1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 !inode_is_open_for_write(inode)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 403 map->m_len)) { 404 ext4_error_inode(inode, func, line, map->m_pblk, 405 "lblock %lu mapped to illegal pblock %llu " 406 "(length %d)", (unsigned long) map->m_lblk, 407 map->m_pblk, map->m_len); 408 return -EFSCORRUPTED; 409 } 410 return 0; 411 } 412 413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 414 ext4_lblk_t len) 415 { 416 int ret; 417 418 if (IS_ENCRYPTED(inode)) 419 return fscrypt_zeroout_range(inode, lblk, pblk, len); 420 421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 422 if (ret > 0) 423 ret = 0; 424 425 return ret; 426 } 427 428 #define check_block_validity(inode, map) \ 429 __check_block_validity((inode), __func__, __LINE__, (map)) 430 431 #ifdef ES_AGGRESSIVE_TEST 432 static void ext4_map_blocks_es_recheck(handle_t *handle, 433 struct inode *inode, 434 struct ext4_map_blocks *es_map, 435 struct ext4_map_blocks *map, 436 int flags) 437 { 438 int retval; 439 440 map->m_flags = 0; 441 /* 442 * There is a race window that the result is not the same. 443 * e.g. xfstests #223 when dioread_nolock enables. The reason 444 * is that we lookup a block mapping in extent status tree with 445 * out taking i_data_sem. So at the time the unwritten extent 446 * could be converted. 447 */ 448 down_read(&EXT4_I(inode)->i_data_sem); 449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 450 retval = ext4_ext_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } else { 453 retval = ext4_ind_map_blocks(handle, inode, map, flags & 454 EXT4_GET_BLOCKS_KEEP_SIZE); 455 } 456 up_read((&EXT4_I(inode)->i_data_sem)); 457 458 /* 459 * We don't check m_len because extent will be collpased in status 460 * tree. So the m_len might not equal. 461 */ 462 if (es_map->m_lblk != map->m_lblk || 463 es_map->m_flags != map->m_flags || 464 es_map->m_pblk != map->m_pblk) { 465 printk("ES cache assertion failed for inode: %lu " 466 "es_cached ex [%d/%d/%llu/%x] != " 467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 468 inode->i_ino, es_map->m_lblk, es_map->m_len, 469 es_map->m_pblk, es_map->m_flags, map->m_lblk, 470 map->m_len, map->m_pblk, map->m_flags, 471 retval, flags); 472 } 473 } 474 #endif /* ES_AGGRESSIVE_TEST */ 475 476 /* 477 * The ext4_map_blocks() function tries to look up the requested blocks, 478 * and returns if the blocks are already mapped. 479 * 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 481 * and store the allocated blocks in the result buffer head and mark it 482 * mapped. 483 * 484 * If file type is extents based, it will call ext4_ext_map_blocks(), 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 486 * based files 487 * 488 * On success, it returns the number of blocks being mapped or allocated. if 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 491 * 492 * It returns 0 if plain look up failed (blocks have not been allocated), in 493 * that case, @map is returned as unmapped but we still do fill map->m_len to 494 * indicate the length of a hole starting at map->m_lblk. 495 * 496 * It returns the error in case of allocation failure. 497 */ 498 int ext4_map_blocks(handle_t *handle, struct inode *inode, 499 struct ext4_map_blocks *map, int flags) 500 { 501 struct extent_status es; 502 int retval; 503 int ret = 0; 504 #ifdef ES_AGGRESSIVE_TEST 505 struct ext4_map_blocks orig_map; 506 507 memcpy(&orig_map, map, sizeof(*map)); 508 #endif 509 510 map->m_flags = 0; 511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 512 "logical block %lu\n", inode->i_ino, flags, map->m_len, 513 (unsigned long) map->m_lblk); 514 515 /* 516 * ext4_map_blocks returns an int, and m_len is an unsigned int 517 */ 518 if (unlikely(map->m_len > INT_MAX)) 519 map->m_len = INT_MAX; 520 521 /* We can handle the block number less than EXT_MAX_BLOCKS */ 522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 523 return -EFSCORRUPTED; 524 525 /* Lookup extent status tree firstly */ 526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 528 map->m_pblk = ext4_es_pblock(&es) + 529 map->m_lblk - es.es_lblk; 530 map->m_flags |= ext4_es_is_written(&es) ? 531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 532 retval = es.es_len - (map->m_lblk - es.es_lblk); 533 if (retval > map->m_len) 534 retval = map->m_len; 535 map->m_len = retval; 536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 537 map->m_pblk = 0; 538 retval = es.es_len - (map->m_lblk - es.es_lblk); 539 if (retval > map->m_len) 540 retval = map->m_len; 541 map->m_len = retval; 542 retval = 0; 543 } else { 544 BUG_ON(1); 545 } 546 #ifdef ES_AGGRESSIVE_TEST 547 ext4_map_blocks_es_recheck(handle, inode, map, 548 &orig_map, flags); 549 #endif 550 goto found; 551 } 552 553 /* 554 * Try to see if we can get the block without requesting a new 555 * file system block. 556 */ 557 down_read(&EXT4_I(inode)->i_data_sem); 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 559 retval = ext4_ext_map_blocks(handle, inode, map, flags & 560 EXT4_GET_BLOCKS_KEEP_SIZE); 561 } else { 562 retval = ext4_ind_map_blocks(handle, inode, map, flags & 563 EXT4_GET_BLOCKS_KEEP_SIZE); 564 } 565 if (retval > 0) { 566 unsigned int status; 567 568 if (unlikely(retval != map->m_len)) { 569 ext4_warning(inode->i_sb, 570 "ES len assertion failed for inode " 571 "%lu: retval %d != map->m_len %d", 572 inode->i_ino, retval, map->m_len); 573 WARN_ON(1); 574 } 575 576 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 579 !(status & EXTENT_STATUS_WRITTEN) && 580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 581 map->m_lblk + map->m_len - 1)) 582 status |= EXTENT_STATUS_DELAYED; 583 ret = ext4_es_insert_extent(inode, map->m_lblk, 584 map->m_len, map->m_pblk, status); 585 if (ret < 0) 586 retval = ret; 587 } 588 up_read((&EXT4_I(inode)->i_data_sem)); 589 590 found: 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 592 ret = check_block_validity(inode, map); 593 if (ret != 0) 594 return ret; 595 } 596 597 /* If it is only a block(s) look up */ 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 599 return retval; 600 601 /* 602 * Returns if the blocks have already allocated 603 * 604 * Note that if blocks have been preallocated 605 * ext4_ext_get_block() returns the create = 0 606 * with buffer head unmapped. 607 */ 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 609 /* 610 * If we need to convert extent to unwritten 611 * we continue and do the actual work in 612 * ext4_ext_map_blocks() 613 */ 614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 615 return retval; 616 617 /* 618 * Here we clear m_flags because after allocating an new extent, 619 * it will be set again. 620 */ 621 map->m_flags &= ~EXT4_MAP_FLAGS; 622 623 /* 624 * New blocks allocate and/or writing to unwritten extent 625 * will possibly result in updating i_data, so we take 626 * the write lock of i_data_sem, and call get_block() 627 * with create == 1 flag. 628 */ 629 down_write(&EXT4_I(inode)->i_data_sem); 630 631 /* 632 * We need to check for EXT4 here because migrate 633 * could have changed the inode type in between 634 */ 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 636 retval = ext4_ext_map_blocks(handle, inode, map, flags); 637 } else { 638 retval = ext4_ind_map_blocks(handle, inode, map, flags); 639 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 641 /* 642 * We allocated new blocks which will result in 643 * i_data's format changing. Force the migrate 644 * to fail by clearing migrate flags 645 */ 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 647 } 648 649 /* 650 * Update reserved blocks/metadata blocks after successful 651 * block allocation which had been deferred till now. We don't 652 * support fallocate for non extent files. So we can update 653 * reserve space here. 654 */ 655 if ((retval > 0) && 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 657 ext4_da_update_reserve_space(inode, retval, 1); 658 } 659 660 if (retval > 0) { 661 unsigned int status; 662 663 if (unlikely(retval != map->m_len)) { 664 ext4_warning(inode->i_sb, 665 "ES len assertion failed for inode " 666 "%lu: retval %d != map->m_len %d", 667 inode->i_ino, retval, map->m_len); 668 WARN_ON(1); 669 } 670 671 /* 672 * We have to zeroout blocks before inserting them into extent 673 * status tree. Otherwise someone could look them up there and 674 * use them before they are really zeroed. We also have to 675 * unmap metadata before zeroing as otherwise writeback can 676 * overwrite zeros with stale data from block device. 677 */ 678 if (flags & EXT4_GET_BLOCKS_ZERO && 679 map->m_flags & EXT4_MAP_MAPPED && 680 map->m_flags & EXT4_MAP_NEW) { 681 ret = ext4_issue_zeroout(inode, map->m_lblk, 682 map->m_pblk, map->m_len); 683 if (ret) { 684 retval = ret; 685 goto out_sem; 686 } 687 } 688 689 /* 690 * If the extent has been zeroed out, we don't need to update 691 * extent status tree. 692 */ 693 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 694 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 695 if (ext4_es_is_written(&es)) 696 goto out_sem; 697 } 698 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 699 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 700 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 701 !(status & EXTENT_STATUS_WRITTEN) && 702 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 703 map->m_lblk + map->m_len - 1)) 704 status |= EXTENT_STATUS_DELAYED; 705 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 706 map->m_pblk, status); 707 if (ret < 0) { 708 retval = ret; 709 goto out_sem; 710 } 711 } 712 713 out_sem: 714 up_write((&EXT4_I(inode)->i_data_sem)); 715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 716 ret = check_block_validity(inode, map); 717 if (ret != 0) 718 return ret; 719 720 /* 721 * Inodes with freshly allocated blocks where contents will be 722 * visible after transaction commit must be on transaction's 723 * ordered data list. 724 */ 725 if (map->m_flags & EXT4_MAP_NEW && 726 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 727 !(flags & EXT4_GET_BLOCKS_ZERO) && 728 !ext4_is_quota_file(inode) && 729 ext4_should_order_data(inode)) { 730 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 731 ret = ext4_jbd2_inode_add_wait(handle, inode); 732 else 733 ret = ext4_jbd2_inode_add_write(handle, inode); 734 if (ret) 735 return ret; 736 } 737 } 738 return retval; 739 } 740 741 /* 742 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 743 * we have to be careful as someone else may be manipulating b_state as well. 744 */ 745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 746 { 747 unsigned long old_state; 748 unsigned long new_state; 749 750 flags &= EXT4_MAP_FLAGS; 751 752 /* Dummy buffer_head? Set non-atomically. */ 753 if (!bh->b_page) { 754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 755 return; 756 } 757 /* 758 * Someone else may be modifying b_state. Be careful! This is ugly but 759 * once we get rid of using bh as a container for mapping information 760 * to pass to / from get_block functions, this can go away. 761 */ 762 do { 763 old_state = READ_ONCE(bh->b_state); 764 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 765 } while (unlikely( 766 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 767 } 768 769 static int _ext4_get_block(struct inode *inode, sector_t iblock, 770 struct buffer_head *bh, int flags) 771 { 772 struct ext4_map_blocks map; 773 int ret = 0; 774 775 if (ext4_has_inline_data(inode)) 776 return -ERANGE; 777 778 map.m_lblk = iblock; 779 map.m_len = bh->b_size >> inode->i_blkbits; 780 781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 782 flags); 783 if (ret > 0) { 784 map_bh(bh, inode->i_sb, map.m_pblk); 785 ext4_update_bh_state(bh, map.m_flags); 786 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 787 ret = 0; 788 } else if (ret == 0) { 789 /* hole case, need to fill in bh->b_size */ 790 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 791 } 792 return ret; 793 } 794 795 int ext4_get_block(struct inode *inode, sector_t iblock, 796 struct buffer_head *bh, int create) 797 { 798 return _ext4_get_block(inode, iblock, bh, 799 create ? EXT4_GET_BLOCKS_CREATE : 0); 800 } 801 802 /* 803 * Get block function used when preparing for buffered write if we require 804 * creating an unwritten extent if blocks haven't been allocated. The extent 805 * will be converted to written after the IO is complete. 806 */ 807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh_result, int create) 809 { 810 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 811 inode->i_ino, create); 812 return _ext4_get_block(inode, iblock, bh_result, 813 EXT4_GET_BLOCKS_IO_CREATE_EXT); 814 } 815 816 /* Maximum number of blocks we map for direct IO at once. */ 817 #define DIO_MAX_BLOCKS 4096 818 819 /* 820 * Get blocks function for the cases that need to start a transaction - 821 * generally difference cases of direct IO and DAX IO. It also handles retries 822 * in case of ENOSPC. 823 */ 824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 825 struct buffer_head *bh_result, int flags) 826 { 827 int dio_credits; 828 handle_t *handle; 829 int retries = 0; 830 int ret; 831 832 /* Trim mapping request to maximum we can map at once for DIO */ 833 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 834 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 835 dio_credits = ext4_chunk_trans_blocks(inode, 836 bh_result->b_size >> inode->i_blkbits); 837 retry: 838 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 839 if (IS_ERR(handle)) 840 return PTR_ERR(handle); 841 842 ret = _ext4_get_block(inode, iblock, bh_result, flags); 843 ext4_journal_stop(handle); 844 845 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 846 goto retry; 847 return ret; 848 } 849 850 /* Get block function for DIO reads and writes to inodes without extents */ 851 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 852 struct buffer_head *bh, int create) 853 { 854 /* We don't expect handle for direct IO */ 855 WARN_ON_ONCE(ext4_journal_current_handle()); 856 857 if (!create) 858 return _ext4_get_block(inode, iblock, bh, 0); 859 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 860 } 861 862 /* 863 * Get block function for AIO DIO writes when we create unwritten extent if 864 * blocks are not allocated yet. The extent will be converted to written 865 * after IO is complete. 866 */ 867 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 868 sector_t iblock, struct buffer_head *bh_result, int create) 869 { 870 int ret; 871 872 /* We don't expect handle for direct IO */ 873 WARN_ON_ONCE(ext4_journal_current_handle()); 874 875 ret = ext4_get_block_trans(inode, iblock, bh_result, 876 EXT4_GET_BLOCKS_IO_CREATE_EXT); 877 878 /* 879 * When doing DIO using unwritten extents, we need io_end to convert 880 * unwritten extents to written on IO completion. We allocate io_end 881 * once we spot unwritten extent and store it in b_private. Generic 882 * DIO code keeps b_private set and furthermore passes the value to 883 * our completion callback in 'private' argument. 884 */ 885 if (!ret && buffer_unwritten(bh_result)) { 886 if (!bh_result->b_private) { 887 ext4_io_end_t *io_end; 888 889 io_end = ext4_init_io_end(inode, GFP_KERNEL); 890 if (!io_end) 891 return -ENOMEM; 892 bh_result->b_private = io_end; 893 ext4_set_io_unwritten_flag(inode, io_end); 894 } 895 set_buffer_defer_completion(bh_result); 896 } 897 898 return ret; 899 } 900 901 /* 902 * Get block function for non-AIO DIO writes when we create unwritten extent if 903 * blocks are not allocated yet. The extent will be converted to written 904 * after IO is complete by ext4_direct_IO_write(). 905 */ 906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 907 sector_t iblock, struct buffer_head *bh_result, int create) 908 { 909 int ret; 910 911 /* We don't expect handle for direct IO */ 912 WARN_ON_ONCE(ext4_journal_current_handle()); 913 914 ret = ext4_get_block_trans(inode, iblock, bh_result, 915 EXT4_GET_BLOCKS_IO_CREATE_EXT); 916 917 /* 918 * Mark inode as having pending DIO writes to unwritten extents. 919 * ext4_direct_IO_write() checks this flag and converts extents to 920 * written. 921 */ 922 if (!ret && buffer_unwritten(bh_result)) 923 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 924 925 return ret; 926 } 927 928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 929 struct buffer_head *bh_result, int create) 930 { 931 int ret; 932 933 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 934 inode->i_ino, create); 935 /* We don't expect handle for direct IO */ 936 WARN_ON_ONCE(ext4_journal_current_handle()); 937 938 ret = _ext4_get_block(inode, iblock, bh_result, 0); 939 /* 940 * Blocks should have been preallocated! ext4_file_write_iter() checks 941 * that. 942 */ 943 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 944 945 return ret; 946 } 947 948 949 /* 950 * `handle' can be NULL if create is zero 951 */ 952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 953 ext4_lblk_t block, int map_flags) 954 { 955 struct ext4_map_blocks map; 956 struct buffer_head *bh; 957 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 958 int err; 959 960 J_ASSERT(handle != NULL || create == 0); 961 962 map.m_lblk = block; 963 map.m_len = 1; 964 err = ext4_map_blocks(handle, inode, &map, map_flags); 965 966 if (err == 0) 967 return create ? ERR_PTR(-ENOSPC) : NULL; 968 if (err < 0) 969 return ERR_PTR(err); 970 971 bh = sb_getblk(inode->i_sb, map.m_pblk); 972 if (unlikely(!bh)) 973 return ERR_PTR(-ENOMEM); 974 if (map.m_flags & EXT4_MAP_NEW) { 975 J_ASSERT(create != 0); 976 J_ASSERT(handle != NULL); 977 978 /* 979 * Now that we do not always journal data, we should 980 * keep in mind whether this should always journal the 981 * new buffer as metadata. For now, regular file 982 * writes use ext4_get_block instead, so it's not a 983 * problem. 984 */ 985 lock_buffer(bh); 986 BUFFER_TRACE(bh, "call get_create_access"); 987 err = ext4_journal_get_create_access(handle, bh); 988 if (unlikely(err)) { 989 unlock_buffer(bh); 990 goto errout; 991 } 992 if (!buffer_uptodate(bh)) { 993 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 994 set_buffer_uptodate(bh); 995 } 996 unlock_buffer(bh); 997 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 998 err = ext4_handle_dirty_metadata(handle, inode, bh); 999 if (unlikely(err)) 1000 goto errout; 1001 } else 1002 BUFFER_TRACE(bh, "not a new buffer"); 1003 return bh; 1004 errout: 1005 brelse(bh); 1006 return ERR_PTR(err); 1007 } 1008 1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1010 ext4_lblk_t block, int map_flags) 1011 { 1012 struct buffer_head *bh; 1013 1014 bh = ext4_getblk(handle, inode, block, map_flags); 1015 if (IS_ERR(bh)) 1016 return bh; 1017 if (!bh || buffer_uptodate(bh)) 1018 return bh; 1019 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1020 wait_on_buffer(bh); 1021 if (buffer_uptodate(bh)) 1022 return bh; 1023 put_bh(bh); 1024 return ERR_PTR(-EIO); 1025 } 1026 1027 /* Read a contiguous batch of blocks. */ 1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1029 bool wait, struct buffer_head **bhs) 1030 { 1031 int i, err; 1032 1033 for (i = 0; i < bh_count; i++) { 1034 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1035 if (IS_ERR(bhs[i])) { 1036 err = PTR_ERR(bhs[i]); 1037 bh_count = i; 1038 goto out_brelse; 1039 } 1040 } 1041 1042 for (i = 0; i < bh_count; i++) 1043 /* Note that NULL bhs[i] is valid because of holes. */ 1044 if (bhs[i] && !buffer_uptodate(bhs[i])) 1045 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1046 &bhs[i]); 1047 1048 if (!wait) 1049 return 0; 1050 1051 for (i = 0; i < bh_count; i++) 1052 if (bhs[i]) 1053 wait_on_buffer(bhs[i]); 1054 1055 for (i = 0; i < bh_count; i++) { 1056 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1057 err = -EIO; 1058 goto out_brelse; 1059 } 1060 } 1061 return 0; 1062 1063 out_brelse: 1064 for (i = 0; i < bh_count; i++) { 1065 brelse(bhs[i]); 1066 bhs[i] = NULL; 1067 } 1068 return err; 1069 } 1070 1071 int ext4_walk_page_buffers(handle_t *handle, 1072 struct buffer_head *head, 1073 unsigned from, 1074 unsigned to, 1075 int *partial, 1076 int (*fn)(handle_t *handle, 1077 struct buffer_head *bh)) 1078 { 1079 struct buffer_head *bh; 1080 unsigned block_start, block_end; 1081 unsigned blocksize = head->b_size; 1082 int err, ret = 0; 1083 struct buffer_head *next; 1084 1085 for (bh = head, block_start = 0; 1086 ret == 0 && (bh != head || !block_start); 1087 block_start = block_end, bh = next) { 1088 next = bh->b_this_page; 1089 block_end = block_start + blocksize; 1090 if (block_end <= from || block_start >= to) { 1091 if (partial && !buffer_uptodate(bh)) 1092 *partial = 1; 1093 continue; 1094 } 1095 err = (*fn)(handle, bh); 1096 if (!ret) 1097 ret = err; 1098 } 1099 return ret; 1100 } 1101 1102 /* 1103 * To preserve ordering, it is essential that the hole instantiation and 1104 * the data write be encapsulated in a single transaction. We cannot 1105 * close off a transaction and start a new one between the ext4_get_block() 1106 * and the commit_write(). So doing the jbd2_journal_start at the start of 1107 * prepare_write() is the right place. 1108 * 1109 * Also, this function can nest inside ext4_writepage(). In that case, we 1110 * *know* that ext4_writepage() has generated enough buffer credits to do the 1111 * whole page. So we won't block on the journal in that case, which is good, 1112 * because the caller may be PF_MEMALLOC. 1113 * 1114 * By accident, ext4 can be reentered when a transaction is open via 1115 * quota file writes. If we were to commit the transaction while thus 1116 * reentered, there can be a deadlock - we would be holding a quota 1117 * lock, and the commit would never complete if another thread had a 1118 * transaction open and was blocking on the quota lock - a ranking 1119 * violation. 1120 * 1121 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1122 * will _not_ run commit under these circumstances because handle->h_ref 1123 * is elevated. We'll still have enough credits for the tiny quotafile 1124 * write. 1125 */ 1126 int do_journal_get_write_access(handle_t *handle, 1127 struct buffer_head *bh) 1128 { 1129 int dirty = buffer_dirty(bh); 1130 int ret; 1131 1132 if (!buffer_mapped(bh) || buffer_freed(bh)) 1133 return 0; 1134 /* 1135 * __block_write_begin() could have dirtied some buffers. Clean 1136 * the dirty bit as jbd2_journal_get_write_access() could complain 1137 * otherwise about fs integrity issues. Setting of the dirty bit 1138 * by __block_write_begin() isn't a real problem here as we clear 1139 * the bit before releasing a page lock and thus writeback cannot 1140 * ever write the buffer. 1141 */ 1142 if (dirty) 1143 clear_buffer_dirty(bh); 1144 BUFFER_TRACE(bh, "get write access"); 1145 ret = ext4_journal_get_write_access(handle, bh); 1146 if (!ret && dirty) 1147 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1148 return ret; 1149 } 1150 1151 #ifdef CONFIG_FS_ENCRYPTION 1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1153 get_block_t *get_block) 1154 { 1155 unsigned from = pos & (PAGE_SIZE - 1); 1156 unsigned to = from + len; 1157 struct inode *inode = page->mapping->host; 1158 unsigned block_start, block_end; 1159 sector_t block; 1160 int err = 0; 1161 unsigned blocksize = inode->i_sb->s_blocksize; 1162 unsigned bbits; 1163 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1164 bool decrypt = false; 1165 1166 BUG_ON(!PageLocked(page)); 1167 BUG_ON(from > PAGE_SIZE); 1168 BUG_ON(to > PAGE_SIZE); 1169 BUG_ON(from > to); 1170 1171 if (!page_has_buffers(page)) 1172 create_empty_buffers(page, blocksize, 0); 1173 head = page_buffers(page); 1174 bbits = ilog2(blocksize); 1175 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1176 1177 for (bh = head, block_start = 0; bh != head || !block_start; 1178 block++, block_start = block_end, bh = bh->b_this_page) { 1179 block_end = block_start + blocksize; 1180 if (block_end <= from || block_start >= to) { 1181 if (PageUptodate(page)) { 1182 if (!buffer_uptodate(bh)) 1183 set_buffer_uptodate(bh); 1184 } 1185 continue; 1186 } 1187 if (buffer_new(bh)) 1188 clear_buffer_new(bh); 1189 if (!buffer_mapped(bh)) { 1190 WARN_ON(bh->b_size != blocksize); 1191 err = get_block(inode, block, bh, 1); 1192 if (err) 1193 break; 1194 if (buffer_new(bh)) { 1195 if (PageUptodate(page)) { 1196 clear_buffer_new(bh); 1197 set_buffer_uptodate(bh); 1198 mark_buffer_dirty(bh); 1199 continue; 1200 } 1201 if (block_end > to || block_start < from) 1202 zero_user_segments(page, to, block_end, 1203 block_start, from); 1204 continue; 1205 } 1206 } 1207 if (PageUptodate(page)) { 1208 if (!buffer_uptodate(bh)) 1209 set_buffer_uptodate(bh); 1210 continue; 1211 } 1212 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1213 !buffer_unwritten(bh) && 1214 (block_start < from || block_end > to)) { 1215 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1216 *wait_bh++ = bh; 1217 decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 1218 } 1219 } 1220 /* 1221 * If we issued read requests, let them complete. 1222 */ 1223 while (wait_bh > wait) { 1224 wait_on_buffer(*--wait_bh); 1225 if (!buffer_uptodate(*wait_bh)) 1226 err = -EIO; 1227 } 1228 if (unlikely(err)) 1229 page_zero_new_buffers(page, from, to); 1230 else if (decrypt) 1231 err = fscrypt_decrypt_page(page->mapping->host, page, 1232 PAGE_SIZE, 0, page->index); 1233 return err; 1234 } 1235 #endif 1236 1237 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1238 loff_t pos, unsigned len, unsigned flags, 1239 struct page **pagep, void **fsdata) 1240 { 1241 struct inode *inode = mapping->host; 1242 int ret, needed_blocks; 1243 handle_t *handle; 1244 int retries = 0; 1245 struct page *page; 1246 pgoff_t index; 1247 unsigned from, to; 1248 1249 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1250 return -EIO; 1251 1252 trace_ext4_write_begin(inode, pos, len, flags); 1253 /* 1254 * Reserve one block more for addition to orphan list in case 1255 * we allocate blocks but write fails for some reason 1256 */ 1257 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1258 index = pos >> PAGE_SHIFT; 1259 from = pos & (PAGE_SIZE - 1); 1260 to = from + len; 1261 1262 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1263 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1264 flags, pagep); 1265 if (ret < 0) 1266 return ret; 1267 if (ret == 1) 1268 return 0; 1269 } 1270 1271 /* 1272 * grab_cache_page_write_begin() can take a long time if the 1273 * system is thrashing due to memory pressure, or if the page 1274 * is being written back. So grab it first before we start 1275 * the transaction handle. This also allows us to allocate 1276 * the page (if needed) without using GFP_NOFS. 1277 */ 1278 retry_grab: 1279 page = grab_cache_page_write_begin(mapping, index, flags); 1280 if (!page) 1281 return -ENOMEM; 1282 unlock_page(page); 1283 1284 retry_journal: 1285 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1286 if (IS_ERR(handle)) { 1287 put_page(page); 1288 return PTR_ERR(handle); 1289 } 1290 1291 lock_page(page); 1292 if (page->mapping != mapping) { 1293 /* The page got truncated from under us */ 1294 unlock_page(page); 1295 put_page(page); 1296 ext4_journal_stop(handle); 1297 goto retry_grab; 1298 } 1299 /* In case writeback began while the page was unlocked */ 1300 wait_for_stable_page(page); 1301 1302 #ifdef CONFIG_FS_ENCRYPTION 1303 if (ext4_should_dioread_nolock(inode)) 1304 ret = ext4_block_write_begin(page, pos, len, 1305 ext4_get_block_unwritten); 1306 else 1307 ret = ext4_block_write_begin(page, pos, len, 1308 ext4_get_block); 1309 #else 1310 if (ext4_should_dioread_nolock(inode)) 1311 ret = __block_write_begin(page, pos, len, 1312 ext4_get_block_unwritten); 1313 else 1314 ret = __block_write_begin(page, pos, len, ext4_get_block); 1315 #endif 1316 if (!ret && ext4_should_journal_data(inode)) { 1317 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1318 from, to, NULL, 1319 do_journal_get_write_access); 1320 } 1321 1322 if (ret) { 1323 unlock_page(page); 1324 /* 1325 * __block_write_begin may have instantiated a few blocks 1326 * outside i_size. Trim these off again. Don't need 1327 * i_size_read because we hold i_mutex. 1328 * 1329 * Add inode to orphan list in case we crash before 1330 * truncate finishes 1331 */ 1332 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1333 ext4_orphan_add(handle, inode); 1334 1335 ext4_journal_stop(handle); 1336 if (pos + len > inode->i_size) { 1337 ext4_truncate_failed_write(inode); 1338 /* 1339 * If truncate failed early the inode might 1340 * still be on the orphan list; we need to 1341 * make sure the inode is removed from the 1342 * orphan list in that case. 1343 */ 1344 if (inode->i_nlink) 1345 ext4_orphan_del(NULL, inode); 1346 } 1347 1348 if (ret == -ENOSPC && 1349 ext4_should_retry_alloc(inode->i_sb, &retries)) 1350 goto retry_journal; 1351 put_page(page); 1352 return ret; 1353 } 1354 *pagep = page; 1355 return ret; 1356 } 1357 1358 /* For write_end() in data=journal mode */ 1359 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1360 { 1361 int ret; 1362 if (!buffer_mapped(bh) || buffer_freed(bh)) 1363 return 0; 1364 set_buffer_uptodate(bh); 1365 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1366 clear_buffer_meta(bh); 1367 clear_buffer_prio(bh); 1368 return ret; 1369 } 1370 1371 /* 1372 * We need to pick up the new inode size which generic_commit_write gave us 1373 * `file' can be NULL - eg, when called from page_symlink(). 1374 * 1375 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1376 * buffers are managed internally. 1377 */ 1378 static int ext4_write_end(struct file *file, 1379 struct address_space *mapping, 1380 loff_t pos, unsigned len, unsigned copied, 1381 struct page *page, void *fsdata) 1382 { 1383 handle_t *handle = ext4_journal_current_handle(); 1384 struct inode *inode = mapping->host; 1385 loff_t old_size = inode->i_size; 1386 int ret = 0, ret2; 1387 int i_size_changed = 0; 1388 int inline_data = ext4_has_inline_data(inode); 1389 1390 trace_ext4_write_end(inode, pos, len, copied); 1391 if (inline_data) { 1392 ret = ext4_write_inline_data_end(inode, pos, len, 1393 copied, page); 1394 if (ret < 0) { 1395 unlock_page(page); 1396 put_page(page); 1397 goto errout; 1398 } 1399 copied = ret; 1400 } else 1401 copied = block_write_end(file, mapping, pos, 1402 len, copied, page, fsdata); 1403 /* 1404 * it's important to update i_size while still holding page lock: 1405 * page writeout could otherwise come in and zero beyond i_size. 1406 */ 1407 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1408 unlock_page(page); 1409 put_page(page); 1410 1411 if (old_size < pos) 1412 pagecache_isize_extended(inode, old_size, pos); 1413 /* 1414 * Don't mark the inode dirty under page lock. First, it unnecessarily 1415 * makes the holding time of page lock longer. Second, it forces lock 1416 * ordering of page lock and transaction start for journaling 1417 * filesystems. 1418 */ 1419 if (i_size_changed || inline_data) 1420 ext4_mark_inode_dirty(handle, inode); 1421 1422 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1423 /* if we have allocated more blocks and copied 1424 * less. We will have blocks allocated outside 1425 * inode->i_size. So truncate them 1426 */ 1427 ext4_orphan_add(handle, inode); 1428 errout: 1429 ret2 = ext4_journal_stop(handle); 1430 if (!ret) 1431 ret = ret2; 1432 1433 if (pos + len > inode->i_size) { 1434 ext4_truncate_failed_write(inode); 1435 /* 1436 * If truncate failed early the inode might still be 1437 * on the orphan list; we need to make sure the inode 1438 * is removed from the orphan list in that case. 1439 */ 1440 if (inode->i_nlink) 1441 ext4_orphan_del(NULL, inode); 1442 } 1443 1444 return ret ? ret : copied; 1445 } 1446 1447 /* 1448 * This is a private version of page_zero_new_buffers() which doesn't 1449 * set the buffer to be dirty, since in data=journalled mode we need 1450 * to call ext4_handle_dirty_metadata() instead. 1451 */ 1452 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1453 struct page *page, 1454 unsigned from, unsigned to) 1455 { 1456 unsigned int block_start = 0, block_end; 1457 struct buffer_head *head, *bh; 1458 1459 bh = head = page_buffers(page); 1460 do { 1461 block_end = block_start + bh->b_size; 1462 if (buffer_new(bh)) { 1463 if (block_end > from && block_start < to) { 1464 if (!PageUptodate(page)) { 1465 unsigned start, size; 1466 1467 start = max(from, block_start); 1468 size = min(to, block_end) - start; 1469 1470 zero_user(page, start, size); 1471 write_end_fn(handle, bh); 1472 } 1473 clear_buffer_new(bh); 1474 } 1475 } 1476 block_start = block_end; 1477 bh = bh->b_this_page; 1478 } while (bh != head); 1479 } 1480 1481 static int ext4_journalled_write_end(struct file *file, 1482 struct address_space *mapping, 1483 loff_t pos, unsigned len, unsigned copied, 1484 struct page *page, void *fsdata) 1485 { 1486 handle_t *handle = ext4_journal_current_handle(); 1487 struct inode *inode = mapping->host; 1488 loff_t old_size = inode->i_size; 1489 int ret = 0, ret2; 1490 int partial = 0; 1491 unsigned from, to; 1492 int size_changed = 0; 1493 int inline_data = ext4_has_inline_data(inode); 1494 1495 trace_ext4_journalled_write_end(inode, pos, len, copied); 1496 from = pos & (PAGE_SIZE - 1); 1497 to = from + len; 1498 1499 BUG_ON(!ext4_handle_valid(handle)); 1500 1501 if (inline_data) { 1502 ret = ext4_write_inline_data_end(inode, pos, len, 1503 copied, page); 1504 if (ret < 0) { 1505 unlock_page(page); 1506 put_page(page); 1507 goto errout; 1508 } 1509 copied = ret; 1510 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1511 copied = 0; 1512 ext4_journalled_zero_new_buffers(handle, page, from, to); 1513 } else { 1514 if (unlikely(copied < len)) 1515 ext4_journalled_zero_new_buffers(handle, page, 1516 from + copied, to); 1517 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1518 from + copied, &partial, 1519 write_end_fn); 1520 if (!partial) 1521 SetPageUptodate(page); 1522 } 1523 size_changed = ext4_update_inode_size(inode, pos + copied); 1524 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1525 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1526 unlock_page(page); 1527 put_page(page); 1528 1529 if (old_size < pos) 1530 pagecache_isize_extended(inode, old_size, pos); 1531 1532 if (size_changed || inline_data) { 1533 ret2 = ext4_mark_inode_dirty(handle, inode); 1534 if (!ret) 1535 ret = ret2; 1536 } 1537 1538 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1539 /* if we have allocated more blocks and copied 1540 * less. We will have blocks allocated outside 1541 * inode->i_size. So truncate them 1542 */ 1543 ext4_orphan_add(handle, inode); 1544 1545 errout: 1546 ret2 = ext4_journal_stop(handle); 1547 if (!ret) 1548 ret = ret2; 1549 if (pos + len > inode->i_size) { 1550 ext4_truncate_failed_write(inode); 1551 /* 1552 * If truncate failed early the inode might still be 1553 * on the orphan list; we need to make sure the inode 1554 * is removed from the orphan list in that case. 1555 */ 1556 if (inode->i_nlink) 1557 ext4_orphan_del(NULL, inode); 1558 } 1559 1560 return ret ? ret : copied; 1561 } 1562 1563 /* 1564 * Reserve space for a single cluster 1565 */ 1566 static int ext4_da_reserve_space(struct inode *inode) 1567 { 1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1569 struct ext4_inode_info *ei = EXT4_I(inode); 1570 int ret; 1571 1572 /* 1573 * We will charge metadata quota at writeout time; this saves 1574 * us from metadata over-estimation, though we may go over by 1575 * a small amount in the end. Here we just reserve for data. 1576 */ 1577 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1578 if (ret) 1579 return ret; 1580 1581 spin_lock(&ei->i_block_reservation_lock); 1582 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1583 spin_unlock(&ei->i_block_reservation_lock); 1584 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1585 return -ENOSPC; 1586 } 1587 ei->i_reserved_data_blocks++; 1588 trace_ext4_da_reserve_space(inode); 1589 spin_unlock(&ei->i_block_reservation_lock); 1590 1591 return 0; /* success */ 1592 } 1593 1594 void ext4_da_release_space(struct inode *inode, int to_free) 1595 { 1596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1597 struct ext4_inode_info *ei = EXT4_I(inode); 1598 1599 if (!to_free) 1600 return; /* Nothing to release, exit */ 1601 1602 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1603 1604 trace_ext4_da_release_space(inode, to_free); 1605 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1606 /* 1607 * if there aren't enough reserved blocks, then the 1608 * counter is messed up somewhere. Since this 1609 * function is called from invalidate page, it's 1610 * harmless to return without any action. 1611 */ 1612 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1613 "ino %lu, to_free %d with only %d reserved " 1614 "data blocks", inode->i_ino, to_free, 1615 ei->i_reserved_data_blocks); 1616 WARN_ON(1); 1617 to_free = ei->i_reserved_data_blocks; 1618 } 1619 ei->i_reserved_data_blocks -= to_free; 1620 1621 /* update fs dirty data blocks counter */ 1622 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1623 1624 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1625 1626 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1627 } 1628 1629 static void ext4_da_page_release_reservation(struct page *page, 1630 unsigned int offset, 1631 unsigned int length) 1632 { 1633 int contiguous_blks = 0; 1634 struct buffer_head *head, *bh; 1635 unsigned int curr_off = 0; 1636 struct inode *inode = page->mapping->host; 1637 unsigned int stop = offset + length; 1638 ext4_fsblk_t lblk; 1639 1640 BUG_ON(stop > PAGE_SIZE || stop < length); 1641 1642 head = page_buffers(page); 1643 bh = head; 1644 do { 1645 unsigned int next_off = curr_off + bh->b_size; 1646 1647 if (next_off > stop) 1648 break; 1649 1650 if ((offset <= curr_off) && (buffer_delay(bh))) { 1651 contiguous_blks++; 1652 clear_buffer_delay(bh); 1653 } else if (contiguous_blks) { 1654 lblk = page->index << 1655 (PAGE_SHIFT - inode->i_blkbits); 1656 lblk += (curr_off >> inode->i_blkbits) - 1657 contiguous_blks; 1658 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1659 contiguous_blks = 0; 1660 } 1661 curr_off = next_off; 1662 } while ((bh = bh->b_this_page) != head); 1663 1664 if (contiguous_blks) { 1665 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1666 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1667 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1668 } 1669 1670 } 1671 1672 /* 1673 * Delayed allocation stuff 1674 */ 1675 1676 struct mpage_da_data { 1677 struct inode *inode; 1678 struct writeback_control *wbc; 1679 1680 pgoff_t first_page; /* The first page to write */ 1681 pgoff_t next_page; /* Current page to examine */ 1682 pgoff_t last_page; /* Last page to examine */ 1683 /* 1684 * Extent to map - this can be after first_page because that can be 1685 * fully mapped. We somewhat abuse m_flags to store whether the extent 1686 * is delalloc or unwritten. 1687 */ 1688 struct ext4_map_blocks map; 1689 struct ext4_io_submit io_submit; /* IO submission data */ 1690 unsigned int do_map:1; 1691 }; 1692 1693 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1694 bool invalidate) 1695 { 1696 int nr_pages, i; 1697 pgoff_t index, end; 1698 struct pagevec pvec; 1699 struct inode *inode = mpd->inode; 1700 struct address_space *mapping = inode->i_mapping; 1701 1702 /* This is necessary when next_page == 0. */ 1703 if (mpd->first_page >= mpd->next_page) 1704 return; 1705 1706 index = mpd->first_page; 1707 end = mpd->next_page - 1; 1708 if (invalidate) { 1709 ext4_lblk_t start, last; 1710 start = index << (PAGE_SHIFT - inode->i_blkbits); 1711 last = end << (PAGE_SHIFT - inode->i_blkbits); 1712 ext4_es_remove_extent(inode, start, last - start + 1); 1713 } 1714 1715 pagevec_init(&pvec); 1716 while (index <= end) { 1717 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1718 if (nr_pages == 0) 1719 break; 1720 for (i = 0; i < nr_pages; i++) { 1721 struct page *page = pvec.pages[i]; 1722 1723 BUG_ON(!PageLocked(page)); 1724 BUG_ON(PageWriteback(page)); 1725 if (invalidate) { 1726 if (page_mapped(page)) 1727 clear_page_dirty_for_io(page); 1728 block_invalidatepage(page, 0, PAGE_SIZE); 1729 ClearPageUptodate(page); 1730 } 1731 unlock_page(page); 1732 } 1733 pagevec_release(&pvec); 1734 } 1735 } 1736 1737 static void ext4_print_free_blocks(struct inode *inode) 1738 { 1739 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1740 struct super_block *sb = inode->i_sb; 1741 struct ext4_inode_info *ei = EXT4_I(inode); 1742 1743 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1744 EXT4_C2B(EXT4_SB(inode->i_sb), 1745 ext4_count_free_clusters(sb))); 1746 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1747 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1748 (long long) EXT4_C2B(EXT4_SB(sb), 1749 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1750 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1751 (long long) EXT4_C2B(EXT4_SB(sb), 1752 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1753 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1754 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1755 ei->i_reserved_data_blocks); 1756 return; 1757 } 1758 1759 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1760 { 1761 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1762 } 1763 1764 /* 1765 * ext4_insert_delayed_block - adds a delayed block to the extents status 1766 * tree, incrementing the reserved cluster/block 1767 * count or making a pending reservation 1768 * where needed 1769 * 1770 * @inode - file containing the newly added block 1771 * @lblk - logical block to be added 1772 * 1773 * Returns 0 on success, negative error code on failure. 1774 */ 1775 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1776 { 1777 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1778 int ret; 1779 bool allocated = false; 1780 1781 /* 1782 * If the cluster containing lblk is shared with a delayed, 1783 * written, or unwritten extent in a bigalloc file system, it's 1784 * already been accounted for and does not need to be reserved. 1785 * A pending reservation must be made for the cluster if it's 1786 * shared with a written or unwritten extent and doesn't already 1787 * have one. Written and unwritten extents can be purged from the 1788 * extents status tree if the system is under memory pressure, so 1789 * it's necessary to examine the extent tree if a search of the 1790 * extents status tree doesn't get a match. 1791 */ 1792 if (sbi->s_cluster_ratio == 1) { 1793 ret = ext4_da_reserve_space(inode); 1794 if (ret != 0) /* ENOSPC */ 1795 goto errout; 1796 } else { /* bigalloc */ 1797 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1798 if (!ext4_es_scan_clu(inode, 1799 &ext4_es_is_mapped, lblk)) { 1800 ret = ext4_clu_mapped(inode, 1801 EXT4_B2C(sbi, lblk)); 1802 if (ret < 0) 1803 goto errout; 1804 if (ret == 0) { 1805 ret = ext4_da_reserve_space(inode); 1806 if (ret != 0) /* ENOSPC */ 1807 goto errout; 1808 } else { 1809 allocated = true; 1810 } 1811 } else { 1812 allocated = true; 1813 } 1814 } 1815 } 1816 1817 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1818 1819 errout: 1820 return ret; 1821 } 1822 1823 /* 1824 * This function is grabs code from the very beginning of 1825 * ext4_map_blocks, but assumes that the caller is from delayed write 1826 * time. This function looks up the requested blocks and sets the 1827 * buffer delay bit under the protection of i_data_sem. 1828 */ 1829 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1830 struct ext4_map_blocks *map, 1831 struct buffer_head *bh) 1832 { 1833 struct extent_status es; 1834 int retval; 1835 sector_t invalid_block = ~((sector_t) 0xffff); 1836 #ifdef ES_AGGRESSIVE_TEST 1837 struct ext4_map_blocks orig_map; 1838 1839 memcpy(&orig_map, map, sizeof(*map)); 1840 #endif 1841 1842 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1843 invalid_block = ~0; 1844 1845 map->m_flags = 0; 1846 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1847 "logical block %lu\n", inode->i_ino, map->m_len, 1848 (unsigned long) map->m_lblk); 1849 1850 /* Lookup extent status tree firstly */ 1851 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1852 if (ext4_es_is_hole(&es)) { 1853 retval = 0; 1854 down_read(&EXT4_I(inode)->i_data_sem); 1855 goto add_delayed; 1856 } 1857 1858 /* 1859 * Delayed extent could be allocated by fallocate. 1860 * So we need to check it. 1861 */ 1862 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1863 map_bh(bh, inode->i_sb, invalid_block); 1864 set_buffer_new(bh); 1865 set_buffer_delay(bh); 1866 return 0; 1867 } 1868 1869 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1870 retval = es.es_len - (iblock - es.es_lblk); 1871 if (retval > map->m_len) 1872 retval = map->m_len; 1873 map->m_len = retval; 1874 if (ext4_es_is_written(&es)) 1875 map->m_flags |= EXT4_MAP_MAPPED; 1876 else if (ext4_es_is_unwritten(&es)) 1877 map->m_flags |= EXT4_MAP_UNWRITTEN; 1878 else 1879 BUG_ON(1); 1880 1881 #ifdef ES_AGGRESSIVE_TEST 1882 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1883 #endif 1884 return retval; 1885 } 1886 1887 /* 1888 * Try to see if we can get the block without requesting a new 1889 * file system block. 1890 */ 1891 down_read(&EXT4_I(inode)->i_data_sem); 1892 if (ext4_has_inline_data(inode)) 1893 retval = 0; 1894 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1895 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1896 else 1897 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1898 1899 add_delayed: 1900 if (retval == 0) { 1901 int ret; 1902 1903 /* 1904 * XXX: __block_prepare_write() unmaps passed block, 1905 * is it OK? 1906 */ 1907 1908 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1909 if (ret != 0) { 1910 retval = ret; 1911 goto out_unlock; 1912 } 1913 1914 map_bh(bh, inode->i_sb, invalid_block); 1915 set_buffer_new(bh); 1916 set_buffer_delay(bh); 1917 } else if (retval > 0) { 1918 int ret; 1919 unsigned int status; 1920 1921 if (unlikely(retval != map->m_len)) { 1922 ext4_warning(inode->i_sb, 1923 "ES len assertion failed for inode " 1924 "%lu: retval %d != map->m_len %d", 1925 inode->i_ino, retval, map->m_len); 1926 WARN_ON(1); 1927 } 1928 1929 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1930 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1931 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1932 map->m_pblk, status); 1933 if (ret != 0) 1934 retval = ret; 1935 } 1936 1937 out_unlock: 1938 up_read((&EXT4_I(inode)->i_data_sem)); 1939 1940 return retval; 1941 } 1942 1943 /* 1944 * This is a special get_block_t callback which is used by 1945 * ext4_da_write_begin(). It will either return mapped block or 1946 * reserve space for a single block. 1947 * 1948 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1949 * We also have b_blocknr = -1 and b_bdev initialized properly 1950 * 1951 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1952 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1953 * initialized properly. 1954 */ 1955 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1956 struct buffer_head *bh, int create) 1957 { 1958 struct ext4_map_blocks map; 1959 int ret = 0; 1960 1961 BUG_ON(create == 0); 1962 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1963 1964 map.m_lblk = iblock; 1965 map.m_len = 1; 1966 1967 /* 1968 * first, we need to know whether the block is allocated already 1969 * preallocated blocks are unmapped but should treated 1970 * the same as allocated blocks. 1971 */ 1972 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1973 if (ret <= 0) 1974 return ret; 1975 1976 map_bh(bh, inode->i_sb, map.m_pblk); 1977 ext4_update_bh_state(bh, map.m_flags); 1978 1979 if (buffer_unwritten(bh)) { 1980 /* A delayed write to unwritten bh should be marked 1981 * new and mapped. Mapped ensures that we don't do 1982 * get_block multiple times when we write to the same 1983 * offset and new ensures that we do proper zero out 1984 * for partial write. 1985 */ 1986 set_buffer_new(bh); 1987 set_buffer_mapped(bh); 1988 } 1989 return 0; 1990 } 1991 1992 static int bget_one(handle_t *handle, struct buffer_head *bh) 1993 { 1994 get_bh(bh); 1995 return 0; 1996 } 1997 1998 static int bput_one(handle_t *handle, struct buffer_head *bh) 1999 { 2000 put_bh(bh); 2001 return 0; 2002 } 2003 2004 static int __ext4_journalled_writepage(struct page *page, 2005 unsigned int len) 2006 { 2007 struct address_space *mapping = page->mapping; 2008 struct inode *inode = mapping->host; 2009 struct buffer_head *page_bufs = NULL; 2010 handle_t *handle = NULL; 2011 int ret = 0, err = 0; 2012 int inline_data = ext4_has_inline_data(inode); 2013 struct buffer_head *inode_bh = NULL; 2014 2015 ClearPageChecked(page); 2016 2017 if (inline_data) { 2018 BUG_ON(page->index != 0); 2019 BUG_ON(len > ext4_get_max_inline_size(inode)); 2020 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2021 if (inode_bh == NULL) 2022 goto out; 2023 } else { 2024 page_bufs = page_buffers(page); 2025 if (!page_bufs) { 2026 BUG(); 2027 goto out; 2028 } 2029 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2030 NULL, bget_one); 2031 } 2032 /* 2033 * We need to release the page lock before we start the 2034 * journal, so grab a reference so the page won't disappear 2035 * out from under us. 2036 */ 2037 get_page(page); 2038 unlock_page(page); 2039 2040 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2041 ext4_writepage_trans_blocks(inode)); 2042 if (IS_ERR(handle)) { 2043 ret = PTR_ERR(handle); 2044 put_page(page); 2045 goto out_no_pagelock; 2046 } 2047 BUG_ON(!ext4_handle_valid(handle)); 2048 2049 lock_page(page); 2050 put_page(page); 2051 if (page->mapping != mapping) { 2052 /* The page got truncated from under us */ 2053 ext4_journal_stop(handle); 2054 ret = 0; 2055 goto out; 2056 } 2057 2058 if (inline_data) { 2059 ret = ext4_mark_inode_dirty(handle, inode); 2060 } else { 2061 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2062 do_journal_get_write_access); 2063 2064 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2065 write_end_fn); 2066 } 2067 if (ret == 0) 2068 ret = err; 2069 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2070 err = ext4_journal_stop(handle); 2071 if (!ret) 2072 ret = err; 2073 2074 if (!ext4_has_inline_data(inode)) 2075 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2076 NULL, bput_one); 2077 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2078 out: 2079 unlock_page(page); 2080 out_no_pagelock: 2081 brelse(inode_bh); 2082 return ret; 2083 } 2084 2085 /* 2086 * Note that we don't need to start a transaction unless we're journaling data 2087 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2088 * need to file the inode to the transaction's list in ordered mode because if 2089 * we are writing back data added by write(), the inode is already there and if 2090 * we are writing back data modified via mmap(), no one guarantees in which 2091 * transaction the data will hit the disk. In case we are journaling data, we 2092 * cannot start transaction directly because transaction start ranks above page 2093 * lock so we have to do some magic. 2094 * 2095 * This function can get called via... 2096 * - ext4_writepages after taking page lock (have journal handle) 2097 * - journal_submit_inode_data_buffers (no journal handle) 2098 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2099 * - grab_page_cache when doing write_begin (have journal handle) 2100 * 2101 * We don't do any block allocation in this function. If we have page with 2102 * multiple blocks we need to write those buffer_heads that are mapped. This 2103 * is important for mmaped based write. So if we do with blocksize 1K 2104 * truncate(f, 1024); 2105 * a = mmap(f, 0, 4096); 2106 * a[0] = 'a'; 2107 * truncate(f, 4096); 2108 * we have in the page first buffer_head mapped via page_mkwrite call back 2109 * but other buffer_heads would be unmapped but dirty (dirty done via the 2110 * do_wp_page). So writepage should write the first block. If we modify 2111 * the mmap area beyond 1024 we will again get a page_fault and the 2112 * page_mkwrite callback will do the block allocation and mark the 2113 * buffer_heads mapped. 2114 * 2115 * We redirty the page if we have any buffer_heads that is either delay or 2116 * unwritten in the page. 2117 * 2118 * We can get recursively called as show below. 2119 * 2120 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2121 * ext4_writepage() 2122 * 2123 * But since we don't do any block allocation we should not deadlock. 2124 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2125 */ 2126 static int ext4_writepage(struct page *page, 2127 struct writeback_control *wbc) 2128 { 2129 int ret = 0; 2130 loff_t size; 2131 unsigned int len; 2132 struct buffer_head *page_bufs = NULL; 2133 struct inode *inode = page->mapping->host; 2134 struct ext4_io_submit io_submit; 2135 bool keep_towrite = false; 2136 2137 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2138 ext4_invalidatepage(page, 0, PAGE_SIZE); 2139 unlock_page(page); 2140 return -EIO; 2141 } 2142 2143 trace_ext4_writepage(page); 2144 size = i_size_read(inode); 2145 if (page->index == size >> PAGE_SHIFT) 2146 len = size & ~PAGE_MASK; 2147 else 2148 len = PAGE_SIZE; 2149 2150 page_bufs = page_buffers(page); 2151 /* 2152 * We cannot do block allocation or other extent handling in this 2153 * function. If there are buffers needing that, we have to redirty 2154 * the page. But we may reach here when we do a journal commit via 2155 * journal_submit_inode_data_buffers() and in that case we must write 2156 * allocated buffers to achieve data=ordered mode guarantees. 2157 * 2158 * Also, if there is only one buffer per page (the fs block 2159 * size == the page size), if one buffer needs block 2160 * allocation or needs to modify the extent tree to clear the 2161 * unwritten flag, we know that the page can't be written at 2162 * all, so we might as well refuse the write immediately. 2163 * Unfortunately if the block size != page size, we can't as 2164 * easily detect this case using ext4_walk_page_buffers(), but 2165 * for the extremely common case, this is an optimization that 2166 * skips a useless round trip through ext4_bio_write_page(). 2167 */ 2168 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2169 ext4_bh_delay_or_unwritten)) { 2170 redirty_page_for_writepage(wbc, page); 2171 if ((current->flags & PF_MEMALLOC) || 2172 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2173 /* 2174 * For memory cleaning there's no point in writing only 2175 * some buffers. So just bail out. Warn if we came here 2176 * from direct reclaim. 2177 */ 2178 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2179 == PF_MEMALLOC); 2180 unlock_page(page); 2181 return 0; 2182 } 2183 keep_towrite = true; 2184 } 2185 2186 if (PageChecked(page) && ext4_should_journal_data(inode)) 2187 /* 2188 * It's mmapped pagecache. Add buffers and journal it. There 2189 * doesn't seem much point in redirtying the page here. 2190 */ 2191 return __ext4_journalled_writepage(page, len); 2192 2193 ext4_io_submit_init(&io_submit, wbc); 2194 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2195 if (!io_submit.io_end) { 2196 redirty_page_for_writepage(wbc, page); 2197 unlock_page(page); 2198 return -ENOMEM; 2199 } 2200 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2201 ext4_io_submit(&io_submit); 2202 /* Drop io_end reference we got from init */ 2203 ext4_put_io_end_defer(io_submit.io_end); 2204 return ret; 2205 } 2206 2207 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2208 { 2209 int len; 2210 loff_t size; 2211 int err; 2212 2213 BUG_ON(page->index != mpd->first_page); 2214 clear_page_dirty_for_io(page); 2215 /* 2216 * We have to be very careful here! Nothing protects writeback path 2217 * against i_size changes and the page can be writeably mapped into 2218 * page tables. So an application can be growing i_size and writing 2219 * data through mmap while writeback runs. clear_page_dirty_for_io() 2220 * write-protects our page in page tables and the page cannot get 2221 * written to again until we release page lock. So only after 2222 * clear_page_dirty_for_io() we are safe to sample i_size for 2223 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2224 * on the barrier provided by TestClearPageDirty in 2225 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2226 * after page tables are updated. 2227 */ 2228 size = i_size_read(mpd->inode); 2229 if (page->index == size >> PAGE_SHIFT) 2230 len = size & ~PAGE_MASK; 2231 else 2232 len = PAGE_SIZE; 2233 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2234 if (!err) 2235 mpd->wbc->nr_to_write--; 2236 mpd->first_page++; 2237 2238 return err; 2239 } 2240 2241 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2242 2243 /* 2244 * mballoc gives us at most this number of blocks... 2245 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2246 * The rest of mballoc seems to handle chunks up to full group size. 2247 */ 2248 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2249 2250 /* 2251 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2252 * 2253 * @mpd - extent of blocks 2254 * @lblk - logical number of the block in the file 2255 * @bh - buffer head we want to add to the extent 2256 * 2257 * The function is used to collect contig. blocks in the same state. If the 2258 * buffer doesn't require mapping for writeback and we haven't started the 2259 * extent of buffers to map yet, the function returns 'true' immediately - the 2260 * caller can write the buffer right away. Otherwise the function returns true 2261 * if the block has been added to the extent, false if the block couldn't be 2262 * added. 2263 */ 2264 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2265 struct buffer_head *bh) 2266 { 2267 struct ext4_map_blocks *map = &mpd->map; 2268 2269 /* Buffer that doesn't need mapping for writeback? */ 2270 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2271 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2272 /* So far no extent to map => we write the buffer right away */ 2273 if (map->m_len == 0) 2274 return true; 2275 return false; 2276 } 2277 2278 /* First block in the extent? */ 2279 if (map->m_len == 0) { 2280 /* We cannot map unless handle is started... */ 2281 if (!mpd->do_map) 2282 return false; 2283 map->m_lblk = lblk; 2284 map->m_len = 1; 2285 map->m_flags = bh->b_state & BH_FLAGS; 2286 return true; 2287 } 2288 2289 /* Don't go larger than mballoc is willing to allocate */ 2290 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2291 return false; 2292 2293 /* Can we merge the block to our big extent? */ 2294 if (lblk == map->m_lblk + map->m_len && 2295 (bh->b_state & BH_FLAGS) == map->m_flags) { 2296 map->m_len++; 2297 return true; 2298 } 2299 return false; 2300 } 2301 2302 /* 2303 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2304 * 2305 * @mpd - extent of blocks for mapping 2306 * @head - the first buffer in the page 2307 * @bh - buffer we should start processing from 2308 * @lblk - logical number of the block in the file corresponding to @bh 2309 * 2310 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2311 * the page for IO if all buffers in this page were mapped and there's no 2312 * accumulated extent of buffers to map or add buffers in the page to the 2313 * extent of buffers to map. The function returns 1 if the caller can continue 2314 * by processing the next page, 0 if it should stop adding buffers to the 2315 * extent to map because we cannot extend it anymore. It can also return value 2316 * < 0 in case of error during IO submission. 2317 */ 2318 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2319 struct buffer_head *head, 2320 struct buffer_head *bh, 2321 ext4_lblk_t lblk) 2322 { 2323 struct inode *inode = mpd->inode; 2324 int err; 2325 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2326 >> inode->i_blkbits; 2327 2328 do { 2329 BUG_ON(buffer_locked(bh)); 2330 2331 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2332 /* Found extent to map? */ 2333 if (mpd->map.m_len) 2334 return 0; 2335 /* Buffer needs mapping and handle is not started? */ 2336 if (!mpd->do_map) 2337 return 0; 2338 /* Everything mapped so far and we hit EOF */ 2339 break; 2340 } 2341 } while (lblk++, (bh = bh->b_this_page) != head); 2342 /* So far everything mapped? Submit the page for IO. */ 2343 if (mpd->map.m_len == 0) { 2344 err = mpage_submit_page(mpd, head->b_page); 2345 if (err < 0) 2346 return err; 2347 } 2348 return lblk < blocks; 2349 } 2350 2351 /* 2352 * mpage_map_buffers - update buffers corresponding to changed extent and 2353 * submit fully mapped pages for IO 2354 * 2355 * @mpd - description of extent to map, on return next extent to map 2356 * 2357 * Scan buffers corresponding to changed extent (we expect corresponding pages 2358 * to be already locked) and update buffer state according to new extent state. 2359 * We map delalloc buffers to their physical location, clear unwritten bits, 2360 * and mark buffers as uninit when we perform writes to unwritten extents 2361 * and do extent conversion after IO is finished. If the last page is not fully 2362 * mapped, we update @map to the next extent in the last page that needs 2363 * mapping. Otherwise we submit the page for IO. 2364 */ 2365 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2366 { 2367 struct pagevec pvec; 2368 int nr_pages, i; 2369 struct inode *inode = mpd->inode; 2370 struct buffer_head *head, *bh; 2371 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2372 pgoff_t start, end; 2373 ext4_lblk_t lblk; 2374 sector_t pblock; 2375 int err; 2376 2377 start = mpd->map.m_lblk >> bpp_bits; 2378 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2379 lblk = start << bpp_bits; 2380 pblock = mpd->map.m_pblk; 2381 2382 pagevec_init(&pvec); 2383 while (start <= end) { 2384 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2385 &start, end); 2386 if (nr_pages == 0) 2387 break; 2388 for (i = 0; i < nr_pages; i++) { 2389 struct page *page = pvec.pages[i]; 2390 2391 bh = head = page_buffers(page); 2392 do { 2393 if (lblk < mpd->map.m_lblk) 2394 continue; 2395 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2396 /* 2397 * Buffer after end of mapped extent. 2398 * Find next buffer in the page to map. 2399 */ 2400 mpd->map.m_len = 0; 2401 mpd->map.m_flags = 0; 2402 /* 2403 * FIXME: If dioread_nolock supports 2404 * blocksize < pagesize, we need to make 2405 * sure we add size mapped so far to 2406 * io_end->size as the following call 2407 * can submit the page for IO. 2408 */ 2409 err = mpage_process_page_bufs(mpd, head, 2410 bh, lblk); 2411 pagevec_release(&pvec); 2412 if (err > 0) 2413 err = 0; 2414 return err; 2415 } 2416 if (buffer_delay(bh)) { 2417 clear_buffer_delay(bh); 2418 bh->b_blocknr = pblock++; 2419 } 2420 clear_buffer_unwritten(bh); 2421 } while (lblk++, (bh = bh->b_this_page) != head); 2422 2423 /* 2424 * FIXME: This is going to break if dioread_nolock 2425 * supports blocksize < pagesize as we will try to 2426 * convert potentially unmapped parts of inode. 2427 */ 2428 mpd->io_submit.io_end->size += PAGE_SIZE; 2429 /* Page fully mapped - let IO run! */ 2430 err = mpage_submit_page(mpd, page); 2431 if (err < 0) { 2432 pagevec_release(&pvec); 2433 return err; 2434 } 2435 } 2436 pagevec_release(&pvec); 2437 } 2438 /* Extent fully mapped and matches with page boundary. We are done. */ 2439 mpd->map.m_len = 0; 2440 mpd->map.m_flags = 0; 2441 return 0; 2442 } 2443 2444 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2445 { 2446 struct inode *inode = mpd->inode; 2447 struct ext4_map_blocks *map = &mpd->map; 2448 int get_blocks_flags; 2449 int err, dioread_nolock; 2450 2451 trace_ext4_da_write_pages_extent(inode, map); 2452 /* 2453 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2454 * to convert an unwritten extent to be initialized (in the case 2455 * where we have written into one or more preallocated blocks). It is 2456 * possible that we're going to need more metadata blocks than 2457 * previously reserved. However we must not fail because we're in 2458 * writeback and there is nothing we can do about it so it might result 2459 * in data loss. So use reserved blocks to allocate metadata if 2460 * possible. 2461 * 2462 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2463 * the blocks in question are delalloc blocks. This indicates 2464 * that the blocks and quotas has already been checked when 2465 * the data was copied into the page cache. 2466 */ 2467 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2468 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2469 EXT4_GET_BLOCKS_IO_SUBMIT; 2470 dioread_nolock = ext4_should_dioread_nolock(inode); 2471 if (dioread_nolock) 2472 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2473 if (map->m_flags & (1 << BH_Delay)) 2474 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2475 2476 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2477 if (err < 0) 2478 return err; 2479 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2480 if (!mpd->io_submit.io_end->handle && 2481 ext4_handle_valid(handle)) { 2482 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2483 handle->h_rsv_handle = NULL; 2484 } 2485 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2486 } 2487 2488 BUG_ON(map->m_len == 0); 2489 return 0; 2490 } 2491 2492 /* 2493 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2494 * mpd->len and submit pages underlying it for IO 2495 * 2496 * @handle - handle for journal operations 2497 * @mpd - extent to map 2498 * @give_up_on_write - we set this to true iff there is a fatal error and there 2499 * is no hope of writing the data. The caller should discard 2500 * dirty pages to avoid infinite loops. 2501 * 2502 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2503 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2504 * them to initialized or split the described range from larger unwritten 2505 * extent. Note that we need not map all the described range since allocation 2506 * can return less blocks or the range is covered by more unwritten extents. We 2507 * cannot map more because we are limited by reserved transaction credits. On 2508 * the other hand we always make sure that the last touched page is fully 2509 * mapped so that it can be written out (and thus forward progress is 2510 * guaranteed). After mapping we submit all mapped pages for IO. 2511 */ 2512 static int mpage_map_and_submit_extent(handle_t *handle, 2513 struct mpage_da_data *mpd, 2514 bool *give_up_on_write) 2515 { 2516 struct inode *inode = mpd->inode; 2517 struct ext4_map_blocks *map = &mpd->map; 2518 int err; 2519 loff_t disksize; 2520 int progress = 0; 2521 2522 mpd->io_submit.io_end->offset = 2523 ((loff_t)map->m_lblk) << inode->i_blkbits; 2524 do { 2525 err = mpage_map_one_extent(handle, mpd); 2526 if (err < 0) { 2527 struct super_block *sb = inode->i_sb; 2528 2529 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2530 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2531 goto invalidate_dirty_pages; 2532 /* 2533 * Let the uper layers retry transient errors. 2534 * In the case of ENOSPC, if ext4_count_free_blocks() 2535 * is non-zero, a commit should free up blocks. 2536 */ 2537 if ((err == -ENOMEM) || 2538 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2539 if (progress) 2540 goto update_disksize; 2541 return err; 2542 } 2543 ext4_msg(sb, KERN_CRIT, 2544 "Delayed block allocation failed for " 2545 "inode %lu at logical offset %llu with" 2546 " max blocks %u with error %d", 2547 inode->i_ino, 2548 (unsigned long long)map->m_lblk, 2549 (unsigned)map->m_len, -err); 2550 ext4_msg(sb, KERN_CRIT, 2551 "This should not happen!! Data will " 2552 "be lost\n"); 2553 if (err == -ENOSPC) 2554 ext4_print_free_blocks(inode); 2555 invalidate_dirty_pages: 2556 *give_up_on_write = true; 2557 return err; 2558 } 2559 progress = 1; 2560 /* 2561 * Update buffer state, submit mapped pages, and get us new 2562 * extent to map 2563 */ 2564 err = mpage_map_and_submit_buffers(mpd); 2565 if (err < 0) 2566 goto update_disksize; 2567 } while (map->m_len); 2568 2569 update_disksize: 2570 /* 2571 * Update on-disk size after IO is submitted. Races with 2572 * truncate are avoided by checking i_size under i_data_sem. 2573 */ 2574 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2575 if (disksize > EXT4_I(inode)->i_disksize) { 2576 int err2; 2577 loff_t i_size; 2578 2579 down_write(&EXT4_I(inode)->i_data_sem); 2580 i_size = i_size_read(inode); 2581 if (disksize > i_size) 2582 disksize = i_size; 2583 if (disksize > EXT4_I(inode)->i_disksize) 2584 EXT4_I(inode)->i_disksize = disksize; 2585 up_write(&EXT4_I(inode)->i_data_sem); 2586 err2 = ext4_mark_inode_dirty(handle, inode); 2587 if (err2) 2588 ext4_error(inode->i_sb, 2589 "Failed to mark inode %lu dirty", 2590 inode->i_ino); 2591 if (!err) 2592 err = err2; 2593 } 2594 return err; 2595 } 2596 2597 /* 2598 * Calculate the total number of credits to reserve for one writepages 2599 * iteration. This is called from ext4_writepages(). We map an extent of 2600 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2601 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2602 * bpp - 1 blocks in bpp different extents. 2603 */ 2604 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2605 { 2606 int bpp = ext4_journal_blocks_per_page(inode); 2607 2608 return ext4_meta_trans_blocks(inode, 2609 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2610 } 2611 2612 /* 2613 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2614 * and underlying extent to map 2615 * 2616 * @mpd - where to look for pages 2617 * 2618 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2619 * IO immediately. When we find a page which isn't mapped we start accumulating 2620 * extent of buffers underlying these pages that needs mapping (formed by 2621 * either delayed or unwritten buffers). We also lock the pages containing 2622 * these buffers. The extent found is returned in @mpd structure (starting at 2623 * mpd->lblk with length mpd->len blocks). 2624 * 2625 * Note that this function can attach bios to one io_end structure which are 2626 * neither logically nor physically contiguous. Although it may seem as an 2627 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2628 * case as we need to track IO to all buffers underlying a page in one io_end. 2629 */ 2630 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2631 { 2632 struct address_space *mapping = mpd->inode->i_mapping; 2633 struct pagevec pvec; 2634 unsigned int nr_pages; 2635 long left = mpd->wbc->nr_to_write; 2636 pgoff_t index = mpd->first_page; 2637 pgoff_t end = mpd->last_page; 2638 xa_mark_t tag; 2639 int i, err = 0; 2640 int blkbits = mpd->inode->i_blkbits; 2641 ext4_lblk_t lblk; 2642 struct buffer_head *head; 2643 2644 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2645 tag = PAGECACHE_TAG_TOWRITE; 2646 else 2647 tag = PAGECACHE_TAG_DIRTY; 2648 2649 pagevec_init(&pvec); 2650 mpd->map.m_len = 0; 2651 mpd->next_page = index; 2652 while (index <= end) { 2653 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2654 tag); 2655 if (nr_pages == 0) 2656 goto out; 2657 2658 for (i = 0; i < nr_pages; i++) { 2659 struct page *page = pvec.pages[i]; 2660 2661 /* 2662 * Accumulated enough dirty pages? This doesn't apply 2663 * to WB_SYNC_ALL mode. For integrity sync we have to 2664 * keep going because someone may be concurrently 2665 * dirtying pages, and we might have synced a lot of 2666 * newly appeared dirty pages, but have not synced all 2667 * of the old dirty pages. 2668 */ 2669 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2670 goto out; 2671 2672 /* If we can't merge this page, we are done. */ 2673 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2674 goto out; 2675 2676 lock_page(page); 2677 /* 2678 * If the page is no longer dirty, or its mapping no 2679 * longer corresponds to inode we are writing (which 2680 * means it has been truncated or invalidated), or the 2681 * page is already under writeback and we are not doing 2682 * a data integrity writeback, skip the page 2683 */ 2684 if (!PageDirty(page) || 2685 (PageWriteback(page) && 2686 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2687 unlikely(page->mapping != mapping)) { 2688 unlock_page(page); 2689 continue; 2690 } 2691 2692 wait_on_page_writeback(page); 2693 BUG_ON(PageWriteback(page)); 2694 2695 if (mpd->map.m_len == 0) 2696 mpd->first_page = page->index; 2697 mpd->next_page = page->index + 1; 2698 /* Add all dirty buffers to mpd */ 2699 lblk = ((ext4_lblk_t)page->index) << 2700 (PAGE_SHIFT - blkbits); 2701 head = page_buffers(page); 2702 err = mpage_process_page_bufs(mpd, head, head, lblk); 2703 if (err <= 0) 2704 goto out; 2705 err = 0; 2706 left--; 2707 } 2708 pagevec_release(&pvec); 2709 cond_resched(); 2710 } 2711 return 0; 2712 out: 2713 pagevec_release(&pvec); 2714 return err; 2715 } 2716 2717 static int ext4_writepages(struct address_space *mapping, 2718 struct writeback_control *wbc) 2719 { 2720 pgoff_t writeback_index = 0; 2721 long nr_to_write = wbc->nr_to_write; 2722 int range_whole = 0; 2723 int cycled = 1; 2724 handle_t *handle = NULL; 2725 struct mpage_da_data mpd; 2726 struct inode *inode = mapping->host; 2727 int needed_blocks, rsv_blocks = 0, ret = 0; 2728 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2729 bool done; 2730 struct blk_plug plug; 2731 bool give_up_on_write = false; 2732 2733 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2734 return -EIO; 2735 2736 percpu_down_read(&sbi->s_journal_flag_rwsem); 2737 trace_ext4_writepages(inode, wbc); 2738 2739 /* 2740 * No pages to write? This is mainly a kludge to avoid starting 2741 * a transaction for special inodes like journal inode on last iput() 2742 * because that could violate lock ordering on umount 2743 */ 2744 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2745 goto out_writepages; 2746 2747 if (ext4_should_journal_data(inode)) { 2748 ret = generic_writepages(mapping, wbc); 2749 goto out_writepages; 2750 } 2751 2752 /* 2753 * If the filesystem has aborted, it is read-only, so return 2754 * right away instead of dumping stack traces later on that 2755 * will obscure the real source of the problem. We test 2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2757 * the latter could be true if the filesystem is mounted 2758 * read-only, and in that case, ext4_writepages should 2759 * *never* be called, so if that ever happens, we would want 2760 * the stack trace. 2761 */ 2762 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2763 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2764 ret = -EROFS; 2765 goto out_writepages; 2766 } 2767 2768 if (ext4_should_dioread_nolock(inode)) { 2769 /* 2770 * We may need to convert up to one extent per block in 2771 * the page and we may dirty the inode. 2772 */ 2773 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2774 PAGE_SIZE >> inode->i_blkbits); 2775 } 2776 2777 /* 2778 * If we have inline data and arrive here, it means that 2779 * we will soon create the block for the 1st page, so 2780 * we'd better clear the inline data here. 2781 */ 2782 if (ext4_has_inline_data(inode)) { 2783 /* Just inode will be modified... */ 2784 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2785 if (IS_ERR(handle)) { 2786 ret = PTR_ERR(handle); 2787 goto out_writepages; 2788 } 2789 BUG_ON(ext4_test_inode_state(inode, 2790 EXT4_STATE_MAY_INLINE_DATA)); 2791 ext4_destroy_inline_data(handle, inode); 2792 ext4_journal_stop(handle); 2793 } 2794 2795 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2796 range_whole = 1; 2797 2798 if (wbc->range_cyclic) { 2799 writeback_index = mapping->writeback_index; 2800 if (writeback_index) 2801 cycled = 0; 2802 mpd.first_page = writeback_index; 2803 mpd.last_page = -1; 2804 } else { 2805 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2806 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2807 } 2808 2809 mpd.inode = inode; 2810 mpd.wbc = wbc; 2811 ext4_io_submit_init(&mpd.io_submit, wbc); 2812 retry: 2813 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2814 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2815 done = false; 2816 blk_start_plug(&plug); 2817 2818 /* 2819 * First writeback pages that don't need mapping - we can avoid 2820 * starting a transaction unnecessarily and also avoid being blocked 2821 * in the block layer on device congestion while having transaction 2822 * started. 2823 */ 2824 mpd.do_map = 0; 2825 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2826 if (!mpd.io_submit.io_end) { 2827 ret = -ENOMEM; 2828 goto unplug; 2829 } 2830 ret = mpage_prepare_extent_to_map(&mpd); 2831 /* Unlock pages we didn't use */ 2832 mpage_release_unused_pages(&mpd, false); 2833 /* Submit prepared bio */ 2834 ext4_io_submit(&mpd.io_submit); 2835 ext4_put_io_end_defer(mpd.io_submit.io_end); 2836 mpd.io_submit.io_end = NULL; 2837 if (ret < 0) 2838 goto unplug; 2839 2840 while (!done && mpd.first_page <= mpd.last_page) { 2841 /* For each extent of pages we use new io_end */ 2842 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2843 if (!mpd.io_submit.io_end) { 2844 ret = -ENOMEM; 2845 break; 2846 } 2847 2848 /* 2849 * We have two constraints: We find one extent to map and we 2850 * must always write out whole page (makes a difference when 2851 * blocksize < pagesize) so that we don't block on IO when we 2852 * try to write out the rest of the page. Journalled mode is 2853 * not supported by delalloc. 2854 */ 2855 BUG_ON(ext4_should_journal_data(inode)); 2856 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2857 2858 /* start a new transaction */ 2859 handle = ext4_journal_start_with_reserve(inode, 2860 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2861 if (IS_ERR(handle)) { 2862 ret = PTR_ERR(handle); 2863 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2864 "%ld pages, ino %lu; err %d", __func__, 2865 wbc->nr_to_write, inode->i_ino, ret); 2866 /* Release allocated io_end */ 2867 ext4_put_io_end(mpd.io_submit.io_end); 2868 mpd.io_submit.io_end = NULL; 2869 break; 2870 } 2871 mpd.do_map = 1; 2872 2873 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2874 ret = mpage_prepare_extent_to_map(&mpd); 2875 if (!ret) { 2876 if (mpd.map.m_len) 2877 ret = mpage_map_and_submit_extent(handle, &mpd, 2878 &give_up_on_write); 2879 else { 2880 /* 2881 * We scanned the whole range (or exhausted 2882 * nr_to_write), submitted what was mapped and 2883 * didn't find anything needing mapping. We are 2884 * done. 2885 */ 2886 done = true; 2887 } 2888 } 2889 /* 2890 * Caution: If the handle is synchronous, 2891 * ext4_journal_stop() can wait for transaction commit 2892 * to finish which may depend on writeback of pages to 2893 * complete or on page lock to be released. In that 2894 * case, we have to wait until after after we have 2895 * submitted all the IO, released page locks we hold, 2896 * and dropped io_end reference (for extent conversion 2897 * to be able to complete) before stopping the handle. 2898 */ 2899 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2900 ext4_journal_stop(handle); 2901 handle = NULL; 2902 mpd.do_map = 0; 2903 } 2904 /* Unlock pages we didn't use */ 2905 mpage_release_unused_pages(&mpd, give_up_on_write); 2906 /* Submit prepared bio */ 2907 ext4_io_submit(&mpd.io_submit); 2908 2909 /* 2910 * Drop our io_end reference we got from init. We have 2911 * to be careful and use deferred io_end finishing if 2912 * we are still holding the transaction as we can 2913 * release the last reference to io_end which may end 2914 * up doing unwritten extent conversion. 2915 */ 2916 if (handle) { 2917 ext4_put_io_end_defer(mpd.io_submit.io_end); 2918 ext4_journal_stop(handle); 2919 } else 2920 ext4_put_io_end(mpd.io_submit.io_end); 2921 mpd.io_submit.io_end = NULL; 2922 2923 if (ret == -ENOSPC && sbi->s_journal) { 2924 /* 2925 * Commit the transaction which would 2926 * free blocks released in the transaction 2927 * and try again 2928 */ 2929 jbd2_journal_force_commit_nested(sbi->s_journal); 2930 ret = 0; 2931 continue; 2932 } 2933 /* Fatal error - ENOMEM, EIO... */ 2934 if (ret) 2935 break; 2936 } 2937 unplug: 2938 blk_finish_plug(&plug); 2939 if (!ret && !cycled && wbc->nr_to_write > 0) { 2940 cycled = 1; 2941 mpd.last_page = writeback_index - 1; 2942 mpd.first_page = 0; 2943 goto retry; 2944 } 2945 2946 /* Update index */ 2947 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2948 /* 2949 * Set the writeback_index so that range_cyclic 2950 * mode will write it back later 2951 */ 2952 mapping->writeback_index = mpd.first_page; 2953 2954 out_writepages: 2955 trace_ext4_writepages_result(inode, wbc, ret, 2956 nr_to_write - wbc->nr_to_write); 2957 percpu_up_read(&sbi->s_journal_flag_rwsem); 2958 return ret; 2959 } 2960 2961 static int ext4_dax_writepages(struct address_space *mapping, 2962 struct writeback_control *wbc) 2963 { 2964 int ret; 2965 long nr_to_write = wbc->nr_to_write; 2966 struct inode *inode = mapping->host; 2967 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2968 2969 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2970 return -EIO; 2971 2972 percpu_down_read(&sbi->s_journal_flag_rwsem); 2973 trace_ext4_writepages(inode, wbc); 2974 2975 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2976 trace_ext4_writepages_result(inode, wbc, ret, 2977 nr_to_write - wbc->nr_to_write); 2978 percpu_up_read(&sbi->s_journal_flag_rwsem); 2979 return ret; 2980 } 2981 2982 static int ext4_nonda_switch(struct super_block *sb) 2983 { 2984 s64 free_clusters, dirty_clusters; 2985 struct ext4_sb_info *sbi = EXT4_SB(sb); 2986 2987 /* 2988 * switch to non delalloc mode if we are running low 2989 * on free block. The free block accounting via percpu 2990 * counters can get slightly wrong with percpu_counter_batch getting 2991 * accumulated on each CPU without updating global counters 2992 * Delalloc need an accurate free block accounting. So switch 2993 * to non delalloc when we are near to error range. 2994 */ 2995 free_clusters = 2996 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2997 dirty_clusters = 2998 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2999 /* 3000 * Start pushing delalloc when 1/2 of free blocks are dirty. 3001 */ 3002 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3003 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3004 3005 if (2 * free_clusters < 3 * dirty_clusters || 3006 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3007 /* 3008 * free block count is less than 150% of dirty blocks 3009 * or free blocks is less than watermark 3010 */ 3011 return 1; 3012 } 3013 return 0; 3014 } 3015 3016 /* We always reserve for an inode update; the superblock could be there too */ 3017 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3018 { 3019 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3020 return 1; 3021 3022 if (pos + len <= 0x7fffffffULL) 3023 return 1; 3024 3025 /* We might need to update the superblock to set LARGE_FILE */ 3026 return 2; 3027 } 3028 3029 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3030 loff_t pos, unsigned len, unsigned flags, 3031 struct page **pagep, void **fsdata) 3032 { 3033 int ret, retries = 0; 3034 struct page *page; 3035 pgoff_t index; 3036 struct inode *inode = mapping->host; 3037 handle_t *handle; 3038 3039 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3040 return -EIO; 3041 3042 index = pos >> PAGE_SHIFT; 3043 3044 if (ext4_nonda_switch(inode->i_sb) || 3045 S_ISLNK(inode->i_mode)) { 3046 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3047 return ext4_write_begin(file, mapping, pos, 3048 len, flags, pagep, fsdata); 3049 } 3050 *fsdata = (void *)0; 3051 trace_ext4_da_write_begin(inode, pos, len, flags); 3052 3053 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3054 ret = ext4_da_write_inline_data_begin(mapping, inode, 3055 pos, len, flags, 3056 pagep, fsdata); 3057 if (ret < 0) 3058 return ret; 3059 if (ret == 1) 3060 return 0; 3061 } 3062 3063 /* 3064 * grab_cache_page_write_begin() can take a long time if the 3065 * system is thrashing due to memory pressure, or if the page 3066 * is being written back. So grab it first before we start 3067 * the transaction handle. This also allows us to allocate 3068 * the page (if needed) without using GFP_NOFS. 3069 */ 3070 retry_grab: 3071 page = grab_cache_page_write_begin(mapping, index, flags); 3072 if (!page) 3073 return -ENOMEM; 3074 unlock_page(page); 3075 3076 /* 3077 * With delayed allocation, we don't log the i_disksize update 3078 * if there is delayed block allocation. But we still need 3079 * to journalling the i_disksize update if writes to the end 3080 * of file which has an already mapped buffer. 3081 */ 3082 retry_journal: 3083 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3084 ext4_da_write_credits(inode, pos, len)); 3085 if (IS_ERR(handle)) { 3086 put_page(page); 3087 return PTR_ERR(handle); 3088 } 3089 3090 lock_page(page); 3091 if (page->mapping != mapping) { 3092 /* The page got truncated from under us */ 3093 unlock_page(page); 3094 put_page(page); 3095 ext4_journal_stop(handle); 3096 goto retry_grab; 3097 } 3098 /* In case writeback began while the page was unlocked */ 3099 wait_for_stable_page(page); 3100 3101 #ifdef CONFIG_FS_ENCRYPTION 3102 ret = ext4_block_write_begin(page, pos, len, 3103 ext4_da_get_block_prep); 3104 #else 3105 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3106 #endif 3107 if (ret < 0) { 3108 unlock_page(page); 3109 ext4_journal_stop(handle); 3110 /* 3111 * block_write_begin may have instantiated a few blocks 3112 * outside i_size. Trim these off again. Don't need 3113 * i_size_read because we hold i_mutex. 3114 */ 3115 if (pos + len > inode->i_size) 3116 ext4_truncate_failed_write(inode); 3117 3118 if (ret == -ENOSPC && 3119 ext4_should_retry_alloc(inode->i_sb, &retries)) 3120 goto retry_journal; 3121 3122 put_page(page); 3123 return ret; 3124 } 3125 3126 *pagep = page; 3127 return ret; 3128 } 3129 3130 /* 3131 * Check if we should update i_disksize 3132 * when write to the end of file but not require block allocation 3133 */ 3134 static int ext4_da_should_update_i_disksize(struct page *page, 3135 unsigned long offset) 3136 { 3137 struct buffer_head *bh; 3138 struct inode *inode = page->mapping->host; 3139 unsigned int idx; 3140 int i; 3141 3142 bh = page_buffers(page); 3143 idx = offset >> inode->i_blkbits; 3144 3145 for (i = 0; i < idx; i++) 3146 bh = bh->b_this_page; 3147 3148 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3149 return 0; 3150 return 1; 3151 } 3152 3153 static int ext4_da_write_end(struct file *file, 3154 struct address_space *mapping, 3155 loff_t pos, unsigned len, unsigned copied, 3156 struct page *page, void *fsdata) 3157 { 3158 struct inode *inode = mapping->host; 3159 int ret = 0, ret2; 3160 handle_t *handle = ext4_journal_current_handle(); 3161 loff_t new_i_size; 3162 unsigned long start, end; 3163 int write_mode = (int)(unsigned long)fsdata; 3164 3165 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3166 return ext4_write_end(file, mapping, pos, 3167 len, copied, page, fsdata); 3168 3169 trace_ext4_da_write_end(inode, pos, len, copied); 3170 start = pos & (PAGE_SIZE - 1); 3171 end = start + copied - 1; 3172 3173 /* 3174 * generic_write_end() will run mark_inode_dirty() if i_size 3175 * changes. So let's piggyback the i_disksize mark_inode_dirty 3176 * into that. 3177 */ 3178 new_i_size = pos + copied; 3179 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3180 if (ext4_has_inline_data(inode) || 3181 ext4_da_should_update_i_disksize(page, end)) { 3182 ext4_update_i_disksize(inode, new_i_size); 3183 /* We need to mark inode dirty even if 3184 * new_i_size is less that inode->i_size 3185 * bu greater than i_disksize.(hint delalloc) 3186 */ 3187 ext4_mark_inode_dirty(handle, inode); 3188 } 3189 } 3190 3191 if (write_mode != CONVERT_INLINE_DATA && 3192 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3193 ext4_has_inline_data(inode)) 3194 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3195 page); 3196 else 3197 ret2 = generic_write_end(file, mapping, pos, len, copied, 3198 page, fsdata); 3199 3200 copied = ret2; 3201 if (ret2 < 0) 3202 ret = ret2; 3203 ret2 = ext4_journal_stop(handle); 3204 if (!ret) 3205 ret = ret2; 3206 3207 return ret ? ret : copied; 3208 } 3209 3210 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3211 unsigned int length) 3212 { 3213 /* 3214 * Drop reserved blocks 3215 */ 3216 BUG_ON(!PageLocked(page)); 3217 if (!page_has_buffers(page)) 3218 goto out; 3219 3220 ext4_da_page_release_reservation(page, offset, length); 3221 3222 out: 3223 ext4_invalidatepage(page, offset, length); 3224 3225 return; 3226 } 3227 3228 /* 3229 * Force all delayed allocation blocks to be allocated for a given inode. 3230 */ 3231 int ext4_alloc_da_blocks(struct inode *inode) 3232 { 3233 trace_ext4_alloc_da_blocks(inode); 3234 3235 if (!EXT4_I(inode)->i_reserved_data_blocks) 3236 return 0; 3237 3238 /* 3239 * We do something simple for now. The filemap_flush() will 3240 * also start triggering a write of the data blocks, which is 3241 * not strictly speaking necessary (and for users of 3242 * laptop_mode, not even desirable). However, to do otherwise 3243 * would require replicating code paths in: 3244 * 3245 * ext4_writepages() -> 3246 * write_cache_pages() ---> (via passed in callback function) 3247 * __mpage_da_writepage() --> 3248 * mpage_add_bh_to_extent() 3249 * mpage_da_map_blocks() 3250 * 3251 * The problem is that write_cache_pages(), located in 3252 * mm/page-writeback.c, marks pages clean in preparation for 3253 * doing I/O, which is not desirable if we're not planning on 3254 * doing I/O at all. 3255 * 3256 * We could call write_cache_pages(), and then redirty all of 3257 * the pages by calling redirty_page_for_writepage() but that 3258 * would be ugly in the extreme. So instead we would need to 3259 * replicate parts of the code in the above functions, 3260 * simplifying them because we wouldn't actually intend to 3261 * write out the pages, but rather only collect contiguous 3262 * logical block extents, call the multi-block allocator, and 3263 * then update the buffer heads with the block allocations. 3264 * 3265 * For now, though, we'll cheat by calling filemap_flush(), 3266 * which will map the blocks, and start the I/O, but not 3267 * actually wait for the I/O to complete. 3268 */ 3269 return filemap_flush(inode->i_mapping); 3270 } 3271 3272 /* 3273 * bmap() is special. It gets used by applications such as lilo and by 3274 * the swapper to find the on-disk block of a specific piece of data. 3275 * 3276 * Naturally, this is dangerous if the block concerned is still in the 3277 * journal. If somebody makes a swapfile on an ext4 data-journaling 3278 * filesystem and enables swap, then they may get a nasty shock when the 3279 * data getting swapped to that swapfile suddenly gets overwritten by 3280 * the original zero's written out previously to the journal and 3281 * awaiting writeback in the kernel's buffer cache. 3282 * 3283 * So, if we see any bmap calls here on a modified, data-journaled file, 3284 * take extra steps to flush any blocks which might be in the cache. 3285 */ 3286 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3287 { 3288 struct inode *inode = mapping->host; 3289 journal_t *journal; 3290 int err; 3291 3292 /* 3293 * We can get here for an inline file via the FIBMAP ioctl 3294 */ 3295 if (ext4_has_inline_data(inode)) 3296 return 0; 3297 3298 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3299 test_opt(inode->i_sb, DELALLOC)) { 3300 /* 3301 * With delalloc we want to sync the file 3302 * so that we can make sure we allocate 3303 * blocks for file 3304 */ 3305 filemap_write_and_wait(mapping); 3306 } 3307 3308 if (EXT4_JOURNAL(inode) && 3309 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3310 /* 3311 * This is a REALLY heavyweight approach, but the use of 3312 * bmap on dirty files is expected to be extremely rare: 3313 * only if we run lilo or swapon on a freshly made file 3314 * do we expect this to happen. 3315 * 3316 * (bmap requires CAP_SYS_RAWIO so this does not 3317 * represent an unprivileged user DOS attack --- we'd be 3318 * in trouble if mortal users could trigger this path at 3319 * will.) 3320 * 3321 * NB. EXT4_STATE_JDATA is not set on files other than 3322 * regular files. If somebody wants to bmap a directory 3323 * or symlink and gets confused because the buffer 3324 * hasn't yet been flushed to disk, they deserve 3325 * everything they get. 3326 */ 3327 3328 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3329 journal = EXT4_JOURNAL(inode); 3330 jbd2_journal_lock_updates(journal); 3331 err = jbd2_journal_flush(journal); 3332 jbd2_journal_unlock_updates(journal); 3333 3334 if (err) 3335 return 0; 3336 } 3337 3338 return generic_block_bmap(mapping, block, ext4_get_block); 3339 } 3340 3341 static int ext4_readpage(struct file *file, struct page *page) 3342 { 3343 int ret = -EAGAIN; 3344 struct inode *inode = page->mapping->host; 3345 3346 trace_ext4_readpage(page); 3347 3348 if (ext4_has_inline_data(inode)) 3349 ret = ext4_readpage_inline(inode, page); 3350 3351 if (ret == -EAGAIN) 3352 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3353 false); 3354 3355 return ret; 3356 } 3357 3358 static int 3359 ext4_readpages(struct file *file, struct address_space *mapping, 3360 struct list_head *pages, unsigned nr_pages) 3361 { 3362 struct inode *inode = mapping->host; 3363 3364 /* If the file has inline data, no need to do readpages. */ 3365 if (ext4_has_inline_data(inode)) 3366 return 0; 3367 3368 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3369 } 3370 3371 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3372 unsigned int length) 3373 { 3374 trace_ext4_invalidatepage(page, offset, length); 3375 3376 /* No journalling happens on data buffers when this function is used */ 3377 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3378 3379 block_invalidatepage(page, offset, length); 3380 } 3381 3382 static int __ext4_journalled_invalidatepage(struct page *page, 3383 unsigned int offset, 3384 unsigned int length) 3385 { 3386 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3387 3388 trace_ext4_journalled_invalidatepage(page, offset, length); 3389 3390 /* 3391 * If it's a full truncate we just forget about the pending dirtying 3392 */ 3393 if (offset == 0 && length == PAGE_SIZE) 3394 ClearPageChecked(page); 3395 3396 return jbd2_journal_invalidatepage(journal, page, offset, length); 3397 } 3398 3399 /* Wrapper for aops... */ 3400 static void ext4_journalled_invalidatepage(struct page *page, 3401 unsigned int offset, 3402 unsigned int length) 3403 { 3404 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3405 } 3406 3407 static int ext4_releasepage(struct page *page, gfp_t wait) 3408 { 3409 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3410 3411 trace_ext4_releasepage(page); 3412 3413 /* Page has dirty journalled data -> cannot release */ 3414 if (PageChecked(page)) 3415 return 0; 3416 if (journal) 3417 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3418 else 3419 return try_to_free_buffers(page); 3420 } 3421 3422 static bool ext4_inode_datasync_dirty(struct inode *inode) 3423 { 3424 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3425 3426 if (journal) 3427 return !jbd2_transaction_committed(journal, 3428 EXT4_I(inode)->i_datasync_tid); 3429 /* Any metadata buffers to write? */ 3430 if (!list_empty(&inode->i_mapping->private_list)) 3431 return true; 3432 return inode->i_state & I_DIRTY_DATASYNC; 3433 } 3434 3435 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3436 unsigned flags, struct iomap *iomap) 3437 { 3438 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3439 unsigned int blkbits = inode->i_blkbits; 3440 unsigned long first_block, last_block; 3441 struct ext4_map_blocks map; 3442 bool delalloc = false; 3443 int ret; 3444 3445 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3446 return -EINVAL; 3447 first_block = offset >> blkbits; 3448 last_block = min_t(loff_t, (offset + length - 1) >> blkbits, 3449 EXT4_MAX_LOGICAL_BLOCK); 3450 3451 if (flags & IOMAP_REPORT) { 3452 if (ext4_has_inline_data(inode)) { 3453 ret = ext4_inline_data_iomap(inode, iomap); 3454 if (ret != -EAGAIN) { 3455 if (ret == 0 && offset >= iomap->length) 3456 ret = -ENOENT; 3457 return ret; 3458 } 3459 } 3460 } else { 3461 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3462 return -ERANGE; 3463 } 3464 3465 map.m_lblk = first_block; 3466 map.m_len = last_block - first_block + 1; 3467 3468 if (flags & IOMAP_REPORT) { 3469 ret = ext4_map_blocks(NULL, inode, &map, 0); 3470 if (ret < 0) 3471 return ret; 3472 3473 if (ret == 0) { 3474 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3475 struct extent_status es; 3476 3477 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3478 map.m_lblk, end, &es); 3479 3480 if (!es.es_len || es.es_lblk > end) { 3481 /* entire range is a hole */ 3482 } else if (es.es_lblk > map.m_lblk) { 3483 /* range starts with a hole */ 3484 map.m_len = es.es_lblk - map.m_lblk; 3485 } else { 3486 ext4_lblk_t offs = 0; 3487 3488 if (es.es_lblk < map.m_lblk) 3489 offs = map.m_lblk - es.es_lblk; 3490 map.m_lblk = es.es_lblk + offs; 3491 map.m_len = es.es_len - offs; 3492 delalloc = true; 3493 } 3494 } 3495 } else if (flags & IOMAP_WRITE) { 3496 int dio_credits; 3497 handle_t *handle; 3498 int retries = 0; 3499 3500 /* Trim mapping request to maximum we can map at once for DIO */ 3501 if (map.m_len > DIO_MAX_BLOCKS) 3502 map.m_len = DIO_MAX_BLOCKS; 3503 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3504 retry: 3505 /* 3506 * Either we allocate blocks and then we don't get unwritten 3507 * extent so we have reserved enough credits, or the blocks 3508 * are already allocated and unwritten and in that case 3509 * extent conversion fits in the credits as well. 3510 */ 3511 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3512 dio_credits); 3513 if (IS_ERR(handle)) 3514 return PTR_ERR(handle); 3515 3516 ret = ext4_map_blocks(handle, inode, &map, 3517 EXT4_GET_BLOCKS_CREATE_ZERO); 3518 if (ret < 0) { 3519 ext4_journal_stop(handle); 3520 if (ret == -ENOSPC && 3521 ext4_should_retry_alloc(inode->i_sb, &retries)) 3522 goto retry; 3523 return ret; 3524 } 3525 3526 /* 3527 * If we added blocks beyond i_size, we need to make sure they 3528 * will get truncated if we crash before updating i_size in 3529 * ext4_iomap_end(). For faults we don't need to do that (and 3530 * even cannot because for orphan list operations inode_lock is 3531 * required) - if we happen to instantiate block beyond i_size, 3532 * it is because we race with truncate which has already added 3533 * the inode to the orphan list. 3534 */ 3535 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3536 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3537 int err; 3538 3539 err = ext4_orphan_add(handle, inode); 3540 if (err < 0) { 3541 ext4_journal_stop(handle); 3542 return err; 3543 } 3544 } 3545 ext4_journal_stop(handle); 3546 } else { 3547 ret = ext4_map_blocks(NULL, inode, &map, 0); 3548 if (ret < 0) 3549 return ret; 3550 } 3551 3552 iomap->flags = 0; 3553 if (ext4_inode_datasync_dirty(inode)) 3554 iomap->flags |= IOMAP_F_DIRTY; 3555 iomap->bdev = inode->i_sb->s_bdev; 3556 iomap->dax_dev = sbi->s_daxdev; 3557 iomap->offset = (u64)first_block << blkbits; 3558 iomap->length = (u64)map.m_len << blkbits; 3559 3560 if (ret == 0) { 3561 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3562 iomap->addr = IOMAP_NULL_ADDR; 3563 } else { 3564 if (map.m_flags & EXT4_MAP_MAPPED) { 3565 iomap->type = IOMAP_MAPPED; 3566 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3567 iomap->type = IOMAP_UNWRITTEN; 3568 } else { 3569 WARN_ON_ONCE(1); 3570 return -EIO; 3571 } 3572 iomap->addr = (u64)map.m_pblk << blkbits; 3573 } 3574 3575 if (map.m_flags & EXT4_MAP_NEW) 3576 iomap->flags |= IOMAP_F_NEW; 3577 3578 return 0; 3579 } 3580 3581 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3582 ssize_t written, unsigned flags, struct iomap *iomap) 3583 { 3584 int ret = 0; 3585 handle_t *handle; 3586 int blkbits = inode->i_blkbits; 3587 bool truncate = false; 3588 3589 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3590 return 0; 3591 3592 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3593 if (IS_ERR(handle)) { 3594 ret = PTR_ERR(handle); 3595 goto orphan_del; 3596 } 3597 if (ext4_update_inode_size(inode, offset + written)) 3598 ext4_mark_inode_dirty(handle, inode); 3599 /* 3600 * We may need to truncate allocated but not written blocks beyond EOF. 3601 */ 3602 if (iomap->offset + iomap->length > 3603 ALIGN(inode->i_size, 1 << blkbits)) { 3604 ext4_lblk_t written_blk, end_blk; 3605 3606 written_blk = (offset + written) >> blkbits; 3607 end_blk = (offset + length) >> blkbits; 3608 if (written_blk < end_blk && ext4_can_truncate(inode)) 3609 truncate = true; 3610 } 3611 /* 3612 * Remove inode from orphan list if we were extending a inode and 3613 * everything went fine. 3614 */ 3615 if (!truncate && inode->i_nlink && 3616 !list_empty(&EXT4_I(inode)->i_orphan)) 3617 ext4_orphan_del(handle, inode); 3618 ext4_journal_stop(handle); 3619 if (truncate) { 3620 ext4_truncate_failed_write(inode); 3621 orphan_del: 3622 /* 3623 * If truncate failed early the inode might still be on the 3624 * orphan list; we need to make sure the inode is removed from 3625 * the orphan list in that case. 3626 */ 3627 if (inode->i_nlink) 3628 ext4_orphan_del(NULL, inode); 3629 } 3630 return ret; 3631 } 3632 3633 const struct iomap_ops ext4_iomap_ops = { 3634 .iomap_begin = ext4_iomap_begin, 3635 .iomap_end = ext4_iomap_end, 3636 }; 3637 3638 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3639 ssize_t size, void *private) 3640 { 3641 ext4_io_end_t *io_end = private; 3642 3643 /* if not async direct IO just return */ 3644 if (!io_end) 3645 return 0; 3646 3647 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3648 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3649 io_end, io_end->inode->i_ino, iocb, offset, size); 3650 3651 /* 3652 * Error during AIO DIO. We cannot convert unwritten extents as the 3653 * data was not written. Just clear the unwritten flag and drop io_end. 3654 */ 3655 if (size <= 0) { 3656 ext4_clear_io_unwritten_flag(io_end); 3657 size = 0; 3658 } 3659 io_end->offset = offset; 3660 io_end->size = size; 3661 ext4_put_io_end(io_end); 3662 3663 return 0; 3664 } 3665 3666 /* 3667 * Handling of direct IO writes. 3668 * 3669 * For ext4 extent files, ext4 will do direct-io write even to holes, 3670 * preallocated extents, and those write extend the file, no need to 3671 * fall back to buffered IO. 3672 * 3673 * For holes, we fallocate those blocks, mark them as unwritten 3674 * If those blocks were preallocated, we mark sure they are split, but 3675 * still keep the range to write as unwritten. 3676 * 3677 * The unwritten extents will be converted to written when DIO is completed. 3678 * For async direct IO, since the IO may still pending when return, we 3679 * set up an end_io call back function, which will do the conversion 3680 * when async direct IO completed. 3681 * 3682 * If the O_DIRECT write will extend the file then add this inode to the 3683 * orphan list. So recovery will truncate it back to the original size 3684 * if the machine crashes during the write. 3685 * 3686 */ 3687 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3688 { 3689 struct file *file = iocb->ki_filp; 3690 struct inode *inode = file->f_mapping->host; 3691 struct ext4_inode_info *ei = EXT4_I(inode); 3692 ssize_t ret; 3693 loff_t offset = iocb->ki_pos; 3694 size_t count = iov_iter_count(iter); 3695 int overwrite = 0; 3696 get_block_t *get_block_func = NULL; 3697 int dio_flags = 0; 3698 loff_t final_size = offset + count; 3699 int orphan = 0; 3700 handle_t *handle; 3701 3702 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3703 /* Credits for sb + inode write */ 3704 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3705 if (IS_ERR(handle)) { 3706 ret = PTR_ERR(handle); 3707 goto out; 3708 } 3709 ret = ext4_orphan_add(handle, inode); 3710 if (ret) { 3711 ext4_journal_stop(handle); 3712 goto out; 3713 } 3714 orphan = 1; 3715 ext4_update_i_disksize(inode, inode->i_size); 3716 ext4_journal_stop(handle); 3717 } 3718 3719 BUG_ON(iocb->private == NULL); 3720 3721 /* 3722 * Make all waiters for direct IO properly wait also for extent 3723 * conversion. This also disallows race between truncate() and 3724 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3725 */ 3726 inode_dio_begin(inode); 3727 3728 /* If we do a overwrite dio, i_mutex locking can be released */ 3729 overwrite = *((int *)iocb->private); 3730 3731 if (overwrite) 3732 inode_unlock(inode); 3733 3734 /* 3735 * For extent mapped files we could direct write to holes and fallocate. 3736 * 3737 * Allocated blocks to fill the hole are marked as unwritten to prevent 3738 * parallel buffered read to expose the stale data before DIO complete 3739 * the data IO. 3740 * 3741 * As to previously fallocated extents, ext4 get_block will just simply 3742 * mark the buffer mapped but still keep the extents unwritten. 3743 * 3744 * For non AIO case, we will convert those unwritten extents to written 3745 * after return back from blockdev_direct_IO. That way we save us from 3746 * allocating io_end structure and also the overhead of offloading 3747 * the extent convertion to a workqueue. 3748 * 3749 * For async DIO, the conversion needs to be deferred when the 3750 * IO is completed. The ext4 end_io callback function will be 3751 * called to take care of the conversion work. Here for async 3752 * case, we allocate an io_end structure to hook to the iocb. 3753 */ 3754 iocb->private = NULL; 3755 if (overwrite) 3756 get_block_func = ext4_dio_get_block_overwrite; 3757 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3758 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3759 get_block_func = ext4_dio_get_block; 3760 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3761 } else if (is_sync_kiocb(iocb)) { 3762 get_block_func = ext4_dio_get_block_unwritten_sync; 3763 dio_flags = DIO_LOCKING; 3764 } else { 3765 get_block_func = ext4_dio_get_block_unwritten_async; 3766 dio_flags = DIO_LOCKING; 3767 } 3768 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3769 get_block_func, ext4_end_io_dio, NULL, 3770 dio_flags); 3771 3772 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3773 EXT4_STATE_DIO_UNWRITTEN)) { 3774 int err; 3775 /* 3776 * for non AIO case, since the IO is already 3777 * completed, we could do the conversion right here 3778 */ 3779 err = ext4_convert_unwritten_extents(NULL, inode, 3780 offset, ret); 3781 if (err < 0) 3782 ret = err; 3783 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3784 } 3785 3786 inode_dio_end(inode); 3787 /* take i_mutex locking again if we do a ovewrite dio */ 3788 if (overwrite) 3789 inode_lock(inode); 3790 3791 if (ret < 0 && final_size > inode->i_size) 3792 ext4_truncate_failed_write(inode); 3793 3794 /* Handle extending of i_size after direct IO write */ 3795 if (orphan) { 3796 int err; 3797 3798 /* Credits for sb + inode write */ 3799 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3800 if (IS_ERR(handle)) { 3801 /* 3802 * We wrote the data but cannot extend 3803 * i_size. Bail out. In async io case, we do 3804 * not return error here because we have 3805 * already submmitted the corresponding 3806 * bio. Returning error here makes the caller 3807 * think that this IO is done and failed 3808 * resulting in race with bio's completion 3809 * handler. 3810 */ 3811 if (!ret) 3812 ret = PTR_ERR(handle); 3813 if (inode->i_nlink) 3814 ext4_orphan_del(NULL, inode); 3815 3816 goto out; 3817 } 3818 if (inode->i_nlink) 3819 ext4_orphan_del(handle, inode); 3820 if (ret > 0) { 3821 loff_t end = offset + ret; 3822 if (end > inode->i_size || end > ei->i_disksize) { 3823 ext4_update_i_disksize(inode, end); 3824 if (end > inode->i_size) 3825 i_size_write(inode, end); 3826 /* 3827 * We're going to return a positive `ret' 3828 * here due to non-zero-length I/O, so there's 3829 * no way of reporting error returns from 3830 * ext4_mark_inode_dirty() to userspace. So 3831 * ignore it. 3832 */ 3833 ext4_mark_inode_dirty(handle, inode); 3834 } 3835 } 3836 err = ext4_journal_stop(handle); 3837 if (ret == 0) 3838 ret = err; 3839 } 3840 out: 3841 return ret; 3842 } 3843 3844 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3845 { 3846 struct address_space *mapping = iocb->ki_filp->f_mapping; 3847 struct inode *inode = mapping->host; 3848 size_t count = iov_iter_count(iter); 3849 ssize_t ret; 3850 3851 /* 3852 * Shared inode_lock is enough for us - it protects against concurrent 3853 * writes & truncates and since we take care of writing back page cache, 3854 * we are protected against page writeback as well. 3855 */ 3856 inode_lock_shared(inode); 3857 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3858 iocb->ki_pos + count - 1); 3859 if (ret) 3860 goto out_unlock; 3861 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3862 iter, ext4_dio_get_block, NULL, NULL, 0); 3863 out_unlock: 3864 inode_unlock_shared(inode); 3865 return ret; 3866 } 3867 3868 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3869 { 3870 struct file *file = iocb->ki_filp; 3871 struct inode *inode = file->f_mapping->host; 3872 size_t count = iov_iter_count(iter); 3873 loff_t offset = iocb->ki_pos; 3874 ssize_t ret; 3875 3876 #ifdef CONFIG_FS_ENCRYPTION 3877 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3878 return 0; 3879 #endif 3880 3881 /* 3882 * If we are doing data journalling we don't support O_DIRECT 3883 */ 3884 if (ext4_should_journal_data(inode)) 3885 return 0; 3886 3887 /* Let buffer I/O handle the inline data case. */ 3888 if (ext4_has_inline_data(inode)) 3889 return 0; 3890 3891 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3892 if (iov_iter_rw(iter) == READ) 3893 ret = ext4_direct_IO_read(iocb, iter); 3894 else 3895 ret = ext4_direct_IO_write(iocb, iter); 3896 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3897 return ret; 3898 } 3899 3900 /* 3901 * Pages can be marked dirty completely asynchronously from ext4's journalling 3902 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3903 * much here because ->set_page_dirty is called under VFS locks. The page is 3904 * not necessarily locked. 3905 * 3906 * We cannot just dirty the page and leave attached buffers clean, because the 3907 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3908 * or jbddirty because all the journalling code will explode. 3909 * 3910 * So what we do is to mark the page "pending dirty" and next time writepage 3911 * is called, propagate that into the buffers appropriately. 3912 */ 3913 static int ext4_journalled_set_page_dirty(struct page *page) 3914 { 3915 SetPageChecked(page); 3916 return __set_page_dirty_nobuffers(page); 3917 } 3918 3919 static int ext4_set_page_dirty(struct page *page) 3920 { 3921 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3922 WARN_ON_ONCE(!page_has_buffers(page)); 3923 return __set_page_dirty_buffers(page); 3924 } 3925 3926 static const struct address_space_operations ext4_aops = { 3927 .readpage = ext4_readpage, 3928 .readpages = ext4_readpages, 3929 .writepage = ext4_writepage, 3930 .writepages = ext4_writepages, 3931 .write_begin = ext4_write_begin, 3932 .write_end = ext4_write_end, 3933 .set_page_dirty = ext4_set_page_dirty, 3934 .bmap = ext4_bmap, 3935 .invalidatepage = ext4_invalidatepage, 3936 .releasepage = ext4_releasepage, 3937 .direct_IO = ext4_direct_IO, 3938 .migratepage = buffer_migrate_page, 3939 .is_partially_uptodate = block_is_partially_uptodate, 3940 .error_remove_page = generic_error_remove_page, 3941 }; 3942 3943 static const struct address_space_operations ext4_journalled_aops = { 3944 .readpage = ext4_readpage, 3945 .readpages = ext4_readpages, 3946 .writepage = ext4_writepage, 3947 .writepages = ext4_writepages, 3948 .write_begin = ext4_write_begin, 3949 .write_end = ext4_journalled_write_end, 3950 .set_page_dirty = ext4_journalled_set_page_dirty, 3951 .bmap = ext4_bmap, 3952 .invalidatepage = ext4_journalled_invalidatepage, 3953 .releasepage = ext4_releasepage, 3954 .direct_IO = ext4_direct_IO, 3955 .is_partially_uptodate = block_is_partially_uptodate, 3956 .error_remove_page = generic_error_remove_page, 3957 }; 3958 3959 static const struct address_space_operations ext4_da_aops = { 3960 .readpage = ext4_readpage, 3961 .readpages = ext4_readpages, 3962 .writepage = ext4_writepage, 3963 .writepages = ext4_writepages, 3964 .write_begin = ext4_da_write_begin, 3965 .write_end = ext4_da_write_end, 3966 .set_page_dirty = ext4_set_page_dirty, 3967 .bmap = ext4_bmap, 3968 .invalidatepage = ext4_da_invalidatepage, 3969 .releasepage = ext4_releasepage, 3970 .direct_IO = ext4_direct_IO, 3971 .migratepage = buffer_migrate_page, 3972 .is_partially_uptodate = block_is_partially_uptodate, 3973 .error_remove_page = generic_error_remove_page, 3974 }; 3975 3976 static const struct address_space_operations ext4_dax_aops = { 3977 .writepages = ext4_dax_writepages, 3978 .direct_IO = noop_direct_IO, 3979 .set_page_dirty = noop_set_page_dirty, 3980 .bmap = ext4_bmap, 3981 .invalidatepage = noop_invalidatepage, 3982 }; 3983 3984 void ext4_set_aops(struct inode *inode) 3985 { 3986 switch (ext4_inode_journal_mode(inode)) { 3987 case EXT4_INODE_ORDERED_DATA_MODE: 3988 case EXT4_INODE_WRITEBACK_DATA_MODE: 3989 break; 3990 case EXT4_INODE_JOURNAL_DATA_MODE: 3991 inode->i_mapping->a_ops = &ext4_journalled_aops; 3992 return; 3993 default: 3994 BUG(); 3995 } 3996 if (IS_DAX(inode)) 3997 inode->i_mapping->a_ops = &ext4_dax_aops; 3998 else if (test_opt(inode->i_sb, DELALLOC)) 3999 inode->i_mapping->a_ops = &ext4_da_aops; 4000 else 4001 inode->i_mapping->a_ops = &ext4_aops; 4002 } 4003 4004 static int __ext4_block_zero_page_range(handle_t *handle, 4005 struct address_space *mapping, loff_t from, loff_t length) 4006 { 4007 ext4_fsblk_t index = from >> PAGE_SHIFT; 4008 unsigned offset = from & (PAGE_SIZE-1); 4009 unsigned blocksize, pos; 4010 ext4_lblk_t iblock; 4011 struct inode *inode = mapping->host; 4012 struct buffer_head *bh; 4013 struct page *page; 4014 int err = 0; 4015 4016 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 4017 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4018 if (!page) 4019 return -ENOMEM; 4020 4021 blocksize = inode->i_sb->s_blocksize; 4022 4023 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4024 4025 if (!page_has_buffers(page)) 4026 create_empty_buffers(page, blocksize, 0); 4027 4028 /* Find the buffer that contains "offset" */ 4029 bh = page_buffers(page); 4030 pos = blocksize; 4031 while (offset >= pos) { 4032 bh = bh->b_this_page; 4033 iblock++; 4034 pos += blocksize; 4035 } 4036 if (buffer_freed(bh)) { 4037 BUFFER_TRACE(bh, "freed: skip"); 4038 goto unlock; 4039 } 4040 if (!buffer_mapped(bh)) { 4041 BUFFER_TRACE(bh, "unmapped"); 4042 ext4_get_block(inode, iblock, bh, 0); 4043 /* unmapped? It's a hole - nothing to do */ 4044 if (!buffer_mapped(bh)) { 4045 BUFFER_TRACE(bh, "still unmapped"); 4046 goto unlock; 4047 } 4048 } 4049 4050 /* Ok, it's mapped. Make sure it's up-to-date */ 4051 if (PageUptodate(page)) 4052 set_buffer_uptodate(bh); 4053 4054 if (!buffer_uptodate(bh)) { 4055 err = -EIO; 4056 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4057 wait_on_buffer(bh); 4058 /* Uhhuh. Read error. Complain and punt. */ 4059 if (!buffer_uptodate(bh)) 4060 goto unlock; 4061 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4062 /* We expect the key to be set. */ 4063 BUG_ON(!fscrypt_has_encryption_key(inode)); 4064 BUG_ON(blocksize != PAGE_SIZE); 4065 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4066 page, PAGE_SIZE, 0, page->index)); 4067 } 4068 } 4069 if (ext4_should_journal_data(inode)) { 4070 BUFFER_TRACE(bh, "get write access"); 4071 err = ext4_journal_get_write_access(handle, bh); 4072 if (err) 4073 goto unlock; 4074 } 4075 zero_user(page, offset, length); 4076 BUFFER_TRACE(bh, "zeroed end of block"); 4077 4078 if (ext4_should_journal_data(inode)) { 4079 err = ext4_handle_dirty_metadata(handle, inode, bh); 4080 } else { 4081 err = 0; 4082 mark_buffer_dirty(bh); 4083 if (ext4_should_order_data(inode)) 4084 err = ext4_jbd2_inode_add_write(handle, inode); 4085 } 4086 4087 unlock: 4088 unlock_page(page); 4089 put_page(page); 4090 return err; 4091 } 4092 4093 /* 4094 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4095 * starting from file offset 'from'. The range to be zero'd must 4096 * be contained with in one block. If the specified range exceeds 4097 * the end of the block it will be shortened to end of the block 4098 * that cooresponds to 'from' 4099 */ 4100 static int ext4_block_zero_page_range(handle_t *handle, 4101 struct address_space *mapping, loff_t from, loff_t length) 4102 { 4103 struct inode *inode = mapping->host; 4104 unsigned offset = from & (PAGE_SIZE-1); 4105 unsigned blocksize = inode->i_sb->s_blocksize; 4106 unsigned max = blocksize - (offset & (blocksize - 1)); 4107 4108 /* 4109 * correct length if it does not fall between 4110 * 'from' and the end of the block 4111 */ 4112 if (length > max || length < 0) 4113 length = max; 4114 4115 if (IS_DAX(inode)) { 4116 return iomap_zero_range(inode, from, length, NULL, 4117 &ext4_iomap_ops); 4118 } 4119 return __ext4_block_zero_page_range(handle, mapping, from, length); 4120 } 4121 4122 /* 4123 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4124 * up to the end of the block which corresponds to `from'. 4125 * This required during truncate. We need to physically zero the tail end 4126 * of that block so it doesn't yield old data if the file is later grown. 4127 */ 4128 static int ext4_block_truncate_page(handle_t *handle, 4129 struct address_space *mapping, loff_t from) 4130 { 4131 unsigned offset = from & (PAGE_SIZE-1); 4132 unsigned length; 4133 unsigned blocksize; 4134 struct inode *inode = mapping->host; 4135 4136 /* If we are processing an encrypted inode during orphan list handling */ 4137 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4138 return 0; 4139 4140 blocksize = inode->i_sb->s_blocksize; 4141 length = blocksize - (offset & (blocksize - 1)); 4142 4143 return ext4_block_zero_page_range(handle, mapping, from, length); 4144 } 4145 4146 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4147 loff_t lstart, loff_t length) 4148 { 4149 struct super_block *sb = inode->i_sb; 4150 struct address_space *mapping = inode->i_mapping; 4151 unsigned partial_start, partial_end; 4152 ext4_fsblk_t start, end; 4153 loff_t byte_end = (lstart + length - 1); 4154 int err = 0; 4155 4156 partial_start = lstart & (sb->s_blocksize - 1); 4157 partial_end = byte_end & (sb->s_blocksize - 1); 4158 4159 start = lstart >> sb->s_blocksize_bits; 4160 end = byte_end >> sb->s_blocksize_bits; 4161 4162 /* Handle partial zero within the single block */ 4163 if (start == end && 4164 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4165 err = ext4_block_zero_page_range(handle, mapping, 4166 lstart, length); 4167 return err; 4168 } 4169 /* Handle partial zero out on the start of the range */ 4170 if (partial_start) { 4171 err = ext4_block_zero_page_range(handle, mapping, 4172 lstart, sb->s_blocksize); 4173 if (err) 4174 return err; 4175 } 4176 /* Handle partial zero out on the end of the range */ 4177 if (partial_end != sb->s_blocksize - 1) 4178 err = ext4_block_zero_page_range(handle, mapping, 4179 byte_end - partial_end, 4180 partial_end + 1); 4181 return err; 4182 } 4183 4184 int ext4_can_truncate(struct inode *inode) 4185 { 4186 if (S_ISREG(inode->i_mode)) 4187 return 1; 4188 if (S_ISDIR(inode->i_mode)) 4189 return 1; 4190 if (S_ISLNK(inode->i_mode)) 4191 return !ext4_inode_is_fast_symlink(inode); 4192 return 0; 4193 } 4194 4195 /* 4196 * We have to make sure i_disksize gets properly updated before we truncate 4197 * page cache due to hole punching or zero range. Otherwise i_disksize update 4198 * can get lost as it may have been postponed to submission of writeback but 4199 * that will never happen after we truncate page cache. 4200 */ 4201 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4202 loff_t len) 4203 { 4204 handle_t *handle; 4205 loff_t size = i_size_read(inode); 4206 4207 WARN_ON(!inode_is_locked(inode)); 4208 if (offset > size || offset + len < size) 4209 return 0; 4210 4211 if (EXT4_I(inode)->i_disksize >= size) 4212 return 0; 4213 4214 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4215 if (IS_ERR(handle)) 4216 return PTR_ERR(handle); 4217 ext4_update_i_disksize(inode, size); 4218 ext4_mark_inode_dirty(handle, inode); 4219 ext4_journal_stop(handle); 4220 4221 return 0; 4222 } 4223 4224 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4225 { 4226 up_write(&ei->i_mmap_sem); 4227 schedule(); 4228 down_write(&ei->i_mmap_sem); 4229 } 4230 4231 int ext4_break_layouts(struct inode *inode) 4232 { 4233 struct ext4_inode_info *ei = EXT4_I(inode); 4234 struct page *page; 4235 int error; 4236 4237 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4238 return -EINVAL; 4239 4240 do { 4241 page = dax_layout_busy_page(inode->i_mapping); 4242 if (!page) 4243 return 0; 4244 4245 error = ___wait_var_event(&page->_refcount, 4246 atomic_read(&page->_refcount) == 1, 4247 TASK_INTERRUPTIBLE, 0, 0, 4248 ext4_wait_dax_page(ei)); 4249 } while (error == 0); 4250 4251 return error; 4252 } 4253 4254 /* 4255 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4256 * associated with the given offset and length 4257 * 4258 * @inode: File inode 4259 * @offset: The offset where the hole will begin 4260 * @len: The length of the hole 4261 * 4262 * Returns: 0 on success or negative on failure 4263 */ 4264 4265 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4266 { 4267 struct super_block *sb = inode->i_sb; 4268 ext4_lblk_t first_block, stop_block; 4269 struct address_space *mapping = inode->i_mapping; 4270 loff_t first_block_offset, last_block_offset; 4271 handle_t *handle; 4272 unsigned int credits; 4273 int ret = 0; 4274 4275 if (!S_ISREG(inode->i_mode)) 4276 return -EOPNOTSUPP; 4277 4278 trace_ext4_punch_hole(inode, offset, length, 0); 4279 4280 /* 4281 * Write out all dirty pages to avoid race conditions 4282 * Then release them. 4283 */ 4284 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4285 ret = filemap_write_and_wait_range(mapping, offset, 4286 offset + length - 1); 4287 if (ret) 4288 return ret; 4289 } 4290 4291 inode_lock(inode); 4292 4293 /* No need to punch hole beyond i_size */ 4294 if (offset >= inode->i_size) 4295 goto out_mutex; 4296 4297 /* 4298 * If the hole extends beyond i_size, set the hole 4299 * to end after the page that contains i_size 4300 */ 4301 if (offset + length > inode->i_size) { 4302 length = inode->i_size + 4303 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4304 offset; 4305 } 4306 4307 if (offset & (sb->s_blocksize - 1) || 4308 (offset + length) & (sb->s_blocksize - 1)) { 4309 /* 4310 * Attach jinode to inode for jbd2 if we do any zeroing of 4311 * partial block 4312 */ 4313 ret = ext4_inode_attach_jinode(inode); 4314 if (ret < 0) 4315 goto out_mutex; 4316 4317 } 4318 4319 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4320 inode_dio_wait(inode); 4321 4322 /* 4323 * Prevent page faults from reinstantiating pages we have released from 4324 * page cache. 4325 */ 4326 down_write(&EXT4_I(inode)->i_mmap_sem); 4327 4328 ret = ext4_break_layouts(inode); 4329 if (ret) 4330 goto out_dio; 4331 4332 first_block_offset = round_up(offset, sb->s_blocksize); 4333 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4334 4335 /* Now release the pages and zero block aligned part of pages*/ 4336 if (last_block_offset > first_block_offset) { 4337 ret = ext4_update_disksize_before_punch(inode, offset, length); 4338 if (ret) 4339 goto out_dio; 4340 truncate_pagecache_range(inode, first_block_offset, 4341 last_block_offset); 4342 } 4343 4344 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4345 credits = ext4_writepage_trans_blocks(inode); 4346 else 4347 credits = ext4_blocks_for_truncate(inode); 4348 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4349 if (IS_ERR(handle)) { 4350 ret = PTR_ERR(handle); 4351 ext4_std_error(sb, ret); 4352 goto out_dio; 4353 } 4354 4355 ret = ext4_zero_partial_blocks(handle, inode, offset, 4356 length); 4357 if (ret) 4358 goto out_stop; 4359 4360 first_block = (offset + sb->s_blocksize - 1) >> 4361 EXT4_BLOCK_SIZE_BITS(sb); 4362 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4363 4364 /* If there are blocks to remove, do it */ 4365 if (stop_block > first_block) { 4366 4367 down_write(&EXT4_I(inode)->i_data_sem); 4368 ext4_discard_preallocations(inode); 4369 4370 ret = ext4_es_remove_extent(inode, first_block, 4371 stop_block - first_block); 4372 if (ret) { 4373 up_write(&EXT4_I(inode)->i_data_sem); 4374 goto out_stop; 4375 } 4376 4377 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4378 ret = ext4_ext_remove_space(inode, first_block, 4379 stop_block - 1); 4380 else 4381 ret = ext4_ind_remove_space(handle, inode, first_block, 4382 stop_block); 4383 4384 up_write(&EXT4_I(inode)->i_data_sem); 4385 } 4386 if (IS_SYNC(inode)) 4387 ext4_handle_sync(handle); 4388 4389 inode->i_mtime = inode->i_ctime = current_time(inode); 4390 ext4_mark_inode_dirty(handle, inode); 4391 if (ret >= 0) 4392 ext4_update_inode_fsync_trans(handle, inode, 1); 4393 out_stop: 4394 ext4_journal_stop(handle); 4395 out_dio: 4396 up_write(&EXT4_I(inode)->i_mmap_sem); 4397 out_mutex: 4398 inode_unlock(inode); 4399 return ret; 4400 } 4401 4402 int ext4_inode_attach_jinode(struct inode *inode) 4403 { 4404 struct ext4_inode_info *ei = EXT4_I(inode); 4405 struct jbd2_inode *jinode; 4406 4407 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4408 return 0; 4409 4410 jinode = jbd2_alloc_inode(GFP_KERNEL); 4411 spin_lock(&inode->i_lock); 4412 if (!ei->jinode) { 4413 if (!jinode) { 4414 spin_unlock(&inode->i_lock); 4415 return -ENOMEM; 4416 } 4417 ei->jinode = jinode; 4418 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4419 jinode = NULL; 4420 } 4421 spin_unlock(&inode->i_lock); 4422 if (unlikely(jinode != NULL)) 4423 jbd2_free_inode(jinode); 4424 return 0; 4425 } 4426 4427 /* 4428 * ext4_truncate() 4429 * 4430 * We block out ext4_get_block() block instantiations across the entire 4431 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4432 * simultaneously on behalf of the same inode. 4433 * 4434 * As we work through the truncate and commit bits of it to the journal there 4435 * is one core, guiding principle: the file's tree must always be consistent on 4436 * disk. We must be able to restart the truncate after a crash. 4437 * 4438 * The file's tree may be transiently inconsistent in memory (although it 4439 * probably isn't), but whenever we close off and commit a journal transaction, 4440 * the contents of (the filesystem + the journal) must be consistent and 4441 * restartable. It's pretty simple, really: bottom up, right to left (although 4442 * left-to-right works OK too). 4443 * 4444 * Note that at recovery time, journal replay occurs *before* the restart of 4445 * truncate against the orphan inode list. 4446 * 4447 * The committed inode has the new, desired i_size (which is the same as 4448 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4449 * that this inode's truncate did not complete and it will again call 4450 * ext4_truncate() to have another go. So there will be instantiated blocks 4451 * to the right of the truncation point in a crashed ext4 filesystem. But 4452 * that's fine - as long as they are linked from the inode, the post-crash 4453 * ext4_truncate() run will find them and release them. 4454 */ 4455 int ext4_truncate(struct inode *inode) 4456 { 4457 struct ext4_inode_info *ei = EXT4_I(inode); 4458 unsigned int credits; 4459 int err = 0; 4460 handle_t *handle; 4461 struct address_space *mapping = inode->i_mapping; 4462 4463 /* 4464 * There is a possibility that we're either freeing the inode 4465 * or it's a completely new inode. In those cases we might not 4466 * have i_mutex locked because it's not necessary. 4467 */ 4468 if (!(inode->i_state & (I_NEW|I_FREEING))) 4469 WARN_ON(!inode_is_locked(inode)); 4470 trace_ext4_truncate_enter(inode); 4471 4472 if (!ext4_can_truncate(inode)) 4473 return 0; 4474 4475 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4476 4477 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4478 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4479 4480 if (ext4_has_inline_data(inode)) { 4481 int has_inline = 1; 4482 4483 err = ext4_inline_data_truncate(inode, &has_inline); 4484 if (err) 4485 return err; 4486 if (has_inline) 4487 return 0; 4488 } 4489 4490 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4491 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4492 if (ext4_inode_attach_jinode(inode) < 0) 4493 return 0; 4494 } 4495 4496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4497 credits = ext4_writepage_trans_blocks(inode); 4498 else 4499 credits = ext4_blocks_for_truncate(inode); 4500 4501 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4502 if (IS_ERR(handle)) 4503 return PTR_ERR(handle); 4504 4505 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4506 ext4_block_truncate_page(handle, mapping, inode->i_size); 4507 4508 /* 4509 * We add the inode to the orphan list, so that if this 4510 * truncate spans multiple transactions, and we crash, we will 4511 * resume the truncate when the filesystem recovers. It also 4512 * marks the inode dirty, to catch the new size. 4513 * 4514 * Implication: the file must always be in a sane, consistent 4515 * truncatable state while each transaction commits. 4516 */ 4517 err = ext4_orphan_add(handle, inode); 4518 if (err) 4519 goto out_stop; 4520 4521 down_write(&EXT4_I(inode)->i_data_sem); 4522 4523 ext4_discard_preallocations(inode); 4524 4525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4526 err = ext4_ext_truncate(handle, inode); 4527 else 4528 ext4_ind_truncate(handle, inode); 4529 4530 up_write(&ei->i_data_sem); 4531 if (err) 4532 goto out_stop; 4533 4534 if (IS_SYNC(inode)) 4535 ext4_handle_sync(handle); 4536 4537 out_stop: 4538 /* 4539 * If this was a simple ftruncate() and the file will remain alive, 4540 * then we need to clear up the orphan record which we created above. 4541 * However, if this was a real unlink then we were called by 4542 * ext4_evict_inode(), and we allow that function to clean up the 4543 * orphan info for us. 4544 */ 4545 if (inode->i_nlink) 4546 ext4_orphan_del(handle, inode); 4547 4548 inode->i_mtime = inode->i_ctime = current_time(inode); 4549 ext4_mark_inode_dirty(handle, inode); 4550 ext4_journal_stop(handle); 4551 4552 trace_ext4_truncate_exit(inode); 4553 return err; 4554 } 4555 4556 /* 4557 * ext4_get_inode_loc returns with an extra refcount against the inode's 4558 * underlying buffer_head on success. If 'in_mem' is true, we have all 4559 * data in memory that is needed to recreate the on-disk version of this 4560 * inode. 4561 */ 4562 static int __ext4_get_inode_loc(struct inode *inode, 4563 struct ext4_iloc *iloc, int in_mem) 4564 { 4565 struct ext4_group_desc *gdp; 4566 struct buffer_head *bh; 4567 struct super_block *sb = inode->i_sb; 4568 ext4_fsblk_t block; 4569 int inodes_per_block, inode_offset; 4570 4571 iloc->bh = NULL; 4572 if (inode->i_ino < EXT4_ROOT_INO || 4573 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4574 return -EFSCORRUPTED; 4575 4576 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4577 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4578 if (!gdp) 4579 return -EIO; 4580 4581 /* 4582 * Figure out the offset within the block group inode table 4583 */ 4584 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4585 inode_offset = ((inode->i_ino - 1) % 4586 EXT4_INODES_PER_GROUP(sb)); 4587 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4588 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4589 4590 bh = sb_getblk(sb, block); 4591 if (unlikely(!bh)) 4592 return -ENOMEM; 4593 if (!buffer_uptodate(bh)) { 4594 lock_buffer(bh); 4595 4596 /* 4597 * If the buffer has the write error flag, we have failed 4598 * to write out another inode in the same block. In this 4599 * case, we don't have to read the block because we may 4600 * read the old inode data successfully. 4601 */ 4602 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4603 set_buffer_uptodate(bh); 4604 4605 if (buffer_uptodate(bh)) { 4606 /* someone brought it uptodate while we waited */ 4607 unlock_buffer(bh); 4608 goto has_buffer; 4609 } 4610 4611 /* 4612 * If we have all information of the inode in memory and this 4613 * is the only valid inode in the block, we need not read the 4614 * block. 4615 */ 4616 if (in_mem) { 4617 struct buffer_head *bitmap_bh; 4618 int i, start; 4619 4620 start = inode_offset & ~(inodes_per_block - 1); 4621 4622 /* Is the inode bitmap in cache? */ 4623 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4624 if (unlikely(!bitmap_bh)) 4625 goto make_io; 4626 4627 /* 4628 * If the inode bitmap isn't in cache then the 4629 * optimisation may end up performing two reads instead 4630 * of one, so skip it. 4631 */ 4632 if (!buffer_uptodate(bitmap_bh)) { 4633 brelse(bitmap_bh); 4634 goto make_io; 4635 } 4636 for (i = start; i < start + inodes_per_block; i++) { 4637 if (i == inode_offset) 4638 continue; 4639 if (ext4_test_bit(i, bitmap_bh->b_data)) 4640 break; 4641 } 4642 brelse(bitmap_bh); 4643 if (i == start + inodes_per_block) { 4644 /* all other inodes are free, so skip I/O */ 4645 memset(bh->b_data, 0, bh->b_size); 4646 set_buffer_uptodate(bh); 4647 unlock_buffer(bh); 4648 goto has_buffer; 4649 } 4650 } 4651 4652 make_io: 4653 /* 4654 * If we need to do any I/O, try to pre-readahead extra 4655 * blocks from the inode table. 4656 */ 4657 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4658 ext4_fsblk_t b, end, table; 4659 unsigned num; 4660 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4661 4662 table = ext4_inode_table(sb, gdp); 4663 /* s_inode_readahead_blks is always a power of 2 */ 4664 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4665 if (table > b) 4666 b = table; 4667 end = b + ra_blks; 4668 num = EXT4_INODES_PER_GROUP(sb); 4669 if (ext4_has_group_desc_csum(sb)) 4670 num -= ext4_itable_unused_count(sb, gdp); 4671 table += num / inodes_per_block; 4672 if (end > table) 4673 end = table; 4674 while (b <= end) 4675 sb_breadahead(sb, b++); 4676 } 4677 4678 /* 4679 * There are other valid inodes in the buffer, this inode 4680 * has in-inode xattrs, or we don't have this inode in memory. 4681 * Read the block from disk. 4682 */ 4683 trace_ext4_load_inode(inode); 4684 get_bh(bh); 4685 bh->b_end_io = end_buffer_read_sync; 4686 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4687 wait_on_buffer(bh); 4688 if (!buffer_uptodate(bh)) { 4689 EXT4_ERROR_INODE_BLOCK(inode, block, 4690 "unable to read itable block"); 4691 brelse(bh); 4692 return -EIO; 4693 } 4694 } 4695 has_buffer: 4696 iloc->bh = bh; 4697 return 0; 4698 } 4699 4700 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4701 { 4702 /* We have all inode data except xattrs in memory here. */ 4703 return __ext4_get_inode_loc(inode, iloc, 4704 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4705 } 4706 4707 static bool ext4_should_use_dax(struct inode *inode) 4708 { 4709 if (!test_opt(inode->i_sb, DAX)) 4710 return false; 4711 if (!S_ISREG(inode->i_mode)) 4712 return false; 4713 if (ext4_should_journal_data(inode)) 4714 return false; 4715 if (ext4_has_inline_data(inode)) 4716 return false; 4717 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4718 return false; 4719 return true; 4720 } 4721 4722 void ext4_set_inode_flags(struct inode *inode) 4723 { 4724 unsigned int flags = EXT4_I(inode)->i_flags; 4725 unsigned int new_fl = 0; 4726 4727 if (flags & EXT4_SYNC_FL) 4728 new_fl |= S_SYNC; 4729 if (flags & EXT4_APPEND_FL) 4730 new_fl |= S_APPEND; 4731 if (flags & EXT4_IMMUTABLE_FL) 4732 new_fl |= S_IMMUTABLE; 4733 if (flags & EXT4_NOATIME_FL) 4734 new_fl |= S_NOATIME; 4735 if (flags & EXT4_DIRSYNC_FL) 4736 new_fl |= S_DIRSYNC; 4737 if (ext4_should_use_dax(inode)) 4738 new_fl |= S_DAX; 4739 if (flags & EXT4_ENCRYPT_FL) 4740 new_fl |= S_ENCRYPTED; 4741 inode_set_flags(inode, new_fl, 4742 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4743 S_ENCRYPTED); 4744 } 4745 4746 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4747 struct ext4_inode_info *ei) 4748 { 4749 blkcnt_t i_blocks ; 4750 struct inode *inode = &(ei->vfs_inode); 4751 struct super_block *sb = inode->i_sb; 4752 4753 if (ext4_has_feature_huge_file(sb)) { 4754 /* we are using combined 48 bit field */ 4755 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4756 le32_to_cpu(raw_inode->i_blocks_lo); 4757 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4758 /* i_blocks represent file system block size */ 4759 return i_blocks << (inode->i_blkbits - 9); 4760 } else { 4761 return i_blocks; 4762 } 4763 } else { 4764 return le32_to_cpu(raw_inode->i_blocks_lo); 4765 } 4766 } 4767 4768 static inline int ext4_iget_extra_inode(struct inode *inode, 4769 struct ext4_inode *raw_inode, 4770 struct ext4_inode_info *ei) 4771 { 4772 __le32 *magic = (void *)raw_inode + 4773 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4774 4775 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4776 EXT4_INODE_SIZE(inode->i_sb) && 4777 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4778 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4779 return ext4_find_inline_data_nolock(inode); 4780 } else 4781 EXT4_I(inode)->i_inline_off = 0; 4782 return 0; 4783 } 4784 4785 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4786 { 4787 if (!ext4_has_feature_project(inode->i_sb)) 4788 return -EOPNOTSUPP; 4789 *projid = EXT4_I(inode)->i_projid; 4790 return 0; 4791 } 4792 4793 /* 4794 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4795 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4796 * set. 4797 */ 4798 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4799 { 4800 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4801 inode_set_iversion_raw(inode, val); 4802 else 4803 inode_set_iversion_queried(inode, val); 4804 } 4805 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4806 { 4807 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4808 return inode_peek_iversion_raw(inode); 4809 else 4810 return inode_peek_iversion(inode); 4811 } 4812 4813 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4814 ext4_iget_flags flags, const char *function, 4815 unsigned int line) 4816 { 4817 struct ext4_iloc iloc; 4818 struct ext4_inode *raw_inode; 4819 struct ext4_inode_info *ei; 4820 struct inode *inode; 4821 journal_t *journal = EXT4_SB(sb)->s_journal; 4822 long ret; 4823 loff_t size; 4824 int block; 4825 uid_t i_uid; 4826 gid_t i_gid; 4827 projid_t i_projid; 4828 4829 if ((!(flags & EXT4_IGET_SPECIAL) && 4830 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4831 (ino < EXT4_ROOT_INO) || 4832 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4833 if (flags & EXT4_IGET_HANDLE) 4834 return ERR_PTR(-ESTALE); 4835 __ext4_error(sb, function, line, 4836 "inode #%lu: comm %s: iget: illegal inode #", 4837 ino, current->comm); 4838 return ERR_PTR(-EFSCORRUPTED); 4839 } 4840 4841 inode = iget_locked(sb, ino); 4842 if (!inode) 4843 return ERR_PTR(-ENOMEM); 4844 if (!(inode->i_state & I_NEW)) 4845 return inode; 4846 4847 ei = EXT4_I(inode); 4848 iloc.bh = NULL; 4849 4850 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4851 if (ret < 0) 4852 goto bad_inode; 4853 raw_inode = ext4_raw_inode(&iloc); 4854 4855 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4856 ext4_error_inode(inode, function, line, 0, 4857 "iget: root inode unallocated"); 4858 ret = -EFSCORRUPTED; 4859 goto bad_inode; 4860 } 4861 4862 if ((flags & EXT4_IGET_HANDLE) && 4863 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4864 ret = -ESTALE; 4865 goto bad_inode; 4866 } 4867 4868 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4869 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4870 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4871 EXT4_INODE_SIZE(inode->i_sb) || 4872 (ei->i_extra_isize & 3)) { 4873 ext4_error_inode(inode, function, line, 0, 4874 "iget: bad extra_isize %u " 4875 "(inode size %u)", 4876 ei->i_extra_isize, 4877 EXT4_INODE_SIZE(inode->i_sb)); 4878 ret = -EFSCORRUPTED; 4879 goto bad_inode; 4880 } 4881 } else 4882 ei->i_extra_isize = 0; 4883 4884 /* Precompute checksum seed for inode metadata */ 4885 if (ext4_has_metadata_csum(sb)) { 4886 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4887 __u32 csum; 4888 __le32 inum = cpu_to_le32(inode->i_ino); 4889 __le32 gen = raw_inode->i_generation; 4890 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4891 sizeof(inum)); 4892 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4893 sizeof(gen)); 4894 } 4895 4896 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4897 ext4_error_inode(inode, function, line, 0, 4898 "iget: checksum invalid"); 4899 ret = -EFSBADCRC; 4900 goto bad_inode; 4901 } 4902 4903 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4904 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4905 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4906 if (ext4_has_feature_project(sb) && 4907 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4908 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4909 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4910 else 4911 i_projid = EXT4_DEF_PROJID; 4912 4913 if (!(test_opt(inode->i_sb, NO_UID32))) { 4914 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4915 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4916 } 4917 i_uid_write(inode, i_uid); 4918 i_gid_write(inode, i_gid); 4919 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4920 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4921 4922 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4923 ei->i_inline_off = 0; 4924 ei->i_dir_start_lookup = 0; 4925 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4926 /* We now have enough fields to check if the inode was active or not. 4927 * This is needed because nfsd might try to access dead inodes 4928 * the test is that same one that e2fsck uses 4929 * NeilBrown 1999oct15 4930 */ 4931 if (inode->i_nlink == 0) { 4932 if ((inode->i_mode == 0 || 4933 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4934 ino != EXT4_BOOT_LOADER_INO) { 4935 /* this inode is deleted */ 4936 ret = -ESTALE; 4937 goto bad_inode; 4938 } 4939 /* The only unlinked inodes we let through here have 4940 * valid i_mode and are being read by the orphan 4941 * recovery code: that's fine, we're about to complete 4942 * the process of deleting those. 4943 * OR it is the EXT4_BOOT_LOADER_INO which is 4944 * not initialized on a new filesystem. */ 4945 } 4946 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4947 ext4_set_inode_flags(inode); 4948 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4949 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4950 if (ext4_has_feature_64bit(sb)) 4951 ei->i_file_acl |= 4952 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4953 inode->i_size = ext4_isize(sb, raw_inode); 4954 if ((size = i_size_read(inode)) < 0) { 4955 ext4_error_inode(inode, function, line, 0, 4956 "iget: bad i_size value: %lld", size); 4957 ret = -EFSCORRUPTED; 4958 goto bad_inode; 4959 } 4960 ei->i_disksize = inode->i_size; 4961 #ifdef CONFIG_QUOTA 4962 ei->i_reserved_quota = 0; 4963 #endif 4964 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4965 ei->i_block_group = iloc.block_group; 4966 ei->i_last_alloc_group = ~0; 4967 /* 4968 * NOTE! The in-memory inode i_data array is in little-endian order 4969 * even on big-endian machines: we do NOT byteswap the block numbers! 4970 */ 4971 for (block = 0; block < EXT4_N_BLOCKS; block++) 4972 ei->i_data[block] = raw_inode->i_block[block]; 4973 INIT_LIST_HEAD(&ei->i_orphan); 4974 4975 /* 4976 * Set transaction id's of transactions that have to be committed 4977 * to finish f[data]sync. We set them to currently running transaction 4978 * as we cannot be sure that the inode or some of its metadata isn't 4979 * part of the transaction - the inode could have been reclaimed and 4980 * now it is reread from disk. 4981 */ 4982 if (journal) { 4983 transaction_t *transaction; 4984 tid_t tid; 4985 4986 read_lock(&journal->j_state_lock); 4987 if (journal->j_running_transaction) 4988 transaction = journal->j_running_transaction; 4989 else 4990 transaction = journal->j_committing_transaction; 4991 if (transaction) 4992 tid = transaction->t_tid; 4993 else 4994 tid = journal->j_commit_sequence; 4995 read_unlock(&journal->j_state_lock); 4996 ei->i_sync_tid = tid; 4997 ei->i_datasync_tid = tid; 4998 } 4999 5000 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5001 if (ei->i_extra_isize == 0) { 5002 /* The extra space is currently unused. Use it. */ 5003 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5004 ei->i_extra_isize = sizeof(struct ext4_inode) - 5005 EXT4_GOOD_OLD_INODE_SIZE; 5006 } else { 5007 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5008 if (ret) 5009 goto bad_inode; 5010 } 5011 } 5012 5013 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5014 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5015 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5016 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5017 5018 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5019 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5020 5021 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5022 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5023 ivers |= 5024 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5025 } 5026 ext4_inode_set_iversion_queried(inode, ivers); 5027 } 5028 5029 ret = 0; 5030 if (ei->i_file_acl && 5031 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5032 ext4_error_inode(inode, function, line, 0, 5033 "iget: bad extended attribute block %llu", 5034 ei->i_file_acl); 5035 ret = -EFSCORRUPTED; 5036 goto bad_inode; 5037 } else if (!ext4_has_inline_data(inode)) { 5038 /* validate the block references in the inode */ 5039 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5040 (S_ISLNK(inode->i_mode) && 5041 !ext4_inode_is_fast_symlink(inode))) { 5042 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5043 ret = ext4_ext_check_inode(inode); 5044 else 5045 ret = ext4_ind_check_inode(inode); 5046 } 5047 } 5048 if (ret) 5049 goto bad_inode; 5050 5051 if (S_ISREG(inode->i_mode)) { 5052 inode->i_op = &ext4_file_inode_operations; 5053 inode->i_fop = &ext4_file_operations; 5054 ext4_set_aops(inode); 5055 } else if (S_ISDIR(inode->i_mode)) { 5056 inode->i_op = &ext4_dir_inode_operations; 5057 inode->i_fop = &ext4_dir_operations; 5058 } else if (S_ISLNK(inode->i_mode)) { 5059 /* VFS does not allow setting these so must be corruption */ 5060 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5061 ext4_error_inode(inode, function, line, 0, 5062 "iget: immutable or append flags " 5063 "not allowed on symlinks"); 5064 ret = -EFSCORRUPTED; 5065 goto bad_inode; 5066 } 5067 if (IS_ENCRYPTED(inode)) { 5068 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5069 ext4_set_aops(inode); 5070 } else if (ext4_inode_is_fast_symlink(inode)) { 5071 inode->i_link = (char *)ei->i_data; 5072 inode->i_op = &ext4_fast_symlink_inode_operations; 5073 nd_terminate_link(ei->i_data, inode->i_size, 5074 sizeof(ei->i_data) - 1); 5075 } else { 5076 inode->i_op = &ext4_symlink_inode_operations; 5077 ext4_set_aops(inode); 5078 } 5079 inode_nohighmem(inode); 5080 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5081 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5082 inode->i_op = &ext4_special_inode_operations; 5083 if (raw_inode->i_block[0]) 5084 init_special_inode(inode, inode->i_mode, 5085 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5086 else 5087 init_special_inode(inode, inode->i_mode, 5088 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5089 } else if (ino == EXT4_BOOT_LOADER_INO) { 5090 make_bad_inode(inode); 5091 } else { 5092 ret = -EFSCORRUPTED; 5093 ext4_error_inode(inode, function, line, 0, 5094 "iget: bogus i_mode (%o)", inode->i_mode); 5095 goto bad_inode; 5096 } 5097 brelse(iloc.bh); 5098 5099 unlock_new_inode(inode); 5100 return inode; 5101 5102 bad_inode: 5103 brelse(iloc.bh); 5104 iget_failed(inode); 5105 return ERR_PTR(ret); 5106 } 5107 5108 static int ext4_inode_blocks_set(handle_t *handle, 5109 struct ext4_inode *raw_inode, 5110 struct ext4_inode_info *ei) 5111 { 5112 struct inode *inode = &(ei->vfs_inode); 5113 u64 i_blocks = inode->i_blocks; 5114 struct super_block *sb = inode->i_sb; 5115 5116 if (i_blocks <= ~0U) { 5117 /* 5118 * i_blocks can be represented in a 32 bit variable 5119 * as multiple of 512 bytes 5120 */ 5121 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5122 raw_inode->i_blocks_high = 0; 5123 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5124 return 0; 5125 } 5126 if (!ext4_has_feature_huge_file(sb)) 5127 return -EFBIG; 5128 5129 if (i_blocks <= 0xffffffffffffULL) { 5130 /* 5131 * i_blocks can be represented in a 48 bit variable 5132 * as multiple of 512 bytes 5133 */ 5134 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5135 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5136 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5137 } else { 5138 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5139 /* i_block is stored in file system block size */ 5140 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5141 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5142 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5143 } 5144 return 0; 5145 } 5146 5147 struct other_inode { 5148 unsigned long orig_ino; 5149 struct ext4_inode *raw_inode; 5150 }; 5151 5152 static int other_inode_match(struct inode * inode, unsigned long ino, 5153 void *data) 5154 { 5155 struct other_inode *oi = (struct other_inode *) data; 5156 5157 if ((inode->i_ino != ino) || 5158 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5159 I_DIRTY_INODE)) || 5160 ((inode->i_state & I_DIRTY_TIME) == 0)) 5161 return 0; 5162 spin_lock(&inode->i_lock); 5163 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5164 I_DIRTY_INODE)) == 0) && 5165 (inode->i_state & I_DIRTY_TIME)) { 5166 struct ext4_inode_info *ei = EXT4_I(inode); 5167 5168 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5169 spin_unlock(&inode->i_lock); 5170 5171 spin_lock(&ei->i_raw_lock); 5172 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5173 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5174 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5175 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5176 spin_unlock(&ei->i_raw_lock); 5177 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5178 return -1; 5179 } 5180 spin_unlock(&inode->i_lock); 5181 return -1; 5182 } 5183 5184 /* 5185 * Opportunistically update the other time fields for other inodes in 5186 * the same inode table block. 5187 */ 5188 static void ext4_update_other_inodes_time(struct super_block *sb, 5189 unsigned long orig_ino, char *buf) 5190 { 5191 struct other_inode oi; 5192 unsigned long ino; 5193 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5194 int inode_size = EXT4_INODE_SIZE(sb); 5195 5196 oi.orig_ino = orig_ino; 5197 /* 5198 * Calculate the first inode in the inode table block. Inode 5199 * numbers are one-based. That is, the first inode in a block 5200 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5201 */ 5202 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5203 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5204 if (ino == orig_ino) 5205 continue; 5206 oi.raw_inode = (struct ext4_inode *) buf; 5207 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5208 } 5209 } 5210 5211 /* 5212 * Post the struct inode info into an on-disk inode location in the 5213 * buffer-cache. This gobbles the caller's reference to the 5214 * buffer_head in the inode location struct. 5215 * 5216 * The caller must have write access to iloc->bh. 5217 */ 5218 static int ext4_do_update_inode(handle_t *handle, 5219 struct inode *inode, 5220 struct ext4_iloc *iloc) 5221 { 5222 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5223 struct ext4_inode_info *ei = EXT4_I(inode); 5224 struct buffer_head *bh = iloc->bh; 5225 struct super_block *sb = inode->i_sb; 5226 int err = 0, rc, block; 5227 int need_datasync = 0, set_large_file = 0; 5228 uid_t i_uid; 5229 gid_t i_gid; 5230 projid_t i_projid; 5231 5232 spin_lock(&ei->i_raw_lock); 5233 5234 /* For fields not tracked in the in-memory inode, 5235 * initialise them to zero for new inodes. */ 5236 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5237 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5238 5239 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5240 i_uid = i_uid_read(inode); 5241 i_gid = i_gid_read(inode); 5242 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5243 if (!(test_opt(inode->i_sb, NO_UID32))) { 5244 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5245 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5246 /* 5247 * Fix up interoperability with old kernels. Otherwise, old inodes get 5248 * re-used with the upper 16 bits of the uid/gid intact 5249 */ 5250 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5251 raw_inode->i_uid_high = 0; 5252 raw_inode->i_gid_high = 0; 5253 } else { 5254 raw_inode->i_uid_high = 5255 cpu_to_le16(high_16_bits(i_uid)); 5256 raw_inode->i_gid_high = 5257 cpu_to_le16(high_16_bits(i_gid)); 5258 } 5259 } else { 5260 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5261 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5262 raw_inode->i_uid_high = 0; 5263 raw_inode->i_gid_high = 0; 5264 } 5265 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5266 5267 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5268 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5269 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5270 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5271 5272 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5273 if (err) { 5274 spin_unlock(&ei->i_raw_lock); 5275 goto out_brelse; 5276 } 5277 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5278 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5279 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5280 raw_inode->i_file_acl_high = 5281 cpu_to_le16(ei->i_file_acl >> 32); 5282 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5283 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5284 ext4_isize_set(raw_inode, ei->i_disksize); 5285 need_datasync = 1; 5286 } 5287 if (ei->i_disksize > 0x7fffffffULL) { 5288 if (!ext4_has_feature_large_file(sb) || 5289 EXT4_SB(sb)->s_es->s_rev_level == 5290 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5291 set_large_file = 1; 5292 } 5293 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5294 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5295 if (old_valid_dev(inode->i_rdev)) { 5296 raw_inode->i_block[0] = 5297 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5298 raw_inode->i_block[1] = 0; 5299 } else { 5300 raw_inode->i_block[0] = 0; 5301 raw_inode->i_block[1] = 5302 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5303 raw_inode->i_block[2] = 0; 5304 } 5305 } else if (!ext4_has_inline_data(inode)) { 5306 for (block = 0; block < EXT4_N_BLOCKS; block++) 5307 raw_inode->i_block[block] = ei->i_data[block]; 5308 } 5309 5310 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5311 u64 ivers = ext4_inode_peek_iversion(inode); 5312 5313 raw_inode->i_disk_version = cpu_to_le32(ivers); 5314 if (ei->i_extra_isize) { 5315 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5316 raw_inode->i_version_hi = 5317 cpu_to_le32(ivers >> 32); 5318 raw_inode->i_extra_isize = 5319 cpu_to_le16(ei->i_extra_isize); 5320 } 5321 } 5322 5323 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5324 i_projid != EXT4_DEF_PROJID); 5325 5326 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5327 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5328 raw_inode->i_projid = cpu_to_le32(i_projid); 5329 5330 ext4_inode_csum_set(inode, raw_inode, ei); 5331 spin_unlock(&ei->i_raw_lock); 5332 if (inode->i_sb->s_flags & SB_LAZYTIME) 5333 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5334 bh->b_data); 5335 5336 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5337 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5338 if (!err) 5339 err = rc; 5340 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5341 if (set_large_file) { 5342 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5343 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5344 if (err) 5345 goto out_brelse; 5346 ext4_set_feature_large_file(sb); 5347 ext4_handle_sync(handle); 5348 err = ext4_handle_dirty_super(handle, sb); 5349 } 5350 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5351 out_brelse: 5352 brelse(bh); 5353 ext4_std_error(inode->i_sb, err); 5354 return err; 5355 } 5356 5357 /* 5358 * ext4_write_inode() 5359 * 5360 * We are called from a few places: 5361 * 5362 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5363 * Here, there will be no transaction running. We wait for any running 5364 * transaction to commit. 5365 * 5366 * - Within flush work (sys_sync(), kupdate and such). 5367 * We wait on commit, if told to. 5368 * 5369 * - Within iput_final() -> write_inode_now() 5370 * We wait on commit, if told to. 5371 * 5372 * In all cases it is actually safe for us to return without doing anything, 5373 * because the inode has been copied into a raw inode buffer in 5374 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5375 * writeback. 5376 * 5377 * Note that we are absolutely dependent upon all inode dirtiers doing the 5378 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5379 * which we are interested. 5380 * 5381 * It would be a bug for them to not do this. The code: 5382 * 5383 * mark_inode_dirty(inode) 5384 * stuff(); 5385 * inode->i_size = expr; 5386 * 5387 * is in error because write_inode() could occur while `stuff()' is running, 5388 * and the new i_size will be lost. Plus the inode will no longer be on the 5389 * superblock's dirty inode list. 5390 */ 5391 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5392 { 5393 int err; 5394 5395 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5396 sb_rdonly(inode->i_sb)) 5397 return 0; 5398 5399 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5400 return -EIO; 5401 5402 if (EXT4_SB(inode->i_sb)->s_journal) { 5403 if (ext4_journal_current_handle()) { 5404 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5405 dump_stack(); 5406 return -EIO; 5407 } 5408 5409 /* 5410 * No need to force transaction in WB_SYNC_NONE mode. Also 5411 * ext4_sync_fs() will force the commit after everything is 5412 * written. 5413 */ 5414 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5415 return 0; 5416 5417 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5418 EXT4_I(inode)->i_sync_tid); 5419 } else { 5420 struct ext4_iloc iloc; 5421 5422 err = __ext4_get_inode_loc(inode, &iloc, 0); 5423 if (err) 5424 return err; 5425 /* 5426 * sync(2) will flush the whole buffer cache. No need to do 5427 * it here separately for each inode. 5428 */ 5429 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5430 sync_dirty_buffer(iloc.bh); 5431 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5432 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5433 "IO error syncing inode"); 5434 err = -EIO; 5435 } 5436 brelse(iloc.bh); 5437 } 5438 return err; 5439 } 5440 5441 /* 5442 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5443 * buffers that are attached to a page stradding i_size and are undergoing 5444 * commit. In that case we have to wait for commit to finish and try again. 5445 */ 5446 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5447 { 5448 struct page *page; 5449 unsigned offset; 5450 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5451 tid_t commit_tid = 0; 5452 int ret; 5453 5454 offset = inode->i_size & (PAGE_SIZE - 1); 5455 /* 5456 * All buffers in the last page remain valid? Then there's nothing to 5457 * do. We do the check mainly to optimize the common PAGE_SIZE == 5458 * blocksize case 5459 */ 5460 if (offset > PAGE_SIZE - i_blocksize(inode)) 5461 return; 5462 while (1) { 5463 page = find_lock_page(inode->i_mapping, 5464 inode->i_size >> PAGE_SHIFT); 5465 if (!page) 5466 return; 5467 ret = __ext4_journalled_invalidatepage(page, offset, 5468 PAGE_SIZE - offset); 5469 unlock_page(page); 5470 put_page(page); 5471 if (ret != -EBUSY) 5472 return; 5473 commit_tid = 0; 5474 read_lock(&journal->j_state_lock); 5475 if (journal->j_committing_transaction) 5476 commit_tid = journal->j_committing_transaction->t_tid; 5477 read_unlock(&journal->j_state_lock); 5478 if (commit_tid) 5479 jbd2_log_wait_commit(journal, commit_tid); 5480 } 5481 } 5482 5483 /* 5484 * ext4_setattr() 5485 * 5486 * Called from notify_change. 5487 * 5488 * We want to trap VFS attempts to truncate the file as soon as 5489 * possible. In particular, we want to make sure that when the VFS 5490 * shrinks i_size, we put the inode on the orphan list and modify 5491 * i_disksize immediately, so that during the subsequent flushing of 5492 * dirty pages and freeing of disk blocks, we can guarantee that any 5493 * commit will leave the blocks being flushed in an unused state on 5494 * disk. (On recovery, the inode will get truncated and the blocks will 5495 * be freed, so we have a strong guarantee that no future commit will 5496 * leave these blocks visible to the user.) 5497 * 5498 * Another thing we have to assure is that if we are in ordered mode 5499 * and inode is still attached to the committing transaction, we must 5500 * we start writeout of all the dirty pages which are being truncated. 5501 * This way we are sure that all the data written in the previous 5502 * transaction are already on disk (truncate waits for pages under 5503 * writeback). 5504 * 5505 * Called with inode->i_mutex down. 5506 */ 5507 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5508 { 5509 struct inode *inode = d_inode(dentry); 5510 int error, rc = 0; 5511 int orphan = 0; 5512 const unsigned int ia_valid = attr->ia_valid; 5513 5514 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5515 return -EIO; 5516 5517 error = setattr_prepare(dentry, attr); 5518 if (error) 5519 return error; 5520 5521 error = fscrypt_prepare_setattr(dentry, attr); 5522 if (error) 5523 return error; 5524 5525 if (is_quota_modification(inode, attr)) { 5526 error = dquot_initialize(inode); 5527 if (error) 5528 return error; 5529 } 5530 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5531 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5532 handle_t *handle; 5533 5534 /* (user+group)*(old+new) structure, inode write (sb, 5535 * inode block, ? - but truncate inode update has it) */ 5536 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5537 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5538 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5539 if (IS_ERR(handle)) { 5540 error = PTR_ERR(handle); 5541 goto err_out; 5542 } 5543 5544 /* dquot_transfer() calls back ext4_get_inode_usage() which 5545 * counts xattr inode references. 5546 */ 5547 down_read(&EXT4_I(inode)->xattr_sem); 5548 error = dquot_transfer(inode, attr); 5549 up_read(&EXT4_I(inode)->xattr_sem); 5550 5551 if (error) { 5552 ext4_journal_stop(handle); 5553 return error; 5554 } 5555 /* Update corresponding info in inode so that everything is in 5556 * one transaction */ 5557 if (attr->ia_valid & ATTR_UID) 5558 inode->i_uid = attr->ia_uid; 5559 if (attr->ia_valid & ATTR_GID) 5560 inode->i_gid = attr->ia_gid; 5561 error = ext4_mark_inode_dirty(handle, inode); 5562 ext4_journal_stop(handle); 5563 } 5564 5565 if (attr->ia_valid & ATTR_SIZE) { 5566 handle_t *handle; 5567 loff_t oldsize = inode->i_size; 5568 int shrink = (attr->ia_size <= inode->i_size); 5569 5570 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5572 5573 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5574 return -EFBIG; 5575 } 5576 if (!S_ISREG(inode->i_mode)) 5577 return -EINVAL; 5578 5579 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5580 inode_inc_iversion(inode); 5581 5582 if (ext4_should_order_data(inode) && 5583 (attr->ia_size < inode->i_size)) { 5584 error = ext4_begin_ordered_truncate(inode, 5585 attr->ia_size); 5586 if (error) 5587 goto err_out; 5588 } 5589 if (attr->ia_size != inode->i_size) { 5590 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5591 if (IS_ERR(handle)) { 5592 error = PTR_ERR(handle); 5593 goto err_out; 5594 } 5595 if (ext4_handle_valid(handle) && shrink) { 5596 error = ext4_orphan_add(handle, inode); 5597 orphan = 1; 5598 } 5599 /* 5600 * Update c/mtime on truncate up, ext4_truncate() will 5601 * update c/mtime in shrink case below 5602 */ 5603 if (!shrink) { 5604 inode->i_mtime = current_time(inode); 5605 inode->i_ctime = inode->i_mtime; 5606 } 5607 down_write(&EXT4_I(inode)->i_data_sem); 5608 EXT4_I(inode)->i_disksize = attr->ia_size; 5609 rc = ext4_mark_inode_dirty(handle, inode); 5610 if (!error) 5611 error = rc; 5612 /* 5613 * We have to update i_size under i_data_sem together 5614 * with i_disksize to avoid races with writeback code 5615 * running ext4_wb_update_i_disksize(). 5616 */ 5617 if (!error) 5618 i_size_write(inode, attr->ia_size); 5619 up_write(&EXT4_I(inode)->i_data_sem); 5620 ext4_journal_stop(handle); 5621 if (error) { 5622 if (orphan) 5623 ext4_orphan_del(NULL, inode); 5624 goto err_out; 5625 } 5626 } 5627 if (!shrink) 5628 pagecache_isize_extended(inode, oldsize, inode->i_size); 5629 5630 /* 5631 * Blocks are going to be removed from the inode. Wait 5632 * for dio in flight. Temporarily disable 5633 * dioread_nolock to prevent livelock. 5634 */ 5635 if (orphan) { 5636 if (!ext4_should_journal_data(inode)) { 5637 inode_dio_wait(inode); 5638 } else 5639 ext4_wait_for_tail_page_commit(inode); 5640 } 5641 down_write(&EXT4_I(inode)->i_mmap_sem); 5642 5643 rc = ext4_break_layouts(inode); 5644 if (rc) { 5645 up_write(&EXT4_I(inode)->i_mmap_sem); 5646 error = rc; 5647 goto err_out; 5648 } 5649 5650 /* 5651 * Truncate pagecache after we've waited for commit 5652 * in data=journal mode to make pages freeable. 5653 */ 5654 truncate_pagecache(inode, inode->i_size); 5655 if (shrink) { 5656 rc = ext4_truncate(inode); 5657 if (rc) 5658 error = rc; 5659 } 5660 up_write(&EXT4_I(inode)->i_mmap_sem); 5661 } 5662 5663 if (!error) { 5664 setattr_copy(inode, attr); 5665 mark_inode_dirty(inode); 5666 } 5667 5668 /* 5669 * If the call to ext4_truncate failed to get a transaction handle at 5670 * all, we need to clean up the in-core orphan list manually. 5671 */ 5672 if (orphan && inode->i_nlink) 5673 ext4_orphan_del(NULL, inode); 5674 5675 if (!error && (ia_valid & ATTR_MODE)) 5676 rc = posix_acl_chmod(inode, inode->i_mode); 5677 5678 err_out: 5679 ext4_std_error(inode->i_sb, error); 5680 if (!error) 5681 error = rc; 5682 return error; 5683 } 5684 5685 int ext4_getattr(const struct path *path, struct kstat *stat, 5686 u32 request_mask, unsigned int query_flags) 5687 { 5688 struct inode *inode = d_inode(path->dentry); 5689 struct ext4_inode *raw_inode; 5690 struct ext4_inode_info *ei = EXT4_I(inode); 5691 unsigned int flags; 5692 5693 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5694 stat->result_mask |= STATX_BTIME; 5695 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5696 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5697 } 5698 5699 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5700 if (flags & EXT4_APPEND_FL) 5701 stat->attributes |= STATX_ATTR_APPEND; 5702 if (flags & EXT4_COMPR_FL) 5703 stat->attributes |= STATX_ATTR_COMPRESSED; 5704 if (flags & EXT4_ENCRYPT_FL) 5705 stat->attributes |= STATX_ATTR_ENCRYPTED; 5706 if (flags & EXT4_IMMUTABLE_FL) 5707 stat->attributes |= STATX_ATTR_IMMUTABLE; 5708 if (flags & EXT4_NODUMP_FL) 5709 stat->attributes |= STATX_ATTR_NODUMP; 5710 5711 stat->attributes_mask |= (STATX_ATTR_APPEND | 5712 STATX_ATTR_COMPRESSED | 5713 STATX_ATTR_ENCRYPTED | 5714 STATX_ATTR_IMMUTABLE | 5715 STATX_ATTR_NODUMP); 5716 5717 generic_fillattr(inode, stat); 5718 return 0; 5719 } 5720 5721 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5722 u32 request_mask, unsigned int query_flags) 5723 { 5724 struct inode *inode = d_inode(path->dentry); 5725 u64 delalloc_blocks; 5726 5727 ext4_getattr(path, stat, request_mask, query_flags); 5728 5729 /* 5730 * If there is inline data in the inode, the inode will normally not 5731 * have data blocks allocated (it may have an external xattr block). 5732 * Report at least one sector for such files, so tools like tar, rsync, 5733 * others don't incorrectly think the file is completely sparse. 5734 */ 5735 if (unlikely(ext4_has_inline_data(inode))) 5736 stat->blocks += (stat->size + 511) >> 9; 5737 5738 /* 5739 * We can't update i_blocks if the block allocation is delayed 5740 * otherwise in the case of system crash before the real block 5741 * allocation is done, we will have i_blocks inconsistent with 5742 * on-disk file blocks. 5743 * We always keep i_blocks updated together with real 5744 * allocation. But to not confuse with user, stat 5745 * will return the blocks that include the delayed allocation 5746 * blocks for this file. 5747 */ 5748 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5749 EXT4_I(inode)->i_reserved_data_blocks); 5750 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5751 return 0; 5752 } 5753 5754 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5755 int pextents) 5756 { 5757 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5758 return ext4_ind_trans_blocks(inode, lblocks); 5759 return ext4_ext_index_trans_blocks(inode, pextents); 5760 } 5761 5762 /* 5763 * Account for index blocks, block groups bitmaps and block group 5764 * descriptor blocks if modify datablocks and index blocks 5765 * worse case, the indexs blocks spread over different block groups 5766 * 5767 * If datablocks are discontiguous, they are possible to spread over 5768 * different block groups too. If they are contiguous, with flexbg, 5769 * they could still across block group boundary. 5770 * 5771 * Also account for superblock, inode, quota and xattr blocks 5772 */ 5773 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5774 int pextents) 5775 { 5776 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5777 int gdpblocks; 5778 int idxblocks; 5779 int ret = 0; 5780 5781 /* 5782 * How many index blocks need to touch to map @lblocks logical blocks 5783 * to @pextents physical extents? 5784 */ 5785 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5786 5787 ret = idxblocks; 5788 5789 /* 5790 * Now let's see how many group bitmaps and group descriptors need 5791 * to account 5792 */ 5793 groups = idxblocks + pextents; 5794 gdpblocks = groups; 5795 if (groups > ngroups) 5796 groups = ngroups; 5797 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5798 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5799 5800 /* bitmaps and block group descriptor blocks */ 5801 ret += groups + gdpblocks; 5802 5803 /* Blocks for super block, inode, quota and xattr blocks */ 5804 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5805 5806 return ret; 5807 } 5808 5809 /* 5810 * Calculate the total number of credits to reserve to fit 5811 * the modification of a single pages into a single transaction, 5812 * which may include multiple chunks of block allocations. 5813 * 5814 * This could be called via ext4_write_begin() 5815 * 5816 * We need to consider the worse case, when 5817 * one new block per extent. 5818 */ 5819 int ext4_writepage_trans_blocks(struct inode *inode) 5820 { 5821 int bpp = ext4_journal_blocks_per_page(inode); 5822 int ret; 5823 5824 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5825 5826 /* Account for data blocks for journalled mode */ 5827 if (ext4_should_journal_data(inode)) 5828 ret += bpp; 5829 return ret; 5830 } 5831 5832 /* 5833 * Calculate the journal credits for a chunk of data modification. 5834 * 5835 * This is called from DIO, fallocate or whoever calling 5836 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5837 * 5838 * journal buffers for data blocks are not included here, as DIO 5839 * and fallocate do no need to journal data buffers. 5840 */ 5841 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5842 { 5843 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5844 } 5845 5846 /* 5847 * The caller must have previously called ext4_reserve_inode_write(). 5848 * Give this, we know that the caller already has write access to iloc->bh. 5849 */ 5850 int ext4_mark_iloc_dirty(handle_t *handle, 5851 struct inode *inode, struct ext4_iloc *iloc) 5852 { 5853 int err = 0; 5854 5855 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5856 put_bh(iloc->bh); 5857 return -EIO; 5858 } 5859 if (IS_I_VERSION(inode)) 5860 inode_inc_iversion(inode); 5861 5862 /* the do_update_inode consumes one bh->b_count */ 5863 get_bh(iloc->bh); 5864 5865 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5866 err = ext4_do_update_inode(handle, inode, iloc); 5867 put_bh(iloc->bh); 5868 return err; 5869 } 5870 5871 /* 5872 * On success, We end up with an outstanding reference count against 5873 * iloc->bh. This _must_ be cleaned up later. 5874 */ 5875 5876 int 5877 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5878 struct ext4_iloc *iloc) 5879 { 5880 int err; 5881 5882 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5883 return -EIO; 5884 5885 err = ext4_get_inode_loc(inode, iloc); 5886 if (!err) { 5887 BUFFER_TRACE(iloc->bh, "get_write_access"); 5888 err = ext4_journal_get_write_access(handle, iloc->bh); 5889 if (err) { 5890 brelse(iloc->bh); 5891 iloc->bh = NULL; 5892 } 5893 } 5894 ext4_std_error(inode->i_sb, err); 5895 return err; 5896 } 5897 5898 static int __ext4_expand_extra_isize(struct inode *inode, 5899 unsigned int new_extra_isize, 5900 struct ext4_iloc *iloc, 5901 handle_t *handle, int *no_expand) 5902 { 5903 struct ext4_inode *raw_inode; 5904 struct ext4_xattr_ibody_header *header; 5905 int error; 5906 5907 raw_inode = ext4_raw_inode(iloc); 5908 5909 header = IHDR(inode, raw_inode); 5910 5911 /* No extended attributes present */ 5912 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5913 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5914 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5915 EXT4_I(inode)->i_extra_isize, 0, 5916 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5917 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5918 return 0; 5919 } 5920 5921 /* try to expand with EAs present */ 5922 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5923 raw_inode, handle); 5924 if (error) { 5925 /* 5926 * Inode size expansion failed; don't try again 5927 */ 5928 *no_expand = 1; 5929 } 5930 5931 return error; 5932 } 5933 5934 /* 5935 * Expand an inode by new_extra_isize bytes. 5936 * Returns 0 on success or negative error number on failure. 5937 */ 5938 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5939 unsigned int new_extra_isize, 5940 struct ext4_iloc iloc, 5941 handle_t *handle) 5942 { 5943 int no_expand; 5944 int error; 5945 5946 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5947 return -EOVERFLOW; 5948 5949 /* 5950 * In nojournal mode, we can immediately attempt to expand 5951 * the inode. When journaled, we first need to obtain extra 5952 * buffer credits since we may write into the EA block 5953 * with this same handle. If journal_extend fails, then it will 5954 * only result in a minor loss of functionality for that inode. 5955 * If this is felt to be critical, then e2fsck should be run to 5956 * force a large enough s_min_extra_isize. 5957 */ 5958 if (ext4_handle_valid(handle) && 5959 jbd2_journal_extend(handle, 5960 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5961 return -ENOSPC; 5962 5963 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5964 return -EBUSY; 5965 5966 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5967 handle, &no_expand); 5968 ext4_write_unlock_xattr(inode, &no_expand); 5969 5970 return error; 5971 } 5972 5973 int ext4_expand_extra_isize(struct inode *inode, 5974 unsigned int new_extra_isize, 5975 struct ext4_iloc *iloc) 5976 { 5977 handle_t *handle; 5978 int no_expand; 5979 int error, rc; 5980 5981 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5982 brelse(iloc->bh); 5983 return -EOVERFLOW; 5984 } 5985 5986 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5987 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5988 if (IS_ERR(handle)) { 5989 error = PTR_ERR(handle); 5990 brelse(iloc->bh); 5991 return error; 5992 } 5993 5994 ext4_write_lock_xattr(inode, &no_expand); 5995 5996 BUFFER_TRACE(iloc->bh, "get_write_access"); 5997 error = ext4_journal_get_write_access(handle, iloc->bh); 5998 if (error) { 5999 brelse(iloc->bh); 6000 goto out_stop; 6001 } 6002 6003 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6004 handle, &no_expand); 6005 6006 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6007 if (!error) 6008 error = rc; 6009 6010 ext4_write_unlock_xattr(inode, &no_expand); 6011 out_stop: 6012 ext4_journal_stop(handle); 6013 return error; 6014 } 6015 6016 /* 6017 * What we do here is to mark the in-core inode as clean with respect to inode 6018 * dirtiness (it may still be data-dirty). 6019 * This means that the in-core inode may be reaped by prune_icache 6020 * without having to perform any I/O. This is a very good thing, 6021 * because *any* task may call prune_icache - even ones which 6022 * have a transaction open against a different journal. 6023 * 6024 * Is this cheating? Not really. Sure, we haven't written the 6025 * inode out, but prune_icache isn't a user-visible syncing function. 6026 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6027 * we start and wait on commits. 6028 */ 6029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6030 { 6031 struct ext4_iloc iloc; 6032 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6033 int err; 6034 6035 might_sleep(); 6036 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6037 err = ext4_reserve_inode_write(handle, inode, &iloc); 6038 if (err) 6039 return err; 6040 6041 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6042 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6043 iloc, handle); 6044 6045 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6046 } 6047 6048 /* 6049 * ext4_dirty_inode() is called from __mark_inode_dirty() 6050 * 6051 * We're really interested in the case where a file is being extended. 6052 * i_size has been changed by generic_commit_write() and we thus need 6053 * to include the updated inode in the current transaction. 6054 * 6055 * Also, dquot_alloc_block() will always dirty the inode when blocks 6056 * are allocated to the file. 6057 * 6058 * If the inode is marked synchronous, we don't honour that here - doing 6059 * so would cause a commit on atime updates, which we don't bother doing. 6060 * We handle synchronous inodes at the highest possible level. 6061 * 6062 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6063 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6064 * to copy into the on-disk inode structure are the timestamp files. 6065 */ 6066 void ext4_dirty_inode(struct inode *inode, int flags) 6067 { 6068 handle_t *handle; 6069 6070 if (flags == I_DIRTY_TIME) 6071 return; 6072 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6073 if (IS_ERR(handle)) 6074 goto out; 6075 6076 ext4_mark_inode_dirty(handle, inode); 6077 6078 ext4_journal_stop(handle); 6079 out: 6080 return; 6081 } 6082 6083 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6084 { 6085 journal_t *journal; 6086 handle_t *handle; 6087 int err; 6088 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6089 6090 /* 6091 * We have to be very careful here: changing a data block's 6092 * journaling status dynamically is dangerous. If we write a 6093 * data block to the journal, change the status and then delete 6094 * that block, we risk forgetting to revoke the old log record 6095 * from the journal and so a subsequent replay can corrupt data. 6096 * So, first we make sure that the journal is empty and that 6097 * nobody is changing anything. 6098 */ 6099 6100 journal = EXT4_JOURNAL(inode); 6101 if (!journal) 6102 return 0; 6103 if (is_journal_aborted(journal)) 6104 return -EROFS; 6105 6106 /* Wait for all existing dio workers */ 6107 inode_dio_wait(inode); 6108 6109 /* 6110 * Before flushing the journal and switching inode's aops, we have 6111 * to flush all dirty data the inode has. There can be outstanding 6112 * delayed allocations, there can be unwritten extents created by 6113 * fallocate or buffered writes in dioread_nolock mode covered by 6114 * dirty data which can be converted only after flushing the dirty 6115 * data (and journalled aops don't know how to handle these cases). 6116 */ 6117 if (val) { 6118 down_write(&EXT4_I(inode)->i_mmap_sem); 6119 err = filemap_write_and_wait(inode->i_mapping); 6120 if (err < 0) { 6121 up_write(&EXT4_I(inode)->i_mmap_sem); 6122 return err; 6123 } 6124 } 6125 6126 percpu_down_write(&sbi->s_journal_flag_rwsem); 6127 jbd2_journal_lock_updates(journal); 6128 6129 /* 6130 * OK, there are no updates running now, and all cached data is 6131 * synced to disk. We are now in a completely consistent state 6132 * which doesn't have anything in the journal, and we know that 6133 * no filesystem updates are running, so it is safe to modify 6134 * the inode's in-core data-journaling state flag now. 6135 */ 6136 6137 if (val) 6138 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6139 else { 6140 err = jbd2_journal_flush(journal); 6141 if (err < 0) { 6142 jbd2_journal_unlock_updates(journal); 6143 percpu_up_write(&sbi->s_journal_flag_rwsem); 6144 return err; 6145 } 6146 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6147 } 6148 ext4_set_aops(inode); 6149 6150 jbd2_journal_unlock_updates(journal); 6151 percpu_up_write(&sbi->s_journal_flag_rwsem); 6152 6153 if (val) 6154 up_write(&EXT4_I(inode)->i_mmap_sem); 6155 6156 /* Finally we can mark the inode as dirty. */ 6157 6158 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6159 if (IS_ERR(handle)) 6160 return PTR_ERR(handle); 6161 6162 err = ext4_mark_inode_dirty(handle, inode); 6163 ext4_handle_sync(handle); 6164 ext4_journal_stop(handle); 6165 ext4_std_error(inode->i_sb, err); 6166 6167 return err; 6168 } 6169 6170 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6171 { 6172 return !buffer_mapped(bh); 6173 } 6174 6175 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6176 { 6177 struct vm_area_struct *vma = vmf->vma; 6178 struct page *page = vmf->page; 6179 loff_t size; 6180 unsigned long len; 6181 int err; 6182 vm_fault_t ret; 6183 struct file *file = vma->vm_file; 6184 struct inode *inode = file_inode(file); 6185 struct address_space *mapping = inode->i_mapping; 6186 handle_t *handle; 6187 get_block_t *get_block; 6188 int retries = 0; 6189 6190 sb_start_pagefault(inode->i_sb); 6191 file_update_time(vma->vm_file); 6192 6193 down_read(&EXT4_I(inode)->i_mmap_sem); 6194 6195 err = ext4_convert_inline_data(inode); 6196 if (err) 6197 goto out_ret; 6198 6199 /* Delalloc case is easy... */ 6200 if (test_opt(inode->i_sb, DELALLOC) && 6201 !ext4_should_journal_data(inode) && 6202 !ext4_nonda_switch(inode->i_sb)) { 6203 do { 6204 err = block_page_mkwrite(vma, vmf, 6205 ext4_da_get_block_prep); 6206 } while (err == -ENOSPC && 6207 ext4_should_retry_alloc(inode->i_sb, &retries)); 6208 goto out_ret; 6209 } 6210 6211 lock_page(page); 6212 size = i_size_read(inode); 6213 /* Page got truncated from under us? */ 6214 if (page->mapping != mapping || page_offset(page) > size) { 6215 unlock_page(page); 6216 ret = VM_FAULT_NOPAGE; 6217 goto out; 6218 } 6219 6220 if (page->index == size >> PAGE_SHIFT) 6221 len = size & ~PAGE_MASK; 6222 else 6223 len = PAGE_SIZE; 6224 /* 6225 * Return if we have all the buffers mapped. This avoids the need to do 6226 * journal_start/journal_stop which can block and take a long time 6227 */ 6228 if (page_has_buffers(page)) { 6229 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6230 0, len, NULL, 6231 ext4_bh_unmapped)) { 6232 /* Wait so that we don't change page under IO */ 6233 wait_for_stable_page(page); 6234 ret = VM_FAULT_LOCKED; 6235 goto out; 6236 } 6237 } 6238 unlock_page(page); 6239 /* OK, we need to fill the hole... */ 6240 if (ext4_should_dioread_nolock(inode)) 6241 get_block = ext4_get_block_unwritten; 6242 else 6243 get_block = ext4_get_block; 6244 retry_alloc: 6245 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6246 ext4_writepage_trans_blocks(inode)); 6247 if (IS_ERR(handle)) { 6248 ret = VM_FAULT_SIGBUS; 6249 goto out; 6250 } 6251 err = block_page_mkwrite(vma, vmf, get_block); 6252 if (!err && ext4_should_journal_data(inode)) { 6253 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6254 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6255 unlock_page(page); 6256 ret = VM_FAULT_SIGBUS; 6257 ext4_journal_stop(handle); 6258 goto out; 6259 } 6260 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6261 } 6262 ext4_journal_stop(handle); 6263 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6264 goto retry_alloc; 6265 out_ret: 6266 ret = block_page_mkwrite_return(err); 6267 out: 6268 up_read(&EXT4_I(inode)->i_mmap_sem); 6269 sb_end_pagefault(inode->i_sb); 6270 return ret; 6271 } 6272 6273 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6274 { 6275 struct inode *inode = file_inode(vmf->vma->vm_file); 6276 vm_fault_t ret; 6277 6278 down_read(&EXT4_I(inode)->i_mmap_sem); 6279 ret = filemap_fault(vmf); 6280 up_read(&EXT4_I(inode)->i_mmap_sem); 6281 6282 return ret; 6283 } 6284