xref: /linux/fs/ext4/inode.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 				   struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 		struct inode *inode, struct page *page, loff_t from,
143 		loff_t length, int flags);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		(inode->i_sb->s_blocksize >> 9) : 0;
152 
153 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155 
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 				 int nblocks)
163 {
164 	int ret;
165 
166 	/*
167 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 	 * moment, get_block can be called only for blocks inside i_size since
169 	 * page cache has been already dropped and writes are blocked by
170 	 * i_mutex. So we can safely drop the i_data_sem here.
171 	 */
172 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	up_write(&EXT4_I(inode)->i_data_sem);
175 	ret = ext4_journal_restart(handle, nblocks);
176 	down_write(&EXT4_I(inode)->i_data_sem);
177 	ext4_discard_preallocations(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 	handle_t *handle;
188 	int err;
189 
190 	trace_ext4_evict_inode(inode);
191 
192 	ext4_ioend_wait(inode);
193 
194 	if (inode->i_nlink) {
195 		/*
196 		 * When journalling data dirty buffers are tracked only in the
197 		 * journal. So although mm thinks everything is clean and
198 		 * ready for reaping the inode might still have some pages to
199 		 * write in the running transaction or waiting to be
200 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 		 * (via truncate_inode_pages()) to discard these buffers can
202 		 * cause data loss. Also even if we did not discard these
203 		 * buffers, we would have no way to find them after the inode
204 		 * is reaped and thus user could see stale data if he tries to
205 		 * read them before the transaction is checkpointed. So be
206 		 * careful and force everything to disk here... We use
207 		 * ei->i_datasync_tid to store the newest transaction
208 		 * containing inode's data.
209 		 *
210 		 * Note that directories do not have this problem because they
211 		 * don't use page cache.
212 		 */
213 		if (ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_log_start_commit(journal, commit_tid);
219 			jbd2_log_wait_commit(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages(&inode->i_data, 0);
223 		goto no_delete;
224 	}
225 
226 	if (!is_bad_inode(inode))
227 		dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages(&inode->i_data, 0);
232 
233 	if (is_bad_inode(inode))
234 		goto no_delete;
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 		return ext4_ext_calc_metadata_amount(inode, lblock);
332 
333 	return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335 
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 					int used, int quota_claim)
342 {
343 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 	struct ext4_inode_info *ei = EXT4_I(inode);
345 
346 	spin_lock(&ei->i_block_reservation_lock);
347 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 	if (unlikely(used > ei->i_reserved_data_blocks)) {
349 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350 			 "with only %d reserved data blocks",
351 			 __func__, inode->i_ino, used,
352 			 ei->i_reserved_data_blocks);
353 		WARN_ON(1);
354 		used = ei->i_reserved_data_blocks;
355 	}
356 
357 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 			 "with only %d reserved metadata blocks\n", __func__,
360 			 inode->i_ino, ei->i_allocated_meta_blocks,
361 			 ei->i_reserved_meta_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 /*
487  * The ext4_map_blocks() function tries to look up the requested blocks,
488  * and returns if the blocks are already mapped.
489  *
490  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491  * and store the allocated blocks in the result buffer head and mark it
492  * mapped.
493  *
494  * If file type is extents based, it will call ext4_ext_map_blocks(),
495  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496  * based files
497  *
498  * On success, it returns the number of blocks being mapped or allocate.
499  * if create==0 and the blocks are pre-allocated and uninitialized block,
500  * the result buffer head is unmapped. If the create ==1, it will make sure
501  * the buffer head is mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, buffer head is unmapped
505  *
506  * It returns the error in case of allocation failure.
507  */
508 int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 		    struct ext4_map_blocks *map, int flags)
510 {
511 	int retval;
512 
513 	map->m_flags = 0;
514 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 		  (unsigned long) map->m_lblk);
517 	/*
518 	 * Try to see if we can get the block without requesting a new
519 	 * file system block.
520 	 */
521 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 		down_read((&EXT4_I(inode)->i_data_sem));
523 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 					     EXT4_GET_BLOCKS_KEEP_SIZE);
526 	} else {
527 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 					     EXT4_GET_BLOCKS_KEEP_SIZE);
529 	}
530 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531 		up_read((&EXT4_I(inode)->i_data_sem));
532 
533 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534 		int ret;
535 		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536 			/* delayed alloc may be allocated by fallocate and
537 			 * coverted to initialized by directIO.
538 			 * we need to handle delayed extent here.
539 			 */
540 			down_write((&EXT4_I(inode)->i_data_sem));
541 			goto delayed_mapped;
542 		}
543 		ret = check_block_validity(inode, map);
544 		if (ret != 0)
545 			return ret;
546 	}
547 
548 	/* If it is only a block(s) look up */
549 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550 		return retval;
551 
552 	/*
553 	 * Returns if the blocks have already allocated
554 	 *
555 	 * Note that if blocks have been preallocated
556 	 * ext4_ext_get_block() returns the create = 0
557 	 * with buffer head unmapped.
558 	 */
559 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560 		return retval;
561 
562 	/*
563 	 * When we call get_blocks without the create flag, the
564 	 * BH_Unwritten flag could have gotten set if the blocks
565 	 * requested were part of a uninitialized extent.  We need to
566 	 * clear this flag now that we are committed to convert all or
567 	 * part of the uninitialized extent to be an initialized
568 	 * extent.  This is because we need to avoid the combination
569 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 	 * set on the buffer_head.
571 	 */
572 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573 
574 	/*
575 	 * New blocks allocate and/or writing to uninitialized extent
576 	 * will possibly result in updating i_data, so we take
577 	 * the write lock of i_data_sem, and call get_blocks()
578 	 * with create == 1 flag.
579 	 */
580 	down_write((&EXT4_I(inode)->i_data_sem));
581 
582 	/*
583 	 * if the caller is from delayed allocation writeout path
584 	 * we have already reserved fs blocks for allocation
585 	 * let the underlying get_block() function know to
586 	 * avoid double accounting
587 	 */
588 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590 	/*
591 	 * We need to check for EXT4 here because migrate
592 	 * could have changed the inode type in between
593 	 */
594 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
596 	} else {
597 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
598 
599 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600 			/*
601 			 * We allocated new blocks which will result in
602 			 * i_data's format changing.  Force the migrate
603 			 * to fail by clearing migrate flags
604 			 */
605 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606 		}
607 
608 		/*
609 		 * Update reserved blocks/metadata blocks after successful
610 		 * block allocation which had been deferred till now. We don't
611 		 * support fallocate for non extent files. So we can update
612 		 * reserve space here.
613 		 */
614 		if ((retval > 0) &&
615 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616 			ext4_da_update_reserve_space(inode, retval, 1);
617 	}
618 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620 
621 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622 			int ret;
623 delayed_mapped:
624 			/* delayed allocation blocks has been allocated */
625 			ret = ext4_es_remove_extent(inode, map->m_lblk,
626 						    map->m_len);
627 			if (ret < 0)
628 				retval = ret;
629 		}
630 	}
631 
632 	up_write((&EXT4_I(inode)->i_data_sem));
633 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634 		int ret = check_block_validity(inode, map);
635 		if (ret != 0)
636 			return ret;
637 	}
638 	return retval;
639 }
640 
641 /* Maximum number of blocks we map for direct IO at once. */
642 #define DIO_MAX_BLOCKS 4096
643 
644 static int _ext4_get_block(struct inode *inode, sector_t iblock,
645 			   struct buffer_head *bh, int flags)
646 {
647 	handle_t *handle = ext4_journal_current_handle();
648 	struct ext4_map_blocks map;
649 	int ret = 0, started = 0;
650 	int dio_credits;
651 
652 	if (ext4_has_inline_data(inode))
653 		return -ERANGE;
654 
655 	map.m_lblk = iblock;
656 	map.m_len = bh->b_size >> inode->i_blkbits;
657 
658 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
659 		/* Direct IO write... */
660 		if (map.m_len > DIO_MAX_BLOCKS)
661 			map.m_len = DIO_MAX_BLOCKS;
662 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
663 		handle = ext4_journal_start(inode, dio_credits);
664 		if (IS_ERR(handle)) {
665 			ret = PTR_ERR(handle);
666 			return ret;
667 		}
668 		started = 1;
669 	}
670 
671 	ret = ext4_map_blocks(handle, inode, &map, flags);
672 	if (ret > 0) {
673 		map_bh(bh, inode->i_sb, map.m_pblk);
674 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
676 		ret = 0;
677 	}
678 	if (started)
679 		ext4_journal_stop(handle);
680 	return ret;
681 }
682 
683 int ext4_get_block(struct inode *inode, sector_t iblock,
684 		   struct buffer_head *bh, int create)
685 {
686 	return _ext4_get_block(inode, iblock, bh,
687 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
688 }
689 
690 /*
691  * `handle' can be NULL if create is zero
692  */
693 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
694 				ext4_lblk_t block, int create, int *errp)
695 {
696 	struct ext4_map_blocks map;
697 	struct buffer_head *bh;
698 	int fatal = 0, err;
699 
700 	J_ASSERT(handle != NULL || create == 0);
701 
702 	map.m_lblk = block;
703 	map.m_len = 1;
704 	err = ext4_map_blocks(handle, inode, &map,
705 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
706 
707 	/* ensure we send some value back into *errp */
708 	*errp = 0;
709 
710 	if (err < 0)
711 		*errp = err;
712 	if (err <= 0)
713 		return NULL;
714 
715 	bh = sb_getblk(inode->i_sb, map.m_pblk);
716 	if (!bh) {
717 		*errp = -EIO;
718 		return NULL;
719 	}
720 	if (map.m_flags & EXT4_MAP_NEW) {
721 		J_ASSERT(create != 0);
722 		J_ASSERT(handle != NULL);
723 
724 		/*
725 		 * Now that we do not always journal data, we should
726 		 * keep in mind whether this should always journal the
727 		 * new buffer as metadata.  For now, regular file
728 		 * writes use ext4_get_block instead, so it's not a
729 		 * problem.
730 		 */
731 		lock_buffer(bh);
732 		BUFFER_TRACE(bh, "call get_create_access");
733 		fatal = ext4_journal_get_create_access(handle, bh);
734 		if (!fatal && !buffer_uptodate(bh)) {
735 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 			set_buffer_uptodate(bh);
737 		}
738 		unlock_buffer(bh);
739 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 		err = ext4_handle_dirty_metadata(handle, inode, bh);
741 		if (!fatal)
742 			fatal = err;
743 	} else {
744 		BUFFER_TRACE(bh, "not a new buffer");
745 	}
746 	if (fatal) {
747 		*errp = fatal;
748 		brelse(bh);
749 		bh = NULL;
750 	}
751 	return bh;
752 }
753 
754 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
755 			       ext4_lblk_t block, int create, int *err)
756 {
757 	struct buffer_head *bh;
758 
759 	bh = ext4_getblk(handle, inode, block, create, err);
760 	if (!bh)
761 		return bh;
762 	if (buffer_uptodate(bh))
763 		return bh;
764 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765 	wait_on_buffer(bh);
766 	if (buffer_uptodate(bh))
767 		return bh;
768 	put_bh(bh);
769 	*err = -EIO;
770 	return NULL;
771 }
772 
773 int ext4_walk_page_buffers(handle_t *handle,
774 			   struct buffer_head *head,
775 			   unsigned from,
776 			   unsigned to,
777 			   int *partial,
778 			   int (*fn)(handle_t *handle,
779 				     struct buffer_head *bh))
780 {
781 	struct buffer_head *bh;
782 	unsigned block_start, block_end;
783 	unsigned blocksize = head->b_size;
784 	int err, ret = 0;
785 	struct buffer_head *next;
786 
787 	for (bh = head, block_start = 0;
788 	     ret == 0 && (bh != head || !block_start);
789 	     block_start = block_end, bh = next) {
790 		next = bh->b_this_page;
791 		block_end = block_start + blocksize;
792 		if (block_end <= from || block_start >= to) {
793 			if (partial && !buffer_uptodate(bh))
794 				*partial = 1;
795 			continue;
796 		}
797 		err = (*fn)(handle, bh);
798 		if (!ret)
799 			ret = err;
800 	}
801 	return ret;
802 }
803 
804 /*
805  * To preserve ordering, it is essential that the hole instantiation and
806  * the data write be encapsulated in a single transaction.  We cannot
807  * close off a transaction and start a new one between the ext4_get_block()
808  * and the commit_write().  So doing the jbd2_journal_start at the start of
809  * prepare_write() is the right place.
810  *
811  * Also, this function can nest inside ext4_writepage() ->
812  * block_write_full_page(). In that case, we *know* that ext4_writepage()
813  * has generated enough buffer credits to do the whole page.  So we won't
814  * block on the journal in that case, which is good, because the caller may
815  * be PF_MEMALLOC.
816  *
817  * By accident, ext4 can be reentered when a transaction is open via
818  * quota file writes.  If we were to commit the transaction while thus
819  * reentered, there can be a deadlock - we would be holding a quota
820  * lock, and the commit would never complete if another thread had a
821  * transaction open and was blocking on the quota lock - a ranking
822  * violation.
823  *
824  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825  * will _not_ run commit under these circumstances because handle->h_ref
826  * is elevated.  We'll still have enough credits for the tiny quotafile
827  * write.
828  */
829 int do_journal_get_write_access(handle_t *handle,
830 				struct buffer_head *bh)
831 {
832 	int dirty = buffer_dirty(bh);
833 	int ret;
834 
835 	if (!buffer_mapped(bh) || buffer_freed(bh))
836 		return 0;
837 	/*
838 	 * __block_write_begin() could have dirtied some buffers. Clean
839 	 * the dirty bit as jbd2_journal_get_write_access() could complain
840 	 * otherwise about fs integrity issues. Setting of the dirty bit
841 	 * by __block_write_begin() isn't a real problem here as we clear
842 	 * the bit before releasing a page lock and thus writeback cannot
843 	 * ever write the buffer.
844 	 */
845 	if (dirty)
846 		clear_buffer_dirty(bh);
847 	ret = ext4_journal_get_write_access(handle, bh);
848 	if (!ret && dirty)
849 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850 	return ret;
851 }
852 
853 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854 		   struct buffer_head *bh_result, int create);
855 static int ext4_write_begin(struct file *file, struct address_space *mapping,
856 			    loff_t pos, unsigned len, unsigned flags,
857 			    struct page **pagep, void **fsdata)
858 {
859 	struct inode *inode = mapping->host;
860 	int ret, needed_blocks;
861 	handle_t *handle;
862 	int retries = 0;
863 	struct page *page;
864 	pgoff_t index;
865 	unsigned from, to;
866 
867 	trace_ext4_write_begin(inode, pos, len, flags);
868 	/*
869 	 * Reserve one block more for addition to orphan list in case
870 	 * we allocate blocks but write fails for some reason
871 	 */
872 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
873 	index = pos >> PAGE_CACHE_SHIFT;
874 	from = pos & (PAGE_CACHE_SIZE - 1);
875 	to = from + len;
876 
877 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879 						    flags, pagep);
880 		if (ret < 0)
881 			goto out;
882 		if (ret == 1) {
883 			ret = 0;
884 			goto out;
885 		}
886 	}
887 
888 retry:
889 	handle = ext4_journal_start(inode, needed_blocks);
890 	if (IS_ERR(handle)) {
891 		ret = PTR_ERR(handle);
892 		goto out;
893 	}
894 
895 	/* We cannot recurse into the filesystem as the transaction is already
896 	 * started */
897 	flags |= AOP_FLAG_NOFS;
898 
899 	page = grab_cache_page_write_begin(mapping, index, flags);
900 	if (!page) {
901 		ext4_journal_stop(handle);
902 		ret = -ENOMEM;
903 		goto out;
904 	}
905 
906 	*pagep = page;
907 
908 	if (ext4_should_dioread_nolock(inode))
909 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
910 	else
911 		ret = __block_write_begin(page, pos, len, ext4_get_block);
912 
913 	if (!ret && ext4_should_journal_data(inode)) {
914 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
915 					     from, to, NULL,
916 					     do_journal_get_write_access);
917 	}
918 
919 	if (ret) {
920 		unlock_page(page);
921 		page_cache_release(page);
922 		/*
923 		 * __block_write_begin may have instantiated a few blocks
924 		 * outside i_size.  Trim these off again. Don't need
925 		 * i_size_read because we hold i_mutex.
926 		 *
927 		 * Add inode to orphan list in case we crash before
928 		 * truncate finishes
929 		 */
930 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
931 			ext4_orphan_add(handle, inode);
932 
933 		ext4_journal_stop(handle);
934 		if (pos + len > inode->i_size) {
935 			ext4_truncate_failed_write(inode);
936 			/*
937 			 * If truncate failed early the inode might
938 			 * still be on the orphan list; we need to
939 			 * make sure the inode is removed from the
940 			 * orphan list in that case.
941 			 */
942 			if (inode->i_nlink)
943 				ext4_orphan_del(NULL, inode);
944 		}
945 	}
946 
947 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
948 		goto retry;
949 out:
950 	return ret;
951 }
952 
953 /* For write_end() in data=journal mode */
954 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
955 {
956 	if (!buffer_mapped(bh) || buffer_freed(bh))
957 		return 0;
958 	set_buffer_uptodate(bh);
959 	return ext4_handle_dirty_metadata(handle, NULL, bh);
960 }
961 
962 static int ext4_generic_write_end(struct file *file,
963 				  struct address_space *mapping,
964 				  loff_t pos, unsigned len, unsigned copied,
965 				  struct page *page, void *fsdata)
966 {
967 	int i_size_changed = 0;
968 	struct inode *inode = mapping->host;
969 	handle_t *handle = ext4_journal_current_handle();
970 
971 	if (ext4_has_inline_data(inode))
972 		copied = ext4_write_inline_data_end(inode, pos, len,
973 						    copied, page);
974 	else
975 		copied = block_write_end(file, mapping, pos,
976 					 len, copied, page, fsdata);
977 
978 	/*
979 	 * No need to use i_size_read() here, the i_size
980 	 * cannot change under us because we hold i_mutex.
981 	 *
982 	 * But it's important to update i_size while still holding page lock:
983 	 * page writeout could otherwise come in and zero beyond i_size.
984 	 */
985 	if (pos + copied > inode->i_size) {
986 		i_size_write(inode, pos + copied);
987 		i_size_changed = 1;
988 	}
989 
990 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
991 		/* We need to mark inode dirty even if
992 		 * new_i_size is less that inode->i_size
993 		 * bu greater than i_disksize.(hint delalloc)
994 		 */
995 		ext4_update_i_disksize(inode, (pos + copied));
996 		i_size_changed = 1;
997 	}
998 	unlock_page(page);
999 	page_cache_release(page);
1000 
1001 	/*
1002 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 	 * makes the holding time of page lock longer. Second, it forces lock
1004 	 * ordering of page lock and transaction start for journaling
1005 	 * filesystems.
1006 	 */
1007 	if (i_size_changed)
1008 		ext4_mark_inode_dirty(handle, inode);
1009 
1010 	return copied;
1011 }
1012 
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_ordered_write_end(struct file *file,
1021 				  struct address_space *mapping,
1022 				  loff_t pos, unsigned len, unsigned copied,
1023 				  struct page *page, void *fsdata)
1024 {
1025 	handle_t *handle = ext4_journal_current_handle();
1026 	struct inode *inode = mapping->host;
1027 	int ret = 0, ret2;
1028 
1029 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1030 	ret = ext4_jbd2_file_inode(handle, inode);
1031 
1032 	if (ret == 0) {
1033 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1034 							page, fsdata);
1035 		copied = ret2;
1036 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1037 			/* if we have allocated more blocks and copied
1038 			 * less. We will have blocks allocated outside
1039 			 * inode->i_size. So truncate them
1040 			 */
1041 			ext4_orphan_add(handle, inode);
1042 		if (ret2 < 0)
1043 			ret = ret2;
1044 	} else {
1045 		unlock_page(page);
1046 		page_cache_release(page);
1047 	}
1048 
1049 	ret2 = ext4_journal_stop(handle);
1050 	if (!ret)
1051 		ret = ret2;
1052 
1053 	if (pos + len > inode->i_size) {
1054 		ext4_truncate_failed_write(inode);
1055 		/*
1056 		 * If truncate failed early the inode might still be
1057 		 * on the orphan list; we need to make sure the inode
1058 		 * is removed from the orphan list in that case.
1059 		 */
1060 		if (inode->i_nlink)
1061 			ext4_orphan_del(NULL, inode);
1062 	}
1063 
1064 
1065 	return ret ? ret : copied;
1066 }
1067 
1068 static int ext4_writeback_write_end(struct file *file,
1069 				    struct address_space *mapping,
1070 				    loff_t pos, unsigned len, unsigned copied,
1071 				    struct page *page, void *fsdata)
1072 {
1073 	handle_t *handle = ext4_journal_current_handle();
1074 	struct inode *inode = mapping->host;
1075 	int ret = 0, ret2;
1076 
1077 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1078 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1079 							page, fsdata);
1080 	copied = ret2;
1081 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082 		/* if we have allocated more blocks and copied
1083 		 * less. We will have blocks allocated outside
1084 		 * inode->i_size. So truncate them
1085 		 */
1086 		ext4_orphan_add(handle, inode);
1087 
1088 	if (ret2 < 0)
1089 		ret = ret2;
1090 
1091 	ret2 = ext4_journal_stop(handle);
1092 	if (!ret)
1093 		ret = ret2;
1094 
1095 	if (pos + len > inode->i_size) {
1096 		ext4_truncate_failed_write(inode);
1097 		/*
1098 		 * If truncate failed early the inode might still be
1099 		 * on the orphan list; we need to make sure the inode
1100 		 * is removed from the orphan list in that case.
1101 		 */
1102 		if (inode->i_nlink)
1103 			ext4_orphan_del(NULL, inode);
1104 	}
1105 
1106 	return ret ? ret : copied;
1107 }
1108 
1109 static int ext4_journalled_write_end(struct file *file,
1110 				     struct address_space *mapping,
1111 				     loff_t pos, unsigned len, unsigned copied,
1112 				     struct page *page, void *fsdata)
1113 {
1114 	handle_t *handle = ext4_journal_current_handle();
1115 	struct inode *inode = mapping->host;
1116 	int ret = 0, ret2;
1117 	int partial = 0;
1118 	unsigned from, to;
1119 	loff_t new_i_size;
1120 
1121 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1122 	from = pos & (PAGE_CACHE_SIZE - 1);
1123 	to = from + len;
1124 
1125 	BUG_ON(!ext4_handle_valid(handle));
1126 
1127 	if (ext4_has_inline_data(inode))
1128 		copied = ext4_write_inline_data_end(inode, pos, len,
1129 						    copied, page);
1130 	else {
1131 		if (copied < len) {
1132 			if (!PageUptodate(page))
1133 				copied = 0;
1134 			page_zero_new_buffers(page, from+copied, to);
1135 		}
1136 
1137 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1138 					     to, &partial, write_end_fn);
1139 		if (!partial)
1140 			SetPageUptodate(page);
1141 	}
1142 	new_i_size = pos + copied;
1143 	if (new_i_size > inode->i_size)
1144 		i_size_write(inode, pos+copied);
1145 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1146 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1147 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1148 		ext4_update_i_disksize(inode, new_i_size);
1149 		ret2 = ext4_mark_inode_dirty(handle, inode);
1150 		if (!ret)
1151 			ret = ret2;
1152 	}
1153 
1154 	unlock_page(page);
1155 	page_cache_release(page);
1156 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1157 		/* if we have allocated more blocks and copied
1158 		 * less. We will have blocks allocated outside
1159 		 * inode->i_size. So truncate them
1160 		 */
1161 		ext4_orphan_add(handle, inode);
1162 
1163 	ret2 = ext4_journal_stop(handle);
1164 	if (!ret)
1165 		ret = ret2;
1166 	if (pos + len > inode->i_size) {
1167 		ext4_truncate_failed_write(inode);
1168 		/*
1169 		 * If truncate failed early the inode might still be
1170 		 * on the orphan list; we need to make sure the inode
1171 		 * is removed from the orphan list in that case.
1172 		 */
1173 		if (inode->i_nlink)
1174 			ext4_orphan_del(NULL, inode);
1175 	}
1176 
1177 	return ret ? ret : copied;
1178 }
1179 
1180 /*
1181  * Reserve a single cluster located at lblock
1182  */
1183 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1184 {
1185 	int retries = 0;
1186 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1187 	struct ext4_inode_info *ei = EXT4_I(inode);
1188 	unsigned int md_needed;
1189 	int ret;
1190 	ext4_lblk_t save_last_lblock;
1191 	int save_len;
1192 
1193 	/*
1194 	 * We will charge metadata quota at writeout time; this saves
1195 	 * us from metadata over-estimation, though we may go over by
1196 	 * a small amount in the end.  Here we just reserve for data.
1197 	 */
1198 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1199 	if (ret)
1200 		return ret;
1201 
1202 	/*
1203 	 * recalculate the amount of metadata blocks to reserve
1204 	 * in order to allocate nrblocks
1205 	 * worse case is one extent per block
1206 	 */
1207 repeat:
1208 	spin_lock(&ei->i_block_reservation_lock);
1209 	/*
1210 	 * ext4_calc_metadata_amount() has side effects, which we have
1211 	 * to be prepared undo if we fail to claim space.
1212 	 */
1213 	save_len = ei->i_da_metadata_calc_len;
1214 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1215 	md_needed = EXT4_NUM_B2C(sbi,
1216 				 ext4_calc_metadata_amount(inode, lblock));
1217 	trace_ext4_da_reserve_space(inode, md_needed);
1218 
1219 	/*
1220 	 * We do still charge estimated metadata to the sb though;
1221 	 * we cannot afford to run out of free blocks.
1222 	 */
1223 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1224 		ei->i_da_metadata_calc_len = save_len;
1225 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1226 		spin_unlock(&ei->i_block_reservation_lock);
1227 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1228 			yield();
1229 			goto repeat;
1230 		}
1231 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1232 		return -ENOSPC;
1233 	}
1234 	ei->i_reserved_data_blocks++;
1235 	ei->i_reserved_meta_blocks += md_needed;
1236 	spin_unlock(&ei->i_block_reservation_lock);
1237 
1238 	return 0;       /* success */
1239 }
1240 
1241 static void ext4_da_release_space(struct inode *inode, int to_free)
1242 {
1243 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1244 	struct ext4_inode_info *ei = EXT4_I(inode);
1245 
1246 	if (!to_free)
1247 		return;		/* Nothing to release, exit */
1248 
1249 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1250 
1251 	trace_ext4_da_release_space(inode, to_free);
1252 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1253 		/*
1254 		 * if there aren't enough reserved blocks, then the
1255 		 * counter is messed up somewhere.  Since this
1256 		 * function is called from invalidate page, it's
1257 		 * harmless to return without any action.
1258 		 */
1259 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1260 			 "ino %lu, to_free %d with only %d reserved "
1261 			 "data blocks", inode->i_ino, to_free,
1262 			 ei->i_reserved_data_blocks);
1263 		WARN_ON(1);
1264 		to_free = ei->i_reserved_data_blocks;
1265 	}
1266 	ei->i_reserved_data_blocks -= to_free;
1267 
1268 	if (ei->i_reserved_data_blocks == 0) {
1269 		/*
1270 		 * We can release all of the reserved metadata blocks
1271 		 * only when we have written all of the delayed
1272 		 * allocation blocks.
1273 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1274 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1275 		 */
1276 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1277 				   ei->i_reserved_meta_blocks);
1278 		ei->i_reserved_meta_blocks = 0;
1279 		ei->i_da_metadata_calc_len = 0;
1280 	}
1281 
1282 	/* update fs dirty data blocks counter */
1283 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1284 
1285 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1286 
1287 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1288 }
1289 
1290 static void ext4_da_page_release_reservation(struct page *page,
1291 					     unsigned long offset)
1292 {
1293 	int to_release = 0;
1294 	struct buffer_head *head, *bh;
1295 	unsigned int curr_off = 0;
1296 	struct inode *inode = page->mapping->host;
1297 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1298 	int num_clusters;
1299 	ext4_fsblk_t lblk;
1300 
1301 	head = page_buffers(page);
1302 	bh = head;
1303 	do {
1304 		unsigned int next_off = curr_off + bh->b_size;
1305 
1306 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1307 			to_release++;
1308 			clear_buffer_delay(bh);
1309 		}
1310 		curr_off = next_off;
1311 	} while ((bh = bh->b_this_page) != head);
1312 
1313 	if (to_release) {
1314 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315 		ext4_es_remove_extent(inode, lblk, to_release);
1316 	}
1317 
1318 	/* If we have released all the blocks belonging to a cluster, then we
1319 	 * need to release the reserved space for that cluster. */
1320 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 	while (num_clusters > 0) {
1322 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1323 			((num_clusters - 1) << sbi->s_cluster_bits);
1324 		if (sbi->s_cluster_ratio == 1 ||
1325 		    !ext4_find_delalloc_cluster(inode, lblk))
1326 			ext4_da_release_space(inode, 1);
1327 
1328 		num_clusters--;
1329 	}
1330 }
1331 
1332 /*
1333  * Delayed allocation stuff
1334  */
1335 
1336 /*
1337  * mpage_da_submit_io - walks through extent of pages and try to write
1338  * them with writepage() call back
1339  *
1340  * @mpd->inode: inode
1341  * @mpd->first_page: first page of the extent
1342  * @mpd->next_page: page after the last page of the extent
1343  *
1344  * By the time mpage_da_submit_io() is called we expect all blocks
1345  * to be allocated. this may be wrong if allocation failed.
1346  *
1347  * As pages are already locked by write_cache_pages(), we can't use it
1348  */
1349 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1350 			      struct ext4_map_blocks *map)
1351 {
1352 	struct pagevec pvec;
1353 	unsigned long index, end;
1354 	int ret = 0, err, nr_pages, i;
1355 	struct inode *inode = mpd->inode;
1356 	struct address_space *mapping = inode->i_mapping;
1357 	loff_t size = i_size_read(inode);
1358 	unsigned int len, block_start;
1359 	struct buffer_head *bh, *page_bufs = NULL;
1360 	int journal_data = ext4_should_journal_data(inode);
1361 	sector_t pblock = 0, cur_logical = 0;
1362 	struct ext4_io_submit io_submit;
1363 
1364 	BUG_ON(mpd->next_page <= mpd->first_page);
1365 	memset(&io_submit, 0, sizeof(io_submit));
1366 	/*
1367 	 * We need to start from the first_page to the next_page - 1
1368 	 * to make sure we also write the mapped dirty buffer_heads.
1369 	 * If we look at mpd->b_blocknr we would only be looking
1370 	 * at the currently mapped buffer_heads.
1371 	 */
1372 	index = mpd->first_page;
1373 	end = mpd->next_page - 1;
1374 
1375 	pagevec_init(&pvec, 0);
1376 	while (index <= end) {
1377 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1378 		if (nr_pages == 0)
1379 			break;
1380 		for (i = 0; i < nr_pages; i++) {
1381 			int commit_write = 0, skip_page = 0;
1382 			struct page *page = pvec.pages[i];
1383 
1384 			index = page->index;
1385 			if (index > end)
1386 				break;
1387 
1388 			if (index == size >> PAGE_CACHE_SHIFT)
1389 				len = size & ~PAGE_CACHE_MASK;
1390 			else
1391 				len = PAGE_CACHE_SIZE;
1392 			if (map) {
1393 				cur_logical = index << (PAGE_CACHE_SHIFT -
1394 							inode->i_blkbits);
1395 				pblock = map->m_pblk + (cur_logical -
1396 							map->m_lblk);
1397 			}
1398 			index++;
1399 
1400 			BUG_ON(!PageLocked(page));
1401 			BUG_ON(PageWriteback(page));
1402 
1403 			/*
1404 			 * If the page does not have buffers (for
1405 			 * whatever reason), try to create them using
1406 			 * __block_write_begin.  If this fails,
1407 			 * skip the page and move on.
1408 			 */
1409 			if (!page_has_buffers(page)) {
1410 				if (__block_write_begin(page, 0, len,
1411 						noalloc_get_block_write)) {
1412 				skip_page:
1413 					unlock_page(page);
1414 					continue;
1415 				}
1416 				commit_write = 1;
1417 			}
1418 
1419 			bh = page_bufs = page_buffers(page);
1420 			block_start = 0;
1421 			do {
1422 				if (!bh)
1423 					goto skip_page;
1424 				if (map && (cur_logical >= map->m_lblk) &&
1425 				    (cur_logical <= (map->m_lblk +
1426 						     (map->m_len - 1)))) {
1427 					if (buffer_delay(bh)) {
1428 						clear_buffer_delay(bh);
1429 						bh->b_blocknr = pblock;
1430 					}
1431 					if (buffer_unwritten(bh) ||
1432 					    buffer_mapped(bh))
1433 						BUG_ON(bh->b_blocknr != pblock);
1434 					if (map->m_flags & EXT4_MAP_UNINIT)
1435 						set_buffer_uninit(bh);
1436 					clear_buffer_unwritten(bh);
1437 				}
1438 
1439 				/*
1440 				 * skip page if block allocation undone and
1441 				 * block is dirty
1442 				 */
1443 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1444 					skip_page = 1;
1445 				bh = bh->b_this_page;
1446 				block_start += bh->b_size;
1447 				cur_logical++;
1448 				pblock++;
1449 			} while (bh != page_bufs);
1450 
1451 			if (skip_page)
1452 				goto skip_page;
1453 
1454 			if (commit_write)
1455 				/* mark the buffer_heads as dirty & uptodate */
1456 				block_commit_write(page, 0, len);
1457 
1458 			clear_page_dirty_for_io(page);
1459 			/*
1460 			 * Delalloc doesn't support data journalling,
1461 			 * but eventually maybe we'll lift this
1462 			 * restriction.
1463 			 */
1464 			if (unlikely(journal_data && PageChecked(page)))
1465 				err = __ext4_journalled_writepage(page, len);
1466 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1467 				err = ext4_bio_write_page(&io_submit, page,
1468 							  len, mpd->wbc);
1469 			else if (buffer_uninit(page_bufs)) {
1470 				ext4_set_bh_endio(page_bufs, inode);
1471 				err = block_write_full_page_endio(page,
1472 					noalloc_get_block_write,
1473 					mpd->wbc, ext4_end_io_buffer_write);
1474 			} else
1475 				err = block_write_full_page(page,
1476 					noalloc_get_block_write, mpd->wbc);
1477 
1478 			if (!err)
1479 				mpd->pages_written++;
1480 			/*
1481 			 * In error case, we have to continue because
1482 			 * remaining pages are still locked
1483 			 */
1484 			if (ret == 0)
1485 				ret = err;
1486 		}
1487 		pagevec_release(&pvec);
1488 	}
1489 	ext4_io_submit(&io_submit);
1490 	return ret;
1491 }
1492 
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495 	int nr_pages, i;
1496 	pgoff_t index, end;
1497 	struct pagevec pvec;
1498 	struct inode *inode = mpd->inode;
1499 	struct address_space *mapping = inode->i_mapping;
1500 	ext4_lblk_t start, last;
1501 
1502 	index = mpd->first_page;
1503 	end   = mpd->next_page - 1;
1504 
1505 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507 	ext4_es_remove_extent(inode, start, last - start + 1);
1508 
1509 	pagevec_init(&pvec, 0);
1510 	while (index <= end) {
1511 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 		if (nr_pages == 0)
1513 			break;
1514 		for (i = 0; i < nr_pages; i++) {
1515 			struct page *page = pvec.pages[i];
1516 			if (page->index > end)
1517 				break;
1518 			BUG_ON(!PageLocked(page));
1519 			BUG_ON(PageWriteback(page));
1520 			block_invalidatepage(page, 0);
1521 			ClearPageUptodate(page);
1522 			unlock_page(page);
1523 		}
1524 		index = pvec.pages[nr_pages - 1]->index + 1;
1525 		pagevec_release(&pvec);
1526 	}
1527 	return;
1528 }
1529 
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533 	struct super_block *sb = inode->i_sb;
1534 
1535 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1537 			ext4_count_free_clusters(inode->i_sb)));
1538 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547 		 EXT4_I(inode)->i_reserved_data_blocks);
1548 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549 	       EXT4_I(inode)->i_reserved_meta_blocks);
1550 	return;
1551 }
1552 
1553 /*
1554  * mpage_da_map_and_submit - go through given space, map them
1555  *       if necessary, and then submit them for I/O
1556  *
1557  * @mpd - bh describing space
1558  *
1559  * The function skips space we know is already mapped to disk blocks.
1560  *
1561  */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564 	int err, blks, get_blocks_flags;
1565 	struct ext4_map_blocks map, *mapp = NULL;
1566 	sector_t next = mpd->b_blocknr;
1567 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569 	handle_t *handle = NULL;
1570 
1571 	/*
1572 	 * If the blocks are mapped already, or we couldn't accumulate
1573 	 * any blocks, then proceed immediately to the submission stage.
1574 	 */
1575 	if ((mpd->b_size == 0) ||
1576 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1577 	     !(mpd->b_state & (1 << BH_Delay)) &&
1578 	     !(mpd->b_state & (1 << BH_Unwritten))))
1579 		goto submit_io;
1580 
1581 	handle = ext4_journal_current_handle();
1582 	BUG_ON(!handle);
1583 
1584 	/*
1585 	 * Call ext4_map_blocks() to allocate any delayed allocation
1586 	 * blocks, or to convert an uninitialized extent to be
1587 	 * initialized (in the case where we have written into
1588 	 * one or more preallocated blocks).
1589 	 *
1590 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 	 * indicate that we are on the delayed allocation path.  This
1592 	 * affects functions in many different parts of the allocation
1593 	 * call path.  This flag exists primarily because we don't
1594 	 * want to change *many* call functions, so ext4_map_blocks()
1595 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596 	 * inode's allocation semaphore is taken.
1597 	 *
1598 	 * If the blocks in questions were delalloc blocks, set
1599 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 	 * variables are updated after the blocks have been allocated.
1601 	 */
1602 	map.m_lblk = next;
1603 	map.m_len = max_blocks;
1604 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605 	if (ext4_should_dioread_nolock(mpd->inode))
1606 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607 	if (mpd->b_state & (1 << BH_Delay))
1608 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609 
1610 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611 	if (blks < 0) {
1612 		struct super_block *sb = mpd->inode->i_sb;
1613 
1614 		err = blks;
1615 		/*
1616 		 * If get block returns EAGAIN or ENOSPC and there
1617 		 * appears to be free blocks we will just let
1618 		 * mpage_da_submit_io() unlock all of the pages.
1619 		 */
1620 		if (err == -EAGAIN)
1621 			goto submit_io;
1622 
1623 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624 			mpd->retval = err;
1625 			goto submit_io;
1626 		}
1627 
1628 		/*
1629 		 * get block failure will cause us to loop in
1630 		 * writepages, because a_ops->writepage won't be able
1631 		 * to make progress. The page will be redirtied by
1632 		 * writepage and writepages will again try to write
1633 		 * the same.
1634 		 */
1635 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636 			ext4_msg(sb, KERN_CRIT,
1637 				 "delayed block allocation failed for inode %lu "
1638 				 "at logical offset %llu with max blocks %zd "
1639 				 "with error %d", mpd->inode->i_ino,
1640 				 (unsigned long long) next,
1641 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1642 			ext4_msg(sb, KERN_CRIT,
1643 				"This should not happen!! Data will be lost\n");
1644 			if (err == -ENOSPC)
1645 				ext4_print_free_blocks(mpd->inode);
1646 		}
1647 		/* invalidate all the pages */
1648 		ext4_da_block_invalidatepages(mpd);
1649 
1650 		/* Mark this page range as having been completed */
1651 		mpd->io_done = 1;
1652 		return;
1653 	}
1654 	BUG_ON(blks == 0);
1655 
1656 	mapp = &map;
1657 	if (map.m_flags & EXT4_MAP_NEW) {
1658 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659 		int i;
1660 
1661 		for (i = 0; i < map.m_len; i++)
1662 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1663 	}
1664 
1665 	/*
1666 	 * Update on-disk size along with block allocation.
1667 	 */
1668 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669 	if (disksize > i_size_read(mpd->inode))
1670 		disksize = i_size_read(mpd->inode);
1671 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672 		ext4_update_i_disksize(mpd->inode, disksize);
1673 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1674 		if (err)
1675 			ext4_error(mpd->inode->i_sb,
1676 				   "Failed to mark inode %lu dirty",
1677 				   mpd->inode->i_ino);
1678 	}
1679 
1680 submit_io:
1681 	mpage_da_submit_io(mpd, mapp);
1682 	mpd->io_done = 1;
1683 }
1684 
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 		(1 << BH_Delay) | (1 << BH_Unwritten))
1687 
1688 /*
1689  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690  *
1691  * @mpd->lbh - extent of blocks
1692  * @logical - logical number of the block in the file
1693  * @bh - bh of the block (used to access block's state)
1694  *
1695  * the function is used to collect contig. blocks in same state
1696  */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1698 				   sector_t logical, size_t b_size,
1699 				   unsigned long b_state)
1700 {
1701 	sector_t next;
1702 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1703 
1704 	/*
1705 	 * XXX Don't go larger than mballoc is willing to allocate
1706 	 * This is a stopgap solution.  We eventually need to fold
1707 	 * mpage_da_submit_io() into this function and then call
1708 	 * ext4_map_blocks() multiple times in a loop
1709 	 */
1710 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1711 		goto flush_it;
1712 
1713 	/* check if thereserved journal credits might overflow */
1714 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1715 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716 			/*
1717 			 * With non-extent format we are limited by the journal
1718 			 * credit available.  Total credit needed to insert
1719 			 * nrblocks contiguous blocks is dependent on the
1720 			 * nrblocks.  So limit nrblocks.
1721 			 */
1722 			goto flush_it;
1723 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1724 				EXT4_MAX_TRANS_DATA) {
1725 			/*
1726 			 * Adding the new buffer_head would make it cross the
1727 			 * allowed limit for which we have journal credit
1728 			 * reserved. So limit the new bh->b_size
1729 			 */
1730 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1731 						mpd->inode->i_blkbits;
1732 			/* we will do mpage_da_submit_io in the next loop */
1733 		}
1734 	}
1735 	/*
1736 	 * First block in the extent
1737 	 */
1738 	if (mpd->b_size == 0) {
1739 		mpd->b_blocknr = logical;
1740 		mpd->b_size = b_size;
1741 		mpd->b_state = b_state & BH_FLAGS;
1742 		return;
1743 	}
1744 
1745 	next = mpd->b_blocknr + nrblocks;
1746 	/*
1747 	 * Can we merge the block to our big extent?
1748 	 */
1749 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1750 		mpd->b_size += b_size;
1751 		return;
1752 	}
1753 
1754 flush_it:
1755 	/*
1756 	 * We couldn't merge the block to our extent, so we
1757 	 * need to flush current  extent and start new one
1758 	 */
1759 	mpage_da_map_and_submit(mpd);
1760 	return;
1761 }
1762 
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767 
1768 /*
1769  * This function is grabs code from the very beginning of
1770  * ext4_map_blocks, but assumes that the caller is from delayed write
1771  * time. This function looks up the requested blocks and sets the
1772  * buffer delay bit under the protection of i_data_sem.
1773  */
1774 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1775 			      struct ext4_map_blocks *map,
1776 			      struct buffer_head *bh)
1777 {
1778 	int retval;
1779 	sector_t invalid_block = ~((sector_t) 0xffff);
1780 
1781 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1782 		invalid_block = ~0;
1783 
1784 	map->m_flags = 0;
1785 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786 		  "logical block %lu\n", inode->i_ino, map->m_len,
1787 		  (unsigned long) map->m_lblk);
1788 	/*
1789 	 * Try to see if we can get the block without requesting a new
1790 	 * file system block.
1791 	 */
1792 	down_read((&EXT4_I(inode)->i_data_sem));
1793 	if (ext4_has_inline_data(inode)) {
1794 		/*
1795 		 * We will soon create blocks for this page, and let
1796 		 * us pretend as if the blocks aren't allocated yet.
1797 		 * In case of clusters, we have to handle the work
1798 		 * of mapping from cluster so that the reserved space
1799 		 * is calculated properly.
1800 		 */
1801 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1802 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1803 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1804 		retval = 0;
1805 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1806 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1807 	else
1808 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1809 
1810 	if (retval == 0) {
1811 		/*
1812 		 * XXX: __block_prepare_write() unmaps passed block,
1813 		 * is it OK?
1814 		 */
1815 		/* If the block was allocated from previously allocated cluster,
1816 		 * then we dont need to reserve it again. */
1817 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1818 			retval = ext4_da_reserve_space(inode, iblock);
1819 			if (retval)
1820 				/* not enough space to reserve */
1821 				goto out_unlock;
1822 		}
1823 
1824 		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1825 		if (retval)
1826 			goto out_unlock;
1827 
1828 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1829 		 * and it should not appear on the bh->b_state.
1830 		 */
1831 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1832 
1833 		map_bh(bh, inode->i_sb, invalid_block);
1834 		set_buffer_new(bh);
1835 		set_buffer_delay(bh);
1836 	}
1837 
1838 out_unlock:
1839 	up_read((&EXT4_I(inode)->i_data_sem));
1840 
1841 	return retval;
1842 }
1843 
1844 /*
1845  * This is a special get_blocks_t callback which is used by
1846  * ext4_da_write_begin().  It will either return mapped block or
1847  * reserve space for a single block.
1848  *
1849  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850  * We also have b_blocknr = -1 and b_bdev initialized properly
1851  *
1852  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854  * initialized properly.
1855  */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 			   struct buffer_head *bh, int create)
1858 {
1859 	struct ext4_map_blocks map;
1860 	int ret = 0;
1861 
1862 	BUG_ON(create == 0);
1863 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864 
1865 	map.m_lblk = iblock;
1866 	map.m_len = 1;
1867 
1868 	/*
1869 	 * first, we need to know whether the block is allocated already
1870 	 * preallocated blocks are unmapped but should treated
1871 	 * the same as allocated blocks.
1872 	 */
1873 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874 	if (ret <= 0)
1875 		return ret;
1876 
1877 	map_bh(bh, inode->i_sb, map.m_pblk);
1878 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1879 
1880 	if (buffer_unwritten(bh)) {
1881 		/* A delayed write to unwritten bh should be marked
1882 		 * new and mapped.  Mapped ensures that we don't do
1883 		 * get_block multiple times when we write to the same
1884 		 * offset and new ensures that we do proper zero out
1885 		 * for partial write.
1886 		 */
1887 		set_buffer_new(bh);
1888 		set_buffer_mapped(bh);
1889 	}
1890 	return 0;
1891 }
1892 
1893 /*
1894  * This function is used as a standard get_block_t calback function
1895  * when there is no desire to allocate any blocks.  It is used as a
1896  * callback function for block_write_begin() and block_write_full_page().
1897  * These functions should only try to map a single block at a time.
1898  *
1899  * Since this function doesn't do block allocations even if the caller
1900  * requests it by passing in create=1, it is critically important that
1901  * any caller checks to make sure that any buffer heads are returned
1902  * by this function are either all already mapped or marked for
1903  * delayed allocation before calling  block_write_full_page().  Otherwise,
1904  * b_blocknr could be left unitialized, and the page write functions will
1905  * be taken by surprise.
1906  */
1907 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1908 				   struct buffer_head *bh_result, int create)
1909 {
1910 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1911 	return _ext4_get_block(inode, iblock, bh_result, 0);
1912 }
1913 
1914 static int bget_one(handle_t *handle, struct buffer_head *bh)
1915 {
1916 	get_bh(bh);
1917 	return 0;
1918 }
1919 
1920 static int bput_one(handle_t *handle, struct buffer_head *bh)
1921 {
1922 	put_bh(bh);
1923 	return 0;
1924 }
1925 
1926 static int __ext4_journalled_writepage(struct page *page,
1927 				       unsigned int len)
1928 {
1929 	struct address_space *mapping = page->mapping;
1930 	struct inode *inode = mapping->host;
1931 	struct buffer_head *page_bufs = NULL;
1932 	handle_t *handle = NULL;
1933 	int ret = 0, err = 0;
1934 	int inline_data = ext4_has_inline_data(inode);
1935 	struct buffer_head *inode_bh = NULL;
1936 
1937 	ClearPageChecked(page);
1938 
1939 	if (inline_data) {
1940 		BUG_ON(page->index != 0);
1941 		BUG_ON(len > ext4_get_max_inline_size(inode));
1942 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1943 		if (inode_bh == NULL)
1944 			goto out;
1945 	} else {
1946 		page_bufs = page_buffers(page);
1947 		if (!page_bufs) {
1948 			BUG();
1949 			goto out;
1950 		}
1951 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1952 				       NULL, bget_one);
1953 	}
1954 	/* As soon as we unlock the page, it can go away, but we have
1955 	 * references to buffers so we are safe */
1956 	unlock_page(page);
1957 
1958 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1959 	if (IS_ERR(handle)) {
1960 		ret = PTR_ERR(handle);
1961 		goto out;
1962 	}
1963 
1964 	BUG_ON(!ext4_handle_valid(handle));
1965 
1966 	if (inline_data) {
1967 		ret = ext4_journal_get_write_access(handle, inode_bh);
1968 
1969 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1970 
1971 	} else {
1972 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1973 					     do_journal_get_write_access);
1974 
1975 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1976 					     write_end_fn);
1977 	}
1978 	if (ret == 0)
1979 		ret = err;
1980 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1981 	err = ext4_journal_stop(handle);
1982 	if (!ret)
1983 		ret = err;
1984 
1985 	if (!ext4_has_inline_data(inode))
1986 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1987 				       NULL, bput_one);
1988 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1989 out:
1990 	brelse(inode_bh);
1991 	return ret;
1992 }
1993 
1994 /*
1995  * Note that we don't need to start a transaction unless we're journaling data
1996  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1997  * need to file the inode to the transaction's list in ordered mode because if
1998  * we are writing back data added by write(), the inode is already there and if
1999  * we are writing back data modified via mmap(), no one guarantees in which
2000  * transaction the data will hit the disk. In case we are journaling data, we
2001  * cannot start transaction directly because transaction start ranks above page
2002  * lock so we have to do some magic.
2003  *
2004  * This function can get called via...
2005  *   - ext4_da_writepages after taking page lock (have journal handle)
2006  *   - journal_submit_inode_data_buffers (no journal handle)
2007  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2008  *   - grab_page_cache when doing write_begin (have journal handle)
2009  *
2010  * We don't do any block allocation in this function. If we have page with
2011  * multiple blocks we need to write those buffer_heads that are mapped. This
2012  * is important for mmaped based write. So if we do with blocksize 1K
2013  * truncate(f, 1024);
2014  * a = mmap(f, 0, 4096);
2015  * a[0] = 'a';
2016  * truncate(f, 4096);
2017  * we have in the page first buffer_head mapped via page_mkwrite call back
2018  * but other buffer_heads would be unmapped but dirty (dirty done via the
2019  * do_wp_page). So writepage should write the first block. If we modify
2020  * the mmap area beyond 1024 we will again get a page_fault and the
2021  * page_mkwrite callback will do the block allocation and mark the
2022  * buffer_heads mapped.
2023  *
2024  * We redirty the page if we have any buffer_heads that is either delay or
2025  * unwritten in the page.
2026  *
2027  * We can get recursively called as show below.
2028  *
2029  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2030  *		ext4_writepage()
2031  *
2032  * But since we don't do any block allocation we should not deadlock.
2033  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2034  */
2035 static int ext4_writepage(struct page *page,
2036 			  struct writeback_control *wbc)
2037 {
2038 	int ret = 0, commit_write = 0;
2039 	loff_t size;
2040 	unsigned int len;
2041 	struct buffer_head *page_bufs = NULL;
2042 	struct inode *inode = page->mapping->host;
2043 
2044 	trace_ext4_writepage(page);
2045 	size = i_size_read(inode);
2046 	if (page->index == size >> PAGE_CACHE_SHIFT)
2047 		len = size & ~PAGE_CACHE_MASK;
2048 	else
2049 		len = PAGE_CACHE_SIZE;
2050 
2051 	/*
2052 	 * If the page does not have buffers (for whatever reason),
2053 	 * try to create them using __block_write_begin.  If this
2054 	 * fails, redirty the page and move on.
2055 	 */
2056 	if (!page_has_buffers(page)) {
2057 		if (__block_write_begin(page, 0, len,
2058 					noalloc_get_block_write)) {
2059 		redirty_page:
2060 			redirty_page_for_writepage(wbc, page);
2061 			unlock_page(page);
2062 			return 0;
2063 		}
2064 		commit_write = 1;
2065 	}
2066 	page_bufs = page_buffers(page);
2067 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 				   ext4_bh_delay_or_unwritten)) {
2069 		/*
2070 		 * We don't want to do block allocation, so redirty
2071 		 * the page and return.  We may reach here when we do
2072 		 * a journal commit via journal_submit_inode_data_buffers.
2073 		 * We can also reach here via shrink_page_list but it
2074 		 * should never be for direct reclaim so warn if that
2075 		 * happens
2076 		 */
2077 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2078 								PF_MEMALLOC);
2079 		goto redirty_page;
2080 	}
2081 	if (commit_write)
2082 		/* now mark the buffer_heads as dirty and uptodate */
2083 		block_commit_write(page, 0, len);
2084 
2085 	if (PageChecked(page) && ext4_should_journal_data(inode))
2086 		/*
2087 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2088 		 * doesn't seem much point in redirtying the page here.
2089 		 */
2090 		return __ext4_journalled_writepage(page, len);
2091 
2092 	if (buffer_uninit(page_bufs)) {
2093 		ext4_set_bh_endio(page_bufs, inode);
2094 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2095 					    wbc, ext4_end_io_buffer_write);
2096 	} else
2097 		ret = block_write_full_page(page, noalloc_get_block_write,
2098 					    wbc);
2099 
2100 	return ret;
2101 }
2102 
2103 /*
2104  * This is called via ext4_da_writepages() to
2105  * calculate the total number of credits to reserve to fit
2106  * a single extent allocation into a single transaction,
2107  * ext4_da_writpeages() will loop calling this before
2108  * the block allocation.
2109  */
2110 
2111 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2112 {
2113 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2114 
2115 	/*
2116 	 * With non-extent format the journal credit needed to
2117 	 * insert nrblocks contiguous block is dependent on
2118 	 * number of contiguous block. So we will limit
2119 	 * number of contiguous block to a sane value
2120 	 */
2121 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2122 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2123 		max_blocks = EXT4_MAX_TRANS_DATA;
2124 
2125 	return ext4_chunk_trans_blocks(inode, max_blocks);
2126 }
2127 
2128 /*
2129  * write_cache_pages_da - walk the list of dirty pages of the given
2130  * address space and accumulate pages that need writing, and call
2131  * mpage_da_map_and_submit to map a single contiguous memory region
2132  * and then write them.
2133  */
2134 static int write_cache_pages_da(handle_t *handle,
2135 				struct address_space *mapping,
2136 				struct writeback_control *wbc,
2137 				struct mpage_da_data *mpd,
2138 				pgoff_t *done_index)
2139 {
2140 	struct buffer_head	*bh, *head;
2141 	struct inode		*inode = mapping->host;
2142 	struct pagevec		pvec;
2143 	unsigned int		nr_pages;
2144 	sector_t		logical;
2145 	pgoff_t			index, end;
2146 	long			nr_to_write = wbc->nr_to_write;
2147 	int			i, tag, ret = 0;
2148 
2149 	memset(mpd, 0, sizeof(struct mpage_da_data));
2150 	mpd->wbc = wbc;
2151 	mpd->inode = inode;
2152 	pagevec_init(&pvec, 0);
2153 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2154 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2155 
2156 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2157 		tag = PAGECACHE_TAG_TOWRITE;
2158 	else
2159 		tag = PAGECACHE_TAG_DIRTY;
2160 
2161 	*done_index = index;
2162 	while (index <= end) {
2163 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2164 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2165 		if (nr_pages == 0)
2166 			return 0;
2167 
2168 		for (i = 0; i < nr_pages; i++) {
2169 			struct page *page = pvec.pages[i];
2170 
2171 			/*
2172 			 * At this point, the page may be truncated or
2173 			 * invalidated (changing page->mapping to NULL), or
2174 			 * even swizzled back from swapper_space to tmpfs file
2175 			 * mapping. However, page->index will not change
2176 			 * because we have a reference on the page.
2177 			 */
2178 			if (page->index > end)
2179 				goto out;
2180 
2181 			*done_index = page->index + 1;
2182 
2183 			/*
2184 			 * If we can't merge this page, and we have
2185 			 * accumulated an contiguous region, write it
2186 			 */
2187 			if ((mpd->next_page != page->index) &&
2188 			    (mpd->next_page != mpd->first_page)) {
2189 				mpage_da_map_and_submit(mpd);
2190 				goto ret_extent_tail;
2191 			}
2192 
2193 			lock_page(page);
2194 
2195 			/*
2196 			 * If the page is no longer dirty, or its
2197 			 * mapping no longer corresponds to inode we
2198 			 * are writing (which means it has been
2199 			 * truncated or invalidated), or the page is
2200 			 * already under writeback and we are not
2201 			 * doing a data integrity writeback, skip the page
2202 			 */
2203 			if (!PageDirty(page) ||
2204 			    (PageWriteback(page) &&
2205 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2206 			    unlikely(page->mapping != mapping)) {
2207 				unlock_page(page);
2208 				continue;
2209 			}
2210 
2211 			wait_on_page_writeback(page);
2212 			BUG_ON(PageWriteback(page));
2213 
2214 			/*
2215 			 * If we have inline data and arrive here, it means that
2216 			 * we will soon create the block for the 1st page, so
2217 			 * we'd better clear the inline data here.
2218 			 */
2219 			if (ext4_has_inline_data(inode)) {
2220 				BUG_ON(ext4_test_inode_state(inode,
2221 						EXT4_STATE_MAY_INLINE_DATA));
2222 				ext4_destroy_inline_data(handle, inode);
2223 			}
2224 
2225 			if (mpd->next_page != page->index)
2226 				mpd->first_page = page->index;
2227 			mpd->next_page = page->index + 1;
2228 			logical = (sector_t) page->index <<
2229 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2230 
2231 			if (!page_has_buffers(page)) {
2232 				mpage_add_bh_to_extent(mpd, logical,
2233 						       PAGE_CACHE_SIZE,
2234 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2235 				if (mpd->io_done)
2236 					goto ret_extent_tail;
2237 			} else {
2238 				/*
2239 				 * Page with regular buffer heads,
2240 				 * just add all dirty ones
2241 				 */
2242 				head = page_buffers(page);
2243 				bh = head;
2244 				do {
2245 					BUG_ON(buffer_locked(bh));
2246 					/*
2247 					 * We need to try to allocate
2248 					 * unmapped blocks in the same page.
2249 					 * Otherwise we won't make progress
2250 					 * with the page in ext4_writepage
2251 					 */
2252 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2253 						mpage_add_bh_to_extent(mpd, logical,
2254 								       bh->b_size,
2255 								       bh->b_state);
2256 						if (mpd->io_done)
2257 							goto ret_extent_tail;
2258 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2259 						/*
2260 						 * mapped dirty buffer. We need
2261 						 * to update the b_state
2262 						 * because we look at b_state
2263 						 * in mpage_da_map_blocks.  We
2264 						 * don't update b_size because
2265 						 * if we find an unmapped
2266 						 * buffer_head later we need to
2267 						 * use the b_state flag of that
2268 						 * buffer_head.
2269 						 */
2270 						if (mpd->b_size == 0)
2271 							mpd->b_state = bh->b_state & BH_FLAGS;
2272 					}
2273 					logical++;
2274 				} while ((bh = bh->b_this_page) != head);
2275 			}
2276 
2277 			if (nr_to_write > 0) {
2278 				nr_to_write--;
2279 				if (nr_to_write == 0 &&
2280 				    wbc->sync_mode == WB_SYNC_NONE)
2281 					/*
2282 					 * We stop writing back only if we are
2283 					 * not doing integrity sync. In case of
2284 					 * integrity sync we have to keep going
2285 					 * because someone may be concurrently
2286 					 * dirtying pages, and we might have
2287 					 * synced a lot of newly appeared dirty
2288 					 * pages, but have not synced all of the
2289 					 * old dirty pages.
2290 					 */
2291 					goto out;
2292 			}
2293 		}
2294 		pagevec_release(&pvec);
2295 		cond_resched();
2296 	}
2297 	return 0;
2298 ret_extent_tail:
2299 	ret = MPAGE_DA_EXTENT_TAIL;
2300 out:
2301 	pagevec_release(&pvec);
2302 	cond_resched();
2303 	return ret;
2304 }
2305 
2306 
2307 static int ext4_da_writepages(struct address_space *mapping,
2308 			      struct writeback_control *wbc)
2309 {
2310 	pgoff_t	index;
2311 	int range_whole = 0;
2312 	handle_t *handle = NULL;
2313 	struct mpage_da_data mpd;
2314 	struct inode *inode = mapping->host;
2315 	int pages_written = 0;
2316 	unsigned int max_pages;
2317 	int range_cyclic, cycled = 1, io_done = 0;
2318 	int needed_blocks, ret = 0;
2319 	long desired_nr_to_write, nr_to_writebump = 0;
2320 	loff_t range_start = wbc->range_start;
2321 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2322 	pgoff_t done_index = 0;
2323 	pgoff_t end;
2324 	struct blk_plug plug;
2325 
2326 	trace_ext4_da_writepages(inode, wbc);
2327 
2328 	/*
2329 	 * No pages to write? This is mainly a kludge to avoid starting
2330 	 * a transaction for special inodes like journal inode on last iput()
2331 	 * because that could violate lock ordering on umount
2332 	 */
2333 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2334 		return 0;
2335 
2336 	/*
2337 	 * If the filesystem has aborted, it is read-only, so return
2338 	 * right away instead of dumping stack traces later on that
2339 	 * will obscure the real source of the problem.  We test
2340 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2341 	 * the latter could be true if the filesystem is mounted
2342 	 * read-only, and in that case, ext4_da_writepages should
2343 	 * *never* be called, so if that ever happens, we would want
2344 	 * the stack trace.
2345 	 */
2346 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2347 		return -EROFS;
2348 
2349 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 		range_whole = 1;
2351 
2352 	range_cyclic = wbc->range_cyclic;
2353 	if (wbc->range_cyclic) {
2354 		index = mapping->writeback_index;
2355 		if (index)
2356 			cycled = 0;
2357 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2358 		wbc->range_end  = LLONG_MAX;
2359 		wbc->range_cyclic = 0;
2360 		end = -1;
2361 	} else {
2362 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2363 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2364 	}
2365 
2366 	/*
2367 	 * This works around two forms of stupidity.  The first is in
2368 	 * the writeback code, which caps the maximum number of pages
2369 	 * written to be 1024 pages.  This is wrong on multiple
2370 	 * levels; different architectues have a different page size,
2371 	 * which changes the maximum amount of data which gets
2372 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2373 	 * forces this value to be 16 megabytes by multiplying
2374 	 * nr_to_write parameter by four, and then relies on its
2375 	 * allocator to allocate larger extents to make them
2376 	 * contiguous.  Unfortunately this brings us to the second
2377 	 * stupidity, which is that ext4's mballoc code only allocates
2378 	 * at most 2048 blocks.  So we force contiguous writes up to
2379 	 * the number of dirty blocks in the inode, or
2380 	 * sbi->max_writeback_mb_bump whichever is smaller.
2381 	 */
2382 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2383 	if (!range_cyclic && range_whole) {
2384 		if (wbc->nr_to_write == LONG_MAX)
2385 			desired_nr_to_write = wbc->nr_to_write;
2386 		else
2387 			desired_nr_to_write = wbc->nr_to_write * 8;
2388 	} else
2389 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2390 							   max_pages);
2391 	if (desired_nr_to_write > max_pages)
2392 		desired_nr_to_write = max_pages;
2393 
2394 	if (wbc->nr_to_write < desired_nr_to_write) {
2395 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2396 		wbc->nr_to_write = desired_nr_to_write;
2397 	}
2398 
2399 retry:
2400 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2401 		tag_pages_for_writeback(mapping, index, end);
2402 
2403 	blk_start_plug(&plug);
2404 	while (!ret && wbc->nr_to_write > 0) {
2405 
2406 		/*
2407 		 * we  insert one extent at a time. So we need
2408 		 * credit needed for single extent allocation.
2409 		 * journalled mode is currently not supported
2410 		 * by delalloc
2411 		 */
2412 		BUG_ON(ext4_should_journal_data(inode));
2413 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2414 
2415 		/* start a new transaction*/
2416 		handle = ext4_journal_start(inode, needed_blocks);
2417 		if (IS_ERR(handle)) {
2418 			ret = PTR_ERR(handle);
2419 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420 			       "%ld pages, ino %lu; err %d", __func__,
2421 				wbc->nr_to_write, inode->i_ino, ret);
2422 			blk_finish_plug(&plug);
2423 			goto out_writepages;
2424 		}
2425 
2426 		/*
2427 		 * Now call write_cache_pages_da() to find the next
2428 		 * contiguous region of logical blocks that need
2429 		 * blocks to be allocated by ext4 and submit them.
2430 		 */
2431 		ret = write_cache_pages_da(handle, mapping,
2432 					   wbc, &mpd, &done_index);
2433 		/*
2434 		 * If we have a contiguous extent of pages and we
2435 		 * haven't done the I/O yet, map the blocks and submit
2436 		 * them for I/O.
2437 		 */
2438 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439 			mpage_da_map_and_submit(&mpd);
2440 			ret = MPAGE_DA_EXTENT_TAIL;
2441 		}
2442 		trace_ext4_da_write_pages(inode, &mpd);
2443 		wbc->nr_to_write -= mpd.pages_written;
2444 
2445 		ext4_journal_stop(handle);
2446 
2447 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448 			/* commit the transaction which would
2449 			 * free blocks released in the transaction
2450 			 * and try again
2451 			 */
2452 			jbd2_journal_force_commit_nested(sbi->s_journal);
2453 			ret = 0;
2454 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455 			/*
2456 			 * Got one extent now try with rest of the pages.
2457 			 * If mpd.retval is set -EIO, journal is aborted.
2458 			 * So we don't need to write any more.
2459 			 */
2460 			pages_written += mpd.pages_written;
2461 			ret = mpd.retval;
2462 			io_done = 1;
2463 		} else if (wbc->nr_to_write)
2464 			/*
2465 			 * There is no more writeout needed
2466 			 * or we requested for a noblocking writeout
2467 			 * and we found the device congested
2468 			 */
2469 			break;
2470 	}
2471 	blk_finish_plug(&plug);
2472 	if (!io_done && !cycled) {
2473 		cycled = 1;
2474 		index = 0;
2475 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2476 		wbc->range_end  = mapping->writeback_index - 1;
2477 		goto retry;
2478 	}
2479 
2480 	/* Update index */
2481 	wbc->range_cyclic = range_cyclic;
2482 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483 		/*
2484 		 * set the writeback_index so that range_cyclic
2485 		 * mode will write it back later
2486 		 */
2487 		mapping->writeback_index = done_index;
2488 
2489 out_writepages:
2490 	wbc->nr_to_write -= nr_to_writebump;
2491 	wbc->range_start = range_start;
2492 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493 	return ret;
2494 }
2495 
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498 	s64 free_blocks, dirty_blocks;
2499 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2500 
2501 	/*
2502 	 * switch to non delalloc mode if we are running low
2503 	 * on free block. The free block accounting via percpu
2504 	 * counters can get slightly wrong with percpu_counter_batch getting
2505 	 * accumulated on each CPU without updating global counters
2506 	 * Delalloc need an accurate free block accounting. So switch
2507 	 * to non delalloc when we are near to error range.
2508 	 */
2509 	free_blocks  = EXT4_C2B(sbi,
2510 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512 	/*
2513 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2514 	 */
2515 	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2516 	    !writeback_in_progress(sb->s_bdi) &&
2517 	    down_read_trylock(&sb->s_umount)) {
2518 		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2519 		up_read(&sb->s_umount);
2520 	}
2521 
2522 	if (2 * free_blocks < 3 * dirty_blocks ||
2523 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2524 		/*
2525 		 * free block count is less than 150% of dirty blocks
2526 		 * or free blocks is less than watermark
2527 		 */
2528 		return 1;
2529 	}
2530 	return 0;
2531 }
2532 
2533 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2534 			       loff_t pos, unsigned len, unsigned flags,
2535 			       struct page **pagep, void **fsdata)
2536 {
2537 	int ret, retries = 0;
2538 	struct page *page;
2539 	pgoff_t index;
2540 	struct inode *inode = mapping->host;
2541 	handle_t *handle;
2542 
2543 	index = pos >> PAGE_CACHE_SHIFT;
2544 
2545 	if (ext4_nonda_switch(inode->i_sb)) {
2546 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2547 		return ext4_write_begin(file, mapping, pos,
2548 					len, flags, pagep, fsdata);
2549 	}
2550 	*fsdata = (void *)0;
2551 	trace_ext4_da_write_begin(inode, pos, len, flags);
2552 
2553 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2554 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2555 						      pos, len, flags,
2556 						      pagep, fsdata);
2557 		if (ret < 0)
2558 			goto out;
2559 		if (ret == 1) {
2560 			ret = 0;
2561 			goto out;
2562 		}
2563 	}
2564 
2565 retry:
2566 	/*
2567 	 * With delayed allocation, we don't log the i_disksize update
2568 	 * if there is delayed block allocation. But we still need
2569 	 * to journalling the i_disksize update if writes to the end
2570 	 * of file which has an already mapped buffer.
2571 	 */
2572 	handle = ext4_journal_start(inode, 1);
2573 	if (IS_ERR(handle)) {
2574 		ret = PTR_ERR(handle);
2575 		goto out;
2576 	}
2577 	/* We cannot recurse into the filesystem as the transaction is already
2578 	 * started */
2579 	flags |= AOP_FLAG_NOFS;
2580 
2581 	page = grab_cache_page_write_begin(mapping, index, flags);
2582 	if (!page) {
2583 		ext4_journal_stop(handle);
2584 		ret = -ENOMEM;
2585 		goto out;
2586 	}
2587 	*pagep = page;
2588 
2589 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2590 	if (ret < 0) {
2591 		unlock_page(page);
2592 		ext4_journal_stop(handle);
2593 		page_cache_release(page);
2594 		/*
2595 		 * block_write_begin may have instantiated a few blocks
2596 		 * outside i_size.  Trim these off again. Don't need
2597 		 * i_size_read because we hold i_mutex.
2598 		 */
2599 		if (pos + len > inode->i_size)
2600 			ext4_truncate_failed_write(inode);
2601 	}
2602 
2603 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2604 		goto retry;
2605 out:
2606 	return ret;
2607 }
2608 
2609 /*
2610  * Check if we should update i_disksize
2611  * when write to the end of file but not require block allocation
2612  */
2613 static int ext4_da_should_update_i_disksize(struct page *page,
2614 					    unsigned long offset)
2615 {
2616 	struct buffer_head *bh;
2617 	struct inode *inode = page->mapping->host;
2618 	unsigned int idx;
2619 	int i;
2620 
2621 	bh = page_buffers(page);
2622 	idx = offset >> inode->i_blkbits;
2623 
2624 	for (i = 0; i < idx; i++)
2625 		bh = bh->b_this_page;
2626 
2627 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2628 		return 0;
2629 	return 1;
2630 }
2631 
2632 static int ext4_da_write_end(struct file *file,
2633 			     struct address_space *mapping,
2634 			     loff_t pos, unsigned len, unsigned copied,
2635 			     struct page *page, void *fsdata)
2636 {
2637 	struct inode *inode = mapping->host;
2638 	int ret = 0, ret2;
2639 	handle_t *handle = ext4_journal_current_handle();
2640 	loff_t new_i_size;
2641 	unsigned long start, end;
2642 	int write_mode = (int)(unsigned long)fsdata;
2643 
2644 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2645 		switch (ext4_inode_journal_mode(inode)) {
2646 		case EXT4_INODE_ORDERED_DATA_MODE:
2647 			return ext4_ordered_write_end(file, mapping, pos,
2648 					len, copied, page, fsdata);
2649 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2650 			return ext4_writeback_write_end(file, mapping, pos,
2651 					len, copied, page, fsdata);
2652 		default:
2653 			BUG();
2654 		}
2655 	}
2656 
2657 	trace_ext4_da_write_end(inode, pos, len, copied);
2658 	start = pos & (PAGE_CACHE_SIZE - 1);
2659 	end = start + copied - 1;
2660 
2661 	/*
2662 	 * generic_write_end() will run mark_inode_dirty() if i_size
2663 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2664 	 * into that.
2665 	 */
2666 	new_i_size = pos + copied;
2667 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2668 		if (ext4_has_inline_data(inode) ||
2669 		    ext4_da_should_update_i_disksize(page, end)) {
2670 			down_write(&EXT4_I(inode)->i_data_sem);
2671 			if (new_i_size > EXT4_I(inode)->i_disksize)
2672 				EXT4_I(inode)->i_disksize = new_i_size;
2673 			up_write(&EXT4_I(inode)->i_data_sem);
2674 			/* We need to mark inode dirty even if
2675 			 * new_i_size is less that inode->i_size
2676 			 * bu greater than i_disksize.(hint delalloc)
2677 			 */
2678 			ext4_mark_inode_dirty(handle, inode);
2679 		}
2680 	}
2681 
2682 	if (write_mode != CONVERT_INLINE_DATA &&
2683 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2684 	    ext4_has_inline_data(inode))
2685 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2686 						     page);
2687 	else
2688 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2689 							page, fsdata);
2690 
2691 	copied = ret2;
2692 	if (ret2 < 0)
2693 		ret = ret2;
2694 	ret2 = ext4_journal_stop(handle);
2695 	if (!ret)
2696 		ret = ret2;
2697 
2698 	return ret ? ret : copied;
2699 }
2700 
2701 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2702 {
2703 	/*
2704 	 * Drop reserved blocks
2705 	 */
2706 	BUG_ON(!PageLocked(page));
2707 	if (!page_has_buffers(page))
2708 		goto out;
2709 
2710 	ext4_da_page_release_reservation(page, offset);
2711 
2712 out:
2713 	ext4_invalidatepage(page, offset);
2714 
2715 	return;
2716 }
2717 
2718 /*
2719  * Force all delayed allocation blocks to be allocated for a given inode.
2720  */
2721 int ext4_alloc_da_blocks(struct inode *inode)
2722 {
2723 	trace_ext4_alloc_da_blocks(inode);
2724 
2725 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2726 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2727 		return 0;
2728 
2729 	/*
2730 	 * We do something simple for now.  The filemap_flush() will
2731 	 * also start triggering a write of the data blocks, which is
2732 	 * not strictly speaking necessary (and for users of
2733 	 * laptop_mode, not even desirable).  However, to do otherwise
2734 	 * would require replicating code paths in:
2735 	 *
2736 	 * ext4_da_writepages() ->
2737 	 *    write_cache_pages() ---> (via passed in callback function)
2738 	 *        __mpage_da_writepage() -->
2739 	 *           mpage_add_bh_to_extent()
2740 	 *           mpage_da_map_blocks()
2741 	 *
2742 	 * The problem is that write_cache_pages(), located in
2743 	 * mm/page-writeback.c, marks pages clean in preparation for
2744 	 * doing I/O, which is not desirable if we're not planning on
2745 	 * doing I/O at all.
2746 	 *
2747 	 * We could call write_cache_pages(), and then redirty all of
2748 	 * the pages by calling redirty_page_for_writepage() but that
2749 	 * would be ugly in the extreme.  So instead we would need to
2750 	 * replicate parts of the code in the above functions,
2751 	 * simplifying them because we wouldn't actually intend to
2752 	 * write out the pages, but rather only collect contiguous
2753 	 * logical block extents, call the multi-block allocator, and
2754 	 * then update the buffer heads with the block allocations.
2755 	 *
2756 	 * For now, though, we'll cheat by calling filemap_flush(),
2757 	 * which will map the blocks, and start the I/O, but not
2758 	 * actually wait for the I/O to complete.
2759 	 */
2760 	return filemap_flush(inode->i_mapping);
2761 }
2762 
2763 /*
2764  * bmap() is special.  It gets used by applications such as lilo and by
2765  * the swapper to find the on-disk block of a specific piece of data.
2766  *
2767  * Naturally, this is dangerous if the block concerned is still in the
2768  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2769  * filesystem and enables swap, then they may get a nasty shock when the
2770  * data getting swapped to that swapfile suddenly gets overwritten by
2771  * the original zero's written out previously to the journal and
2772  * awaiting writeback in the kernel's buffer cache.
2773  *
2774  * So, if we see any bmap calls here on a modified, data-journaled file,
2775  * take extra steps to flush any blocks which might be in the cache.
2776  */
2777 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2778 {
2779 	struct inode *inode = mapping->host;
2780 	journal_t *journal;
2781 	int err;
2782 
2783 	/*
2784 	 * We can get here for an inline file via the FIBMAP ioctl
2785 	 */
2786 	if (ext4_has_inline_data(inode))
2787 		return 0;
2788 
2789 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2790 			test_opt(inode->i_sb, DELALLOC)) {
2791 		/*
2792 		 * With delalloc we want to sync the file
2793 		 * so that we can make sure we allocate
2794 		 * blocks for file
2795 		 */
2796 		filemap_write_and_wait(mapping);
2797 	}
2798 
2799 	if (EXT4_JOURNAL(inode) &&
2800 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2801 		/*
2802 		 * This is a REALLY heavyweight approach, but the use of
2803 		 * bmap on dirty files is expected to be extremely rare:
2804 		 * only if we run lilo or swapon on a freshly made file
2805 		 * do we expect this to happen.
2806 		 *
2807 		 * (bmap requires CAP_SYS_RAWIO so this does not
2808 		 * represent an unprivileged user DOS attack --- we'd be
2809 		 * in trouble if mortal users could trigger this path at
2810 		 * will.)
2811 		 *
2812 		 * NB. EXT4_STATE_JDATA is not set on files other than
2813 		 * regular files.  If somebody wants to bmap a directory
2814 		 * or symlink and gets confused because the buffer
2815 		 * hasn't yet been flushed to disk, they deserve
2816 		 * everything they get.
2817 		 */
2818 
2819 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2820 		journal = EXT4_JOURNAL(inode);
2821 		jbd2_journal_lock_updates(journal);
2822 		err = jbd2_journal_flush(journal);
2823 		jbd2_journal_unlock_updates(journal);
2824 
2825 		if (err)
2826 			return 0;
2827 	}
2828 
2829 	return generic_block_bmap(mapping, block, ext4_get_block);
2830 }
2831 
2832 static int ext4_readpage(struct file *file, struct page *page)
2833 {
2834 	int ret = -EAGAIN;
2835 	struct inode *inode = page->mapping->host;
2836 
2837 	trace_ext4_readpage(page);
2838 
2839 	if (ext4_has_inline_data(inode))
2840 		ret = ext4_readpage_inline(inode, page);
2841 
2842 	if (ret == -EAGAIN)
2843 		return mpage_readpage(page, ext4_get_block);
2844 
2845 	return ret;
2846 }
2847 
2848 static int
2849 ext4_readpages(struct file *file, struct address_space *mapping,
2850 		struct list_head *pages, unsigned nr_pages)
2851 {
2852 	struct inode *inode = mapping->host;
2853 
2854 	/* If the file has inline data, no need to do readpages. */
2855 	if (ext4_has_inline_data(inode))
2856 		return 0;
2857 
2858 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2859 }
2860 
2861 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2862 {
2863 	struct buffer_head *head, *bh;
2864 	unsigned int curr_off = 0;
2865 
2866 	if (!page_has_buffers(page))
2867 		return;
2868 	head = bh = page_buffers(page);
2869 	do {
2870 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2871 					&& bh->b_private) {
2872 			ext4_free_io_end(bh->b_private);
2873 			bh->b_private = NULL;
2874 			bh->b_end_io = NULL;
2875 		}
2876 		curr_off = curr_off + bh->b_size;
2877 		bh = bh->b_this_page;
2878 	} while (bh != head);
2879 }
2880 
2881 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2882 {
2883 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2884 
2885 	trace_ext4_invalidatepage(page, offset);
2886 
2887 	/*
2888 	 * free any io_end structure allocated for buffers to be discarded
2889 	 */
2890 	if (ext4_should_dioread_nolock(page->mapping->host))
2891 		ext4_invalidatepage_free_endio(page, offset);
2892 	/*
2893 	 * If it's a full truncate we just forget about the pending dirtying
2894 	 */
2895 	if (offset == 0)
2896 		ClearPageChecked(page);
2897 
2898 	if (journal)
2899 		jbd2_journal_invalidatepage(journal, page, offset);
2900 	else
2901 		block_invalidatepage(page, offset);
2902 }
2903 
2904 static int ext4_releasepage(struct page *page, gfp_t wait)
2905 {
2906 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2907 
2908 	trace_ext4_releasepage(page);
2909 
2910 	WARN_ON(PageChecked(page));
2911 	if (!page_has_buffers(page))
2912 		return 0;
2913 	if (journal)
2914 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2915 	else
2916 		return try_to_free_buffers(page);
2917 }
2918 
2919 /*
2920  * ext4_get_block used when preparing for a DIO write or buffer write.
2921  * We allocate an uinitialized extent if blocks haven't been allocated.
2922  * The extent will be converted to initialized after the IO is complete.
2923  */
2924 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2925 		   struct buffer_head *bh_result, int create)
2926 {
2927 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2928 		   inode->i_ino, create);
2929 	return _ext4_get_block(inode, iblock, bh_result,
2930 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2931 }
2932 
2933 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2934 		   struct buffer_head *bh_result, int create)
2935 {
2936 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2937 		   inode->i_ino, create);
2938 	return _ext4_get_block(inode, iblock, bh_result,
2939 			       EXT4_GET_BLOCKS_NO_LOCK);
2940 }
2941 
2942 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2943 			    ssize_t size, void *private, int ret,
2944 			    bool is_async)
2945 {
2946 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2947         ext4_io_end_t *io_end = iocb->private;
2948 
2949 	/* if not async direct IO or dio with 0 bytes write, just return */
2950 	if (!io_end || !size)
2951 		goto out;
2952 
2953 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2954 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2955  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2956 		  size);
2957 
2958 	iocb->private = NULL;
2959 
2960 	/* if not aio dio with unwritten extents, just free io and return */
2961 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2962 		ext4_free_io_end(io_end);
2963 out:
2964 		if (is_async)
2965 			aio_complete(iocb, ret, 0);
2966 		inode_dio_done(inode);
2967 		return;
2968 	}
2969 
2970 	io_end->offset = offset;
2971 	io_end->size = size;
2972 	if (is_async) {
2973 		io_end->iocb = iocb;
2974 		io_end->result = ret;
2975 	}
2976 
2977 	ext4_add_complete_io(io_end);
2978 }
2979 
2980 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2981 {
2982 	ext4_io_end_t *io_end = bh->b_private;
2983 	struct inode *inode;
2984 
2985 	if (!test_clear_buffer_uninit(bh) || !io_end)
2986 		goto out;
2987 
2988 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2989 		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2990 			 "sb umounted, discard end_io request for inode %lu",
2991 			 io_end->inode->i_ino);
2992 		ext4_free_io_end(io_end);
2993 		goto out;
2994 	}
2995 
2996 	/*
2997 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2998 	 * but being more careful is always safe for the future change.
2999 	 */
3000 	inode = io_end->inode;
3001 	ext4_set_io_unwritten_flag(inode, io_end);
3002 	ext4_add_complete_io(io_end);
3003 out:
3004 	bh->b_private = NULL;
3005 	bh->b_end_io = NULL;
3006 	clear_buffer_uninit(bh);
3007 	end_buffer_async_write(bh, uptodate);
3008 }
3009 
3010 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3011 {
3012 	ext4_io_end_t *io_end;
3013 	struct page *page = bh->b_page;
3014 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3015 	size_t size = bh->b_size;
3016 
3017 retry:
3018 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3019 	if (!io_end) {
3020 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3021 		schedule();
3022 		goto retry;
3023 	}
3024 	io_end->offset = offset;
3025 	io_end->size = size;
3026 	/*
3027 	 * We need to hold a reference to the page to make sure it
3028 	 * doesn't get evicted before ext4_end_io_work() has a chance
3029 	 * to convert the extent from written to unwritten.
3030 	 */
3031 	io_end->page = page;
3032 	get_page(io_end->page);
3033 
3034 	bh->b_private = io_end;
3035 	bh->b_end_io = ext4_end_io_buffer_write;
3036 	return 0;
3037 }
3038 
3039 /*
3040  * For ext4 extent files, ext4 will do direct-io write to holes,
3041  * preallocated extents, and those write extend the file, no need to
3042  * fall back to buffered IO.
3043  *
3044  * For holes, we fallocate those blocks, mark them as uninitialized
3045  * If those blocks were preallocated, we mark sure they are split, but
3046  * still keep the range to write as uninitialized.
3047  *
3048  * The unwritten extents will be converted to written when DIO is completed.
3049  * For async direct IO, since the IO may still pending when return, we
3050  * set up an end_io call back function, which will do the conversion
3051  * when async direct IO completed.
3052  *
3053  * If the O_DIRECT write will extend the file then add this inode to the
3054  * orphan list.  So recovery will truncate it back to the original size
3055  * if the machine crashes during the write.
3056  *
3057  */
3058 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3059 			      const struct iovec *iov, loff_t offset,
3060 			      unsigned long nr_segs)
3061 {
3062 	struct file *file = iocb->ki_filp;
3063 	struct inode *inode = file->f_mapping->host;
3064 	ssize_t ret;
3065 	size_t count = iov_length(iov, nr_segs);
3066 	int overwrite = 0;
3067 	get_block_t *get_block_func = NULL;
3068 	int dio_flags = 0;
3069 	loff_t final_size = offset + count;
3070 
3071 	/* Use the old path for reads and writes beyond i_size. */
3072 	if (rw != WRITE || final_size > inode->i_size)
3073 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3074 
3075 	BUG_ON(iocb->private == NULL);
3076 
3077 	/* If we do a overwrite dio, i_mutex locking can be released */
3078 	overwrite = *((int *)iocb->private);
3079 
3080 	if (overwrite) {
3081 		atomic_inc(&inode->i_dio_count);
3082 		down_read(&EXT4_I(inode)->i_data_sem);
3083 		mutex_unlock(&inode->i_mutex);
3084 	}
3085 
3086 	/*
3087 	 * We could direct write to holes and fallocate.
3088 	 *
3089 	 * Allocated blocks to fill the hole are marked as
3090 	 * uninitialized to prevent parallel buffered read to expose
3091 	 * the stale data before DIO complete the data IO.
3092 	 *
3093 	 * As to previously fallocated extents, ext4 get_block will
3094 	 * just simply mark the buffer mapped but still keep the
3095 	 * extents uninitialized.
3096 	 *
3097 	 * For non AIO case, we will convert those unwritten extents
3098 	 * to written after return back from blockdev_direct_IO.
3099 	 *
3100 	 * For async DIO, the conversion needs to be deferred when the
3101 	 * IO is completed. The ext4 end_io callback function will be
3102 	 * called to take care of the conversion work.  Here for async
3103 	 * case, we allocate an io_end structure to hook to the iocb.
3104 	 */
3105 	iocb->private = NULL;
3106 	ext4_inode_aio_set(inode, NULL);
3107 	if (!is_sync_kiocb(iocb)) {
3108 		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3109 		if (!io_end) {
3110 			ret = -ENOMEM;
3111 			goto retake_lock;
3112 		}
3113 		io_end->flag |= EXT4_IO_END_DIRECT;
3114 		iocb->private = io_end;
3115 		/*
3116 		 * we save the io structure for current async direct
3117 		 * IO, so that later ext4_map_blocks() could flag the
3118 		 * io structure whether there is a unwritten extents
3119 		 * needs to be converted when IO is completed.
3120 		 */
3121 		ext4_inode_aio_set(inode, io_end);
3122 	}
3123 
3124 	if (overwrite) {
3125 		get_block_func = ext4_get_block_write_nolock;
3126 	} else {
3127 		get_block_func = ext4_get_block_write;
3128 		dio_flags = DIO_LOCKING;
3129 	}
3130 	ret = __blockdev_direct_IO(rw, iocb, inode,
3131 				   inode->i_sb->s_bdev, iov,
3132 				   offset, nr_segs,
3133 				   get_block_func,
3134 				   ext4_end_io_dio,
3135 				   NULL,
3136 				   dio_flags);
3137 
3138 	if (iocb->private)
3139 		ext4_inode_aio_set(inode, NULL);
3140 	/*
3141 	 * The io_end structure takes a reference to the inode, that
3142 	 * structure needs to be destroyed and the reference to the
3143 	 * inode need to be dropped, when IO is complete, even with 0
3144 	 * byte write, or failed.
3145 	 *
3146 	 * In the successful AIO DIO case, the io_end structure will
3147 	 * be destroyed and the reference to the inode will be dropped
3148 	 * after the end_io call back function is called.
3149 	 *
3150 	 * In the case there is 0 byte write, or error case, since VFS
3151 	 * direct IO won't invoke the end_io call back function, we
3152 	 * need to free the end_io structure here.
3153 	 */
3154 	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3155 		ext4_free_io_end(iocb->private);
3156 		iocb->private = NULL;
3157 	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3158 						EXT4_STATE_DIO_UNWRITTEN)) {
3159 		int err;
3160 		/*
3161 		 * for non AIO case, since the IO is already
3162 		 * completed, we could do the conversion right here
3163 		 */
3164 		err = ext4_convert_unwritten_extents(inode,
3165 						     offset, ret);
3166 		if (err < 0)
3167 			ret = err;
3168 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3169 	}
3170 
3171 retake_lock:
3172 	/* take i_mutex locking again if we do a ovewrite dio */
3173 	if (overwrite) {
3174 		inode_dio_done(inode);
3175 		up_read(&EXT4_I(inode)->i_data_sem);
3176 		mutex_lock(&inode->i_mutex);
3177 	}
3178 
3179 	return ret;
3180 }
3181 
3182 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3183 			      const struct iovec *iov, loff_t offset,
3184 			      unsigned long nr_segs)
3185 {
3186 	struct file *file = iocb->ki_filp;
3187 	struct inode *inode = file->f_mapping->host;
3188 	ssize_t ret;
3189 
3190 	/*
3191 	 * If we are doing data journalling we don't support O_DIRECT
3192 	 */
3193 	if (ext4_should_journal_data(inode))
3194 		return 0;
3195 
3196 	/* Let buffer I/O handle the inline data case. */
3197 	if (ext4_has_inline_data(inode))
3198 		return 0;
3199 
3200 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3201 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3202 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3203 	else
3204 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3205 	trace_ext4_direct_IO_exit(inode, offset,
3206 				iov_length(iov, nr_segs), rw, ret);
3207 	return ret;
3208 }
3209 
3210 /*
3211  * Pages can be marked dirty completely asynchronously from ext4's journalling
3212  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3213  * much here because ->set_page_dirty is called under VFS locks.  The page is
3214  * not necessarily locked.
3215  *
3216  * We cannot just dirty the page and leave attached buffers clean, because the
3217  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3218  * or jbddirty because all the journalling code will explode.
3219  *
3220  * So what we do is to mark the page "pending dirty" and next time writepage
3221  * is called, propagate that into the buffers appropriately.
3222  */
3223 static int ext4_journalled_set_page_dirty(struct page *page)
3224 {
3225 	SetPageChecked(page);
3226 	return __set_page_dirty_nobuffers(page);
3227 }
3228 
3229 static const struct address_space_operations ext4_ordered_aops = {
3230 	.readpage		= ext4_readpage,
3231 	.readpages		= ext4_readpages,
3232 	.writepage		= ext4_writepage,
3233 	.write_begin		= ext4_write_begin,
3234 	.write_end		= ext4_ordered_write_end,
3235 	.bmap			= ext4_bmap,
3236 	.invalidatepage		= ext4_invalidatepage,
3237 	.releasepage		= ext4_releasepage,
3238 	.direct_IO		= ext4_direct_IO,
3239 	.migratepage		= buffer_migrate_page,
3240 	.is_partially_uptodate  = block_is_partially_uptodate,
3241 	.error_remove_page	= generic_error_remove_page,
3242 };
3243 
3244 static const struct address_space_operations ext4_writeback_aops = {
3245 	.readpage		= ext4_readpage,
3246 	.readpages		= ext4_readpages,
3247 	.writepage		= ext4_writepage,
3248 	.write_begin		= ext4_write_begin,
3249 	.write_end		= ext4_writeback_write_end,
3250 	.bmap			= ext4_bmap,
3251 	.invalidatepage		= ext4_invalidatepage,
3252 	.releasepage		= ext4_releasepage,
3253 	.direct_IO		= ext4_direct_IO,
3254 	.migratepage		= buffer_migrate_page,
3255 	.is_partially_uptodate  = block_is_partially_uptodate,
3256 	.error_remove_page	= generic_error_remove_page,
3257 };
3258 
3259 static const struct address_space_operations ext4_journalled_aops = {
3260 	.readpage		= ext4_readpage,
3261 	.readpages		= ext4_readpages,
3262 	.writepage		= ext4_writepage,
3263 	.write_begin		= ext4_write_begin,
3264 	.write_end		= ext4_journalled_write_end,
3265 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3266 	.bmap			= ext4_bmap,
3267 	.invalidatepage		= ext4_invalidatepage,
3268 	.releasepage		= ext4_releasepage,
3269 	.direct_IO		= ext4_direct_IO,
3270 	.is_partially_uptodate  = block_is_partially_uptodate,
3271 	.error_remove_page	= generic_error_remove_page,
3272 };
3273 
3274 static const struct address_space_operations ext4_da_aops = {
3275 	.readpage		= ext4_readpage,
3276 	.readpages		= ext4_readpages,
3277 	.writepage		= ext4_writepage,
3278 	.writepages		= ext4_da_writepages,
3279 	.write_begin		= ext4_da_write_begin,
3280 	.write_end		= ext4_da_write_end,
3281 	.bmap			= ext4_bmap,
3282 	.invalidatepage		= ext4_da_invalidatepage,
3283 	.releasepage		= ext4_releasepage,
3284 	.direct_IO		= ext4_direct_IO,
3285 	.migratepage		= buffer_migrate_page,
3286 	.is_partially_uptodate  = block_is_partially_uptodate,
3287 	.error_remove_page	= generic_error_remove_page,
3288 };
3289 
3290 void ext4_set_aops(struct inode *inode)
3291 {
3292 	switch (ext4_inode_journal_mode(inode)) {
3293 	case EXT4_INODE_ORDERED_DATA_MODE:
3294 		if (test_opt(inode->i_sb, DELALLOC))
3295 			inode->i_mapping->a_ops = &ext4_da_aops;
3296 		else
3297 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3298 		break;
3299 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3300 		if (test_opt(inode->i_sb, DELALLOC))
3301 			inode->i_mapping->a_ops = &ext4_da_aops;
3302 		else
3303 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3304 		break;
3305 	case EXT4_INODE_JOURNAL_DATA_MODE:
3306 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3307 		break;
3308 	default:
3309 		BUG();
3310 	}
3311 }
3312 
3313 
3314 /*
3315  * ext4_discard_partial_page_buffers()
3316  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3317  * This function finds and locks the page containing the offset
3318  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3319  * Calling functions that already have the page locked should call
3320  * ext4_discard_partial_page_buffers_no_lock directly.
3321  */
3322 int ext4_discard_partial_page_buffers(handle_t *handle,
3323 		struct address_space *mapping, loff_t from,
3324 		loff_t length, int flags)
3325 {
3326 	struct inode *inode = mapping->host;
3327 	struct page *page;
3328 	int err = 0;
3329 
3330 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3331 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3332 	if (!page)
3333 		return -ENOMEM;
3334 
3335 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3336 		from, length, flags);
3337 
3338 	unlock_page(page);
3339 	page_cache_release(page);
3340 	return err;
3341 }
3342 
3343 /*
3344  * ext4_discard_partial_page_buffers_no_lock()
3345  * Zeros a page range of length 'length' starting from offset 'from'.
3346  * Buffer heads that correspond to the block aligned regions of the
3347  * zeroed range will be unmapped.  Unblock aligned regions
3348  * will have the corresponding buffer head mapped if needed so that
3349  * that region of the page can be updated with the partial zero out.
3350  *
3351  * This function assumes that the page has already been  locked.  The
3352  * The range to be discarded must be contained with in the given page.
3353  * If the specified range exceeds the end of the page it will be shortened
3354  * to the end of the page that corresponds to 'from'.  This function is
3355  * appropriate for updating a page and it buffer heads to be unmapped and
3356  * zeroed for blocks that have been either released, or are going to be
3357  * released.
3358  *
3359  * handle: The journal handle
3360  * inode:  The files inode
3361  * page:   A locked page that contains the offset "from"
3362  * from:   The starting byte offset (from the beginning of the file)
3363  *         to begin discarding
3364  * len:    The length of bytes to discard
3365  * flags:  Optional flags that may be used:
3366  *
3367  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3368  *         Only zero the regions of the page whose buffer heads
3369  *         have already been unmapped.  This flag is appropriate
3370  *         for updating the contents of a page whose blocks may
3371  *         have already been released, and we only want to zero
3372  *         out the regions that correspond to those released blocks.
3373  *
3374  * Returns zero on success or negative on failure.
3375  */
3376 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3377 		struct inode *inode, struct page *page, loff_t from,
3378 		loff_t length, int flags)
3379 {
3380 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3381 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3382 	unsigned int blocksize, max, pos;
3383 	ext4_lblk_t iblock;
3384 	struct buffer_head *bh;
3385 	int err = 0;
3386 
3387 	blocksize = inode->i_sb->s_blocksize;
3388 	max = PAGE_CACHE_SIZE - offset;
3389 
3390 	if (index != page->index)
3391 		return -EINVAL;
3392 
3393 	/*
3394 	 * correct length if it does not fall between
3395 	 * 'from' and the end of the page
3396 	 */
3397 	if (length > max || length < 0)
3398 		length = max;
3399 
3400 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3401 
3402 	if (!page_has_buffers(page))
3403 		create_empty_buffers(page, blocksize, 0);
3404 
3405 	/* Find the buffer that contains "offset" */
3406 	bh = page_buffers(page);
3407 	pos = blocksize;
3408 	while (offset >= pos) {
3409 		bh = bh->b_this_page;
3410 		iblock++;
3411 		pos += blocksize;
3412 	}
3413 
3414 	pos = offset;
3415 	while (pos < offset + length) {
3416 		unsigned int end_of_block, range_to_discard;
3417 
3418 		err = 0;
3419 
3420 		/* The length of space left to zero and unmap */
3421 		range_to_discard = offset + length - pos;
3422 
3423 		/* The length of space until the end of the block */
3424 		end_of_block = blocksize - (pos & (blocksize-1));
3425 
3426 		/*
3427 		 * Do not unmap or zero past end of block
3428 		 * for this buffer head
3429 		 */
3430 		if (range_to_discard > end_of_block)
3431 			range_to_discard = end_of_block;
3432 
3433 
3434 		/*
3435 		 * Skip this buffer head if we are only zeroing unampped
3436 		 * regions of the page
3437 		 */
3438 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3439 			buffer_mapped(bh))
3440 				goto next;
3441 
3442 		/* If the range is block aligned, unmap */
3443 		if (range_to_discard == blocksize) {
3444 			clear_buffer_dirty(bh);
3445 			bh->b_bdev = NULL;
3446 			clear_buffer_mapped(bh);
3447 			clear_buffer_req(bh);
3448 			clear_buffer_new(bh);
3449 			clear_buffer_delay(bh);
3450 			clear_buffer_unwritten(bh);
3451 			clear_buffer_uptodate(bh);
3452 			zero_user(page, pos, range_to_discard);
3453 			BUFFER_TRACE(bh, "Buffer discarded");
3454 			goto next;
3455 		}
3456 
3457 		/*
3458 		 * If this block is not completely contained in the range
3459 		 * to be discarded, then it is not going to be released. Because
3460 		 * we need to keep this block, we need to make sure this part
3461 		 * of the page is uptodate before we modify it by writeing
3462 		 * partial zeros on it.
3463 		 */
3464 		if (!buffer_mapped(bh)) {
3465 			/*
3466 			 * Buffer head must be mapped before we can read
3467 			 * from the block
3468 			 */
3469 			BUFFER_TRACE(bh, "unmapped");
3470 			ext4_get_block(inode, iblock, bh, 0);
3471 			/* unmapped? It's a hole - nothing to do */
3472 			if (!buffer_mapped(bh)) {
3473 				BUFFER_TRACE(bh, "still unmapped");
3474 				goto next;
3475 			}
3476 		}
3477 
3478 		/* Ok, it's mapped. Make sure it's up-to-date */
3479 		if (PageUptodate(page))
3480 			set_buffer_uptodate(bh);
3481 
3482 		if (!buffer_uptodate(bh)) {
3483 			err = -EIO;
3484 			ll_rw_block(READ, 1, &bh);
3485 			wait_on_buffer(bh);
3486 			/* Uhhuh. Read error. Complain and punt.*/
3487 			if (!buffer_uptodate(bh))
3488 				goto next;
3489 		}
3490 
3491 		if (ext4_should_journal_data(inode)) {
3492 			BUFFER_TRACE(bh, "get write access");
3493 			err = ext4_journal_get_write_access(handle, bh);
3494 			if (err)
3495 				goto next;
3496 		}
3497 
3498 		zero_user(page, pos, range_to_discard);
3499 
3500 		err = 0;
3501 		if (ext4_should_journal_data(inode)) {
3502 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3503 		} else
3504 			mark_buffer_dirty(bh);
3505 
3506 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3507 next:
3508 		bh = bh->b_this_page;
3509 		iblock++;
3510 		pos += range_to_discard;
3511 	}
3512 
3513 	return err;
3514 }
3515 
3516 int ext4_can_truncate(struct inode *inode)
3517 {
3518 	if (S_ISREG(inode->i_mode))
3519 		return 1;
3520 	if (S_ISDIR(inode->i_mode))
3521 		return 1;
3522 	if (S_ISLNK(inode->i_mode))
3523 		return !ext4_inode_is_fast_symlink(inode);
3524 	return 0;
3525 }
3526 
3527 /*
3528  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3529  * associated with the given offset and length
3530  *
3531  * @inode:  File inode
3532  * @offset: The offset where the hole will begin
3533  * @len:    The length of the hole
3534  *
3535  * Returns: 0 on success or negative on failure
3536  */
3537 
3538 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3539 {
3540 	struct inode *inode = file->f_path.dentry->d_inode;
3541 	if (!S_ISREG(inode->i_mode))
3542 		return -EOPNOTSUPP;
3543 
3544 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3545 		/* TODO: Add support for non extent hole punching */
3546 		return -EOPNOTSUPP;
3547 	}
3548 
3549 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3550 		/* TODO: Add support for bigalloc file systems */
3551 		return -EOPNOTSUPP;
3552 	}
3553 
3554 	return ext4_ext_punch_hole(file, offset, length);
3555 }
3556 
3557 /*
3558  * ext4_truncate()
3559  *
3560  * We block out ext4_get_block() block instantiations across the entire
3561  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3562  * simultaneously on behalf of the same inode.
3563  *
3564  * As we work through the truncate and commit bits of it to the journal there
3565  * is one core, guiding principle: the file's tree must always be consistent on
3566  * disk.  We must be able to restart the truncate after a crash.
3567  *
3568  * The file's tree may be transiently inconsistent in memory (although it
3569  * probably isn't), but whenever we close off and commit a journal transaction,
3570  * the contents of (the filesystem + the journal) must be consistent and
3571  * restartable.  It's pretty simple, really: bottom up, right to left (although
3572  * left-to-right works OK too).
3573  *
3574  * Note that at recovery time, journal replay occurs *before* the restart of
3575  * truncate against the orphan inode list.
3576  *
3577  * The committed inode has the new, desired i_size (which is the same as
3578  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3579  * that this inode's truncate did not complete and it will again call
3580  * ext4_truncate() to have another go.  So there will be instantiated blocks
3581  * to the right of the truncation point in a crashed ext4 filesystem.  But
3582  * that's fine - as long as they are linked from the inode, the post-crash
3583  * ext4_truncate() run will find them and release them.
3584  */
3585 void ext4_truncate(struct inode *inode)
3586 {
3587 	trace_ext4_truncate_enter(inode);
3588 
3589 	if (!ext4_can_truncate(inode))
3590 		return;
3591 
3592 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3593 
3594 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3595 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3596 
3597 	if (ext4_has_inline_data(inode)) {
3598 		int has_inline = 1;
3599 
3600 		ext4_inline_data_truncate(inode, &has_inline);
3601 		if (has_inline)
3602 			return;
3603 	}
3604 
3605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3606 		ext4_ext_truncate(inode);
3607 	else
3608 		ext4_ind_truncate(inode);
3609 
3610 	trace_ext4_truncate_exit(inode);
3611 }
3612 
3613 /*
3614  * ext4_get_inode_loc returns with an extra refcount against the inode's
3615  * underlying buffer_head on success. If 'in_mem' is true, we have all
3616  * data in memory that is needed to recreate the on-disk version of this
3617  * inode.
3618  */
3619 static int __ext4_get_inode_loc(struct inode *inode,
3620 				struct ext4_iloc *iloc, int in_mem)
3621 {
3622 	struct ext4_group_desc	*gdp;
3623 	struct buffer_head	*bh;
3624 	struct super_block	*sb = inode->i_sb;
3625 	ext4_fsblk_t		block;
3626 	int			inodes_per_block, inode_offset;
3627 
3628 	iloc->bh = NULL;
3629 	if (!ext4_valid_inum(sb, inode->i_ino))
3630 		return -EIO;
3631 
3632 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3633 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3634 	if (!gdp)
3635 		return -EIO;
3636 
3637 	/*
3638 	 * Figure out the offset within the block group inode table
3639 	 */
3640 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3641 	inode_offset = ((inode->i_ino - 1) %
3642 			EXT4_INODES_PER_GROUP(sb));
3643 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3644 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3645 
3646 	bh = sb_getblk(sb, block);
3647 	if (!bh) {
3648 		EXT4_ERROR_INODE_BLOCK(inode, block,
3649 				       "unable to read itable block");
3650 		return -EIO;
3651 	}
3652 	if (!buffer_uptodate(bh)) {
3653 		lock_buffer(bh);
3654 
3655 		/*
3656 		 * If the buffer has the write error flag, we have failed
3657 		 * to write out another inode in the same block.  In this
3658 		 * case, we don't have to read the block because we may
3659 		 * read the old inode data successfully.
3660 		 */
3661 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3662 			set_buffer_uptodate(bh);
3663 
3664 		if (buffer_uptodate(bh)) {
3665 			/* someone brought it uptodate while we waited */
3666 			unlock_buffer(bh);
3667 			goto has_buffer;
3668 		}
3669 
3670 		/*
3671 		 * If we have all information of the inode in memory and this
3672 		 * is the only valid inode in the block, we need not read the
3673 		 * block.
3674 		 */
3675 		if (in_mem) {
3676 			struct buffer_head *bitmap_bh;
3677 			int i, start;
3678 
3679 			start = inode_offset & ~(inodes_per_block - 1);
3680 
3681 			/* Is the inode bitmap in cache? */
3682 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3683 			if (!bitmap_bh)
3684 				goto make_io;
3685 
3686 			/*
3687 			 * If the inode bitmap isn't in cache then the
3688 			 * optimisation may end up performing two reads instead
3689 			 * of one, so skip it.
3690 			 */
3691 			if (!buffer_uptodate(bitmap_bh)) {
3692 				brelse(bitmap_bh);
3693 				goto make_io;
3694 			}
3695 			for (i = start; i < start + inodes_per_block; i++) {
3696 				if (i == inode_offset)
3697 					continue;
3698 				if (ext4_test_bit(i, bitmap_bh->b_data))
3699 					break;
3700 			}
3701 			brelse(bitmap_bh);
3702 			if (i == start + inodes_per_block) {
3703 				/* all other inodes are free, so skip I/O */
3704 				memset(bh->b_data, 0, bh->b_size);
3705 				set_buffer_uptodate(bh);
3706 				unlock_buffer(bh);
3707 				goto has_buffer;
3708 			}
3709 		}
3710 
3711 make_io:
3712 		/*
3713 		 * If we need to do any I/O, try to pre-readahead extra
3714 		 * blocks from the inode table.
3715 		 */
3716 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3717 			ext4_fsblk_t b, end, table;
3718 			unsigned num;
3719 
3720 			table = ext4_inode_table(sb, gdp);
3721 			/* s_inode_readahead_blks is always a power of 2 */
3722 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3723 			if (table > b)
3724 				b = table;
3725 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3726 			num = EXT4_INODES_PER_GROUP(sb);
3727 			if (ext4_has_group_desc_csum(sb))
3728 				num -= ext4_itable_unused_count(sb, gdp);
3729 			table += num / inodes_per_block;
3730 			if (end > table)
3731 				end = table;
3732 			while (b <= end)
3733 				sb_breadahead(sb, b++);
3734 		}
3735 
3736 		/*
3737 		 * There are other valid inodes in the buffer, this inode
3738 		 * has in-inode xattrs, or we don't have this inode in memory.
3739 		 * Read the block from disk.
3740 		 */
3741 		trace_ext4_load_inode(inode);
3742 		get_bh(bh);
3743 		bh->b_end_io = end_buffer_read_sync;
3744 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3745 		wait_on_buffer(bh);
3746 		if (!buffer_uptodate(bh)) {
3747 			EXT4_ERROR_INODE_BLOCK(inode, block,
3748 					       "unable to read itable block");
3749 			brelse(bh);
3750 			return -EIO;
3751 		}
3752 	}
3753 has_buffer:
3754 	iloc->bh = bh;
3755 	return 0;
3756 }
3757 
3758 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3759 {
3760 	/* We have all inode data except xattrs in memory here. */
3761 	return __ext4_get_inode_loc(inode, iloc,
3762 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3763 }
3764 
3765 void ext4_set_inode_flags(struct inode *inode)
3766 {
3767 	unsigned int flags = EXT4_I(inode)->i_flags;
3768 
3769 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3770 	if (flags & EXT4_SYNC_FL)
3771 		inode->i_flags |= S_SYNC;
3772 	if (flags & EXT4_APPEND_FL)
3773 		inode->i_flags |= S_APPEND;
3774 	if (flags & EXT4_IMMUTABLE_FL)
3775 		inode->i_flags |= S_IMMUTABLE;
3776 	if (flags & EXT4_NOATIME_FL)
3777 		inode->i_flags |= S_NOATIME;
3778 	if (flags & EXT4_DIRSYNC_FL)
3779 		inode->i_flags |= S_DIRSYNC;
3780 }
3781 
3782 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3783 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3784 {
3785 	unsigned int vfs_fl;
3786 	unsigned long old_fl, new_fl;
3787 
3788 	do {
3789 		vfs_fl = ei->vfs_inode.i_flags;
3790 		old_fl = ei->i_flags;
3791 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3792 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3793 				EXT4_DIRSYNC_FL);
3794 		if (vfs_fl & S_SYNC)
3795 			new_fl |= EXT4_SYNC_FL;
3796 		if (vfs_fl & S_APPEND)
3797 			new_fl |= EXT4_APPEND_FL;
3798 		if (vfs_fl & S_IMMUTABLE)
3799 			new_fl |= EXT4_IMMUTABLE_FL;
3800 		if (vfs_fl & S_NOATIME)
3801 			new_fl |= EXT4_NOATIME_FL;
3802 		if (vfs_fl & S_DIRSYNC)
3803 			new_fl |= EXT4_DIRSYNC_FL;
3804 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3805 }
3806 
3807 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3808 				  struct ext4_inode_info *ei)
3809 {
3810 	blkcnt_t i_blocks ;
3811 	struct inode *inode = &(ei->vfs_inode);
3812 	struct super_block *sb = inode->i_sb;
3813 
3814 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3815 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3816 		/* we are using combined 48 bit field */
3817 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3818 					le32_to_cpu(raw_inode->i_blocks_lo);
3819 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3820 			/* i_blocks represent file system block size */
3821 			return i_blocks  << (inode->i_blkbits - 9);
3822 		} else {
3823 			return i_blocks;
3824 		}
3825 	} else {
3826 		return le32_to_cpu(raw_inode->i_blocks_lo);
3827 	}
3828 }
3829 
3830 static inline void ext4_iget_extra_inode(struct inode *inode,
3831 					 struct ext4_inode *raw_inode,
3832 					 struct ext4_inode_info *ei)
3833 {
3834 	__le32 *magic = (void *)raw_inode +
3835 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3836 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3837 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3838 		ext4_find_inline_data_nolock(inode);
3839 	} else
3840 		EXT4_I(inode)->i_inline_off = 0;
3841 }
3842 
3843 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3844 {
3845 	struct ext4_iloc iloc;
3846 	struct ext4_inode *raw_inode;
3847 	struct ext4_inode_info *ei;
3848 	struct inode *inode;
3849 	journal_t *journal = EXT4_SB(sb)->s_journal;
3850 	long ret;
3851 	int block;
3852 	uid_t i_uid;
3853 	gid_t i_gid;
3854 
3855 	inode = iget_locked(sb, ino);
3856 	if (!inode)
3857 		return ERR_PTR(-ENOMEM);
3858 	if (!(inode->i_state & I_NEW))
3859 		return inode;
3860 
3861 	ei = EXT4_I(inode);
3862 	iloc.bh = NULL;
3863 
3864 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3865 	if (ret < 0)
3866 		goto bad_inode;
3867 	raw_inode = ext4_raw_inode(&iloc);
3868 
3869 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3870 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3871 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3872 		    EXT4_INODE_SIZE(inode->i_sb)) {
3873 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3874 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3875 				EXT4_INODE_SIZE(inode->i_sb));
3876 			ret = -EIO;
3877 			goto bad_inode;
3878 		}
3879 	} else
3880 		ei->i_extra_isize = 0;
3881 
3882 	/* Precompute checksum seed for inode metadata */
3883 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3884 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3885 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3886 		__u32 csum;
3887 		__le32 inum = cpu_to_le32(inode->i_ino);
3888 		__le32 gen = raw_inode->i_generation;
3889 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3890 				   sizeof(inum));
3891 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3892 					      sizeof(gen));
3893 	}
3894 
3895 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3896 		EXT4_ERROR_INODE(inode, "checksum invalid");
3897 		ret = -EIO;
3898 		goto bad_inode;
3899 	}
3900 
3901 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3902 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3903 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3904 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3905 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3906 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3907 	}
3908 	i_uid_write(inode, i_uid);
3909 	i_gid_write(inode, i_gid);
3910 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3911 
3912 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3913 	ei->i_inline_off = 0;
3914 	ei->i_dir_start_lookup = 0;
3915 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3916 	/* We now have enough fields to check if the inode was active or not.
3917 	 * This is needed because nfsd might try to access dead inodes
3918 	 * the test is that same one that e2fsck uses
3919 	 * NeilBrown 1999oct15
3920 	 */
3921 	if (inode->i_nlink == 0) {
3922 		if (inode->i_mode == 0 ||
3923 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3924 			/* this inode is deleted */
3925 			ret = -ESTALE;
3926 			goto bad_inode;
3927 		}
3928 		/* The only unlinked inodes we let through here have
3929 		 * valid i_mode and are being read by the orphan
3930 		 * recovery code: that's fine, we're about to complete
3931 		 * the process of deleting those. */
3932 	}
3933 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3934 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3935 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3936 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3937 		ei->i_file_acl |=
3938 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3939 	inode->i_size = ext4_isize(raw_inode);
3940 	ei->i_disksize = inode->i_size;
3941 #ifdef CONFIG_QUOTA
3942 	ei->i_reserved_quota = 0;
3943 #endif
3944 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3945 	ei->i_block_group = iloc.block_group;
3946 	ei->i_last_alloc_group = ~0;
3947 	/*
3948 	 * NOTE! The in-memory inode i_data array is in little-endian order
3949 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3950 	 */
3951 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3952 		ei->i_data[block] = raw_inode->i_block[block];
3953 	INIT_LIST_HEAD(&ei->i_orphan);
3954 
3955 	/*
3956 	 * Set transaction id's of transactions that have to be committed
3957 	 * to finish f[data]sync. We set them to currently running transaction
3958 	 * as we cannot be sure that the inode or some of its metadata isn't
3959 	 * part of the transaction - the inode could have been reclaimed and
3960 	 * now it is reread from disk.
3961 	 */
3962 	if (journal) {
3963 		transaction_t *transaction;
3964 		tid_t tid;
3965 
3966 		read_lock(&journal->j_state_lock);
3967 		if (journal->j_running_transaction)
3968 			transaction = journal->j_running_transaction;
3969 		else
3970 			transaction = journal->j_committing_transaction;
3971 		if (transaction)
3972 			tid = transaction->t_tid;
3973 		else
3974 			tid = journal->j_commit_sequence;
3975 		read_unlock(&journal->j_state_lock);
3976 		ei->i_sync_tid = tid;
3977 		ei->i_datasync_tid = tid;
3978 	}
3979 
3980 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3981 		if (ei->i_extra_isize == 0) {
3982 			/* The extra space is currently unused. Use it. */
3983 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3984 					    EXT4_GOOD_OLD_INODE_SIZE;
3985 		} else {
3986 			ext4_iget_extra_inode(inode, raw_inode, ei);
3987 		}
3988 	}
3989 
3990 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3991 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3992 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3993 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3994 
3995 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3996 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3997 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3998 			inode->i_version |=
3999 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4000 	}
4001 
4002 	ret = 0;
4003 	if (ei->i_file_acl &&
4004 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4005 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4006 				 ei->i_file_acl);
4007 		ret = -EIO;
4008 		goto bad_inode;
4009 	} else if (!ext4_has_inline_data(inode)) {
4010 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4011 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4012 			    (S_ISLNK(inode->i_mode) &&
4013 			     !ext4_inode_is_fast_symlink(inode))))
4014 				/* Validate extent which is part of inode */
4015 				ret = ext4_ext_check_inode(inode);
4016 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4017 			   (S_ISLNK(inode->i_mode) &&
4018 			    !ext4_inode_is_fast_symlink(inode))) {
4019 			/* Validate block references which are part of inode */
4020 			ret = ext4_ind_check_inode(inode);
4021 		}
4022 	}
4023 	if (ret)
4024 		goto bad_inode;
4025 
4026 	if (S_ISREG(inode->i_mode)) {
4027 		inode->i_op = &ext4_file_inode_operations;
4028 		inode->i_fop = &ext4_file_operations;
4029 		ext4_set_aops(inode);
4030 	} else if (S_ISDIR(inode->i_mode)) {
4031 		inode->i_op = &ext4_dir_inode_operations;
4032 		inode->i_fop = &ext4_dir_operations;
4033 	} else if (S_ISLNK(inode->i_mode)) {
4034 		if (ext4_inode_is_fast_symlink(inode)) {
4035 			inode->i_op = &ext4_fast_symlink_inode_operations;
4036 			nd_terminate_link(ei->i_data, inode->i_size,
4037 				sizeof(ei->i_data) - 1);
4038 		} else {
4039 			inode->i_op = &ext4_symlink_inode_operations;
4040 			ext4_set_aops(inode);
4041 		}
4042 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4043 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4044 		inode->i_op = &ext4_special_inode_operations;
4045 		if (raw_inode->i_block[0])
4046 			init_special_inode(inode, inode->i_mode,
4047 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4048 		else
4049 			init_special_inode(inode, inode->i_mode,
4050 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4051 	} else {
4052 		ret = -EIO;
4053 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4054 		goto bad_inode;
4055 	}
4056 	brelse(iloc.bh);
4057 	ext4_set_inode_flags(inode);
4058 	unlock_new_inode(inode);
4059 	return inode;
4060 
4061 bad_inode:
4062 	brelse(iloc.bh);
4063 	iget_failed(inode);
4064 	return ERR_PTR(ret);
4065 }
4066 
4067 static int ext4_inode_blocks_set(handle_t *handle,
4068 				struct ext4_inode *raw_inode,
4069 				struct ext4_inode_info *ei)
4070 {
4071 	struct inode *inode = &(ei->vfs_inode);
4072 	u64 i_blocks = inode->i_blocks;
4073 	struct super_block *sb = inode->i_sb;
4074 
4075 	if (i_blocks <= ~0U) {
4076 		/*
4077 		 * i_blocks can be represented in a 32 bit variable
4078 		 * as multiple of 512 bytes
4079 		 */
4080 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4081 		raw_inode->i_blocks_high = 0;
4082 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4083 		return 0;
4084 	}
4085 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4086 		return -EFBIG;
4087 
4088 	if (i_blocks <= 0xffffffffffffULL) {
4089 		/*
4090 		 * i_blocks can be represented in a 48 bit variable
4091 		 * as multiple of 512 bytes
4092 		 */
4093 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4094 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4095 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4096 	} else {
4097 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4098 		/* i_block is stored in file system block size */
4099 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4100 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4101 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4102 	}
4103 	return 0;
4104 }
4105 
4106 /*
4107  * Post the struct inode info into an on-disk inode location in the
4108  * buffer-cache.  This gobbles the caller's reference to the
4109  * buffer_head in the inode location struct.
4110  *
4111  * The caller must have write access to iloc->bh.
4112  */
4113 static int ext4_do_update_inode(handle_t *handle,
4114 				struct inode *inode,
4115 				struct ext4_iloc *iloc)
4116 {
4117 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4118 	struct ext4_inode_info *ei = EXT4_I(inode);
4119 	struct buffer_head *bh = iloc->bh;
4120 	int err = 0, rc, block;
4121 	int need_datasync = 0;
4122 	uid_t i_uid;
4123 	gid_t i_gid;
4124 
4125 	/* For fields not not tracking in the in-memory inode,
4126 	 * initialise them to zero for new inodes. */
4127 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4128 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4129 
4130 	ext4_get_inode_flags(ei);
4131 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4132 	i_uid = i_uid_read(inode);
4133 	i_gid = i_gid_read(inode);
4134 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4135 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4136 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4137 /*
4138  * Fix up interoperability with old kernels. Otherwise, old inodes get
4139  * re-used with the upper 16 bits of the uid/gid intact
4140  */
4141 		if (!ei->i_dtime) {
4142 			raw_inode->i_uid_high =
4143 				cpu_to_le16(high_16_bits(i_uid));
4144 			raw_inode->i_gid_high =
4145 				cpu_to_le16(high_16_bits(i_gid));
4146 		} else {
4147 			raw_inode->i_uid_high = 0;
4148 			raw_inode->i_gid_high = 0;
4149 		}
4150 	} else {
4151 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4152 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4153 		raw_inode->i_uid_high = 0;
4154 		raw_inode->i_gid_high = 0;
4155 	}
4156 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4157 
4158 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4159 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4160 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4161 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4162 
4163 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4164 		goto out_brelse;
4165 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4166 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4167 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4168 	    cpu_to_le32(EXT4_OS_HURD))
4169 		raw_inode->i_file_acl_high =
4170 			cpu_to_le16(ei->i_file_acl >> 32);
4171 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4172 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4173 		ext4_isize_set(raw_inode, ei->i_disksize);
4174 		need_datasync = 1;
4175 	}
4176 	if (ei->i_disksize > 0x7fffffffULL) {
4177 		struct super_block *sb = inode->i_sb;
4178 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4179 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4180 				EXT4_SB(sb)->s_es->s_rev_level ==
4181 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4182 			/* If this is the first large file
4183 			 * created, add a flag to the superblock.
4184 			 */
4185 			err = ext4_journal_get_write_access(handle,
4186 					EXT4_SB(sb)->s_sbh);
4187 			if (err)
4188 				goto out_brelse;
4189 			ext4_update_dynamic_rev(sb);
4190 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4191 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4192 			ext4_handle_sync(handle);
4193 			err = ext4_handle_dirty_super(handle, sb);
4194 		}
4195 	}
4196 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4197 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4198 		if (old_valid_dev(inode->i_rdev)) {
4199 			raw_inode->i_block[0] =
4200 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4201 			raw_inode->i_block[1] = 0;
4202 		} else {
4203 			raw_inode->i_block[0] = 0;
4204 			raw_inode->i_block[1] =
4205 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4206 			raw_inode->i_block[2] = 0;
4207 		}
4208 	} else if (!ext4_has_inline_data(inode)) {
4209 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4210 			raw_inode->i_block[block] = ei->i_data[block];
4211 	}
4212 
4213 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4214 	if (ei->i_extra_isize) {
4215 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4216 			raw_inode->i_version_hi =
4217 			cpu_to_le32(inode->i_version >> 32);
4218 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4219 	}
4220 
4221 	ext4_inode_csum_set(inode, raw_inode, ei);
4222 
4223 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4224 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4225 	if (!err)
4226 		err = rc;
4227 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4228 
4229 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4230 out_brelse:
4231 	brelse(bh);
4232 	ext4_std_error(inode->i_sb, err);
4233 	return err;
4234 }
4235 
4236 /*
4237  * ext4_write_inode()
4238  *
4239  * We are called from a few places:
4240  *
4241  * - Within generic_file_write() for O_SYNC files.
4242  *   Here, there will be no transaction running. We wait for any running
4243  *   transaction to commit.
4244  *
4245  * - Within sys_sync(), kupdate and such.
4246  *   We wait on commit, if tol to.
4247  *
4248  * - Within prune_icache() (PF_MEMALLOC == true)
4249  *   Here we simply return.  We can't afford to block kswapd on the
4250  *   journal commit.
4251  *
4252  * In all cases it is actually safe for us to return without doing anything,
4253  * because the inode has been copied into a raw inode buffer in
4254  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4255  * knfsd.
4256  *
4257  * Note that we are absolutely dependent upon all inode dirtiers doing the
4258  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4259  * which we are interested.
4260  *
4261  * It would be a bug for them to not do this.  The code:
4262  *
4263  *	mark_inode_dirty(inode)
4264  *	stuff();
4265  *	inode->i_size = expr;
4266  *
4267  * is in error because a kswapd-driven write_inode() could occur while
4268  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4269  * will no longer be on the superblock's dirty inode list.
4270  */
4271 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4272 {
4273 	int err;
4274 
4275 	if (current->flags & PF_MEMALLOC)
4276 		return 0;
4277 
4278 	if (EXT4_SB(inode->i_sb)->s_journal) {
4279 		if (ext4_journal_current_handle()) {
4280 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4281 			dump_stack();
4282 			return -EIO;
4283 		}
4284 
4285 		if (wbc->sync_mode != WB_SYNC_ALL)
4286 			return 0;
4287 
4288 		err = ext4_force_commit(inode->i_sb);
4289 	} else {
4290 		struct ext4_iloc iloc;
4291 
4292 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4293 		if (err)
4294 			return err;
4295 		if (wbc->sync_mode == WB_SYNC_ALL)
4296 			sync_dirty_buffer(iloc.bh);
4297 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4298 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4299 					 "IO error syncing inode");
4300 			err = -EIO;
4301 		}
4302 		brelse(iloc.bh);
4303 	}
4304 	return err;
4305 }
4306 
4307 /*
4308  * ext4_setattr()
4309  *
4310  * Called from notify_change.
4311  *
4312  * We want to trap VFS attempts to truncate the file as soon as
4313  * possible.  In particular, we want to make sure that when the VFS
4314  * shrinks i_size, we put the inode on the orphan list and modify
4315  * i_disksize immediately, so that during the subsequent flushing of
4316  * dirty pages and freeing of disk blocks, we can guarantee that any
4317  * commit will leave the blocks being flushed in an unused state on
4318  * disk.  (On recovery, the inode will get truncated and the blocks will
4319  * be freed, so we have a strong guarantee that no future commit will
4320  * leave these blocks visible to the user.)
4321  *
4322  * Another thing we have to assure is that if we are in ordered mode
4323  * and inode is still attached to the committing transaction, we must
4324  * we start writeout of all the dirty pages which are being truncated.
4325  * This way we are sure that all the data written in the previous
4326  * transaction are already on disk (truncate waits for pages under
4327  * writeback).
4328  *
4329  * Called with inode->i_mutex down.
4330  */
4331 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4332 {
4333 	struct inode *inode = dentry->d_inode;
4334 	int error, rc = 0;
4335 	int orphan = 0;
4336 	const unsigned int ia_valid = attr->ia_valid;
4337 
4338 	error = inode_change_ok(inode, attr);
4339 	if (error)
4340 		return error;
4341 
4342 	if (is_quota_modification(inode, attr))
4343 		dquot_initialize(inode);
4344 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4345 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4346 		handle_t *handle;
4347 
4348 		/* (user+group)*(old+new) structure, inode write (sb,
4349 		 * inode block, ? - but truncate inode update has it) */
4350 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4351 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4352 		if (IS_ERR(handle)) {
4353 			error = PTR_ERR(handle);
4354 			goto err_out;
4355 		}
4356 		error = dquot_transfer(inode, attr);
4357 		if (error) {
4358 			ext4_journal_stop(handle);
4359 			return error;
4360 		}
4361 		/* Update corresponding info in inode so that everything is in
4362 		 * one transaction */
4363 		if (attr->ia_valid & ATTR_UID)
4364 			inode->i_uid = attr->ia_uid;
4365 		if (attr->ia_valid & ATTR_GID)
4366 			inode->i_gid = attr->ia_gid;
4367 		error = ext4_mark_inode_dirty(handle, inode);
4368 		ext4_journal_stop(handle);
4369 	}
4370 
4371 	if (attr->ia_valid & ATTR_SIZE) {
4372 
4373 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4374 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4375 
4376 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4377 				return -EFBIG;
4378 		}
4379 	}
4380 
4381 	if (S_ISREG(inode->i_mode) &&
4382 	    attr->ia_valid & ATTR_SIZE &&
4383 	    (attr->ia_size < inode->i_size)) {
4384 		handle_t *handle;
4385 
4386 		handle = ext4_journal_start(inode, 3);
4387 		if (IS_ERR(handle)) {
4388 			error = PTR_ERR(handle);
4389 			goto err_out;
4390 		}
4391 		if (ext4_handle_valid(handle)) {
4392 			error = ext4_orphan_add(handle, inode);
4393 			orphan = 1;
4394 		}
4395 		EXT4_I(inode)->i_disksize = attr->ia_size;
4396 		rc = ext4_mark_inode_dirty(handle, inode);
4397 		if (!error)
4398 			error = rc;
4399 		ext4_journal_stop(handle);
4400 
4401 		if (ext4_should_order_data(inode)) {
4402 			error = ext4_begin_ordered_truncate(inode,
4403 							    attr->ia_size);
4404 			if (error) {
4405 				/* Do as much error cleanup as possible */
4406 				handle = ext4_journal_start(inode, 3);
4407 				if (IS_ERR(handle)) {
4408 					ext4_orphan_del(NULL, inode);
4409 					goto err_out;
4410 				}
4411 				ext4_orphan_del(handle, inode);
4412 				orphan = 0;
4413 				ext4_journal_stop(handle);
4414 				goto err_out;
4415 			}
4416 		}
4417 	}
4418 
4419 	if (attr->ia_valid & ATTR_SIZE) {
4420 		if (attr->ia_size != i_size_read(inode)) {
4421 			truncate_setsize(inode, attr->ia_size);
4422 			/* Inode size will be reduced, wait for dio in flight.
4423 			 * Temporarily disable dioread_nolock to prevent
4424 			 * livelock. */
4425 			if (orphan) {
4426 				ext4_inode_block_unlocked_dio(inode);
4427 				inode_dio_wait(inode);
4428 				ext4_inode_resume_unlocked_dio(inode);
4429 			}
4430 		}
4431 		ext4_truncate(inode);
4432 	}
4433 
4434 	if (!rc) {
4435 		setattr_copy(inode, attr);
4436 		mark_inode_dirty(inode);
4437 	}
4438 
4439 	/*
4440 	 * If the call to ext4_truncate failed to get a transaction handle at
4441 	 * all, we need to clean up the in-core orphan list manually.
4442 	 */
4443 	if (orphan && inode->i_nlink)
4444 		ext4_orphan_del(NULL, inode);
4445 
4446 	if (!rc && (ia_valid & ATTR_MODE))
4447 		rc = ext4_acl_chmod(inode);
4448 
4449 err_out:
4450 	ext4_std_error(inode->i_sb, error);
4451 	if (!error)
4452 		error = rc;
4453 	return error;
4454 }
4455 
4456 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4457 		 struct kstat *stat)
4458 {
4459 	struct inode *inode;
4460 	unsigned long delalloc_blocks;
4461 
4462 	inode = dentry->d_inode;
4463 	generic_fillattr(inode, stat);
4464 
4465 	/*
4466 	 * We can't update i_blocks if the block allocation is delayed
4467 	 * otherwise in the case of system crash before the real block
4468 	 * allocation is done, we will have i_blocks inconsistent with
4469 	 * on-disk file blocks.
4470 	 * We always keep i_blocks updated together with real
4471 	 * allocation. But to not confuse with user, stat
4472 	 * will return the blocks that include the delayed allocation
4473 	 * blocks for this file.
4474 	 */
4475 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4476 				EXT4_I(inode)->i_reserved_data_blocks);
4477 
4478 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4479 	return 0;
4480 }
4481 
4482 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4483 {
4484 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4485 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4486 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4487 }
4488 
4489 /*
4490  * Account for index blocks, block groups bitmaps and block group
4491  * descriptor blocks if modify datablocks and index blocks
4492  * worse case, the indexs blocks spread over different block groups
4493  *
4494  * If datablocks are discontiguous, they are possible to spread over
4495  * different block groups too. If they are contiguous, with flexbg,
4496  * they could still across block group boundary.
4497  *
4498  * Also account for superblock, inode, quota and xattr blocks
4499  */
4500 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4501 {
4502 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4503 	int gdpblocks;
4504 	int idxblocks;
4505 	int ret = 0;
4506 
4507 	/*
4508 	 * How many index blocks need to touch to modify nrblocks?
4509 	 * The "Chunk" flag indicating whether the nrblocks is
4510 	 * physically contiguous on disk
4511 	 *
4512 	 * For Direct IO and fallocate, they calls get_block to allocate
4513 	 * one single extent at a time, so they could set the "Chunk" flag
4514 	 */
4515 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4516 
4517 	ret = idxblocks;
4518 
4519 	/*
4520 	 * Now let's see how many group bitmaps and group descriptors need
4521 	 * to account
4522 	 */
4523 	groups = idxblocks;
4524 	if (chunk)
4525 		groups += 1;
4526 	else
4527 		groups += nrblocks;
4528 
4529 	gdpblocks = groups;
4530 	if (groups > ngroups)
4531 		groups = ngroups;
4532 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4533 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4534 
4535 	/* bitmaps and block group descriptor blocks */
4536 	ret += groups + gdpblocks;
4537 
4538 	/* Blocks for super block, inode, quota and xattr blocks */
4539 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4540 
4541 	return ret;
4542 }
4543 
4544 /*
4545  * Calculate the total number of credits to reserve to fit
4546  * the modification of a single pages into a single transaction,
4547  * which may include multiple chunks of block allocations.
4548  *
4549  * This could be called via ext4_write_begin()
4550  *
4551  * We need to consider the worse case, when
4552  * one new block per extent.
4553  */
4554 int ext4_writepage_trans_blocks(struct inode *inode)
4555 {
4556 	int bpp = ext4_journal_blocks_per_page(inode);
4557 	int ret;
4558 
4559 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4560 
4561 	/* Account for data blocks for journalled mode */
4562 	if (ext4_should_journal_data(inode))
4563 		ret += bpp;
4564 	return ret;
4565 }
4566 
4567 /*
4568  * Calculate the journal credits for a chunk of data modification.
4569  *
4570  * This is called from DIO, fallocate or whoever calling
4571  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4572  *
4573  * journal buffers for data blocks are not included here, as DIO
4574  * and fallocate do no need to journal data buffers.
4575  */
4576 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4577 {
4578 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4579 }
4580 
4581 /*
4582  * The caller must have previously called ext4_reserve_inode_write().
4583  * Give this, we know that the caller already has write access to iloc->bh.
4584  */
4585 int ext4_mark_iloc_dirty(handle_t *handle,
4586 			 struct inode *inode, struct ext4_iloc *iloc)
4587 {
4588 	int err = 0;
4589 
4590 	if (IS_I_VERSION(inode))
4591 		inode_inc_iversion(inode);
4592 
4593 	/* the do_update_inode consumes one bh->b_count */
4594 	get_bh(iloc->bh);
4595 
4596 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4597 	err = ext4_do_update_inode(handle, inode, iloc);
4598 	put_bh(iloc->bh);
4599 	return err;
4600 }
4601 
4602 /*
4603  * On success, We end up with an outstanding reference count against
4604  * iloc->bh.  This _must_ be cleaned up later.
4605  */
4606 
4607 int
4608 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4609 			 struct ext4_iloc *iloc)
4610 {
4611 	int err;
4612 
4613 	err = ext4_get_inode_loc(inode, iloc);
4614 	if (!err) {
4615 		BUFFER_TRACE(iloc->bh, "get_write_access");
4616 		err = ext4_journal_get_write_access(handle, iloc->bh);
4617 		if (err) {
4618 			brelse(iloc->bh);
4619 			iloc->bh = NULL;
4620 		}
4621 	}
4622 	ext4_std_error(inode->i_sb, err);
4623 	return err;
4624 }
4625 
4626 /*
4627  * Expand an inode by new_extra_isize bytes.
4628  * Returns 0 on success or negative error number on failure.
4629  */
4630 static int ext4_expand_extra_isize(struct inode *inode,
4631 				   unsigned int new_extra_isize,
4632 				   struct ext4_iloc iloc,
4633 				   handle_t *handle)
4634 {
4635 	struct ext4_inode *raw_inode;
4636 	struct ext4_xattr_ibody_header *header;
4637 
4638 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4639 		return 0;
4640 
4641 	raw_inode = ext4_raw_inode(&iloc);
4642 
4643 	header = IHDR(inode, raw_inode);
4644 
4645 	/* No extended attributes present */
4646 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4647 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4648 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4649 			new_extra_isize);
4650 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4651 		return 0;
4652 	}
4653 
4654 	/* try to expand with EAs present */
4655 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4656 					  raw_inode, handle);
4657 }
4658 
4659 /*
4660  * What we do here is to mark the in-core inode as clean with respect to inode
4661  * dirtiness (it may still be data-dirty).
4662  * This means that the in-core inode may be reaped by prune_icache
4663  * without having to perform any I/O.  This is a very good thing,
4664  * because *any* task may call prune_icache - even ones which
4665  * have a transaction open against a different journal.
4666  *
4667  * Is this cheating?  Not really.  Sure, we haven't written the
4668  * inode out, but prune_icache isn't a user-visible syncing function.
4669  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4670  * we start and wait on commits.
4671  */
4672 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4673 {
4674 	struct ext4_iloc iloc;
4675 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4676 	static unsigned int mnt_count;
4677 	int err, ret;
4678 
4679 	might_sleep();
4680 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4681 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4682 	if (ext4_handle_valid(handle) &&
4683 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4684 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4685 		/*
4686 		 * We need extra buffer credits since we may write into EA block
4687 		 * with this same handle. If journal_extend fails, then it will
4688 		 * only result in a minor loss of functionality for that inode.
4689 		 * If this is felt to be critical, then e2fsck should be run to
4690 		 * force a large enough s_min_extra_isize.
4691 		 */
4692 		if ((jbd2_journal_extend(handle,
4693 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4694 			ret = ext4_expand_extra_isize(inode,
4695 						      sbi->s_want_extra_isize,
4696 						      iloc, handle);
4697 			if (ret) {
4698 				ext4_set_inode_state(inode,
4699 						     EXT4_STATE_NO_EXPAND);
4700 				if (mnt_count !=
4701 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4702 					ext4_warning(inode->i_sb,
4703 					"Unable to expand inode %lu. Delete"
4704 					" some EAs or run e2fsck.",
4705 					inode->i_ino);
4706 					mnt_count =
4707 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4708 				}
4709 			}
4710 		}
4711 	}
4712 	if (!err)
4713 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4714 	return err;
4715 }
4716 
4717 /*
4718  * ext4_dirty_inode() is called from __mark_inode_dirty()
4719  *
4720  * We're really interested in the case where a file is being extended.
4721  * i_size has been changed by generic_commit_write() and we thus need
4722  * to include the updated inode in the current transaction.
4723  *
4724  * Also, dquot_alloc_block() will always dirty the inode when blocks
4725  * are allocated to the file.
4726  *
4727  * If the inode is marked synchronous, we don't honour that here - doing
4728  * so would cause a commit on atime updates, which we don't bother doing.
4729  * We handle synchronous inodes at the highest possible level.
4730  */
4731 void ext4_dirty_inode(struct inode *inode, int flags)
4732 {
4733 	handle_t *handle;
4734 
4735 	handle = ext4_journal_start(inode, 2);
4736 	if (IS_ERR(handle))
4737 		goto out;
4738 
4739 	ext4_mark_inode_dirty(handle, inode);
4740 
4741 	ext4_journal_stop(handle);
4742 out:
4743 	return;
4744 }
4745 
4746 #if 0
4747 /*
4748  * Bind an inode's backing buffer_head into this transaction, to prevent
4749  * it from being flushed to disk early.  Unlike
4750  * ext4_reserve_inode_write, this leaves behind no bh reference and
4751  * returns no iloc structure, so the caller needs to repeat the iloc
4752  * lookup to mark the inode dirty later.
4753  */
4754 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4755 {
4756 	struct ext4_iloc iloc;
4757 
4758 	int err = 0;
4759 	if (handle) {
4760 		err = ext4_get_inode_loc(inode, &iloc);
4761 		if (!err) {
4762 			BUFFER_TRACE(iloc.bh, "get_write_access");
4763 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4764 			if (!err)
4765 				err = ext4_handle_dirty_metadata(handle,
4766 								 NULL,
4767 								 iloc.bh);
4768 			brelse(iloc.bh);
4769 		}
4770 	}
4771 	ext4_std_error(inode->i_sb, err);
4772 	return err;
4773 }
4774 #endif
4775 
4776 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4777 {
4778 	journal_t *journal;
4779 	handle_t *handle;
4780 	int err;
4781 
4782 	/*
4783 	 * We have to be very careful here: changing a data block's
4784 	 * journaling status dynamically is dangerous.  If we write a
4785 	 * data block to the journal, change the status and then delete
4786 	 * that block, we risk forgetting to revoke the old log record
4787 	 * from the journal and so a subsequent replay can corrupt data.
4788 	 * So, first we make sure that the journal is empty and that
4789 	 * nobody is changing anything.
4790 	 */
4791 
4792 	journal = EXT4_JOURNAL(inode);
4793 	if (!journal)
4794 		return 0;
4795 	if (is_journal_aborted(journal))
4796 		return -EROFS;
4797 	/* We have to allocate physical blocks for delalloc blocks
4798 	 * before flushing journal. otherwise delalloc blocks can not
4799 	 * be allocated any more. even more truncate on delalloc blocks
4800 	 * could trigger BUG by flushing delalloc blocks in journal.
4801 	 * There is no delalloc block in non-journal data mode.
4802 	 */
4803 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4804 		err = ext4_alloc_da_blocks(inode);
4805 		if (err < 0)
4806 			return err;
4807 	}
4808 
4809 	/* Wait for all existing dio workers */
4810 	ext4_inode_block_unlocked_dio(inode);
4811 	inode_dio_wait(inode);
4812 
4813 	jbd2_journal_lock_updates(journal);
4814 
4815 	/*
4816 	 * OK, there are no updates running now, and all cached data is
4817 	 * synced to disk.  We are now in a completely consistent state
4818 	 * which doesn't have anything in the journal, and we know that
4819 	 * no filesystem updates are running, so it is safe to modify
4820 	 * the inode's in-core data-journaling state flag now.
4821 	 */
4822 
4823 	if (val)
4824 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4825 	else {
4826 		jbd2_journal_flush(journal);
4827 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4828 	}
4829 	ext4_set_aops(inode);
4830 
4831 	jbd2_journal_unlock_updates(journal);
4832 	ext4_inode_resume_unlocked_dio(inode);
4833 
4834 	/* Finally we can mark the inode as dirty. */
4835 
4836 	handle = ext4_journal_start(inode, 1);
4837 	if (IS_ERR(handle))
4838 		return PTR_ERR(handle);
4839 
4840 	err = ext4_mark_inode_dirty(handle, inode);
4841 	ext4_handle_sync(handle);
4842 	ext4_journal_stop(handle);
4843 	ext4_std_error(inode->i_sb, err);
4844 
4845 	return err;
4846 }
4847 
4848 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4849 {
4850 	return !buffer_mapped(bh);
4851 }
4852 
4853 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4854 {
4855 	struct page *page = vmf->page;
4856 	loff_t size;
4857 	unsigned long len;
4858 	int ret;
4859 	struct file *file = vma->vm_file;
4860 	struct inode *inode = file->f_path.dentry->d_inode;
4861 	struct address_space *mapping = inode->i_mapping;
4862 	handle_t *handle;
4863 	get_block_t *get_block;
4864 	int retries = 0;
4865 
4866 	sb_start_pagefault(inode->i_sb);
4867 	file_update_time(vma->vm_file);
4868 	/* Delalloc case is easy... */
4869 	if (test_opt(inode->i_sb, DELALLOC) &&
4870 	    !ext4_should_journal_data(inode) &&
4871 	    !ext4_nonda_switch(inode->i_sb)) {
4872 		do {
4873 			ret = __block_page_mkwrite(vma, vmf,
4874 						   ext4_da_get_block_prep);
4875 		} while (ret == -ENOSPC &&
4876 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4877 		goto out_ret;
4878 	}
4879 
4880 	lock_page(page);
4881 	size = i_size_read(inode);
4882 	/* Page got truncated from under us? */
4883 	if (page->mapping != mapping || page_offset(page) > size) {
4884 		unlock_page(page);
4885 		ret = VM_FAULT_NOPAGE;
4886 		goto out;
4887 	}
4888 
4889 	if (page->index == size >> PAGE_CACHE_SHIFT)
4890 		len = size & ~PAGE_CACHE_MASK;
4891 	else
4892 		len = PAGE_CACHE_SIZE;
4893 	/*
4894 	 * Return if we have all the buffers mapped. This avoids the need to do
4895 	 * journal_start/journal_stop which can block and take a long time
4896 	 */
4897 	if (page_has_buffers(page)) {
4898 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4899 					    0, len, NULL,
4900 					    ext4_bh_unmapped)) {
4901 			/* Wait so that we don't change page under IO */
4902 			wait_on_page_writeback(page);
4903 			ret = VM_FAULT_LOCKED;
4904 			goto out;
4905 		}
4906 	}
4907 	unlock_page(page);
4908 	/* OK, we need to fill the hole... */
4909 	if (ext4_should_dioread_nolock(inode))
4910 		get_block = ext4_get_block_write;
4911 	else
4912 		get_block = ext4_get_block;
4913 retry_alloc:
4914 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4915 	if (IS_ERR(handle)) {
4916 		ret = VM_FAULT_SIGBUS;
4917 		goto out;
4918 	}
4919 	ret = __block_page_mkwrite(vma, vmf, get_block);
4920 	if (!ret && ext4_should_journal_data(inode)) {
4921 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4922 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4923 			unlock_page(page);
4924 			ret = VM_FAULT_SIGBUS;
4925 			ext4_journal_stop(handle);
4926 			goto out;
4927 		}
4928 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4929 	}
4930 	ext4_journal_stop(handle);
4931 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4932 		goto retry_alloc;
4933 out_ret:
4934 	ret = block_page_mkwrite_return(ret);
4935 out:
4936 	sb_end_pagefault(inode->i_sb);
4937 	return ret;
4938 }
4939