1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 #define MPAGE_DA_EXTENT_TAIL 0x01 45 46 static inline int ext4_begin_ordered_truncate(struct inode *inode, 47 loff_t new_size) 48 { 49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 50 new_size); 51 } 52 53 static void ext4_invalidatepage(struct page *page, unsigned long offset); 54 55 /* 56 * Test whether an inode is a fast symlink. 57 */ 58 static int ext4_inode_is_fast_symlink(struct inode *inode) 59 { 60 int ea_blocks = EXT4_I(inode)->i_file_acl ? 61 (inode->i_sb->s_blocksize >> 9) : 0; 62 63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 64 } 65 66 /* 67 * The ext4 forget function must perform a revoke if we are freeing data 68 * which has been journaled. Metadata (eg. indirect blocks) must be 69 * revoked in all cases. 70 * 71 * "bh" may be NULL: a metadata block may have been freed from memory 72 * but there may still be a record of it in the journal, and that record 73 * still needs to be revoked. 74 */ 75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 76 struct buffer_head *bh, ext4_fsblk_t blocknr) 77 { 78 int err; 79 80 might_sleep(); 81 82 BUFFER_TRACE(bh, "enter"); 83 84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 85 "data mode %lx\n", 86 bh, is_metadata, inode->i_mode, 87 test_opt(inode->i_sb, DATA_FLAGS)); 88 89 /* Never use the revoke function if we are doing full data 90 * journaling: there is no need to, and a V1 superblock won't 91 * support it. Otherwise, only skip the revoke on un-journaled 92 * data blocks. */ 93 94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 95 (!is_metadata && !ext4_should_journal_data(inode))) { 96 if (bh) { 97 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 98 return ext4_journal_forget(handle, bh); 99 } 100 return 0; 101 } 102 103 /* 104 * data!=journal && (is_metadata || should_journal_data(inode)) 105 */ 106 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 107 err = ext4_journal_revoke(handle, blocknr, bh); 108 if (err) 109 ext4_abort(inode->i_sb, __func__, 110 "error %d when attempting revoke", err); 111 BUFFER_TRACE(bh, "exit"); 112 return err; 113 } 114 115 /* 116 * Work out how many blocks we need to proceed with the next chunk of a 117 * truncate transaction. 118 */ 119 static unsigned long blocks_for_truncate(struct inode *inode) 120 { 121 ext4_lblk_t needed; 122 123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 124 125 /* Give ourselves just enough room to cope with inodes in which 126 * i_blocks is corrupt: we've seen disk corruptions in the past 127 * which resulted in random data in an inode which looked enough 128 * like a regular file for ext4 to try to delete it. Things 129 * will go a bit crazy if that happens, but at least we should 130 * try not to panic the whole kernel. */ 131 if (needed < 2) 132 needed = 2; 133 134 /* But we need to bound the transaction so we don't overflow the 135 * journal. */ 136 if (needed > EXT4_MAX_TRANS_DATA) 137 needed = EXT4_MAX_TRANS_DATA; 138 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 140 } 141 142 /* 143 * Truncate transactions can be complex and absolutely huge. So we need to 144 * be able to restart the transaction at a conventient checkpoint to make 145 * sure we don't overflow the journal. 146 * 147 * start_transaction gets us a new handle for a truncate transaction, 148 * and extend_transaction tries to extend the existing one a bit. If 149 * extend fails, we need to propagate the failure up and restart the 150 * transaction in the top-level truncate loop. --sct 151 */ 152 static handle_t *start_transaction(struct inode *inode) 153 { 154 handle_t *result; 155 156 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 157 if (!IS_ERR(result)) 158 return result; 159 160 ext4_std_error(inode->i_sb, PTR_ERR(result)); 161 return result; 162 } 163 164 /* 165 * Try to extend this transaction for the purposes of truncation. 166 * 167 * Returns 0 if we managed to create more room. If we can't create more 168 * room, and the transaction must be restarted we return 1. 169 */ 170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 171 { 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 173 return 0; 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 175 return 0; 176 return 1; 177 } 178 179 /* 180 * Restart the transaction associated with *handle. This does a commit, 181 * so before we call here everything must be consistently dirtied against 182 * this transaction. 183 */ 184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 185 { 186 jbd_debug(2, "restarting handle %p\n", handle); 187 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 188 } 189 190 /* 191 * Called at the last iput() if i_nlink is zero. 192 */ 193 void ext4_delete_inode(struct inode *inode) 194 { 195 handle_t *handle; 196 int err; 197 198 if (ext4_should_order_data(inode)) 199 ext4_begin_ordered_truncate(inode, 0); 200 truncate_inode_pages(&inode->i_data, 0); 201 202 if (is_bad_inode(inode)) 203 goto no_delete; 204 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 206 if (IS_ERR(handle)) { 207 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 208 /* 209 * If we're going to skip the normal cleanup, we still need to 210 * make sure that the in-core orphan linked list is properly 211 * cleaned up. 212 */ 213 ext4_orphan_del(NULL, inode); 214 goto no_delete; 215 } 216 217 if (IS_SYNC(inode)) 218 handle->h_sync = 1; 219 inode->i_size = 0; 220 err = ext4_mark_inode_dirty(handle, inode); 221 if (err) { 222 ext4_warning(inode->i_sb, __func__, 223 "couldn't mark inode dirty (err %d)", err); 224 goto stop_handle; 225 } 226 if (inode->i_blocks) 227 ext4_truncate(inode); 228 229 /* 230 * ext4_ext_truncate() doesn't reserve any slop when it 231 * restarts journal transactions; therefore there may not be 232 * enough credits left in the handle to remove the inode from 233 * the orphan list and set the dtime field. 234 */ 235 if (handle->h_buffer_credits < 3) { 236 err = ext4_journal_extend(handle, 3); 237 if (err > 0) 238 err = ext4_journal_restart(handle, 3); 239 if (err != 0) { 240 ext4_warning(inode->i_sb, __func__, 241 "couldn't extend journal (err %d)", err); 242 stop_handle: 243 ext4_journal_stop(handle); 244 goto no_delete; 245 } 246 } 247 248 /* 249 * Kill off the orphan record which ext4_truncate created. 250 * AKPM: I think this can be inside the above `if'. 251 * Note that ext4_orphan_del() has to be able to cope with the 252 * deletion of a non-existent orphan - this is because we don't 253 * know if ext4_truncate() actually created an orphan record. 254 * (Well, we could do this if we need to, but heck - it works) 255 */ 256 ext4_orphan_del(handle, inode); 257 EXT4_I(inode)->i_dtime = get_seconds(); 258 259 /* 260 * One subtle ordering requirement: if anything has gone wrong 261 * (transaction abort, IO errors, whatever), then we can still 262 * do these next steps (the fs will already have been marked as 263 * having errors), but we can't free the inode if the mark_dirty 264 * fails. 265 */ 266 if (ext4_mark_inode_dirty(handle, inode)) 267 /* If that failed, just do the required in-core inode clear. */ 268 clear_inode(inode); 269 else 270 ext4_free_inode(handle, inode); 271 ext4_journal_stop(handle); 272 return; 273 no_delete: 274 clear_inode(inode); /* We must guarantee clearing of inode... */ 275 } 276 277 typedef struct { 278 __le32 *p; 279 __le32 key; 280 struct buffer_head *bh; 281 } Indirect; 282 283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 284 { 285 p->key = *(p->p = v); 286 p->bh = bh; 287 } 288 289 /** 290 * ext4_block_to_path - parse the block number into array of offsets 291 * @inode: inode in question (we are only interested in its superblock) 292 * @i_block: block number to be parsed 293 * @offsets: array to store the offsets in 294 * @boundary: set this non-zero if the referred-to block is likely to be 295 * followed (on disk) by an indirect block. 296 * 297 * To store the locations of file's data ext4 uses a data structure common 298 * for UNIX filesystems - tree of pointers anchored in the inode, with 299 * data blocks at leaves and indirect blocks in intermediate nodes. 300 * This function translates the block number into path in that tree - 301 * return value is the path length and @offsets[n] is the offset of 302 * pointer to (n+1)th node in the nth one. If @block is out of range 303 * (negative or too large) warning is printed and zero returned. 304 * 305 * Note: function doesn't find node addresses, so no IO is needed. All 306 * we need to know is the capacity of indirect blocks (taken from the 307 * inode->i_sb). 308 */ 309 310 /* 311 * Portability note: the last comparison (check that we fit into triple 312 * indirect block) is spelled differently, because otherwise on an 313 * architecture with 32-bit longs and 8Kb pages we might get into trouble 314 * if our filesystem had 8Kb blocks. We might use long long, but that would 315 * kill us on x86. Oh, well, at least the sign propagation does not matter - 316 * i_block would have to be negative in the very beginning, so we would not 317 * get there at all. 318 */ 319 320 static int ext4_block_to_path(struct inode *inode, 321 ext4_lblk_t i_block, 322 ext4_lblk_t offsets[4], int *boundary) 323 { 324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 326 const long direct_blocks = EXT4_NDIR_BLOCKS, 327 indirect_blocks = ptrs, 328 double_blocks = (1 << (ptrs_bits * 2)); 329 int n = 0; 330 int final = 0; 331 332 if (i_block < 0) { 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 334 } else if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "ext4_block_to_path", 354 "block %lu > max", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 /** 364 * ext4_get_branch - read the chain of indirect blocks leading to data 365 * @inode: inode in question 366 * @depth: depth of the chain (1 - direct pointer, etc.) 367 * @offsets: offsets of pointers in inode/indirect blocks 368 * @chain: place to store the result 369 * @err: here we store the error value 370 * 371 * Function fills the array of triples <key, p, bh> and returns %NULL 372 * if everything went OK or the pointer to the last filled triple 373 * (incomplete one) otherwise. Upon the return chain[i].key contains 374 * the number of (i+1)-th block in the chain (as it is stored in memory, 375 * i.e. little-endian 32-bit), chain[i].p contains the address of that 376 * number (it points into struct inode for i==0 and into the bh->b_data 377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 378 * block for i>0 and NULL for i==0. In other words, it holds the block 379 * numbers of the chain, addresses they were taken from (and where we can 380 * verify that chain did not change) and buffer_heads hosting these 381 * numbers. 382 * 383 * Function stops when it stumbles upon zero pointer (absent block) 384 * (pointer to last triple returned, *@err == 0) 385 * or when it gets an IO error reading an indirect block 386 * (ditto, *@err == -EIO) 387 * or when it reads all @depth-1 indirect blocks successfully and finds 388 * the whole chain, all way to the data (returns %NULL, *err == 0). 389 * 390 * Need to be called with 391 * down_read(&EXT4_I(inode)->i_data_sem) 392 */ 393 static Indirect *ext4_get_branch(struct inode *inode, int depth, 394 ext4_lblk_t *offsets, 395 Indirect chain[4], int *err) 396 { 397 struct super_block *sb = inode->i_sb; 398 Indirect *p = chain; 399 struct buffer_head *bh; 400 401 *err = 0; 402 /* i_data is not going away, no lock needed */ 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 404 if (!p->key) 405 goto no_block; 406 while (--depth) { 407 bh = sb_bread(sb, le32_to_cpu(p->key)); 408 if (!bh) 409 goto failure; 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 411 /* Reader: end */ 412 if (!p->key) 413 goto no_block; 414 } 415 return NULL; 416 417 failure: 418 *err = -EIO; 419 no_block: 420 return p; 421 } 422 423 /** 424 * ext4_find_near - find a place for allocation with sufficient locality 425 * @inode: owner 426 * @ind: descriptor of indirect block. 427 * 428 * This function returns the preferred place for block allocation. 429 * It is used when heuristic for sequential allocation fails. 430 * Rules are: 431 * + if there is a block to the left of our position - allocate near it. 432 * + if pointer will live in indirect block - allocate near that block. 433 * + if pointer will live in inode - allocate in the same 434 * cylinder group. 435 * 436 * In the latter case we colour the starting block by the callers PID to 437 * prevent it from clashing with concurrent allocations for a different inode 438 * in the same block group. The PID is used here so that functionally related 439 * files will be close-by on-disk. 440 * 441 * Caller must make sure that @ind is valid and will stay that way. 442 */ 443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 444 { 445 struct ext4_inode_info *ei = EXT4_I(inode); 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 447 __le32 *p; 448 ext4_fsblk_t bg_start; 449 ext4_fsblk_t last_block; 450 ext4_grpblk_t colour; 451 452 /* Try to find previous block */ 453 for (p = ind->p - 1; p >= start; p--) { 454 if (*p) 455 return le32_to_cpu(*p); 456 } 457 458 /* No such thing, so let's try location of indirect block */ 459 if (ind->bh) 460 return ind->bh->b_blocknr; 461 462 /* 463 * It is going to be referred to from the inode itself? OK, just put it 464 * into the same cylinder group then. 465 */ 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 468 469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 470 colour = (current->pid % 16) * 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 472 else 473 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 474 return bg_start + colour; 475 } 476 477 /** 478 * ext4_find_goal - find a preferred place for allocation. 479 * @inode: owner 480 * @block: block we want 481 * @partial: pointer to the last triple within a chain 482 * 483 * Normally this function find the preferred place for block allocation, 484 * returns it. 485 */ 486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 487 Indirect *partial) 488 { 489 /* 490 * XXX need to get goal block from mballoc's data structures 491 */ 492 493 return ext4_find_near(inode, partial); 494 } 495 496 /** 497 * ext4_blks_to_allocate: Look up the block map and count the number 498 * of direct blocks need to be allocated for the given branch. 499 * 500 * @branch: chain of indirect blocks 501 * @k: number of blocks need for indirect blocks 502 * @blks: number of data blocks to be mapped. 503 * @blocks_to_boundary: the offset in the indirect block 504 * 505 * return the total number of blocks to be allocate, including the 506 * direct and indirect blocks. 507 */ 508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 509 int blocks_to_boundary) 510 { 511 unsigned long count = 0; 512 513 /* 514 * Simple case, [t,d]Indirect block(s) has not allocated yet 515 * then it's clear blocks on that path have not allocated 516 */ 517 if (k > 0) { 518 /* right now we don't handle cross boundary allocation */ 519 if (blks < blocks_to_boundary + 1) 520 count += blks; 521 else 522 count += blocks_to_boundary + 1; 523 return count; 524 } 525 526 count++; 527 while (count < blks && count <= blocks_to_boundary && 528 le32_to_cpu(*(branch[0].p + count)) == 0) { 529 count++; 530 } 531 return count; 532 } 533 534 /** 535 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 536 * @indirect_blks: the number of blocks need to allocate for indirect 537 * blocks 538 * 539 * @new_blocks: on return it will store the new block numbers for 540 * the indirect blocks(if needed) and the first direct block, 541 * @blks: on return it will store the total number of allocated 542 * direct blocks 543 */ 544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 545 ext4_lblk_t iblock, ext4_fsblk_t goal, 546 int indirect_blks, int blks, 547 ext4_fsblk_t new_blocks[4], int *err) 548 { 549 int target, i; 550 unsigned long count = 0, blk_allocated = 0; 551 int index = 0; 552 ext4_fsblk_t current_block = 0; 553 int ret = 0; 554 555 /* 556 * Here we try to allocate the requested multiple blocks at once, 557 * on a best-effort basis. 558 * To build a branch, we should allocate blocks for 559 * the indirect blocks(if not allocated yet), and at least 560 * the first direct block of this branch. That's the 561 * minimum number of blocks need to allocate(required) 562 */ 563 /* first we try to allocate the indirect blocks */ 564 target = indirect_blks; 565 while (target > 0) { 566 count = target; 567 /* allocating blocks for indirect blocks and direct blocks */ 568 current_block = ext4_new_meta_blocks(handle, inode, 569 goal, &count, err); 570 if (*err) 571 goto failed_out; 572 573 target -= count; 574 /* allocate blocks for indirect blocks */ 575 while (index < indirect_blks && count) { 576 new_blocks[index++] = current_block++; 577 count--; 578 } 579 if (count > 0) { 580 /* 581 * save the new block number 582 * for the first direct block 583 */ 584 new_blocks[index] = current_block; 585 printk(KERN_INFO "%s returned more blocks than " 586 "requested\n", __func__); 587 WARN_ON(1); 588 break; 589 } 590 } 591 592 target = blks - count ; 593 blk_allocated = count; 594 if (!target) 595 goto allocated; 596 /* Now allocate data blocks */ 597 count = target; 598 /* allocating blocks for data blocks */ 599 current_block = ext4_new_blocks(handle, inode, iblock, 600 goal, &count, err); 601 if (*err && (target == blks)) { 602 /* 603 * if the allocation failed and we didn't allocate 604 * any blocks before 605 */ 606 goto failed_out; 607 } 608 if (!*err) { 609 if (target == blks) { 610 /* 611 * save the new block number 612 * for the first direct block 613 */ 614 new_blocks[index] = current_block; 615 } 616 blk_allocated += count; 617 } 618 allocated: 619 /* total number of blocks allocated for direct blocks */ 620 ret = blk_allocated; 621 *err = 0; 622 return ret; 623 failed_out: 624 for (i = 0; i < index; i++) 625 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 626 return ret; 627 } 628 629 /** 630 * ext4_alloc_branch - allocate and set up a chain of blocks. 631 * @inode: owner 632 * @indirect_blks: number of allocated indirect blocks 633 * @blks: number of allocated direct blocks 634 * @offsets: offsets (in the blocks) to store the pointers to next. 635 * @branch: place to store the chain in. 636 * 637 * This function allocates blocks, zeroes out all but the last one, 638 * links them into chain and (if we are synchronous) writes them to disk. 639 * In other words, it prepares a branch that can be spliced onto the 640 * inode. It stores the information about that chain in the branch[], in 641 * the same format as ext4_get_branch() would do. We are calling it after 642 * we had read the existing part of chain and partial points to the last 643 * triple of that (one with zero ->key). Upon the exit we have the same 644 * picture as after the successful ext4_get_block(), except that in one 645 * place chain is disconnected - *branch->p is still zero (we did not 646 * set the last link), but branch->key contains the number that should 647 * be placed into *branch->p to fill that gap. 648 * 649 * If allocation fails we free all blocks we've allocated (and forget 650 * their buffer_heads) and return the error value the from failed 651 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 652 * as described above and return 0. 653 */ 654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 655 ext4_lblk_t iblock, int indirect_blks, 656 int *blks, ext4_fsblk_t goal, 657 ext4_lblk_t *offsets, Indirect *branch) 658 { 659 int blocksize = inode->i_sb->s_blocksize; 660 int i, n = 0; 661 int err = 0; 662 struct buffer_head *bh; 663 int num; 664 ext4_fsblk_t new_blocks[4]; 665 ext4_fsblk_t current_block; 666 667 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 668 *blks, new_blocks, &err); 669 if (err) 670 return err; 671 672 branch[0].key = cpu_to_le32(new_blocks[0]); 673 /* 674 * metadata blocks and data blocks are allocated. 675 */ 676 for (n = 1; n <= indirect_blks; n++) { 677 /* 678 * Get buffer_head for parent block, zero it out 679 * and set the pointer to new one, then send 680 * parent to disk. 681 */ 682 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 683 branch[n].bh = bh; 684 lock_buffer(bh); 685 BUFFER_TRACE(bh, "call get_create_access"); 686 err = ext4_journal_get_create_access(handle, bh); 687 if (err) { 688 unlock_buffer(bh); 689 brelse(bh); 690 goto failed; 691 } 692 693 memset(bh->b_data, 0, blocksize); 694 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 695 branch[n].key = cpu_to_le32(new_blocks[n]); 696 *branch[n].p = branch[n].key; 697 if (n == indirect_blks) { 698 current_block = new_blocks[n]; 699 /* 700 * End of chain, update the last new metablock of 701 * the chain to point to the new allocated 702 * data blocks numbers 703 */ 704 for (i=1; i < num; i++) 705 *(branch[n].p + i) = cpu_to_le32(++current_block); 706 } 707 BUFFER_TRACE(bh, "marking uptodate"); 708 set_buffer_uptodate(bh); 709 unlock_buffer(bh); 710 711 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 712 err = ext4_journal_dirty_metadata(handle, bh); 713 if (err) 714 goto failed; 715 } 716 *blks = num; 717 return err; 718 failed: 719 /* Allocation failed, free what we already allocated */ 720 for (i = 1; i <= n ; i++) { 721 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 722 ext4_journal_forget(handle, branch[i].bh); 723 } 724 for (i = 0; i < indirect_blks; i++) 725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 726 727 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 728 729 return err; 730 } 731 732 /** 733 * ext4_splice_branch - splice the allocated branch onto inode. 734 * @inode: owner 735 * @block: (logical) number of block we are adding 736 * @chain: chain of indirect blocks (with a missing link - see 737 * ext4_alloc_branch) 738 * @where: location of missing link 739 * @num: number of indirect blocks we are adding 740 * @blks: number of direct blocks we are adding 741 * 742 * This function fills the missing link and does all housekeeping needed in 743 * inode (->i_blocks, etc.). In case of success we end up with the full 744 * chain to new block and return 0. 745 */ 746 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 747 ext4_lblk_t block, Indirect *where, int num, int blks) 748 { 749 int i; 750 int err = 0; 751 ext4_fsblk_t current_block; 752 753 /* 754 * If we're splicing into a [td]indirect block (as opposed to the 755 * inode) then we need to get write access to the [td]indirect block 756 * before the splice. 757 */ 758 if (where->bh) { 759 BUFFER_TRACE(where->bh, "get_write_access"); 760 err = ext4_journal_get_write_access(handle, where->bh); 761 if (err) 762 goto err_out; 763 } 764 /* That's it */ 765 766 *where->p = where->key; 767 768 /* 769 * Update the host buffer_head or inode to point to more just allocated 770 * direct blocks blocks 771 */ 772 if (num == 0 && blks > 1) { 773 current_block = le32_to_cpu(where->key) + 1; 774 for (i = 1; i < blks; i++) 775 *(where->p + i) = cpu_to_le32(current_block++); 776 } 777 778 /* We are done with atomic stuff, now do the rest of housekeeping */ 779 780 inode->i_ctime = ext4_current_time(inode); 781 ext4_mark_inode_dirty(handle, inode); 782 783 /* had we spliced it onto indirect block? */ 784 if (where->bh) { 785 /* 786 * If we spliced it onto an indirect block, we haven't 787 * altered the inode. Note however that if it is being spliced 788 * onto an indirect block at the very end of the file (the 789 * file is growing) then we *will* alter the inode to reflect 790 * the new i_size. But that is not done here - it is done in 791 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 792 */ 793 jbd_debug(5, "splicing indirect only\n"); 794 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 795 err = ext4_journal_dirty_metadata(handle, where->bh); 796 if (err) 797 goto err_out; 798 } else { 799 /* 800 * OK, we spliced it into the inode itself on a direct block. 801 * Inode was dirtied above. 802 */ 803 jbd_debug(5, "splicing direct\n"); 804 } 805 return err; 806 807 err_out: 808 for (i = 1; i <= num; i++) { 809 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 810 ext4_journal_forget(handle, where[i].bh); 811 ext4_free_blocks(handle, inode, 812 le32_to_cpu(where[i-1].key), 1, 0); 813 } 814 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 815 816 return err; 817 } 818 819 /* 820 * Allocation strategy is simple: if we have to allocate something, we will 821 * have to go the whole way to leaf. So let's do it before attaching anything 822 * to tree, set linkage between the newborn blocks, write them if sync is 823 * required, recheck the path, free and repeat if check fails, otherwise 824 * set the last missing link (that will protect us from any truncate-generated 825 * removals - all blocks on the path are immune now) and possibly force the 826 * write on the parent block. 827 * That has a nice additional property: no special recovery from the failed 828 * allocations is needed - we simply release blocks and do not touch anything 829 * reachable from inode. 830 * 831 * `handle' can be NULL if create == 0. 832 * 833 * return > 0, # of blocks mapped or allocated. 834 * return = 0, if plain lookup failed. 835 * return < 0, error case. 836 * 837 * 838 * Need to be called with 839 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 840 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 841 */ 842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 843 ext4_lblk_t iblock, unsigned long maxblocks, 844 struct buffer_head *bh_result, 845 int create, int extend_disksize) 846 { 847 int err = -EIO; 848 ext4_lblk_t offsets[4]; 849 Indirect chain[4]; 850 Indirect *partial; 851 ext4_fsblk_t goal; 852 int indirect_blks; 853 int blocks_to_boundary = 0; 854 int depth; 855 struct ext4_inode_info *ei = EXT4_I(inode); 856 int count = 0; 857 ext4_fsblk_t first_block = 0; 858 loff_t disksize; 859 860 861 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 862 J_ASSERT(handle != NULL || create == 0); 863 depth = ext4_block_to_path(inode, iblock, offsets, 864 &blocks_to_boundary); 865 866 if (depth == 0) 867 goto out; 868 869 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 870 871 /* Simplest case - block found, no allocation needed */ 872 if (!partial) { 873 first_block = le32_to_cpu(chain[depth - 1].key); 874 clear_buffer_new(bh_result); 875 count++; 876 /*map more blocks*/ 877 while (count < maxblocks && count <= blocks_to_boundary) { 878 ext4_fsblk_t blk; 879 880 blk = le32_to_cpu(*(chain[depth-1].p + count)); 881 882 if (blk == first_block + count) 883 count++; 884 else 885 break; 886 } 887 goto got_it; 888 } 889 890 /* Next simple case - plain lookup or failed read of indirect block */ 891 if (!create || err == -EIO) 892 goto cleanup; 893 894 /* 895 * Okay, we need to do block allocation. 896 */ 897 goal = ext4_find_goal(inode, iblock, partial); 898 899 /* the number of blocks need to allocate for [d,t]indirect blocks */ 900 indirect_blks = (chain + depth) - partial - 1; 901 902 /* 903 * Next look up the indirect map to count the totoal number of 904 * direct blocks to allocate for this branch. 905 */ 906 count = ext4_blks_to_allocate(partial, indirect_blks, 907 maxblocks, blocks_to_boundary); 908 /* 909 * Block out ext4_truncate while we alter the tree 910 */ 911 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 912 &count, goal, 913 offsets + (partial - chain), partial); 914 915 /* 916 * The ext4_splice_branch call will free and forget any buffers 917 * on the new chain if there is a failure, but that risks using 918 * up transaction credits, especially for bitmaps where the 919 * credits cannot be returned. Can we handle this somehow? We 920 * may need to return -EAGAIN upwards in the worst case. --sct 921 */ 922 if (!err) 923 err = ext4_splice_branch(handle, inode, iblock, 924 partial, indirect_blks, count); 925 /* 926 * i_disksize growing is protected by i_data_sem. Don't forget to 927 * protect it if you're about to implement concurrent 928 * ext4_get_block() -bzzz 929 */ 930 if (!err && extend_disksize) { 931 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 932 if (disksize > i_size_read(inode)) 933 disksize = i_size_read(inode); 934 if (disksize > ei->i_disksize) 935 ei->i_disksize = disksize; 936 } 937 if (err) 938 goto cleanup; 939 940 set_buffer_new(bh_result); 941 got_it: 942 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 943 if (count > blocks_to_boundary) 944 set_buffer_boundary(bh_result); 945 err = count; 946 /* Clean up and exit */ 947 partial = chain + depth - 1; /* the whole chain */ 948 cleanup: 949 while (partial > chain) { 950 BUFFER_TRACE(partial->bh, "call brelse"); 951 brelse(partial->bh); 952 partial--; 953 } 954 BUFFER_TRACE(bh_result, "returned"); 955 out: 956 return err; 957 } 958 959 /* 960 * Calculate the number of metadata blocks need to reserve 961 * to allocate @blocks for non extent file based file 962 */ 963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 964 { 965 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 966 int ind_blks, dind_blks, tind_blks; 967 968 /* number of new indirect blocks needed */ 969 ind_blks = (blocks + icap - 1) / icap; 970 971 dind_blks = (ind_blks + icap - 1) / icap; 972 973 tind_blks = 1; 974 975 return ind_blks + dind_blks + tind_blks; 976 } 977 978 /* 979 * Calculate the number of metadata blocks need to reserve 980 * to allocate given number of blocks 981 */ 982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 983 { 984 if (!blocks) 985 return 0; 986 987 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 988 return ext4_ext_calc_metadata_amount(inode, blocks); 989 990 return ext4_indirect_calc_metadata_amount(inode, blocks); 991 } 992 993 static void ext4_da_update_reserve_space(struct inode *inode, int used) 994 { 995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 996 int total, mdb, mdb_free; 997 998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 999 /* recalculate the number of metablocks still need to be reserved */ 1000 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1001 mdb = ext4_calc_metadata_amount(inode, total); 1002 1003 /* figure out how many metablocks to release */ 1004 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1005 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1006 1007 if (mdb_free) { 1008 /* Account for allocated meta_blocks */ 1009 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1010 1011 /* update fs dirty blocks counter */ 1012 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1013 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1014 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1015 } 1016 1017 /* update per-inode reservations */ 1018 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1019 EXT4_I(inode)->i_reserved_data_blocks -= used; 1020 1021 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1022 } 1023 1024 /* 1025 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1026 * and returns if the blocks are already mapped. 1027 * 1028 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1029 * and store the allocated blocks in the result buffer head and mark it 1030 * mapped. 1031 * 1032 * If file type is extents based, it will call ext4_ext_get_blocks(), 1033 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1034 * based files 1035 * 1036 * On success, it returns the number of blocks being mapped or allocate. 1037 * if create==0 and the blocks are pre-allocated and uninitialized block, 1038 * the result buffer head is unmapped. If the create ==1, it will make sure 1039 * the buffer head is mapped. 1040 * 1041 * It returns 0 if plain look up failed (blocks have not been allocated), in 1042 * that casem, buffer head is unmapped 1043 * 1044 * It returns the error in case of allocation failure. 1045 */ 1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1047 unsigned long max_blocks, struct buffer_head *bh, 1048 int create, int extend_disksize, int flag) 1049 { 1050 int retval; 1051 1052 clear_buffer_mapped(bh); 1053 1054 /* 1055 * Try to see if we can get the block without requesting 1056 * for new file system block. 1057 */ 1058 down_read((&EXT4_I(inode)->i_data_sem)); 1059 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1060 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1061 bh, 0, 0); 1062 } else { 1063 retval = ext4_get_blocks_handle(handle, 1064 inode, block, max_blocks, bh, 0, 0); 1065 } 1066 up_read((&EXT4_I(inode)->i_data_sem)); 1067 1068 /* If it is only a block(s) look up */ 1069 if (!create) 1070 return retval; 1071 1072 /* 1073 * Returns if the blocks have already allocated 1074 * 1075 * Note that if blocks have been preallocated 1076 * ext4_ext_get_block() returns th create = 0 1077 * with buffer head unmapped. 1078 */ 1079 if (retval > 0 && buffer_mapped(bh)) 1080 return retval; 1081 1082 /* 1083 * New blocks allocate and/or writing to uninitialized extent 1084 * will possibly result in updating i_data, so we take 1085 * the write lock of i_data_sem, and call get_blocks() 1086 * with create == 1 flag. 1087 */ 1088 down_write((&EXT4_I(inode)->i_data_sem)); 1089 1090 /* 1091 * if the caller is from delayed allocation writeout path 1092 * we have already reserved fs blocks for allocation 1093 * let the underlying get_block() function know to 1094 * avoid double accounting 1095 */ 1096 if (flag) 1097 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1098 /* 1099 * We need to check for EXT4 here because migrate 1100 * could have changed the inode type in between 1101 */ 1102 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1103 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1104 bh, create, extend_disksize); 1105 } else { 1106 retval = ext4_get_blocks_handle(handle, inode, block, 1107 max_blocks, bh, create, extend_disksize); 1108 1109 if (retval > 0 && buffer_new(bh)) { 1110 /* 1111 * We allocated new blocks which will result in 1112 * i_data's format changing. Force the migrate 1113 * to fail by clearing migrate flags 1114 */ 1115 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1116 ~EXT4_EXT_MIGRATE; 1117 } 1118 } 1119 1120 if (flag) { 1121 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1122 /* 1123 * Update reserved blocks/metadata blocks 1124 * after successful block allocation 1125 * which were deferred till now 1126 */ 1127 if ((retval > 0) && buffer_delay(bh)) 1128 ext4_da_update_reserve_space(inode, retval); 1129 } 1130 1131 up_write((&EXT4_I(inode)->i_data_sem)); 1132 return retval; 1133 } 1134 1135 /* Maximum number of blocks we map for direct IO at once. */ 1136 #define DIO_MAX_BLOCKS 4096 1137 1138 int ext4_get_block(struct inode *inode, sector_t iblock, 1139 struct buffer_head *bh_result, int create) 1140 { 1141 handle_t *handle = ext4_journal_current_handle(); 1142 int ret = 0, started = 0; 1143 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1144 int dio_credits; 1145 1146 if (create && !handle) { 1147 /* Direct IO write... */ 1148 if (max_blocks > DIO_MAX_BLOCKS) 1149 max_blocks = DIO_MAX_BLOCKS; 1150 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1151 handle = ext4_journal_start(inode, dio_credits); 1152 if (IS_ERR(handle)) { 1153 ret = PTR_ERR(handle); 1154 goto out; 1155 } 1156 started = 1; 1157 } 1158 1159 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1160 max_blocks, bh_result, create, 0, 0); 1161 if (ret > 0) { 1162 bh_result->b_size = (ret << inode->i_blkbits); 1163 ret = 0; 1164 } 1165 if (started) 1166 ext4_journal_stop(handle); 1167 out: 1168 return ret; 1169 } 1170 1171 /* 1172 * `handle' can be NULL if create is zero 1173 */ 1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1175 ext4_lblk_t block, int create, int *errp) 1176 { 1177 struct buffer_head dummy; 1178 int fatal = 0, err; 1179 1180 J_ASSERT(handle != NULL || create == 0); 1181 1182 dummy.b_state = 0; 1183 dummy.b_blocknr = -1000; 1184 buffer_trace_init(&dummy.b_history); 1185 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1186 &dummy, create, 1, 0); 1187 /* 1188 * ext4_get_blocks_handle() returns number of blocks 1189 * mapped. 0 in case of a HOLE. 1190 */ 1191 if (err > 0) { 1192 if (err > 1) 1193 WARN_ON(1); 1194 err = 0; 1195 } 1196 *errp = err; 1197 if (!err && buffer_mapped(&dummy)) { 1198 struct buffer_head *bh; 1199 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1200 if (!bh) { 1201 *errp = -EIO; 1202 goto err; 1203 } 1204 if (buffer_new(&dummy)) { 1205 J_ASSERT(create != 0); 1206 J_ASSERT(handle != NULL); 1207 1208 /* 1209 * Now that we do not always journal data, we should 1210 * keep in mind whether this should always journal the 1211 * new buffer as metadata. For now, regular file 1212 * writes use ext4_get_block instead, so it's not a 1213 * problem. 1214 */ 1215 lock_buffer(bh); 1216 BUFFER_TRACE(bh, "call get_create_access"); 1217 fatal = ext4_journal_get_create_access(handle, bh); 1218 if (!fatal && !buffer_uptodate(bh)) { 1219 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1220 set_buffer_uptodate(bh); 1221 } 1222 unlock_buffer(bh); 1223 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1224 err = ext4_journal_dirty_metadata(handle, bh); 1225 if (!fatal) 1226 fatal = err; 1227 } else { 1228 BUFFER_TRACE(bh, "not a new buffer"); 1229 } 1230 if (fatal) { 1231 *errp = fatal; 1232 brelse(bh); 1233 bh = NULL; 1234 } 1235 return bh; 1236 } 1237 err: 1238 return NULL; 1239 } 1240 1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1242 ext4_lblk_t block, int create, int *err) 1243 { 1244 struct buffer_head *bh; 1245 1246 bh = ext4_getblk(handle, inode, block, create, err); 1247 if (!bh) 1248 return bh; 1249 if (buffer_uptodate(bh)) 1250 return bh; 1251 ll_rw_block(READ_META, 1, &bh); 1252 wait_on_buffer(bh); 1253 if (buffer_uptodate(bh)) 1254 return bh; 1255 put_bh(bh); 1256 *err = -EIO; 1257 return NULL; 1258 } 1259 1260 static int walk_page_buffers(handle_t *handle, 1261 struct buffer_head *head, 1262 unsigned from, 1263 unsigned to, 1264 int *partial, 1265 int (*fn)(handle_t *handle, 1266 struct buffer_head *bh)) 1267 { 1268 struct buffer_head *bh; 1269 unsigned block_start, block_end; 1270 unsigned blocksize = head->b_size; 1271 int err, ret = 0; 1272 struct buffer_head *next; 1273 1274 for (bh = head, block_start = 0; 1275 ret == 0 && (bh != head || !block_start); 1276 block_start = block_end, bh = next) 1277 { 1278 next = bh->b_this_page; 1279 block_end = block_start + blocksize; 1280 if (block_end <= from || block_start >= to) { 1281 if (partial && !buffer_uptodate(bh)) 1282 *partial = 1; 1283 continue; 1284 } 1285 err = (*fn)(handle, bh); 1286 if (!ret) 1287 ret = err; 1288 } 1289 return ret; 1290 } 1291 1292 /* 1293 * To preserve ordering, it is essential that the hole instantiation and 1294 * the data write be encapsulated in a single transaction. We cannot 1295 * close off a transaction and start a new one between the ext4_get_block() 1296 * and the commit_write(). So doing the jbd2_journal_start at the start of 1297 * prepare_write() is the right place. 1298 * 1299 * Also, this function can nest inside ext4_writepage() -> 1300 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1301 * has generated enough buffer credits to do the whole page. So we won't 1302 * block on the journal in that case, which is good, because the caller may 1303 * be PF_MEMALLOC. 1304 * 1305 * By accident, ext4 can be reentered when a transaction is open via 1306 * quota file writes. If we were to commit the transaction while thus 1307 * reentered, there can be a deadlock - we would be holding a quota 1308 * lock, and the commit would never complete if another thread had a 1309 * transaction open and was blocking on the quota lock - a ranking 1310 * violation. 1311 * 1312 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1313 * will _not_ run commit under these circumstances because handle->h_ref 1314 * is elevated. We'll still have enough credits for the tiny quotafile 1315 * write. 1316 */ 1317 static int do_journal_get_write_access(handle_t *handle, 1318 struct buffer_head *bh) 1319 { 1320 if (!buffer_mapped(bh) || buffer_freed(bh)) 1321 return 0; 1322 return ext4_journal_get_write_access(handle, bh); 1323 } 1324 1325 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1326 loff_t pos, unsigned len, unsigned flags, 1327 struct page **pagep, void **fsdata) 1328 { 1329 struct inode *inode = mapping->host; 1330 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1331 handle_t *handle; 1332 int retries = 0; 1333 struct page *page; 1334 pgoff_t index; 1335 unsigned from, to; 1336 1337 index = pos >> PAGE_CACHE_SHIFT; 1338 from = pos & (PAGE_CACHE_SIZE - 1); 1339 to = from + len; 1340 1341 retry: 1342 handle = ext4_journal_start(inode, needed_blocks); 1343 if (IS_ERR(handle)) { 1344 ret = PTR_ERR(handle); 1345 goto out; 1346 } 1347 1348 page = __grab_cache_page(mapping, index); 1349 if (!page) { 1350 ext4_journal_stop(handle); 1351 ret = -ENOMEM; 1352 goto out; 1353 } 1354 *pagep = page; 1355 1356 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1357 ext4_get_block); 1358 1359 if (!ret && ext4_should_journal_data(inode)) { 1360 ret = walk_page_buffers(handle, page_buffers(page), 1361 from, to, NULL, do_journal_get_write_access); 1362 } 1363 1364 if (ret) { 1365 unlock_page(page); 1366 ext4_journal_stop(handle); 1367 page_cache_release(page); 1368 /* 1369 * block_write_begin may have instantiated a few blocks 1370 * outside i_size. Trim these off again. Don't need 1371 * i_size_read because we hold i_mutex. 1372 */ 1373 if (pos + len > inode->i_size) 1374 vmtruncate(inode, inode->i_size); 1375 } 1376 1377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1378 goto retry; 1379 out: 1380 return ret; 1381 } 1382 1383 /* For write_end() in data=journal mode */ 1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1385 { 1386 if (!buffer_mapped(bh) || buffer_freed(bh)) 1387 return 0; 1388 set_buffer_uptodate(bh); 1389 return ext4_journal_dirty_metadata(handle, bh); 1390 } 1391 1392 /* 1393 * We need to pick up the new inode size which generic_commit_write gave us 1394 * `file' can be NULL - eg, when called from page_symlink(). 1395 * 1396 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1397 * buffers are managed internally. 1398 */ 1399 static int ext4_ordered_write_end(struct file *file, 1400 struct address_space *mapping, 1401 loff_t pos, unsigned len, unsigned copied, 1402 struct page *page, void *fsdata) 1403 { 1404 handle_t *handle = ext4_journal_current_handle(); 1405 struct inode *inode = mapping->host; 1406 int ret = 0, ret2; 1407 1408 ret = ext4_jbd2_file_inode(handle, inode); 1409 1410 if (ret == 0) { 1411 loff_t new_i_size; 1412 1413 new_i_size = pos + copied; 1414 if (new_i_size > EXT4_I(inode)->i_disksize) { 1415 ext4_update_i_disksize(inode, new_i_size); 1416 /* We need to mark inode dirty even if 1417 * new_i_size is less that inode->i_size 1418 * bu greater than i_disksize.(hint delalloc) 1419 */ 1420 ext4_mark_inode_dirty(handle, inode); 1421 } 1422 1423 ret2 = generic_write_end(file, mapping, pos, len, copied, 1424 page, fsdata); 1425 copied = ret2; 1426 if (ret2 < 0) 1427 ret = ret2; 1428 } 1429 ret2 = ext4_journal_stop(handle); 1430 if (!ret) 1431 ret = ret2; 1432 1433 return ret ? ret : copied; 1434 } 1435 1436 static int ext4_writeback_write_end(struct file *file, 1437 struct address_space *mapping, 1438 loff_t pos, unsigned len, unsigned copied, 1439 struct page *page, void *fsdata) 1440 { 1441 handle_t *handle = ext4_journal_current_handle(); 1442 struct inode *inode = mapping->host; 1443 int ret = 0, ret2; 1444 loff_t new_i_size; 1445 1446 new_i_size = pos + copied; 1447 if (new_i_size > EXT4_I(inode)->i_disksize) { 1448 ext4_update_i_disksize(inode, new_i_size); 1449 /* We need to mark inode dirty even if 1450 * new_i_size is less that inode->i_size 1451 * bu greater than i_disksize.(hint delalloc) 1452 */ 1453 ext4_mark_inode_dirty(handle, inode); 1454 } 1455 1456 ret2 = generic_write_end(file, mapping, pos, len, copied, 1457 page, fsdata); 1458 copied = ret2; 1459 if (ret2 < 0) 1460 ret = ret2; 1461 1462 ret2 = ext4_journal_stop(handle); 1463 if (!ret) 1464 ret = ret2; 1465 1466 return ret ? ret : copied; 1467 } 1468 1469 static int ext4_journalled_write_end(struct file *file, 1470 struct address_space *mapping, 1471 loff_t pos, unsigned len, unsigned copied, 1472 struct page *page, void *fsdata) 1473 { 1474 handle_t *handle = ext4_journal_current_handle(); 1475 struct inode *inode = mapping->host; 1476 int ret = 0, ret2; 1477 int partial = 0; 1478 unsigned from, to; 1479 loff_t new_i_size; 1480 1481 from = pos & (PAGE_CACHE_SIZE - 1); 1482 to = from + len; 1483 1484 if (copied < len) { 1485 if (!PageUptodate(page)) 1486 copied = 0; 1487 page_zero_new_buffers(page, from+copied, to); 1488 } 1489 1490 ret = walk_page_buffers(handle, page_buffers(page), from, 1491 to, &partial, write_end_fn); 1492 if (!partial) 1493 SetPageUptodate(page); 1494 new_i_size = pos + copied; 1495 if (new_i_size > inode->i_size) 1496 i_size_write(inode, pos+copied); 1497 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1498 if (new_i_size > EXT4_I(inode)->i_disksize) { 1499 ext4_update_i_disksize(inode, new_i_size); 1500 ret2 = ext4_mark_inode_dirty(handle, inode); 1501 if (!ret) 1502 ret = ret2; 1503 } 1504 1505 unlock_page(page); 1506 ret2 = ext4_journal_stop(handle); 1507 if (!ret) 1508 ret = ret2; 1509 page_cache_release(page); 1510 1511 return ret ? ret : copied; 1512 } 1513 1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1515 { 1516 int retries = 0; 1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1518 unsigned long md_needed, mdblocks, total = 0; 1519 1520 /* 1521 * recalculate the amount of metadata blocks to reserve 1522 * in order to allocate nrblocks 1523 * worse case is one extent per block 1524 */ 1525 repeat: 1526 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1527 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1528 mdblocks = ext4_calc_metadata_amount(inode, total); 1529 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1530 1531 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1532 total = md_needed + nrblocks; 1533 1534 if (ext4_claim_free_blocks(sbi, total)) { 1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1536 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1537 yield(); 1538 goto repeat; 1539 } 1540 return -ENOSPC; 1541 } 1542 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1543 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1544 1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1546 return 0; /* success */ 1547 } 1548 1549 static void ext4_da_release_space(struct inode *inode, int to_free) 1550 { 1551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1552 int total, mdb, mdb_free, release; 1553 1554 if (!to_free) 1555 return; /* Nothing to release, exit */ 1556 1557 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1558 1559 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1560 /* 1561 * if there is no reserved blocks, but we try to free some 1562 * then the counter is messed up somewhere. 1563 * but since this function is called from invalidate 1564 * page, it's harmless to return without any action 1565 */ 1566 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1567 "blocks for inode %lu, but there is no reserved " 1568 "data blocks\n", to_free, inode->i_ino); 1569 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1570 return; 1571 } 1572 1573 /* recalculate the number of metablocks still need to be reserved */ 1574 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1575 mdb = ext4_calc_metadata_amount(inode, total); 1576 1577 /* figure out how many metablocks to release */ 1578 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1579 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1580 1581 release = to_free + mdb_free; 1582 1583 /* update fs dirty blocks counter for truncate case */ 1584 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1585 1586 /* update per-inode reservations */ 1587 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1588 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1589 1590 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1591 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1592 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1593 } 1594 1595 static void ext4_da_page_release_reservation(struct page *page, 1596 unsigned long offset) 1597 { 1598 int to_release = 0; 1599 struct buffer_head *head, *bh; 1600 unsigned int curr_off = 0; 1601 1602 head = page_buffers(page); 1603 bh = head; 1604 do { 1605 unsigned int next_off = curr_off + bh->b_size; 1606 1607 if ((offset <= curr_off) && (buffer_delay(bh))) { 1608 to_release++; 1609 clear_buffer_delay(bh); 1610 } 1611 curr_off = next_off; 1612 } while ((bh = bh->b_this_page) != head); 1613 ext4_da_release_space(page->mapping->host, to_release); 1614 } 1615 1616 /* 1617 * Delayed allocation stuff 1618 */ 1619 1620 struct mpage_da_data { 1621 struct inode *inode; 1622 struct buffer_head lbh; /* extent of blocks */ 1623 unsigned long first_page, next_page; /* extent of pages */ 1624 get_block_t *get_block; 1625 struct writeback_control *wbc; 1626 int io_done; 1627 long pages_written; 1628 int retval; 1629 }; 1630 1631 /* 1632 * mpage_da_submit_io - walks through extent of pages and try to write 1633 * them with writepage() call back 1634 * 1635 * @mpd->inode: inode 1636 * @mpd->first_page: first page of the extent 1637 * @mpd->next_page: page after the last page of the extent 1638 * @mpd->get_block: the filesystem's block mapper function 1639 * 1640 * By the time mpage_da_submit_io() is called we expect all blocks 1641 * to be allocated. this may be wrong if allocation failed. 1642 * 1643 * As pages are already locked by write_cache_pages(), we can't use it 1644 */ 1645 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1646 { 1647 struct address_space *mapping = mpd->inode->i_mapping; 1648 int ret = 0, err, nr_pages, i; 1649 unsigned long index, end; 1650 struct pagevec pvec; 1651 1652 BUG_ON(mpd->next_page <= mpd->first_page); 1653 pagevec_init(&pvec, 0); 1654 index = mpd->first_page; 1655 end = mpd->next_page - 1; 1656 1657 while (index <= end) { 1658 /* XXX: optimize tail */ 1659 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1660 if (nr_pages == 0) 1661 break; 1662 for (i = 0; i < nr_pages; i++) { 1663 struct page *page = pvec.pages[i]; 1664 1665 index = page->index; 1666 if (index > end) 1667 break; 1668 index++; 1669 1670 err = mapping->a_ops->writepage(page, mpd->wbc); 1671 if (!err) 1672 mpd->pages_written++; 1673 /* 1674 * In error case, we have to continue because 1675 * remaining pages are still locked 1676 * XXX: unlock and re-dirty them? 1677 */ 1678 if (ret == 0) 1679 ret = err; 1680 } 1681 pagevec_release(&pvec); 1682 } 1683 return ret; 1684 } 1685 1686 /* 1687 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1688 * 1689 * @mpd->inode - inode to walk through 1690 * @exbh->b_blocknr - first block on a disk 1691 * @exbh->b_size - amount of space in bytes 1692 * @logical - first logical block to start assignment with 1693 * 1694 * the function goes through all passed space and put actual disk 1695 * block numbers into buffer heads, dropping BH_Delay 1696 */ 1697 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1698 struct buffer_head *exbh) 1699 { 1700 struct inode *inode = mpd->inode; 1701 struct address_space *mapping = inode->i_mapping; 1702 int blocks = exbh->b_size >> inode->i_blkbits; 1703 sector_t pblock = exbh->b_blocknr, cur_logical; 1704 struct buffer_head *head, *bh; 1705 pgoff_t index, end; 1706 struct pagevec pvec; 1707 int nr_pages, i; 1708 1709 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1710 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1711 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1712 1713 pagevec_init(&pvec, 0); 1714 1715 while (index <= end) { 1716 /* XXX: optimize tail */ 1717 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1718 if (nr_pages == 0) 1719 break; 1720 for (i = 0; i < nr_pages; i++) { 1721 struct page *page = pvec.pages[i]; 1722 1723 index = page->index; 1724 if (index > end) 1725 break; 1726 index++; 1727 1728 BUG_ON(!PageLocked(page)); 1729 BUG_ON(PageWriteback(page)); 1730 BUG_ON(!page_has_buffers(page)); 1731 1732 bh = page_buffers(page); 1733 head = bh; 1734 1735 /* skip blocks out of the range */ 1736 do { 1737 if (cur_logical >= logical) 1738 break; 1739 cur_logical++; 1740 } while ((bh = bh->b_this_page) != head); 1741 1742 do { 1743 if (cur_logical >= logical + blocks) 1744 break; 1745 if (buffer_delay(bh)) { 1746 bh->b_blocknr = pblock; 1747 clear_buffer_delay(bh); 1748 bh->b_bdev = inode->i_sb->s_bdev; 1749 } else if (buffer_unwritten(bh)) { 1750 bh->b_blocknr = pblock; 1751 clear_buffer_unwritten(bh); 1752 set_buffer_mapped(bh); 1753 set_buffer_new(bh); 1754 bh->b_bdev = inode->i_sb->s_bdev; 1755 } else if (buffer_mapped(bh)) 1756 BUG_ON(bh->b_blocknr != pblock); 1757 1758 cur_logical++; 1759 pblock++; 1760 } while ((bh = bh->b_this_page) != head); 1761 } 1762 pagevec_release(&pvec); 1763 } 1764 } 1765 1766 1767 /* 1768 * __unmap_underlying_blocks - just a helper function to unmap 1769 * set of blocks described by @bh 1770 */ 1771 static inline void __unmap_underlying_blocks(struct inode *inode, 1772 struct buffer_head *bh) 1773 { 1774 struct block_device *bdev = inode->i_sb->s_bdev; 1775 int blocks, i; 1776 1777 blocks = bh->b_size >> inode->i_blkbits; 1778 for (i = 0; i < blocks; i++) 1779 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1780 } 1781 1782 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1783 sector_t logical, long blk_cnt) 1784 { 1785 int nr_pages, i; 1786 pgoff_t index, end; 1787 struct pagevec pvec; 1788 struct inode *inode = mpd->inode; 1789 struct address_space *mapping = inode->i_mapping; 1790 1791 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1792 end = (logical + blk_cnt - 1) >> 1793 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1794 while (index <= end) { 1795 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1796 if (nr_pages == 0) 1797 break; 1798 for (i = 0; i < nr_pages; i++) { 1799 struct page *page = pvec.pages[i]; 1800 index = page->index; 1801 if (index > end) 1802 break; 1803 index++; 1804 1805 BUG_ON(!PageLocked(page)); 1806 BUG_ON(PageWriteback(page)); 1807 block_invalidatepage(page, 0); 1808 ClearPageUptodate(page); 1809 unlock_page(page); 1810 } 1811 } 1812 return; 1813 } 1814 1815 static void ext4_print_free_blocks(struct inode *inode) 1816 { 1817 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1818 printk(KERN_EMERG "Total free blocks count %lld\n", 1819 ext4_count_free_blocks(inode->i_sb)); 1820 printk(KERN_EMERG "Free/Dirty block details\n"); 1821 printk(KERN_EMERG "free_blocks=%lld\n", 1822 percpu_counter_sum(&sbi->s_freeblocks_counter)); 1823 printk(KERN_EMERG "dirty_blocks=%lld\n", 1824 percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1825 printk(KERN_EMERG "Block reservation details\n"); 1826 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n", 1827 EXT4_I(inode)->i_reserved_data_blocks); 1828 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n", 1829 EXT4_I(inode)->i_reserved_meta_blocks); 1830 return; 1831 } 1832 1833 /* 1834 * mpage_da_map_blocks - go through given space 1835 * 1836 * @mpd->lbh - bh describing space 1837 * @mpd->get_block - the filesystem's block mapper function 1838 * 1839 * The function skips space we know is already mapped to disk blocks. 1840 * 1841 */ 1842 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 1843 { 1844 int err = 0; 1845 struct buffer_head new; 1846 struct buffer_head *lbh = &mpd->lbh; 1847 sector_t next; 1848 1849 /* 1850 * We consider only non-mapped and non-allocated blocks 1851 */ 1852 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1853 return 0; 1854 new.b_state = lbh->b_state; 1855 new.b_blocknr = 0; 1856 new.b_size = lbh->b_size; 1857 next = lbh->b_blocknr; 1858 /* 1859 * If we didn't accumulate anything 1860 * to write simply return 1861 */ 1862 if (!new.b_size) 1863 return 0; 1864 err = mpd->get_block(mpd->inode, next, &new, 1); 1865 if (err) { 1866 1867 /* If get block returns with error 1868 * we simply return. Later writepage 1869 * will redirty the page and writepages 1870 * will find the dirty page again 1871 */ 1872 if (err == -EAGAIN) 1873 return 0; 1874 1875 if (err == -ENOSPC && 1876 ext4_count_free_blocks(mpd->inode->i_sb)) { 1877 mpd->retval = err; 1878 return 0; 1879 } 1880 1881 /* 1882 * get block failure will cause us 1883 * to loop in writepages. Because 1884 * a_ops->writepage won't be able to 1885 * make progress. The page will be redirtied 1886 * by writepage and writepages will again 1887 * try to write the same. 1888 */ 1889 printk(KERN_EMERG "%s block allocation failed for inode %lu " 1890 "at logical offset %llu with max blocks " 1891 "%zd with error %d\n", 1892 __func__, mpd->inode->i_ino, 1893 (unsigned long long)next, 1894 lbh->b_size >> mpd->inode->i_blkbits, err); 1895 printk(KERN_EMERG "This should not happen.!! " 1896 "Data will be lost\n"); 1897 if (err == -ENOSPC) { 1898 ext4_print_free_blocks(mpd->inode); 1899 } 1900 /* invlaidate all the pages */ 1901 ext4_da_block_invalidatepages(mpd, next, 1902 lbh->b_size >> mpd->inode->i_blkbits); 1903 return err; 1904 } 1905 BUG_ON(new.b_size == 0); 1906 1907 if (buffer_new(&new)) 1908 __unmap_underlying_blocks(mpd->inode, &new); 1909 1910 /* 1911 * If blocks are delayed marked, we need to 1912 * put actual blocknr and drop delayed bit 1913 */ 1914 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1915 mpage_put_bnr_to_bhs(mpd, next, &new); 1916 1917 return 0; 1918 } 1919 1920 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1921 (1 << BH_Delay) | (1 << BH_Unwritten)) 1922 1923 /* 1924 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1925 * 1926 * @mpd->lbh - extent of blocks 1927 * @logical - logical number of the block in the file 1928 * @bh - bh of the block (used to access block's state) 1929 * 1930 * the function is used to collect contig. blocks in same state 1931 */ 1932 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1933 sector_t logical, struct buffer_head *bh) 1934 { 1935 sector_t next; 1936 size_t b_size = bh->b_size; 1937 struct buffer_head *lbh = &mpd->lbh; 1938 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1939 1940 /* check if thereserved journal credits might overflow */ 1941 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1942 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1943 /* 1944 * With non-extent format we are limited by the journal 1945 * credit available. Total credit needed to insert 1946 * nrblocks contiguous blocks is dependent on the 1947 * nrblocks. So limit nrblocks. 1948 */ 1949 goto flush_it; 1950 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1951 EXT4_MAX_TRANS_DATA) { 1952 /* 1953 * Adding the new buffer_head would make it cross the 1954 * allowed limit for which we have journal credit 1955 * reserved. So limit the new bh->b_size 1956 */ 1957 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1958 mpd->inode->i_blkbits; 1959 /* we will do mpage_da_submit_io in the next loop */ 1960 } 1961 } 1962 /* 1963 * First block in the extent 1964 */ 1965 if (lbh->b_size == 0) { 1966 lbh->b_blocknr = logical; 1967 lbh->b_size = b_size; 1968 lbh->b_state = bh->b_state & BH_FLAGS; 1969 return; 1970 } 1971 1972 next = lbh->b_blocknr + nrblocks; 1973 /* 1974 * Can we merge the block to our big extent? 1975 */ 1976 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1977 lbh->b_size += b_size; 1978 return; 1979 } 1980 1981 flush_it: 1982 /* 1983 * We couldn't merge the block to our extent, so we 1984 * need to flush current extent and start new one 1985 */ 1986 if (mpage_da_map_blocks(mpd) == 0) 1987 mpage_da_submit_io(mpd); 1988 mpd->io_done = 1; 1989 return; 1990 } 1991 1992 /* 1993 * __mpage_da_writepage - finds extent of pages and blocks 1994 * 1995 * @page: page to consider 1996 * @wbc: not used, we just follow rules 1997 * @data: context 1998 * 1999 * The function finds extents of pages and scan them for all blocks. 2000 */ 2001 static int __mpage_da_writepage(struct page *page, 2002 struct writeback_control *wbc, void *data) 2003 { 2004 struct mpage_da_data *mpd = data; 2005 struct inode *inode = mpd->inode; 2006 struct buffer_head *bh, *head, fake; 2007 sector_t logical; 2008 2009 if (mpd->io_done) { 2010 /* 2011 * Rest of the page in the page_vec 2012 * redirty then and skip then. We will 2013 * try to to write them again after 2014 * starting a new transaction 2015 */ 2016 redirty_page_for_writepage(wbc, page); 2017 unlock_page(page); 2018 return MPAGE_DA_EXTENT_TAIL; 2019 } 2020 /* 2021 * Can we merge this page to current extent? 2022 */ 2023 if (mpd->next_page != page->index) { 2024 /* 2025 * Nope, we can't. So, we map non-allocated blocks 2026 * and start IO on them using writepage() 2027 */ 2028 if (mpd->next_page != mpd->first_page) { 2029 if (mpage_da_map_blocks(mpd) == 0) 2030 mpage_da_submit_io(mpd); 2031 /* 2032 * skip rest of the page in the page_vec 2033 */ 2034 mpd->io_done = 1; 2035 redirty_page_for_writepage(wbc, page); 2036 unlock_page(page); 2037 return MPAGE_DA_EXTENT_TAIL; 2038 } 2039 2040 /* 2041 * Start next extent of pages ... 2042 */ 2043 mpd->first_page = page->index; 2044 2045 /* 2046 * ... and blocks 2047 */ 2048 mpd->lbh.b_size = 0; 2049 mpd->lbh.b_state = 0; 2050 mpd->lbh.b_blocknr = 0; 2051 } 2052 2053 mpd->next_page = page->index + 1; 2054 logical = (sector_t) page->index << 2055 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2056 2057 if (!page_has_buffers(page)) { 2058 /* 2059 * There is no attached buffer heads yet (mmap?) 2060 * we treat the page asfull of dirty blocks 2061 */ 2062 bh = &fake; 2063 bh->b_size = PAGE_CACHE_SIZE; 2064 bh->b_state = 0; 2065 set_buffer_dirty(bh); 2066 set_buffer_uptodate(bh); 2067 mpage_add_bh_to_extent(mpd, logical, bh); 2068 if (mpd->io_done) 2069 return MPAGE_DA_EXTENT_TAIL; 2070 } else { 2071 /* 2072 * Page with regular buffer heads, just add all dirty ones 2073 */ 2074 head = page_buffers(page); 2075 bh = head; 2076 do { 2077 BUG_ON(buffer_locked(bh)); 2078 if (buffer_dirty(bh) && 2079 (!buffer_mapped(bh) || buffer_delay(bh))) { 2080 mpage_add_bh_to_extent(mpd, logical, bh); 2081 if (mpd->io_done) 2082 return MPAGE_DA_EXTENT_TAIL; 2083 } 2084 logical++; 2085 } while ((bh = bh->b_this_page) != head); 2086 } 2087 2088 return 0; 2089 } 2090 2091 /* 2092 * mpage_da_writepages - walk the list of dirty pages of the given 2093 * address space, allocates non-allocated blocks, maps newly-allocated 2094 * blocks to existing bhs and issue IO them 2095 * 2096 * @mapping: address space structure to write 2097 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2098 * @get_block: the filesystem's block mapper function. 2099 * 2100 * This is a library function, which implements the writepages() 2101 * address_space_operation. 2102 */ 2103 static int mpage_da_writepages(struct address_space *mapping, 2104 struct writeback_control *wbc, 2105 struct mpage_da_data *mpd) 2106 { 2107 long to_write; 2108 int ret; 2109 2110 if (!mpd->get_block) 2111 return generic_writepages(mapping, wbc); 2112 2113 mpd->lbh.b_size = 0; 2114 mpd->lbh.b_state = 0; 2115 mpd->lbh.b_blocknr = 0; 2116 mpd->first_page = 0; 2117 mpd->next_page = 0; 2118 mpd->io_done = 0; 2119 mpd->pages_written = 0; 2120 mpd->retval = 0; 2121 2122 to_write = wbc->nr_to_write; 2123 2124 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd); 2125 2126 /* 2127 * Handle last extent of pages 2128 */ 2129 if (!mpd->io_done && mpd->next_page != mpd->first_page) { 2130 if (mpage_da_map_blocks(mpd) == 0) 2131 mpage_da_submit_io(mpd); 2132 } 2133 2134 wbc->nr_to_write = to_write - mpd->pages_written; 2135 return ret; 2136 } 2137 2138 /* 2139 * this is a special callback for ->write_begin() only 2140 * it's intention is to return mapped block or reserve space 2141 */ 2142 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2143 struct buffer_head *bh_result, int create) 2144 { 2145 int ret = 0; 2146 2147 BUG_ON(create == 0); 2148 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2149 2150 /* 2151 * first, we need to know whether the block is allocated already 2152 * preallocated blocks are unmapped but should treated 2153 * the same as allocated blocks. 2154 */ 2155 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2156 if ((ret == 0) && !buffer_delay(bh_result)) { 2157 /* the block isn't (pre)allocated yet, let's reserve space */ 2158 /* 2159 * XXX: __block_prepare_write() unmaps passed block, 2160 * is it OK? 2161 */ 2162 ret = ext4_da_reserve_space(inode, 1); 2163 if (ret) 2164 /* not enough space to reserve */ 2165 return ret; 2166 2167 map_bh(bh_result, inode->i_sb, 0); 2168 set_buffer_new(bh_result); 2169 set_buffer_delay(bh_result); 2170 } else if (ret > 0) { 2171 bh_result->b_size = (ret << inode->i_blkbits); 2172 ret = 0; 2173 } 2174 2175 return ret; 2176 } 2177 #define EXT4_DELALLOC_RSVED 1 2178 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2179 struct buffer_head *bh_result, int create) 2180 { 2181 int ret; 2182 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2183 loff_t disksize = EXT4_I(inode)->i_disksize; 2184 handle_t *handle = NULL; 2185 2186 handle = ext4_journal_current_handle(); 2187 BUG_ON(!handle); 2188 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2189 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2190 if (ret > 0) { 2191 2192 bh_result->b_size = (ret << inode->i_blkbits); 2193 2194 if (ext4_should_order_data(inode)) { 2195 int retval; 2196 retval = ext4_jbd2_file_inode(handle, inode); 2197 if (retval) 2198 /* 2199 * Failed to add inode for ordered 2200 * mode. Don't update file size 2201 */ 2202 return retval; 2203 } 2204 2205 /* 2206 * Update on-disk size along with block allocation 2207 * we don't use 'extend_disksize' as size may change 2208 * within already allocated block -bzzz 2209 */ 2210 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2211 if (disksize > i_size_read(inode)) 2212 disksize = i_size_read(inode); 2213 if (disksize > EXT4_I(inode)->i_disksize) { 2214 ext4_update_i_disksize(inode, disksize); 2215 ret = ext4_mark_inode_dirty(handle, inode); 2216 return ret; 2217 } 2218 ret = 0; 2219 } 2220 return ret; 2221 } 2222 2223 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2224 { 2225 /* 2226 * unmapped buffer is possible for holes. 2227 * delay buffer is possible with delayed allocation 2228 */ 2229 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2230 } 2231 2232 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2233 struct buffer_head *bh_result, int create) 2234 { 2235 int ret = 0; 2236 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2237 2238 /* 2239 * we don't want to do block allocation in writepage 2240 * so call get_block_wrap with create = 0 2241 */ 2242 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2243 bh_result, 0, 0, 0); 2244 if (ret > 0) { 2245 bh_result->b_size = (ret << inode->i_blkbits); 2246 ret = 0; 2247 } 2248 return ret; 2249 } 2250 2251 /* 2252 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2253 * get called via journal_submit_inode_data_buffers (no journal handle) 2254 * get called via shrink_page_list via pdflush (no journal handle) 2255 * or grab_page_cache when doing write_begin (have journal handle) 2256 */ 2257 static int ext4_da_writepage(struct page *page, 2258 struct writeback_control *wbc) 2259 { 2260 int ret = 0; 2261 loff_t size; 2262 unsigned long len; 2263 struct buffer_head *page_bufs; 2264 struct inode *inode = page->mapping->host; 2265 2266 size = i_size_read(inode); 2267 if (page->index == size >> PAGE_CACHE_SHIFT) 2268 len = size & ~PAGE_CACHE_MASK; 2269 else 2270 len = PAGE_CACHE_SIZE; 2271 2272 if (page_has_buffers(page)) { 2273 page_bufs = page_buffers(page); 2274 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2275 ext4_bh_unmapped_or_delay)) { 2276 /* 2277 * We don't want to do block allocation 2278 * So redirty the page and return 2279 * We may reach here when we do a journal commit 2280 * via journal_submit_inode_data_buffers. 2281 * If we don't have mapping block we just ignore 2282 * them. We can also reach here via shrink_page_list 2283 */ 2284 redirty_page_for_writepage(wbc, page); 2285 unlock_page(page); 2286 return 0; 2287 } 2288 } else { 2289 /* 2290 * The test for page_has_buffers() is subtle: 2291 * We know the page is dirty but it lost buffers. That means 2292 * that at some moment in time after write_begin()/write_end() 2293 * has been called all buffers have been clean and thus they 2294 * must have been written at least once. So they are all 2295 * mapped and we can happily proceed with mapping them 2296 * and writing the page. 2297 * 2298 * Try to initialize the buffer_heads and check whether 2299 * all are mapped and non delay. We don't want to 2300 * do block allocation here. 2301 */ 2302 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2303 ext4_normal_get_block_write); 2304 if (!ret) { 2305 page_bufs = page_buffers(page); 2306 /* check whether all are mapped and non delay */ 2307 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2308 ext4_bh_unmapped_or_delay)) { 2309 redirty_page_for_writepage(wbc, page); 2310 unlock_page(page); 2311 return 0; 2312 } 2313 } else { 2314 /* 2315 * We can't do block allocation here 2316 * so just redity the page and unlock 2317 * and return 2318 */ 2319 redirty_page_for_writepage(wbc, page); 2320 unlock_page(page); 2321 return 0; 2322 } 2323 } 2324 2325 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2326 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2327 else 2328 ret = block_write_full_page(page, 2329 ext4_normal_get_block_write, 2330 wbc); 2331 2332 return ret; 2333 } 2334 2335 /* 2336 * This is called via ext4_da_writepages() to 2337 * calulate the total number of credits to reserve to fit 2338 * a single extent allocation into a single transaction, 2339 * ext4_da_writpeages() will loop calling this before 2340 * the block allocation. 2341 */ 2342 2343 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2344 { 2345 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2346 2347 /* 2348 * With non-extent format the journal credit needed to 2349 * insert nrblocks contiguous block is dependent on 2350 * number of contiguous block. So we will limit 2351 * number of contiguous block to a sane value 2352 */ 2353 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2354 (max_blocks > EXT4_MAX_TRANS_DATA)) 2355 max_blocks = EXT4_MAX_TRANS_DATA; 2356 2357 return ext4_chunk_trans_blocks(inode, max_blocks); 2358 } 2359 2360 static int ext4_da_writepages(struct address_space *mapping, 2361 struct writeback_control *wbc) 2362 { 2363 handle_t *handle = NULL; 2364 loff_t range_start = 0; 2365 struct mpage_da_data mpd; 2366 struct inode *inode = mapping->host; 2367 int needed_blocks, ret = 0, nr_to_writebump = 0; 2368 long to_write, pages_skipped = 0; 2369 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2370 2371 /* 2372 * No pages to write? This is mainly a kludge to avoid starting 2373 * a transaction for special inodes like journal inode on last iput() 2374 * because that could violate lock ordering on umount 2375 */ 2376 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2377 return 0; 2378 /* 2379 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2380 * This make sure small files blocks are allocated in 2381 * single attempt. This ensure that small files 2382 * get less fragmented. 2383 */ 2384 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2385 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2386 wbc->nr_to_write = sbi->s_mb_stream_request; 2387 } 2388 2389 if (!wbc->range_cyclic) 2390 /* 2391 * If range_cyclic is not set force range_cont 2392 * and save the old writeback_index 2393 */ 2394 wbc->range_cont = 1; 2395 2396 range_start = wbc->range_start; 2397 pages_skipped = wbc->pages_skipped; 2398 2399 mpd.wbc = wbc; 2400 mpd.inode = mapping->host; 2401 2402 restart_loop: 2403 to_write = wbc->nr_to_write; 2404 while (!ret && to_write > 0) { 2405 2406 /* 2407 * we insert one extent at a time. So we need 2408 * credit needed for single extent allocation. 2409 * journalled mode is currently not supported 2410 * by delalloc 2411 */ 2412 BUG_ON(ext4_should_journal_data(inode)); 2413 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2414 2415 /* start a new transaction*/ 2416 handle = ext4_journal_start(inode, needed_blocks); 2417 if (IS_ERR(handle)) { 2418 ret = PTR_ERR(handle); 2419 printk(KERN_EMERG "%s: jbd2_start: " 2420 "%ld pages, ino %lu; err %d\n", __func__, 2421 wbc->nr_to_write, inode->i_ino, ret); 2422 dump_stack(); 2423 goto out_writepages; 2424 } 2425 to_write -= wbc->nr_to_write; 2426 2427 mpd.get_block = ext4_da_get_block_write; 2428 ret = mpage_da_writepages(mapping, wbc, &mpd); 2429 2430 ext4_journal_stop(handle); 2431 2432 if (mpd.retval == -ENOSPC) 2433 jbd2_journal_force_commit_nested(sbi->s_journal); 2434 2435 /* reset the retry count */ 2436 if (ret == MPAGE_DA_EXTENT_TAIL) { 2437 /* 2438 * got one extent now try with 2439 * rest of the pages 2440 */ 2441 to_write += wbc->nr_to_write; 2442 ret = 0; 2443 } else if (wbc->nr_to_write) { 2444 /* 2445 * There is no more writeout needed 2446 * or we requested for a noblocking writeout 2447 * and we found the device congested 2448 */ 2449 to_write += wbc->nr_to_write; 2450 break; 2451 } 2452 wbc->nr_to_write = to_write; 2453 } 2454 2455 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) { 2456 /* We skipped pages in this loop */ 2457 wbc->range_start = range_start; 2458 wbc->nr_to_write = to_write + 2459 wbc->pages_skipped - pages_skipped; 2460 wbc->pages_skipped = pages_skipped; 2461 goto restart_loop; 2462 } 2463 2464 out_writepages: 2465 wbc->nr_to_write = to_write - nr_to_writebump; 2466 wbc->range_start = range_start; 2467 return ret; 2468 } 2469 2470 #define FALL_BACK_TO_NONDELALLOC 1 2471 static int ext4_nonda_switch(struct super_block *sb) 2472 { 2473 s64 free_blocks, dirty_blocks; 2474 struct ext4_sb_info *sbi = EXT4_SB(sb); 2475 2476 /* 2477 * switch to non delalloc mode if we are running low 2478 * on free block. The free block accounting via percpu 2479 * counters can get slightly wrong with FBC_BATCH getting 2480 * accumulated on each CPU without updating global counters 2481 * Delalloc need an accurate free block accounting. So switch 2482 * to non delalloc when we are near to error range. 2483 */ 2484 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2485 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2486 if (2 * free_blocks < 3 * dirty_blocks || 2487 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2488 /* 2489 * free block count is less that 150% of dirty blocks 2490 * or free blocks is less that watermark 2491 */ 2492 return 1; 2493 } 2494 return 0; 2495 } 2496 2497 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2498 loff_t pos, unsigned len, unsigned flags, 2499 struct page **pagep, void **fsdata) 2500 { 2501 int ret, retries = 0; 2502 struct page *page; 2503 pgoff_t index; 2504 unsigned from, to; 2505 struct inode *inode = mapping->host; 2506 handle_t *handle; 2507 2508 index = pos >> PAGE_CACHE_SHIFT; 2509 from = pos & (PAGE_CACHE_SIZE - 1); 2510 to = from + len; 2511 2512 if (ext4_nonda_switch(inode->i_sb)) { 2513 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2514 return ext4_write_begin(file, mapping, pos, 2515 len, flags, pagep, fsdata); 2516 } 2517 *fsdata = (void *)0; 2518 retry: 2519 /* 2520 * With delayed allocation, we don't log the i_disksize update 2521 * if there is delayed block allocation. But we still need 2522 * to journalling the i_disksize update if writes to the end 2523 * of file which has an already mapped buffer. 2524 */ 2525 handle = ext4_journal_start(inode, 1); 2526 if (IS_ERR(handle)) { 2527 ret = PTR_ERR(handle); 2528 goto out; 2529 } 2530 2531 page = __grab_cache_page(mapping, index); 2532 if (!page) { 2533 ext4_journal_stop(handle); 2534 ret = -ENOMEM; 2535 goto out; 2536 } 2537 *pagep = page; 2538 2539 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2540 ext4_da_get_block_prep); 2541 if (ret < 0) { 2542 unlock_page(page); 2543 ext4_journal_stop(handle); 2544 page_cache_release(page); 2545 /* 2546 * block_write_begin may have instantiated a few blocks 2547 * outside i_size. Trim these off again. Don't need 2548 * i_size_read because we hold i_mutex. 2549 */ 2550 if (pos + len > inode->i_size) 2551 vmtruncate(inode, inode->i_size); 2552 } 2553 2554 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2555 goto retry; 2556 out: 2557 return ret; 2558 } 2559 2560 /* 2561 * Check if we should update i_disksize 2562 * when write to the end of file but not require block allocation 2563 */ 2564 static int ext4_da_should_update_i_disksize(struct page *page, 2565 unsigned long offset) 2566 { 2567 struct buffer_head *bh; 2568 struct inode *inode = page->mapping->host; 2569 unsigned int idx; 2570 int i; 2571 2572 bh = page_buffers(page); 2573 idx = offset >> inode->i_blkbits; 2574 2575 for (i = 0; i < idx; i++) 2576 bh = bh->b_this_page; 2577 2578 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2579 return 0; 2580 return 1; 2581 } 2582 2583 static int ext4_da_write_end(struct file *file, 2584 struct address_space *mapping, 2585 loff_t pos, unsigned len, unsigned copied, 2586 struct page *page, void *fsdata) 2587 { 2588 struct inode *inode = mapping->host; 2589 int ret = 0, ret2; 2590 handle_t *handle = ext4_journal_current_handle(); 2591 loff_t new_i_size; 2592 unsigned long start, end; 2593 int write_mode = (int)(unsigned long)fsdata; 2594 2595 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2596 if (ext4_should_order_data(inode)) { 2597 return ext4_ordered_write_end(file, mapping, pos, 2598 len, copied, page, fsdata); 2599 } else if (ext4_should_writeback_data(inode)) { 2600 return ext4_writeback_write_end(file, mapping, pos, 2601 len, copied, page, fsdata); 2602 } else { 2603 BUG(); 2604 } 2605 } 2606 2607 start = pos & (PAGE_CACHE_SIZE - 1); 2608 end = start + copied - 1; 2609 2610 /* 2611 * generic_write_end() will run mark_inode_dirty() if i_size 2612 * changes. So let's piggyback the i_disksize mark_inode_dirty 2613 * into that. 2614 */ 2615 2616 new_i_size = pos + copied; 2617 if (new_i_size > EXT4_I(inode)->i_disksize) { 2618 if (ext4_da_should_update_i_disksize(page, end)) { 2619 down_write(&EXT4_I(inode)->i_data_sem); 2620 if (new_i_size > EXT4_I(inode)->i_disksize) { 2621 /* 2622 * Updating i_disksize when extending file 2623 * without needing block allocation 2624 */ 2625 if (ext4_should_order_data(inode)) 2626 ret = ext4_jbd2_file_inode(handle, 2627 inode); 2628 2629 EXT4_I(inode)->i_disksize = new_i_size; 2630 } 2631 up_write(&EXT4_I(inode)->i_data_sem); 2632 /* We need to mark inode dirty even if 2633 * new_i_size is less that inode->i_size 2634 * bu greater than i_disksize.(hint delalloc) 2635 */ 2636 ext4_mark_inode_dirty(handle, inode); 2637 } 2638 } 2639 ret2 = generic_write_end(file, mapping, pos, len, copied, 2640 page, fsdata); 2641 copied = ret2; 2642 if (ret2 < 0) 2643 ret = ret2; 2644 ret2 = ext4_journal_stop(handle); 2645 if (!ret) 2646 ret = ret2; 2647 2648 return ret ? ret : copied; 2649 } 2650 2651 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2652 { 2653 /* 2654 * Drop reserved blocks 2655 */ 2656 BUG_ON(!PageLocked(page)); 2657 if (!page_has_buffers(page)) 2658 goto out; 2659 2660 ext4_da_page_release_reservation(page, offset); 2661 2662 out: 2663 ext4_invalidatepage(page, offset); 2664 2665 return; 2666 } 2667 2668 2669 /* 2670 * bmap() is special. It gets used by applications such as lilo and by 2671 * the swapper to find the on-disk block of a specific piece of data. 2672 * 2673 * Naturally, this is dangerous if the block concerned is still in the 2674 * journal. If somebody makes a swapfile on an ext4 data-journaling 2675 * filesystem and enables swap, then they may get a nasty shock when the 2676 * data getting swapped to that swapfile suddenly gets overwritten by 2677 * the original zero's written out previously to the journal and 2678 * awaiting writeback in the kernel's buffer cache. 2679 * 2680 * So, if we see any bmap calls here on a modified, data-journaled file, 2681 * take extra steps to flush any blocks which might be in the cache. 2682 */ 2683 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2684 { 2685 struct inode *inode = mapping->host; 2686 journal_t *journal; 2687 int err; 2688 2689 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2690 test_opt(inode->i_sb, DELALLOC)) { 2691 /* 2692 * With delalloc we want to sync the file 2693 * so that we can make sure we allocate 2694 * blocks for file 2695 */ 2696 filemap_write_and_wait(mapping); 2697 } 2698 2699 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2700 /* 2701 * This is a REALLY heavyweight approach, but the use of 2702 * bmap on dirty files is expected to be extremely rare: 2703 * only if we run lilo or swapon on a freshly made file 2704 * do we expect this to happen. 2705 * 2706 * (bmap requires CAP_SYS_RAWIO so this does not 2707 * represent an unprivileged user DOS attack --- we'd be 2708 * in trouble if mortal users could trigger this path at 2709 * will.) 2710 * 2711 * NB. EXT4_STATE_JDATA is not set on files other than 2712 * regular files. If somebody wants to bmap a directory 2713 * or symlink and gets confused because the buffer 2714 * hasn't yet been flushed to disk, they deserve 2715 * everything they get. 2716 */ 2717 2718 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2719 journal = EXT4_JOURNAL(inode); 2720 jbd2_journal_lock_updates(journal); 2721 err = jbd2_journal_flush(journal); 2722 jbd2_journal_unlock_updates(journal); 2723 2724 if (err) 2725 return 0; 2726 } 2727 2728 return generic_block_bmap(mapping, block, ext4_get_block); 2729 } 2730 2731 static int bget_one(handle_t *handle, struct buffer_head *bh) 2732 { 2733 get_bh(bh); 2734 return 0; 2735 } 2736 2737 static int bput_one(handle_t *handle, struct buffer_head *bh) 2738 { 2739 put_bh(bh); 2740 return 0; 2741 } 2742 2743 /* 2744 * Note that we don't need to start a transaction unless we're journaling data 2745 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2746 * need to file the inode to the transaction's list in ordered mode because if 2747 * we are writing back data added by write(), the inode is already there and if 2748 * we are writing back data modified via mmap(), noone guarantees in which 2749 * transaction the data will hit the disk. In case we are journaling data, we 2750 * cannot start transaction directly because transaction start ranks above page 2751 * lock so we have to do some magic. 2752 * 2753 * In all journaling modes block_write_full_page() will start the I/O. 2754 * 2755 * Problem: 2756 * 2757 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2758 * ext4_writepage() 2759 * 2760 * Similar for: 2761 * 2762 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2763 * 2764 * Same applies to ext4_get_block(). We will deadlock on various things like 2765 * lock_journal and i_data_sem 2766 * 2767 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2768 * allocations fail. 2769 * 2770 * 16May01: If we're reentered then journal_current_handle() will be 2771 * non-zero. We simply *return*. 2772 * 2773 * 1 July 2001: @@@ FIXME: 2774 * In journalled data mode, a data buffer may be metadata against the 2775 * current transaction. But the same file is part of a shared mapping 2776 * and someone does a writepage() on it. 2777 * 2778 * We will move the buffer onto the async_data list, but *after* it has 2779 * been dirtied. So there's a small window where we have dirty data on 2780 * BJ_Metadata. 2781 * 2782 * Note that this only applies to the last partial page in the file. The 2783 * bit which block_write_full_page() uses prepare/commit for. (That's 2784 * broken code anyway: it's wrong for msync()). 2785 * 2786 * It's a rare case: affects the final partial page, for journalled data 2787 * where the file is subject to bith write() and writepage() in the same 2788 * transction. To fix it we'll need a custom block_write_full_page(). 2789 * We'll probably need that anyway for journalling writepage() output. 2790 * 2791 * We don't honour synchronous mounts for writepage(). That would be 2792 * disastrous. Any write() or metadata operation will sync the fs for 2793 * us. 2794 * 2795 */ 2796 static int __ext4_normal_writepage(struct page *page, 2797 struct writeback_control *wbc) 2798 { 2799 struct inode *inode = page->mapping->host; 2800 2801 if (test_opt(inode->i_sb, NOBH)) 2802 return nobh_writepage(page, 2803 ext4_normal_get_block_write, wbc); 2804 else 2805 return block_write_full_page(page, 2806 ext4_normal_get_block_write, 2807 wbc); 2808 } 2809 2810 static int ext4_normal_writepage(struct page *page, 2811 struct writeback_control *wbc) 2812 { 2813 struct inode *inode = page->mapping->host; 2814 loff_t size = i_size_read(inode); 2815 loff_t len; 2816 2817 J_ASSERT(PageLocked(page)); 2818 if (page->index == size >> PAGE_CACHE_SHIFT) 2819 len = size & ~PAGE_CACHE_MASK; 2820 else 2821 len = PAGE_CACHE_SIZE; 2822 2823 if (page_has_buffers(page)) { 2824 /* if page has buffers it should all be mapped 2825 * and allocated. If there are not buffers attached 2826 * to the page we know the page is dirty but it lost 2827 * buffers. That means that at some moment in time 2828 * after write_begin() / write_end() has been called 2829 * all buffers have been clean and thus they must have been 2830 * written at least once. So they are all mapped and we can 2831 * happily proceed with mapping them and writing the page. 2832 */ 2833 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2834 ext4_bh_unmapped_or_delay)); 2835 } 2836 2837 if (!ext4_journal_current_handle()) 2838 return __ext4_normal_writepage(page, wbc); 2839 2840 redirty_page_for_writepage(wbc, page); 2841 unlock_page(page); 2842 return 0; 2843 } 2844 2845 static int __ext4_journalled_writepage(struct page *page, 2846 struct writeback_control *wbc) 2847 { 2848 struct address_space *mapping = page->mapping; 2849 struct inode *inode = mapping->host; 2850 struct buffer_head *page_bufs; 2851 handle_t *handle = NULL; 2852 int ret = 0; 2853 int err; 2854 2855 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2856 ext4_normal_get_block_write); 2857 if (ret != 0) 2858 goto out_unlock; 2859 2860 page_bufs = page_buffers(page); 2861 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2862 bget_one); 2863 /* As soon as we unlock the page, it can go away, but we have 2864 * references to buffers so we are safe */ 2865 unlock_page(page); 2866 2867 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2868 if (IS_ERR(handle)) { 2869 ret = PTR_ERR(handle); 2870 goto out; 2871 } 2872 2873 ret = walk_page_buffers(handle, page_bufs, 0, 2874 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2875 2876 err = walk_page_buffers(handle, page_bufs, 0, 2877 PAGE_CACHE_SIZE, NULL, write_end_fn); 2878 if (ret == 0) 2879 ret = err; 2880 err = ext4_journal_stop(handle); 2881 if (!ret) 2882 ret = err; 2883 2884 walk_page_buffers(handle, page_bufs, 0, 2885 PAGE_CACHE_SIZE, NULL, bput_one); 2886 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2887 goto out; 2888 2889 out_unlock: 2890 unlock_page(page); 2891 out: 2892 return ret; 2893 } 2894 2895 static int ext4_journalled_writepage(struct page *page, 2896 struct writeback_control *wbc) 2897 { 2898 struct inode *inode = page->mapping->host; 2899 loff_t size = i_size_read(inode); 2900 loff_t len; 2901 2902 J_ASSERT(PageLocked(page)); 2903 if (page->index == size >> PAGE_CACHE_SHIFT) 2904 len = size & ~PAGE_CACHE_MASK; 2905 else 2906 len = PAGE_CACHE_SIZE; 2907 2908 if (page_has_buffers(page)) { 2909 /* if page has buffers it should all be mapped 2910 * and allocated. If there are not buffers attached 2911 * to the page we know the page is dirty but it lost 2912 * buffers. That means that at some moment in time 2913 * after write_begin() / write_end() has been called 2914 * all buffers have been clean and thus they must have been 2915 * written at least once. So they are all mapped and we can 2916 * happily proceed with mapping them and writing the page. 2917 */ 2918 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2919 ext4_bh_unmapped_or_delay)); 2920 } 2921 2922 if (ext4_journal_current_handle()) 2923 goto no_write; 2924 2925 if (PageChecked(page)) { 2926 /* 2927 * It's mmapped pagecache. Add buffers and journal it. There 2928 * doesn't seem much point in redirtying the page here. 2929 */ 2930 ClearPageChecked(page); 2931 return __ext4_journalled_writepage(page, wbc); 2932 } else { 2933 /* 2934 * It may be a page full of checkpoint-mode buffers. We don't 2935 * really know unless we go poke around in the buffer_heads. 2936 * But block_write_full_page will do the right thing. 2937 */ 2938 return block_write_full_page(page, 2939 ext4_normal_get_block_write, 2940 wbc); 2941 } 2942 no_write: 2943 redirty_page_for_writepage(wbc, page); 2944 unlock_page(page); 2945 return 0; 2946 } 2947 2948 static int ext4_readpage(struct file *file, struct page *page) 2949 { 2950 return mpage_readpage(page, ext4_get_block); 2951 } 2952 2953 static int 2954 ext4_readpages(struct file *file, struct address_space *mapping, 2955 struct list_head *pages, unsigned nr_pages) 2956 { 2957 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2958 } 2959 2960 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2961 { 2962 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2963 2964 /* 2965 * If it's a full truncate we just forget about the pending dirtying 2966 */ 2967 if (offset == 0) 2968 ClearPageChecked(page); 2969 2970 jbd2_journal_invalidatepage(journal, page, offset); 2971 } 2972 2973 static int ext4_releasepage(struct page *page, gfp_t wait) 2974 { 2975 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2976 2977 WARN_ON(PageChecked(page)); 2978 if (!page_has_buffers(page)) 2979 return 0; 2980 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2981 } 2982 2983 /* 2984 * If the O_DIRECT write will extend the file then add this inode to the 2985 * orphan list. So recovery will truncate it back to the original size 2986 * if the machine crashes during the write. 2987 * 2988 * If the O_DIRECT write is intantiating holes inside i_size and the machine 2989 * crashes then stale disk data _may_ be exposed inside the file. But current 2990 * VFS code falls back into buffered path in that case so we are safe. 2991 */ 2992 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2993 const struct iovec *iov, loff_t offset, 2994 unsigned long nr_segs) 2995 { 2996 struct file *file = iocb->ki_filp; 2997 struct inode *inode = file->f_mapping->host; 2998 struct ext4_inode_info *ei = EXT4_I(inode); 2999 handle_t *handle; 3000 ssize_t ret; 3001 int orphan = 0; 3002 size_t count = iov_length(iov, nr_segs); 3003 3004 if (rw == WRITE) { 3005 loff_t final_size = offset + count; 3006 3007 if (final_size > inode->i_size) { 3008 /* Credits for sb + inode write */ 3009 handle = ext4_journal_start(inode, 2); 3010 if (IS_ERR(handle)) { 3011 ret = PTR_ERR(handle); 3012 goto out; 3013 } 3014 ret = ext4_orphan_add(handle, inode); 3015 if (ret) { 3016 ext4_journal_stop(handle); 3017 goto out; 3018 } 3019 orphan = 1; 3020 ei->i_disksize = inode->i_size; 3021 ext4_journal_stop(handle); 3022 } 3023 } 3024 3025 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3026 offset, nr_segs, 3027 ext4_get_block, NULL); 3028 3029 if (orphan) { 3030 int err; 3031 3032 /* Credits for sb + inode write */ 3033 handle = ext4_journal_start(inode, 2); 3034 if (IS_ERR(handle)) { 3035 /* This is really bad luck. We've written the data 3036 * but cannot extend i_size. Bail out and pretend 3037 * the write failed... */ 3038 ret = PTR_ERR(handle); 3039 goto out; 3040 } 3041 if (inode->i_nlink) 3042 ext4_orphan_del(handle, inode); 3043 if (ret > 0) { 3044 loff_t end = offset + ret; 3045 if (end > inode->i_size) { 3046 ei->i_disksize = end; 3047 i_size_write(inode, end); 3048 /* 3049 * We're going to return a positive `ret' 3050 * here due to non-zero-length I/O, so there's 3051 * no way of reporting error returns from 3052 * ext4_mark_inode_dirty() to userspace. So 3053 * ignore it. 3054 */ 3055 ext4_mark_inode_dirty(handle, inode); 3056 } 3057 } 3058 err = ext4_journal_stop(handle); 3059 if (ret == 0) 3060 ret = err; 3061 } 3062 out: 3063 return ret; 3064 } 3065 3066 /* 3067 * Pages can be marked dirty completely asynchronously from ext4's journalling 3068 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3069 * much here because ->set_page_dirty is called under VFS locks. The page is 3070 * not necessarily locked. 3071 * 3072 * We cannot just dirty the page and leave attached buffers clean, because the 3073 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3074 * or jbddirty because all the journalling code will explode. 3075 * 3076 * So what we do is to mark the page "pending dirty" and next time writepage 3077 * is called, propagate that into the buffers appropriately. 3078 */ 3079 static int ext4_journalled_set_page_dirty(struct page *page) 3080 { 3081 SetPageChecked(page); 3082 return __set_page_dirty_nobuffers(page); 3083 } 3084 3085 static const struct address_space_operations ext4_ordered_aops = { 3086 .readpage = ext4_readpage, 3087 .readpages = ext4_readpages, 3088 .writepage = ext4_normal_writepage, 3089 .sync_page = block_sync_page, 3090 .write_begin = ext4_write_begin, 3091 .write_end = ext4_ordered_write_end, 3092 .bmap = ext4_bmap, 3093 .invalidatepage = ext4_invalidatepage, 3094 .releasepage = ext4_releasepage, 3095 .direct_IO = ext4_direct_IO, 3096 .migratepage = buffer_migrate_page, 3097 .is_partially_uptodate = block_is_partially_uptodate, 3098 }; 3099 3100 static const struct address_space_operations ext4_writeback_aops = { 3101 .readpage = ext4_readpage, 3102 .readpages = ext4_readpages, 3103 .writepage = ext4_normal_writepage, 3104 .sync_page = block_sync_page, 3105 .write_begin = ext4_write_begin, 3106 .write_end = ext4_writeback_write_end, 3107 .bmap = ext4_bmap, 3108 .invalidatepage = ext4_invalidatepage, 3109 .releasepage = ext4_releasepage, 3110 .direct_IO = ext4_direct_IO, 3111 .migratepage = buffer_migrate_page, 3112 .is_partially_uptodate = block_is_partially_uptodate, 3113 }; 3114 3115 static const struct address_space_operations ext4_journalled_aops = { 3116 .readpage = ext4_readpage, 3117 .readpages = ext4_readpages, 3118 .writepage = ext4_journalled_writepage, 3119 .sync_page = block_sync_page, 3120 .write_begin = ext4_write_begin, 3121 .write_end = ext4_journalled_write_end, 3122 .set_page_dirty = ext4_journalled_set_page_dirty, 3123 .bmap = ext4_bmap, 3124 .invalidatepage = ext4_invalidatepage, 3125 .releasepage = ext4_releasepage, 3126 .is_partially_uptodate = block_is_partially_uptodate, 3127 }; 3128 3129 static const struct address_space_operations ext4_da_aops = { 3130 .readpage = ext4_readpage, 3131 .readpages = ext4_readpages, 3132 .writepage = ext4_da_writepage, 3133 .writepages = ext4_da_writepages, 3134 .sync_page = block_sync_page, 3135 .write_begin = ext4_da_write_begin, 3136 .write_end = ext4_da_write_end, 3137 .bmap = ext4_bmap, 3138 .invalidatepage = ext4_da_invalidatepage, 3139 .releasepage = ext4_releasepage, 3140 .direct_IO = ext4_direct_IO, 3141 .migratepage = buffer_migrate_page, 3142 .is_partially_uptodate = block_is_partially_uptodate, 3143 }; 3144 3145 void ext4_set_aops(struct inode *inode) 3146 { 3147 if (ext4_should_order_data(inode) && 3148 test_opt(inode->i_sb, DELALLOC)) 3149 inode->i_mapping->a_ops = &ext4_da_aops; 3150 else if (ext4_should_order_data(inode)) 3151 inode->i_mapping->a_ops = &ext4_ordered_aops; 3152 else if (ext4_should_writeback_data(inode) && 3153 test_opt(inode->i_sb, DELALLOC)) 3154 inode->i_mapping->a_ops = &ext4_da_aops; 3155 else if (ext4_should_writeback_data(inode)) 3156 inode->i_mapping->a_ops = &ext4_writeback_aops; 3157 else 3158 inode->i_mapping->a_ops = &ext4_journalled_aops; 3159 } 3160 3161 /* 3162 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3163 * up to the end of the block which corresponds to `from'. 3164 * This required during truncate. We need to physically zero the tail end 3165 * of that block so it doesn't yield old data if the file is later grown. 3166 */ 3167 int ext4_block_truncate_page(handle_t *handle, 3168 struct address_space *mapping, loff_t from) 3169 { 3170 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3171 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3172 unsigned blocksize, length, pos; 3173 ext4_lblk_t iblock; 3174 struct inode *inode = mapping->host; 3175 struct buffer_head *bh; 3176 struct page *page; 3177 int err = 0; 3178 3179 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3180 if (!page) 3181 return -EINVAL; 3182 3183 blocksize = inode->i_sb->s_blocksize; 3184 length = blocksize - (offset & (blocksize - 1)); 3185 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3186 3187 /* 3188 * For "nobh" option, we can only work if we don't need to 3189 * read-in the page - otherwise we create buffers to do the IO. 3190 */ 3191 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3192 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3193 zero_user(page, offset, length); 3194 set_page_dirty(page); 3195 goto unlock; 3196 } 3197 3198 if (!page_has_buffers(page)) 3199 create_empty_buffers(page, blocksize, 0); 3200 3201 /* Find the buffer that contains "offset" */ 3202 bh = page_buffers(page); 3203 pos = blocksize; 3204 while (offset >= pos) { 3205 bh = bh->b_this_page; 3206 iblock++; 3207 pos += blocksize; 3208 } 3209 3210 err = 0; 3211 if (buffer_freed(bh)) { 3212 BUFFER_TRACE(bh, "freed: skip"); 3213 goto unlock; 3214 } 3215 3216 if (!buffer_mapped(bh)) { 3217 BUFFER_TRACE(bh, "unmapped"); 3218 ext4_get_block(inode, iblock, bh, 0); 3219 /* unmapped? It's a hole - nothing to do */ 3220 if (!buffer_mapped(bh)) { 3221 BUFFER_TRACE(bh, "still unmapped"); 3222 goto unlock; 3223 } 3224 } 3225 3226 /* Ok, it's mapped. Make sure it's up-to-date */ 3227 if (PageUptodate(page)) 3228 set_buffer_uptodate(bh); 3229 3230 if (!buffer_uptodate(bh)) { 3231 err = -EIO; 3232 ll_rw_block(READ, 1, &bh); 3233 wait_on_buffer(bh); 3234 /* Uhhuh. Read error. Complain and punt. */ 3235 if (!buffer_uptodate(bh)) 3236 goto unlock; 3237 } 3238 3239 if (ext4_should_journal_data(inode)) { 3240 BUFFER_TRACE(bh, "get write access"); 3241 err = ext4_journal_get_write_access(handle, bh); 3242 if (err) 3243 goto unlock; 3244 } 3245 3246 zero_user(page, offset, length); 3247 3248 BUFFER_TRACE(bh, "zeroed end of block"); 3249 3250 err = 0; 3251 if (ext4_should_journal_data(inode)) { 3252 err = ext4_journal_dirty_metadata(handle, bh); 3253 } else { 3254 if (ext4_should_order_data(inode)) 3255 err = ext4_jbd2_file_inode(handle, inode); 3256 mark_buffer_dirty(bh); 3257 } 3258 3259 unlock: 3260 unlock_page(page); 3261 page_cache_release(page); 3262 return err; 3263 } 3264 3265 /* 3266 * Probably it should be a library function... search for first non-zero word 3267 * or memcmp with zero_page, whatever is better for particular architecture. 3268 * Linus? 3269 */ 3270 static inline int all_zeroes(__le32 *p, __le32 *q) 3271 { 3272 while (p < q) 3273 if (*p++) 3274 return 0; 3275 return 1; 3276 } 3277 3278 /** 3279 * ext4_find_shared - find the indirect blocks for partial truncation. 3280 * @inode: inode in question 3281 * @depth: depth of the affected branch 3282 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3283 * @chain: place to store the pointers to partial indirect blocks 3284 * @top: place to the (detached) top of branch 3285 * 3286 * This is a helper function used by ext4_truncate(). 3287 * 3288 * When we do truncate() we may have to clean the ends of several 3289 * indirect blocks but leave the blocks themselves alive. Block is 3290 * partially truncated if some data below the new i_size is refered 3291 * from it (and it is on the path to the first completely truncated 3292 * data block, indeed). We have to free the top of that path along 3293 * with everything to the right of the path. Since no allocation 3294 * past the truncation point is possible until ext4_truncate() 3295 * finishes, we may safely do the latter, but top of branch may 3296 * require special attention - pageout below the truncation point 3297 * might try to populate it. 3298 * 3299 * We atomically detach the top of branch from the tree, store the 3300 * block number of its root in *@top, pointers to buffer_heads of 3301 * partially truncated blocks - in @chain[].bh and pointers to 3302 * their last elements that should not be removed - in 3303 * @chain[].p. Return value is the pointer to last filled element 3304 * of @chain. 3305 * 3306 * The work left to caller to do the actual freeing of subtrees: 3307 * a) free the subtree starting from *@top 3308 * b) free the subtrees whose roots are stored in 3309 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3310 * c) free the subtrees growing from the inode past the @chain[0]. 3311 * (no partially truncated stuff there). */ 3312 3313 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3314 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3315 { 3316 Indirect *partial, *p; 3317 int k, err; 3318 3319 *top = 0; 3320 /* Make k index the deepest non-null offest + 1 */ 3321 for (k = depth; k > 1 && !offsets[k-1]; k--) 3322 ; 3323 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3324 /* Writer: pointers */ 3325 if (!partial) 3326 partial = chain + k-1; 3327 /* 3328 * If the branch acquired continuation since we've looked at it - 3329 * fine, it should all survive and (new) top doesn't belong to us. 3330 */ 3331 if (!partial->key && *partial->p) 3332 /* Writer: end */ 3333 goto no_top; 3334 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3335 ; 3336 /* 3337 * OK, we've found the last block that must survive. The rest of our 3338 * branch should be detached before unlocking. However, if that rest 3339 * of branch is all ours and does not grow immediately from the inode 3340 * it's easier to cheat and just decrement partial->p. 3341 */ 3342 if (p == chain + k - 1 && p > chain) { 3343 p->p--; 3344 } else { 3345 *top = *p->p; 3346 /* Nope, don't do this in ext4. Must leave the tree intact */ 3347 #if 0 3348 *p->p = 0; 3349 #endif 3350 } 3351 /* Writer: end */ 3352 3353 while (partial > p) { 3354 brelse(partial->bh); 3355 partial--; 3356 } 3357 no_top: 3358 return partial; 3359 } 3360 3361 /* 3362 * Zero a number of block pointers in either an inode or an indirect block. 3363 * If we restart the transaction we must again get write access to the 3364 * indirect block for further modification. 3365 * 3366 * We release `count' blocks on disk, but (last - first) may be greater 3367 * than `count' because there can be holes in there. 3368 */ 3369 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3370 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3371 unsigned long count, __le32 *first, __le32 *last) 3372 { 3373 __le32 *p; 3374 if (try_to_extend_transaction(handle, inode)) { 3375 if (bh) { 3376 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3377 ext4_journal_dirty_metadata(handle, bh); 3378 } 3379 ext4_mark_inode_dirty(handle, inode); 3380 ext4_journal_test_restart(handle, inode); 3381 if (bh) { 3382 BUFFER_TRACE(bh, "retaking write access"); 3383 ext4_journal_get_write_access(handle, bh); 3384 } 3385 } 3386 3387 /* 3388 * Any buffers which are on the journal will be in memory. We find 3389 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3390 * on them. We've already detached each block from the file, so 3391 * bforget() in jbd2_journal_forget() should be safe. 3392 * 3393 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3394 */ 3395 for (p = first; p < last; p++) { 3396 u32 nr = le32_to_cpu(*p); 3397 if (nr) { 3398 struct buffer_head *tbh; 3399 3400 *p = 0; 3401 tbh = sb_find_get_block(inode->i_sb, nr); 3402 ext4_forget(handle, 0, inode, tbh, nr); 3403 } 3404 } 3405 3406 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3407 } 3408 3409 /** 3410 * ext4_free_data - free a list of data blocks 3411 * @handle: handle for this transaction 3412 * @inode: inode we are dealing with 3413 * @this_bh: indirect buffer_head which contains *@first and *@last 3414 * @first: array of block numbers 3415 * @last: points immediately past the end of array 3416 * 3417 * We are freeing all blocks refered from that array (numbers are stored as 3418 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3419 * 3420 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3421 * blocks are contiguous then releasing them at one time will only affect one 3422 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3423 * actually use a lot of journal space. 3424 * 3425 * @this_bh will be %NULL if @first and @last point into the inode's direct 3426 * block pointers. 3427 */ 3428 static void ext4_free_data(handle_t *handle, struct inode *inode, 3429 struct buffer_head *this_bh, 3430 __le32 *first, __le32 *last) 3431 { 3432 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3433 unsigned long count = 0; /* Number of blocks in the run */ 3434 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3435 corresponding to 3436 block_to_free */ 3437 ext4_fsblk_t nr; /* Current block # */ 3438 __le32 *p; /* Pointer into inode/ind 3439 for current block */ 3440 int err; 3441 3442 if (this_bh) { /* For indirect block */ 3443 BUFFER_TRACE(this_bh, "get_write_access"); 3444 err = ext4_journal_get_write_access(handle, this_bh); 3445 /* Important: if we can't update the indirect pointers 3446 * to the blocks, we can't free them. */ 3447 if (err) 3448 return; 3449 } 3450 3451 for (p = first; p < last; p++) { 3452 nr = le32_to_cpu(*p); 3453 if (nr) { 3454 /* accumulate blocks to free if they're contiguous */ 3455 if (count == 0) { 3456 block_to_free = nr; 3457 block_to_free_p = p; 3458 count = 1; 3459 } else if (nr == block_to_free + count) { 3460 count++; 3461 } else { 3462 ext4_clear_blocks(handle, inode, this_bh, 3463 block_to_free, 3464 count, block_to_free_p, p); 3465 block_to_free = nr; 3466 block_to_free_p = p; 3467 count = 1; 3468 } 3469 } 3470 } 3471 3472 if (count > 0) 3473 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3474 count, block_to_free_p, p); 3475 3476 if (this_bh) { 3477 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3478 3479 /* 3480 * The buffer head should have an attached journal head at this 3481 * point. However, if the data is corrupted and an indirect 3482 * block pointed to itself, it would have been detached when 3483 * the block was cleared. Check for this instead of OOPSing. 3484 */ 3485 if (bh2jh(this_bh)) 3486 ext4_journal_dirty_metadata(handle, this_bh); 3487 else 3488 ext4_error(inode->i_sb, __func__, 3489 "circular indirect block detected, " 3490 "inode=%lu, block=%llu", 3491 inode->i_ino, 3492 (unsigned long long) this_bh->b_blocknr); 3493 } 3494 } 3495 3496 /** 3497 * ext4_free_branches - free an array of branches 3498 * @handle: JBD handle for this transaction 3499 * @inode: inode we are dealing with 3500 * @parent_bh: the buffer_head which contains *@first and *@last 3501 * @first: array of block numbers 3502 * @last: pointer immediately past the end of array 3503 * @depth: depth of the branches to free 3504 * 3505 * We are freeing all blocks refered from these branches (numbers are 3506 * stored as little-endian 32-bit) and updating @inode->i_blocks 3507 * appropriately. 3508 */ 3509 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3510 struct buffer_head *parent_bh, 3511 __le32 *first, __le32 *last, int depth) 3512 { 3513 ext4_fsblk_t nr; 3514 __le32 *p; 3515 3516 if (is_handle_aborted(handle)) 3517 return; 3518 3519 if (depth--) { 3520 struct buffer_head *bh; 3521 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3522 p = last; 3523 while (--p >= first) { 3524 nr = le32_to_cpu(*p); 3525 if (!nr) 3526 continue; /* A hole */ 3527 3528 /* Go read the buffer for the next level down */ 3529 bh = sb_bread(inode->i_sb, nr); 3530 3531 /* 3532 * A read failure? Report error and clear slot 3533 * (should be rare). 3534 */ 3535 if (!bh) { 3536 ext4_error(inode->i_sb, "ext4_free_branches", 3537 "Read failure, inode=%lu, block=%llu", 3538 inode->i_ino, nr); 3539 continue; 3540 } 3541 3542 /* This zaps the entire block. Bottom up. */ 3543 BUFFER_TRACE(bh, "free child branches"); 3544 ext4_free_branches(handle, inode, bh, 3545 (__le32 *) bh->b_data, 3546 (__le32 *) bh->b_data + addr_per_block, 3547 depth); 3548 3549 /* 3550 * We've probably journalled the indirect block several 3551 * times during the truncate. But it's no longer 3552 * needed and we now drop it from the transaction via 3553 * jbd2_journal_revoke(). 3554 * 3555 * That's easy if it's exclusively part of this 3556 * transaction. But if it's part of the committing 3557 * transaction then jbd2_journal_forget() will simply 3558 * brelse() it. That means that if the underlying 3559 * block is reallocated in ext4_get_block(), 3560 * unmap_underlying_metadata() will find this block 3561 * and will try to get rid of it. damn, damn. 3562 * 3563 * If this block has already been committed to the 3564 * journal, a revoke record will be written. And 3565 * revoke records must be emitted *before* clearing 3566 * this block's bit in the bitmaps. 3567 */ 3568 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3569 3570 /* 3571 * Everything below this this pointer has been 3572 * released. Now let this top-of-subtree go. 3573 * 3574 * We want the freeing of this indirect block to be 3575 * atomic in the journal with the updating of the 3576 * bitmap block which owns it. So make some room in 3577 * the journal. 3578 * 3579 * We zero the parent pointer *after* freeing its 3580 * pointee in the bitmaps, so if extend_transaction() 3581 * for some reason fails to put the bitmap changes and 3582 * the release into the same transaction, recovery 3583 * will merely complain about releasing a free block, 3584 * rather than leaking blocks. 3585 */ 3586 if (is_handle_aborted(handle)) 3587 return; 3588 if (try_to_extend_transaction(handle, inode)) { 3589 ext4_mark_inode_dirty(handle, inode); 3590 ext4_journal_test_restart(handle, inode); 3591 } 3592 3593 ext4_free_blocks(handle, inode, nr, 1, 1); 3594 3595 if (parent_bh) { 3596 /* 3597 * The block which we have just freed is 3598 * pointed to by an indirect block: journal it 3599 */ 3600 BUFFER_TRACE(parent_bh, "get_write_access"); 3601 if (!ext4_journal_get_write_access(handle, 3602 parent_bh)){ 3603 *p = 0; 3604 BUFFER_TRACE(parent_bh, 3605 "call ext4_journal_dirty_metadata"); 3606 ext4_journal_dirty_metadata(handle, 3607 parent_bh); 3608 } 3609 } 3610 } 3611 } else { 3612 /* We have reached the bottom of the tree. */ 3613 BUFFER_TRACE(parent_bh, "free data blocks"); 3614 ext4_free_data(handle, inode, parent_bh, first, last); 3615 } 3616 } 3617 3618 int ext4_can_truncate(struct inode *inode) 3619 { 3620 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3621 return 0; 3622 if (S_ISREG(inode->i_mode)) 3623 return 1; 3624 if (S_ISDIR(inode->i_mode)) 3625 return 1; 3626 if (S_ISLNK(inode->i_mode)) 3627 return !ext4_inode_is_fast_symlink(inode); 3628 return 0; 3629 } 3630 3631 /* 3632 * ext4_truncate() 3633 * 3634 * We block out ext4_get_block() block instantiations across the entire 3635 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3636 * simultaneously on behalf of the same inode. 3637 * 3638 * As we work through the truncate and commmit bits of it to the journal there 3639 * is one core, guiding principle: the file's tree must always be consistent on 3640 * disk. We must be able to restart the truncate after a crash. 3641 * 3642 * The file's tree may be transiently inconsistent in memory (although it 3643 * probably isn't), but whenever we close off and commit a journal transaction, 3644 * the contents of (the filesystem + the journal) must be consistent and 3645 * restartable. It's pretty simple, really: bottom up, right to left (although 3646 * left-to-right works OK too). 3647 * 3648 * Note that at recovery time, journal replay occurs *before* the restart of 3649 * truncate against the orphan inode list. 3650 * 3651 * The committed inode has the new, desired i_size (which is the same as 3652 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3653 * that this inode's truncate did not complete and it will again call 3654 * ext4_truncate() to have another go. So there will be instantiated blocks 3655 * to the right of the truncation point in a crashed ext4 filesystem. But 3656 * that's fine - as long as they are linked from the inode, the post-crash 3657 * ext4_truncate() run will find them and release them. 3658 */ 3659 void ext4_truncate(struct inode *inode) 3660 { 3661 handle_t *handle; 3662 struct ext4_inode_info *ei = EXT4_I(inode); 3663 __le32 *i_data = ei->i_data; 3664 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3665 struct address_space *mapping = inode->i_mapping; 3666 ext4_lblk_t offsets[4]; 3667 Indirect chain[4]; 3668 Indirect *partial; 3669 __le32 nr = 0; 3670 int n; 3671 ext4_lblk_t last_block; 3672 unsigned blocksize = inode->i_sb->s_blocksize; 3673 3674 if (!ext4_can_truncate(inode)) 3675 return; 3676 3677 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3678 ext4_ext_truncate(inode); 3679 return; 3680 } 3681 3682 handle = start_transaction(inode); 3683 if (IS_ERR(handle)) 3684 return; /* AKPM: return what? */ 3685 3686 last_block = (inode->i_size + blocksize-1) 3687 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3688 3689 if (inode->i_size & (blocksize - 1)) 3690 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3691 goto out_stop; 3692 3693 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3694 if (n == 0) 3695 goto out_stop; /* error */ 3696 3697 /* 3698 * OK. This truncate is going to happen. We add the inode to the 3699 * orphan list, so that if this truncate spans multiple transactions, 3700 * and we crash, we will resume the truncate when the filesystem 3701 * recovers. It also marks the inode dirty, to catch the new size. 3702 * 3703 * Implication: the file must always be in a sane, consistent 3704 * truncatable state while each transaction commits. 3705 */ 3706 if (ext4_orphan_add(handle, inode)) 3707 goto out_stop; 3708 3709 /* 3710 * From here we block out all ext4_get_block() callers who want to 3711 * modify the block allocation tree. 3712 */ 3713 down_write(&ei->i_data_sem); 3714 3715 ext4_discard_preallocations(inode); 3716 3717 /* 3718 * The orphan list entry will now protect us from any crash which 3719 * occurs before the truncate completes, so it is now safe to propagate 3720 * the new, shorter inode size (held for now in i_size) into the 3721 * on-disk inode. We do this via i_disksize, which is the value which 3722 * ext4 *really* writes onto the disk inode. 3723 */ 3724 ei->i_disksize = inode->i_size; 3725 3726 if (n == 1) { /* direct blocks */ 3727 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3728 i_data + EXT4_NDIR_BLOCKS); 3729 goto do_indirects; 3730 } 3731 3732 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3733 /* Kill the top of shared branch (not detached) */ 3734 if (nr) { 3735 if (partial == chain) { 3736 /* Shared branch grows from the inode */ 3737 ext4_free_branches(handle, inode, NULL, 3738 &nr, &nr+1, (chain+n-1) - partial); 3739 *partial->p = 0; 3740 /* 3741 * We mark the inode dirty prior to restart, 3742 * and prior to stop. No need for it here. 3743 */ 3744 } else { 3745 /* Shared branch grows from an indirect block */ 3746 BUFFER_TRACE(partial->bh, "get_write_access"); 3747 ext4_free_branches(handle, inode, partial->bh, 3748 partial->p, 3749 partial->p+1, (chain+n-1) - partial); 3750 } 3751 } 3752 /* Clear the ends of indirect blocks on the shared branch */ 3753 while (partial > chain) { 3754 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3755 (__le32*)partial->bh->b_data+addr_per_block, 3756 (chain+n-1) - partial); 3757 BUFFER_TRACE(partial->bh, "call brelse"); 3758 brelse (partial->bh); 3759 partial--; 3760 } 3761 do_indirects: 3762 /* Kill the remaining (whole) subtrees */ 3763 switch (offsets[0]) { 3764 default: 3765 nr = i_data[EXT4_IND_BLOCK]; 3766 if (nr) { 3767 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3768 i_data[EXT4_IND_BLOCK] = 0; 3769 } 3770 case EXT4_IND_BLOCK: 3771 nr = i_data[EXT4_DIND_BLOCK]; 3772 if (nr) { 3773 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3774 i_data[EXT4_DIND_BLOCK] = 0; 3775 } 3776 case EXT4_DIND_BLOCK: 3777 nr = i_data[EXT4_TIND_BLOCK]; 3778 if (nr) { 3779 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3780 i_data[EXT4_TIND_BLOCK] = 0; 3781 } 3782 case EXT4_TIND_BLOCK: 3783 ; 3784 } 3785 3786 up_write(&ei->i_data_sem); 3787 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3788 ext4_mark_inode_dirty(handle, inode); 3789 3790 /* 3791 * In a multi-transaction truncate, we only make the final transaction 3792 * synchronous 3793 */ 3794 if (IS_SYNC(inode)) 3795 handle->h_sync = 1; 3796 out_stop: 3797 /* 3798 * If this was a simple ftruncate(), and the file will remain alive 3799 * then we need to clear up the orphan record which we created above. 3800 * However, if this was a real unlink then we were called by 3801 * ext4_delete_inode(), and we allow that function to clean up the 3802 * orphan info for us. 3803 */ 3804 if (inode->i_nlink) 3805 ext4_orphan_del(handle, inode); 3806 3807 ext4_journal_stop(handle); 3808 } 3809 3810 /* 3811 * ext4_get_inode_loc returns with an extra refcount against the inode's 3812 * underlying buffer_head on success. If 'in_mem' is true, we have all 3813 * data in memory that is needed to recreate the on-disk version of this 3814 * inode. 3815 */ 3816 static int __ext4_get_inode_loc(struct inode *inode, 3817 struct ext4_iloc *iloc, int in_mem) 3818 { 3819 struct ext4_group_desc *gdp; 3820 struct buffer_head *bh; 3821 struct super_block *sb = inode->i_sb; 3822 ext4_fsblk_t block; 3823 int inodes_per_block, inode_offset; 3824 3825 iloc->bh = 0; 3826 if (!ext4_valid_inum(sb, inode->i_ino)) 3827 return -EIO; 3828 3829 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3830 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3831 if (!gdp) 3832 return -EIO; 3833 3834 /* 3835 * Figure out the offset within the block group inode table 3836 */ 3837 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 3838 inode_offset = ((inode->i_ino - 1) % 3839 EXT4_INODES_PER_GROUP(sb)); 3840 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3841 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3842 3843 bh = sb_getblk(sb, block); 3844 if (!bh) { 3845 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 3846 "inode block - inode=%lu, block=%llu", 3847 inode->i_ino, block); 3848 return -EIO; 3849 } 3850 if (!buffer_uptodate(bh)) { 3851 lock_buffer(bh); 3852 3853 /* 3854 * If the buffer has the write error flag, we have failed 3855 * to write out another inode in the same block. In this 3856 * case, we don't have to read the block because we may 3857 * read the old inode data successfully. 3858 */ 3859 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3860 set_buffer_uptodate(bh); 3861 3862 if (buffer_uptodate(bh)) { 3863 /* someone brought it uptodate while we waited */ 3864 unlock_buffer(bh); 3865 goto has_buffer; 3866 } 3867 3868 /* 3869 * If we have all information of the inode in memory and this 3870 * is the only valid inode in the block, we need not read the 3871 * block. 3872 */ 3873 if (in_mem) { 3874 struct buffer_head *bitmap_bh; 3875 int i, start; 3876 3877 start = inode_offset & ~(inodes_per_block - 1); 3878 3879 /* Is the inode bitmap in cache? */ 3880 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3881 if (!bitmap_bh) 3882 goto make_io; 3883 3884 /* 3885 * If the inode bitmap isn't in cache then the 3886 * optimisation may end up performing two reads instead 3887 * of one, so skip it. 3888 */ 3889 if (!buffer_uptodate(bitmap_bh)) { 3890 brelse(bitmap_bh); 3891 goto make_io; 3892 } 3893 for (i = start; i < start + inodes_per_block; i++) { 3894 if (i == inode_offset) 3895 continue; 3896 if (ext4_test_bit(i, bitmap_bh->b_data)) 3897 break; 3898 } 3899 brelse(bitmap_bh); 3900 if (i == start + inodes_per_block) { 3901 /* all other inodes are free, so skip I/O */ 3902 memset(bh->b_data, 0, bh->b_size); 3903 set_buffer_uptodate(bh); 3904 unlock_buffer(bh); 3905 goto has_buffer; 3906 } 3907 } 3908 3909 make_io: 3910 /* 3911 * If we need to do any I/O, try to pre-readahead extra 3912 * blocks from the inode table. 3913 */ 3914 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3915 ext4_fsblk_t b, end, table; 3916 unsigned num; 3917 3918 table = ext4_inode_table(sb, gdp); 3919 /* Make sure s_inode_readahead_blks is a power of 2 */ 3920 while (EXT4_SB(sb)->s_inode_readahead_blks & 3921 (EXT4_SB(sb)->s_inode_readahead_blks-1)) 3922 EXT4_SB(sb)->s_inode_readahead_blks = 3923 (EXT4_SB(sb)->s_inode_readahead_blks & 3924 (EXT4_SB(sb)->s_inode_readahead_blks-1)); 3925 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3926 if (table > b) 3927 b = table; 3928 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3929 num = EXT4_INODES_PER_GROUP(sb); 3930 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3931 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3932 num -= le16_to_cpu(gdp->bg_itable_unused); 3933 table += num / inodes_per_block; 3934 if (end > table) 3935 end = table; 3936 while (b <= end) 3937 sb_breadahead(sb, b++); 3938 } 3939 3940 /* 3941 * There are other valid inodes in the buffer, this inode 3942 * has in-inode xattrs, or we don't have this inode in memory. 3943 * Read the block from disk. 3944 */ 3945 get_bh(bh); 3946 bh->b_end_io = end_buffer_read_sync; 3947 submit_bh(READ_META, bh); 3948 wait_on_buffer(bh); 3949 if (!buffer_uptodate(bh)) { 3950 ext4_error(sb, __func__, 3951 "unable to read inode block - inode=%lu, " 3952 "block=%llu", inode->i_ino, block); 3953 brelse(bh); 3954 return -EIO; 3955 } 3956 } 3957 has_buffer: 3958 iloc->bh = bh; 3959 return 0; 3960 } 3961 3962 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3963 { 3964 /* We have all inode data except xattrs in memory here. */ 3965 return __ext4_get_inode_loc(inode, iloc, 3966 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3967 } 3968 3969 void ext4_set_inode_flags(struct inode *inode) 3970 { 3971 unsigned int flags = EXT4_I(inode)->i_flags; 3972 3973 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3974 if (flags & EXT4_SYNC_FL) 3975 inode->i_flags |= S_SYNC; 3976 if (flags & EXT4_APPEND_FL) 3977 inode->i_flags |= S_APPEND; 3978 if (flags & EXT4_IMMUTABLE_FL) 3979 inode->i_flags |= S_IMMUTABLE; 3980 if (flags & EXT4_NOATIME_FL) 3981 inode->i_flags |= S_NOATIME; 3982 if (flags & EXT4_DIRSYNC_FL) 3983 inode->i_flags |= S_DIRSYNC; 3984 } 3985 3986 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3987 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3988 { 3989 unsigned int flags = ei->vfs_inode.i_flags; 3990 3991 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3992 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 3993 if (flags & S_SYNC) 3994 ei->i_flags |= EXT4_SYNC_FL; 3995 if (flags & S_APPEND) 3996 ei->i_flags |= EXT4_APPEND_FL; 3997 if (flags & S_IMMUTABLE) 3998 ei->i_flags |= EXT4_IMMUTABLE_FL; 3999 if (flags & S_NOATIME) 4000 ei->i_flags |= EXT4_NOATIME_FL; 4001 if (flags & S_DIRSYNC) 4002 ei->i_flags |= EXT4_DIRSYNC_FL; 4003 } 4004 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4005 struct ext4_inode_info *ei) 4006 { 4007 blkcnt_t i_blocks ; 4008 struct inode *inode = &(ei->vfs_inode); 4009 struct super_block *sb = inode->i_sb; 4010 4011 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4012 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4013 /* we are using combined 48 bit field */ 4014 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4015 le32_to_cpu(raw_inode->i_blocks_lo); 4016 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4017 /* i_blocks represent file system block size */ 4018 return i_blocks << (inode->i_blkbits - 9); 4019 } else { 4020 return i_blocks; 4021 } 4022 } else { 4023 return le32_to_cpu(raw_inode->i_blocks_lo); 4024 } 4025 } 4026 4027 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4028 { 4029 struct ext4_iloc iloc; 4030 struct ext4_inode *raw_inode; 4031 struct ext4_inode_info *ei; 4032 struct buffer_head *bh; 4033 struct inode *inode; 4034 long ret; 4035 int block; 4036 4037 inode = iget_locked(sb, ino); 4038 if (!inode) 4039 return ERR_PTR(-ENOMEM); 4040 if (!(inode->i_state & I_NEW)) 4041 return inode; 4042 4043 ei = EXT4_I(inode); 4044 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4045 ei->i_acl = EXT4_ACL_NOT_CACHED; 4046 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 4047 #endif 4048 4049 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4050 if (ret < 0) 4051 goto bad_inode; 4052 bh = iloc.bh; 4053 raw_inode = ext4_raw_inode(&iloc); 4054 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4055 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4056 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4057 if (!(test_opt(inode->i_sb, NO_UID32))) { 4058 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4059 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4060 } 4061 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4062 4063 ei->i_state = 0; 4064 ei->i_dir_start_lookup = 0; 4065 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4066 /* We now have enough fields to check if the inode was active or not. 4067 * This is needed because nfsd might try to access dead inodes 4068 * the test is that same one that e2fsck uses 4069 * NeilBrown 1999oct15 4070 */ 4071 if (inode->i_nlink == 0) { 4072 if (inode->i_mode == 0 || 4073 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4074 /* this inode is deleted */ 4075 brelse(bh); 4076 ret = -ESTALE; 4077 goto bad_inode; 4078 } 4079 /* The only unlinked inodes we let through here have 4080 * valid i_mode and are being read by the orphan 4081 * recovery code: that's fine, we're about to complete 4082 * the process of deleting those. */ 4083 } 4084 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4085 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4086 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4087 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4088 cpu_to_le32(EXT4_OS_HURD)) { 4089 ei->i_file_acl |= 4090 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4091 } 4092 inode->i_size = ext4_isize(raw_inode); 4093 ei->i_disksize = inode->i_size; 4094 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4095 ei->i_block_group = iloc.block_group; 4096 /* 4097 * NOTE! The in-memory inode i_data array is in little-endian order 4098 * even on big-endian machines: we do NOT byteswap the block numbers! 4099 */ 4100 for (block = 0; block < EXT4_N_BLOCKS; block++) 4101 ei->i_data[block] = raw_inode->i_block[block]; 4102 INIT_LIST_HEAD(&ei->i_orphan); 4103 4104 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4105 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4106 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4107 EXT4_INODE_SIZE(inode->i_sb)) { 4108 brelse(bh); 4109 ret = -EIO; 4110 goto bad_inode; 4111 } 4112 if (ei->i_extra_isize == 0) { 4113 /* The extra space is currently unused. Use it. */ 4114 ei->i_extra_isize = sizeof(struct ext4_inode) - 4115 EXT4_GOOD_OLD_INODE_SIZE; 4116 } else { 4117 __le32 *magic = (void *)raw_inode + 4118 EXT4_GOOD_OLD_INODE_SIZE + 4119 ei->i_extra_isize; 4120 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4121 ei->i_state |= EXT4_STATE_XATTR; 4122 } 4123 } else 4124 ei->i_extra_isize = 0; 4125 4126 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4127 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4128 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4129 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4130 4131 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4132 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4133 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4134 inode->i_version |= 4135 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4136 } 4137 4138 if (S_ISREG(inode->i_mode)) { 4139 inode->i_op = &ext4_file_inode_operations; 4140 inode->i_fop = &ext4_file_operations; 4141 ext4_set_aops(inode); 4142 } else if (S_ISDIR(inode->i_mode)) { 4143 inode->i_op = &ext4_dir_inode_operations; 4144 inode->i_fop = &ext4_dir_operations; 4145 } else if (S_ISLNK(inode->i_mode)) { 4146 if (ext4_inode_is_fast_symlink(inode)) 4147 inode->i_op = &ext4_fast_symlink_inode_operations; 4148 else { 4149 inode->i_op = &ext4_symlink_inode_operations; 4150 ext4_set_aops(inode); 4151 } 4152 } else { 4153 inode->i_op = &ext4_special_inode_operations; 4154 if (raw_inode->i_block[0]) 4155 init_special_inode(inode, inode->i_mode, 4156 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4157 else 4158 init_special_inode(inode, inode->i_mode, 4159 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4160 } 4161 brelse(iloc.bh); 4162 ext4_set_inode_flags(inode); 4163 unlock_new_inode(inode); 4164 return inode; 4165 4166 bad_inode: 4167 iget_failed(inode); 4168 return ERR_PTR(ret); 4169 } 4170 4171 static int ext4_inode_blocks_set(handle_t *handle, 4172 struct ext4_inode *raw_inode, 4173 struct ext4_inode_info *ei) 4174 { 4175 struct inode *inode = &(ei->vfs_inode); 4176 u64 i_blocks = inode->i_blocks; 4177 struct super_block *sb = inode->i_sb; 4178 int err = 0; 4179 4180 if (i_blocks <= ~0U) { 4181 /* 4182 * i_blocks can be represnted in a 32 bit variable 4183 * as multiple of 512 bytes 4184 */ 4185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4186 raw_inode->i_blocks_high = 0; 4187 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4188 } else if (i_blocks <= 0xffffffffffffULL) { 4189 /* 4190 * i_blocks can be represented in a 48 bit variable 4191 * as multiple of 512 bytes 4192 */ 4193 err = ext4_update_rocompat_feature(handle, sb, 4194 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4195 if (err) 4196 goto err_out; 4197 /* i_block is stored in the split 48 bit fields */ 4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4199 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4200 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4201 } else { 4202 /* 4203 * i_blocks should be represented in a 48 bit variable 4204 * as multiple of file system block size 4205 */ 4206 err = ext4_update_rocompat_feature(handle, sb, 4207 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4208 if (err) 4209 goto err_out; 4210 ei->i_flags |= EXT4_HUGE_FILE_FL; 4211 /* i_block is stored in file system block size */ 4212 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4213 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4214 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4215 } 4216 err_out: 4217 return err; 4218 } 4219 4220 /* 4221 * Post the struct inode info into an on-disk inode location in the 4222 * buffer-cache. This gobbles the caller's reference to the 4223 * buffer_head in the inode location struct. 4224 * 4225 * The caller must have write access to iloc->bh. 4226 */ 4227 static int ext4_do_update_inode(handle_t *handle, 4228 struct inode *inode, 4229 struct ext4_iloc *iloc) 4230 { 4231 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4232 struct ext4_inode_info *ei = EXT4_I(inode); 4233 struct buffer_head *bh = iloc->bh; 4234 int err = 0, rc, block; 4235 4236 /* For fields not not tracking in the in-memory inode, 4237 * initialise them to zero for new inodes. */ 4238 if (ei->i_state & EXT4_STATE_NEW) 4239 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4240 4241 ext4_get_inode_flags(ei); 4242 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4243 if (!(test_opt(inode->i_sb, NO_UID32))) { 4244 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4245 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4246 /* 4247 * Fix up interoperability with old kernels. Otherwise, old inodes get 4248 * re-used with the upper 16 bits of the uid/gid intact 4249 */ 4250 if (!ei->i_dtime) { 4251 raw_inode->i_uid_high = 4252 cpu_to_le16(high_16_bits(inode->i_uid)); 4253 raw_inode->i_gid_high = 4254 cpu_to_le16(high_16_bits(inode->i_gid)); 4255 } else { 4256 raw_inode->i_uid_high = 0; 4257 raw_inode->i_gid_high = 0; 4258 } 4259 } else { 4260 raw_inode->i_uid_low = 4261 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4262 raw_inode->i_gid_low = 4263 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4264 raw_inode->i_uid_high = 0; 4265 raw_inode->i_gid_high = 0; 4266 } 4267 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4268 4269 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4270 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4271 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4272 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4273 4274 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4275 goto out_brelse; 4276 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4277 /* clear the migrate flag in the raw_inode */ 4278 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4279 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4280 cpu_to_le32(EXT4_OS_HURD)) 4281 raw_inode->i_file_acl_high = 4282 cpu_to_le16(ei->i_file_acl >> 32); 4283 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4284 ext4_isize_set(raw_inode, ei->i_disksize); 4285 if (ei->i_disksize > 0x7fffffffULL) { 4286 struct super_block *sb = inode->i_sb; 4287 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4288 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4289 EXT4_SB(sb)->s_es->s_rev_level == 4290 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4291 /* If this is the first large file 4292 * created, add a flag to the superblock. 4293 */ 4294 err = ext4_journal_get_write_access(handle, 4295 EXT4_SB(sb)->s_sbh); 4296 if (err) 4297 goto out_brelse; 4298 ext4_update_dynamic_rev(sb); 4299 EXT4_SET_RO_COMPAT_FEATURE(sb, 4300 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4301 sb->s_dirt = 1; 4302 handle->h_sync = 1; 4303 err = ext4_journal_dirty_metadata(handle, 4304 EXT4_SB(sb)->s_sbh); 4305 } 4306 } 4307 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4308 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4309 if (old_valid_dev(inode->i_rdev)) { 4310 raw_inode->i_block[0] = 4311 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4312 raw_inode->i_block[1] = 0; 4313 } else { 4314 raw_inode->i_block[0] = 0; 4315 raw_inode->i_block[1] = 4316 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4317 raw_inode->i_block[2] = 0; 4318 } 4319 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4320 raw_inode->i_block[block] = ei->i_data[block]; 4321 4322 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4323 if (ei->i_extra_isize) { 4324 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4325 raw_inode->i_version_hi = 4326 cpu_to_le32(inode->i_version >> 32); 4327 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4328 } 4329 4330 4331 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4332 rc = ext4_journal_dirty_metadata(handle, bh); 4333 if (!err) 4334 err = rc; 4335 ei->i_state &= ~EXT4_STATE_NEW; 4336 4337 out_brelse: 4338 brelse(bh); 4339 ext4_std_error(inode->i_sb, err); 4340 return err; 4341 } 4342 4343 /* 4344 * ext4_write_inode() 4345 * 4346 * We are called from a few places: 4347 * 4348 * - Within generic_file_write() for O_SYNC files. 4349 * Here, there will be no transaction running. We wait for any running 4350 * trasnaction to commit. 4351 * 4352 * - Within sys_sync(), kupdate and such. 4353 * We wait on commit, if tol to. 4354 * 4355 * - Within prune_icache() (PF_MEMALLOC == true) 4356 * Here we simply return. We can't afford to block kswapd on the 4357 * journal commit. 4358 * 4359 * In all cases it is actually safe for us to return without doing anything, 4360 * because the inode has been copied into a raw inode buffer in 4361 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4362 * knfsd. 4363 * 4364 * Note that we are absolutely dependent upon all inode dirtiers doing the 4365 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4366 * which we are interested. 4367 * 4368 * It would be a bug for them to not do this. The code: 4369 * 4370 * mark_inode_dirty(inode) 4371 * stuff(); 4372 * inode->i_size = expr; 4373 * 4374 * is in error because a kswapd-driven write_inode() could occur while 4375 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4376 * will no longer be on the superblock's dirty inode list. 4377 */ 4378 int ext4_write_inode(struct inode *inode, int wait) 4379 { 4380 if (current->flags & PF_MEMALLOC) 4381 return 0; 4382 4383 if (ext4_journal_current_handle()) { 4384 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4385 dump_stack(); 4386 return -EIO; 4387 } 4388 4389 if (!wait) 4390 return 0; 4391 4392 return ext4_force_commit(inode->i_sb); 4393 } 4394 4395 /* 4396 * ext4_setattr() 4397 * 4398 * Called from notify_change. 4399 * 4400 * We want to trap VFS attempts to truncate the file as soon as 4401 * possible. In particular, we want to make sure that when the VFS 4402 * shrinks i_size, we put the inode on the orphan list and modify 4403 * i_disksize immediately, so that during the subsequent flushing of 4404 * dirty pages and freeing of disk blocks, we can guarantee that any 4405 * commit will leave the blocks being flushed in an unused state on 4406 * disk. (On recovery, the inode will get truncated and the blocks will 4407 * be freed, so we have a strong guarantee that no future commit will 4408 * leave these blocks visible to the user.) 4409 * 4410 * Another thing we have to assure is that if we are in ordered mode 4411 * and inode is still attached to the committing transaction, we must 4412 * we start writeout of all the dirty pages which are being truncated. 4413 * This way we are sure that all the data written in the previous 4414 * transaction are already on disk (truncate waits for pages under 4415 * writeback). 4416 * 4417 * Called with inode->i_mutex down. 4418 */ 4419 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4420 { 4421 struct inode *inode = dentry->d_inode; 4422 int error, rc = 0; 4423 const unsigned int ia_valid = attr->ia_valid; 4424 4425 error = inode_change_ok(inode, attr); 4426 if (error) 4427 return error; 4428 4429 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4430 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4431 handle_t *handle; 4432 4433 /* (user+group)*(old+new) structure, inode write (sb, 4434 * inode block, ? - but truncate inode update has it) */ 4435 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4436 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4437 if (IS_ERR(handle)) { 4438 error = PTR_ERR(handle); 4439 goto err_out; 4440 } 4441 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4442 if (error) { 4443 ext4_journal_stop(handle); 4444 return error; 4445 } 4446 /* Update corresponding info in inode so that everything is in 4447 * one transaction */ 4448 if (attr->ia_valid & ATTR_UID) 4449 inode->i_uid = attr->ia_uid; 4450 if (attr->ia_valid & ATTR_GID) 4451 inode->i_gid = attr->ia_gid; 4452 error = ext4_mark_inode_dirty(handle, inode); 4453 ext4_journal_stop(handle); 4454 } 4455 4456 if (attr->ia_valid & ATTR_SIZE) { 4457 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4459 4460 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4461 error = -EFBIG; 4462 goto err_out; 4463 } 4464 } 4465 } 4466 4467 if (S_ISREG(inode->i_mode) && 4468 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4469 handle_t *handle; 4470 4471 handle = ext4_journal_start(inode, 3); 4472 if (IS_ERR(handle)) { 4473 error = PTR_ERR(handle); 4474 goto err_out; 4475 } 4476 4477 error = ext4_orphan_add(handle, inode); 4478 EXT4_I(inode)->i_disksize = attr->ia_size; 4479 rc = ext4_mark_inode_dirty(handle, inode); 4480 if (!error) 4481 error = rc; 4482 ext4_journal_stop(handle); 4483 4484 if (ext4_should_order_data(inode)) { 4485 error = ext4_begin_ordered_truncate(inode, 4486 attr->ia_size); 4487 if (error) { 4488 /* Do as much error cleanup as possible */ 4489 handle = ext4_journal_start(inode, 3); 4490 if (IS_ERR(handle)) { 4491 ext4_orphan_del(NULL, inode); 4492 goto err_out; 4493 } 4494 ext4_orphan_del(handle, inode); 4495 ext4_journal_stop(handle); 4496 goto err_out; 4497 } 4498 } 4499 } 4500 4501 rc = inode_setattr(inode, attr); 4502 4503 /* If inode_setattr's call to ext4_truncate failed to get a 4504 * transaction handle at all, we need to clean up the in-core 4505 * orphan list manually. */ 4506 if (inode->i_nlink) 4507 ext4_orphan_del(NULL, inode); 4508 4509 if (!rc && (ia_valid & ATTR_MODE)) 4510 rc = ext4_acl_chmod(inode); 4511 4512 err_out: 4513 ext4_std_error(inode->i_sb, error); 4514 if (!error) 4515 error = rc; 4516 return error; 4517 } 4518 4519 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4520 struct kstat *stat) 4521 { 4522 struct inode *inode; 4523 unsigned long delalloc_blocks; 4524 4525 inode = dentry->d_inode; 4526 generic_fillattr(inode, stat); 4527 4528 /* 4529 * We can't update i_blocks if the block allocation is delayed 4530 * otherwise in the case of system crash before the real block 4531 * allocation is done, we will have i_blocks inconsistent with 4532 * on-disk file blocks. 4533 * We always keep i_blocks updated together with real 4534 * allocation. But to not confuse with user, stat 4535 * will return the blocks that include the delayed allocation 4536 * blocks for this file. 4537 */ 4538 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4539 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4540 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4541 4542 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4543 return 0; 4544 } 4545 4546 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4547 int chunk) 4548 { 4549 int indirects; 4550 4551 /* if nrblocks are contiguous */ 4552 if (chunk) { 4553 /* 4554 * With N contiguous data blocks, it need at most 4555 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4556 * 2 dindirect blocks 4557 * 1 tindirect block 4558 */ 4559 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4560 return indirects + 3; 4561 } 4562 /* 4563 * if nrblocks are not contiguous, worse case, each block touch 4564 * a indirect block, and each indirect block touch a double indirect 4565 * block, plus a triple indirect block 4566 */ 4567 indirects = nrblocks * 2 + 1; 4568 return indirects; 4569 } 4570 4571 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4572 { 4573 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4574 return ext4_indirect_trans_blocks(inode, nrblocks, 0); 4575 return ext4_ext_index_trans_blocks(inode, nrblocks, 0); 4576 } 4577 /* 4578 * Account for index blocks, block groups bitmaps and block group 4579 * descriptor blocks if modify datablocks and index blocks 4580 * worse case, the indexs blocks spread over different block groups 4581 * 4582 * If datablocks are discontiguous, they are possible to spread over 4583 * different block groups too. If they are contiugous, with flexbg, 4584 * they could still across block group boundary. 4585 * 4586 * Also account for superblock, inode, quota and xattr blocks 4587 */ 4588 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4589 { 4590 int groups, gdpblocks; 4591 int idxblocks; 4592 int ret = 0; 4593 4594 /* 4595 * How many index blocks need to touch to modify nrblocks? 4596 * The "Chunk" flag indicating whether the nrblocks is 4597 * physically contiguous on disk 4598 * 4599 * For Direct IO and fallocate, they calls get_block to allocate 4600 * one single extent at a time, so they could set the "Chunk" flag 4601 */ 4602 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4603 4604 ret = idxblocks; 4605 4606 /* 4607 * Now let's see how many group bitmaps and group descriptors need 4608 * to account 4609 */ 4610 groups = idxblocks; 4611 if (chunk) 4612 groups += 1; 4613 else 4614 groups += nrblocks; 4615 4616 gdpblocks = groups; 4617 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4618 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4619 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4620 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4621 4622 /* bitmaps and block group descriptor blocks */ 4623 ret += groups + gdpblocks; 4624 4625 /* Blocks for super block, inode, quota and xattr blocks */ 4626 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4627 4628 return ret; 4629 } 4630 4631 /* 4632 * Calulate the total number of credits to reserve to fit 4633 * the modification of a single pages into a single transaction, 4634 * which may include multiple chunks of block allocations. 4635 * 4636 * This could be called via ext4_write_begin() 4637 * 4638 * We need to consider the worse case, when 4639 * one new block per extent. 4640 */ 4641 int ext4_writepage_trans_blocks(struct inode *inode) 4642 { 4643 int bpp = ext4_journal_blocks_per_page(inode); 4644 int ret; 4645 4646 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4647 4648 /* Account for data blocks for journalled mode */ 4649 if (ext4_should_journal_data(inode)) 4650 ret += bpp; 4651 return ret; 4652 } 4653 4654 /* 4655 * Calculate the journal credits for a chunk of data modification. 4656 * 4657 * This is called from DIO, fallocate or whoever calling 4658 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4659 * 4660 * journal buffers for data blocks are not included here, as DIO 4661 * and fallocate do no need to journal data buffers. 4662 */ 4663 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4664 { 4665 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4666 } 4667 4668 /* 4669 * The caller must have previously called ext4_reserve_inode_write(). 4670 * Give this, we know that the caller already has write access to iloc->bh. 4671 */ 4672 int ext4_mark_iloc_dirty(handle_t *handle, 4673 struct inode *inode, struct ext4_iloc *iloc) 4674 { 4675 int err = 0; 4676 4677 if (test_opt(inode->i_sb, I_VERSION)) 4678 inode_inc_iversion(inode); 4679 4680 /* the do_update_inode consumes one bh->b_count */ 4681 get_bh(iloc->bh); 4682 4683 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4684 err = ext4_do_update_inode(handle, inode, iloc); 4685 put_bh(iloc->bh); 4686 return err; 4687 } 4688 4689 /* 4690 * On success, We end up with an outstanding reference count against 4691 * iloc->bh. This _must_ be cleaned up later. 4692 */ 4693 4694 int 4695 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4696 struct ext4_iloc *iloc) 4697 { 4698 int err = 0; 4699 if (handle) { 4700 err = ext4_get_inode_loc(inode, iloc); 4701 if (!err) { 4702 BUFFER_TRACE(iloc->bh, "get_write_access"); 4703 err = ext4_journal_get_write_access(handle, iloc->bh); 4704 if (err) { 4705 brelse(iloc->bh); 4706 iloc->bh = NULL; 4707 } 4708 } 4709 } 4710 ext4_std_error(inode->i_sb, err); 4711 return err; 4712 } 4713 4714 /* 4715 * Expand an inode by new_extra_isize bytes. 4716 * Returns 0 on success or negative error number on failure. 4717 */ 4718 static int ext4_expand_extra_isize(struct inode *inode, 4719 unsigned int new_extra_isize, 4720 struct ext4_iloc iloc, 4721 handle_t *handle) 4722 { 4723 struct ext4_inode *raw_inode; 4724 struct ext4_xattr_ibody_header *header; 4725 struct ext4_xattr_entry *entry; 4726 4727 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4728 return 0; 4729 4730 raw_inode = ext4_raw_inode(&iloc); 4731 4732 header = IHDR(inode, raw_inode); 4733 entry = IFIRST(header); 4734 4735 /* No extended attributes present */ 4736 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4737 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4738 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4739 new_extra_isize); 4740 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4741 return 0; 4742 } 4743 4744 /* try to expand with EAs present */ 4745 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4746 raw_inode, handle); 4747 } 4748 4749 /* 4750 * What we do here is to mark the in-core inode as clean with respect to inode 4751 * dirtiness (it may still be data-dirty). 4752 * This means that the in-core inode may be reaped by prune_icache 4753 * without having to perform any I/O. This is a very good thing, 4754 * because *any* task may call prune_icache - even ones which 4755 * have a transaction open against a different journal. 4756 * 4757 * Is this cheating? Not really. Sure, we haven't written the 4758 * inode out, but prune_icache isn't a user-visible syncing function. 4759 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4760 * we start and wait on commits. 4761 * 4762 * Is this efficient/effective? Well, we're being nice to the system 4763 * by cleaning up our inodes proactively so they can be reaped 4764 * without I/O. But we are potentially leaving up to five seconds' 4765 * worth of inodes floating about which prune_icache wants us to 4766 * write out. One way to fix that would be to get prune_icache() 4767 * to do a write_super() to free up some memory. It has the desired 4768 * effect. 4769 */ 4770 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4771 { 4772 struct ext4_iloc iloc; 4773 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4774 static unsigned int mnt_count; 4775 int err, ret; 4776 4777 might_sleep(); 4778 err = ext4_reserve_inode_write(handle, inode, &iloc); 4779 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4780 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4781 /* 4782 * We need extra buffer credits since we may write into EA block 4783 * with this same handle. If journal_extend fails, then it will 4784 * only result in a minor loss of functionality for that inode. 4785 * If this is felt to be critical, then e2fsck should be run to 4786 * force a large enough s_min_extra_isize. 4787 */ 4788 if ((jbd2_journal_extend(handle, 4789 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4790 ret = ext4_expand_extra_isize(inode, 4791 sbi->s_want_extra_isize, 4792 iloc, handle); 4793 if (ret) { 4794 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4795 if (mnt_count != 4796 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4797 ext4_warning(inode->i_sb, __func__, 4798 "Unable to expand inode %lu. Delete" 4799 " some EAs or run e2fsck.", 4800 inode->i_ino); 4801 mnt_count = 4802 le16_to_cpu(sbi->s_es->s_mnt_count); 4803 } 4804 } 4805 } 4806 } 4807 if (!err) 4808 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4809 return err; 4810 } 4811 4812 /* 4813 * ext4_dirty_inode() is called from __mark_inode_dirty() 4814 * 4815 * We're really interested in the case where a file is being extended. 4816 * i_size has been changed by generic_commit_write() and we thus need 4817 * to include the updated inode in the current transaction. 4818 * 4819 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4820 * are allocated to the file. 4821 * 4822 * If the inode is marked synchronous, we don't honour that here - doing 4823 * so would cause a commit on atime updates, which we don't bother doing. 4824 * We handle synchronous inodes at the highest possible level. 4825 */ 4826 void ext4_dirty_inode(struct inode *inode) 4827 { 4828 handle_t *current_handle = ext4_journal_current_handle(); 4829 handle_t *handle; 4830 4831 handle = ext4_journal_start(inode, 2); 4832 if (IS_ERR(handle)) 4833 goto out; 4834 if (current_handle && 4835 current_handle->h_transaction != handle->h_transaction) { 4836 /* This task has a transaction open against a different fs */ 4837 printk(KERN_EMERG "%s: transactions do not match!\n", 4838 __func__); 4839 } else { 4840 jbd_debug(5, "marking dirty. outer handle=%p\n", 4841 current_handle); 4842 ext4_mark_inode_dirty(handle, inode); 4843 } 4844 ext4_journal_stop(handle); 4845 out: 4846 return; 4847 } 4848 4849 #if 0 4850 /* 4851 * Bind an inode's backing buffer_head into this transaction, to prevent 4852 * it from being flushed to disk early. Unlike 4853 * ext4_reserve_inode_write, this leaves behind no bh reference and 4854 * returns no iloc structure, so the caller needs to repeat the iloc 4855 * lookup to mark the inode dirty later. 4856 */ 4857 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4858 { 4859 struct ext4_iloc iloc; 4860 4861 int err = 0; 4862 if (handle) { 4863 err = ext4_get_inode_loc(inode, &iloc); 4864 if (!err) { 4865 BUFFER_TRACE(iloc.bh, "get_write_access"); 4866 err = jbd2_journal_get_write_access(handle, iloc.bh); 4867 if (!err) 4868 err = ext4_journal_dirty_metadata(handle, 4869 iloc.bh); 4870 brelse(iloc.bh); 4871 } 4872 } 4873 ext4_std_error(inode->i_sb, err); 4874 return err; 4875 } 4876 #endif 4877 4878 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4879 { 4880 journal_t *journal; 4881 handle_t *handle; 4882 int err; 4883 4884 /* 4885 * We have to be very careful here: changing a data block's 4886 * journaling status dynamically is dangerous. If we write a 4887 * data block to the journal, change the status and then delete 4888 * that block, we risk forgetting to revoke the old log record 4889 * from the journal and so a subsequent replay can corrupt data. 4890 * So, first we make sure that the journal is empty and that 4891 * nobody is changing anything. 4892 */ 4893 4894 journal = EXT4_JOURNAL(inode); 4895 if (is_journal_aborted(journal)) 4896 return -EROFS; 4897 4898 jbd2_journal_lock_updates(journal); 4899 jbd2_journal_flush(journal); 4900 4901 /* 4902 * OK, there are no updates running now, and all cached data is 4903 * synced to disk. We are now in a completely consistent state 4904 * which doesn't have anything in the journal, and we know that 4905 * no filesystem updates are running, so it is safe to modify 4906 * the inode's in-core data-journaling state flag now. 4907 */ 4908 4909 if (val) 4910 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4911 else 4912 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4913 ext4_set_aops(inode); 4914 4915 jbd2_journal_unlock_updates(journal); 4916 4917 /* Finally we can mark the inode as dirty. */ 4918 4919 handle = ext4_journal_start(inode, 1); 4920 if (IS_ERR(handle)) 4921 return PTR_ERR(handle); 4922 4923 err = ext4_mark_inode_dirty(handle, inode); 4924 handle->h_sync = 1; 4925 ext4_journal_stop(handle); 4926 ext4_std_error(inode->i_sb, err); 4927 4928 return err; 4929 } 4930 4931 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4932 { 4933 return !buffer_mapped(bh); 4934 } 4935 4936 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4937 { 4938 loff_t size; 4939 unsigned long len; 4940 int ret = -EINVAL; 4941 void *fsdata; 4942 struct file *file = vma->vm_file; 4943 struct inode *inode = file->f_path.dentry->d_inode; 4944 struct address_space *mapping = inode->i_mapping; 4945 4946 /* 4947 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4948 * get i_mutex because we are already holding mmap_sem. 4949 */ 4950 down_read(&inode->i_alloc_sem); 4951 size = i_size_read(inode); 4952 if (page->mapping != mapping || size <= page_offset(page) 4953 || !PageUptodate(page)) { 4954 /* page got truncated from under us? */ 4955 goto out_unlock; 4956 } 4957 ret = 0; 4958 if (PageMappedToDisk(page)) 4959 goto out_unlock; 4960 4961 if (page->index == size >> PAGE_CACHE_SHIFT) 4962 len = size & ~PAGE_CACHE_MASK; 4963 else 4964 len = PAGE_CACHE_SIZE; 4965 4966 if (page_has_buffers(page)) { 4967 /* return if we have all the buffers mapped */ 4968 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4969 ext4_bh_unmapped)) 4970 goto out_unlock; 4971 } 4972 /* 4973 * OK, we need to fill the hole... Do write_begin write_end 4974 * to do block allocation/reservation.We are not holding 4975 * inode.i__mutex here. That allow * parallel write_begin, 4976 * write_end call. lock_page prevent this from happening 4977 * on the same page though 4978 */ 4979 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4980 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 4981 if (ret < 0) 4982 goto out_unlock; 4983 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4984 len, len, page, fsdata); 4985 if (ret < 0) 4986 goto out_unlock; 4987 ret = 0; 4988 out_unlock: 4989 up_read(&inode->i_alloc_sem); 4990 return ret; 4991 } 4992