1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 571 map->m_pblk, status); 572 } 573 up_read((&EXT4_I(inode)->i_data_sem)); 574 575 found: 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 /* 595 * If we need to convert extent to unwritten 596 * we continue and do the actual work in 597 * ext4_ext_map_blocks() 598 */ 599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to unwritten extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_block() 612 * with create == 1 flag. 613 */ 614 down_write(&EXT4_I(inode)->i_data_sem); 615 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 } 634 635 if (retval > 0) { 636 unsigned int status; 637 638 if (unlikely(retval != map->m_len)) { 639 ext4_warning(inode->i_sb, 640 "ES len assertion failed for inode " 641 "%lu: retval %d != map->m_len %d", 642 inode->i_ino, retval, map->m_len); 643 WARN_ON(1); 644 } 645 646 /* 647 * We have to zeroout blocks before inserting them into extent 648 * status tree. Otherwise someone could look them up there and 649 * use them before they are really zeroed. We also have to 650 * unmap metadata before zeroing as otherwise writeback can 651 * overwrite zeros with stale data from block device. 652 */ 653 if (flags & EXT4_GET_BLOCKS_ZERO && 654 map->m_flags & EXT4_MAP_MAPPED && 655 map->m_flags & EXT4_MAP_NEW) { 656 ret = ext4_issue_zeroout(inode, map->m_lblk, 657 map->m_pblk, map->m_len); 658 if (ret) { 659 retval = ret; 660 goto out_sem; 661 } 662 } 663 664 /* 665 * If the extent has been zeroed out, we don't need to update 666 * extent status tree. 667 */ 668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 670 if (ext4_es_is_written(&es)) 671 goto out_sem; 672 } 673 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 676 !(status & EXTENT_STATUS_WRITTEN) && 677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 678 map->m_lblk + map->m_len - 1)) 679 status |= EXTENT_STATUS_DELAYED; 680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 681 map->m_pblk, status); 682 } 683 684 out_sem: 685 up_write((&EXT4_I(inode)->i_data_sem)); 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 687 ret = check_block_validity(inode, map); 688 if (ret != 0) 689 return ret; 690 691 /* 692 * Inodes with freshly allocated blocks where contents will be 693 * visible after transaction commit must be on transaction's 694 * ordered data list. 695 */ 696 if (map->m_flags & EXT4_MAP_NEW && 697 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 698 !(flags & EXT4_GET_BLOCKS_ZERO) && 699 !ext4_is_quota_file(inode) && 700 ext4_should_order_data(inode)) { 701 loff_t start_byte = 702 (loff_t)map->m_lblk << inode->i_blkbits; 703 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 704 705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 706 ret = ext4_jbd2_inode_add_wait(handle, inode, 707 start_byte, length); 708 else 709 ret = ext4_jbd2_inode_add_write(handle, inode, 710 start_byte, length); 711 if (ret) 712 return ret; 713 } 714 } 715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 716 map->m_flags & EXT4_MAP_MAPPED)) 717 ext4_fc_track_range(handle, inode, map->m_lblk, 718 map->m_lblk + map->m_len - 1); 719 if (retval < 0) 720 ext_debug(inode, "failed with err %d\n", retval); 721 return retval; 722 } 723 724 /* 725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 726 * we have to be careful as someone else may be manipulating b_state as well. 727 */ 728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 729 { 730 unsigned long old_state; 731 unsigned long new_state; 732 733 flags &= EXT4_MAP_FLAGS; 734 735 /* Dummy buffer_head? Set non-atomically. */ 736 if (!bh->b_page) { 737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 738 return; 739 } 740 /* 741 * Someone else may be modifying b_state. Be careful! This is ugly but 742 * once we get rid of using bh as a container for mapping information 743 * to pass to / from get_block functions, this can go away. 744 */ 745 old_state = READ_ONCE(bh->b_state); 746 do { 747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 749 } 750 751 static int _ext4_get_block(struct inode *inode, sector_t iblock, 752 struct buffer_head *bh, int flags) 753 { 754 struct ext4_map_blocks map; 755 int ret = 0; 756 757 if (ext4_has_inline_data(inode)) 758 return -ERANGE; 759 760 map.m_lblk = iblock; 761 map.m_len = bh->b_size >> inode->i_blkbits; 762 763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 764 flags); 765 if (ret > 0) { 766 map_bh(bh, inode->i_sb, map.m_pblk); 767 ext4_update_bh_state(bh, map.m_flags); 768 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 769 ret = 0; 770 } else if (ret == 0) { 771 /* hole case, need to fill in bh->b_size */ 772 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 773 } 774 return ret; 775 } 776 777 int ext4_get_block(struct inode *inode, sector_t iblock, 778 struct buffer_head *bh, int create) 779 { 780 return _ext4_get_block(inode, iblock, bh, 781 create ? EXT4_GET_BLOCKS_CREATE : 0); 782 } 783 784 /* 785 * Get block function used when preparing for buffered write if we require 786 * creating an unwritten extent if blocks haven't been allocated. The extent 787 * will be converted to written after the IO is complete. 788 */ 789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create) 791 { 792 int ret = 0; 793 794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 795 inode->i_ino, create); 796 ret = _ext4_get_block(inode, iblock, bh_result, 797 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 798 799 /* 800 * If the buffer is marked unwritten, mark it as new to make sure it is 801 * zeroed out correctly in case of partial writes. Otherwise, there is 802 * a chance of stale data getting exposed. 803 */ 804 if (ret == 0 && buffer_unwritten(bh_result)) 805 set_buffer_new(bh_result); 806 807 return ret; 808 } 809 810 /* Maximum number of blocks we map for direct IO at once. */ 811 #define DIO_MAX_BLOCKS 4096 812 813 /* 814 * `handle' can be NULL if create is zero 815 */ 816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 817 ext4_lblk_t block, int map_flags) 818 { 819 struct ext4_map_blocks map; 820 struct buffer_head *bh; 821 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 822 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 823 int err; 824 825 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 826 || handle != NULL || create == 0); 827 ASSERT(create == 0 || !nowait); 828 829 map.m_lblk = block; 830 map.m_len = 1; 831 err = ext4_map_blocks(handle, inode, &map, map_flags); 832 833 if (err == 0) 834 return create ? ERR_PTR(-ENOSPC) : NULL; 835 if (err < 0) 836 return ERR_PTR(err); 837 838 if (nowait) 839 return sb_find_get_block(inode->i_sb, map.m_pblk); 840 841 bh = sb_getblk(inode->i_sb, map.m_pblk); 842 if (unlikely(!bh)) 843 return ERR_PTR(-ENOMEM); 844 if (map.m_flags & EXT4_MAP_NEW) { 845 ASSERT(create != 0); 846 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 847 || (handle != NULL)); 848 849 /* 850 * Now that we do not always journal data, we should 851 * keep in mind whether this should always journal the 852 * new buffer as metadata. For now, regular file 853 * writes use ext4_get_block instead, so it's not a 854 * problem. 855 */ 856 lock_buffer(bh); 857 BUFFER_TRACE(bh, "call get_create_access"); 858 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 859 EXT4_JTR_NONE); 860 if (unlikely(err)) { 861 unlock_buffer(bh); 862 goto errout; 863 } 864 if (!buffer_uptodate(bh)) { 865 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 866 set_buffer_uptodate(bh); 867 } 868 unlock_buffer(bh); 869 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 870 err = ext4_handle_dirty_metadata(handle, inode, bh); 871 if (unlikely(err)) 872 goto errout; 873 } else 874 BUFFER_TRACE(bh, "not a new buffer"); 875 return bh; 876 errout: 877 brelse(bh); 878 return ERR_PTR(err); 879 } 880 881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 882 ext4_lblk_t block, int map_flags) 883 { 884 struct buffer_head *bh; 885 int ret; 886 887 bh = ext4_getblk(handle, inode, block, map_flags); 888 if (IS_ERR(bh)) 889 return bh; 890 if (!bh || ext4_buffer_uptodate(bh)) 891 return bh; 892 893 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 894 if (ret) { 895 put_bh(bh); 896 return ERR_PTR(ret); 897 } 898 return bh; 899 } 900 901 /* Read a contiguous batch of blocks. */ 902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 903 bool wait, struct buffer_head **bhs) 904 { 905 int i, err; 906 907 for (i = 0; i < bh_count; i++) { 908 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 909 if (IS_ERR(bhs[i])) { 910 err = PTR_ERR(bhs[i]); 911 bh_count = i; 912 goto out_brelse; 913 } 914 } 915 916 for (i = 0; i < bh_count; i++) 917 /* Note that NULL bhs[i] is valid because of holes. */ 918 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 919 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 920 921 if (!wait) 922 return 0; 923 924 for (i = 0; i < bh_count; i++) 925 if (bhs[i]) 926 wait_on_buffer(bhs[i]); 927 928 for (i = 0; i < bh_count; i++) { 929 if (bhs[i] && !buffer_uptodate(bhs[i])) { 930 err = -EIO; 931 goto out_brelse; 932 } 933 } 934 return 0; 935 936 out_brelse: 937 for (i = 0; i < bh_count; i++) { 938 brelse(bhs[i]); 939 bhs[i] = NULL; 940 } 941 return err; 942 } 943 944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 945 struct buffer_head *head, 946 unsigned from, 947 unsigned to, 948 int *partial, 949 int (*fn)(handle_t *handle, struct inode *inode, 950 struct buffer_head *bh)) 951 { 952 struct buffer_head *bh; 953 unsigned block_start, block_end; 954 unsigned blocksize = head->b_size; 955 int err, ret = 0; 956 struct buffer_head *next; 957 958 for (bh = head, block_start = 0; 959 ret == 0 && (bh != head || !block_start); 960 block_start = block_end, bh = next) { 961 next = bh->b_this_page; 962 block_end = block_start + blocksize; 963 if (block_end <= from || block_start >= to) { 964 if (partial && !buffer_uptodate(bh)) 965 *partial = 1; 966 continue; 967 } 968 err = (*fn)(handle, inode, bh); 969 if (!ret) 970 ret = err; 971 } 972 return ret; 973 } 974 975 /* 976 * Helper for handling dirtying of journalled data. We also mark the folio as 977 * dirty so that writeback code knows about this page (and inode) contains 978 * dirty data. ext4_writepages() then commits appropriate transaction to 979 * make data stable. 980 */ 981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 982 { 983 folio_mark_dirty(bh->b_folio); 984 return ext4_handle_dirty_metadata(handle, NULL, bh); 985 } 986 987 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 988 struct buffer_head *bh) 989 { 990 int dirty = buffer_dirty(bh); 991 int ret; 992 993 if (!buffer_mapped(bh) || buffer_freed(bh)) 994 return 0; 995 /* 996 * __block_write_begin() could have dirtied some buffers. Clean 997 * the dirty bit as jbd2_journal_get_write_access() could complain 998 * otherwise about fs integrity issues. Setting of the dirty bit 999 * by __block_write_begin() isn't a real problem here as we clear 1000 * the bit before releasing a page lock and thus writeback cannot 1001 * ever write the buffer. 1002 */ 1003 if (dirty) 1004 clear_buffer_dirty(bh); 1005 BUFFER_TRACE(bh, "get write access"); 1006 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1007 EXT4_JTR_NONE); 1008 if (!ret && dirty) 1009 ret = ext4_dirty_journalled_data(handle, bh); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_FS_ENCRYPTION 1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1015 get_block_t *get_block) 1016 { 1017 unsigned from = pos & (PAGE_SIZE - 1); 1018 unsigned to = from + len; 1019 struct inode *inode = folio->mapping->host; 1020 unsigned block_start, block_end; 1021 sector_t block; 1022 int err = 0; 1023 unsigned blocksize = inode->i_sb->s_blocksize; 1024 unsigned bbits; 1025 struct buffer_head *bh, *head, *wait[2]; 1026 int nr_wait = 0; 1027 int i; 1028 1029 BUG_ON(!folio_test_locked(folio)); 1030 BUG_ON(from > PAGE_SIZE); 1031 BUG_ON(to > PAGE_SIZE); 1032 BUG_ON(from > to); 1033 1034 head = folio_buffers(folio); 1035 if (!head) 1036 head = create_empty_buffers(folio, blocksize, 0); 1037 bbits = ilog2(blocksize); 1038 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1039 1040 for (bh = head, block_start = 0; bh != head || !block_start; 1041 block++, block_start = block_end, bh = bh->b_this_page) { 1042 block_end = block_start + blocksize; 1043 if (block_end <= from || block_start >= to) { 1044 if (folio_test_uptodate(folio)) { 1045 set_buffer_uptodate(bh); 1046 } 1047 continue; 1048 } 1049 if (buffer_new(bh)) 1050 clear_buffer_new(bh); 1051 if (!buffer_mapped(bh)) { 1052 WARN_ON(bh->b_size != blocksize); 1053 err = get_block(inode, block, bh, 1); 1054 if (err) 1055 break; 1056 if (buffer_new(bh)) { 1057 if (folio_test_uptodate(folio)) { 1058 clear_buffer_new(bh); 1059 set_buffer_uptodate(bh); 1060 mark_buffer_dirty(bh); 1061 continue; 1062 } 1063 if (block_end > to || block_start < from) 1064 folio_zero_segments(folio, to, 1065 block_end, 1066 block_start, from); 1067 continue; 1068 } 1069 } 1070 if (folio_test_uptodate(folio)) { 1071 set_buffer_uptodate(bh); 1072 continue; 1073 } 1074 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1075 !buffer_unwritten(bh) && 1076 (block_start < from || block_end > to)) { 1077 ext4_read_bh_lock(bh, 0, false); 1078 wait[nr_wait++] = bh; 1079 } 1080 } 1081 /* 1082 * If we issued read requests, let them complete. 1083 */ 1084 for (i = 0; i < nr_wait; i++) { 1085 wait_on_buffer(wait[i]); 1086 if (!buffer_uptodate(wait[i])) 1087 err = -EIO; 1088 } 1089 if (unlikely(err)) { 1090 folio_zero_new_buffers(folio, from, to); 1091 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1092 for (i = 0; i < nr_wait; i++) { 1093 int err2; 1094 1095 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1096 blocksize, bh_offset(wait[i])); 1097 if (err2) { 1098 clear_buffer_uptodate(wait[i]); 1099 err = err2; 1100 } 1101 } 1102 } 1103 1104 return err; 1105 } 1106 #endif 1107 1108 /* 1109 * To preserve ordering, it is essential that the hole instantiation and 1110 * the data write be encapsulated in a single transaction. We cannot 1111 * close off a transaction and start a new one between the ext4_get_block() 1112 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1113 * ext4_write_begin() is the right place. 1114 */ 1115 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1116 loff_t pos, unsigned len, 1117 struct page **pagep, void **fsdata) 1118 { 1119 struct inode *inode = mapping->host; 1120 int ret, needed_blocks; 1121 handle_t *handle; 1122 int retries = 0; 1123 struct folio *folio; 1124 pgoff_t index; 1125 unsigned from, to; 1126 1127 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1128 return -EIO; 1129 1130 trace_ext4_write_begin(inode, pos, len); 1131 /* 1132 * Reserve one block more for addition to orphan list in case 1133 * we allocate blocks but write fails for some reason 1134 */ 1135 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1136 index = pos >> PAGE_SHIFT; 1137 from = pos & (PAGE_SIZE - 1); 1138 to = from + len; 1139 1140 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1141 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1142 pagep); 1143 if (ret < 0) 1144 return ret; 1145 if (ret == 1) 1146 return 0; 1147 } 1148 1149 /* 1150 * __filemap_get_folio() can take a long time if the 1151 * system is thrashing due to memory pressure, or if the folio 1152 * is being written back. So grab it first before we start 1153 * the transaction handle. This also allows us to allocate 1154 * the folio (if needed) without using GFP_NOFS. 1155 */ 1156 retry_grab: 1157 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1158 mapping_gfp_mask(mapping)); 1159 if (IS_ERR(folio)) 1160 return PTR_ERR(folio); 1161 /* 1162 * The same as page allocation, we prealloc buffer heads before 1163 * starting the handle. 1164 */ 1165 if (!folio_buffers(folio)) 1166 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1167 1168 folio_unlock(folio); 1169 1170 retry_journal: 1171 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1172 if (IS_ERR(handle)) { 1173 folio_put(folio); 1174 return PTR_ERR(handle); 1175 } 1176 1177 folio_lock(folio); 1178 if (folio->mapping != mapping) { 1179 /* The folio got truncated from under us */ 1180 folio_unlock(folio); 1181 folio_put(folio); 1182 ext4_journal_stop(handle); 1183 goto retry_grab; 1184 } 1185 /* In case writeback began while the folio was unlocked */ 1186 folio_wait_stable(folio); 1187 1188 #ifdef CONFIG_FS_ENCRYPTION 1189 if (ext4_should_dioread_nolock(inode)) 1190 ret = ext4_block_write_begin(folio, pos, len, 1191 ext4_get_block_unwritten); 1192 else 1193 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1194 #else 1195 if (ext4_should_dioread_nolock(inode)) 1196 ret = __block_write_begin(&folio->page, pos, len, 1197 ext4_get_block_unwritten); 1198 else 1199 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1200 #endif 1201 if (!ret && ext4_should_journal_data(inode)) { 1202 ret = ext4_walk_page_buffers(handle, inode, 1203 folio_buffers(folio), from, to, 1204 NULL, do_journal_get_write_access); 1205 } 1206 1207 if (ret) { 1208 bool extended = (pos + len > inode->i_size) && 1209 !ext4_verity_in_progress(inode); 1210 1211 folio_unlock(folio); 1212 /* 1213 * __block_write_begin may have instantiated a few blocks 1214 * outside i_size. Trim these off again. Don't need 1215 * i_size_read because we hold i_rwsem. 1216 * 1217 * Add inode to orphan list in case we crash before 1218 * truncate finishes 1219 */ 1220 if (extended && ext4_can_truncate(inode)) 1221 ext4_orphan_add(handle, inode); 1222 1223 ext4_journal_stop(handle); 1224 if (extended) { 1225 ext4_truncate_failed_write(inode); 1226 /* 1227 * If truncate failed early the inode might 1228 * still be on the orphan list; we need to 1229 * make sure the inode is removed from the 1230 * orphan list in that case. 1231 */ 1232 if (inode->i_nlink) 1233 ext4_orphan_del(NULL, inode); 1234 } 1235 1236 if (ret == -ENOSPC && 1237 ext4_should_retry_alloc(inode->i_sb, &retries)) 1238 goto retry_journal; 1239 folio_put(folio); 1240 return ret; 1241 } 1242 *pagep = &folio->page; 1243 return ret; 1244 } 1245 1246 /* For write_end() in data=journal mode */ 1247 static int write_end_fn(handle_t *handle, struct inode *inode, 1248 struct buffer_head *bh) 1249 { 1250 int ret; 1251 if (!buffer_mapped(bh) || buffer_freed(bh)) 1252 return 0; 1253 set_buffer_uptodate(bh); 1254 ret = ext4_dirty_journalled_data(handle, bh); 1255 clear_buffer_meta(bh); 1256 clear_buffer_prio(bh); 1257 return ret; 1258 } 1259 1260 /* 1261 * We need to pick up the new inode size which generic_commit_write gave us 1262 * `file' can be NULL - eg, when called from page_symlink(). 1263 * 1264 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1265 * buffers are managed internally. 1266 */ 1267 static int ext4_write_end(struct file *file, 1268 struct address_space *mapping, 1269 loff_t pos, unsigned len, unsigned copied, 1270 struct page *page, void *fsdata) 1271 { 1272 struct folio *folio = page_folio(page); 1273 handle_t *handle = ext4_journal_current_handle(); 1274 struct inode *inode = mapping->host; 1275 loff_t old_size = inode->i_size; 1276 int ret = 0, ret2; 1277 int i_size_changed = 0; 1278 bool verity = ext4_verity_in_progress(inode); 1279 1280 trace_ext4_write_end(inode, pos, len, copied); 1281 1282 if (ext4_has_inline_data(inode) && 1283 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1284 return ext4_write_inline_data_end(inode, pos, len, copied, 1285 folio); 1286 1287 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1288 /* 1289 * it's important to update i_size while still holding folio lock: 1290 * page writeout could otherwise come in and zero beyond i_size. 1291 * 1292 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1293 * blocks are being written past EOF, so skip the i_size update. 1294 */ 1295 if (!verity) 1296 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1297 folio_unlock(folio); 1298 folio_put(folio); 1299 1300 if (old_size < pos && !verity) 1301 pagecache_isize_extended(inode, old_size, pos); 1302 /* 1303 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1304 * makes the holding time of folio lock longer. Second, it forces lock 1305 * ordering of folio lock and transaction start for journaling 1306 * filesystems. 1307 */ 1308 if (i_size_changed) 1309 ret = ext4_mark_inode_dirty(handle, inode); 1310 1311 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1312 /* if we have allocated more blocks and copied 1313 * less. We will have blocks allocated outside 1314 * inode->i_size. So truncate them 1315 */ 1316 ext4_orphan_add(handle, inode); 1317 1318 ret2 = ext4_journal_stop(handle); 1319 if (!ret) 1320 ret = ret2; 1321 1322 if (pos + len > inode->i_size && !verity) { 1323 ext4_truncate_failed_write(inode); 1324 /* 1325 * If truncate failed early the inode might still be 1326 * on the orphan list; we need to make sure the inode 1327 * is removed from the orphan list in that case. 1328 */ 1329 if (inode->i_nlink) 1330 ext4_orphan_del(NULL, inode); 1331 } 1332 1333 return ret ? ret : copied; 1334 } 1335 1336 /* 1337 * This is a private version of folio_zero_new_buffers() which doesn't 1338 * set the buffer to be dirty, since in data=journalled mode we need 1339 * to call ext4_dirty_journalled_data() instead. 1340 */ 1341 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1342 struct inode *inode, 1343 struct folio *folio, 1344 unsigned from, unsigned to) 1345 { 1346 unsigned int block_start = 0, block_end; 1347 struct buffer_head *head, *bh; 1348 1349 bh = head = folio_buffers(folio); 1350 do { 1351 block_end = block_start + bh->b_size; 1352 if (buffer_new(bh)) { 1353 if (block_end > from && block_start < to) { 1354 if (!folio_test_uptodate(folio)) { 1355 unsigned start, size; 1356 1357 start = max(from, block_start); 1358 size = min(to, block_end) - start; 1359 1360 folio_zero_range(folio, start, size); 1361 write_end_fn(handle, inode, bh); 1362 } 1363 clear_buffer_new(bh); 1364 } 1365 } 1366 block_start = block_end; 1367 bh = bh->b_this_page; 1368 } while (bh != head); 1369 } 1370 1371 static int ext4_journalled_write_end(struct file *file, 1372 struct address_space *mapping, 1373 loff_t pos, unsigned len, unsigned copied, 1374 struct page *page, void *fsdata) 1375 { 1376 struct folio *folio = page_folio(page); 1377 handle_t *handle = ext4_journal_current_handle(); 1378 struct inode *inode = mapping->host; 1379 loff_t old_size = inode->i_size; 1380 int ret = 0, ret2; 1381 int partial = 0; 1382 unsigned from, to; 1383 int size_changed = 0; 1384 bool verity = ext4_verity_in_progress(inode); 1385 1386 trace_ext4_journalled_write_end(inode, pos, len, copied); 1387 from = pos & (PAGE_SIZE - 1); 1388 to = from + len; 1389 1390 BUG_ON(!ext4_handle_valid(handle)); 1391 1392 if (ext4_has_inline_data(inode)) 1393 return ext4_write_inline_data_end(inode, pos, len, copied, 1394 folio); 1395 1396 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1397 copied = 0; 1398 ext4_journalled_zero_new_buffers(handle, inode, folio, 1399 from, to); 1400 } else { 1401 if (unlikely(copied < len)) 1402 ext4_journalled_zero_new_buffers(handle, inode, folio, 1403 from + copied, to); 1404 ret = ext4_walk_page_buffers(handle, inode, 1405 folio_buffers(folio), 1406 from, from + copied, &partial, 1407 write_end_fn); 1408 if (!partial) 1409 folio_mark_uptodate(folio); 1410 } 1411 if (!verity) 1412 size_changed = ext4_update_inode_size(inode, pos + copied); 1413 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1414 folio_unlock(folio); 1415 folio_put(folio); 1416 1417 if (old_size < pos && !verity) 1418 pagecache_isize_extended(inode, old_size, pos); 1419 1420 if (size_changed) { 1421 ret2 = ext4_mark_inode_dirty(handle, inode); 1422 if (!ret) 1423 ret = ret2; 1424 } 1425 1426 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1427 /* if we have allocated more blocks and copied 1428 * less. We will have blocks allocated outside 1429 * inode->i_size. So truncate them 1430 */ 1431 ext4_orphan_add(handle, inode); 1432 1433 ret2 = ext4_journal_stop(handle); 1434 if (!ret) 1435 ret = ret2; 1436 if (pos + len > inode->i_size && !verity) { 1437 ext4_truncate_failed_write(inode); 1438 /* 1439 * If truncate failed early the inode might still be 1440 * on the orphan list; we need to make sure the inode 1441 * is removed from the orphan list in that case. 1442 */ 1443 if (inode->i_nlink) 1444 ext4_orphan_del(NULL, inode); 1445 } 1446 1447 return ret ? ret : copied; 1448 } 1449 1450 /* 1451 * Reserve space for a single cluster 1452 */ 1453 static int ext4_da_reserve_space(struct inode *inode) 1454 { 1455 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1456 struct ext4_inode_info *ei = EXT4_I(inode); 1457 int ret; 1458 1459 /* 1460 * We will charge metadata quota at writeout time; this saves 1461 * us from metadata over-estimation, though we may go over by 1462 * a small amount in the end. Here we just reserve for data. 1463 */ 1464 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1465 if (ret) 1466 return ret; 1467 1468 spin_lock(&ei->i_block_reservation_lock); 1469 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1470 spin_unlock(&ei->i_block_reservation_lock); 1471 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1472 return -ENOSPC; 1473 } 1474 ei->i_reserved_data_blocks++; 1475 trace_ext4_da_reserve_space(inode); 1476 spin_unlock(&ei->i_block_reservation_lock); 1477 1478 return 0; /* success */ 1479 } 1480 1481 void ext4_da_release_space(struct inode *inode, int to_free) 1482 { 1483 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1484 struct ext4_inode_info *ei = EXT4_I(inode); 1485 1486 if (!to_free) 1487 return; /* Nothing to release, exit */ 1488 1489 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1490 1491 trace_ext4_da_release_space(inode, to_free); 1492 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1493 /* 1494 * if there aren't enough reserved blocks, then the 1495 * counter is messed up somewhere. Since this 1496 * function is called from invalidate page, it's 1497 * harmless to return without any action. 1498 */ 1499 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1500 "ino %lu, to_free %d with only %d reserved " 1501 "data blocks", inode->i_ino, to_free, 1502 ei->i_reserved_data_blocks); 1503 WARN_ON(1); 1504 to_free = ei->i_reserved_data_blocks; 1505 } 1506 ei->i_reserved_data_blocks -= to_free; 1507 1508 /* update fs dirty data blocks counter */ 1509 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1510 1511 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1512 1513 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1514 } 1515 1516 /* 1517 * Delayed allocation stuff 1518 */ 1519 1520 struct mpage_da_data { 1521 /* These are input fields for ext4_do_writepages() */ 1522 struct inode *inode; 1523 struct writeback_control *wbc; 1524 unsigned int can_map:1; /* Can writepages call map blocks? */ 1525 1526 /* These are internal state of ext4_do_writepages() */ 1527 pgoff_t first_page; /* The first page to write */ 1528 pgoff_t next_page; /* Current page to examine */ 1529 pgoff_t last_page; /* Last page to examine */ 1530 /* 1531 * Extent to map - this can be after first_page because that can be 1532 * fully mapped. We somewhat abuse m_flags to store whether the extent 1533 * is delalloc or unwritten. 1534 */ 1535 struct ext4_map_blocks map; 1536 struct ext4_io_submit io_submit; /* IO submission data */ 1537 unsigned int do_map:1; 1538 unsigned int scanned_until_end:1; 1539 unsigned int journalled_more_data:1; 1540 }; 1541 1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1543 bool invalidate) 1544 { 1545 unsigned nr, i; 1546 pgoff_t index, end; 1547 struct folio_batch fbatch; 1548 struct inode *inode = mpd->inode; 1549 struct address_space *mapping = inode->i_mapping; 1550 1551 /* This is necessary when next_page == 0. */ 1552 if (mpd->first_page >= mpd->next_page) 1553 return; 1554 1555 mpd->scanned_until_end = 0; 1556 index = mpd->first_page; 1557 end = mpd->next_page - 1; 1558 if (invalidate) { 1559 ext4_lblk_t start, last; 1560 start = index << (PAGE_SHIFT - inode->i_blkbits); 1561 last = end << (PAGE_SHIFT - inode->i_blkbits); 1562 1563 /* 1564 * avoid racing with extent status tree scans made by 1565 * ext4_insert_delayed_block() 1566 */ 1567 down_write(&EXT4_I(inode)->i_data_sem); 1568 ext4_es_remove_extent(inode, start, last - start + 1); 1569 up_write(&EXT4_I(inode)->i_data_sem); 1570 } 1571 1572 folio_batch_init(&fbatch); 1573 while (index <= end) { 1574 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1575 if (nr == 0) 1576 break; 1577 for (i = 0; i < nr; i++) { 1578 struct folio *folio = fbatch.folios[i]; 1579 1580 if (folio->index < mpd->first_page) 1581 continue; 1582 if (folio_next_index(folio) - 1 > end) 1583 continue; 1584 BUG_ON(!folio_test_locked(folio)); 1585 BUG_ON(folio_test_writeback(folio)); 1586 if (invalidate) { 1587 if (folio_mapped(folio)) 1588 folio_clear_dirty_for_io(folio); 1589 block_invalidate_folio(folio, 0, 1590 folio_size(folio)); 1591 folio_clear_uptodate(folio); 1592 } 1593 folio_unlock(folio); 1594 } 1595 folio_batch_release(&fbatch); 1596 } 1597 } 1598 1599 static void ext4_print_free_blocks(struct inode *inode) 1600 { 1601 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1602 struct super_block *sb = inode->i_sb; 1603 struct ext4_inode_info *ei = EXT4_I(inode); 1604 1605 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1606 EXT4_C2B(EXT4_SB(inode->i_sb), 1607 ext4_count_free_clusters(sb))); 1608 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1609 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1610 (long long) EXT4_C2B(EXT4_SB(sb), 1611 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1612 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1613 (long long) EXT4_C2B(EXT4_SB(sb), 1614 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1615 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1616 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1617 ei->i_reserved_data_blocks); 1618 return; 1619 } 1620 1621 /* 1622 * ext4_insert_delayed_block - adds a delayed block to the extents status 1623 * tree, incrementing the reserved cluster/block 1624 * count or making a pending reservation 1625 * where needed 1626 * 1627 * @inode - file containing the newly added block 1628 * @lblk - logical block to be added 1629 * 1630 * Returns 0 on success, negative error code on failure. 1631 */ 1632 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1633 { 1634 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1635 int ret; 1636 bool allocated = false; 1637 1638 /* 1639 * If the cluster containing lblk is shared with a delayed, 1640 * written, or unwritten extent in a bigalloc file system, it's 1641 * already been accounted for and does not need to be reserved. 1642 * A pending reservation must be made for the cluster if it's 1643 * shared with a written or unwritten extent and doesn't already 1644 * have one. Written and unwritten extents can be purged from the 1645 * extents status tree if the system is under memory pressure, so 1646 * it's necessary to examine the extent tree if a search of the 1647 * extents status tree doesn't get a match. 1648 */ 1649 if (sbi->s_cluster_ratio == 1) { 1650 ret = ext4_da_reserve_space(inode); 1651 if (ret != 0) /* ENOSPC */ 1652 return ret; 1653 } else { /* bigalloc */ 1654 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1655 if (!ext4_es_scan_clu(inode, 1656 &ext4_es_is_mapped, lblk)) { 1657 ret = ext4_clu_mapped(inode, 1658 EXT4_B2C(sbi, lblk)); 1659 if (ret < 0) 1660 return ret; 1661 if (ret == 0) { 1662 ret = ext4_da_reserve_space(inode); 1663 if (ret != 0) /* ENOSPC */ 1664 return ret; 1665 } else { 1666 allocated = true; 1667 } 1668 } else { 1669 allocated = true; 1670 } 1671 } 1672 } 1673 1674 ext4_es_insert_delayed_block(inode, lblk, allocated); 1675 return 0; 1676 } 1677 1678 /* 1679 * This function is grabs code from the very beginning of 1680 * ext4_map_blocks, but assumes that the caller is from delayed write 1681 * time. This function looks up the requested blocks and sets the 1682 * buffer delay bit under the protection of i_data_sem. 1683 */ 1684 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1685 struct ext4_map_blocks *map, 1686 struct buffer_head *bh) 1687 { 1688 struct extent_status es; 1689 int retval; 1690 sector_t invalid_block = ~((sector_t) 0xffff); 1691 #ifdef ES_AGGRESSIVE_TEST 1692 struct ext4_map_blocks orig_map; 1693 1694 memcpy(&orig_map, map, sizeof(*map)); 1695 #endif 1696 1697 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1698 invalid_block = ~0; 1699 1700 map->m_flags = 0; 1701 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1702 (unsigned long) map->m_lblk); 1703 1704 /* Lookup extent status tree firstly */ 1705 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1706 if (ext4_es_is_hole(&es)) { 1707 retval = 0; 1708 down_read(&EXT4_I(inode)->i_data_sem); 1709 goto add_delayed; 1710 } 1711 1712 /* 1713 * Delayed extent could be allocated by fallocate. 1714 * So we need to check it. 1715 */ 1716 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1717 map_bh(bh, inode->i_sb, invalid_block); 1718 set_buffer_new(bh); 1719 set_buffer_delay(bh); 1720 return 0; 1721 } 1722 1723 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1724 retval = es.es_len - (iblock - es.es_lblk); 1725 if (retval > map->m_len) 1726 retval = map->m_len; 1727 map->m_len = retval; 1728 if (ext4_es_is_written(&es)) 1729 map->m_flags |= EXT4_MAP_MAPPED; 1730 else if (ext4_es_is_unwritten(&es)) 1731 map->m_flags |= EXT4_MAP_UNWRITTEN; 1732 else 1733 BUG(); 1734 1735 #ifdef ES_AGGRESSIVE_TEST 1736 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1737 #endif 1738 return retval; 1739 } 1740 1741 /* 1742 * Try to see if we can get the block without requesting a new 1743 * file system block. 1744 */ 1745 down_read(&EXT4_I(inode)->i_data_sem); 1746 if (ext4_has_inline_data(inode)) 1747 retval = 0; 1748 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1749 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1750 else 1751 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1752 1753 add_delayed: 1754 if (retval == 0) { 1755 int ret; 1756 1757 /* 1758 * XXX: __block_prepare_write() unmaps passed block, 1759 * is it OK? 1760 */ 1761 1762 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1763 if (ret != 0) { 1764 retval = ret; 1765 goto out_unlock; 1766 } 1767 1768 map_bh(bh, inode->i_sb, invalid_block); 1769 set_buffer_new(bh); 1770 set_buffer_delay(bh); 1771 } else if (retval > 0) { 1772 unsigned int status; 1773 1774 if (unlikely(retval != map->m_len)) { 1775 ext4_warning(inode->i_sb, 1776 "ES len assertion failed for inode " 1777 "%lu: retval %d != map->m_len %d", 1778 inode->i_ino, retval, map->m_len); 1779 WARN_ON(1); 1780 } 1781 1782 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1783 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1784 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1785 map->m_pblk, status); 1786 } 1787 1788 out_unlock: 1789 up_read((&EXT4_I(inode)->i_data_sem)); 1790 1791 return retval; 1792 } 1793 1794 /* 1795 * This is a special get_block_t callback which is used by 1796 * ext4_da_write_begin(). It will either return mapped block or 1797 * reserve space for a single block. 1798 * 1799 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1800 * We also have b_blocknr = -1 and b_bdev initialized properly 1801 * 1802 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1803 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1804 * initialized properly. 1805 */ 1806 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1807 struct buffer_head *bh, int create) 1808 { 1809 struct ext4_map_blocks map; 1810 int ret = 0; 1811 1812 BUG_ON(create == 0); 1813 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1814 1815 map.m_lblk = iblock; 1816 map.m_len = 1; 1817 1818 /* 1819 * first, we need to know whether the block is allocated already 1820 * preallocated blocks are unmapped but should treated 1821 * the same as allocated blocks. 1822 */ 1823 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1824 if (ret <= 0) 1825 return ret; 1826 1827 map_bh(bh, inode->i_sb, map.m_pblk); 1828 ext4_update_bh_state(bh, map.m_flags); 1829 1830 if (buffer_unwritten(bh)) { 1831 /* A delayed write to unwritten bh should be marked 1832 * new and mapped. Mapped ensures that we don't do 1833 * get_block multiple times when we write to the same 1834 * offset and new ensures that we do proper zero out 1835 * for partial write. 1836 */ 1837 set_buffer_new(bh); 1838 set_buffer_mapped(bh); 1839 } 1840 return 0; 1841 } 1842 1843 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1844 { 1845 mpd->first_page += folio_nr_pages(folio); 1846 folio_unlock(folio); 1847 } 1848 1849 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1850 { 1851 size_t len; 1852 loff_t size; 1853 int err; 1854 1855 BUG_ON(folio->index != mpd->first_page); 1856 folio_clear_dirty_for_io(folio); 1857 /* 1858 * We have to be very careful here! Nothing protects writeback path 1859 * against i_size changes and the page can be writeably mapped into 1860 * page tables. So an application can be growing i_size and writing 1861 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1862 * write-protects our page in page tables and the page cannot get 1863 * written to again until we release folio lock. So only after 1864 * folio_clear_dirty_for_io() we are safe to sample i_size for 1865 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1866 * on the barrier provided by folio_test_clear_dirty() in 1867 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1868 * after page tables are updated. 1869 */ 1870 size = i_size_read(mpd->inode); 1871 len = folio_size(folio); 1872 if (folio_pos(folio) + len > size && 1873 !ext4_verity_in_progress(mpd->inode)) 1874 len = size & ~PAGE_MASK; 1875 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1876 if (!err) 1877 mpd->wbc->nr_to_write--; 1878 1879 return err; 1880 } 1881 1882 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1883 1884 /* 1885 * mballoc gives us at most this number of blocks... 1886 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1887 * The rest of mballoc seems to handle chunks up to full group size. 1888 */ 1889 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1890 1891 /* 1892 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1893 * 1894 * @mpd - extent of blocks 1895 * @lblk - logical number of the block in the file 1896 * @bh - buffer head we want to add to the extent 1897 * 1898 * The function is used to collect contig. blocks in the same state. If the 1899 * buffer doesn't require mapping for writeback and we haven't started the 1900 * extent of buffers to map yet, the function returns 'true' immediately - the 1901 * caller can write the buffer right away. Otherwise the function returns true 1902 * if the block has been added to the extent, false if the block couldn't be 1903 * added. 1904 */ 1905 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1906 struct buffer_head *bh) 1907 { 1908 struct ext4_map_blocks *map = &mpd->map; 1909 1910 /* Buffer that doesn't need mapping for writeback? */ 1911 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1912 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1913 /* So far no extent to map => we write the buffer right away */ 1914 if (map->m_len == 0) 1915 return true; 1916 return false; 1917 } 1918 1919 /* First block in the extent? */ 1920 if (map->m_len == 0) { 1921 /* We cannot map unless handle is started... */ 1922 if (!mpd->do_map) 1923 return false; 1924 map->m_lblk = lblk; 1925 map->m_len = 1; 1926 map->m_flags = bh->b_state & BH_FLAGS; 1927 return true; 1928 } 1929 1930 /* Don't go larger than mballoc is willing to allocate */ 1931 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1932 return false; 1933 1934 /* Can we merge the block to our big extent? */ 1935 if (lblk == map->m_lblk + map->m_len && 1936 (bh->b_state & BH_FLAGS) == map->m_flags) { 1937 map->m_len++; 1938 return true; 1939 } 1940 return false; 1941 } 1942 1943 /* 1944 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1945 * 1946 * @mpd - extent of blocks for mapping 1947 * @head - the first buffer in the page 1948 * @bh - buffer we should start processing from 1949 * @lblk - logical number of the block in the file corresponding to @bh 1950 * 1951 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1952 * the page for IO if all buffers in this page were mapped and there's no 1953 * accumulated extent of buffers to map or add buffers in the page to the 1954 * extent of buffers to map. The function returns 1 if the caller can continue 1955 * by processing the next page, 0 if it should stop adding buffers to the 1956 * extent to map because we cannot extend it anymore. It can also return value 1957 * < 0 in case of error during IO submission. 1958 */ 1959 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1960 struct buffer_head *head, 1961 struct buffer_head *bh, 1962 ext4_lblk_t lblk) 1963 { 1964 struct inode *inode = mpd->inode; 1965 int err; 1966 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1967 >> inode->i_blkbits; 1968 1969 if (ext4_verity_in_progress(inode)) 1970 blocks = EXT_MAX_BLOCKS; 1971 1972 do { 1973 BUG_ON(buffer_locked(bh)); 1974 1975 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1976 /* Found extent to map? */ 1977 if (mpd->map.m_len) 1978 return 0; 1979 /* Buffer needs mapping and handle is not started? */ 1980 if (!mpd->do_map) 1981 return 0; 1982 /* Everything mapped so far and we hit EOF */ 1983 break; 1984 } 1985 } while (lblk++, (bh = bh->b_this_page) != head); 1986 /* So far everything mapped? Submit the page for IO. */ 1987 if (mpd->map.m_len == 0) { 1988 err = mpage_submit_folio(mpd, head->b_folio); 1989 if (err < 0) 1990 return err; 1991 mpage_folio_done(mpd, head->b_folio); 1992 } 1993 if (lblk >= blocks) { 1994 mpd->scanned_until_end = 1; 1995 return 0; 1996 } 1997 return 1; 1998 } 1999 2000 /* 2001 * mpage_process_folio - update folio buffers corresponding to changed extent 2002 * and may submit fully mapped page for IO 2003 * @mpd: description of extent to map, on return next extent to map 2004 * @folio: Contains these buffers. 2005 * @m_lblk: logical block mapping. 2006 * @m_pblk: corresponding physical mapping. 2007 * @map_bh: determines on return whether this page requires any further 2008 * mapping or not. 2009 * 2010 * Scan given folio buffers corresponding to changed extent and update buffer 2011 * state according to new extent state. 2012 * We map delalloc buffers to their physical location, clear unwritten bits. 2013 * If the given folio is not fully mapped, we update @mpd to the next extent in 2014 * the given folio that needs mapping & return @map_bh as true. 2015 */ 2016 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2017 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2018 bool *map_bh) 2019 { 2020 struct buffer_head *head, *bh; 2021 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2022 ext4_lblk_t lblk = *m_lblk; 2023 ext4_fsblk_t pblock = *m_pblk; 2024 int err = 0; 2025 int blkbits = mpd->inode->i_blkbits; 2026 ssize_t io_end_size = 0; 2027 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2028 2029 bh = head = folio_buffers(folio); 2030 do { 2031 if (lblk < mpd->map.m_lblk) 2032 continue; 2033 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2034 /* 2035 * Buffer after end of mapped extent. 2036 * Find next buffer in the folio to map. 2037 */ 2038 mpd->map.m_len = 0; 2039 mpd->map.m_flags = 0; 2040 io_end_vec->size += io_end_size; 2041 2042 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2043 if (err > 0) 2044 err = 0; 2045 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2046 io_end_vec = ext4_alloc_io_end_vec(io_end); 2047 if (IS_ERR(io_end_vec)) { 2048 err = PTR_ERR(io_end_vec); 2049 goto out; 2050 } 2051 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2052 } 2053 *map_bh = true; 2054 goto out; 2055 } 2056 if (buffer_delay(bh)) { 2057 clear_buffer_delay(bh); 2058 bh->b_blocknr = pblock++; 2059 } 2060 clear_buffer_unwritten(bh); 2061 io_end_size += (1 << blkbits); 2062 } while (lblk++, (bh = bh->b_this_page) != head); 2063 2064 io_end_vec->size += io_end_size; 2065 *map_bh = false; 2066 out: 2067 *m_lblk = lblk; 2068 *m_pblk = pblock; 2069 return err; 2070 } 2071 2072 /* 2073 * mpage_map_buffers - update buffers corresponding to changed extent and 2074 * submit fully mapped pages for IO 2075 * 2076 * @mpd - description of extent to map, on return next extent to map 2077 * 2078 * Scan buffers corresponding to changed extent (we expect corresponding pages 2079 * to be already locked) and update buffer state according to new extent state. 2080 * We map delalloc buffers to their physical location, clear unwritten bits, 2081 * and mark buffers as uninit when we perform writes to unwritten extents 2082 * and do extent conversion after IO is finished. If the last page is not fully 2083 * mapped, we update @map to the next extent in the last page that needs 2084 * mapping. Otherwise we submit the page for IO. 2085 */ 2086 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2087 { 2088 struct folio_batch fbatch; 2089 unsigned nr, i; 2090 struct inode *inode = mpd->inode; 2091 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2092 pgoff_t start, end; 2093 ext4_lblk_t lblk; 2094 ext4_fsblk_t pblock; 2095 int err; 2096 bool map_bh = false; 2097 2098 start = mpd->map.m_lblk >> bpp_bits; 2099 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2100 lblk = start << bpp_bits; 2101 pblock = mpd->map.m_pblk; 2102 2103 folio_batch_init(&fbatch); 2104 while (start <= end) { 2105 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2106 if (nr == 0) 2107 break; 2108 for (i = 0; i < nr; i++) { 2109 struct folio *folio = fbatch.folios[i]; 2110 2111 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2112 &map_bh); 2113 /* 2114 * If map_bh is true, means page may require further bh 2115 * mapping, or maybe the page was submitted for IO. 2116 * So we return to call further extent mapping. 2117 */ 2118 if (err < 0 || map_bh) 2119 goto out; 2120 /* Page fully mapped - let IO run! */ 2121 err = mpage_submit_folio(mpd, folio); 2122 if (err < 0) 2123 goto out; 2124 mpage_folio_done(mpd, folio); 2125 } 2126 folio_batch_release(&fbatch); 2127 } 2128 /* Extent fully mapped and matches with page boundary. We are done. */ 2129 mpd->map.m_len = 0; 2130 mpd->map.m_flags = 0; 2131 return 0; 2132 out: 2133 folio_batch_release(&fbatch); 2134 return err; 2135 } 2136 2137 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2138 { 2139 struct inode *inode = mpd->inode; 2140 struct ext4_map_blocks *map = &mpd->map; 2141 int get_blocks_flags; 2142 int err, dioread_nolock; 2143 2144 trace_ext4_da_write_pages_extent(inode, map); 2145 /* 2146 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2147 * to convert an unwritten extent to be initialized (in the case 2148 * where we have written into one or more preallocated blocks). It is 2149 * possible that we're going to need more metadata blocks than 2150 * previously reserved. However we must not fail because we're in 2151 * writeback and there is nothing we can do about it so it might result 2152 * in data loss. So use reserved blocks to allocate metadata if 2153 * possible. 2154 * 2155 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2156 * the blocks in question are delalloc blocks. This indicates 2157 * that the blocks and quotas has already been checked when 2158 * the data was copied into the page cache. 2159 */ 2160 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2161 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2162 EXT4_GET_BLOCKS_IO_SUBMIT; 2163 dioread_nolock = ext4_should_dioread_nolock(inode); 2164 if (dioread_nolock) 2165 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2166 if (map->m_flags & BIT(BH_Delay)) 2167 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2168 2169 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2170 if (err < 0) 2171 return err; 2172 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2173 if (!mpd->io_submit.io_end->handle && 2174 ext4_handle_valid(handle)) { 2175 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2176 handle->h_rsv_handle = NULL; 2177 } 2178 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2179 } 2180 2181 BUG_ON(map->m_len == 0); 2182 return 0; 2183 } 2184 2185 /* 2186 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2187 * mpd->len and submit pages underlying it for IO 2188 * 2189 * @handle - handle for journal operations 2190 * @mpd - extent to map 2191 * @give_up_on_write - we set this to true iff there is a fatal error and there 2192 * is no hope of writing the data. The caller should discard 2193 * dirty pages to avoid infinite loops. 2194 * 2195 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2196 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2197 * them to initialized or split the described range from larger unwritten 2198 * extent. Note that we need not map all the described range since allocation 2199 * can return less blocks or the range is covered by more unwritten extents. We 2200 * cannot map more because we are limited by reserved transaction credits. On 2201 * the other hand we always make sure that the last touched page is fully 2202 * mapped so that it can be written out (and thus forward progress is 2203 * guaranteed). After mapping we submit all mapped pages for IO. 2204 */ 2205 static int mpage_map_and_submit_extent(handle_t *handle, 2206 struct mpage_da_data *mpd, 2207 bool *give_up_on_write) 2208 { 2209 struct inode *inode = mpd->inode; 2210 struct ext4_map_blocks *map = &mpd->map; 2211 int err; 2212 loff_t disksize; 2213 int progress = 0; 2214 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2215 struct ext4_io_end_vec *io_end_vec; 2216 2217 io_end_vec = ext4_alloc_io_end_vec(io_end); 2218 if (IS_ERR(io_end_vec)) 2219 return PTR_ERR(io_end_vec); 2220 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2221 do { 2222 err = mpage_map_one_extent(handle, mpd); 2223 if (err < 0) { 2224 struct super_block *sb = inode->i_sb; 2225 2226 if (ext4_forced_shutdown(sb)) 2227 goto invalidate_dirty_pages; 2228 /* 2229 * Let the uper layers retry transient errors. 2230 * In the case of ENOSPC, if ext4_count_free_blocks() 2231 * is non-zero, a commit should free up blocks. 2232 */ 2233 if ((err == -ENOMEM) || 2234 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2235 if (progress) 2236 goto update_disksize; 2237 return err; 2238 } 2239 ext4_msg(sb, KERN_CRIT, 2240 "Delayed block allocation failed for " 2241 "inode %lu at logical offset %llu with" 2242 " max blocks %u with error %d", 2243 inode->i_ino, 2244 (unsigned long long)map->m_lblk, 2245 (unsigned)map->m_len, -err); 2246 ext4_msg(sb, KERN_CRIT, 2247 "This should not happen!! Data will " 2248 "be lost\n"); 2249 if (err == -ENOSPC) 2250 ext4_print_free_blocks(inode); 2251 invalidate_dirty_pages: 2252 *give_up_on_write = true; 2253 return err; 2254 } 2255 progress = 1; 2256 /* 2257 * Update buffer state, submit mapped pages, and get us new 2258 * extent to map 2259 */ 2260 err = mpage_map_and_submit_buffers(mpd); 2261 if (err < 0) 2262 goto update_disksize; 2263 } while (map->m_len); 2264 2265 update_disksize: 2266 /* 2267 * Update on-disk size after IO is submitted. Races with 2268 * truncate are avoided by checking i_size under i_data_sem. 2269 */ 2270 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2271 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2272 int err2; 2273 loff_t i_size; 2274 2275 down_write(&EXT4_I(inode)->i_data_sem); 2276 i_size = i_size_read(inode); 2277 if (disksize > i_size) 2278 disksize = i_size; 2279 if (disksize > EXT4_I(inode)->i_disksize) 2280 EXT4_I(inode)->i_disksize = disksize; 2281 up_write(&EXT4_I(inode)->i_data_sem); 2282 err2 = ext4_mark_inode_dirty(handle, inode); 2283 if (err2) { 2284 ext4_error_err(inode->i_sb, -err2, 2285 "Failed to mark inode %lu dirty", 2286 inode->i_ino); 2287 } 2288 if (!err) 2289 err = err2; 2290 } 2291 return err; 2292 } 2293 2294 /* 2295 * Calculate the total number of credits to reserve for one writepages 2296 * iteration. This is called from ext4_writepages(). We map an extent of 2297 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2298 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2299 * bpp - 1 blocks in bpp different extents. 2300 */ 2301 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2302 { 2303 int bpp = ext4_journal_blocks_per_page(inode); 2304 2305 return ext4_meta_trans_blocks(inode, 2306 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2307 } 2308 2309 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2310 size_t len) 2311 { 2312 struct buffer_head *page_bufs = folio_buffers(folio); 2313 struct inode *inode = folio->mapping->host; 2314 int ret, err; 2315 2316 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2317 NULL, do_journal_get_write_access); 2318 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2319 NULL, write_end_fn); 2320 if (ret == 0) 2321 ret = err; 2322 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2323 if (ret == 0) 2324 ret = err; 2325 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2326 2327 return ret; 2328 } 2329 2330 static int mpage_journal_page_buffers(handle_t *handle, 2331 struct mpage_da_data *mpd, 2332 struct folio *folio) 2333 { 2334 struct inode *inode = mpd->inode; 2335 loff_t size = i_size_read(inode); 2336 size_t len = folio_size(folio); 2337 2338 folio_clear_checked(folio); 2339 mpd->wbc->nr_to_write--; 2340 2341 if (folio_pos(folio) + len > size && 2342 !ext4_verity_in_progress(inode)) 2343 len = size - folio_pos(folio); 2344 2345 return ext4_journal_folio_buffers(handle, folio, len); 2346 } 2347 2348 /* 2349 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2350 * needing mapping, submit mapped pages 2351 * 2352 * @mpd - where to look for pages 2353 * 2354 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2355 * IO immediately. If we cannot map blocks, we submit just already mapped 2356 * buffers in the page for IO and keep page dirty. When we can map blocks and 2357 * we find a page which isn't mapped we start accumulating extent of buffers 2358 * underlying these pages that needs mapping (formed by either delayed or 2359 * unwritten buffers). We also lock the pages containing these buffers. The 2360 * extent found is returned in @mpd structure (starting at mpd->lblk with 2361 * length mpd->len blocks). 2362 * 2363 * Note that this function can attach bios to one io_end structure which are 2364 * neither logically nor physically contiguous. Although it may seem as an 2365 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2366 * case as we need to track IO to all buffers underlying a page in one io_end. 2367 */ 2368 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2369 { 2370 struct address_space *mapping = mpd->inode->i_mapping; 2371 struct folio_batch fbatch; 2372 unsigned int nr_folios; 2373 pgoff_t index = mpd->first_page; 2374 pgoff_t end = mpd->last_page; 2375 xa_mark_t tag; 2376 int i, err = 0; 2377 int blkbits = mpd->inode->i_blkbits; 2378 ext4_lblk_t lblk; 2379 struct buffer_head *head; 2380 handle_t *handle = NULL; 2381 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2382 2383 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2384 tag = PAGECACHE_TAG_TOWRITE; 2385 else 2386 tag = PAGECACHE_TAG_DIRTY; 2387 2388 mpd->map.m_len = 0; 2389 mpd->next_page = index; 2390 if (ext4_should_journal_data(mpd->inode)) { 2391 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2392 bpp); 2393 if (IS_ERR(handle)) 2394 return PTR_ERR(handle); 2395 } 2396 folio_batch_init(&fbatch); 2397 while (index <= end) { 2398 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2399 tag, &fbatch); 2400 if (nr_folios == 0) 2401 break; 2402 2403 for (i = 0; i < nr_folios; i++) { 2404 struct folio *folio = fbatch.folios[i]; 2405 2406 /* 2407 * Accumulated enough dirty pages? This doesn't apply 2408 * to WB_SYNC_ALL mode. For integrity sync we have to 2409 * keep going because someone may be concurrently 2410 * dirtying pages, and we might have synced a lot of 2411 * newly appeared dirty pages, but have not synced all 2412 * of the old dirty pages. 2413 */ 2414 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2415 mpd->wbc->nr_to_write <= 2416 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2417 goto out; 2418 2419 /* If we can't merge this page, we are done. */ 2420 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2421 goto out; 2422 2423 if (handle) { 2424 err = ext4_journal_ensure_credits(handle, bpp, 2425 0); 2426 if (err < 0) 2427 goto out; 2428 } 2429 2430 folio_lock(folio); 2431 /* 2432 * If the page is no longer dirty, or its mapping no 2433 * longer corresponds to inode we are writing (which 2434 * means it has been truncated or invalidated), or the 2435 * page is already under writeback and we are not doing 2436 * a data integrity writeback, skip the page 2437 */ 2438 if (!folio_test_dirty(folio) || 2439 (folio_test_writeback(folio) && 2440 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2441 unlikely(folio->mapping != mapping)) { 2442 folio_unlock(folio); 2443 continue; 2444 } 2445 2446 folio_wait_writeback(folio); 2447 BUG_ON(folio_test_writeback(folio)); 2448 2449 /* 2450 * Should never happen but for buggy code in 2451 * other subsystems that call 2452 * set_page_dirty() without properly warning 2453 * the file system first. See [1] for more 2454 * information. 2455 * 2456 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2457 */ 2458 if (!folio_buffers(folio)) { 2459 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2460 folio_clear_dirty(folio); 2461 folio_unlock(folio); 2462 continue; 2463 } 2464 2465 if (mpd->map.m_len == 0) 2466 mpd->first_page = folio->index; 2467 mpd->next_page = folio_next_index(folio); 2468 /* 2469 * Writeout when we cannot modify metadata is simple. 2470 * Just submit the page. For data=journal mode we 2471 * first handle writeout of the page for checkpoint and 2472 * only after that handle delayed page dirtying. This 2473 * makes sure current data is checkpointed to the final 2474 * location before possibly journalling it again which 2475 * is desirable when the page is frequently dirtied 2476 * through a pin. 2477 */ 2478 if (!mpd->can_map) { 2479 err = mpage_submit_folio(mpd, folio); 2480 if (err < 0) 2481 goto out; 2482 /* Pending dirtying of journalled data? */ 2483 if (folio_test_checked(folio)) { 2484 err = mpage_journal_page_buffers(handle, 2485 mpd, folio); 2486 if (err < 0) 2487 goto out; 2488 mpd->journalled_more_data = 1; 2489 } 2490 mpage_folio_done(mpd, folio); 2491 } else { 2492 /* Add all dirty buffers to mpd */ 2493 lblk = ((ext4_lblk_t)folio->index) << 2494 (PAGE_SHIFT - blkbits); 2495 head = folio_buffers(folio); 2496 err = mpage_process_page_bufs(mpd, head, head, 2497 lblk); 2498 if (err <= 0) 2499 goto out; 2500 err = 0; 2501 } 2502 } 2503 folio_batch_release(&fbatch); 2504 cond_resched(); 2505 } 2506 mpd->scanned_until_end = 1; 2507 if (handle) 2508 ext4_journal_stop(handle); 2509 return 0; 2510 out: 2511 folio_batch_release(&fbatch); 2512 if (handle) 2513 ext4_journal_stop(handle); 2514 return err; 2515 } 2516 2517 static int ext4_do_writepages(struct mpage_da_data *mpd) 2518 { 2519 struct writeback_control *wbc = mpd->wbc; 2520 pgoff_t writeback_index = 0; 2521 long nr_to_write = wbc->nr_to_write; 2522 int range_whole = 0; 2523 int cycled = 1; 2524 handle_t *handle = NULL; 2525 struct inode *inode = mpd->inode; 2526 struct address_space *mapping = inode->i_mapping; 2527 int needed_blocks, rsv_blocks = 0, ret = 0; 2528 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2529 struct blk_plug plug; 2530 bool give_up_on_write = false; 2531 2532 trace_ext4_writepages(inode, wbc); 2533 2534 /* 2535 * No pages to write? This is mainly a kludge to avoid starting 2536 * a transaction for special inodes like journal inode on last iput() 2537 * because that could violate lock ordering on umount 2538 */ 2539 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2540 goto out_writepages; 2541 2542 /* 2543 * If the filesystem has aborted, it is read-only, so return 2544 * right away instead of dumping stack traces later on that 2545 * will obscure the real source of the problem. We test 2546 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2547 * the latter could be true if the filesystem is mounted 2548 * read-only, and in that case, ext4_writepages should 2549 * *never* be called, so if that ever happens, we would want 2550 * the stack trace. 2551 */ 2552 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2553 ret = -EROFS; 2554 goto out_writepages; 2555 } 2556 2557 /* 2558 * If we have inline data and arrive here, it means that 2559 * we will soon create the block for the 1st page, so 2560 * we'd better clear the inline data here. 2561 */ 2562 if (ext4_has_inline_data(inode)) { 2563 /* Just inode will be modified... */ 2564 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2565 if (IS_ERR(handle)) { 2566 ret = PTR_ERR(handle); 2567 goto out_writepages; 2568 } 2569 BUG_ON(ext4_test_inode_state(inode, 2570 EXT4_STATE_MAY_INLINE_DATA)); 2571 ext4_destroy_inline_data(handle, inode); 2572 ext4_journal_stop(handle); 2573 } 2574 2575 /* 2576 * data=journal mode does not do delalloc so we just need to writeout / 2577 * journal already mapped buffers. On the other hand we need to commit 2578 * transaction to make data stable. We expect all the data to be 2579 * already in the journal (the only exception are DMA pinned pages 2580 * dirtied behind our back) so we commit transaction here and run the 2581 * writeback loop to checkpoint them. The checkpointing is not actually 2582 * necessary to make data persistent *but* quite a few places (extent 2583 * shifting operations, fsverity, ...) depend on being able to drop 2584 * pagecache pages after calling filemap_write_and_wait() and for that 2585 * checkpointing needs to happen. 2586 */ 2587 if (ext4_should_journal_data(inode)) { 2588 mpd->can_map = 0; 2589 if (wbc->sync_mode == WB_SYNC_ALL) 2590 ext4_fc_commit(sbi->s_journal, 2591 EXT4_I(inode)->i_datasync_tid); 2592 } 2593 mpd->journalled_more_data = 0; 2594 2595 if (ext4_should_dioread_nolock(inode)) { 2596 /* 2597 * We may need to convert up to one extent per block in 2598 * the page and we may dirty the inode. 2599 */ 2600 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2601 PAGE_SIZE >> inode->i_blkbits); 2602 } 2603 2604 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2605 range_whole = 1; 2606 2607 if (wbc->range_cyclic) { 2608 writeback_index = mapping->writeback_index; 2609 if (writeback_index) 2610 cycled = 0; 2611 mpd->first_page = writeback_index; 2612 mpd->last_page = -1; 2613 } else { 2614 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2615 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2616 } 2617 2618 ext4_io_submit_init(&mpd->io_submit, wbc); 2619 retry: 2620 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2621 tag_pages_for_writeback(mapping, mpd->first_page, 2622 mpd->last_page); 2623 blk_start_plug(&plug); 2624 2625 /* 2626 * First writeback pages that don't need mapping - we can avoid 2627 * starting a transaction unnecessarily and also avoid being blocked 2628 * in the block layer on device congestion while having transaction 2629 * started. 2630 */ 2631 mpd->do_map = 0; 2632 mpd->scanned_until_end = 0; 2633 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2634 if (!mpd->io_submit.io_end) { 2635 ret = -ENOMEM; 2636 goto unplug; 2637 } 2638 ret = mpage_prepare_extent_to_map(mpd); 2639 /* Unlock pages we didn't use */ 2640 mpage_release_unused_pages(mpd, false); 2641 /* Submit prepared bio */ 2642 ext4_io_submit(&mpd->io_submit); 2643 ext4_put_io_end_defer(mpd->io_submit.io_end); 2644 mpd->io_submit.io_end = NULL; 2645 if (ret < 0) 2646 goto unplug; 2647 2648 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2649 /* For each extent of pages we use new io_end */ 2650 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2651 if (!mpd->io_submit.io_end) { 2652 ret = -ENOMEM; 2653 break; 2654 } 2655 2656 WARN_ON_ONCE(!mpd->can_map); 2657 /* 2658 * We have two constraints: We find one extent to map and we 2659 * must always write out whole page (makes a difference when 2660 * blocksize < pagesize) so that we don't block on IO when we 2661 * try to write out the rest of the page. Journalled mode is 2662 * not supported by delalloc. 2663 */ 2664 BUG_ON(ext4_should_journal_data(inode)); 2665 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2666 2667 /* start a new transaction */ 2668 handle = ext4_journal_start_with_reserve(inode, 2669 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2670 if (IS_ERR(handle)) { 2671 ret = PTR_ERR(handle); 2672 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2673 "%ld pages, ino %lu; err %d", __func__, 2674 wbc->nr_to_write, inode->i_ino, ret); 2675 /* Release allocated io_end */ 2676 ext4_put_io_end(mpd->io_submit.io_end); 2677 mpd->io_submit.io_end = NULL; 2678 break; 2679 } 2680 mpd->do_map = 1; 2681 2682 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2683 ret = mpage_prepare_extent_to_map(mpd); 2684 if (!ret && mpd->map.m_len) 2685 ret = mpage_map_and_submit_extent(handle, mpd, 2686 &give_up_on_write); 2687 /* 2688 * Caution: If the handle is synchronous, 2689 * ext4_journal_stop() can wait for transaction commit 2690 * to finish which may depend on writeback of pages to 2691 * complete or on page lock to be released. In that 2692 * case, we have to wait until after we have 2693 * submitted all the IO, released page locks we hold, 2694 * and dropped io_end reference (for extent conversion 2695 * to be able to complete) before stopping the handle. 2696 */ 2697 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2698 ext4_journal_stop(handle); 2699 handle = NULL; 2700 mpd->do_map = 0; 2701 } 2702 /* Unlock pages we didn't use */ 2703 mpage_release_unused_pages(mpd, give_up_on_write); 2704 /* Submit prepared bio */ 2705 ext4_io_submit(&mpd->io_submit); 2706 2707 /* 2708 * Drop our io_end reference we got from init. We have 2709 * to be careful and use deferred io_end finishing if 2710 * we are still holding the transaction as we can 2711 * release the last reference to io_end which may end 2712 * up doing unwritten extent conversion. 2713 */ 2714 if (handle) { 2715 ext4_put_io_end_defer(mpd->io_submit.io_end); 2716 ext4_journal_stop(handle); 2717 } else 2718 ext4_put_io_end(mpd->io_submit.io_end); 2719 mpd->io_submit.io_end = NULL; 2720 2721 if (ret == -ENOSPC && sbi->s_journal) { 2722 /* 2723 * Commit the transaction which would 2724 * free blocks released in the transaction 2725 * and try again 2726 */ 2727 jbd2_journal_force_commit_nested(sbi->s_journal); 2728 ret = 0; 2729 continue; 2730 } 2731 /* Fatal error - ENOMEM, EIO... */ 2732 if (ret) 2733 break; 2734 } 2735 unplug: 2736 blk_finish_plug(&plug); 2737 if (!ret && !cycled && wbc->nr_to_write > 0) { 2738 cycled = 1; 2739 mpd->last_page = writeback_index - 1; 2740 mpd->first_page = 0; 2741 goto retry; 2742 } 2743 2744 /* Update index */ 2745 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2746 /* 2747 * Set the writeback_index so that range_cyclic 2748 * mode will write it back later 2749 */ 2750 mapping->writeback_index = mpd->first_page; 2751 2752 out_writepages: 2753 trace_ext4_writepages_result(inode, wbc, ret, 2754 nr_to_write - wbc->nr_to_write); 2755 return ret; 2756 } 2757 2758 static int ext4_writepages(struct address_space *mapping, 2759 struct writeback_control *wbc) 2760 { 2761 struct super_block *sb = mapping->host->i_sb; 2762 struct mpage_da_data mpd = { 2763 .inode = mapping->host, 2764 .wbc = wbc, 2765 .can_map = 1, 2766 }; 2767 int ret; 2768 int alloc_ctx; 2769 2770 if (unlikely(ext4_forced_shutdown(sb))) 2771 return -EIO; 2772 2773 alloc_ctx = ext4_writepages_down_read(sb); 2774 ret = ext4_do_writepages(&mpd); 2775 /* 2776 * For data=journal writeback we could have come across pages marked 2777 * for delayed dirtying (PageChecked) which were just added to the 2778 * running transaction. Try once more to get them to stable storage. 2779 */ 2780 if (!ret && mpd.journalled_more_data) 2781 ret = ext4_do_writepages(&mpd); 2782 ext4_writepages_up_read(sb, alloc_ctx); 2783 2784 return ret; 2785 } 2786 2787 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2788 { 2789 struct writeback_control wbc = { 2790 .sync_mode = WB_SYNC_ALL, 2791 .nr_to_write = LONG_MAX, 2792 .range_start = jinode->i_dirty_start, 2793 .range_end = jinode->i_dirty_end, 2794 }; 2795 struct mpage_da_data mpd = { 2796 .inode = jinode->i_vfs_inode, 2797 .wbc = &wbc, 2798 .can_map = 0, 2799 }; 2800 return ext4_do_writepages(&mpd); 2801 } 2802 2803 static int ext4_dax_writepages(struct address_space *mapping, 2804 struct writeback_control *wbc) 2805 { 2806 int ret; 2807 long nr_to_write = wbc->nr_to_write; 2808 struct inode *inode = mapping->host; 2809 int alloc_ctx; 2810 2811 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2812 return -EIO; 2813 2814 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2815 trace_ext4_writepages(inode, wbc); 2816 2817 ret = dax_writeback_mapping_range(mapping, 2818 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2819 trace_ext4_writepages_result(inode, wbc, ret, 2820 nr_to_write - wbc->nr_to_write); 2821 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2822 return ret; 2823 } 2824 2825 static int ext4_nonda_switch(struct super_block *sb) 2826 { 2827 s64 free_clusters, dirty_clusters; 2828 struct ext4_sb_info *sbi = EXT4_SB(sb); 2829 2830 /* 2831 * switch to non delalloc mode if we are running low 2832 * on free block. The free block accounting via percpu 2833 * counters can get slightly wrong with percpu_counter_batch getting 2834 * accumulated on each CPU without updating global counters 2835 * Delalloc need an accurate free block accounting. So switch 2836 * to non delalloc when we are near to error range. 2837 */ 2838 free_clusters = 2839 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2840 dirty_clusters = 2841 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2842 /* 2843 * Start pushing delalloc when 1/2 of free blocks are dirty. 2844 */ 2845 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2846 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2847 2848 if (2 * free_clusters < 3 * dirty_clusters || 2849 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2850 /* 2851 * free block count is less than 150% of dirty blocks 2852 * or free blocks is less than watermark 2853 */ 2854 return 1; 2855 } 2856 return 0; 2857 } 2858 2859 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2860 loff_t pos, unsigned len, 2861 struct page **pagep, void **fsdata) 2862 { 2863 int ret, retries = 0; 2864 struct folio *folio; 2865 pgoff_t index; 2866 struct inode *inode = mapping->host; 2867 2868 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2869 return -EIO; 2870 2871 index = pos >> PAGE_SHIFT; 2872 2873 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2874 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2875 return ext4_write_begin(file, mapping, pos, 2876 len, pagep, fsdata); 2877 } 2878 *fsdata = (void *)0; 2879 trace_ext4_da_write_begin(inode, pos, len); 2880 2881 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2882 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2883 pagep, fsdata); 2884 if (ret < 0) 2885 return ret; 2886 if (ret == 1) 2887 return 0; 2888 } 2889 2890 retry: 2891 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2892 mapping_gfp_mask(mapping)); 2893 if (IS_ERR(folio)) 2894 return PTR_ERR(folio); 2895 2896 /* In case writeback began while the folio was unlocked */ 2897 folio_wait_stable(folio); 2898 2899 #ifdef CONFIG_FS_ENCRYPTION 2900 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2901 #else 2902 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2903 #endif 2904 if (ret < 0) { 2905 folio_unlock(folio); 2906 folio_put(folio); 2907 /* 2908 * block_write_begin may have instantiated a few blocks 2909 * outside i_size. Trim these off again. Don't need 2910 * i_size_read because we hold inode lock. 2911 */ 2912 if (pos + len > inode->i_size) 2913 ext4_truncate_failed_write(inode); 2914 2915 if (ret == -ENOSPC && 2916 ext4_should_retry_alloc(inode->i_sb, &retries)) 2917 goto retry; 2918 return ret; 2919 } 2920 2921 *pagep = &folio->page; 2922 return ret; 2923 } 2924 2925 /* 2926 * Check if we should update i_disksize 2927 * when write to the end of file but not require block allocation 2928 */ 2929 static int ext4_da_should_update_i_disksize(struct folio *folio, 2930 unsigned long offset) 2931 { 2932 struct buffer_head *bh; 2933 struct inode *inode = folio->mapping->host; 2934 unsigned int idx; 2935 int i; 2936 2937 bh = folio_buffers(folio); 2938 idx = offset >> inode->i_blkbits; 2939 2940 for (i = 0; i < idx; i++) 2941 bh = bh->b_this_page; 2942 2943 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2944 return 0; 2945 return 1; 2946 } 2947 2948 static int ext4_da_do_write_end(struct address_space *mapping, 2949 loff_t pos, unsigned len, unsigned copied, 2950 struct folio *folio) 2951 { 2952 struct inode *inode = mapping->host; 2953 loff_t old_size = inode->i_size; 2954 bool disksize_changed = false; 2955 loff_t new_i_size; 2956 2957 /* 2958 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2959 * flag, which all that's needed to trigger page writeback. 2960 */ 2961 copied = block_write_end(NULL, mapping, pos, len, copied, 2962 &folio->page, NULL); 2963 new_i_size = pos + copied; 2964 2965 /* 2966 * It's important to update i_size while still holding folio lock, 2967 * because folio writeout could otherwise come in and zero beyond 2968 * i_size. 2969 * 2970 * Since we are holding inode lock, we are sure i_disksize <= 2971 * i_size. We also know that if i_disksize < i_size, there are 2972 * delalloc writes pending in the range up to i_size. If the end of 2973 * the current write is <= i_size, there's no need to touch 2974 * i_disksize since writeback will push i_disksize up to i_size 2975 * eventually. If the end of the current write is > i_size and 2976 * inside an allocated block which ext4_da_should_update_i_disksize() 2977 * checked, we need to update i_disksize here as certain 2978 * ext4_writepages() paths not allocating blocks and update i_disksize. 2979 */ 2980 if (new_i_size > inode->i_size) { 2981 unsigned long end; 2982 2983 i_size_write(inode, new_i_size); 2984 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2985 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 2986 ext4_update_i_disksize(inode, new_i_size); 2987 disksize_changed = true; 2988 } 2989 } 2990 2991 folio_unlock(folio); 2992 folio_put(folio); 2993 2994 if (old_size < pos) 2995 pagecache_isize_extended(inode, old_size, pos); 2996 2997 if (disksize_changed) { 2998 handle_t *handle; 2999 3000 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3001 if (IS_ERR(handle)) 3002 return PTR_ERR(handle); 3003 ext4_mark_inode_dirty(handle, inode); 3004 ext4_journal_stop(handle); 3005 } 3006 3007 return copied; 3008 } 3009 3010 static int ext4_da_write_end(struct file *file, 3011 struct address_space *mapping, 3012 loff_t pos, unsigned len, unsigned copied, 3013 struct page *page, void *fsdata) 3014 { 3015 struct inode *inode = mapping->host; 3016 int write_mode = (int)(unsigned long)fsdata; 3017 struct folio *folio = page_folio(page); 3018 3019 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3020 return ext4_write_end(file, mapping, pos, 3021 len, copied, &folio->page, fsdata); 3022 3023 trace_ext4_da_write_end(inode, pos, len, copied); 3024 3025 if (write_mode != CONVERT_INLINE_DATA && 3026 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3027 ext4_has_inline_data(inode)) 3028 return ext4_write_inline_data_end(inode, pos, len, copied, 3029 folio); 3030 3031 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3032 copied = 0; 3033 3034 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3035 } 3036 3037 /* 3038 * Force all delayed allocation blocks to be allocated for a given inode. 3039 */ 3040 int ext4_alloc_da_blocks(struct inode *inode) 3041 { 3042 trace_ext4_alloc_da_blocks(inode); 3043 3044 if (!EXT4_I(inode)->i_reserved_data_blocks) 3045 return 0; 3046 3047 /* 3048 * We do something simple for now. The filemap_flush() will 3049 * also start triggering a write of the data blocks, which is 3050 * not strictly speaking necessary (and for users of 3051 * laptop_mode, not even desirable). However, to do otherwise 3052 * would require replicating code paths in: 3053 * 3054 * ext4_writepages() -> 3055 * write_cache_pages() ---> (via passed in callback function) 3056 * __mpage_da_writepage() --> 3057 * mpage_add_bh_to_extent() 3058 * mpage_da_map_blocks() 3059 * 3060 * The problem is that write_cache_pages(), located in 3061 * mm/page-writeback.c, marks pages clean in preparation for 3062 * doing I/O, which is not desirable if we're not planning on 3063 * doing I/O at all. 3064 * 3065 * We could call write_cache_pages(), and then redirty all of 3066 * the pages by calling redirty_page_for_writepage() but that 3067 * would be ugly in the extreme. So instead we would need to 3068 * replicate parts of the code in the above functions, 3069 * simplifying them because we wouldn't actually intend to 3070 * write out the pages, but rather only collect contiguous 3071 * logical block extents, call the multi-block allocator, and 3072 * then update the buffer heads with the block allocations. 3073 * 3074 * For now, though, we'll cheat by calling filemap_flush(), 3075 * which will map the blocks, and start the I/O, but not 3076 * actually wait for the I/O to complete. 3077 */ 3078 return filemap_flush(inode->i_mapping); 3079 } 3080 3081 /* 3082 * bmap() is special. It gets used by applications such as lilo and by 3083 * the swapper to find the on-disk block of a specific piece of data. 3084 * 3085 * Naturally, this is dangerous if the block concerned is still in the 3086 * journal. If somebody makes a swapfile on an ext4 data-journaling 3087 * filesystem and enables swap, then they may get a nasty shock when the 3088 * data getting swapped to that swapfile suddenly gets overwritten by 3089 * the original zero's written out previously to the journal and 3090 * awaiting writeback in the kernel's buffer cache. 3091 * 3092 * So, if we see any bmap calls here on a modified, data-journaled file, 3093 * take extra steps to flush any blocks which might be in the cache. 3094 */ 3095 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3096 { 3097 struct inode *inode = mapping->host; 3098 sector_t ret = 0; 3099 3100 inode_lock_shared(inode); 3101 /* 3102 * We can get here for an inline file via the FIBMAP ioctl 3103 */ 3104 if (ext4_has_inline_data(inode)) 3105 goto out; 3106 3107 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3108 (test_opt(inode->i_sb, DELALLOC) || 3109 ext4_should_journal_data(inode))) { 3110 /* 3111 * With delalloc or journalled data we want to sync the file so 3112 * that we can make sure we allocate blocks for file and data 3113 * is in place for the user to see it 3114 */ 3115 filemap_write_and_wait(mapping); 3116 } 3117 3118 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3119 3120 out: 3121 inode_unlock_shared(inode); 3122 return ret; 3123 } 3124 3125 static int ext4_read_folio(struct file *file, struct folio *folio) 3126 { 3127 int ret = -EAGAIN; 3128 struct inode *inode = folio->mapping->host; 3129 3130 trace_ext4_read_folio(inode, folio); 3131 3132 if (ext4_has_inline_data(inode)) 3133 ret = ext4_readpage_inline(inode, folio); 3134 3135 if (ret == -EAGAIN) 3136 return ext4_mpage_readpages(inode, NULL, folio); 3137 3138 return ret; 3139 } 3140 3141 static void ext4_readahead(struct readahead_control *rac) 3142 { 3143 struct inode *inode = rac->mapping->host; 3144 3145 /* If the file has inline data, no need to do readahead. */ 3146 if (ext4_has_inline_data(inode)) 3147 return; 3148 3149 ext4_mpage_readpages(inode, rac, NULL); 3150 } 3151 3152 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3153 size_t length) 3154 { 3155 trace_ext4_invalidate_folio(folio, offset, length); 3156 3157 /* No journalling happens on data buffers when this function is used */ 3158 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3159 3160 block_invalidate_folio(folio, offset, length); 3161 } 3162 3163 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3164 size_t offset, size_t length) 3165 { 3166 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3167 3168 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3169 3170 /* 3171 * If it's a full truncate we just forget about the pending dirtying 3172 */ 3173 if (offset == 0 && length == folio_size(folio)) 3174 folio_clear_checked(folio); 3175 3176 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3177 } 3178 3179 /* Wrapper for aops... */ 3180 static void ext4_journalled_invalidate_folio(struct folio *folio, 3181 size_t offset, 3182 size_t length) 3183 { 3184 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3185 } 3186 3187 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3188 { 3189 struct inode *inode = folio->mapping->host; 3190 journal_t *journal = EXT4_JOURNAL(inode); 3191 3192 trace_ext4_release_folio(inode, folio); 3193 3194 /* Page has dirty journalled data -> cannot release */ 3195 if (folio_test_checked(folio)) 3196 return false; 3197 if (journal) 3198 return jbd2_journal_try_to_free_buffers(journal, folio); 3199 else 3200 return try_to_free_buffers(folio); 3201 } 3202 3203 static bool ext4_inode_datasync_dirty(struct inode *inode) 3204 { 3205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3206 3207 if (journal) { 3208 if (jbd2_transaction_committed(journal, 3209 EXT4_I(inode)->i_datasync_tid)) 3210 return false; 3211 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3212 return !list_empty(&EXT4_I(inode)->i_fc_list); 3213 return true; 3214 } 3215 3216 /* Any metadata buffers to write? */ 3217 if (!list_empty(&inode->i_mapping->i_private_list)) 3218 return true; 3219 return inode->i_state & I_DIRTY_DATASYNC; 3220 } 3221 3222 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3223 struct ext4_map_blocks *map, loff_t offset, 3224 loff_t length, unsigned int flags) 3225 { 3226 u8 blkbits = inode->i_blkbits; 3227 3228 /* 3229 * Writes that span EOF might trigger an I/O size update on completion, 3230 * so consider them to be dirty for the purpose of O_DSYNC, even if 3231 * there is no other metadata changes being made or are pending. 3232 */ 3233 iomap->flags = 0; 3234 if (ext4_inode_datasync_dirty(inode) || 3235 offset + length > i_size_read(inode)) 3236 iomap->flags |= IOMAP_F_DIRTY; 3237 3238 if (map->m_flags & EXT4_MAP_NEW) 3239 iomap->flags |= IOMAP_F_NEW; 3240 3241 if (flags & IOMAP_DAX) 3242 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3243 else 3244 iomap->bdev = inode->i_sb->s_bdev; 3245 iomap->offset = (u64) map->m_lblk << blkbits; 3246 iomap->length = (u64) map->m_len << blkbits; 3247 3248 if ((map->m_flags & EXT4_MAP_MAPPED) && 3249 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3250 iomap->flags |= IOMAP_F_MERGED; 3251 3252 /* 3253 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3254 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3255 * set. In order for any allocated unwritten extents to be converted 3256 * into written extents correctly within the ->end_io() handler, we 3257 * need to ensure that the iomap->type is set appropriately. Hence, the 3258 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3259 * been set first. 3260 */ 3261 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3262 iomap->type = IOMAP_UNWRITTEN; 3263 iomap->addr = (u64) map->m_pblk << blkbits; 3264 if (flags & IOMAP_DAX) 3265 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3266 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3267 iomap->type = IOMAP_MAPPED; 3268 iomap->addr = (u64) map->m_pblk << blkbits; 3269 if (flags & IOMAP_DAX) 3270 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3271 } else { 3272 iomap->type = IOMAP_HOLE; 3273 iomap->addr = IOMAP_NULL_ADDR; 3274 } 3275 } 3276 3277 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3278 unsigned int flags) 3279 { 3280 handle_t *handle; 3281 u8 blkbits = inode->i_blkbits; 3282 int ret, dio_credits, m_flags = 0, retries = 0; 3283 3284 /* 3285 * Trim the mapping request to the maximum value that we can map at 3286 * once for direct I/O. 3287 */ 3288 if (map->m_len > DIO_MAX_BLOCKS) 3289 map->m_len = DIO_MAX_BLOCKS; 3290 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3291 3292 retry: 3293 /* 3294 * Either we allocate blocks and then don't get an unwritten extent, so 3295 * in that case we have reserved enough credits. Or, the blocks are 3296 * already allocated and unwritten. In that case, the extent conversion 3297 * fits into the credits as well. 3298 */ 3299 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3300 if (IS_ERR(handle)) 3301 return PTR_ERR(handle); 3302 3303 /* 3304 * DAX and direct I/O are the only two operations that are currently 3305 * supported with IOMAP_WRITE. 3306 */ 3307 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3308 if (flags & IOMAP_DAX) 3309 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3310 /* 3311 * We use i_size instead of i_disksize here because delalloc writeback 3312 * can complete at any point during the I/O and subsequently push the 3313 * i_disksize out to i_size. This could be beyond where direct I/O is 3314 * happening and thus expose allocated blocks to direct I/O reads. 3315 */ 3316 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3317 m_flags = EXT4_GET_BLOCKS_CREATE; 3318 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3319 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3320 3321 ret = ext4_map_blocks(handle, inode, map, m_flags); 3322 3323 /* 3324 * We cannot fill holes in indirect tree based inodes as that could 3325 * expose stale data in the case of a crash. Use the magic error code 3326 * to fallback to buffered I/O. 3327 */ 3328 if (!m_flags && !ret) 3329 ret = -ENOTBLK; 3330 3331 ext4_journal_stop(handle); 3332 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3333 goto retry; 3334 3335 return ret; 3336 } 3337 3338 3339 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3340 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3341 { 3342 int ret; 3343 struct ext4_map_blocks map; 3344 u8 blkbits = inode->i_blkbits; 3345 3346 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3347 return -EINVAL; 3348 3349 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3350 return -ERANGE; 3351 3352 /* 3353 * Calculate the first and last logical blocks respectively. 3354 */ 3355 map.m_lblk = offset >> blkbits; 3356 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3357 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3358 3359 if (flags & IOMAP_WRITE) { 3360 /* 3361 * We check here if the blocks are already allocated, then we 3362 * don't need to start a journal txn and we can directly return 3363 * the mapping information. This could boost performance 3364 * especially in multi-threaded overwrite requests. 3365 */ 3366 if (offset + length <= i_size_read(inode)) { 3367 ret = ext4_map_blocks(NULL, inode, &map, 0); 3368 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3369 goto out; 3370 } 3371 ret = ext4_iomap_alloc(inode, &map, flags); 3372 } else { 3373 ret = ext4_map_blocks(NULL, inode, &map, 0); 3374 } 3375 3376 if (ret < 0) 3377 return ret; 3378 out: 3379 /* 3380 * When inline encryption is enabled, sometimes I/O to an encrypted file 3381 * has to be broken up to guarantee DUN contiguity. Handle this by 3382 * limiting the length of the mapping returned. 3383 */ 3384 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3385 3386 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3387 3388 return 0; 3389 } 3390 3391 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3392 loff_t length, unsigned flags, struct iomap *iomap, 3393 struct iomap *srcmap) 3394 { 3395 int ret; 3396 3397 /* 3398 * Even for writes we don't need to allocate blocks, so just pretend 3399 * we are reading to save overhead of starting a transaction. 3400 */ 3401 flags &= ~IOMAP_WRITE; 3402 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3403 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3404 return ret; 3405 } 3406 3407 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3408 ssize_t written, unsigned flags, struct iomap *iomap) 3409 { 3410 /* 3411 * Check to see whether an error occurred while writing out the data to 3412 * the allocated blocks. If so, return the magic error code so that we 3413 * fallback to buffered I/O and attempt to complete the remainder of 3414 * the I/O. Any blocks that may have been allocated in preparation for 3415 * the direct I/O will be reused during buffered I/O. 3416 */ 3417 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3418 return -ENOTBLK; 3419 3420 return 0; 3421 } 3422 3423 const struct iomap_ops ext4_iomap_ops = { 3424 .iomap_begin = ext4_iomap_begin, 3425 .iomap_end = ext4_iomap_end, 3426 }; 3427 3428 const struct iomap_ops ext4_iomap_overwrite_ops = { 3429 .iomap_begin = ext4_iomap_overwrite_begin, 3430 .iomap_end = ext4_iomap_end, 3431 }; 3432 3433 static bool ext4_iomap_is_delalloc(struct inode *inode, 3434 struct ext4_map_blocks *map) 3435 { 3436 struct extent_status es; 3437 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3438 3439 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3440 map->m_lblk, end, &es); 3441 3442 if (!es.es_len || es.es_lblk > end) 3443 return false; 3444 3445 if (es.es_lblk > map->m_lblk) { 3446 map->m_len = es.es_lblk - map->m_lblk; 3447 return false; 3448 } 3449 3450 offset = map->m_lblk - es.es_lblk; 3451 map->m_len = es.es_len - offset; 3452 3453 return true; 3454 } 3455 3456 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3457 loff_t length, unsigned int flags, 3458 struct iomap *iomap, struct iomap *srcmap) 3459 { 3460 int ret; 3461 bool delalloc = false; 3462 struct ext4_map_blocks map; 3463 u8 blkbits = inode->i_blkbits; 3464 3465 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3466 return -EINVAL; 3467 3468 if (ext4_has_inline_data(inode)) { 3469 ret = ext4_inline_data_iomap(inode, iomap); 3470 if (ret != -EAGAIN) { 3471 if (ret == 0 && offset >= iomap->length) 3472 ret = -ENOENT; 3473 return ret; 3474 } 3475 } 3476 3477 /* 3478 * Calculate the first and last logical block respectively. 3479 */ 3480 map.m_lblk = offset >> blkbits; 3481 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3482 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3483 3484 /* 3485 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3486 * So handle it here itself instead of querying ext4_map_blocks(). 3487 * Since ext4_map_blocks() will warn about it and will return 3488 * -EIO error. 3489 */ 3490 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3491 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3492 3493 if (offset >= sbi->s_bitmap_maxbytes) { 3494 map.m_flags = 0; 3495 goto set_iomap; 3496 } 3497 } 3498 3499 ret = ext4_map_blocks(NULL, inode, &map, 0); 3500 if (ret < 0) 3501 return ret; 3502 if (ret == 0) 3503 delalloc = ext4_iomap_is_delalloc(inode, &map); 3504 3505 set_iomap: 3506 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3507 if (delalloc && iomap->type == IOMAP_HOLE) 3508 iomap->type = IOMAP_DELALLOC; 3509 3510 return 0; 3511 } 3512 3513 const struct iomap_ops ext4_iomap_report_ops = { 3514 .iomap_begin = ext4_iomap_begin_report, 3515 }; 3516 3517 /* 3518 * For data=journal mode, folio should be marked dirty only when it was 3519 * writeably mapped. When that happens, it was already attached to the 3520 * transaction and marked as jbddirty (we take care of this in 3521 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3522 * so we should have nothing to do here, except for the case when someone 3523 * had the page pinned and dirtied the page through this pin (e.g. by doing 3524 * direct IO to it). In that case we'd need to attach buffers here to the 3525 * transaction but we cannot due to lock ordering. We cannot just dirty the 3526 * folio and leave attached buffers clean, because the buffers' dirty state is 3527 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3528 * the journalling code will explode. So what we do is to mark the folio 3529 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3530 * to the transaction appropriately. 3531 */ 3532 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3533 struct folio *folio) 3534 { 3535 WARN_ON_ONCE(!folio_buffers(folio)); 3536 if (folio_maybe_dma_pinned(folio)) 3537 folio_set_checked(folio); 3538 return filemap_dirty_folio(mapping, folio); 3539 } 3540 3541 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3542 { 3543 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3544 WARN_ON_ONCE(!folio_buffers(folio)); 3545 return block_dirty_folio(mapping, folio); 3546 } 3547 3548 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3549 struct file *file, sector_t *span) 3550 { 3551 return iomap_swapfile_activate(sis, file, span, 3552 &ext4_iomap_report_ops); 3553 } 3554 3555 static const struct address_space_operations ext4_aops = { 3556 .read_folio = ext4_read_folio, 3557 .readahead = ext4_readahead, 3558 .writepages = ext4_writepages, 3559 .write_begin = ext4_write_begin, 3560 .write_end = ext4_write_end, 3561 .dirty_folio = ext4_dirty_folio, 3562 .bmap = ext4_bmap, 3563 .invalidate_folio = ext4_invalidate_folio, 3564 .release_folio = ext4_release_folio, 3565 .direct_IO = noop_direct_IO, 3566 .migrate_folio = buffer_migrate_folio, 3567 .is_partially_uptodate = block_is_partially_uptodate, 3568 .error_remove_folio = generic_error_remove_folio, 3569 .swap_activate = ext4_iomap_swap_activate, 3570 }; 3571 3572 static const struct address_space_operations ext4_journalled_aops = { 3573 .read_folio = ext4_read_folio, 3574 .readahead = ext4_readahead, 3575 .writepages = ext4_writepages, 3576 .write_begin = ext4_write_begin, 3577 .write_end = ext4_journalled_write_end, 3578 .dirty_folio = ext4_journalled_dirty_folio, 3579 .bmap = ext4_bmap, 3580 .invalidate_folio = ext4_journalled_invalidate_folio, 3581 .release_folio = ext4_release_folio, 3582 .direct_IO = noop_direct_IO, 3583 .migrate_folio = buffer_migrate_folio_norefs, 3584 .is_partially_uptodate = block_is_partially_uptodate, 3585 .error_remove_folio = generic_error_remove_folio, 3586 .swap_activate = ext4_iomap_swap_activate, 3587 }; 3588 3589 static const struct address_space_operations ext4_da_aops = { 3590 .read_folio = ext4_read_folio, 3591 .readahead = ext4_readahead, 3592 .writepages = ext4_writepages, 3593 .write_begin = ext4_da_write_begin, 3594 .write_end = ext4_da_write_end, 3595 .dirty_folio = ext4_dirty_folio, 3596 .bmap = ext4_bmap, 3597 .invalidate_folio = ext4_invalidate_folio, 3598 .release_folio = ext4_release_folio, 3599 .direct_IO = noop_direct_IO, 3600 .migrate_folio = buffer_migrate_folio, 3601 .is_partially_uptodate = block_is_partially_uptodate, 3602 .error_remove_folio = generic_error_remove_folio, 3603 .swap_activate = ext4_iomap_swap_activate, 3604 }; 3605 3606 static const struct address_space_operations ext4_dax_aops = { 3607 .writepages = ext4_dax_writepages, 3608 .direct_IO = noop_direct_IO, 3609 .dirty_folio = noop_dirty_folio, 3610 .bmap = ext4_bmap, 3611 .swap_activate = ext4_iomap_swap_activate, 3612 }; 3613 3614 void ext4_set_aops(struct inode *inode) 3615 { 3616 switch (ext4_inode_journal_mode(inode)) { 3617 case EXT4_INODE_ORDERED_DATA_MODE: 3618 case EXT4_INODE_WRITEBACK_DATA_MODE: 3619 break; 3620 case EXT4_INODE_JOURNAL_DATA_MODE: 3621 inode->i_mapping->a_ops = &ext4_journalled_aops; 3622 return; 3623 default: 3624 BUG(); 3625 } 3626 if (IS_DAX(inode)) 3627 inode->i_mapping->a_ops = &ext4_dax_aops; 3628 else if (test_opt(inode->i_sb, DELALLOC)) 3629 inode->i_mapping->a_ops = &ext4_da_aops; 3630 else 3631 inode->i_mapping->a_ops = &ext4_aops; 3632 } 3633 3634 /* 3635 * Here we can't skip an unwritten buffer even though it usually reads zero 3636 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3637 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3638 * racing writeback can come later and flush the stale pagecache to disk. 3639 */ 3640 static int __ext4_block_zero_page_range(handle_t *handle, 3641 struct address_space *mapping, loff_t from, loff_t length) 3642 { 3643 ext4_fsblk_t index = from >> PAGE_SHIFT; 3644 unsigned offset = from & (PAGE_SIZE-1); 3645 unsigned blocksize, pos; 3646 ext4_lblk_t iblock; 3647 struct inode *inode = mapping->host; 3648 struct buffer_head *bh; 3649 struct folio *folio; 3650 int err = 0; 3651 3652 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3653 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3654 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3655 if (IS_ERR(folio)) 3656 return PTR_ERR(folio); 3657 3658 blocksize = inode->i_sb->s_blocksize; 3659 3660 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3661 3662 bh = folio_buffers(folio); 3663 if (!bh) 3664 bh = create_empty_buffers(folio, blocksize, 0); 3665 3666 /* Find the buffer that contains "offset" */ 3667 pos = blocksize; 3668 while (offset >= pos) { 3669 bh = bh->b_this_page; 3670 iblock++; 3671 pos += blocksize; 3672 } 3673 if (buffer_freed(bh)) { 3674 BUFFER_TRACE(bh, "freed: skip"); 3675 goto unlock; 3676 } 3677 if (!buffer_mapped(bh)) { 3678 BUFFER_TRACE(bh, "unmapped"); 3679 ext4_get_block(inode, iblock, bh, 0); 3680 /* unmapped? It's a hole - nothing to do */ 3681 if (!buffer_mapped(bh)) { 3682 BUFFER_TRACE(bh, "still unmapped"); 3683 goto unlock; 3684 } 3685 } 3686 3687 /* Ok, it's mapped. Make sure it's up-to-date */ 3688 if (folio_test_uptodate(folio)) 3689 set_buffer_uptodate(bh); 3690 3691 if (!buffer_uptodate(bh)) { 3692 err = ext4_read_bh_lock(bh, 0, true); 3693 if (err) 3694 goto unlock; 3695 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3696 /* We expect the key to be set. */ 3697 BUG_ON(!fscrypt_has_encryption_key(inode)); 3698 err = fscrypt_decrypt_pagecache_blocks(folio, 3699 blocksize, 3700 bh_offset(bh)); 3701 if (err) { 3702 clear_buffer_uptodate(bh); 3703 goto unlock; 3704 } 3705 } 3706 } 3707 if (ext4_should_journal_data(inode)) { 3708 BUFFER_TRACE(bh, "get write access"); 3709 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3710 EXT4_JTR_NONE); 3711 if (err) 3712 goto unlock; 3713 } 3714 folio_zero_range(folio, offset, length); 3715 BUFFER_TRACE(bh, "zeroed end of block"); 3716 3717 if (ext4_should_journal_data(inode)) { 3718 err = ext4_dirty_journalled_data(handle, bh); 3719 } else { 3720 err = 0; 3721 mark_buffer_dirty(bh); 3722 if (ext4_should_order_data(inode)) 3723 err = ext4_jbd2_inode_add_write(handle, inode, from, 3724 length); 3725 } 3726 3727 unlock: 3728 folio_unlock(folio); 3729 folio_put(folio); 3730 return err; 3731 } 3732 3733 /* 3734 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3735 * starting from file offset 'from'. The range to be zero'd must 3736 * be contained with in one block. If the specified range exceeds 3737 * the end of the block it will be shortened to end of the block 3738 * that corresponds to 'from' 3739 */ 3740 static int ext4_block_zero_page_range(handle_t *handle, 3741 struct address_space *mapping, loff_t from, loff_t length) 3742 { 3743 struct inode *inode = mapping->host; 3744 unsigned offset = from & (PAGE_SIZE-1); 3745 unsigned blocksize = inode->i_sb->s_blocksize; 3746 unsigned max = blocksize - (offset & (blocksize - 1)); 3747 3748 /* 3749 * correct length if it does not fall between 3750 * 'from' and the end of the block 3751 */ 3752 if (length > max || length < 0) 3753 length = max; 3754 3755 if (IS_DAX(inode)) { 3756 return dax_zero_range(inode, from, length, NULL, 3757 &ext4_iomap_ops); 3758 } 3759 return __ext4_block_zero_page_range(handle, mapping, from, length); 3760 } 3761 3762 /* 3763 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3764 * up to the end of the block which corresponds to `from'. 3765 * This required during truncate. We need to physically zero the tail end 3766 * of that block so it doesn't yield old data if the file is later grown. 3767 */ 3768 static int ext4_block_truncate_page(handle_t *handle, 3769 struct address_space *mapping, loff_t from) 3770 { 3771 unsigned offset = from & (PAGE_SIZE-1); 3772 unsigned length; 3773 unsigned blocksize; 3774 struct inode *inode = mapping->host; 3775 3776 /* If we are processing an encrypted inode during orphan list handling */ 3777 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3778 return 0; 3779 3780 blocksize = inode->i_sb->s_blocksize; 3781 length = blocksize - (offset & (blocksize - 1)); 3782 3783 return ext4_block_zero_page_range(handle, mapping, from, length); 3784 } 3785 3786 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3787 loff_t lstart, loff_t length) 3788 { 3789 struct super_block *sb = inode->i_sb; 3790 struct address_space *mapping = inode->i_mapping; 3791 unsigned partial_start, partial_end; 3792 ext4_fsblk_t start, end; 3793 loff_t byte_end = (lstart + length - 1); 3794 int err = 0; 3795 3796 partial_start = lstart & (sb->s_blocksize - 1); 3797 partial_end = byte_end & (sb->s_blocksize - 1); 3798 3799 start = lstart >> sb->s_blocksize_bits; 3800 end = byte_end >> sb->s_blocksize_bits; 3801 3802 /* Handle partial zero within the single block */ 3803 if (start == end && 3804 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3805 err = ext4_block_zero_page_range(handle, mapping, 3806 lstart, length); 3807 return err; 3808 } 3809 /* Handle partial zero out on the start of the range */ 3810 if (partial_start) { 3811 err = ext4_block_zero_page_range(handle, mapping, 3812 lstart, sb->s_blocksize); 3813 if (err) 3814 return err; 3815 } 3816 /* Handle partial zero out on the end of the range */ 3817 if (partial_end != sb->s_blocksize - 1) 3818 err = ext4_block_zero_page_range(handle, mapping, 3819 byte_end - partial_end, 3820 partial_end + 1); 3821 return err; 3822 } 3823 3824 int ext4_can_truncate(struct inode *inode) 3825 { 3826 if (S_ISREG(inode->i_mode)) 3827 return 1; 3828 if (S_ISDIR(inode->i_mode)) 3829 return 1; 3830 if (S_ISLNK(inode->i_mode)) 3831 return !ext4_inode_is_fast_symlink(inode); 3832 return 0; 3833 } 3834 3835 /* 3836 * We have to make sure i_disksize gets properly updated before we truncate 3837 * page cache due to hole punching or zero range. Otherwise i_disksize update 3838 * can get lost as it may have been postponed to submission of writeback but 3839 * that will never happen after we truncate page cache. 3840 */ 3841 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3842 loff_t len) 3843 { 3844 handle_t *handle; 3845 int ret; 3846 3847 loff_t size = i_size_read(inode); 3848 3849 WARN_ON(!inode_is_locked(inode)); 3850 if (offset > size || offset + len < size) 3851 return 0; 3852 3853 if (EXT4_I(inode)->i_disksize >= size) 3854 return 0; 3855 3856 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3857 if (IS_ERR(handle)) 3858 return PTR_ERR(handle); 3859 ext4_update_i_disksize(inode, size); 3860 ret = ext4_mark_inode_dirty(handle, inode); 3861 ext4_journal_stop(handle); 3862 3863 return ret; 3864 } 3865 3866 static void ext4_wait_dax_page(struct inode *inode) 3867 { 3868 filemap_invalidate_unlock(inode->i_mapping); 3869 schedule(); 3870 filemap_invalidate_lock(inode->i_mapping); 3871 } 3872 3873 int ext4_break_layouts(struct inode *inode) 3874 { 3875 struct page *page; 3876 int error; 3877 3878 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3879 return -EINVAL; 3880 3881 do { 3882 page = dax_layout_busy_page(inode->i_mapping); 3883 if (!page) 3884 return 0; 3885 3886 error = ___wait_var_event(&page->_refcount, 3887 atomic_read(&page->_refcount) == 1, 3888 TASK_INTERRUPTIBLE, 0, 0, 3889 ext4_wait_dax_page(inode)); 3890 } while (error == 0); 3891 3892 return error; 3893 } 3894 3895 /* 3896 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3897 * associated with the given offset and length 3898 * 3899 * @inode: File inode 3900 * @offset: The offset where the hole will begin 3901 * @len: The length of the hole 3902 * 3903 * Returns: 0 on success or negative on failure 3904 */ 3905 3906 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3907 { 3908 struct inode *inode = file_inode(file); 3909 struct super_block *sb = inode->i_sb; 3910 ext4_lblk_t first_block, stop_block; 3911 struct address_space *mapping = inode->i_mapping; 3912 loff_t first_block_offset, last_block_offset, max_length; 3913 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3914 handle_t *handle; 3915 unsigned int credits; 3916 int ret = 0, ret2 = 0; 3917 3918 trace_ext4_punch_hole(inode, offset, length, 0); 3919 3920 /* 3921 * Write out all dirty pages to avoid race conditions 3922 * Then release them. 3923 */ 3924 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3925 ret = filemap_write_and_wait_range(mapping, offset, 3926 offset + length - 1); 3927 if (ret) 3928 return ret; 3929 } 3930 3931 inode_lock(inode); 3932 3933 /* No need to punch hole beyond i_size */ 3934 if (offset >= inode->i_size) 3935 goto out_mutex; 3936 3937 /* 3938 * If the hole extends beyond i_size, set the hole 3939 * to end after the page that contains i_size 3940 */ 3941 if (offset + length > inode->i_size) { 3942 length = inode->i_size + 3943 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3944 offset; 3945 } 3946 3947 /* 3948 * For punch hole the length + offset needs to be within one block 3949 * before last range. Adjust the length if it goes beyond that limit. 3950 */ 3951 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3952 if (offset + length > max_length) 3953 length = max_length - offset; 3954 3955 if (offset & (sb->s_blocksize - 1) || 3956 (offset + length) & (sb->s_blocksize - 1)) { 3957 /* 3958 * Attach jinode to inode for jbd2 if we do any zeroing of 3959 * partial block 3960 */ 3961 ret = ext4_inode_attach_jinode(inode); 3962 if (ret < 0) 3963 goto out_mutex; 3964 3965 } 3966 3967 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3968 inode_dio_wait(inode); 3969 3970 ret = file_modified(file); 3971 if (ret) 3972 goto out_mutex; 3973 3974 /* 3975 * Prevent page faults from reinstantiating pages we have released from 3976 * page cache. 3977 */ 3978 filemap_invalidate_lock(mapping); 3979 3980 ret = ext4_break_layouts(inode); 3981 if (ret) 3982 goto out_dio; 3983 3984 first_block_offset = round_up(offset, sb->s_blocksize); 3985 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3986 3987 /* Now release the pages and zero block aligned part of pages*/ 3988 if (last_block_offset > first_block_offset) { 3989 ret = ext4_update_disksize_before_punch(inode, offset, length); 3990 if (ret) 3991 goto out_dio; 3992 truncate_pagecache_range(inode, first_block_offset, 3993 last_block_offset); 3994 } 3995 3996 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3997 credits = ext4_writepage_trans_blocks(inode); 3998 else 3999 credits = ext4_blocks_for_truncate(inode); 4000 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4001 if (IS_ERR(handle)) { 4002 ret = PTR_ERR(handle); 4003 ext4_std_error(sb, ret); 4004 goto out_dio; 4005 } 4006 4007 ret = ext4_zero_partial_blocks(handle, inode, offset, 4008 length); 4009 if (ret) 4010 goto out_stop; 4011 4012 first_block = (offset + sb->s_blocksize - 1) >> 4013 EXT4_BLOCK_SIZE_BITS(sb); 4014 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4015 4016 /* If there are blocks to remove, do it */ 4017 if (stop_block > first_block) { 4018 4019 down_write(&EXT4_I(inode)->i_data_sem); 4020 ext4_discard_preallocations(inode, 0); 4021 4022 ext4_es_remove_extent(inode, first_block, 4023 stop_block - first_block); 4024 4025 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4026 ret = ext4_ext_remove_space(inode, first_block, 4027 stop_block - 1); 4028 else 4029 ret = ext4_ind_remove_space(handle, inode, first_block, 4030 stop_block); 4031 4032 up_write(&EXT4_I(inode)->i_data_sem); 4033 } 4034 ext4_fc_track_range(handle, inode, first_block, stop_block); 4035 if (IS_SYNC(inode)) 4036 ext4_handle_sync(handle); 4037 4038 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4039 ret2 = ext4_mark_inode_dirty(handle, inode); 4040 if (unlikely(ret2)) 4041 ret = ret2; 4042 if (ret >= 0) 4043 ext4_update_inode_fsync_trans(handle, inode, 1); 4044 out_stop: 4045 ext4_journal_stop(handle); 4046 out_dio: 4047 filemap_invalidate_unlock(mapping); 4048 out_mutex: 4049 inode_unlock(inode); 4050 return ret; 4051 } 4052 4053 int ext4_inode_attach_jinode(struct inode *inode) 4054 { 4055 struct ext4_inode_info *ei = EXT4_I(inode); 4056 struct jbd2_inode *jinode; 4057 4058 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4059 return 0; 4060 4061 jinode = jbd2_alloc_inode(GFP_KERNEL); 4062 spin_lock(&inode->i_lock); 4063 if (!ei->jinode) { 4064 if (!jinode) { 4065 spin_unlock(&inode->i_lock); 4066 return -ENOMEM; 4067 } 4068 ei->jinode = jinode; 4069 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4070 jinode = NULL; 4071 } 4072 spin_unlock(&inode->i_lock); 4073 if (unlikely(jinode != NULL)) 4074 jbd2_free_inode(jinode); 4075 return 0; 4076 } 4077 4078 /* 4079 * ext4_truncate() 4080 * 4081 * We block out ext4_get_block() block instantiations across the entire 4082 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4083 * simultaneously on behalf of the same inode. 4084 * 4085 * As we work through the truncate and commit bits of it to the journal there 4086 * is one core, guiding principle: the file's tree must always be consistent on 4087 * disk. We must be able to restart the truncate after a crash. 4088 * 4089 * The file's tree may be transiently inconsistent in memory (although it 4090 * probably isn't), but whenever we close off and commit a journal transaction, 4091 * the contents of (the filesystem + the journal) must be consistent and 4092 * restartable. It's pretty simple, really: bottom up, right to left (although 4093 * left-to-right works OK too). 4094 * 4095 * Note that at recovery time, journal replay occurs *before* the restart of 4096 * truncate against the orphan inode list. 4097 * 4098 * The committed inode has the new, desired i_size (which is the same as 4099 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4100 * that this inode's truncate did not complete and it will again call 4101 * ext4_truncate() to have another go. So there will be instantiated blocks 4102 * to the right of the truncation point in a crashed ext4 filesystem. But 4103 * that's fine - as long as they are linked from the inode, the post-crash 4104 * ext4_truncate() run will find them and release them. 4105 */ 4106 int ext4_truncate(struct inode *inode) 4107 { 4108 struct ext4_inode_info *ei = EXT4_I(inode); 4109 unsigned int credits; 4110 int err = 0, err2; 4111 handle_t *handle; 4112 struct address_space *mapping = inode->i_mapping; 4113 4114 /* 4115 * There is a possibility that we're either freeing the inode 4116 * or it's a completely new inode. In those cases we might not 4117 * have i_rwsem locked because it's not necessary. 4118 */ 4119 if (!(inode->i_state & (I_NEW|I_FREEING))) 4120 WARN_ON(!inode_is_locked(inode)); 4121 trace_ext4_truncate_enter(inode); 4122 4123 if (!ext4_can_truncate(inode)) 4124 goto out_trace; 4125 4126 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4127 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4128 4129 if (ext4_has_inline_data(inode)) { 4130 int has_inline = 1; 4131 4132 err = ext4_inline_data_truncate(inode, &has_inline); 4133 if (err || has_inline) 4134 goto out_trace; 4135 } 4136 4137 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4138 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4139 err = ext4_inode_attach_jinode(inode); 4140 if (err) 4141 goto out_trace; 4142 } 4143 4144 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4145 credits = ext4_writepage_trans_blocks(inode); 4146 else 4147 credits = ext4_blocks_for_truncate(inode); 4148 4149 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4150 if (IS_ERR(handle)) { 4151 err = PTR_ERR(handle); 4152 goto out_trace; 4153 } 4154 4155 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4156 ext4_block_truncate_page(handle, mapping, inode->i_size); 4157 4158 /* 4159 * We add the inode to the orphan list, so that if this 4160 * truncate spans multiple transactions, and we crash, we will 4161 * resume the truncate when the filesystem recovers. It also 4162 * marks the inode dirty, to catch the new size. 4163 * 4164 * Implication: the file must always be in a sane, consistent 4165 * truncatable state while each transaction commits. 4166 */ 4167 err = ext4_orphan_add(handle, inode); 4168 if (err) 4169 goto out_stop; 4170 4171 down_write(&EXT4_I(inode)->i_data_sem); 4172 4173 ext4_discard_preallocations(inode, 0); 4174 4175 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4176 err = ext4_ext_truncate(handle, inode); 4177 else 4178 ext4_ind_truncate(handle, inode); 4179 4180 up_write(&ei->i_data_sem); 4181 if (err) 4182 goto out_stop; 4183 4184 if (IS_SYNC(inode)) 4185 ext4_handle_sync(handle); 4186 4187 out_stop: 4188 /* 4189 * If this was a simple ftruncate() and the file will remain alive, 4190 * then we need to clear up the orphan record which we created above. 4191 * However, if this was a real unlink then we were called by 4192 * ext4_evict_inode(), and we allow that function to clean up the 4193 * orphan info for us. 4194 */ 4195 if (inode->i_nlink) 4196 ext4_orphan_del(handle, inode); 4197 4198 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4199 err2 = ext4_mark_inode_dirty(handle, inode); 4200 if (unlikely(err2 && !err)) 4201 err = err2; 4202 ext4_journal_stop(handle); 4203 4204 out_trace: 4205 trace_ext4_truncate_exit(inode); 4206 return err; 4207 } 4208 4209 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4210 { 4211 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4212 return inode_peek_iversion_raw(inode); 4213 else 4214 return inode_peek_iversion(inode); 4215 } 4216 4217 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4218 struct ext4_inode_info *ei) 4219 { 4220 struct inode *inode = &(ei->vfs_inode); 4221 u64 i_blocks = READ_ONCE(inode->i_blocks); 4222 struct super_block *sb = inode->i_sb; 4223 4224 if (i_blocks <= ~0U) { 4225 /* 4226 * i_blocks can be represented in a 32 bit variable 4227 * as multiple of 512 bytes 4228 */ 4229 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4230 raw_inode->i_blocks_high = 0; 4231 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4232 return 0; 4233 } 4234 4235 /* 4236 * This should never happen since sb->s_maxbytes should not have 4237 * allowed this, sb->s_maxbytes was set according to the huge_file 4238 * feature in ext4_fill_super(). 4239 */ 4240 if (!ext4_has_feature_huge_file(sb)) 4241 return -EFSCORRUPTED; 4242 4243 if (i_blocks <= 0xffffffffffffULL) { 4244 /* 4245 * i_blocks can be represented in a 48 bit variable 4246 * as multiple of 512 bytes 4247 */ 4248 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4249 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4250 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4251 } else { 4252 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4253 /* i_block is stored in file system block size */ 4254 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4255 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4256 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4257 } 4258 return 0; 4259 } 4260 4261 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4262 { 4263 struct ext4_inode_info *ei = EXT4_I(inode); 4264 uid_t i_uid; 4265 gid_t i_gid; 4266 projid_t i_projid; 4267 int block; 4268 int err; 4269 4270 err = ext4_inode_blocks_set(raw_inode, ei); 4271 4272 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4273 i_uid = i_uid_read(inode); 4274 i_gid = i_gid_read(inode); 4275 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4276 if (!(test_opt(inode->i_sb, NO_UID32))) { 4277 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4278 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4279 /* 4280 * Fix up interoperability with old kernels. Otherwise, 4281 * old inodes get re-used with the upper 16 bits of the 4282 * uid/gid intact. 4283 */ 4284 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4285 raw_inode->i_uid_high = 0; 4286 raw_inode->i_gid_high = 0; 4287 } else { 4288 raw_inode->i_uid_high = 4289 cpu_to_le16(high_16_bits(i_uid)); 4290 raw_inode->i_gid_high = 4291 cpu_to_le16(high_16_bits(i_gid)); 4292 } 4293 } else { 4294 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4295 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4296 raw_inode->i_uid_high = 0; 4297 raw_inode->i_gid_high = 0; 4298 } 4299 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4300 4301 EXT4_INODE_SET_CTIME(inode, raw_inode); 4302 EXT4_INODE_SET_MTIME(inode, raw_inode); 4303 EXT4_INODE_SET_ATIME(inode, raw_inode); 4304 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4305 4306 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4307 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4308 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4309 raw_inode->i_file_acl_high = 4310 cpu_to_le16(ei->i_file_acl >> 32); 4311 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4312 ext4_isize_set(raw_inode, ei->i_disksize); 4313 4314 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4315 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4316 if (old_valid_dev(inode->i_rdev)) { 4317 raw_inode->i_block[0] = 4318 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4319 raw_inode->i_block[1] = 0; 4320 } else { 4321 raw_inode->i_block[0] = 0; 4322 raw_inode->i_block[1] = 4323 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4324 raw_inode->i_block[2] = 0; 4325 } 4326 } else if (!ext4_has_inline_data(inode)) { 4327 for (block = 0; block < EXT4_N_BLOCKS; block++) 4328 raw_inode->i_block[block] = ei->i_data[block]; 4329 } 4330 4331 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4332 u64 ivers = ext4_inode_peek_iversion(inode); 4333 4334 raw_inode->i_disk_version = cpu_to_le32(ivers); 4335 if (ei->i_extra_isize) { 4336 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4337 raw_inode->i_version_hi = 4338 cpu_to_le32(ivers >> 32); 4339 raw_inode->i_extra_isize = 4340 cpu_to_le16(ei->i_extra_isize); 4341 } 4342 } 4343 4344 if (i_projid != EXT4_DEF_PROJID && 4345 !ext4_has_feature_project(inode->i_sb)) 4346 err = err ?: -EFSCORRUPTED; 4347 4348 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4349 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4350 raw_inode->i_projid = cpu_to_le32(i_projid); 4351 4352 ext4_inode_csum_set(inode, raw_inode, ei); 4353 return err; 4354 } 4355 4356 /* 4357 * ext4_get_inode_loc returns with an extra refcount against the inode's 4358 * underlying buffer_head on success. If we pass 'inode' and it does not 4359 * have in-inode xattr, we have all inode data in memory that is needed 4360 * to recreate the on-disk version of this inode. 4361 */ 4362 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4363 struct inode *inode, struct ext4_iloc *iloc, 4364 ext4_fsblk_t *ret_block) 4365 { 4366 struct ext4_group_desc *gdp; 4367 struct buffer_head *bh; 4368 ext4_fsblk_t block; 4369 struct blk_plug plug; 4370 int inodes_per_block, inode_offset; 4371 4372 iloc->bh = NULL; 4373 if (ino < EXT4_ROOT_INO || 4374 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4375 return -EFSCORRUPTED; 4376 4377 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4378 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4379 if (!gdp) 4380 return -EIO; 4381 4382 /* 4383 * Figure out the offset within the block group inode table 4384 */ 4385 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4386 inode_offset = ((ino - 1) % 4387 EXT4_INODES_PER_GROUP(sb)); 4388 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4389 4390 block = ext4_inode_table(sb, gdp); 4391 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4392 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4393 ext4_error(sb, "Invalid inode table block %llu in " 4394 "block_group %u", block, iloc->block_group); 4395 return -EFSCORRUPTED; 4396 } 4397 block += (inode_offset / inodes_per_block); 4398 4399 bh = sb_getblk(sb, block); 4400 if (unlikely(!bh)) 4401 return -ENOMEM; 4402 if (ext4_buffer_uptodate(bh)) 4403 goto has_buffer; 4404 4405 lock_buffer(bh); 4406 if (ext4_buffer_uptodate(bh)) { 4407 /* Someone brought it uptodate while we waited */ 4408 unlock_buffer(bh); 4409 goto has_buffer; 4410 } 4411 4412 /* 4413 * If we have all information of the inode in memory and this 4414 * is the only valid inode in the block, we need not read the 4415 * block. 4416 */ 4417 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4418 struct buffer_head *bitmap_bh; 4419 int i, start; 4420 4421 start = inode_offset & ~(inodes_per_block - 1); 4422 4423 /* Is the inode bitmap in cache? */ 4424 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4425 if (unlikely(!bitmap_bh)) 4426 goto make_io; 4427 4428 /* 4429 * If the inode bitmap isn't in cache then the 4430 * optimisation may end up performing two reads instead 4431 * of one, so skip it. 4432 */ 4433 if (!buffer_uptodate(bitmap_bh)) { 4434 brelse(bitmap_bh); 4435 goto make_io; 4436 } 4437 for (i = start; i < start + inodes_per_block; i++) { 4438 if (i == inode_offset) 4439 continue; 4440 if (ext4_test_bit(i, bitmap_bh->b_data)) 4441 break; 4442 } 4443 brelse(bitmap_bh); 4444 if (i == start + inodes_per_block) { 4445 struct ext4_inode *raw_inode = 4446 (struct ext4_inode *) (bh->b_data + iloc->offset); 4447 4448 /* all other inodes are free, so skip I/O */ 4449 memset(bh->b_data, 0, bh->b_size); 4450 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4451 ext4_fill_raw_inode(inode, raw_inode); 4452 set_buffer_uptodate(bh); 4453 unlock_buffer(bh); 4454 goto has_buffer; 4455 } 4456 } 4457 4458 make_io: 4459 /* 4460 * If we need to do any I/O, try to pre-readahead extra 4461 * blocks from the inode table. 4462 */ 4463 blk_start_plug(&plug); 4464 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4465 ext4_fsblk_t b, end, table; 4466 unsigned num; 4467 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4468 4469 table = ext4_inode_table(sb, gdp); 4470 /* s_inode_readahead_blks is always a power of 2 */ 4471 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4472 if (table > b) 4473 b = table; 4474 end = b + ra_blks; 4475 num = EXT4_INODES_PER_GROUP(sb); 4476 if (ext4_has_group_desc_csum(sb)) 4477 num -= ext4_itable_unused_count(sb, gdp); 4478 table += num / inodes_per_block; 4479 if (end > table) 4480 end = table; 4481 while (b <= end) 4482 ext4_sb_breadahead_unmovable(sb, b++); 4483 } 4484 4485 /* 4486 * There are other valid inodes in the buffer, this inode 4487 * has in-inode xattrs, or we don't have this inode in memory. 4488 * Read the block from disk. 4489 */ 4490 trace_ext4_load_inode(sb, ino); 4491 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4492 blk_finish_plug(&plug); 4493 wait_on_buffer(bh); 4494 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4495 if (!buffer_uptodate(bh)) { 4496 if (ret_block) 4497 *ret_block = block; 4498 brelse(bh); 4499 return -EIO; 4500 } 4501 has_buffer: 4502 iloc->bh = bh; 4503 return 0; 4504 } 4505 4506 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4507 struct ext4_iloc *iloc) 4508 { 4509 ext4_fsblk_t err_blk = 0; 4510 int ret; 4511 4512 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4513 &err_blk); 4514 4515 if (ret == -EIO) 4516 ext4_error_inode_block(inode, err_blk, EIO, 4517 "unable to read itable block"); 4518 4519 return ret; 4520 } 4521 4522 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4523 { 4524 ext4_fsblk_t err_blk = 0; 4525 int ret; 4526 4527 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4528 &err_blk); 4529 4530 if (ret == -EIO) 4531 ext4_error_inode_block(inode, err_blk, EIO, 4532 "unable to read itable block"); 4533 4534 return ret; 4535 } 4536 4537 4538 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4539 struct ext4_iloc *iloc) 4540 { 4541 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4542 } 4543 4544 static bool ext4_should_enable_dax(struct inode *inode) 4545 { 4546 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4547 4548 if (test_opt2(inode->i_sb, DAX_NEVER)) 4549 return false; 4550 if (!S_ISREG(inode->i_mode)) 4551 return false; 4552 if (ext4_should_journal_data(inode)) 4553 return false; 4554 if (ext4_has_inline_data(inode)) 4555 return false; 4556 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4557 return false; 4558 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4559 return false; 4560 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4561 return false; 4562 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4563 return true; 4564 4565 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4566 } 4567 4568 void ext4_set_inode_flags(struct inode *inode, bool init) 4569 { 4570 unsigned int flags = EXT4_I(inode)->i_flags; 4571 unsigned int new_fl = 0; 4572 4573 WARN_ON_ONCE(IS_DAX(inode) && init); 4574 4575 if (flags & EXT4_SYNC_FL) 4576 new_fl |= S_SYNC; 4577 if (flags & EXT4_APPEND_FL) 4578 new_fl |= S_APPEND; 4579 if (flags & EXT4_IMMUTABLE_FL) 4580 new_fl |= S_IMMUTABLE; 4581 if (flags & EXT4_NOATIME_FL) 4582 new_fl |= S_NOATIME; 4583 if (flags & EXT4_DIRSYNC_FL) 4584 new_fl |= S_DIRSYNC; 4585 4586 /* Because of the way inode_set_flags() works we must preserve S_DAX 4587 * here if already set. */ 4588 new_fl |= (inode->i_flags & S_DAX); 4589 if (init && ext4_should_enable_dax(inode)) 4590 new_fl |= S_DAX; 4591 4592 if (flags & EXT4_ENCRYPT_FL) 4593 new_fl |= S_ENCRYPTED; 4594 if (flags & EXT4_CASEFOLD_FL) 4595 new_fl |= S_CASEFOLD; 4596 if (flags & EXT4_VERITY_FL) 4597 new_fl |= S_VERITY; 4598 inode_set_flags(inode, new_fl, 4599 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4600 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4601 } 4602 4603 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4604 struct ext4_inode_info *ei) 4605 { 4606 blkcnt_t i_blocks ; 4607 struct inode *inode = &(ei->vfs_inode); 4608 struct super_block *sb = inode->i_sb; 4609 4610 if (ext4_has_feature_huge_file(sb)) { 4611 /* we are using combined 48 bit field */ 4612 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4613 le32_to_cpu(raw_inode->i_blocks_lo); 4614 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4615 /* i_blocks represent file system block size */ 4616 return i_blocks << (inode->i_blkbits - 9); 4617 } else { 4618 return i_blocks; 4619 } 4620 } else { 4621 return le32_to_cpu(raw_inode->i_blocks_lo); 4622 } 4623 } 4624 4625 static inline int ext4_iget_extra_inode(struct inode *inode, 4626 struct ext4_inode *raw_inode, 4627 struct ext4_inode_info *ei) 4628 { 4629 __le32 *magic = (void *)raw_inode + 4630 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4631 4632 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4633 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4634 int err; 4635 4636 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4637 err = ext4_find_inline_data_nolock(inode); 4638 if (!err && ext4_has_inline_data(inode)) 4639 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4640 return err; 4641 } else 4642 EXT4_I(inode)->i_inline_off = 0; 4643 return 0; 4644 } 4645 4646 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4647 { 4648 if (!ext4_has_feature_project(inode->i_sb)) 4649 return -EOPNOTSUPP; 4650 *projid = EXT4_I(inode)->i_projid; 4651 return 0; 4652 } 4653 4654 /* 4655 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4656 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4657 * set. 4658 */ 4659 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4660 { 4661 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4662 inode_set_iversion_raw(inode, val); 4663 else 4664 inode_set_iversion_queried(inode, val); 4665 } 4666 4667 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4668 4669 { 4670 if (flags & EXT4_IGET_EA_INODE) { 4671 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4672 return "missing EA_INODE flag"; 4673 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4674 EXT4_I(inode)->i_file_acl) 4675 return "ea_inode with extended attributes"; 4676 } else { 4677 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4678 return "unexpected EA_INODE flag"; 4679 } 4680 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4681 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4682 return NULL; 4683 } 4684 4685 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4686 ext4_iget_flags flags, const char *function, 4687 unsigned int line) 4688 { 4689 struct ext4_iloc iloc; 4690 struct ext4_inode *raw_inode; 4691 struct ext4_inode_info *ei; 4692 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4693 struct inode *inode; 4694 const char *err_str; 4695 journal_t *journal = EXT4_SB(sb)->s_journal; 4696 long ret; 4697 loff_t size; 4698 int block; 4699 uid_t i_uid; 4700 gid_t i_gid; 4701 projid_t i_projid; 4702 4703 if ((!(flags & EXT4_IGET_SPECIAL) && 4704 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4705 ino == le32_to_cpu(es->s_usr_quota_inum) || 4706 ino == le32_to_cpu(es->s_grp_quota_inum) || 4707 ino == le32_to_cpu(es->s_prj_quota_inum) || 4708 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4709 (ino < EXT4_ROOT_INO) || 4710 (ino > le32_to_cpu(es->s_inodes_count))) { 4711 if (flags & EXT4_IGET_HANDLE) 4712 return ERR_PTR(-ESTALE); 4713 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4714 "inode #%lu: comm %s: iget: illegal inode #", 4715 ino, current->comm); 4716 return ERR_PTR(-EFSCORRUPTED); 4717 } 4718 4719 inode = iget_locked(sb, ino); 4720 if (!inode) 4721 return ERR_PTR(-ENOMEM); 4722 if (!(inode->i_state & I_NEW)) { 4723 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4724 ext4_error_inode(inode, function, line, 0, err_str); 4725 iput(inode); 4726 return ERR_PTR(-EFSCORRUPTED); 4727 } 4728 return inode; 4729 } 4730 4731 ei = EXT4_I(inode); 4732 iloc.bh = NULL; 4733 4734 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4735 if (ret < 0) 4736 goto bad_inode; 4737 raw_inode = ext4_raw_inode(&iloc); 4738 4739 if ((flags & EXT4_IGET_HANDLE) && 4740 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4741 ret = -ESTALE; 4742 goto bad_inode; 4743 } 4744 4745 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4746 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4747 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4748 EXT4_INODE_SIZE(inode->i_sb) || 4749 (ei->i_extra_isize & 3)) { 4750 ext4_error_inode(inode, function, line, 0, 4751 "iget: bad extra_isize %u " 4752 "(inode size %u)", 4753 ei->i_extra_isize, 4754 EXT4_INODE_SIZE(inode->i_sb)); 4755 ret = -EFSCORRUPTED; 4756 goto bad_inode; 4757 } 4758 } else 4759 ei->i_extra_isize = 0; 4760 4761 /* Precompute checksum seed for inode metadata */ 4762 if (ext4_has_metadata_csum(sb)) { 4763 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4764 __u32 csum; 4765 __le32 inum = cpu_to_le32(inode->i_ino); 4766 __le32 gen = raw_inode->i_generation; 4767 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4768 sizeof(inum)); 4769 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4770 sizeof(gen)); 4771 } 4772 4773 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4774 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4775 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4776 ext4_error_inode_err(inode, function, line, 0, 4777 EFSBADCRC, "iget: checksum invalid"); 4778 ret = -EFSBADCRC; 4779 goto bad_inode; 4780 } 4781 4782 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4783 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4784 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4785 if (ext4_has_feature_project(sb) && 4786 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4787 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4788 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4789 else 4790 i_projid = EXT4_DEF_PROJID; 4791 4792 if (!(test_opt(inode->i_sb, NO_UID32))) { 4793 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4794 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4795 } 4796 i_uid_write(inode, i_uid); 4797 i_gid_write(inode, i_gid); 4798 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4799 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4800 4801 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4802 ei->i_inline_off = 0; 4803 ei->i_dir_start_lookup = 0; 4804 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4805 /* We now have enough fields to check if the inode was active or not. 4806 * This is needed because nfsd might try to access dead inodes 4807 * the test is that same one that e2fsck uses 4808 * NeilBrown 1999oct15 4809 */ 4810 if (inode->i_nlink == 0) { 4811 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4812 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4813 ino != EXT4_BOOT_LOADER_INO) { 4814 /* this inode is deleted or unallocated */ 4815 if (flags & EXT4_IGET_SPECIAL) { 4816 ext4_error_inode(inode, function, line, 0, 4817 "iget: special inode unallocated"); 4818 ret = -EFSCORRUPTED; 4819 } else 4820 ret = -ESTALE; 4821 goto bad_inode; 4822 } 4823 /* The only unlinked inodes we let through here have 4824 * valid i_mode and are being read by the orphan 4825 * recovery code: that's fine, we're about to complete 4826 * the process of deleting those. 4827 * OR it is the EXT4_BOOT_LOADER_INO which is 4828 * not initialized on a new filesystem. */ 4829 } 4830 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4831 ext4_set_inode_flags(inode, true); 4832 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4833 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4834 if (ext4_has_feature_64bit(sb)) 4835 ei->i_file_acl |= 4836 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4837 inode->i_size = ext4_isize(sb, raw_inode); 4838 if ((size = i_size_read(inode)) < 0) { 4839 ext4_error_inode(inode, function, line, 0, 4840 "iget: bad i_size value: %lld", size); 4841 ret = -EFSCORRUPTED; 4842 goto bad_inode; 4843 } 4844 /* 4845 * If dir_index is not enabled but there's dir with INDEX flag set, 4846 * we'd normally treat htree data as empty space. But with metadata 4847 * checksumming that corrupts checksums so forbid that. 4848 */ 4849 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4850 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4851 ext4_error_inode(inode, function, line, 0, 4852 "iget: Dir with htree data on filesystem without dir_index feature."); 4853 ret = -EFSCORRUPTED; 4854 goto bad_inode; 4855 } 4856 ei->i_disksize = inode->i_size; 4857 #ifdef CONFIG_QUOTA 4858 ei->i_reserved_quota = 0; 4859 #endif 4860 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4861 ei->i_block_group = iloc.block_group; 4862 ei->i_last_alloc_group = ~0; 4863 /* 4864 * NOTE! The in-memory inode i_data array is in little-endian order 4865 * even on big-endian machines: we do NOT byteswap the block numbers! 4866 */ 4867 for (block = 0; block < EXT4_N_BLOCKS; block++) 4868 ei->i_data[block] = raw_inode->i_block[block]; 4869 INIT_LIST_HEAD(&ei->i_orphan); 4870 ext4_fc_init_inode(&ei->vfs_inode); 4871 4872 /* 4873 * Set transaction id's of transactions that have to be committed 4874 * to finish f[data]sync. We set them to currently running transaction 4875 * as we cannot be sure that the inode or some of its metadata isn't 4876 * part of the transaction - the inode could have been reclaimed and 4877 * now it is reread from disk. 4878 */ 4879 if (journal) { 4880 transaction_t *transaction; 4881 tid_t tid; 4882 4883 read_lock(&journal->j_state_lock); 4884 if (journal->j_running_transaction) 4885 transaction = journal->j_running_transaction; 4886 else 4887 transaction = journal->j_committing_transaction; 4888 if (transaction) 4889 tid = transaction->t_tid; 4890 else 4891 tid = journal->j_commit_sequence; 4892 read_unlock(&journal->j_state_lock); 4893 ei->i_sync_tid = tid; 4894 ei->i_datasync_tid = tid; 4895 } 4896 4897 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4898 if (ei->i_extra_isize == 0) { 4899 /* The extra space is currently unused. Use it. */ 4900 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4901 ei->i_extra_isize = sizeof(struct ext4_inode) - 4902 EXT4_GOOD_OLD_INODE_SIZE; 4903 } else { 4904 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4905 if (ret) 4906 goto bad_inode; 4907 } 4908 } 4909 4910 EXT4_INODE_GET_CTIME(inode, raw_inode); 4911 EXT4_INODE_GET_ATIME(inode, raw_inode); 4912 EXT4_INODE_GET_MTIME(inode, raw_inode); 4913 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4914 4915 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4916 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4917 4918 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4919 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4920 ivers |= 4921 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4922 } 4923 ext4_inode_set_iversion_queried(inode, ivers); 4924 } 4925 4926 ret = 0; 4927 if (ei->i_file_acl && 4928 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4929 ext4_error_inode(inode, function, line, 0, 4930 "iget: bad extended attribute block %llu", 4931 ei->i_file_acl); 4932 ret = -EFSCORRUPTED; 4933 goto bad_inode; 4934 } else if (!ext4_has_inline_data(inode)) { 4935 /* validate the block references in the inode */ 4936 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4937 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4938 (S_ISLNK(inode->i_mode) && 4939 !ext4_inode_is_fast_symlink(inode)))) { 4940 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4941 ret = ext4_ext_check_inode(inode); 4942 else 4943 ret = ext4_ind_check_inode(inode); 4944 } 4945 } 4946 if (ret) 4947 goto bad_inode; 4948 4949 if (S_ISREG(inode->i_mode)) { 4950 inode->i_op = &ext4_file_inode_operations; 4951 inode->i_fop = &ext4_file_operations; 4952 ext4_set_aops(inode); 4953 } else if (S_ISDIR(inode->i_mode)) { 4954 inode->i_op = &ext4_dir_inode_operations; 4955 inode->i_fop = &ext4_dir_operations; 4956 } else if (S_ISLNK(inode->i_mode)) { 4957 /* VFS does not allow setting these so must be corruption */ 4958 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4959 ext4_error_inode(inode, function, line, 0, 4960 "iget: immutable or append flags " 4961 "not allowed on symlinks"); 4962 ret = -EFSCORRUPTED; 4963 goto bad_inode; 4964 } 4965 if (IS_ENCRYPTED(inode)) { 4966 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4967 } else if (ext4_inode_is_fast_symlink(inode)) { 4968 inode->i_link = (char *)ei->i_data; 4969 inode->i_op = &ext4_fast_symlink_inode_operations; 4970 nd_terminate_link(ei->i_data, inode->i_size, 4971 sizeof(ei->i_data) - 1); 4972 } else { 4973 inode->i_op = &ext4_symlink_inode_operations; 4974 } 4975 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4976 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4977 inode->i_op = &ext4_special_inode_operations; 4978 if (raw_inode->i_block[0]) 4979 init_special_inode(inode, inode->i_mode, 4980 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4981 else 4982 init_special_inode(inode, inode->i_mode, 4983 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4984 } else if (ino == EXT4_BOOT_LOADER_INO) { 4985 make_bad_inode(inode); 4986 } else { 4987 ret = -EFSCORRUPTED; 4988 ext4_error_inode(inode, function, line, 0, 4989 "iget: bogus i_mode (%o)", inode->i_mode); 4990 goto bad_inode; 4991 } 4992 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4993 ext4_error_inode(inode, function, line, 0, 4994 "casefold flag without casefold feature"); 4995 ret = -EFSCORRUPTED; 4996 goto bad_inode; 4997 } 4998 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4999 ext4_error_inode(inode, function, line, 0, err_str); 5000 ret = -EFSCORRUPTED; 5001 goto bad_inode; 5002 } 5003 5004 brelse(iloc.bh); 5005 unlock_new_inode(inode); 5006 return inode; 5007 5008 bad_inode: 5009 brelse(iloc.bh); 5010 iget_failed(inode); 5011 return ERR_PTR(ret); 5012 } 5013 5014 static void __ext4_update_other_inode_time(struct super_block *sb, 5015 unsigned long orig_ino, 5016 unsigned long ino, 5017 struct ext4_inode *raw_inode) 5018 { 5019 struct inode *inode; 5020 5021 inode = find_inode_by_ino_rcu(sb, ino); 5022 if (!inode) 5023 return; 5024 5025 if (!inode_is_dirtytime_only(inode)) 5026 return; 5027 5028 spin_lock(&inode->i_lock); 5029 if (inode_is_dirtytime_only(inode)) { 5030 struct ext4_inode_info *ei = EXT4_I(inode); 5031 5032 inode->i_state &= ~I_DIRTY_TIME; 5033 spin_unlock(&inode->i_lock); 5034 5035 spin_lock(&ei->i_raw_lock); 5036 EXT4_INODE_SET_CTIME(inode, raw_inode); 5037 EXT4_INODE_SET_MTIME(inode, raw_inode); 5038 EXT4_INODE_SET_ATIME(inode, raw_inode); 5039 ext4_inode_csum_set(inode, raw_inode, ei); 5040 spin_unlock(&ei->i_raw_lock); 5041 trace_ext4_other_inode_update_time(inode, orig_ino); 5042 return; 5043 } 5044 spin_unlock(&inode->i_lock); 5045 } 5046 5047 /* 5048 * Opportunistically update the other time fields for other inodes in 5049 * the same inode table block. 5050 */ 5051 static void ext4_update_other_inodes_time(struct super_block *sb, 5052 unsigned long orig_ino, char *buf) 5053 { 5054 unsigned long ino; 5055 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5056 int inode_size = EXT4_INODE_SIZE(sb); 5057 5058 /* 5059 * Calculate the first inode in the inode table block. Inode 5060 * numbers are one-based. That is, the first inode in a block 5061 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5062 */ 5063 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5064 rcu_read_lock(); 5065 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5066 if (ino == orig_ino) 5067 continue; 5068 __ext4_update_other_inode_time(sb, orig_ino, ino, 5069 (struct ext4_inode *)buf); 5070 } 5071 rcu_read_unlock(); 5072 } 5073 5074 /* 5075 * Post the struct inode info into an on-disk inode location in the 5076 * buffer-cache. This gobbles the caller's reference to the 5077 * buffer_head in the inode location struct. 5078 * 5079 * The caller must have write access to iloc->bh. 5080 */ 5081 static int ext4_do_update_inode(handle_t *handle, 5082 struct inode *inode, 5083 struct ext4_iloc *iloc) 5084 { 5085 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5086 struct ext4_inode_info *ei = EXT4_I(inode); 5087 struct buffer_head *bh = iloc->bh; 5088 struct super_block *sb = inode->i_sb; 5089 int err; 5090 int need_datasync = 0, set_large_file = 0; 5091 5092 spin_lock(&ei->i_raw_lock); 5093 5094 /* 5095 * For fields not tracked in the in-memory inode, initialise them 5096 * to zero for new inodes. 5097 */ 5098 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5099 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5100 5101 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5102 need_datasync = 1; 5103 if (ei->i_disksize > 0x7fffffffULL) { 5104 if (!ext4_has_feature_large_file(sb) || 5105 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5106 set_large_file = 1; 5107 } 5108 5109 err = ext4_fill_raw_inode(inode, raw_inode); 5110 spin_unlock(&ei->i_raw_lock); 5111 if (err) { 5112 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5113 goto out_brelse; 5114 } 5115 5116 if (inode->i_sb->s_flags & SB_LAZYTIME) 5117 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5118 bh->b_data); 5119 5120 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5121 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5122 if (err) 5123 goto out_error; 5124 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5125 if (set_large_file) { 5126 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5127 err = ext4_journal_get_write_access(handle, sb, 5128 EXT4_SB(sb)->s_sbh, 5129 EXT4_JTR_NONE); 5130 if (err) 5131 goto out_error; 5132 lock_buffer(EXT4_SB(sb)->s_sbh); 5133 ext4_set_feature_large_file(sb); 5134 ext4_superblock_csum_set(sb); 5135 unlock_buffer(EXT4_SB(sb)->s_sbh); 5136 ext4_handle_sync(handle); 5137 err = ext4_handle_dirty_metadata(handle, NULL, 5138 EXT4_SB(sb)->s_sbh); 5139 } 5140 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5141 out_error: 5142 ext4_std_error(inode->i_sb, err); 5143 out_brelse: 5144 brelse(bh); 5145 return err; 5146 } 5147 5148 /* 5149 * ext4_write_inode() 5150 * 5151 * We are called from a few places: 5152 * 5153 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5154 * Here, there will be no transaction running. We wait for any running 5155 * transaction to commit. 5156 * 5157 * - Within flush work (sys_sync(), kupdate and such). 5158 * We wait on commit, if told to. 5159 * 5160 * - Within iput_final() -> write_inode_now() 5161 * We wait on commit, if told to. 5162 * 5163 * In all cases it is actually safe for us to return without doing anything, 5164 * because the inode has been copied into a raw inode buffer in 5165 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5166 * writeback. 5167 * 5168 * Note that we are absolutely dependent upon all inode dirtiers doing the 5169 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5170 * which we are interested. 5171 * 5172 * It would be a bug for them to not do this. The code: 5173 * 5174 * mark_inode_dirty(inode) 5175 * stuff(); 5176 * inode->i_size = expr; 5177 * 5178 * is in error because write_inode() could occur while `stuff()' is running, 5179 * and the new i_size will be lost. Plus the inode will no longer be on the 5180 * superblock's dirty inode list. 5181 */ 5182 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5183 { 5184 int err; 5185 5186 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5187 return 0; 5188 5189 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5190 return -EIO; 5191 5192 if (EXT4_SB(inode->i_sb)->s_journal) { 5193 if (ext4_journal_current_handle()) { 5194 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5195 dump_stack(); 5196 return -EIO; 5197 } 5198 5199 /* 5200 * No need to force transaction in WB_SYNC_NONE mode. Also 5201 * ext4_sync_fs() will force the commit after everything is 5202 * written. 5203 */ 5204 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5205 return 0; 5206 5207 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5208 EXT4_I(inode)->i_sync_tid); 5209 } else { 5210 struct ext4_iloc iloc; 5211 5212 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5213 if (err) 5214 return err; 5215 /* 5216 * sync(2) will flush the whole buffer cache. No need to do 5217 * it here separately for each inode. 5218 */ 5219 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5220 sync_dirty_buffer(iloc.bh); 5221 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5222 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5223 "IO error syncing inode"); 5224 err = -EIO; 5225 } 5226 brelse(iloc.bh); 5227 } 5228 return err; 5229 } 5230 5231 /* 5232 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5233 * buffers that are attached to a folio straddling i_size and are undergoing 5234 * commit. In that case we have to wait for commit to finish and try again. 5235 */ 5236 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5237 { 5238 unsigned offset; 5239 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5240 tid_t commit_tid = 0; 5241 int ret; 5242 5243 offset = inode->i_size & (PAGE_SIZE - 1); 5244 /* 5245 * If the folio is fully truncated, we don't need to wait for any commit 5246 * (and we even should not as __ext4_journalled_invalidate_folio() may 5247 * strip all buffers from the folio but keep the folio dirty which can then 5248 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5249 * buffers). Also we don't need to wait for any commit if all buffers in 5250 * the folio remain valid. This is most beneficial for the common case of 5251 * blocksize == PAGESIZE. 5252 */ 5253 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5254 return; 5255 while (1) { 5256 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5257 inode->i_size >> PAGE_SHIFT); 5258 if (IS_ERR(folio)) 5259 return; 5260 ret = __ext4_journalled_invalidate_folio(folio, offset, 5261 folio_size(folio) - offset); 5262 folio_unlock(folio); 5263 folio_put(folio); 5264 if (ret != -EBUSY) 5265 return; 5266 commit_tid = 0; 5267 read_lock(&journal->j_state_lock); 5268 if (journal->j_committing_transaction) 5269 commit_tid = journal->j_committing_transaction->t_tid; 5270 read_unlock(&journal->j_state_lock); 5271 if (commit_tid) 5272 jbd2_log_wait_commit(journal, commit_tid); 5273 } 5274 } 5275 5276 /* 5277 * ext4_setattr() 5278 * 5279 * Called from notify_change. 5280 * 5281 * We want to trap VFS attempts to truncate the file as soon as 5282 * possible. In particular, we want to make sure that when the VFS 5283 * shrinks i_size, we put the inode on the orphan list and modify 5284 * i_disksize immediately, so that during the subsequent flushing of 5285 * dirty pages and freeing of disk blocks, we can guarantee that any 5286 * commit will leave the blocks being flushed in an unused state on 5287 * disk. (On recovery, the inode will get truncated and the blocks will 5288 * be freed, so we have a strong guarantee that no future commit will 5289 * leave these blocks visible to the user.) 5290 * 5291 * Another thing we have to assure is that if we are in ordered mode 5292 * and inode is still attached to the committing transaction, we must 5293 * we start writeout of all the dirty pages which are being truncated. 5294 * This way we are sure that all the data written in the previous 5295 * transaction are already on disk (truncate waits for pages under 5296 * writeback). 5297 * 5298 * Called with inode->i_rwsem down. 5299 */ 5300 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5301 struct iattr *attr) 5302 { 5303 struct inode *inode = d_inode(dentry); 5304 int error, rc = 0; 5305 int orphan = 0; 5306 const unsigned int ia_valid = attr->ia_valid; 5307 bool inc_ivers = true; 5308 5309 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5310 return -EIO; 5311 5312 if (unlikely(IS_IMMUTABLE(inode))) 5313 return -EPERM; 5314 5315 if (unlikely(IS_APPEND(inode) && 5316 (ia_valid & (ATTR_MODE | ATTR_UID | 5317 ATTR_GID | ATTR_TIMES_SET)))) 5318 return -EPERM; 5319 5320 error = setattr_prepare(idmap, dentry, attr); 5321 if (error) 5322 return error; 5323 5324 error = fscrypt_prepare_setattr(dentry, attr); 5325 if (error) 5326 return error; 5327 5328 error = fsverity_prepare_setattr(dentry, attr); 5329 if (error) 5330 return error; 5331 5332 if (is_quota_modification(idmap, inode, attr)) { 5333 error = dquot_initialize(inode); 5334 if (error) 5335 return error; 5336 } 5337 5338 if (i_uid_needs_update(idmap, attr, inode) || 5339 i_gid_needs_update(idmap, attr, inode)) { 5340 handle_t *handle; 5341 5342 /* (user+group)*(old+new) structure, inode write (sb, 5343 * inode block, ? - but truncate inode update has it) */ 5344 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5345 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5346 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5347 if (IS_ERR(handle)) { 5348 error = PTR_ERR(handle); 5349 goto err_out; 5350 } 5351 5352 /* dquot_transfer() calls back ext4_get_inode_usage() which 5353 * counts xattr inode references. 5354 */ 5355 down_read(&EXT4_I(inode)->xattr_sem); 5356 error = dquot_transfer(idmap, inode, attr); 5357 up_read(&EXT4_I(inode)->xattr_sem); 5358 5359 if (error) { 5360 ext4_journal_stop(handle); 5361 return error; 5362 } 5363 /* Update corresponding info in inode so that everything is in 5364 * one transaction */ 5365 i_uid_update(idmap, attr, inode); 5366 i_gid_update(idmap, attr, inode); 5367 error = ext4_mark_inode_dirty(handle, inode); 5368 ext4_journal_stop(handle); 5369 if (unlikely(error)) { 5370 return error; 5371 } 5372 } 5373 5374 if (attr->ia_valid & ATTR_SIZE) { 5375 handle_t *handle; 5376 loff_t oldsize = inode->i_size; 5377 loff_t old_disksize; 5378 int shrink = (attr->ia_size < inode->i_size); 5379 5380 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5381 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5382 5383 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5384 return -EFBIG; 5385 } 5386 } 5387 if (!S_ISREG(inode->i_mode)) { 5388 return -EINVAL; 5389 } 5390 5391 if (attr->ia_size == inode->i_size) 5392 inc_ivers = false; 5393 5394 if (shrink) { 5395 if (ext4_should_order_data(inode)) { 5396 error = ext4_begin_ordered_truncate(inode, 5397 attr->ia_size); 5398 if (error) 5399 goto err_out; 5400 } 5401 /* 5402 * Blocks are going to be removed from the inode. Wait 5403 * for dio in flight. 5404 */ 5405 inode_dio_wait(inode); 5406 } 5407 5408 filemap_invalidate_lock(inode->i_mapping); 5409 5410 rc = ext4_break_layouts(inode); 5411 if (rc) { 5412 filemap_invalidate_unlock(inode->i_mapping); 5413 goto err_out; 5414 } 5415 5416 if (attr->ia_size != inode->i_size) { 5417 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5418 if (IS_ERR(handle)) { 5419 error = PTR_ERR(handle); 5420 goto out_mmap_sem; 5421 } 5422 if (ext4_handle_valid(handle) && shrink) { 5423 error = ext4_orphan_add(handle, inode); 5424 orphan = 1; 5425 } 5426 /* 5427 * Update c/mtime on truncate up, ext4_truncate() will 5428 * update c/mtime in shrink case below 5429 */ 5430 if (!shrink) 5431 inode_set_mtime_to_ts(inode, 5432 inode_set_ctime_current(inode)); 5433 5434 if (shrink) 5435 ext4_fc_track_range(handle, inode, 5436 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5437 inode->i_sb->s_blocksize_bits, 5438 EXT_MAX_BLOCKS - 1); 5439 else 5440 ext4_fc_track_range( 5441 handle, inode, 5442 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5443 inode->i_sb->s_blocksize_bits, 5444 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5445 inode->i_sb->s_blocksize_bits); 5446 5447 down_write(&EXT4_I(inode)->i_data_sem); 5448 old_disksize = EXT4_I(inode)->i_disksize; 5449 EXT4_I(inode)->i_disksize = attr->ia_size; 5450 rc = ext4_mark_inode_dirty(handle, inode); 5451 if (!error) 5452 error = rc; 5453 /* 5454 * We have to update i_size under i_data_sem together 5455 * with i_disksize to avoid races with writeback code 5456 * running ext4_wb_update_i_disksize(). 5457 */ 5458 if (!error) 5459 i_size_write(inode, attr->ia_size); 5460 else 5461 EXT4_I(inode)->i_disksize = old_disksize; 5462 up_write(&EXT4_I(inode)->i_data_sem); 5463 ext4_journal_stop(handle); 5464 if (error) 5465 goto out_mmap_sem; 5466 if (!shrink) { 5467 pagecache_isize_extended(inode, oldsize, 5468 inode->i_size); 5469 } else if (ext4_should_journal_data(inode)) { 5470 ext4_wait_for_tail_page_commit(inode); 5471 } 5472 } 5473 5474 /* 5475 * Truncate pagecache after we've waited for commit 5476 * in data=journal mode to make pages freeable. 5477 */ 5478 truncate_pagecache(inode, inode->i_size); 5479 /* 5480 * Call ext4_truncate() even if i_size didn't change to 5481 * truncate possible preallocated blocks. 5482 */ 5483 if (attr->ia_size <= oldsize) { 5484 rc = ext4_truncate(inode); 5485 if (rc) 5486 error = rc; 5487 } 5488 out_mmap_sem: 5489 filemap_invalidate_unlock(inode->i_mapping); 5490 } 5491 5492 if (!error) { 5493 if (inc_ivers) 5494 inode_inc_iversion(inode); 5495 setattr_copy(idmap, inode, attr); 5496 mark_inode_dirty(inode); 5497 } 5498 5499 /* 5500 * If the call to ext4_truncate failed to get a transaction handle at 5501 * all, we need to clean up the in-core orphan list manually. 5502 */ 5503 if (orphan && inode->i_nlink) 5504 ext4_orphan_del(NULL, inode); 5505 5506 if (!error && (ia_valid & ATTR_MODE)) 5507 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5508 5509 err_out: 5510 if (error) 5511 ext4_std_error(inode->i_sb, error); 5512 if (!error) 5513 error = rc; 5514 return error; 5515 } 5516 5517 u32 ext4_dio_alignment(struct inode *inode) 5518 { 5519 if (fsverity_active(inode)) 5520 return 0; 5521 if (ext4_should_journal_data(inode)) 5522 return 0; 5523 if (ext4_has_inline_data(inode)) 5524 return 0; 5525 if (IS_ENCRYPTED(inode)) { 5526 if (!fscrypt_dio_supported(inode)) 5527 return 0; 5528 return i_blocksize(inode); 5529 } 5530 return 1; /* use the iomap defaults */ 5531 } 5532 5533 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5534 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5535 { 5536 struct inode *inode = d_inode(path->dentry); 5537 struct ext4_inode *raw_inode; 5538 struct ext4_inode_info *ei = EXT4_I(inode); 5539 unsigned int flags; 5540 5541 if ((request_mask & STATX_BTIME) && 5542 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5543 stat->result_mask |= STATX_BTIME; 5544 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5545 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5546 } 5547 5548 /* 5549 * Return the DIO alignment restrictions if requested. We only return 5550 * this information when requested, since on encrypted files it might 5551 * take a fair bit of work to get if the file wasn't opened recently. 5552 */ 5553 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5554 u32 dio_align = ext4_dio_alignment(inode); 5555 5556 stat->result_mask |= STATX_DIOALIGN; 5557 if (dio_align == 1) { 5558 struct block_device *bdev = inode->i_sb->s_bdev; 5559 5560 /* iomap defaults */ 5561 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5562 stat->dio_offset_align = bdev_logical_block_size(bdev); 5563 } else { 5564 stat->dio_mem_align = dio_align; 5565 stat->dio_offset_align = dio_align; 5566 } 5567 } 5568 5569 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5570 if (flags & EXT4_APPEND_FL) 5571 stat->attributes |= STATX_ATTR_APPEND; 5572 if (flags & EXT4_COMPR_FL) 5573 stat->attributes |= STATX_ATTR_COMPRESSED; 5574 if (flags & EXT4_ENCRYPT_FL) 5575 stat->attributes |= STATX_ATTR_ENCRYPTED; 5576 if (flags & EXT4_IMMUTABLE_FL) 5577 stat->attributes |= STATX_ATTR_IMMUTABLE; 5578 if (flags & EXT4_NODUMP_FL) 5579 stat->attributes |= STATX_ATTR_NODUMP; 5580 if (flags & EXT4_VERITY_FL) 5581 stat->attributes |= STATX_ATTR_VERITY; 5582 5583 stat->attributes_mask |= (STATX_ATTR_APPEND | 5584 STATX_ATTR_COMPRESSED | 5585 STATX_ATTR_ENCRYPTED | 5586 STATX_ATTR_IMMUTABLE | 5587 STATX_ATTR_NODUMP | 5588 STATX_ATTR_VERITY); 5589 5590 generic_fillattr(idmap, request_mask, inode, stat); 5591 return 0; 5592 } 5593 5594 int ext4_file_getattr(struct mnt_idmap *idmap, 5595 const struct path *path, struct kstat *stat, 5596 u32 request_mask, unsigned int query_flags) 5597 { 5598 struct inode *inode = d_inode(path->dentry); 5599 u64 delalloc_blocks; 5600 5601 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5602 5603 /* 5604 * If there is inline data in the inode, the inode will normally not 5605 * have data blocks allocated (it may have an external xattr block). 5606 * Report at least one sector for such files, so tools like tar, rsync, 5607 * others don't incorrectly think the file is completely sparse. 5608 */ 5609 if (unlikely(ext4_has_inline_data(inode))) 5610 stat->blocks += (stat->size + 511) >> 9; 5611 5612 /* 5613 * We can't update i_blocks if the block allocation is delayed 5614 * otherwise in the case of system crash before the real block 5615 * allocation is done, we will have i_blocks inconsistent with 5616 * on-disk file blocks. 5617 * We always keep i_blocks updated together with real 5618 * allocation. But to not confuse with user, stat 5619 * will return the blocks that include the delayed allocation 5620 * blocks for this file. 5621 */ 5622 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5623 EXT4_I(inode)->i_reserved_data_blocks); 5624 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5625 return 0; 5626 } 5627 5628 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5629 int pextents) 5630 { 5631 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5632 return ext4_ind_trans_blocks(inode, lblocks); 5633 return ext4_ext_index_trans_blocks(inode, pextents); 5634 } 5635 5636 /* 5637 * Account for index blocks, block groups bitmaps and block group 5638 * descriptor blocks if modify datablocks and index blocks 5639 * worse case, the indexs blocks spread over different block groups 5640 * 5641 * If datablocks are discontiguous, they are possible to spread over 5642 * different block groups too. If they are contiguous, with flexbg, 5643 * they could still across block group boundary. 5644 * 5645 * Also account for superblock, inode, quota and xattr blocks 5646 */ 5647 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5648 int pextents) 5649 { 5650 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5651 int gdpblocks; 5652 int idxblocks; 5653 int ret; 5654 5655 /* 5656 * How many index blocks need to touch to map @lblocks logical blocks 5657 * to @pextents physical extents? 5658 */ 5659 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5660 5661 ret = idxblocks; 5662 5663 /* 5664 * Now let's see how many group bitmaps and group descriptors need 5665 * to account 5666 */ 5667 groups = idxblocks + pextents; 5668 gdpblocks = groups; 5669 if (groups > ngroups) 5670 groups = ngroups; 5671 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5672 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5673 5674 /* bitmaps and block group descriptor blocks */ 5675 ret += groups + gdpblocks; 5676 5677 /* Blocks for super block, inode, quota and xattr blocks */ 5678 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5679 5680 return ret; 5681 } 5682 5683 /* 5684 * Calculate the total number of credits to reserve to fit 5685 * the modification of a single pages into a single transaction, 5686 * which may include multiple chunks of block allocations. 5687 * 5688 * This could be called via ext4_write_begin() 5689 * 5690 * We need to consider the worse case, when 5691 * one new block per extent. 5692 */ 5693 int ext4_writepage_trans_blocks(struct inode *inode) 5694 { 5695 int bpp = ext4_journal_blocks_per_page(inode); 5696 int ret; 5697 5698 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5699 5700 /* Account for data blocks for journalled mode */ 5701 if (ext4_should_journal_data(inode)) 5702 ret += bpp; 5703 return ret; 5704 } 5705 5706 /* 5707 * Calculate the journal credits for a chunk of data modification. 5708 * 5709 * This is called from DIO, fallocate or whoever calling 5710 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5711 * 5712 * journal buffers for data blocks are not included here, as DIO 5713 * and fallocate do no need to journal data buffers. 5714 */ 5715 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5716 { 5717 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5718 } 5719 5720 /* 5721 * The caller must have previously called ext4_reserve_inode_write(). 5722 * Give this, we know that the caller already has write access to iloc->bh. 5723 */ 5724 int ext4_mark_iloc_dirty(handle_t *handle, 5725 struct inode *inode, struct ext4_iloc *iloc) 5726 { 5727 int err = 0; 5728 5729 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5730 put_bh(iloc->bh); 5731 return -EIO; 5732 } 5733 ext4_fc_track_inode(handle, inode); 5734 5735 /* the do_update_inode consumes one bh->b_count */ 5736 get_bh(iloc->bh); 5737 5738 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5739 err = ext4_do_update_inode(handle, inode, iloc); 5740 put_bh(iloc->bh); 5741 return err; 5742 } 5743 5744 /* 5745 * On success, We end up with an outstanding reference count against 5746 * iloc->bh. This _must_ be cleaned up later. 5747 */ 5748 5749 int 5750 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5751 struct ext4_iloc *iloc) 5752 { 5753 int err; 5754 5755 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5756 return -EIO; 5757 5758 err = ext4_get_inode_loc(inode, iloc); 5759 if (!err) { 5760 BUFFER_TRACE(iloc->bh, "get_write_access"); 5761 err = ext4_journal_get_write_access(handle, inode->i_sb, 5762 iloc->bh, EXT4_JTR_NONE); 5763 if (err) { 5764 brelse(iloc->bh); 5765 iloc->bh = NULL; 5766 } 5767 } 5768 ext4_std_error(inode->i_sb, err); 5769 return err; 5770 } 5771 5772 static int __ext4_expand_extra_isize(struct inode *inode, 5773 unsigned int new_extra_isize, 5774 struct ext4_iloc *iloc, 5775 handle_t *handle, int *no_expand) 5776 { 5777 struct ext4_inode *raw_inode; 5778 struct ext4_xattr_ibody_header *header; 5779 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5780 struct ext4_inode_info *ei = EXT4_I(inode); 5781 int error; 5782 5783 /* this was checked at iget time, but double check for good measure */ 5784 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5785 (ei->i_extra_isize & 3)) { 5786 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5787 ei->i_extra_isize, 5788 EXT4_INODE_SIZE(inode->i_sb)); 5789 return -EFSCORRUPTED; 5790 } 5791 if ((new_extra_isize < ei->i_extra_isize) || 5792 (new_extra_isize < 4) || 5793 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5794 return -EINVAL; /* Should never happen */ 5795 5796 raw_inode = ext4_raw_inode(iloc); 5797 5798 header = IHDR(inode, raw_inode); 5799 5800 /* No extended attributes present */ 5801 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5802 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5803 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5804 EXT4_I(inode)->i_extra_isize, 0, 5805 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5806 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5807 return 0; 5808 } 5809 5810 /* 5811 * We may need to allocate external xattr block so we need quotas 5812 * initialized. Here we can be called with various locks held so we 5813 * cannot affort to initialize quotas ourselves. So just bail. 5814 */ 5815 if (dquot_initialize_needed(inode)) 5816 return -EAGAIN; 5817 5818 /* try to expand with EAs present */ 5819 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5820 raw_inode, handle); 5821 if (error) { 5822 /* 5823 * Inode size expansion failed; don't try again 5824 */ 5825 *no_expand = 1; 5826 } 5827 5828 return error; 5829 } 5830 5831 /* 5832 * Expand an inode by new_extra_isize bytes. 5833 * Returns 0 on success or negative error number on failure. 5834 */ 5835 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5836 unsigned int new_extra_isize, 5837 struct ext4_iloc iloc, 5838 handle_t *handle) 5839 { 5840 int no_expand; 5841 int error; 5842 5843 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5844 return -EOVERFLOW; 5845 5846 /* 5847 * In nojournal mode, we can immediately attempt to expand 5848 * the inode. When journaled, we first need to obtain extra 5849 * buffer credits since we may write into the EA block 5850 * with this same handle. If journal_extend fails, then it will 5851 * only result in a minor loss of functionality for that inode. 5852 * If this is felt to be critical, then e2fsck should be run to 5853 * force a large enough s_min_extra_isize. 5854 */ 5855 if (ext4_journal_extend(handle, 5856 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5857 return -ENOSPC; 5858 5859 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5860 return -EBUSY; 5861 5862 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5863 handle, &no_expand); 5864 ext4_write_unlock_xattr(inode, &no_expand); 5865 5866 return error; 5867 } 5868 5869 int ext4_expand_extra_isize(struct inode *inode, 5870 unsigned int new_extra_isize, 5871 struct ext4_iloc *iloc) 5872 { 5873 handle_t *handle; 5874 int no_expand; 5875 int error, rc; 5876 5877 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5878 brelse(iloc->bh); 5879 return -EOVERFLOW; 5880 } 5881 5882 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5883 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5884 if (IS_ERR(handle)) { 5885 error = PTR_ERR(handle); 5886 brelse(iloc->bh); 5887 return error; 5888 } 5889 5890 ext4_write_lock_xattr(inode, &no_expand); 5891 5892 BUFFER_TRACE(iloc->bh, "get_write_access"); 5893 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5894 EXT4_JTR_NONE); 5895 if (error) { 5896 brelse(iloc->bh); 5897 goto out_unlock; 5898 } 5899 5900 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5901 handle, &no_expand); 5902 5903 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5904 if (!error) 5905 error = rc; 5906 5907 out_unlock: 5908 ext4_write_unlock_xattr(inode, &no_expand); 5909 ext4_journal_stop(handle); 5910 return error; 5911 } 5912 5913 /* 5914 * What we do here is to mark the in-core inode as clean with respect to inode 5915 * dirtiness (it may still be data-dirty). 5916 * This means that the in-core inode may be reaped by prune_icache 5917 * without having to perform any I/O. This is a very good thing, 5918 * because *any* task may call prune_icache - even ones which 5919 * have a transaction open against a different journal. 5920 * 5921 * Is this cheating? Not really. Sure, we haven't written the 5922 * inode out, but prune_icache isn't a user-visible syncing function. 5923 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5924 * we start and wait on commits. 5925 */ 5926 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5927 const char *func, unsigned int line) 5928 { 5929 struct ext4_iloc iloc; 5930 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5931 int err; 5932 5933 might_sleep(); 5934 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5935 err = ext4_reserve_inode_write(handle, inode, &iloc); 5936 if (err) 5937 goto out; 5938 5939 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5940 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5941 iloc, handle); 5942 5943 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5944 out: 5945 if (unlikely(err)) 5946 ext4_error_inode_err(inode, func, line, 0, err, 5947 "mark_inode_dirty error"); 5948 return err; 5949 } 5950 5951 /* 5952 * ext4_dirty_inode() is called from __mark_inode_dirty() 5953 * 5954 * We're really interested in the case where a file is being extended. 5955 * i_size has been changed by generic_commit_write() and we thus need 5956 * to include the updated inode in the current transaction. 5957 * 5958 * Also, dquot_alloc_block() will always dirty the inode when blocks 5959 * are allocated to the file. 5960 * 5961 * If the inode is marked synchronous, we don't honour that here - doing 5962 * so would cause a commit on atime updates, which we don't bother doing. 5963 * We handle synchronous inodes at the highest possible level. 5964 */ 5965 void ext4_dirty_inode(struct inode *inode, int flags) 5966 { 5967 handle_t *handle; 5968 5969 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5970 if (IS_ERR(handle)) 5971 return; 5972 ext4_mark_inode_dirty(handle, inode); 5973 ext4_journal_stop(handle); 5974 } 5975 5976 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5977 { 5978 journal_t *journal; 5979 handle_t *handle; 5980 int err; 5981 int alloc_ctx; 5982 5983 /* 5984 * We have to be very careful here: changing a data block's 5985 * journaling status dynamically is dangerous. If we write a 5986 * data block to the journal, change the status and then delete 5987 * that block, we risk forgetting to revoke the old log record 5988 * from the journal and so a subsequent replay can corrupt data. 5989 * So, first we make sure that the journal is empty and that 5990 * nobody is changing anything. 5991 */ 5992 5993 journal = EXT4_JOURNAL(inode); 5994 if (!journal) 5995 return 0; 5996 if (is_journal_aborted(journal)) 5997 return -EROFS; 5998 5999 /* Wait for all existing dio workers */ 6000 inode_dio_wait(inode); 6001 6002 /* 6003 * Before flushing the journal and switching inode's aops, we have 6004 * to flush all dirty data the inode has. There can be outstanding 6005 * delayed allocations, there can be unwritten extents created by 6006 * fallocate or buffered writes in dioread_nolock mode covered by 6007 * dirty data which can be converted only after flushing the dirty 6008 * data (and journalled aops don't know how to handle these cases). 6009 */ 6010 if (val) { 6011 filemap_invalidate_lock(inode->i_mapping); 6012 err = filemap_write_and_wait(inode->i_mapping); 6013 if (err < 0) { 6014 filemap_invalidate_unlock(inode->i_mapping); 6015 return err; 6016 } 6017 } 6018 6019 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6020 jbd2_journal_lock_updates(journal); 6021 6022 /* 6023 * OK, there are no updates running now, and all cached data is 6024 * synced to disk. We are now in a completely consistent state 6025 * which doesn't have anything in the journal, and we know that 6026 * no filesystem updates are running, so it is safe to modify 6027 * the inode's in-core data-journaling state flag now. 6028 */ 6029 6030 if (val) 6031 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6032 else { 6033 err = jbd2_journal_flush(journal, 0); 6034 if (err < 0) { 6035 jbd2_journal_unlock_updates(journal); 6036 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6037 return err; 6038 } 6039 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6040 } 6041 ext4_set_aops(inode); 6042 6043 jbd2_journal_unlock_updates(journal); 6044 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6045 6046 if (val) 6047 filemap_invalidate_unlock(inode->i_mapping); 6048 6049 /* Finally we can mark the inode as dirty. */ 6050 6051 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6052 if (IS_ERR(handle)) 6053 return PTR_ERR(handle); 6054 6055 ext4_fc_mark_ineligible(inode->i_sb, 6056 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6057 err = ext4_mark_inode_dirty(handle, inode); 6058 ext4_handle_sync(handle); 6059 ext4_journal_stop(handle); 6060 ext4_std_error(inode->i_sb, err); 6061 6062 return err; 6063 } 6064 6065 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6066 struct buffer_head *bh) 6067 { 6068 return !buffer_mapped(bh); 6069 } 6070 6071 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6072 { 6073 struct vm_area_struct *vma = vmf->vma; 6074 struct folio *folio = page_folio(vmf->page); 6075 loff_t size; 6076 unsigned long len; 6077 int err; 6078 vm_fault_t ret; 6079 struct file *file = vma->vm_file; 6080 struct inode *inode = file_inode(file); 6081 struct address_space *mapping = inode->i_mapping; 6082 handle_t *handle; 6083 get_block_t *get_block; 6084 int retries = 0; 6085 6086 if (unlikely(IS_IMMUTABLE(inode))) 6087 return VM_FAULT_SIGBUS; 6088 6089 sb_start_pagefault(inode->i_sb); 6090 file_update_time(vma->vm_file); 6091 6092 filemap_invalidate_lock_shared(mapping); 6093 6094 err = ext4_convert_inline_data(inode); 6095 if (err) 6096 goto out_ret; 6097 6098 /* 6099 * On data journalling we skip straight to the transaction handle: 6100 * there's no delalloc; page truncated will be checked later; the 6101 * early return w/ all buffers mapped (calculates size/len) can't 6102 * be used; and there's no dioread_nolock, so only ext4_get_block. 6103 */ 6104 if (ext4_should_journal_data(inode)) 6105 goto retry_alloc; 6106 6107 /* Delalloc case is easy... */ 6108 if (test_opt(inode->i_sb, DELALLOC) && 6109 !ext4_nonda_switch(inode->i_sb)) { 6110 do { 6111 err = block_page_mkwrite(vma, vmf, 6112 ext4_da_get_block_prep); 6113 } while (err == -ENOSPC && 6114 ext4_should_retry_alloc(inode->i_sb, &retries)); 6115 goto out_ret; 6116 } 6117 6118 folio_lock(folio); 6119 size = i_size_read(inode); 6120 /* Page got truncated from under us? */ 6121 if (folio->mapping != mapping || folio_pos(folio) > size) { 6122 folio_unlock(folio); 6123 ret = VM_FAULT_NOPAGE; 6124 goto out; 6125 } 6126 6127 len = folio_size(folio); 6128 if (folio_pos(folio) + len > size) 6129 len = size - folio_pos(folio); 6130 /* 6131 * Return if we have all the buffers mapped. This avoids the need to do 6132 * journal_start/journal_stop which can block and take a long time 6133 * 6134 * This cannot be done for data journalling, as we have to add the 6135 * inode to the transaction's list to writeprotect pages on commit. 6136 */ 6137 if (folio_buffers(folio)) { 6138 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6139 0, len, NULL, 6140 ext4_bh_unmapped)) { 6141 /* Wait so that we don't change page under IO */ 6142 folio_wait_stable(folio); 6143 ret = VM_FAULT_LOCKED; 6144 goto out; 6145 } 6146 } 6147 folio_unlock(folio); 6148 /* OK, we need to fill the hole... */ 6149 if (ext4_should_dioread_nolock(inode)) 6150 get_block = ext4_get_block_unwritten; 6151 else 6152 get_block = ext4_get_block; 6153 retry_alloc: 6154 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6155 ext4_writepage_trans_blocks(inode)); 6156 if (IS_ERR(handle)) { 6157 ret = VM_FAULT_SIGBUS; 6158 goto out; 6159 } 6160 /* 6161 * Data journalling can't use block_page_mkwrite() because it 6162 * will set_buffer_dirty() before do_journal_get_write_access() 6163 * thus might hit warning messages for dirty metadata buffers. 6164 */ 6165 if (!ext4_should_journal_data(inode)) { 6166 err = block_page_mkwrite(vma, vmf, get_block); 6167 } else { 6168 folio_lock(folio); 6169 size = i_size_read(inode); 6170 /* Page got truncated from under us? */ 6171 if (folio->mapping != mapping || folio_pos(folio) > size) { 6172 ret = VM_FAULT_NOPAGE; 6173 goto out_error; 6174 } 6175 6176 len = folio_size(folio); 6177 if (folio_pos(folio) + len > size) 6178 len = size - folio_pos(folio); 6179 6180 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6181 if (!err) { 6182 ret = VM_FAULT_SIGBUS; 6183 if (ext4_journal_folio_buffers(handle, folio, len)) 6184 goto out_error; 6185 } else { 6186 folio_unlock(folio); 6187 } 6188 } 6189 ext4_journal_stop(handle); 6190 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6191 goto retry_alloc; 6192 out_ret: 6193 ret = vmf_fs_error(err); 6194 out: 6195 filemap_invalidate_unlock_shared(mapping); 6196 sb_end_pagefault(inode->i_sb); 6197 return ret; 6198 out_error: 6199 folio_unlock(folio); 6200 ext4_journal_stop(handle); 6201 goto out; 6202 } 6203