1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 571 map->m_pblk, status); 572 } 573 up_read((&EXT4_I(inode)->i_data_sem)); 574 575 found: 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 /* 595 * If we need to convert extent to unwritten 596 * we continue and do the actual work in 597 * ext4_ext_map_blocks() 598 */ 599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to unwritten extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_block() 612 * with create == 1 flag. 613 */ 614 down_write(&EXT4_I(inode)->i_data_sem); 615 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 } 634 635 if (retval > 0) { 636 unsigned int status; 637 638 if (unlikely(retval != map->m_len)) { 639 ext4_warning(inode->i_sb, 640 "ES len assertion failed for inode " 641 "%lu: retval %d != map->m_len %d", 642 inode->i_ino, retval, map->m_len); 643 WARN_ON(1); 644 } 645 646 /* 647 * We have to zeroout blocks before inserting them into extent 648 * status tree. Otherwise someone could look them up there and 649 * use them before they are really zeroed. We also have to 650 * unmap metadata before zeroing as otherwise writeback can 651 * overwrite zeros with stale data from block device. 652 */ 653 if (flags & EXT4_GET_BLOCKS_ZERO && 654 map->m_flags & EXT4_MAP_MAPPED && 655 map->m_flags & EXT4_MAP_NEW) { 656 ret = ext4_issue_zeroout(inode, map->m_lblk, 657 map->m_pblk, map->m_len); 658 if (ret) { 659 retval = ret; 660 goto out_sem; 661 } 662 } 663 664 /* 665 * If the extent has been zeroed out, we don't need to update 666 * extent status tree. 667 */ 668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 670 if (ext4_es_is_written(&es)) 671 goto out_sem; 672 } 673 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 676 !(status & EXTENT_STATUS_WRITTEN) && 677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 678 map->m_lblk + map->m_len - 1)) 679 status |= EXTENT_STATUS_DELAYED; 680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 681 map->m_pblk, status); 682 } 683 684 out_sem: 685 up_write((&EXT4_I(inode)->i_data_sem)); 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 687 ret = check_block_validity(inode, map); 688 if (ret != 0) 689 return ret; 690 691 /* 692 * Inodes with freshly allocated blocks where contents will be 693 * visible after transaction commit must be on transaction's 694 * ordered data list. 695 */ 696 if (map->m_flags & EXT4_MAP_NEW && 697 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 698 !(flags & EXT4_GET_BLOCKS_ZERO) && 699 !ext4_is_quota_file(inode) && 700 ext4_should_order_data(inode)) { 701 loff_t start_byte = 702 (loff_t)map->m_lblk << inode->i_blkbits; 703 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 704 705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 706 ret = ext4_jbd2_inode_add_wait(handle, inode, 707 start_byte, length); 708 else 709 ret = ext4_jbd2_inode_add_write(handle, inode, 710 start_byte, length); 711 if (ret) 712 return ret; 713 } 714 } 715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 716 map->m_flags & EXT4_MAP_MAPPED)) 717 ext4_fc_track_range(handle, inode, map->m_lblk, 718 map->m_lblk + map->m_len - 1); 719 if (retval < 0) 720 ext_debug(inode, "failed with err %d\n", retval); 721 return retval; 722 } 723 724 /* 725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 726 * we have to be careful as someone else may be manipulating b_state as well. 727 */ 728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 729 { 730 unsigned long old_state; 731 unsigned long new_state; 732 733 flags &= EXT4_MAP_FLAGS; 734 735 /* Dummy buffer_head? Set non-atomically. */ 736 if (!bh->b_page) { 737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 738 return; 739 } 740 /* 741 * Someone else may be modifying b_state. Be careful! This is ugly but 742 * once we get rid of using bh as a container for mapping information 743 * to pass to / from get_block functions, this can go away. 744 */ 745 old_state = READ_ONCE(bh->b_state); 746 do { 747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 749 } 750 751 static int _ext4_get_block(struct inode *inode, sector_t iblock, 752 struct buffer_head *bh, int flags) 753 { 754 struct ext4_map_blocks map; 755 int ret = 0; 756 757 if (ext4_has_inline_data(inode)) 758 return -ERANGE; 759 760 map.m_lblk = iblock; 761 map.m_len = bh->b_size >> inode->i_blkbits; 762 763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 764 flags); 765 if (ret > 0) { 766 map_bh(bh, inode->i_sb, map.m_pblk); 767 ext4_update_bh_state(bh, map.m_flags); 768 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 769 ret = 0; 770 } else if (ret == 0) { 771 /* hole case, need to fill in bh->b_size */ 772 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 773 } 774 return ret; 775 } 776 777 int ext4_get_block(struct inode *inode, sector_t iblock, 778 struct buffer_head *bh, int create) 779 { 780 return _ext4_get_block(inode, iblock, bh, 781 create ? EXT4_GET_BLOCKS_CREATE : 0); 782 } 783 784 /* 785 * Get block function used when preparing for buffered write if we require 786 * creating an unwritten extent if blocks haven't been allocated. The extent 787 * will be converted to written after the IO is complete. 788 */ 789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create) 791 { 792 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 793 inode->i_ino, create); 794 return _ext4_get_block(inode, iblock, bh_result, 795 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 796 } 797 798 /* Maximum number of blocks we map for direct IO at once. */ 799 #define DIO_MAX_BLOCKS 4096 800 801 /* 802 * `handle' can be NULL if create is zero 803 */ 804 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 805 ext4_lblk_t block, int map_flags) 806 { 807 struct ext4_map_blocks map; 808 struct buffer_head *bh; 809 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 810 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 811 int err; 812 813 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 814 || handle != NULL || create == 0); 815 ASSERT(create == 0 || !nowait); 816 817 map.m_lblk = block; 818 map.m_len = 1; 819 err = ext4_map_blocks(handle, inode, &map, map_flags); 820 821 if (err == 0) 822 return create ? ERR_PTR(-ENOSPC) : NULL; 823 if (err < 0) 824 return ERR_PTR(err); 825 826 if (nowait) 827 return sb_find_get_block(inode->i_sb, map.m_pblk); 828 829 bh = sb_getblk(inode->i_sb, map.m_pblk); 830 if (unlikely(!bh)) 831 return ERR_PTR(-ENOMEM); 832 if (map.m_flags & EXT4_MAP_NEW) { 833 ASSERT(create != 0); 834 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 835 || (handle != NULL)); 836 837 /* 838 * Now that we do not always journal data, we should 839 * keep in mind whether this should always journal the 840 * new buffer as metadata. For now, regular file 841 * writes use ext4_get_block instead, so it's not a 842 * problem. 843 */ 844 lock_buffer(bh); 845 BUFFER_TRACE(bh, "call get_create_access"); 846 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 847 EXT4_JTR_NONE); 848 if (unlikely(err)) { 849 unlock_buffer(bh); 850 goto errout; 851 } 852 if (!buffer_uptodate(bh)) { 853 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 854 set_buffer_uptodate(bh); 855 } 856 unlock_buffer(bh); 857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 858 err = ext4_handle_dirty_metadata(handle, inode, bh); 859 if (unlikely(err)) 860 goto errout; 861 } else 862 BUFFER_TRACE(bh, "not a new buffer"); 863 return bh; 864 errout: 865 brelse(bh); 866 return ERR_PTR(err); 867 } 868 869 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 870 ext4_lblk_t block, int map_flags) 871 { 872 struct buffer_head *bh; 873 int ret; 874 875 bh = ext4_getblk(handle, inode, block, map_flags); 876 if (IS_ERR(bh)) 877 return bh; 878 if (!bh || ext4_buffer_uptodate(bh)) 879 return bh; 880 881 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 882 if (ret) { 883 put_bh(bh); 884 return ERR_PTR(ret); 885 } 886 return bh; 887 } 888 889 /* Read a contiguous batch of blocks. */ 890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 891 bool wait, struct buffer_head **bhs) 892 { 893 int i, err; 894 895 for (i = 0; i < bh_count; i++) { 896 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 897 if (IS_ERR(bhs[i])) { 898 err = PTR_ERR(bhs[i]); 899 bh_count = i; 900 goto out_brelse; 901 } 902 } 903 904 for (i = 0; i < bh_count; i++) 905 /* Note that NULL bhs[i] is valid because of holes. */ 906 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 907 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 908 909 if (!wait) 910 return 0; 911 912 for (i = 0; i < bh_count; i++) 913 if (bhs[i]) 914 wait_on_buffer(bhs[i]); 915 916 for (i = 0; i < bh_count; i++) { 917 if (bhs[i] && !buffer_uptodate(bhs[i])) { 918 err = -EIO; 919 goto out_brelse; 920 } 921 } 922 return 0; 923 924 out_brelse: 925 for (i = 0; i < bh_count; i++) { 926 brelse(bhs[i]); 927 bhs[i] = NULL; 928 } 929 return err; 930 } 931 932 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 933 struct buffer_head *head, 934 unsigned from, 935 unsigned to, 936 int *partial, 937 int (*fn)(handle_t *handle, struct inode *inode, 938 struct buffer_head *bh)) 939 { 940 struct buffer_head *bh; 941 unsigned block_start, block_end; 942 unsigned blocksize = head->b_size; 943 int err, ret = 0; 944 struct buffer_head *next; 945 946 for (bh = head, block_start = 0; 947 ret == 0 && (bh != head || !block_start); 948 block_start = block_end, bh = next) { 949 next = bh->b_this_page; 950 block_end = block_start + blocksize; 951 if (block_end <= from || block_start >= to) { 952 if (partial && !buffer_uptodate(bh)) 953 *partial = 1; 954 continue; 955 } 956 err = (*fn)(handle, inode, bh); 957 if (!ret) 958 ret = err; 959 } 960 return ret; 961 } 962 963 /* 964 * Helper for handling dirtying of journalled data. We also mark the folio as 965 * dirty so that writeback code knows about this page (and inode) contains 966 * dirty data. ext4_writepages() then commits appropriate transaction to 967 * make data stable. 968 */ 969 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 970 { 971 folio_mark_dirty(bh->b_folio); 972 return ext4_handle_dirty_metadata(handle, NULL, bh); 973 } 974 975 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 976 struct buffer_head *bh) 977 { 978 int dirty = buffer_dirty(bh); 979 int ret; 980 981 if (!buffer_mapped(bh) || buffer_freed(bh)) 982 return 0; 983 /* 984 * __block_write_begin() could have dirtied some buffers. Clean 985 * the dirty bit as jbd2_journal_get_write_access() could complain 986 * otherwise about fs integrity issues. Setting of the dirty bit 987 * by __block_write_begin() isn't a real problem here as we clear 988 * the bit before releasing a page lock and thus writeback cannot 989 * ever write the buffer. 990 */ 991 if (dirty) 992 clear_buffer_dirty(bh); 993 BUFFER_TRACE(bh, "get write access"); 994 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 995 EXT4_JTR_NONE); 996 if (!ret && dirty) 997 ret = ext4_dirty_journalled_data(handle, bh); 998 return ret; 999 } 1000 1001 #ifdef CONFIG_FS_ENCRYPTION 1002 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1003 get_block_t *get_block) 1004 { 1005 unsigned from = pos & (PAGE_SIZE - 1); 1006 unsigned to = from + len; 1007 struct inode *inode = folio->mapping->host; 1008 unsigned block_start, block_end; 1009 sector_t block; 1010 int err = 0; 1011 unsigned blocksize = inode->i_sb->s_blocksize; 1012 unsigned bbits; 1013 struct buffer_head *bh, *head, *wait[2]; 1014 int nr_wait = 0; 1015 int i; 1016 1017 BUG_ON(!folio_test_locked(folio)); 1018 BUG_ON(from > PAGE_SIZE); 1019 BUG_ON(to > PAGE_SIZE); 1020 BUG_ON(from > to); 1021 1022 head = folio_buffers(folio); 1023 if (!head) { 1024 create_empty_buffers(&folio->page, blocksize, 0); 1025 head = folio_buffers(folio); 1026 } 1027 bbits = ilog2(blocksize); 1028 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1029 1030 for (bh = head, block_start = 0; bh != head || !block_start; 1031 block++, block_start = block_end, bh = bh->b_this_page) { 1032 block_end = block_start + blocksize; 1033 if (block_end <= from || block_start >= to) { 1034 if (folio_test_uptodate(folio)) { 1035 set_buffer_uptodate(bh); 1036 } 1037 continue; 1038 } 1039 if (buffer_new(bh)) 1040 clear_buffer_new(bh); 1041 if (!buffer_mapped(bh)) { 1042 WARN_ON(bh->b_size != blocksize); 1043 err = get_block(inode, block, bh, 1); 1044 if (err) 1045 break; 1046 if (buffer_new(bh)) { 1047 if (folio_test_uptodate(folio)) { 1048 clear_buffer_new(bh); 1049 set_buffer_uptodate(bh); 1050 mark_buffer_dirty(bh); 1051 continue; 1052 } 1053 if (block_end > to || block_start < from) 1054 folio_zero_segments(folio, to, 1055 block_end, 1056 block_start, from); 1057 continue; 1058 } 1059 } 1060 if (folio_test_uptodate(folio)) { 1061 set_buffer_uptodate(bh); 1062 continue; 1063 } 1064 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1065 !buffer_unwritten(bh) && 1066 (block_start < from || block_end > to)) { 1067 ext4_read_bh_lock(bh, 0, false); 1068 wait[nr_wait++] = bh; 1069 } 1070 } 1071 /* 1072 * If we issued read requests, let them complete. 1073 */ 1074 for (i = 0; i < nr_wait; i++) { 1075 wait_on_buffer(wait[i]); 1076 if (!buffer_uptodate(wait[i])) 1077 err = -EIO; 1078 } 1079 if (unlikely(err)) { 1080 folio_zero_new_buffers(folio, from, to); 1081 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1082 for (i = 0; i < nr_wait; i++) { 1083 int err2; 1084 1085 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1086 blocksize, bh_offset(wait[i])); 1087 if (err2) { 1088 clear_buffer_uptodate(wait[i]); 1089 err = err2; 1090 } 1091 } 1092 } 1093 1094 return err; 1095 } 1096 #endif 1097 1098 /* 1099 * To preserve ordering, it is essential that the hole instantiation and 1100 * the data write be encapsulated in a single transaction. We cannot 1101 * close off a transaction and start a new one between the ext4_get_block() 1102 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1103 * ext4_write_begin() is the right place. 1104 */ 1105 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1106 loff_t pos, unsigned len, 1107 struct page **pagep, void **fsdata) 1108 { 1109 struct inode *inode = mapping->host; 1110 int ret, needed_blocks; 1111 handle_t *handle; 1112 int retries = 0; 1113 struct folio *folio; 1114 pgoff_t index; 1115 unsigned from, to; 1116 1117 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1118 return -EIO; 1119 1120 trace_ext4_write_begin(inode, pos, len); 1121 /* 1122 * Reserve one block more for addition to orphan list in case 1123 * we allocate blocks but write fails for some reason 1124 */ 1125 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1126 index = pos >> PAGE_SHIFT; 1127 from = pos & (PAGE_SIZE - 1); 1128 to = from + len; 1129 1130 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1131 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1132 pagep); 1133 if (ret < 0) 1134 return ret; 1135 if (ret == 1) 1136 return 0; 1137 } 1138 1139 /* 1140 * __filemap_get_folio() can take a long time if the 1141 * system is thrashing due to memory pressure, or if the folio 1142 * is being written back. So grab it first before we start 1143 * the transaction handle. This also allows us to allocate 1144 * the folio (if needed) without using GFP_NOFS. 1145 */ 1146 retry_grab: 1147 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1148 mapping_gfp_mask(mapping)); 1149 if (IS_ERR(folio)) 1150 return PTR_ERR(folio); 1151 /* 1152 * The same as page allocation, we prealloc buffer heads before 1153 * starting the handle. 1154 */ 1155 if (!folio_buffers(folio)) 1156 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1157 1158 folio_unlock(folio); 1159 1160 retry_journal: 1161 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1162 if (IS_ERR(handle)) { 1163 folio_put(folio); 1164 return PTR_ERR(handle); 1165 } 1166 1167 folio_lock(folio); 1168 if (folio->mapping != mapping) { 1169 /* The folio got truncated from under us */ 1170 folio_unlock(folio); 1171 folio_put(folio); 1172 ext4_journal_stop(handle); 1173 goto retry_grab; 1174 } 1175 /* In case writeback began while the folio was unlocked */ 1176 folio_wait_stable(folio); 1177 1178 #ifdef CONFIG_FS_ENCRYPTION 1179 if (ext4_should_dioread_nolock(inode)) 1180 ret = ext4_block_write_begin(folio, pos, len, 1181 ext4_get_block_unwritten); 1182 else 1183 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1184 #else 1185 if (ext4_should_dioread_nolock(inode)) 1186 ret = __block_write_begin(&folio->page, pos, len, 1187 ext4_get_block_unwritten); 1188 else 1189 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1190 #endif 1191 if (!ret && ext4_should_journal_data(inode)) { 1192 ret = ext4_walk_page_buffers(handle, inode, 1193 folio_buffers(folio), from, to, 1194 NULL, do_journal_get_write_access); 1195 } 1196 1197 if (ret) { 1198 bool extended = (pos + len > inode->i_size) && 1199 !ext4_verity_in_progress(inode); 1200 1201 folio_unlock(folio); 1202 /* 1203 * __block_write_begin may have instantiated a few blocks 1204 * outside i_size. Trim these off again. Don't need 1205 * i_size_read because we hold i_rwsem. 1206 * 1207 * Add inode to orphan list in case we crash before 1208 * truncate finishes 1209 */ 1210 if (extended && ext4_can_truncate(inode)) 1211 ext4_orphan_add(handle, inode); 1212 1213 ext4_journal_stop(handle); 1214 if (extended) { 1215 ext4_truncate_failed_write(inode); 1216 /* 1217 * If truncate failed early the inode might 1218 * still be on the orphan list; we need to 1219 * make sure the inode is removed from the 1220 * orphan list in that case. 1221 */ 1222 if (inode->i_nlink) 1223 ext4_orphan_del(NULL, inode); 1224 } 1225 1226 if (ret == -ENOSPC && 1227 ext4_should_retry_alloc(inode->i_sb, &retries)) 1228 goto retry_journal; 1229 folio_put(folio); 1230 return ret; 1231 } 1232 *pagep = &folio->page; 1233 return ret; 1234 } 1235 1236 /* For write_end() in data=journal mode */ 1237 static int write_end_fn(handle_t *handle, struct inode *inode, 1238 struct buffer_head *bh) 1239 { 1240 int ret; 1241 if (!buffer_mapped(bh) || buffer_freed(bh)) 1242 return 0; 1243 set_buffer_uptodate(bh); 1244 ret = ext4_dirty_journalled_data(handle, bh); 1245 clear_buffer_meta(bh); 1246 clear_buffer_prio(bh); 1247 return ret; 1248 } 1249 1250 /* 1251 * We need to pick up the new inode size which generic_commit_write gave us 1252 * `file' can be NULL - eg, when called from page_symlink(). 1253 * 1254 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1255 * buffers are managed internally. 1256 */ 1257 static int ext4_write_end(struct file *file, 1258 struct address_space *mapping, 1259 loff_t pos, unsigned len, unsigned copied, 1260 struct page *page, void *fsdata) 1261 { 1262 struct folio *folio = page_folio(page); 1263 handle_t *handle = ext4_journal_current_handle(); 1264 struct inode *inode = mapping->host; 1265 loff_t old_size = inode->i_size; 1266 int ret = 0, ret2; 1267 int i_size_changed = 0; 1268 bool verity = ext4_verity_in_progress(inode); 1269 1270 trace_ext4_write_end(inode, pos, len, copied); 1271 1272 if (ext4_has_inline_data(inode) && 1273 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1274 return ext4_write_inline_data_end(inode, pos, len, copied, 1275 folio); 1276 1277 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1278 /* 1279 * it's important to update i_size while still holding folio lock: 1280 * page writeout could otherwise come in and zero beyond i_size. 1281 * 1282 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1283 * blocks are being written past EOF, so skip the i_size update. 1284 */ 1285 if (!verity) 1286 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1287 folio_unlock(folio); 1288 folio_put(folio); 1289 1290 if (old_size < pos && !verity) 1291 pagecache_isize_extended(inode, old_size, pos); 1292 /* 1293 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1294 * makes the holding time of folio lock longer. Second, it forces lock 1295 * ordering of folio lock and transaction start for journaling 1296 * filesystems. 1297 */ 1298 if (i_size_changed) 1299 ret = ext4_mark_inode_dirty(handle, inode); 1300 1301 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1302 /* if we have allocated more blocks and copied 1303 * less. We will have blocks allocated outside 1304 * inode->i_size. So truncate them 1305 */ 1306 ext4_orphan_add(handle, inode); 1307 1308 ret2 = ext4_journal_stop(handle); 1309 if (!ret) 1310 ret = ret2; 1311 1312 if (pos + len > inode->i_size && !verity) { 1313 ext4_truncate_failed_write(inode); 1314 /* 1315 * If truncate failed early the inode might still be 1316 * on the orphan list; we need to make sure the inode 1317 * is removed from the orphan list in that case. 1318 */ 1319 if (inode->i_nlink) 1320 ext4_orphan_del(NULL, inode); 1321 } 1322 1323 return ret ? ret : copied; 1324 } 1325 1326 /* 1327 * This is a private version of folio_zero_new_buffers() which doesn't 1328 * set the buffer to be dirty, since in data=journalled mode we need 1329 * to call ext4_dirty_journalled_data() instead. 1330 */ 1331 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1332 struct inode *inode, 1333 struct folio *folio, 1334 unsigned from, unsigned to) 1335 { 1336 unsigned int block_start = 0, block_end; 1337 struct buffer_head *head, *bh; 1338 1339 bh = head = folio_buffers(folio); 1340 do { 1341 block_end = block_start + bh->b_size; 1342 if (buffer_new(bh)) { 1343 if (block_end > from && block_start < to) { 1344 if (!folio_test_uptodate(folio)) { 1345 unsigned start, size; 1346 1347 start = max(from, block_start); 1348 size = min(to, block_end) - start; 1349 1350 folio_zero_range(folio, start, size); 1351 write_end_fn(handle, inode, bh); 1352 } 1353 clear_buffer_new(bh); 1354 } 1355 } 1356 block_start = block_end; 1357 bh = bh->b_this_page; 1358 } while (bh != head); 1359 } 1360 1361 static int ext4_journalled_write_end(struct file *file, 1362 struct address_space *mapping, 1363 loff_t pos, unsigned len, unsigned copied, 1364 struct page *page, void *fsdata) 1365 { 1366 struct folio *folio = page_folio(page); 1367 handle_t *handle = ext4_journal_current_handle(); 1368 struct inode *inode = mapping->host; 1369 loff_t old_size = inode->i_size; 1370 int ret = 0, ret2; 1371 int partial = 0; 1372 unsigned from, to; 1373 int size_changed = 0; 1374 bool verity = ext4_verity_in_progress(inode); 1375 1376 trace_ext4_journalled_write_end(inode, pos, len, copied); 1377 from = pos & (PAGE_SIZE - 1); 1378 to = from + len; 1379 1380 BUG_ON(!ext4_handle_valid(handle)); 1381 1382 if (ext4_has_inline_data(inode)) 1383 return ext4_write_inline_data_end(inode, pos, len, copied, 1384 folio); 1385 1386 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1387 copied = 0; 1388 ext4_journalled_zero_new_buffers(handle, inode, folio, 1389 from, to); 1390 } else { 1391 if (unlikely(copied < len)) 1392 ext4_journalled_zero_new_buffers(handle, inode, folio, 1393 from + copied, to); 1394 ret = ext4_walk_page_buffers(handle, inode, 1395 folio_buffers(folio), 1396 from, from + copied, &partial, 1397 write_end_fn); 1398 if (!partial) 1399 folio_mark_uptodate(folio); 1400 } 1401 if (!verity) 1402 size_changed = ext4_update_inode_size(inode, pos + copied); 1403 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1404 folio_unlock(folio); 1405 folio_put(folio); 1406 1407 if (old_size < pos && !verity) 1408 pagecache_isize_extended(inode, old_size, pos); 1409 1410 if (size_changed) { 1411 ret2 = ext4_mark_inode_dirty(handle, inode); 1412 if (!ret) 1413 ret = ret2; 1414 } 1415 1416 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1417 /* if we have allocated more blocks and copied 1418 * less. We will have blocks allocated outside 1419 * inode->i_size. So truncate them 1420 */ 1421 ext4_orphan_add(handle, inode); 1422 1423 ret2 = ext4_journal_stop(handle); 1424 if (!ret) 1425 ret = ret2; 1426 if (pos + len > inode->i_size && !verity) { 1427 ext4_truncate_failed_write(inode); 1428 /* 1429 * If truncate failed early the inode might still be 1430 * on the orphan list; we need to make sure the inode 1431 * is removed from the orphan list in that case. 1432 */ 1433 if (inode->i_nlink) 1434 ext4_orphan_del(NULL, inode); 1435 } 1436 1437 return ret ? ret : copied; 1438 } 1439 1440 /* 1441 * Reserve space for a single cluster 1442 */ 1443 static int ext4_da_reserve_space(struct inode *inode) 1444 { 1445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1446 struct ext4_inode_info *ei = EXT4_I(inode); 1447 int ret; 1448 1449 /* 1450 * We will charge metadata quota at writeout time; this saves 1451 * us from metadata over-estimation, though we may go over by 1452 * a small amount in the end. Here we just reserve for data. 1453 */ 1454 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1455 if (ret) 1456 return ret; 1457 1458 spin_lock(&ei->i_block_reservation_lock); 1459 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1460 spin_unlock(&ei->i_block_reservation_lock); 1461 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1462 return -ENOSPC; 1463 } 1464 ei->i_reserved_data_blocks++; 1465 trace_ext4_da_reserve_space(inode); 1466 spin_unlock(&ei->i_block_reservation_lock); 1467 1468 return 0; /* success */ 1469 } 1470 1471 void ext4_da_release_space(struct inode *inode, int to_free) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct ext4_inode_info *ei = EXT4_I(inode); 1475 1476 if (!to_free) 1477 return; /* Nothing to release, exit */ 1478 1479 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1480 1481 trace_ext4_da_release_space(inode, to_free); 1482 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1483 /* 1484 * if there aren't enough reserved blocks, then the 1485 * counter is messed up somewhere. Since this 1486 * function is called from invalidate page, it's 1487 * harmless to return without any action. 1488 */ 1489 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1490 "ino %lu, to_free %d with only %d reserved " 1491 "data blocks", inode->i_ino, to_free, 1492 ei->i_reserved_data_blocks); 1493 WARN_ON(1); 1494 to_free = ei->i_reserved_data_blocks; 1495 } 1496 ei->i_reserved_data_blocks -= to_free; 1497 1498 /* update fs dirty data blocks counter */ 1499 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1500 1501 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1502 1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1504 } 1505 1506 /* 1507 * Delayed allocation stuff 1508 */ 1509 1510 struct mpage_da_data { 1511 /* These are input fields for ext4_do_writepages() */ 1512 struct inode *inode; 1513 struct writeback_control *wbc; 1514 unsigned int can_map:1; /* Can writepages call map blocks? */ 1515 1516 /* These are internal state of ext4_do_writepages() */ 1517 pgoff_t first_page; /* The first page to write */ 1518 pgoff_t next_page; /* Current page to examine */ 1519 pgoff_t last_page; /* Last page to examine */ 1520 /* 1521 * Extent to map - this can be after first_page because that can be 1522 * fully mapped. We somewhat abuse m_flags to store whether the extent 1523 * is delalloc or unwritten. 1524 */ 1525 struct ext4_map_blocks map; 1526 struct ext4_io_submit io_submit; /* IO submission data */ 1527 unsigned int do_map:1; 1528 unsigned int scanned_until_end:1; 1529 unsigned int journalled_more_data:1; 1530 }; 1531 1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1533 bool invalidate) 1534 { 1535 unsigned nr, i; 1536 pgoff_t index, end; 1537 struct folio_batch fbatch; 1538 struct inode *inode = mpd->inode; 1539 struct address_space *mapping = inode->i_mapping; 1540 1541 /* This is necessary when next_page == 0. */ 1542 if (mpd->first_page >= mpd->next_page) 1543 return; 1544 1545 mpd->scanned_until_end = 0; 1546 index = mpd->first_page; 1547 end = mpd->next_page - 1; 1548 if (invalidate) { 1549 ext4_lblk_t start, last; 1550 start = index << (PAGE_SHIFT - inode->i_blkbits); 1551 last = end << (PAGE_SHIFT - inode->i_blkbits); 1552 1553 /* 1554 * avoid racing with extent status tree scans made by 1555 * ext4_insert_delayed_block() 1556 */ 1557 down_write(&EXT4_I(inode)->i_data_sem); 1558 ext4_es_remove_extent(inode, start, last - start + 1); 1559 up_write(&EXT4_I(inode)->i_data_sem); 1560 } 1561 1562 folio_batch_init(&fbatch); 1563 while (index <= end) { 1564 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1565 if (nr == 0) 1566 break; 1567 for (i = 0; i < nr; i++) { 1568 struct folio *folio = fbatch.folios[i]; 1569 1570 if (folio->index < mpd->first_page) 1571 continue; 1572 if (folio_next_index(folio) - 1 > end) 1573 continue; 1574 BUG_ON(!folio_test_locked(folio)); 1575 BUG_ON(folio_test_writeback(folio)); 1576 if (invalidate) { 1577 if (folio_mapped(folio)) 1578 folio_clear_dirty_for_io(folio); 1579 block_invalidate_folio(folio, 0, 1580 folio_size(folio)); 1581 folio_clear_uptodate(folio); 1582 } 1583 folio_unlock(folio); 1584 } 1585 folio_batch_release(&fbatch); 1586 } 1587 } 1588 1589 static void ext4_print_free_blocks(struct inode *inode) 1590 { 1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1592 struct super_block *sb = inode->i_sb; 1593 struct ext4_inode_info *ei = EXT4_I(inode); 1594 1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1596 EXT4_C2B(EXT4_SB(inode->i_sb), 1597 ext4_count_free_clusters(sb))); 1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1600 (long long) EXT4_C2B(EXT4_SB(sb), 1601 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1603 (long long) EXT4_C2B(EXT4_SB(sb), 1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1605 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1607 ei->i_reserved_data_blocks); 1608 return; 1609 } 1610 1611 /* 1612 * ext4_insert_delayed_block - adds a delayed block to the extents status 1613 * tree, incrementing the reserved cluster/block 1614 * count or making a pending reservation 1615 * where needed 1616 * 1617 * @inode - file containing the newly added block 1618 * @lblk - logical block to be added 1619 * 1620 * Returns 0 on success, negative error code on failure. 1621 */ 1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1625 int ret; 1626 bool allocated = false; 1627 1628 /* 1629 * If the cluster containing lblk is shared with a delayed, 1630 * written, or unwritten extent in a bigalloc file system, it's 1631 * already been accounted for and does not need to be reserved. 1632 * A pending reservation must be made for the cluster if it's 1633 * shared with a written or unwritten extent and doesn't already 1634 * have one. Written and unwritten extents can be purged from the 1635 * extents status tree if the system is under memory pressure, so 1636 * it's necessary to examine the extent tree if a search of the 1637 * extents status tree doesn't get a match. 1638 */ 1639 if (sbi->s_cluster_ratio == 1) { 1640 ret = ext4_da_reserve_space(inode); 1641 if (ret != 0) /* ENOSPC */ 1642 return ret; 1643 } else { /* bigalloc */ 1644 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1645 if (!ext4_es_scan_clu(inode, 1646 &ext4_es_is_mapped, lblk)) { 1647 ret = ext4_clu_mapped(inode, 1648 EXT4_B2C(sbi, lblk)); 1649 if (ret < 0) 1650 return ret; 1651 if (ret == 0) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { 1656 allocated = true; 1657 } 1658 } else { 1659 allocated = true; 1660 } 1661 } 1662 } 1663 1664 ext4_es_insert_delayed_block(inode, lblk, allocated); 1665 return 0; 1666 } 1667 1668 /* 1669 * This function is grabs code from the very beginning of 1670 * ext4_map_blocks, but assumes that the caller is from delayed write 1671 * time. This function looks up the requested blocks and sets the 1672 * buffer delay bit under the protection of i_data_sem. 1673 */ 1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1675 struct ext4_map_blocks *map, 1676 struct buffer_head *bh) 1677 { 1678 struct extent_status es; 1679 int retval; 1680 sector_t invalid_block = ~((sector_t) 0xffff); 1681 #ifdef ES_AGGRESSIVE_TEST 1682 struct ext4_map_blocks orig_map; 1683 1684 memcpy(&orig_map, map, sizeof(*map)); 1685 #endif 1686 1687 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1688 invalid_block = ~0; 1689 1690 map->m_flags = 0; 1691 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1692 (unsigned long) map->m_lblk); 1693 1694 /* Lookup extent status tree firstly */ 1695 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1696 if (ext4_es_is_hole(&es)) { 1697 retval = 0; 1698 down_read(&EXT4_I(inode)->i_data_sem); 1699 goto add_delayed; 1700 } 1701 1702 /* 1703 * Delayed extent could be allocated by fallocate. 1704 * So we need to check it. 1705 */ 1706 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1707 map_bh(bh, inode->i_sb, invalid_block); 1708 set_buffer_new(bh); 1709 set_buffer_delay(bh); 1710 return 0; 1711 } 1712 1713 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1714 retval = es.es_len - (iblock - es.es_lblk); 1715 if (retval > map->m_len) 1716 retval = map->m_len; 1717 map->m_len = retval; 1718 if (ext4_es_is_written(&es)) 1719 map->m_flags |= EXT4_MAP_MAPPED; 1720 else if (ext4_es_is_unwritten(&es)) 1721 map->m_flags |= EXT4_MAP_UNWRITTEN; 1722 else 1723 BUG(); 1724 1725 #ifdef ES_AGGRESSIVE_TEST 1726 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1727 #endif 1728 return retval; 1729 } 1730 1731 /* 1732 * Try to see if we can get the block without requesting a new 1733 * file system block. 1734 */ 1735 down_read(&EXT4_I(inode)->i_data_sem); 1736 if (ext4_has_inline_data(inode)) 1737 retval = 0; 1738 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1739 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1740 else 1741 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1742 1743 add_delayed: 1744 if (retval == 0) { 1745 int ret; 1746 1747 /* 1748 * XXX: __block_prepare_write() unmaps passed block, 1749 * is it OK? 1750 */ 1751 1752 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1753 if (ret != 0) { 1754 retval = ret; 1755 goto out_unlock; 1756 } 1757 1758 map_bh(bh, inode->i_sb, invalid_block); 1759 set_buffer_new(bh); 1760 set_buffer_delay(bh); 1761 } else if (retval > 0) { 1762 unsigned int status; 1763 1764 if (unlikely(retval != map->m_len)) { 1765 ext4_warning(inode->i_sb, 1766 "ES len assertion failed for inode " 1767 "%lu: retval %d != map->m_len %d", 1768 inode->i_ino, retval, map->m_len); 1769 WARN_ON(1); 1770 } 1771 1772 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1773 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1774 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1775 map->m_pblk, status); 1776 } 1777 1778 out_unlock: 1779 up_read((&EXT4_I(inode)->i_data_sem)); 1780 1781 return retval; 1782 } 1783 1784 /* 1785 * This is a special get_block_t callback which is used by 1786 * ext4_da_write_begin(). It will either return mapped block or 1787 * reserve space for a single block. 1788 * 1789 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1790 * We also have b_blocknr = -1 and b_bdev initialized properly 1791 * 1792 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1793 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1794 * initialized properly. 1795 */ 1796 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1797 struct buffer_head *bh, int create) 1798 { 1799 struct ext4_map_blocks map; 1800 int ret = 0; 1801 1802 BUG_ON(create == 0); 1803 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1804 1805 map.m_lblk = iblock; 1806 map.m_len = 1; 1807 1808 /* 1809 * first, we need to know whether the block is allocated already 1810 * preallocated blocks are unmapped but should treated 1811 * the same as allocated blocks. 1812 */ 1813 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1814 if (ret <= 0) 1815 return ret; 1816 1817 map_bh(bh, inode->i_sb, map.m_pblk); 1818 ext4_update_bh_state(bh, map.m_flags); 1819 1820 if (buffer_unwritten(bh)) { 1821 /* A delayed write to unwritten bh should be marked 1822 * new and mapped. Mapped ensures that we don't do 1823 * get_block multiple times when we write to the same 1824 * offset and new ensures that we do proper zero out 1825 * for partial write. 1826 */ 1827 set_buffer_new(bh); 1828 set_buffer_mapped(bh); 1829 } 1830 return 0; 1831 } 1832 1833 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1834 { 1835 mpd->first_page += folio_nr_pages(folio); 1836 folio_unlock(folio); 1837 } 1838 1839 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1840 { 1841 size_t len; 1842 loff_t size; 1843 int err; 1844 1845 BUG_ON(folio->index != mpd->first_page); 1846 folio_clear_dirty_for_io(folio); 1847 /* 1848 * We have to be very careful here! Nothing protects writeback path 1849 * against i_size changes and the page can be writeably mapped into 1850 * page tables. So an application can be growing i_size and writing 1851 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1852 * write-protects our page in page tables and the page cannot get 1853 * written to again until we release folio lock. So only after 1854 * folio_clear_dirty_for_io() we are safe to sample i_size for 1855 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1856 * on the barrier provided by folio_test_clear_dirty() in 1857 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1858 * after page tables are updated. 1859 */ 1860 size = i_size_read(mpd->inode); 1861 len = folio_size(folio); 1862 if (folio_pos(folio) + len > size && 1863 !ext4_verity_in_progress(mpd->inode)) 1864 len = size & ~PAGE_MASK; 1865 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1866 if (!err) 1867 mpd->wbc->nr_to_write--; 1868 1869 return err; 1870 } 1871 1872 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1873 1874 /* 1875 * mballoc gives us at most this number of blocks... 1876 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1877 * The rest of mballoc seems to handle chunks up to full group size. 1878 */ 1879 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1880 1881 /* 1882 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1883 * 1884 * @mpd - extent of blocks 1885 * @lblk - logical number of the block in the file 1886 * @bh - buffer head we want to add to the extent 1887 * 1888 * The function is used to collect contig. blocks in the same state. If the 1889 * buffer doesn't require mapping for writeback and we haven't started the 1890 * extent of buffers to map yet, the function returns 'true' immediately - the 1891 * caller can write the buffer right away. Otherwise the function returns true 1892 * if the block has been added to the extent, false if the block couldn't be 1893 * added. 1894 */ 1895 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1896 struct buffer_head *bh) 1897 { 1898 struct ext4_map_blocks *map = &mpd->map; 1899 1900 /* Buffer that doesn't need mapping for writeback? */ 1901 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1902 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1903 /* So far no extent to map => we write the buffer right away */ 1904 if (map->m_len == 0) 1905 return true; 1906 return false; 1907 } 1908 1909 /* First block in the extent? */ 1910 if (map->m_len == 0) { 1911 /* We cannot map unless handle is started... */ 1912 if (!mpd->do_map) 1913 return false; 1914 map->m_lblk = lblk; 1915 map->m_len = 1; 1916 map->m_flags = bh->b_state & BH_FLAGS; 1917 return true; 1918 } 1919 1920 /* Don't go larger than mballoc is willing to allocate */ 1921 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1922 return false; 1923 1924 /* Can we merge the block to our big extent? */ 1925 if (lblk == map->m_lblk + map->m_len && 1926 (bh->b_state & BH_FLAGS) == map->m_flags) { 1927 map->m_len++; 1928 return true; 1929 } 1930 return false; 1931 } 1932 1933 /* 1934 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1935 * 1936 * @mpd - extent of blocks for mapping 1937 * @head - the first buffer in the page 1938 * @bh - buffer we should start processing from 1939 * @lblk - logical number of the block in the file corresponding to @bh 1940 * 1941 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1942 * the page for IO if all buffers in this page were mapped and there's no 1943 * accumulated extent of buffers to map or add buffers in the page to the 1944 * extent of buffers to map. The function returns 1 if the caller can continue 1945 * by processing the next page, 0 if it should stop adding buffers to the 1946 * extent to map because we cannot extend it anymore. It can also return value 1947 * < 0 in case of error during IO submission. 1948 */ 1949 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1950 struct buffer_head *head, 1951 struct buffer_head *bh, 1952 ext4_lblk_t lblk) 1953 { 1954 struct inode *inode = mpd->inode; 1955 int err; 1956 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1957 >> inode->i_blkbits; 1958 1959 if (ext4_verity_in_progress(inode)) 1960 blocks = EXT_MAX_BLOCKS; 1961 1962 do { 1963 BUG_ON(buffer_locked(bh)); 1964 1965 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1966 /* Found extent to map? */ 1967 if (mpd->map.m_len) 1968 return 0; 1969 /* Buffer needs mapping and handle is not started? */ 1970 if (!mpd->do_map) 1971 return 0; 1972 /* Everything mapped so far and we hit EOF */ 1973 break; 1974 } 1975 } while (lblk++, (bh = bh->b_this_page) != head); 1976 /* So far everything mapped? Submit the page for IO. */ 1977 if (mpd->map.m_len == 0) { 1978 err = mpage_submit_folio(mpd, head->b_folio); 1979 if (err < 0) 1980 return err; 1981 mpage_folio_done(mpd, head->b_folio); 1982 } 1983 if (lblk >= blocks) { 1984 mpd->scanned_until_end = 1; 1985 return 0; 1986 } 1987 return 1; 1988 } 1989 1990 /* 1991 * mpage_process_folio - update folio buffers corresponding to changed extent 1992 * and may submit fully mapped page for IO 1993 * @mpd: description of extent to map, on return next extent to map 1994 * @folio: Contains these buffers. 1995 * @m_lblk: logical block mapping. 1996 * @m_pblk: corresponding physical mapping. 1997 * @map_bh: determines on return whether this page requires any further 1998 * mapping or not. 1999 * 2000 * Scan given folio buffers corresponding to changed extent and update buffer 2001 * state according to new extent state. 2002 * We map delalloc buffers to their physical location, clear unwritten bits. 2003 * If the given folio is not fully mapped, we update @mpd to the next extent in 2004 * the given folio that needs mapping & return @map_bh as true. 2005 */ 2006 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2007 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2008 bool *map_bh) 2009 { 2010 struct buffer_head *head, *bh; 2011 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2012 ext4_lblk_t lblk = *m_lblk; 2013 ext4_fsblk_t pblock = *m_pblk; 2014 int err = 0; 2015 int blkbits = mpd->inode->i_blkbits; 2016 ssize_t io_end_size = 0; 2017 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2018 2019 bh = head = folio_buffers(folio); 2020 do { 2021 if (lblk < mpd->map.m_lblk) 2022 continue; 2023 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2024 /* 2025 * Buffer after end of mapped extent. 2026 * Find next buffer in the folio to map. 2027 */ 2028 mpd->map.m_len = 0; 2029 mpd->map.m_flags = 0; 2030 io_end_vec->size += io_end_size; 2031 2032 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2033 if (err > 0) 2034 err = 0; 2035 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2036 io_end_vec = ext4_alloc_io_end_vec(io_end); 2037 if (IS_ERR(io_end_vec)) { 2038 err = PTR_ERR(io_end_vec); 2039 goto out; 2040 } 2041 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2042 } 2043 *map_bh = true; 2044 goto out; 2045 } 2046 if (buffer_delay(bh)) { 2047 clear_buffer_delay(bh); 2048 bh->b_blocknr = pblock++; 2049 } 2050 clear_buffer_unwritten(bh); 2051 io_end_size += (1 << blkbits); 2052 } while (lblk++, (bh = bh->b_this_page) != head); 2053 2054 io_end_vec->size += io_end_size; 2055 *map_bh = false; 2056 out: 2057 *m_lblk = lblk; 2058 *m_pblk = pblock; 2059 return err; 2060 } 2061 2062 /* 2063 * mpage_map_buffers - update buffers corresponding to changed extent and 2064 * submit fully mapped pages for IO 2065 * 2066 * @mpd - description of extent to map, on return next extent to map 2067 * 2068 * Scan buffers corresponding to changed extent (we expect corresponding pages 2069 * to be already locked) and update buffer state according to new extent state. 2070 * We map delalloc buffers to their physical location, clear unwritten bits, 2071 * and mark buffers as uninit when we perform writes to unwritten extents 2072 * and do extent conversion after IO is finished. If the last page is not fully 2073 * mapped, we update @map to the next extent in the last page that needs 2074 * mapping. Otherwise we submit the page for IO. 2075 */ 2076 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2077 { 2078 struct folio_batch fbatch; 2079 unsigned nr, i; 2080 struct inode *inode = mpd->inode; 2081 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2082 pgoff_t start, end; 2083 ext4_lblk_t lblk; 2084 ext4_fsblk_t pblock; 2085 int err; 2086 bool map_bh = false; 2087 2088 start = mpd->map.m_lblk >> bpp_bits; 2089 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2090 lblk = start << bpp_bits; 2091 pblock = mpd->map.m_pblk; 2092 2093 folio_batch_init(&fbatch); 2094 while (start <= end) { 2095 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2096 if (nr == 0) 2097 break; 2098 for (i = 0; i < nr; i++) { 2099 struct folio *folio = fbatch.folios[i]; 2100 2101 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2102 &map_bh); 2103 /* 2104 * If map_bh is true, means page may require further bh 2105 * mapping, or maybe the page was submitted for IO. 2106 * So we return to call further extent mapping. 2107 */ 2108 if (err < 0 || map_bh) 2109 goto out; 2110 /* Page fully mapped - let IO run! */ 2111 err = mpage_submit_folio(mpd, folio); 2112 if (err < 0) 2113 goto out; 2114 mpage_folio_done(mpd, folio); 2115 } 2116 folio_batch_release(&fbatch); 2117 } 2118 /* Extent fully mapped and matches with page boundary. We are done. */ 2119 mpd->map.m_len = 0; 2120 mpd->map.m_flags = 0; 2121 return 0; 2122 out: 2123 folio_batch_release(&fbatch); 2124 return err; 2125 } 2126 2127 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2128 { 2129 struct inode *inode = mpd->inode; 2130 struct ext4_map_blocks *map = &mpd->map; 2131 int get_blocks_flags; 2132 int err, dioread_nolock; 2133 2134 trace_ext4_da_write_pages_extent(inode, map); 2135 /* 2136 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2137 * to convert an unwritten extent to be initialized (in the case 2138 * where we have written into one or more preallocated blocks). It is 2139 * possible that we're going to need more metadata blocks than 2140 * previously reserved. However we must not fail because we're in 2141 * writeback and there is nothing we can do about it so it might result 2142 * in data loss. So use reserved blocks to allocate metadata if 2143 * possible. 2144 * 2145 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2146 * the blocks in question are delalloc blocks. This indicates 2147 * that the blocks and quotas has already been checked when 2148 * the data was copied into the page cache. 2149 */ 2150 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2151 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2152 EXT4_GET_BLOCKS_IO_SUBMIT; 2153 dioread_nolock = ext4_should_dioread_nolock(inode); 2154 if (dioread_nolock) 2155 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2156 if (map->m_flags & BIT(BH_Delay)) 2157 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2158 2159 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2160 if (err < 0) 2161 return err; 2162 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2163 if (!mpd->io_submit.io_end->handle && 2164 ext4_handle_valid(handle)) { 2165 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2166 handle->h_rsv_handle = NULL; 2167 } 2168 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2169 } 2170 2171 BUG_ON(map->m_len == 0); 2172 return 0; 2173 } 2174 2175 /* 2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2177 * mpd->len and submit pages underlying it for IO 2178 * 2179 * @handle - handle for journal operations 2180 * @mpd - extent to map 2181 * @give_up_on_write - we set this to true iff there is a fatal error and there 2182 * is no hope of writing the data. The caller should discard 2183 * dirty pages to avoid infinite loops. 2184 * 2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2187 * them to initialized or split the described range from larger unwritten 2188 * extent. Note that we need not map all the described range since allocation 2189 * can return less blocks or the range is covered by more unwritten extents. We 2190 * cannot map more because we are limited by reserved transaction credits. On 2191 * the other hand we always make sure that the last touched page is fully 2192 * mapped so that it can be written out (and thus forward progress is 2193 * guaranteed). After mapping we submit all mapped pages for IO. 2194 */ 2195 static int mpage_map_and_submit_extent(handle_t *handle, 2196 struct mpage_da_data *mpd, 2197 bool *give_up_on_write) 2198 { 2199 struct inode *inode = mpd->inode; 2200 struct ext4_map_blocks *map = &mpd->map; 2201 int err; 2202 loff_t disksize; 2203 int progress = 0; 2204 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2205 struct ext4_io_end_vec *io_end_vec; 2206 2207 io_end_vec = ext4_alloc_io_end_vec(io_end); 2208 if (IS_ERR(io_end_vec)) 2209 return PTR_ERR(io_end_vec); 2210 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2211 do { 2212 err = mpage_map_one_extent(handle, mpd); 2213 if (err < 0) { 2214 struct super_block *sb = inode->i_sb; 2215 2216 if (ext4_forced_shutdown(sb)) 2217 goto invalidate_dirty_pages; 2218 /* 2219 * Let the uper layers retry transient errors. 2220 * In the case of ENOSPC, if ext4_count_free_blocks() 2221 * is non-zero, a commit should free up blocks. 2222 */ 2223 if ((err == -ENOMEM) || 2224 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2225 if (progress) 2226 goto update_disksize; 2227 return err; 2228 } 2229 ext4_msg(sb, KERN_CRIT, 2230 "Delayed block allocation failed for " 2231 "inode %lu at logical offset %llu with" 2232 " max blocks %u with error %d", 2233 inode->i_ino, 2234 (unsigned long long)map->m_lblk, 2235 (unsigned)map->m_len, -err); 2236 ext4_msg(sb, KERN_CRIT, 2237 "This should not happen!! Data will " 2238 "be lost\n"); 2239 if (err == -ENOSPC) 2240 ext4_print_free_blocks(inode); 2241 invalidate_dirty_pages: 2242 *give_up_on_write = true; 2243 return err; 2244 } 2245 progress = 1; 2246 /* 2247 * Update buffer state, submit mapped pages, and get us new 2248 * extent to map 2249 */ 2250 err = mpage_map_and_submit_buffers(mpd); 2251 if (err < 0) 2252 goto update_disksize; 2253 } while (map->m_len); 2254 2255 update_disksize: 2256 /* 2257 * Update on-disk size after IO is submitted. Races with 2258 * truncate are avoided by checking i_size under i_data_sem. 2259 */ 2260 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2261 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2262 int err2; 2263 loff_t i_size; 2264 2265 down_write(&EXT4_I(inode)->i_data_sem); 2266 i_size = i_size_read(inode); 2267 if (disksize > i_size) 2268 disksize = i_size; 2269 if (disksize > EXT4_I(inode)->i_disksize) 2270 EXT4_I(inode)->i_disksize = disksize; 2271 up_write(&EXT4_I(inode)->i_data_sem); 2272 err2 = ext4_mark_inode_dirty(handle, inode); 2273 if (err2) { 2274 ext4_error_err(inode->i_sb, -err2, 2275 "Failed to mark inode %lu dirty", 2276 inode->i_ino); 2277 } 2278 if (!err) 2279 err = err2; 2280 } 2281 return err; 2282 } 2283 2284 /* 2285 * Calculate the total number of credits to reserve for one writepages 2286 * iteration. This is called from ext4_writepages(). We map an extent of 2287 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2288 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2289 * bpp - 1 blocks in bpp different extents. 2290 */ 2291 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2292 { 2293 int bpp = ext4_journal_blocks_per_page(inode); 2294 2295 return ext4_meta_trans_blocks(inode, 2296 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2297 } 2298 2299 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2300 size_t len) 2301 { 2302 struct buffer_head *page_bufs = folio_buffers(folio); 2303 struct inode *inode = folio->mapping->host; 2304 int ret, err; 2305 2306 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2307 NULL, do_journal_get_write_access); 2308 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2309 NULL, write_end_fn); 2310 if (ret == 0) 2311 ret = err; 2312 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2313 if (ret == 0) 2314 ret = err; 2315 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2316 2317 return ret; 2318 } 2319 2320 static int mpage_journal_page_buffers(handle_t *handle, 2321 struct mpage_da_data *mpd, 2322 struct folio *folio) 2323 { 2324 struct inode *inode = mpd->inode; 2325 loff_t size = i_size_read(inode); 2326 size_t len = folio_size(folio); 2327 2328 folio_clear_checked(folio); 2329 mpd->wbc->nr_to_write--; 2330 2331 if (folio_pos(folio) + len > size && 2332 !ext4_verity_in_progress(inode)) 2333 len = size - folio_pos(folio); 2334 2335 return ext4_journal_folio_buffers(handle, folio, len); 2336 } 2337 2338 /* 2339 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2340 * needing mapping, submit mapped pages 2341 * 2342 * @mpd - where to look for pages 2343 * 2344 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2345 * IO immediately. If we cannot map blocks, we submit just already mapped 2346 * buffers in the page for IO and keep page dirty. When we can map blocks and 2347 * we find a page which isn't mapped we start accumulating extent of buffers 2348 * underlying these pages that needs mapping (formed by either delayed or 2349 * unwritten buffers). We also lock the pages containing these buffers. The 2350 * extent found is returned in @mpd structure (starting at mpd->lblk with 2351 * length mpd->len blocks). 2352 * 2353 * Note that this function can attach bios to one io_end structure which are 2354 * neither logically nor physically contiguous. Although it may seem as an 2355 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2356 * case as we need to track IO to all buffers underlying a page in one io_end. 2357 */ 2358 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2359 { 2360 struct address_space *mapping = mpd->inode->i_mapping; 2361 struct folio_batch fbatch; 2362 unsigned int nr_folios; 2363 pgoff_t index = mpd->first_page; 2364 pgoff_t end = mpd->last_page; 2365 xa_mark_t tag; 2366 int i, err = 0; 2367 int blkbits = mpd->inode->i_blkbits; 2368 ext4_lblk_t lblk; 2369 struct buffer_head *head; 2370 handle_t *handle = NULL; 2371 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2372 2373 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2374 tag = PAGECACHE_TAG_TOWRITE; 2375 else 2376 tag = PAGECACHE_TAG_DIRTY; 2377 2378 mpd->map.m_len = 0; 2379 mpd->next_page = index; 2380 if (ext4_should_journal_data(mpd->inode)) { 2381 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2382 bpp); 2383 if (IS_ERR(handle)) 2384 return PTR_ERR(handle); 2385 } 2386 folio_batch_init(&fbatch); 2387 while (index <= end) { 2388 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2389 tag, &fbatch); 2390 if (nr_folios == 0) 2391 break; 2392 2393 for (i = 0; i < nr_folios; i++) { 2394 struct folio *folio = fbatch.folios[i]; 2395 2396 /* 2397 * Accumulated enough dirty pages? This doesn't apply 2398 * to WB_SYNC_ALL mode. For integrity sync we have to 2399 * keep going because someone may be concurrently 2400 * dirtying pages, and we might have synced a lot of 2401 * newly appeared dirty pages, but have not synced all 2402 * of the old dirty pages. 2403 */ 2404 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2405 mpd->wbc->nr_to_write <= 2406 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2407 goto out; 2408 2409 /* If we can't merge this page, we are done. */ 2410 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2411 goto out; 2412 2413 if (handle) { 2414 err = ext4_journal_ensure_credits(handle, bpp, 2415 0); 2416 if (err < 0) 2417 goto out; 2418 } 2419 2420 folio_lock(folio); 2421 /* 2422 * If the page is no longer dirty, or its mapping no 2423 * longer corresponds to inode we are writing (which 2424 * means it has been truncated or invalidated), or the 2425 * page is already under writeback and we are not doing 2426 * a data integrity writeback, skip the page 2427 */ 2428 if (!folio_test_dirty(folio) || 2429 (folio_test_writeback(folio) && 2430 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2431 unlikely(folio->mapping != mapping)) { 2432 folio_unlock(folio); 2433 continue; 2434 } 2435 2436 folio_wait_writeback(folio); 2437 BUG_ON(folio_test_writeback(folio)); 2438 2439 /* 2440 * Should never happen but for buggy code in 2441 * other subsystems that call 2442 * set_page_dirty() without properly warning 2443 * the file system first. See [1] for more 2444 * information. 2445 * 2446 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2447 */ 2448 if (!folio_buffers(folio)) { 2449 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2450 folio_clear_dirty(folio); 2451 folio_unlock(folio); 2452 continue; 2453 } 2454 2455 if (mpd->map.m_len == 0) 2456 mpd->first_page = folio->index; 2457 mpd->next_page = folio_next_index(folio); 2458 /* 2459 * Writeout when we cannot modify metadata is simple. 2460 * Just submit the page. For data=journal mode we 2461 * first handle writeout of the page for checkpoint and 2462 * only after that handle delayed page dirtying. This 2463 * makes sure current data is checkpointed to the final 2464 * location before possibly journalling it again which 2465 * is desirable when the page is frequently dirtied 2466 * through a pin. 2467 */ 2468 if (!mpd->can_map) { 2469 err = mpage_submit_folio(mpd, folio); 2470 if (err < 0) 2471 goto out; 2472 /* Pending dirtying of journalled data? */ 2473 if (folio_test_checked(folio)) { 2474 err = mpage_journal_page_buffers(handle, 2475 mpd, folio); 2476 if (err < 0) 2477 goto out; 2478 mpd->journalled_more_data = 1; 2479 } 2480 mpage_folio_done(mpd, folio); 2481 } else { 2482 /* Add all dirty buffers to mpd */ 2483 lblk = ((ext4_lblk_t)folio->index) << 2484 (PAGE_SHIFT - blkbits); 2485 head = folio_buffers(folio); 2486 err = mpage_process_page_bufs(mpd, head, head, 2487 lblk); 2488 if (err <= 0) 2489 goto out; 2490 err = 0; 2491 } 2492 } 2493 folio_batch_release(&fbatch); 2494 cond_resched(); 2495 } 2496 mpd->scanned_until_end = 1; 2497 if (handle) 2498 ext4_journal_stop(handle); 2499 return 0; 2500 out: 2501 folio_batch_release(&fbatch); 2502 if (handle) 2503 ext4_journal_stop(handle); 2504 return err; 2505 } 2506 2507 static int ext4_do_writepages(struct mpage_da_data *mpd) 2508 { 2509 struct writeback_control *wbc = mpd->wbc; 2510 pgoff_t writeback_index = 0; 2511 long nr_to_write = wbc->nr_to_write; 2512 int range_whole = 0; 2513 int cycled = 1; 2514 handle_t *handle = NULL; 2515 struct inode *inode = mpd->inode; 2516 struct address_space *mapping = inode->i_mapping; 2517 int needed_blocks, rsv_blocks = 0, ret = 0; 2518 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2519 struct blk_plug plug; 2520 bool give_up_on_write = false; 2521 2522 trace_ext4_writepages(inode, wbc); 2523 2524 /* 2525 * No pages to write? This is mainly a kludge to avoid starting 2526 * a transaction for special inodes like journal inode on last iput() 2527 * because that could violate lock ordering on umount 2528 */ 2529 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2530 goto out_writepages; 2531 2532 /* 2533 * If the filesystem has aborted, it is read-only, so return 2534 * right away instead of dumping stack traces later on that 2535 * will obscure the real source of the problem. We test 2536 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2537 * the latter could be true if the filesystem is mounted 2538 * read-only, and in that case, ext4_writepages should 2539 * *never* be called, so if that ever happens, we would want 2540 * the stack trace. 2541 */ 2542 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2543 ret = -EROFS; 2544 goto out_writepages; 2545 } 2546 2547 /* 2548 * If we have inline data and arrive here, it means that 2549 * we will soon create the block for the 1st page, so 2550 * we'd better clear the inline data here. 2551 */ 2552 if (ext4_has_inline_data(inode)) { 2553 /* Just inode will be modified... */ 2554 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2555 if (IS_ERR(handle)) { 2556 ret = PTR_ERR(handle); 2557 goto out_writepages; 2558 } 2559 BUG_ON(ext4_test_inode_state(inode, 2560 EXT4_STATE_MAY_INLINE_DATA)); 2561 ext4_destroy_inline_data(handle, inode); 2562 ext4_journal_stop(handle); 2563 } 2564 2565 /* 2566 * data=journal mode does not do delalloc so we just need to writeout / 2567 * journal already mapped buffers. On the other hand we need to commit 2568 * transaction to make data stable. We expect all the data to be 2569 * already in the journal (the only exception are DMA pinned pages 2570 * dirtied behind our back) so we commit transaction here and run the 2571 * writeback loop to checkpoint them. The checkpointing is not actually 2572 * necessary to make data persistent *but* quite a few places (extent 2573 * shifting operations, fsverity, ...) depend on being able to drop 2574 * pagecache pages after calling filemap_write_and_wait() and for that 2575 * checkpointing needs to happen. 2576 */ 2577 if (ext4_should_journal_data(inode)) { 2578 mpd->can_map = 0; 2579 if (wbc->sync_mode == WB_SYNC_ALL) 2580 ext4_fc_commit(sbi->s_journal, 2581 EXT4_I(inode)->i_datasync_tid); 2582 } 2583 mpd->journalled_more_data = 0; 2584 2585 if (ext4_should_dioread_nolock(inode)) { 2586 /* 2587 * We may need to convert up to one extent per block in 2588 * the page and we may dirty the inode. 2589 */ 2590 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2591 PAGE_SIZE >> inode->i_blkbits); 2592 } 2593 2594 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2595 range_whole = 1; 2596 2597 if (wbc->range_cyclic) { 2598 writeback_index = mapping->writeback_index; 2599 if (writeback_index) 2600 cycled = 0; 2601 mpd->first_page = writeback_index; 2602 mpd->last_page = -1; 2603 } else { 2604 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2605 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2606 } 2607 2608 ext4_io_submit_init(&mpd->io_submit, wbc); 2609 retry: 2610 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2611 tag_pages_for_writeback(mapping, mpd->first_page, 2612 mpd->last_page); 2613 blk_start_plug(&plug); 2614 2615 /* 2616 * First writeback pages that don't need mapping - we can avoid 2617 * starting a transaction unnecessarily and also avoid being blocked 2618 * in the block layer on device congestion while having transaction 2619 * started. 2620 */ 2621 mpd->do_map = 0; 2622 mpd->scanned_until_end = 0; 2623 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2624 if (!mpd->io_submit.io_end) { 2625 ret = -ENOMEM; 2626 goto unplug; 2627 } 2628 ret = mpage_prepare_extent_to_map(mpd); 2629 /* Unlock pages we didn't use */ 2630 mpage_release_unused_pages(mpd, false); 2631 /* Submit prepared bio */ 2632 ext4_io_submit(&mpd->io_submit); 2633 ext4_put_io_end_defer(mpd->io_submit.io_end); 2634 mpd->io_submit.io_end = NULL; 2635 if (ret < 0) 2636 goto unplug; 2637 2638 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2639 /* For each extent of pages we use new io_end */ 2640 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2641 if (!mpd->io_submit.io_end) { 2642 ret = -ENOMEM; 2643 break; 2644 } 2645 2646 WARN_ON_ONCE(!mpd->can_map); 2647 /* 2648 * We have two constraints: We find one extent to map and we 2649 * must always write out whole page (makes a difference when 2650 * blocksize < pagesize) so that we don't block on IO when we 2651 * try to write out the rest of the page. Journalled mode is 2652 * not supported by delalloc. 2653 */ 2654 BUG_ON(ext4_should_journal_data(inode)); 2655 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2656 2657 /* start a new transaction */ 2658 handle = ext4_journal_start_with_reserve(inode, 2659 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2660 if (IS_ERR(handle)) { 2661 ret = PTR_ERR(handle); 2662 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2663 "%ld pages, ino %lu; err %d", __func__, 2664 wbc->nr_to_write, inode->i_ino, ret); 2665 /* Release allocated io_end */ 2666 ext4_put_io_end(mpd->io_submit.io_end); 2667 mpd->io_submit.io_end = NULL; 2668 break; 2669 } 2670 mpd->do_map = 1; 2671 2672 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2673 ret = mpage_prepare_extent_to_map(mpd); 2674 if (!ret && mpd->map.m_len) 2675 ret = mpage_map_and_submit_extent(handle, mpd, 2676 &give_up_on_write); 2677 /* 2678 * Caution: If the handle is synchronous, 2679 * ext4_journal_stop() can wait for transaction commit 2680 * to finish which may depend on writeback of pages to 2681 * complete or on page lock to be released. In that 2682 * case, we have to wait until after we have 2683 * submitted all the IO, released page locks we hold, 2684 * and dropped io_end reference (for extent conversion 2685 * to be able to complete) before stopping the handle. 2686 */ 2687 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2688 ext4_journal_stop(handle); 2689 handle = NULL; 2690 mpd->do_map = 0; 2691 } 2692 /* Unlock pages we didn't use */ 2693 mpage_release_unused_pages(mpd, give_up_on_write); 2694 /* Submit prepared bio */ 2695 ext4_io_submit(&mpd->io_submit); 2696 2697 /* 2698 * Drop our io_end reference we got from init. We have 2699 * to be careful and use deferred io_end finishing if 2700 * we are still holding the transaction as we can 2701 * release the last reference to io_end which may end 2702 * up doing unwritten extent conversion. 2703 */ 2704 if (handle) { 2705 ext4_put_io_end_defer(mpd->io_submit.io_end); 2706 ext4_journal_stop(handle); 2707 } else 2708 ext4_put_io_end(mpd->io_submit.io_end); 2709 mpd->io_submit.io_end = NULL; 2710 2711 if (ret == -ENOSPC && sbi->s_journal) { 2712 /* 2713 * Commit the transaction which would 2714 * free blocks released in the transaction 2715 * and try again 2716 */ 2717 jbd2_journal_force_commit_nested(sbi->s_journal); 2718 ret = 0; 2719 continue; 2720 } 2721 /* Fatal error - ENOMEM, EIO... */ 2722 if (ret) 2723 break; 2724 } 2725 unplug: 2726 blk_finish_plug(&plug); 2727 if (!ret && !cycled && wbc->nr_to_write > 0) { 2728 cycled = 1; 2729 mpd->last_page = writeback_index - 1; 2730 mpd->first_page = 0; 2731 goto retry; 2732 } 2733 2734 /* Update index */ 2735 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2736 /* 2737 * Set the writeback_index so that range_cyclic 2738 * mode will write it back later 2739 */ 2740 mapping->writeback_index = mpd->first_page; 2741 2742 out_writepages: 2743 trace_ext4_writepages_result(inode, wbc, ret, 2744 nr_to_write - wbc->nr_to_write); 2745 return ret; 2746 } 2747 2748 static int ext4_writepages(struct address_space *mapping, 2749 struct writeback_control *wbc) 2750 { 2751 struct super_block *sb = mapping->host->i_sb; 2752 struct mpage_da_data mpd = { 2753 .inode = mapping->host, 2754 .wbc = wbc, 2755 .can_map = 1, 2756 }; 2757 int ret; 2758 int alloc_ctx; 2759 2760 if (unlikely(ext4_forced_shutdown(sb))) 2761 return -EIO; 2762 2763 alloc_ctx = ext4_writepages_down_read(sb); 2764 ret = ext4_do_writepages(&mpd); 2765 /* 2766 * For data=journal writeback we could have come across pages marked 2767 * for delayed dirtying (PageChecked) which were just added to the 2768 * running transaction. Try once more to get them to stable storage. 2769 */ 2770 if (!ret && mpd.journalled_more_data) 2771 ret = ext4_do_writepages(&mpd); 2772 ext4_writepages_up_read(sb, alloc_ctx); 2773 2774 return ret; 2775 } 2776 2777 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2778 { 2779 struct writeback_control wbc = { 2780 .sync_mode = WB_SYNC_ALL, 2781 .nr_to_write = LONG_MAX, 2782 .range_start = jinode->i_dirty_start, 2783 .range_end = jinode->i_dirty_end, 2784 }; 2785 struct mpage_da_data mpd = { 2786 .inode = jinode->i_vfs_inode, 2787 .wbc = &wbc, 2788 .can_map = 0, 2789 }; 2790 return ext4_do_writepages(&mpd); 2791 } 2792 2793 static int ext4_dax_writepages(struct address_space *mapping, 2794 struct writeback_control *wbc) 2795 { 2796 int ret; 2797 long nr_to_write = wbc->nr_to_write; 2798 struct inode *inode = mapping->host; 2799 int alloc_ctx; 2800 2801 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2802 return -EIO; 2803 2804 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2805 trace_ext4_writepages(inode, wbc); 2806 2807 ret = dax_writeback_mapping_range(mapping, 2808 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2809 trace_ext4_writepages_result(inode, wbc, ret, 2810 nr_to_write - wbc->nr_to_write); 2811 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2812 return ret; 2813 } 2814 2815 static int ext4_nonda_switch(struct super_block *sb) 2816 { 2817 s64 free_clusters, dirty_clusters; 2818 struct ext4_sb_info *sbi = EXT4_SB(sb); 2819 2820 /* 2821 * switch to non delalloc mode if we are running low 2822 * on free block. The free block accounting via percpu 2823 * counters can get slightly wrong with percpu_counter_batch getting 2824 * accumulated on each CPU without updating global counters 2825 * Delalloc need an accurate free block accounting. So switch 2826 * to non delalloc when we are near to error range. 2827 */ 2828 free_clusters = 2829 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2830 dirty_clusters = 2831 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2832 /* 2833 * Start pushing delalloc when 1/2 of free blocks are dirty. 2834 */ 2835 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2836 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2837 2838 if (2 * free_clusters < 3 * dirty_clusters || 2839 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2840 /* 2841 * free block count is less than 150% of dirty blocks 2842 * or free blocks is less than watermark 2843 */ 2844 return 1; 2845 } 2846 return 0; 2847 } 2848 2849 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2850 loff_t pos, unsigned len, 2851 struct page **pagep, void **fsdata) 2852 { 2853 int ret, retries = 0; 2854 struct folio *folio; 2855 pgoff_t index; 2856 struct inode *inode = mapping->host; 2857 2858 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2859 return -EIO; 2860 2861 index = pos >> PAGE_SHIFT; 2862 2863 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2864 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2865 return ext4_write_begin(file, mapping, pos, 2866 len, pagep, fsdata); 2867 } 2868 *fsdata = (void *)0; 2869 trace_ext4_da_write_begin(inode, pos, len); 2870 2871 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2872 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2873 pagep, fsdata); 2874 if (ret < 0) 2875 return ret; 2876 if (ret == 1) 2877 return 0; 2878 } 2879 2880 retry: 2881 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2882 mapping_gfp_mask(mapping)); 2883 if (IS_ERR(folio)) 2884 return PTR_ERR(folio); 2885 2886 /* In case writeback began while the folio was unlocked */ 2887 folio_wait_stable(folio); 2888 2889 #ifdef CONFIG_FS_ENCRYPTION 2890 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2891 #else 2892 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2893 #endif 2894 if (ret < 0) { 2895 folio_unlock(folio); 2896 folio_put(folio); 2897 /* 2898 * block_write_begin may have instantiated a few blocks 2899 * outside i_size. Trim these off again. Don't need 2900 * i_size_read because we hold inode lock. 2901 */ 2902 if (pos + len > inode->i_size) 2903 ext4_truncate_failed_write(inode); 2904 2905 if (ret == -ENOSPC && 2906 ext4_should_retry_alloc(inode->i_sb, &retries)) 2907 goto retry; 2908 return ret; 2909 } 2910 2911 *pagep = &folio->page; 2912 return ret; 2913 } 2914 2915 /* 2916 * Check if we should update i_disksize 2917 * when write to the end of file but not require block allocation 2918 */ 2919 static int ext4_da_should_update_i_disksize(struct folio *folio, 2920 unsigned long offset) 2921 { 2922 struct buffer_head *bh; 2923 struct inode *inode = folio->mapping->host; 2924 unsigned int idx; 2925 int i; 2926 2927 bh = folio_buffers(folio); 2928 idx = offset >> inode->i_blkbits; 2929 2930 for (i = 0; i < idx; i++) 2931 bh = bh->b_this_page; 2932 2933 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2934 return 0; 2935 return 1; 2936 } 2937 2938 static int ext4_da_do_write_end(struct address_space *mapping, 2939 loff_t pos, unsigned len, unsigned copied, 2940 struct page *page) 2941 { 2942 struct inode *inode = mapping->host; 2943 loff_t old_size = inode->i_size; 2944 bool disksize_changed = false; 2945 loff_t new_i_size; 2946 2947 /* 2948 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2949 * flag, which all that's needed to trigger page writeback. 2950 */ 2951 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL); 2952 new_i_size = pos + copied; 2953 2954 /* 2955 * It's important to update i_size while still holding page lock, 2956 * because page writeout could otherwise come in and zero beyond 2957 * i_size. 2958 * 2959 * Since we are holding inode lock, we are sure i_disksize <= 2960 * i_size. We also know that if i_disksize < i_size, there are 2961 * delalloc writes pending in the range up to i_size. If the end of 2962 * the current write is <= i_size, there's no need to touch 2963 * i_disksize since writeback will push i_disksize up to i_size 2964 * eventually. If the end of the current write is > i_size and 2965 * inside an allocated block which ext4_da_should_update_i_disksize() 2966 * checked, we need to update i_disksize here as certain 2967 * ext4_writepages() paths not allocating blocks and update i_disksize. 2968 */ 2969 if (new_i_size > inode->i_size) { 2970 unsigned long end; 2971 2972 i_size_write(inode, new_i_size); 2973 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2974 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) { 2975 ext4_update_i_disksize(inode, new_i_size); 2976 disksize_changed = true; 2977 } 2978 } 2979 2980 unlock_page(page); 2981 put_page(page); 2982 2983 if (old_size < pos) 2984 pagecache_isize_extended(inode, old_size, pos); 2985 2986 if (disksize_changed) { 2987 handle_t *handle; 2988 2989 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 2990 if (IS_ERR(handle)) 2991 return PTR_ERR(handle); 2992 ext4_mark_inode_dirty(handle, inode); 2993 ext4_journal_stop(handle); 2994 } 2995 2996 return copied; 2997 } 2998 2999 static int ext4_da_write_end(struct file *file, 3000 struct address_space *mapping, 3001 loff_t pos, unsigned len, unsigned copied, 3002 struct page *page, void *fsdata) 3003 { 3004 struct inode *inode = mapping->host; 3005 int write_mode = (int)(unsigned long)fsdata; 3006 struct folio *folio = page_folio(page); 3007 3008 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3009 return ext4_write_end(file, mapping, pos, 3010 len, copied, &folio->page, fsdata); 3011 3012 trace_ext4_da_write_end(inode, pos, len, copied); 3013 3014 if (write_mode != CONVERT_INLINE_DATA && 3015 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3016 ext4_has_inline_data(inode)) 3017 return ext4_write_inline_data_end(inode, pos, len, copied, 3018 folio); 3019 3020 if (unlikely(copied < len) && !PageUptodate(page)) 3021 copied = 0; 3022 3023 return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page); 3024 } 3025 3026 /* 3027 * Force all delayed allocation blocks to be allocated for a given inode. 3028 */ 3029 int ext4_alloc_da_blocks(struct inode *inode) 3030 { 3031 trace_ext4_alloc_da_blocks(inode); 3032 3033 if (!EXT4_I(inode)->i_reserved_data_blocks) 3034 return 0; 3035 3036 /* 3037 * We do something simple for now. The filemap_flush() will 3038 * also start triggering a write of the data blocks, which is 3039 * not strictly speaking necessary (and for users of 3040 * laptop_mode, not even desirable). However, to do otherwise 3041 * would require replicating code paths in: 3042 * 3043 * ext4_writepages() -> 3044 * write_cache_pages() ---> (via passed in callback function) 3045 * __mpage_da_writepage() --> 3046 * mpage_add_bh_to_extent() 3047 * mpage_da_map_blocks() 3048 * 3049 * The problem is that write_cache_pages(), located in 3050 * mm/page-writeback.c, marks pages clean in preparation for 3051 * doing I/O, which is not desirable if we're not planning on 3052 * doing I/O at all. 3053 * 3054 * We could call write_cache_pages(), and then redirty all of 3055 * the pages by calling redirty_page_for_writepage() but that 3056 * would be ugly in the extreme. So instead we would need to 3057 * replicate parts of the code in the above functions, 3058 * simplifying them because we wouldn't actually intend to 3059 * write out the pages, but rather only collect contiguous 3060 * logical block extents, call the multi-block allocator, and 3061 * then update the buffer heads with the block allocations. 3062 * 3063 * For now, though, we'll cheat by calling filemap_flush(), 3064 * which will map the blocks, and start the I/O, but not 3065 * actually wait for the I/O to complete. 3066 */ 3067 return filemap_flush(inode->i_mapping); 3068 } 3069 3070 /* 3071 * bmap() is special. It gets used by applications such as lilo and by 3072 * the swapper to find the on-disk block of a specific piece of data. 3073 * 3074 * Naturally, this is dangerous if the block concerned is still in the 3075 * journal. If somebody makes a swapfile on an ext4 data-journaling 3076 * filesystem and enables swap, then they may get a nasty shock when the 3077 * data getting swapped to that swapfile suddenly gets overwritten by 3078 * the original zero's written out previously to the journal and 3079 * awaiting writeback in the kernel's buffer cache. 3080 * 3081 * So, if we see any bmap calls here on a modified, data-journaled file, 3082 * take extra steps to flush any blocks which might be in the cache. 3083 */ 3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3085 { 3086 struct inode *inode = mapping->host; 3087 sector_t ret = 0; 3088 3089 inode_lock_shared(inode); 3090 /* 3091 * We can get here for an inline file via the FIBMAP ioctl 3092 */ 3093 if (ext4_has_inline_data(inode)) 3094 goto out; 3095 3096 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3097 (test_opt(inode->i_sb, DELALLOC) || 3098 ext4_should_journal_data(inode))) { 3099 /* 3100 * With delalloc or journalled data we want to sync the file so 3101 * that we can make sure we allocate blocks for file and data 3102 * is in place for the user to see it 3103 */ 3104 filemap_write_and_wait(mapping); 3105 } 3106 3107 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3108 3109 out: 3110 inode_unlock_shared(inode); 3111 return ret; 3112 } 3113 3114 static int ext4_read_folio(struct file *file, struct folio *folio) 3115 { 3116 int ret = -EAGAIN; 3117 struct inode *inode = folio->mapping->host; 3118 3119 trace_ext4_read_folio(inode, folio); 3120 3121 if (ext4_has_inline_data(inode)) 3122 ret = ext4_readpage_inline(inode, folio); 3123 3124 if (ret == -EAGAIN) 3125 return ext4_mpage_readpages(inode, NULL, folio); 3126 3127 return ret; 3128 } 3129 3130 static void ext4_readahead(struct readahead_control *rac) 3131 { 3132 struct inode *inode = rac->mapping->host; 3133 3134 /* If the file has inline data, no need to do readahead. */ 3135 if (ext4_has_inline_data(inode)) 3136 return; 3137 3138 ext4_mpage_readpages(inode, rac, NULL); 3139 } 3140 3141 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3142 size_t length) 3143 { 3144 trace_ext4_invalidate_folio(folio, offset, length); 3145 3146 /* No journalling happens on data buffers when this function is used */ 3147 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3148 3149 block_invalidate_folio(folio, offset, length); 3150 } 3151 3152 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3153 size_t offset, size_t length) 3154 { 3155 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3156 3157 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3158 3159 /* 3160 * If it's a full truncate we just forget about the pending dirtying 3161 */ 3162 if (offset == 0 && length == folio_size(folio)) 3163 folio_clear_checked(folio); 3164 3165 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3166 } 3167 3168 /* Wrapper for aops... */ 3169 static void ext4_journalled_invalidate_folio(struct folio *folio, 3170 size_t offset, 3171 size_t length) 3172 { 3173 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3174 } 3175 3176 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3177 { 3178 struct inode *inode = folio->mapping->host; 3179 journal_t *journal = EXT4_JOURNAL(inode); 3180 3181 trace_ext4_release_folio(inode, folio); 3182 3183 /* Page has dirty journalled data -> cannot release */ 3184 if (folio_test_checked(folio)) 3185 return false; 3186 if (journal) 3187 return jbd2_journal_try_to_free_buffers(journal, folio); 3188 else 3189 return try_to_free_buffers(folio); 3190 } 3191 3192 static bool ext4_inode_datasync_dirty(struct inode *inode) 3193 { 3194 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3195 3196 if (journal) { 3197 if (jbd2_transaction_committed(journal, 3198 EXT4_I(inode)->i_datasync_tid)) 3199 return false; 3200 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3201 return !list_empty(&EXT4_I(inode)->i_fc_list); 3202 return true; 3203 } 3204 3205 /* Any metadata buffers to write? */ 3206 if (!list_empty(&inode->i_mapping->private_list)) 3207 return true; 3208 return inode->i_state & I_DIRTY_DATASYNC; 3209 } 3210 3211 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3212 struct ext4_map_blocks *map, loff_t offset, 3213 loff_t length, unsigned int flags) 3214 { 3215 u8 blkbits = inode->i_blkbits; 3216 3217 /* 3218 * Writes that span EOF might trigger an I/O size update on completion, 3219 * so consider them to be dirty for the purpose of O_DSYNC, even if 3220 * there is no other metadata changes being made or are pending. 3221 */ 3222 iomap->flags = 0; 3223 if (ext4_inode_datasync_dirty(inode) || 3224 offset + length > i_size_read(inode)) 3225 iomap->flags |= IOMAP_F_DIRTY; 3226 3227 if (map->m_flags & EXT4_MAP_NEW) 3228 iomap->flags |= IOMAP_F_NEW; 3229 3230 if (flags & IOMAP_DAX) 3231 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3232 else 3233 iomap->bdev = inode->i_sb->s_bdev; 3234 iomap->offset = (u64) map->m_lblk << blkbits; 3235 iomap->length = (u64) map->m_len << blkbits; 3236 3237 if ((map->m_flags & EXT4_MAP_MAPPED) && 3238 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3239 iomap->flags |= IOMAP_F_MERGED; 3240 3241 /* 3242 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3243 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3244 * set. In order for any allocated unwritten extents to be converted 3245 * into written extents correctly within the ->end_io() handler, we 3246 * need to ensure that the iomap->type is set appropriately. Hence, the 3247 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3248 * been set first. 3249 */ 3250 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3251 iomap->type = IOMAP_UNWRITTEN; 3252 iomap->addr = (u64) map->m_pblk << blkbits; 3253 if (flags & IOMAP_DAX) 3254 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3255 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3256 iomap->type = IOMAP_MAPPED; 3257 iomap->addr = (u64) map->m_pblk << blkbits; 3258 if (flags & IOMAP_DAX) 3259 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3260 } else { 3261 iomap->type = IOMAP_HOLE; 3262 iomap->addr = IOMAP_NULL_ADDR; 3263 } 3264 } 3265 3266 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3267 unsigned int flags) 3268 { 3269 handle_t *handle; 3270 u8 blkbits = inode->i_blkbits; 3271 int ret, dio_credits, m_flags = 0, retries = 0; 3272 3273 /* 3274 * Trim the mapping request to the maximum value that we can map at 3275 * once for direct I/O. 3276 */ 3277 if (map->m_len > DIO_MAX_BLOCKS) 3278 map->m_len = DIO_MAX_BLOCKS; 3279 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3280 3281 retry: 3282 /* 3283 * Either we allocate blocks and then don't get an unwritten extent, so 3284 * in that case we have reserved enough credits. Or, the blocks are 3285 * already allocated and unwritten. In that case, the extent conversion 3286 * fits into the credits as well. 3287 */ 3288 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3289 if (IS_ERR(handle)) 3290 return PTR_ERR(handle); 3291 3292 /* 3293 * DAX and direct I/O are the only two operations that are currently 3294 * supported with IOMAP_WRITE. 3295 */ 3296 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3297 if (flags & IOMAP_DAX) 3298 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3299 /* 3300 * We use i_size instead of i_disksize here because delalloc writeback 3301 * can complete at any point during the I/O and subsequently push the 3302 * i_disksize out to i_size. This could be beyond where direct I/O is 3303 * happening and thus expose allocated blocks to direct I/O reads. 3304 */ 3305 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3306 m_flags = EXT4_GET_BLOCKS_CREATE; 3307 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3308 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3309 3310 ret = ext4_map_blocks(handle, inode, map, m_flags); 3311 3312 /* 3313 * We cannot fill holes in indirect tree based inodes as that could 3314 * expose stale data in the case of a crash. Use the magic error code 3315 * to fallback to buffered I/O. 3316 */ 3317 if (!m_flags && !ret) 3318 ret = -ENOTBLK; 3319 3320 ext4_journal_stop(handle); 3321 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3322 goto retry; 3323 3324 return ret; 3325 } 3326 3327 3328 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3329 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3330 { 3331 int ret; 3332 struct ext4_map_blocks map; 3333 u8 blkbits = inode->i_blkbits; 3334 3335 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3336 return -EINVAL; 3337 3338 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3339 return -ERANGE; 3340 3341 /* 3342 * Calculate the first and last logical blocks respectively. 3343 */ 3344 map.m_lblk = offset >> blkbits; 3345 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3346 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3347 3348 if (flags & IOMAP_WRITE) { 3349 /* 3350 * We check here if the blocks are already allocated, then we 3351 * don't need to start a journal txn and we can directly return 3352 * the mapping information. This could boost performance 3353 * especially in multi-threaded overwrite requests. 3354 */ 3355 if (offset + length <= i_size_read(inode)) { 3356 ret = ext4_map_blocks(NULL, inode, &map, 0); 3357 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3358 goto out; 3359 } 3360 ret = ext4_iomap_alloc(inode, &map, flags); 3361 } else { 3362 ret = ext4_map_blocks(NULL, inode, &map, 0); 3363 } 3364 3365 if (ret < 0) 3366 return ret; 3367 out: 3368 /* 3369 * When inline encryption is enabled, sometimes I/O to an encrypted file 3370 * has to be broken up to guarantee DUN contiguity. Handle this by 3371 * limiting the length of the mapping returned. 3372 */ 3373 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3374 3375 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3376 3377 return 0; 3378 } 3379 3380 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3381 loff_t length, unsigned flags, struct iomap *iomap, 3382 struct iomap *srcmap) 3383 { 3384 int ret; 3385 3386 /* 3387 * Even for writes we don't need to allocate blocks, so just pretend 3388 * we are reading to save overhead of starting a transaction. 3389 */ 3390 flags &= ~IOMAP_WRITE; 3391 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3392 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3393 return ret; 3394 } 3395 3396 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3397 ssize_t written, unsigned flags, struct iomap *iomap) 3398 { 3399 /* 3400 * Check to see whether an error occurred while writing out the data to 3401 * the allocated blocks. If so, return the magic error code so that we 3402 * fallback to buffered I/O and attempt to complete the remainder of 3403 * the I/O. Any blocks that may have been allocated in preparation for 3404 * the direct I/O will be reused during buffered I/O. 3405 */ 3406 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3407 return -ENOTBLK; 3408 3409 return 0; 3410 } 3411 3412 const struct iomap_ops ext4_iomap_ops = { 3413 .iomap_begin = ext4_iomap_begin, 3414 .iomap_end = ext4_iomap_end, 3415 }; 3416 3417 const struct iomap_ops ext4_iomap_overwrite_ops = { 3418 .iomap_begin = ext4_iomap_overwrite_begin, 3419 .iomap_end = ext4_iomap_end, 3420 }; 3421 3422 static bool ext4_iomap_is_delalloc(struct inode *inode, 3423 struct ext4_map_blocks *map) 3424 { 3425 struct extent_status es; 3426 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3427 3428 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3429 map->m_lblk, end, &es); 3430 3431 if (!es.es_len || es.es_lblk > end) 3432 return false; 3433 3434 if (es.es_lblk > map->m_lblk) { 3435 map->m_len = es.es_lblk - map->m_lblk; 3436 return false; 3437 } 3438 3439 offset = map->m_lblk - es.es_lblk; 3440 map->m_len = es.es_len - offset; 3441 3442 return true; 3443 } 3444 3445 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3446 loff_t length, unsigned int flags, 3447 struct iomap *iomap, struct iomap *srcmap) 3448 { 3449 int ret; 3450 bool delalloc = false; 3451 struct ext4_map_blocks map; 3452 u8 blkbits = inode->i_blkbits; 3453 3454 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3455 return -EINVAL; 3456 3457 if (ext4_has_inline_data(inode)) { 3458 ret = ext4_inline_data_iomap(inode, iomap); 3459 if (ret != -EAGAIN) { 3460 if (ret == 0 && offset >= iomap->length) 3461 ret = -ENOENT; 3462 return ret; 3463 } 3464 } 3465 3466 /* 3467 * Calculate the first and last logical block respectively. 3468 */ 3469 map.m_lblk = offset >> blkbits; 3470 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3471 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3472 3473 /* 3474 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3475 * So handle it here itself instead of querying ext4_map_blocks(). 3476 * Since ext4_map_blocks() will warn about it and will return 3477 * -EIO error. 3478 */ 3479 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3481 3482 if (offset >= sbi->s_bitmap_maxbytes) { 3483 map.m_flags = 0; 3484 goto set_iomap; 3485 } 3486 } 3487 3488 ret = ext4_map_blocks(NULL, inode, &map, 0); 3489 if (ret < 0) 3490 return ret; 3491 if (ret == 0) 3492 delalloc = ext4_iomap_is_delalloc(inode, &map); 3493 3494 set_iomap: 3495 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3496 if (delalloc && iomap->type == IOMAP_HOLE) 3497 iomap->type = IOMAP_DELALLOC; 3498 3499 return 0; 3500 } 3501 3502 const struct iomap_ops ext4_iomap_report_ops = { 3503 .iomap_begin = ext4_iomap_begin_report, 3504 }; 3505 3506 /* 3507 * For data=journal mode, folio should be marked dirty only when it was 3508 * writeably mapped. When that happens, it was already attached to the 3509 * transaction and marked as jbddirty (we take care of this in 3510 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3511 * so we should have nothing to do here, except for the case when someone 3512 * had the page pinned and dirtied the page through this pin (e.g. by doing 3513 * direct IO to it). In that case we'd need to attach buffers here to the 3514 * transaction but we cannot due to lock ordering. We cannot just dirty the 3515 * folio and leave attached buffers clean, because the buffers' dirty state is 3516 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3517 * the journalling code will explode. So what we do is to mark the folio 3518 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3519 * to the transaction appropriately. 3520 */ 3521 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3522 struct folio *folio) 3523 { 3524 WARN_ON_ONCE(!folio_buffers(folio)); 3525 if (folio_maybe_dma_pinned(folio)) 3526 folio_set_checked(folio); 3527 return filemap_dirty_folio(mapping, folio); 3528 } 3529 3530 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3531 { 3532 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3533 WARN_ON_ONCE(!folio_buffers(folio)); 3534 return block_dirty_folio(mapping, folio); 3535 } 3536 3537 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3538 struct file *file, sector_t *span) 3539 { 3540 return iomap_swapfile_activate(sis, file, span, 3541 &ext4_iomap_report_ops); 3542 } 3543 3544 static const struct address_space_operations ext4_aops = { 3545 .read_folio = ext4_read_folio, 3546 .readahead = ext4_readahead, 3547 .writepages = ext4_writepages, 3548 .write_begin = ext4_write_begin, 3549 .write_end = ext4_write_end, 3550 .dirty_folio = ext4_dirty_folio, 3551 .bmap = ext4_bmap, 3552 .invalidate_folio = ext4_invalidate_folio, 3553 .release_folio = ext4_release_folio, 3554 .direct_IO = noop_direct_IO, 3555 .migrate_folio = buffer_migrate_folio, 3556 .is_partially_uptodate = block_is_partially_uptodate, 3557 .error_remove_page = generic_error_remove_page, 3558 .swap_activate = ext4_iomap_swap_activate, 3559 }; 3560 3561 static const struct address_space_operations ext4_journalled_aops = { 3562 .read_folio = ext4_read_folio, 3563 .readahead = ext4_readahead, 3564 .writepages = ext4_writepages, 3565 .write_begin = ext4_write_begin, 3566 .write_end = ext4_journalled_write_end, 3567 .dirty_folio = ext4_journalled_dirty_folio, 3568 .bmap = ext4_bmap, 3569 .invalidate_folio = ext4_journalled_invalidate_folio, 3570 .release_folio = ext4_release_folio, 3571 .direct_IO = noop_direct_IO, 3572 .migrate_folio = buffer_migrate_folio_norefs, 3573 .is_partially_uptodate = block_is_partially_uptodate, 3574 .error_remove_page = generic_error_remove_page, 3575 .swap_activate = ext4_iomap_swap_activate, 3576 }; 3577 3578 static const struct address_space_operations ext4_da_aops = { 3579 .read_folio = ext4_read_folio, 3580 .readahead = ext4_readahead, 3581 .writepages = ext4_writepages, 3582 .write_begin = ext4_da_write_begin, 3583 .write_end = ext4_da_write_end, 3584 .dirty_folio = ext4_dirty_folio, 3585 .bmap = ext4_bmap, 3586 .invalidate_folio = ext4_invalidate_folio, 3587 .release_folio = ext4_release_folio, 3588 .direct_IO = noop_direct_IO, 3589 .migrate_folio = buffer_migrate_folio, 3590 .is_partially_uptodate = block_is_partially_uptodate, 3591 .error_remove_page = generic_error_remove_page, 3592 .swap_activate = ext4_iomap_swap_activate, 3593 }; 3594 3595 static const struct address_space_operations ext4_dax_aops = { 3596 .writepages = ext4_dax_writepages, 3597 .direct_IO = noop_direct_IO, 3598 .dirty_folio = noop_dirty_folio, 3599 .bmap = ext4_bmap, 3600 .swap_activate = ext4_iomap_swap_activate, 3601 }; 3602 3603 void ext4_set_aops(struct inode *inode) 3604 { 3605 switch (ext4_inode_journal_mode(inode)) { 3606 case EXT4_INODE_ORDERED_DATA_MODE: 3607 case EXT4_INODE_WRITEBACK_DATA_MODE: 3608 break; 3609 case EXT4_INODE_JOURNAL_DATA_MODE: 3610 inode->i_mapping->a_ops = &ext4_journalled_aops; 3611 return; 3612 default: 3613 BUG(); 3614 } 3615 if (IS_DAX(inode)) 3616 inode->i_mapping->a_ops = &ext4_dax_aops; 3617 else if (test_opt(inode->i_sb, DELALLOC)) 3618 inode->i_mapping->a_ops = &ext4_da_aops; 3619 else 3620 inode->i_mapping->a_ops = &ext4_aops; 3621 } 3622 3623 static int __ext4_block_zero_page_range(handle_t *handle, 3624 struct address_space *mapping, loff_t from, loff_t length) 3625 { 3626 ext4_fsblk_t index = from >> PAGE_SHIFT; 3627 unsigned offset = from & (PAGE_SIZE-1); 3628 unsigned blocksize, pos; 3629 ext4_lblk_t iblock; 3630 struct inode *inode = mapping->host; 3631 struct buffer_head *bh; 3632 struct folio *folio; 3633 int err = 0; 3634 3635 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3636 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3637 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3638 if (IS_ERR(folio)) 3639 return PTR_ERR(folio); 3640 3641 blocksize = inode->i_sb->s_blocksize; 3642 3643 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3644 3645 bh = folio_buffers(folio); 3646 if (!bh) { 3647 create_empty_buffers(&folio->page, blocksize, 0); 3648 bh = folio_buffers(folio); 3649 } 3650 3651 /* Find the buffer that contains "offset" */ 3652 pos = blocksize; 3653 while (offset >= pos) { 3654 bh = bh->b_this_page; 3655 iblock++; 3656 pos += blocksize; 3657 } 3658 if (buffer_freed(bh)) { 3659 BUFFER_TRACE(bh, "freed: skip"); 3660 goto unlock; 3661 } 3662 if (!buffer_mapped(bh)) { 3663 BUFFER_TRACE(bh, "unmapped"); 3664 ext4_get_block(inode, iblock, bh, 0); 3665 /* unmapped? It's a hole - nothing to do */ 3666 if (!buffer_mapped(bh)) { 3667 BUFFER_TRACE(bh, "still unmapped"); 3668 goto unlock; 3669 } 3670 } 3671 3672 /* Ok, it's mapped. Make sure it's up-to-date */ 3673 if (folio_test_uptodate(folio)) 3674 set_buffer_uptodate(bh); 3675 3676 if (!buffer_uptodate(bh)) { 3677 err = ext4_read_bh_lock(bh, 0, true); 3678 if (err) 3679 goto unlock; 3680 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3681 /* We expect the key to be set. */ 3682 BUG_ON(!fscrypt_has_encryption_key(inode)); 3683 err = fscrypt_decrypt_pagecache_blocks(folio, 3684 blocksize, 3685 bh_offset(bh)); 3686 if (err) { 3687 clear_buffer_uptodate(bh); 3688 goto unlock; 3689 } 3690 } 3691 } 3692 if (ext4_should_journal_data(inode)) { 3693 BUFFER_TRACE(bh, "get write access"); 3694 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3695 EXT4_JTR_NONE); 3696 if (err) 3697 goto unlock; 3698 } 3699 folio_zero_range(folio, offset, length); 3700 BUFFER_TRACE(bh, "zeroed end of block"); 3701 3702 if (ext4_should_journal_data(inode)) { 3703 err = ext4_dirty_journalled_data(handle, bh); 3704 } else { 3705 err = 0; 3706 mark_buffer_dirty(bh); 3707 if (ext4_should_order_data(inode)) 3708 err = ext4_jbd2_inode_add_write(handle, inode, from, 3709 length); 3710 } 3711 3712 unlock: 3713 folio_unlock(folio); 3714 folio_put(folio); 3715 return err; 3716 } 3717 3718 /* 3719 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3720 * starting from file offset 'from'. The range to be zero'd must 3721 * be contained with in one block. If the specified range exceeds 3722 * the end of the block it will be shortened to end of the block 3723 * that corresponds to 'from' 3724 */ 3725 static int ext4_block_zero_page_range(handle_t *handle, 3726 struct address_space *mapping, loff_t from, loff_t length) 3727 { 3728 struct inode *inode = mapping->host; 3729 unsigned offset = from & (PAGE_SIZE-1); 3730 unsigned blocksize = inode->i_sb->s_blocksize; 3731 unsigned max = blocksize - (offset & (blocksize - 1)); 3732 3733 /* 3734 * correct length if it does not fall between 3735 * 'from' and the end of the block 3736 */ 3737 if (length > max || length < 0) 3738 length = max; 3739 3740 if (IS_DAX(inode)) { 3741 return dax_zero_range(inode, from, length, NULL, 3742 &ext4_iomap_ops); 3743 } 3744 return __ext4_block_zero_page_range(handle, mapping, from, length); 3745 } 3746 3747 /* 3748 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3749 * up to the end of the block which corresponds to `from'. 3750 * This required during truncate. We need to physically zero the tail end 3751 * of that block so it doesn't yield old data if the file is later grown. 3752 */ 3753 static int ext4_block_truncate_page(handle_t *handle, 3754 struct address_space *mapping, loff_t from) 3755 { 3756 unsigned offset = from & (PAGE_SIZE-1); 3757 unsigned length; 3758 unsigned blocksize; 3759 struct inode *inode = mapping->host; 3760 3761 /* If we are processing an encrypted inode during orphan list handling */ 3762 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3763 return 0; 3764 3765 blocksize = inode->i_sb->s_blocksize; 3766 length = blocksize - (offset & (blocksize - 1)); 3767 3768 return ext4_block_zero_page_range(handle, mapping, from, length); 3769 } 3770 3771 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3772 loff_t lstart, loff_t length) 3773 { 3774 struct super_block *sb = inode->i_sb; 3775 struct address_space *mapping = inode->i_mapping; 3776 unsigned partial_start, partial_end; 3777 ext4_fsblk_t start, end; 3778 loff_t byte_end = (lstart + length - 1); 3779 int err = 0; 3780 3781 partial_start = lstart & (sb->s_blocksize - 1); 3782 partial_end = byte_end & (sb->s_blocksize - 1); 3783 3784 start = lstart >> sb->s_blocksize_bits; 3785 end = byte_end >> sb->s_blocksize_bits; 3786 3787 /* Handle partial zero within the single block */ 3788 if (start == end && 3789 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3790 err = ext4_block_zero_page_range(handle, mapping, 3791 lstart, length); 3792 return err; 3793 } 3794 /* Handle partial zero out on the start of the range */ 3795 if (partial_start) { 3796 err = ext4_block_zero_page_range(handle, mapping, 3797 lstart, sb->s_blocksize); 3798 if (err) 3799 return err; 3800 } 3801 /* Handle partial zero out on the end of the range */ 3802 if (partial_end != sb->s_blocksize - 1) 3803 err = ext4_block_zero_page_range(handle, mapping, 3804 byte_end - partial_end, 3805 partial_end + 1); 3806 return err; 3807 } 3808 3809 int ext4_can_truncate(struct inode *inode) 3810 { 3811 if (S_ISREG(inode->i_mode)) 3812 return 1; 3813 if (S_ISDIR(inode->i_mode)) 3814 return 1; 3815 if (S_ISLNK(inode->i_mode)) 3816 return !ext4_inode_is_fast_symlink(inode); 3817 return 0; 3818 } 3819 3820 /* 3821 * We have to make sure i_disksize gets properly updated before we truncate 3822 * page cache due to hole punching or zero range. Otherwise i_disksize update 3823 * can get lost as it may have been postponed to submission of writeback but 3824 * that will never happen after we truncate page cache. 3825 */ 3826 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3827 loff_t len) 3828 { 3829 handle_t *handle; 3830 int ret; 3831 3832 loff_t size = i_size_read(inode); 3833 3834 WARN_ON(!inode_is_locked(inode)); 3835 if (offset > size || offset + len < size) 3836 return 0; 3837 3838 if (EXT4_I(inode)->i_disksize >= size) 3839 return 0; 3840 3841 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3842 if (IS_ERR(handle)) 3843 return PTR_ERR(handle); 3844 ext4_update_i_disksize(inode, size); 3845 ret = ext4_mark_inode_dirty(handle, inode); 3846 ext4_journal_stop(handle); 3847 3848 return ret; 3849 } 3850 3851 static void ext4_wait_dax_page(struct inode *inode) 3852 { 3853 filemap_invalidate_unlock(inode->i_mapping); 3854 schedule(); 3855 filemap_invalidate_lock(inode->i_mapping); 3856 } 3857 3858 int ext4_break_layouts(struct inode *inode) 3859 { 3860 struct page *page; 3861 int error; 3862 3863 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3864 return -EINVAL; 3865 3866 do { 3867 page = dax_layout_busy_page(inode->i_mapping); 3868 if (!page) 3869 return 0; 3870 3871 error = ___wait_var_event(&page->_refcount, 3872 atomic_read(&page->_refcount) == 1, 3873 TASK_INTERRUPTIBLE, 0, 0, 3874 ext4_wait_dax_page(inode)); 3875 } while (error == 0); 3876 3877 return error; 3878 } 3879 3880 /* 3881 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3882 * associated with the given offset and length 3883 * 3884 * @inode: File inode 3885 * @offset: The offset where the hole will begin 3886 * @len: The length of the hole 3887 * 3888 * Returns: 0 on success or negative on failure 3889 */ 3890 3891 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3892 { 3893 struct inode *inode = file_inode(file); 3894 struct super_block *sb = inode->i_sb; 3895 ext4_lblk_t first_block, stop_block; 3896 struct address_space *mapping = inode->i_mapping; 3897 loff_t first_block_offset, last_block_offset, max_length; 3898 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3899 handle_t *handle; 3900 unsigned int credits; 3901 int ret = 0, ret2 = 0; 3902 3903 trace_ext4_punch_hole(inode, offset, length, 0); 3904 3905 /* 3906 * Write out all dirty pages to avoid race conditions 3907 * Then release them. 3908 */ 3909 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3910 ret = filemap_write_and_wait_range(mapping, offset, 3911 offset + length - 1); 3912 if (ret) 3913 return ret; 3914 } 3915 3916 inode_lock(inode); 3917 3918 /* No need to punch hole beyond i_size */ 3919 if (offset >= inode->i_size) 3920 goto out_mutex; 3921 3922 /* 3923 * If the hole extends beyond i_size, set the hole 3924 * to end after the page that contains i_size 3925 */ 3926 if (offset + length > inode->i_size) { 3927 length = inode->i_size + 3928 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3929 offset; 3930 } 3931 3932 /* 3933 * For punch hole the length + offset needs to be within one block 3934 * before last range. Adjust the length if it goes beyond that limit. 3935 */ 3936 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3937 if (offset + length > max_length) 3938 length = max_length - offset; 3939 3940 if (offset & (sb->s_blocksize - 1) || 3941 (offset + length) & (sb->s_blocksize - 1)) { 3942 /* 3943 * Attach jinode to inode for jbd2 if we do any zeroing of 3944 * partial block 3945 */ 3946 ret = ext4_inode_attach_jinode(inode); 3947 if (ret < 0) 3948 goto out_mutex; 3949 3950 } 3951 3952 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3953 inode_dio_wait(inode); 3954 3955 ret = file_modified(file); 3956 if (ret) 3957 goto out_mutex; 3958 3959 /* 3960 * Prevent page faults from reinstantiating pages we have released from 3961 * page cache. 3962 */ 3963 filemap_invalidate_lock(mapping); 3964 3965 ret = ext4_break_layouts(inode); 3966 if (ret) 3967 goto out_dio; 3968 3969 first_block_offset = round_up(offset, sb->s_blocksize); 3970 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3971 3972 /* Now release the pages and zero block aligned part of pages*/ 3973 if (last_block_offset > first_block_offset) { 3974 ret = ext4_update_disksize_before_punch(inode, offset, length); 3975 if (ret) 3976 goto out_dio; 3977 truncate_pagecache_range(inode, first_block_offset, 3978 last_block_offset); 3979 } 3980 3981 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3982 credits = ext4_writepage_trans_blocks(inode); 3983 else 3984 credits = ext4_blocks_for_truncate(inode); 3985 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3986 if (IS_ERR(handle)) { 3987 ret = PTR_ERR(handle); 3988 ext4_std_error(sb, ret); 3989 goto out_dio; 3990 } 3991 3992 ret = ext4_zero_partial_blocks(handle, inode, offset, 3993 length); 3994 if (ret) 3995 goto out_stop; 3996 3997 first_block = (offset + sb->s_blocksize - 1) >> 3998 EXT4_BLOCK_SIZE_BITS(sb); 3999 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4000 4001 /* If there are blocks to remove, do it */ 4002 if (stop_block > first_block) { 4003 4004 down_write(&EXT4_I(inode)->i_data_sem); 4005 ext4_discard_preallocations(inode, 0); 4006 4007 ext4_es_remove_extent(inode, first_block, 4008 stop_block - first_block); 4009 4010 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4011 ret = ext4_ext_remove_space(inode, first_block, 4012 stop_block - 1); 4013 else 4014 ret = ext4_ind_remove_space(handle, inode, first_block, 4015 stop_block); 4016 4017 up_write(&EXT4_I(inode)->i_data_sem); 4018 } 4019 ext4_fc_track_range(handle, inode, first_block, stop_block); 4020 if (IS_SYNC(inode)) 4021 ext4_handle_sync(handle); 4022 4023 inode->i_mtime = inode_set_ctime_current(inode); 4024 ret2 = ext4_mark_inode_dirty(handle, inode); 4025 if (unlikely(ret2)) 4026 ret = ret2; 4027 if (ret >= 0) 4028 ext4_update_inode_fsync_trans(handle, inode, 1); 4029 out_stop: 4030 ext4_journal_stop(handle); 4031 out_dio: 4032 filemap_invalidate_unlock(mapping); 4033 out_mutex: 4034 inode_unlock(inode); 4035 return ret; 4036 } 4037 4038 int ext4_inode_attach_jinode(struct inode *inode) 4039 { 4040 struct ext4_inode_info *ei = EXT4_I(inode); 4041 struct jbd2_inode *jinode; 4042 4043 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4044 return 0; 4045 4046 jinode = jbd2_alloc_inode(GFP_KERNEL); 4047 spin_lock(&inode->i_lock); 4048 if (!ei->jinode) { 4049 if (!jinode) { 4050 spin_unlock(&inode->i_lock); 4051 return -ENOMEM; 4052 } 4053 ei->jinode = jinode; 4054 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4055 jinode = NULL; 4056 } 4057 spin_unlock(&inode->i_lock); 4058 if (unlikely(jinode != NULL)) 4059 jbd2_free_inode(jinode); 4060 return 0; 4061 } 4062 4063 /* 4064 * ext4_truncate() 4065 * 4066 * We block out ext4_get_block() block instantiations across the entire 4067 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4068 * simultaneously on behalf of the same inode. 4069 * 4070 * As we work through the truncate and commit bits of it to the journal there 4071 * is one core, guiding principle: the file's tree must always be consistent on 4072 * disk. We must be able to restart the truncate after a crash. 4073 * 4074 * The file's tree may be transiently inconsistent in memory (although it 4075 * probably isn't), but whenever we close off and commit a journal transaction, 4076 * the contents of (the filesystem + the journal) must be consistent and 4077 * restartable. It's pretty simple, really: bottom up, right to left (although 4078 * left-to-right works OK too). 4079 * 4080 * Note that at recovery time, journal replay occurs *before* the restart of 4081 * truncate against the orphan inode list. 4082 * 4083 * The committed inode has the new, desired i_size (which is the same as 4084 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4085 * that this inode's truncate did not complete and it will again call 4086 * ext4_truncate() to have another go. So there will be instantiated blocks 4087 * to the right of the truncation point in a crashed ext4 filesystem. But 4088 * that's fine - as long as they are linked from the inode, the post-crash 4089 * ext4_truncate() run will find them and release them. 4090 */ 4091 int ext4_truncate(struct inode *inode) 4092 { 4093 struct ext4_inode_info *ei = EXT4_I(inode); 4094 unsigned int credits; 4095 int err = 0, err2; 4096 handle_t *handle; 4097 struct address_space *mapping = inode->i_mapping; 4098 4099 /* 4100 * There is a possibility that we're either freeing the inode 4101 * or it's a completely new inode. In those cases we might not 4102 * have i_rwsem locked because it's not necessary. 4103 */ 4104 if (!(inode->i_state & (I_NEW|I_FREEING))) 4105 WARN_ON(!inode_is_locked(inode)); 4106 trace_ext4_truncate_enter(inode); 4107 4108 if (!ext4_can_truncate(inode)) 4109 goto out_trace; 4110 4111 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4112 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4113 4114 if (ext4_has_inline_data(inode)) { 4115 int has_inline = 1; 4116 4117 err = ext4_inline_data_truncate(inode, &has_inline); 4118 if (err || has_inline) 4119 goto out_trace; 4120 } 4121 4122 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4123 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4124 err = ext4_inode_attach_jinode(inode); 4125 if (err) 4126 goto out_trace; 4127 } 4128 4129 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4130 credits = ext4_writepage_trans_blocks(inode); 4131 else 4132 credits = ext4_blocks_for_truncate(inode); 4133 4134 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4135 if (IS_ERR(handle)) { 4136 err = PTR_ERR(handle); 4137 goto out_trace; 4138 } 4139 4140 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4141 ext4_block_truncate_page(handle, mapping, inode->i_size); 4142 4143 /* 4144 * We add the inode to the orphan list, so that if this 4145 * truncate spans multiple transactions, and we crash, we will 4146 * resume the truncate when the filesystem recovers. It also 4147 * marks the inode dirty, to catch the new size. 4148 * 4149 * Implication: the file must always be in a sane, consistent 4150 * truncatable state while each transaction commits. 4151 */ 4152 err = ext4_orphan_add(handle, inode); 4153 if (err) 4154 goto out_stop; 4155 4156 down_write(&EXT4_I(inode)->i_data_sem); 4157 4158 ext4_discard_preallocations(inode, 0); 4159 4160 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4161 err = ext4_ext_truncate(handle, inode); 4162 else 4163 ext4_ind_truncate(handle, inode); 4164 4165 up_write(&ei->i_data_sem); 4166 if (err) 4167 goto out_stop; 4168 4169 if (IS_SYNC(inode)) 4170 ext4_handle_sync(handle); 4171 4172 out_stop: 4173 /* 4174 * If this was a simple ftruncate() and the file will remain alive, 4175 * then we need to clear up the orphan record which we created above. 4176 * However, if this was a real unlink then we were called by 4177 * ext4_evict_inode(), and we allow that function to clean up the 4178 * orphan info for us. 4179 */ 4180 if (inode->i_nlink) 4181 ext4_orphan_del(handle, inode); 4182 4183 inode->i_mtime = inode_set_ctime_current(inode); 4184 err2 = ext4_mark_inode_dirty(handle, inode); 4185 if (unlikely(err2 && !err)) 4186 err = err2; 4187 ext4_journal_stop(handle); 4188 4189 out_trace: 4190 trace_ext4_truncate_exit(inode); 4191 return err; 4192 } 4193 4194 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4195 { 4196 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4197 return inode_peek_iversion_raw(inode); 4198 else 4199 return inode_peek_iversion(inode); 4200 } 4201 4202 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4203 struct ext4_inode_info *ei) 4204 { 4205 struct inode *inode = &(ei->vfs_inode); 4206 u64 i_blocks = READ_ONCE(inode->i_blocks); 4207 struct super_block *sb = inode->i_sb; 4208 4209 if (i_blocks <= ~0U) { 4210 /* 4211 * i_blocks can be represented in a 32 bit variable 4212 * as multiple of 512 bytes 4213 */ 4214 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4215 raw_inode->i_blocks_high = 0; 4216 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4217 return 0; 4218 } 4219 4220 /* 4221 * This should never happen since sb->s_maxbytes should not have 4222 * allowed this, sb->s_maxbytes was set according to the huge_file 4223 * feature in ext4_fill_super(). 4224 */ 4225 if (!ext4_has_feature_huge_file(sb)) 4226 return -EFSCORRUPTED; 4227 4228 if (i_blocks <= 0xffffffffffffULL) { 4229 /* 4230 * i_blocks can be represented in a 48 bit variable 4231 * as multiple of 512 bytes 4232 */ 4233 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4234 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4235 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4236 } else { 4237 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4238 /* i_block is stored in file system block size */ 4239 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4240 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4241 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4242 } 4243 return 0; 4244 } 4245 4246 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4247 { 4248 struct ext4_inode_info *ei = EXT4_I(inode); 4249 uid_t i_uid; 4250 gid_t i_gid; 4251 projid_t i_projid; 4252 int block; 4253 int err; 4254 4255 err = ext4_inode_blocks_set(raw_inode, ei); 4256 4257 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4258 i_uid = i_uid_read(inode); 4259 i_gid = i_gid_read(inode); 4260 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4261 if (!(test_opt(inode->i_sb, NO_UID32))) { 4262 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4263 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4264 /* 4265 * Fix up interoperability with old kernels. Otherwise, 4266 * old inodes get re-used with the upper 16 bits of the 4267 * uid/gid intact. 4268 */ 4269 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4270 raw_inode->i_uid_high = 0; 4271 raw_inode->i_gid_high = 0; 4272 } else { 4273 raw_inode->i_uid_high = 4274 cpu_to_le16(high_16_bits(i_uid)); 4275 raw_inode->i_gid_high = 4276 cpu_to_le16(high_16_bits(i_gid)); 4277 } 4278 } else { 4279 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4280 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4281 raw_inode->i_uid_high = 0; 4282 raw_inode->i_gid_high = 0; 4283 } 4284 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4285 4286 EXT4_INODE_SET_CTIME(inode, raw_inode); 4287 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4288 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4289 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4290 4291 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4292 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4293 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4294 raw_inode->i_file_acl_high = 4295 cpu_to_le16(ei->i_file_acl >> 32); 4296 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4297 ext4_isize_set(raw_inode, ei->i_disksize); 4298 4299 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4300 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4301 if (old_valid_dev(inode->i_rdev)) { 4302 raw_inode->i_block[0] = 4303 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4304 raw_inode->i_block[1] = 0; 4305 } else { 4306 raw_inode->i_block[0] = 0; 4307 raw_inode->i_block[1] = 4308 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4309 raw_inode->i_block[2] = 0; 4310 } 4311 } else if (!ext4_has_inline_data(inode)) { 4312 for (block = 0; block < EXT4_N_BLOCKS; block++) 4313 raw_inode->i_block[block] = ei->i_data[block]; 4314 } 4315 4316 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4317 u64 ivers = ext4_inode_peek_iversion(inode); 4318 4319 raw_inode->i_disk_version = cpu_to_le32(ivers); 4320 if (ei->i_extra_isize) { 4321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4322 raw_inode->i_version_hi = 4323 cpu_to_le32(ivers >> 32); 4324 raw_inode->i_extra_isize = 4325 cpu_to_le16(ei->i_extra_isize); 4326 } 4327 } 4328 4329 if (i_projid != EXT4_DEF_PROJID && 4330 !ext4_has_feature_project(inode->i_sb)) 4331 err = err ?: -EFSCORRUPTED; 4332 4333 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4334 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4335 raw_inode->i_projid = cpu_to_le32(i_projid); 4336 4337 ext4_inode_csum_set(inode, raw_inode, ei); 4338 return err; 4339 } 4340 4341 /* 4342 * ext4_get_inode_loc returns with an extra refcount against the inode's 4343 * underlying buffer_head on success. If we pass 'inode' and it does not 4344 * have in-inode xattr, we have all inode data in memory that is needed 4345 * to recreate the on-disk version of this inode. 4346 */ 4347 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4348 struct inode *inode, struct ext4_iloc *iloc, 4349 ext4_fsblk_t *ret_block) 4350 { 4351 struct ext4_group_desc *gdp; 4352 struct buffer_head *bh; 4353 ext4_fsblk_t block; 4354 struct blk_plug plug; 4355 int inodes_per_block, inode_offset; 4356 4357 iloc->bh = NULL; 4358 if (ino < EXT4_ROOT_INO || 4359 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4360 return -EFSCORRUPTED; 4361 4362 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4363 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4364 if (!gdp) 4365 return -EIO; 4366 4367 /* 4368 * Figure out the offset within the block group inode table 4369 */ 4370 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4371 inode_offset = ((ino - 1) % 4372 EXT4_INODES_PER_GROUP(sb)); 4373 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4374 4375 block = ext4_inode_table(sb, gdp); 4376 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4377 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4378 ext4_error(sb, "Invalid inode table block %llu in " 4379 "block_group %u", block, iloc->block_group); 4380 return -EFSCORRUPTED; 4381 } 4382 block += (inode_offset / inodes_per_block); 4383 4384 bh = sb_getblk(sb, block); 4385 if (unlikely(!bh)) 4386 return -ENOMEM; 4387 if (ext4_buffer_uptodate(bh)) 4388 goto has_buffer; 4389 4390 lock_buffer(bh); 4391 if (ext4_buffer_uptodate(bh)) { 4392 /* Someone brought it uptodate while we waited */ 4393 unlock_buffer(bh); 4394 goto has_buffer; 4395 } 4396 4397 /* 4398 * If we have all information of the inode in memory and this 4399 * is the only valid inode in the block, we need not read the 4400 * block. 4401 */ 4402 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4403 struct buffer_head *bitmap_bh; 4404 int i, start; 4405 4406 start = inode_offset & ~(inodes_per_block - 1); 4407 4408 /* Is the inode bitmap in cache? */ 4409 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4410 if (unlikely(!bitmap_bh)) 4411 goto make_io; 4412 4413 /* 4414 * If the inode bitmap isn't in cache then the 4415 * optimisation may end up performing two reads instead 4416 * of one, so skip it. 4417 */ 4418 if (!buffer_uptodate(bitmap_bh)) { 4419 brelse(bitmap_bh); 4420 goto make_io; 4421 } 4422 for (i = start; i < start + inodes_per_block; i++) { 4423 if (i == inode_offset) 4424 continue; 4425 if (ext4_test_bit(i, bitmap_bh->b_data)) 4426 break; 4427 } 4428 brelse(bitmap_bh); 4429 if (i == start + inodes_per_block) { 4430 struct ext4_inode *raw_inode = 4431 (struct ext4_inode *) (bh->b_data + iloc->offset); 4432 4433 /* all other inodes are free, so skip I/O */ 4434 memset(bh->b_data, 0, bh->b_size); 4435 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4436 ext4_fill_raw_inode(inode, raw_inode); 4437 set_buffer_uptodate(bh); 4438 unlock_buffer(bh); 4439 goto has_buffer; 4440 } 4441 } 4442 4443 make_io: 4444 /* 4445 * If we need to do any I/O, try to pre-readahead extra 4446 * blocks from the inode table. 4447 */ 4448 blk_start_plug(&plug); 4449 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4450 ext4_fsblk_t b, end, table; 4451 unsigned num; 4452 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4453 4454 table = ext4_inode_table(sb, gdp); 4455 /* s_inode_readahead_blks is always a power of 2 */ 4456 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4457 if (table > b) 4458 b = table; 4459 end = b + ra_blks; 4460 num = EXT4_INODES_PER_GROUP(sb); 4461 if (ext4_has_group_desc_csum(sb)) 4462 num -= ext4_itable_unused_count(sb, gdp); 4463 table += num / inodes_per_block; 4464 if (end > table) 4465 end = table; 4466 while (b <= end) 4467 ext4_sb_breadahead_unmovable(sb, b++); 4468 } 4469 4470 /* 4471 * There are other valid inodes in the buffer, this inode 4472 * has in-inode xattrs, or we don't have this inode in memory. 4473 * Read the block from disk. 4474 */ 4475 trace_ext4_load_inode(sb, ino); 4476 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4477 blk_finish_plug(&plug); 4478 wait_on_buffer(bh); 4479 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4480 if (!buffer_uptodate(bh)) { 4481 if (ret_block) 4482 *ret_block = block; 4483 brelse(bh); 4484 return -EIO; 4485 } 4486 has_buffer: 4487 iloc->bh = bh; 4488 return 0; 4489 } 4490 4491 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4492 struct ext4_iloc *iloc) 4493 { 4494 ext4_fsblk_t err_blk = 0; 4495 int ret; 4496 4497 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4498 &err_blk); 4499 4500 if (ret == -EIO) 4501 ext4_error_inode_block(inode, err_blk, EIO, 4502 "unable to read itable block"); 4503 4504 return ret; 4505 } 4506 4507 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4508 { 4509 ext4_fsblk_t err_blk = 0; 4510 int ret; 4511 4512 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4513 &err_blk); 4514 4515 if (ret == -EIO) 4516 ext4_error_inode_block(inode, err_blk, EIO, 4517 "unable to read itable block"); 4518 4519 return ret; 4520 } 4521 4522 4523 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4524 struct ext4_iloc *iloc) 4525 { 4526 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4527 } 4528 4529 static bool ext4_should_enable_dax(struct inode *inode) 4530 { 4531 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4532 4533 if (test_opt2(inode->i_sb, DAX_NEVER)) 4534 return false; 4535 if (!S_ISREG(inode->i_mode)) 4536 return false; 4537 if (ext4_should_journal_data(inode)) 4538 return false; 4539 if (ext4_has_inline_data(inode)) 4540 return false; 4541 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4542 return false; 4543 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4544 return false; 4545 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4546 return false; 4547 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4548 return true; 4549 4550 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4551 } 4552 4553 void ext4_set_inode_flags(struct inode *inode, bool init) 4554 { 4555 unsigned int flags = EXT4_I(inode)->i_flags; 4556 unsigned int new_fl = 0; 4557 4558 WARN_ON_ONCE(IS_DAX(inode) && init); 4559 4560 if (flags & EXT4_SYNC_FL) 4561 new_fl |= S_SYNC; 4562 if (flags & EXT4_APPEND_FL) 4563 new_fl |= S_APPEND; 4564 if (flags & EXT4_IMMUTABLE_FL) 4565 new_fl |= S_IMMUTABLE; 4566 if (flags & EXT4_NOATIME_FL) 4567 new_fl |= S_NOATIME; 4568 if (flags & EXT4_DIRSYNC_FL) 4569 new_fl |= S_DIRSYNC; 4570 4571 /* Because of the way inode_set_flags() works we must preserve S_DAX 4572 * here if already set. */ 4573 new_fl |= (inode->i_flags & S_DAX); 4574 if (init && ext4_should_enable_dax(inode)) 4575 new_fl |= S_DAX; 4576 4577 if (flags & EXT4_ENCRYPT_FL) 4578 new_fl |= S_ENCRYPTED; 4579 if (flags & EXT4_CASEFOLD_FL) 4580 new_fl |= S_CASEFOLD; 4581 if (flags & EXT4_VERITY_FL) 4582 new_fl |= S_VERITY; 4583 inode_set_flags(inode, new_fl, 4584 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4585 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4586 } 4587 4588 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4589 struct ext4_inode_info *ei) 4590 { 4591 blkcnt_t i_blocks ; 4592 struct inode *inode = &(ei->vfs_inode); 4593 struct super_block *sb = inode->i_sb; 4594 4595 if (ext4_has_feature_huge_file(sb)) { 4596 /* we are using combined 48 bit field */ 4597 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4598 le32_to_cpu(raw_inode->i_blocks_lo); 4599 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4600 /* i_blocks represent file system block size */ 4601 return i_blocks << (inode->i_blkbits - 9); 4602 } else { 4603 return i_blocks; 4604 } 4605 } else { 4606 return le32_to_cpu(raw_inode->i_blocks_lo); 4607 } 4608 } 4609 4610 static inline int ext4_iget_extra_inode(struct inode *inode, 4611 struct ext4_inode *raw_inode, 4612 struct ext4_inode_info *ei) 4613 { 4614 __le32 *magic = (void *)raw_inode + 4615 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4616 4617 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4618 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4619 int err; 4620 4621 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4622 err = ext4_find_inline_data_nolock(inode); 4623 if (!err && ext4_has_inline_data(inode)) 4624 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4625 return err; 4626 } else 4627 EXT4_I(inode)->i_inline_off = 0; 4628 return 0; 4629 } 4630 4631 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4632 { 4633 if (!ext4_has_feature_project(inode->i_sb)) 4634 return -EOPNOTSUPP; 4635 *projid = EXT4_I(inode)->i_projid; 4636 return 0; 4637 } 4638 4639 /* 4640 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4641 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4642 * set. 4643 */ 4644 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4645 { 4646 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4647 inode_set_iversion_raw(inode, val); 4648 else 4649 inode_set_iversion_queried(inode, val); 4650 } 4651 4652 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4653 4654 { 4655 if (flags & EXT4_IGET_EA_INODE) { 4656 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4657 return "missing EA_INODE flag"; 4658 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4659 EXT4_I(inode)->i_file_acl) 4660 return "ea_inode with extended attributes"; 4661 } else { 4662 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4663 return "unexpected EA_INODE flag"; 4664 } 4665 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4666 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4667 return NULL; 4668 } 4669 4670 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4671 ext4_iget_flags flags, const char *function, 4672 unsigned int line) 4673 { 4674 struct ext4_iloc iloc; 4675 struct ext4_inode *raw_inode; 4676 struct ext4_inode_info *ei; 4677 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4678 struct inode *inode; 4679 const char *err_str; 4680 journal_t *journal = EXT4_SB(sb)->s_journal; 4681 long ret; 4682 loff_t size; 4683 int block; 4684 uid_t i_uid; 4685 gid_t i_gid; 4686 projid_t i_projid; 4687 4688 if ((!(flags & EXT4_IGET_SPECIAL) && 4689 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4690 ino == le32_to_cpu(es->s_usr_quota_inum) || 4691 ino == le32_to_cpu(es->s_grp_quota_inum) || 4692 ino == le32_to_cpu(es->s_prj_quota_inum) || 4693 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4694 (ino < EXT4_ROOT_INO) || 4695 (ino > le32_to_cpu(es->s_inodes_count))) { 4696 if (flags & EXT4_IGET_HANDLE) 4697 return ERR_PTR(-ESTALE); 4698 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4699 "inode #%lu: comm %s: iget: illegal inode #", 4700 ino, current->comm); 4701 return ERR_PTR(-EFSCORRUPTED); 4702 } 4703 4704 inode = iget_locked(sb, ino); 4705 if (!inode) 4706 return ERR_PTR(-ENOMEM); 4707 if (!(inode->i_state & I_NEW)) { 4708 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4709 ext4_error_inode(inode, function, line, 0, err_str); 4710 iput(inode); 4711 return ERR_PTR(-EFSCORRUPTED); 4712 } 4713 return inode; 4714 } 4715 4716 ei = EXT4_I(inode); 4717 iloc.bh = NULL; 4718 4719 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4720 if (ret < 0) 4721 goto bad_inode; 4722 raw_inode = ext4_raw_inode(&iloc); 4723 4724 if ((flags & EXT4_IGET_HANDLE) && 4725 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4726 ret = -ESTALE; 4727 goto bad_inode; 4728 } 4729 4730 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4731 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4732 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4733 EXT4_INODE_SIZE(inode->i_sb) || 4734 (ei->i_extra_isize & 3)) { 4735 ext4_error_inode(inode, function, line, 0, 4736 "iget: bad extra_isize %u " 4737 "(inode size %u)", 4738 ei->i_extra_isize, 4739 EXT4_INODE_SIZE(inode->i_sb)); 4740 ret = -EFSCORRUPTED; 4741 goto bad_inode; 4742 } 4743 } else 4744 ei->i_extra_isize = 0; 4745 4746 /* Precompute checksum seed for inode metadata */ 4747 if (ext4_has_metadata_csum(sb)) { 4748 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4749 __u32 csum; 4750 __le32 inum = cpu_to_le32(inode->i_ino); 4751 __le32 gen = raw_inode->i_generation; 4752 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4753 sizeof(inum)); 4754 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4755 sizeof(gen)); 4756 } 4757 4758 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4759 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4760 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4761 ext4_error_inode_err(inode, function, line, 0, 4762 EFSBADCRC, "iget: checksum invalid"); 4763 ret = -EFSBADCRC; 4764 goto bad_inode; 4765 } 4766 4767 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4768 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4769 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4770 if (ext4_has_feature_project(sb) && 4771 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4772 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4773 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4774 else 4775 i_projid = EXT4_DEF_PROJID; 4776 4777 if (!(test_opt(inode->i_sb, NO_UID32))) { 4778 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4779 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4780 } 4781 i_uid_write(inode, i_uid); 4782 i_gid_write(inode, i_gid); 4783 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4784 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4785 4786 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4787 ei->i_inline_off = 0; 4788 ei->i_dir_start_lookup = 0; 4789 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4790 /* We now have enough fields to check if the inode was active or not. 4791 * This is needed because nfsd might try to access dead inodes 4792 * the test is that same one that e2fsck uses 4793 * NeilBrown 1999oct15 4794 */ 4795 if (inode->i_nlink == 0) { 4796 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4797 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4798 ino != EXT4_BOOT_LOADER_INO) { 4799 /* this inode is deleted or unallocated */ 4800 if (flags & EXT4_IGET_SPECIAL) { 4801 ext4_error_inode(inode, function, line, 0, 4802 "iget: special inode unallocated"); 4803 ret = -EFSCORRUPTED; 4804 } else 4805 ret = -ESTALE; 4806 goto bad_inode; 4807 } 4808 /* The only unlinked inodes we let through here have 4809 * valid i_mode and are being read by the orphan 4810 * recovery code: that's fine, we're about to complete 4811 * the process of deleting those. 4812 * OR it is the EXT4_BOOT_LOADER_INO which is 4813 * not initialized on a new filesystem. */ 4814 } 4815 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4816 ext4_set_inode_flags(inode, true); 4817 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4818 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4819 if (ext4_has_feature_64bit(sb)) 4820 ei->i_file_acl |= 4821 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4822 inode->i_size = ext4_isize(sb, raw_inode); 4823 if ((size = i_size_read(inode)) < 0) { 4824 ext4_error_inode(inode, function, line, 0, 4825 "iget: bad i_size value: %lld", size); 4826 ret = -EFSCORRUPTED; 4827 goto bad_inode; 4828 } 4829 /* 4830 * If dir_index is not enabled but there's dir with INDEX flag set, 4831 * we'd normally treat htree data as empty space. But with metadata 4832 * checksumming that corrupts checksums so forbid that. 4833 */ 4834 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4835 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4836 ext4_error_inode(inode, function, line, 0, 4837 "iget: Dir with htree data on filesystem without dir_index feature."); 4838 ret = -EFSCORRUPTED; 4839 goto bad_inode; 4840 } 4841 ei->i_disksize = inode->i_size; 4842 #ifdef CONFIG_QUOTA 4843 ei->i_reserved_quota = 0; 4844 #endif 4845 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4846 ei->i_block_group = iloc.block_group; 4847 ei->i_last_alloc_group = ~0; 4848 /* 4849 * NOTE! The in-memory inode i_data array is in little-endian order 4850 * even on big-endian machines: we do NOT byteswap the block numbers! 4851 */ 4852 for (block = 0; block < EXT4_N_BLOCKS; block++) 4853 ei->i_data[block] = raw_inode->i_block[block]; 4854 INIT_LIST_HEAD(&ei->i_orphan); 4855 ext4_fc_init_inode(&ei->vfs_inode); 4856 4857 /* 4858 * Set transaction id's of transactions that have to be committed 4859 * to finish f[data]sync. We set them to currently running transaction 4860 * as we cannot be sure that the inode or some of its metadata isn't 4861 * part of the transaction - the inode could have been reclaimed and 4862 * now it is reread from disk. 4863 */ 4864 if (journal) { 4865 transaction_t *transaction; 4866 tid_t tid; 4867 4868 read_lock(&journal->j_state_lock); 4869 if (journal->j_running_transaction) 4870 transaction = journal->j_running_transaction; 4871 else 4872 transaction = journal->j_committing_transaction; 4873 if (transaction) 4874 tid = transaction->t_tid; 4875 else 4876 tid = journal->j_commit_sequence; 4877 read_unlock(&journal->j_state_lock); 4878 ei->i_sync_tid = tid; 4879 ei->i_datasync_tid = tid; 4880 } 4881 4882 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4883 if (ei->i_extra_isize == 0) { 4884 /* The extra space is currently unused. Use it. */ 4885 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4886 ei->i_extra_isize = sizeof(struct ext4_inode) - 4887 EXT4_GOOD_OLD_INODE_SIZE; 4888 } else { 4889 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4890 if (ret) 4891 goto bad_inode; 4892 } 4893 } 4894 4895 EXT4_INODE_GET_CTIME(inode, raw_inode); 4896 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4897 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4898 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4899 4900 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4901 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4902 4903 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4904 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4905 ivers |= 4906 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4907 } 4908 ext4_inode_set_iversion_queried(inode, ivers); 4909 } 4910 4911 ret = 0; 4912 if (ei->i_file_acl && 4913 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4914 ext4_error_inode(inode, function, line, 0, 4915 "iget: bad extended attribute block %llu", 4916 ei->i_file_acl); 4917 ret = -EFSCORRUPTED; 4918 goto bad_inode; 4919 } else if (!ext4_has_inline_data(inode)) { 4920 /* validate the block references in the inode */ 4921 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4922 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4923 (S_ISLNK(inode->i_mode) && 4924 !ext4_inode_is_fast_symlink(inode)))) { 4925 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4926 ret = ext4_ext_check_inode(inode); 4927 else 4928 ret = ext4_ind_check_inode(inode); 4929 } 4930 } 4931 if (ret) 4932 goto bad_inode; 4933 4934 if (S_ISREG(inode->i_mode)) { 4935 inode->i_op = &ext4_file_inode_operations; 4936 inode->i_fop = &ext4_file_operations; 4937 ext4_set_aops(inode); 4938 } else if (S_ISDIR(inode->i_mode)) { 4939 inode->i_op = &ext4_dir_inode_operations; 4940 inode->i_fop = &ext4_dir_operations; 4941 } else if (S_ISLNK(inode->i_mode)) { 4942 /* VFS does not allow setting these so must be corruption */ 4943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4944 ext4_error_inode(inode, function, line, 0, 4945 "iget: immutable or append flags " 4946 "not allowed on symlinks"); 4947 ret = -EFSCORRUPTED; 4948 goto bad_inode; 4949 } 4950 if (IS_ENCRYPTED(inode)) { 4951 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4952 } else if (ext4_inode_is_fast_symlink(inode)) { 4953 inode->i_link = (char *)ei->i_data; 4954 inode->i_op = &ext4_fast_symlink_inode_operations; 4955 nd_terminate_link(ei->i_data, inode->i_size, 4956 sizeof(ei->i_data) - 1); 4957 } else { 4958 inode->i_op = &ext4_symlink_inode_operations; 4959 } 4960 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4961 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4962 inode->i_op = &ext4_special_inode_operations; 4963 if (raw_inode->i_block[0]) 4964 init_special_inode(inode, inode->i_mode, 4965 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4966 else 4967 init_special_inode(inode, inode->i_mode, 4968 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4969 } else if (ino == EXT4_BOOT_LOADER_INO) { 4970 make_bad_inode(inode); 4971 } else { 4972 ret = -EFSCORRUPTED; 4973 ext4_error_inode(inode, function, line, 0, 4974 "iget: bogus i_mode (%o)", inode->i_mode); 4975 goto bad_inode; 4976 } 4977 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4978 ext4_error_inode(inode, function, line, 0, 4979 "casefold flag without casefold feature"); 4980 ret = -EFSCORRUPTED; 4981 goto bad_inode; 4982 } 4983 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4984 ext4_error_inode(inode, function, line, 0, err_str); 4985 ret = -EFSCORRUPTED; 4986 goto bad_inode; 4987 } 4988 4989 brelse(iloc.bh); 4990 unlock_new_inode(inode); 4991 return inode; 4992 4993 bad_inode: 4994 brelse(iloc.bh); 4995 iget_failed(inode); 4996 return ERR_PTR(ret); 4997 } 4998 4999 static void __ext4_update_other_inode_time(struct super_block *sb, 5000 unsigned long orig_ino, 5001 unsigned long ino, 5002 struct ext4_inode *raw_inode) 5003 { 5004 struct inode *inode; 5005 5006 inode = find_inode_by_ino_rcu(sb, ino); 5007 if (!inode) 5008 return; 5009 5010 if (!inode_is_dirtytime_only(inode)) 5011 return; 5012 5013 spin_lock(&inode->i_lock); 5014 if (inode_is_dirtytime_only(inode)) { 5015 struct ext4_inode_info *ei = EXT4_I(inode); 5016 5017 inode->i_state &= ~I_DIRTY_TIME; 5018 spin_unlock(&inode->i_lock); 5019 5020 spin_lock(&ei->i_raw_lock); 5021 EXT4_INODE_SET_CTIME(inode, raw_inode); 5022 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5023 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5024 ext4_inode_csum_set(inode, raw_inode, ei); 5025 spin_unlock(&ei->i_raw_lock); 5026 trace_ext4_other_inode_update_time(inode, orig_ino); 5027 return; 5028 } 5029 spin_unlock(&inode->i_lock); 5030 } 5031 5032 /* 5033 * Opportunistically update the other time fields for other inodes in 5034 * the same inode table block. 5035 */ 5036 static void ext4_update_other_inodes_time(struct super_block *sb, 5037 unsigned long orig_ino, char *buf) 5038 { 5039 unsigned long ino; 5040 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5041 int inode_size = EXT4_INODE_SIZE(sb); 5042 5043 /* 5044 * Calculate the first inode in the inode table block. Inode 5045 * numbers are one-based. That is, the first inode in a block 5046 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5047 */ 5048 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5049 rcu_read_lock(); 5050 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5051 if (ino == orig_ino) 5052 continue; 5053 __ext4_update_other_inode_time(sb, orig_ino, ino, 5054 (struct ext4_inode *)buf); 5055 } 5056 rcu_read_unlock(); 5057 } 5058 5059 /* 5060 * Post the struct inode info into an on-disk inode location in the 5061 * buffer-cache. This gobbles the caller's reference to the 5062 * buffer_head in the inode location struct. 5063 * 5064 * The caller must have write access to iloc->bh. 5065 */ 5066 static int ext4_do_update_inode(handle_t *handle, 5067 struct inode *inode, 5068 struct ext4_iloc *iloc) 5069 { 5070 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5071 struct ext4_inode_info *ei = EXT4_I(inode); 5072 struct buffer_head *bh = iloc->bh; 5073 struct super_block *sb = inode->i_sb; 5074 int err; 5075 int need_datasync = 0, set_large_file = 0; 5076 5077 spin_lock(&ei->i_raw_lock); 5078 5079 /* 5080 * For fields not tracked in the in-memory inode, initialise them 5081 * to zero for new inodes. 5082 */ 5083 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5084 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5085 5086 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5087 need_datasync = 1; 5088 if (ei->i_disksize > 0x7fffffffULL) { 5089 if (!ext4_has_feature_large_file(sb) || 5090 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5091 set_large_file = 1; 5092 } 5093 5094 err = ext4_fill_raw_inode(inode, raw_inode); 5095 spin_unlock(&ei->i_raw_lock); 5096 if (err) { 5097 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5098 goto out_brelse; 5099 } 5100 5101 if (inode->i_sb->s_flags & SB_LAZYTIME) 5102 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5103 bh->b_data); 5104 5105 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5106 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5107 if (err) 5108 goto out_error; 5109 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5110 if (set_large_file) { 5111 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5112 err = ext4_journal_get_write_access(handle, sb, 5113 EXT4_SB(sb)->s_sbh, 5114 EXT4_JTR_NONE); 5115 if (err) 5116 goto out_error; 5117 lock_buffer(EXT4_SB(sb)->s_sbh); 5118 ext4_set_feature_large_file(sb); 5119 ext4_superblock_csum_set(sb); 5120 unlock_buffer(EXT4_SB(sb)->s_sbh); 5121 ext4_handle_sync(handle); 5122 err = ext4_handle_dirty_metadata(handle, NULL, 5123 EXT4_SB(sb)->s_sbh); 5124 } 5125 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5126 out_error: 5127 ext4_std_error(inode->i_sb, err); 5128 out_brelse: 5129 brelse(bh); 5130 return err; 5131 } 5132 5133 /* 5134 * ext4_write_inode() 5135 * 5136 * We are called from a few places: 5137 * 5138 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5139 * Here, there will be no transaction running. We wait for any running 5140 * transaction to commit. 5141 * 5142 * - Within flush work (sys_sync(), kupdate and such). 5143 * We wait on commit, if told to. 5144 * 5145 * - Within iput_final() -> write_inode_now() 5146 * We wait on commit, if told to. 5147 * 5148 * In all cases it is actually safe for us to return without doing anything, 5149 * because the inode has been copied into a raw inode buffer in 5150 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5151 * writeback. 5152 * 5153 * Note that we are absolutely dependent upon all inode dirtiers doing the 5154 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5155 * which we are interested. 5156 * 5157 * It would be a bug for them to not do this. The code: 5158 * 5159 * mark_inode_dirty(inode) 5160 * stuff(); 5161 * inode->i_size = expr; 5162 * 5163 * is in error because write_inode() could occur while `stuff()' is running, 5164 * and the new i_size will be lost. Plus the inode will no longer be on the 5165 * superblock's dirty inode list. 5166 */ 5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5168 { 5169 int err; 5170 5171 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5172 return 0; 5173 5174 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5175 return -EIO; 5176 5177 if (EXT4_SB(inode->i_sb)->s_journal) { 5178 if (ext4_journal_current_handle()) { 5179 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5180 dump_stack(); 5181 return -EIO; 5182 } 5183 5184 /* 5185 * No need to force transaction in WB_SYNC_NONE mode. Also 5186 * ext4_sync_fs() will force the commit after everything is 5187 * written. 5188 */ 5189 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5190 return 0; 5191 5192 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5193 EXT4_I(inode)->i_sync_tid); 5194 } else { 5195 struct ext4_iloc iloc; 5196 5197 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5198 if (err) 5199 return err; 5200 /* 5201 * sync(2) will flush the whole buffer cache. No need to do 5202 * it here separately for each inode. 5203 */ 5204 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5205 sync_dirty_buffer(iloc.bh); 5206 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5207 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5208 "IO error syncing inode"); 5209 err = -EIO; 5210 } 5211 brelse(iloc.bh); 5212 } 5213 return err; 5214 } 5215 5216 /* 5217 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5218 * buffers that are attached to a folio straddling i_size and are undergoing 5219 * commit. In that case we have to wait for commit to finish and try again. 5220 */ 5221 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5222 { 5223 unsigned offset; 5224 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5225 tid_t commit_tid = 0; 5226 int ret; 5227 5228 offset = inode->i_size & (PAGE_SIZE - 1); 5229 /* 5230 * If the folio is fully truncated, we don't need to wait for any commit 5231 * (and we even should not as __ext4_journalled_invalidate_folio() may 5232 * strip all buffers from the folio but keep the folio dirty which can then 5233 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5234 * buffers). Also we don't need to wait for any commit if all buffers in 5235 * the folio remain valid. This is most beneficial for the common case of 5236 * blocksize == PAGESIZE. 5237 */ 5238 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5239 return; 5240 while (1) { 5241 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5242 inode->i_size >> PAGE_SHIFT); 5243 if (IS_ERR(folio)) 5244 return; 5245 ret = __ext4_journalled_invalidate_folio(folio, offset, 5246 folio_size(folio) - offset); 5247 folio_unlock(folio); 5248 folio_put(folio); 5249 if (ret != -EBUSY) 5250 return; 5251 commit_tid = 0; 5252 read_lock(&journal->j_state_lock); 5253 if (journal->j_committing_transaction) 5254 commit_tid = journal->j_committing_transaction->t_tid; 5255 read_unlock(&journal->j_state_lock); 5256 if (commit_tid) 5257 jbd2_log_wait_commit(journal, commit_tid); 5258 } 5259 } 5260 5261 /* 5262 * ext4_setattr() 5263 * 5264 * Called from notify_change. 5265 * 5266 * We want to trap VFS attempts to truncate the file as soon as 5267 * possible. In particular, we want to make sure that when the VFS 5268 * shrinks i_size, we put the inode on the orphan list and modify 5269 * i_disksize immediately, so that during the subsequent flushing of 5270 * dirty pages and freeing of disk blocks, we can guarantee that any 5271 * commit will leave the blocks being flushed in an unused state on 5272 * disk. (On recovery, the inode will get truncated and the blocks will 5273 * be freed, so we have a strong guarantee that no future commit will 5274 * leave these blocks visible to the user.) 5275 * 5276 * Another thing we have to assure is that if we are in ordered mode 5277 * and inode is still attached to the committing transaction, we must 5278 * we start writeout of all the dirty pages which are being truncated. 5279 * This way we are sure that all the data written in the previous 5280 * transaction are already on disk (truncate waits for pages under 5281 * writeback). 5282 * 5283 * Called with inode->i_rwsem down. 5284 */ 5285 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5286 struct iattr *attr) 5287 { 5288 struct inode *inode = d_inode(dentry); 5289 int error, rc = 0; 5290 int orphan = 0; 5291 const unsigned int ia_valid = attr->ia_valid; 5292 bool inc_ivers = true; 5293 5294 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5295 return -EIO; 5296 5297 if (unlikely(IS_IMMUTABLE(inode))) 5298 return -EPERM; 5299 5300 if (unlikely(IS_APPEND(inode) && 5301 (ia_valid & (ATTR_MODE | ATTR_UID | 5302 ATTR_GID | ATTR_TIMES_SET)))) 5303 return -EPERM; 5304 5305 error = setattr_prepare(idmap, dentry, attr); 5306 if (error) 5307 return error; 5308 5309 error = fscrypt_prepare_setattr(dentry, attr); 5310 if (error) 5311 return error; 5312 5313 error = fsverity_prepare_setattr(dentry, attr); 5314 if (error) 5315 return error; 5316 5317 if (is_quota_modification(idmap, inode, attr)) { 5318 error = dquot_initialize(inode); 5319 if (error) 5320 return error; 5321 } 5322 5323 if (i_uid_needs_update(idmap, attr, inode) || 5324 i_gid_needs_update(idmap, attr, inode)) { 5325 handle_t *handle; 5326 5327 /* (user+group)*(old+new) structure, inode write (sb, 5328 * inode block, ? - but truncate inode update has it) */ 5329 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5330 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5331 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5332 if (IS_ERR(handle)) { 5333 error = PTR_ERR(handle); 5334 goto err_out; 5335 } 5336 5337 /* dquot_transfer() calls back ext4_get_inode_usage() which 5338 * counts xattr inode references. 5339 */ 5340 down_read(&EXT4_I(inode)->xattr_sem); 5341 error = dquot_transfer(idmap, inode, attr); 5342 up_read(&EXT4_I(inode)->xattr_sem); 5343 5344 if (error) { 5345 ext4_journal_stop(handle); 5346 return error; 5347 } 5348 /* Update corresponding info in inode so that everything is in 5349 * one transaction */ 5350 i_uid_update(idmap, attr, inode); 5351 i_gid_update(idmap, attr, inode); 5352 error = ext4_mark_inode_dirty(handle, inode); 5353 ext4_journal_stop(handle); 5354 if (unlikely(error)) { 5355 return error; 5356 } 5357 } 5358 5359 if (attr->ia_valid & ATTR_SIZE) { 5360 handle_t *handle; 5361 loff_t oldsize = inode->i_size; 5362 loff_t old_disksize; 5363 int shrink = (attr->ia_size < inode->i_size); 5364 5365 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5367 5368 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5369 return -EFBIG; 5370 } 5371 } 5372 if (!S_ISREG(inode->i_mode)) { 5373 return -EINVAL; 5374 } 5375 5376 if (attr->ia_size == inode->i_size) 5377 inc_ivers = false; 5378 5379 if (shrink) { 5380 if (ext4_should_order_data(inode)) { 5381 error = ext4_begin_ordered_truncate(inode, 5382 attr->ia_size); 5383 if (error) 5384 goto err_out; 5385 } 5386 /* 5387 * Blocks are going to be removed from the inode. Wait 5388 * for dio in flight. 5389 */ 5390 inode_dio_wait(inode); 5391 } 5392 5393 filemap_invalidate_lock(inode->i_mapping); 5394 5395 rc = ext4_break_layouts(inode); 5396 if (rc) { 5397 filemap_invalidate_unlock(inode->i_mapping); 5398 goto err_out; 5399 } 5400 5401 if (attr->ia_size != inode->i_size) { 5402 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5403 if (IS_ERR(handle)) { 5404 error = PTR_ERR(handle); 5405 goto out_mmap_sem; 5406 } 5407 if (ext4_handle_valid(handle) && shrink) { 5408 error = ext4_orphan_add(handle, inode); 5409 orphan = 1; 5410 } 5411 /* 5412 * Update c/mtime on truncate up, ext4_truncate() will 5413 * update c/mtime in shrink case below 5414 */ 5415 if (!shrink) 5416 inode->i_mtime = inode_set_ctime_current(inode); 5417 5418 if (shrink) 5419 ext4_fc_track_range(handle, inode, 5420 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5421 inode->i_sb->s_blocksize_bits, 5422 EXT_MAX_BLOCKS - 1); 5423 else 5424 ext4_fc_track_range( 5425 handle, inode, 5426 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5427 inode->i_sb->s_blocksize_bits, 5428 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5429 inode->i_sb->s_blocksize_bits); 5430 5431 down_write(&EXT4_I(inode)->i_data_sem); 5432 old_disksize = EXT4_I(inode)->i_disksize; 5433 EXT4_I(inode)->i_disksize = attr->ia_size; 5434 rc = ext4_mark_inode_dirty(handle, inode); 5435 if (!error) 5436 error = rc; 5437 /* 5438 * We have to update i_size under i_data_sem together 5439 * with i_disksize to avoid races with writeback code 5440 * running ext4_wb_update_i_disksize(). 5441 */ 5442 if (!error) 5443 i_size_write(inode, attr->ia_size); 5444 else 5445 EXT4_I(inode)->i_disksize = old_disksize; 5446 up_write(&EXT4_I(inode)->i_data_sem); 5447 ext4_journal_stop(handle); 5448 if (error) 5449 goto out_mmap_sem; 5450 if (!shrink) { 5451 pagecache_isize_extended(inode, oldsize, 5452 inode->i_size); 5453 } else if (ext4_should_journal_data(inode)) { 5454 ext4_wait_for_tail_page_commit(inode); 5455 } 5456 } 5457 5458 /* 5459 * Truncate pagecache after we've waited for commit 5460 * in data=journal mode to make pages freeable. 5461 */ 5462 truncate_pagecache(inode, inode->i_size); 5463 /* 5464 * Call ext4_truncate() even if i_size didn't change to 5465 * truncate possible preallocated blocks. 5466 */ 5467 if (attr->ia_size <= oldsize) { 5468 rc = ext4_truncate(inode); 5469 if (rc) 5470 error = rc; 5471 } 5472 out_mmap_sem: 5473 filemap_invalidate_unlock(inode->i_mapping); 5474 } 5475 5476 if (!error) { 5477 if (inc_ivers) 5478 inode_inc_iversion(inode); 5479 setattr_copy(idmap, inode, attr); 5480 mark_inode_dirty(inode); 5481 } 5482 5483 /* 5484 * If the call to ext4_truncate failed to get a transaction handle at 5485 * all, we need to clean up the in-core orphan list manually. 5486 */ 5487 if (orphan && inode->i_nlink) 5488 ext4_orphan_del(NULL, inode); 5489 5490 if (!error && (ia_valid & ATTR_MODE)) 5491 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5492 5493 err_out: 5494 if (error) 5495 ext4_std_error(inode->i_sb, error); 5496 if (!error) 5497 error = rc; 5498 return error; 5499 } 5500 5501 u32 ext4_dio_alignment(struct inode *inode) 5502 { 5503 if (fsverity_active(inode)) 5504 return 0; 5505 if (ext4_should_journal_data(inode)) 5506 return 0; 5507 if (ext4_has_inline_data(inode)) 5508 return 0; 5509 if (IS_ENCRYPTED(inode)) { 5510 if (!fscrypt_dio_supported(inode)) 5511 return 0; 5512 return i_blocksize(inode); 5513 } 5514 return 1; /* use the iomap defaults */ 5515 } 5516 5517 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5518 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5519 { 5520 struct inode *inode = d_inode(path->dentry); 5521 struct ext4_inode *raw_inode; 5522 struct ext4_inode_info *ei = EXT4_I(inode); 5523 unsigned int flags; 5524 5525 if ((request_mask & STATX_BTIME) && 5526 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5527 stat->result_mask |= STATX_BTIME; 5528 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5529 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5530 } 5531 5532 /* 5533 * Return the DIO alignment restrictions if requested. We only return 5534 * this information when requested, since on encrypted files it might 5535 * take a fair bit of work to get if the file wasn't opened recently. 5536 */ 5537 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5538 u32 dio_align = ext4_dio_alignment(inode); 5539 5540 stat->result_mask |= STATX_DIOALIGN; 5541 if (dio_align == 1) { 5542 struct block_device *bdev = inode->i_sb->s_bdev; 5543 5544 /* iomap defaults */ 5545 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5546 stat->dio_offset_align = bdev_logical_block_size(bdev); 5547 } else { 5548 stat->dio_mem_align = dio_align; 5549 stat->dio_offset_align = dio_align; 5550 } 5551 } 5552 5553 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5554 if (flags & EXT4_APPEND_FL) 5555 stat->attributes |= STATX_ATTR_APPEND; 5556 if (flags & EXT4_COMPR_FL) 5557 stat->attributes |= STATX_ATTR_COMPRESSED; 5558 if (flags & EXT4_ENCRYPT_FL) 5559 stat->attributes |= STATX_ATTR_ENCRYPTED; 5560 if (flags & EXT4_IMMUTABLE_FL) 5561 stat->attributes |= STATX_ATTR_IMMUTABLE; 5562 if (flags & EXT4_NODUMP_FL) 5563 stat->attributes |= STATX_ATTR_NODUMP; 5564 if (flags & EXT4_VERITY_FL) 5565 stat->attributes |= STATX_ATTR_VERITY; 5566 5567 stat->attributes_mask |= (STATX_ATTR_APPEND | 5568 STATX_ATTR_COMPRESSED | 5569 STATX_ATTR_ENCRYPTED | 5570 STATX_ATTR_IMMUTABLE | 5571 STATX_ATTR_NODUMP | 5572 STATX_ATTR_VERITY); 5573 5574 generic_fillattr(idmap, request_mask, inode, stat); 5575 return 0; 5576 } 5577 5578 int ext4_file_getattr(struct mnt_idmap *idmap, 5579 const struct path *path, struct kstat *stat, 5580 u32 request_mask, unsigned int query_flags) 5581 { 5582 struct inode *inode = d_inode(path->dentry); 5583 u64 delalloc_blocks; 5584 5585 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5586 5587 /* 5588 * If there is inline data in the inode, the inode will normally not 5589 * have data blocks allocated (it may have an external xattr block). 5590 * Report at least one sector for such files, so tools like tar, rsync, 5591 * others don't incorrectly think the file is completely sparse. 5592 */ 5593 if (unlikely(ext4_has_inline_data(inode))) 5594 stat->blocks += (stat->size + 511) >> 9; 5595 5596 /* 5597 * We can't update i_blocks if the block allocation is delayed 5598 * otherwise in the case of system crash before the real block 5599 * allocation is done, we will have i_blocks inconsistent with 5600 * on-disk file blocks. 5601 * We always keep i_blocks updated together with real 5602 * allocation. But to not confuse with user, stat 5603 * will return the blocks that include the delayed allocation 5604 * blocks for this file. 5605 */ 5606 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5607 EXT4_I(inode)->i_reserved_data_blocks); 5608 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5609 return 0; 5610 } 5611 5612 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5613 int pextents) 5614 { 5615 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5616 return ext4_ind_trans_blocks(inode, lblocks); 5617 return ext4_ext_index_trans_blocks(inode, pextents); 5618 } 5619 5620 /* 5621 * Account for index blocks, block groups bitmaps and block group 5622 * descriptor blocks if modify datablocks and index blocks 5623 * worse case, the indexs blocks spread over different block groups 5624 * 5625 * If datablocks are discontiguous, they are possible to spread over 5626 * different block groups too. If they are contiguous, with flexbg, 5627 * they could still across block group boundary. 5628 * 5629 * Also account for superblock, inode, quota and xattr blocks 5630 */ 5631 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5632 int pextents) 5633 { 5634 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5635 int gdpblocks; 5636 int idxblocks; 5637 int ret; 5638 5639 /* 5640 * How many index blocks need to touch to map @lblocks logical blocks 5641 * to @pextents physical extents? 5642 */ 5643 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5644 5645 ret = idxblocks; 5646 5647 /* 5648 * Now let's see how many group bitmaps and group descriptors need 5649 * to account 5650 */ 5651 groups = idxblocks + pextents; 5652 gdpblocks = groups; 5653 if (groups > ngroups) 5654 groups = ngroups; 5655 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5656 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5657 5658 /* bitmaps and block group descriptor blocks */ 5659 ret += groups + gdpblocks; 5660 5661 /* Blocks for super block, inode, quota and xattr blocks */ 5662 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5663 5664 return ret; 5665 } 5666 5667 /* 5668 * Calculate the total number of credits to reserve to fit 5669 * the modification of a single pages into a single transaction, 5670 * which may include multiple chunks of block allocations. 5671 * 5672 * This could be called via ext4_write_begin() 5673 * 5674 * We need to consider the worse case, when 5675 * one new block per extent. 5676 */ 5677 int ext4_writepage_trans_blocks(struct inode *inode) 5678 { 5679 int bpp = ext4_journal_blocks_per_page(inode); 5680 int ret; 5681 5682 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5683 5684 /* Account for data blocks for journalled mode */ 5685 if (ext4_should_journal_data(inode)) 5686 ret += bpp; 5687 return ret; 5688 } 5689 5690 /* 5691 * Calculate the journal credits for a chunk of data modification. 5692 * 5693 * This is called from DIO, fallocate or whoever calling 5694 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5695 * 5696 * journal buffers for data blocks are not included here, as DIO 5697 * and fallocate do no need to journal data buffers. 5698 */ 5699 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5700 { 5701 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5702 } 5703 5704 /* 5705 * The caller must have previously called ext4_reserve_inode_write(). 5706 * Give this, we know that the caller already has write access to iloc->bh. 5707 */ 5708 int ext4_mark_iloc_dirty(handle_t *handle, 5709 struct inode *inode, struct ext4_iloc *iloc) 5710 { 5711 int err = 0; 5712 5713 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5714 put_bh(iloc->bh); 5715 return -EIO; 5716 } 5717 ext4_fc_track_inode(handle, inode); 5718 5719 /* the do_update_inode consumes one bh->b_count */ 5720 get_bh(iloc->bh); 5721 5722 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5723 err = ext4_do_update_inode(handle, inode, iloc); 5724 put_bh(iloc->bh); 5725 return err; 5726 } 5727 5728 /* 5729 * On success, We end up with an outstanding reference count against 5730 * iloc->bh. This _must_ be cleaned up later. 5731 */ 5732 5733 int 5734 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5735 struct ext4_iloc *iloc) 5736 { 5737 int err; 5738 5739 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5740 return -EIO; 5741 5742 err = ext4_get_inode_loc(inode, iloc); 5743 if (!err) { 5744 BUFFER_TRACE(iloc->bh, "get_write_access"); 5745 err = ext4_journal_get_write_access(handle, inode->i_sb, 5746 iloc->bh, EXT4_JTR_NONE); 5747 if (err) { 5748 brelse(iloc->bh); 5749 iloc->bh = NULL; 5750 } 5751 } 5752 ext4_std_error(inode->i_sb, err); 5753 return err; 5754 } 5755 5756 static int __ext4_expand_extra_isize(struct inode *inode, 5757 unsigned int new_extra_isize, 5758 struct ext4_iloc *iloc, 5759 handle_t *handle, int *no_expand) 5760 { 5761 struct ext4_inode *raw_inode; 5762 struct ext4_xattr_ibody_header *header; 5763 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5764 struct ext4_inode_info *ei = EXT4_I(inode); 5765 int error; 5766 5767 /* this was checked at iget time, but double check for good measure */ 5768 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5769 (ei->i_extra_isize & 3)) { 5770 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5771 ei->i_extra_isize, 5772 EXT4_INODE_SIZE(inode->i_sb)); 5773 return -EFSCORRUPTED; 5774 } 5775 if ((new_extra_isize < ei->i_extra_isize) || 5776 (new_extra_isize < 4) || 5777 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5778 return -EINVAL; /* Should never happen */ 5779 5780 raw_inode = ext4_raw_inode(iloc); 5781 5782 header = IHDR(inode, raw_inode); 5783 5784 /* No extended attributes present */ 5785 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5786 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5787 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5788 EXT4_I(inode)->i_extra_isize, 0, 5789 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5790 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5791 return 0; 5792 } 5793 5794 /* 5795 * We may need to allocate external xattr block so we need quotas 5796 * initialized. Here we can be called with various locks held so we 5797 * cannot affort to initialize quotas ourselves. So just bail. 5798 */ 5799 if (dquot_initialize_needed(inode)) 5800 return -EAGAIN; 5801 5802 /* try to expand with EAs present */ 5803 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5804 raw_inode, handle); 5805 if (error) { 5806 /* 5807 * Inode size expansion failed; don't try again 5808 */ 5809 *no_expand = 1; 5810 } 5811 5812 return error; 5813 } 5814 5815 /* 5816 * Expand an inode by new_extra_isize bytes. 5817 * Returns 0 on success or negative error number on failure. 5818 */ 5819 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5820 unsigned int new_extra_isize, 5821 struct ext4_iloc iloc, 5822 handle_t *handle) 5823 { 5824 int no_expand; 5825 int error; 5826 5827 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5828 return -EOVERFLOW; 5829 5830 /* 5831 * In nojournal mode, we can immediately attempt to expand 5832 * the inode. When journaled, we first need to obtain extra 5833 * buffer credits since we may write into the EA block 5834 * with this same handle. If journal_extend fails, then it will 5835 * only result in a minor loss of functionality for that inode. 5836 * If this is felt to be critical, then e2fsck should be run to 5837 * force a large enough s_min_extra_isize. 5838 */ 5839 if (ext4_journal_extend(handle, 5840 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5841 return -ENOSPC; 5842 5843 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5844 return -EBUSY; 5845 5846 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5847 handle, &no_expand); 5848 ext4_write_unlock_xattr(inode, &no_expand); 5849 5850 return error; 5851 } 5852 5853 int ext4_expand_extra_isize(struct inode *inode, 5854 unsigned int new_extra_isize, 5855 struct ext4_iloc *iloc) 5856 { 5857 handle_t *handle; 5858 int no_expand; 5859 int error, rc; 5860 5861 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5862 brelse(iloc->bh); 5863 return -EOVERFLOW; 5864 } 5865 5866 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5867 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5868 if (IS_ERR(handle)) { 5869 error = PTR_ERR(handle); 5870 brelse(iloc->bh); 5871 return error; 5872 } 5873 5874 ext4_write_lock_xattr(inode, &no_expand); 5875 5876 BUFFER_TRACE(iloc->bh, "get_write_access"); 5877 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5878 EXT4_JTR_NONE); 5879 if (error) { 5880 brelse(iloc->bh); 5881 goto out_unlock; 5882 } 5883 5884 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5885 handle, &no_expand); 5886 5887 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5888 if (!error) 5889 error = rc; 5890 5891 out_unlock: 5892 ext4_write_unlock_xattr(inode, &no_expand); 5893 ext4_journal_stop(handle); 5894 return error; 5895 } 5896 5897 /* 5898 * What we do here is to mark the in-core inode as clean with respect to inode 5899 * dirtiness (it may still be data-dirty). 5900 * This means that the in-core inode may be reaped by prune_icache 5901 * without having to perform any I/O. This is a very good thing, 5902 * because *any* task may call prune_icache - even ones which 5903 * have a transaction open against a different journal. 5904 * 5905 * Is this cheating? Not really. Sure, we haven't written the 5906 * inode out, but prune_icache isn't a user-visible syncing function. 5907 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5908 * we start and wait on commits. 5909 */ 5910 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5911 const char *func, unsigned int line) 5912 { 5913 struct ext4_iloc iloc; 5914 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5915 int err; 5916 5917 might_sleep(); 5918 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5919 err = ext4_reserve_inode_write(handle, inode, &iloc); 5920 if (err) 5921 goto out; 5922 5923 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5924 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5925 iloc, handle); 5926 5927 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5928 out: 5929 if (unlikely(err)) 5930 ext4_error_inode_err(inode, func, line, 0, err, 5931 "mark_inode_dirty error"); 5932 return err; 5933 } 5934 5935 /* 5936 * ext4_dirty_inode() is called from __mark_inode_dirty() 5937 * 5938 * We're really interested in the case where a file is being extended. 5939 * i_size has been changed by generic_commit_write() and we thus need 5940 * to include the updated inode in the current transaction. 5941 * 5942 * Also, dquot_alloc_block() will always dirty the inode when blocks 5943 * are allocated to the file. 5944 * 5945 * If the inode is marked synchronous, we don't honour that here - doing 5946 * so would cause a commit on atime updates, which we don't bother doing. 5947 * We handle synchronous inodes at the highest possible level. 5948 */ 5949 void ext4_dirty_inode(struct inode *inode, int flags) 5950 { 5951 handle_t *handle; 5952 5953 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5954 if (IS_ERR(handle)) 5955 return; 5956 ext4_mark_inode_dirty(handle, inode); 5957 ext4_journal_stop(handle); 5958 } 5959 5960 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5961 { 5962 journal_t *journal; 5963 handle_t *handle; 5964 int err; 5965 int alloc_ctx; 5966 5967 /* 5968 * We have to be very careful here: changing a data block's 5969 * journaling status dynamically is dangerous. If we write a 5970 * data block to the journal, change the status and then delete 5971 * that block, we risk forgetting to revoke the old log record 5972 * from the journal and so a subsequent replay can corrupt data. 5973 * So, first we make sure that the journal is empty and that 5974 * nobody is changing anything. 5975 */ 5976 5977 journal = EXT4_JOURNAL(inode); 5978 if (!journal) 5979 return 0; 5980 if (is_journal_aborted(journal)) 5981 return -EROFS; 5982 5983 /* Wait for all existing dio workers */ 5984 inode_dio_wait(inode); 5985 5986 /* 5987 * Before flushing the journal and switching inode's aops, we have 5988 * to flush all dirty data the inode has. There can be outstanding 5989 * delayed allocations, there can be unwritten extents created by 5990 * fallocate or buffered writes in dioread_nolock mode covered by 5991 * dirty data which can be converted only after flushing the dirty 5992 * data (and journalled aops don't know how to handle these cases). 5993 */ 5994 if (val) { 5995 filemap_invalidate_lock(inode->i_mapping); 5996 err = filemap_write_and_wait(inode->i_mapping); 5997 if (err < 0) { 5998 filemap_invalidate_unlock(inode->i_mapping); 5999 return err; 6000 } 6001 } 6002 6003 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6004 jbd2_journal_lock_updates(journal); 6005 6006 /* 6007 * OK, there are no updates running now, and all cached data is 6008 * synced to disk. We are now in a completely consistent state 6009 * which doesn't have anything in the journal, and we know that 6010 * no filesystem updates are running, so it is safe to modify 6011 * the inode's in-core data-journaling state flag now. 6012 */ 6013 6014 if (val) 6015 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6016 else { 6017 err = jbd2_journal_flush(journal, 0); 6018 if (err < 0) { 6019 jbd2_journal_unlock_updates(journal); 6020 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6021 return err; 6022 } 6023 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6024 } 6025 ext4_set_aops(inode); 6026 6027 jbd2_journal_unlock_updates(journal); 6028 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6029 6030 if (val) 6031 filemap_invalidate_unlock(inode->i_mapping); 6032 6033 /* Finally we can mark the inode as dirty. */ 6034 6035 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6036 if (IS_ERR(handle)) 6037 return PTR_ERR(handle); 6038 6039 ext4_fc_mark_ineligible(inode->i_sb, 6040 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6041 err = ext4_mark_inode_dirty(handle, inode); 6042 ext4_handle_sync(handle); 6043 ext4_journal_stop(handle); 6044 ext4_std_error(inode->i_sb, err); 6045 6046 return err; 6047 } 6048 6049 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6050 struct buffer_head *bh) 6051 { 6052 return !buffer_mapped(bh); 6053 } 6054 6055 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6056 { 6057 struct vm_area_struct *vma = vmf->vma; 6058 struct folio *folio = page_folio(vmf->page); 6059 loff_t size; 6060 unsigned long len; 6061 int err; 6062 vm_fault_t ret; 6063 struct file *file = vma->vm_file; 6064 struct inode *inode = file_inode(file); 6065 struct address_space *mapping = inode->i_mapping; 6066 handle_t *handle; 6067 get_block_t *get_block; 6068 int retries = 0; 6069 6070 if (unlikely(IS_IMMUTABLE(inode))) 6071 return VM_FAULT_SIGBUS; 6072 6073 sb_start_pagefault(inode->i_sb); 6074 file_update_time(vma->vm_file); 6075 6076 filemap_invalidate_lock_shared(mapping); 6077 6078 err = ext4_convert_inline_data(inode); 6079 if (err) 6080 goto out_ret; 6081 6082 /* 6083 * On data journalling we skip straight to the transaction handle: 6084 * there's no delalloc; page truncated will be checked later; the 6085 * early return w/ all buffers mapped (calculates size/len) can't 6086 * be used; and there's no dioread_nolock, so only ext4_get_block. 6087 */ 6088 if (ext4_should_journal_data(inode)) 6089 goto retry_alloc; 6090 6091 /* Delalloc case is easy... */ 6092 if (test_opt(inode->i_sb, DELALLOC) && 6093 !ext4_nonda_switch(inode->i_sb)) { 6094 do { 6095 err = block_page_mkwrite(vma, vmf, 6096 ext4_da_get_block_prep); 6097 } while (err == -ENOSPC && 6098 ext4_should_retry_alloc(inode->i_sb, &retries)); 6099 goto out_ret; 6100 } 6101 6102 folio_lock(folio); 6103 size = i_size_read(inode); 6104 /* Page got truncated from under us? */ 6105 if (folio->mapping != mapping || folio_pos(folio) > size) { 6106 folio_unlock(folio); 6107 ret = VM_FAULT_NOPAGE; 6108 goto out; 6109 } 6110 6111 len = folio_size(folio); 6112 if (folio_pos(folio) + len > size) 6113 len = size - folio_pos(folio); 6114 /* 6115 * Return if we have all the buffers mapped. This avoids the need to do 6116 * journal_start/journal_stop which can block and take a long time 6117 * 6118 * This cannot be done for data journalling, as we have to add the 6119 * inode to the transaction's list to writeprotect pages on commit. 6120 */ 6121 if (folio_buffers(folio)) { 6122 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6123 0, len, NULL, 6124 ext4_bh_unmapped)) { 6125 /* Wait so that we don't change page under IO */ 6126 folio_wait_stable(folio); 6127 ret = VM_FAULT_LOCKED; 6128 goto out; 6129 } 6130 } 6131 folio_unlock(folio); 6132 /* OK, we need to fill the hole... */ 6133 if (ext4_should_dioread_nolock(inode)) 6134 get_block = ext4_get_block_unwritten; 6135 else 6136 get_block = ext4_get_block; 6137 retry_alloc: 6138 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6139 ext4_writepage_trans_blocks(inode)); 6140 if (IS_ERR(handle)) { 6141 ret = VM_FAULT_SIGBUS; 6142 goto out; 6143 } 6144 /* 6145 * Data journalling can't use block_page_mkwrite() because it 6146 * will set_buffer_dirty() before do_journal_get_write_access() 6147 * thus might hit warning messages for dirty metadata buffers. 6148 */ 6149 if (!ext4_should_journal_data(inode)) { 6150 err = block_page_mkwrite(vma, vmf, get_block); 6151 } else { 6152 folio_lock(folio); 6153 size = i_size_read(inode); 6154 /* Page got truncated from under us? */ 6155 if (folio->mapping != mapping || folio_pos(folio) > size) { 6156 ret = VM_FAULT_NOPAGE; 6157 goto out_error; 6158 } 6159 6160 len = folio_size(folio); 6161 if (folio_pos(folio) + len > size) 6162 len = size - folio_pos(folio); 6163 6164 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6165 if (!err) { 6166 ret = VM_FAULT_SIGBUS; 6167 if (ext4_journal_folio_buffers(handle, folio, len)) 6168 goto out_error; 6169 } else { 6170 folio_unlock(folio); 6171 } 6172 } 6173 ext4_journal_stop(handle); 6174 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6175 goto retry_alloc; 6176 out_ret: 6177 ret = vmf_fs_error(err); 6178 out: 6179 filemap_invalidate_unlock_shared(mapping); 6180 sb_end_pagefault(inode->i_sb); 6181 return ret; 6182 out_error: 6183 folio_unlock(folio); 6184 ext4_journal_stop(handle); 6185 goto out; 6186 } 6187