1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/slab.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "ext4_extents.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static inline int ext4_begin_ordered_truncate(struct inode *inode, 54 loff_t new_size) 55 { 56 return jbd2_journal_begin_ordered_truncate( 57 EXT4_SB(inode->i_sb)->s_journal, 58 &EXT4_I(inode)->jinode, 59 new_size); 60 } 61 62 static void ext4_invalidatepage(struct page *page, unsigned long offset); 63 64 /* 65 * Test whether an inode is a fast symlink. 66 */ 67 static int ext4_inode_is_fast_symlink(struct inode *inode) 68 { 69 int ea_blocks = EXT4_I(inode)->i_file_acl ? 70 (inode->i_sb->s_blocksize >> 9) : 0; 71 72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 73 } 74 75 /* 76 * Work out how many blocks we need to proceed with the next chunk of a 77 * truncate transaction. 78 */ 79 static unsigned long blocks_for_truncate(struct inode *inode) 80 { 81 ext4_lblk_t needed; 82 83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 84 85 /* Give ourselves just enough room to cope with inodes in which 86 * i_blocks is corrupt: we've seen disk corruptions in the past 87 * which resulted in random data in an inode which looked enough 88 * like a regular file for ext4 to try to delete it. Things 89 * will go a bit crazy if that happens, but at least we should 90 * try not to panic the whole kernel. */ 91 if (needed < 2) 92 needed = 2; 93 94 /* But we need to bound the transaction so we don't overflow the 95 * journal. */ 96 if (needed > EXT4_MAX_TRANS_DATA) 97 needed = EXT4_MAX_TRANS_DATA; 98 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 100 } 101 102 /* 103 * Truncate transactions can be complex and absolutely huge. So we need to 104 * be able to restart the transaction at a conventient checkpoint to make 105 * sure we don't overflow the journal. 106 * 107 * start_transaction gets us a new handle for a truncate transaction, 108 * and extend_transaction tries to extend the existing one a bit. If 109 * extend fails, we need to propagate the failure up and restart the 110 * transaction in the top-level truncate loop. --sct 111 */ 112 static handle_t *start_transaction(struct inode *inode) 113 { 114 handle_t *result; 115 116 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 117 if (!IS_ERR(result)) 118 return result; 119 120 ext4_std_error(inode->i_sb, PTR_ERR(result)); 121 return result; 122 } 123 124 /* 125 * Try to extend this transaction for the purposes of truncation. 126 * 127 * Returns 0 if we managed to create more room. If we can't create more 128 * room, and the transaction must be restarted we return 1. 129 */ 130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 131 { 132 if (!ext4_handle_valid(handle)) 133 return 0; 134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 135 return 0; 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 137 return 0; 138 return 1; 139 } 140 141 /* 142 * Restart the transaction associated with *handle. This does a commit, 143 * so before we call here everything must be consistently dirtied against 144 * this transaction. 145 */ 146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 147 int nblocks) 148 { 149 int ret; 150 151 /* 152 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this 153 * moment, get_block can be called only for blocks inside i_size since 154 * page cache has been already dropped and writes are blocked by 155 * i_mutex. So we can safely drop the i_data_sem here. 156 */ 157 BUG_ON(EXT4_JOURNAL(inode) == NULL); 158 jbd_debug(2, "restarting handle %p\n", handle); 159 up_write(&EXT4_I(inode)->i_data_sem); 160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 161 down_write(&EXT4_I(inode)->i_data_sem); 162 ext4_discard_preallocations(inode); 163 164 return ret; 165 } 166 167 /* 168 * Called at the last iput() if i_nlink is zero. 169 */ 170 void ext4_delete_inode(struct inode *inode) 171 { 172 handle_t *handle; 173 int err; 174 175 if (!is_bad_inode(inode)) 176 dquot_initialize(inode); 177 178 if (ext4_should_order_data(inode)) 179 ext4_begin_ordered_truncate(inode, 0); 180 truncate_inode_pages(&inode->i_data, 0); 181 182 if (is_bad_inode(inode)) 183 goto no_delete; 184 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 186 if (IS_ERR(handle)) { 187 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 188 /* 189 * If we're going to skip the normal cleanup, we still need to 190 * make sure that the in-core orphan linked list is properly 191 * cleaned up. 192 */ 193 ext4_orphan_del(NULL, inode); 194 goto no_delete; 195 } 196 197 if (IS_SYNC(inode)) 198 ext4_handle_sync(handle); 199 inode->i_size = 0; 200 err = ext4_mark_inode_dirty(handle, inode); 201 if (err) { 202 ext4_warning(inode->i_sb, 203 "couldn't mark inode dirty (err %d)", err); 204 goto stop_handle; 205 } 206 if (inode->i_blocks) 207 ext4_truncate(inode); 208 209 /* 210 * ext4_ext_truncate() doesn't reserve any slop when it 211 * restarts journal transactions; therefore there may not be 212 * enough credits left in the handle to remove the inode from 213 * the orphan list and set the dtime field. 214 */ 215 if (!ext4_handle_has_enough_credits(handle, 3)) { 216 err = ext4_journal_extend(handle, 3); 217 if (err > 0) 218 err = ext4_journal_restart(handle, 3); 219 if (err != 0) { 220 ext4_warning(inode->i_sb, 221 "couldn't extend journal (err %d)", err); 222 stop_handle: 223 ext4_journal_stop(handle); 224 goto no_delete; 225 } 226 } 227 228 /* 229 * Kill off the orphan record which ext4_truncate created. 230 * AKPM: I think this can be inside the above `if'. 231 * Note that ext4_orphan_del() has to be able to cope with the 232 * deletion of a non-existent orphan - this is because we don't 233 * know if ext4_truncate() actually created an orphan record. 234 * (Well, we could do this if we need to, but heck - it works) 235 */ 236 ext4_orphan_del(handle, inode); 237 EXT4_I(inode)->i_dtime = get_seconds(); 238 239 /* 240 * One subtle ordering requirement: if anything has gone wrong 241 * (transaction abort, IO errors, whatever), then we can still 242 * do these next steps (the fs will already have been marked as 243 * having errors), but we can't free the inode if the mark_dirty 244 * fails. 245 */ 246 if (ext4_mark_inode_dirty(handle, inode)) 247 /* If that failed, just do the required in-core inode clear. */ 248 clear_inode(inode); 249 else 250 ext4_free_inode(handle, inode); 251 ext4_journal_stop(handle); 252 return; 253 no_delete: 254 clear_inode(inode); /* We must guarantee clearing of inode... */ 255 } 256 257 typedef struct { 258 __le32 *p; 259 __le32 key; 260 struct buffer_head *bh; 261 } Indirect; 262 263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 264 { 265 p->key = *(p->p = v); 266 p->bh = bh; 267 } 268 269 /** 270 * ext4_block_to_path - parse the block number into array of offsets 271 * @inode: inode in question (we are only interested in its superblock) 272 * @i_block: block number to be parsed 273 * @offsets: array to store the offsets in 274 * @boundary: set this non-zero if the referred-to block is likely to be 275 * followed (on disk) by an indirect block. 276 * 277 * To store the locations of file's data ext4 uses a data structure common 278 * for UNIX filesystems - tree of pointers anchored in the inode, with 279 * data blocks at leaves and indirect blocks in intermediate nodes. 280 * This function translates the block number into path in that tree - 281 * return value is the path length and @offsets[n] is the offset of 282 * pointer to (n+1)th node in the nth one. If @block is out of range 283 * (negative or too large) warning is printed and zero returned. 284 * 285 * Note: function doesn't find node addresses, so no IO is needed. All 286 * we need to know is the capacity of indirect blocks (taken from the 287 * inode->i_sb). 288 */ 289 290 /* 291 * Portability note: the last comparison (check that we fit into triple 292 * indirect block) is spelled differently, because otherwise on an 293 * architecture with 32-bit longs and 8Kb pages we might get into trouble 294 * if our filesystem had 8Kb blocks. We might use long long, but that would 295 * kill us on x86. Oh, well, at least the sign propagation does not matter - 296 * i_block would have to be negative in the very beginning, so we would not 297 * get there at all. 298 */ 299 300 static int ext4_block_to_path(struct inode *inode, 301 ext4_lblk_t i_block, 302 ext4_lblk_t offsets[4], int *boundary) 303 { 304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 306 const long direct_blocks = EXT4_NDIR_BLOCKS, 307 indirect_blocks = ptrs, 308 double_blocks = (1 << (ptrs_bits * 2)); 309 int n = 0; 310 int final = 0; 311 312 if (i_block < direct_blocks) { 313 offsets[n++] = i_block; 314 final = direct_blocks; 315 } else if ((i_block -= direct_blocks) < indirect_blocks) { 316 offsets[n++] = EXT4_IND_BLOCK; 317 offsets[n++] = i_block; 318 final = ptrs; 319 } else if ((i_block -= indirect_blocks) < double_blocks) { 320 offsets[n++] = EXT4_DIND_BLOCK; 321 offsets[n++] = i_block >> ptrs_bits; 322 offsets[n++] = i_block & (ptrs - 1); 323 final = ptrs; 324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 325 offsets[n++] = EXT4_TIND_BLOCK; 326 offsets[n++] = i_block >> (ptrs_bits * 2); 327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 328 offsets[n++] = i_block & (ptrs - 1); 329 final = ptrs; 330 } else { 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 332 i_block + direct_blocks + 333 indirect_blocks + double_blocks, inode->i_ino); 334 } 335 if (boundary) 336 *boundary = final - 1 - (i_block & (ptrs - 1)); 337 return n; 338 } 339 340 static int __ext4_check_blockref(const char *function, struct inode *inode, 341 __le32 *p, unsigned int max) 342 { 343 __le32 *bref = p; 344 unsigned int blk; 345 346 while (bref < p+max) { 347 blk = le32_to_cpu(*bref++); 348 if (blk && 349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 350 blk, 1))) { 351 __ext4_error(inode->i_sb, function, 352 "invalid block reference %u " 353 "in inode #%lu", blk, inode->i_ino); 354 return -EIO; 355 } 356 } 357 return 0; 358 } 359 360 361 #define ext4_check_indirect_blockref(inode, bh) \ 362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 363 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 364 365 #define ext4_check_inode_blockref(inode) \ 366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 367 EXT4_NDIR_BLOCKS) 368 369 /** 370 * ext4_get_branch - read the chain of indirect blocks leading to data 371 * @inode: inode in question 372 * @depth: depth of the chain (1 - direct pointer, etc.) 373 * @offsets: offsets of pointers in inode/indirect blocks 374 * @chain: place to store the result 375 * @err: here we store the error value 376 * 377 * Function fills the array of triples <key, p, bh> and returns %NULL 378 * if everything went OK or the pointer to the last filled triple 379 * (incomplete one) otherwise. Upon the return chain[i].key contains 380 * the number of (i+1)-th block in the chain (as it is stored in memory, 381 * i.e. little-endian 32-bit), chain[i].p contains the address of that 382 * number (it points into struct inode for i==0 and into the bh->b_data 383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 384 * block for i>0 and NULL for i==0. In other words, it holds the block 385 * numbers of the chain, addresses they were taken from (and where we can 386 * verify that chain did not change) and buffer_heads hosting these 387 * numbers. 388 * 389 * Function stops when it stumbles upon zero pointer (absent block) 390 * (pointer to last triple returned, *@err == 0) 391 * or when it gets an IO error reading an indirect block 392 * (ditto, *@err == -EIO) 393 * or when it reads all @depth-1 indirect blocks successfully and finds 394 * the whole chain, all way to the data (returns %NULL, *err == 0). 395 * 396 * Need to be called with 397 * down_read(&EXT4_I(inode)->i_data_sem) 398 */ 399 static Indirect *ext4_get_branch(struct inode *inode, int depth, 400 ext4_lblk_t *offsets, 401 Indirect chain[4], int *err) 402 { 403 struct super_block *sb = inode->i_sb; 404 Indirect *p = chain; 405 struct buffer_head *bh; 406 407 *err = 0; 408 /* i_data is not going away, no lock needed */ 409 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 410 if (!p->key) 411 goto no_block; 412 while (--depth) { 413 bh = sb_getblk(sb, le32_to_cpu(p->key)); 414 if (unlikely(!bh)) 415 goto failure; 416 417 if (!bh_uptodate_or_lock(bh)) { 418 if (bh_submit_read(bh) < 0) { 419 put_bh(bh); 420 goto failure; 421 } 422 /* validate block references */ 423 if (ext4_check_indirect_blockref(inode, bh)) { 424 put_bh(bh); 425 goto failure; 426 } 427 } 428 429 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 430 /* Reader: end */ 431 if (!p->key) 432 goto no_block; 433 } 434 return NULL; 435 436 failure: 437 *err = -EIO; 438 no_block: 439 return p; 440 } 441 442 /** 443 * ext4_find_near - find a place for allocation with sufficient locality 444 * @inode: owner 445 * @ind: descriptor of indirect block. 446 * 447 * This function returns the preferred place for block allocation. 448 * It is used when heuristic for sequential allocation fails. 449 * Rules are: 450 * + if there is a block to the left of our position - allocate near it. 451 * + if pointer will live in indirect block - allocate near that block. 452 * + if pointer will live in inode - allocate in the same 453 * cylinder group. 454 * 455 * In the latter case we colour the starting block by the callers PID to 456 * prevent it from clashing with concurrent allocations for a different inode 457 * in the same block group. The PID is used here so that functionally related 458 * files will be close-by on-disk. 459 * 460 * Caller must make sure that @ind is valid and will stay that way. 461 */ 462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 463 { 464 struct ext4_inode_info *ei = EXT4_I(inode); 465 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 466 __le32 *p; 467 ext4_fsblk_t bg_start; 468 ext4_fsblk_t last_block; 469 ext4_grpblk_t colour; 470 ext4_group_t block_group; 471 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 472 473 /* Try to find previous block */ 474 for (p = ind->p - 1; p >= start; p--) { 475 if (*p) 476 return le32_to_cpu(*p); 477 } 478 479 /* No such thing, so let's try location of indirect block */ 480 if (ind->bh) 481 return ind->bh->b_blocknr; 482 483 /* 484 * It is going to be referred to from the inode itself? OK, just put it 485 * into the same cylinder group then. 486 */ 487 block_group = ei->i_block_group; 488 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 489 block_group &= ~(flex_size-1); 490 if (S_ISREG(inode->i_mode)) 491 block_group++; 492 } 493 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 494 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 495 496 /* 497 * If we are doing delayed allocation, we don't need take 498 * colour into account. 499 */ 500 if (test_opt(inode->i_sb, DELALLOC)) 501 return bg_start; 502 503 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 504 colour = (current->pid % 16) * 505 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 506 else 507 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 508 return bg_start + colour; 509 } 510 511 /** 512 * ext4_find_goal - find a preferred place for allocation. 513 * @inode: owner 514 * @block: block we want 515 * @partial: pointer to the last triple within a chain 516 * 517 * Normally this function find the preferred place for block allocation, 518 * returns it. 519 * Because this is only used for non-extent files, we limit the block nr 520 * to 32 bits. 521 */ 522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 523 Indirect *partial) 524 { 525 ext4_fsblk_t goal; 526 527 /* 528 * XXX need to get goal block from mballoc's data structures 529 */ 530 531 goal = ext4_find_near(inode, partial); 532 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 533 return goal; 534 } 535 536 /** 537 * ext4_blks_to_allocate: Look up the block map and count the number 538 * of direct blocks need to be allocated for the given branch. 539 * 540 * @branch: chain of indirect blocks 541 * @k: number of blocks need for indirect blocks 542 * @blks: number of data blocks to be mapped. 543 * @blocks_to_boundary: the offset in the indirect block 544 * 545 * return the total number of blocks to be allocate, including the 546 * direct and indirect blocks. 547 */ 548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 549 int blocks_to_boundary) 550 { 551 unsigned int count = 0; 552 553 /* 554 * Simple case, [t,d]Indirect block(s) has not allocated yet 555 * then it's clear blocks on that path have not allocated 556 */ 557 if (k > 0) { 558 /* right now we don't handle cross boundary allocation */ 559 if (blks < blocks_to_boundary + 1) 560 count += blks; 561 else 562 count += blocks_to_boundary + 1; 563 return count; 564 } 565 566 count++; 567 while (count < blks && count <= blocks_to_boundary && 568 le32_to_cpu(*(branch[0].p + count)) == 0) { 569 count++; 570 } 571 return count; 572 } 573 574 /** 575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 576 * @indirect_blks: the number of blocks need to allocate for indirect 577 * blocks 578 * 579 * @new_blocks: on return it will store the new block numbers for 580 * the indirect blocks(if needed) and the first direct block, 581 * @blks: on return it will store the total number of allocated 582 * direct blocks 583 */ 584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 585 ext4_lblk_t iblock, ext4_fsblk_t goal, 586 int indirect_blks, int blks, 587 ext4_fsblk_t new_blocks[4], int *err) 588 { 589 struct ext4_allocation_request ar; 590 int target, i; 591 unsigned long count = 0, blk_allocated = 0; 592 int index = 0; 593 ext4_fsblk_t current_block = 0; 594 int ret = 0; 595 596 /* 597 * Here we try to allocate the requested multiple blocks at once, 598 * on a best-effort basis. 599 * To build a branch, we should allocate blocks for 600 * the indirect blocks(if not allocated yet), and at least 601 * the first direct block of this branch. That's the 602 * minimum number of blocks need to allocate(required) 603 */ 604 /* first we try to allocate the indirect blocks */ 605 target = indirect_blks; 606 while (target > 0) { 607 count = target; 608 /* allocating blocks for indirect blocks and direct blocks */ 609 current_block = ext4_new_meta_blocks(handle, inode, 610 goal, &count, err); 611 if (*err) 612 goto failed_out; 613 614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 615 EXT4_ERROR_INODE(inode, 616 "current_block %llu + count %lu > %d!", 617 current_block, count, 618 EXT4_MAX_BLOCK_FILE_PHYS); 619 *err = -EIO; 620 goto failed_out; 621 } 622 623 target -= count; 624 /* allocate blocks for indirect blocks */ 625 while (index < indirect_blks && count) { 626 new_blocks[index++] = current_block++; 627 count--; 628 } 629 if (count > 0) { 630 /* 631 * save the new block number 632 * for the first direct block 633 */ 634 new_blocks[index] = current_block; 635 printk(KERN_INFO "%s returned more blocks than " 636 "requested\n", __func__); 637 WARN_ON(1); 638 break; 639 } 640 } 641 642 target = blks - count ; 643 blk_allocated = count; 644 if (!target) 645 goto allocated; 646 /* Now allocate data blocks */ 647 memset(&ar, 0, sizeof(ar)); 648 ar.inode = inode; 649 ar.goal = goal; 650 ar.len = target; 651 ar.logical = iblock; 652 if (S_ISREG(inode->i_mode)) 653 /* enable in-core preallocation only for regular files */ 654 ar.flags = EXT4_MB_HINT_DATA; 655 656 current_block = ext4_mb_new_blocks(handle, &ar, err); 657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 658 EXT4_ERROR_INODE(inode, 659 "current_block %llu + ar.len %d > %d!", 660 current_block, ar.len, 661 EXT4_MAX_BLOCK_FILE_PHYS); 662 *err = -EIO; 663 goto failed_out; 664 } 665 666 if (*err && (target == blks)) { 667 /* 668 * if the allocation failed and we didn't allocate 669 * any blocks before 670 */ 671 goto failed_out; 672 } 673 if (!*err) { 674 if (target == blks) { 675 /* 676 * save the new block number 677 * for the first direct block 678 */ 679 new_blocks[index] = current_block; 680 } 681 blk_allocated += ar.len; 682 } 683 allocated: 684 /* total number of blocks allocated for direct blocks */ 685 ret = blk_allocated; 686 *err = 0; 687 return ret; 688 failed_out: 689 for (i = 0; i < index; i++) 690 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 691 return ret; 692 } 693 694 /** 695 * ext4_alloc_branch - allocate and set up a chain of blocks. 696 * @inode: owner 697 * @indirect_blks: number of allocated indirect blocks 698 * @blks: number of allocated direct blocks 699 * @offsets: offsets (in the blocks) to store the pointers to next. 700 * @branch: place to store the chain in. 701 * 702 * This function allocates blocks, zeroes out all but the last one, 703 * links them into chain and (if we are synchronous) writes them to disk. 704 * In other words, it prepares a branch that can be spliced onto the 705 * inode. It stores the information about that chain in the branch[], in 706 * the same format as ext4_get_branch() would do. We are calling it after 707 * we had read the existing part of chain and partial points to the last 708 * triple of that (one with zero ->key). Upon the exit we have the same 709 * picture as after the successful ext4_get_block(), except that in one 710 * place chain is disconnected - *branch->p is still zero (we did not 711 * set the last link), but branch->key contains the number that should 712 * be placed into *branch->p to fill that gap. 713 * 714 * If allocation fails we free all blocks we've allocated (and forget 715 * their buffer_heads) and return the error value the from failed 716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 717 * as described above and return 0. 718 */ 719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 720 ext4_lblk_t iblock, int indirect_blks, 721 int *blks, ext4_fsblk_t goal, 722 ext4_lblk_t *offsets, Indirect *branch) 723 { 724 int blocksize = inode->i_sb->s_blocksize; 725 int i, n = 0; 726 int err = 0; 727 struct buffer_head *bh; 728 int num; 729 ext4_fsblk_t new_blocks[4]; 730 ext4_fsblk_t current_block; 731 732 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 733 *blks, new_blocks, &err); 734 if (err) 735 return err; 736 737 branch[0].key = cpu_to_le32(new_blocks[0]); 738 /* 739 * metadata blocks and data blocks are allocated. 740 */ 741 for (n = 1; n <= indirect_blks; n++) { 742 /* 743 * Get buffer_head for parent block, zero it out 744 * and set the pointer to new one, then send 745 * parent to disk. 746 */ 747 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 748 branch[n].bh = bh; 749 lock_buffer(bh); 750 BUFFER_TRACE(bh, "call get_create_access"); 751 err = ext4_journal_get_create_access(handle, bh); 752 if (err) { 753 /* Don't brelse(bh) here; it's done in 754 * ext4_journal_forget() below */ 755 unlock_buffer(bh); 756 goto failed; 757 } 758 759 memset(bh->b_data, 0, blocksize); 760 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 761 branch[n].key = cpu_to_le32(new_blocks[n]); 762 *branch[n].p = branch[n].key; 763 if (n == indirect_blks) { 764 current_block = new_blocks[n]; 765 /* 766 * End of chain, update the last new metablock of 767 * the chain to point to the new allocated 768 * data blocks numbers 769 */ 770 for (i = 1; i < num; i++) 771 *(branch[n].p + i) = cpu_to_le32(++current_block); 772 } 773 BUFFER_TRACE(bh, "marking uptodate"); 774 set_buffer_uptodate(bh); 775 unlock_buffer(bh); 776 777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 778 err = ext4_handle_dirty_metadata(handle, inode, bh); 779 if (err) 780 goto failed; 781 } 782 *blks = num; 783 return err; 784 failed: 785 /* Allocation failed, free what we already allocated */ 786 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 787 for (i = 1; i <= n ; i++) { 788 /* 789 * branch[i].bh is newly allocated, so there is no 790 * need to revoke the block, which is why we don't 791 * need to set EXT4_FREE_BLOCKS_METADATA. 792 */ 793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 794 EXT4_FREE_BLOCKS_FORGET); 795 } 796 for (i = n+1; i < indirect_blks; i++) 797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 798 799 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 800 801 return err; 802 } 803 804 /** 805 * ext4_splice_branch - splice the allocated branch onto inode. 806 * @inode: owner 807 * @block: (logical) number of block we are adding 808 * @chain: chain of indirect blocks (with a missing link - see 809 * ext4_alloc_branch) 810 * @where: location of missing link 811 * @num: number of indirect blocks we are adding 812 * @blks: number of direct blocks we are adding 813 * 814 * This function fills the missing link and does all housekeeping needed in 815 * inode (->i_blocks, etc.). In case of success we end up with the full 816 * chain to new block and return 0. 817 */ 818 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 819 ext4_lblk_t block, Indirect *where, int num, 820 int blks) 821 { 822 int i; 823 int err = 0; 824 ext4_fsblk_t current_block; 825 826 /* 827 * If we're splicing into a [td]indirect block (as opposed to the 828 * inode) then we need to get write access to the [td]indirect block 829 * before the splice. 830 */ 831 if (where->bh) { 832 BUFFER_TRACE(where->bh, "get_write_access"); 833 err = ext4_journal_get_write_access(handle, where->bh); 834 if (err) 835 goto err_out; 836 } 837 /* That's it */ 838 839 *where->p = where->key; 840 841 /* 842 * Update the host buffer_head or inode to point to more just allocated 843 * direct blocks blocks 844 */ 845 if (num == 0 && blks > 1) { 846 current_block = le32_to_cpu(where->key) + 1; 847 for (i = 1; i < blks; i++) 848 *(where->p + i) = cpu_to_le32(current_block++); 849 } 850 851 /* We are done with atomic stuff, now do the rest of housekeeping */ 852 /* had we spliced it onto indirect block? */ 853 if (where->bh) { 854 /* 855 * If we spliced it onto an indirect block, we haven't 856 * altered the inode. Note however that if it is being spliced 857 * onto an indirect block at the very end of the file (the 858 * file is growing) then we *will* alter the inode to reflect 859 * the new i_size. But that is not done here - it is done in 860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 861 */ 862 jbd_debug(5, "splicing indirect only\n"); 863 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 864 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 865 if (err) 866 goto err_out; 867 } else { 868 /* 869 * OK, we spliced it into the inode itself on a direct block. 870 */ 871 ext4_mark_inode_dirty(handle, inode); 872 jbd_debug(5, "splicing direct\n"); 873 } 874 return err; 875 876 err_out: 877 for (i = 1; i <= num; i++) { 878 /* 879 * branch[i].bh is newly allocated, so there is no 880 * need to revoke the block, which is why we don't 881 * need to set EXT4_FREE_BLOCKS_METADATA. 882 */ 883 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 884 EXT4_FREE_BLOCKS_FORGET); 885 } 886 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 887 blks, 0); 888 889 return err; 890 } 891 892 /* 893 * The ext4_ind_get_blocks() function handles non-extents inodes 894 * (i.e., using the traditional indirect/double-indirect i_blocks 895 * scheme) for ext4_get_blocks(). 896 * 897 * Allocation strategy is simple: if we have to allocate something, we will 898 * have to go the whole way to leaf. So let's do it before attaching anything 899 * to tree, set linkage between the newborn blocks, write them if sync is 900 * required, recheck the path, free and repeat if check fails, otherwise 901 * set the last missing link (that will protect us from any truncate-generated 902 * removals - all blocks on the path are immune now) and possibly force the 903 * write on the parent block. 904 * That has a nice additional property: no special recovery from the failed 905 * allocations is needed - we simply release blocks and do not touch anything 906 * reachable from inode. 907 * 908 * `handle' can be NULL if create == 0. 909 * 910 * return > 0, # of blocks mapped or allocated. 911 * return = 0, if plain lookup failed. 912 * return < 0, error case. 913 * 914 * The ext4_ind_get_blocks() function should be called with 915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 918 * blocks. 919 */ 920 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode, 921 ext4_lblk_t iblock, unsigned int maxblocks, 922 struct buffer_head *bh_result, 923 int flags) 924 { 925 int err = -EIO; 926 ext4_lblk_t offsets[4]; 927 Indirect chain[4]; 928 Indirect *partial; 929 ext4_fsblk_t goal; 930 int indirect_blks; 931 int blocks_to_boundary = 0; 932 int depth; 933 int count = 0; 934 ext4_fsblk_t first_block = 0; 935 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 937 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 938 depth = ext4_block_to_path(inode, iblock, offsets, 939 &blocks_to_boundary); 940 941 if (depth == 0) 942 goto out; 943 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 945 946 /* Simplest case - block found, no allocation needed */ 947 if (!partial) { 948 first_block = le32_to_cpu(chain[depth - 1].key); 949 clear_buffer_new(bh_result); 950 count++; 951 /*map more blocks*/ 952 while (count < maxblocks && count <= blocks_to_boundary) { 953 ext4_fsblk_t blk; 954 955 blk = le32_to_cpu(*(chain[depth-1].p + count)); 956 957 if (blk == first_block + count) 958 count++; 959 else 960 break; 961 } 962 goto got_it; 963 } 964 965 /* Next simple case - plain lookup or failed read of indirect block */ 966 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 967 goto cleanup; 968 969 /* 970 * Okay, we need to do block allocation. 971 */ 972 goal = ext4_find_goal(inode, iblock, partial); 973 974 /* the number of blocks need to allocate for [d,t]indirect blocks */ 975 indirect_blks = (chain + depth) - partial - 1; 976 977 /* 978 * Next look up the indirect map to count the totoal number of 979 * direct blocks to allocate for this branch. 980 */ 981 count = ext4_blks_to_allocate(partial, indirect_blks, 982 maxblocks, blocks_to_boundary); 983 /* 984 * Block out ext4_truncate while we alter the tree 985 */ 986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 987 &count, goal, 988 offsets + (partial - chain), partial); 989 990 /* 991 * The ext4_splice_branch call will free and forget any buffers 992 * on the new chain if there is a failure, but that risks using 993 * up transaction credits, especially for bitmaps where the 994 * credits cannot be returned. Can we handle this somehow? We 995 * may need to return -EAGAIN upwards in the worst case. --sct 996 */ 997 if (!err) 998 err = ext4_splice_branch(handle, inode, iblock, 999 partial, indirect_blks, count); 1000 if (err) 1001 goto cleanup; 1002 1003 set_buffer_new(bh_result); 1004 1005 ext4_update_inode_fsync_trans(handle, inode, 1); 1006 got_it: 1007 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 1008 if (count > blocks_to_boundary) 1009 set_buffer_boundary(bh_result); 1010 err = count; 1011 /* Clean up and exit */ 1012 partial = chain + depth - 1; /* the whole chain */ 1013 cleanup: 1014 while (partial > chain) { 1015 BUFFER_TRACE(partial->bh, "call brelse"); 1016 brelse(partial->bh); 1017 partial--; 1018 } 1019 BUFFER_TRACE(bh_result, "returned"); 1020 out: 1021 return err; 1022 } 1023 1024 #ifdef CONFIG_QUOTA 1025 qsize_t *ext4_get_reserved_space(struct inode *inode) 1026 { 1027 return &EXT4_I(inode)->i_reserved_quota; 1028 } 1029 #endif 1030 1031 /* 1032 * Calculate the number of metadata blocks need to reserve 1033 * to allocate a new block at @lblocks for non extent file based file 1034 */ 1035 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1036 sector_t lblock) 1037 { 1038 struct ext4_inode_info *ei = EXT4_I(inode); 1039 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1040 int blk_bits; 1041 1042 if (lblock < EXT4_NDIR_BLOCKS) 1043 return 0; 1044 1045 lblock -= EXT4_NDIR_BLOCKS; 1046 1047 if (ei->i_da_metadata_calc_len && 1048 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1049 ei->i_da_metadata_calc_len++; 1050 return 0; 1051 } 1052 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1053 ei->i_da_metadata_calc_len = 1; 1054 blk_bits = order_base_2(lblock); 1055 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1056 } 1057 1058 /* 1059 * Calculate the number of metadata blocks need to reserve 1060 * to allocate a block located at @lblock 1061 */ 1062 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock) 1063 { 1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1065 return ext4_ext_calc_metadata_amount(inode, lblock); 1066 1067 return ext4_indirect_calc_metadata_amount(inode, lblock); 1068 } 1069 1070 /* 1071 * Called with i_data_sem down, which is important since we can call 1072 * ext4_discard_preallocations() from here. 1073 */ 1074 void ext4_da_update_reserve_space(struct inode *inode, 1075 int used, int quota_claim) 1076 { 1077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1078 struct ext4_inode_info *ei = EXT4_I(inode); 1079 int mdb_free = 0, allocated_meta_blocks = 0; 1080 1081 spin_lock(&ei->i_block_reservation_lock); 1082 trace_ext4_da_update_reserve_space(inode, used); 1083 if (unlikely(used > ei->i_reserved_data_blocks)) { 1084 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1085 "with only %d reserved data blocks\n", 1086 __func__, inode->i_ino, used, 1087 ei->i_reserved_data_blocks); 1088 WARN_ON(1); 1089 used = ei->i_reserved_data_blocks; 1090 } 1091 1092 /* Update per-inode reservations */ 1093 ei->i_reserved_data_blocks -= used; 1094 used += ei->i_allocated_meta_blocks; 1095 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1096 allocated_meta_blocks = ei->i_allocated_meta_blocks; 1097 ei->i_allocated_meta_blocks = 0; 1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used); 1099 1100 if (ei->i_reserved_data_blocks == 0) { 1101 /* 1102 * We can release all of the reserved metadata blocks 1103 * only when we have written all of the delayed 1104 * allocation blocks. 1105 */ 1106 mdb_free = ei->i_reserved_meta_blocks; 1107 ei->i_reserved_meta_blocks = 0; 1108 ei->i_da_metadata_calc_len = 0; 1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1110 } 1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1112 1113 /* Update quota subsystem */ 1114 if (quota_claim) { 1115 dquot_claim_block(inode, used); 1116 if (mdb_free) 1117 dquot_release_reservation_block(inode, mdb_free); 1118 } else { 1119 /* 1120 * We did fallocate with an offset that is already delayed 1121 * allocated. So on delayed allocated writeback we should 1122 * not update the quota for allocated blocks. But then 1123 * converting an fallocate region to initialized region would 1124 * have caused a metadata allocation. So claim quota for 1125 * that 1126 */ 1127 if (allocated_meta_blocks) 1128 dquot_claim_block(inode, allocated_meta_blocks); 1129 dquot_release_reservation_block(inode, mdb_free + used); 1130 } 1131 1132 /* 1133 * If we have done all the pending block allocations and if 1134 * there aren't any writers on the inode, we can discard the 1135 * inode's preallocations. 1136 */ 1137 if ((ei->i_reserved_data_blocks == 0) && 1138 (atomic_read(&inode->i_writecount) == 0)) 1139 ext4_discard_preallocations(inode); 1140 } 1141 1142 static int check_block_validity(struct inode *inode, const char *msg, 1143 sector_t logical, sector_t phys, int len) 1144 { 1145 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1146 __ext4_error(inode->i_sb, msg, 1147 "inode #%lu logical block %llu mapped to %llu " 1148 "(size %d)", inode->i_ino, 1149 (unsigned long long) logical, 1150 (unsigned long long) phys, len); 1151 return -EIO; 1152 } 1153 return 0; 1154 } 1155 1156 /* 1157 * Return the number of contiguous dirty pages in a given inode 1158 * starting at page frame idx. 1159 */ 1160 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1161 unsigned int max_pages) 1162 { 1163 struct address_space *mapping = inode->i_mapping; 1164 pgoff_t index; 1165 struct pagevec pvec; 1166 pgoff_t num = 0; 1167 int i, nr_pages, done = 0; 1168 1169 if (max_pages == 0) 1170 return 0; 1171 pagevec_init(&pvec, 0); 1172 while (!done) { 1173 index = idx; 1174 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1175 PAGECACHE_TAG_DIRTY, 1176 (pgoff_t)PAGEVEC_SIZE); 1177 if (nr_pages == 0) 1178 break; 1179 for (i = 0; i < nr_pages; i++) { 1180 struct page *page = pvec.pages[i]; 1181 struct buffer_head *bh, *head; 1182 1183 lock_page(page); 1184 if (unlikely(page->mapping != mapping) || 1185 !PageDirty(page) || 1186 PageWriteback(page) || 1187 page->index != idx) { 1188 done = 1; 1189 unlock_page(page); 1190 break; 1191 } 1192 if (page_has_buffers(page)) { 1193 bh = head = page_buffers(page); 1194 do { 1195 if (!buffer_delay(bh) && 1196 !buffer_unwritten(bh)) 1197 done = 1; 1198 bh = bh->b_this_page; 1199 } while (!done && (bh != head)); 1200 } 1201 unlock_page(page); 1202 if (done) 1203 break; 1204 idx++; 1205 num++; 1206 if (num >= max_pages) 1207 break; 1208 } 1209 pagevec_release(&pvec); 1210 } 1211 return num; 1212 } 1213 1214 /* 1215 * The ext4_get_blocks() function tries to look up the requested blocks, 1216 * and returns if the blocks are already mapped. 1217 * 1218 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1219 * and store the allocated blocks in the result buffer head and mark it 1220 * mapped. 1221 * 1222 * If file type is extents based, it will call ext4_ext_get_blocks(), 1223 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping 1224 * based files 1225 * 1226 * On success, it returns the number of blocks being mapped or allocate. 1227 * if create==0 and the blocks are pre-allocated and uninitialized block, 1228 * the result buffer head is unmapped. If the create ==1, it will make sure 1229 * the buffer head is mapped. 1230 * 1231 * It returns 0 if plain look up failed (blocks have not been allocated), in 1232 * that casem, buffer head is unmapped 1233 * 1234 * It returns the error in case of allocation failure. 1235 */ 1236 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, 1237 unsigned int max_blocks, struct buffer_head *bh, 1238 int flags) 1239 { 1240 int retval; 1241 1242 clear_buffer_mapped(bh); 1243 clear_buffer_unwritten(bh); 1244 1245 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u," 1246 "logical block %lu\n", inode->i_ino, flags, max_blocks, 1247 (unsigned long)block); 1248 /* 1249 * Try to see if we can get the block without requesting a new 1250 * file system block. 1251 */ 1252 down_read((&EXT4_I(inode)->i_data_sem)); 1253 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1254 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1255 bh, 0); 1256 } else { 1257 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks, 1258 bh, 0); 1259 } 1260 up_read((&EXT4_I(inode)->i_data_sem)); 1261 1262 if (retval > 0 && buffer_mapped(bh)) { 1263 int ret = check_block_validity(inode, "file system corruption", 1264 block, bh->b_blocknr, retval); 1265 if (ret != 0) 1266 return ret; 1267 } 1268 1269 /* If it is only a block(s) look up */ 1270 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1271 return retval; 1272 1273 /* 1274 * Returns if the blocks have already allocated 1275 * 1276 * Note that if blocks have been preallocated 1277 * ext4_ext_get_block() returns th create = 0 1278 * with buffer head unmapped. 1279 */ 1280 if (retval > 0 && buffer_mapped(bh)) 1281 return retval; 1282 1283 /* 1284 * When we call get_blocks without the create flag, the 1285 * BH_Unwritten flag could have gotten set if the blocks 1286 * requested were part of a uninitialized extent. We need to 1287 * clear this flag now that we are committed to convert all or 1288 * part of the uninitialized extent to be an initialized 1289 * extent. This is because we need to avoid the combination 1290 * of BH_Unwritten and BH_Mapped flags being simultaneously 1291 * set on the buffer_head. 1292 */ 1293 clear_buffer_unwritten(bh); 1294 1295 /* 1296 * New blocks allocate and/or writing to uninitialized extent 1297 * will possibly result in updating i_data, so we take 1298 * the write lock of i_data_sem, and call get_blocks() 1299 * with create == 1 flag. 1300 */ 1301 down_write((&EXT4_I(inode)->i_data_sem)); 1302 1303 /* 1304 * if the caller is from delayed allocation writeout path 1305 * we have already reserved fs blocks for allocation 1306 * let the underlying get_block() function know to 1307 * avoid double accounting 1308 */ 1309 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1310 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1311 /* 1312 * We need to check for EXT4 here because migrate 1313 * could have changed the inode type in between 1314 */ 1315 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1316 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1317 bh, flags); 1318 } else { 1319 retval = ext4_ind_get_blocks(handle, inode, block, 1320 max_blocks, bh, flags); 1321 1322 if (retval > 0 && buffer_new(bh)) { 1323 /* 1324 * We allocated new blocks which will result in 1325 * i_data's format changing. Force the migrate 1326 * to fail by clearing migrate flags 1327 */ 1328 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1329 } 1330 1331 /* 1332 * Update reserved blocks/metadata blocks after successful 1333 * block allocation which had been deferred till now. We don't 1334 * support fallocate for non extent files. So we can update 1335 * reserve space here. 1336 */ 1337 if ((retval > 0) && 1338 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1339 ext4_da_update_reserve_space(inode, retval, 1); 1340 } 1341 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1342 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1343 1344 up_write((&EXT4_I(inode)->i_data_sem)); 1345 if (retval > 0 && buffer_mapped(bh)) { 1346 int ret = check_block_validity(inode, "file system " 1347 "corruption after allocation", 1348 block, bh->b_blocknr, retval); 1349 if (ret != 0) 1350 return ret; 1351 } 1352 return retval; 1353 } 1354 1355 /* Maximum number of blocks we map for direct IO at once. */ 1356 #define DIO_MAX_BLOCKS 4096 1357 1358 int ext4_get_block(struct inode *inode, sector_t iblock, 1359 struct buffer_head *bh_result, int create) 1360 { 1361 handle_t *handle = ext4_journal_current_handle(); 1362 int ret = 0, started = 0; 1363 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1364 int dio_credits; 1365 1366 if (create && !handle) { 1367 /* Direct IO write... */ 1368 if (max_blocks > DIO_MAX_BLOCKS) 1369 max_blocks = DIO_MAX_BLOCKS; 1370 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1371 handle = ext4_journal_start(inode, dio_credits); 1372 if (IS_ERR(handle)) { 1373 ret = PTR_ERR(handle); 1374 goto out; 1375 } 1376 started = 1; 1377 } 1378 1379 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 1380 create ? EXT4_GET_BLOCKS_CREATE : 0); 1381 if (ret > 0) { 1382 bh_result->b_size = (ret << inode->i_blkbits); 1383 ret = 0; 1384 } 1385 if (started) 1386 ext4_journal_stop(handle); 1387 out: 1388 return ret; 1389 } 1390 1391 /* 1392 * `handle' can be NULL if create is zero 1393 */ 1394 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1395 ext4_lblk_t block, int create, int *errp) 1396 { 1397 struct buffer_head dummy; 1398 int fatal = 0, err; 1399 int flags = 0; 1400 1401 J_ASSERT(handle != NULL || create == 0); 1402 1403 dummy.b_state = 0; 1404 dummy.b_blocknr = -1000; 1405 buffer_trace_init(&dummy.b_history); 1406 if (create) 1407 flags |= EXT4_GET_BLOCKS_CREATE; 1408 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags); 1409 /* 1410 * ext4_get_blocks() returns number of blocks mapped. 0 in 1411 * case of a HOLE. 1412 */ 1413 if (err > 0) { 1414 if (err > 1) 1415 WARN_ON(1); 1416 err = 0; 1417 } 1418 *errp = err; 1419 if (!err && buffer_mapped(&dummy)) { 1420 struct buffer_head *bh; 1421 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1422 if (!bh) { 1423 *errp = -EIO; 1424 goto err; 1425 } 1426 if (buffer_new(&dummy)) { 1427 J_ASSERT(create != 0); 1428 J_ASSERT(handle != NULL); 1429 1430 /* 1431 * Now that we do not always journal data, we should 1432 * keep in mind whether this should always journal the 1433 * new buffer as metadata. For now, regular file 1434 * writes use ext4_get_block instead, so it's not a 1435 * problem. 1436 */ 1437 lock_buffer(bh); 1438 BUFFER_TRACE(bh, "call get_create_access"); 1439 fatal = ext4_journal_get_create_access(handle, bh); 1440 if (!fatal && !buffer_uptodate(bh)) { 1441 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1442 set_buffer_uptodate(bh); 1443 } 1444 unlock_buffer(bh); 1445 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1446 err = ext4_handle_dirty_metadata(handle, inode, bh); 1447 if (!fatal) 1448 fatal = err; 1449 } else { 1450 BUFFER_TRACE(bh, "not a new buffer"); 1451 } 1452 if (fatal) { 1453 *errp = fatal; 1454 brelse(bh); 1455 bh = NULL; 1456 } 1457 return bh; 1458 } 1459 err: 1460 return NULL; 1461 } 1462 1463 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1464 ext4_lblk_t block, int create, int *err) 1465 { 1466 struct buffer_head *bh; 1467 1468 bh = ext4_getblk(handle, inode, block, create, err); 1469 if (!bh) 1470 return bh; 1471 if (buffer_uptodate(bh)) 1472 return bh; 1473 ll_rw_block(READ_META, 1, &bh); 1474 wait_on_buffer(bh); 1475 if (buffer_uptodate(bh)) 1476 return bh; 1477 put_bh(bh); 1478 *err = -EIO; 1479 return NULL; 1480 } 1481 1482 static int walk_page_buffers(handle_t *handle, 1483 struct buffer_head *head, 1484 unsigned from, 1485 unsigned to, 1486 int *partial, 1487 int (*fn)(handle_t *handle, 1488 struct buffer_head *bh)) 1489 { 1490 struct buffer_head *bh; 1491 unsigned block_start, block_end; 1492 unsigned blocksize = head->b_size; 1493 int err, ret = 0; 1494 struct buffer_head *next; 1495 1496 for (bh = head, block_start = 0; 1497 ret == 0 && (bh != head || !block_start); 1498 block_start = block_end, bh = next) { 1499 next = bh->b_this_page; 1500 block_end = block_start + blocksize; 1501 if (block_end <= from || block_start >= to) { 1502 if (partial && !buffer_uptodate(bh)) 1503 *partial = 1; 1504 continue; 1505 } 1506 err = (*fn)(handle, bh); 1507 if (!ret) 1508 ret = err; 1509 } 1510 return ret; 1511 } 1512 1513 /* 1514 * To preserve ordering, it is essential that the hole instantiation and 1515 * the data write be encapsulated in a single transaction. We cannot 1516 * close off a transaction and start a new one between the ext4_get_block() 1517 * and the commit_write(). So doing the jbd2_journal_start at the start of 1518 * prepare_write() is the right place. 1519 * 1520 * Also, this function can nest inside ext4_writepage() -> 1521 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1522 * has generated enough buffer credits to do the whole page. So we won't 1523 * block on the journal in that case, which is good, because the caller may 1524 * be PF_MEMALLOC. 1525 * 1526 * By accident, ext4 can be reentered when a transaction is open via 1527 * quota file writes. If we were to commit the transaction while thus 1528 * reentered, there can be a deadlock - we would be holding a quota 1529 * lock, and the commit would never complete if another thread had a 1530 * transaction open and was blocking on the quota lock - a ranking 1531 * violation. 1532 * 1533 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1534 * will _not_ run commit under these circumstances because handle->h_ref 1535 * is elevated. We'll still have enough credits for the tiny quotafile 1536 * write. 1537 */ 1538 static int do_journal_get_write_access(handle_t *handle, 1539 struct buffer_head *bh) 1540 { 1541 if (!buffer_mapped(bh) || buffer_freed(bh)) 1542 return 0; 1543 return ext4_journal_get_write_access(handle, bh); 1544 } 1545 1546 /* 1547 * Truncate blocks that were not used by write. We have to truncate the 1548 * pagecache as well so that corresponding buffers get properly unmapped. 1549 */ 1550 static void ext4_truncate_failed_write(struct inode *inode) 1551 { 1552 truncate_inode_pages(inode->i_mapping, inode->i_size); 1553 ext4_truncate(inode); 1554 } 1555 1556 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1557 struct buffer_head *bh_result, int create); 1558 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1559 loff_t pos, unsigned len, unsigned flags, 1560 struct page **pagep, void **fsdata) 1561 { 1562 struct inode *inode = mapping->host; 1563 int ret, needed_blocks; 1564 handle_t *handle; 1565 int retries = 0; 1566 struct page *page; 1567 pgoff_t index; 1568 unsigned from, to; 1569 1570 trace_ext4_write_begin(inode, pos, len, flags); 1571 /* 1572 * Reserve one block more for addition to orphan list in case 1573 * we allocate blocks but write fails for some reason 1574 */ 1575 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1576 index = pos >> PAGE_CACHE_SHIFT; 1577 from = pos & (PAGE_CACHE_SIZE - 1); 1578 to = from + len; 1579 1580 retry: 1581 handle = ext4_journal_start(inode, needed_blocks); 1582 if (IS_ERR(handle)) { 1583 ret = PTR_ERR(handle); 1584 goto out; 1585 } 1586 1587 /* We cannot recurse into the filesystem as the transaction is already 1588 * started */ 1589 flags |= AOP_FLAG_NOFS; 1590 1591 page = grab_cache_page_write_begin(mapping, index, flags); 1592 if (!page) { 1593 ext4_journal_stop(handle); 1594 ret = -ENOMEM; 1595 goto out; 1596 } 1597 *pagep = page; 1598 1599 if (ext4_should_dioread_nolock(inode)) 1600 ret = block_write_begin(file, mapping, pos, len, flags, pagep, 1601 fsdata, ext4_get_block_write); 1602 else 1603 ret = block_write_begin(file, mapping, pos, len, flags, pagep, 1604 fsdata, ext4_get_block); 1605 1606 if (!ret && ext4_should_journal_data(inode)) { 1607 ret = walk_page_buffers(handle, page_buffers(page), 1608 from, to, NULL, do_journal_get_write_access); 1609 } 1610 1611 if (ret) { 1612 unlock_page(page); 1613 page_cache_release(page); 1614 /* 1615 * block_write_begin may have instantiated a few blocks 1616 * outside i_size. Trim these off again. Don't need 1617 * i_size_read because we hold i_mutex. 1618 * 1619 * Add inode to orphan list in case we crash before 1620 * truncate finishes 1621 */ 1622 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1623 ext4_orphan_add(handle, inode); 1624 1625 ext4_journal_stop(handle); 1626 if (pos + len > inode->i_size) { 1627 ext4_truncate_failed_write(inode); 1628 /* 1629 * If truncate failed early the inode might 1630 * still be on the orphan list; we need to 1631 * make sure the inode is removed from the 1632 * orphan list in that case. 1633 */ 1634 if (inode->i_nlink) 1635 ext4_orphan_del(NULL, inode); 1636 } 1637 } 1638 1639 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1640 goto retry; 1641 out: 1642 return ret; 1643 } 1644 1645 /* For write_end() in data=journal mode */ 1646 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1647 { 1648 if (!buffer_mapped(bh) || buffer_freed(bh)) 1649 return 0; 1650 set_buffer_uptodate(bh); 1651 return ext4_handle_dirty_metadata(handle, NULL, bh); 1652 } 1653 1654 static int ext4_generic_write_end(struct file *file, 1655 struct address_space *mapping, 1656 loff_t pos, unsigned len, unsigned copied, 1657 struct page *page, void *fsdata) 1658 { 1659 int i_size_changed = 0; 1660 struct inode *inode = mapping->host; 1661 handle_t *handle = ext4_journal_current_handle(); 1662 1663 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1664 1665 /* 1666 * No need to use i_size_read() here, the i_size 1667 * cannot change under us because we hold i_mutex. 1668 * 1669 * But it's important to update i_size while still holding page lock: 1670 * page writeout could otherwise come in and zero beyond i_size. 1671 */ 1672 if (pos + copied > inode->i_size) { 1673 i_size_write(inode, pos + copied); 1674 i_size_changed = 1; 1675 } 1676 1677 if (pos + copied > EXT4_I(inode)->i_disksize) { 1678 /* We need to mark inode dirty even if 1679 * new_i_size is less that inode->i_size 1680 * bu greater than i_disksize.(hint delalloc) 1681 */ 1682 ext4_update_i_disksize(inode, (pos + copied)); 1683 i_size_changed = 1; 1684 } 1685 unlock_page(page); 1686 page_cache_release(page); 1687 1688 /* 1689 * Don't mark the inode dirty under page lock. First, it unnecessarily 1690 * makes the holding time of page lock longer. Second, it forces lock 1691 * ordering of page lock and transaction start for journaling 1692 * filesystems. 1693 */ 1694 if (i_size_changed) 1695 ext4_mark_inode_dirty(handle, inode); 1696 1697 return copied; 1698 } 1699 1700 /* 1701 * We need to pick up the new inode size which generic_commit_write gave us 1702 * `file' can be NULL - eg, when called from page_symlink(). 1703 * 1704 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1705 * buffers are managed internally. 1706 */ 1707 static int ext4_ordered_write_end(struct file *file, 1708 struct address_space *mapping, 1709 loff_t pos, unsigned len, unsigned copied, 1710 struct page *page, void *fsdata) 1711 { 1712 handle_t *handle = ext4_journal_current_handle(); 1713 struct inode *inode = mapping->host; 1714 int ret = 0, ret2; 1715 1716 trace_ext4_ordered_write_end(inode, pos, len, copied); 1717 ret = ext4_jbd2_file_inode(handle, inode); 1718 1719 if (ret == 0) { 1720 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1721 page, fsdata); 1722 copied = ret2; 1723 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1724 /* if we have allocated more blocks and copied 1725 * less. We will have blocks allocated outside 1726 * inode->i_size. So truncate them 1727 */ 1728 ext4_orphan_add(handle, inode); 1729 if (ret2 < 0) 1730 ret = ret2; 1731 } 1732 ret2 = ext4_journal_stop(handle); 1733 if (!ret) 1734 ret = ret2; 1735 1736 if (pos + len > inode->i_size) { 1737 ext4_truncate_failed_write(inode); 1738 /* 1739 * If truncate failed early the inode might still be 1740 * on the orphan list; we need to make sure the inode 1741 * is removed from the orphan list in that case. 1742 */ 1743 if (inode->i_nlink) 1744 ext4_orphan_del(NULL, inode); 1745 } 1746 1747 1748 return ret ? ret : copied; 1749 } 1750 1751 static int ext4_writeback_write_end(struct file *file, 1752 struct address_space *mapping, 1753 loff_t pos, unsigned len, unsigned copied, 1754 struct page *page, void *fsdata) 1755 { 1756 handle_t *handle = ext4_journal_current_handle(); 1757 struct inode *inode = mapping->host; 1758 int ret = 0, ret2; 1759 1760 trace_ext4_writeback_write_end(inode, pos, len, copied); 1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1762 page, fsdata); 1763 copied = ret2; 1764 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1765 /* if we have allocated more blocks and copied 1766 * less. We will have blocks allocated outside 1767 * inode->i_size. So truncate them 1768 */ 1769 ext4_orphan_add(handle, inode); 1770 1771 if (ret2 < 0) 1772 ret = ret2; 1773 1774 ret2 = ext4_journal_stop(handle); 1775 if (!ret) 1776 ret = ret2; 1777 1778 if (pos + len > inode->i_size) { 1779 ext4_truncate_failed_write(inode); 1780 /* 1781 * If truncate failed early the inode might still be 1782 * on the orphan list; we need to make sure the inode 1783 * is removed from the orphan list in that case. 1784 */ 1785 if (inode->i_nlink) 1786 ext4_orphan_del(NULL, inode); 1787 } 1788 1789 return ret ? ret : copied; 1790 } 1791 1792 static int ext4_journalled_write_end(struct file *file, 1793 struct address_space *mapping, 1794 loff_t pos, unsigned len, unsigned copied, 1795 struct page *page, void *fsdata) 1796 { 1797 handle_t *handle = ext4_journal_current_handle(); 1798 struct inode *inode = mapping->host; 1799 int ret = 0, ret2; 1800 int partial = 0; 1801 unsigned from, to; 1802 loff_t new_i_size; 1803 1804 trace_ext4_journalled_write_end(inode, pos, len, copied); 1805 from = pos & (PAGE_CACHE_SIZE - 1); 1806 to = from + len; 1807 1808 if (copied < len) { 1809 if (!PageUptodate(page)) 1810 copied = 0; 1811 page_zero_new_buffers(page, from+copied, to); 1812 } 1813 1814 ret = walk_page_buffers(handle, page_buffers(page), from, 1815 to, &partial, write_end_fn); 1816 if (!partial) 1817 SetPageUptodate(page); 1818 new_i_size = pos + copied; 1819 if (new_i_size > inode->i_size) 1820 i_size_write(inode, pos+copied); 1821 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1822 if (new_i_size > EXT4_I(inode)->i_disksize) { 1823 ext4_update_i_disksize(inode, new_i_size); 1824 ret2 = ext4_mark_inode_dirty(handle, inode); 1825 if (!ret) 1826 ret = ret2; 1827 } 1828 1829 unlock_page(page); 1830 page_cache_release(page); 1831 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1832 /* if we have allocated more blocks and copied 1833 * less. We will have blocks allocated outside 1834 * inode->i_size. So truncate them 1835 */ 1836 ext4_orphan_add(handle, inode); 1837 1838 ret2 = ext4_journal_stop(handle); 1839 if (!ret) 1840 ret = ret2; 1841 if (pos + len > inode->i_size) { 1842 ext4_truncate_failed_write(inode); 1843 /* 1844 * If truncate failed early the inode might still be 1845 * on the orphan list; we need to make sure the inode 1846 * is removed from the orphan list in that case. 1847 */ 1848 if (inode->i_nlink) 1849 ext4_orphan_del(NULL, inode); 1850 } 1851 1852 return ret ? ret : copied; 1853 } 1854 1855 /* 1856 * Reserve a single block located at lblock 1857 */ 1858 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock) 1859 { 1860 int retries = 0; 1861 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1862 struct ext4_inode_info *ei = EXT4_I(inode); 1863 unsigned long md_needed, md_reserved; 1864 int ret; 1865 1866 /* 1867 * recalculate the amount of metadata blocks to reserve 1868 * in order to allocate nrblocks 1869 * worse case is one extent per block 1870 */ 1871 repeat: 1872 spin_lock(&ei->i_block_reservation_lock); 1873 md_reserved = ei->i_reserved_meta_blocks; 1874 md_needed = ext4_calc_metadata_amount(inode, lblock); 1875 trace_ext4_da_reserve_space(inode, md_needed); 1876 spin_unlock(&ei->i_block_reservation_lock); 1877 1878 /* 1879 * Make quota reservation here to prevent quota overflow 1880 * later. Real quota accounting is done at pages writeout 1881 * time. 1882 */ 1883 ret = dquot_reserve_block(inode, md_needed + 1); 1884 if (ret) 1885 return ret; 1886 1887 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1888 dquot_release_reservation_block(inode, md_needed + 1); 1889 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1890 yield(); 1891 goto repeat; 1892 } 1893 return -ENOSPC; 1894 } 1895 spin_lock(&ei->i_block_reservation_lock); 1896 ei->i_reserved_data_blocks++; 1897 ei->i_reserved_meta_blocks += md_needed; 1898 spin_unlock(&ei->i_block_reservation_lock); 1899 1900 return 0; /* success */ 1901 } 1902 1903 static void ext4_da_release_space(struct inode *inode, int to_free) 1904 { 1905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1906 struct ext4_inode_info *ei = EXT4_I(inode); 1907 1908 if (!to_free) 1909 return; /* Nothing to release, exit */ 1910 1911 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1912 1913 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1914 /* 1915 * if there aren't enough reserved blocks, then the 1916 * counter is messed up somewhere. Since this 1917 * function is called from invalidate page, it's 1918 * harmless to return without any action. 1919 */ 1920 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1921 "ino %lu, to_free %d with only %d reserved " 1922 "data blocks\n", inode->i_ino, to_free, 1923 ei->i_reserved_data_blocks); 1924 WARN_ON(1); 1925 to_free = ei->i_reserved_data_blocks; 1926 } 1927 ei->i_reserved_data_blocks -= to_free; 1928 1929 if (ei->i_reserved_data_blocks == 0) { 1930 /* 1931 * We can release all of the reserved metadata blocks 1932 * only when we have written all of the delayed 1933 * allocation blocks. 1934 */ 1935 to_free += ei->i_reserved_meta_blocks; 1936 ei->i_reserved_meta_blocks = 0; 1937 ei->i_da_metadata_calc_len = 0; 1938 } 1939 1940 /* update fs dirty blocks counter */ 1941 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1942 1943 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1944 1945 dquot_release_reservation_block(inode, to_free); 1946 } 1947 1948 static void ext4_da_page_release_reservation(struct page *page, 1949 unsigned long offset) 1950 { 1951 int to_release = 0; 1952 struct buffer_head *head, *bh; 1953 unsigned int curr_off = 0; 1954 1955 head = page_buffers(page); 1956 bh = head; 1957 do { 1958 unsigned int next_off = curr_off + bh->b_size; 1959 1960 if ((offset <= curr_off) && (buffer_delay(bh))) { 1961 to_release++; 1962 clear_buffer_delay(bh); 1963 } 1964 curr_off = next_off; 1965 } while ((bh = bh->b_this_page) != head); 1966 ext4_da_release_space(page->mapping->host, to_release); 1967 } 1968 1969 /* 1970 * Delayed allocation stuff 1971 */ 1972 1973 /* 1974 * mpage_da_submit_io - walks through extent of pages and try to write 1975 * them with writepage() call back 1976 * 1977 * @mpd->inode: inode 1978 * @mpd->first_page: first page of the extent 1979 * @mpd->next_page: page after the last page of the extent 1980 * 1981 * By the time mpage_da_submit_io() is called we expect all blocks 1982 * to be allocated. this may be wrong if allocation failed. 1983 * 1984 * As pages are already locked by write_cache_pages(), we can't use it 1985 */ 1986 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1987 { 1988 long pages_skipped; 1989 struct pagevec pvec; 1990 unsigned long index, end; 1991 int ret = 0, err, nr_pages, i; 1992 struct inode *inode = mpd->inode; 1993 struct address_space *mapping = inode->i_mapping; 1994 1995 BUG_ON(mpd->next_page <= mpd->first_page); 1996 /* 1997 * We need to start from the first_page to the next_page - 1 1998 * to make sure we also write the mapped dirty buffer_heads. 1999 * If we look at mpd->b_blocknr we would only be looking 2000 * at the currently mapped buffer_heads. 2001 */ 2002 index = mpd->first_page; 2003 end = mpd->next_page - 1; 2004 2005 pagevec_init(&pvec, 0); 2006 while (index <= end) { 2007 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2008 if (nr_pages == 0) 2009 break; 2010 for (i = 0; i < nr_pages; i++) { 2011 struct page *page = pvec.pages[i]; 2012 2013 index = page->index; 2014 if (index > end) 2015 break; 2016 index++; 2017 2018 BUG_ON(!PageLocked(page)); 2019 BUG_ON(PageWriteback(page)); 2020 2021 pages_skipped = mpd->wbc->pages_skipped; 2022 err = mapping->a_ops->writepage(page, mpd->wbc); 2023 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 2024 /* 2025 * have successfully written the page 2026 * without skipping the same 2027 */ 2028 mpd->pages_written++; 2029 /* 2030 * In error case, we have to continue because 2031 * remaining pages are still locked 2032 * XXX: unlock and re-dirty them? 2033 */ 2034 if (ret == 0) 2035 ret = err; 2036 } 2037 pagevec_release(&pvec); 2038 } 2039 return ret; 2040 } 2041 2042 /* 2043 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2044 * 2045 * @mpd->inode - inode to walk through 2046 * @exbh->b_blocknr - first block on a disk 2047 * @exbh->b_size - amount of space in bytes 2048 * @logical - first logical block to start assignment with 2049 * 2050 * the function goes through all passed space and put actual disk 2051 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2052 */ 2053 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 2054 struct buffer_head *exbh) 2055 { 2056 struct inode *inode = mpd->inode; 2057 struct address_space *mapping = inode->i_mapping; 2058 int blocks = exbh->b_size >> inode->i_blkbits; 2059 sector_t pblock = exbh->b_blocknr, cur_logical; 2060 struct buffer_head *head, *bh; 2061 pgoff_t index, end; 2062 struct pagevec pvec; 2063 int nr_pages, i; 2064 2065 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2066 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2067 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2068 2069 pagevec_init(&pvec, 0); 2070 2071 while (index <= end) { 2072 /* XXX: optimize tail */ 2073 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2074 if (nr_pages == 0) 2075 break; 2076 for (i = 0; i < nr_pages; i++) { 2077 struct page *page = pvec.pages[i]; 2078 2079 index = page->index; 2080 if (index > end) 2081 break; 2082 index++; 2083 2084 BUG_ON(!PageLocked(page)); 2085 BUG_ON(PageWriteback(page)); 2086 BUG_ON(!page_has_buffers(page)); 2087 2088 bh = page_buffers(page); 2089 head = bh; 2090 2091 /* skip blocks out of the range */ 2092 do { 2093 if (cur_logical >= logical) 2094 break; 2095 cur_logical++; 2096 } while ((bh = bh->b_this_page) != head); 2097 2098 do { 2099 if (cur_logical >= logical + blocks) 2100 break; 2101 2102 if (buffer_delay(bh) || 2103 buffer_unwritten(bh)) { 2104 2105 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2106 2107 if (buffer_delay(bh)) { 2108 clear_buffer_delay(bh); 2109 bh->b_blocknr = pblock; 2110 } else { 2111 /* 2112 * unwritten already should have 2113 * blocknr assigned. Verify that 2114 */ 2115 clear_buffer_unwritten(bh); 2116 BUG_ON(bh->b_blocknr != pblock); 2117 } 2118 2119 } else if (buffer_mapped(bh)) 2120 BUG_ON(bh->b_blocknr != pblock); 2121 2122 if (buffer_uninit(exbh)) 2123 set_buffer_uninit(bh); 2124 cur_logical++; 2125 pblock++; 2126 } while ((bh = bh->b_this_page) != head); 2127 } 2128 pagevec_release(&pvec); 2129 } 2130 } 2131 2132 2133 /* 2134 * __unmap_underlying_blocks - just a helper function to unmap 2135 * set of blocks described by @bh 2136 */ 2137 static inline void __unmap_underlying_blocks(struct inode *inode, 2138 struct buffer_head *bh) 2139 { 2140 struct block_device *bdev = inode->i_sb->s_bdev; 2141 int blocks, i; 2142 2143 blocks = bh->b_size >> inode->i_blkbits; 2144 for (i = 0; i < blocks; i++) 2145 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 2146 } 2147 2148 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2149 sector_t logical, long blk_cnt) 2150 { 2151 int nr_pages, i; 2152 pgoff_t index, end; 2153 struct pagevec pvec; 2154 struct inode *inode = mpd->inode; 2155 struct address_space *mapping = inode->i_mapping; 2156 2157 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2158 end = (logical + blk_cnt - 1) >> 2159 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2160 while (index <= end) { 2161 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2162 if (nr_pages == 0) 2163 break; 2164 for (i = 0; i < nr_pages; i++) { 2165 struct page *page = pvec.pages[i]; 2166 if (page->index > end) 2167 break; 2168 BUG_ON(!PageLocked(page)); 2169 BUG_ON(PageWriteback(page)); 2170 block_invalidatepage(page, 0); 2171 ClearPageUptodate(page); 2172 unlock_page(page); 2173 } 2174 index = pvec.pages[nr_pages - 1]->index + 1; 2175 pagevec_release(&pvec); 2176 } 2177 return; 2178 } 2179 2180 static void ext4_print_free_blocks(struct inode *inode) 2181 { 2182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2183 printk(KERN_CRIT "Total free blocks count %lld\n", 2184 ext4_count_free_blocks(inode->i_sb)); 2185 printk(KERN_CRIT "Free/Dirty block details\n"); 2186 printk(KERN_CRIT "free_blocks=%lld\n", 2187 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2188 printk(KERN_CRIT "dirty_blocks=%lld\n", 2189 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2190 printk(KERN_CRIT "Block reservation details\n"); 2191 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2192 EXT4_I(inode)->i_reserved_data_blocks); 2193 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2194 EXT4_I(inode)->i_reserved_meta_blocks); 2195 return; 2196 } 2197 2198 /* 2199 * mpage_da_map_blocks - go through given space 2200 * 2201 * @mpd - bh describing space 2202 * 2203 * The function skips space we know is already mapped to disk blocks. 2204 * 2205 */ 2206 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2207 { 2208 int err, blks, get_blocks_flags; 2209 struct buffer_head new; 2210 sector_t next = mpd->b_blocknr; 2211 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2212 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2213 handle_t *handle = NULL; 2214 2215 /* 2216 * We consider only non-mapped and non-allocated blocks 2217 */ 2218 if ((mpd->b_state & (1 << BH_Mapped)) && 2219 !(mpd->b_state & (1 << BH_Delay)) && 2220 !(mpd->b_state & (1 << BH_Unwritten))) 2221 return 0; 2222 2223 /* 2224 * If we didn't accumulate anything to write simply return 2225 */ 2226 if (!mpd->b_size) 2227 return 0; 2228 2229 handle = ext4_journal_current_handle(); 2230 BUG_ON(!handle); 2231 2232 /* 2233 * Call ext4_get_blocks() to allocate any delayed allocation 2234 * blocks, or to convert an uninitialized extent to be 2235 * initialized (in the case where we have written into 2236 * one or more preallocated blocks). 2237 * 2238 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2239 * indicate that we are on the delayed allocation path. This 2240 * affects functions in many different parts of the allocation 2241 * call path. This flag exists primarily because we don't 2242 * want to change *many* call functions, so ext4_get_blocks() 2243 * will set the magic i_delalloc_reserved_flag once the 2244 * inode's allocation semaphore is taken. 2245 * 2246 * If the blocks in questions were delalloc blocks, set 2247 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2248 * variables are updated after the blocks have been allocated. 2249 */ 2250 new.b_state = 0; 2251 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2252 if (ext4_should_dioread_nolock(mpd->inode)) 2253 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2254 if (mpd->b_state & (1 << BH_Delay)) 2255 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2256 2257 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks, 2258 &new, get_blocks_flags); 2259 if (blks < 0) { 2260 err = blks; 2261 /* 2262 * If get block returns with error we simply 2263 * return. Later writepage will redirty the page and 2264 * writepages will find the dirty page again 2265 */ 2266 if (err == -EAGAIN) 2267 return 0; 2268 2269 if (err == -ENOSPC && 2270 ext4_count_free_blocks(mpd->inode->i_sb)) { 2271 mpd->retval = err; 2272 return 0; 2273 } 2274 2275 /* 2276 * get block failure will cause us to loop in 2277 * writepages, because a_ops->writepage won't be able 2278 * to make progress. The page will be redirtied by 2279 * writepage and writepages will again try to write 2280 * the same. 2281 */ 2282 ext4_msg(mpd->inode->i_sb, KERN_CRIT, 2283 "delayed block allocation failed for inode %lu at " 2284 "logical offset %llu with max blocks %zd with " 2285 "error %d\n", mpd->inode->i_ino, 2286 (unsigned long long) next, 2287 mpd->b_size >> mpd->inode->i_blkbits, err); 2288 printk(KERN_CRIT "This should not happen!! " 2289 "Data will be lost\n"); 2290 if (err == -ENOSPC) { 2291 ext4_print_free_blocks(mpd->inode); 2292 } 2293 /* invalidate all the pages */ 2294 ext4_da_block_invalidatepages(mpd, next, 2295 mpd->b_size >> mpd->inode->i_blkbits); 2296 return err; 2297 } 2298 BUG_ON(blks == 0); 2299 2300 new.b_size = (blks << mpd->inode->i_blkbits); 2301 2302 if (buffer_new(&new)) 2303 __unmap_underlying_blocks(mpd->inode, &new); 2304 2305 /* 2306 * If blocks are delayed marked, we need to 2307 * put actual blocknr and drop delayed bit 2308 */ 2309 if ((mpd->b_state & (1 << BH_Delay)) || 2310 (mpd->b_state & (1 << BH_Unwritten))) 2311 mpage_put_bnr_to_bhs(mpd, next, &new); 2312 2313 if (ext4_should_order_data(mpd->inode)) { 2314 err = ext4_jbd2_file_inode(handle, mpd->inode); 2315 if (err) 2316 return err; 2317 } 2318 2319 /* 2320 * Update on-disk size along with block allocation. 2321 */ 2322 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2323 if (disksize > i_size_read(mpd->inode)) 2324 disksize = i_size_read(mpd->inode); 2325 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2326 ext4_update_i_disksize(mpd->inode, disksize); 2327 return ext4_mark_inode_dirty(handle, mpd->inode); 2328 } 2329 2330 return 0; 2331 } 2332 2333 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2334 (1 << BH_Delay) | (1 << BH_Unwritten)) 2335 2336 /* 2337 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2338 * 2339 * @mpd->lbh - extent of blocks 2340 * @logical - logical number of the block in the file 2341 * @bh - bh of the block (used to access block's state) 2342 * 2343 * the function is used to collect contig. blocks in same state 2344 */ 2345 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2346 sector_t logical, size_t b_size, 2347 unsigned long b_state) 2348 { 2349 sector_t next; 2350 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2351 2352 /* check if thereserved journal credits might overflow */ 2353 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2354 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2355 /* 2356 * With non-extent format we are limited by the journal 2357 * credit available. Total credit needed to insert 2358 * nrblocks contiguous blocks is dependent on the 2359 * nrblocks. So limit nrblocks. 2360 */ 2361 goto flush_it; 2362 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2363 EXT4_MAX_TRANS_DATA) { 2364 /* 2365 * Adding the new buffer_head would make it cross the 2366 * allowed limit for which we have journal credit 2367 * reserved. So limit the new bh->b_size 2368 */ 2369 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2370 mpd->inode->i_blkbits; 2371 /* we will do mpage_da_submit_io in the next loop */ 2372 } 2373 } 2374 /* 2375 * First block in the extent 2376 */ 2377 if (mpd->b_size == 0) { 2378 mpd->b_blocknr = logical; 2379 mpd->b_size = b_size; 2380 mpd->b_state = b_state & BH_FLAGS; 2381 return; 2382 } 2383 2384 next = mpd->b_blocknr + nrblocks; 2385 /* 2386 * Can we merge the block to our big extent? 2387 */ 2388 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2389 mpd->b_size += b_size; 2390 return; 2391 } 2392 2393 flush_it: 2394 /* 2395 * We couldn't merge the block to our extent, so we 2396 * need to flush current extent and start new one 2397 */ 2398 if (mpage_da_map_blocks(mpd) == 0) 2399 mpage_da_submit_io(mpd); 2400 mpd->io_done = 1; 2401 return; 2402 } 2403 2404 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2405 { 2406 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2407 } 2408 2409 /* 2410 * __mpage_da_writepage - finds extent of pages and blocks 2411 * 2412 * @page: page to consider 2413 * @wbc: not used, we just follow rules 2414 * @data: context 2415 * 2416 * The function finds extents of pages and scan them for all blocks. 2417 */ 2418 static int __mpage_da_writepage(struct page *page, 2419 struct writeback_control *wbc, void *data) 2420 { 2421 struct mpage_da_data *mpd = data; 2422 struct inode *inode = mpd->inode; 2423 struct buffer_head *bh, *head; 2424 sector_t logical; 2425 2426 if (mpd->io_done) { 2427 /* 2428 * Rest of the page in the page_vec 2429 * redirty then and skip then. We will 2430 * try to write them again after 2431 * starting a new transaction 2432 */ 2433 redirty_page_for_writepage(wbc, page); 2434 unlock_page(page); 2435 return MPAGE_DA_EXTENT_TAIL; 2436 } 2437 /* 2438 * Can we merge this page to current extent? 2439 */ 2440 if (mpd->next_page != page->index) { 2441 /* 2442 * Nope, we can't. So, we map non-allocated blocks 2443 * and start IO on them using writepage() 2444 */ 2445 if (mpd->next_page != mpd->first_page) { 2446 if (mpage_da_map_blocks(mpd) == 0) 2447 mpage_da_submit_io(mpd); 2448 /* 2449 * skip rest of the page in the page_vec 2450 */ 2451 mpd->io_done = 1; 2452 redirty_page_for_writepage(wbc, page); 2453 unlock_page(page); 2454 return MPAGE_DA_EXTENT_TAIL; 2455 } 2456 2457 /* 2458 * Start next extent of pages ... 2459 */ 2460 mpd->first_page = page->index; 2461 2462 /* 2463 * ... and blocks 2464 */ 2465 mpd->b_size = 0; 2466 mpd->b_state = 0; 2467 mpd->b_blocknr = 0; 2468 } 2469 2470 mpd->next_page = page->index + 1; 2471 logical = (sector_t) page->index << 2472 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2473 2474 if (!page_has_buffers(page)) { 2475 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2476 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2477 if (mpd->io_done) 2478 return MPAGE_DA_EXTENT_TAIL; 2479 } else { 2480 /* 2481 * Page with regular buffer heads, just add all dirty ones 2482 */ 2483 head = page_buffers(page); 2484 bh = head; 2485 do { 2486 BUG_ON(buffer_locked(bh)); 2487 /* 2488 * We need to try to allocate 2489 * unmapped blocks in the same page. 2490 * Otherwise we won't make progress 2491 * with the page in ext4_writepage 2492 */ 2493 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2494 mpage_add_bh_to_extent(mpd, logical, 2495 bh->b_size, 2496 bh->b_state); 2497 if (mpd->io_done) 2498 return MPAGE_DA_EXTENT_TAIL; 2499 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2500 /* 2501 * mapped dirty buffer. We need to update 2502 * the b_state because we look at 2503 * b_state in mpage_da_map_blocks. We don't 2504 * update b_size because if we find an 2505 * unmapped buffer_head later we need to 2506 * use the b_state flag of that buffer_head. 2507 */ 2508 if (mpd->b_size == 0) 2509 mpd->b_state = bh->b_state & BH_FLAGS; 2510 } 2511 logical++; 2512 } while ((bh = bh->b_this_page) != head); 2513 } 2514 2515 return 0; 2516 } 2517 2518 /* 2519 * This is a special get_blocks_t callback which is used by 2520 * ext4_da_write_begin(). It will either return mapped block or 2521 * reserve space for a single block. 2522 * 2523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2524 * We also have b_blocknr = -1 and b_bdev initialized properly 2525 * 2526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2528 * initialized properly. 2529 */ 2530 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2531 struct buffer_head *bh_result, int create) 2532 { 2533 int ret = 0; 2534 sector_t invalid_block = ~((sector_t) 0xffff); 2535 2536 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2537 invalid_block = ~0; 2538 2539 BUG_ON(create == 0); 2540 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2541 2542 /* 2543 * first, we need to know whether the block is allocated already 2544 * preallocated blocks are unmapped but should treated 2545 * the same as allocated blocks. 2546 */ 2547 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0); 2548 if ((ret == 0) && !buffer_delay(bh_result)) { 2549 /* the block isn't (pre)allocated yet, let's reserve space */ 2550 /* 2551 * XXX: __block_prepare_write() unmaps passed block, 2552 * is it OK? 2553 */ 2554 ret = ext4_da_reserve_space(inode, iblock); 2555 if (ret) 2556 /* not enough space to reserve */ 2557 return ret; 2558 2559 map_bh(bh_result, inode->i_sb, invalid_block); 2560 set_buffer_new(bh_result); 2561 set_buffer_delay(bh_result); 2562 } else if (ret > 0) { 2563 bh_result->b_size = (ret << inode->i_blkbits); 2564 if (buffer_unwritten(bh_result)) { 2565 /* A delayed write to unwritten bh should 2566 * be marked new and mapped. Mapped ensures 2567 * that we don't do get_block multiple times 2568 * when we write to the same offset and new 2569 * ensures that we do proper zero out for 2570 * partial write. 2571 */ 2572 set_buffer_new(bh_result); 2573 set_buffer_mapped(bh_result); 2574 } 2575 ret = 0; 2576 } 2577 2578 return ret; 2579 } 2580 2581 /* 2582 * This function is used as a standard get_block_t calback function 2583 * when there is no desire to allocate any blocks. It is used as a 2584 * callback function for block_prepare_write(), nobh_writepage(), and 2585 * block_write_full_page(). These functions should only try to map a 2586 * single block at a time. 2587 * 2588 * Since this function doesn't do block allocations even if the caller 2589 * requests it by passing in create=1, it is critically important that 2590 * any caller checks to make sure that any buffer heads are returned 2591 * by this function are either all already mapped or marked for 2592 * delayed allocation before calling nobh_writepage() or 2593 * block_write_full_page(). Otherwise, b_blocknr could be left 2594 * unitialized, and the page write functions will be taken by 2595 * surprise. 2596 */ 2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2598 struct buffer_head *bh_result, int create) 2599 { 2600 int ret = 0; 2601 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2602 2603 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2604 2605 /* 2606 * we don't want to do block allocation in writepage 2607 * so call get_block_wrap with create = 0 2608 */ 2609 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0); 2610 if (ret > 0) { 2611 bh_result->b_size = (ret << inode->i_blkbits); 2612 ret = 0; 2613 } 2614 return ret; 2615 } 2616 2617 static int bget_one(handle_t *handle, struct buffer_head *bh) 2618 { 2619 get_bh(bh); 2620 return 0; 2621 } 2622 2623 static int bput_one(handle_t *handle, struct buffer_head *bh) 2624 { 2625 put_bh(bh); 2626 return 0; 2627 } 2628 2629 static int __ext4_journalled_writepage(struct page *page, 2630 unsigned int len) 2631 { 2632 struct address_space *mapping = page->mapping; 2633 struct inode *inode = mapping->host; 2634 struct buffer_head *page_bufs; 2635 handle_t *handle = NULL; 2636 int ret = 0; 2637 int err; 2638 2639 page_bufs = page_buffers(page); 2640 BUG_ON(!page_bufs); 2641 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2642 /* As soon as we unlock the page, it can go away, but we have 2643 * references to buffers so we are safe */ 2644 unlock_page(page); 2645 2646 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2647 if (IS_ERR(handle)) { 2648 ret = PTR_ERR(handle); 2649 goto out; 2650 } 2651 2652 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2653 do_journal_get_write_access); 2654 2655 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2656 write_end_fn); 2657 if (ret == 0) 2658 ret = err; 2659 err = ext4_journal_stop(handle); 2660 if (!ret) 2661 ret = err; 2662 2663 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2664 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2665 out: 2666 return ret; 2667 } 2668 2669 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2670 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2671 2672 /* 2673 * Note that we don't need to start a transaction unless we're journaling data 2674 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2675 * need to file the inode to the transaction's list in ordered mode because if 2676 * we are writing back data added by write(), the inode is already there and if 2677 * we are writing back data modified via mmap(), noone guarantees in which 2678 * transaction the data will hit the disk. In case we are journaling data, we 2679 * cannot start transaction directly because transaction start ranks above page 2680 * lock so we have to do some magic. 2681 * 2682 * This function can get called via... 2683 * - ext4_da_writepages after taking page lock (have journal handle) 2684 * - journal_submit_inode_data_buffers (no journal handle) 2685 * - shrink_page_list via pdflush (no journal handle) 2686 * - grab_page_cache when doing write_begin (have journal handle) 2687 * 2688 * We don't do any block allocation in this function. If we have page with 2689 * multiple blocks we need to write those buffer_heads that are mapped. This 2690 * is important for mmaped based write. So if we do with blocksize 1K 2691 * truncate(f, 1024); 2692 * a = mmap(f, 0, 4096); 2693 * a[0] = 'a'; 2694 * truncate(f, 4096); 2695 * we have in the page first buffer_head mapped via page_mkwrite call back 2696 * but other bufer_heads would be unmapped but dirty(dirty done via the 2697 * do_wp_page). So writepage should write the first block. If we modify 2698 * the mmap area beyond 1024 we will again get a page_fault and the 2699 * page_mkwrite callback will do the block allocation and mark the 2700 * buffer_heads mapped. 2701 * 2702 * We redirty the page if we have any buffer_heads that is either delay or 2703 * unwritten in the page. 2704 * 2705 * We can get recursively called as show below. 2706 * 2707 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2708 * ext4_writepage() 2709 * 2710 * But since we don't do any block allocation we should not deadlock. 2711 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2712 */ 2713 static int ext4_writepage(struct page *page, 2714 struct writeback_control *wbc) 2715 { 2716 int ret = 0; 2717 loff_t size; 2718 unsigned int len; 2719 struct buffer_head *page_bufs = NULL; 2720 struct inode *inode = page->mapping->host; 2721 2722 trace_ext4_writepage(inode, page); 2723 size = i_size_read(inode); 2724 if (page->index == size >> PAGE_CACHE_SHIFT) 2725 len = size & ~PAGE_CACHE_MASK; 2726 else 2727 len = PAGE_CACHE_SIZE; 2728 2729 if (page_has_buffers(page)) { 2730 page_bufs = page_buffers(page); 2731 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2732 ext4_bh_delay_or_unwritten)) { 2733 /* 2734 * We don't want to do block allocation 2735 * So redirty the page and return 2736 * We may reach here when we do a journal commit 2737 * via journal_submit_inode_data_buffers. 2738 * If we don't have mapping block we just ignore 2739 * them. We can also reach here via shrink_page_list 2740 */ 2741 redirty_page_for_writepage(wbc, page); 2742 unlock_page(page); 2743 return 0; 2744 } 2745 } else { 2746 /* 2747 * The test for page_has_buffers() is subtle: 2748 * We know the page is dirty but it lost buffers. That means 2749 * that at some moment in time after write_begin()/write_end() 2750 * has been called all buffers have been clean and thus they 2751 * must have been written at least once. So they are all 2752 * mapped and we can happily proceed with mapping them 2753 * and writing the page. 2754 * 2755 * Try to initialize the buffer_heads and check whether 2756 * all are mapped and non delay. We don't want to 2757 * do block allocation here. 2758 */ 2759 ret = block_prepare_write(page, 0, len, 2760 noalloc_get_block_write); 2761 if (!ret) { 2762 page_bufs = page_buffers(page); 2763 /* check whether all are mapped and non delay */ 2764 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2765 ext4_bh_delay_or_unwritten)) { 2766 redirty_page_for_writepage(wbc, page); 2767 unlock_page(page); 2768 return 0; 2769 } 2770 } else { 2771 /* 2772 * We can't do block allocation here 2773 * so just redity the page and unlock 2774 * and return 2775 */ 2776 redirty_page_for_writepage(wbc, page); 2777 unlock_page(page); 2778 return 0; 2779 } 2780 /* now mark the buffer_heads as dirty and uptodate */ 2781 block_commit_write(page, 0, len); 2782 } 2783 2784 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2785 /* 2786 * It's mmapped pagecache. Add buffers and journal it. There 2787 * doesn't seem much point in redirtying the page here. 2788 */ 2789 ClearPageChecked(page); 2790 return __ext4_journalled_writepage(page, len); 2791 } 2792 2793 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2794 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2795 else if (page_bufs && buffer_uninit(page_bufs)) { 2796 ext4_set_bh_endio(page_bufs, inode); 2797 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2798 wbc, ext4_end_io_buffer_write); 2799 } else 2800 ret = block_write_full_page(page, noalloc_get_block_write, 2801 wbc); 2802 2803 return ret; 2804 } 2805 2806 /* 2807 * This is called via ext4_da_writepages() to 2808 * calulate the total number of credits to reserve to fit 2809 * a single extent allocation into a single transaction, 2810 * ext4_da_writpeages() will loop calling this before 2811 * the block allocation. 2812 */ 2813 2814 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2815 { 2816 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2817 2818 /* 2819 * With non-extent format the journal credit needed to 2820 * insert nrblocks contiguous block is dependent on 2821 * number of contiguous block. So we will limit 2822 * number of contiguous block to a sane value 2823 */ 2824 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) && 2825 (max_blocks > EXT4_MAX_TRANS_DATA)) 2826 max_blocks = EXT4_MAX_TRANS_DATA; 2827 2828 return ext4_chunk_trans_blocks(inode, max_blocks); 2829 } 2830 2831 static int ext4_da_writepages(struct address_space *mapping, 2832 struct writeback_control *wbc) 2833 { 2834 pgoff_t index; 2835 int range_whole = 0; 2836 handle_t *handle = NULL; 2837 struct mpage_da_data mpd; 2838 struct inode *inode = mapping->host; 2839 int no_nrwrite_index_update; 2840 int pages_written = 0; 2841 long pages_skipped; 2842 unsigned int max_pages; 2843 int range_cyclic, cycled = 1, io_done = 0; 2844 int needed_blocks, ret = 0; 2845 long desired_nr_to_write, nr_to_writebump = 0; 2846 loff_t range_start = wbc->range_start; 2847 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2848 2849 trace_ext4_da_writepages(inode, wbc); 2850 2851 /* 2852 * No pages to write? This is mainly a kludge to avoid starting 2853 * a transaction for special inodes like journal inode on last iput() 2854 * because that could violate lock ordering on umount 2855 */ 2856 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2857 return 0; 2858 2859 /* 2860 * If the filesystem has aborted, it is read-only, so return 2861 * right away instead of dumping stack traces later on that 2862 * will obscure the real source of the problem. We test 2863 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2864 * the latter could be true if the filesystem is mounted 2865 * read-only, and in that case, ext4_da_writepages should 2866 * *never* be called, so if that ever happens, we would want 2867 * the stack trace. 2868 */ 2869 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2870 return -EROFS; 2871 2872 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2873 range_whole = 1; 2874 2875 range_cyclic = wbc->range_cyclic; 2876 if (wbc->range_cyclic) { 2877 index = mapping->writeback_index; 2878 if (index) 2879 cycled = 0; 2880 wbc->range_start = index << PAGE_CACHE_SHIFT; 2881 wbc->range_end = LLONG_MAX; 2882 wbc->range_cyclic = 0; 2883 } else 2884 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2885 2886 /* 2887 * This works around two forms of stupidity. The first is in 2888 * the writeback code, which caps the maximum number of pages 2889 * written to be 1024 pages. This is wrong on multiple 2890 * levels; different architectues have a different page size, 2891 * which changes the maximum amount of data which gets 2892 * written. Secondly, 4 megabytes is way too small. XFS 2893 * forces this value to be 16 megabytes by multiplying 2894 * nr_to_write parameter by four, and then relies on its 2895 * allocator to allocate larger extents to make them 2896 * contiguous. Unfortunately this brings us to the second 2897 * stupidity, which is that ext4's mballoc code only allocates 2898 * at most 2048 blocks. So we force contiguous writes up to 2899 * the number of dirty blocks in the inode, or 2900 * sbi->max_writeback_mb_bump whichever is smaller. 2901 */ 2902 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2903 if (!range_cyclic && range_whole) 2904 desired_nr_to_write = wbc->nr_to_write * 8; 2905 else 2906 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2907 max_pages); 2908 if (desired_nr_to_write > max_pages) 2909 desired_nr_to_write = max_pages; 2910 2911 if (wbc->nr_to_write < desired_nr_to_write) { 2912 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2913 wbc->nr_to_write = desired_nr_to_write; 2914 } 2915 2916 mpd.wbc = wbc; 2917 mpd.inode = mapping->host; 2918 2919 /* 2920 * we don't want write_cache_pages to update 2921 * nr_to_write and writeback_index 2922 */ 2923 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2924 wbc->no_nrwrite_index_update = 1; 2925 pages_skipped = wbc->pages_skipped; 2926 2927 retry: 2928 while (!ret && wbc->nr_to_write > 0) { 2929 2930 /* 2931 * we insert one extent at a time. So we need 2932 * credit needed for single extent allocation. 2933 * journalled mode is currently not supported 2934 * by delalloc 2935 */ 2936 BUG_ON(ext4_should_journal_data(inode)); 2937 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2938 2939 /* start a new transaction*/ 2940 handle = ext4_journal_start(inode, needed_blocks); 2941 if (IS_ERR(handle)) { 2942 ret = PTR_ERR(handle); 2943 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2944 "%ld pages, ino %lu; err %d\n", __func__, 2945 wbc->nr_to_write, inode->i_ino, ret); 2946 goto out_writepages; 2947 } 2948 2949 /* 2950 * Now call __mpage_da_writepage to find the next 2951 * contiguous region of logical blocks that need 2952 * blocks to be allocated by ext4. We don't actually 2953 * submit the blocks for I/O here, even though 2954 * write_cache_pages thinks it will, and will set the 2955 * pages as clean for write before calling 2956 * __mpage_da_writepage(). 2957 */ 2958 mpd.b_size = 0; 2959 mpd.b_state = 0; 2960 mpd.b_blocknr = 0; 2961 mpd.first_page = 0; 2962 mpd.next_page = 0; 2963 mpd.io_done = 0; 2964 mpd.pages_written = 0; 2965 mpd.retval = 0; 2966 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2967 &mpd); 2968 /* 2969 * If we have a contiguous extent of pages and we 2970 * haven't done the I/O yet, map the blocks and submit 2971 * them for I/O. 2972 */ 2973 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2974 if (mpage_da_map_blocks(&mpd) == 0) 2975 mpage_da_submit_io(&mpd); 2976 mpd.io_done = 1; 2977 ret = MPAGE_DA_EXTENT_TAIL; 2978 } 2979 trace_ext4_da_write_pages(inode, &mpd); 2980 wbc->nr_to_write -= mpd.pages_written; 2981 2982 ext4_journal_stop(handle); 2983 2984 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2985 /* commit the transaction which would 2986 * free blocks released in the transaction 2987 * and try again 2988 */ 2989 jbd2_journal_force_commit_nested(sbi->s_journal); 2990 wbc->pages_skipped = pages_skipped; 2991 ret = 0; 2992 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2993 /* 2994 * got one extent now try with 2995 * rest of the pages 2996 */ 2997 pages_written += mpd.pages_written; 2998 wbc->pages_skipped = pages_skipped; 2999 ret = 0; 3000 io_done = 1; 3001 } else if (wbc->nr_to_write) 3002 /* 3003 * There is no more writeout needed 3004 * or we requested for a noblocking writeout 3005 * and we found the device congested 3006 */ 3007 break; 3008 } 3009 if (!io_done && !cycled) { 3010 cycled = 1; 3011 index = 0; 3012 wbc->range_start = index << PAGE_CACHE_SHIFT; 3013 wbc->range_end = mapping->writeback_index - 1; 3014 goto retry; 3015 } 3016 if (pages_skipped != wbc->pages_skipped) 3017 ext4_msg(inode->i_sb, KERN_CRIT, 3018 "This should not happen leaving %s " 3019 "with nr_to_write = %ld ret = %d\n", 3020 __func__, wbc->nr_to_write, ret); 3021 3022 /* Update index */ 3023 index += pages_written; 3024 wbc->range_cyclic = range_cyclic; 3025 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3026 /* 3027 * set the writeback_index so that range_cyclic 3028 * mode will write it back later 3029 */ 3030 mapping->writeback_index = index; 3031 3032 out_writepages: 3033 if (!no_nrwrite_index_update) 3034 wbc->no_nrwrite_index_update = 0; 3035 wbc->nr_to_write -= nr_to_writebump; 3036 wbc->range_start = range_start; 3037 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3038 return ret; 3039 } 3040 3041 #define FALL_BACK_TO_NONDELALLOC 1 3042 static int ext4_nonda_switch(struct super_block *sb) 3043 { 3044 s64 free_blocks, dirty_blocks; 3045 struct ext4_sb_info *sbi = EXT4_SB(sb); 3046 3047 /* 3048 * switch to non delalloc mode if we are running low 3049 * on free block. The free block accounting via percpu 3050 * counters can get slightly wrong with percpu_counter_batch getting 3051 * accumulated on each CPU without updating global counters 3052 * Delalloc need an accurate free block accounting. So switch 3053 * to non delalloc when we are near to error range. 3054 */ 3055 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3056 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3057 if (2 * free_blocks < 3 * dirty_blocks || 3058 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3059 /* 3060 * free block count is less than 150% of dirty blocks 3061 * or free blocks is less than watermark 3062 */ 3063 return 1; 3064 } 3065 /* 3066 * Even if we don't switch but are nearing capacity, 3067 * start pushing delalloc when 1/2 of free blocks are dirty. 3068 */ 3069 if (free_blocks < 2 * dirty_blocks) 3070 writeback_inodes_sb_if_idle(sb); 3071 3072 return 0; 3073 } 3074 3075 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3076 loff_t pos, unsigned len, unsigned flags, 3077 struct page **pagep, void **fsdata) 3078 { 3079 int ret, retries = 0, quota_retries = 0; 3080 struct page *page; 3081 pgoff_t index; 3082 unsigned from, to; 3083 struct inode *inode = mapping->host; 3084 handle_t *handle; 3085 3086 index = pos >> PAGE_CACHE_SHIFT; 3087 from = pos & (PAGE_CACHE_SIZE - 1); 3088 to = from + len; 3089 3090 if (ext4_nonda_switch(inode->i_sb)) { 3091 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3092 return ext4_write_begin(file, mapping, pos, 3093 len, flags, pagep, fsdata); 3094 } 3095 *fsdata = (void *)0; 3096 trace_ext4_da_write_begin(inode, pos, len, flags); 3097 retry: 3098 /* 3099 * With delayed allocation, we don't log the i_disksize update 3100 * if there is delayed block allocation. But we still need 3101 * to journalling the i_disksize update if writes to the end 3102 * of file which has an already mapped buffer. 3103 */ 3104 handle = ext4_journal_start(inode, 1); 3105 if (IS_ERR(handle)) { 3106 ret = PTR_ERR(handle); 3107 goto out; 3108 } 3109 /* We cannot recurse into the filesystem as the transaction is already 3110 * started */ 3111 flags |= AOP_FLAG_NOFS; 3112 3113 page = grab_cache_page_write_begin(mapping, index, flags); 3114 if (!page) { 3115 ext4_journal_stop(handle); 3116 ret = -ENOMEM; 3117 goto out; 3118 } 3119 *pagep = page; 3120 3121 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 3122 ext4_da_get_block_prep); 3123 if (ret < 0) { 3124 unlock_page(page); 3125 ext4_journal_stop(handle); 3126 page_cache_release(page); 3127 /* 3128 * block_write_begin may have instantiated a few blocks 3129 * outside i_size. Trim these off again. Don't need 3130 * i_size_read because we hold i_mutex. 3131 */ 3132 if (pos + len > inode->i_size) 3133 ext4_truncate_failed_write(inode); 3134 } 3135 3136 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3137 goto retry; 3138 3139 if ((ret == -EDQUOT) && 3140 EXT4_I(inode)->i_reserved_meta_blocks && 3141 (quota_retries++ < 3)) { 3142 /* 3143 * Since we often over-estimate the number of meta 3144 * data blocks required, we may sometimes get a 3145 * spurios out of quota error even though there would 3146 * be enough space once we write the data blocks and 3147 * find out how many meta data blocks were _really_ 3148 * required. So try forcing the inode write to see if 3149 * that helps. 3150 */ 3151 write_inode_now(inode, (quota_retries == 3)); 3152 goto retry; 3153 } 3154 out: 3155 return ret; 3156 } 3157 3158 /* 3159 * Check if we should update i_disksize 3160 * when write to the end of file but not require block allocation 3161 */ 3162 static int ext4_da_should_update_i_disksize(struct page *page, 3163 unsigned long offset) 3164 { 3165 struct buffer_head *bh; 3166 struct inode *inode = page->mapping->host; 3167 unsigned int idx; 3168 int i; 3169 3170 bh = page_buffers(page); 3171 idx = offset >> inode->i_blkbits; 3172 3173 for (i = 0; i < idx; i++) 3174 bh = bh->b_this_page; 3175 3176 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3177 return 0; 3178 return 1; 3179 } 3180 3181 static int ext4_da_write_end(struct file *file, 3182 struct address_space *mapping, 3183 loff_t pos, unsigned len, unsigned copied, 3184 struct page *page, void *fsdata) 3185 { 3186 struct inode *inode = mapping->host; 3187 int ret = 0, ret2; 3188 handle_t *handle = ext4_journal_current_handle(); 3189 loff_t new_i_size; 3190 unsigned long start, end; 3191 int write_mode = (int)(unsigned long)fsdata; 3192 3193 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3194 if (ext4_should_order_data(inode)) { 3195 return ext4_ordered_write_end(file, mapping, pos, 3196 len, copied, page, fsdata); 3197 } else if (ext4_should_writeback_data(inode)) { 3198 return ext4_writeback_write_end(file, mapping, pos, 3199 len, copied, page, fsdata); 3200 } else { 3201 BUG(); 3202 } 3203 } 3204 3205 trace_ext4_da_write_end(inode, pos, len, copied); 3206 start = pos & (PAGE_CACHE_SIZE - 1); 3207 end = start + copied - 1; 3208 3209 /* 3210 * generic_write_end() will run mark_inode_dirty() if i_size 3211 * changes. So let's piggyback the i_disksize mark_inode_dirty 3212 * into that. 3213 */ 3214 3215 new_i_size = pos + copied; 3216 if (new_i_size > EXT4_I(inode)->i_disksize) { 3217 if (ext4_da_should_update_i_disksize(page, end)) { 3218 down_write(&EXT4_I(inode)->i_data_sem); 3219 if (new_i_size > EXT4_I(inode)->i_disksize) { 3220 /* 3221 * Updating i_disksize when extending file 3222 * without needing block allocation 3223 */ 3224 if (ext4_should_order_data(inode)) 3225 ret = ext4_jbd2_file_inode(handle, 3226 inode); 3227 3228 EXT4_I(inode)->i_disksize = new_i_size; 3229 } 3230 up_write(&EXT4_I(inode)->i_data_sem); 3231 /* We need to mark inode dirty even if 3232 * new_i_size is less that inode->i_size 3233 * bu greater than i_disksize.(hint delalloc) 3234 */ 3235 ext4_mark_inode_dirty(handle, inode); 3236 } 3237 } 3238 ret2 = generic_write_end(file, mapping, pos, len, copied, 3239 page, fsdata); 3240 copied = ret2; 3241 if (ret2 < 0) 3242 ret = ret2; 3243 ret2 = ext4_journal_stop(handle); 3244 if (!ret) 3245 ret = ret2; 3246 3247 return ret ? ret : copied; 3248 } 3249 3250 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3251 { 3252 /* 3253 * Drop reserved blocks 3254 */ 3255 BUG_ON(!PageLocked(page)); 3256 if (!page_has_buffers(page)) 3257 goto out; 3258 3259 ext4_da_page_release_reservation(page, offset); 3260 3261 out: 3262 ext4_invalidatepage(page, offset); 3263 3264 return; 3265 } 3266 3267 /* 3268 * Force all delayed allocation blocks to be allocated for a given inode. 3269 */ 3270 int ext4_alloc_da_blocks(struct inode *inode) 3271 { 3272 trace_ext4_alloc_da_blocks(inode); 3273 3274 if (!EXT4_I(inode)->i_reserved_data_blocks && 3275 !EXT4_I(inode)->i_reserved_meta_blocks) 3276 return 0; 3277 3278 /* 3279 * We do something simple for now. The filemap_flush() will 3280 * also start triggering a write of the data blocks, which is 3281 * not strictly speaking necessary (and for users of 3282 * laptop_mode, not even desirable). However, to do otherwise 3283 * would require replicating code paths in: 3284 * 3285 * ext4_da_writepages() -> 3286 * write_cache_pages() ---> (via passed in callback function) 3287 * __mpage_da_writepage() --> 3288 * mpage_add_bh_to_extent() 3289 * mpage_da_map_blocks() 3290 * 3291 * The problem is that write_cache_pages(), located in 3292 * mm/page-writeback.c, marks pages clean in preparation for 3293 * doing I/O, which is not desirable if we're not planning on 3294 * doing I/O at all. 3295 * 3296 * We could call write_cache_pages(), and then redirty all of 3297 * the pages by calling redirty_page_for_writeback() but that 3298 * would be ugly in the extreme. So instead we would need to 3299 * replicate parts of the code in the above functions, 3300 * simplifying them becuase we wouldn't actually intend to 3301 * write out the pages, but rather only collect contiguous 3302 * logical block extents, call the multi-block allocator, and 3303 * then update the buffer heads with the block allocations. 3304 * 3305 * For now, though, we'll cheat by calling filemap_flush(), 3306 * which will map the blocks, and start the I/O, but not 3307 * actually wait for the I/O to complete. 3308 */ 3309 return filemap_flush(inode->i_mapping); 3310 } 3311 3312 /* 3313 * bmap() is special. It gets used by applications such as lilo and by 3314 * the swapper to find the on-disk block of a specific piece of data. 3315 * 3316 * Naturally, this is dangerous if the block concerned is still in the 3317 * journal. If somebody makes a swapfile on an ext4 data-journaling 3318 * filesystem and enables swap, then they may get a nasty shock when the 3319 * data getting swapped to that swapfile suddenly gets overwritten by 3320 * the original zero's written out previously to the journal and 3321 * awaiting writeback in the kernel's buffer cache. 3322 * 3323 * So, if we see any bmap calls here on a modified, data-journaled file, 3324 * take extra steps to flush any blocks which might be in the cache. 3325 */ 3326 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3327 { 3328 struct inode *inode = mapping->host; 3329 journal_t *journal; 3330 int err; 3331 3332 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3333 test_opt(inode->i_sb, DELALLOC)) { 3334 /* 3335 * With delalloc we want to sync the file 3336 * so that we can make sure we allocate 3337 * blocks for file 3338 */ 3339 filemap_write_and_wait(mapping); 3340 } 3341 3342 if (EXT4_JOURNAL(inode) && 3343 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3344 /* 3345 * This is a REALLY heavyweight approach, but the use of 3346 * bmap on dirty files is expected to be extremely rare: 3347 * only if we run lilo or swapon on a freshly made file 3348 * do we expect this to happen. 3349 * 3350 * (bmap requires CAP_SYS_RAWIO so this does not 3351 * represent an unprivileged user DOS attack --- we'd be 3352 * in trouble if mortal users could trigger this path at 3353 * will.) 3354 * 3355 * NB. EXT4_STATE_JDATA is not set on files other than 3356 * regular files. If somebody wants to bmap a directory 3357 * or symlink and gets confused because the buffer 3358 * hasn't yet been flushed to disk, they deserve 3359 * everything they get. 3360 */ 3361 3362 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3363 journal = EXT4_JOURNAL(inode); 3364 jbd2_journal_lock_updates(journal); 3365 err = jbd2_journal_flush(journal); 3366 jbd2_journal_unlock_updates(journal); 3367 3368 if (err) 3369 return 0; 3370 } 3371 3372 return generic_block_bmap(mapping, block, ext4_get_block); 3373 } 3374 3375 static int ext4_readpage(struct file *file, struct page *page) 3376 { 3377 return mpage_readpage(page, ext4_get_block); 3378 } 3379 3380 static int 3381 ext4_readpages(struct file *file, struct address_space *mapping, 3382 struct list_head *pages, unsigned nr_pages) 3383 { 3384 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3385 } 3386 3387 static void ext4_free_io_end(ext4_io_end_t *io) 3388 { 3389 BUG_ON(!io); 3390 if (io->page) 3391 put_page(io->page); 3392 iput(io->inode); 3393 kfree(io); 3394 } 3395 3396 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3397 { 3398 struct buffer_head *head, *bh; 3399 unsigned int curr_off = 0; 3400 3401 if (!page_has_buffers(page)) 3402 return; 3403 head = bh = page_buffers(page); 3404 do { 3405 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3406 && bh->b_private) { 3407 ext4_free_io_end(bh->b_private); 3408 bh->b_private = NULL; 3409 bh->b_end_io = NULL; 3410 } 3411 curr_off = curr_off + bh->b_size; 3412 bh = bh->b_this_page; 3413 } while (bh != head); 3414 } 3415 3416 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3417 { 3418 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3419 3420 /* 3421 * free any io_end structure allocated for buffers to be discarded 3422 */ 3423 if (ext4_should_dioread_nolock(page->mapping->host)) 3424 ext4_invalidatepage_free_endio(page, offset); 3425 /* 3426 * If it's a full truncate we just forget about the pending dirtying 3427 */ 3428 if (offset == 0) 3429 ClearPageChecked(page); 3430 3431 if (journal) 3432 jbd2_journal_invalidatepage(journal, page, offset); 3433 else 3434 block_invalidatepage(page, offset); 3435 } 3436 3437 static int ext4_releasepage(struct page *page, gfp_t wait) 3438 { 3439 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3440 3441 WARN_ON(PageChecked(page)); 3442 if (!page_has_buffers(page)) 3443 return 0; 3444 if (journal) 3445 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3446 else 3447 return try_to_free_buffers(page); 3448 } 3449 3450 /* 3451 * O_DIRECT for ext3 (or indirect map) based files 3452 * 3453 * If the O_DIRECT write will extend the file then add this inode to the 3454 * orphan list. So recovery will truncate it back to the original size 3455 * if the machine crashes during the write. 3456 * 3457 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3458 * crashes then stale disk data _may_ be exposed inside the file. But current 3459 * VFS code falls back into buffered path in that case so we are safe. 3460 */ 3461 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3462 const struct iovec *iov, loff_t offset, 3463 unsigned long nr_segs) 3464 { 3465 struct file *file = iocb->ki_filp; 3466 struct inode *inode = file->f_mapping->host; 3467 struct ext4_inode_info *ei = EXT4_I(inode); 3468 handle_t *handle; 3469 ssize_t ret; 3470 int orphan = 0; 3471 size_t count = iov_length(iov, nr_segs); 3472 int retries = 0; 3473 3474 if (rw == WRITE) { 3475 loff_t final_size = offset + count; 3476 3477 if (final_size > inode->i_size) { 3478 /* Credits for sb + inode write */ 3479 handle = ext4_journal_start(inode, 2); 3480 if (IS_ERR(handle)) { 3481 ret = PTR_ERR(handle); 3482 goto out; 3483 } 3484 ret = ext4_orphan_add(handle, inode); 3485 if (ret) { 3486 ext4_journal_stop(handle); 3487 goto out; 3488 } 3489 orphan = 1; 3490 ei->i_disksize = inode->i_size; 3491 ext4_journal_stop(handle); 3492 } 3493 } 3494 3495 retry: 3496 if (rw == READ && ext4_should_dioread_nolock(inode)) 3497 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 3498 inode->i_sb->s_bdev, iov, 3499 offset, nr_segs, 3500 ext4_get_block, NULL); 3501 else 3502 ret = blockdev_direct_IO(rw, iocb, inode, 3503 inode->i_sb->s_bdev, iov, 3504 offset, nr_segs, 3505 ext4_get_block, NULL); 3506 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3507 goto retry; 3508 3509 if (orphan) { 3510 int err; 3511 3512 /* Credits for sb + inode write */ 3513 handle = ext4_journal_start(inode, 2); 3514 if (IS_ERR(handle)) { 3515 /* This is really bad luck. We've written the data 3516 * but cannot extend i_size. Bail out and pretend 3517 * the write failed... */ 3518 ret = PTR_ERR(handle); 3519 if (inode->i_nlink) 3520 ext4_orphan_del(NULL, inode); 3521 3522 goto out; 3523 } 3524 if (inode->i_nlink) 3525 ext4_orphan_del(handle, inode); 3526 if (ret > 0) { 3527 loff_t end = offset + ret; 3528 if (end > inode->i_size) { 3529 ei->i_disksize = end; 3530 i_size_write(inode, end); 3531 /* 3532 * We're going to return a positive `ret' 3533 * here due to non-zero-length I/O, so there's 3534 * no way of reporting error returns from 3535 * ext4_mark_inode_dirty() to userspace. So 3536 * ignore it. 3537 */ 3538 ext4_mark_inode_dirty(handle, inode); 3539 } 3540 } 3541 err = ext4_journal_stop(handle); 3542 if (ret == 0) 3543 ret = err; 3544 } 3545 out: 3546 return ret; 3547 } 3548 3549 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3550 struct buffer_head *bh_result, int create) 3551 { 3552 handle_t *handle = ext4_journal_current_handle(); 3553 int ret = 0; 3554 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 3555 int dio_credits; 3556 int started = 0; 3557 3558 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3559 inode->i_ino, create); 3560 /* 3561 * ext4_get_block in prepare for a DIO write or buffer write. 3562 * We allocate an uinitialized extent if blocks haven't been allocated. 3563 * The extent will be converted to initialized after IO complete. 3564 */ 3565 create = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3566 3567 if (!handle) { 3568 if (max_blocks > DIO_MAX_BLOCKS) 3569 max_blocks = DIO_MAX_BLOCKS; 3570 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 3571 handle = ext4_journal_start(inode, dio_credits); 3572 if (IS_ERR(handle)) { 3573 ret = PTR_ERR(handle); 3574 goto out; 3575 } 3576 started = 1; 3577 } 3578 3579 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 3580 create); 3581 if (ret > 0) { 3582 bh_result->b_size = (ret << inode->i_blkbits); 3583 ret = 0; 3584 } 3585 if (started) 3586 ext4_journal_stop(handle); 3587 out: 3588 return ret; 3589 } 3590 3591 static void dump_completed_IO(struct inode * inode) 3592 { 3593 #ifdef EXT4_DEBUG 3594 struct list_head *cur, *before, *after; 3595 ext4_io_end_t *io, *io0, *io1; 3596 unsigned long flags; 3597 3598 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){ 3599 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino); 3600 return; 3601 } 3602 3603 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino); 3604 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3605 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){ 3606 cur = &io->list; 3607 before = cur->prev; 3608 io0 = container_of(before, ext4_io_end_t, list); 3609 after = cur->next; 3610 io1 = container_of(after, ext4_io_end_t, list); 3611 3612 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3613 io, inode->i_ino, io0, io1); 3614 } 3615 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3616 #endif 3617 } 3618 3619 /* 3620 * check a range of space and convert unwritten extents to written. 3621 */ 3622 static int ext4_end_io_nolock(ext4_io_end_t *io) 3623 { 3624 struct inode *inode = io->inode; 3625 loff_t offset = io->offset; 3626 ssize_t size = io->size; 3627 int ret = 0; 3628 3629 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 3630 "list->prev 0x%p\n", 3631 io, inode->i_ino, io->list.next, io->list.prev); 3632 3633 if (list_empty(&io->list)) 3634 return ret; 3635 3636 if (io->flag != EXT4_IO_UNWRITTEN) 3637 return ret; 3638 3639 ret = ext4_convert_unwritten_extents(inode, offset, size); 3640 if (ret < 0) { 3641 printk(KERN_EMERG "%s: failed to convert unwritten" 3642 "extents to written extents, error is %d" 3643 " io is still on inode %lu aio dio list\n", 3644 __func__, ret, inode->i_ino); 3645 return ret; 3646 } 3647 3648 /* clear the DIO AIO unwritten flag */ 3649 io->flag = 0; 3650 return ret; 3651 } 3652 3653 /* 3654 * work on completed aio dio IO, to convert unwritten extents to extents 3655 */ 3656 static void ext4_end_io_work(struct work_struct *work) 3657 { 3658 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3659 struct inode *inode = io->inode; 3660 struct ext4_inode_info *ei = EXT4_I(inode); 3661 unsigned long flags; 3662 int ret; 3663 3664 mutex_lock(&inode->i_mutex); 3665 ret = ext4_end_io_nolock(io); 3666 if (ret < 0) { 3667 mutex_unlock(&inode->i_mutex); 3668 return; 3669 } 3670 3671 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3672 if (!list_empty(&io->list)) 3673 list_del_init(&io->list); 3674 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3675 mutex_unlock(&inode->i_mutex); 3676 ext4_free_io_end(io); 3677 } 3678 3679 /* 3680 * This function is called from ext4_sync_file(). 3681 * 3682 * When IO is completed, the work to convert unwritten extents to 3683 * written is queued on workqueue but may not get immediately 3684 * scheduled. When fsync is called, we need to ensure the 3685 * conversion is complete before fsync returns. 3686 * The inode keeps track of a list of pending/completed IO that 3687 * might needs to do the conversion. This function walks through 3688 * the list and convert the related unwritten extents for completed IO 3689 * to written. 3690 * The function return the number of pending IOs on success. 3691 */ 3692 int flush_completed_IO(struct inode *inode) 3693 { 3694 ext4_io_end_t *io; 3695 struct ext4_inode_info *ei = EXT4_I(inode); 3696 unsigned long flags; 3697 int ret = 0; 3698 int ret2 = 0; 3699 3700 if (list_empty(&ei->i_completed_io_list)) 3701 return ret; 3702 3703 dump_completed_IO(inode); 3704 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3705 while (!list_empty(&ei->i_completed_io_list)){ 3706 io = list_entry(ei->i_completed_io_list.next, 3707 ext4_io_end_t, list); 3708 /* 3709 * Calling ext4_end_io_nolock() to convert completed 3710 * IO to written. 3711 * 3712 * When ext4_sync_file() is called, run_queue() may already 3713 * about to flush the work corresponding to this io structure. 3714 * It will be upset if it founds the io structure related 3715 * to the work-to-be schedule is freed. 3716 * 3717 * Thus we need to keep the io structure still valid here after 3718 * convertion finished. The io structure has a flag to 3719 * avoid double converting from both fsync and background work 3720 * queue work. 3721 */ 3722 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3723 ret = ext4_end_io_nolock(io); 3724 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3725 if (ret < 0) 3726 ret2 = ret; 3727 else 3728 list_del_init(&io->list); 3729 } 3730 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3731 return (ret2 < 0) ? ret2 : 0; 3732 } 3733 3734 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags) 3735 { 3736 ext4_io_end_t *io = NULL; 3737 3738 io = kmalloc(sizeof(*io), flags); 3739 3740 if (io) { 3741 igrab(inode); 3742 io->inode = inode; 3743 io->flag = 0; 3744 io->offset = 0; 3745 io->size = 0; 3746 io->page = NULL; 3747 INIT_WORK(&io->work, ext4_end_io_work); 3748 INIT_LIST_HEAD(&io->list); 3749 } 3750 3751 return io; 3752 } 3753 3754 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3755 ssize_t size, void *private) 3756 { 3757 ext4_io_end_t *io_end = iocb->private; 3758 struct workqueue_struct *wq; 3759 unsigned long flags; 3760 struct ext4_inode_info *ei; 3761 3762 /* if not async direct IO or dio with 0 bytes write, just return */ 3763 if (!io_end || !size) 3764 return; 3765 3766 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3767 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3768 iocb->private, io_end->inode->i_ino, iocb, offset, 3769 size); 3770 3771 /* if not aio dio with unwritten extents, just free io and return */ 3772 if (io_end->flag != EXT4_IO_UNWRITTEN){ 3773 ext4_free_io_end(io_end); 3774 iocb->private = NULL; 3775 return; 3776 } 3777 3778 io_end->offset = offset; 3779 io_end->size = size; 3780 io_end->flag = EXT4_IO_UNWRITTEN; 3781 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3782 3783 /* queue the work to convert unwritten extents to written */ 3784 queue_work(wq, &io_end->work); 3785 3786 /* Add the io_end to per-inode completed aio dio list*/ 3787 ei = EXT4_I(io_end->inode); 3788 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3789 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3790 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3791 iocb->private = NULL; 3792 } 3793 3794 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3795 { 3796 ext4_io_end_t *io_end = bh->b_private; 3797 struct workqueue_struct *wq; 3798 struct inode *inode; 3799 unsigned long flags; 3800 3801 if (!test_clear_buffer_uninit(bh) || !io_end) 3802 goto out; 3803 3804 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3805 printk("sb umounted, discard end_io request for inode %lu\n", 3806 io_end->inode->i_ino); 3807 ext4_free_io_end(io_end); 3808 goto out; 3809 } 3810 3811 io_end->flag = EXT4_IO_UNWRITTEN; 3812 inode = io_end->inode; 3813 3814 /* Add the io_end to per-inode completed io list*/ 3815 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3816 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3817 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3818 3819 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3820 /* queue the work to convert unwritten extents to written */ 3821 queue_work(wq, &io_end->work); 3822 out: 3823 bh->b_private = NULL; 3824 bh->b_end_io = NULL; 3825 clear_buffer_uninit(bh); 3826 end_buffer_async_write(bh, uptodate); 3827 } 3828 3829 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3830 { 3831 ext4_io_end_t *io_end; 3832 struct page *page = bh->b_page; 3833 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3834 size_t size = bh->b_size; 3835 3836 retry: 3837 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3838 if (!io_end) { 3839 if (printk_ratelimit()) 3840 printk(KERN_WARNING "%s: allocation fail\n", __func__); 3841 schedule(); 3842 goto retry; 3843 } 3844 io_end->offset = offset; 3845 io_end->size = size; 3846 /* 3847 * We need to hold a reference to the page to make sure it 3848 * doesn't get evicted before ext4_end_io_work() has a chance 3849 * to convert the extent from written to unwritten. 3850 */ 3851 io_end->page = page; 3852 get_page(io_end->page); 3853 3854 bh->b_private = io_end; 3855 bh->b_end_io = ext4_end_io_buffer_write; 3856 return 0; 3857 } 3858 3859 /* 3860 * For ext4 extent files, ext4 will do direct-io write to holes, 3861 * preallocated extents, and those write extend the file, no need to 3862 * fall back to buffered IO. 3863 * 3864 * For holes, we fallocate those blocks, mark them as unintialized 3865 * If those blocks were preallocated, we mark sure they are splited, but 3866 * still keep the range to write as unintialized. 3867 * 3868 * The unwrritten extents will be converted to written when DIO is completed. 3869 * For async direct IO, since the IO may still pending when return, we 3870 * set up an end_io call back function, which will do the convertion 3871 * when async direct IO completed. 3872 * 3873 * If the O_DIRECT write will extend the file then add this inode to the 3874 * orphan list. So recovery will truncate it back to the original size 3875 * if the machine crashes during the write. 3876 * 3877 */ 3878 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3879 const struct iovec *iov, loff_t offset, 3880 unsigned long nr_segs) 3881 { 3882 struct file *file = iocb->ki_filp; 3883 struct inode *inode = file->f_mapping->host; 3884 ssize_t ret; 3885 size_t count = iov_length(iov, nr_segs); 3886 3887 loff_t final_size = offset + count; 3888 if (rw == WRITE && final_size <= inode->i_size) { 3889 /* 3890 * We could direct write to holes and fallocate. 3891 * 3892 * Allocated blocks to fill the hole are marked as uninitialized 3893 * to prevent paralel buffered read to expose the stale data 3894 * before DIO complete the data IO. 3895 * 3896 * As to previously fallocated extents, ext4 get_block 3897 * will just simply mark the buffer mapped but still 3898 * keep the extents uninitialized. 3899 * 3900 * for non AIO case, we will convert those unwritten extents 3901 * to written after return back from blockdev_direct_IO. 3902 * 3903 * for async DIO, the conversion needs to be defered when 3904 * the IO is completed. The ext4 end_io callback function 3905 * will be called to take care of the conversion work. 3906 * Here for async case, we allocate an io_end structure to 3907 * hook to the iocb. 3908 */ 3909 iocb->private = NULL; 3910 EXT4_I(inode)->cur_aio_dio = NULL; 3911 if (!is_sync_kiocb(iocb)) { 3912 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3913 if (!iocb->private) 3914 return -ENOMEM; 3915 /* 3916 * we save the io structure for current async 3917 * direct IO, so that later ext4_get_blocks() 3918 * could flag the io structure whether there 3919 * is a unwritten extents needs to be converted 3920 * when IO is completed. 3921 */ 3922 EXT4_I(inode)->cur_aio_dio = iocb->private; 3923 } 3924 3925 ret = blockdev_direct_IO(rw, iocb, inode, 3926 inode->i_sb->s_bdev, iov, 3927 offset, nr_segs, 3928 ext4_get_block_write, 3929 ext4_end_io_dio); 3930 if (iocb->private) 3931 EXT4_I(inode)->cur_aio_dio = NULL; 3932 /* 3933 * The io_end structure takes a reference to the inode, 3934 * that structure needs to be destroyed and the 3935 * reference to the inode need to be dropped, when IO is 3936 * complete, even with 0 byte write, or failed. 3937 * 3938 * In the successful AIO DIO case, the io_end structure will be 3939 * desctroyed and the reference to the inode will be dropped 3940 * after the end_io call back function is called. 3941 * 3942 * In the case there is 0 byte write, or error case, since 3943 * VFS direct IO won't invoke the end_io call back function, 3944 * we need to free the end_io structure here. 3945 */ 3946 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3947 ext4_free_io_end(iocb->private); 3948 iocb->private = NULL; 3949 } else if (ret > 0 && ext4_test_inode_state(inode, 3950 EXT4_STATE_DIO_UNWRITTEN)) { 3951 int err; 3952 /* 3953 * for non AIO case, since the IO is already 3954 * completed, we could do the convertion right here 3955 */ 3956 err = ext4_convert_unwritten_extents(inode, 3957 offset, ret); 3958 if (err < 0) 3959 ret = err; 3960 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3961 } 3962 return ret; 3963 } 3964 3965 /* for write the the end of file case, we fall back to old way */ 3966 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3967 } 3968 3969 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3970 const struct iovec *iov, loff_t offset, 3971 unsigned long nr_segs) 3972 { 3973 struct file *file = iocb->ki_filp; 3974 struct inode *inode = file->f_mapping->host; 3975 3976 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3977 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3978 3979 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3980 } 3981 3982 /* 3983 * Pages can be marked dirty completely asynchronously from ext4's journalling 3984 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3985 * much here because ->set_page_dirty is called under VFS locks. The page is 3986 * not necessarily locked. 3987 * 3988 * We cannot just dirty the page and leave attached buffers clean, because the 3989 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3990 * or jbddirty because all the journalling code will explode. 3991 * 3992 * So what we do is to mark the page "pending dirty" and next time writepage 3993 * is called, propagate that into the buffers appropriately. 3994 */ 3995 static int ext4_journalled_set_page_dirty(struct page *page) 3996 { 3997 SetPageChecked(page); 3998 return __set_page_dirty_nobuffers(page); 3999 } 4000 4001 static const struct address_space_operations ext4_ordered_aops = { 4002 .readpage = ext4_readpage, 4003 .readpages = ext4_readpages, 4004 .writepage = ext4_writepage, 4005 .sync_page = block_sync_page, 4006 .write_begin = ext4_write_begin, 4007 .write_end = ext4_ordered_write_end, 4008 .bmap = ext4_bmap, 4009 .invalidatepage = ext4_invalidatepage, 4010 .releasepage = ext4_releasepage, 4011 .direct_IO = ext4_direct_IO, 4012 .migratepage = buffer_migrate_page, 4013 .is_partially_uptodate = block_is_partially_uptodate, 4014 .error_remove_page = generic_error_remove_page, 4015 }; 4016 4017 static const struct address_space_operations ext4_writeback_aops = { 4018 .readpage = ext4_readpage, 4019 .readpages = ext4_readpages, 4020 .writepage = ext4_writepage, 4021 .sync_page = block_sync_page, 4022 .write_begin = ext4_write_begin, 4023 .write_end = ext4_writeback_write_end, 4024 .bmap = ext4_bmap, 4025 .invalidatepage = ext4_invalidatepage, 4026 .releasepage = ext4_releasepage, 4027 .direct_IO = ext4_direct_IO, 4028 .migratepage = buffer_migrate_page, 4029 .is_partially_uptodate = block_is_partially_uptodate, 4030 .error_remove_page = generic_error_remove_page, 4031 }; 4032 4033 static const struct address_space_operations ext4_journalled_aops = { 4034 .readpage = ext4_readpage, 4035 .readpages = ext4_readpages, 4036 .writepage = ext4_writepage, 4037 .sync_page = block_sync_page, 4038 .write_begin = ext4_write_begin, 4039 .write_end = ext4_journalled_write_end, 4040 .set_page_dirty = ext4_journalled_set_page_dirty, 4041 .bmap = ext4_bmap, 4042 .invalidatepage = ext4_invalidatepage, 4043 .releasepage = ext4_releasepage, 4044 .is_partially_uptodate = block_is_partially_uptodate, 4045 .error_remove_page = generic_error_remove_page, 4046 }; 4047 4048 static const struct address_space_operations ext4_da_aops = { 4049 .readpage = ext4_readpage, 4050 .readpages = ext4_readpages, 4051 .writepage = ext4_writepage, 4052 .writepages = ext4_da_writepages, 4053 .sync_page = block_sync_page, 4054 .write_begin = ext4_da_write_begin, 4055 .write_end = ext4_da_write_end, 4056 .bmap = ext4_bmap, 4057 .invalidatepage = ext4_da_invalidatepage, 4058 .releasepage = ext4_releasepage, 4059 .direct_IO = ext4_direct_IO, 4060 .migratepage = buffer_migrate_page, 4061 .is_partially_uptodate = block_is_partially_uptodate, 4062 .error_remove_page = generic_error_remove_page, 4063 }; 4064 4065 void ext4_set_aops(struct inode *inode) 4066 { 4067 if (ext4_should_order_data(inode) && 4068 test_opt(inode->i_sb, DELALLOC)) 4069 inode->i_mapping->a_ops = &ext4_da_aops; 4070 else if (ext4_should_order_data(inode)) 4071 inode->i_mapping->a_ops = &ext4_ordered_aops; 4072 else if (ext4_should_writeback_data(inode) && 4073 test_opt(inode->i_sb, DELALLOC)) 4074 inode->i_mapping->a_ops = &ext4_da_aops; 4075 else if (ext4_should_writeback_data(inode)) 4076 inode->i_mapping->a_ops = &ext4_writeback_aops; 4077 else 4078 inode->i_mapping->a_ops = &ext4_journalled_aops; 4079 } 4080 4081 /* 4082 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4083 * up to the end of the block which corresponds to `from'. 4084 * This required during truncate. We need to physically zero the tail end 4085 * of that block so it doesn't yield old data if the file is later grown. 4086 */ 4087 int ext4_block_truncate_page(handle_t *handle, 4088 struct address_space *mapping, loff_t from) 4089 { 4090 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 4091 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4092 unsigned blocksize, length, pos; 4093 ext4_lblk_t iblock; 4094 struct inode *inode = mapping->host; 4095 struct buffer_head *bh; 4096 struct page *page; 4097 int err = 0; 4098 4099 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4100 mapping_gfp_mask(mapping) & ~__GFP_FS); 4101 if (!page) 4102 return -EINVAL; 4103 4104 blocksize = inode->i_sb->s_blocksize; 4105 length = blocksize - (offset & (blocksize - 1)); 4106 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4107 4108 /* 4109 * For "nobh" option, we can only work if we don't need to 4110 * read-in the page - otherwise we create buffers to do the IO. 4111 */ 4112 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 4113 ext4_should_writeback_data(inode) && PageUptodate(page)) { 4114 zero_user(page, offset, length); 4115 set_page_dirty(page); 4116 goto unlock; 4117 } 4118 4119 if (!page_has_buffers(page)) 4120 create_empty_buffers(page, blocksize, 0); 4121 4122 /* Find the buffer that contains "offset" */ 4123 bh = page_buffers(page); 4124 pos = blocksize; 4125 while (offset >= pos) { 4126 bh = bh->b_this_page; 4127 iblock++; 4128 pos += blocksize; 4129 } 4130 4131 err = 0; 4132 if (buffer_freed(bh)) { 4133 BUFFER_TRACE(bh, "freed: skip"); 4134 goto unlock; 4135 } 4136 4137 if (!buffer_mapped(bh)) { 4138 BUFFER_TRACE(bh, "unmapped"); 4139 ext4_get_block(inode, iblock, bh, 0); 4140 /* unmapped? It's a hole - nothing to do */ 4141 if (!buffer_mapped(bh)) { 4142 BUFFER_TRACE(bh, "still unmapped"); 4143 goto unlock; 4144 } 4145 } 4146 4147 /* Ok, it's mapped. Make sure it's up-to-date */ 4148 if (PageUptodate(page)) 4149 set_buffer_uptodate(bh); 4150 4151 if (!buffer_uptodate(bh)) { 4152 err = -EIO; 4153 ll_rw_block(READ, 1, &bh); 4154 wait_on_buffer(bh); 4155 /* Uhhuh. Read error. Complain and punt. */ 4156 if (!buffer_uptodate(bh)) 4157 goto unlock; 4158 } 4159 4160 if (ext4_should_journal_data(inode)) { 4161 BUFFER_TRACE(bh, "get write access"); 4162 err = ext4_journal_get_write_access(handle, bh); 4163 if (err) 4164 goto unlock; 4165 } 4166 4167 zero_user(page, offset, length); 4168 4169 BUFFER_TRACE(bh, "zeroed end of block"); 4170 4171 err = 0; 4172 if (ext4_should_journal_data(inode)) { 4173 err = ext4_handle_dirty_metadata(handle, inode, bh); 4174 } else { 4175 if (ext4_should_order_data(inode)) 4176 err = ext4_jbd2_file_inode(handle, inode); 4177 mark_buffer_dirty(bh); 4178 } 4179 4180 unlock: 4181 unlock_page(page); 4182 page_cache_release(page); 4183 return err; 4184 } 4185 4186 /* 4187 * Probably it should be a library function... search for first non-zero word 4188 * or memcmp with zero_page, whatever is better for particular architecture. 4189 * Linus? 4190 */ 4191 static inline int all_zeroes(__le32 *p, __le32 *q) 4192 { 4193 while (p < q) 4194 if (*p++) 4195 return 0; 4196 return 1; 4197 } 4198 4199 /** 4200 * ext4_find_shared - find the indirect blocks for partial truncation. 4201 * @inode: inode in question 4202 * @depth: depth of the affected branch 4203 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4204 * @chain: place to store the pointers to partial indirect blocks 4205 * @top: place to the (detached) top of branch 4206 * 4207 * This is a helper function used by ext4_truncate(). 4208 * 4209 * When we do truncate() we may have to clean the ends of several 4210 * indirect blocks but leave the blocks themselves alive. Block is 4211 * partially truncated if some data below the new i_size is refered 4212 * from it (and it is on the path to the first completely truncated 4213 * data block, indeed). We have to free the top of that path along 4214 * with everything to the right of the path. Since no allocation 4215 * past the truncation point is possible until ext4_truncate() 4216 * finishes, we may safely do the latter, but top of branch may 4217 * require special attention - pageout below the truncation point 4218 * might try to populate it. 4219 * 4220 * We atomically detach the top of branch from the tree, store the 4221 * block number of its root in *@top, pointers to buffer_heads of 4222 * partially truncated blocks - in @chain[].bh and pointers to 4223 * their last elements that should not be removed - in 4224 * @chain[].p. Return value is the pointer to last filled element 4225 * of @chain. 4226 * 4227 * The work left to caller to do the actual freeing of subtrees: 4228 * a) free the subtree starting from *@top 4229 * b) free the subtrees whose roots are stored in 4230 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4231 * c) free the subtrees growing from the inode past the @chain[0]. 4232 * (no partially truncated stuff there). */ 4233 4234 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4235 ext4_lblk_t offsets[4], Indirect chain[4], 4236 __le32 *top) 4237 { 4238 Indirect *partial, *p; 4239 int k, err; 4240 4241 *top = 0; 4242 /* Make k index the deepest non-null offset + 1 */ 4243 for (k = depth; k > 1 && !offsets[k-1]; k--) 4244 ; 4245 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4246 /* Writer: pointers */ 4247 if (!partial) 4248 partial = chain + k-1; 4249 /* 4250 * If the branch acquired continuation since we've looked at it - 4251 * fine, it should all survive and (new) top doesn't belong to us. 4252 */ 4253 if (!partial->key && *partial->p) 4254 /* Writer: end */ 4255 goto no_top; 4256 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4257 ; 4258 /* 4259 * OK, we've found the last block that must survive. The rest of our 4260 * branch should be detached before unlocking. However, if that rest 4261 * of branch is all ours and does not grow immediately from the inode 4262 * it's easier to cheat and just decrement partial->p. 4263 */ 4264 if (p == chain + k - 1 && p > chain) { 4265 p->p--; 4266 } else { 4267 *top = *p->p; 4268 /* Nope, don't do this in ext4. Must leave the tree intact */ 4269 #if 0 4270 *p->p = 0; 4271 #endif 4272 } 4273 /* Writer: end */ 4274 4275 while (partial > p) { 4276 brelse(partial->bh); 4277 partial--; 4278 } 4279 no_top: 4280 return partial; 4281 } 4282 4283 /* 4284 * Zero a number of block pointers in either an inode or an indirect block. 4285 * If we restart the transaction we must again get write access to the 4286 * indirect block for further modification. 4287 * 4288 * We release `count' blocks on disk, but (last - first) may be greater 4289 * than `count' because there can be holes in there. 4290 */ 4291 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4292 struct buffer_head *bh, 4293 ext4_fsblk_t block_to_free, 4294 unsigned long count, __le32 *first, 4295 __le32 *last) 4296 { 4297 __le32 *p; 4298 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4299 4300 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4301 flags |= EXT4_FREE_BLOCKS_METADATA; 4302 4303 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4304 count)) { 4305 ext4_error(inode->i_sb, "inode #%lu: " 4306 "attempt to clear blocks %llu len %lu, invalid", 4307 inode->i_ino, (unsigned long long) block_to_free, 4308 count); 4309 return 1; 4310 } 4311 4312 if (try_to_extend_transaction(handle, inode)) { 4313 if (bh) { 4314 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4315 ext4_handle_dirty_metadata(handle, inode, bh); 4316 } 4317 ext4_mark_inode_dirty(handle, inode); 4318 ext4_truncate_restart_trans(handle, inode, 4319 blocks_for_truncate(inode)); 4320 if (bh) { 4321 BUFFER_TRACE(bh, "retaking write access"); 4322 ext4_journal_get_write_access(handle, bh); 4323 } 4324 } 4325 4326 for (p = first; p < last; p++) 4327 *p = 0; 4328 4329 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4330 return 0; 4331 } 4332 4333 /** 4334 * ext4_free_data - free a list of data blocks 4335 * @handle: handle for this transaction 4336 * @inode: inode we are dealing with 4337 * @this_bh: indirect buffer_head which contains *@first and *@last 4338 * @first: array of block numbers 4339 * @last: points immediately past the end of array 4340 * 4341 * We are freeing all blocks refered from that array (numbers are stored as 4342 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4343 * 4344 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4345 * blocks are contiguous then releasing them at one time will only affect one 4346 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4347 * actually use a lot of journal space. 4348 * 4349 * @this_bh will be %NULL if @first and @last point into the inode's direct 4350 * block pointers. 4351 */ 4352 static void ext4_free_data(handle_t *handle, struct inode *inode, 4353 struct buffer_head *this_bh, 4354 __le32 *first, __le32 *last) 4355 { 4356 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4357 unsigned long count = 0; /* Number of blocks in the run */ 4358 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4359 corresponding to 4360 block_to_free */ 4361 ext4_fsblk_t nr; /* Current block # */ 4362 __le32 *p; /* Pointer into inode/ind 4363 for current block */ 4364 int err; 4365 4366 if (this_bh) { /* For indirect block */ 4367 BUFFER_TRACE(this_bh, "get_write_access"); 4368 err = ext4_journal_get_write_access(handle, this_bh); 4369 /* Important: if we can't update the indirect pointers 4370 * to the blocks, we can't free them. */ 4371 if (err) 4372 return; 4373 } 4374 4375 for (p = first; p < last; p++) { 4376 nr = le32_to_cpu(*p); 4377 if (nr) { 4378 /* accumulate blocks to free if they're contiguous */ 4379 if (count == 0) { 4380 block_to_free = nr; 4381 block_to_free_p = p; 4382 count = 1; 4383 } else if (nr == block_to_free + count) { 4384 count++; 4385 } else { 4386 if (ext4_clear_blocks(handle, inode, this_bh, 4387 block_to_free, count, 4388 block_to_free_p, p)) 4389 break; 4390 block_to_free = nr; 4391 block_to_free_p = p; 4392 count = 1; 4393 } 4394 } 4395 } 4396 4397 if (count > 0) 4398 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4399 count, block_to_free_p, p); 4400 4401 if (this_bh) { 4402 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4403 4404 /* 4405 * The buffer head should have an attached journal head at this 4406 * point. However, if the data is corrupted and an indirect 4407 * block pointed to itself, it would have been detached when 4408 * the block was cleared. Check for this instead of OOPSing. 4409 */ 4410 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4411 ext4_handle_dirty_metadata(handle, inode, this_bh); 4412 else 4413 ext4_error(inode->i_sb, 4414 "circular indirect block detected, " 4415 "inode=%lu, block=%llu", 4416 inode->i_ino, 4417 (unsigned long long) this_bh->b_blocknr); 4418 } 4419 } 4420 4421 /** 4422 * ext4_free_branches - free an array of branches 4423 * @handle: JBD handle for this transaction 4424 * @inode: inode we are dealing with 4425 * @parent_bh: the buffer_head which contains *@first and *@last 4426 * @first: array of block numbers 4427 * @last: pointer immediately past the end of array 4428 * @depth: depth of the branches to free 4429 * 4430 * We are freeing all blocks refered from these branches (numbers are 4431 * stored as little-endian 32-bit) and updating @inode->i_blocks 4432 * appropriately. 4433 */ 4434 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4435 struct buffer_head *parent_bh, 4436 __le32 *first, __le32 *last, int depth) 4437 { 4438 ext4_fsblk_t nr; 4439 __le32 *p; 4440 4441 if (ext4_handle_is_aborted(handle)) 4442 return; 4443 4444 if (depth--) { 4445 struct buffer_head *bh; 4446 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4447 p = last; 4448 while (--p >= first) { 4449 nr = le32_to_cpu(*p); 4450 if (!nr) 4451 continue; /* A hole */ 4452 4453 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4454 nr, 1)) { 4455 ext4_error(inode->i_sb, 4456 "indirect mapped block in inode " 4457 "#%lu invalid (level %d, blk #%lu)", 4458 inode->i_ino, depth, 4459 (unsigned long) nr); 4460 break; 4461 } 4462 4463 /* Go read the buffer for the next level down */ 4464 bh = sb_bread(inode->i_sb, nr); 4465 4466 /* 4467 * A read failure? Report error and clear slot 4468 * (should be rare). 4469 */ 4470 if (!bh) { 4471 ext4_error(inode->i_sb, 4472 "Read failure, inode=%lu, block=%llu", 4473 inode->i_ino, nr); 4474 continue; 4475 } 4476 4477 /* This zaps the entire block. Bottom up. */ 4478 BUFFER_TRACE(bh, "free child branches"); 4479 ext4_free_branches(handle, inode, bh, 4480 (__le32 *) bh->b_data, 4481 (__le32 *) bh->b_data + addr_per_block, 4482 depth); 4483 4484 /* 4485 * We've probably journalled the indirect block several 4486 * times during the truncate. But it's no longer 4487 * needed and we now drop it from the transaction via 4488 * jbd2_journal_revoke(). 4489 * 4490 * That's easy if it's exclusively part of this 4491 * transaction. But if it's part of the committing 4492 * transaction then jbd2_journal_forget() will simply 4493 * brelse() it. That means that if the underlying 4494 * block is reallocated in ext4_get_block(), 4495 * unmap_underlying_metadata() will find this block 4496 * and will try to get rid of it. damn, damn. 4497 * 4498 * If this block has already been committed to the 4499 * journal, a revoke record will be written. And 4500 * revoke records must be emitted *before* clearing 4501 * this block's bit in the bitmaps. 4502 */ 4503 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 4504 4505 /* 4506 * Everything below this this pointer has been 4507 * released. Now let this top-of-subtree go. 4508 * 4509 * We want the freeing of this indirect block to be 4510 * atomic in the journal with the updating of the 4511 * bitmap block which owns it. So make some room in 4512 * the journal. 4513 * 4514 * We zero the parent pointer *after* freeing its 4515 * pointee in the bitmaps, so if extend_transaction() 4516 * for some reason fails to put the bitmap changes and 4517 * the release into the same transaction, recovery 4518 * will merely complain about releasing a free block, 4519 * rather than leaking blocks. 4520 */ 4521 if (ext4_handle_is_aborted(handle)) 4522 return; 4523 if (try_to_extend_transaction(handle, inode)) { 4524 ext4_mark_inode_dirty(handle, inode); 4525 ext4_truncate_restart_trans(handle, inode, 4526 blocks_for_truncate(inode)); 4527 } 4528 4529 ext4_free_blocks(handle, inode, 0, nr, 1, 4530 EXT4_FREE_BLOCKS_METADATA); 4531 4532 if (parent_bh) { 4533 /* 4534 * The block which we have just freed is 4535 * pointed to by an indirect block: journal it 4536 */ 4537 BUFFER_TRACE(parent_bh, "get_write_access"); 4538 if (!ext4_journal_get_write_access(handle, 4539 parent_bh)){ 4540 *p = 0; 4541 BUFFER_TRACE(parent_bh, 4542 "call ext4_handle_dirty_metadata"); 4543 ext4_handle_dirty_metadata(handle, 4544 inode, 4545 parent_bh); 4546 } 4547 } 4548 } 4549 } else { 4550 /* We have reached the bottom of the tree. */ 4551 BUFFER_TRACE(parent_bh, "free data blocks"); 4552 ext4_free_data(handle, inode, parent_bh, first, last); 4553 } 4554 } 4555 4556 int ext4_can_truncate(struct inode *inode) 4557 { 4558 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4559 return 0; 4560 if (S_ISREG(inode->i_mode)) 4561 return 1; 4562 if (S_ISDIR(inode->i_mode)) 4563 return 1; 4564 if (S_ISLNK(inode->i_mode)) 4565 return !ext4_inode_is_fast_symlink(inode); 4566 return 0; 4567 } 4568 4569 /* 4570 * ext4_truncate() 4571 * 4572 * We block out ext4_get_block() block instantiations across the entire 4573 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4574 * simultaneously on behalf of the same inode. 4575 * 4576 * As we work through the truncate and commmit bits of it to the journal there 4577 * is one core, guiding principle: the file's tree must always be consistent on 4578 * disk. We must be able to restart the truncate after a crash. 4579 * 4580 * The file's tree may be transiently inconsistent in memory (although it 4581 * probably isn't), but whenever we close off and commit a journal transaction, 4582 * the contents of (the filesystem + the journal) must be consistent and 4583 * restartable. It's pretty simple, really: bottom up, right to left (although 4584 * left-to-right works OK too). 4585 * 4586 * Note that at recovery time, journal replay occurs *before* the restart of 4587 * truncate against the orphan inode list. 4588 * 4589 * The committed inode has the new, desired i_size (which is the same as 4590 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4591 * that this inode's truncate did not complete and it will again call 4592 * ext4_truncate() to have another go. So there will be instantiated blocks 4593 * to the right of the truncation point in a crashed ext4 filesystem. But 4594 * that's fine - as long as they are linked from the inode, the post-crash 4595 * ext4_truncate() run will find them and release them. 4596 */ 4597 void ext4_truncate(struct inode *inode) 4598 { 4599 handle_t *handle; 4600 struct ext4_inode_info *ei = EXT4_I(inode); 4601 __le32 *i_data = ei->i_data; 4602 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4603 struct address_space *mapping = inode->i_mapping; 4604 ext4_lblk_t offsets[4]; 4605 Indirect chain[4]; 4606 Indirect *partial; 4607 __le32 nr = 0; 4608 int n; 4609 ext4_lblk_t last_block; 4610 unsigned blocksize = inode->i_sb->s_blocksize; 4611 4612 if (!ext4_can_truncate(inode)) 4613 return; 4614 4615 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL; 4616 4617 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4618 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4619 4620 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 4621 ext4_ext_truncate(inode); 4622 return; 4623 } 4624 4625 handle = start_transaction(inode); 4626 if (IS_ERR(handle)) 4627 return; /* AKPM: return what? */ 4628 4629 last_block = (inode->i_size + blocksize-1) 4630 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4631 4632 if (inode->i_size & (blocksize - 1)) 4633 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4634 goto out_stop; 4635 4636 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4637 if (n == 0) 4638 goto out_stop; /* error */ 4639 4640 /* 4641 * OK. This truncate is going to happen. We add the inode to the 4642 * orphan list, so that if this truncate spans multiple transactions, 4643 * and we crash, we will resume the truncate when the filesystem 4644 * recovers. It also marks the inode dirty, to catch the new size. 4645 * 4646 * Implication: the file must always be in a sane, consistent 4647 * truncatable state while each transaction commits. 4648 */ 4649 if (ext4_orphan_add(handle, inode)) 4650 goto out_stop; 4651 4652 /* 4653 * From here we block out all ext4_get_block() callers who want to 4654 * modify the block allocation tree. 4655 */ 4656 down_write(&ei->i_data_sem); 4657 4658 ext4_discard_preallocations(inode); 4659 4660 /* 4661 * The orphan list entry will now protect us from any crash which 4662 * occurs before the truncate completes, so it is now safe to propagate 4663 * the new, shorter inode size (held for now in i_size) into the 4664 * on-disk inode. We do this via i_disksize, which is the value which 4665 * ext4 *really* writes onto the disk inode. 4666 */ 4667 ei->i_disksize = inode->i_size; 4668 4669 if (n == 1) { /* direct blocks */ 4670 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4671 i_data + EXT4_NDIR_BLOCKS); 4672 goto do_indirects; 4673 } 4674 4675 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4676 /* Kill the top of shared branch (not detached) */ 4677 if (nr) { 4678 if (partial == chain) { 4679 /* Shared branch grows from the inode */ 4680 ext4_free_branches(handle, inode, NULL, 4681 &nr, &nr+1, (chain+n-1) - partial); 4682 *partial->p = 0; 4683 /* 4684 * We mark the inode dirty prior to restart, 4685 * and prior to stop. No need for it here. 4686 */ 4687 } else { 4688 /* Shared branch grows from an indirect block */ 4689 BUFFER_TRACE(partial->bh, "get_write_access"); 4690 ext4_free_branches(handle, inode, partial->bh, 4691 partial->p, 4692 partial->p+1, (chain+n-1) - partial); 4693 } 4694 } 4695 /* Clear the ends of indirect blocks on the shared branch */ 4696 while (partial > chain) { 4697 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4698 (__le32*)partial->bh->b_data+addr_per_block, 4699 (chain+n-1) - partial); 4700 BUFFER_TRACE(partial->bh, "call brelse"); 4701 brelse(partial->bh); 4702 partial--; 4703 } 4704 do_indirects: 4705 /* Kill the remaining (whole) subtrees */ 4706 switch (offsets[0]) { 4707 default: 4708 nr = i_data[EXT4_IND_BLOCK]; 4709 if (nr) { 4710 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4711 i_data[EXT4_IND_BLOCK] = 0; 4712 } 4713 case EXT4_IND_BLOCK: 4714 nr = i_data[EXT4_DIND_BLOCK]; 4715 if (nr) { 4716 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4717 i_data[EXT4_DIND_BLOCK] = 0; 4718 } 4719 case EXT4_DIND_BLOCK: 4720 nr = i_data[EXT4_TIND_BLOCK]; 4721 if (nr) { 4722 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4723 i_data[EXT4_TIND_BLOCK] = 0; 4724 } 4725 case EXT4_TIND_BLOCK: 4726 ; 4727 } 4728 4729 up_write(&ei->i_data_sem); 4730 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4731 ext4_mark_inode_dirty(handle, inode); 4732 4733 /* 4734 * In a multi-transaction truncate, we only make the final transaction 4735 * synchronous 4736 */ 4737 if (IS_SYNC(inode)) 4738 ext4_handle_sync(handle); 4739 out_stop: 4740 /* 4741 * If this was a simple ftruncate(), and the file will remain alive 4742 * then we need to clear up the orphan record which we created above. 4743 * However, if this was a real unlink then we were called by 4744 * ext4_delete_inode(), and we allow that function to clean up the 4745 * orphan info for us. 4746 */ 4747 if (inode->i_nlink) 4748 ext4_orphan_del(handle, inode); 4749 4750 ext4_journal_stop(handle); 4751 } 4752 4753 /* 4754 * ext4_get_inode_loc returns with an extra refcount against the inode's 4755 * underlying buffer_head on success. If 'in_mem' is true, we have all 4756 * data in memory that is needed to recreate the on-disk version of this 4757 * inode. 4758 */ 4759 static int __ext4_get_inode_loc(struct inode *inode, 4760 struct ext4_iloc *iloc, int in_mem) 4761 { 4762 struct ext4_group_desc *gdp; 4763 struct buffer_head *bh; 4764 struct super_block *sb = inode->i_sb; 4765 ext4_fsblk_t block; 4766 int inodes_per_block, inode_offset; 4767 4768 iloc->bh = NULL; 4769 if (!ext4_valid_inum(sb, inode->i_ino)) 4770 return -EIO; 4771 4772 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4773 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4774 if (!gdp) 4775 return -EIO; 4776 4777 /* 4778 * Figure out the offset within the block group inode table 4779 */ 4780 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4781 inode_offset = ((inode->i_ino - 1) % 4782 EXT4_INODES_PER_GROUP(sb)); 4783 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4784 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4785 4786 bh = sb_getblk(sb, block); 4787 if (!bh) { 4788 ext4_error(sb, "unable to read inode block - " 4789 "inode=%lu, block=%llu", inode->i_ino, block); 4790 return -EIO; 4791 } 4792 if (!buffer_uptodate(bh)) { 4793 lock_buffer(bh); 4794 4795 /* 4796 * If the buffer has the write error flag, we have failed 4797 * to write out another inode in the same block. In this 4798 * case, we don't have to read the block because we may 4799 * read the old inode data successfully. 4800 */ 4801 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4802 set_buffer_uptodate(bh); 4803 4804 if (buffer_uptodate(bh)) { 4805 /* someone brought it uptodate while we waited */ 4806 unlock_buffer(bh); 4807 goto has_buffer; 4808 } 4809 4810 /* 4811 * If we have all information of the inode in memory and this 4812 * is the only valid inode in the block, we need not read the 4813 * block. 4814 */ 4815 if (in_mem) { 4816 struct buffer_head *bitmap_bh; 4817 int i, start; 4818 4819 start = inode_offset & ~(inodes_per_block - 1); 4820 4821 /* Is the inode bitmap in cache? */ 4822 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4823 if (!bitmap_bh) 4824 goto make_io; 4825 4826 /* 4827 * If the inode bitmap isn't in cache then the 4828 * optimisation may end up performing two reads instead 4829 * of one, so skip it. 4830 */ 4831 if (!buffer_uptodate(bitmap_bh)) { 4832 brelse(bitmap_bh); 4833 goto make_io; 4834 } 4835 for (i = start; i < start + inodes_per_block; i++) { 4836 if (i == inode_offset) 4837 continue; 4838 if (ext4_test_bit(i, bitmap_bh->b_data)) 4839 break; 4840 } 4841 brelse(bitmap_bh); 4842 if (i == start + inodes_per_block) { 4843 /* all other inodes are free, so skip I/O */ 4844 memset(bh->b_data, 0, bh->b_size); 4845 set_buffer_uptodate(bh); 4846 unlock_buffer(bh); 4847 goto has_buffer; 4848 } 4849 } 4850 4851 make_io: 4852 /* 4853 * If we need to do any I/O, try to pre-readahead extra 4854 * blocks from the inode table. 4855 */ 4856 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4857 ext4_fsblk_t b, end, table; 4858 unsigned num; 4859 4860 table = ext4_inode_table(sb, gdp); 4861 /* s_inode_readahead_blks is always a power of 2 */ 4862 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4863 if (table > b) 4864 b = table; 4865 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4866 num = EXT4_INODES_PER_GROUP(sb); 4867 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4868 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4869 num -= ext4_itable_unused_count(sb, gdp); 4870 table += num / inodes_per_block; 4871 if (end > table) 4872 end = table; 4873 while (b <= end) 4874 sb_breadahead(sb, b++); 4875 } 4876 4877 /* 4878 * There are other valid inodes in the buffer, this inode 4879 * has in-inode xattrs, or we don't have this inode in memory. 4880 * Read the block from disk. 4881 */ 4882 get_bh(bh); 4883 bh->b_end_io = end_buffer_read_sync; 4884 submit_bh(READ_META, bh); 4885 wait_on_buffer(bh); 4886 if (!buffer_uptodate(bh)) { 4887 ext4_error(sb, "unable to read inode block - inode=%lu," 4888 " block=%llu", inode->i_ino, block); 4889 brelse(bh); 4890 return -EIO; 4891 } 4892 } 4893 has_buffer: 4894 iloc->bh = bh; 4895 return 0; 4896 } 4897 4898 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4899 { 4900 /* We have all inode data except xattrs in memory here. */ 4901 return __ext4_get_inode_loc(inode, iloc, 4902 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4903 } 4904 4905 void ext4_set_inode_flags(struct inode *inode) 4906 { 4907 unsigned int flags = EXT4_I(inode)->i_flags; 4908 4909 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4910 if (flags & EXT4_SYNC_FL) 4911 inode->i_flags |= S_SYNC; 4912 if (flags & EXT4_APPEND_FL) 4913 inode->i_flags |= S_APPEND; 4914 if (flags & EXT4_IMMUTABLE_FL) 4915 inode->i_flags |= S_IMMUTABLE; 4916 if (flags & EXT4_NOATIME_FL) 4917 inode->i_flags |= S_NOATIME; 4918 if (flags & EXT4_DIRSYNC_FL) 4919 inode->i_flags |= S_DIRSYNC; 4920 } 4921 4922 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4923 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4924 { 4925 unsigned int flags = ei->vfs_inode.i_flags; 4926 4927 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4928 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4929 if (flags & S_SYNC) 4930 ei->i_flags |= EXT4_SYNC_FL; 4931 if (flags & S_APPEND) 4932 ei->i_flags |= EXT4_APPEND_FL; 4933 if (flags & S_IMMUTABLE) 4934 ei->i_flags |= EXT4_IMMUTABLE_FL; 4935 if (flags & S_NOATIME) 4936 ei->i_flags |= EXT4_NOATIME_FL; 4937 if (flags & S_DIRSYNC) 4938 ei->i_flags |= EXT4_DIRSYNC_FL; 4939 } 4940 4941 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4942 struct ext4_inode_info *ei) 4943 { 4944 blkcnt_t i_blocks ; 4945 struct inode *inode = &(ei->vfs_inode); 4946 struct super_block *sb = inode->i_sb; 4947 4948 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4949 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4950 /* we are using combined 48 bit field */ 4951 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4952 le32_to_cpu(raw_inode->i_blocks_lo); 4953 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4954 /* i_blocks represent file system block size */ 4955 return i_blocks << (inode->i_blkbits - 9); 4956 } else { 4957 return i_blocks; 4958 } 4959 } else { 4960 return le32_to_cpu(raw_inode->i_blocks_lo); 4961 } 4962 } 4963 4964 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4965 { 4966 struct ext4_iloc iloc; 4967 struct ext4_inode *raw_inode; 4968 struct ext4_inode_info *ei; 4969 struct inode *inode; 4970 journal_t *journal = EXT4_SB(sb)->s_journal; 4971 long ret; 4972 int block; 4973 4974 inode = iget_locked(sb, ino); 4975 if (!inode) 4976 return ERR_PTR(-ENOMEM); 4977 if (!(inode->i_state & I_NEW)) 4978 return inode; 4979 4980 ei = EXT4_I(inode); 4981 iloc.bh = 0; 4982 4983 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4984 if (ret < 0) 4985 goto bad_inode; 4986 raw_inode = ext4_raw_inode(&iloc); 4987 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4988 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4989 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4990 if (!(test_opt(inode->i_sb, NO_UID32))) { 4991 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4992 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4993 } 4994 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4995 4996 ei->i_state_flags = 0; 4997 ei->i_dir_start_lookup = 0; 4998 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4999 /* We now have enough fields to check if the inode was active or not. 5000 * This is needed because nfsd might try to access dead inodes 5001 * the test is that same one that e2fsck uses 5002 * NeilBrown 1999oct15 5003 */ 5004 if (inode->i_nlink == 0) { 5005 if (inode->i_mode == 0 || 5006 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 5007 /* this inode is deleted */ 5008 ret = -ESTALE; 5009 goto bad_inode; 5010 } 5011 /* The only unlinked inodes we let through here have 5012 * valid i_mode and are being read by the orphan 5013 * recovery code: that's fine, we're about to complete 5014 * the process of deleting those. */ 5015 } 5016 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5017 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5018 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5019 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 5020 ei->i_file_acl |= 5021 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5022 inode->i_size = ext4_isize(raw_inode); 5023 ei->i_disksize = inode->i_size; 5024 #ifdef CONFIG_QUOTA 5025 ei->i_reserved_quota = 0; 5026 #endif 5027 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5028 ei->i_block_group = iloc.block_group; 5029 ei->i_last_alloc_group = ~0; 5030 /* 5031 * NOTE! The in-memory inode i_data array is in little-endian order 5032 * even on big-endian machines: we do NOT byteswap the block numbers! 5033 */ 5034 for (block = 0; block < EXT4_N_BLOCKS; block++) 5035 ei->i_data[block] = raw_inode->i_block[block]; 5036 INIT_LIST_HEAD(&ei->i_orphan); 5037 5038 /* 5039 * Set transaction id's of transactions that have to be committed 5040 * to finish f[data]sync. We set them to currently running transaction 5041 * as we cannot be sure that the inode or some of its metadata isn't 5042 * part of the transaction - the inode could have been reclaimed and 5043 * now it is reread from disk. 5044 */ 5045 if (journal) { 5046 transaction_t *transaction; 5047 tid_t tid; 5048 5049 spin_lock(&journal->j_state_lock); 5050 if (journal->j_running_transaction) 5051 transaction = journal->j_running_transaction; 5052 else 5053 transaction = journal->j_committing_transaction; 5054 if (transaction) 5055 tid = transaction->t_tid; 5056 else 5057 tid = journal->j_commit_sequence; 5058 spin_unlock(&journal->j_state_lock); 5059 ei->i_sync_tid = tid; 5060 ei->i_datasync_tid = tid; 5061 } 5062 5063 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5064 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5065 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5066 EXT4_INODE_SIZE(inode->i_sb)) { 5067 ret = -EIO; 5068 goto bad_inode; 5069 } 5070 if (ei->i_extra_isize == 0) { 5071 /* The extra space is currently unused. Use it. */ 5072 ei->i_extra_isize = sizeof(struct ext4_inode) - 5073 EXT4_GOOD_OLD_INODE_SIZE; 5074 } else { 5075 __le32 *magic = (void *)raw_inode + 5076 EXT4_GOOD_OLD_INODE_SIZE + 5077 ei->i_extra_isize; 5078 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 5079 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5080 } 5081 } else 5082 ei->i_extra_isize = 0; 5083 5084 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5085 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5086 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5087 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5088 5089 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 5090 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5091 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5092 inode->i_version |= 5093 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5094 } 5095 5096 ret = 0; 5097 if (ei->i_file_acl && 5098 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5099 ext4_error(sb, "bad extended attribute block %llu inode #%lu", 5100 ei->i_file_acl, inode->i_ino); 5101 ret = -EIO; 5102 goto bad_inode; 5103 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 5104 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5105 (S_ISLNK(inode->i_mode) && 5106 !ext4_inode_is_fast_symlink(inode))) 5107 /* Validate extent which is part of inode */ 5108 ret = ext4_ext_check_inode(inode); 5109 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5110 (S_ISLNK(inode->i_mode) && 5111 !ext4_inode_is_fast_symlink(inode))) { 5112 /* Validate block references which are part of inode */ 5113 ret = ext4_check_inode_blockref(inode); 5114 } 5115 if (ret) 5116 goto bad_inode; 5117 5118 if (S_ISREG(inode->i_mode)) { 5119 inode->i_op = &ext4_file_inode_operations; 5120 inode->i_fop = &ext4_file_operations; 5121 ext4_set_aops(inode); 5122 } else if (S_ISDIR(inode->i_mode)) { 5123 inode->i_op = &ext4_dir_inode_operations; 5124 inode->i_fop = &ext4_dir_operations; 5125 } else if (S_ISLNK(inode->i_mode)) { 5126 if (ext4_inode_is_fast_symlink(inode)) { 5127 inode->i_op = &ext4_fast_symlink_inode_operations; 5128 nd_terminate_link(ei->i_data, inode->i_size, 5129 sizeof(ei->i_data) - 1); 5130 } else { 5131 inode->i_op = &ext4_symlink_inode_operations; 5132 ext4_set_aops(inode); 5133 } 5134 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5135 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5136 inode->i_op = &ext4_special_inode_operations; 5137 if (raw_inode->i_block[0]) 5138 init_special_inode(inode, inode->i_mode, 5139 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5140 else 5141 init_special_inode(inode, inode->i_mode, 5142 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5143 } else { 5144 ret = -EIO; 5145 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu", 5146 inode->i_mode, inode->i_ino); 5147 goto bad_inode; 5148 } 5149 brelse(iloc.bh); 5150 ext4_set_inode_flags(inode); 5151 unlock_new_inode(inode); 5152 return inode; 5153 5154 bad_inode: 5155 brelse(iloc.bh); 5156 iget_failed(inode); 5157 return ERR_PTR(ret); 5158 } 5159 5160 static int ext4_inode_blocks_set(handle_t *handle, 5161 struct ext4_inode *raw_inode, 5162 struct ext4_inode_info *ei) 5163 { 5164 struct inode *inode = &(ei->vfs_inode); 5165 u64 i_blocks = inode->i_blocks; 5166 struct super_block *sb = inode->i_sb; 5167 5168 if (i_blocks <= ~0U) { 5169 /* 5170 * i_blocks can be represnted in a 32 bit variable 5171 * as multiple of 512 bytes 5172 */ 5173 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5174 raw_inode->i_blocks_high = 0; 5175 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5176 return 0; 5177 } 5178 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5179 return -EFBIG; 5180 5181 if (i_blocks <= 0xffffffffffffULL) { 5182 /* 5183 * i_blocks can be represented in a 48 bit variable 5184 * as multiple of 512 bytes 5185 */ 5186 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5187 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5188 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5189 } else { 5190 ei->i_flags |= EXT4_HUGE_FILE_FL; 5191 /* i_block is stored in file system block size */ 5192 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5193 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5194 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5195 } 5196 return 0; 5197 } 5198 5199 /* 5200 * Post the struct inode info into an on-disk inode location in the 5201 * buffer-cache. This gobbles the caller's reference to the 5202 * buffer_head in the inode location struct. 5203 * 5204 * The caller must have write access to iloc->bh. 5205 */ 5206 static int ext4_do_update_inode(handle_t *handle, 5207 struct inode *inode, 5208 struct ext4_iloc *iloc) 5209 { 5210 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5211 struct ext4_inode_info *ei = EXT4_I(inode); 5212 struct buffer_head *bh = iloc->bh; 5213 int err = 0, rc, block; 5214 5215 /* For fields not not tracking in the in-memory inode, 5216 * initialise them to zero for new inodes. */ 5217 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5218 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5219 5220 ext4_get_inode_flags(ei); 5221 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5222 if (!(test_opt(inode->i_sb, NO_UID32))) { 5223 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5224 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5225 /* 5226 * Fix up interoperability with old kernels. Otherwise, old inodes get 5227 * re-used with the upper 16 bits of the uid/gid intact 5228 */ 5229 if (!ei->i_dtime) { 5230 raw_inode->i_uid_high = 5231 cpu_to_le16(high_16_bits(inode->i_uid)); 5232 raw_inode->i_gid_high = 5233 cpu_to_le16(high_16_bits(inode->i_gid)); 5234 } else { 5235 raw_inode->i_uid_high = 0; 5236 raw_inode->i_gid_high = 0; 5237 } 5238 } else { 5239 raw_inode->i_uid_low = 5240 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5241 raw_inode->i_gid_low = 5242 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5243 raw_inode->i_uid_high = 0; 5244 raw_inode->i_gid_high = 0; 5245 } 5246 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5247 5248 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5249 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5250 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5251 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5252 5253 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5254 goto out_brelse; 5255 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5256 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5257 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5258 cpu_to_le32(EXT4_OS_HURD)) 5259 raw_inode->i_file_acl_high = 5260 cpu_to_le16(ei->i_file_acl >> 32); 5261 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5262 ext4_isize_set(raw_inode, ei->i_disksize); 5263 if (ei->i_disksize > 0x7fffffffULL) { 5264 struct super_block *sb = inode->i_sb; 5265 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5266 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5267 EXT4_SB(sb)->s_es->s_rev_level == 5268 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5269 /* If this is the first large file 5270 * created, add a flag to the superblock. 5271 */ 5272 err = ext4_journal_get_write_access(handle, 5273 EXT4_SB(sb)->s_sbh); 5274 if (err) 5275 goto out_brelse; 5276 ext4_update_dynamic_rev(sb); 5277 EXT4_SET_RO_COMPAT_FEATURE(sb, 5278 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5279 sb->s_dirt = 1; 5280 ext4_handle_sync(handle); 5281 err = ext4_handle_dirty_metadata(handle, NULL, 5282 EXT4_SB(sb)->s_sbh); 5283 } 5284 } 5285 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5286 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5287 if (old_valid_dev(inode->i_rdev)) { 5288 raw_inode->i_block[0] = 5289 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5290 raw_inode->i_block[1] = 0; 5291 } else { 5292 raw_inode->i_block[0] = 0; 5293 raw_inode->i_block[1] = 5294 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5295 raw_inode->i_block[2] = 0; 5296 } 5297 } else 5298 for (block = 0; block < EXT4_N_BLOCKS; block++) 5299 raw_inode->i_block[block] = ei->i_data[block]; 5300 5301 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5302 if (ei->i_extra_isize) { 5303 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5304 raw_inode->i_version_hi = 5305 cpu_to_le32(inode->i_version >> 32); 5306 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5307 } 5308 5309 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5310 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5311 if (!err) 5312 err = rc; 5313 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5314 5315 ext4_update_inode_fsync_trans(handle, inode, 0); 5316 out_brelse: 5317 brelse(bh); 5318 ext4_std_error(inode->i_sb, err); 5319 return err; 5320 } 5321 5322 /* 5323 * ext4_write_inode() 5324 * 5325 * We are called from a few places: 5326 * 5327 * - Within generic_file_write() for O_SYNC files. 5328 * Here, there will be no transaction running. We wait for any running 5329 * trasnaction to commit. 5330 * 5331 * - Within sys_sync(), kupdate and such. 5332 * We wait on commit, if tol to. 5333 * 5334 * - Within prune_icache() (PF_MEMALLOC == true) 5335 * Here we simply return. We can't afford to block kswapd on the 5336 * journal commit. 5337 * 5338 * In all cases it is actually safe for us to return without doing anything, 5339 * because the inode has been copied into a raw inode buffer in 5340 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5341 * knfsd. 5342 * 5343 * Note that we are absolutely dependent upon all inode dirtiers doing the 5344 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5345 * which we are interested. 5346 * 5347 * It would be a bug for them to not do this. The code: 5348 * 5349 * mark_inode_dirty(inode) 5350 * stuff(); 5351 * inode->i_size = expr; 5352 * 5353 * is in error because a kswapd-driven write_inode() could occur while 5354 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5355 * will no longer be on the superblock's dirty inode list. 5356 */ 5357 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5358 { 5359 int err; 5360 5361 if (current->flags & PF_MEMALLOC) 5362 return 0; 5363 5364 if (EXT4_SB(inode->i_sb)->s_journal) { 5365 if (ext4_journal_current_handle()) { 5366 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5367 dump_stack(); 5368 return -EIO; 5369 } 5370 5371 if (wbc->sync_mode != WB_SYNC_ALL) 5372 return 0; 5373 5374 err = ext4_force_commit(inode->i_sb); 5375 } else { 5376 struct ext4_iloc iloc; 5377 5378 err = ext4_get_inode_loc(inode, &iloc); 5379 if (err) 5380 return err; 5381 if (wbc->sync_mode == WB_SYNC_ALL) 5382 sync_dirty_buffer(iloc.bh); 5383 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5384 ext4_error(inode->i_sb, "IO error syncing inode, " 5385 "inode=%lu, block=%llu", inode->i_ino, 5386 (unsigned long long)iloc.bh->b_blocknr); 5387 err = -EIO; 5388 } 5389 } 5390 return err; 5391 } 5392 5393 /* 5394 * ext4_setattr() 5395 * 5396 * Called from notify_change. 5397 * 5398 * We want to trap VFS attempts to truncate the file as soon as 5399 * possible. In particular, we want to make sure that when the VFS 5400 * shrinks i_size, we put the inode on the orphan list and modify 5401 * i_disksize immediately, so that during the subsequent flushing of 5402 * dirty pages and freeing of disk blocks, we can guarantee that any 5403 * commit will leave the blocks being flushed in an unused state on 5404 * disk. (On recovery, the inode will get truncated and the blocks will 5405 * be freed, so we have a strong guarantee that no future commit will 5406 * leave these blocks visible to the user.) 5407 * 5408 * Another thing we have to assure is that if we are in ordered mode 5409 * and inode is still attached to the committing transaction, we must 5410 * we start writeout of all the dirty pages which are being truncated. 5411 * This way we are sure that all the data written in the previous 5412 * transaction are already on disk (truncate waits for pages under 5413 * writeback). 5414 * 5415 * Called with inode->i_mutex down. 5416 */ 5417 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5418 { 5419 struct inode *inode = dentry->d_inode; 5420 int error, rc = 0; 5421 const unsigned int ia_valid = attr->ia_valid; 5422 5423 error = inode_change_ok(inode, attr); 5424 if (error) 5425 return error; 5426 5427 if (ia_valid & ATTR_SIZE) 5428 dquot_initialize(inode); 5429 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5430 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5431 handle_t *handle; 5432 5433 /* (user+group)*(old+new) structure, inode write (sb, 5434 * inode block, ? - but truncate inode update has it) */ 5435 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5436 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5437 if (IS_ERR(handle)) { 5438 error = PTR_ERR(handle); 5439 goto err_out; 5440 } 5441 error = dquot_transfer(inode, attr); 5442 if (error) { 5443 ext4_journal_stop(handle); 5444 return error; 5445 } 5446 /* Update corresponding info in inode so that everything is in 5447 * one transaction */ 5448 if (attr->ia_valid & ATTR_UID) 5449 inode->i_uid = attr->ia_uid; 5450 if (attr->ia_valid & ATTR_GID) 5451 inode->i_gid = attr->ia_gid; 5452 error = ext4_mark_inode_dirty(handle, inode); 5453 ext4_journal_stop(handle); 5454 } 5455 5456 if (attr->ia_valid & ATTR_SIZE) { 5457 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 5458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5459 5460 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5461 error = -EFBIG; 5462 goto err_out; 5463 } 5464 } 5465 } 5466 5467 if (S_ISREG(inode->i_mode) && 5468 attr->ia_valid & ATTR_SIZE && 5469 (attr->ia_size < inode->i_size || 5470 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) { 5471 handle_t *handle; 5472 5473 handle = ext4_journal_start(inode, 3); 5474 if (IS_ERR(handle)) { 5475 error = PTR_ERR(handle); 5476 goto err_out; 5477 } 5478 5479 error = ext4_orphan_add(handle, inode); 5480 EXT4_I(inode)->i_disksize = attr->ia_size; 5481 rc = ext4_mark_inode_dirty(handle, inode); 5482 if (!error) 5483 error = rc; 5484 ext4_journal_stop(handle); 5485 5486 if (ext4_should_order_data(inode)) { 5487 error = ext4_begin_ordered_truncate(inode, 5488 attr->ia_size); 5489 if (error) { 5490 /* Do as much error cleanup as possible */ 5491 handle = ext4_journal_start(inode, 3); 5492 if (IS_ERR(handle)) { 5493 ext4_orphan_del(NULL, inode); 5494 goto err_out; 5495 } 5496 ext4_orphan_del(handle, inode); 5497 ext4_journal_stop(handle); 5498 goto err_out; 5499 } 5500 } 5501 /* ext4_truncate will clear the flag */ 5502 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL)) 5503 ext4_truncate(inode); 5504 } 5505 5506 rc = inode_setattr(inode, attr); 5507 5508 /* If inode_setattr's call to ext4_truncate failed to get a 5509 * transaction handle at all, we need to clean up the in-core 5510 * orphan list manually. */ 5511 if (inode->i_nlink) 5512 ext4_orphan_del(NULL, inode); 5513 5514 if (!rc && (ia_valid & ATTR_MODE)) 5515 rc = ext4_acl_chmod(inode); 5516 5517 err_out: 5518 ext4_std_error(inode->i_sb, error); 5519 if (!error) 5520 error = rc; 5521 return error; 5522 } 5523 5524 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5525 struct kstat *stat) 5526 { 5527 struct inode *inode; 5528 unsigned long delalloc_blocks; 5529 5530 inode = dentry->d_inode; 5531 generic_fillattr(inode, stat); 5532 5533 /* 5534 * We can't update i_blocks if the block allocation is delayed 5535 * otherwise in the case of system crash before the real block 5536 * allocation is done, we will have i_blocks inconsistent with 5537 * on-disk file blocks. 5538 * We always keep i_blocks updated together with real 5539 * allocation. But to not confuse with user, stat 5540 * will return the blocks that include the delayed allocation 5541 * blocks for this file. 5542 */ 5543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5544 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5546 5547 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5548 return 0; 5549 } 5550 5551 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5552 int chunk) 5553 { 5554 int indirects; 5555 5556 /* if nrblocks are contiguous */ 5557 if (chunk) { 5558 /* 5559 * With N contiguous data blocks, it need at most 5560 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5561 * 2 dindirect blocks 5562 * 1 tindirect block 5563 */ 5564 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5565 return indirects + 3; 5566 } 5567 /* 5568 * if nrblocks are not contiguous, worse case, each block touch 5569 * a indirect block, and each indirect block touch a double indirect 5570 * block, plus a triple indirect block 5571 */ 5572 indirects = nrblocks * 2 + 1; 5573 return indirects; 5574 } 5575 5576 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5577 { 5578 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 5579 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5580 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5581 } 5582 5583 /* 5584 * Account for index blocks, block groups bitmaps and block group 5585 * descriptor blocks if modify datablocks and index blocks 5586 * worse case, the indexs blocks spread over different block groups 5587 * 5588 * If datablocks are discontiguous, they are possible to spread over 5589 * different block groups too. If they are contiuguous, with flexbg, 5590 * they could still across block group boundary. 5591 * 5592 * Also account for superblock, inode, quota and xattr blocks 5593 */ 5594 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5595 { 5596 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5597 int gdpblocks; 5598 int idxblocks; 5599 int ret = 0; 5600 5601 /* 5602 * How many index blocks need to touch to modify nrblocks? 5603 * The "Chunk" flag indicating whether the nrblocks is 5604 * physically contiguous on disk 5605 * 5606 * For Direct IO and fallocate, they calls get_block to allocate 5607 * one single extent at a time, so they could set the "Chunk" flag 5608 */ 5609 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5610 5611 ret = idxblocks; 5612 5613 /* 5614 * Now let's see how many group bitmaps and group descriptors need 5615 * to account 5616 */ 5617 groups = idxblocks; 5618 if (chunk) 5619 groups += 1; 5620 else 5621 groups += nrblocks; 5622 5623 gdpblocks = groups; 5624 if (groups > ngroups) 5625 groups = ngroups; 5626 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5627 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5628 5629 /* bitmaps and block group descriptor blocks */ 5630 ret += groups + gdpblocks; 5631 5632 /* Blocks for super block, inode, quota and xattr blocks */ 5633 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5634 5635 return ret; 5636 } 5637 5638 /* 5639 * Calulate the total number of credits to reserve to fit 5640 * the modification of a single pages into a single transaction, 5641 * which may include multiple chunks of block allocations. 5642 * 5643 * This could be called via ext4_write_begin() 5644 * 5645 * We need to consider the worse case, when 5646 * one new block per extent. 5647 */ 5648 int ext4_writepage_trans_blocks(struct inode *inode) 5649 { 5650 int bpp = ext4_journal_blocks_per_page(inode); 5651 int ret; 5652 5653 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5654 5655 /* Account for data blocks for journalled mode */ 5656 if (ext4_should_journal_data(inode)) 5657 ret += bpp; 5658 return ret; 5659 } 5660 5661 /* 5662 * Calculate the journal credits for a chunk of data modification. 5663 * 5664 * This is called from DIO, fallocate or whoever calling 5665 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks. 5666 * 5667 * journal buffers for data blocks are not included here, as DIO 5668 * and fallocate do no need to journal data buffers. 5669 */ 5670 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5671 { 5672 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5673 } 5674 5675 /* 5676 * The caller must have previously called ext4_reserve_inode_write(). 5677 * Give this, we know that the caller already has write access to iloc->bh. 5678 */ 5679 int ext4_mark_iloc_dirty(handle_t *handle, 5680 struct inode *inode, struct ext4_iloc *iloc) 5681 { 5682 int err = 0; 5683 5684 if (test_opt(inode->i_sb, I_VERSION)) 5685 inode_inc_iversion(inode); 5686 5687 /* the do_update_inode consumes one bh->b_count */ 5688 get_bh(iloc->bh); 5689 5690 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5691 err = ext4_do_update_inode(handle, inode, iloc); 5692 put_bh(iloc->bh); 5693 return err; 5694 } 5695 5696 /* 5697 * On success, We end up with an outstanding reference count against 5698 * iloc->bh. This _must_ be cleaned up later. 5699 */ 5700 5701 int 5702 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5703 struct ext4_iloc *iloc) 5704 { 5705 int err; 5706 5707 err = ext4_get_inode_loc(inode, iloc); 5708 if (!err) { 5709 BUFFER_TRACE(iloc->bh, "get_write_access"); 5710 err = ext4_journal_get_write_access(handle, iloc->bh); 5711 if (err) { 5712 brelse(iloc->bh); 5713 iloc->bh = NULL; 5714 } 5715 } 5716 ext4_std_error(inode->i_sb, err); 5717 return err; 5718 } 5719 5720 /* 5721 * Expand an inode by new_extra_isize bytes. 5722 * Returns 0 on success or negative error number on failure. 5723 */ 5724 static int ext4_expand_extra_isize(struct inode *inode, 5725 unsigned int new_extra_isize, 5726 struct ext4_iloc iloc, 5727 handle_t *handle) 5728 { 5729 struct ext4_inode *raw_inode; 5730 struct ext4_xattr_ibody_header *header; 5731 struct ext4_xattr_entry *entry; 5732 5733 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5734 return 0; 5735 5736 raw_inode = ext4_raw_inode(&iloc); 5737 5738 header = IHDR(inode, raw_inode); 5739 entry = IFIRST(header); 5740 5741 /* No extended attributes present */ 5742 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5743 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5744 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5745 new_extra_isize); 5746 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5747 return 0; 5748 } 5749 5750 /* try to expand with EAs present */ 5751 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5752 raw_inode, handle); 5753 } 5754 5755 /* 5756 * What we do here is to mark the in-core inode as clean with respect to inode 5757 * dirtiness (it may still be data-dirty). 5758 * This means that the in-core inode may be reaped by prune_icache 5759 * without having to perform any I/O. This is a very good thing, 5760 * because *any* task may call prune_icache - even ones which 5761 * have a transaction open against a different journal. 5762 * 5763 * Is this cheating? Not really. Sure, we haven't written the 5764 * inode out, but prune_icache isn't a user-visible syncing function. 5765 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5766 * we start and wait on commits. 5767 * 5768 * Is this efficient/effective? Well, we're being nice to the system 5769 * by cleaning up our inodes proactively so they can be reaped 5770 * without I/O. But we are potentially leaving up to five seconds' 5771 * worth of inodes floating about which prune_icache wants us to 5772 * write out. One way to fix that would be to get prune_icache() 5773 * to do a write_super() to free up some memory. It has the desired 5774 * effect. 5775 */ 5776 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5777 { 5778 struct ext4_iloc iloc; 5779 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5780 static unsigned int mnt_count; 5781 int err, ret; 5782 5783 might_sleep(); 5784 err = ext4_reserve_inode_write(handle, inode, &iloc); 5785 if (ext4_handle_valid(handle) && 5786 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5787 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5788 /* 5789 * We need extra buffer credits since we may write into EA block 5790 * with this same handle. If journal_extend fails, then it will 5791 * only result in a minor loss of functionality for that inode. 5792 * If this is felt to be critical, then e2fsck should be run to 5793 * force a large enough s_min_extra_isize. 5794 */ 5795 if ((jbd2_journal_extend(handle, 5796 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5797 ret = ext4_expand_extra_isize(inode, 5798 sbi->s_want_extra_isize, 5799 iloc, handle); 5800 if (ret) { 5801 ext4_set_inode_state(inode, 5802 EXT4_STATE_NO_EXPAND); 5803 if (mnt_count != 5804 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5805 ext4_warning(inode->i_sb, 5806 "Unable to expand inode %lu. Delete" 5807 " some EAs or run e2fsck.", 5808 inode->i_ino); 5809 mnt_count = 5810 le16_to_cpu(sbi->s_es->s_mnt_count); 5811 } 5812 } 5813 } 5814 } 5815 if (!err) 5816 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5817 return err; 5818 } 5819 5820 /* 5821 * ext4_dirty_inode() is called from __mark_inode_dirty() 5822 * 5823 * We're really interested in the case where a file is being extended. 5824 * i_size has been changed by generic_commit_write() and we thus need 5825 * to include the updated inode in the current transaction. 5826 * 5827 * Also, dquot_alloc_block() will always dirty the inode when blocks 5828 * are allocated to the file. 5829 * 5830 * If the inode is marked synchronous, we don't honour that here - doing 5831 * so would cause a commit on atime updates, which we don't bother doing. 5832 * We handle synchronous inodes at the highest possible level. 5833 */ 5834 void ext4_dirty_inode(struct inode *inode) 5835 { 5836 handle_t *handle; 5837 5838 handle = ext4_journal_start(inode, 2); 5839 if (IS_ERR(handle)) 5840 goto out; 5841 5842 ext4_mark_inode_dirty(handle, inode); 5843 5844 ext4_journal_stop(handle); 5845 out: 5846 return; 5847 } 5848 5849 #if 0 5850 /* 5851 * Bind an inode's backing buffer_head into this transaction, to prevent 5852 * it from being flushed to disk early. Unlike 5853 * ext4_reserve_inode_write, this leaves behind no bh reference and 5854 * returns no iloc structure, so the caller needs to repeat the iloc 5855 * lookup to mark the inode dirty later. 5856 */ 5857 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5858 { 5859 struct ext4_iloc iloc; 5860 5861 int err = 0; 5862 if (handle) { 5863 err = ext4_get_inode_loc(inode, &iloc); 5864 if (!err) { 5865 BUFFER_TRACE(iloc.bh, "get_write_access"); 5866 err = jbd2_journal_get_write_access(handle, iloc.bh); 5867 if (!err) 5868 err = ext4_handle_dirty_metadata(handle, 5869 NULL, 5870 iloc.bh); 5871 brelse(iloc.bh); 5872 } 5873 } 5874 ext4_std_error(inode->i_sb, err); 5875 return err; 5876 } 5877 #endif 5878 5879 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5880 { 5881 journal_t *journal; 5882 handle_t *handle; 5883 int err; 5884 5885 /* 5886 * We have to be very careful here: changing a data block's 5887 * journaling status dynamically is dangerous. If we write a 5888 * data block to the journal, change the status and then delete 5889 * that block, we risk forgetting to revoke the old log record 5890 * from the journal and so a subsequent replay can corrupt data. 5891 * So, first we make sure that the journal is empty and that 5892 * nobody is changing anything. 5893 */ 5894 5895 journal = EXT4_JOURNAL(inode); 5896 if (!journal) 5897 return 0; 5898 if (is_journal_aborted(journal)) 5899 return -EROFS; 5900 5901 jbd2_journal_lock_updates(journal); 5902 jbd2_journal_flush(journal); 5903 5904 /* 5905 * OK, there are no updates running now, and all cached data is 5906 * synced to disk. We are now in a completely consistent state 5907 * which doesn't have anything in the journal, and we know that 5908 * no filesystem updates are running, so it is safe to modify 5909 * the inode's in-core data-journaling state flag now. 5910 */ 5911 5912 if (val) 5913 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5914 else 5915 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5916 ext4_set_aops(inode); 5917 5918 jbd2_journal_unlock_updates(journal); 5919 5920 /* Finally we can mark the inode as dirty. */ 5921 5922 handle = ext4_journal_start(inode, 1); 5923 if (IS_ERR(handle)) 5924 return PTR_ERR(handle); 5925 5926 err = ext4_mark_inode_dirty(handle, inode); 5927 ext4_handle_sync(handle); 5928 ext4_journal_stop(handle); 5929 ext4_std_error(inode->i_sb, err); 5930 5931 return err; 5932 } 5933 5934 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5935 { 5936 return !buffer_mapped(bh); 5937 } 5938 5939 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5940 { 5941 struct page *page = vmf->page; 5942 loff_t size; 5943 unsigned long len; 5944 int ret = -EINVAL; 5945 void *fsdata; 5946 struct file *file = vma->vm_file; 5947 struct inode *inode = file->f_path.dentry->d_inode; 5948 struct address_space *mapping = inode->i_mapping; 5949 5950 /* 5951 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5952 * get i_mutex because we are already holding mmap_sem. 5953 */ 5954 down_read(&inode->i_alloc_sem); 5955 size = i_size_read(inode); 5956 if (page->mapping != mapping || size <= page_offset(page) 5957 || !PageUptodate(page)) { 5958 /* page got truncated from under us? */ 5959 goto out_unlock; 5960 } 5961 ret = 0; 5962 if (PageMappedToDisk(page)) 5963 goto out_unlock; 5964 5965 if (page->index == size >> PAGE_CACHE_SHIFT) 5966 len = size & ~PAGE_CACHE_MASK; 5967 else 5968 len = PAGE_CACHE_SIZE; 5969 5970 lock_page(page); 5971 /* 5972 * return if we have all the buffers mapped. This avoid 5973 * the need to call write_begin/write_end which does a 5974 * journal_start/journal_stop which can block and take 5975 * long time 5976 */ 5977 if (page_has_buffers(page)) { 5978 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5979 ext4_bh_unmapped)) { 5980 unlock_page(page); 5981 goto out_unlock; 5982 } 5983 } 5984 unlock_page(page); 5985 /* 5986 * OK, we need to fill the hole... Do write_begin write_end 5987 * to do block allocation/reservation.We are not holding 5988 * inode.i__mutex here. That allow * parallel write_begin, 5989 * write_end call. lock_page prevent this from happening 5990 * on the same page though 5991 */ 5992 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5993 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5994 if (ret < 0) 5995 goto out_unlock; 5996 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5997 len, len, page, fsdata); 5998 if (ret < 0) 5999 goto out_unlock; 6000 ret = 0; 6001 out_unlock: 6002 if (ret) 6003 ret = VM_FAULT_SIGBUS; 6004 up_read(&inode->i_alloc_sem); 6005 return ret; 6006 } 6007