xref: /linux/fs/ext4/inode.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u32 csum;
55 	__u16 dummy_csum = 0;
56 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 	unsigned int csum_size = sizeof(dummy_csum);
58 
59 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 	offset += csum_size;
62 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
64 
65 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 		offset = offsetof(struct ext4_inode, i_checksum_hi);
67 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 				   EXT4_GOOD_OLD_INODE_SIZE,
69 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
70 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 					   csum_size);
73 			offset += csum_size;
74 			csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75 					   EXT4_INODE_SIZE(inode->i_sb) -
76 					   offset);
77 		}
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks)
265 		ext4_truncate(inode);
266 
267 	/*
268 	 * ext4_ext_truncate() doesn't reserve any slop when it
269 	 * restarts journal transactions; therefore there may not be
270 	 * enough credits left in the handle to remove the inode from
271 	 * the orphan list and set the dtime field.
272 	 */
273 	if (!ext4_handle_has_enough_credits(handle, 3)) {
274 		err = ext4_journal_extend(handle, 3);
275 		if (err > 0)
276 			err = ext4_journal_restart(handle, 3);
277 		if (err != 0) {
278 			ext4_warning(inode->i_sb,
279 				     "couldn't extend journal (err %d)", err);
280 		stop_handle:
281 			ext4_journal_stop(handle);
282 			ext4_orphan_del(NULL, inode);
283 			sb_end_intwrite(inode->i_sb);
284 			goto no_delete;
285 		}
286 	}
287 
288 	/*
289 	 * Kill off the orphan record which ext4_truncate created.
290 	 * AKPM: I think this can be inside the above `if'.
291 	 * Note that ext4_orphan_del() has to be able to cope with the
292 	 * deletion of a non-existent orphan - this is because we don't
293 	 * know if ext4_truncate() actually created an orphan record.
294 	 * (Well, we could do this if we need to, but heck - it works)
295 	 */
296 	ext4_orphan_del(handle, inode);
297 	EXT4_I(inode)->i_dtime	= get_seconds();
298 
299 	/*
300 	 * One subtle ordering requirement: if anything has gone wrong
301 	 * (transaction abort, IO errors, whatever), then we can still
302 	 * do these next steps (the fs will already have been marked as
303 	 * having errors), but we can't free the inode if the mark_dirty
304 	 * fails.
305 	 */
306 	if (ext4_mark_inode_dirty(handle, inode))
307 		/* If that failed, just do the required in-core inode clear. */
308 		ext4_clear_inode(inode);
309 	else
310 		ext4_free_inode(handle, inode);
311 	ext4_journal_stop(handle);
312 	sb_end_intwrite(inode->i_sb);
313 	return;
314 no_delete:
315 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
316 }
317 
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 	return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324 
325 /*
326  * Called with i_data_sem down, which is important since we can call
327  * ext4_discard_preallocations() from here.
328  */
329 void ext4_da_update_reserve_space(struct inode *inode,
330 					int used, int quota_claim)
331 {
332 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 	struct ext4_inode_info *ei = EXT4_I(inode);
334 
335 	spin_lock(&ei->i_block_reservation_lock);
336 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 	if (unlikely(used > ei->i_reserved_data_blocks)) {
338 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 			 "with only %d reserved data blocks",
340 			 __func__, inode->i_ino, used,
341 			 ei->i_reserved_data_blocks);
342 		WARN_ON(1);
343 		used = ei->i_reserved_data_blocks;
344 	}
345 
346 	/* Update per-inode reservations */
347 	ei->i_reserved_data_blocks -= used;
348 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349 
350 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351 
352 	/* Update quota subsystem for data blocks */
353 	if (quota_claim)
354 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 	else {
356 		/*
357 		 * We did fallocate with an offset that is already delayed
358 		 * allocated. So on delayed allocated writeback we should
359 		 * not re-claim the quota for fallocated blocks.
360 		 */
361 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 	}
363 
364 	/*
365 	 * If we have done all the pending block allocations and if
366 	 * there aren't any writers on the inode, we can discard the
367 	 * inode's preallocations.
368 	 */
369 	if ((ei->i_reserved_data_blocks == 0) &&
370 	    (atomic_read(&inode->i_writecount) == 0))
371 		ext4_discard_preallocations(inode);
372 }
373 
374 static int __check_block_validity(struct inode *inode, const char *func,
375 				unsigned int line,
376 				struct ext4_map_blocks *map)
377 {
378 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 				   map->m_len)) {
380 		ext4_error_inode(inode, func, line, map->m_pblk,
381 				 "lblock %lu mapped to illegal pblock "
382 				 "(length %d)", (unsigned long) map->m_lblk,
383 				 map->m_len);
384 		return -EFSCORRUPTED;
385 	}
386 	return 0;
387 }
388 
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390 		       ext4_lblk_t len)
391 {
392 	int ret;
393 
394 	if (ext4_encrypted_inode(inode))
395 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
396 
397 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 	if (ret > 0)
399 		ret = 0;
400 
401 	return ret;
402 }
403 
404 #define check_block_validity(inode, map)	\
405 	__check_block_validity((inode), __func__, __LINE__, (map))
406 
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409 				       struct inode *inode,
410 				       struct ext4_map_blocks *es_map,
411 				       struct ext4_map_blocks *map,
412 				       int flags)
413 {
414 	int retval;
415 
416 	map->m_flags = 0;
417 	/*
418 	 * There is a race window that the result is not the same.
419 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
420 	 * is that we lookup a block mapping in extent status tree with
421 	 * out taking i_data_sem.  So at the time the unwritten extent
422 	 * could be converted.
423 	 */
424 	down_read(&EXT4_I(inode)->i_data_sem);
425 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
427 					     EXT4_GET_BLOCKS_KEEP_SIZE);
428 	} else {
429 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
430 					     EXT4_GET_BLOCKS_KEEP_SIZE);
431 	}
432 	up_read((&EXT4_I(inode)->i_data_sem));
433 
434 	/*
435 	 * We don't check m_len because extent will be collpased in status
436 	 * tree.  So the m_len might not equal.
437 	 */
438 	if (es_map->m_lblk != map->m_lblk ||
439 	    es_map->m_flags != map->m_flags ||
440 	    es_map->m_pblk != map->m_pblk) {
441 		printk("ES cache assertion failed for inode: %lu "
442 		       "es_cached ex [%d/%d/%llu/%x] != "
443 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
445 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
446 		       map->m_len, map->m_pblk, map->m_flags,
447 		       retval, flags);
448 	}
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451 
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocated.  if
465  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467  *
468  * It returns 0 if plain look up failed (blocks have not been allocated), in
469  * that case, @map is returned as unmapped but we still do fill map->m_len to
470  * indicate the length of a hole starting at map->m_lblk.
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475 		    struct ext4_map_blocks *map, int flags)
476 {
477 	struct extent_status es;
478 	int retval;
479 	int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481 	struct ext4_map_blocks orig_map;
482 
483 	memcpy(&orig_map, map, sizeof(*map));
484 #endif
485 
486 	map->m_flags = 0;
487 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
489 		  (unsigned long) map->m_lblk);
490 
491 	/*
492 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 	 */
494 	if (unlikely(map->m_len > INT_MAX))
495 		map->m_len = INT_MAX;
496 
497 	/* We can handle the block number less than EXT_MAX_BLOCKS */
498 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499 		return -EFSCORRUPTED;
500 
501 	/* Lookup extent status tree firstly */
502 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504 			map->m_pblk = ext4_es_pblock(&es) +
505 					map->m_lblk - es.es_lblk;
506 			map->m_flags |= ext4_es_is_written(&es) ?
507 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508 			retval = es.es_len - (map->m_lblk - es.es_lblk);
509 			if (retval > map->m_len)
510 				retval = map->m_len;
511 			map->m_len = retval;
512 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513 			map->m_pblk = 0;
514 			retval = es.es_len - (map->m_lblk - es.es_lblk);
515 			if (retval > map->m_len)
516 				retval = map->m_len;
517 			map->m_len = retval;
518 			retval = 0;
519 		} else {
520 			BUG_ON(1);
521 		}
522 #ifdef ES_AGGRESSIVE_TEST
523 		ext4_map_blocks_es_recheck(handle, inode, map,
524 					   &orig_map, flags);
525 #endif
526 		goto found;
527 	}
528 
529 	/*
530 	 * Try to see if we can get the block without requesting a new
531 	 * file system block.
532 	 */
533 	down_read(&EXT4_I(inode)->i_data_sem);
534 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
536 					     EXT4_GET_BLOCKS_KEEP_SIZE);
537 	} else {
538 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
539 					     EXT4_GET_BLOCKS_KEEP_SIZE);
540 	}
541 	if (retval > 0) {
542 		unsigned int status;
543 
544 		if (unlikely(retval != map->m_len)) {
545 			ext4_warning(inode->i_sb,
546 				     "ES len assertion failed for inode "
547 				     "%lu: retval %d != map->m_len %d",
548 				     inode->i_ino, retval, map->m_len);
549 			WARN_ON(1);
550 		}
551 
552 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555 		    !(status & EXTENT_STATUS_WRITTEN) &&
556 		    ext4_find_delalloc_range(inode, map->m_lblk,
557 					     map->m_lblk + map->m_len - 1))
558 			status |= EXTENT_STATUS_DELAYED;
559 		ret = ext4_es_insert_extent(inode, map->m_lblk,
560 					    map->m_len, map->m_pblk, status);
561 		if (ret < 0)
562 			retval = ret;
563 	}
564 	up_read((&EXT4_I(inode)->i_data_sem));
565 
566 found:
567 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568 		ret = check_block_validity(inode, map);
569 		if (ret != 0)
570 			return ret;
571 	}
572 
573 	/* If it is only a block(s) look up */
574 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575 		return retval;
576 
577 	/*
578 	 * Returns if the blocks have already allocated
579 	 *
580 	 * Note that if blocks have been preallocated
581 	 * ext4_ext_get_block() returns the create = 0
582 	 * with buffer head unmapped.
583 	 */
584 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 		/*
586 		 * If we need to convert extent to unwritten
587 		 * we continue and do the actual work in
588 		 * ext4_ext_map_blocks()
589 		 */
590 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591 			return retval;
592 
593 	/*
594 	 * Here we clear m_flags because after allocating an new extent,
595 	 * it will be set again.
596 	 */
597 	map->m_flags &= ~EXT4_MAP_FLAGS;
598 
599 	/*
600 	 * New blocks allocate and/or writing to unwritten extent
601 	 * will possibly result in updating i_data, so we take
602 	 * the write lock of i_data_sem, and call get_block()
603 	 * with create == 1 flag.
604 	 */
605 	down_write(&EXT4_I(inode)->i_data_sem);
606 
607 	/*
608 	 * We need to check for EXT4 here because migrate
609 	 * could have changed the inode type in between
610 	 */
611 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 	} else {
614 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
615 
616 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 			/*
618 			 * We allocated new blocks which will result in
619 			 * i_data's format changing.  Force the migrate
620 			 * to fail by clearing migrate flags
621 			 */
622 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 		}
624 
625 		/*
626 		 * Update reserved blocks/metadata blocks after successful
627 		 * block allocation which had been deferred till now. We don't
628 		 * support fallocate for non extent files. So we can update
629 		 * reserve space here.
630 		 */
631 		if ((retval > 0) &&
632 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 			ext4_da_update_reserve_space(inode, retval, 1);
634 	}
635 
636 	if (retval > 0) {
637 		unsigned int status;
638 
639 		if (unlikely(retval != map->m_len)) {
640 			ext4_warning(inode->i_sb,
641 				     "ES len assertion failed for inode "
642 				     "%lu: retval %d != map->m_len %d",
643 				     inode->i_ino, retval, map->m_len);
644 			WARN_ON(1);
645 		}
646 
647 		/*
648 		 * We have to zeroout blocks before inserting them into extent
649 		 * status tree. Otherwise someone could look them up there and
650 		 * use them before they are really zeroed.
651 		 */
652 		if (flags & EXT4_GET_BLOCKS_ZERO &&
653 		    map->m_flags & EXT4_MAP_MAPPED &&
654 		    map->m_flags & EXT4_MAP_NEW) {
655 			ret = ext4_issue_zeroout(inode, map->m_lblk,
656 						 map->m_pblk, map->m_len);
657 			if (ret) {
658 				retval = ret;
659 				goto out_sem;
660 			}
661 		}
662 
663 		/*
664 		 * If the extent has been zeroed out, we don't need to update
665 		 * extent status tree.
666 		 */
667 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
668 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
669 			if (ext4_es_is_written(&es))
670 				goto out_sem;
671 		}
672 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
673 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
674 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
675 		    !(status & EXTENT_STATUS_WRITTEN) &&
676 		    ext4_find_delalloc_range(inode, map->m_lblk,
677 					     map->m_lblk + map->m_len - 1))
678 			status |= EXTENT_STATUS_DELAYED;
679 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
680 					    map->m_pblk, status);
681 		if (ret < 0) {
682 			retval = ret;
683 			goto out_sem;
684 		}
685 	}
686 
687 out_sem:
688 	up_write((&EXT4_I(inode)->i_data_sem));
689 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 		ret = check_block_validity(inode, map);
691 		if (ret != 0)
692 			return ret;
693 
694 		/*
695 		 * Inodes with freshly allocated blocks where contents will be
696 		 * visible after transaction commit must be on transaction's
697 		 * ordered data list.
698 		 */
699 		if (map->m_flags & EXT4_MAP_NEW &&
700 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
701 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
702 		    !IS_NOQUOTA(inode) &&
703 		    ext4_should_order_data(inode)) {
704 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
705 				ret = ext4_jbd2_inode_add_wait(handle, inode);
706 			else
707 				ret = ext4_jbd2_inode_add_write(handle, inode);
708 			if (ret)
709 				return ret;
710 		}
711 	}
712 	return retval;
713 }
714 
715 /*
716  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
717  * we have to be careful as someone else may be manipulating b_state as well.
718  */
719 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
720 {
721 	unsigned long old_state;
722 	unsigned long new_state;
723 
724 	flags &= EXT4_MAP_FLAGS;
725 
726 	/* Dummy buffer_head? Set non-atomically. */
727 	if (!bh->b_page) {
728 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
729 		return;
730 	}
731 	/*
732 	 * Someone else may be modifying b_state. Be careful! This is ugly but
733 	 * once we get rid of using bh as a container for mapping information
734 	 * to pass to / from get_block functions, this can go away.
735 	 */
736 	do {
737 		old_state = READ_ONCE(bh->b_state);
738 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
739 	} while (unlikely(
740 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
741 }
742 
743 static int _ext4_get_block(struct inode *inode, sector_t iblock,
744 			   struct buffer_head *bh, int flags)
745 {
746 	struct ext4_map_blocks map;
747 	int ret = 0;
748 
749 	if (ext4_has_inline_data(inode))
750 		return -ERANGE;
751 
752 	map.m_lblk = iblock;
753 	map.m_len = bh->b_size >> inode->i_blkbits;
754 
755 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
756 			      flags);
757 	if (ret > 0) {
758 		map_bh(bh, inode->i_sb, map.m_pblk);
759 		ext4_update_bh_state(bh, map.m_flags);
760 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
761 		ret = 0;
762 	}
763 	return ret;
764 }
765 
766 int ext4_get_block(struct inode *inode, sector_t iblock,
767 		   struct buffer_head *bh, int create)
768 {
769 	return _ext4_get_block(inode, iblock, bh,
770 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
771 }
772 
773 /*
774  * Get block function used when preparing for buffered write if we require
775  * creating an unwritten extent if blocks haven't been allocated.  The extent
776  * will be converted to written after the IO is complete.
777  */
778 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
779 			     struct buffer_head *bh_result, int create)
780 {
781 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
782 		   inode->i_ino, create);
783 	return _ext4_get_block(inode, iblock, bh_result,
784 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
785 }
786 
787 /* Maximum number of blocks we map for direct IO at once. */
788 #define DIO_MAX_BLOCKS 4096
789 
790 /*
791  * Get blocks function for the cases that need to start a transaction -
792  * generally difference cases of direct IO and DAX IO. It also handles retries
793  * in case of ENOSPC.
794  */
795 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
796 				struct buffer_head *bh_result, int flags)
797 {
798 	int dio_credits;
799 	handle_t *handle;
800 	int retries = 0;
801 	int ret;
802 
803 	/* Trim mapping request to maximum we can map at once for DIO */
804 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
805 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
806 	dio_credits = ext4_chunk_trans_blocks(inode,
807 				      bh_result->b_size >> inode->i_blkbits);
808 retry:
809 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
810 	if (IS_ERR(handle))
811 		return PTR_ERR(handle);
812 
813 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
814 	ext4_journal_stop(handle);
815 
816 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
817 		goto retry;
818 	return ret;
819 }
820 
821 /* Get block function for DIO reads and writes to inodes without extents */
822 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
823 		       struct buffer_head *bh, int create)
824 {
825 	/* We don't expect handle for direct IO */
826 	WARN_ON_ONCE(ext4_journal_current_handle());
827 
828 	if (!create)
829 		return _ext4_get_block(inode, iblock, bh, 0);
830 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
831 }
832 
833 /*
834  * Get block function for AIO DIO writes when we create unwritten extent if
835  * blocks are not allocated yet. The extent will be converted to written
836  * after IO is complete.
837  */
838 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
839 		sector_t iblock, struct buffer_head *bh_result,	int create)
840 {
841 	int ret;
842 
843 	/* We don't expect handle for direct IO */
844 	WARN_ON_ONCE(ext4_journal_current_handle());
845 
846 	ret = ext4_get_block_trans(inode, iblock, bh_result,
847 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
848 
849 	/*
850 	 * When doing DIO using unwritten extents, we need io_end to convert
851 	 * unwritten extents to written on IO completion. We allocate io_end
852 	 * once we spot unwritten extent and store it in b_private. Generic
853 	 * DIO code keeps b_private set and furthermore passes the value to
854 	 * our completion callback in 'private' argument.
855 	 */
856 	if (!ret && buffer_unwritten(bh_result)) {
857 		if (!bh_result->b_private) {
858 			ext4_io_end_t *io_end;
859 
860 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
861 			if (!io_end)
862 				return -ENOMEM;
863 			bh_result->b_private = io_end;
864 			ext4_set_io_unwritten_flag(inode, io_end);
865 		}
866 		set_buffer_defer_completion(bh_result);
867 	}
868 
869 	return ret;
870 }
871 
872 /*
873  * Get block function for non-AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete from ext4_ext_direct_IO() function.
876  */
877 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
878 		sector_t iblock, struct buffer_head *bh_result,	int create)
879 {
880 	int ret;
881 
882 	/* We don't expect handle for direct IO */
883 	WARN_ON_ONCE(ext4_journal_current_handle());
884 
885 	ret = ext4_get_block_trans(inode, iblock, bh_result,
886 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
887 
888 	/*
889 	 * Mark inode as having pending DIO writes to unwritten extents.
890 	 * ext4_ext_direct_IO() checks this flag and converts extents to
891 	 * written.
892 	 */
893 	if (!ret && buffer_unwritten(bh_result))
894 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
895 
896 	return ret;
897 }
898 
899 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
900 		   struct buffer_head *bh_result, int create)
901 {
902 	int ret;
903 
904 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
905 		   inode->i_ino, create);
906 	/* We don't expect handle for direct IO */
907 	WARN_ON_ONCE(ext4_journal_current_handle());
908 
909 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
910 	/*
911 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
912 	 * that.
913 	 */
914 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
915 
916 	return ret;
917 }
918 
919 
920 /*
921  * `handle' can be NULL if create is zero
922  */
923 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
924 				ext4_lblk_t block, int map_flags)
925 {
926 	struct ext4_map_blocks map;
927 	struct buffer_head *bh;
928 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
929 	int err;
930 
931 	J_ASSERT(handle != NULL || create == 0);
932 
933 	map.m_lblk = block;
934 	map.m_len = 1;
935 	err = ext4_map_blocks(handle, inode, &map, map_flags);
936 
937 	if (err == 0)
938 		return create ? ERR_PTR(-ENOSPC) : NULL;
939 	if (err < 0)
940 		return ERR_PTR(err);
941 
942 	bh = sb_getblk(inode->i_sb, map.m_pblk);
943 	if (unlikely(!bh))
944 		return ERR_PTR(-ENOMEM);
945 	if (map.m_flags & EXT4_MAP_NEW) {
946 		J_ASSERT(create != 0);
947 		J_ASSERT(handle != NULL);
948 
949 		/*
950 		 * Now that we do not always journal data, we should
951 		 * keep in mind whether this should always journal the
952 		 * new buffer as metadata.  For now, regular file
953 		 * writes use ext4_get_block instead, so it's not a
954 		 * problem.
955 		 */
956 		lock_buffer(bh);
957 		BUFFER_TRACE(bh, "call get_create_access");
958 		err = ext4_journal_get_create_access(handle, bh);
959 		if (unlikely(err)) {
960 			unlock_buffer(bh);
961 			goto errout;
962 		}
963 		if (!buffer_uptodate(bh)) {
964 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
965 			set_buffer_uptodate(bh);
966 		}
967 		unlock_buffer(bh);
968 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
969 		err = ext4_handle_dirty_metadata(handle, inode, bh);
970 		if (unlikely(err))
971 			goto errout;
972 	} else
973 		BUFFER_TRACE(bh, "not a new buffer");
974 	return bh;
975 errout:
976 	brelse(bh);
977 	return ERR_PTR(err);
978 }
979 
980 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
981 			       ext4_lblk_t block, int map_flags)
982 {
983 	struct buffer_head *bh;
984 
985 	bh = ext4_getblk(handle, inode, block, map_flags);
986 	if (IS_ERR(bh))
987 		return bh;
988 	if (!bh || buffer_uptodate(bh))
989 		return bh;
990 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
991 	wait_on_buffer(bh);
992 	if (buffer_uptodate(bh))
993 		return bh;
994 	put_bh(bh);
995 	return ERR_PTR(-EIO);
996 }
997 
998 int ext4_walk_page_buffers(handle_t *handle,
999 			   struct buffer_head *head,
1000 			   unsigned from,
1001 			   unsigned to,
1002 			   int *partial,
1003 			   int (*fn)(handle_t *handle,
1004 				     struct buffer_head *bh))
1005 {
1006 	struct buffer_head *bh;
1007 	unsigned block_start, block_end;
1008 	unsigned blocksize = head->b_size;
1009 	int err, ret = 0;
1010 	struct buffer_head *next;
1011 
1012 	for (bh = head, block_start = 0;
1013 	     ret == 0 && (bh != head || !block_start);
1014 	     block_start = block_end, bh = next) {
1015 		next = bh->b_this_page;
1016 		block_end = block_start + blocksize;
1017 		if (block_end <= from || block_start >= to) {
1018 			if (partial && !buffer_uptodate(bh))
1019 				*partial = 1;
1020 			continue;
1021 		}
1022 		err = (*fn)(handle, bh);
1023 		if (!ret)
1024 			ret = err;
1025 	}
1026 	return ret;
1027 }
1028 
1029 /*
1030  * To preserve ordering, it is essential that the hole instantiation and
1031  * the data write be encapsulated in a single transaction.  We cannot
1032  * close off a transaction and start a new one between the ext4_get_block()
1033  * and the commit_write().  So doing the jbd2_journal_start at the start of
1034  * prepare_write() is the right place.
1035  *
1036  * Also, this function can nest inside ext4_writepage().  In that case, we
1037  * *know* that ext4_writepage() has generated enough buffer credits to do the
1038  * whole page.  So we won't block on the journal in that case, which is good,
1039  * because the caller may be PF_MEMALLOC.
1040  *
1041  * By accident, ext4 can be reentered when a transaction is open via
1042  * quota file writes.  If we were to commit the transaction while thus
1043  * reentered, there can be a deadlock - we would be holding a quota
1044  * lock, and the commit would never complete if another thread had a
1045  * transaction open and was blocking on the quota lock - a ranking
1046  * violation.
1047  *
1048  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1049  * will _not_ run commit under these circumstances because handle->h_ref
1050  * is elevated.  We'll still have enough credits for the tiny quotafile
1051  * write.
1052  */
1053 int do_journal_get_write_access(handle_t *handle,
1054 				struct buffer_head *bh)
1055 {
1056 	int dirty = buffer_dirty(bh);
1057 	int ret;
1058 
1059 	if (!buffer_mapped(bh) || buffer_freed(bh))
1060 		return 0;
1061 	/*
1062 	 * __block_write_begin() could have dirtied some buffers. Clean
1063 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1064 	 * otherwise about fs integrity issues. Setting of the dirty bit
1065 	 * by __block_write_begin() isn't a real problem here as we clear
1066 	 * the bit before releasing a page lock and thus writeback cannot
1067 	 * ever write the buffer.
1068 	 */
1069 	if (dirty)
1070 		clear_buffer_dirty(bh);
1071 	BUFFER_TRACE(bh, "get write access");
1072 	ret = ext4_journal_get_write_access(handle, bh);
1073 	if (!ret && dirty)
1074 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1075 	return ret;
1076 }
1077 
1078 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1079 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1080 				  get_block_t *get_block)
1081 {
1082 	unsigned from = pos & (PAGE_SIZE - 1);
1083 	unsigned to = from + len;
1084 	struct inode *inode = page->mapping->host;
1085 	unsigned block_start, block_end;
1086 	sector_t block;
1087 	int err = 0;
1088 	unsigned blocksize = inode->i_sb->s_blocksize;
1089 	unsigned bbits;
1090 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1091 	bool decrypt = false;
1092 
1093 	BUG_ON(!PageLocked(page));
1094 	BUG_ON(from > PAGE_SIZE);
1095 	BUG_ON(to > PAGE_SIZE);
1096 	BUG_ON(from > to);
1097 
1098 	if (!page_has_buffers(page))
1099 		create_empty_buffers(page, blocksize, 0);
1100 	head = page_buffers(page);
1101 	bbits = ilog2(blocksize);
1102 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1103 
1104 	for (bh = head, block_start = 0; bh != head || !block_start;
1105 	    block++, block_start = block_end, bh = bh->b_this_page) {
1106 		block_end = block_start + blocksize;
1107 		if (block_end <= from || block_start >= to) {
1108 			if (PageUptodate(page)) {
1109 				if (!buffer_uptodate(bh))
1110 					set_buffer_uptodate(bh);
1111 			}
1112 			continue;
1113 		}
1114 		if (buffer_new(bh))
1115 			clear_buffer_new(bh);
1116 		if (!buffer_mapped(bh)) {
1117 			WARN_ON(bh->b_size != blocksize);
1118 			err = get_block(inode, block, bh, 1);
1119 			if (err)
1120 				break;
1121 			if (buffer_new(bh)) {
1122 				unmap_underlying_metadata(bh->b_bdev,
1123 							  bh->b_blocknr);
1124 				if (PageUptodate(page)) {
1125 					clear_buffer_new(bh);
1126 					set_buffer_uptodate(bh);
1127 					mark_buffer_dirty(bh);
1128 					continue;
1129 				}
1130 				if (block_end > to || block_start < from)
1131 					zero_user_segments(page, to, block_end,
1132 							   block_start, from);
1133 				continue;
1134 			}
1135 		}
1136 		if (PageUptodate(page)) {
1137 			if (!buffer_uptodate(bh))
1138 				set_buffer_uptodate(bh);
1139 			continue;
1140 		}
1141 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1142 		    !buffer_unwritten(bh) &&
1143 		    (block_start < from || block_end > to)) {
1144 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1145 			*wait_bh++ = bh;
1146 			decrypt = ext4_encrypted_inode(inode) &&
1147 				S_ISREG(inode->i_mode);
1148 		}
1149 	}
1150 	/*
1151 	 * If we issued read requests, let them complete.
1152 	 */
1153 	while (wait_bh > wait) {
1154 		wait_on_buffer(*--wait_bh);
1155 		if (!buffer_uptodate(*wait_bh))
1156 			err = -EIO;
1157 	}
1158 	if (unlikely(err))
1159 		page_zero_new_buffers(page, from, to);
1160 	else if (decrypt)
1161 		err = fscrypt_decrypt_page(page);
1162 	return err;
1163 }
1164 #endif
1165 
1166 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1167 			    loff_t pos, unsigned len, unsigned flags,
1168 			    struct page **pagep, void **fsdata)
1169 {
1170 	struct inode *inode = mapping->host;
1171 	int ret, needed_blocks;
1172 	handle_t *handle;
1173 	int retries = 0;
1174 	struct page *page;
1175 	pgoff_t index;
1176 	unsigned from, to;
1177 
1178 	trace_ext4_write_begin(inode, pos, len, flags);
1179 	/*
1180 	 * Reserve one block more for addition to orphan list in case
1181 	 * we allocate blocks but write fails for some reason
1182 	 */
1183 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1184 	index = pos >> PAGE_SHIFT;
1185 	from = pos & (PAGE_SIZE - 1);
1186 	to = from + len;
1187 
1188 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1189 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1190 						    flags, pagep);
1191 		if (ret < 0)
1192 			return ret;
1193 		if (ret == 1)
1194 			return 0;
1195 	}
1196 
1197 	/*
1198 	 * grab_cache_page_write_begin() can take a long time if the
1199 	 * system is thrashing due to memory pressure, or if the page
1200 	 * is being written back.  So grab it first before we start
1201 	 * the transaction handle.  This also allows us to allocate
1202 	 * the page (if needed) without using GFP_NOFS.
1203 	 */
1204 retry_grab:
1205 	page = grab_cache_page_write_begin(mapping, index, flags);
1206 	if (!page)
1207 		return -ENOMEM;
1208 	unlock_page(page);
1209 
1210 retry_journal:
1211 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1212 	if (IS_ERR(handle)) {
1213 		put_page(page);
1214 		return PTR_ERR(handle);
1215 	}
1216 
1217 	lock_page(page);
1218 	if (page->mapping != mapping) {
1219 		/* The page got truncated from under us */
1220 		unlock_page(page);
1221 		put_page(page);
1222 		ext4_journal_stop(handle);
1223 		goto retry_grab;
1224 	}
1225 	/* In case writeback began while the page was unlocked */
1226 	wait_for_stable_page(page);
1227 
1228 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1229 	if (ext4_should_dioread_nolock(inode))
1230 		ret = ext4_block_write_begin(page, pos, len,
1231 					     ext4_get_block_unwritten);
1232 	else
1233 		ret = ext4_block_write_begin(page, pos, len,
1234 					     ext4_get_block);
1235 #else
1236 	if (ext4_should_dioread_nolock(inode))
1237 		ret = __block_write_begin(page, pos, len,
1238 					  ext4_get_block_unwritten);
1239 	else
1240 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1241 #endif
1242 	if (!ret && ext4_should_journal_data(inode)) {
1243 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1244 					     from, to, NULL,
1245 					     do_journal_get_write_access);
1246 	}
1247 
1248 	if (ret) {
1249 		unlock_page(page);
1250 		/*
1251 		 * __block_write_begin may have instantiated a few blocks
1252 		 * outside i_size.  Trim these off again. Don't need
1253 		 * i_size_read because we hold i_mutex.
1254 		 *
1255 		 * Add inode to orphan list in case we crash before
1256 		 * truncate finishes
1257 		 */
1258 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1259 			ext4_orphan_add(handle, inode);
1260 
1261 		ext4_journal_stop(handle);
1262 		if (pos + len > inode->i_size) {
1263 			ext4_truncate_failed_write(inode);
1264 			/*
1265 			 * If truncate failed early the inode might
1266 			 * still be on the orphan list; we need to
1267 			 * make sure the inode is removed from the
1268 			 * orphan list in that case.
1269 			 */
1270 			if (inode->i_nlink)
1271 				ext4_orphan_del(NULL, inode);
1272 		}
1273 
1274 		if (ret == -ENOSPC &&
1275 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1276 			goto retry_journal;
1277 		put_page(page);
1278 		return ret;
1279 	}
1280 	*pagep = page;
1281 	return ret;
1282 }
1283 
1284 /* For write_end() in data=journal mode */
1285 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1286 {
1287 	int ret;
1288 	if (!buffer_mapped(bh) || buffer_freed(bh))
1289 		return 0;
1290 	set_buffer_uptodate(bh);
1291 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292 	clear_buffer_meta(bh);
1293 	clear_buffer_prio(bh);
1294 	return ret;
1295 }
1296 
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305 			  struct address_space *mapping,
1306 			  loff_t pos, unsigned len, unsigned copied,
1307 			  struct page *page, void *fsdata)
1308 {
1309 	handle_t *handle = ext4_journal_current_handle();
1310 	struct inode *inode = mapping->host;
1311 	loff_t old_size = inode->i_size;
1312 	int ret = 0, ret2;
1313 	int i_size_changed = 0;
1314 
1315 	trace_ext4_write_end(inode, pos, len, copied);
1316 	if (ext4_has_inline_data(inode)) {
1317 		ret = ext4_write_inline_data_end(inode, pos, len,
1318 						 copied, page);
1319 		if (ret < 0)
1320 			goto errout;
1321 		copied = ret;
1322 	} else
1323 		copied = block_write_end(file, mapping, pos,
1324 					 len, copied, page, fsdata);
1325 	/*
1326 	 * it's important to update i_size while still holding page lock:
1327 	 * page writeout could otherwise come in and zero beyond i_size.
1328 	 */
1329 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1330 	unlock_page(page);
1331 	put_page(page);
1332 
1333 	if (old_size < pos)
1334 		pagecache_isize_extended(inode, old_size, pos);
1335 	/*
1336 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1337 	 * makes the holding time of page lock longer. Second, it forces lock
1338 	 * ordering of page lock and transaction start for journaling
1339 	 * filesystems.
1340 	 */
1341 	if (i_size_changed)
1342 		ext4_mark_inode_dirty(handle, inode);
1343 
1344 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1345 		/* if we have allocated more blocks and copied
1346 		 * less. We will have blocks allocated outside
1347 		 * inode->i_size. So truncate them
1348 		 */
1349 		ext4_orphan_add(handle, inode);
1350 errout:
1351 	ret2 = ext4_journal_stop(handle);
1352 	if (!ret)
1353 		ret = ret2;
1354 
1355 	if (pos + len > inode->i_size) {
1356 		ext4_truncate_failed_write(inode);
1357 		/*
1358 		 * If truncate failed early the inode might still be
1359 		 * on the orphan list; we need to make sure the inode
1360 		 * is removed from the orphan list in that case.
1361 		 */
1362 		if (inode->i_nlink)
1363 			ext4_orphan_del(NULL, inode);
1364 	}
1365 
1366 	return ret ? ret : copied;
1367 }
1368 
1369 /*
1370  * This is a private version of page_zero_new_buffers() which doesn't
1371  * set the buffer to be dirty, since in data=journalled mode we need
1372  * to call ext4_handle_dirty_metadata() instead.
1373  */
1374 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1375 {
1376 	unsigned int block_start = 0, block_end;
1377 	struct buffer_head *head, *bh;
1378 
1379 	bh = head = page_buffers(page);
1380 	do {
1381 		block_end = block_start + bh->b_size;
1382 		if (buffer_new(bh)) {
1383 			if (block_end > from && block_start < to) {
1384 				if (!PageUptodate(page)) {
1385 					unsigned start, size;
1386 
1387 					start = max(from, block_start);
1388 					size = min(to, block_end) - start;
1389 
1390 					zero_user(page, start, size);
1391 					set_buffer_uptodate(bh);
1392 				}
1393 				clear_buffer_new(bh);
1394 			}
1395 		}
1396 		block_start = block_end;
1397 		bh = bh->b_this_page;
1398 	} while (bh != head);
1399 }
1400 
1401 static int ext4_journalled_write_end(struct file *file,
1402 				     struct address_space *mapping,
1403 				     loff_t pos, unsigned len, unsigned copied,
1404 				     struct page *page, void *fsdata)
1405 {
1406 	handle_t *handle = ext4_journal_current_handle();
1407 	struct inode *inode = mapping->host;
1408 	loff_t old_size = inode->i_size;
1409 	int ret = 0, ret2;
1410 	int partial = 0;
1411 	unsigned from, to;
1412 	int size_changed = 0;
1413 
1414 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1415 	from = pos & (PAGE_SIZE - 1);
1416 	to = from + len;
1417 
1418 	BUG_ON(!ext4_handle_valid(handle));
1419 
1420 	if (ext4_has_inline_data(inode))
1421 		copied = ext4_write_inline_data_end(inode, pos, len,
1422 						    copied, page);
1423 	else {
1424 		if (copied < len) {
1425 			if (!PageUptodate(page))
1426 				copied = 0;
1427 			zero_new_buffers(page, from+copied, to);
1428 		}
1429 
1430 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1431 					     to, &partial, write_end_fn);
1432 		if (!partial)
1433 			SetPageUptodate(page);
1434 	}
1435 	size_changed = ext4_update_inode_size(inode, pos + copied);
1436 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1437 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1438 	unlock_page(page);
1439 	put_page(page);
1440 
1441 	if (old_size < pos)
1442 		pagecache_isize_extended(inode, old_size, pos);
1443 
1444 	if (size_changed) {
1445 		ret2 = ext4_mark_inode_dirty(handle, inode);
1446 		if (!ret)
1447 			ret = ret2;
1448 	}
1449 
1450 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1451 		/* if we have allocated more blocks and copied
1452 		 * less. We will have blocks allocated outside
1453 		 * inode->i_size. So truncate them
1454 		 */
1455 		ext4_orphan_add(handle, inode);
1456 
1457 	ret2 = ext4_journal_stop(handle);
1458 	if (!ret)
1459 		ret = ret2;
1460 	if (pos + len > inode->i_size) {
1461 		ext4_truncate_failed_write(inode);
1462 		/*
1463 		 * If truncate failed early the inode might still be
1464 		 * on the orphan list; we need to make sure the inode
1465 		 * is removed from the orphan list in that case.
1466 		 */
1467 		if (inode->i_nlink)
1468 			ext4_orphan_del(NULL, inode);
1469 	}
1470 
1471 	return ret ? ret : copied;
1472 }
1473 
1474 /*
1475  * Reserve space for a single cluster
1476  */
1477 static int ext4_da_reserve_space(struct inode *inode)
1478 {
1479 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 	struct ext4_inode_info *ei = EXT4_I(inode);
1481 	int ret;
1482 
1483 	/*
1484 	 * We will charge metadata quota at writeout time; this saves
1485 	 * us from metadata over-estimation, though we may go over by
1486 	 * a small amount in the end.  Here we just reserve for data.
1487 	 */
1488 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1489 	if (ret)
1490 		return ret;
1491 
1492 	spin_lock(&ei->i_block_reservation_lock);
1493 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1494 		spin_unlock(&ei->i_block_reservation_lock);
1495 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1496 		return -ENOSPC;
1497 	}
1498 	ei->i_reserved_data_blocks++;
1499 	trace_ext4_da_reserve_space(inode);
1500 	spin_unlock(&ei->i_block_reservation_lock);
1501 
1502 	return 0;       /* success */
1503 }
1504 
1505 static void ext4_da_release_space(struct inode *inode, int to_free)
1506 {
1507 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508 	struct ext4_inode_info *ei = EXT4_I(inode);
1509 
1510 	if (!to_free)
1511 		return;		/* Nothing to release, exit */
1512 
1513 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1514 
1515 	trace_ext4_da_release_space(inode, to_free);
1516 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1517 		/*
1518 		 * if there aren't enough reserved blocks, then the
1519 		 * counter is messed up somewhere.  Since this
1520 		 * function is called from invalidate page, it's
1521 		 * harmless to return without any action.
1522 		 */
1523 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1524 			 "ino %lu, to_free %d with only %d reserved "
1525 			 "data blocks", inode->i_ino, to_free,
1526 			 ei->i_reserved_data_blocks);
1527 		WARN_ON(1);
1528 		to_free = ei->i_reserved_data_blocks;
1529 	}
1530 	ei->i_reserved_data_blocks -= to_free;
1531 
1532 	/* update fs dirty data blocks counter */
1533 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1534 
1535 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536 
1537 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1538 }
1539 
1540 static void ext4_da_page_release_reservation(struct page *page,
1541 					     unsigned int offset,
1542 					     unsigned int length)
1543 {
1544 	int to_release = 0, contiguous_blks = 0;
1545 	struct buffer_head *head, *bh;
1546 	unsigned int curr_off = 0;
1547 	struct inode *inode = page->mapping->host;
1548 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1549 	unsigned int stop = offset + length;
1550 	int num_clusters;
1551 	ext4_fsblk_t lblk;
1552 
1553 	BUG_ON(stop > PAGE_SIZE || stop < length);
1554 
1555 	head = page_buffers(page);
1556 	bh = head;
1557 	do {
1558 		unsigned int next_off = curr_off + bh->b_size;
1559 
1560 		if (next_off > stop)
1561 			break;
1562 
1563 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1564 			to_release++;
1565 			contiguous_blks++;
1566 			clear_buffer_delay(bh);
1567 		} else if (contiguous_blks) {
1568 			lblk = page->index <<
1569 			       (PAGE_SHIFT - inode->i_blkbits);
1570 			lblk += (curr_off >> inode->i_blkbits) -
1571 				contiguous_blks;
1572 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1573 			contiguous_blks = 0;
1574 		}
1575 		curr_off = next_off;
1576 	} while ((bh = bh->b_this_page) != head);
1577 
1578 	if (contiguous_blks) {
1579 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1580 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1581 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1582 	}
1583 
1584 	/* If we have released all the blocks belonging to a cluster, then we
1585 	 * need to release the reserved space for that cluster. */
1586 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1587 	while (num_clusters > 0) {
1588 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1589 			((num_clusters - 1) << sbi->s_cluster_bits);
1590 		if (sbi->s_cluster_ratio == 1 ||
1591 		    !ext4_find_delalloc_cluster(inode, lblk))
1592 			ext4_da_release_space(inode, 1);
1593 
1594 		num_clusters--;
1595 	}
1596 }
1597 
1598 /*
1599  * Delayed allocation stuff
1600  */
1601 
1602 struct mpage_da_data {
1603 	struct inode *inode;
1604 	struct writeback_control *wbc;
1605 
1606 	pgoff_t first_page;	/* The first page to write */
1607 	pgoff_t next_page;	/* Current page to examine */
1608 	pgoff_t last_page;	/* Last page to examine */
1609 	/*
1610 	 * Extent to map - this can be after first_page because that can be
1611 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1612 	 * is delalloc or unwritten.
1613 	 */
1614 	struct ext4_map_blocks map;
1615 	struct ext4_io_submit io_submit;	/* IO submission data */
1616 };
1617 
1618 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1619 				       bool invalidate)
1620 {
1621 	int nr_pages, i;
1622 	pgoff_t index, end;
1623 	struct pagevec pvec;
1624 	struct inode *inode = mpd->inode;
1625 	struct address_space *mapping = inode->i_mapping;
1626 
1627 	/* This is necessary when next_page == 0. */
1628 	if (mpd->first_page >= mpd->next_page)
1629 		return;
1630 
1631 	index = mpd->first_page;
1632 	end   = mpd->next_page - 1;
1633 	if (invalidate) {
1634 		ext4_lblk_t start, last;
1635 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1636 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1637 		ext4_es_remove_extent(inode, start, last - start + 1);
1638 	}
1639 
1640 	pagevec_init(&pvec, 0);
1641 	while (index <= end) {
1642 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1643 		if (nr_pages == 0)
1644 			break;
1645 		for (i = 0; i < nr_pages; i++) {
1646 			struct page *page = pvec.pages[i];
1647 			if (page->index > end)
1648 				break;
1649 			BUG_ON(!PageLocked(page));
1650 			BUG_ON(PageWriteback(page));
1651 			if (invalidate) {
1652 				block_invalidatepage(page, 0, PAGE_SIZE);
1653 				ClearPageUptodate(page);
1654 			}
1655 			unlock_page(page);
1656 		}
1657 		index = pvec.pages[nr_pages - 1]->index + 1;
1658 		pagevec_release(&pvec);
1659 	}
1660 }
1661 
1662 static void ext4_print_free_blocks(struct inode *inode)
1663 {
1664 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1665 	struct super_block *sb = inode->i_sb;
1666 	struct ext4_inode_info *ei = EXT4_I(inode);
1667 
1668 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1669 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1670 			ext4_count_free_clusters(sb)));
1671 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1672 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1673 	       (long long) EXT4_C2B(EXT4_SB(sb),
1674 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1675 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1676 	       (long long) EXT4_C2B(EXT4_SB(sb),
1677 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1678 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1679 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1680 		 ei->i_reserved_data_blocks);
1681 	return;
1682 }
1683 
1684 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1685 {
1686 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1687 }
1688 
1689 /*
1690  * This function is grabs code from the very beginning of
1691  * ext4_map_blocks, but assumes that the caller is from delayed write
1692  * time. This function looks up the requested blocks and sets the
1693  * buffer delay bit under the protection of i_data_sem.
1694  */
1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1696 			      struct ext4_map_blocks *map,
1697 			      struct buffer_head *bh)
1698 {
1699 	struct extent_status es;
1700 	int retval;
1701 	sector_t invalid_block = ~((sector_t) 0xffff);
1702 #ifdef ES_AGGRESSIVE_TEST
1703 	struct ext4_map_blocks orig_map;
1704 
1705 	memcpy(&orig_map, map, sizeof(*map));
1706 #endif
1707 
1708 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1709 		invalid_block = ~0;
1710 
1711 	map->m_flags = 0;
1712 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1713 		  "logical block %lu\n", inode->i_ino, map->m_len,
1714 		  (unsigned long) map->m_lblk);
1715 
1716 	/* Lookup extent status tree firstly */
1717 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1718 		if (ext4_es_is_hole(&es)) {
1719 			retval = 0;
1720 			down_read(&EXT4_I(inode)->i_data_sem);
1721 			goto add_delayed;
1722 		}
1723 
1724 		/*
1725 		 * Delayed extent could be allocated by fallocate.
1726 		 * So we need to check it.
1727 		 */
1728 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 			map_bh(bh, inode->i_sb, invalid_block);
1730 			set_buffer_new(bh);
1731 			set_buffer_delay(bh);
1732 			return 0;
1733 		}
1734 
1735 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 		retval = es.es_len - (iblock - es.es_lblk);
1737 		if (retval > map->m_len)
1738 			retval = map->m_len;
1739 		map->m_len = retval;
1740 		if (ext4_es_is_written(&es))
1741 			map->m_flags |= EXT4_MAP_MAPPED;
1742 		else if (ext4_es_is_unwritten(&es))
1743 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1744 		else
1745 			BUG_ON(1);
1746 
1747 #ifdef ES_AGGRESSIVE_TEST
1748 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750 		return retval;
1751 	}
1752 
1753 	/*
1754 	 * Try to see if we can get the block without requesting a new
1755 	 * file system block.
1756 	 */
1757 	down_read(&EXT4_I(inode)->i_data_sem);
1758 	if (ext4_has_inline_data(inode))
1759 		retval = 0;
1760 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762 	else
1763 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764 
1765 add_delayed:
1766 	if (retval == 0) {
1767 		int ret;
1768 		/*
1769 		 * XXX: __block_prepare_write() unmaps passed block,
1770 		 * is it OK?
1771 		 */
1772 		/*
1773 		 * If the block was allocated from previously allocated cluster,
1774 		 * then we don't need to reserve it again. However we still need
1775 		 * to reserve metadata for every block we're going to write.
1776 		 */
1777 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1778 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1779 			ret = ext4_da_reserve_space(inode);
1780 			if (ret) {
1781 				/* not enough space to reserve */
1782 				retval = ret;
1783 				goto out_unlock;
1784 			}
1785 		}
1786 
1787 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1788 					    ~0, EXTENT_STATUS_DELAYED);
1789 		if (ret) {
1790 			retval = ret;
1791 			goto out_unlock;
1792 		}
1793 
1794 		map_bh(bh, inode->i_sb, invalid_block);
1795 		set_buffer_new(bh);
1796 		set_buffer_delay(bh);
1797 	} else if (retval > 0) {
1798 		int ret;
1799 		unsigned int status;
1800 
1801 		if (unlikely(retval != map->m_len)) {
1802 			ext4_warning(inode->i_sb,
1803 				     "ES len assertion failed for inode "
1804 				     "%lu: retval %d != map->m_len %d",
1805 				     inode->i_ino, retval, map->m_len);
1806 			WARN_ON(1);
1807 		}
1808 
1809 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1810 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1811 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1812 					    map->m_pblk, status);
1813 		if (ret != 0)
1814 			retval = ret;
1815 	}
1816 
1817 out_unlock:
1818 	up_read((&EXT4_I(inode)->i_data_sem));
1819 
1820 	return retval;
1821 }
1822 
1823 /*
1824  * This is a special get_block_t callback which is used by
1825  * ext4_da_write_begin().  It will either return mapped block or
1826  * reserve space for a single block.
1827  *
1828  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1829  * We also have b_blocknr = -1 and b_bdev initialized properly
1830  *
1831  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1832  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1833  * initialized properly.
1834  */
1835 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1836 			   struct buffer_head *bh, int create)
1837 {
1838 	struct ext4_map_blocks map;
1839 	int ret = 0;
1840 
1841 	BUG_ON(create == 0);
1842 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1843 
1844 	map.m_lblk = iblock;
1845 	map.m_len = 1;
1846 
1847 	/*
1848 	 * first, we need to know whether the block is allocated already
1849 	 * preallocated blocks are unmapped but should treated
1850 	 * the same as allocated blocks.
1851 	 */
1852 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1853 	if (ret <= 0)
1854 		return ret;
1855 
1856 	map_bh(bh, inode->i_sb, map.m_pblk);
1857 	ext4_update_bh_state(bh, map.m_flags);
1858 
1859 	if (buffer_unwritten(bh)) {
1860 		/* A delayed write to unwritten bh should be marked
1861 		 * new and mapped.  Mapped ensures that we don't do
1862 		 * get_block multiple times when we write to the same
1863 		 * offset and new ensures that we do proper zero out
1864 		 * for partial write.
1865 		 */
1866 		set_buffer_new(bh);
1867 		set_buffer_mapped(bh);
1868 	}
1869 	return 0;
1870 }
1871 
1872 static int bget_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874 	get_bh(bh);
1875 	return 0;
1876 }
1877 
1878 static int bput_one(handle_t *handle, struct buffer_head *bh)
1879 {
1880 	put_bh(bh);
1881 	return 0;
1882 }
1883 
1884 static int __ext4_journalled_writepage(struct page *page,
1885 				       unsigned int len)
1886 {
1887 	struct address_space *mapping = page->mapping;
1888 	struct inode *inode = mapping->host;
1889 	struct buffer_head *page_bufs = NULL;
1890 	handle_t *handle = NULL;
1891 	int ret = 0, err = 0;
1892 	int inline_data = ext4_has_inline_data(inode);
1893 	struct buffer_head *inode_bh = NULL;
1894 
1895 	ClearPageChecked(page);
1896 
1897 	if (inline_data) {
1898 		BUG_ON(page->index != 0);
1899 		BUG_ON(len > ext4_get_max_inline_size(inode));
1900 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1901 		if (inode_bh == NULL)
1902 			goto out;
1903 	} else {
1904 		page_bufs = page_buffers(page);
1905 		if (!page_bufs) {
1906 			BUG();
1907 			goto out;
1908 		}
1909 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1910 				       NULL, bget_one);
1911 	}
1912 	/*
1913 	 * We need to release the page lock before we start the
1914 	 * journal, so grab a reference so the page won't disappear
1915 	 * out from under us.
1916 	 */
1917 	get_page(page);
1918 	unlock_page(page);
1919 
1920 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1921 				    ext4_writepage_trans_blocks(inode));
1922 	if (IS_ERR(handle)) {
1923 		ret = PTR_ERR(handle);
1924 		put_page(page);
1925 		goto out_no_pagelock;
1926 	}
1927 	BUG_ON(!ext4_handle_valid(handle));
1928 
1929 	lock_page(page);
1930 	put_page(page);
1931 	if (page->mapping != mapping) {
1932 		/* The page got truncated from under us */
1933 		ext4_journal_stop(handle);
1934 		ret = 0;
1935 		goto out;
1936 	}
1937 
1938 	if (inline_data) {
1939 		BUFFER_TRACE(inode_bh, "get write access");
1940 		ret = ext4_journal_get_write_access(handle, inode_bh);
1941 
1942 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1943 
1944 	} else {
1945 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1946 					     do_journal_get_write_access);
1947 
1948 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1949 					     write_end_fn);
1950 	}
1951 	if (ret == 0)
1952 		ret = err;
1953 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1954 	err = ext4_journal_stop(handle);
1955 	if (!ret)
1956 		ret = err;
1957 
1958 	if (!ext4_has_inline_data(inode))
1959 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1960 				       NULL, bput_one);
1961 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1962 out:
1963 	unlock_page(page);
1964 out_no_pagelock:
1965 	brelse(inode_bh);
1966 	return ret;
1967 }
1968 
1969 /*
1970  * Note that we don't need to start a transaction unless we're journaling data
1971  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1972  * need to file the inode to the transaction's list in ordered mode because if
1973  * we are writing back data added by write(), the inode is already there and if
1974  * we are writing back data modified via mmap(), no one guarantees in which
1975  * transaction the data will hit the disk. In case we are journaling data, we
1976  * cannot start transaction directly because transaction start ranks above page
1977  * lock so we have to do some magic.
1978  *
1979  * This function can get called via...
1980  *   - ext4_writepages after taking page lock (have journal handle)
1981  *   - journal_submit_inode_data_buffers (no journal handle)
1982  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1983  *   - grab_page_cache when doing write_begin (have journal handle)
1984  *
1985  * We don't do any block allocation in this function. If we have page with
1986  * multiple blocks we need to write those buffer_heads that are mapped. This
1987  * is important for mmaped based write. So if we do with blocksize 1K
1988  * truncate(f, 1024);
1989  * a = mmap(f, 0, 4096);
1990  * a[0] = 'a';
1991  * truncate(f, 4096);
1992  * we have in the page first buffer_head mapped via page_mkwrite call back
1993  * but other buffer_heads would be unmapped but dirty (dirty done via the
1994  * do_wp_page). So writepage should write the first block. If we modify
1995  * the mmap area beyond 1024 we will again get a page_fault and the
1996  * page_mkwrite callback will do the block allocation and mark the
1997  * buffer_heads mapped.
1998  *
1999  * We redirty the page if we have any buffer_heads that is either delay or
2000  * unwritten in the page.
2001  *
2002  * We can get recursively called as show below.
2003  *
2004  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2005  *		ext4_writepage()
2006  *
2007  * But since we don't do any block allocation we should not deadlock.
2008  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2009  */
2010 static int ext4_writepage(struct page *page,
2011 			  struct writeback_control *wbc)
2012 {
2013 	int ret = 0;
2014 	loff_t size;
2015 	unsigned int len;
2016 	struct buffer_head *page_bufs = NULL;
2017 	struct inode *inode = page->mapping->host;
2018 	struct ext4_io_submit io_submit;
2019 	bool keep_towrite = false;
2020 
2021 	trace_ext4_writepage(page);
2022 	size = i_size_read(inode);
2023 	if (page->index == size >> PAGE_SHIFT)
2024 		len = size & ~PAGE_MASK;
2025 	else
2026 		len = PAGE_SIZE;
2027 
2028 	page_bufs = page_buffers(page);
2029 	/*
2030 	 * We cannot do block allocation or other extent handling in this
2031 	 * function. If there are buffers needing that, we have to redirty
2032 	 * the page. But we may reach here when we do a journal commit via
2033 	 * journal_submit_inode_data_buffers() and in that case we must write
2034 	 * allocated buffers to achieve data=ordered mode guarantees.
2035 	 *
2036 	 * Also, if there is only one buffer per page (the fs block
2037 	 * size == the page size), if one buffer needs block
2038 	 * allocation or needs to modify the extent tree to clear the
2039 	 * unwritten flag, we know that the page can't be written at
2040 	 * all, so we might as well refuse the write immediately.
2041 	 * Unfortunately if the block size != page size, we can't as
2042 	 * easily detect this case using ext4_walk_page_buffers(), but
2043 	 * for the extremely common case, this is an optimization that
2044 	 * skips a useless round trip through ext4_bio_write_page().
2045 	 */
2046 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2047 				   ext4_bh_delay_or_unwritten)) {
2048 		redirty_page_for_writepage(wbc, page);
2049 		if ((current->flags & PF_MEMALLOC) ||
2050 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2051 			/*
2052 			 * For memory cleaning there's no point in writing only
2053 			 * some buffers. So just bail out. Warn if we came here
2054 			 * from direct reclaim.
2055 			 */
2056 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2057 							== PF_MEMALLOC);
2058 			unlock_page(page);
2059 			return 0;
2060 		}
2061 		keep_towrite = true;
2062 	}
2063 
2064 	if (PageChecked(page) && ext4_should_journal_data(inode))
2065 		/*
2066 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2067 		 * doesn't seem much point in redirtying the page here.
2068 		 */
2069 		return __ext4_journalled_writepage(page, len);
2070 
2071 	ext4_io_submit_init(&io_submit, wbc);
2072 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2073 	if (!io_submit.io_end) {
2074 		redirty_page_for_writepage(wbc, page);
2075 		unlock_page(page);
2076 		return -ENOMEM;
2077 	}
2078 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2079 	ext4_io_submit(&io_submit);
2080 	/* Drop io_end reference we got from init */
2081 	ext4_put_io_end_defer(io_submit.io_end);
2082 	return ret;
2083 }
2084 
2085 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2086 {
2087 	int len;
2088 	loff_t size = i_size_read(mpd->inode);
2089 	int err;
2090 
2091 	BUG_ON(page->index != mpd->first_page);
2092 	if (page->index == size >> PAGE_SHIFT)
2093 		len = size & ~PAGE_MASK;
2094 	else
2095 		len = PAGE_SIZE;
2096 	clear_page_dirty_for_io(page);
2097 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2098 	if (!err)
2099 		mpd->wbc->nr_to_write--;
2100 	mpd->first_page++;
2101 
2102 	return err;
2103 }
2104 
2105 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2106 
2107 /*
2108  * mballoc gives us at most this number of blocks...
2109  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2110  * The rest of mballoc seems to handle chunks up to full group size.
2111  */
2112 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2113 
2114 /*
2115  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2116  *
2117  * @mpd - extent of blocks
2118  * @lblk - logical number of the block in the file
2119  * @bh - buffer head we want to add to the extent
2120  *
2121  * The function is used to collect contig. blocks in the same state. If the
2122  * buffer doesn't require mapping for writeback and we haven't started the
2123  * extent of buffers to map yet, the function returns 'true' immediately - the
2124  * caller can write the buffer right away. Otherwise the function returns true
2125  * if the block has been added to the extent, false if the block couldn't be
2126  * added.
2127  */
2128 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2129 				   struct buffer_head *bh)
2130 {
2131 	struct ext4_map_blocks *map = &mpd->map;
2132 
2133 	/* Buffer that doesn't need mapping for writeback? */
2134 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2135 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2136 		/* So far no extent to map => we write the buffer right away */
2137 		if (map->m_len == 0)
2138 			return true;
2139 		return false;
2140 	}
2141 
2142 	/* First block in the extent? */
2143 	if (map->m_len == 0) {
2144 		map->m_lblk = lblk;
2145 		map->m_len = 1;
2146 		map->m_flags = bh->b_state & BH_FLAGS;
2147 		return true;
2148 	}
2149 
2150 	/* Don't go larger than mballoc is willing to allocate */
2151 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2152 		return false;
2153 
2154 	/* Can we merge the block to our big extent? */
2155 	if (lblk == map->m_lblk + map->m_len &&
2156 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2157 		map->m_len++;
2158 		return true;
2159 	}
2160 	return false;
2161 }
2162 
2163 /*
2164  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2165  *
2166  * @mpd - extent of blocks for mapping
2167  * @head - the first buffer in the page
2168  * @bh - buffer we should start processing from
2169  * @lblk - logical number of the block in the file corresponding to @bh
2170  *
2171  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2172  * the page for IO if all buffers in this page were mapped and there's no
2173  * accumulated extent of buffers to map or add buffers in the page to the
2174  * extent of buffers to map. The function returns 1 if the caller can continue
2175  * by processing the next page, 0 if it should stop adding buffers to the
2176  * extent to map because we cannot extend it anymore. It can also return value
2177  * < 0 in case of error during IO submission.
2178  */
2179 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2180 				   struct buffer_head *head,
2181 				   struct buffer_head *bh,
2182 				   ext4_lblk_t lblk)
2183 {
2184 	struct inode *inode = mpd->inode;
2185 	int err;
2186 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2187 							>> inode->i_blkbits;
2188 
2189 	do {
2190 		BUG_ON(buffer_locked(bh));
2191 
2192 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2193 			/* Found extent to map? */
2194 			if (mpd->map.m_len)
2195 				return 0;
2196 			/* Everything mapped so far and we hit EOF */
2197 			break;
2198 		}
2199 	} while (lblk++, (bh = bh->b_this_page) != head);
2200 	/* So far everything mapped? Submit the page for IO. */
2201 	if (mpd->map.m_len == 0) {
2202 		err = mpage_submit_page(mpd, head->b_page);
2203 		if (err < 0)
2204 			return err;
2205 	}
2206 	return lblk < blocks;
2207 }
2208 
2209 /*
2210  * mpage_map_buffers - update buffers corresponding to changed extent and
2211  *		       submit fully mapped pages for IO
2212  *
2213  * @mpd - description of extent to map, on return next extent to map
2214  *
2215  * Scan buffers corresponding to changed extent (we expect corresponding pages
2216  * to be already locked) and update buffer state according to new extent state.
2217  * We map delalloc buffers to their physical location, clear unwritten bits,
2218  * and mark buffers as uninit when we perform writes to unwritten extents
2219  * and do extent conversion after IO is finished. If the last page is not fully
2220  * mapped, we update @map to the next extent in the last page that needs
2221  * mapping. Otherwise we submit the page for IO.
2222  */
2223 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2224 {
2225 	struct pagevec pvec;
2226 	int nr_pages, i;
2227 	struct inode *inode = mpd->inode;
2228 	struct buffer_head *head, *bh;
2229 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2230 	pgoff_t start, end;
2231 	ext4_lblk_t lblk;
2232 	sector_t pblock;
2233 	int err;
2234 
2235 	start = mpd->map.m_lblk >> bpp_bits;
2236 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2237 	lblk = start << bpp_bits;
2238 	pblock = mpd->map.m_pblk;
2239 
2240 	pagevec_init(&pvec, 0);
2241 	while (start <= end) {
2242 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2243 					  PAGEVEC_SIZE);
2244 		if (nr_pages == 0)
2245 			break;
2246 		for (i = 0; i < nr_pages; i++) {
2247 			struct page *page = pvec.pages[i];
2248 
2249 			if (page->index > end)
2250 				break;
2251 			/* Up to 'end' pages must be contiguous */
2252 			BUG_ON(page->index != start);
2253 			bh = head = page_buffers(page);
2254 			do {
2255 				if (lblk < mpd->map.m_lblk)
2256 					continue;
2257 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2258 					/*
2259 					 * Buffer after end of mapped extent.
2260 					 * Find next buffer in the page to map.
2261 					 */
2262 					mpd->map.m_len = 0;
2263 					mpd->map.m_flags = 0;
2264 					/*
2265 					 * FIXME: If dioread_nolock supports
2266 					 * blocksize < pagesize, we need to make
2267 					 * sure we add size mapped so far to
2268 					 * io_end->size as the following call
2269 					 * can submit the page for IO.
2270 					 */
2271 					err = mpage_process_page_bufs(mpd, head,
2272 								      bh, lblk);
2273 					pagevec_release(&pvec);
2274 					if (err > 0)
2275 						err = 0;
2276 					return err;
2277 				}
2278 				if (buffer_delay(bh)) {
2279 					clear_buffer_delay(bh);
2280 					bh->b_blocknr = pblock++;
2281 				}
2282 				clear_buffer_unwritten(bh);
2283 			} while (lblk++, (bh = bh->b_this_page) != head);
2284 
2285 			/*
2286 			 * FIXME: This is going to break if dioread_nolock
2287 			 * supports blocksize < pagesize as we will try to
2288 			 * convert potentially unmapped parts of inode.
2289 			 */
2290 			mpd->io_submit.io_end->size += PAGE_SIZE;
2291 			/* Page fully mapped - let IO run! */
2292 			err = mpage_submit_page(mpd, page);
2293 			if (err < 0) {
2294 				pagevec_release(&pvec);
2295 				return err;
2296 			}
2297 			start++;
2298 		}
2299 		pagevec_release(&pvec);
2300 	}
2301 	/* Extent fully mapped and matches with page boundary. We are done. */
2302 	mpd->map.m_len = 0;
2303 	mpd->map.m_flags = 0;
2304 	return 0;
2305 }
2306 
2307 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2308 {
2309 	struct inode *inode = mpd->inode;
2310 	struct ext4_map_blocks *map = &mpd->map;
2311 	int get_blocks_flags;
2312 	int err, dioread_nolock;
2313 
2314 	trace_ext4_da_write_pages_extent(inode, map);
2315 	/*
2316 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2317 	 * to convert an unwritten extent to be initialized (in the case
2318 	 * where we have written into one or more preallocated blocks).  It is
2319 	 * possible that we're going to need more metadata blocks than
2320 	 * previously reserved. However we must not fail because we're in
2321 	 * writeback and there is nothing we can do about it so it might result
2322 	 * in data loss.  So use reserved blocks to allocate metadata if
2323 	 * possible.
2324 	 *
2325 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2326 	 * the blocks in question are delalloc blocks.  This indicates
2327 	 * that the blocks and quotas has already been checked when
2328 	 * the data was copied into the page cache.
2329 	 */
2330 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2331 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2332 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2333 	dioread_nolock = ext4_should_dioread_nolock(inode);
2334 	if (dioread_nolock)
2335 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2336 	if (map->m_flags & (1 << BH_Delay))
2337 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2338 
2339 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2340 	if (err < 0)
2341 		return err;
2342 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2343 		if (!mpd->io_submit.io_end->handle &&
2344 		    ext4_handle_valid(handle)) {
2345 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2346 			handle->h_rsv_handle = NULL;
2347 		}
2348 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2349 	}
2350 
2351 	BUG_ON(map->m_len == 0);
2352 	if (map->m_flags & EXT4_MAP_NEW) {
2353 		struct block_device *bdev = inode->i_sb->s_bdev;
2354 		int i;
2355 
2356 		for (i = 0; i < map->m_len; i++)
2357 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2358 	}
2359 	return 0;
2360 }
2361 
2362 /*
2363  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2364  *				 mpd->len and submit pages underlying it for IO
2365  *
2366  * @handle - handle for journal operations
2367  * @mpd - extent to map
2368  * @give_up_on_write - we set this to true iff there is a fatal error and there
2369  *                     is no hope of writing the data. The caller should discard
2370  *                     dirty pages to avoid infinite loops.
2371  *
2372  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2373  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2374  * them to initialized or split the described range from larger unwritten
2375  * extent. Note that we need not map all the described range since allocation
2376  * can return less blocks or the range is covered by more unwritten extents. We
2377  * cannot map more because we are limited by reserved transaction credits. On
2378  * the other hand we always make sure that the last touched page is fully
2379  * mapped so that it can be written out (and thus forward progress is
2380  * guaranteed). After mapping we submit all mapped pages for IO.
2381  */
2382 static int mpage_map_and_submit_extent(handle_t *handle,
2383 				       struct mpage_da_data *mpd,
2384 				       bool *give_up_on_write)
2385 {
2386 	struct inode *inode = mpd->inode;
2387 	struct ext4_map_blocks *map = &mpd->map;
2388 	int err;
2389 	loff_t disksize;
2390 	int progress = 0;
2391 
2392 	mpd->io_submit.io_end->offset =
2393 				((loff_t)map->m_lblk) << inode->i_blkbits;
2394 	do {
2395 		err = mpage_map_one_extent(handle, mpd);
2396 		if (err < 0) {
2397 			struct super_block *sb = inode->i_sb;
2398 
2399 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2400 				goto invalidate_dirty_pages;
2401 			/*
2402 			 * Let the uper layers retry transient errors.
2403 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2404 			 * is non-zero, a commit should free up blocks.
2405 			 */
2406 			if ((err == -ENOMEM) ||
2407 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2408 				if (progress)
2409 					goto update_disksize;
2410 				return err;
2411 			}
2412 			ext4_msg(sb, KERN_CRIT,
2413 				 "Delayed block allocation failed for "
2414 				 "inode %lu at logical offset %llu with"
2415 				 " max blocks %u with error %d",
2416 				 inode->i_ino,
2417 				 (unsigned long long)map->m_lblk,
2418 				 (unsigned)map->m_len, -err);
2419 			ext4_msg(sb, KERN_CRIT,
2420 				 "This should not happen!! Data will "
2421 				 "be lost\n");
2422 			if (err == -ENOSPC)
2423 				ext4_print_free_blocks(inode);
2424 		invalidate_dirty_pages:
2425 			*give_up_on_write = true;
2426 			return err;
2427 		}
2428 		progress = 1;
2429 		/*
2430 		 * Update buffer state, submit mapped pages, and get us new
2431 		 * extent to map
2432 		 */
2433 		err = mpage_map_and_submit_buffers(mpd);
2434 		if (err < 0)
2435 			goto update_disksize;
2436 	} while (map->m_len);
2437 
2438 update_disksize:
2439 	/*
2440 	 * Update on-disk size after IO is submitted.  Races with
2441 	 * truncate are avoided by checking i_size under i_data_sem.
2442 	 */
2443 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2444 	if (disksize > EXT4_I(inode)->i_disksize) {
2445 		int err2;
2446 		loff_t i_size;
2447 
2448 		down_write(&EXT4_I(inode)->i_data_sem);
2449 		i_size = i_size_read(inode);
2450 		if (disksize > i_size)
2451 			disksize = i_size;
2452 		if (disksize > EXT4_I(inode)->i_disksize)
2453 			EXT4_I(inode)->i_disksize = disksize;
2454 		err2 = ext4_mark_inode_dirty(handle, inode);
2455 		up_write(&EXT4_I(inode)->i_data_sem);
2456 		if (err2)
2457 			ext4_error(inode->i_sb,
2458 				   "Failed to mark inode %lu dirty",
2459 				   inode->i_ino);
2460 		if (!err)
2461 			err = err2;
2462 	}
2463 	return err;
2464 }
2465 
2466 /*
2467  * Calculate the total number of credits to reserve for one writepages
2468  * iteration. This is called from ext4_writepages(). We map an extent of
2469  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2470  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2471  * bpp - 1 blocks in bpp different extents.
2472  */
2473 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2474 {
2475 	int bpp = ext4_journal_blocks_per_page(inode);
2476 
2477 	return ext4_meta_trans_blocks(inode,
2478 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2479 }
2480 
2481 /*
2482  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2483  * 				 and underlying extent to map
2484  *
2485  * @mpd - where to look for pages
2486  *
2487  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2488  * IO immediately. When we find a page which isn't mapped we start accumulating
2489  * extent of buffers underlying these pages that needs mapping (formed by
2490  * either delayed or unwritten buffers). We also lock the pages containing
2491  * these buffers. The extent found is returned in @mpd structure (starting at
2492  * mpd->lblk with length mpd->len blocks).
2493  *
2494  * Note that this function can attach bios to one io_end structure which are
2495  * neither logically nor physically contiguous. Although it may seem as an
2496  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2497  * case as we need to track IO to all buffers underlying a page in one io_end.
2498  */
2499 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2500 {
2501 	struct address_space *mapping = mpd->inode->i_mapping;
2502 	struct pagevec pvec;
2503 	unsigned int nr_pages;
2504 	long left = mpd->wbc->nr_to_write;
2505 	pgoff_t index = mpd->first_page;
2506 	pgoff_t end = mpd->last_page;
2507 	int tag;
2508 	int i, err = 0;
2509 	int blkbits = mpd->inode->i_blkbits;
2510 	ext4_lblk_t lblk;
2511 	struct buffer_head *head;
2512 
2513 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2514 		tag = PAGECACHE_TAG_TOWRITE;
2515 	else
2516 		tag = PAGECACHE_TAG_DIRTY;
2517 
2518 	pagevec_init(&pvec, 0);
2519 	mpd->map.m_len = 0;
2520 	mpd->next_page = index;
2521 	while (index <= end) {
2522 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2523 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2524 		if (nr_pages == 0)
2525 			goto out;
2526 
2527 		for (i = 0; i < nr_pages; i++) {
2528 			struct page *page = pvec.pages[i];
2529 
2530 			/*
2531 			 * At this point, the page may be truncated or
2532 			 * invalidated (changing page->mapping to NULL), or
2533 			 * even swizzled back from swapper_space to tmpfs file
2534 			 * mapping. However, page->index will not change
2535 			 * because we have a reference on the page.
2536 			 */
2537 			if (page->index > end)
2538 				goto out;
2539 
2540 			/*
2541 			 * Accumulated enough dirty pages? This doesn't apply
2542 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2543 			 * keep going because someone may be concurrently
2544 			 * dirtying pages, and we might have synced a lot of
2545 			 * newly appeared dirty pages, but have not synced all
2546 			 * of the old dirty pages.
2547 			 */
2548 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2549 				goto out;
2550 
2551 			/* If we can't merge this page, we are done. */
2552 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2553 				goto out;
2554 
2555 			lock_page(page);
2556 			/*
2557 			 * If the page is no longer dirty, or its mapping no
2558 			 * longer corresponds to inode we are writing (which
2559 			 * means it has been truncated or invalidated), or the
2560 			 * page is already under writeback and we are not doing
2561 			 * a data integrity writeback, skip the page
2562 			 */
2563 			if (!PageDirty(page) ||
2564 			    (PageWriteback(page) &&
2565 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2566 			    unlikely(page->mapping != mapping)) {
2567 				unlock_page(page);
2568 				continue;
2569 			}
2570 
2571 			wait_on_page_writeback(page);
2572 			BUG_ON(PageWriteback(page));
2573 
2574 			if (mpd->map.m_len == 0)
2575 				mpd->first_page = page->index;
2576 			mpd->next_page = page->index + 1;
2577 			/* Add all dirty buffers to mpd */
2578 			lblk = ((ext4_lblk_t)page->index) <<
2579 				(PAGE_SHIFT - blkbits);
2580 			head = page_buffers(page);
2581 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2582 			if (err <= 0)
2583 				goto out;
2584 			err = 0;
2585 			left--;
2586 		}
2587 		pagevec_release(&pvec);
2588 		cond_resched();
2589 	}
2590 	return 0;
2591 out:
2592 	pagevec_release(&pvec);
2593 	return err;
2594 }
2595 
2596 static int __writepage(struct page *page, struct writeback_control *wbc,
2597 		       void *data)
2598 {
2599 	struct address_space *mapping = data;
2600 	int ret = ext4_writepage(page, wbc);
2601 	mapping_set_error(mapping, ret);
2602 	return ret;
2603 }
2604 
2605 static int ext4_writepages(struct address_space *mapping,
2606 			   struct writeback_control *wbc)
2607 {
2608 	pgoff_t	writeback_index = 0;
2609 	long nr_to_write = wbc->nr_to_write;
2610 	int range_whole = 0;
2611 	int cycled = 1;
2612 	handle_t *handle = NULL;
2613 	struct mpage_da_data mpd;
2614 	struct inode *inode = mapping->host;
2615 	int needed_blocks, rsv_blocks = 0, ret = 0;
2616 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2617 	bool done;
2618 	struct blk_plug plug;
2619 	bool give_up_on_write = false;
2620 
2621 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2622 	trace_ext4_writepages(inode, wbc);
2623 
2624 	if (dax_mapping(mapping)) {
2625 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2626 						  wbc);
2627 		goto out_writepages;
2628 	}
2629 
2630 	/*
2631 	 * No pages to write? This is mainly a kludge to avoid starting
2632 	 * a transaction for special inodes like journal inode on last iput()
2633 	 * because that could violate lock ordering on umount
2634 	 */
2635 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2636 		goto out_writepages;
2637 
2638 	if (ext4_should_journal_data(inode)) {
2639 		struct blk_plug plug;
2640 
2641 		blk_start_plug(&plug);
2642 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2643 		blk_finish_plug(&plug);
2644 		goto out_writepages;
2645 	}
2646 
2647 	/*
2648 	 * If the filesystem has aborted, it is read-only, so return
2649 	 * right away instead of dumping stack traces later on that
2650 	 * will obscure the real source of the problem.  We test
2651 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2652 	 * the latter could be true if the filesystem is mounted
2653 	 * read-only, and in that case, ext4_writepages should
2654 	 * *never* be called, so if that ever happens, we would want
2655 	 * the stack trace.
2656 	 */
2657 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2658 		ret = -EROFS;
2659 		goto out_writepages;
2660 	}
2661 
2662 	if (ext4_should_dioread_nolock(inode)) {
2663 		/*
2664 		 * We may need to convert up to one extent per block in
2665 		 * the page and we may dirty the inode.
2666 		 */
2667 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2668 	}
2669 
2670 	/*
2671 	 * If we have inline data and arrive here, it means that
2672 	 * we will soon create the block for the 1st page, so
2673 	 * we'd better clear the inline data here.
2674 	 */
2675 	if (ext4_has_inline_data(inode)) {
2676 		/* Just inode will be modified... */
2677 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2678 		if (IS_ERR(handle)) {
2679 			ret = PTR_ERR(handle);
2680 			goto out_writepages;
2681 		}
2682 		BUG_ON(ext4_test_inode_state(inode,
2683 				EXT4_STATE_MAY_INLINE_DATA));
2684 		ext4_destroy_inline_data(handle, inode);
2685 		ext4_journal_stop(handle);
2686 	}
2687 
2688 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689 		range_whole = 1;
2690 
2691 	if (wbc->range_cyclic) {
2692 		writeback_index = mapping->writeback_index;
2693 		if (writeback_index)
2694 			cycled = 0;
2695 		mpd.first_page = writeback_index;
2696 		mpd.last_page = -1;
2697 	} else {
2698 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700 	}
2701 
2702 	mpd.inode = inode;
2703 	mpd.wbc = wbc;
2704 	ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708 	done = false;
2709 	blk_start_plug(&plug);
2710 	while (!done && mpd.first_page <= mpd.last_page) {
2711 		/* For each extent of pages we use new io_end */
2712 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2713 		if (!mpd.io_submit.io_end) {
2714 			ret = -ENOMEM;
2715 			break;
2716 		}
2717 
2718 		/*
2719 		 * We have two constraints: We find one extent to map and we
2720 		 * must always write out whole page (makes a difference when
2721 		 * blocksize < pagesize) so that we don't block on IO when we
2722 		 * try to write out the rest of the page. Journalled mode is
2723 		 * not supported by delalloc.
2724 		 */
2725 		BUG_ON(ext4_should_journal_data(inode));
2726 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2727 
2728 		/* start a new transaction */
2729 		handle = ext4_journal_start_with_reserve(inode,
2730 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2731 		if (IS_ERR(handle)) {
2732 			ret = PTR_ERR(handle);
2733 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2734 			       "%ld pages, ino %lu; err %d", __func__,
2735 				wbc->nr_to_write, inode->i_ino, ret);
2736 			/* Release allocated io_end */
2737 			ext4_put_io_end(mpd.io_submit.io_end);
2738 			break;
2739 		}
2740 
2741 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2742 		ret = mpage_prepare_extent_to_map(&mpd);
2743 		if (!ret) {
2744 			if (mpd.map.m_len)
2745 				ret = mpage_map_and_submit_extent(handle, &mpd,
2746 					&give_up_on_write);
2747 			else {
2748 				/*
2749 				 * We scanned the whole range (or exhausted
2750 				 * nr_to_write), submitted what was mapped and
2751 				 * didn't find anything needing mapping. We are
2752 				 * done.
2753 				 */
2754 				done = true;
2755 			}
2756 		}
2757 		/*
2758 		 * Caution: If the handle is synchronous,
2759 		 * ext4_journal_stop() can wait for transaction commit
2760 		 * to finish which may depend on writeback of pages to
2761 		 * complete or on page lock to be released.  In that
2762 		 * case, we have to wait until after after we have
2763 		 * submitted all the IO, released page locks we hold,
2764 		 * and dropped io_end reference (for extent conversion
2765 		 * to be able to complete) before stopping the handle.
2766 		 */
2767 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2768 			ext4_journal_stop(handle);
2769 			handle = NULL;
2770 		}
2771 		/* Submit prepared bio */
2772 		ext4_io_submit(&mpd.io_submit);
2773 		/* Unlock pages we didn't use */
2774 		mpage_release_unused_pages(&mpd, give_up_on_write);
2775 		/*
2776 		 * Drop our io_end reference we got from init. We have
2777 		 * to be careful and use deferred io_end finishing if
2778 		 * we are still holding the transaction as we can
2779 		 * release the last reference to io_end which may end
2780 		 * up doing unwritten extent conversion.
2781 		 */
2782 		if (handle) {
2783 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2784 			ext4_journal_stop(handle);
2785 		} else
2786 			ext4_put_io_end(mpd.io_submit.io_end);
2787 
2788 		if (ret == -ENOSPC && sbi->s_journal) {
2789 			/*
2790 			 * Commit the transaction which would
2791 			 * free blocks released in the transaction
2792 			 * and try again
2793 			 */
2794 			jbd2_journal_force_commit_nested(sbi->s_journal);
2795 			ret = 0;
2796 			continue;
2797 		}
2798 		/* Fatal error - ENOMEM, EIO... */
2799 		if (ret)
2800 			break;
2801 	}
2802 	blk_finish_plug(&plug);
2803 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2804 		cycled = 1;
2805 		mpd.last_page = writeback_index - 1;
2806 		mpd.first_page = 0;
2807 		goto retry;
2808 	}
2809 
2810 	/* Update index */
2811 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2812 		/*
2813 		 * Set the writeback_index so that range_cyclic
2814 		 * mode will write it back later
2815 		 */
2816 		mapping->writeback_index = mpd.first_page;
2817 
2818 out_writepages:
2819 	trace_ext4_writepages_result(inode, wbc, ret,
2820 				     nr_to_write - wbc->nr_to_write);
2821 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2822 	return ret;
2823 }
2824 
2825 static int ext4_nonda_switch(struct super_block *sb)
2826 {
2827 	s64 free_clusters, dirty_clusters;
2828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2829 
2830 	/*
2831 	 * switch to non delalloc mode if we are running low
2832 	 * on free block. The free block accounting via percpu
2833 	 * counters can get slightly wrong with percpu_counter_batch getting
2834 	 * accumulated on each CPU without updating global counters
2835 	 * Delalloc need an accurate free block accounting. So switch
2836 	 * to non delalloc when we are near to error range.
2837 	 */
2838 	free_clusters =
2839 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2840 	dirty_clusters =
2841 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2842 	/*
2843 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2844 	 */
2845 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2846 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2847 
2848 	if (2 * free_clusters < 3 * dirty_clusters ||
2849 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2850 		/*
2851 		 * free block count is less than 150% of dirty blocks
2852 		 * or free blocks is less than watermark
2853 		 */
2854 		return 1;
2855 	}
2856 	return 0;
2857 }
2858 
2859 /* We always reserve for an inode update; the superblock could be there too */
2860 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2861 {
2862 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2863 		return 1;
2864 
2865 	if (pos + len <= 0x7fffffffULL)
2866 		return 1;
2867 
2868 	/* We might need to update the superblock to set LARGE_FILE */
2869 	return 2;
2870 }
2871 
2872 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2873 			       loff_t pos, unsigned len, unsigned flags,
2874 			       struct page **pagep, void **fsdata)
2875 {
2876 	int ret, retries = 0;
2877 	struct page *page;
2878 	pgoff_t index;
2879 	struct inode *inode = mapping->host;
2880 	handle_t *handle;
2881 
2882 	index = pos >> PAGE_SHIFT;
2883 
2884 	if (ext4_nonda_switch(inode->i_sb)) {
2885 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2886 		return ext4_write_begin(file, mapping, pos,
2887 					len, flags, pagep, fsdata);
2888 	}
2889 	*fsdata = (void *)0;
2890 	trace_ext4_da_write_begin(inode, pos, len, flags);
2891 
2892 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2893 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2894 						      pos, len, flags,
2895 						      pagep, fsdata);
2896 		if (ret < 0)
2897 			return ret;
2898 		if (ret == 1)
2899 			return 0;
2900 	}
2901 
2902 	/*
2903 	 * grab_cache_page_write_begin() can take a long time if the
2904 	 * system is thrashing due to memory pressure, or if the page
2905 	 * is being written back.  So grab it first before we start
2906 	 * the transaction handle.  This also allows us to allocate
2907 	 * the page (if needed) without using GFP_NOFS.
2908 	 */
2909 retry_grab:
2910 	page = grab_cache_page_write_begin(mapping, index, flags);
2911 	if (!page)
2912 		return -ENOMEM;
2913 	unlock_page(page);
2914 
2915 	/*
2916 	 * With delayed allocation, we don't log the i_disksize update
2917 	 * if there is delayed block allocation. But we still need
2918 	 * to journalling the i_disksize update if writes to the end
2919 	 * of file which has an already mapped buffer.
2920 	 */
2921 retry_journal:
2922 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2923 				ext4_da_write_credits(inode, pos, len));
2924 	if (IS_ERR(handle)) {
2925 		put_page(page);
2926 		return PTR_ERR(handle);
2927 	}
2928 
2929 	lock_page(page);
2930 	if (page->mapping != mapping) {
2931 		/* The page got truncated from under us */
2932 		unlock_page(page);
2933 		put_page(page);
2934 		ext4_journal_stop(handle);
2935 		goto retry_grab;
2936 	}
2937 	/* In case writeback began while the page was unlocked */
2938 	wait_for_stable_page(page);
2939 
2940 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2941 	ret = ext4_block_write_begin(page, pos, len,
2942 				     ext4_da_get_block_prep);
2943 #else
2944 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2945 #endif
2946 	if (ret < 0) {
2947 		unlock_page(page);
2948 		ext4_journal_stop(handle);
2949 		/*
2950 		 * block_write_begin may have instantiated a few blocks
2951 		 * outside i_size.  Trim these off again. Don't need
2952 		 * i_size_read because we hold i_mutex.
2953 		 */
2954 		if (pos + len > inode->i_size)
2955 			ext4_truncate_failed_write(inode);
2956 
2957 		if (ret == -ENOSPC &&
2958 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2959 			goto retry_journal;
2960 
2961 		put_page(page);
2962 		return ret;
2963 	}
2964 
2965 	*pagep = page;
2966 	return ret;
2967 }
2968 
2969 /*
2970  * Check if we should update i_disksize
2971  * when write to the end of file but not require block allocation
2972  */
2973 static int ext4_da_should_update_i_disksize(struct page *page,
2974 					    unsigned long offset)
2975 {
2976 	struct buffer_head *bh;
2977 	struct inode *inode = page->mapping->host;
2978 	unsigned int idx;
2979 	int i;
2980 
2981 	bh = page_buffers(page);
2982 	idx = offset >> inode->i_blkbits;
2983 
2984 	for (i = 0; i < idx; i++)
2985 		bh = bh->b_this_page;
2986 
2987 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988 		return 0;
2989 	return 1;
2990 }
2991 
2992 static int ext4_da_write_end(struct file *file,
2993 			     struct address_space *mapping,
2994 			     loff_t pos, unsigned len, unsigned copied,
2995 			     struct page *page, void *fsdata)
2996 {
2997 	struct inode *inode = mapping->host;
2998 	int ret = 0, ret2;
2999 	handle_t *handle = ext4_journal_current_handle();
3000 	loff_t new_i_size;
3001 	unsigned long start, end;
3002 	int write_mode = (int)(unsigned long)fsdata;
3003 
3004 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3005 		return ext4_write_end(file, mapping, pos,
3006 				      len, copied, page, fsdata);
3007 
3008 	trace_ext4_da_write_end(inode, pos, len, copied);
3009 	start = pos & (PAGE_SIZE - 1);
3010 	end = start + copied - 1;
3011 
3012 	/*
3013 	 * generic_write_end() will run mark_inode_dirty() if i_size
3014 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3015 	 * into that.
3016 	 */
3017 	new_i_size = pos + copied;
3018 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3019 		if (ext4_has_inline_data(inode) ||
3020 		    ext4_da_should_update_i_disksize(page, end)) {
3021 			ext4_update_i_disksize(inode, new_i_size);
3022 			/* We need to mark inode dirty even if
3023 			 * new_i_size is less that inode->i_size
3024 			 * bu greater than i_disksize.(hint delalloc)
3025 			 */
3026 			ext4_mark_inode_dirty(handle, inode);
3027 		}
3028 	}
3029 
3030 	if (write_mode != CONVERT_INLINE_DATA &&
3031 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3032 	    ext4_has_inline_data(inode))
3033 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3034 						     page);
3035 	else
3036 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3037 							page, fsdata);
3038 
3039 	copied = ret2;
3040 	if (ret2 < 0)
3041 		ret = ret2;
3042 	ret2 = ext4_journal_stop(handle);
3043 	if (!ret)
3044 		ret = ret2;
3045 
3046 	return ret ? ret : copied;
3047 }
3048 
3049 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3050 				   unsigned int length)
3051 {
3052 	/*
3053 	 * Drop reserved blocks
3054 	 */
3055 	BUG_ON(!PageLocked(page));
3056 	if (!page_has_buffers(page))
3057 		goto out;
3058 
3059 	ext4_da_page_release_reservation(page, offset, length);
3060 
3061 out:
3062 	ext4_invalidatepage(page, offset, length);
3063 
3064 	return;
3065 }
3066 
3067 /*
3068  * Force all delayed allocation blocks to be allocated for a given inode.
3069  */
3070 int ext4_alloc_da_blocks(struct inode *inode)
3071 {
3072 	trace_ext4_alloc_da_blocks(inode);
3073 
3074 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3075 		return 0;
3076 
3077 	/*
3078 	 * We do something simple for now.  The filemap_flush() will
3079 	 * also start triggering a write of the data blocks, which is
3080 	 * not strictly speaking necessary (and for users of
3081 	 * laptop_mode, not even desirable).  However, to do otherwise
3082 	 * would require replicating code paths in:
3083 	 *
3084 	 * ext4_writepages() ->
3085 	 *    write_cache_pages() ---> (via passed in callback function)
3086 	 *        __mpage_da_writepage() -->
3087 	 *           mpage_add_bh_to_extent()
3088 	 *           mpage_da_map_blocks()
3089 	 *
3090 	 * The problem is that write_cache_pages(), located in
3091 	 * mm/page-writeback.c, marks pages clean in preparation for
3092 	 * doing I/O, which is not desirable if we're not planning on
3093 	 * doing I/O at all.
3094 	 *
3095 	 * We could call write_cache_pages(), and then redirty all of
3096 	 * the pages by calling redirty_page_for_writepage() but that
3097 	 * would be ugly in the extreme.  So instead we would need to
3098 	 * replicate parts of the code in the above functions,
3099 	 * simplifying them because we wouldn't actually intend to
3100 	 * write out the pages, but rather only collect contiguous
3101 	 * logical block extents, call the multi-block allocator, and
3102 	 * then update the buffer heads with the block allocations.
3103 	 *
3104 	 * For now, though, we'll cheat by calling filemap_flush(),
3105 	 * which will map the blocks, and start the I/O, but not
3106 	 * actually wait for the I/O to complete.
3107 	 */
3108 	return filemap_flush(inode->i_mapping);
3109 }
3110 
3111 /*
3112  * bmap() is special.  It gets used by applications such as lilo and by
3113  * the swapper to find the on-disk block of a specific piece of data.
3114  *
3115  * Naturally, this is dangerous if the block concerned is still in the
3116  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3117  * filesystem and enables swap, then they may get a nasty shock when the
3118  * data getting swapped to that swapfile suddenly gets overwritten by
3119  * the original zero's written out previously to the journal and
3120  * awaiting writeback in the kernel's buffer cache.
3121  *
3122  * So, if we see any bmap calls here on a modified, data-journaled file,
3123  * take extra steps to flush any blocks which might be in the cache.
3124  */
3125 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3126 {
3127 	struct inode *inode = mapping->host;
3128 	journal_t *journal;
3129 	int err;
3130 
3131 	/*
3132 	 * We can get here for an inline file via the FIBMAP ioctl
3133 	 */
3134 	if (ext4_has_inline_data(inode))
3135 		return 0;
3136 
3137 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3138 			test_opt(inode->i_sb, DELALLOC)) {
3139 		/*
3140 		 * With delalloc we want to sync the file
3141 		 * so that we can make sure we allocate
3142 		 * blocks for file
3143 		 */
3144 		filemap_write_and_wait(mapping);
3145 	}
3146 
3147 	if (EXT4_JOURNAL(inode) &&
3148 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3149 		/*
3150 		 * This is a REALLY heavyweight approach, but the use of
3151 		 * bmap on dirty files is expected to be extremely rare:
3152 		 * only if we run lilo or swapon on a freshly made file
3153 		 * do we expect this to happen.
3154 		 *
3155 		 * (bmap requires CAP_SYS_RAWIO so this does not
3156 		 * represent an unprivileged user DOS attack --- we'd be
3157 		 * in trouble if mortal users could trigger this path at
3158 		 * will.)
3159 		 *
3160 		 * NB. EXT4_STATE_JDATA is not set on files other than
3161 		 * regular files.  If somebody wants to bmap a directory
3162 		 * or symlink and gets confused because the buffer
3163 		 * hasn't yet been flushed to disk, they deserve
3164 		 * everything they get.
3165 		 */
3166 
3167 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3168 		journal = EXT4_JOURNAL(inode);
3169 		jbd2_journal_lock_updates(journal);
3170 		err = jbd2_journal_flush(journal);
3171 		jbd2_journal_unlock_updates(journal);
3172 
3173 		if (err)
3174 			return 0;
3175 	}
3176 
3177 	return generic_block_bmap(mapping, block, ext4_get_block);
3178 }
3179 
3180 static int ext4_readpage(struct file *file, struct page *page)
3181 {
3182 	int ret = -EAGAIN;
3183 	struct inode *inode = page->mapping->host;
3184 
3185 	trace_ext4_readpage(page);
3186 
3187 	if (ext4_has_inline_data(inode))
3188 		ret = ext4_readpage_inline(inode, page);
3189 
3190 	if (ret == -EAGAIN)
3191 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3192 
3193 	return ret;
3194 }
3195 
3196 static int
3197 ext4_readpages(struct file *file, struct address_space *mapping,
3198 		struct list_head *pages, unsigned nr_pages)
3199 {
3200 	struct inode *inode = mapping->host;
3201 
3202 	/* If the file has inline data, no need to do readpages. */
3203 	if (ext4_has_inline_data(inode))
3204 		return 0;
3205 
3206 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3207 }
3208 
3209 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3210 				unsigned int length)
3211 {
3212 	trace_ext4_invalidatepage(page, offset, length);
3213 
3214 	/* No journalling happens on data buffers when this function is used */
3215 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3216 
3217 	block_invalidatepage(page, offset, length);
3218 }
3219 
3220 static int __ext4_journalled_invalidatepage(struct page *page,
3221 					    unsigned int offset,
3222 					    unsigned int length)
3223 {
3224 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3225 
3226 	trace_ext4_journalled_invalidatepage(page, offset, length);
3227 
3228 	/*
3229 	 * If it's a full truncate we just forget about the pending dirtying
3230 	 */
3231 	if (offset == 0 && length == PAGE_SIZE)
3232 		ClearPageChecked(page);
3233 
3234 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3235 }
3236 
3237 /* Wrapper for aops... */
3238 static void ext4_journalled_invalidatepage(struct page *page,
3239 					   unsigned int offset,
3240 					   unsigned int length)
3241 {
3242 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3243 }
3244 
3245 static int ext4_releasepage(struct page *page, gfp_t wait)
3246 {
3247 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3248 
3249 	trace_ext4_releasepage(page);
3250 
3251 	/* Page has dirty journalled data -> cannot release */
3252 	if (PageChecked(page))
3253 		return 0;
3254 	if (journal)
3255 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3256 	else
3257 		return try_to_free_buffers(page);
3258 }
3259 
3260 #ifdef CONFIG_FS_DAX
3261 /*
3262  * Get block function for DAX IO and mmap faults. It takes care of converting
3263  * unwritten extents to written ones and initializes new / converted blocks
3264  * to zeros.
3265  */
3266 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3267 		       struct buffer_head *bh_result, int create)
3268 {
3269 	int ret;
3270 
3271 	ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3272 	if (!create)
3273 		return _ext4_get_block(inode, iblock, bh_result, 0);
3274 
3275 	ret = ext4_get_block_trans(inode, iblock, bh_result,
3276 				   EXT4_GET_BLOCKS_PRE_IO |
3277 				   EXT4_GET_BLOCKS_CREATE_ZERO);
3278 	if (ret < 0)
3279 		return ret;
3280 
3281 	if (buffer_unwritten(bh_result)) {
3282 		/*
3283 		 * We are protected by i_mmap_sem or i_mutex so we know block
3284 		 * cannot go away from under us even though we dropped
3285 		 * i_data_sem. Convert extent to written and write zeros there.
3286 		 */
3287 		ret = ext4_get_block_trans(inode, iblock, bh_result,
3288 					   EXT4_GET_BLOCKS_CONVERT |
3289 					   EXT4_GET_BLOCKS_CREATE_ZERO);
3290 		if (ret < 0)
3291 			return ret;
3292 	}
3293 	/*
3294 	 * At least for now we have to clear BH_New so that DAX code
3295 	 * doesn't attempt to zero blocks again in a racy way.
3296 	 */
3297 	clear_buffer_new(bh_result);
3298 	return 0;
3299 }
3300 #else
3301 /* Just define empty function, it will never get called. */
3302 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3303 		       struct buffer_head *bh_result, int create)
3304 {
3305 	BUG();
3306 	return 0;
3307 }
3308 #endif
3309 
3310 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3311 			    ssize_t size, void *private)
3312 {
3313         ext4_io_end_t *io_end = private;
3314 
3315 	/* if not async direct IO just return */
3316 	if (!io_end)
3317 		return 0;
3318 
3319 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3320 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3321 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3322 
3323 	/*
3324 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3325 	 * data was not written. Just clear the unwritten flag and drop io_end.
3326 	 */
3327 	if (size <= 0) {
3328 		ext4_clear_io_unwritten_flag(io_end);
3329 		size = 0;
3330 	}
3331 	io_end->offset = offset;
3332 	io_end->size = size;
3333 	ext4_put_io_end(io_end);
3334 
3335 	return 0;
3336 }
3337 
3338 /*
3339  * Handling of direct IO writes.
3340  *
3341  * For ext4 extent files, ext4 will do direct-io write even to holes,
3342  * preallocated extents, and those write extend the file, no need to
3343  * fall back to buffered IO.
3344  *
3345  * For holes, we fallocate those blocks, mark them as unwritten
3346  * If those blocks were preallocated, we mark sure they are split, but
3347  * still keep the range to write as unwritten.
3348  *
3349  * The unwritten extents will be converted to written when DIO is completed.
3350  * For async direct IO, since the IO may still pending when return, we
3351  * set up an end_io call back function, which will do the conversion
3352  * when async direct IO completed.
3353  *
3354  * If the O_DIRECT write will extend the file then add this inode to the
3355  * orphan list.  So recovery will truncate it back to the original size
3356  * if the machine crashes during the write.
3357  *
3358  */
3359 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3360 {
3361 	struct file *file = iocb->ki_filp;
3362 	struct inode *inode = file->f_mapping->host;
3363 	struct ext4_inode_info *ei = EXT4_I(inode);
3364 	ssize_t ret;
3365 	loff_t offset = iocb->ki_pos;
3366 	size_t count = iov_iter_count(iter);
3367 	int overwrite = 0;
3368 	get_block_t *get_block_func = NULL;
3369 	int dio_flags = 0;
3370 	loff_t final_size = offset + count;
3371 	int orphan = 0;
3372 	handle_t *handle;
3373 
3374 	if (final_size > inode->i_size) {
3375 		/* Credits for sb + inode write */
3376 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3377 		if (IS_ERR(handle)) {
3378 			ret = PTR_ERR(handle);
3379 			goto out;
3380 		}
3381 		ret = ext4_orphan_add(handle, inode);
3382 		if (ret) {
3383 			ext4_journal_stop(handle);
3384 			goto out;
3385 		}
3386 		orphan = 1;
3387 		ei->i_disksize = inode->i_size;
3388 		ext4_journal_stop(handle);
3389 	}
3390 
3391 	BUG_ON(iocb->private == NULL);
3392 
3393 	/*
3394 	 * Make all waiters for direct IO properly wait also for extent
3395 	 * conversion. This also disallows race between truncate() and
3396 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3397 	 */
3398 	inode_dio_begin(inode);
3399 
3400 	/* If we do a overwrite dio, i_mutex locking can be released */
3401 	overwrite = *((int *)iocb->private);
3402 
3403 	if (overwrite)
3404 		inode_unlock(inode);
3405 
3406 	/*
3407 	 * For extent mapped files we could direct write to holes and fallocate.
3408 	 *
3409 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3410 	 * parallel buffered read to expose the stale data before DIO complete
3411 	 * the data IO.
3412 	 *
3413 	 * As to previously fallocated extents, ext4 get_block will just simply
3414 	 * mark the buffer mapped but still keep the extents unwritten.
3415 	 *
3416 	 * For non AIO case, we will convert those unwritten extents to written
3417 	 * after return back from blockdev_direct_IO. That way we save us from
3418 	 * allocating io_end structure and also the overhead of offloading
3419 	 * the extent convertion to a workqueue.
3420 	 *
3421 	 * For async DIO, the conversion needs to be deferred when the
3422 	 * IO is completed. The ext4 end_io callback function will be
3423 	 * called to take care of the conversion work.  Here for async
3424 	 * case, we allocate an io_end structure to hook to the iocb.
3425 	 */
3426 	iocb->private = NULL;
3427 	if (overwrite)
3428 		get_block_func = ext4_dio_get_block_overwrite;
3429 	else if (IS_DAX(inode)) {
3430 		/*
3431 		 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3432 		 * writes need zeroing either because they can race with page
3433 		 * faults or because they use partial blocks.
3434 		 */
3435 		if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3436 		    ext4_aligned_io(inode, offset, count))
3437 			get_block_func = ext4_dio_get_block;
3438 		else
3439 			get_block_func = ext4_dax_get_block;
3440 		dio_flags = DIO_LOCKING;
3441 	} else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3442 		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3443 		get_block_func = ext4_dio_get_block;
3444 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3445 	} else if (is_sync_kiocb(iocb)) {
3446 		get_block_func = ext4_dio_get_block_unwritten_sync;
3447 		dio_flags = DIO_LOCKING;
3448 	} else {
3449 		get_block_func = ext4_dio_get_block_unwritten_async;
3450 		dio_flags = DIO_LOCKING;
3451 	}
3452 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3453 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3454 #endif
3455 	if (IS_DAX(inode)) {
3456 		ret = dax_do_io(iocb, inode, iter, get_block_func,
3457 				ext4_end_io_dio, dio_flags);
3458 	} else
3459 		ret = __blockdev_direct_IO(iocb, inode,
3460 					   inode->i_sb->s_bdev, iter,
3461 					   get_block_func,
3462 					   ext4_end_io_dio, NULL, dio_flags);
3463 
3464 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3465 						EXT4_STATE_DIO_UNWRITTEN)) {
3466 		int err;
3467 		/*
3468 		 * for non AIO case, since the IO is already
3469 		 * completed, we could do the conversion right here
3470 		 */
3471 		err = ext4_convert_unwritten_extents(NULL, inode,
3472 						     offset, ret);
3473 		if (err < 0)
3474 			ret = err;
3475 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3476 	}
3477 
3478 	inode_dio_end(inode);
3479 	/* take i_mutex locking again if we do a ovewrite dio */
3480 	if (overwrite)
3481 		inode_lock(inode);
3482 
3483 	if (ret < 0 && final_size > inode->i_size)
3484 		ext4_truncate_failed_write(inode);
3485 
3486 	/* Handle extending of i_size after direct IO write */
3487 	if (orphan) {
3488 		int err;
3489 
3490 		/* Credits for sb + inode write */
3491 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3492 		if (IS_ERR(handle)) {
3493 			/* This is really bad luck. We've written the data
3494 			 * but cannot extend i_size. Bail out and pretend
3495 			 * the write failed... */
3496 			ret = PTR_ERR(handle);
3497 			if (inode->i_nlink)
3498 				ext4_orphan_del(NULL, inode);
3499 
3500 			goto out;
3501 		}
3502 		if (inode->i_nlink)
3503 			ext4_orphan_del(handle, inode);
3504 		if (ret > 0) {
3505 			loff_t end = offset + ret;
3506 			if (end > inode->i_size) {
3507 				ei->i_disksize = end;
3508 				i_size_write(inode, end);
3509 				/*
3510 				 * We're going to return a positive `ret'
3511 				 * here due to non-zero-length I/O, so there's
3512 				 * no way of reporting error returns from
3513 				 * ext4_mark_inode_dirty() to userspace.  So
3514 				 * ignore it.
3515 				 */
3516 				ext4_mark_inode_dirty(handle, inode);
3517 			}
3518 		}
3519 		err = ext4_journal_stop(handle);
3520 		if (ret == 0)
3521 			ret = err;
3522 	}
3523 out:
3524 	return ret;
3525 }
3526 
3527 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3528 {
3529 	int unlocked = 0;
3530 	struct inode *inode = iocb->ki_filp->f_mapping->host;
3531 	ssize_t ret;
3532 
3533 	if (ext4_should_dioread_nolock(inode)) {
3534 		/*
3535 		 * Nolock dioread optimization may be dynamically disabled
3536 		 * via ext4_inode_block_unlocked_dio(). Check inode's state
3537 		 * while holding extra i_dio_count ref.
3538 		 */
3539 		inode_dio_begin(inode);
3540 		smp_mb();
3541 		if (unlikely(ext4_test_inode_state(inode,
3542 						    EXT4_STATE_DIOREAD_LOCK)))
3543 			inode_dio_end(inode);
3544 		else
3545 			unlocked = 1;
3546 	}
3547 	if (IS_DAX(inode)) {
3548 		ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3549 				NULL, unlocked ? 0 : DIO_LOCKING);
3550 	} else {
3551 		ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3552 					   iter, ext4_dio_get_block,
3553 					   NULL, NULL,
3554 					   unlocked ? 0 : DIO_LOCKING);
3555 	}
3556 	if (unlocked)
3557 		inode_dio_end(inode);
3558 	return ret;
3559 }
3560 
3561 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3562 {
3563 	struct file *file = iocb->ki_filp;
3564 	struct inode *inode = file->f_mapping->host;
3565 	size_t count = iov_iter_count(iter);
3566 	loff_t offset = iocb->ki_pos;
3567 	ssize_t ret;
3568 
3569 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3570 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3571 		return 0;
3572 #endif
3573 
3574 	/*
3575 	 * If we are doing data journalling we don't support O_DIRECT
3576 	 */
3577 	if (ext4_should_journal_data(inode))
3578 		return 0;
3579 
3580 	/* Let buffer I/O handle the inline data case. */
3581 	if (ext4_has_inline_data(inode))
3582 		return 0;
3583 
3584 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3585 	if (iov_iter_rw(iter) == READ)
3586 		ret = ext4_direct_IO_read(iocb, iter);
3587 	else
3588 		ret = ext4_direct_IO_write(iocb, iter);
3589 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3590 	return ret;
3591 }
3592 
3593 /*
3594  * Pages can be marked dirty completely asynchronously from ext4's journalling
3595  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3596  * much here because ->set_page_dirty is called under VFS locks.  The page is
3597  * not necessarily locked.
3598  *
3599  * We cannot just dirty the page and leave attached buffers clean, because the
3600  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3601  * or jbddirty because all the journalling code will explode.
3602  *
3603  * So what we do is to mark the page "pending dirty" and next time writepage
3604  * is called, propagate that into the buffers appropriately.
3605  */
3606 static int ext4_journalled_set_page_dirty(struct page *page)
3607 {
3608 	SetPageChecked(page);
3609 	return __set_page_dirty_nobuffers(page);
3610 }
3611 
3612 static const struct address_space_operations ext4_aops = {
3613 	.readpage		= ext4_readpage,
3614 	.readpages		= ext4_readpages,
3615 	.writepage		= ext4_writepage,
3616 	.writepages		= ext4_writepages,
3617 	.write_begin		= ext4_write_begin,
3618 	.write_end		= ext4_write_end,
3619 	.bmap			= ext4_bmap,
3620 	.invalidatepage		= ext4_invalidatepage,
3621 	.releasepage		= ext4_releasepage,
3622 	.direct_IO		= ext4_direct_IO,
3623 	.migratepage		= buffer_migrate_page,
3624 	.is_partially_uptodate  = block_is_partially_uptodate,
3625 	.error_remove_page	= generic_error_remove_page,
3626 };
3627 
3628 static const struct address_space_operations ext4_journalled_aops = {
3629 	.readpage		= ext4_readpage,
3630 	.readpages		= ext4_readpages,
3631 	.writepage		= ext4_writepage,
3632 	.writepages		= ext4_writepages,
3633 	.write_begin		= ext4_write_begin,
3634 	.write_end		= ext4_journalled_write_end,
3635 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3636 	.bmap			= ext4_bmap,
3637 	.invalidatepage		= ext4_journalled_invalidatepage,
3638 	.releasepage		= ext4_releasepage,
3639 	.direct_IO		= ext4_direct_IO,
3640 	.is_partially_uptodate  = block_is_partially_uptodate,
3641 	.error_remove_page	= generic_error_remove_page,
3642 };
3643 
3644 static const struct address_space_operations ext4_da_aops = {
3645 	.readpage		= ext4_readpage,
3646 	.readpages		= ext4_readpages,
3647 	.writepage		= ext4_writepage,
3648 	.writepages		= ext4_writepages,
3649 	.write_begin		= ext4_da_write_begin,
3650 	.write_end		= ext4_da_write_end,
3651 	.bmap			= ext4_bmap,
3652 	.invalidatepage		= ext4_da_invalidatepage,
3653 	.releasepage		= ext4_releasepage,
3654 	.direct_IO		= ext4_direct_IO,
3655 	.migratepage		= buffer_migrate_page,
3656 	.is_partially_uptodate  = block_is_partially_uptodate,
3657 	.error_remove_page	= generic_error_remove_page,
3658 };
3659 
3660 void ext4_set_aops(struct inode *inode)
3661 {
3662 	switch (ext4_inode_journal_mode(inode)) {
3663 	case EXT4_INODE_ORDERED_DATA_MODE:
3664 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3665 		break;
3666 	case EXT4_INODE_JOURNAL_DATA_MODE:
3667 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3668 		return;
3669 	default:
3670 		BUG();
3671 	}
3672 	if (test_opt(inode->i_sb, DELALLOC))
3673 		inode->i_mapping->a_ops = &ext4_da_aops;
3674 	else
3675 		inode->i_mapping->a_ops = &ext4_aops;
3676 }
3677 
3678 static int __ext4_block_zero_page_range(handle_t *handle,
3679 		struct address_space *mapping, loff_t from, loff_t length)
3680 {
3681 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3682 	unsigned offset = from & (PAGE_SIZE-1);
3683 	unsigned blocksize, pos;
3684 	ext4_lblk_t iblock;
3685 	struct inode *inode = mapping->host;
3686 	struct buffer_head *bh;
3687 	struct page *page;
3688 	int err = 0;
3689 
3690 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3691 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3692 	if (!page)
3693 		return -ENOMEM;
3694 
3695 	blocksize = inode->i_sb->s_blocksize;
3696 
3697 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3698 
3699 	if (!page_has_buffers(page))
3700 		create_empty_buffers(page, blocksize, 0);
3701 
3702 	/* Find the buffer that contains "offset" */
3703 	bh = page_buffers(page);
3704 	pos = blocksize;
3705 	while (offset >= pos) {
3706 		bh = bh->b_this_page;
3707 		iblock++;
3708 		pos += blocksize;
3709 	}
3710 	if (buffer_freed(bh)) {
3711 		BUFFER_TRACE(bh, "freed: skip");
3712 		goto unlock;
3713 	}
3714 	if (!buffer_mapped(bh)) {
3715 		BUFFER_TRACE(bh, "unmapped");
3716 		ext4_get_block(inode, iblock, bh, 0);
3717 		/* unmapped? It's a hole - nothing to do */
3718 		if (!buffer_mapped(bh)) {
3719 			BUFFER_TRACE(bh, "still unmapped");
3720 			goto unlock;
3721 		}
3722 	}
3723 
3724 	/* Ok, it's mapped. Make sure it's up-to-date */
3725 	if (PageUptodate(page))
3726 		set_buffer_uptodate(bh);
3727 
3728 	if (!buffer_uptodate(bh)) {
3729 		err = -EIO;
3730 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3731 		wait_on_buffer(bh);
3732 		/* Uhhuh. Read error. Complain and punt. */
3733 		if (!buffer_uptodate(bh))
3734 			goto unlock;
3735 		if (S_ISREG(inode->i_mode) &&
3736 		    ext4_encrypted_inode(inode)) {
3737 			/* We expect the key to be set. */
3738 			BUG_ON(!fscrypt_has_encryption_key(inode));
3739 			BUG_ON(blocksize != PAGE_SIZE);
3740 			WARN_ON_ONCE(fscrypt_decrypt_page(page));
3741 		}
3742 	}
3743 	if (ext4_should_journal_data(inode)) {
3744 		BUFFER_TRACE(bh, "get write access");
3745 		err = ext4_journal_get_write_access(handle, bh);
3746 		if (err)
3747 			goto unlock;
3748 	}
3749 	zero_user(page, offset, length);
3750 	BUFFER_TRACE(bh, "zeroed end of block");
3751 
3752 	if (ext4_should_journal_data(inode)) {
3753 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3754 	} else {
3755 		err = 0;
3756 		mark_buffer_dirty(bh);
3757 		if (ext4_should_order_data(inode))
3758 			err = ext4_jbd2_inode_add_write(handle, inode);
3759 	}
3760 
3761 unlock:
3762 	unlock_page(page);
3763 	put_page(page);
3764 	return err;
3765 }
3766 
3767 /*
3768  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3769  * starting from file offset 'from'.  The range to be zero'd must
3770  * be contained with in one block.  If the specified range exceeds
3771  * the end of the block it will be shortened to end of the block
3772  * that cooresponds to 'from'
3773  */
3774 static int ext4_block_zero_page_range(handle_t *handle,
3775 		struct address_space *mapping, loff_t from, loff_t length)
3776 {
3777 	struct inode *inode = mapping->host;
3778 	unsigned offset = from & (PAGE_SIZE-1);
3779 	unsigned blocksize = inode->i_sb->s_blocksize;
3780 	unsigned max = blocksize - (offset & (blocksize - 1));
3781 
3782 	/*
3783 	 * correct length if it does not fall between
3784 	 * 'from' and the end of the block
3785 	 */
3786 	if (length > max || length < 0)
3787 		length = max;
3788 
3789 	if (IS_DAX(inode))
3790 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3791 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3792 }
3793 
3794 /*
3795  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3796  * up to the end of the block which corresponds to `from'.
3797  * This required during truncate. We need to physically zero the tail end
3798  * of that block so it doesn't yield old data if the file is later grown.
3799  */
3800 static int ext4_block_truncate_page(handle_t *handle,
3801 		struct address_space *mapping, loff_t from)
3802 {
3803 	unsigned offset = from & (PAGE_SIZE-1);
3804 	unsigned length;
3805 	unsigned blocksize;
3806 	struct inode *inode = mapping->host;
3807 
3808 	blocksize = inode->i_sb->s_blocksize;
3809 	length = blocksize - (offset & (blocksize - 1));
3810 
3811 	return ext4_block_zero_page_range(handle, mapping, from, length);
3812 }
3813 
3814 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3815 			     loff_t lstart, loff_t length)
3816 {
3817 	struct super_block *sb = inode->i_sb;
3818 	struct address_space *mapping = inode->i_mapping;
3819 	unsigned partial_start, partial_end;
3820 	ext4_fsblk_t start, end;
3821 	loff_t byte_end = (lstart + length - 1);
3822 	int err = 0;
3823 
3824 	partial_start = lstart & (sb->s_blocksize - 1);
3825 	partial_end = byte_end & (sb->s_blocksize - 1);
3826 
3827 	start = lstart >> sb->s_blocksize_bits;
3828 	end = byte_end >> sb->s_blocksize_bits;
3829 
3830 	/* Handle partial zero within the single block */
3831 	if (start == end &&
3832 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3833 		err = ext4_block_zero_page_range(handle, mapping,
3834 						 lstart, length);
3835 		return err;
3836 	}
3837 	/* Handle partial zero out on the start of the range */
3838 	if (partial_start) {
3839 		err = ext4_block_zero_page_range(handle, mapping,
3840 						 lstart, sb->s_blocksize);
3841 		if (err)
3842 			return err;
3843 	}
3844 	/* Handle partial zero out on the end of the range */
3845 	if (partial_end != sb->s_blocksize - 1)
3846 		err = ext4_block_zero_page_range(handle, mapping,
3847 						 byte_end - partial_end,
3848 						 partial_end + 1);
3849 	return err;
3850 }
3851 
3852 int ext4_can_truncate(struct inode *inode)
3853 {
3854 	if (S_ISREG(inode->i_mode))
3855 		return 1;
3856 	if (S_ISDIR(inode->i_mode))
3857 		return 1;
3858 	if (S_ISLNK(inode->i_mode))
3859 		return !ext4_inode_is_fast_symlink(inode);
3860 	return 0;
3861 }
3862 
3863 /*
3864  * We have to make sure i_disksize gets properly updated before we truncate
3865  * page cache due to hole punching or zero range. Otherwise i_disksize update
3866  * can get lost as it may have been postponed to submission of writeback but
3867  * that will never happen after we truncate page cache.
3868  */
3869 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3870 				      loff_t len)
3871 {
3872 	handle_t *handle;
3873 	loff_t size = i_size_read(inode);
3874 
3875 	WARN_ON(!inode_is_locked(inode));
3876 	if (offset > size || offset + len < size)
3877 		return 0;
3878 
3879 	if (EXT4_I(inode)->i_disksize >= size)
3880 		return 0;
3881 
3882 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3883 	if (IS_ERR(handle))
3884 		return PTR_ERR(handle);
3885 	ext4_update_i_disksize(inode, size);
3886 	ext4_mark_inode_dirty(handle, inode);
3887 	ext4_journal_stop(handle);
3888 
3889 	return 0;
3890 }
3891 
3892 /*
3893  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3894  * associated with the given offset and length
3895  *
3896  * @inode:  File inode
3897  * @offset: The offset where the hole will begin
3898  * @len:    The length of the hole
3899  *
3900  * Returns: 0 on success or negative on failure
3901  */
3902 
3903 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3904 {
3905 	struct super_block *sb = inode->i_sb;
3906 	ext4_lblk_t first_block, stop_block;
3907 	struct address_space *mapping = inode->i_mapping;
3908 	loff_t first_block_offset, last_block_offset;
3909 	handle_t *handle;
3910 	unsigned int credits;
3911 	int ret = 0;
3912 
3913 	if (!S_ISREG(inode->i_mode))
3914 		return -EOPNOTSUPP;
3915 
3916 	trace_ext4_punch_hole(inode, offset, length, 0);
3917 
3918 	/*
3919 	 * Write out all dirty pages to avoid race conditions
3920 	 * Then release them.
3921 	 */
3922 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3923 		ret = filemap_write_and_wait_range(mapping, offset,
3924 						   offset + length - 1);
3925 		if (ret)
3926 			return ret;
3927 	}
3928 
3929 	inode_lock(inode);
3930 
3931 	/* No need to punch hole beyond i_size */
3932 	if (offset >= inode->i_size)
3933 		goto out_mutex;
3934 
3935 	/*
3936 	 * If the hole extends beyond i_size, set the hole
3937 	 * to end after the page that contains i_size
3938 	 */
3939 	if (offset + length > inode->i_size) {
3940 		length = inode->i_size +
3941 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3942 		   offset;
3943 	}
3944 
3945 	if (offset & (sb->s_blocksize - 1) ||
3946 	    (offset + length) & (sb->s_blocksize - 1)) {
3947 		/*
3948 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3949 		 * partial block
3950 		 */
3951 		ret = ext4_inode_attach_jinode(inode);
3952 		if (ret < 0)
3953 			goto out_mutex;
3954 
3955 	}
3956 
3957 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3958 	ext4_inode_block_unlocked_dio(inode);
3959 	inode_dio_wait(inode);
3960 
3961 	/*
3962 	 * Prevent page faults from reinstantiating pages we have released from
3963 	 * page cache.
3964 	 */
3965 	down_write(&EXT4_I(inode)->i_mmap_sem);
3966 	first_block_offset = round_up(offset, sb->s_blocksize);
3967 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3968 
3969 	/* Now release the pages and zero block aligned part of pages*/
3970 	if (last_block_offset > first_block_offset) {
3971 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3972 		if (ret)
3973 			goto out_dio;
3974 		truncate_pagecache_range(inode, first_block_offset,
3975 					 last_block_offset);
3976 	}
3977 
3978 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3979 		credits = ext4_writepage_trans_blocks(inode);
3980 	else
3981 		credits = ext4_blocks_for_truncate(inode);
3982 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3983 	if (IS_ERR(handle)) {
3984 		ret = PTR_ERR(handle);
3985 		ext4_std_error(sb, ret);
3986 		goto out_dio;
3987 	}
3988 
3989 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3990 				       length);
3991 	if (ret)
3992 		goto out_stop;
3993 
3994 	first_block = (offset + sb->s_blocksize - 1) >>
3995 		EXT4_BLOCK_SIZE_BITS(sb);
3996 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3997 
3998 	/* If there are no blocks to remove, return now */
3999 	if (first_block >= stop_block)
4000 		goto out_stop;
4001 
4002 	down_write(&EXT4_I(inode)->i_data_sem);
4003 	ext4_discard_preallocations(inode);
4004 
4005 	ret = ext4_es_remove_extent(inode, first_block,
4006 				    stop_block - first_block);
4007 	if (ret) {
4008 		up_write(&EXT4_I(inode)->i_data_sem);
4009 		goto out_stop;
4010 	}
4011 
4012 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4013 		ret = ext4_ext_remove_space(inode, first_block,
4014 					    stop_block - 1);
4015 	else
4016 		ret = ext4_ind_remove_space(handle, inode, first_block,
4017 					    stop_block);
4018 
4019 	up_write(&EXT4_I(inode)->i_data_sem);
4020 	if (IS_SYNC(inode))
4021 		ext4_handle_sync(handle);
4022 
4023 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4024 	ext4_mark_inode_dirty(handle, inode);
4025 out_stop:
4026 	ext4_journal_stop(handle);
4027 out_dio:
4028 	up_write(&EXT4_I(inode)->i_mmap_sem);
4029 	ext4_inode_resume_unlocked_dio(inode);
4030 out_mutex:
4031 	inode_unlock(inode);
4032 	return ret;
4033 }
4034 
4035 int ext4_inode_attach_jinode(struct inode *inode)
4036 {
4037 	struct ext4_inode_info *ei = EXT4_I(inode);
4038 	struct jbd2_inode *jinode;
4039 
4040 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4041 		return 0;
4042 
4043 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4044 	spin_lock(&inode->i_lock);
4045 	if (!ei->jinode) {
4046 		if (!jinode) {
4047 			spin_unlock(&inode->i_lock);
4048 			return -ENOMEM;
4049 		}
4050 		ei->jinode = jinode;
4051 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4052 		jinode = NULL;
4053 	}
4054 	spin_unlock(&inode->i_lock);
4055 	if (unlikely(jinode != NULL))
4056 		jbd2_free_inode(jinode);
4057 	return 0;
4058 }
4059 
4060 /*
4061  * ext4_truncate()
4062  *
4063  * We block out ext4_get_block() block instantiations across the entire
4064  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4065  * simultaneously on behalf of the same inode.
4066  *
4067  * As we work through the truncate and commit bits of it to the journal there
4068  * is one core, guiding principle: the file's tree must always be consistent on
4069  * disk.  We must be able to restart the truncate after a crash.
4070  *
4071  * The file's tree may be transiently inconsistent in memory (although it
4072  * probably isn't), but whenever we close off and commit a journal transaction,
4073  * the contents of (the filesystem + the journal) must be consistent and
4074  * restartable.  It's pretty simple, really: bottom up, right to left (although
4075  * left-to-right works OK too).
4076  *
4077  * Note that at recovery time, journal replay occurs *before* the restart of
4078  * truncate against the orphan inode list.
4079  *
4080  * The committed inode has the new, desired i_size (which is the same as
4081  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4082  * that this inode's truncate did not complete and it will again call
4083  * ext4_truncate() to have another go.  So there will be instantiated blocks
4084  * to the right of the truncation point in a crashed ext4 filesystem.  But
4085  * that's fine - as long as they are linked from the inode, the post-crash
4086  * ext4_truncate() run will find them and release them.
4087  */
4088 void ext4_truncate(struct inode *inode)
4089 {
4090 	struct ext4_inode_info *ei = EXT4_I(inode);
4091 	unsigned int credits;
4092 	handle_t *handle;
4093 	struct address_space *mapping = inode->i_mapping;
4094 
4095 	/*
4096 	 * There is a possibility that we're either freeing the inode
4097 	 * or it's a completely new inode. In those cases we might not
4098 	 * have i_mutex locked because it's not necessary.
4099 	 */
4100 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4101 		WARN_ON(!inode_is_locked(inode));
4102 	trace_ext4_truncate_enter(inode);
4103 
4104 	if (!ext4_can_truncate(inode))
4105 		return;
4106 
4107 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4108 
4109 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4110 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4111 
4112 	if (ext4_has_inline_data(inode)) {
4113 		int has_inline = 1;
4114 
4115 		ext4_inline_data_truncate(inode, &has_inline);
4116 		if (has_inline)
4117 			return;
4118 	}
4119 
4120 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4121 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4122 		if (ext4_inode_attach_jinode(inode) < 0)
4123 			return;
4124 	}
4125 
4126 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4127 		credits = ext4_writepage_trans_blocks(inode);
4128 	else
4129 		credits = ext4_blocks_for_truncate(inode);
4130 
4131 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4132 	if (IS_ERR(handle)) {
4133 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4134 		return;
4135 	}
4136 
4137 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4138 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4139 
4140 	/*
4141 	 * We add the inode to the orphan list, so that if this
4142 	 * truncate spans multiple transactions, and we crash, we will
4143 	 * resume the truncate when the filesystem recovers.  It also
4144 	 * marks the inode dirty, to catch the new size.
4145 	 *
4146 	 * Implication: the file must always be in a sane, consistent
4147 	 * truncatable state while each transaction commits.
4148 	 */
4149 	if (ext4_orphan_add(handle, inode))
4150 		goto out_stop;
4151 
4152 	down_write(&EXT4_I(inode)->i_data_sem);
4153 
4154 	ext4_discard_preallocations(inode);
4155 
4156 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4157 		ext4_ext_truncate(handle, inode);
4158 	else
4159 		ext4_ind_truncate(handle, inode);
4160 
4161 	up_write(&ei->i_data_sem);
4162 
4163 	if (IS_SYNC(inode))
4164 		ext4_handle_sync(handle);
4165 
4166 out_stop:
4167 	/*
4168 	 * If this was a simple ftruncate() and the file will remain alive,
4169 	 * then we need to clear up the orphan record which we created above.
4170 	 * However, if this was a real unlink then we were called by
4171 	 * ext4_evict_inode(), and we allow that function to clean up the
4172 	 * orphan info for us.
4173 	 */
4174 	if (inode->i_nlink)
4175 		ext4_orphan_del(handle, inode);
4176 
4177 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4178 	ext4_mark_inode_dirty(handle, inode);
4179 	ext4_journal_stop(handle);
4180 
4181 	trace_ext4_truncate_exit(inode);
4182 }
4183 
4184 /*
4185  * ext4_get_inode_loc returns with an extra refcount against the inode's
4186  * underlying buffer_head on success. If 'in_mem' is true, we have all
4187  * data in memory that is needed to recreate the on-disk version of this
4188  * inode.
4189  */
4190 static int __ext4_get_inode_loc(struct inode *inode,
4191 				struct ext4_iloc *iloc, int in_mem)
4192 {
4193 	struct ext4_group_desc	*gdp;
4194 	struct buffer_head	*bh;
4195 	struct super_block	*sb = inode->i_sb;
4196 	ext4_fsblk_t		block;
4197 	int			inodes_per_block, inode_offset;
4198 
4199 	iloc->bh = NULL;
4200 	if (!ext4_valid_inum(sb, inode->i_ino))
4201 		return -EFSCORRUPTED;
4202 
4203 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4204 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4205 	if (!gdp)
4206 		return -EIO;
4207 
4208 	/*
4209 	 * Figure out the offset within the block group inode table
4210 	 */
4211 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4212 	inode_offset = ((inode->i_ino - 1) %
4213 			EXT4_INODES_PER_GROUP(sb));
4214 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4215 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4216 
4217 	bh = sb_getblk(sb, block);
4218 	if (unlikely(!bh))
4219 		return -ENOMEM;
4220 	if (!buffer_uptodate(bh)) {
4221 		lock_buffer(bh);
4222 
4223 		/*
4224 		 * If the buffer has the write error flag, we have failed
4225 		 * to write out another inode in the same block.  In this
4226 		 * case, we don't have to read the block because we may
4227 		 * read the old inode data successfully.
4228 		 */
4229 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4230 			set_buffer_uptodate(bh);
4231 
4232 		if (buffer_uptodate(bh)) {
4233 			/* someone brought it uptodate while we waited */
4234 			unlock_buffer(bh);
4235 			goto has_buffer;
4236 		}
4237 
4238 		/*
4239 		 * If we have all information of the inode in memory and this
4240 		 * is the only valid inode in the block, we need not read the
4241 		 * block.
4242 		 */
4243 		if (in_mem) {
4244 			struct buffer_head *bitmap_bh;
4245 			int i, start;
4246 
4247 			start = inode_offset & ~(inodes_per_block - 1);
4248 
4249 			/* Is the inode bitmap in cache? */
4250 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4251 			if (unlikely(!bitmap_bh))
4252 				goto make_io;
4253 
4254 			/*
4255 			 * If the inode bitmap isn't in cache then the
4256 			 * optimisation may end up performing two reads instead
4257 			 * of one, so skip it.
4258 			 */
4259 			if (!buffer_uptodate(bitmap_bh)) {
4260 				brelse(bitmap_bh);
4261 				goto make_io;
4262 			}
4263 			for (i = start; i < start + inodes_per_block; i++) {
4264 				if (i == inode_offset)
4265 					continue;
4266 				if (ext4_test_bit(i, bitmap_bh->b_data))
4267 					break;
4268 			}
4269 			brelse(bitmap_bh);
4270 			if (i == start + inodes_per_block) {
4271 				/* all other inodes are free, so skip I/O */
4272 				memset(bh->b_data, 0, bh->b_size);
4273 				set_buffer_uptodate(bh);
4274 				unlock_buffer(bh);
4275 				goto has_buffer;
4276 			}
4277 		}
4278 
4279 make_io:
4280 		/*
4281 		 * If we need to do any I/O, try to pre-readahead extra
4282 		 * blocks from the inode table.
4283 		 */
4284 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4285 			ext4_fsblk_t b, end, table;
4286 			unsigned num;
4287 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4288 
4289 			table = ext4_inode_table(sb, gdp);
4290 			/* s_inode_readahead_blks is always a power of 2 */
4291 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4292 			if (table > b)
4293 				b = table;
4294 			end = b + ra_blks;
4295 			num = EXT4_INODES_PER_GROUP(sb);
4296 			if (ext4_has_group_desc_csum(sb))
4297 				num -= ext4_itable_unused_count(sb, gdp);
4298 			table += num / inodes_per_block;
4299 			if (end > table)
4300 				end = table;
4301 			while (b <= end)
4302 				sb_breadahead(sb, b++);
4303 		}
4304 
4305 		/*
4306 		 * There are other valid inodes in the buffer, this inode
4307 		 * has in-inode xattrs, or we don't have this inode in memory.
4308 		 * Read the block from disk.
4309 		 */
4310 		trace_ext4_load_inode(inode);
4311 		get_bh(bh);
4312 		bh->b_end_io = end_buffer_read_sync;
4313 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4314 		wait_on_buffer(bh);
4315 		if (!buffer_uptodate(bh)) {
4316 			EXT4_ERROR_INODE_BLOCK(inode, block,
4317 					       "unable to read itable block");
4318 			brelse(bh);
4319 			return -EIO;
4320 		}
4321 	}
4322 has_buffer:
4323 	iloc->bh = bh;
4324 	return 0;
4325 }
4326 
4327 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4328 {
4329 	/* We have all inode data except xattrs in memory here. */
4330 	return __ext4_get_inode_loc(inode, iloc,
4331 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4332 }
4333 
4334 void ext4_set_inode_flags(struct inode *inode)
4335 {
4336 	unsigned int flags = EXT4_I(inode)->i_flags;
4337 	unsigned int new_fl = 0;
4338 
4339 	if (flags & EXT4_SYNC_FL)
4340 		new_fl |= S_SYNC;
4341 	if (flags & EXT4_APPEND_FL)
4342 		new_fl |= S_APPEND;
4343 	if (flags & EXT4_IMMUTABLE_FL)
4344 		new_fl |= S_IMMUTABLE;
4345 	if (flags & EXT4_NOATIME_FL)
4346 		new_fl |= S_NOATIME;
4347 	if (flags & EXT4_DIRSYNC_FL)
4348 		new_fl |= S_DIRSYNC;
4349 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4350 		new_fl |= S_DAX;
4351 	inode_set_flags(inode, new_fl,
4352 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4353 }
4354 
4355 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4356 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4357 {
4358 	unsigned int vfs_fl;
4359 	unsigned long old_fl, new_fl;
4360 
4361 	do {
4362 		vfs_fl = ei->vfs_inode.i_flags;
4363 		old_fl = ei->i_flags;
4364 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4365 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4366 				EXT4_DIRSYNC_FL);
4367 		if (vfs_fl & S_SYNC)
4368 			new_fl |= EXT4_SYNC_FL;
4369 		if (vfs_fl & S_APPEND)
4370 			new_fl |= EXT4_APPEND_FL;
4371 		if (vfs_fl & S_IMMUTABLE)
4372 			new_fl |= EXT4_IMMUTABLE_FL;
4373 		if (vfs_fl & S_NOATIME)
4374 			new_fl |= EXT4_NOATIME_FL;
4375 		if (vfs_fl & S_DIRSYNC)
4376 			new_fl |= EXT4_DIRSYNC_FL;
4377 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4378 }
4379 
4380 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4381 				  struct ext4_inode_info *ei)
4382 {
4383 	blkcnt_t i_blocks ;
4384 	struct inode *inode = &(ei->vfs_inode);
4385 	struct super_block *sb = inode->i_sb;
4386 
4387 	if (ext4_has_feature_huge_file(sb)) {
4388 		/* we are using combined 48 bit field */
4389 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4390 					le32_to_cpu(raw_inode->i_blocks_lo);
4391 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4392 			/* i_blocks represent file system block size */
4393 			return i_blocks  << (inode->i_blkbits - 9);
4394 		} else {
4395 			return i_blocks;
4396 		}
4397 	} else {
4398 		return le32_to_cpu(raw_inode->i_blocks_lo);
4399 	}
4400 }
4401 
4402 static inline void ext4_iget_extra_inode(struct inode *inode,
4403 					 struct ext4_inode *raw_inode,
4404 					 struct ext4_inode_info *ei)
4405 {
4406 	__le32 *magic = (void *)raw_inode +
4407 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4408 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4409 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4410 		ext4_find_inline_data_nolock(inode);
4411 	} else
4412 		EXT4_I(inode)->i_inline_off = 0;
4413 }
4414 
4415 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4416 {
4417 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4418 		return -EOPNOTSUPP;
4419 	*projid = EXT4_I(inode)->i_projid;
4420 	return 0;
4421 }
4422 
4423 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4424 {
4425 	struct ext4_iloc iloc;
4426 	struct ext4_inode *raw_inode;
4427 	struct ext4_inode_info *ei;
4428 	struct inode *inode;
4429 	journal_t *journal = EXT4_SB(sb)->s_journal;
4430 	long ret;
4431 	int block;
4432 	uid_t i_uid;
4433 	gid_t i_gid;
4434 	projid_t i_projid;
4435 
4436 	inode = iget_locked(sb, ino);
4437 	if (!inode)
4438 		return ERR_PTR(-ENOMEM);
4439 	if (!(inode->i_state & I_NEW))
4440 		return inode;
4441 
4442 	ei = EXT4_I(inode);
4443 	iloc.bh = NULL;
4444 
4445 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4446 	if (ret < 0)
4447 		goto bad_inode;
4448 	raw_inode = ext4_raw_inode(&iloc);
4449 
4450 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4451 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4452 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4453 		    EXT4_INODE_SIZE(inode->i_sb)) {
4454 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4455 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4456 				EXT4_INODE_SIZE(inode->i_sb));
4457 			ret = -EFSCORRUPTED;
4458 			goto bad_inode;
4459 		}
4460 	} else
4461 		ei->i_extra_isize = 0;
4462 
4463 	/* Precompute checksum seed for inode metadata */
4464 	if (ext4_has_metadata_csum(sb)) {
4465 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4466 		__u32 csum;
4467 		__le32 inum = cpu_to_le32(inode->i_ino);
4468 		__le32 gen = raw_inode->i_generation;
4469 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4470 				   sizeof(inum));
4471 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4472 					      sizeof(gen));
4473 	}
4474 
4475 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4476 		EXT4_ERROR_INODE(inode, "checksum invalid");
4477 		ret = -EFSBADCRC;
4478 		goto bad_inode;
4479 	}
4480 
4481 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4482 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4483 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4484 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4485 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4486 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4487 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4488 	else
4489 		i_projid = EXT4_DEF_PROJID;
4490 
4491 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4492 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4493 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4494 	}
4495 	i_uid_write(inode, i_uid);
4496 	i_gid_write(inode, i_gid);
4497 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4498 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4499 
4500 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4501 	ei->i_inline_off = 0;
4502 	ei->i_dir_start_lookup = 0;
4503 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4504 	/* We now have enough fields to check if the inode was active or not.
4505 	 * This is needed because nfsd might try to access dead inodes
4506 	 * the test is that same one that e2fsck uses
4507 	 * NeilBrown 1999oct15
4508 	 */
4509 	if (inode->i_nlink == 0) {
4510 		if ((inode->i_mode == 0 ||
4511 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4512 		    ino != EXT4_BOOT_LOADER_INO) {
4513 			/* this inode is deleted */
4514 			ret = -ESTALE;
4515 			goto bad_inode;
4516 		}
4517 		/* The only unlinked inodes we let through here have
4518 		 * valid i_mode and are being read by the orphan
4519 		 * recovery code: that's fine, we're about to complete
4520 		 * the process of deleting those.
4521 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4522 		 * not initialized on a new filesystem. */
4523 	}
4524 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4525 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4526 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4527 	if (ext4_has_feature_64bit(sb))
4528 		ei->i_file_acl |=
4529 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4530 	inode->i_size = ext4_isize(raw_inode);
4531 	ei->i_disksize = inode->i_size;
4532 #ifdef CONFIG_QUOTA
4533 	ei->i_reserved_quota = 0;
4534 #endif
4535 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4536 	ei->i_block_group = iloc.block_group;
4537 	ei->i_last_alloc_group = ~0;
4538 	/*
4539 	 * NOTE! The in-memory inode i_data array is in little-endian order
4540 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4541 	 */
4542 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4543 		ei->i_data[block] = raw_inode->i_block[block];
4544 	INIT_LIST_HEAD(&ei->i_orphan);
4545 
4546 	/*
4547 	 * Set transaction id's of transactions that have to be committed
4548 	 * to finish f[data]sync. We set them to currently running transaction
4549 	 * as we cannot be sure that the inode or some of its metadata isn't
4550 	 * part of the transaction - the inode could have been reclaimed and
4551 	 * now it is reread from disk.
4552 	 */
4553 	if (journal) {
4554 		transaction_t *transaction;
4555 		tid_t tid;
4556 
4557 		read_lock(&journal->j_state_lock);
4558 		if (journal->j_running_transaction)
4559 			transaction = journal->j_running_transaction;
4560 		else
4561 			transaction = journal->j_committing_transaction;
4562 		if (transaction)
4563 			tid = transaction->t_tid;
4564 		else
4565 			tid = journal->j_commit_sequence;
4566 		read_unlock(&journal->j_state_lock);
4567 		ei->i_sync_tid = tid;
4568 		ei->i_datasync_tid = tid;
4569 	}
4570 
4571 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4572 		if (ei->i_extra_isize == 0) {
4573 			/* The extra space is currently unused. Use it. */
4574 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4575 					    EXT4_GOOD_OLD_INODE_SIZE;
4576 		} else {
4577 			ext4_iget_extra_inode(inode, raw_inode, ei);
4578 		}
4579 	}
4580 
4581 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4582 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4583 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4584 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4585 
4586 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4587 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4588 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4589 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4590 				inode->i_version |=
4591 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4592 		}
4593 	}
4594 
4595 	ret = 0;
4596 	if (ei->i_file_acl &&
4597 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4598 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4599 				 ei->i_file_acl);
4600 		ret = -EFSCORRUPTED;
4601 		goto bad_inode;
4602 	} else if (!ext4_has_inline_data(inode)) {
4603 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4604 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4605 			    (S_ISLNK(inode->i_mode) &&
4606 			     !ext4_inode_is_fast_symlink(inode))))
4607 				/* Validate extent which is part of inode */
4608 				ret = ext4_ext_check_inode(inode);
4609 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4610 			   (S_ISLNK(inode->i_mode) &&
4611 			    !ext4_inode_is_fast_symlink(inode))) {
4612 			/* Validate block references which are part of inode */
4613 			ret = ext4_ind_check_inode(inode);
4614 		}
4615 	}
4616 	if (ret)
4617 		goto bad_inode;
4618 
4619 	if (S_ISREG(inode->i_mode)) {
4620 		inode->i_op = &ext4_file_inode_operations;
4621 		inode->i_fop = &ext4_file_operations;
4622 		ext4_set_aops(inode);
4623 	} else if (S_ISDIR(inode->i_mode)) {
4624 		inode->i_op = &ext4_dir_inode_operations;
4625 		inode->i_fop = &ext4_dir_operations;
4626 	} else if (S_ISLNK(inode->i_mode)) {
4627 		if (ext4_encrypted_inode(inode)) {
4628 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4629 			ext4_set_aops(inode);
4630 		} else if (ext4_inode_is_fast_symlink(inode)) {
4631 			inode->i_link = (char *)ei->i_data;
4632 			inode->i_op = &ext4_fast_symlink_inode_operations;
4633 			nd_terminate_link(ei->i_data, inode->i_size,
4634 				sizeof(ei->i_data) - 1);
4635 		} else {
4636 			inode->i_op = &ext4_symlink_inode_operations;
4637 			ext4_set_aops(inode);
4638 		}
4639 		inode_nohighmem(inode);
4640 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4641 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4642 		inode->i_op = &ext4_special_inode_operations;
4643 		if (raw_inode->i_block[0])
4644 			init_special_inode(inode, inode->i_mode,
4645 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4646 		else
4647 			init_special_inode(inode, inode->i_mode,
4648 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4649 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4650 		make_bad_inode(inode);
4651 	} else {
4652 		ret = -EFSCORRUPTED;
4653 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4654 		goto bad_inode;
4655 	}
4656 	brelse(iloc.bh);
4657 	ext4_set_inode_flags(inode);
4658 	unlock_new_inode(inode);
4659 	return inode;
4660 
4661 bad_inode:
4662 	brelse(iloc.bh);
4663 	iget_failed(inode);
4664 	return ERR_PTR(ret);
4665 }
4666 
4667 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4668 {
4669 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4670 		return ERR_PTR(-EFSCORRUPTED);
4671 	return ext4_iget(sb, ino);
4672 }
4673 
4674 static int ext4_inode_blocks_set(handle_t *handle,
4675 				struct ext4_inode *raw_inode,
4676 				struct ext4_inode_info *ei)
4677 {
4678 	struct inode *inode = &(ei->vfs_inode);
4679 	u64 i_blocks = inode->i_blocks;
4680 	struct super_block *sb = inode->i_sb;
4681 
4682 	if (i_blocks <= ~0U) {
4683 		/*
4684 		 * i_blocks can be represented in a 32 bit variable
4685 		 * as multiple of 512 bytes
4686 		 */
4687 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4688 		raw_inode->i_blocks_high = 0;
4689 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4690 		return 0;
4691 	}
4692 	if (!ext4_has_feature_huge_file(sb))
4693 		return -EFBIG;
4694 
4695 	if (i_blocks <= 0xffffffffffffULL) {
4696 		/*
4697 		 * i_blocks can be represented in a 48 bit variable
4698 		 * as multiple of 512 bytes
4699 		 */
4700 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4701 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4702 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4703 	} else {
4704 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4705 		/* i_block is stored in file system block size */
4706 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4707 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4708 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4709 	}
4710 	return 0;
4711 }
4712 
4713 struct other_inode {
4714 	unsigned long		orig_ino;
4715 	struct ext4_inode	*raw_inode;
4716 };
4717 
4718 static int other_inode_match(struct inode * inode, unsigned long ino,
4719 			     void *data)
4720 {
4721 	struct other_inode *oi = (struct other_inode *) data;
4722 
4723 	if ((inode->i_ino != ino) ||
4724 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4725 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4726 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4727 		return 0;
4728 	spin_lock(&inode->i_lock);
4729 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4730 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4731 	    (inode->i_state & I_DIRTY_TIME)) {
4732 		struct ext4_inode_info	*ei = EXT4_I(inode);
4733 
4734 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4735 		spin_unlock(&inode->i_lock);
4736 
4737 		spin_lock(&ei->i_raw_lock);
4738 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4739 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4740 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4741 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4742 		spin_unlock(&ei->i_raw_lock);
4743 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4744 		return -1;
4745 	}
4746 	spin_unlock(&inode->i_lock);
4747 	return -1;
4748 }
4749 
4750 /*
4751  * Opportunistically update the other time fields for other inodes in
4752  * the same inode table block.
4753  */
4754 static void ext4_update_other_inodes_time(struct super_block *sb,
4755 					  unsigned long orig_ino, char *buf)
4756 {
4757 	struct other_inode oi;
4758 	unsigned long ino;
4759 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4760 	int inode_size = EXT4_INODE_SIZE(sb);
4761 
4762 	oi.orig_ino = orig_ino;
4763 	/*
4764 	 * Calculate the first inode in the inode table block.  Inode
4765 	 * numbers are one-based.  That is, the first inode in a block
4766 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4767 	 */
4768 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4769 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4770 		if (ino == orig_ino)
4771 			continue;
4772 		oi.raw_inode = (struct ext4_inode *) buf;
4773 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4774 	}
4775 }
4776 
4777 /*
4778  * Post the struct inode info into an on-disk inode location in the
4779  * buffer-cache.  This gobbles the caller's reference to the
4780  * buffer_head in the inode location struct.
4781  *
4782  * The caller must have write access to iloc->bh.
4783  */
4784 static int ext4_do_update_inode(handle_t *handle,
4785 				struct inode *inode,
4786 				struct ext4_iloc *iloc)
4787 {
4788 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4789 	struct ext4_inode_info *ei = EXT4_I(inode);
4790 	struct buffer_head *bh = iloc->bh;
4791 	struct super_block *sb = inode->i_sb;
4792 	int err = 0, rc, block;
4793 	int need_datasync = 0, set_large_file = 0;
4794 	uid_t i_uid;
4795 	gid_t i_gid;
4796 	projid_t i_projid;
4797 
4798 	spin_lock(&ei->i_raw_lock);
4799 
4800 	/* For fields not tracked in the in-memory inode,
4801 	 * initialise them to zero for new inodes. */
4802 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4803 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4804 
4805 	ext4_get_inode_flags(ei);
4806 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4807 	i_uid = i_uid_read(inode);
4808 	i_gid = i_gid_read(inode);
4809 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4810 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4811 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4812 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4813 /*
4814  * Fix up interoperability with old kernels. Otherwise, old inodes get
4815  * re-used with the upper 16 bits of the uid/gid intact
4816  */
4817 		if (!ei->i_dtime) {
4818 			raw_inode->i_uid_high =
4819 				cpu_to_le16(high_16_bits(i_uid));
4820 			raw_inode->i_gid_high =
4821 				cpu_to_le16(high_16_bits(i_gid));
4822 		} else {
4823 			raw_inode->i_uid_high = 0;
4824 			raw_inode->i_gid_high = 0;
4825 		}
4826 	} else {
4827 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4828 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4829 		raw_inode->i_uid_high = 0;
4830 		raw_inode->i_gid_high = 0;
4831 	}
4832 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4833 
4834 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4835 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4836 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4837 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4838 
4839 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4840 	if (err) {
4841 		spin_unlock(&ei->i_raw_lock);
4842 		goto out_brelse;
4843 	}
4844 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4845 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4846 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4847 		raw_inode->i_file_acl_high =
4848 			cpu_to_le16(ei->i_file_acl >> 32);
4849 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4850 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4851 		ext4_isize_set(raw_inode, ei->i_disksize);
4852 		need_datasync = 1;
4853 	}
4854 	if (ei->i_disksize > 0x7fffffffULL) {
4855 		if (!ext4_has_feature_large_file(sb) ||
4856 				EXT4_SB(sb)->s_es->s_rev_level ==
4857 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4858 			set_large_file = 1;
4859 	}
4860 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4861 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4862 		if (old_valid_dev(inode->i_rdev)) {
4863 			raw_inode->i_block[0] =
4864 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4865 			raw_inode->i_block[1] = 0;
4866 		} else {
4867 			raw_inode->i_block[0] = 0;
4868 			raw_inode->i_block[1] =
4869 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4870 			raw_inode->i_block[2] = 0;
4871 		}
4872 	} else if (!ext4_has_inline_data(inode)) {
4873 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4874 			raw_inode->i_block[block] = ei->i_data[block];
4875 	}
4876 
4877 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4878 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4879 		if (ei->i_extra_isize) {
4880 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4881 				raw_inode->i_version_hi =
4882 					cpu_to_le32(inode->i_version >> 32);
4883 			raw_inode->i_extra_isize =
4884 				cpu_to_le16(ei->i_extra_isize);
4885 		}
4886 	}
4887 
4888 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4889 			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4890 	       i_projid != EXT4_DEF_PROJID);
4891 
4892 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4893 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4894 		raw_inode->i_projid = cpu_to_le32(i_projid);
4895 
4896 	ext4_inode_csum_set(inode, raw_inode, ei);
4897 	spin_unlock(&ei->i_raw_lock);
4898 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4899 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4900 					      bh->b_data);
4901 
4902 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4903 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4904 	if (!err)
4905 		err = rc;
4906 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4907 	if (set_large_file) {
4908 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4909 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4910 		if (err)
4911 			goto out_brelse;
4912 		ext4_update_dynamic_rev(sb);
4913 		ext4_set_feature_large_file(sb);
4914 		ext4_handle_sync(handle);
4915 		err = ext4_handle_dirty_super(handle, sb);
4916 	}
4917 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4918 out_brelse:
4919 	brelse(bh);
4920 	ext4_std_error(inode->i_sb, err);
4921 	return err;
4922 }
4923 
4924 /*
4925  * ext4_write_inode()
4926  *
4927  * We are called from a few places:
4928  *
4929  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4930  *   Here, there will be no transaction running. We wait for any running
4931  *   transaction to commit.
4932  *
4933  * - Within flush work (sys_sync(), kupdate and such).
4934  *   We wait on commit, if told to.
4935  *
4936  * - Within iput_final() -> write_inode_now()
4937  *   We wait on commit, if told to.
4938  *
4939  * In all cases it is actually safe for us to return without doing anything,
4940  * because the inode has been copied into a raw inode buffer in
4941  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4942  * writeback.
4943  *
4944  * Note that we are absolutely dependent upon all inode dirtiers doing the
4945  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4946  * which we are interested.
4947  *
4948  * It would be a bug for them to not do this.  The code:
4949  *
4950  *	mark_inode_dirty(inode)
4951  *	stuff();
4952  *	inode->i_size = expr;
4953  *
4954  * is in error because write_inode() could occur while `stuff()' is running,
4955  * and the new i_size will be lost.  Plus the inode will no longer be on the
4956  * superblock's dirty inode list.
4957  */
4958 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4959 {
4960 	int err;
4961 
4962 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4963 		return 0;
4964 
4965 	if (EXT4_SB(inode->i_sb)->s_journal) {
4966 		if (ext4_journal_current_handle()) {
4967 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4968 			dump_stack();
4969 			return -EIO;
4970 		}
4971 
4972 		/*
4973 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4974 		 * ext4_sync_fs() will force the commit after everything is
4975 		 * written.
4976 		 */
4977 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4978 			return 0;
4979 
4980 		err = ext4_force_commit(inode->i_sb);
4981 	} else {
4982 		struct ext4_iloc iloc;
4983 
4984 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4985 		if (err)
4986 			return err;
4987 		/*
4988 		 * sync(2) will flush the whole buffer cache. No need to do
4989 		 * it here separately for each inode.
4990 		 */
4991 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4992 			sync_dirty_buffer(iloc.bh);
4993 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4994 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4995 					 "IO error syncing inode");
4996 			err = -EIO;
4997 		}
4998 		brelse(iloc.bh);
4999 	}
5000 	return err;
5001 }
5002 
5003 /*
5004  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5005  * buffers that are attached to a page stradding i_size and are undergoing
5006  * commit. In that case we have to wait for commit to finish and try again.
5007  */
5008 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5009 {
5010 	struct page *page;
5011 	unsigned offset;
5012 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5013 	tid_t commit_tid = 0;
5014 	int ret;
5015 
5016 	offset = inode->i_size & (PAGE_SIZE - 1);
5017 	/*
5018 	 * All buffers in the last page remain valid? Then there's nothing to
5019 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5020 	 * blocksize case
5021 	 */
5022 	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5023 		return;
5024 	while (1) {
5025 		page = find_lock_page(inode->i_mapping,
5026 				      inode->i_size >> PAGE_SHIFT);
5027 		if (!page)
5028 			return;
5029 		ret = __ext4_journalled_invalidatepage(page, offset,
5030 						PAGE_SIZE - offset);
5031 		unlock_page(page);
5032 		put_page(page);
5033 		if (ret != -EBUSY)
5034 			return;
5035 		commit_tid = 0;
5036 		read_lock(&journal->j_state_lock);
5037 		if (journal->j_committing_transaction)
5038 			commit_tid = journal->j_committing_transaction->t_tid;
5039 		read_unlock(&journal->j_state_lock);
5040 		if (commit_tid)
5041 			jbd2_log_wait_commit(journal, commit_tid);
5042 	}
5043 }
5044 
5045 /*
5046  * ext4_setattr()
5047  *
5048  * Called from notify_change.
5049  *
5050  * We want to trap VFS attempts to truncate the file as soon as
5051  * possible.  In particular, we want to make sure that when the VFS
5052  * shrinks i_size, we put the inode on the orphan list and modify
5053  * i_disksize immediately, so that during the subsequent flushing of
5054  * dirty pages and freeing of disk blocks, we can guarantee that any
5055  * commit will leave the blocks being flushed in an unused state on
5056  * disk.  (On recovery, the inode will get truncated and the blocks will
5057  * be freed, so we have a strong guarantee that no future commit will
5058  * leave these blocks visible to the user.)
5059  *
5060  * Another thing we have to assure is that if we are in ordered mode
5061  * and inode is still attached to the committing transaction, we must
5062  * we start writeout of all the dirty pages which are being truncated.
5063  * This way we are sure that all the data written in the previous
5064  * transaction are already on disk (truncate waits for pages under
5065  * writeback).
5066  *
5067  * Called with inode->i_mutex down.
5068  */
5069 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5070 {
5071 	struct inode *inode = d_inode(dentry);
5072 	int error, rc = 0;
5073 	int orphan = 0;
5074 	const unsigned int ia_valid = attr->ia_valid;
5075 
5076 	error = inode_change_ok(inode, attr);
5077 	if (error)
5078 		return error;
5079 
5080 	if (is_quota_modification(inode, attr)) {
5081 		error = dquot_initialize(inode);
5082 		if (error)
5083 			return error;
5084 	}
5085 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5086 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5087 		handle_t *handle;
5088 
5089 		/* (user+group)*(old+new) structure, inode write (sb,
5090 		 * inode block, ? - but truncate inode update has it) */
5091 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5092 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5093 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5094 		if (IS_ERR(handle)) {
5095 			error = PTR_ERR(handle);
5096 			goto err_out;
5097 		}
5098 		error = dquot_transfer(inode, attr);
5099 		if (error) {
5100 			ext4_journal_stop(handle);
5101 			return error;
5102 		}
5103 		/* Update corresponding info in inode so that everything is in
5104 		 * one transaction */
5105 		if (attr->ia_valid & ATTR_UID)
5106 			inode->i_uid = attr->ia_uid;
5107 		if (attr->ia_valid & ATTR_GID)
5108 			inode->i_gid = attr->ia_gid;
5109 		error = ext4_mark_inode_dirty(handle, inode);
5110 		ext4_journal_stop(handle);
5111 	}
5112 
5113 	if (attr->ia_valid & ATTR_SIZE) {
5114 		handle_t *handle;
5115 		loff_t oldsize = inode->i_size;
5116 		int shrink = (attr->ia_size <= inode->i_size);
5117 
5118 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5119 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5120 
5121 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5122 				return -EFBIG;
5123 		}
5124 		if (!S_ISREG(inode->i_mode))
5125 			return -EINVAL;
5126 
5127 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5128 			inode_inc_iversion(inode);
5129 
5130 		if (ext4_should_order_data(inode) &&
5131 		    (attr->ia_size < inode->i_size)) {
5132 			error = ext4_begin_ordered_truncate(inode,
5133 							    attr->ia_size);
5134 			if (error)
5135 				goto err_out;
5136 		}
5137 		if (attr->ia_size != inode->i_size) {
5138 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5139 			if (IS_ERR(handle)) {
5140 				error = PTR_ERR(handle);
5141 				goto err_out;
5142 			}
5143 			if (ext4_handle_valid(handle) && shrink) {
5144 				error = ext4_orphan_add(handle, inode);
5145 				orphan = 1;
5146 			}
5147 			/*
5148 			 * Update c/mtime on truncate up, ext4_truncate() will
5149 			 * update c/mtime in shrink case below
5150 			 */
5151 			if (!shrink) {
5152 				inode->i_mtime = ext4_current_time(inode);
5153 				inode->i_ctime = inode->i_mtime;
5154 			}
5155 			down_write(&EXT4_I(inode)->i_data_sem);
5156 			EXT4_I(inode)->i_disksize = attr->ia_size;
5157 			rc = ext4_mark_inode_dirty(handle, inode);
5158 			if (!error)
5159 				error = rc;
5160 			/*
5161 			 * We have to update i_size under i_data_sem together
5162 			 * with i_disksize to avoid races with writeback code
5163 			 * running ext4_wb_update_i_disksize().
5164 			 */
5165 			if (!error)
5166 				i_size_write(inode, attr->ia_size);
5167 			up_write(&EXT4_I(inode)->i_data_sem);
5168 			ext4_journal_stop(handle);
5169 			if (error) {
5170 				if (orphan)
5171 					ext4_orphan_del(NULL, inode);
5172 				goto err_out;
5173 			}
5174 		}
5175 		if (!shrink)
5176 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5177 
5178 		/*
5179 		 * Blocks are going to be removed from the inode. Wait
5180 		 * for dio in flight.  Temporarily disable
5181 		 * dioread_nolock to prevent livelock.
5182 		 */
5183 		if (orphan) {
5184 			if (!ext4_should_journal_data(inode)) {
5185 				ext4_inode_block_unlocked_dio(inode);
5186 				inode_dio_wait(inode);
5187 				ext4_inode_resume_unlocked_dio(inode);
5188 			} else
5189 				ext4_wait_for_tail_page_commit(inode);
5190 		}
5191 		down_write(&EXT4_I(inode)->i_mmap_sem);
5192 		/*
5193 		 * Truncate pagecache after we've waited for commit
5194 		 * in data=journal mode to make pages freeable.
5195 		 */
5196 		truncate_pagecache(inode, inode->i_size);
5197 		if (shrink)
5198 			ext4_truncate(inode);
5199 		up_write(&EXT4_I(inode)->i_mmap_sem);
5200 	}
5201 
5202 	if (!rc) {
5203 		setattr_copy(inode, attr);
5204 		mark_inode_dirty(inode);
5205 	}
5206 
5207 	/*
5208 	 * If the call to ext4_truncate failed to get a transaction handle at
5209 	 * all, we need to clean up the in-core orphan list manually.
5210 	 */
5211 	if (orphan && inode->i_nlink)
5212 		ext4_orphan_del(NULL, inode);
5213 
5214 	if (!rc && (ia_valid & ATTR_MODE))
5215 		rc = posix_acl_chmod(inode, inode->i_mode);
5216 
5217 err_out:
5218 	ext4_std_error(inode->i_sb, error);
5219 	if (!error)
5220 		error = rc;
5221 	return error;
5222 }
5223 
5224 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5225 		 struct kstat *stat)
5226 {
5227 	struct inode *inode;
5228 	unsigned long long delalloc_blocks;
5229 
5230 	inode = d_inode(dentry);
5231 	generic_fillattr(inode, stat);
5232 
5233 	/*
5234 	 * If there is inline data in the inode, the inode will normally not
5235 	 * have data blocks allocated (it may have an external xattr block).
5236 	 * Report at least one sector for such files, so tools like tar, rsync,
5237 	 * others doen't incorrectly think the file is completely sparse.
5238 	 */
5239 	if (unlikely(ext4_has_inline_data(inode)))
5240 		stat->blocks += (stat->size + 511) >> 9;
5241 
5242 	/*
5243 	 * We can't update i_blocks if the block allocation is delayed
5244 	 * otherwise in the case of system crash before the real block
5245 	 * allocation is done, we will have i_blocks inconsistent with
5246 	 * on-disk file blocks.
5247 	 * We always keep i_blocks updated together with real
5248 	 * allocation. But to not confuse with user, stat
5249 	 * will return the blocks that include the delayed allocation
5250 	 * blocks for this file.
5251 	 */
5252 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5253 				   EXT4_I(inode)->i_reserved_data_blocks);
5254 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5255 	return 0;
5256 }
5257 
5258 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5259 				   int pextents)
5260 {
5261 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5262 		return ext4_ind_trans_blocks(inode, lblocks);
5263 	return ext4_ext_index_trans_blocks(inode, pextents);
5264 }
5265 
5266 /*
5267  * Account for index blocks, block groups bitmaps and block group
5268  * descriptor blocks if modify datablocks and index blocks
5269  * worse case, the indexs blocks spread over different block groups
5270  *
5271  * If datablocks are discontiguous, they are possible to spread over
5272  * different block groups too. If they are contiguous, with flexbg,
5273  * they could still across block group boundary.
5274  *
5275  * Also account for superblock, inode, quota and xattr blocks
5276  */
5277 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5278 				  int pextents)
5279 {
5280 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5281 	int gdpblocks;
5282 	int idxblocks;
5283 	int ret = 0;
5284 
5285 	/*
5286 	 * How many index blocks need to touch to map @lblocks logical blocks
5287 	 * to @pextents physical extents?
5288 	 */
5289 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5290 
5291 	ret = idxblocks;
5292 
5293 	/*
5294 	 * Now let's see how many group bitmaps and group descriptors need
5295 	 * to account
5296 	 */
5297 	groups = idxblocks + pextents;
5298 	gdpblocks = groups;
5299 	if (groups > ngroups)
5300 		groups = ngroups;
5301 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5302 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5303 
5304 	/* bitmaps and block group descriptor blocks */
5305 	ret += groups + gdpblocks;
5306 
5307 	/* Blocks for super block, inode, quota and xattr blocks */
5308 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5309 
5310 	return ret;
5311 }
5312 
5313 /*
5314  * Calculate the total number of credits to reserve to fit
5315  * the modification of a single pages into a single transaction,
5316  * which may include multiple chunks of block allocations.
5317  *
5318  * This could be called via ext4_write_begin()
5319  *
5320  * We need to consider the worse case, when
5321  * one new block per extent.
5322  */
5323 int ext4_writepage_trans_blocks(struct inode *inode)
5324 {
5325 	int bpp = ext4_journal_blocks_per_page(inode);
5326 	int ret;
5327 
5328 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5329 
5330 	/* Account for data blocks for journalled mode */
5331 	if (ext4_should_journal_data(inode))
5332 		ret += bpp;
5333 	return ret;
5334 }
5335 
5336 /*
5337  * Calculate the journal credits for a chunk of data modification.
5338  *
5339  * This is called from DIO, fallocate or whoever calling
5340  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5341  *
5342  * journal buffers for data blocks are not included here, as DIO
5343  * and fallocate do no need to journal data buffers.
5344  */
5345 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5346 {
5347 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5348 }
5349 
5350 /*
5351  * The caller must have previously called ext4_reserve_inode_write().
5352  * Give this, we know that the caller already has write access to iloc->bh.
5353  */
5354 int ext4_mark_iloc_dirty(handle_t *handle,
5355 			 struct inode *inode, struct ext4_iloc *iloc)
5356 {
5357 	int err = 0;
5358 
5359 	if (IS_I_VERSION(inode))
5360 		inode_inc_iversion(inode);
5361 
5362 	/* the do_update_inode consumes one bh->b_count */
5363 	get_bh(iloc->bh);
5364 
5365 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5366 	err = ext4_do_update_inode(handle, inode, iloc);
5367 	put_bh(iloc->bh);
5368 	return err;
5369 }
5370 
5371 /*
5372  * On success, We end up with an outstanding reference count against
5373  * iloc->bh.  This _must_ be cleaned up later.
5374  */
5375 
5376 int
5377 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5378 			 struct ext4_iloc *iloc)
5379 {
5380 	int err;
5381 
5382 	err = ext4_get_inode_loc(inode, iloc);
5383 	if (!err) {
5384 		BUFFER_TRACE(iloc->bh, "get_write_access");
5385 		err = ext4_journal_get_write_access(handle, iloc->bh);
5386 		if (err) {
5387 			brelse(iloc->bh);
5388 			iloc->bh = NULL;
5389 		}
5390 	}
5391 	ext4_std_error(inode->i_sb, err);
5392 	return err;
5393 }
5394 
5395 /*
5396  * Expand an inode by new_extra_isize bytes.
5397  * Returns 0 on success or negative error number on failure.
5398  */
5399 static int ext4_expand_extra_isize(struct inode *inode,
5400 				   unsigned int new_extra_isize,
5401 				   struct ext4_iloc iloc,
5402 				   handle_t *handle)
5403 {
5404 	struct ext4_inode *raw_inode;
5405 	struct ext4_xattr_ibody_header *header;
5406 
5407 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5408 		return 0;
5409 
5410 	raw_inode = ext4_raw_inode(&iloc);
5411 
5412 	header = IHDR(inode, raw_inode);
5413 
5414 	/* No extended attributes present */
5415 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5416 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5417 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5418 			new_extra_isize);
5419 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5420 		return 0;
5421 	}
5422 
5423 	/* try to expand with EAs present */
5424 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5425 					  raw_inode, handle);
5426 }
5427 
5428 /*
5429  * What we do here is to mark the in-core inode as clean with respect to inode
5430  * dirtiness (it may still be data-dirty).
5431  * This means that the in-core inode may be reaped by prune_icache
5432  * without having to perform any I/O.  This is a very good thing,
5433  * because *any* task may call prune_icache - even ones which
5434  * have a transaction open against a different journal.
5435  *
5436  * Is this cheating?  Not really.  Sure, we haven't written the
5437  * inode out, but prune_icache isn't a user-visible syncing function.
5438  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5439  * we start and wait on commits.
5440  */
5441 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5442 {
5443 	struct ext4_iloc iloc;
5444 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5445 	static unsigned int mnt_count;
5446 	int err, ret;
5447 
5448 	might_sleep();
5449 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5450 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5451 	if (err)
5452 		return err;
5453 	if (ext4_handle_valid(handle) &&
5454 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5455 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5456 		/*
5457 		 * We need extra buffer credits since we may write into EA block
5458 		 * with this same handle. If journal_extend fails, then it will
5459 		 * only result in a minor loss of functionality for that inode.
5460 		 * If this is felt to be critical, then e2fsck should be run to
5461 		 * force a large enough s_min_extra_isize.
5462 		 */
5463 		if ((jbd2_journal_extend(handle,
5464 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5465 			ret = ext4_expand_extra_isize(inode,
5466 						      sbi->s_want_extra_isize,
5467 						      iloc, handle);
5468 			if (ret) {
5469 				ext4_set_inode_state(inode,
5470 						     EXT4_STATE_NO_EXPAND);
5471 				if (mnt_count !=
5472 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5473 					ext4_warning(inode->i_sb,
5474 					"Unable to expand inode %lu. Delete"
5475 					" some EAs or run e2fsck.",
5476 					inode->i_ino);
5477 					mnt_count =
5478 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5479 				}
5480 			}
5481 		}
5482 	}
5483 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5484 }
5485 
5486 /*
5487  * ext4_dirty_inode() is called from __mark_inode_dirty()
5488  *
5489  * We're really interested in the case where a file is being extended.
5490  * i_size has been changed by generic_commit_write() and we thus need
5491  * to include the updated inode in the current transaction.
5492  *
5493  * Also, dquot_alloc_block() will always dirty the inode when blocks
5494  * are allocated to the file.
5495  *
5496  * If the inode is marked synchronous, we don't honour that here - doing
5497  * so would cause a commit on atime updates, which we don't bother doing.
5498  * We handle synchronous inodes at the highest possible level.
5499  *
5500  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5501  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5502  * to copy into the on-disk inode structure are the timestamp files.
5503  */
5504 void ext4_dirty_inode(struct inode *inode, int flags)
5505 {
5506 	handle_t *handle;
5507 
5508 	if (flags == I_DIRTY_TIME)
5509 		return;
5510 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5511 	if (IS_ERR(handle))
5512 		goto out;
5513 
5514 	ext4_mark_inode_dirty(handle, inode);
5515 
5516 	ext4_journal_stop(handle);
5517 out:
5518 	return;
5519 }
5520 
5521 #if 0
5522 /*
5523  * Bind an inode's backing buffer_head into this transaction, to prevent
5524  * it from being flushed to disk early.  Unlike
5525  * ext4_reserve_inode_write, this leaves behind no bh reference and
5526  * returns no iloc structure, so the caller needs to repeat the iloc
5527  * lookup to mark the inode dirty later.
5528  */
5529 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5530 {
5531 	struct ext4_iloc iloc;
5532 
5533 	int err = 0;
5534 	if (handle) {
5535 		err = ext4_get_inode_loc(inode, &iloc);
5536 		if (!err) {
5537 			BUFFER_TRACE(iloc.bh, "get_write_access");
5538 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5539 			if (!err)
5540 				err = ext4_handle_dirty_metadata(handle,
5541 								 NULL,
5542 								 iloc.bh);
5543 			brelse(iloc.bh);
5544 		}
5545 	}
5546 	ext4_std_error(inode->i_sb, err);
5547 	return err;
5548 }
5549 #endif
5550 
5551 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5552 {
5553 	journal_t *journal;
5554 	handle_t *handle;
5555 	int err;
5556 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5557 
5558 	/*
5559 	 * We have to be very careful here: changing a data block's
5560 	 * journaling status dynamically is dangerous.  If we write a
5561 	 * data block to the journal, change the status and then delete
5562 	 * that block, we risk forgetting to revoke the old log record
5563 	 * from the journal and so a subsequent replay can corrupt data.
5564 	 * So, first we make sure that the journal is empty and that
5565 	 * nobody is changing anything.
5566 	 */
5567 
5568 	journal = EXT4_JOURNAL(inode);
5569 	if (!journal)
5570 		return 0;
5571 	if (is_journal_aborted(journal))
5572 		return -EROFS;
5573 
5574 	/* Wait for all existing dio workers */
5575 	ext4_inode_block_unlocked_dio(inode);
5576 	inode_dio_wait(inode);
5577 
5578 	/*
5579 	 * Before flushing the journal and switching inode's aops, we have
5580 	 * to flush all dirty data the inode has. There can be outstanding
5581 	 * delayed allocations, there can be unwritten extents created by
5582 	 * fallocate or buffered writes in dioread_nolock mode covered by
5583 	 * dirty data which can be converted only after flushing the dirty
5584 	 * data (and journalled aops don't know how to handle these cases).
5585 	 */
5586 	if (val) {
5587 		down_write(&EXT4_I(inode)->i_mmap_sem);
5588 		err = filemap_write_and_wait(inode->i_mapping);
5589 		if (err < 0) {
5590 			up_write(&EXT4_I(inode)->i_mmap_sem);
5591 			ext4_inode_resume_unlocked_dio(inode);
5592 			return err;
5593 		}
5594 	}
5595 
5596 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5597 	jbd2_journal_lock_updates(journal);
5598 
5599 	/*
5600 	 * OK, there are no updates running now, and all cached data is
5601 	 * synced to disk.  We are now in a completely consistent state
5602 	 * which doesn't have anything in the journal, and we know that
5603 	 * no filesystem updates are running, so it is safe to modify
5604 	 * the inode's in-core data-journaling state flag now.
5605 	 */
5606 
5607 	if (val)
5608 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5609 	else {
5610 		err = jbd2_journal_flush(journal);
5611 		if (err < 0) {
5612 			jbd2_journal_unlock_updates(journal);
5613 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5614 			ext4_inode_resume_unlocked_dio(inode);
5615 			return err;
5616 		}
5617 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5618 	}
5619 	ext4_set_aops(inode);
5620 
5621 	jbd2_journal_unlock_updates(journal);
5622 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5623 
5624 	if (val)
5625 		up_write(&EXT4_I(inode)->i_mmap_sem);
5626 	ext4_inode_resume_unlocked_dio(inode);
5627 
5628 	/* Finally we can mark the inode as dirty. */
5629 
5630 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5631 	if (IS_ERR(handle))
5632 		return PTR_ERR(handle);
5633 
5634 	err = ext4_mark_inode_dirty(handle, inode);
5635 	ext4_handle_sync(handle);
5636 	ext4_journal_stop(handle);
5637 	ext4_std_error(inode->i_sb, err);
5638 
5639 	return err;
5640 }
5641 
5642 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5643 {
5644 	return !buffer_mapped(bh);
5645 }
5646 
5647 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5648 {
5649 	struct page *page = vmf->page;
5650 	loff_t size;
5651 	unsigned long len;
5652 	int ret;
5653 	struct file *file = vma->vm_file;
5654 	struct inode *inode = file_inode(file);
5655 	struct address_space *mapping = inode->i_mapping;
5656 	handle_t *handle;
5657 	get_block_t *get_block;
5658 	int retries = 0;
5659 
5660 	sb_start_pagefault(inode->i_sb);
5661 	file_update_time(vma->vm_file);
5662 
5663 	down_read(&EXT4_I(inode)->i_mmap_sem);
5664 	/* Delalloc case is easy... */
5665 	if (test_opt(inode->i_sb, DELALLOC) &&
5666 	    !ext4_should_journal_data(inode) &&
5667 	    !ext4_nonda_switch(inode->i_sb)) {
5668 		do {
5669 			ret = block_page_mkwrite(vma, vmf,
5670 						   ext4_da_get_block_prep);
5671 		} while (ret == -ENOSPC &&
5672 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5673 		goto out_ret;
5674 	}
5675 
5676 	lock_page(page);
5677 	size = i_size_read(inode);
5678 	/* Page got truncated from under us? */
5679 	if (page->mapping != mapping || page_offset(page) > size) {
5680 		unlock_page(page);
5681 		ret = VM_FAULT_NOPAGE;
5682 		goto out;
5683 	}
5684 
5685 	if (page->index == size >> PAGE_SHIFT)
5686 		len = size & ~PAGE_MASK;
5687 	else
5688 		len = PAGE_SIZE;
5689 	/*
5690 	 * Return if we have all the buffers mapped. This avoids the need to do
5691 	 * journal_start/journal_stop which can block and take a long time
5692 	 */
5693 	if (page_has_buffers(page)) {
5694 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5695 					    0, len, NULL,
5696 					    ext4_bh_unmapped)) {
5697 			/* Wait so that we don't change page under IO */
5698 			wait_for_stable_page(page);
5699 			ret = VM_FAULT_LOCKED;
5700 			goto out;
5701 		}
5702 	}
5703 	unlock_page(page);
5704 	/* OK, we need to fill the hole... */
5705 	if (ext4_should_dioread_nolock(inode))
5706 		get_block = ext4_get_block_unwritten;
5707 	else
5708 		get_block = ext4_get_block;
5709 retry_alloc:
5710 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5711 				    ext4_writepage_trans_blocks(inode));
5712 	if (IS_ERR(handle)) {
5713 		ret = VM_FAULT_SIGBUS;
5714 		goto out;
5715 	}
5716 	ret = block_page_mkwrite(vma, vmf, get_block);
5717 	if (!ret && ext4_should_journal_data(inode)) {
5718 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5719 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5720 			unlock_page(page);
5721 			ret = VM_FAULT_SIGBUS;
5722 			ext4_journal_stop(handle);
5723 			goto out;
5724 		}
5725 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5726 	}
5727 	ext4_journal_stop(handle);
5728 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5729 		goto retry_alloc;
5730 out_ret:
5731 	ret = block_page_mkwrite_return(ret);
5732 out:
5733 	up_read(&EXT4_I(inode)->i_mmap_sem);
5734 	sb_end_pagefault(inode->i_sb);
5735 	return ret;
5736 }
5737 
5738 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5739 {
5740 	struct inode *inode = file_inode(vma->vm_file);
5741 	int err;
5742 
5743 	down_read(&EXT4_I(inode)->i_mmap_sem);
5744 	err = filemap_fault(vma, vmf);
5745 	up_read(&EXT4_I(inode)->i_mmap_sem);
5746 
5747 	return err;
5748 }
5749 
5750 /*
5751  * Find the first extent at or after @lblk in an inode that is not a hole.
5752  * Search for @map_len blocks at most. The extent is returned in @result.
5753  *
5754  * The function returns 1 if we found an extent. The function returns 0 in
5755  * case there is no extent at or after @lblk and in that case also sets
5756  * @result->es_len to 0. In case of error, the error code is returned.
5757  */
5758 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5759 			 unsigned int map_len, struct extent_status *result)
5760 {
5761 	struct ext4_map_blocks map;
5762 	struct extent_status es = {};
5763 	int ret;
5764 
5765 	map.m_lblk = lblk;
5766 	map.m_len = map_len;
5767 
5768 	/*
5769 	 * For non-extent based files this loop may iterate several times since
5770 	 * we do not determine full hole size.
5771 	 */
5772 	while (map.m_len > 0) {
5773 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5774 		if (ret < 0)
5775 			return ret;
5776 		/* There's extent covering m_lblk? Just return it. */
5777 		if (ret > 0) {
5778 			int status;
5779 
5780 			ext4_es_store_pblock(result, map.m_pblk);
5781 			result->es_lblk = map.m_lblk;
5782 			result->es_len = map.m_len;
5783 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5784 				status = EXTENT_STATUS_UNWRITTEN;
5785 			else
5786 				status = EXTENT_STATUS_WRITTEN;
5787 			ext4_es_store_status(result, status);
5788 			return 1;
5789 		}
5790 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5791 						  map.m_lblk + map.m_len - 1,
5792 						  &es);
5793 		/* Is delalloc data before next block in extent tree? */
5794 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5795 			ext4_lblk_t offset = 0;
5796 
5797 			if (es.es_lblk < lblk)
5798 				offset = lblk - es.es_lblk;
5799 			result->es_lblk = es.es_lblk + offset;
5800 			ext4_es_store_pblock(result,
5801 					     ext4_es_pblock(&es) + offset);
5802 			result->es_len = es.es_len - offset;
5803 			ext4_es_store_status(result, ext4_es_status(&es));
5804 
5805 			return 1;
5806 		}
5807 		/* There's a hole at m_lblk, advance us after it */
5808 		map.m_lblk += map.m_len;
5809 		map_len -= map.m_len;
5810 		map.m_len = map_len;
5811 		cond_resched();
5812 	}
5813 	result->es_len = 0;
5814 	return 0;
5815 }
5816