xref: /linux/fs/ext4/inode.c (revision a76053707dbf0dc020a73b4d90cd952409ef3691)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 				  int pextents);
145 
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 
156 		if (ext4_has_inline_data(inode))
157 			return 0;
158 
159 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 	}
161 	return S_ISLNK(inode->i_mode) && inode->i_size &&
162 	       (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 	/*
173 	 * Credits for final inode cleanup and freeing:
174 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 	 */
177 	int extra_credits = 6;
178 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 	bool freeze_protected = false;
180 
181 	trace_ext4_evict_inode(inode);
182 
183 	if (inode->i_nlink) {
184 		/*
185 		 * When journalling data dirty buffers are tracked only in the
186 		 * journal. So although mm thinks everything is clean and
187 		 * ready for reaping the inode might still have some pages to
188 		 * write in the running transaction or waiting to be
189 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 		 * (via truncate_inode_pages()) to discard these buffers can
191 		 * cause data loss. Also even if we did not discard these
192 		 * buffers, we would have no way to find them after the inode
193 		 * is reaped and thus user could see stale data if he tries to
194 		 * read them before the transaction is checkpointed. So be
195 		 * careful and force everything to disk here... We use
196 		 * ei->i_datasync_tid to store the newest transaction
197 		 * containing inode's data.
198 		 *
199 		 * Note that directories do not have this problem because they
200 		 * don't use page cache.
201 		 */
202 		if (inode->i_ino != EXT4_JOURNAL_INO &&
203 		    ext4_should_journal_data(inode) &&
204 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 		    inode->i_data.nrpages) {
206 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 
209 			jbd2_complete_transaction(journal, commit_tid);
210 			filemap_write_and_wait(&inode->i_data);
211 		}
212 		truncate_inode_pages_final(&inode->i_data);
213 
214 		goto no_delete;
215 	}
216 
217 	if (is_bad_inode(inode))
218 		goto no_delete;
219 	dquot_initialize(inode);
220 
221 	if (ext4_should_order_data(inode))
222 		ext4_begin_ordered_truncate(inode, 0);
223 	truncate_inode_pages_final(&inode->i_data);
224 
225 	/*
226 	 * For inodes with journalled data, transaction commit could have
227 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 	 * flag but we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list)) {
231 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 		inode_io_list_del(inode);
233 	}
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it. When we are in a running transaction though,
238 	 * we are already protected against freezing and we cannot grab further
239 	 * protection due to lock ordering constraints.
240 	 */
241 	if (!ext4_journal_current_handle()) {
242 		sb_start_intwrite(inode->i_sb);
243 		freeze_protected = true;
244 	}
245 
246 	if (!IS_NOQUOTA(inode))
247 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248 
249 	/*
250 	 * Block bitmap, group descriptor, and inode are accounted in both
251 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 	 */
253 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 	if (IS_ERR(handle)) {
256 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 		/*
258 		 * If we're going to skip the normal cleanup, we still need to
259 		 * make sure that the in-core orphan linked list is properly
260 		 * cleaned up.
261 		 */
262 		ext4_orphan_del(NULL, inode);
263 		if (freeze_protected)
264 			sb_end_intwrite(inode->i_sb);
265 		goto no_delete;
266 	}
267 
268 	if (IS_SYNC(inode))
269 		ext4_handle_sync(handle);
270 
271 	/*
272 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 	 * special handling of symlinks here because i_size is used to
274 	 * determine whether ext4_inode_info->i_data contains symlink data or
275 	 * block mappings. Setting i_size to 0 will remove its fast symlink
276 	 * status. Erase i_data so that it becomes a valid empty block map.
277 	 */
278 	if (ext4_inode_is_fast_symlink(inode))
279 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 	inode->i_size = 0;
281 	err = ext4_mark_inode_dirty(handle, inode);
282 	if (err) {
283 		ext4_warning(inode->i_sb,
284 			     "couldn't mark inode dirty (err %d)", err);
285 		goto stop_handle;
286 	}
287 	if (inode->i_blocks) {
288 		err = ext4_truncate(inode);
289 		if (err) {
290 			ext4_error_err(inode->i_sb, -err,
291 				       "couldn't truncate inode %lu (err %d)",
292 				       inode->i_ino, err);
293 			goto stop_handle;
294 		}
295 	}
296 
297 	/* Remove xattr references. */
298 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 				      extra_credits);
300 	if (err) {
301 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 		ext4_journal_stop(handle);
304 		ext4_orphan_del(NULL, inode);
305 		if (freeze_protected)
306 			sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	if (freeze_protected)
336 		sb_end_intwrite(inode->i_sb);
337 	ext4_xattr_inode_array_free(ea_inode_array);
338 	return;
339 no_delete:
340 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
343 }
344 
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348 	return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351 
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357 					int used, int quota_claim)
358 {
359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 	struct ext4_inode_info *ei = EXT4_I(inode);
361 
362 	spin_lock(&ei->i_block_reservation_lock);
363 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 	if (unlikely(used > ei->i_reserved_data_blocks)) {
365 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 			 "with only %d reserved data blocks",
367 			 __func__, inode->i_ino, used,
368 			 ei->i_reserved_data_blocks);
369 		WARN_ON(1);
370 		used = ei->i_reserved_data_blocks;
371 	}
372 
373 	/* Update per-inode reservations */
374 	ei->i_reserved_data_blocks -= used;
375 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 
377 	spin_unlock(&ei->i_block_reservation_lock);
378 
379 	/* Update quota subsystem for data blocks */
380 	if (quota_claim)
381 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 	else {
383 		/*
384 		 * We did fallocate with an offset that is already delayed
385 		 * allocated. So on delayed allocated writeback we should
386 		 * not re-claim the quota for fallocated blocks.
387 		 */
388 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 	}
390 
391 	/*
392 	 * If we have done all the pending block allocations and if
393 	 * there aren't any writers on the inode, we can discard the
394 	 * inode's preallocations.
395 	 */
396 	if ((ei->i_reserved_data_blocks == 0) &&
397 	    !inode_is_open_for_write(inode))
398 		ext4_discard_preallocations(inode, 0);
399 }
400 
401 static int __check_block_validity(struct inode *inode, const char *func,
402 				unsigned int line,
403 				struct ext4_map_blocks *map)
404 {
405 	if (ext4_has_feature_journal(inode->i_sb) &&
406 	    (inode->i_ino ==
407 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 		return 0;
409 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 		ext4_error_inode(inode, func, line, map->m_pblk,
411 				 "lblock %lu mapped to illegal pblock %llu "
412 				 "(length %d)", (unsigned long) map->m_lblk,
413 				 map->m_pblk, map->m_len);
414 		return -EFSCORRUPTED;
415 	}
416 	return 0;
417 }
418 
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 		       ext4_lblk_t len)
421 {
422 	int ret;
423 
424 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 
427 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 	if (ret > 0)
429 		ret = 0;
430 
431 	return ret;
432 }
433 
434 #define check_block_validity(inode, map)	\
435 	__check_block_validity((inode), __func__, __LINE__, (map))
436 
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 				       struct inode *inode,
440 				       struct ext4_map_blocks *es_map,
441 				       struct ext4_map_blocks *map,
442 				       int flags)
443 {
444 	int retval;
445 
446 	map->m_flags = 0;
447 	/*
448 	 * There is a race window that the result is not the same.
449 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
450 	 * is that we lookup a block mapping in extent status tree with
451 	 * out taking i_data_sem.  So at the time the unwritten extent
452 	 * could be converted.
453 	 */
454 	down_read(&EXT4_I(inode)->i_data_sem);
455 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 	} else {
458 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 		  flags, map->m_len, (unsigned long) map->m_lblk);
517 
518 	/*
519 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 	 */
521 	if (unlikely(map->m_len > INT_MAX))
522 		map->m_len = INT_MAX;
523 
524 	/* We can handle the block number less than EXT_MAX_BLOCKS */
525 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 		return -EFSCORRUPTED;
527 
528 	/* Lookup extent status tree firstly */
529 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 	} else {
565 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 	}
567 	if (retval > 0) {
568 		unsigned int status;
569 
570 		if (unlikely(retval != map->m_len)) {
571 			ext4_warning(inode->i_sb,
572 				     "ES len assertion failed for inode "
573 				     "%lu: retval %d != map->m_len %d",
574 				     inode->i_ino, retval, map->m_len);
575 			WARN_ON(1);
576 		}
577 
578 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 		    !(status & EXTENT_STATUS_WRITTEN) &&
582 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 				       map->m_lblk + map->m_len - 1))
584 			status |= EXTENT_STATUS_DELAYED;
585 		ret = ext4_es_insert_extent(inode, map->m_lblk,
586 					    map->m_len, map->m_pblk, status);
587 		if (ret < 0)
588 			retval = ret;
589 	}
590 	up_read((&EXT4_I(inode)->i_data_sem));
591 
592 found:
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 		ret = check_block_validity(inode, map);
595 		if (ret != 0)
596 			return ret;
597 	}
598 
599 	/* If it is only a block(s) look up */
600 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 		return retval;
602 
603 	/*
604 	 * Returns if the blocks have already allocated
605 	 *
606 	 * Note that if blocks have been preallocated
607 	 * ext4_ext_get_block() returns the create = 0
608 	 * with buffer head unmapped.
609 	 */
610 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 		/*
612 		 * If we need to convert extent to unwritten
613 		 * we continue and do the actual work in
614 		 * ext4_ext_map_blocks()
615 		 */
616 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 			return retval;
618 
619 	/*
620 	 * Here we clear m_flags because after allocating an new extent,
621 	 * it will be set again.
622 	 */
623 	map->m_flags &= ~EXT4_MAP_FLAGS;
624 
625 	/*
626 	 * New blocks allocate and/or writing to unwritten extent
627 	 * will possibly result in updating i_data, so we take
628 	 * the write lock of i_data_sem, and call get_block()
629 	 * with create == 1 flag.
630 	 */
631 	down_write(&EXT4_I(inode)->i_data_sem);
632 
633 	/*
634 	 * We need to check for EXT4 here because migrate
635 	 * could have changed the inode type in between
636 	 */
637 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 	} else {
640 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 
642 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 			/*
644 			 * We allocated new blocks which will result in
645 			 * i_data's format changing.  Force the migrate
646 			 * to fail by clearing migrate flags
647 			 */
648 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 		}
650 
651 		/*
652 		 * Update reserved blocks/metadata blocks after successful
653 		 * block allocation which had been deferred till now. We don't
654 		 * support fallocate for non extent files. So we can update
655 		 * reserve space here.
656 		 */
657 		if ((retval > 0) &&
658 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 			ext4_da_update_reserve_space(inode, retval, 1);
660 	}
661 
662 	if (retval > 0) {
663 		unsigned int status;
664 
665 		if (unlikely(retval != map->m_len)) {
666 			ext4_warning(inode->i_sb,
667 				     "ES len assertion failed for inode "
668 				     "%lu: retval %d != map->m_len %d",
669 				     inode->i_ino, retval, map->m_len);
670 			WARN_ON(1);
671 		}
672 
673 		/*
674 		 * We have to zeroout blocks before inserting them into extent
675 		 * status tree. Otherwise someone could look them up there and
676 		 * use them before they are really zeroed. We also have to
677 		 * unmap metadata before zeroing as otherwise writeback can
678 		 * overwrite zeros with stale data from block device.
679 		 */
680 		if (flags & EXT4_GET_BLOCKS_ZERO &&
681 		    map->m_flags & EXT4_MAP_MAPPED &&
682 		    map->m_flags & EXT4_MAP_NEW) {
683 			ret = ext4_issue_zeroout(inode, map->m_lblk,
684 						 map->m_pblk, map->m_len);
685 			if (ret) {
686 				retval = ret;
687 				goto out_sem;
688 			}
689 		}
690 
691 		/*
692 		 * If the extent has been zeroed out, we don't need to update
693 		 * extent status tree.
694 		 */
695 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 			if (ext4_es_is_written(&es))
698 				goto out_sem;
699 		}
700 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 		    !(status & EXTENT_STATUS_WRITTEN) &&
704 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 				       map->m_lblk + map->m_len - 1))
706 			status |= EXTENT_STATUS_DELAYED;
707 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 					    map->m_pblk, status);
709 		if (ret < 0) {
710 			retval = ret;
711 			goto out_sem;
712 		}
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 		ext4_fc_track_range(handle, inode, map->m_lblk,
746 			    map->m_lblk + map->m_len - 1);
747 	}
748 
749 	if (retval < 0)
750 		ext_debug(inode, "failed with err %d\n", retval);
751 	return retval;
752 }
753 
754 /*
755  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756  * we have to be careful as someone else may be manipulating b_state as well.
757  */
758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 {
760 	unsigned long old_state;
761 	unsigned long new_state;
762 
763 	flags &= EXT4_MAP_FLAGS;
764 
765 	/* Dummy buffer_head? Set non-atomically. */
766 	if (!bh->b_page) {
767 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 		return;
769 	}
770 	/*
771 	 * Someone else may be modifying b_state. Be careful! This is ugly but
772 	 * once we get rid of using bh as a container for mapping information
773 	 * to pass to / from get_block functions, this can go away.
774 	 */
775 	do {
776 		old_state = READ_ONCE(bh->b_state);
777 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 	} while (unlikely(
779 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780 }
781 
782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 		   inode->i_ino, create);
825 	return _ext4_get_block(inode, iblock, bh_result,
826 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
827 }
828 
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831 
832 /*
833  * `handle' can be NULL if create is zero
834  */
835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 				ext4_lblk_t block, int map_flags)
837 {
838 	struct ext4_map_blocks map;
839 	struct buffer_head *bh;
840 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 	int err;
842 
843 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		    || handle != NULL || create == 0);
845 
846 	map.m_lblk = block;
847 	map.m_len = 1;
848 	err = ext4_map_blocks(handle, inode, &map, map_flags);
849 
850 	if (err == 0)
851 		return create ? ERR_PTR(-ENOSPC) : NULL;
852 	if (err < 0)
853 		return ERR_PTR(err);
854 
855 	bh = sb_getblk(inode->i_sb, map.m_pblk);
856 	if (unlikely(!bh))
857 		return ERR_PTR(-ENOMEM);
858 	if (map.m_flags & EXT4_MAP_NEW) {
859 		ASSERT(create != 0);
860 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 			    || (handle != NULL));
862 
863 		/*
864 		 * Now that we do not always journal data, we should
865 		 * keep in mind whether this should always journal the
866 		 * new buffer as metadata.  For now, regular file
867 		 * writes use ext4_get_block instead, so it's not a
868 		 * problem.
869 		 */
870 		lock_buffer(bh);
871 		BUFFER_TRACE(bh, "call get_create_access");
872 		err = ext4_journal_get_create_access(handle, bh);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
957 int ext4_walk_page_buffers(handle_t *handle,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, bh);
1032 	if (!ret && dirty)
1033 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 	return ret;
1035 }
1036 
1037 #ifdef CONFIG_FS_ENCRYPTION
1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 				  get_block_t *get_block)
1040 {
1041 	unsigned from = pos & (PAGE_SIZE - 1);
1042 	unsigned to = from + len;
1043 	struct inode *inode = page->mapping->host;
1044 	unsigned block_start, block_end;
1045 	sector_t block;
1046 	int err = 0;
1047 	unsigned blocksize = inode->i_sb->s_blocksize;
1048 	unsigned bbits;
1049 	struct buffer_head *bh, *head, *wait[2];
1050 	int nr_wait = 0;
1051 	int i;
1052 
1053 	BUG_ON(!PageLocked(page));
1054 	BUG_ON(from > PAGE_SIZE);
1055 	BUG_ON(to > PAGE_SIZE);
1056 	BUG_ON(from > to);
1057 
1058 	if (!page_has_buffers(page))
1059 		create_empty_buffers(page, blocksize, 0);
1060 	head = page_buffers(page);
1061 	bbits = ilog2(blocksize);
1062 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063 
1064 	for (bh = head, block_start = 0; bh != head || !block_start;
1065 	    block++, block_start = block_end, bh = bh->b_this_page) {
1066 		block_end = block_start + blocksize;
1067 		if (block_end <= from || block_start >= to) {
1068 			if (PageUptodate(page)) {
1069 				set_buffer_uptodate(bh);
1070 			}
1071 			continue;
1072 		}
1073 		if (buffer_new(bh))
1074 			clear_buffer_new(bh);
1075 		if (!buffer_mapped(bh)) {
1076 			WARN_ON(bh->b_size != blocksize);
1077 			err = get_block(inode, block, bh, 1);
1078 			if (err)
1079 				break;
1080 			if (buffer_new(bh)) {
1081 				if (PageUptodate(page)) {
1082 					clear_buffer_new(bh);
1083 					set_buffer_uptodate(bh);
1084 					mark_buffer_dirty(bh);
1085 					continue;
1086 				}
1087 				if (block_end > to || block_start < from)
1088 					zero_user_segments(page, to, block_end,
1089 							   block_start, from);
1090 				continue;
1091 			}
1092 		}
1093 		if (PageUptodate(page)) {
1094 			set_buffer_uptodate(bh);
1095 			continue;
1096 		}
1097 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 		    !buffer_unwritten(bh) &&
1099 		    (block_start < from || block_end > to)) {
1100 			ext4_read_bh_lock(bh, 0, false);
1101 			wait[nr_wait++] = bh;
1102 		}
1103 	}
1104 	/*
1105 	 * If we issued read requests, let them complete.
1106 	 */
1107 	for (i = 0; i < nr_wait; i++) {
1108 		wait_on_buffer(wait[i]);
1109 		if (!buffer_uptodate(wait[i]))
1110 			err = -EIO;
1111 	}
1112 	if (unlikely(err)) {
1113 		page_zero_new_buffers(page, from, to);
1114 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115 		for (i = 0; i < nr_wait; i++) {
1116 			int err2;
1117 
1118 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119 								bh_offset(wait[i]));
1120 			if (err2) {
1121 				clear_buffer_uptodate(wait[i]);
1122 				err = err2;
1123 			}
1124 		}
1125 	}
1126 
1127 	return err;
1128 }
1129 #endif
1130 
1131 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132 			    loff_t pos, unsigned len, unsigned flags,
1133 			    struct page **pagep, void **fsdata)
1134 {
1135 	struct inode *inode = mapping->host;
1136 	int ret, needed_blocks;
1137 	handle_t *handle;
1138 	int retries = 0;
1139 	struct page *page;
1140 	pgoff_t index;
1141 	unsigned from, to;
1142 
1143 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144 		return -EIO;
1145 
1146 	trace_ext4_write_begin(inode, pos, len, flags);
1147 	/*
1148 	 * Reserve one block more for addition to orphan list in case
1149 	 * we allocate blocks but write fails for some reason
1150 	 */
1151 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152 	index = pos >> PAGE_SHIFT;
1153 	from = pos & (PAGE_SIZE - 1);
1154 	to = from + len;
1155 
1156 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158 						    flags, pagep);
1159 		if (ret < 0)
1160 			return ret;
1161 		if (ret == 1)
1162 			return 0;
1163 	}
1164 
1165 	/*
1166 	 * grab_cache_page_write_begin() can take a long time if the
1167 	 * system is thrashing due to memory pressure, or if the page
1168 	 * is being written back.  So grab it first before we start
1169 	 * the transaction handle.  This also allows us to allocate
1170 	 * the page (if needed) without using GFP_NOFS.
1171 	 */
1172 retry_grab:
1173 	page = grab_cache_page_write_begin(mapping, index, flags);
1174 	if (!page)
1175 		return -ENOMEM;
1176 	unlock_page(page);
1177 
1178 retry_journal:
1179 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1180 	if (IS_ERR(handle)) {
1181 		put_page(page);
1182 		return PTR_ERR(handle);
1183 	}
1184 
1185 	lock_page(page);
1186 	if (page->mapping != mapping) {
1187 		/* The page got truncated from under us */
1188 		unlock_page(page);
1189 		put_page(page);
1190 		ext4_journal_stop(handle);
1191 		goto retry_grab;
1192 	}
1193 	/* In case writeback began while the page was unlocked */
1194 	wait_for_stable_page(page);
1195 
1196 #ifdef CONFIG_FS_ENCRYPTION
1197 	if (ext4_should_dioread_nolock(inode))
1198 		ret = ext4_block_write_begin(page, pos, len,
1199 					     ext4_get_block_unwritten);
1200 	else
1201 		ret = ext4_block_write_begin(page, pos, len,
1202 					     ext4_get_block);
1203 #else
1204 	if (ext4_should_dioread_nolock(inode))
1205 		ret = __block_write_begin(page, pos, len,
1206 					  ext4_get_block_unwritten);
1207 	else
1208 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1209 #endif
1210 	if (!ret && ext4_should_journal_data(inode)) {
1211 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1212 					     from, to, NULL,
1213 					     do_journal_get_write_access);
1214 	}
1215 
1216 	if (ret) {
1217 		bool extended = (pos + len > inode->i_size) &&
1218 				!ext4_verity_in_progress(inode);
1219 
1220 		unlock_page(page);
1221 		/*
1222 		 * __block_write_begin may have instantiated a few blocks
1223 		 * outside i_size.  Trim these off again. Don't need
1224 		 * i_size_read because we hold i_mutex.
1225 		 *
1226 		 * Add inode to orphan list in case we crash before
1227 		 * truncate finishes
1228 		 */
1229 		if (extended && ext4_can_truncate(inode))
1230 			ext4_orphan_add(handle, inode);
1231 
1232 		ext4_journal_stop(handle);
1233 		if (extended) {
1234 			ext4_truncate_failed_write(inode);
1235 			/*
1236 			 * If truncate failed early the inode might
1237 			 * still be on the orphan list; we need to
1238 			 * make sure the inode is removed from the
1239 			 * orphan list in that case.
1240 			 */
1241 			if (inode->i_nlink)
1242 				ext4_orphan_del(NULL, inode);
1243 		}
1244 
1245 		if (ret == -ENOSPC &&
1246 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1247 			goto retry_journal;
1248 		put_page(page);
1249 		return ret;
1250 	}
1251 	*pagep = page;
1252 	return ret;
1253 }
1254 
1255 /* For write_end() in data=journal mode */
1256 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1257 {
1258 	int ret;
1259 	if (!buffer_mapped(bh) || buffer_freed(bh))
1260 		return 0;
1261 	set_buffer_uptodate(bh);
1262 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1263 	clear_buffer_meta(bh);
1264 	clear_buffer_prio(bh);
1265 	return ret;
1266 }
1267 
1268 /*
1269  * We need to pick up the new inode size which generic_commit_write gave us
1270  * `file' can be NULL - eg, when called from page_symlink().
1271  *
1272  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1273  * buffers are managed internally.
1274  */
1275 static int ext4_write_end(struct file *file,
1276 			  struct address_space *mapping,
1277 			  loff_t pos, unsigned len, unsigned copied,
1278 			  struct page *page, void *fsdata)
1279 {
1280 	handle_t *handle = ext4_journal_current_handle();
1281 	struct inode *inode = mapping->host;
1282 	loff_t old_size = inode->i_size;
1283 	int ret = 0, ret2;
1284 	int i_size_changed = 0;
1285 	int inline_data = ext4_has_inline_data(inode);
1286 	bool verity = ext4_verity_in_progress(inode);
1287 
1288 	trace_ext4_write_end(inode, pos, len, copied);
1289 	if (inline_data) {
1290 		ret = ext4_write_inline_data_end(inode, pos, len,
1291 						 copied, page);
1292 		if (ret < 0) {
1293 			unlock_page(page);
1294 			put_page(page);
1295 			goto errout;
1296 		}
1297 		copied = ret;
1298 	} else
1299 		copied = block_write_end(file, mapping, pos,
1300 					 len, copied, page, fsdata);
1301 	/*
1302 	 * it's important to update i_size while still holding page lock:
1303 	 * page writeout could otherwise come in and zero beyond i_size.
1304 	 *
1305 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1306 	 * blocks are being written past EOF, so skip the i_size update.
1307 	 */
1308 	if (!verity)
1309 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1310 	unlock_page(page);
1311 	put_page(page);
1312 
1313 	if (old_size < pos && !verity)
1314 		pagecache_isize_extended(inode, old_size, pos);
1315 	/*
1316 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1317 	 * makes the holding time of page lock longer. Second, it forces lock
1318 	 * ordering of page lock and transaction start for journaling
1319 	 * filesystems.
1320 	 */
1321 	if (i_size_changed || inline_data)
1322 		ret = ext4_mark_inode_dirty(handle, inode);
1323 
1324 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1325 		/* if we have allocated more blocks and copied
1326 		 * less. We will have blocks allocated outside
1327 		 * inode->i_size. So truncate them
1328 		 */
1329 		ext4_orphan_add(handle, inode);
1330 errout:
1331 	ret2 = ext4_journal_stop(handle);
1332 	if (!ret)
1333 		ret = ret2;
1334 
1335 	if (pos + len > inode->i_size && !verity) {
1336 		ext4_truncate_failed_write(inode);
1337 		/*
1338 		 * If truncate failed early the inode might still be
1339 		 * on the orphan list; we need to make sure the inode
1340 		 * is removed from the orphan list in that case.
1341 		 */
1342 		if (inode->i_nlink)
1343 			ext4_orphan_del(NULL, inode);
1344 	}
1345 
1346 	return ret ? ret : copied;
1347 }
1348 
1349 /*
1350  * This is a private version of page_zero_new_buffers() which doesn't
1351  * set the buffer to be dirty, since in data=journalled mode we need
1352  * to call ext4_handle_dirty_metadata() instead.
1353  */
1354 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1355 					    struct page *page,
1356 					    unsigned from, unsigned to)
1357 {
1358 	unsigned int block_start = 0, block_end;
1359 	struct buffer_head *head, *bh;
1360 
1361 	bh = head = page_buffers(page);
1362 	do {
1363 		block_end = block_start + bh->b_size;
1364 		if (buffer_new(bh)) {
1365 			if (block_end > from && block_start < to) {
1366 				if (!PageUptodate(page)) {
1367 					unsigned start, size;
1368 
1369 					start = max(from, block_start);
1370 					size = min(to, block_end) - start;
1371 
1372 					zero_user(page, start, size);
1373 					write_end_fn(handle, bh);
1374 				}
1375 				clear_buffer_new(bh);
1376 			}
1377 		}
1378 		block_start = block_end;
1379 		bh = bh->b_this_page;
1380 	} while (bh != head);
1381 }
1382 
1383 static int ext4_journalled_write_end(struct file *file,
1384 				     struct address_space *mapping,
1385 				     loff_t pos, unsigned len, unsigned copied,
1386 				     struct page *page, void *fsdata)
1387 {
1388 	handle_t *handle = ext4_journal_current_handle();
1389 	struct inode *inode = mapping->host;
1390 	loff_t old_size = inode->i_size;
1391 	int ret = 0, ret2;
1392 	int partial = 0;
1393 	unsigned from, to;
1394 	int size_changed = 0;
1395 	int inline_data = ext4_has_inline_data(inode);
1396 	bool verity = ext4_verity_in_progress(inode);
1397 
1398 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1399 	from = pos & (PAGE_SIZE - 1);
1400 	to = from + len;
1401 
1402 	BUG_ON(!ext4_handle_valid(handle));
1403 
1404 	if (inline_data) {
1405 		ret = ext4_write_inline_data_end(inode, pos, len,
1406 						 copied, page);
1407 		if (ret < 0) {
1408 			unlock_page(page);
1409 			put_page(page);
1410 			goto errout;
1411 		}
1412 		copied = ret;
1413 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1414 		copied = 0;
1415 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1416 	} else {
1417 		if (unlikely(copied < len))
1418 			ext4_journalled_zero_new_buffers(handle, page,
1419 							 from + copied, to);
1420 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1421 					     from + copied, &partial,
1422 					     write_end_fn);
1423 		if (!partial)
1424 			SetPageUptodate(page);
1425 	}
1426 	if (!verity)
1427 		size_changed = ext4_update_inode_size(inode, pos + copied);
1428 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1429 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1430 	unlock_page(page);
1431 	put_page(page);
1432 
1433 	if (old_size < pos && !verity)
1434 		pagecache_isize_extended(inode, old_size, pos);
1435 
1436 	if (size_changed || inline_data) {
1437 		ret2 = ext4_mark_inode_dirty(handle, inode);
1438 		if (!ret)
1439 			ret = ret2;
1440 	}
1441 
1442 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1443 		/* if we have allocated more blocks and copied
1444 		 * less. We will have blocks allocated outside
1445 		 * inode->i_size. So truncate them
1446 		 */
1447 		ext4_orphan_add(handle, inode);
1448 
1449 errout:
1450 	ret2 = ext4_journal_stop(handle);
1451 	if (!ret)
1452 		ret = ret2;
1453 	if (pos + len > inode->i_size && !verity) {
1454 		ext4_truncate_failed_write(inode);
1455 		/*
1456 		 * If truncate failed early the inode might still be
1457 		 * on the orphan list; we need to make sure the inode
1458 		 * is removed from the orphan list in that case.
1459 		 */
1460 		if (inode->i_nlink)
1461 			ext4_orphan_del(NULL, inode);
1462 	}
1463 
1464 	return ret ? ret : copied;
1465 }
1466 
1467 /*
1468  * Reserve space for a single cluster
1469  */
1470 static int ext4_da_reserve_space(struct inode *inode)
1471 {
1472 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1473 	struct ext4_inode_info *ei = EXT4_I(inode);
1474 	int ret;
1475 
1476 	/*
1477 	 * We will charge metadata quota at writeout time; this saves
1478 	 * us from metadata over-estimation, though we may go over by
1479 	 * a small amount in the end.  Here we just reserve for data.
1480 	 */
1481 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1482 	if (ret)
1483 		return ret;
1484 
1485 	spin_lock(&ei->i_block_reservation_lock);
1486 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1487 		spin_unlock(&ei->i_block_reservation_lock);
1488 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1489 		return -ENOSPC;
1490 	}
1491 	ei->i_reserved_data_blocks++;
1492 	trace_ext4_da_reserve_space(inode);
1493 	spin_unlock(&ei->i_block_reservation_lock);
1494 
1495 	return 0;       /* success */
1496 }
1497 
1498 void ext4_da_release_space(struct inode *inode, int to_free)
1499 {
1500 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1501 	struct ext4_inode_info *ei = EXT4_I(inode);
1502 
1503 	if (!to_free)
1504 		return;		/* Nothing to release, exit */
1505 
1506 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1507 
1508 	trace_ext4_da_release_space(inode, to_free);
1509 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1510 		/*
1511 		 * if there aren't enough reserved blocks, then the
1512 		 * counter is messed up somewhere.  Since this
1513 		 * function is called from invalidate page, it's
1514 		 * harmless to return without any action.
1515 		 */
1516 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1517 			 "ino %lu, to_free %d with only %d reserved "
1518 			 "data blocks", inode->i_ino, to_free,
1519 			 ei->i_reserved_data_blocks);
1520 		WARN_ON(1);
1521 		to_free = ei->i_reserved_data_blocks;
1522 	}
1523 	ei->i_reserved_data_blocks -= to_free;
1524 
1525 	/* update fs dirty data blocks counter */
1526 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1527 
1528 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1529 
1530 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1531 }
1532 
1533 /*
1534  * Delayed allocation stuff
1535  */
1536 
1537 struct mpage_da_data {
1538 	struct inode *inode;
1539 	struct writeback_control *wbc;
1540 
1541 	pgoff_t first_page;	/* The first page to write */
1542 	pgoff_t next_page;	/* Current page to examine */
1543 	pgoff_t last_page;	/* Last page to examine */
1544 	/*
1545 	 * Extent to map - this can be after first_page because that can be
1546 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1547 	 * is delalloc or unwritten.
1548 	 */
1549 	struct ext4_map_blocks map;
1550 	struct ext4_io_submit io_submit;	/* IO submission data */
1551 	unsigned int do_map:1;
1552 	unsigned int scanned_until_end:1;
1553 };
1554 
1555 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1556 				       bool invalidate)
1557 {
1558 	int nr_pages, i;
1559 	pgoff_t index, end;
1560 	struct pagevec pvec;
1561 	struct inode *inode = mpd->inode;
1562 	struct address_space *mapping = inode->i_mapping;
1563 
1564 	/* This is necessary when next_page == 0. */
1565 	if (mpd->first_page >= mpd->next_page)
1566 		return;
1567 
1568 	mpd->scanned_until_end = 0;
1569 	index = mpd->first_page;
1570 	end   = mpd->next_page - 1;
1571 	if (invalidate) {
1572 		ext4_lblk_t start, last;
1573 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1574 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1575 		ext4_es_remove_extent(inode, start, last - start + 1);
1576 	}
1577 
1578 	pagevec_init(&pvec);
1579 	while (index <= end) {
1580 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1581 		if (nr_pages == 0)
1582 			break;
1583 		for (i = 0; i < nr_pages; i++) {
1584 			struct page *page = pvec.pages[i];
1585 
1586 			BUG_ON(!PageLocked(page));
1587 			BUG_ON(PageWriteback(page));
1588 			if (invalidate) {
1589 				if (page_mapped(page))
1590 					clear_page_dirty_for_io(page);
1591 				block_invalidatepage(page, 0, PAGE_SIZE);
1592 				ClearPageUptodate(page);
1593 			}
1594 			unlock_page(page);
1595 		}
1596 		pagevec_release(&pvec);
1597 	}
1598 }
1599 
1600 static void ext4_print_free_blocks(struct inode *inode)
1601 {
1602 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1603 	struct super_block *sb = inode->i_sb;
1604 	struct ext4_inode_info *ei = EXT4_I(inode);
1605 
1606 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1607 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1608 			ext4_count_free_clusters(sb)));
1609 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1610 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1611 	       (long long) EXT4_C2B(EXT4_SB(sb),
1612 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1613 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1614 	       (long long) EXT4_C2B(EXT4_SB(sb),
1615 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1616 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1617 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1618 		 ei->i_reserved_data_blocks);
1619 	return;
1620 }
1621 
1622 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1623 {
1624 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1625 }
1626 
1627 /*
1628  * ext4_insert_delayed_block - adds a delayed block to the extents status
1629  *                             tree, incrementing the reserved cluster/block
1630  *                             count or making a pending reservation
1631  *                             where needed
1632  *
1633  * @inode - file containing the newly added block
1634  * @lblk - logical block to be added
1635  *
1636  * Returns 0 on success, negative error code on failure.
1637  */
1638 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1639 {
1640 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1641 	int ret;
1642 	bool allocated = false;
1643 
1644 	/*
1645 	 * If the cluster containing lblk is shared with a delayed,
1646 	 * written, or unwritten extent in a bigalloc file system, it's
1647 	 * already been accounted for and does not need to be reserved.
1648 	 * A pending reservation must be made for the cluster if it's
1649 	 * shared with a written or unwritten extent and doesn't already
1650 	 * have one.  Written and unwritten extents can be purged from the
1651 	 * extents status tree if the system is under memory pressure, so
1652 	 * it's necessary to examine the extent tree if a search of the
1653 	 * extents status tree doesn't get a match.
1654 	 */
1655 	if (sbi->s_cluster_ratio == 1) {
1656 		ret = ext4_da_reserve_space(inode);
1657 		if (ret != 0)   /* ENOSPC */
1658 			goto errout;
1659 	} else {   /* bigalloc */
1660 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1661 			if (!ext4_es_scan_clu(inode,
1662 					      &ext4_es_is_mapped, lblk)) {
1663 				ret = ext4_clu_mapped(inode,
1664 						      EXT4_B2C(sbi, lblk));
1665 				if (ret < 0)
1666 					goto errout;
1667 				if (ret == 0) {
1668 					ret = ext4_da_reserve_space(inode);
1669 					if (ret != 0)   /* ENOSPC */
1670 						goto errout;
1671 				} else {
1672 					allocated = true;
1673 				}
1674 			} else {
1675 				allocated = true;
1676 			}
1677 		}
1678 	}
1679 
1680 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1681 
1682 errout:
1683 	return ret;
1684 }
1685 
1686 /*
1687  * This function is grabs code from the very beginning of
1688  * ext4_map_blocks, but assumes that the caller is from delayed write
1689  * time. This function looks up the requested blocks and sets the
1690  * buffer delay bit under the protection of i_data_sem.
1691  */
1692 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1693 			      struct ext4_map_blocks *map,
1694 			      struct buffer_head *bh)
1695 {
1696 	struct extent_status es;
1697 	int retval;
1698 	sector_t invalid_block = ~((sector_t) 0xffff);
1699 #ifdef ES_AGGRESSIVE_TEST
1700 	struct ext4_map_blocks orig_map;
1701 
1702 	memcpy(&orig_map, map, sizeof(*map));
1703 #endif
1704 
1705 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1706 		invalid_block = ~0;
1707 
1708 	map->m_flags = 0;
1709 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1710 		  (unsigned long) map->m_lblk);
1711 
1712 	/* Lookup extent status tree firstly */
1713 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1714 		if (ext4_es_is_hole(&es)) {
1715 			retval = 0;
1716 			down_read(&EXT4_I(inode)->i_data_sem);
1717 			goto add_delayed;
1718 		}
1719 
1720 		/*
1721 		 * Delayed extent could be allocated by fallocate.
1722 		 * So we need to check it.
1723 		 */
1724 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1725 			map_bh(bh, inode->i_sb, invalid_block);
1726 			set_buffer_new(bh);
1727 			set_buffer_delay(bh);
1728 			return 0;
1729 		}
1730 
1731 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1732 		retval = es.es_len - (iblock - es.es_lblk);
1733 		if (retval > map->m_len)
1734 			retval = map->m_len;
1735 		map->m_len = retval;
1736 		if (ext4_es_is_written(&es))
1737 			map->m_flags |= EXT4_MAP_MAPPED;
1738 		else if (ext4_es_is_unwritten(&es))
1739 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1740 		else
1741 			BUG();
1742 
1743 #ifdef ES_AGGRESSIVE_TEST
1744 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1745 #endif
1746 		return retval;
1747 	}
1748 
1749 	/*
1750 	 * Try to see if we can get the block without requesting a new
1751 	 * file system block.
1752 	 */
1753 	down_read(&EXT4_I(inode)->i_data_sem);
1754 	if (ext4_has_inline_data(inode))
1755 		retval = 0;
1756 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1757 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1758 	else
1759 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1760 
1761 add_delayed:
1762 	if (retval == 0) {
1763 		int ret;
1764 
1765 		/*
1766 		 * XXX: __block_prepare_write() unmaps passed block,
1767 		 * is it OK?
1768 		 */
1769 
1770 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1771 		if (ret != 0) {
1772 			retval = ret;
1773 			goto out_unlock;
1774 		}
1775 
1776 		map_bh(bh, inode->i_sb, invalid_block);
1777 		set_buffer_new(bh);
1778 		set_buffer_delay(bh);
1779 	} else if (retval > 0) {
1780 		int ret;
1781 		unsigned int status;
1782 
1783 		if (unlikely(retval != map->m_len)) {
1784 			ext4_warning(inode->i_sb,
1785 				     "ES len assertion failed for inode "
1786 				     "%lu: retval %d != map->m_len %d",
1787 				     inode->i_ino, retval, map->m_len);
1788 			WARN_ON(1);
1789 		}
1790 
1791 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1792 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1793 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1794 					    map->m_pblk, status);
1795 		if (ret != 0)
1796 			retval = ret;
1797 	}
1798 
1799 out_unlock:
1800 	up_read((&EXT4_I(inode)->i_data_sem));
1801 
1802 	return retval;
1803 }
1804 
1805 /*
1806  * This is a special get_block_t callback which is used by
1807  * ext4_da_write_begin().  It will either return mapped block or
1808  * reserve space for a single block.
1809  *
1810  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1811  * We also have b_blocknr = -1 and b_bdev initialized properly
1812  *
1813  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1814  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1815  * initialized properly.
1816  */
1817 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1818 			   struct buffer_head *bh, int create)
1819 {
1820 	struct ext4_map_blocks map;
1821 	int ret = 0;
1822 
1823 	BUG_ON(create == 0);
1824 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1825 
1826 	map.m_lblk = iblock;
1827 	map.m_len = 1;
1828 
1829 	/*
1830 	 * first, we need to know whether the block is allocated already
1831 	 * preallocated blocks are unmapped but should treated
1832 	 * the same as allocated blocks.
1833 	 */
1834 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1835 	if (ret <= 0)
1836 		return ret;
1837 
1838 	map_bh(bh, inode->i_sb, map.m_pblk);
1839 	ext4_update_bh_state(bh, map.m_flags);
1840 
1841 	if (buffer_unwritten(bh)) {
1842 		/* A delayed write to unwritten bh should be marked
1843 		 * new and mapped.  Mapped ensures that we don't do
1844 		 * get_block multiple times when we write to the same
1845 		 * offset and new ensures that we do proper zero out
1846 		 * for partial write.
1847 		 */
1848 		set_buffer_new(bh);
1849 		set_buffer_mapped(bh);
1850 	}
1851 	return 0;
1852 }
1853 
1854 static int bget_one(handle_t *handle, struct buffer_head *bh)
1855 {
1856 	get_bh(bh);
1857 	return 0;
1858 }
1859 
1860 static int bput_one(handle_t *handle, struct buffer_head *bh)
1861 {
1862 	put_bh(bh);
1863 	return 0;
1864 }
1865 
1866 static int __ext4_journalled_writepage(struct page *page,
1867 				       unsigned int len)
1868 {
1869 	struct address_space *mapping = page->mapping;
1870 	struct inode *inode = mapping->host;
1871 	struct buffer_head *page_bufs = NULL;
1872 	handle_t *handle = NULL;
1873 	int ret = 0, err = 0;
1874 	int inline_data = ext4_has_inline_data(inode);
1875 	struct buffer_head *inode_bh = NULL;
1876 
1877 	ClearPageChecked(page);
1878 
1879 	if (inline_data) {
1880 		BUG_ON(page->index != 0);
1881 		BUG_ON(len > ext4_get_max_inline_size(inode));
1882 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1883 		if (inode_bh == NULL)
1884 			goto out;
1885 	} else {
1886 		page_bufs = page_buffers(page);
1887 		if (!page_bufs) {
1888 			BUG();
1889 			goto out;
1890 		}
1891 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1892 				       NULL, bget_one);
1893 	}
1894 	/*
1895 	 * We need to release the page lock before we start the
1896 	 * journal, so grab a reference so the page won't disappear
1897 	 * out from under us.
1898 	 */
1899 	get_page(page);
1900 	unlock_page(page);
1901 
1902 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1903 				    ext4_writepage_trans_blocks(inode));
1904 	if (IS_ERR(handle)) {
1905 		ret = PTR_ERR(handle);
1906 		put_page(page);
1907 		goto out_no_pagelock;
1908 	}
1909 	BUG_ON(!ext4_handle_valid(handle));
1910 
1911 	lock_page(page);
1912 	put_page(page);
1913 	if (page->mapping != mapping) {
1914 		/* The page got truncated from under us */
1915 		ext4_journal_stop(handle);
1916 		ret = 0;
1917 		goto out;
1918 	}
1919 
1920 	if (inline_data) {
1921 		ret = ext4_mark_inode_dirty(handle, inode);
1922 	} else {
1923 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1924 					     do_journal_get_write_access);
1925 
1926 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1927 					     write_end_fn);
1928 	}
1929 	if (ret == 0)
1930 		ret = err;
1931 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1932 	if (ret == 0)
1933 		ret = err;
1934 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1935 	err = ext4_journal_stop(handle);
1936 	if (!ret)
1937 		ret = err;
1938 
1939 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1940 out:
1941 	unlock_page(page);
1942 out_no_pagelock:
1943 	if (!inline_data && page_bufs)
1944 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945 				       NULL, bput_one);
1946 	brelse(inode_bh);
1947 	return ret;
1948 }
1949 
1950 /*
1951  * Note that we don't need to start a transaction unless we're journaling data
1952  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1953  * need to file the inode to the transaction's list in ordered mode because if
1954  * we are writing back data added by write(), the inode is already there and if
1955  * we are writing back data modified via mmap(), no one guarantees in which
1956  * transaction the data will hit the disk. In case we are journaling data, we
1957  * cannot start transaction directly because transaction start ranks above page
1958  * lock so we have to do some magic.
1959  *
1960  * This function can get called via...
1961  *   - ext4_writepages after taking page lock (have journal handle)
1962  *   - journal_submit_inode_data_buffers (no journal handle)
1963  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1964  *   - grab_page_cache when doing write_begin (have journal handle)
1965  *
1966  * We don't do any block allocation in this function. If we have page with
1967  * multiple blocks we need to write those buffer_heads that are mapped. This
1968  * is important for mmaped based write. So if we do with blocksize 1K
1969  * truncate(f, 1024);
1970  * a = mmap(f, 0, 4096);
1971  * a[0] = 'a';
1972  * truncate(f, 4096);
1973  * we have in the page first buffer_head mapped via page_mkwrite call back
1974  * but other buffer_heads would be unmapped but dirty (dirty done via the
1975  * do_wp_page). So writepage should write the first block. If we modify
1976  * the mmap area beyond 1024 we will again get a page_fault and the
1977  * page_mkwrite callback will do the block allocation and mark the
1978  * buffer_heads mapped.
1979  *
1980  * We redirty the page if we have any buffer_heads that is either delay or
1981  * unwritten in the page.
1982  *
1983  * We can get recursively called as show below.
1984  *
1985  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1986  *		ext4_writepage()
1987  *
1988  * But since we don't do any block allocation we should not deadlock.
1989  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1990  */
1991 static int ext4_writepage(struct page *page,
1992 			  struct writeback_control *wbc)
1993 {
1994 	int ret = 0;
1995 	loff_t size;
1996 	unsigned int len;
1997 	struct buffer_head *page_bufs = NULL;
1998 	struct inode *inode = page->mapping->host;
1999 	struct ext4_io_submit io_submit;
2000 	bool keep_towrite = false;
2001 
2002 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2003 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2004 		unlock_page(page);
2005 		return -EIO;
2006 	}
2007 
2008 	trace_ext4_writepage(page);
2009 	size = i_size_read(inode);
2010 	if (page->index == size >> PAGE_SHIFT &&
2011 	    !ext4_verity_in_progress(inode))
2012 		len = size & ~PAGE_MASK;
2013 	else
2014 		len = PAGE_SIZE;
2015 
2016 	page_bufs = page_buffers(page);
2017 	/*
2018 	 * We cannot do block allocation or other extent handling in this
2019 	 * function. If there are buffers needing that, we have to redirty
2020 	 * the page. But we may reach here when we do a journal commit via
2021 	 * journal_submit_inode_data_buffers() and in that case we must write
2022 	 * allocated buffers to achieve data=ordered mode guarantees.
2023 	 *
2024 	 * Also, if there is only one buffer per page (the fs block
2025 	 * size == the page size), if one buffer needs block
2026 	 * allocation or needs to modify the extent tree to clear the
2027 	 * unwritten flag, we know that the page can't be written at
2028 	 * all, so we might as well refuse the write immediately.
2029 	 * Unfortunately if the block size != page size, we can't as
2030 	 * easily detect this case using ext4_walk_page_buffers(), but
2031 	 * for the extremely common case, this is an optimization that
2032 	 * skips a useless round trip through ext4_bio_write_page().
2033 	 */
2034 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2035 				   ext4_bh_delay_or_unwritten)) {
2036 		redirty_page_for_writepage(wbc, page);
2037 		if ((current->flags & PF_MEMALLOC) ||
2038 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2039 			/*
2040 			 * For memory cleaning there's no point in writing only
2041 			 * some buffers. So just bail out. Warn if we came here
2042 			 * from direct reclaim.
2043 			 */
2044 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2045 							== PF_MEMALLOC);
2046 			unlock_page(page);
2047 			return 0;
2048 		}
2049 		keep_towrite = true;
2050 	}
2051 
2052 	if (PageChecked(page) && ext4_should_journal_data(inode))
2053 		/*
2054 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2055 		 * doesn't seem much point in redirtying the page here.
2056 		 */
2057 		return __ext4_journalled_writepage(page, len);
2058 
2059 	ext4_io_submit_init(&io_submit, wbc);
2060 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2061 	if (!io_submit.io_end) {
2062 		redirty_page_for_writepage(wbc, page);
2063 		unlock_page(page);
2064 		return -ENOMEM;
2065 	}
2066 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2067 	ext4_io_submit(&io_submit);
2068 	/* Drop io_end reference we got from init */
2069 	ext4_put_io_end_defer(io_submit.io_end);
2070 	return ret;
2071 }
2072 
2073 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2074 {
2075 	int len;
2076 	loff_t size;
2077 	int err;
2078 
2079 	BUG_ON(page->index != mpd->first_page);
2080 	clear_page_dirty_for_io(page);
2081 	/*
2082 	 * We have to be very careful here!  Nothing protects writeback path
2083 	 * against i_size changes and the page can be writeably mapped into
2084 	 * page tables. So an application can be growing i_size and writing
2085 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2086 	 * write-protects our page in page tables and the page cannot get
2087 	 * written to again until we release page lock. So only after
2088 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2089 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2090 	 * on the barrier provided by TestClearPageDirty in
2091 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2092 	 * after page tables are updated.
2093 	 */
2094 	size = i_size_read(mpd->inode);
2095 	if (page->index == size >> PAGE_SHIFT &&
2096 	    !ext4_verity_in_progress(mpd->inode))
2097 		len = size & ~PAGE_MASK;
2098 	else
2099 		len = PAGE_SIZE;
2100 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2101 	if (!err)
2102 		mpd->wbc->nr_to_write--;
2103 	mpd->first_page++;
2104 
2105 	return err;
2106 }
2107 
2108 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2109 
2110 /*
2111  * mballoc gives us at most this number of blocks...
2112  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2113  * The rest of mballoc seems to handle chunks up to full group size.
2114  */
2115 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2116 
2117 /*
2118  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2119  *
2120  * @mpd - extent of blocks
2121  * @lblk - logical number of the block in the file
2122  * @bh - buffer head we want to add to the extent
2123  *
2124  * The function is used to collect contig. blocks in the same state. If the
2125  * buffer doesn't require mapping for writeback and we haven't started the
2126  * extent of buffers to map yet, the function returns 'true' immediately - the
2127  * caller can write the buffer right away. Otherwise the function returns true
2128  * if the block has been added to the extent, false if the block couldn't be
2129  * added.
2130  */
2131 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2132 				   struct buffer_head *bh)
2133 {
2134 	struct ext4_map_blocks *map = &mpd->map;
2135 
2136 	/* Buffer that doesn't need mapping for writeback? */
2137 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2138 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2139 		/* So far no extent to map => we write the buffer right away */
2140 		if (map->m_len == 0)
2141 			return true;
2142 		return false;
2143 	}
2144 
2145 	/* First block in the extent? */
2146 	if (map->m_len == 0) {
2147 		/* We cannot map unless handle is started... */
2148 		if (!mpd->do_map)
2149 			return false;
2150 		map->m_lblk = lblk;
2151 		map->m_len = 1;
2152 		map->m_flags = bh->b_state & BH_FLAGS;
2153 		return true;
2154 	}
2155 
2156 	/* Don't go larger than mballoc is willing to allocate */
2157 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2158 		return false;
2159 
2160 	/* Can we merge the block to our big extent? */
2161 	if (lblk == map->m_lblk + map->m_len &&
2162 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2163 		map->m_len++;
2164 		return true;
2165 	}
2166 	return false;
2167 }
2168 
2169 /*
2170  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2171  *
2172  * @mpd - extent of blocks for mapping
2173  * @head - the first buffer in the page
2174  * @bh - buffer we should start processing from
2175  * @lblk - logical number of the block in the file corresponding to @bh
2176  *
2177  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2178  * the page for IO if all buffers in this page were mapped and there's no
2179  * accumulated extent of buffers to map or add buffers in the page to the
2180  * extent of buffers to map. The function returns 1 if the caller can continue
2181  * by processing the next page, 0 if it should stop adding buffers to the
2182  * extent to map because we cannot extend it anymore. It can also return value
2183  * < 0 in case of error during IO submission.
2184  */
2185 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2186 				   struct buffer_head *head,
2187 				   struct buffer_head *bh,
2188 				   ext4_lblk_t lblk)
2189 {
2190 	struct inode *inode = mpd->inode;
2191 	int err;
2192 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2193 							>> inode->i_blkbits;
2194 
2195 	if (ext4_verity_in_progress(inode))
2196 		blocks = EXT_MAX_BLOCKS;
2197 
2198 	do {
2199 		BUG_ON(buffer_locked(bh));
2200 
2201 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2202 			/* Found extent to map? */
2203 			if (mpd->map.m_len)
2204 				return 0;
2205 			/* Buffer needs mapping and handle is not started? */
2206 			if (!mpd->do_map)
2207 				return 0;
2208 			/* Everything mapped so far and we hit EOF */
2209 			break;
2210 		}
2211 	} while (lblk++, (bh = bh->b_this_page) != head);
2212 	/* So far everything mapped? Submit the page for IO. */
2213 	if (mpd->map.m_len == 0) {
2214 		err = mpage_submit_page(mpd, head->b_page);
2215 		if (err < 0)
2216 			return err;
2217 	}
2218 	if (lblk >= blocks) {
2219 		mpd->scanned_until_end = 1;
2220 		return 0;
2221 	}
2222 	return 1;
2223 }
2224 
2225 /*
2226  * mpage_process_page - update page buffers corresponding to changed extent and
2227  *		       may submit fully mapped page for IO
2228  *
2229  * @mpd		- description of extent to map, on return next extent to map
2230  * @m_lblk	- logical block mapping.
2231  * @m_pblk	- corresponding physical mapping.
2232  * @map_bh	- determines on return whether this page requires any further
2233  *		  mapping or not.
2234  * Scan given page buffers corresponding to changed extent and update buffer
2235  * state according to new extent state.
2236  * We map delalloc buffers to their physical location, clear unwritten bits.
2237  * If the given page is not fully mapped, we update @map to the next extent in
2238  * the given page that needs mapping & return @map_bh as true.
2239  */
2240 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2241 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2242 			      bool *map_bh)
2243 {
2244 	struct buffer_head *head, *bh;
2245 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2246 	ext4_lblk_t lblk = *m_lblk;
2247 	ext4_fsblk_t pblock = *m_pblk;
2248 	int err = 0;
2249 	int blkbits = mpd->inode->i_blkbits;
2250 	ssize_t io_end_size = 0;
2251 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2252 
2253 	bh = head = page_buffers(page);
2254 	do {
2255 		if (lblk < mpd->map.m_lblk)
2256 			continue;
2257 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2258 			/*
2259 			 * Buffer after end of mapped extent.
2260 			 * Find next buffer in the page to map.
2261 			 */
2262 			mpd->map.m_len = 0;
2263 			mpd->map.m_flags = 0;
2264 			io_end_vec->size += io_end_size;
2265 			io_end_size = 0;
2266 
2267 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2268 			if (err > 0)
2269 				err = 0;
2270 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2271 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2272 				if (IS_ERR(io_end_vec)) {
2273 					err = PTR_ERR(io_end_vec);
2274 					goto out;
2275 				}
2276 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2277 			}
2278 			*map_bh = true;
2279 			goto out;
2280 		}
2281 		if (buffer_delay(bh)) {
2282 			clear_buffer_delay(bh);
2283 			bh->b_blocknr = pblock++;
2284 		}
2285 		clear_buffer_unwritten(bh);
2286 		io_end_size += (1 << blkbits);
2287 	} while (lblk++, (bh = bh->b_this_page) != head);
2288 
2289 	io_end_vec->size += io_end_size;
2290 	io_end_size = 0;
2291 	*map_bh = false;
2292 out:
2293 	*m_lblk = lblk;
2294 	*m_pblk = pblock;
2295 	return err;
2296 }
2297 
2298 /*
2299  * mpage_map_buffers - update buffers corresponding to changed extent and
2300  *		       submit fully mapped pages for IO
2301  *
2302  * @mpd - description of extent to map, on return next extent to map
2303  *
2304  * Scan buffers corresponding to changed extent (we expect corresponding pages
2305  * to be already locked) and update buffer state according to new extent state.
2306  * We map delalloc buffers to their physical location, clear unwritten bits,
2307  * and mark buffers as uninit when we perform writes to unwritten extents
2308  * and do extent conversion after IO is finished. If the last page is not fully
2309  * mapped, we update @map to the next extent in the last page that needs
2310  * mapping. Otherwise we submit the page for IO.
2311  */
2312 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2313 {
2314 	struct pagevec pvec;
2315 	int nr_pages, i;
2316 	struct inode *inode = mpd->inode;
2317 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2318 	pgoff_t start, end;
2319 	ext4_lblk_t lblk;
2320 	ext4_fsblk_t pblock;
2321 	int err;
2322 	bool map_bh = false;
2323 
2324 	start = mpd->map.m_lblk >> bpp_bits;
2325 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2326 	lblk = start << bpp_bits;
2327 	pblock = mpd->map.m_pblk;
2328 
2329 	pagevec_init(&pvec);
2330 	while (start <= end) {
2331 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2332 						&start, end);
2333 		if (nr_pages == 0)
2334 			break;
2335 		for (i = 0; i < nr_pages; i++) {
2336 			struct page *page = pvec.pages[i];
2337 
2338 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2339 						 &map_bh);
2340 			/*
2341 			 * If map_bh is true, means page may require further bh
2342 			 * mapping, or maybe the page was submitted for IO.
2343 			 * So we return to call further extent mapping.
2344 			 */
2345 			if (err < 0 || map_bh)
2346 				goto out;
2347 			/* Page fully mapped - let IO run! */
2348 			err = mpage_submit_page(mpd, page);
2349 			if (err < 0)
2350 				goto out;
2351 		}
2352 		pagevec_release(&pvec);
2353 	}
2354 	/* Extent fully mapped and matches with page boundary. We are done. */
2355 	mpd->map.m_len = 0;
2356 	mpd->map.m_flags = 0;
2357 	return 0;
2358 out:
2359 	pagevec_release(&pvec);
2360 	return err;
2361 }
2362 
2363 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2364 {
2365 	struct inode *inode = mpd->inode;
2366 	struct ext4_map_blocks *map = &mpd->map;
2367 	int get_blocks_flags;
2368 	int err, dioread_nolock;
2369 
2370 	trace_ext4_da_write_pages_extent(inode, map);
2371 	/*
2372 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2373 	 * to convert an unwritten extent to be initialized (in the case
2374 	 * where we have written into one or more preallocated blocks).  It is
2375 	 * possible that we're going to need more metadata blocks than
2376 	 * previously reserved. However we must not fail because we're in
2377 	 * writeback and there is nothing we can do about it so it might result
2378 	 * in data loss.  So use reserved blocks to allocate metadata if
2379 	 * possible.
2380 	 *
2381 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2382 	 * the blocks in question are delalloc blocks.  This indicates
2383 	 * that the blocks and quotas has already been checked when
2384 	 * the data was copied into the page cache.
2385 	 */
2386 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2387 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2388 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2389 	dioread_nolock = ext4_should_dioread_nolock(inode);
2390 	if (dioread_nolock)
2391 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2392 	if (map->m_flags & BIT(BH_Delay))
2393 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2394 
2395 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2396 	if (err < 0)
2397 		return err;
2398 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2399 		if (!mpd->io_submit.io_end->handle &&
2400 		    ext4_handle_valid(handle)) {
2401 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2402 			handle->h_rsv_handle = NULL;
2403 		}
2404 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2405 	}
2406 
2407 	BUG_ON(map->m_len == 0);
2408 	return 0;
2409 }
2410 
2411 /*
2412  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2413  *				 mpd->len and submit pages underlying it for IO
2414  *
2415  * @handle - handle for journal operations
2416  * @mpd - extent to map
2417  * @give_up_on_write - we set this to true iff there is a fatal error and there
2418  *                     is no hope of writing the data. The caller should discard
2419  *                     dirty pages to avoid infinite loops.
2420  *
2421  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2422  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2423  * them to initialized or split the described range from larger unwritten
2424  * extent. Note that we need not map all the described range since allocation
2425  * can return less blocks or the range is covered by more unwritten extents. We
2426  * cannot map more because we are limited by reserved transaction credits. On
2427  * the other hand we always make sure that the last touched page is fully
2428  * mapped so that it can be written out (and thus forward progress is
2429  * guaranteed). After mapping we submit all mapped pages for IO.
2430  */
2431 static int mpage_map_and_submit_extent(handle_t *handle,
2432 				       struct mpage_da_data *mpd,
2433 				       bool *give_up_on_write)
2434 {
2435 	struct inode *inode = mpd->inode;
2436 	struct ext4_map_blocks *map = &mpd->map;
2437 	int err;
2438 	loff_t disksize;
2439 	int progress = 0;
2440 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2441 	struct ext4_io_end_vec *io_end_vec;
2442 
2443 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2444 	if (IS_ERR(io_end_vec))
2445 		return PTR_ERR(io_end_vec);
2446 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2447 	do {
2448 		err = mpage_map_one_extent(handle, mpd);
2449 		if (err < 0) {
2450 			struct super_block *sb = inode->i_sb;
2451 
2452 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2453 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2454 				goto invalidate_dirty_pages;
2455 			/*
2456 			 * Let the uper layers retry transient errors.
2457 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2458 			 * is non-zero, a commit should free up blocks.
2459 			 */
2460 			if ((err == -ENOMEM) ||
2461 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2462 				if (progress)
2463 					goto update_disksize;
2464 				return err;
2465 			}
2466 			ext4_msg(sb, KERN_CRIT,
2467 				 "Delayed block allocation failed for "
2468 				 "inode %lu at logical offset %llu with"
2469 				 " max blocks %u with error %d",
2470 				 inode->i_ino,
2471 				 (unsigned long long)map->m_lblk,
2472 				 (unsigned)map->m_len, -err);
2473 			ext4_msg(sb, KERN_CRIT,
2474 				 "This should not happen!! Data will "
2475 				 "be lost\n");
2476 			if (err == -ENOSPC)
2477 				ext4_print_free_blocks(inode);
2478 		invalidate_dirty_pages:
2479 			*give_up_on_write = true;
2480 			return err;
2481 		}
2482 		progress = 1;
2483 		/*
2484 		 * Update buffer state, submit mapped pages, and get us new
2485 		 * extent to map
2486 		 */
2487 		err = mpage_map_and_submit_buffers(mpd);
2488 		if (err < 0)
2489 			goto update_disksize;
2490 	} while (map->m_len);
2491 
2492 update_disksize:
2493 	/*
2494 	 * Update on-disk size after IO is submitted.  Races with
2495 	 * truncate are avoided by checking i_size under i_data_sem.
2496 	 */
2497 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2498 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2499 		int err2;
2500 		loff_t i_size;
2501 
2502 		down_write(&EXT4_I(inode)->i_data_sem);
2503 		i_size = i_size_read(inode);
2504 		if (disksize > i_size)
2505 			disksize = i_size;
2506 		if (disksize > EXT4_I(inode)->i_disksize)
2507 			EXT4_I(inode)->i_disksize = disksize;
2508 		up_write(&EXT4_I(inode)->i_data_sem);
2509 		err2 = ext4_mark_inode_dirty(handle, inode);
2510 		if (err2) {
2511 			ext4_error_err(inode->i_sb, -err2,
2512 				       "Failed to mark inode %lu dirty",
2513 				       inode->i_ino);
2514 		}
2515 		if (!err)
2516 			err = err2;
2517 	}
2518 	return err;
2519 }
2520 
2521 /*
2522  * Calculate the total number of credits to reserve for one writepages
2523  * iteration. This is called from ext4_writepages(). We map an extent of
2524  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2525  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2526  * bpp - 1 blocks in bpp different extents.
2527  */
2528 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2529 {
2530 	int bpp = ext4_journal_blocks_per_page(inode);
2531 
2532 	return ext4_meta_trans_blocks(inode,
2533 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2534 }
2535 
2536 /*
2537  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2538  * 				 and underlying extent to map
2539  *
2540  * @mpd - where to look for pages
2541  *
2542  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2543  * IO immediately. When we find a page which isn't mapped we start accumulating
2544  * extent of buffers underlying these pages that needs mapping (formed by
2545  * either delayed or unwritten buffers). We also lock the pages containing
2546  * these buffers. The extent found is returned in @mpd structure (starting at
2547  * mpd->lblk with length mpd->len blocks).
2548  *
2549  * Note that this function can attach bios to one io_end structure which are
2550  * neither logically nor physically contiguous. Although it may seem as an
2551  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2552  * case as we need to track IO to all buffers underlying a page in one io_end.
2553  */
2554 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2555 {
2556 	struct address_space *mapping = mpd->inode->i_mapping;
2557 	struct pagevec pvec;
2558 	unsigned int nr_pages;
2559 	long left = mpd->wbc->nr_to_write;
2560 	pgoff_t index = mpd->first_page;
2561 	pgoff_t end = mpd->last_page;
2562 	xa_mark_t tag;
2563 	int i, err = 0;
2564 	int blkbits = mpd->inode->i_blkbits;
2565 	ext4_lblk_t lblk;
2566 	struct buffer_head *head;
2567 
2568 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2569 		tag = PAGECACHE_TAG_TOWRITE;
2570 	else
2571 		tag = PAGECACHE_TAG_DIRTY;
2572 
2573 	pagevec_init(&pvec);
2574 	mpd->map.m_len = 0;
2575 	mpd->next_page = index;
2576 	while (index <= end) {
2577 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2578 				tag);
2579 		if (nr_pages == 0)
2580 			break;
2581 
2582 		for (i = 0; i < nr_pages; i++) {
2583 			struct page *page = pvec.pages[i];
2584 
2585 			/*
2586 			 * Accumulated enough dirty pages? This doesn't apply
2587 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2588 			 * keep going because someone may be concurrently
2589 			 * dirtying pages, and we might have synced a lot of
2590 			 * newly appeared dirty pages, but have not synced all
2591 			 * of the old dirty pages.
2592 			 */
2593 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2594 				goto out;
2595 
2596 			/* If we can't merge this page, we are done. */
2597 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2598 				goto out;
2599 
2600 			lock_page(page);
2601 			/*
2602 			 * If the page is no longer dirty, or its mapping no
2603 			 * longer corresponds to inode we are writing (which
2604 			 * means it has been truncated or invalidated), or the
2605 			 * page is already under writeback and we are not doing
2606 			 * a data integrity writeback, skip the page
2607 			 */
2608 			if (!PageDirty(page) ||
2609 			    (PageWriteback(page) &&
2610 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2611 			    unlikely(page->mapping != mapping)) {
2612 				unlock_page(page);
2613 				continue;
2614 			}
2615 
2616 			wait_on_page_writeback(page);
2617 			BUG_ON(PageWriteback(page));
2618 
2619 			if (mpd->map.m_len == 0)
2620 				mpd->first_page = page->index;
2621 			mpd->next_page = page->index + 1;
2622 			/* Add all dirty buffers to mpd */
2623 			lblk = ((ext4_lblk_t)page->index) <<
2624 				(PAGE_SHIFT - blkbits);
2625 			head = page_buffers(page);
2626 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2627 			if (err <= 0)
2628 				goto out;
2629 			err = 0;
2630 			left--;
2631 		}
2632 		pagevec_release(&pvec);
2633 		cond_resched();
2634 	}
2635 	mpd->scanned_until_end = 1;
2636 	return 0;
2637 out:
2638 	pagevec_release(&pvec);
2639 	return err;
2640 }
2641 
2642 static int ext4_writepages(struct address_space *mapping,
2643 			   struct writeback_control *wbc)
2644 {
2645 	pgoff_t	writeback_index = 0;
2646 	long nr_to_write = wbc->nr_to_write;
2647 	int range_whole = 0;
2648 	int cycled = 1;
2649 	handle_t *handle = NULL;
2650 	struct mpage_da_data mpd;
2651 	struct inode *inode = mapping->host;
2652 	int needed_blocks, rsv_blocks = 0, ret = 0;
2653 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2654 	struct blk_plug plug;
2655 	bool give_up_on_write = false;
2656 
2657 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2658 		return -EIO;
2659 
2660 	percpu_down_read(&sbi->s_writepages_rwsem);
2661 	trace_ext4_writepages(inode, wbc);
2662 
2663 	/*
2664 	 * No pages to write? This is mainly a kludge to avoid starting
2665 	 * a transaction for special inodes like journal inode on last iput()
2666 	 * because that could violate lock ordering on umount
2667 	 */
2668 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2669 		goto out_writepages;
2670 
2671 	if (ext4_should_journal_data(inode)) {
2672 		ret = generic_writepages(mapping, wbc);
2673 		goto out_writepages;
2674 	}
2675 
2676 	/*
2677 	 * If the filesystem has aborted, it is read-only, so return
2678 	 * right away instead of dumping stack traces later on that
2679 	 * will obscure the real source of the problem.  We test
2680 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2681 	 * the latter could be true if the filesystem is mounted
2682 	 * read-only, and in that case, ext4_writepages should
2683 	 * *never* be called, so if that ever happens, we would want
2684 	 * the stack trace.
2685 	 */
2686 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2687 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2688 		ret = -EROFS;
2689 		goto out_writepages;
2690 	}
2691 
2692 	/*
2693 	 * If we have inline data and arrive here, it means that
2694 	 * we will soon create the block for the 1st page, so
2695 	 * we'd better clear the inline data here.
2696 	 */
2697 	if (ext4_has_inline_data(inode)) {
2698 		/* Just inode will be modified... */
2699 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2700 		if (IS_ERR(handle)) {
2701 			ret = PTR_ERR(handle);
2702 			goto out_writepages;
2703 		}
2704 		BUG_ON(ext4_test_inode_state(inode,
2705 				EXT4_STATE_MAY_INLINE_DATA));
2706 		ext4_destroy_inline_data(handle, inode);
2707 		ext4_journal_stop(handle);
2708 	}
2709 
2710 	if (ext4_should_dioread_nolock(inode)) {
2711 		/*
2712 		 * We may need to convert up to one extent per block in
2713 		 * the page and we may dirty the inode.
2714 		 */
2715 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2716 						PAGE_SIZE >> inode->i_blkbits);
2717 	}
2718 
2719 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2720 		range_whole = 1;
2721 
2722 	if (wbc->range_cyclic) {
2723 		writeback_index = mapping->writeback_index;
2724 		if (writeback_index)
2725 			cycled = 0;
2726 		mpd.first_page = writeback_index;
2727 		mpd.last_page = -1;
2728 	} else {
2729 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2730 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2731 	}
2732 
2733 	mpd.inode = inode;
2734 	mpd.wbc = wbc;
2735 	ext4_io_submit_init(&mpd.io_submit, wbc);
2736 retry:
2737 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2738 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2739 	blk_start_plug(&plug);
2740 
2741 	/*
2742 	 * First writeback pages that don't need mapping - we can avoid
2743 	 * starting a transaction unnecessarily and also avoid being blocked
2744 	 * in the block layer on device congestion while having transaction
2745 	 * started.
2746 	 */
2747 	mpd.do_map = 0;
2748 	mpd.scanned_until_end = 0;
2749 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2750 	if (!mpd.io_submit.io_end) {
2751 		ret = -ENOMEM;
2752 		goto unplug;
2753 	}
2754 	ret = mpage_prepare_extent_to_map(&mpd);
2755 	/* Unlock pages we didn't use */
2756 	mpage_release_unused_pages(&mpd, false);
2757 	/* Submit prepared bio */
2758 	ext4_io_submit(&mpd.io_submit);
2759 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2760 	mpd.io_submit.io_end = NULL;
2761 	if (ret < 0)
2762 		goto unplug;
2763 
2764 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2765 		/* For each extent of pages we use new io_end */
2766 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2767 		if (!mpd.io_submit.io_end) {
2768 			ret = -ENOMEM;
2769 			break;
2770 		}
2771 
2772 		/*
2773 		 * We have two constraints: We find one extent to map and we
2774 		 * must always write out whole page (makes a difference when
2775 		 * blocksize < pagesize) so that we don't block on IO when we
2776 		 * try to write out the rest of the page. Journalled mode is
2777 		 * not supported by delalloc.
2778 		 */
2779 		BUG_ON(ext4_should_journal_data(inode));
2780 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2781 
2782 		/* start a new transaction */
2783 		handle = ext4_journal_start_with_reserve(inode,
2784 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2785 		if (IS_ERR(handle)) {
2786 			ret = PTR_ERR(handle);
2787 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2788 			       "%ld pages, ino %lu; err %d", __func__,
2789 				wbc->nr_to_write, inode->i_ino, ret);
2790 			/* Release allocated io_end */
2791 			ext4_put_io_end(mpd.io_submit.io_end);
2792 			mpd.io_submit.io_end = NULL;
2793 			break;
2794 		}
2795 		mpd.do_map = 1;
2796 
2797 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2798 		ret = mpage_prepare_extent_to_map(&mpd);
2799 		if (!ret && mpd.map.m_len)
2800 			ret = mpage_map_and_submit_extent(handle, &mpd,
2801 					&give_up_on_write);
2802 		/*
2803 		 * Caution: If the handle is synchronous,
2804 		 * ext4_journal_stop() can wait for transaction commit
2805 		 * to finish which may depend on writeback of pages to
2806 		 * complete or on page lock to be released.  In that
2807 		 * case, we have to wait until after we have
2808 		 * submitted all the IO, released page locks we hold,
2809 		 * and dropped io_end reference (for extent conversion
2810 		 * to be able to complete) before stopping the handle.
2811 		 */
2812 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2813 			ext4_journal_stop(handle);
2814 			handle = NULL;
2815 			mpd.do_map = 0;
2816 		}
2817 		/* Unlock pages we didn't use */
2818 		mpage_release_unused_pages(&mpd, give_up_on_write);
2819 		/* Submit prepared bio */
2820 		ext4_io_submit(&mpd.io_submit);
2821 
2822 		/*
2823 		 * Drop our io_end reference we got from init. We have
2824 		 * to be careful and use deferred io_end finishing if
2825 		 * we are still holding the transaction as we can
2826 		 * release the last reference to io_end which may end
2827 		 * up doing unwritten extent conversion.
2828 		 */
2829 		if (handle) {
2830 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 			ext4_journal_stop(handle);
2832 		} else
2833 			ext4_put_io_end(mpd.io_submit.io_end);
2834 		mpd.io_submit.io_end = NULL;
2835 
2836 		if (ret == -ENOSPC && sbi->s_journal) {
2837 			/*
2838 			 * Commit the transaction which would
2839 			 * free blocks released in the transaction
2840 			 * and try again
2841 			 */
2842 			jbd2_journal_force_commit_nested(sbi->s_journal);
2843 			ret = 0;
2844 			continue;
2845 		}
2846 		/* Fatal error - ENOMEM, EIO... */
2847 		if (ret)
2848 			break;
2849 	}
2850 unplug:
2851 	blk_finish_plug(&plug);
2852 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2853 		cycled = 1;
2854 		mpd.last_page = writeback_index - 1;
2855 		mpd.first_page = 0;
2856 		goto retry;
2857 	}
2858 
2859 	/* Update index */
2860 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2861 		/*
2862 		 * Set the writeback_index so that range_cyclic
2863 		 * mode will write it back later
2864 		 */
2865 		mapping->writeback_index = mpd.first_page;
2866 
2867 out_writepages:
2868 	trace_ext4_writepages_result(inode, wbc, ret,
2869 				     nr_to_write - wbc->nr_to_write);
2870 	percpu_up_read(&sbi->s_writepages_rwsem);
2871 	return ret;
2872 }
2873 
2874 static int ext4_dax_writepages(struct address_space *mapping,
2875 			       struct writeback_control *wbc)
2876 {
2877 	int ret;
2878 	long nr_to_write = wbc->nr_to_write;
2879 	struct inode *inode = mapping->host;
2880 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2881 
2882 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2883 		return -EIO;
2884 
2885 	percpu_down_read(&sbi->s_writepages_rwsem);
2886 	trace_ext4_writepages(inode, wbc);
2887 
2888 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2889 	trace_ext4_writepages_result(inode, wbc, ret,
2890 				     nr_to_write - wbc->nr_to_write);
2891 	percpu_up_read(&sbi->s_writepages_rwsem);
2892 	return ret;
2893 }
2894 
2895 static int ext4_nonda_switch(struct super_block *sb)
2896 {
2897 	s64 free_clusters, dirty_clusters;
2898 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2899 
2900 	/*
2901 	 * switch to non delalloc mode if we are running low
2902 	 * on free block. The free block accounting via percpu
2903 	 * counters can get slightly wrong with percpu_counter_batch getting
2904 	 * accumulated on each CPU without updating global counters
2905 	 * Delalloc need an accurate free block accounting. So switch
2906 	 * to non delalloc when we are near to error range.
2907 	 */
2908 	free_clusters =
2909 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2910 	dirty_clusters =
2911 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2912 	/*
2913 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2914 	 */
2915 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2916 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2917 
2918 	if (2 * free_clusters < 3 * dirty_clusters ||
2919 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2920 		/*
2921 		 * free block count is less than 150% of dirty blocks
2922 		 * or free blocks is less than watermark
2923 		 */
2924 		return 1;
2925 	}
2926 	return 0;
2927 }
2928 
2929 /* We always reserve for an inode update; the superblock could be there too */
2930 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2931 {
2932 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2933 		return 1;
2934 
2935 	if (pos + len <= 0x7fffffffULL)
2936 		return 1;
2937 
2938 	/* We might need to update the superblock to set LARGE_FILE */
2939 	return 2;
2940 }
2941 
2942 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2943 			       loff_t pos, unsigned len, unsigned flags,
2944 			       struct page **pagep, void **fsdata)
2945 {
2946 	int ret, retries = 0;
2947 	struct page *page;
2948 	pgoff_t index;
2949 	struct inode *inode = mapping->host;
2950 	handle_t *handle;
2951 
2952 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2953 		return -EIO;
2954 
2955 	index = pos >> PAGE_SHIFT;
2956 
2957 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2958 	    ext4_verity_in_progress(inode)) {
2959 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2960 		return ext4_write_begin(file, mapping, pos,
2961 					len, flags, pagep, fsdata);
2962 	}
2963 	*fsdata = (void *)0;
2964 	trace_ext4_da_write_begin(inode, pos, len, flags);
2965 
2966 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2967 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2968 						      pos, len, flags,
2969 						      pagep, fsdata);
2970 		if (ret < 0)
2971 			return ret;
2972 		if (ret == 1)
2973 			return 0;
2974 	}
2975 
2976 	/*
2977 	 * grab_cache_page_write_begin() can take a long time if the
2978 	 * system is thrashing due to memory pressure, or if the page
2979 	 * is being written back.  So grab it first before we start
2980 	 * the transaction handle.  This also allows us to allocate
2981 	 * the page (if needed) without using GFP_NOFS.
2982 	 */
2983 retry_grab:
2984 	page = grab_cache_page_write_begin(mapping, index, flags);
2985 	if (!page)
2986 		return -ENOMEM;
2987 	unlock_page(page);
2988 
2989 	/*
2990 	 * With delayed allocation, we don't log the i_disksize update
2991 	 * if there is delayed block allocation. But we still need
2992 	 * to journalling the i_disksize update if writes to the end
2993 	 * of file which has an already mapped buffer.
2994 	 */
2995 retry_journal:
2996 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2997 				ext4_da_write_credits(inode, pos, len));
2998 	if (IS_ERR(handle)) {
2999 		put_page(page);
3000 		return PTR_ERR(handle);
3001 	}
3002 
3003 	lock_page(page);
3004 	if (page->mapping != mapping) {
3005 		/* The page got truncated from under us */
3006 		unlock_page(page);
3007 		put_page(page);
3008 		ext4_journal_stop(handle);
3009 		goto retry_grab;
3010 	}
3011 	/* In case writeback began while the page was unlocked */
3012 	wait_for_stable_page(page);
3013 
3014 #ifdef CONFIG_FS_ENCRYPTION
3015 	ret = ext4_block_write_begin(page, pos, len,
3016 				     ext4_da_get_block_prep);
3017 #else
3018 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3019 #endif
3020 	if (ret < 0) {
3021 		unlock_page(page);
3022 		ext4_journal_stop(handle);
3023 		/*
3024 		 * block_write_begin may have instantiated a few blocks
3025 		 * outside i_size.  Trim these off again. Don't need
3026 		 * i_size_read because we hold i_mutex.
3027 		 */
3028 		if (pos + len > inode->i_size)
3029 			ext4_truncate_failed_write(inode);
3030 
3031 		if (ret == -ENOSPC &&
3032 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3033 			goto retry_journal;
3034 
3035 		put_page(page);
3036 		return ret;
3037 	}
3038 
3039 	*pagep = page;
3040 	return ret;
3041 }
3042 
3043 /*
3044  * Check if we should update i_disksize
3045  * when write to the end of file but not require block allocation
3046  */
3047 static int ext4_da_should_update_i_disksize(struct page *page,
3048 					    unsigned long offset)
3049 {
3050 	struct buffer_head *bh;
3051 	struct inode *inode = page->mapping->host;
3052 	unsigned int idx;
3053 	int i;
3054 
3055 	bh = page_buffers(page);
3056 	idx = offset >> inode->i_blkbits;
3057 
3058 	for (i = 0; i < idx; i++)
3059 		bh = bh->b_this_page;
3060 
3061 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3062 		return 0;
3063 	return 1;
3064 }
3065 
3066 static int ext4_da_write_end(struct file *file,
3067 			     struct address_space *mapping,
3068 			     loff_t pos, unsigned len, unsigned copied,
3069 			     struct page *page, void *fsdata)
3070 {
3071 	struct inode *inode = mapping->host;
3072 	int ret = 0, ret2;
3073 	handle_t *handle = ext4_journal_current_handle();
3074 	loff_t new_i_size;
3075 	unsigned long start, end;
3076 	int write_mode = (int)(unsigned long)fsdata;
3077 
3078 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3079 		return ext4_write_end(file, mapping, pos,
3080 				      len, copied, page, fsdata);
3081 
3082 	trace_ext4_da_write_end(inode, pos, len, copied);
3083 	start = pos & (PAGE_SIZE - 1);
3084 	end = start + copied - 1;
3085 
3086 	/*
3087 	 * generic_write_end() will run mark_inode_dirty() if i_size
3088 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3089 	 * into that.
3090 	 */
3091 	new_i_size = pos + copied;
3092 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3093 		if (ext4_has_inline_data(inode) ||
3094 		    ext4_da_should_update_i_disksize(page, end)) {
3095 			ext4_update_i_disksize(inode, new_i_size);
3096 			/* We need to mark inode dirty even if
3097 			 * new_i_size is less that inode->i_size
3098 			 * bu greater than i_disksize.(hint delalloc)
3099 			 */
3100 			ret = ext4_mark_inode_dirty(handle, inode);
3101 		}
3102 	}
3103 
3104 	if (write_mode != CONVERT_INLINE_DATA &&
3105 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3106 	    ext4_has_inline_data(inode))
3107 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3108 						     page);
3109 	else
3110 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3111 							page, fsdata);
3112 
3113 	copied = ret2;
3114 	if (ret2 < 0)
3115 		ret = ret2;
3116 	ret2 = ext4_journal_stop(handle);
3117 	if (unlikely(ret2 && !ret))
3118 		ret = ret2;
3119 
3120 	return ret ? ret : copied;
3121 }
3122 
3123 /*
3124  * Force all delayed allocation blocks to be allocated for a given inode.
3125  */
3126 int ext4_alloc_da_blocks(struct inode *inode)
3127 {
3128 	trace_ext4_alloc_da_blocks(inode);
3129 
3130 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3131 		return 0;
3132 
3133 	/*
3134 	 * We do something simple for now.  The filemap_flush() will
3135 	 * also start triggering a write of the data blocks, which is
3136 	 * not strictly speaking necessary (and for users of
3137 	 * laptop_mode, not even desirable).  However, to do otherwise
3138 	 * would require replicating code paths in:
3139 	 *
3140 	 * ext4_writepages() ->
3141 	 *    write_cache_pages() ---> (via passed in callback function)
3142 	 *        __mpage_da_writepage() -->
3143 	 *           mpage_add_bh_to_extent()
3144 	 *           mpage_da_map_blocks()
3145 	 *
3146 	 * The problem is that write_cache_pages(), located in
3147 	 * mm/page-writeback.c, marks pages clean in preparation for
3148 	 * doing I/O, which is not desirable if we're not planning on
3149 	 * doing I/O at all.
3150 	 *
3151 	 * We could call write_cache_pages(), and then redirty all of
3152 	 * the pages by calling redirty_page_for_writepage() but that
3153 	 * would be ugly in the extreme.  So instead we would need to
3154 	 * replicate parts of the code in the above functions,
3155 	 * simplifying them because we wouldn't actually intend to
3156 	 * write out the pages, but rather only collect contiguous
3157 	 * logical block extents, call the multi-block allocator, and
3158 	 * then update the buffer heads with the block allocations.
3159 	 *
3160 	 * For now, though, we'll cheat by calling filemap_flush(),
3161 	 * which will map the blocks, and start the I/O, but not
3162 	 * actually wait for the I/O to complete.
3163 	 */
3164 	return filemap_flush(inode->i_mapping);
3165 }
3166 
3167 /*
3168  * bmap() is special.  It gets used by applications such as lilo and by
3169  * the swapper to find the on-disk block of a specific piece of data.
3170  *
3171  * Naturally, this is dangerous if the block concerned is still in the
3172  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3173  * filesystem and enables swap, then they may get a nasty shock when the
3174  * data getting swapped to that swapfile suddenly gets overwritten by
3175  * the original zero's written out previously to the journal and
3176  * awaiting writeback in the kernel's buffer cache.
3177  *
3178  * So, if we see any bmap calls here on a modified, data-journaled file,
3179  * take extra steps to flush any blocks which might be in the cache.
3180  */
3181 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3182 {
3183 	struct inode *inode = mapping->host;
3184 	journal_t *journal;
3185 	int err;
3186 
3187 	/*
3188 	 * We can get here for an inline file via the FIBMAP ioctl
3189 	 */
3190 	if (ext4_has_inline_data(inode))
3191 		return 0;
3192 
3193 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3194 			test_opt(inode->i_sb, DELALLOC)) {
3195 		/*
3196 		 * With delalloc we want to sync the file
3197 		 * so that we can make sure we allocate
3198 		 * blocks for file
3199 		 */
3200 		filemap_write_and_wait(mapping);
3201 	}
3202 
3203 	if (EXT4_JOURNAL(inode) &&
3204 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3205 		/*
3206 		 * This is a REALLY heavyweight approach, but the use of
3207 		 * bmap on dirty files is expected to be extremely rare:
3208 		 * only if we run lilo or swapon on a freshly made file
3209 		 * do we expect this to happen.
3210 		 *
3211 		 * (bmap requires CAP_SYS_RAWIO so this does not
3212 		 * represent an unprivileged user DOS attack --- we'd be
3213 		 * in trouble if mortal users could trigger this path at
3214 		 * will.)
3215 		 *
3216 		 * NB. EXT4_STATE_JDATA is not set on files other than
3217 		 * regular files.  If somebody wants to bmap a directory
3218 		 * or symlink and gets confused because the buffer
3219 		 * hasn't yet been flushed to disk, they deserve
3220 		 * everything they get.
3221 		 */
3222 
3223 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3224 		journal = EXT4_JOURNAL(inode);
3225 		jbd2_journal_lock_updates(journal);
3226 		err = jbd2_journal_flush(journal, 0);
3227 		jbd2_journal_unlock_updates(journal);
3228 
3229 		if (err)
3230 			return 0;
3231 	}
3232 
3233 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3234 }
3235 
3236 static int ext4_readpage(struct file *file, struct page *page)
3237 {
3238 	int ret = -EAGAIN;
3239 	struct inode *inode = page->mapping->host;
3240 
3241 	trace_ext4_readpage(page);
3242 
3243 	if (ext4_has_inline_data(inode))
3244 		ret = ext4_readpage_inline(inode, page);
3245 
3246 	if (ret == -EAGAIN)
3247 		return ext4_mpage_readpages(inode, NULL, page);
3248 
3249 	return ret;
3250 }
3251 
3252 static void ext4_readahead(struct readahead_control *rac)
3253 {
3254 	struct inode *inode = rac->mapping->host;
3255 
3256 	/* If the file has inline data, no need to do readahead. */
3257 	if (ext4_has_inline_data(inode))
3258 		return;
3259 
3260 	ext4_mpage_readpages(inode, rac, NULL);
3261 }
3262 
3263 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3264 				unsigned int length)
3265 {
3266 	trace_ext4_invalidatepage(page, offset, length);
3267 
3268 	/* No journalling happens on data buffers when this function is used */
3269 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3270 
3271 	block_invalidatepage(page, offset, length);
3272 }
3273 
3274 static int __ext4_journalled_invalidatepage(struct page *page,
3275 					    unsigned int offset,
3276 					    unsigned int length)
3277 {
3278 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3279 
3280 	trace_ext4_journalled_invalidatepage(page, offset, length);
3281 
3282 	/*
3283 	 * If it's a full truncate we just forget about the pending dirtying
3284 	 */
3285 	if (offset == 0 && length == PAGE_SIZE)
3286 		ClearPageChecked(page);
3287 
3288 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3289 }
3290 
3291 /* Wrapper for aops... */
3292 static void ext4_journalled_invalidatepage(struct page *page,
3293 					   unsigned int offset,
3294 					   unsigned int length)
3295 {
3296 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3297 }
3298 
3299 static int ext4_releasepage(struct page *page, gfp_t wait)
3300 {
3301 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3302 
3303 	trace_ext4_releasepage(page);
3304 
3305 	/* Page has dirty journalled data -> cannot release */
3306 	if (PageChecked(page))
3307 		return 0;
3308 	if (journal)
3309 		return jbd2_journal_try_to_free_buffers(journal, page);
3310 	else
3311 		return try_to_free_buffers(page);
3312 }
3313 
3314 static bool ext4_inode_datasync_dirty(struct inode *inode)
3315 {
3316 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3317 
3318 	if (journal) {
3319 		if (jbd2_transaction_committed(journal,
3320 			EXT4_I(inode)->i_datasync_tid))
3321 			return false;
3322 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3323 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3324 		return true;
3325 	}
3326 
3327 	/* Any metadata buffers to write? */
3328 	if (!list_empty(&inode->i_mapping->private_list))
3329 		return true;
3330 	return inode->i_state & I_DIRTY_DATASYNC;
3331 }
3332 
3333 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3334 			   struct ext4_map_blocks *map, loff_t offset,
3335 			   loff_t length)
3336 {
3337 	u8 blkbits = inode->i_blkbits;
3338 
3339 	/*
3340 	 * Writes that span EOF might trigger an I/O size update on completion,
3341 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3342 	 * there is no other metadata changes being made or are pending.
3343 	 */
3344 	iomap->flags = 0;
3345 	if (ext4_inode_datasync_dirty(inode) ||
3346 	    offset + length > i_size_read(inode))
3347 		iomap->flags |= IOMAP_F_DIRTY;
3348 
3349 	if (map->m_flags & EXT4_MAP_NEW)
3350 		iomap->flags |= IOMAP_F_NEW;
3351 
3352 	iomap->bdev = inode->i_sb->s_bdev;
3353 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3354 	iomap->offset = (u64) map->m_lblk << blkbits;
3355 	iomap->length = (u64) map->m_len << blkbits;
3356 
3357 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3358 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3359 		iomap->flags |= IOMAP_F_MERGED;
3360 
3361 	/*
3362 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3363 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3364 	 * set. In order for any allocated unwritten extents to be converted
3365 	 * into written extents correctly within the ->end_io() handler, we
3366 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3367 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3368 	 * been set first.
3369 	 */
3370 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3371 		iomap->type = IOMAP_UNWRITTEN;
3372 		iomap->addr = (u64) map->m_pblk << blkbits;
3373 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3374 		iomap->type = IOMAP_MAPPED;
3375 		iomap->addr = (u64) map->m_pblk << blkbits;
3376 	} else {
3377 		iomap->type = IOMAP_HOLE;
3378 		iomap->addr = IOMAP_NULL_ADDR;
3379 	}
3380 }
3381 
3382 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3383 			    unsigned int flags)
3384 {
3385 	handle_t *handle;
3386 	u8 blkbits = inode->i_blkbits;
3387 	int ret, dio_credits, m_flags = 0, retries = 0;
3388 
3389 	/*
3390 	 * Trim the mapping request to the maximum value that we can map at
3391 	 * once for direct I/O.
3392 	 */
3393 	if (map->m_len > DIO_MAX_BLOCKS)
3394 		map->m_len = DIO_MAX_BLOCKS;
3395 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3396 
3397 retry:
3398 	/*
3399 	 * Either we allocate blocks and then don't get an unwritten extent, so
3400 	 * in that case we have reserved enough credits. Or, the blocks are
3401 	 * already allocated and unwritten. In that case, the extent conversion
3402 	 * fits into the credits as well.
3403 	 */
3404 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3405 	if (IS_ERR(handle))
3406 		return PTR_ERR(handle);
3407 
3408 	/*
3409 	 * DAX and direct I/O are the only two operations that are currently
3410 	 * supported with IOMAP_WRITE.
3411 	 */
3412 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3413 	if (IS_DAX(inode))
3414 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3415 	/*
3416 	 * We use i_size instead of i_disksize here because delalloc writeback
3417 	 * can complete at any point during the I/O and subsequently push the
3418 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3419 	 * happening and thus expose allocated blocks to direct I/O reads.
3420 	 */
3421 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3422 		m_flags = EXT4_GET_BLOCKS_CREATE;
3423 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3424 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3425 
3426 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3427 
3428 	/*
3429 	 * We cannot fill holes in indirect tree based inodes as that could
3430 	 * expose stale data in the case of a crash. Use the magic error code
3431 	 * to fallback to buffered I/O.
3432 	 */
3433 	if (!m_flags && !ret)
3434 		ret = -ENOTBLK;
3435 
3436 	ext4_journal_stop(handle);
3437 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3438 		goto retry;
3439 
3440 	return ret;
3441 }
3442 
3443 
3444 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3445 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3446 {
3447 	int ret;
3448 	struct ext4_map_blocks map;
3449 	u8 blkbits = inode->i_blkbits;
3450 
3451 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3452 		return -EINVAL;
3453 
3454 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3455 		return -ERANGE;
3456 
3457 	/*
3458 	 * Calculate the first and last logical blocks respectively.
3459 	 */
3460 	map.m_lblk = offset >> blkbits;
3461 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3462 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3463 
3464 	if (flags & IOMAP_WRITE) {
3465 		/*
3466 		 * We check here if the blocks are already allocated, then we
3467 		 * don't need to start a journal txn and we can directly return
3468 		 * the mapping information. This could boost performance
3469 		 * especially in multi-threaded overwrite requests.
3470 		 */
3471 		if (offset + length <= i_size_read(inode)) {
3472 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3473 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3474 				goto out;
3475 		}
3476 		ret = ext4_iomap_alloc(inode, &map, flags);
3477 	} else {
3478 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3479 	}
3480 
3481 	if (ret < 0)
3482 		return ret;
3483 out:
3484 	ext4_set_iomap(inode, iomap, &map, offset, length);
3485 
3486 	return 0;
3487 }
3488 
3489 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3490 		loff_t length, unsigned flags, struct iomap *iomap,
3491 		struct iomap *srcmap)
3492 {
3493 	int ret;
3494 
3495 	/*
3496 	 * Even for writes we don't need to allocate blocks, so just pretend
3497 	 * we are reading to save overhead of starting a transaction.
3498 	 */
3499 	flags &= ~IOMAP_WRITE;
3500 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3501 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3502 	return ret;
3503 }
3504 
3505 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3506 			  ssize_t written, unsigned flags, struct iomap *iomap)
3507 {
3508 	/*
3509 	 * Check to see whether an error occurred while writing out the data to
3510 	 * the allocated blocks. If so, return the magic error code so that we
3511 	 * fallback to buffered I/O and attempt to complete the remainder of
3512 	 * the I/O. Any blocks that may have been allocated in preparation for
3513 	 * the direct I/O will be reused during buffered I/O.
3514 	 */
3515 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3516 		return -ENOTBLK;
3517 
3518 	return 0;
3519 }
3520 
3521 const struct iomap_ops ext4_iomap_ops = {
3522 	.iomap_begin		= ext4_iomap_begin,
3523 	.iomap_end		= ext4_iomap_end,
3524 };
3525 
3526 const struct iomap_ops ext4_iomap_overwrite_ops = {
3527 	.iomap_begin		= ext4_iomap_overwrite_begin,
3528 	.iomap_end		= ext4_iomap_end,
3529 };
3530 
3531 static bool ext4_iomap_is_delalloc(struct inode *inode,
3532 				   struct ext4_map_blocks *map)
3533 {
3534 	struct extent_status es;
3535 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3536 
3537 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3538 				  map->m_lblk, end, &es);
3539 
3540 	if (!es.es_len || es.es_lblk > end)
3541 		return false;
3542 
3543 	if (es.es_lblk > map->m_lblk) {
3544 		map->m_len = es.es_lblk - map->m_lblk;
3545 		return false;
3546 	}
3547 
3548 	offset = map->m_lblk - es.es_lblk;
3549 	map->m_len = es.es_len - offset;
3550 
3551 	return true;
3552 }
3553 
3554 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3555 				   loff_t length, unsigned int flags,
3556 				   struct iomap *iomap, struct iomap *srcmap)
3557 {
3558 	int ret;
3559 	bool delalloc = false;
3560 	struct ext4_map_blocks map;
3561 	u8 blkbits = inode->i_blkbits;
3562 
3563 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3564 		return -EINVAL;
3565 
3566 	if (ext4_has_inline_data(inode)) {
3567 		ret = ext4_inline_data_iomap(inode, iomap);
3568 		if (ret != -EAGAIN) {
3569 			if (ret == 0 && offset >= iomap->length)
3570 				ret = -ENOENT;
3571 			return ret;
3572 		}
3573 	}
3574 
3575 	/*
3576 	 * Calculate the first and last logical block respectively.
3577 	 */
3578 	map.m_lblk = offset >> blkbits;
3579 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3580 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3581 
3582 	/*
3583 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3584 	 * So handle it here itself instead of querying ext4_map_blocks().
3585 	 * Since ext4_map_blocks() will warn about it and will return
3586 	 * -EIO error.
3587 	 */
3588 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3589 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3590 
3591 		if (offset >= sbi->s_bitmap_maxbytes) {
3592 			map.m_flags = 0;
3593 			goto set_iomap;
3594 		}
3595 	}
3596 
3597 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3598 	if (ret < 0)
3599 		return ret;
3600 	if (ret == 0)
3601 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3602 
3603 set_iomap:
3604 	ext4_set_iomap(inode, iomap, &map, offset, length);
3605 	if (delalloc && iomap->type == IOMAP_HOLE)
3606 		iomap->type = IOMAP_DELALLOC;
3607 
3608 	return 0;
3609 }
3610 
3611 const struct iomap_ops ext4_iomap_report_ops = {
3612 	.iomap_begin = ext4_iomap_begin_report,
3613 };
3614 
3615 /*
3616  * Pages can be marked dirty completely asynchronously from ext4's journalling
3617  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3618  * much here because ->set_page_dirty is called under VFS locks.  The page is
3619  * not necessarily locked.
3620  *
3621  * We cannot just dirty the page and leave attached buffers clean, because the
3622  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3623  * or jbddirty because all the journalling code will explode.
3624  *
3625  * So what we do is to mark the page "pending dirty" and next time writepage
3626  * is called, propagate that into the buffers appropriately.
3627  */
3628 static int ext4_journalled_set_page_dirty(struct page *page)
3629 {
3630 	SetPageChecked(page);
3631 	return __set_page_dirty_nobuffers(page);
3632 }
3633 
3634 static int ext4_set_page_dirty(struct page *page)
3635 {
3636 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3637 	WARN_ON_ONCE(!page_has_buffers(page));
3638 	return __set_page_dirty_buffers(page);
3639 }
3640 
3641 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3642 				    struct file *file, sector_t *span)
3643 {
3644 	return iomap_swapfile_activate(sis, file, span,
3645 				       &ext4_iomap_report_ops);
3646 }
3647 
3648 static const struct address_space_operations ext4_aops = {
3649 	.readpage		= ext4_readpage,
3650 	.readahead		= ext4_readahead,
3651 	.writepage		= ext4_writepage,
3652 	.writepages		= ext4_writepages,
3653 	.write_begin		= ext4_write_begin,
3654 	.write_end		= ext4_write_end,
3655 	.set_page_dirty		= ext4_set_page_dirty,
3656 	.bmap			= ext4_bmap,
3657 	.invalidatepage		= ext4_invalidatepage,
3658 	.releasepage		= ext4_releasepage,
3659 	.direct_IO		= noop_direct_IO,
3660 	.migratepage		= buffer_migrate_page,
3661 	.is_partially_uptodate  = block_is_partially_uptodate,
3662 	.error_remove_page	= generic_error_remove_page,
3663 	.swap_activate		= ext4_iomap_swap_activate,
3664 };
3665 
3666 static const struct address_space_operations ext4_journalled_aops = {
3667 	.readpage		= ext4_readpage,
3668 	.readahead		= ext4_readahead,
3669 	.writepage		= ext4_writepage,
3670 	.writepages		= ext4_writepages,
3671 	.write_begin		= ext4_write_begin,
3672 	.write_end		= ext4_journalled_write_end,
3673 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3674 	.bmap			= ext4_bmap,
3675 	.invalidatepage		= ext4_journalled_invalidatepage,
3676 	.releasepage		= ext4_releasepage,
3677 	.direct_IO		= noop_direct_IO,
3678 	.is_partially_uptodate  = block_is_partially_uptodate,
3679 	.error_remove_page	= generic_error_remove_page,
3680 	.swap_activate		= ext4_iomap_swap_activate,
3681 };
3682 
3683 static const struct address_space_operations ext4_da_aops = {
3684 	.readpage		= ext4_readpage,
3685 	.readahead		= ext4_readahead,
3686 	.writepage		= ext4_writepage,
3687 	.writepages		= ext4_writepages,
3688 	.write_begin		= ext4_da_write_begin,
3689 	.write_end		= ext4_da_write_end,
3690 	.set_page_dirty		= ext4_set_page_dirty,
3691 	.bmap			= ext4_bmap,
3692 	.invalidatepage		= ext4_invalidatepage,
3693 	.releasepage		= ext4_releasepage,
3694 	.direct_IO		= noop_direct_IO,
3695 	.migratepage		= buffer_migrate_page,
3696 	.is_partially_uptodate  = block_is_partially_uptodate,
3697 	.error_remove_page	= generic_error_remove_page,
3698 	.swap_activate		= ext4_iomap_swap_activate,
3699 };
3700 
3701 static const struct address_space_operations ext4_dax_aops = {
3702 	.writepages		= ext4_dax_writepages,
3703 	.direct_IO		= noop_direct_IO,
3704 	.set_page_dirty		= __set_page_dirty_no_writeback,
3705 	.bmap			= ext4_bmap,
3706 	.invalidatepage		= noop_invalidatepage,
3707 	.swap_activate		= ext4_iomap_swap_activate,
3708 };
3709 
3710 void ext4_set_aops(struct inode *inode)
3711 {
3712 	switch (ext4_inode_journal_mode(inode)) {
3713 	case EXT4_INODE_ORDERED_DATA_MODE:
3714 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3715 		break;
3716 	case EXT4_INODE_JOURNAL_DATA_MODE:
3717 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3718 		return;
3719 	default:
3720 		BUG();
3721 	}
3722 	if (IS_DAX(inode))
3723 		inode->i_mapping->a_ops = &ext4_dax_aops;
3724 	else if (test_opt(inode->i_sb, DELALLOC))
3725 		inode->i_mapping->a_ops = &ext4_da_aops;
3726 	else
3727 		inode->i_mapping->a_ops = &ext4_aops;
3728 }
3729 
3730 static int __ext4_block_zero_page_range(handle_t *handle,
3731 		struct address_space *mapping, loff_t from, loff_t length)
3732 {
3733 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3734 	unsigned offset = from & (PAGE_SIZE-1);
3735 	unsigned blocksize, pos;
3736 	ext4_lblk_t iblock;
3737 	struct inode *inode = mapping->host;
3738 	struct buffer_head *bh;
3739 	struct page *page;
3740 	int err = 0;
3741 
3742 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3743 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3744 	if (!page)
3745 		return -ENOMEM;
3746 
3747 	blocksize = inode->i_sb->s_blocksize;
3748 
3749 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3750 
3751 	if (!page_has_buffers(page))
3752 		create_empty_buffers(page, blocksize, 0);
3753 
3754 	/* Find the buffer that contains "offset" */
3755 	bh = page_buffers(page);
3756 	pos = blocksize;
3757 	while (offset >= pos) {
3758 		bh = bh->b_this_page;
3759 		iblock++;
3760 		pos += blocksize;
3761 	}
3762 	if (buffer_freed(bh)) {
3763 		BUFFER_TRACE(bh, "freed: skip");
3764 		goto unlock;
3765 	}
3766 	if (!buffer_mapped(bh)) {
3767 		BUFFER_TRACE(bh, "unmapped");
3768 		ext4_get_block(inode, iblock, bh, 0);
3769 		/* unmapped? It's a hole - nothing to do */
3770 		if (!buffer_mapped(bh)) {
3771 			BUFFER_TRACE(bh, "still unmapped");
3772 			goto unlock;
3773 		}
3774 	}
3775 
3776 	/* Ok, it's mapped. Make sure it's up-to-date */
3777 	if (PageUptodate(page))
3778 		set_buffer_uptodate(bh);
3779 
3780 	if (!buffer_uptodate(bh)) {
3781 		err = ext4_read_bh_lock(bh, 0, true);
3782 		if (err)
3783 			goto unlock;
3784 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3785 			/* We expect the key to be set. */
3786 			BUG_ON(!fscrypt_has_encryption_key(inode));
3787 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3788 							       bh_offset(bh));
3789 			if (err) {
3790 				clear_buffer_uptodate(bh);
3791 				goto unlock;
3792 			}
3793 		}
3794 	}
3795 	if (ext4_should_journal_data(inode)) {
3796 		BUFFER_TRACE(bh, "get write access");
3797 		err = ext4_journal_get_write_access(handle, bh);
3798 		if (err)
3799 			goto unlock;
3800 	}
3801 	zero_user(page, offset, length);
3802 	BUFFER_TRACE(bh, "zeroed end of block");
3803 
3804 	if (ext4_should_journal_data(inode)) {
3805 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3806 	} else {
3807 		err = 0;
3808 		mark_buffer_dirty(bh);
3809 		if (ext4_should_order_data(inode))
3810 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3811 					length);
3812 	}
3813 
3814 unlock:
3815 	unlock_page(page);
3816 	put_page(page);
3817 	return err;
3818 }
3819 
3820 /*
3821  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3822  * starting from file offset 'from'.  The range to be zero'd must
3823  * be contained with in one block.  If the specified range exceeds
3824  * the end of the block it will be shortened to end of the block
3825  * that corresponds to 'from'
3826  */
3827 static int ext4_block_zero_page_range(handle_t *handle,
3828 		struct address_space *mapping, loff_t from, loff_t length)
3829 {
3830 	struct inode *inode = mapping->host;
3831 	unsigned offset = from & (PAGE_SIZE-1);
3832 	unsigned blocksize = inode->i_sb->s_blocksize;
3833 	unsigned max = blocksize - (offset & (blocksize - 1));
3834 
3835 	/*
3836 	 * correct length if it does not fall between
3837 	 * 'from' and the end of the block
3838 	 */
3839 	if (length > max || length < 0)
3840 		length = max;
3841 
3842 	if (IS_DAX(inode)) {
3843 		return iomap_zero_range(inode, from, length, NULL,
3844 					&ext4_iomap_ops);
3845 	}
3846 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3847 }
3848 
3849 /*
3850  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3851  * up to the end of the block which corresponds to `from'.
3852  * This required during truncate. We need to physically zero the tail end
3853  * of that block so it doesn't yield old data if the file is later grown.
3854  */
3855 static int ext4_block_truncate_page(handle_t *handle,
3856 		struct address_space *mapping, loff_t from)
3857 {
3858 	unsigned offset = from & (PAGE_SIZE-1);
3859 	unsigned length;
3860 	unsigned blocksize;
3861 	struct inode *inode = mapping->host;
3862 
3863 	/* If we are processing an encrypted inode during orphan list handling */
3864 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3865 		return 0;
3866 
3867 	blocksize = inode->i_sb->s_blocksize;
3868 	length = blocksize - (offset & (blocksize - 1));
3869 
3870 	return ext4_block_zero_page_range(handle, mapping, from, length);
3871 }
3872 
3873 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3874 			     loff_t lstart, loff_t length)
3875 {
3876 	struct super_block *sb = inode->i_sb;
3877 	struct address_space *mapping = inode->i_mapping;
3878 	unsigned partial_start, partial_end;
3879 	ext4_fsblk_t start, end;
3880 	loff_t byte_end = (lstart + length - 1);
3881 	int err = 0;
3882 
3883 	partial_start = lstart & (sb->s_blocksize - 1);
3884 	partial_end = byte_end & (sb->s_blocksize - 1);
3885 
3886 	start = lstart >> sb->s_blocksize_bits;
3887 	end = byte_end >> sb->s_blocksize_bits;
3888 
3889 	/* Handle partial zero within the single block */
3890 	if (start == end &&
3891 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3892 		err = ext4_block_zero_page_range(handle, mapping,
3893 						 lstart, length);
3894 		return err;
3895 	}
3896 	/* Handle partial zero out on the start of the range */
3897 	if (partial_start) {
3898 		err = ext4_block_zero_page_range(handle, mapping,
3899 						 lstart, sb->s_blocksize);
3900 		if (err)
3901 			return err;
3902 	}
3903 	/* Handle partial zero out on the end of the range */
3904 	if (partial_end != sb->s_blocksize - 1)
3905 		err = ext4_block_zero_page_range(handle, mapping,
3906 						 byte_end - partial_end,
3907 						 partial_end + 1);
3908 	return err;
3909 }
3910 
3911 int ext4_can_truncate(struct inode *inode)
3912 {
3913 	if (S_ISREG(inode->i_mode))
3914 		return 1;
3915 	if (S_ISDIR(inode->i_mode))
3916 		return 1;
3917 	if (S_ISLNK(inode->i_mode))
3918 		return !ext4_inode_is_fast_symlink(inode);
3919 	return 0;
3920 }
3921 
3922 /*
3923  * We have to make sure i_disksize gets properly updated before we truncate
3924  * page cache due to hole punching or zero range. Otherwise i_disksize update
3925  * can get lost as it may have been postponed to submission of writeback but
3926  * that will never happen after we truncate page cache.
3927  */
3928 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3929 				      loff_t len)
3930 {
3931 	handle_t *handle;
3932 	int ret;
3933 
3934 	loff_t size = i_size_read(inode);
3935 
3936 	WARN_ON(!inode_is_locked(inode));
3937 	if (offset > size || offset + len < size)
3938 		return 0;
3939 
3940 	if (EXT4_I(inode)->i_disksize >= size)
3941 		return 0;
3942 
3943 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3944 	if (IS_ERR(handle))
3945 		return PTR_ERR(handle);
3946 	ext4_update_i_disksize(inode, size);
3947 	ret = ext4_mark_inode_dirty(handle, inode);
3948 	ext4_journal_stop(handle);
3949 
3950 	return ret;
3951 }
3952 
3953 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3954 {
3955 	up_write(&ei->i_mmap_sem);
3956 	schedule();
3957 	down_write(&ei->i_mmap_sem);
3958 }
3959 
3960 int ext4_break_layouts(struct inode *inode)
3961 {
3962 	struct ext4_inode_info *ei = EXT4_I(inode);
3963 	struct page *page;
3964 	int error;
3965 
3966 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3967 		return -EINVAL;
3968 
3969 	do {
3970 		page = dax_layout_busy_page(inode->i_mapping);
3971 		if (!page)
3972 			return 0;
3973 
3974 		error = ___wait_var_event(&page->_refcount,
3975 				atomic_read(&page->_refcount) == 1,
3976 				TASK_INTERRUPTIBLE, 0, 0,
3977 				ext4_wait_dax_page(ei));
3978 	} while (error == 0);
3979 
3980 	return error;
3981 }
3982 
3983 /*
3984  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3985  * associated with the given offset and length
3986  *
3987  * @inode:  File inode
3988  * @offset: The offset where the hole will begin
3989  * @len:    The length of the hole
3990  *
3991  * Returns: 0 on success or negative on failure
3992  */
3993 
3994 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3995 {
3996 	struct super_block *sb = inode->i_sb;
3997 	ext4_lblk_t first_block, stop_block;
3998 	struct address_space *mapping = inode->i_mapping;
3999 	loff_t first_block_offset, last_block_offset;
4000 	handle_t *handle;
4001 	unsigned int credits;
4002 	int ret = 0, ret2 = 0;
4003 
4004 	trace_ext4_punch_hole(inode, offset, length, 0);
4005 
4006 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4007 	if (ext4_has_inline_data(inode)) {
4008 		down_write(&EXT4_I(inode)->i_mmap_sem);
4009 		ret = ext4_convert_inline_data(inode);
4010 		up_write(&EXT4_I(inode)->i_mmap_sem);
4011 		if (ret)
4012 			return ret;
4013 	}
4014 
4015 	/*
4016 	 * Write out all dirty pages to avoid race conditions
4017 	 * Then release them.
4018 	 */
4019 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4020 		ret = filemap_write_and_wait_range(mapping, offset,
4021 						   offset + length - 1);
4022 		if (ret)
4023 			return ret;
4024 	}
4025 
4026 	inode_lock(inode);
4027 
4028 	/* No need to punch hole beyond i_size */
4029 	if (offset >= inode->i_size)
4030 		goto out_mutex;
4031 
4032 	/*
4033 	 * If the hole extends beyond i_size, set the hole
4034 	 * to end after the page that contains i_size
4035 	 */
4036 	if (offset + length > inode->i_size) {
4037 		length = inode->i_size +
4038 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4039 		   offset;
4040 	}
4041 
4042 	if (offset & (sb->s_blocksize - 1) ||
4043 	    (offset + length) & (sb->s_blocksize - 1)) {
4044 		/*
4045 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4046 		 * partial block
4047 		 */
4048 		ret = ext4_inode_attach_jinode(inode);
4049 		if (ret < 0)
4050 			goto out_mutex;
4051 
4052 	}
4053 
4054 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4055 	inode_dio_wait(inode);
4056 
4057 	/*
4058 	 * Prevent page faults from reinstantiating pages we have released from
4059 	 * page cache.
4060 	 */
4061 	down_write(&EXT4_I(inode)->i_mmap_sem);
4062 
4063 	ret = ext4_break_layouts(inode);
4064 	if (ret)
4065 		goto out_dio;
4066 
4067 	first_block_offset = round_up(offset, sb->s_blocksize);
4068 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4069 
4070 	/* Now release the pages and zero block aligned part of pages*/
4071 	if (last_block_offset > first_block_offset) {
4072 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4073 		if (ret)
4074 			goto out_dio;
4075 		truncate_pagecache_range(inode, first_block_offset,
4076 					 last_block_offset);
4077 	}
4078 
4079 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4080 		credits = ext4_writepage_trans_blocks(inode);
4081 	else
4082 		credits = ext4_blocks_for_truncate(inode);
4083 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4084 	if (IS_ERR(handle)) {
4085 		ret = PTR_ERR(handle);
4086 		ext4_std_error(sb, ret);
4087 		goto out_dio;
4088 	}
4089 
4090 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4091 				       length);
4092 	if (ret)
4093 		goto out_stop;
4094 
4095 	first_block = (offset + sb->s_blocksize - 1) >>
4096 		EXT4_BLOCK_SIZE_BITS(sb);
4097 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4098 
4099 	/* If there are blocks to remove, do it */
4100 	if (stop_block > first_block) {
4101 
4102 		down_write(&EXT4_I(inode)->i_data_sem);
4103 		ext4_discard_preallocations(inode, 0);
4104 
4105 		ret = ext4_es_remove_extent(inode, first_block,
4106 					    stop_block - first_block);
4107 		if (ret) {
4108 			up_write(&EXT4_I(inode)->i_data_sem);
4109 			goto out_stop;
4110 		}
4111 
4112 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4113 			ret = ext4_ext_remove_space(inode, first_block,
4114 						    stop_block - 1);
4115 		else
4116 			ret = ext4_ind_remove_space(handle, inode, first_block,
4117 						    stop_block);
4118 
4119 		up_write(&EXT4_I(inode)->i_data_sem);
4120 	}
4121 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4122 	if (IS_SYNC(inode))
4123 		ext4_handle_sync(handle);
4124 
4125 	inode->i_mtime = inode->i_ctime = current_time(inode);
4126 	ret2 = ext4_mark_inode_dirty(handle, inode);
4127 	if (unlikely(ret2))
4128 		ret = ret2;
4129 	if (ret >= 0)
4130 		ext4_update_inode_fsync_trans(handle, inode, 1);
4131 out_stop:
4132 	ext4_journal_stop(handle);
4133 out_dio:
4134 	up_write(&EXT4_I(inode)->i_mmap_sem);
4135 out_mutex:
4136 	inode_unlock(inode);
4137 	return ret;
4138 }
4139 
4140 int ext4_inode_attach_jinode(struct inode *inode)
4141 {
4142 	struct ext4_inode_info *ei = EXT4_I(inode);
4143 	struct jbd2_inode *jinode;
4144 
4145 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4146 		return 0;
4147 
4148 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4149 	spin_lock(&inode->i_lock);
4150 	if (!ei->jinode) {
4151 		if (!jinode) {
4152 			spin_unlock(&inode->i_lock);
4153 			return -ENOMEM;
4154 		}
4155 		ei->jinode = jinode;
4156 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4157 		jinode = NULL;
4158 	}
4159 	spin_unlock(&inode->i_lock);
4160 	if (unlikely(jinode != NULL))
4161 		jbd2_free_inode(jinode);
4162 	return 0;
4163 }
4164 
4165 /*
4166  * ext4_truncate()
4167  *
4168  * We block out ext4_get_block() block instantiations across the entire
4169  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4170  * simultaneously on behalf of the same inode.
4171  *
4172  * As we work through the truncate and commit bits of it to the journal there
4173  * is one core, guiding principle: the file's tree must always be consistent on
4174  * disk.  We must be able to restart the truncate after a crash.
4175  *
4176  * The file's tree may be transiently inconsistent in memory (although it
4177  * probably isn't), but whenever we close off and commit a journal transaction,
4178  * the contents of (the filesystem + the journal) must be consistent and
4179  * restartable.  It's pretty simple, really: bottom up, right to left (although
4180  * left-to-right works OK too).
4181  *
4182  * Note that at recovery time, journal replay occurs *before* the restart of
4183  * truncate against the orphan inode list.
4184  *
4185  * The committed inode has the new, desired i_size (which is the same as
4186  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4187  * that this inode's truncate did not complete and it will again call
4188  * ext4_truncate() to have another go.  So there will be instantiated blocks
4189  * to the right of the truncation point in a crashed ext4 filesystem.  But
4190  * that's fine - as long as they are linked from the inode, the post-crash
4191  * ext4_truncate() run will find them and release them.
4192  */
4193 int ext4_truncate(struct inode *inode)
4194 {
4195 	struct ext4_inode_info *ei = EXT4_I(inode);
4196 	unsigned int credits;
4197 	int err = 0, err2;
4198 	handle_t *handle;
4199 	struct address_space *mapping = inode->i_mapping;
4200 
4201 	/*
4202 	 * There is a possibility that we're either freeing the inode
4203 	 * or it's a completely new inode. In those cases we might not
4204 	 * have i_mutex locked because it's not necessary.
4205 	 */
4206 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4207 		WARN_ON(!inode_is_locked(inode));
4208 	trace_ext4_truncate_enter(inode);
4209 
4210 	if (!ext4_can_truncate(inode))
4211 		goto out_trace;
4212 
4213 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4214 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4215 
4216 	if (ext4_has_inline_data(inode)) {
4217 		int has_inline = 1;
4218 
4219 		err = ext4_inline_data_truncate(inode, &has_inline);
4220 		if (err || has_inline)
4221 			goto out_trace;
4222 	}
4223 
4224 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4225 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4226 		if (ext4_inode_attach_jinode(inode) < 0)
4227 			goto out_trace;
4228 	}
4229 
4230 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4231 		credits = ext4_writepage_trans_blocks(inode);
4232 	else
4233 		credits = ext4_blocks_for_truncate(inode);
4234 
4235 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4236 	if (IS_ERR(handle)) {
4237 		err = PTR_ERR(handle);
4238 		goto out_trace;
4239 	}
4240 
4241 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4242 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4243 
4244 	/*
4245 	 * We add the inode to the orphan list, so that if this
4246 	 * truncate spans multiple transactions, and we crash, we will
4247 	 * resume the truncate when the filesystem recovers.  It also
4248 	 * marks the inode dirty, to catch the new size.
4249 	 *
4250 	 * Implication: the file must always be in a sane, consistent
4251 	 * truncatable state while each transaction commits.
4252 	 */
4253 	err = ext4_orphan_add(handle, inode);
4254 	if (err)
4255 		goto out_stop;
4256 
4257 	down_write(&EXT4_I(inode)->i_data_sem);
4258 
4259 	ext4_discard_preallocations(inode, 0);
4260 
4261 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4262 		err = ext4_ext_truncate(handle, inode);
4263 	else
4264 		ext4_ind_truncate(handle, inode);
4265 
4266 	up_write(&ei->i_data_sem);
4267 	if (err)
4268 		goto out_stop;
4269 
4270 	if (IS_SYNC(inode))
4271 		ext4_handle_sync(handle);
4272 
4273 out_stop:
4274 	/*
4275 	 * If this was a simple ftruncate() and the file will remain alive,
4276 	 * then we need to clear up the orphan record which we created above.
4277 	 * However, if this was a real unlink then we were called by
4278 	 * ext4_evict_inode(), and we allow that function to clean up the
4279 	 * orphan info for us.
4280 	 */
4281 	if (inode->i_nlink)
4282 		ext4_orphan_del(handle, inode);
4283 
4284 	inode->i_mtime = inode->i_ctime = current_time(inode);
4285 	err2 = ext4_mark_inode_dirty(handle, inode);
4286 	if (unlikely(err2 && !err))
4287 		err = err2;
4288 	ext4_journal_stop(handle);
4289 
4290 out_trace:
4291 	trace_ext4_truncate_exit(inode);
4292 	return err;
4293 }
4294 
4295 /*
4296  * ext4_get_inode_loc returns with an extra refcount against the inode's
4297  * underlying buffer_head on success. If 'in_mem' is true, we have all
4298  * data in memory that is needed to recreate the on-disk version of this
4299  * inode.
4300  */
4301 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4302 				struct ext4_iloc *iloc, int in_mem,
4303 				ext4_fsblk_t *ret_block)
4304 {
4305 	struct ext4_group_desc	*gdp;
4306 	struct buffer_head	*bh;
4307 	ext4_fsblk_t		block;
4308 	struct blk_plug		plug;
4309 	int			inodes_per_block, inode_offset;
4310 
4311 	iloc->bh = NULL;
4312 	if (ino < EXT4_ROOT_INO ||
4313 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4314 		return -EFSCORRUPTED;
4315 
4316 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4317 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4318 	if (!gdp)
4319 		return -EIO;
4320 
4321 	/*
4322 	 * Figure out the offset within the block group inode table
4323 	 */
4324 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4325 	inode_offset = ((ino - 1) %
4326 			EXT4_INODES_PER_GROUP(sb));
4327 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4328 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4329 
4330 	bh = sb_getblk(sb, block);
4331 	if (unlikely(!bh))
4332 		return -ENOMEM;
4333 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4334 		goto simulate_eio;
4335 	if (!buffer_uptodate(bh)) {
4336 		lock_buffer(bh);
4337 
4338 		if (ext4_buffer_uptodate(bh)) {
4339 			/* someone brought it uptodate while we waited */
4340 			unlock_buffer(bh);
4341 			goto has_buffer;
4342 		}
4343 
4344 		/*
4345 		 * If we have all information of the inode in memory and this
4346 		 * is the only valid inode in the block, we need not read the
4347 		 * block.
4348 		 */
4349 		if (in_mem) {
4350 			struct buffer_head *bitmap_bh;
4351 			int i, start;
4352 
4353 			start = inode_offset & ~(inodes_per_block - 1);
4354 
4355 			/* Is the inode bitmap in cache? */
4356 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4357 			if (unlikely(!bitmap_bh))
4358 				goto make_io;
4359 
4360 			/*
4361 			 * If the inode bitmap isn't in cache then the
4362 			 * optimisation may end up performing two reads instead
4363 			 * of one, so skip it.
4364 			 */
4365 			if (!buffer_uptodate(bitmap_bh)) {
4366 				brelse(bitmap_bh);
4367 				goto make_io;
4368 			}
4369 			for (i = start; i < start + inodes_per_block; i++) {
4370 				if (i == inode_offset)
4371 					continue;
4372 				if (ext4_test_bit(i, bitmap_bh->b_data))
4373 					break;
4374 			}
4375 			brelse(bitmap_bh);
4376 			if (i == start + inodes_per_block) {
4377 				/* all other inodes are free, so skip I/O */
4378 				memset(bh->b_data, 0, bh->b_size);
4379 				set_buffer_uptodate(bh);
4380 				unlock_buffer(bh);
4381 				goto has_buffer;
4382 			}
4383 		}
4384 
4385 make_io:
4386 		/*
4387 		 * If we need to do any I/O, try to pre-readahead extra
4388 		 * blocks from the inode table.
4389 		 */
4390 		blk_start_plug(&plug);
4391 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4392 			ext4_fsblk_t b, end, table;
4393 			unsigned num;
4394 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4395 
4396 			table = ext4_inode_table(sb, gdp);
4397 			/* s_inode_readahead_blks is always a power of 2 */
4398 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4399 			if (table > b)
4400 				b = table;
4401 			end = b + ra_blks;
4402 			num = EXT4_INODES_PER_GROUP(sb);
4403 			if (ext4_has_group_desc_csum(sb))
4404 				num -= ext4_itable_unused_count(sb, gdp);
4405 			table += num / inodes_per_block;
4406 			if (end > table)
4407 				end = table;
4408 			while (b <= end)
4409 				ext4_sb_breadahead_unmovable(sb, b++);
4410 		}
4411 
4412 		/*
4413 		 * There are other valid inodes in the buffer, this inode
4414 		 * has in-inode xattrs, or we don't have this inode in memory.
4415 		 * Read the block from disk.
4416 		 */
4417 		trace_ext4_load_inode(sb, ino);
4418 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4419 		blk_finish_plug(&plug);
4420 		wait_on_buffer(bh);
4421 		if (!buffer_uptodate(bh)) {
4422 		simulate_eio:
4423 			if (ret_block)
4424 				*ret_block = block;
4425 			brelse(bh);
4426 			return -EIO;
4427 		}
4428 	}
4429 has_buffer:
4430 	iloc->bh = bh;
4431 	return 0;
4432 }
4433 
4434 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4435 					struct ext4_iloc *iloc)
4436 {
4437 	ext4_fsblk_t err_blk;
4438 	int ret;
4439 
4440 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4441 					&err_blk);
4442 
4443 	if (ret == -EIO)
4444 		ext4_error_inode_block(inode, err_blk, EIO,
4445 					"unable to read itable block");
4446 
4447 	return ret;
4448 }
4449 
4450 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4451 {
4452 	ext4_fsblk_t err_blk;
4453 	int ret;
4454 
4455 	/* We have all inode data except xattrs in memory here. */
4456 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4457 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4458 
4459 	if (ret == -EIO)
4460 		ext4_error_inode_block(inode, err_blk, EIO,
4461 					"unable to read itable block");
4462 
4463 	return ret;
4464 }
4465 
4466 
4467 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4468 			  struct ext4_iloc *iloc)
4469 {
4470 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4471 }
4472 
4473 static bool ext4_should_enable_dax(struct inode *inode)
4474 {
4475 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4476 
4477 	if (test_opt2(inode->i_sb, DAX_NEVER))
4478 		return false;
4479 	if (!S_ISREG(inode->i_mode))
4480 		return false;
4481 	if (ext4_should_journal_data(inode))
4482 		return false;
4483 	if (ext4_has_inline_data(inode))
4484 		return false;
4485 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4486 		return false;
4487 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4488 		return false;
4489 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4490 		return false;
4491 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4492 		return true;
4493 
4494 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4495 }
4496 
4497 void ext4_set_inode_flags(struct inode *inode, bool init)
4498 {
4499 	unsigned int flags = EXT4_I(inode)->i_flags;
4500 	unsigned int new_fl = 0;
4501 
4502 	WARN_ON_ONCE(IS_DAX(inode) && init);
4503 
4504 	if (flags & EXT4_SYNC_FL)
4505 		new_fl |= S_SYNC;
4506 	if (flags & EXT4_APPEND_FL)
4507 		new_fl |= S_APPEND;
4508 	if (flags & EXT4_IMMUTABLE_FL)
4509 		new_fl |= S_IMMUTABLE;
4510 	if (flags & EXT4_NOATIME_FL)
4511 		new_fl |= S_NOATIME;
4512 	if (flags & EXT4_DIRSYNC_FL)
4513 		new_fl |= S_DIRSYNC;
4514 
4515 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4516 	 * here if already set. */
4517 	new_fl |= (inode->i_flags & S_DAX);
4518 	if (init && ext4_should_enable_dax(inode))
4519 		new_fl |= S_DAX;
4520 
4521 	if (flags & EXT4_ENCRYPT_FL)
4522 		new_fl |= S_ENCRYPTED;
4523 	if (flags & EXT4_CASEFOLD_FL)
4524 		new_fl |= S_CASEFOLD;
4525 	if (flags & EXT4_VERITY_FL)
4526 		new_fl |= S_VERITY;
4527 	inode_set_flags(inode, new_fl,
4528 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4529 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4530 }
4531 
4532 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4533 				  struct ext4_inode_info *ei)
4534 {
4535 	blkcnt_t i_blocks ;
4536 	struct inode *inode = &(ei->vfs_inode);
4537 	struct super_block *sb = inode->i_sb;
4538 
4539 	if (ext4_has_feature_huge_file(sb)) {
4540 		/* we are using combined 48 bit field */
4541 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4542 					le32_to_cpu(raw_inode->i_blocks_lo);
4543 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4544 			/* i_blocks represent file system block size */
4545 			return i_blocks  << (inode->i_blkbits - 9);
4546 		} else {
4547 			return i_blocks;
4548 		}
4549 	} else {
4550 		return le32_to_cpu(raw_inode->i_blocks_lo);
4551 	}
4552 }
4553 
4554 static inline int ext4_iget_extra_inode(struct inode *inode,
4555 					 struct ext4_inode *raw_inode,
4556 					 struct ext4_inode_info *ei)
4557 {
4558 	__le32 *magic = (void *)raw_inode +
4559 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4560 
4561 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4562 	    EXT4_INODE_SIZE(inode->i_sb) &&
4563 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4564 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4565 		return ext4_find_inline_data_nolock(inode);
4566 	} else
4567 		EXT4_I(inode)->i_inline_off = 0;
4568 	return 0;
4569 }
4570 
4571 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4572 {
4573 	if (!ext4_has_feature_project(inode->i_sb))
4574 		return -EOPNOTSUPP;
4575 	*projid = EXT4_I(inode)->i_projid;
4576 	return 0;
4577 }
4578 
4579 /*
4580  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4581  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4582  * set.
4583  */
4584 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4585 {
4586 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4587 		inode_set_iversion_raw(inode, val);
4588 	else
4589 		inode_set_iversion_queried(inode, val);
4590 }
4591 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4592 {
4593 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4594 		return inode_peek_iversion_raw(inode);
4595 	else
4596 		return inode_peek_iversion(inode);
4597 }
4598 
4599 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4600 			  ext4_iget_flags flags, const char *function,
4601 			  unsigned int line)
4602 {
4603 	struct ext4_iloc iloc;
4604 	struct ext4_inode *raw_inode;
4605 	struct ext4_inode_info *ei;
4606 	struct inode *inode;
4607 	journal_t *journal = EXT4_SB(sb)->s_journal;
4608 	long ret;
4609 	loff_t size;
4610 	int block;
4611 	uid_t i_uid;
4612 	gid_t i_gid;
4613 	projid_t i_projid;
4614 
4615 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4616 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4617 	    (ino < EXT4_ROOT_INO) ||
4618 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4619 		if (flags & EXT4_IGET_HANDLE)
4620 			return ERR_PTR(-ESTALE);
4621 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4622 			     "inode #%lu: comm %s: iget: illegal inode #",
4623 			     ino, current->comm);
4624 		return ERR_PTR(-EFSCORRUPTED);
4625 	}
4626 
4627 	inode = iget_locked(sb, ino);
4628 	if (!inode)
4629 		return ERR_PTR(-ENOMEM);
4630 	if (!(inode->i_state & I_NEW))
4631 		return inode;
4632 
4633 	ei = EXT4_I(inode);
4634 	iloc.bh = NULL;
4635 
4636 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4637 	if (ret < 0)
4638 		goto bad_inode;
4639 	raw_inode = ext4_raw_inode(&iloc);
4640 
4641 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4642 		ext4_error_inode(inode, function, line, 0,
4643 				 "iget: root inode unallocated");
4644 		ret = -EFSCORRUPTED;
4645 		goto bad_inode;
4646 	}
4647 
4648 	if ((flags & EXT4_IGET_HANDLE) &&
4649 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4650 		ret = -ESTALE;
4651 		goto bad_inode;
4652 	}
4653 
4654 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4655 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4656 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4657 			EXT4_INODE_SIZE(inode->i_sb) ||
4658 		    (ei->i_extra_isize & 3)) {
4659 			ext4_error_inode(inode, function, line, 0,
4660 					 "iget: bad extra_isize %u "
4661 					 "(inode size %u)",
4662 					 ei->i_extra_isize,
4663 					 EXT4_INODE_SIZE(inode->i_sb));
4664 			ret = -EFSCORRUPTED;
4665 			goto bad_inode;
4666 		}
4667 	} else
4668 		ei->i_extra_isize = 0;
4669 
4670 	/* Precompute checksum seed for inode metadata */
4671 	if (ext4_has_metadata_csum(sb)) {
4672 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4673 		__u32 csum;
4674 		__le32 inum = cpu_to_le32(inode->i_ino);
4675 		__le32 gen = raw_inode->i_generation;
4676 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4677 				   sizeof(inum));
4678 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4679 					      sizeof(gen));
4680 	}
4681 
4682 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4683 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4684 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4685 		ext4_error_inode_err(inode, function, line, 0,
4686 				EFSBADCRC, "iget: checksum invalid");
4687 		ret = -EFSBADCRC;
4688 		goto bad_inode;
4689 	}
4690 
4691 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4692 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4693 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4694 	if (ext4_has_feature_project(sb) &&
4695 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4696 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4697 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4698 	else
4699 		i_projid = EXT4_DEF_PROJID;
4700 
4701 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4702 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4703 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4704 	}
4705 	i_uid_write(inode, i_uid);
4706 	i_gid_write(inode, i_gid);
4707 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4708 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4709 
4710 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4711 	ei->i_inline_off = 0;
4712 	ei->i_dir_start_lookup = 0;
4713 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4714 	/* We now have enough fields to check if the inode was active or not.
4715 	 * This is needed because nfsd might try to access dead inodes
4716 	 * the test is that same one that e2fsck uses
4717 	 * NeilBrown 1999oct15
4718 	 */
4719 	if (inode->i_nlink == 0) {
4720 		if ((inode->i_mode == 0 ||
4721 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4722 		    ino != EXT4_BOOT_LOADER_INO) {
4723 			/* this inode is deleted */
4724 			ret = -ESTALE;
4725 			goto bad_inode;
4726 		}
4727 		/* The only unlinked inodes we let through here have
4728 		 * valid i_mode and are being read by the orphan
4729 		 * recovery code: that's fine, we're about to complete
4730 		 * the process of deleting those.
4731 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4732 		 * not initialized on a new filesystem. */
4733 	}
4734 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4735 	ext4_set_inode_flags(inode, true);
4736 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4737 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4738 	if (ext4_has_feature_64bit(sb))
4739 		ei->i_file_acl |=
4740 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4741 	inode->i_size = ext4_isize(sb, raw_inode);
4742 	if ((size = i_size_read(inode)) < 0) {
4743 		ext4_error_inode(inode, function, line, 0,
4744 				 "iget: bad i_size value: %lld", size);
4745 		ret = -EFSCORRUPTED;
4746 		goto bad_inode;
4747 	}
4748 	/*
4749 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4750 	 * we'd normally treat htree data as empty space. But with metadata
4751 	 * checksumming that corrupts checksums so forbid that.
4752 	 */
4753 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4754 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4755 		ext4_error_inode(inode, function, line, 0,
4756 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4757 		ret = -EFSCORRUPTED;
4758 		goto bad_inode;
4759 	}
4760 	ei->i_disksize = inode->i_size;
4761 #ifdef CONFIG_QUOTA
4762 	ei->i_reserved_quota = 0;
4763 #endif
4764 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4765 	ei->i_block_group = iloc.block_group;
4766 	ei->i_last_alloc_group = ~0;
4767 	/*
4768 	 * NOTE! The in-memory inode i_data array is in little-endian order
4769 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4770 	 */
4771 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4772 		ei->i_data[block] = raw_inode->i_block[block];
4773 	INIT_LIST_HEAD(&ei->i_orphan);
4774 	ext4_fc_init_inode(&ei->vfs_inode);
4775 
4776 	/*
4777 	 * Set transaction id's of transactions that have to be committed
4778 	 * to finish f[data]sync. We set them to currently running transaction
4779 	 * as we cannot be sure that the inode or some of its metadata isn't
4780 	 * part of the transaction - the inode could have been reclaimed and
4781 	 * now it is reread from disk.
4782 	 */
4783 	if (journal) {
4784 		transaction_t *transaction;
4785 		tid_t tid;
4786 
4787 		read_lock(&journal->j_state_lock);
4788 		if (journal->j_running_transaction)
4789 			transaction = journal->j_running_transaction;
4790 		else
4791 			transaction = journal->j_committing_transaction;
4792 		if (transaction)
4793 			tid = transaction->t_tid;
4794 		else
4795 			tid = journal->j_commit_sequence;
4796 		read_unlock(&journal->j_state_lock);
4797 		ei->i_sync_tid = tid;
4798 		ei->i_datasync_tid = tid;
4799 	}
4800 
4801 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4802 		if (ei->i_extra_isize == 0) {
4803 			/* The extra space is currently unused. Use it. */
4804 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4805 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4806 					    EXT4_GOOD_OLD_INODE_SIZE;
4807 		} else {
4808 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4809 			if (ret)
4810 				goto bad_inode;
4811 		}
4812 	}
4813 
4814 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4815 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4816 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4817 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4818 
4819 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4820 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4821 
4822 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4823 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4824 				ivers |=
4825 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4826 		}
4827 		ext4_inode_set_iversion_queried(inode, ivers);
4828 	}
4829 
4830 	ret = 0;
4831 	if (ei->i_file_acl &&
4832 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4833 		ext4_error_inode(inode, function, line, 0,
4834 				 "iget: bad extended attribute block %llu",
4835 				 ei->i_file_acl);
4836 		ret = -EFSCORRUPTED;
4837 		goto bad_inode;
4838 	} else if (!ext4_has_inline_data(inode)) {
4839 		/* validate the block references in the inode */
4840 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4841 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4842 			(S_ISLNK(inode->i_mode) &&
4843 			!ext4_inode_is_fast_symlink(inode)))) {
4844 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4845 				ret = ext4_ext_check_inode(inode);
4846 			else
4847 				ret = ext4_ind_check_inode(inode);
4848 		}
4849 	}
4850 	if (ret)
4851 		goto bad_inode;
4852 
4853 	if (S_ISREG(inode->i_mode)) {
4854 		inode->i_op = &ext4_file_inode_operations;
4855 		inode->i_fop = &ext4_file_operations;
4856 		ext4_set_aops(inode);
4857 	} else if (S_ISDIR(inode->i_mode)) {
4858 		inode->i_op = &ext4_dir_inode_operations;
4859 		inode->i_fop = &ext4_dir_operations;
4860 	} else if (S_ISLNK(inode->i_mode)) {
4861 		/* VFS does not allow setting these so must be corruption */
4862 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4863 			ext4_error_inode(inode, function, line, 0,
4864 					 "iget: immutable or append flags "
4865 					 "not allowed on symlinks");
4866 			ret = -EFSCORRUPTED;
4867 			goto bad_inode;
4868 		}
4869 		if (IS_ENCRYPTED(inode)) {
4870 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4871 			ext4_set_aops(inode);
4872 		} else if (ext4_inode_is_fast_symlink(inode)) {
4873 			inode->i_link = (char *)ei->i_data;
4874 			inode->i_op = &ext4_fast_symlink_inode_operations;
4875 			nd_terminate_link(ei->i_data, inode->i_size,
4876 				sizeof(ei->i_data) - 1);
4877 		} else {
4878 			inode->i_op = &ext4_symlink_inode_operations;
4879 			ext4_set_aops(inode);
4880 		}
4881 		inode_nohighmem(inode);
4882 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4883 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4884 		inode->i_op = &ext4_special_inode_operations;
4885 		if (raw_inode->i_block[0])
4886 			init_special_inode(inode, inode->i_mode,
4887 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4888 		else
4889 			init_special_inode(inode, inode->i_mode,
4890 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4891 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4892 		make_bad_inode(inode);
4893 	} else {
4894 		ret = -EFSCORRUPTED;
4895 		ext4_error_inode(inode, function, line, 0,
4896 				 "iget: bogus i_mode (%o)", inode->i_mode);
4897 		goto bad_inode;
4898 	}
4899 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4900 		ext4_error_inode(inode, function, line, 0,
4901 				 "casefold flag without casefold feature");
4902 	brelse(iloc.bh);
4903 
4904 	unlock_new_inode(inode);
4905 	return inode;
4906 
4907 bad_inode:
4908 	brelse(iloc.bh);
4909 	iget_failed(inode);
4910 	return ERR_PTR(ret);
4911 }
4912 
4913 static int ext4_inode_blocks_set(handle_t *handle,
4914 				struct ext4_inode *raw_inode,
4915 				struct ext4_inode_info *ei)
4916 {
4917 	struct inode *inode = &(ei->vfs_inode);
4918 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4919 	struct super_block *sb = inode->i_sb;
4920 
4921 	if (i_blocks <= ~0U) {
4922 		/*
4923 		 * i_blocks can be represented in a 32 bit variable
4924 		 * as multiple of 512 bytes
4925 		 */
4926 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4927 		raw_inode->i_blocks_high = 0;
4928 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4929 		return 0;
4930 	}
4931 	if (!ext4_has_feature_huge_file(sb))
4932 		return -EFBIG;
4933 
4934 	if (i_blocks <= 0xffffffffffffULL) {
4935 		/*
4936 		 * i_blocks can be represented in a 48 bit variable
4937 		 * as multiple of 512 bytes
4938 		 */
4939 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4940 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4941 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4942 	} else {
4943 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4944 		/* i_block is stored in file system block size */
4945 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4946 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4947 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4948 	}
4949 	return 0;
4950 }
4951 
4952 static void __ext4_update_other_inode_time(struct super_block *sb,
4953 					   unsigned long orig_ino,
4954 					   unsigned long ino,
4955 					   struct ext4_inode *raw_inode)
4956 {
4957 	struct inode *inode;
4958 
4959 	inode = find_inode_by_ino_rcu(sb, ino);
4960 	if (!inode)
4961 		return;
4962 
4963 	if (!inode_is_dirtytime_only(inode))
4964 		return;
4965 
4966 	spin_lock(&inode->i_lock);
4967 	if (inode_is_dirtytime_only(inode)) {
4968 		struct ext4_inode_info	*ei = EXT4_I(inode);
4969 
4970 		inode->i_state &= ~I_DIRTY_TIME;
4971 		spin_unlock(&inode->i_lock);
4972 
4973 		spin_lock(&ei->i_raw_lock);
4974 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4975 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4976 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4977 		ext4_inode_csum_set(inode, raw_inode, ei);
4978 		spin_unlock(&ei->i_raw_lock);
4979 		trace_ext4_other_inode_update_time(inode, orig_ino);
4980 		return;
4981 	}
4982 	spin_unlock(&inode->i_lock);
4983 }
4984 
4985 /*
4986  * Opportunistically update the other time fields for other inodes in
4987  * the same inode table block.
4988  */
4989 static void ext4_update_other_inodes_time(struct super_block *sb,
4990 					  unsigned long orig_ino, char *buf)
4991 {
4992 	unsigned long ino;
4993 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4994 	int inode_size = EXT4_INODE_SIZE(sb);
4995 
4996 	/*
4997 	 * Calculate the first inode in the inode table block.  Inode
4998 	 * numbers are one-based.  That is, the first inode in a block
4999 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5000 	 */
5001 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5002 	rcu_read_lock();
5003 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5004 		if (ino == orig_ino)
5005 			continue;
5006 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5007 					       (struct ext4_inode *)buf);
5008 	}
5009 	rcu_read_unlock();
5010 }
5011 
5012 /*
5013  * Post the struct inode info into an on-disk inode location in the
5014  * buffer-cache.  This gobbles the caller's reference to the
5015  * buffer_head in the inode location struct.
5016  *
5017  * The caller must have write access to iloc->bh.
5018  */
5019 static int ext4_do_update_inode(handle_t *handle,
5020 				struct inode *inode,
5021 				struct ext4_iloc *iloc)
5022 {
5023 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5024 	struct ext4_inode_info *ei = EXT4_I(inode);
5025 	struct buffer_head *bh = iloc->bh;
5026 	struct super_block *sb = inode->i_sb;
5027 	int err = 0, block;
5028 	int need_datasync = 0, set_large_file = 0;
5029 	uid_t i_uid;
5030 	gid_t i_gid;
5031 	projid_t i_projid;
5032 
5033 	spin_lock(&ei->i_raw_lock);
5034 
5035 	/* For fields not tracked in the in-memory inode,
5036 	 * initialise them to zero for new inodes. */
5037 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5038 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5039 
5040 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5041 	if (err) {
5042 		spin_unlock(&ei->i_raw_lock);
5043 		goto out_brelse;
5044 	}
5045 
5046 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5047 	i_uid = i_uid_read(inode);
5048 	i_gid = i_gid_read(inode);
5049 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5050 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5051 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5052 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5053 /*
5054  * Fix up interoperability with old kernels. Otherwise, old inodes get
5055  * re-used with the upper 16 bits of the uid/gid intact
5056  */
5057 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5058 			raw_inode->i_uid_high = 0;
5059 			raw_inode->i_gid_high = 0;
5060 		} else {
5061 			raw_inode->i_uid_high =
5062 				cpu_to_le16(high_16_bits(i_uid));
5063 			raw_inode->i_gid_high =
5064 				cpu_to_le16(high_16_bits(i_gid));
5065 		}
5066 	} else {
5067 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5068 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5069 		raw_inode->i_uid_high = 0;
5070 		raw_inode->i_gid_high = 0;
5071 	}
5072 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5073 
5074 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5075 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5076 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5077 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5078 
5079 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5080 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5081 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5082 		raw_inode->i_file_acl_high =
5083 			cpu_to_le16(ei->i_file_acl >> 32);
5084 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5085 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5086 		ext4_isize_set(raw_inode, ei->i_disksize);
5087 		need_datasync = 1;
5088 	}
5089 	if (ei->i_disksize > 0x7fffffffULL) {
5090 		if (!ext4_has_feature_large_file(sb) ||
5091 				EXT4_SB(sb)->s_es->s_rev_level ==
5092 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5093 			set_large_file = 1;
5094 	}
5095 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5096 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5097 		if (old_valid_dev(inode->i_rdev)) {
5098 			raw_inode->i_block[0] =
5099 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5100 			raw_inode->i_block[1] = 0;
5101 		} else {
5102 			raw_inode->i_block[0] = 0;
5103 			raw_inode->i_block[1] =
5104 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5105 			raw_inode->i_block[2] = 0;
5106 		}
5107 	} else if (!ext4_has_inline_data(inode)) {
5108 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5109 			raw_inode->i_block[block] = ei->i_data[block];
5110 	}
5111 
5112 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5113 		u64 ivers = ext4_inode_peek_iversion(inode);
5114 
5115 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5116 		if (ei->i_extra_isize) {
5117 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5118 				raw_inode->i_version_hi =
5119 					cpu_to_le32(ivers >> 32);
5120 			raw_inode->i_extra_isize =
5121 				cpu_to_le16(ei->i_extra_isize);
5122 		}
5123 	}
5124 
5125 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5126 	       i_projid != EXT4_DEF_PROJID);
5127 
5128 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5129 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5130 		raw_inode->i_projid = cpu_to_le32(i_projid);
5131 
5132 	ext4_inode_csum_set(inode, raw_inode, ei);
5133 	spin_unlock(&ei->i_raw_lock);
5134 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5135 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5136 					      bh->b_data);
5137 
5138 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5139 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5140 	if (err)
5141 		goto out_brelse;
5142 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5143 	if (set_large_file) {
5144 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5145 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5146 		if (err)
5147 			goto out_brelse;
5148 		lock_buffer(EXT4_SB(sb)->s_sbh);
5149 		ext4_set_feature_large_file(sb);
5150 		ext4_superblock_csum_set(sb);
5151 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5152 		ext4_handle_sync(handle);
5153 		err = ext4_handle_dirty_metadata(handle, NULL,
5154 						 EXT4_SB(sb)->s_sbh);
5155 	}
5156 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5157 out_brelse:
5158 	brelse(bh);
5159 	ext4_std_error(inode->i_sb, err);
5160 	return err;
5161 }
5162 
5163 /*
5164  * ext4_write_inode()
5165  *
5166  * We are called from a few places:
5167  *
5168  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5169  *   Here, there will be no transaction running. We wait for any running
5170  *   transaction to commit.
5171  *
5172  * - Within flush work (sys_sync(), kupdate and such).
5173  *   We wait on commit, if told to.
5174  *
5175  * - Within iput_final() -> write_inode_now()
5176  *   We wait on commit, if told to.
5177  *
5178  * In all cases it is actually safe for us to return without doing anything,
5179  * because the inode has been copied into a raw inode buffer in
5180  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5181  * writeback.
5182  *
5183  * Note that we are absolutely dependent upon all inode dirtiers doing the
5184  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5185  * which we are interested.
5186  *
5187  * It would be a bug for them to not do this.  The code:
5188  *
5189  *	mark_inode_dirty(inode)
5190  *	stuff();
5191  *	inode->i_size = expr;
5192  *
5193  * is in error because write_inode() could occur while `stuff()' is running,
5194  * and the new i_size will be lost.  Plus the inode will no longer be on the
5195  * superblock's dirty inode list.
5196  */
5197 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5198 {
5199 	int err;
5200 
5201 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5202 	    sb_rdonly(inode->i_sb))
5203 		return 0;
5204 
5205 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5206 		return -EIO;
5207 
5208 	if (EXT4_SB(inode->i_sb)->s_journal) {
5209 		if (ext4_journal_current_handle()) {
5210 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5211 			dump_stack();
5212 			return -EIO;
5213 		}
5214 
5215 		/*
5216 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5217 		 * ext4_sync_fs() will force the commit after everything is
5218 		 * written.
5219 		 */
5220 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5221 			return 0;
5222 
5223 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5224 						EXT4_I(inode)->i_sync_tid);
5225 	} else {
5226 		struct ext4_iloc iloc;
5227 
5228 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5229 		if (err)
5230 			return err;
5231 		/*
5232 		 * sync(2) will flush the whole buffer cache. No need to do
5233 		 * it here separately for each inode.
5234 		 */
5235 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5236 			sync_dirty_buffer(iloc.bh);
5237 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5238 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5239 					       "IO error syncing inode");
5240 			err = -EIO;
5241 		}
5242 		brelse(iloc.bh);
5243 	}
5244 	return err;
5245 }
5246 
5247 /*
5248  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5249  * buffers that are attached to a page stradding i_size and are undergoing
5250  * commit. In that case we have to wait for commit to finish and try again.
5251  */
5252 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5253 {
5254 	struct page *page;
5255 	unsigned offset;
5256 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5257 	tid_t commit_tid = 0;
5258 	int ret;
5259 
5260 	offset = inode->i_size & (PAGE_SIZE - 1);
5261 	/*
5262 	 * If the page is fully truncated, we don't need to wait for any commit
5263 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5264 	 * strip all buffers from the page but keep the page dirty which can then
5265 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5266 	 * buffers). Also we don't need to wait for any commit if all buffers in
5267 	 * the page remain valid. This is most beneficial for the common case of
5268 	 * blocksize == PAGESIZE.
5269 	 */
5270 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5271 		return;
5272 	while (1) {
5273 		page = find_lock_page(inode->i_mapping,
5274 				      inode->i_size >> PAGE_SHIFT);
5275 		if (!page)
5276 			return;
5277 		ret = __ext4_journalled_invalidatepage(page, offset,
5278 						PAGE_SIZE - offset);
5279 		unlock_page(page);
5280 		put_page(page);
5281 		if (ret != -EBUSY)
5282 			return;
5283 		commit_tid = 0;
5284 		read_lock(&journal->j_state_lock);
5285 		if (journal->j_committing_transaction)
5286 			commit_tid = journal->j_committing_transaction->t_tid;
5287 		read_unlock(&journal->j_state_lock);
5288 		if (commit_tid)
5289 			jbd2_log_wait_commit(journal, commit_tid);
5290 	}
5291 }
5292 
5293 /*
5294  * ext4_setattr()
5295  *
5296  * Called from notify_change.
5297  *
5298  * We want to trap VFS attempts to truncate the file as soon as
5299  * possible.  In particular, we want to make sure that when the VFS
5300  * shrinks i_size, we put the inode on the orphan list and modify
5301  * i_disksize immediately, so that during the subsequent flushing of
5302  * dirty pages and freeing of disk blocks, we can guarantee that any
5303  * commit will leave the blocks being flushed in an unused state on
5304  * disk.  (On recovery, the inode will get truncated and the blocks will
5305  * be freed, so we have a strong guarantee that no future commit will
5306  * leave these blocks visible to the user.)
5307  *
5308  * Another thing we have to assure is that if we are in ordered mode
5309  * and inode is still attached to the committing transaction, we must
5310  * we start writeout of all the dirty pages which are being truncated.
5311  * This way we are sure that all the data written in the previous
5312  * transaction are already on disk (truncate waits for pages under
5313  * writeback).
5314  *
5315  * Called with inode->i_mutex down.
5316  */
5317 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5318 		 struct iattr *attr)
5319 {
5320 	struct inode *inode = d_inode(dentry);
5321 	int error, rc = 0;
5322 	int orphan = 0;
5323 	const unsigned int ia_valid = attr->ia_valid;
5324 
5325 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5326 		return -EIO;
5327 
5328 	if (unlikely(IS_IMMUTABLE(inode)))
5329 		return -EPERM;
5330 
5331 	if (unlikely(IS_APPEND(inode) &&
5332 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5333 				  ATTR_GID | ATTR_TIMES_SET))))
5334 		return -EPERM;
5335 
5336 	error = setattr_prepare(mnt_userns, dentry, attr);
5337 	if (error)
5338 		return error;
5339 
5340 	error = fscrypt_prepare_setattr(dentry, attr);
5341 	if (error)
5342 		return error;
5343 
5344 	error = fsverity_prepare_setattr(dentry, attr);
5345 	if (error)
5346 		return error;
5347 
5348 	if (is_quota_modification(inode, attr)) {
5349 		error = dquot_initialize(inode);
5350 		if (error)
5351 			return error;
5352 	}
5353 	ext4_fc_start_update(inode);
5354 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5355 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5356 		handle_t *handle;
5357 
5358 		/* (user+group)*(old+new) structure, inode write (sb,
5359 		 * inode block, ? - but truncate inode update has it) */
5360 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5361 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5362 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5363 		if (IS_ERR(handle)) {
5364 			error = PTR_ERR(handle);
5365 			goto err_out;
5366 		}
5367 
5368 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5369 		 * counts xattr inode references.
5370 		 */
5371 		down_read(&EXT4_I(inode)->xattr_sem);
5372 		error = dquot_transfer(inode, attr);
5373 		up_read(&EXT4_I(inode)->xattr_sem);
5374 
5375 		if (error) {
5376 			ext4_journal_stop(handle);
5377 			ext4_fc_stop_update(inode);
5378 			return error;
5379 		}
5380 		/* Update corresponding info in inode so that everything is in
5381 		 * one transaction */
5382 		if (attr->ia_valid & ATTR_UID)
5383 			inode->i_uid = attr->ia_uid;
5384 		if (attr->ia_valid & ATTR_GID)
5385 			inode->i_gid = attr->ia_gid;
5386 		error = ext4_mark_inode_dirty(handle, inode);
5387 		ext4_journal_stop(handle);
5388 		if (unlikely(error)) {
5389 			ext4_fc_stop_update(inode);
5390 			return error;
5391 		}
5392 	}
5393 
5394 	if (attr->ia_valid & ATTR_SIZE) {
5395 		handle_t *handle;
5396 		loff_t oldsize = inode->i_size;
5397 		int shrink = (attr->ia_size < inode->i_size);
5398 
5399 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5400 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5401 
5402 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5403 				ext4_fc_stop_update(inode);
5404 				return -EFBIG;
5405 			}
5406 		}
5407 		if (!S_ISREG(inode->i_mode)) {
5408 			ext4_fc_stop_update(inode);
5409 			return -EINVAL;
5410 		}
5411 
5412 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5413 			inode_inc_iversion(inode);
5414 
5415 		if (shrink) {
5416 			if (ext4_should_order_data(inode)) {
5417 				error = ext4_begin_ordered_truncate(inode,
5418 							    attr->ia_size);
5419 				if (error)
5420 					goto err_out;
5421 			}
5422 			/*
5423 			 * Blocks are going to be removed from the inode. Wait
5424 			 * for dio in flight.
5425 			 */
5426 			inode_dio_wait(inode);
5427 		}
5428 
5429 		down_write(&EXT4_I(inode)->i_mmap_sem);
5430 
5431 		rc = ext4_break_layouts(inode);
5432 		if (rc) {
5433 			up_write(&EXT4_I(inode)->i_mmap_sem);
5434 			goto err_out;
5435 		}
5436 
5437 		if (attr->ia_size != inode->i_size) {
5438 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5439 			if (IS_ERR(handle)) {
5440 				error = PTR_ERR(handle);
5441 				goto out_mmap_sem;
5442 			}
5443 			if (ext4_handle_valid(handle) && shrink) {
5444 				error = ext4_orphan_add(handle, inode);
5445 				orphan = 1;
5446 			}
5447 			/*
5448 			 * Update c/mtime on truncate up, ext4_truncate() will
5449 			 * update c/mtime in shrink case below
5450 			 */
5451 			if (!shrink) {
5452 				inode->i_mtime = current_time(inode);
5453 				inode->i_ctime = inode->i_mtime;
5454 			}
5455 
5456 			if (shrink)
5457 				ext4_fc_track_range(handle, inode,
5458 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5459 					inode->i_sb->s_blocksize_bits,
5460 					(oldsize > 0 ? oldsize - 1 : 0) >>
5461 					inode->i_sb->s_blocksize_bits);
5462 			else
5463 				ext4_fc_track_range(
5464 					handle, inode,
5465 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5466 					inode->i_sb->s_blocksize_bits,
5467 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5468 					inode->i_sb->s_blocksize_bits);
5469 
5470 			down_write(&EXT4_I(inode)->i_data_sem);
5471 			EXT4_I(inode)->i_disksize = attr->ia_size;
5472 			rc = ext4_mark_inode_dirty(handle, inode);
5473 			if (!error)
5474 				error = rc;
5475 			/*
5476 			 * We have to update i_size under i_data_sem together
5477 			 * with i_disksize to avoid races with writeback code
5478 			 * running ext4_wb_update_i_disksize().
5479 			 */
5480 			if (!error)
5481 				i_size_write(inode, attr->ia_size);
5482 			up_write(&EXT4_I(inode)->i_data_sem);
5483 			ext4_journal_stop(handle);
5484 			if (error)
5485 				goto out_mmap_sem;
5486 			if (!shrink) {
5487 				pagecache_isize_extended(inode, oldsize,
5488 							 inode->i_size);
5489 			} else if (ext4_should_journal_data(inode)) {
5490 				ext4_wait_for_tail_page_commit(inode);
5491 			}
5492 		}
5493 
5494 		/*
5495 		 * Truncate pagecache after we've waited for commit
5496 		 * in data=journal mode to make pages freeable.
5497 		 */
5498 		truncate_pagecache(inode, inode->i_size);
5499 		/*
5500 		 * Call ext4_truncate() even if i_size didn't change to
5501 		 * truncate possible preallocated blocks.
5502 		 */
5503 		if (attr->ia_size <= oldsize) {
5504 			rc = ext4_truncate(inode);
5505 			if (rc)
5506 				error = rc;
5507 		}
5508 out_mmap_sem:
5509 		up_write(&EXT4_I(inode)->i_mmap_sem);
5510 	}
5511 
5512 	if (!error) {
5513 		setattr_copy(mnt_userns, inode, attr);
5514 		mark_inode_dirty(inode);
5515 	}
5516 
5517 	/*
5518 	 * If the call to ext4_truncate failed to get a transaction handle at
5519 	 * all, we need to clean up the in-core orphan list manually.
5520 	 */
5521 	if (orphan && inode->i_nlink)
5522 		ext4_orphan_del(NULL, inode);
5523 
5524 	if (!error && (ia_valid & ATTR_MODE))
5525 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5526 
5527 err_out:
5528 	if  (error)
5529 		ext4_std_error(inode->i_sb, error);
5530 	if (!error)
5531 		error = rc;
5532 	ext4_fc_stop_update(inode);
5533 	return error;
5534 }
5535 
5536 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5537 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5538 {
5539 	struct inode *inode = d_inode(path->dentry);
5540 	struct ext4_inode *raw_inode;
5541 	struct ext4_inode_info *ei = EXT4_I(inode);
5542 	unsigned int flags;
5543 
5544 	if ((request_mask & STATX_BTIME) &&
5545 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5546 		stat->result_mask |= STATX_BTIME;
5547 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5548 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5549 	}
5550 
5551 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5552 	if (flags & EXT4_APPEND_FL)
5553 		stat->attributes |= STATX_ATTR_APPEND;
5554 	if (flags & EXT4_COMPR_FL)
5555 		stat->attributes |= STATX_ATTR_COMPRESSED;
5556 	if (flags & EXT4_ENCRYPT_FL)
5557 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5558 	if (flags & EXT4_IMMUTABLE_FL)
5559 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5560 	if (flags & EXT4_NODUMP_FL)
5561 		stat->attributes |= STATX_ATTR_NODUMP;
5562 	if (flags & EXT4_VERITY_FL)
5563 		stat->attributes |= STATX_ATTR_VERITY;
5564 
5565 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5566 				  STATX_ATTR_COMPRESSED |
5567 				  STATX_ATTR_ENCRYPTED |
5568 				  STATX_ATTR_IMMUTABLE |
5569 				  STATX_ATTR_NODUMP |
5570 				  STATX_ATTR_VERITY);
5571 
5572 	generic_fillattr(mnt_userns, inode, stat);
5573 	return 0;
5574 }
5575 
5576 int ext4_file_getattr(struct user_namespace *mnt_userns,
5577 		      const struct path *path, struct kstat *stat,
5578 		      u32 request_mask, unsigned int query_flags)
5579 {
5580 	struct inode *inode = d_inode(path->dentry);
5581 	u64 delalloc_blocks;
5582 
5583 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5584 
5585 	/*
5586 	 * If there is inline data in the inode, the inode will normally not
5587 	 * have data blocks allocated (it may have an external xattr block).
5588 	 * Report at least one sector for such files, so tools like tar, rsync,
5589 	 * others don't incorrectly think the file is completely sparse.
5590 	 */
5591 	if (unlikely(ext4_has_inline_data(inode)))
5592 		stat->blocks += (stat->size + 511) >> 9;
5593 
5594 	/*
5595 	 * We can't update i_blocks if the block allocation is delayed
5596 	 * otherwise in the case of system crash before the real block
5597 	 * allocation is done, we will have i_blocks inconsistent with
5598 	 * on-disk file blocks.
5599 	 * We always keep i_blocks updated together with real
5600 	 * allocation. But to not confuse with user, stat
5601 	 * will return the blocks that include the delayed allocation
5602 	 * blocks for this file.
5603 	 */
5604 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5605 				   EXT4_I(inode)->i_reserved_data_blocks);
5606 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5607 	return 0;
5608 }
5609 
5610 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5611 				   int pextents)
5612 {
5613 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5614 		return ext4_ind_trans_blocks(inode, lblocks);
5615 	return ext4_ext_index_trans_blocks(inode, pextents);
5616 }
5617 
5618 /*
5619  * Account for index blocks, block groups bitmaps and block group
5620  * descriptor blocks if modify datablocks and index blocks
5621  * worse case, the indexs blocks spread over different block groups
5622  *
5623  * If datablocks are discontiguous, they are possible to spread over
5624  * different block groups too. If they are contiguous, with flexbg,
5625  * they could still across block group boundary.
5626  *
5627  * Also account for superblock, inode, quota and xattr blocks
5628  */
5629 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5630 				  int pextents)
5631 {
5632 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5633 	int gdpblocks;
5634 	int idxblocks;
5635 	int ret = 0;
5636 
5637 	/*
5638 	 * How many index blocks need to touch to map @lblocks logical blocks
5639 	 * to @pextents physical extents?
5640 	 */
5641 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5642 
5643 	ret = idxblocks;
5644 
5645 	/*
5646 	 * Now let's see how many group bitmaps and group descriptors need
5647 	 * to account
5648 	 */
5649 	groups = idxblocks + pextents;
5650 	gdpblocks = groups;
5651 	if (groups > ngroups)
5652 		groups = ngroups;
5653 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5654 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5655 
5656 	/* bitmaps and block group descriptor blocks */
5657 	ret += groups + gdpblocks;
5658 
5659 	/* Blocks for super block, inode, quota and xattr blocks */
5660 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5661 
5662 	return ret;
5663 }
5664 
5665 /*
5666  * Calculate the total number of credits to reserve to fit
5667  * the modification of a single pages into a single transaction,
5668  * which may include multiple chunks of block allocations.
5669  *
5670  * This could be called via ext4_write_begin()
5671  *
5672  * We need to consider the worse case, when
5673  * one new block per extent.
5674  */
5675 int ext4_writepage_trans_blocks(struct inode *inode)
5676 {
5677 	int bpp = ext4_journal_blocks_per_page(inode);
5678 	int ret;
5679 
5680 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5681 
5682 	/* Account for data blocks for journalled mode */
5683 	if (ext4_should_journal_data(inode))
5684 		ret += bpp;
5685 	return ret;
5686 }
5687 
5688 /*
5689  * Calculate the journal credits for a chunk of data modification.
5690  *
5691  * This is called from DIO, fallocate or whoever calling
5692  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5693  *
5694  * journal buffers for data blocks are not included here, as DIO
5695  * and fallocate do no need to journal data buffers.
5696  */
5697 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5698 {
5699 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5700 }
5701 
5702 /*
5703  * The caller must have previously called ext4_reserve_inode_write().
5704  * Give this, we know that the caller already has write access to iloc->bh.
5705  */
5706 int ext4_mark_iloc_dirty(handle_t *handle,
5707 			 struct inode *inode, struct ext4_iloc *iloc)
5708 {
5709 	int err = 0;
5710 
5711 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5712 		put_bh(iloc->bh);
5713 		return -EIO;
5714 	}
5715 	ext4_fc_track_inode(handle, inode);
5716 
5717 	if (IS_I_VERSION(inode))
5718 		inode_inc_iversion(inode);
5719 
5720 	/* the do_update_inode consumes one bh->b_count */
5721 	get_bh(iloc->bh);
5722 
5723 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5724 	err = ext4_do_update_inode(handle, inode, iloc);
5725 	put_bh(iloc->bh);
5726 	return err;
5727 }
5728 
5729 /*
5730  * On success, We end up with an outstanding reference count against
5731  * iloc->bh.  This _must_ be cleaned up later.
5732  */
5733 
5734 int
5735 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5736 			 struct ext4_iloc *iloc)
5737 {
5738 	int err;
5739 
5740 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5741 		return -EIO;
5742 
5743 	err = ext4_get_inode_loc(inode, iloc);
5744 	if (!err) {
5745 		BUFFER_TRACE(iloc->bh, "get_write_access");
5746 		err = ext4_journal_get_write_access(handle, iloc->bh);
5747 		if (err) {
5748 			brelse(iloc->bh);
5749 			iloc->bh = NULL;
5750 		}
5751 	}
5752 	ext4_std_error(inode->i_sb, err);
5753 	return err;
5754 }
5755 
5756 static int __ext4_expand_extra_isize(struct inode *inode,
5757 				     unsigned int new_extra_isize,
5758 				     struct ext4_iloc *iloc,
5759 				     handle_t *handle, int *no_expand)
5760 {
5761 	struct ext4_inode *raw_inode;
5762 	struct ext4_xattr_ibody_header *header;
5763 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5764 	struct ext4_inode_info *ei = EXT4_I(inode);
5765 	int error;
5766 
5767 	/* this was checked at iget time, but double check for good measure */
5768 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5769 	    (ei->i_extra_isize & 3)) {
5770 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5771 				 ei->i_extra_isize,
5772 				 EXT4_INODE_SIZE(inode->i_sb));
5773 		return -EFSCORRUPTED;
5774 	}
5775 	if ((new_extra_isize < ei->i_extra_isize) ||
5776 	    (new_extra_isize < 4) ||
5777 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5778 		return -EINVAL;	/* Should never happen */
5779 
5780 	raw_inode = ext4_raw_inode(iloc);
5781 
5782 	header = IHDR(inode, raw_inode);
5783 
5784 	/* No extended attributes present */
5785 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5786 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5787 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5788 		       EXT4_I(inode)->i_extra_isize, 0,
5789 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5790 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5791 		return 0;
5792 	}
5793 
5794 	/* try to expand with EAs present */
5795 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5796 					   raw_inode, handle);
5797 	if (error) {
5798 		/*
5799 		 * Inode size expansion failed; don't try again
5800 		 */
5801 		*no_expand = 1;
5802 	}
5803 
5804 	return error;
5805 }
5806 
5807 /*
5808  * Expand an inode by new_extra_isize bytes.
5809  * Returns 0 on success or negative error number on failure.
5810  */
5811 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5812 					  unsigned int new_extra_isize,
5813 					  struct ext4_iloc iloc,
5814 					  handle_t *handle)
5815 {
5816 	int no_expand;
5817 	int error;
5818 
5819 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5820 		return -EOVERFLOW;
5821 
5822 	/*
5823 	 * In nojournal mode, we can immediately attempt to expand
5824 	 * the inode.  When journaled, we first need to obtain extra
5825 	 * buffer credits since we may write into the EA block
5826 	 * with this same handle. If journal_extend fails, then it will
5827 	 * only result in a minor loss of functionality for that inode.
5828 	 * If this is felt to be critical, then e2fsck should be run to
5829 	 * force a large enough s_min_extra_isize.
5830 	 */
5831 	if (ext4_journal_extend(handle,
5832 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5833 		return -ENOSPC;
5834 
5835 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5836 		return -EBUSY;
5837 
5838 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5839 					  handle, &no_expand);
5840 	ext4_write_unlock_xattr(inode, &no_expand);
5841 
5842 	return error;
5843 }
5844 
5845 int ext4_expand_extra_isize(struct inode *inode,
5846 			    unsigned int new_extra_isize,
5847 			    struct ext4_iloc *iloc)
5848 {
5849 	handle_t *handle;
5850 	int no_expand;
5851 	int error, rc;
5852 
5853 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5854 		brelse(iloc->bh);
5855 		return -EOVERFLOW;
5856 	}
5857 
5858 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5859 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5860 	if (IS_ERR(handle)) {
5861 		error = PTR_ERR(handle);
5862 		brelse(iloc->bh);
5863 		return error;
5864 	}
5865 
5866 	ext4_write_lock_xattr(inode, &no_expand);
5867 
5868 	BUFFER_TRACE(iloc->bh, "get_write_access");
5869 	error = ext4_journal_get_write_access(handle, iloc->bh);
5870 	if (error) {
5871 		brelse(iloc->bh);
5872 		goto out_unlock;
5873 	}
5874 
5875 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5876 					  handle, &no_expand);
5877 
5878 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5879 	if (!error)
5880 		error = rc;
5881 
5882 out_unlock:
5883 	ext4_write_unlock_xattr(inode, &no_expand);
5884 	ext4_journal_stop(handle);
5885 	return error;
5886 }
5887 
5888 /*
5889  * What we do here is to mark the in-core inode as clean with respect to inode
5890  * dirtiness (it may still be data-dirty).
5891  * This means that the in-core inode may be reaped by prune_icache
5892  * without having to perform any I/O.  This is a very good thing,
5893  * because *any* task may call prune_icache - even ones which
5894  * have a transaction open against a different journal.
5895  *
5896  * Is this cheating?  Not really.  Sure, we haven't written the
5897  * inode out, but prune_icache isn't a user-visible syncing function.
5898  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5899  * we start and wait on commits.
5900  */
5901 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5902 				const char *func, unsigned int line)
5903 {
5904 	struct ext4_iloc iloc;
5905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5906 	int err;
5907 
5908 	might_sleep();
5909 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5910 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5911 	if (err)
5912 		goto out;
5913 
5914 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5915 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5916 					       iloc, handle);
5917 
5918 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5919 out:
5920 	if (unlikely(err))
5921 		ext4_error_inode_err(inode, func, line, 0, err,
5922 					"mark_inode_dirty error");
5923 	return err;
5924 }
5925 
5926 /*
5927  * ext4_dirty_inode() is called from __mark_inode_dirty()
5928  *
5929  * We're really interested in the case where a file is being extended.
5930  * i_size has been changed by generic_commit_write() and we thus need
5931  * to include the updated inode in the current transaction.
5932  *
5933  * Also, dquot_alloc_block() will always dirty the inode when blocks
5934  * are allocated to the file.
5935  *
5936  * If the inode is marked synchronous, we don't honour that here - doing
5937  * so would cause a commit on atime updates, which we don't bother doing.
5938  * We handle synchronous inodes at the highest possible level.
5939  */
5940 void ext4_dirty_inode(struct inode *inode, int flags)
5941 {
5942 	handle_t *handle;
5943 
5944 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5945 	if (IS_ERR(handle))
5946 		return;
5947 	ext4_mark_inode_dirty(handle, inode);
5948 	ext4_journal_stop(handle);
5949 }
5950 
5951 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5952 {
5953 	journal_t *journal;
5954 	handle_t *handle;
5955 	int err;
5956 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5957 
5958 	/*
5959 	 * We have to be very careful here: changing a data block's
5960 	 * journaling status dynamically is dangerous.  If we write a
5961 	 * data block to the journal, change the status and then delete
5962 	 * that block, we risk forgetting to revoke the old log record
5963 	 * from the journal and so a subsequent replay can corrupt data.
5964 	 * So, first we make sure that the journal is empty and that
5965 	 * nobody is changing anything.
5966 	 */
5967 
5968 	journal = EXT4_JOURNAL(inode);
5969 	if (!journal)
5970 		return 0;
5971 	if (is_journal_aborted(journal))
5972 		return -EROFS;
5973 
5974 	/* Wait for all existing dio workers */
5975 	inode_dio_wait(inode);
5976 
5977 	/*
5978 	 * Before flushing the journal and switching inode's aops, we have
5979 	 * to flush all dirty data the inode has. There can be outstanding
5980 	 * delayed allocations, there can be unwritten extents created by
5981 	 * fallocate or buffered writes in dioread_nolock mode covered by
5982 	 * dirty data which can be converted only after flushing the dirty
5983 	 * data (and journalled aops don't know how to handle these cases).
5984 	 */
5985 	if (val) {
5986 		down_write(&EXT4_I(inode)->i_mmap_sem);
5987 		err = filemap_write_and_wait(inode->i_mapping);
5988 		if (err < 0) {
5989 			up_write(&EXT4_I(inode)->i_mmap_sem);
5990 			return err;
5991 		}
5992 	}
5993 
5994 	percpu_down_write(&sbi->s_writepages_rwsem);
5995 	jbd2_journal_lock_updates(journal);
5996 
5997 	/*
5998 	 * OK, there are no updates running now, and all cached data is
5999 	 * synced to disk.  We are now in a completely consistent state
6000 	 * which doesn't have anything in the journal, and we know that
6001 	 * no filesystem updates are running, so it is safe to modify
6002 	 * the inode's in-core data-journaling state flag now.
6003 	 */
6004 
6005 	if (val)
6006 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6007 	else {
6008 		err = jbd2_journal_flush(journal, 0);
6009 		if (err < 0) {
6010 			jbd2_journal_unlock_updates(journal);
6011 			percpu_up_write(&sbi->s_writepages_rwsem);
6012 			return err;
6013 		}
6014 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6015 	}
6016 	ext4_set_aops(inode);
6017 
6018 	jbd2_journal_unlock_updates(journal);
6019 	percpu_up_write(&sbi->s_writepages_rwsem);
6020 
6021 	if (val)
6022 		up_write(&EXT4_I(inode)->i_mmap_sem);
6023 
6024 	/* Finally we can mark the inode as dirty. */
6025 
6026 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6027 	if (IS_ERR(handle))
6028 		return PTR_ERR(handle);
6029 
6030 	ext4_fc_mark_ineligible(inode->i_sb,
6031 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6032 	err = ext4_mark_inode_dirty(handle, inode);
6033 	ext4_handle_sync(handle);
6034 	ext4_journal_stop(handle);
6035 	ext4_std_error(inode->i_sb, err);
6036 
6037 	return err;
6038 }
6039 
6040 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6041 {
6042 	return !buffer_mapped(bh);
6043 }
6044 
6045 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6046 {
6047 	struct vm_area_struct *vma = vmf->vma;
6048 	struct page *page = vmf->page;
6049 	loff_t size;
6050 	unsigned long len;
6051 	int err;
6052 	vm_fault_t ret;
6053 	struct file *file = vma->vm_file;
6054 	struct inode *inode = file_inode(file);
6055 	struct address_space *mapping = inode->i_mapping;
6056 	handle_t *handle;
6057 	get_block_t *get_block;
6058 	int retries = 0;
6059 
6060 	if (unlikely(IS_IMMUTABLE(inode)))
6061 		return VM_FAULT_SIGBUS;
6062 
6063 	sb_start_pagefault(inode->i_sb);
6064 	file_update_time(vma->vm_file);
6065 
6066 	down_read(&EXT4_I(inode)->i_mmap_sem);
6067 
6068 	err = ext4_convert_inline_data(inode);
6069 	if (err)
6070 		goto out_ret;
6071 
6072 	/*
6073 	 * On data journalling we skip straight to the transaction handle:
6074 	 * there's no delalloc; page truncated will be checked later; the
6075 	 * early return w/ all buffers mapped (calculates size/len) can't
6076 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6077 	 */
6078 	if (ext4_should_journal_data(inode))
6079 		goto retry_alloc;
6080 
6081 	/* Delalloc case is easy... */
6082 	if (test_opt(inode->i_sb, DELALLOC) &&
6083 	    !ext4_nonda_switch(inode->i_sb)) {
6084 		do {
6085 			err = block_page_mkwrite(vma, vmf,
6086 						   ext4_da_get_block_prep);
6087 		} while (err == -ENOSPC &&
6088 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6089 		goto out_ret;
6090 	}
6091 
6092 	lock_page(page);
6093 	size = i_size_read(inode);
6094 	/* Page got truncated from under us? */
6095 	if (page->mapping != mapping || page_offset(page) > size) {
6096 		unlock_page(page);
6097 		ret = VM_FAULT_NOPAGE;
6098 		goto out;
6099 	}
6100 
6101 	if (page->index == size >> PAGE_SHIFT)
6102 		len = size & ~PAGE_MASK;
6103 	else
6104 		len = PAGE_SIZE;
6105 	/*
6106 	 * Return if we have all the buffers mapped. This avoids the need to do
6107 	 * journal_start/journal_stop which can block and take a long time
6108 	 *
6109 	 * This cannot be done for data journalling, as we have to add the
6110 	 * inode to the transaction's list to writeprotect pages on commit.
6111 	 */
6112 	if (page_has_buffers(page)) {
6113 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6114 					    0, len, NULL,
6115 					    ext4_bh_unmapped)) {
6116 			/* Wait so that we don't change page under IO */
6117 			wait_for_stable_page(page);
6118 			ret = VM_FAULT_LOCKED;
6119 			goto out;
6120 		}
6121 	}
6122 	unlock_page(page);
6123 	/* OK, we need to fill the hole... */
6124 	if (ext4_should_dioread_nolock(inode))
6125 		get_block = ext4_get_block_unwritten;
6126 	else
6127 		get_block = ext4_get_block;
6128 retry_alloc:
6129 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6130 				    ext4_writepage_trans_blocks(inode));
6131 	if (IS_ERR(handle)) {
6132 		ret = VM_FAULT_SIGBUS;
6133 		goto out;
6134 	}
6135 	/*
6136 	 * Data journalling can't use block_page_mkwrite() because it
6137 	 * will set_buffer_dirty() before do_journal_get_write_access()
6138 	 * thus might hit warning messages for dirty metadata buffers.
6139 	 */
6140 	if (!ext4_should_journal_data(inode)) {
6141 		err = block_page_mkwrite(vma, vmf, get_block);
6142 	} else {
6143 		lock_page(page);
6144 		size = i_size_read(inode);
6145 		/* Page got truncated from under us? */
6146 		if (page->mapping != mapping || page_offset(page) > size) {
6147 			ret = VM_FAULT_NOPAGE;
6148 			goto out_error;
6149 		}
6150 
6151 		if (page->index == size >> PAGE_SHIFT)
6152 			len = size & ~PAGE_MASK;
6153 		else
6154 			len = PAGE_SIZE;
6155 
6156 		err = __block_write_begin(page, 0, len, ext4_get_block);
6157 		if (!err) {
6158 			ret = VM_FAULT_SIGBUS;
6159 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6160 					0, len, NULL, do_journal_get_write_access))
6161 				goto out_error;
6162 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6163 					0, len, NULL, write_end_fn))
6164 				goto out_error;
6165 			if (ext4_jbd2_inode_add_write(handle, inode,
6166 						      page_offset(page), len))
6167 				goto out_error;
6168 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6169 		} else {
6170 			unlock_page(page);
6171 		}
6172 	}
6173 	ext4_journal_stop(handle);
6174 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6175 		goto retry_alloc;
6176 out_ret:
6177 	ret = block_page_mkwrite_return(err);
6178 out:
6179 	up_read(&EXT4_I(inode)->i_mmap_sem);
6180 	sb_end_pagefault(inode->i_sb);
6181 	return ret;
6182 out_error:
6183 	unlock_page(page);
6184 	ext4_journal_stop(handle);
6185 	goto out;
6186 }
6187 
6188 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6189 {
6190 	struct inode *inode = file_inode(vmf->vma->vm_file);
6191 	vm_fault_t ret;
6192 
6193 	down_read(&EXT4_I(inode)->i_mmap_sem);
6194 	ret = filemap_fault(vmf);
6195 	up_read(&EXT4_I(inode)->i_mmap_sem);
6196 
6197 	return ret;
6198 }
6199