1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include "ext4_jbd2.h" 41 #include "xattr.h" 42 #include "acl.h" 43 #include "ext4_extents.h" 44 45 #define MPAGE_DA_EXTENT_TAIL 0x01 46 47 static inline int ext4_begin_ordered_truncate(struct inode *inode, 48 loff_t new_size) 49 { 50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 51 new_size); 52 } 53 54 static void ext4_invalidatepage(struct page *page, unsigned long offset); 55 56 /* 57 * Test whether an inode is a fast symlink. 58 */ 59 static int ext4_inode_is_fast_symlink(struct inode *inode) 60 { 61 int ea_blocks = EXT4_I(inode)->i_file_acl ? 62 (inode->i_sb->s_blocksize >> 9) : 0; 63 64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 65 } 66 67 /* 68 * The ext4 forget function must perform a revoke if we are freeing data 69 * which has been journaled. Metadata (eg. indirect blocks) must be 70 * revoked in all cases. 71 * 72 * "bh" may be NULL: a metadata block may have been freed from memory 73 * but there may still be a record of it in the journal, and that record 74 * still needs to be revoked. 75 * 76 * If the handle isn't valid we're not journaling so there's nothing to do. 77 */ 78 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 79 struct buffer_head *bh, ext4_fsblk_t blocknr) 80 { 81 int err; 82 83 if (!ext4_handle_valid(handle)) 84 return 0; 85 86 might_sleep(); 87 88 BUFFER_TRACE(bh, "enter"); 89 90 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 91 "data mode %lx\n", 92 bh, is_metadata, inode->i_mode, 93 test_opt(inode->i_sb, DATA_FLAGS)); 94 95 /* Never use the revoke function if we are doing full data 96 * journaling: there is no need to, and a V1 superblock won't 97 * support it. Otherwise, only skip the revoke on un-journaled 98 * data blocks. */ 99 100 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 101 (!is_metadata && !ext4_should_journal_data(inode))) { 102 if (bh) { 103 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 104 return ext4_journal_forget(handle, bh); 105 } 106 return 0; 107 } 108 109 /* 110 * data!=journal && (is_metadata || should_journal_data(inode)) 111 */ 112 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 113 err = ext4_journal_revoke(handle, blocknr, bh); 114 if (err) 115 ext4_abort(inode->i_sb, __func__, 116 "error %d when attempting revoke", err); 117 BUFFER_TRACE(bh, "exit"); 118 return err; 119 } 120 121 /* 122 * Work out how many blocks we need to proceed with the next chunk of a 123 * truncate transaction. 124 */ 125 static unsigned long blocks_for_truncate(struct inode *inode) 126 { 127 ext4_lblk_t needed; 128 129 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 130 131 /* Give ourselves just enough room to cope with inodes in which 132 * i_blocks is corrupt: we've seen disk corruptions in the past 133 * which resulted in random data in an inode which looked enough 134 * like a regular file for ext4 to try to delete it. Things 135 * will go a bit crazy if that happens, but at least we should 136 * try not to panic the whole kernel. */ 137 if (needed < 2) 138 needed = 2; 139 140 /* But we need to bound the transaction so we don't overflow the 141 * journal. */ 142 if (needed > EXT4_MAX_TRANS_DATA) 143 needed = EXT4_MAX_TRANS_DATA; 144 145 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 146 } 147 148 /* 149 * Truncate transactions can be complex and absolutely huge. So we need to 150 * be able to restart the transaction at a conventient checkpoint to make 151 * sure we don't overflow the journal. 152 * 153 * start_transaction gets us a new handle for a truncate transaction, 154 * and extend_transaction tries to extend the existing one a bit. If 155 * extend fails, we need to propagate the failure up and restart the 156 * transaction in the top-level truncate loop. --sct 157 */ 158 static handle_t *start_transaction(struct inode *inode) 159 { 160 handle_t *result; 161 162 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 163 if (!IS_ERR(result)) 164 return result; 165 166 ext4_std_error(inode->i_sb, PTR_ERR(result)); 167 return result; 168 } 169 170 /* 171 * Try to extend this transaction for the purposes of truncation. 172 * 173 * Returns 0 if we managed to create more room. If we can't create more 174 * room, and the transaction must be restarted we return 1. 175 */ 176 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 177 { 178 if (!ext4_handle_valid(handle)) 179 return 0; 180 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 181 return 0; 182 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 183 return 0; 184 return 1; 185 } 186 187 /* 188 * Restart the transaction associated with *handle. This does a commit, 189 * so before we call here everything must be consistently dirtied against 190 * this transaction. 191 */ 192 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 193 { 194 BUG_ON(EXT4_JOURNAL(inode) == NULL); 195 jbd_debug(2, "restarting handle %p\n", handle); 196 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 197 } 198 199 /* 200 * Called at the last iput() if i_nlink is zero. 201 */ 202 void ext4_delete_inode(struct inode *inode) 203 { 204 handle_t *handle; 205 int err; 206 207 if (ext4_should_order_data(inode)) 208 ext4_begin_ordered_truncate(inode, 0); 209 truncate_inode_pages(&inode->i_data, 0); 210 211 if (is_bad_inode(inode)) 212 goto no_delete; 213 214 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 215 if (IS_ERR(handle)) { 216 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 217 /* 218 * If we're going to skip the normal cleanup, we still need to 219 * make sure that the in-core orphan linked list is properly 220 * cleaned up. 221 */ 222 ext4_orphan_del(NULL, inode); 223 goto no_delete; 224 } 225 226 if (IS_SYNC(inode)) 227 ext4_handle_sync(handle); 228 inode->i_size = 0; 229 err = ext4_mark_inode_dirty(handle, inode); 230 if (err) { 231 ext4_warning(inode->i_sb, __func__, 232 "couldn't mark inode dirty (err %d)", err); 233 goto stop_handle; 234 } 235 if (inode->i_blocks) 236 ext4_truncate(inode); 237 238 /* 239 * ext4_ext_truncate() doesn't reserve any slop when it 240 * restarts journal transactions; therefore there may not be 241 * enough credits left in the handle to remove the inode from 242 * the orphan list and set the dtime field. 243 */ 244 if (!ext4_handle_has_enough_credits(handle, 3)) { 245 err = ext4_journal_extend(handle, 3); 246 if (err > 0) 247 err = ext4_journal_restart(handle, 3); 248 if (err != 0) { 249 ext4_warning(inode->i_sb, __func__, 250 "couldn't extend journal (err %d)", err); 251 stop_handle: 252 ext4_journal_stop(handle); 253 goto no_delete; 254 } 255 } 256 257 /* 258 * Kill off the orphan record which ext4_truncate created. 259 * AKPM: I think this can be inside the above `if'. 260 * Note that ext4_orphan_del() has to be able to cope with the 261 * deletion of a non-existent orphan - this is because we don't 262 * know if ext4_truncate() actually created an orphan record. 263 * (Well, we could do this if we need to, but heck - it works) 264 */ 265 ext4_orphan_del(handle, inode); 266 EXT4_I(inode)->i_dtime = get_seconds(); 267 268 /* 269 * One subtle ordering requirement: if anything has gone wrong 270 * (transaction abort, IO errors, whatever), then we can still 271 * do these next steps (the fs will already have been marked as 272 * having errors), but we can't free the inode if the mark_dirty 273 * fails. 274 */ 275 if (ext4_mark_inode_dirty(handle, inode)) 276 /* If that failed, just do the required in-core inode clear. */ 277 clear_inode(inode); 278 else 279 ext4_free_inode(handle, inode); 280 ext4_journal_stop(handle); 281 return; 282 no_delete: 283 clear_inode(inode); /* We must guarantee clearing of inode... */ 284 } 285 286 typedef struct { 287 __le32 *p; 288 __le32 key; 289 struct buffer_head *bh; 290 } Indirect; 291 292 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 293 { 294 p->key = *(p->p = v); 295 p->bh = bh; 296 } 297 298 /** 299 * ext4_block_to_path - parse the block number into array of offsets 300 * @inode: inode in question (we are only interested in its superblock) 301 * @i_block: block number to be parsed 302 * @offsets: array to store the offsets in 303 * @boundary: set this non-zero if the referred-to block is likely to be 304 * followed (on disk) by an indirect block. 305 * 306 * To store the locations of file's data ext4 uses a data structure common 307 * for UNIX filesystems - tree of pointers anchored in the inode, with 308 * data blocks at leaves and indirect blocks in intermediate nodes. 309 * This function translates the block number into path in that tree - 310 * return value is the path length and @offsets[n] is the offset of 311 * pointer to (n+1)th node in the nth one. If @block is out of range 312 * (negative or too large) warning is printed and zero returned. 313 * 314 * Note: function doesn't find node addresses, so no IO is needed. All 315 * we need to know is the capacity of indirect blocks (taken from the 316 * inode->i_sb). 317 */ 318 319 /* 320 * Portability note: the last comparison (check that we fit into triple 321 * indirect block) is spelled differently, because otherwise on an 322 * architecture with 32-bit longs and 8Kb pages we might get into trouble 323 * if our filesystem had 8Kb blocks. We might use long long, but that would 324 * kill us on x86. Oh, well, at least the sign propagation does not matter - 325 * i_block would have to be negative in the very beginning, so we would not 326 * get there at all. 327 */ 328 329 static int ext4_block_to_path(struct inode *inode, 330 ext4_lblk_t i_block, 331 ext4_lblk_t offsets[4], int *boundary) 332 { 333 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 334 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 335 const long direct_blocks = EXT4_NDIR_BLOCKS, 336 indirect_blocks = ptrs, 337 double_blocks = (1 << (ptrs_bits * 2)); 338 int n = 0; 339 int final = 0; 340 341 if (i_block < 0) { 342 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 343 } else if (i_block < direct_blocks) { 344 offsets[n++] = i_block; 345 final = direct_blocks; 346 } else if ((i_block -= direct_blocks) < indirect_blocks) { 347 offsets[n++] = EXT4_IND_BLOCK; 348 offsets[n++] = i_block; 349 final = ptrs; 350 } else if ((i_block -= indirect_blocks) < double_blocks) { 351 offsets[n++] = EXT4_DIND_BLOCK; 352 offsets[n++] = i_block >> ptrs_bits; 353 offsets[n++] = i_block & (ptrs - 1); 354 final = ptrs; 355 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 356 offsets[n++] = EXT4_TIND_BLOCK; 357 offsets[n++] = i_block >> (ptrs_bits * 2); 358 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 359 offsets[n++] = i_block & (ptrs - 1); 360 final = ptrs; 361 } else { 362 ext4_warning(inode->i_sb, "ext4_block_to_path", 363 "block %lu > max in inode %lu", 364 i_block + direct_blocks + 365 indirect_blocks + double_blocks, inode->i_ino); 366 } 367 if (boundary) 368 *boundary = final - 1 - (i_block & (ptrs - 1)); 369 return n; 370 } 371 372 /** 373 * ext4_get_branch - read the chain of indirect blocks leading to data 374 * @inode: inode in question 375 * @depth: depth of the chain (1 - direct pointer, etc.) 376 * @offsets: offsets of pointers in inode/indirect blocks 377 * @chain: place to store the result 378 * @err: here we store the error value 379 * 380 * Function fills the array of triples <key, p, bh> and returns %NULL 381 * if everything went OK or the pointer to the last filled triple 382 * (incomplete one) otherwise. Upon the return chain[i].key contains 383 * the number of (i+1)-th block in the chain (as it is stored in memory, 384 * i.e. little-endian 32-bit), chain[i].p contains the address of that 385 * number (it points into struct inode for i==0 and into the bh->b_data 386 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 387 * block for i>0 and NULL for i==0. In other words, it holds the block 388 * numbers of the chain, addresses they were taken from (and where we can 389 * verify that chain did not change) and buffer_heads hosting these 390 * numbers. 391 * 392 * Function stops when it stumbles upon zero pointer (absent block) 393 * (pointer to last triple returned, *@err == 0) 394 * or when it gets an IO error reading an indirect block 395 * (ditto, *@err == -EIO) 396 * or when it reads all @depth-1 indirect blocks successfully and finds 397 * the whole chain, all way to the data (returns %NULL, *err == 0). 398 * 399 * Need to be called with 400 * down_read(&EXT4_I(inode)->i_data_sem) 401 */ 402 static Indirect *ext4_get_branch(struct inode *inode, int depth, 403 ext4_lblk_t *offsets, 404 Indirect chain[4], int *err) 405 { 406 struct super_block *sb = inode->i_sb; 407 Indirect *p = chain; 408 struct buffer_head *bh; 409 410 *err = 0; 411 /* i_data is not going away, no lock needed */ 412 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 413 if (!p->key) 414 goto no_block; 415 while (--depth) { 416 bh = sb_bread(sb, le32_to_cpu(p->key)); 417 if (!bh) 418 goto failure; 419 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 420 /* Reader: end */ 421 if (!p->key) 422 goto no_block; 423 } 424 return NULL; 425 426 failure: 427 *err = -EIO; 428 no_block: 429 return p; 430 } 431 432 /** 433 * ext4_find_near - find a place for allocation with sufficient locality 434 * @inode: owner 435 * @ind: descriptor of indirect block. 436 * 437 * This function returns the preferred place for block allocation. 438 * It is used when heuristic for sequential allocation fails. 439 * Rules are: 440 * + if there is a block to the left of our position - allocate near it. 441 * + if pointer will live in indirect block - allocate near that block. 442 * + if pointer will live in inode - allocate in the same 443 * cylinder group. 444 * 445 * In the latter case we colour the starting block by the callers PID to 446 * prevent it from clashing with concurrent allocations for a different inode 447 * in the same block group. The PID is used here so that functionally related 448 * files will be close-by on-disk. 449 * 450 * Caller must make sure that @ind is valid and will stay that way. 451 */ 452 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 453 { 454 struct ext4_inode_info *ei = EXT4_I(inode); 455 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 456 __le32 *p; 457 ext4_fsblk_t bg_start; 458 ext4_fsblk_t last_block; 459 ext4_grpblk_t colour; 460 461 /* Try to find previous block */ 462 for (p = ind->p - 1; p >= start; p--) { 463 if (*p) 464 return le32_to_cpu(*p); 465 } 466 467 /* No such thing, so let's try location of indirect block */ 468 if (ind->bh) 469 return ind->bh->b_blocknr; 470 471 /* 472 * It is going to be referred to from the inode itself? OK, just put it 473 * into the same cylinder group then. 474 */ 475 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 476 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 477 478 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 479 colour = (current->pid % 16) * 480 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 481 else 482 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 483 return bg_start + colour; 484 } 485 486 /** 487 * ext4_find_goal - find a preferred place for allocation. 488 * @inode: owner 489 * @block: block we want 490 * @partial: pointer to the last triple within a chain 491 * 492 * Normally this function find the preferred place for block allocation, 493 * returns it. 494 */ 495 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 496 Indirect *partial) 497 { 498 /* 499 * XXX need to get goal block from mballoc's data structures 500 */ 501 502 return ext4_find_near(inode, partial); 503 } 504 505 /** 506 * ext4_blks_to_allocate: Look up the block map and count the number 507 * of direct blocks need to be allocated for the given branch. 508 * 509 * @branch: chain of indirect blocks 510 * @k: number of blocks need for indirect blocks 511 * @blks: number of data blocks to be mapped. 512 * @blocks_to_boundary: the offset in the indirect block 513 * 514 * return the total number of blocks to be allocate, including the 515 * direct and indirect blocks. 516 */ 517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 518 int blocks_to_boundary) 519 { 520 unsigned int count = 0; 521 522 /* 523 * Simple case, [t,d]Indirect block(s) has not allocated yet 524 * then it's clear blocks on that path have not allocated 525 */ 526 if (k > 0) { 527 /* right now we don't handle cross boundary allocation */ 528 if (blks < blocks_to_boundary + 1) 529 count += blks; 530 else 531 count += blocks_to_boundary + 1; 532 return count; 533 } 534 535 count++; 536 while (count < blks && count <= blocks_to_boundary && 537 le32_to_cpu(*(branch[0].p + count)) == 0) { 538 count++; 539 } 540 return count; 541 } 542 543 /** 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 545 * @indirect_blks: the number of blocks need to allocate for indirect 546 * blocks 547 * 548 * @new_blocks: on return it will store the new block numbers for 549 * the indirect blocks(if needed) and the first direct block, 550 * @blks: on return it will store the total number of allocated 551 * direct blocks 552 */ 553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 554 ext4_lblk_t iblock, ext4_fsblk_t goal, 555 int indirect_blks, int blks, 556 ext4_fsblk_t new_blocks[4], int *err) 557 { 558 struct ext4_allocation_request ar; 559 int target, i; 560 unsigned long count = 0, blk_allocated = 0; 561 int index = 0; 562 ext4_fsblk_t current_block = 0; 563 int ret = 0; 564 565 /* 566 * Here we try to allocate the requested multiple blocks at once, 567 * on a best-effort basis. 568 * To build a branch, we should allocate blocks for 569 * the indirect blocks(if not allocated yet), and at least 570 * the first direct block of this branch. That's the 571 * minimum number of blocks need to allocate(required) 572 */ 573 /* first we try to allocate the indirect blocks */ 574 target = indirect_blks; 575 while (target > 0) { 576 count = target; 577 /* allocating blocks for indirect blocks and direct blocks */ 578 current_block = ext4_new_meta_blocks(handle, inode, 579 goal, &count, err); 580 if (*err) 581 goto failed_out; 582 583 target -= count; 584 /* allocate blocks for indirect blocks */ 585 while (index < indirect_blks && count) { 586 new_blocks[index++] = current_block++; 587 count--; 588 } 589 if (count > 0) { 590 /* 591 * save the new block number 592 * for the first direct block 593 */ 594 new_blocks[index] = current_block; 595 printk(KERN_INFO "%s returned more blocks than " 596 "requested\n", __func__); 597 WARN_ON(1); 598 break; 599 } 600 } 601 602 target = blks - count ; 603 blk_allocated = count; 604 if (!target) 605 goto allocated; 606 /* Now allocate data blocks */ 607 memset(&ar, 0, sizeof(ar)); 608 ar.inode = inode; 609 ar.goal = goal; 610 ar.len = target; 611 ar.logical = iblock; 612 if (S_ISREG(inode->i_mode)) 613 /* enable in-core preallocation only for regular files */ 614 ar.flags = EXT4_MB_HINT_DATA; 615 616 current_block = ext4_mb_new_blocks(handle, &ar, err); 617 618 if (*err && (target == blks)) { 619 /* 620 * if the allocation failed and we didn't allocate 621 * any blocks before 622 */ 623 goto failed_out; 624 } 625 if (!*err) { 626 if (target == blks) { 627 /* 628 * save the new block number 629 * for the first direct block 630 */ 631 new_blocks[index] = current_block; 632 } 633 blk_allocated += ar.len; 634 } 635 allocated: 636 /* total number of blocks allocated for direct blocks */ 637 ret = blk_allocated; 638 *err = 0; 639 return ret; 640 failed_out: 641 for (i = 0; i < index; i++) 642 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 643 return ret; 644 } 645 646 /** 647 * ext4_alloc_branch - allocate and set up a chain of blocks. 648 * @inode: owner 649 * @indirect_blks: number of allocated indirect blocks 650 * @blks: number of allocated direct blocks 651 * @offsets: offsets (in the blocks) to store the pointers to next. 652 * @branch: place to store the chain in. 653 * 654 * This function allocates blocks, zeroes out all but the last one, 655 * links them into chain and (if we are synchronous) writes them to disk. 656 * In other words, it prepares a branch that can be spliced onto the 657 * inode. It stores the information about that chain in the branch[], in 658 * the same format as ext4_get_branch() would do. We are calling it after 659 * we had read the existing part of chain and partial points to the last 660 * triple of that (one with zero ->key). Upon the exit we have the same 661 * picture as after the successful ext4_get_block(), except that in one 662 * place chain is disconnected - *branch->p is still zero (we did not 663 * set the last link), but branch->key contains the number that should 664 * be placed into *branch->p to fill that gap. 665 * 666 * If allocation fails we free all blocks we've allocated (and forget 667 * their buffer_heads) and return the error value the from failed 668 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 669 * as described above and return 0. 670 */ 671 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 672 ext4_lblk_t iblock, int indirect_blks, 673 int *blks, ext4_fsblk_t goal, 674 ext4_lblk_t *offsets, Indirect *branch) 675 { 676 int blocksize = inode->i_sb->s_blocksize; 677 int i, n = 0; 678 int err = 0; 679 struct buffer_head *bh; 680 int num; 681 ext4_fsblk_t new_blocks[4]; 682 ext4_fsblk_t current_block; 683 684 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 685 *blks, new_blocks, &err); 686 if (err) 687 return err; 688 689 branch[0].key = cpu_to_le32(new_blocks[0]); 690 /* 691 * metadata blocks and data blocks are allocated. 692 */ 693 for (n = 1; n <= indirect_blks; n++) { 694 /* 695 * Get buffer_head for parent block, zero it out 696 * and set the pointer to new one, then send 697 * parent to disk. 698 */ 699 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 700 branch[n].bh = bh; 701 lock_buffer(bh); 702 BUFFER_TRACE(bh, "call get_create_access"); 703 err = ext4_journal_get_create_access(handle, bh); 704 if (err) { 705 unlock_buffer(bh); 706 brelse(bh); 707 goto failed; 708 } 709 710 memset(bh->b_data, 0, blocksize); 711 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 712 branch[n].key = cpu_to_le32(new_blocks[n]); 713 *branch[n].p = branch[n].key; 714 if (n == indirect_blks) { 715 current_block = new_blocks[n]; 716 /* 717 * End of chain, update the last new metablock of 718 * the chain to point to the new allocated 719 * data blocks numbers 720 */ 721 for (i=1; i < num; i++) 722 *(branch[n].p + i) = cpu_to_le32(++current_block); 723 } 724 BUFFER_TRACE(bh, "marking uptodate"); 725 set_buffer_uptodate(bh); 726 unlock_buffer(bh); 727 728 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 729 err = ext4_handle_dirty_metadata(handle, inode, bh); 730 if (err) 731 goto failed; 732 } 733 *blks = num; 734 return err; 735 failed: 736 /* Allocation failed, free what we already allocated */ 737 for (i = 1; i <= n ; i++) { 738 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 739 ext4_journal_forget(handle, branch[i].bh); 740 } 741 for (i = 0; i < indirect_blks; i++) 742 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 743 744 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 745 746 return err; 747 } 748 749 /** 750 * ext4_splice_branch - splice the allocated branch onto inode. 751 * @inode: owner 752 * @block: (logical) number of block we are adding 753 * @chain: chain of indirect blocks (with a missing link - see 754 * ext4_alloc_branch) 755 * @where: location of missing link 756 * @num: number of indirect blocks we are adding 757 * @blks: number of direct blocks we are adding 758 * 759 * This function fills the missing link and does all housekeeping needed in 760 * inode (->i_blocks, etc.). In case of success we end up with the full 761 * chain to new block and return 0. 762 */ 763 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 764 ext4_lblk_t block, Indirect *where, int num, int blks) 765 { 766 int i; 767 int err = 0; 768 ext4_fsblk_t current_block; 769 770 /* 771 * If we're splicing into a [td]indirect block (as opposed to the 772 * inode) then we need to get write access to the [td]indirect block 773 * before the splice. 774 */ 775 if (where->bh) { 776 BUFFER_TRACE(where->bh, "get_write_access"); 777 err = ext4_journal_get_write_access(handle, where->bh); 778 if (err) 779 goto err_out; 780 } 781 /* That's it */ 782 783 *where->p = where->key; 784 785 /* 786 * Update the host buffer_head or inode to point to more just allocated 787 * direct blocks blocks 788 */ 789 if (num == 0 && blks > 1) { 790 current_block = le32_to_cpu(where->key) + 1; 791 for (i = 1; i < blks; i++) 792 *(where->p + i) = cpu_to_le32(current_block++); 793 } 794 795 /* We are done with atomic stuff, now do the rest of housekeeping */ 796 797 inode->i_ctime = ext4_current_time(inode); 798 ext4_mark_inode_dirty(handle, inode); 799 800 /* had we spliced it onto indirect block? */ 801 if (where->bh) { 802 /* 803 * If we spliced it onto an indirect block, we haven't 804 * altered the inode. Note however that if it is being spliced 805 * onto an indirect block at the very end of the file (the 806 * file is growing) then we *will* alter the inode to reflect 807 * the new i_size. But that is not done here - it is done in 808 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 809 */ 810 jbd_debug(5, "splicing indirect only\n"); 811 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 812 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 813 if (err) 814 goto err_out; 815 } else { 816 /* 817 * OK, we spliced it into the inode itself on a direct block. 818 * Inode was dirtied above. 819 */ 820 jbd_debug(5, "splicing direct\n"); 821 } 822 return err; 823 824 err_out: 825 for (i = 1; i <= num; i++) { 826 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 827 ext4_journal_forget(handle, where[i].bh); 828 ext4_free_blocks(handle, inode, 829 le32_to_cpu(where[i-1].key), 1, 0); 830 } 831 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 832 833 return err; 834 } 835 836 /* 837 * Allocation strategy is simple: if we have to allocate something, we will 838 * have to go the whole way to leaf. So let's do it before attaching anything 839 * to tree, set linkage between the newborn blocks, write them if sync is 840 * required, recheck the path, free and repeat if check fails, otherwise 841 * set the last missing link (that will protect us from any truncate-generated 842 * removals - all blocks on the path are immune now) and possibly force the 843 * write on the parent block. 844 * That has a nice additional property: no special recovery from the failed 845 * allocations is needed - we simply release blocks and do not touch anything 846 * reachable from inode. 847 * 848 * `handle' can be NULL if create == 0. 849 * 850 * return > 0, # of blocks mapped or allocated. 851 * return = 0, if plain lookup failed. 852 * return < 0, error case. 853 * 854 * 855 * Need to be called with 856 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 857 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 858 */ 859 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 860 ext4_lblk_t iblock, unsigned int maxblocks, 861 struct buffer_head *bh_result, 862 int create, int extend_disksize) 863 { 864 int err = -EIO; 865 ext4_lblk_t offsets[4]; 866 Indirect chain[4]; 867 Indirect *partial; 868 ext4_fsblk_t goal; 869 int indirect_blks; 870 int blocks_to_boundary = 0; 871 int depth; 872 struct ext4_inode_info *ei = EXT4_I(inode); 873 int count = 0; 874 ext4_fsblk_t first_block = 0; 875 loff_t disksize; 876 877 878 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 879 J_ASSERT(handle != NULL || create == 0); 880 depth = ext4_block_to_path(inode, iblock, offsets, 881 &blocks_to_boundary); 882 883 if (depth == 0) 884 goto out; 885 886 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 887 888 /* Simplest case - block found, no allocation needed */ 889 if (!partial) { 890 first_block = le32_to_cpu(chain[depth - 1].key); 891 clear_buffer_new(bh_result); 892 count++; 893 /*map more blocks*/ 894 while (count < maxblocks && count <= blocks_to_boundary) { 895 ext4_fsblk_t blk; 896 897 blk = le32_to_cpu(*(chain[depth-1].p + count)); 898 899 if (blk == first_block + count) 900 count++; 901 else 902 break; 903 } 904 goto got_it; 905 } 906 907 /* Next simple case - plain lookup or failed read of indirect block */ 908 if (!create || err == -EIO) 909 goto cleanup; 910 911 /* 912 * Okay, we need to do block allocation. 913 */ 914 goal = ext4_find_goal(inode, iblock, partial); 915 916 /* the number of blocks need to allocate for [d,t]indirect blocks */ 917 indirect_blks = (chain + depth) - partial - 1; 918 919 /* 920 * Next look up the indirect map to count the totoal number of 921 * direct blocks to allocate for this branch. 922 */ 923 count = ext4_blks_to_allocate(partial, indirect_blks, 924 maxblocks, blocks_to_boundary); 925 /* 926 * Block out ext4_truncate while we alter the tree 927 */ 928 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 929 &count, goal, 930 offsets + (partial - chain), partial); 931 932 /* 933 * The ext4_splice_branch call will free and forget any buffers 934 * on the new chain if there is a failure, but that risks using 935 * up transaction credits, especially for bitmaps where the 936 * credits cannot be returned. Can we handle this somehow? We 937 * may need to return -EAGAIN upwards in the worst case. --sct 938 */ 939 if (!err) 940 err = ext4_splice_branch(handle, inode, iblock, 941 partial, indirect_blks, count); 942 /* 943 * i_disksize growing is protected by i_data_sem. Don't forget to 944 * protect it if you're about to implement concurrent 945 * ext4_get_block() -bzzz 946 */ 947 if (!err && extend_disksize) { 948 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 949 if (disksize > i_size_read(inode)) 950 disksize = i_size_read(inode); 951 if (disksize > ei->i_disksize) 952 ei->i_disksize = disksize; 953 } 954 if (err) 955 goto cleanup; 956 957 set_buffer_new(bh_result); 958 got_it: 959 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 960 if (count > blocks_to_boundary) 961 set_buffer_boundary(bh_result); 962 err = count; 963 /* Clean up and exit */ 964 partial = chain + depth - 1; /* the whole chain */ 965 cleanup: 966 while (partial > chain) { 967 BUFFER_TRACE(partial->bh, "call brelse"); 968 brelse(partial->bh); 969 partial--; 970 } 971 BUFFER_TRACE(bh_result, "returned"); 972 out: 973 return err; 974 } 975 976 /* 977 * Calculate the number of metadata blocks need to reserve 978 * to allocate @blocks for non extent file based file 979 */ 980 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 981 { 982 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 983 int ind_blks, dind_blks, tind_blks; 984 985 /* number of new indirect blocks needed */ 986 ind_blks = (blocks + icap - 1) / icap; 987 988 dind_blks = (ind_blks + icap - 1) / icap; 989 990 tind_blks = 1; 991 992 return ind_blks + dind_blks + tind_blks; 993 } 994 995 /* 996 * Calculate the number of metadata blocks need to reserve 997 * to allocate given number of blocks 998 */ 999 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1000 { 1001 if (!blocks) 1002 return 0; 1003 1004 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1005 return ext4_ext_calc_metadata_amount(inode, blocks); 1006 1007 return ext4_indirect_calc_metadata_amount(inode, blocks); 1008 } 1009 1010 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1011 { 1012 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1013 int total, mdb, mdb_free; 1014 1015 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1016 /* recalculate the number of metablocks still need to be reserved */ 1017 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1018 mdb = ext4_calc_metadata_amount(inode, total); 1019 1020 /* figure out how many metablocks to release */ 1021 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1022 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1023 1024 if (mdb_free) { 1025 /* Account for allocated meta_blocks */ 1026 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1027 1028 /* update fs dirty blocks counter */ 1029 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1030 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1031 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1032 } 1033 1034 /* update per-inode reservations */ 1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1036 EXT4_I(inode)->i_reserved_data_blocks -= used; 1037 1038 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1039 } 1040 1041 /* 1042 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1043 * and returns if the blocks are already mapped. 1044 * 1045 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1046 * and store the allocated blocks in the result buffer head and mark it 1047 * mapped. 1048 * 1049 * If file type is extents based, it will call ext4_ext_get_blocks(), 1050 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1051 * based files 1052 * 1053 * On success, it returns the number of blocks being mapped or allocate. 1054 * if create==0 and the blocks are pre-allocated and uninitialized block, 1055 * the result buffer head is unmapped. If the create ==1, it will make sure 1056 * the buffer head is mapped. 1057 * 1058 * It returns 0 if plain look up failed (blocks have not been allocated), in 1059 * that casem, buffer head is unmapped 1060 * 1061 * It returns the error in case of allocation failure. 1062 */ 1063 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1064 unsigned int max_blocks, struct buffer_head *bh, 1065 int create, int extend_disksize, int flag) 1066 { 1067 int retval; 1068 1069 clear_buffer_mapped(bh); 1070 1071 /* 1072 * Try to see if we can get the block without requesting 1073 * for new file system block. 1074 */ 1075 down_read((&EXT4_I(inode)->i_data_sem)); 1076 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1077 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1078 bh, 0, 0); 1079 } else { 1080 retval = ext4_get_blocks_handle(handle, 1081 inode, block, max_blocks, bh, 0, 0); 1082 } 1083 up_read((&EXT4_I(inode)->i_data_sem)); 1084 1085 /* If it is only a block(s) look up */ 1086 if (!create) 1087 return retval; 1088 1089 /* 1090 * Returns if the blocks have already allocated 1091 * 1092 * Note that if blocks have been preallocated 1093 * ext4_ext_get_block() returns th create = 0 1094 * with buffer head unmapped. 1095 */ 1096 if (retval > 0 && buffer_mapped(bh)) 1097 return retval; 1098 1099 /* 1100 * New blocks allocate and/or writing to uninitialized extent 1101 * will possibly result in updating i_data, so we take 1102 * the write lock of i_data_sem, and call get_blocks() 1103 * with create == 1 flag. 1104 */ 1105 down_write((&EXT4_I(inode)->i_data_sem)); 1106 1107 /* 1108 * if the caller is from delayed allocation writeout path 1109 * we have already reserved fs blocks for allocation 1110 * let the underlying get_block() function know to 1111 * avoid double accounting 1112 */ 1113 if (flag) 1114 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1115 /* 1116 * We need to check for EXT4 here because migrate 1117 * could have changed the inode type in between 1118 */ 1119 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1120 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1121 bh, create, extend_disksize); 1122 } else { 1123 retval = ext4_get_blocks_handle(handle, inode, block, 1124 max_blocks, bh, create, extend_disksize); 1125 1126 if (retval > 0 && buffer_new(bh)) { 1127 /* 1128 * We allocated new blocks which will result in 1129 * i_data's format changing. Force the migrate 1130 * to fail by clearing migrate flags 1131 */ 1132 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1133 ~EXT4_EXT_MIGRATE; 1134 } 1135 } 1136 1137 if (flag) { 1138 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1139 /* 1140 * Update reserved blocks/metadata blocks 1141 * after successful block allocation 1142 * which were deferred till now 1143 */ 1144 if ((retval > 0) && buffer_delay(bh)) 1145 ext4_da_update_reserve_space(inode, retval); 1146 } 1147 1148 up_write((&EXT4_I(inode)->i_data_sem)); 1149 return retval; 1150 } 1151 1152 /* Maximum number of blocks we map for direct IO at once. */ 1153 #define DIO_MAX_BLOCKS 4096 1154 1155 int ext4_get_block(struct inode *inode, sector_t iblock, 1156 struct buffer_head *bh_result, int create) 1157 { 1158 handle_t *handle = ext4_journal_current_handle(); 1159 int ret = 0, started = 0; 1160 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1161 int dio_credits; 1162 1163 if (create && !handle) { 1164 /* Direct IO write... */ 1165 if (max_blocks > DIO_MAX_BLOCKS) 1166 max_blocks = DIO_MAX_BLOCKS; 1167 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1168 handle = ext4_journal_start(inode, dio_credits); 1169 if (IS_ERR(handle)) { 1170 ret = PTR_ERR(handle); 1171 goto out; 1172 } 1173 started = 1; 1174 } 1175 1176 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1177 max_blocks, bh_result, create, 0, 0); 1178 if (ret > 0) { 1179 bh_result->b_size = (ret << inode->i_blkbits); 1180 ret = 0; 1181 } 1182 if (started) 1183 ext4_journal_stop(handle); 1184 out: 1185 return ret; 1186 } 1187 1188 /* 1189 * `handle' can be NULL if create is zero 1190 */ 1191 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1192 ext4_lblk_t block, int create, int *errp) 1193 { 1194 struct buffer_head dummy; 1195 int fatal = 0, err; 1196 1197 J_ASSERT(handle != NULL || create == 0); 1198 1199 dummy.b_state = 0; 1200 dummy.b_blocknr = -1000; 1201 buffer_trace_init(&dummy.b_history); 1202 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1203 &dummy, create, 1, 0); 1204 /* 1205 * ext4_get_blocks_handle() returns number of blocks 1206 * mapped. 0 in case of a HOLE. 1207 */ 1208 if (err > 0) { 1209 if (err > 1) 1210 WARN_ON(1); 1211 err = 0; 1212 } 1213 *errp = err; 1214 if (!err && buffer_mapped(&dummy)) { 1215 struct buffer_head *bh; 1216 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1217 if (!bh) { 1218 *errp = -EIO; 1219 goto err; 1220 } 1221 if (buffer_new(&dummy)) { 1222 J_ASSERT(create != 0); 1223 J_ASSERT(handle != NULL); 1224 1225 /* 1226 * Now that we do not always journal data, we should 1227 * keep in mind whether this should always journal the 1228 * new buffer as metadata. For now, regular file 1229 * writes use ext4_get_block instead, so it's not a 1230 * problem. 1231 */ 1232 lock_buffer(bh); 1233 BUFFER_TRACE(bh, "call get_create_access"); 1234 fatal = ext4_journal_get_create_access(handle, bh); 1235 if (!fatal && !buffer_uptodate(bh)) { 1236 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1237 set_buffer_uptodate(bh); 1238 } 1239 unlock_buffer(bh); 1240 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1241 err = ext4_handle_dirty_metadata(handle, inode, bh); 1242 if (!fatal) 1243 fatal = err; 1244 } else { 1245 BUFFER_TRACE(bh, "not a new buffer"); 1246 } 1247 if (fatal) { 1248 *errp = fatal; 1249 brelse(bh); 1250 bh = NULL; 1251 } 1252 return bh; 1253 } 1254 err: 1255 return NULL; 1256 } 1257 1258 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1259 ext4_lblk_t block, int create, int *err) 1260 { 1261 struct buffer_head *bh; 1262 1263 bh = ext4_getblk(handle, inode, block, create, err); 1264 if (!bh) 1265 return bh; 1266 if (buffer_uptodate(bh)) 1267 return bh; 1268 ll_rw_block(READ_META, 1, &bh); 1269 wait_on_buffer(bh); 1270 if (buffer_uptodate(bh)) 1271 return bh; 1272 put_bh(bh); 1273 *err = -EIO; 1274 return NULL; 1275 } 1276 1277 static int walk_page_buffers(handle_t *handle, 1278 struct buffer_head *head, 1279 unsigned from, 1280 unsigned to, 1281 int *partial, 1282 int (*fn)(handle_t *handle, 1283 struct buffer_head *bh)) 1284 { 1285 struct buffer_head *bh; 1286 unsigned block_start, block_end; 1287 unsigned blocksize = head->b_size; 1288 int err, ret = 0; 1289 struct buffer_head *next; 1290 1291 for (bh = head, block_start = 0; 1292 ret == 0 && (bh != head || !block_start); 1293 block_start = block_end, bh = next) 1294 { 1295 next = bh->b_this_page; 1296 block_end = block_start + blocksize; 1297 if (block_end <= from || block_start >= to) { 1298 if (partial && !buffer_uptodate(bh)) 1299 *partial = 1; 1300 continue; 1301 } 1302 err = (*fn)(handle, bh); 1303 if (!ret) 1304 ret = err; 1305 } 1306 return ret; 1307 } 1308 1309 /* 1310 * To preserve ordering, it is essential that the hole instantiation and 1311 * the data write be encapsulated in a single transaction. We cannot 1312 * close off a transaction and start a new one between the ext4_get_block() 1313 * and the commit_write(). So doing the jbd2_journal_start at the start of 1314 * prepare_write() is the right place. 1315 * 1316 * Also, this function can nest inside ext4_writepage() -> 1317 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1318 * has generated enough buffer credits to do the whole page. So we won't 1319 * block on the journal in that case, which is good, because the caller may 1320 * be PF_MEMALLOC. 1321 * 1322 * By accident, ext4 can be reentered when a transaction is open via 1323 * quota file writes. If we were to commit the transaction while thus 1324 * reentered, there can be a deadlock - we would be holding a quota 1325 * lock, and the commit would never complete if another thread had a 1326 * transaction open and was blocking on the quota lock - a ranking 1327 * violation. 1328 * 1329 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1330 * will _not_ run commit under these circumstances because handle->h_ref 1331 * is elevated. We'll still have enough credits for the tiny quotafile 1332 * write. 1333 */ 1334 static int do_journal_get_write_access(handle_t *handle, 1335 struct buffer_head *bh) 1336 { 1337 if (!buffer_mapped(bh) || buffer_freed(bh)) 1338 return 0; 1339 return ext4_journal_get_write_access(handle, bh); 1340 } 1341 1342 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1343 loff_t pos, unsigned len, unsigned flags, 1344 struct page **pagep, void **fsdata) 1345 { 1346 struct inode *inode = mapping->host; 1347 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1348 handle_t *handle; 1349 int retries = 0; 1350 struct page *page; 1351 pgoff_t index; 1352 unsigned from, to; 1353 1354 trace_mark(ext4_write_begin, 1355 "dev %s ino %lu pos %llu len %u flags %u", 1356 inode->i_sb->s_id, inode->i_ino, 1357 (unsigned long long) pos, len, flags); 1358 index = pos >> PAGE_CACHE_SHIFT; 1359 from = pos & (PAGE_CACHE_SIZE - 1); 1360 to = from + len; 1361 1362 retry: 1363 handle = ext4_journal_start(inode, needed_blocks); 1364 if (IS_ERR(handle)) { 1365 ret = PTR_ERR(handle); 1366 goto out; 1367 } 1368 1369 page = grab_cache_page_write_begin(mapping, index, flags); 1370 if (!page) { 1371 ext4_journal_stop(handle); 1372 ret = -ENOMEM; 1373 goto out; 1374 } 1375 *pagep = page; 1376 1377 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1378 ext4_get_block); 1379 1380 if (!ret && ext4_should_journal_data(inode)) { 1381 ret = walk_page_buffers(handle, page_buffers(page), 1382 from, to, NULL, do_journal_get_write_access); 1383 } 1384 1385 if (ret) { 1386 unlock_page(page); 1387 ext4_journal_stop(handle); 1388 page_cache_release(page); 1389 /* 1390 * block_write_begin may have instantiated a few blocks 1391 * outside i_size. Trim these off again. Don't need 1392 * i_size_read because we hold i_mutex. 1393 */ 1394 if (pos + len > inode->i_size) 1395 vmtruncate(inode, inode->i_size); 1396 } 1397 1398 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1399 goto retry; 1400 out: 1401 return ret; 1402 } 1403 1404 /* For write_end() in data=journal mode */ 1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1406 { 1407 if (!buffer_mapped(bh) || buffer_freed(bh)) 1408 return 0; 1409 set_buffer_uptodate(bh); 1410 return ext4_handle_dirty_metadata(handle, NULL, bh); 1411 } 1412 1413 /* 1414 * We need to pick up the new inode size which generic_commit_write gave us 1415 * `file' can be NULL - eg, when called from page_symlink(). 1416 * 1417 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1418 * buffers are managed internally. 1419 */ 1420 static int ext4_ordered_write_end(struct file *file, 1421 struct address_space *mapping, 1422 loff_t pos, unsigned len, unsigned copied, 1423 struct page *page, void *fsdata) 1424 { 1425 handle_t *handle = ext4_journal_current_handle(); 1426 struct inode *inode = mapping->host; 1427 int ret = 0, ret2; 1428 1429 trace_mark(ext4_ordered_write_end, 1430 "dev %s ino %lu pos %llu len %u copied %u", 1431 inode->i_sb->s_id, inode->i_ino, 1432 (unsigned long long) pos, len, copied); 1433 ret = ext4_jbd2_file_inode(handle, inode); 1434 1435 if (ret == 0) { 1436 loff_t new_i_size; 1437 1438 new_i_size = pos + copied; 1439 if (new_i_size > EXT4_I(inode)->i_disksize) { 1440 ext4_update_i_disksize(inode, new_i_size); 1441 /* We need to mark inode dirty even if 1442 * new_i_size is less that inode->i_size 1443 * bu greater than i_disksize.(hint delalloc) 1444 */ 1445 ext4_mark_inode_dirty(handle, inode); 1446 } 1447 1448 ret2 = generic_write_end(file, mapping, pos, len, copied, 1449 page, fsdata); 1450 copied = ret2; 1451 if (ret2 < 0) 1452 ret = ret2; 1453 } 1454 ret2 = ext4_journal_stop(handle); 1455 if (!ret) 1456 ret = ret2; 1457 1458 return ret ? ret : copied; 1459 } 1460 1461 static int ext4_writeback_write_end(struct file *file, 1462 struct address_space *mapping, 1463 loff_t pos, unsigned len, unsigned copied, 1464 struct page *page, void *fsdata) 1465 { 1466 handle_t *handle = ext4_journal_current_handle(); 1467 struct inode *inode = mapping->host; 1468 int ret = 0, ret2; 1469 loff_t new_i_size; 1470 1471 trace_mark(ext4_writeback_write_end, 1472 "dev %s ino %lu pos %llu len %u copied %u", 1473 inode->i_sb->s_id, inode->i_ino, 1474 (unsigned long long) pos, len, copied); 1475 new_i_size = pos + copied; 1476 if (new_i_size > EXT4_I(inode)->i_disksize) { 1477 ext4_update_i_disksize(inode, new_i_size); 1478 /* We need to mark inode dirty even if 1479 * new_i_size is less that inode->i_size 1480 * bu greater than i_disksize.(hint delalloc) 1481 */ 1482 ext4_mark_inode_dirty(handle, inode); 1483 } 1484 1485 ret2 = generic_write_end(file, mapping, pos, len, copied, 1486 page, fsdata); 1487 copied = ret2; 1488 if (ret2 < 0) 1489 ret = ret2; 1490 1491 ret2 = ext4_journal_stop(handle); 1492 if (!ret) 1493 ret = ret2; 1494 1495 return ret ? ret : copied; 1496 } 1497 1498 static int ext4_journalled_write_end(struct file *file, 1499 struct address_space *mapping, 1500 loff_t pos, unsigned len, unsigned copied, 1501 struct page *page, void *fsdata) 1502 { 1503 handle_t *handle = ext4_journal_current_handle(); 1504 struct inode *inode = mapping->host; 1505 int ret = 0, ret2; 1506 int partial = 0; 1507 unsigned from, to; 1508 loff_t new_i_size; 1509 1510 trace_mark(ext4_journalled_write_end, 1511 "dev %s ino %lu pos %llu len %u copied %u", 1512 inode->i_sb->s_id, inode->i_ino, 1513 (unsigned long long) pos, len, copied); 1514 from = pos & (PAGE_CACHE_SIZE - 1); 1515 to = from + len; 1516 1517 if (copied < len) { 1518 if (!PageUptodate(page)) 1519 copied = 0; 1520 page_zero_new_buffers(page, from+copied, to); 1521 } 1522 1523 ret = walk_page_buffers(handle, page_buffers(page), from, 1524 to, &partial, write_end_fn); 1525 if (!partial) 1526 SetPageUptodate(page); 1527 new_i_size = pos + copied; 1528 if (new_i_size > inode->i_size) 1529 i_size_write(inode, pos+copied); 1530 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1531 if (new_i_size > EXT4_I(inode)->i_disksize) { 1532 ext4_update_i_disksize(inode, new_i_size); 1533 ret2 = ext4_mark_inode_dirty(handle, inode); 1534 if (!ret) 1535 ret = ret2; 1536 } 1537 1538 unlock_page(page); 1539 ret2 = ext4_journal_stop(handle); 1540 if (!ret) 1541 ret = ret2; 1542 page_cache_release(page); 1543 1544 return ret ? ret : copied; 1545 } 1546 1547 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1548 { 1549 int retries = 0; 1550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1551 unsigned long md_needed, mdblocks, total = 0; 1552 1553 /* 1554 * recalculate the amount of metadata blocks to reserve 1555 * in order to allocate nrblocks 1556 * worse case is one extent per block 1557 */ 1558 repeat: 1559 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1560 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1561 mdblocks = ext4_calc_metadata_amount(inode, total); 1562 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1563 1564 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1565 total = md_needed + nrblocks; 1566 1567 if (ext4_claim_free_blocks(sbi, total)) { 1568 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1569 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1570 yield(); 1571 goto repeat; 1572 } 1573 return -ENOSPC; 1574 } 1575 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1576 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1577 1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1579 return 0; /* success */ 1580 } 1581 1582 static void ext4_da_release_space(struct inode *inode, int to_free) 1583 { 1584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1585 int total, mdb, mdb_free, release; 1586 1587 if (!to_free) 1588 return; /* Nothing to release, exit */ 1589 1590 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1591 1592 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1593 /* 1594 * if there is no reserved blocks, but we try to free some 1595 * then the counter is messed up somewhere. 1596 * but since this function is called from invalidate 1597 * page, it's harmless to return without any action 1598 */ 1599 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1600 "blocks for inode %lu, but there is no reserved " 1601 "data blocks\n", to_free, inode->i_ino); 1602 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1603 return; 1604 } 1605 1606 /* recalculate the number of metablocks still need to be reserved */ 1607 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1608 mdb = ext4_calc_metadata_amount(inode, total); 1609 1610 /* figure out how many metablocks to release */ 1611 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1612 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1613 1614 release = to_free + mdb_free; 1615 1616 /* update fs dirty blocks counter for truncate case */ 1617 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1618 1619 /* update per-inode reservations */ 1620 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1621 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1622 1623 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1624 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1625 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1626 } 1627 1628 static void ext4_da_page_release_reservation(struct page *page, 1629 unsigned long offset) 1630 { 1631 int to_release = 0; 1632 struct buffer_head *head, *bh; 1633 unsigned int curr_off = 0; 1634 1635 head = page_buffers(page); 1636 bh = head; 1637 do { 1638 unsigned int next_off = curr_off + bh->b_size; 1639 1640 if ((offset <= curr_off) && (buffer_delay(bh))) { 1641 to_release++; 1642 clear_buffer_delay(bh); 1643 } 1644 curr_off = next_off; 1645 } while ((bh = bh->b_this_page) != head); 1646 ext4_da_release_space(page->mapping->host, to_release); 1647 } 1648 1649 /* 1650 * Delayed allocation stuff 1651 */ 1652 1653 struct mpage_da_data { 1654 struct inode *inode; 1655 struct buffer_head lbh; /* extent of blocks */ 1656 unsigned long first_page, next_page; /* extent of pages */ 1657 get_block_t *get_block; 1658 struct writeback_control *wbc; 1659 int io_done; 1660 int pages_written; 1661 int retval; 1662 }; 1663 1664 /* 1665 * mpage_da_submit_io - walks through extent of pages and try to write 1666 * them with writepage() call back 1667 * 1668 * @mpd->inode: inode 1669 * @mpd->first_page: first page of the extent 1670 * @mpd->next_page: page after the last page of the extent 1671 * @mpd->get_block: the filesystem's block mapper function 1672 * 1673 * By the time mpage_da_submit_io() is called we expect all blocks 1674 * to be allocated. this may be wrong if allocation failed. 1675 * 1676 * As pages are already locked by write_cache_pages(), we can't use it 1677 */ 1678 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1679 { 1680 long pages_skipped; 1681 struct pagevec pvec; 1682 unsigned long index, end; 1683 int ret = 0, err, nr_pages, i; 1684 struct inode *inode = mpd->inode; 1685 struct address_space *mapping = inode->i_mapping; 1686 1687 BUG_ON(mpd->next_page <= mpd->first_page); 1688 /* 1689 * We need to start from the first_page to the next_page - 1 1690 * to make sure we also write the mapped dirty buffer_heads. 1691 * If we look at mpd->lbh.b_blocknr we would only be looking 1692 * at the currently mapped buffer_heads. 1693 */ 1694 index = mpd->first_page; 1695 end = mpd->next_page - 1; 1696 1697 pagevec_init(&pvec, 0); 1698 while (index <= end) { 1699 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1700 if (nr_pages == 0) 1701 break; 1702 for (i = 0; i < nr_pages; i++) { 1703 struct page *page = pvec.pages[i]; 1704 1705 index = page->index; 1706 if (index > end) 1707 break; 1708 index++; 1709 1710 BUG_ON(!PageLocked(page)); 1711 BUG_ON(PageWriteback(page)); 1712 1713 pages_skipped = mpd->wbc->pages_skipped; 1714 err = mapping->a_ops->writepage(page, mpd->wbc); 1715 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1716 /* 1717 * have successfully written the page 1718 * without skipping the same 1719 */ 1720 mpd->pages_written++; 1721 /* 1722 * In error case, we have to continue because 1723 * remaining pages are still locked 1724 * XXX: unlock and re-dirty them? 1725 */ 1726 if (ret == 0) 1727 ret = err; 1728 } 1729 pagevec_release(&pvec); 1730 } 1731 return ret; 1732 } 1733 1734 /* 1735 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1736 * 1737 * @mpd->inode - inode to walk through 1738 * @exbh->b_blocknr - first block on a disk 1739 * @exbh->b_size - amount of space in bytes 1740 * @logical - first logical block to start assignment with 1741 * 1742 * the function goes through all passed space and put actual disk 1743 * block numbers into buffer heads, dropping BH_Delay 1744 */ 1745 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1746 struct buffer_head *exbh) 1747 { 1748 struct inode *inode = mpd->inode; 1749 struct address_space *mapping = inode->i_mapping; 1750 int blocks = exbh->b_size >> inode->i_blkbits; 1751 sector_t pblock = exbh->b_blocknr, cur_logical; 1752 struct buffer_head *head, *bh; 1753 pgoff_t index, end; 1754 struct pagevec pvec; 1755 int nr_pages, i; 1756 1757 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1758 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1759 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1760 1761 pagevec_init(&pvec, 0); 1762 1763 while (index <= end) { 1764 /* XXX: optimize tail */ 1765 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1766 if (nr_pages == 0) 1767 break; 1768 for (i = 0; i < nr_pages; i++) { 1769 struct page *page = pvec.pages[i]; 1770 1771 index = page->index; 1772 if (index > end) 1773 break; 1774 index++; 1775 1776 BUG_ON(!PageLocked(page)); 1777 BUG_ON(PageWriteback(page)); 1778 BUG_ON(!page_has_buffers(page)); 1779 1780 bh = page_buffers(page); 1781 head = bh; 1782 1783 /* skip blocks out of the range */ 1784 do { 1785 if (cur_logical >= logical) 1786 break; 1787 cur_logical++; 1788 } while ((bh = bh->b_this_page) != head); 1789 1790 do { 1791 if (cur_logical >= logical + blocks) 1792 break; 1793 if (buffer_delay(bh)) { 1794 bh->b_blocknr = pblock; 1795 clear_buffer_delay(bh); 1796 bh->b_bdev = inode->i_sb->s_bdev; 1797 } else if (buffer_unwritten(bh)) { 1798 bh->b_blocknr = pblock; 1799 clear_buffer_unwritten(bh); 1800 set_buffer_mapped(bh); 1801 set_buffer_new(bh); 1802 bh->b_bdev = inode->i_sb->s_bdev; 1803 } else if (buffer_mapped(bh)) 1804 BUG_ON(bh->b_blocknr != pblock); 1805 1806 cur_logical++; 1807 pblock++; 1808 } while ((bh = bh->b_this_page) != head); 1809 } 1810 pagevec_release(&pvec); 1811 } 1812 } 1813 1814 1815 /* 1816 * __unmap_underlying_blocks - just a helper function to unmap 1817 * set of blocks described by @bh 1818 */ 1819 static inline void __unmap_underlying_blocks(struct inode *inode, 1820 struct buffer_head *bh) 1821 { 1822 struct block_device *bdev = inode->i_sb->s_bdev; 1823 int blocks, i; 1824 1825 blocks = bh->b_size >> inode->i_blkbits; 1826 for (i = 0; i < blocks; i++) 1827 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1828 } 1829 1830 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1831 sector_t logical, long blk_cnt) 1832 { 1833 int nr_pages, i; 1834 pgoff_t index, end; 1835 struct pagevec pvec; 1836 struct inode *inode = mpd->inode; 1837 struct address_space *mapping = inode->i_mapping; 1838 1839 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1840 end = (logical + blk_cnt - 1) >> 1841 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1842 while (index <= end) { 1843 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1844 if (nr_pages == 0) 1845 break; 1846 for (i = 0; i < nr_pages; i++) { 1847 struct page *page = pvec.pages[i]; 1848 index = page->index; 1849 if (index > end) 1850 break; 1851 index++; 1852 1853 BUG_ON(!PageLocked(page)); 1854 BUG_ON(PageWriteback(page)); 1855 block_invalidatepage(page, 0); 1856 ClearPageUptodate(page); 1857 unlock_page(page); 1858 } 1859 } 1860 return; 1861 } 1862 1863 static void ext4_print_free_blocks(struct inode *inode) 1864 { 1865 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1866 printk(KERN_EMERG "Total free blocks count %lld\n", 1867 ext4_count_free_blocks(inode->i_sb)); 1868 printk(KERN_EMERG "Free/Dirty block details\n"); 1869 printk(KERN_EMERG "free_blocks=%lld\n", 1870 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter)); 1871 printk(KERN_EMERG "dirty_blocks=%lld\n", 1872 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1873 printk(KERN_EMERG "Block reservation details\n"); 1874 printk(KERN_EMERG "i_reserved_data_blocks=%u\n", 1875 EXT4_I(inode)->i_reserved_data_blocks); 1876 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n", 1877 EXT4_I(inode)->i_reserved_meta_blocks); 1878 return; 1879 } 1880 1881 /* 1882 * mpage_da_map_blocks - go through given space 1883 * 1884 * @mpd->lbh - bh describing space 1885 * @mpd->get_block - the filesystem's block mapper function 1886 * 1887 * The function skips space we know is already mapped to disk blocks. 1888 * 1889 */ 1890 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 1891 { 1892 int err = 0; 1893 struct buffer_head new; 1894 struct buffer_head *lbh = &mpd->lbh; 1895 sector_t next; 1896 1897 /* 1898 * We consider only non-mapped and non-allocated blocks 1899 */ 1900 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1901 return 0; 1902 new.b_state = lbh->b_state; 1903 new.b_blocknr = 0; 1904 new.b_size = lbh->b_size; 1905 next = lbh->b_blocknr; 1906 /* 1907 * If we didn't accumulate anything 1908 * to write simply return 1909 */ 1910 if (!new.b_size) 1911 return 0; 1912 err = mpd->get_block(mpd->inode, next, &new, 1); 1913 if (err) { 1914 1915 /* If get block returns with error 1916 * we simply return. Later writepage 1917 * will redirty the page and writepages 1918 * will find the dirty page again 1919 */ 1920 if (err == -EAGAIN) 1921 return 0; 1922 1923 if (err == -ENOSPC && 1924 ext4_count_free_blocks(mpd->inode->i_sb)) { 1925 mpd->retval = err; 1926 return 0; 1927 } 1928 1929 /* 1930 * get block failure will cause us 1931 * to loop in writepages. Because 1932 * a_ops->writepage won't be able to 1933 * make progress. The page will be redirtied 1934 * by writepage and writepages will again 1935 * try to write the same. 1936 */ 1937 printk(KERN_EMERG "%s block allocation failed for inode %lu " 1938 "at logical offset %llu with max blocks " 1939 "%zd with error %d\n", 1940 __func__, mpd->inode->i_ino, 1941 (unsigned long long)next, 1942 lbh->b_size >> mpd->inode->i_blkbits, err); 1943 printk(KERN_EMERG "This should not happen.!! " 1944 "Data will be lost\n"); 1945 if (err == -ENOSPC) { 1946 ext4_print_free_blocks(mpd->inode); 1947 } 1948 /* invlaidate all the pages */ 1949 ext4_da_block_invalidatepages(mpd, next, 1950 lbh->b_size >> mpd->inode->i_blkbits); 1951 return err; 1952 } 1953 BUG_ON(new.b_size == 0); 1954 1955 if (buffer_new(&new)) 1956 __unmap_underlying_blocks(mpd->inode, &new); 1957 1958 /* 1959 * If blocks are delayed marked, we need to 1960 * put actual blocknr and drop delayed bit 1961 */ 1962 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1963 mpage_put_bnr_to_bhs(mpd, next, &new); 1964 1965 return 0; 1966 } 1967 1968 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1969 (1 << BH_Delay) | (1 << BH_Unwritten)) 1970 1971 /* 1972 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1973 * 1974 * @mpd->lbh - extent of blocks 1975 * @logical - logical number of the block in the file 1976 * @bh - bh of the block (used to access block's state) 1977 * 1978 * the function is used to collect contig. blocks in same state 1979 */ 1980 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1981 sector_t logical, struct buffer_head *bh) 1982 { 1983 sector_t next; 1984 size_t b_size = bh->b_size; 1985 struct buffer_head *lbh = &mpd->lbh; 1986 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1987 1988 /* check if thereserved journal credits might overflow */ 1989 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1990 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1991 /* 1992 * With non-extent format we are limited by the journal 1993 * credit available. Total credit needed to insert 1994 * nrblocks contiguous blocks is dependent on the 1995 * nrblocks. So limit nrblocks. 1996 */ 1997 goto flush_it; 1998 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1999 EXT4_MAX_TRANS_DATA) { 2000 /* 2001 * Adding the new buffer_head would make it cross the 2002 * allowed limit for which we have journal credit 2003 * reserved. So limit the new bh->b_size 2004 */ 2005 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2006 mpd->inode->i_blkbits; 2007 /* we will do mpage_da_submit_io in the next loop */ 2008 } 2009 } 2010 /* 2011 * First block in the extent 2012 */ 2013 if (lbh->b_size == 0) { 2014 lbh->b_blocknr = logical; 2015 lbh->b_size = b_size; 2016 lbh->b_state = bh->b_state & BH_FLAGS; 2017 return; 2018 } 2019 2020 next = lbh->b_blocknr + nrblocks; 2021 /* 2022 * Can we merge the block to our big extent? 2023 */ 2024 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 2025 lbh->b_size += b_size; 2026 return; 2027 } 2028 2029 flush_it: 2030 /* 2031 * We couldn't merge the block to our extent, so we 2032 * need to flush current extent and start new one 2033 */ 2034 if (mpage_da_map_blocks(mpd) == 0) 2035 mpage_da_submit_io(mpd); 2036 mpd->io_done = 1; 2037 return; 2038 } 2039 2040 /* 2041 * __mpage_da_writepage - finds extent of pages and blocks 2042 * 2043 * @page: page to consider 2044 * @wbc: not used, we just follow rules 2045 * @data: context 2046 * 2047 * The function finds extents of pages and scan them for all blocks. 2048 */ 2049 static int __mpage_da_writepage(struct page *page, 2050 struct writeback_control *wbc, void *data) 2051 { 2052 struct mpage_da_data *mpd = data; 2053 struct inode *inode = mpd->inode; 2054 struct buffer_head *bh, *head, fake; 2055 sector_t logical; 2056 2057 if (mpd->io_done) { 2058 /* 2059 * Rest of the page in the page_vec 2060 * redirty then and skip then. We will 2061 * try to to write them again after 2062 * starting a new transaction 2063 */ 2064 redirty_page_for_writepage(wbc, page); 2065 unlock_page(page); 2066 return MPAGE_DA_EXTENT_TAIL; 2067 } 2068 /* 2069 * Can we merge this page to current extent? 2070 */ 2071 if (mpd->next_page != page->index) { 2072 /* 2073 * Nope, we can't. So, we map non-allocated blocks 2074 * and start IO on them using writepage() 2075 */ 2076 if (mpd->next_page != mpd->first_page) { 2077 if (mpage_da_map_blocks(mpd) == 0) 2078 mpage_da_submit_io(mpd); 2079 /* 2080 * skip rest of the page in the page_vec 2081 */ 2082 mpd->io_done = 1; 2083 redirty_page_for_writepage(wbc, page); 2084 unlock_page(page); 2085 return MPAGE_DA_EXTENT_TAIL; 2086 } 2087 2088 /* 2089 * Start next extent of pages ... 2090 */ 2091 mpd->first_page = page->index; 2092 2093 /* 2094 * ... and blocks 2095 */ 2096 mpd->lbh.b_size = 0; 2097 mpd->lbh.b_state = 0; 2098 mpd->lbh.b_blocknr = 0; 2099 } 2100 2101 mpd->next_page = page->index + 1; 2102 logical = (sector_t) page->index << 2103 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2104 2105 if (!page_has_buffers(page)) { 2106 /* 2107 * There is no attached buffer heads yet (mmap?) 2108 * we treat the page asfull of dirty blocks 2109 */ 2110 bh = &fake; 2111 bh->b_size = PAGE_CACHE_SIZE; 2112 bh->b_state = 0; 2113 set_buffer_dirty(bh); 2114 set_buffer_uptodate(bh); 2115 mpage_add_bh_to_extent(mpd, logical, bh); 2116 if (mpd->io_done) 2117 return MPAGE_DA_EXTENT_TAIL; 2118 } else { 2119 /* 2120 * Page with regular buffer heads, just add all dirty ones 2121 */ 2122 head = page_buffers(page); 2123 bh = head; 2124 do { 2125 BUG_ON(buffer_locked(bh)); 2126 /* 2127 * We need to try to allocate 2128 * unmapped blocks in the same page. 2129 * Otherwise we won't make progress 2130 * with the page in ext4_da_writepage 2131 */ 2132 if (buffer_dirty(bh) && 2133 (!buffer_mapped(bh) || buffer_delay(bh))) { 2134 mpage_add_bh_to_extent(mpd, logical, bh); 2135 if (mpd->io_done) 2136 return MPAGE_DA_EXTENT_TAIL; 2137 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2138 /* 2139 * mapped dirty buffer. We need to update 2140 * the b_state because we look at 2141 * b_state in mpage_da_map_blocks. We don't 2142 * update b_size because if we find an 2143 * unmapped buffer_head later we need to 2144 * use the b_state flag of that buffer_head. 2145 */ 2146 if (mpd->lbh.b_size == 0) 2147 mpd->lbh.b_state = 2148 bh->b_state & BH_FLAGS; 2149 } 2150 logical++; 2151 } while ((bh = bh->b_this_page) != head); 2152 } 2153 2154 return 0; 2155 } 2156 2157 /* 2158 * mpage_da_writepages - walk the list of dirty pages of the given 2159 * address space, allocates non-allocated blocks, maps newly-allocated 2160 * blocks to existing bhs and issue IO them 2161 * 2162 * @mapping: address space structure to write 2163 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2164 * @get_block: the filesystem's block mapper function. 2165 * 2166 * This is a library function, which implements the writepages() 2167 * address_space_operation. 2168 */ 2169 static int mpage_da_writepages(struct address_space *mapping, 2170 struct writeback_control *wbc, 2171 struct mpage_da_data *mpd) 2172 { 2173 int ret; 2174 2175 if (!mpd->get_block) 2176 return generic_writepages(mapping, wbc); 2177 2178 mpd->lbh.b_size = 0; 2179 mpd->lbh.b_state = 0; 2180 mpd->lbh.b_blocknr = 0; 2181 mpd->first_page = 0; 2182 mpd->next_page = 0; 2183 mpd->io_done = 0; 2184 mpd->pages_written = 0; 2185 mpd->retval = 0; 2186 2187 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd); 2188 /* 2189 * Handle last extent of pages 2190 */ 2191 if (!mpd->io_done && mpd->next_page != mpd->first_page) { 2192 if (mpage_da_map_blocks(mpd) == 0) 2193 mpage_da_submit_io(mpd); 2194 2195 mpd->io_done = 1; 2196 ret = MPAGE_DA_EXTENT_TAIL; 2197 } 2198 wbc->nr_to_write -= mpd->pages_written; 2199 return ret; 2200 } 2201 2202 /* 2203 * this is a special callback for ->write_begin() only 2204 * it's intention is to return mapped block or reserve space 2205 */ 2206 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2207 struct buffer_head *bh_result, int create) 2208 { 2209 int ret = 0; 2210 2211 BUG_ON(create == 0); 2212 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2213 2214 /* 2215 * first, we need to know whether the block is allocated already 2216 * preallocated blocks are unmapped but should treated 2217 * the same as allocated blocks. 2218 */ 2219 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2220 if ((ret == 0) && !buffer_delay(bh_result)) { 2221 /* the block isn't (pre)allocated yet, let's reserve space */ 2222 /* 2223 * XXX: __block_prepare_write() unmaps passed block, 2224 * is it OK? 2225 */ 2226 ret = ext4_da_reserve_space(inode, 1); 2227 if (ret) 2228 /* not enough space to reserve */ 2229 return ret; 2230 2231 map_bh(bh_result, inode->i_sb, 0); 2232 set_buffer_new(bh_result); 2233 set_buffer_delay(bh_result); 2234 } else if (ret > 0) { 2235 bh_result->b_size = (ret << inode->i_blkbits); 2236 ret = 0; 2237 } 2238 2239 return ret; 2240 } 2241 #define EXT4_DELALLOC_RSVED 1 2242 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2243 struct buffer_head *bh_result, int create) 2244 { 2245 int ret; 2246 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2247 loff_t disksize = EXT4_I(inode)->i_disksize; 2248 handle_t *handle = NULL; 2249 2250 handle = ext4_journal_current_handle(); 2251 BUG_ON(!handle); 2252 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2253 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2254 if (ret > 0) { 2255 2256 bh_result->b_size = (ret << inode->i_blkbits); 2257 2258 if (ext4_should_order_data(inode)) { 2259 int retval; 2260 retval = ext4_jbd2_file_inode(handle, inode); 2261 if (retval) 2262 /* 2263 * Failed to add inode for ordered 2264 * mode. Don't update file size 2265 */ 2266 return retval; 2267 } 2268 2269 /* 2270 * Update on-disk size along with block allocation 2271 * we don't use 'extend_disksize' as size may change 2272 * within already allocated block -bzzz 2273 */ 2274 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2275 if (disksize > i_size_read(inode)) 2276 disksize = i_size_read(inode); 2277 if (disksize > EXT4_I(inode)->i_disksize) { 2278 ext4_update_i_disksize(inode, disksize); 2279 ret = ext4_mark_inode_dirty(handle, inode); 2280 return ret; 2281 } 2282 ret = 0; 2283 } 2284 return ret; 2285 } 2286 2287 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2288 { 2289 /* 2290 * unmapped buffer is possible for holes. 2291 * delay buffer is possible with delayed allocation 2292 */ 2293 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2294 } 2295 2296 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2297 struct buffer_head *bh_result, int create) 2298 { 2299 int ret = 0; 2300 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2301 2302 /* 2303 * we don't want to do block allocation in writepage 2304 * so call get_block_wrap with create = 0 2305 */ 2306 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2307 bh_result, 0, 0, 0); 2308 if (ret > 0) { 2309 bh_result->b_size = (ret << inode->i_blkbits); 2310 ret = 0; 2311 } 2312 return ret; 2313 } 2314 2315 /* 2316 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2317 * get called via journal_submit_inode_data_buffers (no journal handle) 2318 * get called via shrink_page_list via pdflush (no journal handle) 2319 * or grab_page_cache when doing write_begin (have journal handle) 2320 */ 2321 static int ext4_da_writepage(struct page *page, 2322 struct writeback_control *wbc) 2323 { 2324 int ret = 0; 2325 loff_t size; 2326 unsigned int len; 2327 struct buffer_head *page_bufs; 2328 struct inode *inode = page->mapping->host; 2329 2330 trace_mark(ext4_da_writepage, 2331 "dev %s ino %lu page_index %lu", 2332 inode->i_sb->s_id, inode->i_ino, page->index); 2333 size = i_size_read(inode); 2334 if (page->index == size >> PAGE_CACHE_SHIFT) 2335 len = size & ~PAGE_CACHE_MASK; 2336 else 2337 len = PAGE_CACHE_SIZE; 2338 2339 if (page_has_buffers(page)) { 2340 page_bufs = page_buffers(page); 2341 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2342 ext4_bh_unmapped_or_delay)) { 2343 /* 2344 * We don't want to do block allocation 2345 * So redirty the page and return 2346 * We may reach here when we do a journal commit 2347 * via journal_submit_inode_data_buffers. 2348 * If we don't have mapping block we just ignore 2349 * them. We can also reach here via shrink_page_list 2350 */ 2351 redirty_page_for_writepage(wbc, page); 2352 unlock_page(page); 2353 return 0; 2354 } 2355 } else { 2356 /* 2357 * The test for page_has_buffers() is subtle: 2358 * We know the page is dirty but it lost buffers. That means 2359 * that at some moment in time after write_begin()/write_end() 2360 * has been called all buffers have been clean and thus they 2361 * must have been written at least once. So they are all 2362 * mapped and we can happily proceed with mapping them 2363 * and writing the page. 2364 * 2365 * Try to initialize the buffer_heads and check whether 2366 * all are mapped and non delay. We don't want to 2367 * do block allocation here. 2368 */ 2369 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2370 ext4_normal_get_block_write); 2371 if (!ret) { 2372 page_bufs = page_buffers(page); 2373 /* check whether all are mapped and non delay */ 2374 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2375 ext4_bh_unmapped_or_delay)) { 2376 redirty_page_for_writepage(wbc, page); 2377 unlock_page(page); 2378 return 0; 2379 } 2380 } else { 2381 /* 2382 * We can't do block allocation here 2383 * so just redity the page and unlock 2384 * and return 2385 */ 2386 redirty_page_for_writepage(wbc, page); 2387 unlock_page(page); 2388 return 0; 2389 } 2390 /* now mark the buffer_heads as dirty and uptodate */ 2391 block_commit_write(page, 0, PAGE_CACHE_SIZE); 2392 } 2393 2394 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2395 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2396 else 2397 ret = block_write_full_page(page, 2398 ext4_normal_get_block_write, 2399 wbc); 2400 2401 return ret; 2402 } 2403 2404 /* 2405 * This is called via ext4_da_writepages() to 2406 * calulate the total number of credits to reserve to fit 2407 * a single extent allocation into a single transaction, 2408 * ext4_da_writpeages() will loop calling this before 2409 * the block allocation. 2410 */ 2411 2412 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2413 { 2414 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2415 2416 /* 2417 * With non-extent format the journal credit needed to 2418 * insert nrblocks contiguous block is dependent on 2419 * number of contiguous block. So we will limit 2420 * number of contiguous block to a sane value 2421 */ 2422 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2423 (max_blocks > EXT4_MAX_TRANS_DATA)) 2424 max_blocks = EXT4_MAX_TRANS_DATA; 2425 2426 return ext4_chunk_trans_blocks(inode, max_blocks); 2427 } 2428 2429 static int ext4_da_writepages(struct address_space *mapping, 2430 struct writeback_control *wbc) 2431 { 2432 pgoff_t index; 2433 int range_whole = 0; 2434 handle_t *handle = NULL; 2435 struct mpage_da_data mpd; 2436 struct inode *inode = mapping->host; 2437 int no_nrwrite_index_update; 2438 int pages_written = 0; 2439 long pages_skipped; 2440 int needed_blocks, ret = 0, nr_to_writebump = 0; 2441 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2442 2443 trace_mark(ext4_da_writepages, 2444 "dev %s ino %lu nr_t_write %ld " 2445 "pages_skipped %ld range_start %llu " 2446 "range_end %llu nonblocking %d " 2447 "for_kupdate %d for_reclaim %d " 2448 "for_writepages %d range_cyclic %d", 2449 inode->i_sb->s_id, inode->i_ino, 2450 wbc->nr_to_write, wbc->pages_skipped, 2451 (unsigned long long) wbc->range_start, 2452 (unsigned long long) wbc->range_end, 2453 wbc->nonblocking, wbc->for_kupdate, 2454 wbc->for_reclaim, wbc->for_writepages, 2455 wbc->range_cyclic); 2456 2457 /* 2458 * No pages to write? This is mainly a kludge to avoid starting 2459 * a transaction for special inodes like journal inode on last iput() 2460 * because that could violate lock ordering on umount 2461 */ 2462 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2463 return 0; 2464 2465 /* 2466 * If the filesystem has aborted, it is read-only, so return 2467 * right away instead of dumping stack traces later on that 2468 * will obscure the real source of the problem. We test 2469 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because 2470 * the latter could be true if the filesystem is mounted 2471 * read-only, and in that case, ext4_da_writepages should 2472 * *never* be called, so if that ever happens, we would want 2473 * the stack trace. 2474 */ 2475 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT)) 2476 return -EROFS; 2477 2478 /* 2479 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2480 * This make sure small files blocks are allocated in 2481 * single attempt. This ensure that small files 2482 * get less fragmented. 2483 */ 2484 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2485 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2486 wbc->nr_to_write = sbi->s_mb_stream_request; 2487 } 2488 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2489 range_whole = 1; 2490 2491 if (wbc->range_cyclic) 2492 index = mapping->writeback_index; 2493 else 2494 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2495 2496 mpd.wbc = wbc; 2497 mpd.inode = mapping->host; 2498 2499 /* 2500 * we don't want write_cache_pages to update 2501 * nr_to_write and writeback_index 2502 */ 2503 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2504 wbc->no_nrwrite_index_update = 1; 2505 pages_skipped = wbc->pages_skipped; 2506 2507 while (!ret && wbc->nr_to_write > 0) { 2508 2509 /* 2510 * we insert one extent at a time. So we need 2511 * credit needed for single extent allocation. 2512 * journalled mode is currently not supported 2513 * by delalloc 2514 */ 2515 BUG_ON(ext4_should_journal_data(inode)); 2516 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2517 2518 /* start a new transaction*/ 2519 handle = ext4_journal_start(inode, needed_blocks); 2520 if (IS_ERR(handle)) { 2521 ret = PTR_ERR(handle); 2522 printk(KERN_CRIT "%s: jbd2_start: " 2523 "%ld pages, ino %lu; err %d\n", __func__, 2524 wbc->nr_to_write, inode->i_ino, ret); 2525 dump_stack(); 2526 goto out_writepages; 2527 } 2528 mpd.get_block = ext4_da_get_block_write; 2529 ret = mpage_da_writepages(mapping, wbc, &mpd); 2530 2531 ext4_journal_stop(handle); 2532 2533 if (mpd.retval == -ENOSPC) { 2534 /* commit the transaction which would 2535 * free blocks released in the transaction 2536 * and try again 2537 */ 2538 jbd2_journal_force_commit_nested(sbi->s_journal); 2539 wbc->pages_skipped = pages_skipped; 2540 ret = 0; 2541 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2542 /* 2543 * got one extent now try with 2544 * rest of the pages 2545 */ 2546 pages_written += mpd.pages_written; 2547 wbc->pages_skipped = pages_skipped; 2548 ret = 0; 2549 } else if (wbc->nr_to_write) 2550 /* 2551 * There is no more writeout needed 2552 * or we requested for a noblocking writeout 2553 * and we found the device congested 2554 */ 2555 break; 2556 } 2557 if (pages_skipped != wbc->pages_skipped) 2558 printk(KERN_EMERG "This should not happen leaving %s " 2559 "with nr_to_write = %ld ret = %d\n", 2560 __func__, wbc->nr_to_write, ret); 2561 2562 /* Update index */ 2563 index += pages_written; 2564 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2565 /* 2566 * set the writeback_index so that range_cyclic 2567 * mode will write it back later 2568 */ 2569 mapping->writeback_index = index; 2570 2571 out_writepages: 2572 if (!no_nrwrite_index_update) 2573 wbc->no_nrwrite_index_update = 0; 2574 wbc->nr_to_write -= nr_to_writebump; 2575 trace_mark(ext4_da_writepage_result, 2576 "dev %s ino %lu ret %d pages_written %d " 2577 "pages_skipped %ld congestion %d " 2578 "more_io %d no_nrwrite_index_update %d", 2579 inode->i_sb->s_id, inode->i_ino, ret, 2580 pages_written, wbc->pages_skipped, 2581 wbc->encountered_congestion, wbc->more_io, 2582 wbc->no_nrwrite_index_update); 2583 return ret; 2584 } 2585 2586 #define FALL_BACK_TO_NONDELALLOC 1 2587 static int ext4_nonda_switch(struct super_block *sb) 2588 { 2589 s64 free_blocks, dirty_blocks; 2590 struct ext4_sb_info *sbi = EXT4_SB(sb); 2591 2592 /* 2593 * switch to non delalloc mode if we are running low 2594 * on free block. The free block accounting via percpu 2595 * counters can get slightly wrong with percpu_counter_batch getting 2596 * accumulated on each CPU without updating global counters 2597 * Delalloc need an accurate free block accounting. So switch 2598 * to non delalloc when we are near to error range. 2599 */ 2600 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2601 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2602 if (2 * free_blocks < 3 * dirty_blocks || 2603 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2604 /* 2605 * free block count is less that 150% of dirty blocks 2606 * or free blocks is less that watermark 2607 */ 2608 return 1; 2609 } 2610 return 0; 2611 } 2612 2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2614 loff_t pos, unsigned len, unsigned flags, 2615 struct page **pagep, void **fsdata) 2616 { 2617 int ret, retries = 0; 2618 struct page *page; 2619 pgoff_t index; 2620 unsigned from, to; 2621 struct inode *inode = mapping->host; 2622 handle_t *handle; 2623 2624 index = pos >> PAGE_CACHE_SHIFT; 2625 from = pos & (PAGE_CACHE_SIZE - 1); 2626 to = from + len; 2627 2628 if (ext4_nonda_switch(inode->i_sb)) { 2629 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2630 return ext4_write_begin(file, mapping, pos, 2631 len, flags, pagep, fsdata); 2632 } 2633 *fsdata = (void *)0; 2634 2635 trace_mark(ext4_da_write_begin, 2636 "dev %s ino %lu pos %llu len %u flags %u", 2637 inode->i_sb->s_id, inode->i_ino, 2638 (unsigned long long) pos, len, flags); 2639 retry: 2640 /* 2641 * With delayed allocation, we don't log the i_disksize update 2642 * if there is delayed block allocation. But we still need 2643 * to journalling the i_disksize update if writes to the end 2644 * of file which has an already mapped buffer. 2645 */ 2646 handle = ext4_journal_start(inode, 1); 2647 if (IS_ERR(handle)) { 2648 ret = PTR_ERR(handle); 2649 goto out; 2650 } 2651 2652 page = grab_cache_page_write_begin(mapping, index, flags); 2653 if (!page) { 2654 ext4_journal_stop(handle); 2655 ret = -ENOMEM; 2656 goto out; 2657 } 2658 *pagep = page; 2659 2660 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2661 ext4_da_get_block_prep); 2662 if (ret < 0) { 2663 unlock_page(page); 2664 ext4_journal_stop(handle); 2665 page_cache_release(page); 2666 /* 2667 * block_write_begin may have instantiated a few blocks 2668 * outside i_size. Trim these off again. Don't need 2669 * i_size_read because we hold i_mutex. 2670 */ 2671 if (pos + len > inode->i_size) 2672 vmtruncate(inode, inode->i_size); 2673 } 2674 2675 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2676 goto retry; 2677 out: 2678 return ret; 2679 } 2680 2681 /* 2682 * Check if we should update i_disksize 2683 * when write to the end of file but not require block allocation 2684 */ 2685 static int ext4_da_should_update_i_disksize(struct page *page, 2686 unsigned long offset) 2687 { 2688 struct buffer_head *bh; 2689 struct inode *inode = page->mapping->host; 2690 unsigned int idx; 2691 int i; 2692 2693 bh = page_buffers(page); 2694 idx = offset >> inode->i_blkbits; 2695 2696 for (i = 0; i < idx; i++) 2697 bh = bh->b_this_page; 2698 2699 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2700 return 0; 2701 return 1; 2702 } 2703 2704 static int ext4_da_write_end(struct file *file, 2705 struct address_space *mapping, 2706 loff_t pos, unsigned len, unsigned copied, 2707 struct page *page, void *fsdata) 2708 { 2709 struct inode *inode = mapping->host; 2710 int ret = 0, ret2; 2711 handle_t *handle = ext4_journal_current_handle(); 2712 loff_t new_i_size; 2713 unsigned long start, end; 2714 int write_mode = (int)(unsigned long)fsdata; 2715 2716 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2717 if (ext4_should_order_data(inode)) { 2718 return ext4_ordered_write_end(file, mapping, pos, 2719 len, copied, page, fsdata); 2720 } else if (ext4_should_writeback_data(inode)) { 2721 return ext4_writeback_write_end(file, mapping, pos, 2722 len, copied, page, fsdata); 2723 } else { 2724 BUG(); 2725 } 2726 } 2727 2728 trace_mark(ext4_da_write_end, 2729 "dev %s ino %lu pos %llu len %u copied %u", 2730 inode->i_sb->s_id, inode->i_ino, 2731 (unsigned long long) pos, len, copied); 2732 start = pos & (PAGE_CACHE_SIZE - 1); 2733 end = start + copied - 1; 2734 2735 /* 2736 * generic_write_end() will run mark_inode_dirty() if i_size 2737 * changes. So let's piggyback the i_disksize mark_inode_dirty 2738 * into that. 2739 */ 2740 2741 new_i_size = pos + copied; 2742 if (new_i_size > EXT4_I(inode)->i_disksize) { 2743 if (ext4_da_should_update_i_disksize(page, end)) { 2744 down_write(&EXT4_I(inode)->i_data_sem); 2745 if (new_i_size > EXT4_I(inode)->i_disksize) { 2746 /* 2747 * Updating i_disksize when extending file 2748 * without needing block allocation 2749 */ 2750 if (ext4_should_order_data(inode)) 2751 ret = ext4_jbd2_file_inode(handle, 2752 inode); 2753 2754 EXT4_I(inode)->i_disksize = new_i_size; 2755 } 2756 up_write(&EXT4_I(inode)->i_data_sem); 2757 /* We need to mark inode dirty even if 2758 * new_i_size is less that inode->i_size 2759 * bu greater than i_disksize.(hint delalloc) 2760 */ 2761 ext4_mark_inode_dirty(handle, inode); 2762 } 2763 } 2764 ret2 = generic_write_end(file, mapping, pos, len, copied, 2765 page, fsdata); 2766 copied = ret2; 2767 if (ret2 < 0) 2768 ret = ret2; 2769 ret2 = ext4_journal_stop(handle); 2770 if (!ret) 2771 ret = ret2; 2772 2773 return ret ? ret : copied; 2774 } 2775 2776 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2777 { 2778 /* 2779 * Drop reserved blocks 2780 */ 2781 BUG_ON(!PageLocked(page)); 2782 if (!page_has_buffers(page)) 2783 goto out; 2784 2785 ext4_da_page_release_reservation(page, offset); 2786 2787 out: 2788 ext4_invalidatepage(page, offset); 2789 2790 return; 2791 } 2792 2793 2794 /* 2795 * bmap() is special. It gets used by applications such as lilo and by 2796 * the swapper to find the on-disk block of a specific piece of data. 2797 * 2798 * Naturally, this is dangerous if the block concerned is still in the 2799 * journal. If somebody makes a swapfile on an ext4 data-journaling 2800 * filesystem and enables swap, then they may get a nasty shock when the 2801 * data getting swapped to that swapfile suddenly gets overwritten by 2802 * the original zero's written out previously to the journal and 2803 * awaiting writeback in the kernel's buffer cache. 2804 * 2805 * So, if we see any bmap calls here on a modified, data-journaled file, 2806 * take extra steps to flush any blocks which might be in the cache. 2807 */ 2808 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2809 { 2810 struct inode *inode = mapping->host; 2811 journal_t *journal; 2812 int err; 2813 2814 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2815 test_opt(inode->i_sb, DELALLOC)) { 2816 /* 2817 * With delalloc we want to sync the file 2818 * so that we can make sure we allocate 2819 * blocks for file 2820 */ 2821 filemap_write_and_wait(mapping); 2822 } 2823 2824 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2825 /* 2826 * This is a REALLY heavyweight approach, but the use of 2827 * bmap on dirty files is expected to be extremely rare: 2828 * only if we run lilo or swapon on a freshly made file 2829 * do we expect this to happen. 2830 * 2831 * (bmap requires CAP_SYS_RAWIO so this does not 2832 * represent an unprivileged user DOS attack --- we'd be 2833 * in trouble if mortal users could trigger this path at 2834 * will.) 2835 * 2836 * NB. EXT4_STATE_JDATA is not set on files other than 2837 * regular files. If somebody wants to bmap a directory 2838 * or symlink and gets confused because the buffer 2839 * hasn't yet been flushed to disk, they deserve 2840 * everything they get. 2841 */ 2842 2843 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2844 journal = EXT4_JOURNAL(inode); 2845 jbd2_journal_lock_updates(journal); 2846 err = jbd2_journal_flush(journal); 2847 jbd2_journal_unlock_updates(journal); 2848 2849 if (err) 2850 return 0; 2851 } 2852 2853 return generic_block_bmap(mapping, block, ext4_get_block); 2854 } 2855 2856 static int bget_one(handle_t *handle, struct buffer_head *bh) 2857 { 2858 get_bh(bh); 2859 return 0; 2860 } 2861 2862 static int bput_one(handle_t *handle, struct buffer_head *bh) 2863 { 2864 put_bh(bh); 2865 return 0; 2866 } 2867 2868 /* 2869 * Note that we don't need to start a transaction unless we're journaling data 2870 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2871 * need to file the inode to the transaction's list in ordered mode because if 2872 * we are writing back data added by write(), the inode is already there and if 2873 * we are writing back data modified via mmap(), noone guarantees in which 2874 * transaction the data will hit the disk. In case we are journaling data, we 2875 * cannot start transaction directly because transaction start ranks above page 2876 * lock so we have to do some magic. 2877 * 2878 * In all journaling modes block_write_full_page() will start the I/O. 2879 * 2880 * Problem: 2881 * 2882 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2883 * ext4_writepage() 2884 * 2885 * Similar for: 2886 * 2887 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2888 * 2889 * Same applies to ext4_get_block(). We will deadlock on various things like 2890 * lock_journal and i_data_sem 2891 * 2892 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2893 * allocations fail. 2894 * 2895 * 16May01: If we're reentered then journal_current_handle() will be 2896 * non-zero. We simply *return*. 2897 * 2898 * 1 July 2001: @@@ FIXME: 2899 * In journalled data mode, a data buffer may be metadata against the 2900 * current transaction. But the same file is part of a shared mapping 2901 * and someone does a writepage() on it. 2902 * 2903 * We will move the buffer onto the async_data list, but *after* it has 2904 * been dirtied. So there's a small window where we have dirty data on 2905 * BJ_Metadata. 2906 * 2907 * Note that this only applies to the last partial page in the file. The 2908 * bit which block_write_full_page() uses prepare/commit for. (That's 2909 * broken code anyway: it's wrong for msync()). 2910 * 2911 * It's a rare case: affects the final partial page, for journalled data 2912 * where the file is subject to bith write() and writepage() in the same 2913 * transction. To fix it we'll need a custom block_write_full_page(). 2914 * We'll probably need that anyway for journalling writepage() output. 2915 * 2916 * We don't honour synchronous mounts for writepage(). That would be 2917 * disastrous. Any write() or metadata operation will sync the fs for 2918 * us. 2919 * 2920 */ 2921 static int __ext4_normal_writepage(struct page *page, 2922 struct writeback_control *wbc) 2923 { 2924 struct inode *inode = page->mapping->host; 2925 2926 if (test_opt(inode->i_sb, NOBH)) 2927 return nobh_writepage(page, 2928 ext4_normal_get_block_write, wbc); 2929 else 2930 return block_write_full_page(page, 2931 ext4_normal_get_block_write, 2932 wbc); 2933 } 2934 2935 static int ext4_normal_writepage(struct page *page, 2936 struct writeback_control *wbc) 2937 { 2938 struct inode *inode = page->mapping->host; 2939 loff_t size = i_size_read(inode); 2940 loff_t len; 2941 2942 trace_mark(ext4_normal_writepage, 2943 "dev %s ino %lu page_index %lu", 2944 inode->i_sb->s_id, inode->i_ino, page->index); 2945 J_ASSERT(PageLocked(page)); 2946 if (page->index == size >> PAGE_CACHE_SHIFT) 2947 len = size & ~PAGE_CACHE_MASK; 2948 else 2949 len = PAGE_CACHE_SIZE; 2950 2951 if (page_has_buffers(page)) { 2952 /* if page has buffers it should all be mapped 2953 * and allocated. If there are not buffers attached 2954 * to the page we know the page is dirty but it lost 2955 * buffers. That means that at some moment in time 2956 * after write_begin() / write_end() has been called 2957 * all buffers have been clean and thus they must have been 2958 * written at least once. So they are all mapped and we can 2959 * happily proceed with mapping them and writing the page. 2960 */ 2961 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2962 ext4_bh_unmapped_or_delay)); 2963 } 2964 2965 if (!ext4_journal_current_handle()) 2966 return __ext4_normal_writepage(page, wbc); 2967 2968 redirty_page_for_writepage(wbc, page); 2969 unlock_page(page); 2970 return 0; 2971 } 2972 2973 static int __ext4_journalled_writepage(struct page *page, 2974 struct writeback_control *wbc) 2975 { 2976 struct address_space *mapping = page->mapping; 2977 struct inode *inode = mapping->host; 2978 struct buffer_head *page_bufs; 2979 handle_t *handle = NULL; 2980 int ret = 0; 2981 int err; 2982 2983 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2984 ext4_normal_get_block_write); 2985 if (ret != 0) 2986 goto out_unlock; 2987 2988 page_bufs = page_buffers(page); 2989 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2990 bget_one); 2991 /* As soon as we unlock the page, it can go away, but we have 2992 * references to buffers so we are safe */ 2993 unlock_page(page); 2994 2995 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2996 if (IS_ERR(handle)) { 2997 ret = PTR_ERR(handle); 2998 goto out; 2999 } 3000 3001 ret = walk_page_buffers(handle, page_bufs, 0, 3002 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 3003 3004 err = walk_page_buffers(handle, page_bufs, 0, 3005 PAGE_CACHE_SIZE, NULL, write_end_fn); 3006 if (ret == 0) 3007 ret = err; 3008 err = ext4_journal_stop(handle); 3009 if (!ret) 3010 ret = err; 3011 3012 walk_page_buffers(handle, page_bufs, 0, 3013 PAGE_CACHE_SIZE, NULL, bput_one); 3014 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 3015 goto out; 3016 3017 out_unlock: 3018 unlock_page(page); 3019 out: 3020 return ret; 3021 } 3022 3023 static int ext4_journalled_writepage(struct page *page, 3024 struct writeback_control *wbc) 3025 { 3026 struct inode *inode = page->mapping->host; 3027 loff_t size = i_size_read(inode); 3028 loff_t len; 3029 3030 trace_mark(ext4_journalled_writepage, 3031 "dev %s ino %lu page_index %lu", 3032 inode->i_sb->s_id, inode->i_ino, page->index); 3033 J_ASSERT(PageLocked(page)); 3034 if (page->index == size >> PAGE_CACHE_SHIFT) 3035 len = size & ~PAGE_CACHE_MASK; 3036 else 3037 len = PAGE_CACHE_SIZE; 3038 3039 if (page_has_buffers(page)) { 3040 /* if page has buffers it should all be mapped 3041 * and allocated. If there are not buffers attached 3042 * to the page we know the page is dirty but it lost 3043 * buffers. That means that at some moment in time 3044 * after write_begin() / write_end() has been called 3045 * all buffers have been clean and thus they must have been 3046 * written at least once. So they are all mapped and we can 3047 * happily proceed with mapping them and writing the page. 3048 */ 3049 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 3050 ext4_bh_unmapped_or_delay)); 3051 } 3052 3053 if (ext4_journal_current_handle()) 3054 goto no_write; 3055 3056 if (PageChecked(page)) { 3057 /* 3058 * It's mmapped pagecache. Add buffers and journal it. There 3059 * doesn't seem much point in redirtying the page here. 3060 */ 3061 ClearPageChecked(page); 3062 return __ext4_journalled_writepage(page, wbc); 3063 } else { 3064 /* 3065 * It may be a page full of checkpoint-mode buffers. We don't 3066 * really know unless we go poke around in the buffer_heads. 3067 * But block_write_full_page will do the right thing. 3068 */ 3069 return block_write_full_page(page, 3070 ext4_normal_get_block_write, 3071 wbc); 3072 } 3073 no_write: 3074 redirty_page_for_writepage(wbc, page); 3075 unlock_page(page); 3076 return 0; 3077 } 3078 3079 static int ext4_readpage(struct file *file, struct page *page) 3080 { 3081 return mpage_readpage(page, ext4_get_block); 3082 } 3083 3084 static int 3085 ext4_readpages(struct file *file, struct address_space *mapping, 3086 struct list_head *pages, unsigned nr_pages) 3087 { 3088 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3089 } 3090 3091 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3092 { 3093 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3094 3095 /* 3096 * If it's a full truncate we just forget about the pending dirtying 3097 */ 3098 if (offset == 0) 3099 ClearPageChecked(page); 3100 3101 if (journal) 3102 jbd2_journal_invalidatepage(journal, page, offset); 3103 else 3104 block_invalidatepage(page, offset); 3105 } 3106 3107 static int ext4_releasepage(struct page *page, gfp_t wait) 3108 { 3109 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3110 3111 WARN_ON(PageChecked(page)); 3112 if (!page_has_buffers(page)) 3113 return 0; 3114 if (journal) 3115 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3116 else 3117 return try_to_free_buffers(page); 3118 } 3119 3120 /* 3121 * If the O_DIRECT write will extend the file then add this inode to the 3122 * orphan list. So recovery will truncate it back to the original size 3123 * if the machine crashes during the write. 3124 * 3125 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3126 * crashes then stale disk data _may_ be exposed inside the file. But current 3127 * VFS code falls back into buffered path in that case so we are safe. 3128 */ 3129 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3130 const struct iovec *iov, loff_t offset, 3131 unsigned long nr_segs) 3132 { 3133 struct file *file = iocb->ki_filp; 3134 struct inode *inode = file->f_mapping->host; 3135 struct ext4_inode_info *ei = EXT4_I(inode); 3136 handle_t *handle; 3137 ssize_t ret; 3138 int orphan = 0; 3139 size_t count = iov_length(iov, nr_segs); 3140 3141 if (rw == WRITE) { 3142 loff_t final_size = offset + count; 3143 3144 if (final_size > inode->i_size) { 3145 /* Credits for sb + inode write */ 3146 handle = ext4_journal_start(inode, 2); 3147 if (IS_ERR(handle)) { 3148 ret = PTR_ERR(handle); 3149 goto out; 3150 } 3151 ret = ext4_orphan_add(handle, inode); 3152 if (ret) { 3153 ext4_journal_stop(handle); 3154 goto out; 3155 } 3156 orphan = 1; 3157 ei->i_disksize = inode->i_size; 3158 ext4_journal_stop(handle); 3159 } 3160 } 3161 3162 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3163 offset, nr_segs, 3164 ext4_get_block, NULL); 3165 3166 if (orphan) { 3167 int err; 3168 3169 /* Credits for sb + inode write */ 3170 handle = ext4_journal_start(inode, 2); 3171 if (IS_ERR(handle)) { 3172 /* This is really bad luck. We've written the data 3173 * but cannot extend i_size. Bail out and pretend 3174 * the write failed... */ 3175 ret = PTR_ERR(handle); 3176 goto out; 3177 } 3178 if (inode->i_nlink) 3179 ext4_orphan_del(handle, inode); 3180 if (ret > 0) { 3181 loff_t end = offset + ret; 3182 if (end > inode->i_size) { 3183 ei->i_disksize = end; 3184 i_size_write(inode, end); 3185 /* 3186 * We're going to return a positive `ret' 3187 * here due to non-zero-length I/O, so there's 3188 * no way of reporting error returns from 3189 * ext4_mark_inode_dirty() to userspace. So 3190 * ignore it. 3191 */ 3192 ext4_mark_inode_dirty(handle, inode); 3193 } 3194 } 3195 err = ext4_journal_stop(handle); 3196 if (ret == 0) 3197 ret = err; 3198 } 3199 out: 3200 return ret; 3201 } 3202 3203 /* 3204 * Pages can be marked dirty completely asynchronously from ext4's journalling 3205 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3206 * much here because ->set_page_dirty is called under VFS locks. The page is 3207 * not necessarily locked. 3208 * 3209 * We cannot just dirty the page and leave attached buffers clean, because the 3210 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3211 * or jbddirty because all the journalling code will explode. 3212 * 3213 * So what we do is to mark the page "pending dirty" and next time writepage 3214 * is called, propagate that into the buffers appropriately. 3215 */ 3216 static int ext4_journalled_set_page_dirty(struct page *page) 3217 { 3218 SetPageChecked(page); 3219 return __set_page_dirty_nobuffers(page); 3220 } 3221 3222 static const struct address_space_operations ext4_ordered_aops = { 3223 .readpage = ext4_readpage, 3224 .readpages = ext4_readpages, 3225 .writepage = ext4_normal_writepage, 3226 .sync_page = block_sync_page, 3227 .write_begin = ext4_write_begin, 3228 .write_end = ext4_ordered_write_end, 3229 .bmap = ext4_bmap, 3230 .invalidatepage = ext4_invalidatepage, 3231 .releasepage = ext4_releasepage, 3232 .direct_IO = ext4_direct_IO, 3233 .migratepage = buffer_migrate_page, 3234 .is_partially_uptodate = block_is_partially_uptodate, 3235 }; 3236 3237 static const struct address_space_operations ext4_writeback_aops = { 3238 .readpage = ext4_readpage, 3239 .readpages = ext4_readpages, 3240 .writepage = ext4_normal_writepage, 3241 .sync_page = block_sync_page, 3242 .write_begin = ext4_write_begin, 3243 .write_end = ext4_writeback_write_end, 3244 .bmap = ext4_bmap, 3245 .invalidatepage = ext4_invalidatepage, 3246 .releasepage = ext4_releasepage, 3247 .direct_IO = ext4_direct_IO, 3248 .migratepage = buffer_migrate_page, 3249 .is_partially_uptodate = block_is_partially_uptodate, 3250 }; 3251 3252 static const struct address_space_operations ext4_journalled_aops = { 3253 .readpage = ext4_readpage, 3254 .readpages = ext4_readpages, 3255 .writepage = ext4_journalled_writepage, 3256 .sync_page = block_sync_page, 3257 .write_begin = ext4_write_begin, 3258 .write_end = ext4_journalled_write_end, 3259 .set_page_dirty = ext4_journalled_set_page_dirty, 3260 .bmap = ext4_bmap, 3261 .invalidatepage = ext4_invalidatepage, 3262 .releasepage = ext4_releasepage, 3263 .is_partially_uptodate = block_is_partially_uptodate, 3264 }; 3265 3266 static const struct address_space_operations ext4_da_aops = { 3267 .readpage = ext4_readpage, 3268 .readpages = ext4_readpages, 3269 .writepage = ext4_da_writepage, 3270 .writepages = ext4_da_writepages, 3271 .sync_page = block_sync_page, 3272 .write_begin = ext4_da_write_begin, 3273 .write_end = ext4_da_write_end, 3274 .bmap = ext4_bmap, 3275 .invalidatepage = ext4_da_invalidatepage, 3276 .releasepage = ext4_releasepage, 3277 .direct_IO = ext4_direct_IO, 3278 .migratepage = buffer_migrate_page, 3279 .is_partially_uptodate = block_is_partially_uptodate, 3280 }; 3281 3282 void ext4_set_aops(struct inode *inode) 3283 { 3284 if (ext4_should_order_data(inode) && 3285 test_opt(inode->i_sb, DELALLOC)) 3286 inode->i_mapping->a_ops = &ext4_da_aops; 3287 else if (ext4_should_order_data(inode)) 3288 inode->i_mapping->a_ops = &ext4_ordered_aops; 3289 else if (ext4_should_writeback_data(inode) && 3290 test_opt(inode->i_sb, DELALLOC)) 3291 inode->i_mapping->a_ops = &ext4_da_aops; 3292 else if (ext4_should_writeback_data(inode)) 3293 inode->i_mapping->a_ops = &ext4_writeback_aops; 3294 else 3295 inode->i_mapping->a_ops = &ext4_journalled_aops; 3296 } 3297 3298 /* 3299 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3300 * up to the end of the block which corresponds to `from'. 3301 * This required during truncate. We need to physically zero the tail end 3302 * of that block so it doesn't yield old data if the file is later grown. 3303 */ 3304 int ext4_block_truncate_page(handle_t *handle, 3305 struct address_space *mapping, loff_t from) 3306 { 3307 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3308 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3309 unsigned blocksize, length, pos; 3310 ext4_lblk_t iblock; 3311 struct inode *inode = mapping->host; 3312 struct buffer_head *bh; 3313 struct page *page; 3314 int err = 0; 3315 3316 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3317 if (!page) 3318 return -EINVAL; 3319 3320 blocksize = inode->i_sb->s_blocksize; 3321 length = blocksize - (offset & (blocksize - 1)); 3322 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3323 3324 /* 3325 * For "nobh" option, we can only work if we don't need to 3326 * read-in the page - otherwise we create buffers to do the IO. 3327 */ 3328 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3329 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3330 zero_user(page, offset, length); 3331 set_page_dirty(page); 3332 goto unlock; 3333 } 3334 3335 if (!page_has_buffers(page)) 3336 create_empty_buffers(page, blocksize, 0); 3337 3338 /* Find the buffer that contains "offset" */ 3339 bh = page_buffers(page); 3340 pos = blocksize; 3341 while (offset >= pos) { 3342 bh = bh->b_this_page; 3343 iblock++; 3344 pos += blocksize; 3345 } 3346 3347 err = 0; 3348 if (buffer_freed(bh)) { 3349 BUFFER_TRACE(bh, "freed: skip"); 3350 goto unlock; 3351 } 3352 3353 if (!buffer_mapped(bh)) { 3354 BUFFER_TRACE(bh, "unmapped"); 3355 ext4_get_block(inode, iblock, bh, 0); 3356 /* unmapped? It's a hole - nothing to do */ 3357 if (!buffer_mapped(bh)) { 3358 BUFFER_TRACE(bh, "still unmapped"); 3359 goto unlock; 3360 } 3361 } 3362 3363 /* Ok, it's mapped. Make sure it's up-to-date */ 3364 if (PageUptodate(page)) 3365 set_buffer_uptodate(bh); 3366 3367 if (!buffer_uptodate(bh)) { 3368 err = -EIO; 3369 ll_rw_block(READ, 1, &bh); 3370 wait_on_buffer(bh); 3371 /* Uhhuh. Read error. Complain and punt. */ 3372 if (!buffer_uptodate(bh)) 3373 goto unlock; 3374 } 3375 3376 if (ext4_should_journal_data(inode)) { 3377 BUFFER_TRACE(bh, "get write access"); 3378 err = ext4_journal_get_write_access(handle, bh); 3379 if (err) 3380 goto unlock; 3381 } 3382 3383 zero_user(page, offset, length); 3384 3385 BUFFER_TRACE(bh, "zeroed end of block"); 3386 3387 err = 0; 3388 if (ext4_should_journal_data(inode)) { 3389 err = ext4_handle_dirty_metadata(handle, inode, bh); 3390 } else { 3391 if (ext4_should_order_data(inode)) 3392 err = ext4_jbd2_file_inode(handle, inode); 3393 mark_buffer_dirty(bh); 3394 } 3395 3396 unlock: 3397 unlock_page(page); 3398 page_cache_release(page); 3399 return err; 3400 } 3401 3402 /* 3403 * Probably it should be a library function... search for first non-zero word 3404 * or memcmp with zero_page, whatever is better for particular architecture. 3405 * Linus? 3406 */ 3407 static inline int all_zeroes(__le32 *p, __le32 *q) 3408 { 3409 while (p < q) 3410 if (*p++) 3411 return 0; 3412 return 1; 3413 } 3414 3415 /** 3416 * ext4_find_shared - find the indirect blocks for partial truncation. 3417 * @inode: inode in question 3418 * @depth: depth of the affected branch 3419 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3420 * @chain: place to store the pointers to partial indirect blocks 3421 * @top: place to the (detached) top of branch 3422 * 3423 * This is a helper function used by ext4_truncate(). 3424 * 3425 * When we do truncate() we may have to clean the ends of several 3426 * indirect blocks but leave the blocks themselves alive. Block is 3427 * partially truncated if some data below the new i_size is refered 3428 * from it (and it is on the path to the first completely truncated 3429 * data block, indeed). We have to free the top of that path along 3430 * with everything to the right of the path. Since no allocation 3431 * past the truncation point is possible until ext4_truncate() 3432 * finishes, we may safely do the latter, but top of branch may 3433 * require special attention - pageout below the truncation point 3434 * might try to populate it. 3435 * 3436 * We atomically detach the top of branch from the tree, store the 3437 * block number of its root in *@top, pointers to buffer_heads of 3438 * partially truncated blocks - in @chain[].bh and pointers to 3439 * their last elements that should not be removed - in 3440 * @chain[].p. Return value is the pointer to last filled element 3441 * of @chain. 3442 * 3443 * The work left to caller to do the actual freeing of subtrees: 3444 * a) free the subtree starting from *@top 3445 * b) free the subtrees whose roots are stored in 3446 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3447 * c) free the subtrees growing from the inode past the @chain[0]. 3448 * (no partially truncated stuff there). */ 3449 3450 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3451 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3452 { 3453 Indirect *partial, *p; 3454 int k, err; 3455 3456 *top = 0; 3457 /* Make k index the deepest non-null offest + 1 */ 3458 for (k = depth; k > 1 && !offsets[k-1]; k--) 3459 ; 3460 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3461 /* Writer: pointers */ 3462 if (!partial) 3463 partial = chain + k-1; 3464 /* 3465 * If the branch acquired continuation since we've looked at it - 3466 * fine, it should all survive and (new) top doesn't belong to us. 3467 */ 3468 if (!partial->key && *partial->p) 3469 /* Writer: end */ 3470 goto no_top; 3471 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3472 ; 3473 /* 3474 * OK, we've found the last block that must survive. The rest of our 3475 * branch should be detached before unlocking. However, if that rest 3476 * of branch is all ours and does not grow immediately from the inode 3477 * it's easier to cheat and just decrement partial->p. 3478 */ 3479 if (p == chain + k - 1 && p > chain) { 3480 p->p--; 3481 } else { 3482 *top = *p->p; 3483 /* Nope, don't do this in ext4. Must leave the tree intact */ 3484 #if 0 3485 *p->p = 0; 3486 #endif 3487 } 3488 /* Writer: end */ 3489 3490 while (partial > p) { 3491 brelse(partial->bh); 3492 partial--; 3493 } 3494 no_top: 3495 return partial; 3496 } 3497 3498 /* 3499 * Zero a number of block pointers in either an inode or an indirect block. 3500 * If we restart the transaction we must again get write access to the 3501 * indirect block for further modification. 3502 * 3503 * We release `count' blocks on disk, but (last - first) may be greater 3504 * than `count' because there can be holes in there. 3505 */ 3506 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3507 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3508 unsigned long count, __le32 *first, __le32 *last) 3509 { 3510 __le32 *p; 3511 if (try_to_extend_transaction(handle, inode)) { 3512 if (bh) { 3513 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3514 ext4_handle_dirty_metadata(handle, inode, bh); 3515 } 3516 ext4_mark_inode_dirty(handle, inode); 3517 ext4_journal_test_restart(handle, inode); 3518 if (bh) { 3519 BUFFER_TRACE(bh, "retaking write access"); 3520 ext4_journal_get_write_access(handle, bh); 3521 } 3522 } 3523 3524 /* 3525 * Any buffers which are on the journal will be in memory. We find 3526 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3527 * on them. We've already detached each block from the file, so 3528 * bforget() in jbd2_journal_forget() should be safe. 3529 * 3530 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3531 */ 3532 for (p = first; p < last; p++) { 3533 u32 nr = le32_to_cpu(*p); 3534 if (nr) { 3535 struct buffer_head *tbh; 3536 3537 *p = 0; 3538 tbh = sb_find_get_block(inode->i_sb, nr); 3539 ext4_forget(handle, 0, inode, tbh, nr); 3540 } 3541 } 3542 3543 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3544 } 3545 3546 /** 3547 * ext4_free_data - free a list of data blocks 3548 * @handle: handle for this transaction 3549 * @inode: inode we are dealing with 3550 * @this_bh: indirect buffer_head which contains *@first and *@last 3551 * @first: array of block numbers 3552 * @last: points immediately past the end of array 3553 * 3554 * We are freeing all blocks refered from that array (numbers are stored as 3555 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3556 * 3557 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3558 * blocks are contiguous then releasing them at one time will only affect one 3559 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3560 * actually use a lot of journal space. 3561 * 3562 * @this_bh will be %NULL if @first and @last point into the inode's direct 3563 * block pointers. 3564 */ 3565 static void ext4_free_data(handle_t *handle, struct inode *inode, 3566 struct buffer_head *this_bh, 3567 __le32 *first, __le32 *last) 3568 { 3569 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3570 unsigned long count = 0; /* Number of blocks in the run */ 3571 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3572 corresponding to 3573 block_to_free */ 3574 ext4_fsblk_t nr; /* Current block # */ 3575 __le32 *p; /* Pointer into inode/ind 3576 for current block */ 3577 int err; 3578 3579 if (this_bh) { /* For indirect block */ 3580 BUFFER_TRACE(this_bh, "get_write_access"); 3581 err = ext4_journal_get_write_access(handle, this_bh); 3582 /* Important: if we can't update the indirect pointers 3583 * to the blocks, we can't free them. */ 3584 if (err) 3585 return; 3586 } 3587 3588 for (p = first; p < last; p++) { 3589 nr = le32_to_cpu(*p); 3590 if (nr) { 3591 /* accumulate blocks to free if they're contiguous */ 3592 if (count == 0) { 3593 block_to_free = nr; 3594 block_to_free_p = p; 3595 count = 1; 3596 } else if (nr == block_to_free + count) { 3597 count++; 3598 } else { 3599 ext4_clear_blocks(handle, inode, this_bh, 3600 block_to_free, 3601 count, block_to_free_p, p); 3602 block_to_free = nr; 3603 block_to_free_p = p; 3604 count = 1; 3605 } 3606 } 3607 } 3608 3609 if (count > 0) 3610 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3611 count, block_to_free_p, p); 3612 3613 if (this_bh) { 3614 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 3615 3616 /* 3617 * The buffer head should have an attached journal head at this 3618 * point. However, if the data is corrupted and an indirect 3619 * block pointed to itself, it would have been detached when 3620 * the block was cleared. Check for this instead of OOPSing. 3621 */ 3622 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 3623 ext4_handle_dirty_metadata(handle, inode, this_bh); 3624 else 3625 ext4_error(inode->i_sb, __func__, 3626 "circular indirect block detected, " 3627 "inode=%lu, block=%llu", 3628 inode->i_ino, 3629 (unsigned long long) this_bh->b_blocknr); 3630 } 3631 } 3632 3633 /** 3634 * ext4_free_branches - free an array of branches 3635 * @handle: JBD handle for this transaction 3636 * @inode: inode we are dealing with 3637 * @parent_bh: the buffer_head which contains *@first and *@last 3638 * @first: array of block numbers 3639 * @last: pointer immediately past the end of array 3640 * @depth: depth of the branches to free 3641 * 3642 * We are freeing all blocks refered from these branches (numbers are 3643 * stored as little-endian 32-bit) and updating @inode->i_blocks 3644 * appropriately. 3645 */ 3646 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3647 struct buffer_head *parent_bh, 3648 __le32 *first, __le32 *last, int depth) 3649 { 3650 ext4_fsblk_t nr; 3651 __le32 *p; 3652 3653 if (ext4_handle_is_aborted(handle)) 3654 return; 3655 3656 if (depth--) { 3657 struct buffer_head *bh; 3658 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3659 p = last; 3660 while (--p >= first) { 3661 nr = le32_to_cpu(*p); 3662 if (!nr) 3663 continue; /* A hole */ 3664 3665 /* Go read the buffer for the next level down */ 3666 bh = sb_bread(inode->i_sb, nr); 3667 3668 /* 3669 * A read failure? Report error and clear slot 3670 * (should be rare). 3671 */ 3672 if (!bh) { 3673 ext4_error(inode->i_sb, "ext4_free_branches", 3674 "Read failure, inode=%lu, block=%llu", 3675 inode->i_ino, nr); 3676 continue; 3677 } 3678 3679 /* This zaps the entire block. Bottom up. */ 3680 BUFFER_TRACE(bh, "free child branches"); 3681 ext4_free_branches(handle, inode, bh, 3682 (__le32 *) bh->b_data, 3683 (__le32 *) bh->b_data + addr_per_block, 3684 depth); 3685 3686 /* 3687 * We've probably journalled the indirect block several 3688 * times during the truncate. But it's no longer 3689 * needed and we now drop it from the transaction via 3690 * jbd2_journal_revoke(). 3691 * 3692 * That's easy if it's exclusively part of this 3693 * transaction. But if it's part of the committing 3694 * transaction then jbd2_journal_forget() will simply 3695 * brelse() it. That means that if the underlying 3696 * block is reallocated in ext4_get_block(), 3697 * unmap_underlying_metadata() will find this block 3698 * and will try to get rid of it. damn, damn. 3699 * 3700 * If this block has already been committed to the 3701 * journal, a revoke record will be written. And 3702 * revoke records must be emitted *before* clearing 3703 * this block's bit in the bitmaps. 3704 */ 3705 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3706 3707 /* 3708 * Everything below this this pointer has been 3709 * released. Now let this top-of-subtree go. 3710 * 3711 * We want the freeing of this indirect block to be 3712 * atomic in the journal with the updating of the 3713 * bitmap block which owns it. So make some room in 3714 * the journal. 3715 * 3716 * We zero the parent pointer *after* freeing its 3717 * pointee in the bitmaps, so if extend_transaction() 3718 * for some reason fails to put the bitmap changes and 3719 * the release into the same transaction, recovery 3720 * will merely complain about releasing a free block, 3721 * rather than leaking blocks. 3722 */ 3723 if (ext4_handle_is_aborted(handle)) 3724 return; 3725 if (try_to_extend_transaction(handle, inode)) { 3726 ext4_mark_inode_dirty(handle, inode); 3727 ext4_journal_test_restart(handle, inode); 3728 } 3729 3730 ext4_free_blocks(handle, inode, nr, 1, 1); 3731 3732 if (parent_bh) { 3733 /* 3734 * The block which we have just freed is 3735 * pointed to by an indirect block: journal it 3736 */ 3737 BUFFER_TRACE(parent_bh, "get_write_access"); 3738 if (!ext4_journal_get_write_access(handle, 3739 parent_bh)){ 3740 *p = 0; 3741 BUFFER_TRACE(parent_bh, 3742 "call ext4_handle_dirty_metadata"); 3743 ext4_handle_dirty_metadata(handle, 3744 inode, 3745 parent_bh); 3746 } 3747 } 3748 } 3749 } else { 3750 /* We have reached the bottom of the tree. */ 3751 BUFFER_TRACE(parent_bh, "free data blocks"); 3752 ext4_free_data(handle, inode, parent_bh, first, last); 3753 } 3754 } 3755 3756 int ext4_can_truncate(struct inode *inode) 3757 { 3758 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3759 return 0; 3760 if (S_ISREG(inode->i_mode)) 3761 return 1; 3762 if (S_ISDIR(inode->i_mode)) 3763 return 1; 3764 if (S_ISLNK(inode->i_mode)) 3765 return !ext4_inode_is_fast_symlink(inode); 3766 return 0; 3767 } 3768 3769 /* 3770 * ext4_truncate() 3771 * 3772 * We block out ext4_get_block() block instantiations across the entire 3773 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3774 * simultaneously on behalf of the same inode. 3775 * 3776 * As we work through the truncate and commmit bits of it to the journal there 3777 * is one core, guiding principle: the file's tree must always be consistent on 3778 * disk. We must be able to restart the truncate after a crash. 3779 * 3780 * The file's tree may be transiently inconsistent in memory (although it 3781 * probably isn't), but whenever we close off and commit a journal transaction, 3782 * the contents of (the filesystem + the journal) must be consistent and 3783 * restartable. It's pretty simple, really: bottom up, right to left (although 3784 * left-to-right works OK too). 3785 * 3786 * Note that at recovery time, journal replay occurs *before* the restart of 3787 * truncate against the orphan inode list. 3788 * 3789 * The committed inode has the new, desired i_size (which is the same as 3790 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3791 * that this inode's truncate did not complete and it will again call 3792 * ext4_truncate() to have another go. So there will be instantiated blocks 3793 * to the right of the truncation point in a crashed ext4 filesystem. But 3794 * that's fine - as long as they are linked from the inode, the post-crash 3795 * ext4_truncate() run will find them and release them. 3796 */ 3797 void ext4_truncate(struct inode *inode) 3798 { 3799 handle_t *handle; 3800 struct ext4_inode_info *ei = EXT4_I(inode); 3801 __le32 *i_data = ei->i_data; 3802 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3803 struct address_space *mapping = inode->i_mapping; 3804 ext4_lblk_t offsets[4]; 3805 Indirect chain[4]; 3806 Indirect *partial; 3807 __le32 nr = 0; 3808 int n; 3809 ext4_lblk_t last_block; 3810 unsigned blocksize = inode->i_sb->s_blocksize; 3811 3812 if (!ext4_can_truncate(inode)) 3813 return; 3814 3815 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3816 ext4_ext_truncate(inode); 3817 return; 3818 } 3819 3820 handle = start_transaction(inode); 3821 if (IS_ERR(handle)) 3822 return; /* AKPM: return what? */ 3823 3824 last_block = (inode->i_size + blocksize-1) 3825 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3826 3827 if (inode->i_size & (blocksize - 1)) 3828 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3829 goto out_stop; 3830 3831 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3832 if (n == 0) 3833 goto out_stop; /* error */ 3834 3835 /* 3836 * OK. This truncate is going to happen. We add the inode to the 3837 * orphan list, so that if this truncate spans multiple transactions, 3838 * and we crash, we will resume the truncate when the filesystem 3839 * recovers. It also marks the inode dirty, to catch the new size. 3840 * 3841 * Implication: the file must always be in a sane, consistent 3842 * truncatable state while each transaction commits. 3843 */ 3844 if (ext4_orphan_add(handle, inode)) 3845 goto out_stop; 3846 3847 /* 3848 * From here we block out all ext4_get_block() callers who want to 3849 * modify the block allocation tree. 3850 */ 3851 down_write(&ei->i_data_sem); 3852 3853 ext4_discard_preallocations(inode); 3854 3855 /* 3856 * The orphan list entry will now protect us from any crash which 3857 * occurs before the truncate completes, so it is now safe to propagate 3858 * the new, shorter inode size (held for now in i_size) into the 3859 * on-disk inode. We do this via i_disksize, which is the value which 3860 * ext4 *really* writes onto the disk inode. 3861 */ 3862 ei->i_disksize = inode->i_size; 3863 3864 if (n == 1) { /* direct blocks */ 3865 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3866 i_data + EXT4_NDIR_BLOCKS); 3867 goto do_indirects; 3868 } 3869 3870 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3871 /* Kill the top of shared branch (not detached) */ 3872 if (nr) { 3873 if (partial == chain) { 3874 /* Shared branch grows from the inode */ 3875 ext4_free_branches(handle, inode, NULL, 3876 &nr, &nr+1, (chain+n-1) - partial); 3877 *partial->p = 0; 3878 /* 3879 * We mark the inode dirty prior to restart, 3880 * and prior to stop. No need for it here. 3881 */ 3882 } else { 3883 /* Shared branch grows from an indirect block */ 3884 BUFFER_TRACE(partial->bh, "get_write_access"); 3885 ext4_free_branches(handle, inode, partial->bh, 3886 partial->p, 3887 partial->p+1, (chain+n-1) - partial); 3888 } 3889 } 3890 /* Clear the ends of indirect blocks on the shared branch */ 3891 while (partial > chain) { 3892 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3893 (__le32*)partial->bh->b_data+addr_per_block, 3894 (chain+n-1) - partial); 3895 BUFFER_TRACE(partial->bh, "call brelse"); 3896 brelse (partial->bh); 3897 partial--; 3898 } 3899 do_indirects: 3900 /* Kill the remaining (whole) subtrees */ 3901 switch (offsets[0]) { 3902 default: 3903 nr = i_data[EXT4_IND_BLOCK]; 3904 if (nr) { 3905 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3906 i_data[EXT4_IND_BLOCK] = 0; 3907 } 3908 case EXT4_IND_BLOCK: 3909 nr = i_data[EXT4_DIND_BLOCK]; 3910 if (nr) { 3911 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3912 i_data[EXT4_DIND_BLOCK] = 0; 3913 } 3914 case EXT4_DIND_BLOCK: 3915 nr = i_data[EXT4_TIND_BLOCK]; 3916 if (nr) { 3917 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3918 i_data[EXT4_TIND_BLOCK] = 0; 3919 } 3920 case EXT4_TIND_BLOCK: 3921 ; 3922 } 3923 3924 up_write(&ei->i_data_sem); 3925 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3926 ext4_mark_inode_dirty(handle, inode); 3927 3928 /* 3929 * In a multi-transaction truncate, we only make the final transaction 3930 * synchronous 3931 */ 3932 if (IS_SYNC(inode)) 3933 ext4_handle_sync(handle); 3934 out_stop: 3935 /* 3936 * If this was a simple ftruncate(), and the file will remain alive 3937 * then we need to clear up the orphan record which we created above. 3938 * However, if this was a real unlink then we were called by 3939 * ext4_delete_inode(), and we allow that function to clean up the 3940 * orphan info for us. 3941 */ 3942 if (inode->i_nlink) 3943 ext4_orphan_del(handle, inode); 3944 3945 ext4_journal_stop(handle); 3946 } 3947 3948 /* 3949 * ext4_get_inode_loc returns with an extra refcount against the inode's 3950 * underlying buffer_head on success. If 'in_mem' is true, we have all 3951 * data in memory that is needed to recreate the on-disk version of this 3952 * inode. 3953 */ 3954 static int __ext4_get_inode_loc(struct inode *inode, 3955 struct ext4_iloc *iloc, int in_mem) 3956 { 3957 struct ext4_group_desc *gdp; 3958 struct buffer_head *bh; 3959 struct super_block *sb = inode->i_sb; 3960 ext4_fsblk_t block; 3961 int inodes_per_block, inode_offset; 3962 3963 iloc->bh = NULL; 3964 if (!ext4_valid_inum(sb, inode->i_ino)) 3965 return -EIO; 3966 3967 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3968 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3969 if (!gdp) 3970 return -EIO; 3971 3972 /* 3973 * Figure out the offset within the block group inode table 3974 */ 3975 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 3976 inode_offset = ((inode->i_ino - 1) % 3977 EXT4_INODES_PER_GROUP(sb)); 3978 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3979 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3980 3981 bh = sb_getblk(sb, block); 3982 if (!bh) { 3983 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 3984 "inode block - inode=%lu, block=%llu", 3985 inode->i_ino, block); 3986 return -EIO; 3987 } 3988 if (!buffer_uptodate(bh)) { 3989 lock_buffer(bh); 3990 3991 /* 3992 * If the buffer has the write error flag, we have failed 3993 * to write out another inode in the same block. In this 3994 * case, we don't have to read the block because we may 3995 * read the old inode data successfully. 3996 */ 3997 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3998 set_buffer_uptodate(bh); 3999 4000 if (buffer_uptodate(bh)) { 4001 /* someone brought it uptodate while we waited */ 4002 unlock_buffer(bh); 4003 goto has_buffer; 4004 } 4005 4006 /* 4007 * If we have all information of the inode in memory and this 4008 * is the only valid inode in the block, we need not read the 4009 * block. 4010 */ 4011 if (in_mem) { 4012 struct buffer_head *bitmap_bh; 4013 int i, start; 4014 4015 start = inode_offset & ~(inodes_per_block - 1); 4016 4017 /* Is the inode bitmap in cache? */ 4018 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4019 if (!bitmap_bh) 4020 goto make_io; 4021 4022 /* 4023 * If the inode bitmap isn't in cache then the 4024 * optimisation may end up performing two reads instead 4025 * of one, so skip it. 4026 */ 4027 if (!buffer_uptodate(bitmap_bh)) { 4028 brelse(bitmap_bh); 4029 goto make_io; 4030 } 4031 for (i = start; i < start + inodes_per_block; i++) { 4032 if (i == inode_offset) 4033 continue; 4034 if (ext4_test_bit(i, bitmap_bh->b_data)) 4035 break; 4036 } 4037 brelse(bitmap_bh); 4038 if (i == start + inodes_per_block) { 4039 /* all other inodes are free, so skip I/O */ 4040 memset(bh->b_data, 0, bh->b_size); 4041 set_buffer_uptodate(bh); 4042 unlock_buffer(bh); 4043 goto has_buffer; 4044 } 4045 } 4046 4047 make_io: 4048 /* 4049 * If we need to do any I/O, try to pre-readahead extra 4050 * blocks from the inode table. 4051 */ 4052 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4053 ext4_fsblk_t b, end, table; 4054 unsigned num; 4055 4056 table = ext4_inode_table(sb, gdp); 4057 /* Make sure s_inode_readahead_blks is a power of 2 */ 4058 while (EXT4_SB(sb)->s_inode_readahead_blks & 4059 (EXT4_SB(sb)->s_inode_readahead_blks-1)) 4060 EXT4_SB(sb)->s_inode_readahead_blks = 4061 (EXT4_SB(sb)->s_inode_readahead_blks & 4062 (EXT4_SB(sb)->s_inode_readahead_blks-1)); 4063 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4064 if (table > b) 4065 b = table; 4066 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4067 num = EXT4_INODES_PER_GROUP(sb); 4068 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4069 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4070 num -= ext4_itable_unused_count(sb, gdp); 4071 table += num / inodes_per_block; 4072 if (end > table) 4073 end = table; 4074 while (b <= end) 4075 sb_breadahead(sb, b++); 4076 } 4077 4078 /* 4079 * There are other valid inodes in the buffer, this inode 4080 * has in-inode xattrs, or we don't have this inode in memory. 4081 * Read the block from disk. 4082 */ 4083 get_bh(bh); 4084 bh->b_end_io = end_buffer_read_sync; 4085 submit_bh(READ_META, bh); 4086 wait_on_buffer(bh); 4087 if (!buffer_uptodate(bh)) { 4088 ext4_error(sb, __func__, 4089 "unable to read inode block - inode=%lu, " 4090 "block=%llu", inode->i_ino, block); 4091 brelse(bh); 4092 return -EIO; 4093 } 4094 } 4095 has_buffer: 4096 iloc->bh = bh; 4097 return 0; 4098 } 4099 4100 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4101 { 4102 /* We have all inode data except xattrs in memory here. */ 4103 return __ext4_get_inode_loc(inode, iloc, 4104 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 4105 } 4106 4107 void ext4_set_inode_flags(struct inode *inode) 4108 { 4109 unsigned int flags = EXT4_I(inode)->i_flags; 4110 4111 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4112 if (flags & EXT4_SYNC_FL) 4113 inode->i_flags |= S_SYNC; 4114 if (flags & EXT4_APPEND_FL) 4115 inode->i_flags |= S_APPEND; 4116 if (flags & EXT4_IMMUTABLE_FL) 4117 inode->i_flags |= S_IMMUTABLE; 4118 if (flags & EXT4_NOATIME_FL) 4119 inode->i_flags |= S_NOATIME; 4120 if (flags & EXT4_DIRSYNC_FL) 4121 inode->i_flags |= S_DIRSYNC; 4122 } 4123 4124 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4125 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4126 { 4127 unsigned int flags = ei->vfs_inode.i_flags; 4128 4129 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4130 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4131 if (flags & S_SYNC) 4132 ei->i_flags |= EXT4_SYNC_FL; 4133 if (flags & S_APPEND) 4134 ei->i_flags |= EXT4_APPEND_FL; 4135 if (flags & S_IMMUTABLE) 4136 ei->i_flags |= EXT4_IMMUTABLE_FL; 4137 if (flags & S_NOATIME) 4138 ei->i_flags |= EXT4_NOATIME_FL; 4139 if (flags & S_DIRSYNC) 4140 ei->i_flags |= EXT4_DIRSYNC_FL; 4141 } 4142 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4143 struct ext4_inode_info *ei) 4144 { 4145 blkcnt_t i_blocks ; 4146 struct inode *inode = &(ei->vfs_inode); 4147 struct super_block *sb = inode->i_sb; 4148 4149 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4150 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4151 /* we are using combined 48 bit field */ 4152 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4153 le32_to_cpu(raw_inode->i_blocks_lo); 4154 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4155 /* i_blocks represent file system block size */ 4156 return i_blocks << (inode->i_blkbits - 9); 4157 } else { 4158 return i_blocks; 4159 } 4160 } else { 4161 return le32_to_cpu(raw_inode->i_blocks_lo); 4162 } 4163 } 4164 4165 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4166 { 4167 struct ext4_iloc iloc; 4168 struct ext4_inode *raw_inode; 4169 struct ext4_inode_info *ei; 4170 struct buffer_head *bh; 4171 struct inode *inode; 4172 long ret; 4173 int block; 4174 4175 inode = iget_locked(sb, ino); 4176 if (!inode) 4177 return ERR_PTR(-ENOMEM); 4178 if (!(inode->i_state & I_NEW)) 4179 return inode; 4180 4181 ei = EXT4_I(inode); 4182 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4183 ei->i_acl = EXT4_ACL_NOT_CACHED; 4184 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 4185 #endif 4186 4187 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4188 if (ret < 0) 4189 goto bad_inode; 4190 bh = iloc.bh; 4191 raw_inode = ext4_raw_inode(&iloc); 4192 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4193 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4194 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4195 if (!(test_opt(inode->i_sb, NO_UID32))) { 4196 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4197 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4198 } 4199 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4200 4201 ei->i_state = 0; 4202 ei->i_dir_start_lookup = 0; 4203 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4204 /* We now have enough fields to check if the inode was active or not. 4205 * This is needed because nfsd might try to access dead inodes 4206 * the test is that same one that e2fsck uses 4207 * NeilBrown 1999oct15 4208 */ 4209 if (inode->i_nlink == 0) { 4210 if (inode->i_mode == 0 || 4211 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4212 /* this inode is deleted */ 4213 brelse(bh); 4214 ret = -ESTALE; 4215 goto bad_inode; 4216 } 4217 /* The only unlinked inodes we let through here have 4218 * valid i_mode and are being read by the orphan 4219 * recovery code: that's fine, we're about to complete 4220 * the process of deleting those. */ 4221 } 4222 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4223 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4224 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4225 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4226 cpu_to_le32(EXT4_OS_HURD)) { 4227 ei->i_file_acl |= 4228 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4229 } 4230 inode->i_size = ext4_isize(raw_inode); 4231 ei->i_disksize = inode->i_size; 4232 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4233 ei->i_block_group = iloc.block_group; 4234 /* 4235 * NOTE! The in-memory inode i_data array is in little-endian order 4236 * even on big-endian machines: we do NOT byteswap the block numbers! 4237 */ 4238 for (block = 0; block < EXT4_N_BLOCKS; block++) 4239 ei->i_data[block] = raw_inode->i_block[block]; 4240 INIT_LIST_HEAD(&ei->i_orphan); 4241 4242 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4243 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4244 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4245 EXT4_INODE_SIZE(inode->i_sb)) { 4246 brelse(bh); 4247 ret = -EIO; 4248 goto bad_inode; 4249 } 4250 if (ei->i_extra_isize == 0) { 4251 /* The extra space is currently unused. Use it. */ 4252 ei->i_extra_isize = sizeof(struct ext4_inode) - 4253 EXT4_GOOD_OLD_INODE_SIZE; 4254 } else { 4255 __le32 *magic = (void *)raw_inode + 4256 EXT4_GOOD_OLD_INODE_SIZE + 4257 ei->i_extra_isize; 4258 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4259 ei->i_state |= EXT4_STATE_XATTR; 4260 } 4261 } else 4262 ei->i_extra_isize = 0; 4263 4264 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4265 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4266 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4267 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4268 4269 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4270 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4271 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4272 inode->i_version |= 4273 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4274 } 4275 4276 if (S_ISREG(inode->i_mode)) { 4277 inode->i_op = &ext4_file_inode_operations; 4278 inode->i_fop = &ext4_file_operations; 4279 ext4_set_aops(inode); 4280 } else if (S_ISDIR(inode->i_mode)) { 4281 inode->i_op = &ext4_dir_inode_operations; 4282 inode->i_fop = &ext4_dir_operations; 4283 } else if (S_ISLNK(inode->i_mode)) { 4284 if (ext4_inode_is_fast_symlink(inode)) { 4285 inode->i_op = &ext4_fast_symlink_inode_operations; 4286 nd_terminate_link(ei->i_data, inode->i_size, 4287 sizeof(ei->i_data) - 1); 4288 } else { 4289 inode->i_op = &ext4_symlink_inode_operations; 4290 ext4_set_aops(inode); 4291 } 4292 } else { 4293 inode->i_op = &ext4_special_inode_operations; 4294 if (raw_inode->i_block[0]) 4295 init_special_inode(inode, inode->i_mode, 4296 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4297 else 4298 init_special_inode(inode, inode->i_mode, 4299 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4300 } 4301 brelse(iloc.bh); 4302 ext4_set_inode_flags(inode); 4303 unlock_new_inode(inode); 4304 return inode; 4305 4306 bad_inode: 4307 iget_failed(inode); 4308 return ERR_PTR(ret); 4309 } 4310 4311 static int ext4_inode_blocks_set(handle_t *handle, 4312 struct ext4_inode *raw_inode, 4313 struct ext4_inode_info *ei) 4314 { 4315 struct inode *inode = &(ei->vfs_inode); 4316 u64 i_blocks = inode->i_blocks; 4317 struct super_block *sb = inode->i_sb; 4318 4319 if (i_blocks <= ~0U) { 4320 /* 4321 * i_blocks can be represnted in a 32 bit variable 4322 * as multiple of 512 bytes 4323 */ 4324 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4325 raw_inode->i_blocks_high = 0; 4326 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4327 return 0; 4328 } 4329 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4330 return -EFBIG; 4331 4332 if (i_blocks <= 0xffffffffffffULL) { 4333 /* 4334 * i_blocks can be represented in a 48 bit variable 4335 * as multiple of 512 bytes 4336 */ 4337 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4338 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4339 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4340 } else { 4341 ei->i_flags |= EXT4_HUGE_FILE_FL; 4342 /* i_block is stored in file system block size */ 4343 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4344 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4345 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4346 } 4347 return 0; 4348 } 4349 4350 /* 4351 * Post the struct inode info into an on-disk inode location in the 4352 * buffer-cache. This gobbles the caller's reference to the 4353 * buffer_head in the inode location struct. 4354 * 4355 * The caller must have write access to iloc->bh. 4356 */ 4357 static int ext4_do_update_inode(handle_t *handle, 4358 struct inode *inode, 4359 struct ext4_iloc *iloc) 4360 { 4361 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4362 struct ext4_inode_info *ei = EXT4_I(inode); 4363 struct buffer_head *bh = iloc->bh; 4364 int err = 0, rc, block; 4365 4366 /* For fields not not tracking in the in-memory inode, 4367 * initialise them to zero for new inodes. */ 4368 if (ei->i_state & EXT4_STATE_NEW) 4369 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4370 4371 ext4_get_inode_flags(ei); 4372 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4373 if (!(test_opt(inode->i_sb, NO_UID32))) { 4374 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4375 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4376 /* 4377 * Fix up interoperability with old kernels. Otherwise, old inodes get 4378 * re-used with the upper 16 bits of the uid/gid intact 4379 */ 4380 if (!ei->i_dtime) { 4381 raw_inode->i_uid_high = 4382 cpu_to_le16(high_16_bits(inode->i_uid)); 4383 raw_inode->i_gid_high = 4384 cpu_to_le16(high_16_bits(inode->i_gid)); 4385 } else { 4386 raw_inode->i_uid_high = 0; 4387 raw_inode->i_gid_high = 0; 4388 } 4389 } else { 4390 raw_inode->i_uid_low = 4391 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4392 raw_inode->i_gid_low = 4393 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4394 raw_inode->i_uid_high = 0; 4395 raw_inode->i_gid_high = 0; 4396 } 4397 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4398 4399 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4400 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4401 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4402 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4403 4404 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4405 goto out_brelse; 4406 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4407 /* clear the migrate flag in the raw_inode */ 4408 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4409 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4410 cpu_to_le32(EXT4_OS_HURD)) 4411 raw_inode->i_file_acl_high = 4412 cpu_to_le16(ei->i_file_acl >> 32); 4413 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4414 ext4_isize_set(raw_inode, ei->i_disksize); 4415 if (ei->i_disksize > 0x7fffffffULL) { 4416 struct super_block *sb = inode->i_sb; 4417 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4418 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4419 EXT4_SB(sb)->s_es->s_rev_level == 4420 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4421 /* If this is the first large file 4422 * created, add a flag to the superblock. 4423 */ 4424 err = ext4_journal_get_write_access(handle, 4425 EXT4_SB(sb)->s_sbh); 4426 if (err) 4427 goto out_brelse; 4428 ext4_update_dynamic_rev(sb); 4429 EXT4_SET_RO_COMPAT_FEATURE(sb, 4430 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4431 sb->s_dirt = 1; 4432 ext4_handle_sync(handle); 4433 err = ext4_handle_dirty_metadata(handle, inode, 4434 EXT4_SB(sb)->s_sbh); 4435 } 4436 } 4437 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4438 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4439 if (old_valid_dev(inode->i_rdev)) { 4440 raw_inode->i_block[0] = 4441 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4442 raw_inode->i_block[1] = 0; 4443 } else { 4444 raw_inode->i_block[0] = 0; 4445 raw_inode->i_block[1] = 4446 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4447 raw_inode->i_block[2] = 0; 4448 } 4449 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4450 raw_inode->i_block[block] = ei->i_data[block]; 4451 4452 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4453 if (ei->i_extra_isize) { 4454 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4455 raw_inode->i_version_hi = 4456 cpu_to_le32(inode->i_version >> 32); 4457 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4458 } 4459 4460 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4461 rc = ext4_handle_dirty_metadata(handle, inode, bh); 4462 if (!err) 4463 err = rc; 4464 ei->i_state &= ~EXT4_STATE_NEW; 4465 4466 out_brelse: 4467 brelse(bh); 4468 ext4_std_error(inode->i_sb, err); 4469 return err; 4470 } 4471 4472 /* 4473 * ext4_write_inode() 4474 * 4475 * We are called from a few places: 4476 * 4477 * - Within generic_file_write() for O_SYNC files. 4478 * Here, there will be no transaction running. We wait for any running 4479 * trasnaction to commit. 4480 * 4481 * - Within sys_sync(), kupdate and such. 4482 * We wait on commit, if tol to. 4483 * 4484 * - Within prune_icache() (PF_MEMALLOC == true) 4485 * Here we simply return. We can't afford to block kswapd on the 4486 * journal commit. 4487 * 4488 * In all cases it is actually safe for us to return without doing anything, 4489 * because the inode has been copied into a raw inode buffer in 4490 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4491 * knfsd. 4492 * 4493 * Note that we are absolutely dependent upon all inode dirtiers doing the 4494 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4495 * which we are interested. 4496 * 4497 * It would be a bug for them to not do this. The code: 4498 * 4499 * mark_inode_dirty(inode) 4500 * stuff(); 4501 * inode->i_size = expr; 4502 * 4503 * is in error because a kswapd-driven write_inode() could occur while 4504 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4505 * will no longer be on the superblock's dirty inode list. 4506 */ 4507 int ext4_write_inode(struct inode *inode, int wait) 4508 { 4509 if (current->flags & PF_MEMALLOC) 4510 return 0; 4511 4512 if (ext4_journal_current_handle()) { 4513 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4514 dump_stack(); 4515 return -EIO; 4516 } 4517 4518 if (!wait) 4519 return 0; 4520 4521 return ext4_force_commit(inode->i_sb); 4522 } 4523 4524 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh) 4525 { 4526 int err = 0; 4527 4528 mark_buffer_dirty(bh); 4529 if (inode && inode_needs_sync(inode)) { 4530 sync_dirty_buffer(bh); 4531 if (buffer_req(bh) && !buffer_uptodate(bh)) { 4532 ext4_error(inode->i_sb, __func__, 4533 "IO error syncing inode, " 4534 "inode=%lu, block=%llu", 4535 inode->i_ino, 4536 (unsigned long long)bh->b_blocknr); 4537 err = -EIO; 4538 } 4539 } 4540 return err; 4541 } 4542 4543 /* 4544 * ext4_setattr() 4545 * 4546 * Called from notify_change. 4547 * 4548 * We want to trap VFS attempts to truncate the file as soon as 4549 * possible. In particular, we want to make sure that when the VFS 4550 * shrinks i_size, we put the inode on the orphan list and modify 4551 * i_disksize immediately, so that during the subsequent flushing of 4552 * dirty pages and freeing of disk blocks, we can guarantee that any 4553 * commit will leave the blocks being flushed in an unused state on 4554 * disk. (On recovery, the inode will get truncated and the blocks will 4555 * be freed, so we have a strong guarantee that no future commit will 4556 * leave these blocks visible to the user.) 4557 * 4558 * Another thing we have to assure is that if we are in ordered mode 4559 * and inode is still attached to the committing transaction, we must 4560 * we start writeout of all the dirty pages which are being truncated. 4561 * This way we are sure that all the data written in the previous 4562 * transaction are already on disk (truncate waits for pages under 4563 * writeback). 4564 * 4565 * Called with inode->i_mutex down. 4566 */ 4567 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4568 { 4569 struct inode *inode = dentry->d_inode; 4570 int error, rc = 0; 4571 const unsigned int ia_valid = attr->ia_valid; 4572 4573 error = inode_change_ok(inode, attr); 4574 if (error) 4575 return error; 4576 4577 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4578 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4579 handle_t *handle; 4580 4581 /* (user+group)*(old+new) structure, inode write (sb, 4582 * inode block, ? - but truncate inode update has it) */ 4583 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4584 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4585 if (IS_ERR(handle)) { 4586 error = PTR_ERR(handle); 4587 goto err_out; 4588 } 4589 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4590 if (error) { 4591 ext4_journal_stop(handle); 4592 return error; 4593 } 4594 /* Update corresponding info in inode so that everything is in 4595 * one transaction */ 4596 if (attr->ia_valid & ATTR_UID) 4597 inode->i_uid = attr->ia_uid; 4598 if (attr->ia_valid & ATTR_GID) 4599 inode->i_gid = attr->ia_gid; 4600 error = ext4_mark_inode_dirty(handle, inode); 4601 ext4_journal_stop(handle); 4602 } 4603 4604 if (attr->ia_valid & ATTR_SIZE) { 4605 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4606 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4607 4608 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4609 error = -EFBIG; 4610 goto err_out; 4611 } 4612 } 4613 } 4614 4615 if (S_ISREG(inode->i_mode) && 4616 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4617 handle_t *handle; 4618 4619 handle = ext4_journal_start(inode, 3); 4620 if (IS_ERR(handle)) { 4621 error = PTR_ERR(handle); 4622 goto err_out; 4623 } 4624 4625 error = ext4_orphan_add(handle, inode); 4626 EXT4_I(inode)->i_disksize = attr->ia_size; 4627 rc = ext4_mark_inode_dirty(handle, inode); 4628 if (!error) 4629 error = rc; 4630 ext4_journal_stop(handle); 4631 4632 if (ext4_should_order_data(inode)) { 4633 error = ext4_begin_ordered_truncate(inode, 4634 attr->ia_size); 4635 if (error) { 4636 /* Do as much error cleanup as possible */ 4637 handle = ext4_journal_start(inode, 3); 4638 if (IS_ERR(handle)) { 4639 ext4_orphan_del(NULL, inode); 4640 goto err_out; 4641 } 4642 ext4_orphan_del(handle, inode); 4643 ext4_journal_stop(handle); 4644 goto err_out; 4645 } 4646 } 4647 } 4648 4649 rc = inode_setattr(inode, attr); 4650 4651 /* If inode_setattr's call to ext4_truncate failed to get a 4652 * transaction handle at all, we need to clean up the in-core 4653 * orphan list manually. */ 4654 if (inode->i_nlink) 4655 ext4_orphan_del(NULL, inode); 4656 4657 if (!rc && (ia_valid & ATTR_MODE)) 4658 rc = ext4_acl_chmod(inode); 4659 4660 err_out: 4661 ext4_std_error(inode->i_sb, error); 4662 if (!error) 4663 error = rc; 4664 return error; 4665 } 4666 4667 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4668 struct kstat *stat) 4669 { 4670 struct inode *inode; 4671 unsigned long delalloc_blocks; 4672 4673 inode = dentry->d_inode; 4674 generic_fillattr(inode, stat); 4675 4676 /* 4677 * We can't update i_blocks if the block allocation is delayed 4678 * otherwise in the case of system crash before the real block 4679 * allocation is done, we will have i_blocks inconsistent with 4680 * on-disk file blocks. 4681 * We always keep i_blocks updated together with real 4682 * allocation. But to not confuse with user, stat 4683 * will return the blocks that include the delayed allocation 4684 * blocks for this file. 4685 */ 4686 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4687 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4688 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4689 4690 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4691 return 0; 4692 } 4693 4694 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4695 int chunk) 4696 { 4697 int indirects; 4698 4699 /* if nrblocks are contiguous */ 4700 if (chunk) { 4701 /* 4702 * With N contiguous data blocks, it need at most 4703 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4704 * 2 dindirect blocks 4705 * 1 tindirect block 4706 */ 4707 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4708 return indirects + 3; 4709 } 4710 /* 4711 * if nrblocks are not contiguous, worse case, each block touch 4712 * a indirect block, and each indirect block touch a double indirect 4713 * block, plus a triple indirect block 4714 */ 4715 indirects = nrblocks * 2 + 1; 4716 return indirects; 4717 } 4718 4719 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4720 { 4721 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4722 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 4723 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4724 } 4725 4726 /* 4727 * Account for index blocks, block groups bitmaps and block group 4728 * descriptor blocks if modify datablocks and index blocks 4729 * worse case, the indexs blocks spread over different block groups 4730 * 4731 * If datablocks are discontiguous, they are possible to spread over 4732 * different block groups too. If they are contiugous, with flexbg, 4733 * they could still across block group boundary. 4734 * 4735 * Also account for superblock, inode, quota and xattr blocks 4736 */ 4737 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4738 { 4739 int groups, gdpblocks; 4740 int idxblocks; 4741 int ret = 0; 4742 4743 /* 4744 * How many index blocks need to touch to modify nrblocks? 4745 * The "Chunk" flag indicating whether the nrblocks is 4746 * physically contiguous on disk 4747 * 4748 * For Direct IO and fallocate, they calls get_block to allocate 4749 * one single extent at a time, so they could set the "Chunk" flag 4750 */ 4751 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4752 4753 ret = idxblocks; 4754 4755 /* 4756 * Now let's see how many group bitmaps and group descriptors need 4757 * to account 4758 */ 4759 groups = idxblocks; 4760 if (chunk) 4761 groups += 1; 4762 else 4763 groups += nrblocks; 4764 4765 gdpblocks = groups; 4766 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4767 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4768 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4769 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4770 4771 /* bitmaps and block group descriptor blocks */ 4772 ret += groups + gdpblocks; 4773 4774 /* Blocks for super block, inode, quota and xattr blocks */ 4775 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4776 4777 return ret; 4778 } 4779 4780 /* 4781 * Calulate the total number of credits to reserve to fit 4782 * the modification of a single pages into a single transaction, 4783 * which may include multiple chunks of block allocations. 4784 * 4785 * This could be called via ext4_write_begin() 4786 * 4787 * We need to consider the worse case, when 4788 * one new block per extent. 4789 */ 4790 int ext4_writepage_trans_blocks(struct inode *inode) 4791 { 4792 int bpp = ext4_journal_blocks_per_page(inode); 4793 int ret; 4794 4795 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4796 4797 /* Account for data blocks for journalled mode */ 4798 if (ext4_should_journal_data(inode)) 4799 ret += bpp; 4800 return ret; 4801 } 4802 4803 /* 4804 * Calculate the journal credits for a chunk of data modification. 4805 * 4806 * This is called from DIO, fallocate or whoever calling 4807 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4808 * 4809 * journal buffers for data blocks are not included here, as DIO 4810 * and fallocate do no need to journal data buffers. 4811 */ 4812 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4813 { 4814 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4815 } 4816 4817 /* 4818 * The caller must have previously called ext4_reserve_inode_write(). 4819 * Give this, we know that the caller already has write access to iloc->bh. 4820 */ 4821 int ext4_mark_iloc_dirty(handle_t *handle, 4822 struct inode *inode, struct ext4_iloc *iloc) 4823 { 4824 int err = 0; 4825 4826 if (test_opt(inode->i_sb, I_VERSION)) 4827 inode_inc_iversion(inode); 4828 4829 /* the do_update_inode consumes one bh->b_count */ 4830 get_bh(iloc->bh); 4831 4832 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4833 err = ext4_do_update_inode(handle, inode, iloc); 4834 put_bh(iloc->bh); 4835 return err; 4836 } 4837 4838 /* 4839 * On success, We end up with an outstanding reference count against 4840 * iloc->bh. This _must_ be cleaned up later. 4841 */ 4842 4843 int 4844 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4845 struct ext4_iloc *iloc) 4846 { 4847 int err; 4848 4849 err = ext4_get_inode_loc(inode, iloc); 4850 if (!err) { 4851 BUFFER_TRACE(iloc->bh, "get_write_access"); 4852 err = ext4_journal_get_write_access(handle, iloc->bh); 4853 if (err) { 4854 brelse(iloc->bh); 4855 iloc->bh = NULL; 4856 } 4857 } 4858 ext4_std_error(inode->i_sb, err); 4859 return err; 4860 } 4861 4862 /* 4863 * Expand an inode by new_extra_isize bytes. 4864 * Returns 0 on success or negative error number on failure. 4865 */ 4866 static int ext4_expand_extra_isize(struct inode *inode, 4867 unsigned int new_extra_isize, 4868 struct ext4_iloc iloc, 4869 handle_t *handle) 4870 { 4871 struct ext4_inode *raw_inode; 4872 struct ext4_xattr_ibody_header *header; 4873 struct ext4_xattr_entry *entry; 4874 4875 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4876 return 0; 4877 4878 raw_inode = ext4_raw_inode(&iloc); 4879 4880 header = IHDR(inode, raw_inode); 4881 entry = IFIRST(header); 4882 4883 /* No extended attributes present */ 4884 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4885 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4886 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4887 new_extra_isize); 4888 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4889 return 0; 4890 } 4891 4892 /* try to expand with EAs present */ 4893 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4894 raw_inode, handle); 4895 } 4896 4897 /* 4898 * What we do here is to mark the in-core inode as clean with respect to inode 4899 * dirtiness (it may still be data-dirty). 4900 * This means that the in-core inode may be reaped by prune_icache 4901 * without having to perform any I/O. This is a very good thing, 4902 * because *any* task may call prune_icache - even ones which 4903 * have a transaction open against a different journal. 4904 * 4905 * Is this cheating? Not really. Sure, we haven't written the 4906 * inode out, but prune_icache isn't a user-visible syncing function. 4907 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4908 * we start and wait on commits. 4909 * 4910 * Is this efficient/effective? Well, we're being nice to the system 4911 * by cleaning up our inodes proactively so they can be reaped 4912 * without I/O. But we are potentially leaving up to five seconds' 4913 * worth of inodes floating about which prune_icache wants us to 4914 * write out. One way to fix that would be to get prune_icache() 4915 * to do a write_super() to free up some memory. It has the desired 4916 * effect. 4917 */ 4918 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4919 { 4920 struct ext4_iloc iloc; 4921 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4922 static unsigned int mnt_count; 4923 int err, ret; 4924 4925 might_sleep(); 4926 err = ext4_reserve_inode_write(handle, inode, &iloc); 4927 if (ext4_handle_valid(handle) && 4928 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4929 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4930 /* 4931 * We need extra buffer credits since we may write into EA block 4932 * with this same handle. If journal_extend fails, then it will 4933 * only result in a minor loss of functionality for that inode. 4934 * If this is felt to be critical, then e2fsck should be run to 4935 * force a large enough s_min_extra_isize. 4936 */ 4937 if ((jbd2_journal_extend(handle, 4938 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4939 ret = ext4_expand_extra_isize(inode, 4940 sbi->s_want_extra_isize, 4941 iloc, handle); 4942 if (ret) { 4943 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4944 if (mnt_count != 4945 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4946 ext4_warning(inode->i_sb, __func__, 4947 "Unable to expand inode %lu. Delete" 4948 " some EAs or run e2fsck.", 4949 inode->i_ino); 4950 mnt_count = 4951 le16_to_cpu(sbi->s_es->s_mnt_count); 4952 } 4953 } 4954 } 4955 } 4956 if (!err) 4957 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4958 return err; 4959 } 4960 4961 /* 4962 * ext4_dirty_inode() is called from __mark_inode_dirty() 4963 * 4964 * We're really interested in the case where a file is being extended. 4965 * i_size has been changed by generic_commit_write() and we thus need 4966 * to include the updated inode in the current transaction. 4967 * 4968 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4969 * are allocated to the file. 4970 * 4971 * If the inode is marked synchronous, we don't honour that here - doing 4972 * so would cause a commit on atime updates, which we don't bother doing. 4973 * We handle synchronous inodes at the highest possible level. 4974 */ 4975 void ext4_dirty_inode(struct inode *inode) 4976 { 4977 handle_t *current_handle = ext4_journal_current_handle(); 4978 handle_t *handle; 4979 4980 if (!ext4_handle_valid(current_handle)) { 4981 ext4_mark_inode_dirty(current_handle, inode); 4982 return; 4983 } 4984 4985 handle = ext4_journal_start(inode, 2); 4986 if (IS_ERR(handle)) 4987 goto out; 4988 if (current_handle && 4989 current_handle->h_transaction != handle->h_transaction) { 4990 /* This task has a transaction open against a different fs */ 4991 printk(KERN_EMERG "%s: transactions do not match!\n", 4992 __func__); 4993 } else { 4994 jbd_debug(5, "marking dirty. outer handle=%p\n", 4995 current_handle); 4996 ext4_mark_inode_dirty(handle, inode); 4997 } 4998 ext4_journal_stop(handle); 4999 out: 5000 return; 5001 } 5002 5003 #if 0 5004 /* 5005 * Bind an inode's backing buffer_head into this transaction, to prevent 5006 * it from being flushed to disk early. Unlike 5007 * ext4_reserve_inode_write, this leaves behind no bh reference and 5008 * returns no iloc structure, so the caller needs to repeat the iloc 5009 * lookup to mark the inode dirty later. 5010 */ 5011 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5012 { 5013 struct ext4_iloc iloc; 5014 5015 int err = 0; 5016 if (handle) { 5017 err = ext4_get_inode_loc(inode, &iloc); 5018 if (!err) { 5019 BUFFER_TRACE(iloc.bh, "get_write_access"); 5020 err = jbd2_journal_get_write_access(handle, iloc.bh); 5021 if (!err) 5022 err = ext4_handle_dirty_metadata(handle, 5023 inode, 5024 iloc.bh); 5025 brelse(iloc.bh); 5026 } 5027 } 5028 ext4_std_error(inode->i_sb, err); 5029 return err; 5030 } 5031 #endif 5032 5033 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5034 { 5035 journal_t *journal; 5036 handle_t *handle; 5037 int err; 5038 5039 /* 5040 * We have to be very careful here: changing a data block's 5041 * journaling status dynamically is dangerous. If we write a 5042 * data block to the journal, change the status and then delete 5043 * that block, we risk forgetting to revoke the old log record 5044 * from the journal and so a subsequent replay can corrupt data. 5045 * So, first we make sure that the journal is empty and that 5046 * nobody is changing anything. 5047 */ 5048 5049 journal = EXT4_JOURNAL(inode); 5050 if (!journal) 5051 return 0; 5052 if (is_journal_aborted(journal)) 5053 return -EROFS; 5054 5055 jbd2_journal_lock_updates(journal); 5056 jbd2_journal_flush(journal); 5057 5058 /* 5059 * OK, there are no updates running now, and all cached data is 5060 * synced to disk. We are now in a completely consistent state 5061 * which doesn't have anything in the journal, and we know that 5062 * no filesystem updates are running, so it is safe to modify 5063 * the inode's in-core data-journaling state flag now. 5064 */ 5065 5066 if (val) 5067 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5068 else 5069 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5070 ext4_set_aops(inode); 5071 5072 jbd2_journal_unlock_updates(journal); 5073 5074 /* Finally we can mark the inode as dirty. */ 5075 5076 handle = ext4_journal_start(inode, 1); 5077 if (IS_ERR(handle)) 5078 return PTR_ERR(handle); 5079 5080 err = ext4_mark_inode_dirty(handle, inode); 5081 ext4_handle_sync(handle); 5082 ext4_journal_stop(handle); 5083 ext4_std_error(inode->i_sb, err); 5084 5085 return err; 5086 } 5087 5088 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5089 { 5090 return !buffer_mapped(bh); 5091 } 5092 5093 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 5094 { 5095 loff_t size; 5096 unsigned long len; 5097 int ret = -EINVAL; 5098 void *fsdata; 5099 struct file *file = vma->vm_file; 5100 struct inode *inode = file->f_path.dentry->d_inode; 5101 struct address_space *mapping = inode->i_mapping; 5102 5103 /* 5104 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5105 * get i_mutex because we are already holding mmap_sem. 5106 */ 5107 down_read(&inode->i_alloc_sem); 5108 size = i_size_read(inode); 5109 if (page->mapping != mapping || size <= page_offset(page) 5110 || !PageUptodate(page)) { 5111 /* page got truncated from under us? */ 5112 goto out_unlock; 5113 } 5114 ret = 0; 5115 if (PageMappedToDisk(page)) 5116 goto out_unlock; 5117 5118 if (page->index == size >> PAGE_CACHE_SHIFT) 5119 len = size & ~PAGE_CACHE_MASK; 5120 else 5121 len = PAGE_CACHE_SIZE; 5122 5123 if (page_has_buffers(page)) { 5124 /* return if we have all the buffers mapped */ 5125 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5126 ext4_bh_unmapped)) 5127 goto out_unlock; 5128 } 5129 /* 5130 * OK, we need to fill the hole... Do write_begin write_end 5131 * to do block allocation/reservation.We are not holding 5132 * inode.i__mutex here. That allow * parallel write_begin, 5133 * write_end call. lock_page prevent this from happening 5134 * on the same page though 5135 */ 5136 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5137 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5138 if (ret < 0) 5139 goto out_unlock; 5140 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5141 len, len, page, fsdata); 5142 if (ret < 0) 5143 goto out_unlock; 5144 ret = 0; 5145 out_unlock: 5146 up_read(&inode->i_alloc_sem); 5147 return ret; 5148 } 5149