xref: /linux/fs/ext4/inode.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "ext4_extents.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 					      loff_t new_size)
54 {
55 	return jbd2_journal_begin_ordered_truncate(
56 					EXT4_SB(inode->i_sb)->s_journal,
57 					&EXT4_I(inode)->jinode,
58 					new_size);
59 }
60 
61 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62 
63 /*
64  * Test whether an inode is a fast symlink.
65  */
66 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 {
68 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
69 		(inode->i_sb->s_blocksize >> 9) : 0;
70 
71 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
72 }
73 
74 /*
75  * Work out how many blocks we need to proceed with the next chunk of a
76  * truncate transaction.
77  */
78 static unsigned long blocks_for_truncate(struct inode *inode)
79 {
80 	ext4_lblk_t needed;
81 
82 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83 
84 	/* Give ourselves just enough room to cope with inodes in which
85 	 * i_blocks is corrupt: we've seen disk corruptions in the past
86 	 * which resulted in random data in an inode which looked enough
87 	 * like a regular file for ext4 to try to delete it.  Things
88 	 * will go a bit crazy if that happens, but at least we should
89 	 * try not to panic the whole kernel. */
90 	if (needed < 2)
91 		needed = 2;
92 
93 	/* But we need to bound the transaction so we don't overflow the
94 	 * journal. */
95 	if (needed > EXT4_MAX_TRANS_DATA)
96 		needed = EXT4_MAX_TRANS_DATA;
97 
98 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
99 }
100 
101 /*
102  * Truncate transactions can be complex and absolutely huge.  So we need to
103  * be able to restart the transaction at a conventient checkpoint to make
104  * sure we don't overflow the journal.
105  *
106  * start_transaction gets us a new handle for a truncate transaction,
107  * and extend_transaction tries to extend the existing one a bit.  If
108  * extend fails, we need to propagate the failure up and restart the
109  * transaction in the top-level truncate loop. --sct
110  */
111 static handle_t *start_transaction(struct inode *inode)
112 {
113 	handle_t *result;
114 
115 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
116 	if (!IS_ERR(result))
117 		return result;
118 
119 	ext4_std_error(inode->i_sb, PTR_ERR(result));
120 	return result;
121 }
122 
123 /*
124  * Try to extend this transaction for the purposes of truncation.
125  *
126  * Returns 0 if we managed to create more room.  If we can't create more
127  * room, and the transaction must be restarted we return 1.
128  */
129 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 {
131 	if (!ext4_handle_valid(handle))
132 		return 0;
133 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134 		return 0;
135 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136 		return 0;
137 	return 1;
138 }
139 
140 /*
141  * Restart the transaction associated with *handle.  This does a commit,
142  * so before we call here everything must be consistently dirtied against
143  * this transaction.
144  */
145 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146 				 int nblocks)
147 {
148 	int ret;
149 
150 	/*
151 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
152 	 * moment, get_block can be called only for blocks inside i_size since
153 	 * page cache has been already dropped and writes are blocked by
154 	 * i_mutex. So we can safely drop the i_data_sem here.
155 	 */
156 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
157 	jbd_debug(2, "restarting handle %p\n", handle);
158 	up_write(&EXT4_I(inode)->i_data_sem);
159 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
160 	down_write(&EXT4_I(inode)->i_data_sem);
161 	ext4_discard_preallocations(inode);
162 
163 	return ret;
164 }
165 
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_delete_inode(struct inode *inode)
170 {
171 	handle_t *handle;
172 	int err;
173 
174 	if (!is_bad_inode(inode))
175 		dquot_initialize(inode);
176 
177 	if (ext4_should_order_data(inode))
178 		ext4_begin_ordered_truncate(inode, 0);
179 	truncate_inode_pages(&inode->i_data, 0);
180 
181 	if (is_bad_inode(inode))
182 		goto no_delete;
183 
184 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
185 	if (IS_ERR(handle)) {
186 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
187 		/*
188 		 * If we're going to skip the normal cleanup, we still need to
189 		 * make sure that the in-core orphan linked list is properly
190 		 * cleaned up.
191 		 */
192 		ext4_orphan_del(NULL, inode);
193 		goto no_delete;
194 	}
195 
196 	if (IS_SYNC(inode))
197 		ext4_handle_sync(handle);
198 	inode->i_size = 0;
199 	err = ext4_mark_inode_dirty(handle, inode);
200 	if (err) {
201 		ext4_warning(inode->i_sb,
202 			     "couldn't mark inode dirty (err %d)", err);
203 		goto stop_handle;
204 	}
205 	if (inode->i_blocks)
206 		ext4_truncate(inode);
207 
208 	/*
209 	 * ext4_ext_truncate() doesn't reserve any slop when it
210 	 * restarts journal transactions; therefore there may not be
211 	 * enough credits left in the handle to remove the inode from
212 	 * the orphan list and set the dtime field.
213 	 */
214 	if (!ext4_handle_has_enough_credits(handle, 3)) {
215 		err = ext4_journal_extend(handle, 3);
216 		if (err > 0)
217 			err = ext4_journal_restart(handle, 3);
218 		if (err != 0) {
219 			ext4_warning(inode->i_sb,
220 				     "couldn't extend journal (err %d)", err);
221 		stop_handle:
222 			ext4_journal_stop(handle);
223 			goto no_delete;
224 		}
225 	}
226 
227 	/*
228 	 * Kill off the orphan record which ext4_truncate created.
229 	 * AKPM: I think this can be inside the above `if'.
230 	 * Note that ext4_orphan_del() has to be able to cope with the
231 	 * deletion of a non-existent orphan - this is because we don't
232 	 * know if ext4_truncate() actually created an orphan record.
233 	 * (Well, we could do this if we need to, but heck - it works)
234 	 */
235 	ext4_orphan_del(handle, inode);
236 	EXT4_I(inode)->i_dtime	= get_seconds();
237 
238 	/*
239 	 * One subtle ordering requirement: if anything has gone wrong
240 	 * (transaction abort, IO errors, whatever), then we can still
241 	 * do these next steps (the fs will already have been marked as
242 	 * having errors), but we can't free the inode if the mark_dirty
243 	 * fails.
244 	 */
245 	if (ext4_mark_inode_dirty(handle, inode))
246 		/* If that failed, just do the required in-core inode clear. */
247 		clear_inode(inode);
248 	else
249 		ext4_free_inode(handle, inode);
250 	ext4_journal_stop(handle);
251 	return;
252 no_delete:
253 	clear_inode(inode);	/* We must guarantee clearing of inode... */
254 }
255 
256 typedef struct {
257 	__le32	*p;
258 	__le32	key;
259 	struct buffer_head *bh;
260 } Indirect;
261 
262 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
263 {
264 	p->key = *(p->p = v);
265 	p->bh = bh;
266 }
267 
268 /**
269  *	ext4_block_to_path - parse the block number into array of offsets
270  *	@inode: inode in question (we are only interested in its superblock)
271  *	@i_block: block number to be parsed
272  *	@offsets: array to store the offsets in
273  *	@boundary: set this non-zero if the referred-to block is likely to be
274  *	       followed (on disk) by an indirect block.
275  *
276  *	To store the locations of file's data ext4 uses a data structure common
277  *	for UNIX filesystems - tree of pointers anchored in the inode, with
278  *	data blocks at leaves and indirect blocks in intermediate nodes.
279  *	This function translates the block number into path in that tree -
280  *	return value is the path length and @offsets[n] is the offset of
281  *	pointer to (n+1)th node in the nth one. If @block is out of range
282  *	(negative or too large) warning is printed and zero returned.
283  *
284  *	Note: function doesn't find node addresses, so no IO is needed. All
285  *	we need to know is the capacity of indirect blocks (taken from the
286  *	inode->i_sb).
287  */
288 
289 /*
290  * Portability note: the last comparison (check that we fit into triple
291  * indirect block) is spelled differently, because otherwise on an
292  * architecture with 32-bit longs and 8Kb pages we might get into trouble
293  * if our filesystem had 8Kb blocks. We might use long long, but that would
294  * kill us on x86. Oh, well, at least the sign propagation does not matter -
295  * i_block would have to be negative in the very beginning, so we would not
296  * get there at all.
297  */
298 
299 static int ext4_block_to_path(struct inode *inode,
300 			      ext4_lblk_t i_block,
301 			      ext4_lblk_t offsets[4], int *boundary)
302 {
303 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
304 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
305 	const long direct_blocks = EXT4_NDIR_BLOCKS,
306 		indirect_blocks = ptrs,
307 		double_blocks = (1 << (ptrs_bits * 2));
308 	int n = 0;
309 	int final = 0;
310 
311 	if (i_block < direct_blocks) {
312 		offsets[n++] = i_block;
313 		final = direct_blocks;
314 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
315 		offsets[n++] = EXT4_IND_BLOCK;
316 		offsets[n++] = i_block;
317 		final = ptrs;
318 	} else if ((i_block -= indirect_blocks) < double_blocks) {
319 		offsets[n++] = EXT4_DIND_BLOCK;
320 		offsets[n++] = i_block >> ptrs_bits;
321 		offsets[n++] = i_block & (ptrs - 1);
322 		final = ptrs;
323 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
324 		offsets[n++] = EXT4_TIND_BLOCK;
325 		offsets[n++] = i_block >> (ptrs_bits * 2);
326 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
327 		offsets[n++] = i_block & (ptrs - 1);
328 		final = ptrs;
329 	} else {
330 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
331 			     i_block + direct_blocks +
332 			     indirect_blocks + double_blocks, inode->i_ino);
333 	}
334 	if (boundary)
335 		*boundary = final - 1 - (i_block & (ptrs - 1));
336 	return n;
337 }
338 
339 static int __ext4_check_blockref(const char *function, struct inode *inode,
340 				 __le32 *p, unsigned int max)
341 {
342 	__le32 *bref = p;
343 	unsigned int blk;
344 
345 	while (bref < p+max) {
346 		blk = le32_to_cpu(*bref++);
347 		if (blk &&
348 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
349 						    blk, 1))) {
350 			__ext4_error(inode->i_sb, function,
351 				   "invalid block reference %u "
352 				   "in inode #%lu", blk, inode->i_ino);
353 			return -EIO;
354 		}
355 	}
356 	return 0;
357 }
358 
359 
360 #define ext4_check_indirect_blockref(inode, bh)                         \
361 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
362 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
363 
364 #define ext4_check_inode_blockref(inode)                                \
365 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
366 			      EXT4_NDIR_BLOCKS)
367 
368 /**
369  *	ext4_get_branch - read the chain of indirect blocks leading to data
370  *	@inode: inode in question
371  *	@depth: depth of the chain (1 - direct pointer, etc.)
372  *	@offsets: offsets of pointers in inode/indirect blocks
373  *	@chain: place to store the result
374  *	@err: here we store the error value
375  *
376  *	Function fills the array of triples <key, p, bh> and returns %NULL
377  *	if everything went OK or the pointer to the last filled triple
378  *	(incomplete one) otherwise. Upon the return chain[i].key contains
379  *	the number of (i+1)-th block in the chain (as it is stored in memory,
380  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
381  *	number (it points into struct inode for i==0 and into the bh->b_data
382  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383  *	block for i>0 and NULL for i==0. In other words, it holds the block
384  *	numbers of the chain, addresses they were taken from (and where we can
385  *	verify that chain did not change) and buffer_heads hosting these
386  *	numbers.
387  *
388  *	Function stops when it stumbles upon zero pointer (absent block)
389  *		(pointer to last triple returned, *@err == 0)
390  *	or when it gets an IO error reading an indirect block
391  *		(ditto, *@err == -EIO)
392  *	or when it reads all @depth-1 indirect blocks successfully and finds
393  *	the whole chain, all way to the data (returns %NULL, *err == 0).
394  *
395  *      Need to be called with
396  *      down_read(&EXT4_I(inode)->i_data_sem)
397  */
398 static Indirect *ext4_get_branch(struct inode *inode, int depth,
399 				 ext4_lblk_t  *offsets,
400 				 Indirect chain[4], int *err)
401 {
402 	struct super_block *sb = inode->i_sb;
403 	Indirect *p = chain;
404 	struct buffer_head *bh;
405 
406 	*err = 0;
407 	/* i_data is not going away, no lock needed */
408 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409 	if (!p->key)
410 		goto no_block;
411 	while (--depth) {
412 		bh = sb_getblk(sb, le32_to_cpu(p->key));
413 		if (unlikely(!bh))
414 			goto failure;
415 
416 		if (!bh_uptodate_or_lock(bh)) {
417 			if (bh_submit_read(bh) < 0) {
418 				put_bh(bh);
419 				goto failure;
420 			}
421 			/* validate block references */
422 			if (ext4_check_indirect_blockref(inode, bh)) {
423 				put_bh(bh);
424 				goto failure;
425 			}
426 		}
427 
428 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429 		/* Reader: end */
430 		if (!p->key)
431 			goto no_block;
432 	}
433 	return NULL;
434 
435 failure:
436 	*err = -EIO;
437 no_block:
438 	return p;
439 }
440 
441 /**
442  *	ext4_find_near - find a place for allocation with sufficient locality
443  *	@inode: owner
444  *	@ind: descriptor of indirect block.
445  *
446  *	This function returns the preferred place for block allocation.
447  *	It is used when heuristic for sequential allocation fails.
448  *	Rules are:
449  *	  + if there is a block to the left of our position - allocate near it.
450  *	  + if pointer will live in indirect block - allocate near that block.
451  *	  + if pointer will live in inode - allocate in the same
452  *	    cylinder group.
453  *
454  * In the latter case we colour the starting block by the callers PID to
455  * prevent it from clashing with concurrent allocations for a different inode
456  * in the same block group.   The PID is used here so that functionally related
457  * files will be close-by on-disk.
458  *
459  *	Caller must make sure that @ind is valid and will stay that way.
460  */
461 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
462 {
463 	struct ext4_inode_info *ei = EXT4_I(inode);
464 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465 	__le32 *p;
466 	ext4_fsblk_t bg_start;
467 	ext4_fsblk_t last_block;
468 	ext4_grpblk_t colour;
469 	ext4_group_t block_group;
470 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
471 
472 	/* Try to find previous block */
473 	for (p = ind->p - 1; p >= start; p--) {
474 		if (*p)
475 			return le32_to_cpu(*p);
476 	}
477 
478 	/* No such thing, so let's try location of indirect block */
479 	if (ind->bh)
480 		return ind->bh->b_blocknr;
481 
482 	/*
483 	 * It is going to be referred to from the inode itself? OK, just put it
484 	 * into the same cylinder group then.
485 	 */
486 	block_group = ei->i_block_group;
487 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
488 		block_group &= ~(flex_size-1);
489 		if (S_ISREG(inode->i_mode))
490 			block_group++;
491 	}
492 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
494 
495 	/*
496 	 * If we are doing delayed allocation, we don't need take
497 	 * colour into account.
498 	 */
499 	if (test_opt(inode->i_sb, DELALLOC))
500 		return bg_start;
501 
502 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
503 		colour = (current->pid % 16) *
504 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505 	else
506 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507 	return bg_start + colour;
508 }
509 
510 /**
511  *	ext4_find_goal - find a preferred place for allocation.
512  *	@inode: owner
513  *	@block:  block we want
514  *	@partial: pointer to the last triple within a chain
515  *
516  *	Normally this function find the preferred place for block allocation,
517  *	returns it.
518  *	Because this is only used for non-extent files, we limit the block nr
519  *	to 32 bits.
520  */
521 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522 				   Indirect *partial)
523 {
524 	ext4_fsblk_t goal;
525 
526 	/*
527 	 * XXX need to get goal block from mballoc's data structures
528 	 */
529 
530 	goal = ext4_find_near(inode, partial);
531 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
532 	return goal;
533 }
534 
535 /**
536  *	ext4_blks_to_allocate: Look up the block map and count the number
537  *	of direct blocks need to be allocated for the given branch.
538  *
539  *	@branch: chain of indirect blocks
540  *	@k: number of blocks need for indirect blocks
541  *	@blks: number of data blocks to be mapped.
542  *	@blocks_to_boundary:  the offset in the indirect block
543  *
544  *	return the total number of blocks to be allocate, including the
545  *	direct and indirect blocks.
546  */
547 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548 				 int blocks_to_boundary)
549 {
550 	unsigned int count = 0;
551 
552 	/*
553 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 	 * then it's clear blocks on that path have not allocated
555 	 */
556 	if (k > 0) {
557 		/* right now we don't handle cross boundary allocation */
558 		if (blks < blocks_to_boundary + 1)
559 			count += blks;
560 		else
561 			count += blocks_to_boundary + 1;
562 		return count;
563 	}
564 
565 	count++;
566 	while (count < blks && count <= blocks_to_boundary &&
567 		le32_to_cpu(*(branch[0].p + count)) == 0) {
568 		count++;
569 	}
570 	return count;
571 }
572 
573 /**
574  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
575  *	@indirect_blks: the number of blocks need to allocate for indirect
576  *			blocks
577  *
578  *	@new_blocks: on return it will store the new block numbers for
579  *	the indirect blocks(if needed) and the first direct block,
580  *	@blks:	on return it will store the total number of allocated
581  *		direct blocks
582  */
583 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
585 			     int indirect_blks, int blks,
586 			     ext4_fsblk_t new_blocks[4], int *err)
587 {
588 	struct ext4_allocation_request ar;
589 	int target, i;
590 	unsigned long count = 0, blk_allocated = 0;
591 	int index = 0;
592 	ext4_fsblk_t current_block = 0;
593 	int ret = 0;
594 
595 	/*
596 	 * Here we try to allocate the requested multiple blocks at once,
597 	 * on a best-effort basis.
598 	 * To build a branch, we should allocate blocks for
599 	 * the indirect blocks(if not allocated yet), and at least
600 	 * the first direct block of this branch.  That's the
601 	 * minimum number of blocks need to allocate(required)
602 	 */
603 	/* first we try to allocate the indirect blocks */
604 	target = indirect_blks;
605 	while (target > 0) {
606 		count = target;
607 		/* allocating blocks for indirect blocks and direct blocks */
608 		current_block = ext4_new_meta_blocks(handle, inode,
609 							goal, &count, err);
610 		if (*err)
611 			goto failed_out;
612 
613 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
614 			EXT4_ERROR_INODE(inode,
615 					 "current_block %llu + count %lu > %d!",
616 					 current_block, count,
617 					 EXT4_MAX_BLOCK_FILE_PHYS);
618 			*err = -EIO;
619 			goto failed_out;
620 		}
621 
622 		target -= count;
623 		/* allocate blocks for indirect blocks */
624 		while (index < indirect_blks && count) {
625 			new_blocks[index++] = current_block++;
626 			count--;
627 		}
628 		if (count > 0) {
629 			/*
630 			 * save the new block number
631 			 * for the first direct block
632 			 */
633 			new_blocks[index] = current_block;
634 			printk(KERN_INFO "%s returned more blocks than "
635 						"requested\n", __func__);
636 			WARN_ON(1);
637 			break;
638 		}
639 	}
640 
641 	target = blks - count ;
642 	blk_allocated = count;
643 	if (!target)
644 		goto allocated;
645 	/* Now allocate data blocks */
646 	memset(&ar, 0, sizeof(ar));
647 	ar.inode = inode;
648 	ar.goal = goal;
649 	ar.len = target;
650 	ar.logical = iblock;
651 	if (S_ISREG(inode->i_mode))
652 		/* enable in-core preallocation only for regular files */
653 		ar.flags = EXT4_MB_HINT_DATA;
654 
655 	current_block = ext4_mb_new_blocks(handle, &ar, err);
656 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
657 		EXT4_ERROR_INODE(inode,
658 				 "current_block %llu + ar.len %d > %d!",
659 				 current_block, ar.len,
660 				 EXT4_MAX_BLOCK_FILE_PHYS);
661 		*err = -EIO;
662 		goto failed_out;
663 	}
664 
665 	if (*err && (target == blks)) {
666 		/*
667 		 * if the allocation failed and we didn't allocate
668 		 * any blocks before
669 		 */
670 		goto failed_out;
671 	}
672 	if (!*err) {
673 		if (target == blks) {
674 			/*
675 			 * save the new block number
676 			 * for the first direct block
677 			 */
678 			new_blocks[index] = current_block;
679 		}
680 		blk_allocated += ar.len;
681 	}
682 allocated:
683 	/* total number of blocks allocated for direct blocks */
684 	ret = blk_allocated;
685 	*err = 0;
686 	return ret;
687 failed_out:
688 	for (i = 0; i < index; i++)
689 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
690 	return ret;
691 }
692 
693 /**
694  *	ext4_alloc_branch - allocate and set up a chain of blocks.
695  *	@inode: owner
696  *	@indirect_blks: number of allocated indirect blocks
697  *	@blks: number of allocated direct blocks
698  *	@offsets: offsets (in the blocks) to store the pointers to next.
699  *	@branch: place to store the chain in.
700  *
701  *	This function allocates blocks, zeroes out all but the last one,
702  *	links them into chain and (if we are synchronous) writes them to disk.
703  *	In other words, it prepares a branch that can be spliced onto the
704  *	inode. It stores the information about that chain in the branch[], in
705  *	the same format as ext4_get_branch() would do. We are calling it after
706  *	we had read the existing part of chain and partial points to the last
707  *	triple of that (one with zero ->key). Upon the exit we have the same
708  *	picture as after the successful ext4_get_block(), except that in one
709  *	place chain is disconnected - *branch->p is still zero (we did not
710  *	set the last link), but branch->key contains the number that should
711  *	be placed into *branch->p to fill that gap.
712  *
713  *	If allocation fails we free all blocks we've allocated (and forget
714  *	their buffer_heads) and return the error value the from failed
715  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
716  *	as described above and return 0.
717  */
718 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
719 			     ext4_lblk_t iblock, int indirect_blks,
720 			     int *blks, ext4_fsblk_t goal,
721 			     ext4_lblk_t *offsets, Indirect *branch)
722 {
723 	int blocksize = inode->i_sb->s_blocksize;
724 	int i, n = 0;
725 	int err = 0;
726 	struct buffer_head *bh;
727 	int num;
728 	ext4_fsblk_t new_blocks[4];
729 	ext4_fsblk_t current_block;
730 
731 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
732 				*blks, new_blocks, &err);
733 	if (err)
734 		return err;
735 
736 	branch[0].key = cpu_to_le32(new_blocks[0]);
737 	/*
738 	 * metadata blocks and data blocks are allocated.
739 	 */
740 	for (n = 1; n <= indirect_blks;  n++) {
741 		/*
742 		 * Get buffer_head for parent block, zero it out
743 		 * and set the pointer to new one, then send
744 		 * parent to disk.
745 		 */
746 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
747 		branch[n].bh = bh;
748 		lock_buffer(bh);
749 		BUFFER_TRACE(bh, "call get_create_access");
750 		err = ext4_journal_get_create_access(handle, bh);
751 		if (err) {
752 			/* Don't brelse(bh) here; it's done in
753 			 * ext4_journal_forget() below */
754 			unlock_buffer(bh);
755 			goto failed;
756 		}
757 
758 		memset(bh->b_data, 0, blocksize);
759 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
760 		branch[n].key = cpu_to_le32(new_blocks[n]);
761 		*branch[n].p = branch[n].key;
762 		if (n == indirect_blks) {
763 			current_block = new_blocks[n];
764 			/*
765 			 * End of chain, update the last new metablock of
766 			 * the chain to point to the new allocated
767 			 * data blocks numbers
768 			 */
769 			for (i = 1; i < num; i++)
770 				*(branch[n].p + i) = cpu_to_le32(++current_block);
771 		}
772 		BUFFER_TRACE(bh, "marking uptodate");
773 		set_buffer_uptodate(bh);
774 		unlock_buffer(bh);
775 
776 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 		err = ext4_handle_dirty_metadata(handle, inode, bh);
778 		if (err)
779 			goto failed;
780 	}
781 	*blks = num;
782 	return err;
783 failed:
784 	/* Allocation failed, free what we already allocated */
785 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
786 	for (i = 1; i <= n ; i++) {
787 		/*
788 		 * branch[i].bh is newly allocated, so there is no
789 		 * need to revoke the block, which is why we don't
790 		 * need to set EXT4_FREE_BLOCKS_METADATA.
791 		 */
792 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
793 				 EXT4_FREE_BLOCKS_FORGET);
794 	}
795 	for (i = n+1; i < indirect_blks; i++)
796 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
797 
798 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
799 
800 	return err;
801 }
802 
803 /**
804  * ext4_splice_branch - splice the allocated branch onto inode.
805  * @inode: owner
806  * @block: (logical) number of block we are adding
807  * @chain: chain of indirect blocks (with a missing link - see
808  *	ext4_alloc_branch)
809  * @where: location of missing link
810  * @num:   number of indirect blocks we are adding
811  * @blks:  number of direct blocks we are adding
812  *
813  * This function fills the missing link and does all housekeeping needed in
814  * inode (->i_blocks, etc.). In case of success we end up with the full
815  * chain to new block and return 0.
816  */
817 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
818 			      ext4_lblk_t block, Indirect *where, int num,
819 			      int blks)
820 {
821 	int i;
822 	int err = 0;
823 	ext4_fsblk_t current_block;
824 
825 	/*
826 	 * If we're splicing into a [td]indirect block (as opposed to the
827 	 * inode) then we need to get write access to the [td]indirect block
828 	 * before the splice.
829 	 */
830 	if (where->bh) {
831 		BUFFER_TRACE(where->bh, "get_write_access");
832 		err = ext4_journal_get_write_access(handle, where->bh);
833 		if (err)
834 			goto err_out;
835 	}
836 	/* That's it */
837 
838 	*where->p = where->key;
839 
840 	/*
841 	 * Update the host buffer_head or inode to point to more just allocated
842 	 * direct blocks blocks
843 	 */
844 	if (num == 0 && blks > 1) {
845 		current_block = le32_to_cpu(where->key) + 1;
846 		for (i = 1; i < blks; i++)
847 			*(where->p + i) = cpu_to_le32(current_block++);
848 	}
849 
850 	/* We are done with atomic stuff, now do the rest of housekeeping */
851 	/* had we spliced it onto indirect block? */
852 	if (where->bh) {
853 		/*
854 		 * If we spliced it onto an indirect block, we haven't
855 		 * altered the inode.  Note however that if it is being spliced
856 		 * onto an indirect block at the very end of the file (the
857 		 * file is growing) then we *will* alter the inode to reflect
858 		 * the new i_size.  But that is not done here - it is done in
859 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
860 		 */
861 		jbd_debug(5, "splicing indirect only\n");
862 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
863 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
864 		if (err)
865 			goto err_out;
866 	} else {
867 		/*
868 		 * OK, we spliced it into the inode itself on a direct block.
869 		 */
870 		ext4_mark_inode_dirty(handle, inode);
871 		jbd_debug(5, "splicing direct\n");
872 	}
873 	return err;
874 
875 err_out:
876 	for (i = 1; i <= num; i++) {
877 		/*
878 		 * branch[i].bh is newly allocated, so there is no
879 		 * need to revoke the block, which is why we don't
880 		 * need to set EXT4_FREE_BLOCKS_METADATA.
881 		 */
882 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
883 				 EXT4_FREE_BLOCKS_FORGET);
884 	}
885 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
886 			 blks, 0);
887 
888 	return err;
889 }
890 
891 /*
892  * The ext4_ind_get_blocks() function handles non-extents inodes
893  * (i.e., using the traditional indirect/double-indirect i_blocks
894  * scheme) for ext4_get_blocks().
895  *
896  * Allocation strategy is simple: if we have to allocate something, we will
897  * have to go the whole way to leaf. So let's do it before attaching anything
898  * to tree, set linkage between the newborn blocks, write them if sync is
899  * required, recheck the path, free and repeat if check fails, otherwise
900  * set the last missing link (that will protect us from any truncate-generated
901  * removals - all blocks on the path are immune now) and possibly force the
902  * write on the parent block.
903  * That has a nice additional property: no special recovery from the failed
904  * allocations is needed - we simply release blocks and do not touch anything
905  * reachable from inode.
906  *
907  * `handle' can be NULL if create == 0.
908  *
909  * return > 0, # of blocks mapped or allocated.
910  * return = 0, if plain lookup failed.
911  * return < 0, error case.
912  *
913  * The ext4_ind_get_blocks() function should be called with
914  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
917  * blocks.
918  */
919 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
920 			       ext4_lblk_t iblock, unsigned int maxblocks,
921 			       struct buffer_head *bh_result,
922 			       int flags)
923 {
924 	int err = -EIO;
925 	ext4_lblk_t offsets[4];
926 	Indirect chain[4];
927 	Indirect *partial;
928 	ext4_fsblk_t goal;
929 	int indirect_blks;
930 	int blocks_to_boundary = 0;
931 	int depth;
932 	int count = 0;
933 	ext4_fsblk_t first_block = 0;
934 
935 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
936 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
937 	depth = ext4_block_to_path(inode, iblock, offsets,
938 				   &blocks_to_boundary);
939 
940 	if (depth == 0)
941 		goto out;
942 
943 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
944 
945 	/* Simplest case - block found, no allocation needed */
946 	if (!partial) {
947 		first_block = le32_to_cpu(chain[depth - 1].key);
948 		clear_buffer_new(bh_result);
949 		count++;
950 		/*map more blocks*/
951 		while (count < maxblocks && count <= blocks_to_boundary) {
952 			ext4_fsblk_t blk;
953 
954 			blk = le32_to_cpu(*(chain[depth-1].p + count));
955 
956 			if (blk == first_block + count)
957 				count++;
958 			else
959 				break;
960 		}
961 		goto got_it;
962 	}
963 
964 	/* Next simple case - plain lookup or failed read of indirect block */
965 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
966 		goto cleanup;
967 
968 	/*
969 	 * Okay, we need to do block allocation.
970 	*/
971 	goal = ext4_find_goal(inode, iblock, partial);
972 
973 	/* the number of blocks need to allocate for [d,t]indirect blocks */
974 	indirect_blks = (chain + depth) - partial - 1;
975 
976 	/*
977 	 * Next look up the indirect map to count the totoal number of
978 	 * direct blocks to allocate for this branch.
979 	 */
980 	count = ext4_blks_to_allocate(partial, indirect_blks,
981 					maxblocks, blocks_to_boundary);
982 	/*
983 	 * Block out ext4_truncate while we alter the tree
984 	 */
985 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
986 				&count, goal,
987 				offsets + (partial - chain), partial);
988 
989 	/*
990 	 * The ext4_splice_branch call will free and forget any buffers
991 	 * on the new chain if there is a failure, but that risks using
992 	 * up transaction credits, especially for bitmaps where the
993 	 * credits cannot be returned.  Can we handle this somehow?  We
994 	 * may need to return -EAGAIN upwards in the worst case.  --sct
995 	 */
996 	if (!err)
997 		err = ext4_splice_branch(handle, inode, iblock,
998 					 partial, indirect_blks, count);
999 	if (err)
1000 		goto cleanup;
1001 
1002 	set_buffer_new(bh_result);
1003 
1004 	ext4_update_inode_fsync_trans(handle, inode, 1);
1005 got_it:
1006 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1007 	if (count > blocks_to_boundary)
1008 		set_buffer_boundary(bh_result);
1009 	err = count;
1010 	/* Clean up and exit */
1011 	partial = chain + depth - 1;	/* the whole chain */
1012 cleanup:
1013 	while (partial > chain) {
1014 		BUFFER_TRACE(partial->bh, "call brelse");
1015 		brelse(partial->bh);
1016 		partial--;
1017 	}
1018 	BUFFER_TRACE(bh_result, "returned");
1019 out:
1020 	return err;
1021 }
1022 
1023 #ifdef CONFIG_QUOTA
1024 qsize_t *ext4_get_reserved_space(struct inode *inode)
1025 {
1026 	return &EXT4_I(inode)->i_reserved_quota;
1027 }
1028 #endif
1029 
1030 /*
1031  * Calculate the number of metadata blocks need to reserve
1032  * to allocate a new block at @lblocks for non extent file based file
1033  */
1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1035 					      sector_t lblock)
1036 {
1037 	struct ext4_inode_info *ei = EXT4_I(inode);
1038 	int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1039 	int blk_bits;
1040 
1041 	if (lblock < EXT4_NDIR_BLOCKS)
1042 		return 0;
1043 
1044 	lblock -= EXT4_NDIR_BLOCKS;
1045 
1046 	if (ei->i_da_metadata_calc_len &&
1047 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1048 		ei->i_da_metadata_calc_len++;
1049 		return 0;
1050 	}
1051 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1052 	ei->i_da_metadata_calc_len = 1;
1053 	blk_bits = roundup_pow_of_two(lblock + 1);
1054 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1055 }
1056 
1057 /*
1058  * Calculate the number of metadata blocks need to reserve
1059  * to allocate a block located at @lblock
1060  */
1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1062 {
1063 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064 		return ext4_ext_calc_metadata_amount(inode, lblock);
1065 
1066 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1067 }
1068 
1069 /*
1070  * Called with i_data_sem down, which is important since we can call
1071  * ext4_discard_preallocations() from here.
1072  */
1073 void ext4_da_update_reserve_space(struct inode *inode,
1074 					int used, int quota_claim)
1075 {
1076 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077 	struct ext4_inode_info *ei = EXT4_I(inode);
1078 	int mdb_free = 0, allocated_meta_blocks = 0;
1079 
1080 	spin_lock(&ei->i_block_reservation_lock);
1081 	trace_ext4_da_update_reserve_space(inode, used);
1082 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1083 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084 			 "with only %d reserved data blocks\n",
1085 			 __func__, inode->i_ino, used,
1086 			 ei->i_reserved_data_blocks);
1087 		WARN_ON(1);
1088 		used = ei->i_reserved_data_blocks;
1089 	}
1090 
1091 	/* Update per-inode reservations */
1092 	ei->i_reserved_data_blocks -= used;
1093 	used += ei->i_allocated_meta_blocks;
1094 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1095 	allocated_meta_blocks = ei->i_allocated_meta_blocks;
1096 	ei->i_allocated_meta_blocks = 0;
1097 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1098 
1099 	if (ei->i_reserved_data_blocks == 0) {
1100 		/*
1101 		 * We can release all of the reserved metadata blocks
1102 		 * only when we have written all of the delayed
1103 		 * allocation blocks.
1104 		 */
1105 		mdb_free = ei->i_reserved_meta_blocks;
1106 		ei->i_reserved_meta_blocks = 0;
1107 		ei->i_da_metadata_calc_len = 0;
1108 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1109 	}
1110 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1111 
1112 	/* Update quota subsystem */
1113 	if (quota_claim) {
1114 		dquot_claim_block(inode, used);
1115 		if (mdb_free)
1116 			dquot_release_reservation_block(inode, mdb_free);
1117 	} else {
1118 		/*
1119 		 * We did fallocate with an offset that is already delayed
1120 		 * allocated. So on delayed allocated writeback we should
1121 		 * not update the quota for allocated blocks. But then
1122 		 * converting an fallocate region to initialized region would
1123 		 * have caused a metadata allocation. So claim quota for
1124 		 * that
1125 		 */
1126 		if (allocated_meta_blocks)
1127 			dquot_claim_block(inode, allocated_meta_blocks);
1128 		dquot_release_reservation_block(inode, mdb_free + used);
1129 	}
1130 
1131 	/*
1132 	 * If we have done all the pending block allocations and if
1133 	 * there aren't any writers on the inode, we can discard the
1134 	 * inode's preallocations.
1135 	 */
1136 	if ((ei->i_reserved_data_blocks == 0) &&
1137 	    (atomic_read(&inode->i_writecount) == 0))
1138 		ext4_discard_preallocations(inode);
1139 }
1140 
1141 static int check_block_validity(struct inode *inode, const char *msg,
1142 				sector_t logical, sector_t phys, int len)
1143 {
1144 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1145 		__ext4_error(inode->i_sb, msg,
1146 			   "inode #%lu logical block %llu mapped to %llu "
1147 			   "(size %d)", inode->i_ino,
1148 			   (unsigned long long) logical,
1149 			   (unsigned long long) phys, len);
1150 		return -EIO;
1151 	}
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Return the number of contiguous dirty pages in a given inode
1157  * starting at page frame idx.
1158  */
1159 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1160 				    unsigned int max_pages)
1161 {
1162 	struct address_space *mapping = inode->i_mapping;
1163 	pgoff_t	index;
1164 	struct pagevec pvec;
1165 	pgoff_t num = 0;
1166 	int i, nr_pages, done = 0;
1167 
1168 	if (max_pages == 0)
1169 		return 0;
1170 	pagevec_init(&pvec, 0);
1171 	while (!done) {
1172 		index = idx;
1173 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1174 					      PAGECACHE_TAG_DIRTY,
1175 					      (pgoff_t)PAGEVEC_SIZE);
1176 		if (nr_pages == 0)
1177 			break;
1178 		for (i = 0; i < nr_pages; i++) {
1179 			struct page *page = pvec.pages[i];
1180 			struct buffer_head *bh, *head;
1181 
1182 			lock_page(page);
1183 			if (unlikely(page->mapping != mapping) ||
1184 			    !PageDirty(page) ||
1185 			    PageWriteback(page) ||
1186 			    page->index != idx) {
1187 				done = 1;
1188 				unlock_page(page);
1189 				break;
1190 			}
1191 			if (page_has_buffers(page)) {
1192 				bh = head = page_buffers(page);
1193 				do {
1194 					if (!buffer_delay(bh) &&
1195 					    !buffer_unwritten(bh))
1196 						done = 1;
1197 					bh = bh->b_this_page;
1198 				} while (!done && (bh != head));
1199 			}
1200 			unlock_page(page);
1201 			if (done)
1202 				break;
1203 			idx++;
1204 			num++;
1205 			if (num >= max_pages)
1206 				break;
1207 		}
1208 		pagevec_release(&pvec);
1209 	}
1210 	return num;
1211 }
1212 
1213 /*
1214  * The ext4_get_blocks() function tries to look up the requested blocks,
1215  * and returns if the blocks are already mapped.
1216  *
1217  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218  * and store the allocated blocks in the result buffer head and mark it
1219  * mapped.
1220  *
1221  * If file type is extents based, it will call ext4_ext_get_blocks(),
1222  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1223  * based files
1224  *
1225  * On success, it returns the number of blocks being mapped or allocate.
1226  * if create==0 and the blocks are pre-allocated and uninitialized block,
1227  * the result buffer head is unmapped. If the create ==1, it will make sure
1228  * the buffer head is mapped.
1229  *
1230  * It returns 0 if plain look up failed (blocks have not been allocated), in
1231  * that casem, buffer head is unmapped
1232  *
1233  * It returns the error in case of allocation failure.
1234  */
1235 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1236 		    unsigned int max_blocks, struct buffer_head *bh,
1237 		    int flags)
1238 {
1239 	int retval;
1240 
1241 	clear_buffer_mapped(bh);
1242 	clear_buffer_unwritten(bh);
1243 
1244 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1245 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1246 		  (unsigned long)block);
1247 	/*
1248 	 * Try to see if we can get the block without requesting a new
1249 	 * file system block.
1250 	 */
1251 	down_read((&EXT4_I(inode)->i_data_sem));
1252 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1253 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1254 				bh, 0);
1255 	} else {
1256 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1257 					     bh, 0);
1258 	}
1259 	up_read((&EXT4_I(inode)->i_data_sem));
1260 
1261 	if (retval > 0 && buffer_mapped(bh)) {
1262 		int ret = check_block_validity(inode, "file system corruption",
1263 					       block, bh->b_blocknr, retval);
1264 		if (ret != 0)
1265 			return ret;
1266 	}
1267 
1268 	/* If it is only a block(s) look up */
1269 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1270 		return retval;
1271 
1272 	/*
1273 	 * Returns if the blocks have already allocated
1274 	 *
1275 	 * Note that if blocks have been preallocated
1276 	 * ext4_ext_get_block() returns th create = 0
1277 	 * with buffer head unmapped.
1278 	 */
1279 	if (retval > 0 && buffer_mapped(bh))
1280 		return retval;
1281 
1282 	/*
1283 	 * When we call get_blocks without the create flag, the
1284 	 * BH_Unwritten flag could have gotten set if the blocks
1285 	 * requested were part of a uninitialized extent.  We need to
1286 	 * clear this flag now that we are committed to convert all or
1287 	 * part of the uninitialized extent to be an initialized
1288 	 * extent.  This is because we need to avoid the combination
1289 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1290 	 * set on the buffer_head.
1291 	 */
1292 	clear_buffer_unwritten(bh);
1293 
1294 	/*
1295 	 * New blocks allocate and/or writing to uninitialized extent
1296 	 * will possibly result in updating i_data, so we take
1297 	 * the write lock of i_data_sem, and call get_blocks()
1298 	 * with create == 1 flag.
1299 	 */
1300 	down_write((&EXT4_I(inode)->i_data_sem));
1301 
1302 	/*
1303 	 * if the caller is from delayed allocation writeout path
1304 	 * we have already reserved fs blocks for allocation
1305 	 * let the underlying get_block() function know to
1306 	 * avoid double accounting
1307 	 */
1308 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1309 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1310 	/*
1311 	 * We need to check for EXT4 here because migrate
1312 	 * could have changed the inode type in between
1313 	 */
1314 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1315 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1316 					      bh, flags);
1317 	} else {
1318 		retval = ext4_ind_get_blocks(handle, inode, block,
1319 					     max_blocks, bh, flags);
1320 
1321 		if (retval > 0 && buffer_new(bh)) {
1322 			/*
1323 			 * We allocated new blocks which will result in
1324 			 * i_data's format changing.  Force the migrate
1325 			 * to fail by clearing migrate flags
1326 			 */
1327 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1328 		}
1329 
1330 		/*
1331 		 * Update reserved blocks/metadata blocks after successful
1332 		 * block allocation which had been deferred till now. We don't
1333 		 * support fallocate for non extent files. So we can update
1334 		 * reserve space here.
1335 		 */
1336 		if ((retval > 0) &&
1337 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1338 			ext4_da_update_reserve_space(inode, retval, 1);
1339 	}
1340 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1342 
1343 	up_write((&EXT4_I(inode)->i_data_sem));
1344 	if (retval > 0 && buffer_mapped(bh)) {
1345 		int ret = check_block_validity(inode, "file system "
1346 					       "corruption after allocation",
1347 					       block, bh->b_blocknr, retval);
1348 		if (ret != 0)
1349 			return ret;
1350 	}
1351 	return retval;
1352 }
1353 
1354 /* Maximum number of blocks we map for direct IO at once. */
1355 #define DIO_MAX_BLOCKS 4096
1356 
1357 int ext4_get_block(struct inode *inode, sector_t iblock,
1358 		   struct buffer_head *bh_result, int create)
1359 {
1360 	handle_t *handle = ext4_journal_current_handle();
1361 	int ret = 0, started = 0;
1362 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1363 	int dio_credits;
1364 
1365 	if (create && !handle) {
1366 		/* Direct IO write... */
1367 		if (max_blocks > DIO_MAX_BLOCKS)
1368 			max_blocks = DIO_MAX_BLOCKS;
1369 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1370 		handle = ext4_journal_start(inode, dio_credits);
1371 		if (IS_ERR(handle)) {
1372 			ret = PTR_ERR(handle);
1373 			goto out;
1374 		}
1375 		started = 1;
1376 	}
1377 
1378 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1379 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1380 	if (ret > 0) {
1381 		bh_result->b_size = (ret << inode->i_blkbits);
1382 		ret = 0;
1383 	}
1384 	if (started)
1385 		ext4_journal_stop(handle);
1386 out:
1387 	return ret;
1388 }
1389 
1390 /*
1391  * `handle' can be NULL if create is zero
1392  */
1393 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1394 				ext4_lblk_t block, int create, int *errp)
1395 {
1396 	struct buffer_head dummy;
1397 	int fatal = 0, err;
1398 	int flags = 0;
1399 
1400 	J_ASSERT(handle != NULL || create == 0);
1401 
1402 	dummy.b_state = 0;
1403 	dummy.b_blocknr = -1000;
1404 	buffer_trace_init(&dummy.b_history);
1405 	if (create)
1406 		flags |= EXT4_GET_BLOCKS_CREATE;
1407 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1408 	/*
1409 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1410 	 * case of a HOLE.
1411 	 */
1412 	if (err > 0) {
1413 		if (err > 1)
1414 			WARN_ON(1);
1415 		err = 0;
1416 	}
1417 	*errp = err;
1418 	if (!err && buffer_mapped(&dummy)) {
1419 		struct buffer_head *bh;
1420 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1421 		if (!bh) {
1422 			*errp = -EIO;
1423 			goto err;
1424 		}
1425 		if (buffer_new(&dummy)) {
1426 			J_ASSERT(create != 0);
1427 			J_ASSERT(handle != NULL);
1428 
1429 			/*
1430 			 * Now that we do not always journal data, we should
1431 			 * keep in mind whether this should always journal the
1432 			 * new buffer as metadata.  For now, regular file
1433 			 * writes use ext4_get_block instead, so it's not a
1434 			 * problem.
1435 			 */
1436 			lock_buffer(bh);
1437 			BUFFER_TRACE(bh, "call get_create_access");
1438 			fatal = ext4_journal_get_create_access(handle, bh);
1439 			if (!fatal && !buffer_uptodate(bh)) {
1440 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1441 				set_buffer_uptodate(bh);
1442 			}
1443 			unlock_buffer(bh);
1444 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1445 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1446 			if (!fatal)
1447 				fatal = err;
1448 		} else {
1449 			BUFFER_TRACE(bh, "not a new buffer");
1450 		}
1451 		if (fatal) {
1452 			*errp = fatal;
1453 			brelse(bh);
1454 			bh = NULL;
1455 		}
1456 		return bh;
1457 	}
1458 err:
1459 	return NULL;
1460 }
1461 
1462 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1463 			       ext4_lblk_t block, int create, int *err)
1464 {
1465 	struct buffer_head *bh;
1466 
1467 	bh = ext4_getblk(handle, inode, block, create, err);
1468 	if (!bh)
1469 		return bh;
1470 	if (buffer_uptodate(bh))
1471 		return bh;
1472 	ll_rw_block(READ_META, 1, &bh);
1473 	wait_on_buffer(bh);
1474 	if (buffer_uptodate(bh))
1475 		return bh;
1476 	put_bh(bh);
1477 	*err = -EIO;
1478 	return NULL;
1479 }
1480 
1481 static int walk_page_buffers(handle_t *handle,
1482 			     struct buffer_head *head,
1483 			     unsigned from,
1484 			     unsigned to,
1485 			     int *partial,
1486 			     int (*fn)(handle_t *handle,
1487 				       struct buffer_head *bh))
1488 {
1489 	struct buffer_head *bh;
1490 	unsigned block_start, block_end;
1491 	unsigned blocksize = head->b_size;
1492 	int err, ret = 0;
1493 	struct buffer_head *next;
1494 
1495 	for (bh = head, block_start = 0;
1496 	     ret == 0 && (bh != head || !block_start);
1497 	     block_start = block_end, bh = next) {
1498 		next = bh->b_this_page;
1499 		block_end = block_start + blocksize;
1500 		if (block_end <= from || block_start >= to) {
1501 			if (partial && !buffer_uptodate(bh))
1502 				*partial = 1;
1503 			continue;
1504 		}
1505 		err = (*fn)(handle, bh);
1506 		if (!ret)
1507 			ret = err;
1508 	}
1509 	return ret;
1510 }
1511 
1512 /*
1513  * To preserve ordering, it is essential that the hole instantiation and
1514  * the data write be encapsulated in a single transaction.  We cannot
1515  * close off a transaction and start a new one between the ext4_get_block()
1516  * and the commit_write().  So doing the jbd2_journal_start at the start of
1517  * prepare_write() is the right place.
1518  *
1519  * Also, this function can nest inside ext4_writepage() ->
1520  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1521  * has generated enough buffer credits to do the whole page.  So we won't
1522  * block on the journal in that case, which is good, because the caller may
1523  * be PF_MEMALLOC.
1524  *
1525  * By accident, ext4 can be reentered when a transaction is open via
1526  * quota file writes.  If we were to commit the transaction while thus
1527  * reentered, there can be a deadlock - we would be holding a quota
1528  * lock, and the commit would never complete if another thread had a
1529  * transaction open and was blocking on the quota lock - a ranking
1530  * violation.
1531  *
1532  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1533  * will _not_ run commit under these circumstances because handle->h_ref
1534  * is elevated.  We'll still have enough credits for the tiny quotafile
1535  * write.
1536  */
1537 static int do_journal_get_write_access(handle_t *handle,
1538 				       struct buffer_head *bh)
1539 {
1540 	if (!buffer_mapped(bh) || buffer_freed(bh))
1541 		return 0;
1542 	return ext4_journal_get_write_access(handle, bh);
1543 }
1544 
1545 /*
1546  * Truncate blocks that were not used by write. We have to truncate the
1547  * pagecache as well so that corresponding buffers get properly unmapped.
1548  */
1549 static void ext4_truncate_failed_write(struct inode *inode)
1550 {
1551 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1552 	ext4_truncate(inode);
1553 }
1554 
1555 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1556 		   struct buffer_head *bh_result, int create);
1557 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1558 			    loff_t pos, unsigned len, unsigned flags,
1559 			    struct page **pagep, void **fsdata)
1560 {
1561 	struct inode *inode = mapping->host;
1562 	int ret, needed_blocks;
1563 	handle_t *handle;
1564 	int retries = 0;
1565 	struct page *page;
1566 	pgoff_t index;
1567 	unsigned from, to;
1568 
1569 	trace_ext4_write_begin(inode, pos, len, flags);
1570 	/*
1571 	 * Reserve one block more for addition to orphan list in case
1572 	 * we allocate blocks but write fails for some reason
1573 	 */
1574 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1575 	index = pos >> PAGE_CACHE_SHIFT;
1576 	from = pos & (PAGE_CACHE_SIZE - 1);
1577 	to = from + len;
1578 
1579 retry:
1580 	handle = ext4_journal_start(inode, needed_blocks);
1581 	if (IS_ERR(handle)) {
1582 		ret = PTR_ERR(handle);
1583 		goto out;
1584 	}
1585 
1586 	/* We cannot recurse into the filesystem as the transaction is already
1587 	 * started */
1588 	flags |= AOP_FLAG_NOFS;
1589 
1590 	page = grab_cache_page_write_begin(mapping, index, flags);
1591 	if (!page) {
1592 		ext4_journal_stop(handle);
1593 		ret = -ENOMEM;
1594 		goto out;
1595 	}
1596 	*pagep = page;
1597 
1598 	if (ext4_should_dioread_nolock(inode))
1599 		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1600 				fsdata, ext4_get_block_write);
1601 	else
1602 		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1603 				fsdata, ext4_get_block);
1604 
1605 	if (!ret && ext4_should_journal_data(inode)) {
1606 		ret = walk_page_buffers(handle, page_buffers(page),
1607 				from, to, NULL, do_journal_get_write_access);
1608 	}
1609 
1610 	if (ret) {
1611 		unlock_page(page);
1612 		page_cache_release(page);
1613 		/*
1614 		 * block_write_begin may have instantiated a few blocks
1615 		 * outside i_size.  Trim these off again. Don't need
1616 		 * i_size_read because we hold i_mutex.
1617 		 *
1618 		 * Add inode to orphan list in case we crash before
1619 		 * truncate finishes
1620 		 */
1621 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1622 			ext4_orphan_add(handle, inode);
1623 
1624 		ext4_journal_stop(handle);
1625 		if (pos + len > inode->i_size) {
1626 			ext4_truncate_failed_write(inode);
1627 			/*
1628 			 * If truncate failed early the inode might
1629 			 * still be on the orphan list; we need to
1630 			 * make sure the inode is removed from the
1631 			 * orphan list in that case.
1632 			 */
1633 			if (inode->i_nlink)
1634 				ext4_orphan_del(NULL, inode);
1635 		}
1636 	}
1637 
1638 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1639 		goto retry;
1640 out:
1641 	return ret;
1642 }
1643 
1644 /* For write_end() in data=journal mode */
1645 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1646 {
1647 	if (!buffer_mapped(bh) || buffer_freed(bh))
1648 		return 0;
1649 	set_buffer_uptodate(bh);
1650 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1651 }
1652 
1653 static int ext4_generic_write_end(struct file *file,
1654 				  struct address_space *mapping,
1655 				  loff_t pos, unsigned len, unsigned copied,
1656 				  struct page *page, void *fsdata)
1657 {
1658 	int i_size_changed = 0;
1659 	struct inode *inode = mapping->host;
1660 	handle_t *handle = ext4_journal_current_handle();
1661 
1662 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1663 
1664 	/*
1665 	 * No need to use i_size_read() here, the i_size
1666 	 * cannot change under us because we hold i_mutex.
1667 	 *
1668 	 * But it's important to update i_size while still holding page lock:
1669 	 * page writeout could otherwise come in and zero beyond i_size.
1670 	 */
1671 	if (pos + copied > inode->i_size) {
1672 		i_size_write(inode, pos + copied);
1673 		i_size_changed = 1;
1674 	}
1675 
1676 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1677 		/* We need to mark inode dirty even if
1678 		 * new_i_size is less that inode->i_size
1679 		 * bu greater than i_disksize.(hint delalloc)
1680 		 */
1681 		ext4_update_i_disksize(inode, (pos + copied));
1682 		i_size_changed = 1;
1683 	}
1684 	unlock_page(page);
1685 	page_cache_release(page);
1686 
1687 	/*
1688 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1689 	 * makes the holding time of page lock longer. Second, it forces lock
1690 	 * ordering of page lock and transaction start for journaling
1691 	 * filesystems.
1692 	 */
1693 	if (i_size_changed)
1694 		ext4_mark_inode_dirty(handle, inode);
1695 
1696 	return copied;
1697 }
1698 
1699 /*
1700  * We need to pick up the new inode size which generic_commit_write gave us
1701  * `file' can be NULL - eg, when called from page_symlink().
1702  *
1703  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1704  * buffers are managed internally.
1705  */
1706 static int ext4_ordered_write_end(struct file *file,
1707 				  struct address_space *mapping,
1708 				  loff_t pos, unsigned len, unsigned copied,
1709 				  struct page *page, void *fsdata)
1710 {
1711 	handle_t *handle = ext4_journal_current_handle();
1712 	struct inode *inode = mapping->host;
1713 	int ret = 0, ret2;
1714 
1715 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1716 	ret = ext4_jbd2_file_inode(handle, inode);
1717 
1718 	if (ret == 0) {
1719 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1720 							page, fsdata);
1721 		copied = ret2;
1722 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1723 			/* if we have allocated more blocks and copied
1724 			 * less. We will have blocks allocated outside
1725 			 * inode->i_size. So truncate them
1726 			 */
1727 			ext4_orphan_add(handle, inode);
1728 		if (ret2 < 0)
1729 			ret = ret2;
1730 	}
1731 	ret2 = ext4_journal_stop(handle);
1732 	if (!ret)
1733 		ret = ret2;
1734 
1735 	if (pos + len > inode->i_size) {
1736 		ext4_truncate_failed_write(inode);
1737 		/*
1738 		 * If truncate failed early the inode might still be
1739 		 * on the orphan list; we need to make sure the inode
1740 		 * is removed from the orphan list in that case.
1741 		 */
1742 		if (inode->i_nlink)
1743 			ext4_orphan_del(NULL, inode);
1744 	}
1745 
1746 
1747 	return ret ? ret : copied;
1748 }
1749 
1750 static int ext4_writeback_write_end(struct file *file,
1751 				    struct address_space *mapping,
1752 				    loff_t pos, unsigned len, unsigned copied,
1753 				    struct page *page, void *fsdata)
1754 {
1755 	handle_t *handle = ext4_journal_current_handle();
1756 	struct inode *inode = mapping->host;
1757 	int ret = 0, ret2;
1758 
1759 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1760 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1761 							page, fsdata);
1762 	copied = ret2;
1763 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1764 		/* if we have allocated more blocks and copied
1765 		 * less. We will have blocks allocated outside
1766 		 * inode->i_size. So truncate them
1767 		 */
1768 		ext4_orphan_add(handle, inode);
1769 
1770 	if (ret2 < 0)
1771 		ret = ret2;
1772 
1773 	ret2 = ext4_journal_stop(handle);
1774 	if (!ret)
1775 		ret = ret2;
1776 
1777 	if (pos + len > inode->i_size) {
1778 		ext4_truncate_failed_write(inode);
1779 		/*
1780 		 * If truncate failed early the inode might still be
1781 		 * on the orphan list; we need to make sure the inode
1782 		 * is removed from the orphan list in that case.
1783 		 */
1784 		if (inode->i_nlink)
1785 			ext4_orphan_del(NULL, inode);
1786 	}
1787 
1788 	return ret ? ret : copied;
1789 }
1790 
1791 static int ext4_journalled_write_end(struct file *file,
1792 				     struct address_space *mapping,
1793 				     loff_t pos, unsigned len, unsigned copied,
1794 				     struct page *page, void *fsdata)
1795 {
1796 	handle_t *handle = ext4_journal_current_handle();
1797 	struct inode *inode = mapping->host;
1798 	int ret = 0, ret2;
1799 	int partial = 0;
1800 	unsigned from, to;
1801 	loff_t new_i_size;
1802 
1803 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1804 	from = pos & (PAGE_CACHE_SIZE - 1);
1805 	to = from + len;
1806 
1807 	if (copied < len) {
1808 		if (!PageUptodate(page))
1809 			copied = 0;
1810 		page_zero_new_buffers(page, from+copied, to);
1811 	}
1812 
1813 	ret = walk_page_buffers(handle, page_buffers(page), from,
1814 				to, &partial, write_end_fn);
1815 	if (!partial)
1816 		SetPageUptodate(page);
1817 	new_i_size = pos + copied;
1818 	if (new_i_size > inode->i_size)
1819 		i_size_write(inode, pos+copied);
1820 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1821 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1822 		ext4_update_i_disksize(inode, new_i_size);
1823 		ret2 = ext4_mark_inode_dirty(handle, inode);
1824 		if (!ret)
1825 			ret = ret2;
1826 	}
1827 
1828 	unlock_page(page);
1829 	page_cache_release(page);
1830 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1831 		/* if we have allocated more blocks and copied
1832 		 * less. We will have blocks allocated outside
1833 		 * inode->i_size. So truncate them
1834 		 */
1835 		ext4_orphan_add(handle, inode);
1836 
1837 	ret2 = ext4_journal_stop(handle);
1838 	if (!ret)
1839 		ret = ret2;
1840 	if (pos + len > inode->i_size) {
1841 		ext4_truncate_failed_write(inode);
1842 		/*
1843 		 * If truncate failed early the inode might still be
1844 		 * on the orphan list; we need to make sure the inode
1845 		 * is removed from the orphan list in that case.
1846 		 */
1847 		if (inode->i_nlink)
1848 			ext4_orphan_del(NULL, inode);
1849 	}
1850 
1851 	return ret ? ret : copied;
1852 }
1853 
1854 /*
1855  * Reserve a single block located at lblock
1856  */
1857 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1858 {
1859 	int retries = 0;
1860 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1861 	struct ext4_inode_info *ei = EXT4_I(inode);
1862 	unsigned long md_needed, md_reserved;
1863 	int ret;
1864 
1865 	/*
1866 	 * recalculate the amount of metadata blocks to reserve
1867 	 * in order to allocate nrblocks
1868 	 * worse case is one extent per block
1869 	 */
1870 repeat:
1871 	spin_lock(&ei->i_block_reservation_lock);
1872 	md_reserved = ei->i_reserved_meta_blocks;
1873 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1874 	trace_ext4_da_reserve_space(inode, md_needed);
1875 	spin_unlock(&ei->i_block_reservation_lock);
1876 
1877 	/*
1878 	 * Make quota reservation here to prevent quota overflow
1879 	 * later. Real quota accounting is done at pages writeout
1880 	 * time.
1881 	 */
1882 	ret = dquot_reserve_block(inode, md_needed + 1);
1883 	if (ret)
1884 		return ret;
1885 
1886 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1887 		dquot_release_reservation_block(inode, md_needed + 1);
1888 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1889 			yield();
1890 			goto repeat;
1891 		}
1892 		return -ENOSPC;
1893 	}
1894 	spin_lock(&ei->i_block_reservation_lock);
1895 	ei->i_reserved_data_blocks++;
1896 	ei->i_reserved_meta_blocks += md_needed;
1897 	spin_unlock(&ei->i_block_reservation_lock);
1898 
1899 	return 0;       /* success */
1900 }
1901 
1902 static void ext4_da_release_space(struct inode *inode, int to_free)
1903 {
1904 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1905 	struct ext4_inode_info *ei = EXT4_I(inode);
1906 
1907 	if (!to_free)
1908 		return;		/* Nothing to release, exit */
1909 
1910 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1911 
1912 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1913 		/*
1914 		 * if there aren't enough reserved blocks, then the
1915 		 * counter is messed up somewhere.  Since this
1916 		 * function is called from invalidate page, it's
1917 		 * harmless to return without any action.
1918 		 */
1919 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1920 			 "ino %lu, to_free %d with only %d reserved "
1921 			 "data blocks\n", inode->i_ino, to_free,
1922 			 ei->i_reserved_data_blocks);
1923 		WARN_ON(1);
1924 		to_free = ei->i_reserved_data_blocks;
1925 	}
1926 	ei->i_reserved_data_blocks -= to_free;
1927 
1928 	if (ei->i_reserved_data_blocks == 0) {
1929 		/*
1930 		 * We can release all of the reserved metadata blocks
1931 		 * only when we have written all of the delayed
1932 		 * allocation blocks.
1933 		 */
1934 		to_free += ei->i_reserved_meta_blocks;
1935 		ei->i_reserved_meta_blocks = 0;
1936 		ei->i_da_metadata_calc_len = 0;
1937 	}
1938 
1939 	/* update fs dirty blocks counter */
1940 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1941 
1942 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1943 
1944 	dquot_release_reservation_block(inode, to_free);
1945 }
1946 
1947 static void ext4_da_page_release_reservation(struct page *page,
1948 					     unsigned long offset)
1949 {
1950 	int to_release = 0;
1951 	struct buffer_head *head, *bh;
1952 	unsigned int curr_off = 0;
1953 
1954 	head = page_buffers(page);
1955 	bh = head;
1956 	do {
1957 		unsigned int next_off = curr_off + bh->b_size;
1958 
1959 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1960 			to_release++;
1961 			clear_buffer_delay(bh);
1962 		}
1963 		curr_off = next_off;
1964 	} while ((bh = bh->b_this_page) != head);
1965 	ext4_da_release_space(page->mapping->host, to_release);
1966 }
1967 
1968 /*
1969  * Delayed allocation stuff
1970  */
1971 
1972 /*
1973  * mpage_da_submit_io - walks through extent of pages and try to write
1974  * them with writepage() call back
1975  *
1976  * @mpd->inode: inode
1977  * @mpd->first_page: first page of the extent
1978  * @mpd->next_page: page after the last page of the extent
1979  *
1980  * By the time mpage_da_submit_io() is called we expect all blocks
1981  * to be allocated. this may be wrong if allocation failed.
1982  *
1983  * As pages are already locked by write_cache_pages(), we can't use it
1984  */
1985 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1986 {
1987 	long pages_skipped;
1988 	struct pagevec pvec;
1989 	unsigned long index, end;
1990 	int ret = 0, err, nr_pages, i;
1991 	struct inode *inode = mpd->inode;
1992 	struct address_space *mapping = inode->i_mapping;
1993 
1994 	BUG_ON(mpd->next_page <= mpd->first_page);
1995 	/*
1996 	 * We need to start from the first_page to the next_page - 1
1997 	 * to make sure we also write the mapped dirty buffer_heads.
1998 	 * If we look at mpd->b_blocknr we would only be looking
1999 	 * at the currently mapped buffer_heads.
2000 	 */
2001 	index = mpd->first_page;
2002 	end = mpd->next_page - 1;
2003 
2004 	pagevec_init(&pvec, 0);
2005 	while (index <= end) {
2006 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2007 		if (nr_pages == 0)
2008 			break;
2009 		for (i = 0; i < nr_pages; i++) {
2010 			struct page *page = pvec.pages[i];
2011 
2012 			index = page->index;
2013 			if (index > end)
2014 				break;
2015 			index++;
2016 
2017 			BUG_ON(!PageLocked(page));
2018 			BUG_ON(PageWriteback(page));
2019 
2020 			pages_skipped = mpd->wbc->pages_skipped;
2021 			err = mapping->a_ops->writepage(page, mpd->wbc);
2022 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2023 				/*
2024 				 * have successfully written the page
2025 				 * without skipping the same
2026 				 */
2027 				mpd->pages_written++;
2028 			/*
2029 			 * In error case, we have to continue because
2030 			 * remaining pages are still locked
2031 			 * XXX: unlock and re-dirty them?
2032 			 */
2033 			if (ret == 0)
2034 				ret = err;
2035 		}
2036 		pagevec_release(&pvec);
2037 	}
2038 	return ret;
2039 }
2040 
2041 /*
2042  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2043  *
2044  * @mpd->inode - inode to walk through
2045  * @exbh->b_blocknr - first block on a disk
2046  * @exbh->b_size - amount of space in bytes
2047  * @logical - first logical block to start assignment with
2048  *
2049  * the function goes through all passed space and put actual disk
2050  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2051  */
2052 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2053 				 struct buffer_head *exbh)
2054 {
2055 	struct inode *inode = mpd->inode;
2056 	struct address_space *mapping = inode->i_mapping;
2057 	int blocks = exbh->b_size >> inode->i_blkbits;
2058 	sector_t pblock = exbh->b_blocknr, cur_logical;
2059 	struct buffer_head *head, *bh;
2060 	pgoff_t index, end;
2061 	struct pagevec pvec;
2062 	int nr_pages, i;
2063 
2064 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2065 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2066 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067 
2068 	pagevec_init(&pvec, 0);
2069 
2070 	while (index <= end) {
2071 		/* XXX: optimize tail */
2072 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2073 		if (nr_pages == 0)
2074 			break;
2075 		for (i = 0; i < nr_pages; i++) {
2076 			struct page *page = pvec.pages[i];
2077 
2078 			index = page->index;
2079 			if (index > end)
2080 				break;
2081 			index++;
2082 
2083 			BUG_ON(!PageLocked(page));
2084 			BUG_ON(PageWriteback(page));
2085 			BUG_ON(!page_has_buffers(page));
2086 
2087 			bh = page_buffers(page);
2088 			head = bh;
2089 
2090 			/* skip blocks out of the range */
2091 			do {
2092 				if (cur_logical >= logical)
2093 					break;
2094 				cur_logical++;
2095 			} while ((bh = bh->b_this_page) != head);
2096 
2097 			do {
2098 				if (cur_logical >= logical + blocks)
2099 					break;
2100 
2101 				if (buffer_delay(bh) ||
2102 						buffer_unwritten(bh)) {
2103 
2104 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2105 
2106 					if (buffer_delay(bh)) {
2107 						clear_buffer_delay(bh);
2108 						bh->b_blocknr = pblock;
2109 					} else {
2110 						/*
2111 						 * unwritten already should have
2112 						 * blocknr assigned. Verify that
2113 						 */
2114 						clear_buffer_unwritten(bh);
2115 						BUG_ON(bh->b_blocknr != pblock);
2116 					}
2117 
2118 				} else if (buffer_mapped(bh))
2119 					BUG_ON(bh->b_blocknr != pblock);
2120 
2121 				if (buffer_uninit(exbh))
2122 					set_buffer_uninit(bh);
2123 				cur_logical++;
2124 				pblock++;
2125 			} while ((bh = bh->b_this_page) != head);
2126 		}
2127 		pagevec_release(&pvec);
2128 	}
2129 }
2130 
2131 
2132 /*
2133  * __unmap_underlying_blocks - just a helper function to unmap
2134  * set of blocks described by @bh
2135  */
2136 static inline void __unmap_underlying_blocks(struct inode *inode,
2137 					     struct buffer_head *bh)
2138 {
2139 	struct block_device *bdev = inode->i_sb->s_bdev;
2140 	int blocks, i;
2141 
2142 	blocks = bh->b_size >> inode->i_blkbits;
2143 	for (i = 0; i < blocks; i++)
2144 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2145 }
2146 
2147 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2148 					sector_t logical, long blk_cnt)
2149 {
2150 	int nr_pages, i;
2151 	pgoff_t index, end;
2152 	struct pagevec pvec;
2153 	struct inode *inode = mpd->inode;
2154 	struct address_space *mapping = inode->i_mapping;
2155 
2156 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157 	end   = (logical + blk_cnt - 1) >>
2158 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2159 	while (index <= end) {
2160 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2161 		if (nr_pages == 0)
2162 			break;
2163 		for (i = 0; i < nr_pages; i++) {
2164 			struct page *page = pvec.pages[i];
2165 			if (page->index > end)
2166 				break;
2167 			BUG_ON(!PageLocked(page));
2168 			BUG_ON(PageWriteback(page));
2169 			block_invalidatepage(page, 0);
2170 			ClearPageUptodate(page);
2171 			unlock_page(page);
2172 		}
2173 		index = pvec.pages[nr_pages - 1]->index + 1;
2174 		pagevec_release(&pvec);
2175 	}
2176 	return;
2177 }
2178 
2179 static void ext4_print_free_blocks(struct inode *inode)
2180 {
2181 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2182 	printk(KERN_CRIT "Total free blocks count %lld\n",
2183 	       ext4_count_free_blocks(inode->i_sb));
2184 	printk(KERN_CRIT "Free/Dirty block details\n");
2185 	printk(KERN_CRIT "free_blocks=%lld\n",
2186 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2187 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2188 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2189 	printk(KERN_CRIT "Block reservation details\n");
2190 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2191 	       EXT4_I(inode)->i_reserved_data_blocks);
2192 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2193 	       EXT4_I(inode)->i_reserved_meta_blocks);
2194 	return;
2195 }
2196 
2197 /*
2198  * mpage_da_map_blocks - go through given space
2199  *
2200  * @mpd - bh describing space
2201  *
2202  * The function skips space we know is already mapped to disk blocks.
2203  *
2204  */
2205 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2206 {
2207 	int err, blks, get_blocks_flags;
2208 	struct buffer_head new;
2209 	sector_t next = mpd->b_blocknr;
2210 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2211 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2212 	handle_t *handle = NULL;
2213 
2214 	/*
2215 	 * We consider only non-mapped and non-allocated blocks
2216 	 */
2217 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2218 		!(mpd->b_state & (1 << BH_Delay)) &&
2219 		!(mpd->b_state & (1 << BH_Unwritten)))
2220 		return 0;
2221 
2222 	/*
2223 	 * If we didn't accumulate anything to write simply return
2224 	 */
2225 	if (!mpd->b_size)
2226 		return 0;
2227 
2228 	handle = ext4_journal_current_handle();
2229 	BUG_ON(!handle);
2230 
2231 	/*
2232 	 * Call ext4_get_blocks() to allocate any delayed allocation
2233 	 * blocks, or to convert an uninitialized extent to be
2234 	 * initialized (in the case where we have written into
2235 	 * one or more preallocated blocks).
2236 	 *
2237 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2238 	 * indicate that we are on the delayed allocation path.  This
2239 	 * affects functions in many different parts of the allocation
2240 	 * call path.  This flag exists primarily because we don't
2241 	 * want to change *many* call functions, so ext4_get_blocks()
2242 	 * will set the magic i_delalloc_reserved_flag once the
2243 	 * inode's allocation semaphore is taken.
2244 	 *
2245 	 * If the blocks in questions were delalloc blocks, set
2246 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2247 	 * variables are updated after the blocks have been allocated.
2248 	 */
2249 	new.b_state = 0;
2250 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2251 	if (ext4_should_dioread_nolock(mpd->inode))
2252 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2253 	if (mpd->b_state & (1 << BH_Delay))
2254 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2255 
2256 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2257 			       &new, get_blocks_flags);
2258 	if (blks < 0) {
2259 		err = blks;
2260 		/*
2261 		 * If get block returns with error we simply
2262 		 * return. Later writepage will redirty the page and
2263 		 * writepages will find the dirty page again
2264 		 */
2265 		if (err == -EAGAIN)
2266 			return 0;
2267 
2268 		if (err == -ENOSPC &&
2269 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2270 			mpd->retval = err;
2271 			return 0;
2272 		}
2273 
2274 		/*
2275 		 * get block failure will cause us to loop in
2276 		 * writepages, because a_ops->writepage won't be able
2277 		 * to make progress. The page will be redirtied by
2278 		 * writepage and writepages will again try to write
2279 		 * the same.
2280 		 */
2281 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2282 			 "delayed block allocation failed for inode %lu at "
2283 			 "logical offset %llu with max blocks %zd with "
2284 			 "error %d\n", mpd->inode->i_ino,
2285 			 (unsigned long long) next,
2286 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2287 		printk(KERN_CRIT "This should not happen!!  "
2288 		       "Data will be lost\n");
2289 		if (err == -ENOSPC) {
2290 			ext4_print_free_blocks(mpd->inode);
2291 		}
2292 		/* invalidate all the pages */
2293 		ext4_da_block_invalidatepages(mpd, next,
2294 				mpd->b_size >> mpd->inode->i_blkbits);
2295 		return err;
2296 	}
2297 	BUG_ON(blks == 0);
2298 
2299 	new.b_size = (blks << mpd->inode->i_blkbits);
2300 
2301 	if (buffer_new(&new))
2302 		__unmap_underlying_blocks(mpd->inode, &new);
2303 
2304 	/*
2305 	 * If blocks are delayed marked, we need to
2306 	 * put actual blocknr and drop delayed bit
2307 	 */
2308 	if ((mpd->b_state & (1 << BH_Delay)) ||
2309 	    (mpd->b_state & (1 << BH_Unwritten)))
2310 		mpage_put_bnr_to_bhs(mpd, next, &new);
2311 
2312 	if (ext4_should_order_data(mpd->inode)) {
2313 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2314 		if (err)
2315 			return err;
2316 	}
2317 
2318 	/*
2319 	 * Update on-disk size along with block allocation.
2320 	 */
2321 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2322 	if (disksize > i_size_read(mpd->inode))
2323 		disksize = i_size_read(mpd->inode);
2324 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2325 		ext4_update_i_disksize(mpd->inode, disksize);
2326 		return ext4_mark_inode_dirty(handle, mpd->inode);
2327 	}
2328 
2329 	return 0;
2330 }
2331 
2332 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2333 		(1 << BH_Delay) | (1 << BH_Unwritten))
2334 
2335 /*
2336  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2337  *
2338  * @mpd->lbh - extent of blocks
2339  * @logical - logical number of the block in the file
2340  * @bh - bh of the block (used to access block's state)
2341  *
2342  * the function is used to collect contig. blocks in same state
2343  */
2344 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2345 				   sector_t logical, size_t b_size,
2346 				   unsigned long b_state)
2347 {
2348 	sector_t next;
2349 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2350 
2351 	/* check if thereserved journal credits might overflow */
2352 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2353 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2354 			/*
2355 			 * With non-extent format we are limited by the journal
2356 			 * credit available.  Total credit needed to insert
2357 			 * nrblocks contiguous blocks is dependent on the
2358 			 * nrblocks.  So limit nrblocks.
2359 			 */
2360 			goto flush_it;
2361 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2362 				EXT4_MAX_TRANS_DATA) {
2363 			/*
2364 			 * Adding the new buffer_head would make it cross the
2365 			 * allowed limit for which we have journal credit
2366 			 * reserved. So limit the new bh->b_size
2367 			 */
2368 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2369 						mpd->inode->i_blkbits;
2370 			/* we will do mpage_da_submit_io in the next loop */
2371 		}
2372 	}
2373 	/*
2374 	 * First block in the extent
2375 	 */
2376 	if (mpd->b_size == 0) {
2377 		mpd->b_blocknr = logical;
2378 		mpd->b_size = b_size;
2379 		mpd->b_state = b_state & BH_FLAGS;
2380 		return;
2381 	}
2382 
2383 	next = mpd->b_blocknr + nrblocks;
2384 	/*
2385 	 * Can we merge the block to our big extent?
2386 	 */
2387 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2388 		mpd->b_size += b_size;
2389 		return;
2390 	}
2391 
2392 flush_it:
2393 	/*
2394 	 * We couldn't merge the block to our extent, so we
2395 	 * need to flush current  extent and start new one
2396 	 */
2397 	if (mpage_da_map_blocks(mpd) == 0)
2398 		mpage_da_submit_io(mpd);
2399 	mpd->io_done = 1;
2400 	return;
2401 }
2402 
2403 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2404 {
2405 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2406 }
2407 
2408 /*
2409  * __mpage_da_writepage - finds extent of pages and blocks
2410  *
2411  * @page: page to consider
2412  * @wbc: not used, we just follow rules
2413  * @data: context
2414  *
2415  * The function finds extents of pages and scan them for all blocks.
2416  */
2417 static int __mpage_da_writepage(struct page *page,
2418 				struct writeback_control *wbc, void *data)
2419 {
2420 	struct mpage_da_data *mpd = data;
2421 	struct inode *inode = mpd->inode;
2422 	struct buffer_head *bh, *head;
2423 	sector_t logical;
2424 
2425 	if (mpd->io_done) {
2426 		/*
2427 		 * Rest of the page in the page_vec
2428 		 * redirty then and skip then. We will
2429 		 * try to write them again after
2430 		 * starting a new transaction
2431 		 */
2432 		redirty_page_for_writepage(wbc, page);
2433 		unlock_page(page);
2434 		return MPAGE_DA_EXTENT_TAIL;
2435 	}
2436 	/*
2437 	 * Can we merge this page to current extent?
2438 	 */
2439 	if (mpd->next_page != page->index) {
2440 		/*
2441 		 * Nope, we can't. So, we map non-allocated blocks
2442 		 * and start IO on them using writepage()
2443 		 */
2444 		if (mpd->next_page != mpd->first_page) {
2445 			if (mpage_da_map_blocks(mpd) == 0)
2446 				mpage_da_submit_io(mpd);
2447 			/*
2448 			 * skip rest of the page in the page_vec
2449 			 */
2450 			mpd->io_done = 1;
2451 			redirty_page_for_writepage(wbc, page);
2452 			unlock_page(page);
2453 			return MPAGE_DA_EXTENT_TAIL;
2454 		}
2455 
2456 		/*
2457 		 * Start next extent of pages ...
2458 		 */
2459 		mpd->first_page = page->index;
2460 
2461 		/*
2462 		 * ... and blocks
2463 		 */
2464 		mpd->b_size = 0;
2465 		mpd->b_state = 0;
2466 		mpd->b_blocknr = 0;
2467 	}
2468 
2469 	mpd->next_page = page->index + 1;
2470 	logical = (sector_t) page->index <<
2471 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2472 
2473 	if (!page_has_buffers(page)) {
2474 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2475 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2476 		if (mpd->io_done)
2477 			return MPAGE_DA_EXTENT_TAIL;
2478 	} else {
2479 		/*
2480 		 * Page with regular buffer heads, just add all dirty ones
2481 		 */
2482 		head = page_buffers(page);
2483 		bh = head;
2484 		do {
2485 			BUG_ON(buffer_locked(bh));
2486 			/*
2487 			 * We need to try to allocate
2488 			 * unmapped blocks in the same page.
2489 			 * Otherwise we won't make progress
2490 			 * with the page in ext4_writepage
2491 			 */
2492 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2493 				mpage_add_bh_to_extent(mpd, logical,
2494 						       bh->b_size,
2495 						       bh->b_state);
2496 				if (mpd->io_done)
2497 					return MPAGE_DA_EXTENT_TAIL;
2498 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2499 				/*
2500 				 * mapped dirty buffer. We need to update
2501 				 * the b_state because we look at
2502 				 * b_state in mpage_da_map_blocks. We don't
2503 				 * update b_size because if we find an
2504 				 * unmapped buffer_head later we need to
2505 				 * use the b_state flag of that buffer_head.
2506 				 */
2507 				if (mpd->b_size == 0)
2508 					mpd->b_state = bh->b_state & BH_FLAGS;
2509 			}
2510 			logical++;
2511 		} while ((bh = bh->b_this_page) != head);
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 /*
2518  * This is a special get_blocks_t callback which is used by
2519  * ext4_da_write_begin().  It will either return mapped block or
2520  * reserve space for a single block.
2521  *
2522  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2523  * We also have b_blocknr = -1 and b_bdev initialized properly
2524  *
2525  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2526  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2527  * initialized properly.
2528  */
2529 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2530 				  struct buffer_head *bh_result, int create)
2531 {
2532 	int ret = 0;
2533 	sector_t invalid_block = ~((sector_t) 0xffff);
2534 
2535 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2536 		invalid_block = ~0;
2537 
2538 	BUG_ON(create == 0);
2539 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2540 
2541 	/*
2542 	 * first, we need to know whether the block is allocated already
2543 	 * preallocated blocks are unmapped but should treated
2544 	 * the same as allocated blocks.
2545 	 */
2546 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2547 	if ((ret == 0) && !buffer_delay(bh_result)) {
2548 		/* the block isn't (pre)allocated yet, let's reserve space */
2549 		/*
2550 		 * XXX: __block_prepare_write() unmaps passed block,
2551 		 * is it OK?
2552 		 */
2553 		ret = ext4_da_reserve_space(inode, iblock);
2554 		if (ret)
2555 			/* not enough space to reserve */
2556 			return ret;
2557 
2558 		map_bh(bh_result, inode->i_sb, invalid_block);
2559 		set_buffer_new(bh_result);
2560 		set_buffer_delay(bh_result);
2561 	} else if (ret > 0) {
2562 		bh_result->b_size = (ret << inode->i_blkbits);
2563 		if (buffer_unwritten(bh_result)) {
2564 			/* A delayed write to unwritten bh should
2565 			 * be marked new and mapped.  Mapped ensures
2566 			 * that we don't do get_block multiple times
2567 			 * when we write to the same offset and new
2568 			 * ensures that we do proper zero out for
2569 			 * partial write.
2570 			 */
2571 			set_buffer_new(bh_result);
2572 			set_buffer_mapped(bh_result);
2573 		}
2574 		ret = 0;
2575 	}
2576 
2577 	return ret;
2578 }
2579 
2580 /*
2581  * This function is used as a standard get_block_t calback function
2582  * when there is no desire to allocate any blocks.  It is used as a
2583  * callback function for block_prepare_write(), nobh_writepage(), and
2584  * block_write_full_page().  These functions should only try to map a
2585  * single block at a time.
2586  *
2587  * Since this function doesn't do block allocations even if the caller
2588  * requests it by passing in create=1, it is critically important that
2589  * any caller checks to make sure that any buffer heads are returned
2590  * by this function are either all already mapped or marked for
2591  * delayed allocation before calling nobh_writepage() or
2592  * block_write_full_page().  Otherwise, b_blocknr could be left
2593  * unitialized, and the page write functions will be taken by
2594  * surprise.
2595  */
2596 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2597 				   struct buffer_head *bh_result, int create)
2598 {
2599 	int ret = 0;
2600 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2601 
2602 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2603 
2604 	/*
2605 	 * we don't want to do block allocation in writepage
2606 	 * so call get_block_wrap with create = 0
2607 	 */
2608 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2609 	if (ret > 0) {
2610 		bh_result->b_size = (ret << inode->i_blkbits);
2611 		ret = 0;
2612 	}
2613 	return ret;
2614 }
2615 
2616 static int bget_one(handle_t *handle, struct buffer_head *bh)
2617 {
2618 	get_bh(bh);
2619 	return 0;
2620 }
2621 
2622 static int bput_one(handle_t *handle, struct buffer_head *bh)
2623 {
2624 	put_bh(bh);
2625 	return 0;
2626 }
2627 
2628 static int __ext4_journalled_writepage(struct page *page,
2629 				       unsigned int len)
2630 {
2631 	struct address_space *mapping = page->mapping;
2632 	struct inode *inode = mapping->host;
2633 	struct buffer_head *page_bufs;
2634 	handle_t *handle = NULL;
2635 	int ret = 0;
2636 	int err;
2637 
2638 	page_bufs = page_buffers(page);
2639 	BUG_ON(!page_bufs);
2640 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2641 	/* As soon as we unlock the page, it can go away, but we have
2642 	 * references to buffers so we are safe */
2643 	unlock_page(page);
2644 
2645 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2646 	if (IS_ERR(handle)) {
2647 		ret = PTR_ERR(handle);
2648 		goto out;
2649 	}
2650 
2651 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2652 				do_journal_get_write_access);
2653 
2654 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2655 				write_end_fn);
2656 	if (ret == 0)
2657 		ret = err;
2658 	err = ext4_journal_stop(handle);
2659 	if (!ret)
2660 		ret = err;
2661 
2662 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2663 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2664 out:
2665 	return ret;
2666 }
2667 
2668 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2669 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2670 
2671 /*
2672  * Note that we don't need to start a transaction unless we're journaling data
2673  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2674  * need to file the inode to the transaction's list in ordered mode because if
2675  * we are writing back data added by write(), the inode is already there and if
2676  * we are writing back data modified via mmap(), noone guarantees in which
2677  * transaction the data will hit the disk. In case we are journaling data, we
2678  * cannot start transaction directly because transaction start ranks above page
2679  * lock so we have to do some magic.
2680  *
2681  * This function can get called via...
2682  *   - ext4_da_writepages after taking page lock (have journal handle)
2683  *   - journal_submit_inode_data_buffers (no journal handle)
2684  *   - shrink_page_list via pdflush (no journal handle)
2685  *   - grab_page_cache when doing write_begin (have journal handle)
2686  *
2687  * We don't do any block allocation in this function. If we have page with
2688  * multiple blocks we need to write those buffer_heads that are mapped. This
2689  * is important for mmaped based write. So if we do with blocksize 1K
2690  * truncate(f, 1024);
2691  * a = mmap(f, 0, 4096);
2692  * a[0] = 'a';
2693  * truncate(f, 4096);
2694  * we have in the page first buffer_head mapped via page_mkwrite call back
2695  * but other bufer_heads would be unmapped but dirty(dirty done via the
2696  * do_wp_page). So writepage should write the first block. If we modify
2697  * the mmap area beyond 1024 we will again get a page_fault and the
2698  * page_mkwrite callback will do the block allocation and mark the
2699  * buffer_heads mapped.
2700  *
2701  * We redirty the page if we have any buffer_heads that is either delay or
2702  * unwritten in the page.
2703  *
2704  * We can get recursively called as show below.
2705  *
2706  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2707  *		ext4_writepage()
2708  *
2709  * But since we don't do any block allocation we should not deadlock.
2710  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2711  */
2712 static int ext4_writepage(struct page *page,
2713 			  struct writeback_control *wbc)
2714 {
2715 	int ret = 0;
2716 	loff_t size;
2717 	unsigned int len;
2718 	struct buffer_head *page_bufs = NULL;
2719 	struct inode *inode = page->mapping->host;
2720 
2721 	trace_ext4_writepage(inode, page);
2722 	size = i_size_read(inode);
2723 	if (page->index == size >> PAGE_CACHE_SHIFT)
2724 		len = size & ~PAGE_CACHE_MASK;
2725 	else
2726 		len = PAGE_CACHE_SIZE;
2727 
2728 	if (page_has_buffers(page)) {
2729 		page_bufs = page_buffers(page);
2730 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2731 					ext4_bh_delay_or_unwritten)) {
2732 			/*
2733 			 * We don't want to do  block allocation
2734 			 * So redirty the page and return
2735 			 * We may reach here when we do a journal commit
2736 			 * via journal_submit_inode_data_buffers.
2737 			 * If we don't have mapping block we just ignore
2738 			 * them. We can also reach here via shrink_page_list
2739 			 */
2740 			redirty_page_for_writepage(wbc, page);
2741 			unlock_page(page);
2742 			return 0;
2743 		}
2744 	} else {
2745 		/*
2746 		 * The test for page_has_buffers() is subtle:
2747 		 * We know the page is dirty but it lost buffers. That means
2748 		 * that at some moment in time after write_begin()/write_end()
2749 		 * has been called all buffers have been clean and thus they
2750 		 * must have been written at least once. So they are all
2751 		 * mapped and we can happily proceed with mapping them
2752 		 * and writing the page.
2753 		 *
2754 		 * Try to initialize the buffer_heads and check whether
2755 		 * all are mapped and non delay. We don't want to
2756 		 * do block allocation here.
2757 		 */
2758 		ret = block_prepare_write(page, 0, len,
2759 					  noalloc_get_block_write);
2760 		if (!ret) {
2761 			page_bufs = page_buffers(page);
2762 			/* check whether all are mapped and non delay */
2763 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2764 						ext4_bh_delay_or_unwritten)) {
2765 				redirty_page_for_writepage(wbc, page);
2766 				unlock_page(page);
2767 				return 0;
2768 			}
2769 		} else {
2770 			/*
2771 			 * We can't do block allocation here
2772 			 * so just redity the page and unlock
2773 			 * and return
2774 			 */
2775 			redirty_page_for_writepage(wbc, page);
2776 			unlock_page(page);
2777 			return 0;
2778 		}
2779 		/* now mark the buffer_heads as dirty and uptodate */
2780 		block_commit_write(page, 0, len);
2781 	}
2782 
2783 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2784 		/*
2785 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2786 		 * doesn't seem much point in redirtying the page here.
2787 		 */
2788 		ClearPageChecked(page);
2789 		return __ext4_journalled_writepage(page, len);
2790 	}
2791 
2792 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2793 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2794 	else if (page_bufs && buffer_uninit(page_bufs)) {
2795 		ext4_set_bh_endio(page_bufs, inode);
2796 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2797 					    wbc, ext4_end_io_buffer_write);
2798 	} else
2799 		ret = block_write_full_page(page, noalloc_get_block_write,
2800 					    wbc);
2801 
2802 	return ret;
2803 }
2804 
2805 /*
2806  * This is called via ext4_da_writepages() to
2807  * calulate the total number of credits to reserve to fit
2808  * a single extent allocation into a single transaction,
2809  * ext4_da_writpeages() will loop calling this before
2810  * the block allocation.
2811  */
2812 
2813 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2814 {
2815 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2816 
2817 	/*
2818 	 * With non-extent format the journal credit needed to
2819 	 * insert nrblocks contiguous block is dependent on
2820 	 * number of contiguous block. So we will limit
2821 	 * number of contiguous block to a sane value
2822 	 */
2823 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2824 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2825 		max_blocks = EXT4_MAX_TRANS_DATA;
2826 
2827 	return ext4_chunk_trans_blocks(inode, max_blocks);
2828 }
2829 
2830 static int ext4_da_writepages(struct address_space *mapping,
2831 			      struct writeback_control *wbc)
2832 {
2833 	pgoff_t	index;
2834 	int range_whole = 0;
2835 	handle_t *handle = NULL;
2836 	struct mpage_da_data mpd;
2837 	struct inode *inode = mapping->host;
2838 	int no_nrwrite_index_update;
2839 	int pages_written = 0;
2840 	long pages_skipped;
2841 	unsigned int max_pages;
2842 	int range_cyclic, cycled = 1, io_done = 0;
2843 	int needed_blocks, ret = 0;
2844 	long desired_nr_to_write, nr_to_writebump = 0;
2845 	loff_t range_start = wbc->range_start;
2846 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2847 
2848 	trace_ext4_da_writepages(inode, wbc);
2849 
2850 	/*
2851 	 * No pages to write? This is mainly a kludge to avoid starting
2852 	 * a transaction for special inodes like journal inode on last iput()
2853 	 * because that could violate lock ordering on umount
2854 	 */
2855 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2856 		return 0;
2857 
2858 	/*
2859 	 * If the filesystem has aborted, it is read-only, so return
2860 	 * right away instead of dumping stack traces later on that
2861 	 * will obscure the real source of the problem.  We test
2862 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2863 	 * the latter could be true if the filesystem is mounted
2864 	 * read-only, and in that case, ext4_da_writepages should
2865 	 * *never* be called, so if that ever happens, we would want
2866 	 * the stack trace.
2867 	 */
2868 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2869 		return -EROFS;
2870 
2871 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2872 		range_whole = 1;
2873 
2874 	range_cyclic = wbc->range_cyclic;
2875 	if (wbc->range_cyclic) {
2876 		index = mapping->writeback_index;
2877 		if (index)
2878 			cycled = 0;
2879 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2880 		wbc->range_end  = LLONG_MAX;
2881 		wbc->range_cyclic = 0;
2882 	} else
2883 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2884 
2885 	/*
2886 	 * This works around two forms of stupidity.  The first is in
2887 	 * the writeback code, which caps the maximum number of pages
2888 	 * written to be 1024 pages.  This is wrong on multiple
2889 	 * levels; different architectues have a different page size,
2890 	 * which changes the maximum amount of data which gets
2891 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2892 	 * forces this value to be 16 megabytes by multiplying
2893 	 * nr_to_write parameter by four, and then relies on its
2894 	 * allocator to allocate larger extents to make them
2895 	 * contiguous.  Unfortunately this brings us to the second
2896 	 * stupidity, which is that ext4's mballoc code only allocates
2897 	 * at most 2048 blocks.  So we force contiguous writes up to
2898 	 * the number of dirty blocks in the inode, or
2899 	 * sbi->max_writeback_mb_bump whichever is smaller.
2900 	 */
2901 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2902 	if (!range_cyclic && range_whole)
2903 		desired_nr_to_write = wbc->nr_to_write * 8;
2904 	else
2905 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2906 							   max_pages);
2907 	if (desired_nr_to_write > max_pages)
2908 		desired_nr_to_write = max_pages;
2909 
2910 	if (wbc->nr_to_write < desired_nr_to_write) {
2911 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2912 		wbc->nr_to_write = desired_nr_to_write;
2913 	}
2914 
2915 	mpd.wbc = wbc;
2916 	mpd.inode = mapping->host;
2917 
2918 	/*
2919 	 * we don't want write_cache_pages to update
2920 	 * nr_to_write and writeback_index
2921 	 */
2922 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2923 	wbc->no_nrwrite_index_update = 1;
2924 	pages_skipped = wbc->pages_skipped;
2925 
2926 retry:
2927 	while (!ret && wbc->nr_to_write > 0) {
2928 
2929 		/*
2930 		 * we  insert one extent at a time. So we need
2931 		 * credit needed for single extent allocation.
2932 		 * journalled mode is currently not supported
2933 		 * by delalloc
2934 		 */
2935 		BUG_ON(ext4_should_journal_data(inode));
2936 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2937 
2938 		/* start a new transaction*/
2939 		handle = ext4_journal_start(inode, needed_blocks);
2940 		if (IS_ERR(handle)) {
2941 			ret = PTR_ERR(handle);
2942 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2943 			       "%ld pages, ino %lu; err %d\n", __func__,
2944 				wbc->nr_to_write, inode->i_ino, ret);
2945 			goto out_writepages;
2946 		}
2947 
2948 		/*
2949 		 * Now call __mpage_da_writepage to find the next
2950 		 * contiguous region of logical blocks that need
2951 		 * blocks to be allocated by ext4.  We don't actually
2952 		 * submit the blocks for I/O here, even though
2953 		 * write_cache_pages thinks it will, and will set the
2954 		 * pages as clean for write before calling
2955 		 * __mpage_da_writepage().
2956 		 */
2957 		mpd.b_size = 0;
2958 		mpd.b_state = 0;
2959 		mpd.b_blocknr = 0;
2960 		mpd.first_page = 0;
2961 		mpd.next_page = 0;
2962 		mpd.io_done = 0;
2963 		mpd.pages_written = 0;
2964 		mpd.retval = 0;
2965 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2966 					&mpd);
2967 		/*
2968 		 * If we have a contiguous extent of pages and we
2969 		 * haven't done the I/O yet, map the blocks and submit
2970 		 * them for I/O.
2971 		 */
2972 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2973 			if (mpage_da_map_blocks(&mpd) == 0)
2974 				mpage_da_submit_io(&mpd);
2975 			mpd.io_done = 1;
2976 			ret = MPAGE_DA_EXTENT_TAIL;
2977 		}
2978 		trace_ext4_da_write_pages(inode, &mpd);
2979 		wbc->nr_to_write -= mpd.pages_written;
2980 
2981 		ext4_journal_stop(handle);
2982 
2983 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2984 			/* commit the transaction which would
2985 			 * free blocks released in the transaction
2986 			 * and try again
2987 			 */
2988 			jbd2_journal_force_commit_nested(sbi->s_journal);
2989 			wbc->pages_skipped = pages_skipped;
2990 			ret = 0;
2991 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2992 			/*
2993 			 * got one extent now try with
2994 			 * rest of the pages
2995 			 */
2996 			pages_written += mpd.pages_written;
2997 			wbc->pages_skipped = pages_skipped;
2998 			ret = 0;
2999 			io_done = 1;
3000 		} else if (wbc->nr_to_write)
3001 			/*
3002 			 * There is no more writeout needed
3003 			 * or we requested for a noblocking writeout
3004 			 * and we found the device congested
3005 			 */
3006 			break;
3007 	}
3008 	if (!io_done && !cycled) {
3009 		cycled = 1;
3010 		index = 0;
3011 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3012 		wbc->range_end  = mapping->writeback_index - 1;
3013 		goto retry;
3014 	}
3015 	if (pages_skipped != wbc->pages_skipped)
3016 		ext4_msg(inode->i_sb, KERN_CRIT,
3017 			 "This should not happen leaving %s "
3018 			 "with nr_to_write = %ld ret = %d\n",
3019 			 __func__, wbc->nr_to_write, ret);
3020 
3021 	/* Update index */
3022 	index += pages_written;
3023 	wbc->range_cyclic = range_cyclic;
3024 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3025 		/*
3026 		 * set the writeback_index so that range_cyclic
3027 		 * mode will write it back later
3028 		 */
3029 		mapping->writeback_index = index;
3030 
3031 out_writepages:
3032 	if (!no_nrwrite_index_update)
3033 		wbc->no_nrwrite_index_update = 0;
3034 	wbc->nr_to_write -= nr_to_writebump;
3035 	wbc->range_start = range_start;
3036 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3037 	return ret;
3038 }
3039 
3040 #define FALL_BACK_TO_NONDELALLOC 1
3041 static int ext4_nonda_switch(struct super_block *sb)
3042 {
3043 	s64 free_blocks, dirty_blocks;
3044 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3045 
3046 	/*
3047 	 * switch to non delalloc mode if we are running low
3048 	 * on free block. The free block accounting via percpu
3049 	 * counters can get slightly wrong with percpu_counter_batch getting
3050 	 * accumulated on each CPU without updating global counters
3051 	 * Delalloc need an accurate free block accounting. So switch
3052 	 * to non delalloc when we are near to error range.
3053 	 */
3054 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3055 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3056 	if (2 * free_blocks < 3 * dirty_blocks ||
3057 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3058 		/*
3059 		 * free block count is less than 150% of dirty blocks
3060 		 * or free blocks is less than watermark
3061 		 */
3062 		return 1;
3063 	}
3064 	/*
3065 	 * Even if we don't switch but are nearing capacity,
3066 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3067 	 */
3068 	if (free_blocks < 2 * dirty_blocks)
3069 		writeback_inodes_sb_if_idle(sb);
3070 
3071 	return 0;
3072 }
3073 
3074 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3075 			       loff_t pos, unsigned len, unsigned flags,
3076 			       struct page **pagep, void **fsdata)
3077 {
3078 	int ret, retries = 0, quota_retries = 0;
3079 	struct page *page;
3080 	pgoff_t index;
3081 	unsigned from, to;
3082 	struct inode *inode = mapping->host;
3083 	handle_t *handle;
3084 
3085 	index = pos >> PAGE_CACHE_SHIFT;
3086 	from = pos & (PAGE_CACHE_SIZE - 1);
3087 	to = from + len;
3088 
3089 	if (ext4_nonda_switch(inode->i_sb)) {
3090 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3091 		return ext4_write_begin(file, mapping, pos,
3092 					len, flags, pagep, fsdata);
3093 	}
3094 	*fsdata = (void *)0;
3095 	trace_ext4_da_write_begin(inode, pos, len, flags);
3096 retry:
3097 	/*
3098 	 * With delayed allocation, we don't log the i_disksize update
3099 	 * if there is delayed block allocation. But we still need
3100 	 * to journalling the i_disksize update if writes to the end
3101 	 * of file which has an already mapped buffer.
3102 	 */
3103 	handle = ext4_journal_start(inode, 1);
3104 	if (IS_ERR(handle)) {
3105 		ret = PTR_ERR(handle);
3106 		goto out;
3107 	}
3108 	/* We cannot recurse into the filesystem as the transaction is already
3109 	 * started */
3110 	flags |= AOP_FLAG_NOFS;
3111 
3112 	page = grab_cache_page_write_begin(mapping, index, flags);
3113 	if (!page) {
3114 		ext4_journal_stop(handle);
3115 		ret = -ENOMEM;
3116 		goto out;
3117 	}
3118 	*pagep = page;
3119 
3120 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3121 				ext4_da_get_block_prep);
3122 	if (ret < 0) {
3123 		unlock_page(page);
3124 		ext4_journal_stop(handle);
3125 		page_cache_release(page);
3126 		/*
3127 		 * block_write_begin may have instantiated a few blocks
3128 		 * outside i_size.  Trim these off again. Don't need
3129 		 * i_size_read because we hold i_mutex.
3130 		 */
3131 		if (pos + len > inode->i_size)
3132 			ext4_truncate_failed_write(inode);
3133 	}
3134 
3135 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3136 		goto retry;
3137 
3138 	if ((ret == -EDQUOT) &&
3139 	    EXT4_I(inode)->i_reserved_meta_blocks &&
3140 	    (quota_retries++ < 3)) {
3141 		/*
3142 		 * Since we often over-estimate the number of meta
3143 		 * data blocks required, we may sometimes get a
3144 		 * spurios out of quota error even though there would
3145 		 * be enough space once we write the data blocks and
3146 		 * find out how many meta data blocks were _really_
3147 		 * required.  So try forcing the inode write to see if
3148 		 * that helps.
3149 		 */
3150 		write_inode_now(inode, (quota_retries == 3));
3151 		goto retry;
3152 	}
3153 out:
3154 	return ret;
3155 }
3156 
3157 /*
3158  * Check if we should update i_disksize
3159  * when write to the end of file but not require block allocation
3160  */
3161 static int ext4_da_should_update_i_disksize(struct page *page,
3162 					    unsigned long offset)
3163 {
3164 	struct buffer_head *bh;
3165 	struct inode *inode = page->mapping->host;
3166 	unsigned int idx;
3167 	int i;
3168 
3169 	bh = page_buffers(page);
3170 	idx = offset >> inode->i_blkbits;
3171 
3172 	for (i = 0; i < idx; i++)
3173 		bh = bh->b_this_page;
3174 
3175 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3176 		return 0;
3177 	return 1;
3178 }
3179 
3180 static int ext4_da_write_end(struct file *file,
3181 			     struct address_space *mapping,
3182 			     loff_t pos, unsigned len, unsigned copied,
3183 			     struct page *page, void *fsdata)
3184 {
3185 	struct inode *inode = mapping->host;
3186 	int ret = 0, ret2;
3187 	handle_t *handle = ext4_journal_current_handle();
3188 	loff_t new_i_size;
3189 	unsigned long start, end;
3190 	int write_mode = (int)(unsigned long)fsdata;
3191 
3192 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3193 		if (ext4_should_order_data(inode)) {
3194 			return ext4_ordered_write_end(file, mapping, pos,
3195 					len, copied, page, fsdata);
3196 		} else if (ext4_should_writeback_data(inode)) {
3197 			return ext4_writeback_write_end(file, mapping, pos,
3198 					len, copied, page, fsdata);
3199 		} else {
3200 			BUG();
3201 		}
3202 	}
3203 
3204 	trace_ext4_da_write_end(inode, pos, len, copied);
3205 	start = pos & (PAGE_CACHE_SIZE - 1);
3206 	end = start + copied - 1;
3207 
3208 	/*
3209 	 * generic_write_end() will run mark_inode_dirty() if i_size
3210 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3211 	 * into that.
3212 	 */
3213 
3214 	new_i_size = pos + copied;
3215 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3216 		if (ext4_da_should_update_i_disksize(page, end)) {
3217 			down_write(&EXT4_I(inode)->i_data_sem);
3218 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3219 				/*
3220 				 * Updating i_disksize when extending file
3221 				 * without needing block allocation
3222 				 */
3223 				if (ext4_should_order_data(inode))
3224 					ret = ext4_jbd2_file_inode(handle,
3225 								   inode);
3226 
3227 				EXT4_I(inode)->i_disksize = new_i_size;
3228 			}
3229 			up_write(&EXT4_I(inode)->i_data_sem);
3230 			/* We need to mark inode dirty even if
3231 			 * new_i_size is less that inode->i_size
3232 			 * bu greater than i_disksize.(hint delalloc)
3233 			 */
3234 			ext4_mark_inode_dirty(handle, inode);
3235 		}
3236 	}
3237 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3238 							page, fsdata);
3239 	copied = ret2;
3240 	if (ret2 < 0)
3241 		ret = ret2;
3242 	ret2 = ext4_journal_stop(handle);
3243 	if (!ret)
3244 		ret = ret2;
3245 
3246 	return ret ? ret : copied;
3247 }
3248 
3249 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3250 {
3251 	/*
3252 	 * Drop reserved blocks
3253 	 */
3254 	BUG_ON(!PageLocked(page));
3255 	if (!page_has_buffers(page))
3256 		goto out;
3257 
3258 	ext4_da_page_release_reservation(page, offset);
3259 
3260 out:
3261 	ext4_invalidatepage(page, offset);
3262 
3263 	return;
3264 }
3265 
3266 /*
3267  * Force all delayed allocation blocks to be allocated for a given inode.
3268  */
3269 int ext4_alloc_da_blocks(struct inode *inode)
3270 {
3271 	trace_ext4_alloc_da_blocks(inode);
3272 
3273 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3274 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3275 		return 0;
3276 
3277 	/*
3278 	 * We do something simple for now.  The filemap_flush() will
3279 	 * also start triggering a write of the data blocks, which is
3280 	 * not strictly speaking necessary (and for users of
3281 	 * laptop_mode, not even desirable).  However, to do otherwise
3282 	 * would require replicating code paths in:
3283 	 *
3284 	 * ext4_da_writepages() ->
3285 	 *    write_cache_pages() ---> (via passed in callback function)
3286 	 *        __mpage_da_writepage() -->
3287 	 *           mpage_add_bh_to_extent()
3288 	 *           mpage_da_map_blocks()
3289 	 *
3290 	 * The problem is that write_cache_pages(), located in
3291 	 * mm/page-writeback.c, marks pages clean in preparation for
3292 	 * doing I/O, which is not desirable if we're not planning on
3293 	 * doing I/O at all.
3294 	 *
3295 	 * We could call write_cache_pages(), and then redirty all of
3296 	 * the pages by calling redirty_page_for_writeback() but that
3297 	 * would be ugly in the extreme.  So instead we would need to
3298 	 * replicate parts of the code in the above functions,
3299 	 * simplifying them becuase we wouldn't actually intend to
3300 	 * write out the pages, but rather only collect contiguous
3301 	 * logical block extents, call the multi-block allocator, and
3302 	 * then update the buffer heads with the block allocations.
3303 	 *
3304 	 * For now, though, we'll cheat by calling filemap_flush(),
3305 	 * which will map the blocks, and start the I/O, but not
3306 	 * actually wait for the I/O to complete.
3307 	 */
3308 	return filemap_flush(inode->i_mapping);
3309 }
3310 
3311 /*
3312  * bmap() is special.  It gets used by applications such as lilo and by
3313  * the swapper to find the on-disk block of a specific piece of data.
3314  *
3315  * Naturally, this is dangerous if the block concerned is still in the
3316  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3317  * filesystem and enables swap, then they may get a nasty shock when the
3318  * data getting swapped to that swapfile suddenly gets overwritten by
3319  * the original zero's written out previously to the journal and
3320  * awaiting writeback in the kernel's buffer cache.
3321  *
3322  * So, if we see any bmap calls here on a modified, data-journaled file,
3323  * take extra steps to flush any blocks which might be in the cache.
3324  */
3325 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3326 {
3327 	struct inode *inode = mapping->host;
3328 	journal_t *journal;
3329 	int err;
3330 
3331 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3332 			test_opt(inode->i_sb, DELALLOC)) {
3333 		/*
3334 		 * With delalloc we want to sync the file
3335 		 * so that we can make sure we allocate
3336 		 * blocks for file
3337 		 */
3338 		filemap_write_and_wait(mapping);
3339 	}
3340 
3341 	if (EXT4_JOURNAL(inode) &&
3342 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3343 		/*
3344 		 * This is a REALLY heavyweight approach, but the use of
3345 		 * bmap on dirty files is expected to be extremely rare:
3346 		 * only if we run lilo or swapon on a freshly made file
3347 		 * do we expect this to happen.
3348 		 *
3349 		 * (bmap requires CAP_SYS_RAWIO so this does not
3350 		 * represent an unprivileged user DOS attack --- we'd be
3351 		 * in trouble if mortal users could trigger this path at
3352 		 * will.)
3353 		 *
3354 		 * NB. EXT4_STATE_JDATA is not set on files other than
3355 		 * regular files.  If somebody wants to bmap a directory
3356 		 * or symlink and gets confused because the buffer
3357 		 * hasn't yet been flushed to disk, they deserve
3358 		 * everything they get.
3359 		 */
3360 
3361 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3362 		journal = EXT4_JOURNAL(inode);
3363 		jbd2_journal_lock_updates(journal);
3364 		err = jbd2_journal_flush(journal);
3365 		jbd2_journal_unlock_updates(journal);
3366 
3367 		if (err)
3368 			return 0;
3369 	}
3370 
3371 	return generic_block_bmap(mapping, block, ext4_get_block);
3372 }
3373 
3374 static int ext4_readpage(struct file *file, struct page *page)
3375 {
3376 	return mpage_readpage(page, ext4_get_block);
3377 }
3378 
3379 static int
3380 ext4_readpages(struct file *file, struct address_space *mapping,
3381 		struct list_head *pages, unsigned nr_pages)
3382 {
3383 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3384 }
3385 
3386 static void ext4_free_io_end(ext4_io_end_t *io)
3387 {
3388 	BUG_ON(!io);
3389 	if (io->page)
3390 		put_page(io->page);
3391 	iput(io->inode);
3392 	kfree(io);
3393 }
3394 
3395 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3396 {
3397 	struct buffer_head *head, *bh;
3398 	unsigned int curr_off = 0;
3399 
3400 	if (!page_has_buffers(page))
3401 		return;
3402 	head = bh = page_buffers(page);
3403 	do {
3404 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3405 					&& bh->b_private) {
3406 			ext4_free_io_end(bh->b_private);
3407 			bh->b_private = NULL;
3408 			bh->b_end_io = NULL;
3409 		}
3410 		curr_off = curr_off + bh->b_size;
3411 		bh = bh->b_this_page;
3412 	} while (bh != head);
3413 }
3414 
3415 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3416 {
3417 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3418 
3419 	/*
3420 	 * free any io_end structure allocated for buffers to be discarded
3421 	 */
3422 	if (ext4_should_dioread_nolock(page->mapping->host))
3423 		ext4_invalidatepage_free_endio(page, offset);
3424 	/*
3425 	 * If it's a full truncate we just forget about the pending dirtying
3426 	 */
3427 	if (offset == 0)
3428 		ClearPageChecked(page);
3429 
3430 	if (journal)
3431 		jbd2_journal_invalidatepage(journal, page, offset);
3432 	else
3433 		block_invalidatepage(page, offset);
3434 }
3435 
3436 static int ext4_releasepage(struct page *page, gfp_t wait)
3437 {
3438 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3439 
3440 	WARN_ON(PageChecked(page));
3441 	if (!page_has_buffers(page))
3442 		return 0;
3443 	if (journal)
3444 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3445 	else
3446 		return try_to_free_buffers(page);
3447 }
3448 
3449 /*
3450  * O_DIRECT for ext3 (or indirect map) based files
3451  *
3452  * If the O_DIRECT write will extend the file then add this inode to the
3453  * orphan list.  So recovery will truncate it back to the original size
3454  * if the machine crashes during the write.
3455  *
3456  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3457  * crashes then stale disk data _may_ be exposed inside the file. But current
3458  * VFS code falls back into buffered path in that case so we are safe.
3459  */
3460 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3461 			      const struct iovec *iov, loff_t offset,
3462 			      unsigned long nr_segs)
3463 {
3464 	struct file *file = iocb->ki_filp;
3465 	struct inode *inode = file->f_mapping->host;
3466 	struct ext4_inode_info *ei = EXT4_I(inode);
3467 	handle_t *handle;
3468 	ssize_t ret;
3469 	int orphan = 0;
3470 	size_t count = iov_length(iov, nr_segs);
3471 	int retries = 0;
3472 
3473 	if (rw == WRITE) {
3474 		loff_t final_size = offset + count;
3475 
3476 		if (final_size > inode->i_size) {
3477 			/* Credits for sb + inode write */
3478 			handle = ext4_journal_start(inode, 2);
3479 			if (IS_ERR(handle)) {
3480 				ret = PTR_ERR(handle);
3481 				goto out;
3482 			}
3483 			ret = ext4_orphan_add(handle, inode);
3484 			if (ret) {
3485 				ext4_journal_stop(handle);
3486 				goto out;
3487 			}
3488 			orphan = 1;
3489 			ei->i_disksize = inode->i_size;
3490 			ext4_journal_stop(handle);
3491 		}
3492 	}
3493 
3494 retry:
3495 	if (rw == READ && ext4_should_dioread_nolock(inode))
3496 		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3497 				 inode->i_sb->s_bdev, iov,
3498 				 offset, nr_segs,
3499 				 ext4_get_block, NULL);
3500 	else
3501 		ret = blockdev_direct_IO(rw, iocb, inode,
3502 				 inode->i_sb->s_bdev, iov,
3503 				 offset, nr_segs,
3504 				 ext4_get_block, NULL);
3505 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3506 		goto retry;
3507 
3508 	if (orphan) {
3509 		int err;
3510 
3511 		/* Credits for sb + inode write */
3512 		handle = ext4_journal_start(inode, 2);
3513 		if (IS_ERR(handle)) {
3514 			/* This is really bad luck. We've written the data
3515 			 * but cannot extend i_size. Bail out and pretend
3516 			 * the write failed... */
3517 			ret = PTR_ERR(handle);
3518 			if (inode->i_nlink)
3519 				ext4_orphan_del(NULL, inode);
3520 
3521 			goto out;
3522 		}
3523 		if (inode->i_nlink)
3524 			ext4_orphan_del(handle, inode);
3525 		if (ret > 0) {
3526 			loff_t end = offset + ret;
3527 			if (end > inode->i_size) {
3528 				ei->i_disksize = end;
3529 				i_size_write(inode, end);
3530 				/*
3531 				 * We're going to return a positive `ret'
3532 				 * here due to non-zero-length I/O, so there's
3533 				 * no way of reporting error returns from
3534 				 * ext4_mark_inode_dirty() to userspace.  So
3535 				 * ignore it.
3536 				 */
3537 				ext4_mark_inode_dirty(handle, inode);
3538 			}
3539 		}
3540 		err = ext4_journal_stop(handle);
3541 		if (ret == 0)
3542 			ret = err;
3543 	}
3544 out:
3545 	return ret;
3546 }
3547 
3548 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3549 		   struct buffer_head *bh_result, int create)
3550 {
3551 	handle_t *handle = ext4_journal_current_handle();
3552 	int ret = 0;
3553 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3554 	int dio_credits;
3555 	int started = 0;
3556 
3557 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3558 		   inode->i_ino, create);
3559 	/*
3560 	 * ext4_get_block in prepare for a DIO write or buffer write.
3561 	 * We allocate an uinitialized extent if blocks haven't been allocated.
3562 	 * The extent will be converted to initialized after IO complete.
3563 	 */
3564 	create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3565 
3566 	if (!handle) {
3567 		if (max_blocks > DIO_MAX_BLOCKS)
3568 			max_blocks = DIO_MAX_BLOCKS;
3569 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3570 		handle = ext4_journal_start(inode, dio_credits);
3571 		if (IS_ERR(handle)) {
3572 			ret = PTR_ERR(handle);
3573 			goto out;
3574 		}
3575 		started = 1;
3576 	}
3577 
3578 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3579 			      create);
3580 	if (ret > 0) {
3581 		bh_result->b_size = (ret << inode->i_blkbits);
3582 		ret = 0;
3583 	}
3584 	if (started)
3585 		ext4_journal_stop(handle);
3586 out:
3587 	return ret;
3588 }
3589 
3590 static void dump_completed_IO(struct inode * inode)
3591 {
3592 #ifdef	EXT4_DEBUG
3593 	struct list_head *cur, *before, *after;
3594 	ext4_io_end_t *io, *io0, *io1;
3595 	unsigned long flags;
3596 
3597 	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3598 		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3599 		return;
3600 	}
3601 
3602 	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3603 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3604 	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3605 		cur = &io->list;
3606 		before = cur->prev;
3607 		io0 = container_of(before, ext4_io_end_t, list);
3608 		after = cur->next;
3609 		io1 = container_of(after, ext4_io_end_t, list);
3610 
3611 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3612 			    io, inode->i_ino, io0, io1);
3613 	}
3614 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3615 #endif
3616 }
3617 
3618 /*
3619  * check a range of space and convert unwritten extents to written.
3620  */
3621 static int ext4_end_io_nolock(ext4_io_end_t *io)
3622 {
3623 	struct inode *inode = io->inode;
3624 	loff_t offset = io->offset;
3625 	ssize_t size = io->size;
3626 	int ret = 0;
3627 
3628 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3629 		   "list->prev 0x%p\n",
3630 	           io, inode->i_ino, io->list.next, io->list.prev);
3631 
3632 	if (list_empty(&io->list))
3633 		return ret;
3634 
3635 	if (io->flag != EXT4_IO_UNWRITTEN)
3636 		return ret;
3637 
3638 	ret = ext4_convert_unwritten_extents(inode, offset, size);
3639 	if (ret < 0) {
3640 		printk(KERN_EMERG "%s: failed to convert unwritten"
3641 			"extents to written extents, error is %d"
3642 			" io is still on inode %lu aio dio list\n",
3643                        __func__, ret, inode->i_ino);
3644 		return ret;
3645 	}
3646 
3647 	/* clear the DIO AIO unwritten flag */
3648 	io->flag = 0;
3649 	return ret;
3650 }
3651 
3652 /*
3653  * work on completed aio dio IO, to convert unwritten extents to extents
3654  */
3655 static void ext4_end_io_work(struct work_struct *work)
3656 {
3657 	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
3658 	struct inode		*inode = io->inode;
3659 	struct ext4_inode_info	*ei = EXT4_I(inode);
3660 	unsigned long		flags;
3661 	int			ret;
3662 
3663 	mutex_lock(&inode->i_mutex);
3664 	ret = ext4_end_io_nolock(io);
3665 	if (ret < 0) {
3666 		mutex_unlock(&inode->i_mutex);
3667 		return;
3668 	}
3669 
3670 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3671 	if (!list_empty(&io->list))
3672 		list_del_init(&io->list);
3673 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3674 	mutex_unlock(&inode->i_mutex);
3675 	ext4_free_io_end(io);
3676 }
3677 
3678 /*
3679  * This function is called from ext4_sync_file().
3680  *
3681  * When IO is completed, the work to convert unwritten extents to
3682  * written is queued on workqueue but may not get immediately
3683  * scheduled. When fsync is called, we need to ensure the
3684  * conversion is complete before fsync returns.
3685  * The inode keeps track of a list of pending/completed IO that
3686  * might needs to do the conversion. This function walks through
3687  * the list and convert the related unwritten extents for completed IO
3688  * to written.
3689  * The function return the number of pending IOs on success.
3690  */
3691 int flush_completed_IO(struct inode *inode)
3692 {
3693 	ext4_io_end_t *io;
3694 	struct ext4_inode_info *ei = EXT4_I(inode);
3695 	unsigned long flags;
3696 	int ret = 0;
3697 	int ret2 = 0;
3698 
3699 	if (list_empty(&ei->i_completed_io_list))
3700 		return ret;
3701 
3702 	dump_completed_IO(inode);
3703 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3704 	while (!list_empty(&ei->i_completed_io_list)){
3705 		io = list_entry(ei->i_completed_io_list.next,
3706 				ext4_io_end_t, list);
3707 		/*
3708 		 * Calling ext4_end_io_nolock() to convert completed
3709 		 * IO to written.
3710 		 *
3711 		 * When ext4_sync_file() is called, run_queue() may already
3712 		 * about to flush the work corresponding to this io structure.
3713 		 * It will be upset if it founds the io structure related
3714 		 * to the work-to-be schedule is freed.
3715 		 *
3716 		 * Thus we need to keep the io structure still valid here after
3717 		 * convertion finished. The io structure has a flag to
3718 		 * avoid double converting from both fsync and background work
3719 		 * queue work.
3720 		 */
3721 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3722 		ret = ext4_end_io_nolock(io);
3723 		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3724 		if (ret < 0)
3725 			ret2 = ret;
3726 		else
3727 			list_del_init(&io->list);
3728 	}
3729 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3730 	return (ret2 < 0) ? ret2 : 0;
3731 }
3732 
3733 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3734 {
3735 	ext4_io_end_t *io = NULL;
3736 
3737 	io = kmalloc(sizeof(*io), flags);
3738 
3739 	if (io) {
3740 		igrab(inode);
3741 		io->inode = inode;
3742 		io->flag = 0;
3743 		io->offset = 0;
3744 		io->size = 0;
3745 		io->page = NULL;
3746 		INIT_WORK(&io->work, ext4_end_io_work);
3747 		INIT_LIST_HEAD(&io->list);
3748 	}
3749 
3750 	return io;
3751 }
3752 
3753 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3754 			    ssize_t size, void *private)
3755 {
3756         ext4_io_end_t *io_end = iocb->private;
3757 	struct workqueue_struct *wq;
3758 	unsigned long flags;
3759 	struct ext4_inode_info *ei;
3760 
3761 	/* if not async direct IO or dio with 0 bytes write, just return */
3762 	if (!io_end || !size)
3763 		return;
3764 
3765 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3766 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3767  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3768 		  size);
3769 
3770 	/* if not aio dio with unwritten extents, just free io and return */
3771 	if (io_end->flag != EXT4_IO_UNWRITTEN){
3772 		ext4_free_io_end(io_end);
3773 		iocb->private = NULL;
3774 		return;
3775 	}
3776 
3777 	io_end->offset = offset;
3778 	io_end->size = size;
3779 	io_end->flag = EXT4_IO_UNWRITTEN;
3780 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3781 
3782 	/* queue the work to convert unwritten extents to written */
3783 	queue_work(wq, &io_end->work);
3784 
3785 	/* Add the io_end to per-inode completed aio dio list*/
3786 	ei = EXT4_I(io_end->inode);
3787 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3788 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3789 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3790 	iocb->private = NULL;
3791 }
3792 
3793 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3794 {
3795 	ext4_io_end_t *io_end = bh->b_private;
3796 	struct workqueue_struct *wq;
3797 	struct inode *inode;
3798 	unsigned long flags;
3799 
3800 	if (!test_clear_buffer_uninit(bh) || !io_end)
3801 		goto out;
3802 
3803 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3804 		printk("sb umounted, discard end_io request for inode %lu\n",
3805 			io_end->inode->i_ino);
3806 		ext4_free_io_end(io_end);
3807 		goto out;
3808 	}
3809 
3810 	io_end->flag = EXT4_IO_UNWRITTEN;
3811 	inode = io_end->inode;
3812 
3813 	/* Add the io_end to per-inode completed io list*/
3814 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3815 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3816 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3817 
3818 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3819 	/* queue the work to convert unwritten extents to written */
3820 	queue_work(wq, &io_end->work);
3821 out:
3822 	bh->b_private = NULL;
3823 	bh->b_end_io = NULL;
3824 	clear_buffer_uninit(bh);
3825 	end_buffer_async_write(bh, uptodate);
3826 }
3827 
3828 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3829 {
3830 	ext4_io_end_t *io_end;
3831 	struct page *page = bh->b_page;
3832 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3833 	size_t size = bh->b_size;
3834 
3835 retry:
3836 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3837 	if (!io_end) {
3838 		if (printk_ratelimit())
3839 			printk(KERN_WARNING "%s: allocation fail\n", __func__);
3840 		schedule();
3841 		goto retry;
3842 	}
3843 	io_end->offset = offset;
3844 	io_end->size = size;
3845 	/*
3846 	 * We need to hold a reference to the page to make sure it
3847 	 * doesn't get evicted before ext4_end_io_work() has a chance
3848 	 * to convert the extent from written to unwritten.
3849 	 */
3850 	io_end->page = page;
3851 	get_page(io_end->page);
3852 
3853 	bh->b_private = io_end;
3854 	bh->b_end_io = ext4_end_io_buffer_write;
3855 	return 0;
3856 }
3857 
3858 /*
3859  * For ext4 extent files, ext4 will do direct-io write to holes,
3860  * preallocated extents, and those write extend the file, no need to
3861  * fall back to buffered IO.
3862  *
3863  * For holes, we fallocate those blocks, mark them as unintialized
3864  * If those blocks were preallocated, we mark sure they are splited, but
3865  * still keep the range to write as unintialized.
3866  *
3867  * The unwrritten extents will be converted to written when DIO is completed.
3868  * For async direct IO, since the IO may still pending when return, we
3869  * set up an end_io call back function, which will do the convertion
3870  * when async direct IO completed.
3871  *
3872  * If the O_DIRECT write will extend the file then add this inode to the
3873  * orphan list.  So recovery will truncate it back to the original size
3874  * if the machine crashes during the write.
3875  *
3876  */
3877 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3878 			      const struct iovec *iov, loff_t offset,
3879 			      unsigned long nr_segs)
3880 {
3881 	struct file *file = iocb->ki_filp;
3882 	struct inode *inode = file->f_mapping->host;
3883 	ssize_t ret;
3884 	size_t count = iov_length(iov, nr_segs);
3885 
3886 	loff_t final_size = offset + count;
3887 	if (rw == WRITE && final_size <= inode->i_size) {
3888 		/*
3889  		 * We could direct write to holes and fallocate.
3890 		 *
3891  		 * Allocated blocks to fill the hole are marked as uninitialized
3892  		 * to prevent paralel buffered read to expose the stale data
3893  		 * before DIO complete the data IO.
3894 		 *
3895  		 * As to previously fallocated extents, ext4 get_block
3896  		 * will just simply mark the buffer mapped but still
3897  		 * keep the extents uninitialized.
3898  		 *
3899 		 * for non AIO case, we will convert those unwritten extents
3900 		 * to written after return back from blockdev_direct_IO.
3901 		 *
3902 		 * for async DIO, the conversion needs to be defered when
3903 		 * the IO is completed. The ext4 end_io callback function
3904 		 * will be called to take care of the conversion work.
3905 		 * Here for async case, we allocate an io_end structure to
3906 		 * hook to the iocb.
3907  		 */
3908 		iocb->private = NULL;
3909 		EXT4_I(inode)->cur_aio_dio = NULL;
3910 		if (!is_sync_kiocb(iocb)) {
3911 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3912 			if (!iocb->private)
3913 				return -ENOMEM;
3914 			/*
3915 			 * we save the io structure for current async
3916 			 * direct IO, so that later ext4_get_blocks()
3917 			 * could flag the io structure whether there
3918 			 * is a unwritten extents needs to be converted
3919 			 * when IO is completed.
3920 			 */
3921 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3922 		}
3923 
3924 		ret = blockdev_direct_IO(rw, iocb, inode,
3925 					 inode->i_sb->s_bdev, iov,
3926 					 offset, nr_segs,
3927 					 ext4_get_block_write,
3928 					 ext4_end_io_dio);
3929 		if (iocb->private)
3930 			EXT4_I(inode)->cur_aio_dio = NULL;
3931 		/*
3932 		 * The io_end structure takes a reference to the inode,
3933 		 * that structure needs to be destroyed and the
3934 		 * reference to the inode need to be dropped, when IO is
3935 		 * complete, even with 0 byte write, or failed.
3936 		 *
3937 		 * In the successful AIO DIO case, the io_end structure will be
3938 		 * desctroyed and the reference to the inode will be dropped
3939 		 * after the end_io call back function is called.
3940 		 *
3941 		 * In the case there is 0 byte write, or error case, since
3942 		 * VFS direct IO won't invoke the end_io call back function,
3943 		 * we need to free the end_io structure here.
3944 		 */
3945 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3946 			ext4_free_io_end(iocb->private);
3947 			iocb->private = NULL;
3948 		} else if (ret > 0 && ext4_test_inode_state(inode,
3949 						EXT4_STATE_DIO_UNWRITTEN)) {
3950 			int err;
3951 			/*
3952 			 * for non AIO case, since the IO is already
3953 			 * completed, we could do the convertion right here
3954 			 */
3955 			err = ext4_convert_unwritten_extents(inode,
3956 							     offset, ret);
3957 			if (err < 0)
3958 				ret = err;
3959 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3960 		}
3961 		return ret;
3962 	}
3963 
3964 	/* for write the the end of file case, we fall back to old way */
3965 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3966 }
3967 
3968 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3969 			      const struct iovec *iov, loff_t offset,
3970 			      unsigned long nr_segs)
3971 {
3972 	struct file *file = iocb->ki_filp;
3973 	struct inode *inode = file->f_mapping->host;
3974 
3975 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3976 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3977 
3978 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3979 }
3980 
3981 /*
3982  * Pages can be marked dirty completely asynchronously from ext4's journalling
3983  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3984  * much here because ->set_page_dirty is called under VFS locks.  The page is
3985  * not necessarily locked.
3986  *
3987  * We cannot just dirty the page and leave attached buffers clean, because the
3988  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3989  * or jbddirty because all the journalling code will explode.
3990  *
3991  * So what we do is to mark the page "pending dirty" and next time writepage
3992  * is called, propagate that into the buffers appropriately.
3993  */
3994 static int ext4_journalled_set_page_dirty(struct page *page)
3995 {
3996 	SetPageChecked(page);
3997 	return __set_page_dirty_nobuffers(page);
3998 }
3999 
4000 static const struct address_space_operations ext4_ordered_aops = {
4001 	.readpage		= ext4_readpage,
4002 	.readpages		= ext4_readpages,
4003 	.writepage		= ext4_writepage,
4004 	.sync_page		= block_sync_page,
4005 	.write_begin		= ext4_write_begin,
4006 	.write_end		= ext4_ordered_write_end,
4007 	.bmap			= ext4_bmap,
4008 	.invalidatepage		= ext4_invalidatepage,
4009 	.releasepage		= ext4_releasepage,
4010 	.direct_IO		= ext4_direct_IO,
4011 	.migratepage		= buffer_migrate_page,
4012 	.is_partially_uptodate  = block_is_partially_uptodate,
4013 	.error_remove_page	= generic_error_remove_page,
4014 };
4015 
4016 static const struct address_space_operations ext4_writeback_aops = {
4017 	.readpage		= ext4_readpage,
4018 	.readpages		= ext4_readpages,
4019 	.writepage		= ext4_writepage,
4020 	.sync_page		= block_sync_page,
4021 	.write_begin		= ext4_write_begin,
4022 	.write_end		= ext4_writeback_write_end,
4023 	.bmap			= ext4_bmap,
4024 	.invalidatepage		= ext4_invalidatepage,
4025 	.releasepage		= ext4_releasepage,
4026 	.direct_IO		= ext4_direct_IO,
4027 	.migratepage		= buffer_migrate_page,
4028 	.is_partially_uptodate  = block_is_partially_uptodate,
4029 	.error_remove_page	= generic_error_remove_page,
4030 };
4031 
4032 static const struct address_space_operations ext4_journalled_aops = {
4033 	.readpage		= ext4_readpage,
4034 	.readpages		= ext4_readpages,
4035 	.writepage		= ext4_writepage,
4036 	.sync_page		= block_sync_page,
4037 	.write_begin		= ext4_write_begin,
4038 	.write_end		= ext4_journalled_write_end,
4039 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4040 	.bmap			= ext4_bmap,
4041 	.invalidatepage		= ext4_invalidatepage,
4042 	.releasepage		= ext4_releasepage,
4043 	.is_partially_uptodate  = block_is_partially_uptodate,
4044 	.error_remove_page	= generic_error_remove_page,
4045 };
4046 
4047 static const struct address_space_operations ext4_da_aops = {
4048 	.readpage		= ext4_readpage,
4049 	.readpages		= ext4_readpages,
4050 	.writepage		= ext4_writepage,
4051 	.writepages		= ext4_da_writepages,
4052 	.sync_page		= block_sync_page,
4053 	.write_begin		= ext4_da_write_begin,
4054 	.write_end		= ext4_da_write_end,
4055 	.bmap			= ext4_bmap,
4056 	.invalidatepage		= ext4_da_invalidatepage,
4057 	.releasepage		= ext4_releasepage,
4058 	.direct_IO		= ext4_direct_IO,
4059 	.migratepage		= buffer_migrate_page,
4060 	.is_partially_uptodate  = block_is_partially_uptodate,
4061 	.error_remove_page	= generic_error_remove_page,
4062 };
4063 
4064 void ext4_set_aops(struct inode *inode)
4065 {
4066 	if (ext4_should_order_data(inode) &&
4067 		test_opt(inode->i_sb, DELALLOC))
4068 		inode->i_mapping->a_ops = &ext4_da_aops;
4069 	else if (ext4_should_order_data(inode))
4070 		inode->i_mapping->a_ops = &ext4_ordered_aops;
4071 	else if (ext4_should_writeback_data(inode) &&
4072 		 test_opt(inode->i_sb, DELALLOC))
4073 		inode->i_mapping->a_ops = &ext4_da_aops;
4074 	else if (ext4_should_writeback_data(inode))
4075 		inode->i_mapping->a_ops = &ext4_writeback_aops;
4076 	else
4077 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4078 }
4079 
4080 /*
4081  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4082  * up to the end of the block which corresponds to `from'.
4083  * This required during truncate. We need to physically zero the tail end
4084  * of that block so it doesn't yield old data if the file is later grown.
4085  */
4086 int ext4_block_truncate_page(handle_t *handle,
4087 		struct address_space *mapping, loff_t from)
4088 {
4089 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4090 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4091 	unsigned blocksize, length, pos;
4092 	ext4_lblk_t iblock;
4093 	struct inode *inode = mapping->host;
4094 	struct buffer_head *bh;
4095 	struct page *page;
4096 	int err = 0;
4097 
4098 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4099 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4100 	if (!page)
4101 		return -EINVAL;
4102 
4103 	blocksize = inode->i_sb->s_blocksize;
4104 	length = blocksize - (offset & (blocksize - 1));
4105 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4106 
4107 	/*
4108 	 * For "nobh" option,  we can only work if we don't need to
4109 	 * read-in the page - otherwise we create buffers to do the IO.
4110 	 */
4111 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4112 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4113 		zero_user(page, offset, length);
4114 		set_page_dirty(page);
4115 		goto unlock;
4116 	}
4117 
4118 	if (!page_has_buffers(page))
4119 		create_empty_buffers(page, blocksize, 0);
4120 
4121 	/* Find the buffer that contains "offset" */
4122 	bh = page_buffers(page);
4123 	pos = blocksize;
4124 	while (offset >= pos) {
4125 		bh = bh->b_this_page;
4126 		iblock++;
4127 		pos += blocksize;
4128 	}
4129 
4130 	err = 0;
4131 	if (buffer_freed(bh)) {
4132 		BUFFER_TRACE(bh, "freed: skip");
4133 		goto unlock;
4134 	}
4135 
4136 	if (!buffer_mapped(bh)) {
4137 		BUFFER_TRACE(bh, "unmapped");
4138 		ext4_get_block(inode, iblock, bh, 0);
4139 		/* unmapped? It's a hole - nothing to do */
4140 		if (!buffer_mapped(bh)) {
4141 			BUFFER_TRACE(bh, "still unmapped");
4142 			goto unlock;
4143 		}
4144 	}
4145 
4146 	/* Ok, it's mapped. Make sure it's up-to-date */
4147 	if (PageUptodate(page))
4148 		set_buffer_uptodate(bh);
4149 
4150 	if (!buffer_uptodate(bh)) {
4151 		err = -EIO;
4152 		ll_rw_block(READ, 1, &bh);
4153 		wait_on_buffer(bh);
4154 		/* Uhhuh. Read error. Complain and punt. */
4155 		if (!buffer_uptodate(bh))
4156 			goto unlock;
4157 	}
4158 
4159 	if (ext4_should_journal_data(inode)) {
4160 		BUFFER_TRACE(bh, "get write access");
4161 		err = ext4_journal_get_write_access(handle, bh);
4162 		if (err)
4163 			goto unlock;
4164 	}
4165 
4166 	zero_user(page, offset, length);
4167 
4168 	BUFFER_TRACE(bh, "zeroed end of block");
4169 
4170 	err = 0;
4171 	if (ext4_should_journal_data(inode)) {
4172 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4173 	} else {
4174 		if (ext4_should_order_data(inode))
4175 			err = ext4_jbd2_file_inode(handle, inode);
4176 		mark_buffer_dirty(bh);
4177 	}
4178 
4179 unlock:
4180 	unlock_page(page);
4181 	page_cache_release(page);
4182 	return err;
4183 }
4184 
4185 /*
4186  * Probably it should be a library function... search for first non-zero word
4187  * or memcmp with zero_page, whatever is better for particular architecture.
4188  * Linus?
4189  */
4190 static inline int all_zeroes(__le32 *p, __le32 *q)
4191 {
4192 	while (p < q)
4193 		if (*p++)
4194 			return 0;
4195 	return 1;
4196 }
4197 
4198 /**
4199  *	ext4_find_shared - find the indirect blocks for partial truncation.
4200  *	@inode:	  inode in question
4201  *	@depth:	  depth of the affected branch
4202  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4203  *	@chain:	  place to store the pointers to partial indirect blocks
4204  *	@top:	  place to the (detached) top of branch
4205  *
4206  *	This is a helper function used by ext4_truncate().
4207  *
4208  *	When we do truncate() we may have to clean the ends of several
4209  *	indirect blocks but leave the blocks themselves alive. Block is
4210  *	partially truncated if some data below the new i_size is refered
4211  *	from it (and it is on the path to the first completely truncated
4212  *	data block, indeed).  We have to free the top of that path along
4213  *	with everything to the right of the path. Since no allocation
4214  *	past the truncation point is possible until ext4_truncate()
4215  *	finishes, we may safely do the latter, but top of branch may
4216  *	require special attention - pageout below the truncation point
4217  *	might try to populate it.
4218  *
4219  *	We atomically detach the top of branch from the tree, store the
4220  *	block number of its root in *@top, pointers to buffer_heads of
4221  *	partially truncated blocks - in @chain[].bh and pointers to
4222  *	their last elements that should not be removed - in
4223  *	@chain[].p. Return value is the pointer to last filled element
4224  *	of @chain.
4225  *
4226  *	The work left to caller to do the actual freeing of subtrees:
4227  *		a) free the subtree starting from *@top
4228  *		b) free the subtrees whose roots are stored in
4229  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4230  *		c) free the subtrees growing from the inode past the @chain[0].
4231  *			(no partially truncated stuff there).  */
4232 
4233 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4234 				  ext4_lblk_t offsets[4], Indirect chain[4],
4235 				  __le32 *top)
4236 {
4237 	Indirect *partial, *p;
4238 	int k, err;
4239 
4240 	*top = 0;
4241 	/* Make k index the deepest non-null offset + 1 */
4242 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4243 		;
4244 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4245 	/* Writer: pointers */
4246 	if (!partial)
4247 		partial = chain + k-1;
4248 	/*
4249 	 * If the branch acquired continuation since we've looked at it -
4250 	 * fine, it should all survive and (new) top doesn't belong to us.
4251 	 */
4252 	if (!partial->key && *partial->p)
4253 		/* Writer: end */
4254 		goto no_top;
4255 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4256 		;
4257 	/*
4258 	 * OK, we've found the last block that must survive. The rest of our
4259 	 * branch should be detached before unlocking. However, if that rest
4260 	 * of branch is all ours and does not grow immediately from the inode
4261 	 * it's easier to cheat and just decrement partial->p.
4262 	 */
4263 	if (p == chain + k - 1 && p > chain) {
4264 		p->p--;
4265 	} else {
4266 		*top = *p->p;
4267 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4268 #if 0
4269 		*p->p = 0;
4270 #endif
4271 	}
4272 	/* Writer: end */
4273 
4274 	while (partial > p) {
4275 		brelse(partial->bh);
4276 		partial--;
4277 	}
4278 no_top:
4279 	return partial;
4280 }
4281 
4282 /*
4283  * Zero a number of block pointers in either an inode or an indirect block.
4284  * If we restart the transaction we must again get write access to the
4285  * indirect block for further modification.
4286  *
4287  * We release `count' blocks on disk, but (last - first) may be greater
4288  * than `count' because there can be holes in there.
4289  */
4290 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4291 			     struct buffer_head *bh,
4292 			     ext4_fsblk_t block_to_free,
4293 			     unsigned long count, __le32 *first,
4294 			     __le32 *last)
4295 {
4296 	__le32 *p;
4297 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4298 
4299 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4300 		flags |= EXT4_FREE_BLOCKS_METADATA;
4301 
4302 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4303 				   count)) {
4304 		ext4_error(inode->i_sb, "inode #%lu: "
4305 			   "attempt to clear blocks %llu len %lu, invalid",
4306 			   inode->i_ino, (unsigned long long) block_to_free,
4307 			   count);
4308 		return 1;
4309 	}
4310 
4311 	if (try_to_extend_transaction(handle, inode)) {
4312 		if (bh) {
4313 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4314 			ext4_handle_dirty_metadata(handle, inode, bh);
4315 		}
4316 		ext4_mark_inode_dirty(handle, inode);
4317 		ext4_truncate_restart_trans(handle, inode,
4318 					    blocks_for_truncate(inode));
4319 		if (bh) {
4320 			BUFFER_TRACE(bh, "retaking write access");
4321 			ext4_journal_get_write_access(handle, bh);
4322 		}
4323 	}
4324 
4325 	for (p = first; p < last; p++)
4326 		*p = 0;
4327 
4328 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4329 	return 0;
4330 }
4331 
4332 /**
4333  * ext4_free_data - free a list of data blocks
4334  * @handle:	handle for this transaction
4335  * @inode:	inode we are dealing with
4336  * @this_bh:	indirect buffer_head which contains *@first and *@last
4337  * @first:	array of block numbers
4338  * @last:	points immediately past the end of array
4339  *
4340  * We are freeing all blocks refered from that array (numbers are stored as
4341  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4342  *
4343  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4344  * blocks are contiguous then releasing them at one time will only affect one
4345  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4346  * actually use a lot of journal space.
4347  *
4348  * @this_bh will be %NULL if @first and @last point into the inode's direct
4349  * block pointers.
4350  */
4351 static void ext4_free_data(handle_t *handle, struct inode *inode,
4352 			   struct buffer_head *this_bh,
4353 			   __le32 *first, __le32 *last)
4354 {
4355 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4356 	unsigned long count = 0;	    /* Number of blocks in the run */
4357 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4358 					       corresponding to
4359 					       block_to_free */
4360 	ext4_fsblk_t nr;		    /* Current block # */
4361 	__le32 *p;			    /* Pointer into inode/ind
4362 					       for current block */
4363 	int err;
4364 
4365 	if (this_bh) {				/* For indirect block */
4366 		BUFFER_TRACE(this_bh, "get_write_access");
4367 		err = ext4_journal_get_write_access(handle, this_bh);
4368 		/* Important: if we can't update the indirect pointers
4369 		 * to the blocks, we can't free them. */
4370 		if (err)
4371 			return;
4372 	}
4373 
4374 	for (p = first; p < last; p++) {
4375 		nr = le32_to_cpu(*p);
4376 		if (nr) {
4377 			/* accumulate blocks to free if they're contiguous */
4378 			if (count == 0) {
4379 				block_to_free = nr;
4380 				block_to_free_p = p;
4381 				count = 1;
4382 			} else if (nr == block_to_free + count) {
4383 				count++;
4384 			} else {
4385 				if (ext4_clear_blocks(handle, inode, this_bh,
4386 						      block_to_free, count,
4387 						      block_to_free_p, p))
4388 					break;
4389 				block_to_free = nr;
4390 				block_to_free_p = p;
4391 				count = 1;
4392 			}
4393 		}
4394 	}
4395 
4396 	if (count > 0)
4397 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4398 				  count, block_to_free_p, p);
4399 
4400 	if (this_bh) {
4401 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4402 
4403 		/*
4404 		 * The buffer head should have an attached journal head at this
4405 		 * point. However, if the data is corrupted and an indirect
4406 		 * block pointed to itself, it would have been detached when
4407 		 * the block was cleared. Check for this instead of OOPSing.
4408 		 */
4409 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4410 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4411 		else
4412 			ext4_error(inode->i_sb,
4413 				   "circular indirect block detected, "
4414 				   "inode=%lu, block=%llu",
4415 				   inode->i_ino,
4416 				   (unsigned long long) this_bh->b_blocknr);
4417 	}
4418 }
4419 
4420 /**
4421  *	ext4_free_branches - free an array of branches
4422  *	@handle: JBD handle for this transaction
4423  *	@inode:	inode we are dealing with
4424  *	@parent_bh: the buffer_head which contains *@first and *@last
4425  *	@first:	array of block numbers
4426  *	@last:	pointer immediately past the end of array
4427  *	@depth:	depth of the branches to free
4428  *
4429  *	We are freeing all blocks refered from these branches (numbers are
4430  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4431  *	appropriately.
4432  */
4433 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4434 			       struct buffer_head *parent_bh,
4435 			       __le32 *first, __le32 *last, int depth)
4436 {
4437 	ext4_fsblk_t nr;
4438 	__le32 *p;
4439 
4440 	if (ext4_handle_is_aborted(handle))
4441 		return;
4442 
4443 	if (depth--) {
4444 		struct buffer_head *bh;
4445 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4446 		p = last;
4447 		while (--p >= first) {
4448 			nr = le32_to_cpu(*p);
4449 			if (!nr)
4450 				continue;		/* A hole */
4451 
4452 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4453 						   nr, 1)) {
4454 				ext4_error(inode->i_sb,
4455 					   "indirect mapped block in inode "
4456 					   "#%lu invalid (level %d, blk #%lu)",
4457 					   inode->i_ino, depth,
4458 					   (unsigned long) nr);
4459 				break;
4460 			}
4461 
4462 			/* Go read the buffer for the next level down */
4463 			bh = sb_bread(inode->i_sb, nr);
4464 
4465 			/*
4466 			 * A read failure? Report error and clear slot
4467 			 * (should be rare).
4468 			 */
4469 			if (!bh) {
4470 				ext4_error(inode->i_sb,
4471 					   "Read failure, inode=%lu, block=%llu",
4472 					   inode->i_ino, nr);
4473 				continue;
4474 			}
4475 
4476 			/* This zaps the entire block.  Bottom up. */
4477 			BUFFER_TRACE(bh, "free child branches");
4478 			ext4_free_branches(handle, inode, bh,
4479 					(__le32 *) bh->b_data,
4480 					(__le32 *) bh->b_data + addr_per_block,
4481 					depth);
4482 
4483 			/*
4484 			 * We've probably journalled the indirect block several
4485 			 * times during the truncate.  But it's no longer
4486 			 * needed and we now drop it from the transaction via
4487 			 * jbd2_journal_revoke().
4488 			 *
4489 			 * That's easy if it's exclusively part of this
4490 			 * transaction.  But if it's part of the committing
4491 			 * transaction then jbd2_journal_forget() will simply
4492 			 * brelse() it.  That means that if the underlying
4493 			 * block is reallocated in ext4_get_block(),
4494 			 * unmap_underlying_metadata() will find this block
4495 			 * and will try to get rid of it.  damn, damn.
4496 			 *
4497 			 * If this block has already been committed to the
4498 			 * journal, a revoke record will be written.  And
4499 			 * revoke records must be emitted *before* clearing
4500 			 * this block's bit in the bitmaps.
4501 			 */
4502 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4503 
4504 			/*
4505 			 * Everything below this this pointer has been
4506 			 * released.  Now let this top-of-subtree go.
4507 			 *
4508 			 * We want the freeing of this indirect block to be
4509 			 * atomic in the journal with the updating of the
4510 			 * bitmap block which owns it.  So make some room in
4511 			 * the journal.
4512 			 *
4513 			 * We zero the parent pointer *after* freeing its
4514 			 * pointee in the bitmaps, so if extend_transaction()
4515 			 * for some reason fails to put the bitmap changes and
4516 			 * the release into the same transaction, recovery
4517 			 * will merely complain about releasing a free block,
4518 			 * rather than leaking blocks.
4519 			 */
4520 			if (ext4_handle_is_aborted(handle))
4521 				return;
4522 			if (try_to_extend_transaction(handle, inode)) {
4523 				ext4_mark_inode_dirty(handle, inode);
4524 				ext4_truncate_restart_trans(handle, inode,
4525 					    blocks_for_truncate(inode));
4526 			}
4527 
4528 			ext4_free_blocks(handle, inode, 0, nr, 1,
4529 					 EXT4_FREE_BLOCKS_METADATA);
4530 
4531 			if (parent_bh) {
4532 				/*
4533 				 * The block which we have just freed is
4534 				 * pointed to by an indirect block: journal it
4535 				 */
4536 				BUFFER_TRACE(parent_bh, "get_write_access");
4537 				if (!ext4_journal_get_write_access(handle,
4538 								   parent_bh)){
4539 					*p = 0;
4540 					BUFFER_TRACE(parent_bh,
4541 					"call ext4_handle_dirty_metadata");
4542 					ext4_handle_dirty_metadata(handle,
4543 								   inode,
4544 								   parent_bh);
4545 				}
4546 			}
4547 		}
4548 	} else {
4549 		/* We have reached the bottom of the tree. */
4550 		BUFFER_TRACE(parent_bh, "free data blocks");
4551 		ext4_free_data(handle, inode, parent_bh, first, last);
4552 	}
4553 }
4554 
4555 int ext4_can_truncate(struct inode *inode)
4556 {
4557 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4558 		return 0;
4559 	if (S_ISREG(inode->i_mode))
4560 		return 1;
4561 	if (S_ISDIR(inode->i_mode))
4562 		return 1;
4563 	if (S_ISLNK(inode->i_mode))
4564 		return !ext4_inode_is_fast_symlink(inode);
4565 	return 0;
4566 }
4567 
4568 /*
4569  * ext4_truncate()
4570  *
4571  * We block out ext4_get_block() block instantiations across the entire
4572  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4573  * simultaneously on behalf of the same inode.
4574  *
4575  * As we work through the truncate and commmit bits of it to the journal there
4576  * is one core, guiding principle: the file's tree must always be consistent on
4577  * disk.  We must be able to restart the truncate after a crash.
4578  *
4579  * The file's tree may be transiently inconsistent in memory (although it
4580  * probably isn't), but whenever we close off and commit a journal transaction,
4581  * the contents of (the filesystem + the journal) must be consistent and
4582  * restartable.  It's pretty simple, really: bottom up, right to left (although
4583  * left-to-right works OK too).
4584  *
4585  * Note that at recovery time, journal replay occurs *before* the restart of
4586  * truncate against the orphan inode list.
4587  *
4588  * The committed inode has the new, desired i_size (which is the same as
4589  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4590  * that this inode's truncate did not complete and it will again call
4591  * ext4_truncate() to have another go.  So there will be instantiated blocks
4592  * to the right of the truncation point in a crashed ext4 filesystem.  But
4593  * that's fine - as long as they are linked from the inode, the post-crash
4594  * ext4_truncate() run will find them and release them.
4595  */
4596 void ext4_truncate(struct inode *inode)
4597 {
4598 	handle_t *handle;
4599 	struct ext4_inode_info *ei = EXT4_I(inode);
4600 	__le32 *i_data = ei->i_data;
4601 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4602 	struct address_space *mapping = inode->i_mapping;
4603 	ext4_lblk_t offsets[4];
4604 	Indirect chain[4];
4605 	Indirect *partial;
4606 	__le32 nr = 0;
4607 	int n;
4608 	ext4_lblk_t last_block;
4609 	unsigned blocksize = inode->i_sb->s_blocksize;
4610 
4611 	if (!ext4_can_truncate(inode))
4612 		return;
4613 
4614 	EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4615 
4616 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4617 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4618 
4619 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4620 		ext4_ext_truncate(inode);
4621 		return;
4622 	}
4623 
4624 	handle = start_transaction(inode);
4625 	if (IS_ERR(handle))
4626 		return;		/* AKPM: return what? */
4627 
4628 	last_block = (inode->i_size + blocksize-1)
4629 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4630 
4631 	if (inode->i_size & (blocksize - 1))
4632 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4633 			goto out_stop;
4634 
4635 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4636 	if (n == 0)
4637 		goto out_stop;	/* error */
4638 
4639 	/*
4640 	 * OK.  This truncate is going to happen.  We add the inode to the
4641 	 * orphan list, so that if this truncate spans multiple transactions,
4642 	 * and we crash, we will resume the truncate when the filesystem
4643 	 * recovers.  It also marks the inode dirty, to catch the new size.
4644 	 *
4645 	 * Implication: the file must always be in a sane, consistent
4646 	 * truncatable state while each transaction commits.
4647 	 */
4648 	if (ext4_orphan_add(handle, inode))
4649 		goto out_stop;
4650 
4651 	/*
4652 	 * From here we block out all ext4_get_block() callers who want to
4653 	 * modify the block allocation tree.
4654 	 */
4655 	down_write(&ei->i_data_sem);
4656 
4657 	ext4_discard_preallocations(inode);
4658 
4659 	/*
4660 	 * The orphan list entry will now protect us from any crash which
4661 	 * occurs before the truncate completes, so it is now safe to propagate
4662 	 * the new, shorter inode size (held for now in i_size) into the
4663 	 * on-disk inode. We do this via i_disksize, which is the value which
4664 	 * ext4 *really* writes onto the disk inode.
4665 	 */
4666 	ei->i_disksize = inode->i_size;
4667 
4668 	if (n == 1) {		/* direct blocks */
4669 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4670 			       i_data + EXT4_NDIR_BLOCKS);
4671 		goto do_indirects;
4672 	}
4673 
4674 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4675 	/* Kill the top of shared branch (not detached) */
4676 	if (nr) {
4677 		if (partial == chain) {
4678 			/* Shared branch grows from the inode */
4679 			ext4_free_branches(handle, inode, NULL,
4680 					   &nr, &nr+1, (chain+n-1) - partial);
4681 			*partial->p = 0;
4682 			/*
4683 			 * We mark the inode dirty prior to restart,
4684 			 * and prior to stop.  No need for it here.
4685 			 */
4686 		} else {
4687 			/* Shared branch grows from an indirect block */
4688 			BUFFER_TRACE(partial->bh, "get_write_access");
4689 			ext4_free_branches(handle, inode, partial->bh,
4690 					partial->p,
4691 					partial->p+1, (chain+n-1) - partial);
4692 		}
4693 	}
4694 	/* Clear the ends of indirect blocks on the shared branch */
4695 	while (partial > chain) {
4696 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4697 				   (__le32*)partial->bh->b_data+addr_per_block,
4698 				   (chain+n-1) - partial);
4699 		BUFFER_TRACE(partial->bh, "call brelse");
4700 		brelse(partial->bh);
4701 		partial--;
4702 	}
4703 do_indirects:
4704 	/* Kill the remaining (whole) subtrees */
4705 	switch (offsets[0]) {
4706 	default:
4707 		nr = i_data[EXT4_IND_BLOCK];
4708 		if (nr) {
4709 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4710 			i_data[EXT4_IND_BLOCK] = 0;
4711 		}
4712 	case EXT4_IND_BLOCK:
4713 		nr = i_data[EXT4_DIND_BLOCK];
4714 		if (nr) {
4715 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4716 			i_data[EXT4_DIND_BLOCK] = 0;
4717 		}
4718 	case EXT4_DIND_BLOCK:
4719 		nr = i_data[EXT4_TIND_BLOCK];
4720 		if (nr) {
4721 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4722 			i_data[EXT4_TIND_BLOCK] = 0;
4723 		}
4724 	case EXT4_TIND_BLOCK:
4725 		;
4726 	}
4727 
4728 	up_write(&ei->i_data_sem);
4729 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4730 	ext4_mark_inode_dirty(handle, inode);
4731 
4732 	/*
4733 	 * In a multi-transaction truncate, we only make the final transaction
4734 	 * synchronous
4735 	 */
4736 	if (IS_SYNC(inode))
4737 		ext4_handle_sync(handle);
4738 out_stop:
4739 	/*
4740 	 * If this was a simple ftruncate(), and the file will remain alive
4741 	 * then we need to clear up the orphan record which we created above.
4742 	 * However, if this was a real unlink then we were called by
4743 	 * ext4_delete_inode(), and we allow that function to clean up the
4744 	 * orphan info for us.
4745 	 */
4746 	if (inode->i_nlink)
4747 		ext4_orphan_del(handle, inode);
4748 
4749 	ext4_journal_stop(handle);
4750 }
4751 
4752 /*
4753  * ext4_get_inode_loc returns with an extra refcount against the inode's
4754  * underlying buffer_head on success. If 'in_mem' is true, we have all
4755  * data in memory that is needed to recreate the on-disk version of this
4756  * inode.
4757  */
4758 static int __ext4_get_inode_loc(struct inode *inode,
4759 				struct ext4_iloc *iloc, int in_mem)
4760 {
4761 	struct ext4_group_desc	*gdp;
4762 	struct buffer_head	*bh;
4763 	struct super_block	*sb = inode->i_sb;
4764 	ext4_fsblk_t		block;
4765 	int			inodes_per_block, inode_offset;
4766 
4767 	iloc->bh = NULL;
4768 	if (!ext4_valid_inum(sb, inode->i_ino))
4769 		return -EIO;
4770 
4771 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4772 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4773 	if (!gdp)
4774 		return -EIO;
4775 
4776 	/*
4777 	 * Figure out the offset within the block group inode table
4778 	 */
4779 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4780 	inode_offset = ((inode->i_ino - 1) %
4781 			EXT4_INODES_PER_GROUP(sb));
4782 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4783 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4784 
4785 	bh = sb_getblk(sb, block);
4786 	if (!bh) {
4787 		ext4_error(sb, "unable to read inode block - "
4788 			   "inode=%lu, block=%llu", inode->i_ino, block);
4789 		return -EIO;
4790 	}
4791 	if (!buffer_uptodate(bh)) {
4792 		lock_buffer(bh);
4793 
4794 		/*
4795 		 * If the buffer has the write error flag, we have failed
4796 		 * to write out another inode in the same block.  In this
4797 		 * case, we don't have to read the block because we may
4798 		 * read the old inode data successfully.
4799 		 */
4800 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4801 			set_buffer_uptodate(bh);
4802 
4803 		if (buffer_uptodate(bh)) {
4804 			/* someone brought it uptodate while we waited */
4805 			unlock_buffer(bh);
4806 			goto has_buffer;
4807 		}
4808 
4809 		/*
4810 		 * If we have all information of the inode in memory and this
4811 		 * is the only valid inode in the block, we need not read the
4812 		 * block.
4813 		 */
4814 		if (in_mem) {
4815 			struct buffer_head *bitmap_bh;
4816 			int i, start;
4817 
4818 			start = inode_offset & ~(inodes_per_block - 1);
4819 
4820 			/* Is the inode bitmap in cache? */
4821 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4822 			if (!bitmap_bh)
4823 				goto make_io;
4824 
4825 			/*
4826 			 * If the inode bitmap isn't in cache then the
4827 			 * optimisation may end up performing two reads instead
4828 			 * of one, so skip it.
4829 			 */
4830 			if (!buffer_uptodate(bitmap_bh)) {
4831 				brelse(bitmap_bh);
4832 				goto make_io;
4833 			}
4834 			for (i = start; i < start + inodes_per_block; i++) {
4835 				if (i == inode_offset)
4836 					continue;
4837 				if (ext4_test_bit(i, bitmap_bh->b_data))
4838 					break;
4839 			}
4840 			brelse(bitmap_bh);
4841 			if (i == start + inodes_per_block) {
4842 				/* all other inodes are free, so skip I/O */
4843 				memset(bh->b_data, 0, bh->b_size);
4844 				set_buffer_uptodate(bh);
4845 				unlock_buffer(bh);
4846 				goto has_buffer;
4847 			}
4848 		}
4849 
4850 make_io:
4851 		/*
4852 		 * If we need to do any I/O, try to pre-readahead extra
4853 		 * blocks from the inode table.
4854 		 */
4855 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4856 			ext4_fsblk_t b, end, table;
4857 			unsigned num;
4858 
4859 			table = ext4_inode_table(sb, gdp);
4860 			/* s_inode_readahead_blks is always a power of 2 */
4861 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4862 			if (table > b)
4863 				b = table;
4864 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4865 			num = EXT4_INODES_PER_GROUP(sb);
4866 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4867 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4868 				num -= ext4_itable_unused_count(sb, gdp);
4869 			table += num / inodes_per_block;
4870 			if (end > table)
4871 				end = table;
4872 			while (b <= end)
4873 				sb_breadahead(sb, b++);
4874 		}
4875 
4876 		/*
4877 		 * There are other valid inodes in the buffer, this inode
4878 		 * has in-inode xattrs, or we don't have this inode in memory.
4879 		 * Read the block from disk.
4880 		 */
4881 		get_bh(bh);
4882 		bh->b_end_io = end_buffer_read_sync;
4883 		submit_bh(READ_META, bh);
4884 		wait_on_buffer(bh);
4885 		if (!buffer_uptodate(bh)) {
4886 			ext4_error(sb, "unable to read inode block - inode=%lu,"
4887 				   " block=%llu", inode->i_ino, block);
4888 			brelse(bh);
4889 			return -EIO;
4890 		}
4891 	}
4892 has_buffer:
4893 	iloc->bh = bh;
4894 	return 0;
4895 }
4896 
4897 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4898 {
4899 	/* We have all inode data except xattrs in memory here. */
4900 	return __ext4_get_inode_loc(inode, iloc,
4901 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4902 }
4903 
4904 void ext4_set_inode_flags(struct inode *inode)
4905 {
4906 	unsigned int flags = EXT4_I(inode)->i_flags;
4907 
4908 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4909 	if (flags & EXT4_SYNC_FL)
4910 		inode->i_flags |= S_SYNC;
4911 	if (flags & EXT4_APPEND_FL)
4912 		inode->i_flags |= S_APPEND;
4913 	if (flags & EXT4_IMMUTABLE_FL)
4914 		inode->i_flags |= S_IMMUTABLE;
4915 	if (flags & EXT4_NOATIME_FL)
4916 		inode->i_flags |= S_NOATIME;
4917 	if (flags & EXT4_DIRSYNC_FL)
4918 		inode->i_flags |= S_DIRSYNC;
4919 }
4920 
4921 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4922 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4923 {
4924 	unsigned int flags = ei->vfs_inode.i_flags;
4925 
4926 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4927 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4928 	if (flags & S_SYNC)
4929 		ei->i_flags |= EXT4_SYNC_FL;
4930 	if (flags & S_APPEND)
4931 		ei->i_flags |= EXT4_APPEND_FL;
4932 	if (flags & S_IMMUTABLE)
4933 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4934 	if (flags & S_NOATIME)
4935 		ei->i_flags |= EXT4_NOATIME_FL;
4936 	if (flags & S_DIRSYNC)
4937 		ei->i_flags |= EXT4_DIRSYNC_FL;
4938 }
4939 
4940 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4941 				  struct ext4_inode_info *ei)
4942 {
4943 	blkcnt_t i_blocks ;
4944 	struct inode *inode = &(ei->vfs_inode);
4945 	struct super_block *sb = inode->i_sb;
4946 
4947 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4948 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4949 		/* we are using combined 48 bit field */
4950 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4951 					le32_to_cpu(raw_inode->i_blocks_lo);
4952 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4953 			/* i_blocks represent file system block size */
4954 			return i_blocks  << (inode->i_blkbits - 9);
4955 		} else {
4956 			return i_blocks;
4957 		}
4958 	} else {
4959 		return le32_to_cpu(raw_inode->i_blocks_lo);
4960 	}
4961 }
4962 
4963 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4964 {
4965 	struct ext4_iloc iloc;
4966 	struct ext4_inode *raw_inode;
4967 	struct ext4_inode_info *ei;
4968 	struct inode *inode;
4969 	journal_t *journal = EXT4_SB(sb)->s_journal;
4970 	long ret;
4971 	int block;
4972 
4973 	inode = iget_locked(sb, ino);
4974 	if (!inode)
4975 		return ERR_PTR(-ENOMEM);
4976 	if (!(inode->i_state & I_NEW))
4977 		return inode;
4978 
4979 	ei = EXT4_I(inode);
4980 	iloc.bh = 0;
4981 
4982 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4983 	if (ret < 0)
4984 		goto bad_inode;
4985 	raw_inode = ext4_raw_inode(&iloc);
4986 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4987 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4988 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4989 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4990 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4991 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4992 	}
4993 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4994 
4995 	ei->i_state_flags = 0;
4996 	ei->i_dir_start_lookup = 0;
4997 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4998 	/* We now have enough fields to check if the inode was active or not.
4999 	 * This is needed because nfsd might try to access dead inodes
5000 	 * the test is that same one that e2fsck uses
5001 	 * NeilBrown 1999oct15
5002 	 */
5003 	if (inode->i_nlink == 0) {
5004 		if (inode->i_mode == 0 ||
5005 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5006 			/* this inode is deleted */
5007 			ret = -ESTALE;
5008 			goto bad_inode;
5009 		}
5010 		/* The only unlinked inodes we let through here have
5011 		 * valid i_mode and are being read by the orphan
5012 		 * recovery code: that's fine, we're about to complete
5013 		 * the process of deleting those. */
5014 	}
5015 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5016 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5017 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5018 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5019 		ei->i_file_acl |=
5020 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5021 	inode->i_size = ext4_isize(raw_inode);
5022 	ei->i_disksize = inode->i_size;
5023 #ifdef CONFIG_QUOTA
5024 	ei->i_reserved_quota = 0;
5025 #endif
5026 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5027 	ei->i_block_group = iloc.block_group;
5028 	ei->i_last_alloc_group = ~0;
5029 	/*
5030 	 * NOTE! The in-memory inode i_data array is in little-endian order
5031 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5032 	 */
5033 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5034 		ei->i_data[block] = raw_inode->i_block[block];
5035 	INIT_LIST_HEAD(&ei->i_orphan);
5036 
5037 	/*
5038 	 * Set transaction id's of transactions that have to be committed
5039 	 * to finish f[data]sync. We set them to currently running transaction
5040 	 * as we cannot be sure that the inode or some of its metadata isn't
5041 	 * part of the transaction - the inode could have been reclaimed and
5042 	 * now it is reread from disk.
5043 	 */
5044 	if (journal) {
5045 		transaction_t *transaction;
5046 		tid_t tid;
5047 
5048 		spin_lock(&journal->j_state_lock);
5049 		if (journal->j_running_transaction)
5050 			transaction = journal->j_running_transaction;
5051 		else
5052 			transaction = journal->j_committing_transaction;
5053 		if (transaction)
5054 			tid = transaction->t_tid;
5055 		else
5056 			tid = journal->j_commit_sequence;
5057 		spin_unlock(&journal->j_state_lock);
5058 		ei->i_sync_tid = tid;
5059 		ei->i_datasync_tid = tid;
5060 	}
5061 
5062 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5063 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5064 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5065 		    EXT4_INODE_SIZE(inode->i_sb)) {
5066 			ret = -EIO;
5067 			goto bad_inode;
5068 		}
5069 		if (ei->i_extra_isize == 0) {
5070 			/* The extra space is currently unused. Use it. */
5071 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5072 					    EXT4_GOOD_OLD_INODE_SIZE;
5073 		} else {
5074 			__le32 *magic = (void *)raw_inode +
5075 					EXT4_GOOD_OLD_INODE_SIZE +
5076 					ei->i_extra_isize;
5077 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5078 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5079 		}
5080 	} else
5081 		ei->i_extra_isize = 0;
5082 
5083 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5084 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5085 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5086 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5087 
5088 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5089 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5090 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5091 			inode->i_version |=
5092 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5093 	}
5094 
5095 	ret = 0;
5096 	if (ei->i_file_acl &&
5097 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5098 		ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5099 			   ei->i_file_acl, inode->i_ino);
5100 		ret = -EIO;
5101 		goto bad_inode;
5102 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5103 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5104 		    (S_ISLNK(inode->i_mode) &&
5105 		     !ext4_inode_is_fast_symlink(inode)))
5106 			/* Validate extent which is part of inode */
5107 			ret = ext4_ext_check_inode(inode);
5108 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5109 		   (S_ISLNK(inode->i_mode) &&
5110 		    !ext4_inode_is_fast_symlink(inode))) {
5111 		/* Validate block references which are part of inode */
5112 		ret = ext4_check_inode_blockref(inode);
5113 	}
5114 	if (ret)
5115 		goto bad_inode;
5116 
5117 	if (S_ISREG(inode->i_mode)) {
5118 		inode->i_op = &ext4_file_inode_operations;
5119 		inode->i_fop = &ext4_file_operations;
5120 		ext4_set_aops(inode);
5121 	} else if (S_ISDIR(inode->i_mode)) {
5122 		inode->i_op = &ext4_dir_inode_operations;
5123 		inode->i_fop = &ext4_dir_operations;
5124 	} else if (S_ISLNK(inode->i_mode)) {
5125 		if (ext4_inode_is_fast_symlink(inode)) {
5126 			inode->i_op = &ext4_fast_symlink_inode_operations;
5127 			nd_terminate_link(ei->i_data, inode->i_size,
5128 				sizeof(ei->i_data) - 1);
5129 		} else {
5130 			inode->i_op = &ext4_symlink_inode_operations;
5131 			ext4_set_aops(inode);
5132 		}
5133 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5134 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5135 		inode->i_op = &ext4_special_inode_operations;
5136 		if (raw_inode->i_block[0])
5137 			init_special_inode(inode, inode->i_mode,
5138 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5139 		else
5140 			init_special_inode(inode, inode->i_mode,
5141 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5142 	} else {
5143 		ret = -EIO;
5144 		ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5145 			   inode->i_mode, inode->i_ino);
5146 		goto bad_inode;
5147 	}
5148 	brelse(iloc.bh);
5149 	ext4_set_inode_flags(inode);
5150 	unlock_new_inode(inode);
5151 	return inode;
5152 
5153 bad_inode:
5154 	brelse(iloc.bh);
5155 	iget_failed(inode);
5156 	return ERR_PTR(ret);
5157 }
5158 
5159 static int ext4_inode_blocks_set(handle_t *handle,
5160 				struct ext4_inode *raw_inode,
5161 				struct ext4_inode_info *ei)
5162 {
5163 	struct inode *inode = &(ei->vfs_inode);
5164 	u64 i_blocks = inode->i_blocks;
5165 	struct super_block *sb = inode->i_sb;
5166 
5167 	if (i_blocks <= ~0U) {
5168 		/*
5169 		 * i_blocks can be represnted in a 32 bit variable
5170 		 * as multiple of 512 bytes
5171 		 */
5172 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5173 		raw_inode->i_blocks_high = 0;
5174 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5175 		return 0;
5176 	}
5177 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5178 		return -EFBIG;
5179 
5180 	if (i_blocks <= 0xffffffffffffULL) {
5181 		/*
5182 		 * i_blocks can be represented in a 48 bit variable
5183 		 * as multiple of 512 bytes
5184 		 */
5185 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5186 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5187 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5188 	} else {
5189 		ei->i_flags |= EXT4_HUGE_FILE_FL;
5190 		/* i_block is stored in file system block size */
5191 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5192 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5193 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5194 	}
5195 	return 0;
5196 }
5197 
5198 /*
5199  * Post the struct inode info into an on-disk inode location in the
5200  * buffer-cache.  This gobbles the caller's reference to the
5201  * buffer_head in the inode location struct.
5202  *
5203  * The caller must have write access to iloc->bh.
5204  */
5205 static int ext4_do_update_inode(handle_t *handle,
5206 				struct inode *inode,
5207 				struct ext4_iloc *iloc)
5208 {
5209 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5210 	struct ext4_inode_info *ei = EXT4_I(inode);
5211 	struct buffer_head *bh = iloc->bh;
5212 	int err = 0, rc, block;
5213 
5214 	/* For fields not not tracking in the in-memory inode,
5215 	 * initialise them to zero for new inodes. */
5216 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5217 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5218 
5219 	ext4_get_inode_flags(ei);
5220 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5221 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5222 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5223 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5224 /*
5225  * Fix up interoperability with old kernels. Otherwise, old inodes get
5226  * re-used with the upper 16 bits of the uid/gid intact
5227  */
5228 		if (!ei->i_dtime) {
5229 			raw_inode->i_uid_high =
5230 				cpu_to_le16(high_16_bits(inode->i_uid));
5231 			raw_inode->i_gid_high =
5232 				cpu_to_le16(high_16_bits(inode->i_gid));
5233 		} else {
5234 			raw_inode->i_uid_high = 0;
5235 			raw_inode->i_gid_high = 0;
5236 		}
5237 	} else {
5238 		raw_inode->i_uid_low =
5239 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5240 		raw_inode->i_gid_low =
5241 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5242 		raw_inode->i_uid_high = 0;
5243 		raw_inode->i_gid_high = 0;
5244 	}
5245 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5246 
5247 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5248 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5249 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5250 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5251 
5252 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5253 		goto out_brelse;
5254 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5255 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5256 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5257 	    cpu_to_le32(EXT4_OS_HURD))
5258 		raw_inode->i_file_acl_high =
5259 			cpu_to_le16(ei->i_file_acl >> 32);
5260 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5261 	ext4_isize_set(raw_inode, ei->i_disksize);
5262 	if (ei->i_disksize > 0x7fffffffULL) {
5263 		struct super_block *sb = inode->i_sb;
5264 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5265 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5266 				EXT4_SB(sb)->s_es->s_rev_level ==
5267 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5268 			/* If this is the first large file
5269 			 * created, add a flag to the superblock.
5270 			 */
5271 			err = ext4_journal_get_write_access(handle,
5272 					EXT4_SB(sb)->s_sbh);
5273 			if (err)
5274 				goto out_brelse;
5275 			ext4_update_dynamic_rev(sb);
5276 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5277 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5278 			sb->s_dirt = 1;
5279 			ext4_handle_sync(handle);
5280 			err = ext4_handle_dirty_metadata(handle, NULL,
5281 					EXT4_SB(sb)->s_sbh);
5282 		}
5283 	}
5284 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5285 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5286 		if (old_valid_dev(inode->i_rdev)) {
5287 			raw_inode->i_block[0] =
5288 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5289 			raw_inode->i_block[1] = 0;
5290 		} else {
5291 			raw_inode->i_block[0] = 0;
5292 			raw_inode->i_block[1] =
5293 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5294 			raw_inode->i_block[2] = 0;
5295 		}
5296 	} else
5297 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5298 			raw_inode->i_block[block] = ei->i_data[block];
5299 
5300 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5301 	if (ei->i_extra_isize) {
5302 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5303 			raw_inode->i_version_hi =
5304 			cpu_to_le32(inode->i_version >> 32);
5305 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5306 	}
5307 
5308 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5309 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5310 	if (!err)
5311 		err = rc;
5312 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5313 
5314 	ext4_update_inode_fsync_trans(handle, inode, 0);
5315 out_brelse:
5316 	brelse(bh);
5317 	ext4_std_error(inode->i_sb, err);
5318 	return err;
5319 }
5320 
5321 /*
5322  * ext4_write_inode()
5323  *
5324  * We are called from a few places:
5325  *
5326  * - Within generic_file_write() for O_SYNC files.
5327  *   Here, there will be no transaction running. We wait for any running
5328  *   trasnaction to commit.
5329  *
5330  * - Within sys_sync(), kupdate and such.
5331  *   We wait on commit, if tol to.
5332  *
5333  * - Within prune_icache() (PF_MEMALLOC == true)
5334  *   Here we simply return.  We can't afford to block kswapd on the
5335  *   journal commit.
5336  *
5337  * In all cases it is actually safe for us to return without doing anything,
5338  * because the inode has been copied into a raw inode buffer in
5339  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5340  * knfsd.
5341  *
5342  * Note that we are absolutely dependent upon all inode dirtiers doing the
5343  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5344  * which we are interested.
5345  *
5346  * It would be a bug for them to not do this.  The code:
5347  *
5348  *	mark_inode_dirty(inode)
5349  *	stuff();
5350  *	inode->i_size = expr;
5351  *
5352  * is in error because a kswapd-driven write_inode() could occur while
5353  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5354  * will no longer be on the superblock's dirty inode list.
5355  */
5356 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5357 {
5358 	int err;
5359 
5360 	if (current->flags & PF_MEMALLOC)
5361 		return 0;
5362 
5363 	if (EXT4_SB(inode->i_sb)->s_journal) {
5364 		if (ext4_journal_current_handle()) {
5365 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5366 			dump_stack();
5367 			return -EIO;
5368 		}
5369 
5370 		if (wbc->sync_mode != WB_SYNC_ALL)
5371 			return 0;
5372 
5373 		err = ext4_force_commit(inode->i_sb);
5374 	} else {
5375 		struct ext4_iloc iloc;
5376 
5377 		err = ext4_get_inode_loc(inode, &iloc);
5378 		if (err)
5379 			return err;
5380 		if (wbc->sync_mode == WB_SYNC_ALL)
5381 			sync_dirty_buffer(iloc.bh);
5382 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5383 			ext4_error(inode->i_sb, "IO error syncing inode, "
5384 				   "inode=%lu, block=%llu", inode->i_ino,
5385 				   (unsigned long long)iloc.bh->b_blocknr);
5386 			err = -EIO;
5387 		}
5388 	}
5389 	return err;
5390 }
5391 
5392 /*
5393  * ext4_setattr()
5394  *
5395  * Called from notify_change.
5396  *
5397  * We want to trap VFS attempts to truncate the file as soon as
5398  * possible.  In particular, we want to make sure that when the VFS
5399  * shrinks i_size, we put the inode on the orphan list and modify
5400  * i_disksize immediately, so that during the subsequent flushing of
5401  * dirty pages and freeing of disk blocks, we can guarantee that any
5402  * commit will leave the blocks being flushed in an unused state on
5403  * disk.  (On recovery, the inode will get truncated and the blocks will
5404  * be freed, so we have a strong guarantee that no future commit will
5405  * leave these blocks visible to the user.)
5406  *
5407  * Another thing we have to assure is that if we are in ordered mode
5408  * and inode is still attached to the committing transaction, we must
5409  * we start writeout of all the dirty pages which are being truncated.
5410  * This way we are sure that all the data written in the previous
5411  * transaction are already on disk (truncate waits for pages under
5412  * writeback).
5413  *
5414  * Called with inode->i_mutex down.
5415  */
5416 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5417 {
5418 	struct inode *inode = dentry->d_inode;
5419 	int error, rc = 0;
5420 	const unsigned int ia_valid = attr->ia_valid;
5421 
5422 	error = inode_change_ok(inode, attr);
5423 	if (error)
5424 		return error;
5425 
5426 	if (ia_valid & ATTR_SIZE)
5427 		dquot_initialize(inode);
5428 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5429 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5430 		handle_t *handle;
5431 
5432 		/* (user+group)*(old+new) structure, inode write (sb,
5433 		 * inode block, ? - but truncate inode update has it) */
5434 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5435 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5436 		if (IS_ERR(handle)) {
5437 			error = PTR_ERR(handle);
5438 			goto err_out;
5439 		}
5440 		error = dquot_transfer(inode, attr);
5441 		if (error) {
5442 			ext4_journal_stop(handle);
5443 			return error;
5444 		}
5445 		/* Update corresponding info in inode so that everything is in
5446 		 * one transaction */
5447 		if (attr->ia_valid & ATTR_UID)
5448 			inode->i_uid = attr->ia_uid;
5449 		if (attr->ia_valid & ATTR_GID)
5450 			inode->i_gid = attr->ia_gid;
5451 		error = ext4_mark_inode_dirty(handle, inode);
5452 		ext4_journal_stop(handle);
5453 	}
5454 
5455 	if (attr->ia_valid & ATTR_SIZE) {
5456 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5457 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5458 
5459 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5460 				error = -EFBIG;
5461 				goto err_out;
5462 			}
5463 		}
5464 	}
5465 
5466 	if (S_ISREG(inode->i_mode) &&
5467 	    attr->ia_valid & ATTR_SIZE &&
5468 	    (attr->ia_size < inode->i_size ||
5469 	     (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5470 		handle_t *handle;
5471 
5472 		handle = ext4_journal_start(inode, 3);
5473 		if (IS_ERR(handle)) {
5474 			error = PTR_ERR(handle);
5475 			goto err_out;
5476 		}
5477 
5478 		error = ext4_orphan_add(handle, inode);
5479 		EXT4_I(inode)->i_disksize = attr->ia_size;
5480 		rc = ext4_mark_inode_dirty(handle, inode);
5481 		if (!error)
5482 			error = rc;
5483 		ext4_journal_stop(handle);
5484 
5485 		if (ext4_should_order_data(inode)) {
5486 			error = ext4_begin_ordered_truncate(inode,
5487 							    attr->ia_size);
5488 			if (error) {
5489 				/* Do as much error cleanup as possible */
5490 				handle = ext4_journal_start(inode, 3);
5491 				if (IS_ERR(handle)) {
5492 					ext4_orphan_del(NULL, inode);
5493 					goto err_out;
5494 				}
5495 				ext4_orphan_del(handle, inode);
5496 				ext4_journal_stop(handle);
5497 				goto err_out;
5498 			}
5499 		}
5500 		/* ext4_truncate will clear the flag */
5501 		if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5502 			ext4_truncate(inode);
5503 	}
5504 
5505 	rc = inode_setattr(inode, attr);
5506 
5507 	/* If inode_setattr's call to ext4_truncate failed to get a
5508 	 * transaction handle at all, we need to clean up the in-core
5509 	 * orphan list manually. */
5510 	if (inode->i_nlink)
5511 		ext4_orphan_del(NULL, inode);
5512 
5513 	if (!rc && (ia_valid & ATTR_MODE))
5514 		rc = ext4_acl_chmod(inode);
5515 
5516 err_out:
5517 	ext4_std_error(inode->i_sb, error);
5518 	if (!error)
5519 		error = rc;
5520 	return error;
5521 }
5522 
5523 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5524 		 struct kstat *stat)
5525 {
5526 	struct inode *inode;
5527 	unsigned long delalloc_blocks;
5528 
5529 	inode = dentry->d_inode;
5530 	generic_fillattr(inode, stat);
5531 
5532 	/*
5533 	 * We can't update i_blocks if the block allocation is delayed
5534 	 * otherwise in the case of system crash before the real block
5535 	 * allocation is done, we will have i_blocks inconsistent with
5536 	 * on-disk file blocks.
5537 	 * We always keep i_blocks updated together with real
5538 	 * allocation. But to not confuse with user, stat
5539 	 * will return the blocks that include the delayed allocation
5540 	 * blocks for this file.
5541 	 */
5542 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5543 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5544 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5545 
5546 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5547 	return 0;
5548 }
5549 
5550 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5551 				      int chunk)
5552 {
5553 	int indirects;
5554 
5555 	/* if nrblocks are contiguous */
5556 	if (chunk) {
5557 		/*
5558 		 * With N contiguous data blocks, it need at most
5559 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5560 		 * 2 dindirect blocks
5561 		 * 1 tindirect block
5562 		 */
5563 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5564 		return indirects + 3;
5565 	}
5566 	/*
5567 	 * if nrblocks are not contiguous, worse case, each block touch
5568 	 * a indirect block, and each indirect block touch a double indirect
5569 	 * block, plus a triple indirect block
5570 	 */
5571 	indirects = nrblocks * 2 + 1;
5572 	return indirects;
5573 }
5574 
5575 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5576 {
5577 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5578 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5579 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5580 }
5581 
5582 /*
5583  * Account for index blocks, block groups bitmaps and block group
5584  * descriptor blocks if modify datablocks and index blocks
5585  * worse case, the indexs blocks spread over different block groups
5586  *
5587  * If datablocks are discontiguous, they are possible to spread over
5588  * different block groups too. If they are contiuguous, with flexbg,
5589  * they could still across block group boundary.
5590  *
5591  * Also account for superblock, inode, quota and xattr blocks
5592  */
5593 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5594 {
5595 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5596 	int gdpblocks;
5597 	int idxblocks;
5598 	int ret = 0;
5599 
5600 	/*
5601 	 * How many index blocks need to touch to modify nrblocks?
5602 	 * The "Chunk" flag indicating whether the nrblocks is
5603 	 * physically contiguous on disk
5604 	 *
5605 	 * For Direct IO and fallocate, they calls get_block to allocate
5606 	 * one single extent at a time, so they could set the "Chunk" flag
5607 	 */
5608 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5609 
5610 	ret = idxblocks;
5611 
5612 	/*
5613 	 * Now let's see how many group bitmaps and group descriptors need
5614 	 * to account
5615 	 */
5616 	groups = idxblocks;
5617 	if (chunk)
5618 		groups += 1;
5619 	else
5620 		groups += nrblocks;
5621 
5622 	gdpblocks = groups;
5623 	if (groups > ngroups)
5624 		groups = ngroups;
5625 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5626 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5627 
5628 	/* bitmaps and block group descriptor blocks */
5629 	ret += groups + gdpblocks;
5630 
5631 	/* Blocks for super block, inode, quota and xattr blocks */
5632 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5633 
5634 	return ret;
5635 }
5636 
5637 /*
5638  * Calulate the total number of credits to reserve to fit
5639  * the modification of a single pages into a single transaction,
5640  * which may include multiple chunks of block allocations.
5641  *
5642  * This could be called via ext4_write_begin()
5643  *
5644  * We need to consider the worse case, when
5645  * one new block per extent.
5646  */
5647 int ext4_writepage_trans_blocks(struct inode *inode)
5648 {
5649 	int bpp = ext4_journal_blocks_per_page(inode);
5650 	int ret;
5651 
5652 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5653 
5654 	/* Account for data blocks for journalled mode */
5655 	if (ext4_should_journal_data(inode))
5656 		ret += bpp;
5657 	return ret;
5658 }
5659 
5660 /*
5661  * Calculate the journal credits for a chunk of data modification.
5662  *
5663  * This is called from DIO, fallocate or whoever calling
5664  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5665  *
5666  * journal buffers for data blocks are not included here, as DIO
5667  * and fallocate do no need to journal data buffers.
5668  */
5669 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5670 {
5671 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5672 }
5673 
5674 /*
5675  * The caller must have previously called ext4_reserve_inode_write().
5676  * Give this, we know that the caller already has write access to iloc->bh.
5677  */
5678 int ext4_mark_iloc_dirty(handle_t *handle,
5679 			 struct inode *inode, struct ext4_iloc *iloc)
5680 {
5681 	int err = 0;
5682 
5683 	if (test_opt(inode->i_sb, I_VERSION))
5684 		inode_inc_iversion(inode);
5685 
5686 	/* the do_update_inode consumes one bh->b_count */
5687 	get_bh(iloc->bh);
5688 
5689 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5690 	err = ext4_do_update_inode(handle, inode, iloc);
5691 	put_bh(iloc->bh);
5692 	return err;
5693 }
5694 
5695 /*
5696  * On success, We end up with an outstanding reference count against
5697  * iloc->bh.  This _must_ be cleaned up later.
5698  */
5699 
5700 int
5701 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5702 			 struct ext4_iloc *iloc)
5703 {
5704 	int err;
5705 
5706 	err = ext4_get_inode_loc(inode, iloc);
5707 	if (!err) {
5708 		BUFFER_TRACE(iloc->bh, "get_write_access");
5709 		err = ext4_journal_get_write_access(handle, iloc->bh);
5710 		if (err) {
5711 			brelse(iloc->bh);
5712 			iloc->bh = NULL;
5713 		}
5714 	}
5715 	ext4_std_error(inode->i_sb, err);
5716 	return err;
5717 }
5718 
5719 /*
5720  * Expand an inode by new_extra_isize bytes.
5721  * Returns 0 on success or negative error number on failure.
5722  */
5723 static int ext4_expand_extra_isize(struct inode *inode,
5724 				   unsigned int new_extra_isize,
5725 				   struct ext4_iloc iloc,
5726 				   handle_t *handle)
5727 {
5728 	struct ext4_inode *raw_inode;
5729 	struct ext4_xattr_ibody_header *header;
5730 	struct ext4_xattr_entry *entry;
5731 
5732 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5733 		return 0;
5734 
5735 	raw_inode = ext4_raw_inode(&iloc);
5736 
5737 	header = IHDR(inode, raw_inode);
5738 	entry = IFIRST(header);
5739 
5740 	/* No extended attributes present */
5741 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5742 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5743 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5744 			new_extra_isize);
5745 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5746 		return 0;
5747 	}
5748 
5749 	/* try to expand with EAs present */
5750 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5751 					  raw_inode, handle);
5752 }
5753 
5754 /*
5755  * What we do here is to mark the in-core inode as clean with respect to inode
5756  * dirtiness (it may still be data-dirty).
5757  * This means that the in-core inode may be reaped by prune_icache
5758  * without having to perform any I/O.  This is a very good thing,
5759  * because *any* task may call prune_icache - even ones which
5760  * have a transaction open against a different journal.
5761  *
5762  * Is this cheating?  Not really.  Sure, we haven't written the
5763  * inode out, but prune_icache isn't a user-visible syncing function.
5764  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5765  * we start and wait on commits.
5766  *
5767  * Is this efficient/effective?  Well, we're being nice to the system
5768  * by cleaning up our inodes proactively so they can be reaped
5769  * without I/O.  But we are potentially leaving up to five seconds'
5770  * worth of inodes floating about which prune_icache wants us to
5771  * write out.  One way to fix that would be to get prune_icache()
5772  * to do a write_super() to free up some memory.  It has the desired
5773  * effect.
5774  */
5775 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5776 {
5777 	struct ext4_iloc iloc;
5778 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5779 	static unsigned int mnt_count;
5780 	int err, ret;
5781 
5782 	might_sleep();
5783 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5784 	if (ext4_handle_valid(handle) &&
5785 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5786 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5787 		/*
5788 		 * We need extra buffer credits since we may write into EA block
5789 		 * with this same handle. If journal_extend fails, then it will
5790 		 * only result in a minor loss of functionality for that inode.
5791 		 * If this is felt to be critical, then e2fsck should be run to
5792 		 * force a large enough s_min_extra_isize.
5793 		 */
5794 		if ((jbd2_journal_extend(handle,
5795 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5796 			ret = ext4_expand_extra_isize(inode,
5797 						      sbi->s_want_extra_isize,
5798 						      iloc, handle);
5799 			if (ret) {
5800 				ext4_set_inode_state(inode,
5801 						     EXT4_STATE_NO_EXPAND);
5802 				if (mnt_count !=
5803 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5804 					ext4_warning(inode->i_sb,
5805 					"Unable to expand inode %lu. Delete"
5806 					" some EAs or run e2fsck.",
5807 					inode->i_ino);
5808 					mnt_count =
5809 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5810 				}
5811 			}
5812 		}
5813 	}
5814 	if (!err)
5815 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5816 	return err;
5817 }
5818 
5819 /*
5820  * ext4_dirty_inode() is called from __mark_inode_dirty()
5821  *
5822  * We're really interested in the case where a file is being extended.
5823  * i_size has been changed by generic_commit_write() and we thus need
5824  * to include the updated inode in the current transaction.
5825  *
5826  * Also, dquot_alloc_block() will always dirty the inode when blocks
5827  * are allocated to the file.
5828  *
5829  * If the inode is marked synchronous, we don't honour that here - doing
5830  * so would cause a commit on atime updates, which we don't bother doing.
5831  * We handle synchronous inodes at the highest possible level.
5832  */
5833 void ext4_dirty_inode(struct inode *inode)
5834 {
5835 	handle_t *handle;
5836 
5837 	handle = ext4_journal_start(inode, 2);
5838 	if (IS_ERR(handle))
5839 		goto out;
5840 
5841 	ext4_mark_inode_dirty(handle, inode);
5842 
5843 	ext4_journal_stop(handle);
5844 out:
5845 	return;
5846 }
5847 
5848 #if 0
5849 /*
5850  * Bind an inode's backing buffer_head into this transaction, to prevent
5851  * it from being flushed to disk early.  Unlike
5852  * ext4_reserve_inode_write, this leaves behind no bh reference and
5853  * returns no iloc structure, so the caller needs to repeat the iloc
5854  * lookup to mark the inode dirty later.
5855  */
5856 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5857 {
5858 	struct ext4_iloc iloc;
5859 
5860 	int err = 0;
5861 	if (handle) {
5862 		err = ext4_get_inode_loc(inode, &iloc);
5863 		if (!err) {
5864 			BUFFER_TRACE(iloc.bh, "get_write_access");
5865 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5866 			if (!err)
5867 				err = ext4_handle_dirty_metadata(handle,
5868 								 NULL,
5869 								 iloc.bh);
5870 			brelse(iloc.bh);
5871 		}
5872 	}
5873 	ext4_std_error(inode->i_sb, err);
5874 	return err;
5875 }
5876 #endif
5877 
5878 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5879 {
5880 	journal_t *journal;
5881 	handle_t *handle;
5882 	int err;
5883 
5884 	/*
5885 	 * We have to be very careful here: changing a data block's
5886 	 * journaling status dynamically is dangerous.  If we write a
5887 	 * data block to the journal, change the status and then delete
5888 	 * that block, we risk forgetting to revoke the old log record
5889 	 * from the journal and so a subsequent replay can corrupt data.
5890 	 * So, first we make sure that the journal is empty and that
5891 	 * nobody is changing anything.
5892 	 */
5893 
5894 	journal = EXT4_JOURNAL(inode);
5895 	if (!journal)
5896 		return 0;
5897 	if (is_journal_aborted(journal))
5898 		return -EROFS;
5899 
5900 	jbd2_journal_lock_updates(journal);
5901 	jbd2_journal_flush(journal);
5902 
5903 	/*
5904 	 * OK, there are no updates running now, and all cached data is
5905 	 * synced to disk.  We are now in a completely consistent state
5906 	 * which doesn't have anything in the journal, and we know that
5907 	 * no filesystem updates are running, so it is safe to modify
5908 	 * the inode's in-core data-journaling state flag now.
5909 	 */
5910 
5911 	if (val)
5912 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5913 	else
5914 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5915 	ext4_set_aops(inode);
5916 
5917 	jbd2_journal_unlock_updates(journal);
5918 
5919 	/* Finally we can mark the inode as dirty. */
5920 
5921 	handle = ext4_journal_start(inode, 1);
5922 	if (IS_ERR(handle))
5923 		return PTR_ERR(handle);
5924 
5925 	err = ext4_mark_inode_dirty(handle, inode);
5926 	ext4_handle_sync(handle);
5927 	ext4_journal_stop(handle);
5928 	ext4_std_error(inode->i_sb, err);
5929 
5930 	return err;
5931 }
5932 
5933 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5934 {
5935 	return !buffer_mapped(bh);
5936 }
5937 
5938 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5939 {
5940 	struct page *page = vmf->page;
5941 	loff_t size;
5942 	unsigned long len;
5943 	int ret = -EINVAL;
5944 	void *fsdata;
5945 	struct file *file = vma->vm_file;
5946 	struct inode *inode = file->f_path.dentry->d_inode;
5947 	struct address_space *mapping = inode->i_mapping;
5948 
5949 	/*
5950 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5951 	 * get i_mutex because we are already holding mmap_sem.
5952 	 */
5953 	down_read(&inode->i_alloc_sem);
5954 	size = i_size_read(inode);
5955 	if (page->mapping != mapping || size <= page_offset(page)
5956 	    || !PageUptodate(page)) {
5957 		/* page got truncated from under us? */
5958 		goto out_unlock;
5959 	}
5960 	ret = 0;
5961 	if (PageMappedToDisk(page))
5962 		goto out_unlock;
5963 
5964 	if (page->index == size >> PAGE_CACHE_SHIFT)
5965 		len = size & ~PAGE_CACHE_MASK;
5966 	else
5967 		len = PAGE_CACHE_SIZE;
5968 
5969 	lock_page(page);
5970 	/*
5971 	 * return if we have all the buffers mapped. This avoid
5972 	 * the need to call write_begin/write_end which does a
5973 	 * journal_start/journal_stop which can block and take
5974 	 * long time
5975 	 */
5976 	if (page_has_buffers(page)) {
5977 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5978 					ext4_bh_unmapped)) {
5979 			unlock_page(page);
5980 			goto out_unlock;
5981 		}
5982 	}
5983 	unlock_page(page);
5984 	/*
5985 	 * OK, we need to fill the hole... Do write_begin write_end
5986 	 * to do block allocation/reservation.We are not holding
5987 	 * inode.i__mutex here. That allow * parallel write_begin,
5988 	 * write_end call. lock_page prevent this from happening
5989 	 * on the same page though
5990 	 */
5991 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5992 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5993 	if (ret < 0)
5994 		goto out_unlock;
5995 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5996 			len, len, page, fsdata);
5997 	if (ret < 0)
5998 		goto out_unlock;
5999 	ret = 0;
6000 out_unlock:
6001 	if (ret)
6002 		ret = VM_FAULT_SIGBUS;
6003 	up_read(&inode->i_alloc_sem);
6004 	return ret;
6005 }
6006