xref: /linux/fs/ext4/inode.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 						   new_size);
52 }
53 
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
55 
56 /*
57  * Test whether an inode is a fast symlink.
58  */
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 {
61 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 		(inode->i_sb->s_blocksize >> 9) : 0;
63 
64 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 }
66 
67 /*
68  * The ext4 forget function must perform a revoke if we are freeing data
69  * which has been journaled.  Metadata (eg. indirect blocks) must be
70  * revoked in all cases.
71  *
72  * "bh" may be NULL: a metadata block may have been freed from memory
73  * but there may still be a record of it in the journal, and that record
74  * still needs to be revoked.
75  *
76  * If the handle isn't valid we're not journaling so there's nothing to do.
77  */
78 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
79 			struct buffer_head *bh, ext4_fsblk_t blocknr)
80 {
81 	int err;
82 
83 	if (!ext4_handle_valid(handle))
84 		return 0;
85 
86 	might_sleep();
87 
88 	BUFFER_TRACE(bh, "enter");
89 
90 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
91 		  "data mode %lx\n",
92 		  bh, is_metadata, inode->i_mode,
93 		  test_opt(inode->i_sb, DATA_FLAGS));
94 
95 	/* Never use the revoke function if we are doing full data
96 	 * journaling: there is no need to, and a V1 superblock won't
97 	 * support it.  Otherwise, only skip the revoke on un-journaled
98 	 * data blocks. */
99 
100 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
101 	    (!is_metadata && !ext4_should_journal_data(inode))) {
102 		if (bh) {
103 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
104 			return ext4_journal_forget(handle, bh);
105 		}
106 		return 0;
107 	}
108 
109 	/*
110 	 * data!=journal && (is_metadata || should_journal_data(inode))
111 	 */
112 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
113 	err = ext4_journal_revoke(handle, blocknr, bh);
114 	if (err)
115 		ext4_abort(inode->i_sb, __func__,
116 			   "error %d when attempting revoke", err);
117 	BUFFER_TRACE(bh, "exit");
118 	return err;
119 }
120 
121 /*
122  * Work out how many blocks we need to proceed with the next chunk of a
123  * truncate transaction.
124  */
125 static unsigned long blocks_for_truncate(struct inode *inode)
126 {
127 	ext4_lblk_t needed;
128 
129 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
130 
131 	/* Give ourselves just enough room to cope with inodes in which
132 	 * i_blocks is corrupt: we've seen disk corruptions in the past
133 	 * which resulted in random data in an inode which looked enough
134 	 * like a regular file for ext4 to try to delete it.  Things
135 	 * will go a bit crazy if that happens, but at least we should
136 	 * try not to panic the whole kernel. */
137 	if (needed < 2)
138 		needed = 2;
139 
140 	/* But we need to bound the transaction so we don't overflow the
141 	 * journal. */
142 	if (needed > EXT4_MAX_TRANS_DATA)
143 		needed = EXT4_MAX_TRANS_DATA;
144 
145 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
146 }
147 
148 /*
149  * Truncate transactions can be complex and absolutely huge.  So we need to
150  * be able to restart the transaction at a conventient checkpoint to make
151  * sure we don't overflow the journal.
152  *
153  * start_transaction gets us a new handle for a truncate transaction,
154  * and extend_transaction tries to extend the existing one a bit.  If
155  * extend fails, we need to propagate the failure up and restart the
156  * transaction in the top-level truncate loop. --sct
157  */
158 static handle_t *start_transaction(struct inode *inode)
159 {
160 	handle_t *result;
161 
162 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
163 	if (!IS_ERR(result))
164 		return result;
165 
166 	ext4_std_error(inode->i_sb, PTR_ERR(result));
167 	return result;
168 }
169 
170 /*
171  * Try to extend this transaction for the purposes of truncation.
172  *
173  * Returns 0 if we managed to create more room.  If we can't create more
174  * room, and the transaction must be restarted we return 1.
175  */
176 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
177 {
178 	if (!ext4_handle_valid(handle))
179 		return 0;
180 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
181 		return 0;
182 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
183 		return 0;
184 	return 1;
185 }
186 
187 /*
188  * Restart the transaction associated with *handle.  This does a commit,
189  * so before we call here everything must be consistently dirtied against
190  * this transaction.
191  */
192 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
193 {
194 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
195 	jbd_debug(2, "restarting handle %p\n", handle);
196 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
197 }
198 
199 /*
200  * Called at the last iput() if i_nlink is zero.
201  */
202 void ext4_delete_inode(struct inode *inode)
203 {
204 	handle_t *handle;
205 	int err;
206 
207 	if (ext4_should_order_data(inode))
208 		ext4_begin_ordered_truncate(inode, 0);
209 	truncate_inode_pages(&inode->i_data, 0);
210 
211 	if (is_bad_inode(inode))
212 		goto no_delete;
213 
214 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
215 	if (IS_ERR(handle)) {
216 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
217 		/*
218 		 * If we're going to skip the normal cleanup, we still need to
219 		 * make sure that the in-core orphan linked list is properly
220 		 * cleaned up.
221 		 */
222 		ext4_orphan_del(NULL, inode);
223 		goto no_delete;
224 	}
225 
226 	if (IS_SYNC(inode))
227 		ext4_handle_sync(handle);
228 	inode->i_size = 0;
229 	err = ext4_mark_inode_dirty(handle, inode);
230 	if (err) {
231 		ext4_warning(inode->i_sb, __func__,
232 			     "couldn't mark inode dirty (err %d)", err);
233 		goto stop_handle;
234 	}
235 	if (inode->i_blocks)
236 		ext4_truncate(inode);
237 
238 	/*
239 	 * ext4_ext_truncate() doesn't reserve any slop when it
240 	 * restarts journal transactions; therefore there may not be
241 	 * enough credits left in the handle to remove the inode from
242 	 * the orphan list and set the dtime field.
243 	 */
244 	if (!ext4_handle_has_enough_credits(handle, 3)) {
245 		err = ext4_journal_extend(handle, 3);
246 		if (err > 0)
247 			err = ext4_journal_restart(handle, 3);
248 		if (err != 0) {
249 			ext4_warning(inode->i_sb, __func__,
250 				     "couldn't extend journal (err %d)", err);
251 		stop_handle:
252 			ext4_journal_stop(handle);
253 			goto no_delete;
254 		}
255 	}
256 
257 	/*
258 	 * Kill off the orphan record which ext4_truncate created.
259 	 * AKPM: I think this can be inside the above `if'.
260 	 * Note that ext4_orphan_del() has to be able to cope with the
261 	 * deletion of a non-existent orphan - this is because we don't
262 	 * know if ext4_truncate() actually created an orphan record.
263 	 * (Well, we could do this if we need to, but heck - it works)
264 	 */
265 	ext4_orphan_del(handle, inode);
266 	EXT4_I(inode)->i_dtime	= get_seconds();
267 
268 	/*
269 	 * One subtle ordering requirement: if anything has gone wrong
270 	 * (transaction abort, IO errors, whatever), then we can still
271 	 * do these next steps (the fs will already have been marked as
272 	 * having errors), but we can't free the inode if the mark_dirty
273 	 * fails.
274 	 */
275 	if (ext4_mark_inode_dirty(handle, inode))
276 		/* If that failed, just do the required in-core inode clear. */
277 		clear_inode(inode);
278 	else
279 		ext4_free_inode(handle, inode);
280 	ext4_journal_stop(handle);
281 	return;
282 no_delete:
283 	clear_inode(inode);	/* We must guarantee clearing of inode... */
284 }
285 
286 typedef struct {
287 	__le32	*p;
288 	__le32	key;
289 	struct buffer_head *bh;
290 } Indirect;
291 
292 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
293 {
294 	p->key = *(p->p = v);
295 	p->bh = bh;
296 }
297 
298 /**
299  *	ext4_block_to_path - parse the block number into array of offsets
300  *	@inode: inode in question (we are only interested in its superblock)
301  *	@i_block: block number to be parsed
302  *	@offsets: array to store the offsets in
303  *	@boundary: set this non-zero if the referred-to block is likely to be
304  *	       followed (on disk) by an indirect block.
305  *
306  *	To store the locations of file's data ext4 uses a data structure common
307  *	for UNIX filesystems - tree of pointers anchored in the inode, with
308  *	data blocks at leaves and indirect blocks in intermediate nodes.
309  *	This function translates the block number into path in that tree -
310  *	return value is the path length and @offsets[n] is the offset of
311  *	pointer to (n+1)th node in the nth one. If @block is out of range
312  *	(negative or too large) warning is printed and zero returned.
313  *
314  *	Note: function doesn't find node addresses, so no IO is needed. All
315  *	we need to know is the capacity of indirect blocks (taken from the
316  *	inode->i_sb).
317  */
318 
319 /*
320  * Portability note: the last comparison (check that we fit into triple
321  * indirect block) is spelled differently, because otherwise on an
322  * architecture with 32-bit longs and 8Kb pages we might get into trouble
323  * if our filesystem had 8Kb blocks. We might use long long, but that would
324  * kill us on x86. Oh, well, at least the sign propagation does not matter -
325  * i_block would have to be negative in the very beginning, so we would not
326  * get there at all.
327  */
328 
329 static int ext4_block_to_path(struct inode *inode,
330 			ext4_lblk_t i_block,
331 			ext4_lblk_t offsets[4], int *boundary)
332 {
333 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
334 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
335 	const long direct_blocks = EXT4_NDIR_BLOCKS,
336 		indirect_blocks = ptrs,
337 		double_blocks = (1 << (ptrs_bits * 2));
338 	int n = 0;
339 	int final = 0;
340 
341 	if (i_block < 0) {
342 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
343 	} else if (i_block < direct_blocks) {
344 		offsets[n++] = i_block;
345 		final = direct_blocks;
346 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
347 		offsets[n++] = EXT4_IND_BLOCK;
348 		offsets[n++] = i_block;
349 		final = ptrs;
350 	} else if ((i_block -= indirect_blocks) < double_blocks) {
351 		offsets[n++] = EXT4_DIND_BLOCK;
352 		offsets[n++] = i_block >> ptrs_bits;
353 		offsets[n++] = i_block & (ptrs - 1);
354 		final = ptrs;
355 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
356 		offsets[n++] = EXT4_TIND_BLOCK;
357 		offsets[n++] = i_block >> (ptrs_bits * 2);
358 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
359 		offsets[n++] = i_block & (ptrs - 1);
360 		final = ptrs;
361 	} else {
362 		ext4_warning(inode->i_sb, "ext4_block_to_path",
363 				"block %lu > max in inode %lu",
364 				i_block + direct_blocks +
365 				indirect_blocks + double_blocks, inode->i_ino);
366 	}
367 	if (boundary)
368 		*boundary = final - 1 - (i_block & (ptrs - 1));
369 	return n;
370 }
371 
372 /**
373  *	ext4_get_branch - read the chain of indirect blocks leading to data
374  *	@inode: inode in question
375  *	@depth: depth of the chain (1 - direct pointer, etc.)
376  *	@offsets: offsets of pointers in inode/indirect blocks
377  *	@chain: place to store the result
378  *	@err: here we store the error value
379  *
380  *	Function fills the array of triples <key, p, bh> and returns %NULL
381  *	if everything went OK or the pointer to the last filled triple
382  *	(incomplete one) otherwise. Upon the return chain[i].key contains
383  *	the number of (i+1)-th block in the chain (as it is stored in memory,
384  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
385  *	number (it points into struct inode for i==0 and into the bh->b_data
386  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
387  *	block for i>0 and NULL for i==0. In other words, it holds the block
388  *	numbers of the chain, addresses they were taken from (and where we can
389  *	verify that chain did not change) and buffer_heads hosting these
390  *	numbers.
391  *
392  *	Function stops when it stumbles upon zero pointer (absent block)
393  *		(pointer to last triple returned, *@err == 0)
394  *	or when it gets an IO error reading an indirect block
395  *		(ditto, *@err == -EIO)
396  *	or when it reads all @depth-1 indirect blocks successfully and finds
397  *	the whole chain, all way to the data (returns %NULL, *err == 0).
398  *
399  *      Need to be called with
400  *      down_read(&EXT4_I(inode)->i_data_sem)
401  */
402 static Indirect *ext4_get_branch(struct inode *inode, int depth,
403 				 ext4_lblk_t  *offsets,
404 				 Indirect chain[4], int *err)
405 {
406 	struct super_block *sb = inode->i_sb;
407 	Indirect *p = chain;
408 	struct buffer_head *bh;
409 
410 	*err = 0;
411 	/* i_data is not going away, no lock needed */
412 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
413 	if (!p->key)
414 		goto no_block;
415 	while (--depth) {
416 		bh = sb_bread(sb, le32_to_cpu(p->key));
417 		if (!bh)
418 			goto failure;
419 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
420 		/* Reader: end */
421 		if (!p->key)
422 			goto no_block;
423 	}
424 	return NULL;
425 
426 failure:
427 	*err = -EIO;
428 no_block:
429 	return p;
430 }
431 
432 /**
433  *	ext4_find_near - find a place for allocation with sufficient locality
434  *	@inode: owner
435  *	@ind: descriptor of indirect block.
436  *
437  *	This function returns the preferred place for block allocation.
438  *	It is used when heuristic for sequential allocation fails.
439  *	Rules are:
440  *	  + if there is a block to the left of our position - allocate near it.
441  *	  + if pointer will live in indirect block - allocate near that block.
442  *	  + if pointer will live in inode - allocate in the same
443  *	    cylinder group.
444  *
445  * In the latter case we colour the starting block by the callers PID to
446  * prevent it from clashing with concurrent allocations for a different inode
447  * in the same block group.   The PID is used here so that functionally related
448  * files will be close-by on-disk.
449  *
450  *	Caller must make sure that @ind is valid and will stay that way.
451  */
452 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
453 {
454 	struct ext4_inode_info *ei = EXT4_I(inode);
455 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
456 	__le32 *p;
457 	ext4_fsblk_t bg_start;
458 	ext4_fsblk_t last_block;
459 	ext4_grpblk_t colour;
460 
461 	/* Try to find previous block */
462 	for (p = ind->p - 1; p >= start; p--) {
463 		if (*p)
464 			return le32_to_cpu(*p);
465 	}
466 
467 	/* No such thing, so let's try location of indirect block */
468 	if (ind->bh)
469 		return ind->bh->b_blocknr;
470 
471 	/*
472 	 * It is going to be referred to from the inode itself? OK, just put it
473 	 * into the same cylinder group then.
474 	 */
475 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
476 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
477 
478 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
479 		colour = (current->pid % 16) *
480 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
481 	else
482 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
483 	return bg_start + colour;
484 }
485 
486 /**
487  *	ext4_find_goal - find a preferred place for allocation.
488  *	@inode: owner
489  *	@block:  block we want
490  *	@partial: pointer to the last triple within a chain
491  *
492  *	Normally this function find the preferred place for block allocation,
493  *	returns it.
494  */
495 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
496 		Indirect *partial)
497 {
498 	/*
499 	 * XXX need to get goal block from mballoc's data structures
500 	 */
501 
502 	return ext4_find_near(inode, partial);
503 }
504 
505 /**
506  *	ext4_blks_to_allocate: Look up the block map and count the number
507  *	of direct blocks need to be allocated for the given branch.
508  *
509  *	@branch: chain of indirect blocks
510  *	@k: number of blocks need for indirect blocks
511  *	@blks: number of data blocks to be mapped.
512  *	@blocks_to_boundary:  the offset in the indirect block
513  *
514  *	return the total number of blocks to be allocate, including the
515  *	direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
518 		int blocks_to_boundary)
519 {
520 	unsigned int count = 0;
521 
522 	/*
523 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 	 * then it's clear blocks on that path have not allocated
525 	 */
526 	if (k > 0) {
527 		/* right now we don't handle cross boundary allocation */
528 		if (blks < blocks_to_boundary + 1)
529 			count += blks;
530 		else
531 			count += blocks_to_boundary + 1;
532 		return count;
533 	}
534 
535 	count++;
536 	while (count < blks && count <= blocks_to_boundary &&
537 		le32_to_cpu(*(branch[0].p + count)) == 0) {
538 		count++;
539 	}
540 	return count;
541 }
542 
543 /**
544  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *	@indirect_blks: the number of blocks need to allocate for indirect
546  *			blocks
547  *
548  *	@new_blocks: on return it will store the new block numbers for
549  *	the indirect blocks(if needed) and the first direct block,
550  *	@blks:	on return it will store the total number of allocated
551  *		direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 				ext4_lblk_t iblock, ext4_fsblk_t goal,
555 				int indirect_blks, int blks,
556 				ext4_fsblk_t new_blocks[4], int *err)
557 {
558 	struct ext4_allocation_request ar;
559 	int target, i;
560 	unsigned long count = 0, blk_allocated = 0;
561 	int index = 0;
562 	ext4_fsblk_t current_block = 0;
563 	int ret = 0;
564 
565 	/*
566 	 * Here we try to allocate the requested multiple blocks at once,
567 	 * on a best-effort basis.
568 	 * To build a branch, we should allocate blocks for
569 	 * the indirect blocks(if not allocated yet), and at least
570 	 * the first direct block of this branch.  That's the
571 	 * minimum number of blocks need to allocate(required)
572 	 */
573 	/* first we try to allocate the indirect blocks */
574 	target = indirect_blks;
575 	while (target > 0) {
576 		count = target;
577 		/* allocating blocks for indirect blocks and direct blocks */
578 		current_block = ext4_new_meta_blocks(handle, inode,
579 							goal, &count, err);
580 		if (*err)
581 			goto failed_out;
582 
583 		target -= count;
584 		/* allocate blocks for indirect blocks */
585 		while (index < indirect_blks && count) {
586 			new_blocks[index++] = current_block++;
587 			count--;
588 		}
589 		if (count > 0) {
590 			/*
591 			 * save the new block number
592 			 * for the first direct block
593 			 */
594 			new_blocks[index] = current_block;
595 			printk(KERN_INFO "%s returned more blocks than "
596 						"requested\n", __func__);
597 			WARN_ON(1);
598 			break;
599 		}
600 	}
601 
602 	target = blks - count ;
603 	blk_allocated = count;
604 	if (!target)
605 		goto allocated;
606 	/* Now allocate data blocks */
607 	memset(&ar, 0, sizeof(ar));
608 	ar.inode = inode;
609 	ar.goal = goal;
610 	ar.len = target;
611 	ar.logical = iblock;
612 	if (S_ISREG(inode->i_mode))
613 		/* enable in-core preallocation only for regular files */
614 		ar.flags = EXT4_MB_HINT_DATA;
615 
616 	current_block = ext4_mb_new_blocks(handle, &ar, err);
617 
618 	if (*err && (target == blks)) {
619 		/*
620 		 * if the allocation failed and we didn't allocate
621 		 * any blocks before
622 		 */
623 		goto failed_out;
624 	}
625 	if (!*err) {
626 		if (target == blks) {
627 		/*
628 		 * save the new block number
629 		 * for the first direct block
630 		 */
631 			new_blocks[index] = current_block;
632 		}
633 		blk_allocated += ar.len;
634 	}
635 allocated:
636 	/* total number of blocks allocated for direct blocks */
637 	ret = blk_allocated;
638 	*err = 0;
639 	return ret;
640 failed_out:
641 	for (i = 0; i < index; i++)
642 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
643 	return ret;
644 }
645 
646 /**
647  *	ext4_alloc_branch - allocate and set up a chain of blocks.
648  *	@inode: owner
649  *	@indirect_blks: number of allocated indirect blocks
650  *	@blks: number of allocated direct blocks
651  *	@offsets: offsets (in the blocks) to store the pointers to next.
652  *	@branch: place to store the chain in.
653  *
654  *	This function allocates blocks, zeroes out all but the last one,
655  *	links them into chain and (if we are synchronous) writes them to disk.
656  *	In other words, it prepares a branch that can be spliced onto the
657  *	inode. It stores the information about that chain in the branch[], in
658  *	the same format as ext4_get_branch() would do. We are calling it after
659  *	we had read the existing part of chain and partial points to the last
660  *	triple of that (one with zero ->key). Upon the exit we have the same
661  *	picture as after the successful ext4_get_block(), except that in one
662  *	place chain is disconnected - *branch->p is still zero (we did not
663  *	set the last link), but branch->key contains the number that should
664  *	be placed into *branch->p to fill that gap.
665  *
666  *	If allocation fails we free all blocks we've allocated (and forget
667  *	their buffer_heads) and return the error value the from failed
668  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
669  *	as described above and return 0.
670  */
671 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
672 				ext4_lblk_t iblock, int indirect_blks,
673 				int *blks, ext4_fsblk_t goal,
674 				ext4_lblk_t *offsets, Indirect *branch)
675 {
676 	int blocksize = inode->i_sb->s_blocksize;
677 	int i, n = 0;
678 	int err = 0;
679 	struct buffer_head *bh;
680 	int num;
681 	ext4_fsblk_t new_blocks[4];
682 	ext4_fsblk_t current_block;
683 
684 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
685 				*blks, new_blocks, &err);
686 	if (err)
687 		return err;
688 
689 	branch[0].key = cpu_to_le32(new_blocks[0]);
690 	/*
691 	 * metadata blocks and data blocks are allocated.
692 	 */
693 	for (n = 1; n <= indirect_blks;  n++) {
694 		/*
695 		 * Get buffer_head for parent block, zero it out
696 		 * and set the pointer to new one, then send
697 		 * parent to disk.
698 		 */
699 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
700 		branch[n].bh = bh;
701 		lock_buffer(bh);
702 		BUFFER_TRACE(bh, "call get_create_access");
703 		err = ext4_journal_get_create_access(handle, bh);
704 		if (err) {
705 			unlock_buffer(bh);
706 			brelse(bh);
707 			goto failed;
708 		}
709 
710 		memset(bh->b_data, 0, blocksize);
711 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
712 		branch[n].key = cpu_to_le32(new_blocks[n]);
713 		*branch[n].p = branch[n].key;
714 		if (n == indirect_blks) {
715 			current_block = new_blocks[n];
716 			/*
717 			 * End of chain, update the last new metablock of
718 			 * the chain to point to the new allocated
719 			 * data blocks numbers
720 			 */
721 			for (i=1; i < num; i++)
722 				*(branch[n].p + i) = cpu_to_le32(++current_block);
723 		}
724 		BUFFER_TRACE(bh, "marking uptodate");
725 		set_buffer_uptodate(bh);
726 		unlock_buffer(bh);
727 
728 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
729 		err = ext4_handle_dirty_metadata(handle, inode, bh);
730 		if (err)
731 			goto failed;
732 	}
733 	*blks = num;
734 	return err;
735 failed:
736 	/* Allocation failed, free what we already allocated */
737 	for (i = 1; i <= n ; i++) {
738 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
739 		ext4_journal_forget(handle, branch[i].bh);
740 	}
741 	for (i = 0; i < indirect_blks; i++)
742 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
743 
744 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
745 
746 	return err;
747 }
748 
749 /**
750  * ext4_splice_branch - splice the allocated branch onto inode.
751  * @inode: owner
752  * @block: (logical) number of block we are adding
753  * @chain: chain of indirect blocks (with a missing link - see
754  *	ext4_alloc_branch)
755  * @where: location of missing link
756  * @num:   number of indirect blocks we are adding
757  * @blks:  number of direct blocks we are adding
758  *
759  * This function fills the missing link and does all housekeeping needed in
760  * inode (->i_blocks, etc.). In case of success we end up with the full
761  * chain to new block and return 0.
762  */
763 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
764 			ext4_lblk_t block, Indirect *where, int num, int blks)
765 {
766 	int i;
767 	int err = 0;
768 	ext4_fsblk_t current_block;
769 
770 	/*
771 	 * If we're splicing into a [td]indirect block (as opposed to the
772 	 * inode) then we need to get write access to the [td]indirect block
773 	 * before the splice.
774 	 */
775 	if (where->bh) {
776 		BUFFER_TRACE(where->bh, "get_write_access");
777 		err = ext4_journal_get_write_access(handle, where->bh);
778 		if (err)
779 			goto err_out;
780 	}
781 	/* That's it */
782 
783 	*where->p = where->key;
784 
785 	/*
786 	 * Update the host buffer_head or inode to point to more just allocated
787 	 * direct blocks blocks
788 	 */
789 	if (num == 0 && blks > 1) {
790 		current_block = le32_to_cpu(where->key) + 1;
791 		for (i = 1; i < blks; i++)
792 			*(where->p + i) = cpu_to_le32(current_block++);
793 	}
794 
795 	/* We are done with atomic stuff, now do the rest of housekeeping */
796 
797 	inode->i_ctime = ext4_current_time(inode);
798 	ext4_mark_inode_dirty(handle, inode);
799 
800 	/* had we spliced it onto indirect block? */
801 	if (where->bh) {
802 		/*
803 		 * If we spliced it onto an indirect block, we haven't
804 		 * altered the inode.  Note however that if it is being spliced
805 		 * onto an indirect block at the very end of the file (the
806 		 * file is growing) then we *will* alter the inode to reflect
807 		 * the new i_size.  But that is not done here - it is done in
808 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
809 		 */
810 		jbd_debug(5, "splicing indirect only\n");
811 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
812 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
813 		if (err)
814 			goto err_out;
815 	} else {
816 		/*
817 		 * OK, we spliced it into the inode itself on a direct block.
818 		 * Inode was dirtied above.
819 		 */
820 		jbd_debug(5, "splicing direct\n");
821 	}
822 	return err;
823 
824 err_out:
825 	for (i = 1; i <= num; i++) {
826 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
827 		ext4_journal_forget(handle, where[i].bh);
828 		ext4_free_blocks(handle, inode,
829 					le32_to_cpu(where[i-1].key), 1, 0);
830 	}
831 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
832 
833 	return err;
834 }
835 
836 /*
837  * Allocation strategy is simple: if we have to allocate something, we will
838  * have to go the whole way to leaf. So let's do it before attaching anything
839  * to tree, set linkage between the newborn blocks, write them if sync is
840  * required, recheck the path, free and repeat if check fails, otherwise
841  * set the last missing link (that will protect us from any truncate-generated
842  * removals - all blocks on the path are immune now) and possibly force the
843  * write on the parent block.
844  * That has a nice additional property: no special recovery from the failed
845  * allocations is needed - we simply release blocks and do not touch anything
846  * reachable from inode.
847  *
848  * `handle' can be NULL if create == 0.
849  *
850  * return > 0, # of blocks mapped or allocated.
851  * return = 0, if plain lookup failed.
852  * return < 0, error case.
853  *
854  *
855  * Need to be called with
856  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
857  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
858  */
859 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
860 				  ext4_lblk_t iblock, unsigned int maxblocks,
861 				  struct buffer_head *bh_result,
862 				  int create, int extend_disksize)
863 {
864 	int err = -EIO;
865 	ext4_lblk_t offsets[4];
866 	Indirect chain[4];
867 	Indirect *partial;
868 	ext4_fsblk_t goal;
869 	int indirect_blks;
870 	int blocks_to_boundary = 0;
871 	int depth;
872 	struct ext4_inode_info *ei = EXT4_I(inode);
873 	int count = 0;
874 	ext4_fsblk_t first_block = 0;
875 	loff_t disksize;
876 
877 
878 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
879 	J_ASSERT(handle != NULL || create == 0);
880 	depth = ext4_block_to_path(inode, iblock, offsets,
881 					&blocks_to_boundary);
882 
883 	if (depth == 0)
884 		goto out;
885 
886 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
887 
888 	/* Simplest case - block found, no allocation needed */
889 	if (!partial) {
890 		first_block = le32_to_cpu(chain[depth - 1].key);
891 		clear_buffer_new(bh_result);
892 		count++;
893 		/*map more blocks*/
894 		while (count < maxblocks && count <= blocks_to_boundary) {
895 			ext4_fsblk_t blk;
896 
897 			blk = le32_to_cpu(*(chain[depth-1].p + count));
898 
899 			if (blk == first_block + count)
900 				count++;
901 			else
902 				break;
903 		}
904 		goto got_it;
905 	}
906 
907 	/* Next simple case - plain lookup or failed read of indirect block */
908 	if (!create || err == -EIO)
909 		goto cleanup;
910 
911 	/*
912 	 * Okay, we need to do block allocation.
913 	*/
914 	goal = ext4_find_goal(inode, iblock, partial);
915 
916 	/* the number of blocks need to allocate for [d,t]indirect blocks */
917 	indirect_blks = (chain + depth) - partial - 1;
918 
919 	/*
920 	 * Next look up the indirect map to count the totoal number of
921 	 * direct blocks to allocate for this branch.
922 	 */
923 	count = ext4_blks_to_allocate(partial, indirect_blks,
924 					maxblocks, blocks_to_boundary);
925 	/*
926 	 * Block out ext4_truncate while we alter the tree
927 	 */
928 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
929 					&count, goal,
930 					offsets + (partial - chain), partial);
931 
932 	/*
933 	 * The ext4_splice_branch call will free and forget any buffers
934 	 * on the new chain if there is a failure, but that risks using
935 	 * up transaction credits, especially for bitmaps where the
936 	 * credits cannot be returned.  Can we handle this somehow?  We
937 	 * may need to return -EAGAIN upwards in the worst case.  --sct
938 	 */
939 	if (!err)
940 		err = ext4_splice_branch(handle, inode, iblock,
941 					partial, indirect_blks, count);
942 	/*
943 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
944 	 * protect it if you're about to implement concurrent
945 	 * ext4_get_block() -bzzz
946 	*/
947 	if (!err && extend_disksize) {
948 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
949 		if (disksize > i_size_read(inode))
950 			disksize = i_size_read(inode);
951 		if (disksize > ei->i_disksize)
952 			ei->i_disksize = disksize;
953 	}
954 	if (err)
955 		goto cleanup;
956 
957 	set_buffer_new(bh_result);
958 got_it:
959 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960 	if (count > blocks_to_boundary)
961 		set_buffer_boundary(bh_result);
962 	err = count;
963 	/* Clean up and exit */
964 	partial = chain + depth - 1;	/* the whole chain */
965 cleanup:
966 	while (partial > chain) {
967 		BUFFER_TRACE(partial->bh, "call brelse");
968 		brelse(partial->bh);
969 		partial--;
970 	}
971 	BUFFER_TRACE(bh_result, "returned");
972 out:
973 	return err;
974 }
975 
976 /*
977  * Calculate the number of metadata blocks need to reserve
978  * to allocate @blocks for non extent file based file
979  */
980 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
981 {
982 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
983 	int ind_blks, dind_blks, tind_blks;
984 
985 	/* number of new indirect blocks needed */
986 	ind_blks = (blocks + icap - 1) / icap;
987 
988 	dind_blks = (ind_blks + icap - 1) / icap;
989 
990 	tind_blks = 1;
991 
992 	return ind_blks + dind_blks + tind_blks;
993 }
994 
995 /*
996  * Calculate the number of metadata blocks need to reserve
997  * to allocate given number of blocks
998  */
999 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1000 {
1001 	if (!blocks)
1002 		return 0;
1003 
1004 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1005 		return ext4_ext_calc_metadata_amount(inode, blocks);
1006 
1007 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1008 }
1009 
1010 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1011 {
1012 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1013 	int total, mdb, mdb_free;
1014 
1015 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1016 	/* recalculate the number of metablocks still need to be reserved */
1017 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1018 	mdb = ext4_calc_metadata_amount(inode, total);
1019 
1020 	/* figure out how many metablocks to release */
1021 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1022 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1023 
1024 	if (mdb_free) {
1025 		/* Account for allocated meta_blocks */
1026 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1027 
1028 		/* update fs dirty blocks counter */
1029 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1030 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1031 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1032 	}
1033 
1034 	/* update per-inode reservations */
1035 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1036 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1037 
1038 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1039 }
1040 
1041 /*
1042  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1043  * and returns if the blocks are already mapped.
1044  *
1045  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1046  * and store the allocated blocks in the result buffer head and mark it
1047  * mapped.
1048  *
1049  * If file type is extents based, it will call ext4_ext_get_blocks(),
1050  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1051  * based files
1052  *
1053  * On success, it returns the number of blocks being mapped or allocate.
1054  * if create==0 and the blocks are pre-allocated and uninitialized block,
1055  * the result buffer head is unmapped. If the create ==1, it will make sure
1056  * the buffer head is mapped.
1057  *
1058  * It returns 0 if plain look up failed (blocks have not been allocated), in
1059  * that casem, buffer head is unmapped
1060  *
1061  * It returns the error in case of allocation failure.
1062  */
1063 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1064 			unsigned int max_blocks, struct buffer_head *bh,
1065 			int create, int extend_disksize, int flag)
1066 {
1067 	int retval;
1068 
1069 	clear_buffer_mapped(bh);
1070 
1071 	/*
1072 	 * Try to see if we can get  the block without requesting
1073 	 * for new file system block.
1074 	 */
1075 	down_read((&EXT4_I(inode)->i_data_sem));
1076 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1077 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1078 				bh, 0, 0);
1079 	} else {
1080 		retval = ext4_get_blocks_handle(handle,
1081 				inode, block, max_blocks, bh, 0, 0);
1082 	}
1083 	up_read((&EXT4_I(inode)->i_data_sem));
1084 
1085 	/* If it is only a block(s) look up */
1086 	if (!create)
1087 		return retval;
1088 
1089 	/*
1090 	 * Returns if the blocks have already allocated
1091 	 *
1092 	 * Note that if blocks have been preallocated
1093 	 * ext4_ext_get_block() returns th create = 0
1094 	 * with buffer head unmapped.
1095 	 */
1096 	if (retval > 0 && buffer_mapped(bh))
1097 		return retval;
1098 
1099 	/*
1100 	 * New blocks allocate and/or writing to uninitialized extent
1101 	 * will possibly result in updating i_data, so we take
1102 	 * the write lock of i_data_sem, and call get_blocks()
1103 	 * with create == 1 flag.
1104 	 */
1105 	down_write((&EXT4_I(inode)->i_data_sem));
1106 
1107 	/*
1108 	 * if the caller is from delayed allocation writeout path
1109 	 * we have already reserved fs blocks for allocation
1110 	 * let the underlying get_block() function know to
1111 	 * avoid double accounting
1112 	 */
1113 	if (flag)
1114 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1115 	/*
1116 	 * We need to check for EXT4 here because migrate
1117 	 * could have changed the inode type in between
1118 	 */
1119 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1120 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1121 				bh, create, extend_disksize);
1122 	} else {
1123 		retval = ext4_get_blocks_handle(handle, inode, block,
1124 				max_blocks, bh, create, extend_disksize);
1125 
1126 		if (retval > 0 && buffer_new(bh)) {
1127 			/*
1128 			 * We allocated new blocks which will result in
1129 			 * i_data's format changing.  Force the migrate
1130 			 * to fail by clearing migrate flags
1131 			 */
1132 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1133 							~EXT4_EXT_MIGRATE;
1134 		}
1135 	}
1136 
1137 	if (flag) {
1138 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1139 		/*
1140 		 * Update reserved blocks/metadata blocks
1141 		 * after successful block allocation
1142 		 * which were deferred till now
1143 		 */
1144 		if ((retval > 0) && buffer_delay(bh))
1145 			ext4_da_update_reserve_space(inode, retval);
1146 	}
1147 
1148 	up_write((&EXT4_I(inode)->i_data_sem));
1149 	return retval;
1150 }
1151 
1152 /* Maximum number of blocks we map for direct IO at once. */
1153 #define DIO_MAX_BLOCKS 4096
1154 
1155 int ext4_get_block(struct inode *inode, sector_t iblock,
1156 		   struct buffer_head *bh_result, int create)
1157 {
1158 	handle_t *handle = ext4_journal_current_handle();
1159 	int ret = 0, started = 0;
1160 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1161 	int dio_credits;
1162 
1163 	if (create && !handle) {
1164 		/* Direct IO write... */
1165 		if (max_blocks > DIO_MAX_BLOCKS)
1166 			max_blocks = DIO_MAX_BLOCKS;
1167 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1168 		handle = ext4_journal_start(inode, dio_credits);
1169 		if (IS_ERR(handle)) {
1170 			ret = PTR_ERR(handle);
1171 			goto out;
1172 		}
1173 		started = 1;
1174 	}
1175 
1176 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1177 					max_blocks, bh_result, create, 0, 0);
1178 	if (ret > 0) {
1179 		bh_result->b_size = (ret << inode->i_blkbits);
1180 		ret = 0;
1181 	}
1182 	if (started)
1183 		ext4_journal_stop(handle);
1184 out:
1185 	return ret;
1186 }
1187 
1188 /*
1189  * `handle' can be NULL if create is zero
1190  */
1191 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1192 				ext4_lblk_t block, int create, int *errp)
1193 {
1194 	struct buffer_head dummy;
1195 	int fatal = 0, err;
1196 
1197 	J_ASSERT(handle != NULL || create == 0);
1198 
1199 	dummy.b_state = 0;
1200 	dummy.b_blocknr = -1000;
1201 	buffer_trace_init(&dummy.b_history);
1202 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1203 					&dummy, create, 1, 0);
1204 	/*
1205 	 * ext4_get_blocks_handle() returns number of blocks
1206 	 * mapped. 0 in case of a HOLE.
1207 	 */
1208 	if (err > 0) {
1209 		if (err > 1)
1210 			WARN_ON(1);
1211 		err = 0;
1212 	}
1213 	*errp = err;
1214 	if (!err && buffer_mapped(&dummy)) {
1215 		struct buffer_head *bh;
1216 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1217 		if (!bh) {
1218 			*errp = -EIO;
1219 			goto err;
1220 		}
1221 		if (buffer_new(&dummy)) {
1222 			J_ASSERT(create != 0);
1223 			J_ASSERT(handle != NULL);
1224 
1225 			/*
1226 			 * Now that we do not always journal data, we should
1227 			 * keep in mind whether this should always journal the
1228 			 * new buffer as metadata.  For now, regular file
1229 			 * writes use ext4_get_block instead, so it's not a
1230 			 * problem.
1231 			 */
1232 			lock_buffer(bh);
1233 			BUFFER_TRACE(bh, "call get_create_access");
1234 			fatal = ext4_journal_get_create_access(handle, bh);
1235 			if (!fatal && !buffer_uptodate(bh)) {
1236 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1237 				set_buffer_uptodate(bh);
1238 			}
1239 			unlock_buffer(bh);
1240 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1241 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1242 			if (!fatal)
1243 				fatal = err;
1244 		} else {
1245 			BUFFER_TRACE(bh, "not a new buffer");
1246 		}
1247 		if (fatal) {
1248 			*errp = fatal;
1249 			brelse(bh);
1250 			bh = NULL;
1251 		}
1252 		return bh;
1253 	}
1254 err:
1255 	return NULL;
1256 }
1257 
1258 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1259 			       ext4_lblk_t block, int create, int *err)
1260 {
1261 	struct buffer_head *bh;
1262 
1263 	bh = ext4_getblk(handle, inode, block, create, err);
1264 	if (!bh)
1265 		return bh;
1266 	if (buffer_uptodate(bh))
1267 		return bh;
1268 	ll_rw_block(READ_META, 1, &bh);
1269 	wait_on_buffer(bh);
1270 	if (buffer_uptodate(bh))
1271 		return bh;
1272 	put_bh(bh);
1273 	*err = -EIO;
1274 	return NULL;
1275 }
1276 
1277 static int walk_page_buffers(handle_t *handle,
1278 			     struct buffer_head *head,
1279 			     unsigned from,
1280 			     unsigned to,
1281 			     int *partial,
1282 			     int (*fn)(handle_t *handle,
1283 				       struct buffer_head *bh))
1284 {
1285 	struct buffer_head *bh;
1286 	unsigned block_start, block_end;
1287 	unsigned blocksize = head->b_size;
1288 	int err, ret = 0;
1289 	struct buffer_head *next;
1290 
1291 	for (bh = head, block_start = 0;
1292 	     ret == 0 && (bh != head || !block_start);
1293 	     block_start = block_end, bh = next)
1294 	{
1295 		next = bh->b_this_page;
1296 		block_end = block_start + blocksize;
1297 		if (block_end <= from || block_start >= to) {
1298 			if (partial && !buffer_uptodate(bh))
1299 				*partial = 1;
1300 			continue;
1301 		}
1302 		err = (*fn)(handle, bh);
1303 		if (!ret)
1304 			ret = err;
1305 	}
1306 	return ret;
1307 }
1308 
1309 /*
1310  * To preserve ordering, it is essential that the hole instantiation and
1311  * the data write be encapsulated in a single transaction.  We cannot
1312  * close off a transaction and start a new one between the ext4_get_block()
1313  * and the commit_write().  So doing the jbd2_journal_start at the start of
1314  * prepare_write() is the right place.
1315  *
1316  * Also, this function can nest inside ext4_writepage() ->
1317  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1318  * has generated enough buffer credits to do the whole page.  So we won't
1319  * block on the journal in that case, which is good, because the caller may
1320  * be PF_MEMALLOC.
1321  *
1322  * By accident, ext4 can be reentered when a transaction is open via
1323  * quota file writes.  If we were to commit the transaction while thus
1324  * reentered, there can be a deadlock - we would be holding a quota
1325  * lock, and the commit would never complete if another thread had a
1326  * transaction open and was blocking on the quota lock - a ranking
1327  * violation.
1328  *
1329  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1330  * will _not_ run commit under these circumstances because handle->h_ref
1331  * is elevated.  We'll still have enough credits for the tiny quotafile
1332  * write.
1333  */
1334 static int do_journal_get_write_access(handle_t *handle,
1335 					struct buffer_head *bh)
1336 {
1337 	if (!buffer_mapped(bh) || buffer_freed(bh))
1338 		return 0;
1339 	return ext4_journal_get_write_access(handle, bh);
1340 }
1341 
1342 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1343 				loff_t pos, unsigned len, unsigned flags,
1344 				struct page **pagep, void **fsdata)
1345 {
1346 	struct inode *inode = mapping->host;
1347 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1348 	handle_t *handle;
1349 	int retries = 0;
1350 	struct page *page;
1351  	pgoff_t index;
1352 	unsigned from, to;
1353 
1354 	trace_mark(ext4_write_begin,
1355 		   "dev %s ino %lu pos %llu len %u flags %u",
1356 		   inode->i_sb->s_id, inode->i_ino,
1357 		   (unsigned long long) pos, len, flags);
1358  	index = pos >> PAGE_CACHE_SHIFT;
1359 	from = pos & (PAGE_CACHE_SIZE - 1);
1360 	to = from + len;
1361 
1362 retry:
1363 	handle = ext4_journal_start(inode, needed_blocks);
1364 	if (IS_ERR(handle)) {
1365 		ret = PTR_ERR(handle);
1366 		goto out;
1367 	}
1368 
1369 	page = grab_cache_page_write_begin(mapping, index, flags);
1370 	if (!page) {
1371 		ext4_journal_stop(handle);
1372 		ret = -ENOMEM;
1373 		goto out;
1374 	}
1375 	*pagep = page;
1376 
1377 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1378 							ext4_get_block);
1379 
1380 	if (!ret && ext4_should_journal_data(inode)) {
1381 		ret = walk_page_buffers(handle, page_buffers(page),
1382 				from, to, NULL, do_journal_get_write_access);
1383 	}
1384 
1385 	if (ret) {
1386 		unlock_page(page);
1387 		ext4_journal_stop(handle);
1388 		page_cache_release(page);
1389 		/*
1390 		 * block_write_begin may have instantiated a few blocks
1391 		 * outside i_size.  Trim these off again. Don't need
1392 		 * i_size_read because we hold i_mutex.
1393 		 */
1394 		if (pos + len > inode->i_size)
1395 			vmtruncate(inode, inode->i_size);
1396 	}
1397 
1398 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1399 		goto retry;
1400 out:
1401 	return ret;
1402 }
1403 
1404 /* For write_end() in data=journal mode */
1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1406 {
1407 	if (!buffer_mapped(bh) || buffer_freed(bh))
1408 		return 0;
1409 	set_buffer_uptodate(bh);
1410 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1411 }
1412 
1413 /*
1414  * We need to pick up the new inode size which generic_commit_write gave us
1415  * `file' can be NULL - eg, when called from page_symlink().
1416  *
1417  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1418  * buffers are managed internally.
1419  */
1420 static int ext4_ordered_write_end(struct file *file,
1421 				struct address_space *mapping,
1422 				loff_t pos, unsigned len, unsigned copied,
1423 				struct page *page, void *fsdata)
1424 {
1425 	handle_t *handle = ext4_journal_current_handle();
1426 	struct inode *inode = mapping->host;
1427 	int ret = 0, ret2;
1428 
1429 	trace_mark(ext4_ordered_write_end,
1430 		   "dev %s ino %lu pos %llu len %u copied %u",
1431 		   inode->i_sb->s_id, inode->i_ino,
1432 		   (unsigned long long) pos, len, copied);
1433 	ret = ext4_jbd2_file_inode(handle, inode);
1434 
1435 	if (ret == 0) {
1436 		loff_t new_i_size;
1437 
1438 		new_i_size = pos + copied;
1439 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1440 			ext4_update_i_disksize(inode, new_i_size);
1441 			/* We need to mark inode dirty even if
1442 			 * new_i_size is less that inode->i_size
1443 			 * bu greater than i_disksize.(hint delalloc)
1444 			 */
1445 			ext4_mark_inode_dirty(handle, inode);
1446 		}
1447 
1448 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1449 							page, fsdata);
1450 		copied = ret2;
1451 		if (ret2 < 0)
1452 			ret = ret2;
1453 	}
1454 	ret2 = ext4_journal_stop(handle);
1455 	if (!ret)
1456 		ret = ret2;
1457 
1458 	return ret ? ret : copied;
1459 }
1460 
1461 static int ext4_writeback_write_end(struct file *file,
1462 				struct address_space *mapping,
1463 				loff_t pos, unsigned len, unsigned copied,
1464 				struct page *page, void *fsdata)
1465 {
1466 	handle_t *handle = ext4_journal_current_handle();
1467 	struct inode *inode = mapping->host;
1468 	int ret = 0, ret2;
1469 	loff_t new_i_size;
1470 
1471 	trace_mark(ext4_writeback_write_end,
1472 		   "dev %s ino %lu pos %llu len %u copied %u",
1473 		   inode->i_sb->s_id, inode->i_ino,
1474 		   (unsigned long long) pos, len, copied);
1475 	new_i_size = pos + copied;
1476 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1477 		ext4_update_i_disksize(inode, new_i_size);
1478 		/* We need to mark inode dirty even if
1479 		 * new_i_size is less that inode->i_size
1480 		 * bu greater than i_disksize.(hint delalloc)
1481 		 */
1482 		ext4_mark_inode_dirty(handle, inode);
1483 	}
1484 
1485 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1486 							page, fsdata);
1487 	copied = ret2;
1488 	if (ret2 < 0)
1489 		ret = ret2;
1490 
1491 	ret2 = ext4_journal_stop(handle);
1492 	if (!ret)
1493 		ret = ret2;
1494 
1495 	return ret ? ret : copied;
1496 }
1497 
1498 static int ext4_journalled_write_end(struct file *file,
1499 				struct address_space *mapping,
1500 				loff_t pos, unsigned len, unsigned copied,
1501 				struct page *page, void *fsdata)
1502 {
1503 	handle_t *handle = ext4_journal_current_handle();
1504 	struct inode *inode = mapping->host;
1505 	int ret = 0, ret2;
1506 	int partial = 0;
1507 	unsigned from, to;
1508 	loff_t new_i_size;
1509 
1510 	trace_mark(ext4_journalled_write_end,
1511 		   "dev %s ino %lu pos %llu len %u copied %u",
1512 		   inode->i_sb->s_id, inode->i_ino,
1513 		   (unsigned long long) pos, len, copied);
1514 	from = pos & (PAGE_CACHE_SIZE - 1);
1515 	to = from + len;
1516 
1517 	if (copied < len) {
1518 		if (!PageUptodate(page))
1519 			copied = 0;
1520 		page_zero_new_buffers(page, from+copied, to);
1521 	}
1522 
1523 	ret = walk_page_buffers(handle, page_buffers(page), from,
1524 				to, &partial, write_end_fn);
1525 	if (!partial)
1526 		SetPageUptodate(page);
1527 	new_i_size = pos + copied;
1528 	if (new_i_size > inode->i_size)
1529 		i_size_write(inode, pos+copied);
1530 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1531 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1532 		ext4_update_i_disksize(inode, new_i_size);
1533 		ret2 = ext4_mark_inode_dirty(handle, inode);
1534 		if (!ret)
1535 			ret = ret2;
1536 	}
1537 
1538 	unlock_page(page);
1539 	ret2 = ext4_journal_stop(handle);
1540 	if (!ret)
1541 		ret = ret2;
1542 	page_cache_release(page);
1543 
1544 	return ret ? ret : copied;
1545 }
1546 
1547 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1548 {
1549 	int retries = 0;
1550        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1551        unsigned long md_needed, mdblocks, total = 0;
1552 
1553 	/*
1554 	 * recalculate the amount of metadata blocks to reserve
1555 	 * in order to allocate nrblocks
1556 	 * worse case is one extent per block
1557 	 */
1558 repeat:
1559 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1560 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1561 	mdblocks = ext4_calc_metadata_amount(inode, total);
1562 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1563 
1564 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1565 	total = md_needed + nrblocks;
1566 
1567 	if (ext4_claim_free_blocks(sbi, total)) {
1568 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1569 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1570 			yield();
1571 			goto repeat;
1572 		}
1573 		return -ENOSPC;
1574 	}
1575 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1576 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1577 
1578 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 	return 0;       /* success */
1580 }
1581 
1582 static void ext4_da_release_space(struct inode *inode, int to_free)
1583 {
1584 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1585 	int total, mdb, mdb_free, release;
1586 
1587 	if (!to_free)
1588 		return;		/* Nothing to release, exit */
1589 
1590 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1591 
1592 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1593 		/*
1594 		 * if there is no reserved blocks, but we try to free some
1595 		 * then the counter is messed up somewhere.
1596 		 * but since this function is called from invalidate
1597 		 * page, it's harmless to return without any action
1598 		 */
1599 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1600 			    "blocks for inode %lu, but there is no reserved "
1601 			    "data blocks\n", to_free, inode->i_ino);
1602 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1603 		return;
1604 	}
1605 
1606 	/* recalculate the number of metablocks still need to be reserved */
1607 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1608 	mdb = ext4_calc_metadata_amount(inode, total);
1609 
1610 	/* figure out how many metablocks to release */
1611 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1612 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1613 
1614 	release = to_free + mdb_free;
1615 
1616 	/* update fs dirty blocks counter for truncate case */
1617 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1618 
1619 	/* update per-inode reservations */
1620 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1621 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1622 
1623 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1624 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1625 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626 }
1627 
1628 static void ext4_da_page_release_reservation(struct page *page,
1629 						unsigned long offset)
1630 {
1631 	int to_release = 0;
1632 	struct buffer_head *head, *bh;
1633 	unsigned int curr_off = 0;
1634 
1635 	head = page_buffers(page);
1636 	bh = head;
1637 	do {
1638 		unsigned int next_off = curr_off + bh->b_size;
1639 
1640 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1641 			to_release++;
1642 			clear_buffer_delay(bh);
1643 		}
1644 		curr_off = next_off;
1645 	} while ((bh = bh->b_this_page) != head);
1646 	ext4_da_release_space(page->mapping->host, to_release);
1647 }
1648 
1649 /*
1650  * Delayed allocation stuff
1651  */
1652 
1653 struct mpage_da_data {
1654 	struct inode *inode;
1655 	struct buffer_head lbh;			/* extent of blocks */
1656 	unsigned long first_page, next_page;	/* extent of pages */
1657 	get_block_t *get_block;
1658 	struct writeback_control *wbc;
1659 	int io_done;
1660 	int pages_written;
1661 	int retval;
1662 };
1663 
1664 /*
1665  * mpage_da_submit_io - walks through extent of pages and try to write
1666  * them with writepage() call back
1667  *
1668  * @mpd->inode: inode
1669  * @mpd->first_page: first page of the extent
1670  * @mpd->next_page: page after the last page of the extent
1671  * @mpd->get_block: the filesystem's block mapper function
1672  *
1673  * By the time mpage_da_submit_io() is called we expect all blocks
1674  * to be allocated. this may be wrong if allocation failed.
1675  *
1676  * As pages are already locked by write_cache_pages(), we can't use it
1677  */
1678 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1679 {
1680 	long pages_skipped;
1681 	struct pagevec pvec;
1682 	unsigned long index, end;
1683 	int ret = 0, err, nr_pages, i;
1684 	struct inode *inode = mpd->inode;
1685 	struct address_space *mapping = inode->i_mapping;
1686 
1687 	BUG_ON(mpd->next_page <= mpd->first_page);
1688 	/*
1689 	 * We need to start from the first_page to the next_page - 1
1690 	 * to make sure we also write the mapped dirty buffer_heads.
1691 	 * If we look at mpd->lbh.b_blocknr we would only be looking
1692 	 * at the currently mapped buffer_heads.
1693 	 */
1694 	index = mpd->first_page;
1695 	end = mpd->next_page - 1;
1696 
1697 	pagevec_init(&pvec, 0);
1698 	while (index <= end) {
1699 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1700 		if (nr_pages == 0)
1701 			break;
1702 		for (i = 0; i < nr_pages; i++) {
1703 			struct page *page = pvec.pages[i];
1704 
1705 			index = page->index;
1706 			if (index > end)
1707 				break;
1708 			index++;
1709 
1710 			BUG_ON(!PageLocked(page));
1711 			BUG_ON(PageWriteback(page));
1712 
1713 			pages_skipped = mpd->wbc->pages_skipped;
1714 			err = mapping->a_ops->writepage(page, mpd->wbc);
1715 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1716 				/*
1717 				 * have successfully written the page
1718 				 * without skipping the same
1719 				 */
1720 				mpd->pages_written++;
1721 			/*
1722 			 * In error case, we have to continue because
1723 			 * remaining pages are still locked
1724 			 * XXX: unlock and re-dirty them?
1725 			 */
1726 			if (ret == 0)
1727 				ret = err;
1728 		}
1729 		pagevec_release(&pvec);
1730 	}
1731 	return ret;
1732 }
1733 
1734 /*
1735  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1736  *
1737  * @mpd->inode - inode to walk through
1738  * @exbh->b_blocknr - first block on a disk
1739  * @exbh->b_size - amount of space in bytes
1740  * @logical - first logical block to start assignment with
1741  *
1742  * the function goes through all passed space and put actual disk
1743  * block numbers into buffer heads, dropping BH_Delay
1744  */
1745 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1746 				 struct buffer_head *exbh)
1747 {
1748 	struct inode *inode = mpd->inode;
1749 	struct address_space *mapping = inode->i_mapping;
1750 	int blocks = exbh->b_size >> inode->i_blkbits;
1751 	sector_t pblock = exbh->b_blocknr, cur_logical;
1752 	struct buffer_head *head, *bh;
1753 	pgoff_t index, end;
1754 	struct pagevec pvec;
1755 	int nr_pages, i;
1756 
1757 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1758 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1759 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1760 
1761 	pagevec_init(&pvec, 0);
1762 
1763 	while (index <= end) {
1764 		/* XXX: optimize tail */
1765 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1766 		if (nr_pages == 0)
1767 			break;
1768 		for (i = 0; i < nr_pages; i++) {
1769 			struct page *page = pvec.pages[i];
1770 
1771 			index = page->index;
1772 			if (index > end)
1773 				break;
1774 			index++;
1775 
1776 			BUG_ON(!PageLocked(page));
1777 			BUG_ON(PageWriteback(page));
1778 			BUG_ON(!page_has_buffers(page));
1779 
1780 			bh = page_buffers(page);
1781 			head = bh;
1782 
1783 			/* skip blocks out of the range */
1784 			do {
1785 				if (cur_logical >= logical)
1786 					break;
1787 				cur_logical++;
1788 			} while ((bh = bh->b_this_page) != head);
1789 
1790 			do {
1791 				if (cur_logical >= logical + blocks)
1792 					break;
1793 				if (buffer_delay(bh)) {
1794 					bh->b_blocknr = pblock;
1795 					clear_buffer_delay(bh);
1796 					bh->b_bdev = inode->i_sb->s_bdev;
1797 				} else if (buffer_unwritten(bh)) {
1798 					bh->b_blocknr = pblock;
1799 					clear_buffer_unwritten(bh);
1800 					set_buffer_mapped(bh);
1801 					set_buffer_new(bh);
1802 					bh->b_bdev = inode->i_sb->s_bdev;
1803 				} else if (buffer_mapped(bh))
1804 					BUG_ON(bh->b_blocknr != pblock);
1805 
1806 				cur_logical++;
1807 				pblock++;
1808 			} while ((bh = bh->b_this_page) != head);
1809 		}
1810 		pagevec_release(&pvec);
1811 	}
1812 }
1813 
1814 
1815 /*
1816  * __unmap_underlying_blocks - just a helper function to unmap
1817  * set of blocks described by @bh
1818  */
1819 static inline void __unmap_underlying_blocks(struct inode *inode,
1820 					     struct buffer_head *bh)
1821 {
1822 	struct block_device *bdev = inode->i_sb->s_bdev;
1823 	int blocks, i;
1824 
1825 	blocks = bh->b_size >> inode->i_blkbits;
1826 	for (i = 0; i < blocks; i++)
1827 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1828 }
1829 
1830 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1831 					sector_t logical, long blk_cnt)
1832 {
1833 	int nr_pages, i;
1834 	pgoff_t index, end;
1835 	struct pagevec pvec;
1836 	struct inode *inode = mpd->inode;
1837 	struct address_space *mapping = inode->i_mapping;
1838 
1839 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1840 	end   = (logical + blk_cnt - 1) >>
1841 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1842 	while (index <= end) {
1843 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1844 		if (nr_pages == 0)
1845 			break;
1846 		for (i = 0; i < nr_pages; i++) {
1847 			struct page *page = pvec.pages[i];
1848 			index = page->index;
1849 			if (index > end)
1850 				break;
1851 			index++;
1852 
1853 			BUG_ON(!PageLocked(page));
1854 			BUG_ON(PageWriteback(page));
1855 			block_invalidatepage(page, 0);
1856 			ClearPageUptodate(page);
1857 			unlock_page(page);
1858 		}
1859 	}
1860 	return;
1861 }
1862 
1863 static void ext4_print_free_blocks(struct inode *inode)
1864 {
1865 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1866 	printk(KERN_EMERG "Total free blocks count %lld\n",
1867 			ext4_count_free_blocks(inode->i_sb));
1868 	printk(KERN_EMERG "Free/Dirty block details\n");
1869 	printk(KERN_EMERG "free_blocks=%lld\n",
1870 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1871 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1872 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1873 	printk(KERN_EMERG "Block reservation details\n");
1874 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1875 			EXT4_I(inode)->i_reserved_data_blocks);
1876 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1877 			EXT4_I(inode)->i_reserved_meta_blocks);
1878 	return;
1879 }
1880 
1881 /*
1882  * mpage_da_map_blocks - go through given space
1883  *
1884  * @mpd->lbh - bh describing space
1885  * @mpd->get_block - the filesystem's block mapper function
1886  *
1887  * The function skips space we know is already mapped to disk blocks.
1888  *
1889  */
1890 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1891 {
1892 	int err = 0;
1893 	struct buffer_head new;
1894 	struct buffer_head *lbh = &mpd->lbh;
1895 	sector_t next;
1896 
1897 	/*
1898 	 * We consider only non-mapped and non-allocated blocks
1899 	 */
1900 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1901 		return 0;
1902 	new.b_state = lbh->b_state;
1903 	new.b_blocknr = 0;
1904 	new.b_size = lbh->b_size;
1905 	next = lbh->b_blocknr;
1906 	/*
1907 	 * If we didn't accumulate anything
1908 	 * to write simply return
1909 	 */
1910 	if (!new.b_size)
1911 		return 0;
1912 	err = mpd->get_block(mpd->inode, next, &new, 1);
1913 	if (err) {
1914 
1915 		/* If get block returns with error
1916 		 * we simply return. Later writepage
1917 		 * will redirty the page and writepages
1918 		 * will find the dirty page again
1919 		 */
1920 		if (err == -EAGAIN)
1921 			return 0;
1922 
1923 		if (err == -ENOSPC &&
1924 				ext4_count_free_blocks(mpd->inode->i_sb)) {
1925 			mpd->retval = err;
1926 			return 0;
1927 		}
1928 
1929 		/*
1930 		 * get block failure will cause us
1931 		 * to loop in writepages. Because
1932 		 * a_ops->writepage won't be able to
1933 		 * make progress. The page will be redirtied
1934 		 * by writepage and writepages will again
1935 		 * try to write the same.
1936 		 */
1937 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1938 				  "at logical offset %llu with max blocks "
1939 				  "%zd with error %d\n",
1940 				  __func__, mpd->inode->i_ino,
1941 				  (unsigned long long)next,
1942 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1943 		printk(KERN_EMERG "This should not happen.!! "
1944 					"Data will be lost\n");
1945 		if (err == -ENOSPC) {
1946 			ext4_print_free_blocks(mpd->inode);
1947 		}
1948 		/* invlaidate all the pages */
1949 		ext4_da_block_invalidatepages(mpd, next,
1950 				lbh->b_size >> mpd->inode->i_blkbits);
1951 		return err;
1952 	}
1953 	BUG_ON(new.b_size == 0);
1954 
1955 	if (buffer_new(&new))
1956 		__unmap_underlying_blocks(mpd->inode, &new);
1957 
1958 	/*
1959 	 * If blocks are delayed marked, we need to
1960 	 * put actual blocknr and drop delayed bit
1961 	 */
1962 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1963 		mpage_put_bnr_to_bhs(mpd, next, &new);
1964 
1965 	return 0;
1966 }
1967 
1968 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1969 		(1 << BH_Delay) | (1 << BH_Unwritten))
1970 
1971 /*
1972  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1973  *
1974  * @mpd->lbh - extent of blocks
1975  * @logical - logical number of the block in the file
1976  * @bh - bh of the block (used to access block's state)
1977  *
1978  * the function is used to collect contig. blocks in same state
1979  */
1980 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1981 				   sector_t logical, struct buffer_head *bh)
1982 {
1983 	sector_t next;
1984 	size_t b_size = bh->b_size;
1985 	struct buffer_head *lbh = &mpd->lbh;
1986 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1987 
1988 	/* check if thereserved journal credits might overflow */
1989 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1990 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1991 			/*
1992 			 * With non-extent format we are limited by the journal
1993 			 * credit available.  Total credit needed to insert
1994 			 * nrblocks contiguous blocks is dependent on the
1995 			 * nrblocks.  So limit nrblocks.
1996 			 */
1997 			goto flush_it;
1998 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1999 				EXT4_MAX_TRANS_DATA) {
2000 			/*
2001 			 * Adding the new buffer_head would make it cross the
2002 			 * allowed limit for which we have journal credit
2003 			 * reserved. So limit the new bh->b_size
2004 			 */
2005 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2006 						mpd->inode->i_blkbits;
2007 			/* we will do mpage_da_submit_io in the next loop */
2008 		}
2009 	}
2010 	/*
2011 	 * First block in the extent
2012 	 */
2013 	if (lbh->b_size == 0) {
2014 		lbh->b_blocknr = logical;
2015 		lbh->b_size = b_size;
2016 		lbh->b_state = bh->b_state & BH_FLAGS;
2017 		return;
2018 	}
2019 
2020 	next = lbh->b_blocknr + nrblocks;
2021 	/*
2022 	 * Can we merge the block to our big extent?
2023 	 */
2024 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2025 		lbh->b_size += b_size;
2026 		return;
2027 	}
2028 
2029 flush_it:
2030 	/*
2031 	 * We couldn't merge the block to our extent, so we
2032 	 * need to flush current  extent and start new one
2033 	 */
2034 	if (mpage_da_map_blocks(mpd) == 0)
2035 		mpage_da_submit_io(mpd);
2036 	mpd->io_done = 1;
2037 	return;
2038 }
2039 
2040 /*
2041  * __mpage_da_writepage - finds extent of pages and blocks
2042  *
2043  * @page: page to consider
2044  * @wbc: not used, we just follow rules
2045  * @data: context
2046  *
2047  * The function finds extents of pages and scan them for all blocks.
2048  */
2049 static int __mpage_da_writepage(struct page *page,
2050 				struct writeback_control *wbc, void *data)
2051 {
2052 	struct mpage_da_data *mpd = data;
2053 	struct inode *inode = mpd->inode;
2054 	struct buffer_head *bh, *head, fake;
2055 	sector_t logical;
2056 
2057 	if (mpd->io_done) {
2058 		/*
2059 		 * Rest of the page in the page_vec
2060 		 * redirty then and skip then. We will
2061 		 * try to to write them again after
2062 		 * starting a new transaction
2063 		 */
2064 		redirty_page_for_writepage(wbc, page);
2065 		unlock_page(page);
2066 		return MPAGE_DA_EXTENT_TAIL;
2067 	}
2068 	/*
2069 	 * Can we merge this page to current extent?
2070 	 */
2071 	if (mpd->next_page != page->index) {
2072 		/*
2073 		 * Nope, we can't. So, we map non-allocated blocks
2074 		 * and start IO on them using writepage()
2075 		 */
2076 		if (mpd->next_page != mpd->first_page) {
2077 			if (mpage_da_map_blocks(mpd) == 0)
2078 				mpage_da_submit_io(mpd);
2079 			/*
2080 			 * skip rest of the page in the page_vec
2081 			 */
2082 			mpd->io_done = 1;
2083 			redirty_page_for_writepage(wbc, page);
2084 			unlock_page(page);
2085 			return MPAGE_DA_EXTENT_TAIL;
2086 		}
2087 
2088 		/*
2089 		 * Start next extent of pages ...
2090 		 */
2091 		mpd->first_page = page->index;
2092 
2093 		/*
2094 		 * ... and blocks
2095 		 */
2096 		mpd->lbh.b_size = 0;
2097 		mpd->lbh.b_state = 0;
2098 		mpd->lbh.b_blocknr = 0;
2099 	}
2100 
2101 	mpd->next_page = page->index + 1;
2102 	logical = (sector_t) page->index <<
2103 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2104 
2105 	if (!page_has_buffers(page)) {
2106 		/*
2107 		 * There is no attached buffer heads yet (mmap?)
2108 		 * we treat the page asfull of dirty blocks
2109 		 */
2110 		bh = &fake;
2111 		bh->b_size = PAGE_CACHE_SIZE;
2112 		bh->b_state = 0;
2113 		set_buffer_dirty(bh);
2114 		set_buffer_uptodate(bh);
2115 		mpage_add_bh_to_extent(mpd, logical, bh);
2116 		if (mpd->io_done)
2117 			return MPAGE_DA_EXTENT_TAIL;
2118 	} else {
2119 		/*
2120 		 * Page with regular buffer heads, just add all dirty ones
2121 		 */
2122 		head = page_buffers(page);
2123 		bh = head;
2124 		do {
2125 			BUG_ON(buffer_locked(bh));
2126 			/*
2127 			 * We need to try to allocate
2128 			 * unmapped blocks in the same page.
2129 			 * Otherwise we won't make progress
2130 			 * with the page in ext4_da_writepage
2131 			 */
2132 			if (buffer_dirty(bh) &&
2133 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2134 				mpage_add_bh_to_extent(mpd, logical, bh);
2135 				if (mpd->io_done)
2136 					return MPAGE_DA_EXTENT_TAIL;
2137 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2138 				/*
2139 				 * mapped dirty buffer. We need to update
2140 				 * the b_state because we look at
2141 				 * b_state in mpage_da_map_blocks. We don't
2142 				 * update b_size because if we find an
2143 				 * unmapped buffer_head later we need to
2144 				 * use the b_state flag of that buffer_head.
2145 				 */
2146 				if (mpd->lbh.b_size == 0)
2147 					mpd->lbh.b_state =
2148 						bh->b_state & BH_FLAGS;
2149 			}
2150 			logical++;
2151 		} while ((bh = bh->b_this_page) != head);
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 /*
2158  * mpage_da_writepages - walk the list of dirty pages of the given
2159  * address space, allocates non-allocated blocks, maps newly-allocated
2160  * blocks to existing bhs and issue IO them
2161  *
2162  * @mapping: address space structure to write
2163  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2164  * @get_block: the filesystem's block mapper function.
2165  *
2166  * This is a library function, which implements the writepages()
2167  * address_space_operation.
2168  */
2169 static int mpage_da_writepages(struct address_space *mapping,
2170 			       struct writeback_control *wbc,
2171 			       struct mpage_da_data *mpd)
2172 {
2173 	int ret;
2174 
2175 	if (!mpd->get_block)
2176 		return generic_writepages(mapping, wbc);
2177 
2178 	mpd->lbh.b_size = 0;
2179 	mpd->lbh.b_state = 0;
2180 	mpd->lbh.b_blocknr = 0;
2181 	mpd->first_page = 0;
2182 	mpd->next_page = 0;
2183 	mpd->io_done = 0;
2184 	mpd->pages_written = 0;
2185 	mpd->retval = 0;
2186 
2187 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2188 	/*
2189 	 * Handle last extent of pages
2190 	 */
2191 	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2192 		if (mpage_da_map_blocks(mpd) == 0)
2193 			mpage_da_submit_io(mpd);
2194 
2195 		mpd->io_done = 1;
2196 		ret = MPAGE_DA_EXTENT_TAIL;
2197 	}
2198 	wbc->nr_to_write -= mpd->pages_written;
2199 	return ret;
2200 }
2201 
2202 /*
2203  * this is a special callback for ->write_begin() only
2204  * it's intention is to return mapped block or reserve space
2205  */
2206 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2207 				  struct buffer_head *bh_result, int create)
2208 {
2209 	int ret = 0;
2210 
2211 	BUG_ON(create == 0);
2212 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2213 
2214 	/*
2215 	 * first, we need to know whether the block is allocated already
2216 	 * preallocated blocks are unmapped but should treated
2217 	 * the same as allocated blocks.
2218 	 */
2219 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2220 	if ((ret == 0) && !buffer_delay(bh_result)) {
2221 		/* the block isn't (pre)allocated yet, let's reserve space */
2222 		/*
2223 		 * XXX: __block_prepare_write() unmaps passed block,
2224 		 * is it OK?
2225 		 */
2226 		ret = ext4_da_reserve_space(inode, 1);
2227 		if (ret)
2228 			/* not enough space to reserve */
2229 			return ret;
2230 
2231 		map_bh(bh_result, inode->i_sb, 0);
2232 		set_buffer_new(bh_result);
2233 		set_buffer_delay(bh_result);
2234 	} else if (ret > 0) {
2235 		bh_result->b_size = (ret << inode->i_blkbits);
2236 		ret = 0;
2237 	}
2238 
2239 	return ret;
2240 }
2241 #define		EXT4_DELALLOC_RSVED	1
2242 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2243 				   struct buffer_head *bh_result, int create)
2244 {
2245 	int ret;
2246 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2247 	loff_t disksize = EXT4_I(inode)->i_disksize;
2248 	handle_t *handle = NULL;
2249 
2250 	handle = ext4_journal_current_handle();
2251 	BUG_ON(!handle);
2252 	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2253 			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2254 	if (ret > 0) {
2255 
2256 		bh_result->b_size = (ret << inode->i_blkbits);
2257 
2258 		if (ext4_should_order_data(inode)) {
2259 			int retval;
2260 			retval = ext4_jbd2_file_inode(handle, inode);
2261 			if (retval)
2262 				/*
2263 				 * Failed to add inode for ordered
2264 				 * mode. Don't update file size
2265 				 */
2266 				return retval;
2267 		}
2268 
2269 		/*
2270 		 * Update on-disk size along with block allocation
2271 		 * we don't use 'extend_disksize' as size may change
2272 		 * within already allocated block -bzzz
2273 		 */
2274 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2275 		if (disksize > i_size_read(inode))
2276 			disksize = i_size_read(inode);
2277 		if (disksize > EXT4_I(inode)->i_disksize) {
2278 			ext4_update_i_disksize(inode, disksize);
2279 			ret = ext4_mark_inode_dirty(handle, inode);
2280 			return ret;
2281 		}
2282 		ret = 0;
2283 	}
2284 	return ret;
2285 }
2286 
2287 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2288 {
2289 	/*
2290 	 * unmapped buffer is possible for holes.
2291 	 * delay buffer is possible with delayed allocation
2292 	 */
2293 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2294 }
2295 
2296 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2297 				   struct buffer_head *bh_result, int create)
2298 {
2299 	int ret = 0;
2300 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2301 
2302 	/*
2303 	 * we don't want to do block allocation in writepage
2304 	 * so call get_block_wrap with create = 0
2305 	 */
2306 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2307 				   bh_result, 0, 0, 0);
2308 	if (ret > 0) {
2309 		bh_result->b_size = (ret << inode->i_blkbits);
2310 		ret = 0;
2311 	}
2312 	return ret;
2313 }
2314 
2315 /*
2316  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2317  * get called via journal_submit_inode_data_buffers (no journal handle)
2318  * get called via shrink_page_list via pdflush (no journal handle)
2319  * or grab_page_cache when doing write_begin (have journal handle)
2320  */
2321 static int ext4_da_writepage(struct page *page,
2322 				struct writeback_control *wbc)
2323 {
2324 	int ret = 0;
2325 	loff_t size;
2326 	unsigned int len;
2327 	struct buffer_head *page_bufs;
2328 	struct inode *inode = page->mapping->host;
2329 
2330 	trace_mark(ext4_da_writepage,
2331 		   "dev %s ino %lu page_index %lu",
2332 		   inode->i_sb->s_id, inode->i_ino, page->index);
2333 	size = i_size_read(inode);
2334 	if (page->index == size >> PAGE_CACHE_SHIFT)
2335 		len = size & ~PAGE_CACHE_MASK;
2336 	else
2337 		len = PAGE_CACHE_SIZE;
2338 
2339 	if (page_has_buffers(page)) {
2340 		page_bufs = page_buffers(page);
2341 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2342 					ext4_bh_unmapped_or_delay)) {
2343 			/*
2344 			 * We don't want to do  block allocation
2345 			 * So redirty the page and return
2346 			 * We may reach here when we do a journal commit
2347 			 * via journal_submit_inode_data_buffers.
2348 			 * If we don't have mapping block we just ignore
2349 			 * them. We can also reach here via shrink_page_list
2350 			 */
2351 			redirty_page_for_writepage(wbc, page);
2352 			unlock_page(page);
2353 			return 0;
2354 		}
2355 	} else {
2356 		/*
2357 		 * The test for page_has_buffers() is subtle:
2358 		 * We know the page is dirty but it lost buffers. That means
2359 		 * that at some moment in time after write_begin()/write_end()
2360 		 * has been called all buffers have been clean and thus they
2361 		 * must have been written at least once. So they are all
2362 		 * mapped and we can happily proceed with mapping them
2363 		 * and writing the page.
2364 		 *
2365 		 * Try to initialize the buffer_heads and check whether
2366 		 * all are mapped and non delay. We don't want to
2367 		 * do block allocation here.
2368 		 */
2369 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2370 						ext4_normal_get_block_write);
2371 		if (!ret) {
2372 			page_bufs = page_buffers(page);
2373 			/* check whether all are mapped and non delay */
2374 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2375 						ext4_bh_unmapped_or_delay)) {
2376 				redirty_page_for_writepage(wbc, page);
2377 				unlock_page(page);
2378 				return 0;
2379 			}
2380 		} else {
2381 			/*
2382 			 * We can't do block allocation here
2383 			 * so just redity the page and unlock
2384 			 * and return
2385 			 */
2386 			redirty_page_for_writepage(wbc, page);
2387 			unlock_page(page);
2388 			return 0;
2389 		}
2390 		/* now mark the buffer_heads as dirty and uptodate */
2391 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2392 	}
2393 
2394 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2395 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2396 	else
2397 		ret = block_write_full_page(page,
2398 						ext4_normal_get_block_write,
2399 						wbc);
2400 
2401 	return ret;
2402 }
2403 
2404 /*
2405  * This is called via ext4_da_writepages() to
2406  * calulate the total number of credits to reserve to fit
2407  * a single extent allocation into a single transaction,
2408  * ext4_da_writpeages() will loop calling this before
2409  * the block allocation.
2410  */
2411 
2412 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2413 {
2414 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2415 
2416 	/*
2417 	 * With non-extent format the journal credit needed to
2418 	 * insert nrblocks contiguous block is dependent on
2419 	 * number of contiguous block. So we will limit
2420 	 * number of contiguous block to a sane value
2421 	 */
2422 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2423 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2424 		max_blocks = EXT4_MAX_TRANS_DATA;
2425 
2426 	return ext4_chunk_trans_blocks(inode, max_blocks);
2427 }
2428 
2429 static int ext4_da_writepages(struct address_space *mapping,
2430 			      struct writeback_control *wbc)
2431 {
2432 	pgoff_t	index;
2433 	int range_whole = 0;
2434 	handle_t *handle = NULL;
2435 	struct mpage_da_data mpd;
2436 	struct inode *inode = mapping->host;
2437 	int no_nrwrite_index_update;
2438 	int pages_written = 0;
2439 	long pages_skipped;
2440 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2441 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2442 
2443 	trace_mark(ext4_da_writepages,
2444 		   "dev %s ino %lu nr_t_write %ld "
2445 		   "pages_skipped %ld range_start %llu "
2446 		   "range_end %llu nonblocking %d "
2447 		   "for_kupdate %d for_reclaim %d "
2448 		   "for_writepages %d range_cyclic %d",
2449 		   inode->i_sb->s_id, inode->i_ino,
2450 		   wbc->nr_to_write, wbc->pages_skipped,
2451 		   (unsigned long long) wbc->range_start,
2452 		   (unsigned long long) wbc->range_end,
2453 		   wbc->nonblocking, wbc->for_kupdate,
2454 		   wbc->for_reclaim, wbc->for_writepages,
2455 		   wbc->range_cyclic);
2456 
2457 	/*
2458 	 * No pages to write? This is mainly a kludge to avoid starting
2459 	 * a transaction for special inodes like journal inode on last iput()
2460 	 * because that could violate lock ordering on umount
2461 	 */
2462 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2463 		return 0;
2464 
2465 	/*
2466 	 * If the filesystem has aborted, it is read-only, so return
2467 	 * right away instead of dumping stack traces later on that
2468 	 * will obscure the real source of the problem.  We test
2469 	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2470 	 * the latter could be true if the filesystem is mounted
2471 	 * read-only, and in that case, ext4_da_writepages should
2472 	 * *never* be called, so if that ever happens, we would want
2473 	 * the stack trace.
2474 	 */
2475 	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2476 		return -EROFS;
2477 
2478 	/*
2479 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2480 	 * This make sure small files blocks are allocated in
2481 	 * single attempt. This ensure that small files
2482 	 * get less fragmented.
2483 	 */
2484 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2485 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2486 		wbc->nr_to_write = sbi->s_mb_stream_request;
2487 	}
2488 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2489 		range_whole = 1;
2490 
2491 	if (wbc->range_cyclic)
2492 		index = mapping->writeback_index;
2493 	else
2494 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2495 
2496 	mpd.wbc = wbc;
2497 	mpd.inode = mapping->host;
2498 
2499 	/*
2500 	 * we don't want write_cache_pages to update
2501 	 * nr_to_write and writeback_index
2502 	 */
2503 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2504 	wbc->no_nrwrite_index_update = 1;
2505 	pages_skipped = wbc->pages_skipped;
2506 
2507 	while (!ret && wbc->nr_to_write > 0) {
2508 
2509 		/*
2510 		 * we  insert one extent at a time. So we need
2511 		 * credit needed for single extent allocation.
2512 		 * journalled mode is currently not supported
2513 		 * by delalloc
2514 		 */
2515 		BUG_ON(ext4_should_journal_data(inode));
2516 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2517 
2518 		/* start a new transaction*/
2519 		handle = ext4_journal_start(inode, needed_blocks);
2520 		if (IS_ERR(handle)) {
2521 			ret = PTR_ERR(handle);
2522 			printk(KERN_CRIT "%s: jbd2_start: "
2523 			       "%ld pages, ino %lu; err %d\n", __func__,
2524 				wbc->nr_to_write, inode->i_ino, ret);
2525 			dump_stack();
2526 			goto out_writepages;
2527 		}
2528 		mpd.get_block = ext4_da_get_block_write;
2529 		ret = mpage_da_writepages(mapping, wbc, &mpd);
2530 
2531 		ext4_journal_stop(handle);
2532 
2533 		if (mpd.retval == -ENOSPC) {
2534 			/* commit the transaction which would
2535 			 * free blocks released in the transaction
2536 			 * and try again
2537 			 */
2538 			jbd2_journal_force_commit_nested(sbi->s_journal);
2539 			wbc->pages_skipped = pages_skipped;
2540 			ret = 0;
2541 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2542 			/*
2543 			 * got one extent now try with
2544 			 * rest of the pages
2545 			 */
2546 			pages_written += mpd.pages_written;
2547 			wbc->pages_skipped = pages_skipped;
2548 			ret = 0;
2549 		} else if (wbc->nr_to_write)
2550 			/*
2551 			 * There is no more writeout needed
2552 			 * or we requested for a noblocking writeout
2553 			 * and we found the device congested
2554 			 */
2555 			break;
2556 	}
2557 	if (pages_skipped != wbc->pages_skipped)
2558 		printk(KERN_EMERG "This should not happen leaving %s "
2559 				"with nr_to_write = %ld ret = %d\n",
2560 				__func__, wbc->nr_to_write, ret);
2561 
2562 	/* Update index */
2563 	index += pages_written;
2564 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2565 		/*
2566 		 * set the writeback_index so that range_cyclic
2567 		 * mode will write it back later
2568 		 */
2569 		mapping->writeback_index = index;
2570 
2571 out_writepages:
2572 	if (!no_nrwrite_index_update)
2573 		wbc->no_nrwrite_index_update = 0;
2574 	wbc->nr_to_write -= nr_to_writebump;
2575 	trace_mark(ext4_da_writepage_result,
2576 		   "dev %s ino %lu ret %d pages_written %d "
2577 		   "pages_skipped %ld congestion %d "
2578 		   "more_io %d no_nrwrite_index_update %d",
2579 		   inode->i_sb->s_id, inode->i_ino, ret,
2580 		   pages_written, wbc->pages_skipped,
2581 		   wbc->encountered_congestion, wbc->more_io,
2582 		   wbc->no_nrwrite_index_update);
2583 	return ret;
2584 }
2585 
2586 #define FALL_BACK_TO_NONDELALLOC 1
2587 static int ext4_nonda_switch(struct super_block *sb)
2588 {
2589 	s64 free_blocks, dirty_blocks;
2590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2591 
2592 	/*
2593 	 * switch to non delalloc mode if we are running low
2594 	 * on free block. The free block accounting via percpu
2595 	 * counters can get slightly wrong with percpu_counter_batch getting
2596 	 * accumulated on each CPU without updating global counters
2597 	 * Delalloc need an accurate free block accounting. So switch
2598 	 * to non delalloc when we are near to error range.
2599 	 */
2600 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2601 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2602 	if (2 * free_blocks < 3 * dirty_blocks ||
2603 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2604 		/*
2605 		 * free block count is less that 150% of dirty blocks
2606 		 * or free blocks is less that watermark
2607 		 */
2608 		return 1;
2609 	}
2610 	return 0;
2611 }
2612 
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614 				loff_t pos, unsigned len, unsigned flags,
2615 				struct page **pagep, void **fsdata)
2616 {
2617 	int ret, retries = 0;
2618 	struct page *page;
2619 	pgoff_t index;
2620 	unsigned from, to;
2621 	struct inode *inode = mapping->host;
2622 	handle_t *handle;
2623 
2624 	index = pos >> PAGE_CACHE_SHIFT;
2625 	from = pos & (PAGE_CACHE_SIZE - 1);
2626 	to = from + len;
2627 
2628 	if (ext4_nonda_switch(inode->i_sb)) {
2629 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2630 		return ext4_write_begin(file, mapping, pos,
2631 					len, flags, pagep, fsdata);
2632 	}
2633 	*fsdata = (void *)0;
2634 
2635 	trace_mark(ext4_da_write_begin,
2636 		   "dev %s ino %lu pos %llu len %u flags %u",
2637 		   inode->i_sb->s_id, inode->i_ino,
2638 		   (unsigned long long) pos, len, flags);
2639 retry:
2640 	/*
2641 	 * With delayed allocation, we don't log the i_disksize update
2642 	 * if there is delayed block allocation. But we still need
2643 	 * to journalling the i_disksize update if writes to the end
2644 	 * of file which has an already mapped buffer.
2645 	 */
2646 	handle = ext4_journal_start(inode, 1);
2647 	if (IS_ERR(handle)) {
2648 		ret = PTR_ERR(handle);
2649 		goto out;
2650 	}
2651 
2652 	page = grab_cache_page_write_begin(mapping, index, flags);
2653 	if (!page) {
2654 		ext4_journal_stop(handle);
2655 		ret = -ENOMEM;
2656 		goto out;
2657 	}
2658 	*pagep = page;
2659 
2660 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2661 							ext4_da_get_block_prep);
2662 	if (ret < 0) {
2663 		unlock_page(page);
2664 		ext4_journal_stop(handle);
2665 		page_cache_release(page);
2666 		/*
2667 		 * block_write_begin may have instantiated a few blocks
2668 		 * outside i_size.  Trim these off again. Don't need
2669 		 * i_size_read because we hold i_mutex.
2670 		 */
2671 		if (pos + len > inode->i_size)
2672 			vmtruncate(inode, inode->i_size);
2673 	}
2674 
2675 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2676 		goto retry;
2677 out:
2678 	return ret;
2679 }
2680 
2681 /*
2682  * Check if we should update i_disksize
2683  * when write to the end of file but not require block allocation
2684  */
2685 static int ext4_da_should_update_i_disksize(struct page *page,
2686 					 unsigned long offset)
2687 {
2688 	struct buffer_head *bh;
2689 	struct inode *inode = page->mapping->host;
2690 	unsigned int idx;
2691 	int i;
2692 
2693 	bh = page_buffers(page);
2694 	idx = offset >> inode->i_blkbits;
2695 
2696 	for (i = 0; i < idx; i++)
2697 		bh = bh->b_this_page;
2698 
2699 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2700 		return 0;
2701 	return 1;
2702 }
2703 
2704 static int ext4_da_write_end(struct file *file,
2705 				struct address_space *mapping,
2706 				loff_t pos, unsigned len, unsigned copied,
2707 				struct page *page, void *fsdata)
2708 {
2709 	struct inode *inode = mapping->host;
2710 	int ret = 0, ret2;
2711 	handle_t *handle = ext4_journal_current_handle();
2712 	loff_t new_i_size;
2713 	unsigned long start, end;
2714 	int write_mode = (int)(unsigned long)fsdata;
2715 
2716 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2717 		if (ext4_should_order_data(inode)) {
2718 			return ext4_ordered_write_end(file, mapping, pos,
2719 					len, copied, page, fsdata);
2720 		} else if (ext4_should_writeback_data(inode)) {
2721 			return ext4_writeback_write_end(file, mapping, pos,
2722 					len, copied, page, fsdata);
2723 		} else {
2724 			BUG();
2725 		}
2726 	}
2727 
2728 	trace_mark(ext4_da_write_end,
2729 		   "dev %s ino %lu pos %llu len %u copied %u",
2730 		   inode->i_sb->s_id, inode->i_ino,
2731 		   (unsigned long long) pos, len, copied);
2732 	start = pos & (PAGE_CACHE_SIZE - 1);
2733 	end = start + copied - 1;
2734 
2735 	/*
2736 	 * generic_write_end() will run mark_inode_dirty() if i_size
2737 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2738 	 * into that.
2739 	 */
2740 
2741 	new_i_size = pos + copied;
2742 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2743 		if (ext4_da_should_update_i_disksize(page, end)) {
2744 			down_write(&EXT4_I(inode)->i_data_sem);
2745 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2746 				/*
2747 				 * Updating i_disksize when extending file
2748 				 * without needing block allocation
2749 				 */
2750 				if (ext4_should_order_data(inode))
2751 					ret = ext4_jbd2_file_inode(handle,
2752 								   inode);
2753 
2754 				EXT4_I(inode)->i_disksize = new_i_size;
2755 			}
2756 			up_write(&EXT4_I(inode)->i_data_sem);
2757 			/* We need to mark inode dirty even if
2758 			 * new_i_size is less that inode->i_size
2759 			 * bu greater than i_disksize.(hint delalloc)
2760 			 */
2761 			ext4_mark_inode_dirty(handle, inode);
2762 		}
2763 	}
2764 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2765 							page, fsdata);
2766 	copied = ret2;
2767 	if (ret2 < 0)
2768 		ret = ret2;
2769 	ret2 = ext4_journal_stop(handle);
2770 	if (!ret)
2771 		ret = ret2;
2772 
2773 	return ret ? ret : copied;
2774 }
2775 
2776 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2777 {
2778 	/*
2779 	 * Drop reserved blocks
2780 	 */
2781 	BUG_ON(!PageLocked(page));
2782 	if (!page_has_buffers(page))
2783 		goto out;
2784 
2785 	ext4_da_page_release_reservation(page, offset);
2786 
2787 out:
2788 	ext4_invalidatepage(page, offset);
2789 
2790 	return;
2791 }
2792 
2793 
2794 /*
2795  * bmap() is special.  It gets used by applications such as lilo and by
2796  * the swapper to find the on-disk block of a specific piece of data.
2797  *
2798  * Naturally, this is dangerous if the block concerned is still in the
2799  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2800  * filesystem and enables swap, then they may get a nasty shock when the
2801  * data getting swapped to that swapfile suddenly gets overwritten by
2802  * the original zero's written out previously to the journal and
2803  * awaiting writeback in the kernel's buffer cache.
2804  *
2805  * So, if we see any bmap calls here on a modified, data-journaled file,
2806  * take extra steps to flush any blocks which might be in the cache.
2807  */
2808 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2809 {
2810 	struct inode *inode = mapping->host;
2811 	journal_t *journal;
2812 	int err;
2813 
2814 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2815 			test_opt(inode->i_sb, DELALLOC)) {
2816 		/*
2817 		 * With delalloc we want to sync the file
2818 		 * so that we can make sure we allocate
2819 		 * blocks for file
2820 		 */
2821 		filemap_write_and_wait(mapping);
2822 	}
2823 
2824 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2825 		/*
2826 		 * This is a REALLY heavyweight approach, but the use of
2827 		 * bmap on dirty files is expected to be extremely rare:
2828 		 * only if we run lilo or swapon on a freshly made file
2829 		 * do we expect this to happen.
2830 		 *
2831 		 * (bmap requires CAP_SYS_RAWIO so this does not
2832 		 * represent an unprivileged user DOS attack --- we'd be
2833 		 * in trouble if mortal users could trigger this path at
2834 		 * will.)
2835 		 *
2836 		 * NB. EXT4_STATE_JDATA is not set on files other than
2837 		 * regular files.  If somebody wants to bmap a directory
2838 		 * or symlink and gets confused because the buffer
2839 		 * hasn't yet been flushed to disk, they deserve
2840 		 * everything they get.
2841 		 */
2842 
2843 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2844 		journal = EXT4_JOURNAL(inode);
2845 		jbd2_journal_lock_updates(journal);
2846 		err = jbd2_journal_flush(journal);
2847 		jbd2_journal_unlock_updates(journal);
2848 
2849 		if (err)
2850 			return 0;
2851 	}
2852 
2853 	return generic_block_bmap(mapping, block, ext4_get_block);
2854 }
2855 
2856 static int bget_one(handle_t *handle, struct buffer_head *bh)
2857 {
2858 	get_bh(bh);
2859 	return 0;
2860 }
2861 
2862 static int bput_one(handle_t *handle, struct buffer_head *bh)
2863 {
2864 	put_bh(bh);
2865 	return 0;
2866 }
2867 
2868 /*
2869  * Note that we don't need to start a transaction unless we're journaling data
2870  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2871  * need to file the inode to the transaction's list in ordered mode because if
2872  * we are writing back data added by write(), the inode is already there and if
2873  * we are writing back data modified via mmap(), noone guarantees in which
2874  * transaction the data will hit the disk. In case we are journaling data, we
2875  * cannot start transaction directly because transaction start ranks above page
2876  * lock so we have to do some magic.
2877  *
2878  * In all journaling modes block_write_full_page() will start the I/O.
2879  *
2880  * Problem:
2881  *
2882  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2883  *		ext4_writepage()
2884  *
2885  * Similar for:
2886  *
2887  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2888  *
2889  * Same applies to ext4_get_block().  We will deadlock on various things like
2890  * lock_journal and i_data_sem
2891  *
2892  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2893  * allocations fail.
2894  *
2895  * 16May01: If we're reentered then journal_current_handle() will be
2896  *	    non-zero. We simply *return*.
2897  *
2898  * 1 July 2001: @@@ FIXME:
2899  *   In journalled data mode, a data buffer may be metadata against the
2900  *   current transaction.  But the same file is part of a shared mapping
2901  *   and someone does a writepage() on it.
2902  *
2903  *   We will move the buffer onto the async_data list, but *after* it has
2904  *   been dirtied. So there's a small window where we have dirty data on
2905  *   BJ_Metadata.
2906  *
2907  *   Note that this only applies to the last partial page in the file.  The
2908  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2909  *   broken code anyway: it's wrong for msync()).
2910  *
2911  *   It's a rare case: affects the final partial page, for journalled data
2912  *   where the file is subject to bith write() and writepage() in the same
2913  *   transction.  To fix it we'll need a custom block_write_full_page().
2914  *   We'll probably need that anyway for journalling writepage() output.
2915  *
2916  * We don't honour synchronous mounts for writepage().  That would be
2917  * disastrous.  Any write() or metadata operation will sync the fs for
2918  * us.
2919  *
2920  */
2921 static int __ext4_normal_writepage(struct page *page,
2922 				struct writeback_control *wbc)
2923 {
2924 	struct inode *inode = page->mapping->host;
2925 
2926 	if (test_opt(inode->i_sb, NOBH))
2927 		return nobh_writepage(page,
2928 					ext4_normal_get_block_write, wbc);
2929 	else
2930 		return block_write_full_page(page,
2931 						ext4_normal_get_block_write,
2932 						wbc);
2933 }
2934 
2935 static int ext4_normal_writepage(struct page *page,
2936 				struct writeback_control *wbc)
2937 {
2938 	struct inode *inode = page->mapping->host;
2939 	loff_t size = i_size_read(inode);
2940 	loff_t len;
2941 
2942 	trace_mark(ext4_normal_writepage,
2943 		   "dev %s ino %lu page_index %lu",
2944 		   inode->i_sb->s_id, inode->i_ino, page->index);
2945 	J_ASSERT(PageLocked(page));
2946 	if (page->index == size >> PAGE_CACHE_SHIFT)
2947 		len = size & ~PAGE_CACHE_MASK;
2948 	else
2949 		len = PAGE_CACHE_SIZE;
2950 
2951 	if (page_has_buffers(page)) {
2952 		/* if page has buffers it should all be mapped
2953 		 * and allocated. If there are not buffers attached
2954 		 * to the page we know the page is dirty but it lost
2955 		 * buffers. That means that at some moment in time
2956 		 * after write_begin() / write_end() has been called
2957 		 * all buffers have been clean and thus they must have been
2958 		 * written at least once. So they are all mapped and we can
2959 		 * happily proceed with mapping them and writing the page.
2960 		 */
2961 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2962 					ext4_bh_unmapped_or_delay));
2963 	}
2964 
2965 	if (!ext4_journal_current_handle())
2966 		return __ext4_normal_writepage(page, wbc);
2967 
2968 	redirty_page_for_writepage(wbc, page);
2969 	unlock_page(page);
2970 	return 0;
2971 }
2972 
2973 static int __ext4_journalled_writepage(struct page *page,
2974 				struct writeback_control *wbc)
2975 {
2976 	struct address_space *mapping = page->mapping;
2977 	struct inode *inode = mapping->host;
2978 	struct buffer_head *page_bufs;
2979 	handle_t *handle = NULL;
2980 	int ret = 0;
2981 	int err;
2982 
2983 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2984 					ext4_normal_get_block_write);
2985 	if (ret != 0)
2986 		goto out_unlock;
2987 
2988 	page_bufs = page_buffers(page);
2989 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2990 								bget_one);
2991 	/* As soon as we unlock the page, it can go away, but we have
2992 	 * references to buffers so we are safe */
2993 	unlock_page(page);
2994 
2995 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2996 	if (IS_ERR(handle)) {
2997 		ret = PTR_ERR(handle);
2998 		goto out;
2999 	}
3000 
3001 	ret = walk_page_buffers(handle, page_bufs, 0,
3002 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3003 
3004 	err = walk_page_buffers(handle, page_bufs, 0,
3005 				PAGE_CACHE_SIZE, NULL, write_end_fn);
3006 	if (ret == 0)
3007 		ret = err;
3008 	err = ext4_journal_stop(handle);
3009 	if (!ret)
3010 		ret = err;
3011 
3012 	walk_page_buffers(handle, page_bufs, 0,
3013 				PAGE_CACHE_SIZE, NULL, bput_one);
3014 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3015 	goto out;
3016 
3017 out_unlock:
3018 	unlock_page(page);
3019 out:
3020 	return ret;
3021 }
3022 
3023 static int ext4_journalled_writepage(struct page *page,
3024 				struct writeback_control *wbc)
3025 {
3026 	struct inode *inode = page->mapping->host;
3027 	loff_t size = i_size_read(inode);
3028 	loff_t len;
3029 
3030 	trace_mark(ext4_journalled_writepage,
3031 		   "dev %s ino %lu page_index %lu",
3032 		   inode->i_sb->s_id, inode->i_ino, page->index);
3033 	J_ASSERT(PageLocked(page));
3034 	if (page->index == size >> PAGE_CACHE_SHIFT)
3035 		len = size & ~PAGE_CACHE_MASK;
3036 	else
3037 		len = PAGE_CACHE_SIZE;
3038 
3039 	if (page_has_buffers(page)) {
3040 		/* if page has buffers it should all be mapped
3041 		 * and allocated. If there are not buffers attached
3042 		 * to the page we know the page is dirty but it lost
3043 		 * buffers. That means that at some moment in time
3044 		 * after write_begin() / write_end() has been called
3045 		 * all buffers have been clean and thus they must have been
3046 		 * written at least once. So they are all mapped and we can
3047 		 * happily proceed with mapping them and writing the page.
3048 		 */
3049 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3050 					ext4_bh_unmapped_or_delay));
3051 	}
3052 
3053 	if (ext4_journal_current_handle())
3054 		goto no_write;
3055 
3056 	if (PageChecked(page)) {
3057 		/*
3058 		 * It's mmapped pagecache.  Add buffers and journal it.  There
3059 		 * doesn't seem much point in redirtying the page here.
3060 		 */
3061 		ClearPageChecked(page);
3062 		return __ext4_journalled_writepage(page, wbc);
3063 	} else {
3064 		/*
3065 		 * It may be a page full of checkpoint-mode buffers.  We don't
3066 		 * really know unless we go poke around in the buffer_heads.
3067 		 * But block_write_full_page will do the right thing.
3068 		 */
3069 		return block_write_full_page(page,
3070 						ext4_normal_get_block_write,
3071 						wbc);
3072 	}
3073 no_write:
3074 	redirty_page_for_writepage(wbc, page);
3075 	unlock_page(page);
3076 	return 0;
3077 }
3078 
3079 static int ext4_readpage(struct file *file, struct page *page)
3080 {
3081 	return mpage_readpage(page, ext4_get_block);
3082 }
3083 
3084 static int
3085 ext4_readpages(struct file *file, struct address_space *mapping,
3086 		struct list_head *pages, unsigned nr_pages)
3087 {
3088 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3089 }
3090 
3091 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3092 {
3093 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3094 
3095 	/*
3096 	 * If it's a full truncate we just forget about the pending dirtying
3097 	 */
3098 	if (offset == 0)
3099 		ClearPageChecked(page);
3100 
3101 	if (journal)
3102 		jbd2_journal_invalidatepage(journal, page, offset);
3103 	else
3104 		block_invalidatepage(page, offset);
3105 }
3106 
3107 static int ext4_releasepage(struct page *page, gfp_t wait)
3108 {
3109 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3110 
3111 	WARN_ON(PageChecked(page));
3112 	if (!page_has_buffers(page))
3113 		return 0;
3114 	if (journal)
3115 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3116 	else
3117 		return try_to_free_buffers(page);
3118 }
3119 
3120 /*
3121  * If the O_DIRECT write will extend the file then add this inode to the
3122  * orphan list.  So recovery will truncate it back to the original size
3123  * if the machine crashes during the write.
3124  *
3125  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3126  * crashes then stale disk data _may_ be exposed inside the file. But current
3127  * VFS code falls back into buffered path in that case so we are safe.
3128  */
3129 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3130 			const struct iovec *iov, loff_t offset,
3131 			unsigned long nr_segs)
3132 {
3133 	struct file *file = iocb->ki_filp;
3134 	struct inode *inode = file->f_mapping->host;
3135 	struct ext4_inode_info *ei = EXT4_I(inode);
3136 	handle_t *handle;
3137 	ssize_t ret;
3138 	int orphan = 0;
3139 	size_t count = iov_length(iov, nr_segs);
3140 
3141 	if (rw == WRITE) {
3142 		loff_t final_size = offset + count;
3143 
3144 		if (final_size > inode->i_size) {
3145 			/* Credits for sb + inode write */
3146 			handle = ext4_journal_start(inode, 2);
3147 			if (IS_ERR(handle)) {
3148 				ret = PTR_ERR(handle);
3149 				goto out;
3150 			}
3151 			ret = ext4_orphan_add(handle, inode);
3152 			if (ret) {
3153 				ext4_journal_stop(handle);
3154 				goto out;
3155 			}
3156 			orphan = 1;
3157 			ei->i_disksize = inode->i_size;
3158 			ext4_journal_stop(handle);
3159 		}
3160 	}
3161 
3162 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3163 				 offset, nr_segs,
3164 				 ext4_get_block, NULL);
3165 
3166 	if (orphan) {
3167 		int err;
3168 
3169 		/* Credits for sb + inode write */
3170 		handle = ext4_journal_start(inode, 2);
3171 		if (IS_ERR(handle)) {
3172 			/* This is really bad luck. We've written the data
3173 			 * but cannot extend i_size. Bail out and pretend
3174 			 * the write failed... */
3175 			ret = PTR_ERR(handle);
3176 			goto out;
3177 		}
3178 		if (inode->i_nlink)
3179 			ext4_orphan_del(handle, inode);
3180 		if (ret > 0) {
3181 			loff_t end = offset + ret;
3182 			if (end > inode->i_size) {
3183 				ei->i_disksize = end;
3184 				i_size_write(inode, end);
3185 				/*
3186 				 * We're going to return a positive `ret'
3187 				 * here due to non-zero-length I/O, so there's
3188 				 * no way of reporting error returns from
3189 				 * ext4_mark_inode_dirty() to userspace.  So
3190 				 * ignore it.
3191 				 */
3192 				ext4_mark_inode_dirty(handle, inode);
3193 			}
3194 		}
3195 		err = ext4_journal_stop(handle);
3196 		if (ret == 0)
3197 			ret = err;
3198 	}
3199 out:
3200 	return ret;
3201 }
3202 
3203 /*
3204  * Pages can be marked dirty completely asynchronously from ext4's journalling
3205  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3206  * much here because ->set_page_dirty is called under VFS locks.  The page is
3207  * not necessarily locked.
3208  *
3209  * We cannot just dirty the page and leave attached buffers clean, because the
3210  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3211  * or jbddirty because all the journalling code will explode.
3212  *
3213  * So what we do is to mark the page "pending dirty" and next time writepage
3214  * is called, propagate that into the buffers appropriately.
3215  */
3216 static int ext4_journalled_set_page_dirty(struct page *page)
3217 {
3218 	SetPageChecked(page);
3219 	return __set_page_dirty_nobuffers(page);
3220 }
3221 
3222 static const struct address_space_operations ext4_ordered_aops = {
3223 	.readpage		= ext4_readpage,
3224 	.readpages		= ext4_readpages,
3225 	.writepage		= ext4_normal_writepage,
3226 	.sync_page		= block_sync_page,
3227 	.write_begin		= ext4_write_begin,
3228 	.write_end		= ext4_ordered_write_end,
3229 	.bmap			= ext4_bmap,
3230 	.invalidatepage		= ext4_invalidatepage,
3231 	.releasepage		= ext4_releasepage,
3232 	.direct_IO		= ext4_direct_IO,
3233 	.migratepage		= buffer_migrate_page,
3234 	.is_partially_uptodate  = block_is_partially_uptodate,
3235 };
3236 
3237 static const struct address_space_operations ext4_writeback_aops = {
3238 	.readpage		= ext4_readpage,
3239 	.readpages		= ext4_readpages,
3240 	.writepage		= ext4_normal_writepage,
3241 	.sync_page		= block_sync_page,
3242 	.write_begin		= ext4_write_begin,
3243 	.write_end		= ext4_writeback_write_end,
3244 	.bmap			= ext4_bmap,
3245 	.invalidatepage		= ext4_invalidatepage,
3246 	.releasepage		= ext4_releasepage,
3247 	.direct_IO		= ext4_direct_IO,
3248 	.migratepage		= buffer_migrate_page,
3249 	.is_partially_uptodate  = block_is_partially_uptodate,
3250 };
3251 
3252 static const struct address_space_operations ext4_journalled_aops = {
3253 	.readpage		= ext4_readpage,
3254 	.readpages		= ext4_readpages,
3255 	.writepage		= ext4_journalled_writepage,
3256 	.sync_page		= block_sync_page,
3257 	.write_begin		= ext4_write_begin,
3258 	.write_end		= ext4_journalled_write_end,
3259 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3260 	.bmap			= ext4_bmap,
3261 	.invalidatepage		= ext4_invalidatepage,
3262 	.releasepage		= ext4_releasepage,
3263 	.is_partially_uptodate  = block_is_partially_uptodate,
3264 };
3265 
3266 static const struct address_space_operations ext4_da_aops = {
3267 	.readpage		= ext4_readpage,
3268 	.readpages		= ext4_readpages,
3269 	.writepage		= ext4_da_writepage,
3270 	.writepages		= ext4_da_writepages,
3271 	.sync_page		= block_sync_page,
3272 	.write_begin		= ext4_da_write_begin,
3273 	.write_end		= ext4_da_write_end,
3274 	.bmap			= ext4_bmap,
3275 	.invalidatepage		= ext4_da_invalidatepage,
3276 	.releasepage		= ext4_releasepage,
3277 	.direct_IO		= ext4_direct_IO,
3278 	.migratepage		= buffer_migrate_page,
3279 	.is_partially_uptodate  = block_is_partially_uptodate,
3280 };
3281 
3282 void ext4_set_aops(struct inode *inode)
3283 {
3284 	if (ext4_should_order_data(inode) &&
3285 		test_opt(inode->i_sb, DELALLOC))
3286 		inode->i_mapping->a_ops = &ext4_da_aops;
3287 	else if (ext4_should_order_data(inode))
3288 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3289 	else if (ext4_should_writeback_data(inode) &&
3290 		 test_opt(inode->i_sb, DELALLOC))
3291 		inode->i_mapping->a_ops = &ext4_da_aops;
3292 	else if (ext4_should_writeback_data(inode))
3293 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3294 	else
3295 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3296 }
3297 
3298 /*
3299  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3300  * up to the end of the block which corresponds to `from'.
3301  * This required during truncate. We need to physically zero the tail end
3302  * of that block so it doesn't yield old data if the file is later grown.
3303  */
3304 int ext4_block_truncate_page(handle_t *handle,
3305 		struct address_space *mapping, loff_t from)
3306 {
3307 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3308 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3309 	unsigned blocksize, length, pos;
3310 	ext4_lblk_t iblock;
3311 	struct inode *inode = mapping->host;
3312 	struct buffer_head *bh;
3313 	struct page *page;
3314 	int err = 0;
3315 
3316 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3317 	if (!page)
3318 		return -EINVAL;
3319 
3320 	blocksize = inode->i_sb->s_blocksize;
3321 	length = blocksize - (offset & (blocksize - 1));
3322 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3323 
3324 	/*
3325 	 * For "nobh" option,  we can only work if we don't need to
3326 	 * read-in the page - otherwise we create buffers to do the IO.
3327 	 */
3328 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3329 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3330 		zero_user(page, offset, length);
3331 		set_page_dirty(page);
3332 		goto unlock;
3333 	}
3334 
3335 	if (!page_has_buffers(page))
3336 		create_empty_buffers(page, blocksize, 0);
3337 
3338 	/* Find the buffer that contains "offset" */
3339 	bh = page_buffers(page);
3340 	pos = blocksize;
3341 	while (offset >= pos) {
3342 		bh = bh->b_this_page;
3343 		iblock++;
3344 		pos += blocksize;
3345 	}
3346 
3347 	err = 0;
3348 	if (buffer_freed(bh)) {
3349 		BUFFER_TRACE(bh, "freed: skip");
3350 		goto unlock;
3351 	}
3352 
3353 	if (!buffer_mapped(bh)) {
3354 		BUFFER_TRACE(bh, "unmapped");
3355 		ext4_get_block(inode, iblock, bh, 0);
3356 		/* unmapped? It's a hole - nothing to do */
3357 		if (!buffer_mapped(bh)) {
3358 			BUFFER_TRACE(bh, "still unmapped");
3359 			goto unlock;
3360 		}
3361 	}
3362 
3363 	/* Ok, it's mapped. Make sure it's up-to-date */
3364 	if (PageUptodate(page))
3365 		set_buffer_uptodate(bh);
3366 
3367 	if (!buffer_uptodate(bh)) {
3368 		err = -EIO;
3369 		ll_rw_block(READ, 1, &bh);
3370 		wait_on_buffer(bh);
3371 		/* Uhhuh. Read error. Complain and punt. */
3372 		if (!buffer_uptodate(bh))
3373 			goto unlock;
3374 	}
3375 
3376 	if (ext4_should_journal_data(inode)) {
3377 		BUFFER_TRACE(bh, "get write access");
3378 		err = ext4_journal_get_write_access(handle, bh);
3379 		if (err)
3380 			goto unlock;
3381 	}
3382 
3383 	zero_user(page, offset, length);
3384 
3385 	BUFFER_TRACE(bh, "zeroed end of block");
3386 
3387 	err = 0;
3388 	if (ext4_should_journal_data(inode)) {
3389 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3390 	} else {
3391 		if (ext4_should_order_data(inode))
3392 			err = ext4_jbd2_file_inode(handle, inode);
3393 		mark_buffer_dirty(bh);
3394 	}
3395 
3396 unlock:
3397 	unlock_page(page);
3398 	page_cache_release(page);
3399 	return err;
3400 }
3401 
3402 /*
3403  * Probably it should be a library function... search for first non-zero word
3404  * or memcmp with zero_page, whatever is better for particular architecture.
3405  * Linus?
3406  */
3407 static inline int all_zeroes(__le32 *p, __le32 *q)
3408 {
3409 	while (p < q)
3410 		if (*p++)
3411 			return 0;
3412 	return 1;
3413 }
3414 
3415 /**
3416  *	ext4_find_shared - find the indirect blocks for partial truncation.
3417  *	@inode:	  inode in question
3418  *	@depth:	  depth of the affected branch
3419  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3420  *	@chain:	  place to store the pointers to partial indirect blocks
3421  *	@top:	  place to the (detached) top of branch
3422  *
3423  *	This is a helper function used by ext4_truncate().
3424  *
3425  *	When we do truncate() we may have to clean the ends of several
3426  *	indirect blocks but leave the blocks themselves alive. Block is
3427  *	partially truncated if some data below the new i_size is refered
3428  *	from it (and it is on the path to the first completely truncated
3429  *	data block, indeed).  We have to free the top of that path along
3430  *	with everything to the right of the path. Since no allocation
3431  *	past the truncation point is possible until ext4_truncate()
3432  *	finishes, we may safely do the latter, but top of branch may
3433  *	require special attention - pageout below the truncation point
3434  *	might try to populate it.
3435  *
3436  *	We atomically detach the top of branch from the tree, store the
3437  *	block number of its root in *@top, pointers to buffer_heads of
3438  *	partially truncated blocks - in @chain[].bh and pointers to
3439  *	their last elements that should not be removed - in
3440  *	@chain[].p. Return value is the pointer to last filled element
3441  *	of @chain.
3442  *
3443  *	The work left to caller to do the actual freeing of subtrees:
3444  *		a) free the subtree starting from *@top
3445  *		b) free the subtrees whose roots are stored in
3446  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3447  *		c) free the subtrees growing from the inode past the @chain[0].
3448  *			(no partially truncated stuff there).  */
3449 
3450 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3451 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3452 {
3453 	Indirect *partial, *p;
3454 	int k, err;
3455 
3456 	*top = 0;
3457 	/* Make k index the deepest non-null offest + 1 */
3458 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3459 		;
3460 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3461 	/* Writer: pointers */
3462 	if (!partial)
3463 		partial = chain + k-1;
3464 	/*
3465 	 * If the branch acquired continuation since we've looked at it -
3466 	 * fine, it should all survive and (new) top doesn't belong to us.
3467 	 */
3468 	if (!partial->key && *partial->p)
3469 		/* Writer: end */
3470 		goto no_top;
3471 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3472 		;
3473 	/*
3474 	 * OK, we've found the last block that must survive. The rest of our
3475 	 * branch should be detached before unlocking. However, if that rest
3476 	 * of branch is all ours and does not grow immediately from the inode
3477 	 * it's easier to cheat and just decrement partial->p.
3478 	 */
3479 	if (p == chain + k - 1 && p > chain) {
3480 		p->p--;
3481 	} else {
3482 		*top = *p->p;
3483 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3484 #if 0
3485 		*p->p = 0;
3486 #endif
3487 	}
3488 	/* Writer: end */
3489 
3490 	while (partial > p) {
3491 		brelse(partial->bh);
3492 		partial--;
3493 	}
3494 no_top:
3495 	return partial;
3496 }
3497 
3498 /*
3499  * Zero a number of block pointers in either an inode or an indirect block.
3500  * If we restart the transaction we must again get write access to the
3501  * indirect block for further modification.
3502  *
3503  * We release `count' blocks on disk, but (last - first) may be greater
3504  * than `count' because there can be holes in there.
3505  */
3506 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3507 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3508 		unsigned long count, __le32 *first, __le32 *last)
3509 {
3510 	__le32 *p;
3511 	if (try_to_extend_transaction(handle, inode)) {
3512 		if (bh) {
3513 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3514 			ext4_handle_dirty_metadata(handle, inode, bh);
3515 		}
3516 		ext4_mark_inode_dirty(handle, inode);
3517 		ext4_journal_test_restart(handle, inode);
3518 		if (bh) {
3519 			BUFFER_TRACE(bh, "retaking write access");
3520 			ext4_journal_get_write_access(handle, bh);
3521 		}
3522 	}
3523 
3524 	/*
3525 	 * Any buffers which are on the journal will be in memory. We find
3526 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3527 	 * on them.  We've already detached each block from the file, so
3528 	 * bforget() in jbd2_journal_forget() should be safe.
3529 	 *
3530 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3531 	 */
3532 	for (p = first; p < last; p++) {
3533 		u32 nr = le32_to_cpu(*p);
3534 		if (nr) {
3535 			struct buffer_head *tbh;
3536 
3537 			*p = 0;
3538 			tbh = sb_find_get_block(inode->i_sb, nr);
3539 			ext4_forget(handle, 0, inode, tbh, nr);
3540 		}
3541 	}
3542 
3543 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3544 }
3545 
3546 /**
3547  * ext4_free_data - free a list of data blocks
3548  * @handle:	handle for this transaction
3549  * @inode:	inode we are dealing with
3550  * @this_bh:	indirect buffer_head which contains *@first and *@last
3551  * @first:	array of block numbers
3552  * @last:	points immediately past the end of array
3553  *
3554  * We are freeing all blocks refered from that array (numbers are stored as
3555  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3556  *
3557  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3558  * blocks are contiguous then releasing them at one time will only affect one
3559  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3560  * actually use a lot of journal space.
3561  *
3562  * @this_bh will be %NULL if @first and @last point into the inode's direct
3563  * block pointers.
3564  */
3565 static void ext4_free_data(handle_t *handle, struct inode *inode,
3566 			   struct buffer_head *this_bh,
3567 			   __le32 *first, __le32 *last)
3568 {
3569 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3570 	unsigned long count = 0;	    /* Number of blocks in the run */
3571 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3572 					       corresponding to
3573 					       block_to_free */
3574 	ext4_fsblk_t nr;		    /* Current block # */
3575 	__le32 *p;			    /* Pointer into inode/ind
3576 					       for current block */
3577 	int err;
3578 
3579 	if (this_bh) {				/* For indirect block */
3580 		BUFFER_TRACE(this_bh, "get_write_access");
3581 		err = ext4_journal_get_write_access(handle, this_bh);
3582 		/* Important: if we can't update the indirect pointers
3583 		 * to the blocks, we can't free them. */
3584 		if (err)
3585 			return;
3586 	}
3587 
3588 	for (p = first; p < last; p++) {
3589 		nr = le32_to_cpu(*p);
3590 		if (nr) {
3591 			/* accumulate blocks to free if they're contiguous */
3592 			if (count == 0) {
3593 				block_to_free = nr;
3594 				block_to_free_p = p;
3595 				count = 1;
3596 			} else if (nr == block_to_free + count) {
3597 				count++;
3598 			} else {
3599 				ext4_clear_blocks(handle, inode, this_bh,
3600 						  block_to_free,
3601 						  count, block_to_free_p, p);
3602 				block_to_free = nr;
3603 				block_to_free_p = p;
3604 				count = 1;
3605 			}
3606 		}
3607 	}
3608 
3609 	if (count > 0)
3610 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3611 				  count, block_to_free_p, p);
3612 
3613 	if (this_bh) {
3614 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3615 
3616 		/*
3617 		 * The buffer head should have an attached journal head at this
3618 		 * point. However, if the data is corrupted and an indirect
3619 		 * block pointed to itself, it would have been detached when
3620 		 * the block was cleared. Check for this instead of OOPSing.
3621 		 */
3622 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3623 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3624 		else
3625 			ext4_error(inode->i_sb, __func__,
3626 				   "circular indirect block detected, "
3627 				   "inode=%lu, block=%llu",
3628 				   inode->i_ino,
3629 				   (unsigned long long) this_bh->b_blocknr);
3630 	}
3631 }
3632 
3633 /**
3634  *	ext4_free_branches - free an array of branches
3635  *	@handle: JBD handle for this transaction
3636  *	@inode:	inode we are dealing with
3637  *	@parent_bh: the buffer_head which contains *@first and *@last
3638  *	@first:	array of block numbers
3639  *	@last:	pointer immediately past the end of array
3640  *	@depth:	depth of the branches to free
3641  *
3642  *	We are freeing all blocks refered from these branches (numbers are
3643  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3644  *	appropriately.
3645  */
3646 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3647 			       struct buffer_head *parent_bh,
3648 			       __le32 *first, __le32 *last, int depth)
3649 {
3650 	ext4_fsblk_t nr;
3651 	__le32 *p;
3652 
3653 	if (ext4_handle_is_aborted(handle))
3654 		return;
3655 
3656 	if (depth--) {
3657 		struct buffer_head *bh;
3658 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3659 		p = last;
3660 		while (--p >= first) {
3661 			nr = le32_to_cpu(*p);
3662 			if (!nr)
3663 				continue;		/* A hole */
3664 
3665 			/* Go read the buffer for the next level down */
3666 			bh = sb_bread(inode->i_sb, nr);
3667 
3668 			/*
3669 			 * A read failure? Report error and clear slot
3670 			 * (should be rare).
3671 			 */
3672 			if (!bh) {
3673 				ext4_error(inode->i_sb, "ext4_free_branches",
3674 					   "Read failure, inode=%lu, block=%llu",
3675 					   inode->i_ino, nr);
3676 				continue;
3677 			}
3678 
3679 			/* This zaps the entire block.  Bottom up. */
3680 			BUFFER_TRACE(bh, "free child branches");
3681 			ext4_free_branches(handle, inode, bh,
3682 					(__le32 *) bh->b_data,
3683 					(__le32 *) bh->b_data + addr_per_block,
3684 					depth);
3685 
3686 			/*
3687 			 * We've probably journalled the indirect block several
3688 			 * times during the truncate.  But it's no longer
3689 			 * needed and we now drop it from the transaction via
3690 			 * jbd2_journal_revoke().
3691 			 *
3692 			 * That's easy if it's exclusively part of this
3693 			 * transaction.  But if it's part of the committing
3694 			 * transaction then jbd2_journal_forget() will simply
3695 			 * brelse() it.  That means that if the underlying
3696 			 * block is reallocated in ext4_get_block(),
3697 			 * unmap_underlying_metadata() will find this block
3698 			 * and will try to get rid of it.  damn, damn.
3699 			 *
3700 			 * If this block has already been committed to the
3701 			 * journal, a revoke record will be written.  And
3702 			 * revoke records must be emitted *before* clearing
3703 			 * this block's bit in the bitmaps.
3704 			 */
3705 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3706 
3707 			/*
3708 			 * Everything below this this pointer has been
3709 			 * released.  Now let this top-of-subtree go.
3710 			 *
3711 			 * We want the freeing of this indirect block to be
3712 			 * atomic in the journal with the updating of the
3713 			 * bitmap block which owns it.  So make some room in
3714 			 * the journal.
3715 			 *
3716 			 * We zero the parent pointer *after* freeing its
3717 			 * pointee in the bitmaps, so if extend_transaction()
3718 			 * for some reason fails to put the bitmap changes and
3719 			 * the release into the same transaction, recovery
3720 			 * will merely complain about releasing a free block,
3721 			 * rather than leaking blocks.
3722 			 */
3723 			if (ext4_handle_is_aborted(handle))
3724 				return;
3725 			if (try_to_extend_transaction(handle, inode)) {
3726 				ext4_mark_inode_dirty(handle, inode);
3727 				ext4_journal_test_restart(handle, inode);
3728 			}
3729 
3730 			ext4_free_blocks(handle, inode, nr, 1, 1);
3731 
3732 			if (parent_bh) {
3733 				/*
3734 				 * The block which we have just freed is
3735 				 * pointed to by an indirect block: journal it
3736 				 */
3737 				BUFFER_TRACE(parent_bh, "get_write_access");
3738 				if (!ext4_journal_get_write_access(handle,
3739 								   parent_bh)){
3740 					*p = 0;
3741 					BUFFER_TRACE(parent_bh,
3742 					"call ext4_handle_dirty_metadata");
3743 					ext4_handle_dirty_metadata(handle,
3744 								   inode,
3745 								   parent_bh);
3746 				}
3747 			}
3748 		}
3749 	} else {
3750 		/* We have reached the bottom of the tree. */
3751 		BUFFER_TRACE(parent_bh, "free data blocks");
3752 		ext4_free_data(handle, inode, parent_bh, first, last);
3753 	}
3754 }
3755 
3756 int ext4_can_truncate(struct inode *inode)
3757 {
3758 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3759 		return 0;
3760 	if (S_ISREG(inode->i_mode))
3761 		return 1;
3762 	if (S_ISDIR(inode->i_mode))
3763 		return 1;
3764 	if (S_ISLNK(inode->i_mode))
3765 		return !ext4_inode_is_fast_symlink(inode);
3766 	return 0;
3767 }
3768 
3769 /*
3770  * ext4_truncate()
3771  *
3772  * We block out ext4_get_block() block instantiations across the entire
3773  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3774  * simultaneously on behalf of the same inode.
3775  *
3776  * As we work through the truncate and commmit bits of it to the journal there
3777  * is one core, guiding principle: the file's tree must always be consistent on
3778  * disk.  We must be able to restart the truncate after a crash.
3779  *
3780  * The file's tree may be transiently inconsistent in memory (although it
3781  * probably isn't), but whenever we close off and commit a journal transaction,
3782  * the contents of (the filesystem + the journal) must be consistent and
3783  * restartable.  It's pretty simple, really: bottom up, right to left (although
3784  * left-to-right works OK too).
3785  *
3786  * Note that at recovery time, journal replay occurs *before* the restart of
3787  * truncate against the orphan inode list.
3788  *
3789  * The committed inode has the new, desired i_size (which is the same as
3790  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3791  * that this inode's truncate did not complete and it will again call
3792  * ext4_truncate() to have another go.  So there will be instantiated blocks
3793  * to the right of the truncation point in a crashed ext4 filesystem.  But
3794  * that's fine - as long as they are linked from the inode, the post-crash
3795  * ext4_truncate() run will find them and release them.
3796  */
3797 void ext4_truncate(struct inode *inode)
3798 {
3799 	handle_t *handle;
3800 	struct ext4_inode_info *ei = EXT4_I(inode);
3801 	__le32 *i_data = ei->i_data;
3802 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3803 	struct address_space *mapping = inode->i_mapping;
3804 	ext4_lblk_t offsets[4];
3805 	Indirect chain[4];
3806 	Indirect *partial;
3807 	__le32 nr = 0;
3808 	int n;
3809 	ext4_lblk_t last_block;
3810 	unsigned blocksize = inode->i_sb->s_blocksize;
3811 
3812 	if (!ext4_can_truncate(inode))
3813 		return;
3814 
3815 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3816 		ext4_ext_truncate(inode);
3817 		return;
3818 	}
3819 
3820 	handle = start_transaction(inode);
3821 	if (IS_ERR(handle))
3822 		return;		/* AKPM: return what? */
3823 
3824 	last_block = (inode->i_size + blocksize-1)
3825 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3826 
3827 	if (inode->i_size & (blocksize - 1))
3828 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3829 			goto out_stop;
3830 
3831 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3832 	if (n == 0)
3833 		goto out_stop;	/* error */
3834 
3835 	/*
3836 	 * OK.  This truncate is going to happen.  We add the inode to the
3837 	 * orphan list, so that if this truncate spans multiple transactions,
3838 	 * and we crash, we will resume the truncate when the filesystem
3839 	 * recovers.  It also marks the inode dirty, to catch the new size.
3840 	 *
3841 	 * Implication: the file must always be in a sane, consistent
3842 	 * truncatable state while each transaction commits.
3843 	 */
3844 	if (ext4_orphan_add(handle, inode))
3845 		goto out_stop;
3846 
3847 	/*
3848 	 * From here we block out all ext4_get_block() callers who want to
3849 	 * modify the block allocation tree.
3850 	 */
3851 	down_write(&ei->i_data_sem);
3852 
3853 	ext4_discard_preallocations(inode);
3854 
3855 	/*
3856 	 * The orphan list entry will now protect us from any crash which
3857 	 * occurs before the truncate completes, so it is now safe to propagate
3858 	 * the new, shorter inode size (held for now in i_size) into the
3859 	 * on-disk inode. We do this via i_disksize, which is the value which
3860 	 * ext4 *really* writes onto the disk inode.
3861 	 */
3862 	ei->i_disksize = inode->i_size;
3863 
3864 	if (n == 1) {		/* direct blocks */
3865 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3866 			       i_data + EXT4_NDIR_BLOCKS);
3867 		goto do_indirects;
3868 	}
3869 
3870 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3871 	/* Kill the top of shared branch (not detached) */
3872 	if (nr) {
3873 		if (partial == chain) {
3874 			/* Shared branch grows from the inode */
3875 			ext4_free_branches(handle, inode, NULL,
3876 					   &nr, &nr+1, (chain+n-1) - partial);
3877 			*partial->p = 0;
3878 			/*
3879 			 * We mark the inode dirty prior to restart,
3880 			 * and prior to stop.  No need for it here.
3881 			 */
3882 		} else {
3883 			/* Shared branch grows from an indirect block */
3884 			BUFFER_TRACE(partial->bh, "get_write_access");
3885 			ext4_free_branches(handle, inode, partial->bh,
3886 					partial->p,
3887 					partial->p+1, (chain+n-1) - partial);
3888 		}
3889 	}
3890 	/* Clear the ends of indirect blocks on the shared branch */
3891 	while (partial > chain) {
3892 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3893 				   (__le32*)partial->bh->b_data+addr_per_block,
3894 				   (chain+n-1) - partial);
3895 		BUFFER_TRACE(partial->bh, "call brelse");
3896 		brelse (partial->bh);
3897 		partial--;
3898 	}
3899 do_indirects:
3900 	/* Kill the remaining (whole) subtrees */
3901 	switch (offsets[0]) {
3902 	default:
3903 		nr = i_data[EXT4_IND_BLOCK];
3904 		if (nr) {
3905 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3906 			i_data[EXT4_IND_BLOCK] = 0;
3907 		}
3908 	case EXT4_IND_BLOCK:
3909 		nr = i_data[EXT4_DIND_BLOCK];
3910 		if (nr) {
3911 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3912 			i_data[EXT4_DIND_BLOCK] = 0;
3913 		}
3914 	case EXT4_DIND_BLOCK:
3915 		nr = i_data[EXT4_TIND_BLOCK];
3916 		if (nr) {
3917 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3918 			i_data[EXT4_TIND_BLOCK] = 0;
3919 		}
3920 	case EXT4_TIND_BLOCK:
3921 		;
3922 	}
3923 
3924 	up_write(&ei->i_data_sem);
3925 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3926 	ext4_mark_inode_dirty(handle, inode);
3927 
3928 	/*
3929 	 * In a multi-transaction truncate, we only make the final transaction
3930 	 * synchronous
3931 	 */
3932 	if (IS_SYNC(inode))
3933 		ext4_handle_sync(handle);
3934 out_stop:
3935 	/*
3936 	 * If this was a simple ftruncate(), and the file will remain alive
3937 	 * then we need to clear up the orphan record which we created above.
3938 	 * However, if this was a real unlink then we were called by
3939 	 * ext4_delete_inode(), and we allow that function to clean up the
3940 	 * orphan info for us.
3941 	 */
3942 	if (inode->i_nlink)
3943 		ext4_orphan_del(handle, inode);
3944 
3945 	ext4_journal_stop(handle);
3946 }
3947 
3948 /*
3949  * ext4_get_inode_loc returns with an extra refcount against the inode's
3950  * underlying buffer_head on success. If 'in_mem' is true, we have all
3951  * data in memory that is needed to recreate the on-disk version of this
3952  * inode.
3953  */
3954 static int __ext4_get_inode_loc(struct inode *inode,
3955 				struct ext4_iloc *iloc, int in_mem)
3956 {
3957 	struct ext4_group_desc	*gdp;
3958 	struct buffer_head	*bh;
3959 	struct super_block	*sb = inode->i_sb;
3960 	ext4_fsblk_t		block;
3961 	int			inodes_per_block, inode_offset;
3962 
3963 	iloc->bh = NULL;
3964 	if (!ext4_valid_inum(sb, inode->i_ino))
3965 		return -EIO;
3966 
3967 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3968 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3969 	if (!gdp)
3970 		return -EIO;
3971 
3972 	/*
3973 	 * Figure out the offset within the block group inode table
3974 	 */
3975 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3976 	inode_offset = ((inode->i_ino - 1) %
3977 			EXT4_INODES_PER_GROUP(sb));
3978 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3979 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3980 
3981 	bh = sb_getblk(sb, block);
3982 	if (!bh) {
3983 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3984 			   "inode block - inode=%lu, block=%llu",
3985 			   inode->i_ino, block);
3986 		return -EIO;
3987 	}
3988 	if (!buffer_uptodate(bh)) {
3989 		lock_buffer(bh);
3990 
3991 		/*
3992 		 * If the buffer has the write error flag, we have failed
3993 		 * to write out another inode in the same block.  In this
3994 		 * case, we don't have to read the block because we may
3995 		 * read the old inode data successfully.
3996 		 */
3997 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3998 			set_buffer_uptodate(bh);
3999 
4000 		if (buffer_uptodate(bh)) {
4001 			/* someone brought it uptodate while we waited */
4002 			unlock_buffer(bh);
4003 			goto has_buffer;
4004 		}
4005 
4006 		/*
4007 		 * If we have all information of the inode in memory and this
4008 		 * is the only valid inode in the block, we need not read the
4009 		 * block.
4010 		 */
4011 		if (in_mem) {
4012 			struct buffer_head *bitmap_bh;
4013 			int i, start;
4014 
4015 			start = inode_offset & ~(inodes_per_block - 1);
4016 
4017 			/* Is the inode bitmap in cache? */
4018 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4019 			if (!bitmap_bh)
4020 				goto make_io;
4021 
4022 			/*
4023 			 * If the inode bitmap isn't in cache then the
4024 			 * optimisation may end up performing two reads instead
4025 			 * of one, so skip it.
4026 			 */
4027 			if (!buffer_uptodate(bitmap_bh)) {
4028 				brelse(bitmap_bh);
4029 				goto make_io;
4030 			}
4031 			for (i = start; i < start + inodes_per_block; i++) {
4032 				if (i == inode_offset)
4033 					continue;
4034 				if (ext4_test_bit(i, bitmap_bh->b_data))
4035 					break;
4036 			}
4037 			brelse(bitmap_bh);
4038 			if (i == start + inodes_per_block) {
4039 				/* all other inodes are free, so skip I/O */
4040 				memset(bh->b_data, 0, bh->b_size);
4041 				set_buffer_uptodate(bh);
4042 				unlock_buffer(bh);
4043 				goto has_buffer;
4044 			}
4045 		}
4046 
4047 make_io:
4048 		/*
4049 		 * If we need to do any I/O, try to pre-readahead extra
4050 		 * blocks from the inode table.
4051 		 */
4052 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4053 			ext4_fsblk_t b, end, table;
4054 			unsigned num;
4055 
4056 			table = ext4_inode_table(sb, gdp);
4057 			/* Make sure s_inode_readahead_blks is a power of 2 */
4058 			while (EXT4_SB(sb)->s_inode_readahead_blks &
4059 			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
4060 				EXT4_SB(sb)->s_inode_readahead_blks =
4061 				   (EXT4_SB(sb)->s_inode_readahead_blks &
4062 				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
4063 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4064 			if (table > b)
4065 				b = table;
4066 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4067 			num = EXT4_INODES_PER_GROUP(sb);
4068 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4070 				num -= ext4_itable_unused_count(sb, gdp);
4071 			table += num / inodes_per_block;
4072 			if (end > table)
4073 				end = table;
4074 			while (b <= end)
4075 				sb_breadahead(sb, b++);
4076 		}
4077 
4078 		/*
4079 		 * There are other valid inodes in the buffer, this inode
4080 		 * has in-inode xattrs, or we don't have this inode in memory.
4081 		 * Read the block from disk.
4082 		 */
4083 		get_bh(bh);
4084 		bh->b_end_io = end_buffer_read_sync;
4085 		submit_bh(READ_META, bh);
4086 		wait_on_buffer(bh);
4087 		if (!buffer_uptodate(bh)) {
4088 			ext4_error(sb, __func__,
4089 				   "unable to read inode block - inode=%lu, "
4090 				   "block=%llu", inode->i_ino, block);
4091 			brelse(bh);
4092 			return -EIO;
4093 		}
4094 	}
4095 has_buffer:
4096 	iloc->bh = bh;
4097 	return 0;
4098 }
4099 
4100 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4101 {
4102 	/* We have all inode data except xattrs in memory here. */
4103 	return __ext4_get_inode_loc(inode, iloc,
4104 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4105 }
4106 
4107 void ext4_set_inode_flags(struct inode *inode)
4108 {
4109 	unsigned int flags = EXT4_I(inode)->i_flags;
4110 
4111 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4112 	if (flags & EXT4_SYNC_FL)
4113 		inode->i_flags |= S_SYNC;
4114 	if (flags & EXT4_APPEND_FL)
4115 		inode->i_flags |= S_APPEND;
4116 	if (flags & EXT4_IMMUTABLE_FL)
4117 		inode->i_flags |= S_IMMUTABLE;
4118 	if (flags & EXT4_NOATIME_FL)
4119 		inode->i_flags |= S_NOATIME;
4120 	if (flags & EXT4_DIRSYNC_FL)
4121 		inode->i_flags |= S_DIRSYNC;
4122 }
4123 
4124 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4125 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4126 {
4127 	unsigned int flags = ei->vfs_inode.i_flags;
4128 
4129 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4130 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4131 	if (flags & S_SYNC)
4132 		ei->i_flags |= EXT4_SYNC_FL;
4133 	if (flags & S_APPEND)
4134 		ei->i_flags |= EXT4_APPEND_FL;
4135 	if (flags & S_IMMUTABLE)
4136 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4137 	if (flags & S_NOATIME)
4138 		ei->i_flags |= EXT4_NOATIME_FL;
4139 	if (flags & S_DIRSYNC)
4140 		ei->i_flags |= EXT4_DIRSYNC_FL;
4141 }
4142 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4143 					struct ext4_inode_info *ei)
4144 {
4145 	blkcnt_t i_blocks ;
4146 	struct inode *inode = &(ei->vfs_inode);
4147 	struct super_block *sb = inode->i_sb;
4148 
4149 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4150 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4151 		/* we are using combined 48 bit field */
4152 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4153 					le32_to_cpu(raw_inode->i_blocks_lo);
4154 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4155 			/* i_blocks represent file system block size */
4156 			return i_blocks  << (inode->i_blkbits - 9);
4157 		} else {
4158 			return i_blocks;
4159 		}
4160 	} else {
4161 		return le32_to_cpu(raw_inode->i_blocks_lo);
4162 	}
4163 }
4164 
4165 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4166 {
4167 	struct ext4_iloc iloc;
4168 	struct ext4_inode *raw_inode;
4169 	struct ext4_inode_info *ei;
4170 	struct buffer_head *bh;
4171 	struct inode *inode;
4172 	long ret;
4173 	int block;
4174 
4175 	inode = iget_locked(sb, ino);
4176 	if (!inode)
4177 		return ERR_PTR(-ENOMEM);
4178 	if (!(inode->i_state & I_NEW))
4179 		return inode;
4180 
4181 	ei = EXT4_I(inode);
4182 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4183 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4184 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4185 #endif
4186 
4187 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4188 	if (ret < 0)
4189 		goto bad_inode;
4190 	bh = iloc.bh;
4191 	raw_inode = ext4_raw_inode(&iloc);
4192 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4193 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4194 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4195 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4196 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4197 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4198 	}
4199 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4200 
4201 	ei->i_state = 0;
4202 	ei->i_dir_start_lookup = 0;
4203 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4204 	/* We now have enough fields to check if the inode was active or not.
4205 	 * This is needed because nfsd might try to access dead inodes
4206 	 * the test is that same one that e2fsck uses
4207 	 * NeilBrown 1999oct15
4208 	 */
4209 	if (inode->i_nlink == 0) {
4210 		if (inode->i_mode == 0 ||
4211 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4212 			/* this inode is deleted */
4213 			brelse(bh);
4214 			ret = -ESTALE;
4215 			goto bad_inode;
4216 		}
4217 		/* The only unlinked inodes we let through here have
4218 		 * valid i_mode and are being read by the orphan
4219 		 * recovery code: that's fine, we're about to complete
4220 		 * the process of deleting those. */
4221 	}
4222 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4223 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4224 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4225 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4226 	    cpu_to_le32(EXT4_OS_HURD)) {
4227 		ei->i_file_acl |=
4228 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4229 	}
4230 	inode->i_size = ext4_isize(raw_inode);
4231 	ei->i_disksize = inode->i_size;
4232 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4233 	ei->i_block_group = iloc.block_group;
4234 	/*
4235 	 * NOTE! The in-memory inode i_data array is in little-endian order
4236 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4237 	 */
4238 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4239 		ei->i_data[block] = raw_inode->i_block[block];
4240 	INIT_LIST_HEAD(&ei->i_orphan);
4241 
4242 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4243 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4244 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4245 		    EXT4_INODE_SIZE(inode->i_sb)) {
4246 			brelse(bh);
4247 			ret = -EIO;
4248 			goto bad_inode;
4249 		}
4250 		if (ei->i_extra_isize == 0) {
4251 			/* The extra space is currently unused. Use it. */
4252 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4253 					    EXT4_GOOD_OLD_INODE_SIZE;
4254 		} else {
4255 			__le32 *magic = (void *)raw_inode +
4256 					EXT4_GOOD_OLD_INODE_SIZE +
4257 					ei->i_extra_isize;
4258 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4259 				 ei->i_state |= EXT4_STATE_XATTR;
4260 		}
4261 	} else
4262 		ei->i_extra_isize = 0;
4263 
4264 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4265 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4266 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4267 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4268 
4269 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4270 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4271 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4272 			inode->i_version |=
4273 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4274 	}
4275 
4276 	if (S_ISREG(inode->i_mode)) {
4277 		inode->i_op = &ext4_file_inode_operations;
4278 		inode->i_fop = &ext4_file_operations;
4279 		ext4_set_aops(inode);
4280 	} else if (S_ISDIR(inode->i_mode)) {
4281 		inode->i_op = &ext4_dir_inode_operations;
4282 		inode->i_fop = &ext4_dir_operations;
4283 	} else if (S_ISLNK(inode->i_mode)) {
4284 		if (ext4_inode_is_fast_symlink(inode)) {
4285 			inode->i_op = &ext4_fast_symlink_inode_operations;
4286 			nd_terminate_link(ei->i_data, inode->i_size,
4287 				sizeof(ei->i_data) - 1);
4288 		} else {
4289 			inode->i_op = &ext4_symlink_inode_operations;
4290 			ext4_set_aops(inode);
4291 		}
4292 	} else {
4293 		inode->i_op = &ext4_special_inode_operations;
4294 		if (raw_inode->i_block[0])
4295 			init_special_inode(inode, inode->i_mode,
4296 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4297 		else
4298 			init_special_inode(inode, inode->i_mode,
4299 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4300 	}
4301 	brelse(iloc.bh);
4302 	ext4_set_inode_flags(inode);
4303 	unlock_new_inode(inode);
4304 	return inode;
4305 
4306 bad_inode:
4307 	iget_failed(inode);
4308 	return ERR_PTR(ret);
4309 }
4310 
4311 static int ext4_inode_blocks_set(handle_t *handle,
4312 				struct ext4_inode *raw_inode,
4313 				struct ext4_inode_info *ei)
4314 {
4315 	struct inode *inode = &(ei->vfs_inode);
4316 	u64 i_blocks = inode->i_blocks;
4317 	struct super_block *sb = inode->i_sb;
4318 
4319 	if (i_blocks <= ~0U) {
4320 		/*
4321 		 * i_blocks can be represnted in a 32 bit variable
4322 		 * as multiple of 512 bytes
4323 		 */
4324 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4325 		raw_inode->i_blocks_high = 0;
4326 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4327 		return 0;
4328 	}
4329 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4330 		return -EFBIG;
4331 
4332 	if (i_blocks <= 0xffffffffffffULL) {
4333 		/*
4334 		 * i_blocks can be represented in a 48 bit variable
4335 		 * as multiple of 512 bytes
4336 		 */
4337 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4338 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4339 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4340 	} else {
4341 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4342 		/* i_block is stored in file system block size */
4343 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4344 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4345 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4346 	}
4347 	return 0;
4348 }
4349 
4350 /*
4351  * Post the struct inode info into an on-disk inode location in the
4352  * buffer-cache.  This gobbles the caller's reference to the
4353  * buffer_head in the inode location struct.
4354  *
4355  * The caller must have write access to iloc->bh.
4356  */
4357 static int ext4_do_update_inode(handle_t *handle,
4358 				struct inode *inode,
4359 				struct ext4_iloc *iloc)
4360 {
4361 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4362 	struct ext4_inode_info *ei = EXT4_I(inode);
4363 	struct buffer_head *bh = iloc->bh;
4364 	int err = 0, rc, block;
4365 
4366 	/* For fields not not tracking in the in-memory inode,
4367 	 * initialise them to zero for new inodes. */
4368 	if (ei->i_state & EXT4_STATE_NEW)
4369 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4370 
4371 	ext4_get_inode_flags(ei);
4372 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4373 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4374 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4375 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4376 /*
4377  * Fix up interoperability with old kernels. Otherwise, old inodes get
4378  * re-used with the upper 16 bits of the uid/gid intact
4379  */
4380 		if (!ei->i_dtime) {
4381 			raw_inode->i_uid_high =
4382 				cpu_to_le16(high_16_bits(inode->i_uid));
4383 			raw_inode->i_gid_high =
4384 				cpu_to_le16(high_16_bits(inode->i_gid));
4385 		} else {
4386 			raw_inode->i_uid_high = 0;
4387 			raw_inode->i_gid_high = 0;
4388 		}
4389 	} else {
4390 		raw_inode->i_uid_low =
4391 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4392 		raw_inode->i_gid_low =
4393 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4394 		raw_inode->i_uid_high = 0;
4395 		raw_inode->i_gid_high = 0;
4396 	}
4397 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4398 
4399 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4400 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4401 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4402 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4403 
4404 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4405 		goto out_brelse;
4406 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4407 	/* clear the migrate flag in the raw_inode */
4408 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4409 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4410 	    cpu_to_le32(EXT4_OS_HURD))
4411 		raw_inode->i_file_acl_high =
4412 			cpu_to_le16(ei->i_file_acl >> 32);
4413 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4414 	ext4_isize_set(raw_inode, ei->i_disksize);
4415 	if (ei->i_disksize > 0x7fffffffULL) {
4416 		struct super_block *sb = inode->i_sb;
4417 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4418 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4419 				EXT4_SB(sb)->s_es->s_rev_level ==
4420 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4421 			/* If this is the first large file
4422 			 * created, add a flag to the superblock.
4423 			 */
4424 			err = ext4_journal_get_write_access(handle,
4425 					EXT4_SB(sb)->s_sbh);
4426 			if (err)
4427 				goto out_brelse;
4428 			ext4_update_dynamic_rev(sb);
4429 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4430 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4431 			sb->s_dirt = 1;
4432 			ext4_handle_sync(handle);
4433 			err = ext4_handle_dirty_metadata(handle, inode,
4434 					EXT4_SB(sb)->s_sbh);
4435 		}
4436 	}
4437 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4438 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4439 		if (old_valid_dev(inode->i_rdev)) {
4440 			raw_inode->i_block[0] =
4441 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4442 			raw_inode->i_block[1] = 0;
4443 		} else {
4444 			raw_inode->i_block[0] = 0;
4445 			raw_inode->i_block[1] =
4446 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4447 			raw_inode->i_block[2] = 0;
4448 		}
4449 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4450 		raw_inode->i_block[block] = ei->i_data[block];
4451 
4452 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4453 	if (ei->i_extra_isize) {
4454 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4455 			raw_inode->i_version_hi =
4456 			cpu_to_le32(inode->i_version >> 32);
4457 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4458 	}
4459 
4460 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4461 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4462 	if (!err)
4463 		err = rc;
4464 	ei->i_state &= ~EXT4_STATE_NEW;
4465 
4466 out_brelse:
4467 	brelse(bh);
4468 	ext4_std_error(inode->i_sb, err);
4469 	return err;
4470 }
4471 
4472 /*
4473  * ext4_write_inode()
4474  *
4475  * We are called from a few places:
4476  *
4477  * - Within generic_file_write() for O_SYNC files.
4478  *   Here, there will be no transaction running. We wait for any running
4479  *   trasnaction to commit.
4480  *
4481  * - Within sys_sync(), kupdate and such.
4482  *   We wait on commit, if tol to.
4483  *
4484  * - Within prune_icache() (PF_MEMALLOC == true)
4485  *   Here we simply return.  We can't afford to block kswapd on the
4486  *   journal commit.
4487  *
4488  * In all cases it is actually safe for us to return without doing anything,
4489  * because the inode has been copied into a raw inode buffer in
4490  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4491  * knfsd.
4492  *
4493  * Note that we are absolutely dependent upon all inode dirtiers doing the
4494  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4495  * which we are interested.
4496  *
4497  * It would be a bug for them to not do this.  The code:
4498  *
4499  *	mark_inode_dirty(inode)
4500  *	stuff();
4501  *	inode->i_size = expr;
4502  *
4503  * is in error because a kswapd-driven write_inode() could occur while
4504  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4505  * will no longer be on the superblock's dirty inode list.
4506  */
4507 int ext4_write_inode(struct inode *inode, int wait)
4508 {
4509 	if (current->flags & PF_MEMALLOC)
4510 		return 0;
4511 
4512 	if (ext4_journal_current_handle()) {
4513 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4514 		dump_stack();
4515 		return -EIO;
4516 	}
4517 
4518 	if (!wait)
4519 		return 0;
4520 
4521 	return ext4_force_commit(inode->i_sb);
4522 }
4523 
4524 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4525 {
4526 	int err = 0;
4527 
4528 	mark_buffer_dirty(bh);
4529 	if (inode && inode_needs_sync(inode)) {
4530 		sync_dirty_buffer(bh);
4531 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
4532 			ext4_error(inode->i_sb, __func__,
4533 				   "IO error syncing inode, "
4534 				   "inode=%lu, block=%llu",
4535 				   inode->i_ino,
4536 				   (unsigned long long)bh->b_blocknr);
4537 			err = -EIO;
4538 		}
4539 	}
4540 	return err;
4541 }
4542 
4543 /*
4544  * ext4_setattr()
4545  *
4546  * Called from notify_change.
4547  *
4548  * We want to trap VFS attempts to truncate the file as soon as
4549  * possible.  In particular, we want to make sure that when the VFS
4550  * shrinks i_size, we put the inode on the orphan list and modify
4551  * i_disksize immediately, so that during the subsequent flushing of
4552  * dirty pages and freeing of disk blocks, we can guarantee that any
4553  * commit will leave the blocks being flushed in an unused state on
4554  * disk.  (On recovery, the inode will get truncated and the blocks will
4555  * be freed, so we have a strong guarantee that no future commit will
4556  * leave these blocks visible to the user.)
4557  *
4558  * Another thing we have to assure is that if we are in ordered mode
4559  * and inode is still attached to the committing transaction, we must
4560  * we start writeout of all the dirty pages which are being truncated.
4561  * This way we are sure that all the data written in the previous
4562  * transaction are already on disk (truncate waits for pages under
4563  * writeback).
4564  *
4565  * Called with inode->i_mutex down.
4566  */
4567 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4568 {
4569 	struct inode *inode = dentry->d_inode;
4570 	int error, rc = 0;
4571 	const unsigned int ia_valid = attr->ia_valid;
4572 
4573 	error = inode_change_ok(inode, attr);
4574 	if (error)
4575 		return error;
4576 
4577 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4578 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4579 		handle_t *handle;
4580 
4581 		/* (user+group)*(old+new) structure, inode write (sb,
4582 		 * inode block, ? - but truncate inode update has it) */
4583 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4584 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4585 		if (IS_ERR(handle)) {
4586 			error = PTR_ERR(handle);
4587 			goto err_out;
4588 		}
4589 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4590 		if (error) {
4591 			ext4_journal_stop(handle);
4592 			return error;
4593 		}
4594 		/* Update corresponding info in inode so that everything is in
4595 		 * one transaction */
4596 		if (attr->ia_valid & ATTR_UID)
4597 			inode->i_uid = attr->ia_uid;
4598 		if (attr->ia_valid & ATTR_GID)
4599 			inode->i_gid = attr->ia_gid;
4600 		error = ext4_mark_inode_dirty(handle, inode);
4601 		ext4_journal_stop(handle);
4602 	}
4603 
4604 	if (attr->ia_valid & ATTR_SIZE) {
4605 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4606 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4607 
4608 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4609 				error = -EFBIG;
4610 				goto err_out;
4611 			}
4612 		}
4613 	}
4614 
4615 	if (S_ISREG(inode->i_mode) &&
4616 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4617 		handle_t *handle;
4618 
4619 		handle = ext4_journal_start(inode, 3);
4620 		if (IS_ERR(handle)) {
4621 			error = PTR_ERR(handle);
4622 			goto err_out;
4623 		}
4624 
4625 		error = ext4_orphan_add(handle, inode);
4626 		EXT4_I(inode)->i_disksize = attr->ia_size;
4627 		rc = ext4_mark_inode_dirty(handle, inode);
4628 		if (!error)
4629 			error = rc;
4630 		ext4_journal_stop(handle);
4631 
4632 		if (ext4_should_order_data(inode)) {
4633 			error = ext4_begin_ordered_truncate(inode,
4634 							    attr->ia_size);
4635 			if (error) {
4636 				/* Do as much error cleanup as possible */
4637 				handle = ext4_journal_start(inode, 3);
4638 				if (IS_ERR(handle)) {
4639 					ext4_orphan_del(NULL, inode);
4640 					goto err_out;
4641 				}
4642 				ext4_orphan_del(handle, inode);
4643 				ext4_journal_stop(handle);
4644 				goto err_out;
4645 			}
4646 		}
4647 	}
4648 
4649 	rc = inode_setattr(inode, attr);
4650 
4651 	/* If inode_setattr's call to ext4_truncate failed to get a
4652 	 * transaction handle at all, we need to clean up the in-core
4653 	 * orphan list manually. */
4654 	if (inode->i_nlink)
4655 		ext4_orphan_del(NULL, inode);
4656 
4657 	if (!rc && (ia_valid & ATTR_MODE))
4658 		rc = ext4_acl_chmod(inode);
4659 
4660 err_out:
4661 	ext4_std_error(inode->i_sb, error);
4662 	if (!error)
4663 		error = rc;
4664 	return error;
4665 }
4666 
4667 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4668 		 struct kstat *stat)
4669 {
4670 	struct inode *inode;
4671 	unsigned long delalloc_blocks;
4672 
4673 	inode = dentry->d_inode;
4674 	generic_fillattr(inode, stat);
4675 
4676 	/*
4677 	 * We can't update i_blocks if the block allocation is delayed
4678 	 * otherwise in the case of system crash before the real block
4679 	 * allocation is done, we will have i_blocks inconsistent with
4680 	 * on-disk file blocks.
4681 	 * We always keep i_blocks updated together with real
4682 	 * allocation. But to not confuse with user, stat
4683 	 * will return the blocks that include the delayed allocation
4684 	 * blocks for this file.
4685 	 */
4686 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4687 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4688 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4689 
4690 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4691 	return 0;
4692 }
4693 
4694 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4695 				      int chunk)
4696 {
4697 	int indirects;
4698 
4699 	/* if nrblocks are contiguous */
4700 	if (chunk) {
4701 		/*
4702 		 * With N contiguous data blocks, it need at most
4703 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4704 		 * 2 dindirect blocks
4705 		 * 1 tindirect block
4706 		 */
4707 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4708 		return indirects + 3;
4709 	}
4710 	/*
4711 	 * if nrblocks are not contiguous, worse case, each block touch
4712 	 * a indirect block, and each indirect block touch a double indirect
4713 	 * block, plus a triple indirect block
4714 	 */
4715 	indirects = nrblocks * 2 + 1;
4716 	return indirects;
4717 }
4718 
4719 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4720 {
4721 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4722 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4723 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4724 }
4725 
4726 /*
4727  * Account for index blocks, block groups bitmaps and block group
4728  * descriptor blocks if modify datablocks and index blocks
4729  * worse case, the indexs blocks spread over different block groups
4730  *
4731  * If datablocks are discontiguous, they are possible to spread over
4732  * different block groups too. If they are contiugous, with flexbg,
4733  * they could still across block group boundary.
4734  *
4735  * Also account for superblock, inode, quota and xattr blocks
4736  */
4737 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4738 {
4739 	int groups, gdpblocks;
4740 	int idxblocks;
4741 	int ret = 0;
4742 
4743 	/*
4744 	 * How many index blocks need to touch to modify nrblocks?
4745 	 * The "Chunk" flag indicating whether the nrblocks is
4746 	 * physically contiguous on disk
4747 	 *
4748 	 * For Direct IO and fallocate, they calls get_block to allocate
4749 	 * one single extent at a time, so they could set the "Chunk" flag
4750 	 */
4751 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4752 
4753 	ret = idxblocks;
4754 
4755 	/*
4756 	 * Now let's see how many group bitmaps and group descriptors need
4757 	 * to account
4758 	 */
4759 	groups = idxblocks;
4760 	if (chunk)
4761 		groups += 1;
4762 	else
4763 		groups += nrblocks;
4764 
4765 	gdpblocks = groups;
4766 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4767 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4768 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4769 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4770 
4771 	/* bitmaps and block group descriptor blocks */
4772 	ret += groups + gdpblocks;
4773 
4774 	/* Blocks for super block, inode, quota and xattr blocks */
4775 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4776 
4777 	return ret;
4778 }
4779 
4780 /*
4781  * Calulate the total number of credits to reserve to fit
4782  * the modification of a single pages into a single transaction,
4783  * which may include multiple chunks of block allocations.
4784  *
4785  * This could be called via ext4_write_begin()
4786  *
4787  * We need to consider the worse case, when
4788  * one new block per extent.
4789  */
4790 int ext4_writepage_trans_blocks(struct inode *inode)
4791 {
4792 	int bpp = ext4_journal_blocks_per_page(inode);
4793 	int ret;
4794 
4795 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4796 
4797 	/* Account for data blocks for journalled mode */
4798 	if (ext4_should_journal_data(inode))
4799 		ret += bpp;
4800 	return ret;
4801 }
4802 
4803 /*
4804  * Calculate the journal credits for a chunk of data modification.
4805  *
4806  * This is called from DIO, fallocate or whoever calling
4807  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4808  *
4809  * journal buffers for data blocks are not included here, as DIO
4810  * and fallocate do no need to journal data buffers.
4811  */
4812 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4813 {
4814 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4815 }
4816 
4817 /*
4818  * The caller must have previously called ext4_reserve_inode_write().
4819  * Give this, we know that the caller already has write access to iloc->bh.
4820  */
4821 int ext4_mark_iloc_dirty(handle_t *handle,
4822 		struct inode *inode, struct ext4_iloc *iloc)
4823 {
4824 	int err = 0;
4825 
4826 	if (test_opt(inode->i_sb, I_VERSION))
4827 		inode_inc_iversion(inode);
4828 
4829 	/* the do_update_inode consumes one bh->b_count */
4830 	get_bh(iloc->bh);
4831 
4832 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4833 	err = ext4_do_update_inode(handle, inode, iloc);
4834 	put_bh(iloc->bh);
4835 	return err;
4836 }
4837 
4838 /*
4839  * On success, We end up with an outstanding reference count against
4840  * iloc->bh.  This _must_ be cleaned up later.
4841  */
4842 
4843 int
4844 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4845 			 struct ext4_iloc *iloc)
4846 {
4847 	int err;
4848 
4849 	err = ext4_get_inode_loc(inode, iloc);
4850 	if (!err) {
4851 		BUFFER_TRACE(iloc->bh, "get_write_access");
4852 		err = ext4_journal_get_write_access(handle, iloc->bh);
4853 		if (err) {
4854 			brelse(iloc->bh);
4855 			iloc->bh = NULL;
4856 		}
4857 	}
4858 	ext4_std_error(inode->i_sb, err);
4859 	return err;
4860 }
4861 
4862 /*
4863  * Expand an inode by new_extra_isize bytes.
4864  * Returns 0 on success or negative error number on failure.
4865  */
4866 static int ext4_expand_extra_isize(struct inode *inode,
4867 				   unsigned int new_extra_isize,
4868 				   struct ext4_iloc iloc,
4869 				   handle_t *handle)
4870 {
4871 	struct ext4_inode *raw_inode;
4872 	struct ext4_xattr_ibody_header *header;
4873 	struct ext4_xattr_entry *entry;
4874 
4875 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4876 		return 0;
4877 
4878 	raw_inode = ext4_raw_inode(&iloc);
4879 
4880 	header = IHDR(inode, raw_inode);
4881 	entry = IFIRST(header);
4882 
4883 	/* No extended attributes present */
4884 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4885 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4886 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4887 			new_extra_isize);
4888 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4889 		return 0;
4890 	}
4891 
4892 	/* try to expand with EAs present */
4893 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4894 					  raw_inode, handle);
4895 }
4896 
4897 /*
4898  * What we do here is to mark the in-core inode as clean with respect to inode
4899  * dirtiness (it may still be data-dirty).
4900  * This means that the in-core inode may be reaped by prune_icache
4901  * without having to perform any I/O.  This is a very good thing,
4902  * because *any* task may call prune_icache - even ones which
4903  * have a transaction open against a different journal.
4904  *
4905  * Is this cheating?  Not really.  Sure, we haven't written the
4906  * inode out, but prune_icache isn't a user-visible syncing function.
4907  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4908  * we start and wait on commits.
4909  *
4910  * Is this efficient/effective?  Well, we're being nice to the system
4911  * by cleaning up our inodes proactively so they can be reaped
4912  * without I/O.  But we are potentially leaving up to five seconds'
4913  * worth of inodes floating about which prune_icache wants us to
4914  * write out.  One way to fix that would be to get prune_icache()
4915  * to do a write_super() to free up some memory.  It has the desired
4916  * effect.
4917  */
4918 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4919 {
4920 	struct ext4_iloc iloc;
4921 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4922 	static unsigned int mnt_count;
4923 	int err, ret;
4924 
4925 	might_sleep();
4926 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4927 	if (ext4_handle_valid(handle) &&
4928 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4929 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4930 		/*
4931 		 * We need extra buffer credits since we may write into EA block
4932 		 * with this same handle. If journal_extend fails, then it will
4933 		 * only result in a minor loss of functionality for that inode.
4934 		 * If this is felt to be critical, then e2fsck should be run to
4935 		 * force a large enough s_min_extra_isize.
4936 		 */
4937 		if ((jbd2_journal_extend(handle,
4938 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4939 			ret = ext4_expand_extra_isize(inode,
4940 						      sbi->s_want_extra_isize,
4941 						      iloc, handle);
4942 			if (ret) {
4943 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4944 				if (mnt_count !=
4945 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4946 					ext4_warning(inode->i_sb, __func__,
4947 					"Unable to expand inode %lu. Delete"
4948 					" some EAs or run e2fsck.",
4949 					inode->i_ino);
4950 					mnt_count =
4951 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4952 				}
4953 			}
4954 		}
4955 	}
4956 	if (!err)
4957 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4958 	return err;
4959 }
4960 
4961 /*
4962  * ext4_dirty_inode() is called from __mark_inode_dirty()
4963  *
4964  * We're really interested in the case where a file is being extended.
4965  * i_size has been changed by generic_commit_write() and we thus need
4966  * to include the updated inode in the current transaction.
4967  *
4968  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4969  * are allocated to the file.
4970  *
4971  * If the inode is marked synchronous, we don't honour that here - doing
4972  * so would cause a commit on atime updates, which we don't bother doing.
4973  * We handle synchronous inodes at the highest possible level.
4974  */
4975 void ext4_dirty_inode(struct inode *inode)
4976 {
4977 	handle_t *current_handle = ext4_journal_current_handle();
4978 	handle_t *handle;
4979 
4980 	if (!ext4_handle_valid(current_handle)) {
4981 		ext4_mark_inode_dirty(current_handle, inode);
4982 		return;
4983 	}
4984 
4985 	handle = ext4_journal_start(inode, 2);
4986 	if (IS_ERR(handle))
4987 		goto out;
4988 	if (current_handle &&
4989 		current_handle->h_transaction != handle->h_transaction) {
4990 		/* This task has a transaction open against a different fs */
4991 		printk(KERN_EMERG "%s: transactions do not match!\n",
4992 		       __func__);
4993 	} else {
4994 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4995 				current_handle);
4996 		ext4_mark_inode_dirty(handle, inode);
4997 	}
4998 	ext4_journal_stop(handle);
4999 out:
5000 	return;
5001 }
5002 
5003 #if 0
5004 /*
5005  * Bind an inode's backing buffer_head into this transaction, to prevent
5006  * it from being flushed to disk early.  Unlike
5007  * ext4_reserve_inode_write, this leaves behind no bh reference and
5008  * returns no iloc structure, so the caller needs to repeat the iloc
5009  * lookup to mark the inode dirty later.
5010  */
5011 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5012 {
5013 	struct ext4_iloc iloc;
5014 
5015 	int err = 0;
5016 	if (handle) {
5017 		err = ext4_get_inode_loc(inode, &iloc);
5018 		if (!err) {
5019 			BUFFER_TRACE(iloc.bh, "get_write_access");
5020 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5021 			if (!err)
5022 				err = ext4_handle_dirty_metadata(handle,
5023 								 inode,
5024 								 iloc.bh);
5025 			brelse(iloc.bh);
5026 		}
5027 	}
5028 	ext4_std_error(inode->i_sb, err);
5029 	return err;
5030 }
5031 #endif
5032 
5033 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5034 {
5035 	journal_t *journal;
5036 	handle_t *handle;
5037 	int err;
5038 
5039 	/*
5040 	 * We have to be very careful here: changing a data block's
5041 	 * journaling status dynamically is dangerous.  If we write a
5042 	 * data block to the journal, change the status and then delete
5043 	 * that block, we risk forgetting to revoke the old log record
5044 	 * from the journal and so a subsequent replay can corrupt data.
5045 	 * So, first we make sure that the journal is empty and that
5046 	 * nobody is changing anything.
5047 	 */
5048 
5049 	journal = EXT4_JOURNAL(inode);
5050 	if (!journal)
5051 		return 0;
5052 	if (is_journal_aborted(journal))
5053 		return -EROFS;
5054 
5055 	jbd2_journal_lock_updates(journal);
5056 	jbd2_journal_flush(journal);
5057 
5058 	/*
5059 	 * OK, there are no updates running now, and all cached data is
5060 	 * synced to disk.  We are now in a completely consistent state
5061 	 * which doesn't have anything in the journal, and we know that
5062 	 * no filesystem updates are running, so it is safe to modify
5063 	 * the inode's in-core data-journaling state flag now.
5064 	 */
5065 
5066 	if (val)
5067 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5068 	else
5069 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5070 	ext4_set_aops(inode);
5071 
5072 	jbd2_journal_unlock_updates(journal);
5073 
5074 	/* Finally we can mark the inode as dirty. */
5075 
5076 	handle = ext4_journal_start(inode, 1);
5077 	if (IS_ERR(handle))
5078 		return PTR_ERR(handle);
5079 
5080 	err = ext4_mark_inode_dirty(handle, inode);
5081 	ext4_handle_sync(handle);
5082 	ext4_journal_stop(handle);
5083 	ext4_std_error(inode->i_sb, err);
5084 
5085 	return err;
5086 }
5087 
5088 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5089 {
5090 	return !buffer_mapped(bh);
5091 }
5092 
5093 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5094 {
5095 	loff_t size;
5096 	unsigned long len;
5097 	int ret = -EINVAL;
5098 	void *fsdata;
5099 	struct file *file = vma->vm_file;
5100 	struct inode *inode = file->f_path.dentry->d_inode;
5101 	struct address_space *mapping = inode->i_mapping;
5102 
5103 	/*
5104 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5105 	 * get i_mutex because we are already holding mmap_sem.
5106 	 */
5107 	down_read(&inode->i_alloc_sem);
5108 	size = i_size_read(inode);
5109 	if (page->mapping != mapping || size <= page_offset(page)
5110 	    || !PageUptodate(page)) {
5111 		/* page got truncated from under us? */
5112 		goto out_unlock;
5113 	}
5114 	ret = 0;
5115 	if (PageMappedToDisk(page))
5116 		goto out_unlock;
5117 
5118 	if (page->index == size >> PAGE_CACHE_SHIFT)
5119 		len = size & ~PAGE_CACHE_MASK;
5120 	else
5121 		len = PAGE_CACHE_SIZE;
5122 
5123 	if (page_has_buffers(page)) {
5124 		/* return if we have all the buffers mapped */
5125 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5126 				       ext4_bh_unmapped))
5127 			goto out_unlock;
5128 	}
5129 	/*
5130 	 * OK, we need to fill the hole... Do write_begin write_end
5131 	 * to do block allocation/reservation.We are not holding
5132 	 * inode.i__mutex here. That allow * parallel write_begin,
5133 	 * write_end call. lock_page prevent this from happening
5134 	 * on the same page though
5135 	 */
5136 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5137 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5138 	if (ret < 0)
5139 		goto out_unlock;
5140 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5141 			len, len, page, fsdata);
5142 	if (ret < 0)
5143 		goto out_unlock;
5144 	ret = 0;
5145 out_unlock:
5146 	up_read(&inode->i_alloc_sem);
5147 	return ret;
5148 }
5149