1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 trace_ext4_begin_ordered_truncate(inode, new_size); 55 /* 56 * If jinode is zero, then we never opened the file for 57 * writing, so there's no need to call 58 * jbd2_journal_begin_ordered_truncate() since there's no 59 * outstanding writes we need to flush. 60 */ 61 if (!EXT4_I(inode)->jinode) 62 return 0; 63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 64 EXT4_I(inode)->jinode, 65 new_size); 66 } 67 68 static void ext4_invalidatepage(struct page *page, unsigned long offset); 69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 70 struct buffer_head *bh_result, int create); 71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 73 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 75 76 /* 77 * Test whether an inode is a fast symlink. 78 */ 79 static int ext4_inode_is_fast_symlink(struct inode *inode) 80 { 81 int ea_blocks = EXT4_I(inode)->i_file_acl ? 82 (inode->i_sb->s_blocksize >> 9) : 0; 83 84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 85 } 86 87 /* 88 * Restart the transaction associated with *handle. This does a commit, 89 * so before we call here everything must be consistently dirtied against 90 * this transaction. 91 */ 92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 93 int nblocks) 94 { 95 int ret; 96 97 /* 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 99 * moment, get_block can be called only for blocks inside i_size since 100 * page cache has been already dropped and writes are blocked by 101 * i_mutex. So we can safely drop the i_data_sem here. 102 */ 103 BUG_ON(EXT4_JOURNAL(inode) == NULL); 104 jbd_debug(2, "restarting handle %p\n", handle); 105 up_write(&EXT4_I(inode)->i_data_sem); 106 ret = ext4_journal_restart(handle, nblocks); 107 down_write(&EXT4_I(inode)->i_data_sem); 108 ext4_discard_preallocations(inode); 109 110 return ret; 111 } 112 113 /* 114 * Called at the last iput() if i_nlink is zero. 115 */ 116 void ext4_evict_inode(struct inode *inode) 117 { 118 handle_t *handle; 119 int err; 120 121 trace_ext4_evict_inode(inode); 122 123 ext4_ioend_wait(inode); 124 125 if (inode->i_nlink) { 126 /* 127 * When journalling data dirty buffers are tracked only in the 128 * journal. So although mm thinks everything is clean and 129 * ready for reaping the inode might still have some pages to 130 * write in the running transaction or waiting to be 131 * checkpointed. Thus calling jbd2_journal_invalidatepage() 132 * (via truncate_inode_pages()) to discard these buffers can 133 * cause data loss. Also even if we did not discard these 134 * buffers, we would have no way to find them after the inode 135 * is reaped and thus user could see stale data if he tries to 136 * read them before the transaction is checkpointed. So be 137 * careful and force everything to disk here... We use 138 * ei->i_datasync_tid to store the newest transaction 139 * containing inode's data. 140 * 141 * Note that directories do not have this problem because they 142 * don't use page cache. 143 */ 144 if (ext4_should_journal_data(inode) && 145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 148 149 jbd2_log_start_commit(journal, commit_tid); 150 jbd2_log_wait_commit(journal, commit_tid); 151 filemap_write_and_wait(&inode->i_data); 152 } 153 truncate_inode_pages(&inode->i_data, 0); 154 goto no_delete; 155 } 156 157 if (!is_bad_inode(inode)) 158 dquot_initialize(inode); 159 160 if (ext4_should_order_data(inode)) 161 ext4_begin_ordered_truncate(inode, 0); 162 truncate_inode_pages(&inode->i_data, 0); 163 164 if (is_bad_inode(inode)) 165 goto no_delete; 166 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 168 if (IS_ERR(handle)) { 169 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 170 /* 171 * If we're going to skip the normal cleanup, we still need to 172 * make sure that the in-core orphan linked list is properly 173 * cleaned up. 174 */ 175 ext4_orphan_del(NULL, inode); 176 goto no_delete; 177 } 178 179 if (IS_SYNC(inode)) 180 ext4_handle_sync(handle); 181 inode->i_size = 0; 182 err = ext4_mark_inode_dirty(handle, inode); 183 if (err) { 184 ext4_warning(inode->i_sb, 185 "couldn't mark inode dirty (err %d)", err); 186 goto stop_handle; 187 } 188 if (inode->i_blocks) 189 ext4_truncate(inode); 190 191 /* 192 * ext4_ext_truncate() doesn't reserve any slop when it 193 * restarts journal transactions; therefore there may not be 194 * enough credits left in the handle to remove the inode from 195 * the orphan list and set the dtime field. 196 */ 197 if (!ext4_handle_has_enough_credits(handle, 3)) { 198 err = ext4_journal_extend(handle, 3); 199 if (err > 0) 200 err = ext4_journal_restart(handle, 3); 201 if (err != 0) { 202 ext4_warning(inode->i_sb, 203 "couldn't extend journal (err %d)", err); 204 stop_handle: 205 ext4_journal_stop(handle); 206 ext4_orphan_del(NULL, inode); 207 goto no_delete; 208 } 209 } 210 211 /* 212 * Kill off the orphan record which ext4_truncate created. 213 * AKPM: I think this can be inside the above `if'. 214 * Note that ext4_orphan_del() has to be able to cope with the 215 * deletion of a non-existent orphan - this is because we don't 216 * know if ext4_truncate() actually created an orphan record. 217 * (Well, we could do this if we need to, but heck - it works) 218 */ 219 ext4_orphan_del(handle, inode); 220 EXT4_I(inode)->i_dtime = get_seconds(); 221 222 /* 223 * One subtle ordering requirement: if anything has gone wrong 224 * (transaction abort, IO errors, whatever), then we can still 225 * do these next steps (the fs will already have been marked as 226 * having errors), but we can't free the inode if the mark_dirty 227 * fails. 228 */ 229 if (ext4_mark_inode_dirty(handle, inode)) 230 /* If that failed, just do the required in-core inode clear. */ 231 ext4_clear_inode(inode); 232 else 233 ext4_free_inode(handle, inode); 234 ext4_journal_stop(handle); 235 return; 236 no_delete: 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 238 } 239 240 #ifdef CONFIG_QUOTA 241 qsize_t *ext4_get_reserved_space(struct inode *inode) 242 { 243 return &EXT4_I(inode)->i_reserved_quota; 244 } 245 #endif 246 247 /* 248 * Calculate the number of metadata blocks need to reserve 249 * to allocate a block located at @lblock 250 */ 251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 252 { 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 254 return ext4_ext_calc_metadata_amount(inode, lblock); 255 256 return ext4_ind_calc_metadata_amount(inode, lblock); 257 } 258 259 /* 260 * Called with i_data_sem down, which is important since we can call 261 * ext4_discard_preallocations() from here. 262 */ 263 void ext4_da_update_reserve_space(struct inode *inode, 264 int used, int quota_claim) 265 { 266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 267 struct ext4_inode_info *ei = EXT4_I(inode); 268 269 spin_lock(&ei->i_block_reservation_lock); 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 271 if (unlikely(used > ei->i_reserved_data_blocks)) { 272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 273 "with only %d reserved data blocks\n", 274 __func__, inode->i_ino, used, 275 ei->i_reserved_data_blocks); 276 WARN_ON(1); 277 used = ei->i_reserved_data_blocks; 278 } 279 280 /* Update per-inode reservations */ 281 ei->i_reserved_data_blocks -= used; 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 284 used + ei->i_allocated_meta_blocks); 285 ei->i_allocated_meta_blocks = 0; 286 287 if (ei->i_reserved_data_blocks == 0) { 288 /* 289 * We can release all of the reserved metadata blocks 290 * only when we have written all of the delayed 291 * allocation blocks. 292 */ 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 294 ei->i_reserved_meta_blocks); 295 ei->i_reserved_meta_blocks = 0; 296 ei->i_da_metadata_calc_len = 0; 297 } 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 299 300 /* Update quota subsystem for data blocks */ 301 if (quota_claim) 302 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 303 else { 304 /* 305 * We did fallocate with an offset that is already delayed 306 * allocated. So on delayed allocated writeback we should 307 * not re-claim the quota for fallocated blocks. 308 */ 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 310 } 311 312 /* 313 * If we have done all the pending block allocations and if 314 * there aren't any writers on the inode, we can discard the 315 * inode's preallocations. 316 */ 317 if ((ei->i_reserved_data_blocks == 0) && 318 (atomic_read(&inode->i_writecount) == 0)) 319 ext4_discard_preallocations(inode); 320 } 321 322 static int __check_block_validity(struct inode *inode, const char *func, 323 unsigned int line, 324 struct ext4_map_blocks *map) 325 { 326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 327 map->m_len)) { 328 ext4_error_inode(inode, func, line, map->m_pblk, 329 "lblock %lu mapped to illegal pblock " 330 "(length %d)", (unsigned long) map->m_lblk, 331 map->m_len); 332 return -EIO; 333 } 334 return 0; 335 } 336 337 #define check_block_validity(inode, map) \ 338 __check_block_validity((inode), __func__, __LINE__, (map)) 339 340 /* 341 * Return the number of contiguous dirty pages in a given inode 342 * starting at page frame idx. 343 */ 344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 345 unsigned int max_pages) 346 { 347 struct address_space *mapping = inode->i_mapping; 348 pgoff_t index; 349 struct pagevec pvec; 350 pgoff_t num = 0; 351 int i, nr_pages, done = 0; 352 353 if (max_pages == 0) 354 return 0; 355 pagevec_init(&pvec, 0); 356 while (!done) { 357 index = idx; 358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 359 PAGECACHE_TAG_DIRTY, 360 (pgoff_t)PAGEVEC_SIZE); 361 if (nr_pages == 0) 362 break; 363 for (i = 0; i < nr_pages; i++) { 364 struct page *page = pvec.pages[i]; 365 struct buffer_head *bh, *head; 366 367 lock_page(page); 368 if (unlikely(page->mapping != mapping) || 369 !PageDirty(page) || 370 PageWriteback(page) || 371 page->index != idx) { 372 done = 1; 373 unlock_page(page); 374 break; 375 } 376 if (page_has_buffers(page)) { 377 bh = head = page_buffers(page); 378 do { 379 if (!buffer_delay(bh) && 380 !buffer_unwritten(bh)) 381 done = 1; 382 bh = bh->b_this_page; 383 } while (!done && (bh != head)); 384 } 385 unlock_page(page); 386 if (done) 387 break; 388 idx++; 389 num++; 390 if (num >= max_pages) { 391 done = 1; 392 break; 393 } 394 } 395 pagevec_release(&pvec); 396 } 397 return num; 398 } 399 400 /* 401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 402 */ 403 static void set_buffers_da_mapped(struct inode *inode, 404 struct ext4_map_blocks *map) 405 { 406 struct address_space *mapping = inode->i_mapping; 407 struct pagevec pvec; 408 int i, nr_pages; 409 pgoff_t index, end; 410 411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 412 end = (map->m_lblk + map->m_len - 1) >> 413 (PAGE_CACHE_SHIFT - inode->i_blkbits); 414 415 pagevec_init(&pvec, 0); 416 while (index <= end) { 417 nr_pages = pagevec_lookup(&pvec, mapping, index, 418 min(end - index + 1, 419 (pgoff_t)PAGEVEC_SIZE)); 420 if (nr_pages == 0) 421 break; 422 for (i = 0; i < nr_pages; i++) { 423 struct page *page = pvec.pages[i]; 424 struct buffer_head *bh, *head; 425 426 if (unlikely(page->mapping != mapping) || 427 !PageDirty(page)) 428 break; 429 430 if (page_has_buffers(page)) { 431 bh = head = page_buffers(page); 432 do { 433 set_buffer_da_mapped(bh); 434 bh = bh->b_this_page; 435 } while (bh != head); 436 } 437 index++; 438 } 439 pagevec_release(&pvec); 440 } 441 } 442 443 /* 444 * The ext4_map_blocks() function tries to look up the requested blocks, 445 * and returns if the blocks are already mapped. 446 * 447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 448 * and store the allocated blocks in the result buffer head and mark it 449 * mapped. 450 * 451 * If file type is extents based, it will call ext4_ext_map_blocks(), 452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 453 * based files 454 * 455 * On success, it returns the number of blocks being mapped or allocate. 456 * if create==0 and the blocks are pre-allocated and uninitialized block, 457 * the result buffer head is unmapped. If the create ==1, it will make sure 458 * the buffer head is mapped. 459 * 460 * It returns 0 if plain look up failed (blocks have not been allocated), in 461 * that case, buffer head is unmapped 462 * 463 * It returns the error in case of allocation failure. 464 */ 465 int ext4_map_blocks(handle_t *handle, struct inode *inode, 466 struct ext4_map_blocks *map, int flags) 467 { 468 int retval; 469 470 map->m_flags = 0; 471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 472 "logical block %lu\n", inode->i_ino, flags, map->m_len, 473 (unsigned long) map->m_lblk); 474 /* 475 * Try to see if we can get the block without requesting a new 476 * file system block. 477 */ 478 down_read((&EXT4_I(inode)->i_data_sem)); 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 480 retval = ext4_ext_map_blocks(handle, inode, map, flags & 481 EXT4_GET_BLOCKS_KEEP_SIZE); 482 } else { 483 retval = ext4_ind_map_blocks(handle, inode, map, flags & 484 EXT4_GET_BLOCKS_KEEP_SIZE); 485 } 486 up_read((&EXT4_I(inode)->i_data_sem)); 487 488 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 489 int ret = check_block_validity(inode, map); 490 if (ret != 0) 491 return ret; 492 } 493 494 /* If it is only a block(s) look up */ 495 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 496 return retval; 497 498 /* 499 * Returns if the blocks have already allocated 500 * 501 * Note that if blocks have been preallocated 502 * ext4_ext_get_block() returns the create = 0 503 * with buffer head unmapped. 504 */ 505 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 506 return retval; 507 508 /* 509 * When we call get_blocks without the create flag, the 510 * BH_Unwritten flag could have gotten set if the blocks 511 * requested were part of a uninitialized extent. We need to 512 * clear this flag now that we are committed to convert all or 513 * part of the uninitialized extent to be an initialized 514 * extent. This is because we need to avoid the combination 515 * of BH_Unwritten and BH_Mapped flags being simultaneously 516 * set on the buffer_head. 517 */ 518 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 519 520 /* 521 * New blocks allocate and/or writing to uninitialized extent 522 * will possibly result in updating i_data, so we take 523 * the write lock of i_data_sem, and call get_blocks() 524 * with create == 1 flag. 525 */ 526 down_write((&EXT4_I(inode)->i_data_sem)); 527 528 /* 529 * if the caller is from delayed allocation writeout path 530 * we have already reserved fs blocks for allocation 531 * let the underlying get_block() function know to 532 * avoid double accounting 533 */ 534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 535 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 536 /* 537 * We need to check for EXT4 here because migrate 538 * could have changed the inode type in between 539 */ 540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 541 retval = ext4_ext_map_blocks(handle, inode, map, flags); 542 } else { 543 retval = ext4_ind_map_blocks(handle, inode, map, flags); 544 545 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 546 /* 547 * We allocated new blocks which will result in 548 * i_data's format changing. Force the migrate 549 * to fail by clearing migrate flags 550 */ 551 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 552 } 553 554 /* 555 * Update reserved blocks/metadata blocks after successful 556 * block allocation which had been deferred till now. We don't 557 * support fallocate for non extent files. So we can update 558 * reserve space here. 559 */ 560 if ((retval > 0) && 561 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 562 ext4_da_update_reserve_space(inode, retval, 1); 563 } 564 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 565 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 566 567 /* If we have successfully mapped the delayed allocated blocks, 568 * set the BH_Da_Mapped bit on them. Its important to do this 569 * under the protection of i_data_sem. 570 */ 571 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 572 set_buffers_da_mapped(inode, map); 573 } 574 575 up_write((&EXT4_I(inode)->i_data_sem)); 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 int ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 return retval; 582 } 583 584 /* Maximum number of blocks we map for direct IO at once. */ 585 #define DIO_MAX_BLOCKS 4096 586 587 static int _ext4_get_block(struct inode *inode, sector_t iblock, 588 struct buffer_head *bh, int flags) 589 { 590 handle_t *handle = ext4_journal_current_handle(); 591 struct ext4_map_blocks map; 592 int ret = 0, started = 0; 593 int dio_credits; 594 595 map.m_lblk = iblock; 596 map.m_len = bh->b_size >> inode->i_blkbits; 597 598 if (flags && !handle) { 599 /* Direct IO write... */ 600 if (map.m_len > DIO_MAX_BLOCKS) 601 map.m_len = DIO_MAX_BLOCKS; 602 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 603 handle = ext4_journal_start(inode, dio_credits); 604 if (IS_ERR(handle)) { 605 ret = PTR_ERR(handle); 606 return ret; 607 } 608 started = 1; 609 } 610 611 ret = ext4_map_blocks(handle, inode, &map, flags); 612 if (ret > 0) { 613 map_bh(bh, inode->i_sb, map.m_pblk); 614 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 615 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 616 ret = 0; 617 } 618 if (started) 619 ext4_journal_stop(handle); 620 return ret; 621 } 622 623 int ext4_get_block(struct inode *inode, sector_t iblock, 624 struct buffer_head *bh, int create) 625 { 626 return _ext4_get_block(inode, iblock, bh, 627 create ? EXT4_GET_BLOCKS_CREATE : 0); 628 } 629 630 /* 631 * `handle' can be NULL if create is zero 632 */ 633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 634 ext4_lblk_t block, int create, int *errp) 635 { 636 struct ext4_map_blocks map; 637 struct buffer_head *bh; 638 int fatal = 0, err; 639 640 J_ASSERT(handle != NULL || create == 0); 641 642 map.m_lblk = block; 643 map.m_len = 1; 644 err = ext4_map_blocks(handle, inode, &map, 645 create ? EXT4_GET_BLOCKS_CREATE : 0); 646 647 if (err < 0) 648 *errp = err; 649 if (err <= 0) 650 return NULL; 651 *errp = 0; 652 653 bh = sb_getblk(inode->i_sb, map.m_pblk); 654 if (!bh) { 655 *errp = -EIO; 656 return NULL; 657 } 658 if (map.m_flags & EXT4_MAP_NEW) { 659 J_ASSERT(create != 0); 660 J_ASSERT(handle != NULL); 661 662 /* 663 * Now that we do not always journal data, we should 664 * keep in mind whether this should always journal the 665 * new buffer as metadata. For now, regular file 666 * writes use ext4_get_block instead, so it's not a 667 * problem. 668 */ 669 lock_buffer(bh); 670 BUFFER_TRACE(bh, "call get_create_access"); 671 fatal = ext4_journal_get_create_access(handle, bh); 672 if (!fatal && !buffer_uptodate(bh)) { 673 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 674 set_buffer_uptodate(bh); 675 } 676 unlock_buffer(bh); 677 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 678 err = ext4_handle_dirty_metadata(handle, inode, bh); 679 if (!fatal) 680 fatal = err; 681 } else { 682 BUFFER_TRACE(bh, "not a new buffer"); 683 } 684 if (fatal) { 685 *errp = fatal; 686 brelse(bh); 687 bh = NULL; 688 } 689 return bh; 690 } 691 692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 693 ext4_lblk_t block, int create, int *err) 694 { 695 struct buffer_head *bh; 696 697 bh = ext4_getblk(handle, inode, block, create, err); 698 if (!bh) 699 return bh; 700 if (buffer_uptodate(bh)) 701 return bh; 702 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 703 wait_on_buffer(bh); 704 if (buffer_uptodate(bh)) 705 return bh; 706 put_bh(bh); 707 *err = -EIO; 708 return NULL; 709 } 710 711 static int walk_page_buffers(handle_t *handle, 712 struct buffer_head *head, 713 unsigned from, 714 unsigned to, 715 int *partial, 716 int (*fn)(handle_t *handle, 717 struct buffer_head *bh)) 718 { 719 struct buffer_head *bh; 720 unsigned block_start, block_end; 721 unsigned blocksize = head->b_size; 722 int err, ret = 0; 723 struct buffer_head *next; 724 725 for (bh = head, block_start = 0; 726 ret == 0 && (bh != head || !block_start); 727 block_start = block_end, bh = next) { 728 next = bh->b_this_page; 729 block_end = block_start + blocksize; 730 if (block_end <= from || block_start >= to) { 731 if (partial && !buffer_uptodate(bh)) 732 *partial = 1; 733 continue; 734 } 735 err = (*fn)(handle, bh); 736 if (!ret) 737 ret = err; 738 } 739 return ret; 740 } 741 742 /* 743 * To preserve ordering, it is essential that the hole instantiation and 744 * the data write be encapsulated in a single transaction. We cannot 745 * close off a transaction and start a new one between the ext4_get_block() 746 * and the commit_write(). So doing the jbd2_journal_start at the start of 747 * prepare_write() is the right place. 748 * 749 * Also, this function can nest inside ext4_writepage() -> 750 * block_write_full_page(). In that case, we *know* that ext4_writepage() 751 * has generated enough buffer credits to do the whole page. So we won't 752 * block on the journal in that case, which is good, because the caller may 753 * be PF_MEMALLOC. 754 * 755 * By accident, ext4 can be reentered when a transaction is open via 756 * quota file writes. If we were to commit the transaction while thus 757 * reentered, there can be a deadlock - we would be holding a quota 758 * lock, and the commit would never complete if another thread had a 759 * transaction open and was blocking on the quota lock - a ranking 760 * violation. 761 * 762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 763 * will _not_ run commit under these circumstances because handle->h_ref 764 * is elevated. We'll still have enough credits for the tiny quotafile 765 * write. 766 */ 767 static int do_journal_get_write_access(handle_t *handle, 768 struct buffer_head *bh) 769 { 770 int dirty = buffer_dirty(bh); 771 int ret; 772 773 if (!buffer_mapped(bh) || buffer_freed(bh)) 774 return 0; 775 /* 776 * __block_write_begin() could have dirtied some buffers. Clean 777 * the dirty bit as jbd2_journal_get_write_access() could complain 778 * otherwise about fs integrity issues. Setting of the dirty bit 779 * by __block_write_begin() isn't a real problem here as we clear 780 * the bit before releasing a page lock and thus writeback cannot 781 * ever write the buffer. 782 */ 783 if (dirty) 784 clear_buffer_dirty(bh); 785 ret = ext4_journal_get_write_access(handle, bh); 786 if (!ret && dirty) 787 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 788 return ret; 789 } 790 791 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 792 struct buffer_head *bh_result, int create); 793 static int ext4_write_begin(struct file *file, struct address_space *mapping, 794 loff_t pos, unsigned len, unsigned flags, 795 struct page **pagep, void **fsdata) 796 { 797 struct inode *inode = mapping->host; 798 int ret, needed_blocks; 799 handle_t *handle; 800 int retries = 0; 801 struct page *page; 802 pgoff_t index; 803 unsigned from, to; 804 805 trace_ext4_write_begin(inode, pos, len, flags); 806 /* 807 * Reserve one block more for addition to orphan list in case 808 * we allocate blocks but write fails for some reason 809 */ 810 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 811 index = pos >> PAGE_CACHE_SHIFT; 812 from = pos & (PAGE_CACHE_SIZE - 1); 813 to = from + len; 814 815 retry: 816 handle = ext4_journal_start(inode, needed_blocks); 817 if (IS_ERR(handle)) { 818 ret = PTR_ERR(handle); 819 goto out; 820 } 821 822 /* We cannot recurse into the filesystem as the transaction is already 823 * started */ 824 flags |= AOP_FLAG_NOFS; 825 826 page = grab_cache_page_write_begin(mapping, index, flags); 827 if (!page) { 828 ext4_journal_stop(handle); 829 ret = -ENOMEM; 830 goto out; 831 } 832 *pagep = page; 833 834 if (ext4_should_dioread_nolock(inode)) 835 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 836 else 837 ret = __block_write_begin(page, pos, len, ext4_get_block); 838 839 if (!ret && ext4_should_journal_data(inode)) { 840 ret = walk_page_buffers(handle, page_buffers(page), 841 from, to, NULL, do_journal_get_write_access); 842 } 843 844 if (ret) { 845 unlock_page(page); 846 page_cache_release(page); 847 /* 848 * __block_write_begin may have instantiated a few blocks 849 * outside i_size. Trim these off again. Don't need 850 * i_size_read because we hold i_mutex. 851 * 852 * Add inode to orphan list in case we crash before 853 * truncate finishes 854 */ 855 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 856 ext4_orphan_add(handle, inode); 857 858 ext4_journal_stop(handle); 859 if (pos + len > inode->i_size) { 860 ext4_truncate_failed_write(inode); 861 /* 862 * If truncate failed early the inode might 863 * still be on the orphan list; we need to 864 * make sure the inode is removed from the 865 * orphan list in that case. 866 */ 867 if (inode->i_nlink) 868 ext4_orphan_del(NULL, inode); 869 } 870 } 871 872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 873 goto retry; 874 out: 875 return ret; 876 } 877 878 /* For write_end() in data=journal mode */ 879 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 880 { 881 if (!buffer_mapped(bh) || buffer_freed(bh)) 882 return 0; 883 set_buffer_uptodate(bh); 884 return ext4_handle_dirty_metadata(handle, NULL, bh); 885 } 886 887 static int ext4_generic_write_end(struct file *file, 888 struct address_space *mapping, 889 loff_t pos, unsigned len, unsigned copied, 890 struct page *page, void *fsdata) 891 { 892 int i_size_changed = 0; 893 struct inode *inode = mapping->host; 894 handle_t *handle = ext4_journal_current_handle(); 895 896 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 897 898 /* 899 * No need to use i_size_read() here, the i_size 900 * cannot change under us because we hold i_mutex. 901 * 902 * But it's important to update i_size while still holding page lock: 903 * page writeout could otherwise come in and zero beyond i_size. 904 */ 905 if (pos + copied > inode->i_size) { 906 i_size_write(inode, pos + copied); 907 i_size_changed = 1; 908 } 909 910 if (pos + copied > EXT4_I(inode)->i_disksize) { 911 /* We need to mark inode dirty even if 912 * new_i_size is less that inode->i_size 913 * bu greater than i_disksize.(hint delalloc) 914 */ 915 ext4_update_i_disksize(inode, (pos + copied)); 916 i_size_changed = 1; 917 } 918 unlock_page(page); 919 page_cache_release(page); 920 921 /* 922 * Don't mark the inode dirty under page lock. First, it unnecessarily 923 * makes the holding time of page lock longer. Second, it forces lock 924 * ordering of page lock and transaction start for journaling 925 * filesystems. 926 */ 927 if (i_size_changed) 928 ext4_mark_inode_dirty(handle, inode); 929 930 return copied; 931 } 932 933 /* 934 * We need to pick up the new inode size which generic_commit_write gave us 935 * `file' can be NULL - eg, when called from page_symlink(). 936 * 937 * ext4 never places buffers on inode->i_mapping->private_list. metadata 938 * buffers are managed internally. 939 */ 940 static int ext4_ordered_write_end(struct file *file, 941 struct address_space *mapping, 942 loff_t pos, unsigned len, unsigned copied, 943 struct page *page, void *fsdata) 944 { 945 handle_t *handle = ext4_journal_current_handle(); 946 struct inode *inode = mapping->host; 947 int ret = 0, ret2; 948 949 trace_ext4_ordered_write_end(inode, pos, len, copied); 950 ret = ext4_jbd2_file_inode(handle, inode); 951 952 if (ret == 0) { 953 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 954 page, fsdata); 955 copied = ret2; 956 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 957 /* if we have allocated more blocks and copied 958 * less. We will have blocks allocated outside 959 * inode->i_size. So truncate them 960 */ 961 ext4_orphan_add(handle, inode); 962 if (ret2 < 0) 963 ret = ret2; 964 } else { 965 unlock_page(page); 966 page_cache_release(page); 967 } 968 969 ret2 = ext4_journal_stop(handle); 970 if (!ret) 971 ret = ret2; 972 973 if (pos + len > inode->i_size) { 974 ext4_truncate_failed_write(inode); 975 /* 976 * If truncate failed early the inode might still be 977 * on the orphan list; we need to make sure the inode 978 * is removed from the orphan list in that case. 979 */ 980 if (inode->i_nlink) 981 ext4_orphan_del(NULL, inode); 982 } 983 984 985 return ret ? ret : copied; 986 } 987 988 static int ext4_writeback_write_end(struct file *file, 989 struct address_space *mapping, 990 loff_t pos, unsigned len, unsigned copied, 991 struct page *page, void *fsdata) 992 { 993 handle_t *handle = ext4_journal_current_handle(); 994 struct inode *inode = mapping->host; 995 int ret = 0, ret2; 996 997 trace_ext4_writeback_write_end(inode, pos, len, copied); 998 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 999 page, fsdata); 1000 copied = ret2; 1001 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1002 /* if we have allocated more blocks and copied 1003 * less. We will have blocks allocated outside 1004 * inode->i_size. So truncate them 1005 */ 1006 ext4_orphan_add(handle, inode); 1007 1008 if (ret2 < 0) 1009 ret = ret2; 1010 1011 ret2 = ext4_journal_stop(handle); 1012 if (!ret) 1013 ret = ret2; 1014 1015 if (pos + len > inode->i_size) { 1016 ext4_truncate_failed_write(inode); 1017 /* 1018 * If truncate failed early the inode might still be 1019 * on the orphan list; we need to make sure the inode 1020 * is removed from the orphan list in that case. 1021 */ 1022 if (inode->i_nlink) 1023 ext4_orphan_del(NULL, inode); 1024 } 1025 1026 return ret ? ret : copied; 1027 } 1028 1029 static int ext4_journalled_write_end(struct file *file, 1030 struct address_space *mapping, 1031 loff_t pos, unsigned len, unsigned copied, 1032 struct page *page, void *fsdata) 1033 { 1034 handle_t *handle = ext4_journal_current_handle(); 1035 struct inode *inode = mapping->host; 1036 int ret = 0, ret2; 1037 int partial = 0; 1038 unsigned from, to; 1039 loff_t new_i_size; 1040 1041 trace_ext4_journalled_write_end(inode, pos, len, copied); 1042 from = pos & (PAGE_CACHE_SIZE - 1); 1043 to = from + len; 1044 1045 BUG_ON(!ext4_handle_valid(handle)); 1046 1047 if (copied < len) { 1048 if (!PageUptodate(page)) 1049 copied = 0; 1050 page_zero_new_buffers(page, from+copied, to); 1051 } 1052 1053 ret = walk_page_buffers(handle, page_buffers(page), from, 1054 to, &partial, write_end_fn); 1055 if (!partial) 1056 SetPageUptodate(page); 1057 new_i_size = pos + copied; 1058 if (new_i_size > inode->i_size) 1059 i_size_write(inode, pos+copied); 1060 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1062 if (new_i_size > EXT4_I(inode)->i_disksize) { 1063 ext4_update_i_disksize(inode, new_i_size); 1064 ret2 = ext4_mark_inode_dirty(handle, inode); 1065 if (!ret) 1066 ret = ret2; 1067 } 1068 1069 unlock_page(page); 1070 page_cache_release(page); 1071 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1072 /* if we have allocated more blocks and copied 1073 * less. We will have blocks allocated outside 1074 * inode->i_size. So truncate them 1075 */ 1076 ext4_orphan_add(handle, inode); 1077 1078 ret2 = ext4_journal_stop(handle); 1079 if (!ret) 1080 ret = ret2; 1081 if (pos + len > inode->i_size) { 1082 ext4_truncate_failed_write(inode); 1083 /* 1084 * If truncate failed early the inode might still be 1085 * on the orphan list; we need to make sure the inode 1086 * is removed from the orphan list in that case. 1087 */ 1088 if (inode->i_nlink) 1089 ext4_orphan_del(NULL, inode); 1090 } 1091 1092 return ret ? ret : copied; 1093 } 1094 1095 /* 1096 * Reserve a single cluster located at lblock 1097 */ 1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1099 { 1100 int retries = 0; 1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1102 struct ext4_inode_info *ei = EXT4_I(inode); 1103 unsigned int md_needed; 1104 int ret; 1105 1106 /* 1107 * recalculate the amount of metadata blocks to reserve 1108 * in order to allocate nrblocks 1109 * worse case is one extent per block 1110 */ 1111 repeat: 1112 spin_lock(&ei->i_block_reservation_lock); 1113 md_needed = EXT4_NUM_B2C(sbi, 1114 ext4_calc_metadata_amount(inode, lblock)); 1115 trace_ext4_da_reserve_space(inode, md_needed); 1116 spin_unlock(&ei->i_block_reservation_lock); 1117 1118 /* 1119 * We will charge metadata quota at writeout time; this saves 1120 * us from metadata over-estimation, though we may go over by 1121 * a small amount in the end. Here we just reserve for data. 1122 */ 1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1124 if (ret) 1125 return ret; 1126 /* 1127 * We do still charge estimated metadata to the sb though; 1128 * we cannot afford to run out of free blocks. 1129 */ 1130 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1131 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1132 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1133 yield(); 1134 goto repeat; 1135 } 1136 return -ENOSPC; 1137 } 1138 spin_lock(&ei->i_block_reservation_lock); 1139 ei->i_reserved_data_blocks++; 1140 ei->i_reserved_meta_blocks += md_needed; 1141 spin_unlock(&ei->i_block_reservation_lock); 1142 1143 return 0; /* success */ 1144 } 1145 1146 static void ext4_da_release_space(struct inode *inode, int to_free) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1149 struct ext4_inode_info *ei = EXT4_I(inode); 1150 1151 if (!to_free) 1152 return; /* Nothing to release, exit */ 1153 1154 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1155 1156 trace_ext4_da_release_space(inode, to_free); 1157 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1158 /* 1159 * if there aren't enough reserved blocks, then the 1160 * counter is messed up somewhere. Since this 1161 * function is called from invalidate page, it's 1162 * harmless to return without any action. 1163 */ 1164 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1165 "ino %lu, to_free %d with only %d reserved " 1166 "data blocks\n", inode->i_ino, to_free, 1167 ei->i_reserved_data_blocks); 1168 WARN_ON(1); 1169 to_free = ei->i_reserved_data_blocks; 1170 } 1171 ei->i_reserved_data_blocks -= to_free; 1172 1173 if (ei->i_reserved_data_blocks == 0) { 1174 /* 1175 * We can release all of the reserved metadata blocks 1176 * only when we have written all of the delayed 1177 * allocation blocks. 1178 * Note that in case of bigalloc, i_reserved_meta_blocks, 1179 * i_reserved_data_blocks, etc. refer to number of clusters. 1180 */ 1181 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1182 ei->i_reserved_meta_blocks); 1183 ei->i_reserved_meta_blocks = 0; 1184 ei->i_da_metadata_calc_len = 0; 1185 } 1186 1187 /* update fs dirty data blocks counter */ 1188 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1189 1190 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1191 1192 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1193 } 1194 1195 static void ext4_da_page_release_reservation(struct page *page, 1196 unsigned long offset) 1197 { 1198 int to_release = 0; 1199 struct buffer_head *head, *bh; 1200 unsigned int curr_off = 0; 1201 struct inode *inode = page->mapping->host; 1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1203 int num_clusters; 1204 1205 head = page_buffers(page); 1206 bh = head; 1207 do { 1208 unsigned int next_off = curr_off + bh->b_size; 1209 1210 if ((offset <= curr_off) && (buffer_delay(bh))) { 1211 to_release++; 1212 clear_buffer_delay(bh); 1213 clear_buffer_da_mapped(bh); 1214 } 1215 curr_off = next_off; 1216 } while ((bh = bh->b_this_page) != head); 1217 1218 /* If we have released all the blocks belonging to a cluster, then we 1219 * need to release the reserved space for that cluster. */ 1220 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1221 while (num_clusters > 0) { 1222 ext4_fsblk_t lblk; 1223 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1224 ((num_clusters - 1) << sbi->s_cluster_bits); 1225 if (sbi->s_cluster_ratio == 1 || 1226 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1227 ext4_da_release_space(inode, 1); 1228 1229 num_clusters--; 1230 } 1231 } 1232 1233 /* 1234 * Delayed allocation stuff 1235 */ 1236 1237 /* 1238 * mpage_da_submit_io - walks through extent of pages and try to write 1239 * them with writepage() call back 1240 * 1241 * @mpd->inode: inode 1242 * @mpd->first_page: first page of the extent 1243 * @mpd->next_page: page after the last page of the extent 1244 * 1245 * By the time mpage_da_submit_io() is called we expect all blocks 1246 * to be allocated. this may be wrong if allocation failed. 1247 * 1248 * As pages are already locked by write_cache_pages(), we can't use it 1249 */ 1250 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1251 struct ext4_map_blocks *map) 1252 { 1253 struct pagevec pvec; 1254 unsigned long index, end; 1255 int ret = 0, err, nr_pages, i; 1256 struct inode *inode = mpd->inode; 1257 struct address_space *mapping = inode->i_mapping; 1258 loff_t size = i_size_read(inode); 1259 unsigned int len, block_start; 1260 struct buffer_head *bh, *page_bufs = NULL; 1261 int journal_data = ext4_should_journal_data(inode); 1262 sector_t pblock = 0, cur_logical = 0; 1263 struct ext4_io_submit io_submit; 1264 1265 BUG_ON(mpd->next_page <= mpd->first_page); 1266 memset(&io_submit, 0, sizeof(io_submit)); 1267 /* 1268 * We need to start from the first_page to the next_page - 1 1269 * to make sure we also write the mapped dirty buffer_heads. 1270 * If we look at mpd->b_blocknr we would only be looking 1271 * at the currently mapped buffer_heads. 1272 */ 1273 index = mpd->first_page; 1274 end = mpd->next_page - 1; 1275 1276 pagevec_init(&pvec, 0); 1277 while (index <= end) { 1278 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1279 if (nr_pages == 0) 1280 break; 1281 for (i = 0; i < nr_pages; i++) { 1282 int commit_write = 0, skip_page = 0; 1283 struct page *page = pvec.pages[i]; 1284 1285 index = page->index; 1286 if (index > end) 1287 break; 1288 1289 if (index == size >> PAGE_CACHE_SHIFT) 1290 len = size & ~PAGE_CACHE_MASK; 1291 else 1292 len = PAGE_CACHE_SIZE; 1293 if (map) { 1294 cur_logical = index << (PAGE_CACHE_SHIFT - 1295 inode->i_blkbits); 1296 pblock = map->m_pblk + (cur_logical - 1297 map->m_lblk); 1298 } 1299 index++; 1300 1301 BUG_ON(!PageLocked(page)); 1302 BUG_ON(PageWriteback(page)); 1303 1304 /* 1305 * If the page does not have buffers (for 1306 * whatever reason), try to create them using 1307 * __block_write_begin. If this fails, 1308 * skip the page and move on. 1309 */ 1310 if (!page_has_buffers(page)) { 1311 if (__block_write_begin(page, 0, len, 1312 noalloc_get_block_write)) { 1313 skip_page: 1314 unlock_page(page); 1315 continue; 1316 } 1317 commit_write = 1; 1318 } 1319 1320 bh = page_bufs = page_buffers(page); 1321 block_start = 0; 1322 do { 1323 if (!bh) 1324 goto skip_page; 1325 if (map && (cur_logical >= map->m_lblk) && 1326 (cur_logical <= (map->m_lblk + 1327 (map->m_len - 1)))) { 1328 if (buffer_delay(bh)) { 1329 clear_buffer_delay(bh); 1330 bh->b_blocknr = pblock; 1331 } 1332 if (buffer_da_mapped(bh)) 1333 clear_buffer_da_mapped(bh); 1334 if (buffer_unwritten(bh) || 1335 buffer_mapped(bh)) 1336 BUG_ON(bh->b_blocknr != pblock); 1337 if (map->m_flags & EXT4_MAP_UNINIT) 1338 set_buffer_uninit(bh); 1339 clear_buffer_unwritten(bh); 1340 } 1341 1342 /* skip page if block allocation undone */ 1343 if (buffer_delay(bh) || buffer_unwritten(bh)) 1344 skip_page = 1; 1345 bh = bh->b_this_page; 1346 block_start += bh->b_size; 1347 cur_logical++; 1348 pblock++; 1349 } while (bh != page_bufs); 1350 1351 if (skip_page) 1352 goto skip_page; 1353 1354 if (commit_write) 1355 /* mark the buffer_heads as dirty & uptodate */ 1356 block_commit_write(page, 0, len); 1357 1358 clear_page_dirty_for_io(page); 1359 /* 1360 * Delalloc doesn't support data journalling, 1361 * but eventually maybe we'll lift this 1362 * restriction. 1363 */ 1364 if (unlikely(journal_data && PageChecked(page))) 1365 err = __ext4_journalled_writepage(page, len); 1366 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1367 err = ext4_bio_write_page(&io_submit, page, 1368 len, mpd->wbc); 1369 else if (buffer_uninit(page_bufs)) { 1370 ext4_set_bh_endio(page_bufs, inode); 1371 err = block_write_full_page_endio(page, 1372 noalloc_get_block_write, 1373 mpd->wbc, ext4_end_io_buffer_write); 1374 } else 1375 err = block_write_full_page(page, 1376 noalloc_get_block_write, mpd->wbc); 1377 1378 if (!err) 1379 mpd->pages_written++; 1380 /* 1381 * In error case, we have to continue because 1382 * remaining pages are still locked 1383 */ 1384 if (ret == 0) 1385 ret = err; 1386 } 1387 pagevec_release(&pvec); 1388 } 1389 ext4_io_submit(&io_submit); 1390 return ret; 1391 } 1392 1393 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1394 { 1395 int nr_pages, i; 1396 pgoff_t index, end; 1397 struct pagevec pvec; 1398 struct inode *inode = mpd->inode; 1399 struct address_space *mapping = inode->i_mapping; 1400 1401 index = mpd->first_page; 1402 end = mpd->next_page - 1; 1403 while (index <= end) { 1404 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1405 if (nr_pages == 0) 1406 break; 1407 for (i = 0; i < nr_pages; i++) { 1408 struct page *page = pvec.pages[i]; 1409 if (page->index > end) 1410 break; 1411 BUG_ON(!PageLocked(page)); 1412 BUG_ON(PageWriteback(page)); 1413 block_invalidatepage(page, 0); 1414 ClearPageUptodate(page); 1415 unlock_page(page); 1416 } 1417 index = pvec.pages[nr_pages - 1]->index + 1; 1418 pagevec_release(&pvec); 1419 } 1420 return; 1421 } 1422 1423 static void ext4_print_free_blocks(struct inode *inode) 1424 { 1425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1426 printk(KERN_CRIT "Total free blocks count %lld\n", 1427 EXT4_C2B(EXT4_SB(inode->i_sb), 1428 ext4_count_free_clusters(inode->i_sb))); 1429 printk(KERN_CRIT "Free/Dirty block details\n"); 1430 printk(KERN_CRIT "free_blocks=%lld\n", 1431 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1432 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1433 printk(KERN_CRIT "dirty_blocks=%lld\n", 1434 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1435 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1436 printk(KERN_CRIT "Block reservation details\n"); 1437 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1438 EXT4_I(inode)->i_reserved_data_blocks); 1439 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1440 EXT4_I(inode)->i_reserved_meta_blocks); 1441 return; 1442 } 1443 1444 /* 1445 * mpage_da_map_and_submit - go through given space, map them 1446 * if necessary, and then submit them for I/O 1447 * 1448 * @mpd - bh describing space 1449 * 1450 * The function skips space we know is already mapped to disk blocks. 1451 * 1452 */ 1453 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1454 { 1455 int err, blks, get_blocks_flags; 1456 struct ext4_map_blocks map, *mapp = NULL; 1457 sector_t next = mpd->b_blocknr; 1458 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1459 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1460 handle_t *handle = NULL; 1461 1462 /* 1463 * If the blocks are mapped already, or we couldn't accumulate 1464 * any blocks, then proceed immediately to the submission stage. 1465 */ 1466 if ((mpd->b_size == 0) || 1467 ((mpd->b_state & (1 << BH_Mapped)) && 1468 !(mpd->b_state & (1 << BH_Delay)) && 1469 !(mpd->b_state & (1 << BH_Unwritten)))) 1470 goto submit_io; 1471 1472 handle = ext4_journal_current_handle(); 1473 BUG_ON(!handle); 1474 1475 /* 1476 * Call ext4_map_blocks() to allocate any delayed allocation 1477 * blocks, or to convert an uninitialized extent to be 1478 * initialized (in the case where we have written into 1479 * one or more preallocated blocks). 1480 * 1481 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1482 * indicate that we are on the delayed allocation path. This 1483 * affects functions in many different parts of the allocation 1484 * call path. This flag exists primarily because we don't 1485 * want to change *many* call functions, so ext4_map_blocks() 1486 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1487 * inode's allocation semaphore is taken. 1488 * 1489 * If the blocks in questions were delalloc blocks, set 1490 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1491 * variables are updated after the blocks have been allocated. 1492 */ 1493 map.m_lblk = next; 1494 map.m_len = max_blocks; 1495 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1496 if (ext4_should_dioread_nolock(mpd->inode)) 1497 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1498 if (mpd->b_state & (1 << BH_Delay)) 1499 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1500 1501 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1502 if (blks < 0) { 1503 struct super_block *sb = mpd->inode->i_sb; 1504 1505 err = blks; 1506 /* 1507 * If get block returns EAGAIN or ENOSPC and there 1508 * appears to be free blocks we will just let 1509 * mpage_da_submit_io() unlock all of the pages. 1510 */ 1511 if (err == -EAGAIN) 1512 goto submit_io; 1513 1514 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1515 mpd->retval = err; 1516 goto submit_io; 1517 } 1518 1519 /* 1520 * get block failure will cause us to loop in 1521 * writepages, because a_ops->writepage won't be able 1522 * to make progress. The page will be redirtied by 1523 * writepage and writepages will again try to write 1524 * the same. 1525 */ 1526 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1527 ext4_msg(sb, KERN_CRIT, 1528 "delayed block allocation failed for inode %lu " 1529 "at logical offset %llu with max blocks %zd " 1530 "with error %d", mpd->inode->i_ino, 1531 (unsigned long long) next, 1532 mpd->b_size >> mpd->inode->i_blkbits, err); 1533 ext4_msg(sb, KERN_CRIT, 1534 "This should not happen!! Data will be lost\n"); 1535 if (err == -ENOSPC) 1536 ext4_print_free_blocks(mpd->inode); 1537 } 1538 /* invalidate all the pages */ 1539 ext4_da_block_invalidatepages(mpd); 1540 1541 /* Mark this page range as having been completed */ 1542 mpd->io_done = 1; 1543 return; 1544 } 1545 BUG_ON(blks == 0); 1546 1547 mapp = ↦ 1548 if (map.m_flags & EXT4_MAP_NEW) { 1549 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1550 int i; 1551 1552 for (i = 0; i < map.m_len; i++) 1553 unmap_underlying_metadata(bdev, map.m_pblk + i); 1554 1555 if (ext4_should_order_data(mpd->inode)) { 1556 err = ext4_jbd2_file_inode(handle, mpd->inode); 1557 if (err) { 1558 /* Only if the journal is aborted */ 1559 mpd->retval = err; 1560 goto submit_io; 1561 } 1562 } 1563 } 1564 1565 /* 1566 * Update on-disk size along with block allocation. 1567 */ 1568 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1569 if (disksize > i_size_read(mpd->inode)) 1570 disksize = i_size_read(mpd->inode); 1571 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1572 ext4_update_i_disksize(mpd->inode, disksize); 1573 err = ext4_mark_inode_dirty(handle, mpd->inode); 1574 if (err) 1575 ext4_error(mpd->inode->i_sb, 1576 "Failed to mark inode %lu dirty", 1577 mpd->inode->i_ino); 1578 } 1579 1580 submit_io: 1581 mpage_da_submit_io(mpd, mapp); 1582 mpd->io_done = 1; 1583 } 1584 1585 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1586 (1 << BH_Delay) | (1 << BH_Unwritten)) 1587 1588 /* 1589 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1590 * 1591 * @mpd->lbh - extent of blocks 1592 * @logical - logical number of the block in the file 1593 * @bh - bh of the block (used to access block's state) 1594 * 1595 * the function is used to collect contig. blocks in same state 1596 */ 1597 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1598 sector_t logical, size_t b_size, 1599 unsigned long b_state) 1600 { 1601 sector_t next; 1602 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1603 1604 /* 1605 * XXX Don't go larger than mballoc is willing to allocate 1606 * This is a stopgap solution. We eventually need to fold 1607 * mpage_da_submit_io() into this function and then call 1608 * ext4_map_blocks() multiple times in a loop 1609 */ 1610 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1611 goto flush_it; 1612 1613 /* check if thereserved journal credits might overflow */ 1614 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1615 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1616 /* 1617 * With non-extent format we are limited by the journal 1618 * credit available. Total credit needed to insert 1619 * nrblocks contiguous blocks is dependent on the 1620 * nrblocks. So limit nrblocks. 1621 */ 1622 goto flush_it; 1623 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1624 EXT4_MAX_TRANS_DATA) { 1625 /* 1626 * Adding the new buffer_head would make it cross the 1627 * allowed limit for which we have journal credit 1628 * reserved. So limit the new bh->b_size 1629 */ 1630 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1631 mpd->inode->i_blkbits; 1632 /* we will do mpage_da_submit_io in the next loop */ 1633 } 1634 } 1635 /* 1636 * First block in the extent 1637 */ 1638 if (mpd->b_size == 0) { 1639 mpd->b_blocknr = logical; 1640 mpd->b_size = b_size; 1641 mpd->b_state = b_state & BH_FLAGS; 1642 return; 1643 } 1644 1645 next = mpd->b_blocknr + nrblocks; 1646 /* 1647 * Can we merge the block to our big extent? 1648 */ 1649 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1650 mpd->b_size += b_size; 1651 return; 1652 } 1653 1654 flush_it: 1655 /* 1656 * We couldn't merge the block to our extent, so we 1657 * need to flush current extent and start new one 1658 */ 1659 mpage_da_map_and_submit(mpd); 1660 return; 1661 } 1662 1663 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1664 { 1665 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1666 } 1667 1668 /* 1669 * This function is grabs code from the very beginning of 1670 * ext4_map_blocks, but assumes that the caller is from delayed write 1671 * time. This function looks up the requested blocks and sets the 1672 * buffer delay bit under the protection of i_data_sem. 1673 */ 1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1675 struct ext4_map_blocks *map, 1676 struct buffer_head *bh) 1677 { 1678 int retval; 1679 sector_t invalid_block = ~((sector_t) 0xffff); 1680 1681 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1682 invalid_block = ~0; 1683 1684 map->m_flags = 0; 1685 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1686 "logical block %lu\n", inode->i_ino, map->m_len, 1687 (unsigned long) map->m_lblk); 1688 /* 1689 * Try to see if we can get the block without requesting a new 1690 * file system block. 1691 */ 1692 down_read((&EXT4_I(inode)->i_data_sem)); 1693 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1694 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1695 else 1696 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1697 1698 if (retval == 0) { 1699 /* 1700 * XXX: __block_prepare_write() unmaps passed block, 1701 * is it OK? 1702 */ 1703 /* If the block was allocated from previously allocated cluster, 1704 * then we dont need to reserve it again. */ 1705 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1706 retval = ext4_da_reserve_space(inode, iblock); 1707 if (retval) 1708 /* not enough space to reserve */ 1709 goto out_unlock; 1710 } 1711 1712 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1713 * and it should not appear on the bh->b_state. 1714 */ 1715 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1716 1717 map_bh(bh, inode->i_sb, invalid_block); 1718 set_buffer_new(bh); 1719 set_buffer_delay(bh); 1720 } 1721 1722 out_unlock: 1723 up_read((&EXT4_I(inode)->i_data_sem)); 1724 1725 return retval; 1726 } 1727 1728 /* 1729 * This is a special get_blocks_t callback which is used by 1730 * ext4_da_write_begin(). It will either return mapped block or 1731 * reserve space for a single block. 1732 * 1733 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1734 * We also have b_blocknr = -1 and b_bdev initialized properly 1735 * 1736 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1737 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1738 * initialized properly. 1739 */ 1740 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1741 struct buffer_head *bh, int create) 1742 { 1743 struct ext4_map_blocks map; 1744 int ret = 0; 1745 1746 BUG_ON(create == 0); 1747 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1748 1749 map.m_lblk = iblock; 1750 map.m_len = 1; 1751 1752 /* 1753 * first, we need to know whether the block is allocated already 1754 * preallocated blocks are unmapped but should treated 1755 * the same as allocated blocks. 1756 */ 1757 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1758 if (ret <= 0) 1759 return ret; 1760 1761 map_bh(bh, inode->i_sb, map.m_pblk); 1762 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1763 1764 if (buffer_unwritten(bh)) { 1765 /* A delayed write to unwritten bh should be marked 1766 * new and mapped. Mapped ensures that we don't do 1767 * get_block multiple times when we write to the same 1768 * offset and new ensures that we do proper zero out 1769 * for partial write. 1770 */ 1771 set_buffer_new(bh); 1772 set_buffer_mapped(bh); 1773 } 1774 return 0; 1775 } 1776 1777 /* 1778 * This function is used as a standard get_block_t calback function 1779 * when there is no desire to allocate any blocks. It is used as a 1780 * callback function for block_write_begin() and block_write_full_page(). 1781 * These functions should only try to map a single block at a time. 1782 * 1783 * Since this function doesn't do block allocations even if the caller 1784 * requests it by passing in create=1, it is critically important that 1785 * any caller checks to make sure that any buffer heads are returned 1786 * by this function are either all already mapped or marked for 1787 * delayed allocation before calling block_write_full_page(). Otherwise, 1788 * b_blocknr could be left unitialized, and the page write functions will 1789 * be taken by surprise. 1790 */ 1791 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1792 struct buffer_head *bh_result, int create) 1793 { 1794 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1795 return _ext4_get_block(inode, iblock, bh_result, 0); 1796 } 1797 1798 static int bget_one(handle_t *handle, struct buffer_head *bh) 1799 { 1800 get_bh(bh); 1801 return 0; 1802 } 1803 1804 static int bput_one(handle_t *handle, struct buffer_head *bh) 1805 { 1806 put_bh(bh); 1807 return 0; 1808 } 1809 1810 static int __ext4_journalled_writepage(struct page *page, 1811 unsigned int len) 1812 { 1813 struct address_space *mapping = page->mapping; 1814 struct inode *inode = mapping->host; 1815 struct buffer_head *page_bufs; 1816 handle_t *handle = NULL; 1817 int ret = 0; 1818 int err; 1819 1820 ClearPageChecked(page); 1821 page_bufs = page_buffers(page); 1822 BUG_ON(!page_bufs); 1823 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1824 /* As soon as we unlock the page, it can go away, but we have 1825 * references to buffers so we are safe */ 1826 unlock_page(page); 1827 1828 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1829 if (IS_ERR(handle)) { 1830 ret = PTR_ERR(handle); 1831 goto out; 1832 } 1833 1834 BUG_ON(!ext4_handle_valid(handle)); 1835 1836 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1837 do_journal_get_write_access); 1838 1839 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1840 write_end_fn); 1841 if (ret == 0) 1842 ret = err; 1843 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1844 err = ext4_journal_stop(handle); 1845 if (!ret) 1846 ret = err; 1847 1848 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1849 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1850 out: 1851 return ret; 1852 } 1853 1854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1855 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1856 1857 /* 1858 * Note that we don't need to start a transaction unless we're journaling data 1859 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1860 * need to file the inode to the transaction's list in ordered mode because if 1861 * we are writing back data added by write(), the inode is already there and if 1862 * we are writing back data modified via mmap(), no one guarantees in which 1863 * transaction the data will hit the disk. In case we are journaling data, we 1864 * cannot start transaction directly because transaction start ranks above page 1865 * lock so we have to do some magic. 1866 * 1867 * This function can get called via... 1868 * - ext4_da_writepages after taking page lock (have journal handle) 1869 * - journal_submit_inode_data_buffers (no journal handle) 1870 * - shrink_page_list via pdflush (no journal handle) 1871 * - grab_page_cache when doing write_begin (have journal handle) 1872 * 1873 * We don't do any block allocation in this function. If we have page with 1874 * multiple blocks we need to write those buffer_heads that are mapped. This 1875 * is important for mmaped based write. So if we do with blocksize 1K 1876 * truncate(f, 1024); 1877 * a = mmap(f, 0, 4096); 1878 * a[0] = 'a'; 1879 * truncate(f, 4096); 1880 * we have in the page first buffer_head mapped via page_mkwrite call back 1881 * but other bufer_heads would be unmapped but dirty(dirty done via the 1882 * do_wp_page). So writepage should write the first block. If we modify 1883 * the mmap area beyond 1024 we will again get a page_fault and the 1884 * page_mkwrite callback will do the block allocation and mark the 1885 * buffer_heads mapped. 1886 * 1887 * We redirty the page if we have any buffer_heads that is either delay or 1888 * unwritten in the page. 1889 * 1890 * We can get recursively called as show below. 1891 * 1892 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1893 * ext4_writepage() 1894 * 1895 * But since we don't do any block allocation we should not deadlock. 1896 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1897 */ 1898 static int ext4_writepage(struct page *page, 1899 struct writeback_control *wbc) 1900 { 1901 int ret = 0, commit_write = 0; 1902 loff_t size; 1903 unsigned int len; 1904 struct buffer_head *page_bufs = NULL; 1905 struct inode *inode = page->mapping->host; 1906 1907 trace_ext4_writepage(page); 1908 size = i_size_read(inode); 1909 if (page->index == size >> PAGE_CACHE_SHIFT) 1910 len = size & ~PAGE_CACHE_MASK; 1911 else 1912 len = PAGE_CACHE_SIZE; 1913 1914 /* 1915 * If the page does not have buffers (for whatever reason), 1916 * try to create them using __block_write_begin. If this 1917 * fails, redirty the page and move on. 1918 */ 1919 if (!page_has_buffers(page)) { 1920 if (__block_write_begin(page, 0, len, 1921 noalloc_get_block_write)) { 1922 redirty_page: 1923 redirty_page_for_writepage(wbc, page); 1924 unlock_page(page); 1925 return 0; 1926 } 1927 commit_write = 1; 1928 } 1929 page_bufs = page_buffers(page); 1930 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1931 ext4_bh_delay_or_unwritten)) { 1932 /* 1933 * We don't want to do block allocation, so redirty 1934 * the page and return. We may reach here when we do 1935 * a journal commit via journal_submit_inode_data_buffers. 1936 * We can also reach here via shrink_page_list but it 1937 * should never be for direct reclaim so warn if that 1938 * happens 1939 */ 1940 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1941 PF_MEMALLOC); 1942 goto redirty_page; 1943 } 1944 if (commit_write) 1945 /* now mark the buffer_heads as dirty and uptodate */ 1946 block_commit_write(page, 0, len); 1947 1948 if (PageChecked(page) && ext4_should_journal_data(inode)) 1949 /* 1950 * It's mmapped pagecache. Add buffers and journal it. There 1951 * doesn't seem much point in redirtying the page here. 1952 */ 1953 return __ext4_journalled_writepage(page, len); 1954 1955 if (buffer_uninit(page_bufs)) { 1956 ext4_set_bh_endio(page_bufs, inode); 1957 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1958 wbc, ext4_end_io_buffer_write); 1959 } else 1960 ret = block_write_full_page(page, noalloc_get_block_write, 1961 wbc); 1962 1963 return ret; 1964 } 1965 1966 /* 1967 * This is called via ext4_da_writepages() to 1968 * calculate the total number of credits to reserve to fit 1969 * a single extent allocation into a single transaction, 1970 * ext4_da_writpeages() will loop calling this before 1971 * the block allocation. 1972 */ 1973 1974 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1975 { 1976 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1977 1978 /* 1979 * With non-extent format the journal credit needed to 1980 * insert nrblocks contiguous block is dependent on 1981 * number of contiguous block. So we will limit 1982 * number of contiguous block to a sane value 1983 */ 1984 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1985 (max_blocks > EXT4_MAX_TRANS_DATA)) 1986 max_blocks = EXT4_MAX_TRANS_DATA; 1987 1988 return ext4_chunk_trans_blocks(inode, max_blocks); 1989 } 1990 1991 /* 1992 * write_cache_pages_da - walk the list of dirty pages of the given 1993 * address space and accumulate pages that need writing, and call 1994 * mpage_da_map_and_submit to map a single contiguous memory region 1995 * and then write them. 1996 */ 1997 static int write_cache_pages_da(struct address_space *mapping, 1998 struct writeback_control *wbc, 1999 struct mpage_da_data *mpd, 2000 pgoff_t *done_index) 2001 { 2002 struct buffer_head *bh, *head; 2003 struct inode *inode = mapping->host; 2004 struct pagevec pvec; 2005 unsigned int nr_pages; 2006 sector_t logical; 2007 pgoff_t index, end; 2008 long nr_to_write = wbc->nr_to_write; 2009 int i, tag, ret = 0; 2010 2011 memset(mpd, 0, sizeof(struct mpage_da_data)); 2012 mpd->wbc = wbc; 2013 mpd->inode = inode; 2014 pagevec_init(&pvec, 0); 2015 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2016 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2017 2018 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2019 tag = PAGECACHE_TAG_TOWRITE; 2020 else 2021 tag = PAGECACHE_TAG_DIRTY; 2022 2023 *done_index = index; 2024 while (index <= end) { 2025 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2026 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2027 if (nr_pages == 0) 2028 return 0; 2029 2030 for (i = 0; i < nr_pages; i++) { 2031 struct page *page = pvec.pages[i]; 2032 2033 /* 2034 * At this point, the page may be truncated or 2035 * invalidated (changing page->mapping to NULL), or 2036 * even swizzled back from swapper_space to tmpfs file 2037 * mapping. However, page->index will not change 2038 * because we have a reference on the page. 2039 */ 2040 if (page->index > end) 2041 goto out; 2042 2043 *done_index = page->index + 1; 2044 2045 /* 2046 * If we can't merge this page, and we have 2047 * accumulated an contiguous region, write it 2048 */ 2049 if ((mpd->next_page != page->index) && 2050 (mpd->next_page != mpd->first_page)) { 2051 mpage_da_map_and_submit(mpd); 2052 goto ret_extent_tail; 2053 } 2054 2055 lock_page(page); 2056 2057 /* 2058 * If the page is no longer dirty, or its 2059 * mapping no longer corresponds to inode we 2060 * are writing (which means it has been 2061 * truncated or invalidated), or the page is 2062 * already under writeback and we are not 2063 * doing a data integrity writeback, skip the page 2064 */ 2065 if (!PageDirty(page) || 2066 (PageWriteback(page) && 2067 (wbc->sync_mode == WB_SYNC_NONE)) || 2068 unlikely(page->mapping != mapping)) { 2069 unlock_page(page); 2070 continue; 2071 } 2072 2073 wait_on_page_writeback(page); 2074 BUG_ON(PageWriteback(page)); 2075 2076 if (mpd->next_page != page->index) 2077 mpd->first_page = page->index; 2078 mpd->next_page = page->index + 1; 2079 logical = (sector_t) page->index << 2080 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2081 2082 if (!page_has_buffers(page)) { 2083 mpage_add_bh_to_extent(mpd, logical, 2084 PAGE_CACHE_SIZE, 2085 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2086 if (mpd->io_done) 2087 goto ret_extent_tail; 2088 } else { 2089 /* 2090 * Page with regular buffer heads, 2091 * just add all dirty ones 2092 */ 2093 head = page_buffers(page); 2094 bh = head; 2095 do { 2096 BUG_ON(buffer_locked(bh)); 2097 /* 2098 * We need to try to allocate 2099 * unmapped blocks in the same page. 2100 * Otherwise we won't make progress 2101 * with the page in ext4_writepage 2102 */ 2103 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2104 mpage_add_bh_to_extent(mpd, logical, 2105 bh->b_size, 2106 bh->b_state); 2107 if (mpd->io_done) 2108 goto ret_extent_tail; 2109 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2110 /* 2111 * mapped dirty buffer. We need 2112 * to update the b_state 2113 * because we look at b_state 2114 * in mpage_da_map_blocks. We 2115 * don't update b_size because 2116 * if we find an unmapped 2117 * buffer_head later we need to 2118 * use the b_state flag of that 2119 * buffer_head. 2120 */ 2121 if (mpd->b_size == 0) 2122 mpd->b_state = bh->b_state & BH_FLAGS; 2123 } 2124 logical++; 2125 } while ((bh = bh->b_this_page) != head); 2126 } 2127 2128 if (nr_to_write > 0) { 2129 nr_to_write--; 2130 if (nr_to_write == 0 && 2131 wbc->sync_mode == WB_SYNC_NONE) 2132 /* 2133 * We stop writing back only if we are 2134 * not doing integrity sync. In case of 2135 * integrity sync we have to keep going 2136 * because someone may be concurrently 2137 * dirtying pages, and we might have 2138 * synced a lot of newly appeared dirty 2139 * pages, but have not synced all of the 2140 * old dirty pages. 2141 */ 2142 goto out; 2143 } 2144 } 2145 pagevec_release(&pvec); 2146 cond_resched(); 2147 } 2148 return 0; 2149 ret_extent_tail: 2150 ret = MPAGE_DA_EXTENT_TAIL; 2151 out: 2152 pagevec_release(&pvec); 2153 cond_resched(); 2154 return ret; 2155 } 2156 2157 2158 static int ext4_da_writepages(struct address_space *mapping, 2159 struct writeback_control *wbc) 2160 { 2161 pgoff_t index; 2162 int range_whole = 0; 2163 handle_t *handle = NULL; 2164 struct mpage_da_data mpd; 2165 struct inode *inode = mapping->host; 2166 int pages_written = 0; 2167 unsigned int max_pages; 2168 int range_cyclic, cycled = 1, io_done = 0; 2169 int needed_blocks, ret = 0; 2170 long desired_nr_to_write, nr_to_writebump = 0; 2171 loff_t range_start = wbc->range_start; 2172 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2173 pgoff_t done_index = 0; 2174 pgoff_t end; 2175 struct blk_plug plug; 2176 2177 trace_ext4_da_writepages(inode, wbc); 2178 2179 /* 2180 * No pages to write? This is mainly a kludge to avoid starting 2181 * a transaction for special inodes like journal inode on last iput() 2182 * because that could violate lock ordering on umount 2183 */ 2184 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2185 return 0; 2186 2187 /* 2188 * If the filesystem has aborted, it is read-only, so return 2189 * right away instead of dumping stack traces later on that 2190 * will obscure the real source of the problem. We test 2191 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2192 * the latter could be true if the filesystem is mounted 2193 * read-only, and in that case, ext4_da_writepages should 2194 * *never* be called, so if that ever happens, we would want 2195 * the stack trace. 2196 */ 2197 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2198 return -EROFS; 2199 2200 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2201 range_whole = 1; 2202 2203 range_cyclic = wbc->range_cyclic; 2204 if (wbc->range_cyclic) { 2205 index = mapping->writeback_index; 2206 if (index) 2207 cycled = 0; 2208 wbc->range_start = index << PAGE_CACHE_SHIFT; 2209 wbc->range_end = LLONG_MAX; 2210 wbc->range_cyclic = 0; 2211 end = -1; 2212 } else { 2213 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2214 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2215 } 2216 2217 /* 2218 * This works around two forms of stupidity. The first is in 2219 * the writeback code, which caps the maximum number of pages 2220 * written to be 1024 pages. This is wrong on multiple 2221 * levels; different architectues have a different page size, 2222 * which changes the maximum amount of data which gets 2223 * written. Secondly, 4 megabytes is way too small. XFS 2224 * forces this value to be 16 megabytes by multiplying 2225 * nr_to_write parameter by four, and then relies on its 2226 * allocator to allocate larger extents to make them 2227 * contiguous. Unfortunately this brings us to the second 2228 * stupidity, which is that ext4's mballoc code only allocates 2229 * at most 2048 blocks. So we force contiguous writes up to 2230 * the number of dirty blocks in the inode, or 2231 * sbi->max_writeback_mb_bump whichever is smaller. 2232 */ 2233 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2234 if (!range_cyclic && range_whole) { 2235 if (wbc->nr_to_write == LONG_MAX) 2236 desired_nr_to_write = wbc->nr_to_write; 2237 else 2238 desired_nr_to_write = wbc->nr_to_write * 8; 2239 } else 2240 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2241 max_pages); 2242 if (desired_nr_to_write > max_pages) 2243 desired_nr_to_write = max_pages; 2244 2245 if (wbc->nr_to_write < desired_nr_to_write) { 2246 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2247 wbc->nr_to_write = desired_nr_to_write; 2248 } 2249 2250 retry: 2251 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2252 tag_pages_for_writeback(mapping, index, end); 2253 2254 blk_start_plug(&plug); 2255 while (!ret && wbc->nr_to_write > 0) { 2256 2257 /* 2258 * we insert one extent at a time. So we need 2259 * credit needed for single extent allocation. 2260 * journalled mode is currently not supported 2261 * by delalloc 2262 */ 2263 BUG_ON(ext4_should_journal_data(inode)); 2264 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2265 2266 /* start a new transaction*/ 2267 handle = ext4_journal_start(inode, needed_blocks); 2268 if (IS_ERR(handle)) { 2269 ret = PTR_ERR(handle); 2270 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2271 "%ld pages, ino %lu; err %d", __func__, 2272 wbc->nr_to_write, inode->i_ino, ret); 2273 goto out_writepages; 2274 } 2275 2276 /* 2277 * Now call write_cache_pages_da() to find the next 2278 * contiguous region of logical blocks that need 2279 * blocks to be allocated by ext4 and submit them. 2280 */ 2281 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2282 /* 2283 * If we have a contiguous extent of pages and we 2284 * haven't done the I/O yet, map the blocks and submit 2285 * them for I/O. 2286 */ 2287 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2288 mpage_da_map_and_submit(&mpd); 2289 ret = MPAGE_DA_EXTENT_TAIL; 2290 } 2291 trace_ext4_da_write_pages(inode, &mpd); 2292 wbc->nr_to_write -= mpd.pages_written; 2293 2294 ext4_journal_stop(handle); 2295 2296 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2297 /* commit the transaction which would 2298 * free blocks released in the transaction 2299 * and try again 2300 */ 2301 jbd2_journal_force_commit_nested(sbi->s_journal); 2302 ret = 0; 2303 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2304 /* 2305 * Got one extent now try with rest of the pages. 2306 * If mpd.retval is set -EIO, journal is aborted. 2307 * So we don't need to write any more. 2308 */ 2309 pages_written += mpd.pages_written; 2310 ret = mpd.retval; 2311 io_done = 1; 2312 } else if (wbc->nr_to_write) 2313 /* 2314 * There is no more writeout needed 2315 * or we requested for a noblocking writeout 2316 * and we found the device congested 2317 */ 2318 break; 2319 } 2320 blk_finish_plug(&plug); 2321 if (!io_done && !cycled) { 2322 cycled = 1; 2323 index = 0; 2324 wbc->range_start = index << PAGE_CACHE_SHIFT; 2325 wbc->range_end = mapping->writeback_index - 1; 2326 goto retry; 2327 } 2328 2329 /* Update index */ 2330 wbc->range_cyclic = range_cyclic; 2331 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2332 /* 2333 * set the writeback_index so that range_cyclic 2334 * mode will write it back later 2335 */ 2336 mapping->writeback_index = done_index; 2337 2338 out_writepages: 2339 wbc->nr_to_write -= nr_to_writebump; 2340 wbc->range_start = range_start; 2341 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2342 return ret; 2343 } 2344 2345 #define FALL_BACK_TO_NONDELALLOC 1 2346 static int ext4_nonda_switch(struct super_block *sb) 2347 { 2348 s64 free_blocks, dirty_blocks; 2349 struct ext4_sb_info *sbi = EXT4_SB(sb); 2350 2351 /* 2352 * switch to non delalloc mode if we are running low 2353 * on free block. The free block accounting via percpu 2354 * counters can get slightly wrong with percpu_counter_batch getting 2355 * accumulated on each CPU without updating global counters 2356 * Delalloc need an accurate free block accounting. So switch 2357 * to non delalloc when we are near to error range. 2358 */ 2359 free_blocks = EXT4_C2B(sbi, 2360 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2361 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2362 if (2 * free_blocks < 3 * dirty_blocks || 2363 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2364 /* 2365 * free block count is less than 150% of dirty blocks 2366 * or free blocks is less than watermark 2367 */ 2368 return 1; 2369 } 2370 /* 2371 * Even if we don't switch but are nearing capacity, 2372 * start pushing delalloc when 1/2 of free blocks are dirty. 2373 */ 2374 if (free_blocks < 2 * dirty_blocks) 2375 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2376 2377 return 0; 2378 } 2379 2380 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2381 loff_t pos, unsigned len, unsigned flags, 2382 struct page **pagep, void **fsdata) 2383 { 2384 int ret, retries = 0; 2385 struct page *page; 2386 pgoff_t index; 2387 struct inode *inode = mapping->host; 2388 handle_t *handle; 2389 loff_t page_len; 2390 2391 index = pos >> PAGE_CACHE_SHIFT; 2392 2393 if (ext4_nonda_switch(inode->i_sb)) { 2394 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2395 return ext4_write_begin(file, mapping, pos, 2396 len, flags, pagep, fsdata); 2397 } 2398 *fsdata = (void *)0; 2399 trace_ext4_da_write_begin(inode, pos, len, flags); 2400 retry: 2401 /* 2402 * With delayed allocation, we don't log the i_disksize update 2403 * if there is delayed block allocation. But we still need 2404 * to journalling the i_disksize update if writes to the end 2405 * of file which has an already mapped buffer. 2406 */ 2407 handle = ext4_journal_start(inode, 1); 2408 if (IS_ERR(handle)) { 2409 ret = PTR_ERR(handle); 2410 goto out; 2411 } 2412 /* We cannot recurse into the filesystem as the transaction is already 2413 * started */ 2414 flags |= AOP_FLAG_NOFS; 2415 2416 page = grab_cache_page_write_begin(mapping, index, flags); 2417 if (!page) { 2418 ext4_journal_stop(handle); 2419 ret = -ENOMEM; 2420 goto out; 2421 } 2422 *pagep = page; 2423 2424 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2425 if (ret < 0) { 2426 unlock_page(page); 2427 ext4_journal_stop(handle); 2428 page_cache_release(page); 2429 /* 2430 * block_write_begin may have instantiated a few blocks 2431 * outside i_size. Trim these off again. Don't need 2432 * i_size_read because we hold i_mutex. 2433 */ 2434 if (pos + len > inode->i_size) 2435 ext4_truncate_failed_write(inode); 2436 } else { 2437 page_len = pos & (PAGE_CACHE_SIZE - 1); 2438 if (page_len > 0) { 2439 ret = ext4_discard_partial_page_buffers_no_lock(handle, 2440 inode, page, pos - page_len, page_len, 2441 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED); 2442 } 2443 } 2444 2445 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2446 goto retry; 2447 out: 2448 return ret; 2449 } 2450 2451 /* 2452 * Check if we should update i_disksize 2453 * when write to the end of file but not require block allocation 2454 */ 2455 static int ext4_da_should_update_i_disksize(struct page *page, 2456 unsigned long offset) 2457 { 2458 struct buffer_head *bh; 2459 struct inode *inode = page->mapping->host; 2460 unsigned int idx; 2461 int i; 2462 2463 bh = page_buffers(page); 2464 idx = offset >> inode->i_blkbits; 2465 2466 for (i = 0; i < idx; i++) 2467 bh = bh->b_this_page; 2468 2469 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2470 return 0; 2471 return 1; 2472 } 2473 2474 static int ext4_da_write_end(struct file *file, 2475 struct address_space *mapping, 2476 loff_t pos, unsigned len, unsigned copied, 2477 struct page *page, void *fsdata) 2478 { 2479 struct inode *inode = mapping->host; 2480 int ret = 0, ret2; 2481 handle_t *handle = ext4_journal_current_handle(); 2482 loff_t new_i_size; 2483 unsigned long start, end; 2484 int write_mode = (int)(unsigned long)fsdata; 2485 loff_t page_len; 2486 2487 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2488 if (ext4_should_order_data(inode)) { 2489 return ext4_ordered_write_end(file, mapping, pos, 2490 len, copied, page, fsdata); 2491 } else if (ext4_should_writeback_data(inode)) { 2492 return ext4_writeback_write_end(file, mapping, pos, 2493 len, copied, page, fsdata); 2494 } else { 2495 BUG(); 2496 } 2497 } 2498 2499 trace_ext4_da_write_end(inode, pos, len, copied); 2500 start = pos & (PAGE_CACHE_SIZE - 1); 2501 end = start + copied - 1; 2502 2503 /* 2504 * generic_write_end() will run mark_inode_dirty() if i_size 2505 * changes. So let's piggyback the i_disksize mark_inode_dirty 2506 * into that. 2507 */ 2508 2509 new_i_size = pos + copied; 2510 if (new_i_size > EXT4_I(inode)->i_disksize) { 2511 if (ext4_da_should_update_i_disksize(page, end)) { 2512 down_write(&EXT4_I(inode)->i_data_sem); 2513 if (new_i_size > EXT4_I(inode)->i_disksize) { 2514 /* 2515 * Updating i_disksize when extending file 2516 * without needing block allocation 2517 */ 2518 if (ext4_should_order_data(inode)) 2519 ret = ext4_jbd2_file_inode(handle, 2520 inode); 2521 2522 EXT4_I(inode)->i_disksize = new_i_size; 2523 } 2524 up_write(&EXT4_I(inode)->i_data_sem); 2525 /* We need to mark inode dirty even if 2526 * new_i_size is less that inode->i_size 2527 * bu greater than i_disksize.(hint delalloc) 2528 */ 2529 ext4_mark_inode_dirty(handle, inode); 2530 } 2531 } 2532 ret2 = generic_write_end(file, mapping, pos, len, copied, 2533 page, fsdata); 2534 2535 page_len = PAGE_CACHE_SIZE - 2536 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1)); 2537 2538 if (page_len > 0) { 2539 ret = ext4_discard_partial_page_buffers_no_lock(handle, 2540 inode, page, pos + copied - 1, page_len, 2541 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED); 2542 } 2543 2544 copied = ret2; 2545 if (ret2 < 0) 2546 ret = ret2; 2547 ret2 = ext4_journal_stop(handle); 2548 if (!ret) 2549 ret = ret2; 2550 2551 return ret ? ret : copied; 2552 } 2553 2554 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2555 { 2556 /* 2557 * Drop reserved blocks 2558 */ 2559 BUG_ON(!PageLocked(page)); 2560 if (!page_has_buffers(page)) 2561 goto out; 2562 2563 ext4_da_page_release_reservation(page, offset); 2564 2565 out: 2566 ext4_invalidatepage(page, offset); 2567 2568 return; 2569 } 2570 2571 /* 2572 * Force all delayed allocation blocks to be allocated for a given inode. 2573 */ 2574 int ext4_alloc_da_blocks(struct inode *inode) 2575 { 2576 trace_ext4_alloc_da_blocks(inode); 2577 2578 if (!EXT4_I(inode)->i_reserved_data_blocks && 2579 !EXT4_I(inode)->i_reserved_meta_blocks) 2580 return 0; 2581 2582 /* 2583 * We do something simple for now. The filemap_flush() will 2584 * also start triggering a write of the data blocks, which is 2585 * not strictly speaking necessary (and for users of 2586 * laptop_mode, not even desirable). However, to do otherwise 2587 * would require replicating code paths in: 2588 * 2589 * ext4_da_writepages() -> 2590 * write_cache_pages() ---> (via passed in callback function) 2591 * __mpage_da_writepage() --> 2592 * mpage_add_bh_to_extent() 2593 * mpage_da_map_blocks() 2594 * 2595 * The problem is that write_cache_pages(), located in 2596 * mm/page-writeback.c, marks pages clean in preparation for 2597 * doing I/O, which is not desirable if we're not planning on 2598 * doing I/O at all. 2599 * 2600 * We could call write_cache_pages(), and then redirty all of 2601 * the pages by calling redirty_page_for_writepage() but that 2602 * would be ugly in the extreme. So instead we would need to 2603 * replicate parts of the code in the above functions, 2604 * simplifying them because we wouldn't actually intend to 2605 * write out the pages, but rather only collect contiguous 2606 * logical block extents, call the multi-block allocator, and 2607 * then update the buffer heads with the block allocations. 2608 * 2609 * For now, though, we'll cheat by calling filemap_flush(), 2610 * which will map the blocks, and start the I/O, but not 2611 * actually wait for the I/O to complete. 2612 */ 2613 return filemap_flush(inode->i_mapping); 2614 } 2615 2616 /* 2617 * bmap() is special. It gets used by applications such as lilo and by 2618 * the swapper to find the on-disk block of a specific piece of data. 2619 * 2620 * Naturally, this is dangerous if the block concerned is still in the 2621 * journal. If somebody makes a swapfile on an ext4 data-journaling 2622 * filesystem and enables swap, then they may get a nasty shock when the 2623 * data getting swapped to that swapfile suddenly gets overwritten by 2624 * the original zero's written out previously to the journal and 2625 * awaiting writeback in the kernel's buffer cache. 2626 * 2627 * So, if we see any bmap calls here on a modified, data-journaled file, 2628 * take extra steps to flush any blocks which might be in the cache. 2629 */ 2630 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2631 { 2632 struct inode *inode = mapping->host; 2633 journal_t *journal; 2634 int err; 2635 2636 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2637 test_opt(inode->i_sb, DELALLOC)) { 2638 /* 2639 * With delalloc we want to sync the file 2640 * so that we can make sure we allocate 2641 * blocks for file 2642 */ 2643 filemap_write_and_wait(mapping); 2644 } 2645 2646 if (EXT4_JOURNAL(inode) && 2647 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2648 /* 2649 * This is a REALLY heavyweight approach, but the use of 2650 * bmap on dirty files is expected to be extremely rare: 2651 * only if we run lilo or swapon on a freshly made file 2652 * do we expect this to happen. 2653 * 2654 * (bmap requires CAP_SYS_RAWIO so this does not 2655 * represent an unprivileged user DOS attack --- we'd be 2656 * in trouble if mortal users could trigger this path at 2657 * will.) 2658 * 2659 * NB. EXT4_STATE_JDATA is not set on files other than 2660 * regular files. If somebody wants to bmap a directory 2661 * or symlink and gets confused because the buffer 2662 * hasn't yet been flushed to disk, they deserve 2663 * everything they get. 2664 */ 2665 2666 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2667 journal = EXT4_JOURNAL(inode); 2668 jbd2_journal_lock_updates(journal); 2669 err = jbd2_journal_flush(journal); 2670 jbd2_journal_unlock_updates(journal); 2671 2672 if (err) 2673 return 0; 2674 } 2675 2676 return generic_block_bmap(mapping, block, ext4_get_block); 2677 } 2678 2679 static int ext4_readpage(struct file *file, struct page *page) 2680 { 2681 trace_ext4_readpage(page); 2682 return mpage_readpage(page, ext4_get_block); 2683 } 2684 2685 static int 2686 ext4_readpages(struct file *file, struct address_space *mapping, 2687 struct list_head *pages, unsigned nr_pages) 2688 { 2689 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2690 } 2691 2692 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2693 { 2694 struct buffer_head *head, *bh; 2695 unsigned int curr_off = 0; 2696 2697 if (!page_has_buffers(page)) 2698 return; 2699 head = bh = page_buffers(page); 2700 do { 2701 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2702 && bh->b_private) { 2703 ext4_free_io_end(bh->b_private); 2704 bh->b_private = NULL; 2705 bh->b_end_io = NULL; 2706 } 2707 curr_off = curr_off + bh->b_size; 2708 bh = bh->b_this_page; 2709 } while (bh != head); 2710 } 2711 2712 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2713 { 2714 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2715 2716 trace_ext4_invalidatepage(page, offset); 2717 2718 /* 2719 * free any io_end structure allocated for buffers to be discarded 2720 */ 2721 if (ext4_should_dioread_nolock(page->mapping->host)) 2722 ext4_invalidatepage_free_endio(page, offset); 2723 /* 2724 * If it's a full truncate we just forget about the pending dirtying 2725 */ 2726 if (offset == 0) 2727 ClearPageChecked(page); 2728 2729 if (journal) 2730 jbd2_journal_invalidatepage(journal, page, offset); 2731 else 2732 block_invalidatepage(page, offset); 2733 } 2734 2735 static int ext4_releasepage(struct page *page, gfp_t wait) 2736 { 2737 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2738 2739 trace_ext4_releasepage(page); 2740 2741 WARN_ON(PageChecked(page)); 2742 if (!page_has_buffers(page)) 2743 return 0; 2744 if (journal) 2745 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2746 else 2747 return try_to_free_buffers(page); 2748 } 2749 2750 /* 2751 * ext4_get_block used when preparing for a DIO write or buffer write. 2752 * We allocate an uinitialized extent if blocks haven't been allocated. 2753 * The extent will be converted to initialized after the IO is complete. 2754 */ 2755 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2756 struct buffer_head *bh_result, int create) 2757 { 2758 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2759 inode->i_ino, create); 2760 return _ext4_get_block(inode, iblock, bh_result, 2761 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2762 } 2763 2764 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2765 ssize_t size, void *private, int ret, 2766 bool is_async) 2767 { 2768 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2769 ext4_io_end_t *io_end = iocb->private; 2770 struct workqueue_struct *wq; 2771 unsigned long flags; 2772 struct ext4_inode_info *ei; 2773 2774 /* if not async direct IO or dio with 0 bytes write, just return */ 2775 if (!io_end || !size) 2776 goto out; 2777 2778 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2779 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2780 iocb->private, io_end->inode->i_ino, iocb, offset, 2781 size); 2782 2783 /* if not aio dio with unwritten extents, just free io and return */ 2784 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2785 ext4_free_io_end(io_end); 2786 iocb->private = NULL; 2787 out: 2788 if (is_async) 2789 aio_complete(iocb, ret, 0); 2790 inode_dio_done(inode); 2791 return; 2792 } 2793 2794 io_end->offset = offset; 2795 io_end->size = size; 2796 if (is_async) { 2797 io_end->iocb = iocb; 2798 io_end->result = ret; 2799 } 2800 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2801 2802 /* Add the io_end to per-inode completed aio dio list*/ 2803 ei = EXT4_I(io_end->inode); 2804 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2805 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2806 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2807 2808 /* queue the work to convert unwritten extents to written */ 2809 queue_work(wq, &io_end->work); 2810 iocb->private = NULL; 2811 2812 /* XXX: probably should move into the real I/O completion handler */ 2813 inode_dio_done(inode); 2814 } 2815 2816 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2817 { 2818 ext4_io_end_t *io_end = bh->b_private; 2819 struct workqueue_struct *wq; 2820 struct inode *inode; 2821 unsigned long flags; 2822 2823 if (!test_clear_buffer_uninit(bh) || !io_end) 2824 goto out; 2825 2826 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2827 printk("sb umounted, discard end_io request for inode %lu\n", 2828 io_end->inode->i_ino); 2829 ext4_free_io_end(io_end); 2830 goto out; 2831 } 2832 2833 /* 2834 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2835 * but being more careful is always safe for the future change. 2836 */ 2837 inode = io_end->inode; 2838 ext4_set_io_unwritten_flag(inode, io_end); 2839 2840 /* Add the io_end to per-inode completed io list*/ 2841 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2842 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2843 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2844 2845 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2846 /* queue the work to convert unwritten extents to written */ 2847 queue_work(wq, &io_end->work); 2848 out: 2849 bh->b_private = NULL; 2850 bh->b_end_io = NULL; 2851 clear_buffer_uninit(bh); 2852 end_buffer_async_write(bh, uptodate); 2853 } 2854 2855 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2856 { 2857 ext4_io_end_t *io_end; 2858 struct page *page = bh->b_page; 2859 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2860 size_t size = bh->b_size; 2861 2862 retry: 2863 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2864 if (!io_end) { 2865 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2866 schedule(); 2867 goto retry; 2868 } 2869 io_end->offset = offset; 2870 io_end->size = size; 2871 /* 2872 * We need to hold a reference to the page to make sure it 2873 * doesn't get evicted before ext4_end_io_work() has a chance 2874 * to convert the extent from written to unwritten. 2875 */ 2876 io_end->page = page; 2877 get_page(io_end->page); 2878 2879 bh->b_private = io_end; 2880 bh->b_end_io = ext4_end_io_buffer_write; 2881 return 0; 2882 } 2883 2884 /* 2885 * For ext4 extent files, ext4 will do direct-io write to holes, 2886 * preallocated extents, and those write extend the file, no need to 2887 * fall back to buffered IO. 2888 * 2889 * For holes, we fallocate those blocks, mark them as uninitialized 2890 * If those blocks were preallocated, we mark sure they are splited, but 2891 * still keep the range to write as uninitialized. 2892 * 2893 * The unwrritten extents will be converted to written when DIO is completed. 2894 * For async direct IO, since the IO may still pending when return, we 2895 * set up an end_io call back function, which will do the conversion 2896 * when async direct IO completed. 2897 * 2898 * If the O_DIRECT write will extend the file then add this inode to the 2899 * orphan list. So recovery will truncate it back to the original size 2900 * if the machine crashes during the write. 2901 * 2902 */ 2903 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2904 const struct iovec *iov, loff_t offset, 2905 unsigned long nr_segs) 2906 { 2907 struct file *file = iocb->ki_filp; 2908 struct inode *inode = file->f_mapping->host; 2909 ssize_t ret; 2910 size_t count = iov_length(iov, nr_segs); 2911 2912 loff_t final_size = offset + count; 2913 if (rw == WRITE && final_size <= inode->i_size) { 2914 /* 2915 * We could direct write to holes and fallocate. 2916 * 2917 * Allocated blocks to fill the hole are marked as uninitialized 2918 * to prevent parallel buffered read to expose the stale data 2919 * before DIO complete the data IO. 2920 * 2921 * As to previously fallocated extents, ext4 get_block 2922 * will just simply mark the buffer mapped but still 2923 * keep the extents uninitialized. 2924 * 2925 * for non AIO case, we will convert those unwritten extents 2926 * to written after return back from blockdev_direct_IO. 2927 * 2928 * for async DIO, the conversion needs to be defered when 2929 * the IO is completed. The ext4 end_io callback function 2930 * will be called to take care of the conversion work. 2931 * Here for async case, we allocate an io_end structure to 2932 * hook to the iocb. 2933 */ 2934 iocb->private = NULL; 2935 EXT4_I(inode)->cur_aio_dio = NULL; 2936 if (!is_sync_kiocb(iocb)) { 2937 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2938 if (!iocb->private) 2939 return -ENOMEM; 2940 /* 2941 * we save the io structure for current async 2942 * direct IO, so that later ext4_map_blocks() 2943 * could flag the io structure whether there 2944 * is a unwritten extents needs to be converted 2945 * when IO is completed. 2946 */ 2947 EXT4_I(inode)->cur_aio_dio = iocb->private; 2948 } 2949 2950 ret = __blockdev_direct_IO(rw, iocb, inode, 2951 inode->i_sb->s_bdev, iov, 2952 offset, nr_segs, 2953 ext4_get_block_write, 2954 ext4_end_io_dio, 2955 NULL, 2956 DIO_LOCKING | DIO_SKIP_HOLES); 2957 if (iocb->private) 2958 EXT4_I(inode)->cur_aio_dio = NULL; 2959 /* 2960 * The io_end structure takes a reference to the inode, 2961 * that structure needs to be destroyed and the 2962 * reference to the inode need to be dropped, when IO is 2963 * complete, even with 0 byte write, or failed. 2964 * 2965 * In the successful AIO DIO case, the io_end structure will be 2966 * desctroyed and the reference to the inode will be dropped 2967 * after the end_io call back function is called. 2968 * 2969 * In the case there is 0 byte write, or error case, since 2970 * VFS direct IO won't invoke the end_io call back function, 2971 * we need to free the end_io structure here. 2972 */ 2973 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2974 ext4_free_io_end(iocb->private); 2975 iocb->private = NULL; 2976 } else if (ret > 0 && ext4_test_inode_state(inode, 2977 EXT4_STATE_DIO_UNWRITTEN)) { 2978 int err; 2979 /* 2980 * for non AIO case, since the IO is already 2981 * completed, we could do the conversion right here 2982 */ 2983 err = ext4_convert_unwritten_extents(inode, 2984 offset, ret); 2985 if (err < 0) 2986 ret = err; 2987 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2988 } 2989 return ret; 2990 } 2991 2992 /* for write the the end of file case, we fall back to old way */ 2993 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2994 } 2995 2996 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2997 const struct iovec *iov, loff_t offset, 2998 unsigned long nr_segs) 2999 { 3000 struct file *file = iocb->ki_filp; 3001 struct inode *inode = file->f_mapping->host; 3002 ssize_t ret; 3003 3004 /* 3005 * If we are doing data journalling we don't support O_DIRECT 3006 */ 3007 if (ext4_should_journal_data(inode)) 3008 return 0; 3009 3010 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3011 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3012 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3013 else 3014 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3015 trace_ext4_direct_IO_exit(inode, offset, 3016 iov_length(iov, nr_segs), rw, ret); 3017 return ret; 3018 } 3019 3020 /* 3021 * Pages can be marked dirty completely asynchronously from ext4's journalling 3022 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3023 * much here because ->set_page_dirty is called under VFS locks. The page is 3024 * not necessarily locked. 3025 * 3026 * We cannot just dirty the page and leave attached buffers clean, because the 3027 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3028 * or jbddirty because all the journalling code will explode. 3029 * 3030 * So what we do is to mark the page "pending dirty" and next time writepage 3031 * is called, propagate that into the buffers appropriately. 3032 */ 3033 static int ext4_journalled_set_page_dirty(struct page *page) 3034 { 3035 SetPageChecked(page); 3036 return __set_page_dirty_nobuffers(page); 3037 } 3038 3039 static const struct address_space_operations ext4_ordered_aops = { 3040 .readpage = ext4_readpage, 3041 .readpages = ext4_readpages, 3042 .writepage = ext4_writepage, 3043 .write_begin = ext4_write_begin, 3044 .write_end = ext4_ordered_write_end, 3045 .bmap = ext4_bmap, 3046 .invalidatepage = ext4_invalidatepage, 3047 .releasepage = ext4_releasepage, 3048 .direct_IO = ext4_direct_IO, 3049 .migratepage = buffer_migrate_page, 3050 .is_partially_uptodate = block_is_partially_uptodate, 3051 .error_remove_page = generic_error_remove_page, 3052 }; 3053 3054 static const struct address_space_operations ext4_writeback_aops = { 3055 .readpage = ext4_readpage, 3056 .readpages = ext4_readpages, 3057 .writepage = ext4_writepage, 3058 .write_begin = ext4_write_begin, 3059 .write_end = ext4_writeback_write_end, 3060 .bmap = ext4_bmap, 3061 .invalidatepage = ext4_invalidatepage, 3062 .releasepage = ext4_releasepage, 3063 .direct_IO = ext4_direct_IO, 3064 .migratepage = buffer_migrate_page, 3065 .is_partially_uptodate = block_is_partially_uptodate, 3066 .error_remove_page = generic_error_remove_page, 3067 }; 3068 3069 static const struct address_space_operations ext4_journalled_aops = { 3070 .readpage = ext4_readpage, 3071 .readpages = ext4_readpages, 3072 .writepage = ext4_writepage, 3073 .write_begin = ext4_write_begin, 3074 .write_end = ext4_journalled_write_end, 3075 .set_page_dirty = ext4_journalled_set_page_dirty, 3076 .bmap = ext4_bmap, 3077 .invalidatepage = ext4_invalidatepage, 3078 .releasepage = ext4_releasepage, 3079 .direct_IO = ext4_direct_IO, 3080 .is_partially_uptodate = block_is_partially_uptodate, 3081 .error_remove_page = generic_error_remove_page, 3082 }; 3083 3084 static const struct address_space_operations ext4_da_aops = { 3085 .readpage = ext4_readpage, 3086 .readpages = ext4_readpages, 3087 .writepage = ext4_writepage, 3088 .writepages = ext4_da_writepages, 3089 .write_begin = ext4_da_write_begin, 3090 .write_end = ext4_da_write_end, 3091 .bmap = ext4_bmap, 3092 .invalidatepage = ext4_da_invalidatepage, 3093 .releasepage = ext4_releasepage, 3094 .direct_IO = ext4_direct_IO, 3095 .migratepage = buffer_migrate_page, 3096 .is_partially_uptodate = block_is_partially_uptodate, 3097 .error_remove_page = generic_error_remove_page, 3098 }; 3099 3100 void ext4_set_aops(struct inode *inode) 3101 { 3102 if (ext4_should_order_data(inode) && 3103 test_opt(inode->i_sb, DELALLOC)) 3104 inode->i_mapping->a_ops = &ext4_da_aops; 3105 else if (ext4_should_order_data(inode)) 3106 inode->i_mapping->a_ops = &ext4_ordered_aops; 3107 else if (ext4_should_writeback_data(inode) && 3108 test_opt(inode->i_sb, DELALLOC)) 3109 inode->i_mapping->a_ops = &ext4_da_aops; 3110 else if (ext4_should_writeback_data(inode)) 3111 inode->i_mapping->a_ops = &ext4_writeback_aops; 3112 else 3113 inode->i_mapping->a_ops = &ext4_journalled_aops; 3114 } 3115 3116 3117 /* 3118 * ext4_discard_partial_page_buffers() 3119 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3120 * This function finds and locks the page containing the offset 3121 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3122 * Calling functions that already have the page locked should call 3123 * ext4_discard_partial_page_buffers_no_lock directly. 3124 */ 3125 int ext4_discard_partial_page_buffers(handle_t *handle, 3126 struct address_space *mapping, loff_t from, 3127 loff_t length, int flags) 3128 { 3129 struct inode *inode = mapping->host; 3130 struct page *page; 3131 int err = 0; 3132 3133 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3134 mapping_gfp_mask(mapping) & ~__GFP_FS); 3135 if (!page) 3136 return -ENOMEM; 3137 3138 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3139 from, length, flags); 3140 3141 unlock_page(page); 3142 page_cache_release(page); 3143 return err; 3144 } 3145 3146 /* 3147 * ext4_discard_partial_page_buffers_no_lock() 3148 * Zeros a page range of length 'length' starting from offset 'from'. 3149 * Buffer heads that correspond to the block aligned regions of the 3150 * zeroed range will be unmapped. Unblock aligned regions 3151 * will have the corresponding buffer head mapped if needed so that 3152 * that region of the page can be updated with the partial zero out. 3153 * 3154 * This function assumes that the page has already been locked. The 3155 * The range to be discarded must be contained with in the given page. 3156 * If the specified range exceeds the end of the page it will be shortened 3157 * to the end of the page that corresponds to 'from'. This function is 3158 * appropriate for updating a page and it buffer heads to be unmapped and 3159 * zeroed for blocks that have been either released, or are going to be 3160 * released. 3161 * 3162 * handle: The journal handle 3163 * inode: The files inode 3164 * page: A locked page that contains the offset "from" 3165 * from: The starting byte offset (from the begining of the file) 3166 * to begin discarding 3167 * len: The length of bytes to discard 3168 * flags: Optional flags that may be used: 3169 * 3170 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3171 * Only zero the regions of the page whose buffer heads 3172 * have already been unmapped. This flag is appropriate 3173 * for updateing the contents of a page whose blocks may 3174 * have already been released, and we only want to zero 3175 * out the regions that correspond to those released blocks. 3176 * 3177 * Returns zero on sucess or negative on failure. 3178 */ 3179 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3180 struct inode *inode, struct page *page, loff_t from, 3181 loff_t length, int flags) 3182 { 3183 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3184 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3185 unsigned int blocksize, max, pos; 3186 ext4_lblk_t iblock; 3187 struct buffer_head *bh; 3188 int err = 0; 3189 3190 blocksize = inode->i_sb->s_blocksize; 3191 max = PAGE_CACHE_SIZE - offset; 3192 3193 if (index != page->index) 3194 return -EINVAL; 3195 3196 /* 3197 * correct length if it does not fall between 3198 * 'from' and the end of the page 3199 */ 3200 if (length > max || length < 0) 3201 length = max; 3202 3203 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3204 3205 if (!page_has_buffers(page)) { 3206 /* 3207 * If the range to be discarded covers a partial block 3208 * we need to get the page buffers. This is because 3209 * partial blocks cannot be released and the page needs 3210 * to be updated with the contents of the block before 3211 * we write the zeros on top of it. 3212 */ 3213 if ((from & (blocksize - 1)) || 3214 ((from + length) & (blocksize - 1))) { 3215 create_empty_buffers(page, blocksize, 0); 3216 } else { 3217 /* 3218 * If there are no partial blocks, 3219 * there is nothing to update, 3220 * so we can return now 3221 */ 3222 return 0; 3223 } 3224 } 3225 3226 /* Find the buffer that contains "offset" */ 3227 bh = page_buffers(page); 3228 pos = blocksize; 3229 while (offset >= pos) { 3230 bh = bh->b_this_page; 3231 iblock++; 3232 pos += blocksize; 3233 } 3234 3235 pos = offset; 3236 while (pos < offset + length) { 3237 unsigned int end_of_block, range_to_discard; 3238 3239 err = 0; 3240 3241 /* The length of space left to zero and unmap */ 3242 range_to_discard = offset + length - pos; 3243 3244 /* The length of space until the end of the block */ 3245 end_of_block = blocksize - (pos & (blocksize-1)); 3246 3247 /* 3248 * Do not unmap or zero past end of block 3249 * for this buffer head 3250 */ 3251 if (range_to_discard > end_of_block) 3252 range_to_discard = end_of_block; 3253 3254 3255 /* 3256 * Skip this buffer head if we are only zeroing unampped 3257 * regions of the page 3258 */ 3259 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3260 buffer_mapped(bh)) 3261 goto next; 3262 3263 /* If the range is block aligned, unmap */ 3264 if (range_to_discard == blocksize) { 3265 clear_buffer_dirty(bh); 3266 bh->b_bdev = NULL; 3267 clear_buffer_mapped(bh); 3268 clear_buffer_req(bh); 3269 clear_buffer_new(bh); 3270 clear_buffer_delay(bh); 3271 clear_buffer_unwritten(bh); 3272 clear_buffer_uptodate(bh); 3273 zero_user(page, pos, range_to_discard); 3274 BUFFER_TRACE(bh, "Buffer discarded"); 3275 goto next; 3276 } 3277 3278 /* 3279 * If this block is not completely contained in the range 3280 * to be discarded, then it is not going to be released. Because 3281 * we need to keep this block, we need to make sure this part 3282 * of the page is uptodate before we modify it by writeing 3283 * partial zeros on it. 3284 */ 3285 if (!buffer_mapped(bh)) { 3286 /* 3287 * Buffer head must be mapped before we can read 3288 * from the block 3289 */ 3290 BUFFER_TRACE(bh, "unmapped"); 3291 ext4_get_block(inode, iblock, bh, 0); 3292 /* unmapped? It's a hole - nothing to do */ 3293 if (!buffer_mapped(bh)) { 3294 BUFFER_TRACE(bh, "still unmapped"); 3295 goto next; 3296 } 3297 } 3298 3299 /* Ok, it's mapped. Make sure it's up-to-date */ 3300 if (PageUptodate(page)) 3301 set_buffer_uptodate(bh); 3302 3303 if (!buffer_uptodate(bh)) { 3304 err = -EIO; 3305 ll_rw_block(READ, 1, &bh); 3306 wait_on_buffer(bh); 3307 /* Uhhuh. Read error. Complain and punt.*/ 3308 if (!buffer_uptodate(bh)) 3309 goto next; 3310 } 3311 3312 if (ext4_should_journal_data(inode)) { 3313 BUFFER_TRACE(bh, "get write access"); 3314 err = ext4_journal_get_write_access(handle, bh); 3315 if (err) 3316 goto next; 3317 } 3318 3319 zero_user(page, pos, range_to_discard); 3320 3321 err = 0; 3322 if (ext4_should_journal_data(inode)) { 3323 err = ext4_handle_dirty_metadata(handle, inode, bh); 3324 } else 3325 mark_buffer_dirty(bh); 3326 3327 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3328 next: 3329 bh = bh->b_this_page; 3330 iblock++; 3331 pos += range_to_discard; 3332 } 3333 3334 return err; 3335 } 3336 3337 /* 3338 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3339 * up to the end of the block which corresponds to `from'. 3340 * This required during truncate. We need to physically zero the tail end 3341 * of that block so it doesn't yield old data if the file is later grown. 3342 */ 3343 int ext4_block_truncate_page(handle_t *handle, 3344 struct address_space *mapping, loff_t from) 3345 { 3346 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3347 unsigned length; 3348 unsigned blocksize; 3349 struct inode *inode = mapping->host; 3350 3351 blocksize = inode->i_sb->s_blocksize; 3352 length = blocksize - (offset & (blocksize - 1)); 3353 3354 return ext4_block_zero_page_range(handle, mapping, from, length); 3355 } 3356 3357 /* 3358 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3359 * starting from file offset 'from'. The range to be zero'd must 3360 * be contained with in one block. If the specified range exceeds 3361 * the end of the block it will be shortened to end of the block 3362 * that cooresponds to 'from' 3363 */ 3364 int ext4_block_zero_page_range(handle_t *handle, 3365 struct address_space *mapping, loff_t from, loff_t length) 3366 { 3367 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3368 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3369 unsigned blocksize, max, pos; 3370 ext4_lblk_t iblock; 3371 struct inode *inode = mapping->host; 3372 struct buffer_head *bh; 3373 struct page *page; 3374 int err = 0; 3375 3376 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3377 mapping_gfp_mask(mapping) & ~__GFP_FS); 3378 if (!page) 3379 return -ENOMEM; 3380 3381 blocksize = inode->i_sb->s_blocksize; 3382 max = blocksize - (offset & (blocksize - 1)); 3383 3384 /* 3385 * correct length if it does not fall between 3386 * 'from' and the end of the block 3387 */ 3388 if (length > max || length < 0) 3389 length = max; 3390 3391 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3392 3393 if (!page_has_buffers(page)) 3394 create_empty_buffers(page, blocksize, 0); 3395 3396 /* Find the buffer that contains "offset" */ 3397 bh = page_buffers(page); 3398 pos = blocksize; 3399 while (offset >= pos) { 3400 bh = bh->b_this_page; 3401 iblock++; 3402 pos += blocksize; 3403 } 3404 3405 err = 0; 3406 if (buffer_freed(bh)) { 3407 BUFFER_TRACE(bh, "freed: skip"); 3408 goto unlock; 3409 } 3410 3411 if (!buffer_mapped(bh)) { 3412 BUFFER_TRACE(bh, "unmapped"); 3413 ext4_get_block(inode, iblock, bh, 0); 3414 /* unmapped? It's a hole - nothing to do */ 3415 if (!buffer_mapped(bh)) { 3416 BUFFER_TRACE(bh, "still unmapped"); 3417 goto unlock; 3418 } 3419 } 3420 3421 /* Ok, it's mapped. Make sure it's up-to-date */ 3422 if (PageUptodate(page)) 3423 set_buffer_uptodate(bh); 3424 3425 if (!buffer_uptodate(bh)) { 3426 err = -EIO; 3427 ll_rw_block(READ, 1, &bh); 3428 wait_on_buffer(bh); 3429 /* Uhhuh. Read error. Complain and punt. */ 3430 if (!buffer_uptodate(bh)) 3431 goto unlock; 3432 } 3433 3434 if (ext4_should_journal_data(inode)) { 3435 BUFFER_TRACE(bh, "get write access"); 3436 err = ext4_journal_get_write_access(handle, bh); 3437 if (err) 3438 goto unlock; 3439 } 3440 3441 zero_user(page, offset, length); 3442 3443 BUFFER_TRACE(bh, "zeroed end of block"); 3444 3445 err = 0; 3446 if (ext4_should_journal_data(inode)) { 3447 err = ext4_handle_dirty_metadata(handle, inode, bh); 3448 } else 3449 mark_buffer_dirty(bh); 3450 3451 unlock: 3452 unlock_page(page); 3453 page_cache_release(page); 3454 return err; 3455 } 3456 3457 int ext4_can_truncate(struct inode *inode) 3458 { 3459 if (S_ISREG(inode->i_mode)) 3460 return 1; 3461 if (S_ISDIR(inode->i_mode)) 3462 return 1; 3463 if (S_ISLNK(inode->i_mode)) 3464 return !ext4_inode_is_fast_symlink(inode); 3465 return 0; 3466 } 3467 3468 /* 3469 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3470 * associated with the given offset and length 3471 * 3472 * @inode: File inode 3473 * @offset: The offset where the hole will begin 3474 * @len: The length of the hole 3475 * 3476 * Returns: 0 on sucess or negative on failure 3477 */ 3478 3479 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3480 { 3481 struct inode *inode = file->f_path.dentry->d_inode; 3482 if (!S_ISREG(inode->i_mode)) 3483 return -ENOTSUPP; 3484 3485 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3486 /* TODO: Add support for non extent hole punching */ 3487 return -ENOTSUPP; 3488 } 3489 3490 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3491 /* TODO: Add support for bigalloc file systems */ 3492 return -ENOTSUPP; 3493 } 3494 3495 return ext4_ext_punch_hole(file, offset, length); 3496 } 3497 3498 /* 3499 * ext4_truncate() 3500 * 3501 * We block out ext4_get_block() block instantiations across the entire 3502 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3503 * simultaneously on behalf of the same inode. 3504 * 3505 * As we work through the truncate and commmit bits of it to the journal there 3506 * is one core, guiding principle: the file's tree must always be consistent on 3507 * disk. We must be able to restart the truncate after a crash. 3508 * 3509 * The file's tree may be transiently inconsistent in memory (although it 3510 * probably isn't), but whenever we close off and commit a journal transaction, 3511 * the contents of (the filesystem + the journal) must be consistent and 3512 * restartable. It's pretty simple, really: bottom up, right to left (although 3513 * left-to-right works OK too). 3514 * 3515 * Note that at recovery time, journal replay occurs *before* the restart of 3516 * truncate against the orphan inode list. 3517 * 3518 * The committed inode has the new, desired i_size (which is the same as 3519 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3520 * that this inode's truncate did not complete and it will again call 3521 * ext4_truncate() to have another go. So there will be instantiated blocks 3522 * to the right of the truncation point in a crashed ext4 filesystem. But 3523 * that's fine - as long as they are linked from the inode, the post-crash 3524 * ext4_truncate() run will find them and release them. 3525 */ 3526 void ext4_truncate(struct inode *inode) 3527 { 3528 trace_ext4_truncate_enter(inode); 3529 3530 if (!ext4_can_truncate(inode)) 3531 return; 3532 3533 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3534 3535 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3536 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3537 3538 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3539 ext4_ext_truncate(inode); 3540 else 3541 ext4_ind_truncate(inode); 3542 3543 trace_ext4_truncate_exit(inode); 3544 } 3545 3546 /* 3547 * ext4_get_inode_loc returns with an extra refcount against the inode's 3548 * underlying buffer_head on success. If 'in_mem' is true, we have all 3549 * data in memory that is needed to recreate the on-disk version of this 3550 * inode. 3551 */ 3552 static int __ext4_get_inode_loc(struct inode *inode, 3553 struct ext4_iloc *iloc, int in_mem) 3554 { 3555 struct ext4_group_desc *gdp; 3556 struct buffer_head *bh; 3557 struct super_block *sb = inode->i_sb; 3558 ext4_fsblk_t block; 3559 int inodes_per_block, inode_offset; 3560 3561 iloc->bh = NULL; 3562 if (!ext4_valid_inum(sb, inode->i_ino)) 3563 return -EIO; 3564 3565 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3566 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3567 if (!gdp) 3568 return -EIO; 3569 3570 /* 3571 * Figure out the offset within the block group inode table 3572 */ 3573 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3574 inode_offset = ((inode->i_ino - 1) % 3575 EXT4_INODES_PER_GROUP(sb)); 3576 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3577 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3578 3579 bh = sb_getblk(sb, block); 3580 if (!bh) { 3581 EXT4_ERROR_INODE_BLOCK(inode, block, 3582 "unable to read itable block"); 3583 return -EIO; 3584 } 3585 if (!buffer_uptodate(bh)) { 3586 lock_buffer(bh); 3587 3588 /* 3589 * If the buffer has the write error flag, we have failed 3590 * to write out another inode in the same block. In this 3591 * case, we don't have to read the block because we may 3592 * read the old inode data successfully. 3593 */ 3594 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3595 set_buffer_uptodate(bh); 3596 3597 if (buffer_uptodate(bh)) { 3598 /* someone brought it uptodate while we waited */ 3599 unlock_buffer(bh); 3600 goto has_buffer; 3601 } 3602 3603 /* 3604 * If we have all information of the inode in memory and this 3605 * is the only valid inode in the block, we need not read the 3606 * block. 3607 */ 3608 if (in_mem) { 3609 struct buffer_head *bitmap_bh; 3610 int i, start; 3611 3612 start = inode_offset & ~(inodes_per_block - 1); 3613 3614 /* Is the inode bitmap in cache? */ 3615 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3616 if (!bitmap_bh) 3617 goto make_io; 3618 3619 /* 3620 * If the inode bitmap isn't in cache then the 3621 * optimisation may end up performing two reads instead 3622 * of one, so skip it. 3623 */ 3624 if (!buffer_uptodate(bitmap_bh)) { 3625 brelse(bitmap_bh); 3626 goto make_io; 3627 } 3628 for (i = start; i < start + inodes_per_block; i++) { 3629 if (i == inode_offset) 3630 continue; 3631 if (ext4_test_bit(i, bitmap_bh->b_data)) 3632 break; 3633 } 3634 brelse(bitmap_bh); 3635 if (i == start + inodes_per_block) { 3636 /* all other inodes are free, so skip I/O */ 3637 memset(bh->b_data, 0, bh->b_size); 3638 set_buffer_uptodate(bh); 3639 unlock_buffer(bh); 3640 goto has_buffer; 3641 } 3642 } 3643 3644 make_io: 3645 /* 3646 * If we need to do any I/O, try to pre-readahead extra 3647 * blocks from the inode table. 3648 */ 3649 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3650 ext4_fsblk_t b, end, table; 3651 unsigned num; 3652 3653 table = ext4_inode_table(sb, gdp); 3654 /* s_inode_readahead_blks is always a power of 2 */ 3655 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3656 if (table > b) 3657 b = table; 3658 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3659 num = EXT4_INODES_PER_GROUP(sb); 3660 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3661 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3662 num -= ext4_itable_unused_count(sb, gdp); 3663 table += num / inodes_per_block; 3664 if (end > table) 3665 end = table; 3666 while (b <= end) 3667 sb_breadahead(sb, b++); 3668 } 3669 3670 /* 3671 * There are other valid inodes in the buffer, this inode 3672 * has in-inode xattrs, or we don't have this inode in memory. 3673 * Read the block from disk. 3674 */ 3675 trace_ext4_load_inode(inode); 3676 get_bh(bh); 3677 bh->b_end_io = end_buffer_read_sync; 3678 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3679 wait_on_buffer(bh); 3680 if (!buffer_uptodate(bh)) { 3681 EXT4_ERROR_INODE_BLOCK(inode, block, 3682 "unable to read itable block"); 3683 brelse(bh); 3684 return -EIO; 3685 } 3686 } 3687 has_buffer: 3688 iloc->bh = bh; 3689 return 0; 3690 } 3691 3692 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3693 { 3694 /* We have all inode data except xattrs in memory here. */ 3695 return __ext4_get_inode_loc(inode, iloc, 3696 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3697 } 3698 3699 void ext4_set_inode_flags(struct inode *inode) 3700 { 3701 unsigned int flags = EXT4_I(inode)->i_flags; 3702 3703 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3704 if (flags & EXT4_SYNC_FL) 3705 inode->i_flags |= S_SYNC; 3706 if (flags & EXT4_APPEND_FL) 3707 inode->i_flags |= S_APPEND; 3708 if (flags & EXT4_IMMUTABLE_FL) 3709 inode->i_flags |= S_IMMUTABLE; 3710 if (flags & EXT4_NOATIME_FL) 3711 inode->i_flags |= S_NOATIME; 3712 if (flags & EXT4_DIRSYNC_FL) 3713 inode->i_flags |= S_DIRSYNC; 3714 } 3715 3716 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3717 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3718 { 3719 unsigned int vfs_fl; 3720 unsigned long old_fl, new_fl; 3721 3722 do { 3723 vfs_fl = ei->vfs_inode.i_flags; 3724 old_fl = ei->i_flags; 3725 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3726 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3727 EXT4_DIRSYNC_FL); 3728 if (vfs_fl & S_SYNC) 3729 new_fl |= EXT4_SYNC_FL; 3730 if (vfs_fl & S_APPEND) 3731 new_fl |= EXT4_APPEND_FL; 3732 if (vfs_fl & S_IMMUTABLE) 3733 new_fl |= EXT4_IMMUTABLE_FL; 3734 if (vfs_fl & S_NOATIME) 3735 new_fl |= EXT4_NOATIME_FL; 3736 if (vfs_fl & S_DIRSYNC) 3737 new_fl |= EXT4_DIRSYNC_FL; 3738 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3739 } 3740 3741 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3742 struct ext4_inode_info *ei) 3743 { 3744 blkcnt_t i_blocks ; 3745 struct inode *inode = &(ei->vfs_inode); 3746 struct super_block *sb = inode->i_sb; 3747 3748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3749 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3750 /* we are using combined 48 bit field */ 3751 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3752 le32_to_cpu(raw_inode->i_blocks_lo); 3753 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3754 /* i_blocks represent file system block size */ 3755 return i_blocks << (inode->i_blkbits - 9); 3756 } else { 3757 return i_blocks; 3758 } 3759 } else { 3760 return le32_to_cpu(raw_inode->i_blocks_lo); 3761 } 3762 } 3763 3764 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3765 { 3766 struct ext4_iloc iloc; 3767 struct ext4_inode *raw_inode; 3768 struct ext4_inode_info *ei; 3769 struct inode *inode; 3770 journal_t *journal = EXT4_SB(sb)->s_journal; 3771 long ret; 3772 int block; 3773 3774 inode = iget_locked(sb, ino); 3775 if (!inode) 3776 return ERR_PTR(-ENOMEM); 3777 if (!(inode->i_state & I_NEW)) 3778 return inode; 3779 3780 ei = EXT4_I(inode); 3781 iloc.bh = NULL; 3782 3783 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3784 if (ret < 0) 3785 goto bad_inode; 3786 raw_inode = ext4_raw_inode(&iloc); 3787 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3788 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3789 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3790 if (!(test_opt(inode->i_sb, NO_UID32))) { 3791 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3792 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3793 } 3794 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3795 3796 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3797 ei->i_dir_start_lookup = 0; 3798 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3799 /* We now have enough fields to check if the inode was active or not. 3800 * This is needed because nfsd might try to access dead inodes 3801 * the test is that same one that e2fsck uses 3802 * NeilBrown 1999oct15 3803 */ 3804 if (inode->i_nlink == 0) { 3805 if (inode->i_mode == 0 || 3806 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3807 /* this inode is deleted */ 3808 ret = -ESTALE; 3809 goto bad_inode; 3810 } 3811 /* The only unlinked inodes we let through here have 3812 * valid i_mode and are being read by the orphan 3813 * recovery code: that's fine, we're about to complete 3814 * the process of deleting those. */ 3815 } 3816 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3817 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3818 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3819 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3820 ei->i_file_acl |= 3821 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3822 inode->i_size = ext4_isize(raw_inode); 3823 ei->i_disksize = inode->i_size; 3824 #ifdef CONFIG_QUOTA 3825 ei->i_reserved_quota = 0; 3826 #endif 3827 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3828 ei->i_block_group = iloc.block_group; 3829 ei->i_last_alloc_group = ~0; 3830 /* 3831 * NOTE! The in-memory inode i_data array is in little-endian order 3832 * even on big-endian machines: we do NOT byteswap the block numbers! 3833 */ 3834 for (block = 0; block < EXT4_N_BLOCKS; block++) 3835 ei->i_data[block] = raw_inode->i_block[block]; 3836 INIT_LIST_HEAD(&ei->i_orphan); 3837 3838 /* 3839 * Set transaction id's of transactions that have to be committed 3840 * to finish f[data]sync. We set them to currently running transaction 3841 * as we cannot be sure that the inode or some of its metadata isn't 3842 * part of the transaction - the inode could have been reclaimed and 3843 * now it is reread from disk. 3844 */ 3845 if (journal) { 3846 transaction_t *transaction; 3847 tid_t tid; 3848 3849 read_lock(&journal->j_state_lock); 3850 if (journal->j_running_transaction) 3851 transaction = journal->j_running_transaction; 3852 else 3853 transaction = journal->j_committing_transaction; 3854 if (transaction) 3855 tid = transaction->t_tid; 3856 else 3857 tid = journal->j_commit_sequence; 3858 read_unlock(&journal->j_state_lock); 3859 ei->i_sync_tid = tid; 3860 ei->i_datasync_tid = tid; 3861 } 3862 3863 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3864 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3865 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3866 EXT4_INODE_SIZE(inode->i_sb)) { 3867 ret = -EIO; 3868 goto bad_inode; 3869 } 3870 if (ei->i_extra_isize == 0) { 3871 /* The extra space is currently unused. Use it. */ 3872 ei->i_extra_isize = sizeof(struct ext4_inode) - 3873 EXT4_GOOD_OLD_INODE_SIZE; 3874 } else { 3875 __le32 *magic = (void *)raw_inode + 3876 EXT4_GOOD_OLD_INODE_SIZE + 3877 ei->i_extra_isize; 3878 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3879 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3880 } 3881 } else 3882 ei->i_extra_isize = 0; 3883 3884 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3885 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3886 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3887 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3888 3889 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3890 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3891 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3892 inode->i_version |= 3893 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3894 } 3895 3896 ret = 0; 3897 if (ei->i_file_acl && 3898 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3899 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3900 ei->i_file_acl); 3901 ret = -EIO; 3902 goto bad_inode; 3903 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3904 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3905 (S_ISLNK(inode->i_mode) && 3906 !ext4_inode_is_fast_symlink(inode))) 3907 /* Validate extent which is part of inode */ 3908 ret = ext4_ext_check_inode(inode); 3909 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3910 (S_ISLNK(inode->i_mode) && 3911 !ext4_inode_is_fast_symlink(inode))) { 3912 /* Validate block references which are part of inode */ 3913 ret = ext4_ind_check_inode(inode); 3914 } 3915 if (ret) 3916 goto bad_inode; 3917 3918 if (S_ISREG(inode->i_mode)) { 3919 inode->i_op = &ext4_file_inode_operations; 3920 inode->i_fop = &ext4_file_operations; 3921 ext4_set_aops(inode); 3922 } else if (S_ISDIR(inode->i_mode)) { 3923 inode->i_op = &ext4_dir_inode_operations; 3924 inode->i_fop = &ext4_dir_operations; 3925 } else if (S_ISLNK(inode->i_mode)) { 3926 if (ext4_inode_is_fast_symlink(inode)) { 3927 inode->i_op = &ext4_fast_symlink_inode_operations; 3928 nd_terminate_link(ei->i_data, inode->i_size, 3929 sizeof(ei->i_data) - 1); 3930 } else { 3931 inode->i_op = &ext4_symlink_inode_operations; 3932 ext4_set_aops(inode); 3933 } 3934 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3935 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3936 inode->i_op = &ext4_special_inode_operations; 3937 if (raw_inode->i_block[0]) 3938 init_special_inode(inode, inode->i_mode, 3939 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3940 else 3941 init_special_inode(inode, inode->i_mode, 3942 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3943 } else { 3944 ret = -EIO; 3945 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3946 goto bad_inode; 3947 } 3948 brelse(iloc.bh); 3949 ext4_set_inode_flags(inode); 3950 unlock_new_inode(inode); 3951 return inode; 3952 3953 bad_inode: 3954 brelse(iloc.bh); 3955 iget_failed(inode); 3956 return ERR_PTR(ret); 3957 } 3958 3959 static int ext4_inode_blocks_set(handle_t *handle, 3960 struct ext4_inode *raw_inode, 3961 struct ext4_inode_info *ei) 3962 { 3963 struct inode *inode = &(ei->vfs_inode); 3964 u64 i_blocks = inode->i_blocks; 3965 struct super_block *sb = inode->i_sb; 3966 3967 if (i_blocks <= ~0U) { 3968 /* 3969 * i_blocks can be represnted in a 32 bit variable 3970 * as multiple of 512 bytes 3971 */ 3972 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3973 raw_inode->i_blocks_high = 0; 3974 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3975 return 0; 3976 } 3977 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3978 return -EFBIG; 3979 3980 if (i_blocks <= 0xffffffffffffULL) { 3981 /* 3982 * i_blocks can be represented in a 48 bit variable 3983 * as multiple of 512 bytes 3984 */ 3985 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3986 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3987 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3988 } else { 3989 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3990 /* i_block is stored in file system block size */ 3991 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3992 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3993 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3994 } 3995 return 0; 3996 } 3997 3998 /* 3999 * Post the struct inode info into an on-disk inode location in the 4000 * buffer-cache. This gobbles the caller's reference to the 4001 * buffer_head in the inode location struct. 4002 * 4003 * The caller must have write access to iloc->bh. 4004 */ 4005 static int ext4_do_update_inode(handle_t *handle, 4006 struct inode *inode, 4007 struct ext4_iloc *iloc) 4008 { 4009 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4010 struct ext4_inode_info *ei = EXT4_I(inode); 4011 struct buffer_head *bh = iloc->bh; 4012 int err = 0, rc, block; 4013 4014 /* For fields not not tracking in the in-memory inode, 4015 * initialise them to zero for new inodes. */ 4016 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4017 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4018 4019 ext4_get_inode_flags(ei); 4020 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4021 if (!(test_opt(inode->i_sb, NO_UID32))) { 4022 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4023 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4024 /* 4025 * Fix up interoperability with old kernels. Otherwise, old inodes get 4026 * re-used with the upper 16 bits of the uid/gid intact 4027 */ 4028 if (!ei->i_dtime) { 4029 raw_inode->i_uid_high = 4030 cpu_to_le16(high_16_bits(inode->i_uid)); 4031 raw_inode->i_gid_high = 4032 cpu_to_le16(high_16_bits(inode->i_gid)); 4033 } else { 4034 raw_inode->i_uid_high = 0; 4035 raw_inode->i_gid_high = 0; 4036 } 4037 } else { 4038 raw_inode->i_uid_low = 4039 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4040 raw_inode->i_gid_low = 4041 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4042 raw_inode->i_uid_high = 0; 4043 raw_inode->i_gid_high = 0; 4044 } 4045 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4046 4047 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4048 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4049 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4050 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4051 4052 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4053 goto out_brelse; 4054 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4055 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4056 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4057 cpu_to_le32(EXT4_OS_HURD)) 4058 raw_inode->i_file_acl_high = 4059 cpu_to_le16(ei->i_file_acl >> 32); 4060 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4061 ext4_isize_set(raw_inode, ei->i_disksize); 4062 if (ei->i_disksize > 0x7fffffffULL) { 4063 struct super_block *sb = inode->i_sb; 4064 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4065 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4066 EXT4_SB(sb)->s_es->s_rev_level == 4067 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4068 /* If this is the first large file 4069 * created, add a flag to the superblock. 4070 */ 4071 err = ext4_journal_get_write_access(handle, 4072 EXT4_SB(sb)->s_sbh); 4073 if (err) 4074 goto out_brelse; 4075 ext4_update_dynamic_rev(sb); 4076 EXT4_SET_RO_COMPAT_FEATURE(sb, 4077 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4078 sb->s_dirt = 1; 4079 ext4_handle_sync(handle); 4080 err = ext4_handle_dirty_metadata(handle, NULL, 4081 EXT4_SB(sb)->s_sbh); 4082 } 4083 } 4084 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4085 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4086 if (old_valid_dev(inode->i_rdev)) { 4087 raw_inode->i_block[0] = 4088 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4089 raw_inode->i_block[1] = 0; 4090 } else { 4091 raw_inode->i_block[0] = 0; 4092 raw_inode->i_block[1] = 4093 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4094 raw_inode->i_block[2] = 0; 4095 } 4096 } else 4097 for (block = 0; block < EXT4_N_BLOCKS; block++) 4098 raw_inode->i_block[block] = ei->i_data[block]; 4099 4100 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4101 if (ei->i_extra_isize) { 4102 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4103 raw_inode->i_version_hi = 4104 cpu_to_le32(inode->i_version >> 32); 4105 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4106 } 4107 4108 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4109 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4110 if (!err) 4111 err = rc; 4112 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4113 4114 ext4_update_inode_fsync_trans(handle, inode, 0); 4115 out_brelse: 4116 brelse(bh); 4117 ext4_std_error(inode->i_sb, err); 4118 return err; 4119 } 4120 4121 /* 4122 * ext4_write_inode() 4123 * 4124 * We are called from a few places: 4125 * 4126 * - Within generic_file_write() for O_SYNC files. 4127 * Here, there will be no transaction running. We wait for any running 4128 * trasnaction to commit. 4129 * 4130 * - Within sys_sync(), kupdate and such. 4131 * We wait on commit, if tol to. 4132 * 4133 * - Within prune_icache() (PF_MEMALLOC == true) 4134 * Here we simply return. We can't afford to block kswapd on the 4135 * journal commit. 4136 * 4137 * In all cases it is actually safe for us to return without doing anything, 4138 * because the inode has been copied into a raw inode buffer in 4139 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4140 * knfsd. 4141 * 4142 * Note that we are absolutely dependent upon all inode dirtiers doing the 4143 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4144 * which we are interested. 4145 * 4146 * It would be a bug for them to not do this. The code: 4147 * 4148 * mark_inode_dirty(inode) 4149 * stuff(); 4150 * inode->i_size = expr; 4151 * 4152 * is in error because a kswapd-driven write_inode() could occur while 4153 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4154 * will no longer be on the superblock's dirty inode list. 4155 */ 4156 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4157 { 4158 int err; 4159 4160 if (current->flags & PF_MEMALLOC) 4161 return 0; 4162 4163 if (EXT4_SB(inode->i_sb)->s_journal) { 4164 if (ext4_journal_current_handle()) { 4165 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4166 dump_stack(); 4167 return -EIO; 4168 } 4169 4170 if (wbc->sync_mode != WB_SYNC_ALL) 4171 return 0; 4172 4173 err = ext4_force_commit(inode->i_sb); 4174 } else { 4175 struct ext4_iloc iloc; 4176 4177 err = __ext4_get_inode_loc(inode, &iloc, 0); 4178 if (err) 4179 return err; 4180 if (wbc->sync_mode == WB_SYNC_ALL) 4181 sync_dirty_buffer(iloc.bh); 4182 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4183 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4184 "IO error syncing inode"); 4185 err = -EIO; 4186 } 4187 brelse(iloc.bh); 4188 } 4189 return err; 4190 } 4191 4192 /* 4193 * ext4_setattr() 4194 * 4195 * Called from notify_change. 4196 * 4197 * We want to trap VFS attempts to truncate the file as soon as 4198 * possible. In particular, we want to make sure that when the VFS 4199 * shrinks i_size, we put the inode on the orphan list and modify 4200 * i_disksize immediately, so that during the subsequent flushing of 4201 * dirty pages and freeing of disk blocks, we can guarantee that any 4202 * commit will leave the blocks being flushed in an unused state on 4203 * disk. (On recovery, the inode will get truncated and the blocks will 4204 * be freed, so we have a strong guarantee that no future commit will 4205 * leave these blocks visible to the user.) 4206 * 4207 * Another thing we have to assure is that if we are in ordered mode 4208 * and inode is still attached to the committing transaction, we must 4209 * we start writeout of all the dirty pages which are being truncated. 4210 * This way we are sure that all the data written in the previous 4211 * transaction are already on disk (truncate waits for pages under 4212 * writeback). 4213 * 4214 * Called with inode->i_mutex down. 4215 */ 4216 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4217 { 4218 struct inode *inode = dentry->d_inode; 4219 int error, rc = 0; 4220 int orphan = 0; 4221 const unsigned int ia_valid = attr->ia_valid; 4222 4223 error = inode_change_ok(inode, attr); 4224 if (error) 4225 return error; 4226 4227 if (is_quota_modification(inode, attr)) 4228 dquot_initialize(inode); 4229 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4230 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4231 handle_t *handle; 4232 4233 /* (user+group)*(old+new) structure, inode write (sb, 4234 * inode block, ? - but truncate inode update has it) */ 4235 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4236 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4237 if (IS_ERR(handle)) { 4238 error = PTR_ERR(handle); 4239 goto err_out; 4240 } 4241 error = dquot_transfer(inode, attr); 4242 if (error) { 4243 ext4_journal_stop(handle); 4244 return error; 4245 } 4246 /* Update corresponding info in inode so that everything is in 4247 * one transaction */ 4248 if (attr->ia_valid & ATTR_UID) 4249 inode->i_uid = attr->ia_uid; 4250 if (attr->ia_valid & ATTR_GID) 4251 inode->i_gid = attr->ia_gid; 4252 error = ext4_mark_inode_dirty(handle, inode); 4253 ext4_journal_stop(handle); 4254 } 4255 4256 if (attr->ia_valid & ATTR_SIZE) { 4257 inode_dio_wait(inode); 4258 4259 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4260 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4261 4262 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4263 return -EFBIG; 4264 } 4265 } 4266 4267 if (S_ISREG(inode->i_mode) && 4268 attr->ia_valid & ATTR_SIZE && 4269 (attr->ia_size < inode->i_size)) { 4270 handle_t *handle; 4271 4272 handle = ext4_journal_start(inode, 3); 4273 if (IS_ERR(handle)) { 4274 error = PTR_ERR(handle); 4275 goto err_out; 4276 } 4277 if (ext4_handle_valid(handle)) { 4278 error = ext4_orphan_add(handle, inode); 4279 orphan = 1; 4280 } 4281 EXT4_I(inode)->i_disksize = attr->ia_size; 4282 rc = ext4_mark_inode_dirty(handle, inode); 4283 if (!error) 4284 error = rc; 4285 ext4_journal_stop(handle); 4286 4287 if (ext4_should_order_data(inode)) { 4288 error = ext4_begin_ordered_truncate(inode, 4289 attr->ia_size); 4290 if (error) { 4291 /* Do as much error cleanup as possible */ 4292 handle = ext4_journal_start(inode, 3); 4293 if (IS_ERR(handle)) { 4294 ext4_orphan_del(NULL, inode); 4295 goto err_out; 4296 } 4297 ext4_orphan_del(handle, inode); 4298 orphan = 0; 4299 ext4_journal_stop(handle); 4300 goto err_out; 4301 } 4302 } 4303 } 4304 4305 if (attr->ia_valid & ATTR_SIZE) { 4306 if (attr->ia_size != i_size_read(inode)) { 4307 truncate_setsize(inode, attr->ia_size); 4308 ext4_truncate(inode); 4309 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 4310 ext4_truncate(inode); 4311 } 4312 4313 if (!rc) { 4314 setattr_copy(inode, attr); 4315 mark_inode_dirty(inode); 4316 } 4317 4318 /* 4319 * If the call to ext4_truncate failed to get a transaction handle at 4320 * all, we need to clean up the in-core orphan list manually. 4321 */ 4322 if (orphan && inode->i_nlink) 4323 ext4_orphan_del(NULL, inode); 4324 4325 if (!rc && (ia_valid & ATTR_MODE)) 4326 rc = ext4_acl_chmod(inode); 4327 4328 err_out: 4329 ext4_std_error(inode->i_sb, error); 4330 if (!error) 4331 error = rc; 4332 return error; 4333 } 4334 4335 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4336 struct kstat *stat) 4337 { 4338 struct inode *inode; 4339 unsigned long delalloc_blocks; 4340 4341 inode = dentry->d_inode; 4342 generic_fillattr(inode, stat); 4343 4344 /* 4345 * We can't update i_blocks if the block allocation is delayed 4346 * otherwise in the case of system crash before the real block 4347 * allocation is done, we will have i_blocks inconsistent with 4348 * on-disk file blocks. 4349 * We always keep i_blocks updated together with real 4350 * allocation. But to not confuse with user, stat 4351 * will return the blocks that include the delayed allocation 4352 * blocks for this file. 4353 */ 4354 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4355 4356 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4357 return 0; 4358 } 4359 4360 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4361 { 4362 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4363 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4364 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4365 } 4366 4367 /* 4368 * Account for index blocks, block groups bitmaps and block group 4369 * descriptor blocks if modify datablocks and index blocks 4370 * worse case, the indexs blocks spread over different block groups 4371 * 4372 * If datablocks are discontiguous, they are possible to spread over 4373 * different block groups too. If they are contiuguous, with flexbg, 4374 * they could still across block group boundary. 4375 * 4376 * Also account for superblock, inode, quota and xattr blocks 4377 */ 4378 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4379 { 4380 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4381 int gdpblocks; 4382 int idxblocks; 4383 int ret = 0; 4384 4385 /* 4386 * How many index blocks need to touch to modify nrblocks? 4387 * The "Chunk" flag indicating whether the nrblocks is 4388 * physically contiguous on disk 4389 * 4390 * For Direct IO and fallocate, they calls get_block to allocate 4391 * one single extent at a time, so they could set the "Chunk" flag 4392 */ 4393 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4394 4395 ret = idxblocks; 4396 4397 /* 4398 * Now let's see how many group bitmaps and group descriptors need 4399 * to account 4400 */ 4401 groups = idxblocks; 4402 if (chunk) 4403 groups += 1; 4404 else 4405 groups += nrblocks; 4406 4407 gdpblocks = groups; 4408 if (groups > ngroups) 4409 groups = ngroups; 4410 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4411 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4412 4413 /* bitmaps and block group descriptor blocks */ 4414 ret += groups + gdpblocks; 4415 4416 /* Blocks for super block, inode, quota and xattr blocks */ 4417 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4418 4419 return ret; 4420 } 4421 4422 /* 4423 * Calculate the total number of credits to reserve to fit 4424 * the modification of a single pages into a single transaction, 4425 * which may include multiple chunks of block allocations. 4426 * 4427 * This could be called via ext4_write_begin() 4428 * 4429 * We need to consider the worse case, when 4430 * one new block per extent. 4431 */ 4432 int ext4_writepage_trans_blocks(struct inode *inode) 4433 { 4434 int bpp = ext4_journal_blocks_per_page(inode); 4435 int ret; 4436 4437 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4438 4439 /* Account for data blocks for journalled mode */ 4440 if (ext4_should_journal_data(inode)) 4441 ret += bpp; 4442 return ret; 4443 } 4444 4445 /* 4446 * Calculate the journal credits for a chunk of data modification. 4447 * 4448 * This is called from DIO, fallocate or whoever calling 4449 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4450 * 4451 * journal buffers for data blocks are not included here, as DIO 4452 * and fallocate do no need to journal data buffers. 4453 */ 4454 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4455 { 4456 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4457 } 4458 4459 /* 4460 * The caller must have previously called ext4_reserve_inode_write(). 4461 * Give this, we know that the caller already has write access to iloc->bh. 4462 */ 4463 int ext4_mark_iloc_dirty(handle_t *handle, 4464 struct inode *inode, struct ext4_iloc *iloc) 4465 { 4466 int err = 0; 4467 4468 if (test_opt(inode->i_sb, I_VERSION)) 4469 inode_inc_iversion(inode); 4470 4471 /* the do_update_inode consumes one bh->b_count */ 4472 get_bh(iloc->bh); 4473 4474 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4475 err = ext4_do_update_inode(handle, inode, iloc); 4476 put_bh(iloc->bh); 4477 return err; 4478 } 4479 4480 /* 4481 * On success, We end up with an outstanding reference count against 4482 * iloc->bh. This _must_ be cleaned up later. 4483 */ 4484 4485 int 4486 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4487 struct ext4_iloc *iloc) 4488 { 4489 int err; 4490 4491 err = ext4_get_inode_loc(inode, iloc); 4492 if (!err) { 4493 BUFFER_TRACE(iloc->bh, "get_write_access"); 4494 err = ext4_journal_get_write_access(handle, iloc->bh); 4495 if (err) { 4496 brelse(iloc->bh); 4497 iloc->bh = NULL; 4498 } 4499 } 4500 ext4_std_error(inode->i_sb, err); 4501 return err; 4502 } 4503 4504 /* 4505 * Expand an inode by new_extra_isize bytes. 4506 * Returns 0 on success or negative error number on failure. 4507 */ 4508 static int ext4_expand_extra_isize(struct inode *inode, 4509 unsigned int new_extra_isize, 4510 struct ext4_iloc iloc, 4511 handle_t *handle) 4512 { 4513 struct ext4_inode *raw_inode; 4514 struct ext4_xattr_ibody_header *header; 4515 4516 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4517 return 0; 4518 4519 raw_inode = ext4_raw_inode(&iloc); 4520 4521 header = IHDR(inode, raw_inode); 4522 4523 /* No extended attributes present */ 4524 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4525 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4526 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4527 new_extra_isize); 4528 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4529 return 0; 4530 } 4531 4532 /* try to expand with EAs present */ 4533 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4534 raw_inode, handle); 4535 } 4536 4537 /* 4538 * What we do here is to mark the in-core inode as clean with respect to inode 4539 * dirtiness (it may still be data-dirty). 4540 * This means that the in-core inode may be reaped by prune_icache 4541 * without having to perform any I/O. This is a very good thing, 4542 * because *any* task may call prune_icache - even ones which 4543 * have a transaction open against a different journal. 4544 * 4545 * Is this cheating? Not really. Sure, we haven't written the 4546 * inode out, but prune_icache isn't a user-visible syncing function. 4547 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4548 * we start and wait on commits. 4549 * 4550 * Is this efficient/effective? Well, we're being nice to the system 4551 * by cleaning up our inodes proactively so they can be reaped 4552 * without I/O. But we are potentially leaving up to five seconds' 4553 * worth of inodes floating about which prune_icache wants us to 4554 * write out. One way to fix that would be to get prune_icache() 4555 * to do a write_super() to free up some memory. It has the desired 4556 * effect. 4557 */ 4558 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4559 { 4560 struct ext4_iloc iloc; 4561 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4562 static unsigned int mnt_count; 4563 int err, ret; 4564 4565 might_sleep(); 4566 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4567 err = ext4_reserve_inode_write(handle, inode, &iloc); 4568 if (ext4_handle_valid(handle) && 4569 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4570 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4571 /* 4572 * We need extra buffer credits since we may write into EA block 4573 * with this same handle. If journal_extend fails, then it will 4574 * only result in a minor loss of functionality for that inode. 4575 * If this is felt to be critical, then e2fsck should be run to 4576 * force a large enough s_min_extra_isize. 4577 */ 4578 if ((jbd2_journal_extend(handle, 4579 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4580 ret = ext4_expand_extra_isize(inode, 4581 sbi->s_want_extra_isize, 4582 iloc, handle); 4583 if (ret) { 4584 ext4_set_inode_state(inode, 4585 EXT4_STATE_NO_EXPAND); 4586 if (mnt_count != 4587 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4588 ext4_warning(inode->i_sb, 4589 "Unable to expand inode %lu. Delete" 4590 " some EAs or run e2fsck.", 4591 inode->i_ino); 4592 mnt_count = 4593 le16_to_cpu(sbi->s_es->s_mnt_count); 4594 } 4595 } 4596 } 4597 } 4598 if (!err) 4599 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4600 return err; 4601 } 4602 4603 /* 4604 * ext4_dirty_inode() is called from __mark_inode_dirty() 4605 * 4606 * We're really interested in the case where a file is being extended. 4607 * i_size has been changed by generic_commit_write() and we thus need 4608 * to include the updated inode in the current transaction. 4609 * 4610 * Also, dquot_alloc_block() will always dirty the inode when blocks 4611 * are allocated to the file. 4612 * 4613 * If the inode is marked synchronous, we don't honour that here - doing 4614 * so would cause a commit on atime updates, which we don't bother doing. 4615 * We handle synchronous inodes at the highest possible level. 4616 */ 4617 void ext4_dirty_inode(struct inode *inode, int flags) 4618 { 4619 handle_t *handle; 4620 4621 handle = ext4_journal_start(inode, 2); 4622 if (IS_ERR(handle)) 4623 goto out; 4624 4625 ext4_mark_inode_dirty(handle, inode); 4626 4627 ext4_journal_stop(handle); 4628 out: 4629 return; 4630 } 4631 4632 #if 0 4633 /* 4634 * Bind an inode's backing buffer_head into this transaction, to prevent 4635 * it from being flushed to disk early. Unlike 4636 * ext4_reserve_inode_write, this leaves behind no bh reference and 4637 * returns no iloc structure, so the caller needs to repeat the iloc 4638 * lookup to mark the inode dirty later. 4639 */ 4640 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4641 { 4642 struct ext4_iloc iloc; 4643 4644 int err = 0; 4645 if (handle) { 4646 err = ext4_get_inode_loc(inode, &iloc); 4647 if (!err) { 4648 BUFFER_TRACE(iloc.bh, "get_write_access"); 4649 err = jbd2_journal_get_write_access(handle, iloc.bh); 4650 if (!err) 4651 err = ext4_handle_dirty_metadata(handle, 4652 NULL, 4653 iloc.bh); 4654 brelse(iloc.bh); 4655 } 4656 } 4657 ext4_std_error(inode->i_sb, err); 4658 return err; 4659 } 4660 #endif 4661 4662 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4663 { 4664 journal_t *journal; 4665 handle_t *handle; 4666 int err; 4667 4668 /* 4669 * We have to be very careful here: changing a data block's 4670 * journaling status dynamically is dangerous. If we write a 4671 * data block to the journal, change the status and then delete 4672 * that block, we risk forgetting to revoke the old log record 4673 * from the journal and so a subsequent replay can corrupt data. 4674 * So, first we make sure that the journal is empty and that 4675 * nobody is changing anything. 4676 */ 4677 4678 journal = EXT4_JOURNAL(inode); 4679 if (!journal) 4680 return 0; 4681 if (is_journal_aborted(journal)) 4682 return -EROFS; 4683 4684 jbd2_journal_lock_updates(journal); 4685 jbd2_journal_flush(journal); 4686 4687 /* 4688 * OK, there are no updates running now, and all cached data is 4689 * synced to disk. We are now in a completely consistent state 4690 * which doesn't have anything in the journal, and we know that 4691 * no filesystem updates are running, so it is safe to modify 4692 * the inode's in-core data-journaling state flag now. 4693 */ 4694 4695 if (val) 4696 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4697 else 4698 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4699 ext4_set_aops(inode); 4700 4701 jbd2_journal_unlock_updates(journal); 4702 4703 /* Finally we can mark the inode as dirty. */ 4704 4705 handle = ext4_journal_start(inode, 1); 4706 if (IS_ERR(handle)) 4707 return PTR_ERR(handle); 4708 4709 err = ext4_mark_inode_dirty(handle, inode); 4710 ext4_handle_sync(handle); 4711 ext4_journal_stop(handle); 4712 ext4_std_error(inode->i_sb, err); 4713 4714 return err; 4715 } 4716 4717 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4718 { 4719 return !buffer_mapped(bh); 4720 } 4721 4722 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4723 { 4724 struct page *page = vmf->page; 4725 loff_t size; 4726 unsigned long len; 4727 int ret; 4728 struct file *file = vma->vm_file; 4729 struct inode *inode = file->f_path.dentry->d_inode; 4730 struct address_space *mapping = inode->i_mapping; 4731 handle_t *handle; 4732 get_block_t *get_block; 4733 int retries = 0; 4734 4735 /* 4736 * This check is racy but catches the common case. We rely on 4737 * __block_page_mkwrite() to do a reliable check. 4738 */ 4739 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4740 /* Delalloc case is easy... */ 4741 if (test_opt(inode->i_sb, DELALLOC) && 4742 !ext4_should_journal_data(inode) && 4743 !ext4_nonda_switch(inode->i_sb)) { 4744 do { 4745 ret = __block_page_mkwrite(vma, vmf, 4746 ext4_da_get_block_prep); 4747 } while (ret == -ENOSPC && 4748 ext4_should_retry_alloc(inode->i_sb, &retries)); 4749 goto out_ret; 4750 } 4751 4752 lock_page(page); 4753 size = i_size_read(inode); 4754 /* Page got truncated from under us? */ 4755 if (page->mapping != mapping || page_offset(page) > size) { 4756 unlock_page(page); 4757 ret = VM_FAULT_NOPAGE; 4758 goto out; 4759 } 4760 4761 if (page->index == size >> PAGE_CACHE_SHIFT) 4762 len = size & ~PAGE_CACHE_MASK; 4763 else 4764 len = PAGE_CACHE_SIZE; 4765 /* 4766 * Return if we have all the buffers mapped. This avoids the need to do 4767 * journal_start/journal_stop which can block and take a long time 4768 */ 4769 if (page_has_buffers(page)) { 4770 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4771 ext4_bh_unmapped)) { 4772 /* Wait so that we don't change page under IO */ 4773 wait_on_page_writeback(page); 4774 ret = VM_FAULT_LOCKED; 4775 goto out; 4776 } 4777 } 4778 unlock_page(page); 4779 /* OK, we need to fill the hole... */ 4780 if (ext4_should_dioread_nolock(inode)) 4781 get_block = ext4_get_block_write; 4782 else 4783 get_block = ext4_get_block; 4784 retry_alloc: 4785 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4786 if (IS_ERR(handle)) { 4787 ret = VM_FAULT_SIGBUS; 4788 goto out; 4789 } 4790 ret = __block_page_mkwrite(vma, vmf, get_block); 4791 if (!ret && ext4_should_journal_data(inode)) { 4792 if (walk_page_buffers(handle, page_buffers(page), 0, 4793 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4794 unlock_page(page); 4795 ret = VM_FAULT_SIGBUS; 4796 ext4_journal_stop(handle); 4797 goto out; 4798 } 4799 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4800 } 4801 ext4_journal_stop(handle); 4802 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4803 goto retry_alloc; 4804 out_ret: 4805 ret = block_page_mkwrite_return(ret); 4806 out: 4807 return ret; 4808 } 4809