1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/ext4_jbd2.h> 29 #include <linux/jbd2.h> 30 #include <linux/smp_lock.h> 31 #include <linux/highuid.h> 32 #include <linux/pagemap.h> 33 #include <linux/quotaops.h> 34 #include <linux/string.h> 35 #include <linux/buffer_head.h> 36 #include <linux/writeback.h> 37 #include <linux/mpage.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include "xattr.h" 41 #include "acl.h" 42 43 /* 44 * Test whether an inode is a fast symlink. 45 */ 46 static int ext4_inode_is_fast_symlink(struct inode *inode) 47 { 48 int ea_blocks = EXT4_I(inode)->i_file_acl ? 49 (inode->i_sb->s_blocksize >> 9) : 0; 50 51 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 52 } 53 54 /* 55 * The ext4 forget function must perform a revoke if we are freeing data 56 * which has been journaled. Metadata (eg. indirect blocks) must be 57 * revoked in all cases. 58 * 59 * "bh" may be NULL: a metadata block may have been freed from memory 60 * but there may still be a record of it in the journal, and that record 61 * still needs to be revoked. 62 */ 63 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 64 struct buffer_head *bh, ext4_fsblk_t blocknr) 65 { 66 int err; 67 68 might_sleep(); 69 70 BUFFER_TRACE(bh, "enter"); 71 72 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 73 "data mode %lx\n", 74 bh, is_metadata, inode->i_mode, 75 test_opt(inode->i_sb, DATA_FLAGS)); 76 77 /* Never use the revoke function if we are doing full data 78 * journaling: there is no need to, and a V1 superblock won't 79 * support it. Otherwise, only skip the revoke on un-journaled 80 * data blocks. */ 81 82 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 83 (!is_metadata && !ext4_should_journal_data(inode))) { 84 if (bh) { 85 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 86 return ext4_journal_forget(handle, bh); 87 } 88 return 0; 89 } 90 91 /* 92 * data!=journal && (is_metadata || should_journal_data(inode)) 93 */ 94 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 95 err = ext4_journal_revoke(handle, blocknr, bh); 96 if (err) 97 ext4_abort(inode->i_sb, __FUNCTION__, 98 "error %d when attempting revoke", err); 99 BUFFER_TRACE(bh, "exit"); 100 return err; 101 } 102 103 /* 104 * Work out how many blocks we need to proceed with the next chunk of a 105 * truncate transaction. 106 */ 107 static unsigned long blocks_for_truncate(struct inode *inode) 108 { 109 unsigned long needed; 110 111 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 112 113 /* Give ourselves just enough room to cope with inodes in which 114 * i_blocks is corrupt: we've seen disk corruptions in the past 115 * which resulted in random data in an inode which looked enough 116 * like a regular file for ext4 to try to delete it. Things 117 * will go a bit crazy if that happens, but at least we should 118 * try not to panic the whole kernel. */ 119 if (needed < 2) 120 needed = 2; 121 122 /* But we need to bound the transaction so we don't overflow the 123 * journal. */ 124 if (needed > EXT4_MAX_TRANS_DATA) 125 needed = EXT4_MAX_TRANS_DATA; 126 127 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 128 } 129 130 /* 131 * Truncate transactions can be complex and absolutely huge. So we need to 132 * be able to restart the transaction at a conventient checkpoint to make 133 * sure we don't overflow the journal. 134 * 135 * start_transaction gets us a new handle for a truncate transaction, 136 * and extend_transaction tries to extend the existing one a bit. If 137 * extend fails, we need to propagate the failure up and restart the 138 * transaction in the top-level truncate loop. --sct 139 */ 140 static handle_t *start_transaction(struct inode *inode) 141 { 142 handle_t *result; 143 144 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 145 if (!IS_ERR(result)) 146 return result; 147 148 ext4_std_error(inode->i_sb, PTR_ERR(result)); 149 return result; 150 } 151 152 /* 153 * Try to extend this transaction for the purposes of truncation. 154 * 155 * Returns 0 if we managed to create more room. If we can't create more 156 * room, and the transaction must be restarted we return 1. 157 */ 158 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 159 { 160 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 161 return 0; 162 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 163 return 0; 164 return 1; 165 } 166 167 /* 168 * Restart the transaction associated with *handle. This does a commit, 169 * so before we call here everything must be consistently dirtied against 170 * this transaction. 171 */ 172 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 173 { 174 jbd_debug(2, "restarting handle %p\n", handle); 175 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_delete_inode (struct inode * inode) 182 { 183 handle_t *handle; 184 185 truncate_inode_pages(&inode->i_data, 0); 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 190 handle = start_transaction(inode); 191 if (IS_ERR(handle)) { 192 /* 193 * If we're going to skip the normal cleanup, we still need to 194 * make sure that the in-core orphan linked list is properly 195 * cleaned up. 196 */ 197 ext4_orphan_del(NULL, inode); 198 goto no_delete; 199 } 200 201 if (IS_SYNC(inode)) 202 handle->h_sync = 1; 203 inode->i_size = 0; 204 if (inode->i_blocks) 205 ext4_truncate(inode); 206 /* 207 * Kill off the orphan record which ext4_truncate created. 208 * AKPM: I think this can be inside the above `if'. 209 * Note that ext4_orphan_del() has to be able to cope with the 210 * deletion of a non-existent orphan - this is because we don't 211 * know if ext4_truncate() actually created an orphan record. 212 * (Well, we could do this if we need to, but heck - it works) 213 */ 214 ext4_orphan_del(handle, inode); 215 EXT4_I(inode)->i_dtime = get_seconds(); 216 217 /* 218 * One subtle ordering requirement: if anything has gone wrong 219 * (transaction abort, IO errors, whatever), then we can still 220 * do these next steps (the fs will already have been marked as 221 * having errors), but we can't free the inode if the mark_dirty 222 * fails. 223 */ 224 if (ext4_mark_inode_dirty(handle, inode)) 225 /* If that failed, just do the required in-core inode clear. */ 226 clear_inode(inode); 227 else 228 ext4_free_inode(handle, inode); 229 ext4_journal_stop(handle); 230 return; 231 no_delete: 232 clear_inode(inode); /* We must guarantee clearing of inode... */ 233 } 234 235 typedef struct { 236 __le32 *p; 237 __le32 key; 238 struct buffer_head *bh; 239 } Indirect; 240 241 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 242 { 243 p->key = *(p->p = v); 244 p->bh = bh; 245 } 246 247 static int verify_chain(Indirect *from, Indirect *to) 248 { 249 while (from <= to && from->key == *from->p) 250 from++; 251 return (from > to); 252 } 253 254 /** 255 * ext4_block_to_path - parse the block number into array of offsets 256 * @inode: inode in question (we are only interested in its superblock) 257 * @i_block: block number to be parsed 258 * @offsets: array to store the offsets in 259 * @boundary: set this non-zero if the referred-to block is likely to be 260 * followed (on disk) by an indirect block. 261 * 262 * To store the locations of file's data ext4 uses a data structure common 263 * for UNIX filesystems - tree of pointers anchored in the inode, with 264 * data blocks at leaves and indirect blocks in intermediate nodes. 265 * This function translates the block number into path in that tree - 266 * return value is the path length and @offsets[n] is the offset of 267 * pointer to (n+1)th node in the nth one. If @block is out of range 268 * (negative or too large) warning is printed and zero returned. 269 * 270 * Note: function doesn't find node addresses, so no IO is needed. All 271 * we need to know is the capacity of indirect blocks (taken from the 272 * inode->i_sb). 273 */ 274 275 /* 276 * Portability note: the last comparison (check that we fit into triple 277 * indirect block) is spelled differently, because otherwise on an 278 * architecture with 32-bit longs and 8Kb pages we might get into trouble 279 * if our filesystem had 8Kb blocks. We might use long long, but that would 280 * kill us on x86. Oh, well, at least the sign propagation does not matter - 281 * i_block would have to be negative in the very beginning, so we would not 282 * get there at all. 283 */ 284 285 static int ext4_block_to_path(struct inode *inode, 286 long i_block, int offsets[4], int *boundary) 287 { 288 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 289 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 290 const long direct_blocks = EXT4_NDIR_BLOCKS, 291 indirect_blocks = ptrs, 292 double_blocks = (1 << (ptrs_bits * 2)); 293 int n = 0; 294 int final = 0; 295 296 if (i_block < 0) { 297 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 298 } else if (i_block < direct_blocks) { 299 offsets[n++] = i_block; 300 final = direct_blocks; 301 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 302 offsets[n++] = EXT4_IND_BLOCK; 303 offsets[n++] = i_block; 304 final = ptrs; 305 } else if ((i_block -= indirect_blocks) < double_blocks) { 306 offsets[n++] = EXT4_DIND_BLOCK; 307 offsets[n++] = i_block >> ptrs_bits; 308 offsets[n++] = i_block & (ptrs - 1); 309 final = ptrs; 310 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 311 offsets[n++] = EXT4_TIND_BLOCK; 312 offsets[n++] = i_block >> (ptrs_bits * 2); 313 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 314 offsets[n++] = i_block & (ptrs - 1); 315 final = ptrs; 316 } else { 317 ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big"); 318 } 319 if (boundary) 320 *boundary = final - 1 - (i_block & (ptrs - 1)); 321 return n; 322 } 323 324 /** 325 * ext4_get_branch - read the chain of indirect blocks leading to data 326 * @inode: inode in question 327 * @depth: depth of the chain (1 - direct pointer, etc.) 328 * @offsets: offsets of pointers in inode/indirect blocks 329 * @chain: place to store the result 330 * @err: here we store the error value 331 * 332 * Function fills the array of triples <key, p, bh> and returns %NULL 333 * if everything went OK or the pointer to the last filled triple 334 * (incomplete one) otherwise. Upon the return chain[i].key contains 335 * the number of (i+1)-th block in the chain (as it is stored in memory, 336 * i.e. little-endian 32-bit), chain[i].p contains the address of that 337 * number (it points into struct inode for i==0 and into the bh->b_data 338 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 339 * block for i>0 and NULL for i==0. In other words, it holds the block 340 * numbers of the chain, addresses they were taken from (and where we can 341 * verify that chain did not change) and buffer_heads hosting these 342 * numbers. 343 * 344 * Function stops when it stumbles upon zero pointer (absent block) 345 * (pointer to last triple returned, *@err == 0) 346 * or when it gets an IO error reading an indirect block 347 * (ditto, *@err == -EIO) 348 * or when it notices that chain had been changed while it was reading 349 * (ditto, *@err == -EAGAIN) 350 * or when it reads all @depth-1 indirect blocks successfully and finds 351 * the whole chain, all way to the data (returns %NULL, *err == 0). 352 */ 353 static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets, 354 Indirect chain[4], int *err) 355 { 356 struct super_block *sb = inode->i_sb; 357 Indirect *p = chain; 358 struct buffer_head *bh; 359 360 *err = 0; 361 /* i_data is not going away, no lock needed */ 362 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 363 if (!p->key) 364 goto no_block; 365 while (--depth) { 366 bh = sb_bread(sb, le32_to_cpu(p->key)); 367 if (!bh) 368 goto failure; 369 /* Reader: pointers */ 370 if (!verify_chain(chain, p)) 371 goto changed; 372 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 373 /* Reader: end */ 374 if (!p->key) 375 goto no_block; 376 } 377 return NULL; 378 379 changed: 380 brelse(bh); 381 *err = -EAGAIN; 382 goto no_block; 383 failure: 384 *err = -EIO; 385 no_block: 386 return p; 387 } 388 389 /** 390 * ext4_find_near - find a place for allocation with sufficient locality 391 * @inode: owner 392 * @ind: descriptor of indirect block. 393 * 394 * This function returns the prefered place for block allocation. 395 * It is used when heuristic for sequential allocation fails. 396 * Rules are: 397 * + if there is a block to the left of our position - allocate near it. 398 * + if pointer will live in indirect block - allocate near that block. 399 * + if pointer will live in inode - allocate in the same 400 * cylinder group. 401 * 402 * In the latter case we colour the starting block by the callers PID to 403 * prevent it from clashing with concurrent allocations for a different inode 404 * in the same block group. The PID is used here so that functionally related 405 * files will be close-by on-disk. 406 * 407 * Caller must make sure that @ind is valid and will stay that way. 408 */ 409 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 410 { 411 struct ext4_inode_info *ei = EXT4_I(inode); 412 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 413 __le32 *p; 414 ext4_fsblk_t bg_start; 415 ext4_grpblk_t colour; 416 417 /* Try to find previous block */ 418 for (p = ind->p - 1; p >= start; p--) { 419 if (*p) 420 return le32_to_cpu(*p); 421 } 422 423 /* No such thing, so let's try location of indirect block */ 424 if (ind->bh) 425 return ind->bh->b_blocknr; 426 427 /* 428 * It is going to be referred to from the inode itself? OK, just put it 429 * into the same cylinder group then. 430 */ 431 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 432 colour = (current->pid % 16) * 433 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 434 return bg_start + colour; 435 } 436 437 /** 438 * ext4_find_goal - find a prefered place for allocation. 439 * @inode: owner 440 * @block: block we want 441 * @chain: chain of indirect blocks 442 * @partial: pointer to the last triple within a chain 443 * @goal: place to store the result. 444 * 445 * Normally this function find the prefered place for block allocation, 446 * stores it in *@goal and returns zero. 447 */ 448 449 static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block, 450 Indirect chain[4], Indirect *partial) 451 { 452 struct ext4_block_alloc_info *block_i; 453 454 block_i = EXT4_I(inode)->i_block_alloc_info; 455 456 /* 457 * try the heuristic for sequential allocation, 458 * failing that at least try to get decent locality. 459 */ 460 if (block_i && (block == block_i->last_alloc_logical_block + 1) 461 && (block_i->last_alloc_physical_block != 0)) { 462 return block_i->last_alloc_physical_block + 1; 463 } 464 465 return ext4_find_near(inode, partial); 466 } 467 468 /** 469 * ext4_blks_to_allocate: Look up the block map and count the number 470 * of direct blocks need to be allocated for the given branch. 471 * 472 * @branch: chain of indirect blocks 473 * @k: number of blocks need for indirect blocks 474 * @blks: number of data blocks to be mapped. 475 * @blocks_to_boundary: the offset in the indirect block 476 * 477 * return the total number of blocks to be allocate, including the 478 * direct and indirect blocks. 479 */ 480 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 481 int blocks_to_boundary) 482 { 483 unsigned long count = 0; 484 485 /* 486 * Simple case, [t,d]Indirect block(s) has not allocated yet 487 * then it's clear blocks on that path have not allocated 488 */ 489 if (k > 0) { 490 /* right now we don't handle cross boundary allocation */ 491 if (blks < blocks_to_boundary + 1) 492 count += blks; 493 else 494 count += blocks_to_boundary + 1; 495 return count; 496 } 497 498 count++; 499 while (count < blks && count <= blocks_to_boundary && 500 le32_to_cpu(*(branch[0].p + count)) == 0) { 501 count++; 502 } 503 return count; 504 } 505 506 /** 507 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 508 * @indirect_blks: the number of blocks need to allocate for indirect 509 * blocks 510 * 511 * @new_blocks: on return it will store the new block numbers for 512 * the indirect blocks(if needed) and the first direct block, 513 * @blks: on return it will store the total number of allocated 514 * direct blocks 515 */ 516 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 517 ext4_fsblk_t goal, int indirect_blks, int blks, 518 ext4_fsblk_t new_blocks[4], int *err) 519 { 520 int target, i; 521 unsigned long count = 0; 522 int index = 0; 523 ext4_fsblk_t current_block = 0; 524 int ret = 0; 525 526 /* 527 * Here we try to allocate the requested multiple blocks at once, 528 * on a best-effort basis. 529 * To build a branch, we should allocate blocks for 530 * the indirect blocks(if not allocated yet), and at least 531 * the first direct block of this branch. That's the 532 * minimum number of blocks need to allocate(required) 533 */ 534 target = blks + indirect_blks; 535 536 while (1) { 537 count = target; 538 /* allocating blocks for indirect blocks and direct blocks */ 539 current_block = ext4_new_blocks(handle,inode,goal,&count,err); 540 if (*err) 541 goto failed_out; 542 543 target -= count; 544 /* allocate blocks for indirect blocks */ 545 while (index < indirect_blks && count) { 546 new_blocks[index++] = current_block++; 547 count--; 548 } 549 550 if (count > 0) 551 break; 552 } 553 554 /* save the new block number for the first direct block */ 555 new_blocks[index] = current_block; 556 557 /* total number of blocks allocated for direct blocks */ 558 ret = count; 559 *err = 0; 560 return ret; 561 failed_out: 562 for (i = 0; i <index; i++) 563 ext4_free_blocks(handle, inode, new_blocks[i], 1); 564 return ret; 565 } 566 567 /** 568 * ext4_alloc_branch - allocate and set up a chain of blocks. 569 * @inode: owner 570 * @indirect_blks: number of allocated indirect blocks 571 * @blks: number of allocated direct blocks 572 * @offsets: offsets (in the blocks) to store the pointers to next. 573 * @branch: place to store the chain in. 574 * 575 * This function allocates blocks, zeroes out all but the last one, 576 * links them into chain and (if we are synchronous) writes them to disk. 577 * In other words, it prepares a branch that can be spliced onto the 578 * inode. It stores the information about that chain in the branch[], in 579 * the same format as ext4_get_branch() would do. We are calling it after 580 * we had read the existing part of chain and partial points to the last 581 * triple of that (one with zero ->key). Upon the exit we have the same 582 * picture as after the successful ext4_get_block(), except that in one 583 * place chain is disconnected - *branch->p is still zero (we did not 584 * set the last link), but branch->key contains the number that should 585 * be placed into *branch->p to fill that gap. 586 * 587 * If allocation fails we free all blocks we've allocated (and forget 588 * their buffer_heads) and return the error value the from failed 589 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 590 * as described above and return 0. 591 */ 592 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 593 int indirect_blks, int *blks, ext4_fsblk_t goal, 594 int *offsets, Indirect *branch) 595 { 596 int blocksize = inode->i_sb->s_blocksize; 597 int i, n = 0; 598 int err = 0; 599 struct buffer_head *bh; 600 int num; 601 ext4_fsblk_t new_blocks[4]; 602 ext4_fsblk_t current_block; 603 604 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, 605 *blks, new_blocks, &err); 606 if (err) 607 return err; 608 609 branch[0].key = cpu_to_le32(new_blocks[0]); 610 /* 611 * metadata blocks and data blocks are allocated. 612 */ 613 for (n = 1; n <= indirect_blks; n++) { 614 /* 615 * Get buffer_head for parent block, zero it out 616 * and set the pointer to new one, then send 617 * parent to disk. 618 */ 619 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 620 branch[n].bh = bh; 621 lock_buffer(bh); 622 BUFFER_TRACE(bh, "call get_create_access"); 623 err = ext4_journal_get_create_access(handle, bh); 624 if (err) { 625 unlock_buffer(bh); 626 brelse(bh); 627 goto failed; 628 } 629 630 memset(bh->b_data, 0, blocksize); 631 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 632 branch[n].key = cpu_to_le32(new_blocks[n]); 633 *branch[n].p = branch[n].key; 634 if ( n == indirect_blks) { 635 current_block = new_blocks[n]; 636 /* 637 * End of chain, update the last new metablock of 638 * the chain to point to the new allocated 639 * data blocks numbers 640 */ 641 for (i=1; i < num; i++) 642 *(branch[n].p + i) = cpu_to_le32(++current_block); 643 } 644 BUFFER_TRACE(bh, "marking uptodate"); 645 set_buffer_uptodate(bh); 646 unlock_buffer(bh); 647 648 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 649 err = ext4_journal_dirty_metadata(handle, bh); 650 if (err) 651 goto failed; 652 } 653 *blks = num; 654 return err; 655 failed: 656 /* Allocation failed, free what we already allocated */ 657 for (i = 1; i <= n ; i++) { 658 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 659 ext4_journal_forget(handle, branch[i].bh); 660 } 661 for (i = 0; i <indirect_blks; i++) 662 ext4_free_blocks(handle, inode, new_blocks[i], 1); 663 664 ext4_free_blocks(handle, inode, new_blocks[i], num); 665 666 return err; 667 } 668 669 /** 670 * ext4_splice_branch - splice the allocated branch onto inode. 671 * @inode: owner 672 * @block: (logical) number of block we are adding 673 * @chain: chain of indirect blocks (with a missing link - see 674 * ext4_alloc_branch) 675 * @where: location of missing link 676 * @num: number of indirect blocks we are adding 677 * @blks: number of direct blocks we are adding 678 * 679 * This function fills the missing link and does all housekeeping needed in 680 * inode (->i_blocks, etc.). In case of success we end up with the full 681 * chain to new block and return 0. 682 */ 683 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 684 long block, Indirect *where, int num, int blks) 685 { 686 int i; 687 int err = 0; 688 struct ext4_block_alloc_info *block_i; 689 ext4_fsblk_t current_block; 690 691 block_i = EXT4_I(inode)->i_block_alloc_info; 692 /* 693 * If we're splicing into a [td]indirect block (as opposed to the 694 * inode) then we need to get write access to the [td]indirect block 695 * before the splice. 696 */ 697 if (where->bh) { 698 BUFFER_TRACE(where->bh, "get_write_access"); 699 err = ext4_journal_get_write_access(handle, where->bh); 700 if (err) 701 goto err_out; 702 } 703 /* That's it */ 704 705 *where->p = where->key; 706 707 /* 708 * Update the host buffer_head or inode to point to more just allocated 709 * direct blocks blocks 710 */ 711 if (num == 0 && blks > 1) { 712 current_block = le32_to_cpu(where->key) + 1; 713 for (i = 1; i < blks; i++) 714 *(where->p + i ) = cpu_to_le32(current_block++); 715 } 716 717 /* 718 * update the most recently allocated logical & physical block 719 * in i_block_alloc_info, to assist find the proper goal block for next 720 * allocation 721 */ 722 if (block_i) { 723 block_i->last_alloc_logical_block = block + blks - 1; 724 block_i->last_alloc_physical_block = 725 le32_to_cpu(where[num].key) + blks - 1; 726 } 727 728 /* We are done with atomic stuff, now do the rest of housekeeping */ 729 730 inode->i_ctime = CURRENT_TIME_SEC; 731 ext4_mark_inode_dirty(handle, inode); 732 733 /* had we spliced it onto indirect block? */ 734 if (where->bh) { 735 /* 736 * If we spliced it onto an indirect block, we haven't 737 * altered the inode. Note however that if it is being spliced 738 * onto an indirect block at the very end of the file (the 739 * file is growing) then we *will* alter the inode to reflect 740 * the new i_size. But that is not done here - it is done in 741 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 742 */ 743 jbd_debug(5, "splicing indirect only\n"); 744 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 745 err = ext4_journal_dirty_metadata(handle, where->bh); 746 if (err) 747 goto err_out; 748 } else { 749 /* 750 * OK, we spliced it into the inode itself on a direct block. 751 * Inode was dirtied above. 752 */ 753 jbd_debug(5, "splicing direct\n"); 754 } 755 return err; 756 757 err_out: 758 for (i = 1; i <= num; i++) { 759 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 760 ext4_journal_forget(handle, where[i].bh); 761 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); 762 } 763 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); 764 765 return err; 766 } 767 768 /* 769 * Allocation strategy is simple: if we have to allocate something, we will 770 * have to go the whole way to leaf. So let's do it before attaching anything 771 * to tree, set linkage between the newborn blocks, write them if sync is 772 * required, recheck the path, free and repeat if check fails, otherwise 773 * set the last missing link (that will protect us from any truncate-generated 774 * removals - all blocks on the path are immune now) and possibly force the 775 * write on the parent block. 776 * That has a nice additional property: no special recovery from the failed 777 * allocations is needed - we simply release blocks and do not touch anything 778 * reachable from inode. 779 * 780 * `handle' can be NULL if create == 0. 781 * 782 * The BKL may not be held on entry here. Be sure to take it early. 783 * return > 0, # of blocks mapped or allocated. 784 * return = 0, if plain lookup failed. 785 * return < 0, error case. 786 */ 787 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 788 sector_t iblock, unsigned long maxblocks, 789 struct buffer_head *bh_result, 790 int create, int extend_disksize) 791 { 792 int err = -EIO; 793 int offsets[4]; 794 Indirect chain[4]; 795 Indirect *partial; 796 ext4_fsblk_t goal; 797 int indirect_blks; 798 int blocks_to_boundary = 0; 799 int depth; 800 struct ext4_inode_info *ei = EXT4_I(inode); 801 int count = 0; 802 ext4_fsblk_t first_block = 0; 803 804 805 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 806 J_ASSERT(handle != NULL || create == 0); 807 depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 808 809 if (depth == 0) 810 goto out; 811 812 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 813 814 /* Simplest case - block found, no allocation needed */ 815 if (!partial) { 816 first_block = le32_to_cpu(chain[depth - 1].key); 817 clear_buffer_new(bh_result); 818 count++; 819 /*map more blocks*/ 820 while (count < maxblocks && count <= blocks_to_boundary) { 821 ext4_fsblk_t blk; 822 823 if (!verify_chain(chain, partial)) { 824 /* 825 * Indirect block might be removed by 826 * truncate while we were reading it. 827 * Handling of that case: forget what we've 828 * got now. Flag the err as EAGAIN, so it 829 * will reread. 830 */ 831 err = -EAGAIN; 832 count = 0; 833 break; 834 } 835 blk = le32_to_cpu(*(chain[depth-1].p + count)); 836 837 if (blk == first_block + count) 838 count++; 839 else 840 break; 841 } 842 if (err != -EAGAIN) 843 goto got_it; 844 } 845 846 /* Next simple case - plain lookup or failed read of indirect block */ 847 if (!create || err == -EIO) 848 goto cleanup; 849 850 mutex_lock(&ei->truncate_mutex); 851 852 /* 853 * If the indirect block is missing while we are reading 854 * the chain(ext4_get_branch() returns -EAGAIN err), or 855 * if the chain has been changed after we grab the semaphore, 856 * (either because another process truncated this branch, or 857 * another get_block allocated this branch) re-grab the chain to see if 858 * the request block has been allocated or not. 859 * 860 * Since we already block the truncate/other get_block 861 * at this point, we will have the current copy of the chain when we 862 * splice the branch into the tree. 863 */ 864 if (err == -EAGAIN || !verify_chain(chain, partial)) { 865 while (partial > chain) { 866 brelse(partial->bh); 867 partial--; 868 } 869 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 870 if (!partial) { 871 count++; 872 mutex_unlock(&ei->truncate_mutex); 873 if (err) 874 goto cleanup; 875 clear_buffer_new(bh_result); 876 goto got_it; 877 } 878 } 879 880 /* 881 * Okay, we need to do block allocation. Lazily initialize the block 882 * allocation info here if necessary 883 */ 884 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 885 ext4_init_block_alloc_info(inode); 886 887 goal = ext4_find_goal(inode, iblock, chain, partial); 888 889 /* the number of blocks need to allocate for [d,t]indirect blocks */ 890 indirect_blks = (chain + depth) - partial - 1; 891 892 /* 893 * Next look up the indirect map to count the totoal number of 894 * direct blocks to allocate for this branch. 895 */ 896 count = ext4_blks_to_allocate(partial, indirect_blks, 897 maxblocks, blocks_to_boundary); 898 /* 899 * Block out ext4_truncate while we alter the tree 900 */ 901 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, 902 offsets + (partial - chain), partial); 903 904 /* 905 * The ext4_splice_branch call will free and forget any buffers 906 * on the new chain if there is a failure, but that risks using 907 * up transaction credits, especially for bitmaps where the 908 * credits cannot be returned. Can we handle this somehow? We 909 * may need to return -EAGAIN upwards in the worst case. --sct 910 */ 911 if (!err) 912 err = ext4_splice_branch(handle, inode, iblock, 913 partial, indirect_blks, count); 914 /* 915 * i_disksize growing is protected by truncate_mutex. Don't forget to 916 * protect it if you're about to implement concurrent 917 * ext4_get_block() -bzzz 918 */ 919 if (!err && extend_disksize && inode->i_size > ei->i_disksize) 920 ei->i_disksize = inode->i_size; 921 mutex_unlock(&ei->truncate_mutex); 922 if (err) 923 goto cleanup; 924 925 set_buffer_new(bh_result); 926 got_it: 927 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 928 if (count > blocks_to_boundary) 929 set_buffer_boundary(bh_result); 930 err = count; 931 /* Clean up and exit */ 932 partial = chain + depth - 1; /* the whole chain */ 933 cleanup: 934 while (partial > chain) { 935 BUFFER_TRACE(partial->bh, "call brelse"); 936 brelse(partial->bh); 937 partial--; 938 } 939 BUFFER_TRACE(bh_result, "returned"); 940 out: 941 return err; 942 } 943 944 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32) 945 946 static int ext4_get_block(struct inode *inode, sector_t iblock, 947 struct buffer_head *bh_result, int create) 948 { 949 handle_t *handle = ext4_journal_current_handle(); 950 int ret = 0; 951 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 952 953 if (!create) 954 goto get_block; /* A read */ 955 956 if (max_blocks == 1) 957 goto get_block; /* A single block get */ 958 959 if (handle->h_transaction->t_state == T_LOCKED) { 960 /* 961 * Huge direct-io writes can hold off commits for long 962 * periods of time. Let this commit run. 963 */ 964 ext4_journal_stop(handle); 965 handle = ext4_journal_start(inode, DIO_CREDITS); 966 if (IS_ERR(handle)) 967 ret = PTR_ERR(handle); 968 goto get_block; 969 } 970 971 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) { 972 /* 973 * Getting low on buffer credits... 974 */ 975 ret = ext4_journal_extend(handle, DIO_CREDITS); 976 if (ret > 0) { 977 /* 978 * Couldn't extend the transaction. Start a new one. 979 */ 980 ret = ext4_journal_restart(handle, DIO_CREDITS); 981 } 982 } 983 984 get_block: 985 if (ret == 0) { 986 ret = ext4_get_blocks_wrap(handle, inode, iblock, 987 max_blocks, bh_result, create, 0); 988 if (ret > 0) { 989 bh_result->b_size = (ret << inode->i_blkbits); 990 ret = 0; 991 } 992 } 993 return ret; 994 } 995 996 /* 997 * `handle' can be NULL if create is zero 998 */ 999 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1000 long block, int create, int *errp) 1001 { 1002 struct buffer_head dummy; 1003 int fatal = 0, err; 1004 1005 J_ASSERT(handle != NULL || create == 0); 1006 1007 dummy.b_state = 0; 1008 dummy.b_blocknr = -1000; 1009 buffer_trace_init(&dummy.b_history); 1010 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1011 &dummy, create, 1); 1012 /* 1013 * ext4_get_blocks_handle() returns number of blocks 1014 * mapped. 0 in case of a HOLE. 1015 */ 1016 if (err > 0) { 1017 if (err > 1) 1018 WARN_ON(1); 1019 err = 0; 1020 } 1021 *errp = err; 1022 if (!err && buffer_mapped(&dummy)) { 1023 struct buffer_head *bh; 1024 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1025 if (!bh) { 1026 *errp = -EIO; 1027 goto err; 1028 } 1029 if (buffer_new(&dummy)) { 1030 J_ASSERT(create != 0); 1031 J_ASSERT(handle != 0); 1032 1033 /* 1034 * Now that we do not always journal data, we should 1035 * keep in mind whether this should always journal the 1036 * new buffer as metadata. For now, regular file 1037 * writes use ext4_get_block instead, so it's not a 1038 * problem. 1039 */ 1040 lock_buffer(bh); 1041 BUFFER_TRACE(bh, "call get_create_access"); 1042 fatal = ext4_journal_get_create_access(handle, bh); 1043 if (!fatal && !buffer_uptodate(bh)) { 1044 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1045 set_buffer_uptodate(bh); 1046 } 1047 unlock_buffer(bh); 1048 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1049 err = ext4_journal_dirty_metadata(handle, bh); 1050 if (!fatal) 1051 fatal = err; 1052 } else { 1053 BUFFER_TRACE(bh, "not a new buffer"); 1054 } 1055 if (fatal) { 1056 *errp = fatal; 1057 brelse(bh); 1058 bh = NULL; 1059 } 1060 return bh; 1061 } 1062 err: 1063 return NULL; 1064 } 1065 1066 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1067 int block, int create, int *err) 1068 { 1069 struct buffer_head * bh; 1070 1071 bh = ext4_getblk(handle, inode, block, create, err); 1072 if (!bh) 1073 return bh; 1074 if (buffer_uptodate(bh)) 1075 return bh; 1076 ll_rw_block(READ_META, 1, &bh); 1077 wait_on_buffer(bh); 1078 if (buffer_uptodate(bh)) 1079 return bh; 1080 put_bh(bh); 1081 *err = -EIO; 1082 return NULL; 1083 } 1084 1085 static int walk_page_buffers( handle_t *handle, 1086 struct buffer_head *head, 1087 unsigned from, 1088 unsigned to, 1089 int *partial, 1090 int (*fn)( handle_t *handle, 1091 struct buffer_head *bh)) 1092 { 1093 struct buffer_head *bh; 1094 unsigned block_start, block_end; 1095 unsigned blocksize = head->b_size; 1096 int err, ret = 0; 1097 struct buffer_head *next; 1098 1099 for ( bh = head, block_start = 0; 1100 ret == 0 && (bh != head || !block_start); 1101 block_start = block_end, bh = next) 1102 { 1103 next = bh->b_this_page; 1104 block_end = block_start + blocksize; 1105 if (block_end <= from || block_start >= to) { 1106 if (partial && !buffer_uptodate(bh)) 1107 *partial = 1; 1108 continue; 1109 } 1110 err = (*fn)(handle, bh); 1111 if (!ret) 1112 ret = err; 1113 } 1114 return ret; 1115 } 1116 1117 /* 1118 * To preserve ordering, it is essential that the hole instantiation and 1119 * the data write be encapsulated in a single transaction. We cannot 1120 * close off a transaction and start a new one between the ext4_get_block() 1121 * and the commit_write(). So doing the jbd2_journal_start at the start of 1122 * prepare_write() is the right place. 1123 * 1124 * Also, this function can nest inside ext4_writepage() -> 1125 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1126 * has generated enough buffer credits to do the whole page. So we won't 1127 * block on the journal in that case, which is good, because the caller may 1128 * be PF_MEMALLOC. 1129 * 1130 * By accident, ext4 can be reentered when a transaction is open via 1131 * quota file writes. If we were to commit the transaction while thus 1132 * reentered, there can be a deadlock - we would be holding a quota 1133 * lock, and the commit would never complete if another thread had a 1134 * transaction open and was blocking on the quota lock - a ranking 1135 * violation. 1136 * 1137 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1138 * will _not_ run commit under these circumstances because handle->h_ref 1139 * is elevated. We'll still have enough credits for the tiny quotafile 1140 * write. 1141 */ 1142 static int do_journal_get_write_access(handle_t *handle, 1143 struct buffer_head *bh) 1144 { 1145 if (!buffer_mapped(bh) || buffer_freed(bh)) 1146 return 0; 1147 return ext4_journal_get_write_access(handle, bh); 1148 } 1149 1150 static int ext4_prepare_write(struct file *file, struct page *page, 1151 unsigned from, unsigned to) 1152 { 1153 struct inode *inode = page->mapping->host; 1154 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1155 handle_t *handle; 1156 int retries = 0; 1157 1158 retry: 1159 handle = ext4_journal_start(inode, needed_blocks); 1160 if (IS_ERR(handle)) { 1161 ret = PTR_ERR(handle); 1162 goto out; 1163 } 1164 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1165 ret = nobh_prepare_write(page, from, to, ext4_get_block); 1166 else 1167 ret = block_prepare_write(page, from, to, ext4_get_block); 1168 if (ret) 1169 goto prepare_write_failed; 1170 1171 if (ext4_should_journal_data(inode)) { 1172 ret = walk_page_buffers(handle, page_buffers(page), 1173 from, to, NULL, do_journal_get_write_access); 1174 } 1175 prepare_write_failed: 1176 if (ret) 1177 ext4_journal_stop(handle); 1178 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1179 goto retry; 1180 out: 1181 return ret; 1182 } 1183 1184 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1185 { 1186 int err = jbd2_journal_dirty_data(handle, bh); 1187 if (err) 1188 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__, 1189 bh, handle,err); 1190 return err; 1191 } 1192 1193 /* For commit_write() in data=journal mode */ 1194 static int commit_write_fn(handle_t *handle, struct buffer_head *bh) 1195 { 1196 if (!buffer_mapped(bh) || buffer_freed(bh)) 1197 return 0; 1198 set_buffer_uptodate(bh); 1199 return ext4_journal_dirty_metadata(handle, bh); 1200 } 1201 1202 /* 1203 * We need to pick up the new inode size which generic_commit_write gave us 1204 * `file' can be NULL - eg, when called from page_symlink(). 1205 * 1206 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1207 * buffers are managed internally. 1208 */ 1209 static int ext4_ordered_commit_write(struct file *file, struct page *page, 1210 unsigned from, unsigned to) 1211 { 1212 handle_t *handle = ext4_journal_current_handle(); 1213 struct inode *inode = page->mapping->host; 1214 int ret = 0, ret2; 1215 1216 ret = walk_page_buffers(handle, page_buffers(page), 1217 from, to, NULL, ext4_journal_dirty_data); 1218 1219 if (ret == 0) { 1220 /* 1221 * generic_commit_write() will run mark_inode_dirty() if i_size 1222 * changes. So let's piggyback the i_disksize mark_inode_dirty 1223 * into that. 1224 */ 1225 loff_t new_i_size; 1226 1227 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 1228 if (new_i_size > EXT4_I(inode)->i_disksize) 1229 EXT4_I(inode)->i_disksize = new_i_size; 1230 ret = generic_commit_write(file, page, from, to); 1231 } 1232 ret2 = ext4_journal_stop(handle); 1233 if (!ret) 1234 ret = ret2; 1235 return ret; 1236 } 1237 1238 static int ext4_writeback_commit_write(struct file *file, struct page *page, 1239 unsigned from, unsigned to) 1240 { 1241 handle_t *handle = ext4_journal_current_handle(); 1242 struct inode *inode = page->mapping->host; 1243 int ret = 0, ret2; 1244 loff_t new_i_size; 1245 1246 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 1247 if (new_i_size > EXT4_I(inode)->i_disksize) 1248 EXT4_I(inode)->i_disksize = new_i_size; 1249 1250 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1251 ret = nobh_commit_write(file, page, from, to); 1252 else 1253 ret = generic_commit_write(file, page, from, to); 1254 1255 ret2 = ext4_journal_stop(handle); 1256 if (!ret) 1257 ret = ret2; 1258 return ret; 1259 } 1260 1261 static int ext4_journalled_commit_write(struct file *file, 1262 struct page *page, unsigned from, unsigned to) 1263 { 1264 handle_t *handle = ext4_journal_current_handle(); 1265 struct inode *inode = page->mapping->host; 1266 int ret = 0, ret2; 1267 int partial = 0; 1268 loff_t pos; 1269 1270 /* 1271 * Here we duplicate the generic_commit_write() functionality 1272 */ 1273 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 1274 1275 ret = walk_page_buffers(handle, page_buffers(page), from, 1276 to, &partial, commit_write_fn); 1277 if (!partial) 1278 SetPageUptodate(page); 1279 if (pos > inode->i_size) 1280 i_size_write(inode, pos); 1281 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1282 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1283 EXT4_I(inode)->i_disksize = inode->i_size; 1284 ret2 = ext4_mark_inode_dirty(handle, inode); 1285 if (!ret) 1286 ret = ret2; 1287 } 1288 ret2 = ext4_journal_stop(handle); 1289 if (!ret) 1290 ret = ret2; 1291 return ret; 1292 } 1293 1294 /* 1295 * bmap() is special. It gets used by applications such as lilo and by 1296 * the swapper to find the on-disk block of a specific piece of data. 1297 * 1298 * Naturally, this is dangerous if the block concerned is still in the 1299 * journal. If somebody makes a swapfile on an ext4 data-journaling 1300 * filesystem and enables swap, then they may get a nasty shock when the 1301 * data getting swapped to that swapfile suddenly gets overwritten by 1302 * the original zero's written out previously to the journal and 1303 * awaiting writeback in the kernel's buffer cache. 1304 * 1305 * So, if we see any bmap calls here on a modified, data-journaled file, 1306 * take extra steps to flush any blocks which might be in the cache. 1307 */ 1308 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 1309 { 1310 struct inode *inode = mapping->host; 1311 journal_t *journal; 1312 int err; 1313 1314 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 1315 /* 1316 * This is a REALLY heavyweight approach, but the use of 1317 * bmap on dirty files is expected to be extremely rare: 1318 * only if we run lilo or swapon on a freshly made file 1319 * do we expect this to happen. 1320 * 1321 * (bmap requires CAP_SYS_RAWIO so this does not 1322 * represent an unprivileged user DOS attack --- we'd be 1323 * in trouble if mortal users could trigger this path at 1324 * will.) 1325 * 1326 * NB. EXT4_STATE_JDATA is not set on files other than 1327 * regular files. If somebody wants to bmap a directory 1328 * or symlink and gets confused because the buffer 1329 * hasn't yet been flushed to disk, they deserve 1330 * everything they get. 1331 */ 1332 1333 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 1334 journal = EXT4_JOURNAL(inode); 1335 jbd2_journal_lock_updates(journal); 1336 err = jbd2_journal_flush(journal); 1337 jbd2_journal_unlock_updates(journal); 1338 1339 if (err) 1340 return 0; 1341 } 1342 1343 return generic_block_bmap(mapping,block,ext4_get_block); 1344 } 1345 1346 static int bget_one(handle_t *handle, struct buffer_head *bh) 1347 { 1348 get_bh(bh); 1349 return 0; 1350 } 1351 1352 static int bput_one(handle_t *handle, struct buffer_head *bh) 1353 { 1354 put_bh(bh); 1355 return 0; 1356 } 1357 1358 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1359 { 1360 if (buffer_mapped(bh)) 1361 return ext4_journal_dirty_data(handle, bh); 1362 return 0; 1363 } 1364 1365 /* 1366 * Note that we always start a transaction even if we're not journalling 1367 * data. This is to preserve ordering: any hole instantiation within 1368 * __block_write_full_page -> ext4_get_block() should be journalled 1369 * along with the data so we don't crash and then get metadata which 1370 * refers to old data. 1371 * 1372 * In all journalling modes block_write_full_page() will start the I/O. 1373 * 1374 * Problem: 1375 * 1376 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1377 * ext4_writepage() 1378 * 1379 * Similar for: 1380 * 1381 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1382 * 1383 * Same applies to ext4_get_block(). We will deadlock on various things like 1384 * lock_journal and i_truncate_mutex. 1385 * 1386 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1387 * allocations fail. 1388 * 1389 * 16May01: If we're reentered then journal_current_handle() will be 1390 * non-zero. We simply *return*. 1391 * 1392 * 1 July 2001: @@@ FIXME: 1393 * In journalled data mode, a data buffer may be metadata against the 1394 * current transaction. But the same file is part of a shared mapping 1395 * and someone does a writepage() on it. 1396 * 1397 * We will move the buffer onto the async_data list, but *after* it has 1398 * been dirtied. So there's a small window where we have dirty data on 1399 * BJ_Metadata. 1400 * 1401 * Note that this only applies to the last partial page in the file. The 1402 * bit which block_write_full_page() uses prepare/commit for. (That's 1403 * broken code anyway: it's wrong for msync()). 1404 * 1405 * It's a rare case: affects the final partial page, for journalled data 1406 * where the file is subject to bith write() and writepage() in the same 1407 * transction. To fix it we'll need a custom block_write_full_page(). 1408 * We'll probably need that anyway for journalling writepage() output. 1409 * 1410 * We don't honour synchronous mounts for writepage(). That would be 1411 * disastrous. Any write() or metadata operation will sync the fs for 1412 * us. 1413 * 1414 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1415 * we don't need to open a transaction here. 1416 */ 1417 static int ext4_ordered_writepage(struct page *page, 1418 struct writeback_control *wbc) 1419 { 1420 struct inode *inode = page->mapping->host; 1421 struct buffer_head *page_bufs; 1422 handle_t *handle = NULL; 1423 int ret = 0; 1424 int err; 1425 1426 J_ASSERT(PageLocked(page)); 1427 1428 /* 1429 * We give up here if we're reentered, because it might be for a 1430 * different filesystem. 1431 */ 1432 if (ext4_journal_current_handle()) 1433 goto out_fail; 1434 1435 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1436 1437 if (IS_ERR(handle)) { 1438 ret = PTR_ERR(handle); 1439 goto out_fail; 1440 } 1441 1442 if (!page_has_buffers(page)) { 1443 create_empty_buffers(page, inode->i_sb->s_blocksize, 1444 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1445 } 1446 page_bufs = page_buffers(page); 1447 walk_page_buffers(handle, page_bufs, 0, 1448 PAGE_CACHE_SIZE, NULL, bget_one); 1449 1450 ret = block_write_full_page(page, ext4_get_block, wbc); 1451 1452 /* 1453 * The page can become unlocked at any point now, and 1454 * truncate can then come in and change things. So we 1455 * can't touch *page from now on. But *page_bufs is 1456 * safe due to elevated refcount. 1457 */ 1458 1459 /* 1460 * And attach them to the current transaction. But only if 1461 * block_write_full_page() succeeded. Otherwise they are unmapped, 1462 * and generally junk. 1463 */ 1464 if (ret == 0) { 1465 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1466 NULL, jbd2_journal_dirty_data_fn); 1467 if (!ret) 1468 ret = err; 1469 } 1470 walk_page_buffers(handle, page_bufs, 0, 1471 PAGE_CACHE_SIZE, NULL, bput_one); 1472 err = ext4_journal_stop(handle); 1473 if (!ret) 1474 ret = err; 1475 return ret; 1476 1477 out_fail: 1478 redirty_page_for_writepage(wbc, page); 1479 unlock_page(page); 1480 return ret; 1481 } 1482 1483 static int ext4_writeback_writepage(struct page *page, 1484 struct writeback_control *wbc) 1485 { 1486 struct inode *inode = page->mapping->host; 1487 handle_t *handle = NULL; 1488 int ret = 0; 1489 int err; 1490 1491 if (ext4_journal_current_handle()) 1492 goto out_fail; 1493 1494 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1495 if (IS_ERR(handle)) { 1496 ret = PTR_ERR(handle); 1497 goto out_fail; 1498 } 1499 1500 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1501 ret = nobh_writepage(page, ext4_get_block, wbc); 1502 else 1503 ret = block_write_full_page(page, ext4_get_block, wbc); 1504 1505 err = ext4_journal_stop(handle); 1506 if (!ret) 1507 ret = err; 1508 return ret; 1509 1510 out_fail: 1511 redirty_page_for_writepage(wbc, page); 1512 unlock_page(page); 1513 return ret; 1514 } 1515 1516 static int ext4_journalled_writepage(struct page *page, 1517 struct writeback_control *wbc) 1518 { 1519 struct inode *inode = page->mapping->host; 1520 handle_t *handle = NULL; 1521 int ret = 0; 1522 int err; 1523 1524 if (ext4_journal_current_handle()) 1525 goto no_write; 1526 1527 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1528 if (IS_ERR(handle)) { 1529 ret = PTR_ERR(handle); 1530 goto no_write; 1531 } 1532 1533 if (!page_has_buffers(page) || PageChecked(page)) { 1534 /* 1535 * It's mmapped pagecache. Add buffers and journal it. There 1536 * doesn't seem much point in redirtying the page here. 1537 */ 1538 ClearPageChecked(page); 1539 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 1540 ext4_get_block); 1541 if (ret != 0) { 1542 ext4_journal_stop(handle); 1543 goto out_unlock; 1544 } 1545 ret = walk_page_buffers(handle, page_buffers(page), 0, 1546 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1547 1548 err = walk_page_buffers(handle, page_buffers(page), 0, 1549 PAGE_CACHE_SIZE, NULL, commit_write_fn); 1550 if (ret == 0) 1551 ret = err; 1552 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1553 unlock_page(page); 1554 } else { 1555 /* 1556 * It may be a page full of checkpoint-mode buffers. We don't 1557 * really know unless we go poke around in the buffer_heads. 1558 * But block_write_full_page will do the right thing. 1559 */ 1560 ret = block_write_full_page(page, ext4_get_block, wbc); 1561 } 1562 err = ext4_journal_stop(handle); 1563 if (!ret) 1564 ret = err; 1565 out: 1566 return ret; 1567 1568 no_write: 1569 redirty_page_for_writepage(wbc, page); 1570 out_unlock: 1571 unlock_page(page); 1572 goto out; 1573 } 1574 1575 static int ext4_readpage(struct file *file, struct page *page) 1576 { 1577 return mpage_readpage(page, ext4_get_block); 1578 } 1579 1580 static int 1581 ext4_readpages(struct file *file, struct address_space *mapping, 1582 struct list_head *pages, unsigned nr_pages) 1583 { 1584 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 1585 } 1586 1587 static void ext4_invalidatepage(struct page *page, unsigned long offset) 1588 { 1589 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1590 1591 /* 1592 * If it's a full truncate we just forget about the pending dirtying 1593 */ 1594 if (offset == 0) 1595 ClearPageChecked(page); 1596 1597 jbd2_journal_invalidatepage(journal, page, offset); 1598 } 1599 1600 static int ext4_releasepage(struct page *page, gfp_t wait) 1601 { 1602 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1603 1604 WARN_ON(PageChecked(page)); 1605 if (!page_has_buffers(page)) 1606 return 0; 1607 return jbd2_journal_try_to_free_buffers(journal, page, wait); 1608 } 1609 1610 /* 1611 * If the O_DIRECT write will extend the file then add this inode to the 1612 * orphan list. So recovery will truncate it back to the original size 1613 * if the machine crashes during the write. 1614 * 1615 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1616 * crashes then stale disk data _may_ be exposed inside the file. 1617 */ 1618 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 1619 const struct iovec *iov, loff_t offset, 1620 unsigned long nr_segs) 1621 { 1622 struct file *file = iocb->ki_filp; 1623 struct inode *inode = file->f_mapping->host; 1624 struct ext4_inode_info *ei = EXT4_I(inode); 1625 handle_t *handle = NULL; 1626 ssize_t ret; 1627 int orphan = 0; 1628 size_t count = iov_length(iov, nr_segs); 1629 1630 if (rw == WRITE) { 1631 loff_t final_size = offset + count; 1632 1633 handle = ext4_journal_start(inode, DIO_CREDITS); 1634 if (IS_ERR(handle)) { 1635 ret = PTR_ERR(handle); 1636 goto out; 1637 } 1638 if (final_size > inode->i_size) { 1639 ret = ext4_orphan_add(handle, inode); 1640 if (ret) 1641 goto out_stop; 1642 orphan = 1; 1643 ei->i_disksize = inode->i_size; 1644 } 1645 } 1646 1647 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1648 offset, nr_segs, 1649 ext4_get_block, NULL); 1650 1651 /* 1652 * Reacquire the handle: ext4_get_block() can restart the transaction 1653 */ 1654 handle = ext4_journal_current_handle(); 1655 1656 out_stop: 1657 if (handle) { 1658 int err; 1659 1660 if (orphan && inode->i_nlink) 1661 ext4_orphan_del(handle, inode); 1662 if (orphan && ret > 0) { 1663 loff_t end = offset + ret; 1664 if (end > inode->i_size) { 1665 ei->i_disksize = end; 1666 i_size_write(inode, end); 1667 /* 1668 * We're going to return a positive `ret' 1669 * here due to non-zero-length I/O, so there's 1670 * no way of reporting error returns from 1671 * ext4_mark_inode_dirty() to userspace. So 1672 * ignore it. 1673 */ 1674 ext4_mark_inode_dirty(handle, inode); 1675 } 1676 } 1677 err = ext4_journal_stop(handle); 1678 if (ret == 0) 1679 ret = err; 1680 } 1681 out: 1682 return ret; 1683 } 1684 1685 /* 1686 * Pages can be marked dirty completely asynchronously from ext4's journalling 1687 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1688 * much here because ->set_page_dirty is called under VFS locks. The page is 1689 * not necessarily locked. 1690 * 1691 * We cannot just dirty the page and leave attached buffers clean, because the 1692 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1693 * or jbddirty because all the journalling code will explode. 1694 * 1695 * So what we do is to mark the page "pending dirty" and next time writepage 1696 * is called, propagate that into the buffers appropriately. 1697 */ 1698 static int ext4_journalled_set_page_dirty(struct page *page) 1699 { 1700 SetPageChecked(page); 1701 return __set_page_dirty_nobuffers(page); 1702 } 1703 1704 static const struct address_space_operations ext4_ordered_aops = { 1705 .readpage = ext4_readpage, 1706 .readpages = ext4_readpages, 1707 .writepage = ext4_ordered_writepage, 1708 .sync_page = block_sync_page, 1709 .prepare_write = ext4_prepare_write, 1710 .commit_write = ext4_ordered_commit_write, 1711 .bmap = ext4_bmap, 1712 .invalidatepage = ext4_invalidatepage, 1713 .releasepage = ext4_releasepage, 1714 .direct_IO = ext4_direct_IO, 1715 .migratepage = buffer_migrate_page, 1716 }; 1717 1718 static const struct address_space_operations ext4_writeback_aops = { 1719 .readpage = ext4_readpage, 1720 .readpages = ext4_readpages, 1721 .writepage = ext4_writeback_writepage, 1722 .sync_page = block_sync_page, 1723 .prepare_write = ext4_prepare_write, 1724 .commit_write = ext4_writeback_commit_write, 1725 .bmap = ext4_bmap, 1726 .invalidatepage = ext4_invalidatepage, 1727 .releasepage = ext4_releasepage, 1728 .direct_IO = ext4_direct_IO, 1729 .migratepage = buffer_migrate_page, 1730 }; 1731 1732 static const struct address_space_operations ext4_journalled_aops = { 1733 .readpage = ext4_readpage, 1734 .readpages = ext4_readpages, 1735 .writepage = ext4_journalled_writepage, 1736 .sync_page = block_sync_page, 1737 .prepare_write = ext4_prepare_write, 1738 .commit_write = ext4_journalled_commit_write, 1739 .set_page_dirty = ext4_journalled_set_page_dirty, 1740 .bmap = ext4_bmap, 1741 .invalidatepage = ext4_invalidatepage, 1742 .releasepage = ext4_releasepage, 1743 }; 1744 1745 void ext4_set_aops(struct inode *inode) 1746 { 1747 if (ext4_should_order_data(inode)) 1748 inode->i_mapping->a_ops = &ext4_ordered_aops; 1749 else if (ext4_should_writeback_data(inode)) 1750 inode->i_mapping->a_ops = &ext4_writeback_aops; 1751 else 1752 inode->i_mapping->a_ops = &ext4_journalled_aops; 1753 } 1754 1755 /* 1756 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 1757 * up to the end of the block which corresponds to `from'. 1758 * This required during truncate. We need to physically zero the tail end 1759 * of that block so it doesn't yield old data if the file is later grown. 1760 */ 1761 int ext4_block_truncate_page(handle_t *handle, struct page *page, 1762 struct address_space *mapping, loff_t from) 1763 { 1764 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1765 unsigned offset = from & (PAGE_CACHE_SIZE-1); 1766 unsigned blocksize, iblock, length, pos; 1767 struct inode *inode = mapping->host; 1768 struct buffer_head *bh; 1769 int err = 0; 1770 void *kaddr; 1771 1772 blocksize = inode->i_sb->s_blocksize; 1773 length = blocksize - (offset & (blocksize - 1)); 1774 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1775 1776 /* 1777 * For "nobh" option, we can only work if we don't need to 1778 * read-in the page - otherwise we create buffers to do the IO. 1779 */ 1780 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 1781 ext4_should_writeback_data(inode) && PageUptodate(page)) { 1782 kaddr = kmap_atomic(page, KM_USER0); 1783 memset(kaddr + offset, 0, length); 1784 flush_dcache_page(page); 1785 kunmap_atomic(kaddr, KM_USER0); 1786 set_page_dirty(page); 1787 goto unlock; 1788 } 1789 1790 if (!page_has_buffers(page)) 1791 create_empty_buffers(page, blocksize, 0); 1792 1793 /* Find the buffer that contains "offset" */ 1794 bh = page_buffers(page); 1795 pos = blocksize; 1796 while (offset >= pos) { 1797 bh = bh->b_this_page; 1798 iblock++; 1799 pos += blocksize; 1800 } 1801 1802 err = 0; 1803 if (buffer_freed(bh)) { 1804 BUFFER_TRACE(bh, "freed: skip"); 1805 goto unlock; 1806 } 1807 1808 if (!buffer_mapped(bh)) { 1809 BUFFER_TRACE(bh, "unmapped"); 1810 ext4_get_block(inode, iblock, bh, 0); 1811 /* unmapped? It's a hole - nothing to do */ 1812 if (!buffer_mapped(bh)) { 1813 BUFFER_TRACE(bh, "still unmapped"); 1814 goto unlock; 1815 } 1816 } 1817 1818 /* Ok, it's mapped. Make sure it's up-to-date */ 1819 if (PageUptodate(page)) 1820 set_buffer_uptodate(bh); 1821 1822 if (!buffer_uptodate(bh)) { 1823 err = -EIO; 1824 ll_rw_block(READ, 1, &bh); 1825 wait_on_buffer(bh); 1826 /* Uhhuh. Read error. Complain and punt. */ 1827 if (!buffer_uptodate(bh)) 1828 goto unlock; 1829 } 1830 1831 if (ext4_should_journal_data(inode)) { 1832 BUFFER_TRACE(bh, "get write access"); 1833 err = ext4_journal_get_write_access(handle, bh); 1834 if (err) 1835 goto unlock; 1836 } 1837 1838 kaddr = kmap_atomic(page, KM_USER0); 1839 memset(kaddr + offset, 0, length); 1840 flush_dcache_page(page); 1841 kunmap_atomic(kaddr, KM_USER0); 1842 1843 BUFFER_TRACE(bh, "zeroed end of block"); 1844 1845 err = 0; 1846 if (ext4_should_journal_data(inode)) { 1847 err = ext4_journal_dirty_metadata(handle, bh); 1848 } else { 1849 if (ext4_should_order_data(inode)) 1850 err = ext4_journal_dirty_data(handle, bh); 1851 mark_buffer_dirty(bh); 1852 } 1853 1854 unlock: 1855 unlock_page(page); 1856 page_cache_release(page); 1857 return err; 1858 } 1859 1860 /* 1861 * Probably it should be a library function... search for first non-zero word 1862 * or memcmp with zero_page, whatever is better for particular architecture. 1863 * Linus? 1864 */ 1865 static inline int all_zeroes(__le32 *p, __le32 *q) 1866 { 1867 while (p < q) 1868 if (*p++) 1869 return 0; 1870 return 1; 1871 } 1872 1873 /** 1874 * ext4_find_shared - find the indirect blocks for partial truncation. 1875 * @inode: inode in question 1876 * @depth: depth of the affected branch 1877 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 1878 * @chain: place to store the pointers to partial indirect blocks 1879 * @top: place to the (detached) top of branch 1880 * 1881 * This is a helper function used by ext4_truncate(). 1882 * 1883 * When we do truncate() we may have to clean the ends of several 1884 * indirect blocks but leave the blocks themselves alive. Block is 1885 * partially truncated if some data below the new i_size is refered 1886 * from it (and it is on the path to the first completely truncated 1887 * data block, indeed). We have to free the top of that path along 1888 * with everything to the right of the path. Since no allocation 1889 * past the truncation point is possible until ext4_truncate() 1890 * finishes, we may safely do the latter, but top of branch may 1891 * require special attention - pageout below the truncation point 1892 * might try to populate it. 1893 * 1894 * We atomically detach the top of branch from the tree, store the 1895 * block number of its root in *@top, pointers to buffer_heads of 1896 * partially truncated blocks - in @chain[].bh and pointers to 1897 * their last elements that should not be removed - in 1898 * @chain[].p. Return value is the pointer to last filled element 1899 * of @chain. 1900 * 1901 * The work left to caller to do the actual freeing of subtrees: 1902 * a) free the subtree starting from *@top 1903 * b) free the subtrees whose roots are stored in 1904 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1905 * c) free the subtrees growing from the inode past the @chain[0]. 1906 * (no partially truncated stuff there). */ 1907 1908 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1909 int offsets[4], Indirect chain[4], __le32 *top) 1910 { 1911 Indirect *partial, *p; 1912 int k, err; 1913 1914 *top = 0; 1915 /* Make k index the deepest non-null offest + 1 */ 1916 for (k = depth; k > 1 && !offsets[k-1]; k--) 1917 ; 1918 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1919 /* Writer: pointers */ 1920 if (!partial) 1921 partial = chain + k-1; 1922 /* 1923 * If the branch acquired continuation since we've looked at it - 1924 * fine, it should all survive and (new) top doesn't belong to us. 1925 */ 1926 if (!partial->key && *partial->p) 1927 /* Writer: end */ 1928 goto no_top; 1929 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 1930 ; 1931 /* 1932 * OK, we've found the last block that must survive. The rest of our 1933 * branch should be detached before unlocking. However, if that rest 1934 * of branch is all ours and does not grow immediately from the inode 1935 * it's easier to cheat and just decrement partial->p. 1936 */ 1937 if (p == chain + k - 1 && p > chain) { 1938 p->p--; 1939 } else { 1940 *top = *p->p; 1941 /* Nope, don't do this in ext4. Must leave the tree intact */ 1942 #if 0 1943 *p->p = 0; 1944 #endif 1945 } 1946 /* Writer: end */ 1947 1948 while(partial > p) { 1949 brelse(partial->bh); 1950 partial--; 1951 } 1952 no_top: 1953 return partial; 1954 } 1955 1956 /* 1957 * Zero a number of block pointers in either an inode or an indirect block. 1958 * If we restart the transaction we must again get write access to the 1959 * indirect block for further modification. 1960 * 1961 * We release `count' blocks on disk, but (last - first) may be greater 1962 * than `count' because there can be holes in there. 1963 */ 1964 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 1965 struct buffer_head *bh, ext4_fsblk_t block_to_free, 1966 unsigned long count, __le32 *first, __le32 *last) 1967 { 1968 __le32 *p; 1969 if (try_to_extend_transaction(handle, inode)) { 1970 if (bh) { 1971 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1972 ext4_journal_dirty_metadata(handle, bh); 1973 } 1974 ext4_mark_inode_dirty(handle, inode); 1975 ext4_journal_test_restart(handle, inode); 1976 if (bh) { 1977 BUFFER_TRACE(bh, "retaking write access"); 1978 ext4_journal_get_write_access(handle, bh); 1979 } 1980 } 1981 1982 /* 1983 * Any buffers which are on the journal will be in memory. We find 1984 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 1985 * on them. We've already detached each block from the file, so 1986 * bforget() in jbd2_journal_forget() should be safe. 1987 * 1988 * AKPM: turn on bforget in jbd2_journal_forget()!!! 1989 */ 1990 for (p = first; p < last; p++) { 1991 u32 nr = le32_to_cpu(*p); 1992 if (nr) { 1993 struct buffer_head *bh; 1994 1995 *p = 0; 1996 bh = sb_find_get_block(inode->i_sb, nr); 1997 ext4_forget(handle, 0, inode, bh, nr); 1998 } 1999 } 2000 2001 ext4_free_blocks(handle, inode, block_to_free, count); 2002 } 2003 2004 /** 2005 * ext4_free_data - free a list of data blocks 2006 * @handle: handle for this transaction 2007 * @inode: inode we are dealing with 2008 * @this_bh: indirect buffer_head which contains *@first and *@last 2009 * @first: array of block numbers 2010 * @last: points immediately past the end of array 2011 * 2012 * We are freeing all blocks refered from that array (numbers are stored as 2013 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2014 * 2015 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2016 * blocks are contiguous then releasing them at one time will only affect one 2017 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2018 * actually use a lot of journal space. 2019 * 2020 * @this_bh will be %NULL if @first and @last point into the inode's direct 2021 * block pointers. 2022 */ 2023 static void ext4_free_data(handle_t *handle, struct inode *inode, 2024 struct buffer_head *this_bh, 2025 __le32 *first, __le32 *last) 2026 { 2027 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2028 unsigned long count = 0; /* Number of blocks in the run */ 2029 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2030 corresponding to 2031 block_to_free */ 2032 ext4_fsblk_t nr; /* Current block # */ 2033 __le32 *p; /* Pointer into inode/ind 2034 for current block */ 2035 int err; 2036 2037 if (this_bh) { /* For indirect block */ 2038 BUFFER_TRACE(this_bh, "get_write_access"); 2039 err = ext4_journal_get_write_access(handle, this_bh); 2040 /* Important: if we can't update the indirect pointers 2041 * to the blocks, we can't free them. */ 2042 if (err) 2043 return; 2044 } 2045 2046 for (p = first; p < last; p++) { 2047 nr = le32_to_cpu(*p); 2048 if (nr) { 2049 /* accumulate blocks to free if they're contiguous */ 2050 if (count == 0) { 2051 block_to_free = nr; 2052 block_to_free_p = p; 2053 count = 1; 2054 } else if (nr == block_to_free + count) { 2055 count++; 2056 } else { 2057 ext4_clear_blocks(handle, inode, this_bh, 2058 block_to_free, 2059 count, block_to_free_p, p); 2060 block_to_free = nr; 2061 block_to_free_p = p; 2062 count = 1; 2063 } 2064 } 2065 } 2066 2067 if (count > 0) 2068 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 2069 count, block_to_free_p, p); 2070 2071 if (this_bh) { 2072 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 2073 ext4_journal_dirty_metadata(handle, this_bh); 2074 } 2075 } 2076 2077 /** 2078 * ext4_free_branches - free an array of branches 2079 * @handle: JBD handle for this transaction 2080 * @inode: inode we are dealing with 2081 * @parent_bh: the buffer_head which contains *@first and *@last 2082 * @first: array of block numbers 2083 * @last: pointer immediately past the end of array 2084 * @depth: depth of the branches to free 2085 * 2086 * We are freeing all blocks refered from these branches (numbers are 2087 * stored as little-endian 32-bit) and updating @inode->i_blocks 2088 * appropriately. 2089 */ 2090 static void ext4_free_branches(handle_t *handle, struct inode *inode, 2091 struct buffer_head *parent_bh, 2092 __le32 *first, __le32 *last, int depth) 2093 { 2094 ext4_fsblk_t nr; 2095 __le32 *p; 2096 2097 if (is_handle_aborted(handle)) 2098 return; 2099 2100 if (depth--) { 2101 struct buffer_head *bh; 2102 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2103 p = last; 2104 while (--p >= first) { 2105 nr = le32_to_cpu(*p); 2106 if (!nr) 2107 continue; /* A hole */ 2108 2109 /* Go read the buffer for the next level down */ 2110 bh = sb_bread(inode->i_sb, nr); 2111 2112 /* 2113 * A read failure? Report error and clear slot 2114 * (should be rare). 2115 */ 2116 if (!bh) { 2117 ext4_error(inode->i_sb, "ext4_free_branches", 2118 "Read failure, inode=%lu, block=%llu", 2119 inode->i_ino, nr); 2120 continue; 2121 } 2122 2123 /* This zaps the entire block. Bottom up. */ 2124 BUFFER_TRACE(bh, "free child branches"); 2125 ext4_free_branches(handle, inode, bh, 2126 (__le32*)bh->b_data, 2127 (__le32*)bh->b_data + addr_per_block, 2128 depth); 2129 2130 /* 2131 * We've probably journalled the indirect block several 2132 * times during the truncate. But it's no longer 2133 * needed and we now drop it from the transaction via 2134 * jbd2_journal_revoke(). 2135 * 2136 * That's easy if it's exclusively part of this 2137 * transaction. But if it's part of the committing 2138 * transaction then jbd2_journal_forget() will simply 2139 * brelse() it. That means that if the underlying 2140 * block is reallocated in ext4_get_block(), 2141 * unmap_underlying_metadata() will find this block 2142 * and will try to get rid of it. damn, damn. 2143 * 2144 * If this block has already been committed to the 2145 * journal, a revoke record will be written. And 2146 * revoke records must be emitted *before* clearing 2147 * this block's bit in the bitmaps. 2148 */ 2149 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 2150 2151 /* 2152 * Everything below this this pointer has been 2153 * released. Now let this top-of-subtree go. 2154 * 2155 * We want the freeing of this indirect block to be 2156 * atomic in the journal with the updating of the 2157 * bitmap block which owns it. So make some room in 2158 * the journal. 2159 * 2160 * We zero the parent pointer *after* freeing its 2161 * pointee in the bitmaps, so if extend_transaction() 2162 * for some reason fails to put the bitmap changes and 2163 * the release into the same transaction, recovery 2164 * will merely complain about releasing a free block, 2165 * rather than leaking blocks. 2166 */ 2167 if (is_handle_aborted(handle)) 2168 return; 2169 if (try_to_extend_transaction(handle, inode)) { 2170 ext4_mark_inode_dirty(handle, inode); 2171 ext4_journal_test_restart(handle, inode); 2172 } 2173 2174 ext4_free_blocks(handle, inode, nr, 1); 2175 2176 if (parent_bh) { 2177 /* 2178 * The block which we have just freed is 2179 * pointed to by an indirect block: journal it 2180 */ 2181 BUFFER_TRACE(parent_bh, "get_write_access"); 2182 if (!ext4_journal_get_write_access(handle, 2183 parent_bh)){ 2184 *p = 0; 2185 BUFFER_TRACE(parent_bh, 2186 "call ext4_journal_dirty_metadata"); 2187 ext4_journal_dirty_metadata(handle, 2188 parent_bh); 2189 } 2190 } 2191 } 2192 } else { 2193 /* We have reached the bottom of the tree. */ 2194 BUFFER_TRACE(parent_bh, "free data blocks"); 2195 ext4_free_data(handle, inode, parent_bh, first, last); 2196 } 2197 } 2198 2199 /* 2200 * ext4_truncate() 2201 * 2202 * We block out ext4_get_block() block instantiations across the entire 2203 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 2204 * simultaneously on behalf of the same inode. 2205 * 2206 * As we work through the truncate and commmit bits of it to the journal there 2207 * is one core, guiding principle: the file's tree must always be consistent on 2208 * disk. We must be able to restart the truncate after a crash. 2209 * 2210 * The file's tree may be transiently inconsistent in memory (although it 2211 * probably isn't), but whenever we close off and commit a journal transaction, 2212 * the contents of (the filesystem + the journal) must be consistent and 2213 * restartable. It's pretty simple, really: bottom up, right to left (although 2214 * left-to-right works OK too). 2215 * 2216 * Note that at recovery time, journal replay occurs *before* the restart of 2217 * truncate against the orphan inode list. 2218 * 2219 * The committed inode has the new, desired i_size (which is the same as 2220 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 2221 * that this inode's truncate did not complete and it will again call 2222 * ext4_truncate() to have another go. So there will be instantiated blocks 2223 * to the right of the truncation point in a crashed ext4 filesystem. But 2224 * that's fine - as long as they are linked from the inode, the post-crash 2225 * ext4_truncate() run will find them and release them. 2226 */ 2227 void ext4_truncate(struct inode *inode) 2228 { 2229 handle_t *handle; 2230 struct ext4_inode_info *ei = EXT4_I(inode); 2231 __le32 *i_data = ei->i_data; 2232 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2233 struct address_space *mapping = inode->i_mapping; 2234 int offsets[4]; 2235 Indirect chain[4]; 2236 Indirect *partial; 2237 __le32 nr = 0; 2238 int n; 2239 long last_block; 2240 unsigned blocksize = inode->i_sb->s_blocksize; 2241 struct page *page; 2242 2243 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2244 S_ISLNK(inode->i_mode))) 2245 return; 2246 if (ext4_inode_is_fast_symlink(inode)) 2247 return; 2248 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2249 return; 2250 2251 /* 2252 * We have to lock the EOF page here, because lock_page() nests 2253 * outside jbd2_journal_start(). 2254 */ 2255 if ((inode->i_size & (blocksize - 1)) == 0) { 2256 /* Block boundary? Nothing to do */ 2257 page = NULL; 2258 } else { 2259 page = grab_cache_page(mapping, 2260 inode->i_size >> PAGE_CACHE_SHIFT); 2261 if (!page) 2262 return; 2263 } 2264 2265 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 2266 return ext4_ext_truncate(inode, page); 2267 2268 handle = start_transaction(inode); 2269 if (IS_ERR(handle)) { 2270 if (page) { 2271 clear_highpage(page); 2272 flush_dcache_page(page); 2273 unlock_page(page); 2274 page_cache_release(page); 2275 } 2276 return; /* AKPM: return what? */ 2277 } 2278 2279 last_block = (inode->i_size + blocksize-1) 2280 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 2281 2282 if (page) 2283 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2284 2285 n = ext4_block_to_path(inode, last_block, offsets, NULL); 2286 if (n == 0) 2287 goto out_stop; /* error */ 2288 2289 /* 2290 * OK. This truncate is going to happen. We add the inode to the 2291 * orphan list, so that if this truncate spans multiple transactions, 2292 * and we crash, we will resume the truncate when the filesystem 2293 * recovers. It also marks the inode dirty, to catch the new size. 2294 * 2295 * Implication: the file must always be in a sane, consistent 2296 * truncatable state while each transaction commits. 2297 */ 2298 if (ext4_orphan_add(handle, inode)) 2299 goto out_stop; 2300 2301 /* 2302 * The orphan list entry will now protect us from any crash which 2303 * occurs before the truncate completes, so it is now safe to propagate 2304 * the new, shorter inode size (held for now in i_size) into the 2305 * on-disk inode. We do this via i_disksize, which is the value which 2306 * ext4 *really* writes onto the disk inode. 2307 */ 2308 ei->i_disksize = inode->i_size; 2309 2310 /* 2311 * From here we block out all ext4_get_block() callers who want to 2312 * modify the block allocation tree. 2313 */ 2314 mutex_lock(&ei->truncate_mutex); 2315 2316 if (n == 1) { /* direct blocks */ 2317 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 2318 i_data + EXT4_NDIR_BLOCKS); 2319 goto do_indirects; 2320 } 2321 2322 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 2323 /* Kill the top of shared branch (not detached) */ 2324 if (nr) { 2325 if (partial == chain) { 2326 /* Shared branch grows from the inode */ 2327 ext4_free_branches(handle, inode, NULL, 2328 &nr, &nr+1, (chain+n-1) - partial); 2329 *partial->p = 0; 2330 /* 2331 * We mark the inode dirty prior to restart, 2332 * and prior to stop. No need for it here. 2333 */ 2334 } else { 2335 /* Shared branch grows from an indirect block */ 2336 BUFFER_TRACE(partial->bh, "get_write_access"); 2337 ext4_free_branches(handle, inode, partial->bh, 2338 partial->p, 2339 partial->p+1, (chain+n-1) - partial); 2340 } 2341 } 2342 /* Clear the ends of indirect blocks on the shared branch */ 2343 while (partial > chain) { 2344 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 2345 (__le32*)partial->bh->b_data+addr_per_block, 2346 (chain+n-1) - partial); 2347 BUFFER_TRACE(partial->bh, "call brelse"); 2348 brelse (partial->bh); 2349 partial--; 2350 } 2351 do_indirects: 2352 /* Kill the remaining (whole) subtrees */ 2353 switch (offsets[0]) { 2354 default: 2355 nr = i_data[EXT4_IND_BLOCK]; 2356 if (nr) { 2357 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2358 i_data[EXT4_IND_BLOCK] = 0; 2359 } 2360 case EXT4_IND_BLOCK: 2361 nr = i_data[EXT4_DIND_BLOCK]; 2362 if (nr) { 2363 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2364 i_data[EXT4_DIND_BLOCK] = 0; 2365 } 2366 case EXT4_DIND_BLOCK: 2367 nr = i_data[EXT4_TIND_BLOCK]; 2368 if (nr) { 2369 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2370 i_data[EXT4_TIND_BLOCK] = 0; 2371 } 2372 case EXT4_TIND_BLOCK: 2373 ; 2374 } 2375 2376 ext4_discard_reservation(inode); 2377 2378 mutex_unlock(&ei->truncate_mutex); 2379 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 2380 ext4_mark_inode_dirty(handle, inode); 2381 2382 /* 2383 * In a multi-transaction truncate, we only make the final transaction 2384 * synchronous 2385 */ 2386 if (IS_SYNC(inode)) 2387 handle->h_sync = 1; 2388 out_stop: 2389 /* 2390 * If this was a simple ftruncate(), and the file will remain alive 2391 * then we need to clear up the orphan record which we created above. 2392 * However, if this was a real unlink then we were called by 2393 * ext4_delete_inode(), and we allow that function to clean up the 2394 * orphan info for us. 2395 */ 2396 if (inode->i_nlink) 2397 ext4_orphan_del(handle, inode); 2398 2399 ext4_journal_stop(handle); 2400 } 2401 2402 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 2403 unsigned long ino, struct ext4_iloc *iloc) 2404 { 2405 unsigned long desc, group_desc, block_group; 2406 unsigned long offset; 2407 ext4_fsblk_t block; 2408 struct buffer_head *bh; 2409 struct ext4_group_desc * gdp; 2410 2411 if (!ext4_valid_inum(sb, ino)) { 2412 /* 2413 * This error is already checked for in namei.c unless we are 2414 * looking at an NFS filehandle, in which case no error 2415 * report is needed 2416 */ 2417 return 0; 2418 } 2419 2420 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 2421 if (block_group >= EXT4_SB(sb)->s_groups_count) { 2422 ext4_error(sb,"ext4_get_inode_block","group >= groups count"); 2423 return 0; 2424 } 2425 smp_rmb(); 2426 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2427 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2428 bh = EXT4_SB(sb)->s_group_desc[group_desc]; 2429 if (!bh) { 2430 ext4_error (sb, "ext4_get_inode_block", 2431 "Descriptor not loaded"); 2432 return 0; 2433 } 2434 2435 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data + 2436 desc * EXT4_DESC_SIZE(sb)); 2437 /* 2438 * Figure out the offset within the block group inode table 2439 */ 2440 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 2441 EXT4_INODE_SIZE(sb); 2442 block = ext4_inode_table(sb, gdp) + 2443 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 2444 2445 iloc->block_group = block_group; 2446 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 2447 return block; 2448 } 2449 2450 /* 2451 * ext4_get_inode_loc returns with an extra refcount against the inode's 2452 * underlying buffer_head on success. If 'in_mem' is true, we have all 2453 * data in memory that is needed to recreate the on-disk version of this 2454 * inode. 2455 */ 2456 static int __ext4_get_inode_loc(struct inode *inode, 2457 struct ext4_iloc *iloc, int in_mem) 2458 { 2459 ext4_fsblk_t block; 2460 struct buffer_head *bh; 2461 2462 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2463 if (!block) 2464 return -EIO; 2465 2466 bh = sb_getblk(inode->i_sb, block); 2467 if (!bh) { 2468 ext4_error (inode->i_sb, "ext4_get_inode_loc", 2469 "unable to read inode block - " 2470 "inode=%lu, block=%llu", 2471 inode->i_ino, block); 2472 return -EIO; 2473 } 2474 if (!buffer_uptodate(bh)) { 2475 lock_buffer(bh); 2476 if (buffer_uptodate(bh)) { 2477 /* someone brought it uptodate while we waited */ 2478 unlock_buffer(bh); 2479 goto has_buffer; 2480 } 2481 2482 /* 2483 * If we have all information of the inode in memory and this 2484 * is the only valid inode in the block, we need not read the 2485 * block. 2486 */ 2487 if (in_mem) { 2488 struct buffer_head *bitmap_bh; 2489 struct ext4_group_desc *desc; 2490 int inodes_per_buffer; 2491 int inode_offset, i; 2492 int block_group; 2493 int start; 2494 2495 block_group = (inode->i_ino - 1) / 2496 EXT4_INODES_PER_GROUP(inode->i_sb); 2497 inodes_per_buffer = bh->b_size / 2498 EXT4_INODE_SIZE(inode->i_sb); 2499 inode_offset = ((inode->i_ino - 1) % 2500 EXT4_INODES_PER_GROUP(inode->i_sb)); 2501 start = inode_offset & ~(inodes_per_buffer - 1); 2502 2503 /* Is the inode bitmap in cache? */ 2504 desc = ext4_get_group_desc(inode->i_sb, 2505 block_group, NULL); 2506 if (!desc) 2507 goto make_io; 2508 2509 bitmap_bh = sb_getblk(inode->i_sb, 2510 ext4_inode_bitmap(inode->i_sb, desc)); 2511 if (!bitmap_bh) 2512 goto make_io; 2513 2514 /* 2515 * If the inode bitmap isn't in cache then the 2516 * optimisation may end up performing two reads instead 2517 * of one, so skip it. 2518 */ 2519 if (!buffer_uptodate(bitmap_bh)) { 2520 brelse(bitmap_bh); 2521 goto make_io; 2522 } 2523 for (i = start; i < start + inodes_per_buffer; i++) { 2524 if (i == inode_offset) 2525 continue; 2526 if (ext4_test_bit(i, bitmap_bh->b_data)) 2527 break; 2528 } 2529 brelse(bitmap_bh); 2530 if (i == start + inodes_per_buffer) { 2531 /* all other inodes are free, so skip I/O */ 2532 memset(bh->b_data, 0, bh->b_size); 2533 set_buffer_uptodate(bh); 2534 unlock_buffer(bh); 2535 goto has_buffer; 2536 } 2537 } 2538 2539 make_io: 2540 /* 2541 * There are other valid inodes in the buffer, this inode 2542 * has in-inode xattrs, or we don't have this inode in memory. 2543 * Read the block from disk. 2544 */ 2545 get_bh(bh); 2546 bh->b_end_io = end_buffer_read_sync; 2547 submit_bh(READ_META, bh); 2548 wait_on_buffer(bh); 2549 if (!buffer_uptodate(bh)) { 2550 ext4_error(inode->i_sb, "ext4_get_inode_loc", 2551 "unable to read inode block - " 2552 "inode=%lu, block=%llu", 2553 inode->i_ino, block); 2554 brelse(bh); 2555 return -EIO; 2556 } 2557 } 2558 has_buffer: 2559 iloc->bh = bh; 2560 return 0; 2561 } 2562 2563 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 2564 { 2565 /* We have all inode data except xattrs in memory here. */ 2566 return __ext4_get_inode_loc(inode, iloc, 2567 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 2568 } 2569 2570 void ext4_set_inode_flags(struct inode *inode) 2571 { 2572 unsigned int flags = EXT4_I(inode)->i_flags; 2573 2574 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2575 if (flags & EXT4_SYNC_FL) 2576 inode->i_flags |= S_SYNC; 2577 if (flags & EXT4_APPEND_FL) 2578 inode->i_flags |= S_APPEND; 2579 if (flags & EXT4_IMMUTABLE_FL) 2580 inode->i_flags |= S_IMMUTABLE; 2581 if (flags & EXT4_NOATIME_FL) 2582 inode->i_flags |= S_NOATIME; 2583 if (flags & EXT4_DIRSYNC_FL) 2584 inode->i_flags |= S_DIRSYNC; 2585 } 2586 2587 void ext4_read_inode(struct inode * inode) 2588 { 2589 struct ext4_iloc iloc; 2590 struct ext4_inode *raw_inode; 2591 struct ext4_inode_info *ei = EXT4_I(inode); 2592 struct buffer_head *bh; 2593 int block; 2594 2595 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 2596 ei->i_acl = EXT4_ACL_NOT_CACHED; 2597 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 2598 #endif 2599 ei->i_block_alloc_info = NULL; 2600 2601 if (__ext4_get_inode_loc(inode, &iloc, 0)) 2602 goto bad_inode; 2603 bh = iloc.bh; 2604 raw_inode = ext4_raw_inode(&iloc); 2605 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2606 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2607 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2608 if(!(test_opt (inode->i_sb, NO_UID32))) { 2609 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2610 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2611 } 2612 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 2613 inode->i_size = le32_to_cpu(raw_inode->i_size); 2614 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime); 2615 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime); 2616 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime); 2617 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; 2618 2619 ei->i_state = 0; 2620 ei->i_dir_start_lookup = 0; 2621 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2622 /* We now have enough fields to check if the inode was active or not. 2623 * This is needed because nfsd might try to access dead inodes 2624 * the test is that same one that e2fsck uses 2625 * NeilBrown 1999oct15 2626 */ 2627 if (inode->i_nlink == 0) { 2628 if (inode->i_mode == 0 || 2629 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 2630 /* this inode is deleted */ 2631 brelse (bh); 2632 goto bad_inode; 2633 } 2634 /* The only unlinked inodes we let through here have 2635 * valid i_mode and are being read by the orphan 2636 * recovery code: that's fine, we're about to complete 2637 * the process of deleting those. */ 2638 } 2639 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 2640 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2641 #ifdef EXT4_FRAGMENTS 2642 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 2643 ei->i_frag_no = raw_inode->i_frag; 2644 ei->i_frag_size = raw_inode->i_fsize; 2645 #endif 2646 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 2647 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2648 cpu_to_le32(EXT4_OS_HURD)) 2649 ei->i_file_acl |= 2650 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 2651 if (!S_ISREG(inode->i_mode)) { 2652 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 2653 } else { 2654 inode->i_size |= 2655 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 2656 } 2657 ei->i_disksize = inode->i_size; 2658 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2659 ei->i_block_group = iloc.block_group; 2660 /* 2661 * NOTE! The in-memory inode i_data array is in little-endian order 2662 * even on big-endian machines: we do NOT byteswap the block numbers! 2663 */ 2664 for (block = 0; block < EXT4_N_BLOCKS; block++) 2665 ei->i_data[block] = raw_inode->i_block[block]; 2666 INIT_LIST_HEAD(&ei->i_orphan); 2667 2668 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 && 2669 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2670 /* 2671 * When mke2fs creates big inodes it does not zero out 2672 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE, 2673 * so ignore those first few inodes. 2674 */ 2675 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2676 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2677 EXT4_INODE_SIZE(inode->i_sb)) 2678 goto bad_inode; 2679 if (ei->i_extra_isize == 0) { 2680 /* The extra space is currently unused. Use it. */ 2681 ei->i_extra_isize = sizeof(struct ext4_inode) - 2682 EXT4_GOOD_OLD_INODE_SIZE; 2683 } else { 2684 __le32 *magic = (void *)raw_inode + 2685 EXT4_GOOD_OLD_INODE_SIZE + 2686 ei->i_extra_isize; 2687 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 2688 ei->i_state |= EXT4_STATE_XATTR; 2689 } 2690 } else 2691 ei->i_extra_isize = 0; 2692 2693 if (S_ISREG(inode->i_mode)) { 2694 inode->i_op = &ext4_file_inode_operations; 2695 inode->i_fop = &ext4_file_operations; 2696 ext4_set_aops(inode); 2697 } else if (S_ISDIR(inode->i_mode)) { 2698 inode->i_op = &ext4_dir_inode_operations; 2699 inode->i_fop = &ext4_dir_operations; 2700 } else if (S_ISLNK(inode->i_mode)) { 2701 if (ext4_inode_is_fast_symlink(inode)) 2702 inode->i_op = &ext4_fast_symlink_inode_operations; 2703 else { 2704 inode->i_op = &ext4_symlink_inode_operations; 2705 ext4_set_aops(inode); 2706 } 2707 } else { 2708 inode->i_op = &ext4_special_inode_operations; 2709 if (raw_inode->i_block[0]) 2710 init_special_inode(inode, inode->i_mode, 2711 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 2712 else 2713 init_special_inode(inode, inode->i_mode, 2714 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 2715 } 2716 brelse (iloc.bh); 2717 ext4_set_inode_flags(inode); 2718 return; 2719 2720 bad_inode: 2721 make_bad_inode(inode); 2722 return; 2723 } 2724 2725 /* 2726 * Post the struct inode info into an on-disk inode location in the 2727 * buffer-cache. This gobbles the caller's reference to the 2728 * buffer_head in the inode location struct. 2729 * 2730 * The caller must have write access to iloc->bh. 2731 */ 2732 static int ext4_do_update_inode(handle_t *handle, 2733 struct inode *inode, 2734 struct ext4_iloc *iloc) 2735 { 2736 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 2737 struct ext4_inode_info *ei = EXT4_I(inode); 2738 struct buffer_head *bh = iloc->bh; 2739 int err = 0, rc, block; 2740 2741 /* For fields not not tracking in the in-memory inode, 2742 * initialise them to zero for new inodes. */ 2743 if (ei->i_state & EXT4_STATE_NEW) 2744 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 2745 2746 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 2747 if(!(test_opt(inode->i_sb, NO_UID32))) { 2748 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 2749 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 2750 /* 2751 * Fix up interoperability with old kernels. Otherwise, old inodes get 2752 * re-used with the upper 16 bits of the uid/gid intact 2753 */ 2754 if(!ei->i_dtime) { 2755 raw_inode->i_uid_high = 2756 cpu_to_le16(high_16_bits(inode->i_uid)); 2757 raw_inode->i_gid_high = 2758 cpu_to_le16(high_16_bits(inode->i_gid)); 2759 } else { 2760 raw_inode->i_uid_high = 0; 2761 raw_inode->i_gid_high = 0; 2762 } 2763 } else { 2764 raw_inode->i_uid_low = 2765 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 2766 raw_inode->i_gid_low = 2767 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 2768 raw_inode->i_uid_high = 0; 2769 raw_inode->i_gid_high = 0; 2770 } 2771 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 2772 raw_inode->i_size = cpu_to_le32(ei->i_disksize); 2773 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 2774 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 2775 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 2776 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 2777 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 2778 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 2779 #ifdef EXT4_FRAGMENTS 2780 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 2781 raw_inode->i_frag = ei->i_frag_no; 2782 raw_inode->i_fsize = ei->i_frag_size; 2783 #endif 2784 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2785 cpu_to_le32(EXT4_OS_HURD)) 2786 raw_inode->i_file_acl_high = 2787 cpu_to_le16(ei->i_file_acl >> 32); 2788 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 2789 if (!S_ISREG(inode->i_mode)) { 2790 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 2791 } else { 2792 raw_inode->i_size_high = 2793 cpu_to_le32(ei->i_disksize >> 32); 2794 if (ei->i_disksize > 0x7fffffffULL) { 2795 struct super_block *sb = inode->i_sb; 2796 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 2797 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 2798 EXT4_SB(sb)->s_es->s_rev_level == 2799 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 2800 /* If this is the first large file 2801 * created, add a flag to the superblock. 2802 */ 2803 err = ext4_journal_get_write_access(handle, 2804 EXT4_SB(sb)->s_sbh); 2805 if (err) 2806 goto out_brelse; 2807 ext4_update_dynamic_rev(sb); 2808 EXT4_SET_RO_COMPAT_FEATURE(sb, 2809 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 2810 sb->s_dirt = 1; 2811 handle->h_sync = 1; 2812 err = ext4_journal_dirty_metadata(handle, 2813 EXT4_SB(sb)->s_sbh); 2814 } 2815 } 2816 } 2817 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 2818 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 2819 if (old_valid_dev(inode->i_rdev)) { 2820 raw_inode->i_block[0] = 2821 cpu_to_le32(old_encode_dev(inode->i_rdev)); 2822 raw_inode->i_block[1] = 0; 2823 } else { 2824 raw_inode->i_block[0] = 0; 2825 raw_inode->i_block[1] = 2826 cpu_to_le32(new_encode_dev(inode->i_rdev)); 2827 raw_inode->i_block[2] = 0; 2828 } 2829 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 2830 raw_inode->i_block[block] = ei->i_data[block]; 2831 2832 if (ei->i_extra_isize) 2833 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 2834 2835 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2836 rc = ext4_journal_dirty_metadata(handle, bh); 2837 if (!err) 2838 err = rc; 2839 ei->i_state &= ~EXT4_STATE_NEW; 2840 2841 out_brelse: 2842 brelse (bh); 2843 ext4_std_error(inode->i_sb, err); 2844 return err; 2845 } 2846 2847 /* 2848 * ext4_write_inode() 2849 * 2850 * We are called from a few places: 2851 * 2852 * - Within generic_file_write() for O_SYNC files. 2853 * Here, there will be no transaction running. We wait for any running 2854 * trasnaction to commit. 2855 * 2856 * - Within sys_sync(), kupdate and such. 2857 * We wait on commit, if tol to. 2858 * 2859 * - Within prune_icache() (PF_MEMALLOC == true) 2860 * Here we simply return. We can't afford to block kswapd on the 2861 * journal commit. 2862 * 2863 * In all cases it is actually safe for us to return without doing anything, 2864 * because the inode has been copied into a raw inode buffer in 2865 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 2866 * knfsd. 2867 * 2868 * Note that we are absolutely dependent upon all inode dirtiers doing the 2869 * right thing: they *must* call mark_inode_dirty() after dirtying info in 2870 * which we are interested. 2871 * 2872 * It would be a bug for them to not do this. The code: 2873 * 2874 * mark_inode_dirty(inode) 2875 * stuff(); 2876 * inode->i_size = expr; 2877 * 2878 * is in error because a kswapd-driven write_inode() could occur while 2879 * `stuff()' is running, and the new i_size will be lost. Plus the inode 2880 * will no longer be on the superblock's dirty inode list. 2881 */ 2882 int ext4_write_inode(struct inode *inode, int wait) 2883 { 2884 if (current->flags & PF_MEMALLOC) 2885 return 0; 2886 2887 if (ext4_journal_current_handle()) { 2888 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n"); 2889 dump_stack(); 2890 return -EIO; 2891 } 2892 2893 if (!wait) 2894 return 0; 2895 2896 return ext4_force_commit(inode->i_sb); 2897 } 2898 2899 /* 2900 * ext4_setattr() 2901 * 2902 * Called from notify_change. 2903 * 2904 * We want to trap VFS attempts to truncate the file as soon as 2905 * possible. In particular, we want to make sure that when the VFS 2906 * shrinks i_size, we put the inode on the orphan list and modify 2907 * i_disksize immediately, so that during the subsequent flushing of 2908 * dirty pages and freeing of disk blocks, we can guarantee that any 2909 * commit will leave the blocks being flushed in an unused state on 2910 * disk. (On recovery, the inode will get truncated and the blocks will 2911 * be freed, so we have a strong guarantee that no future commit will 2912 * leave these blocks visible to the user.) 2913 * 2914 * Called with inode->sem down. 2915 */ 2916 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 2917 { 2918 struct inode *inode = dentry->d_inode; 2919 int error, rc = 0; 2920 const unsigned int ia_valid = attr->ia_valid; 2921 2922 error = inode_change_ok(inode, attr); 2923 if (error) 2924 return error; 2925 2926 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 2927 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 2928 handle_t *handle; 2929 2930 /* (user+group)*(old+new) structure, inode write (sb, 2931 * inode block, ? - but truncate inode update has it) */ 2932 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 2933 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 2934 if (IS_ERR(handle)) { 2935 error = PTR_ERR(handle); 2936 goto err_out; 2937 } 2938 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 2939 if (error) { 2940 ext4_journal_stop(handle); 2941 return error; 2942 } 2943 /* Update corresponding info in inode so that everything is in 2944 * one transaction */ 2945 if (attr->ia_valid & ATTR_UID) 2946 inode->i_uid = attr->ia_uid; 2947 if (attr->ia_valid & ATTR_GID) 2948 inode->i_gid = attr->ia_gid; 2949 error = ext4_mark_inode_dirty(handle, inode); 2950 ext4_journal_stop(handle); 2951 } 2952 2953 if (S_ISREG(inode->i_mode) && 2954 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 2955 handle_t *handle; 2956 2957 handle = ext4_journal_start(inode, 3); 2958 if (IS_ERR(handle)) { 2959 error = PTR_ERR(handle); 2960 goto err_out; 2961 } 2962 2963 error = ext4_orphan_add(handle, inode); 2964 EXT4_I(inode)->i_disksize = attr->ia_size; 2965 rc = ext4_mark_inode_dirty(handle, inode); 2966 if (!error) 2967 error = rc; 2968 ext4_journal_stop(handle); 2969 } 2970 2971 rc = inode_setattr(inode, attr); 2972 2973 /* If inode_setattr's call to ext4_truncate failed to get a 2974 * transaction handle at all, we need to clean up the in-core 2975 * orphan list manually. */ 2976 if (inode->i_nlink) 2977 ext4_orphan_del(NULL, inode); 2978 2979 if (!rc && (ia_valid & ATTR_MODE)) 2980 rc = ext4_acl_chmod(inode); 2981 2982 err_out: 2983 ext4_std_error(inode->i_sb, error); 2984 if (!error) 2985 error = rc; 2986 return error; 2987 } 2988 2989 2990 /* 2991 * How many blocks doth make a writepage()? 2992 * 2993 * With N blocks per page, it may be: 2994 * N data blocks 2995 * 2 indirect block 2996 * 2 dindirect 2997 * 1 tindirect 2998 * N+5 bitmap blocks (from the above) 2999 * N+5 group descriptor summary blocks 3000 * 1 inode block 3001 * 1 superblock. 3002 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 3003 * 3004 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 3005 * 3006 * With ordered or writeback data it's the same, less the N data blocks. 3007 * 3008 * If the inode's direct blocks can hold an integral number of pages then a 3009 * page cannot straddle two indirect blocks, and we can only touch one indirect 3010 * and dindirect block, and the "5" above becomes "3". 3011 * 3012 * This still overestimates under most circumstances. If we were to pass the 3013 * start and end offsets in here as well we could do block_to_path() on each 3014 * block and work out the exact number of indirects which are touched. Pah. 3015 */ 3016 3017 int ext4_writepage_trans_blocks(struct inode *inode) 3018 { 3019 int bpp = ext4_journal_blocks_per_page(inode); 3020 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 3021 int ret; 3022 3023 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3024 return ext4_ext_writepage_trans_blocks(inode, bpp); 3025 3026 if (ext4_should_journal_data(inode)) 3027 ret = 3 * (bpp + indirects) + 2; 3028 else 3029 ret = 2 * (bpp + indirects) + 2; 3030 3031 #ifdef CONFIG_QUOTA 3032 /* We know that structure was already allocated during DQUOT_INIT so 3033 * we will be updating only the data blocks + inodes */ 3034 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 3035 #endif 3036 3037 return ret; 3038 } 3039 3040 /* 3041 * The caller must have previously called ext4_reserve_inode_write(). 3042 * Give this, we know that the caller already has write access to iloc->bh. 3043 */ 3044 int ext4_mark_iloc_dirty(handle_t *handle, 3045 struct inode *inode, struct ext4_iloc *iloc) 3046 { 3047 int err = 0; 3048 3049 /* the do_update_inode consumes one bh->b_count */ 3050 get_bh(iloc->bh); 3051 3052 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 3053 err = ext4_do_update_inode(handle, inode, iloc); 3054 put_bh(iloc->bh); 3055 return err; 3056 } 3057 3058 /* 3059 * On success, We end up with an outstanding reference count against 3060 * iloc->bh. This _must_ be cleaned up later. 3061 */ 3062 3063 int 3064 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 3065 struct ext4_iloc *iloc) 3066 { 3067 int err = 0; 3068 if (handle) { 3069 err = ext4_get_inode_loc(inode, iloc); 3070 if (!err) { 3071 BUFFER_TRACE(iloc->bh, "get_write_access"); 3072 err = ext4_journal_get_write_access(handle, iloc->bh); 3073 if (err) { 3074 brelse(iloc->bh); 3075 iloc->bh = NULL; 3076 } 3077 } 3078 } 3079 ext4_std_error(inode->i_sb, err); 3080 return err; 3081 } 3082 3083 /* 3084 * What we do here is to mark the in-core inode as clean with respect to inode 3085 * dirtiness (it may still be data-dirty). 3086 * This means that the in-core inode may be reaped by prune_icache 3087 * without having to perform any I/O. This is a very good thing, 3088 * because *any* task may call prune_icache - even ones which 3089 * have a transaction open against a different journal. 3090 * 3091 * Is this cheating? Not really. Sure, we haven't written the 3092 * inode out, but prune_icache isn't a user-visible syncing function. 3093 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3094 * we start and wait on commits. 3095 * 3096 * Is this efficient/effective? Well, we're being nice to the system 3097 * by cleaning up our inodes proactively so they can be reaped 3098 * without I/O. But we are potentially leaving up to five seconds' 3099 * worth of inodes floating about which prune_icache wants us to 3100 * write out. One way to fix that would be to get prune_icache() 3101 * to do a write_super() to free up some memory. It has the desired 3102 * effect. 3103 */ 3104 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 3105 { 3106 struct ext4_iloc iloc; 3107 int err; 3108 3109 might_sleep(); 3110 err = ext4_reserve_inode_write(handle, inode, &iloc); 3111 if (!err) 3112 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3113 return err; 3114 } 3115 3116 /* 3117 * ext4_dirty_inode() is called from __mark_inode_dirty() 3118 * 3119 * We're really interested in the case where a file is being extended. 3120 * i_size has been changed by generic_commit_write() and we thus need 3121 * to include the updated inode in the current transaction. 3122 * 3123 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 3124 * are allocated to the file. 3125 * 3126 * If the inode is marked synchronous, we don't honour that here - doing 3127 * so would cause a commit on atime updates, which we don't bother doing. 3128 * We handle synchronous inodes at the highest possible level. 3129 */ 3130 void ext4_dirty_inode(struct inode *inode) 3131 { 3132 handle_t *current_handle = ext4_journal_current_handle(); 3133 handle_t *handle; 3134 3135 handle = ext4_journal_start(inode, 2); 3136 if (IS_ERR(handle)) 3137 goto out; 3138 if (current_handle && 3139 current_handle->h_transaction != handle->h_transaction) { 3140 /* This task has a transaction open against a different fs */ 3141 printk(KERN_EMERG "%s: transactions do not match!\n", 3142 __FUNCTION__); 3143 } else { 3144 jbd_debug(5, "marking dirty. outer handle=%p\n", 3145 current_handle); 3146 ext4_mark_inode_dirty(handle, inode); 3147 } 3148 ext4_journal_stop(handle); 3149 out: 3150 return; 3151 } 3152 3153 #if 0 3154 /* 3155 * Bind an inode's backing buffer_head into this transaction, to prevent 3156 * it from being flushed to disk early. Unlike 3157 * ext4_reserve_inode_write, this leaves behind no bh reference and 3158 * returns no iloc structure, so the caller needs to repeat the iloc 3159 * lookup to mark the inode dirty later. 3160 */ 3161 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 3162 { 3163 struct ext4_iloc iloc; 3164 3165 int err = 0; 3166 if (handle) { 3167 err = ext4_get_inode_loc(inode, &iloc); 3168 if (!err) { 3169 BUFFER_TRACE(iloc.bh, "get_write_access"); 3170 err = jbd2_journal_get_write_access(handle, iloc.bh); 3171 if (!err) 3172 err = ext4_journal_dirty_metadata(handle, 3173 iloc.bh); 3174 brelse(iloc.bh); 3175 } 3176 } 3177 ext4_std_error(inode->i_sb, err); 3178 return err; 3179 } 3180 #endif 3181 3182 int ext4_change_inode_journal_flag(struct inode *inode, int val) 3183 { 3184 journal_t *journal; 3185 handle_t *handle; 3186 int err; 3187 3188 /* 3189 * We have to be very careful here: changing a data block's 3190 * journaling status dynamically is dangerous. If we write a 3191 * data block to the journal, change the status and then delete 3192 * that block, we risk forgetting to revoke the old log record 3193 * from the journal and so a subsequent replay can corrupt data. 3194 * So, first we make sure that the journal is empty and that 3195 * nobody is changing anything. 3196 */ 3197 3198 journal = EXT4_JOURNAL(inode); 3199 if (is_journal_aborted(journal) || IS_RDONLY(inode)) 3200 return -EROFS; 3201 3202 jbd2_journal_lock_updates(journal); 3203 jbd2_journal_flush(journal); 3204 3205 /* 3206 * OK, there are no updates running now, and all cached data is 3207 * synced to disk. We are now in a completely consistent state 3208 * which doesn't have anything in the journal, and we know that 3209 * no filesystem updates are running, so it is safe to modify 3210 * the inode's in-core data-journaling state flag now. 3211 */ 3212 3213 if (val) 3214 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 3215 else 3216 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 3217 ext4_set_aops(inode); 3218 3219 jbd2_journal_unlock_updates(journal); 3220 3221 /* Finally we can mark the inode as dirty. */ 3222 3223 handle = ext4_journal_start(inode, 1); 3224 if (IS_ERR(handle)) 3225 return PTR_ERR(handle); 3226 3227 err = ext4_mark_inode_dirty(handle, inode); 3228 handle->h_sync = 1; 3229 ext4_journal_stop(handle); 3230 ext4_std_error(inode->i_sb, err); 3231 3232 return err; 3233 } 3234