xref: /linux/fs/ext4/inode.c (revision b6d27a345f9d12fb80d61a1b1801ced9c1d6178a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 					    struct inode *inode,
55 					    struct folio *folio,
56 					    unsigned from, unsigned to);
57 
58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 			      struct ext4_inode_info *ei)
60 {
61 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
62 	__u32 csum;
63 	__u16 dummy_csum = 0;
64 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
65 	unsigned int csum_size = sizeof(dummy_csum);
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
68 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
69 	offset += csum_size;
70 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
71 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
72 
73 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
74 		offset = offsetof(struct ext4_inode, i_checksum_hi);
75 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
76 				   EXT4_GOOD_OLD_INODE_SIZE,
77 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
78 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
79 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
80 					   csum_size);
81 			offset += csum_size;
82 		}
83 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
84 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
85 	}
86 
87 	return csum;
88 }
89 
90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
91 				  struct ext4_inode_info *ei)
92 {
93 	__u32 provided, calculated;
94 
95 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
96 	    cpu_to_le32(EXT4_OS_LINUX) ||
97 	    !ext4_has_feature_metadata_csum(inode->i_sb))
98 		return 1;
99 
100 	provided = le16_to_cpu(raw->i_checksum_lo);
101 	calculated = ext4_inode_csum(inode, raw, ei);
102 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
103 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
104 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
105 	else
106 		calculated &= 0xFFFF;
107 
108 	return provided == calculated;
109 }
110 
111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
112 			 struct ext4_inode_info *ei)
113 {
114 	__u32 csum;
115 
116 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
117 	    cpu_to_le32(EXT4_OS_LINUX) ||
118 	    !ext4_has_feature_metadata_csum(inode->i_sb))
119 		return;
120 
121 	csum = ext4_inode_csum(inode, raw, ei);
122 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
123 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
124 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
125 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
126 }
127 
128 static inline int ext4_begin_ordered_truncate(struct inode *inode,
129 					      loff_t new_size)
130 {
131 	trace_ext4_begin_ordered_truncate(inode, new_size);
132 	/*
133 	 * If jinode is zero, then we never opened the file for
134 	 * writing, so there's no need to call
135 	 * jbd2_journal_begin_ordered_truncate() since there's no
136 	 * outstanding writes we need to flush.
137 	 */
138 	if (!EXT4_I(inode)->jinode)
139 		return 0;
140 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
141 						   EXT4_I(inode)->jinode,
142 						   new_size);
143 }
144 
145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 				  int pextents);
147 
148 /*
149  * Test whether an inode is a fast symlink.
150  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151  */
152 int ext4_inode_is_fast_symlink(struct inode *inode)
153 {
154 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
155 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
156 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 
158 		if (ext4_has_inline_data(inode))
159 			return 0;
160 
161 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 	}
163 	return S_ISLNK(inode->i_mode) && inode->i_size &&
164 	       (inode->i_size < EXT4_N_BLOCKS * 4);
165 }
166 
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_evict_inode(struct inode *inode)
171 {
172 	handle_t *handle;
173 	int err;
174 	/*
175 	 * Credits for final inode cleanup and freeing:
176 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
177 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 	 */
179 	int extra_credits = 6;
180 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
181 	bool freeze_protected = false;
182 
183 	trace_ext4_evict_inode(inode);
184 
185 	dax_break_layout_final(inode);
186 
187 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
188 		ext4_evict_ea_inode(inode);
189 	if (inode->i_nlink) {
190 		truncate_inode_pages_final(&inode->i_data);
191 
192 		goto no_delete;
193 	}
194 
195 	if (is_bad_inode(inode))
196 		goto no_delete;
197 	dquot_initialize(inode);
198 
199 	if (ext4_should_order_data(inode))
200 		ext4_begin_ordered_truncate(inode, 0);
201 	truncate_inode_pages_final(&inode->i_data);
202 
203 	/*
204 	 * For inodes with journalled data, transaction commit could have
205 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
206 	 * extents converting worker could merge extents and also have dirtied
207 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
208 	 * we still need to remove the inode from the writeback lists.
209 	 */
210 	if (!list_empty_careful(&inode->i_io_list))
211 		inode_io_list_del(inode);
212 
213 	/*
214 	 * Protect us against freezing - iput() caller didn't have to have any
215 	 * protection against it. When we are in a running transaction though,
216 	 * we are already protected against freezing and we cannot grab further
217 	 * protection due to lock ordering constraints.
218 	 */
219 	if (!ext4_journal_current_handle()) {
220 		sb_start_intwrite(inode->i_sb);
221 		freeze_protected = true;
222 	}
223 
224 	if (!IS_NOQUOTA(inode))
225 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
226 
227 	/*
228 	 * Block bitmap, group descriptor, and inode are accounted in both
229 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
230 	 */
231 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
232 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
233 	if (IS_ERR(handle)) {
234 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
235 		/*
236 		 * If we're going to skip the normal cleanup, we still need to
237 		 * make sure that the in-core orphan linked list is properly
238 		 * cleaned up.
239 		 */
240 		ext4_orphan_del(NULL, inode);
241 		if (freeze_protected)
242 			sb_end_intwrite(inode->i_sb);
243 		goto no_delete;
244 	}
245 
246 	if (IS_SYNC(inode))
247 		ext4_handle_sync(handle);
248 
249 	/*
250 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
251 	 * special handling of symlinks here because i_size is used to
252 	 * determine whether ext4_inode_info->i_data contains symlink data or
253 	 * block mappings. Setting i_size to 0 will remove its fast symlink
254 	 * status. Erase i_data so that it becomes a valid empty block map.
255 	 */
256 	if (ext4_inode_is_fast_symlink(inode))
257 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
258 	inode->i_size = 0;
259 	err = ext4_mark_inode_dirty(handle, inode);
260 	if (err) {
261 		ext4_warning(inode->i_sb,
262 			     "couldn't mark inode dirty (err %d)", err);
263 		goto stop_handle;
264 	}
265 	if (inode->i_blocks) {
266 		err = ext4_truncate(inode);
267 		if (err) {
268 			ext4_error_err(inode->i_sb, -err,
269 				       "couldn't truncate inode %lu (err %d)",
270 				       inode->i_ino, err);
271 			goto stop_handle;
272 		}
273 	}
274 
275 	/* Remove xattr references. */
276 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
277 				      extra_credits);
278 	if (err) {
279 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
280 stop_handle:
281 		ext4_journal_stop(handle);
282 		ext4_orphan_del(NULL, inode);
283 		if (freeze_protected)
284 			sb_end_intwrite(inode->i_sb);
285 		ext4_xattr_inode_array_free(ea_inode_array);
286 		goto no_delete;
287 	}
288 
289 	/*
290 	 * Kill off the orphan record which ext4_truncate created.
291 	 * AKPM: I think this can be inside the above `if'.
292 	 * Note that ext4_orphan_del() has to be able to cope with the
293 	 * deletion of a non-existent orphan - this is because we don't
294 	 * know if ext4_truncate() actually created an orphan record.
295 	 * (Well, we could do this if we need to, but heck - it works)
296 	 */
297 	ext4_orphan_del(handle, inode);
298 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
299 
300 	/*
301 	 * One subtle ordering requirement: if anything has gone wrong
302 	 * (transaction abort, IO errors, whatever), then we can still
303 	 * do these next steps (the fs will already have been marked as
304 	 * having errors), but we can't free the inode if the mark_dirty
305 	 * fails.
306 	 */
307 	if (ext4_mark_inode_dirty(handle, inode))
308 		/* If that failed, just do the required in-core inode clear. */
309 		ext4_clear_inode(inode);
310 	else
311 		ext4_free_inode(handle, inode);
312 	ext4_journal_stop(handle);
313 	if (freeze_protected)
314 		sb_end_intwrite(inode->i_sb);
315 	ext4_xattr_inode_array_free(ea_inode_array);
316 	return;
317 no_delete:
318 	/*
319 	 * Check out some where else accidentally dirty the evicting inode,
320 	 * which may probably cause inode use-after-free issues later.
321 	 */
322 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
323 
324 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
325 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
326 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
327 }
328 
329 #ifdef CONFIG_QUOTA
330 qsize_t *ext4_get_reserved_space(struct inode *inode)
331 {
332 	return &EXT4_I(inode)->i_reserved_quota;
333 }
334 #endif
335 
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 					int used, int quota_claim)
342 {
343 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 	struct ext4_inode_info *ei = EXT4_I(inode);
345 
346 	spin_lock(&ei->i_block_reservation_lock);
347 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 	if (unlikely(used > ei->i_reserved_data_blocks)) {
349 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 			 "with only %d reserved data blocks",
351 			 __func__, inode->i_ino, used,
352 			 ei->i_reserved_data_blocks);
353 		WARN_ON(1);
354 		used = ei->i_reserved_data_blocks;
355 	}
356 
357 	/* Update per-inode reservations */
358 	ei->i_reserved_data_blocks -= used;
359 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
360 
361 	spin_unlock(&ei->i_block_reservation_lock);
362 
363 	/* Update quota subsystem for data blocks */
364 	if (quota_claim)
365 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
366 	else {
367 		/*
368 		 * We did fallocate with an offset that is already delayed
369 		 * allocated. So on delayed allocated writeback we should
370 		 * not re-claim the quota for fallocated blocks.
371 		 */
372 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
373 	}
374 
375 	/*
376 	 * If we have done all the pending block allocations and if
377 	 * there aren't any writers on the inode, we can discard the
378 	 * inode's preallocations.
379 	 */
380 	if ((ei->i_reserved_data_blocks == 0) &&
381 	    !inode_is_open_for_write(inode))
382 		ext4_discard_preallocations(inode);
383 }
384 
385 static int __check_block_validity(struct inode *inode, const char *func,
386 				unsigned int line,
387 				struct ext4_map_blocks *map)
388 {
389 	if (ext4_has_feature_journal(inode->i_sb) &&
390 	    (inode->i_ino ==
391 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
392 		return 0;
393 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
394 		ext4_error_inode(inode, func, line, map->m_pblk,
395 				 "lblock %lu mapped to illegal pblock %llu "
396 				 "(length %d)", (unsigned long) map->m_lblk,
397 				 map->m_pblk, map->m_len);
398 		return -EFSCORRUPTED;
399 	}
400 	return 0;
401 }
402 
403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
404 		       ext4_lblk_t len)
405 {
406 	int ret;
407 
408 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
409 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
410 
411 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
412 	if (ret > 0)
413 		ret = 0;
414 
415 	return ret;
416 }
417 
418 #define check_block_validity(inode, map)	\
419 	__check_block_validity((inode), __func__, __LINE__, (map))
420 
421 #ifdef ES_AGGRESSIVE_TEST
422 static void ext4_map_blocks_es_recheck(handle_t *handle,
423 				       struct inode *inode,
424 				       struct ext4_map_blocks *es_map,
425 				       struct ext4_map_blocks *map,
426 				       int flags)
427 {
428 	int retval;
429 
430 	map->m_flags = 0;
431 	/*
432 	 * There is a race window that the result is not the same.
433 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
434 	 * is that we lookup a block mapping in extent status tree with
435 	 * out taking i_data_sem.  So at the time the unwritten extent
436 	 * could be converted.
437 	 */
438 	down_read(&EXT4_I(inode)->i_data_sem);
439 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
440 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
441 	} else {
442 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
443 	}
444 	up_read((&EXT4_I(inode)->i_data_sem));
445 
446 	/*
447 	 * We don't check m_len because extent will be collpased in status
448 	 * tree.  So the m_len might not equal.
449 	 */
450 	if (es_map->m_lblk != map->m_lblk ||
451 	    es_map->m_flags != map->m_flags ||
452 	    es_map->m_pblk != map->m_pblk) {
453 		printk("ES cache assertion failed for inode: %lu "
454 		       "es_cached ex [%d/%d/%llu/%x] != "
455 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
456 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
457 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
458 		       map->m_len, map->m_pblk, map->m_flags,
459 		       retval, flags);
460 	}
461 }
462 #endif /* ES_AGGRESSIVE_TEST */
463 
464 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
465 				 struct ext4_map_blocks *map)
466 {
467 	unsigned int status;
468 	int retval;
469 
470 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
471 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
472 	else
473 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
474 
475 	if (retval <= 0)
476 		return retval;
477 
478 	if (unlikely(retval != map->m_len)) {
479 		ext4_warning(inode->i_sb,
480 			     "ES len assertion failed for inode "
481 			     "%lu: retval %d != map->m_len %d",
482 			     inode->i_ino, retval, map->m_len);
483 		WARN_ON(1);
484 	}
485 
486 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
487 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
488 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
489 			      map->m_pblk, status, false);
490 	return retval;
491 }
492 
493 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
494 				  struct ext4_map_blocks *map, int flags)
495 {
496 	struct extent_status es;
497 	unsigned int status;
498 	int err, retval = 0;
499 
500 	/*
501 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
502 	 * indicates that the blocks and quotas has already been
503 	 * checked when the data was copied into the page cache.
504 	 */
505 	if (map->m_flags & EXT4_MAP_DELAYED)
506 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
507 
508 	/*
509 	 * Here we clear m_flags because after allocating an new extent,
510 	 * it will be set again.
511 	 */
512 	map->m_flags &= ~EXT4_MAP_FLAGS;
513 
514 	/*
515 	 * We need to check for EXT4 here because migrate could have
516 	 * changed the inode type in between.
517 	 */
518 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
519 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
520 	} else {
521 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
522 
523 		/*
524 		 * We allocated new blocks which will result in i_data's
525 		 * format changing. Force the migrate to fail by clearing
526 		 * migrate flags.
527 		 */
528 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
529 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
530 	}
531 	if (retval <= 0)
532 		return retval;
533 
534 	if (unlikely(retval != map->m_len)) {
535 		ext4_warning(inode->i_sb,
536 			     "ES len assertion failed for inode %lu: "
537 			     "retval %d != map->m_len %d",
538 			     inode->i_ino, retval, map->m_len);
539 		WARN_ON(1);
540 	}
541 
542 	/*
543 	 * We have to zeroout blocks before inserting them into extent
544 	 * status tree. Otherwise someone could look them up there and
545 	 * use them before they are really zeroed. We also have to
546 	 * unmap metadata before zeroing as otherwise writeback can
547 	 * overwrite zeros with stale data from block device.
548 	 */
549 	if (flags & EXT4_GET_BLOCKS_ZERO &&
550 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
551 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
552 					 map->m_len);
553 		if (err)
554 			return err;
555 	}
556 
557 	/*
558 	 * If the extent has been zeroed out, we don't need to update
559 	 * extent status tree.
560 	 */
561 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
562 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
563 		if (ext4_es_is_written(&es))
564 			return retval;
565 	}
566 
567 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
568 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
569 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
570 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
571 
572 	return retval;
573 }
574 
575 /*
576  * The ext4_map_blocks() function tries to look up the requested blocks,
577  * and returns if the blocks are already mapped.
578  *
579  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
580  * and store the allocated blocks in the result buffer head and mark it
581  * mapped.
582  *
583  * If file type is extents based, it will call ext4_ext_map_blocks(),
584  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
585  * based files
586  *
587  * On success, it returns the number of blocks being mapped or allocated.
588  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
589  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
590  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
591  *
592  * It returns 0 if plain look up failed (blocks have not been allocated), in
593  * that case, @map is returned as unmapped but we still do fill map->m_len to
594  * indicate the length of a hole starting at map->m_lblk.
595  *
596  * It returns the error in case of allocation failure.
597  */
598 int ext4_map_blocks(handle_t *handle, struct inode *inode,
599 		    struct ext4_map_blocks *map, int flags)
600 {
601 	struct extent_status es;
602 	int retval;
603 	int ret = 0;
604 #ifdef ES_AGGRESSIVE_TEST
605 	struct ext4_map_blocks orig_map;
606 
607 	memcpy(&orig_map, map, sizeof(*map));
608 #endif
609 
610 	map->m_flags = 0;
611 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
612 		  flags, map->m_len, (unsigned long) map->m_lblk);
613 
614 	/*
615 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
616 	 */
617 	if (unlikely(map->m_len > INT_MAX))
618 		map->m_len = INT_MAX;
619 
620 	/* We can handle the block number less than EXT_MAX_BLOCKS */
621 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
622 		return -EFSCORRUPTED;
623 
624 	/* Lookup extent status tree firstly */
625 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
626 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
627 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
628 			map->m_pblk = ext4_es_pblock(&es) +
629 					map->m_lblk - es.es_lblk;
630 			map->m_flags |= ext4_es_is_written(&es) ?
631 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
632 			retval = es.es_len - (map->m_lblk - es.es_lblk);
633 			if (retval > map->m_len)
634 				retval = map->m_len;
635 			map->m_len = retval;
636 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
637 			map->m_pblk = 0;
638 			map->m_flags |= ext4_es_is_delayed(&es) ?
639 					EXT4_MAP_DELAYED : 0;
640 			retval = es.es_len - (map->m_lblk - es.es_lblk);
641 			if (retval > map->m_len)
642 				retval = map->m_len;
643 			map->m_len = retval;
644 			retval = 0;
645 		} else {
646 			BUG();
647 		}
648 
649 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
650 			return retval;
651 #ifdef ES_AGGRESSIVE_TEST
652 		ext4_map_blocks_es_recheck(handle, inode, map,
653 					   &orig_map, flags);
654 #endif
655 		goto found;
656 	}
657 	/*
658 	 * In the query cache no-wait mode, nothing we can do more if we
659 	 * cannot find extent in the cache.
660 	 */
661 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
662 		return 0;
663 
664 	/*
665 	 * Try to see if we can get the block without requesting a new
666 	 * file system block.
667 	 */
668 	down_read(&EXT4_I(inode)->i_data_sem);
669 	retval = ext4_map_query_blocks(handle, inode, map);
670 	up_read((&EXT4_I(inode)->i_data_sem));
671 
672 found:
673 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
674 		ret = check_block_validity(inode, map);
675 		if (ret != 0)
676 			return ret;
677 	}
678 
679 	/* If it is only a block(s) look up */
680 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
681 		return retval;
682 
683 	/*
684 	 * Returns if the blocks have already allocated
685 	 *
686 	 * Note that if blocks have been preallocated
687 	 * ext4_ext_map_blocks() returns with buffer head unmapped
688 	 */
689 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
690 		/*
691 		 * If we need to convert extent to unwritten
692 		 * we continue and do the actual work in
693 		 * ext4_ext_map_blocks()
694 		 */
695 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
696 			return retval;
697 
698 	/*
699 	 * New blocks allocate and/or writing to unwritten extent
700 	 * will possibly result in updating i_data, so we take
701 	 * the write lock of i_data_sem, and call get_block()
702 	 * with create == 1 flag.
703 	 */
704 	down_write(&EXT4_I(inode)->i_data_sem);
705 	retval = ext4_map_create_blocks(handle, inode, map, flags);
706 	up_write((&EXT4_I(inode)->i_data_sem));
707 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
708 		ret = check_block_validity(inode, map);
709 		if (ret != 0)
710 			return ret;
711 
712 		/*
713 		 * Inodes with freshly allocated blocks where contents will be
714 		 * visible after transaction commit must be on transaction's
715 		 * ordered data list.
716 		 */
717 		if (map->m_flags & EXT4_MAP_NEW &&
718 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
719 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
720 		    !ext4_is_quota_file(inode) &&
721 		    ext4_should_order_data(inode)) {
722 			loff_t start_byte =
723 				(loff_t)map->m_lblk << inode->i_blkbits;
724 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
725 
726 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
727 				ret = ext4_jbd2_inode_add_wait(handle, inode,
728 						start_byte, length);
729 			else
730 				ret = ext4_jbd2_inode_add_write(handle, inode,
731 						start_byte, length);
732 			if (ret)
733 				return ret;
734 		}
735 	}
736 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
737 				map->m_flags & EXT4_MAP_MAPPED))
738 		ext4_fc_track_range(handle, inode, map->m_lblk,
739 					map->m_lblk + map->m_len - 1);
740 	if (retval < 0)
741 		ext_debug(inode, "failed with err %d\n", retval);
742 	return retval;
743 }
744 
745 /*
746  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
747  * we have to be careful as someone else may be manipulating b_state as well.
748  */
749 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
750 {
751 	unsigned long old_state;
752 	unsigned long new_state;
753 
754 	flags &= EXT4_MAP_FLAGS;
755 
756 	/* Dummy buffer_head? Set non-atomically. */
757 	if (!bh->b_folio) {
758 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
759 		return;
760 	}
761 	/*
762 	 * Someone else may be modifying b_state. Be careful! This is ugly but
763 	 * once we get rid of using bh as a container for mapping information
764 	 * to pass to / from get_block functions, this can go away.
765 	 */
766 	old_state = READ_ONCE(bh->b_state);
767 	do {
768 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
769 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
770 }
771 
772 static int _ext4_get_block(struct inode *inode, sector_t iblock,
773 			   struct buffer_head *bh, int flags)
774 {
775 	struct ext4_map_blocks map;
776 	int ret = 0;
777 
778 	if (ext4_has_inline_data(inode))
779 		return -ERANGE;
780 
781 	map.m_lblk = iblock;
782 	map.m_len = bh->b_size >> inode->i_blkbits;
783 
784 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
785 			      flags);
786 	if (ret > 0) {
787 		map_bh(bh, inode->i_sb, map.m_pblk);
788 		ext4_update_bh_state(bh, map.m_flags);
789 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
790 		ret = 0;
791 	} else if (ret == 0) {
792 		/* hole case, need to fill in bh->b_size */
793 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794 	}
795 	return ret;
796 }
797 
798 int ext4_get_block(struct inode *inode, sector_t iblock,
799 		   struct buffer_head *bh, int create)
800 {
801 	return _ext4_get_block(inode, iblock, bh,
802 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
803 }
804 
805 /*
806  * Get block function used when preparing for buffered write if we require
807  * creating an unwritten extent if blocks haven't been allocated.  The extent
808  * will be converted to written after the IO is complete.
809  */
810 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
811 			     struct buffer_head *bh_result, int create)
812 {
813 	int ret = 0;
814 
815 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
816 		   inode->i_ino, create);
817 	ret = _ext4_get_block(inode, iblock, bh_result,
818 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
819 
820 	/*
821 	 * If the buffer is marked unwritten, mark it as new to make sure it is
822 	 * zeroed out correctly in case of partial writes. Otherwise, there is
823 	 * a chance of stale data getting exposed.
824 	 */
825 	if (ret == 0 && buffer_unwritten(bh_result))
826 		set_buffer_new(bh_result);
827 
828 	return ret;
829 }
830 
831 /* Maximum number of blocks we map for direct IO at once. */
832 #define DIO_MAX_BLOCKS 4096
833 
834 /*
835  * `handle' can be NULL if create is zero
836  */
837 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
838 				ext4_lblk_t block, int map_flags)
839 {
840 	struct ext4_map_blocks map;
841 	struct buffer_head *bh;
842 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
843 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
844 	int err;
845 
846 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
847 		    || handle != NULL || create == 0);
848 	ASSERT(create == 0 || !nowait);
849 
850 	map.m_lblk = block;
851 	map.m_len = 1;
852 	err = ext4_map_blocks(handle, inode, &map, map_flags);
853 
854 	if (err == 0)
855 		return create ? ERR_PTR(-ENOSPC) : NULL;
856 	if (err < 0)
857 		return ERR_PTR(err);
858 
859 	if (nowait)
860 		return sb_find_get_block(inode->i_sb, map.m_pblk);
861 
862 	/*
863 	 * Since bh could introduce extra ref count such as referred by
864 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
865 	 * as it may fail the migration when journal_head remains.
866 	 */
867 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
868 				inode->i_sb->s_blocksize);
869 
870 	if (unlikely(!bh))
871 		return ERR_PTR(-ENOMEM);
872 	if (map.m_flags & EXT4_MAP_NEW) {
873 		ASSERT(create != 0);
874 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
875 			    || (handle != NULL));
876 
877 		/*
878 		 * Now that we do not always journal data, we should
879 		 * keep in mind whether this should always journal the
880 		 * new buffer as metadata.  For now, regular file
881 		 * writes use ext4_get_block instead, so it's not a
882 		 * problem.
883 		 */
884 		lock_buffer(bh);
885 		BUFFER_TRACE(bh, "call get_create_access");
886 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
887 						     EXT4_JTR_NONE);
888 		if (unlikely(err)) {
889 			unlock_buffer(bh);
890 			goto errout;
891 		}
892 		if (!buffer_uptodate(bh)) {
893 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
894 			set_buffer_uptodate(bh);
895 		}
896 		unlock_buffer(bh);
897 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
898 		err = ext4_handle_dirty_metadata(handle, inode, bh);
899 		if (unlikely(err))
900 			goto errout;
901 	} else
902 		BUFFER_TRACE(bh, "not a new buffer");
903 	return bh;
904 errout:
905 	brelse(bh);
906 	return ERR_PTR(err);
907 }
908 
909 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
910 			       ext4_lblk_t block, int map_flags)
911 {
912 	struct buffer_head *bh;
913 	int ret;
914 
915 	bh = ext4_getblk(handle, inode, block, map_flags);
916 	if (IS_ERR(bh))
917 		return bh;
918 	if (!bh || ext4_buffer_uptodate(bh))
919 		return bh;
920 
921 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
922 	if (ret) {
923 		put_bh(bh);
924 		return ERR_PTR(ret);
925 	}
926 	return bh;
927 }
928 
929 /* Read a contiguous batch of blocks. */
930 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
931 		     bool wait, struct buffer_head **bhs)
932 {
933 	int i, err;
934 
935 	for (i = 0; i < bh_count; i++) {
936 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
937 		if (IS_ERR(bhs[i])) {
938 			err = PTR_ERR(bhs[i]);
939 			bh_count = i;
940 			goto out_brelse;
941 		}
942 	}
943 
944 	for (i = 0; i < bh_count; i++)
945 		/* Note that NULL bhs[i] is valid because of holes. */
946 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
947 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
948 
949 	if (!wait)
950 		return 0;
951 
952 	for (i = 0; i < bh_count; i++)
953 		if (bhs[i])
954 			wait_on_buffer(bhs[i]);
955 
956 	for (i = 0; i < bh_count; i++) {
957 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
958 			err = -EIO;
959 			goto out_brelse;
960 		}
961 	}
962 	return 0;
963 
964 out_brelse:
965 	for (i = 0; i < bh_count; i++) {
966 		brelse(bhs[i]);
967 		bhs[i] = NULL;
968 	}
969 	return err;
970 }
971 
972 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
973 			   struct buffer_head *head,
974 			   unsigned from,
975 			   unsigned to,
976 			   int *partial,
977 			   int (*fn)(handle_t *handle, struct inode *inode,
978 				     struct buffer_head *bh))
979 {
980 	struct buffer_head *bh;
981 	unsigned block_start, block_end;
982 	unsigned blocksize = head->b_size;
983 	int err, ret = 0;
984 	struct buffer_head *next;
985 
986 	for (bh = head, block_start = 0;
987 	     ret == 0 && (bh != head || !block_start);
988 	     block_start = block_end, bh = next) {
989 		next = bh->b_this_page;
990 		block_end = block_start + blocksize;
991 		if (block_end <= from || block_start >= to) {
992 			if (partial && !buffer_uptodate(bh))
993 				*partial = 1;
994 			continue;
995 		}
996 		err = (*fn)(handle, inode, bh);
997 		if (!ret)
998 			ret = err;
999 	}
1000 	return ret;
1001 }
1002 
1003 /*
1004  * Helper for handling dirtying of journalled data. We also mark the folio as
1005  * dirty so that writeback code knows about this page (and inode) contains
1006  * dirty data. ext4_writepages() then commits appropriate transaction to
1007  * make data stable.
1008  */
1009 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1010 {
1011 	folio_mark_dirty(bh->b_folio);
1012 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1013 }
1014 
1015 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1016 				struct buffer_head *bh)
1017 {
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	BUFFER_TRACE(bh, "get write access");
1021 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1022 					    EXT4_JTR_NONE);
1023 }
1024 
1025 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1026 			   loff_t pos, unsigned len,
1027 			   get_block_t *get_block)
1028 {
1029 	unsigned from = pos & (PAGE_SIZE - 1);
1030 	unsigned to = from + len;
1031 	struct inode *inode = folio->mapping->host;
1032 	unsigned block_start, block_end;
1033 	sector_t block;
1034 	int err = 0;
1035 	unsigned blocksize = inode->i_sb->s_blocksize;
1036 	unsigned bbits;
1037 	struct buffer_head *bh, *head, *wait[2];
1038 	int nr_wait = 0;
1039 	int i;
1040 	bool should_journal_data = ext4_should_journal_data(inode);
1041 
1042 	BUG_ON(!folio_test_locked(folio));
1043 	BUG_ON(from > PAGE_SIZE);
1044 	BUG_ON(to > PAGE_SIZE);
1045 	BUG_ON(from > to);
1046 
1047 	head = folio_buffers(folio);
1048 	if (!head)
1049 		head = create_empty_buffers(folio, blocksize, 0);
1050 	bbits = ilog2(blocksize);
1051 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1052 
1053 	for (bh = head, block_start = 0; bh != head || !block_start;
1054 	    block++, block_start = block_end, bh = bh->b_this_page) {
1055 		block_end = block_start + blocksize;
1056 		if (block_end <= from || block_start >= to) {
1057 			if (folio_test_uptodate(folio)) {
1058 				set_buffer_uptodate(bh);
1059 			}
1060 			continue;
1061 		}
1062 		if (buffer_new(bh))
1063 			clear_buffer_new(bh);
1064 		if (!buffer_mapped(bh)) {
1065 			WARN_ON(bh->b_size != blocksize);
1066 			err = get_block(inode, block, bh, 1);
1067 			if (err)
1068 				break;
1069 			if (buffer_new(bh)) {
1070 				/*
1071 				 * We may be zeroing partial buffers or all new
1072 				 * buffers in case of failure. Prepare JBD2 for
1073 				 * that.
1074 				 */
1075 				if (should_journal_data)
1076 					do_journal_get_write_access(handle,
1077 								    inode, bh);
1078 				if (folio_test_uptodate(folio)) {
1079 					/*
1080 					 * Unlike __block_write_begin() we leave
1081 					 * dirtying of new uptodate buffers to
1082 					 * ->write_end() time or
1083 					 * folio_zero_new_buffers().
1084 					 */
1085 					set_buffer_uptodate(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					folio_zero_segments(folio, to,
1090 							    block_end,
1091 							    block_start, from);
1092 				continue;
1093 			}
1094 		}
1095 		if (folio_test_uptodate(folio)) {
1096 			set_buffer_uptodate(bh);
1097 			continue;
1098 		}
1099 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100 		    !buffer_unwritten(bh) &&
1101 		    (block_start < from || block_end > to)) {
1102 			ext4_read_bh_lock(bh, 0, false);
1103 			wait[nr_wait++] = bh;
1104 		}
1105 	}
1106 	/*
1107 	 * If we issued read requests, let them complete.
1108 	 */
1109 	for (i = 0; i < nr_wait; i++) {
1110 		wait_on_buffer(wait[i]);
1111 		if (!buffer_uptodate(wait[i]))
1112 			err = -EIO;
1113 	}
1114 	if (unlikely(err)) {
1115 		if (should_journal_data)
1116 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1117 							 from, to);
1118 		else
1119 			folio_zero_new_buffers(folio, from, to);
1120 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1121 		for (i = 0; i < nr_wait; i++) {
1122 			int err2;
1123 
1124 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1125 						blocksize, bh_offset(wait[i]));
1126 			if (err2) {
1127 				clear_buffer_uptodate(wait[i]);
1128 				err = err2;
1129 			}
1130 		}
1131 	}
1132 
1133 	return err;
1134 }
1135 
1136 /*
1137  * To preserve ordering, it is essential that the hole instantiation and
1138  * the data write be encapsulated in a single transaction.  We cannot
1139  * close off a transaction and start a new one between the ext4_get_block()
1140  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1141  * ext4_write_begin() is the right place.
1142  */
1143 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1144 			    loff_t pos, unsigned len,
1145 			    struct folio **foliop, void **fsdata)
1146 {
1147 	struct inode *inode = mapping->host;
1148 	int ret, needed_blocks;
1149 	handle_t *handle;
1150 	int retries = 0;
1151 	struct folio *folio;
1152 	pgoff_t index;
1153 	unsigned from, to;
1154 
1155 	ret = ext4_emergency_state(inode->i_sb);
1156 	if (unlikely(ret))
1157 		return ret;
1158 
1159 	trace_ext4_write_begin(inode, pos, len);
1160 	/*
1161 	 * Reserve one block more for addition to orphan list in case
1162 	 * we allocate blocks but write fails for some reason
1163 	 */
1164 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1165 	index = pos >> PAGE_SHIFT;
1166 	from = pos & (PAGE_SIZE - 1);
1167 	to = from + len;
1168 
1169 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1170 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1171 						    foliop);
1172 		if (ret < 0)
1173 			return ret;
1174 		if (ret == 1)
1175 			return 0;
1176 	}
1177 
1178 	/*
1179 	 * __filemap_get_folio() can take a long time if the
1180 	 * system is thrashing due to memory pressure, or if the folio
1181 	 * is being written back.  So grab it first before we start
1182 	 * the transaction handle.  This also allows us to allocate
1183 	 * the folio (if needed) without using GFP_NOFS.
1184 	 */
1185 retry_grab:
1186 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1187 					mapping_gfp_mask(mapping));
1188 	if (IS_ERR(folio))
1189 		return PTR_ERR(folio);
1190 	/*
1191 	 * The same as page allocation, we prealloc buffer heads before
1192 	 * starting the handle.
1193 	 */
1194 	if (!folio_buffers(folio))
1195 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1196 
1197 	folio_unlock(folio);
1198 
1199 retry_journal:
1200 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1201 	if (IS_ERR(handle)) {
1202 		folio_put(folio);
1203 		return PTR_ERR(handle);
1204 	}
1205 
1206 	folio_lock(folio);
1207 	if (folio->mapping != mapping) {
1208 		/* The folio got truncated from under us */
1209 		folio_unlock(folio);
1210 		folio_put(folio);
1211 		ext4_journal_stop(handle);
1212 		goto retry_grab;
1213 	}
1214 	/* In case writeback began while the folio was unlocked */
1215 	folio_wait_stable(folio);
1216 
1217 	if (ext4_should_dioread_nolock(inode))
1218 		ret = ext4_block_write_begin(handle, folio, pos, len,
1219 					     ext4_get_block_unwritten);
1220 	else
1221 		ret = ext4_block_write_begin(handle, folio, pos, len,
1222 					     ext4_get_block);
1223 	if (!ret && ext4_should_journal_data(inode)) {
1224 		ret = ext4_walk_page_buffers(handle, inode,
1225 					     folio_buffers(folio), from, to,
1226 					     NULL, do_journal_get_write_access);
1227 	}
1228 
1229 	if (ret) {
1230 		bool extended = (pos + len > inode->i_size) &&
1231 				!ext4_verity_in_progress(inode);
1232 
1233 		folio_unlock(folio);
1234 		/*
1235 		 * ext4_block_write_begin may have instantiated a few blocks
1236 		 * outside i_size.  Trim these off again. Don't need
1237 		 * i_size_read because we hold i_rwsem.
1238 		 *
1239 		 * Add inode to orphan list in case we crash before
1240 		 * truncate finishes
1241 		 */
1242 		if (extended && ext4_can_truncate(inode))
1243 			ext4_orphan_add(handle, inode);
1244 
1245 		ext4_journal_stop(handle);
1246 		if (extended) {
1247 			ext4_truncate_failed_write(inode);
1248 			/*
1249 			 * If truncate failed early the inode might
1250 			 * still be on the orphan list; we need to
1251 			 * make sure the inode is removed from the
1252 			 * orphan list in that case.
1253 			 */
1254 			if (inode->i_nlink)
1255 				ext4_orphan_del(NULL, inode);
1256 		}
1257 
1258 		if (ret == -ENOSPC &&
1259 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1260 			goto retry_journal;
1261 		folio_put(folio);
1262 		return ret;
1263 	}
1264 	*foliop = folio;
1265 	return ret;
1266 }
1267 
1268 /* For write_end() in data=journal mode */
1269 static int write_end_fn(handle_t *handle, struct inode *inode,
1270 			struct buffer_head *bh)
1271 {
1272 	int ret;
1273 	if (!buffer_mapped(bh) || buffer_freed(bh))
1274 		return 0;
1275 	set_buffer_uptodate(bh);
1276 	ret = ext4_dirty_journalled_data(handle, bh);
1277 	clear_buffer_meta(bh);
1278 	clear_buffer_prio(bh);
1279 	return ret;
1280 }
1281 
1282 /*
1283  * We need to pick up the new inode size which generic_commit_write gave us
1284  * `file' can be NULL - eg, when called from page_symlink().
1285  *
1286  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1287  * buffers are managed internally.
1288  */
1289 static int ext4_write_end(struct file *file,
1290 			  struct address_space *mapping,
1291 			  loff_t pos, unsigned len, unsigned copied,
1292 			  struct folio *folio, void *fsdata)
1293 {
1294 	handle_t *handle = ext4_journal_current_handle();
1295 	struct inode *inode = mapping->host;
1296 	loff_t old_size = inode->i_size;
1297 	int ret = 0, ret2;
1298 	int i_size_changed = 0;
1299 	bool verity = ext4_verity_in_progress(inode);
1300 
1301 	trace_ext4_write_end(inode, pos, len, copied);
1302 
1303 	if (ext4_has_inline_data(inode) &&
1304 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1305 		return ext4_write_inline_data_end(inode, pos, len, copied,
1306 						  folio);
1307 
1308 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1309 	/*
1310 	 * it's important to update i_size while still holding folio lock:
1311 	 * page writeout could otherwise come in and zero beyond i_size.
1312 	 *
1313 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1314 	 * blocks are being written past EOF, so skip the i_size update.
1315 	 */
1316 	if (!verity)
1317 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1318 	folio_unlock(folio);
1319 	folio_put(folio);
1320 
1321 	if (old_size < pos && !verity) {
1322 		pagecache_isize_extended(inode, old_size, pos);
1323 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1324 	}
1325 	/*
1326 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1327 	 * makes the holding time of folio lock longer. Second, it forces lock
1328 	 * ordering of folio lock and transaction start for journaling
1329 	 * filesystems.
1330 	 */
1331 	if (i_size_changed)
1332 		ret = ext4_mark_inode_dirty(handle, inode);
1333 
1334 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1335 		/* if we have allocated more blocks and copied
1336 		 * less. We will have blocks allocated outside
1337 		 * inode->i_size. So truncate them
1338 		 */
1339 		ext4_orphan_add(handle, inode);
1340 
1341 	ret2 = ext4_journal_stop(handle);
1342 	if (!ret)
1343 		ret = ret2;
1344 
1345 	if (pos + len > inode->i_size && !verity) {
1346 		ext4_truncate_failed_write(inode);
1347 		/*
1348 		 * If truncate failed early the inode might still be
1349 		 * on the orphan list; we need to make sure the inode
1350 		 * is removed from the orphan list in that case.
1351 		 */
1352 		if (inode->i_nlink)
1353 			ext4_orphan_del(NULL, inode);
1354 	}
1355 
1356 	return ret ? ret : copied;
1357 }
1358 
1359 /*
1360  * This is a private version of folio_zero_new_buffers() which doesn't
1361  * set the buffer to be dirty, since in data=journalled mode we need
1362  * to call ext4_dirty_journalled_data() instead.
1363  */
1364 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1365 					    struct inode *inode,
1366 					    struct folio *folio,
1367 					    unsigned from, unsigned to)
1368 {
1369 	unsigned int block_start = 0, block_end;
1370 	struct buffer_head *head, *bh;
1371 
1372 	bh = head = folio_buffers(folio);
1373 	do {
1374 		block_end = block_start + bh->b_size;
1375 		if (buffer_new(bh)) {
1376 			if (block_end > from && block_start < to) {
1377 				if (!folio_test_uptodate(folio)) {
1378 					unsigned start, size;
1379 
1380 					start = max(from, block_start);
1381 					size = min(to, block_end) - start;
1382 
1383 					folio_zero_range(folio, start, size);
1384 				}
1385 				clear_buffer_new(bh);
1386 				write_end_fn(handle, inode, bh);
1387 			}
1388 		}
1389 		block_start = block_end;
1390 		bh = bh->b_this_page;
1391 	} while (bh != head);
1392 }
1393 
1394 static int ext4_journalled_write_end(struct file *file,
1395 				     struct address_space *mapping,
1396 				     loff_t pos, unsigned len, unsigned copied,
1397 				     struct folio *folio, void *fsdata)
1398 {
1399 	handle_t *handle = ext4_journal_current_handle();
1400 	struct inode *inode = mapping->host;
1401 	loff_t old_size = inode->i_size;
1402 	int ret = 0, ret2;
1403 	int partial = 0;
1404 	unsigned from, to;
1405 	int size_changed = 0;
1406 	bool verity = ext4_verity_in_progress(inode);
1407 
1408 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1409 	from = pos & (PAGE_SIZE - 1);
1410 	to = from + len;
1411 
1412 	BUG_ON(!ext4_handle_valid(handle));
1413 
1414 	if (ext4_has_inline_data(inode))
1415 		return ext4_write_inline_data_end(inode, pos, len, copied,
1416 						  folio);
1417 
1418 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1419 		copied = 0;
1420 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1421 						 from, to);
1422 	} else {
1423 		if (unlikely(copied < len))
1424 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1425 							 from + copied, to);
1426 		ret = ext4_walk_page_buffers(handle, inode,
1427 					     folio_buffers(folio),
1428 					     from, from + copied, &partial,
1429 					     write_end_fn);
1430 		if (!partial)
1431 			folio_mark_uptodate(folio);
1432 	}
1433 	if (!verity)
1434 		size_changed = ext4_update_inode_size(inode, pos + copied);
1435 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1436 	folio_unlock(folio);
1437 	folio_put(folio);
1438 
1439 	if (old_size < pos && !verity) {
1440 		pagecache_isize_extended(inode, old_size, pos);
1441 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1442 	}
1443 
1444 	if (size_changed) {
1445 		ret2 = ext4_mark_inode_dirty(handle, inode);
1446 		if (!ret)
1447 			ret = ret2;
1448 	}
1449 
1450 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 		/* if we have allocated more blocks and copied
1452 		 * less. We will have blocks allocated outside
1453 		 * inode->i_size. So truncate them
1454 		 */
1455 		ext4_orphan_add(handle, inode);
1456 
1457 	ret2 = ext4_journal_stop(handle);
1458 	if (!ret)
1459 		ret = ret2;
1460 	if (pos + len > inode->i_size && !verity) {
1461 		ext4_truncate_failed_write(inode);
1462 		/*
1463 		 * If truncate failed early the inode might still be
1464 		 * on the orphan list; we need to make sure the inode
1465 		 * is removed from the orphan list in that case.
1466 		 */
1467 		if (inode->i_nlink)
1468 			ext4_orphan_del(NULL, inode);
1469 	}
1470 
1471 	return ret ? ret : copied;
1472 }
1473 
1474 /*
1475  * Reserve space for 'nr_resv' clusters
1476  */
1477 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1478 {
1479 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 	struct ext4_inode_info *ei = EXT4_I(inode);
1481 	int ret;
1482 
1483 	/*
1484 	 * We will charge metadata quota at writeout time; this saves
1485 	 * us from metadata over-estimation, though we may go over by
1486 	 * a small amount in the end.  Here we just reserve for data.
1487 	 */
1488 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1489 	if (ret)
1490 		return ret;
1491 
1492 	spin_lock(&ei->i_block_reservation_lock);
1493 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1494 		spin_unlock(&ei->i_block_reservation_lock);
1495 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1496 		return -ENOSPC;
1497 	}
1498 	ei->i_reserved_data_blocks += nr_resv;
1499 	trace_ext4_da_reserve_space(inode, nr_resv);
1500 	spin_unlock(&ei->i_block_reservation_lock);
1501 
1502 	return 0;       /* success */
1503 }
1504 
1505 void ext4_da_release_space(struct inode *inode, int to_free)
1506 {
1507 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508 	struct ext4_inode_info *ei = EXT4_I(inode);
1509 
1510 	if (!to_free)
1511 		return;		/* Nothing to release, exit */
1512 
1513 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1514 
1515 	trace_ext4_da_release_space(inode, to_free);
1516 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1517 		/*
1518 		 * if there aren't enough reserved blocks, then the
1519 		 * counter is messed up somewhere.  Since this
1520 		 * function is called from invalidate page, it's
1521 		 * harmless to return without any action.
1522 		 */
1523 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1524 			 "ino %lu, to_free %d with only %d reserved "
1525 			 "data blocks", inode->i_ino, to_free,
1526 			 ei->i_reserved_data_blocks);
1527 		WARN_ON(1);
1528 		to_free = ei->i_reserved_data_blocks;
1529 	}
1530 	ei->i_reserved_data_blocks -= to_free;
1531 
1532 	/* update fs dirty data blocks counter */
1533 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1534 
1535 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536 
1537 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1538 }
1539 
1540 /*
1541  * Delayed allocation stuff
1542  */
1543 
1544 struct mpage_da_data {
1545 	/* These are input fields for ext4_do_writepages() */
1546 	struct inode *inode;
1547 	struct writeback_control *wbc;
1548 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1549 
1550 	/* These are internal state of ext4_do_writepages() */
1551 	pgoff_t first_page;	/* The first page to write */
1552 	pgoff_t next_page;	/* Current page to examine */
1553 	pgoff_t last_page;	/* Last page to examine */
1554 	/*
1555 	 * Extent to map - this can be after first_page because that can be
1556 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1557 	 * is delalloc or unwritten.
1558 	 */
1559 	struct ext4_map_blocks map;
1560 	struct ext4_io_submit io_submit;	/* IO submission data */
1561 	unsigned int do_map:1;
1562 	unsigned int scanned_until_end:1;
1563 	unsigned int journalled_more_data:1;
1564 };
1565 
1566 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1567 				       bool invalidate)
1568 {
1569 	unsigned nr, i;
1570 	pgoff_t index, end;
1571 	struct folio_batch fbatch;
1572 	struct inode *inode = mpd->inode;
1573 	struct address_space *mapping = inode->i_mapping;
1574 
1575 	/* This is necessary when next_page == 0. */
1576 	if (mpd->first_page >= mpd->next_page)
1577 		return;
1578 
1579 	mpd->scanned_until_end = 0;
1580 	index = mpd->first_page;
1581 	end   = mpd->next_page - 1;
1582 	if (invalidate) {
1583 		ext4_lblk_t start, last;
1584 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1585 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1586 
1587 		/*
1588 		 * avoid racing with extent status tree scans made by
1589 		 * ext4_insert_delayed_block()
1590 		 */
1591 		down_write(&EXT4_I(inode)->i_data_sem);
1592 		ext4_es_remove_extent(inode, start, last - start + 1);
1593 		up_write(&EXT4_I(inode)->i_data_sem);
1594 	}
1595 
1596 	folio_batch_init(&fbatch);
1597 	while (index <= end) {
1598 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1599 		if (nr == 0)
1600 			break;
1601 		for (i = 0; i < nr; i++) {
1602 			struct folio *folio = fbatch.folios[i];
1603 
1604 			if (folio->index < mpd->first_page)
1605 				continue;
1606 			if (folio_next_index(folio) - 1 > end)
1607 				continue;
1608 			BUG_ON(!folio_test_locked(folio));
1609 			BUG_ON(folio_test_writeback(folio));
1610 			if (invalidate) {
1611 				if (folio_mapped(folio))
1612 					folio_clear_dirty_for_io(folio);
1613 				block_invalidate_folio(folio, 0,
1614 						folio_size(folio));
1615 				folio_clear_uptodate(folio);
1616 			}
1617 			folio_unlock(folio);
1618 		}
1619 		folio_batch_release(&fbatch);
1620 	}
1621 }
1622 
1623 static void ext4_print_free_blocks(struct inode *inode)
1624 {
1625 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 	struct super_block *sb = inode->i_sb;
1627 	struct ext4_inode_info *ei = EXT4_I(inode);
1628 
1629 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1630 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1631 			ext4_count_free_clusters(sb)));
1632 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1633 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1634 	       (long long) EXT4_C2B(EXT4_SB(sb),
1635 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1636 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1637 	       (long long) EXT4_C2B(EXT4_SB(sb),
1638 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1639 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1640 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1641 		 ei->i_reserved_data_blocks);
1642 	return;
1643 }
1644 
1645 /*
1646  * Check whether the cluster containing lblk has been allocated or has
1647  * delalloc reservation.
1648  *
1649  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1650  * reservation, 2 if it's already been allocated, negative error code on
1651  * failure.
1652  */
1653 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1654 {
1655 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1656 	int ret;
1657 
1658 	/* Has delalloc reservation? */
1659 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1660 		return 1;
1661 
1662 	/* Already been allocated? */
1663 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1664 		return 2;
1665 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1666 	if (ret < 0)
1667 		return ret;
1668 	if (ret > 0)
1669 		return 2;
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1676  *                              status tree, incrementing the reserved
1677  *                              cluster/block count or making pending
1678  *                              reservations where needed
1679  *
1680  * @inode - file containing the newly added block
1681  * @lblk - start logical block to be added
1682  * @len - length of blocks to be added
1683  *
1684  * Returns 0 on success, negative error code on failure.
1685  */
1686 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1687 				      ext4_lblk_t len)
1688 {
1689 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1690 	int ret;
1691 	bool lclu_allocated = false;
1692 	bool end_allocated = false;
1693 	ext4_lblk_t resv_clu;
1694 	ext4_lblk_t end = lblk + len - 1;
1695 
1696 	/*
1697 	 * If the cluster containing lblk or end is shared with a delayed,
1698 	 * written, or unwritten extent in a bigalloc file system, it's
1699 	 * already been accounted for and does not need to be reserved.
1700 	 * A pending reservation must be made for the cluster if it's
1701 	 * shared with a written or unwritten extent and doesn't already
1702 	 * have one.  Written and unwritten extents can be purged from the
1703 	 * extents status tree if the system is under memory pressure, so
1704 	 * it's necessary to examine the extent tree if a search of the
1705 	 * extents status tree doesn't get a match.
1706 	 */
1707 	if (sbi->s_cluster_ratio == 1) {
1708 		ret = ext4_da_reserve_space(inode, len);
1709 		if (ret != 0)   /* ENOSPC */
1710 			return ret;
1711 	} else {   /* bigalloc */
1712 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1713 
1714 		ret = ext4_clu_alloc_state(inode, lblk);
1715 		if (ret < 0)
1716 			return ret;
1717 		if (ret > 0) {
1718 			resv_clu--;
1719 			lclu_allocated = (ret == 2);
1720 		}
1721 
1722 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1723 			ret = ext4_clu_alloc_state(inode, end);
1724 			if (ret < 0)
1725 				return ret;
1726 			if (ret > 0) {
1727 				resv_clu--;
1728 				end_allocated = (ret == 2);
1729 			}
1730 		}
1731 
1732 		if (resv_clu) {
1733 			ret = ext4_da_reserve_space(inode, resv_clu);
1734 			if (ret != 0)   /* ENOSPC */
1735 				return ret;
1736 		}
1737 	}
1738 
1739 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1740 				      end_allocated);
1741 	return 0;
1742 }
1743 
1744 /*
1745  * Looks up the requested blocks and sets the delalloc extent map.
1746  * First try to look up for the extent entry that contains the requested
1747  * blocks in the extent status tree without i_data_sem, then try to look
1748  * up for the ondisk extent mapping with i_data_sem in read mode,
1749  * finally hold i_data_sem in write mode, looks up again and add a
1750  * delalloc extent entry if it still couldn't find any extent. Pass out
1751  * the mapped extent through @map and return 0 on success.
1752  */
1753 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1754 {
1755 	struct extent_status es;
1756 	int retval;
1757 #ifdef ES_AGGRESSIVE_TEST
1758 	struct ext4_map_blocks orig_map;
1759 
1760 	memcpy(&orig_map, map, sizeof(*map));
1761 #endif
1762 
1763 	map->m_flags = 0;
1764 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1765 		  (unsigned long) map->m_lblk);
1766 
1767 	/* Lookup extent status tree firstly */
1768 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1769 		map->m_len = min_t(unsigned int, map->m_len,
1770 				   es.es_len - (map->m_lblk - es.es_lblk));
1771 
1772 		if (ext4_es_is_hole(&es))
1773 			goto add_delayed;
1774 
1775 found:
1776 		/*
1777 		 * Delayed extent could be allocated by fallocate.
1778 		 * So we need to check it.
1779 		 */
1780 		if (ext4_es_is_delayed(&es)) {
1781 			map->m_flags |= EXT4_MAP_DELAYED;
1782 			return 0;
1783 		}
1784 
1785 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1786 		if (ext4_es_is_written(&es))
1787 			map->m_flags |= EXT4_MAP_MAPPED;
1788 		else if (ext4_es_is_unwritten(&es))
1789 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1790 		else
1791 			BUG();
1792 
1793 #ifdef ES_AGGRESSIVE_TEST
1794 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1795 #endif
1796 		return 0;
1797 	}
1798 
1799 	/*
1800 	 * Try to see if we can get the block without requesting a new
1801 	 * file system block.
1802 	 */
1803 	down_read(&EXT4_I(inode)->i_data_sem);
1804 	if (ext4_has_inline_data(inode))
1805 		retval = 0;
1806 	else
1807 		retval = ext4_map_query_blocks(NULL, inode, map);
1808 	up_read(&EXT4_I(inode)->i_data_sem);
1809 	if (retval)
1810 		return retval < 0 ? retval : 0;
1811 
1812 add_delayed:
1813 	down_write(&EXT4_I(inode)->i_data_sem);
1814 	/*
1815 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1816 	 * and fallocate path (no folio lock) can race. Make sure we
1817 	 * lookup the extent status tree here again while i_data_sem
1818 	 * is held in write mode, before inserting a new da entry in
1819 	 * the extent status tree.
1820 	 */
1821 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1822 		map->m_len = min_t(unsigned int, map->m_len,
1823 				   es.es_len - (map->m_lblk - es.es_lblk));
1824 
1825 		if (!ext4_es_is_hole(&es)) {
1826 			up_write(&EXT4_I(inode)->i_data_sem);
1827 			goto found;
1828 		}
1829 	} else if (!ext4_has_inline_data(inode)) {
1830 		retval = ext4_map_query_blocks(NULL, inode, map);
1831 		if (retval) {
1832 			up_write(&EXT4_I(inode)->i_data_sem);
1833 			return retval < 0 ? retval : 0;
1834 		}
1835 	}
1836 
1837 	map->m_flags |= EXT4_MAP_DELAYED;
1838 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1839 	up_write(&EXT4_I(inode)->i_data_sem);
1840 
1841 	return retval;
1842 }
1843 
1844 /*
1845  * This is a special get_block_t callback which is used by
1846  * ext4_da_write_begin().  It will either return mapped block or
1847  * reserve space for a single block.
1848  *
1849  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850  * We also have b_blocknr = -1 and b_bdev initialized properly
1851  *
1852  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854  * initialized properly.
1855  */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 			   struct buffer_head *bh, int create)
1858 {
1859 	struct ext4_map_blocks map;
1860 	sector_t invalid_block = ~((sector_t) 0xffff);
1861 	int ret = 0;
1862 
1863 	BUG_ON(create == 0);
1864 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1865 
1866 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1867 		invalid_block = ~0;
1868 
1869 	map.m_lblk = iblock;
1870 	map.m_len = 1;
1871 
1872 	/*
1873 	 * first, we need to know whether the block is allocated already
1874 	 * preallocated blocks are unmapped but should treated
1875 	 * the same as allocated blocks.
1876 	 */
1877 	ret = ext4_da_map_blocks(inode, &map);
1878 	if (ret < 0)
1879 		return ret;
1880 
1881 	if (map.m_flags & EXT4_MAP_DELAYED) {
1882 		map_bh(bh, inode->i_sb, invalid_block);
1883 		set_buffer_new(bh);
1884 		set_buffer_delay(bh);
1885 		return 0;
1886 	}
1887 
1888 	map_bh(bh, inode->i_sb, map.m_pblk);
1889 	ext4_update_bh_state(bh, map.m_flags);
1890 
1891 	if (buffer_unwritten(bh)) {
1892 		/* A delayed write to unwritten bh should be marked
1893 		 * new and mapped.  Mapped ensures that we don't do
1894 		 * get_block multiple times when we write to the same
1895 		 * offset and new ensures that we do proper zero out
1896 		 * for partial write.
1897 		 */
1898 		set_buffer_new(bh);
1899 		set_buffer_mapped(bh);
1900 	}
1901 	return 0;
1902 }
1903 
1904 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1905 {
1906 	mpd->first_page += folio_nr_pages(folio);
1907 	folio_unlock(folio);
1908 }
1909 
1910 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1911 {
1912 	size_t len;
1913 	loff_t size;
1914 	int err;
1915 
1916 	BUG_ON(folio->index != mpd->first_page);
1917 	folio_clear_dirty_for_io(folio);
1918 	/*
1919 	 * We have to be very careful here!  Nothing protects writeback path
1920 	 * against i_size changes and the page can be writeably mapped into
1921 	 * page tables. So an application can be growing i_size and writing
1922 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1923 	 * write-protects our page in page tables and the page cannot get
1924 	 * written to again until we release folio lock. So only after
1925 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1926 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1927 	 * on the barrier provided by folio_test_clear_dirty() in
1928 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1929 	 * after page tables are updated.
1930 	 */
1931 	size = i_size_read(mpd->inode);
1932 	len = folio_size(folio);
1933 	if (folio_pos(folio) + len > size &&
1934 	    !ext4_verity_in_progress(mpd->inode))
1935 		len = size & (len - 1);
1936 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1937 	if (!err)
1938 		mpd->wbc->nr_to_write--;
1939 
1940 	return err;
1941 }
1942 
1943 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1944 
1945 /*
1946  * mballoc gives us at most this number of blocks...
1947  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1948  * The rest of mballoc seems to handle chunks up to full group size.
1949  */
1950 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1951 
1952 /*
1953  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1954  *
1955  * @mpd - extent of blocks
1956  * @lblk - logical number of the block in the file
1957  * @bh - buffer head we want to add to the extent
1958  *
1959  * The function is used to collect contig. blocks in the same state. If the
1960  * buffer doesn't require mapping for writeback and we haven't started the
1961  * extent of buffers to map yet, the function returns 'true' immediately - the
1962  * caller can write the buffer right away. Otherwise the function returns true
1963  * if the block has been added to the extent, false if the block couldn't be
1964  * added.
1965  */
1966 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1967 				   struct buffer_head *bh)
1968 {
1969 	struct ext4_map_blocks *map = &mpd->map;
1970 
1971 	/* Buffer that doesn't need mapping for writeback? */
1972 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1973 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1974 		/* So far no extent to map => we write the buffer right away */
1975 		if (map->m_len == 0)
1976 			return true;
1977 		return false;
1978 	}
1979 
1980 	/* First block in the extent? */
1981 	if (map->m_len == 0) {
1982 		/* We cannot map unless handle is started... */
1983 		if (!mpd->do_map)
1984 			return false;
1985 		map->m_lblk = lblk;
1986 		map->m_len = 1;
1987 		map->m_flags = bh->b_state & BH_FLAGS;
1988 		return true;
1989 	}
1990 
1991 	/* Don't go larger than mballoc is willing to allocate */
1992 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1993 		return false;
1994 
1995 	/* Can we merge the block to our big extent? */
1996 	if (lblk == map->m_lblk + map->m_len &&
1997 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1998 		map->m_len++;
1999 		return true;
2000 	}
2001 	return false;
2002 }
2003 
2004 /*
2005  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2006  *
2007  * @mpd - extent of blocks for mapping
2008  * @head - the first buffer in the page
2009  * @bh - buffer we should start processing from
2010  * @lblk - logical number of the block in the file corresponding to @bh
2011  *
2012  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2013  * the page for IO if all buffers in this page were mapped and there's no
2014  * accumulated extent of buffers to map or add buffers in the page to the
2015  * extent of buffers to map. The function returns 1 if the caller can continue
2016  * by processing the next page, 0 if it should stop adding buffers to the
2017  * extent to map because we cannot extend it anymore. It can also return value
2018  * < 0 in case of error during IO submission.
2019  */
2020 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2021 				   struct buffer_head *head,
2022 				   struct buffer_head *bh,
2023 				   ext4_lblk_t lblk)
2024 {
2025 	struct inode *inode = mpd->inode;
2026 	int err;
2027 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2028 							>> inode->i_blkbits;
2029 
2030 	if (ext4_verity_in_progress(inode))
2031 		blocks = EXT_MAX_BLOCKS;
2032 
2033 	do {
2034 		BUG_ON(buffer_locked(bh));
2035 
2036 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2037 			/* Found extent to map? */
2038 			if (mpd->map.m_len)
2039 				return 0;
2040 			/* Buffer needs mapping and handle is not started? */
2041 			if (!mpd->do_map)
2042 				return 0;
2043 			/* Everything mapped so far and we hit EOF */
2044 			break;
2045 		}
2046 	} while (lblk++, (bh = bh->b_this_page) != head);
2047 	/* So far everything mapped? Submit the page for IO. */
2048 	if (mpd->map.m_len == 0) {
2049 		err = mpage_submit_folio(mpd, head->b_folio);
2050 		if (err < 0)
2051 			return err;
2052 		mpage_folio_done(mpd, head->b_folio);
2053 	}
2054 	if (lblk >= blocks) {
2055 		mpd->scanned_until_end = 1;
2056 		return 0;
2057 	}
2058 	return 1;
2059 }
2060 
2061 /*
2062  * mpage_process_folio - update folio buffers corresponding to changed extent
2063  *			 and may submit fully mapped page for IO
2064  * @mpd: description of extent to map, on return next extent to map
2065  * @folio: Contains these buffers.
2066  * @m_lblk: logical block mapping.
2067  * @m_pblk: corresponding physical mapping.
2068  * @map_bh: determines on return whether this page requires any further
2069  *		  mapping or not.
2070  *
2071  * Scan given folio buffers corresponding to changed extent and update buffer
2072  * state according to new extent state.
2073  * We map delalloc buffers to their physical location, clear unwritten bits.
2074  * If the given folio is not fully mapped, we update @mpd to the next extent in
2075  * the given folio that needs mapping & return @map_bh as true.
2076  */
2077 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2078 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2079 			      bool *map_bh)
2080 {
2081 	struct buffer_head *head, *bh;
2082 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2083 	ext4_lblk_t lblk = *m_lblk;
2084 	ext4_fsblk_t pblock = *m_pblk;
2085 	int err = 0;
2086 	int blkbits = mpd->inode->i_blkbits;
2087 	ssize_t io_end_size = 0;
2088 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2089 
2090 	bh = head = folio_buffers(folio);
2091 	do {
2092 		if (lblk < mpd->map.m_lblk)
2093 			continue;
2094 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2095 			/*
2096 			 * Buffer after end of mapped extent.
2097 			 * Find next buffer in the folio to map.
2098 			 */
2099 			mpd->map.m_len = 0;
2100 			mpd->map.m_flags = 0;
2101 			io_end_vec->size += io_end_size;
2102 
2103 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2104 			if (err > 0)
2105 				err = 0;
2106 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2107 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2108 				if (IS_ERR(io_end_vec)) {
2109 					err = PTR_ERR(io_end_vec);
2110 					goto out;
2111 				}
2112 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2113 			}
2114 			*map_bh = true;
2115 			goto out;
2116 		}
2117 		if (buffer_delay(bh)) {
2118 			clear_buffer_delay(bh);
2119 			bh->b_blocknr = pblock++;
2120 		}
2121 		clear_buffer_unwritten(bh);
2122 		io_end_size += (1 << blkbits);
2123 	} while (lblk++, (bh = bh->b_this_page) != head);
2124 
2125 	io_end_vec->size += io_end_size;
2126 	*map_bh = false;
2127 out:
2128 	*m_lblk = lblk;
2129 	*m_pblk = pblock;
2130 	return err;
2131 }
2132 
2133 /*
2134  * mpage_map_buffers - update buffers corresponding to changed extent and
2135  *		       submit fully mapped pages for IO
2136  *
2137  * @mpd - description of extent to map, on return next extent to map
2138  *
2139  * Scan buffers corresponding to changed extent (we expect corresponding pages
2140  * to be already locked) and update buffer state according to new extent state.
2141  * We map delalloc buffers to their physical location, clear unwritten bits,
2142  * and mark buffers as uninit when we perform writes to unwritten extents
2143  * and do extent conversion after IO is finished. If the last page is not fully
2144  * mapped, we update @map to the next extent in the last page that needs
2145  * mapping. Otherwise we submit the page for IO.
2146  */
2147 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2148 {
2149 	struct folio_batch fbatch;
2150 	unsigned nr, i;
2151 	struct inode *inode = mpd->inode;
2152 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2153 	pgoff_t start, end;
2154 	ext4_lblk_t lblk;
2155 	ext4_fsblk_t pblock;
2156 	int err;
2157 	bool map_bh = false;
2158 
2159 	start = mpd->map.m_lblk >> bpp_bits;
2160 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2161 	lblk = start << bpp_bits;
2162 	pblock = mpd->map.m_pblk;
2163 
2164 	folio_batch_init(&fbatch);
2165 	while (start <= end) {
2166 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2167 		if (nr == 0)
2168 			break;
2169 		for (i = 0; i < nr; i++) {
2170 			struct folio *folio = fbatch.folios[i];
2171 
2172 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2173 						 &map_bh);
2174 			/*
2175 			 * If map_bh is true, means page may require further bh
2176 			 * mapping, or maybe the page was submitted for IO.
2177 			 * So we return to call further extent mapping.
2178 			 */
2179 			if (err < 0 || map_bh)
2180 				goto out;
2181 			/* Page fully mapped - let IO run! */
2182 			err = mpage_submit_folio(mpd, folio);
2183 			if (err < 0)
2184 				goto out;
2185 			mpage_folio_done(mpd, folio);
2186 		}
2187 		folio_batch_release(&fbatch);
2188 	}
2189 	/* Extent fully mapped and matches with page boundary. We are done. */
2190 	mpd->map.m_len = 0;
2191 	mpd->map.m_flags = 0;
2192 	return 0;
2193 out:
2194 	folio_batch_release(&fbatch);
2195 	return err;
2196 }
2197 
2198 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2199 {
2200 	struct inode *inode = mpd->inode;
2201 	struct ext4_map_blocks *map = &mpd->map;
2202 	int get_blocks_flags;
2203 	int err, dioread_nolock;
2204 
2205 	trace_ext4_da_write_pages_extent(inode, map);
2206 	/*
2207 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2208 	 * to convert an unwritten extent to be initialized (in the case
2209 	 * where we have written into one or more preallocated blocks).  It is
2210 	 * possible that we're going to need more metadata blocks than
2211 	 * previously reserved. However we must not fail because we're in
2212 	 * writeback and there is nothing we can do about it so it might result
2213 	 * in data loss.  So use reserved blocks to allocate metadata if
2214 	 * possible.
2215 	 */
2216 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2217 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2218 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2219 	dioread_nolock = ext4_should_dioread_nolock(inode);
2220 	if (dioread_nolock)
2221 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2222 
2223 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2224 	if (err < 0)
2225 		return err;
2226 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2227 		if (!mpd->io_submit.io_end->handle &&
2228 		    ext4_handle_valid(handle)) {
2229 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2230 			handle->h_rsv_handle = NULL;
2231 		}
2232 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2233 	}
2234 
2235 	BUG_ON(map->m_len == 0);
2236 	return 0;
2237 }
2238 
2239 /*
2240  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2241  *				 mpd->len and submit pages underlying it for IO
2242  *
2243  * @handle - handle for journal operations
2244  * @mpd - extent to map
2245  * @give_up_on_write - we set this to true iff there is a fatal error and there
2246  *                     is no hope of writing the data. The caller should discard
2247  *                     dirty pages to avoid infinite loops.
2248  *
2249  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2250  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2251  * them to initialized or split the described range from larger unwritten
2252  * extent. Note that we need not map all the described range since allocation
2253  * can return less blocks or the range is covered by more unwritten extents. We
2254  * cannot map more because we are limited by reserved transaction credits. On
2255  * the other hand we always make sure that the last touched page is fully
2256  * mapped so that it can be written out (and thus forward progress is
2257  * guaranteed). After mapping we submit all mapped pages for IO.
2258  */
2259 static int mpage_map_and_submit_extent(handle_t *handle,
2260 				       struct mpage_da_data *mpd,
2261 				       bool *give_up_on_write)
2262 {
2263 	struct inode *inode = mpd->inode;
2264 	struct ext4_map_blocks *map = &mpd->map;
2265 	int err;
2266 	loff_t disksize;
2267 	int progress = 0;
2268 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2269 	struct ext4_io_end_vec *io_end_vec;
2270 
2271 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2272 	if (IS_ERR(io_end_vec))
2273 		return PTR_ERR(io_end_vec);
2274 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2275 	do {
2276 		err = mpage_map_one_extent(handle, mpd);
2277 		if (err < 0) {
2278 			struct super_block *sb = inode->i_sb;
2279 
2280 			if (ext4_emergency_state(sb))
2281 				goto invalidate_dirty_pages;
2282 			/*
2283 			 * Let the uper layers retry transient errors.
2284 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2285 			 * is non-zero, a commit should free up blocks.
2286 			 */
2287 			if ((err == -ENOMEM) ||
2288 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2289 				if (progress)
2290 					goto update_disksize;
2291 				return err;
2292 			}
2293 			ext4_msg(sb, KERN_CRIT,
2294 				 "Delayed block allocation failed for "
2295 				 "inode %lu at logical offset %llu with"
2296 				 " max blocks %u with error %d",
2297 				 inode->i_ino,
2298 				 (unsigned long long)map->m_lblk,
2299 				 (unsigned)map->m_len, -err);
2300 			ext4_msg(sb, KERN_CRIT,
2301 				 "This should not happen!! Data will "
2302 				 "be lost\n");
2303 			if (err == -ENOSPC)
2304 				ext4_print_free_blocks(inode);
2305 		invalidate_dirty_pages:
2306 			*give_up_on_write = true;
2307 			return err;
2308 		}
2309 		progress = 1;
2310 		/*
2311 		 * Update buffer state, submit mapped pages, and get us new
2312 		 * extent to map
2313 		 */
2314 		err = mpage_map_and_submit_buffers(mpd);
2315 		if (err < 0)
2316 			goto update_disksize;
2317 	} while (map->m_len);
2318 
2319 update_disksize:
2320 	/*
2321 	 * Update on-disk size after IO is submitted.  Races with
2322 	 * truncate are avoided by checking i_size under i_data_sem.
2323 	 */
2324 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2325 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2326 		int err2;
2327 		loff_t i_size;
2328 
2329 		down_write(&EXT4_I(inode)->i_data_sem);
2330 		i_size = i_size_read(inode);
2331 		if (disksize > i_size)
2332 			disksize = i_size;
2333 		if (disksize > EXT4_I(inode)->i_disksize)
2334 			EXT4_I(inode)->i_disksize = disksize;
2335 		up_write(&EXT4_I(inode)->i_data_sem);
2336 		err2 = ext4_mark_inode_dirty(handle, inode);
2337 		if (err2) {
2338 			ext4_error_err(inode->i_sb, -err2,
2339 				       "Failed to mark inode %lu dirty",
2340 				       inode->i_ino);
2341 		}
2342 		if (!err)
2343 			err = err2;
2344 	}
2345 	return err;
2346 }
2347 
2348 /*
2349  * Calculate the total number of credits to reserve for one writepages
2350  * iteration. This is called from ext4_writepages(). We map an extent of
2351  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2352  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2353  * bpp - 1 blocks in bpp different extents.
2354  */
2355 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2356 {
2357 	int bpp = ext4_journal_blocks_per_page(inode);
2358 
2359 	return ext4_meta_trans_blocks(inode,
2360 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2361 }
2362 
2363 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2364 				     size_t len)
2365 {
2366 	struct buffer_head *page_bufs = folio_buffers(folio);
2367 	struct inode *inode = folio->mapping->host;
2368 	int ret, err;
2369 
2370 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2371 				     NULL, do_journal_get_write_access);
2372 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2373 				     NULL, write_end_fn);
2374 	if (ret == 0)
2375 		ret = err;
2376 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2377 	if (ret == 0)
2378 		ret = err;
2379 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2380 
2381 	return ret;
2382 }
2383 
2384 static int mpage_journal_page_buffers(handle_t *handle,
2385 				      struct mpage_da_data *mpd,
2386 				      struct folio *folio)
2387 {
2388 	struct inode *inode = mpd->inode;
2389 	loff_t size = i_size_read(inode);
2390 	size_t len = folio_size(folio);
2391 
2392 	folio_clear_checked(folio);
2393 	mpd->wbc->nr_to_write--;
2394 
2395 	if (folio_pos(folio) + len > size &&
2396 	    !ext4_verity_in_progress(inode))
2397 		len = size & (len - 1);
2398 
2399 	return ext4_journal_folio_buffers(handle, folio, len);
2400 }
2401 
2402 /*
2403  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2404  * 				 needing mapping, submit mapped pages
2405  *
2406  * @mpd - where to look for pages
2407  *
2408  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2409  * IO immediately. If we cannot map blocks, we submit just already mapped
2410  * buffers in the page for IO and keep page dirty. When we can map blocks and
2411  * we find a page which isn't mapped we start accumulating extent of buffers
2412  * underlying these pages that needs mapping (formed by either delayed or
2413  * unwritten buffers). We also lock the pages containing these buffers. The
2414  * extent found is returned in @mpd structure (starting at mpd->lblk with
2415  * length mpd->len blocks).
2416  *
2417  * Note that this function can attach bios to one io_end structure which are
2418  * neither logically nor physically contiguous. Although it may seem as an
2419  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2420  * case as we need to track IO to all buffers underlying a page in one io_end.
2421  */
2422 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2423 {
2424 	struct address_space *mapping = mpd->inode->i_mapping;
2425 	struct folio_batch fbatch;
2426 	unsigned int nr_folios;
2427 	pgoff_t index = mpd->first_page;
2428 	pgoff_t end = mpd->last_page;
2429 	xa_mark_t tag;
2430 	int i, err = 0;
2431 	int blkbits = mpd->inode->i_blkbits;
2432 	ext4_lblk_t lblk;
2433 	struct buffer_head *head;
2434 	handle_t *handle = NULL;
2435 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2436 
2437 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2438 		tag = PAGECACHE_TAG_TOWRITE;
2439 	else
2440 		tag = PAGECACHE_TAG_DIRTY;
2441 
2442 	mpd->map.m_len = 0;
2443 	mpd->next_page = index;
2444 	if (ext4_should_journal_data(mpd->inode)) {
2445 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2446 					    bpp);
2447 		if (IS_ERR(handle))
2448 			return PTR_ERR(handle);
2449 	}
2450 	folio_batch_init(&fbatch);
2451 	while (index <= end) {
2452 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2453 				tag, &fbatch);
2454 		if (nr_folios == 0)
2455 			break;
2456 
2457 		for (i = 0; i < nr_folios; i++) {
2458 			struct folio *folio = fbatch.folios[i];
2459 
2460 			/*
2461 			 * Accumulated enough dirty pages? This doesn't apply
2462 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2463 			 * keep going because someone may be concurrently
2464 			 * dirtying pages, and we might have synced a lot of
2465 			 * newly appeared dirty pages, but have not synced all
2466 			 * of the old dirty pages.
2467 			 */
2468 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2469 			    mpd->wbc->nr_to_write <=
2470 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2471 				goto out;
2472 
2473 			/* If we can't merge this page, we are done. */
2474 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2475 				goto out;
2476 
2477 			if (handle) {
2478 				err = ext4_journal_ensure_credits(handle, bpp,
2479 								  0);
2480 				if (err < 0)
2481 					goto out;
2482 			}
2483 
2484 			folio_lock(folio);
2485 			/*
2486 			 * If the page is no longer dirty, or its mapping no
2487 			 * longer corresponds to inode we are writing (which
2488 			 * means it has been truncated or invalidated), or the
2489 			 * page is already under writeback and we are not doing
2490 			 * a data integrity writeback, skip the page
2491 			 */
2492 			if (!folio_test_dirty(folio) ||
2493 			    (folio_test_writeback(folio) &&
2494 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2495 			    unlikely(folio->mapping != mapping)) {
2496 				folio_unlock(folio);
2497 				continue;
2498 			}
2499 
2500 			folio_wait_writeback(folio);
2501 			BUG_ON(folio_test_writeback(folio));
2502 
2503 			/*
2504 			 * Should never happen but for buggy code in
2505 			 * other subsystems that call
2506 			 * set_page_dirty() without properly warning
2507 			 * the file system first.  See [1] for more
2508 			 * information.
2509 			 *
2510 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2511 			 */
2512 			if (!folio_buffers(folio)) {
2513 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2514 				folio_clear_dirty(folio);
2515 				folio_unlock(folio);
2516 				continue;
2517 			}
2518 
2519 			if (mpd->map.m_len == 0)
2520 				mpd->first_page = folio->index;
2521 			mpd->next_page = folio_next_index(folio);
2522 			/*
2523 			 * Writeout when we cannot modify metadata is simple.
2524 			 * Just submit the page. For data=journal mode we
2525 			 * first handle writeout of the page for checkpoint and
2526 			 * only after that handle delayed page dirtying. This
2527 			 * makes sure current data is checkpointed to the final
2528 			 * location before possibly journalling it again which
2529 			 * is desirable when the page is frequently dirtied
2530 			 * through a pin.
2531 			 */
2532 			if (!mpd->can_map) {
2533 				err = mpage_submit_folio(mpd, folio);
2534 				if (err < 0)
2535 					goto out;
2536 				/* Pending dirtying of journalled data? */
2537 				if (folio_test_checked(folio)) {
2538 					err = mpage_journal_page_buffers(handle,
2539 						mpd, folio);
2540 					if (err < 0)
2541 						goto out;
2542 					mpd->journalled_more_data = 1;
2543 				}
2544 				mpage_folio_done(mpd, folio);
2545 			} else {
2546 				/* Add all dirty buffers to mpd */
2547 				lblk = ((ext4_lblk_t)folio->index) <<
2548 					(PAGE_SHIFT - blkbits);
2549 				head = folio_buffers(folio);
2550 				err = mpage_process_page_bufs(mpd, head, head,
2551 						lblk);
2552 				if (err <= 0)
2553 					goto out;
2554 				err = 0;
2555 			}
2556 		}
2557 		folio_batch_release(&fbatch);
2558 		cond_resched();
2559 	}
2560 	mpd->scanned_until_end = 1;
2561 	if (handle)
2562 		ext4_journal_stop(handle);
2563 	return 0;
2564 out:
2565 	folio_batch_release(&fbatch);
2566 	if (handle)
2567 		ext4_journal_stop(handle);
2568 	return err;
2569 }
2570 
2571 static int ext4_do_writepages(struct mpage_da_data *mpd)
2572 {
2573 	struct writeback_control *wbc = mpd->wbc;
2574 	pgoff_t	writeback_index = 0;
2575 	long nr_to_write = wbc->nr_to_write;
2576 	int range_whole = 0;
2577 	int cycled = 1;
2578 	handle_t *handle = NULL;
2579 	struct inode *inode = mpd->inode;
2580 	struct address_space *mapping = inode->i_mapping;
2581 	int needed_blocks, rsv_blocks = 0, ret = 0;
2582 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2583 	struct blk_plug plug;
2584 	bool give_up_on_write = false;
2585 
2586 	trace_ext4_writepages(inode, wbc);
2587 
2588 	/*
2589 	 * No pages to write? This is mainly a kludge to avoid starting
2590 	 * a transaction for special inodes like journal inode on last iput()
2591 	 * because that could violate lock ordering on umount
2592 	 */
2593 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2594 		goto out_writepages;
2595 
2596 	/*
2597 	 * If the filesystem has aborted, it is read-only, so return
2598 	 * right away instead of dumping stack traces later on that
2599 	 * will obscure the real source of the problem.  We test
2600 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2601 	 * the latter could be true if the filesystem is mounted
2602 	 * read-only, and in that case, ext4_writepages should
2603 	 * *never* be called, so if that ever happens, we would want
2604 	 * the stack trace.
2605 	 */
2606 	ret = ext4_emergency_state(mapping->host->i_sb);
2607 	if (unlikely(ret))
2608 		goto out_writepages;
2609 
2610 	/*
2611 	 * If we have inline data and arrive here, it means that
2612 	 * we will soon create the block for the 1st page, so
2613 	 * we'd better clear the inline data here.
2614 	 */
2615 	if (ext4_has_inline_data(inode)) {
2616 		/* Just inode will be modified... */
2617 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2618 		if (IS_ERR(handle)) {
2619 			ret = PTR_ERR(handle);
2620 			goto out_writepages;
2621 		}
2622 		BUG_ON(ext4_test_inode_state(inode,
2623 				EXT4_STATE_MAY_INLINE_DATA));
2624 		ext4_destroy_inline_data(handle, inode);
2625 		ext4_journal_stop(handle);
2626 	}
2627 
2628 	/*
2629 	 * data=journal mode does not do delalloc so we just need to writeout /
2630 	 * journal already mapped buffers. On the other hand we need to commit
2631 	 * transaction to make data stable. We expect all the data to be
2632 	 * already in the journal (the only exception are DMA pinned pages
2633 	 * dirtied behind our back) so we commit transaction here and run the
2634 	 * writeback loop to checkpoint them. The checkpointing is not actually
2635 	 * necessary to make data persistent *but* quite a few places (extent
2636 	 * shifting operations, fsverity, ...) depend on being able to drop
2637 	 * pagecache pages after calling filemap_write_and_wait() and for that
2638 	 * checkpointing needs to happen.
2639 	 */
2640 	if (ext4_should_journal_data(inode)) {
2641 		mpd->can_map = 0;
2642 		if (wbc->sync_mode == WB_SYNC_ALL)
2643 			ext4_fc_commit(sbi->s_journal,
2644 				       EXT4_I(inode)->i_datasync_tid);
2645 	}
2646 	mpd->journalled_more_data = 0;
2647 
2648 	if (ext4_should_dioread_nolock(inode)) {
2649 		/*
2650 		 * We may need to convert up to one extent per block in
2651 		 * the page and we may dirty the inode.
2652 		 */
2653 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2654 						PAGE_SIZE >> inode->i_blkbits);
2655 	}
2656 
2657 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2658 		range_whole = 1;
2659 
2660 	if (wbc->range_cyclic) {
2661 		writeback_index = mapping->writeback_index;
2662 		if (writeback_index)
2663 			cycled = 0;
2664 		mpd->first_page = writeback_index;
2665 		mpd->last_page = -1;
2666 	} else {
2667 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2668 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2669 	}
2670 
2671 	ext4_io_submit_init(&mpd->io_submit, wbc);
2672 retry:
2673 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2674 		tag_pages_for_writeback(mapping, mpd->first_page,
2675 					mpd->last_page);
2676 	blk_start_plug(&plug);
2677 
2678 	/*
2679 	 * First writeback pages that don't need mapping - we can avoid
2680 	 * starting a transaction unnecessarily and also avoid being blocked
2681 	 * in the block layer on device congestion while having transaction
2682 	 * started.
2683 	 */
2684 	mpd->do_map = 0;
2685 	mpd->scanned_until_end = 0;
2686 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2687 	if (!mpd->io_submit.io_end) {
2688 		ret = -ENOMEM;
2689 		goto unplug;
2690 	}
2691 	ret = mpage_prepare_extent_to_map(mpd);
2692 	/* Unlock pages we didn't use */
2693 	mpage_release_unused_pages(mpd, false);
2694 	/* Submit prepared bio */
2695 	ext4_io_submit(&mpd->io_submit);
2696 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2697 	mpd->io_submit.io_end = NULL;
2698 	if (ret < 0)
2699 		goto unplug;
2700 
2701 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2702 		/* For each extent of pages we use new io_end */
2703 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2704 		if (!mpd->io_submit.io_end) {
2705 			ret = -ENOMEM;
2706 			break;
2707 		}
2708 
2709 		WARN_ON_ONCE(!mpd->can_map);
2710 		/*
2711 		 * We have two constraints: We find one extent to map and we
2712 		 * must always write out whole page (makes a difference when
2713 		 * blocksize < pagesize) so that we don't block on IO when we
2714 		 * try to write out the rest of the page. Journalled mode is
2715 		 * not supported by delalloc.
2716 		 */
2717 		BUG_ON(ext4_should_journal_data(inode));
2718 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2719 
2720 		/* start a new transaction */
2721 		handle = ext4_journal_start_with_reserve(inode,
2722 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2723 		if (IS_ERR(handle)) {
2724 			ret = PTR_ERR(handle);
2725 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2726 			       "%ld pages, ino %lu; err %d", __func__,
2727 				wbc->nr_to_write, inode->i_ino, ret);
2728 			/* Release allocated io_end */
2729 			ext4_put_io_end(mpd->io_submit.io_end);
2730 			mpd->io_submit.io_end = NULL;
2731 			break;
2732 		}
2733 		mpd->do_map = 1;
2734 
2735 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2736 		ret = mpage_prepare_extent_to_map(mpd);
2737 		if (!ret && mpd->map.m_len)
2738 			ret = mpage_map_and_submit_extent(handle, mpd,
2739 					&give_up_on_write);
2740 		/*
2741 		 * Caution: If the handle is synchronous,
2742 		 * ext4_journal_stop() can wait for transaction commit
2743 		 * to finish which may depend on writeback of pages to
2744 		 * complete or on page lock to be released.  In that
2745 		 * case, we have to wait until after we have
2746 		 * submitted all the IO, released page locks we hold,
2747 		 * and dropped io_end reference (for extent conversion
2748 		 * to be able to complete) before stopping the handle.
2749 		 */
2750 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2751 			ext4_journal_stop(handle);
2752 			handle = NULL;
2753 			mpd->do_map = 0;
2754 		}
2755 		/* Unlock pages we didn't use */
2756 		mpage_release_unused_pages(mpd, give_up_on_write);
2757 		/* Submit prepared bio */
2758 		ext4_io_submit(&mpd->io_submit);
2759 
2760 		/*
2761 		 * Drop our io_end reference we got from init. We have
2762 		 * to be careful and use deferred io_end finishing if
2763 		 * we are still holding the transaction as we can
2764 		 * release the last reference to io_end which may end
2765 		 * up doing unwritten extent conversion.
2766 		 */
2767 		if (handle) {
2768 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2769 			ext4_journal_stop(handle);
2770 		} else
2771 			ext4_put_io_end(mpd->io_submit.io_end);
2772 		mpd->io_submit.io_end = NULL;
2773 
2774 		if (ret == -ENOSPC && sbi->s_journal) {
2775 			/*
2776 			 * Commit the transaction which would
2777 			 * free blocks released in the transaction
2778 			 * and try again
2779 			 */
2780 			jbd2_journal_force_commit_nested(sbi->s_journal);
2781 			ret = 0;
2782 			continue;
2783 		}
2784 		/* Fatal error - ENOMEM, EIO... */
2785 		if (ret)
2786 			break;
2787 	}
2788 unplug:
2789 	blk_finish_plug(&plug);
2790 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2791 		cycled = 1;
2792 		mpd->last_page = writeback_index - 1;
2793 		mpd->first_page = 0;
2794 		goto retry;
2795 	}
2796 
2797 	/* Update index */
2798 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2799 		/*
2800 		 * Set the writeback_index so that range_cyclic
2801 		 * mode will write it back later
2802 		 */
2803 		mapping->writeback_index = mpd->first_page;
2804 
2805 out_writepages:
2806 	trace_ext4_writepages_result(inode, wbc, ret,
2807 				     nr_to_write - wbc->nr_to_write);
2808 	return ret;
2809 }
2810 
2811 static int ext4_writepages(struct address_space *mapping,
2812 			   struct writeback_control *wbc)
2813 {
2814 	struct super_block *sb = mapping->host->i_sb;
2815 	struct mpage_da_data mpd = {
2816 		.inode = mapping->host,
2817 		.wbc = wbc,
2818 		.can_map = 1,
2819 	};
2820 	int ret;
2821 	int alloc_ctx;
2822 
2823 	ret = ext4_emergency_state(sb);
2824 	if (unlikely(ret))
2825 		return ret;
2826 
2827 	alloc_ctx = ext4_writepages_down_read(sb);
2828 	ret = ext4_do_writepages(&mpd);
2829 	/*
2830 	 * For data=journal writeback we could have come across pages marked
2831 	 * for delayed dirtying (PageChecked) which were just added to the
2832 	 * running transaction. Try once more to get them to stable storage.
2833 	 */
2834 	if (!ret && mpd.journalled_more_data)
2835 		ret = ext4_do_writepages(&mpd);
2836 	ext4_writepages_up_read(sb, alloc_ctx);
2837 
2838 	return ret;
2839 }
2840 
2841 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2842 {
2843 	struct writeback_control wbc = {
2844 		.sync_mode = WB_SYNC_ALL,
2845 		.nr_to_write = LONG_MAX,
2846 		.range_start = jinode->i_dirty_start,
2847 		.range_end = jinode->i_dirty_end,
2848 	};
2849 	struct mpage_da_data mpd = {
2850 		.inode = jinode->i_vfs_inode,
2851 		.wbc = &wbc,
2852 		.can_map = 0,
2853 	};
2854 	return ext4_do_writepages(&mpd);
2855 }
2856 
2857 static int ext4_dax_writepages(struct address_space *mapping,
2858 			       struct writeback_control *wbc)
2859 {
2860 	int ret;
2861 	long nr_to_write = wbc->nr_to_write;
2862 	struct inode *inode = mapping->host;
2863 	int alloc_ctx;
2864 
2865 	ret = ext4_emergency_state(inode->i_sb);
2866 	if (unlikely(ret))
2867 		return ret;
2868 
2869 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2870 	trace_ext4_writepages(inode, wbc);
2871 
2872 	ret = dax_writeback_mapping_range(mapping,
2873 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2874 	trace_ext4_writepages_result(inode, wbc, ret,
2875 				     nr_to_write - wbc->nr_to_write);
2876 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2877 	return ret;
2878 }
2879 
2880 static int ext4_nonda_switch(struct super_block *sb)
2881 {
2882 	s64 free_clusters, dirty_clusters;
2883 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2884 
2885 	/*
2886 	 * switch to non delalloc mode if we are running low
2887 	 * on free block. The free block accounting via percpu
2888 	 * counters can get slightly wrong with percpu_counter_batch getting
2889 	 * accumulated on each CPU without updating global counters
2890 	 * Delalloc need an accurate free block accounting. So switch
2891 	 * to non delalloc when we are near to error range.
2892 	 */
2893 	free_clusters =
2894 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2895 	dirty_clusters =
2896 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2897 	/*
2898 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2899 	 */
2900 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2901 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2902 
2903 	if (2 * free_clusters < 3 * dirty_clusters ||
2904 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2905 		/*
2906 		 * free block count is less than 150% of dirty blocks
2907 		 * or free blocks is less than watermark
2908 		 */
2909 		return 1;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2915 			       loff_t pos, unsigned len,
2916 			       struct folio **foliop, void **fsdata)
2917 {
2918 	int ret, retries = 0;
2919 	struct folio *folio;
2920 	pgoff_t index;
2921 	struct inode *inode = mapping->host;
2922 
2923 	ret = ext4_emergency_state(inode->i_sb);
2924 	if (unlikely(ret))
2925 		return ret;
2926 
2927 	index = pos >> PAGE_SHIFT;
2928 
2929 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2930 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2931 		return ext4_write_begin(file, mapping, pos,
2932 					len, foliop, fsdata);
2933 	}
2934 	*fsdata = (void *)0;
2935 	trace_ext4_da_write_begin(inode, pos, len);
2936 
2937 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2938 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
2939 						     foliop, fsdata, true);
2940 		if (ret < 0)
2941 			return ret;
2942 		if (ret == 1)
2943 			return 0;
2944 	}
2945 
2946 retry:
2947 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2948 			mapping_gfp_mask(mapping));
2949 	if (IS_ERR(folio))
2950 		return PTR_ERR(folio);
2951 
2952 	ret = ext4_block_write_begin(NULL, folio, pos, len,
2953 				     ext4_da_get_block_prep);
2954 	if (ret < 0) {
2955 		folio_unlock(folio);
2956 		folio_put(folio);
2957 		/*
2958 		 * block_write_begin may have instantiated a few blocks
2959 		 * outside i_size.  Trim these off again. Don't need
2960 		 * i_size_read because we hold inode lock.
2961 		 */
2962 		if (pos + len > inode->i_size)
2963 			ext4_truncate_failed_write(inode);
2964 
2965 		if (ret == -ENOSPC &&
2966 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2967 			goto retry;
2968 		return ret;
2969 	}
2970 
2971 	*foliop = folio;
2972 	return ret;
2973 }
2974 
2975 /*
2976  * Check if we should update i_disksize
2977  * when write to the end of file but not require block allocation
2978  */
2979 static int ext4_da_should_update_i_disksize(struct folio *folio,
2980 					    unsigned long offset)
2981 {
2982 	struct buffer_head *bh;
2983 	struct inode *inode = folio->mapping->host;
2984 	unsigned int idx;
2985 	int i;
2986 
2987 	bh = folio_buffers(folio);
2988 	idx = offset >> inode->i_blkbits;
2989 
2990 	for (i = 0; i < idx; i++)
2991 		bh = bh->b_this_page;
2992 
2993 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2994 		return 0;
2995 	return 1;
2996 }
2997 
2998 static int ext4_da_do_write_end(struct address_space *mapping,
2999 			loff_t pos, unsigned len, unsigned copied,
3000 			struct folio *folio)
3001 {
3002 	struct inode *inode = mapping->host;
3003 	loff_t old_size = inode->i_size;
3004 	bool disksize_changed = false;
3005 	loff_t new_i_size, zero_len = 0;
3006 	handle_t *handle;
3007 
3008 	if (unlikely(!folio_buffers(folio))) {
3009 		folio_unlock(folio);
3010 		folio_put(folio);
3011 		return -EIO;
3012 	}
3013 	/*
3014 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3015 	 * flag, which all that's needed to trigger page writeback.
3016 	 */
3017 	copied = block_write_end(NULL, mapping, pos, len, copied,
3018 			folio, NULL);
3019 	new_i_size = pos + copied;
3020 
3021 	/*
3022 	 * It's important to update i_size while still holding folio lock,
3023 	 * because folio writeout could otherwise come in and zero beyond
3024 	 * i_size.
3025 	 *
3026 	 * Since we are holding inode lock, we are sure i_disksize <=
3027 	 * i_size. We also know that if i_disksize < i_size, there are
3028 	 * delalloc writes pending in the range up to i_size. If the end of
3029 	 * the current write is <= i_size, there's no need to touch
3030 	 * i_disksize since writeback will push i_disksize up to i_size
3031 	 * eventually. If the end of the current write is > i_size and
3032 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3033 	 * checked, we need to update i_disksize here as certain
3034 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3035 	 */
3036 	if (new_i_size > inode->i_size) {
3037 		unsigned long end;
3038 
3039 		i_size_write(inode, new_i_size);
3040 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3041 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3042 			ext4_update_i_disksize(inode, new_i_size);
3043 			disksize_changed = true;
3044 		}
3045 	}
3046 
3047 	folio_unlock(folio);
3048 	folio_put(folio);
3049 
3050 	if (pos > old_size) {
3051 		pagecache_isize_extended(inode, old_size, pos);
3052 		zero_len = pos - old_size;
3053 	}
3054 
3055 	if (!disksize_changed && !zero_len)
3056 		return copied;
3057 
3058 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3059 	if (IS_ERR(handle))
3060 		return PTR_ERR(handle);
3061 	if (zero_len)
3062 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3063 	ext4_mark_inode_dirty(handle, inode);
3064 	ext4_journal_stop(handle);
3065 
3066 	return copied;
3067 }
3068 
3069 static int ext4_da_write_end(struct file *file,
3070 			     struct address_space *mapping,
3071 			     loff_t pos, unsigned len, unsigned copied,
3072 			     struct folio *folio, void *fsdata)
3073 {
3074 	struct inode *inode = mapping->host;
3075 	int write_mode = (int)(unsigned long)fsdata;
3076 
3077 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3078 		return ext4_write_end(file, mapping, pos,
3079 				      len, copied, folio, fsdata);
3080 
3081 	trace_ext4_da_write_end(inode, pos, len, copied);
3082 
3083 	if (write_mode != CONVERT_INLINE_DATA &&
3084 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3085 	    ext4_has_inline_data(inode))
3086 		return ext4_write_inline_data_end(inode, pos, len, copied,
3087 						  folio);
3088 
3089 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3090 		copied = 0;
3091 
3092 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3093 }
3094 
3095 /*
3096  * Force all delayed allocation blocks to be allocated for a given inode.
3097  */
3098 int ext4_alloc_da_blocks(struct inode *inode)
3099 {
3100 	trace_ext4_alloc_da_blocks(inode);
3101 
3102 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3103 		return 0;
3104 
3105 	/*
3106 	 * We do something simple for now.  The filemap_flush() will
3107 	 * also start triggering a write of the data blocks, which is
3108 	 * not strictly speaking necessary (and for users of
3109 	 * laptop_mode, not even desirable).  However, to do otherwise
3110 	 * would require replicating code paths in:
3111 	 *
3112 	 * ext4_writepages() ->
3113 	 *    write_cache_pages() ---> (via passed in callback function)
3114 	 *        __mpage_da_writepage() -->
3115 	 *           mpage_add_bh_to_extent()
3116 	 *           mpage_da_map_blocks()
3117 	 *
3118 	 * The problem is that write_cache_pages(), located in
3119 	 * mm/page-writeback.c, marks pages clean in preparation for
3120 	 * doing I/O, which is not desirable if we're not planning on
3121 	 * doing I/O at all.
3122 	 *
3123 	 * We could call write_cache_pages(), and then redirty all of
3124 	 * the pages by calling redirty_page_for_writepage() but that
3125 	 * would be ugly in the extreme.  So instead we would need to
3126 	 * replicate parts of the code in the above functions,
3127 	 * simplifying them because we wouldn't actually intend to
3128 	 * write out the pages, but rather only collect contiguous
3129 	 * logical block extents, call the multi-block allocator, and
3130 	 * then update the buffer heads with the block allocations.
3131 	 *
3132 	 * For now, though, we'll cheat by calling filemap_flush(),
3133 	 * which will map the blocks, and start the I/O, but not
3134 	 * actually wait for the I/O to complete.
3135 	 */
3136 	return filemap_flush(inode->i_mapping);
3137 }
3138 
3139 /*
3140  * bmap() is special.  It gets used by applications such as lilo and by
3141  * the swapper to find the on-disk block of a specific piece of data.
3142  *
3143  * Naturally, this is dangerous if the block concerned is still in the
3144  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3145  * filesystem and enables swap, then they may get a nasty shock when the
3146  * data getting swapped to that swapfile suddenly gets overwritten by
3147  * the original zero's written out previously to the journal and
3148  * awaiting writeback in the kernel's buffer cache.
3149  *
3150  * So, if we see any bmap calls here on a modified, data-journaled file,
3151  * take extra steps to flush any blocks which might be in the cache.
3152  */
3153 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3154 {
3155 	struct inode *inode = mapping->host;
3156 	sector_t ret = 0;
3157 
3158 	inode_lock_shared(inode);
3159 	/*
3160 	 * We can get here for an inline file via the FIBMAP ioctl
3161 	 */
3162 	if (ext4_has_inline_data(inode))
3163 		goto out;
3164 
3165 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3166 	    (test_opt(inode->i_sb, DELALLOC) ||
3167 	     ext4_should_journal_data(inode))) {
3168 		/*
3169 		 * With delalloc or journalled data we want to sync the file so
3170 		 * that we can make sure we allocate blocks for file and data
3171 		 * is in place for the user to see it
3172 		 */
3173 		filemap_write_and_wait(mapping);
3174 	}
3175 
3176 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3177 
3178 out:
3179 	inode_unlock_shared(inode);
3180 	return ret;
3181 }
3182 
3183 static int ext4_read_folio(struct file *file, struct folio *folio)
3184 {
3185 	int ret = -EAGAIN;
3186 	struct inode *inode = folio->mapping->host;
3187 
3188 	trace_ext4_read_folio(inode, folio);
3189 
3190 	if (ext4_has_inline_data(inode))
3191 		ret = ext4_readpage_inline(inode, folio);
3192 
3193 	if (ret == -EAGAIN)
3194 		return ext4_mpage_readpages(inode, NULL, folio);
3195 
3196 	return ret;
3197 }
3198 
3199 static void ext4_readahead(struct readahead_control *rac)
3200 {
3201 	struct inode *inode = rac->mapping->host;
3202 
3203 	/* If the file has inline data, no need to do readahead. */
3204 	if (ext4_has_inline_data(inode))
3205 		return;
3206 
3207 	ext4_mpage_readpages(inode, rac, NULL);
3208 }
3209 
3210 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3211 				size_t length)
3212 {
3213 	trace_ext4_invalidate_folio(folio, offset, length);
3214 
3215 	/* No journalling happens on data buffers when this function is used */
3216 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3217 
3218 	block_invalidate_folio(folio, offset, length);
3219 }
3220 
3221 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3222 					    size_t offset, size_t length)
3223 {
3224 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3225 
3226 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3227 
3228 	/*
3229 	 * If it's a full truncate we just forget about the pending dirtying
3230 	 */
3231 	if (offset == 0 && length == folio_size(folio))
3232 		folio_clear_checked(folio);
3233 
3234 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3235 }
3236 
3237 /* Wrapper for aops... */
3238 static void ext4_journalled_invalidate_folio(struct folio *folio,
3239 					   size_t offset,
3240 					   size_t length)
3241 {
3242 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3243 }
3244 
3245 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3246 {
3247 	struct inode *inode = folio->mapping->host;
3248 	journal_t *journal = EXT4_JOURNAL(inode);
3249 
3250 	trace_ext4_release_folio(inode, folio);
3251 
3252 	/* Page has dirty journalled data -> cannot release */
3253 	if (folio_test_checked(folio))
3254 		return false;
3255 	if (journal)
3256 		return jbd2_journal_try_to_free_buffers(journal, folio);
3257 	else
3258 		return try_to_free_buffers(folio);
3259 }
3260 
3261 static bool ext4_inode_datasync_dirty(struct inode *inode)
3262 {
3263 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3264 
3265 	if (journal) {
3266 		if (jbd2_transaction_committed(journal,
3267 			EXT4_I(inode)->i_datasync_tid))
3268 			return false;
3269 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3270 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3271 		return true;
3272 	}
3273 
3274 	/* Any metadata buffers to write? */
3275 	if (!list_empty(&inode->i_mapping->i_private_list))
3276 		return true;
3277 	return inode->i_state & I_DIRTY_DATASYNC;
3278 }
3279 
3280 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3281 			   struct ext4_map_blocks *map, loff_t offset,
3282 			   loff_t length, unsigned int flags)
3283 {
3284 	u8 blkbits = inode->i_blkbits;
3285 
3286 	/*
3287 	 * Writes that span EOF might trigger an I/O size update on completion,
3288 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3289 	 * there is no other metadata changes being made or are pending.
3290 	 */
3291 	iomap->flags = 0;
3292 	if (ext4_inode_datasync_dirty(inode) ||
3293 	    offset + length > i_size_read(inode))
3294 		iomap->flags |= IOMAP_F_DIRTY;
3295 
3296 	if (map->m_flags & EXT4_MAP_NEW)
3297 		iomap->flags |= IOMAP_F_NEW;
3298 
3299 	/* HW-offload atomics are always used */
3300 	if (flags & IOMAP_ATOMIC)
3301 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3302 
3303 	if (flags & IOMAP_DAX)
3304 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3305 	else
3306 		iomap->bdev = inode->i_sb->s_bdev;
3307 	iomap->offset = (u64) map->m_lblk << blkbits;
3308 	iomap->length = (u64) map->m_len << blkbits;
3309 
3310 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3311 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3312 		iomap->flags |= IOMAP_F_MERGED;
3313 
3314 	/*
3315 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3316 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3317 	 * set. In order for any allocated unwritten extents to be converted
3318 	 * into written extents correctly within the ->end_io() handler, we
3319 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3320 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3321 	 * been set first.
3322 	 */
3323 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3324 		iomap->type = IOMAP_UNWRITTEN;
3325 		iomap->addr = (u64) map->m_pblk << blkbits;
3326 		if (flags & IOMAP_DAX)
3327 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3328 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3329 		iomap->type = IOMAP_MAPPED;
3330 		iomap->addr = (u64) map->m_pblk << blkbits;
3331 		if (flags & IOMAP_DAX)
3332 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3333 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3334 		iomap->type = IOMAP_DELALLOC;
3335 		iomap->addr = IOMAP_NULL_ADDR;
3336 	} else {
3337 		iomap->type = IOMAP_HOLE;
3338 		iomap->addr = IOMAP_NULL_ADDR;
3339 	}
3340 }
3341 
3342 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3343 			    unsigned int flags)
3344 {
3345 	handle_t *handle;
3346 	u8 blkbits = inode->i_blkbits;
3347 	int ret, dio_credits, m_flags = 0, retries = 0;
3348 
3349 	/*
3350 	 * Trim the mapping request to the maximum value that we can map at
3351 	 * once for direct I/O.
3352 	 */
3353 	if (map->m_len > DIO_MAX_BLOCKS)
3354 		map->m_len = DIO_MAX_BLOCKS;
3355 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3356 
3357 retry:
3358 	/*
3359 	 * Either we allocate blocks and then don't get an unwritten extent, so
3360 	 * in that case we have reserved enough credits. Or, the blocks are
3361 	 * already allocated and unwritten. In that case, the extent conversion
3362 	 * fits into the credits as well.
3363 	 */
3364 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3365 	if (IS_ERR(handle))
3366 		return PTR_ERR(handle);
3367 
3368 	/*
3369 	 * DAX and direct I/O are the only two operations that are currently
3370 	 * supported with IOMAP_WRITE.
3371 	 */
3372 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3373 	if (flags & IOMAP_DAX)
3374 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3375 	/*
3376 	 * We use i_size instead of i_disksize here because delalloc writeback
3377 	 * can complete at any point during the I/O and subsequently push the
3378 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3379 	 * happening and thus expose allocated blocks to direct I/O reads.
3380 	 */
3381 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3382 		m_flags = EXT4_GET_BLOCKS_CREATE;
3383 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3384 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3385 
3386 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3387 
3388 	/*
3389 	 * We cannot fill holes in indirect tree based inodes as that could
3390 	 * expose stale data in the case of a crash. Use the magic error code
3391 	 * to fallback to buffered I/O.
3392 	 */
3393 	if (!m_flags && !ret)
3394 		ret = -ENOTBLK;
3395 
3396 	ext4_journal_stop(handle);
3397 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3398 		goto retry;
3399 
3400 	return ret;
3401 }
3402 
3403 
3404 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3405 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3406 {
3407 	int ret;
3408 	struct ext4_map_blocks map;
3409 	u8 blkbits = inode->i_blkbits;
3410 
3411 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3412 		return -EINVAL;
3413 
3414 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3415 		return -ERANGE;
3416 
3417 	/*
3418 	 * Calculate the first and last logical blocks respectively.
3419 	 */
3420 	map.m_lblk = offset >> blkbits;
3421 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3422 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3423 
3424 	if (flags & IOMAP_WRITE) {
3425 		/*
3426 		 * We check here if the blocks are already allocated, then we
3427 		 * don't need to start a journal txn and we can directly return
3428 		 * the mapping information. This could boost performance
3429 		 * especially in multi-threaded overwrite requests.
3430 		 */
3431 		if (offset + length <= i_size_read(inode)) {
3432 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3433 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3434 				goto out;
3435 		}
3436 		ret = ext4_iomap_alloc(inode, &map, flags);
3437 	} else {
3438 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3439 	}
3440 
3441 	if (ret < 0)
3442 		return ret;
3443 out:
3444 	/*
3445 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3446 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3447 	 * limiting the length of the mapping returned.
3448 	 */
3449 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3450 
3451 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3452 
3453 	return 0;
3454 }
3455 
3456 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3457 		loff_t length, unsigned flags, struct iomap *iomap,
3458 		struct iomap *srcmap)
3459 {
3460 	int ret;
3461 
3462 	/*
3463 	 * Even for writes we don't need to allocate blocks, so just pretend
3464 	 * we are reading to save overhead of starting a transaction.
3465 	 */
3466 	flags &= ~IOMAP_WRITE;
3467 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3468 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3469 	return ret;
3470 }
3471 
3472 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3473 {
3474 	/* must be a directio to fall back to buffered */
3475 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3476 		    (IOMAP_WRITE | IOMAP_DIRECT))
3477 		return false;
3478 
3479 	/* atomic writes are all-or-nothing */
3480 	if (flags & IOMAP_ATOMIC)
3481 		return false;
3482 
3483 	/* can only try again if we wrote nothing */
3484 	return written == 0;
3485 }
3486 
3487 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3488 			  ssize_t written, unsigned flags, struct iomap *iomap)
3489 {
3490 	/*
3491 	 * Check to see whether an error occurred while writing out the data to
3492 	 * the allocated blocks. If so, return the magic error code for
3493 	 * non-atomic write so that we fallback to buffered I/O and attempt to
3494 	 * complete the remainder of the I/O.
3495 	 * For non-atomic writes, any blocks that may have been
3496 	 * allocated in preparation for the direct I/O will be reused during
3497 	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3498 	 */
3499 	if (ext4_want_directio_fallback(flags, written))
3500 		return -ENOTBLK;
3501 
3502 	return 0;
3503 }
3504 
3505 const struct iomap_ops ext4_iomap_ops = {
3506 	.iomap_begin		= ext4_iomap_begin,
3507 	.iomap_end		= ext4_iomap_end,
3508 };
3509 
3510 const struct iomap_ops ext4_iomap_overwrite_ops = {
3511 	.iomap_begin		= ext4_iomap_overwrite_begin,
3512 	.iomap_end		= ext4_iomap_end,
3513 };
3514 
3515 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3516 				   loff_t length, unsigned int flags,
3517 				   struct iomap *iomap, struct iomap *srcmap)
3518 {
3519 	int ret;
3520 	struct ext4_map_blocks map;
3521 	u8 blkbits = inode->i_blkbits;
3522 
3523 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3524 		return -EINVAL;
3525 
3526 	if (ext4_has_inline_data(inode)) {
3527 		ret = ext4_inline_data_iomap(inode, iomap);
3528 		if (ret != -EAGAIN) {
3529 			if (ret == 0 && offset >= iomap->length)
3530 				ret = -ENOENT;
3531 			return ret;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * Calculate the first and last logical block respectively.
3537 	 */
3538 	map.m_lblk = offset >> blkbits;
3539 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3540 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3541 
3542 	/*
3543 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3544 	 * So handle it here itself instead of querying ext4_map_blocks().
3545 	 * Since ext4_map_blocks() will warn about it and will return
3546 	 * -EIO error.
3547 	 */
3548 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3549 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3550 
3551 		if (offset >= sbi->s_bitmap_maxbytes) {
3552 			map.m_flags = 0;
3553 			goto set_iomap;
3554 		}
3555 	}
3556 
3557 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3558 	if (ret < 0)
3559 		return ret;
3560 set_iomap:
3561 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3562 
3563 	return 0;
3564 }
3565 
3566 const struct iomap_ops ext4_iomap_report_ops = {
3567 	.iomap_begin = ext4_iomap_begin_report,
3568 };
3569 
3570 /*
3571  * For data=journal mode, folio should be marked dirty only when it was
3572  * writeably mapped. When that happens, it was already attached to the
3573  * transaction and marked as jbddirty (we take care of this in
3574  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3575  * so we should have nothing to do here, except for the case when someone
3576  * had the page pinned and dirtied the page through this pin (e.g. by doing
3577  * direct IO to it). In that case we'd need to attach buffers here to the
3578  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3579  * folio and leave attached buffers clean, because the buffers' dirty state is
3580  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3581  * the journalling code will explode.  So what we do is to mark the folio
3582  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3583  * to the transaction appropriately.
3584  */
3585 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3586 		struct folio *folio)
3587 {
3588 	WARN_ON_ONCE(!folio_buffers(folio));
3589 	if (folio_maybe_dma_pinned(folio))
3590 		folio_set_checked(folio);
3591 	return filemap_dirty_folio(mapping, folio);
3592 }
3593 
3594 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3595 {
3596 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3597 	WARN_ON_ONCE(!folio_buffers(folio));
3598 	return block_dirty_folio(mapping, folio);
3599 }
3600 
3601 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3602 				    struct file *file, sector_t *span)
3603 {
3604 	return iomap_swapfile_activate(sis, file, span,
3605 				       &ext4_iomap_report_ops);
3606 }
3607 
3608 static const struct address_space_operations ext4_aops = {
3609 	.read_folio		= ext4_read_folio,
3610 	.readahead		= ext4_readahead,
3611 	.writepages		= ext4_writepages,
3612 	.write_begin		= ext4_write_begin,
3613 	.write_end		= ext4_write_end,
3614 	.dirty_folio		= ext4_dirty_folio,
3615 	.bmap			= ext4_bmap,
3616 	.invalidate_folio	= ext4_invalidate_folio,
3617 	.release_folio		= ext4_release_folio,
3618 	.migrate_folio		= buffer_migrate_folio,
3619 	.is_partially_uptodate  = block_is_partially_uptodate,
3620 	.error_remove_folio	= generic_error_remove_folio,
3621 	.swap_activate		= ext4_iomap_swap_activate,
3622 };
3623 
3624 static const struct address_space_operations ext4_journalled_aops = {
3625 	.read_folio		= ext4_read_folio,
3626 	.readahead		= ext4_readahead,
3627 	.writepages		= ext4_writepages,
3628 	.write_begin		= ext4_write_begin,
3629 	.write_end		= ext4_journalled_write_end,
3630 	.dirty_folio		= ext4_journalled_dirty_folio,
3631 	.bmap			= ext4_bmap,
3632 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3633 	.release_folio		= ext4_release_folio,
3634 	.migrate_folio		= buffer_migrate_folio_norefs,
3635 	.is_partially_uptodate  = block_is_partially_uptodate,
3636 	.error_remove_folio	= generic_error_remove_folio,
3637 	.swap_activate		= ext4_iomap_swap_activate,
3638 };
3639 
3640 static const struct address_space_operations ext4_da_aops = {
3641 	.read_folio		= ext4_read_folio,
3642 	.readahead		= ext4_readahead,
3643 	.writepages		= ext4_writepages,
3644 	.write_begin		= ext4_da_write_begin,
3645 	.write_end		= ext4_da_write_end,
3646 	.dirty_folio		= ext4_dirty_folio,
3647 	.bmap			= ext4_bmap,
3648 	.invalidate_folio	= ext4_invalidate_folio,
3649 	.release_folio		= ext4_release_folio,
3650 	.migrate_folio		= buffer_migrate_folio,
3651 	.is_partially_uptodate  = block_is_partially_uptodate,
3652 	.error_remove_folio	= generic_error_remove_folio,
3653 	.swap_activate		= ext4_iomap_swap_activate,
3654 };
3655 
3656 static const struct address_space_operations ext4_dax_aops = {
3657 	.writepages		= ext4_dax_writepages,
3658 	.dirty_folio		= noop_dirty_folio,
3659 	.bmap			= ext4_bmap,
3660 	.swap_activate		= ext4_iomap_swap_activate,
3661 };
3662 
3663 void ext4_set_aops(struct inode *inode)
3664 {
3665 	switch (ext4_inode_journal_mode(inode)) {
3666 	case EXT4_INODE_ORDERED_DATA_MODE:
3667 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3668 		break;
3669 	case EXT4_INODE_JOURNAL_DATA_MODE:
3670 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3671 		return;
3672 	default:
3673 		BUG();
3674 	}
3675 	if (IS_DAX(inode))
3676 		inode->i_mapping->a_ops = &ext4_dax_aops;
3677 	else if (test_opt(inode->i_sb, DELALLOC))
3678 		inode->i_mapping->a_ops = &ext4_da_aops;
3679 	else
3680 		inode->i_mapping->a_ops = &ext4_aops;
3681 }
3682 
3683 /*
3684  * Here we can't skip an unwritten buffer even though it usually reads zero
3685  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3686  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3687  * racing writeback can come later and flush the stale pagecache to disk.
3688  */
3689 static int __ext4_block_zero_page_range(handle_t *handle,
3690 		struct address_space *mapping, loff_t from, loff_t length)
3691 {
3692 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3693 	unsigned offset = from & (PAGE_SIZE-1);
3694 	unsigned blocksize, pos;
3695 	ext4_lblk_t iblock;
3696 	struct inode *inode = mapping->host;
3697 	struct buffer_head *bh;
3698 	struct folio *folio;
3699 	int err = 0;
3700 
3701 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3702 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3703 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3704 	if (IS_ERR(folio))
3705 		return PTR_ERR(folio);
3706 
3707 	blocksize = inode->i_sb->s_blocksize;
3708 
3709 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3710 
3711 	bh = folio_buffers(folio);
3712 	if (!bh)
3713 		bh = create_empty_buffers(folio, blocksize, 0);
3714 
3715 	/* Find the buffer that contains "offset" */
3716 	pos = blocksize;
3717 	while (offset >= pos) {
3718 		bh = bh->b_this_page;
3719 		iblock++;
3720 		pos += blocksize;
3721 	}
3722 	if (buffer_freed(bh)) {
3723 		BUFFER_TRACE(bh, "freed: skip");
3724 		goto unlock;
3725 	}
3726 	if (!buffer_mapped(bh)) {
3727 		BUFFER_TRACE(bh, "unmapped");
3728 		ext4_get_block(inode, iblock, bh, 0);
3729 		/* unmapped? It's a hole - nothing to do */
3730 		if (!buffer_mapped(bh)) {
3731 			BUFFER_TRACE(bh, "still unmapped");
3732 			goto unlock;
3733 		}
3734 	}
3735 
3736 	/* Ok, it's mapped. Make sure it's up-to-date */
3737 	if (folio_test_uptodate(folio))
3738 		set_buffer_uptodate(bh);
3739 
3740 	if (!buffer_uptodate(bh)) {
3741 		err = ext4_read_bh_lock(bh, 0, true);
3742 		if (err)
3743 			goto unlock;
3744 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3745 			/* We expect the key to be set. */
3746 			BUG_ON(!fscrypt_has_encryption_key(inode));
3747 			err = fscrypt_decrypt_pagecache_blocks(folio,
3748 							       blocksize,
3749 							       bh_offset(bh));
3750 			if (err) {
3751 				clear_buffer_uptodate(bh);
3752 				goto unlock;
3753 			}
3754 		}
3755 	}
3756 	if (ext4_should_journal_data(inode)) {
3757 		BUFFER_TRACE(bh, "get write access");
3758 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3759 						    EXT4_JTR_NONE);
3760 		if (err)
3761 			goto unlock;
3762 	}
3763 	folio_zero_range(folio, offset, length);
3764 	BUFFER_TRACE(bh, "zeroed end of block");
3765 
3766 	if (ext4_should_journal_data(inode)) {
3767 		err = ext4_dirty_journalled_data(handle, bh);
3768 	} else {
3769 		err = 0;
3770 		mark_buffer_dirty(bh);
3771 		if (ext4_should_order_data(inode))
3772 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3773 					length);
3774 	}
3775 
3776 unlock:
3777 	folio_unlock(folio);
3778 	folio_put(folio);
3779 	return err;
3780 }
3781 
3782 /*
3783  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3784  * starting from file offset 'from'.  The range to be zero'd must
3785  * be contained with in one block.  If the specified range exceeds
3786  * the end of the block it will be shortened to end of the block
3787  * that corresponds to 'from'
3788  */
3789 static int ext4_block_zero_page_range(handle_t *handle,
3790 		struct address_space *mapping, loff_t from, loff_t length)
3791 {
3792 	struct inode *inode = mapping->host;
3793 	unsigned offset = from & (PAGE_SIZE-1);
3794 	unsigned blocksize = inode->i_sb->s_blocksize;
3795 	unsigned max = blocksize - (offset & (blocksize - 1));
3796 
3797 	/*
3798 	 * correct length if it does not fall between
3799 	 * 'from' and the end of the block
3800 	 */
3801 	if (length > max || length < 0)
3802 		length = max;
3803 
3804 	if (IS_DAX(inode)) {
3805 		return dax_zero_range(inode, from, length, NULL,
3806 				      &ext4_iomap_ops);
3807 	}
3808 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3809 }
3810 
3811 /*
3812  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3813  * up to the end of the block which corresponds to `from'.
3814  * This required during truncate. We need to physically zero the tail end
3815  * of that block so it doesn't yield old data if the file is later grown.
3816  */
3817 static int ext4_block_truncate_page(handle_t *handle,
3818 		struct address_space *mapping, loff_t from)
3819 {
3820 	unsigned offset = from & (PAGE_SIZE-1);
3821 	unsigned length;
3822 	unsigned blocksize;
3823 	struct inode *inode = mapping->host;
3824 
3825 	/* If we are processing an encrypted inode during orphan list handling */
3826 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3827 		return 0;
3828 
3829 	blocksize = inode->i_sb->s_blocksize;
3830 	length = blocksize - (offset & (blocksize - 1));
3831 
3832 	return ext4_block_zero_page_range(handle, mapping, from, length);
3833 }
3834 
3835 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3836 			     loff_t lstart, loff_t length)
3837 {
3838 	struct super_block *sb = inode->i_sb;
3839 	struct address_space *mapping = inode->i_mapping;
3840 	unsigned partial_start, partial_end;
3841 	ext4_fsblk_t start, end;
3842 	loff_t byte_end = (lstart + length - 1);
3843 	int err = 0;
3844 
3845 	partial_start = lstart & (sb->s_blocksize - 1);
3846 	partial_end = byte_end & (sb->s_blocksize - 1);
3847 
3848 	start = lstart >> sb->s_blocksize_bits;
3849 	end = byte_end >> sb->s_blocksize_bits;
3850 
3851 	/* Handle partial zero within the single block */
3852 	if (start == end &&
3853 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3854 		err = ext4_block_zero_page_range(handle, mapping,
3855 						 lstart, length);
3856 		return err;
3857 	}
3858 	/* Handle partial zero out on the start of the range */
3859 	if (partial_start) {
3860 		err = ext4_block_zero_page_range(handle, mapping,
3861 						 lstart, sb->s_blocksize);
3862 		if (err)
3863 			return err;
3864 	}
3865 	/* Handle partial zero out on the end of the range */
3866 	if (partial_end != sb->s_blocksize - 1)
3867 		err = ext4_block_zero_page_range(handle, mapping,
3868 						 byte_end - partial_end,
3869 						 partial_end + 1);
3870 	return err;
3871 }
3872 
3873 int ext4_can_truncate(struct inode *inode)
3874 {
3875 	if (S_ISREG(inode->i_mode))
3876 		return 1;
3877 	if (S_ISDIR(inode->i_mode))
3878 		return 1;
3879 	if (S_ISLNK(inode->i_mode))
3880 		return !ext4_inode_is_fast_symlink(inode);
3881 	return 0;
3882 }
3883 
3884 /*
3885  * We have to make sure i_disksize gets properly updated before we truncate
3886  * page cache due to hole punching or zero range. Otherwise i_disksize update
3887  * can get lost as it may have been postponed to submission of writeback but
3888  * that will never happen after we truncate page cache.
3889  */
3890 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3891 				      loff_t len)
3892 {
3893 	handle_t *handle;
3894 	int ret;
3895 
3896 	loff_t size = i_size_read(inode);
3897 
3898 	WARN_ON(!inode_is_locked(inode));
3899 	if (offset > size || offset + len < size)
3900 		return 0;
3901 
3902 	if (EXT4_I(inode)->i_disksize >= size)
3903 		return 0;
3904 
3905 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3906 	if (IS_ERR(handle))
3907 		return PTR_ERR(handle);
3908 	ext4_update_i_disksize(inode, size);
3909 	ret = ext4_mark_inode_dirty(handle, inode);
3910 	ext4_journal_stop(handle);
3911 
3912 	return ret;
3913 }
3914 
3915 static inline void ext4_truncate_folio(struct inode *inode,
3916 				       loff_t start, loff_t end)
3917 {
3918 	unsigned long blocksize = i_blocksize(inode);
3919 	struct folio *folio;
3920 
3921 	/* Nothing to be done if no complete block needs to be truncated. */
3922 	if (round_up(start, blocksize) >= round_down(end, blocksize))
3923 		return;
3924 
3925 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
3926 	if (IS_ERR(folio))
3927 		return;
3928 
3929 	if (folio_mkclean(folio))
3930 		folio_mark_dirty(folio);
3931 	folio_unlock(folio);
3932 	folio_put(folio);
3933 }
3934 
3935 int ext4_truncate_page_cache_block_range(struct inode *inode,
3936 					 loff_t start, loff_t end)
3937 {
3938 	unsigned long blocksize = i_blocksize(inode);
3939 	int ret;
3940 
3941 	/*
3942 	 * For journalled data we need to write (and checkpoint) pages
3943 	 * before discarding page cache to avoid inconsitent data on disk
3944 	 * in case of crash before freeing or unwritten converting trans
3945 	 * is committed.
3946 	 */
3947 	if (ext4_should_journal_data(inode)) {
3948 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
3949 						   end - 1);
3950 		if (ret)
3951 			return ret;
3952 		goto truncate_pagecache;
3953 	}
3954 
3955 	/*
3956 	 * If the block size is less than the page size, the file's mapped
3957 	 * blocks within one page could be freed or converted to unwritten.
3958 	 * So it's necessary to remove writable userspace mappings, and then
3959 	 * ext4_page_mkwrite() can be called during subsequent write access
3960 	 * to these partial folios.
3961 	 */
3962 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
3963 	    blocksize < PAGE_SIZE && start < inode->i_size) {
3964 		loff_t page_boundary = round_up(start, PAGE_SIZE);
3965 
3966 		ext4_truncate_folio(inode, start, min(page_boundary, end));
3967 		if (end > page_boundary)
3968 			ext4_truncate_folio(inode,
3969 					    round_down(end, PAGE_SIZE), end);
3970 	}
3971 
3972 truncate_pagecache:
3973 	truncate_pagecache_range(inode, start, end - 1);
3974 	return 0;
3975 }
3976 
3977 static void ext4_wait_dax_page(struct inode *inode)
3978 {
3979 	filemap_invalidate_unlock(inode->i_mapping);
3980 	schedule();
3981 	filemap_invalidate_lock(inode->i_mapping);
3982 }
3983 
3984 int ext4_break_layouts(struct inode *inode)
3985 {
3986 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3987 		return -EINVAL;
3988 
3989 	return dax_break_layout_inode(inode, ext4_wait_dax_page);
3990 }
3991 
3992 /*
3993  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3994  * associated with the given offset and length
3995  *
3996  * @inode:  File inode
3997  * @offset: The offset where the hole will begin
3998  * @len:    The length of the hole
3999  *
4000  * Returns: 0 on success or negative on failure
4001  */
4002 
4003 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4004 {
4005 	struct inode *inode = file_inode(file);
4006 	struct super_block *sb = inode->i_sb;
4007 	ext4_lblk_t start_lblk, end_lblk;
4008 	loff_t max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4009 	loff_t end = offset + length;
4010 	handle_t *handle;
4011 	unsigned int credits;
4012 	int ret;
4013 
4014 	trace_ext4_punch_hole(inode, offset, length, 0);
4015 	WARN_ON_ONCE(!inode_is_locked(inode));
4016 
4017 	/* No need to punch hole beyond i_size */
4018 	if (offset >= inode->i_size)
4019 		return 0;
4020 
4021 	/*
4022 	 * If the hole extends beyond i_size, set the hole to end after
4023 	 * the page that contains i_size, and also make sure that the hole
4024 	 * within one block before last range.
4025 	 */
4026 	if (end > inode->i_size)
4027 		end = round_up(inode->i_size, PAGE_SIZE);
4028 	if (end > max_end)
4029 		end = max_end;
4030 	length = end - offset;
4031 
4032 	/*
4033 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4034 	 * block.
4035 	 */
4036 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4037 		ret = ext4_inode_attach_jinode(inode);
4038 		if (ret < 0)
4039 			return ret;
4040 	}
4041 
4042 
4043 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4044 	if (ret)
4045 		return ret;
4046 
4047 	/* Now release the pages and zero block aligned part of pages*/
4048 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4049 	if (ret)
4050 		return ret;
4051 
4052 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4053 		credits = ext4_writepage_trans_blocks(inode);
4054 	else
4055 		credits = ext4_blocks_for_truncate(inode);
4056 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4057 	if (IS_ERR(handle)) {
4058 		ret = PTR_ERR(handle);
4059 		ext4_std_error(sb, ret);
4060 		return ret;
4061 	}
4062 
4063 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4064 	if (ret)
4065 		goto out_handle;
4066 
4067 	/* If there are blocks to remove, do it */
4068 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4069 	end_lblk = end >> inode->i_blkbits;
4070 
4071 	if (end_lblk > start_lblk) {
4072 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4073 
4074 		down_write(&EXT4_I(inode)->i_data_sem);
4075 		ext4_discard_preallocations(inode);
4076 
4077 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4078 
4079 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4080 			ret = ext4_ext_remove_space(inode, start_lblk,
4081 						    end_lblk - 1);
4082 		else
4083 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4084 						    end_lblk);
4085 		if (ret) {
4086 			up_write(&EXT4_I(inode)->i_data_sem);
4087 			goto out_handle;
4088 		}
4089 
4090 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4091 				      EXTENT_STATUS_HOLE, 0);
4092 		up_write(&EXT4_I(inode)->i_data_sem);
4093 	}
4094 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4095 
4096 	ret = ext4_mark_inode_dirty(handle, inode);
4097 	if (unlikely(ret))
4098 		goto out_handle;
4099 
4100 	ext4_update_inode_fsync_trans(handle, inode, 1);
4101 	if (IS_SYNC(inode))
4102 		ext4_handle_sync(handle);
4103 out_handle:
4104 	ext4_journal_stop(handle);
4105 	return ret;
4106 }
4107 
4108 int ext4_inode_attach_jinode(struct inode *inode)
4109 {
4110 	struct ext4_inode_info *ei = EXT4_I(inode);
4111 	struct jbd2_inode *jinode;
4112 
4113 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4114 		return 0;
4115 
4116 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4117 	spin_lock(&inode->i_lock);
4118 	if (!ei->jinode) {
4119 		if (!jinode) {
4120 			spin_unlock(&inode->i_lock);
4121 			return -ENOMEM;
4122 		}
4123 		ei->jinode = jinode;
4124 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4125 		jinode = NULL;
4126 	}
4127 	spin_unlock(&inode->i_lock);
4128 	if (unlikely(jinode != NULL))
4129 		jbd2_free_inode(jinode);
4130 	return 0;
4131 }
4132 
4133 /*
4134  * ext4_truncate()
4135  *
4136  * We block out ext4_get_block() block instantiations across the entire
4137  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4138  * simultaneously on behalf of the same inode.
4139  *
4140  * As we work through the truncate and commit bits of it to the journal there
4141  * is one core, guiding principle: the file's tree must always be consistent on
4142  * disk.  We must be able to restart the truncate after a crash.
4143  *
4144  * The file's tree may be transiently inconsistent in memory (although it
4145  * probably isn't), but whenever we close off and commit a journal transaction,
4146  * the contents of (the filesystem + the journal) must be consistent and
4147  * restartable.  It's pretty simple, really: bottom up, right to left (although
4148  * left-to-right works OK too).
4149  *
4150  * Note that at recovery time, journal replay occurs *before* the restart of
4151  * truncate against the orphan inode list.
4152  *
4153  * The committed inode has the new, desired i_size (which is the same as
4154  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4155  * that this inode's truncate did not complete and it will again call
4156  * ext4_truncate() to have another go.  So there will be instantiated blocks
4157  * to the right of the truncation point in a crashed ext4 filesystem.  But
4158  * that's fine - as long as they are linked from the inode, the post-crash
4159  * ext4_truncate() run will find them and release them.
4160  */
4161 int ext4_truncate(struct inode *inode)
4162 {
4163 	struct ext4_inode_info *ei = EXT4_I(inode);
4164 	unsigned int credits;
4165 	int err = 0, err2;
4166 	handle_t *handle;
4167 	struct address_space *mapping = inode->i_mapping;
4168 
4169 	/*
4170 	 * There is a possibility that we're either freeing the inode
4171 	 * or it's a completely new inode. In those cases we might not
4172 	 * have i_rwsem locked because it's not necessary.
4173 	 */
4174 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4175 		WARN_ON(!inode_is_locked(inode));
4176 	trace_ext4_truncate_enter(inode);
4177 
4178 	if (!ext4_can_truncate(inode))
4179 		goto out_trace;
4180 
4181 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4182 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4183 
4184 	if (ext4_has_inline_data(inode)) {
4185 		int has_inline = 1;
4186 
4187 		err = ext4_inline_data_truncate(inode, &has_inline);
4188 		if (err || has_inline)
4189 			goto out_trace;
4190 	}
4191 
4192 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4193 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4194 		err = ext4_inode_attach_jinode(inode);
4195 		if (err)
4196 			goto out_trace;
4197 	}
4198 
4199 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4200 		credits = ext4_writepage_trans_blocks(inode);
4201 	else
4202 		credits = ext4_blocks_for_truncate(inode);
4203 
4204 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4205 	if (IS_ERR(handle)) {
4206 		err = PTR_ERR(handle);
4207 		goto out_trace;
4208 	}
4209 
4210 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4211 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4212 
4213 	/*
4214 	 * We add the inode to the orphan list, so that if this
4215 	 * truncate spans multiple transactions, and we crash, we will
4216 	 * resume the truncate when the filesystem recovers.  It also
4217 	 * marks the inode dirty, to catch the new size.
4218 	 *
4219 	 * Implication: the file must always be in a sane, consistent
4220 	 * truncatable state while each transaction commits.
4221 	 */
4222 	err = ext4_orphan_add(handle, inode);
4223 	if (err)
4224 		goto out_stop;
4225 
4226 	down_write(&EXT4_I(inode)->i_data_sem);
4227 
4228 	ext4_discard_preallocations(inode);
4229 
4230 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4231 		err = ext4_ext_truncate(handle, inode);
4232 	else
4233 		ext4_ind_truncate(handle, inode);
4234 
4235 	up_write(&ei->i_data_sem);
4236 	if (err)
4237 		goto out_stop;
4238 
4239 	if (IS_SYNC(inode))
4240 		ext4_handle_sync(handle);
4241 
4242 out_stop:
4243 	/*
4244 	 * If this was a simple ftruncate() and the file will remain alive,
4245 	 * then we need to clear up the orphan record which we created above.
4246 	 * However, if this was a real unlink then we were called by
4247 	 * ext4_evict_inode(), and we allow that function to clean up the
4248 	 * orphan info for us.
4249 	 */
4250 	if (inode->i_nlink)
4251 		ext4_orphan_del(handle, inode);
4252 
4253 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4254 	err2 = ext4_mark_inode_dirty(handle, inode);
4255 	if (unlikely(err2 && !err))
4256 		err = err2;
4257 	ext4_journal_stop(handle);
4258 
4259 out_trace:
4260 	trace_ext4_truncate_exit(inode);
4261 	return err;
4262 }
4263 
4264 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4265 {
4266 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4267 		return inode_peek_iversion_raw(inode);
4268 	else
4269 		return inode_peek_iversion(inode);
4270 }
4271 
4272 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4273 				 struct ext4_inode_info *ei)
4274 {
4275 	struct inode *inode = &(ei->vfs_inode);
4276 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4277 	struct super_block *sb = inode->i_sb;
4278 
4279 	if (i_blocks <= ~0U) {
4280 		/*
4281 		 * i_blocks can be represented in a 32 bit variable
4282 		 * as multiple of 512 bytes
4283 		 */
4284 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4285 		raw_inode->i_blocks_high = 0;
4286 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4287 		return 0;
4288 	}
4289 
4290 	/*
4291 	 * This should never happen since sb->s_maxbytes should not have
4292 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4293 	 * feature in ext4_fill_super().
4294 	 */
4295 	if (!ext4_has_feature_huge_file(sb))
4296 		return -EFSCORRUPTED;
4297 
4298 	if (i_blocks <= 0xffffffffffffULL) {
4299 		/*
4300 		 * i_blocks can be represented in a 48 bit variable
4301 		 * as multiple of 512 bytes
4302 		 */
4303 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4304 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4305 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4306 	} else {
4307 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4308 		/* i_block is stored in file system block size */
4309 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4310 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4311 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4312 	}
4313 	return 0;
4314 }
4315 
4316 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4317 {
4318 	struct ext4_inode_info *ei = EXT4_I(inode);
4319 	uid_t i_uid;
4320 	gid_t i_gid;
4321 	projid_t i_projid;
4322 	int block;
4323 	int err;
4324 
4325 	err = ext4_inode_blocks_set(raw_inode, ei);
4326 
4327 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4328 	i_uid = i_uid_read(inode);
4329 	i_gid = i_gid_read(inode);
4330 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4331 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4332 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4333 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4334 		/*
4335 		 * Fix up interoperability with old kernels. Otherwise,
4336 		 * old inodes get re-used with the upper 16 bits of the
4337 		 * uid/gid intact.
4338 		 */
4339 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4340 			raw_inode->i_uid_high = 0;
4341 			raw_inode->i_gid_high = 0;
4342 		} else {
4343 			raw_inode->i_uid_high =
4344 				cpu_to_le16(high_16_bits(i_uid));
4345 			raw_inode->i_gid_high =
4346 				cpu_to_le16(high_16_bits(i_gid));
4347 		}
4348 	} else {
4349 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4350 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4351 		raw_inode->i_uid_high = 0;
4352 		raw_inode->i_gid_high = 0;
4353 	}
4354 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4355 
4356 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4357 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4358 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4359 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4360 
4361 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4362 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4363 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4364 		raw_inode->i_file_acl_high =
4365 			cpu_to_le16(ei->i_file_acl >> 32);
4366 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4367 	ext4_isize_set(raw_inode, ei->i_disksize);
4368 
4369 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4370 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4371 		if (old_valid_dev(inode->i_rdev)) {
4372 			raw_inode->i_block[0] =
4373 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4374 			raw_inode->i_block[1] = 0;
4375 		} else {
4376 			raw_inode->i_block[0] = 0;
4377 			raw_inode->i_block[1] =
4378 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4379 			raw_inode->i_block[2] = 0;
4380 		}
4381 	} else if (!ext4_has_inline_data(inode)) {
4382 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4383 			raw_inode->i_block[block] = ei->i_data[block];
4384 	}
4385 
4386 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4387 		u64 ivers = ext4_inode_peek_iversion(inode);
4388 
4389 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4390 		if (ei->i_extra_isize) {
4391 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4392 				raw_inode->i_version_hi =
4393 					cpu_to_le32(ivers >> 32);
4394 			raw_inode->i_extra_isize =
4395 				cpu_to_le16(ei->i_extra_isize);
4396 		}
4397 	}
4398 
4399 	if (i_projid != EXT4_DEF_PROJID &&
4400 	    !ext4_has_feature_project(inode->i_sb))
4401 		err = err ?: -EFSCORRUPTED;
4402 
4403 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4404 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4405 		raw_inode->i_projid = cpu_to_le32(i_projid);
4406 
4407 	ext4_inode_csum_set(inode, raw_inode, ei);
4408 	return err;
4409 }
4410 
4411 /*
4412  * ext4_get_inode_loc returns with an extra refcount against the inode's
4413  * underlying buffer_head on success. If we pass 'inode' and it does not
4414  * have in-inode xattr, we have all inode data in memory that is needed
4415  * to recreate the on-disk version of this inode.
4416  */
4417 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4418 				struct inode *inode, struct ext4_iloc *iloc,
4419 				ext4_fsblk_t *ret_block)
4420 {
4421 	struct ext4_group_desc	*gdp;
4422 	struct buffer_head	*bh;
4423 	ext4_fsblk_t		block;
4424 	struct blk_plug		plug;
4425 	int			inodes_per_block, inode_offset;
4426 
4427 	iloc->bh = NULL;
4428 	if (ino < EXT4_ROOT_INO ||
4429 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4430 		return -EFSCORRUPTED;
4431 
4432 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4433 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4434 	if (!gdp)
4435 		return -EIO;
4436 
4437 	/*
4438 	 * Figure out the offset within the block group inode table
4439 	 */
4440 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4441 	inode_offset = ((ino - 1) %
4442 			EXT4_INODES_PER_GROUP(sb));
4443 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4444 
4445 	block = ext4_inode_table(sb, gdp);
4446 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4447 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4448 		ext4_error(sb, "Invalid inode table block %llu in "
4449 			   "block_group %u", block, iloc->block_group);
4450 		return -EFSCORRUPTED;
4451 	}
4452 	block += (inode_offset / inodes_per_block);
4453 
4454 	bh = sb_getblk(sb, block);
4455 	if (unlikely(!bh))
4456 		return -ENOMEM;
4457 	if (ext4_buffer_uptodate(bh))
4458 		goto has_buffer;
4459 
4460 	lock_buffer(bh);
4461 	if (ext4_buffer_uptodate(bh)) {
4462 		/* Someone brought it uptodate while we waited */
4463 		unlock_buffer(bh);
4464 		goto has_buffer;
4465 	}
4466 
4467 	/*
4468 	 * If we have all information of the inode in memory and this
4469 	 * is the only valid inode in the block, we need not read the
4470 	 * block.
4471 	 */
4472 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4473 		struct buffer_head *bitmap_bh;
4474 		int i, start;
4475 
4476 		start = inode_offset & ~(inodes_per_block - 1);
4477 
4478 		/* Is the inode bitmap in cache? */
4479 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4480 		if (unlikely(!bitmap_bh))
4481 			goto make_io;
4482 
4483 		/*
4484 		 * If the inode bitmap isn't in cache then the
4485 		 * optimisation may end up performing two reads instead
4486 		 * of one, so skip it.
4487 		 */
4488 		if (!buffer_uptodate(bitmap_bh)) {
4489 			brelse(bitmap_bh);
4490 			goto make_io;
4491 		}
4492 		for (i = start; i < start + inodes_per_block; i++) {
4493 			if (i == inode_offset)
4494 				continue;
4495 			if (ext4_test_bit(i, bitmap_bh->b_data))
4496 				break;
4497 		}
4498 		brelse(bitmap_bh);
4499 		if (i == start + inodes_per_block) {
4500 			struct ext4_inode *raw_inode =
4501 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4502 
4503 			/* all other inodes are free, so skip I/O */
4504 			memset(bh->b_data, 0, bh->b_size);
4505 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4506 				ext4_fill_raw_inode(inode, raw_inode);
4507 			set_buffer_uptodate(bh);
4508 			unlock_buffer(bh);
4509 			goto has_buffer;
4510 		}
4511 	}
4512 
4513 make_io:
4514 	/*
4515 	 * If we need to do any I/O, try to pre-readahead extra
4516 	 * blocks from the inode table.
4517 	 */
4518 	blk_start_plug(&plug);
4519 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4520 		ext4_fsblk_t b, end, table;
4521 		unsigned num;
4522 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4523 
4524 		table = ext4_inode_table(sb, gdp);
4525 		/* s_inode_readahead_blks is always a power of 2 */
4526 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4527 		if (table > b)
4528 			b = table;
4529 		end = b + ra_blks;
4530 		num = EXT4_INODES_PER_GROUP(sb);
4531 		if (ext4_has_group_desc_csum(sb))
4532 			num -= ext4_itable_unused_count(sb, gdp);
4533 		table += num / inodes_per_block;
4534 		if (end > table)
4535 			end = table;
4536 		while (b <= end)
4537 			ext4_sb_breadahead_unmovable(sb, b++);
4538 	}
4539 
4540 	/*
4541 	 * There are other valid inodes in the buffer, this inode
4542 	 * has in-inode xattrs, or we don't have this inode in memory.
4543 	 * Read the block from disk.
4544 	 */
4545 	trace_ext4_load_inode(sb, ino);
4546 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4547 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4548 	blk_finish_plug(&plug);
4549 	wait_on_buffer(bh);
4550 	if (!buffer_uptodate(bh)) {
4551 		if (ret_block)
4552 			*ret_block = block;
4553 		brelse(bh);
4554 		return -EIO;
4555 	}
4556 has_buffer:
4557 	iloc->bh = bh;
4558 	return 0;
4559 }
4560 
4561 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4562 					struct ext4_iloc *iloc)
4563 {
4564 	ext4_fsblk_t err_blk = 0;
4565 	int ret;
4566 
4567 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4568 					&err_blk);
4569 
4570 	if (ret == -EIO)
4571 		ext4_error_inode_block(inode, err_blk, EIO,
4572 					"unable to read itable block");
4573 
4574 	return ret;
4575 }
4576 
4577 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4578 {
4579 	ext4_fsblk_t err_blk = 0;
4580 	int ret;
4581 
4582 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4583 					&err_blk);
4584 
4585 	if (ret == -EIO)
4586 		ext4_error_inode_block(inode, err_blk, EIO,
4587 					"unable to read itable block");
4588 
4589 	return ret;
4590 }
4591 
4592 
4593 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4594 			  struct ext4_iloc *iloc)
4595 {
4596 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4597 }
4598 
4599 static bool ext4_should_enable_dax(struct inode *inode)
4600 {
4601 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4602 
4603 	if (test_opt2(inode->i_sb, DAX_NEVER))
4604 		return false;
4605 	if (!S_ISREG(inode->i_mode))
4606 		return false;
4607 	if (ext4_should_journal_data(inode))
4608 		return false;
4609 	if (ext4_has_inline_data(inode))
4610 		return false;
4611 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4612 		return false;
4613 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4614 		return false;
4615 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4616 		return false;
4617 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4618 		return true;
4619 
4620 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4621 }
4622 
4623 void ext4_set_inode_flags(struct inode *inode, bool init)
4624 {
4625 	unsigned int flags = EXT4_I(inode)->i_flags;
4626 	unsigned int new_fl = 0;
4627 
4628 	WARN_ON_ONCE(IS_DAX(inode) && init);
4629 
4630 	if (flags & EXT4_SYNC_FL)
4631 		new_fl |= S_SYNC;
4632 	if (flags & EXT4_APPEND_FL)
4633 		new_fl |= S_APPEND;
4634 	if (flags & EXT4_IMMUTABLE_FL)
4635 		new_fl |= S_IMMUTABLE;
4636 	if (flags & EXT4_NOATIME_FL)
4637 		new_fl |= S_NOATIME;
4638 	if (flags & EXT4_DIRSYNC_FL)
4639 		new_fl |= S_DIRSYNC;
4640 
4641 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4642 	 * here if already set. */
4643 	new_fl |= (inode->i_flags & S_DAX);
4644 	if (init && ext4_should_enable_dax(inode))
4645 		new_fl |= S_DAX;
4646 
4647 	if (flags & EXT4_ENCRYPT_FL)
4648 		new_fl |= S_ENCRYPTED;
4649 	if (flags & EXT4_CASEFOLD_FL)
4650 		new_fl |= S_CASEFOLD;
4651 	if (flags & EXT4_VERITY_FL)
4652 		new_fl |= S_VERITY;
4653 	inode_set_flags(inode, new_fl,
4654 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4655 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4656 }
4657 
4658 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4659 				  struct ext4_inode_info *ei)
4660 {
4661 	blkcnt_t i_blocks ;
4662 	struct inode *inode = &(ei->vfs_inode);
4663 	struct super_block *sb = inode->i_sb;
4664 
4665 	if (ext4_has_feature_huge_file(sb)) {
4666 		/* we are using combined 48 bit field */
4667 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4668 					le32_to_cpu(raw_inode->i_blocks_lo);
4669 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4670 			/* i_blocks represent file system block size */
4671 			return i_blocks  << (inode->i_blkbits - 9);
4672 		} else {
4673 			return i_blocks;
4674 		}
4675 	} else {
4676 		return le32_to_cpu(raw_inode->i_blocks_lo);
4677 	}
4678 }
4679 
4680 static inline int ext4_iget_extra_inode(struct inode *inode,
4681 					 struct ext4_inode *raw_inode,
4682 					 struct ext4_inode_info *ei)
4683 {
4684 	__le32 *magic = (void *)raw_inode +
4685 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4686 
4687 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4688 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4689 		int err;
4690 
4691 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
4692 					ITAIL(inode, raw_inode));
4693 		if (err)
4694 			return err;
4695 
4696 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4697 		err = ext4_find_inline_data_nolock(inode);
4698 		if (!err && ext4_has_inline_data(inode))
4699 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4700 		return err;
4701 	} else
4702 		EXT4_I(inode)->i_inline_off = 0;
4703 	return 0;
4704 }
4705 
4706 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4707 {
4708 	if (!ext4_has_feature_project(inode->i_sb))
4709 		return -EOPNOTSUPP;
4710 	*projid = EXT4_I(inode)->i_projid;
4711 	return 0;
4712 }
4713 
4714 /*
4715  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4716  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4717  * set.
4718  */
4719 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4720 {
4721 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4722 		inode_set_iversion_raw(inode, val);
4723 	else
4724 		inode_set_iversion_queried(inode, val);
4725 }
4726 
4727 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4728 
4729 {
4730 	if (flags & EXT4_IGET_EA_INODE) {
4731 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4732 			return "missing EA_INODE flag";
4733 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4734 		    EXT4_I(inode)->i_file_acl)
4735 			return "ea_inode with extended attributes";
4736 	} else {
4737 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4738 			return "unexpected EA_INODE flag";
4739 	}
4740 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4741 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4742 	return NULL;
4743 }
4744 
4745 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4746 			  ext4_iget_flags flags, const char *function,
4747 			  unsigned int line)
4748 {
4749 	struct ext4_iloc iloc;
4750 	struct ext4_inode *raw_inode;
4751 	struct ext4_inode_info *ei;
4752 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4753 	struct inode *inode;
4754 	const char *err_str;
4755 	journal_t *journal = EXT4_SB(sb)->s_journal;
4756 	long ret;
4757 	loff_t size;
4758 	int block;
4759 	uid_t i_uid;
4760 	gid_t i_gid;
4761 	projid_t i_projid;
4762 
4763 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4764 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4765 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4766 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4767 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4768 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4769 	    (ino < EXT4_ROOT_INO) ||
4770 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4771 		if (flags & EXT4_IGET_HANDLE)
4772 			return ERR_PTR(-ESTALE);
4773 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4774 			     "inode #%lu: comm %s: iget: illegal inode #",
4775 			     ino, current->comm);
4776 		return ERR_PTR(-EFSCORRUPTED);
4777 	}
4778 
4779 	inode = iget_locked(sb, ino);
4780 	if (!inode)
4781 		return ERR_PTR(-ENOMEM);
4782 	if (!(inode->i_state & I_NEW)) {
4783 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4784 			ext4_error_inode(inode, function, line, 0, err_str);
4785 			iput(inode);
4786 			return ERR_PTR(-EFSCORRUPTED);
4787 		}
4788 		return inode;
4789 	}
4790 
4791 	ei = EXT4_I(inode);
4792 	iloc.bh = NULL;
4793 
4794 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4795 	if (ret < 0)
4796 		goto bad_inode;
4797 	raw_inode = ext4_raw_inode(&iloc);
4798 
4799 	if ((flags & EXT4_IGET_HANDLE) &&
4800 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4801 		ret = -ESTALE;
4802 		goto bad_inode;
4803 	}
4804 
4805 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4806 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4807 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4808 			EXT4_INODE_SIZE(inode->i_sb) ||
4809 		    (ei->i_extra_isize & 3)) {
4810 			ext4_error_inode(inode, function, line, 0,
4811 					 "iget: bad extra_isize %u "
4812 					 "(inode size %u)",
4813 					 ei->i_extra_isize,
4814 					 EXT4_INODE_SIZE(inode->i_sb));
4815 			ret = -EFSCORRUPTED;
4816 			goto bad_inode;
4817 		}
4818 	} else
4819 		ei->i_extra_isize = 0;
4820 
4821 	/* Precompute checksum seed for inode metadata */
4822 	if (ext4_has_feature_metadata_csum(sb)) {
4823 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4824 		__u32 csum;
4825 		__le32 inum = cpu_to_le32(inode->i_ino);
4826 		__le32 gen = raw_inode->i_generation;
4827 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4828 				   sizeof(inum));
4829 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4830 					      sizeof(gen));
4831 	}
4832 
4833 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4834 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4835 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4836 		ext4_error_inode_err(inode, function, line, 0,
4837 				EFSBADCRC, "iget: checksum invalid");
4838 		ret = -EFSBADCRC;
4839 		goto bad_inode;
4840 	}
4841 
4842 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4843 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4844 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4845 	if (ext4_has_feature_project(sb) &&
4846 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4847 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4848 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4849 	else
4850 		i_projid = EXT4_DEF_PROJID;
4851 
4852 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4853 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4854 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4855 	}
4856 	i_uid_write(inode, i_uid);
4857 	i_gid_write(inode, i_gid);
4858 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4859 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4860 
4861 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4862 	ei->i_inline_off = 0;
4863 	ei->i_dir_start_lookup = 0;
4864 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4865 	/* We now have enough fields to check if the inode was active or not.
4866 	 * This is needed because nfsd might try to access dead inodes
4867 	 * the test is that same one that e2fsck uses
4868 	 * NeilBrown 1999oct15
4869 	 */
4870 	if (inode->i_nlink == 0) {
4871 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4872 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4873 		    ino != EXT4_BOOT_LOADER_INO) {
4874 			/* this inode is deleted or unallocated */
4875 			if (flags & EXT4_IGET_SPECIAL) {
4876 				ext4_error_inode(inode, function, line, 0,
4877 						 "iget: special inode unallocated");
4878 				ret = -EFSCORRUPTED;
4879 			} else
4880 				ret = -ESTALE;
4881 			goto bad_inode;
4882 		}
4883 		/* The only unlinked inodes we let through here have
4884 		 * valid i_mode and are being read by the orphan
4885 		 * recovery code: that's fine, we're about to complete
4886 		 * the process of deleting those.
4887 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4888 		 * not initialized on a new filesystem. */
4889 	}
4890 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4891 	ext4_set_inode_flags(inode, true);
4892 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4893 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4894 	if (ext4_has_feature_64bit(sb))
4895 		ei->i_file_acl |=
4896 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4897 	inode->i_size = ext4_isize(sb, raw_inode);
4898 	if ((size = i_size_read(inode)) < 0) {
4899 		ext4_error_inode(inode, function, line, 0,
4900 				 "iget: bad i_size value: %lld", size);
4901 		ret = -EFSCORRUPTED;
4902 		goto bad_inode;
4903 	}
4904 	/*
4905 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4906 	 * we'd normally treat htree data as empty space. But with metadata
4907 	 * checksumming that corrupts checksums so forbid that.
4908 	 */
4909 	if (!ext4_has_feature_dir_index(sb) &&
4910 	    ext4_has_feature_metadata_csum(sb) &&
4911 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4912 		ext4_error_inode(inode, function, line, 0,
4913 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4914 		ret = -EFSCORRUPTED;
4915 		goto bad_inode;
4916 	}
4917 	ei->i_disksize = inode->i_size;
4918 #ifdef CONFIG_QUOTA
4919 	ei->i_reserved_quota = 0;
4920 #endif
4921 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4922 	ei->i_block_group = iloc.block_group;
4923 	ei->i_last_alloc_group = ~0;
4924 	/*
4925 	 * NOTE! The in-memory inode i_data array is in little-endian order
4926 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4927 	 */
4928 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4929 		ei->i_data[block] = raw_inode->i_block[block];
4930 	INIT_LIST_HEAD(&ei->i_orphan);
4931 	ext4_fc_init_inode(&ei->vfs_inode);
4932 
4933 	/*
4934 	 * Set transaction id's of transactions that have to be committed
4935 	 * to finish f[data]sync. We set them to currently running transaction
4936 	 * as we cannot be sure that the inode or some of its metadata isn't
4937 	 * part of the transaction - the inode could have been reclaimed and
4938 	 * now it is reread from disk.
4939 	 */
4940 	if (journal) {
4941 		transaction_t *transaction;
4942 		tid_t tid;
4943 
4944 		read_lock(&journal->j_state_lock);
4945 		if (journal->j_running_transaction)
4946 			transaction = journal->j_running_transaction;
4947 		else
4948 			transaction = journal->j_committing_transaction;
4949 		if (transaction)
4950 			tid = transaction->t_tid;
4951 		else
4952 			tid = journal->j_commit_sequence;
4953 		read_unlock(&journal->j_state_lock);
4954 		ei->i_sync_tid = tid;
4955 		ei->i_datasync_tid = tid;
4956 	}
4957 
4958 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4959 		if (ei->i_extra_isize == 0) {
4960 			/* The extra space is currently unused. Use it. */
4961 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4962 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4963 					    EXT4_GOOD_OLD_INODE_SIZE;
4964 		} else {
4965 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4966 			if (ret)
4967 				goto bad_inode;
4968 		}
4969 	}
4970 
4971 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4972 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4973 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4974 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4975 
4976 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4977 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4978 
4979 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4980 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4981 				ivers |=
4982 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4983 		}
4984 		ext4_inode_set_iversion_queried(inode, ivers);
4985 	}
4986 
4987 	ret = 0;
4988 	if (ei->i_file_acl &&
4989 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4990 		ext4_error_inode(inode, function, line, 0,
4991 				 "iget: bad extended attribute block %llu",
4992 				 ei->i_file_acl);
4993 		ret = -EFSCORRUPTED;
4994 		goto bad_inode;
4995 	} else if (!ext4_has_inline_data(inode)) {
4996 		/* validate the block references in the inode */
4997 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4998 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4999 			(S_ISLNK(inode->i_mode) &&
5000 			!ext4_inode_is_fast_symlink(inode)))) {
5001 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5002 				ret = ext4_ext_check_inode(inode);
5003 			else
5004 				ret = ext4_ind_check_inode(inode);
5005 		}
5006 	}
5007 	if (ret)
5008 		goto bad_inode;
5009 
5010 	if (S_ISREG(inode->i_mode)) {
5011 		inode->i_op = &ext4_file_inode_operations;
5012 		inode->i_fop = &ext4_file_operations;
5013 		ext4_set_aops(inode);
5014 	} else if (S_ISDIR(inode->i_mode)) {
5015 		inode->i_op = &ext4_dir_inode_operations;
5016 		inode->i_fop = &ext4_dir_operations;
5017 	} else if (S_ISLNK(inode->i_mode)) {
5018 		/* VFS does not allow setting these so must be corruption */
5019 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5020 			ext4_error_inode(inode, function, line, 0,
5021 					 "iget: immutable or append flags "
5022 					 "not allowed on symlinks");
5023 			ret = -EFSCORRUPTED;
5024 			goto bad_inode;
5025 		}
5026 		if (IS_ENCRYPTED(inode)) {
5027 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5028 		} else if (ext4_inode_is_fast_symlink(inode)) {
5029 			inode->i_op = &ext4_fast_symlink_inode_operations;
5030 			if (inode->i_size == 0 ||
5031 			    inode->i_size >= sizeof(ei->i_data) ||
5032 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5033 								inode->i_size) {
5034 				ext4_error_inode(inode, function, line, 0,
5035 					"invalid fast symlink length %llu",
5036 					 (unsigned long long)inode->i_size);
5037 				ret = -EFSCORRUPTED;
5038 				goto bad_inode;
5039 			}
5040 			inode_set_cached_link(inode, (char *)ei->i_data,
5041 					      inode->i_size);
5042 		} else {
5043 			inode->i_op = &ext4_symlink_inode_operations;
5044 		}
5045 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5046 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5047 		inode->i_op = &ext4_special_inode_operations;
5048 		if (raw_inode->i_block[0])
5049 			init_special_inode(inode, inode->i_mode,
5050 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5051 		else
5052 			init_special_inode(inode, inode->i_mode,
5053 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5054 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5055 		make_bad_inode(inode);
5056 	} else {
5057 		ret = -EFSCORRUPTED;
5058 		ext4_error_inode(inode, function, line, 0,
5059 				 "iget: bogus i_mode (%o)", inode->i_mode);
5060 		goto bad_inode;
5061 	}
5062 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5063 		ext4_error_inode(inode, function, line, 0,
5064 				 "casefold flag without casefold feature");
5065 		ret = -EFSCORRUPTED;
5066 		goto bad_inode;
5067 	}
5068 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5069 		ext4_error_inode(inode, function, line, 0, err_str);
5070 		ret = -EFSCORRUPTED;
5071 		goto bad_inode;
5072 	}
5073 
5074 	brelse(iloc.bh);
5075 	unlock_new_inode(inode);
5076 	return inode;
5077 
5078 bad_inode:
5079 	brelse(iloc.bh);
5080 	iget_failed(inode);
5081 	return ERR_PTR(ret);
5082 }
5083 
5084 static void __ext4_update_other_inode_time(struct super_block *sb,
5085 					   unsigned long orig_ino,
5086 					   unsigned long ino,
5087 					   struct ext4_inode *raw_inode)
5088 {
5089 	struct inode *inode;
5090 
5091 	inode = find_inode_by_ino_rcu(sb, ino);
5092 	if (!inode)
5093 		return;
5094 
5095 	if (!inode_is_dirtytime_only(inode))
5096 		return;
5097 
5098 	spin_lock(&inode->i_lock);
5099 	if (inode_is_dirtytime_only(inode)) {
5100 		struct ext4_inode_info	*ei = EXT4_I(inode);
5101 
5102 		inode->i_state &= ~I_DIRTY_TIME;
5103 		spin_unlock(&inode->i_lock);
5104 
5105 		spin_lock(&ei->i_raw_lock);
5106 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5107 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5108 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5109 		ext4_inode_csum_set(inode, raw_inode, ei);
5110 		spin_unlock(&ei->i_raw_lock);
5111 		trace_ext4_other_inode_update_time(inode, orig_ino);
5112 		return;
5113 	}
5114 	spin_unlock(&inode->i_lock);
5115 }
5116 
5117 /*
5118  * Opportunistically update the other time fields for other inodes in
5119  * the same inode table block.
5120  */
5121 static void ext4_update_other_inodes_time(struct super_block *sb,
5122 					  unsigned long orig_ino, char *buf)
5123 {
5124 	unsigned long ino;
5125 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5126 	int inode_size = EXT4_INODE_SIZE(sb);
5127 
5128 	/*
5129 	 * Calculate the first inode in the inode table block.  Inode
5130 	 * numbers are one-based.  That is, the first inode in a block
5131 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5132 	 */
5133 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5134 	rcu_read_lock();
5135 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5136 		if (ino == orig_ino)
5137 			continue;
5138 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5139 					       (struct ext4_inode *)buf);
5140 	}
5141 	rcu_read_unlock();
5142 }
5143 
5144 /*
5145  * Post the struct inode info into an on-disk inode location in the
5146  * buffer-cache.  This gobbles the caller's reference to the
5147  * buffer_head in the inode location struct.
5148  *
5149  * The caller must have write access to iloc->bh.
5150  */
5151 static int ext4_do_update_inode(handle_t *handle,
5152 				struct inode *inode,
5153 				struct ext4_iloc *iloc)
5154 {
5155 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5156 	struct ext4_inode_info *ei = EXT4_I(inode);
5157 	struct buffer_head *bh = iloc->bh;
5158 	struct super_block *sb = inode->i_sb;
5159 	int err;
5160 	int need_datasync = 0, set_large_file = 0;
5161 
5162 	spin_lock(&ei->i_raw_lock);
5163 
5164 	/*
5165 	 * For fields not tracked in the in-memory inode, initialise them
5166 	 * to zero for new inodes.
5167 	 */
5168 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5169 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5170 
5171 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5172 		need_datasync = 1;
5173 	if (ei->i_disksize > 0x7fffffffULL) {
5174 		if (!ext4_has_feature_large_file(sb) ||
5175 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5176 			set_large_file = 1;
5177 	}
5178 
5179 	err = ext4_fill_raw_inode(inode, raw_inode);
5180 	spin_unlock(&ei->i_raw_lock);
5181 	if (err) {
5182 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5183 		goto out_brelse;
5184 	}
5185 
5186 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5187 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5188 					      bh->b_data);
5189 
5190 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5191 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5192 	if (err)
5193 		goto out_error;
5194 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5195 	if (set_large_file) {
5196 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5197 		err = ext4_journal_get_write_access(handle, sb,
5198 						    EXT4_SB(sb)->s_sbh,
5199 						    EXT4_JTR_NONE);
5200 		if (err)
5201 			goto out_error;
5202 		lock_buffer(EXT4_SB(sb)->s_sbh);
5203 		ext4_set_feature_large_file(sb);
5204 		ext4_superblock_csum_set(sb);
5205 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5206 		ext4_handle_sync(handle);
5207 		err = ext4_handle_dirty_metadata(handle, NULL,
5208 						 EXT4_SB(sb)->s_sbh);
5209 	}
5210 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5211 out_error:
5212 	ext4_std_error(inode->i_sb, err);
5213 out_brelse:
5214 	brelse(bh);
5215 	return err;
5216 }
5217 
5218 /*
5219  * ext4_write_inode()
5220  *
5221  * We are called from a few places:
5222  *
5223  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5224  *   Here, there will be no transaction running. We wait for any running
5225  *   transaction to commit.
5226  *
5227  * - Within flush work (sys_sync(), kupdate and such).
5228  *   We wait on commit, if told to.
5229  *
5230  * - Within iput_final() -> write_inode_now()
5231  *   We wait on commit, if told to.
5232  *
5233  * In all cases it is actually safe for us to return without doing anything,
5234  * because the inode has been copied into a raw inode buffer in
5235  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5236  * writeback.
5237  *
5238  * Note that we are absolutely dependent upon all inode dirtiers doing the
5239  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5240  * which we are interested.
5241  *
5242  * It would be a bug for them to not do this.  The code:
5243  *
5244  *	mark_inode_dirty(inode)
5245  *	stuff();
5246  *	inode->i_size = expr;
5247  *
5248  * is in error because write_inode() could occur while `stuff()' is running,
5249  * and the new i_size will be lost.  Plus the inode will no longer be on the
5250  * superblock's dirty inode list.
5251  */
5252 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5253 {
5254 	int err;
5255 
5256 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5257 		return 0;
5258 
5259 	err = ext4_emergency_state(inode->i_sb);
5260 	if (unlikely(err))
5261 		return err;
5262 
5263 	if (EXT4_SB(inode->i_sb)->s_journal) {
5264 		if (ext4_journal_current_handle()) {
5265 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5266 			dump_stack();
5267 			return -EIO;
5268 		}
5269 
5270 		/*
5271 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5272 		 * ext4_sync_fs() will force the commit after everything is
5273 		 * written.
5274 		 */
5275 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5276 			return 0;
5277 
5278 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5279 						EXT4_I(inode)->i_sync_tid);
5280 	} else {
5281 		struct ext4_iloc iloc;
5282 
5283 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5284 		if (err)
5285 			return err;
5286 		/*
5287 		 * sync(2) will flush the whole buffer cache. No need to do
5288 		 * it here separately for each inode.
5289 		 */
5290 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5291 			sync_dirty_buffer(iloc.bh);
5292 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5293 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5294 					       "IO error syncing inode");
5295 			err = -EIO;
5296 		}
5297 		brelse(iloc.bh);
5298 	}
5299 	return err;
5300 }
5301 
5302 /*
5303  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5304  * buffers that are attached to a folio straddling i_size and are undergoing
5305  * commit. In that case we have to wait for commit to finish and try again.
5306  */
5307 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5308 {
5309 	unsigned offset;
5310 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5311 	tid_t commit_tid;
5312 	int ret;
5313 	bool has_transaction;
5314 
5315 	offset = inode->i_size & (PAGE_SIZE - 1);
5316 	/*
5317 	 * If the folio is fully truncated, we don't need to wait for any commit
5318 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5319 	 * strip all buffers from the folio but keep the folio dirty which can then
5320 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5321 	 * buffers). Also we don't need to wait for any commit if all buffers in
5322 	 * the folio remain valid. This is most beneficial for the common case of
5323 	 * blocksize == PAGESIZE.
5324 	 */
5325 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5326 		return;
5327 	while (1) {
5328 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5329 				      inode->i_size >> PAGE_SHIFT);
5330 		if (IS_ERR(folio))
5331 			return;
5332 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5333 						folio_size(folio) - offset);
5334 		folio_unlock(folio);
5335 		folio_put(folio);
5336 		if (ret != -EBUSY)
5337 			return;
5338 		has_transaction = false;
5339 		read_lock(&journal->j_state_lock);
5340 		if (journal->j_committing_transaction) {
5341 			commit_tid = journal->j_committing_transaction->t_tid;
5342 			has_transaction = true;
5343 		}
5344 		read_unlock(&journal->j_state_lock);
5345 		if (has_transaction)
5346 			jbd2_log_wait_commit(journal, commit_tid);
5347 	}
5348 }
5349 
5350 /*
5351  * ext4_setattr()
5352  *
5353  * Called from notify_change.
5354  *
5355  * We want to trap VFS attempts to truncate the file as soon as
5356  * possible.  In particular, we want to make sure that when the VFS
5357  * shrinks i_size, we put the inode on the orphan list and modify
5358  * i_disksize immediately, so that during the subsequent flushing of
5359  * dirty pages and freeing of disk blocks, we can guarantee that any
5360  * commit will leave the blocks being flushed in an unused state on
5361  * disk.  (On recovery, the inode will get truncated and the blocks will
5362  * be freed, so we have a strong guarantee that no future commit will
5363  * leave these blocks visible to the user.)
5364  *
5365  * Another thing we have to assure is that if we are in ordered mode
5366  * and inode is still attached to the committing transaction, we must
5367  * we start writeout of all the dirty pages which are being truncated.
5368  * This way we are sure that all the data written in the previous
5369  * transaction are already on disk (truncate waits for pages under
5370  * writeback).
5371  *
5372  * Called with inode->i_rwsem down.
5373  */
5374 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5375 		 struct iattr *attr)
5376 {
5377 	struct inode *inode = d_inode(dentry);
5378 	int error, rc = 0;
5379 	int orphan = 0;
5380 	const unsigned int ia_valid = attr->ia_valid;
5381 	bool inc_ivers = true;
5382 
5383 	error = ext4_emergency_state(inode->i_sb);
5384 	if (unlikely(error))
5385 		return error;
5386 
5387 	if (unlikely(IS_IMMUTABLE(inode)))
5388 		return -EPERM;
5389 
5390 	if (unlikely(IS_APPEND(inode) &&
5391 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5392 				  ATTR_GID | ATTR_TIMES_SET))))
5393 		return -EPERM;
5394 
5395 	error = setattr_prepare(idmap, dentry, attr);
5396 	if (error)
5397 		return error;
5398 
5399 	error = fscrypt_prepare_setattr(dentry, attr);
5400 	if (error)
5401 		return error;
5402 
5403 	error = fsverity_prepare_setattr(dentry, attr);
5404 	if (error)
5405 		return error;
5406 
5407 	if (is_quota_modification(idmap, inode, attr)) {
5408 		error = dquot_initialize(inode);
5409 		if (error)
5410 			return error;
5411 	}
5412 
5413 	if (i_uid_needs_update(idmap, attr, inode) ||
5414 	    i_gid_needs_update(idmap, attr, inode)) {
5415 		handle_t *handle;
5416 
5417 		/* (user+group)*(old+new) structure, inode write (sb,
5418 		 * inode block, ? - but truncate inode update has it) */
5419 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5420 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5421 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5422 		if (IS_ERR(handle)) {
5423 			error = PTR_ERR(handle);
5424 			goto err_out;
5425 		}
5426 
5427 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5428 		 * counts xattr inode references.
5429 		 */
5430 		down_read(&EXT4_I(inode)->xattr_sem);
5431 		error = dquot_transfer(idmap, inode, attr);
5432 		up_read(&EXT4_I(inode)->xattr_sem);
5433 
5434 		if (error) {
5435 			ext4_journal_stop(handle);
5436 			return error;
5437 		}
5438 		/* Update corresponding info in inode so that everything is in
5439 		 * one transaction */
5440 		i_uid_update(idmap, attr, inode);
5441 		i_gid_update(idmap, attr, inode);
5442 		error = ext4_mark_inode_dirty(handle, inode);
5443 		ext4_journal_stop(handle);
5444 		if (unlikely(error)) {
5445 			return error;
5446 		}
5447 	}
5448 
5449 	if (attr->ia_valid & ATTR_SIZE) {
5450 		handle_t *handle;
5451 		loff_t oldsize = inode->i_size;
5452 		loff_t old_disksize;
5453 		int shrink = (attr->ia_size < inode->i_size);
5454 
5455 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5456 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5457 
5458 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5459 				return -EFBIG;
5460 			}
5461 		}
5462 		if (!S_ISREG(inode->i_mode)) {
5463 			return -EINVAL;
5464 		}
5465 
5466 		if (attr->ia_size == inode->i_size)
5467 			inc_ivers = false;
5468 
5469 		if (shrink) {
5470 			if (ext4_should_order_data(inode)) {
5471 				error = ext4_begin_ordered_truncate(inode,
5472 							    attr->ia_size);
5473 				if (error)
5474 					goto err_out;
5475 			}
5476 			/*
5477 			 * Blocks are going to be removed from the inode. Wait
5478 			 * for dio in flight.
5479 			 */
5480 			inode_dio_wait(inode);
5481 		}
5482 
5483 		filemap_invalidate_lock(inode->i_mapping);
5484 
5485 		rc = ext4_break_layouts(inode);
5486 		if (rc) {
5487 			filemap_invalidate_unlock(inode->i_mapping);
5488 			goto err_out;
5489 		}
5490 
5491 		if (attr->ia_size != inode->i_size) {
5492 			/* attach jbd2 jinode for EOF folio tail zeroing */
5493 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5494 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5495 				error = ext4_inode_attach_jinode(inode);
5496 				if (error)
5497 					goto out_mmap_sem;
5498 			}
5499 
5500 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5501 			if (IS_ERR(handle)) {
5502 				error = PTR_ERR(handle);
5503 				goto out_mmap_sem;
5504 			}
5505 			if (ext4_handle_valid(handle) && shrink) {
5506 				error = ext4_orphan_add(handle, inode);
5507 				orphan = 1;
5508 			}
5509 			/*
5510 			 * Update c/mtime and tail zero the EOF folio on
5511 			 * truncate up. ext4_truncate() handles the shrink case
5512 			 * below.
5513 			 */
5514 			if (!shrink) {
5515 				inode_set_mtime_to_ts(inode,
5516 						      inode_set_ctime_current(inode));
5517 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5518 					ext4_block_truncate_page(handle,
5519 							inode->i_mapping, oldsize);
5520 			}
5521 
5522 			if (shrink)
5523 				ext4_fc_track_range(handle, inode,
5524 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5525 					inode->i_sb->s_blocksize_bits,
5526 					EXT_MAX_BLOCKS - 1);
5527 			else
5528 				ext4_fc_track_range(
5529 					handle, inode,
5530 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5531 					inode->i_sb->s_blocksize_bits,
5532 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5533 					inode->i_sb->s_blocksize_bits);
5534 
5535 			down_write(&EXT4_I(inode)->i_data_sem);
5536 			old_disksize = EXT4_I(inode)->i_disksize;
5537 			EXT4_I(inode)->i_disksize = attr->ia_size;
5538 			rc = ext4_mark_inode_dirty(handle, inode);
5539 			if (!error)
5540 				error = rc;
5541 			/*
5542 			 * We have to update i_size under i_data_sem together
5543 			 * with i_disksize to avoid races with writeback code
5544 			 * running ext4_wb_update_i_disksize().
5545 			 */
5546 			if (!error)
5547 				i_size_write(inode, attr->ia_size);
5548 			else
5549 				EXT4_I(inode)->i_disksize = old_disksize;
5550 			up_write(&EXT4_I(inode)->i_data_sem);
5551 			ext4_journal_stop(handle);
5552 			if (error)
5553 				goto out_mmap_sem;
5554 			if (!shrink) {
5555 				pagecache_isize_extended(inode, oldsize,
5556 							 inode->i_size);
5557 			} else if (ext4_should_journal_data(inode)) {
5558 				ext4_wait_for_tail_page_commit(inode);
5559 			}
5560 		}
5561 
5562 		/*
5563 		 * Truncate pagecache after we've waited for commit
5564 		 * in data=journal mode to make pages freeable.
5565 		 */
5566 		truncate_pagecache(inode, inode->i_size);
5567 		/*
5568 		 * Call ext4_truncate() even if i_size didn't change to
5569 		 * truncate possible preallocated blocks.
5570 		 */
5571 		if (attr->ia_size <= oldsize) {
5572 			rc = ext4_truncate(inode);
5573 			if (rc)
5574 				error = rc;
5575 		}
5576 out_mmap_sem:
5577 		filemap_invalidate_unlock(inode->i_mapping);
5578 	}
5579 
5580 	if (!error) {
5581 		if (inc_ivers)
5582 			inode_inc_iversion(inode);
5583 		setattr_copy(idmap, inode, attr);
5584 		mark_inode_dirty(inode);
5585 	}
5586 
5587 	/*
5588 	 * If the call to ext4_truncate failed to get a transaction handle at
5589 	 * all, we need to clean up the in-core orphan list manually.
5590 	 */
5591 	if (orphan && inode->i_nlink)
5592 		ext4_orphan_del(NULL, inode);
5593 
5594 	if (!error && (ia_valid & ATTR_MODE))
5595 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5596 
5597 err_out:
5598 	if  (error)
5599 		ext4_std_error(inode->i_sb, error);
5600 	if (!error)
5601 		error = rc;
5602 	return error;
5603 }
5604 
5605 u32 ext4_dio_alignment(struct inode *inode)
5606 {
5607 	if (fsverity_active(inode))
5608 		return 0;
5609 	if (ext4_should_journal_data(inode))
5610 		return 0;
5611 	if (ext4_has_inline_data(inode))
5612 		return 0;
5613 	if (IS_ENCRYPTED(inode)) {
5614 		if (!fscrypt_dio_supported(inode))
5615 			return 0;
5616 		return i_blocksize(inode);
5617 	}
5618 	return 1; /* use the iomap defaults */
5619 }
5620 
5621 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5622 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5623 {
5624 	struct inode *inode = d_inode(path->dentry);
5625 	struct ext4_inode *raw_inode;
5626 	struct ext4_inode_info *ei = EXT4_I(inode);
5627 	unsigned int flags;
5628 
5629 	if ((request_mask & STATX_BTIME) &&
5630 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5631 		stat->result_mask |= STATX_BTIME;
5632 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5633 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5634 	}
5635 
5636 	/*
5637 	 * Return the DIO alignment restrictions if requested.  We only return
5638 	 * this information when requested, since on encrypted files it might
5639 	 * take a fair bit of work to get if the file wasn't opened recently.
5640 	 */
5641 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5642 		u32 dio_align = ext4_dio_alignment(inode);
5643 
5644 		stat->result_mask |= STATX_DIOALIGN;
5645 		if (dio_align == 1) {
5646 			struct block_device *bdev = inode->i_sb->s_bdev;
5647 
5648 			/* iomap defaults */
5649 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5650 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5651 		} else {
5652 			stat->dio_mem_align = dio_align;
5653 			stat->dio_offset_align = dio_align;
5654 		}
5655 	}
5656 
5657 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5658 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5659 		unsigned int awu_min = 0, awu_max = 0;
5660 
5661 		if (ext4_inode_can_atomic_write(inode)) {
5662 			awu_min = sbi->s_awu_min;
5663 			awu_max = sbi->s_awu_max;
5664 		}
5665 
5666 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5667 	}
5668 
5669 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5670 	if (flags & EXT4_APPEND_FL)
5671 		stat->attributes |= STATX_ATTR_APPEND;
5672 	if (flags & EXT4_COMPR_FL)
5673 		stat->attributes |= STATX_ATTR_COMPRESSED;
5674 	if (flags & EXT4_ENCRYPT_FL)
5675 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5676 	if (flags & EXT4_IMMUTABLE_FL)
5677 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5678 	if (flags & EXT4_NODUMP_FL)
5679 		stat->attributes |= STATX_ATTR_NODUMP;
5680 	if (flags & EXT4_VERITY_FL)
5681 		stat->attributes |= STATX_ATTR_VERITY;
5682 
5683 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5684 				  STATX_ATTR_COMPRESSED |
5685 				  STATX_ATTR_ENCRYPTED |
5686 				  STATX_ATTR_IMMUTABLE |
5687 				  STATX_ATTR_NODUMP |
5688 				  STATX_ATTR_VERITY);
5689 
5690 	generic_fillattr(idmap, request_mask, inode, stat);
5691 	return 0;
5692 }
5693 
5694 int ext4_file_getattr(struct mnt_idmap *idmap,
5695 		      const struct path *path, struct kstat *stat,
5696 		      u32 request_mask, unsigned int query_flags)
5697 {
5698 	struct inode *inode = d_inode(path->dentry);
5699 	u64 delalloc_blocks;
5700 
5701 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5702 
5703 	/*
5704 	 * If there is inline data in the inode, the inode will normally not
5705 	 * have data blocks allocated (it may have an external xattr block).
5706 	 * Report at least one sector for such files, so tools like tar, rsync,
5707 	 * others don't incorrectly think the file is completely sparse.
5708 	 */
5709 	if (unlikely(ext4_has_inline_data(inode)))
5710 		stat->blocks += (stat->size + 511) >> 9;
5711 
5712 	/*
5713 	 * We can't update i_blocks if the block allocation is delayed
5714 	 * otherwise in the case of system crash before the real block
5715 	 * allocation is done, we will have i_blocks inconsistent with
5716 	 * on-disk file blocks.
5717 	 * We always keep i_blocks updated together with real
5718 	 * allocation. But to not confuse with user, stat
5719 	 * will return the blocks that include the delayed allocation
5720 	 * blocks for this file.
5721 	 */
5722 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5723 				   EXT4_I(inode)->i_reserved_data_blocks);
5724 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5725 	return 0;
5726 }
5727 
5728 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5729 				   int pextents)
5730 {
5731 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5732 		return ext4_ind_trans_blocks(inode, lblocks);
5733 	return ext4_ext_index_trans_blocks(inode, pextents);
5734 }
5735 
5736 /*
5737  * Account for index blocks, block groups bitmaps and block group
5738  * descriptor blocks if modify datablocks and index blocks
5739  * worse case, the indexs blocks spread over different block groups
5740  *
5741  * If datablocks are discontiguous, they are possible to spread over
5742  * different block groups too. If they are contiguous, with flexbg,
5743  * they could still across block group boundary.
5744  *
5745  * Also account for superblock, inode, quota and xattr blocks
5746  */
5747 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5748 				  int pextents)
5749 {
5750 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5751 	int gdpblocks;
5752 	int idxblocks;
5753 	int ret;
5754 
5755 	/*
5756 	 * How many index blocks need to touch to map @lblocks logical blocks
5757 	 * to @pextents physical extents?
5758 	 */
5759 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5760 
5761 	ret = idxblocks;
5762 
5763 	/*
5764 	 * Now let's see how many group bitmaps and group descriptors need
5765 	 * to account
5766 	 */
5767 	groups = idxblocks + pextents;
5768 	gdpblocks = groups;
5769 	if (groups > ngroups)
5770 		groups = ngroups;
5771 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5772 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5773 
5774 	/* bitmaps and block group descriptor blocks */
5775 	ret += groups + gdpblocks;
5776 
5777 	/* Blocks for super block, inode, quota and xattr blocks */
5778 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5779 
5780 	return ret;
5781 }
5782 
5783 /*
5784  * Calculate the total number of credits to reserve to fit
5785  * the modification of a single pages into a single transaction,
5786  * which may include multiple chunks of block allocations.
5787  *
5788  * This could be called via ext4_write_begin()
5789  *
5790  * We need to consider the worse case, when
5791  * one new block per extent.
5792  */
5793 int ext4_writepage_trans_blocks(struct inode *inode)
5794 {
5795 	int bpp = ext4_journal_blocks_per_page(inode);
5796 	int ret;
5797 
5798 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5799 
5800 	/* Account for data blocks for journalled mode */
5801 	if (ext4_should_journal_data(inode))
5802 		ret += bpp;
5803 	return ret;
5804 }
5805 
5806 /*
5807  * Calculate the journal credits for a chunk of data modification.
5808  *
5809  * This is called from DIO, fallocate or whoever calling
5810  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5811  *
5812  * journal buffers for data blocks are not included here, as DIO
5813  * and fallocate do no need to journal data buffers.
5814  */
5815 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5816 {
5817 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5818 }
5819 
5820 /*
5821  * The caller must have previously called ext4_reserve_inode_write().
5822  * Give this, we know that the caller already has write access to iloc->bh.
5823  */
5824 int ext4_mark_iloc_dirty(handle_t *handle,
5825 			 struct inode *inode, struct ext4_iloc *iloc)
5826 {
5827 	int err = 0;
5828 
5829 	err = ext4_emergency_state(inode->i_sb);
5830 	if (unlikely(err)) {
5831 		put_bh(iloc->bh);
5832 		return err;
5833 	}
5834 	ext4_fc_track_inode(handle, inode);
5835 
5836 	/* the do_update_inode consumes one bh->b_count */
5837 	get_bh(iloc->bh);
5838 
5839 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5840 	err = ext4_do_update_inode(handle, inode, iloc);
5841 	put_bh(iloc->bh);
5842 	return err;
5843 }
5844 
5845 /*
5846  * On success, We end up with an outstanding reference count against
5847  * iloc->bh.  This _must_ be cleaned up later.
5848  */
5849 
5850 int
5851 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5852 			 struct ext4_iloc *iloc)
5853 {
5854 	int err;
5855 
5856 	err = ext4_emergency_state(inode->i_sb);
5857 	if (unlikely(err))
5858 		return err;
5859 
5860 	err = ext4_get_inode_loc(inode, iloc);
5861 	if (!err) {
5862 		BUFFER_TRACE(iloc->bh, "get_write_access");
5863 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5864 						    iloc->bh, EXT4_JTR_NONE);
5865 		if (err) {
5866 			brelse(iloc->bh);
5867 			iloc->bh = NULL;
5868 		}
5869 	}
5870 	ext4_std_error(inode->i_sb, err);
5871 	return err;
5872 }
5873 
5874 static int __ext4_expand_extra_isize(struct inode *inode,
5875 				     unsigned int new_extra_isize,
5876 				     struct ext4_iloc *iloc,
5877 				     handle_t *handle, int *no_expand)
5878 {
5879 	struct ext4_inode *raw_inode;
5880 	struct ext4_xattr_ibody_header *header;
5881 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5882 	struct ext4_inode_info *ei = EXT4_I(inode);
5883 	int error;
5884 
5885 	/* this was checked at iget time, but double check for good measure */
5886 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5887 	    (ei->i_extra_isize & 3)) {
5888 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5889 				 ei->i_extra_isize,
5890 				 EXT4_INODE_SIZE(inode->i_sb));
5891 		return -EFSCORRUPTED;
5892 	}
5893 	if ((new_extra_isize < ei->i_extra_isize) ||
5894 	    (new_extra_isize < 4) ||
5895 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5896 		return -EINVAL;	/* Should never happen */
5897 
5898 	raw_inode = ext4_raw_inode(iloc);
5899 
5900 	header = IHDR(inode, raw_inode);
5901 
5902 	/* No extended attributes present */
5903 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5904 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5905 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5906 		       EXT4_I(inode)->i_extra_isize, 0,
5907 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5908 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5909 		return 0;
5910 	}
5911 
5912 	/*
5913 	 * We may need to allocate external xattr block so we need quotas
5914 	 * initialized. Here we can be called with various locks held so we
5915 	 * cannot affort to initialize quotas ourselves. So just bail.
5916 	 */
5917 	if (dquot_initialize_needed(inode))
5918 		return -EAGAIN;
5919 
5920 	/* try to expand with EAs present */
5921 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5922 					   raw_inode, handle);
5923 	if (error) {
5924 		/*
5925 		 * Inode size expansion failed; don't try again
5926 		 */
5927 		*no_expand = 1;
5928 	}
5929 
5930 	return error;
5931 }
5932 
5933 /*
5934  * Expand an inode by new_extra_isize bytes.
5935  * Returns 0 on success or negative error number on failure.
5936  */
5937 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5938 					  unsigned int new_extra_isize,
5939 					  struct ext4_iloc iloc,
5940 					  handle_t *handle)
5941 {
5942 	int no_expand;
5943 	int error;
5944 
5945 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5946 		return -EOVERFLOW;
5947 
5948 	/*
5949 	 * In nojournal mode, we can immediately attempt to expand
5950 	 * the inode.  When journaled, we first need to obtain extra
5951 	 * buffer credits since we may write into the EA block
5952 	 * with this same handle. If journal_extend fails, then it will
5953 	 * only result in a minor loss of functionality for that inode.
5954 	 * If this is felt to be critical, then e2fsck should be run to
5955 	 * force a large enough s_min_extra_isize.
5956 	 */
5957 	if (ext4_journal_extend(handle,
5958 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5959 		return -ENOSPC;
5960 
5961 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5962 		return -EBUSY;
5963 
5964 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5965 					  handle, &no_expand);
5966 	ext4_write_unlock_xattr(inode, &no_expand);
5967 
5968 	return error;
5969 }
5970 
5971 int ext4_expand_extra_isize(struct inode *inode,
5972 			    unsigned int new_extra_isize,
5973 			    struct ext4_iloc *iloc)
5974 {
5975 	handle_t *handle;
5976 	int no_expand;
5977 	int error, rc;
5978 
5979 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5980 		brelse(iloc->bh);
5981 		return -EOVERFLOW;
5982 	}
5983 
5984 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5985 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5986 	if (IS_ERR(handle)) {
5987 		error = PTR_ERR(handle);
5988 		brelse(iloc->bh);
5989 		return error;
5990 	}
5991 
5992 	ext4_write_lock_xattr(inode, &no_expand);
5993 
5994 	BUFFER_TRACE(iloc->bh, "get_write_access");
5995 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5996 					      EXT4_JTR_NONE);
5997 	if (error) {
5998 		brelse(iloc->bh);
5999 		goto out_unlock;
6000 	}
6001 
6002 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6003 					  handle, &no_expand);
6004 
6005 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6006 	if (!error)
6007 		error = rc;
6008 
6009 out_unlock:
6010 	ext4_write_unlock_xattr(inode, &no_expand);
6011 	ext4_journal_stop(handle);
6012 	return error;
6013 }
6014 
6015 /*
6016  * What we do here is to mark the in-core inode as clean with respect to inode
6017  * dirtiness (it may still be data-dirty).
6018  * This means that the in-core inode may be reaped by prune_icache
6019  * without having to perform any I/O.  This is a very good thing,
6020  * because *any* task may call prune_icache - even ones which
6021  * have a transaction open against a different journal.
6022  *
6023  * Is this cheating?  Not really.  Sure, we haven't written the
6024  * inode out, but prune_icache isn't a user-visible syncing function.
6025  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6026  * we start and wait on commits.
6027  */
6028 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6029 				const char *func, unsigned int line)
6030 {
6031 	struct ext4_iloc iloc;
6032 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6033 	int err;
6034 
6035 	might_sleep();
6036 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6037 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6038 	if (err)
6039 		goto out;
6040 
6041 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6042 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6043 					       iloc, handle);
6044 
6045 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6046 out:
6047 	if (unlikely(err))
6048 		ext4_error_inode_err(inode, func, line, 0, err,
6049 					"mark_inode_dirty error");
6050 	return err;
6051 }
6052 
6053 /*
6054  * ext4_dirty_inode() is called from __mark_inode_dirty()
6055  *
6056  * We're really interested in the case where a file is being extended.
6057  * i_size has been changed by generic_commit_write() and we thus need
6058  * to include the updated inode in the current transaction.
6059  *
6060  * Also, dquot_alloc_block() will always dirty the inode when blocks
6061  * are allocated to the file.
6062  *
6063  * If the inode is marked synchronous, we don't honour that here - doing
6064  * so would cause a commit on atime updates, which we don't bother doing.
6065  * We handle synchronous inodes at the highest possible level.
6066  */
6067 void ext4_dirty_inode(struct inode *inode, int flags)
6068 {
6069 	handle_t *handle;
6070 
6071 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6072 	if (IS_ERR(handle))
6073 		return;
6074 	ext4_mark_inode_dirty(handle, inode);
6075 	ext4_journal_stop(handle);
6076 }
6077 
6078 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6079 {
6080 	journal_t *journal;
6081 	handle_t *handle;
6082 	int err;
6083 	int alloc_ctx;
6084 
6085 	/*
6086 	 * We have to be very careful here: changing a data block's
6087 	 * journaling status dynamically is dangerous.  If we write a
6088 	 * data block to the journal, change the status and then delete
6089 	 * that block, we risk forgetting to revoke the old log record
6090 	 * from the journal and so a subsequent replay can corrupt data.
6091 	 * So, first we make sure that the journal is empty and that
6092 	 * nobody is changing anything.
6093 	 */
6094 
6095 	journal = EXT4_JOURNAL(inode);
6096 	if (!journal)
6097 		return 0;
6098 	if (is_journal_aborted(journal))
6099 		return -EROFS;
6100 
6101 	/* Wait for all existing dio workers */
6102 	inode_dio_wait(inode);
6103 
6104 	/*
6105 	 * Before flushing the journal and switching inode's aops, we have
6106 	 * to flush all dirty data the inode has. There can be outstanding
6107 	 * delayed allocations, there can be unwritten extents created by
6108 	 * fallocate or buffered writes in dioread_nolock mode covered by
6109 	 * dirty data which can be converted only after flushing the dirty
6110 	 * data (and journalled aops don't know how to handle these cases).
6111 	 */
6112 	if (val) {
6113 		filemap_invalidate_lock(inode->i_mapping);
6114 		err = filemap_write_and_wait(inode->i_mapping);
6115 		if (err < 0) {
6116 			filemap_invalidate_unlock(inode->i_mapping);
6117 			return err;
6118 		}
6119 	}
6120 
6121 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6122 	jbd2_journal_lock_updates(journal);
6123 
6124 	/*
6125 	 * OK, there are no updates running now, and all cached data is
6126 	 * synced to disk.  We are now in a completely consistent state
6127 	 * which doesn't have anything in the journal, and we know that
6128 	 * no filesystem updates are running, so it is safe to modify
6129 	 * the inode's in-core data-journaling state flag now.
6130 	 */
6131 
6132 	if (val)
6133 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6134 	else {
6135 		err = jbd2_journal_flush(journal, 0);
6136 		if (err < 0) {
6137 			jbd2_journal_unlock_updates(journal);
6138 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6139 			return err;
6140 		}
6141 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6142 	}
6143 	ext4_set_aops(inode);
6144 
6145 	jbd2_journal_unlock_updates(journal);
6146 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6147 
6148 	if (val)
6149 		filemap_invalidate_unlock(inode->i_mapping);
6150 
6151 	/* Finally we can mark the inode as dirty. */
6152 
6153 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6154 	if (IS_ERR(handle))
6155 		return PTR_ERR(handle);
6156 
6157 	ext4_fc_mark_ineligible(inode->i_sb,
6158 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6159 	err = ext4_mark_inode_dirty(handle, inode);
6160 	ext4_handle_sync(handle);
6161 	ext4_journal_stop(handle);
6162 	ext4_std_error(inode->i_sb, err);
6163 
6164 	return err;
6165 }
6166 
6167 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6168 			    struct buffer_head *bh)
6169 {
6170 	return !buffer_mapped(bh);
6171 }
6172 
6173 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6174 {
6175 	struct vm_area_struct *vma = vmf->vma;
6176 	struct folio *folio = page_folio(vmf->page);
6177 	loff_t size;
6178 	unsigned long len;
6179 	int err;
6180 	vm_fault_t ret;
6181 	struct file *file = vma->vm_file;
6182 	struct inode *inode = file_inode(file);
6183 	struct address_space *mapping = inode->i_mapping;
6184 	handle_t *handle;
6185 	get_block_t *get_block;
6186 	int retries = 0;
6187 
6188 	if (unlikely(IS_IMMUTABLE(inode)))
6189 		return VM_FAULT_SIGBUS;
6190 
6191 	sb_start_pagefault(inode->i_sb);
6192 	file_update_time(vma->vm_file);
6193 
6194 	filemap_invalidate_lock_shared(mapping);
6195 
6196 	err = ext4_convert_inline_data(inode);
6197 	if (err)
6198 		goto out_ret;
6199 
6200 	/*
6201 	 * On data journalling we skip straight to the transaction handle:
6202 	 * there's no delalloc; page truncated will be checked later; the
6203 	 * early return w/ all buffers mapped (calculates size/len) can't
6204 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6205 	 */
6206 	if (ext4_should_journal_data(inode))
6207 		goto retry_alloc;
6208 
6209 	/* Delalloc case is easy... */
6210 	if (test_opt(inode->i_sb, DELALLOC) &&
6211 	    !ext4_nonda_switch(inode->i_sb)) {
6212 		do {
6213 			err = block_page_mkwrite(vma, vmf,
6214 						   ext4_da_get_block_prep);
6215 		} while (err == -ENOSPC &&
6216 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6217 		goto out_ret;
6218 	}
6219 
6220 	folio_lock(folio);
6221 	size = i_size_read(inode);
6222 	/* Page got truncated from under us? */
6223 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6224 		folio_unlock(folio);
6225 		ret = VM_FAULT_NOPAGE;
6226 		goto out;
6227 	}
6228 
6229 	len = folio_size(folio);
6230 	if (folio_pos(folio) + len > size)
6231 		len = size - folio_pos(folio);
6232 	/*
6233 	 * Return if we have all the buffers mapped. This avoids the need to do
6234 	 * journal_start/journal_stop which can block and take a long time
6235 	 *
6236 	 * This cannot be done for data journalling, as we have to add the
6237 	 * inode to the transaction's list to writeprotect pages on commit.
6238 	 */
6239 	if (folio_buffers(folio)) {
6240 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6241 					    0, len, NULL,
6242 					    ext4_bh_unmapped)) {
6243 			/* Wait so that we don't change page under IO */
6244 			folio_wait_stable(folio);
6245 			ret = VM_FAULT_LOCKED;
6246 			goto out;
6247 		}
6248 	}
6249 	folio_unlock(folio);
6250 	/* OK, we need to fill the hole... */
6251 	if (ext4_should_dioread_nolock(inode))
6252 		get_block = ext4_get_block_unwritten;
6253 	else
6254 		get_block = ext4_get_block;
6255 retry_alloc:
6256 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6257 				    ext4_writepage_trans_blocks(inode));
6258 	if (IS_ERR(handle)) {
6259 		ret = VM_FAULT_SIGBUS;
6260 		goto out;
6261 	}
6262 	/*
6263 	 * Data journalling can't use block_page_mkwrite() because it
6264 	 * will set_buffer_dirty() before do_journal_get_write_access()
6265 	 * thus might hit warning messages for dirty metadata buffers.
6266 	 */
6267 	if (!ext4_should_journal_data(inode)) {
6268 		err = block_page_mkwrite(vma, vmf, get_block);
6269 	} else {
6270 		folio_lock(folio);
6271 		size = i_size_read(inode);
6272 		/* Page got truncated from under us? */
6273 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6274 			ret = VM_FAULT_NOPAGE;
6275 			goto out_error;
6276 		}
6277 
6278 		len = folio_size(folio);
6279 		if (folio_pos(folio) + len > size)
6280 			len = size - folio_pos(folio);
6281 
6282 		err = ext4_block_write_begin(handle, folio, 0, len,
6283 					     ext4_get_block);
6284 		if (!err) {
6285 			ret = VM_FAULT_SIGBUS;
6286 			if (ext4_journal_folio_buffers(handle, folio, len))
6287 				goto out_error;
6288 		} else {
6289 			folio_unlock(folio);
6290 		}
6291 	}
6292 	ext4_journal_stop(handle);
6293 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6294 		goto retry_alloc;
6295 out_ret:
6296 	ret = vmf_fs_error(err);
6297 out:
6298 	filemap_invalidate_unlock_shared(mapping);
6299 	sb_end_pagefault(inode->i_sb);
6300 	return ret;
6301 out_error:
6302 	folio_unlock(folio);
6303 	ext4_journal_stop(handle);
6304 	goto out;
6305 }
6306