1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u32 csum; 55 __u16 dummy_csum = 0; 56 int offset = offsetof(struct ext4_inode, i_checksum_lo); 57 unsigned int csum_size = sizeof(dummy_csum); 58 59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 61 offset += csum_size; 62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 63 EXT4_GOOD_OLD_INODE_SIZE - offset); 64 65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 66 offset = offsetof(struct ext4_inode, i_checksum_hi); 67 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 68 EXT4_GOOD_OLD_INODE_SIZE, 69 offset - EXT4_GOOD_OLD_INODE_SIZE); 70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 72 csum_size); 73 offset += csum_size; 74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 75 EXT4_INODE_SIZE(inode->i_sb) - 76 offset); 77 } 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 159 /* 160 * Restart the transaction associated with *handle. This does a commit, 161 * so before we call here everything must be consistently dirtied against 162 * this transaction. 163 */ 164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 165 int nblocks) 166 { 167 int ret; 168 169 /* 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 171 * moment, get_block can be called only for blocks inside i_size since 172 * page cache has been already dropped and writes are blocked by 173 * i_mutex. So we can safely drop the i_data_sem here. 174 */ 175 BUG_ON(EXT4_JOURNAL(inode) == NULL); 176 jbd_debug(2, "restarting handle %p\n", handle); 177 up_write(&EXT4_I(inode)->i_data_sem); 178 ret = ext4_journal_restart(handle, nblocks); 179 down_write(&EXT4_I(inode)->i_data_sem); 180 ext4_discard_preallocations(inode); 181 182 return ret; 183 } 184 185 /* 186 * Called at the last iput() if i_nlink is zero. 187 */ 188 void ext4_evict_inode(struct inode *inode) 189 { 190 handle_t *handle; 191 int err; 192 193 trace_ext4_evict_inode(inode); 194 195 if (inode->i_nlink) { 196 /* 197 * When journalling data dirty buffers are tracked only in the 198 * journal. So although mm thinks everything is clean and 199 * ready for reaping the inode might still have some pages to 200 * write in the running transaction or waiting to be 201 * checkpointed. Thus calling jbd2_journal_invalidatepage() 202 * (via truncate_inode_pages()) to discard these buffers can 203 * cause data loss. Also even if we did not discard these 204 * buffers, we would have no way to find them after the inode 205 * is reaped and thus user could see stale data if he tries to 206 * read them before the transaction is checkpointed. So be 207 * careful and force everything to disk here... We use 208 * ei->i_datasync_tid to store the newest transaction 209 * containing inode's data. 210 * 211 * Note that directories do not have this problem because they 212 * don't use page cache. 213 */ 214 if (inode->i_ino != EXT4_JOURNAL_INO && 215 ext4_should_journal_data(inode) && 216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 242 ext4_blocks_for_truncate(inode)+3); 243 if (IS_ERR(handle)) { 244 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 245 /* 246 * If we're going to skip the normal cleanup, we still need to 247 * make sure that the in-core orphan linked list is properly 248 * cleaned up. 249 */ 250 ext4_orphan_del(NULL, inode); 251 sb_end_intwrite(inode->i_sb); 252 goto no_delete; 253 } 254 255 if (IS_SYNC(inode)) 256 ext4_handle_sync(handle); 257 inode->i_size = 0; 258 err = ext4_mark_inode_dirty(handle, inode); 259 if (err) { 260 ext4_warning(inode->i_sb, 261 "couldn't mark inode dirty (err %d)", err); 262 goto stop_handle; 263 } 264 if (inode->i_blocks) 265 ext4_truncate(inode); 266 267 /* 268 * ext4_ext_truncate() doesn't reserve any slop when it 269 * restarts journal transactions; therefore there may not be 270 * enough credits left in the handle to remove the inode from 271 * the orphan list and set the dtime field. 272 */ 273 if (!ext4_handle_has_enough_credits(handle, 3)) { 274 err = ext4_journal_extend(handle, 3); 275 if (err > 0) 276 err = ext4_journal_restart(handle, 3); 277 if (err != 0) { 278 ext4_warning(inode->i_sb, 279 "couldn't extend journal (err %d)", err); 280 stop_handle: 281 ext4_journal_stop(handle); 282 ext4_orphan_del(NULL, inode); 283 sb_end_intwrite(inode->i_sb); 284 goto no_delete; 285 } 286 } 287 288 /* 289 * Kill off the orphan record which ext4_truncate created. 290 * AKPM: I think this can be inside the above `if'. 291 * Note that ext4_orphan_del() has to be able to cope with the 292 * deletion of a non-existent orphan - this is because we don't 293 * know if ext4_truncate() actually created an orphan record. 294 * (Well, we could do this if we need to, but heck - it works) 295 */ 296 ext4_orphan_del(handle, inode); 297 EXT4_I(inode)->i_dtime = get_seconds(); 298 299 /* 300 * One subtle ordering requirement: if anything has gone wrong 301 * (transaction abort, IO errors, whatever), then we can still 302 * do these next steps (the fs will already have been marked as 303 * having errors), but we can't free the inode if the mark_dirty 304 * fails. 305 */ 306 if (ext4_mark_inode_dirty(handle, inode)) 307 /* If that failed, just do the required in-core inode clear. */ 308 ext4_clear_inode(inode); 309 else 310 ext4_free_inode(handle, inode); 311 ext4_journal_stop(handle); 312 sb_end_intwrite(inode->i_sb); 313 return; 314 no_delete: 315 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 316 } 317 318 #ifdef CONFIG_QUOTA 319 qsize_t *ext4_get_reserved_space(struct inode *inode) 320 { 321 return &EXT4_I(inode)->i_reserved_quota; 322 } 323 #endif 324 325 /* 326 * Called with i_data_sem down, which is important since we can call 327 * ext4_discard_preallocations() from here. 328 */ 329 void ext4_da_update_reserve_space(struct inode *inode, 330 int used, int quota_claim) 331 { 332 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 333 struct ext4_inode_info *ei = EXT4_I(inode); 334 335 spin_lock(&ei->i_block_reservation_lock); 336 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 337 if (unlikely(used > ei->i_reserved_data_blocks)) { 338 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 339 "with only %d reserved data blocks", 340 __func__, inode->i_ino, used, 341 ei->i_reserved_data_blocks); 342 WARN_ON(1); 343 used = ei->i_reserved_data_blocks; 344 } 345 346 /* Update per-inode reservations */ 347 ei->i_reserved_data_blocks -= used; 348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 349 350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 351 352 /* Update quota subsystem for data blocks */ 353 if (quota_claim) 354 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 355 else { 356 /* 357 * We did fallocate with an offset that is already delayed 358 * allocated. So on delayed allocated writeback we should 359 * not re-claim the quota for fallocated blocks. 360 */ 361 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 362 } 363 364 /* 365 * If we have done all the pending block allocations and if 366 * there aren't any writers on the inode, we can discard the 367 * inode's preallocations. 368 */ 369 if ((ei->i_reserved_data_blocks == 0) && 370 (atomic_read(&inode->i_writecount) == 0)) 371 ext4_discard_preallocations(inode); 372 } 373 374 static int __check_block_validity(struct inode *inode, const char *func, 375 unsigned int line, 376 struct ext4_map_blocks *map) 377 { 378 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 379 map->m_len)) { 380 ext4_error_inode(inode, func, line, map->m_pblk, 381 "lblock %lu mapped to illegal pblock " 382 "(length %d)", (unsigned long) map->m_lblk, 383 map->m_len); 384 return -EFSCORRUPTED; 385 } 386 return 0; 387 } 388 389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 390 ext4_lblk_t len) 391 { 392 int ret; 393 394 if (ext4_encrypted_inode(inode)) 395 return fscrypt_zeroout_range(inode, lblk, pblk, len); 396 397 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 398 if (ret > 0) 399 ret = 0; 400 401 return ret; 402 } 403 404 #define check_block_validity(inode, map) \ 405 __check_block_validity((inode), __func__, __LINE__, (map)) 406 407 #ifdef ES_AGGRESSIVE_TEST 408 static void ext4_map_blocks_es_recheck(handle_t *handle, 409 struct inode *inode, 410 struct ext4_map_blocks *es_map, 411 struct ext4_map_blocks *map, 412 int flags) 413 { 414 int retval; 415 416 map->m_flags = 0; 417 /* 418 * There is a race window that the result is not the same. 419 * e.g. xfstests #223 when dioread_nolock enables. The reason 420 * is that we lookup a block mapping in extent status tree with 421 * out taking i_data_sem. So at the time the unwritten extent 422 * could be converted. 423 */ 424 down_read(&EXT4_I(inode)->i_data_sem); 425 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 426 retval = ext4_ext_map_blocks(handle, inode, map, flags & 427 EXT4_GET_BLOCKS_KEEP_SIZE); 428 } else { 429 retval = ext4_ind_map_blocks(handle, inode, map, flags & 430 EXT4_GET_BLOCKS_KEEP_SIZE); 431 } 432 up_read((&EXT4_I(inode)->i_data_sem)); 433 434 /* 435 * We don't check m_len because extent will be collpased in status 436 * tree. So the m_len might not equal. 437 */ 438 if (es_map->m_lblk != map->m_lblk || 439 es_map->m_flags != map->m_flags || 440 es_map->m_pblk != map->m_pblk) { 441 printk("ES cache assertion failed for inode: %lu " 442 "es_cached ex [%d/%d/%llu/%x] != " 443 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 444 inode->i_ino, es_map->m_lblk, es_map->m_len, 445 es_map->m_pblk, es_map->m_flags, map->m_lblk, 446 map->m_len, map->m_pblk, map->m_flags, 447 retval, flags); 448 } 449 } 450 #endif /* ES_AGGRESSIVE_TEST */ 451 452 /* 453 * The ext4_map_blocks() function tries to look up the requested blocks, 454 * and returns if the blocks are already mapped. 455 * 456 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 457 * and store the allocated blocks in the result buffer head and mark it 458 * mapped. 459 * 460 * If file type is extents based, it will call ext4_ext_map_blocks(), 461 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 462 * based files 463 * 464 * On success, it returns the number of blocks being mapped or allocated. if 465 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 466 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 467 * 468 * It returns 0 if plain look up failed (blocks have not been allocated), in 469 * that case, @map is returned as unmapped but we still do fill map->m_len to 470 * indicate the length of a hole starting at map->m_lblk. 471 * 472 * It returns the error in case of allocation failure. 473 */ 474 int ext4_map_blocks(handle_t *handle, struct inode *inode, 475 struct ext4_map_blocks *map, int flags) 476 { 477 struct extent_status es; 478 int retval; 479 int ret = 0; 480 #ifdef ES_AGGRESSIVE_TEST 481 struct ext4_map_blocks orig_map; 482 483 memcpy(&orig_map, map, sizeof(*map)); 484 #endif 485 486 map->m_flags = 0; 487 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 488 "logical block %lu\n", inode->i_ino, flags, map->m_len, 489 (unsigned long) map->m_lblk); 490 491 /* 492 * ext4_map_blocks returns an int, and m_len is an unsigned int 493 */ 494 if (unlikely(map->m_len > INT_MAX)) 495 map->m_len = INT_MAX; 496 497 /* We can handle the block number less than EXT_MAX_BLOCKS */ 498 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 499 return -EFSCORRUPTED; 500 501 /* Lookup extent status tree firstly */ 502 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 503 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 504 map->m_pblk = ext4_es_pblock(&es) + 505 map->m_lblk - es.es_lblk; 506 map->m_flags |= ext4_es_is_written(&es) ? 507 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 508 retval = es.es_len - (map->m_lblk - es.es_lblk); 509 if (retval > map->m_len) 510 retval = map->m_len; 511 map->m_len = retval; 512 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 513 map->m_pblk = 0; 514 retval = es.es_len - (map->m_lblk - es.es_lblk); 515 if (retval > map->m_len) 516 retval = map->m_len; 517 map->m_len = retval; 518 retval = 0; 519 } else { 520 BUG_ON(1); 521 } 522 #ifdef ES_AGGRESSIVE_TEST 523 ext4_map_blocks_es_recheck(handle, inode, map, 524 &orig_map, flags); 525 #endif 526 goto found; 527 } 528 529 /* 530 * Try to see if we can get the block without requesting a new 531 * file system block. 532 */ 533 down_read(&EXT4_I(inode)->i_data_sem); 534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 535 retval = ext4_ext_map_blocks(handle, inode, map, flags & 536 EXT4_GET_BLOCKS_KEEP_SIZE); 537 } else { 538 retval = ext4_ind_map_blocks(handle, inode, map, flags & 539 EXT4_GET_BLOCKS_KEEP_SIZE); 540 } 541 if (retval > 0) { 542 unsigned int status; 543 544 if (unlikely(retval != map->m_len)) { 545 ext4_warning(inode->i_sb, 546 "ES len assertion failed for inode " 547 "%lu: retval %d != map->m_len %d", 548 inode->i_ino, retval, map->m_len); 549 WARN_ON(1); 550 } 551 552 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 553 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 554 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 555 !(status & EXTENT_STATUS_WRITTEN) && 556 ext4_find_delalloc_range(inode, map->m_lblk, 557 map->m_lblk + map->m_len - 1)) 558 status |= EXTENT_STATUS_DELAYED; 559 ret = ext4_es_insert_extent(inode, map->m_lblk, 560 map->m_len, map->m_pblk, status); 561 if (ret < 0) 562 retval = ret; 563 } 564 up_read((&EXT4_I(inode)->i_data_sem)); 565 566 found: 567 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 568 ret = check_block_validity(inode, map); 569 if (ret != 0) 570 return ret; 571 } 572 573 /* If it is only a block(s) look up */ 574 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 575 return retval; 576 577 /* 578 * Returns if the blocks have already allocated 579 * 580 * Note that if blocks have been preallocated 581 * ext4_ext_get_block() returns the create = 0 582 * with buffer head unmapped. 583 */ 584 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 585 /* 586 * If we need to convert extent to unwritten 587 * we continue and do the actual work in 588 * ext4_ext_map_blocks() 589 */ 590 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 591 return retval; 592 593 /* 594 * Here we clear m_flags because after allocating an new extent, 595 * it will be set again. 596 */ 597 map->m_flags &= ~EXT4_MAP_FLAGS; 598 599 /* 600 * New blocks allocate and/or writing to unwritten extent 601 * will possibly result in updating i_data, so we take 602 * the write lock of i_data_sem, and call get_block() 603 * with create == 1 flag. 604 */ 605 down_write(&EXT4_I(inode)->i_data_sem); 606 607 /* 608 * We need to check for EXT4 here because migrate 609 * could have changed the inode type in between 610 */ 611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 612 retval = ext4_ext_map_blocks(handle, inode, map, flags); 613 } else { 614 retval = ext4_ind_map_blocks(handle, inode, map, flags); 615 616 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 617 /* 618 * We allocated new blocks which will result in 619 * i_data's format changing. Force the migrate 620 * to fail by clearing migrate flags 621 */ 622 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 623 } 624 625 /* 626 * Update reserved blocks/metadata blocks after successful 627 * block allocation which had been deferred till now. We don't 628 * support fallocate for non extent files. So we can update 629 * reserve space here. 630 */ 631 if ((retval > 0) && 632 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 633 ext4_da_update_reserve_space(inode, retval, 1); 634 } 635 636 if (retval > 0) { 637 unsigned int status; 638 639 if (unlikely(retval != map->m_len)) { 640 ext4_warning(inode->i_sb, 641 "ES len assertion failed for inode " 642 "%lu: retval %d != map->m_len %d", 643 inode->i_ino, retval, map->m_len); 644 WARN_ON(1); 645 } 646 647 /* 648 * We have to zeroout blocks before inserting them into extent 649 * status tree. Otherwise someone could look them up there and 650 * use them before they are really zeroed. 651 */ 652 if (flags & EXT4_GET_BLOCKS_ZERO && 653 map->m_flags & EXT4_MAP_MAPPED && 654 map->m_flags & EXT4_MAP_NEW) { 655 ret = ext4_issue_zeroout(inode, map->m_lblk, 656 map->m_pblk, map->m_len); 657 if (ret) { 658 retval = ret; 659 goto out_sem; 660 } 661 } 662 663 /* 664 * If the extent has been zeroed out, we don't need to update 665 * extent status tree. 666 */ 667 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 668 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 669 if (ext4_es_is_written(&es)) 670 goto out_sem; 671 } 672 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 673 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 674 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 675 !(status & EXTENT_STATUS_WRITTEN) && 676 ext4_find_delalloc_range(inode, map->m_lblk, 677 map->m_lblk + map->m_len - 1)) 678 status |= EXTENT_STATUS_DELAYED; 679 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 680 map->m_pblk, status); 681 if (ret < 0) { 682 retval = ret; 683 goto out_sem; 684 } 685 } 686 687 out_sem: 688 up_write((&EXT4_I(inode)->i_data_sem)); 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 690 ret = check_block_validity(inode, map); 691 if (ret != 0) 692 return ret; 693 694 /* 695 * Inodes with freshly allocated blocks where contents will be 696 * visible after transaction commit must be on transaction's 697 * ordered data list. 698 */ 699 if (map->m_flags & EXT4_MAP_NEW && 700 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 701 !(flags & EXT4_GET_BLOCKS_ZERO) && 702 !IS_NOQUOTA(inode) && 703 ext4_should_order_data(inode)) { 704 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 705 ret = ext4_jbd2_inode_add_wait(handle, inode); 706 else 707 ret = ext4_jbd2_inode_add_write(handle, inode); 708 if (ret) 709 return ret; 710 } 711 } 712 return retval; 713 } 714 715 /* 716 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 717 * we have to be careful as someone else may be manipulating b_state as well. 718 */ 719 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 720 { 721 unsigned long old_state; 722 unsigned long new_state; 723 724 flags &= EXT4_MAP_FLAGS; 725 726 /* Dummy buffer_head? Set non-atomically. */ 727 if (!bh->b_page) { 728 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 729 return; 730 } 731 /* 732 * Someone else may be modifying b_state. Be careful! This is ugly but 733 * once we get rid of using bh as a container for mapping information 734 * to pass to / from get_block functions, this can go away. 735 */ 736 do { 737 old_state = READ_ONCE(bh->b_state); 738 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 739 } while (unlikely( 740 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 741 } 742 743 static int _ext4_get_block(struct inode *inode, sector_t iblock, 744 struct buffer_head *bh, int flags) 745 { 746 struct ext4_map_blocks map; 747 int ret = 0; 748 749 if (ext4_has_inline_data(inode)) 750 return -ERANGE; 751 752 map.m_lblk = iblock; 753 map.m_len = bh->b_size >> inode->i_blkbits; 754 755 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 756 flags); 757 if (ret > 0) { 758 map_bh(bh, inode->i_sb, map.m_pblk); 759 ext4_update_bh_state(bh, map.m_flags); 760 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 761 ret = 0; 762 } 763 return ret; 764 } 765 766 int ext4_get_block(struct inode *inode, sector_t iblock, 767 struct buffer_head *bh, int create) 768 { 769 return _ext4_get_block(inode, iblock, bh, 770 create ? EXT4_GET_BLOCKS_CREATE : 0); 771 } 772 773 /* 774 * Get block function used when preparing for buffered write if we require 775 * creating an unwritten extent if blocks haven't been allocated. The extent 776 * will be converted to written after the IO is complete. 777 */ 778 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 779 struct buffer_head *bh_result, int create) 780 { 781 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 782 inode->i_ino, create); 783 return _ext4_get_block(inode, iblock, bh_result, 784 EXT4_GET_BLOCKS_IO_CREATE_EXT); 785 } 786 787 /* Maximum number of blocks we map for direct IO at once. */ 788 #define DIO_MAX_BLOCKS 4096 789 790 /* 791 * Get blocks function for the cases that need to start a transaction - 792 * generally difference cases of direct IO and DAX IO. It also handles retries 793 * in case of ENOSPC. 794 */ 795 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 796 struct buffer_head *bh_result, int flags) 797 { 798 int dio_credits; 799 handle_t *handle; 800 int retries = 0; 801 int ret; 802 803 /* Trim mapping request to maximum we can map at once for DIO */ 804 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 805 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 806 dio_credits = ext4_chunk_trans_blocks(inode, 807 bh_result->b_size >> inode->i_blkbits); 808 retry: 809 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 810 if (IS_ERR(handle)) 811 return PTR_ERR(handle); 812 813 ret = _ext4_get_block(inode, iblock, bh_result, flags); 814 ext4_journal_stop(handle); 815 816 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 817 goto retry; 818 return ret; 819 } 820 821 /* Get block function for DIO reads and writes to inodes without extents */ 822 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 823 struct buffer_head *bh, int create) 824 { 825 /* We don't expect handle for direct IO */ 826 WARN_ON_ONCE(ext4_journal_current_handle()); 827 828 if (!create) 829 return _ext4_get_block(inode, iblock, bh, 0); 830 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 831 } 832 833 /* 834 * Get block function for AIO DIO writes when we create unwritten extent if 835 * blocks are not allocated yet. The extent will be converted to written 836 * after IO is complete. 837 */ 838 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 839 sector_t iblock, struct buffer_head *bh_result, int create) 840 { 841 int ret; 842 843 /* We don't expect handle for direct IO */ 844 WARN_ON_ONCE(ext4_journal_current_handle()); 845 846 ret = ext4_get_block_trans(inode, iblock, bh_result, 847 EXT4_GET_BLOCKS_IO_CREATE_EXT); 848 849 /* 850 * When doing DIO using unwritten extents, we need io_end to convert 851 * unwritten extents to written on IO completion. We allocate io_end 852 * once we spot unwritten extent and store it in b_private. Generic 853 * DIO code keeps b_private set and furthermore passes the value to 854 * our completion callback in 'private' argument. 855 */ 856 if (!ret && buffer_unwritten(bh_result)) { 857 if (!bh_result->b_private) { 858 ext4_io_end_t *io_end; 859 860 io_end = ext4_init_io_end(inode, GFP_KERNEL); 861 if (!io_end) 862 return -ENOMEM; 863 bh_result->b_private = io_end; 864 ext4_set_io_unwritten_flag(inode, io_end); 865 } 866 set_buffer_defer_completion(bh_result); 867 } 868 869 return ret; 870 } 871 872 /* 873 * Get block function for non-AIO DIO writes when we create unwritten extent if 874 * blocks are not allocated yet. The extent will be converted to written 875 * after IO is complete from ext4_ext_direct_IO() function. 876 */ 877 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 878 sector_t iblock, struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 /* We don't expect handle for direct IO */ 883 WARN_ON_ONCE(ext4_journal_current_handle()); 884 885 ret = ext4_get_block_trans(inode, iblock, bh_result, 886 EXT4_GET_BLOCKS_IO_CREATE_EXT); 887 888 /* 889 * Mark inode as having pending DIO writes to unwritten extents. 890 * ext4_ext_direct_IO() checks this flag and converts extents to 891 * written. 892 */ 893 if (!ret && buffer_unwritten(bh_result)) 894 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 895 896 return ret; 897 } 898 899 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 900 struct buffer_head *bh_result, int create) 901 { 902 int ret; 903 904 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 905 inode->i_ino, create); 906 /* We don't expect handle for direct IO */ 907 WARN_ON_ONCE(ext4_journal_current_handle()); 908 909 ret = _ext4_get_block(inode, iblock, bh_result, 0); 910 /* 911 * Blocks should have been preallocated! ext4_file_write_iter() checks 912 * that. 913 */ 914 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 915 916 return ret; 917 } 918 919 920 /* 921 * `handle' can be NULL if create is zero 922 */ 923 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 924 ext4_lblk_t block, int map_flags) 925 { 926 struct ext4_map_blocks map; 927 struct buffer_head *bh; 928 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 929 int err; 930 931 J_ASSERT(handle != NULL || create == 0); 932 933 map.m_lblk = block; 934 map.m_len = 1; 935 err = ext4_map_blocks(handle, inode, &map, map_flags); 936 937 if (err == 0) 938 return create ? ERR_PTR(-ENOSPC) : NULL; 939 if (err < 0) 940 return ERR_PTR(err); 941 942 bh = sb_getblk(inode->i_sb, map.m_pblk); 943 if (unlikely(!bh)) 944 return ERR_PTR(-ENOMEM); 945 if (map.m_flags & EXT4_MAP_NEW) { 946 J_ASSERT(create != 0); 947 J_ASSERT(handle != NULL); 948 949 /* 950 * Now that we do not always journal data, we should 951 * keep in mind whether this should always journal the 952 * new buffer as metadata. For now, regular file 953 * writes use ext4_get_block instead, so it's not a 954 * problem. 955 */ 956 lock_buffer(bh); 957 BUFFER_TRACE(bh, "call get_create_access"); 958 err = ext4_journal_get_create_access(handle, bh); 959 if (unlikely(err)) { 960 unlock_buffer(bh); 961 goto errout; 962 } 963 if (!buffer_uptodate(bh)) { 964 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 965 set_buffer_uptodate(bh); 966 } 967 unlock_buffer(bh); 968 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 969 err = ext4_handle_dirty_metadata(handle, inode, bh); 970 if (unlikely(err)) 971 goto errout; 972 } else 973 BUFFER_TRACE(bh, "not a new buffer"); 974 return bh; 975 errout: 976 brelse(bh); 977 return ERR_PTR(err); 978 } 979 980 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 981 ext4_lblk_t block, int map_flags) 982 { 983 struct buffer_head *bh; 984 985 bh = ext4_getblk(handle, inode, block, map_flags); 986 if (IS_ERR(bh)) 987 return bh; 988 if (!bh || buffer_uptodate(bh)) 989 return bh; 990 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 991 wait_on_buffer(bh); 992 if (buffer_uptodate(bh)) 993 return bh; 994 put_bh(bh); 995 return ERR_PTR(-EIO); 996 } 997 998 int ext4_walk_page_buffers(handle_t *handle, 999 struct buffer_head *head, 1000 unsigned from, 1001 unsigned to, 1002 int *partial, 1003 int (*fn)(handle_t *handle, 1004 struct buffer_head *bh)) 1005 { 1006 struct buffer_head *bh; 1007 unsigned block_start, block_end; 1008 unsigned blocksize = head->b_size; 1009 int err, ret = 0; 1010 struct buffer_head *next; 1011 1012 for (bh = head, block_start = 0; 1013 ret == 0 && (bh != head || !block_start); 1014 block_start = block_end, bh = next) { 1015 next = bh->b_this_page; 1016 block_end = block_start + blocksize; 1017 if (block_end <= from || block_start >= to) { 1018 if (partial && !buffer_uptodate(bh)) 1019 *partial = 1; 1020 continue; 1021 } 1022 err = (*fn)(handle, bh); 1023 if (!ret) 1024 ret = err; 1025 } 1026 return ret; 1027 } 1028 1029 /* 1030 * To preserve ordering, it is essential that the hole instantiation and 1031 * the data write be encapsulated in a single transaction. We cannot 1032 * close off a transaction and start a new one between the ext4_get_block() 1033 * and the commit_write(). So doing the jbd2_journal_start at the start of 1034 * prepare_write() is the right place. 1035 * 1036 * Also, this function can nest inside ext4_writepage(). In that case, we 1037 * *know* that ext4_writepage() has generated enough buffer credits to do the 1038 * whole page. So we won't block on the journal in that case, which is good, 1039 * because the caller may be PF_MEMALLOC. 1040 * 1041 * By accident, ext4 can be reentered when a transaction is open via 1042 * quota file writes. If we were to commit the transaction while thus 1043 * reentered, there can be a deadlock - we would be holding a quota 1044 * lock, and the commit would never complete if another thread had a 1045 * transaction open and was blocking on the quota lock - a ranking 1046 * violation. 1047 * 1048 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1049 * will _not_ run commit under these circumstances because handle->h_ref 1050 * is elevated. We'll still have enough credits for the tiny quotafile 1051 * write. 1052 */ 1053 int do_journal_get_write_access(handle_t *handle, 1054 struct buffer_head *bh) 1055 { 1056 int dirty = buffer_dirty(bh); 1057 int ret; 1058 1059 if (!buffer_mapped(bh) || buffer_freed(bh)) 1060 return 0; 1061 /* 1062 * __block_write_begin() could have dirtied some buffers. Clean 1063 * the dirty bit as jbd2_journal_get_write_access() could complain 1064 * otherwise about fs integrity issues. Setting of the dirty bit 1065 * by __block_write_begin() isn't a real problem here as we clear 1066 * the bit before releasing a page lock and thus writeback cannot 1067 * ever write the buffer. 1068 */ 1069 if (dirty) 1070 clear_buffer_dirty(bh); 1071 BUFFER_TRACE(bh, "get write access"); 1072 ret = ext4_journal_get_write_access(handle, bh); 1073 if (!ret && dirty) 1074 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1075 return ret; 1076 } 1077 1078 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1079 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1080 get_block_t *get_block) 1081 { 1082 unsigned from = pos & (PAGE_SIZE - 1); 1083 unsigned to = from + len; 1084 struct inode *inode = page->mapping->host; 1085 unsigned block_start, block_end; 1086 sector_t block; 1087 int err = 0; 1088 unsigned blocksize = inode->i_sb->s_blocksize; 1089 unsigned bbits; 1090 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1091 bool decrypt = false; 1092 1093 BUG_ON(!PageLocked(page)); 1094 BUG_ON(from > PAGE_SIZE); 1095 BUG_ON(to > PAGE_SIZE); 1096 BUG_ON(from > to); 1097 1098 if (!page_has_buffers(page)) 1099 create_empty_buffers(page, blocksize, 0); 1100 head = page_buffers(page); 1101 bbits = ilog2(blocksize); 1102 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1103 1104 for (bh = head, block_start = 0; bh != head || !block_start; 1105 block++, block_start = block_end, bh = bh->b_this_page) { 1106 block_end = block_start + blocksize; 1107 if (block_end <= from || block_start >= to) { 1108 if (PageUptodate(page)) { 1109 if (!buffer_uptodate(bh)) 1110 set_buffer_uptodate(bh); 1111 } 1112 continue; 1113 } 1114 if (buffer_new(bh)) 1115 clear_buffer_new(bh); 1116 if (!buffer_mapped(bh)) { 1117 WARN_ON(bh->b_size != blocksize); 1118 err = get_block(inode, block, bh, 1); 1119 if (err) 1120 break; 1121 if (buffer_new(bh)) { 1122 unmap_underlying_metadata(bh->b_bdev, 1123 bh->b_blocknr); 1124 if (PageUptodate(page)) { 1125 clear_buffer_new(bh); 1126 set_buffer_uptodate(bh); 1127 mark_buffer_dirty(bh); 1128 continue; 1129 } 1130 if (block_end > to || block_start < from) 1131 zero_user_segments(page, to, block_end, 1132 block_start, from); 1133 continue; 1134 } 1135 } 1136 if (PageUptodate(page)) { 1137 if (!buffer_uptodate(bh)) 1138 set_buffer_uptodate(bh); 1139 continue; 1140 } 1141 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1142 !buffer_unwritten(bh) && 1143 (block_start < from || block_end > to)) { 1144 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1145 *wait_bh++ = bh; 1146 decrypt = ext4_encrypted_inode(inode) && 1147 S_ISREG(inode->i_mode); 1148 } 1149 } 1150 /* 1151 * If we issued read requests, let them complete. 1152 */ 1153 while (wait_bh > wait) { 1154 wait_on_buffer(*--wait_bh); 1155 if (!buffer_uptodate(*wait_bh)) 1156 err = -EIO; 1157 } 1158 if (unlikely(err)) 1159 page_zero_new_buffers(page, from, to); 1160 else if (decrypt) 1161 err = fscrypt_decrypt_page(page); 1162 return err; 1163 } 1164 #endif 1165 1166 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1167 loff_t pos, unsigned len, unsigned flags, 1168 struct page **pagep, void **fsdata) 1169 { 1170 struct inode *inode = mapping->host; 1171 int ret, needed_blocks; 1172 handle_t *handle; 1173 int retries = 0; 1174 struct page *page; 1175 pgoff_t index; 1176 unsigned from, to; 1177 1178 trace_ext4_write_begin(inode, pos, len, flags); 1179 /* 1180 * Reserve one block more for addition to orphan list in case 1181 * we allocate blocks but write fails for some reason 1182 */ 1183 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1184 index = pos >> PAGE_SHIFT; 1185 from = pos & (PAGE_SIZE - 1); 1186 to = from + len; 1187 1188 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1189 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1190 flags, pagep); 1191 if (ret < 0) 1192 return ret; 1193 if (ret == 1) 1194 return 0; 1195 } 1196 1197 /* 1198 * grab_cache_page_write_begin() can take a long time if the 1199 * system is thrashing due to memory pressure, or if the page 1200 * is being written back. So grab it first before we start 1201 * the transaction handle. This also allows us to allocate 1202 * the page (if needed) without using GFP_NOFS. 1203 */ 1204 retry_grab: 1205 page = grab_cache_page_write_begin(mapping, index, flags); 1206 if (!page) 1207 return -ENOMEM; 1208 unlock_page(page); 1209 1210 retry_journal: 1211 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1212 if (IS_ERR(handle)) { 1213 put_page(page); 1214 return PTR_ERR(handle); 1215 } 1216 1217 lock_page(page); 1218 if (page->mapping != mapping) { 1219 /* The page got truncated from under us */ 1220 unlock_page(page); 1221 put_page(page); 1222 ext4_journal_stop(handle); 1223 goto retry_grab; 1224 } 1225 /* In case writeback began while the page was unlocked */ 1226 wait_for_stable_page(page); 1227 1228 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1229 if (ext4_should_dioread_nolock(inode)) 1230 ret = ext4_block_write_begin(page, pos, len, 1231 ext4_get_block_unwritten); 1232 else 1233 ret = ext4_block_write_begin(page, pos, len, 1234 ext4_get_block); 1235 #else 1236 if (ext4_should_dioread_nolock(inode)) 1237 ret = __block_write_begin(page, pos, len, 1238 ext4_get_block_unwritten); 1239 else 1240 ret = __block_write_begin(page, pos, len, ext4_get_block); 1241 #endif 1242 if (!ret && ext4_should_journal_data(inode)) { 1243 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1244 from, to, NULL, 1245 do_journal_get_write_access); 1246 } 1247 1248 if (ret) { 1249 unlock_page(page); 1250 /* 1251 * __block_write_begin may have instantiated a few blocks 1252 * outside i_size. Trim these off again. Don't need 1253 * i_size_read because we hold i_mutex. 1254 * 1255 * Add inode to orphan list in case we crash before 1256 * truncate finishes 1257 */ 1258 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1259 ext4_orphan_add(handle, inode); 1260 1261 ext4_journal_stop(handle); 1262 if (pos + len > inode->i_size) { 1263 ext4_truncate_failed_write(inode); 1264 /* 1265 * If truncate failed early the inode might 1266 * still be on the orphan list; we need to 1267 * make sure the inode is removed from the 1268 * orphan list in that case. 1269 */ 1270 if (inode->i_nlink) 1271 ext4_orphan_del(NULL, inode); 1272 } 1273 1274 if (ret == -ENOSPC && 1275 ext4_should_retry_alloc(inode->i_sb, &retries)) 1276 goto retry_journal; 1277 put_page(page); 1278 return ret; 1279 } 1280 *pagep = page; 1281 return ret; 1282 } 1283 1284 /* For write_end() in data=journal mode */ 1285 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1286 { 1287 int ret; 1288 if (!buffer_mapped(bh) || buffer_freed(bh)) 1289 return 0; 1290 set_buffer_uptodate(bh); 1291 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1292 clear_buffer_meta(bh); 1293 clear_buffer_prio(bh); 1294 return ret; 1295 } 1296 1297 /* 1298 * We need to pick up the new inode size which generic_commit_write gave us 1299 * `file' can be NULL - eg, when called from page_symlink(). 1300 * 1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1302 * buffers are managed internally. 1303 */ 1304 static int ext4_write_end(struct file *file, 1305 struct address_space *mapping, 1306 loff_t pos, unsigned len, unsigned copied, 1307 struct page *page, void *fsdata) 1308 { 1309 handle_t *handle = ext4_journal_current_handle(); 1310 struct inode *inode = mapping->host; 1311 loff_t old_size = inode->i_size; 1312 int ret = 0, ret2; 1313 int i_size_changed = 0; 1314 1315 trace_ext4_write_end(inode, pos, len, copied); 1316 if (ext4_has_inline_data(inode)) { 1317 ret = ext4_write_inline_data_end(inode, pos, len, 1318 copied, page); 1319 if (ret < 0) 1320 goto errout; 1321 copied = ret; 1322 } else 1323 copied = block_write_end(file, mapping, pos, 1324 len, copied, page, fsdata); 1325 /* 1326 * it's important to update i_size while still holding page lock: 1327 * page writeout could otherwise come in and zero beyond i_size. 1328 */ 1329 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1330 unlock_page(page); 1331 put_page(page); 1332 1333 if (old_size < pos) 1334 pagecache_isize_extended(inode, old_size, pos); 1335 /* 1336 * Don't mark the inode dirty under page lock. First, it unnecessarily 1337 * makes the holding time of page lock longer. Second, it forces lock 1338 * ordering of page lock and transaction start for journaling 1339 * filesystems. 1340 */ 1341 if (i_size_changed) 1342 ext4_mark_inode_dirty(handle, inode); 1343 1344 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1345 /* if we have allocated more blocks and copied 1346 * less. We will have blocks allocated outside 1347 * inode->i_size. So truncate them 1348 */ 1349 ext4_orphan_add(handle, inode); 1350 errout: 1351 ret2 = ext4_journal_stop(handle); 1352 if (!ret) 1353 ret = ret2; 1354 1355 if (pos + len > inode->i_size) { 1356 ext4_truncate_failed_write(inode); 1357 /* 1358 * If truncate failed early the inode might still be 1359 * on the orphan list; we need to make sure the inode 1360 * is removed from the orphan list in that case. 1361 */ 1362 if (inode->i_nlink) 1363 ext4_orphan_del(NULL, inode); 1364 } 1365 1366 return ret ? ret : copied; 1367 } 1368 1369 /* 1370 * This is a private version of page_zero_new_buffers() which doesn't 1371 * set the buffer to be dirty, since in data=journalled mode we need 1372 * to call ext4_handle_dirty_metadata() instead. 1373 */ 1374 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1375 { 1376 unsigned int block_start = 0, block_end; 1377 struct buffer_head *head, *bh; 1378 1379 bh = head = page_buffers(page); 1380 do { 1381 block_end = block_start + bh->b_size; 1382 if (buffer_new(bh)) { 1383 if (block_end > from && block_start < to) { 1384 if (!PageUptodate(page)) { 1385 unsigned start, size; 1386 1387 start = max(from, block_start); 1388 size = min(to, block_end) - start; 1389 1390 zero_user(page, start, size); 1391 set_buffer_uptodate(bh); 1392 } 1393 clear_buffer_new(bh); 1394 } 1395 } 1396 block_start = block_end; 1397 bh = bh->b_this_page; 1398 } while (bh != head); 1399 } 1400 1401 static int ext4_journalled_write_end(struct file *file, 1402 struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 handle_t *handle = ext4_journal_current_handle(); 1407 struct inode *inode = mapping->host; 1408 loff_t old_size = inode->i_size; 1409 int ret = 0, ret2; 1410 int partial = 0; 1411 unsigned from, to; 1412 int size_changed = 0; 1413 1414 trace_ext4_journalled_write_end(inode, pos, len, copied); 1415 from = pos & (PAGE_SIZE - 1); 1416 to = from + len; 1417 1418 BUG_ON(!ext4_handle_valid(handle)); 1419 1420 if (ext4_has_inline_data(inode)) 1421 copied = ext4_write_inline_data_end(inode, pos, len, 1422 copied, page); 1423 else { 1424 if (copied < len) { 1425 if (!PageUptodate(page)) 1426 copied = 0; 1427 zero_new_buffers(page, from+copied, to); 1428 } 1429 1430 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1431 to, &partial, write_end_fn); 1432 if (!partial) 1433 SetPageUptodate(page); 1434 } 1435 size_changed = ext4_update_inode_size(inode, pos + copied); 1436 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1437 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1438 unlock_page(page); 1439 put_page(page); 1440 1441 if (old_size < pos) 1442 pagecache_isize_extended(inode, old_size, pos); 1443 1444 if (size_changed) { 1445 ret2 = ext4_mark_inode_dirty(handle, inode); 1446 if (!ret) 1447 ret = ret2; 1448 } 1449 1450 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1451 /* if we have allocated more blocks and copied 1452 * less. We will have blocks allocated outside 1453 * inode->i_size. So truncate them 1454 */ 1455 ext4_orphan_add(handle, inode); 1456 1457 ret2 = ext4_journal_stop(handle); 1458 if (!ret) 1459 ret = ret2; 1460 if (pos + len > inode->i_size) { 1461 ext4_truncate_failed_write(inode); 1462 /* 1463 * If truncate failed early the inode might still be 1464 * on the orphan list; we need to make sure the inode 1465 * is removed from the orphan list in that case. 1466 */ 1467 if (inode->i_nlink) 1468 ext4_orphan_del(NULL, inode); 1469 } 1470 1471 return ret ? ret : copied; 1472 } 1473 1474 /* 1475 * Reserve space for a single cluster 1476 */ 1477 static int ext4_da_reserve_space(struct inode *inode) 1478 { 1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1480 struct ext4_inode_info *ei = EXT4_I(inode); 1481 int ret; 1482 1483 /* 1484 * We will charge metadata quota at writeout time; this saves 1485 * us from metadata over-estimation, though we may go over by 1486 * a small amount in the end. Here we just reserve for data. 1487 */ 1488 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1489 if (ret) 1490 return ret; 1491 1492 spin_lock(&ei->i_block_reservation_lock); 1493 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1494 spin_unlock(&ei->i_block_reservation_lock); 1495 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1496 return -ENOSPC; 1497 } 1498 ei->i_reserved_data_blocks++; 1499 trace_ext4_da_reserve_space(inode); 1500 spin_unlock(&ei->i_block_reservation_lock); 1501 1502 return 0; /* success */ 1503 } 1504 1505 static void ext4_da_release_space(struct inode *inode, int to_free) 1506 { 1507 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1508 struct ext4_inode_info *ei = EXT4_I(inode); 1509 1510 if (!to_free) 1511 return; /* Nothing to release, exit */ 1512 1513 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 trace_ext4_da_release_space(inode, to_free); 1516 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1517 /* 1518 * if there aren't enough reserved blocks, then the 1519 * counter is messed up somewhere. Since this 1520 * function is called from invalidate page, it's 1521 * harmless to return without any action. 1522 */ 1523 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1524 "ino %lu, to_free %d with only %d reserved " 1525 "data blocks", inode->i_ino, to_free, 1526 ei->i_reserved_data_blocks); 1527 WARN_ON(1); 1528 to_free = ei->i_reserved_data_blocks; 1529 } 1530 ei->i_reserved_data_blocks -= to_free; 1531 1532 /* update fs dirty data blocks counter */ 1533 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1534 1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1536 1537 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1538 } 1539 1540 static void ext4_da_page_release_reservation(struct page *page, 1541 unsigned int offset, 1542 unsigned int length) 1543 { 1544 int to_release = 0, contiguous_blks = 0; 1545 struct buffer_head *head, *bh; 1546 unsigned int curr_off = 0; 1547 struct inode *inode = page->mapping->host; 1548 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1549 unsigned int stop = offset + length; 1550 int num_clusters; 1551 ext4_fsblk_t lblk; 1552 1553 BUG_ON(stop > PAGE_SIZE || stop < length); 1554 1555 head = page_buffers(page); 1556 bh = head; 1557 do { 1558 unsigned int next_off = curr_off + bh->b_size; 1559 1560 if (next_off > stop) 1561 break; 1562 1563 if ((offset <= curr_off) && (buffer_delay(bh))) { 1564 to_release++; 1565 contiguous_blks++; 1566 clear_buffer_delay(bh); 1567 } else if (contiguous_blks) { 1568 lblk = page->index << 1569 (PAGE_SHIFT - inode->i_blkbits); 1570 lblk += (curr_off >> inode->i_blkbits) - 1571 contiguous_blks; 1572 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1573 contiguous_blks = 0; 1574 } 1575 curr_off = next_off; 1576 } while ((bh = bh->b_this_page) != head); 1577 1578 if (contiguous_blks) { 1579 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1580 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1581 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1582 } 1583 1584 /* If we have released all the blocks belonging to a cluster, then we 1585 * need to release the reserved space for that cluster. */ 1586 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1587 while (num_clusters > 0) { 1588 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1589 ((num_clusters - 1) << sbi->s_cluster_bits); 1590 if (sbi->s_cluster_ratio == 1 || 1591 !ext4_find_delalloc_cluster(inode, lblk)) 1592 ext4_da_release_space(inode, 1); 1593 1594 num_clusters--; 1595 } 1596 } 1597 1598 /* 1599 * Delayed allocation stuff 1600 */ 1601 1602 struct mpage_da_data { 1603 struct inode *inode; 1604 struct writeback_control *wbc; 1605 1606 pgoff_t first_page; /* The first page to write */ 1607 pgoff_t next_page; /* Current page to examine */ 1608 pgoff_t last_page; /* Last page to examine */ 1609 /* 1610 * Extent to map - this can be after first_page because that can be 1611 * fully mapped. We somewhat abuse m_flags to store whether the extent 1612 * is delalloc or unwritten. 1613 */ 1614 struct ext4_map_blocks map; 1615 struct ext4_io_submit io_submit; /* IO submission data */ 1616 }; 1617 1618 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1619 bool invalidate) 1620 { 1621 int nr_pages, i; 1622 pgoff_t index, end; 1623 struct pagevec pvec; 1624 struct inode *inode = mpd->inode; 1625 struct address_space *mapping = inode->i_mapping; 1626 1627 /* This is necessary when next_page == 0. */ 1628 if (mpd->first_page >= mpd->next_page) 1629 return; 1630 1631 index = mpd->first_page; 1632 end = mpd->next_page - 1; 1633 if (invalidate) { 1634 ext4_lblk_t start, last; 1635 start = index << (PAGE_SHIFT - inode->i_blkbits); 1636 last = end << (PAGE_SHIFT - inode->i_blkbits); 1637 ext4_es_remove_extent(inode, start, last - start + 1); 1638 } 1639 1640 pagevec_init(&pvec, 0); 1641 while (index <= end) { 1642 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1643 if (nr_pages == 0) 1644 break; 1645 for (i = 0; i < nr_pages; i++) { 1646 struct page *page = pvec.pages[i]; 1647 if (page->index > end) 1648 break; 1649 BUG_ON(!PageLocked(page)); 1650 BUG_ON(PageWriteback(page)); 1651 if (invalidate) { 1652 block_invalidatepage(page, 0, PAGE_SIZE); 1653 ClearPageUptodate(page); 1654 } 1655 unlock_page(page); 1656 } 1657 index = pvec.pages[nr_pages - 1]->index + 1; 1658 pagevec_release(&pvec); 1659 } 1660 } 1661 1662 static void ext4_print_free_blocks(struct inode *inode) 1663 { 1664 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1665 struct super_block *sb = inode->i_sb; 1666 struct ext4_inode_info *ei = EXT4_I(inode); 1667 1668 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1669 EXT4_C2B(EXT4_SB(inode->i_sb), 1670 ext4_count_free_clusters(sb))); 1671 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1672 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1673 (long long) EXT4_C2B(EXT4_SB(sb), 1674 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1675 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1676 (long long) EXT4_C2B(EXT4_SB(sb), 1677 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1678 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1679 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1680 ei->i_reserved_data_blocks); 1681 return; 1682 } 1683 1684 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1685 { 1686 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1687 } 1688 1689 /* 1690 * This function is grabs code from the very beginning of 1691 * ext4_map_blocks, but assumes that the caller is from delayed write 1692 * time. This function looks up the requested blocks and sets the 1693 * buffer delay bit under the protection of i_data_sem. 1694 */ 1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1696 struct ext4_map_blocks *map, 1697 struct buffer_head *bh) 1698 { 1699 struct extent_status es; 1700 int retval; 1701 sector_t invalid_block = ~((sector_t) 0xffff); 1702 #ifdef ES_AGGRESSIVE_TEST 1703 struct ext4_map_blocks orig_map; 1704 1705 memcpy(&orig_map, map, sizeof(*map)); 1706 #endif 1707 1708 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1709 invalid_block = ~0; 1710 1711 map->m_flags = 0; 1712 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1713 "logical block %lu\n", inode->i_ino, map->m_len, 1714 (unsigned long) map->m_lblk); 1715 1716 /* Lookup extent status tree firstly */ 1717 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1718 if (ext4_es_is_hole(&es)) { 1719 retval = 0; 1720 down_read(&EXT4_I(inode)->i_data_sem); 1721 goto add_delayed; 1722 } 1723 1724 /* 1725 * Delayed extent could be allocated by fallocate. 1726 * So we need to check it. 1727 */ 1728 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1729 map_bh(bh, inode->i_sb, invalid_block); 1730 set_buffer_new(bh); 1731 set_buffer_delay(bh); 1732 return 0; 1733 } 1734 1735 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1736 retval = es.es_len - (iblock - es.es_lblk); 1737 if (retval > map->m_len) 1738 retval = map->m_len; 1739 map->m_len = retval; 1740 if (ext4_es_is_written(&es)) 1741 map->m_flags |= EXT4_MAP_MAPPED; 1742 else if (ext4_es_is_unwritten(&es)) 1743 map->m_flags |= EXT4_MAP_UNWRITTEN; 1744 else 1745 BUG_ON(1); 1746 1747 #ifdef ES_AGGRESSIVE_TEST 1748 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1749 #endif 1750 return retval; 1751 } 1752 1753 /* 1754 * Try to see if we can get the block without requesting a new 1755 * file system block. 1756 */ 1757 down_read(&EXT4_I(inode)->i_data_sem); 1758 if (ext4_has_inline_data(inode)) 1759 retval = 0; 1760 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1761 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1762 else 1763 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1764 1765 add_delayed: 1766 if (retval == 0) { 1767 int ret; 1768 /* 1769 * XXX: __block_prepare_write() unmaps passed block, 1770 * is it OK? 1771 */ 1772 /* 1773 * If the block was allocated from previously allocated cluster, 1774 * then we don't need to reserve it again. However we still need 1775 * to reserve metadata for every block we're going to write. 1776 */ 1777 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1778 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1779 ret = ext4_da_reserve_space(inode); 1780 if (ret) { 1781 /* not enough space to reserve */ 1782 retval = ret; 1783 goto out_unlock; 1784 } 1785 } 1786 1787 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1788 ~0, EXTENT_STATUS_DELAYED); 1789 if (ret) { 1790 retval = ret; 1791 goto out_unlock; 1792 } 1793 1794 map_bh(bh, inode->i_sb, invalid_block); 1795 set_buffer_new(bh); 1796 set_buffer_delay(bh); 1797 } else if (retval > 0) { 1798 int ret; 1799 unsigned int status; 1800 1801 if (unlikely(retval != map->m_len)) { 1802 ext4_warning(inode->i_sb, 1803 "ES len assertion failed for inode " 1804 "%lu: retval %d != map->m_len %d", 1805 inode->i_ino, retval, map->m_len); 1806 WARN_ON(1); 1807 } 1808 1809 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1810 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1811 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1812 map->m_pblk, status); 1813 if (ret != 0) 1814 retval = ret; 1815 } 1816 1817 out_unlock: 1818 up_read((&EXT4_I(inode)->i_data_sem)); 1819 1820 return retval; 1821 } 1822 1823 /* 1824 * This is a special get_block_t callback which is used by 1825 * ext4_da_write_begin(). It will either return mapped block or 1826 * reserve space for a single block. 1827 * 1828 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1829 * We also have b_blocknr = -1 and b_bdev initialized properly 1830 * 1831 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1832 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1833 * initialized properly. 1834 */ 1835 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1836 struct buffer_head *bh, int create) 1837 { 1838 struct ext4_map_blocks map; 1839 int ret = 0; 1840 1841 BUG_ON(create == 0); 1842 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1843 1844 map.m_lblk = iblock; 1845 map.m_len = 1; 1846 1847 /* 1848 * first, we need to know whether the block is allocated already 1849 * preallocated blocks are unmapped but should treated 1850 * the same as allocated blocks. 1851 */ 1852 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1853 if (ret <= 0) 1854 return ret; 1855 1856 map_bh(bh, inode->i_sb, map.m_pblk); 1857 ext4_update_bh_state(bh, map.m_flags); 1858 1859 if (buffer_unwritten(bh)) { 1860 /* A delayed write to unwritten bh should be marked 1861 * new and mapped. Mapped ensures that we don't do 1862 * get_block multiple times when we write to the same 1863 * offset and new ensures that we do proper zero out 1864 * for partial write. 1865 */ 1866 set_buffer_new(bh); 1867 set_buffer_mapped(bh); 1868 } 1869 return 0; 1870 } 1871 1872 static int bget_one(handle_t *handle, struct buffer_head *bh) 1873 { 1874 get_bh(bh); 1875 return 0; 1876 } 1877 1878 static int bput_one(handle_t *handle, struct buffer_head *bh) 1879 { 1880 put_bh(bh); 1881 return 0; 1882 } 1883 1884 static int __ext4_journalled_writepage(struct page *page, 1885 unsigned int len) 1886 { 1887 struct address_space *mapping = page->mapping; 1888 struct inode *inode = mapping->host; 1889 struct buffer_head *page_bufs = NULL; 1890 handle_t *handle = NULL; 1891 int ret = 0, err = 0; 1892 int inline_data = ext4_has_inline_data(inode); 1893 struct buffer_head *inode_bh = NULL; 1894 1895 ClearPageChecked(page); 1896 1897 if (inline_data) { 1898 BUG_ON(page->index != 0); 1899 BUG_ON(len > ext4_get_max_inline_size(inode)); 1900 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1901 if (inode_bh == NULL) 1902 goto out; 1903 } else { 1904 page_bufs = page_buffers(page); 1905 if (!page_bufs) { 1906 BUG(); 1907 goto out; 1908 } 1909 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1910 NULL, bget_one); 1911 } 1912 /* 1913 * We need to release the page lock before we start the 1914 * journal, so grab a reference so the page won't disappear 1915 * out from under us. 1916 */ 1917 get_page(page); 1918 unlock_page(page); 1919 1920 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1921 ext4_writepage_trans_blocks(inode)); 1922 if (IS_ERR(handle)) { 1923 ret = PTR_ERR(handle); 1924 put_page(page); 1925 goto out_no_pagelock; 1926 } 1927 BUG_ON(!ext4_handle_valid(handle)); 1928 1929 lock_page(page); 1930 put_page(page); 1931 if (page->mapping != mapping) { 1932 /* The page got truncated from under us */ 1933 ext4_journal_stop(handle); 1934 ret = 0; 1935 goto out; 1936 } 1937 1938 if (inline_data) { 1939 BUFFER_TRACE(inode_bh, "get write access"); 1940 ret = ext4_journal_get_write_access(handle, inode_bh); 1941 1942 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1943 1944 } else { 1945 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1946 do_journal_get_write_access); 1947 1948 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1949 write_end_fn); 1950 } 1951 if (ret == 0) 1952 ret = err; 1953 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1954 err = ext4_journal_stop(handle); 1955 if (!ret) 1956 ret = err; 1957 1958 if (!ext4_has_inline_data(inode)) 1959 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1960 NULL, bput_one); 1961 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1962 out: 1963 unlock_page(page); 1964 out_no_pagelock: 1965 brelse(inode_bh); 1966 return ret; 1967 } 1968 1969 /* 1970 * Note that we don't need to start a transaction unless we're journaling data 1971 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1972 * need to file the inode to the transaction's list in ordered mode because if 1973 * we are writing back data added by write(), the inode is already there and if 1974 * we are writing back data modified via mmap(), no one guarantees in which 1975 * transaction the data will hit the disk. In case we are journaling data, we 1976 * cannot start transaction directly because transaction start ranks above page 1977 * lock so we have to do some magic. 1978 * 1979 * This function can get called via... 1980 * - ext4_writepages after taking page lock (have journal handle) 1981 * - journal_submit_inode_data_buffers (no journal handle) 1982 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1983 * - grab_page_cache when doing write_begin (have journal handle) 1984 * 1985 * We don't do any block allocation in this function. If we have page with 1986 * multiple blocks we need to write those buffer_heads that are mapped. This 1987 * is important for mmaped based write. So if we do with blocksize 1K 1988 * truncate(f, 1024); 1989 * a = mmap(f, 0, 4096); 1990 * a[0] = 'a'; 1991 * truncate(f, 4096); 1992 * we have in the page first buffer_head mapped via page_mkwrite call back 1993 * but other buffer_heads would be unmapped but dirty (dirty done via the 1994 * do_wp_page). So writepage should write the first block. If we modify 1995 * the mmap area beyond 1024 we will again get a page_fault and the 1996 * page_mkwrite callback will do the block allocation and mark the 1997 * buffer_heads mapped. 1998 * 1999 * We redirty the page if we have any buffer_heads that is either delay or 2000 * unwritten in the page. 2001 * 2002 * We can get recursively called as show below. 2003 * 2004 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2005 * ext4_writepage() 2006 * 2007 * But since we don't do any block allocation we should not deadlock. 2008 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2009 */ 2010 static int ext4_writepage(struct page *page, 2011 struct writeback_control *wbc) 2012 { 2013 int ret = 0; 2014 loff_t size; 2015 unsigned int len; 2016 struct buffer_head *page_bufs = NULL; 2017 struct inode *inode = page->mapping->host; 2018 struct ext4_io_submit io_submit; 2019 bool keep_towrite = false; 2020 2021 trace_ext4_writepage(page); 2022 size = i_size_read(inode); 2023 if (page->index == size >> PAGE_SHIFT) 2024 len = size & ~PAGE_MASK; 2025 else 2026 len = PAGE_SIZE; 2027 2028 page_bufs = page_buffers(page); 2029 /* 2030 * We cannot do block allocation or other extent handling in this 2031 * function. If there are buffers needing that, we have to redirty 2032 * the page. But we may reach here when we do a journal commit via 2033 * journal_submit_inode_data_buffers() and in that case we must write 2034 * allocated buffers to achieve data=ordered mode guarantees. 2035 * 2036 * Also, if there is only one buffer per page (the fs block 2037 * size == the page size), if one buffer needs block 2038 * allocation or needs to modify the extent tree to clear the 2039 * unwritten flag, we know that the page can't be written at 2040 * all, so we might as well refuse the write immediately. 2041 * Unfortunately if the block size != page size, we can't as 2042 * easily detect this case using ext4_walk_page_buffers(), but 2043 * for the extremely common case, this is an optimization that 2044 * skips a useless round trip through ext4_bio_write_page(). 2045 */ 2046 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2047 ext4_bh_delay_or_unwritten)) { 2048 redirty_page_for_writepage(wbc, page); 2049 if ((current->flags & PF_MEMALLOC) || 2050 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2051 /* 2052 * For memory cleaning there's no point in writing only 2053 * some buffers. So just bail out. Warn if we came here 2054 * from direct reclaim. 2055 */ 2056 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2057 == PF_MEMALLOC); 2058 unlock_page(page); 2059 return 0; 2060 } 2061 keep_towrite = true; 2062 } 2063 2064 if (PageChecked(page) && ext4_should_journal_data(inode)) 2065 /* 2066 * It's mmapped pagecache. Add buffers and journal it. There 2067 * doesn't seem much point in redirtying the page here. 2068 */ 2069 return __ext4_journalled_writepage(page, len); 2070 2071 ext4_io_submit_init(&io_submit, wbc); 2072 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2073 if (!io_submit.io_end) { 2074 redirty_page_for_writepage(wbc, page); 2075 unlock_page(page); 2076 return -ENOMEM; 2077 } 2078 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2079 ext4_io_submit(&io_submit); 2080 /* Drop io_end reference we got from init */ 2081 ext4_put_io_end_defer(io_submit.io_end); 2082 return ret; 2083 } 2084 2085 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2086 { 2087 int len; 2088 loff_t size = i_size_read(mpd->inode); 2089 int err; 2090 2091 BUG_ON(page->index != mpd->first_page); 2092 if (page->index == size >> PAGE_SHIFT) 2093 len = size & ~PAGE_MASK; 2094 else 2095 len = PAGE_SIZE; 2096 clear_page_dirty_for_io(page); 2097 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2098 if (!err) 2099 mpd->wbc->nr_to_write--; 2100 mpd->first_page++; 2101 2102 return err; 2103 } 2104 2105 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2106 2107 /* 2108 * mballoc gives us at most this number of blocks... 2109 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2110 * The rest of mballoc seems to handle chunks up to full group size. 2111 */ 2112 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2113 2114 /* 2115 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2116 * 2117 * @mpd - extent of blocks 2118 * @lblk - logical number of the block in the file 2119 * @bh - buffer head we want to add to the extent 2120 * 2121 * The function is used to collect contig. blocks in the same state. If the 2122 * buffer doesn't require mapping for writeback and we haven't started the 2123 * extent of buffers to map yet, the function returns 'true' immediately - the 2124 * caller can write the buffer right away. Otherwise the function returns true 2125 * if the block has been added to the extent, false if the block couldn't be 2126 * added. 2127 */ 2128 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2129 struct buffer_head *bh) 2130 { 2131 struct ext4_map_blocks *map = &mpd->map; 2132 2133 /* Buffer that doesn't need mapping for writeback? */ 2134 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2135 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2136 /* So far no extent to map => we write the buffer right away */ 2137 if (map->m_len == 0) 2138 return true; 2139 return false; 2140 } 2141 2142 /* First block in the extent? */ 2143 if (map->m_len == 0) { 2144 map->m_lblk = lblk; 2145 map->m_len = 1; 2146 map->m_flags = bh->b_state & BH_FLAGS; 2147 return true; 2148 } 2149 2150 /* Don't go larger than mballoc is willing to allocate */ 2151 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2152 return false; 2153 2154 /* Can we merge the block to our big extent? */ 2155 if (lblk == map->m_lblk + map->m_len && 2156 (bh->b_state & BH_FLAGS) == map->m_flags) { 2157 map->m_len++; 2158 return true; 2159 } 2160 return false; 2161 } 2162 2163 /* 2164 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2165 * 2166 * @mpd - extent of blocks for mapping 2167 * @head - the first buffer in the page 2168 * @bh - buffer we should start processing from 2169 * @lblk - logical number of the block in the file corresponding to @bh 2170 * 2171 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2172 * the page for IO if all buffers in this page were mapped and there's no 2173 * accumulated extent of buffers to map or add buffers in the page to the 2174 * extent of buffers to map. The function returns 1 if the caller can continue 2175 * by processing the next page, 0 if it should stop adding buffers to the 2176 * extent to map because we cannot extend it anymore. It can also return value 2177 * < 0 in case of error during IO submission. 2178 */ 2179 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2180 struct buffer_head *head, 2181 struct buffer_head *bh, 2182 ext4_lblk_t lblk) 2183 { 2184 struct inode *inode = mpd->inode; 2185 int err; 2186 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2187 >> inode->i_blkbits; 2188 2189 do { 2190 BUG_ON(buffer_locked(bh)); 2191 2192 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2193 /* Found extent to map? */ 2194 if (mpd->map.m_len) 2195 return 0; 2196 /* Everything mapped so far and we hit EOF */ 2197 break; 2198 } 2199 } while (lblk++, (bh = bh->b_this_page) != head); 2200 /* So far everything mapped? Submit the page for IO. */ 2201 if (mpd->map.m_len == 0) { 2202 err = mpage_submit_page(mpd, head->b_page); 2203 if (err < 0) 2204 return err; 2205 } 2206 return lblk < blocks; 2207 } 2208 2209 /* 2210 * mpage_map_buffers - update buffers corresponding to changed extent and 2211 * submit fully mapped pages for IO 2212 * 2213 * @mpd - description of extent to map, on return next extent to map 2214 * 2215 * Scan buffers corresponding to changed extent (we expect corresponding pages 2216 * to be already locked) and update buffer state according to new extent state. 2217 * We map delalloc buffers to their physical location, clear unwritten bits, 2218 * and mark buffers as uninit when we perform writes to unwritten extents 2219 * and do extent conversion after IO is finished. If the last page is not fully 2220 * mapped, we update @map to the next extent in the last page that needs 2221 * mapping. Otherwise we submit the page for IO. 2222 */ 2223 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2224 { 2225 struct pagevec pvec; 2226 int nr_pages, i; 2227 struct inode *inode = mpd->inode; 2228 struct buffer_head *head, *bh; 2229 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2230 pgoff_t start, end; 2231 ext4_lblk_t lblk; 2232 sector_t pblock; 2233 int err; 2234 2235 start = mpd->map.m_lblk >> bpp_bits; 2236 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2237 lblk = start << bpp_bits; 2238 pblock = mpd->map.m_pblk; 2239 2240 pagevec_init(&pvec, 0); 2241 while (start <= end) { 2242 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2243 PAGEVEC_SIZE); 2244 if (nr_pages == 0) 2245 break; 2246 for (i = 0; i < nr_pages; i++) { 2247 struct page *page = pvec.pages[i]; 2248 2249 if (page->index > end) 2250 break; 2251 /* Up to 'end' pages must be contiguous */ 2252 BUG_ON(page->index != start); 2253 bh = head = page_buffers(page); 2254 do { 2255 if (lblk < mpd->map.m_lblk) 2256 continue; 2257 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2258 /* 2259 * Buffer after end of mapped extent. 2260 * Find next buffer in the page to map. 2261 */ 2262 mpd->map.m_len = 0; 2263 mpd->map.m_flags = 0; 2264 /* 2265 * FIXME: If dioread_nolock supports 2266 * blocksize < pagesize, we need to make 2267 * sure we add size mapped so far to 2268 * io_end->size as the following call 2269 * can submit the page for IO. 2270 */ 2271 err = mpage_process_page_bufs(mpd, head, 2272 bh, lblk); 2273 pagevec_release(&pvec); 2274 if (err > 0) 2275 err = 0; 2276 return err; 2277 } 2278 if (buffer_delay(bh)) { 2279 clear_buffer_delay(bh); 2280 bh->b_blocknr = pblock++; 2281 } 2282 clear_buffer_unwritten(bh); 2283 } while (lblk++, (bh = bh->b_this_page) != head); 2284 2285 /* 2286 * FIXME: This is going to break if dioread_nolock 2287 * supports blocksize < pagesize as we will try to 2288 * convert potentially unmapped parts of inode. 2289 */ 2290 mpd->io_submit.io_end->size += PAGE_SIZE; 2291 /* Page fully mapped - let IO run! */ 2292 err = mpage_submit_page(mpd, page); 2293 if (err < 0) { 2294 pagevec_release(&pvec); 2295 return err; 2296 } 2297 start++; 2298 } 2299 pagevec_release(&pvec); 2300 } 2301 /* Extent fully mapped and matches with page boundary. We are done. */ 2302 mpd->map.m_len = 0; 2303 mpd->map.m_flags = 0; 2304 return 0; 2305 } 2306 2307 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2308 { 2309 struct inode *inode = mpd->inode; 2310 struct ext4_map_blocks *map = &mpd->map; 2311 int get_blocks_flags; 2312 int err, dioread_nolock; 2313 2314 trace_ext4_da_write_pages_extent(inode, map); 2315 /* 2316 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2317 * to convert an unwritten extent to be initialized (in the case 2318 * where we have written into one or more preallocated blocks). It is 2319 * possible that we're going to need more metadata blocks than 2320 * previously reserved. However we must not fail because we're in 2321 * writeback and there is nothing we can do about it so it might result 2322 * in data loss. So use reserved blocks to allocate metadata if 2323 * possible. 2324 * 2325 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2326 * the blocks in question are delalloc blocks. This indicates 2327 * that the blocks and quotas has already been checked when 2328 * the data was copied into the page cache. 2329 */ 2330 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2331 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2332 EXT4_GET_BLOCKS_IO_SUBMIT; 2333 dioread_nolock = ext4_should_dioread_nolock(inode); 2334 if (dioread_nolock) 2335 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2336 if (map->m_flags & (1 << BH_Delay)) 2337 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2338 2339 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2340 if (err < 0) 2341 return err; 2342 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2343 if (!mpd->io_submit.io_end->handle && 2344 ext4_handle_valid(handle)) { 2345 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2346 handle->h_rsv_handle = NULL; 2347 } 2348 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2349 } 2350 2351 BUG_ON(map->m_len == 0); 2352 if (map->m_flags & EXT4_MAP_NEW) { 2353 struct block_device *bdev = inode->i_sb->s_bdev; 2354 int i; 2355 2356 for (i = 0; i < map->m_len; i++) 2357 unmap_underlying_metadata(bdev, map->m_pblk + i); 2358 } 2359 return 0; 2360 } 2361 2362 /* 2363 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2364 * mpd->len and submit pages underlying it for IO 2365 * 2366 * @handle - handle for journal operations 2367 * @mpd - extent to map 2368 * @give_up_on_write - we set this to true iff there is a fatal error and there 2369 * is no hope of writing the data. The caller should discard 2370 * dirty pages to avoid infinite loops. 2371 * 2372 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2373 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2374 * them to initialized or split the described range from larger unwritten 2375 * extent. Note that we need not map all the described range since allocation 2376 * can return less blocks or the range is covered by more unwritten extents. We 2377 * cannot map more because we are limited by reserved transaction credits. On 2378 * the other hand we always make sure that the last touched page is fully 2379 * mapped so that it can be written out (and thus forward progress is 2380 * guaranteed). After mapping we submit all mapped pages for IO. 2381 */ 2382 static int mpage_map_and_submit_extent(handle_t *handle, 2383 struct mpage_da_data *mpd, 2384 bool *give_up_on_write) 2385 { 2386 struct inode *inode = mpd->inode; 2387 struct ext4_map_blocks *map = &mpd->map; 2388 int err; 2389 loff_t disksize; 2390 int progress = 0; 2391 2392 mpd->io_submit.io_end->offset = 2393 ((loff_t)map->m_lblk) << inode->i_blkbits; 2394 do { 2395 err = mpage_map_one_extent(handle, mpd); 2396 if (err < 0) { 2397 struct super_block *sb = inode->i_sb; 2398 2399 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2400 goto invalidate_dirty_pages; 2401 /* 2402 * Let the uper layers retry transient errors. 2403 * In the case of ENOSPC, if ext4_count_free_blocks() 2404 * is non-zero, a commit should free up blocks. 2405 */ 2406 if ((err == -ENOMEM) || 2407 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2408 if (progress) 2409 goto update_disksize; 2410 return err; 2411 } 2412 ext4_msg(sb, KERN_CRIT, 2413 "Delayed block allocation failed for " 2414 "inode %lu at logical offset %llu with" 2415 " max blocks %u with error %d", 2416 inode->i_ino, 2417 (unsigned long long)map->m_lblk, 2418 (unsigned)map->m_len, -err); 2419 ext4_msg(sb, KERN_CRIT, 2420 "This should not happen!! Data will " 2421 "be lost\n"); 2422 if (err == -ENOSPC) 2423 ext4_print_free_blocks(inode); 2424 invalidate_dirty_pages: 2425 *give_up_on_write = true; 2426 return err; 2427 } 2428 progress = 1; 2429 /* 2430 * Update buffer state, submit mapped pages, and get us new 2431 * extent to map 2432 */ 2433 err = mpage_map_and_submit_buffers(mpd); 2434 if (err < 0) 2435 goto update_disksize; 2436 } while (map->m_len); 2437 2438 update_disksize: 2439 /* 2440 * Update on-disk size after IO is submitted. Races with 2441 * truncate are avoided by checking i_size under i_data_sem. 2442 */ 2443 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2444 if (disksize > EXT4_I(inode)->i_disksize) { 2445 int err2; 2446 loff_t i_size; 2447 2448 down_write(&EXT4_I(inode)->i_data_sem); 2449 i_size = i_size_read(inode); 2450 if (disksize > i_size) 2451 disksize = i_size; 2452 if (disksize > EXT4_I(inode)->i_disksize) 2453 EXT4_I(inode)->i_disksize = disksize; 2454 err2 = ext4_mark_inode_dirty(handle, inode); 2455 up_write(&EXT4_I(inode)->i_data_sem); 2456 if (err2) 2457 ext4_error(inode->i_sb, 2458 "Failed to mark inode %lu dirty", 2459 inode->i_ino); 2460 if (!err) 2461 err = err2; 2462 } 2463 return err; 2464 } 2465 2466 /* 2467 * Calculate the total number of credits to reserve for one writepages 2468 * iteration. This is called from ext4_writepages(). We map an extent of 2469 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2470 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2471 * bpp - 1 blocks in bpp different extents. 2472 */ 2473 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2474 { 2475 int bpp = ext4_journal_blocks_per_page(inode); 2476 2477 return ext4_meta_trans_blocks(inode, 2478 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2479 } 2480 2481 /* 2482 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2483 * and underlying extent to map 2484 * 2485 * @mpd - where to look for pages 2486 * 2487 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2488 * IO immediately. When we find a page which isn't mapped we start accumulating 2489 * extent of buffers underlying these pages that needs mapping (formed by 2490 * either delayed or unwritten buffers). We also lock the pages containing 2491 * these buffers. The extent found is returned in @mpd structure (starting at 2492 * mpd->lblk with length mpd->len blocks). 2493 * 2494 * Note that this function can attach bios to one io_end structure which are 2495 * neither logically nor physically contiguous. Although it may seem as an 2496 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2497 * case as we need to track IO to all buffers underlying a page in one io_end. 2498 */ 2499 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2500 { 2501 struct address_space *mapping = mpd->inode->i_mapping; 2502 struct pagevec pvec; 2503 unsigned int nr_pages; 2504 long left = mpd->wbc->nr_to_write; 2505 pgoff_t index = mpd->first_page; 2506 pgoff_t end = mpd->last_page; 2507 int tag; 2508 int i, err = 0; 2509 int blkbits = mpd->inode->i_blkbits; 2510 ext4_lblk_t lblk; 2511 struct buffer_head *head; 2512 2513 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2514 tag = PAGECACHE_TAG_TOWRITE; 2515 else 2516 tag = PAGECACHE_TAG_DIRTY; 2517 2518 pagevec_init(&pvec, 0); 2519 mpd->map.m_len = 0; 2520 mpd->next_page = index; 2521 while (index <= end) { 2522 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2523 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2524 if (nr_pages == 0) 2525 goto out; 2526 2527 for (i = 0; i < nr_pages; i++) { 2528 struct page *page = pvec.pages[i]; 2529 2530 /* 2531 * At this point, the page may be truncated or 2532 * invalidated (changing page->mapping to NULL), or 2533 * even swizzled back from swapper_space to tmpfs file 2534 * mapping. However, page->index will not change 2535 * because we have a reference on the page. 2536 */ 2537 if (page->index > end) 2538 goto out; 2539 2540 /* 2541 * Accumulated enough dirty pages? This doesn't apply 2542 * to WB_SYNC_ALL mode. For integrity sync we have to 2543 * keep going because someone may be concurrently 2544 * dirtying pages, and we might have synced a lot of 2545 * newly appeared dirty pages, but have not synced all 2546 * of the old dirty pages. 2547 */ 2548 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2549 goto out; 2550 2551 /* If we can't merge this page, we are done. */ 2552 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2553 goto out; 2554 2555 lock_page(page); 2556 /* 2557 * If the page is no longer dirty, or its mapping no 2558 * longer corresponds to inode we are writing (which 2559 * means it has been truncated or invalidated), or the 2560 * page is already under writeback and we are not doing 2561 * a data integrity writeback, skip the page 2562 */ 2563 if (!PageDirty(page) || 2564 (PageWriteback(page) && 2565 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2566 unlikely(page->mapping != mapping)) { 2567 unlock_page(page); 2568 continue; 2569 } 2570 2571 wait_on_page_writeback(page); 2572 BUG_ON(PageWriteback(page)); 2573 2574 if (mpd->map.m_len == 0) 2575 mpd->first_page = page->index; 2576 mpd->next_page = page->index + 1; 2577 /* Add all dirty buffers to mpd */ 2578 lblk = ((ext4_lblk_t)page->index) << 2579 (PAGE_SHIFT - blkbits); 2580 head = page_buffers(page); 2581 err = mpage_process_page_bufs(mpd, head, head, lblk); 2582 if (err <= 0) 2583 goto out; 2584 err = 0; 2585 left--; 2586 } 2587 pagevec_release(&pvec); 2588 cond_resched(); 2589 } 2590 return 0; 2591 out: 2592 pagevec_release(&pvec); 2593 return err; 2594 } 2595 2596 static int __writepage(struct page *page, struct writeback_control *wbc, 2597 void *data) 2598 { 2599 struct address_space *mapping = data; 2600 int ret = ext4_writepage(page, wbc); 2601 mapping_set_error(mapping, ret); 2602 return ret; 2603 } 2604 2605 static int ext4_writepages(struct address_space *mapping, 2606 struct writeback_control *wbc) 2607 { 2608 pgoff_t writeback_index = 0; 2609 long nr_to_write = wbc->nr_to_write; 2610 int range_whole = 0; 2611 int cycled = 1; 2612 handle_t *handle = NULL; 2613 struct mpage_da_data mpd; 2614 struct inode *inode = mapping->host; 2615 int needed_blocks, rsv_blocks = 0, ret = 0; 2616 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2617 bool done; 2618 struct blk_plug plug; 2619 bool give_up_on_write = false; 2620 2621 percpu_down_read(&sbi->s_journal_flag_rwsem); 2622 trace_ext4_writepages(inode, wbc); 2623 2624 if (dax_mapping(mapping)) { 2625 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2626 wbc); 2627 goto out_writepages; 2628 } 2629 2630 /* 2631 * No pages to write? This is mainly a kludge to avoid starting 2632 * a transaction for special inodes like journal inode on last iput() 2633 * because that could violate lock ordering on umount 2634 */ 2635 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2636 goto out_writepages; 2637 2638 if (ext4_should_journal_data(inode)) { 2639 struct blk_plug plug; 2640 2641 blk_start_plug(&plug); 2642 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2643 blk_finish_plug(&plug); 2644 goto out_writepages; 2645 } 2646 2647 /* 2648 * If the filesystem has aborted, it is read-only, so return 2649 * right away instead of dumping stack traces later on that 2650 * will obscure the real source of the problem. We test 2651 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2652 * the latter could be true if the filesystem is mounted 2653 * read-only, and in that case, ext4_writepages should 2654 * *never* be called, so if that ever happens, we would want 2655 * the stack trace. 2656 */ 2657 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2658 ret = -EROFS; 2659 goto out_writepages; 2660 } 2661 2662 if (ext4_should_dioread_nolock(inode)) { 2663 /* 2664 * We may need to convert up to one extent per block in 2665 * the page and we may dirty the inode. 2666 */ 2667 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2668 } 2669 2670 /* 2671 * If we have inline data and arrive here, it means that 2672 * we will soon create the block for the 1st page, so 2673 * we'd better clear the inline data here. 2674 */ 2675 if (ext4_has_inline_data(inode)) { 2676 /* Just inode will be modified... */ 2677 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2678 if (IS_ERR(handle)) { 2679 ret = PTR_ERR(handle); 2680 goto out_writepages; 2681 } 2682 BUG_ON(ext4_test_inode_state(inode, 2683 EXT4_STATE_MAY_INLINE_DATA)); 2684 ext4_destroy_inline_data(handle, inode); 2685 ext4_journal_stop(handle); 2686 } 2687 2688 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2689 range_whole = 1; 2690 2691 if (wbc->range_cyclic) { 2692 writeback_index = mapping->writeback_index; 2693 if (writeback_index) 2694 cycled = 0; 2695 mpd.first_page = writeback_index; 2696 mpd.last_page = -1; 2697 } else { 2698 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2699 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2700 } 2701 2702 mpd.inode = inode; 2703 mpd.wbc = wbc; 2704 ext4_io_submit_init(&mpd.io_submit, wbc); 2705 retry: 2706 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2707 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2708 done = false; 2709 blk_start_plug(&plug); 2710 while (!done && mpd.first_page <= mpd.last_page) { 2711 /* For each extent of pages we use new io_end */ 2712 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2713 if (!mpd.io_submit.io_end) { 2714 ret = -ENOMEM; 2715 break; 2716 } 2717 2718 /* 2719 * We have two constraints: We find one extent to map and we 2720 * must always write out whole page (makes a difference when 2721 * blocksize < pagesize) so that we don't block on IO when we 2722 * try to write out the rest of the page. Journalled mode is 2723 * not supported by delalloc. 2724 */ 2725 BUG_ON(ext4_should_journal_data(inode)); 2726 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2727 2728 /* start a new transaction */ 2729 handle = ext4_journal_start_with_reserve(inode, 2730 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2731 if (IS_ERR(handle)) { 2732 ret = PTR_ERR(handle); 2733 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2734 "%ld pages, ino %lu; err %d", __func__, 2735 wbc->nr_to_write, inode->i_ino, ret); 2736 /* Release allocated io_end */ 2737 ext4_put_io_end(mpd.io_submit.io_end); 2738 break; 2739 } 2740 2741 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2742 ret = mpage_prepare_extent_to_map(&mpd); 2743 if (!ret) { 2744 if (mpd.map.m_len) 2745 ret = mpage_map_and_submit_extent(handle, &mpd, 2746 &give_up_on_write); 2747 else { 2748 /* 2749 * We scanned the whole range (or exhausted 2750 * nr_to_write), submitted what was mapped and 2751 * didn't find anything needing mapping. We are 2752 * done. 2753 */ 2754 done = true; 2755 } 2756 } 2757 /* 2758 * Caution: If the handle is synchronous, 2759 * ext4_journal_stop() can wait for transaction commit 2760 * to finish which may depend on writeback of pages to 2761 * complete or on page lock to be released. In that 2762 * case, we have to wait until after after we have 2763 * submitted all the IO, released page locks we hold, 2764 * and dropped io_end reference (for extent conversion 2765 * to be able to complete) before stopping the handle. 2766 */ 2767 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2768 ext4_journal_stop(handle); 2769 handle = NULL; 2770 } 2771 /* Submit prepared bio */ 2772 ext4_io_submit(&mpd.io_submit); 2773 /* Unlock pages we didn't use */ 2774 mpage_release_unused_pages(&mpd, give_up_on_write); 2775 /* 2776 * Drop our io_end reference we got from init. We have 2777 * to be careful and use deferred io_end finishing if 2778 * we are still holding the transaction as we can 2779 * release the last reference to io_end which may end 2780 * up doing unwritten extent conversion. 2781 */ 2782 if (handle) { 2783 ext4_put_io_end_defer(mpd.io_submit.io_end); 2784 ext4_journal_stop(handle); 2785 } else 2786 ext4_put_io_end(mpd.io_submit.io_end); 2787 2788 if (ret == -ENOSPC && sbi->s_journal) { 2789 /* 2790 * Commit the transaction which would 2791 * free blocks released in the transaction 2792 * and try again 2793 */ 2794 jbd2_journal_force_commit_nested(sbi->s_journal); 2795 ret = 0; 2796 continue; 2797 } 2798 /* Fatal error - ENOMEM, EIO... */ 2799 if (ret) 2800 break; 2801 } 2802 blk_finish_plug(&plug); 2803 if (!ret && !cycled && wbc->nr_to_write > 0) { 2804 cycled = 1; 2805 mpd.last_page = writeback_index - 1; 2806 mpd.first_page = 0; 2807 goto retry; 2808 } 2809 2810 /* Update index */ 2811 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2812 /* 2813 * Set the writeback_index so that range_cyclic 2814 * mode will write it back later 2815 */ 2816 mapping->writeback_index = mpd.first_page; 2817 2818 out_writepages: 2819 trace_ext4_writepages_result(inode, wbc, ret, 2820 nr_to_write - wbc->nr_to_write); 2821 percpu_up_read(&sbi->s_journal_flag_rwsem); 2822 return ret; 2823 } 2824 2825 static int ext4_nonda_switch(struct super_block *sb) 2826 { 2827 s64 free_clusters, dirty_clusters; 2828 struct ext4_sb_info *sbi = EXT4_SB(sb); 2829 2830 /* 2831 * switch to non delalloc mode if we are running low 2832 * on free block. The free block accounting via percpu 2833 * counters can get slightly wrong with percpu_counter_batch getting 2834 * accumulated on each CPU without updating global counters 2835 * Delalloc need an accurate free block accounting. So switch 2836 * to non delalloc when we are near to error range. 2837 */ 2838 free_clusters = 2839 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2840 dirty_clusters = 2841 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2842 /* 2843 * Start pushing delalloc when 1/2 of free blocks are dirty. 2844 */ 2845 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2846 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2847 2848 if (2 * free_clusters < 3 * dirty_clusters || 2849 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2850 /* 2851 * free block count is less than 150% of dirty blocks 2852 * or free blocks is less than watermark 2853 */ 2854 return 1; 2855 } 2856 return 0; 2857 } 2858 2859 /* We always reserve for an inode update; the superblock could be there too */ 2860 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2861 { 2862 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2863 return 1; 2864 2865 if (pos + len <= 0x7fffffffULL) 2866 return 1; 2867 2868 /* We might need to update the superblock to set LARGE_FILE */ 2869 return 2; 2870 } 2871 2872 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2873 loff_t pos, unsigned len, unsigned flags, 2874 struct page **pagep, void **fsdata) 2875 { 2876 int ret, retries = 0; 2877 struct page *page; 2878 pgoff_t index; 2879 struct inode *inode = mapping->host; 2880 handle_t *handle; 2881 2882 index = pos >> PAGE_SHIFT; 2883 2884 if (ext4_nonda_switch(inode->i_sb)) { 2885 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2886 return ext4_write_begin(file, mapping, pos, 2887 len, flags, pagep, fsdata); 2888 } 2889 *fsdata = (void *)0; 2890 trace_ext4_da_write_begin(inode, pos, len, flags); 2891 2892 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2893 ret = ext4_da_write_inline_data_begin(mapping, inode, 2894 pos, len, flags, 2895 pagep, fsdata); 2896 if (ret < 0) 2897 return ret; 2898 if (ret == 1) 2899 return 0; 2900 } 2901 2902 /* 2903 * grab_cache_page_write_begin() can take a long time if the 2904 * system is thrashing due to memory pressure, or if the page 2905 * is being written back. So grab it first before we start 2906 * the transaction handle. This also allows us to allocate 2907 * the page (if needed) without using GFP_NOFS. 2908 */ 2909 retry_grab: 2910 page = grab_cache_page_write_begin(mapping, index, flags); 2911 if (!page) 2912 return -ENOMEM; 2913 unlock_page(page); 2914 2915 /* 2916 * With delayed allocation, we don't log the i_disksize update 2917 * if there is delayed block allocation. But we still need 2918 * to journalling the i_disksize update if writes to the end 2919 * of file which has an already mapped buffer. 2920 */ 2921 retry_journal: 2922 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2923 ext4_da_write_credits(inode, pos, len)); 2924 if (IS_ERR(handle)) { 2925 put_page(page); 2926 return PTR_ERR(handle); 2927 } 2928 2929 lock_page(page); 2930 if (page->mapping != mapping) { 2931 /* The page got truncated from under us */ 2932 unlock_page(page); 2933 put_page(page); 2934 ext4_journal_stop(handle); 2935 goto retry_grab; 2936 } 2937 /* In case writeback began while the page was unlocked */ 2938 wait_for_stable_page(page); 2939 2940 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2941 ret = ext4_block_write_begin(page, pos, len, 2942 ext4_da_get_block_prep); 2943 #else 2944 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2945 #endif 2946 if (ret < 0) { 2947 unlock_page(page); 2948 ext4_journal_stop(handle); 2949 /* 2950 * block_write_begin may have instantiated a few blocks 2951 * outside i_size. Trim these off again. Don't need 2952 * i_size_read because we hold i_mutex. 2953 */ 2954 if (pos + len > inode->i_size) 2955 ext4_truncate_failed_write(inode); 2956 2957 if (ret == -ENOSPC && 2958 ext4_should_retry_alloc(inode->i_sb, &retries)) 2959 goto retry_journal; 2960 2961 put_page(page); 2962 return ret; 2963 } 2964 2965 *pagep = page; 2966 return ret; 2967 } 2968 2969 /* 2970 * Check if we should update i_disksize 2971 * when write to the end of file but not require block allocation 2972 */ 2973 static int ext4_da_should_update_i_disksize(struct page *page, 2974 unsigned long offset) 2975 { 2976 struct buffer_head *bh; 2977 struct inode *inode = page->mapping->host; 2978 unsigned int idx; 2979 int i; 2980 2981 bh = page_buffers(page); 2982 idx = offset >> inode->i_blkbits; 2983 2984 for (i = 0; i < idx; i++) 2985 bh = bh->b_this_page; 2986 2987 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2988 return 0; 2989 return 1; 2990 } 2991 2992 static int ext4_da_write_end(struct file *file, 2993 struct address_space *mapping, 2994 loff_t pos, unsigned len, unsigned copied, 2995 struct page *page, void *fsdata) 2996 { 2997 struct inode *inode = mapping->host; 2998 int ret = 0, ret2; 2999 handle_t *handle = ext4_journal_current_handle(); 3000 loff_t new_i_size; 3001 unsigned long start, end; 3002 int write_mode = (int)(unsigned long)fsdata; 3003 3004 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3005 return ext4_write_end(file, mapping, pos, 3006 len, copied, page, fsdata); 3007 3008 trace_ext4_da_write_end(inode, pos, len, copied); 3009 start = pos & (PAGE_SIZE - 1); 3010 end = start + copied - 1; 3011 3012 /* 3013 * generic_write_end() will run mark_inode_dirty() if i_size 3014 * changes. So let's piggyback the i_disksize mark_inode_dirty 3015 * into that. 3016 */ 3017 new_i_size = pos + copied; 3018 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3019 if (ext4_has_inline_data(inode) || 3020 ext4_da_should_update_i_disksize(page, end)) { 3021 ext4_update_i_disksize(inode, new_i_size); 3022 /* We need to mark inode dirty even if 3023 * new_i_size is less that inode->i_size 3024 * bu greater than i_disksize.(hint delalloc) 3025 */ 3026 ext4_mark_inode_dirty(handle, inode); 3027 } 3028 } 3029 3030 if (write_mode != CONVERT_INLINE_DATA && 3031 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3032 ext4_has_inline_data(inode)) 3033 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3034 page); 3035 else 3036 ret2 = generic_write_end(file, mapping, pos, len, copied, 3037 page, fsdata); 3038 3039 copied = ret2; 3040 if (ret2 < 0) 3041 ret = ret2; 3042 ret2 = ext4_journal_stop(handle); 3043 if (!ret) 3044 ret = ret2; 3045 3046 return ret ? ret : copied; 3047 } 3048 3049 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3050 unsigned int length) 3051 { 3052 /* 3053 * Drop reserved blocks 3054 */ 3055 BUG_ON(!PageLocked(page)); 3056 if (!page_has_buffers(page)) 3057 goto out; 3058 3059 ext4_da_page_release_reservation(page, offset, length); 3060 3061 out: 3062 ext4_invalidatepage(page, offset, length); 3063 3064 return; 3065 } 3066 3067 /* 3068 * Force all delayed allocation blocks to be allocated for a given inode. 3069 */ 3070 int ext4_alloc_da_blocks(struct inode *inode) 3071 { 3072 trace_ext4_alloc_da_blocks(inode); 3073 3074 if (!EXT4_I(inode)->i_reserved_data_blocks) 3075 return 0; 3076 3077 /* 3078 * We do something simple for now. The filemap_flush() will 3079 * also start triggering a write of the data blocks, which is 3080 * not strictly speaking necessary (and for users of 3081 * laptop_mode, not even desirable). However, to do otherwise 3082 * would require replicating code paths in: 3083 * 3084 * ext4_writepages() -> 3085 * write_cache_pages() ---> (via passed in callback function) 3086 * __mpage_da_writepage() --> 3087 * mpage_add_bh_to_extent() 3088 * mpage_da_map_blocks() 3089 * 3090 * The problem is that write_cache_pages(), located in 3091 * mm/page-writeback.c, marks pages clean in preparation for 3092 * doing I/O, which is not desirable if we're not planning on 3093 * doing I/O at all. 3094 * 3095 * We could call write_cache_pages(), and then redirty all of 3096 * the pages by calling redirty_page_for_writepage() but that 3097 * would be ugly in the extreme. So instead we would need to 3098 * replicate parts of the code in the above functions, 3099 * simplifying them because we wouldn't actually intend to 3100 * write out the pages, but rather only collect contiguous 3101 * logical block extents, call the multi-block allocator, and 3102 * then update the buffer heads with the block allocations. 3103 * 3104 * For now, though, we'll cheat by calling filemap_flush(), 3105 * which will map the blocks, and start the I/O, but not 3106 * actually wait for the I/O to complete. 3107 */ 3108 return filemap_flush(inode->i_mapping); 3109 } 3110 3111 /* 3112 * bmap() is special. It gets used by applications such as lilo and by 3113 * the swapper to find the on-disk block of a specific piece of data. 3114 * 3115 * Naturally, this is dangerous if the block concerned is still in the 3116 * journal. If somebody makes a swapfile on an ext4 data-journaling 3117 * filesystem and enables swap, then they may get a nasty shock when the 3118 * data getting swapped to that swapfile suddenly gets overwritten by 3119 * the original zero's written out previously to the journal and 3120 * awaiting writeback in the kernel's buffer cache. 3121 * 3122 * So, if we see any bmap calls here on a modified, data-journaled file, 3123 * take extra steps to flush any blocks which might be in the cache. 3124 */ 3125 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3126 { 3127 struct inode *inode = mapping->host; 3128 journal_t *journal; 3129 int err; 3130 3131 /* 3132 * We can get here for an inline file via the FIBMAP ioctl 3133 */ 3134 if (ext4_has_inline_data(inode)) 3135 return 0; 3136 3137 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3138 test_opt(inode->i_sb, DELALLOC)) { 3139 /* 3140 * With delalloc we want to sync the file 3141 * so that we can make sure we allocate 3142 * blocks for file 3143 */ 3144 filemap_write_and_wait(mapping); 3145 } 3146 3147 if (EXT4_JOURNAL(inode) && 3148 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3149 /* 3150 * This is a REALLY heavyweight approach, but the use of 3151 * bmap on dirty files is expected to be extremely rare: 3152 * only if we run lilo or swapon on a freshly made file 3153 * do we expect this to happen. 3154 * 3155 * (bmap requires CAP_SYS_RAWIO so this does not 3156 * represent an unprivileged user DOS attack --- we'd be 3157 * in trouble if mortal users could trigger this path at 3158 * will.) 3159 * 3160 * NB. EXT4_STATE_JDATA is not set on files other than 3161 * regular files. If somebody wants to bmap a directory 3162 * or symlink and gets confused because the buffer 3163 * hasn't yet been flushed to disk, they deserve 3164 * everything they get. 3165 */ 3166 3167 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3168 journal = EXT4_JOURNAL(inode); 3169 jbd2_journal_lock_updates(journal); 3170 err = jbd2_journal_flush(journal); 3171 jbd2_journal_unlock_updates(journal); 3172 3173 if (err) 3174 return 0; 3175 } 3176 3177 return generic_block_bmap(mapping, block, ext4_get_block); 3178 } 3179 3180 static int ext4_readpage(struct file *file, struct page *page) 3181 { 3182 int ret = -EAGAIN; 3183 struct inode *inode = page->mapping->host; 3184 3185 trace_ext4_readpage(page); 3186 3187 if (ext4_has_inline_data(inode)) 3188 ret = ext4_readpage_inline(inode, page); 3189 3190 if (ret == -EAGAIN) 3191 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3192 3193 return ret; 3194 } 3195 3196 static int 3197 ext4_readpages(struct file *file, struct address_space *mapping, 3198 struct list_head *pages, unsigned nr_pages) 3199 { 3200 struct inode *inode = mapping->host; 3201 3202 /* If the file has inline data, no need to do readpages. */ 3203 if (ext4_has_inline_data(inode)) 3204 return 0; 3205 3206 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3207 } 3208 3209 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3210 unsigned int length) 3211 { 3212 trace_ext4_invalidatepage(page, offset, length); 3213 3214 /* No journalling happens on data buffers when this function is used */ 3215 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3216 3217 block_invalidatepage(page, offset, length); 3218 } 3219 3220 static int __ext4_journalled_invalidatepage(struct page *page, 3221 unsigned int offset, 3222 unsigned int length) 3223 { 3224 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3225 3226 trace_ext4_journalled_invalidatepage(page, offset, length); 3227 3228 /* 3229 * If it's a full truncate we just forget about the pending dirtying 3230 */ 3231 if (offset == 0 && length == PAGE_SIZE) 3232 ClearPageChecked(page); 3233 3234 return jbd2_journal_invalidatepage(journal, page, offset, length); 3235 } 3236 3237 /* Wrapper for aops... */ 3238 static void ext4_journalled_invalidatepage(struct page *page, 3239 unsigned int offset, 3240 unsigned int length) 3241 { 3242 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3243 } 3244 3245 static int ext4_releasepage(struct page *page, gfp_t wait) 3246 { 3247 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3248 3249 trace_ext4_releasepage(page); 3250 3251 /* Page has dirty journalled data -> cannot release */ 3252 if (PageChecked(page)) 3253 return 0; 3254 if (journal) 3255 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3256 else 3257 return try_to_free_buffers(page); 3258 } 3259 3260 #ifdef CONFIG_FS_DAX 3261 /* 3262 * Get block function for DAX IO and mmap faults. It takes care of converting 3263 * unwritten extents to written ones and initializes new / converted blocks 3264 * to zeros. 3265 */ 3266 int ext4_dax_get_block(struct inode *inode, sector_t iblock, 3267 struct buffer_head *bh_result, int create) 3268 { 3269 int ret; 3270 3271 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create); 3272 if (!create) 3273 return _ext4_get_block(inode, iblock, bh_result, 0); 3274 3275 ret = ext4_get_block_trans(inode, iblock, bh_result, 3276 EXT4_GET_BLOCKS_PRE_IO | 3277 EXT4_GET_BLOCKS_CREATE_ZERO); 3278 if (ret < 0) 3279 return ret; 3280 3281 if (buffer_unwritten(bh_result)) { 3282 /* 3283 * We are protected by i_mmap_sem or i_mutex so we know block 3284 * cannot go away from under us even though we dropped 3285 * i_data_sem. Convert extent to written and write zeros there. 3286 */ 3287 ret = ext4_get_block_trans(inode, iblock, bh_result, 3288 EXT4_GET_BLOCKS_CONVERT | 3289 EXT4_GET_BLOCKS_CREATE_ZERO); 3290 if (ret < 0) 3291 return ret; 3292 } 3293 /* 3294 * At least for now we have to clear BH_New so that DAX code 3295 * doesn't attempt to zero blocks again in a racy way. 3296 */ 3297 clear_buffer_new(bh_result); 3298 return 0; 3299 } 3300 #else 3301 /* Just define empty function, it will never get called. */ 3302 int ext4_dax_get_block(struct inode *inode, sector_t iblock, 3303 struct buffer_head *bh_result, int create) 3304 { 3305 BUG(); 3306 return 0; 3307 } 3308 #endif 3309 3310 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3311 ssize_t size, void *private) 3312 { 3313 ext4_io_end_t *io_end = private; 3314 3315 /* if not async direct IO just return */ 3316 if (!io_end) 3317 return 0; 3318 3319 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3320 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3321 io_end, io_end->inode->i_ino, iocb, offset, size); 3322 3323 /* 3324 * Error during AIO DIO. We cannot convert unwritten extents as the 3325 * data was not written. Just clear the unwritten flag and drop io_end. 3326 */ 3327 if (size <= 0) { 3328 ext4_clear_io_unwritten_flag(io_end); 3329 size = 0; 3330 } 3331 io_end->offset = offset; 3332 io_end->size = size; 3333 ext4_put_io_end(io_end); 3334 3335 return 0; 3336 } 3337 3338 /* 3339 * Handling of direct IO writes. 3340 * 3341 * For ext4 extent files, ext4 will do direct-io write even to holes, 3342 * preallocated extents, and those write extend the file, no need to 3343 * fall back to buffered IO. 3344 * 3345 * For holes, we fallocate those blocks, mark them as unwritten 3346 * If those blocks were preallocated, we mark sure they are split, but 3347 * still keep the range to write as unwritten. 3348 * 3349 * The unwritten extents will be converted to written when DIO is completed. 3350 * For async direct IO, since the IO may still pending when return, we 3351 * set up an end_io call back function, which will do the conversion 3352 * when async direct IO completed. 3353 * 3354 * If the O_DIRECT write will extend the file then add this inode to the 3355 * orphan list. So recovery will truncate it back to the original size 3356 * if the machine crashes during the write. 3357 * 3358 */ 3359 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3360 { 3361 struct file *file = iocb->ki_filp; 3362 struct inode *inode = file->f_mapping->host; 3363 struct ext4_inode_info *ei = EXT4_I(inode); 3364 ssize_t ret; 3365 loff_t offset = iocb->ki_pos; 3366 size_t count = iov_iter_count(iter); 3367 int overwrite = 0; 3368 get_block_t *get_block_func = NULL; 3369 int dio_flags = 0; 3370 loff_t final_size = offset + count; 3371 int orphan = 0; 3372 handle_t *handle; 3373 3374 if (final_size > inode->i_size) { 3375 /* Credits for sb + inode write */ 3376 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3377 if (IS_ERR(handle)) { 3378 ret = PTR_ERR(handle); 3379 goto out; 3380 } 3381 ret = ext4_orphan_add(handle, inode); 3382 if (ret) { 3383 ext4_journal_stop(handle); 3384 goto out; 3385 } 3386 orphan = 1; 3387 ei->i_disksize = inode->i_size; 3388 ext4_journal_stop(handle); 3389 } 3390 3391 BUG_ON(iocb->private == NULL); 3392 3393 /* 3394 * Make all waiters for direct IO properly wait also for extent 3395 * conversion. This also disallows race between truncate() and 3396 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3397 */ 3398 inode_dio_begin(inode); 3399 3400 /* If we do a overwrite dio, i_mutex locking can be released */ 3401 overwrite = *((int *)iocb->private); 3402 3403 if (overwrite) 3404 inode_unlock(inode); 3405 3406 /* 3407 * For extent mapped files we could direct write to holes and fallocate. 3408 * 3409 * Allocated blocks to fill the hole are marked as unwritten to prevent 3410 * parallel buffered read to expose the stale data before DIO complete 3411 * the data IO. 3412 * 3413 * As to previously fallocated extents, ext4 get_block will just simply 3414 * mark the buffer mapped but still keep the extents unwritten. 3415 * 3416 * For non AIO case, we will convert those unwritten extents to written 3417 * after return back from blockdev_direct_IO. That way we save us from 3418 * allocating io_end structure and also the overhead of offloading 3419 * the extent convertion to a workqueue. 3420 * 3421 * For async DIO, the conversion needs to be deferred when the 3422 * IO is completed. The ext4 end_io callback function will be 3423 * called to take care of the conversion work. Here for async 3424 * case, we allocate an io_end structure to hook to the iocb. 3425 */ 3426 iocb->private = NULL; 3427 if (overwrite) 3428 get_block_func = ext4_dio_get_block_overwrite; 3429 else if (IS_DAX(inode)) { 3430 /* 3431 * We can avoid zeroing for aligned DAX writes beyond EOF. Other 3432 * writes need zeroing either because they can race with page 3433 * faults or because they use partial blocks. 3434 */ 3435 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size && 3436 ext4_aligned_io(inode, offset, count)) 3437 get_block_func = ext4_dio_get_block; 3438 else 3439 get_block_func = ext4_dax_get_block; 3440 dio_flags = DIO_LOCKING; 3441 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3442 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) { 3443 get_block_func = ext4_dio_get_block; 3444 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3445 } else if (is_sync_kiocb(iocb)) { 3446 get_block_func = ext4_dio_get_block_unwritten_sync; 3447 dio_flags = DIO_LOCKING; 3448 } else { 3449 get_block_func = ext4_dio_get_block_unwritten_async; 3450 dio_flags = DIO_LOCKING; 3451 } 3452 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3453 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3454 #endif 3455 if (IS_DAX(inode)) { 3456 ret = dax_do_io(iocb, inode, iter, get_block_func, 3457 ext4_end_io_dio, dio_flags); 3458 } else 3459 ret = __blockdev_direct_IO(iocb, inode, 3460 inode->i_sb->s_bdev, iter, 3461 get_block_func, 3462 ext4_end_io_dio, NULL, dio_flags); 3463 3464 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3465 EXT4_STATE_DIO_UNWRITTEN)) { 3466 int err; 3467 /* 3468 * for non AIO case, since the IO is already 3469 * completed, we could do the conversion right here 3470 */ 3471 err = ext4_convert_unwritten_extents(NULL, inode, 3472 offset, ret); 3473 if (err < 0) 3474 ret = err; 3475 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3476 } 3477 3478 inode_dio_end(inode); 3479 /* take i_mutex locking again if we do a ovewrite dio */ 3480 if (overwrite) 3481 inode_lock(inode); 3482 3483 if (ret < 0 && final_size > inode->i_size) 3484 ext4_truncate_failed_write(inode); 3485 3486 /* Handle extending of i_size after direct IO write */ 3487 if (orphan) { 3488 int err; 3489 3490 /* Credits for sb + inode write */ 3491 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3492 if (IS_ERR(handle)) { 3493 /* This is really bad luck. We've written the data 3494 * but cannot extend i_size. Bail out and pretend 3495 * the write failed... */ 3496 ret = PTR_ERR(handle); 3497 if (inode->i_nlink) 3498 ext4_orphan_del(NULL, inode); 3499 3500 goto out; 3501 } 3502 if (inode->i_nlink) 3503 ext4_orphan_del(handle, inode); 3504 if (ret > 0) { 3505 loff_t end = offset + ret; 3506 if (end > inode->i_size) { 3507 ei->i_disksize = end; 3508 i_size_write(inode, end); 3509 /* 3510 * We're going to return a positive `ret' 3511 * here due to non-zero-length I/O, so there's 3512 * no way of reporting error returns from 3513 * ext4_mark_inode_dirty() to userspace. So 3514 * ignore it. 3515 */ 3516 ext4_mark_inode_dirty(handle, inode); 3517 } 3518 } 3519 err = ext4_journal_stop(handle); 3520 if (ret == 0) 3521 ret = err; 3522 } 3523 out: 3524 return ret; 3525 } 3526 3527 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3528 { 3529 int unlocked = 0; 3530 struct inode *inode = iocb->ki_filp->f_mapping->host; 3531 ssize_t ret; 3532 3533 if (ext4_should_dioread_nolock(inode)) { 3534 /* 3535 * Nolock dioread optimization may be dynamically disabled 3536 * via ext4_inode_block_unlocked_dio(). Check inode's state 3537 * while holding extra i_dio_count ref. 3538 */ 3539 inode_dio_begin(inode); 3540 smp_mb(); 3541 if (unlikely(ext4_test_inode_state(inode, 3542 EXT4_STATE_DIOREAD_LOCK))) 3543 inode_dio_end(inode); 3544 else 3545 unlocked = 1; 3546 } 3547 if (IS_DAX(inode)) { 3548 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, 3549 NULL, unlocked ? 0 : DIO_LOCKING); 3550 } else { 3551 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3552 iter, ext4_dio_get_block, 3553 NULL, NULL, 3554 unlocked ? 0 : DIO_LOCKING); 3555 } 3556 if (unlocked) 3557 inode_dio_end(inode); 3558 return ret; 3559 } 3560 3561 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3562 { 3563 struct file *file = iocb->ki_filp; 3564 struct inode *inode = file->f_mapping->host; 3565 size_t count = iov_iter_count(iter); 3566 loff_t offset = iocb->ki_pos; 3567 ssize_t ret; 3568 3569 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3570 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3571 return 0; 3572 #endif 3573 3574 /* 3575 * If we are doing data journalling we don't support O_DIRECT 3576 */ 3577 if (ext4_should_journal_data(inode)) 3578 return 0; 3579 3580 /* Let buffer I/O handle the inline data case. */ 3581 if (ext4_has_inline_data(inode)) 3582 return 0; 3583 3584 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3585 if (iov_iter_rw(iter) == READ) 3586 ret = ext4_direct_IO_read(iocb, iter); 3587 else 3588 ret = ext4_direct_IO_write(iocb, iter); 3589 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3590 return ret; 3591 } 3592 3593 /* 3594 * Pages can be marked dirty completely asynchronously from ext4's journalling 3595 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3596 * much here because ->set_page_dirty is called under VFS locks. The page is 3597 * not necessarily locked. 3598 * 3599 * We cannot just dirty the page and leave attached buffers clean, because the 3600 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3601 * or jbddirty because all the journalling code will explode. 3602 * 3603 * So what we do is to mark the page "pending dirty" and next time writepage 3604 * is called, propagate that into the buffers appropriately. 3605 */ 3606 static int ext4_journalled_set_page_dirty(struct page *page) 3607 { 3608 SetPageChecked(page); 3609 return __set_page_dirty_nobuffers(page); 3610 } 3611 3612 static const struct address_space_operations ext4_aops = { 3613 .readpage = ext4_readpage, 3614 .readpages = ext4_readpages, 3615 .writepage = ext4_writepage, 3616 .writepages = ext4_writepages, 3617 .write_begin = ext4_write_begin, 3618 .write_end = ext4_write_end, 3619 .bmap = ext4_bmap, 3620 .invalidatepage = ext4_invalidatepage, 3621 .releasepage = ext4_releasepage, 3622 .direct_IO = ext4_direct_IO, 3623 .migratepage = buffer_migrate_page, 3624 .is_partially_uptodate = block_is_partially_uptodate, 3625 .error_remove_page = generic_error_remove_page, 3626 }; 3627 3628 static const struct address_space_operations ext4_journalled_aops = { 3629 .readpage = ext4_readpage, 3630 .readpages = ext4_readpages, 3631 .writepage = ext4_writepage, 3632 .writepages = ext4_writepages, 3633 .write_begin = ext4_write_begin, 3634 .write_end = ext4_journalled_write_end, 3635 .set_page_dirty = ext4_journalled_set_page_dirty, 3636 .bmap = ext4_bmap, 3637 .invalidatepage = ext4_journalled_invalidatepage, 3638 .releasepage = ext4_releasepage, 3639 .direct_IO = ext4_direct_IO, 3640 .is_partially_uptodate = block_is_partially_uptodate, 3641 .error_remove_page = generic_error_remove_page, 3642 }; 3643 3644 static const struct address_space_operations ext4_da_aops = { 3645 .readpage = ext4_readpage, 3646 .readpages = ext4_readpages, 3647 .writepage = ext4_writepage, 3648 .writepages = ext4_writepages, 3649 .write_begin = ext4_da_write_begin, 3650 .write_end = ext4_da_write_end, 3651 .bmap = ext4_bmap, 3652 .invalidatepage = ext4_da_invalidatepage, 3653 .releasepage = ext4_releasepage, 3654 .direct_IO = ext4_direct_IO, 3655 .migratepage = buffer_migrate_page, 3656 .is_partially_uptodate = block_is_partially_uptodate, 3657 .error_remove_page = generic_error_remove_page, 3658 }; 3659 3660 void ext4_set_aops(struct inode *inode) 3661 { 3662 switch (ext4_inode_journal_mode(inode)) { 3663 case EXT4_INODE_ORDERED_DATA_MODE: 3664 case EXT4_INODE_WRITEBACK_DATA_MODE: 3665 break; 3666 case EXT4_INODE_JOURNAL_DATA_MODE: 3667 inode->i_mapping->a_ops = &ext4_journalled_aops; 3668 return; 3669 default: 3670 BUG(); 3671 } 3672 if (test_opt(inode->i_sb, DELALLOC)) 3673 inode->i_mapping->a_ops = &ext4_da_aops; 3674 else 3675 inode->i_mapping->a_ops = &ext4_aops; 3676 } 3677 3678 static int __ext4_block_zero_page_range(handle_t *handle, 3679 struct address_space *mapping, loff_t from, loff_t length) 3680 { 3681 ext4_fsblk_t index = from >> PAGE_SHIFT; 3682 unsigned offset = from & (PAGE_SIZE-1); 3683 unsigned blocksize, pos; 3684 ext4_lblk_t iblock; 3685 struct inode *inode = mapping->host; 3686 struct buffer_head *bh; 3687 struct page *page; 3688 int err = 0; 3689 3690 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3691 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3692 if (!page) 3693 return -ENOMEM; 3694 3695 blocksize = inode->i_sb->s_blocksize; 3696 3697 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3698 3699 if (!page_has_buffers(page)) 3700 create_empty_buffers(page, blocksize, 0); 3701 3702 /* Find the buffer that contains "offset" */ 3703 bh = page_buffers(page); 3704 pos = blocksize; 3705 while (offset >= pos) { 3706 bh = bh->b_this_page; 3707 iblock++; 3708 pos += blocksize; 3709 } 3710 if (buffer_freed(bh)) { 3711 BUFFER_TRACE(bh, "freed: skip"); 3712 goto unlock; 3713 } 3714 if (!buffer_mapped(bh)) { 3715 BUFFER_TRACE(bh, "unmapped"); 3716 ext4_get_block(inode, iblock, bh, 0); 3717 /* unmapped? It's a hole - nothing to do */ 3718 if (!buffer_mapped(bh)) { 3719 BUFFER_TRACE(bh, "still unmapped"); 3720 goto unlock; 3721 } 3722 } 3723 3724 /* Ok, it's mapped. Make sure it's up-to-date */ 3725 if (PageUptodate(page)) 3726 set_buffer_uptodate(bh); 3727 3728 if (!buffer_uptodate(bh)) { 3729 err = -EIO; 3730 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3731 wait_on_buffer(bh); 3732 /* Uhhuh. Read error. Complain and punt. */ 3733 if (!buffer_uptodate(bh)) 3734 goto unlock; 3735 if (S_ISREG(inode->i_mode) && 3736 ext4_encrypted_inode(inode)) { 3737 /* We expect the key to be set. */ 3738 BUG_ON(!fscrypt_has_encryption_key(inode)); 3739 BUG_ON(blocksize != PAGE_SIZE); 3740 WARN_ON_ONCE(fscrypt_decrypt_page(page)); 3741 } 3742 } 3743 if (ext4_should_journal_data(inode)) { 3744 BUFFER_TRACE(bh, "get write access"); 3745 err = ext4_journal_get_write_access(handle, bh); 3746 if (err) 3747 goto unlock; 3748 } 3749 zero_user(page, offset, length); 3750 BUFFER_TRACE(bh, "zeroed end of block"); 3751 3752 if (ext4_should_journal_data(inode)) { 3753 err = ext4_handle_dirty_metadata(handle, inode, bh); 3754 } else { 3755 err = 0; 3756 mark_buffer_dirty(bh); 3757 if (ext4_should_order_data(inode)) 3758 err = ext4_jbd2_inode_add_write(handle, inode); 3759 } 3760 3761 unlock: 3762 unlock_page(page); 3763 put_page(page); 3764 return err; 3765 } 3766 3767 /* 3768 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3769 * starting from file offset 'from'. The range to be zero'd must 3770 * be contained with in one block. If the specified range exceeds 3771 * the end of the block it will be shortened to end of the block 3772 * that cooresponds to 'from' 3773 */ 3774 static int ext4_block_zero_page_range(handle_t *handle, 3775 struct address_space *mapping, loff_t from, loff_t length) 3776 { 3777 struct inode *inode = mapping->host; 3778 unsigned offset = from & (PAGE_SIZE-1); 3779 unsigned blocksize = inode->i_sb->s_blocksize; 3780 unsigned max = blocksize - (offset & (blocksize - 1)); 3781 3782 /* 3783 * correct length if it does not fall between 3784 * 'from' and the end of the block 3785 */ 3786 if (length > max || length < 0) 3787 length = max; 3788 3789 if (IS_DAX(inode)) 3790 return dax_zero_page_range(inode, from, length, ext4_get_block); 3791 return __ext4_block_zero_page_range(handle, mapping, from, length); 3792 } 3793 3794 /* 3795 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3796 * up to the end of the block which corresponds to `from'. 3797 * This required during truncate. We need to physically zero the tail end 3798 * of that block so it doesn't yield old data if the file is later grown. 3799 */ 3800 static int ext4_block_truncate_page(handle_t *handle, 3801 struct address_space *mapping, loff_t from) 3802 { 3803 unsigned offset = from & (PAGE_SIZE-1); 3804 unsigned length; 3805 unsigned blocksize; 3806 struct inode *inode = mapping->host; 3807 3808 blocksize = inode->i_sb->s_blocksize; 3809 length = blocksize - (offset & (blocksize - 1)); 3810 3811 return ext4_block_zero_page_range(handle, mapping, from, length); 3812 } 3813 3814 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3815 loff_t lstart, loff_t length) 3816 { 3817 struct super_block *sb = inode->i_sb; 3818 struct address_space *mapping = inode->i_mapping; 3819 unsigned partial_start, partial_end; 3820 ext4_fsblk_t start, end; 3821 loff_t byte_end = (lstart + length - 1); 3822 int err = 0; 3823 3824 partial_start = lstart & (sb->s_blocksize - 1); 3825 partial_end = byte_end & (sb->s_blocksize - 1); 3826 3827 start = lstart >> sb->s_blocksize_bits; 3828 end = byte_end >> sb->s_blocksize_bits; 3829 3830 /* Handle partial zero within the single block */ 3831 if (start == end && 3832 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3833 err = ext4_block_zero_page_range(handle, mapping, 3834 lstart, length); 3835 return err; 3836 } 3837 /* Handle partial zero out on the start of the range */ 3838 if (partial_start) { 3839 err = ext4_block_zero_page_range(handle, mapping, 3840 lstart, sb->s_blocksize); 3841 if (err) 3842 return err; 3843 } 3844 /* Handle partial zero out on the end of the range */ 3845 if (partial_end != sb->s_blocksize - 1) 3846 err = ext4_block_zero_page_range(handle, mapping, 3847 byte_end - partial_end, 3848 partial_end + 1); 3849 return err; 3850 } 3851 3852 int ext4_can_truncate(struct inode *inode) 3853 { 3854 if (S_ISREG(inode->i_mode)) 3855 return 1; 3856 if (S_ISDIR(inode->i_mode)) 3857 return 1; 3858 if (S_ISLNK(inode->i_mode)) 3859 return !ext4_inode_is_fast_symlink(inode); 3860 return 0; 3861 } 3862 3863 /* 3864 * We have to make sure i_disksize gets properly updated before we truncate 3865 * page cache due to hole punching or zero range. Otherwise i_disksize update 3866 * can get lost as it may have been postponed to submission of writeback but 3867 * that will never happen after we truncate page cache. 3868 */ 3869 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3870 loff_t len) 3871 { 3872 handle_t *handle; 3873 loff_t size = i_size_read(inode); 3874 3875 WARN_ON(!inode_is_locked(inode)); 3876 if (offset > size || offset + len < size) 3877 return 0; 3878 3879 if (EXT4_I(inode)->i_disksize >= size) 3880 return 0; 3881 3882 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3883 if (IS_ERR(handle)) 3884 return PTR_ERR(handle); 3885 ext4_update_i_disksize(inode, size); 3886 ext4_mark_inode_dirty(handle, inode); 3887 ext4_journal_stop(handle); 3888 3889 return 0; 3890 } 3891 3892 /* 3893 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3894 * associated with the given offset and length 3895 * 3896 * @inode: File inode 3897 * @offset: The offset where the hole will begin 3898 * @len: The length of the hole 3899 * 3900 * Returns: 0 on success or negative on failure 3901 */ 3902 3903 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3904 { 3905 struct super_block *sb = inode->i_sb; 3906 ext4_lblk_t first_block, stop_block; 3907 struct address_space *mapping = inode->i_mapping; 3908 loff_t first_block_offset, last_block_offset; 3909 handle_t *handle; 3910 unsigned int credits; 3911 int ret = 0; 3912 3913 if (!S_ISREG(inode->i_mode)) 3914 return -EOPNOTSUPP; 3915 3916 trace_ext4_punch_hole(inode, offset, length, 0); 3917 3918 /* 3919 * Write out all dirty pages to avoid race conditions 3920 * Then release them. 3921 */ 3922 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3923 ret = filemap_write_and_wait_range(mapping, offset, 3924 offset + length - 1); 3925 if (ret) 3926 return ret; 3927 } 3928 3929 inode_lock(inode); 3930 3931 /* No need to punch hole beyond i_size */ 3932 if (offset >= inode->i_size) 3933 goto out_mutex; 3934 3935 /* 3936 * If the hole extends beyond i_size, set the hole 3937 * to end after the page that contains i_size 3938 */ 3939 if (offset + length > inode->i_size) { 3940 length = inode->i_size + 3941 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3942 offset; 3943 } 3944 3945 if (offset & (sb->s_blocksize - 1) || 3946 (offset + length) & (sb->s_blocksize - 1)) { 3947 /* 3948 * Attach jinode to inode for jbd2 if we do any zeroing of 3949 * partial block 3950 */ 3951 ret = ext4_inode_attach_jinode(inode); 3952 if (ret < 0) 3953 goto out_mutex; 3954 3955 } 3956 3957 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3958 ext4_inode_block_unlocked_dio(inode); 3959 inode_dio_wait(inode); 3960 3961 /* 3962 * Prevent page faults from reinstantiating pages we have released from 3963 * page cache. 3964 */ 3965 down_write(&EXT4_I(inode)->i_mmap_sem); 3966 first_block_offset = round_up(offset, sb->s_blocksize); 3967 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3968 3969 /* Now release the pages and zero block aligned part of pages*/ 3970 if (last_block_offset > first_block_offset) { 3971 ret = ext4_update_disksize_before_punch(inode, offset, length); 3972 if (ret) 3973 goto out_dio; 3974 truncate_pagecache_range(inode, first_block_offset, 3975 last_block_offset); 3976 } 3977 3978 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3979 credits = ext4_writepage_trans_blocks(inode); 3980 else 3981 credits = ext4_blocks_for_truncate(inode); 3982 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3983 if (IS_ERR(handle)) { 3984 ret = PTR_ERR(handle); 3985 ext4_std_error(sb, ret); 3986 goto out_dio; 3987 } 3988 3989 ret = ext4_zero_partial_blocks(handle, inode, offset, 3990 length); 3991 if (ret) 3992 goto out_stop; 3993 3994 first_block = (offset + sb->s_blocksize - 1) >> 3995 EXT4_BLOCK_SIZE_BITS(sb); 3996 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3997 3998 /* If there are no blocks to remove, return now */ 3999 if (first_block >= stop_block) 4000 goto out_stop; 4001 4002 down_write(&EXT4_I(inode)->i_data_sem); 4003 ext4_discard_preallocations(inode); 4004 4005 ret = ext4_es_remove_extent(inode, first_block, 4006 stop_block - first_block); 4007 if (ret) { 4008 up_write(&EXT4_I(inode)->i_data_sem); 4009 goto out_stop; 4010 } 4011 4012 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4013 ret = ext4_ext_remove_space(inode, first_block, 4014 stop_block - 1); 4015 else 4016 ret = ext4_ind_remove_space(handle, inode, first_block, 4017 stop_block); 4018 4019 up_write(&EXT4_I(inode)->i_data_sem); 4020 if (IS_SYNC(inode)) 4021 ext4_handle_sync(handle); 4022 4023 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4024 ext4_mark_inode_dirty(handle, inode); 4025 out_stop: 4026 ext4_journal_stop(handle); 4027 out_dio: 4028 up_write(&EXT4_I(inode)->i_mmap_sem); 4029 ext4_inode_resume_unlocked_dio(inode); 4030 out_mutex: 4031 inode_unlock(inode); 4032 return ret; 4033 } 4034 4035 int ext4_inode_attach_jinode(struct inode *inode) 4036 { 4037 struct ext4_inode_info *ei = EXT4_I(inode); 4038 struct jbd2_inode *jinode; 4039 4040 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4041 return 0; 4042 4043 jinode = jbd2_alloc_inode(GFP_KERNEL); 4044 spin_lock(&inode->i_lock); 4045 if (!ei->jinode) { 4046 if (!jinode) { 4047 spin_unlock(&inode->i_lock); 4048 return -ENOMEM; 4049 } 4050 ei->jinode = jinode; 4051 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4052 jinode = NULL; 4053 } 4054 spin_unlock(&inode->i_lock); 4055 if (unlikely(jinode != NULL)) 4056 jbd2_free_inode(jinode); 4057 return 0; 4058 } 4059 4060 /* 4061 * ext4_truncate() 4062 * 4063 * We block out ext4_get_block() block instantiations across the entire 4064 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4065 * simultaneously on behalf of the same inode. 4066 * 4067 * As we work through the truncate and commit bits of it to the journal there 4068 * is one core, guiding principle: the file's tree must always be consistent on 4069 * disk. We must be able to restart the truncate after a crash. 4070 * 4071 * The file's tree may be transiently inconsistent in memory (although it 4072 * probably isn't), but whenever we close off and commit a journal transaction, 4073 * the contents of (the filesystem + the journal) must be consistent and 4074 * restartable. It's pretty simple, really: bottom up, right to left (although 4075 * left-to-right works OK too). 4076 * 4077 * Note that at recovery time, journal replay occurs *before* the restart of 4078 * truncate against the orphan inode list. 4079 * 4080 * The committed inode has the new, desired i_size (which is the same as 4081 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4082 * that this inode's truncate did not complete and it will again call 4083 * ext4_truncate() to have another go. So there will be instantiated blocks 4084 * to the right of the truncation point in a crashed ext4 filesystem. But 4085 * that's fine - as long as they are linked from the inode, the post-crash 4086 * ext4_truncate() run will find them and release them. 4087 */ 4088 void ext4_truncate(struct inode *inode) 4089 { 4090 struct ext4_inode_info *ei = EXT4_I(inode); 4091 unsigned int credits; 4092 handle_t *handle; 4093 struct address_space *mapping = inode->i_mapping; 4094 4095 /* 4096 * There is a possibility that we're either freeing the inode 4097 * or it's a completely new inode. In those cases we might not 4098 * have i_mutex locked because it's not necessary. 4099 */ 4100 if (!(inode->i_state & (I_NEW|I_FREEING))) 4101 WARN_ON(!inode_is_locked(inode)); 4102 trace_ext4_truncate_enter(inode); 4103 4104 if (!ext4_can_truncate(inode)) 4105 return; 4106 4107 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4108 4109 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4110 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4111 4112 if (ext4_has_inline_data(inode)) { 4113 int has_inline = 1; 4114 4115 ext4_inline_data_truncate(inode, &has_inline); 4116 if (has_inline) 4117 return; 4118 } 4119 4120 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4121 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4122 if (ext4_inode_attach_jinode(inode) < 0) 4123 return; 4124 } 4125 4126 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4127 credits = ext4_writepage_trans_blocks(inode); 4128 else 4129 credits = ext4_blocks_for_truncate(inode); 4130 4131 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4132 if (IS_ERR(handle)) { 4133 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 4134 return; 4135 } 4136 4137 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4138 ext4_block_truncate_page(handle, mapping, inode->i_size); 4139 4140 /* 4141 * We add the inode to the orphan list, so that if this 4142 * truncate spans multiple transactions, and we crash, we will 4143 * resume the truncate when the filesystem recovers. It also 4144 * marks the inode dirty, to catch the new size. 4145 * 4146 * Implication: the file must always be in a sane, consistent 4147 * truncatable state while each transaction commits. 4148 */ 4149 if (ext4_orphan_add(handle, inode)) 4150 goto out_stop; 4151 4152 down_write(&EXT4_I(inode)->i_data_sem); 4153 4154 ext4_discard_preallocations(inode); 4155 4156 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4157 ext4_ext_truncate(handle, inode); 4158 else 4159 ext4_ind_truncate(handle, inode); 4160 4161 up_write(&ei->i_data_sem); 4162 4163 if (IS_SYNC(inode)) 4164 ext4_handle_sync(handle); 4165 4166 out_stop: 4167 /* 4168 * If this was a simple ftruncate() and the file will remain alive, 4169 * then we need to clear up the orphan record which we created above. 4170 * However, if this was a real unlink then we were called by 4171 * ext4_evict_inode(), and we allow that function to clean up the 4172 * orphan info for us. 4173 */ 4174 if (inode->i_nlink) 4175 ext4_orphan_del(handle, inode); 4176 4177 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4178 ext4_mark_inode_dirty(handle, inode); 4179 ext4_journal_stop(handle); 4180 4181 trace_ext4_truncate_exit(inode); 4182 } 4183 4184 /* 4185 * ext4_get_inode_loc returns with an extra refcount against the inode's 4186 * underlying buffer_head on success. If 'in_mem' is true, we have all 4187 * data in memory that is needed to recreate the on-disk version of this 4188 * inode. 4189 */ 4190 static int __ext4_get_inode_loc(struct inode *inode, 4191 struct ext4_iloc *iloc, int in_mem) 4192 { 4193 struct ext4_group_desc *gdp; 4194 struct buffer_head *bh; 4195 struct super_block *sb = inode->i_sb; 4196 ext4_fsblk_t block; 4197 int inodes_per_block, inode_offset; 4198 4199 iloc->bh = NULL; 4200 if (!ext4_valid_inum(sb, inode->i_ino)) 4201 return -EFSCORRUPTED; 4202 4203 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4204 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4205 if (!gdp) 4206 return -EIO; 4207 4208 /* 4209 * Figure out the offset within the block group inode table 4210 */ 4211 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4212 inode_offset = ((inode->i_ino - 1) % 4213 EXT4_INODES_PER_GROUP(sb)); 4214 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4215 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4216 4217 bh = sb_getblk(sb, block); 4218 if (unlikely(!bh)) 4219 return -ENOMEM; 4220 if (!buffer_uptodate(bh)) { 4221 lock_buffer(bh); 4222 4223 /* 4224 * If the buffer has the write error flag, we have failed 4225 * to write out another inode in the same block. In this 4226 * case, we don't have to read the block because we may 4227 * read the old inode data successfully. 4228 */ 4229 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4230 set_buffer_uptodate(bh); 4231 4232 if (buffer_uptodate(bh)) { 4233 /* someone brought it uptodate while we waited */ 4234 unlock_buffer(bh); 4235 goto has_buffer; 4236 } 4237 4238 /* 4239 * If we have all information of the inode in memory and this 4240 * is the only valid inode in the block, we need not read the 4241 * block. 4242 */ 4243 if (in_mem) { 4244 struct buffer_head *bitmap_bh; 4245 int i, start; 4246 4247 start = inode_offset & ~(inodes_per_block - 1); 4248 4249 /* Is the inode bitmap in cache? */ 4250 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4251 if (unlikely(!bitmap_bh)) 4252 goto make_io; 4253 4254 /* 4255 * If the inode bitmap isn't in cache then the 4256 * optimisation may end up performing two reads instead 4257 * of one, so skip it. 4258 */ 4259 if (!buffer_uptodate(bitmap_bh)) { 4260 brelse(bitmap_bh); 4261 goto make_io; 4262 } 4263 for (i = start; i < start + inodes_per_block; i++) { 4264 if (i == inode_offset) 4265 continue; 4266 if (ext4_test_bit(i, bitmap_bh->b_data)) 4267 break; 4268 } 4269 brelse(bitmap_bh); 4270 if (i == start + inodes_per_block) { 4271 /* all other inodes are free, so skip I/O */ 4272 memset(bh->b_data, 0, bh->b_size); 4273 set_buffer_uptodate(bh); 4274 unlock_buffer(bh); 4275 goto has_buffer; 4276 } 4277 } 4278 4279 make_io: 4280 /* 4281 * If we need to do any I/O, try to pre-readahead extra 4282 * blocks from the inode table. 4283 */ 4284 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4285 ext4_fsblk_t b, end, table; 4286 unsigned num; 4287 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4288 4289 table = ext4_inode_table(sb, gdp); 4290 /* s_inode_readahead_blks is always a power of 2 */ 4291 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4292 if (table > b) 4293 b = table; 4294 end = b + ra_blks; 4295 num = EXT4_INODES_PER_GROUP(sb); 4296 if (ext4_has_group_desc_csum(sb)) 4297 num -= ext4_itable_unused_count(sb, gdp); 4298 table += num / inodes_per_block; 4299 if (end > table) 4300 end = table; 4301 while (b <= end) 4302 sb_breadahead(sb, b++); 4303 } 4304 4305 /* 4306 * There are other valid inodes in the buffer, this inode 4307 * has in-inode xattrs, or we don't have this inode in memory. 4308 * Read the block from disk. 4309 */ 4310 trace_ext4_load_inode(inode); 4311 get_bh(bh); 4312 bh->b_end_io = end_buffer_read_sync; 4313 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4314 wait_on_buffer(bh); 4315 if (!buffer_uptodate(bh)) { 4316 EXT4_ERROR_INODE_BLOCK(inode, block, 4317 "unable to read itable block"); 4318 brelse(bh); 4319 return -EIO; 4320 } 4321 } 4322 has_buffer: 4323 iloc->bh = bh; 4324 return 0; 4325 } 4326 4327 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4328 { 4329 /* We have all inode data except xattrs in memory here. */ 4330 return __ext4_get_inode_loc(inode, iloc, 4331 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4332 } 4333 4334 void ext4_set_inode_flags(struct inode *inode) 4335 { 4336 unsigned int flags = EXT4_I(inode)->i_flags; 4337 unsigned int new_fl = 0; 4338 4339 if (flags & EXT4_SYNC_FL) 4340 new_fl |= S_SYNC; 4341 if (flags & EXT4_APPEND_FL) 4342 new_fl |= S_APPEND; 4343 if (flags & EXT4_IMMUTABLE_FL) 4344 new_fl |= S_IMMUTABLE; 4345 if (flags & EXT4_NOATIME_FL) 4346 new_fl |= S_NOATIME; 4347 if (flags & EXT4_DIRSYNC_FL) 4348 new_fl |= S_DIRSYNC; 4349 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 4350 new_fl |= S_DAX; 4351 inode_set_flags(inode, new_fl, 4352 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4353 } 4354 4355 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4356 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4357 { 4358 unsigned int vfs_fl; 4359 unsigned long old_fl, new_fl; 4360 4361 do { 4362 vfs_fl = ei->vfs_inode.i_flags; 4363 old_fl = ei->i_flags; 4364 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4365 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4366 EXT4_DIRSYNC_FL); 4367 if (vfs_fl & S_SYNC) 4368 new_fl |= EXT4_SYNC_FL; 4369 if (vfs_fl & S_APPEND) 4370 new_fl |= EXT4_APPEND_FL; 4371 if (vfs_fl & S_IMMUTABLE) 4372 new_fl |= EXT4_IMMUTABLE_FL; 4373 if (vfs_fl & S_NOATIME) 4374 new_fl |= EXT4_NOATIME_FL; 4375 if (vfs_fl & S_DIRSYNC) 4376 new_fl |= EXT4_DIRSYNC_FL; 4377 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4378 } 4379 4380 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4381 struct ext4_inode_info *ei) 4382 { 4383 blkcnt_t i_blocks ; 4384 struct inode *inode = &(ei->vfs_inode); 4385 struct super_block *sb = inode->i_sb; 4386 4387 if (ext4_has_feature_huge_file(sb)) { 4388 /* we are using combined 48 bit field */ 4389 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4390 le32_to_cpu(raw_inode->i_blocks_lo); 4391 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4392 /* i_blocks represent file system block size */ 4393 return i_blocks << (inode->i_blkbits - 9); 4394 } else { 4395 return i_blocks; 4396 } 4397 } else { 4398 return le32_to_cpu(raw_inode->i_blocks_lo); 4399 } 4400 } 4401 4402 static inline void ext4_iget_extra_inode(struct inode *inode, 4403 struct ext4_inode *raw_inode, 4404 struct ext4_inode_info *ei) 4405 { 4406 __le32 *magic = (void *)raw_inode + 4407 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4408 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4409 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4410 ext4_find_inline_data_nolock(inode); 4411 } else 4412 EXT4_I(inode)->i_inline_off = 0; 4413 } 4414 4415 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4416 { 4417 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT)) 4418 return -EOPNOTSUPP; 4419 *projid = EXT4_I(inode)->i_projid; 4420 return 0; 4421 } 4422 4423 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4424 { 4425 struct ext4_iloc iloc; 4426 struct ext4_inode *raw_inode; 4427 struct ext4_inode_info *ei; 4428 struct inode *inode; 4429 journal_t *journal = EXT4_SB(sb)->s_journal; 4430 long ret; 4431 int block; 4432 uid_t i_uid; 4433 gid_t i_gid; 4434 projid_t i_projid; 4435 4436 inode = iget_locked(sb, ino); 4437 if (!inode) 4438 return ERR_PTR(-ENOMEM); 4439 if (!(inode->i_state & I_NEW)) 4440 return inode; 4441 4442 ei = EXT4_I(inode); 4443 iloc.bh = NULL; 4444 4445 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4446 if (ret < 0) 4447 goto bad_inode; 4448 raw_inode = ext4_raw_inode(&iloc); 4449 4450 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4451 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4452 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4453 EXT4_INODE_SIZE(inode->i_sb)) { 4454 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4455 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4456 EXT4_INODE_SIZE(inode->i_sb)); 4457 ret = -EFSCORRUPTED; 4458 goto bad_inode; 4459 } 4460 } else 4461 ei->i_extra_isize = 0; 4462 4463 /* Precompute checksum seed for inode metadata */ 4464 if (ext4_has_metadata_csum(sb)) { 4465 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4466 __u32 csum; 4467 __le32 inum = cpu_to_le32(inode->i_ino); 4468 __le32 gen = raw_inode->i_generation; 4469 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4470 sizeof(inum)); 4471 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4472 sizeof(gen)); 4473 } 4474 4475 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4476 EXT4_ERROR_INODE(inode, "checksum invalid"); 4477 ret = -EFSBADCRC; 4478 goto bad_inode; 4479 } 4480 4481 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4482 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4483 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4484 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 4485 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4486 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4487 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4488 else 4489 i_projid = EXT4_DEF_PROJID; 4490 4491 if (!(test_opt(inode->i_sb, NO_UID32))) { 4492 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4493 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4494 } 4495 i_uid_write(inode, i_uid); 4496 i_gid_write(inode, i_gid); 4497 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4498 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4499 4500 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4501 ei->i_inline_off = 0; 4502 ei->i_dir_start_lookup = 0; 4503 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4504 /* We now have enough fields to check if the inode was active or not. 4505 * This is needed because nfsd might try to access dead inodes 4506 * the test is that same one that e2fsck uses 4507 * NeilBrown 1999oct15 4508 */ 4509 if (inode->i_nlink == 0) { 4510 if ((inode->i_mode == 0 || 4511 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4512 ino != EXT4_BOOT_LOADER_INO) { 4513 /* this inode is deleted */ 4514 ret = -ESTALE; 4515 goto bad_inode; 4516 } 4517 /* The only unlinked inodes we let through here have 4518 * valid i_mode and are being read by the orphan 4519 * recovery code: that's fine, we're about to complete 4520 * the process of deleting those. 4521 * OR it is the EXT4_BOOT_LOADER_INO which is 4522 * not initialized on a new filesystem. */ 4523 } 4524 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4525 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4526 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4527 if (ext4_has_feature_64bit(sb)) 4528 ei->i_file_acl |= 4529 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4530 inode->i_size = ext4_isize(raw_inode); 4531 ei->i_disksize = inode->i_size; 4532 #ifdef CONFIG_QUOTA 4533 ei->i_reserved_quota = 0; 4534 #endif 4535 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4536 ei->i_block_group = iloc.block_group; 4537 ei->i_last_alloc_group = ~0; 4538 /* 4539 * NOTE! The in-memory inode i_data array is in little-endian order 4540 * even on big-endian machines: we do NOT byteswap the block numbers! 4541 */ 4542 for (block = 0; block < EXT4_N_BLOCKS; block++) 4543 ei->i_data[block] = raw_inode->i_block[block]; 4544 INIT_LIST_HEAD(&ei->i_orphan); 4545 4546 /* 4547 * Set transaction id's of transactions that have to be committed 4548 * to finish f[data]sync. We set them to currently running transaction 4549 * as we cannot be sure that the inode or some of its metadata isn't 4550 * part of the transaction - the inode could have been reclaimed and 4551 * now it is reread from disk. 4552 */ 4553 if (journal) { 4554 transaction_t *transaction; 4555 tid_t tid; 4556 4557 read_lock(&journal->j_state_lock); 4558 if (journal->j_running_transaction) 4559 transaction = journal->j_running_transaction; 4560 else 4561 transaction = journal->j_committing_transaction; 4562 if (transaction) 4563 tid = transaction->t_tid; 4564 else 4565 tid = journal->j_commit_sequence; 4566 read_unlock(&journal->j_state_lock); 4567 ei->i_sync_tid = tid; 4568 ei->i_datasync_tid = tid; 4569 } 4570 4571 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4572 if (ei->i_extra_isize == 0) { 4573 /* The extra space is currently unused. Use it. */ 4574 ei->i_extra_isize = sizeof(struct ext4_inode) - 4575 EXT4_GOOD_OLD_INODE_SIZE; 4576 } else { 4577 ext4_iget_extra_inode(inode, raw_inode, ei); 4578 } 4579 } 4580 4581 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4582 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4583 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4584 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4585 4586 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4587 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4588 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4589 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4590 inode->i_version |= 4591 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4592 } 4593 } 4594 4595 ret = 0; 4596 if (ei->i_file_acl && 4597 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4598 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4599 ei->i_file_acl); 4600 ret = -EFSCORRUPTED; 4601 goto bad_inode; 4602 } else if (!ext4_has_inline_data(inode)) { 4603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4604 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4605 (S_ISLNK(inode->i_mode) && 4606 !ext4_inode_is_fast_symlink(inode)))) 4607 /* Validate extent which is part of inode */ 4608 ret = ext4_ext_check_inode(inode); 4609 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4610 (S_ISLNK(inode->i_mode) && 4611 !ext4_inode_is_fast_symlink(inode))) { 4612 /* Validate block references which are part of inode */ 4613 ret = ext4_ind_check_inode(inode); 4614 } 4615 } 4616 if (ret) 4617 goto bad_inode; 4618 4619 if (S_ISREG(inode->i_mode)) { 4620 inode->i_op = &ext4_file_inode_operations; 4621 inode->i_fop = &ext4_file_operations; 4622 ext4_set_aops(inode); 4623 } else if (S_ISDIR(inode->i_mode)) { 4624 inode->i_op = &ext4_dir_inode_operations; 4625 inode->i_fop = &ext4_dir_operations; 4626 } else if (S_ISLNK(inode->i_mode)) { 4627 if (ext4_encrypted_inode(inode)) { 4628 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4629 ext4_set_aops(inode); 4630 } else if (ext4_inode_is_fast_symlink(inode)) { 4631 inode->i_link = (char *)ei->i_data; 4632 inode->i_op = &ext4_fast_symlink_inode_operations; 4633 nd_terminate_link(ei->i_data, inode->i_size, 4634 sizeof(ei->i_data) - 1); 4635 } else { 4636 inode->i_op = &ext4_symlink_inode_operations; 4637 ext4_set_aops(inode); 4638 } 4639 inode_nohighmem(inode); 4640 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4641 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4642 inode->i_op = &ext4_special_inode_operations; 4643 if (raw_inode->i_block[0]) 4644 init_special_inode(inode, inode->i_mode, 4645 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4646 else 4647 init_special_inode(inode, inode->i_mode, 4648 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4649 } else if (ino == EXT4_BOOT_LOADER_INO) { 4650 make_bad_inode(inode); 4651 } else { 4652 ret = -EFSCORRUPTED; 4653 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4654 goto bad_inode; 4655 } 4656 brelse(iloc.bh); 4657 ext4_set_inode_flags(inode); 4658 unlock_new_inode(inode); 4659 return inode; 4660 4661 bad_inode: 4662 brelse(iloc.bh); 4663 iget_failed(inode); 4664 return ERR_PTR(ret); 4665 } 4666 4667 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4668 { 4669 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4670 return ERR_PTR(-EFSCORRUPTED); 4671 return ext4_iget(sb, ino); 4672 } 4673 4674 static int ext4_inode_blocks_set(handle_t *handle, 4675 struct ext4_inode *raw_inode, 4676 struct ext4_inode_info *ei) 4677 { 4678 struct inode *inode = &(ei->vfs_inode); 4679 u64 i_blocks = inode->i_blocks; 4680 struct super_block *sb = inode->i_sb; 4681 4682 if (i_blocks <= ~0U) { 4683 /* 4684 * i_blocks can be represented in a 32 bit variable 4685 * as multiple of 512 bytes 4686 */ 4687 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4688 raw_inode->i_blocks_high = 0; 4689 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4690 return 0; 4691 } 4692 if (!ext4_has_feature_huge_file(sb)) 4693 return -EFBIG; 4694 4695 if (i_blocks <= 0xffffffffffffULL) { 4696 /* 4697 * i_blocks can be represented in a 48 bit variable 4698 * as multiple of 512 bytes 4699 */ 4700 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4701 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4702 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4703 } else { 4704 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4705 /* i_block is stored in file system block size */ 4706 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4707 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4708 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4709 } 4710 return 0; 4711 } 4712 4713 struct other_inode { 4714 unsigned long orig_ino; 4715 struct ext4_inode *raw_inode; 4716 }; 4717 4718 static int other_inode_match(struct inode * inode, unsigned long ino, 4719 void *data) 4720 { 4721 struct other_inode *oi = (struct other_inode *) data; 4722 4723 if ((inode->i_ino != ino) || 4724 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4725 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4726 ((inode->i_state & I_DIRTY_TIME) == 0)) 4727 return 0; 4728 spin_lock(&inode->i_lock); 4729 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4730 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4731 (inode->i_state & I_DIRTY_TIME)) { 4732 struct ext4_inode_info *ei = EXT4_I(inode); 4733 4734 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4735 spin_unlock(&inode->i_lock); 4736 4737 spin_lock(&ei->i_raw_lock); 4738 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4739 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4740 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4741 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4742 spin_unlock(&ei->i_raw_lock); 4743 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4744 return -1; 4745 } 4746 spin_unlock(&inode->i_lock); 4747 return -1; 4748 } 4749 4750 /* 4751 * Opportunistically update the other time fields for other inodes in 4752 * the same inode table block. 4753 */ 4754 static void ext4_update_other_inodes_time(struct super_block *sb, 4755 unsigned long orig_ino, char *buf) 4756 { 4757 struct other_inode oi; 4758 unsigned long ino; 4759 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4760 int inode_size = EXT4_INODE_SIZE(sb); 4761 4762 oi.orig_ino = orig_ino; 4763 /* 4764 * Calculate the first inode in the inode table block. Inode 4765 * numbers are one-based. That is, the first inode in a block 4766 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4767 */ 4768 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4769 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4770 if (ino == orig_ino) 4771 continue; 4772 oi.raw_inode = (struct ext4_inode *) buf; 4773 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4774 } 4775 } 4776 4777 /* 4778 * Post the struct inode info into an on-disk inode location in the 4779 * buffer-cache. This gobbles the caller's reference to the 4780 * buffer_head in the inode location struct. 4781 * 4782 * The caller must have write access to iloc->bh. 4783 */ 4784 static int ext4_do_update_inode(handle_t *handle, 4785 struct inode *inode, 4786 struct ext4_iloc *iloc) 4787 { 4788 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4789 struct ext4_inode_info *ei = EXT4_I(inode); 4790 struct buffer_head *bh = iloc->bh; 4791 struct super_block *sb = inode->i_sb; 4792 int err = 0, rc, block; 4793 int need_datasync = 0, set_large_file = 0; 4794 uid_t i_uid; 4795 gid_t i_gid; 4796 projid_t i_projid; 4797 4798 spin_lock(&ei->i_raw_lock); 4799 4800 /* For fields not tracked in the in-memory inode, 4801 * initialise them to zero for new inodes. */ 4802 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4803 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4804 4805 ext4_get_inode_flags(ei); 4806 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4807 i_uid = i_uid_read(inode); 4808 i_gid = i_gid_read(inode); 4809 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4810 if (!(test_opt(inode->i_sb, NO_UID32))) { 4811 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4812 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4813 /* 4814 * Fix up interoperability with old kernels. Otherwise, old inodes get 4815 * re-used with the upper 16 bits of the uid/gid intact 4816 */ 4817 if (!ei->i_dtime) { 4818 raw_inode->i_uid_high = 4819 cpu_to_le16(high_16_bits(i_uid)); 4820 raw_inode->i_gid_high = 4821 cpu_to_le16(high_16_bits(i_gid)); 4822 } else { 4823 raw_inode->i_uid_high = 0; 4824 raw_inode->i_gid_high = 0; 4825 } 4826 } else { 4827 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4828 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4829 raw_inode->i_uid_high = 0; 4830 raw_inode->i_gid_high = 0; 4831 } 4832 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4833 4834 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4835 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4836 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4837 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4838 4839 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4840 if (err) { 4841 spin_unlock(&ei->i_raw_lock); 4842 goto out_brelse; 4843 } 4844 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4845 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4846 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4847 raw_inode->i_file_acl_high = 4848 cpu_to_le16(ei->i_file_acl >> 32); 4849 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4850 if (ei->i_disksize != ext4_isize(raw_inode)) { 4851 ext4_isize_set(raw_inode, ei->i_disksize); 4852 need_datasync = 1; 4853 } 4854 if (ei->i_disksize > 0x7fffffffULL) { 4855 if (!ext4_has_feature_large_file(sb) || 4856 EXT4_SB(sb)->s_es->s_rev_level == 4857 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4858 set_large_file = 1; 4859 } 4860 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4861 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4862 if (old_valid_dev(inode->i_rdev)) { 4863 raw_inode->i_block[0] = 4864 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4865 raw_inode->i_block[1] = 0; 4866 } else { 4867 raw_inode->i_block[0] = 0; 4868 raw_inode->i_block[1] = 4869 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4870 raw_inode->i_block[2] = 0; 4871 } 4872 } else if (!ext4_has_inline_data(inode)) { 4873 for (block = 0; block < EXT4_N_BLOCKS; block++) 4874 raw_inode->i_block[block] = ei->i_data[block]; 4875 } 4876 4877 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4878 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4879 if (ei->i_extra_isize) { 4880 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4881 raw_inode->i_version_hi = 4882 cpu_to_le32(inode->i_version >> 32); 4883 raw_inode->i_extra_isize = 4884 cpu_to_le16(ei->i_extra_isize); 4885 } 4886 } 4887 4888 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 4889 EXT4_FEATURE_RO_COMPAT_PROJECT) && 4890 i_projid != EXT4_DEF_PROJID); 4891 4892 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4893 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4894 raw_inode->i_projid = cpu_to_le32(i_projid); 4895 4896 ext4_inode_csum_set(inode, raw_inode, ei); 4897 spin_unlock(&ei->i_raw_lock); 4898 if (inode->i_sb->s_flags & MS_LAZYTIME) 4899 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4900 bh->b_data); 4901 4902 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4903 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4904 if (!err) 4905 err = rc; 4906 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4907 if (set_large_file) { 4908 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4909 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4910 if (err) 4911 goto out_brelse; 4912 ext4_update_dynamic_rev(sb); 4913 ext4_set_feature_large_file(sb); 4914 ext4_handle_sync(handle); 4915 err = ext4_handle_dirty_super(handle, sb); 4916 } 4917 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4918 out_brelse: 4919 brelse(bh); 4920 ext4_std_error(inode->i_sb, err); 4921 return err; 4922 } 4923 4924 /* 4925 * ext4_write_inode() 4926 * 4927 * We are called from a few places: 4928 * 4929 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4930 * Here, there will be no transaction running. We wait for any running 4931 * transaction to commit. 4932 * 4933 * - Within flush work (sys_sync(), kupdate and such). 4934 * We wait on commit, if told to. 4935 * 4936 * - Within iput_final() -> write_inode_now() 4937 * We wait on commit, if told to. 4938 * 4939 * In all cases it is actually safe for us to return without doing anything, 4940 * because the inode has been copied into a raw inode buffer in 4941 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4942 * writeback. 4943 * 4944 * Note that we are absolutely dependent upon all inode dirtiers doing the 4945 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4946 * which we are interested. 4947 * 4948 * It would be a bug for them to not do this. The code: 4949 * 4950 * mark_inode_dirty(inode) 4951 * stuff(); 4952 * inode->i_size = expr; 4953 * 4954 * is in error because write_inode() could occur while `stuff()' is running, 4955 * and the new i_size will be lost. Plus the inode will no longer be on the 4956 * superblock's dirty inode list. 4957 */ 4958 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4959 { 4960 int err; 4961 4962 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4963 return 0; 4964 4965 if (EXT4_SB(inode->i_sb)->s_journal) { 4966 if (ext4_journal_current_handle()) { 4967 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4968 dump_stack(); 4969 return -EIO; 4970 } 4971 4972 /* 4973 * No need to force transaction in WB_SYNC_NONE mode. Also 4974 * ext4_sync_fs() will force the commit after everything is 4975 * written. 4976 */ 4977 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4978 return 0; 4979 4980 err = ext4_force_commit(inode->i_sb); 4981 } else { 4982 struct ext4_iloc iloc; 4983 4984 err = __ext4_get_inode_loc(inode, &iloc, 0); 4985 if (err) 4986 return err; 4987 /* 4988 * sync(2) will flush the whole buffer cache. No need to do 4989 * it here separately for each inode. 4990 */ 4991 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4992 sync_dirty_buffer(iloc.bh); 4993 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4994 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4995 "IO error syncing inode"); 4996 err = -EIO; 4997 } 4998 brelse(iloc.bh); 4999 } 5000 return err; 5001 } 5002 5003 /* 5004 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5005 * buffers that are attached to a page stradding i_size and are undergoing 5006 * commit. In that case we have to wait for commit to finish and try again. 5007 */ 5008 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5009 { 5010 struct page *page; 5011 unsigned offset; 5012 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5013 tid_t commit_tid = 0; 5014 int ret; 5015 5016 offset = inode->i_size & (PAGE_SIZE - 1); 5017 /* 5018 * All buffers in the last page remain valid? Then there's nothing to 5019 * do. We do the check mainly to optimize the common PAGE_SIZE == 5020 * blocksize case 5021 */ 5022 if (offset > PAGE_SIZE - (1 << inode->i_blkbits)) 5023 return; 5024 while (1) { 5025 page = find_lock_page(inode->i_mapping, 5026 inode->i_size >> PAGE_SHIFT); 5027 if (!page) 5028 return; 5029 ret = __ext4_journalled_invalidatepage(page, offset, 5030 PAGE_SIZE - offset); 5031 unlock_page(page); 5032 put_page(page); 5033 if (ret != -EBUSY) 5034 return; 5035 commit_tid = 0; 5036 read_lock(&journal->j_state_lock); 5037 if (journal->j_committing_transaction) 5038 commit_tid = journal->j_committing_transaction->t_tid; 5039 read_unlock(&journal->j_state_lock); 5040 if (commit_tid) 5041 jbd2_log_wait_commit(journal, commit_tid); 5042 } 5043 } 5044 5045 /* 5046 * ext4_setattr() 5047 * 5048 * Called from notify_change. 5049 * 5050 * We want to trap VFS attempts to truncate the file as soon as 5051 * possible. In particular, we want to make sure that when the VFS 5052 * shrinks i_size, we put the inode on the orphan list and modify 5053 * i_disksize immediately, so that during the subsequent flushing of 5054 * dirty pages and freeing of disk blocks, we can guarantee that any 5055 * commit will leave the blocks being flushed in an unused state on 5056 * disk. (On recovery, the inode will get truncated and the blocks will 5057 * be freed, so we have a strong guarantee that no future commit will 5058 * leave these blocks visible to the user.) 5059 * 5060 * Another thing we have to assure is that if we are in ordered mode 5061 * and inode is still attached to the committing transaction, we must 5062 * we start writeout of all the dirty pages which are being truncated. 5063 * This way we are sure that all the data written in the previous 5064 * transaction are already on disk (truncate waits for pages under 5065 * writeback). 5066 * 5067 * Called with inode->i_mutex down. 5068 */ 5069 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5070 { 5071 struct inode *inode = d_inode(dentry); 5072 int error, rc = 0; 5073 int orphan = 0; 5074 const unsigned int ia_valid = attr->ia_valid; 5075 5076 error = inode_change_ok(inode, attr); 5077 if (error) 5078 return error; 5079 5080 if (is_quota_modification(inode, attr)) { 5081 error = dquot_initialize(inode); 5082 if (error) 5083 return error; 5084 } 5085 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5086 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5087 handle_t *handle; 5088 5089 /* (user+group)*(old+new) structure, inode write (sb, 5090 * inode block, ? - but truncate inode update has it) */ 5091 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5092 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5093 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5094 if (IS_ERR(handle)) { 5095 error = PTR_ERR(handle); 5096 goto err_out; 5097 } 5098 error = dquot_transfer(inode, attr); 5099 if (error) { 5100 ext4_journal_stop(handle); 5101 return error; 5102 } 5103 /* Update corresponding info in inode so that everything is in 5104 * one transaction */ 5105 if (attr->ia_valid & ATTR_UID) 5106 inode->i_uid = attr->ia_uid; 5107 if (attr->ia_valid & ATTR_GID) 5108 inode->i_gid = attr->ia_gid; 5109 error = ext4_mark_inode_dirty(handle, inode); 5110 ext4_journal_stop(handle); 5111 } 5112 5113 if (attr->ia_valid & ATTR_SIZE) { 5114 handle_t *handle; 5115 loff_t oldsize = inode->i_size; 5116 int shrink = (attr->ia_size <= inode->i_size); 5117 5118 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5119 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5120 5121 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5122 return -EFBIG; 5123 } 5124 if (!S_ISREG(inode->i_mode)) 5125 return -EINVAL; 5126 5127 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5128 inode_inc_iversion(inode); 5129 5130 if (ext4_should_order_data(inode) && 5131 (attr->ia_size < inode->i_size)) { 5132 error = ext4_begin_ordered_truncate(inode, 5133 attr->ia_size); 5134 if (error) 5135 goto err_out; 5136 } 5137 if (attr->ia_size != inode->i_size) { 5138 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5139 if (IS_ERR(handle)) { 5140 error = PTR_ERR(handle); 5141 goto err_out; 5142 } 5143 if (ext4_handle_valid(handle) && shrink) { 5144 error = ext4_orphan_add(handle, inode); 5145 orphan = 1; 5146 } 5147 /* 5148 * Update c/mtime on truncate up, ext4_truncate() will 5149 * update c/mtime in shrink case below 5150 */ 5151 if (!shrink) { 5152 inode->i_mtime = ext4_current_time(inode); 5153 inode->i_ctime = inode->i_mtime; 5154 } 5155 down_write(&EXT4_I(inode)->i_data_sem); 5156 EXT4_I(inode)->i_disksize = attr->ia_size; 5157 rc = ext4_mark_inode_dirty(handle, inode); 5158 if (!error) 5159 error = rc; 5160 /* 5161 * We have to update i_size under i_data_sem together 5162 * with i_disksize to avoid races with writeback code 5163 * running ext4_wb_update_i_disksize(). 5164 */ 5165 if (!error) 5166 i_size_write(inode, attr->ia_size); 5167 up_write(&EXT4_I(inode)->i_data_sem); 5168 ext4_journal_stop(handle); 5169 if (error) { 5170 if (orphan) 5171 ext4_orphan_del(NULL, inode); 5172 goto err_out; 5173 } 5174 } 5175 if (!shrink) 5176 pagecache_isize_extended(inode, oldsize, inode->i_size); 5177 5178 /* 5179 * Blocks are going to be removed from the inode. Wait 5180 * for dio in flight. Temporarily disable 5181 * dioread_nolock to prevent livelock. 5182 */ 5183 if (orphan) { 5184 if (!ext4_should_journal_data(inode)) { 5185 ext4_inode_block_unlocked_dio(inode); 5186 inode_dio_wait(inode); 5187 ext4_inode_resume_unlocked_dio(inode); 5188 } else 5189 ext4_wait_for_tail_page_commit(inode); 5190 } 5191 down_write(&EXT4_I(inode)->i_mmap_sem); 5192 /* 5193 * Truncate pagecache after we've waited for commit 5194 * in data=journal mode to make pages freeable. 5195 */ 5196 truncate_pagecache(inode, inode->i_size); 5197 if (shrink) 5198 ext4_truncate(inode); 5199 up_write(&EXT4_I(inode)->i_mmap_sem); 5200 } 5201 5202 if (!rc) { 5203 setattr_copy(inode, attr); 5204 mark_inode_dirty(inode); 5205 } 5206 5207 /* 5208 * If the call to ext4_truncate failed to get a transaction handle at 5209 * all, we need to clean up the in-core orphan list manually. 5210 */ 5211 if (orphan && inode->i_nlink) 5212 ext4_orphan_del(NULL, inode); 5213 5214 if (!rc && (ia_valid & ATTR_MODE)) 5215 rc = posix_acl_chmod(inode, inode->i_mode); 5216 5217 err_out: 5218 ext4_std_error(inode->i_sb, error); 5219 if (!error) 5220 error = rc; 5221 return error; 5222 } 5223 5224 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5225 struct kstat *stat) 5226 { 5227 struct inode *inode; 5228 unsigned long long delalloc_blocks; 5229 5230 inode = d_inode(dentry); 5231 generic_fillattr(inode, stat); 5232 5233 /* 5234 * If there is inline data in the inode, the inode will normally not 5235 * have data blocks allocated (it may have an external xattr block). 5236 * Report at least one sector for such files, so tools like tar, rsync, 5237 * others doen't incorrectly think the file is completely sparse. 5238 */ 5239 if (unlikely(ext4_has_inline_data(inode))) 5240 stat->blocks += (stat->size + 511) >> 9; 5241 5242 /* 5243 * We can't update i_blocks if the block allocation is delayed 5244 * otherwise in the case of system crash before the real block 5245 * allocation is done, we will have i_blocks inconsistent with 5246 * on-disk file blocks. 5247 * We always keep i_blocks updated together with real 5248 * allocation. But to not confuse with user, stat 5249 * will return the blocks that include the delayed allocation 5250 * blocks for this file. 5251 */ 5252 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5253 EXT4_I(inode)->i_reserved_data_blocks); 5254 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5255 return 0; 5256 } 5257 5258 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5259 int pextents) 5260 { 5261 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5262 return ext4_ind_trans_blocks(inode, lblocks); 5263 return ext4_ext_index_trans_blocks(inode, pextents); 5264 } 5265 5266 /* 5267 * Account for index blocks, block groups bitmaps and block group 5268 * descriptor blocks if modify datablocks and index blocks 5269 * worse case, the indexs blocks spread over different block groups 5270 * 5271 * If datablocks are discontiguous, they are possible to spread over 5272 * different block groups too. If they are contiguous, with flexbg, 5273 * they could still across block group boundary. 5274 * 5275 * Also account for superblock, inode, quota and xattr blocks 5276 */ 5277 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5278 int pextents) 5279 { 5280 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5281 int gdpblocks; 5282 int idxblocks; 5283 int ret = 0; 5284 5285 /* 5286 * How many index blocks need to touch to map @lblocks logical blocks 5287 * to @pextents physical extents? 5288 */ 5289 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5290 5291 ret = idxblocks; 5292 5293 /* 5294 * Now let's see how many group bitmaps and group descriptors need 5295 * to account 5296 */ 5297 groups = idxblocks + pextents; 5298 gdpblocks = groups; 5299 if (groups > ngroups) 5300 groups = ngroups; 5301 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5302 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5303 5304 /* bitmaps and block group descriptor blocks */ 5305 ret += groups + gdpblocks; 5306 5307 /* Blocks for super block, inode, quota and xattr blocks */ 5308 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5309 5310 return ret; 5311 } 5312 5313 /* 5314 * Calculate the total number of credits to reserve to fit 5315 * the modification of a single pages into a single transaction, 5316 * which may include multiple chunks of block allocations. 5317 * 5318 * This could be called via ext4_write_begin() 5319 * 5320 * We need to consider the worse case, when 5321 * one new block per extent. 5322 */ 5323 int ext4_writepage_trans_blocks(struct inode *inode) 5324 { 5325 int bpp = ext4_journal_blocks_per_page(inode); 5326 int ret; 5327 5328 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5329 5330 /* Account for data blocks for journalled mode */ 5331 if (ext4_should_journal_data(inode)) 5332 ret += bpp; 5333 return ret; 5334 } 5335 5336 /* 5337 * Calculate the journal credits for a chunk of data modification. 5338 * 5339 * This is called from DIO, fallocate or whoever calling 5340 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5341 * 5342 * journal buffers for data blocks are not included here, as DIO 5343 * and fallocate do no need to journal data buffers. 5344 */ 5345 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5346 { 5347 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5348 } 5349 5350 /* 5351 * The caller must have previously called ext4_reserve_inode_write(). 5352 * Give this, we know that the caller already has write access to iloc->bh. 5353 */ 5354 int ext4_mark_iloc_dirty(handle_t *handle, 5355 struct inode *inode, struct ext4_iloc *iloc) 5356 { 5357 int err = 0; 5358 5359 if (IS_I_VERSION(inode)) 5360 inode_inc_iversion(inode); 5361 5362 /* the do_update_inode consumes one bh->b_count */ 5363 get_bh(iloc->bh); 5364 5365 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5366 err = ext4_do_update_inode(handle, inode, iloc); 5367 put_bh(iloc->bh); 5368 return err; 5369 } 5370 5371 /* 5372 * On success, We end up with an outstanding reference count against 5373 * iloc->bh. This _must_ be cleaned up later. 5374 */ 5375 5376 int 5377 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5378 struct ext4_iloc *iloc) 5379 { 5380 int err; 5381 5382 err = ext4_get_inode_loc(inode, iloc); 5383 if (!err) { 5384 BUFFER_TRACE(iloc->bh, "get_write_access"); 5385 err = ext4_journal_get_write_access(handle, iloc->bh); 5386 if (err) { 5387 brelse(iloc->bh); 5388 iloc->bh = NULL; 5389 } 5390 } 5391 ext4_std_error(inode->i_sb, err); 5392 return err; 5393 } 5394 5395 /* 5396 * Expand an inode by new_extra_isize bytes. 5397 * Returns 0 on success or negative error number on failure. 5398 */ 5399 static int ext4_expand_extra_isize(struct inode *inode, 5400 unsigned int new_extra_isize, 5401 struct ext4_iloc iloc, 5402 handle_t *handle) 5403 { 5404 struct ext4_inode *raw_inode; 5405 struct ext4_xattr_ibody_header *header; 5406 5407 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5408 return 0; 5409 5410 raw_inode = ext4_raw_inode(&iloc); 5411 5412 header = IHDR(inode, raw_inode); 5413 5414 /* No extended attributes present */ 5415 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5416 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5417 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5418 new_extra_isize); 5419 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5420 return 0; 5421 } 5422 5423 /* try to expand with EAs present */ 5424 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5425 raw_inode, handle); 5426 } 5427 5428 /* 5429 * What we do here is to mark the in-core inode as clean with respect to inode 5430 * dirtiness (it may still be data-dirty). 5431 * This means that the in-core inode may be reaped by prune_icache 5432 * without having to perform any I/O. This is a very good thing, 5433 * because *any* task may call prune_icache - even ones which 5434 * have a transaction open against a different journal. 5435 * 5436 * Is this cheating? Not really. Sure, we haven't written the 5437 * inode out, but prune_icache isn't a user-visible syncing function. 5438 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5439 * we start and wait on commits. 5440 */ 5441 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5442 { 5443 struct ext4_iloc iloc; 5444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5445 static unsigned int mnt_count; 5446 int err, ret; 5447 5448 might_sleep(); 5449 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5450 err = ext4_reserve_inode_write(handle, inode, &iloc); 5451 if (err) 5452 return err; 5453 if (ext4_handle_valid(handle) && 5454 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5455 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5456 /* 5457 * We need extra buffer credits since we may write into EA block 5458 * with this same handle. If journal_extend fails, then it will 5459 * only result in a minor loss of functionality for that inode. 5460 * If this is felt to be critical, then e2fsck should be run to 5461 * force a large enough s_min_extra_isize. 5462 */ 5463 if ((jbd2_journal_extend(handle, 5464 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5465 ret = ext4_expand_extra_isize(inode, 5466 sbi->s_want_extra_isize, 5467 iloc, handle); 5468 if (ret) { 5469 ext4_set_inode_state(inode, 5470 EXT4_STATE_NO_EXPAND); 5471 if (mnt_count != 5472 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5473 ext4_warning(inode->i_sb, 5474 "Unable to expand inode %lu. Delete" 5475 " some EAs or run e2fsck.", 5476 inode->i_ino); 5477 mnt_count = 5478 le16_to_cpu(sbi->s_es->s_mnt_count); 5479 } 5480 } 5481 } 5482 } 5483 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5484 } 5485 5486 /* 5487 * ext4_dirty_inode() is called from __mark_inode_dirty() 5488 * 5489 * We're really interested in the case where a file is being extended. 5490 * i_size has been changed by generic_commit_write() and we thus need 5491 * to include the updated inode in the current transaction. 5492 * 5493 * Also, dquot_alloc_block() will always dirty the inode when blocks 5494 * are allocated to the file. 5495 * 5496 * If the inode is marked synchronous, we don't honour that here - doing 5497 * so would cause a commit on atime updates, which we don't bother doing. 5498 * We handle synchronous inodes at the highest possible level. 5499 * 5500 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5501 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5502 * to copy into the on-disk inode structure are the timestamp files. 5503 */ 5504 void ext4_dirty_inode(struct inode *inode, int flags) 5505 { 5506 handle_t *handle; 5507 5508 if (flags == I_DIRTY_TIME) 5509 return; 5510 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5511 if (IS_ERR(handle)) 5512 goto out; 5513 5514 ext4_mark_inode_dirty(handle, inode); 5515 5516 ext4_journal_stop(handle); 5517 out: 5518 return; 5519 } 5520 5521 #if 0 5522 /* 5523 * Bind an inode's backing buffer_head into this transaction, to prevent 5524 * it from being flushed to disk early. Unlike 5525 * ext4_reserve_inode_write, this leaves behind no bh reference and 5526 * returns no iloc structure, so the caller needs to repeat the iloc 5527 * lookup to mark the inode dirty later. 5528 */ 5529 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5530 { 5531 struct ext4_iloc iloc; 5532 5533 int err = 0; 5534 if (handle) { 5535 err = ext4_get_inode_loc(inode, &iloc); 5536 if (!err) { 5537 BUFFER_TRACE(iloc.bh, "get_write_access"); 5538 err = jbd2_journal_get_write_access(handle, iloc.bh); 5539 if (!err) 5540 err = ext4_handle_dirty_metadata(handle, 5541 NULL, 5542 iloc.bh); 5543 brelse(iloc.bh); 5544 } 5545 } 5546 ext4_std_error(inode->i_sb, err); 5547 return err; 5548 } 5549 #endif 5550 5551 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5552 { 5553 journal_t *journal; 5554 handle_t *handle; 5555 int err; 5556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5557 5558 /* 5559 * We have to be very careful here: changing a data block's 5560 * journaling status dynamically is dangerous. If we write a 5561 * data block to the journal, change the status and then delete 5562 * that block, we risk forgetting to revoke the old log record 5563 * from the journal and so a subsequent replay can corrupt data. 5564 * So, first we make sure that the journal is empty and that 5565 * nobody is changing anything. 5566 */ 5567 5568 journal = EXT4_JOURNAL(inode); 5569 if (!journal) 5570 return 0; 5571 if (is_journal_aborted(journal)) 5572 return -EROFS; 5573 5574 /* Wait for all existing dio workers */ 5575 ext4_inode_block_unlocked_dio(inode); 5576 inode_dio_wait(inode); 5577 5578 /* 5579 * Before flushing the journal and switching inode's aops, we have 5580 * to flush all dirty data the inode has. There can be outstanding 5581 * delayed allocations, there can be unwritten extents created by 5582 * fallocate or buffered writes in dioread_nolock mode covered by 5583 * dirty data which can be converted only after flushing the dirty 5584 * data (and journalled aops don't know how to handle these cases). 5585 */ 5586 if (val) { 5587 down_write(&EXT4_I(inode)->i_mmap_sem); 5588 err = filemap_write_and_wait(inode->i_mapping); 5589 if (err < 0) { 5590 up_write(&EXT4_I(inode)->i_mmap_sem); 5591 ext4_inode_resume_unlocked_dio(inode); 5592 return err; 5593 } 5594 } 5595 5596 percpu_down_write(&sbi->s_journal_flag_rwsem); 5597 jbd2_journal_lock_updates(journal); 5598 5599 /* 5600 * OK, there are no updates running now, and all cached data is 5601 * synced to disk. We are now in a completely consistent state 5602 * which doesn't have anything in the journal, and we know that 5603 * no filesystem updates are running, so it is safe to modify 5604 * the inode's in-core data-journaling state flag now. 5605 */ 5606 5607 if (val) 5608 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5609 else { 5610 err = jbd2_journal_flush(journal); 5611 if (err < 0) { 5612 jbd2_journal_unlock_updates(journal); 5613 percpu_up_write(&sbi->s_journal_flag_rwsem); 5614 ext4_inode_resume_unlocked_dio(inode); 5615 return err; 5616 } 5617 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5618 } 5619 ext4_set_aops(inode); 5620 5621 jbd2_journal_unlock_updates(journal); 5622 percpu_up_write(&sbi->s_journal_flag_rwsem); 5623 5624 if (val) 5625 up_write(&EXT4_I(inode)->i_mmap_sem); 5626 ext4_inode_resume_unlocked_dio(inode); 5627 5628 /* Finally we can mark the inode as dirty. */ 5629 5630 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5631 if (IS_ERR(handle)) 5632 return PTR_ERR(handle); 5633 5634 err = ext4_mark_inode_dirty(handle, inode); 5635 ext4_handle_sync(handle); 5636 ext4_journal_stop(handle); 5637 ext4_std_error(inode->i_sb, err); 5638 5639 return err; 5640 } 5641 5642 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5643 { 5644 return !buffer_mapped(bh); 5645 } 5646 5647 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5648 { 5649 struct page *page = vmf->page; 5650 loff_t size; 5651 unsigned long len; 5652 int ret; 5653 struct file *file = vma->vm_file; 5654 struct inode *inode = file_inode(file); 5655 struct address_space *mapping = inode->i_mapping; 5656 handle_t *handle; 5657 get_block_t *get_block; 5658 int retries = 0; 5659 5660 sb_start_pagefault(inode->i_sb); 5661 file_update_time(vma->vm_file); 5662 5663 down_read(&EXT4_I(inode)->i_mmap_sem); 5664 /* Delalloc case is easy... */ 5665 if (test_opt(inode->i_sb, DELALLOC) && 5666 !ext4_should_journal_data(inode) && 5667 !ext4_nonda_switch(inode->i_sb)) { 5668 do { 5669 ret = block_page_mkwrite(vma, vmf, 5670 ext4_da_get_block_prep); 5671 } while (ret == -ENOSPC && 5672 ext4_should_retry_alloc(inode->i_sb, &retries)); 5673 goto out_ret; 5674 } 5675 5676 lock_page(page); 5677 size = i_size_read(inode); 5678 /* Page got truncated from under us? */ 5679 if (page->mapping != mapping || page_offset(page) > size) { 5680 unlock_page(page); 5681 ret = VM_FAULT_NOPAGE; 5682 goto out; 5683 } 5684 5685 if (page->index == size >> PAGE_SHIFT) 5686 len = size & ~PAGE_MASK; 5687 else 5688 len = PAGE_SIZE; 5689 /* 5690 * Return if we have all the buffers mapped. This avoids the need to do 5691 * journal_start/journal_stop which can block and take a long time 5692 */ 5693 if (page_has_buffers(page)) { 5694 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5695 0, len, NULL, 5696 ext4_bh_unmapped)) { 5697 /* Wait so that we don't change page under IO */ 5698 wait_for_stable_page(page); 5699 ret = VM_FAULT_LOCKED; 5700 goto out; 5701 } 5702 } 5703 unlock_page(page); 5704 /* OK, we need to fill the hole... */ 5705 if (ext4_should_dioread_nolock(inode)) 5706 get_block = ext4_get_block_unwritten; 5707 else 5708 get_block = ext4_get_block; 5709 retry_alloc: 5710 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5711 ext4_writepage_trans_blocks(inode)); 5712 if (IS_ERR(handle)) { 5713 ret = VM_FAULT_SIGBUS; 5714 goto out; 5715 } 5716 ret = block_page_mkwrite(vma, vmf, get_block); 5717 if (!ret && ext4_should_journal_data(inode)) { 5718 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5719 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5720 unlock_page(page); 5721 ret = VM_FAULT_SIGBUS; 5722 ext4_journal_stop(handle); 5723 goto out; 5724 } 5725 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5726 } 5727 ext4_journal_stop(handle); 5728 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5729 goto retry_alloc; 5730 out_ret: 5731 ret = block_page_mkwrite_return(ret); 5732 out: 5733 up_read(&EXT4_I(inode)->i_mmap_sem); 5734 sb_end_pagefault(inode->i_sb); 5735 return ret; 5736 } 5737 5738 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5739 { 5740 struct inode *inode = file_inode(vma->vm_file); 5741 int err; 5742 5743 down_read(&EXT4_I(inode)->i_mmap_sem); 5744 err = filemap_fault(vma, vmf); 5745 up_read(&EXT4_I(inode)->i_mmap_sem); 5746 5747 return err; 5748 } 5749 5750 /* 5751 * Find the first extent at or after @lblk in an inode that is not a hole. 5752 * Search for @map_len blocks at most. The extent is returned in @result. 5753 * 5754 * The function returns 1 if we found an extent. The function returns 0 in 5755 * case there is no extent at or after @lblk and in that case also sets 5756 * @result->es_len to 0. In case of error, the error code is returned. 5757 */ 5758 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5759 unsigned int map_len, struct extent_status *result) 5760 { 5761 struct ext4_map_blocks map; 5762 struct extent_status es = {}; 5763 int ret; 5764 5765 map.m_lblk = lblk; 5766 map.m_len = map_len; 5767 5768 /* 5769 * For non-extent based files this loop may iterate several times since 5770 * we do not determine full hole size. 5771 */ 5772 while (map.m_len > 0) { 5773 ret = ext4_map_blocks(NULL, inode, &map, 0); 5774 if (ret < 0) 5775 return ret; 5776 /* There's extent covering m_lblk? Just return it. */ 5777 if (ret > 0) { 5778 int status; 5779 5780 ext4_es_store_pblock(result, map.m_pblk); 5781 result->es_lblk = map.m_lblk; 5782 result->es_len = map.m_len; 5783 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5784 status = EXTENT_STATUS_UNWRITTEN; 5785 else 5786 status = EXTENT_STATUS_WRITTEN; 5787 ext4_es_store_status(result, status); 5788 return 1; 5789 } 5790 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5791 map.m_lblk + map.m_len - 1, 5792 &es); 5793 /* Is delalloc data before next block in extent tree? */ 5794 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5795 ext4_lblk_t offset = 0; 5796 5797 if (es.es_lblk < lblk) 5798 offset = lblk - es.es_lblk; 5799 result->es_lblk = es.es_lblk + offset; 5800 ext4_es_store_pblock(result, 5801 ext4_es_pblock(&es) + offset); 5802 result->es_len = es.es_len - offset; 5803 ext4_es_store_status(result, ext4_es_status(&es)); 5804 5805 return 1; 5806 } 5807 /* There's a hole at m_lblk, advance us after it */ 5808 map.m_lblk += map.m_len; 5809 map_len -= map.m_len; 5810 map.m_len = map_len; 5811 cond_resched(); 5812 } 5813 result->es_len = 0; 5814 return 0; 5815 } 5816