1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 !inode_is_open_for_write(inode)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (ext4_has_feature_journal(inode->i_sb) && 403 (inode->i_ino == 404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 405 return 0; 406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 407 map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, flags & 455 EXT4_GET_BLOCKS_KEEP_SIZE); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, flags & 458 EXT4_GET_BLOCKS_KEEP_SIZE); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* We can handle the block number less than EXT_MAX_BLOCKS */ 526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 527 return -EFSCORRUPTED; 528 529 /* Lookup extent status tree firstly */ 530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } else { 566 retval = ext4_ind_map_blocks(handle, inode, map, flags & 567 EXT4_GET_BLOCKS_KEEP_SIZE); 568 } 569 if (retval > 0) { 570 unsigned int status; 571 572 if (unlikely(retval != map->m_len)) { 573 ext4_warning(inode->i_sb, 574 "ES len assertion failed for inode " 575 "%lu: retval %d != map->m_len %d", 576 inode->i_ino, retval, map->m_len); 577 WARN_ON(1); 578 } 579 580 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 583 !(status & EXTENT_STATUS_WRITTEN) && 584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 585 map->m_lblk + map->m_len - 1)) 586 status |= EXTENT_STATUS_DELAYED; 587 ret = ext4_es_insert_extent(inode, map->m_lblk, 588 map->m_len, map->m_pblk, status); 589 if (ret < 0) 590 retval = ret; 591 } 592 up_read((&EXT4_I(inode)->i_data_sem)); 593 594 found: 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 596 ret = check_block_validity(inode, map); 597 if (ret != 0) 598 return ret; 599 } 600 601 /* If it is only a block(s) look up */ 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 603 return retval; 604 605 /* 606 * Returns if the blocks have already allocated 607 * 608 * Note that if blocks have been preallocated 609 * ext4_ext_get_block() returns the create = 0 610 * with buffer head unmapped. 611 */ 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 613 /* 614 * If we need to convert extent to unwritten 615 * we continue and do the actual work in 616 * ext4_ext_map_blocks() 617 */ 618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 619 return retval; 620 621 /* 622 * Here we clear m_flags because after allocating an new extent, 623 * it will be set again. 624 */ 625 map->m_flags &= ~EXT4_MAP_FLAGS; 626 627 /* 628 * New blocks allocate and/or writing to unwritten extent 629 * will possibly result in updating i_data, so we take 630 * the write lock of i_data_sem, and call get_block() 631 * with create == 1 flag. 632 */ 633 down_write(&EXT4_I(inode)->i_data_sem); 634 635 /* 636 * We need to check for EXT4 here because migrate 637 * could have changed the inode type in between 638 */ 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 640 retval = ext4_ext_map_blocks(handle, inode, map, flags); 641 } else { 642 retval = ext4_ind_map_blocks(handle, inode, map, flags); 643 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 645 /* 646 * We allocated new blocks which will result in 647 * i_data's format changing. Force the migrate 648 * to fail by clearing migrate flags 649 */ 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 651 } 652 653 /* 654 * Update reserved blocks/metadata blocks after successful 655 * block allocation which had been deferred till now. We don't 656 * support fallocate for non extent files. So we can update 657 * reserve space here. 658 */ 659 if ((retval > 0) && 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 661 ext4_da_update_reserve_space(inode, retval, 1); 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 if (ret < 0) { 712 retval = ret; 713 goto out_sem; 714 } 715 } 716 717 out_sem: 718 up_write((&EXT4_I(inode)->i_data_sem)); 719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 720 ret = check_block_validity(inode, map); 721 if (ret != 0) 722 return ret; 723 724 /* 725 * Inodes with freshly allocated blocks where contents will be 726 * visible after transaction commit must be on transaction's 727 * ordered data list. 728 */ 729 if (map->m_flags & EXT4_MAP_NEW && 730 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 731 !(flags & EXT4_GET_BLOCKS_ZERO) && 732 !ext4_is_quota_file(inode) && 733 ext4_should_order_data(inode)) { 734 loff_t start_byte = 735 (loff_t)map->m_lblk << inode->i_blkbits; 736 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 737 738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 739 ret = ext4_jbd2_inode_add_wait(handle, inode, 740 start_byte, length); 741 else 742 ret = ext4_jbd2_inode_add_write(handle, inode, 743 start_byte, length); 744 if (ret) 745 return ret; 746 } 747 } 748 return retval; 749 } 750 751 /* 752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 753 * we have to be careful as someone else may be manipulating b_state as well. 754 */ 755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 756 { 757 unsigned long old_state; 758 unsigned long new_state; 759 760 flags &= EXT4_MAP_FLAGS; 761 762 /* Dummy buffer_head? Set non-atomically. */ 763 if (!bh->b_page) { 764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 765 return; 766 } 767 /* 768 * Someone else may be modifying b_state. Be careful! This is ugly but 769 * once we get rid of using bh as a container for mapping information 770 * to pass to / from get_block functions, this can go away. 771 */ 772 do { 773 old_state = READ_ONCE(bh->b_state); 774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 775 } while (unlikely( 776 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 777 } 778 779 static int _ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int flags) 781 { 782 struct ext4_map_blocks map; 783 int ret = 0; 784 785 if (ext4_has_inline_data(inode)) 786 return -ERANGE; 787 788 map.m_lblk = iblock; 789 map.m_len = bh->b_size >> inode->i_blkbits; 790 791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 792 flags); 793 if (ret > 0) { 794 map_bh(bh, inode->i_sb, map.m_pblk); 795 ext4_update_bh_state(bh, map.m_flags); 796 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 797 ret = 0; 798 } else if (ret == 0) { 799 /* hole case, need to fill in bh->b_size */ 800 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 801 } 802 return ret; 803 } 804 805 int ext4_get_block(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh, int create) 807 { 808 return _ext4_get_block(inode, iblock, bh, 809 create ? EXT4_GET_BLOCKS_CREATE : 0); 810 } 811 812 /* 813 * Get block function used when preparing for buffered write if we require 814 * creating an unwritten extent if blocks haven't been allocated. The extent 815 * will be converted to written after the IO is complete. 816 */ 817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 818 struct buffer_head *bh_result, int create) 819 { 820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 821 inode->i_ino, create); 822 return _ext4_get_block(inode, iblock, bh_result, 823 EXT4_GET_BLOCKS_IO_CREATE_EXT); 824 } 825 826 /* Maximum number of blocks we map for direct IO at once. */ 827 #define DIO_MAX_BLOCKS 4096 828 829 /* 830 * Get blocks function for the cases that need to start a transaction - 831 * generally difference cases of direct IO and DAX IO. It also handles retries 832 * in case of ENOSPC. 833 */ 834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 835 struct buffer_head *bh_result, int flags) 836 { 837 int dio_credits; 838 handle_t *handle; 839 int retries = 0; 840 int ret; 841 842 /* Trim mapping request to maximum we can map at once for DIO */ 843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 845 dio_credits = ext4_chunk_trans_blocks(inode, 846 bh_result->b_size >> inode->i_blkbits); 847 retry: 848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 849 if (IS_ERR(handle)) 850 return PTR_ERR(handle); 851 852 ret = _ext4_get_block(inode, iblock, bh_result, flags); 853 ext4_journal_stop(handle); 854 855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 856 goto retry; 857 return ret; 858 } 859 860 /* Get block function for DIO reads and writes to inodes without extents */ 861 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 862 struct buffer_head *bh, int create) 863 { 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 if (!create) 868 return _ext4_get_block(inode, iblock, bh, 0); 869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 870 } 871 872 /* 873 * Get block function for AIO DIO writes when we create unwritten extent if 874 * blocks are not allocated yet. The extent will be converted to written 875 * after IO is complete. 876 */ 877 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 878 sector_t iblock, struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 /* We don't expect handle for direct IO */ 883 WARN_ON_ONCE(ext4_journal_current_handle()); 884 885 ret = ext4_get_block_trans(inode, iblock, bh_result, 886 EXT4_GET_BLOCKS_IO_CREATE_EXT); 887 888 /* 889 * When doing DIO using unwritten extents, we need io_end to convert 890 * unwritten extents to written on IO completion. We allocate io_end 891 * once we spot unwritten extent and store it in b_private. Generic 892 * DIO code keeps b_private set and furthermore passes the value to 893 * our completion callback in 'private' argument. 894 */ 895 if (!ret && buffer_unwritten(bh_result)) { 896 if (!bh_result->b_private) { 897 ext4_io_end_t *io_end; 898 899 io_end = ext4_init_io_end(inode, GFP_KERNEL); 900 if (!io_end) 901 return -ENOMEM; 902 bh_result->b_private = io_end; 903 ext4_set_io_unwritten_flag(inode, io_end); 904 } 905 set_buffer_defer_completion(bh_result); 906 } 907 908 return ret; 909 } 910 911 /* 912 * Get block function for non-AIO DIO writes when we create unwritten extent if 913 * blocks are not allocated yet. The extent will be converted to written 914 * after IO is complete by ext4_direct_IO_write(). 915 */ 916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 917 sector_t iblock, struct buffer_head *bh_result, int create) 918 { 919 int ret; 920 921 /* We don't expect handle for direct IO */ 922 WARN_ON_ONCE(ext4_journal_current_handle()); 923 924 ret = ext4_get_block_trans(inode, iblock, bh_result, 925 EXT4_GET_BLOCKS_IO_CREATE_EXT); 926 927 /* 928 * Mark inode as having pending DIO writes to unwritten extents. 929 * ext4_direct_IO_write() checks this flag and converts extents to 930 * written. 931 */ 932 if (!ret && buffer_unwritten(bh_result)) 933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 934 935 return ret; 936 } 937 938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 939 struct buffer_head *bh_result, int create) 940 { 941 int ret; 942 943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 944 inode->i_ino, create); 945 /* We don't expect handle for direct IO */ 946 WARN_ON_ONCE(ext4_journal_current_handle()); 947 948 ret = _ext4_get_block(inode, iblock, bh_result, 0); 949 /* 950 * Blocks should have been preallocated! ext4_file_write_iter() checks 951 * that. 952 */ 953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 954 955 return ret; 956 } 957 958 959 /* 960 * `handle' can be NULL if create is zero 961 */ 962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 963 ext4_lblk_t block, int map_flags) 964 { 965 struct ext4_map_blocks map; 966 struct buffer_head *bh; 967 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 968 int err; 969 970 J_ASSERT(handle != NULL || create == 0); 971 972 map.m_lblk = block; 973 map.m_len = 1; 974 err = ext4_map_blocks(handle, inode, &map, map_flags); 975 976 if (err == 0) 977 return create ? ERR_PTR(-ENOSPC) : NULL; 978 if (err < 0) 979 return ERR_PTR(err); 980 981 bh = sb_getblk(inode->i_sb, map.m_pblk); 982 if (unlikely(!bh)) 983 return ERR_PTR(-ENOMEM); 984 if (map.m_flags & EXT4_MAP_NEW) { 985 J_ASSERT(create != 0); 986 J_ASSERT(handle != NULL); 987 988 /* 989 * Now that we do not always journal data, we should 990 * keep in mind whether this should always journal the 991 * new buffer as metadata. For now, regular file 992 * writes use ext4_get_block instead, so it's not a 993 * problem. 994 */ 995 lock_buffer(bh); 996 BUFFER_TRACE(bh, "call get_create_access"); 997 err = ext4_journal_get_create_access(handle, bh); 998 if (unlikely(err)) { 999 unlock_buffer(bh); 1000 goto errout; 1001 } 1002 if (!buffer_uptodate(bh)) { 1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1004 set_buffer_uptodate(bh); 1005 } 1006 unlock_buffer(bh); 1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1008 err = ext4_handle_dirty_metadata(handle, inode, bh); 1009 if (unlikely(err)) 1010 goto errout; 1011 } else 1012 BUFFER_TRACE(bh, "not a new buffer"); 1013 return bh; 1014 errout: 1015 brelse(bh); 1016 return ERR_PTR(err); 1017 } 1018 1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1020 ext4_lblk_t block, int map_flags) 1021 { 1022 struct buffer_head *bh; 1023 1024 bh = ext4_getblk(handle, inode, block, map_flags); 1025 if (IS_ERR(bh)) 1026 return bh; 1027 if (!bh || buffer_uptodate(bh)) 1028 return bh; 1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1030 wait_on_buffer(bh); 1031 if (buffer_uptodate(bh)) 1032 return bh; 1033 put_bh(bh); 1034 return ERR_PTR(-EIO); 1035 } 1036 1037 /* Read a contiguous batch of blocks. */ 1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1039 bool wait, struct buffer_head **bhs) 1040 { 1041 int i, err; 1042 1043 for (i = 0; i < bh_count; i++) { 1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1045 if (IS_ERR(bhs[i])) { 1046 err = PTR_ERR(bhs[i]); 1047 bh_count = i; 1048 goto out_brelse; 1049 } 1050 } 1051 1052 for (i = 0; i < bh_count; i++) 1053 /* Note that NULL bhs[i] is valid because of holes. */ 1054 if (bhs[i] && !buffer_uptodate(bhs[i])) 1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1056 &bhs[i]); 1057 1058 if (!wait) 1059 return 0; 1060 1061 for (i = 0; i < bh_count; i++) 1062 if (bhs[i]) 1063 wait_on_buffer(bhs[i]); 1064 1065 for (i = 0; i < bh_count; i++) { 1066 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1067 err = -EIO; 1068 goto out_brelse; 1069 } 1070 } 1071 return 0; 1072 1073 out_brelse: 1074 for (i = 0; i < bh_count; i++) { 1075 brelse(bhs[i]); 1076 bhs[i] = NULL; 1077 } 1078 return err; 1079 } 1080 1081 int ext4_walk_page_buffers(handle_t *handle, 1082 struct buffer_head *head, 1083 unsigned from, 1084 unsigned to, 1085 int *partial, 1086 int (*fn)(handle_t *handle, 1087 struct buffer_head *bh)) 1088 { 1089 struct buffer_head *bh; 1090 unsigned block_start, block_end; 1091 unsigned blocksize = head->b_size; 1092 int err, ret = 0; 1093 struct buffer_head *next; 1094 1095 for (bh = head, block_start = 0; 1096 ret == 0 && (bh != head || !block_start); 1097 block_start = block_end, bh = next) { 1098 next = bh->b_this_page; 1099 block_end = block_start + blocksize; 1100 if (block_end <= from || block_start >= to) { 1101 if (partial && !buffer_uptodate(bh)) 1102 *partial = 1; 1103 continue; 1104 } 1105 err = (*fn)(handle, bh); 1106 if (!ret) 1107 ret = err; 1108 } 1109 return ret; 1110 } 1111 1112 /* 1113 * To preserve ordering, it is essential that the hole instantiation and 1114 * the data write be encapsulated in a single transaction. We cannot 1115 * close off a transaction and start a new one between the ext4_get_block() 1116 * and the commit_write(). So doing the jbd2_journal_start at the start of 1117 * prepare_write() is the right place. 1118 * 1119 * Also, this function can nest inside ext4_writepage(). In that case, we 1120 * *know* that ext4_writepage() has generated enough buffer credits to do the 1121 * whole page. So we won't block on the journal in that case, which is good, 1122 * because the caller may be PF_MEMALLOC. 1123 * 1124 * By accident, ext4 can be reentered when a transaction is open via 1125 * quota file writes. If we were to commit the transaction while thus 1126 * reentered, there can be a deadlock - we would be holding a quota 1127 * lock, and the commit would never complete if another thread had a 1128 * transaction open and was blocking on the quota lock - a ranking 1129 * violation. 1130 * 1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1132 * will _not_ run commit under these circumstances because handle->h_ref 1133 * is elevated. We'll still have enough credits for the tiny quotafile 1134 * write. 1135 */ 1136 int do_journal_get_write_access(handle_t *handle, 1137 struct buffer_head *bh) 1138 { 1139 int dirty = buffer_dirty(bh); 1140 int ret; 1141 1142 if (!buffer_mapped(bh) || buffer_freed(bh)) 1143 return 0; 1144 /* 1145 * __block_write_begin() could have dirtied some buffers. Clean 1146 * the dirty bit as jbd2_journal_get_write_access() could complain 1147 * otherwise about fs integrity issues. Setting of the dirty bit 1148 * by __block_write_begin() isn't a real problem here as we clear 1149 * the bit before releasing a page lock and thus writeback cannot 1150 * ever write the buffer. 1151 */ 1152 if (dirty) 1153 clear_buffer_dirty(bh); 1154 BUFFER_TRACE(bh, "get write access"); 1155 ret = ext4_journal_get_write_access(handle, bh); 1156 if (!ret && dirty) 1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1158 return ret; 1159 } 1160 1161 #ifdef CONFIG_FS_ENCRYPTION 1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1163 get_block_t *get_block) 1164 { 1165 unsigned from = pos & (PAGE_SIZE - 1); 1166 unsigned to = from + len; 1167 struct inode *inode = page->mapping->host; 1168 unsigned block_start, block_end; 1169 sector_t block; 1170 int err = 0; 1171 unsigned blocksize = inode->i_sb->s_blocksize; 1172 unsigned bbits; 1173 struct buffer_head *bh, *head, *wait[2]; 1174 int nr_wait = 0; 1175 int i; 1176 1177 BUG_ON(!PageLocked(page)); 1178 BUG_ON(from > PAGE_SIZE); 1179 BUG_ON(to > PAGE_SIZE); 1180 BUG_ON(from > to); 1181 1182 if (!page_has_buffers(page)) 1183 create_empty_buffers(page, blocksize, 0); 1184 head = page_buffers(page); 1185 bbits = ilog2(blocksize); 1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1187 1188 for (bh = head, block_start = 0; bh != head || !block_start; 1189 block++, block_start = block_end, bh = bh->b_this_page) { 1190 block_end = block_start + blocksize; 1191 if (block_end <= from || block_start >= to) { 1192 if (PageUptodate(page)) { 1193 if (!buffer_uptodate(bh)) 1194 set_buffer_uptodate(bh); 1195 } 1196 continue; 1197 } 1198 if (buffer_new(bh)) 1199 clear_buffer_new(bh); 1200 if (!buffer_mapped(bh)) { 1201 WARN_ON(bh->b_size != blocksize); 1202 err = get_block(inode, block, bh, 1); 1203 if (err) 1204 break; 1205 if (buffer_new(bh)) { 1206 if (PageUptodate(page)) { 1207 clear_buffer_new(bh); 1208 set_buffer_uptodate(bh); 1209 mark_buffer_dirty(bh); 1210 continue; 1211 } 1212 if (block_end > to || block_start < from) 1213 zero_user_segments(page, to, block_end, 1214 block_start, from); 1215 continue; 1216 } 1217 } 1218 if (PageUptodate(page)) { 1219 if (!buffer_uptodate(bh)) 1220 set_buffer_uptodate(bh); 1221 continue; 1222 } 1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1224 !buffer_unwritten(bh) && 1225 (block_start < from || block_end > to)) { 1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1227 wait[nr_wait++] = bh; 1228 } 1229 } 1230 /* 1231 * If we issued read requests, let them complete. 1232 */ 1233 for (i = 0; i < nr_wait; i++) { 1234 wait_on_buffer(wait[i]); 1235 if (!buffer_uptodate(wait[i])) 1236 err = -EIO; 1237 } 1238 if (unlikely(err)) { 1239 page_zero_new_buffers(page, from, to); 1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1241 for (i = 0; i < nr_wait; i++) { 1242 int err2; 1243 1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1245 bh_offset(wait[i])); 1246 if (err2) { 1247 clear_buffer_uptodate(wait[i]); 1248 err = err2; 1249 } 1250 } 1251 } 1252 1253 return err; 1254 } 1255 #endif 1256 1257 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1258 loff_t pos, unsigned len, unsigned flags, 1259 struct page **pagep, void **fsdata) 1260 { 1261 struct inode *inode = mapping->host; 1262 int ret, needed_blocks; 1263 handle_t *handle; 1264 int retries = 0; 1265 struct page *page; 1266 pgoff_t index; 1267 unsigned from, to; 1268 1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1270 return -EIO; 1271 1272 trace_ext4_write_begin(inode, pos, len, flags); 1273 /* 1274 * Reserve one block more for addition to orphan list in case 1275 * we allocate blocks but write fails for some reason 1276 */ 1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1278 index = pos >> PAGE_SHIFT; 1279 from = pos & (PAGE_SIZE - 1); 1280 to = from + len; 1281 1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1284 flags, pagep); 1285 if (ret < 0) 1286 return ret; 1287 if (ret == 1) 1288 return 0; 1289 } 1290 1291 /* 1292 * grab_cache_page_write_begin() can take a long time if the 1293 * system is thrashing due to memory pressure, or if the page 1294 * is being written back. So grab it first before we start 1295 * the transaction handle. This also allows us to allocate 1296 * the page (if needed) without using GFP_NOFS. 1297 */ 1298 retry_grab: 1299 page = grab_cache_page_write_begin(mapping, index, flags); 1300 if (!page) 1301 return -ENOMEM; 1302 unlock_page(page); 1303 1304 retry_journal: 1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1306 if (IS_ERR(handle)) { 1307 put_page(page); 1308 return PTR_ERR(handle); 1309 } 1310 1311 lock_page(page); 1312 if (page->mapping != mapping) { 1313 /* The page got truncated from under us */ 1314 unlock_page(page); 1315 put_page(page); 1316 ext4_journal_stop(handle); 1317 goto retry_grab; 1318 } 1319 /* In case writeback began while the page was unlocked */ 1320 wait_for_stable_page(page); 1321 1322 #ifdef CONFIG_FS_ENCRYPTION 1323 if (ext4_should_dioread_nolock(inode)) 1324 ret = ext4_block_write_begin(page, pos, len, 1325 ext4_get_block_unwritten); 1326 else 1327 ret = ext4_block_write_begin(page, pos, len, 1328 ext4_get_block); 1329 #else 1330 if (ext4_should_dioread_nolock(inode)) 1331 ret = __block_write_begin(page, pos, len, 1332 ext4_get_block_unwritten); 1333 else 1334 ret = __block_write_begin(page, pos, len, ext4_get_block); 1335 #endif 1336 if (!ret && ext4_should_journal_data(inode)) { 1337 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1338 from, to, NULL, 1339 do_journal_get_write_access); 1340 } 1341 1342 if (ret) { 1343 bool extended = (pos + len > inode->i_size) && 1344 !ext4_verity_in_progress(inode); 1345 1346 unlock_page(page); 1347 /* 1348 * __block_write_begin may have instantiated a few blocks 1349 * outside i_size. Trim these off again. Don't need 1350 * i_size_read because we hold i_mutex. 1351 * 1352 * Add inode to orphan list in case we crash before 1353 * truncate finishes 1354 */ 1355 if (extended && ext4_can_truncate(inode)) 1356 ext4_orphan_add(handle, inode); 1357 1358 ext4_journal_stop(handle); 1359 if (extended) { 1360 ext4_truncate_failed_write(inode); 1361 /* 1362 * If truncate failed early the inode might 1363 * still be on the orphan list; we need to 1364 * make sure the inode is removed from the 1365 * orphan list in that case. 1366 */ 1367 if (inode->i_nlink) 1368 ext4_orphan_del(NULL, inode); 1369 } 1370 1371 if (ret == -ENOSPC && 1372 ext4_should_retry_alloc(inode->i_sb, &retries)) 1373 goto retry_journal; 1374 put_page(page); 1375 return ret; 1376 } 1377 *pagep = page; 1378 return ret; 1379 } 1380 1381 /* For write_end() in data=journal mode */ 1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1383 { 1384 int ret; 1385 if (!buffer_mapped(bh) || buffer_freed(bh)) 1386 return 0; 1387 set_buffer_uptodate(bh); 1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1389 clear_buffer_meta(bh); 1390 clear_buffer_prio(bh); 1391 return ret; 1392 } 1393 1394 /* 1395 * We need to pick up the new inode size which generic_commit_write gave us 1396 * `file' can be NULL - eg, when called from page_symlink(). 1397 * 1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1399 * buffers are managed internally. 1400 */ 1401 static int ext4_write_end(struct file *file, 1402 struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 handle_t *handle = ext4_journal_current_handle(); 1407 struct inode *inode = mapping->host; 1408 loff_t old_size = inode->i_size; 1409 int ret = 0, ret2; 1410 int i_size_changed = 0; 1411 int inline_data = ext4_has_inline_data(inode); 1412 bool verity = ext4_verity_in_progress(inode); 1413 1414 trace_ext4_write_end(inode, pos, len, copied); 1415 if (inline_data) { 1416 ret = ext4_write_inline_data_end(inode, pos, len, 1417 copied, page); 1418 if (ret < 0) { 1419 unlock_page(page); 1420 put_page(page); 1421 goto errout; 1422 } 1423 copied = ret; 1424 } else 1425 copied = block_write_end(file, mapping, pos, 1426 len, copied, page, fsdata); 1427 /* 1428 * it's important to update i_size while still holding page lock: 1429 * page writeout could otherwise come in and zero beyond i_size. 1430 * 1431 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1432 * blocks are being written past EOF, so skip the i_size update. 1433 */ 1434 if (!verity) 1435 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1436 unlock_page(page); 1437 put_page(page); 1438 1439 if (old_size < pos && !verity) 1440 pagecache_isize_extended(inode, old_size, pos); 1441 /* 1442 * Don't mark the inode dirty under page lock. First, it unnecessarily 1443 * makes the holding time of page lock longer. Second, it forces lock 1444 * ordering of page lock and transaction start for journaling 1445 * filesystems. 1446 */ 1447 if (i_size_changed || inline_data) 1448 ext4_mark_inode_dirty(handle, inode); 1449 1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1451 /* if we have allocated more blocks and copied 1452 * less. We will have blocks allocated outside 1453 * inode->i_size. So truncate them 1454 */ 1455 ext4_orphan_add(handle, inode); 1456 errout: 1457 ret2 = ext4_journal_stop(handle); 1458 if (!ret) 1459 ret = ret2; 1460 1461 if (pos + len > inode->i_size && !verity) { 1462 ext4_truncate_failed_write(inode); 1463 /* 1464 * If truncate failed early the inode might still be 1465 * on the orphan list; we need to make sure the inode 1466 * is removed from the orphan list in that case. 1467 */ 1468 if (inode->i_nlink) 1469 ext4_orphan_del(NULL, inode); 1470 } 1471 1472 return ret ? ret : copied; 1473 } 1474 1475 /* 1476 * This is a private version of page_zero_new_buffers() which doesn't 1477 * set the buffer to be dirty, since in data=journalled mode we need 1478 * to call ext4_handle_dirty_metadata() instead. 1479 */ 1480 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1481 struct page *page, 1482 unsigned from, unsigned to) 1483 { 1484 unsigned int block_start = 0, block_end; 1485 struct buffer_head *head, *bh; 1486 1487 bh = head = page_buffers(page); 1488 do { 1489 block_end = block_start + bh->b_size; 1490 if (buffer_new(bh)) { 1491 if (block_end > from && block_start < to) { 1492 if (!PageUptodate(page)) { 1493 unsigned start, size; 1494 1495 start = max(from, block_start); 1496 size = min(to, block_end) - start; 1497 1498 zero_user(page, start, size); 1499 write_end_fn(handle, bh); 1500 } 1501 clear_buffer_new(bh); 1502 } 1503 } 1504 block_start = block_end; 1505 bh = bh->b_this_page; 1506 } while (bh != head); 1507 } 1508 1509 static int ext4_journalled_write_end(struct file *file, 1510 struct address_space *mapping, 1511 loff_t pos, unsigned len, unsigned copied, 1512 struct page *page, void *fsdata) 1513 { 1514 handle_t *handle = ext4_journal_current_handle(); 1515 struct inode *inode = mapping->host; 1516 loff_t old_size = inode->i_size; 1517 int ret = 0, ret2; 1518 int partial = 0; 1519 unsigned from, to; 1520 int size_changed = 0; 1521 int inline_data = ext4_has_inline_data(inode); 1522 bool verity = ext4_verity_in_progress(inode); 1523 1524 trace_ext4_journalled_write_end(inode, pos, len, copied); 1525 from = pos & (PAGE_SIZE - 1); 1526 to = from + len; 1527 1528 BUG_ON(!ext4_handle_valid(handle)); 1529 1530 if (inline_data) { 1531 ret = ext4_write_inline_data_end(inode, pos, len, 1532 copied, page); 1533 if (ret < 0) { 1534 unlock_page(page); 1535 put_page(page); 1536 goto errout; 1537 } 1538 copied = ret; 1539 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1540 copied = 0; 1541 ext4_journalled_zero_new_buffers(handle, page, from, to); 1542 } else { 1543 if (unlikely(copied < len)) 1544 ext4_journalled_zero_new_buffers(handle, page, 1545 from + copied, to); 1546 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1547 from + copied, &partial, 1548 write_end_fn); 1549 if (!partial) 1550 SetPageUptodate(page); 1551 } 1552 if (!verity) 1553 size_changed = ext4_update_inode_size(inode, pos + copied); 1554 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1555 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1556 unlock_page(page); 1557 put_page(page); 1558 1559 if (old_size < pos && !verity) 1560 pagecache_isize_extended(inode, old_size, pos); 1561 1562 if (size_changed || inline_data) { 1563 ret2 = ext4_mark_inode_dirty(handle, inode); 1564 if (!ret) 1565 ret = ret2; 1566 } 1567 1568 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1569 /* if we have allocated more blocks and copied 1570 * less. We will have blocks allocated outside 1571 * inode->i_size. So truncate them 1572 */ 1573 ext4_orphan_add(handle, inode); 1574 1575 errout: 1576 ret2 = ext4_journal_stop(handle); 1577 if (!ret) 1578 ret = ret2; 1579 if (pos + len > inode->i_size && !verity) { 1580 ext4_truncate_failed_write(inode); 1581 /* 1582 * If truncate failed early the inode might still be 1583 * on the orphan list; we need to make sure the inode 1584 * is removed from the orphan list in that case. 1585 */ 1586 if (inode->i_nlink) 1587 ext4_orphan_del(NULL, inode); 1588 } 1589 1590 return ret ? ret : copied; 1591 } 1592 1593 /* 1594 * Reserve space for a single cluster 1595 */ 1596 static int ext4_da_reserve_space(struct inode *inode) 1597 { 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1599 struct ext4_inode_info *ei = EXT4_I(inode); 1600 int ret; 1601 1602 /* 1603 * We will charge metadata quota at writeout time; this saves 1604 * us from metadata over-estimation, though we may go over by 1605 * a small amount in the end. Here we just reserve for data. 1606 */ 1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1608 if (ret) 1609 return ret; 1610 1611 spin_lock(&ei->i_block_reservation_lock); 1612 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1613 spin_unlock(&ei->i_block_reservation_lock); 1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1615 return -ENOSPC; 1616 } 1617 ei->i_reserved_data_blocks++; 1618 trace_ext4_da_reserve_space(inode); 1619 spin_unlock(&ei->i_block_reservation_lock); 1620 1621 return 0; /* success */ 1622 } 1623 1624 void ext4_da_release_space(struct inode *inode, int to_free) 1625 { 1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1627 struct ext4_inode_info *ei = EXT4_I(inode); 1628 1629 if (!to_free) 1630 return; /* Nothing to release, exit */ 1631 1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1633 1634 trace_ext4_da_release_space(inode, to_free); 1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1636 /* 1637 * if there aren't enough reserved blocks, then the 1638 * counter is messed up somewhere. Since this 1639 * function is called from invalidate page, it's 1640 * harmless to return without any action. 1641 */ 1642 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1643 "ino %lu, to_free %d with only %d reserved " 1644 "data blocks", inode->i_ino, to_free, 1645 ei->i_reserved_data_blocks); 1646 WARN_ON(1); 1647 to_free = ei->i_reserved_data_blocks; 1648 } 1649 ei->i_reserved_data_blocks -= to_free; 1650 1651 /* update fs dirty data blocks counter */ 1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1653 1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1655 1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1657 } 1658 1659 static void ext4_da_page_release_reservation(struct page *page, 1660 unsigned int offset, 1661 unsigned int length) 1662 { 1663 int contiguous_blks = 0; 1664 struct buffer_head *head, *bh; 1665 unsigned int curr_off = 0; 1666 struct inode *inode = page->mapping->host; 1667 unsigned int stop = offset + length; 1668 ext4_fsblk_t lblk; 1669 1670 BUG_ON(stop > PAGE_SIZE || stop < length); 1671 1672 head = page_buffers(page); 1673 bh = head; 1674 do { 1675 unsigned int next_off = curr_off + bh->b_size; 1676 1677 if (next_off > stop) 1678 break; 1679 1680 if ((offset <= curr_off) && (buffer_delay(bh))) { 1681 contiguous_blks++; 1682 clear_buffer_delay(bh); 1683 } else if (contiguous_blks) { 1684 lblk = page->index << 1685 (PAGE_SHIFT - inode->i_blkbits); 1686 lblk += (curr_off >> inode->i_blkbits) - 1687 contiguous_blks; 1688 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1689 contiguous_blks = 0; 1690 } 1691 curr_off = next_off; 1692 } while ((bh = bh->b_this_page) != head); 1693 1694 if (contiguous_blks) { 1695 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1696 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1697 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1698 } 1699 1700 } 1701 1702 /* 1703 * Delayed allocation stuff 1704 */ 1705 1706 struct mpage_da_data { 1707 struct inode *inode; 1708 struct writeback_control *wbc; 1709 1710 pgoff_t first_page; /* The first page to write */ 1711 pgoff_t next_page; /* Current page to examine */ 1712 pgoff_t last_page; /* Last page to examine */ 1713 /* 1714 * Extent to map - this can be after first_page because that can be 1715 * fully mapped. We somewhat abuse m_flags to store whether the extent 1716 * is delalloc or unwritten. 1717 */ 1718 struct ext4_map_blocks map; 1719 struct ext4_io_submit io_submit; /* IO submission data */ 1720 unsigned int do_map:1; 1721 }; 1722 1723 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1724 bool invalidate) 1725 { 1726 int nr_pages, i; 1727 pgoff_t index, end; 1728 struct pagevec pvec; 1729 struct inode *inode = mpd->inode; 1730 struct address_space *mapping = inode->i_mapping; 1731 1732 /* This is necessary when next_page == 0. */ 1733 if (mpd->first_page >= mpd->next_page) 1734 return; 1735 1736 index = mpd->first_page; 1737 end = mpd->next_page - 1; 1738 if (invalidate) { 1739 ext4_lblk_t start, last; 1740 start = index << (PAGE_SHIFT - inode->i_blkbits); 1741 last = end << (PAGE_SHIFT - inode->i_blkbits); 1742 ext4_es_remove_extent(inode, start, last - start + 1); 1743 } 1744 1745 pagevec_init(&pvec); 1746 while (index <= end) { 1747 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1748 if (nr_pages == 0) 1749 break; 1750 for (i = 0; i < nr_pages; i++) { 1751 struct page *page = pvec.pages[i]; 1752 1753 BUG_ON(!PageLocked(page)); 1754 BUG_ON(PageWriteback(page)); 1755 if (invalidate) { 1756 if (page_mapped(page)) 1757 clear_page_dirty_for_io(page); 1758 block_invalidatepage(page, 0, PAGE_SIZE); 1759 ClearPageUptodate(page); 1760 } 1761 unlock_page(page); 1762 } 1763 pagevec_release(&pvec); 1764 } 1765 } 1766 1767 static void ext4_print_free_blocks(struct inode *inode) 1768 { 1769 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1770 struct super_block *sb = inode->i_sb; 1771 struct ext4_inode_info *ei = EXT4_I(inode); 1772 1773 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1774 EXT4_C2B(EXT4_SB(inode->i_sb), 1775 ext4_count_free_clusters(sb))); 1776 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1777 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1778 (long long) EXT4_C2B(EXT4_SB(sb), 1779 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1780 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1781 (long long) EXT4_C2B(EXT4_SB(sb), 1782 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1783 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1784 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1785 ei->i_reserved_data_blocks); 1786 return; 1787 } 1788 1789 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1790 { 1791 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1792 } 1793 1794 /* 1795 * ext4_insert_delayed_block - adds a delayed block to the extents status 1796 * tree, incrementing the reserved cluster/block 1797 * count or making a pending reservation 1798 * where needed 1799 * 1800 * @inode - file containing the newly added block 1801 * @lblk - logical block to be added 1802 * 1803 * Returns 0 on success, negative error code on failure. 1804 */ 1805 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1806 { 1807 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1808 int ret; 1809 bool allocated = false; 1810 1811 /* 1812 * If the cluster containing lblk is shared with a delayed, 1813 * written, or unwritten extent in a bigalloc file system, it's 1814 * already been accounted for and does not need to be reserved. 1815 * A pending reservation must be made for the cluster if it's 1816 * shared with a written or unwritten extent and doesn't already 1817 * have one. Written and unwritten extents can be purged from the 1818 * extents status tree if the system is under memory pressure, so 1819 * it's necessary to examine the extent tree if a search of the 1820 * extents status tree doesn't get a match. 1821 */ 1822 if (sbi->s_cluster_ratio == 1) { 1823 ret = ext4_da_reserve_space(inode); 1824 if (ret != 0) /* ENOSPC */ 1825 goto errout; 1826 } else { /* bigalloc */ 1827 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1828 if (!ext4_es_scan_clu(inode, 1829 &ext4_es_is_mapped, lblk)) { 1830 ret = ext4_clu_mapped(inode, 1831 EXT4_B2C(sbi, lblk)); 1832 if (ret < 0) 1833 goto errout; 1834 if (ret == 0) { 1835 ret = ext4_da_reserve_space(inode); 1836 if (ret != 0) /* ENOSPC */ 1837 goto errout; 1838 } else { 1839 allocated = true; 1840 } 1841 } else { 1842 allocated = true; 1843 } 1844 } 1845 } 1846 1847 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1848 1849 errout: 1850 return ret; 1851 } 1852 1853 /* 1854 * This function is grabs code from the very beginning of 1855 * ext4_map_blocks, but assumes that the caller is from delayed write 1856 * time. This function looks up the requested blocks and sets the 1857 * buffer delay bit under the protection of i_data_sem. 1858 */ 1859 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1860 struct ext4_map_blocks *map, 1861 struct buffer_head *bh) 1862 { 1863 struct extent_status es; 1864 int retval; 1865 sector_t invalid_block = ~((sector_t) 0xffff); 1866 #ifdef ES_AGGRESSIVE_TEST 1867 struct ext4_map_blocks orig_map; 1868 1869 memcpy(&orig_map, map, sizeof(*map)); 1870 #endif 1871 1872 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1873 invalid_block = ~0; 1874 1875 map->m_flags = 0; 1876 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1877 "logical block %lu\n", inode->i_ino, map->m_len, 1878 (unsigned long) map->m_lblk); 1879 1880 /* Lookup extent status tree firstly */ 1881 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1882 if (ext4_es_is_hole(&es)) { 1883 retval = 0; 1884 down_read(&EXT4_I(inode)->i_data_sem); 1885 goto add_delayed; 1886 } 1887 1888 /* 1889 * Delayed extent could be allocated by fallocate. 1890 * So we need to check it. 1891 */ 1892 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1893 map_bh(bh, inode->i_sb, invalid_block); 1894 set_buffer_new(bh); 1895 set_buffer_delay(bh); 1896 return 0; 1897 } 1898 1899 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1900 retval = es.es_len - (iblock - es.es_lblk); 1901 if (retval > map->m_len) 1902 retval = map->m_len; 1903 map->m_len = retval; 1904 if (ext4_es_is_written(&es)) 1905 map->m_flags |= EXT4_MAP_MAPPED; 1906 else if (ext4_es_is_unwritten(&es)) 1907 map->m_flags |= EXT4_MAP_UNWRITTEN; 1908 else 1909 BUG(); 1910 1911 #ifdef ES_AGGRESSIVE_TEST 1912 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1913 #endif 1914 return retval; 1915 } 1916 1917 /* 1918 * Try to see if we can get the block without requesting a new 1919 * file system block. 1920 */ 1921 down_read(&EXT4_I(inode)->i_data_sem); 1922 if (ext4_has_inline_data(inode)) 1923 retval = 0; 1924 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1925 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1926 else 1927 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1928 1929 add_delayed: 1930 if (retval == 0) { 1931 int ret; 1932 1933 /* 1934 * XXX: __block_prepare_write() unmaps passed block, 1935 * is it OK? 1936 */ 1937 1938 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1939 if (ret != 0) { 1940 retval = ret; 1941 goto out_unlock; 1942 } 1943 1944 map_bh(bh, inode->i_sb, invalid_block); 1945 set_buffer_new(bh); 1946 set_buffer_delay(bh); 1947 } else if (retval > 0) { 1948 int ret; 1949 unsigned int status; 1950 1951 if (unlikely(retval != map->m_len)) { 1952 ext4_warning(inode->i_sb, 1953 "ES len assertion failed for inode " 1954 "%lu: retval %d != map->m_len %d", 1955 inode->i_ino, retval, map->m_len); 1956 WARN_ON(1); 1957 } 1958 1959 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1960 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1961 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1962 map->m_pblk, status); 1963 if (ret != 0) 1964 retval = ret; 1965 } 1966 1967 out_unlock: 1968 up_read((&EXT4_I(inode)->i_data_sem)); 1969 1970 return retval; 1971 } 1972 1973 /* 1974 * This is a special get_block_t callback which is used by 1975 * ext4_da_write_begin(). It will either return mapped block or 1976 * reserve space for a single block. 1977 * 1978 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1979 * We also have b_blocknr = -1 and b_bdev initialized properly 1980 * 1981 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1982 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1983 * initialized properly. 1984 */ 1985 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1986 struct buffer_head *bh, int create) 1987 { 1988 struct ext4_map_blocks map; 1989 int ret = 0; 1990 1991 BUG_ON(create == 0); 1992 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1993 1994 map.m_lblk = iblock; 1995 map.m_len = 1; 1996 1997 /* 1998 * first, we need to know whether the block is allocated already 1999 * preallocated blocks are unmapped but should treated 2000 * the same as allocated blocks. 2001 */ 2002 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2003 if (ret <= 0) 2004 return ret; 2005 2006 map_bh(bh, inode->i_sb, map.m_pblk); 2007 ext4_update_bh_state(bh, map.m_flags); 2008 2009 if (buffer_unwritten(bh)) { 2010 /* A delayed write to unwritten bh should be marked 2011 * new and mapped. Mapped ensures that we don't do 2012 * get_block multiple times when we write to the same 2013 * offset and new ensures that we do proper zero out 2014 * for partial write. 2015 */ 2016 set_buffer_new(bh); 2017 set_buffer_mapped(bh); 2018 } 2019 return 0; 2020 } 2021 2022 static int bget_one(handle_t *handle, struct buffer_head *bh) 2023 { 2024 get_bh(bh); 2025 return 0; 2026 } 2027 2028 static int bput_one(handle_t *handle, struct buffer_head *bh) 2029 { 2030 put_bh(bh); 2031 return 0; 2032 } 2033 2034 static int __ext4_journalled_writepage(struct page *page, 2035 unsigned int len) 2036 { 2037 struct address_space *mapping = page->mapping; 2038 struct inode *inode = mapping->host; 2039 struct buffer_head *page_bufs = NULL; 2040 handle_t *handle = NULL; 2041 int ret = 0, err = 0; 2042 int inline_data = ext4_has_inline_data(inode); 2043 struct buffer_head *inode_bh = NULL; 2044 2045 ClearPageChecked(page); 2046 2047 if (inline_data) { 2048 BUG_ON(page->index != 0); 2049 BUG_ON(len > ext4_get_max_inline_size(inode)); 2050 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2051 if (inode_bh == NULL) 2052 goto out; 2053 } else { 2054 page_bufs = page_buffers(page); 2055 if (!page_bufs) { 2056 BUG(); 2057 goto out; 2058 } 2059 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2060 NULL, bget_one); 2061 } 2062 /* 2063 * We need to release the page lock before we start the 2064 * journal, so grab a reference so the page won't disappear 2065 * out from under us. 2066 */ 2067 get_page(page); 2068 unlock_page(page); 2069 2070 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2071 ext4_writepage_trans_blocks(inode)); 2072 if (IS_ERR(handle)) { 2073 ret = PTR_ERR(handle); 2074 put_page(page); 2075 goto out_no_pagelock; 2076 } 2077 BUG_ON(!ext4_handle_valid(handle)); 2078 2079 lock_page(page); 2080 put_page(page); 2081 if (page->mapping != mapping) { 2082 /* The page got truncated from under us */ 2083 ext4_journal_stop(handle); 2084 ret = 0; 2085 goto out; 2086 } 2087 2088 if (inline_data) { 2089 ret = ext4_mark_inode_dirty(handle, inode); 2090 } else { 2091 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2092 do_journal_get_write_access); 2093 2094 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2095 write_end_fn); 2096 } 2097 if (ret == 0) 2098 ret = err; 2099 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2100 err = ext4_journal_stop(handle); 2101 if (!ret) 2102 ret = err; 2103 2104 if (!ext4_has_inline_data(inode)) 2105 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2106 NULL, bput_one); 2107 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2108 out: 2109 unlock_page(page); 2110 out_no_pagelock: 2111 brelse(inode_bh); 2112 return ret; 2113 } 2114 2115 /* 2116 * Note that we don't need to start a transaction unless we're journaling data 2117 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2118 * need to file the inode to the transaction's list in ordered mode because if 2119 * we are writing back data added by write(), the inode is already there and if 2120 * we are writing back data modified via mmap(), no one guarantees in which 2121 * transaction the data will hit the disk. In case we are journaling data, we 2122 * cannot start transaction directly because transaction start ranks above page 2123 * lock so we have to do some magic. 2124 * 2125 * This function can get called via... 2126 * - ext4_writepages after taking page lock (have journal handle) 2127 * - journal_submit_inode_data_buffers (no journal handle) 2128 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2129 * - grab_page_cache when doing write_begin (have journal handle) 2130 * 2131 * We don't do any block allocation in this function. If we have page with 2132 * multiple blocks we need to write those buffer_heads that are mapped. This 2133 * is important for mmaped based write. So if we do with blocksize 1K 2134 * truncate(f, 1024); 2135 * a = mmap(f, 0, 4096); 2136 * a[0] = 'a'; 2137 * truncate(f, 4096); 2138 * we have in the page first buffer_head mapped via page_mkwrite call back 2139 * but other buffer_heads would be unmapped but dirty (dirty done via the 2140 * do_wp_page). So writepage should write the first block. If we modify 2141 * the mmap area beyond 1024 we will again get a page_fault and the 2142 * page_mkwrite callback will do the block allocation and mark the 2143 * buffer_heads mapped. 2144 * 2145 * We redirty the page if we have any buffer_heads that is either delay or 2146 * unwritten in the page. 2147 * 2148 * We can get recursively called as show below. 2149 * 2150 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2151 * ext4_writepage() 2152 * 2153 * But since we don't do any block allocation we should not deadlock. 2154 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2155 */ 2156 static int ext4_writepage(struct page *page, 2157 struct writeback_control *wbc) 2158 { 2159 int ret = 0; 2160 loff_t size; 2161 unsigned int len; 2162 struct buffer_head *page_bufs = NULL; 2163 struct inode *inode = page->mapping->host; 2164 struct ext4_io_submit io_submit; 2165 bool keep_towrite = false; 2166 2167 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2168 ext4_invalidatepage(page, 0, PAGE_SIZE); 2169 unlock_page(page); 2170 return -EIO; 2171 } 2172 2173 trace_ext4_writepage(page); 2174 size = i_size_read(inode); 2175 if (page->index == size >> PAGE_SHIFT && 2176 !ext4_verity_in_progress(inode)) 2177 len = size & ~PAGE_MASK; 2178 else 2179 len = PAGE_SIZE; 2180 2181 page_bufs = page_buffers(page); 2182 /* 2183 * We cannot do block allocation or other extent handling in this 2184 * function. If there are buffers needing that, we have to redirty 2185 * the page. But we may reach here when we do a journal commit via 2186 * journal_submit_inode_data_buffers() and in that case we must write 2187 * allocated buffers to achieve data=ordered mode guarantees. 2188 * 2189 * Also, if there is only one buffer per page (the fs block 2190 * size == the page size), if one buffer needs block 2191 * allocation or needs to modify the extent tree to clear the 2192 * unwritten flag, we know that the page can't be written at 2193 * all, so we might as well refuse the write immediately. 2194 * Unfortunately if the block size != page size, we can't as 2195 * easily detect this case using ext4_walk_page_buffers(), but 2196 * for the extremely common case, this is an optimization that 2197 * skips a useless round trip through ext4_bio_write_page(). 2198 */ 2199 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2200 ext4_bh_delay_or_unwritten)) { 2201 redirty_page_for_writepage(wbc, page); 2202 if ((current->flags & PF_MEMALLOC) || 2203 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2204 /* 2205 * For memory cleaning there's no point in writing only 2206 * some buffers. So just bail out. Warn if we came here 2207 * from direct reclaim. 2208 */ 2209 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2210 == PF_MEMALLOC); 2211 unlock_page(page); 2212 return 0; 2213 } 2214 keep_towrite = true; 2215 } 2216 2217 if (PageChecked(page) && ext4_should_journal_data(inode)) 2218 /* 2219 * It's mmapped pagecache. Add buffers and journal it. There 2220 * doesn't seem much point in redirtying the page here. 2221 */ 2222 return __ext4_journalled_writepage(page, len); 2223 2224 ext4_io_submit_init(&io_submit, wbc); 2225 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2226 if (!io_submit.io_end) { 2227 redirty_page_for_writepage(wbc, page); 2228 unlock_page(page); 2229 return -ENOMEM; 2230 } 2231 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2232 ext4_io_submit(&io_submit); 2233 /* Drop io_end reference we got from init */ 2234 ext4_put_io_end_defer(io_submit.io_end); 2235 return ret; 2236 } 2237 2238 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2239 { 2240 int len; 2241 loff_t size; 2242 int err; 2243 2244 BUG_ON(page->index != mpd->first_page); 2245 clear_page_dirty_for_io(page); 2246 /* 2247 * We have to be very careful here! Nothing protects writeback path 2248 * against i_size changes and the page can be writeably mapped into 2249 * page tables. So an application can be growing i_size and writing 2250 * data through mmap while writeback runs. clear_page_dirty_for_io() 2251 * write-protects our page in page tables and the page cannot get 2252 * written to again until we release page lock. So only after 2253 * clear_page_dirty_for_io() we are safe to sample i_size for 2254 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2255 * on the barrier provided by TestClearPageDirty in 2256 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2257 * after page tables are updated. 2258 */ 2259 size = i_size_read(mpd->inode); 2260 if (page->index == size >> PAGE_SHIFT && 2261 !ext4_verity_in_progress(mpd->inode)) 2262 len = size & ~PAGE_MASK; 2263 else 2264 len = PAGE_SIZE; 2265 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2266 if (!err) 2267 mpd->wbc->nr_to_write--; 2268 mpd->first_page++; 2269 2270 return err; 2271 } 2272 2273 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2274 2275 /* 2276 * mballoc gives us at most this number of blocks... 2277 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2278 * The rest of mballoc seems to handle chunks up to full group size. 2279 */ 2280 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2281 2282 /* 2283 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2284 * 2285 * @mpd - extent of blocks 2286 * @lblk - logical number of the block in the file 2287 * @bh - buffer head we want to add to the extent 2288 * 2289 * The function is used to collect contig. blocks in the same state. If the 2290 * buffer doesn't require mapping for writeback and we haven't started the 2291 * extent of buffers to map yet, the function returns 'true' immediately - the 2292 * caller can write the buffer right away. Otherwise the function returns true 2293 * if the block has been added to the extent, false if the block couldn't be 2294 * added. 2295 */ 2296 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2297 struct buffer_head *bh) 2298 { 2299 struct ext4_map_blocks *map = &mpd->map; 2300 2301 /* Buffer that doesn't need mapping for writeback? */ 2302 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2303 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2304 /* So far no extent to map => we write the buffer right away */ 2305 if (map->m_len == 0) 2306 return true; 2307 return false; 2308 } 2309 2310 /* First block in the extent? */ 2311 if (map->m_len == 0) { 2312 /* We cannot map unless handle is started... */ 2313 if (!mpd->do_map) 2314 return false; 2315 map->m_lblk = lblk; 2316 map->m_len = 1; 2317 map->m_flags = bh->b_state & BH_FLAGS; 2318 return true; 2319 } 2320 2321 /* Don't go larger than mballoc is willing to allocate */ 2322 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2323 return false; 2324 2325 /* Can we merge the block to our big extent? */ 2326 if (lblk == map->m_lblk + map->m_len && 2327 (bh->b_state & BH_FLAGS) == map->m_flags) { 2328 map->m_len++; 2329 return true; 2330 } 2331 return false; 2332 } 2333 2334 /* 2335 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2336 * 2337 * @mpd - extent of blocks for mapping 2338 * @head - the first buffer in the page 2339 * @bh - buffer we should start processing from 2340 * @lblk - logical number of the block in the file corresponding to @bh 2341 * 2342 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2343 * the page for IO if all buffers in this page were mapped and there's no 2344 * accumulated extent of buffers to map or add buffers in the page to the 2345 * extent of buffers to map. The function returns 1 if the caller can continue 2346 * by processing the next page, 0 if it should stop adding buffers to the 2347 * extent to map because we cannot extend it anymore. It can also return value 2348 * < 0 in case of error during IO submission. 2349 */ 2350 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2351 struct buffer_head *head, 2352 struct buffer_head *bh, 2353 ext4_lblk_t lblk) 2354 { 2355 struct inode *inode = mpd->inode; 2356 int err; 2357 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2358 >> inode->i_blkbits; 2359 2360 if (ext4_verity_in_progress(inode)) 2361 blocks = EXT_MAX_BLOCKS; 2362 2363 do { 2364 BUG_ON(buffer_locked(bh)); 2365 2366 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2367 /* Found extent to map? */ 2368 if (mpd->map.m_len) 2369 return 0; 2370 /* Buffer needs mapping and handle is not started? */ 2371 if (!mpd->do_map) 2372 return 0; 2373 /* Everything mapped so far and we hit EOF */ 2374 break; 2375 } 2376 } while (lblk++, (bh = bh->b_this_page) != head); 2377 /* So far everything mapped? Submit the page for IO. */ 2378 if (mpd->map.m_len == 0) { 2379 err = mpage_submit_page(mpd, head->b_page); 2380 if (err < 0) 2381 return err; 2382 } 2383 return lblk < blocks; 2384 } 2385 2386 /* 2387 * mpage_map_buffers - update buffers corresponding to changed extent and 2388 * submit fully mapped pages for IO 2389 * 2390 * @mpd - description of extent to map, on return next extent to map 2391 * 2392 * Scan buffers corresponding to changed extent (we expect corresponding pages 2393 * to be already locked) and update buffer state according to new extent state. 2394 * We map delalloc buffers to their physical location, clear unwritten bits, 2395 * and mark buffers as uninit when we perform writes to unwritten extents 2396 * and do extent conversion after IO is finished. If the last page is not fully 2397 * mapped, we update @map to the next extent in the last page that needs 2398 * mapping. Otherwise we submit the page for IO. 2399 */ 2400 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2401 { 2402 struct pagevec pvec; 2403 int nr_pages, i; 2404 struct inode *inode = mpd->inode; 2405 struct buffer_head *head, *bh; 2406 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2407 pgoff_t start, end; 2408 ext4_lblk_t lblk; 2409 sector_t pblock; 2410 int err; 2411 2412 start = mpd->map.m_lblk >> bpp_bits; 2413 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2414 lblk = start << bpp_bits; 2415 pblock = mpd->map.m_pblk; 2416 2417 pagevec_init(&pvec); 2418 while (start <= end) { 2419 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2420 &start, end); 2421 if (nr_pages == 0) 2422 break; 2423 for (i = 0; i < nr_pages; i++) { 2424 struct page *page = pvec.pages[i]; 2425 2426 bh = head = page_buffers(page); 2427 do { 2428 if (lblk < mpd->map.m_lblk) 2429 continue; 2430 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2431 /* 2432 * Buffer after end of mapped extent. 2433 * Find next buffer in the page to map. 2434 */ 2435 mpd->map.m_len = 0; 2436 mpd->map.m_flags = 0; 2437 /* 2438 * FIXME: If dioread_nolock supports 2439 * blocksize < pagesize, we need to make 2440 * sure we add size mapped so far to 2441 * io_end->size as the following call 2442 * can submit the page for IO. 2443 */ 2444 err = mpage_process_page_bufs(mpd, head, 2445 bh, lblk); 2446 pagevec_release(&pvec); 2447 if (err > 0) 2448 err = 0; 2449 return err; 2450 } 2451 if (buffer_delay(bh)) { 2452 clear_buffer_delay(bh); 2453 bh->b_blocknr = pblock++; 2454 } 2455 clear_buffer_unwritten(bh); 2456 } while (lblk++, (bh = bh->b_this_page) != head); 2457 2458 /* 2459 * FIXME: This is going to break if dioread_nolock 2460 * supports blocksize < pagesize as we will try to 2461 * convert potentially unmapped parts of inode. 2462 */ 2463 mpd->io_submit.io_end->size += PAGE_SIZE; 2464 /* Page fully mapped - let IO run! */ 2465 err = mpage_submit_page(mpd, page); 2466 if (err < 0) { 2467 pagevec_release(&pvec); 2468 return err; 2469 } 2470 } 2471 pagevec_release(&pvec); 2472 } 2473 /* Extent fully mapped and matches with page boundary. We are done. */ 2474 mpd->map.m_len = 0; 2475 mpd->map.m_flags = 0; 2476 return 0; 2477 } 2478 2479 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2480 { 2481 struct inode *inode = mpd->inode; 2482 struct ext4_map_blocks *map = &mpd->map; 2483 int get_blocks_flags; 2484 int err, dioread_nolock; 2485 2486 trace_ext4_da_write_pages_extent(inode, map); 2487 /* 2488 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2489 * to convert an unwritten extent to be initialized (in the case 2490 * where we have written into one or more preallocated blocks). It is 2491 * possible that we're going to need more metadata blocks than 2492 * previously reserved. However we must not fail because we're in 2493 * writeback and there is nothing we can do about it so it might result 2494 * in data loss. So use reserved blocks to allocate metadata if 2495 * possible. 2496 * 2497 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2498 * the blocks in question are delalloc blocks. This indicates 2499 * that the blocks and quotas has already been checked when 2500 * the data was copied into the page cache. 2501 */ 2502 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2503 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2504 EXT4_GET_BLOCKS_IO_SUBMIT; 2505 dioread_nolock = ext4_should_dioread_nolock(inode); 2506 if (dioread_nolock) 2507 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2508 if (map->m_flags & (1 << BH_Delay)) 2509 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2510 2511 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2512 if (err < 0) 2513 return err; 2514 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2515 if (!mpd->io_submit.io_end->handle && 2516 ext4_handle_valid(handle)) { 2517 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2518 handle->h_rsv_handle = NULL; 2519 } 2520 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2521 } 2522 2523 BUG_ON(map->m_len == 0); 2524 return 0; 2525 } 2526 2527 /* 2528 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2529 * mpd->len and submit pages underlying it for IO 2530 * 2531 * @handle - handle for journal operations 2532 * @mpd - extent to map 2533 * @give_up_on_write - we set this to true iff there is a fatal error and there 2534 * is no hope of writing the data. The caller should discard 2535 * dirty pages to avoid infinite loops. 2536 * 2537 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2538 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2539 * them to initialized or split the described range from larger unwritten 2540 * extent. Note that we need not map all the described range since allocation 2541 * can return less blocks or the range is covered by more unwritten extents. We 2542 * cannot map more because we are limited by reserved transaction credits. On 2543 * the other hand we always make sure that the last touched page is fully 2544 * mapped so that it can be written out (and thus forward progress is 2545 * guaranteed). After mapping we submit all mapped pages for IO. 2546 */ 2547 static int mpage_map_and_submit_extent(handle_t *handle, 2548 struct mpage_da_data *mpd, 2549 bool *give_up_on_write) 2550 { 2551 struct inode *inode = mpd->inode; 2552 struct ext4_map_blocks *map = &mpd->map; 2553 int err; 2554 loff_t disksize; 2555 int progress = 0; 2556 2557 mpd->io_submit.io_end->offset = 2558 ((loff_t)map->m_lblk) << inode->i_blkbits; 2559 do { 2560 err = mpage_map_one_extent(handle, mpd); 2561 if (err < 0) { 2562 struct super_block *sb = inode->i_sb; 2563 2564 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2565 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2566 goto invalidate_dirty_pages; 2567 /* 2568 * Let the uper layers retry transient errors. 2569 * In the case of ENOSPC, if ext4_count_free_blocks() 2570 * is non-zero, a commit should free up blocks. 2571 */ 2572 if ((err == -ENOMEM) || 2573 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2574 if (progress) 2575 goto update_disksize; 2576 return err; 2577 } 2578 ext4_msg(sb, KERN_CRIT, 2579 "Delayed block allocation failed for " 2580 "inode %lu at logical offset %llu with" 2581 " max blocks %u with error %d", 2582 inode->i_ino, 2583 (unsigned long long)map->m_lblk, 2584 (unsigned)map->m_len, -err); 2585 ext4_msg(sb, KERN_CRIT, 2586 "This should not happen!! Data will " 2587 "be lost\n"); 2588 if (err == -ENOSPC) 2589 ext4_print_free_blocks(inode); 2590 invalidate_dirty_pages: 2591 *give_up_on_write = true; 2592 return err; 2593 } 2594 progress = 1; 2595 /* 2596 * Update buffer state, submit mapped pages, and get us new 2597 * extent to map 2598 */ 2599 err = mpage_map_and_submit_buffers(mpd); 2600 if (err < 0) 2601 goto update_disksize; 2602 } while (map->m_len); 2603 2604 update_disksize: 2605 /* 2606 * Update on-disk size after IO is submitted. Races with 2607 * truncate are avoided by checking i_size under i_data_sem. 2608 */ 2609 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2610 if (disksize > EXT4_I(inode)->i_disksize) { 2611 int err2; 2612 loff_t i_size; 2613 2614 down_write(&EXT4_I(inode)->i_data_sem); 2615 i_size = i_size_read(inode); 2616 if (disksize > i_size) 2617 disksize = i_size; 2618 if (disksize > EXT4_I(inode)->i_disksize) 2619 EXT4_I(inode)->i_disksize = disksize; 2620 up_write(&EXT4_I(inode)->i_data_sem); 2621 err2 = ext4_mark_inode_dirty(handle, inode); 2622 if (err2) 2623 ext4_error(inode->i_sb, 2624 "Failed to mark inode %lu dirty", 2625 inode->i_ino); 2626 if (!err) 2627 err = err2; 2628 } 2629 return err; 2630 } 2631 2632 /* 2633 * Calculate the total number of credits to reserve for one writepages 2634 * iteration. This is called from ext4_writepages(). We map an extent of 2635 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2636 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2637 * bpp - 1 blocks in bpp different extents. 2638 */ 2639 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2640 { 2641 int bpp = ext4_journal_blocks_per_page(inode); 2642 2643 return ext4_meta_trans_blocks(inode, 2644 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2645 } 2646 2647 /* 2648 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2649 * and underlying extent to map 2650 * 2651 * @mpd - where to look for pages 2652 * 2653 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2654 * IO immediately. When we find a page which isn't mapped we start accumulating 2655 * extent of buffers underlying these pages that needs mapping (formed by 2656 * either delayed or unwritten buffers). We also lock the pages containing 2657 * these buffers. The extent found is returned in @mpd structure (starting at 2658 * mpd->lblk with length mpd->len blocks). 2659 * 2660 * Note that this function can attach bios to one io_end structure which are 2661 * neither logically nor physically contiguous. Although it may seem as an 2662 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2663 * case as we need to track IO to all buffers underlying a page in one io_end. 2664 */ 2665 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2666 { 2667 struct address_space *mapping = mpd->inode->i_mapping; 2668 struct pagevec pvec; 2669 unsigned int nr_pages; 2670 long left = mpd->wbc->nr_to_write; 2671 pgoff_t index = mpd->first_page; 2672 pgoff_t end = mpd->last_page; 2673 xa_mark_t tag; 2674 int i, err = 0; 2675 int blkbits = mpd->inode->i_blkbits; 2676 ext4_lblk_t lblk; 2677 struct buffer_head *head; 2678 2679 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2680 tag = PAGECACHE_TAG_TOWRITE; 2681 else 2682 tag = PAGECACHE_TAG_DIRTY; 2683 2684 pagevec_init(&pvec); 2685 mpd->map.m_len = 0; 2686 mpd->next_page = index; 2687 while (index <= end) { 2688 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2689 tag); 2690 if (nr_pages == 0) 2691 goto out; 2692 2693 for (i = 0; i < nr_pages; i++) { 2694 struct page *page = pvec.pages[i]; 2695 2696 /* 2697 * Accumulated enough dirty pages? This doesn't apply 2698 * to WB_SYNC_ALL mode. For integrity sync we have to 2699 * keep going because someone may be concurrently 2700 * dirtying pages, and we might have synced a lot of 2701 * newly appeared dirty pages, but have not synced all 2702 * of the old dirty pages. 2703 */ 2704 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2705 goto out; 2706 2707 /* If we can't merge this page, we are done. */ 2708 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2709 goto out; 2710 2711 lock_page(page); 2712 /* 2713 * If the page is no longer dirty, or its mapping no 2714 * longer corresponds to inode we are writing (which 2715 * means it has been truncated or invalidated), or the 2716 * page is already under writeback and we are not doing 2717 * a data integrity writeback, skip the page 2718 */ 2719 if (!PageDirty(page) || 2720 (PageWriteback(page) && 2721 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2722 unlikely(page->mapping != mapping)) { 2723 unlock_page(page); 2724 continue; 2725 } 2726 2727 wait_on_page_writeback(page); 2728 BUG_ON(PageWriteback(page)); 2729 2730 if (mpd->map.m_len == 0) 2731 mpd->first_page = page->index; 2732 mpd->next_page = page->index + 1; 2733 /* Add all dirty buffers to mpd */ 2734 lblk = ((ext4_lblk_t)page->index) << 2735 (PAGE_SHIFT - blkbits); 2736 head = page_buffers(page); 2737 err = mpage_process_page_bufs(mpd, head, head, lblk); 2738 if (err <= 0) 2739 goto out; 2740 err = 0; 2741 left--; 2742 } 2743 pagevec_release(&pvec); 2744 cond_resched(); 2745 } 2746 return 0; 2747 out: 2748 pagevec_release(&pvec); 2749 return err; 2750 } 2751 2752 static int ext4_writepages(struct address_space *mapping, 2753 struct writeback_control *wbc) 2754 { 2755 pgoff_t writeback_index = 0; 2756 long nr_to_write = wbc->nr_to_write; 2757 int range_whole = 0; 2758 int cycled = 1; 2759 handle_t *handle = NULL; 2760 struct mpage_da_data mpd; 2761 struct inode *inode = mapping->host; 2762 int needed_blocks, rsv_blocks = 0, ret = 0; 2763 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2764 bool done; 2765 struct blk_plug plug; 2766 bool give_up_on_write = false; 2767 2768 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2769 return -EIO; 2770 2771 percpu_down_read(&sbi->s_journal_flag_rwsem); 2772 trace_ext4_writepages(inode, wbc); 2773 2774 /* 2775 * No pages to write? This is mainly a kludge to avoid starting 2776 * a transaction for special inodes like journal inode on last iput() 2777 * because that could violate lock ordering on umount 2778 */ 2779 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2780 goto out_writepages; 2781 2782 if (ext4_should_journal_data(inode)) { 2783 ret = generic_writepages(mapping, wbc); 2784 goto out_writepages; 2785 } 2786 2787 /* 2788 * If the filesystem has aborted, it is read-only, so return 2789 * right away instead of dumping stack traces later on that 2790 * will obscure the real source of the problem. We test 2791 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2792 * the latter could be true if the filesystem is mounted 2793 * read-only, and in that case, ext4_writepages should 2794 * *never* be called, so if that ever happens, we would want 2795 * the stack trace. 2796 */ 2797 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2798 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2799 ret = -EROFS; 2800 goto out_writepages; 2801 } 2802 2803 if (ext4_should_dioread_nolock(inode)) { 2804 /* 2805 * We may need to convert up to one extent per block in 2806 * the page and we may dirty the inode. 2807 */ 2808 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2809 PAGE_SIZE >> inode->i_blkbits); 2810 } 2811 2812 /* 2813 * If we have inline data and arrive here, it means that 2814 * we will soon create the block for the 1st page, so 2815 * we'd better clear the inline data here. 2816 */ 2817 if (ext4_has_inline_data(inode)) { 2818 /* Just inode will be modified... */ 2819 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2820 if (IS_ERR(handle)) { 2821 ret = PTR_ERR(handle); 2822 goto out_writepages; 2823 } 2824 BUG_ON(ext4_test_inode_state(inode, 2825 EXT4_STATE_MAY_INLINE_DATA)); 2826 ext4_destroy_inline_data(handle, inode); 2827 ext4_journal_stop(handle); 2828 } 2829 2830 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2831 range_whole = 1; 2832 2833 if (wbc->range_cyclic) { 2834 writeback_index = mapping->writeback_index; 2835 if (writeback_index) 2836 cycled = 0; 2837 mpd.first_page = writeback_index; 2838 mpd.last_page = -1; 2839 } else { 2840 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2841 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2842 } 2843 2844 mpd.inode = inode; 2845 mpd.wbc = wbc; 2846 ext4_io_submit_init(&mpd.io_submit, wbc); 2847 retry: 2848 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2849 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2850 done = false; 2851 blk_start_plug(&plug); 2852 2853 /* 2854 * First writeback pages that don't need mapping - we can avoid 2855 * starting a transaction unnecessarily and also avoid being blocked 2856 * in the block layer on device congestion while having transaction 2857 * started. 2858 */ 2859 mpd.do_map = 0; 2860 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2861 if (!mpd.io_submit.io_end) { 2862 ret = -ENOMEM; 2863 goto unplug; 2864 } 2865 ret = mpage_prepare_extent_to_map(&mpd); 2866 /* Unlock pages we didn't use */ 2867 mpage_release_unused_pages(&mpd, false); 2868 /* Submit prepared bio */ 2869 ext4_io_submit(&mpd.io_submit); 2870 ext4_put_io_end_defer(mpd.io_submit.io_end); 2871 mpd.io_submit.io_end = NULL; 2872 if (ret < 0) 2873 goto unplug; 2874 2875 while (!done && mpd.first_page <= mpd.last_page) { 2876 /* For each extent of pages we use new io_end */ 2877 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2878 if (!mpd.io_submit.io_end) { 2879 ret = -ENOMEM; 2880 break; 2881 } 2882 2883 /* 2884 * We have two constraints: We find one extent to map and we 2885 * must always write out whole page (makes a difference when 2886 * blocksize < pagesize) so that we don't block on IO when we 2887 * try to write out the rest of the page. Journalled mode is 2888 * not supported by delalloc. 2889 */ 2890 BUG_ON(ext4_should_journal_data(inode)); 2891 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2892 2893 /* start a new transaction */ 2894 handle = ext4_journal_start_with_reserve(inode, 2895 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2896 if (IS_ERR(handle)) { 2897 ret = PTR_ERR(handle); 2898 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2899 "%ld pages, ino %lu; err %d", __func__, 2900 wbc->nr_to_write, inode->i_ino, ret); 2901 /* Release allocated io_end */ 2902 ext4_put_io_end(mpd.io_submit.io_end); 2903 mpd.io_submit.io_end = NULL; 2904 break; 2905 } 2906 mpd.do_map = 1; 2907 2908 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2909 ret = mpage_prepare_extent_to_map(&mpd); 2910 if (!ret) { 2911 if (mpd.map.m_len) 2912 ret = mpage_map_and_submit_extent(handle, &mpd, 2913 &give_up_on_write); 2914 else { 2915 /* 2916 * We scanned the whole range (or exhausted 2917 * nr_to_write), submitted what was mapped and 2918 * didn't find anything needing mapping. We are 2919 * done. 2920 */ 2921 done = true; 2922 } 2923 } 2924 /* 2925 * Caution: If the handle is synchronous, 2926 * ext4_journal_stop() can wait for transaction commit 2927 * to finish which may depend on writeback of pages to 2928 * complete or on page lock to be released. In that 2929 * case, we have to wait until after after we have 2930 * submitted all the IO, released page locks we hold, 2931 * and dropped io_end reference (for extent conversion 2932 * to be able to complete) before stopping the handle. 2933 */ 2934 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2935 ext4_journal_stop(handle); 2936 handle = NULL; 2937 mpd.do_map = 0; 2938 } 2939 /* Unlock pages we didn't use */ 2940 mpage_release_unused_pages(&mpd, give_up_on_write); 2941 /* Submit prepared bio */ 2942 ext4_io_submit(&mpd.io_submit); 2943 2944 /* 2945 * Drop our io_end reference we got from init. We have 2946 * to be careful and use deferred io_end finishing if 2947 * we are still holding the transaction as we can 2948 * release the last reference to io_end which may end 2949 * up doing unwritten extent conversion. 2950 */ 2951 if (handle) { 2952 ext4_put_io_end_defer(mpd.io_submit.io_end); 2953 ext4_journal_stop(handle); 2954 } else 2955 ext4_put_io_end(mpd.io_submit.io_end); 2956 mpd.io_submit.io_end = NULL; 2957 2958 if (ret == -ENOSPC && sbi->s_journal) { 2959 /* 2960 * Commit the transaction which would 2961 * free blocks released in the transaction 2962 * and try again 2963 */ 2964 jbd2_journal_force_commit_nested(sbi->s_journal); 2965 ret = 0; 2966 continue; 2967 } 2968 /* Fatal error - ENOMEM, EIO... */ 2969 if (ret) 2970 break; 2971 } 2972 unplug: 2973 blk_finish_plug(&plug); 2974 if (!ret && !cycled && wbc->nr_to_write > 0) { 2975 cycled = 1; 2976 mpd.last_page = writeback_index - 1; 2977 mpd.first_page = 0; 2978 goto retry; 2979 } 2980 2981 /* Update index */ 2982 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2983 /* 2984 * Set the writeback_index so that range_cyclic 2985 * mode will write it back later 2986 */ 2987 mapping->writeback_index = mpd.first_page; 2988 2989 out_writepages: 2990 trace_ext4_writepages_result(inode, wbc, ret, 2991 nr_to_write - wbc->nr_to_write); 2992 percpu_up_read(&sbi->s_journal_flag_rwsem); 2993 return ret; 2994 } 2995 2996 static int ext4_dax_writepages(struct address_space *mapping, 2997 struct writeback_control *wbc) 2998 { 2999 int ret; 3000 long nr_to_write = wbc->nr_to_write; 3001 struct inode *inode = mapping->host; 3002 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 3003 3004 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3005 return -EIO; 3006 3007 percpu_down_read(&sbi->s_journal_flag_rwsem); 3008 trace_ext4_writepages(inode, wbc); 3009 3010 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 3011 trace_ext4_writepages_result(inode, wbc, ret, 3012 nr_to_write - wbc->nr_to_write); 3013 percpu_up_read(&sbi->s_journal_flag_rwsem); 3014 return ret; 3015 } 3016 3017 static int ext4_nonda_switch(struct super_block *sb) 3018 { 3019 s64 free_clusters, dirty_clusters; 3020 struct ext4_sb_info *sbi = EXT4_SB(sb); 3021 3022 /* 3023 * switch to non delalloc mode if we are running low 3024 * on free block. The free block accounting via percpu 3025 * counters can get slightly wrong with percpu_counter_batch getting 3026 * accumulated on each CPU without updating global counters 3027 * Delalloc need an accurate free block accounting. So switch 3028 * to non delalloc when we are near to error range. 3029 */ 3030 free_clusters = 3031 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3032 dirty_clusters = 3033 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3034 /* 3035 * Start pushing delalloc when 1/2 of free blocks are dirty. 3036 */ 3037 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3038 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3039 3040 if (2 * free_clusters < 3 * dirty_clusters || 3041 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3042 /* 3043 * free block count is less than 150% of dirty blocks 3044 * or free blocks is less than watermark 3045 */ 3046 return 1; 3047 } 3048 return 0; 3049 } 3050 3051 /* We always reserve for an inode update; the superblock could be there too */ 3052 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3053 { 3054 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3055 return 1; 3056 3057 if (pos + len <= 0x7fffffffULL) 3058 return 1; 3059 3060 /* We might need to update the superblock to set LARGE_FILE */ 3061 return 2; 3062 } 3063 3064 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3065 loff_t pos, unsigned len, unsigned flags, 3066 struct page **pagep, void **fsdata) 3067 { 3068 int ret, retries = 0; 3069 struct page *page; 3070 pgoff_t index; 3071 struct inode *inode = mapping->host; 3072 handle_t *handle; 3073 3074 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3075 return -EIO; 3076 3077 index = pos >> PAGE_SHIFT; 3078 3079 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 3080 ext4_verity_in_progress(inode)) { 3081 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3082 return ext4_write_begin(file, mapping, pos, 3083 len, flags, pagep, fsdata); 3084 } 3085 *fsdata = (void *)0; 3086 trace_ext4_da_write_begin(inode, pos, len, flags); 3087 3088 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3089 ret = ext4_da_write_inline_data_begin(mapping, inode, 3090 pos, len, flags, 3091 pagep, fsdata); 3092 if (ret < 0) 3093 return ret; 3094 if (ret == 1) 3095 return 0; 3096 } 3097 3098 /* 3099 * grab_cache_page_write_begin() can take a long time if the 3100 * system is thrashing due to memory pressure, or if the page 3101 * is being written back. So grab it first before we start 3102 * the transaction handle. This also allows us to allocate 3103 * the page (if needed) without using GFP_NOFS. 3104 */ 3105 retry_grab: 3106 page = grab_cache_page_write_begin(mapping, index, flags); 3107 if (!page) 3108 return -ENOMEM; 3109 unlock_page(page); 3110 3111 /* 3112 * With delayed allocation, we don't log the i_disksize update 3113 * if there is delayed block allocation. But we still need 3114 * to journalling the i_disksize update if writes to the end 3115 * of file which has an already mapped buffer. 3116 */ 3117 retry_journal: 3118 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3119 ext4_da_write_credits(inode, pos, len)); 3120 if (IS_ERR(handle)) { 3121 put_page(page); 3122 return PTR_ERR(handle); 3123 } 3124 3125 lock_page(page); 3126 if (page->mapping != mapping) { 3127 /* The page got truncated from under us */ 3128 unlock_page(page); 3129 put_page(page); 3130 ext4_journal_stop(handle); 3131 goto retry_grab; 3132 } 3133 /* In case writeback began while the page was unlocked */ 3134 wait_for_stable_page(page); 3135 3136 #ifdef CONFIG_FS_ENCRYPTION 3137 ret = ext4_block_write_begin(page, pos, len, 3138 ext4_da_get_block_prep); 3139 #else 3140 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3141 #endif 3142 if (ret < 0) { 3143 unlock_page(page); 3144 ext4_journal_stop(handle); 3145 /* 3146 * block_write_begin may have instantiated a few blocks 3147 * outside i_size. Trim these off again. Don't need 3148 * i_size_read because we hold i_mutex. 3149 */ 3150 if (pos + len > inode->i_size) 3151 ext4_truncate_failed_write(inode); 3152 3153 if (ret == -ENOSPC && 3154 ext4_should_retry_alloc(inode->i_sb, &retries)) 3155 goto retry_journal; 3156 3157 put_page(page); 3158 return ret; 3159 } 3160 3161 *pagep = page; 3162 return ret; 3163 } 3164 3165 /* 3166 * Check if we should update i_disksize 3167 * when write to the end of file but not require block allocation 3168 */ 3169 static int ext4_da_should_update_i_disksize(struct page *page, 3170 unsigned long offset) 3171 { 3172 struct buffer_head *bh; 3173 struct inode *inode = page->mapping->host; 3174 unsigned int idx; 3175 int i; 3176 3177 bh = page_buffers(page); 3178 idx = offset >> inode->i_blkbits; 3179 3180 for (i = 0; i < idx; i++) 3181 bh = bh->b_this_page; 3182 3183 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3184 return 0; 3185 return 1; 3186 } 3187 3188 static int ext4_da_write_end(struct file *file, 3189 struct address_space *mapping, 3190 loff_t pos, unsigned len, unsigned copied, 3191 struct page *page, void *fsdata) 3192 { 3193 struct inode *inode = mapping->host; 3194 int ret = 0, ret2; 3195 handle_t *handle = ext4_journal_current_handle(); 3196 loff_t new_i_size; 3197 unsigned long start, end; 3198 int write_mode = (int)(unsigned long)fsdata; 3199 3200 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3201 return ext4_write_end(file, mapping, pos, 3202 len, copied, page, fsdata); 3203 3204 trace_ext4_da_write_end(inode, pos, len, copied); 3205 start = pos & (PAGE_SIZE - 1); 3206 end = start + copied - 1; 3207 3208 /* 3209 * generic_write_end() will run mark_inode_dirty() if i_size 3210 * changes. So let's piggyback the i_disksize mark_inode_dirty 3211 * into that. 3212 */ 3213 new_i_size = pos + copied; 3214 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3215 if (ext4_has_inline_data(inode) || 3216 ext4_da_should_update_i_disksize(page, end)) { 3217 ext4_update_i_disksize(inode, new_i_size); 3218 /* We need to mark inode dirty even if 3219 * new_i_size is less that inode->i_size 3220 * bu greater than i_disksize.(hint delalloc) 3221 */ 3222 ext4_mark_inode_dirty(handle, inode); 3223 } 3224 } 3225 3226 if (write_mode != CONVERT_INLINE_DATA && 3227 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3228 ext4_has_inline_data(inode)) 3229 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3230 page); 3231 else 3232 ret2 = generic_write_end(file, mapping, pos, len, copied, 3233 page, fsdata); 3234 3235 copied = ret2; 3236 if (ret2 < 0) 3237 ret = ret2; 3238 ret2 = ext4_journal_stop(handle); 3239 if (!ret) 3240 ret = ret2; 3241 3242 return ret ? ret : copied; 3243 } 3244 3245 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3246 unsigned int length) 3247 { 3248 /* 3249 * Drop reserved blocks 3250 */ 3251 BUG_ON(!PageLocked(page)); 3252 if (!page_has_buffers(page)) 3253 goto out; 3254 3255 ext4_da_page_release_reservation(page, offset, length); 3256 3257 out: 3258 ext4_invalidatepage(page, offset, length); 3259 3260 return; 3261 } 3262 3263 /* 3264 * Force all delayed allocation blocks to be allocated for a given inode. 3265 */ 3266 int ext4_alloc_da_blocks(struct inode *inode) 3267 { 3268 trace_ext4_alloc_da_blocks(inode); 3269 3270 if (!EXT4_I(inode)->i_reserved_data_blocks) 3271 return 0; 3272 3273 /* 3274 * We do something simple for now. The filemap_flush() will 3275 * also start triggering a write of the data blocks, which is 3276 * not strictly speaking necessary (and for users of 3277 * laptop_mode, not even desirable). However, to do otherwise 3278 * would require replicating code paths in: 3279 * 3280 * ext4_writepages() -> 3281 * write_cache_pages() ---> (via passed in callback function) 3282 * __mpage_da_writepage() --> 3283 * mpage_add_bh_to_extent() 3284 * mpage_da_map_blocks() 3285 * 3286 * The problem is that write_cache_pages(), located in 3287 * mm/page-writeback.c, marks pages clean in preparation for 3288 * doing I/O, which is not desirable if we're not planning on 3289 * doing I/O at all. 3290 * 3291 * We could call write_cache_pages(), and then redirty all of 3292 * the pages by calling redirty_page_for_writepage() but that 3293 * would be ugly in the extreme. So instead we would need to 3294 * replicate parts of the code in the above functions, 3295 * simplifying them because we wouldn't actually intend to 3296 * write out the pages, but rather only collect contiguous 3297 * logical block extents, call the multi-block allocator, and 3298 * then update the buffer heads with the block allocations. 3299 * 3300 * For now, though, we'll cheat by calling filemap_flush(), 3301 * which will map the blocks, and start the I/O, but not 3302 * actually wait for the I/O to complete. 3303 */ 3304 return filemap_flush(inode->i_mapping); 3305 } 3306 3307 /* 3308 * bmap() is special. It gets used by applications such as lilo and by 3309 * the swapper to find the on-disk block of a specific piece of data. 3310 * 3311 * Naturally, this is dangerous if the block concerned is still in the 3312 * journal. If somebody makes a swapfile on an ext4 data-journaling 3313 * filesystem and enables swap, then they may get a nasty shock when the 3314 * data getting swapped to that swapfile suddenly gets overwritten by 3315 * the original zero's written out previously to the journal and 3316 * awaiting writeback in the kernel's buffer cache. 3317 * 3318 * So, if we see any bmap calls here on a modified, data-journaled file, 3319 * take extra steps to flush any blocks which might be in the cache. 3320 */ 3321 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3322 { 3323 struct inode *inode = mapping->host; 3324 journal_t *journal; 3325 int err; 3326 3327 /* 3328 * We can get here for an inline file via the FIBMAP ioctl 3329 */ 3330 if (ext4_has_inline_data(inode)) 3331 return 0; 3332 3333 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3334 test_opt(inode->i_sb, DELALLOC)) { 3335 /* 3336 * With delalloc we want to sync the file 3337 * so that we can make sure we allocate 3338 * blocks for file 3339 */ 3340 filemap_write_and_wait(mapping); 3341 } 3342 3343 if (EXT4_JOURNAL(inode) && 3344 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3345 /* 3346 * This is a REALLY heavyweight approach, but the use of 3347 * bmap on dirty files is expected to be extremely rare: 3348 * only if we run lilo or swapon on a freshly made file 3349 * do we expect this to happen. 3350 * 3351 * (bmap requires CAP_SYS_RAWIO so this does not 3352 * represent an unprivileged user DOS attack --- we'd be 3353 * in trouble if mortal users could trigger this path at 3354 * will.) 3355 * 3356 * NB. EXT4_STATE_JDATA is not set on files other than 3357 * regular files. If somebody wants to bmap a directory 3358 * or symlink and gets confused because the buffer 3359 * hasn't yet been flushed to disk, they deserve 3360 * everything they get. 3361 */ 3362 3363 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3364 journal = EXT4_JOURNAL(inode); 3365 jbd2_journal_lock_updates(journal); 3366 err = jbd2_journal_flush(journal); 3367 jbd2_journal_unlock_updates(journal); 3368 3369 if (err) 3370 return 0; 3371 } 3372 3373 return generic_block_bmap(mapping, block, ext4_get_block); 3374 } 3375 3376 static int ext4_readpage(struct file *file, struct page *page) 3377 { 3378 int ret = -EAGAIN; 3379 struct inode *inode = page->mapping->host; 3380 3381 trace_ext4_readpage(page); 3382 3383 if (ext4_has_inline_data(inode)) 3384 ret = ext4_readpage_inline(inode, page); 3385 3386 if (ret == -EAGAIN) 3387 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3388 false); 3389 3390 return ret; 3391 } 3392 3393 static int 3394 ext4_readpages(struct file *file, struct address_space *mapping, 3395 struct list_head *pages, unsigned nr_pages) 3396 { 3397 struct inode *inode = mapping->host; 3398 3399 /* If the file has inline data, no need to do readpages. */ 3400 if (ext4_has_inline_data(inode)) 3401 return 0; 3402 3403 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3404 } 3405 3406 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3407 unsigned int length) 3408 { 3409 trace_ext4_invalidatepage(page, offset, length); 3410 3411 /* No journalling happens on data buffers when this function is used */ 3412 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3413 3414 block_invalidatepage(page, offset, length); 3415 } 3416 3417 static int __ext4_journalled_invalidatepage(struct page *page, 3418 unsigned int offset, 3419 unsigned int length) 3420 { 3421 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3422 3423 trace_ext4_journalled_invalidatepage(page, offset, length); 3424 3425 /* 3426 * If it's a full truncate we just forget about the pending dirtying 3427 */ 3428 if (offset == 0 && length == PAGE_SIZE) 3429 ClearPageChecked(page); 3430 3431 return jbd2_journal_invalidatepage(journal, page, offset, length); 3432 } 3433 3434 /* Wrapper for aops... */ 3435 static void ext4_journalled_invalidatepage(struct page *page, 3436 unsigned int offset, 3437 unsigned int length) 3438 { 3439 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3440 } 3441 3442 static int ext4_releasepage(struct page *page, gfp_t wait) 3443 { 3444 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3445 3446 trace_ext4_releasepage(page); 3447 3448 /* Page has dirty journalled data -> cannot release */ 3449 if (PageChecked(page)) 3450 return 0; 3451 if (journal) 3452 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3453 else 3454 return try_to_free_buffers(page); 3455 } 3456 3457 static bool ext4_inode_datasync_dirty(struct inode *inode) 3458 { 3459 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3460 3461 if (journal) 3462 return !jbd2_transaction_committed(journal, 3463 EXT4_I(inode)->i_datasync_tid); 3464 /* Any metadata buffers to write? */ 3465 if (!list_empty(&inode->i_mapping->private_list)) 3466 return true; 3467 return inode->i_state & I_DIRTY_DATASYNC; 3468 } 3469 3470 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3471 unsigned flags, struct iomap *iomap) 3472 { 3473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3474 unsigned int blkbits = inode->i_blkbits; 3475 unsigned long first_block, last_block; 3476 struct ext4_map_blocks map; 3477 bool delalloc = false; 3478 int ret; 3479 3480 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3481 return -EINVAL; 3482 first_block = offset >> blkbits; 3483 last_block = min_t(loff_t, (offset + length - 1) >> blkbits, 3484 EXT4_MAX_LOGICAL_BLOCK); 3485 3486 if (flags & IOMAP_REPORT) { 3487 if (ext4_has_inline_data(inode)) { 3488 ret = ext4_inline_data_iomap(inode, iomap); 3489 if (ret != -EAGAIN) { 3490 if (ret == 0 && offset >= iomap->length) 3491 ret = -ENOENT; 3492 return ret; 3493 } 3494 } 3495 } else { 3496 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3497 return -ERANGE; 3498 } 3499 3500 map.m_lblk = first_block; 3501 map.m_len = last_block - first_block + 1; 3502 3503 if (flags & IOMAP_REPORT) { 3504 ret = ext4_map_blocks(NULL, inode, &map, 0); 3505 if (ret < 0) 3506 return ret; 3507 3508 if (ret == 0) { 3509 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3510 struct extent_status es; 3511 3512 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3513 map.m_lblk, end, &es); 3514 3515 if (!es.es_len || es.es_lblk > end) { 3516 /* entire range is a hole */ 3517 } else if (es.es_lblk > map.m_lblk) { 3518 /* range starts with a hole */ 3519 map.m_len = es.es_lblk - map.m_lblk; 3520 } else { 3521 ext4_lblk_t offs = 0; 3522 3523 if (es.es_lblk < map.m_lblk) 3524 offs = map.m_lblk - es.es_lblk; 3525 map.m_lblk = es.es_lblk + offs; 3526 map.m_len = es.es_len - offs; 3527 delalloc = true; 3528 } 3529 } 3530 } else if (flags & IOMAP_WRITE) { 3531 int dio_credits; 3532 handle_t *handle; 3533 int retries = 0; 3534 3535 /* Trim mapping request to maximum we can map at once for DIO */ 3536 if (map.m_len > DIO_MAX_BLOCKS) 3537 map.m_len = DIO_MAX_BLOCKS; 3538 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3539 retry: 3540 /* 3541 * Either we allocate blocks and then we don't get unwritten 3542 * extent so we have reserved enough credits, or the blocks 3543 * are already allocated and unwritten and in that case 3544 * extent conversion fits in the credits as well. 3545 */ 3546 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3547 dio_credits); 3548 if (IS_ERR(handle)) 3549 return PTR_ERR(handle); 3550 3551 ret = ext4_map_blocks(handle, inode, &map, 3552 EXT4_GET_BLOCKS_CREATE_ZERO); 3553 if (ret < 0) { 3554 ext4_journal_stop(handle); 3555 if (ret == -ENOSPC && 3556 ext4_should_retry_alloc(inode->i_sb, &retries)) 3557 goto retry; 3558 return ret; 3559 } 3560 3561 /* 3562 * If we added blocks beyond i_size, we need to make sure they 3563 * will get truncated if we crash before updating i_size in 3564 * ext4_iomap_end(). For faults we don't need to do that (and 3565 * even cannot because for orphan list operations inode_lock is 3566 * required) - if we happen to instantiate block beyond i_size, 3567 * it is because we race with truncate which has already added 3568 * the inode to the orphan list. 3569 */ 3570 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3571 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3572 int err; 3573 3574 err = ext4_orphan_add(handle, inode); 3575 if (err < 0) { 3576 ext4_journal_stop(handle); 3577 return err; 3578 } 3579 } 3580 ext4_journal_stop(handle); 3581 } else { 3582 ret = ext4_map_blocks(NULL, inode, &map, 0); 3583 if (ret < 0) 3584 return ret; 3585 } 3586 3587 iomap->flags = 0; 3588 if (ext4_inode_datasync_dirty(inode)) 3589 iomap->flags |= IOMAP_F_DIRTY; 3590 iomap->bdev = inode->i_sb->s_bdev; 3591 iomap->dax_dev = sbi->s_daxdev; 3592 iomap->offset = (u64)first_block << blkbits; 3593 iomap->length = (u64)map.m_len << blkbits; 3594 3595 if (ret == 0) { 3596 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3597 iomap->addr = IOMAP_NULL_ADDR; 3598 } else { 3599 if (map.m_flags & EXT4_MAP_MAPPED) { 3600 iomap->type = IOMAP_MAPPED; 3601 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3602 iomap->type = IOMAP_UNWRITTEN; 3603 } else { 3604 WARN_ON_ONCE(1); 3605 return -EIO; 3606 } 3607 iomap->addr = (u64)map.m_pblk << blkbits; 3608 } 3609 3610 if (map.m_flags & EXT4_MAP_NEW) 3611 iomap->flags |= IOMAP_F_NEW; 3612 3613 return 0; 3614 } 3615 3616 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3617 ssize_t written, unsigned flags, struct iomap *iomap) 3618 { 3619 int ret = 0; 3620 handle_t *handle; 3621 int blkbits = inode->i_blkbits; 3622 bool truncate = false; 3623 3624 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3625 return 0; 3626 3627 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3628 if (IS_ERR(handle)) { 3629 ret = PTR_ERR(handle); 3630 goto orphan_del; 3631 } 3632 if (ext4_update_inode_size(inode, offset + written)) 3633 ext4_mark_inode_dirty(handle, inode); 3634 /* 3635 * We may need to truncate allocated but not written blocks beyond EOF. 3636 */ 3637 if (iomap->offset + iomap->length > 3638 ALIGN(inode->i_size, 1 << blkbits)) { 3639 ext4_lblk_t written_blk, end_blk; 3640 3641 written_blk = (offset + written) >> blkbits; 3642 end_blk = (offset + length) >> blkbits; 3643 if (written_blk < end_blk && ext4_can_truncate(inode)) 3644 truncate = true; 3645 } 3646 /* 3647 * Remove inode from orphan list if we were extending a inode and 3648 * everything went fine. 3649 */ 3650 if (!truncate && inode->i_nlink && 3651 !list_empty(&EXT4_I(inode)->i_orphan)) 3652 ext4_orphan_del(handle, inode); 3653 ext4_journal_stop(handle); 3654 if (truncate) { 3655 ext4_truncate_failed_write(inode); 3656 orphan_del: 3657 /* 3658 * If truncate failed early the inode might still be on the 3659 * orphan list; we need to make sure the inode is removed from 3660 * the orphan list in that case. 3661 */ 3662 if (inode->i_nlink) 3663 ext4_orphan_del(NULL, inode); 3664 } 3665 return ret; 3666 } 3667 3668 const struct iomap_ops ext4_iomap_ops = { 3669 .iomap_begin = ext4_iomap_begin, 3670 .iomap_end = ext4_iomap_end, 3671 }; 3672 3673 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3674 ssize_t size, void *private) 3675 { 3676 ext4_io_end_t *io_end = private; 3677 3678 /* if not async direct IO just return */ 3679 if (!io_end) 3680 return 0; 3681 3682 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3683 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3684 io_end, io_end->inode->i_ino, iocb, offset, size); 3685 3686 /* 3687 * Error during AIO DIO. We cannot convert unwritten extents as the 3688 * data was not written. Just clear the unwritten flag and drop io_end. 3689 */ 3690 if (size <= 0) { 3691 ext4_clear_io_unwritten_flag(io_end); 3692 size = 0; 3693 } 3694 io_end->offset = offset; 3695 io_end->size = size; 3696 ext4_put_io_end(io_end); 3697 3698 return 0; 3699 } 3700 3701 /* 3702 * Handling of direct IO writes. 3703 * 3704 * For ext4 extent files, ext4 will do direct-io write even to holes, 3705 * preallocated extents, and those write extend the file, no need to 3706 * fall back to buffered IO. 3707 * 3708 * For holes, we fallocate those blocks, mark them as unwritten 3709 * If those blocks were preallocated, we mark sure they are split, but 3710 * still keep the range to write as unwritten. 3711 * 3712 * The unwritten extents will be converted to written when DIO is completed. 3713 * For async direct IO, since the IO may still pending when return, we 3714 * set up an end_io call back function, which will do the conversion 3715 * when async direct IO completed. 3716 * 3717 * If the O_DIRECT write will extend the file then add this inode to the 3718 * orphan list. So recovery will truncate it back to the original size 3719 * if the machine crashes during the write. 3720 * 3721 */ 3722 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3723 { 3724 struct file *file = iocb->ki_filp; 3725 struct inode *inode = file->f_mapping->host; 3726 struct ext4_inode_info *ei = EXT4_I(inode); 3727 ssize_t ret; 3728 loff_t offset = iocb->ki_pos; 3729 size_t count = iov_iter_count(iter); 3730 int overwrite = 0; 3731 get_block_t *get_block_func = NULL; 3732 int dio_flags = 0; 3733 loff_t final_size = offset + count; 3734 int orphan = 0; 3735 handle_t *handle; 3736 3737 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3738 /* Credits for sb + inode write */ 3739 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3740 if (IS_ERR(handle)) { 3741 ret = PTR_ERR(handle); 3742 goto out; 3743 } 3744 ret = ext4_orphan_add(handle, inode); 3745 if (ret) { 3746 ext4_journal_stop(handle); 3747 goto out; 3748 } 3749 orphan = 1; 3750 ext4_update_i_disksize(inode, inode->i_size); 3751 ext4_journal_stop(handle); 3752 } 3753 3754 BUG_ON(iocb->private == NULL); 3755 3756 /* 3757 * Make all waiters for direct IO properly wait also for extent 3758 * conversion. This also disallows race between truncate() and 3759 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3760 */ 3761 inode_dio_begin(inode); 3762 3763 /* If we do a overwrite dio, i_mutex locking can be released */ 3764 overwrite = *((int *)iocb->private); 3765 3766 if (overwrite) 3767 inode_unlock(inode); 3768 3769 /* 3770 * For extent mapped files we could direct write to holes and fallocate. 3771 * 3772 * Allocated blocks to fill the hole are marked as unwritten to prevent 3773 * parallel buffered read to expose the stale data before DIO complete 3774 * the data IO. 3775 * 3776 * As to previously fallocated extents, ext4 get_block will just simply 3777 * mark the buffer mapped but still keep the extents unwritten. 3778 * 3779 * For non AIO case, we will convert those unwritten extents to written 3780 * after return back from blockdev_direct_IO. That way we save us from 3781 * allocating io_end structure and also the overhead of offloading 3782 * the extent convertion to a workqueue. 3783 * 3784 * For async DIO, the conversion needs to be deferred when the 3785 * IO is completed. The ext4 end_io callback function will be 3786 * called to take care of the conversion work. Here for async 3787 * case, we allocate an io_end structure to hook to the iocb. 3788 */ 3789 iocb->private = NULL; 3790 if (overwrite) 3791 get_block_func = ext4_dio_get_block_overwrite; 3792 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3793 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3794 get_block_func = ext4_dio_get_block; 3795 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3796 } else if (is_sync_kiocb(iocb)) { 3797 get_block_func = ext4_dio_get_block_unwritten_sync; 3798 dio_flags = DIO_LOCKING; 3799 } else { 3800 get_block_func = ext4_dio_get_block_unwritten_async; 3801 dio_flags = DIO_LOCKING; 3802 } 3803 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3804 get_block_func, ext4_end_io_dio, NULL, 3805 dio_flags); 3806 3807 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3808 EXT4_STATE_DIO_UNWRITTEN)) { 3809 int err; 3810 /* 3811 * for non AIO case, since the IO is already 3812 * completed, we could do the conversion right here 3813 */ 3814 err = ext4_convert_unwritten_extents(NULL, inode, 3815 offset, ret); 3816 if (err < 0) 3817 ret = err; 3818 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3819 } 3820 3821 inode_dio_end(inode); 3822 /* take i_mutex locking again if we do a ovewrite dio */ 3823 if (overwrite) 3824 inode_lock(inode); 3825 3826 if (ret < 0 && final_size > inode->i_size) 3827 ext4_truncate_failed_write(inode); 3828 3829 /* Handle extending of i_size after direct IO write */ 3830 if (orphan) { 3831 int err; 3832 3833 /* Credits for sb + inode write */ 3834 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3835 if (IS_ERR(handle)) { 3836 /* 3837 * We wrote the data but cannot extend 3838 * i_size. Bail out. In async io case, we do 3839 * not return error here because we have 3840 * already submmitted the corresponding 3841 * bio. Returning error here makes the caller 3842 * think that this IO is done and failed 3843 * resulting in race with bio's completion 3844 * handler. 3845 */ 3846 if (!ret) 3847 ret = PTR_ERR(handle); 3848 if (inode->i_nlink) 3849 ext4_orphan_del(NULL, inode); 3850 3851 goto out; 3852 } 3853 if (inode->i_nlink) 3854 ext4_orphan_del(handle, inode); 3855 if (ret > 0) { 3856 loff_t end = offset + ret; 3857 if (end > inode->i_size || end > ei->i_disksize) { 3858 ext4_update_i_disksize(inode, end); 3859 if (end > inode->i_size) 3860 i_size_write(inode, end); 3861 /* 3862 * We're going to return a positive `ret' 3863 * here due to non-zero-length I/O, so there's 3864 * no way of reporting error returns from 3865 * ext4_mark_inode_dirty() to userspace. So 3866 * ignore it. 3867 */ 3868 ext4_mark_inode_dirty(handle, inode); 3869 } 3870 } 3871 err = ext4_journal_stop(handle); 3872 if (ret == 0) 3873 ret = err; 3874 } 3875 out: 3876 return ret; 3877 } 3878 3879 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3880 { 3881 struct address_space *mapping = iocb->ki_filp->f_mapping; 3882 struct inode *inode = mapping->host; 3883 size_t count = iov_iter_count(iter); 3884 ssize_t ret; 3885 3886 /* 3887 * Shared inode_lock is enough for us - it protects against concurrent 3888 * writes & truncates and since we take care of writing back page cache, 3889 * we are protected against page writeback as well. 3890 */ 3891 inode_lock_shared(inode); 3892 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3893 iocb->ki_pos + count - 1); 3894 if (ret) 3895 goto out_unlock; 3896 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3897 iter, ext4_dio_get_block, NULL, NULL, 0); 3898 out_unlock: 3899 inode_unlock_shared(inode); 3900 return ret; 3901 } 3902 3903 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3904 { 3905 struct file *file = iocb->ki_filp; 3906 struct inode *inode = file->f_mapping->host; 3907 size_t count = iov_iter_count(iter); 3908 loff_t offset = iocb->ki_pos; 3909 ssize_t ret; 3910 3911 #ifdef CONFIG_FS_ENCRYPTION 3912 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3913 return 0; 3914 #endif 3915 if (fsverity_active(inode)) 3916 return 0; 3917 3918 /* 3919 * If we are doing data journalling we don't support O_DIRECT 3920 */ 3921 if (ext4_should_journal_data(inode)) 3922 return 0; 3923 3924 /* Let buffer I/O handle the inline data case. */ 3925 if (ext4_has_inline_data(inode)) 3926 return 0; 3927 3928 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3929 if (iov_iter_rw(iter) == READ) 3930 ret = ext4_direct_IO_read(iocb, iter); 3931 else 3932 ret = ext4_direct_IO_write(iocb, iter); 3933 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3934 return ret; 3935 } 3936 3937 /* 3938 * Pages can be marked dirty completely asynchronously from ext4's journalling 3939 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3940 * much here because ->set_page_dirty is called under VFS locks. The page is 3941 * not necessarily locked. 3942 * 3943 * We cannot just dirty the page and leave attached buffers clean, because the 3944 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3945 * or jbddirty because all the journalling code will explode. 3946 * 3947 * So what we do is to mark the page "pending dirty" and next time writepage 3948 * is called, propagate that into the buffers appropriately. 3949 */ 3950 static int ext4_journalled_set_page_dirty(struct page *page) 3951 { 3952 SetPageChecked(page); 3953 return __set_page_dirty_nobuffers(page); 3954 } 3955 3956 static int ext4_set_page_dirty(struct page *page) 3957 { 3958 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3959 WARN_ON_ONCE(!page_has_buffers(page)); 3960 return __set_page_dirty_buffers(page); 3961 } 3962 3963 static const struct address_space_operations ext4_aops = { 3964 .readpage = ext4_readpage, 3965 .readpages = ext4_readpages, 3966 .writepage = ext4_writepage, 3967 .writepages = ext4_writepages, 3968 .write_begin = ext4_write_begin, 3969 .write_end = ext4_write_end, 3970 .set_page_dirty = ext4_set_page_dirty, 3971 .bmap = ext4_bmap, 3972 .invalidatepage = ext4_invalidatepage, 3973 .releasepage = ext4_releasepage, 3974 .direct_IO = ext4_direct_IO, 3975 .migratepage = buffer_migrate_page, 3976 .is_partially_uptodate = block_is_partially_uptodate, 3977 .error_remove_page = generic_error_remove_page, 3978 }; 3979 3980 static const struct address_space_operations ext4_journalled_aops = { 3981 .readpage = ext4_readpage, 3982 .readpages = ext4_readpages, 3983 .writepage = ext4_writepage, 3984 .writepages = ext4_writepages, 3985 .write_begin = ext4_write_begin, 3986 .write_end = ext4_journalled_write_end, 3987 .set_page_dirty = ext4_journalled_set_page_dirty, 3988 .bmap = ext4_bmap, 3989 .invalidatepage = ext4_journalled_invalidatepage, 3990 .releasepage = ext4_releasepage, 3991 .direct_IO = ext4_direct_IO, 3992 .is_partially_uptodate = block_is_partially_uptodate, 3993 .error_remove_page = generic_error_remove_page, 3994 }; 3995 3996 static const struct address_space_operations ext4_da_aops = { 3997 .readpage = ext4_readpage, 3998 .readpages = ext4_readpages, 3999 .writepage = ext4_writepage, 4000 .writepages = ext4_writepages, 4001 .write_begin = ext4_da_write_begin, 4002 .write_end = ext4_da_write_end, 4003 .set_page_dirty = ext4_set_page_dirty, 4004 .bmap = ext4_bmap, 4005 .invalidatepage = ext4_da_invalidatepage, 4006 .releasepage = ext4_releasepage, 4007 .direct_IO = ext4_direct_IO, 4008 .migratepage = buffer_migrate_page, 4009 .is_partially_uptodate = block_is_partially_uptodate, 4010 .error_remove_page = generic_error_remove_page, 4011 }; 4012 4013 static const struct address_space_operations ext4_dax_aops = { 4014 .writepages = ext4_dax_writepages, 4015 .direct_IO = noop_direct_IO, 4016 .set_page_dirty = noop_set_page_dirty, 4017 .bmap = ext4_bmap, 4018 .invalidatepage = noop_invalidatepage, 4019 }; 4020 4021 void ext4_set_aops(struct inode *inode) 4022 { 4023 switch (ext4_inode_journal_mode(inode)) { 4024 case EXT4_INODE_ORDERED_DATA_MODE: 4025 case EXT4_INODE_WRITEBACK_DATA_MODE: 4026 break; 4027 case EXT4_INODE_JOURNAL_DATA_MODE: 4028 inode->i_mapping->a_ops = &ext4_journalled_aops; 4029 return; 4030 default: 4031 BUG(); 4032 } 4033 if (IS_DAX(inode)) 4034 inode->i_mapping->a_ops = &ext4_dax_aops; 4035 else if (test_opt(inode->i_sb, DELALLOC)) 4036 inode->i_mapping->a_ops = &ext4_da_aops; 4037 else 4038 inode->i_mapping->a_ops = &ext4_aops; 4039 } 4040 4041 static int __ext4_block_zero_page_range(handle_t *handle, 4042 struct address_space *mapping, loff_t from, loff_t length) 4043 { 4044 ext4_fsblk_t index = from >> PAGE_SHIFT; 4045 unsigned offset = from & (PAGE_SIZE-1); 4046 unsigned blocksize, pos; 4047 ext4_lblk_t iblock; 4048 struct inode *inode = mapping->host; 4049 struct buffer_head *bh; 4050 struct page *page; 4051 int err = 0; 4052 4053 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 4054 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4055 if (!page) 4056 return -ENOMEM; 4057 4058 blocksize = inode->i_sb->s_blocksize; 4059 4060 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4061 4062 if (!page_has_buffers(page)) 4063 create_empty_buffers(page, blocksize, 0); 4064 4065 /* Find the buffer that contains "offset" */ 4066 bh = page_buffers(page); 4067 pos = blocksize; 4068 while (offset >= pos) { 4069 bh = bh->b_this_page; 4070 iblock++; 4071 pos += blocksize; 4072 } 4073 if (buffer_freed(bh)) { 4074 BUFFER_TRACE(bh, "freed: skip"); 4075 goto unlock; 4076 } 4077 if (!buffer_mapped(bh)) { 4078 BUFFER_TRACE(bh, "unmapped"); 4079 ext4_get_block(inode, iblock, bh, 0); 4080 /* unmapped? It's a hole - nothing to do */ 4081 if (!buffer_mapped(bh)) { 4082 BUFFER_TRACE(bh, "still unmapped"); 4083 goto unlock; 4084 } 4085 } 4086 4087 /* Ok, it's mapped. Make sure it's up-to-date */ 4088 if (PageUptodate(page)) 4089 set_buffer_uptodate(bh); 4090 4091 if (!buffer_uptodate(bh)) { 4092 err = -EIO; 4093 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4094 wait_on_buffer(bh); 4095 /* Uhhuh. Read error. Complain and punt. */ 4096 if (!buffer_uptodate(bh)) 4097 goto unlock; 4098 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4099 /* We expect the key to be set. */ 4100 BUG_ON(!fscrypt_has_encryption_key(inode)); 4101 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks( 4102 page, blocksize, bh_offset(bh))); 4103 } 4104 } 4105 if (ext4_should_journal_data(inode)) { 4106 BUFFER_TRACE(bh, "get write access"); 4107 err = ext4_journal_get_write_access(handle, bh); 4108 if (err) 4109 goto unlock; 4110 } 4111 zero_user(page, offset, length); 4112 BUFFER_TRACE(bh, "zeroed end of block"); 4113 4114 if (ext4_should_journal_data(inode)) { 4115 err = ext4_handle_dirty_metadata(handle, inode, bh); 4116 } else { 4117 err = 0; 4118 mark_buffer_dirty(bh); 4119 if (ext4_should_order_data(inode)) 4120 err = ext4_jbd2_inode_add_write(handle, inode, from, 4121 length); 4122 } 4123 4124 unlock: 4125 unlock_page(page); 4126 put_page(page); 4127 return err; 4128 } 4129 4130 /* 4131 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4132 * starting from file offset 'from'. The range to be zero'd must 4133 * be contained with in one block. If the specified range exceeds 4134 * the end of the block it will be shortened to end of the block 4135 * that cooresponds to 'from' 4136 */ 4137 static int ext4_block_zero_page_range(handle_t *handle, 4138 struct address_space *mapping, loff_t from, loff_t length) 4139 { 4140 struct inode *inode = mapping->host; 4141 unsigned offset = from & (PAGE_SIZE-1); 4142 unsigned blocksize = inode->i_sb->s_blocksize; 4143 unsigned max = blocksize - (offset & (blocksize - 1)); 4144 4145 /* 4146 * correct length if it does not fall between 4147 * 'from' and the end of the block 4148 */ 4149 if (length > max || length < 0) 4150 length = max; 4151 4152 if (IS_DAX(inode)) { 4153 return iomap_zero_range(inode, from, length, NULL, 4154 &ext4_iomap_ops); 4155 } 4156 return __ext4_block_zero_page_range(handle, mapping, from, length); 4157 } 4158 4159 /* 4160 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4161 * up to the end of the block which corresponds to `from'. 4162 * This required during truncate. We need to physically zero the tail end 4163 * of that block so it doesn't yield old data if the file is later grown. 4164 */ 4165 static int ext4_block_truncate_page(handle_t *handle, 4166 struct address_space *mapping, loff_t from) 4167 { 4168 unsigned offset = from & (PAGE_SIZE-1); 4169 unsigned length; 4170 unsigned blocksize; 4171 struct inode *inode = mapping->host; 4172 4173 /* If we are processing an encrypted inode during orphan list handling */ 4174 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4175 return 0; 4176 4177 blocksize = inode->i_sb->s_blocksize; 4178 length = blocksize - (offset & (blocksize - 1)); 4179 4180 return ext4_block_zero_page_range(handle, mapping, from, length); 4181 } 4182 4183 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4184 loff_t lstart, loff_t length) 4185 { 4186 struct super_block *sb = inode->i_sb; 4187 struct address_space *mapping = inode->i_mapping; 4188 unsigned partial_start, partial_end; 4189 ext4_fsblk_t start, end; 4190 loff_t byte_end = (lstart + length - 1); 4191 int err = 0; 4192 4193 partial_start = lstart & (sb->s_blocksize - 1); 4194 partial_end = byte_end & (sb->s_blocksize - 1); 4195 4196 start = lstart >> sb->s_blocksize_bits; 4197 end = byte_end >> sb->s_blocksize_bits; 4198 4199 /* Handle partial zero within the single block */ 4200 if (start == end && 4201 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4202 err = ext4_block_zero_page_range(handle, mapping, 4203 lstart, length); 4204 return err; 4205 } 4206 /* Handle partial zero out on the start of the range */ 4207 if (partial_start) { 4208 err = ext4_block_zero_page_range(handle, mapping, 4209 lstart, sb->s_blocksize); 4210 if (err) 4211 return err; 4212 } 4213 /* Handle partial zero out on the end of the range */ 4214 if (partial_end != sb->s_blocksize - 1) 4215 err = ext4_block_zero_page_range(handle, mapping, 4216 byte_end - partial_end, 4217 partial_end + 1); 4218 return err; 4219 } 4220 4221 int ext4_can_truncate(struct inode *inode) 4222 { 4223 if (S_ISREG(inode->i_mode)) 4224 return 1; 4225 if (S_ISDIR(inode->i_mode)) 4226 return 1; 4227 if (S_ISLNK(inode->i_mode)) 4228 return !ext4_inode_is_fast_symlink(inode); 4229 return 0; 4230 } 4231 4232 /* 4233 * We have to make sure i_disksize gets properly updated before we truncate 4234 * page cache due to hole punching or zero range. Otherwise i_disksize update 4235 * can get lost as it may have been postponed to submission of writeback but 4236 * that will never happen after we truncate page cache. 4237 */ 4238 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4239 loff_t len) 4240 { 4241 handle_t *handle; 4242 loff_t size = i_size_read(inode); 4243 4244 WARN_ON(!inode_is_locked(inode)); 4245 if (offset > size || offset + len < size) 4246 return 0; 4247 4248 if (EXT4_I(inode)->i_disksize >= size) 4249 return 0; 4250 4251 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4252 if (IS_ERR(handle)) 4253 return PTR_ERR(handle); 4254 ext4_update_i_disksize(inode, size); 4255 ext4_mark_inode_dirty(handle, inode); 4256 ext4_journal_stop(handle); 4257 4258 return 0; 4259 } 4260 4261 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4262 { 4263 up_write(&ei->i_mmap_sem); 4264 schedule(); 4265 down_write(&ei->i_mmap_sem); 4266 } 4267 4268 int ext4_break_layouts(struct inode *inode) 4269 { 4270 struct ext4_inode_info *ei = EXT4_I(inode); 4271 struct page *page; 4272 int error; 4273 4274 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4275 return -EINVAL; 4276 4277 do { 4278 page = dax_layout_busy_page(inode->i_mapping); 4279 if (!page) 4280 return 0; 4281 4282 error = ___wait_var_event(&page->_refcount, 4283 atomic_read(&page->_refcount) == 1, 4284 TASK_INTERRUPTIBLE, 0, 0, 4285 ext4_wait_dax_page(ei)); 4286 } while (error == 0); 4287 4288 return error; 4289 } 4290 4291 /* 4292 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4293 * associated with the given offset and length 4294 * 4295 * @inode: File inode 4296 * @offset: The offset where the hole will begin 4297 * @len: The length of the hole 4298 * 4299 * Returns: 0 on success or negative on failure 4300 */ 4301 4302 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4303 { 4304 struct super_block *sb = inode->i_sb; 4305 ext4_lblk_t first_block, stop_block; 4306 struct address_space *mapping = inode->i_mapping; 4307 loff_t first_block_offset, last_block_offset; 4308 handle_t *handle; 4309 unsigned int credits; 4310 int ret = 0; 4311 4312 if (!S_ISREG(inode->i_mode)) 4313 return -EOPNOTSUPP; 4314 4315 trace_ext4_punch_hole(inode, offset, length, 0); 4316 4317 /* 4318 * Write out all dirty pages to avoid race conditions 4319 * Then release them. 4320 */ 4321 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4322 ret = filemap_write_and_wait_range(mapping, offset, 4323 offset + length - 1); 4324 if (ret) 4325 return ret; 4326 } 4327 4328 inode_lock(inode); 4329 4330 /* No need to punch hole beyond i_size */ 4331 if (offset >= inode->i_size) 4332 goto out_mutex; 4333 4334 /* 4335 * If the hole extends beyond i_size, set the hole 4336 * to end after the page that contains i_size 4337 */ 4338 if (offset + length > inode->i_size) { 4339 length = inode->i_size + 4340 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4341 offset; 4342 } 4343 4344 if (offset & (sb->s_blocksize - 1) || 4345 (offset + length) & (sb->s_blocksize - 1)) { 4346 /* 4347 * Attach jinode to inode for jbd2 if we do any zeroing of 4348 * partial block 4349 */ 4350 ret = ext4_inode_attach_jinode(inode); 4351 if (ret < 0) 4352 goto out_mutex; 4353 4354 } 4355 4356 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4357 inode_dio_wait(inode); 4358 4359 /* 4360 * Prevent page faults from reinstantiating pages we have released from 4361 * page cache. 4362 */ 4363 down_write(&EXT4_I(inode)->i_mmap_sem); 4364 4365 ret = ext4_break_layouts(inode); 4366 if (ret) 4367 goto out_dio; 4368 4369 first_block_offset = round_up(offset, sb->s_blocksize); 4370 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4371 4372 /* Now release the pages and zero block aligned part of pages*/ 4373 if (last_block_offset > first_block_offset) { 4374 ret = ext4_update_disksize_before_punch(inode, offset, length); 4375 if (ret) 4376 goto out_dio; 4377 truncate_pagecache_range(inode, first_block_offset, 4378 last_block_offset); 4379 } 4380 4381 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4382 credits = ext4_writepage_trans_blocks(inode); 4383 else 4384 credits = ext4_blocks_for_truncate(inode); 4385 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4386 if (IS_ERR(handle)) { 4387 ret = PTR_ERR(handle); 4388 ext4_std_error(sb, ret); 4389 goto out_dio; 4390 } 4391 4392 ret = ext4_zero_partial_blocks(handle, inode, offset, 4393 length); 4394 if (ret) 4395 goto out_stop; 4396 4397 first_block = (offset + sb->s_blocksize - 1) >> 4398 EXT4_BLOCK_SIZE_BITS(sb); 4399 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4400 4401 /* If there are blocks to remove, do it */ 4402 if (stop_block > first_block) { 4403 4404 down_write(&EXT4_I(inode)->i_data_sem); 4405 ext4_discard_preallocations(inode); 4406 4407 ret = ext4_es_remove_extent(inode, first_block, 4408 stop_block - first_block); 4409 if (ret) { 4410 up_write(&EXT4_I(inode)->i_data_sem); 4411 goto out_stop; 4412 } 4413 4414 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4415 ret = ext4_ext_remove_space(inode, first_block, 4416 stop_block - 1); 4417 else 4418 ret = ext4_ind_remove_space(handle, inode, first_block, 4419 stop_block); 4420 4421 up_write(&EXT4_I(inode)->i_data_sem); 4422 } 4423 if (IS_SYNC(inode)) 4424 ext4_handle_sync(handle); 4425 4426 inode->i_mtime = inode->i_ctime = current_time(inode); 4427 ext4_mark_inode_dirty(handle, inode); 4428 if (ret >= 0) 4429 ext4_update_inode_fsync_trans(handle, inode, 1); 4430 out_stop: 4431 ext4_journal_stop(handle); 4432 out_dio: 4433 up_write(&EXT4_I(inode)->i_mmap_sem); 4434 out_mutex: 4435 inode_unlock(inode); 4436 return ret; 4437 } 4438 4439 int ext4_inode_attach_jinode(struct inode *inode) 4440 { 4441 struct ext4_inode_info *ei = EXT4_I(inode); 4442 struct jbd2_inode *jinode; 4443 4444 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4445 return 0; 4446 4447 jinode = jbd2_alloc_inode(GFP_KERNEL); 4448 spin_lock(&inode->i_lock); 4449 if (!ei->jinode) { 4450 if (!jinode) { 4451 spin_unlock(&inode->i_lock); 4452 return -ENOMEM; 4453 } 4454 ei->jinode = jinode; 4455 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4456 jinode = NULL; 4457 } 4458 spin_unlock(&inode->i_lock); 4459 if (unlikely(jinode != NULL)) 4460 jbd2_free_inode(jinode); 4461 return 0; 4462 } 4463 4464 /* 4465 * ext4_truncate() 4466 * 4467 * We block out ext4_get_block() block instantiations across the entire 4468 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4469 * simultaneously on behalf of the same inode. 4470 * 4471 * As we work through the truncate and commit bits of it to the journal there 4472 * is one core, guiding principle: the file's tree must always be consistent on 4473 * disk. We must be able to restart the truncate after a crash. 4474 * 4475 * The file's tree may be transiently inconsistent in memory (although it 4476 * probably isn't), but whenever we close off and commit a journal transaction, 4477 * the contents of (the filesystem + the journal) must be consistent and 4478 * restartable. It's pretty simple, really: bottom up, right to left (although 4479 * left-to-right works OK too). 4480 * 4481 * Note that at recovery time, journal replay occurs *before* the restart of 4482 * truncate against the orphan inode list. 4483 * 4484 * The committed inode has the new, desired i_size (which is the same as 4485 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4486 * that this inode's truncate did not complete and it will again call 4487 * ext4_truncate() to have another go. So there will be instantiated blocks 4488 * to the right of the truncation point in a crashed ext4 filesystem. But 4489 * that's fine - as long as they are linked from the inode, the post-crash 4490 * ext4_truncate() run will find them and release them. 4491 */ 4492 int ext4_truncate(struct inode *inode) 4493 { 4494 struct ext4_inode_info *ei = EXT4_I(inode); 4495 unsigned int credits; 4496 int err = 0; 4497 handle_t *handle; 4498 struct address_space *mapping = inode->i_mapping; 4499 4500 /* 4501 * There is a possibility that we're either freeing the inode 4502 * or it's a completely new inode. In those cases we might not 4503 * have i_mutex locked because it's not necessary. 4504 */ 4505 if (!(inode->i_state & (I_NEW|I_FREEING))) 4506 WARN_ON(!inode_is_locked(inode)); 4507 trace_ext4_truncate_enter(inode); 4508 4509 if (!ext4_can_truncate(inode)) 4510 return 0; 4511 4512 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4513 4514 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4515 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4516 4517 if (ext4_has_inline_data(inode)) { 4518 int has_inline = 1; 4519 4520 err = ext4_inline_data_truncate(inode, &has_inline); 4521 if (err) 4522 return err; 4523 if (has_inline) 4524 return 0; 4525 } 4526 4527 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4528 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4529 if (ext4_inode_attach_jinode(inode) < 0) 4530 return 0; 4531 } 4532 4533 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4534 credits = ext4_writepage_trans_blocks(inode); 4535 else 4536 credits = ext4_blocks_for_truncate(inode); 4537 4538 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4539 if (IS_ERR(handle)) 4540 return PTR_ERR(handle); 4541 4542 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4543 ext4_block_truncate_page(handle, mapping, inode->i_size); 4544 4545 /* 4546 * We add the inode to the orphan list, so that if this 4547 * truncate spans multiple transactions, and we crash, we will 4548 * resume the truncate when the filesystem recovers. It also 4549 * marks the inode dirty, to catch the new size. 4550 * 4551 * Implication: the file must always be in a sane, consistent 4552 * truncatable state while each transaction commits. 4553 */ 4554 err = ext4_orphan_add(handle, inode); 4555 if (err) 4556 goto out_stop; 4557 4558 down_write(&EXT4_I(inode)->i_data_sem); 4559 4560 ext4_discard_preallocations(inode); 4561 4562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4563 err = ext4_ext_truncate(handle, inode); 4564 else 4565 ext4_ind_truncate(handle, inode); 4566 4567 up_write(&ei->i_data_sem); 4568 if (err) 4569 goto out_stop; 4570 4571 if (IS_SYNC(inode)) 4572 ext4_handle_sync(handle); 4573 4574 out_stop: 4575 /* 4576 * If this was a simple ftruncate() and the file will remain alive, 4577 * then we need to clear up the orphan record which we created above. 4578 * However, if this was a real unlink then we were called by 4579 * ext4_evict_inode(), and we allow that function to clean up the 4580 * orphan info for us. 4581 */ 4582 if (inode->i_nlink) 4583 ext4_orphan_del(handle, inode); 4584 4585 inode->i_mtime = inode->i_ctime = current_time(inode); 4586 ext4_mark_inode_dirty(handle, inode); 4587 ext4_journal_stop(handle); 4588 4589 trace_ext4_truncate_exit(inode); 4590 return err; 4591 } 4592 4593 /* 4594 * ext4_get_inode_loc returns with an extra refcount against the inode's 4595 * underlying buffer_head on success. If 'in_mem' is true, we have all 4596 * data in memory that is needed to recreate the on-disk version of this 4597 * inode. 4598 */ 4599 static int __ext4_get_inode_loc(struct inode *inode, 4600 struct ext4_iloc *iloc, int in_mem) 4601 { 4602 struct ext4_group_desc *gdp; 4603 struct buffer_head *bh; 4604 struct super_block *sb = inode->i_sb; 4605 ext4_fsblk_t block; 4606 int inodes_per_block, inode_offset; 4607 4608 iloc->bh = NULL; 4609 if (inode->i_ino < EXT4_ROOT_INO || 4610 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4611 return -EFSCORRUPTED; 4612 4613 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4614 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4615 if (!gdp) 4616 return -EIO; 4617 4618 /* 4619 * Figure out the offset within the block group inode table 4620 */ 4621 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4622 inode_offset = ((inode->i_ino - 1) % 4623 EXT4_INODES_PER_GROUP(sb)); 4624 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4625 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4626 4627 bh = sb_getblk(sb, block); 4628 if (unlikely(!bh)) 4629 return -ENOMEM; 4630 if (!buffer_uptodate(bh)) { 4631 lock_buffer(bh); 4632 4633 /* 4634 * If the buffer has the write error flag, we have failed 4635 * to write out another inode in the same block. In this 4636 * case, we don't have to read the block because we may 4637 * read the old inode data successfully. 4638 */ 4639 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4640 set_buffer_uptodate(bh); 4641 4642 if (buffer_uptodate(bh)) { 4643 /* someone brought it uptodate while we waited */ 4644 unlock_buffer(bh); 4645 goto has_buffer; 4646 } 4647 4648 /* 4649 * If we have all information of the inode in memory and this 4650 * is the only valid inode in the block, we need not read the 4651 * block. 4652 */ 4653 if (in_mem) { 4654 struct buffer_head *bitmap_bh; 4655 int i, start; 4656 4657 start = inode_offset & ~(inodes_per_block - 1); 4658 4659 /* Is the inode bitmap in cache? */ 4660 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4661 if (unlikely(!bitmap_bh)) 4662 goto make_io; 4663 4664 /* 4665 * If the inode bitmap isn't in cache then the 4666 * optimisation may end up performing two reads instead 4667 * of one, so skip it. 4668 */ 4669 if (!buffer_uptodate(bitmap_bh)) { 4670 brelse(bitmap_bh); 4671 goto make_io; 4672 } 4673 for (i = start; i < start + inodes_per_block; i++) { 4674 if (i == inode_offset) 4675 continue; 4676 if (ext4_test_bit(i, bitmap_bh->b_data)) 4677 break; 4678 } 4679 brelse(bitmap_bh); 4680 if (i == start + inodes_per_block) { 4681 /* all other inodes are free, so skip I/O */ 4682 memset(bh->b_data, 0, bh->b_size); 4683 set_buffer_uptodate(bh); 4684 unlock_buffer(bh); 4685 goto has_buffer; 4686 } 4687 } 4688 4689 make_io: 4690 /* 4691 * If we need to do any I/O, try to pre-readahead extra 4692 * blocks from the inode table. 4693 */ 4694 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4695 ext4_fsblk_t b, end, table; 4696 unsigned num; 4697 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4698 4699 table = ext4_inode_table(sb, gdp); 4700 /* s_inode_readahead_blks is always a power of 2 */ 4701 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4702 if (table > b) 4703 b = table; 4704 end = b + ra_blks; 4705 num = EXT4_INODES_PER_GROUP(sb); 4706 if (ext4_has_group_desc_csum(sb)) 4707 num -= ext4_itable_unused_count(sb, gdp); 4708 table += num / inodes_per_block; 4709 if (end > table) 4710 end = table; 4711 while (b <= end) 4712 sb_breadahead(sb, b++); 4713 } 4714 4715 /* 4716 * There are other valid inodes in the buffer, this inode 4717 * has in-inode xattrs, or we don't have this inode in memory. 4718 * Read the block from disk. 4719 */ 4720 trace_ext4_load_inode(inode); 4721 get_bh(bh); 4722 bh->b_end_io = end_buffer_read_sync; 4723 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4724 wait_on_buffer(bh); 4725 if (!buffer_uptodate(bh)) { 4726 EXT4_ERROR_INODE_BLOCK(inode, block, 4727 "unable to read itable block"); 4728 brelse(bh); 4729 return -EIO; 4730 } 4731 } 4732 has_buffer: 4733 iloc->bh = bh; 4734 return 0; 4735 } 4736 4737 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4738 { 4739 /* We have all inode data except xattrs in memory here. */ 4740 return __ext4_get_inode_loc(inode, iloc, 4741 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4742 } 4743 4744 static bool ext4_should_use_dax(struct inode *inode) 4745 { 4746 if (!test_opt(inode->i_sb, DAX)) 4747 return false; 4748 if (!S_ISREG(inode->i_mode)) 4749 return false; 4750 if (ext4_should_journal_data(inode)) 4751 return false; 4752 if (ext4_has_inline_data(inode)) 4753 return false; 4754 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4755 return false; 4756 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4757 return false; 4758 return true; 4759 } 4760 4761 void ext4_set_inode_flags(struct inode *inode) 4762 { 4763 unsigned int flags = EXT4_I(inode)->i_flags; 4764 unsigned int new_fl = 0; 4765 4766 if (flags & EXT4_SYNC_FL) 4767 new_fl |= S_SYNC; 4768 if (flags & EXT4_APPEND_FL) 4769 new_fl |= S_APPEND; 4770 if (flags & EXT4_IMMUTABLE_FL) 4771 new_fl |= S_IMMUTABLE; 4772 if (flags & EXT4_NOATIME_FL) 4773 new_fl |= S_NOATIME; 4774 if (flags & EXT4_DIRSYNC_FL) 4775 new_fl |= S_DIRSYNC; 4776 if (ext4_should_use_dax(inode)) 4777 new_fl |= S_DAX; 4778 if (flags & EXT4_ENCRYPT_FL) 4779 new_fl |= S_ENCRYPTED; 4780 if (flags & EXT4_CASEFOLD_FL) 4781 new_fl |= S_CASEFOLD; 4782 if (flags & EXT4_VERITY_FL) 4783 new_fl |= S_VERITY; 4784 inode_set_flags(inode, new_fl, 4785 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4786 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4787 } 4788 4789 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4790 struct ext4_inode_info *ei) 4791 { 4792 blkcnt_t i_blocks ; 4793 struct inode *inode = &(ei->vfs_inode); 4794 struct super_block *sb = inode->i_sb; 4795 4796 if (ext4_has_feature_huge_file(sb)) { 4797 /* we are using combined 48 bit field */ 4798 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4799 le32_to_cpu(raw_inode->i_blocks_lo); 4800 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4801 /* i_blocks represent file system block size */ 4802 return i_blocks << (inode->i_blkbits - 9); 4803 } else { 4804 return i_blocks; 4805 } 4806 } else { 4807 return le32_to_cpu(raw_inode->i_blocks_lo); 4808 } 4809 } 4810 4811 static inline int ext4_iget_extra_inode(struct inode *inode, 4812 struct ext4_inode *raw_inode, 4813 struct ext4_inode_info *ei) 4814 { 4815 __le32 *magic = (void *)raw_inode + 4816 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4817 4818 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4819 EXT4_INODE_SIZE(inode->i_sb) && 4820 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4821 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4822 return ext4_find_inline_data_nolock(inode); 4823 } else 4824 EXT4_I(inode)->i_inline_off = 0; 4825 return 0; 4826 } 4827 4828 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4829 { 4830 if (!ext4_has_feature_project(inode->i_sb)) 4831 return -EOPNOTSUPP; 4832 *projid = EXT4_I(inode)->i_projid; 4833 return 0; 4834 } 4835 4836 /* 4837 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4838 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4839 * set. 4840 */ 4841 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4842 { 4843 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4844 inode_set_iversion_raw(inode, val); 4845 else 4846 inode_set_iversion_queried(inode, val); 4847 } 4848 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4849 { 4850 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4851 return inode_peek_iversion_raw(inode); 4852 else 4853 return inode_peek_iversion(inode); 4854 } 4855 4856 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4857 ext4_iget_flags flags, const char *function, 4858 unsigned int line) 4859 { 4860 struct ext4_iloc iloc; 4861 struct ext4_inode *raw_inode; 4862 struct ext4_inode_info *ei; 4863 struct inode *inode; 4864 journal_t *journal = EXT4_SB(sb)->s_journal; 4865 long ret; 4866 loff_t size; 4867 int block; 4868 uid_t i_uid; 4869 gid_t i_gid; 4870 projid_t i_projid; 4871 4872 if ((!(flags & EXT4_IGET_SPECIAL) && 4873 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4874 (ino < EXT4_ROOT_INO) || 4875 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4876 if (flags & EXT4_IGET_HANDLE) 4877 return ERR_PTR(-ESTALE); 4878 __ext4_error(sb, function, line, 4879 "inode #%lu: comm %s: iget: illegal inode #", 4880 ino, current->comm); 4881 return ERR_PTR(-EFSCORRUPTED); 4882 } 4883 4884 inode = iget_locked(sb, ino); 4885 if (!inode) 4886 return ERR_PTR(-ENOMEM); 4887 if (!(inode->i_state & I_NEW)) 4888 return inode; 4889 4890 ei = EXT4_I(inode); 4891 iloc.bh = NULL; 4892 4893 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4894 if (ret < 0) 4895 goto bad_inode; 4896 raw_inode = ext4_raw_inode(&iloc); 4897 4898 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4899 ext4_error_inode(inode, function, line, 0, 4900 "iget: root inode unallocated"); 4901 ret = -EFSCORRUPTED; 4902 goto bad_inode; 4903 } 4904 4905 if ((flags & EXT4_IGET_HANDLE) && 4906 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4907 ret = -ESTALE; 4908 goto bad_inode; 4909 } 4910 4911 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4912 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4913 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4914 EXT4_INODE_SIZE(inode->i_sb) || 4915 (ei->i_extra_isize & 3)) { 4916 ext4_error_inode(inode, function, line, 0, 4917 "iget: bad extra_isize %u " 4918 "(inode size %u)", 4919 ei->i_extra_isize, 4920 EXT4_INODE_SIZE(inode->i_sb)); 4921 ret = -EFSCORRUPTED; 4922 goto bad_inode; 4923 } 4924 } else 4925 ei->i_extra_isize = 0; 4926 4927 /* Precompute checksum seed for inode metadata */ 4928 if (ext4_has_metadata_csum(sb)) { 4929 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4930 __u32 csum; 4931 __le32 inum = cpu_to_le32(inode->i_ino); 4932 __le32 gen = raw_inode->i_generation; 4933 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4934 sizeof(inum)); 4935 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4936 sizeof(gen)); 4937 } 4938 4939 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4940 ext4_error_inode(inode, function, line, 0, 4941 "iget: checksum invalid"); 4942 ret = -EFSBADCRC; 4943 goto bad_inode; 4944 } 4945 4946 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4947 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4948 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4949 if (ext4_has_feature_project(sb) && 4950 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4951 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4952 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4953 else 4954 i_projid = EXT4_DEF_PROJID; 4955 4956 if (!(test_opt(inode->i_sb, NO_UID32))) { 4957 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4958 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4959 } 4960 i_uid_write(inode, i_uid); 4961 i_gid_write(inode, i_gid); 4962 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4963 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4964 4965 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4966 ei->i_inline_off = 0; 4967 ei->i_dir_start_lookup = 0; 4968 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4969 /* We now have enough fields to check if the inode was active or not. 4970 * This is needed because nfsd might try to access dead inodes 4971 * the test is that same one that e2fsck uses 4972 * NeilBrown 1999oct15 4973 */ 4974 if (inode->i_nlink == 0) { 4975 if ((inode->i_mode == 0 || 4976 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4977 ino != EXT4_BOOT_LOADER_INO) { 4978 /* this inode is deleted */ 4979 ret = -ESTALE; 4980 goto bad_inode; 4981 } 4982 /* The only unlinked inodes we let through here have 4983 * valid i_mode and are being read by the orphan 4984 * recovery code: that's fine, we're about to complete 4985 * the process of deleting those. 4986 * OR it is the EXT4_BOOT_LOADER_INO which is 4987 * not initialized on a new filesystem. */ 4988 } 4989 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4990 ext4_set_inode_flags(inode); 4991 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4992 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4993 if (ext4_has_feature_64bit(sb)) 4994 ei->i_file_acl |= 4995 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4996 inode->i_size = ext4_isize(sb, raw_inode); 4997 if ((size = i_size_read(inode)) < 0) { 4998 ext4_error_inode(inode, function, line, 0, 4999 "iget: bad i_size value: %lld", size); 5000 ret = -EFSCORRUPTED; 5001 goto bad_inode; 5002 } 5003 ei->i_disksize = inode->i_size; 5004 #ifdef CONFIG_QUOTA 5005 ei->i_reserved_quota = 0; 5006 #endif 5007 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5008 ei->i_block_group = iloc.block_group; 5009 ei->i_last_alloc_group = ~0; 5010 /* 5011 * NOTE! The in-memory inode i_data array is in little-endian order 5012 * even on big-endian machines: we do NOT byteswap the block numbers! 5013 */ 5014 for (block = 0; block < EXT4_N_BLOCKS; block++) 5015 ei->i_data[block] = raw_inode->i_block[block]; 5016 INIT_LIST_HEAD(&ei->i_orphan); 5017 5018 /* 5019 * Set transaction id's of transactions that have to be committed 5020 * to finish f[data]sync. We set them to currently running transaction 5021 * as we cannot be sure that the inode or some of its metadata isn't 5022 * part of the transaction - the inode could have been reclaimed and 5023 * now it is reread from disk. 5024 */ 5025 if (journal) { 5026 transaction_t *transaction; 5027 tid_t tid; 5028 5029 read_lock(&journal->j_state_lock); 5030 if (journal->j_running_transaction) 5031 transaction = journal->j_running_transaction; 5032 else 5033 transaction = journal->j_committing_transaction; 5034 if (transaction) 5035 tid = transaction->t_tid; 5036 else 5037 tid = journal->j_commit_sequence; 5038 read_unlock(&journal->j_state_lock); 5039 ei->i_sync_tid = tid; 5040 ei->i_datasync_tid = tid; 5041 } 5042 5043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5044 if (ei->i_extra_isize == 0) { 5045 /* The extra space is currently unused. Use it. */ 5046 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5047 ei->i_extra_isize = sizeof(struct ext4_inode) - 5048 EXT4_GOOD_OLD_INODE_SIZE; 5049 } else { 5050 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5051 if (ret) 5052 goto bad_inode; 5053 } 5054 } 5055 5056 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5057 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5058 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5059 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5060 5061 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5062 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5063 5064 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5065 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5066 ivers |= 5067 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5068 } 5069 ext4_inode_set_iversion_queried(inode, ivers); 5070 } 5071 5072 ret = 0; 5073 if (ei->i_file_acl && 5074 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5075 ext4_error_inode(inode, function, line, 0, 5076 "iget: bad extended attribute block %llu", 5077 ei->i_file_acl); 5078 ret = -EFSCORRUPTED; 5079 goto bad_inode; 5080 } else if (!ext4_has_inline_data(inode)) { 5081 /* validate the block references in the inode */ 5082 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5083 (S_ISLNK(inode->i_mode) && 5084 !ext4_inode_is_fast_symlink(inode))) { 5085 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5086 ret = ext4_ext_check_inode(inode); 5087 else 5088 ret = ext4_ind_check_inode(inode); 5089 } 5090 } 5091 if (ret) 5092 goto bad_inode; 5093 5094 if (S_ISREG(inode->i_mode)) { 5095 inode->i_op = &ext4_file_inode_operations; 5096 inode->i_fop = &ext4_file_operations; 5097 ext4_set_aops(inode); 5098 } else if (S_ISDIR(inode->i_mode)) { 5099 inode->i_op = &ext4_dir_inode_operations; 5100 inode->i_fop = &ext4_dir_operations; 5101 } else if (S_ISLNK(inode->i_mode)) { 5102 /* VFS does not allow setting these so must be corruption */ 5103 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5104 ext4_error_inode(inode, function, line, 0, 5105 "iget: immutable or append flags " 5106 "not allowed on symlinks"); 5107 ret = -EFSCORRUPTED; 5108 goto bad_inode; 5109 } 5110 if (IS_ENCRYPTED(inode)) { 5111 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5112 ext4_set_aops(inode); 5113 } else if (ext4_inode_is_fast_symlink(inode)) { 5114 inode->i_link = (char *)ei->i_data; 5115 inode->i_op = &ext4_fast_symlink_inode_operations; 5116 nd_terminate_link(ei->i_data, inode->i_size, 5117 sizeof(ei->i_data) - 1); 5118 } else { 5119 inode->i_op = &ext4_symlink_inode_operations; 5120 ext4_set_aops(inode); 5121 } 5122 inode_nohighmem(inode); 5123 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5124 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5125 inode->i_op = &ext4_special_inode_operations; 5126 if (raw_inode->i_block[0]) 5127 init_special_inode(inode, inode->i_mode, 5128 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5129 else 5130 init_special_inode(inode, inode->i_mode, 5131 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5132 } else if (ino == EXT4_BOOT_LOADER_INO) { 5133 make_bad_inode(inode); 5134 } else { 5135 ret = -EFSCORRUPTED; 5136 ext4_error_inode(inode, function, line, 0, 5137 "iget: bogus i_mode (%o)", inode->i_mode); 5138 goto bad_inode; 5139 } 5140 brelse(iloc.bh); 5141 5142 unlock_new_inode(inode); 5143 return inode; 5144 5145 bad_inode: 5146 brelse(iloc.bh); 5147 iget_failed(inode); 5148 return ERR_PTR(ret); 5149 } 5150 5151 static int ext4_inode_blocks_set(handle_t *handle, 5152 struct ext4_inode *raw_inode, 5153 struct ext4_inode_info *ei) 5154 { 5155 struct inode *inode = &(ei->vfs_inode); 5156 u64 i_blocks = inode->i_blocks; 5157 struct super_block *sb = inode->i_sb; 5158 5159 if (i_blocks <= ~0U) { 5160 /* 5161 * i_blocks can be represented in a 32 bit variable 5162 * as multiple of 512 bytes 5163 */ 5164 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5165 raw_inode->i_blocks_high = 0; 5166 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5167 return 0; 5168 } 5169 if (!ext4_has_feature_huge_file(sb)) 5170 return -EFBIG; 5171 5172 if (i_blocks <= 0xffffffffffffULL) { 5173 /* 5174 * i_blocks can be represented in a 48 bit variable 5175 * as multiple of 512 bytes 5176 */ 5177 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5178 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5179 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5180 } else { 5181 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5182 /* i_block is stored in file system block size */ 5183 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5184 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5185 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5186 } 5187 return 0; 5188 } 5189 5190 struct other_inode { 5191 unsigned long orig_ino; 5192 struct ext4_inode *raw_inode; 5193 }; 5194 5195 static int other_inode_match(struct inode * inode, unsigned long ino, 5196 void *data) 5197 { 5198 struct other_inode *oi = (struct other_inode *) data; 5199 5200 if ((inode->i_ino != ino) || 5201 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5202 I_DIRTY_INODE)) || 5203 ((inode->i_state & I_DIRTY_TIME) == 0)) 5204 return 0; 5205 spin_lock(&inode->i_lock); 5206 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5207 I_DIRTY_INODE)) == 0) && 5208 (inode->i_state & I_DIRTY_TIME)) { 5209 struct ext4_inode_info *ei = EXT4_I(inode); 5210 5211 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5212 spin_unlock(&inode->i_lock); 5213 5214 spin_lock(&ei->i_raw_lock); 5215 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5216 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5217 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5218 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5219 spin_unlock(&ei->i_raw_lock); 5220 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5221 return -1; 5222 } 5223 spin_unlock(&inode->i_lock); 5224 return -1; 5225 } 5226 5227 /* 5228 * Opportunistically update the other time fields for other inodes in 5229 * the same inode table block. 5230 */ 5231 static void ext4_update_other_inodes_time(struct super_block *sb, 5232 unsigned long orig_ino, char *buf) 5233 { 5234 struct other_inode oi; 5235 unsigned long ino; 5236 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5237 int inode_size = EXT4_INODE_SIZE(sb); 5238 5239 oi.orig_ino = orig_ino; 5240 /* 5241 * Calculate the first inode in the inode table block. Inode 5242 * numbers are one-based. That is, the first inode in a block 5243 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5244 */ 5245 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5246 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5247 if (ino == orig_ino) 5248 continue; 5249 oi.raw_inode = (struct ext4_inode *) buf; 5250 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5251 } 5252 } 5253 5254 /* 5255 * Post the struct inode info into an on-disk inode location in the 5256 * buffer-cache. This gobbles the caller's reference to the 5257 * buffer_head in the inode location struct. 5258 * 5259 * The caller must have write access to iloc->bh. 5260 */ 5261 static int ext4_do_update_inode(handle_t *handle, 5262 struct inode *inode, 5263 struct ext4_iloc *iloc) 5264 { 5265 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5266 struct ext4_inode_info *ei = EXT4_I(inode); 5267 struct buffer_head *bh = iloc->bh; 5268 struct super_block *sb = inode->i_sb; 5269 int err = 0, rc, block; 5270 int need_datasync = 0, set_large_file = 0; 5271 uid_t i_uid; 5272 gid_t i_gid; 5273 projid_t i_projid; 5274 5275 spin_lock(&ei->i_raw_lock); 5276 5277 /* For fields not tracked in the in-memory inode, 5278 * initialise them to zero for new inodes. */ 5279 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5280 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5281 5282 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5283 i_uid = i_uid_read(inode); 5284 i_gid = i_gid_read(inode); 5285 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5286 if (!(test_opt(inode->i_sb, NO_UID32))) { 5287 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5288 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5289 /* 5290 * Fix up interoperability with old kernels. Otherwise, old inodes get 5291 * re-used with the upper 16 bits of the uid/gid intact 5292 */ 5293 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5294 raw_inode->i_uid_high = 0; 5295 raw_inode->i_gid_high = 0; 5296 } else { 5297 raw_inode->i_uid_high = 5298 cpu_to_le16(high_16_bits(i_uid)); 5299 raw_inode->i_gid_high = 5300 cpu_to_le16(high_16_bits(i_gid)); 5301 } 5302 } else { 5303 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5304 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5305 raw_inode->i_uid_high = 0; 5306 raw_inode->i_gid_high = 0; 5307 } 5308 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5309 5310 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5311 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5312 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5313 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5314 5315 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5316 if (err) { 5317 spin_unlock(&ei->i_raw_lock); 5318 goto out_brelse; 5319 } 5320 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5321 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5322 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5323 raw_inode->i_file_acl_high = 5324 cpu_to_le16(ei->i_file_acl >> 32); 5325 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5326 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5327 ext4_isize_set(raw_inode, ei->i_disksize); 5328 need_datasync = 1; 5329 } 5330 if (ei->i_disksize > 0x7fffffffULL) { 5331 if (!ext4_has_feature_large_file(sb) || 5332 EXT4_SB(sb)->s_es->s_rev_level == 5333 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5334 set_large_file = 1; 5335 } 5336 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5337 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5338 if (old_valid_dev(inode->i_rdev)) { 5339 raw_inode->i_block[0] = 5340 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5341 raw_inode->i_block[1] = 0; 5342 } else { 5343 raw_inode->i_block[0] = 0; 5344 raw_inode->i_block[1] = 5345 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5346 raw_inode->i_block[2] = 0; 5347 } 5348 } else if (!ext4_has_inline_data(inode)) { 5349 for (block = 0; block < EXT4_N_BLOCKS; block++) 5350 raw_inode->i_block[block] = ei->i_data[block]; 5351 } 5352 5353 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5354 u64 ivers = ext4_inode_peek_iversion(inode); 5355 5356 raw_inode->i_disk_version = cpu_to_le32(ivers); 5357 if (ei->i_extra_isize) { 5358 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5359 raw_inode->i_version_hi = 5360 cpu_to_le32(ivers >> 32); 5361 raw_inode->i_extra_isize = 5362 cpu_to_le16(ei->i_extra_isize); 5363 } 5364 } 5365 5366 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5367 i_projid != EXT4_DEF_PROJID); 5368 5369 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5370 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5371 raw_inode->i_projid = cpu_to_le32(i_projid); 5372 5373 ext4_inode_csum_set(inode, raw_inode, ei); 5374 spin_unlock(&ei->i_raw_lock); 5375 if (inode->i_sb->s_flags & SB_LAZYTIME) 5376 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5377 bh->b_data); 5378 5379 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5380 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5381 if (!err) 5382 err = rc; 5383 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5384 if (set_large_file) { 5385 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5386 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5387 if (err) 5388 goto out_brelse; 5389 ext4_set_feature_large_file(sb); 5390 ext4_handle_sync(handle); 5391 err = ext4_handle_dirty_super(handle, sb); 5392 } 5393 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5394 out_brelse: 5395 brelse(bh); 5396 ext4_std_error(inode->i_sb, err); 5397 return err; 5398 } 5399 5400 /* 5401 * ext4_write_inode() 5402 * 5403 * We are called from a few places: 5404 * 5405 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5406 * Here, there will be no transaction running. We wait for any running 5407 * transaction to commit. 5408 * 5409 * - Within flush work (sys_sync(), kupdate and such). 5410 * We wait on commit, if told to. 5411 * 5412 * - Within iput_final() -> write_inode_now() 5413 * We wait on commit, if told to. 5414 * 5415 * In all cases it is actually safe for us to return without doing anything, 5416 * because the inode has been copied into a raw inode buffer in 5417 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5418 * writeback. 5419 * 5420 * Note that we are absolutely dependent upon all inode dirtiers doing the 5421 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5422 * which we are interested. 5423 * 5424 * It would be a bug for them to not do this. The code: 5425 * 5426 * mark_inode_dirty(inode) 5427 * stuff(); 5428 * inode->i_size = expr; 5429 * 5430 * is in error because write_inode() could occur while `stuff()' is running, 5431 * and the new i_size will be lost. Plus the inode will no longer be on the 5432 * superblock's dirty inode list. 5433 */ 5434 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5435 { 5436 int err; 5437 5438 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5439 sb_rdonly(inode->i_sb)) 5440 return 0; 5441 5442 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5443 return -EIO; 5444 5445 if (EXT4_SB(inode->i_sb)->s_journal) { 5446 if (ext4_journal_current_handle()) { 5447 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5448 dump_stack(); 5449 return -EIO; 5450 } 5451 5452 /* 5453 * No need to force transaction in WB_SYNC_NONE mode. Also 5454 * ext4_sync_fs() will force the commit after everything is 5455 * written. 5456 */ 5457 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5458 return 0; 5459 5460 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5461 EXT4_I(inode)->i_sync_tid); 5462 } else { 5463 struct ext4_iloc iloc; 5464 5465 err = __ext4_get_inode_loc(inode, &iloc, 0); 5466 if (err) 5467 return err; 5468 /* 5469 * sync(2) will flush the whole buffer cache. No need to do 5470 * it here separately for each inode. 5471 */ 5472 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5473 sync_dirty_buffer(iloc.bh); 5474 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5475 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5476 "IO error syncing inode"); 5477 err = -EIO; 5478 } 5479 brelse(iloc.bh); 5480 } 5481 return err; 5482 } 5483 5484 /* 5485 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5486 * buffers that are attached to a page stradding i_size and are undergoing 5487 * commit. In that case we have to wait for commit to finish and try again. 5488 */ 5489 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5490 { 5491 struct page *page; 5492 unsigned offset; 5493 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5494 tid_t commit_tid = 0; 5495 int ret; 5496 5497 offset = inode->i_size & (PAGE_SIZE - 1); 5498 /* 5499 * All buffers in the last page remain valid? Then there's nothing to 5500 * do. We do the check mainly to optimize the common PAGE_SIZE == 5501 * blocksize case 5502 */ 5503 if (offset > PAGE_SIZE - i_blocksize(inode)) 5504 return; 5505 while (1) { 5506 page = find_lock_page(inode->i_mapping, 5507 inode->i_size >> PAGE_SHIFT); 5508 if (!page) 5509 return; 5510 ret = __ext4_journalled_invalidatepage(page, offset, 5511 PAGE_SIZE - offset); 5512 unlock_page(page); 5513 put_page(page); 5514 if (ret != -EBUSY) 5515 return; 5516 commit_tid = 0; 5517 read_lock(&journal->j_state_lock); 5518 if (journal->j_committing_transaction) 5519 commit_tid = journal->j_committing_transaction->t_tid; 5520 read_unlock(&journal->j_state_lock); 5521 if (commit_tid) 5522 jbd2_log_wait_commit(journal, commit_tid); 5523 } 5524 } 5525 5526 /* 5527 * ext4_setattr() 5528 * 5529 * Called from notify_change. 5530 * 5531 * We want to trap VFS attempts to truncate the file as soon as 5532 * possible. In particular, we want to make sure that when the VFS 5533 * shrinks i_size, we put the inode on the orphan list and modify 5534 * i_disksize immediately, so that during the subsequent flushing of 5535 * dirty pages and freeing of disk blocks, we can guarantee that any 5536 * commit will leave the blocks being flushed in an unused state on 5537 * disk. (On recovery, the inode will get truncated and the blocks will 5538 * be freed, so we have a strong guarantee that no future commit will 5539 * leave these blocks visible to the user.) 5540 * 5541 * Another thing we have to assure is that if we are in ordered mode 5542 * and inode is still attached to the committing transaction, we must 5543 * we start writeout of all the dirty pages which are being truncated. 5544 * This way we are sure that all the data written in the previous 5545 * transaction are already on disk (truncate waits for pages under 5546 * writeback). 5547 * 5548 * Called with inode->i_mutex down. 5549 */ 5550 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5551 { 5552 struct inode *inode = d_inode(dentry); 5553 int error, rc = 0; 5554 int orphan = 0; 5555 const unsigned int ia_valid = attr->ia_valid; 5556 5557 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5558 return -EIO; 5559 5560 if (unlikely(IS_IMMUTABLE(inode))) 5561 return -EPERM; 5562 5563 if (unlikely(IS_APPEND(inode) && 5564 (ia_valid & (ATTR_MODE | ATTR_UID | 5565 ATTR_GID | ATTR_TIMES_SET)))) 5566 return -EPERM; 5567 5568 error = setattr_prepare(dentry, attr); 5569 if (error) 5570 return error; 5571 5572 error = fscrypt_prepare_setattr(dentry, attr); 5573 if (error) 5574 return error; 5575 5576 error = fsverity_prepare_setattr(dentry, attr); 5577 if (error) 5578 return error; 5579 5580 if (is_quota_modification(inode, attr)) { 5581 error = dquot_initialize(inode); 5582 if (error) 5583 return error; 5584 } 5585 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5586 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5587 handle_t *handle; 5588 5589 /* (user+group)*(old+new) structure, inode write (sb, 5590 * inode block, ? - but truncate inode update has it) */ 5591 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5592 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5593 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5594 if (IS_ERR(handle)) { 5595 error = PTR_ERR(handle); 5596 goto err_out; 5597 } 5598 5599 /* dquot_transfer() calls back ext4_get_inode_usage() which 5600 * counts xattr inode references. 5601 */ 5602 down_read(&EXT4_I(inode)->xattr_sem); 5603 error = dquot_transfer(inode, attr); 5604 up_read(&EXT4_I(inode)->xattr_sem); 5605 5606 if (error) { 5607 ext4_journal_stop(handle); 5608 return error; 5609 } 5610 /* Update corresponding info in inode so that everything is in 5611 * one transaction */ 5612 if (attr->ia_valid & ATTR_UID) 5613 inode->i_uid = attr->ia_uid; 5614 if (attr->ia_valid & ATTR_GID) 5615 inode->i_gid = attr->ia_gid; 5616 error = ext4_mark_inode_dirty(handle, inode); 5617 ext4_journal_stop(handle); 5618 } 5619 5620 if (attr->ia_valid & ATTR_SIZE) { 5621 handle_t *handle; 5622 loff_t oldsize = inode->i_size; 5623 int shrink = (attr->ia_size < inode->i_size); 5624 5625 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5627 5628 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5629 return -EFBIG; 5630 } 5631 if (!S_ISREG(inode->i_mode)) 5632 return -EINVAL; 5633 5634 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5635 inode_inc_iversion(inode); 5636 5637 if (shrink) { 5638 if (ext4_should_order_data(inode)) { 5639 error = ext4_begin_ordered_truncate(inode, 5640 attr->ia_size); 5641 if (error) 5642 goto err_out; 5643 } 5644 /* 5645 * Blocks are going to be removed from the inode. Wait 5646 * for dio in flight. 5647 */ 5648 inode_dio_wait(inode); 5649 } 5650 5651 down_write(&EXT4_I(inode)->i_mmap_sem); 5652 5653 rc = ext4_break_layouts(inode); 5654 if (rc) { 5655 up_write(&EXT4_I(inode)->i_mmap_sem); 5656 return rc; 5657 } 5658 5659 if (attr->ia_size != inode->i_size) { 5660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5661 if (IS_ERR(handle)) { 5662 error = PTR_ERR(handle); 5663 goto out_mmap_sem; 5664 } 5665 if (ext4_handle_valid(handle) && shrink) { 5666 error = ext4_orphan_add(handle, inode); 5667 orphan = 1; 5668 } 5669 /* 5670 * Update c/mtime on truncate up, ext4_truncate() will 5671 * update c/mtime in shrink case below 5672 */ 5673 if (!shrink) { 5674 inode->i_mtime = current_time(inode); 5675 inode->i_ctime = inode->i_mtime; 5676 } 5677 down_write(&EXT4_I(inode)->i_data_sem); 5678 EXT4_I(inode)->i_disksize = attr->ia_size; 5679 rc = ext4_mark_inode_dirty(handle, inode); 5680 if (!error) 5681 error = rc; 5682 /* 5683 * We have to update i_size under i_data_sem together 5684 * with i_disksize to avoid races with writeback code 5685 * running ext4_wb_update_i_disksize(). 5686 */ 5687 if (!error) 5688 i_size_write(inode, attr->ia_size); 5689 up_write(&EXT4_I(inode)->i_data_sem); 5690 ext4_journal_stop(handle); 5691 if (error) 5692 goto out_mmap_sem; 5693 if (!shrink) { 5694 pagecache_isize_extended(inode, oldsize, 5695 inode->i_size); 5696 } else if (ext4_should_journal_data(inode)) { 5697 ext4_wait_for_tail_page_commit(inode); 5698 } 5699 } 5700 5701 /* 5702 * Truncate pagecache after we've waited for commit 5703 * in data=journal mode to make pages freeable. 5704 */ 5705 truncate_pagecache(inode, inode->i_size); 5706 /* 5707 * Call ext4_truncate() even if i_size didn't change to 5708 * truncate possible preallocated blocks. 5709 */ 5710 if (attr->ia_size <= oldsize) { 5711 rc = ext4_truncate(inode); 5712 if (rc) 5713 error = rc; 5714 } 5715 out_mmap_sem: 5716 up_write(&EXT4_I(inode)->i_mmap_sem); 5717 } 5718 5719 if (!error) { 5720 setattr_copy(inode, attr); 5721 mark_inode_dirty(inode); 5722 } 5723 5724 /* 5725 * If the call to ext4_truncate failed to get a transaction handle at 5726 * all, we need to clean up the in-core orphan list manually. 5727 */ 5728 if (orphan && inode->i_nlink) 5729 ext4_orphan_del(NULL, inode); 5730 5731 if (!error && (ia_valid & ATTR_MODE)) 5732 rc = posix_acl_chmod(inode, inode->i_mode); 5733 5734 err_out: 5735 ext4_std_error(inode->i_sb, error); 5736 if (!error) 5737 error = rc; 5738 return error; 5739 } 5740 5741 int ext4_getattr(const struct path *path, struct kstat *stat, 5742 u32 request_mask, unsigned int query_flags) 5743 { 5744 struct inode *inode = d_inode(path->dentry); 5745 struct ext4_inode *raw_inode; 5746 struct ext4_inode_info *ei = EXT4_I(inode); 5747 unsigned int flags; 5748 5749 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5750 stat->result_mask |= STATX_BTIME; 5751 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5752 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5753 } 5754 5755 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5756 if (flags & EXT4_APPEND_FL) 5757 stat->attributes |= STATX_ATTR_APPEND; 5758 if (flags & EXT4_COMPR_FL) 5759 stat->attributes |= STATX_ATTR_COMPRESSED; 5760 if (flags & EXT4_ENCRYPT_FL) 5761 stat->attributes |= STATX_ATTR_ENCRYPTED; 5762 if (flags & EXT4_IMMUTABLE_FL) 5763 stat->attributes |= STATX_ATTR_IMMUTABLE; 5764 if (flags & EXT4_NODUMP_FL) 5765 stat->attributes |= STATX_ATTR_NODUMP; 5766 5767 stat->attributes_mask |= (STATX_ATTR_APPEND | 5768 STATX_ATTR_COMPRESSED | 5769 STATX_ATTR_ENCRYPTED | 5770 STATX_ATTR_IMMUTABLE | 5771 STATX_ATTR_NODUMP); 5772 5773 generic_fillattr(inode, stat); 5774 return 0; 5775 } 5776 5777 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5778 u32 request_mask, unsigned int query_flags) 5779 { 5780 struct inode *inode = d_inode(path->dentry); 5781 u64 delalloc_blocks; 5782 5783 ext4_getattr(path, stat, request_mask, query_flags); 5784 5785 /* 5786 * If there is inline data in the inode, the inode will normally not 5787 * have data blocks allocated (it may have an external xattr block). 5788 * Report at least one sector for such files, so tools like tar, rsync, 5789 * others don't incorrectly think the file is completely sparse. 5790 */ 5791 if (unlikely(ext4_has_inline_data(inode))) 5792 stat->blocks += (stat->size + 511) >> 9; 5793 5794 /* 5795 * We can't update i_blocks if the block allocation is delayed 5796 * otherwise in the case of system crash before the real block 5797 * allocation is done, we will have i_blocks inconsistent with 5798 * on-disk file blocks. 5799 * We always keep i_blocks updated together with real 5800 * allocation. But to not confuse with user, stat 5801 * will return the blocks that include the delayed allocation 5802 * blocks for this file. 5803 */ 5804 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5805 EXT4_I(inode)->i_reserved_data_blocks); 5806 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5807 return 0; 5808 } 5809 5810 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5811 int pextents) 5812 { 5813 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5814 return ext4_ind_trans_blocks(inode, lblocks); 5815 return ext4_ext_index_trans_blocks(inode, pextents); 5816 } 5817 5818 /* 5819 * Account for index blocks, block groups bitmaps and block group 5820 * descriptor blocks if modify datablocks and index blocks 5821 * worse case, the indexs blocks spread over different block groups 5822 * 5823 * If datablocks are discontiguous, they are possible to spread over 5824 * different block groups too. If they are contiguous, with flexbg, 5825 * they could still across block group boundary. 5826 * 5827 * Also account for superblock, inode, quota and xattr blocks 5828 */ 5829 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5830 int pextents) 5831 { 5832 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5833 int gdpblocks; 5834 int idxblocks; 5835 int ret = 0; 5836 5837 /* 5838 * How many index blocks need to touch to map @lblocks logical blocks 5839 * to @pextents physical extents? 5840 */ 5841 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5842 5843 ret = idxblocks; 5844 5845 /* 5846 * Now let's see how many group bitmaps and group descriptors need 5847 * to account 5848 */ 5849 groups = idxblocks + pextents; 5850 gdpblocks = groups; 5851 if (groups > ngroups) 5852 groups = ngroups; 5853 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5854 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5855 5856 /* bitmaps and block group descriptor blocks */ 5857 ret += groups + gdpblocks; 5858 5859 /* Blocks for super block, inode, quota and xattr blocks */ 5860 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5861 5862 return ret; 5863 } 5864 5865 /* 5866 * Calculate the total number of credits to reserve to fit 5867 * the modification of a single pages into a single transaction, 5868 * which may include multiple chunks of block allocations. 5869 * 5870 * This could be called via ext4_write_begin() 5871 * 5872 * We need to consider the worse case, when 5873 * one new block per extent. 5874 */ 5875 int ext4_writepage_trans_blocks(struct inode *inode) 5876 { 5877 int bpp = ext4_journal_blocks_per_page(inode); 5878 int ret; 5879 5880 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5881 5882 /* Account for data blocks for journalled mode */ 5883 if (ext4_should_journal_data(inode)) 5884 ret += bpp; 5885 return ret; 5886 } 5887 5888 /* 5889 * Calculate the journal credits for a chunk of data modification. 5890 * 5891 * This is called from DIO, fallocate or whoever calling 5892 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5893 * 5894 * journal buffers for data blocks are not included here, as DIO 5895 * and fallocate do no need to journal data buffers. 5896 */ 5897 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5898 { 5899 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5900 } 5901 5902 /* 5903 * The caller must have previously called ext4_reserve_inode_write(). 5904 * Give this, we know that the caller already has write access to iloc->bh. 5905 */ 5906 int ext4_mark_iloc_dirty(handle_t *handle, 5907 struct inode *inode, struct ext4_iloc *iloc) 5908 { 5909 int err = 0; 5910 5911 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5912 put_bh(iloc->bh); 5913 return -EIO; 5914 } 5915 if (IS_I_VERSION(inode)) 5916 inode_inc_iversion(inode); 5917 5918 /* the do_update_inode consumes one bh->b_count */ 5919 get_bh(iloc->bh); 5920 5921 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5922 err = ext4_do_update_inode(handle, inode, iloc); 5923 put_bh(iloc->bh); 5924 return err; 5925 } 5926 5927 /* 5928 * On success, We end up with an outstanding reference count against 5929 * iloc->bh. This _must_ be cleaned up later. 5930 */ 5931 5932 int 5933 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5934 struct ext4_iloc *iloc) 5935 { 5936 int err; 5937 5938 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5939 return -EIO; 5940 5941 err = ext4_get_inode_loc(inode, iloc); 5942 if (!err) { 5943 BUFFER_TRACE(iloc->bh, "get_write_access"); 5944 err = ext4_journal_get_write_access(handle, iloc->bh); 5945 if (err) { 5946 brelse(iloc->bh); 5947 iloc->bh = NULL; 5948 } 5949 } 5950 ext4_std_error(inode->i_sb, err); 5951 return err; 5952 } 5953 5954 static int __ext4_expand_extra_isize(struct inode *inode, 5955 unsigned int new_extra_isize, 5956 struct ext4_iloc *iloc, 5957 handle_t *handle, int *no_expand) 5958 { 5959 struct ext4_inode *raw_inode; 5960 struct ext4_xattr_ibody_header *header; 5961 int error; 5962 5963 raw_inode = ext4_raw_inode(iloc); 5964 5965 header = IHDR(inode, raw_inode); 5966 5967 /* No extended attributes present */ 5968 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5969 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5970 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5971 EXT4_I(inode)->i_extra_isize, 0, 5972 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5973 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5974 return 0; 5975 } 5976 5977 /* try to expand with EAs present */ 5978 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5979 raw_inode, handle); 5980 if (error) { 5981 /* 5982 * Inode size expansion failed; don't try again 5983 */ 5984 *no_expand = 1; 5985 } 5986 5987 return error; 5988 } 5989 5990 /* 5991 * Expand an inode by new_extra_isize bytes. 5992 * Returns 0 on success or negative error number on failure. 5993 */ 5994 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5995 unsigned int new_extra_isize, 5996 struct ext4_iloc iloc, 5997 handle_t *handle) 5998 { 5999 int no_expand; 6000 int error; 6001 6002 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6003 return -EOVERFLOW; 6004 6005 /* 6006 * In nojournal mode, we can immediately attempt to expand 6007 * the inode. When journaled, we first need to obtain extra 6008 * buffer credits since we may write into the EA block 6009 * with this same handle. If journal_extend fails, then it will 6010 * only result in a minor loss of functionality for that inode. 6011 * If this is felt to be critical, then e2fsck should be run to 6012 * force a large enough s_min_extra_isize. 6013 */ 6014 if (ext4_handle_valid(handle) && 6015 jbd2_journal_extend(handle, 6016 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 6017 return -ENOSPC; 6018 6019 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6020 return -EBUSY; 6021 6022 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6023 handle, &no_expand); 6024 ext4_write_unlock_xattr(inode, &no_expand); 6025 6026 return error; 6027 } 6028 6029 int ext4_expand_extra_isize(struct inode *inode, 6030 unsigned int new_extra_isize, 6031 struct ext4_iloc *iloc) 6032 { 6033 handle_t *handle; 6034 int no_expand; 6035 int error, rc; 6036 6037 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6038 brelse(iloc->bh); 6039 return -EOVERFLOW; 6040 } 6041 6042 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6043 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6044 if (IS_ERR(handle)) { 6045 error = PTR_ERR(handle); 6046 brelse(iloc->bh); 6047 return error; 6048 } 6049 6050 ext4_write_lock_xattr(inode, &no_expand); 6051 6052 BUFFER_TRACE(iloc->bh, "get_write_access"); 6053 error = ext4_journal_get_write_access(handle, iloc->bh); 6054 if (error) { 6055 brelse(iloc->bh); 6056 goto out_stop; 6057 } 6058 6059 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6060 handle, &no_expand); 6061 6062 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6063 if (!error) 6064 error = rc; 6065 6066 ext4_write_unlock_xattr(inode, &no_expand); 6067 out_stop: 6068 ext4_journal_stop(handle); 6069 return error; 6070 } 6071 6072 /* 6073 * What we do here is to mark the in-core inode as clean with respect to inode 6074 * dirtiness (it may still be data-dirty). 6075 * This means that the in-core inode may be reaped by prune_icache 6076 * without having to perform any I/O. This is a very good thing, 6077 * because *any* task may call prune_icache - even ones which 6078 * have a transaction open against a different journal. 6079 * 6080 * Is this cheating? Not really. Sure, we haven't written the 6081 * inode out, but prune_icache isn't a user-visible syncing function. 6082 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6083 * we start and wait on commits. 6084 */ 6085 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6086 { 6087 struct ext4_iloc iloc; 6088 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6089 int err; 6090 6091 might_sleep(); 6092 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6093 err = ext4_reserve_inode_write(handle, inode, &iloc); 6094 if (err) 6095 return err; 6096 6097 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6098 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6099 iloc, handle); 6100 6101 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6102 } 6103 6104 /* 6105 * ext4_dirty_inode() is called from __mark_inode_dirty() 6106 * 6107 * We're really interested in the case where a file is being extended. 6108 * i_size has been changed by generic_commit_write() and we thus need 6109 * to include the updated inode in the current transaction. 6110 * 6111 * Also, dquot_alloc_block() will always dirty the inode when blocks 6112 * are allocated to the file. 6113 * 6114 * If the inode is marked synchronous, we don't honour that here - doing 6115 * so would cause a commit on atime updates, which we don't bother doing. 6116 * We handle synchronous inodes at the highest possible level. 6117 * 6118 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6119 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6120 * to copy into the on-disk inode structure are the timestamp files. 6121 */ 6122 void ext4_dirty_inode(struct inode *inode, int flags) 6123 { 6124 handle_t *handle; 6125 6126 if (flags == I_DIRTY_TIME) 6127 return; 6128 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6129 if (IS_ERR(handle)) 6130 goto out; 6131 6132 ext4_mark_inode_dirty(handle, inode); 6133 6134 ext4_journal_stop(handle); 6135 out: 6136 return; 6137 } 6138 6139 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6140 { 6141 journal_t *journal; 6142 handle_t *handle; 6143 int err; 6144 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6145 6146 /* 6147 * We have to be very careful here: changing a data block's 6148 * journaling status dynamically is dangerous. If we write a 6149 * data block to the journal, change the status and then delete 6150 * that block, we risk forgetting to revoke the old log record 6151 * from the journal and so a subsequent replay can corrupt data. 6152 * So, first we make sure that the journal is empty and that 6153 * nobody is changing anything. 6154 */ 6155 6156 journal = EXT4_JOURNAL(inode); 6157 if (!journal) 6158 return 0; 6159 if (is_journal_aborted(journal)) 6160 return -EROFS; 6161 6162 /* Wait for all existing dio workers */ 6163 inode_dio_wait(inode); 6164 6165 /* 6166 * Before flushing the journal and switching inode's aops, we have 6167 * to flush all dirty data the inode has. There can be outstanding 6168 * delayed allocations, there can be unwritten extents created by 6169 * fallocate or buffered writes in dioread_nolock mode covered by 6170 * dirty data which can be converted only after flushing the dirty 6171 * data (and journalled aops don't know how to handle these cases). 6172 */ 6173 if (val) { 6174 down_write(&EXT4_I(inode)->i_mmap_sem); 6175 err = filemap_write_and_wait(inode->i_mapping); 6176 if (err < 0) { 6177 up_write(&EXT4_I(inode)->i_mmap_sem); 6178 return err; 6179 } 6180 } 6181 6182 percpu_down_write(&sbi->s_journal_flag_rwsem); 6183 jbd2_journal_lock_updates(journal); 6184 6185 /* 6186 * OK, there are no updates running now, and all cached data is 6187 * synced to disk. We are now in a completely consistent state 6188 * which doesn't have anything in the journal, and we know that 6189 * no filesystem updates are running, so it is safe to modify 6190 * the inode's in-core data-journaling state flag now. 6191 */ 6192 6193 if (val) 6194 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6195 else { 6196 err = jbd2_journal_flush(journal); 6197 if (err < 0) { 6198 jbd2_journal_unlock_updates(journal); 6199 percpu_up_write(&sbi->s_journal_flag_rwsem); 6200 return err; 6201 } 6202 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6203 } 6204 ext4_set_aops(inode); 6205 6206 jbd2_journal_unlock_updates(journal); 6207 percpu_up_write(&sbi->s_journal_flag_rwsem); 6208 6209 if (val) 6210 up_write(&EXT4_I(inode)->i_mmap_sem); 6211 6212 /* Finally we can mark the inode as dirty. */ 6213 6214 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6215 if (IS_ERR(handle)) 6216 return PTR_ERR(handle); 6217 6218 err = ext4_mark_inode_dirty(handle, inode); 6219 ext4_handle_sync(handle); 6220 ext4_journal_stop(handle); 6221 ext4_std_error(inode->i_sb, err); 6222 6223 return err; 6224 } 6225 6226 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6227 { 6228 return !buffer_mapped(bh); 6229 } 6230 6231 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6232 { 6233 struct vm_area_struct *vma = vmf->vma; 6234 struct page *page = vmf->page; 6235 loff_t size; 6236 unsigned long len; 6237 int err; 6238 vm_fault_t ret; 6239 struct file *file = vma->vm_file; 6240 struct inode *inode = file_inode(file); 6241 struct address_space *mapping = inode->i_mapping; 6242 handle_t *handle; 6243 get_block_t *get_block; 6244 int retries = 0; 6245 6246 if (unlikely(IS_IMMUTABLE(inode))) 6247 return VM_FAULT_SIGBUS; 6248 6249 sb_start_pagefault(inode->i_sb); 6250 file_update_time(vma->vm_file); 6251 6252 down_read(&EXT4_I(inode)->i_mmap_sem); 6253 6254 err = ext4_convert_inline_data(inode); 6255 if (err) 6256 goto out_ret; 6257 6258 /* Delalloc case is easy... */ 6259 if (test_opt(inode->i_sb, DELALLOC) && 6260 !ext4_should_journal_data(inode) && 6261 !ext4_nonda_switch(inode->i_sb)) { 6262 do { 6263 err = block_page_mkwrite(vma, vmf, 6264 ext4_da_get_block_prep); 6265 } while (err == -ENOSPC && 6266 ext4_should_retry_alloc(inode->i_sb, &retries)); 6267 goto out_ret; 6268 } 6269 6270 lock_page(page); 6271 size = i_size_read(inode); 6272 /* Page got truncated from under us? */ 6273 if (page->mapping != mapping || page_offset(page) > size) { 6274 unlock_page(page); 6275 ret = VM_FAULT_NOPAGE; 6276 goto out; 6277 } 6278 6279 if (page->index == size >> PAGE_SHIFT) 6280 len = size & ~PAGE_MASK; 6281 else 6282 len = PAGE_SIZE; 6283 /* 6284 * Return if we have all the buffers mapped. This avoids the need to do 6285 * journal_start/journal_stop which can block and take a long time 6286 */ 6287 if (page_has_buffers(page)) { 6288 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6289 0, len, NULL, 6290 ext4_bh_unmapped)) { 6291 /* Wait so that we don't change page under IO */ 6292 wait_for_stable_page(page); 6293 ret = VM_FAULT_LOCKED; 6294 goto out; 6295 } 6296 } 6297 unlock_page(page); 6298 /* OK, we need to fill the hole... */ 6299 if (ext4_should_dioread_nolock(inode)) 6300 get_block = ext4_get_block_unwritten; 6301 else 6302 get_block = ext4_get_block; 6303 retry_alloc: 6304 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6305 ext4_writepage_trans_blocks(inode)); 6306 if (IS_ERR(handle)) { 6307 ret = VM_FAULT_SIGBUS; 6308 goto out; 6309 } 6310 err = block_page_mkwrite(vma, vmf, get_block); 6311 if (!err && ext4_should_journal_data(inode)) { 6312 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6313 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6314 unlock_page(page); 6315 ret = VM_FAULT_SIGBUS; 6316 ext4_journal_stop(handle); 6317 goto out; 6318 } 6319 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6320 } 6321 ext4_journal_stop(handle); 6322 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6323 goto retry_alloc; 6324 out_ret: 6325 ret = block_page_mkwrite_return(err); 6326 out: 6327 up_read(&EXT4_I(inode)->i_mmap_sem); 6328 sb_end_pagefault(inode->i_sb); 6329 return ret; 6330 } 6331 6332 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6333 { 6334 struct inode *inode = file_inode(vmf->vma->vm_file); 6335 vm_fault_t ret; 6336 6337 down_read(&EXT4_I(inode)->i_mmap_sem); 6338 ret = filemap_fault(vmf); 6339 up_read(&EXT4_I(inode)->i_mmap_sem); 6340 6341 return ret; 6342 } 6343