3600 unsigned int credits; 3601 int ret = 0; 3602 3603 if (!S_ISREG(inode->i_mode)) 3604 return -EOPNOTSUPP; 3605 3606 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3607 /* TODO: Add support for bigalloc file systems */ 3608 return -EOPNOTSUPP; 3609 } 3610 3611 trace_ext4_punch_hole(inode, offset, length); 3612 3613 /* 3614 * Write out all dirty pages to avoid race conditions 3615 * Then release them. 3616 */ 3617 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3618 ret = filemap_write_and_wait_range(mapping, offset, 3619 offset + length - 1); 3620 if (ret) 3621 return ret; 3622 } 3623 3624 mutex_lock(&inode->i_mutex); 3625 /* It's not possible punch hole on append only file */ 3626 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3627 ret = -EPERM; 3628 goto out_mutex; 3629 } 3630 if (IS_SWAPFILE(inode)) { 3631 ret = -ETXTBSY; 3632 goto out_mutex; 3633 } 3634 3635 /* No need to punch hole beyond i_size */ 3636 if (offset >= inode->i_size) 3637 goto out_mutex; 3638 3639 /* 3640 * If the hole extends beyond i_size, set the hole 3641 * to end after the page that contains i_size 3642 */ 3643 if (offset + length > inode->i_size) { 3644 length = inode->i_size + 3645 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3646 offset; 3647 } 3648 3649 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 3650 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 3651 3652 first_page_offset = first_page << PAGE_CACHE_SHIFT; 3653 last_page_offset = last_page << PAGE_CACHE_SHIFT; 3654 3655 /* Now release the pages */ 3656 if (last_page_offset > first_page_offset) { 3657 truncate_pagecache_range(inode, first_page_offset, 3658 last_page_offset - 1); 3659 } 3660 3661 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3662 ext4_inode_block_unlocked_dio(inode); 3663 ret = ext4_flush_unwritten_io(inode); 3664 if (ret) 3665 goto out_dio; 3666 inode_dio_wait(inode); 3667 3668 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3669 credits = ext4_writepage_trans_blocks(inode); 3670 else 3671 credits = ext4_blocks_for_truncate(inode); 3672 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3673 if (IS_ERR(handle)) { 3674 ret = PTR_ERR(handle); 3675 ext4_std_error(sb, ret); 3676 goto out_dio; 3677 } 3678 3679 /* 3680 * Now we need to zero out the non-page-aligned data in the 3681 * pages at the start and tail of the hole, and unmap the 3682 * buffer heads for the block aligned regions of the page that 3683 * were completely zeroed. 3684 */ 3685 if (first_page > last_page) { 3686 /* 3687 * If the file space being truncated is contained 3688 * within a page just zero out and unmap the middle of 3689 * that page 3690 */ 3691 ret = ext4_discard_partial_page_buffers(handle, 3692 mapping, offset, length, 0); 3693 3694 if (ret) 3695 goto out_stop; 3696 } else { 3697 /* 3698 * zero out and unmap the partial page that contains 3699 * the start of the hole 3700 */ 3701 page_len = first_page_offset - offset; 3702 if (page_len > 0) { 3703 ret = ext4_discard_partial_page_buffers(handle, mapping, 3704 offset, page_len, 0); 3705 if (ret) 3706 goto out_stop; 3707 } 3708 3709 /* 3710 * zero out and unmap the partial page that contains 3711 * the end of the hole 3712 */ 3713 page_len = offset + length - last_page_offset; 3714 if (page_len > 0) { 3715 ret = ext4_discard_partial_page_buffers(handle, mapping, 3716 last_page_offset, page_len, 0); 3717 if (ret) 3718 goto out_stop; 3719 } 3720 } 3721 3722 /* 3723 * If i_size is contained in the last page, we need to 3724 * unmap and zero the partial page after i_size 3725 */ 3726 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 3727 inode->i_size % PAGE_CACHE_SIZE != 0) { 3728 page_len = PAGE_CACHE_SIZE - 3729 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3730 3731 if (page_len > 0) { 3732 ret = ext4_discard_partial_page_buffers(handle, 3733 mapping, inode->i_size, page_len, 0); 3734 3735 if (ret) 3736 goto out_stop; 3737 } 3738 } 3739 3740 first_block = (offset + sb->s_blocksize - 1) >> 3741 EXT4_BLOCK_SIZE_BITS(sb); 3742 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3743 3744 /* If there are no blocks to remove, return now */ 3745 if (first_block >= stop_block) 3746 goto out_stop; 3747 3748 down_write(&EXT4_I(inode)->i_data_sem); 3749 ext4_discard_preallocations(inode); 3750 3751 ret = ext4_es_remove_extent(inode, first_block, 3752 stop_block - first_block); 3753 if (ret) { 3754 up_write(&EXT4_I(inode)->i_data_sem); 3755 goto out_stop; 3756 } 3757 3758 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3759 ret = ext4_ext_remove_space(inode, first_block, 3760 stop_block - 1); 3761 else 3762 ret = ext4_free_hole_blocks(handle, inode, first_block, 3763 stop_block); 3764 3765 ext4_discard_preallocations(inode); 3766 up_write(&EXT4_I(inode)->i_data_sem); 3767 if (IS_SYNC(inode)) 3768 ext4_handle_sync(handle); 3769 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3770 ext4_mark_inode_dirty(handle, inode); 3771 out_stop: 3772 ext4_journal_stop(handle); 3773 out_dio: 3774 ext4_inode_resume_unlocked_dio(inode); 3775 out_mutex: 3776 mutex_unlock(&inode->i_mutex); 3777 return ret; 3778 } 3779 3780 /* 3781 * ext4_truncate() 3782 * 3783 * We block out ext4_get_block() block instantiations across the entire 3784 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3785 * simultaneously on behalf of the same inode. 3786 * 3787 * As we work through the truncate and commit bits of it to the journal there 3788 * is one core, guiding principle: the file's tree must always be consistent on 3789 * disk. We must be able to restart the truncate after a crash. 3790 * 3791 * The file's tree may be transiently inconsistent in memory (although it 3792 * probably isn't), but whenever we close off and commit a journal transaction, 3793 * the contents of (the filesystem + the journal) must be consistent and 3794 * restartable. It's pretty simple, really: bottom up, right to left (although 3795 * left-to-right works OK too). 3796 * 3797 * Note that at recovery time, journal replay occurs *before* the restart of 3798 * truncate against the orphan inode list. 3799 * 3800 * The committed inode has the new, desired i_size (which is the same as 3801 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3802 * that this inode's truncate did not complete and it will again call 3803 * ext4_truncate() to have another go. So there will be instantiated blocks 3804 * to the right of the truncation point in a crashed ext4 filesystem. But 3805 * that's fine - as long as they are linked from the inode, the post-crash 3806 * ext4_truncate() run will find them and release them. 3807 */ 3808 void ext4_truncate(struct inode *inode) 3809 { 3810 struct ext4_inode_info *ei = EXT4_I(inode); 3811 unsigned int credits; 3812 handle_t *handle; 3813 struct address_space *mapping = inode->i_mapping; 3814 loff_t page_len; 3815 3816 /* 3817 * There is a possibility that we're either freeing the inode 3818 * or it completely new indode. In those cases we might not 3819 * have i_mutex locked because it's not necessary. 3820 */ 3821 if (!(inode->i_state & (I_NEW|I_FREEING))) 3822 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3823 trace_ext4_truncate_enter(inode); 3824 3825 if (!ext4_can_truncate(inode)) 3826 return; 3827 3828 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3829 3830 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3831 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3832 3833 if (ext4_has_inline_data(inode)) { 3834 int has_inline = 1; 3835 3836 ext4_inline_data_truncate(inode, &has_inline); 3837 if (has_inline) 3838 return; 3839 } 3840 3841 /* 3842 * finish any pending end_io work so we won't run the risk of 3843 * converting any truncated blocks to initialized later 3844 */ 3845 ext4_flush_unwritten_io(inode); 3846 3847 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3848 credits = ext4_writepage_trans_blocks(inode); 3849 else 3850 credits = ext4_blocks_for_truncate(inode); 3851 3852 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3853 if (IS_ERR(handle)) { 3854 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3855 return; 3856 } 3857 3858 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 3859 page_len = PAGE_CACHE_SIZE - 3860 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3861 3862 if (ext4_discard_partial_page_buffers(handle, 3863 mapping, inode->i_size, page_len, 0)) 3864 goto out_stop; 3865 } 3866 3867 /* 3868 * We add the inode to the orphan list, so that if this 3869 * truncate spans multiple transactions, and we crash, we will 3870 * resume the truncate when the filesystem recovers. It also 3871 * marks the inode dirty, to catch the new size. 3872 * 3873 * Implication: the file must always be in a sane, consistent 3874 * truncatable state while each transaction commits. 3875 */ 3876 if (ext4_orphan_add(handle, inode)) 3877 goto out_stop; 3878 3879 down_write(&EXT4_I(inode)->i_data_sem); 3880 3881 ext4_discard_preallocations(inode); 3882 3883 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3884 ext4_ext_truncate(handle, inode); 3885 else 3886 ext4_ind_truncate(handle, inode); 3887 3888 up_write(&ei->i_data_sem); 3889 3890 if (IS_SYNC(inode)) 3891 ext4_handle_sync(handle); 3892 3893 out_stop: 3894 /* 3895 * If this was a simple ftruncate() and the file will remain alive, 3896 * then we need to clear up the orphan record which we created above. 3897 * However, if this was a real unlink then we were called by 3898 * ext4_delete_inode(), and we allow that function to clean up the 3899 * orphan info for us. 3900 */ 3901 if (inode->i_nlink) 3902 ext4_orphan_del(handle, inode); 3903 3904 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3905 ext4_mark_inode_dirty(handle, inode); 3906 ext4_journal_stop(handle); 3907 3908 trace_ext4_truncate_exit(inode); 3909 } 3910 3911 /* 3912 * ext4_get_inode_loc returns with an extra refcount against the inode's 3913 * underlying buffer_head on success. If 'in_mem' is true, we have all 3914 * data in memory that is needed to recreate the on-disk version of this 3915 * inode. 3916 */ 3917 static int __ext4_get_inode_loc(struct inode *inode, 3918 struct ext4_iloc *iloc, int in_mem) 3919 { 3920 struct ext4_group_desc *gdp; 3921 struct buffer_head *bh; 3922 struct super_block *sb = inode->i_sb; 3923 ext4_fsblk_t block; 3924 int inodes_per_block, inode_offset; 3925 3926 iloc->bh = NULL; 3927 if (!ext4_valid_inum(sb, inode->i_ino)) 3928 return -EIO; 3929 3930 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3931 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3932 if (!gdp) 3933 return -EIO; 3934 3935 /* 3936 * Figure out the offset within the block group inode table 3937 */ 3938 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3939 inode_offset = ((inode->i_ino - 1) % 3940 EXT4_INODES_PER_GROUP(sb)); 3941 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3942 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3943 3944 bh = sb_getblk(sb, block); 3945 if (unlikely(!bh)) 3946 return -ENOMEM; 3947 if (!buffer_uptodate(bh)) { 3948 lock_buffer(bh); 3949 3950 /* 3951 * If the buffer has the write error flag, we have failed 3952 * to write out another inode in the same block. In this 3953 * case, we don't have to read the block because we may 3954 * read the old inode data successfully. 3955 */ 3956 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3957 set_buffer_uptodate(bh); 3958 3959 if (buffer_uptodate(bh)) { 3960 /* someone brought it uptodate while we waited */ 3961 unlock_buffer(bh); 3962 goto has_buffer; 3963 } 3964 3965 /* 3966 * If we have all information of the inode in memory and this 3967 * is the only valid inode in the block, we need not read the 3968 * block. 3969 */ 3970 if (in_mem) { 3971 struct buffer_head *bitmap_bh; 3972 int i, start; 3973 3974 start = inode_offset & ~(inodes_per_block - 1); 3975 3976 /* Is the inode bitmap in cache? */ 3977 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3978 if (unlikely(!bitmap_bh)) 3979 goto make_io; 3980 3981 /* 3982 * If the inode bitmap isn't in cache then the 3983 * optimisation may end up performing two reads instead 3984 * of one, so skip it. 3985 */ 3986 if (!buffer_uptodate(bitmap_bh)) { 3987 brelse(bitmap_bh); 3988 goto make_io; 3989 } 3990 for (i = start; i < start + inodes_per_block; i++) { 3991 if (i == inode_offset) 3992 continue; 3993 if (ext4_test_bit(i, bitmap_bh->b_data)) 3994 break; 3995 } 3996 brelse(bitmap_bh); 3997 if (i == start + inodes_per_block) { 3998 /* all other inodes are free, so skip I/O */ 3999 memset(bh->b_data, 0, bh->b_size); 4000 set_buffer_uptodate(bh); 4001 unlock_buffer(bh); 4002 goto has_buffer; 4003 } 4004 } 4005 4006 make_io: 4007 /* 4008 * If we need to do any I/O, try to pre-readahead extra 4009 * blocks from the inode table. 4010 */ 4011 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4012 ext4_fsblk_t b, end, table; 4013 unsigned num; 4014 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4015 4016 table = ext4_inode_table(sb, gdp); 4017 /* s_inode_readahead_blks is always a power of 2 */ 4018 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4019 if (table > b) 4020 b = table; 4021 end = b + ra_blks; 4022 num = EXT4_INODES_PER_GROUP(sb); 4023 if (ext4_has_group_desc_csum(sb)) 4024 num -= ext4_itable_unused_count(sb, gdp); 4025 table += num / inodes_per_block; 4026 if (end > table) 4027 end = table; 4028 while (b <= end) 4029 sb_breadahead(sb, b++); 4030 } 4031 4032 /* 4033 * There are other valid inodes in the buffer, this inode 4034 * has in-inode xattrs, or we don't have this inode in memory. 4035 * Read the block from disk. 4036 */ 4037 trace_ext4_load_inode(inode); 4038 get_bh(bh); 4039 bh->b_end_io = end_buffer_read_sync; 4040 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4041 wait_on_buffer(bh); 4042 if (!buffer_uptodate(bh)) { 4043 EXT4_ERROR_INODE_BLOCK(inode, block, 4044 "unable to read itable block"); 4045 brelse(bh); 4046 return -EIO; 4047 } 4048 } 4049 has_buffer: 4050 iloc->bh = bh; 4051 return 0; 4052 } 4053 4054 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4055 { 4056 /* We have all inode data except xattrs in memory here. */ 4057 return __ext4_get_inode_loc(inode, iloc, 4058 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4059 } 4060 4061 void ext4_set_inode_flags(struct inode *inode) 4062 { 4063 unsigned int flags = EXT4_I(inode)->i_flags; 4064 4065 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4066 if (flags & EXT4_SYNC_FL) 4067 inode->i_flags |= S_SYNC; 4068 if (flags & EXT4_APPEND_FL) 4069 inode->i_flags |= S_APPEND; 4070 if (flags & EXT4_IMMUTABLE_FL) 4071 inode->i_flags |= S_IMMUTABLE; 4072 if (flags & EXT4_NOATIME_FL) 4073 inode->i_flags |= S_NOATIME; 4074 if (flags & EXT4_DIRSYNC_FL) 4075 inode->i_flags |= S_DIRSYNC; 4076 } 4077 4078 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4079 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4080 { 4081 unsigned int vfs_fl; 4082 unsigned long old_fl, new_fl; 4083 4084 do { 4085 vfs_fl = ei->vfs_inode.i_flags; 4086 old_fl = ei->i_flags; 4087 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4088 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4089 EXT4_DIRSYNC_FL); 4090 if (vfs_fl & S_SYNC) 4091 new_fl |= EXT4_SYNC_FL; 4092 if (vfs_fl & S_APPEND) 4093 new_fl |= EXT4_APPEND_FL; 4094 if (vfs_fl & S_IMMUTABLE) 4095 new_fl |= EXT4_IMMUTABLE_FL; 4096 if (vfs_fl & S_NOATIME) 4097 new_fl |= EXT4_NOATIME_FL; 4098 if (vfs_fl & S_DIRSYNC) 4099 new_fl |= EXT4_DIRSYNC_FL; 4100 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4101 } 4102 4103 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4104 struct ext4_inode_info *ei) 4105 { 4106 blkcnt_t i_blocks ; 4107 struct inode *inode = &(ei->vfs_inode); 4108 struct super_block *sb = inode->i_sb; 4109 4110 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4111 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4112 /* we are using combined 48 bit field */ 4113 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4114 le32_to_cpu(raw_inode->i_blocks_lo); 4115 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4116 /* i_blocks represent file system block size */ 4117 return i_blocks << (inode->i_blkbits - 9); 4118 } else { 4119 return i_blocks; 4120 } 4121 } else { 4122 return le32_to_cpu(raw_inode->i_blocks_lo); 4123 } 4124 } 4125 4126 static inline void ext4_iget_extra_inode(struct inode *inode, 4127 struct ext4_inode *raw_inode, 4128 struct ext4_inode_info *ei) 4129 { 4130 __le32 *magic = (void *)raw_inode + 4131 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4132 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4133 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4134 ext4_find_inline_data_nolock(inode); 4135 } else 4136 EXT4_I(inode)->i_inline_off = 0; 4137 } 4138 4139 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4140 { 4141 struct ext4_iloc iloc; 4142 struct ext4_inode *raw_inode; 4143 struct ext4_inode_info *ei; 4144 struct inode *inode; 4145 journal_t *journal = EXT4_SB(sb)->s_journal; 4146 long ret; 4147 int block; 4148 uid_t i_uid; 4149 gid_t i_gid; 4150 4151 inode = iget_locked(sb, ino); 4152 if (!inode) 4153 return ERR_PTR(-ENOMEM); 4154 if (!(inode->i_state & I_NEW)) 4155 return inode; 4156 4157 ei = EXT4_I(inode); 4158 iloc.bh = NULL; 4159 4160 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4161 if (ret < 0) 4162 goto bad_inode; 4163 raw_inode = ext4_raw_inode(&iloc); 4164 4165 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4166 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4167 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4168 EXT4_INODE_SIZE(inode->i_sb)) { 4169 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4170 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4171 EXT4_INODE_SIZE(inode->i_sb)); 4172 ret = -EIO; 4173 goto bad_inode; 4174 } 4175 } else 4176 ei->i_extra_isize = 0; 4177 4178 /* Precompute checksum seed for inode metadata */ 4179 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4180 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4181 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4182 __u32 csum; 4183 __le32 inum = cpu_to_le32(inode->i_ino); 4184 __le32 gen = raw_inode->i_generation; 4185 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4186 sizeof(inum)); 4187 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4188 sizeof(gen)); 4189 } 4190 4191 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4192 EXT4_ERROR_INODE(inode, "checksum invalid"); 4193 ret = -EIO; 4194 goto bad_inode; 4195 } 4196 4197 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4198 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4199 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4200 if (!(test_opt(inode->i_sb, NO_UID32))) { 4201 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4202 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4203 } 4204 i_uid_write(inode, i_uid); 4205 i_gid_write(inode, i_gid); 4206 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4207 4208 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4209 ei->i_inline_off = 0; 4210 ei->i_dir_start_lookup = 0; 4211 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4212 /* We now have enough fields to check if the inode was active or not. 4213 * This is needed because nfsd might try to access dead inodes 4214 * the test is that same one that e2fsck uses 4215 * NeilBrown 1999oct15 4216 */ 4217 if (inode->i_nlink == 0) { 4218 if ((inode->i_mode == 0 || 4219 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4220 ino != EXT4_BOOT_LOADER_INO) { 4221 /* this inode is deleted */ 4222 ret = -ESTALE; 4223 goto bad_inode; 4224 } 4225 /* The only unlinked inodes we let through here have 4226 * valid i_mode and are being read by the orphan 4227 * recovery code: that's fine, we're about to complete 4228 * the process of deleting those. 4229 * OR it is the EXT4_BOOT_LOADER_INO which is 4230 * not initialized on a new filesystem. */ 4231 } 4232 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4233 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4234 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4235 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4236 ei->i_file_acl |= 4237 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4238 inode->i_size = ext4_isize(raw_inode); 4239 ei->i_disksize = inode->i_size; 4240 #ifdef CONFIG_QUOTA 4241 ei->i_reserved_quota = 0; 4242 #endif 4243 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4244 ei->i_block_group = iloc.block_group; 4245 ei->i_last_alloc_group = ~0; 4246 /* 4247 * NOTE! The in-memory inode i_data array is in little-endian order 4248 * even on big-endian machines: we do NOT byteswap the block numbers! 4249 */ 4250 for (block = 0; block < EXT4_N_BLOCKS; block++) 4251 ei->i_data[block] = raw_inode->i_block[block]; 4252 INIT_LIST_HEAD(&ei->i_orphan); 4253 4254 /* 4255 * Set transaction id's of transactions that have to be committed 4256 * to finish f[data]sync. We set them to currently running transaction 4257 * as we cannot be sure that the inode or some of its metadata isn't 4258 * part of the transaction - the inode could have been reclaimed and 4259 * now it is reread from disk. 4260 */ 4261 if (journal) { 4262 transaction_t *transaction; 4263 tid_t tid; 4264 4265 read_lock(&journal->j_state_lock); 4266 if (journal->j_running_transaction) 4267 transaction = journal->j_running_transaction; 4268 else 4269 transaction = journal->j_committing_transaction; 4270 if (transaction) 4271 tid = transaction->t_tid; 4272 else 4273 tid = journal->j_commit_sequence; 4274 read_unlock(&journal->j_state_lock); 4275 ei->i_sync_tid = tid; 4276 ei->i_datasync_tid = tid; 4277 } 4278 4279 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4280 if (ei->i_extra_isize == 0) { 4281 /* The extra space is currently unused. Use it. */ 4282 ei->i_extra_isize = sizeof(struct ext4_inode) - 4283 EXT4_GOOD_OLD_INODE_SIZE; 4284 } else { 4285 ext4_iget_extra_inode(inode, raw_inode, ei); 4286 } 4287 } 4288 4289 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4290 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4291 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4292 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4293 4294 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4295 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4296 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4297 inode->i_version |= 4298 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4299 } 4300 4301 ret = 0; 4302 if (ei->i_file_acl && 4303 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4304 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4305 ei->i_file_acl); 4306 ret = -EIO; 4307 goto bad_inode; 4308 } else if (!ext4_has_inline_data(inode)) { 4309 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4310 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4311 (S_ISLNK(inode->i_mode) && 4312 !ext4_inode_is_fast_symlink(inode)))) 4313 /* Validate extent which is part of inode */ 4314 ret = ext4_ext_check_inode(inode); 4315 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4316 (S_ISLNK(inode->i_mode) && 4317 !ext4_inode_is_fast_symlink(inode))) { 4318 /* Validate block references which are part of inode */ 4319 ret = ext4_ind_check_inode(inode); 4320 } 4321 } 4322 if (ret) 4323 goto bad_inode; 4324 4325 if (S_ISREG(inode->i_mode)) { 4326 inode->i_op = &ext4_file_inode_operations; 4327 inode->i_fop = &ext4_file_operations; 4328 ext4_set_aops(inode); 4329 } else if (S_ISDIR(inode->i_mode)) { 4330 inode->i_op = &ext4_dir_inode_operations; 4331 inode->i_fop = &ext4_dir_operations; 4332 } else if (S_ISLNK(inode->i_mode)) { 4333 if (ext4_inode_is_fast_symlink(inode)) { 4334 inode->i_op = &ext4_fast_symlink_inode_operations; 4335 nd_terminate_link(ei->i_data, inode->i_size, 4336 sizeof(ei->i_data) - 1); 4337 } else { 4338 inode->i_op = &ext4_symlink_inode_operations; 4339 ext4_set_aops(inode); 4340 } 4341 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4342 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4343 inode->i_op = &ext4_special_inode_operations; 4344 if (raw_inode->i_block[0]) 4345 init_special_inode(inode, inode->i_mode, 4346 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4347 else 4348 init_special_inode(inode, inode->i_mode, 4349 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4350 } else if (ino == EXT4_BOOT_LOADER_INO) { 4351 make_bad_inode(inode); 4352 } else { 4353 ret = -EIO; 4354 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4355 goto bad_inode; 4356 } 4357 brelse(iloc.bh); 4358 ext4_set_inode_flags(inode); 4359 unlock_new_inode(inode); 4360 return inode; 4361 4362 bad_inode: 4363 brelse(iloc.bh); 4364 iget_failed(inode); 4365 return ERR_PTR(ret); 4366 } 4367 4368 static int ext4_inode_blocks_set(handle_t *handle, 4369 struct ext4_inode *raw_inode, 4370 struct ext4_inode_info *ei) 4371 { 4372 struct inode *inode = &(ei->vfs_inode); 4373 u64 i_blocks = inode->i_blocks; 4374 struct super_block *sb = inode->i_sb; 4375 4376 if (i_blocks <= ~0U) { 4377 /* 4378 * i_blocks can be represented in a 32 bit variable 4379 * as multiple of 512 bytes 4380 */ 4381 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4382 raw_inode->i_blocks_high = 0; 4383 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4384 return 0; 4385 } 4386 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4387 return -EFBIG; 4388 4389 if (i_blocks <= 0xffffffffffffULL) { 4390 /* 4391 * i_blocks can be represented in a 48 bit variable 4392 * as multiple of 512 bytes 4393 */ 4394 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4395 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4396 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4397 } else { 4398 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4399 /* i_block is stored in file system block size */ 4400 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4401 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4402 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4403 } 4404 return 0; 4405 } 4406 4407 /* 4408 * Post the struct inode info into an on-disk inode location in the 4409 * buffer-cache. This gobbles the caller's reference to the 4410 * buffer_head in the inode location struct. 4411 * 4412 * The caller must have write access to iloc->bh. 4413 */ 4414 static int ext4_do_update_inode(handle_t *handle, 4415 struct inode *inode, 4416 struct ext4_iloc *iloc) 4417 { 4418 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4419 struct ext4_inode_info *ei = EXT4_I(inode); 4420 struct buffer_head *bh = iloc->bh; 4421 int err = 0, rc, block; 4422 int need_datasync = 0; 4423 uid_t i_uid; 4424 gid_t i_gid; 4425 4426 /* For fields not not tracking in the in-memory inode, 4427 * initialise them to zero for new inodes. */ 4428 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4429 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4430 4431 ext4_get_inode_flags(ei); 4432 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4433 i_uid = i_uid_read(inode); 4434 i_gid = i_gid_read(inode); 4435 if (!(test_opt(inode->i_sb, NO_UID32))) { 4436 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4437 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4438 /* 4439 * Fix up interoperability with old kernels. Otherwise, old inodes get 4440 * re-used with the upper 16 bits of the uid/gid intact 4441 */ 4442 if (!ei->i_dtime) { 4443 raw_inode->i_uid_high = 4444 cpu_to_le16(high_16_bits(i_uid)); 4445 raw_inode->i_gid_high = 4446 cpu_to_le16(high_16_bits(i_gid)); 4447 } else { 4448 raw_inode->i_uid_high = 0; 4449 raw_inode->i_gid_high = 0; 4450 } 4451 } else { 4452 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4453 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4454 raw_inode->i_uid_high = 0; 4455 raw_inode->i_gid_high = 0; 4456 } 4457 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4458 4459 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4460 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4461 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4462 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4463 4464 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4465 goto out_brelse; 4466 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4467 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4468 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4469 cpu_to_le32(EXT4_OS_HURD)) 4470 raw_inode->i_file_acl_high = 4471 cpu_to_le16(ei->i_file_acl >> 32); 4472 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4473 if (ei->i_disksize != ext4_isize(raw_inode)) { 4474 ext4_isize_set(raw_inode, ei->i_disksize); 4475 need_datasync = 1; 4476 } 4477 if (ei->i_disksize > 0x7fffffffULL) { 4478 struct super_block *sb = inode->i_sb; 4479 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4480 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4481 EXT4_SB(sb)->s_es->s_rev_level == 4482 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4483 /* If this is the first large file 4484 * created, add a flag to the superblock. 4485 */ 4486 err = ext4_journal_get_write_access(handle, 4487 EXT4_SB(sb)->s_sbh); 4488 if (err) 4489 goto out_brelse; 4490 ext4_update_dynamic_rev(sb); 4491 EXT4_SET_RO_COMPAT_FEATURE(sb, 4492 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4493 ext4_handle_sync(handle); 4494 err = ext4_handle_dirty_super(handle, sb); 4495 } 4496 } 4497 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4498 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4499 if (old_valid_dev(inode->i_rdev)) { 4500 raw_inode->i_block[0] = 4501 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4502 raw_inode->i_block[1] = 0; 4503 } else { 4504 raw_inode->i_block[0] = 0; 4505 raw_inode->i_block[1] = 4506 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4507 raw_inode->i_block[2] = 0; 4508 } 4509 } else if (!ext4_has_inline_data(inode)) { 4510 for (block = 0; block < EXT4_N_BLOCKS; block++) 4511 raw_inode->i_block[block] = ei->i_data[block]; 4512 } 4513 4514 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4515 if (ei->i_extra_isize) { 4516 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4517 raw_inode->i_version_hi = 4518 cpu_to_le32(inode->i_version >> 32); 4519 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4520 } 4521 4522 ext4_inode_csum_set(inode, raw_inode, ei); 4523 4524 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4525 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4526 if (!err) 4527 err = rc; 4528 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4529 4530 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4531 out_brelse: 4532 brelse(bh); 4533 ext4_std_error(inode->i_sb, err); 4534 return err; 4535 } 4536 4537 /* 4538 * ext4_write_inode() 4539 * 4540 * We are called from a few places: 4541 * 4542 * - Within generic_file_write() for O_SYNC files. 4543 * Here, there will be no transaction running. We wait for any running 4544 * transaction to commit. 4545 * 4546 * - Within sys_sync(), kupdate and such. 4547 * We wait on commit, if tol to. 4548 * 4549 * - Within prune_icache() (PF_MEMALLOC == true) 4550 * Here we simply return. We can't afford to block kswapd on the 4551 * journal commit. 4552 * 4553 * In all cases it is actually safe for us to return without doing anything, 4554 * because the inode has been copied into a raw inode buffer in 4555 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4556 * knfsd. 4557 * 4558 * Note that we are absolutely dependent upon all inode dirtiers doing the 4559 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4560 * which we are interested. 4561 * 4562 * It would be a bug for them to not do this. The code: 4563 * 4564 * mark_inode_dirty(inode) 4565 * stuff(); 4566 * inode->i_size = expr; 4567 * 4568 * is in error because a kswapd-driven write_inode() could occur while 4569 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4570 * will no longer be on the superblock's dirty inode list. 4571 */ 4572 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4573 { 4574 int err; 4575 4576 if (current->flags & PF_MEMALLOC) 4577 return 0; 4578 4579 if (EXT4_SB(inode->i_sb)->s_journal) { 4580 if (ext4_journal_current_handle()) { 4581 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4582 dump_stack(); 4583 return -EIO; 4584 } 4585 4586 if (wbc->sync_mode != WB_SYNC_ALL) 4587 return 0; 4588 4589 err = ext4_force_commit(inode->i_sb); 4590 } else { 4591 struct ext4_iloc iloc; 4592 4593 err = __ext4_get_inode_loc(inode, &iloc, 0); 4594 if (err) 4595 return err; 4596 if (wbc->sync_mode == WB_SYNC_ALL) 4597 sync_dirty_buffer(iloc.bh); 4598 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4599 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4600 "IO error syncing inode"); 4601 err = -EIO; 4602 } 4603 brelse(iloc.bh); 4604 } 4605 return err; 4606 } 4607 4608 /* 4609 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4610 * buffers that are attached to a page stradding i_size and are undergoing 4611 * commit. In that case we have to wait for commit to finish and try again. 4612 */ 4613 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4614 { 4615 struct page *page; 4616 unsigned offset; 4617 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4618 tid_t commit_tid = 0; 4619 int ret; 4620 4621 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4622 /* 4623 * All buffers in the last page remain valid? Then there's nothing to 4624 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4625 * blocksize case 4626 */ 4627 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4628 return; 4629 while (1) { 4630 page = find_lock_page(inode->i_mapping, 4631 inode->i_size >> PAGE_CACHE_SHIFT); 4632 if (!page) 4633 return; 4634 ret = __ext4_journalled_invalidatepage(page, offset); 4635 unlock_page(page); 4636 page_cache_release(page); 4637 if (ret != -EBUSY) 4638 return; 4639 commit_tid = 0; 4640 read_lock(&journal->j_state_lock); 4641 if (journal->j_committing_transaction) 4642 commit_tid = journal->j_committing_transaction->t_tid; 4643 read_unlock(&journal->j_state_lock); 4644 if (commit_tid) 4645 jbd2_log_wait_commit(journal, commit_tid); 4646 } 4647 } 4648 4649 /* 4650 * ext4_setattr() 4651 * 4652 * Called from notify_change. 4653 * 4654 * We want to trap VFS attempts to truncate the file as soon as 4655 * possible. In particular, we want to make sure that when the VFS 4656 * shrinks i_size, we put the inode on the orphan list and modify 4657 * i_disksize immediately, so that during the subsequent flushing of 4658 * dirty pages and freeing of disk blocks, we can guarantee that any 4659 * commit will leave the blocks being flushed in an unused state on 4660 * disk. (On recovery, the inode will get truncated and the blocks will 4661 * be freed, so we have a strong guarantee that no future commit will 4662 * leave these blocks visible to the user.) 4663 * 4664 * Another thing we have to assure is that if we are in ordered mode 4665 * and inode is still attached to the committing transaction, we must 4666 * we start writeout of all the dirty pages which are being truncated. 4667 * This way we are sure that all the data written in the previous 4668 * transaction are already on disk (truncate waits for pages under 4669 * writeback). 4670 * 4671 * Called with inode->i_mutex down. 4672 */ 4673 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4674 { 4675 struct inode *inode = dentry->d_inode; 4676 int error, rc = 0; 4677 int orphan = 0; 4678 const unsigned int ia_valid = attr->ia_valid; 4679 4680 error = inode_change_ok(inode, attr); 4681 if (error) 4682 return error; 4683 4684 if (is_quota_modification(inode, attr)) 4685 dquot_initialize(inode); 4686 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4687 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4688 handle_t *handle; 4689 4690 /* (user+group)*(old+new) structure, inode write (sb, 4691 * inode block, ? - but truncate inode update has it) */ 4692 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4693 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4694 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4695 if (IS_ERR(handle)) { 4696 error = PTR_ERR(handle); 4697 goto err_out; 4698 } 4699 error = dquot_transfer(inode, attr); 4700 if (error) { 4701 ext4_journal_stop(handle); 4702 return error; 4703 } 4704 /* Update corresponding info in inode so that everything is in 4705 * one transaction */ 4706 if (attr->ia_valid & ATTR_UID) 4707 inode->i_uid = attr->ia_uid; 4708 if (attr->ia_valid & ATTR_GID) 4709 inode->i_gid = attr->ia_gid; 4710 error = ext4_mark_inode_dirty(handle, inode); 4711 ext4_journal_stop(handle); 4712 } 4713 4714 if (attr->ia_valid & ATTR_SIZE) { 4715 4716 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4717 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4718 4719 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4720 return -EFBIG; 4721 } 4722 } 4723 4724 if (S_ISREG(inode->i_mode) && 4725 attr->ia_valid & ATTR_SIZE && 4726 (attr->ia_size < inode->i_size)) { 4727 handle_t *handle; 4728 4729 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4730 if (IS_ERR(handle)) { 4731 error = PTR_ERR(handle); 4732 goto err_out; 4733 } 4734 if (ext4_handle_valid(handle)) { 4735 error = ext4_orphan_add(handle, inode); 4736 orphan = 1; 4737 } 4738 EXT4_I(inode)->i_disksize = attr->ia_size; 4739 rc = ext4_mark_inode_dirty(handle, inode); 4740 if (!error) 4741 error = rc; 4742 ext4_journal_stop(handle); 4743 4744 if (ext4_should_order_data(inode)) { 4745 error = ext4_begin_ordered_truncate(inode, 4746 attr->ia_size); 4747 if (error) { 4748 /* Do as much error cleanup as possible */ 4749 handle = ext4_journal_start(inode, 4750 EXT4_HT_INODE, 3); 4751 if (IS_ERR(handle)) { 4752 ext4_orphan_del(NULL, inode); 4753 goto err_out; 4754 } 4755 ext4_orphan_del(handle, inode); 4756 orphan = 0; 4757 ext4_journal_stop(handle); 4758 goto err_out; 4759 } 4760 } 4761 } 4762 4763 if (attr->ia_valid & ATTR_SIZE) { 4764 if (attr->ia_size != inode->i_size) { 4765 loff_t oldsize = inode->i_size; 4766 4767 i_size_write(inode, attr->ia_size); 4768 /* 4769 * Blocks are going to be removed from the inode. Wait 4770 * for dio in flight. Temporarily disable 4771 * dioread_nolock to prevent livelock. 4772 */ 4773 if (orphan) { 4774 if (!ext4_should_journal_data(inode)) { 4775 ext4_inode_block_unlocked_dio(inode); 4776 inode_dio_wait(inode); 4777 ext4_inode_resume_unlocked_dio(inode); 4778 } else 4779 ext4_wait_for_tail_page_commit(inode); 4780 } 4781 /* 4782 * Truncate pagecache after we've waited for commit 4783 * in data=journal mode to make pages freeable. 4784 */ 4785 truncate_pagecache(inode, oldsize, inode->i_size); 4786 } 4787 ext4_truncate(inode); 4788 } 4789 4790 if (!rc) { 4791 setattr_copy(inode, attr); 4792 mark_inode_dirty(inode); 4793 } 4794 4795 /* 4796 * If the call to ext4_truncate failed to get a transaction handle at 4797 * all, we need to clean up the in-core orphan list manually. 4798 */ 4799 if (orphan && inode->i_nlink) 4800 ext4_orphan_del(NULL, inode); 4801 4802 if (!rc && (ia_valid & ATTR_MODE)) 4803 rc = ext4_acl_chmod(inode); 4804 4805 err_out: 4806 ext4_std_error(inode->i_sb, error); 4807 if (!error) 4808 error = rc; 4809 return error; 4810 } 4811 4812 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4813 struct kstat *stat) 4814 { 4815 struct inode *inode; 4816 unsigned long delalloc_blocks; 4817 4818 inode = dentry->d_inode; 4819 generic_fillattr(inode, stat); 4820 4821 /* 4822 * We can't update i_blocks if the block allocation is delayed 4823 * otherwise in the case of system crash before the real block 4824 * allocation is done, we will have i_blocks inconsistent with 4825 * on-disk file blocks. 4826 * We always keep i_blocks updated together with real 4827 * allocation. But to not confuse with user, stat 4828 * will return the blocks that include the delayed allocation 4829 * blocks for this file. 4830 */ 4831 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4832 EXT4_I(inode)->i_reserved_data_blocks); 4833 4834 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4835 return 0; 4836 } 4837 4838 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4839 { 4840 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4841 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4842 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4843 } 4844 4845 /* 4846 * Account for index blocks, block groups bitmaps and block group 4847 * descriptor blocks if modify datablocks and index blocks 4848 * worse case, the indexs blocks spread over different block groups 4849 * 4850 * If datablocks are discontiguous, they are possible to spread over 4851 * different block groups too. If they are contiguous, with flexbg, 4852 * they could still across block group boundary. 4853 * 4854 * Also account for superblock, inode, quota and xattr blocks 4855 */ 4856 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4857 { 4858 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4859 int gdpblocks; 4860 int idxblocks; 4861 int ret = 0; 4862 4863 /* 4864 * How many index blocks need to touch to modify nrblocks? 4865 * The "Chunk" flag indicating whether the nrblocks is 4866 * physically contiguous on disk 4867 * 4868 * For Direct IO and fallocate, they calls get_block to allocate 4869 * one single extent at a time, so they could set the "Chunk" flag 4870 */ 4871 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4872 4873 ret = idxblocks; 4874 4875 /* 4876 * Now let's see how many group bitmaps and group descriptors need 4877 * to account 4878 */ 4879 groups = idxblocks; 4880 if (chunk) 4881 groups += 1; 4882 else 4883 groups += nrblocks; 4884 4885 gdpblocks = groups; 4886 if (groups > ngroups) 4887 groups = ngroups; 4888 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4889 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4890 4891 /* bitmaps and block group descriptor blocks */ 4892 ret += groups + gdpblocks; 4893 4894 /* Blocks for super block, inode, quota and xattr blocks */ 4895 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4896 4897 return ret; 4898 } 4899 4900 /* 4901 * Calculate the total number of credits to reserve to fit 4902 * the modification of a single pages into a single transaction, 4903 * which may include multiple chunks of block allocations. 4904 * 4905 * This could be called via ext4_write_begin() 4906 * 4907 * We need to consider the worse case, when 4908 * one new block per extent. 4909 */ 4910 int ext4_writepage_trans_blocks(struct inode *inode) 4911 { 4912 int bpp = ext4_journal_blocks_per_page(inode); 4913 int ret; 4914 4915 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4916 4917 /* Account for data blocks for journalled mode */ 4918 if (ext4_should_journal_data(inode)) 4919 ret += bpp; 4920 return ret; 4921 } 4922 4923 /* 4924 * Calculate the journal credits for a chunk of data modification. 4925 * 4926 * This is called from DIO, fallocate or whoever calling 4927 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4928 * 4929 * journal buffers for data blocks are not included here, as DIO 4930 * and fallocate do no need to journal data buffers. 4931 */ 4932 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4933 { 4934 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4935 } 4936 4937 /* 4938 * The caller must have previously called ext4_reserve_inode_write(). 4939 * Give this, we know that the caller already has write access to iloc->bh. 4940 */ 4941 int ext4_mark_iloc_dirty(handle_t *handle, 4942 struct inode *inode, struct ext4_iloc *iloc) 4943 { 4944 int err = 0; 4945 4946 if (IS_I_VERSION(inode)) 4947 inode_inc_iversion(inode); 4948 4949 /* the do_update_inode consumes one bh->b_count */ 4950 get_bh(iloc->bh); 4951 4952 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4953 err = ext4_do_update_inode(handle, inode, iloc); 4954 put_bh(iloc->bh); 4955 return err; 4956 } 4957 4958 /* 4959 * On success, We end up with an outstanding reference count against 4960 * iloc->bh. This _must_ be cleaned up later. 4961 */ 4962 4963 int 4964 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4965 struct ext4_iloc *iloc) 4966 { 4967 int err; 4968 4969 err = ext4_get_inode_loc(inode, iloc); 4970 if (!err) { 4971 BUFFER_TRACE(iloc->bh, "get_write_access"); 4972 err = ext4_journal_get_write_access(handle, iloc->bh); 4973 if (err) { 4974 brelse(iloc->bh); 4975 iloc->bh = NULL; 4976 } 4977 } 4978 ext4_std_error(inode->i_sb, err); 4979 return err; 4980 } 4981 4982 /* 4983 * Expand an inode by new_extra_isize bytes. 4984 * Returns 0 on success or negative error number on failure. 4985 */ 4986 static int ext4_expand_extra_isize(struct inode *inode, 4987 unsigned int new_extra_isize, 4988 struct ext4_iloc iloc, 4989 handle_t *handle) 4990 { 4991 struct ext4_inode *raw_inode; 4992 struct ext4_xattr_ibody_header *header; 4993 4994 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4995 return 0; 4996 4997 raw_inode = ext4_raw_inode(&iloc); 4998 4999 header = IHDR(inode, raw_inode); 5000 5001 /* No extended attributes present */ 5002 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5003 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5004 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5005 new_extra_isize); 5006 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5007 return 0; 5008 } 5009 5010 /* try to expand with EAs present */ 5011 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5012 raw_inode, handle); 5013 } 5014 5015 /* 5016 * What we do here is to mark the in-core inode as clean with respect to inode 5017 * dirtiness (it may still be data-dirty). 5018 * This means that the in-core inode may be reaped by prune_icache 5019 * without having to perform any I/O. This is a very good thing, 5020 * because *any* task may call prune_icache - even ones which 5021 * have a transaction open against a different journal. 5022 * 5023 * Is this cheating? Not really. Sure, we haven't written the 5024 * inode out, but prune_icache isn't a user-visible syncing function. 5025 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5026 * we start and wait on commits. 5027 */ 5028 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5029 { 5030 struct ext4_iloc iloc; 5031 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5032 static unsigned int mnt_count; 5033 int err, ret; 5034 5035 might_sleep(); 5036 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5037 err = ext4_reserve_inode_write(handle, inode, &iloc); 5038 if (ext4_handle_valid(handle) && 5039 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5040 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5041 /* 5042 * We need extra buffer credits since we may write into EA block 5043 * with this same handle. If journal_extend fails, then it will 5044 * only result in a minor loss of functionality for that inode. 5045 * If this is felt to be critical, then e2fsck should be run to 5046 * force a large enough s_min_extra_isize. 5047 */ 5048 if ((jbd2_journal_extend(handle, 5049 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5050 ret = ext4_expand_extra_isize(inode, 5051 sbi->s_want_extra_isize, 5052 iloc, handle); 5053 if (ret) { 5054 ext4_set_inode_state(inode, 5055 EXT4_STATE_NO_EXPAND); 5056 if (mnt_count != 5057 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5058 ext4_warning(inode->i_sb, 5059 "Unable to expand inode %lu. Delete" 5060 " some EAs or run e2fsck.", 5061 inode->i_ino); 5062 mnt_count = 5063 le16_to_cpu(sbi->s_es->s_mnt_count); 5064 } 5065 } 5066 } 5067 } 5068 if (!err) 5069 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5070 return err; 5071 } 5072 5073 /* 5074 * ext4_dirty_inode() is called from __mark_inode_dirty() 5075 * 5076 * We're really interested in the case where a file is being extended. 5077 * i_size has been changed by generic_commit_write() and we thus need 5078 * to include the updated inode in the current transaction. 5079 * 5080 * Also, dquot_alloc_block() will always dirty the inode when blocks 5081 * are allocated to the file. 5082 * 5083 * If the inode is marked synchronous, we don't honour that here - doing 5084 * so would cause a commit on atime updates, which we don't bother doing. 5085 * We handle synchronous inodes at the highest possible level. 5086 */ 5087 void ext4_dirty_inode(struct inode *inode, int flags) 5088 { 5089 handle_t *handle; 5090 5091 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5092 if (IS_ERR(handle)) 5093 goto out; 5094 5095 ext4_mark_inode_dirty(handle, inode); 5096 5097 ext4_journal_stop(handle); 5098 out: 5099 return; 5100 } 5101 5102 #if 0 5103 /* 5104 * Bind an inode's backing buffer_head into this transaction, to prevent 5105 * it from being flushed to disk early. Unlike 5106 * ext4_reserve_inode_write, this leaves behind no bh reference and 5107 * returns no iloc structure, so the caller needs to repeat the iloc 5108 * lookup to mark the inode dirty later. 5109 */ 5110 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5111 { 5112 struct ext4_iloc iloc; 5113 5114 int err = 0; 5115 if (handle) { 5116 err = ext4_get_inode_loc(inode, &iloc); 5117 if (!err) { 5118 BUFFER_TRACE(iloc.bh, "get_write_access"); 5119 err = jbd2_journal_get_write_access(handle, iloc.bh); 5120 if (!err) 5121 err = ext4_handle_dirty_metadata(handle, 5122 NULL, 5123 iloc.bh); 5124 brelse(iloc.bh); 5125 } 5126 } 5127 ext4_std_error(inode->i_sb, err); 5128 return err; 5129 } 5130 #endif 5131 5132 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5133 { 5134 journal_t *journal; 5135 handle_t *handle; 5136 int err; 5137 5138 /* 5139 * We have to be very careful here: changing a data block's 5140 * journaling status dynamically is dangerous. If we write a 5141 * data block to the journal, change the status and then delete 5142 * that block, we risk forgetting to revoke the old log record 5143 * from the journal and so a subsequent replay can corrupt data. 5144 * So, first we make sure that the journal is empty and that 5145 * nobody is changing anything. 5146 */ 5147 5148 journal = EXT4_JOURNAL(inode); 5149 if (!journal) 5150 return 0; 5151 if (is_journal_aborted(journal)) 5152 return -EROFS; 5153 /* We have to allocate physical blocks for delalloc blocks 5154 * before flushing journal. otherwise delalloc blocks can not 5155 * be allocated any more. even more truncate on delalloc blocks 5156 * could trigger BUG by flushing delalloc blocks in journal. 5157 * There is no delalloc block in non-journal data mode. 5158 */ 5159 if (val && test_opt(inode->i_sb, DELALLOC)) { 5160 err = ext4_alloc_da_blocks(inode); 5161 if (err < 0) 5162 return err; 5163 } 5164 5165 /* Wait for all existing dio workers */ 5166 ext4_inode_block_unlocked_dio(inode); 5167 inode_dio_wait(inode); 5168 5169 jbd2_journal_lock_updates(journal); 5170 5171 /* 5172 * OK, there are no updates running now, and all cached data is 5173 * synced to disk. We are now in a completely consistent state 5174 * which doesn't have anything in the journal, and we know that 5175 * no filesystem updates are running, so it is safe to modify 5176 * the inode's in-core data-journaling state flag now. 5177 */ 5178 5179 if (val) 5180 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5181 else { 5182 jbd2_journal_flush(journal); 5183 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5184 } 5185 ext4_set_aops(inode); 5186 5187 jbd2_journal_unlock_updates(journal); 5188 ext4_inode_resume_unlocked_dio(inode); 5189 5190 /* Finally we can mark the inode as dirty. */ 5191 5192 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5193 if (IS_ERR(handle)) 5194 return PTR_ERR(handle); 5195 5196 err = ext4_mark_inode_dirty(handle, inode); 5197 ext4_handle_sync(handle); 5198 ext4_journal_stop(handle); 5199 ext4_std_error(inode->i_sb, err); 5200 5201 return err; 5202 } 5203 5204 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5205 { 5206 return !buffer_mapped(bh); 5207 } 5208 5209 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5210 { 5211 struct page *page = vmf->page; 5212 loff_t size; 5213 unsigned long len; 5214 int ret; 5215 struct file *file = vma->vm_file; 5216 struct inode *inode = file_inode(file); 5217 struct address_space *mapping = inode->i_mapping; 5218 handle_t *handle; 5219 get_block_t *get_block; 5220 int retries = 0; 5221 5222 sb_start_pagefault(inode->i_sb); 5223 file_update_time(vma->vm_file); 5224 /* Delalloc case is easy... */ 5225 if (test_opt(inode->i_sb, DELALLOC) && 5226 !ext4_should_journal_data(inode) && 5227 !ext4_nonda_switch(inode->i_sb)) { 5228 do { 5229 ret = __block_page_mkwrite(vma, vmf, 5230 ext4_da_get_block_prep); 5231 } while (ret == -ENOSPC && 5232 ext4_should_retry_alloc(inode->i_sb, &retries)); 5233 goto out_ret; 5234 } 5235 5236 lock_page(page); 5237 size = i_size_read(inode); 5238 /* Page got truncated from under us? */ 5239 if (page->mapping != mapping || page_offset(page) > size) { 5240 unlock_page(page); 5241 ret = VM_FAULT_NOPAGE; 5242 goto out; 5243 } 5244 5245 if (page->index == size >> PAGE_CACHE_SHIFT) 5246 len = size & ~PAGE_CACHE_MASK; 5247 else 5248 len = PAGE_CACHE_SIZE; 5249 /* 5250 * Return if we have all the buffers mapped. This avoids the need to do 5251 * journal_start/journal_stop which can block and take a long time 5252 */ 5253 if (page_has_buffers(page)) { 5254 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5255 0, len, NULL, 5256 ext4_bh_unmapped)) { 5257 /* Wait so that we don't change page under IO */ 5258 wait_for_stable_page(page); 5259 ret = VM_FAULT_LOCKED; 5260 goto out; 5261 } 5262 } 5263 unlock_page(page); 5264 /* OK, we need to fill the hole... */ 5265 if (ext4_should_dioread_nolock(inode)) 5266 get_block = ext4_get_block_write; 5267 else 5268 get_block = ext4_get_block; 5269 retry_alloc: 5270 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5271 ext4_writepage_trans_blocks(inode)); 5272 if (IS_ERR(handle)) { 5273 ret = VM_FAULT_SIGBUS; 5274 goto out; 5275 } 5276 ret = __block_page_mkwrite(vma, vmf, get_block); 5277 if (!ret && ext4_should_journal_data(inode)) { 5278 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5279 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5280 unlock_page(page); 5281 ret = VM_FAULT_SIGBUS; 5282 ext4_journal_stop(handle); 5283 goto out; 5284 } 5285 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5286 } 5287 ext4_journal_stop(handle); 5288 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5289 goto retry_alloc; 5290 out_ret: 5291 ret = block_page_mkwrite_return(ret); 5292 out: 5293 sb_end_pagefault(inode->i_sb); 5294 return ret; 5295 } 5296