xref: /linux/fs/ext4/inode.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    !inode_is_open_for_write(inode))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (ext4_has_feature_journal(inode->i_sb) &&
403 	    (inode->i_ino ==
404 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 		return 0;
406 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 				   map->m_len)) {
408 		ext4_error_inode(inode, func, line, map->m_pblk,
409 				 "lblock %lu mapped to illegal pblock %llu "
410 				 "(length %d)", (unsigned long) map->m_lblk,
411 				 map->m_pblk, map->m_len);
412 		return -EFSCORRUPTED;
413 	}
414 	return 0;
415 }
416 
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 		       ext4_lblk_t len)
419 {
420 	int ret;
421 
422 	if (IS_ENCRYPTED(inode))
423 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
424 
425 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 	if (ret > 0)
427 		ret = 0;
428 
429 	return ret;
430 }
431 
432 #define check_block_validity(inode, map)	\
433 	__check_block_validity((inode), __func__, __LINE__, (map))
434 
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 				       struct inode *inode,
438 				       struct ext4_map_blocks *es_map,
439 				       struct ext4_map_blocks *map,
440 				       int flags)
441 {
442 	int retval;
443 
444 	map->m_flags = 0;
445 	/*
446 	 * There is a race window that the result is not the same.
447 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
448 	 * is that we lookup a block mapping in extent status tree with
449 	 * out taking i_data_sem.  So at the time the unwritten extent
450 	 * could be converted.
451 	 */
452 	down_read(&EXT4_I(inode)->i_data_sem);
453 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 					     EXT4_GET_BLOCKS_KEEP_SIZE);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 					     EXT4_GET_BLOCKS_KEEP_SIZE);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 		  (unsigned long) map->m_lblk);
518 
519 	/*
520 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 	 */
522 	if (unlikely(map->m_len > INT_MAX))
523 		map->m_len = INT_MAX;
524 
525 	/* We can handle the block number less than EXT_MAX_BLOCKS */
526 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 		return -EFSCORRUPTED;
528 
529 	/* Lookup extent status tree firstly */
530 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	} else {
566 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 					     EXT4_GET_BLOCKS_KEEP_SIZE);
568 	}
569 	if (retval > 0) {
570 		unsigned int status;
571 
572 		if (unlikely(retval != map->m_len)) {
573 			ext4_warning(inode->i_sb,
574 				     "ES len assertion failed for inode "
575 				     "%lu: retval %d != map->m_len %d",
576 				     inode->i_ino, retval, map->m_len);
577 			WARN_ON(1);
578 		}
579 
580 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 		    !(status & EXTENT_STATUS_WRITTEN) &&
584 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 				       map->m_lblk + map->m_len - 1))
586 			status |= EXTENT_STATUS_DELAYED;
587 		ret = ext4_es_insert_extent(inode, map->m_lblk,
588 					    map->m_len, map->m_pblk, status);
589 		if (ret < 0)
590 			retval = ret;
591 	}
592 	up_read((&EXT4_I(inode)->i_data_sem));
593 
594 found:
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 		ret = check_block_validity(inode, map);
597 		if (ret != 0)
598 			return ret;
599 	}
600 
601 	/* If it is only a block(s) look up */
602 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 		return retval;
604 
605 	/*
606 	 * Returns if the blocks have already allocated
607 	 *
608 	 * Note that if blocks have been preallocated
609 	 * ext4_ext_get_block() returns the create = 0
610 	 * with buffer head unmapped.
611 	 */
612 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 		/*
614 		 * If we need to convert extent to unwritten
615 		 * we continue and do the actual work in
616 		 * ext4_ext_map_blocks()
617 		 */
618 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 			return retval;
620 
621 	/*
622 	 * Here we clear m_flags because after allocating an new extent,
623 	 * it will be set again.
624 	 */
625 	map->m_flags &= ~EXT4_MAP_FLAGS;
626 
627 	/*
628 	 * New blocks allocate and/or writing to unwritten extent
629 	 * will possibly result in updating i_data, so we take
630 	 * the write lock of i_data_sem, and call get_block()
631 	 * with create == 1 flag.
632 	 */
633 	down_write(&EXT4_I(inode)->i_data_sem);
634 
635 	/*
636 	 * We need to check for EXT4 here because migrate
637 	 * could have changed the inode type in between
638 	 */
639 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 	} else {
642 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
643 
644 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 			/*
646 			 * We allocated new blocks which will result in
647 			 * i_data's format changing.  Force the migrate
648 			 * to fail by clearing migrate flags
649 			 */
650 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 		}
652 
653 		/*
654 		 * Update reserved blocks/metadata blocks after successful
655 		 * block allocation which had been deferred till now. We don't
656 		 * support fallocate for non extent files. So we can update
657 		 * reserve space here.
658 		 */
659 		if ((retval > 0) &&
660 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 			ext4_da_update_reserve_space(inode, retval, 1);
662 	}
663 
664 	if (retval > 0) {
665 		unsigned int status;
666 
667 		if (unlikely(retval != map->m_len)) {
668 			ext4_warning(inode->i_sb,
669 				     "ES len assertion failed for inode "
670 				     "%lu: retval %d != map->m_len %d",
671 				     inode->i_ino, retval, map->m_len);
672 			WARN_ON(1);
673 		}
674 
675 		/*
676 		 * We have to zeroout blocks before inserting them into extent
677 		 * status tree. Otherwise someone could look them up there and
678 		 * use them before they are really zeroed. We also have to
679 		 * unmap metadata before zeroing as otherwise writeback can
680 		 * overwrite zeros with stale data from block device.
681 		 */
682 		if (flags & EXT4_GET_BLOCKS_ZERO &&
683 		    map->m_flags & EXT4_MAP_MAPPED &&
684 		    map->m_flags & EXT4_MAP_NEW) {
685 			ret = ext4_issue_zeroout(inode, map->m_lblk,
686 						 map->m_pblk, map->m_len);
687 			if (ret) {
688 				retval = ret;
689 				goto out_sem;
690 			}
691 		}
692 
693 		/*
694 		 * If the extent has been zeroed out, we don't need to update
695 		 * extent status tree.
696 		 */
697 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699 			if (ext4_es_is_written(&es))
700 				goto out_sem;
701 		}
702 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 		    !(status & EXTENT_STATUS_WRITTEN) &&
706 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 				       map->m_lblk + map->m_len - 1))
708 			status |= EXTENT_STATUS_DELAYED;
709 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 					    map->m_pblk, status);
711 		if (ret < 0) {
712 			retval = ret;
713 			goto out_sem;
714 		}
715 	}
716 
717 out_sem:
718 	up_write((&EXT4_I(inode)->i_data_sem));
719 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 		ret = check_block_validity(inode, map);
721 		if (ret != 0)
722 			return ret;
723 
724 		/*
725 		 * Inodes with freshly allocated blocks where contents will be
726 		 * visible after transaction commit must be on transaction's
727 		 * ordered data list.
728 		 */
729 		if (map->m_flags & EXT4_MAP_NEW &&
730 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 		    !ext4_is_quota_file(inode) &&
733 		    ext4_should_order_data(inode)) {
734 			loff_t start_byte =
735 				(loff_t)map->m_lblk << inode->i_blkbits;
736 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737 
738 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739 				ret = ext4_jbd2_inode_add_wait(handle, inode,
740 						start_byte, length);
741 			else
742 				ret = ext4_jbd2_inode_add_write(handle, inode,
743 						start_byte, length);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	return retval;
749 }
750 
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757 	unsigned long old_state;
758 	unsigned long new_state;
759 
760 	flags &= EXT4_MAP_FLAGS;
761 
762 	/* Dummy buffer_head? Set non-atomically. */
763 	if (!bh->b_page) {
764 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 		return;
766 	}
767 	/*
768 	 * Someone else may be modifying b_state. Be careful! This is ugly but
769 	 * once we get rid of using bh as a container for mapping information
770 	 * to pass to / from get_block functions, this can go away.
771 	 */
772 	do {
773 		old_state = READ_ONCE(bh->b_state);
774 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 	} while (unlikely(
776 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778 
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 			   struct buffer_head *bh, int flags)
781 {
782 	struct ext4_map_blocks map;
783 	int ret = 0;
784 
785 	if (ext4_has_inline_data(inode))
786 		return -ERANGE;
787 
788 	map.m_lblk = iblock;
789 	map.m_len = bh->b_size >> inode->i_blkbits;
790 
791 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 			      flags);
793 	if (ret > 0) {
794 		map_bh(bh, inode->i_sb, map.m_pblk);
795 		ext4_update_bh_state(bh, map.m_flags);
796 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 		ret = 0;
798 	} else if (ret == 0) {
799 		/* hole case, need to fill in bh->b_size */
800 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 	}
802 	return ret;
803 }
804 
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806 		   struct buffer_head *bh, int create)
807 {
808 	return _ext4_get_block(inode, iblock, bh,
809 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811 
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 			     struct buffer_head *bh_result, int create)
819 {
820 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 		   inode->i_ino, create);
822 	return _ext4_get_block(inode, iblock, bh_result,
823 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825 
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828 
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 				struct buffer_head *bh_result, int flags)
836 {
837 	int dio_credits;
838 	handle_t *handle;
839 	int retries = 0;
840 	int ret;
841 
842 	/* Trim mapping request to maximum we can map at once for DIO */
843 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 	dio_credits = ext4_chunk_trans_blocks(inode,
846 				      bh_result->b_size >> inode->i_blkbits);
847 retry:
848 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 	if (IS_ERR(handle))
850 		return PTR_ERR(handle);
851 
852 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 	ext4_journal_stop(handle);
854 
855 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 		goto retry;
857 	return ret;
858 }
859 
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 		       struct buffer_head *bh, int create)
863 {
864 	/* We don't expect handle for direct IO */
865 	WARN_ON_ONCE(ext4_journal_current_handle());
866 
867 	if (!create)
868 		return _ext4_get_block(inode, iblock, bh, 0);
869 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871 
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 		sector_t iblock, struct buffer_head *bh_result,	int create)
879 {
880 	int ret;
881 
882 	/* We don't expect handle for direct IO */
883 	WARN_ON_ONCE(ext4_journal_current_handle());
884 
885 	ret = ext4_get_block_trans(inode, iblock, bh_result,
886 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
887 
888 	/*
889 	 * When doing DIO using unwritten extents, we need io_end to convert
890 	 * unwritten extents to written on IO completion. We allocate io_end
891 	 * once we spot unwritten extent and store it in b_private. Generic
892 	 * DIO code keeps b_private set and furthermore passes the value to
893 	 * our completion callback in 'private' argument.
894 	 */
895 	if (!ret && buffer_unwritten(bh_result)) {
896 		if (!bh_result->b_private) {
897 			ext4_io_end_t *io_end;
898 
899 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 			if (!io_end)
901 				return -ENOMEM;
902 			bh_result->b_private = io_end;
903 			ext4_set_io_unwritten_flag(inode, io_end);
904 		}
905 		set_buffer_defer_completion(bh_result);
906 	}
907 
908 	return ret;
909 }
910 
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 		sector_t iblock, struct buffer_head *bh_result,	int create)
918 {
919 	int ret;
920 
921 	/* We don't expect handle for direct IO */
922 	WARN_ON_ONCE(ext4_journal_current_handle());
923 
924 	ret = ext4_get_block_trans(inode, iblock, bh_result,
925 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
926 
927 	/*
928 	 * Mark inode as having pending DIO writes to unwritten extents.
929 	 * ext4_direct_IO_write() checks this flag and converts extents to
930 	 * written.
931 	 */
932 	if (!ret && buffer_unwritten(bh_result))
933 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934 
935 	return ret;
936 }
937 
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 		   struct buffer_head *bh_result, int create)
940 {
941 	int ret;
942 
943 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 		   inode->i_ino, create);
945 	/* We don't expect handle for direct IO */
946 	WARN_ON_ONCE(ext4_journal_current_handle());
947 
948 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 	/*
950 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 	 * that.
952 	 */
953 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954 
955 	return ret;
956 }
957 
958 
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 				ext4_lblk_t block, int map_flags)
964 {
965 	struct ext4_map_blocks map;
966 	struct buffer_head *bh;
967 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 	int err;
969 
970 	J_ASSERT(handle != NULL || create == 0);
971 
972 	map.m_lblk = block;
973 	map.m_len = 1;
974 	err = ext4_map_blocks(handle, inode, &map, map_flags);
975 
976 	if (err == 0)
977 		return create ? ERR_PTR(-ENOSPC) : NULL;
978 	if (err < 0)
979 		return ERR_PTR(err);
980 
981 	bh = sb_getblk(inode->i_sb, map.m_pblk);
982 	if (unlikely(!bh))
983 		return ERR_PTR(-ENOMEM);
984 	if (map.m_flags & EXT4_MAP_NEW) {
985 		J_ASSERT(create != 0);
986 		J_ASSERT(handle != NULL);
987 
988 		/*
989 		 * Now that we do not always journal data, we should
990 		 * keep in mind whether this should always journal the
991 		 * new buffer as metadata.  For now, regular file
992 		 * writes use ext4_get_block instead, so it's not a
993 		 * problem.
994 		 */
995 		lock_buffer(bh);
996 		BUFFER_TRACE(bh, "call get_create_access");
997 		err = ext4_journal_get_create_access(handle, bh);
998 		if (unlikely(err)) {
999 			unlock_buffer(bh);
1000 			goto errout;
1001 		}
1002 		if (!buffer_uptodate(bh)) {
1003 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 			set_buffer_uptodate(bh);
1005 		}
1006 		unlock_buffer(bh);
1007 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1009 		if (unlikely(err))
1010 			goto errout;
1011 	} else
1012 		BUFFER_TRACE(bh, "not a new buffer");
1013 	return bh;
1014 errout:
1015 	brelse(bh);
1016 	return ERR_PTR(err);
1017 }
1018 
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020 			       ext4_lblk_t block, int map_flags)
1021 {
1022 	struct buffer_head *bh;
1023 
1024 	bh = ext4_getblk(handle, inode, block, map_flags);
1025 	if (IS_ERR(bh))
1026 		return bh;
1027 	if (!bh || buffer_uptodate(bh))
1028 		return bh;
1029 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030 	wait_on_buffer(bh);
1031 	if (buffer_uptodate(bh))
1032 		return bh;
1033 	put_bh(bh);
1034 	return ERR_PTR(-EIO);
1035 }
1036 
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 		     bool wait, struct buffer_head **bhs)
1040 {
1041 	int i, err;
1042 
1043 	for (i = 0; i < bh_count; i++) {
1044 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 		if (IS_ERR(bhs[i])) {
1046 			err = PTR_ERR(bhs[i]);
1047 			bh_count = i;
1048 			goto out_brelse;
1049 		}
1050 	}
1051 
1052 	for (i = 0; i < bh_count; i++)
1053 		/* Note that NULL bhs[i] is valid because of holes. */
1054 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1055 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 				    &bhs[i]);
1057 
1058 	if (!wait)
1059 		return 0;
1060 
1061 	for (i = 0; i < bh_count; i++)
1062 		if (bhs[i])
1063 			wait_on_buffer(bhs[i]);
1064 
1065 	for (i = 0; i < bh_count; i++) {
1066 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 			err = -EIO;
1068 			goto out_brelse;
1069 		}
1070 	}
1071 	return 0;
1072 
1073 out_brelse:
1074 	for (i = 0; i < bh_count; i++) {
1075 		brelse(bhs[i]);
1076 		bhs[i] = NULL;
1077 	}
1078 	return err;
1079 }
1080 
1081 int ext4_walk_page_buffers(handle_t *handle,
1082 			   struct buffer_head *head,
1083 			   unsigned from,
1084 			   unsigned to,
1085 			   int *partial,
1086 			   int (*fn)(handle_t *handle,
1087 				     struct buffer_head *bh))
1088 {
1089 	struct buffer_head *bh;
1090 	unsigned block_start, block_end;
1091 	unsigned blocksize = head->b_size;
1092 	int err, ret = 0;
1093 	struct buffer_head *next;
1094 
1095 	for (bh = head, block_start = 0;
1096 	     ret == 0 && (bh != head || !block_start);
1097 	     block_start = block_end, bh = next) {
1098 		next = bh->b_this_page;
1099 		block_end = block_start + blocksize;
1100 		if (block_end <= from || block_start >= to) {
1101 			if (partial && !buffer_uptodate(bh))
1102 				*partial = 1;
1103 			continue;
1104 		}
1105 		err = (*fn)(handle, bh);
1106 		if (!ret)
1107 			ret = err;
1108 	}
1109 	return ret;
1110 }
1111 
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137 				struct buffer_head *bh)
1138 {
1139 	int dirty = buffer_dirty(bh);
1140 	int ret;
1141 
1142 	if (!buffer_mapped(bh) || buffer_freed(bh))
1143 		return 0;
1144 	/*
1145 	 * __block_write_begin() could have dirtied some buffers. Clean
1146 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 	 * otherwise about fs integrity issues. Setting of the dirty bit
1148 	 * by __block_write_begin() isn't a real problem here as we clear
1149 	 * the bit before releasing a page lock and thus writeback cannot
1150 	 * ever write the buffer.
1151 	 */
1152 	if (dirty)
1153 		clear_buffer_dirty(bh);
1154 	BUFFER_TRACE(bh, "get write access");
1155 	ret = ext4_journal_get_write_access(handle, bh);
1156 	if (!ret && dirty)
1157 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 	return ret;
1159 }
1160 
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 				  get_block_t *get_block)
1164 {
1165 	unsigned from = pos & (PAGE_SIZE - 1);
1166 	unsigned to = from + len;
1167 	struct inode *inode = page->mapping->host;
1168 	unsigned block_start, block_end;
1169 	sector_t block;
1170 	int err = 0;
1171 	unsigned blocksize = inode->i_sb->s_blocksize;
1172 	unsigned bbits;
1173 	struct buffer_head *bh, *head, *wait[2];
1174 	int nr_wait = 0;
1175 	int i;
1176 
1177 	BUG_ON(!PageLocked(page));
1178 	BUG_ON(from > PAGE_SIZE);
1179 	BUG_ON(to > PAGE_SIZE);
1180 	BUG_ON(from > to);
1181 
1182 	if (!page_has_buffers(page))
1183 		create_empty_buffers(page, blocksize, 0);
1184 	head = page_buffers(page);
1185 	bbits = ilog2(blocksize);
1186 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187 
1188 	for (bh = head, block_start = 0; bh != head || !block_start;
1189 	    block++, block_start = block_end, bh = bh->b_this_page) {
1190 		block_end = block_start + blocksize;
1191 		if (block_end <= from || block_start >= to) {
1192 			if (PageUptodate(page)) {
1193 				if (!buffer_uptodate(bh))
1194 					set_buffer_uptodate(bh);
1195 			}
1196 			continue;
1197 		}
1198 		if (buffer_new(bh))
1199 			clear_buffer_new(bh);
1200 		if (!buffer_mapped(bh)) {
1201 			WARN_ON(bh->b_size != blocksize);
1202 			err = get_block(inode, block, bh, 1);
1203 			if (err)
1204 				break;
1205 			if (buffer_new(bh)) {
1206 				if (PageUptodate(page)) {
1207 					clear_buffer_new(bh);
1208 					set_buffer_uptodate(bh);
1209 					mark_buffer_dirty(bh);
1210 					continue;
1211 				}
1212 				if (block_end > to || block_start < from)
1213 					zero_user_segments(page, to, block_end,
1214 							   block_start, from);
1215 				continue;
1216 			}
1217 		}
1218 		if (PageUptodate(page)) {
1219 			if (!buffer_uptodate(bh))
1220 				set_buffer_uptodate(bh);
1221 			continue;
1222 		}
1223 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 		    !buffer_unwritten(bh) &&
1225 		    (block_start < from || block_end > to)) {
1226 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227 			wait[nr_wait++] = bh;
1228 		}
1229 	}
1230 	/*
1231 	 * If we issued read requests, let them complete.
1232 	 */
1233 	for (i = 0; i < nr_wait; i++) {
1234 		wait_on_buffer(wait[i]);
1235 		if (!buffer_uptodate(wait[i]))
1236 			err = -EIO;
1237 	}
1238 	if (unlikely(err)) {
1239 		page_zero_new_buffers(page, from, to);
1240 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 		for (i = 0; i < nr_wait; i++) {
1242 			int err2;
1243 
1244 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 								bh_offset(wait[i]));
1246 			if (err2) {
1247 				clear_buffer_uptodate(wait[i]);
1248 				err = err2;
1249 			}
1250 		}
1251 	}
1252 
1253 	return err;
1254 }
1255 #endif
1256 
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258 			    loff_t pos, unsigned len, unsigned flags,
1259 			    struct page **pagep, void **fsdata)
1260 {
1261 	struct inode *inode = mapping->host;
1262 	int ret, needed_blocks;
1263 	handle_t *handle;
1264 	int retries = 0;
1265 	struct page *page;
1266 	pgoff_t index;
1267 	unsigned from, to;
1268 
1269 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 		return -EIO;
1271 
1272 	trace_ext4_write_begin(inode, pos, len, flags);
1273 	/*
1274 	 * Reserve one block more for addition to orphan list in case
1275 	 * we allocate blocks but write fails for some reason
1276 	 */
1277 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 	index = pos >> PAGE_SHIFT;
1279 	from = pos & (PAGE_SIZE - 1);
1280 	to = from + len;
1281 
1282 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 						    flags, pagep);
1285 		if (ret < 0)
1286 			return ret;
1287 		if (ret == 1)
1288 			return 0;
1289 	}
1290 
1291 	/*
1292 	 * grab_cache_page_write_begin() can take a long time if the
1293 	 * system is thrashing due to memory pressure, or if the page
1294 	 * is being written back.  So grab it first before we start
1295 	 * the transaction handle.  This also allows us to allocate
1296 	 * the page (if needed) without using GFP_NOFS.
1297 	 */
1298 retry_grab:
1299 	page = grab_cache_page_write_begin(mapping, index, flags);
1300 	if (!page)
1301 		return -ENOMEM;
1302 	unlock_page(page);
1303 
1304 retry_journal:
1305 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306 	if (IS_ERR(handle)) {
1307 		put_page(page);
1308 		return PTR_ERR(handle);
1309 	}
1310 
1311 	lock_page(page);
1312 	if (page->mapping != mapping) {
1313 		/* The page got truncated from under us */
1314 		unlock_page(page);
1315 		put_page(page);
1316 		ext4_journal_stop(handle);
1317 		goto retry_grab;
1318 	}
1319 	/* In case writeback began while the page was unlocked */
1320 	wait_for_stable_page(page);
1321 
1322 #ifdef CONFIG_FS_ENCRYPTION
1323 	if (ext4_should_dioread_nolock(inode))
1324 		ret = ext4_block_write_begin(page, pos, len,
1325 					     ext4_get_block_unwritten);
1326 	else
1327 		ret = ext4_block_write_begin(page, pos, len,
1328 					     ext4_get_block);
1329 #else
1330 	if (ext4_should_dioread_nolock(inode))
1331 		ret = __block_write_begin(page, pos, len,
1332 					  ext4_get_block_unwritten);
1333 	else
1334 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336 	if (!ret && ext4_should_journal_data(inode)) {
1337 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 					     from, to, NULL,
1339 					     do_journal_get_write_access);
1340 	}
1341 
1342 	if (ret) {
1343 		bool extended = (pos + len > inode->i_size) &&
1344 				!ext4_verity_in_progress(inode);
1345 
1346 		unlock_page(page);
1347 		/*
1348 		 * __block_write_begin may have instantiated a few blocks
1349 		 * outside i_size.  Trim these off again. Don't need
1350 		 * i_size_read because we hold i_mutex.
1351 		 *
1352 		 * Add inode to orphan list in case we crash before
1353 		 * truncate finishes
1354 		 */
1355 		if (extended && ext4_can_truncate(inode))
1356 			ext4_orphan_add(handle, inode);
1357 
1358 		ext4_journal_stop(handle);
1359 		if (extended) {
1360 			ext4_truncate_failed_write(inode);
1361 			/*
1362 			 * If truncate failed early the inode might
1363 			 * still be on the orphan list; we need to
1364 			 * make sure the inode is removed from the
1365 			 * orphan list in that case.
1366 			 */
1367 			if (inode->i_nlink)
1368 				ext4_orphan_del(NULL, inode);
1369 		}
1370 
1371 		if (ret == -ENOSPC &&
1372 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1373 			goto retry_journal;
1374 		put_page(page);
1375 		return ret;
1376 	}
1377 	*pagep = page;
1378 	return ret;
1379 }
1380 
1381 /* For write_end() in data=journal mode */
1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383 {
1384 	int ret;
1385 	if (!buffer_mapped(bh) || buffer_freed(bh))
1386 		return 0;
1387 	set_buffer_uptodate(bh);
1388 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 	clear_buffer_meta(bh);
1390 	clear_buffer_prio(bh);
1391 	return ret;
1392 }
1393 
1394 /*
1395  * We need to pick up the new inode size which generic_commit_write gave us
1396  * `file' can be NULL - eg, when called from page_symlink().
1397  *
1398  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399  * buffers are managed internally.
1400  */
1401 static int ext4_write_end(struct file *file,
1402 			  struct address_space *mapping,
1403 			  loff_t pos, unsigned len, unsigned copied,
1404 			  struct page *page, void *fsdata)
1405 {
1406 	handle_t *handle = ext4_journal_current_handle();
1407 	struct inode *inode = mapping->host;
1408 	loff_t old_size = inode->i_size;
1409 	int ret = 0, ret2;
1410 	int i_size_changed = 0;
1411 	int inline_data = ext4_has_inline_data(inode);
1412 	bool verity = ext4_verity_in_progress(inode);
1413 
1414 	trace_ext4_write_end(inode, pos, len, copied);
1415 	if (inline_data) {
1416 		ret = ext4_write_inline_data_end(inode, pos, len,
1417 						 copied, page);
1418 		if (ret < 0) {
1419 			unlock_page(page);
1420 			put_page(page);
1421 			goto errout;
1422 		}
1423 		copied = ret;
1424 	} else
1425 		copied = block_write_end(file, mapping, pos,
1426 					 len, copied, page, fsdata);
1427 	/*
1428 	 * it's important to update i_size while still holding page lock:
1429 	 * page writeout could otherwise come in and zero beyond i_size.
1430 	 *
1431 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432 	 * blocks are being written past EOF, so skip the i_size update.
1433 	 */
1434 	if (!verity)
1435 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436 	unlock_page(page);
1437 	put_page(page);
1438 
1439 	if (old_size < pos && !verity)
1440 		pagecache_isize_extended(inode, old_size, pos);
1441 	/*
1442 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443 	 * makes the holding time of page lock longer. Second, it forces lock
1444 	 * ordering of page lock and transaction start for journaling
1445 	 * filesystems.
1446 	 */
1447 	if (i_size_changed || inline_data)
1448 		ext4_mark_inode_dirty(handle, inode);
1449 
1450 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 		/* if we have allocated more blocks and copied
1452 		 * less. We will have blocks allocated outside
1453 		 * inode->i_size. So truncate them
1454 		 */
1455 		ext4_orphan_add(handle, inode);
1456 errout:
1457 	ret2 = ext4_journal_stop(handle);
1458 	if (!ret)
1459 		ret = ret2;
1460 
1461 	if (pos + len > inode->i_size && !verity) {
1462 		ext4_truncate_failed_write(inode);
1463 		/*
1464 		 * If truncate failed early the inode might still be
1465 		 * on the orphan list; we need to make sure the inode
1466 		 * is removed from the orphan list in that case.
1467 		 */
1468 		if (inode->i_nlink)
1469 			ext4_orphan_del(NULL, inode);
1470 	}
1471 
1472 	return ret ? ret : copied;
1473 }
1474 
1475 /*
1476  * This is a private version of page_zero_new_buffers() which doesn't
1477  * set the buffer to be dirty, since in data=journalled mode we need
1478  * to call ext4_handle_dirty_metadata() instead.
1479  */
1480 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481 					    struct page *page,
1482 					    unsigned from, unsigned to)
1483 {
1484 	unsigned int block_start = 0, block_end;
1485 	struct buffer_head *head, *bh;
1486 
1487 	bh = head = page_buffers(page);
1488 	do {
1489 		block_end = block_start + bh->b_size;
1490 		if (buffer_new(bh)) {
1491 			if (block_end > from && block_start < to) {
1492 				if (!PageUptodate(page)) {
1493 					unsigned start, size;
1494 
1495 					start = max(from, block_start);
1496 					size = min(to, block_end) - start;
1497 
1498 					zero_user(page, start, size);
1499 					write_end_fn(handle, bh);
1500 				}
1501 				clear_buffer_new(bh);
1502 			}
1503 		}
1504 		block_start = block_end;
1505 		bh = bh->b_this_page;
1506 	} while (bh != head);
1507 }
1508 
1509 static int ext4_journalled_write_end(struct file *file,
1510 				     struct address_space *mapping,
1511 				     loff_t pos, unsigned len, unsigned copied,
1512 				     struct page *page, void *fsdata)
1513 {
1514 	handle_t *handle = ext4_journal_current_handle();
1515 	struct inode *inode = mapping->host;
1516 	loff_t old_size = inode->i_size;
1517 	int ret = 0, ret2;
1518 	int partial = 0;
1519 	unsigned from, to;
1520 	int size_changed = 0;
1521 	int inline_data = ext4_has_inline_data(inode);
1522 	bool verity = ext4_verity_in_progress(inode);
1523 
1524 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1525 	from = pos & (PAGE_SIZE - 1);
1526 	to = from + len;
1527 
1528 	BUG_ON(!ext4_handle_valid(handle));
1529 
1530 	if (inline_data) {
1531 		ret = ext4_write_inline_data_end(inode, pos, len,
1532 						 copied, page);
1533 		if (ret < 0) {
1534 			unlock_page(page);
1535 			put_page(page);
1536 			goto errout;
1537 		}
1538 		copied = ret;
1539 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1540 		copied = 0;
1541 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1542 	} else {
1543 		if (unlikely(copied < len))
1544 			ext4_journalled_zero_new_buffers(handle, page,
1545 							 from + copied, to);
1546 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547 					     from + copied, &partial,
1548 					     write_end_fn);
1549 		if (!partial)
1550 			SetPageUptodate(page);
1551 	}
1552 	if (!verity)
1553 		size_changed = ext4_update_inode_size(inode, pos + copied);
1554 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556 	unlock_page(page);
1557 	put_page(page);
1558 
1559 	if (old_size < pos && !verity)
1560 		pagecache_isize_extended(inode, old_size, pos);
1561 
1562 	if (size_changed || inline_data) {
1563 		ret2 = ext4_mark_inode_dirty(handle, inode);
1564 		if (!ret)
1565 			ret = ret2;
1566 	}
1567 
1568 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569 		/* if we have allocated more blocks and copied
1570 		 * less. We will have blocks allocated outside
1571 		 * inode->i_size. So truncate them
1572 		 */
1573 		ext4_orphan_add(handle, inode);
1574 
1575 errout:
1576 	ret2 = ext4_journal_stop(handle);
1577 	if (!ret)
1578 		ret = ret2;
1579 	if (pos + len > inode->i_size && !verity) {
1580 		ext4_truncate_failed_write(inode);
1581 		/*
1582 		 * If truncate failed early the inode might still be
1583 		 * on the orphan list; we need to make sure the inode
1584 		 * is removed from the orphan list in that case.
1585 		 */
1586 		if (inode->i_nlink)
1587 			ext4_orphan_del(NULL, inode);
1588 	}
1589 
1590 	return ret ? ret : copied;
1591 }
1592 
1593 /*
1594  * Reserve space for a single cluster
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode)
1597 {
1598 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 	struct ext4_inode_info *ei = EXT4_I(inode);
1600 	int ret;
1601 
1602 	/*
1603 	 * We will charge metadata quota at writeout time; this saves
1604 	 * us from metadata over-estimation, though we may go over by
1605 	 * a small amount in the end.  Here we just reserve for data.
1606 	 */
1607 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608 	if (ret)
1609 		return ret;
1610 
1611 	spin_lock(&ei->i_block_reservation_lock);
1612 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613 		spin_unlock(&ei->i_block_reservation_lock);
1614 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615 		return -ENOSPC;
1616 	}
1617 	ei->i_reserved_data_blocks++;
1618 	trace_ext4_da_reserve_space(inode);
1619 	spin_unlock(&ei->i_block_reservation_lock);
1620 
1621 	return 0;       /* success */
1622 }
1623 
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	struct ext4_inode_info *ei = EXT4_I(inode);
1628 
1629 	if (!to_free)
1630 		return;		/* Nothing to release, exit */
1631 
1632 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633 
1634 	trace_ext4_da_release_space(inode, to_free);
1635 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636 		/*
1637 		 * if there aren't enough reserved blocks, then the
1638 		 * counter is messed up somewhere.  Since this
1639 		 * function is called from invalidate page, it's
1640 		 * harmless to return without any action.
1641 		 */
1642 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643 			 "ino %lu, to_free %d with only %d reserved "
1644 			 "data blocks", inode->i_ino, to_free,
1645 			 ei->i_reserved_data_blocks);
1646 		WARN_ON(1);
1647 		to_free = ei->i_reserved_data_blocks;
1648 	}
1649 	ei->i_reserved_data_blocks -= to_free;
1650 
1651 	/* update fs dirty data blocks counter */
1652 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653 
1654 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655 
1656 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658 
1659 static void ext4_da_page_release_reservation(struct page *page,
1660 					     unsigned int offset,
1661 					     unsigned int length)
1662 {
1663 	int contiguous_blks = 0;
1664 	struct buffer_head *head, *bh;
1665 	unsigned int curr_off = 0;
1666 	struct inode *inode = page->mapping->host;
1667 	unsigned int stop = offset + length;
1668 	ext4_fsblk_t lblk;
1669 
1670 	BUG_ON(stop > PAGE_SIZE || stop < length);
1671 
1672 	head = page_buffers(page);
1673 	bh = head;
1674 	do {
1675 		unsigned int next_off = curr_off + bh->b_size;
1676 
1677 		if (next_off > stop)
1678 			break;
1679 
1680 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1681 			contiguous_blks++;
1682 			clear_buffer_delay(bh);
1683 		} else if (contiguous_blks) {
1684 			lblk = page->index <<
1685 			       (PAGE_SHIFT - inode->i_blkbits);
1686 			lblk += (curr_off >> inode->i_blkbits) -
1687 				contiguous_blks;
1688 			ext4_es_remove_blks(inode, lblk, contiguous_blks);
1689 			contiguous_blks = 0;
1690 		}
1691 		curr_off = next_off;
1692 	} while ((bh = bh->b_this_page) != head);
1693 
1694 	if (contiguous_blks) {
1695 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1696 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1697 		ext4_es_remove_blks(inode, lblk, contiguous_blks);
1698 	}
1699 
1700 }
1701 
1702 /*
1703  * Delayed allocation stuff
1704  */
1705 
1706 struct mpage_da_data {
1707 	struct inode *inode;
1708 	struct writeback_control *wbc;
1709 
1710 	pgoff_t first_page;	/* The first page to write */
1711 	pgoff_t next_page;	/* Current page to examine */
1712 	pgoff_t last_page;	/* Last page to examine */
1713 	/*
1714 	 * Extent to map - this can be after first_page because that can be
1715 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1716 	 * is delalloc or unwritten.
1717 	 */
1718 	struct ext4_map_blocks map;
1719 	struct ext4_io_submit io_submit;	/* IO submission data */
1720 	unsigned int do_map:1;
1721 };
1722 
1723 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1724 				       bool invalidate)
1725 {
1726 	int nr_pages, i;
1727 	pgoff_t index, end;
1728 	struct pagevec pvec;
1729 	struct inode *inode = mpd->inode;
1730 	struct address_space *mapping = inode->i_mapping;
1731 
1732 	/* This is necessary when next_page == 0. */
1733 	if (mpd->first_page >= mpd->next_page)
1734 		return;
1735 
1736 	index = mpd->first_page;
1737 	end   = mpd->next_page - 1;
1738 	if (invalidate) {
1739 		ext4_lblk_t start, last;
1740 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1741 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1742 		ext4_es_remove_extent(inode, start, last - start + 1);
1743 	}
1744 
1745 	pagevec_init(&pvec);
1746 	while (index <= end) {
1747 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1748 		if (nr_pages == 0)
1749 			break;
1750 		for (i = 0; i < nr_pages; i++) {
1751 			struct page *page = pvec.pages[i];
1752 
1753 			BUG_ON(!PageLocked(page));
1754 			BUG_ON(PageWriteback(page));
1755 			if (invalidate) {
1756 				if (page_mapped(page))
1757 					clear_page_dirty_for_io(page);
1758 				block_invalidatepage(page, 0, PAGE_SIZE);
1759 				ClearPageUptodate(page);
1760 			}
1761 			unlock_page(page);
1762 		}
1763 		pagevec_release(&pvec);
1764 	}
1765 }
1766 
1767 static void ext4_print_free_blocks(struct inode *inode)
1768 {
1769 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1770 	struct super_block *sb = inode->i_sb;
1771 	struct ext4_inode_info *ei = EXT4_I(inode);
1772 
1773 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1774 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1775 			ext4_count_free_clusters(sb)));
1776 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1777 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1778 	       (long long) EXT4_C2B(EXT4_SB(sb),
1779 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1780 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1781 	       (long long) EXT4_C2B(EXT4_SB(sb),
1782 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1783 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1784 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1785 		 ei->i_reserved_data_blocks);
1786 	return;
1787 }
1788 
1789 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1790 {
1791 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1792 }
1793 
1794 /*
1795  * ext4_insert_delayed_block - adds a delayed block to the extents status
1796  *                             tree, incrementing the reserved cluster/block
1797  *                             count or making a pending reservation
1798  *                             where needed
1799  *
1800  * @inode - file containing the newly added block
1801  * @lblk - logical block to be added
1802  *
1803  * Returns 0 on success, negative error code on failure.
1804  */
1805 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1806 {
1807 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1808 	int ret;
1809 	bool allocated = false;
1810 
1811 	/*
1812 	 * If the cluster containing lblk is shared with a delayed,
1813 	 * written, or unwritten extent in a bigalloc file system, it's
1814 	 * already been accounted for and does not need to be reserved.
1815 	 * A pending reservation must be made for the cluster if it's
1816 	 * shared with a written or unwritten extent and doesn't already
1817 	 * have one.  Written and unwritten extents can be purged from the
1818 	 * extents status tree if the system is under memory pressure, so
1819 	 * it's necessary to examine the extent tree if a search of the
1820 	 * extents status tree doesn't get a match.
1821 	 */
1822 	if (sbi->s_cluster_ratio == 1) {
1823 		ret = ext4_da_reserve_space(inode);
1824 		if (ret != 0)   /* ENOSPC */
1825 			goto errout;
1826 	} else {   /* bigalloc */
1827 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1828 			if (!ext4_es_scan_clu(inode,
1829 					      &ext4_es_is_mapped, lblk)) {
1830 				ret = ext4_clu_mapped(inode,
1831 						      EXT4_B2C(sbi, lblk));
1832 				if (ret < 0)
1833 					goto errout;
1834 				if (ret == 0) {
1835 					ret = ext4_da_reserve_space(inode);
1836 					if (ret != 0)   /* ENOSPC */
1837 						goto errout;
1838 				} else {
1839 					allocated = true;
1840 				}
1841 			} else {
1842 				allocated = true;
1843 			}
1844 		}
1845 	}
1846 
1847 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1848 
1849 errout:
1850 	return ret;
1851 }
1852 
1853 /*
1854  * This function is grabs code from the very beginning of
1855  * ext4_map_blocks, but assumes that the caller is from delayed write
1856  * time. This function looks up the requested blocks and sets the
1857  * buffer delay bit under the protection of i_data_sem.
1858  */
1859 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1860 			      struct ext4_map_blocks *map,
1861 			      struct buffer_head *bh)
1862 {
1863 	struct extent_status es;
1864 	int retval;
1865 	sector_t invalid_block = ~((sector_t) 0xffff);
1866 #ifdef ES_AGGRESSIVE_TEST
1867 	struct ext4_map_blocks orig_map;
1868 
1869 	memcpy(&orig_map, map, sizeof(*map));
1870 #endif
1871 
1872 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1873 		invalid_block = ~0;
1874 
1875 	map->m_flags = 0;
1876 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1877 		  "logical block %lu\n", inode->i_ino, map->m_len,
1878 		  (unsigned long) map->m_lblk);
1879 
1880 	/* Lookup extent status tree firstly */
1881 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1882 		if (ext4_es_is_hole(&es)) {
1883 			retval = 0;
1884 			down_read(&EXT4_I(inode)->i_data_sem);
1885 			goto add_delayed;
1886 		}
1887 
1888 		/*
1889 		 * Delayed extent could be allocated by fallocate.
1890 		 * So we need to check it.
1891 		 */
1892 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1893 			map_bh(bh, inode->i_sb, invalid_block);
1894 			set_buffer_new(bh);
1895 			set_buffer_delay(bh);
1896 			return 0;
1897 		}
1898 
1899 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1900 		retval = es.es_len - (iblock - es.es_lblk);
1901 		if (retval > map->m_len)
1902 			retval = map->m_len;
1903 		map->m_len = retval;
1904 		if (ext4_es_is_written(&es))
1905 			map->m_flags |= EXT4_MAP_MAPPED;
1906 		else if (ext4_es_is_unwritten(&es))
1907 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1908 		else
1909 			BUG();
1910 
1911 #ifdef ES_AGGRESSIVE_TEST
1912 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1913 #endif
1914 		return retval;
1915 	}
1916 
1917 	/*
1918 	 * Try to see if we can get the block without requesting a new
1919 	 * file system block.
1920 	 */
1921 	down_read(&EXT4_I(inode)->i_data_sem);
1922 	if (ext4_has_inline_data(inode))
1923 		retval = 0;
1924 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1925 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1926 	else
1927 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1928 
1929 add_delayed:
1930 	if (retval == 0) {
1931 		int ret;
1932 
1933 		/*
1934 		 * XXX: __block_prepare_write() unmaps passed block,
1935 		 * is it OK?
1936 		 */
1937 
1938 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1939 		if (ret != 0) {
1940 			retval = ret;
1941 			goto out_unlock;
1942 		}
1943 
1944 		map_bh(bh, inode->i_sb, invalid_block);
1945 		set_buffer_new(bh);
1946 		set_buffer_delay(bh);
1947 	} else if (retval > 0) {
1948 		int ret;
1949 		unsigned int status;
1950 
1951 		if (unlikely(retval != map->m_len)) {
1952 			ext4_warning(inode->i_sb,
1953 				     "ES len assertion failed for inode "
1954 				     "%lu: retval %d != map->m_len %d",
1955 				     inode->i_ino, retval, map->m_len);
1956 			WARN_ON(1);
1957 		}
1958 
1959 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1960 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1961 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1962 					    map->m_pblk, status);
1963 		if (ret != 0)
1964 			retval = ret;
1965 	}
1966 
1967 out_unlock:
1968 	up_read((&EXT4_I(inode)->i_data_sem));
1969 
1970 	return retval;
1971 }
1972 
1973 /*
1974  * This is a special get_block_t callback which is used by
1975  * ext4_da_write_begin().  It will either return mapped block or
1976  * reserve space for a single block.
1977  *
1978  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1979  * We also have b_blocknr = -1 and b_bdev initialized properly
1980  *
1981  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1982  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1983  * initialized properly.
1984  */
1985 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1986 			   struct buffer_head *bh, int create)
1987 {
1988 	struct ext4_map_blocks map;
1989 	int ret = 0;
1990 
1991 	BUG_ON(create == 0);
1992 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1993 
1994 	map.m_lblk = iblock;
1995 	map.m_len = 1;
1996 
1997 	/*
1998 	 * first, we need to know whether the block is allocated already
1999 	 * preallocated blocks are unmapped but should treated
2000 	 * the same as allocated blocks.
2001 	 */
2002 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2003 	if (ret <= 0)
2004 		return ret;
2005 
2006 	map_bh(bh, inode->i_sb, map.m_pblk);
2007 	ext4_update_bh_state(bh, map.m_flags);
2008 
2009 	if (buffer_unwritten(bh)) {
2010 		/* A delayed write to unwritten bh should be marked
2011 		 * new and mapped.  Mapped ensures that we don't do
2012 		 * get_block multiple times when we write to the same
2013 		 * offset and new ensures that we do proper zero out
2014 		 * for partial write.
2015 		 */
2016 		set_buffer_new(bh);
2017 		set_buffer_mapped(bh);
2018 	}
2019 	return 0;
2020 }
2021 
2022 static int bget_one(handle_t *handle, struct buffer_head *bh)
2023 {
2024 	get_bh(bh);
2025 	return 0;
2026 }
2027 
2028 static int bput_one(handle_t *handle, struct buffer_head *bh)
2029 {
2030 	put_bh(bh);
2031 	return 0;
2032 }
2033 
2034 static int __ext4_journalled_writepage(struct page *page,
2035 				       unsigned int len)
2036 {
2037 	struct address_space *mapping = page->mapping;
2038 	struct inode *inode = mapping->host;
2039 	struct buffer_head *page_bufs = NULL;
2040 	handle_t *handle = NULL;
2041 	int ret = 0, err = 0;
2042 	int inline_data = ext4_has_inline_data(inode);
2043 	struct buffer_head *inode_bh = NULL;
2044 
2045 	ClearPageChecked(page);
2046 
2047 	if (inline_data) {
2048 		BUG_ON(page->index != 0);
2049 		BUG_ON(len > ext4_get_max_inline_size(inode));
2050 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2051 		if (inode_bh == NULL)
2052 			goto out;
2053 	} else {
2054 		page_bufs = page_buffers(page);
2055 		if (!page_bufs) {
2056 			BUG();
2057 			goto out;
2058 		}
2059 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2060 				       NULL, bget_one);
2061 	}
2062 	/*
2063 	 * We need to release the page lock before we start the
2064 	 * journal, so grab a reference so the page won't disappear
2065 	 * out from under us.
2066 	 */
2067 	get_page(page);
2068 	unlock_page(page);
2069 
2070 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2071 				    ext4_writepage_trans_blocks(inode));
2072 	if (IS_ERR(handle)) {
2073 		ret = PTR_ERR(handle);
2074 		put_page(page);
2075 		goto out_no_pagelock;
2076 	}
2077 	BUG_ON(!ext4_handle_valid(handle));
2078 
2079 	lock_page(page);
2080 	put_page(page);
2081 	if (page->mapping != mapping) {
2082 		/* The page got truncated from under us */
2083 		ext4_journal_stop(handle);
2084 		ret = 0;
2085 		goto out;
2086 	}
2087 
2088 	if (inline_data) {
2089 		ret = ext4_mark_inode_dirty(handle, inode);
2090 	} else {
2091 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2092 					     do_journal_get_write_access);
2093 
2094 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2095 					     write_end_fn);
2096 	}
2097 	if (ret == 0)
2098 		ret = err;
2099 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2100 	err = ext4_journal_stop(handle);
2101 	if (!ret)
2102 		ret = err;
2103 
2104 	if (!ext4_has_inline_data(inode))
2105 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2106 				       NULL, bput_one);
2107 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2108 out:
2109 	unlock_page(page);
2110 out_no_pagelock:
2111 	brelse(inode_bh);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Note that we don't need to start a transaction unless we're journaling data
2117  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2118  * need to file the inode to the transaction's list in ordered mode because if
2119  * we are writing back data added by write(), the inode is already there and if
2120  * we are writing back data modified via mmap(), no one guarantees in which
2121  * transaction the data will hit the disk. In case we are journaling data, we
2122  * cannot start transaction directly because transaction start ranks above page
2123  * lock so we have to do some magic.
2124  *
2125  * This function can get called via...
2126  *   - ext4_writepages after taking page lock (have journal handle)
2127  *   - journal_submit_inode_data_buffers (no journal handle)
2128  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2129  *   - grab_page_cache when doing write_begin (have journal handle)
2130  *
2131  * We don't do any block allocation in this function. If we have page with
2132  * multiple blocks we need to write those buffer_heads that are mapped. This
2133  * is important for mmaped based write. So if we do with blocksize 1K
2134  * truncate(f, 1024);
2135  * a = mmap(f, 0, 4096);
2136  * a[0] = 'a';
2137  * truncate(f, 4096);
2138  * we have in the page first buffer_head mapped via page_mkwrite call back
2139  * but other buffer_heads would be unmapped but dirty (dirty done via the
2140  * do_wp_page). So writepage should write the first block. If we modify
2141  * the mmap area beyond 1024 we will again get a page_fault and the
2142  * page_mkwrite callback will do the block allocation and mark the
2143  * buffer_heads mapped.
2144  *
2145  * We redirty the page if we have any buffer_heads that is either delay or
2146  * unwritten in the page.
2147  *
2148  * We can get recursively called as show below.
2149  *
2150  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2151  *		ext4_writepage()
2152  *
2153  * But since we don't do any block allocation we should not deadlock.
2154  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2155  */
2156 static int ext4_writepage(struct page *page,
2157 			  struct writeback_control *wbc)
2158 {
2159 	int ret = 0;
2160 	loff_t size;
2161 	unsigned int len;
2162 	struct buffer_head *page_bufs = NULL;
2163 	struct inode *inode = page->mapping->host;
2164 	struct ext4_io_submit io_submit;
2165 	bool keep_towrite = false;
2166 
2167 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2168 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2169 		unlock_page(page);
2170 		return -EIO;
2171 	}
2172 
2173 	trace_ext4_writepage(page);
2174 	size = i_size_read(inode);
2175 	if (page->index == size >> PAGE_SHIFT &&
2176 	    !ext4_verity_in_progress(inode))
2177 		len = size & ~PAGE_MASK;
2178 	else
2179 		len = PAGE_SIZE;
2180 
2181 	page_bufs = page_buffers(page);
2182 	/*
2183 	 * We cannot do block allocation or other extent handling in this
2184 	 * function. If there are buffers needing that, we have to redirty
2185 	 * the page. But we may reach here when we do a journal commit via
2186 	 * journal_submit_inode_data_buffers() and in that case we must write
2187 	 * allocated buffers to achieve data=ordered mode guarantees.
2188 	 *
2189 	 * Also, if there is only one buffer per page (the fs block
2190 	 * size == the page size), if one buffer needs block
2191 	 * allocation or needs to modify the extent tree to clear the
2192 	 * unwritten flag, we know that the page can't be written at
2193 	 * all, so we might as well refuse the write immediately.
2194 	 * Unfortunately if the block size != page size, we can't as
2195 	 * easily detect this case using ext4_walk_page_buffers(), but
2196 	 * for the extremely common case, this is an optimization that
2197 	 * skips a useless round trip through ext4_bio_write_page().
2198 	 */
2199 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2200 				   ext4_bh_delay_or_unwritten)) {
2201 		redirty_page_for_writepage(wbc, page);
2202 		if ((current->flags & PF_MEMALLOC) ||
2203 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2204 			/*
2205 			 * For memory cleaning there's no point in writing only
2206 			 * some buffers. So just bail out. Warn if we came here
2207 			 * from direct reclaim.
2208 			 */
2209 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2210 							== PF_MEMALLOC);
2211 			unlock_page(page);
2212 			return 0;
2213 		}
2214 		keep_towrite = true;
2215 	}
2216 
2217 	if (PageChecked(page) && ext4_should_journal_data(inode))
2218 		/*
2219 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2220 		 * doesn't seem much point in redirtying the page here.
2221 		 */
2222 		return __ext4_journalled_writepage(page, len);
2223 
2224 	ext4_io_submit_init(&io_submit, wbc);
2225 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2226 	if (!io_submit.io_end) {
2227 		redirty_page_for_writepage(wbc, page);
2228 		unlock_page(page);
2229 		return -ENOMEM;
2230 	}
2231 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2232 	ext4_io_submit(&io_submit);
2233 	/* Drop io_end reference we got from init */
2234 	ext4_put_io_end_defer(io_submit.io_end);
2235 	return ret;
2236 }
2237 
2238 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2239 {
2240 	int len;
2241 	loff_t size;
2242 	int err;
2243 
2244 	BUG_ON(page->index != mpd->first_page);
2245 	clear_page_dirty_for_io(page);
2246 	/*
2247 	 * We have to be very careful here!  Nothing protects writeback path
2248 	 * against i_size changes and the page can be writeably mapped into
2249 	 * page tables. So an application can be growing i_size and writing
2250 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2251 	 * write-protects our page in page tables and the page cannot get
2252 	 * written to again until we release page lock. So only after
2253 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2254 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2255 	 * on the barrier provided by TestClearPageDirty in
2256 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2257 	 * after page tables are updated.
2258 	 */
2259 	size = i_size_read(mpd->inode);
2260 	if (page->index == size >> PAGE_SHIFT &&
2261 	    !ext4_verity_in_progress(mpd->inode))
2262 		len = size & ~PAGE_MASK;
2263 	else
2264 		len = PAGE_SIZE;
2265 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2266 	if (!err)
2267 		mpd->wbc->nr_to_write--;
2268 	mpd->first_page++;
2269 
2270 	return err;
2271 }
2272 
2273 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2274 
2275 /*
2276  * mballoc gives us at most this number of blocks...
2277  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2278  * The rest of mballoc seems to handle chunks up to full group size.
2279  */
2280 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2281 
2282 /*
2283  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2284  *
2285  * @mpd - extent of blocks
2286  * @lblk - logical number of the block in the file
2287  * @bh - buffer head we want to add to the extent
2288  *
2289  * The function is used to collect contig. blocks in the same state. If the
2290  * buffer doesn't require mapping for writeback and we haven't started the
2291  * extent of buffers to map yet, the function returns 'true' immediately - the
2292  * caller can write the buffer right away. Otherwise the function returns true
2293  * if the block has been added to the extent, false if the block couldn't be
2294  * added.
2295  */
2296 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2297 				   struct buffer_head *bh)
2298 {
2299 	struct ext4_map_blocks *map = &mpd->map;
2300 
2301 	/* Buffer that doesn't need mapping for writeback? */
2302 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2303 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2304 		/* So far no extent to map => we write the buffer right away */
2305 		if (map->m_len == 0)
2306 			return true;
2307 		return false;
2308 	}
2309 
2310 	/* First block in the extent? */
2311 	if (map->m_len == 0) {
2312 		/* We cannot map unless handle is started... */
2313 		if (!mpd->do_map)
2314 			return false;
2315 		map->m_lblk = lblk;
2316 		map->m_len = 1;
2317 		map->m_flags = bh->b_state & BH_FLAGS;
2318 		return true;
2319 	}
2320 
2321 	/* Don't go larger than mballoc is willing to allocate */
2322 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2323 		return false;
2324 
2325 	/* Can we merge the block to our big extent? */
2326 	if (lblk == map->m_lblk + map->m_len &&
2327 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2328 		map->m_len++;
2329 		return true;
2330 	}
2331 	return false;
2332 }
2333 
2334 /*
2335  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2336  *
2337  * @mpd - extent of blocks for mapping
2338  * @head - the first buffer in the page
2339  * @bh - buffer we should start processing from
2340  * @lblk - logical number of the block in the file corresponding to @bh
2341  *
2342  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2343  * the page for IO if all buffers in this page were mapped and there's no
2344  * accumulated extent of buffers to map or add buffers in the page to the
2345  * extent of buffers to map. The function returns 1 if the caller can continue
2346  * by processing the next page, 0 if it should stop adding buffers to the
2347  * extent to map because we cannot extend it anymore. It can also return value
2348  * < 0 in case of error during IO submission.
2349  */
2350 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2351 				   struct buffer_head *head,
2352 				   struct buffer_head *bh,
2353 				   ext4_lblk_t lblk)
2354 {
2355 	struct inode *inode = mpd->inode;
2356 	int err;
2357 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2358 							>> inode->i_blkbits;
2359 
2360 	if (ext4_verity_in_progress(inode))
2361 		blocks = EXT_MAX_BLOCKS;
2362 
2363 	do {
2364 		BUG_ON(buffer_locked(bh));
2365 
2366 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2367 			/* Found extent to map? */
2368 			if (mpd->map.m_len)
2369 				return 0;
2370 			/* Buffer needs mapping and handle is not started? */
2371 			if (!mpd->do_map)
2372 				return 0;
2373 			/* Everything mapped so far and we hit EOF */
2374 			break;
2375 		}
2376 	} while (lblk++, (bh = bh->b_this_page) != head);
2377 	/* So far everything mapped? Submit the page for IO. */
2378 	if (mpd->map.m_len == 0) {
2379 		err = mpage_submit_page(mpd, head->b_page);
2380 		if (err < 0)
2381 			return err;
2382 	}
2383 	return lblk < blocks;
2384 }
2385 
2386 /*
2387  * mpage_map_buffers - update buffers corresponding to changed extent and
2388  *		       submit fully mapped pages for IO
2389  *
2390  * @mpd - description of extent to map, on return next extent to map
2391  *
2392  * Scan buffers corresponding to changed extent (we expect corresponding pages
2393  * to be already locked) and update buffer state according to new extent state.
2394  * We map delalloc buffers to their physical location, clear unwritten bits,
2395  * and mark buffers as uninit when we perform writes to unwritten extents
2396  * and do extent conversion after IO is finished. If the last page is not fully
2397  * mapped, we update @map to the next extent in the last page that needs
2398  * mapping. Otherwise we submit the page for IO.
2399  */
2400 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2401 {
2402 	struct pagevec pvec;
2403 	int nr_pages, i;
2404 	struct inode *inode = mpd->inode;
2405 	struct buffer_head *head, *bh;
2406 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2407 	pgoff_t start, end;
2408 	ext4_lblk_t lblk;
2409 	sector_t pblock;
2410 	int err;
2411 
2412 	start = mpd->map.m_lblk >> bpp_bits;
2413 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2414 	lblk = start << bpp_bits;
2415 	pblock = mpd->map.m_pblk;
2416 
2417 	pagevec_init(&pvec);
2418 	while (start <= end) {
2419 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2420 						&start, end);
2421 		if (nr_pages == 0)
2422 			break;
2423 		for (i = 0; i < nr_pages; i++) {
2424 			struct page *page = pvec.pages[i];
2425 
2426 			bh = head = page_buffers(page);
2427 			do {
2428 				if (lblk < mpd->map.m_lblk)
2429 					continue;
2430 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2431 					/*
2432 					 * Buffer after end of mapped extent.
2433 					 * Find next buffer in the page to map.
2434 					 */
2435 					mpd->map.m_len = 0;
2436 					mpd->map.m_flags = 0;
2437 					/*
2438 					 * FIXME: If dioread_nolock supports
2439 					 * blocksize < pagesize, we need to make
2440 					 * sure we add size mapped so far to
2441 					 * io_end->size as the following call
2442 					 * can submit the page for IO.
2443 					 */
2444 					err = mpage_process_page_bufs(mpd, head,
2445 								      bh, lblk);
2446 					pagevec_release(&pvec);
2447 					if (err > 0)
2448 						err = 0;
2449 					return err;
2450 				}
2451 				if (buffer_delay(bh)) {
2452 					clear_buffer_delay(bh);
2453 					bh->b_blocknr = pblock++;
2454 				}
2455 				clear_buffer_unwritten(bh);
2456 			} while (lblk++, (bh = bh->b_this_page) != head);
2457 
2458 			/*
2459 			 * FIXME: This is going to break if dioread_nolock
2460 			 * supports blocksize < pagesize as we will try to
2461 			 * convert potentially unmapped parts of inode.
2462 			 */
2463 			mpd->io_submit.io_end->size += PAGE_SIZE;
2464 			/* Page fully mapped - let IO run! */
2465 			err = mpage_submit_page(mpd, page);
2466 			if (err < 0) {
2467 				pagevec_release(&pvec);
2468 				return err;
2469 			}
2470 		}
2471 		pagevec_release(&pvec);
2472 	}
2473 	/* Extent fully mapped and matches with page boundary. We are done. */
2474 	mpd->map.m_len = 0;
2475 	mpd->map.m_flags = 0;
2476 	return 0;
2477 }
2478 
2479 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2480 {
2481 	struct inode *inode = mpd->inode;
2482 	struct ext4_map_blocks *map = &mpd->map;
2483 	int get_blocks_flags;
2484 	int err, dioread_nolock;
2485 
2486 	trace_ext4_da_write_pages_extent(inode, map);
2487 	/*
2488 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2489 	 * to convert an unwritten extent to be initialized (in the case
2490 	 * where we have written into one or more preallocated blocks).  It is
2491 	 * possible that we're going to need more metadata blocks than
2492 	 * previously reserved. However we must not fail because we're in
2493 	 * writeback and there is nothing we can do about it so it might result
2494 	 * in data loss.  So use reserved blocks to allocate metadata if
2495 	 * possible.
2496 	 *
2497 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2498 	 * the blocks in question are delalloc blocks.  This indicates
2499 	 * that the blocks and quotas has already been checked when
2500 	 * the data was copied into the page cache.
2501 	 */
2502 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2503 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2504 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2505 	dioread_nolock = ext4_should_dioread_nolock(inode);
2506 	if (dioread_nolock)
2507 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2508 	if (map->m_flags & (1 << BH_Delay))
2509 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2510 
2511 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2512 	if (err < 0)
2513 		return err;
2514 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2515 		if (!mpd->io_submit.io_end->handle &&
2516 		    ext4_handle_valid(handle)) {
2517 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2518 			handle->h_rsv_handle = NULL;
2519 		}
2520 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2521 	}
2522 
2523 	BUG_ON(map->m_len == 0);
2524 	return 0;
2525 }
2526 
2527 /*
2528  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2529  *				 mpd->len and submit pages underlying it for IO
2530  *
2531  * @handle - handle for journal operations
2532  * @mpd - extent to map
2533  * @give_up_on_write - we set this to true iff there is a fatal error and there
2534  *                     is no hope of writing the data. The caller should discard
2535  *                     dirty pages to avoid infinite loops.
2536  *
2537  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2538  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2539  * them to initialized or split the described range from larger unwritten
2540  * extent. Note that we need not map all the described range since allocation
2541  * can return less blocks or the range is covered by more unwritten extents. We
2542  * cannot map more because we are limited by reserved transaction credits. On
2543  * the other hand we always make sure that the last touched page is fully
2544  * mapped so that it can be written out (and thus forward progress is
2545  * guaranteed). After mapping we submit all mapped pages for IO.
2546  */
2547 static int mpage_map_and_submit_extent(handle_t *handle,
2548 				       struct mpage_da_data *mpd,
2549 				       bool *give_up_on_write)
2550 {
2551 	struct inode *inode = mpd->inode;
2552 	struct ext4_map_blocks *map = &mpd->map;
2553 	int err;
2554 	loff_t disksize;
2555 	int progress = 0;
2556 
2557 	mpd->io_submit.io_end->offset =
2558 				((loff_t)map->m_lblk) << inode->i_blkbits;
2559 	do {
2560 		err = mpage_map_one_extent(handle, mpd);
2561 		if (err < 0) {
2562 			struct super_block *sb = inode->i_sb;
2563 
2564 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2565 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2566 				goto invalidate_dirty_pages;
2567 			/*
2568 			 * Let the uper layers retry transient errors.
2569 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2570 			 * is non-zero, a commit should free up blocks.
2571 			 */
2572 			if ((err == -ENOMEM) ||
2573 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2574 				if (progress)
2575 					goto update_disksize;
2576 				return err;
2577 			}
2578 			ext4_msg(sb, KERN_CRIT,
2579 				 "Delayed block allocation failed for "
2580 				 "inode %lu at logical offset %llu with"
2581 				 " max blocks %u with error %d",
2582 				 inode->i_ino,
2583 				 (unsigned long long)map->m_lblk,
2584 				 (unsigned)map->m_len, -err);
2585 			ext4_msg(sb, KERN_CRIT,
2586 				 "This should not happen!! Data will "
2587 				 "be lost\n");
2588 			if (err == -ENOSPC)
2589 				ext4_print_free_blocks(inode);
2590 		invalidate_dirty_pages:
2591 			*give_up_on_write = true;
2592 			return err;
2593 		}
2594 		progress = 1;
2595 		/*
2596 		 * Update buffer state, submit mapped pages, and get us new
2597 		 * extent to map
2598 		 */
2599 		err = mpage_map_and_submit_buffers(mpd);
2600 		if (err < 0)
2601 			goto update_disksize;
2602 	} while (map->m_len);
2603 
2604 update_disksize:
2605 	/*
2606 	 * Update on-disk size after IO is submitted.  Races with
2607 	 * truncate are avoided by checking i_size under i_data_sem.
2608 	 */
2609 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2610 	if (disksize > EXT4_I(inode)->i_disksize) {
2611 		int err2;
2612 		loff_t i_size;
2613 
2614 		down_write(&EXT4_I(inode)->i_data_sem);
2615 		i_size = i_size_read(inode);
2616 		if (disksize > i_size)
2617 			disksize = i_size;
2618 		if (disksize > EXT4_I(inode)->i_disksize)
2619 			EXT4_I(inode)->i_disksize = disksize;
2620 		up_write(&EXT4_I(inode)->i_data_sem);
2621 		err2 = ext4_mark_inode_dirty(handle, inode);
2622 		if (err2)
2623 			ext4_error(inode->i_sb,
2624 				   "Failed to mark inode %lu dirty",
2625 				   inode->i_ino);
2626 		if (!err)
2627 			err = err2;
2628 	}
2629 	return err;
2630 }
2631 
2632 /*
2633  * Calculate the total number of credits to reserve for one writepages
2634  * iteration. This is called from ext4_writepages(). We map an extent of
2635  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2636  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2637  * bpp - 1 blocks in bpp different extents.
2638  */
2639 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2640 {
2641 	int bpp = ext4_journal_blocks_per_page(inode);
2642 
2643 	return ext4_meta_trans_blocks(inode,
2644 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2645 }
2646 
2647 /*
2648  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2649  * 				 and underlying extent to map
2650  *
2651  * @mpd - where to look for pages
2652  *
2653  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2654  * IO immediately. When we find a page which isn't mapped we start accumulating
2655  * extent of buffers underlying these pages that needs mapping (formed by
2656  * either delayed or unwritten buffers). We also lock the pages containing
2657  * these buffers. The extent found is returned in @mpd structure (starting at
2658  * mpd->lblk with length mpd->len blocks).
2659  *
2660  * Note that this function can attach bios to one io_end structure which are
2661  * neither logically nor physically contiguous. Although it may seem as an
2662  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2663  * case as we need to track IO to all buffers underlying a page in one io_end.
2664  */
2665 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2666 {
2667 	struct address_space *mapping = mpd->inode->i_mapping;
2668 	struct pagevec pvec;
2669 	unsigned int nr_pages;
2670 	long left = mpd->wbc->nr_to_write;
2671 	pgoff_t index = mpd->first_page;
2672 	pgoff_t end = mpd->last_page;
2673 	xa_mark_t tag;
2674 	int i, err = 0;
2675 	int blkbits = mpd->inode->i_blkbits;
2676 	ext4_lblk_t lblk;
2677 	struct buffer_head *head;
2678 
2679 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2680 		tag = PAGECACHE_TAG_TOWRITE;
2681 	else
2682 		tag = PAGECACHE_TAG_DIRTY;
2683 
2684 	pagevec_init(&pvec);
2685 	mpd->map.m_len = 0;
2686 	mpd->next_page = index;
2687 	while (index <= end) {
2688 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2689 				tag);
2690 		if (nr_pages == 0)
2691 			goto out;
2692 
2693 		for (i = 0; i < nr_pages; i++) {
2694 			struct page *page = pvec.pages[i];
2695 
2696 			/*
2697 			 * Accumulated enough dirty pages? This doesn't apply
2698 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2699 			 * keep going because someone may be concurrently
2700 			 * dirtying pages, and we might have synced a lot of
2701 			 * newly appeared dirty pages, but have not synced all
2702 			 * of the old dirty pages.
2703 			 */
2704 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2705 				goto out;
2706 
2707 			/* If we can't merge this page, we are done. */
2708 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2709 				goto out;
2710 
2711 			lock_page(page);
2712 			/*
2713 			 * If the page is no longer dirty, or its mapping no
2714 			 * longer corresponds to inode we are writing (which
2715 			 * means it has been truncated or invalidated), or the
2716 			 * page is already under writeback and we are not doing
2717 			 * a data integrity writeback, skip the page
2718 			 */
2719 			if (!PageDirty(page) ||
2720 			    (PageWriteback(page) &&
2721 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2722 			    unlikely(page->mapping != mapping)) {
2723 				unlock_page(page);
2724 				continue;
2725 			}
2726 
2727 			wait_on_page_writeback(page);
2728 			BUG_ON(PageWriteback(page));
2729 
2730 			if (mpd->map.m_len == 0)
2731 				mpd->first_page = page->index;
2732 			mpd->next_page = page->index + 1;
2733 			/* Add all dirty buffers to mpd */
2734 			lblk = ((ext4_lblk_t)page->index) <<
2735 				(PAGE_SHIFT - blkbits);
2736 			head = page_buffers(page);
2737 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2738 			if (err <= 0)
2739 				goto out;
2740 			err = 0;
2741 			left--;
2742 		}
2743 		pagevec_release(&pvec);
2744 		cond_resched();
2745 	}
2746 	return 0;
2747 out:
2748 	pagevec_release(&pvec);
2749 	return err;
2750 }
2751 
2752 static int ext4_writepages(struct address_space *mapping,
2753 			   struct writeback_control *wbc)
2754 {
2755 	pgoff_t	writeback_index = 0;
2756 	long nr_to_write = wbc->nr_to_write;
2757 	int range_whole = 0;
2758 	int cycled = 1;
2759 	handle_t *handle = NULL;
2760 	struct mpage_da_data mpd;
2761 	struct inode *inode = mapping->host;
2762 	int needed_blocks, rsv_blocks = 0, ret = 0;
2763 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2764 	bool done;
2765 	struct blk_plug plug;
2766 	bool give_up_on_write = false;
2767 
2768 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2769 		return -EIO;
2770 
2771 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2772 	trace_ext4_writepages(inode, wbc);
2773 
2774 	/*
2775 	 * No pages to write? This is mainly a kludge to avoid starting
2776 	 * a transaction for special inodes like journal inode on last iput()
2777 	 * because that could violate lock ordering on umount
2778 	 */
2779 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2780 		goto out_writepages;
2781 
2782 	if (ext4_should_journal_data(inode)) {
2783 		ret = generic_writepages(mapping, wbc);
2784 		goto out_writepages;
2785 	}
2786 
2787 	/*
2788 	 * If the filesystem has aborted, it is read-only, so return
2789 	 * right away instead of dumping stack traces later on that
2790 	 * will obscure the real source of the problem.  We test
2791 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2792 	 * the latter could be true if the filesystem is mounted
2793 	 * read-only, and in that case, ext4_writepages should
2794 	 * *never* be called, so if that ever happens, we would want
2795 	 * the stack trace.
2796 	 */
2797 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2798 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2799 		ret = -EROFS;
2800 		goto out_writepages;
2801 	}
2802 
2803 	if (ext4_should_dioread_nolock(inode)) {
2804 		/*
2805 		 * We may need to convert up to one extent per block in
2806 		 * the page and we may dirty the inode.
2807 		 */
2808 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2809 						PAGE_SIZE >> inode->i_blkbits);
2810 	}
2811 
2812 	/*
2813 	 * If we have inline data and arrive here, it means that
2814 	 * we will soon create the block for the 1st page, so
2815 	 * we'd better clear the inline data here.
2816 	 */
2817 	if (ext4_has_inline_data(inode)) {
2818 		/* Just inode will be modified... */
2819 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2820 		if (IS_ERR(handle)) {
2821 			ret = PTR_ERR(handle);
2822 			goto out_writepages;
2823 		}
2824 		BUG_ON(ext4_test_inode_state(inode,
2825 				EXT4_STATE_MAY_INLINE_DATA));
2826 		ext4_destroy_inline_data(handle, inode);
2827 		ext4_journal_stop(handle);
2828 	}
2829 
2830 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2831 		range_whole = 1;
2832 
2833 	if (wbc->range_cyclic) {
2834 		writeback_index = mapping->writeback_index;
2835 		if (writeback_index)
2836 			cycled = 0;
2837 		mpd.first_page = writeback_index;
2838 		mpd.last_page = -1;
2839 	} else {
2840 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2841 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2842 	}
2843 
2844 	mpd.inode = inode;
2845 	mpd.wbc = wbc;
2846 	ext4_io_submit_init(&mpd.io_submit, wbc);
2847 retry:
2848 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2849 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2850 	done = false;
2851 	blk_start_plug(&plug);
2852 
2853 	/*
2854 	 * First writeback pages that don't need mapping - we can avoid
2855 	 * starting a transaction unnecessarily and also avoid being blocked
2856 	 * in the block layer on device congestion while having transaction
2857 	 * started.
2858 	 */
2859 	mpd.do_map = 0;
2860 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2861 	if (!mpd.io_submit.io_end) {
2862 		ret = -ENOMEM;
2863 		goto unplug;
2864 	}
2865 	ret = mpage_prepare_extent_to_map(&mpd);
2866 	/* Unlock pages we didn't use */
2867 	mpage_release_unused_pages(&mpd, false);
2868 	/* Submit prepared bio */
2869 	ext4_io_submit(&mpd.io_submit);
2870 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2871 	mpd.io_submit.io_end = NULL;
2872 	if (ret < 0)
2873 		goto unplug;
2874 
2875 	while (!done && mpd.first_page <= mpd.last_page) {
2876 		/* For each extent of pages we use new io_end */
2877 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2878 		if (!mpd.io_submit.io_end) {
2879 			ret = -ENOMEM;
2880 			break;
2881 		}
2882 
2883 		/*
2884 		 * We have two constraints: We find one extent to map and we
2885 		 * must always write out whole page (makes a difference when
2886 		 * blocksize < pagesize) so that we don't block on IO when we
2887 		 * try to write out the rest of the page. Journalled mode is
2888 		 * not supported by delalloc.
2889 		 */
2890 		BUG_ON(ext4_should_journal_data(inode));
2891 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2892 
2893 		/* start a new transaction */
2894 		handle = ext4_journal_start_with_reserve(inode,
2895 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2896 		if (IS_ERR(handle)) {
2897 			ret = PTR_ERR(handle);
2898 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2899 			       "%ld pages, ino %lu; err %d", __func__,
2900 				wbc->nr_to_write, inode->i_ino, ret);
2901 			/* Release allocated io_end */
2902 			ext4_put_io_end(mpd.io_submit.io_end);
2903 			mpd.io_submit.io_end = NULL;
2904 			break;
2905 		}
2906 		mpd.do_map = 1;
2907 
2908 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2909 		ret = mpage_prepare_extent_to_map(&mpd);
2910 		if (!ret) {
2911 			if (mpd.map.m_len)
2912 				ret = mpage_map_and_submit_extent(handle, &mpd,
2913 					&give_up_on_write);
2914 			else {
2915 				/*
2916 				 * We scanned the whole range (or exhausted
2917 				 * nr_to_write), submitted what was mapped and
2918 				 * didn't find anything needing mapping. We are
2919 				 * done.
2920 				 */
2921 				done = true;
2922 			}
2923 		}
2924 		/*
2925 		 * Caution: If the handle is synchronous,
2926 		 * ext4_journal_stop() can wait for transaction commit
2927 		 * to finish which may depend on writeback of pages to
2928 		 * complete or on page lock to be released.  In that
2929 		 * case, we have to wait until after after we have
2930 		 * submitted all the IO, released page locks we hold,
2931 		 * and dropped io_end reference (for extent conversion
2932 		 * to be able to complete) before stopping the handle.
2933 		 */
2934 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2935 			ext4_journal_stop(handle);
2936 			handle = NULL;
2937 			mpd.do_map = 0;
2938 		}
2939 		/* Unlock pages we didn't use */
2940 		mpage_release_unused_pages(&mpd, give_up_on_write);
2941 		/* Submit prepared bio */
2942 		ext4_io_submit(&mpd.io_submit);
2943 
2944 		/*
2945 		 * Drop our io_end reference we got from init. We have
2946 		 * to be careful and use deferred io_end finishing if
2947 		 * we are still holding the transaction as we can
2948 		 * release the last reference to io_end which may end
2949 		 * up doing unwritten extent conversion.
2950 		 */
2951 		if (handle) {
2952 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2953 			ext4_journal_stop(handle);
2954 		} else
2955 			ext4_put_io_end(mpd.io_submit.io_end);
2956 		mpd.io_submit.io_end = NULL;
2957 
2958 		if (ret == -ENOSPC && sbi->s_journal) {
2959 			/*
2960 			 * Commit the transaction which would
2961 			 * free blocks released in the transaction
2962 			 * and try again
2963 			 */
2964 			jbd2_journal_force_commit_nested(sbi->s_journal);
2965 			ret = 0;
2966 			continue;
2967 		}
2968 		/* Fatal error - ENOMEM, EIO... */
2969 		if (ret)
2970 			break;
2971 	}
2972 unplug:
2973 	blk_finish_plug(&plug);
2974 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2975 		cycled = 1;
2976 		mpd.last_page = writeback_index - 1;
2977 		mpd.first_page = 0;
2978 		goto retry;
2979 	}
2980 
2981 	/* Update index */
2982 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2983 		/*
2984 		 * Set the writeback_index so that range_cyclic
2985 		 * mode will write it back later
2986 		 */
2987 		mapping->writeback_index = mpd.first_page;
2988 
2989 out_writepages:
2990 	trace_ext4_writepages_result(inode, wbc, ret,
2991 				     nr_to_write - wbc->nr_to_write);
2992 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2993 	return ret;
2994 }
2995 
2996 static int ext4_dax_writepages(struct address_space *mapping,
2997 			       struct writeback_control *wbc)
2998 {
2999 	int ret;
3000 	long nr_to_write = wbc->nr_to_write;
3001 	struct inode *inode = mapping->host;
3002 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3003 
3004 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3005 		return -EIO;
3006 
3007 	percpu_down_read(&sbi->s_journal_flag_rwsem);
3008 	trace_ext4_writepages(inode, wbc);
3009 
3010 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3011 	trace_ext4_writepages_result(inode, wbc, ret,
3012 				     nr_to_write - wbc->nr_to_write);
3013 	percpu_up_read(&sbi->s_journal_flag_rwsem);
3014 	return ret;
3015 }
3016 
3017 static int ext4_nonda_switch(struct super_block *sb)
3018 {
3019 	s64 free_clusters, dirty_clusters;
3020 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3021 
3022 	/*
3023 	 * switch to non delalloc mode if we are running low
3024 	 * on free block. The free block accounting via percpu
3025 	 * counters can get slightly wrong with percpu_counter_batch getting
3026 	 * accumulated on each CPU without updating global counters
3027 	 * Delalloc need an accurate free block accounting. So switch
3028 	 * to non delalloc when we are near to error range.
3029 	 */
3030 	free_clusters =
3031 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3032 	dirty_clusters =
3033 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3034 	/*
3035 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3036 	 */
3037 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3038 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3039 
3040 	if (2 * free_clusters < 3 * dirty_clusters ||
3041 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3042 		/*
3043 		 * free block count is less than 150% of dirty blocks
3044 		 * or free blocks is less than watermark
3045 		 */
3046 		return 1;
3047 	}
3048 	return 0;
3049 }
3050 
3051 /* We always reserve for an inode update; the superblock could be there too */
3052 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3053 {
3054 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3055 		return 1;
3056 
3057 	if (pos + len <= 0x7fffffffULL)
3058 		return 1;
3059 
3060 	/* We might need to update the superblock to set LARGE_FILE */
3061 	return 2;
3062 }
3063 
3064 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3065 			       loff_t pos, unsigned len, unsigned flags,
3066 			       struct page **pagep, void **fsdata)
3067 {
3068 	int ret, retries = 0;
3069 	struct page *page;
3070 	pgoff_t index;
3071 	struct inode *inode = mapping->host;
3072 	handle_t *handle;
3073 
3074 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3075 		return -EIO;
3076 
3077 	index = pos >> PAGE_SHIFT;
3078 
3079 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3080 	    ext4_verity_in_progress(inode)) {
3081 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3082 		return ext4_write_begin(file, mapping, pos,
3083 					len, flags, pagep, fsdata);
3084 	}
3085 	*fsdata = (void *)0;
3086 	trace_ext4_da_write_begin(inode, pos, len, flags);
3087 
3088 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3089 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3090 						      pos, len, flags,
3091 						      pagep, fsdata);
3092 		if (ret < 0)
3093 			return ret;
3094 		if (ret == 1)
3095 			return 0;
3096 	}
3097 
3098 	/*
3099 	 * grab_cache_page_write_begin() can take a long time if the
3100 	 * system is thrashing due to memory pressure, or if the page
3101 	 * is being written back.  So grab it first before we start
3102 	 * the transaction handle.  This also allows us to allocate
3103 	 * the page (if needed) without using GFP_NOFS.
3104 	 */
3105 retry_grab:
3106 	page = grab_cache_page_write_begin(mapping, index, flags);
3107 	if (!page)
3108 		return -ENOMEM;
3109 	unlock_page(page);
3110 
3111 	/*
3112 	 * With delayed allocation, we don't log the i_disksize update
3113 	 * if there is delayed block allocation. But we still need
3114 	 * to journalling the i_disksize update if writes to the end
3115 	 * of file which has an already mapped buffer.
3116 	 */
3117 retry_journal:
3118 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3119 				ext4_da_write_credits(inode, pos, len));
3120 	if (IS_ERR(handle)) {
3121 		put_page(page);
3122 		return PTR_ERR(handle);
3123 	}
3124 
3125 	lock_page(page);
3126 	if (page->mapping != mapping) {
3127 		/* The page got truncated from under us */
3128 		unlock_page(page);
3129 		put_page(page);
3130 		ext4_journal_stop(handle);
3131 		goto retry_grab;
3132 	}
3133 	/* In case writeback began while the page was unlocked */
3134 	wait_for_stable_page(page);
3135 
3136 #ifdef CONFIG_FS_ENCRYPTION
3137 	ret = ext4_block_write_begin(page, pos, len,
3138 				     ext4_da_get_block_prep);
3139 #else
3140 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3141 #endif
3142 	if (ret < 0) {
3143 		unlock_page(page);
3144 		ext4_journal_stop(handle);
3145 		/*
3146 		 * block_write_begin may have instantiated a few blocks
3147 		 * outside i_size.  Trim these off again. Don't need
3148 		 * i_size_read because we hold i_mutex.
3149 		 */
3150 		if (pos + len > inode->i_size)
3151 			ext4_truncate_failed_write(inode);
3152 
3153 		if (ret == -ENOSPC &&
3154 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3155 			goto retry_journal;
3156 
3157 		put_page(page);
3158 		return ret;
3159 	}
3160 
3161 	*pagep = page;
3162 	return ret;
3163 }
3164 
3165 /*
3166  * Check if we should update i_disksize
3167  * when write to the end of file but not require block allocation
3168  */
3169 static int ext4_da_should_update_i_disksize(struct page *page,
3170 					    unsigned long offset)
3171 {
3172 	struct buffer_head *bh;
3173 	struct inode *inode = page->mapping->host;
3174 	unsigned int idx;
3175 	int i;
3176 
3177 	bh = page_buffers(page);
3178 	idx = offset >> inode->i_blkbits;
3179 
3180 	for (i = 0; i < idx; i++)
3181 		bh = bh->b_this_page;
3182 
3183 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3184 		return 0;
3185 	return 1;
3186 }
3187 
3188 static int ext4_da_write_end(struct file *file,
3189 			     struct address_space *mapping,
3190 			     loff_t pos, unsigned len, unsigned copied,
3191 			     struct page *page, void *fsdata)
3192 {
3193 	struct inode *inode = mapping->host;
3194 	int ret = 0, ret2;
3195 	handle_t *handle = ext4_journal_current_handle();
3196 	loff_t new_i_size;
3197 	unsigned long start, end;
3198 	int write_mode = (int)(unsigned long)fsdata;
3199 
3200 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3201 		return ext4_write_end(file, mapping, pos,
3202 				      len, copied, page, fsdata);
3203 
3204 	trace_ext4_da_write_end(inode, pos, len, copied);
3205 	start = pos & (PAGE_SIZE - 1);
3206 	end = start + copied - 1;
3207 
3208 	/*
3209 	 * generic_write_end() will run mark_inode_dirty() if i_size
3210 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3211 	 * into that.
3212 	 */
3213 	new_i_size = pos + copied;
3214 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3215 		if (ext4_has_inline_data(inode) ||
3216 		    ext4_da_should_update_i_disksize(page, end)) {
3217 			ext4_update_i_disksize(inode, new_i_size);
3218 			/* We need to mark inode dirty even if
3219 			 * new_i_size is less that inode->i_size
3220 			 * bu greater than i_disksize.(hint delalloc)
3221 			 */
3222 			ext4_mark_inode_dirty(handle, inode);
3223 		}
3224 	}
3225 
3226 	if (write_mode != CONVERT_INLINE_DATA &&
3227 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3228 	    ext4_has_inline_data(inode))
3229 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3230 						     page);
3231 	else
3232 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3233 							page, fsdata);
3234 
3235 	copied = ret2;
3236 	if (ret2 < 0)
3237 		ret = ret2;
3238 	ret2 = ext4_journal_stop(handle);
3239 	if (!ret)
3240 		ret = ret2;
3241 
3242 	return ret ? ret : copied;
3243 }
3244 
3245 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3246 				   unsigned int length)
3247 {
3248 	/*
3249 	 * Drop reserved blocks
3250 	 */
3251 	BUG_ON(!PageLocked(page));
3252 	if (!page_has_buffers(page))
3253 		goto out;
3254 
3255 	ext4_da_page_release_reservation(page, offset, length);
3256 
3257 out:
3258 	ext4_invalidatepage(page, offset, length);
3259 
3260 	return;
3261 }
3262 
3263 /*
3264  * Force all delayed allocation blocks to be allocated for a given inode.
3265  */
3266 int ext4_alloc_da_blocks(struct inode *inode)
3267 {
3268 	trace_ext4_alloc_da_blocks(inode);
3269 
3270 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3271 		return 0;
3272 
3273 	/*
3274 	 * We do something simple for now.  The filemap_flush() will
3275 	 * also start triggering a write of the data blocks, which is
3276 	 * not strictly speaking necessary (and for users of
3277 	 * laptop_mode, not even desirable).  However, to do otherwise
3278 	 * would require replicating code paths in:
3279 	 *
3280 	 * ext4_writepages() ->
3281 	 *    write_cache_pages() ---> (via passed in callback function)
3282 	 *        __mpage_da_writepage() -->
3283 	 *           mpage_add_bh_to_extent()
3284 	 *           mpage_da_map_blocks()
3285 	 *
3286 	 * The problem is that write_cache_pages(), located in
3287 	 * mm/page-writeback.c, marks pages clean in preparation for
3288 	 * doing I/O, which is not desirable if we're not planning on
3289 	 * doing I/O at all.
3290 	 *
3291 	 * We could call write_cache_pages(), and then redirty all of
3292 	 * the pages by calling redirty_page_for_writepage() but that
3293 	 * would be ugly in the extreme.  So instead we would need to
3294 	 * replicate parts of the code in the above functions,
3295 	 * simplifying them because we wouldn't actually intend to
3296 	 * write out the pages, but rather only collect contiguous
3297 	 * logical block extents, call the multi-block allocator, and
3298 	 * then update the buffer heads with the block allocations.
3299 	 *
3300 	 * For now, though, we'll cheat by calling filemap_flush(),
3301 	 * which will map the blocks, and start the I/O, but not
3302 	 * actually wait for the I/O to complete.
3303 	 */
3304 	return filemap_flush(inode->i_mapping);
3305 }
3306 
3307 /*
3308  * bmap() is special.  It gets used by applications such as lilo and by
3309  * the swapper to find the on-disk block of a specific piece of data.
3310  *
3311  * Naturally, this is dangerous if the block concerned is still in the
3312  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3313  * filesystem and enables swap, then they may get a nasty shock when the
3314  * data getting swapped to that swapfile suddenly gets overwritten by
3315  * the original zero's written out previously to the journal and
3316  * awaiting writeback in the kernel's buffer cache.
3317  *
3318  * So, if we see any bmap calls here on a modified, data-journaled file,
3319  * take extra steps to flush any blocks which might be in the cache.
3320  */
3321 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3322 {
3323 	struct inode *inode = mapping->host;
3324 	journal_t *journal;
3325 	int err;
3326 
3327 	/*
3328 	 * We can get here for an inline file via the FIBMAP ioctl
3329 	 */
3330 	if (ext4_has_inline_data(inode))
3331 		return 0;
3332 
3333 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3334 			test_opt(inode->i_sb, DELALLOC)) {
3335 		/*
3336 		 * With delalloc we want to sync the file
3337 		 * so that we can make sure we allocate
3338 		 * blocks for file
3339 		 */
3340 		filemap_write_and_wait(mapping);
3341 	}
3342 
3343 	if (EXT4_JOURNAL(inode) &&
3344 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3345 		/*
3346 		 * This is a REALLY heavyweight approach, but the use of
3347 		 * bmap on dirty files is expected to be extremely rare:
3348 		 * only if we run lilo or swapon on a freshly made file
3349 		 * do we expect this to happen.
3350 		 *
3351 		 * (bmap requires CAP_SYS_RAWIO so this does not
3352 		 * represent an unprivileged user DOS attack --- we'd be
3353 		 * in trouble if mortal users could trigger this path at
3354 		 * will.)
3355 		 *
3356 		 * NB. EXT4_STATE_JDATA is not set on files other than
3357 		 * regular files.  If somebody wants to bmap a directory
3358 		 * or symlink and gets confused because the buffer
3359 		 * hasn't yet been flushed to disk, they deserve
3360 		 * everything they get.
3361 		 */
3362 
3363 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3364 		journal = EXT4_JOURNAL(inode);
3365 		jbd2_journal_lock_updates(journal);
3366 		err = jbd2_journal_flush(journal);
3367 		jbd2_journal_unlock_updates(journal);
3368 
3369 		if (err)
3370 			return 0;
3371 	}
3372 
3373 	return generic_block_bmap(mapping, block, ext4_get_block);
3374 }
3375 
3376 static int ext4_readpage(struct file *file, struct page *page)
3377 {
3378 	int ret = -EAGAIN;
3379 	struct inode *inode = page->mapping->host;
3380 
3381 	trace_ext4_readpage(page);
3382 
3383 	if (ext4_has_inline_data(inode))
3384 		ret = ext4_readpage_inline(inode, page);
3385 
3386 	if (ret == -EAGAIN)
3387 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3388 						false);
3389 
3390 	return ret;
3391 }
3392 
3393 static int
3394 ext4_readpages(struct file *file, struct address_space *mapping,
3395 		struct list_head *pages, unsigned nr_pages)
3396 {
3397 	struct inode *inode = mapping->host;
3398 
3399 	/* If the file has inline data, no need to do readpages. */
3400 	if (ext4_has_inline_data(inode))
3401 		return 0;
3402 
3403 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3404 }
3405 
3406 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3407 				unsigned int length)
3408 {
3409 	trace_ext4_invalidatepage(page, offset, length);
3410 
3411 	/* No journalling happens on data buffers when this function is used */
3412 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3413 
3414 	block_invalidatepage(page, offset, length);
3415 }
3416 
3417 static int __ext4_journalled_invalidatepage(struct page *page,
3418 					    unsigned int offset,
3419 					    unsigned int length)
3420 {
3421 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3422 
3423 	trace_ext4_journalled_invalidatepage(page, offset, length);
3424 
3425 	/*
3426 	 * If it's a full truncate we just forget about the pending dirtying
3427 	 */
3428 	if (offset == 0 && length == PAGE_SIZE)
3429 		ClearPageChecked(page);
3430 
3431 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3432 }
3433 
3434 /* Wrapper for aops... */
3435 static void ext4_journalled_invalidatepage(struct page *page,
3436 					   unsigned int offset,
3437 					   unsigned int length)
3438 {
3439 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3440 }
3441 
3442 static int ext4_releasepage(struct page *page, gfp_t wait)
3443 {
3444 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3445 
3446 	trace_ext4_releasepage(page);
3447 
3448 	/* Page has dirty journalled data -> cannot release */
3449 	if (PageChecked(page))
3450 		return 0;
3451 	if (journal)
3452 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3453 	else
3454 		return try_to_free_buffers(page);
3455 }
3456 
3457 static bool ext4_inode_datasync_dirty(struct inode *inode)
3458 {
3459 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3460 
3461 	if (journal)
3462 		return !jbd2_transaction_committed(journal,
3463 					EXT4_I(inode)->i_datasync_tid);
3464 	/* Any metadata buffers to write? */
3465 	if (!list_empty(&inode->i_mapping->private_list))
3466 		return true;
3467 	return inode->i_state & I_DIRTY_DATASYNC;
3468 }
3469 
3470 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3471 			    unsigned flags, struct iomap *iomap)
3472 {
3473 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3474 	unsigned int blkbits = inode->i_blkbits;
3475 	unsigned long first_block, last_block;
3476 	struct ext4_map_blocks map;
3477 	bool delalloc = false;
3478 	int ret;
3479 
3480 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3481 		return -EINVAL;
3482 	first_block = offset >> blkbits;
3483 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3484 			   EXT4_MAX_LOGICAL_BLOCK);
3485 
3486 	if (flags & IOMAP_REPORT) {
3487 		if (ext4_has_inline_data(inode)) {
3488 			ret = ext4_inline_data_iomap(inode, iomap);
3489 			if (ret != -EAGAIN) {
3490 				if (ret == 0 && offset >= iomap->length)
3491 					ret = -ENOENT;
3492 				return ret;
3493 			}
3494 		}
3495 	} else {
3496 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3497 			return -ERANGE;
3498 	}
3499 
3500 	map.m_lblk = first_block;
3501 	map.m_len = last_block - first_block + 1;
3502 
3503 	if (flags & IOMAP_REPORT) {
3504 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3505 		if (ret < 0)
3506 			return ret;
3507 
3508 		if (ret == 0) {
3509 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3510 			struct extent_status es;
3511 
3512 			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3513 						  map.m_lblk, end, &es);
3514 
3515 			if (!es.es_len || es.es_lblk > end) {
3516 				/* entire range is a hole */
3517 			} else if (es.es_lblk > map.m_lblk) {
3518 				/* range starts with a hole */
3519 				map.m_len = es.es_lblk - map.m_lblk;
3520 			} else {
3521 				ext4_lblk_t offs = 0;
3522 
3523 				if (es.es_lblk < map.m_lblk)
3524 					offs = map.m_lblk - es.es_lblk;
3525 				map.m_lblk = es.es_lblk + offs;
3526 				map.m_len = es.es_len - offs;
3527 				delalloc = true;
3528 			}
3529 		}
3530 	} else if (flags & IOMAP_WRITE) {
3531 		int dio_credits;
3532 		handle_t *handle;
3533 		int retries = 0;
3534 
3535 		/* Trim mapping request to maximum we can map at once for DIO */
3536 		if (map.m_len > DIO_MAX_BLOCKS)
3537 			map.m_len = DIO_MAX_BLOCKS;
3538 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3539 retry:
3540 		/*
3541 		 * Either we allocate blocks and then we don't get unwritten
3542 		 * extent so we have reserved enough credits, or the blocks
3543 		 * are already allocated and unwritten and in that case
3544 		 * extent conversion fits in the credits as well.
3545 		 */
3546 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3547 					    dio_credits);
3548 		if (IS_ERR(handle))
3549 			return PTR_ERR(handle);
3550 
3551 		ret = ext4_map_blocks(handle, inode, &map,
3552 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3553 		if (ret < 0) {
3554 			ext4_journal_stop(handle);
3555 			if (ret == -ENOSPC &&
3556 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3557 				goto retry;
3558 			return ret;
3559 		}
3560 
3561 		/*
3562 		 * If we added blocks beyond i_size, we need to make sure they
3563 		 * will get truncated if we crash before updating i_size in
3564 		 * ext4_iomap_end(). For faults we don't need to do that (and
3565 		 * even cannot because for orphan list operations inode_lock is
3566 		 * required) - if we happen to instantiate block beyond i_size,
3567 		 * it is because we race with truncate which has already added
3568 		 * the inode to the orphan list.
3569 		 */
3570 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3571 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3572 			int err;
3573 
3574 			err = ext4_orphan_add(handle, inode);
3575 			if (err < 0) {
3576 				ext4_journal_stop(handle);
3577 				return err;
3578 			}
3579 		}
3580 		ext4_journal_stop(handle);
3581 	} else {
3582 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3583 		if (ret < 0)
3584 			return ret;
3585 	}
3586 
3587 	iomap->flags = 0;
3588 	if (ext4_inode_datasync_dirty(inode))
3589 		iomap->flags |= IOMAP_F_DIRTY;
3590 	iomap->bdev = inode->i_sb->s_bdev;
3591 	iomap->dax_dev = sbi->s_daxdev;
3592 	iomap->offset = (u64)first_block << blkbits;
3593 	iomap->length = (u64)map.m_len << blkbits;
3594 
3595 	if (ret == 0) {
3596 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3597 		iomap->addr = IOMAP_NULL_ADDR;
3598 	} else {
3599 		if (map.m_flags & EXT4_MAP_MAPPED) {
3600 			iomap->type = IOMAP_MAPPED;
3601 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3602 			iomap->type = IOMAP_UNWRITTEN;
3603 		} else {
3604 			WARN_ON_ONCE(1);
3605 			return -EIO;
3606 		}
3607 		iomap->addr = (u64)map.m_pblk << blkbits;
3608 	}
3609 
3610 	if (map.m_flags & EXT4_MAP_NEW)
3611 		iomap->flags |= IOMAP_F_NEW;
3612 
3613 	return 0;
3614 }
3615 
3616 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3617 			  ssize_t written, unsigned flags, struct iomap *iomap)
3618 {
3619 	int ret = 0;
3620 	handle_t *handle;
3621 	int blkbits = inode->i_blkbits;
3622 	bool truncate = false;
3623 
3624 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3625 		return 0;
3626 
3627 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3628 	if (IS_ERR(handle)) {
3629 		ret = PTR_ERR(handle);
3630 		goto orphan_del;
3631 	}
3632 	if (ext4_update_inode_size(inode, offset + written))
3633 		ext4_mark_inode_dirty(handle, inode);
3634 	/*
3635 	 * We may need to truncate allocated but not written blocks beyond EOF.
3636 	 */
3637 	if (iomap->offset + iomap->length >
3638 	    ALIGN(inode->i_size, 1 << blkbits)) {
3639 		ext4_lblk_t written_blk, end_blk;
3640 
3641 		written_blk = (offset + written) >> blkbits;
3642 		end_blk = (offset + length) >> blkbits;
3643 		if (written_blk < end_blk && ext4_can_truncate(inode))
3644 			truncate = true;
3645 	}
3646 	/*
3647 	 * Remove inode from orphan list if we were extending a inode and
3648 	 * everything went fine.
3649 	 */
3650 	if (!truncate && inode->i_nlink &&
3651 	    !list_empty(&EXT4_I(inode)->i_orphan))
3652 		ext4_orphan_del(handle, inode);
3653 	ext4_journal_stop(handle);
3654 	if (truncate) {
3655 		ext4_truncate_failed_write(inode);
3656 orphan_del:
3657 		/*
3658 		 * If truncate failed early the inode might still be on the
3659 		 * orphan list; we need to make sure the inode is removed from
3660 		 * the orphan list in that case.
3661 		 */
3662 		if (inode->i_nlink)
3663 			ext4_orphan_del(NULL, inode);
3664 	}
3665 	return ret;
3666 }
3667 
3668 const struct iomap_ops ext4_iomap_ops = {
3669 	.iomap_begin		= ext4_iomap_begin,
3670 	.iomap_end		= ext4_iomap_end,
3671 };
3672 
3673 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3674 			    ssize_t size, void *private)
3675 {
3676         ext4_io_end_t *io_end = private;
3677 
3678 	/* if not async direct IO just return */
3679 	if (!io_end)
3680 		return 0;
3681 
3682 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3683 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3684 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3685 
3686 	/*
3687 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3688 	 * data was not written. Just clear the unwritten flag and drop io_end.
3689 	 */
3690 	if (size <= 0) {
3691 		ext4_clear_io_unwritten_flag(io_end);
3692 		size = 0;
3693 	}
3694 	io_end->offset = offset;
3695 	io_end->size = size;
3696 	ext4_put_io_end(io_end);
3697 
3698 	return 0;
3699 }
3700 
3701 /*
3702  * Handling of direct IO writes.
3703  *
3704  * For ext4 extent files, ext4 will do direct-io write even to holes,
3705  * preallocated extents, and those write extend the file, no need to
3706  * fall back to buffered IO.
3707  *
3708  * For holes, we fallocate those blocks, mark them as unwritten
3709  * If those blocks were preallocated, we mark sure they are split, but
3710  * still keep the range to write as unwritten.
3711  *
3712  * The unwritten extents will be converted to written when DIO is completed.
3713  * For async direct IO, since the IO may still pending when return, we
3714  * set up an end_io call back function, which will do the conversion
3715  * when async direct IO completed.
3716  *
3717  * If the O_DIRECT write will extend the file then add this inode to the
3718  * orphan list.  So recovery will truncate it back to the original size
3719  * if the machine crashes during the write.
3720  *
3721  */
3722 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3723 {
3724 	struct file *file = iocb->ki_filp;
3725 	struct inode *inode = file->f_mapping->host;
3726 	struct ext4_inode_info *ei = EXT4_I(inode);
3727 	ssize_t ret;
3728 	loff_t offset = iocb->ki_pos;
3729 	size_t count = iov_iter_count(iter);
3730 	int overwrite = 0;
3731 	get_block_t *get_block_func = NULL;
3732 	int dio_flags = 0;
3733 	loff_t final_size = offset + count;
3734 	int orphan = 0;
3735 	handle_t *handle;
3736 
3737 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3738 		/* Credits for sb + inode write */
3739 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3740 		if (IS_ERR(handle)) {
3741 			ret = PTR_ERR(handle);
3742 			goto out;
3743 		}
3744 		ret = ext4_orphan_add(handle, inode);
3745 		if (ret) {
3746 			ext4_journal_stop(handle);
3747 			goto out;
3748 		}
3749 		orphan = 1;
3750 		ext4_update_i_disksize(inode, inode->i_size);
3751 		ext4_journal_stop(handle);
3752 	}
3753 
3754 	BUG_ON(iocb->private == NULL);
3755 
3756 	/*
3757 	 * Make all waiters for direct IO properly wait also for extent
3758 	 * conversion. This also disallows race between truncate() and
3759 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3760 	 */
3761 	inode_dio_begin(inode);
3762 
3763 	/* If we do a overwrite dio, i_mutex locking can be released */
3764 	overwrite = *((int *)iocb->private);
3765 
3766 	if (overwrite)
3767 		inode_unlock(inode);
3768 
3769 	/*
3770 	 * For extent mapped files we could direct write to holes and fallocate.
3771 	 *
3772 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3773 	 * parallel buffered read to expose the stale data before DIO complete
3774 	 * the data IO.
3775 	 *
3776 	 * As to previously fallocated extents, ext4 get_block will just simply
3777 	 * mark the buffer mapped but still keep the extents unwritten.
3778 	 *
3779 	 * For non AIO case, we will convert those unwritten extents to written
3780 	 * after return back from blockdev_direct_IO. That way we save us from
3781 	 * allocating io_end structure and also the overhead of offloading
3782 	 * the extent convertion to a workqueue.
3783 	 *
3784 	 * For async DIO, the conversion needs to be deferred when the
3785 	 * IO is completed. The ext4 end_io callback function will be
3786 	 * called to take care of the conversion work.  Here for async
3787 	 * case, we allocate an io_end structure to hook to the iocb.
3788 	 */
3789 	iocb->private = NULL;
3790 	if (overwrite)
3791 		get_block_func = ext4_dio_get_block_overwrite;
3792 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3793 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3794 		get_block_func = ext4_dio_get_block;
3795 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3796 	} else if (is_sync_kiocb(iocb)) {
3797 		get_block_func = ext4_dio_get_block_unwritten_sync;
3798 		dio_flags = DIO_LOCKING;
3799 	} else {
3800 		get_block_func = ext4_dio_get_block_unwritten_async;
3801 		dio_flags = DIO_LOCKING;
3802 	}
3803 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3804 				   get_block_func, ext4_end_io_dio, NULL,
3805 				   dio_flags);
3806 
3807 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3808 						EXT4_STATE_DIO_UNWRITTEN)) {
3809 		int err;
3810 		/*
3811 		 * for non AIO case, since the IO is already
3812 		 * completed, we could do the conversion right here
3813 		 */
3814 		err = ext4_convert_unwritten_extents(NULL, inode,
3815 						     offset, ret);
3816 		if (err < 0)
3817 			ret = err;
3818 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3819 	}
3820 
3821 	inode_dio_end(inode);
3822 	/* take i_mutex locking again if we do a ovewrite dio */
3823 	if (overwrite)
3824 		inode_lock(inode);
3825 
3826 	if (ret < 0 && final_size > inode->i_size)
3827 		ext4_truncate_failed_write(inode);
3828 
3829 	/* Handle extending of i_size after direct IO write */
3830 	if (orphan) {
3831 		int err;
3832 
3833 		/* Credits for sb + inode write */
3834 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3835 		if (IS_ERR(handle)) {
3836 			/*
3837 			 * We wrote the data but cannot extend
3838 			 * i_size. Bail out. In async io case, we do
3839 			 * not return error here because we have
3840 			 * already submmitted the corresponding
3841 			 * bio. Returning error here makes the caller
3842 			 * think that this IO is done and failed
3843 			 * resulting in race with bio's completion
3844 			 * handler.
3845 			 */
3846 			if (!ret)
3847 				ret = PTR_ERR(handle);
3848 			if (inode->i_nlink)
3849 				ext4_orphan_del(NULL, inode);
3850 
3851 			goto out;
3852 		}
3853 		if (inode->i_nlink)
3854 			ext4_orphan_del(handle, inode);
3855 		if (ret > 0) {
3856 			loff_t end = offset + ret;
3857 			if (end > inode->i_size || end > ei->i_disksize) {
3858 				ext4_update_i_disksize(inode, end);
3859 				if (end > inode->i_size)
3860 					i_size_write(inode, end);
3861 				/*
3862 				 * We're going to return a positive `ret'
3863 				 * here due to non-zero-length I/O, so there's
3864 				 * no way of reporting error returns from
3865 				 * ext4_mark_inode_dirty() to userspace.  So
3866 				 * ignore it.
3867 				 */
3868 				ext4_mark_inode_dirty(handle, inode);
3869 			}
3870 		}
3871 		err = ext4_journal_stop(handle);
3872 		if (ret == 0)
3873 			ret = err;
3874 	}
3875 out:
3876 	return ret;
3877 }
3878 
3879 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3880 {
3881 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3882 	struct inode *inode = mapping->host;
3883 	size_t count = iov_iter_count(iter);
3884 	ssize_t ret;
3885 
3886 	/*
3887 	 * Shared inode_lock is enough for us - it protects against concurrent
3888 	 * writes & truncates and since we take care of writing back page cache,
3889 	 * we are protected against page writeback as well.
3890 	 */
3891 	inode_lock_shared(inode);
3892 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3893 					   iocb->ki_pos + count - 1);
3894 	if (ret)
3895 		goto out_unlock;
3896 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3897 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3898 out_unlock:
3899 	inode_unlock_shared(inode);
3900 	return ret;
3901 }
3902 
3903 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3904 {
3905 	struct file *file = iocb->ki_filp;
3906 	struct inode *inode = file->f_mapping->host;
3907 	size_t count = iov_iter_count(iter);
3908 	loff_t offset = iocb->ki_pos;
3909 	ssize_t ret;
3910 
3911 #ifdef CONFIG_FS_ENCRYPTION
3912 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3913 		return 0;
3914 #endif
3915 	if (fsverity_active(inode))
3916 		return 0;
3917 
3918 	/*
3919 	 * If we are doing data journalling we don't support O_DIRECT
3920 	 */
3921 	if (ext4_should_journal_data(inode))
3922 		return 0;
3923 
3924 	/* Let buffer I/O handle the inline data case. */
3925 	if (ext4_has_inline_data(inode))
3926 		return 0;
3927 
3928 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3929 	if (iov_iter_rw(iter) == READ)
3930 		ret = ext4_direct_IO_read(iocb, iter);
3931 	else
3932 		ret = ext4_direct_IO_write(iocb, iter);
3933 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3934 	return ret;
3935 }
3936 
3937 /*
3938  * Pages can be marked dirty completely asynchronously from ext4's journalling
3939  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3940  * much here because ->set_page_dirty is called under VFS locks.  The page is
3941  * not necessarily locked.
3942  *
3943  * We cannot just dirty the page and leave attached buffers clean, because the
3944  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3945  * or jbddirty because all the journalling code will explode.
3946  *
3947  * So what we do is to mark the page "pending dirty" and next time writepage
3948  * is called, propagate that into the buffers appropriately.
3949  */
3950 static int ext4_journalled_set_page_dirty(struct page *page)
3951 {
3952 	SetPageChecked(page);
3953 	return __set_page_dirty_nobuffers(page);
3954 }
3955 
3956 static int ext4_set_page_dirty(struct page *page)
3957 {
3958 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3959 	WARN_ON_ONCE(!page_has_buffers(page));
3960 	return __set_page_dirty_buffers(page);
3961 }
3962 
3963 static const struct address_space_operations ext4_aops = {
3964 	.readpage		= ext4_readpage,
3965 	.readpages		= ext4_readpages,
3966 	.writepage		= ext4_writepage,
3967 	.writepages		= ext4_writepages,
3968 	.write_begin		= ext4_write_begin,
3969 	.write_end		= ext4_write_end,
3970 	.set_page_dirty		= ext4_set_page_dirty,
3971 	.bmap			= ext4_bmap,
3972 	.invalidatepage		= ext4_invalidatepage,
3973 	.releasepage		= ext4_releasepage,
3974 	.direct_IO		= ext4_direct_IO,
3975 	.migratepage		= buffer_migrate_page,
3976 	.is_partially_uptodate  = block_is_partially_uptodate,
3977 	.error_remove_page	= generic_error_remove_page,
3978 };
3979 
3980 static const struct address_space_operations ext4_journalled_aops = {
3981 	.readpage		= ext4_readpage,
3982 	.readpages		= ext4_readpages,
3983 	.writepage		= ext4_writepage,
3984 	.writepages		= ext4_writepages,
3985 	.write_begin		= ext4_write_begin,
3986 	.write_end		= ext4_journalled_write_end,
3987 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3988 	.bmap			= ext4_bmap,
3989 	.invalidatepage		= ext4_journalled_invalidatepage,
3990 	.releasepage		= ext4_releasepage,
3991 	.direct_IO		= ext4_direct_IO,
3992 	.is_partially_uptodate  = block_is_partially_uptodate,
3993 	.error_remove_page	= generic_error_remove_page,
3994 };
3995 
3996 static const struct address_space_operations ext4_da_aops = {
3997 	.readpage		= ext4_readpage,
3998 	.readpages		= ext4_readpages,
3999 	.writepage		= ext4_writepage,
4000 	.writepages		= ext4_writepages,
4001 	.write_begin		= ext4_da_write_begin,
4002 	.write_end		= ext4_da_write_end,
4003 	.set_page_dirty		= ext4_set_page_dirty,
4004 	.bmap			= ext4_bmap,
4005 	.invalidatepage		= ext4_da_invalidatepage,
4006 	.releasepage		= ext4_releasepage,
4007 	.direct_IO		= ext4_direct_IO,
4008 	.migratepage		= buffer_migrate_page,
4009 	.is_partially_uptodate  = block_is_partially_uptodate,
4010 	.error_remove_page	= generic_error_remove_page,
4011 };
4012 
4013 static const struct address_space_operations ext4_dax_aops = {
4014 	.writepages		= ext4_dax_writepages,
4015 	.direct_IO		= noop_direct_IO,
4016 	.set_page_dirty		= noop_set_page_dirty,
4017 	.bmap			= ext4_bmap,
4018 	.invalidatepage		= noop_invalidatepage,
4019 };
4020 
4021 void ext4_set_aops(struct inode *inode)
4022 {
4023 	switch (ext4_inode_journal_mode(inode)) {
4024 	case EXT4_INODE_ORDERED_DATA_MODE:
4025 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4026 		break;
4027 	case EXT4_INODE_JOURNAL_DATA_MODE:
4028 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4029 		return;
4030 	default:
4031 		BUG();
4032 	}
4033 	if (IS_DAX(inode))
4034 		inode->i_mapping->a_ops = &ext4_dax_aops;
4035 	else if (test_opt(inode->i_sb, DELALLOC))
4036 		inode->i_mapping->a_ops = &ext4_da_aops;
4037 	else
4038 		inode->i_mapping->a_ops = &ext4_aops;
4039 }
4040 
4041 static int __ext4_block_zero_page_range(handle_t *handle,
4042 		struct address_space *mapping, loff_t from, loff_t length)
4043 {
4044 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4045 	unsigned offset = from & (PAGE_SIZE-1);
4046 	unsigned blocksize, pos;
4047 	ext4_lblk_t iblock;
4048 	struct inode *inode = mapping->host;
4049 	struct buffer_head *bh;
4050 	struct page *page;
4051 	int err = 0;
4052 
4053 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4054 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4055 	if (!page)
4056 		return -ENOMEM;
4057 
4058 	blocksize = inode->i_sb->s_blocksize;
4059 
4060 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4061 
4062 	if (!page_has_buffers(page))
4063 		create_empty_buffers(page, blocksize, 0);
4064 
4065 	/* Find the buffer that contains "offset" */
4066 	bh = page_buffers(page);
4067 	pos = blocksize;
4068 	while (offset >= pos) {
4069 		bh = bh->b_this_page;
4070 		iblock++;
4071 		pos += blocksize;
4072 	}
4073 	if (buffer_freed(bh)) {
4074 		BUFFER_TRACE(bh, "freed: skip");
4075 		goto unlock;
4076 	}
4077 	if (!buffer_mapped(bh)) {
4078 		BUFFER_TRACE(bh, "unmapped");
4079 		ext4_get_block(inode, iblock, bh, 0);
4080 		/* unmapped? It's a hole - nothing to do */
4081 		if (!buffer_mapped(bh)) {
4082 			BUFFER_TRACE(bh, "still unmapped");
4083 			goto unlock;
4084 		}
4085 	}
4086 
4087 	/* Ok, it's mapped. Make sure it's up-to-date */
4088 	if (PageUptodate(page))
4089 		set_buffer_uptodate(bh);
4090 
4091 	if (!buffer_uptodate(bh)) {
4092 		err = -EIO;
4093 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4094 		wait_on_buffer(bh);
4095 		/* Uhhuh. Read error. Complain and punt. */
4096 		if (!buffer_uptodate(bh))
4097 			goto unlock;
4098 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4099 			/* We expect the key to be set. */
4100 			BUG_ON(!fscrypt_has_encryption_key(inode));
4101 			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4102 					page, blocksize, bh_offset(bh)));
4103 		}
4104 	}
4105 	if (ext4_should_journal_data(inode)) {
4106 		BUFFER_TRACE(bh, "get write access");
4107 		err = ext4_journal_get_write_access(handle, bh);
4108 		if (err)
4109 			goto unlock;
4110 	}
4111 	zero_user(page, offset, length);
4112 	BUFFER_TRACE(bh, "zeroed end of block");
4113 
4114 	if (ext4_should_journal_data(inode)) {
4115 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4116 	} else {
4117 		err = 0;
4118 		mark_buffer_dirty(bh);
4119 		if (ext4_should_order_data(inode))
4120 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4121 					length);
4122 	}
4123 
4124 unlock:
4125 	unlock_page(page);
4126 	put_page(page);
4127 	return err;
4128 }
4129 
4130 /*
4131  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4132  * starting from file offset 'from'.  The range to be zero'd must
4133  * be contained with in one block.  If the specified range exceeds
4134  * the end of the block it will be shortened to end of the block
4135  * that cooresponds to 'from'
4136  */
4137 static int ext4_block_zero_page_range(handle_t *handle,
4138 		struct address_space *mapping, loff_t from, loff_t length)
4139 {
4140 	struct inode *inode = mapping->host;
4141 	unsigned offset = from & (PAGE_SIZE-1);
4142 	unsigned blocksize = inode->i_sb->s_blocksize;
4143 	unsigned max = blocksize - (offset & (blocksize - 1));
4144 
4145 	/*
4146 	 * correct length if it does not fall between
4147 	 * 'from' and the end of the block
4148 	 */
4149 	if (length > max || length < 0)
4150 		length = max;
4151 
4152 	if (IS_DAX(inode)) {
4153 		return iomap_zero_range(inode, from, length, NULL,
4154 					&ext4_iomap_ops);
4155 	}
4156 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4157 }
4158 
4159 /*
4160  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4161  * up to the end of the block which corresponds to `from'.
4162  * This required during truncate. We need to physically zero the tail end
4163  * of that block so it doesn't yield old data if the file is later grown.
4164  */
4165 static int ext4_block_truncate_page(handle_t *handle,
4166 		struct address_space *mapping, loff_t from)
4167 {
4168 	unsigned offset = from & (PAGE_SIZE-1);
4169 	unsigned length;
4170 	unsigned blocksize;
4171 	struct inode *inode = mapping->host;
4172 
4173 	/* If we are processing an encrypted inode during orphan list handling */
4174 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4175 		return 0;
4176 
4177 	blocksize = inode->i_sb->s_blocksize;
4178 	length = blocksize - (offset & (blocksize - 1));
4179 
4180 	return ext4_block_zero_page_range(handle, mapping, from, length);
4181 }
4182 
4183 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4184 			     loff_t lstart, loff_t length)
4185 {
4186 	struct super_block *sb = inode->i_sb;
4187 	struct address_space *mapping = inode->i_mapping;
4188 	unsigned partial_start, partial_end;
4189 	ext4_fsblk_t start, end;
4190 	loff_t byte_end = (lstart + length - 1);
4191 	int err = 0;
4192 
4193 	partial_start = lstart & (sb->s_blocksize - 1);
4194 	partial_end = byte_end & (sb->s_blocksize - 1);
4195 
4196 	start = lstart >> sb->s_blocksize_bits;
4197 	end = byte_end >> sb->s_blocksize_bits;
4198 
4199 	/* Handle partial zero within the single block */
4200 	if (start == end &&
4201 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4202 		err = ext4_block_zero_page_range(handle, mapping,
4203 						 lstart, length);
4204 		return err;
4205 	}
4206 	/* Handle partial zero out on the start of the range */
4207 	if (partial_start) {
4208 		err = ext4_block_zero_page_range(handle, mapping,
4209 						 lstart, sb->s_blocksize);
4210 		if (err)
4211 			return err;
4212 	}
4213 	/* Handle partial zero out on the end of the range */
4214 	if (partial_end != sb->s_blocksize - 1)
4215 		err = ext4_block_zero_page_range(handle, mapping,
4216 						 byte_end - partial_end,
4217 						 partial_end + 1);
4218 	return err;
4219 }
4220 
4221 int ext4_can_truncate(struct inode *inode)
4222 {
4223 	if (S_ISREG(inode->i_mode))
4224 		return 1;
4225 	if (S_ISDIR(inode->i_mode))
4226 		return 1;
4227 	if (S_ISLNK(inode->i_mode))
4228 		return !ext4_inode_is_fast_symlink(inode);
4229 	return 0;
4230 }
4231 
4232 /*
4233  * We have to make sure i_disksize gets properly updated before we truncate
4234  * page cache due to hole punching or zero range. Otherwise i_disksize update
4235  * can get lost as it may have been postponed to submission of writeback but
4236  * that will never happen after we truncate page cache.
4237  */
4238 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4239 				      loff_t len)
4240 {
4241 	handle_t *handle;
4242 	loff_t size = i_size_read(inode);
4243 
4244 	WARN_ON(!inode_is_locked(inode));
4245 	if (offset > size || offset + len < size)
4246 		return 0;
4247 
4248 	if (EXT4_I(inode)->i_disksize >= size)
4249 		return 0;
4250 
4251 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4252 	if (IS_ERR(handle))
4253 		return PTR_ERR(handle);
4254 	ext4_update_i_disksize(inode, size);
4255 	ext4_mark_inode_dirty(handle, inode);
4256 	ext4_journal_stop(handle);
4257 
4258 	return 0;
4259 }
4260 
4261 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4262 {
4263 	up_write(&ei->i_mmap_sem);
4264 	schedule();
4265 	down_write(&ei->i_mmap_sem);
4266 }
4267 
4268 int ext4_break_layouts(struct inode *inode)
4269 {
4270 	struct ext4_inode_info *ei = EXT4_I(inode);
4271 	struct page *page;
4272 	int error;
4273 
4274 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4275 		return -EINVAL;
4276 
4277 	do {
4278 		page = dax_layout_busy_page(inode->i_mapping);
4279 		if (!page)
4280 			return 0;
4281 
4282 		error = ___wait_var_event(&page->_refcount,
4283 				atomic_read(&page->_refcount) == 1,
4284 				TASK_INTERRUPTIBLE, 0, 0,
4285 				ext4_wait_dax_page(ei));
4286 	} while (error == 0);
4287 
4288 	return error;
4289 }
4290 
4291 /*
4292  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4293  * associated with the given offset and length
4294  *
4295  * @inode:  File inode
4296  * @offset: The offset where the hole will begin
4297  * @len:    The length of the hole
4298  *
4299  * Returns: 0 on success or negative on failure
4300  */
4301 
4302 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4303 {
4304 	struct super_block *sb = inode->i_sb;
4305 	ext4_lblk_t first_block, stop_block;
4306 	struct address_space *mapping = inode->i_mapping;
4307 	loff_t first_block_offset, last_block_offset;
4308 	handle_t *handle;
4309 	unsigned int credits;
4310 	int ret = 0;
4311 
4312 	if (!S_ISREG(inode->i_mode))
4313 		return -EOPNOTSUPP;
4314 
4315 	trace_ext4_punch_hole(inode, offset, length, 0);
4316 
4317 	/*
4318 	 * Write out all dirty pages to avoid race conditions
4319 	 * Then release them.
4320 	 */
4321 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4322 		ret = filemap_write_and_wait_range(mapping, offset,
4323 						   offset + length - 1);
4324 		if (ret)
4325 			return ret;
4326 	}
4327 
4328 	inode_lock(inode);
4329 
4330 	/* No need to punch hole beyond i_size */
4331 	if (offset >= inode->i_size)
4332 		goto out_mutex;
4333 
4334 	/*
4335 	 * If the hole extends beyond i_size, set the hole
4336 	 * to end after the page that contains i_size
4337 	 */
4338 	if (offset + length > inode->i_size) {
4339 		length = inode->i_size +
4340 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4341 		   offset;
4342 	}
4343 
4344 	if (offset & (sb->s_blocksize - 1) ||
4345 	    (offset + length) & (sb->s_blocksize - 1)) {
4346 		/*
4347 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4348 		 * partial block
4349 		 */
4350 		ret = ext4_inode_attach_jinode(inode);
4351 		if (ret < 0)
4352 			goto out_mutex;
4353 
4354 	}
4355 
4356 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4357 	inode_dio_wait(inode);
4358 
4359 	/*
4360 	 * Prevent page faults from reinstantiating pages we have released from
4361 	 * page cache.
4362 	 */
4363 	down_write(&EXT4_I(inode)->i_mmap_sem);
4364 
4365 	ret = ext4_break_layouts(inode);
4366 	if (ret)
4367 		goto out_dio;
4368 
4369 	first_block_offset = round_up(offset, sb->s_blocksize);
4370 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4371 
4372 	/* Now release the pages and zero block aligned part of pages*/
4373 	if (last_block_offset > first_block_offset) {
4374 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4375 		if (ret)
4376 			goto out_dio;
4377 		truncate_pagecache_range(inode, first_block_offset,
4378 					 last_block_offset);
4379 	}
4380 
4381 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4382 		credits = ext4_writepage_trans_blocks(inode);
4383 	else
4384 		credits = ext4_blocks_for_truncate(inode);
4385 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4386 	if (IS_ERR(handle)) {
4387 		ret = PTR_ERR(handle);
4388 		ext4_std_error(sb, ret);
4389 		goto out_dio;
4390 	}
4391 
4392 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4393 				       length);
4394 	if (ret)
4395 		goto out_stop;
4396 
4397 	first_block = (offset + sb->s_blocksize - 1) >>
4398 		EXT4_BLOCK_SIZE_BITS(sb);
4399 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4400 
4401 	/* If there are blocks to remove, do it */
4402 	if (stop_block > first_block) {
4403 
4404 		down_write(&EXT4_I(inode)->i_data_sem);
4405 		ext4_discard_preallocations(inode);
4406 
4407 		ret = ext4_es_remove_extent(inode, first_block,
4408 					    stop_block - first_block);
4409 		if (ret) {
4410 			up_write(&EXT4_I(inode)->i_data_sem);
4411 			goto out_stop;
4412 		}
4413 
4414 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4415 			ret = ext4_ext_remove_space(inode, first_block,
4416 						    stop_block - 1);
4417 		else
4418 			ret = ext4_ind_remove_space(handle, inode, first_block,
4419 						    stop_block);
4420 
4421 		up_write(&EXT4_I(inode)->i_data_sem);
4422 	}
4423 	if (IS_SYNC(inode))
4424 		ext4_handle_sync(handle);
4425 
4426 	inode->i_mtime = inode->i_ctime = current_time(inode);
4427 	ext4_mark_inode_dirty(handle, inode);
4428 	if (ret >= 0)
4429 		ext4_update_inode_fsync_trans(handle, inode, 1);
4430 out_stop:
4431 	ext4_journal_stop(handle);
4432 out_dio:
4433 	up_write(&EXT4_I(inode)->i_mmap_sem);
4434 out_mutex:
4435 	inode_unlock(inode);
4436 	return ret;
4437 }
4438 
4439 int ext4_inode_attach_jinode(struct inode *inode)
4440 {
4441 	struct ext4_inode_info *ei = EXT4_I(inode);
4442 	struct jbd2_inode *jinode;
4443 
4444 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4445 		return 0;
4446 
4447 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4448 	spin_lock(&inode->i_lock);
4449 	if (!ei->jinode) {
4450 		if (!jinode) {
4451 			spin_unlock(&inode->i_lock);
4452 			return -ENOMEM;
4453 		}
4454 		ei->jinode = jinode;
4455 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4456 		jinode = NULL;
4457 	}
4458 	spin_unlock(&inode->i_lock);
4459 	if (unlikely(jinode != NULL))
4460 		jbd2_free_inode(jinode);
4461 	return 0;
4462 }
4463 
4464 /*
4465  * ext4_truncate()
4466  *
4467  * We block out ext4_get_block() block instantiations across the entire
4468  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4469  * simultaneously on behalf of the same inode.
4470  *
4471  * As we work through the truncate and commit bits of it to the journal there
4472  * is one core, guiding principle: the file's tree must always be consistent on
4473  * disk.  We must be able to restart the truncate after a crash.
4474  *
4475  * The file's tree may be transiently inconsistent in memory (although it
4476  * probably isn't), but whenever we close off and commit a journal transaction,
4477  * the contents of (the filesystem + the journal) must be consistent and
4478  * restartable.  It's pretty simple, really: bottom up, right to left (although
4479  * left-to-right works OK too).
4480  *
4481  * Note that at recovery time, journal replay occurs *before* the restart of
4482  * truncate against the orphan inode list.
4483  *
4484  * The committed inode has the new, desired i_size (which is the same as
4485  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4486  * that this inode's truncate did not complete and it will again call
4487  * ext4_truncate() to have another go.  So there will be instantiated blocks
4488  * to the right of the truncation point in a crashed ext4 filesystem.  But
4489  * that's fine - as long as they are linked from the inode, the post-crash
4490  * ext4_truncate() run will find them and release them.
4491  */
4492 int ext4_truncate(struct inode *inode)
4493 {
4494 	struct ext4_inode_info *ei = EXT4_I(inode);
4495 	unsigned int credits;
4496 	int err = 0;
4497 	handle_t *handle;
4498 	struct address_space *mapping = inode->i_mapping;
4499 
4500 	/*
4501 	 * There is a possibility that we're either freeing the inode
4502 	 * or it's a completely new inode. In those cases we might not
4503 	 * have i_mutex locked because it's not necessary.
4504 	 */
4505 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4506 		WARN_ON(!inode_is_locked(inode));
4507 	trace_ext4_truncate_enter(inode);
4508 
4509 	if (!ext4_can_truncate(inode))
4510 		return 0;
4511 
4512 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4513 
4514 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4515 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4516 
4517 	if (ext4_has_inline_data(inode)) {
4518 		int has_inline = 1;
4519 
4520 		err = ext4_inline_data_truncate(inode, &has_inline);
4521 		if (err)
4522 			return err;
4523 		if (has_inline)
4524 			return 0;
4525 	}
4526 
4527 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4528 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4529 		if (ext4_inode_attach_jinode(inode) < 0)
4530 			return 0;
4531 	}
4532 
4533 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4534 		credits = ext4_writepage_trans_blocks(inode);
4535 	else
4536 		credits = ext4_blocks_for_truncate(inode);
4537 
4538 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4539 	if (IS_ERR(handle))
4540 		return PTR_ERR(handle);
4541 
4542 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4543 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4544 
4545 	/*
4546 	 * We add the inode to the orphan list, so that if this
4547 	 * truncate spans multiple transactions, and we crash, we will
4548 	 * resume the truncate when the filesystem recovers.  It also
4549 	 * marks the inode dirty, to catch the new size.
4550 	 *
4551 	 * Implication: the file must always be in a sane, consistent
4552 	 * truncatable state while each transaction commits.
4553 	 */
4554 	err = ext4_orphan_add(handle, inode);
4555 	if (err)
4556 		goto out_stop;
4557 
4558 	down_write(&EXT4_I(inode)->i_data_sem);
4559 
4560 	ext4_discard_preallocations(inode);
4561 
4562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4563 		err = ext4_ext_truncate(handle, inode);
4564 	else
4565 		ext4_ind_truncate(handle, inode);
4566 
4567 	up_write(&ei->i_data_sem);
4568 	if (err)
4569 		goto out_stop;
4570 
4571 	if (IS_SYNC(inode))
4572 		ext4_handle_sync(handle);
4573 
4574 out_stop:
4575 	/*
4576 	 * If this was a simple ftruncate() and the file will remain alive,
4577 	 * then we need to clear up the orphan record which we created above.
4578 	 * However, if this was a real unlink then we were called by
4579 	 * ext4_evict_inode(), and we allow that function to clean up the
4580 	 * orphan info for us.
4581 	 */
4582 	if (inode->i_nlink)
4583 		ext4_orphan_del(handle, inode);
4584 
4585 	inode->i_mtime = inode->i_ctime = current_time(inode);
4586 	ext4_mark_inode_dirty(handle, inode);
4587 	ext4_journal_stop(handle);
4588 
4589 	trace_ext4_truncate_exit(inode);
4590 	return err;
4591 }
4592 
4593 /*
4594  * ext4_get_inode_loc returns with an extra refcount against the inode's
4595  * underlying buffer_head on success. If 'in_mem' is true, we have all
4596  * data in memory that is needed to recreate the on-disk version of this
4597  * inode.
4598  */
4599 static int __ext4_get_inode_loc(struct inode *inode,
4600 				struct ext4_iloc *iloc, int in_mem)
4601 {
4602 	struct ext4_group_desc	*gdp;
4603 	struct buffer_head	*bh;
4604 	struct super_block	*sb = inode->i_sb;
4605 	ext4_fsblk_t		block;
4606 	int			inodes_per_block, inode_offset;
4607 
4608 	iloc->bh = NULL;
4609 	if (inode->i_ino < EXT4_ROOT_INO ||
4610 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4611 		return -EFSCORRUPTED;
4612 
4613 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4614 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4615 	if (!gdp)
4616 		return -EIO;
4617 
4618 	/*
4619 	 * Figure out the offset within the block group inode table
4620 	 */
4621 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4622 	inode_offset = ((inode->i_ino - 1) %
4623 			EXT4_INODES_PER_GROUP(sb));
4624 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4625 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4626 
4627 	bh = sb_getblk(sb, block);
4628 	if (unlikely(!bh))
4629 		return -ENOMEM;
4630 	if (!buffer_uptodate(bh)) {
4631 		lock_buffer(bh);
4632 
4633 		/*
4634 		 * If the buffer has the write error flag, we have failed
4635 		 * to write out another inode in the same block.  In this
4636 		 * case, we don't have to read the block because we may
4637 		 * read the old inode data successfully.
4638 		 */
4639 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4640 			set_buffer_uptodate(bh);
4641 
4642 		if (buffer_uptodate(bh)) {
4643 			/* someone brought it uptodate while we waited */
4644 			unlock_buffer(bh);
4645 			goto has_buffer;
4646 		}
4647 
4648 		/*
4649 		 * If we have all information of the inode in memory and this
4650 		 * is the only valid inode in the block, we need not read the
4651 		 * block.
4652 		 */
4653 		if (in_mem) {
4654 			struct buffer_head *bitmap_bh;
4655 			int i, start;
4656 
4657 			start = inode_offset & ~(inodes_per_block - 1);
4658 
4659 			/* Is the inode bitmap in cache? */
4660 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4661 			if (unlikely(!bitmap_bh))
4662 				goto make_io;
4663 
4664 			/*
4665 			 * If the inode bitmap isn't in cache then the
4666 			 * optimisation may end up performing two reads instead
4667 			 * of one, so skip it.
4668 			 */
4669 			if (!buffer_uptodate(bitmap_bh)) {
4670 				brelse(bitmap_bh);
4671 				goto make_io;
4672 			}
4673 			for (i = start; i < start + inodes_per_block; i++) {
4674 				if (i == inode_offset)
4675 					continue;
4676 				if (ext4_test_bit(i, bitmap_bh->b_data))
4677 					break;
4678 			}
4679 			brelse(bitmap_bh);
4680 			if (i == start + inodes_per_block) {
4681 				/* all other inodes are free, so skip I/O */
4682 				memset(bh->b_data, 0, bh->b_size);
4683 				set_buffer_uptodate(bh);
4684 				unlock_buffer(bh);
4685 				goto has_buffer;
4686 			}
4687 		}
4688 
4689 make_io:
4690 		/*
4691 		 * If we need to do any I/O, try to pre-readahead extra
4692 		 * blocks from the inode table.
4693 		 */
4694 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4695 			ext4_fsblk_t b, end, table;
4696 			unsigned num;
4697 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4698 
4699 			table = ext4_inode_table(sb, gdp);
4700 			/* s_inode_readahead_blks is always a power of 2 */
4701 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4702 			if (table > b)
4703 				b = table;
4704 			end = b + ra_blks;
4705 			num = EXT4_INODES_PER_GROUP(sb);
4706 			if (ext4_has_group_desc_csum(sb))
4707 				num -= ext4_itable_unused_count(sb, gdp);
4708 			table += num / inodes_per_block;
4709 			if (end > table)
4710 				end = table;
4711 			while (b <= end)
4712 				sb_breadahead(sb, b++);
4713 		}
4714 
4715 		/*
4716 		 * There are other valid inodes in the buffer, this inode
4717 		 * has in-inode xattrs, or we don't have this inode in memory.
4718 		 * Read the block from disk.
4719 		 */
4720 		trace_ext4_load_inode(inode);
4721 		get_bh(bh);
4722 		bh->b_end_io = end_buffer_read_sync;
4723 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4724 		wait_on_buffer(bh);
4725 		if (!buffer_uptodate(bh)) {
4726 			EXT4_ERROR_INODE_BLOCK(inode, block,
4727 					       "unable to read itable block");
4728 			brelse(bh);
4729 			return -EIO;
4730 		}
4731 	}
4732 has_buffer:
4733 	iloc->bh = bh;
4734 	return 0;
4735 }
4736 
4737 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4738 {
4739 	/* We have all inode data except xattrs in memory here. */
4740 	return __ext4_get_inode_loc(inode, iloc,
4741 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4742 }
4743 
4744 static bool ext4_should_use_dax(struct inode *inode)
4745 {
4746 	if (!test_opt(inode->i_sb, DAX))
4747 		return false;
4748 	if (!S_ISREG(inode->i_mode))
4749 		return false;
4750 	if (ext4_should_journal_data(inode))
4751 		return false;
4752 	if (ext4_has_inline_data(inode))
4753 		return false;
4754 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4755 		return false;
4756 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4757 		return false;
4758 	return true;
4759 }
4760 
4761 void ext4_set_inode_flags(struct inode *inode)
4762 {
4763 	unsigned int flags = EXT4_I(inode)->i_flags;
4764 	unsigned int new_fl = 0;
4765 
4766 	if (flags & EXT4_SYNC_FL)
4767 		new_fl |= S_SYNC;
4768 	if (flags & EXT4_APPEND_FL)
4769 		new_fl |= S_APPEND;
4770 	if (flags & EXT4_IMMUTABLE_FL)
4771 		new_fl |= S_IMMUTABLE;
4772 	if (flags & EXT4_NOATIME_FL)
4773 		new_fl |= S_NOATIME;
4774 	if (flags & EXT4_DIRSYNC_FL)
4775 		new_fl |= S_DIRSYNC;
4776 	if (ext4_should_use_dax(inode))
4777 		new_fl |= S_DAX;
4778 	if (flags & EXT4_ENCRYPT_FL)
4779 		new_fl |= S_ENCRYPTED;
4780 	if (flags & EXT4_CASEFOLD_FL)
4781 		new_fl |= S_CASEFOLD;
4782 	if (flags & EXT4_VERITY_FL)
4783 		new_fl |= S_VERITY;
4784 	inode_set_flags(inode, new_fl,
4785 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4786 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4787 }
4788 
4789 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4790 				  struct ext4_inode_info *ei)
4791 {
4792 	blkcnt_t i_blocks ;
4793 	struct inode *inode = &(ei->vfs_inode);
4794 	struct super_block *sb = inode->i_sb;
4795 
4796 	if (ext4_has_feature_huge_file(sb)) {
4797 		/* we are using combined 48 bit field */
4798 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4799 					le32_to_cpu(raw_inode->i_blocks_lo);
4800 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4801 			/* i_blocks represent file system block size */
4802 			return i_blocks  << (inode->i_blkbits - 9);
4803 		} else {
4804 			return i_blocks;
4805 		}
4806 	} else {
4807 		return le32_to_cpu(raw_inode->i_blocks_lo);
4808 	}
4809 }
4810 
4811 static inline int ext4_iget_extra_inode(struct inode *inode,
4812 					 struct ext4_inode *raw_inode,
4813 					 struct ext4_inode_info *ei)
4814 {
4815 	__le32 *magic = (void *)raw_inode +
4816 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4817 
4818 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4819 	    EXT4_INODE_SIZE(inode->i_sb) &&
4820 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4821 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4822 		return ext4_find_inline_data_nolock(inode);
4823 	} else
4824 		EXT4_I(inode)->i_inline_off = 0;
4825 	return 0;
4826 }
4827 
4828 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4829 {
4830 	if (!ext4_has_feature_project(inode->i_sb))
4831 		return -EOPNOTSUPP;
4832 	*projid = EXT4_I(inode)->i_projid;
4833 	return 0;
4834 }
4835 
4836 /*
4837  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4838  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4839  * set.
4840  */
4841 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4842 {
4843 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4844 		inode_set_iversion_raw(inode, val);
4845 	else
4846 		inode_set_iversion_queried(inode, val);
4847 }
4848 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4849 {
4850 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4851 		return inode_peek_iversion_raw(inode);
4852 	else
4853 		return inode_peek_iversion(inode);
4854 }
4855 
4856 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4857 			  ext4_iget_flags flags, const char *function,
4858 			  unsigned int line)
4859 {
4860 	struct ext4_iloc iloc;
4861 	struct ext4_inode *raw_inode;
4862 	struct ext4_inode_info *ei;
4863 	struct inode *inode;
4864 	journal_t *journal = EXT4_SB(sb)->s_journal;
4865 	long ret;
4866 	loff_t size;
4867 	int block;
4868 	uid_t i_uid;
4869 	gid_t i_gid;
4870 	projid_t i_projid;
4871 
4872 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4873 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4874 	    (ino < EXT4_ROOT_INO) ||
4875 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4876 		if (flags & EXT4_IGET_HANDLE)
4877 			return ERR_PTR(-ESTALE);
4878 		__ext4_error(sb, function, line,
4879 			     "inode #%lu: comm %s: iget: illegal inode #",
4880 			     ino, current->comm);
4881 		return ERR_PTR(-EFSCORRUPTED);
4882 	}
4883 
4884 	inode = iget_locked(sb, ino);
4885 	if (!inode)
4886 		return ERR_PTR(-ENOMEM);
4887 	if (!(inode->i_state & I_NEW))
4888 		return inode;
4889 
4890 	ei = EXT4_I(inode);
4891 	iloc.bh = NULL;
4892 
4893 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4894 	if (ret < 0)
4895 		goto bad_inode;
4896 	raw_inode = ext4_raw_inode(&iloc);
4897 
4898 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4899 		ext4_error_inode(inode, function, line, 0,
4900 				 "iget: root inode unallocated");
4901 		ret = -EFSCORRUPTED;
4902 		goto bad_inode;
4903 	}
4904 
4905 	if ((flags & EXT4_IGET_HANDLE) &&
4906 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4907 		ret = -ESTALE;
4908 		goto bad_inode;
4909 	}
4910 
4911 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4912 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4913 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4914 			EXT4_INODE_SIZE(inode->i_sb) ||
4915 		    (ei->i_extra_isize & 3)) {
4916 			ext4_error_inode(inode, function, line, 0,
4917 					 "iget: bad extra_isize %u "
4918 					 "(inode size %u)",
4919 					 ei->i_extra_isize,
4920 					 EXT4_INODE_SIZE(inode->i_sb));
4921 			ret = -EFSCORRUPTED;
4922 			goto bad_inode;
4923 		}
4924 	} else
4925 		ei->i_extra_isize = 0;
4926 
4927 	/* Precompute checksum seed for inode metadata */
4928 	if (ext4_has_metadata_csum(sb)) {
4929 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4930 		__u32 csum;
4931 		__le32 inum = cpu_to_le32(inode->i_ino);
4932 		__le32 gen = raw_inode->i_generation;
4933 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4934 				   sizeof(inum));
4935 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4936 					      sizeof(gen));
4937 	}
4938 
4939 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4940 		ext4_error_inode(inode, function, line, 0,
4941 				 "iget: checksum invalid");
4942 		ret = -EFSBADCRC;
4943 		goto bad_inode;
4944 	}
4945 
4946 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4947 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4948 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4949 	if (ext4_has_feature_project(sb) &&
4950 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4951 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4952 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4953 	else
4954 		i_projid = EXT4_DEF_PROJID;
4955 
4956 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4957 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4958 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4959 	}
4960 	i_uid_write(inode, i_uid);
4961 	i_gid_write(inode, i_gid);
4962 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4963 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4964 
4965 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4966 	ei->i_inline_off = 0;
4967 	ei->i_dir_start_lookup = 0;
4968 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4969 	/* We now have enough fields to check if the inode was active or not.
4970 	 * This is needed because nfsd might try to access dead inodes
4971 	 * the test is that same one that e2fsck uses
4972 	 * NeilBrown 1999oct15
4973 	 */
4974 	if (inode->i_nlink == 0) {
4975 		if ((inode->i_mode == 0 ||
4976 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4977 		    ino != EXT4_BOOT_LOADER_INO) {
4978 			/* this inode is deleted */
4979 			ret = -ESTALE;
4980 			goto bad_inode;
4981 		}
4982 		/* The only unlinked inodes we let through here have
4983 		 * valid i_mode and are being read by the orphan
4984 		 * recovery code: that's fine, we're about to complete
4985 		 * the process of deleting those.
4986 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4987 		 * not initialized on a new filesystem. */
4988 	}
4989 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4990 	ext4_set_inode_flags(inode);
4991 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4992 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4993 	if (ext4_has_feature_64bit(sb))
4994 		ei->i_file_acl |=
4995 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4996 	inode->i_size = ext4_isize(sb, raw_inode);
4997 	if ((size = i_size_read(inode)) < 0) {
4998 		ext4_error_inode(inode, function, line, 0,
4999 				 "iget: bad i_size value: %lld", size);
5000 		ret = -EFSCORRUPTED;
5001 		goto bad_inode;
5002 	}
5003 	ei->i_disksize = inode->i_size;
5004 #ifdef CONFIG_QUOTA
5005 	ei->i_reserved_quota = 0;
5006 #endif
5007 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5008 	ei->i_block_group = iloc.block_group;
5009 	ei->i_last_alloc_group = ~0;
5010 	/*
5011 	 * NOTE! The in-memory inode i_data array is in little-endian order
5012 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5013 	 */
5014 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5015 		ei->i_data[block] = raw_inode->i_block[block];
5016 	INIT_LIST_HEAD(&ei->i_orphan);
5017 
5018 	/*
5019 	 * Set transaction id's of transactions that have to be committed
5020 	 * to finish f[data]sync. We set them to currently running transaction
5021 	 * as we cannot be sure that the inode or some of its metadata isn't
5022 	 * part of the transaction - the inode could have been reclaimed and
5023 	 * now it is reread from disk.
5024 	 */
5025 	if (journal) {
5026 		transaction_t *transaction;
5027 		tid_t tid;
5028 
5029 		read_lock(&journal->j_state_lock);
5030 		if (journal->j_running_transaction)
5031 			transaction = journal->j_running_transaction;
5032 		else
5033 			transaction = journal->j_committing_transaction;
5034 		if (transaction)
5035 			tid = transaction->t_tid;
5036 		else
5037 			tid = journal->j_commit_sequence;
5038 		read_unlock(&journal->j_state_lock);
5039 		ei->i_sync_tid = tid;
5040 		ei->i_datasync_tid = tid;
5041 	}
5042 
5043 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5044 		if (ei->i_extra_isize == 0) {
5045 			/* The extra space is currently unused. Use it. */
5046 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5047 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5048 					    EXT4_GOOD_OLD_INODE_SIZE;
5049 		} else {
5050 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5051 			if (ret)
5052 				goto bad_inode;
5053 		}
5054 	}
5055 
5056 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5057 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5058 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5059 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5060 
5061 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5062 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5063 
5064 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5065 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5066 				ivers |=
5067 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5068 		}
5069 		ext4_inode_set_iversion_queried(inode, ivers);
5070 	}
5071 
5072 	ret = 0;
5073 	if (ei->i_file_acl &&
5074 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5075 		ext4_error_inode(inode, function, line, 0,
5076 				 "iget: bad extended attribute block %llu",
5077 				 ei->i_file_acl);
5078 		ret = -EFSCORRUPTED;
5079 		goto bad_inode;
5080 	} else if (!ext4_has_inline_data(inode)) {
5081 		/* validate the block references in the inode */
5082 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5083 		   (S_ISLNK(inode->i_mode) &&
5084 		    !ext4_inode_is_fast_symlink(inode))) {
5085 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5086 				ret = ext4_ext_check_inode(inode);
5087 			else
5088 				ret = ext4_ind_check_inode(inode);
5089 		}
5090 	}
5091 	if (ret)
5092 		goto bad_inode;
5093 
5094 	if (S_ISREG(inode->i_mode)) {
5095 		inode->i_op = &ext4_file_inode_operations;
5096 		inode->i_fop = &ext4_file_operations;
5097 		ext4_set_aops(inode);
5098 	} else if (S_ISDIR(inode->i_mode)) {
5099 		inode->i_op = &ext4_dir_inode_operations;
5100 		inode->i_fop = &ext4_dir_operations;
5101 	} else if (S_ISLNK(inode->i_mode)) {
5102 		/* VFS does not allow setting these so must be corruption */
5103 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5104 			ext4_error_inode(inode, function, line, 0,
5105 					 "iget: immutable or append flags "
5106 					 "not allowed on symlinks");
5107 			ret = -EFSCORRUPTED;
5108 			goto bad_inode;
5109 		}
5110 		if (IS_ENCRYPTED(inode)) {
5111 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5112 			ext4_set_aops(inode);
5113 		} else if (ext4_inode_is_fast_symlink(inode)) {
5114 			inode->i_link = (char *)ei->i_data;
5115 			inode->i_op = &ext4_fast_symlink_inode_operations;
5116 			nd_terminate_link(ei->i_data, inode->i_size,
5117 				sizeof(ei->i_data) - 1);
5118 		} else {
5119 			inode->i_op = &ext4_symlink_inode_operations;
5120 			ext4_set_aops(inode);
5121 		}
5122 		inode_nohighmem(inode);
5123 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5124 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5125 		inode->i_op = &ext4_special_inode_operations;
5126 		if (raw_inode->i_block[0])
5127 			init_special_inode(inode, inode->i_mode,
5128 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5129 		else
5130 			init_special_inode(inode, inode->i_mode,
5131 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5132 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5133 		make_bad_inode(inode);
5134 	} else {
5135 		ret = -EFSCORRUPTED;
5136 		ext4_error_inode(inode, function, line, 0,
5137 				 "iget: bogus i_mode (%o)", inode->i_mode);
5138 		goto bad_inode;
5139 	}
5140 	brelse(iloc.bh);
5141 
5142 	unlock_new_inode(inode);
5143 	return inode;
5144 
5145 bad_inode:
5146 	brelse(iloc.bh);
5147 	iget_failed(inode);
5148 	return ERR_PTR(ret);
5149 }
5150 
5151 static int ext4_inode_blocks_set(handle_t *handle,
5152 				struct ext4_inode *raw_inode,
5153 				struct ext4_inode_info *ei)
5154 {
5155 	struct inode *inode = &(ei->vfs_inode);
5156 	u64 i_blocks = inode->i_blocks;
5157 	struct super_block *sb = inode->i_sb;
5158 
5159 	if (i_blocks <= ~0U) {
5160 		/*
5161 		 * i_blocks can be represented in a 32 bit variable
5162 		 * as multiple of 512 bytes
5163 		 */
5164 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5165 		raw_inode->i_blocks_high = 0;
5166 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5167 		return 0;
5168 	}
5169 	if (!ext4_has_feature_huge_file(sb))
5170 		return -EFBIG;
5171 
5172 	if (i_blocks <= 0xffffffffffffULL) {
5173 		/*
5174 		 * i_blocks can be represented in a 48 bit variable
5175 		 * as multiple of 512 bytes
5176 		 */
5177 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5178 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5179 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5180 	} else {
5181 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5182 		/* i_block is stored in file system block size */
5183 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5184 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5185 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5186 	}
5187 	return 0;
5188 }
5189 
5190 struct other_inode {
5191 	unsigned long		orig_ino;
5192 	struct ext4_inode	*raw_inode;
5193 };
5194 
5195 static int other_inode_match(struct inode * inode, unsigned long ino,
5196 			     void *data)
5197 {
5198 	struct other_inode *oi = (struct other_inode *) data;
5199 
5200 	if ((inode->i_ino != ino) ||
5201 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5202 			       I_DIRTY_INODE)) ||
5203 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5204 		return 0;
5205 	spin_lock(&inode->i_lock);
5206 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5207 				I_DIRTY_INODE)) == 0) &&
5208 	    (inode->i_state & I_DIRTY_TIME)) {
5209 		struct ext4_inode_info	*ei = EXT4_I(inode);
5210 
5211 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5212 		spin_unlock(&inode->i_lock);
5213 
5214 		spin_lock(&ei->i_raw_lock);
5215 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5216 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5217 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5218 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5219 		spin_unlock(&ei->i_raw_lock);
5220 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5221 		return -1;
5222 	}
5223 	spin_unlock(&inode->i_lock);
5224 	return -1;
5225 }
5226 
5227 /*
5228  * Opportunistically update the other time fields for other inodes in
5229  * the same inode table block.
5230  */
5231 static void ext4_update_other_inodes_time(struct super_block *sb,
5232 					  unsigned long orig_ino, char *buf)
5233 {
5234 	struct other_inode oi;
5235 	unsigned long ino;
5236 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5237 	int inode_size = EXT4_INODE_SIZE(sb);
5238 
5239 	oi.orig_ino = orig_ino;
5240 	/*
5241 	 * Calculate the first inode in the inode table block.  Inode
5242 	 * numbers are one-based.  That is, the first inode in a block
5243 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5244 	 */
5245 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5246 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5247 		if (ino == orig_ino)
5248 			continue;
5249 		oi.raw_inode = (struct ext4_inode *) buf;
5250 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5251 	}
5252 }
5253 
5254 /*
5255  * Post the struct inode info into an on-disk inode location in the
5256  * buffer-cache.  This gobbles the caller's reference to the
5257  * buffer_head in the inode location struct.
5258  *
5259  * The caller must have write access to iloc->bh.
5260  */
5261 static int ext4_do_update_inode(handle_t *handle,
5262 				struct inode *inode,
5263 				struct ext4_iloc *iloc)
5264 {
5265 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5266 	struct ext4_inode_info *ei = EXT4_I(inode);
5267 	struct buffer_head *bh = iloc->bh;
5268 	struct super_block *sb = inode->i_sb;
5269 	int err = 0, rc, block;
5270 	int need_datasync = 0, set_large_file = 0;
5271 	uid_t i_uid;
5272 	gid_t i_gid;
5273 	projid_t i_projid;
5274 
5275 	spin_lock(&ei->i_raw_lock);
5276 
5277 	/* For fields not tracked in the in-memory inode,
5278 	 * initialise them to zero for new inodes. */
5279 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5280 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5281 
5282 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5283 	i_uid = i_uid_read(inode);
5284 	i_gid = i_gid_read(inode);
5285 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5286 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5287 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5288 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5289 /*
5290  * Fix up interoperability with old kernels. Otherwise, old inodes get
5291  * re-used with the upper 16 bits of the uid/gid intact
5292  */
5293 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5294 			raw_inode->i_uid_high = 0;
5295 			raw_inode->i_gid_high = 0;
5296 		} else {
5297 			raw_inode->i_uid_high =
5298 				cpu_to_le16(high_16_bits(i_uid));
5299 			raw_inode->i_gid_high =
5300 				cpu_to_le16(high_16_bits(i_gid));
5301 		}
5302 	} else {
5303 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5304 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5305 		raw_inode->i_uid_high = 0;
5306 		raw_inode->i_gid_high = 0;
5307 	}
5308 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5309 
5310 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5311 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5312 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5313 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5314 
5315 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5316 	if (err) {
5317 		spin_unlock(&ei->i_raw_lock);
5318 		goto out_brelse;
5319 	}
5320 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5321 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5322 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5323 		raw_inode->i_file_acl_high =
5324 			cpu_to_le16(ei->i_file_acl >> 32);
5325 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5326 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5327 		ext4_isize_set(raw_inode, ei->i_disksize);
5328 		need_datasync = 1;
5329 	}
5330 	if (ei->i_disksize > 0x7fffffffULL) {
5331 		if (!ext4_has_feature_large_file(sb) ||
5332 				EXT4_SB(sb)->s_es->s_rev_level ==
5333 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5334 			set_large_file = 1;
5335 	}
5336 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5337 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5338 		if (old_valid_dev(inode->i_rdev)) {
5339 			raw_inode->i_block[0] =
5340 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5341 			raw_inode->i_block[1] = 0;
5342 		} else {
5343 			raw_inode->i_block[0] = 0;
5344 			raw_inode->i_block[1] =
5345 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5346 			raw_inode->i_block[2] = 0;
5347 		}
5348 	} else if (!ext4_has_inline_data(inode)) {
5349 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5350 			raw_inode->i_block[block] = ei->i_data[block];
5351 	}
5352 
5353 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5354 		u64 ivers = ext4_inode_peek_iversion(inode);
5355 
5356 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5357 		if (ei->i_extra_isize) {
5358 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5359 				raw_inode->i_version_hi =
5360 					cpu_to_le32(ivers >> 32);
5361 			raw_inode->i_extra_isize =
5362 				cpu_to_le16(ei->i_extra_isize);
5363 		}
5364 	}
5365 
5366 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5367 	       i_projid != EXT4_DEF_PROJID);
5368 
5369 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5370 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5371 		raw_inode->i_projid = cpu_to_le32(i_projid);
5372 
5373 	ext4_inode_csum_set(inode, raw_inode, ei);
5374 	spin_unlock(&ei->i_raw_lock);
5375 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5376 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5377 					      bh->b_data);
5378 
5379 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5380 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5381 	if (!err)
5382 		err = rc;
5383 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5384 	if (set_large_file) {
5385 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5386 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5387 		if (err)
5388 			goto out_brelse;
5389 		ext4_set_feature_large_file(sb);
5390 		ext4_handle_sync(handle);
5391 		err = ext4_handle_dirty_super(handle, sb);
5392 	}
5393 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5394 out_brelse:
5395 	brelse(bh);
5396 	ext4_std_error(inode->i_sb, err);
5397 	return err;
5398 }
5399 
5400 /*
5401  * ext4_write_inode()
5402  *
5403  * We are called from a few places:
5404  *
5405  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5406  *   Here, there will be no transaction running. We wait for any running
5407  *   transaction to commit.
5408  *
5409  * - Within flush work (sys_sync(), kupdate and such).
5410  *   We wait on commit, if told to.
5411  *
5412  * - Within iput_final() -> write_inode_now()
5413  *   We wait on commit, if told to.
5414  *
5415  * In all cases it is actually safe for us to return without doing anything,
5416  * because the inode has been copied into a raw inode buffer in
5417  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5418  * writeback.
5419  *
5420  * Note that we are absolutely dependent upon all inode dirtiers doing the
5421  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5422  * which we are interested.
5423  *
5424  * It would be a bug for them to not do this.  The code:
5425  *
5426  *	mark_inode_dirty(inode)
5427  *	stuff();
5428  *	inode->i_size = expr;
5429  *
5430  * is in error because write_inode() could occur while `stuff()' is running,
5431  * and the new i_size will be lost.  Plus the inode will no longer be on the
5432  * superblock's dirty inode list.
5433  */
5434 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5435 {
5436 	int err;
5437 
5438 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5439 	    sb_rdonly(inode->i_sb))
5440 		return 0;
5441 
5442 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5443 		return -EIO;
5444 
5445 	if (EXT4_SB(inode->i_sb)->s_journal) {
5446 		if (ext4_journal_current_handle()) {
5447 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5448 			dump_stack();
5449 			return -EIO;
5450 		}
5451 
5452 		/*
5453 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5454 		 * ext4_sync_fs() will force the commit after everything is
5455 		 * written.
5456 		 */
5457 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5458 			return 0;
5459 
5460 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5461 						EXT4_I(inode)->i_sync_tid);
5462 	} else {
5463 		struct ext4_iloc iloc;
5464 
5465 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5466 		if (err)
5467 			return err;
5468 		/*
5469 		 * sync(2) will flush the whole buffer cache. No need to do
5470 		 * it here separately for each inode.
5471 		 */
5472 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5473 			sync_dirty_buffer(iloc.bh);
5474 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5475 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5476 					 "IO error syncing inode");
5477 			err = -EIO;
5478 		}
5479 		brelse(iloc.bh);
5480 	}
5481 	return err;
5482 }
5483 
5484 /*
5485  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5486  * buffers that are attached to a page stradding i_size and are undergoing
5487  * commit. In that case we have to wait for commit to finish and try again.
5488  */
5489 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5490 {
5491 	struct page *page;
5492 	unsigned offset;
5493 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5494 	tid_t commit_tid = 0;
5495 	int ret;
5496 
5497 	offset = inode->i_size & (PAGE_SIZE - 1);
5498 	/*
5499 	 * All buffers in the last page remain valid? Then there's nothing to
5500 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5501 	 * blocksize case
5502 	 */
5503 	if (offset > PAGE_SIZE - i_blocksize(inode))
5504 		return;
5505 	while (1) {
5506 		page = find_lock_page(inode->i_mapping,
5507 				      inode->i_size >> PAGE_SHIFT);
5508 		if (!page)
5509 			return;
5510 		ret = __ext4_journalled_invalidatepage(page, offset,
5511 						PAGE_SIZE - offset);
5512 		unlock_page(page);
5513 		put_page(page);
5514 		if (ret != -EBUSY)
5515 			return;
5516 		commit_tid = 0;
5517 		read_lock(&journal->j_state_lock);
5518 		if (journal->j_committing_transaction)
5519 			commit_tid = journal->j_committing_transaction->t_tid;
5520 		read_unlock(&journal->j_state_lock);
5521 		if (commit_tid)
5522 			jbd2_log_wait_commit(journal, commit_tid);
5523 	}
5524 }
5525 
5526 /*
5527  * ext4_setattr()
5528  *
5529  * Called from notify_change.
5530  *
5531  * We want to trap VFS attempts to truncate the file as soon as
5532  * possible.  In particular, we want to make sure that when the VFS
5533  * shrinks i_size, we put the inode on the orphan list and modify
5534  * i_disksize immediately, so that during the subsequent flushing of
5535  * dirty pages and freeing of disk blocks, we can guarantee that any
5536  * commit will leave the blocks being flushed in an unused state on
5537  * disk.  (On recovery, the inode will get truncated and the blocks will
5538  * be freed, so we have a strong guarantee that no future commit will
5539  * leave these blocks visible to the user.)
5540  *
5541  * Another thing we have to assure is that if we are in ordered mode
5542  * and inode is still attached to the committing transaction, we must
5543  * we start writeout of all the dirty pages which are being truncated.
5544  * This way we are sure that all the data written in the previous
5545  * transaction are already on disk (truncate waits for pages under
5546  * writeback).
5547  *
5548  * Called with inode->i_mutex down.
5549  */
5550 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5551 {
5552 	struct inode *inode = d_inode(dentry);
5553 	int error, rc = 0;
5554 	int orphan = 0;
5555 	const unsigned int ia_valid = attr->ia_valid;
5556 
5557 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5558 		return -EIO;
5559 
5560 	if (unlikely(IS_IMMUTABLE(inode)))
5561 		return -EPERM;
5562 
5563 	if (unlikely(IS_APPEND(inode) &&
5564 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5565 				  ATTR_GID | ATTR_TIMES_SET))))
5566 		return -EPERM;
5567 
5568 	error = setattr_prepare(dentry, attr);
5569 	if (error)
5570 		return error;
5571 
5572 	error = fscrypt_prepare_setattr(dentry, attr);
5573 	if (error)
5574 		return error;
5575 
5576 	error = fsverity_prepare_setattr(dentry, attr);
5577 	if (error)
5578 		return error;
5579 
5580 	if (is_quota_modification(inode, attr)) {
5581 		error = dquot_initialize(inode);
5582 		if (error)
5583 			return error;
5584 	}
5585 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5586 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5587 		handle_t *handle;
5588 
5589 		/* (user+group)*(old+new) structure, inode write (sb,
5590 		 * inode block, ? - but truncate inode update has it) */
5591 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5592 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5593 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5594 		if (IS_ERR(handle)) {
5595 			error = PTR_ERR(handle);
5596 			goto err_out;
5597 		}
5598 
5599 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5600 		 * counts xattr inode references.
5601 		 */
5602 		down_read(&EXT4_I(inode)->xattr_sem);
5603 		error = dquot_transfer(inode, attr);
5604 		up_read(&EXT4_I(inode)->xattr_sem);
5605 
5606 		if (error) {
5607 			ext4_journal_stop(handle);
5608 			return error;
5609 		}
5610 		/* Update corresponding info in inode so that everything is in
5611 		 * one transaction */
5612 		if (attr->ia_valid & ATTR_UID)
5613 			inode->i_uid = attr->ia_uid;
5614 		if (attr->ia_valid & ATTR_GID)
5615 			inode->i_gid = attr->ia_gid;
5616 		error = ext4_mark_inode_dirty(handle, inode);
5617 		ext4_journal_stop(handle);
5618 	}
5619 
5620 	if (attr->ia_valid & ATTR_SIZE) {
5621 		handle_t *handle;
5622 		loff_t oldsize = inode->i_size;
5623 		int shrink = (attr->ia_size < inode->i_size);
5624 
5625 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5626 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5627 
5628 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5629 				return -EFBIG;
5630 		}
5631 		if (!S_ISREG(inode->i_mode))
5632 			return -EINVAL;
5633 
5634 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5635 			inode_inc_iversion(inode);
5636 
5637 		if (shrink) {
5638 			if (ext4_should_order_data(inode)) {
5639 				error = ext4_begin_ordered_truncate(inode,
5640 							    attr->ia_size);
5641 				if (error)
5642 					goto err_out;
5643 			}
5644 			/*
5645 			 * Blocks are going to be removed from the inode. Wait
5646 			 * for dio in flight.
5647 			 */
5648 			inode_dio_wait(inode);
5649 		}
5650 
5651 		down_write(&EXT4_I(inode)->i_mmap_sem);
5652 
5653 		rc = ext4_break_layouts(inode);
5654 		if (rc) {
5655 			up_write(&EXT4_I(inode)->i_mmap_sem);
5656 			return rc;
5657 		}
5658 
5659 		if (attr->ia_size != inode->i_size) {
5660 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5661 			if (IS_ERR(handle)) {
5662 				error = PTR_ERR(handle);
5663 				goto out_mmap_sem;
5664 			}
5665 			if (ext4_handle_valid(handle) && shrink) {
5666 				error = ext4_orphan_add(handle, inode);
5667 				orphan = 1;
5668 			}
5669 			/*
5670 			 * Update c/mtime on truncate up, ext4_truncate() will
5671 			 * update c/mtime in shrink case below
5672 			 */
5673 			if (!shrink) {
5674 				inode->i_mtime = current_time(inode);
5675 				inode->i_ctime = inode->i_mtime;
5676 			}
5677 			down_write(&EXT4_I(inode)->i_data_sem);
5678 			EXT4_I(inode)->i_disksize = attr->ia_size;
5679 			rc = ext4_mark_inode_dirty(handle, inode);
5680 			if (!error)
5681 				error = rc;
5682 			/*
5683 			 * We have to update i_size under i_data_sem together
5684 			 * with i_disksize to avoid races with writeback code
5685 			 * running ext4_wb_update_i_disksize().
5686 			 */
5687 			if (!error)
5688 				i_size_write(inode, attr->ia_size);
5689 			up_write(&EXT4_I(inode)->i_data_sem);
5690 			ext4_journal_stop(handle);
5691 			if (error)
5692 				goto out_mmap_sem;
5693 			if (!shrink) {
5694 				pagecache_isize_extended(inode, oldsize,
5695 							 inode->i_size);
5696 			} else if (ext4_should_journal_data(inode)) {
5697 				ext4_wait_for_tail_page_commit(inode);
5698 			}
5699 		}
5700 
5701 		/*
5702 		 * Truncate pagecache after we've waited for commit
5703 		 * in data=journal mode to make pages freeable.
5704 		 */
5705 		truncate_pagecache(inode, inode->i_size);
5706 		/*
5707 		 * Call ext4_truncate() even if i_size didn't change to
5708 		 * truncate possible preallocated blocks.
5709 		 */
5710 		if (attr->ia_size <= oldsize) {
5711 			rc = ext4_truncate(inode);
5712 			if (rc)
5713 				error = rc;
5714 		}
5715 out_mmap_sem:
5716 		up_write(&EXT4_I(inode)->i_mmap_sem);
5717 	}
5718 
5719 	if (!error) {
5720 		setattr_copy(inode, attr);
5721 		mark_inode_dirty(inode);
5722 	}
5723 
5724 	/*
5725 	 * If the call to ext4_truncate failed to get a transaction handle at
5726 	 * all, we need to clean up the in-core orphan list manually.
5727 	 */
5728 	if (orphan && inode->i_nlink)
5729 		ext4_orphan_del(NULL, inode);
5730 
5731 	if (!error && (ia_valid & ATTR_MODE))
5732 		rc = posix_acl_chmod(inode, inode->i_mode);
5733 
5734 err_out:
5735 	ext4_std_error(inode->i_sb, error);
5736 	if (!error)
5737 		error = rc;
5738 	return error;
5739 }
5740 
5741 int ext4_getattr(const struct path *path, struct kstat *stat,
5742 		 u32 request_mask, unsigned int query_flags)
5743 {
5744 	struct inode *inode = d_inode(path->dentry);
5745 	struct ext4_inode *raw_inode;
5746 	struct ext4_inode_info *ei = EXT4_I(inode);
5747 	unsigned int flags;
5748 
5749 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5750 		stat->result_mask |= STATX_BTIME;
5751 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5752 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5753 	}
5754 
5755 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5756 	if (flags & EXT4_APPEND_FL)
5757 		stat->attributes |= STATX_ATTR_APPEND;
5758 	if (flags & EXT4_COMPR_FL)
5759 		stat->attributes |= STATX_ATTR_COMPRESSED;
5760 	if (flags & EXT4_ENCRYPT_FL)
5761 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5762 	if (flags & EXT4_IMMUTABLE_FL)
5763 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5764 	if (flags & EXT4_NODUMP_FL)
5765 		stat->attributes |= STATX_ATTR_NODUMP;
5766 
5767 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5768 				  STATX_ATTR_COMPRESSED |
5769 				  STATX_ATTR_ENCRYPTED |
5770 				  STATX_ATTR_IMMUTABLE |
5771 				  STATX_ATTR_NODUMP);
5772 
5773 	generic_fillattr(inode, stat);
5774 	return 0;
5775 }
5776 
5777 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5778 		      u32 request_mask, unsigned int query_flags)
5779 {
5780 	struct inode *inode = d_inode(path->dentry);
5781 	u64 delalloc_blocks;
5782 
5783 	ext4_getattr(path, stat, request_mask, query_flags);
5784 
5785 	/*
5786 	 * If there is inline data in the inode, the inode will normally not
5787 	 * have data blocks allocated (it may have an external xattr block).
5788 	 * Report at least one sector for such files, so tools like tar, rsync,
5789 	 * others don't incorrectly think the file is completely sparse.
5790 	 */
5791 	if (unlikely(ext4_has_inline_data(inode)))
5792 		stat->blocks += (stat->size + 511) >> 9;
5793 
5794 	/*
5795 	 * We can't update i_blocks if the block allocation is delayed
5796 	 * otherwise in the case of system crash before the real block
5797 	 * allocation is done, we will have i_blocks inconsistent with
5798 	 * on-disk file blocks.
5799 	 * We always keep i_blocks updated together with real
5800 	 * allocation. But to not confuse with user, stat
5801 	 * will return the blocks that include the delayed allocation
5802 	 * blocks for this file.
5803 	 */
5804 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5805 				   EXT4_I(inode)->i_reserved_data_blocks);
5806 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5807 	return 0;
5808 }
5809 
5810 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5811 				   int pextents)
5812 {
5813 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5814 		return ext4_ind_trans_blocks(inode, lblocks);
5815 	return ext4_ext_index_trans_blocks(inode, pextents);
5816 }
5817 
5818 /*
5819  * Account for index blocks, block groups bitmaps and block group
5820  * descriptor blocks if modify datablocks and index blocks
5821  * worse case, the indexs blocks spread over different block groups
5822  *
5823  * If datablocks are discontiguous, they are possible to spread over
5824  * different block groups too. If they are contiguous, with flexbg,
5825  * they could still across block group boundary.
5826  *
5827  * Also account for superblock, inode, quota and xattr blocks
5828  */
5829 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5830 				  int pextents)
5831 {
5832 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5833 	int gdpblocks;
5834 	int idxblocks;
5835 	int ret = 0;
5836 
5837 	/*
5838 	 * How many index blocks need to touch to map @lblocks logical blocks
5839 	 * to @pextents physical extents?
5840 	 */
5841 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5842 
5843 	ret = idxblocks;
5844 
5845 	/*
5846 	 * Now let's see how many group bitmaps and group descriptors need
5847 	 * to account
5848 	 */
5849 	groups = idxblocks + pextents;
5850 	gdpblocks = groups;
5851 	if (groups > ngroups)
5852 		groups = ngroups;
5853 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5854 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5855 
5856 	/* bitmaps and block group descriptor blocks */
5857 	ret += groups + gdpblocks;
5858 
5859 	/* Blocks for super block, inode, quota and xattr blocks */
5860 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5861 
5862 	return ret;
5863 }
5864 
5865 /*
5866  * Calculate the total number of credits to reserve to fit
5867  * the modification of a single pages into a single transaction,
5868  * which may include multiple chunks of block allocations.
5869  *
5870  * This could be called via ext4_write_begin()
5871  *
5872  * We need to consider the worse case, when
5873  * one new block per extent.
5874  */
5875 int ext4_writepage_trans_blocks(struct inode *inode)
5876 {
5877 	int bpp = ext4_journal_blocks_per_page(inode);
5878 	int ret;
5879 
5880 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5881 
5882 	/* Account for data blocks for journalled mode */
5883 	if (ext4_should_journal_data(inode))
5884 		ret += bpp;
5885 	return ret;
5886 }
5887 
5888 /*
5889  * Calculate the journal credits for a chunk of data modification.
5890  *
5891  * This is called from DIO, fallocate or whoever calling
5892  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5893  *
5894  * journal buffers for data blocks are not included here, as DIO
5895  * and fallocate do no need to journal data buffers.
5896  */
5897 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5898 {
5899 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5900 }
5901 
5902 /*
5903  * The caller must have previously called ext4_reserve_inode_write().
5904  * Give this, we know that the caller already has write access to iloc->bh.
5905  */
5906 int ext4_mark_iloc_dirty(handle_t *handle,
5907 			 struct inode *inode, struct ext4_iloc *iloc)
5908 {
5909 	int err = 0;
5910 
5911 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5912 		put_bh(iloc->bh);
5913 		return -EIO;
5914 	}
5915 	if (IS_I_VERSION(inode))
5916 		inode_inc_iversion(inode);
5917 
5918 	/* the do_update_inode consumes one bh->b_count */
5919 	get_bh(iloc->bh);
5920 
5921 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5922 	err = ext4_do_update_inode(handle, inode, iloc);
5923 	put_bh(iloc->bh);
5924 	return err;
5925 }
5926 
5927 /*
5928  * On success, We end up with an outstanding reference count against
5929  * iloc->bh.  This _must_ be cleaned up later.
5930  */
5931 
5932 int
5933 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5934 			 struct ext4_iloc *iloc)
5935 {
5936 	int err;
5937 
5938 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5939 		return -EIO;
5940 
5941 	err = ext4_get_inode_loc(inode, iloc);
5942 	if (!err) {
5943 		BUFFER_TRACE(iloc->bh, "get_write_access");
5944 		err = ext4_journal_get_write_access(handle, iloc->bh);
5945 		if (err) {
5946 			brelse(iloc->bh);
5947 			iloc->bh = NULL;
5948 		}
5949 	}
5950 	ext4_std_error(inode->i_sb, err);
5951 	return err;
5952 }
5953 
5954 static int __ext4_expand_extra_isize(struct inode *inode,
5955 				     unsigned int new_extra_isize,
5956 				     struct ext4_iloc *iloc,
5957 				     handle_t *handle, int *no_expand)
5958 {
5959 	struct ext4_inode *raw_inode;
5960 	struct ext4_xattr_ibody_header *header;
5961 	int error;
5962 
5963 	raw_inode = ext4_raw_inode(iloc);
5964 
5965 	header = IHDR(inode, raw_inode);
5966 
5967 	/* No extended attributes present */
5968 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5969 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5970 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5971 		       EXT4_I(inode)->i_extra_isize, 0,
5972 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5973 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5974 		return 0;
5975 	}
5976 
5977 	/* try to expand with EAs present */
5978 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5979 					   raw_inode, handle);
5980 	if (error) {
5981 		/*
5982 		 * Inode size expansion failed; don't try again
5983 		 */
5984 		*no_expand = 1;
5985 	}
5986 
5987 	return error;
5988 }
5989 
5990 /*
5991  * Expand an inode by new_extra_isize bytes.
5992  * Returns 0 on success or negative error number on failure.
5993  */
5994 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5995 					  unsigned int new_extra_isize,
5996 					  struct ext4_iloc iloc,
5997 					  handle_t *handle)
5998 {
5999 	int no_expand;
6000 	int error;
6001 
6002 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6003 		return -EOVERFLOW;
6004 
6005 	/*
6006 	 * In nojournal mode, we can immediately attempt to expand
6007 	 * the inode.  When journaled, we first need to obtain extra
6008 	 * buffer credits since we may write into the EA block
6009 	 * with this same handle. If journal_extend fails, then it will
6010 	 * only result in a minor loss of functionality for that inode.
6011 	 * If this is felt to be critical, then e2fsck should be run to
6012 	 * force a large enough s_min_extra_isize.
6013 	 */
6014 	if (ext4_handle_valid(handle) &&
6015 	    jbd2_journal_extend(handle,
6016 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6017 		return -ENOSPC;
6018 
6019 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6020 		return -EBUSY;
6021 
6022 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6023 					  handle, &no_expand);
6024 	ext4_write_unlock_xattr(inode, &no_expand);
6025 
6026 	return error;
6027 }
6028 
6029 int ext4_expand_extra_isize(struct inode *inode,
6030 			    unsigned int new_extra_isize,
6031 			    struct ext4_iloc *iloc)
6032 {
6033 	handle_t *handle;
6034 	int no_expand;
6035 	int error, rc;
6036 
6037 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6038 		brelse(iloc->bh);
6039 		return -EOVERFLOW;
6040 	}
6041 
6042 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6043 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6044 	if (IS_ERR(handle)) {
6045 		error = PTR_ERR(handle);
6046 		brelse(iloc->bh);
6047 		return error;
6048 	}
6049 
6050 	ext4_write_lock_xattr(inode, &no_expand);
6051 
6052 	BUFFER_TRACE(iloc->bh, "get_write_access");
6053 	error = ext4_journal_get_write_access(handle, iloc->bh);
6054 	if (error) {
6055 		brelse(iloc->bh);
6056 		goto out_stop;
6057 	}
6058 
6059 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6060 					  handle, &no_expand);
6061 
6062 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6063 	if (!error)
6064 		error = rc;
6065 
6066 	ext4_write_unlock_xattr(inode, &no_expand);
6067 out_stop:
6068 	ext4_journal_stop(handle);
6069 	return error;
6070 }
6071 
6072 /*
6073  * What we do here is to mark the in-core inode as clean with respect to inode
6074  * dirtiness (it may still be data-dirty).
6075  * This means that the in-core inode may be reaped by prune_icache
6076  * without having to perform any I/O.  This is a very good thing,
6077  * because *any* task may call prune_icache - even ones which
6078  * have a transaction open against a different journal.
6079  *
6080  * Is this cheating?  Not really.  Sure, we haven't written the
6081  * inode out, but prune_icache isn't a user-visible syncing function.
6082  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6083  * we start and wait on commits.
6084  */
6085 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6086 {
6087 	struct ext4_iloc iloc;
6088 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6089 	int err;
6090 
6091 	might_sleep();
6092 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6093 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6094 	if (err)
6095 		return err;
6096 
6097 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6098 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6099 					       iloc, handle);
6100 
6101 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6102 }
6103 
6104 /*
6105  * ext4_dirty_inode() is called from __mark_inode_dirty()
6106  *
6107  * We're really interested in the case where a file is being extended.
6108  * i_size has been changed by generic_commit_write() and we thus need
6109  * to include the updated inode in the current transaction.
6110  *
6111  * Also, dquot_alloc_block() will always dirty the inode when blocks
6112  * are allocated to the file.
6113  *
6114  * If the inode is marked synchronous, we don't honour that here - doing
6115  * so would cause a commit on atime updates, which we don't bother doing.
6116  * We handle synchronous inodes at the highest possible level.
6117  *
6118  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6119  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6120  * to copy into the on-disk inode structure are the timestamp files.
6121  */
6122 void ext4_dirty_inode(struct inode *inode, int flags)
6123 {
6124 	handle_t *handle;
6125 
6126 	if (flags == I_DIRTY_TIME)
6127 		return;
6128 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6129 	if (IS_ERR(handle))
6130 		goto out;
6131 
6132 	ext4_mark_inode_dirty(handle, inode);
6133 
6134 	ext4_journal_stop(handle);
6135 out:
6136 	return;
6137 }
6138 
6139 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6140 {
6141 	journal_t *journal;
6142 	handle_t *handle;
6143 	int err;
6144 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6145 
6146 	/*
6147 	 * We have to be very careful here: changing a data block's
6148 	 * journaling status dynamically is dangerous.  If we write a
6149 	 * data block to the journal, change the status and then delete
6150 	 * that block, we risk forgetting to revoke the old log record
6151 	 * from the journal and so a subsequent replay can corrupt data.
6152 	 * So, first we make sure that the journal is empty and that
6153 	 * nobody is changing anything.
6154 	 */
6155 
6156 	journal = EXT4_JOURNAL(inode);
6157 	if (!journal)
6158 		return 0;
6159 	if (is_journal_aborted(journal))
6160 		return -EROFS;
6161 
6162 	/* Wait for all existing dio workers */
6163 	inode_dio_wait(inode);
6164 
6165 	/*
6166 	 * Before flushing the journal and switching inode's aops, we have
6167 	 * to flush all dirty data the inode has. There can be outstanding
6168 	 * delayed allocations, there can be unwritten extents created by
6169 	 * fallocate or buffered writes in dioread_nolock mode covered by
6170 	 * dirty data which can be converted only after flushing the dirty
6171 	 * data (and journalled aops don't know how to handle these cases).
6172 	 */
6173 	if (val) {
6174 		down_write(&EXT4_I(inode)->i_mmap_sem);
6175 		err = filemap_write_and_wait(inode->i_mapping);
6176 		if (err < 0) {
6177 			up_write(&EXT4_I(inode)->i_mmap_sem);
6178 			return err;
6179 		}
6180 	}
6181 
6182 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6183 	jbd2_journal_lock_updates(journal);
6184 
6185 	/*
6186 	 * OK, there are no updates running now, and all cached data is
6187 	 * synced to disk.  We are now in a completely consistent state
6188 	 * which doesn't have anything in the journal, and we know that
6189 	 * no filesystem updates are running, so it is safe to modify
6190 	 * the inode's in-core data-journaling state flag now.
6191 	 */
6192 
6193 	if (val)
6194 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6195 	else {
6196 		err = jbd2_journal_flush(journal);
6197 		if (err < 0) {
6198 			jbd2_journal_unlock_updates(journal);
6199 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6200 			return err;
6201 		}
6202 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6203 	}
6204 	ext4_set_aops(inode);
6205 
6206 	jbd2_journal_unlock_updates(journal);
6207 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6208 
6209 	if (val)
6210 		up_write(&EXT4_I(inode)->i_mmap_sem);
6211 
6212 	/* Finally we can mark the inode as dirty. */
6213 
6214 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6215 	if (IS_ERR(handle))
6216 		return PTR_ERR(handle);
6217 
6218 	err = ext4_mark_inode_dirty(handle, inode);
6219 	ext4_handle_sync(handle);
6220 	ext4_journal_stop(handle);
6221 	ext4_std_error(inode->i_sb, err);
6222 
6223 	return err;
6224 }
6225 
6226 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6227 {
6228 	return !buffer_mapped(bh);
6229 }
6230 
6231 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6232 {
6233 	struct vm_area_struct *vma = vmf->vma;
6234 	struct page *page = vmf->page;
6235 	loff_t size;
6236 	unsigned long len;
6237 	int err;
6238 	vm_fault_t ret;
6239 	struct file *file = vma->vm_file;
6240 	struct inode *inode = file_inode(file);
6241 	struct address_space *mapping = inode->i_mapping;
6242 	handle_t *handle;
6243 	get_block_t *get_block;
6244 	int retries = 0;
6245 
6246 	if (unlikely(IS_IMMUTABLE(inode)))
6247 		return VM_FAULT_SIGBUS;
6248 
6249 	sb_start_pagefault(inode->i_sb);
6250 	file_update_time(vma->vm_file);
6251 
6252 	down_read(&EXT4_I(inode)->i_mmap_sem);
6253 
6254 	err = ext4_convert_inline_data(inode);
6255 	if (err)
6256 		goto out_ret;
6257 
6258 	/* Delalloc case is easy... */
6259 	if (test_opt(inode->i_sb, DELALLOC) &&
6260 	    !ext4_should_journal_data(inode) &&
6261 	    !ext4_nonda_switch(inode->i_sb)) {
6262 		do {
6263 			err = block_page_mkwrite(vma, vmf,
6264 						   ext4_da_get_block_prep);
6265 		} while (err == -ENOSPC &&
6266 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6267 		goto out_ret;
6268 	}
6269 
6270 	lock_page(page);
6271 	size = i_size_read(inode);
6272 	/* Page got truncated from under us? */
6273 	if (page->mapping != mapping || page_offset(page) > size) {
6274 		unlock_page(page);
6275 		ret = VM_FAULT_NOPAGE;
6276 		goto out;
6277 	}
6278 
6279 	if (page->index == size >> PAGE_SHIFT)
6280 		len = size & ~PAGE_MASK;
6281 	else
6282 		len = PAGE_SIZE;
6283 	/*
6284 	 * Return if we have all the buffers mapped. This avoids the need to do
6285 	 * journal_start/journal_stop which can block and take a long time
6286 	 */
6287 	if (page_has_buffers(page)) {
6288 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6289 					    0, len, NULL,
6290 					    ext4_bh_unmapped)) {
6291 			/* Wait so that we don't change page under IO */
6292 			wait_for_stable_page(page);
6293 			ret = VM_FAULT_LOCKED;
6294 			goto out;
6295 		}
6296 	}
6297 	unlock_page(page);
6298 	/* OK, we need to fill the hole... */
6299 	if (ext4_should_dioread_nolock(inode))
6300 		get_block = ext4_get_block_unwritten;
6301 	else
6302 		get_block = ext4_get_block;
6303 retry_alloc:
6304 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6305 				    ext4_writepage_trans_blocks(inode));
6306 	if (IS_ERR(handle)) {
6307 		ret = VM_FAULT_SIGBUS;
6308 		goto out;
6309 	}
6310 	err = block_page_mkwrite(vma, vmf, get_block);
6311 	if (!err && ext4_should_journal_data(inode)) {
6312 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6313 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6314 			unlock_page(page);
6315 			ret = VM_FAULT_SIGBUS;
6316 			ext4_journal_stop(handle);
6317 			goto out;
6318 		}
6319 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6320 	}
6321 	ext4_journal_stop(handle);
6322 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6323 		goto retry_alloc;
6324 out_ret:
6325 	ret = block_page_mkwrite_return(err);
6326 out:
6327 	up_read(&EXT4_I(inode)->i_mmap_sem);
6328 	sb_end_pagefault(inode->i_sb);
6329 	return ret;
6330 }
6331 
6332 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6333 {
6334 	struct inode *inode = file_inode(vmf->vma->vm_file);
6335 	vm_fault_t ret;
6336 
6337 	down_read(&EXT4_I(inode)->i_mmap_sem);
6338 	ret = filemap_fault(vmf);
6339 	up_read(&EXT4_I(inode)->i_mmap_sem);
6340 
6341 	return ret;
6342 }
6343