xref: /linux/fs/ext4/inode.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 					      loff_t new_size)
55 {
56 	return jbd2_journal_begin_ordered_truncate(
57 					EXT4_SB(inode->i_sb)->s_journal,
58 					&EXT4_I(inode)->jinode,
59 					new_size);
60 }
61 
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 		(inode->i_sb->s_blocksize >> 9) : 0;
71 
72 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74 
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81 	ext4_lblk_t needed;
82 
83 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84 
85 	/* Give ourselves just enough room to cope with inodes in which
86 	 * i_blocks is corrupt: we've seen disk corruptions in the past
87 	 * which resulted in random data in an inode which looked enough
88 	 * like a regular file for ext4 to try to delete it.  Things
89 	 * will go a bit crazy if that happens, but at least we should
90 	 * try not to panic the whole kernel. */
91 	if (needed < 2)
92 		needed = 2;
93 
94 	/* But we need to bound the transaction so we don't overflow the
95 	 * journal. */
96 	if (needed > EXT4_MAX_TRANS_DATA)
97 		needed = EXT4_MAX_TRANS_DATA;
98 
99 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101 
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114 	handle_t *result;
115 
116 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 	if (!IS_ERR(result))
118 		return result;
119 
120 	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 	return result;
122 }
123 
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132 	if (!ext4_handle_valid(handle))
133 		return 0;
134 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 		return 0;
136 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 		return 0;
138 	return 1;
139 }
140 
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 				 int nblocks)
148 {
149 	int ret;
150 
151 	/*
152 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
153 	 * moment, get_block can be called only for blocks inside i_size since
154 	 * page cache has been already dropped and writes are blocked by
155 	 * i_mutex. So we can safely drop the i_data_sem here.
156 	 */
157 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 	jbd_debug(2, "restarting handle %p\n", handle);
159 	up_write(&EXT4_I(inode)->i_data_sem);
160 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 	down_write(&EXT4_I(inode)->i_data_sem);
162 	ext4_discard_preallocations(inode);
163 
164 	return ret;
165 }
166 
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_delete_inode(struct inode *inode)
171 {
172 	handle_t *handle;
173 	int err;
174 
175 	if (!is_bad_inode(inode))
176 		dquot_initialize(inode);
177 
178 	if (ext4_should_order_data(inode))
179 		ext4_begin_ordered_truncate(inode, 0);
180 	truncate_inode_pages(&inode->i_data, 0);
181 
182 	if (is_bad_inode(inode))
183 		goto no_delete;
184 
185 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186 	if (IS_ERR(handle)) {
187 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 		/*
189 		 * If we're going to skip the normal cleanup, we still need to
190 		 * make sure that the in-core orphan linked list is properly
191 		 * cleaned up.
192 		 */
193 		ext4_orphan_del(NULL, inode);
194 		goto no_delete;
195 	}
196 
197 	if (IS_SYNC(inode))
198 		ext4_handle_sync(handle);
199 	inode->i_size = 0;
200 	err = ext4_mark_inode_dirty(handle, inode);
201 	if (err) {
202 		ext4_warning(inode->i_sb,
203 			     "couldn't mark inode dirty (err %d)", err);
204 		goto stop_handle;
205 	}
206 	if (inode->i_blocks)
207 		ext4_truncate(inode);
208 
209 	/*
210 	 * ext4_ext_truncate() doesn't reserve any slop when it
211 	 * restarts journal transactions; therefore there may not be
212 	 * enough credits left in the handle to remove the inode from
213 	 * the orphan list and set the dtime field.
214 	 */
215 	if (!ext4_handle_has_enough_credits(handle, 3)) {
216 		err = ext4_journal_extend(handle, 3);
217 		if (err > 0)
218 			err = ext4_journal_restart(handle, 3);
219 		if (err != 0) {
220 			ext4_warning(inode->i_sb,
221 				     "couldn't extend journal (err %d)", err);
222 		stop_handle:
223 			ext4_journal_stop(handle);
224 			goto no_delete;
225 		}
226 	}
227 
228 	/*
229 	 * Kill off the orphan record which ext4_truncate created.
230 	 * AKPM: I think this can be inside the above `if'.
231 	 * Note that ext4_orphan_del() has to be able to cope with the
232 	 * deletion of a non-existent orphan - this is because we don't
233 	 * know if ext4_truncate() actually created an orphan record.
234 	 * (Well, we could do this if we need to, but heck - it works)
235 	 */
236 	ext4_orphan_del(handle, inode);
237 	EXT4_I(inode)->i_dtime	= get_seconds();
238 
239 	/*
240 	 * One subtle ordering requirement: if anything has gone wrong
241 	 * (transaction abort, IO errors, whatever), then we can still
242 	 * do these next steps (the fs will already have been marked as
243 	 * having errors), but we can't free the inode if the mark_dirty
244 	 * fails.
245 	 */
246 	if (ext4_mark_inode_dirty(handle, inode))
247 		/* If that failed, just do the required in-core inode clear. */
248 		clear_inode(inode);
249 	else
250 		ext4_free_inode(handle, inode);
251 	ext4_journal_stop(handle);
252 	return;
253 no_delete:
254 	clear_inode(inode);	/* We must guarantee clearing of inode... */
255 }
256 
257 typedef struct {
258 	__le32	*p;
259 	__le32	key;
260 	struct buffer_head *bh;
261 } Indirect;
262 
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 {
265 	p->key = *(p->p = v);
266 	p->bh = bh;
267 }
268 
269 /**
270  *	ext4_block_to_path - parse the block number into array of offsets
271  *	@inode: inode in question (we are only interested in its superblock)
272  *	@i_block: block number to be parsed
273  *	@offsets: array to store the offsets in
274  *	@boundary: set this non-zero if the referred-to block is likely to be
275  *	       followed (on disk) by an indirect block.
276  *
277  *	To store the locations of file's data ext4 uses a data structure common
278  *	for UNIX filesystems - tree of pointers anchored in the inode, with
279  *	data blocks at leaves and indirect blocks in intermediate nodes.
280  *	This function translates the block number into path in that tree -
281  *	return value is the path length and @offsets[n] is the offset of
282  *	pointer to (n+1)th node in the nth one. If @block is out of range
283  *	(negative or too large) warning is printed and zero returned.
284  *
285  *	Note: function doesn't find node addresses, so no IO is needed. All
286  *	we need to know is the capacity of indirect blocks (taken from the
287  *	inode->i_sb).
288  */
289 
290 /*
291  * Portability note: the last comparison (check that we fit into triple
292  * indirect block) is spelled differently, because otherwise on an
293  * architecture with 32-bit longs and 8Kb pages we might get into trouble
294  * if our filesystem had 8Kb blocks. We might use long long, but that would
295  * kill us on x86. Oh, well, at least the sign propagation does not matter -
296  * i_block would have to be negative in the very beginning, so we would not
297  * get there at all.
298  */
299 
300 static int ext4_block_to_path(struct inode *inode,
301 			      ext4_lblk_t i_block,
302 			      ext4_lblk_t offsets[4], int *boundary)
303 {
304 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 	const long direct_blocks = EXT4_NDIR_BLOCKS,
307 		indirect_blocks = ptrs,
308 		double_blocks = (1 << (ptrs_bits * 2));
309 	int n = 0;
310 	int final = 0;
311 
312 	if (i_block < direct_blocks) {
313 		offsets[n++] = i_block;
314 		final = direct_blocks;
315 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
316 		offsets[n++] = EXT4_IND_BLOCK;
317 		offsets[n++] = i_block;
318 		final = ptrs;
319 	} else if ((i_block -= indirect_blocks) < double_blocks) {
320 		offsets[n++] = EXT4_DIND_BLOCK;
321 		offsets[n++] = i_block >> ptrs_bits;
322 		offsets[n++] = i_block & (ptrs - 1);
323 		final = ptrs;
324 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 		offsets[n++] = EXT4_TIND_BLOCK;
326 		offsets[n++] = i_block >> (ptrs_bits * 2);
327 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 		offsets[n++] = i_block & (ptrs - 1);
329 		final = ptrs;
330 	} else {
331 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 			     i_block + direct_blocks +
333 			     indirect_blocks + double_blocks, inode->i_ino);
334 	}
335 	if (boundary)
336 		*boundary = final - 1 - (i_block & (ptrs - 1));
337 	return n;
338 }
339 
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341 				 __le32 *p, unsigned int max)
342 {
343 	__le32 *bref = p;
344 	unsigned int blk;
345 
346 	while (bref < p+max) {
347 		blk = le32_to_cpu(*bref++);
348 		if (blk &&
349 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350 						    blk, 1))) {
351 			__ext4_error(inode->i_sb, function,
352 				   "invalid block reference %u "
353 				   "in inode #%lu", blk, inode->i_ino);
354 			return -EIO;
355 		}
356 	}
357 	return 0;
358 }
359 
360 
361 #define ext4_check_indirect_blockref(inode, bh)                         \
362 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
363 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364 
365 #define ext4_check_inode_blockref(inode)                                \
366 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
367 			      EXT4_NDIR_BLOCKS)
368 
369 /**
370  *	ext4_get_branch - read the chain of indirect blocks leading to data
371  *	@inode: inode in question
372  *	@depth: depth of the chain (1 - direct pointer, etc.)
373  *	@offsets: offsets of pointers in inode/indirect blocks
374  *	@chain: place to store the result
375  *	@err: here we store the error value
376  *
377  *	Function fills the array of triples <key, p, bh> and returns %NULL
378  *	if everything went OK or the pointer to the last filled triple
379  *	(incomplete one) otherwise. Upon the return chain[i].key contains
380  *	the number of (i+1)-th block in the chain (as it is stored in memory,
381  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
382  *	number (it points into struct inode for i==0 and into the bh->b_data
383  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384  *	block for i>0 and NULL for i==0. In other words, it holds the block
385  *	numbers of the chain, addresses they were taken from (and where we can
386  *	verify that chain did not change) and buffer_heads hosting these
387  *	numbers.
388  *
389  *	Function stops when it stumbles upon zero pointer (absent block)
390  *		(pointer to last triple returned, *@err == 0)
391  *	or when it gets an IO error reading an indirect block
392  *		(ditto, *@err == -EIO)
393  *	or when it reads all @depth-1 indirect blocks successfully and finds
394  *	the whole chain, all way to the data (returns %NULL, *err == 0).
395  *
396  *      Need to be called with
397  *      down_read(&EXT4_I(inode)->i_data_sem)
398  */
399 static Indirect *ext4_get_branch(struct inode *inode, int depth,
400 				 ext4_lblk_t  *offsets,
401 				 Indirect chain[4], int *err)
402 {
403 	struct super_block *sb = inode->i_sb;
404 	Indirect *p = chain;
405 	struct buffer_head *bh;
406 
407 	*err = 0;
408 	/* i_data is not going away, no lock needed */
409 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410 	if (!p->key)
411 		goto no_block;
412 	while (--depth) {
413 		bh = sb_getblk(sb, le32_to_cpu(p->key));
414 		if (unlikely(!bh))
415 			goto failure;
416 
417 		if (!bh_uptodate_or_lock(bh)) {
418 			if (bh_submit_read(bh) < 0) {
419 				put_bh(bh);
420 				goto failure;
421 			}
422 			/* validate block references */
423 			if (ext4_check_indirect_blockref(inode, bh)) {
424 				put_bh(bh);
425 				goto failure;
426 			}
427 		}
428 
429 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430 		/* Reader: end */
431 		if (!p->key)
432 			goto no_block;
433 	}
434 	return NULL;
435 
436 failure:
437 	*err = -EIO;
438 no_block:
439 	return p;
440 }
441 
442 /**
443  *	ext4_find_near - find a place for allocation with sufficient locality
444  *	@inode: owner
445  *	@ind: descriptor of indirect block.
446  *
447  *	This function returns the preferred place for block allocation.
448  *	It is used when heuristic for sequential allocation fails.
449  *	Rules are:
450  *	  + if there is a block to the left of our position - allocate near it.
451  *	  + if pointer will live in indirect block - allocate near that block.
452  *	  + if pointer will live in inode - allocate in the same
453  *	    cylinder group.
454  *
455  * In the latter case we colour the starting block by the callers PID to
456  * prevent it from clashing with concurrent allocations for a different inode
457  * in the same block group.   The PID is used here so that functionally related
458  * files will be close-by on-disk.
459  *
460  *	Caller must make sure that @ind is valid and will stay that way.
461  */
462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
463 {
464 	struct ext4_inode_info *ei = EXT4_I(inode);
465 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466 	__le32 *p;
467 	ext4_fsblk_t bg_start;
468 	ext4_fsblk_t last_block;
469 	ext4_grpblk_t colour;
470 	ext4_group_t block_group;
471 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
472 
473 	/* Try to find previous block */
474 	for (p = ind->p - 1; p >= start; p--) {
475 		if (*p)
476 			return le32_to_cpu(*p);
477 	}
478 
479 	/* No such thing, so let's try location of indirect block */
480 	if (ind->bh)
481 		return ind->bh->b_blocknr;
482 
483 	/*
484 	 * It is going to be referred to from the inode itself? OK, just put it
485 	 * into the same cylinder group then.
486 	 */
487 	block_group = ei->i_block_group;
488 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489 		block_group &= ~(flex_size-1);
490 		if (S_ISREG(inode->i_mode))
491 			block_group++;
492 	}
493 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
495 
496 	/*
497 	 * If we are doing delayed allocation, we don't need take
498 	 * colour into account.
499 	 */
500 	if (test_opt(inode->i_sb, DELALLOC))
501 		return bg_start;
502 
503 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504 		colour = (current->pid % 16) *
505 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506 	else
507 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508 	return bg_start + colour;
509 }
510 
511 /**
512  *	ext4_find_goal - find a preferred place for allocation.
513  *	@inode: owner
514  *	@block:  block we want
515  *	@partial: pointer to the last triple within a chain
516  *
517  *	Normally this function find the preferred place for block allocation,
518  *	returns it.
519  *	Because this is only used for non-extent files, we limit the block nr
520  *	to 32 bits.
521  */
522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523 				   Indirect *partial)
524 {
525 	ext4_fsblk_t goal;
526 
527 	/*
528 	 * XXX need to get goal block from mballoc's data structures
529 	 */
530 
531 	goal = ext4_find_near(inode, partial);
532 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533 	return goal;
534 }
535 
536 /**
537  *	ext4_blks_to_allocate: Look up the block map and count the number
538  *	of direct blocks need to be allocated for the given branch.
539  *
540  *	@branch: chain of indirect blocks
541  *	@k: number of blocks need for indirect blocks
542  *	@blks: number of data blocks to be mapped.
543  *	@blocks_to_boundary:  the offset in the indirect block
544  *
545  *	return the total number of blocks to be allocate, including the
546  *	direct and indirect blocks.
547  */
548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549 				 int blocks_to_boundary)
550 {
551 	unsigned int count = 0;
552 
553 	/*
554 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 	 * then it's clear blocks on that path have not allocated
556 	 */
557 	if (k > 0) {
558 		/* right now we don't handle cross boundary allocation */
559 		if (blks < blocks_to_boundary + 1)
560 			count += blks;
561 		else
562 			count += blocks_to_boundary + 1;
563 		return count;
564 	}
565 
566 	count++;
567 	while (count < blks && count <= blocks_to_boundary &&
568 		le32_to_cpu(*(branch[0].p + count)) == 0) {
569 		count++;
570 	}
571 	return count;
572 }
573 
574 /**
575  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
576  *	@indirect_blks: the number of blocks need to allocate for indirect
577  *			blocks
578  *
579  *	@new_blocks: on return it will store the new block numbers for
580  *	the indirect blocks(if needed) and the first direct block,
581  *	@blks:	on return it will store the total number of allocated
582  *		direct blocks
583  */
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
586 			     int indirect_blks, int blks,
587 			     ext4_fsblk_t new_blocks[4], int *err)
588 {
589 	struct ext4_allocation_request ar;
590 	int target, i;
591 	unsigned long count = 0, blk_allocated = 0;
592 	int index = 0;
593 	ext4_fsblk_t current_block = 0;
594 	int ret = 0;
595 
596 	/*
597 	 * Here we try to allocate the requested multiple blocks at once,
598 	 * on a best-effort basis.
599 	 * To build a branch, we should allocate blocks for
600 	 * the indirect blocks(if not allocated yet), and at least
601 	 * the first direct block of this branch.  That's the
602 	 * minimum number of blocks need to allocate(required)
603 	 */
604 	/* first we try to allocate the indirect blocks */
605 	target = indirect_blks;
606 	while (target > 0) {
607 		count = target;
608 		/* allocating blocks for indirect blocks and direct blocks */
609 		current_block = ext4_new_meta_blocks(handle, inode,
610 							goal, &count, err);
611 		if (*err)
612 			goto failed_out;
613 
614 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 			EXT4_ERROR_INODE(inode,
616 					 "current_block %llu + count %lu > %d!",
617 					 current_block, count,
618 					 EXT4_MAX_BLOCK_FILE_PHYS);
619 			*err = -EIO;
620 			goto failed_out;
621 		}
622 
623 		target -= count;
624 		/* allocate blocks for indirect blocks */
625 		while (index < indirect_blks && count) {
626 			new_blocks[index++] = current_block++;
627 			count--;
628 		}
629 		if (count > 0) {
630 			/*
631 			 * save the new block number
632 			 * for the first direct block
633 			 */
634 			new_blocks[index] = current_block;
635 			printk(KERN_INFO "%s returned more blocks than "
636 						"requested\n", __func__);
637 			WARN_ON(1);
638 			break;
639 		}
640 	}
641 
642 	target = blks - count ;
643 	blk_allocated = count;
644 	if (!target)
645 		goto allocated;
646 	/* Now allocate data blocks */
647 	memset(&ar, 0, sizeof(ar));
648 	ar.inode = inode;
649 	ar.goal = goal;
650 	ar.len = target;
651 	ar.logical = iblock;
652 	if (S_ISREG(inode->i_mode))
653 		/* enable in-core preallocation only for regular files */
654 		ar.flags = EXT4_MB_HINT_DATA;
655 
656 	current_block = ext4_mb_new_blocks(handle, &ar, err);
657 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 		EXT4_ERROR_INODE(inode,
659 				 "current_block %llu + ar.len %d > %d!",
660 				 current_block, ar.len,
661 				 EXT4_MAX_BLOCK_FILE_PHYS);
662 		*err = -EIO;
663 		goto failed_out;
664 	}
665 
666 	if (*err && (target == blks)) {
667 		/*
668 		 * if the allocation failed and we didn't allocate
669 		 * any blocks before
670 		 */
671 		goto failed_out;
672 	}
673 	if (!*err) {
674 		if (target == blks) {
675 			/*
676 			 * save the new block number
677 			 * for the first direct block
678 			 */
679 			new_blocks[index] = current_block;
680 		}
681 		blk_allocated += ar.len;
682 	}
683 allocated:
684 	/* total number of blocks allocated for direct blocks */
685 	ret = blk_allocated;
686 	*err = 0;
687 	return ret;
688 failed_out:
689 	for (i = 0; i < index; i++)
690 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691 	return ret;
692 }
693 
694 /**
695  *	ext4_alloc_branch - allocate and set up a chain of blocks.
696  *	@inode: owner
697  *	@indirect_blks: number of allocated indirect blocks
698  *	@blks: number of allocated direct blocks
699  *	@offsets: offsets (in the blocks) to store the pointers to next.
700  *	@branch: place to store the chain in.
701  *
702  *	This function allocates blocks, zeroes out all but the last one,
703  *	links them into chain and (if we are synchronous) writes them to disk.
704  *	In other words, it prepares a branch that can be spliced onto the
705  *	inode. It stores the information about that chain in the branch[], in
706  *	the same format as ext4_get_branch() would do. We are calling it after
707  *	we had read the existing part of chain and partial points to the last
708  *	triple of that (one with zero ->key). Upon the exit we have the same
709  *	picture as after the successful ext4_get_block(), except that in one
710  *	place chain is disconnected - *branch->p is still zero (we did not
711  *	set the last link), but branch->key contains the number that should
712  *	be placed into *branch->p to fill that gap.
713  *
714  *	If allocation fails we free all blocks we've allocated (and forget
715  *	their buffer_heads) and return the error value the from failed
716  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717  *	as described above and return 0.
718  */
719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720 			     ext4_lblk_t iblock, int indirect_blks,
721 			     int *blks, ext4_fsblk_t goal,
722 			     ext4_lblk_t *offsets, Indirect *branch)
723 {
724 	int blocksize = inode->i_sb->s_blocksize;
725 	int i, n = 0;
726 	int err = 0;
727 	struct buffer_head *bh;
728 	int num;
729 	ext4_fsblk_t new_blocks[4];
730 	ext4_fsblk_t current_block;
731 
732 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733 				*blks, new_blocks, &err);
734 	if (err)
735 		return err;
736 
737 	branch[0].key = cpu_to_le32(new_blocks[0]);
738 	/*
739 	 * metadata blocks and data blocks are allocated.
740 	 */
741 	for (n = 1; n <= indirect_blks;  n++) {
742 		/*
743 		 * Get buffer_head for parent block, zero it out
744 		 * and set the pointer to new one, then send
745 		 * parent to disk.
746 		 */
747 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748 		branch[n].bh = bh;
749 		lock_buffer(bh);
750 		BUFFER_TRACE(bh, "call get_create_access");
751 		err = ext4_journal_get_create_access(handle, bh);
752 		if (err) {
753 			/* Don't brelse(bh) here; it's done in
754 			 * ext4_journal_forget() below */
755 			unlock_buffer(bh);
756 			goto failed;
757 		}
758 
759 		memset(bh->b_data, 0, blocksize);
760 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
761 		branch[n].key = cpu_to_le32(new_blocks[n]);
762 		*branch[n].p = branch[n].key;
763 		if (n == indirect_blks) {
764 			current_block = new_blocks[n];
765 			/*
766 			 * End of chain, update the last new metablock of
767 			 * the chain to point to the new allocated
768 			 * data blocks numbers
769 			 */
770 			for (i = 1; i < num; i++)
771 				*(branch[n].p + i) = cpu_to_le32(++current_block);
772 		}
773 		BUFFER_TRACE(bh, "marking uptodate");
774 		set_buffer_uptodate(bh);
775 		unlock_buffer(bh);
776 
777 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 		err = ext4_handle_dirty_metadata(handle, inode, bh);
779 		if (err)
780 			goto failed;
781 	}
782 	*blks = num;
783 	return err;
784 failed:
785 	/* Allocation failed, free what we already allocated */
786 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787 	for (i = 1; i <= n ; i++) {
788 		/*
789 		 * branch[i].bh is newly allocated, so there is no
790 		 * need to revoke the block, which is why we don't
791 		 * need to set EXT4_FREE_BLOCKS_METADATA.
792 		 */
793 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794 				 EXT4_FREE_BLOCKS_FORGET);
795 	}
796 	for (i = n+1; i < indirect_blks; i++)
797 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
798 
799 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
800 
801 	return err;
802 }
803 
804 /**
805  * ext4_splice_branch - splice the allocated branch onto inode.
806  * @inode: owner
807  * @block: (logical) number of block we are adding
808  * @chain: chain of indirect blocks (with a missing link - see
809  *	ext4_alloc_branch)
810  * @where: location of missing link
811  * @num:   number of indirect blocks we are adding
812  * @blks:  number of direct blocks we are adding
813  *
814  * This function fills the missing link and does all housekeeping needed in
815  * inode (->i_blocks, etc.). In case of success we end up with the full
816  * chain to new block and return 0.
817  */
818 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819 			      ext4_lblk_t block, Indirect *where, int num,
820 			      int blks)
821 {
822 	int i;
823 	int err = 0;
824 	ext4_fsblk_t current_block;
825 
826 	/*
827 	 * If we're splicing into a [td]indirect block (as opposed to the
828 	 * inode) then we need to get write access to the [td]indirect block
829 	 * before the splice.
830 	 */
831 	if (where->bh) {
832 		BUFFER_TRACE(where->bh, "get_write_access");
833 		err = ext4_journal_get_write_access(handle, where->bh);
834 		if (err)
835 			goto err_out;
836 	}
837 	/* That's it */
838 
839 	*where->p = where->key;
840 
841 	/*
842 	 * Update the host buffer_head or inode to point to more just allocated
843 	 * direct blocks blocks
844 	 */
845 	if (num == 0 && blks > 1) {
846 		current_block = le32_to_cpu(where->key) + 1;
847 		for (i = 1; i < blks; i++)
848 			*(where->p + i) = cpu_to_le32(current_block++);
849 	}
850 
851 	/* We are done with atomic stuff, now do the rest of housekeeping */
852 	/* had we spliced it onto indirect block? */
853 	if (where->bh) {
854 		/*
855 		 * If we spliced it onto an indirect block, we haven't
856 		 * altered the inode.  Note however that if it is being spliced
857 		 * onto an indirect block at the very end of the file (the
858 		 * file is growing) then we *will* alter the inode to reflect
859 		 * the new i_size.  But that is not done here - it is done in
860 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861 		 */
862 		jbd_debug(5, "splicing indirect only\n");
863 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865 		if (err)
866 			goto err_out;
867 	} else {
868 		/*
869 		 * OK, we spliced it into the inode itself on a direct block.
870 		 */
871 		ext4_mark_inode_dirty(handle, inode);
872 		jbd_debug(5, "splicing direct\n");
873 	}
874 	return err;
875 
876 err_out:
877 	for (i = 1; i <= num; i++) {
878 		/*
879 		 * branch[i].bh is newly allocated, so there is no
880 		 * need to revoke the block, which is why we don't
881 		 * need to set EXT4_FREE_BLOCKS_METADATA.
882 		 */
883 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884 				 EXT4_FREE_BLOCKS_FORGET);
885 	}
886 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887 			 blks, 0);
888 
889 	return err;
890 }
891 
892 /*
893  * The ext4_ind_get_blocks() function handles non-extents inodes
894  * (i.e., using the traditional indirect/double-indirect i_blocks
895  * scheme) for ext4_get_blocks().
896  *
897  * Allocation strategy is simple: if we have to allocate something, we will
898  * have to go the whole way to leaf. So let's do it before attaching anything
899  * to tree, set linkage between the newborn blocks, write them if sync is
900  * required, recheck the path, free and repeat if check fails, otherwise
901  * set the last missing link (that will protect us from any truncate-generated
902  * removals - all blocks on the path are immune now) and possibly force the
903  * write on the parent block.
904  * That has a nice additional property: no special recovery from the failed
905  * allocations is needed - we simply release blocks and do not touch anything
906  * reachable from inode.
907  *
908  * `handle' can be NULL if create == 0.
909  *
910  * return > 0, # of blocks mapped or allocated.
911  * return = 0, if plain lookup failed.
912  * return < 0, error case.
913  *
914  * The ext4_ind_get_blocks() function should be called with
915  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918  * blocks.
919  */
920 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921 			       ext4_lblk_t iblock, unsigned int maxblocks,
922 			       struct buffer_head *bh_result,
923 			       int flags)
924 {
925 	int err = -EIO;
926 	ext4_lblk_t offsets[4];
927 	Indirect chain[4];
928 	Indirect *partial;
929 	ext4_fsblk_t goal;
930 	int indirect_blks;
931 	int blocks_to_boundary = 0;
932 	int depth;
933 	int count = 0;
934 	ext4_fsblk_t first_block = 0;
935 
936 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
938 	depth = ext4_block_to_path(inode, iblock, offsets,
939 				   &blocks_to_boundary);
940 
941 	if (depth == 0)
942 		goto out;
943 
944 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945 
946 	/* Simplest case - block found, no allocation needed */
947 	if (!partial) {
948 		first_block = le32_to_cpu(chain[depth - 1].key);
949 		clear_buffer_new(bh_result);
950 		count++;
951 		/*map more blocks*/
952 		while (count < maxblocks && count <= blocks_to_boundary) {
953 			ext4_fsblk_t blk;
954 
955 			blk = le32_to_cpu(*(chain[depth-1].p + count));
956 
957 			if (blk == first_block + count)
958 				count++;
959 			else
960 				break;
961 		}
962 		goto got_it;
963 	}
964 
965 	/* Next simple case - plain lookup or failed read of indirect block */
966 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967 		goto cleanup;
968 
969 	/*
970 	 * Okay, we need to do block allocation.
971 	*/
972 	goal = ext4_find_goal(inode, iblock, partial);
973 
974 	/* the number of blocks need to allocate for [d,t]indirect blocks */
975 	indirect_blks = (chain + depth) - partial - 1;
976 
977 	/*
978 	 * Next look up the indirect map to count the totoal number of
979 	 * direct blocks to allocate for this branch.
980 	 */
981 	count = ext4_blks_to_allocate(partial, indirect_blks,
982 					maxblocks, blocks_to_boundary);
983 	/*
984 	 * Block out ext4_truncate while we alter the tree
985 	 */
986 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 				&count, goal,
988 				offsets + (partial - chain), partial);
989 
990 	/*
991 	 * The ext4_splice_branch call will free and forget any buffers
992 	 * on the new chain if there is a failure, but that risks using
993 	 * up transaction credits, especially for bitmaps where the
994 	 * credits cannot be returned.  Can we handle this somehow?  We
995 	 * may need to return -EAGAIN upwards in the worst case.  --sct
996 	 */
997 	if (!err)
998 		err = ext4_splice_branch(handle, inode, iblock,
999 					 partial, indirect_blks, count);
1000 	if (err)
1001 		goto cleanup;
1002 
1003 	set_buffer_new(bh_result);
1004 
1005 	ext4_update_inode_fsync_trans(handle, inode, 1);
1006 got_it:
1007 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008 	if (count > blocks_to_boundary)
1009 		set_buffer_boundary(bh_result);
1010 	err = count;
1011 	/* Clean up and exit */
1012 	partial = chain + depth - 1;	/* the whole chain */
1013 cleanup:
1014 	while (partial > chain) {
1015 		BUFFER_TRACE(partial->bh, "call brelse");
1016 		brelse(partial->bh);
1017 		partial--;
1018 	}
1019 	BUFFER_TRACE(bh_result, "returned");
1020 out:
1021 	return err;
1022 }
1023 
1024 #ifdef CONFIG_QUOTA
1025 qsize_t *ext4_get_reserved_space(struct inode *inode)
1026 {
1027 	return &EXT4_I(inode)->i_reserved_quota;
1028 }
1029 #endif
1030 
1031 /*
1032  * Calculate the number of metadata blocks need to reserve
1033  * to allocate a new block at @lblocks for non extent file based file
1034  */
1035 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1036 					      sector_t lblock)
1037 {
1038 	struct ext4_inode_info *ei = EXT4_I(inode);
1039 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1040 	int blk_bits;
1041 
1042 	if (lblock < EXT4_NDIR_BLOCKS)
1043 		return 0;
1044 
1045 	lblock -= EXT4_NDIR_BLOCKS;
1046 
1047 	if (ei->i_da_metadata_calc_len &&
1048 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1049 		ei->i_da_metadata_calc_len++;
1050 		return 0;
1051 	}
1052 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1053 	ei->i_da_metadata_calc_len = 1;
1054 	blk_bits = order_base_2(lblock);
1055 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1056 }
1057 
1058 /*
1059  * Calculate the number of metadata blocks need to reserve
1060  * to allocate a block located at @lblock
1061  */
1062 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1063 {
1064 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 		return ext4_ext_calc_metadata_amount(inode, lblock);
1066 
1067 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1068 }
1069 
1070 /*
1071  * Called with i_data_sem down, which is important since we can call
1072  * ext4_discard_preallocations() from here.
1073  */
1074 void ext4_da_update_reserve_space(struct inode *inode,
1075 					int used, int quota_claim)
1076 {
1077 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1078 	struct ext4_inode_info *ei = EXT4_I(inode);
1079 	int mdb_free = 0, allocated_meta_blocks = 0;
1080 
1081 	spin_lock(&ei->i_block_reservation_lock);
1082 	trace_ext4_da_update_reserve_space(inode, used);
1083 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1084 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1085 			 "with only %d reserved data blocks\n",
1086 			 __func__, inode->i_ino, used,
1087 			 ei->i_reserved_data_blocks);
1088 		WARN_ON(1);
1089 		used = ei->i_reserved_data_blocks;
1090 	}
1091 
1092 	/* Update per-inode reservations */
1093 	ei->i_reserved_data_blocks -= used;
1094 	used += ei->i_allocated_meta_blocks;
1095 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1096 	allocated_meta_blocks = ei->i_allocated_meta_blocks;
1097 	ei->i_allocated_meta_blocks = 0;
1098 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1099 
1100 	if (ei->i_reserved_data_blocks == 0) {
1101 		/*
1102 		 * We can release all of the reserved metadata blocks
1103 		 * only when we have written all of the delayed
1104 		 * allocation blocks.
1105 		 */
1106 		mdb_free = ei->i_reserved_meta_blocks;
1107 		ei->i_reserved_meta_blocks = 0;
1108 		ei->i_da_metadata_calc_len = 0;
1109 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1110 	}
1111 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112 
1113 	/* Update quota subsystem */
1114 	if (quota_claim) {
1115 		dquot_claim_block(inode, used);
1116 		if (mdb_free)
1117 			dquot_release_reservation_block(inode, mdb_free);
1118 	} else {
1119 		/*
1120 		 * We did fallocate with an offset that is already delayed
1121 		 * allocated. So on delayed allocated writeback we should
1122 		 * not update the quota for allocated blocks. But then
1123 		 * converting an fallocate region to initialized region would
1124 		 * have caused a metadata allocation. So claim quota for
1125 		 * that
1126 		 */
1127 		if (allocated_meta_blocks)
1128 			dquot_claim_block(inode, allocated_meta_blocks);
1129 		dquot_release_reservation_block(inode, mdb_free + used);
1130 	}
1131 
1132 	/*
1133 	 * If we have done all the pending block allocations and if
1134 	 * there aren't any writers on the inode, we can discard the
1135 	 * inode's preallocations.
1136 	 */
1137 	if ((ei->i_reserved_data_blocks == 0) &&
1138 	    (atomic_read(&inode->i_writecount) == 0))
1139 		ext4_discard_preallocations(inode);
1140 }
1141 
1142 static int check_block_validity(struct inode *inode, const char *msg,
1143 				sector_t logical, sector_t phys, int len)
1144 {
1145 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1146 		__ext4_error(inode->i_sb, msg,
1147 			   "inode #%lu logical block %llu mapped to %llu "
1148 			   "(size %d)", inode->i_ino,
1149 			   (unsigned long long) logical,
1150 			   (unsigned long long) phys, len);
1151 		return -EIO;
1152 	}
1153 	return 0;
1154 }
1155 
1156 /*
1157  * Return the number of contiguous dirty pages in a given inode
1158  * starting at page frame idx.
1159  */
1160 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1161 				    unsigned int max_pages)
1162 {
1163 	struct address_space *mapping = inode->i_mapping;
1164 	pgoff_t	index;
1165 	struct pagevec pvec;
1166 	pgoff_t num = 0;
1167 	int i, nr_pages, done = 0;
1168 
1169 	if (max_pages == 0)
1170 		return 0;
1171 	pagevec_init(&pvec, 0);
1172 	while (!done) {
1173 		index = idx;
1174 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1175 					      PAGECACHE_TAG_DIRTY,
1176 					      (pgoff_t)PAGEVEC_SIZE);
1177 		if (nr_pages == 0)
1178 			break;
1179 		for (i = 0; i < nr_pages; i++) {
1180 			struct page *page = pvec.pages[i];
1181 			struct buffer_head *bh, *head;
1182 
1183 			lock_page(page);
1184 			if (unlikely(page->mapping != mapping) ||
1185 			    !PageDirty(page) ||
1186 			    PageWriteback(page) ||
1187 			    page->index != idx) {
1188 				done = 1;
1189 				unlock_page(page);
1190 				break;
1191 			}
1192 			if (page_has_buffers(page)) {
1193 				bh = head = page_buffers(page);
1194 				do {
1195 					if (!buffer_delay(bh) &&
1196 					    !buffer_unwritten(bh))
1197 						done = 1;
1198 					bh = bh->b_this_page;
1199 				} while (!done && (bh != head));
1200 			}
1201 			unlock_page(page);
1202 			if (done)
1203 				break;
1204 			idx++;
1205 			num++;
1206 			if (num >= max_pages)
1207 				break;
1208 		}
1209 		pagevec_release(&pvec);
1210 	}
1211 	return num;
1212 }
1213 
1214 /*
1215  * The ext4_get_blocks() function tries to look up the requested blocks,
1216  * and returns if the blocks are already mapped.
1217  *
1218  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1219  * and store the allocated blocks in the result buffer head and mark it
1220  * mapped.
1221  *
1222  * If file type is extents based, it will call ext4_ext_get_blocks(),
1223  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1224  * based files
1225  *
1226  * On success, it returns the number of blocks being mapped or allocate.
1227  * if create==0 and the blocks are pre-allocated and uninitialized block,
1228  * the result buffer head is unmapped. If the create ==1, it will make sure
1229  * the buffer head is mapped.
1230  *
1231  * It returns 0 if plain look up failed (blocks have not been allocated), in
1232  * that casem, buffer head is unmapped
1233  *
1234  * It returns the error in case of allocation failure.
1235  */
1236 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1237 		    unsigned int max_blocks, struct buffer_head *bh,
1238 		    int flags)
1239 {
1240 	int retval;
1241 
1242 	clear_buffer_mapped(bh);
1243 	clear_buffer_unwritten(bh);
1244 
1245 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1246 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1247 		  (unsigned long)block);
1248 	/*
1249 	 * Try to see if we can get the block without requesting a new
1250 	 * file system block.
1251 	 */
1252 	down_read((&EXT4_I(inode)->i_data_sem));
1253 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1254 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1255 				bh, 0);
1256 	} else {
1257 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1258 					     bh, 0);
1259 	}
1260 	up_read((&EXT4_I(inode)->i_data_sem));
1261 
1262 	if (retval > 0 && buffer_mapped(bh)) {
1263 		int ret = check_block_validity(inode, "file system corruption",
1264 					       block, bh->b_blocknr, retval);
1265 		if (ret != 0)
1266 			return ret;
1267 	}
1268 
1269 	/* If it is only a block(s) look up */
1270 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1271 		return retval;
1272 
1273 	/*
1274 	 * Returns if the blocks have already allocated
1275 	 *
1276 	 * Note that if blocks have been preallocated
1277 	 * ext4_ext_get_block() returns th create = 0
1278 	 * with buffer head unmapped.
1279 	 */
1280 	if (retval > 0 && buffer_mapped(bh))
1281 		return retval;
1282 
1283 	/*
1284 	 * When we call get_blocks without the create flag, the
1285 	 * BH_Unwritten flag could have gotten set if the blocks
1286 	 * requested were part of a uninitialized extent.  We need to
1287 	 * clear this flag now that we are committed to convert all or
1288 	 * part of the uninitialized extent to be an initialized
1289 	 * extent.  This is because we need to avoid the combination
1290 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1291 	 * set on the buffer_head.
1292 	 */
1293 	clear_buffer_unwritten(bh);
1294 
1295 	/*
1296 	 * New blocks allocate and/or writing to uninitialized extent
1297 	 * will possibly result in updating i_data, so we take
1298 	 * the write lock of i_data_sem, and call get_blocks()
1299 	 * with create == 1 flag.
1300 	 */
1301 	down_write((&EXT4_I(inode)->i_data_sem));
1302 
1303 	/*
1304 	 * if the caller is from delayed allocation writeout path
1305 	 * we have already reserved fs blocks for allocation
1306 	 * let the underlying get_block() function know to
1307 	 * avoid double accounting
1308 	 */
1309 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1310 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1311 	/*
1312 	 * We need to check for EXT4 here because migrate
1313 	 * could have changed the inode type in between
1314 	 */
1315 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1316 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1317 					      bh, flags);
1318 	} else {
1319 		retval = ext4_ind_get_blocks(handle, inode, block,
1320 					     max_blocks, bh, flags);
1321 
1322 		if (retval > 0 && buffer_new(bh)) {
1323 			/*
1324 			 * We allocated new blocks which will result in
1325 			 * i_data's format changing.  Force the migrate
1326 			 * to fail by clearing migrate flags
1327 			 */
1328 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1329 		}
1330 
1331 		/*
1332 		 * Update reserved blocks/metadata blocks after successful
1333 		 * block allocation which had been deferred till now. We don't
1334 		 * support fallocate for non extent files. So we can update
1335 		 * reserve space here.
1336 		 */
1337 		if ((retval > 0) &&
1338 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1339 			ext4_da_update_reserve_space(inode, retval, 1);
1340 	}
1341 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1342 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1343 
1344 	up_write((&EXT4_I(inode)->i_data_sem));
1345 	if (retval > 0 && buffer_mapped(bh)) {
1346 		int ret = check_block_validity(inode, "file system "
1347 					       "corruption after allocation",
1348 					       block, bh->b_blocknr, retval);
1349 		if (ret != 0)
1350 			return ret;
1351 	}
1352 	return retval;
1353 }
1354 
1355 /* Maximum number of blocks we map for direct IO at once. */
1356 #define DIO_MAX_BLOCKS 4096
1357 
1358 int ext4_get_block(struct inode *inode, sector_t iblock,
1359 		   struct buffer_head *bh_result, int create)
1360 {
1361 	handle_t *handle = ext4_journal_current_handle();
1362 	int ret = 0, started = 0;
1363 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1364 	int dio_credits;
1365 
1366 	if (create && !handle) {
1367 		/* Direct IO write... */
1368 		if (max_blocks > DIO_MAX_BLOCKS)
1369 			max_blocks = DIO_MAX_BLOCKS;
1370 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1371 		handle = ext4_journal_start(inode, dio_credits);
1372 		if (IS_ERR(handle)) {
1373 			ret = PTR_ERR(handle);
1374 			goto out;
1375 		}
1376 		started = 1;
1377 	}
1378 
1379 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1380 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1381 	if (ret > 0) {
1382 		bh_result->b_size = (ret << inode->i_blkbits);
1383 		ret = 0;
1384 	}
1385 	if (started)
1386 		ext4_journal_stop(handle);
1387 out:
1388 	return ret;
1389 }
1390 
1391 /*
1392  * `handle' can be NULL if create is zero
1393  */
1394 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1395 				ext4_lblk_t block, int create, int *errp)
1396 {
1397 	struct buffer_head dummy;
1398 	int fatal = 0, err;
1399 	int flags = 0;
1400 
1401 	J_ASSERT(handle != NULL || create == 0);
1402 
1403 	dummy.b_state = 0;
1404 	dummy.b_blocknr = -1000;
1405 	buffer_trace_init(&dummy.b_history);
1406 	if (create)
1407 		flags |= EXT4_GET_BLOCKS_CREATE;
1408 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1409 	/*
1410 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1411 	 * case of a HOLE.
1412 	 */
1413 	if (err > 0) {
1414 		if (err > 1)
1415 			WARN_ON(1);
1416 		err = 0;
1417 	}
1418 	*errp = err;
1419 	if (!err && buffer_mapped(&dummy)) {
1420 		struct buffer_head *bh;
1421 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1422 		if (!bh) {
1423 			*errp = -EIO;
1424 			goto err;
1425 		}
1426 		if (buffer_new(&dummy)) {
1427 			J_ASSERT(create != 0);
1428 			J_ASSERT(handle != NULL);
1429 
1430 			/*
1431 			 * Now that we do not always journal data, we should
1432 			 * keep in mind whether this should always journal the
1433 			 * new buffer as metadata.  For now, regular file
1434 			 * writes use ext4_get_block instead, so it's not a
1435 			 * problem.
1436 			 */
1437 			lock_buffer(bh);
1438 			BUFFER_TRACE(bh, "call get_create_access");
1439 			fatal = ext4_journal_get_create_access(handle, bh);
1440 			if (!fatal && !buffer_uptodate(bh)) {
1441 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1442 				set_buffer_uptodate(bh);
1443 			}
1444 			unlock_buffer(bh);
1445 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1446 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1447 			if (!fatal)
1448 				fatal = err;
1449 		} else {
1450 			BUFFER_TRACE(bh, "not a new buffer");
1451 		}
1452 		if (fatal) {
1453 			*errp = fatal;
1454 			brelse(bh);
1455 			bh = NULL;
1456 		}
1457 		return bh;
1458 	}
1459 err:
1460 	return NULL;
1461 }
1462 
1463 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1464 			       ext4_lblk_t block, int create, int *err)
1465 {
1466 	struct buffer_head *bh;
1467 
1468 	bh = ext4_getblk(handle, inode, block, create, err);
1469 	if (!bh)
1470 		return bh;
1471 	if (buffer_uptodate(bh))
1472 		return bh;
1473 	ll_rw_block(READ_META, 1, &bh);
1474 	wait_on_buffer(bh);
1475 	if (buffer_uptodate(bh))
1476 		return bh;
1477 	put_bh(bh);
1478 	*err = -EIO;
1479 	return NULL;
1480 }
1481 
1482 static int walk_page_buffers(handle_t *handle,
1483 			     struct buffer_head *head,
1484 			     unsigned from,
1485 			     unsigned to,
1486 			     int *partial,
1487 			     int (*fn)(handle_t *handle,
1488 				       struct buffer_head *bh))
1489 {
1490 	struct buffer_head *bh;
1491 	unsigned block_start, block_end;
1492 	unsigned blocksize = head->b_size;
1493 	int err, ret = 0;
1494 	struct buffer_head *next;
1495 
1496 	for (bh = head, block_start = 0;
1497 	     ret == 0 && (bh != head || !block_start);
1498 	     block_start = block_end, bh = next) {
1499 		next = bh->b_this_page;
1500 		block_end = block_start + blocksize;
1501 		if (block_end <= from || block_start >= to) {
1502 			if (partial && !buffer_uptodate(bh))
1503 				*partial = 1;
1504 			continue;
1505 		}
1506 		err = (*fn)(handle, bh);
1507 		if (!ret)
1508 			ret = err;
1509 	}
1510 	return ret;
1511 }
1512 
1513 /*
1514  * To preserve ordering, it is essential that the hole instantiation and
1515  * the data write be encapsulated in a single transaction.  We cannot
1516  * close off a transaction and start a new one between the ext4_get_block()
1517  * and the commit_write().  So doing the jbd2_journal_start at the start of
1518  * prepare_write() is the right place.
1519  *
1520  * Also, this function can nest inside ext4_writepage() ->
1521  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1522  * has generated enough buffer credits to do the whole page.  So we won't
1523  * block on the journal in that case, which is good, because the caller may
1524  * be PF_MEMALLOC.
1525  *
1526  * By accident, ext4 can be reentered when a transaction is open via
1527  * quota file writes.  If we were to commit the transaction while thus
1528  * reentered, there can be a deadlock - we would be holding a quota
1529  * lock, and the commit would never complete if another thread had a
1530  * transaction open and was blocking on the quota lock - a ranking
1531  * violation.
1532  *
1533  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1534  * will _not_ run commit under these circumstances because handle->h_ref
1535  * is elevated.  We'll still have enough credits for the tiny quotafile
1536  * write.
1537  */
1538 static int do_journal_get_write_access(handle_t *handle,
1539 				       struct buffer_head *bh)
1540 {
1541 	if (!buffer_mapped(bh) || buffer_freed(bh))
1542 		return 0;
1543 	return ext4_journal_get_write_access(handle, bh);
1544 }
1545 
1546 /*
1547  * Truncate blocks that were not used by write. We have to truncate the
1548  * pagecache as well so that corresponding buffers get properly unmapped.
1549  */
1550 static void ext4_truncate_failed_write(struct inode *inode)
1551 {
1552 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1553 	ext4_truncate(inode);
1554 }
1555 
1556 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1557 		   struct buffer_head *bh_result, int create);
1558 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1559 			    loff_t pos, unsigned len, unsigned flags,
1560 			    struct page **pagep, void **fsdata)
1561 {
1562 	struct inode *inode = mapping->host;
1563 	int ret, needed_blocks;
1564 	handle_t *handle;
1565 	int retries = 0;
1566 	struct page *page;
1567 	pgoff_t index;
1568 	unsigned from, to;
1569 
1570 	trace_ext4_write_begin(inode, pos, len, flags);
1571 	/*
1572 	 * Reserve one block more for addition to orphan list in case
1573 	 * we allocate blocks but write fails for some reason
1574 	 */
1575 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1576 	index = pos >> PAGE_CACHE_SHIFT;
1577 	from = pos & (PAGE_CACHE_SIZE - 1);
1578 	to = from + len;
1579 
1580 retry:
1581 	handle = ext4_journal_start(inode, needed_blocks);
1582 	if (IS_ERR(handle)) {
1583 		ret = PTR_ERR(handle);
1584 		goto out;
1585 	}
1586 
1587 	/* We cannot recurse into the filesystem as the transaction is already
1588 	 * started */
1589 	flags |= AOP_FLAG_NOFS;
1590 
1591 	page = grab_cache_page_write_begin(mapping, index, flags);
1592 	if (!page) {
1593 		ext4_journal_stop(handle);
1594 		ret = -ENOMEM;
1595 		goto out;
1596 	}
1597 	*pagep = page;
1598 
1599 	if (ext4_should_dioread_nolock(inode))
1600 		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1601 				fsdata, ext4_get_block_write);
1602 	else
1603 		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1604 				fsdata, ext4_get_block);
1605 
1606 	if (!ret && ext4_should_journal_data(inode)) {
1607 		ret = walk_page_buffers(handle, page_buffers(page),
1608 				from, to, NULL, do_journal_get_write_access);
1609 	}
1610 
1611 	if (ret) {
1612 		unlock_page(page);
1613 		page_cache_release(page);
1614 		/*
1615 		 * block_write_begin may have instantiated a few blocks
1616 		 * outside i_size.  Trim these off again. Don't need
1617 		 * i_size_read because we hold i_mutex.
1618 		 *
1619 		 * Add inode to orphan list in case we crash before
1620 		 * truncate finishes
1621 		 */
1622 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1623 			ext4_orphan_add(handle, inode);
1624 
1625 		ext4_journal_stop(handle);
1626 		if (pos + len > inode->i_size) {
1627 			ext4_truncate_failed_write(inode);
1628 			/*
1629 			 * If truncate failed early the inode might
1630 			 * still be on the orphan list; we need to
1631 			 * make sure the inode is removed from the
1632 			 * orphan list in that case.
1633 			 */
1634 			if (inode->i_nlink)
1635 				ext4_orphan_del(NULL, inode);
1636 		}
1637 	}
1638 
1639 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1640 		goto retry;
1641 out:
1642 	return ret;
1643 }
1644 
1645 /* For write_end() in data=journal mode */
1646 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1647 {
1648 	if (!buffer_mapped(bh) || buffer_freed(bh))
1649 		return 0;
1650 	set_buffer_uptodate(bh);
1651 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1652 }
1653 
1654 static int ext4_generic_write_end(struct file *file,
1655 				  struct address_space *mapping,
1656 				  loff_t pos, unsigned len, unsigned copied,
1657 				  struct page *page, void *fsdata)
1658 {
1659 	int i_size_changed = 0;
1660 	struct inode *inode = mapping->host;
1661 	handle_t *handle = ext4_journal_current_handle();
1662 
1663 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1664 
1665 	/*
1666 	 * No need to use i_size_read() here, the i_size
1667 	 * cannot change under us because we hold i_mutex.
1668 	 *
1669 	 * But it's important to update i_size while still holding page lock:
1670 	 * page writeout could otherwise come in and zero beyond i_size.
1671 	 */
1672 	if (pos + copied > inode->i_size) {
1673 		i_size_write(inode, pos + copied);
1674 		i_size_changed = 1;
1675 	}
1676 
1677 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1678 		/* We need to mark inode dirty even if
1679 		 * new_i_size is less that inode->i_size
1680 		 * bu greater than i_disksize.(hint delalloc)
1681 		 */
1682 		ext4_update_i_disksize(inode, (pos + copied));
1683 		i_size_changed = 1;
1684 	}
1685 	unlock_page(page);
1686 	page_cache_release(page);
1687 
1688 	/*
1689 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1690 	 * makes the holding time of page lock longer. Second, it forces lock
1691 	 * ordering of page lock and transaction start for journaling
1692 	 * filesystems.
1693 	 */
1694 	if (i_size_changed)
1695 		ext4_mark_inode_dirty(handle, inode);
1696 
1697 	return copied;
1698 }
1699 
1700 /*
1701  * We need to pick up the new inode size which generic_commit_write gave us
1702  * `file' can be NULL - eg, when called from page_symlink().
1703  *
1704  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1705  * buffers are managed internally.
1706  */
1707 static int ext4_ordered_write_end(struct file *file,
1708 				  struct address_space *mapping,
1709 				  loff_t pos, unsigned len, unsigned copied,
1710 				  struct page *page, void *fsdata)
1711 {
1712 	handle_t *handle = ext4_journal_current_handle();
1713 	struct inode *inode = mapping->host;
1714 	int ret = 0, ret2;
1715 
1716 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1717 	ret = ext4_jbd2_file_inode(handle, inode);
1718 
1719 	if (ret == 0) {
1720 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1721 							page, fsdata);
1722 		copied = ret2;
1723 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1724 			/* if we have allocated more blocks and copied
1725 			 * less. We will have blocks allocated outside
1726 			 * inode->i_size. So truncate them
1727 			 */
1728 			ext4_orphan_add(handle, inode);
1729 		if (ret2 < 0)
1730 			ret = ret2;
1731 	}
1732 	ret2 = ext4_journal_stop(handle);
1733 	if (!ret)
1734 		ret = ret2;
1735 
1736 	if (pos + len > inode->i_size) {
1737 		ext4_truncate_failed_write(inode);
1738 		/*
1739 		 * If truncate failed early the inode might still be
1740 		 * on the orphan list; we need to make sure the inode
1741 		 * is removed from the orphan list in that case.
1742 		 */
1743 		if (inode->i_nlink)
1744 			ext4_orphan_del(NULL, inode);
1745 	}
1746 
1747 
1748 	return ret ? ret : copied;
1749 }
1750 
1751 static int ext4_writeback_write_end(struct file *file,
1752 				    struct address_space *mapping,
1753 				    loff_t pos, unsigned len, unsigned copied,
1754 				    struct page *page, void *fsdata)
1755 {
1756 	handle_t *handle = ext4_journal_current_handle();
1757 	struct inode *inode = mapping->host;
1758 	int ret = 0, ret2;
1759 
1760 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1761 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762 							page, fsdata);
1763 	copied = ret2;
1764 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 		/* if we have allocated more blocks and copied
1766 		 * less. We will have blocks allocated outside
1767 		 * inode->i_size. So truncate them
1768 		 */
1769 		ext4_orphan_add(handle, inode);
1770 
1771 	if (ret2 < 0)
1772 		ret = ret2;
1773 
1774 	ret2 = ext4_journal_stop(handle);
1775 	if (!ret)
1776 		ret = ret2;
1777 
1778 	if (pos + len > inode->i_size) {
1779 		ext4_truncate_failed_write(inode);
1780 		/*
1781 		 * If truncate failed early the inode might still be
1782 		 * on the orphan list; we need to make sure the inode
1783 		 * is removed from the orphan list in that case.
1784 		 */
1785 		if (inode->i_nlink)
1786 			ext4_orphan_del(NULL, inode);
1787 	}
1788 
1789 	return ret ? ret : copied;
1790 }
1791 
1792 static int ext4_journalled_write_end(struct file *file,
1793 				     struct address_space *mapping,
1794 				     loff_t pos, unsigned len, unsigned copied,
1795 				     struct page *page, void *fsdata)
1796 {
1797 	handle_t *handle = ext4_journal_current_handle();
1798 	struct inode *inode = mapping->host;
1799 	int ret = 0, ret2;
1800 	int partial = 0;
1801 	unsigned from, to;
1802 	loff_t new_i_size;
1803 
1804 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1805 	from = pos & (PAGE_CACHE_SIZE - 1);
1806 	to = from + len;
1807 
1808 	if (copied < len) {
1809 		if (!PageUptodate(page))
1810 			copied = 0;
1811 		page_zero_new_buffers(page, from+copied, to);
1812 	}
1813 
1814 	ret = walk_page_buffers(handle, page_buffers(page), from,
1815 				to, &partial, write_end_fn);
1816 	if (!partial)
1817 		SetPageUptodate(page);
1818 	new_i_size = pos + copied;
1819 	if (new_i_size > inode->i_size)
1820 		i_size_write(inode, pos+copied);
1821 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1822 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1823 		ext4_update_i_disksize(inode, new_i_size);
1824 		ret2 = ext4_mark_inode_dirty(handle, inode);
1825 		if (!ret)
1826 			ret = ret2;
1827 	}
1828 
1829 	unlock_page(page);
1830 	page_cache_release(page);
1831 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1832 		/* if we have allocated more blocks and copied
1833 		 * less. We will have blocks allocated outside
1834 		 * inode->i_size. So truncate them
1835 		 */
1836 		ext4_orphan_add(handle, inode);
1837 
1838 	ret2 = ext4_journal_stop(handle);
1839 	if (!ret)
1840 		ret = ret2;
1841 	if (pos + len > inode->i_size) {
1842 		ext4_truncate_failed_write(inode);
1843 		/*
1844 		 * If truncate failed early the inode might still be
1845 		 * on the orphan list; we need to make sure the inode
1846 		 * is removed from the orphan list in that case.
1847 		 */
1848 		if (inode->i_nlink)
1849 			ext4_orphan_del(NULL, inode);
1850 	}
1851 
1852 	return ret ? ret : copied;
1853 }
1854 
1855 /*
1856  * Reserve a single block located at lblock
1857  */
1858 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1859 {
1860 	int retries = 0;
1861 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1862 	struct ext4_inode_info *ei = EXT4_I(inode);
1863 	unsigned long md_needed, md_reserved;
1864 	int ret;
1865 
1866 	/*
1867 	 * recalculate the amount of metadata blocks to reserve
1868 	 * in order to allocate nrblocks
1869 	 * worse case is one extent per block
1870 	 */
1871 repeat:
1872 	spin_lock(&ei->i_block_reservation_lock);
1873 	md_reserved = ei->i_reserved_meta_blocks;
1874 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1875 	trace_ext4_da_reserve_space(inode, md_needed);
1876 	spin_unlock(&ei->i_block_reservation_lock);
1877 
1878 	/*
1879 	 * Make quota reservation here to prevent quota overflow
1880 	 * later. Real quota accounting is done at pages writeout
1881 	 * time.
1882 	 */
1883 	ret = dquot_reserve_block(inode, md_needed + 1);
1884 	if (ret)
1885 		return ret;
1886 
1887 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1888 		dquot_release_reservation_block(inode, md_needed + 1);
1889 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1890 			yield();
1891 			goto repeat;
1892 		}
1893 		return -ENOSPC;
1894 	}
1895 	spin_lock(&ei->i_block_reservation_lock);
1896 	ei->i_reserved_data_blocks++;
1897 	ei->i_reserved_meta_blocks += md_needed;
1898 	spin_unlock(&ei->i_block_reservation_lock);
1899 
1900 	return 0;       /* success */
1901 }
1902 
1903 static void ext4_da_release_space(struct inode *inode, int to_free)
1904 {
1905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906 	struct ext4_inode_info *ei = EXT4_I(inode);
1907 
1908 	if (!to_free)
1909 		return;		/* Nothing to release, exit */
1910 
1911 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1912 
1913 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1914 		/*
1915 		 * if there aren't enough reserved blocks, then the
1916 		 * counter is messed up somewhere.  Since this
1917 		 * function is called from invalidate page, it's
1918 		 * harmless to return without any action.
1919 		 */
1920 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1921 			 "ino %lu, to_free %d with only %d reserved "
1922 			 "data blocks\n", inode->i_ino, to_free,
1923 			 ei->i_reserved_data_blocks);
1924 		WARN_ON(1);
1925 		to_free = ei->i_reserved_data_blocks;
1926 	}
1927 	ei->i_reserved_data_blocks -= to_free;
1928 
1929 	if (ei->i_reserved_data_blocks == 0) {
1930 		/*
1931 		 * We can release all of the reserved metadata blocks
1932 		 * only when we have written all of the delayed
1933 		 * allocation blocks.
1934 		 */
1935 		to_free += ei->i_reserved_meta_blocks;
1936 		ei->i_reserved_meta_blocks = 0;
1937 		ei->i_da_metadata_calc_len = 0;
1938 	}
1939 
1940 	/* update fs dirty blocks counter */
1941 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1942 
1943 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1944 
1945 	dquot_release_reservation_block(inode, to_free);
1946 }
1947 
1948 static void ext4_da_page_release_reservation(struct page *page,
1949 					     unsigned long offset)
1950 {
1951 	int to_release = 0;
1952 	struct buffer_head *head, *bh;
1953 	unsigned int curr_off = 0;
1954 
1955 	head = page_buffers(page);
1956 	bh = head;
1957 	do {
1958 		unsigned int next_off = curr_off + bh->b_size;
1959 
1960 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1961 			to_release++;
1962 			clear_buffer_delay(bh);
1963 		}
1964 		curr_off = next_off;
1965 	} while ((bh = bh->b_this_page) != head);
1966 	ext4_da_release_space(page->mapping->host, to_release);
1967 }
1968 
1969 /*
1970  * Delayed allocation stuff
1971  */
1972 
1973 /*
1974  * mpage_da_submit_io - walks through extent of pages and try to write
1975  * them with writepage() call back
1976  *
1977  * @mpd->inode: inode
1978  * @mpd->first_page: first page of the extent
1979  * @mpd->next_page: page after the last page of the extent
1980  *
1981  * By the time mpage_da_submit_io() is called we expect all blocks
1982  * to be allocated. this may be wrong if allocation failed.
1983  *
1984  * As pages are already locked by write_cache_pages(), we can't use it
1985  */
1986 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1987 {
1988 	long pages_skipped;
1989 	struct pagevec pvec;
1990 	unsigned long index, end;
1991 	int ret = 0, err, nr_pages, i;
1992 	struct inode *inode = mpd->inode;
1993 	struct address_space *mapping = inode->i_mapping;
1994 
1995 	BUG_ON(mpd->next_page <= mpd->first_page);
1996 	/*
1997 	 * We need to start from the first_page to the next_page - 1
1998 	 * to make sure we also write the mapped dirty buffer_heads.
1999 	 * If we look at mpd->b_blocknr we would only be looking
2000 	 * at the currently mapped buffer_heads.
2001 	 */
2002 	index = mpd->first_page;
2003 	end = mpd->next_page - 1;
2004 
2005 	pagevec_init(&pvec, 0);
2006 	while (index <= end) {
2007 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2008 		if (nr_pages == 0)
2009 			break;
2010 		for (i = 0; i < nr_pages; i++) {
2011 			struct page *page = pvec.pages[i];
2012 
2013 			index = page->index;
2014 			if (index > end)
2015 				break;
2016 			index++;
2017 
2018 			BUG_ON(!PageLocked(page));
2019 			BUG_ON(PageWriteback(page));
2020 
2021 			pages_skipped = mpd->wbc->pages_skipped;
2022 			err = mapping->a_ops->writepage(page, mpd->wbc);
2023 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2024 				/*
2025 				 * have successfully written the page
2026 				 * without skipping the same
2027 				 */
2028 				mpd->pages_written++;
2029 			/*
2030 			 * In error case, we have to continue because
2031 			 * remaining pages are still locked
2032 			 * XXX: unlock and re-dirty them?
2033 			 */
2034 			if (ret == 0)
2035 				ret = err;
2036 		}
2037 		pagevec_release(&pvec);
2038 	}
2039 	return ret;
2040 }
2041 
2042 /*
2043  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2044  *
2045  * @mpd->inode - inode to walk through
2046  * @exbh->b_blocknr - first block on a disk
2047  * @exbh->b_size - amount of space in bytes
2048  * @logical - first logical block to start assignment with
2049  *
2050  * the function goes through all passed space and put actual disk
2051  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2052  */
2053 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2054 				 struct buffer_head *exbh)
2055 {
2056 	struct inode *inode = mpd->inode;
2057 	struct address_space *mapping = inode->i_mapping;
2058 	int blocks = exbh->b_size >> inode->i_blkbits;
2059 	sector_t pblock = exbh->b_blocknr, cur_logical;
2060 	struct buffer_head *head, *bh;
2061 	pgoff_t index, end;
2062 	struct pagevec pvec;
2063 	int nr_pages, i;
2064 
2065 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2066 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2068 
2069 	pagevec_init(&pvec, 0);
2070 
2071 	while (index <= end) {
2072 		/* XXX: optimize tail */
2073 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2074 		if (nr_pages == 0)
2075 			break;
2076 		for (i = 0; i < nr_pages; i++) {
2077 			struct page *page = pvec.pages[i];
2078 
2079 			index = page->index;
2080 			if (index > end)
2081 				break;
2082 			index++;
2083 
2084 			BUG_ON(!PageLocked(page));
2085 			BUG_ON(PageWriteback(page));
2086 			BUG_ON(!page_has_buffers(page));
2087 
2088 			bh = page_buffers(page);
2089 			head = bh;
2090 
2091 			/* skip blocks out of the range */
2092 			do {
2093 				if (cur_logical >= logical)
2094 					break;
2095 				cur_logical++;
2096 			} while ((bh = bh->b_this_page) != head);
2097 
2098 			do {
2099 				if (cur_logical >= logical + blocks)
2100 					break;
2101 
2102 				if (buffer_delay(bh) ||
2103 						buffer_unwritten(bh)) {
2104 
2105 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2106 
2107 					if (buffer_delay(bh)) {
2108 						clear_buffer_delay(bh);
2109 						bh->b_blocknr = pblock;
2110 					} else {
2111 						/*
2112 						 * unwritten already should have
2113 						 * blocknr assigned. Verify that
2114 						 */
2115 						clear_buffer_unwritten(bh);
2116 						BUG_ON(bh->b_blocknr != pblock);
2117 					}
2118 
2119 				} else if (buffer_mapped(bh))
2120 					BUG_ON(bh->b_blocknr != pblock);
2121 
2122 				if (buffer_uninit(exbh))
2123 					set_buffer_uninit(bh);
2124 				cur_logical++;
2125 				pblock++;
2126 			} while ((bh = bh->b_this_page) != head);
2127 		}
2128 		pagevec_release(&pvec);
2129 	}
2130 }
2131 
2132 
2133 /*
2134  * __unmap_underlying_blocks - just a helper function to unmap
2135  * set of blocks described by @bh
2136  */
2137 static inline void __unmap_underlying_blocks(struct inode *inode,
2138 					     struct buffer_head *bh)
2139 {
2140 	struct block_device *bdev = inode->i_sb->s_bdev;
2141 	int blocks, i;
2142 
2143 	blocks = bh->b_size >> inode->i_blkbits;
2144 	for (i = 0; i < blocks; i++)
2145 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2146 }
2147 
2148 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2149 					sector_t logical, long blk_cnt)
2150 {
2151 	int nr_pages, i;
2152 	pgoff_t index, end;
2153 	struct pagevec pvec;
2154 	struct inode *inode = mpd->inode;
2155 	struct address_space *mapping = inode->i_mapping;
2156 
2157 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2158 	end   = (logical + blk_cnt - 1) >>
2159 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2160 	while (index <= end) {
2161 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2162 		if (nr_pages == 0)
2163 			break;
2164 		for (i = 0; i < nr_pages; i++) {
2165 			struct page *page = pvec.pages[i];
2166 			if (page->index > end)
2167 				break;
2168 			BUG_ON(!PageLocked(page));
2169 			BUG_ON(PageWriteback(page));
2170 			block_invalidatepage(page, 0);
2171 			ClearPageUptodate(page);
2172 			unlock_page(page);
2173 		}
2174 		index = pvec.pages[nr_pages - 1]->index + 1;
2175 		pagevec_release(&pvec);
2176 	}
2177 	return;
2178 }
2179 
2180 static void ext4_print_free_blocks(struct inode *inode)
2181 {
2182 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2183 	printk(KERN_CRIT "Total free blocks count %lld\n",
2184 	       ext4_count_free_blocks(inode->i_sb));
2185 	printk(KERN_CRIT "Free/Dirty block details\n");
2186 	printk(KERN_CRIT "free_blocks=%lld\n",
2187 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2188 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2189 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2190 	printk(KERN_CRIT "Block reservation details\n");
2191 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2192 	       EXT4_I(inode)->i_reserved_data_blocks);
2193 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2194 	       EXT4_I(inode)->i_reserved_meta_blocks);
2195 	return;
2196 }
2197 
2198 /*
2199  * mpage_da_map_blocks - go through given space
2200  *
2201  * @mpd - bh describing space
2202  *
2203  * The function skips space we know is already mapped to disk blocks.
2204  *
2205  */
2206 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2207 {
2208 	int err, blks, get_blocks_flags;
2209 	struct buffer_head new;
2210 	sector_t next = mpd->b_blocknr;
2211 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2212 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2213 	handle_t *handle = NULL;
2214 
2215 	/*
2216 	 * We consider only non-mapped and non-allocated blocks
2217 	 */
2218 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2219 		!(mpd->b_state & (1 << BH_Delay)) &&
2220 		!(mpd->b_state & (1 << BH_Unwritten)))
2221 		return 0;
2222 
2223 	/*
2224 	 * If we didn't accumulate anything to write simply return
2225 	 */
2226 	if (!mpd->b_size)
2227 		return 0;
2228 
2229 	handle = ext4_journal_current_handle();
2230 	BUG_ON(!handle);
2231 
2232 	/*
2233 	 * Call ext4_get_blocks() to allocate any delayed allocation
2234 	 * blocks, or to convert an uninitialized extent to be
2235 	 * initialized (in the case where we have written into
2236 	 * one or more preallocated blocks).
2237 	 *
2238 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2239 	 * indicate that we are on the delayed allocation path.  This
2240 	 * affects functions in many different parts of the allocation
2241 	 * call path.  This flag exists primarily because we don't
2242 	 * want to change *many* call functions, so ext4_get_blocks()
2243 	 * will set the magic i_delalloc_reserved_flag once the
2244 	 * inode's allocation semaphore is taken.
2245 	 *
2246 	 * If the blocks in questions were delalloc blocks, set
2247 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2248 	 * variables are updated after the blocks have been allocated.
2249 	 */
2250 	new.b_state = 0;
2251 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2252 	if (ext4_should_dioread_nolock(mpd->inode))
2253 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2254 	if (mpd->b_state & (1 << BH_Delay))
2255 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2256 
2257 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2258 			       &new, get_blocks_flags);
2259 	if (blks < 0) {
2260 		err = blks;
2261 		/*
2262 		 * If get block returns with error we simply
2263 		 * return. Later writepage will redirty the page and
2264 		 * writepages will find the dirty page again
2265 		 */
2266 		if (err == -EAGAIN)
2267 			return 0;
2268 
2269 		if (err == -ENOSPC &&
2270 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2271 			mpd->retval = err;
2272 			return 0;
2273 		}
2274 
2275 		/*
2276 		 * get block failure will cause us to loop in
2277 		 * writepages, because a_ops->writepage won't be able
2278 		 * to make progress. The page will be redirtied by
2279 		 * writepage and writepages will again try to write
2280 		 * the same.
2281 		 */
2282 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2283 			 "delayed block allocation failed for inode %lu at "
2284 			 "logical offset %llu with max blocks %zd with "
2285 			 "error %d\n", mpd->inode->i_ino,
2286 			 (unsigned long long) next,
2287 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2288 		printk(KERN_CRIT "This should not happen!!  "
2289 		       "Data will be lost\n");
2290 		if (err == -ENOSPC) {
2291 			ext4_print_free_blocks(mpd->inode);
2292 		}
2293 		/* invalidate all the pages */
2294 		ext4_da_block_invalidatepages(mpd, next,
2295 				mpd->b_size >> mpd->inode->i_blkbits);
2296 		return err;
2297 	}
2298 	BUG_ON(blks == 0);
2299 
2300 	new.b_size = (blks << mpd->inode->i_blkbits);
2301 
2302 	if (buffer_new(&new))
2303 		__unmap_underlying_blocks(mpd->inode, &new);
2304 
2305 	/*
2306 	 * If blocks are delayed marked, we need to
2307 	 * put actual blocknr and drop delayed bit
2308 	 */
2309 	if ((mpd->b_state & (1 << BH_Delay)) ||
2310 	    (mpd->b_state & (1 << BH_Unwritten)))
2311 		mpage_put_bnr_to_bhs(mpd, next, &new);
2312 
2313 	if (ext4_should_order_data(mpd->inode)) {
2314 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2315 		if (err)
2316 			return err;
2317 	}
2318 
2319 	/*
2320 	 * Update on-disk size along with block allocation.
2321 	 */
2322 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2323 	if (disksize > i_size_read(mpd->inode))
2324 		disksize = i_size_read(mpd->inode);
2325 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2326 		ext4_update_i_disksize(mpd->inode, disksize);
2327 		return ext4_mark_inode_dirty(handle, mpd->inode);
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2334 		(1 << BH_Delay) | (1 << BH_Unwritten))
2335 
2336 /*
2337  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2338  *
2339  * @mpd->lbh - extent of blocks
2340  * @logical - logical number of the block in the file
2341  * @bh - bh of the block (used to access block's state)
2342  *
2343  * the function is used to collect contig. blocks in same state
2344  */
2345 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2346 				   sector_t logical, size_t b_size,
2347 				   unsigned long b_state)
2348 {
2349 	sector_t next;
2350 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2351 
2352 	/* check if thereserved journal credits might overflow */
2353 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2354 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2355 			/*
2356 			 * With non-extent format we are limited by the journal
2357 			 * credit available.  Total credit needed to insert
2358 			 * nrblocks contiguous blocks is dependent on the
2359 			 * nrblocks.  So limit nrblocks.
2360 			 */
2361 			goto flush_it;
2362 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2363 				EXT4_MAX_TRANS_DATA) {
2364 			/*
2365 			 * Adding the new buffer_head would make it cross the
2366 			 * allowed limit for which we have journal credit
2367 			 * reserved. So limit the new bh->b_size
2368 			 */
2369 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2370 						mpd->inode->i_blkbits;
2371 			/* we will do mpage_da_submit_io in the next loop */
2372 		}
2373 	}
2374 	/*
2375 	 * First block in the extent
2376 	 */
2377 	if (mpd->b_size == 0) {
2378 		mpd->b_blocknr = logical;
2379 		mpd->b_size = b_size;
2380 		mpd->b_state = b_state & BH_FLAGS;
2381 		return;
2382 	}
2383 
2384 	next = mpd->b_blocknr + nrblocks;
2385 	/*
2386 	 * Can we merge the block to our big extent?
2387 	 */
2388 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2389 		mpd->b_size += b_size;
2390 		return;
2391 	}
2392 
2393 flush_it:
2394 	/*
2395 	 * We couldn't merge the block to our extent, so we
2396 	 * need to flush current  extent and start new one
2397 	 */
2398 	if (mpage_da_map_blocks(mpd) == 0)
2399 		mpage_da_submit_io(mpd);
2400 	mpd->io_done = 1;
2401 	return;
2402 }
2403 
2404 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2405 {
2406 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2407 }
2408 
2409 /*
2410  * __mpage_da_writepage - finds extent of pages and blocks
2411  *
2412  * @page: page to consider
2413  * @wbc: not used, we just follow rules
2414  * @data: context
2415  *
2416  * The function finds extents of pages and scan them for all blocks.
2417  */
2418 static int __mpage_da_writepage(struct page *page,
2419 				struct writeback_control *wbc, void *data)
2420 {
2421 	struct mpage_da_data *mpd = data;
2422 	struct inode *inode = mpd->inode;
2423 	struct buffer_head *bh, *head;
2424 	sector_t logical;
2425 
2426 	if (mpd->io_done) {
2427 		/*
2428 		 * Rest of the page in the page_vec
2429 		 * redirty then and skip then. We will
2430 		 * try to write them again after
2431 		 * starting a new transaction
2432 		 */
2433 		redirty_page_for_writepage(wbc, page);
2434 		unlock_page(page);
2435 		return MPAGE_DA_EXTENT_TAIL;
2436 	}
2437 	/*
2438 	 * Can we merge this page to current extent?
2439 	 */
2440 	if (mpd->next_page != page->index) {
2441 		/*
2442 		 * Nope, we can't. So, we map non-allocated blocks
2443 		 * and start IO on them using writepage()
2444 		 */
2445 		if (mpd->next_page != mpd->first_page) {
2446 			if (mpage_da_map_blocks(mpd) == 0)
2447 				mpage_da_submit_io(mpd);
2448 			/*
2449 			 * skip rest of the page in the page_vec
2450 			 */
2451 			mpd->io_done = 1;
2452 			redirty_page_for_writepage(wbc, page);
2453 			unlock_page(page);
2454 			return MPAGE_DA_EXTENT_TAIL;
2455 		}
2456 
2457 		/*
2458 		 * Start next extent of pages ...
2459 		 */
2460 		mpd->first_page = page->index;
2461 
2462 		/*
2463 		 * ... and blocks
2464 		 */
2465 		mpd->b_size = 0;
2466 		mpd->b_state = 0;
2467 		mpd->b_blocknr = 0;
2468 	}
2469 
2470 	mpd->next_page = page->index + 1;
2471 	logical = (sector_t) page->index <<
2472 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2473 
2474 	if (!page_has_buffers(page)) {
2475 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2476 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2477 		if (mpd->io_done)
2478 			return MPAGE_DA_EXTENT_TAIL;
2479 	} else {
2480 		/*
2481 		 * Page with regular buffer heads, just add all dirty ones
2482 		 */
2483 		head = page_buffers(page);
2484 		bh = head;
2485 		do {
2486 			BUG_ON(buffer_locked(bh));
2487 			/*
2488 			 * We need to try to allocate
2489 			 * unmapped blocks in the same page.
2490 			 * Otherwise we won't make progress
2491 			 * with the page in ext4_writepage
2492 			 */
2493 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2494 				mpage_add_bh_to_extent(mpd, logical,
2495 						       bh->b_size,
2496 						       bh->b_state);
2497 				if (mpd->io_done)
2498 					return MPAGE_DA_EXTENT_TAIL;
2499 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2500 				/*
2501 				 * mapped dirty buffer. We need to update
2502 				 * the b_state because we look at
2503 				 * b_state in mpage_da_map_blocks. We don't
2504 				 * update b_size because if we find an
2505 				 * unmapped buffer_head later we need to
2506 				 * use the b_state flag of that buffer_head.
2507 				 */
2508 				if (mpd->b_size == 0)
2509 					mpd->b_state = bh->b_state & BH_FLAGS;
2510 			}
2511 			logical++;
2512 		} while ((bh = bh->b_this_page) != head);
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 /*
2519  * This is a special get_blocks_t callback which is used by
2520  * ext4_da_write_begin().  It will either return mapped block or
2521  * reserve space for a single block.
2522  *
2523  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2524  * We also have b_blocknr = -1 and b_bdev initialized properly
2525  *
2526  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2527  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2528  * initialized properly.
2529  */
2530 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2531 				  struct buffer_head *bh_result, int create)
2532 {
2533 	int ret = 0;
2534 	sector_t invalid_block = ~((sector_t) 0xffff);
2535 
2536 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2537 		invalid_block = ~0;
2538 
2539 	BUG_ON(create == 0);
2540 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2541 
2542 	/*
2543 	 * first, we need to know whether the block is allocated already
2544 	 * preallocated blocks are unmapped but should treated
2545 	 * the same as allocated blocks.
2546 	 */
2547 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2548 	if ((ret == 0) && !buffer_delay(bh_result)) {
2549 		/* the block isn't (pre)allocated yet, let's reserve space */
2550 		/*
2551 		 * XXX: __block_prepare_write() unmaps passed block,
2552 		 * is it OK?
2553 		 */
2554 		ret = ext4_da_reserve_space(inode, iblock);
2555 		if (ret)
2556 			/* not enough space to reserve */
2557 			return ret;
2558 
2559 		map_bh(bh_result, inode->i_sb, invalid_block);
2560 		set_buffer_new(bh_result);
2561 		set_buffer_delay(bh_result);
2562 	} else if (ret > 0) {
2563 		bh_result->b_size = (ret << inode->i_blkbits);
2564 		if (buffer_unwritten(bh_result)) {
2565 			/* A delayed write to unwritten bh should
2566 			 * be marked new and mapped.  Mapped ensures
2567 			 * that we don't do get_block multiple times
2568 			 * when we write to the same offset and new
2569 			 * ensures that we do proper zero out for
2570 			 * partial write.
2571 			 */
2572 			set_buffer_new(bh_result);
2573 			set_buffer_mapped(bh_result);
2574 		}
2575 		ret = 0;
2576 	}
2577 
2578 	return ret;
2579 }
2580 
2581 /*
2582  * This function is used as a standard get_block_t calback function
2583  * when there is no desire to allocate any blocks.  It is used as a
2584  * callback function for block_prepare_write(), nobh_writepage(), and
2585  * block_write_full_page().  These functions should only try to map a
2586  * single block at a time.
2587  *
2588  * Since this function doesn't do block allocations even if the caller
2589  * requests it by passing in create=1, it is critically important that
2590  * any caller checks to make sure that any buffer heads are returned
2591  * by this function are either all already mapped or marked for
2592  * delayed allocation before calling nobh_writepage() or
2593  * block_write_full_page().  Otherwise, b_blocknr could be left
2594  * unitialized, and the page write functions will be taken by
2595  * surprise.
2596  */
2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2598 				   struct buffer_head *bh_result, int create)
2599 {
2600 	int ret = 0;
2601 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2602 
2603 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2604 
2605 	/*
2606 	 * we don't want to do block allocation in writepage
2607 	 * so call get_block_wrap with create = 0
2608 	 */
2609 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2610 	if (ret > 0) {
2611 		bh_result->b_size = (ret << inode->i_blkbits);
2612 		ret = 0;
2613 	}
2614 	return ret;
2615 }
2616 
2617 static int bget_one(handle_t *handle, struct buffer_head *bh)
2618 {
2619 	get_bh(bh);
2620 	return 0;
2621 }
2622 
2623 static int bput_one(handle_t *handle, struct buffer_head *bh)
2624 {
2625 	put_bh(bh);
2626 	return 0;
2627 }
2628 
2629 static int __ext4_journalled_writepage(struct page *page,
2630 				       unsigned int len)
2631 {
2632 	struct address_space *mapping = page->mapping;
2633 	struct inode *inode = mapping->host;
2634 	struct buffer_head *page_bufs;
2635 	handle_t *handle = NULL;
2636 	int ret = 0;
2637 	int err;
2638 
2639 	page_bufs = page_buffers(page);
2640 	BUG_ON(!page_bufs);
2641 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2642 	/* As soon as we unlock the page, it can go away, but we have
2643 	 * references to buffers so we are safe */
2644 	unlock_page(page);
2645 
2646 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2647 	if (IS_ERR(handle)) {
2648 		ret = PTR_ERR(handle);
2649 		goto out;
2650 	}
2651 
2652 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2653 				do_journal_get_write_access);
2654 
2655 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2656 				write_end_fn);
2657 	if (ret == 0)
2658 		ret = err;
2659 	err = ext4_journal_stop(handle);
2660 	if (!ret)
2661 		ret = err;
2662 
2663 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2664 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2665 out:
2666 	return ret;
2667 }
2668 
2669 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2670 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2671 
2672 /*
2673  * Note that we don't need to start a transaction unless we're journaling data
2674  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2675  * need to file the inode to the transaction's list in ordered mode because if
2676  * we are writing back data added by write(), the inode is already there and if
2677  * we are writing back data modified via mmap(), noone guarantees in which
2678  * transaction the data will hit the disk. In case we are journaling data, we
2679  * cannot start transaction directly because transaction start ranks above page
2680  * lock so we have to do some magic.
2681  *
2682  * This function can get called via...
2683  *   - ext4_da_writepages after taking page lock (have journal handle)
2684  *   - journal_submit_inode_data_buffers (no journal handle)
2685  *   - shrink_page_list via pdflush (no journal handle)
2686  *   - grab_page_cache when doing write_begin (have journal handle)
2687  *
2688  * We don't do any block allocation in this function. If we have page with
2689  * multiple blocks we need to write those buffer_heads that are mapped. This
2690  * is important for mmaped based write. So if we do with blocksize 1K
2691  * truncate(f, 1024);
2692  * a = mmap(f, 0, 4096);
2693  * a[0] = 'a';
2694  * truncate(f, 4096);
2695  * we have in the page first buffer_head mapped via page_mkwrite call back
2696  * but other bufer_heads would be unmapped but dirty(dirty done via the
2697  * do_wp_page). So writepage should write the first block. If we modify
2698  * the mmap area beyond 1024 we will again get a page_fault and the
2699  * page_mkwrite callback will do the block allocation and mark the
2700  * buffer_heads mapped.
2701  *
2702  * We redirty the page if we have any buffer_heads that is either delay or
2703  * unwritten in the page.
2704  *
2705  * We can get recursively called as show below.
2706  *
2707  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2708  *		ext4_writepage()
2709  *
2710  * But since we don't do any block allocation we should not deadlock.
2711  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2712  */
2713 static int ext4_writepage(struct page *page,
2714 			  struct writeback_control *wbc)
2715 {
2716 	int ret = 0;
2717 	loff_t size;
2718 	unsigned int len;
2719 	struct buffer_head *page_bufs = NULL;
2720 	struct inode *inode = page->mapping->host;
2721 
2722 	trace_ext4_writepage(inode, page);
2723 	size = i_size_read(inode);
2724 	if (page->index == size >> PAGE_CACHE_SHIFT)
2725 		len = size & ~PAGE_CACHE_MASK;
2726 	else
2727 		len = PAGE_CACHE_SIZE;
2728 
2729 	if (page_has_buffers(page)) {
2730 		page_bufs = page_buffers(page);
2731 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2732 					ext4_bh_delay_or_unwritten)) {
2733 			/*
2734 			 * We don't want to do  block allocation
2735 			 * So redirty the page and return
2736 			 * We may reach here when we do a journal commit
2737 			 * via journal_submit_inode_data_buffers.
2738 			 * If we don't have mapping block we just ignore
2739 			 * them. We can also reach here via shrink_page_list
2740 			 */
2741 			redirty_page_for_writepage(wbc, page);
2742 			unlock_page(page);
2743 			return 0;
2744 		}
2745 	} else {
2746 		/*
2747 		 * The test for page_has_buffers() is subtle:
2748 		 * We know the page is dirty but it lost buffers. That means
2749 		 * that at some moment in time after write_begin()/write_end()
2750 		 * has been called all buffers have been clean and thus they
2751 		 * must have been written at least once. So they are all
2752 		 * mapped and we can happily proceed with mapping them
2753 		 * and writing the page.
2754 		 *
2755 		 * Try to initialize the buffer_heads and check whether
2756 		 * all are mapped and non delay. We don't want to
2757 		 * do block allocation here.
2758 		 */
2759 		ret = block_prepare_write(page, 0, len,
2760 					  noalloc_get_block_write);
2761 		if (!ret) {
2762 			page_bufs = page_buffers(page);
2763 			/* check whether all are mapped and non delay */
2764 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2765 						ext4_bh_delay_or_unwritten)) {
2766 				redirty_page_for_writepage(wbc, page);
2767 				unlock_page(page);
2768 				return 0;
2769 			}
2770 		} else {
2771 			/*
2772 			 * We can't do block allocation here
2773 			 * so just redity the page and unlock
2774 			 * and return
2775 			 */
2776 			redirty_page_for_writepage(wbc, page);
2777 			unlock_page(page);
2778 			return 0;
2779 		}
2780 		/* now mark the buffer_heads as dirty and uptodate */
2781 		block_commit_write(page, 0, len);
2782 	}
2783 
2784 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2785 		/*
2786 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2787 		 * doesn't seem much point in redirtying the page here.
2788 		 */
2789 		ClearPageChecked(page);
2790 		return __ext4_journalled_writepage(page, len);
2791 	}
2792 
2793 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2794 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2795 	else if (page_bufs && buffer_uninit(page_bufs)) {
2796 		ext4_set_bh_endio(page_bufs, inode);
2797 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2798 					    wbc, ext4_end_io_buffer_write);
2799 	} else
2800 		ret = block_write_full_page(page, noalloc_get_block_write,
2801 					    wbc);
2802 
2803 	return ret;
2804 }
2805 
2806 /*
2807  * This is called via ext4_da_writepages() to
2808  * calulate the total number of credits to reserve to fit
2809  * a single extent allocation into a single transaction,
2810  * ext4_da_writpeages() will loop calling this before
2811  * the block allocation.
2812  */
2813 
2814 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2815 {
2816 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2817 
2818 	/*
2819 	 * With non-extent format the journal credit needed to
2820 	 * insert nrblocks contiguous block is dependent on
2821 	 * number of contiguous block. So we will limit
2822 	 * number of contiguous block to a sane value
2823 	 */
2824 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2825 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2826 		max_blocks = EXT4_MAX_TRANS_DATA;
2827 
2828 	return ext4_chunk_trans_blocks(inode, max_blocks);
2829 }
2830 
2831 static int ext4_da_writepages(struct address_space *mapping,
2832 			      struct writeback_control *wbc)
2833 {
2834 	pgoff_t	index;
2835 	int range_whole = 0;
2836 	handle_t *handle = NULL;
2837 	struct mpage_da_data mpd;
2838 	struct inode *inode = mapping->host;
2839 	int no_nrwrite_index_update;
2840 	int pages_written = 0;
2841 	long pages_skipped;
2842 	unsigned int max_pages;
2843 	int range_cyclic, cycled = 1, io_done = 0;
2844 	int needed_blocks, ret = 0;
2845 	long desired_nr_to_write, nr_to_writebump = 0;
2846 	loff_t range_start = wbc->range_start;
2847 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2848 
2849 	trace_ext4_da_writepages(inode, wbc);
2850 
2851 	/*
2852 	 * No pages to write? This is mainly a kludge to avoid starting
2853 	 * a transaction for special inodes like journal inode on last iput()
2854 	 * because that could violate lock ordering on umount
2855 	 */
2856 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2857 		return 0;
2858 
2859 	/*
2860 	 * If the filesystem has aborted, it is read-only, so return
2861 	 * right away instead of dumping stack traces later on that
2862 	 * will obscure the real source of the problem.  We test
2863 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2864 	 * the latter could be true if the filesystem is mounted
2865 	 * read-only, and in that case, ext4_da_writepages should
2866 	 * *never* be called, so if that ever happens, we would want
2867 	 * the stack trace.
2868 	 */
2869 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2870 		return -EROFS;
2871 
2872 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2873 		range_whole = 1;
2874 
2875 	range_cyclic = wbc->range_cyclic;
2876 	if (wbc->range_cyclic) {
2877 		index = mapping->writeback_index;
2878 		if (index)
2879 			cycled = 0;
2880 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2881 		wbc->range_end  = LLONG_MAX;
2882 		wbc->range_cyclic = 0;
2883 	} else
2884 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2885 
2886 	/*
2887 	 * This works around two forms of stupidity.  The first is in
2888 	 * the writeback code, which caps the maximum number of pages
2889 	 * written to be 1024 pages.  This is wrong on multiple
2890 	 * levels; different architectues have a different page size,
2891 	 * which changes the maximum amount of data which gets
2892 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2893 	 * forces this value to be 16 megabytes by multiplying
2894 	 * nr_to_write parameter by four, and then relies on its
2895 	 * allocator to allocate larger extents to make them
2896 	 * contiguous.  Unfortunately this brings us to the second
2897 	 * stupidity, which is that ext4's mballoc code only allocates
2898 	 * at most 2048 blocks.  So we force contiguous writes up to
2899 	 * the number of dirty blocks in the inode, or
2900 	 * sbi->max_writeback_mb_bump whichever is smaller.
2901 	 */
2902 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2903 	if (!range_cyclic && range_whole)
2904 		desired_nr_to_write = wbc->nr_to_write * 8;
2905 	else
2906 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2907 							   max_pages);
2908 	if (desired_nr_to_write > max_pages)
2909 		desired_nr_to_write = max_pages;
2910 
2911 	if (wbc->nr_to_write < desired_nr_to_write) {
2912 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2913 		wbc->nr_to_write = desired_nr_to_write;
2914 	}
2915 
2916 	mpd.wbc = wbc;
2917 	mpd.inode = mapping->host;
2918 
2919 	/*
2920 	 * we don't want write_cache_pages to update
2921 	 * nr_to_write and writeback_index
2922 	 */
2923 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2924 	wbc->no_nrwrite_index_update = 1;
2925 	pages_skipped = wbc->pages_skipped;
2926 
2927 retry:
2928 	while (!ret && wbc->nr_to_write > 0) {
2929 
2930 		/*
2931 		 * we  insert one extent at a time. So we need
2932 		 * credit needed for single extent allocation.
2933 		 * journalled mode is currently not supported
2934 		 * by delalloc
2935 		 */
2936 		BUG_ON(ext4_should_journal_data(inode));
2937 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2938 
2939 		/* start a new transaction*/
2940 		handle = ext4_journal_start(inode, needed_blocks);
2941 		if (IS_ERR(handle)) {
2942 			ret = PTR_ERR(handle);
2943 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2944 			       "%ld pages, ino %lu; err %d\n", __func__,
2945 				wbc->nr_to_write, inode->i_ino, ret);
2946 			goto out_writepages;
2947 		}
2948 
2949 		/*
2950 		 * Now call __mpage_da_writepage to find the next
2951 		 * contiguous region of logical blocks that need
2952 		 * blocks to be allocated by ext4.  We don't actually
2953 		 * submit the blocks for I/O here, even though
2954 		 * write_cache_pages thinks it will, and will set the
2955 		 * pages as clean for write before calling
2956 		 * __mpage_da_writepage().
2957 		 */
2958 		mpd.b_size = 0;
2959 		mpd.b_state = 0;
2960 		mpd.b_blocknr = 0;
2961 		mpd.first_page = 0;
2962 		mpd.next_page = 0;
2963 		mpd.io_done = 0;
2964 		mpd.pages_written = 0;
2965 		mpd.retval = 0;
2966 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2967 					&mpd);
2968 		/*
2969 		 * If we have a contiguous extent of pages and we
2970 		 * haven't done the I/O yet, map the blocks and submit
2971 		 * them for I/O.
2972 		 */
2973 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2974 			if (mpage_da_map_blocks(&mpd) == 0)
2975 				mpage_da_submit_io(&mpd);
2976 			mpd.io_done = 1;
2977 			ret = MPAGE_DA_EXTENT_TAIL;
2978 		}
2979 		trace_ext4_da_write_pages(inode, &mpd);
2980 		wbc->nr_to_write -= mpd.pages_written;
2981 
2982 		ext4_journal_stop(handle);
2983 
2984 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2985 			/* commit the transaction which would
2986 			 * free blocks released in the transaction
2987 			 * and try again
2988 			 */
2989 			jbd2_journal_force_commit_nested(sbi->s_journal);
2990 			wbc->pages_skipped = pages_skipped;
2991 			ret = 0;
2992 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2993 			/*
2994 			 * got one extent now try with
2995 			 * rest of the pages
2996 			 */
2997 			pages_written += mpd.pages_written;
2998 			wbc->pages_skipped = pages_skipped;
2999 			ret = 0;
3000 			io_done = 1;
3001 		} else if (wbc->nr_to_write)
3002 			/*
3003 			 * There is no more writeout needed
3004 			 * or we requested for a noblocking writeout
3005 			 * and we found the device congested
3006 			 */
3007 			break;
3008 	}
3009 	if (!io_done && !cycled) {
3010 		cycled = 1;
3011 		index = 0;
3012 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3013 		wbc->range_end  = mapping->writeback_index - 1;
3014 		goto retry;
3015 	}
3016 	if (pages_skipped != wbc->pages_skipped)
3017 		ext4_msg(inode->i_sb, KERN_CRIT,
3018 			 "This should not happen leaving %s "
3019 			 "with nr_to_write = %ld ret = %d\n",
3020 			 __func__, wbc->nr_to_write, ret);
3021 
3022 	/* Update index */
3023 	index += pages_written;
3024 	wbc->range_cyclic = range_cyclic;
3025 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3026 		/*
3027 		 * set the writeback_index so that range_cyclic
3028 		 * mode will write it back later
3029 		 */
3030 		mapping->writeback_index = index;
3031 
3032 out_writepages:
3033 	if (!no_nrwrite_index_update)
3034 		wbc->no_nrwrite_index_update = 0;
3035 	wbc->nr_to_write -= nr_to_writebump;
3036 	wbc->range_start = range_start;
3037 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3038 	return ret;
3039 }
3040 
3041 #define FALL_BACK_TO_NONDELALLOC 1
3042 static int ext4_nonda_switch(struct super_block *sb)
3043 {
3044 	s64 free_blocks, dirty_blocks;
3045 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3046 
3047 	/*
3048 	 * switch to non delalloc mode if we are running low
3049 	 * on free block. The free block accounting via percpu
3050 	 * counters can get slightly wrong with percpu_counter_batch getting
3051 	 * accumulated on each CPU without updating global counters
3052 	 * Delalloc need an accurate free block accounting. So switch
3053 	 * to non delalloc when we are near to error range.
3054 	 */
3055 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3056 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3057 	if (2 * free_blocks < 3 * dirty_blocks ||
3058 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3059 		/*
3060 		 * free block count is less than 150% of dirty blocks
3061 		 * or free blocks is less than watermark
3062 		 */
3063 		return 1;
3064 	}
3065 	/*
3066 	 * Even if we don't switch but are nearing capacity,
3067 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3068 	 */
3069 	if (free_blocks < 2 * dirty_blocks)
3070 		writeback_inodes_sb_if_idle(sb);
3071 
3072 	return 0;
3073 }
3074 
3075 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3076 			       loff_t pos, unsigned len, unsigned flags,
3077 			       struct page **pagep, void **fsdata)
3078 {
3079 	int ret, retries = 0, quota_retries = 0;
3080 	struct page *page;
3081 	pgoff_t index;
3082 	unsigned from, to;
3083 	struct inode *inode = mapping->host;
3084 	handle_t *handle;
3085 
3086 	index = pos >> PAGE_CACHE_SHIFT;
3087 	from = pos & (PAGE_CACHE_SIZE - 1);
3088 	to = from + len;
3089 
3090 	if (ext4_nonda_switch(inode->i_sb)) {
3091 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3092 		return ext4_write_begin(file, mapping, pos,
3093 					len, flags, pagep, fsdata);
3094 	}
3095 	*fsdata = (void *)0;
3096 	trace_ext4_da_write_begin(inode, pos, len, flags);
3097 retry:
3098 	/*
3099 	 * With delayed allocation, we don't log the i_disksize update
3100 	 * if there is delayed block allocation. But we still need
3101 	 * to journalling the i_disksize update if writes to the end
3102 	 * of file which has an already mapped buffer.
3103 	 */
3104 	handle = ext4_journal_start(inode, 1);
3105 	if (IS_ERR(handle)) {
3106 		ret = PTR_ERR(handle);
3107 		goto out;
3108 	}
3109 	/* We cannot recurse into the filesystem as the transaction is already
3110 	 * started */
3111 	flags |= AOP_FLAG_NOFS;
3112 
3113 	page = grab_cache_page_write_begin(mapping, index, flags);
3114 	if (!page) {
3115 		ext4_journal_stop(handle);
3116 		ret = -ENOMEM;
3117 		goto out;
3118 	}
3119 	*pagep = page;
3120 
3121 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3122 				ext4_da_get_block_prep);
3123 	if (ret < 0) {
3124 		unlock_page(page);
3125 		ext4_journal_stop(handle);
3126 		page_cache_release(page);
3127 		/*
3128 		 * block_write_begin may have instantiated a few blocks
3129 		 * outside i_size.  Trim these off again. Don't need
3130 		 * i_size_read because we hold i_mutex.
3131 		 */
3132 		if (pos + len > inode->i_size)
3133 			ext4_truncate_failed_write(inode);
3134 	}
3135 
3136 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3137 		goto retry;
3138 
3139 	if ((ret == -EDQUOT) &&
3140 	    EXT4_I(inode)->i_reserved_meta_blocks &&
3141 	    (quota_retries++ < 3)) {
3142 		/*
3143 		 * Since we often over-estimate the number of meta
3144 		 * data blocks required, we may sometimes get a
3145 		 * spurios out of quota error even though there would
3146 		 * be enough space once we write the data blocks and
3147 		 * find out how many meta data blocks were _really_
3148 		 * required.  So try forcing the inode write to see if
3149 		 * that helps.
3150 		 */
3151 		write_inode_now(inode, (quota_retries == 3));
3152 		goto retry;
3153 	}
3154 out:
3155 	return ret;
3156 }
3157 
3158 /*
3159  * Check if we should update i_disksize
3160  * when write to the end of file but not require block allocation
3161  */
3162 static int ext4_da_should_update_i_disksize(struct page *page,
3163 					    unsigned long offset)
3164 {
3165 	struct buffer_head *bh;
3166 	struct inode *inode = page->mapping->host;
3167 	unsigned int idx;
3168 	int i;
3169 
3170 	bh = page_buffers(page);
3171 	idx = offset >> inode->i_blkbits;
3172 
3173 	for (i = 0; i < idx; i++)
3174 		bh = bh->b_this_page;
3175 
3176 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3177 		return 0;
3178 	return 1;
3179 }
3180 
3181 static int ext4_da_write_end(struct file *file,
3182 			     struct address_space *mapping,
3183 			     loff_t pos, unsigned len, unsigned copied,
3184 			     struct page *page, void *fsdata)
3185 {
3186 	struct inode *inode = mapping->host;
3187 	int ret = 0, ret2;
3188 	handle_t *handle = ext4_journal_current_handle();
3189 	loff_t new_i_size;
3190 	unsigned long start, end;
3191 	int write_mode = (int)(unsigned long)fsdata;
3192 
3193 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3194 		if (ext4_should_order_data(inode)) {
3195 			return ext4_ordered_write_end(file, mapping, pos,
3196 					len, copied, page, fsdata);
3197 		} else if (ext4_should_writeback_data(inode)) {
3198 			return ext4_writeback_write_end(file, mapping, pos,
3199 					len, copied, page, fsdata);
3200 		} else {
3201 			BUG();
3202 		}
3203 	}
3204 
3205 	trace_ext4_da_write_end(inode, pos, len, copied);
3206 	start = pos & (PAGE_CACHE_SIZE - 1);
3207 	end = start + copied - 1;
3208 
3209 	/*
3210 	 * generic_write_end() will run mark_inode_dirty() if i_size
3211 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3212 	 * into that.
3213 	 */
3214 
3215 	new_i_size = pos + copied;
3216 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3217 		if (ext4_da_should_update_i_disksize(page, end)) {
3218 			down_write(&EXT4_I(inode)->i_data_sem);
3219 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3220 				/*
3221 				 * Updating i_disksize when extending file
3222 				 * without needing block allocation
3223 				 */
3224 				if (ext4_should_order_data(inode))
3225 					ret = ext4_jbd2_file_inode(handle,
3226 								   inode);
3227 
3228 				EXT4_I(inode)->i_disksize = new_i_size;
3229 			}
3230 			up_write(&EXT4_I(inode)->i_data_sem);
3231 			/* We need to mark inode dirty even if
3232 			 * new_i_size is less that inode->i_size
3233 			 * bu greater than i_disksize.(hint delalloc)
3234 			 */
3235 			ext4_mark_inode_dirty(handle, inode);
3236 		}
3237 	}
3238 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3239 							page, fsdata);
3240 	copied = ret2;
3241 	if (ret2 < 0)
3242 		ret = ret2;
3243 	ret2 = ext4_journal_stop(handle);
3244 	if (!ret)
3245 		ret = ret2;
3246 
3247 	return ret ? ret : copied;
3248 }
3249 
3250 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3251 {
3252 	/*
3253 	 * Drop reserved blocks
3254 	 */
3255 	BUG_ON(!PageLocked(page));
3256 	if (!page_has_buffers(page))
3257 		goto out;
3258 
3259 	ext4_da_page_release_reservation(page, offset);
3260 
3261 out:
3262 	ext4_invalidatepage(page, offset);
3263 
3264 	return;
3265 }
3266 
3267 /*
3268  * Force all delayed allocation blocks to be allocated for a given inode.
3269  */
3270 int ext4_alloc_da_blocks(struct inode *inode)
3271 {
3272 	trace_ext4_alloc_da_blocks(inode);
3273 
3274 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3275 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3276 		return 0;
3277 
3278 	/*
3279 	 * We do something simple for now.  The filemap_flush() will
3280 	 * also start triggering a write of the data blocks, which is
3281 	 * not strictly speaking necessary (and for users of
3282 	 * laptop_mode, not even desirable).  However, to do otherwise
3283 	 * would require replicating code paths in:
3284 	 *
3285 	 * ext4_da_writepages() ->
3286 	 *    write_cache_pages() ---> (via passed in callback function)
3287 	 *        __mpage_da_writepage() -->
3288 	 *           mpage_add_bh_to_extent()
3289 	 *           mpage_da_map_blocks()
3290 	 *
3291 	 * The problem is that write_cache_pages(), located in
3292 	 * mm/page-writeback.c, marks pages clean in preparation for
3293 	 * doing I/O, which is not desirable if we're not planning on
3294 	 * doing I/O at all.
3295 	 *
3296 	 * We could call write_cache_pages(), and then redirty all of
3297 	 * the pages by calling redirty_page_for_writeback() but that
3298 	 * would be ugly in the extreme.  So instead we would need to
3299 	 * replicate parts of the code in the above functions,
3300 	 * simplifying them becuase we wouldn't actually intend to
3301 	 * write out the pages, but rather only collect contiguous
3302 	 * logical block extents, call the multi-block allocator, and
3303 	 * then update the buffer heads with the block allocations.
3304 	 *
3305 	 * For now, though, we'll cheat by calling filemap_flush(),
3306 	 * which will map the blocks, and start the I/O, but not
3307 	 * actually wait for the I/O to complete.
3308 	 */
3309 	return filemap_flush(inode->i_mapping);
3310 }
3311 
3312 /*
3313  * bmap() is special.  It gets used by applications such as lilo and by
3314  * the swapper to find the on-disk block of a specific piece of data.
3315  *
3316  * Naturally, this is dangerous if the block concerned is still in the
3317  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3318  * filesystem and enables swap, then they may get a nasty shock when the
3319  * data getting swapped to that swapfile suddenly gets overwritten by
3320  * the original zero's written out previously to the journal and
3321  * awaiting writeback in the kernel's buffer cache.
3322  *
3323  * So, if we see any bmap calls here on a modified, data-journaled file,
3324  * take extra steps to flush any blocks which might be in the cache.
3325  */
3326 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3327 {
3328 	struct inode *inode = mapping->host;
3329 	journal_t *journal;
3330 	int err;
3331 
3332 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3333 			test_opt(inode->i_sb, DELALLOC)) {
3334 		/*
3335 		 * With delalloc we want to sync the file
3336 		 * so that we can make sure we allocate
3337 		 * blocks for file
3338 		 */
3339 		filemap_write_and_wait(mapping);
3340 	}
3341 
3342 	if (EXT4_JOURNAL(inode) &&
3343 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3344 		/*
3345 		 * This is a REALLY heavyweight approach, but the use of
3346 		 * bmap on dirty files is expected to be extremely rare:
3347 		 * only if we run lilo or swapon on a freshly made file
3348 		 * do we expect this to happen.
3349 		 *
3350 		 * (bmap requires CAP_SYS_RAWIO so this does not
3351 		 * represent an unprivileged user DOS attack --- we'd be
3352 		 * in trouble if mortal users could trigger this path at
3353 		 * will.)
3354 		 *
3355 		 * NB. EXT4_STATE_JDATA is not set on files other than
3356 		 * regular files.  If somebody wants to bmap a directory
3357 		 * or symlink and gets confused because the buffer
3358 		 * hasn't yet been flushed to disk, they deserve
3359 		 * everything they get.
3360 		 */
3361 
3362 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3363 		journal = EXT4_JOURNAL(inode);
3364 		jbd2_journal_lock_updates(journal);
3365 		err = jbd2_journal_flush(journal);
3366 		jbd2_journal_unlock_updates(journal);
3367 
3368 		if (err)
3369 			return 0;
3370 	}
3371 
3372 	return generic_block_bmap(mapping, block, ext4_get_block);
3373 }
3374 
3375 static int ext4_readpage(struct file *file, struct page *page)
3376 {
3377 	return mpage_readpage(page, ext4_get_block);
3378 }
3379 
3380 static int
3381 ext4_readpages(struct file *file, struct address_space *mapping,
3382 		struct list_head *pages, unsigned nr_pages)
3383 {
3384 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3385 }
3386 
3387 static void ext4_free_io_end(ext4_io_end_t *io)
3388 {
3389 	BUG_ON(!io);
3390 	if (io->page)
3391 		put_page(io->page);
3392 	iput(io->inode);
3393 	kfree(io);
3394 }
3395 
3396 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3397 {
3398 	struct buffer_head *head, *bh;
3399 	unsigned int curr_off = 0;
3400 
3401 	if (!page_has_buffers(page))
3402 		return;
3403 	head = bh = page_buffers(page);
3404 	do {
3405 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3406 					&& bh->b_private) {
3407 			ext4_free_io_end(bh->b_private);
3408 			bh->b_private = NULL;
3409 			bh->b_end_io = NULL;
3410 		}
3411 		curr_off = curr_off + bh->b_size;
3412 		bh = bh->b_this_page;
3413 	} while (bh != head);
3414 }
3415 
3416 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3417 {
3418 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3419 
3420 	/*
3421 	 * free any io_end structure allocated for buffers to be discarded
3422 	 */
3423 	if (ext4_should_dioread_nolock(page->mapping->host))
3424 		ext4_invalidatepage_free_endio(page, offset);
3425 	/*
3426 	 * If it's a full truncate we just forget about the pending dirtying
3427 	 */
3428 	if (offset == 0)
3429 		ClearPageChecked(page);
3430 
3431 	if (journal)
3432 		jbd2_journal_invalidatepage(journal, page, offset);
3433 	else
3434 		block_invalidatepage(page, offset);
3435 }
3436 
3437 static int ext4_releasepage(struct page *page, gfp_t wait)
3438 {
3439 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3440 
3441 	WARN_ON(PageChecked(page));
3442 	if (!page_has_buffers(page))
3443 		return 0;
3444 	if (journal)
3445 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3446 	else
3447 		return try_to_free_buffers(page);
3448 }
3449 
3450 /*
3451  * O_DIRECT for ext3 (or indirect map) based files
3452  *
3453  * If the O_DIRECT write will extend the file then add this inode to the
3454  * orphan list.  So recovery will truncate it back to the original size
3455  * if the machine crashes during the write.
3456  *
3457  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3458  * crashes then stale disk data _may_ be exposed inside the file. But current
3459  * VFS code falls back into buffered path in that case so we are safe.
3460  */
3461 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3462 			      const struct iovec *iov, loff_t offset,
3463 			      unsigned long nr_segs)
3464 {
3465 	struct file *file = iocb->ki_filp;
3466 	struct inode *inode = file->f_mapping->host;
3467 	struct ext4_inode_info *ei = EXT4_I(inode);
3468 	handle_t *handle;
3469 	ssize_t ret;
3470 	int orphan = 0;
3471 	size_t count = iov_length(iov, nr_segs);
3472 	int retries = 0;
3473 
3474 	if (rw == WRITE) {
3475 		loff_t final_size = offset + count;
3476 
3477 		if (final_size > inode->i_size) {
3478 			/* Credits for sb + inode write */
3479 			handle = ext4_journal_start(inode, 2);
3480 			if (IS_ERR(handle)) {
3481 				ret = PTR_ERR(handle);
3482 				goto out;
3483 			}
3484 			ret = ext4_orphan_add(handle, inode);
3485 			if (ret) {
3486 				ext4_journal_stop(handle);
3487 				goto out;
3488 			}
3489 			orphan = 1;
3490 			ei->i_disksize = inode->i_size;
3491 			ext4_journal_stop(handle);
3492 		}
3493 	}
3494 
3495 retry:
3496 	if (rw == READ && ext4_should_dioread_nolock(inode))
3497 		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3498 				 inode->i_sb->s_bdev, iov,
3499 				 offset, nr_segs,
3500 				 ext4_get_block, NULL);
3501 	else
3502 		ret = blockdev_direct_IO(rw, iocb, inode,
3503 				 inode->i_sb->s_bdev, iov,
3504 				 offset, nr_segs,
3505 				 ext4_get_block, NULL);
3506 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3507 		goto retry;
3508 
3509 	if (orphan) {
3510 		int err;
3511 
3512 		/* Credits for sb + inode write */
3513 		handle = ext4_journal_start(inode, 2);
3514 		if (IS_ERR(handle)) {
3515 			/* This is really bad luck. We've written the data
3516 			 * but cannot extend i_size. Bail out and pretend
3517 			 * the write failed... */
3518 			ret = PTR_ERR(handle);
3519 			if (inode->i_nlink)
3520 				ext4_orphan_del(NULL, inode);
3521 
3522 			goto out;
3523 		}
3524 		if (inode->i_nlink)
3525 			ext4_orphan_del(handle, inode);
3526 		if (ret > 0) {
3527 			loff_t end = offset + ret;
3528 			if (end > inode->i_size) {
3529 				ei->i_disksize = end;
3530 				i_size_write(inode, end);
3531 				/*
3532 				 * We're going to return a positive `ret'
3533 				 * here due to non-zero-length I/O, so there's
3534 				 * no way of reporting error returns from
3535 				 * ext4_mark_inode_dirty() to userspace.  So
3536 				 * ignore it.
3537 				 */
3538 				ext4_mark_inode_dirty(handle, inode);
3539 			}
3540 		}
3541 		err = ext4_journal_stop(handle);
3542 		if (ret == 0)
3543 			ret = err;
3544 	}
3545 out:
3546 	return ret;
3547 }
3548 
3549 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3550 		   struct buffer_head *bh_result, int create)
3551 {
3552 	handle_t *handle = ext4_journal_current_handle();
3553 	int ret = 0;
3554 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3555 	int dio_credits;
3556 	int started = 0;
3557 
3558 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3559 		   inode->i_ino, create);
3560 	/*
3561 	 * ext4_get_block in prepare for a DIO write or buffer write.
3562 	 * We allocate an uinitialized extent if blocks haven't been allocated.
3563 	 * The extent will be converted to initialized after IO complete.
3564 	 */
3565 	create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3566 
3567 	if (!handle) {
3568 		if (max_blocks > DIO_MAX_BLOCKS)
3569 			max_blocks = DIO_MAX_BLOCKS;
3570 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3571 		handle = ext4_journal_start(inode, dio_credits);
3572 		if (IS_ERR(handle)) {
3573 			ret = PTR_ERR(handle);
3574 			goto out;
3575 		}
3576 		started = 1;
3577 	}
3578 
3579 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3580 			      create);
3581 	if (ret > 0) {
3582 		bh_result->b_size = (ret << inode->i_blkbits);
3583 		ret = 0;
3584 	}
3585 	if (started)
3586 		ext4_journal_stop(handle);
3587 out:
3588 	return ret;
3589 }
3590 
3591 static void dump_completed_IO(struct inode * inode)
3592 {
3593 #ifdef	EXT4_DEBUG
3594 	struct list_head *cur, *before, *after;
3595 	ext4_io_end_t *io, *io0, *io1;
3596 	unsigned long flags;
3597 
3598 	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3599 		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3600 		return;
3601 	}
3602 
3603 	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3604 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3605 	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3606 		cur = &io->list;
3607 		before = cur->prev;
3608 		io0 = container_of(before, ext4_io_end_t, list);
3609 		after = cur->next;
3610 		io1 = container_of(after, ext4_io_end_t, list);
3611 
3612 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3613 			    io, inode->i_ino, io0, io1);
3614 	}
3615 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3616 #endif
3617 }
3618 
3619 /*
3620  * check a range of space and convert unwritten extents to written.
3621  */
3622 static int ext4_end_io_nolock(ext4_io_end_t *io)
3623 {
3624 	struct inode *inode = io->inode;
3625 	loff_t offset = io->offset;
3626 	ssize_t size = io->size;
3627 	int ret = 0;
3628 
3629 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3630 		   "list->prev 0x%p\n",
3631 	           io, inode->i_ino, io->list.next, io->list.prev);
3632 
3633 	if (list_empty(&io->list))
3634 		return ret;
3635 
3636 	if (io->flag != EXT4_IO_UNWRITTEN)
3637 		return ret;
3638 
3639 	ret = ext4_convert_unwritten_extents(inode, offset, size);
3640 	if (ret < 0) {
3641 		printk(KERN_EMERG "%s: failed to convert unwritten"
3642 			"extents to written extents, error is %d"
3643 			" io is still on inode %lu aio dio list\n",
3644                        __func__, ret, inode->i_ino);
3645 		return ret;
3646 	}
3647 
3648 	/* clear the DIO AIO unwritten flag */
3649 	io->flag = 0;
3650 	return ret;
3651 }
3652 
3653 /*
3654  * work on completed aio dio IO, to convert unwritten extents to extents
3655  */
3656 static void ext4_end_io_work(struct work_struct *work)
3657 {
3658 	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
3659 	struct inode		*inode = io->inode;
3660 	struct ext4_inode_info	*ei = EXT4_I(inode);
3661 	unsigned long		flags;
3662 	int			ret;
3663 
3664 	mutex_lock(&inode->i_mutex);
3665 	ret = ext4_end_io_nolock(io);
3666 	if (ret < 0) {
3667 		mutex_unlock(&inode->i_mutex);
3668 		return;
3669 	}
3670 
3671 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3672 	if (!list_empty(&io->list))
3673 		list_del_init(&io->list);
3674 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3675 	mutex_unlock(&inode->i_mutex);
3676 	ext4_free_io_end(io);
3677 }
3678 
3679 /*
3680  * This function is called from ext4_sync_file().
3681  *
3682  * When IO is completed, the work to convert unwritten extents to
3683  * written is queued on workqueue but may not get immediately
3684  * scheduled. When fsync is called, we need to ensure the
3685  * conversion is complete before fsync returns.
3686  * The inode keeps track of a list of pending/completed IO that
3687  * might needs to do the conversion. This function walks through
3688  * the list and convert the related unwritten extents for completed IO
3689  * to written.
3690  * The function return the number of pending IOs on success.
3691  */
3692 int flush_completed_IO(struct inode *inode)
3693 {
3694 	ext4_io_end_t *io;
3695 	struct ext4_inode_info *ei = EXT4_I(inode);
3696 	unsigned long flags;
3697 	int ret = 0;
3698 	int ret2 = 0;
3699 
3700 	if (list_empty(&ei->i_completed_io_list))
3701 		return ret;
3702 
3703 	dump_completed_IO(inode);
3704 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3705 	while (!list_empty(&ei->i_completed_io_list)){
3706 		io = list_entry(ei->i_completed_io_list.next,
3707 				ext4_io_end_t, list);
3708 		/*
3709 		 * Calling ext4_end_io_nolock() to convert completed
3710 		 * IO to written.
3711 		 *
3712 		 * When ext4_sync_file() is called, run_queue() may already
3713 		 * about to flush the work corresponding to this io structure.
3714 		 * It will be upset if it founds the io structure related
3715 		 * to the work-to-be schedule is freed.
3716 		 *
3717 		 * Thus we need to keep the io structure still valid here after
3718 		 * convertion finished. The io structure has a flag to
3719 		 * avoid double converting from both fsync and background work
3720 		 * queue work.
3721 		 */
3722 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3723 		ret = ext4_end_io_nolock(io);
3724 		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3725 		if (ret < 0)
3726 			ret2 = ret;
3727 		else
3728 			list_del_init(&io->list);
3729 	}
3730 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3731 	return (ret2 < 0) ? ret2 : 0;
3732 }
3733 
3734 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3735 {
3736 	ext4_io_end_t *io = NULL;
3737 
3738 	io = kmalloc(sizeof(*io), flags);
3739 
3740 	if (io) {
3741 		igrab(inode);
3742 		io->inode = inode;
3743 		io->flag = 0;
3744 		io->offset = 0;
3745 		io->size = 0;
3746 		io->page = NULL;
3747 		INIT_WORK(&io->work, ext4_end_io_work);
3748 		INIT_LIST_HEAD(&io->list);
3749 	}
3750 
3751 	return io;
3752 }
3753 
3754 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3755 			    ssize_t size, void *private)
3756 {
3757         ext4_io_end_t *io_end = iocb->private;
3758 	struct workqueue_struct *wq;
3759 	unsigned long flags;
3760 	struct ext4_inode_info *ei;
3761 
3762 	/* if not async direct IO or dio with 0 bytes write, just return */
3763 	if (!io_end || !size)
3764 		return;
3765 
3766 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3767 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3768  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3769 		  size);
3770 
3771 	/* if not aio dio with unwritten extents, just free io and return */
3772 	if (io_end->flag != EXT4_IO_UNWRITTEN){
3773 		ext4_free_io_end(io_end);
3774 		iocb->private = NULL;
3775 		return;
3776 	}
3777 
3778 	io_end->offset = offset;
3779 	io_end->size = size;
3780 	io_end->flag = EXT4_IO_UNWRITTEN;
3781 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3782 
3783 	/* queue the work to convert unwritten extents to written */
3784 	queue_work(wq, &io_end->work);
3785 
3786 	/* Add the io_end to per-inode completed aio dio list*/
3787 	ei = EXT4_I(io_end->inode);
3788 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3789 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3790 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3791 	iocb->private = NULL;
3792 }
3793 
3794 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3795 {
3796 	ext4_io_end_t *io_end = bh->b_private;
3797 	struct workqueue_struct *wq;
3798 	struct inode *inode;
3799 	unsigned long flags;
3800 
3801 	if (!test_clear_buffer_uninit(bh) || !io_end)
3802 		goto out;
3803 
3804 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3805 		printk("sb umounted, discard end_io request for inode %lu\n",
3806 			io_end->inode->i_ino);
3807 		ext4_free_io_end(io_end);
3808 		goto out;
3809 	}
3810 
3811 	io_end->flag = EXT4_IO_UNWRITTEN;
3812 	inode = io_end->inode;
3813 
3814 	/* Add the io_end to per-inode completed io list*/
3815 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3816 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3817 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3818 
3819 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3820 	/* queue the work to convert unwritten extents to written */
3821 	queue_work(wq, &io_end->work);
3822 out:
3823 	bh->b_private = NULL;
3824 	bh->b_end_io = NULL;
3825 	clear_buffer_uninit(bh);
3826 	end_buffer_async_write(bh, uptodate);
3827 }
3828 
3829 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3830 {
3831 	ext4_io_end_t *io_end;
3832 	struct page *page = bh->b_page;
3833 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3834 	size_t size = bh->b_size;
3835 
3836 retry:
3837 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3838 	if (!io_end) {
3839 		if (printk_ratelimit())
3840 			printk(KERN_WARNING "%s: allocation fail\n", __func__);
3841 		schedule();
3842 		goto retry;
3843 	}
3844 	io_end->offset = offset;
3845 	io_end->size = size;
3846 	/*
3847 	 * We need to hold a reference to the page to make sure it
3848 	 * doesn't get evicted before ext4_end_io_work() has a chance
3849 	 * to convert the extent from written to unwritten.
3850 	 */
3851 	io_end->page = page;
3852 	get_page(io_end->page);
3853 
3854 	bh->b_private = io_end;
3855 	bh->b_end_io = ext4_end_io_buffer_write;
3856 	return 0;
3857 }
3858 
3859 /*
3860  * For ext4 extent files, ext4 will do direct-io write to holes,
3861  * preallocated extents, and those write extend the file, no need to
3862  * fall back to buffered IO.
3863  *
3864  * For holes, we fallocate those blocks, mark them as unintialized
3865  * If those blocks were preallocated, we mark sure they are splited, but
3866  * still keep the range to write as unintialized.
3867  *
3868  * The unwrritten extents will be converted to written when DIO is completed.
3869  * For async direct IO, since the IO may still pending when return, we
3870  * set up an end_io call back function, which will do the convertion
3871  * when async direct IO completed.
3872  *
3873  * If the O_DIRECT write will extend the file then add this inode to the
3874  * orphan list.  So recovery will truncate it back to the original size
3875  * if the machine crashes during the write.
3876  *
3877  */
3878 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3879 			      const struct iovec *iov, loff_t offset,
3880 			      unsigned long nr_segs)
3881 {
3882 	struct file *file = iocb->ki_filp;
3883 	struct inode *inode = file->f_mapping->host;
3884 	ssize_t ret;
3885 	size_t count = iov_length(iov, nr_segs);
3886 
3887 	loff_t final_size = offset + count;
3888 	if (rw == WRITE && final_size <= inode->i_size) {
3889 		/*
3890  		 * We could direct write to holes and fallocate.
3891 		 *
3892  		 * Allocated blocks to fill the hole are marked as uninitialized
3893  		 * to prevent paralel buffered read to expose the stale data
3894  		 * before DIO complete the data IO.
3895 		 *
3896  		 * As to previously fallocated extents, ext4 get_block
3897  		 * will just simply mark the buffer mapped but still
3898  		 * keep the extents uninitialized.
3899  		 *
3900 		 * for non AIO case, we will convert those unwritten extents
3901 		 * to written after return back from blockdev_direct_IO.
3902 		 *
3903 		 * for async DIO, the conversion needs to be defered when
3904 		 * the IO is completed. The ext4 end_io callback function
3905 		 * will be called to take care of the conversion work.
3906 		 * Here for async case, we allocate an io_end structure to
3907 		 * hook to the iocb.
3908  		 */
3909 		iocb->private = NULL;
3910 		EXT4_I(inode)->cur_aio_dio = NULL;
3911 		if (!is_sync_kiocb(iocb)) {
3912 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3913 			if (!iocb->private)
3914 				return -ENOMEM;
3915 			/*
3916 			 * we save the io structure for current async
3917 			 * direct IO, so that later ext4_get_blocks()
3918 			 * could flag the io structure whether there
3919 			 * is a unwritten extents needs to be converted
3920 			 * when IO is completed.
3921 			 */
3922 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3923 		}
3924 
3925 		ret = blockdev_direct_IO(rw, iocb, inode,
3926 					 inode->i_sb->s_bdev, iov,
3927 					 offset, nr_segs,
3928 					 ext4_get_block_write,
3929 					 ext4_end_io_dio);
3930 		if (iocb->private)
3931 			EXT4_I(inode)->cur_aio_dio = NULL;
3932 		/*
3933 		 * The io_end structure takes a reference to the inode,
3934 		 * that structure needs to be destroyed and the
3935 		 * reference to the inode need to be dropped, when IO is
3936 		 * complete, even with 0 byte write, or failed.
3937 		 *
3938 		 * In the successful AIO DIO case, the io_end structure will be
3939 		 * desctroyed and the reference to the inode will be dropped
3940 		 * after the end_io call back function is called.
3941 		 *
3942 		 * In the case there is 0 byte write, or error case, since
3943 		 * VFS direct IO won't invoke the end_io call back function,
3944 		 * we need to free the end_io structure here.
3945 		 */
3946 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3947 			ext4_free_io_end(iocb->private);
3948 			iocb->private = NULL;
3949 		} else if (ret > 0 && ext4_test_inode_state(inode,
3950 						EXT4_STATE_DIO_UNWRITTEN)) {
3951 			int err;
3952 			/*
3953 			 * for non AIO case, since the IO is already
3954 			 * completed, we could do the convertion right here
3955 			 */
3956 			err = ext4_convert_unwritten_extents(inode,
3957 							     offset, ret);
3958 			if (err < 0)
3959 				ret = err;
3960 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3961 		}
3962 		return ret;
3963 	}
3964 
3965 	/* for write the the end of file case, we fall back to old way */
3966 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3967 }
3968 
3969 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3970 			      const struct iovec *iov, loff_t offset,
3971 			      unsigned long nr_segs)
3972 {
3973 	struct file *file = iocb->ki_filp;
3974 	struct inode *inode = file->f_mapping->host;
3975 
3976 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3977 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3978 
3979 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3980 }
3981 
3982 /*
3983  * Pages can be marked dirty completely asynchronously from ext4's journalling
3984  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3985  * much here because ->set_page_dirty is called under VFS locks.  The page is
3986  * not necessarily locked.
3987  *
3988  * We cannot just dirty the page and leave attached buffers clean, because the
3989  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3990  * or jbddirty because all the journalling code will explode.
3991  *
3992  * So what we do is to mark the page "pending dirty" and next time writepage
3993  * is called, propagate that into the buffers appropriately.
3994  */
3995 static int ext4_journalled_set_page_dirty(struct page *page)
3996 {
3997 	SetPageChecked(page);
3998 	return __set_page_dirty_nobuffers(page);
3999 }
4000 
4001 static const struct address_space_operations ext4_ordered_aops = {
4002 	.readpage		= ext4_readpage,
4003 	.readpages		= ext4_readpages,
4004 	.writepage		= ext4_writepage,
4005 	.sync_page		= block_sync_page,
4006 	.write_begin		= ext4_write_begin,
4007 	.write_end		= ext4_ordered_write_end,
4008 	.bmap			= ext4_bmap,
4009 	.invalidatepage		= ext4_invalidatepage,
4010 	.releasepage		= ext4_releasepage,
4011 	.direct_IO		= ext4_direct_IO,
4012 	.migratepage		= buffer_migrate_page,
4013 	.is_partially_uptodate  = block_is_partially_uptodate,
4014 	.error_remove_page	= generic_error_remove_page,
4015 };
4016 
4017 static const struct address_space_operations ext4_writeback_aops = {
4018 	.readpage		= ext4_readpage,
4019 	.readpages		= ext4_readpages,
4020 	.writepage		= ext4_writepage,
4021 	.sync_page		= block_sync_page,
4022 	.write_begin		= ext4_write_begin,
4023 	.write_end		= ext4_writeback_write_end,
4024 	.bmap			= ext4_bmap,
4025 	.invalidatepage		= ext4_invalidatepage,
4026 	.releasepage		= ext4_releasepage,
4027 	.direct_IO		= ext4_direct_IO,
4028 	.migratepage		= buffer_migrate_page,
4029 	.is_partially_uptodate  = block_is_partially_uptodate,
4030 	.error_remove_page	= generic_error_remove_page,
4031 };
4032 
4033 static const struct address_space_operations ext4_journalled_aops = {
4034 	.readpage		= ext4_readpage,
4035 	.readpages		= ext4_readpages,
4036 	.writepage		= ext4_writepage,
4037 	.sync_page		= block_sync_page,
4038 	.write_begin		= ext4_write_begin,
4039 	.write_end		= ext4_journalled_write_end,
4040 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4041 	.bmap			= ext4_bmap,
4042 	.invalidatepage		= ext4_invalidatepage,
4043 	.releasepage		= ext4_releasepage,
4044 	.is_partially_uptodate  = block_is_partially_uptodate,
4045 	.error_remove_page	= generic_error_remove_page,
4046 };
4047 
4048 static const struct address_space_operations ext4_da_aops = {
4049 	.readpage		= ext4_readpage,
4050 	.readpages		= ext4_readpages,
4051 	.writepage		= ext4_writepage,
4052 	.writepages		= ext4_da_writepages,
4053 	.sync_page		= block_sync_page,
4054 	.write_begin		= ext4_da_write_begin,
4055 	.write_end		= ext4_da_write_end,
4056 	.bmap			= ext4_bmap,
4057 	.invalidatepage		= ext4_da_invalidatepage,
4058 	.releasepage		= ext4_releasepage,
4059 	.direct_IO		= ext4_direct_IO,
4060 	.migratepage		= buffer_migrate_page,
4061 	.is_partially_uptodate  = block_is_partially_uptodate,
4062 	.error_remove_page	= generic_error_remove_page,
4063 };
4064 
4065 void ext4_set_aops(struct inode *inode)
4066 {
4067 	if (ext4_should_order_data(inode) &&
4068 		test_opt(inode->i_sb, DELALLOC))
4069 		inode->i_mapping->a_ops = &ext4_da_aops;
4070 	else if (ext4_should_order_data(inode))
4071 		inode->i_mapping->a_ops = &ext4_ordered_aops;
4072 	else if (ext4_should_writeback_data(inode) &&
4073 		 test_opt(inode->i_sb, DELALLOC))
4074 		inode->i_mapping->a_ops = &ext4_da_aops;
4075 	else if (ext4_should_writeback_data(inode))
4076 		inode->i_mapping->a_ops = &ext4_writeback_aops;
4077 	else
4078 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4079 }
4080 
4081 /*
4082  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4083  * up to the end of the block which corresponds to `from'.
4084  * This required during truncate. We need to physically zero the tail end
4085  * of that block so it doesn't yield old data if the file is later grown.
4086  */
4087 int ext4_block_truncate_page(handle_t *handle,
4088 		struct address_space *mapping, loff_t from)
4089 {
4090 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4091 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4092 	unsigned blocksize, length, pos;
4093 	ext4_lblk_t iblock;
4094 	struct inode *inode = mapping->host;
4095 	struct buffer_head *bh;
4096 	struct page *page;
4097 	int err = 0;
4098 
4099 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4100 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4101 	if (!page)
4102 		return -EINVAL;
4103 
4104 	blocksize = inode->i_sb->s_blocksize;
4105 	length = blocksize - (offset & (blocksize - 1));
4106 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4107 
4108 	/*
4109 	 * For "nobh" option,  we can only work if we don't need to
4110 	 * read-in the page - otherwise we create buffers to do the IO.
4111 	 */
4112 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4113 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4114 		zero_user(page, offset, length);
4115 		set_page_dirty(page);
4116 		goto unlock;
4117 	}
4118 
4119 	if (!page_has_buffers(page))
4120 		create_empty_buffers(page, blocksize, 0);
4121 
4122 	/* Find the buffer that contains "offset" */
4123 	bh = page_buffers(page);
4124 	pos = blocksize;
4125 	while (offset >= pos) {
4126 		bh = bh->b_this_page;
4127 		iblock++;
4128 		pos += blocksize;
4129 	}
4130 
4131 	err = 0;
4132 	if (buffer_freed(bh)) {
4133 		BUFFER_TRACE(bh, "freed: skip");
4134 		goto unlock;
4135 	}
4136 
4137 	if (!buffer_mapped(bh)) {
4138 		BUFFER_TRACE(bh, "unmapped");
4139 		ext4_get_block(inode, iblock, bh, 0);
4140 		/* unmapped? It's a hole - nothing to do */
4141 		if (!buffer_mapped(bh)) {
4142 			BUFFER_TRACE(bh, "still unmapped");
4143 			goto unlock;
4144 		}
4145 	}
4146 
4147 	/* Ok, it's mapped. Make sure it's up-to-date */
4148 	if (PageUptodate(page))
4149 		set_buffer_uptodate(bh);
4150 
4151 	if (!buffer_uptodate(bh)) {
4152 		err = -EIO;
4153 		ll_rw_block(READ, 1, &bh);
4154 		wait_on_buffer(bh);
4155 		/* Uhhuh. Read error. Complain and punt. */
4156 		if (!buffer_uptodate(bh))
4157 			goto unlock;
4158 	}
4159 
4160 	if (ext4_should_journal_data(inode)) {
4161 		BUFFER_TRACE(bh, "get write access");
4162 		err = ext4_journal_get_write_access(handle, bh);
4163 		if (err)
4164 			goto unlock;
4165 	}
4166 
4167 	zero_user(page, offset, length);
4168 
4169 	BUFFER_TRACE(bh, "zeroed end of block");
4170 
4171 	err = 0;
4172 	if (ext4_should_journal_data(inode)) {
4173 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4174 	} else {
4175 		if (ext4_should_order_data(inode))
4176 			err = ext4_jbd2_file_inode(handle, inode);
4177 		mark_buffer_dirty(bh);
4178 	}
4179 
4180 unlock:
4181 	unlock_page(page);
4182 	page_cache_release(page);
4183 	return err;
4184 }
4185 
4186 /*
4187  * Probably it should be a library function... search for first non-zero word
4188  * or memcmp with zero_page, whatever is better for particular architecture.
4189  * Linus?
4190  */
4191 static inline int all_zeroes(__le32 *p, __le32 *q)
4192 {
4193 	while (p < q)
4194 		if (*p++)
4195 			return 0;
4196 	return 1;
4197 }
4198 
4199 /**
4200  *	ext4_find_shared - find the indirect blocks for partial truncation.
4201  *	@inode:	  inode in question
4202  *	@depth:	  depth of the affected branch
4203  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4204  *	@chain:	  place to store the pointers to partial indirect blocks
4205  *	@top:	  place to the (detached) top of branch
4206  *
4207  *	This is a helper function used by ext4_truncate().
4208  *
4209  *	When we do truncate() we may have to clean the ends of several
4210  *	indirect blocks but leave the blocks themselves alive. Block is
4211  *	partially truncated if some data below the new i_size is refered
4212  *	from it (and it is on the path to the first completely truncated
4213  *	data block, indeed).  We have to free the top of that path along
4214  *	with everything to the right of the path. Since no allocation
4215  *	past the truncation point is possible until ext4_truncate()
4216  *	finishes, we may safely do the latter, but top of branch may
4217  *	require special attention - pageout below the truncation point
4218  *	might try to populate it.
4219  *
4220  *	We atomically detach the top of branch from the tree, store the
4221  *	block number of its root in *@top, pointers to buffer_heads of
4222  *	partially truncated blocks - in @chain[].bh and pointers to
4223  *	their last elements that should not be removed - in
4224  *	@chain[].p. Return value is the pointer to last filled element
4225  *	of @chain.
4226  *
4227  *	The work left to caller to do the actual freeing of subtrees:
4228  *		a) free the subtree starting from *@top
4229  *		b) free the subtrees whose roots are stored in
4230  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4231  *		c) free the subtrees growing from the inode past the @chain[0].
4232  *			(no partially truncated stuff there).  */
4233 
4234 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4235 				  ext4_lblk_t offsets[4], Indirect chain[4],
4236 				  __le32 *top)
4237 {
4238 	Indirect *partial, *p;
4239 	int k, err;
4240 
4241 	*top = 0;
4242 	/* Make k index the deepest non-null offset + 1 */
4243 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4244 		;
4245 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4246 	/* Writer: pointers */
4247 	if (!partial)
4248 		partial = chain + k-1;
4249 	/*
4250 	 * If the branch acquired continuation since we've looked at it -
4251 	 * fine, it should all survive and (new) top doesn't belong to us.
4252 	 */
4253 	if (!partial->key && *partial->p)
4254 		/* Writer: end */
4255 		goto no_top;
4256 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4257 		;
4258 	/*
4259 	 * OK, we've found the last block that must survive. The rest of our
4260 	 * branch should be detached before unlocking. However, if that rest
4261 	 * of branch is all ours and does not grow immediately from the inode
4262 	 * it's easier to cheat and just decrement partial->p.
4263 	 */
4264 	if (p == chain + k - 1 && p > chain) {
4265 		p->p--;
4266 	} else {
4267 		*top = *p->p;
4268 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4269 #if 0
4270 		*p->p = 0;
4271 #endif
4272 	}
4273 	/* Writer: end */
4274 
4275 	while (partial > p) {
4276 		brelse(partial->bh);
4277 		partial--;
4278 	}
4279 no_top:
4280 	return partial;
4281 }
4282 
4283 /*
4284  * Zero a number of block pointers in either an inode or an indirect block.
4285  * If we restart the transaction we must again get write access to the
4286  * indirect block for further modification.
4287  *
4288  * We release `count' blocks on disk, but (last - first) may be greater
4289  * than `count' because there can be holes in there.
4290  */
4291 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4292 			     struct buffer_head *bh,
4293 			     ext4_fsblk_t block_to_free,
4294 			     unsigned long count, __le32 *first,
4295 			     __le32 *last)
4296 {
4297 	__le32 *p;
4298 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4299 
4300 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4301 		flags |= EXT4_FREE_BLOCKS_METADATA;
4302 
4303 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4304 				   count)) {
4305 		ext4_error(inode->i_sb, "inode #%lu: "
4306 			   "attempt to clear blocks %llu len %lu, invalid",
4307 			   inode->i_ino, (unsigned long long) block_to_free,
4308 			   count);
4309 		return 1;
4310 	}
4311 
4312 	if (try_to_extend_transaction(handle, inode)) {
4313 		if (bh) {
4314 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4315 			ext4_handle_dirty_metadata(handle, inode, bh);
4316 		}
4317 		ext4_mark_inode_dirty(handle, inode);
4318 		ext4_truncate_restart_trans(handle, inode,
4319 					    blocks_for_truncate(inode));
4320 		if (bh) {
4321 			BUFFER_TRACE(bh, "retaking write access");
4322 			ext4_journal_get_write_access(handle, bh);
4323 		}
4324 	}
4325 
4326 	for (p = first; p < last; p++)
4327 		*p = 0;
4328 
4329 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4330 	return 0;
4331 }
4332 
4333 /**
4334  * ext4_free_data - free a list of data blocks
4335  * @handle:	handle for this transaction
4336  * @inode:	inode we are dealing with
4337  * @this_bh:	indirect buffer_head which contains *@first and *@last
4338  * @first:	array of block numbers
4339  * @last:	points immediately past the end of array
4340  *
4341  * We are freeing all blocks refered from that array (numbers are stored as
4342  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4343  *
4344  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4345  * blocks are contiguous then releasing them at one time will only affect one
4346  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4347  * actually use a lot of journal space.
4348  *
4349  * @this_bh will be %NULL if @first and @last point into the inode's direct
4350  * block pointers.
4351  */
4352 static void ext4_free_data(handle_t *handle, struct inode *inode,
4353 			   struct buffer_head *this_bh,
4354 			   __le32 *first, __le32 *last)
4355 {
4356 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4357 	unsigned long count = 0;	    /* Number of blocks in the run */
4358 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4359 					       corresponding to
4360 					       block_to_free */
4361 	ext4_fsblk_t nr;		    /* Current block # */
4362 	__le32 *p;			    /* Pointer into inode/ind
4363 					       for current block */
4364 	int err;
4365 
4366 	if (this_bh) {				/* For indirect block */
4367 		BUFFER_TRACE(this_bh, "get_write_access");
4368 		err = ext4_journal_get_write_access(handle, this_bh);
4369 		/* Important: if we can't update the indirect pointers
4370 		 * to the blocks, we can't free them. */
4371 		if (err)
4372 			return;
4373 	}
4374 
4375 	for (p = first; p < last; p++) {
4376 		nr = le32_to_cpu(*p);
4377 		if (nr) {
4378 			/* accumulate blocks to free if they're contiguous */
4379 			if (count == 0) {
4380 				block_to_free = nr;
4381 				block_to_free_p = p;
4382 				count = 1;
4383 			} else if (nr == block_to_free + count) {
4384 				count++;
4385 			} else {
4386 				if (ext4_clear_blocks(handle, inode, this_bh,
4387 						      block_to_free, count,
4388 						      block_to_free_p, p))
4389 					break;
4390 				block_to_free = nr;
4391 				block_to_free_p = p;
4392 				count = 1;
4393 			}
4394 		}
4395 	}
4396 
4397 	if (count > 0)
4398 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4399 				  count, block_to_free_p, p);
4400 
4401 	if (this_bh) {
4402 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4403 
4404 		/*
4405 		 * The buffer head should have an attached journal head at this
4406 		 * point. However, if the data is corrupted and an indirect
4407 		 * block pointed to itself, it would have been detached when
4408 		 * the block was cleared. Check for this instead of OOPSing.
4409 		 */
4410 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4411 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4412 		else
4413 			ext4_error(inode->i_sb,
4414 				   "circular indirect block detected, "
4415 				   "inode=%lu, block=%llu",
4416 				   inode->i_ino,
4417 				   (unsigned long long) this_bh->b_blocknr);
4418 	}
4419 }
4420 
4421 /**
4422  *	ext4_free_branches - free an array of branches
4423  *	@handle: JBD handle for this transaction
4424  *	@inode:	inode we are dealing with
4425  *	@parent_bh: the buffer_head which contains *@first and *@last
4426  *	@first:	array of block numbers
4427  *	@last:	pointer immediately past the end of array
4428  *	@depth:	depth of the branches to free
4429  *
4430  *	We are freeing all blocks refered from these branches (numbers are
4431  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4432  *	appropriately.
4433  */
4434 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4435 			       struct buffer_head *parent_bh,
4436 			       __le32 *first, __le32 *last, int depth)
4437 {
4438 	ext4_fsblk_t nr;
4439 	__le32 *p;
4440 
4441 	if (ext4_handle_is_aborted(handle))
4442 		return;
4443 
4444 	if (depth--) {
4445 		struct buffer_head *bh;
4446 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4447 		p = last;
4448 		while (--p >= first) {
4449 			nr = le32_to_cpu(*p);
4450 			if (!nr)
4451 				continue;		/* A hole */
4452 
4453 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4454 						   nr, 1)) {
4455 				ext4_error(inode->i_sb,
4456 					   "indirect mapped block in inode "
4457 					   "#%lu invalid (level %d, blk #%lu)",
4458 					   inode->i_ino, depth,
4459 					   (unsigned long) nr);
4460 				break;
4461 			}
4462 
4463 			/* Go read the buffer for the next level down */
4464 			bh = sb_bread(inode->i_sb, nr);
4465 
4466 			/*
4467 			 * A read failure? Report error and clear slot
4468 			 * (should be rare).
4469 			 */
4470 			if (!bh) {
4471 				ext4_error(inode->i_sb,
4472 					   "Read failure, inode=%lu, block=%llu",
4473 					   inode->i_ino, nr);
4474 				continue;
4475 			}
4476 
4477 			/* This zaps the entire block.  Bottom up. */
4478 			BUFFER_TRACE(bh, "free child branches");
4479 			ext4_free_branches(handle, inode, bh,
4480 					(__le32 *) bh->b_data,
4481 					(__le32 *) bh->b_data + addr_per_block,
4482 					depth);
4483 
4484 			/*
4485 			 * We've probably journalled the indirect block several
4486 			 * times during the truncate.  But it's no longer
4487 			 * needed and we now drop it from the transaction via
4488 			 * jbd2_journal_revoke().
4489 			 *
4490 			 * That's easy if it's exclusively part of this
4491 			 * transaction.  But if it's part of the committing
4492 			 * transaction then jbd2_journal_forget() will simply
4493 			 * brelse() it.  That means that if the underlying
4494 			 * block is reallocated in ext4_get_block(),
4495 			 * unmap_underlying_metadata() will find this block
4496 			 * and will try to get rid of it.  damn, damn.
4497 			 *
4498 			 * If this block has already been committed to the
4499 			 * journal, a revoke record will be written.  And
4500 			 * revoke records must be emitted *before* clearing
4501 			 * this block's bit in the bitmaps.
4502 			 */
4503 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4504 
4505 			/*
4506 			 * Everything below this this pointer has been
4507 			 * released.  Now let this top-of-subtree go.
4508 			 *
4509 			 * We want the freeing of this indirect block to be
4510 			 * atomic in the journal with the updating of the
4511 			 * bitmap block which owns it.  So make some room in
4512 			 * the journal.
4513 			 *
4514 			 * We zero the parent pointer *after* freeing its
4515 			 * pointee in the bitmaps, so if extend_transaction()
4516 			 * for some reason fails to put the bitmap changes and
4517 			 * the release into the same transaction, recovery
4518 			 * will merely complain about releasing a free block,
4519 			 * rather than leaking blocks.
4520 			 */
4521 			if (ext4_handle_is_aborted(handle))
4522 				return;
4523 			if (try_to_extend_transaction(handle, inode)) {
4524 				ext4_mark_inode_dirty(handle, inode);
4525 				ext4_truncate_restart_trans(handle, inode,
4526 					    blocks_for_truncate(inode));
4527 			}
4528 
4529 			ext4_free_blocks(handle, inode, 0, nr, 1,
4530 					 EXT4_FREE_BLOCKS_METADATA);
4531 
4532 			if (parent_bh) {
4533 				/*
4534 				 * The block which we have just freed is
4535 				 * pointed to by an indirect block: journal it
4536 				 */
4537 				BUFFER_TRACE(parent_bh, "get_write_access");
4538 				if (!ext4_journal_get_write_access(handle,
4539 								   parent_bh)){
4540 					*p = 0;
4541 					BUFFER_TRACE(parent_bh,
4542 					"call ext4_handle_dirty_metadata");
4543 					ext4_handle_dirty_metadata(handle,
4544 								   inode,
4545 								   parent_bh);
4546 				}
4547 			}
4548 		}
4549 	} else {
4550 		/* We have reached the bottom of the tree. */
4551 		BUFFER_TRACE(parent_bh, "free data blocks");
4552 		ext4_free_data(handle, inode, parent_bh, first, last);
4553 	}
4554 }
4555 
4556 int ext4_can_truncate(struct inode *inode)
4557 {
4558 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4559 		return 0;
4560 	if (S_ISREG(inode->i_mode))
4561 		return 1;
4562 	if (S_ISDIR(inode->i_mode))
4563 		return 1;
4564 	if (S_ISLNK(inode->i_mode))
4565 		return !ext4_inode_is_fast_symlink(inode);
4566 	return 0;
4567 }
4568 
4569 /*
4570  * ext4_truncate()
4571  *
4572  * We block out ext4_get_block() block instantiations across the entire
4573  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4574  * simultaneously on behalf of the same inode.
4575  *
4576  * As we work through the truncate and commmit bits of it to the journal there
4577  * is one core, guiding principle: the file's tree must always be consistent on
4578  * disk.  We must be able to restart the truncate after a crash.
4579  *
4580  * The file's tree may be transiently inconsistent in memory (although it
4581  * probably isn't), but whenever we close off and commit a journal transaction,
4582  * the contents of (the filesystem + the journal) must be consistent and
4583  * restartable.  It's pretty simple, really: bottom up, right to left (although
4584  * left-to-right works OK too).
4585  *
4586  * Note that at recovery time, journal replay occurs *before* the restart of
4587  * truncate against the orphan inode list.
4588  *
4589  * The committed inode has the new, desired i_size (which is the same as
4590  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4591  * that this inode's truncate did not complete and it will again call
4592  * ext4_truncate() to have another go.  So there will be instantiated blocks
4593  * to the right of the truncation point in a crashed ext4 filesystem.  But
4594  * that's fine - as long as they are linked from the inode, the post-crash
4595  * ext4_truncate() run will find them and release them.
4596  */
4597 void ext4_truncate(struct inode *inode)
4598 {
4599 	handle_t *handle;
4600 	struct ext4_inode_info *ei = EXT4_I(inode);
4601 	__le32 *i_data = ei->i_data;
4602 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4603 	struct address_space *mapping = inode->i_mapping;
4604 	ext4_lblk_t offsets[4];
4605 	Indirect chain[4];
4606 	Indirect *partial;
4607 	__le32 nr = 0;
4608 	int n;
4609 	ext4_lblk_t last_block;
4610 	unsigned blocksize = inode->i_sb->s_blocksize;
4611 
4612 	if (!ext4_can_truncate(inode))
4613 		return;
4614 
4615 	EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4616 
4617 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4618 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4619 
4620 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4621 		ext4_ext_truncate(inode);
4622 		return;
4623 	}
4624 
4625 	handle = start_transaction(inode);
4626 	if (IS_ERR(handle))
4627 		return;		/* AKPM: return what? */
4628 
4629 	last_block = (inode->i_size + blocksize-1)
4630 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4631 
4632 	if (inode->i_size & (blocksize - 1))
4633 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4634 			goto out_stop;
4635 
4636 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4637 	if (n == 0)
4638 		goto out_stop;	/* error */
4639 
4640 	/*
4641 	 * OK.  This truncate is going to happen.  We add the inode to the
4642 	 * orphan list, so that if this truncate spans multiple transactions,
4643 	 * and we crash, we will resume the truncate when the filesystem
4644 	 * recovers.  It also marks the inode dirty, to catch the new size.
4645 	 *
4646 	 * Implication: the file must always be in a sane, consistent
4647 	 * truncatable state while each transaction commits.
4648 	 */
4649 	if (ext4_orphan_add(handle, inode))
4650 		goto out_stop;
4651 
4652 	/*
4653 	 * From here we block out all ext4_get_block() callers who want to
4654 	 * modify the block allocation tree.
4655 	 */
4656 	down_write(&ei->i_data_sem);
4657 
4658 	ext4_discard_preallocations(inode);
4659 
4660 	/*
4661 	 * The orphan list entry will now protect us from any crash which
4662 	 * occurs before the truncate completes, so it is now safe to propagate
4663 	 * the new, shorter inode size (held for now in i_size) into the
4664 	 * on-disk inode. We do this via i_disksize, which is the value which
4665 	 * ext4 *really* writes onto the disk inode.
4666 	 */
4667 	ei->i_disksize = inode->i_size;
4668 
4669 	if (n == 1) {		/* direct blocks */
4670 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4671 			       i_data + EXT4_NDIR_BLOCKS);
4672 		goto do_indirects;
4673 	}
4674 
4675 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4676 	/* Kill the top of shared branch (not detached) */
4677 	if (nr) {
4678 		if (partial == chain) {
4679 			/* Shared branch grows from the inode */
4680 			ext4_free_branches(handle, inode, NULL,
4681 					   &nr, &nr+1, (chain+n-1) - partial);
4682 			*partial->p = 0;
4683 			/*
4684 			 * We mark the inode dirty prior to restart,
4685 			 * and prior to stop.  No need for it here.
4686 			 */
4687 		} else {
4688 			/* Shared branch grows from an indirect block */
4689 			BUFFER_TRACE(partial->bh, "get_write_access");
4690 			ext4_free_branches(handle, inode, partial->bh,
4691 					partial->p,
4692 					partial->p+1, (chain+n-1) - partial);
4693 		}
4694 	}
4695 	/* Clear the ends of indirect blocks on the shared branch */
4696 	while (partial > chain) {
4697 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4698 				   (__le32*)partial->bh->b_data+addr_per_block,
4699 				   (chain+n-1) - partial);
4700 		BUFFER_TRACE(partial->bh, "call brelse");
4701 		brelse(partial->bh);
4702 		partial--;
4703 	}
4704 do_indirects:
4705 	/* Kill the remaining (whole) subtrees */
4706 	switch (offsets[0]) {
4707 	default:
4708 		nr = i_data[EXT4_IND_BLOCK];
4709 		if (nr) {
4710 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4711 			i_data[EXT4_IND_BLOCK] = 0;
4712 		}
4713 	case EXT4_IND_BLOCK:
4714 		nr = i_data[EXT4_DIND_BLOCK];
4715 		if (nr) {
4716 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4717 			i_data[EXT4_DIND_BLOCK] = 0;
4718 		}
4719 	case EXT4_DIND_BLOCK:
4720 		nr = i_data[EXT4_TIND_BLOCK];
4721 		if (nr) {
4722 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4723 			i_data[EXT4_TIND_BLOCK] = 0;
4724 		}
4725 	case EXT4_TIND_BLOCK:
4726 		;
4727 	}
4728 
4729 	up_write(&ei->i_data_sem);
4730 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4731 	ext4_mark_inode_dirty(handle, inode);
4732 
4733 	/*
4734 	 * In a multi-transaction truncate, we only make the final transaction
4735 	 * synchronous
4736 	 */
4737 	if (IS_SYNC(inode))
4738 		ext4_handle_sync(handle);
4739 out_stop:
4740 	/*
4741 	 * If this was a simple ftruncate(), and the file will remain alive
4742 	 * then we need to clear up the orphan record which we created above.
4743 	 * However, if this was a real unlink then we were called by
4744 	 * ext4_delete_inode(), and we allow that function to clean up the
4745 	 * orphan info for us.
4746 	 */
4747 	if (inode->i_nlink)
4748 		ext4_orphan_del(handle, inode);
4749 
4750 	ext4_journal_stop(handle);
4751 }
4752 
4753 /*
4754  * ext4_get_inode_loc returns with an extra refcount against the inode's
4755  * underlying buffer_head on success. If 'in_mem' is true, we have all
4756  * data in memory that is needed to recreate the on-disk version of this
4757  * inode.
4758  */
4759 static int __ext4_get_inode_loc(struct inode *inode,
4760 				struct ext4_iloc *iloc, int in_mem)
4761 {
4762 	struct ext4_group_desc	*gdp;
4763 	struct buffer_head	*bh;
4764 	struct super_block	*sb = inode->i_sb;
4765 	ext4_fsblk_t		block;
4766 	int			inodes_per_block, inode_offset;
4767 
4768 	iloc->bh = NULL;
4769 	if (!ext4_valid_inum(sb, inode->i_ino))
4770 		return -EIO;
4771 
4772 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4773 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4774 	if (!gdp)
4775 		return -EIO;
4776 
4777 	/*
4778 	 * Figure out the offset within the block group inode table
4779 	 */
4780 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4781 	inode_offset = ((inode->i_ino - 1) %
4782 			EXT4_INODES_PER_GROUP(sb));
4783 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4784 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4785 
4786 	bh = sb_getblk(sb, block);
4787 	if (!bh) {
4788 		ext4_error(sb, "unable to read inode block - "
4789 			   "inode=%lu, block=%llu", inode->i_ino, block);
4790 		return -EIO;
4791 	}
4792 	if (!buffer_uptodate(bh)) {
4793 		lock_buffer(bh);
4794 
4795 		/*
4796 		 * If the buffer has the write error flag, we have failed
4797 		 * to write out another inode in the same block.  In this
4798 		 * case, we don't have to read the block because we may
4799 		 * read the old inode data successfully.
4800 		 */
4801 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4802 			set_buffer_uptodate(bh);
4803 
4804 		if (buffer_uptodate(bh)) {
4805 			/* someone brought it uptodate while we waited */
4806 			unlock_buffer(bh);
4807 			goto has_buffer;
4808 		}
4809 
4810 		/*
4811 		 * If we have all information of the inode in memory and this
4812 		 * is the only valid inode in the block, we need not read the
4813 		 * block.
4814 		 */
4815 		if (in_mem) {
4816 			struct buffer_head *bitmap_bh;
4817 			int i, start;
4818 
4819 			start = inode_offset & ~(inodes_per_block - 1);
4820 
4821 			/* Is the inode bitmap in cache? */
4822 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4823 			if (!bitmap_bh)
4824 				goto make_io;
4825 
4826 			/*
4827 			 * If the inode bitmap isn't in cache then the
4828 			 * optimisation may end up performing two reads instead
4829 			 * of one, so skip it.
4830 			 */
4831 			if (!buffer_uptodate(bitmap_bh)) {
4832 				brelse(bitmap_bh);
4833 				goto make_io;
4834 			}
4835 			for (i = start; i < start + inodes_per_block; i++) {
4836 				if (i == inode_offset)
4837 					continue;
4838 				if (ext4_test_bit(i, bitmap_bh->b_data))
4839 					break;
4840 			}
4841 			brelse(bitmap_bh);
4842 			if (i == start + inodes_per_block) {
4843 				/* all other inodes are free, so skip I/O */
4844 				memset(bh->b_data, 0, bh->b_size);
4845 				set_buffer_uptodate(bh);
4846 				unlock_buffer(bh);
4847 				goto has_buffer;
4848 			}
4849 		}
4850 
4851 make_io:
4852 		/*
4853 		 * If we need to do any I/O, try to pre-readahead extra
4854 		 * blocks from the inode table.
4855 		 */
4856 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4857 			ext4_fsblk_t b, end, table;
4858 			unsigned num;
4859 
4860 			table = ext4_inode_table(sb, gdp);
4861 			/* s_inode_readahead_blks is always a power of 2 */
4862 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4863 			if (table > b)
4864 				b = table;
4865 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4866 			num = EXT4_INODES_PER_GROUP(sb);
4867 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4868 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4869 				num -= ext4_itable_unused_count(sb, gdp);
4870 			table += num / inodes_per_block;
4871 			if (end > table)
4872 				end = table;
4873 			while (b <= end)
4874 				sb_breadahead(sb, b++);
4875 		}
4876 
4877 		/*
4878 		 * There are other valid inodes in the buffer, this inode
4879 		 * has in-inode xattrs, or we don't have this inode in memory.
4880 		 * Read the block from disk.
4881 		 */
4882 		get_bh(bh);
4883 		bh->b_end_io = end_buffer_read_sync;
4884 		submit_bh(READ_META, bh);
4885 		wait_on_buffer(bh);
4886 		if (!buffer_uptodate(bh)) {
4887 			ext4_error(sb, "unable to read inode block - inode=%lu,"
4888 				   " block=%llu", inode->i_ino, block);
4889 			brelse(bh);
4890 			return -EIO;
4891 		}
4892 	}
4893 has_buffer:
4894 	iloc->bh = bh;
4895 	return 0;
4896 }
4897 
4898 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4899 {
4900 	/* We have all inode data except xattrs in memory here. */
4901 	return __ext4_get_inode_loc(inode, iloc,
4902 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4903 }
4904 
4905 void ext4_set_inode_flags(struct inode *inode)
4906 {
4907 	unsigned int flags = EXT4_I(inode)->i_flags;
4908 
4909 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4910 	if (flags & EXT4_SYNC_FL)
4911 		inode->i_flags |= S_SYNC;
4912 	if (flags & EXT4_APPEND_FL)
4913 		inode->i_flags |= S_APPEND;
4914 	if (flags & EXT4_IMMUTABLE_FL)
4915 		inode->i_flags |= S_IMMUTABLE;
4916 	if (flags & EXT4_NOATIME_FL)
4917 		inode->i_flags |= S_NOATIME;
4918 	if (flags & EXT4_DIRSYNC_FL)
4919 		inode->i_flags |= S_DIRSYNC;
4920 }
4921 
4922 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4923 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4924 {
4925 	unsigned int flags = ei->vfs_inode.i_flags;
4926 
4927 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4928 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4929 	if (flags & S_SYNC)
4930 		ei->i_flags |= EXT4_SYNC_FL;
4931 	if (flags & S_APPEND)
4932 		ei->i_flags |= EXT4_APPEND_FL;
4933 	if (flags & S_IMMUTABLE)
4934 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4935 	if (flags & S_NOATIME)
4936 		ei->i_flags |= EXT4_NOATIME_FL;
4937 	if (flags & S_DIRSYNC)
4938 		ei->i_flags |= EXT4_DIRSYNC_FL;
4939 }
4940 
4941 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4942 				  struct ext4_inode_info *ei)
4943 {
4944 	blkcnt_t i_blocks ;
4945 	struct inode *inode = &(ei->vfs_inode);
4946 	struct super_block *sb = inode->i_sb;
4947 
4948 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4949 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4950 		/* we are using combined 48 bit field */
4951 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4952 					le32_to_cpu(raw_inode->i_blocks_lo);
4953 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4954 			/* i_blocks represent file system block size */
4955 			return i_blocks  << (inode->i_blkbits - 9);
4956 		} else {
4957 			return i_blocks;
4958 		}
4959 	} else {
4960 		return le32_to_cpu(raw_inode->i_blocks_lo);
4961 	}
4962 }
4963 
4964 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4965 {
4966 	struct ext4_iloc iloc;
4967 	struct ext4_inode *raw_inode;
4968 	struct ext4_inode_info *ei;
4969 	struct inode *inode;
4970 	journal_t *journal = EXT4_SB(sb)->s_journal;
4971 	long ret;
4972 	int block;
4973 
4974 	inode = iget_locked(sb, ino);
4975 	if (!inode)
4976 		return ERR_PTR(-ENOMEM);
4977 	if (!(inode->i_state & I_NEW))
4978 		return inode;
4979 
4980 	ei = EXT4_I(inode);
4981 	iloc.bh = 0;
4982 
4983 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4984 	if (ret < 0)
4985 		goto bad_inode;
4986 	raw_inode = ext4_raw_inode(&iloc);
4987 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4988 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4989 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4990 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4991 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4992 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4993 	}
4994 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4995 
4996 	ei->i_state_flags = 0;
4997 	ei->i_dir_start_lookup = 0;
4998 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4999 	/* We now have enough fields to check if the inode was active or not.
5000 	 * This is needed because nfsd might try to access dead inodes
5001 	 * the test is that same one that e2fsck uses
5002 	 * NeilBrown 1999oct15
5003 	 */
5004 	if (inode->i_nlink == 0) {
5005 		if (inode->i_mode == 0 ||
5006 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5007 			/* this inode is deleted */
5008 			ret = -ESTALE;
5009 			goto bad_inode;
5010 		}
5011 		/* The only unlinked inodes we let through here have
5012 		 * valid i_mode and are being read by the orphan
5013 		 * recovery code: that's fine, we're about to complete
5014 		 * the process of deleting those. */
5015 	}
5016 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5017 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5018 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5019 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5020 		ei->i_file_acl |=
5021 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5022 	inode->i_size = ext4_isize(raw_inode);
5023 	ei->i_disksize = inode->i_size;
5024 #ifdef CONFIG_QUOTA
5025 	ei->i_reserved_quota = 0;
5026 #endif
5027 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5028 	ei->i_block_group = iloc.block_group;
5029 	ei->i_last_alloc_group = ~0;
5030 	/*
5031 	 * NOTE! The in-memory inode i_data array is in little-endian order
5032 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5033 	 */
5034 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5035 		ei->i_data[block] = raw_inode->i_block[block];
5036 	INIT_LIST_HEAD(&ei->i_orphan);
5037 
5038 	/*
5039 	 * Set transaction id's of transactions that have to be committed
5040 	 * to finish f[data]sync. We set them to currently running transaction
5041 	 * as we cannot be sure that the inode or some of its metadata isn't
5042 	 * part of the transaction - the inode could have been reclaimed and
5043 	 * now it is reread from disk.
5044 	 */
5045 	if (journal) {
5046 		transaction_t *transaction;
5047 		tid_t tid;
5048 
5049 		spin_lock(&journal->j_state_lock);
5050 		if (journal->j_running_transaction)
5051 			transaction = journal->j_running_transaction;
5052 		else
5053 			transaction = journal->j_committing_transaction;
5054 		if (transaction)
5055 			tid = transaction->t_tid;
5056 		else
5057 			tid = journal->j_commit_sequence;
5058 		spin_unlock(&journal->j_state_lock);
5059 		ei->i_sync_tid = tid;
5060 		ei->i_datasync_tid = tid;
5061 	}
5062 
5063 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5064 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5065 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5066 		    EXT4_INODE_SIZE(inode->i_sb)) {
5067 			ret = -EIO;
5068 			goto bad_inode;
5069 		}
5070 		if (ei->i_extra_isize == 0) {
5071 			/* The extra space is currently unused. Use it. */
5072 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5073 					    EXT4_GOOD_OLD_INODE_SIZE;
5074 		} else {
5075 			__le32 *magic = (void *)raw_inode +
5076 					EXT4_GOOD_OLD_INODE_SIZE +
5077 					ei->i_extra_isize;
5078 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5079 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5080 		}
5081 	} else
5082 		ei->i_extra_isize = 0;
5083 
5084 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5085 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5086 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5087 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5088 
5089 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5090 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5091 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5092 			inode->i_version |=
5093 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5094 	}
5095 
5096 	ret = 0;
5097 	if (ei->i_file_acl &&
5098 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5099 		ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5100 			   ei->i_file_acl, inode->i_ino);
5101 		ret = -EIO;
5102 		goto bad_inode;
5103 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5104 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5105 		    (S_ISLNK(inode->i_mode) &&
5106 		     !ext4_inode_is_fast_symlink(inode)))
5107 			/* Validate extent which is part of inode */
5108 			ret = ext4_ext_check_inode(inode);
5109 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5110 		   (S_ISLNK(inode->i_mode) &&
5111 		    !ext4_inode_is_fast_symlink(inode))) {
5112 		/* Validate block references which are part of inode */
5113 		ret = ext4_check_inode_blockref(inode);
5114 	}
5115 	if (ret)
5116 		goto bad_inode;
5117 
5118 	if (S_ISREG(inode->i_mode)) {
5119 		inode->i_op = &ext4_file_inode_operations;
5120 		inode->i_fop = &ext4_file_operations;
5121 		ext4_set_aops(inode);
5122 	} else if (S_ISDIR(inode->i_mode)) {
5123 		inode->i_op = &ext4_dir_inode_operations;
5124 		inode->i_fop = &ext4_dir_operations;
5125 	} else if (S_ISLNK(inode->i_mode)) {
5126 		if (ext4_inode_is_fast_symlink(inode)) {
5127 			inode->i_op = &ext4_fast_symlink_inode_operations;
5128 			nd_terminate_link(ei->i_data, inode->i_size,
5129 				sizeof(ei->i_data) - 1);
5130 		} else {
5131 			inode->i_op = &ext4_symlink_inode_operations;
5132 			ext4_set_aops(inode);
5133 		}
5134 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5135 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5136 		inode->i_op = &ext4_special_inode_operations;
5137 		if (raw_inode->i_block[0])
5138 			init_special_inode(inode, inode->i_mode,
5139 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5140 		else
5141 			init_special_inode(inode, inode->i_mode,
5142 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5143 	} else {
5144 		ret = -EIO;
5145 		ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5146 			   inode->i_mode, inode->i_ino);
5147 		goto bad_inode;
5148 	}
5149 	brelse(iloc.bh);
5150 	ext4_set_inode_flags(inode);
5151 	unlock_new_inode(inode);
5152 	return inode;
5153 
5154 bad_inode:
5155 	brelse(iloc.bh);
5156 	iget_failed(inode);
5157 	return ERR_PTR(ret);
5158 }
5159 
5160 static int ext4_inode_blocks_set(handle_t *handle,
5161 				struct ext4_inode *raw_inode,
5162 				struct ext4_inode_info *ei)
5163 {
5164 	struct inode *inode = &(ei->vfs_inode);
5165 	u64 i_blocks = inode->i_blocks;
5166 	struct super_block *sb = inode->i_sb;
5167 
5168 	if (i_blocks <= ~0U) {
5169 		/*
5170 		 * i_blocks can be represnted in a 32 bit variable
5171 		 * as multiple of 512 bytes
5172 		 */
5173 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5174 		raw_inode->i_blocks_high = 0;
5175 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5176 		return 0;
5177 	}
5178 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5179 		return -EFBIG;
5180 
5181 	if (i_blocks <= 0xffffffffffffULL) {
5182 		/*
5183 		 * i_blocks can be represented in a 48 bit variable
5184 		 * as multiple of 512 bytes
5185 		 */
5186 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5187 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5188 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5189 	} else {
5190 		ei->i_flags |= EXT4_HUGE_FILE_FL;
5191 		/* i_block is stored in file system block size */
5192 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5193 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5194 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5195 	}
5196 	return 0;
5197 }
5198 
5199 /*
5200  * Post the struct inode info into an on-disk inode location in the
5201  * buffer-cache.  This gobbles the caller's reference to the
5202  * buffer_head in the inode location struct.
5203  *
5204  * The caller must have write access to iloc->bh.
5205  */
5206 static int ext4_do_update_inode(handle_t *handle,
5207 				struct inode *inode,
5208 				struct ext4_iloc *iloc)
5209 {
5210 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5211 	struct ext4_inode_info *ei = EXT4_I(inode);
5212 	struct buffer_head *bh = iloc->bh;
5213 	int err = 0, rc, block;
5214 
5215 	/* For fields not not tracking in the in-memory inode,
5216 	 * initialise them to zero for new inodes. */
5217 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5218 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5219 
5220 	ext4_get_inode_flags(ei);
5221 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5222 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5223 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5224 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5225 /*
5226  * Fix up interoperability with old kernels. Otherwise, old inodes get
5227  * re-used with the upper 16 bits of the uid/gid intact
5228  */
5229 		if (!ei->i_dtime) {
5230 			raw_inode->i_uid_high =
5231 				cpu_to_le16(high_16_bits(inode->i_uid));
5232 			raw_inode->i_gid_high =
5233 				cpu_to_le16(high_16_bits(inode->i_gid));
5234 		} else {
5235 			raw_inode->i_uid_high = 0;
5236 			raw_inode->i_gid_high = 0;
5237 		}
5238 	} else {
5239 		raw_inode->i_uid_low =
5240 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5241 		raw_inode->i_gid_low =
5242 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5243 		raw_inode->i_uid_high = 0;
5244 		raw_inode->i_gid_high = 0;
5245 	}
5246 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5247 
5248 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5249 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5250 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5251 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5252 
5253 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5254 		goto out_brelse;
5255 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5256 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5257 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5258 	    cpu_to_le32(EXT4_OS_HURD))
5259 		raw_inode->i_file_acl_high =
5260 			cpu_to_le16(ei->i_file_acl >> 32);
5261 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5262 	ext4_isize_set(raw_inode, ei->i_disksize);
5263 	if (ei->i_disksize > 0x7fffffffULL) {
5264 		struct super_block *sb = inode->i_sb;
5265 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5266 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5267 				EXT4_SB(sb)->s_es->s_rev_level ==
5268 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5269 			/* If this is the first large file
5270 			 * created, add a flag to the superblock.
5271 			 */
5272 			err = ext4_journal_get_write_access(handle,
5273 					EXT4_SB(sb)->s_sbh);
5274 			if (err)
5275 				goto out_brelse;
5276 			ext4_update_dynamic_rev(sb);
5277 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5278 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5279 			sb->s_dirt = 1;
5280 			ext4_handle_sync(handle);
5281 			err = ext4_handle_dirty_metadata(handle, NULL,
5282 					EXT4_SB(sb)->s_sbh);
5283 		}
5284 	}
5285 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5286 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5287 		if (old_valid_dev(inode->i_rdev)) {
5288 			raw_inode->i_block[0] =
5289 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5290 			raw_inode->i_block[1] = 0;
5291 		} else {
5292 			raw_inode->i_block[0] = 0;
5293 			raw_inode->i_block[1] =
5294 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5295 			raw_inode->i_block[2] = 0;
5296 		}
5297 	} else
5298 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5299 			raw_inode->i_block[block] = ei->i_data[block];
5300 
5301 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5302 	if (ei->i_extra_isize) {
5303 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5304 			raw_inode->i_version_hi =
5305 			cpu_to_le32(inode->i_version >> 32);
5306 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5307 	}
5308 
5309 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5310 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5311 	if (!err)
5312 		err = rc;
5313 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5314 
5315 	ext4_update_inode_fsync_trans(handle, inode, 0);
5316 out_brelse:
5317 	brelse(bh);
5318 	ext4_std_error(inode->i_sb, err);
5319 	return err;
5320 }
5321 
5322 /*
5323  * ext4_write_inode()
5324  *
5325  * We are called from a few places:
5326  *
5327  * - Within generic_file_write() for O_SYNC files.
5328  *   Here, there will be no transaction running. We wait for any running
5329  *   trasnaction to commit.
5330  *
5331  * - Within sys_sync(), kupdate and such.
5332  *   We wait on commit, if tol to.
5333  *
5334  * - Within prune_icache() (PF_MEMALLOC == true)
5335  *   Here we simply return.  We can't afford to block kswapd on the
5336  *   journal commit.
5337  *
5338  * In all cases it is actually safe for us to return without doing anything,
5339  * because the inode has been copied into a raw inode buffer in
5340  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5341  * knfsd.
5342  *
5343  * Note that we are absolutely dependent upon all inode dirtiers doing the
5344  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5345  * which we are interested.
5346  *
5347  * It would be a bug for them to not do this.  The code:
5348  *
5349  *	mark_inode_dirty(inode)
5350  *	stuff();
5351  *	inode->i_size = expr;
5352  *
5353  * is in error because a kswapd-driven write_inode() could occur while
5354  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5355  * will no longer be on the superblock's dirty inode list.
5356  */
5357 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5358 {
5359 	int err;
5360 
5361 	if (current->flags & PF_MEMALLOC)
5362 		return 0;
5363 
5364 	if (EXT4_SB(inode->i_sb)->s_journal) {
5365 		if (ext4_journal_current_handle()) {
5366 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5367 			dump_stack();
5368 			return -EIO;
5369 		}
5370 
5371 		if (wbc->sync_mode != WB_SYNC_ALL)
5372 			return 0;
5373 
5374 		err = ext4_force_commit(inode->i_sb);
5375 	} else {
5376 		struct ext4_iloc iloc;
5377 
5378 		err = ext4_get_inode_loc(inode, &iloc);
5379 		if (err)
5380 			return err;
5381 		if (wbc->sync_mode == WB_SYNC_ALL)
5382 			sync_dirty_buffer(iloc.bh);
5383 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5384 			ext4_error(inode->i_sb, "IO error syncing inode, "
5385 				   "inode=%lu, block=%llu", inode->i_ino,
5386 				   (unsigned long long)iloc.bh->b_blocknr);
5387 			err = -EIO;
5388 		}
5389 	}
5390 	return err;
5391 }
5392 
5393 /*
5394  * ext4_setattr()
5395  *
5396  * Called from notify_change.
5397  *
5398  * We want to trap VFS attempts to truncate the file as soon as
5399  * possible.  In particular, we want to make sure that when the VFS
5400  * shrinks i_size, we put the inode on the orphan list and modify
5401  * i_disksize immediately, so that during the subsequent flushing of
5402  * dirty pages and freeing of disk blocks, we can guarantee that any
5403  * commit will leave the blocks being flushed in an unused state on
5404  * disk.  (On recovery, the inode will get truncated and the blocks will
5405  * be freed, so we have a strong guarantee that no future commit will
5406  * leave these blocks visible to the user.)
5407  *
5408  * Another thing we have to assure is that if we are in ordered mode
5409  * and inode is still attached to the committing transaction, we must
5410  * we start writeout of all the dirty pages which are being truncated.
5411  * This way we are sure that all the data written in the previous
5412  * transaction are already on disk (truncate waits for pages under
5413  * writeback).
5414  *
5415  * Called with inode->i_mutex down.
5416  */
5417 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5418 {
5419 	struct inode *inode = dentry->d_inode;
5420 	int error, rc = 0;
5421 	const unsigned int ia_valid = attr->ia_valid;
5422 
5423 	error = inode_change_ok(inode, attr);
5424 	if (error)
5425 		return error;
5426 
5427 	if (ia_valid & ATTR_SIZE)
5428 		dquot_initialize(inode);
5429 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5430 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5431 		handle_t *handle;
5432 
5433 		/* (user+group)*(old+new) structure, inode write (sb,
5434 		 * inode block, ? - but truncate inode update has it) */
5435 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5436 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5437 		if (IS_ERR(handle)) {
5438 			error = PTR_ERR(handle);
5439 			goto err_out;
5440 		}
5441 		error = dquot_transfer(inode, attr);
5442 		if (error) {
5443 			ext4_journal_stop(handle);
5444 			return error;
5445 		}
5446 		/* Update corresponding info in inode so that everything is in
5447 		 * one transaction */
5448 		if (attr->ia_valid & ATTR_UID)
5449 			inode->i_uid = attr->ia_uid;
5450 		if (attr->ia_valid & ATTR_GID)
5451 			inode->i_gid = attr->ia_gid;
5452 		error = ext4_mark_inode_dirty(handle, inode);
5453 		ext4_journal_stop(handle);
5454 	}
5455 
5456 	if (attr->ia_valid & ATTR_SIZE) {
5457 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5458 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5459 
5460 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5461 				error = -EFBIG;
5462 				goto err_out;
5463 			}
5464 		}
5465 	}
5466 
5467 	if (S_ISREG(inode->i_mode) &&
5468 	    attr->ia_valid & ATTR_SIZE &&
5469 	    (attr->ia_size < inode->i_size ||
5470 	     (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5471 		handle_t *handle;
5472 
5473 		handle = ext4_journal_start(inode, 3);
5474 		if (IS_ERR(handle)) {
5475 			error = PTR_ERR(handle);
5476 			goto err_out;
5477 		}
5478 
5479 		error = ext4_orphan_add(handle, inode);
5480 		EXT4_I(inode)->i_disksize = attr->ia_size;
5481 		rc = ext4_mark_inode_dirty(handle, inode);
5482 		if (!error)
5483 			error = rc;
5484 		ext4_journal_stop(handle);
5485 
5486 		if (ext4_should_order_data(inode)) {
5487 			error = ext4_begin_ordered_truncate(inode,
5488 							    attr->ia_size);
5489 			if (error) {
5490 				/* Do as much error cleanup as possible */
5491 				handle = ext4_journal_start(inode, 3);
5492 				if (IS_ERR(handle)) {
5493 					ext4_orphan_del(NULL, inode);
5494 					goto err_out;
5495 				}
5496 				ext4_orphan_del(handle, inode);
5497 				ext4_journal_stop(handle);
5498 				goto err_out;
5499 			}
5500 		}
5501 		/* ext4_truncate will clear the flag */
5502 		if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5503 			ext4_truncate(inode);
5504 	}
5505 
5506 	rc = inode_setattr(inode, attr);
5507 
5508 	/* If inode_setattr's call to ext4_truncate failed to get a
5509 	 * transaction handle at all, we need to clean up the in-core
5510 	 * orphan list manually. */
5511 	if (inode->i_nlink)
5512 		ext4_orphan_del(NULL, inode);
5513 
5514 	if (!rc && (ia_valid & ATTR_MODE))
5515 		rc = ext4_acl_chmod(inode);
5516 
5517 err_out:
5518 	ext4_std_error(inode->i_sb, error);
5519 	if (!error)
5520 		error = rc;
5521 	return error;
5522 }
5523 
5524 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5525 		 struct kstat *stat)
5526 {
5527 	struct inode *inode;
5528 	unsigned long delalloc_blocks;
5529 
5530 	inode = dentry->d_inode;
5531 	generic_fillattr(inode, stat);
5532 
5533 	/*
5534 	 * We can't update i_blocks if the block allocation is delayed
5535 	 * otherwise in the case of system crash before the real block
5536 	 * allocation is done, we will have i_blocks inconsistent with
5537 	 * on-disk file blocks.
5538 	 * We always keep i_blocks updated together with real
5539 	 * allocation. But to not confuse with user, stat
5540 	 * will return the blocks that include the delayed allocation
5541 	 * blocks for this file.
5542 	 */
5543 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5544 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5545 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5546 
5547 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5548 	return 0;
5549 }
5550 
5551 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5552 				      int chunk)
5553 {
5554 	int indirects;
5555 
5556 	/* if nrblocks are contiguous */
5557 	if (chunk) {
5558 		/*
5559 		 * With N contiguous data blocks, it need at most
5560 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5561 		 * 2 dindirect blocks
5562 		 * 1 tindirect block
5563 		 */
5564 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5565 		return indirects + 3;
5566 	}
5567 	/*
5568 	 * if nrblocks are not contiguous, worse case, each block touch
5569 	 * a indirect block, and each indirect block touch a double indirect
5570 	 * block, plus a triple indirect block
5571 	 */
5572 	indirects = nrblocks * 2 + 1;
5573 	return indirects;
5574 }
5575 
5576 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5577 {
5578 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5579 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5580 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5581 }
5582 
5583 /*
5584  * Account for index blocks, block groups bitmaps and block group
5585  * descriptor blocks if modify datablocks and index blocks
5586  * worse case, the indexs blocks spread over different block groups
5587  *
5588  * If datablocks are discontiguous, they are possible to spread over
5589  * different block groups too. If they are contiuguous, with flexbg,
5590  * they could still across block group boundary.
5591  *
5592  * Also account for superblock, inode, quota and xattr blocks
5593  */
5594 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5595 {
5596 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5597 	int gdpblocks;
5598 	int idxblocks;
5599 	int ret = 0;
5600 
5601 	/*
5602 	 * How many index blocks need to touch to modify nrblocks?
5603 	 * The "Chunk" flag indicating whether the nrblocks is
5604 	 * physically contiguous on disk
5605 	 *
5606 	 * For Direct IO and fallocate, they calls get_block to allocate
5607 	 * one single extent at a time, so they could set the "Chunk" flag
5608 	 */
5609 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5610 
5611 	ret = idxblocks;
5612 
5613 	/*
5614 	 * Now let's see how many group bitmaps and group descriptors need
5615 	 * to account
5616 	 */
5617 	groups = idxblocks;
5618 	if (chunk)
5619 		groups += 1;
5620 	else
5621 		groups += nrblocks;
5622 
5623 	gdpblocks = groups;
5624 	if (groups > ngroups)
5625 		groups = ngroups;
5626 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5627 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5628 
5629 	/* bitmaps and block group descriptor blocks */
5630 	ret += groups + gdpblocks;
5631 
5632 	/* Blocks for super block, inode, quota and xattr blocks */
5633 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5634 
5635 	return ret;
5636 }
5637 
5638 /*
5639  * Calulate the total number of credits to reserve to fit
5640  * the modification of a single pages into a single transaction,
5641  * which may include multiple chunks of block allocations.
5642  *
5643  * This could be called via ext4_write_begin()
5644  *
5645  * We need to consider the worse case, when
5646  * one new block per extent.
5647  */
5648 int ext4_writepage_trans_blocks(struct inode *inode)
5649 {
5650 	int bpp = ext4_journal_blocks_per_page(inode);
5651 	int ret;
5652 
5653 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5654 
5655 	/* Account for data blocks for journalled mode */
5656 	if (ext4_should_journal_data(inode))
5657 		ret += bpp;
5658 	return ret;
5659 }
5660 
5661 /*
5662  * Calculate the journal credits for a chunk of data modification.
5663  *
5664  * This is called from DIO, fallocate or whoever calling
5665  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5666  *
5667  * journal buffers for data blocks are not included here, as DIO
5668  * and fallocate do no need to journal data buffers.
5669  */
5670 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5671 {
5672 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5673 }
5674 
5675 /*
5676  * The caller must have previously called ext4_reserve_inode_write().
5677  * Give this, we know that the caller already has write access to iloc->bh.
5678  */
5679 int ext4_mark_iloc_dirty(handle_t *handle,
5680 			 struct inode *inode, struct ext4_iloc *iloc)
5681 {
5682 	int err = 0;
5683 
5684 	if (test_opt(inode->i_sb, I_VERSION))
5685 		inode_inc_iversion(inode);
5686 
5687 	/* the do_update_inode consumes one bh->b_count */
5688 	get_bh(iloc->bh);
5689 
5690 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5691 	err = ext4_do_update_inode(handle, inode, iloc);
5692 	put_bh(iloc->bh);
5693 	return err;
5694 }
5695 
5696 /*
5697  * On success, We end up with an outstanding reference count against
5698  * iloc->bh.  This _must_ be cleaned up later.
5699  */
5700 
5701 int
5702 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5703 			 struct ext4_iloc *iloc)
5704 {
5705 	int err;
5706 
5707 	err = ext4_get_inode_loc(inode, iloc);
5708 	if (!err) {
5709 		BUFFER_TRACE(iloc->bh, "get_write_access");
5710 		err = ext4_journal_get_write_access(handle, iloc->bh);
5711 		if (err) {
5712 			brelse(iloc->bh);
5713 			iloc->bh = NULL;
5714 		}
5715 	}
5716 	ext4_std_error(inode->i_sb, err);
5717 	return err;
5718 }
5719 
5720 /*
5721  * Expand an inode by new_extra_isize bytes.
5722  * Returns 0 on success or negative error number on failure.
5723  */
5724 static int ext4_expand_extra_isize(struct inode *inode,
5725 				   unsigned int new_extra_isize,
5726 				   struct ext4_iloc iloc,
5727 				   handle_t *handle)
5728 {
5729 	struct ext4_inode *raw_inode;
5730 	struct ext4_xattr_ibody_header *header;
5731 	struct ext4_xattr_entry *entry;
5732 
5733 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5734 		return 0;
5735 
5736 	raw_inode = ext4_raw_inode(&iloc);
5737 
5738 	header = IHDR(inode, raw_inode);
5739 	entry = IFIRST(header);
5740 
5741 	/* No extended attributes present */
5742 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5743 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5744 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5745 			new_extra_isize);
5746 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5747 		return 0;
5748 	}
5749 
5750 	/* try to expand with EAs present */
5751 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5752 					  raw_inode, handle);
5753 }
5754 
5755 /*
5756  * What we do here is to mark the in-core inode as clean with respect to inode
5757  * dirtiness (it may still be data-dirty).
5758  * This means that the in-core inode may be reaped by prune_icache
5759  * without having to perform any I/O.  This is a very good thing,
5760  * because *any* task may call prune_icache - even ones which
5761  * have a transaction open against a different journal.
5762  *
5763  * Is this cheating?  Not really.  Sure, we haven't written the
5764  * inode out, but prune_icache isn't a user-visible syncing function.
5765  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5766  * we start and wait on commits.
5767  *
5768  * Is this efficient/effective?  Well, we're being nice to the system
5769  * by cleaning up our inodes proactively so they can be reaped
5770  * without I/O.  But we are potentially leaving up to five seconds'
5771  * worth of inodes floating about which prune_icache wants us to
5772  * write out.  One way to fix that would be to get prune_icache()
5773  * to do a write_super() to free up some memory.  It has the desired
5774  * effect.
5775  */
5776 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5777 {
5778 	struct ext4_iloc iloc;
5779 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5780 	static unsigned int mnt_count;
5781 	int err, ret;
5782 
5783 	might_sleep();
5784 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5785 	if (ext4_handle_valid(handle) &&
5786 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5787 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5788 		/*
5789 		 * We need extra buffer credits since we may write into EA block
5790 		 * with this same handle. If journal_extend fails, then it will
5791 		 * only result in a minor loss of functionality for that inode.
5792 		 * If this is felt to be critical, then e2fsck should be run to
5793 		 * force a large enough s_min_extra_isize.
5794 		 */
5795 		if ((jbd2_journal_extend(handle,
5796 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5797 			ret = ext4_expand_extra_isize(inode,
5798 						      sbi->s_want_extra_isize,
5799 						      iloc, handle);
5800 			if (ret) {
5801 				ext4_set_inode_state(inode,
5802 						     EXT4_STATE_NO_EXPAND);
5803 				if (mnt_count !=
5804 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5805 					ext4_warning(inode->i_sb,
5806 					"Unable to expand inode %lu. Delete"
5807 					" some EAs or run e2fsck.",
5808 					inode->i_ino);
5809 					mnt_count =
5810 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5811 				}
5812 			}
5813 		}
5814 	}
5815 	if (!err)
5816 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5817 	return err;
5818 }
5819 
5820 /*
5821  * ext4_dirty_inode() is called from __mark_inode_dirty()
5822  *
5823  * We're really interested in the case where a file is being extended.
5824  * i_size has been changed by generic_commit_write() and we thus need
5825  * to include the updated inode in the current transaction.
5826  *
5827  * Also, dquot_alloc_block() will always dirty the inode when blocks
5828  * are allocated to the file.
5829  *
5830  * If the inode is marked synchronous, we don't honour that here - doing
5831  * so would cause a commit on atime updates, which we don't bother doing.
5832  * We handle synchronous inodes at the highest possible level.
5833  */
5834 void ext4_dirty_inode(struct inode *inode)
5835 {
5836 	handle_t *handle;
5837 
5838 	handle = ext4_journal_start(inode, 2);
5839 	if (IS_ERR(handle))
5840 		goto out;
5841 
5842 	ext4_mark_inode_dirty(handle, inode);
5843 
5844 	ext4_journal_stop(handle);
5845 out:
5846 	return;
5847 }
5848 
5849 #if 0
5850 /*
5851  * Bind an inode's backing buffer_head into this transaction, to prevent
5852  * it from being flushed to disk early.  Unlike
5853  * ext4_reserve_inode_write, this leaves behind no bh reference and
5854  * returns no iloc structure, so the caller needs to repeat the iloc
5855  * lookup to mark the inode dirty later.
5856  */
5857 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5858 {
5859 	struct ext4_iloc iloc;
5860 
5861 	int err = 0;
5862 	if (handle) {
5863 		err = ext4_get_inode_loc(inode, &iloc);
5864 		if (!err) {
5865 			BUFFER_TRACE(iloc.bh, "get_write_access");
5866 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5867 			if (!err)
5868 				err = ext4_handle_dirty_metadata(handle,
5869 								 NULL,
5870 								 iloc.bh);
5871 			brelse(iloc.bh);
5872 		}
5873 	}
5874 	ext4_std_error(inode->i_sb, err);
5875 	return err;
5876 }
5877 #endif
5878 
5879 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5880 {
5881 	journal_t *journal;
5882 	handle_t *handle;
5883 	int err;
5884 
5885 	/*
5886 	 * We have to be very careful here: changing a data block's
5887 	 * journaling status dynamically is dangerous.  If we write a
5888 	 * data block to the journal, change the status and then delete
5889 	 * that block, we risk forgetting to revoke the old log record
5890 	 * from the journal and so a subsequent replay can corrupt data.
5891 	 * So, first we make sure that the journal is empty and that
5892 	 * nobody is changing anything.
5893 	 */
5894 
5895 	journal = EXT4_JOURNAL(inode);
5896 	if (!journal)
5897 		return 0;
5898 	if (is_journal_aborted(journal))
5899 		return -EROFS;
5900 
5901 	jbd2_journal_lock_updates(journal);
5902 	jbd2_journal_flush(journal);
5903 
5904 	/*
5905 	 * OK, there are no updates running now, and all cached data is
5906 	 * synced to disk.  We are now in a completely consistent state
5907 	 * which doesn't have anything in the journal, and we know that
5908 	 * no filesystem updates are running, so it is safe to modify
5909 	 * the inode's in-core data-journaling state flag now.
5910 	 */
5911 
5912 	if (val)
5913 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5914 	else
5915 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5916 	ext4_set_aops(inode);
5917 
5918 	jbd2_journal_unlock_updates(journal);
5919 
5920 	/* Finally we can mark the inode as dirty. */
5921 
5922 	handle = ext4_journal_start(inode, 1);
5923 	if (IS_ERR(handle))
5924 		return PTR_ERR(handle);
5925 
5926 	err = ext4_mark_inode_dirty(handle, inode);
5927 	ext4_handle_sync(handle);
5928 	ext4_journal_stop(handle);
5929 	ext4_std_error(inode->i_sb, err);
5930 
5931 	return err;
5932 }
5933 
5934 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5935 {
5936 	return !buffer_mapped(bh);
5937 }
5938 
5939 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5940 {
5941 	struct page *page = vmf->page;
5942 	loff_t size;
5943 	unsigned long len;
5944 	int ret = -EINVAL;
5945 	void *fsdata;
5946 	struct file *file = vma->vm_file;
5947 	struct inode *inode = file->f_path.dentry->d_inode;
5948 	struct address_space *mapping = inode->i_mapping;
5949 
5950 	/*
5951 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5952 	 * get i_mutex because we are already holding mmap_sem.
5953 	 */
5954 	down_read(&inode->i_alloc_sem);
5955 	size = i_size_read(inode);
5956 	if (page->mapping != mapping || size <= page_offset(page)
5957 	    || !PageUptodate(page)) {
5958 		/* page got truncated from under us? */
5959 		goto out_unlock;
5960 	}
5961 	ret = 0;
5962 	if (PageMappedToDisk(page))
5963 		goto out_unlock;
5964 
5965 	if (page->index == size >> PAGE_CACHE_SHIFT)
5966 		len = size & ~PAGE_CACHE_MASK;
5967 	else
5968 		len = PAGE_CACHE_SIZE;
5969 
5970 	lock_page(page);
5971 	/*
5972 	 * return if we have all the buffers mapped. This avoid
5973 	 * the need to call write_begin/write_end which does a
5974 	 * journal_start/journal_stop which can block and take
5975 	 * long time
5976 	 */
5977 	if (page_has_buffers(page)) {
5978 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5979 					ext4_bh_unmapped)) {
5980 			unlock_page(page);
5981 			goto out_unlock;
5982 		}
5983 	}
5984 	unlock_page(page);
5985 	/*
5986 	 * OK, we need to fill the hole... Do write_begin write_end
5987 	 * to do block allocation/reservation.We are not holding
5988 	 * inode.i__mutex here. That allow * parallel write_begin,
5989 	 * write_end call. lock_page prevent this from happening
5990 	 * on the same page though
5991 	 */
5992 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5993 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5994 	if (ret < 0)
5995 		goto out_unlock;
5996 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5997 			len, len, page, fsdata);
5998 	if (ret < 0)
5999 		goto out_unlock;
6000 	ret = 0;
6001 out_unlock:
6002 	if (ret)
6003 		ret = VM_FAULT_SIGBUS;
6004 	up_read(&inode->i_alloc_sem);
6005 	return ret;
6006 }
6007