1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "ext4_extents.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static inline int ext4_begin_ordered_truncate(struct inode *inode, 53 loff_t new_size) 54 { 55 return jbd2_journal_begin_ordered_truncate( 56 EXT4_SB(inode->i_sb)->s_journal, 57 &EXT4_I(inode)->jinode, 58 new_size); 59 } 60 61 static void ext4_invalidatepage(struct page *page, unsigned long offset); 62 63 /* 64 * Test whether an inode is a fast symlink. 65 */ 66 static int ext4_inode_is_fast_symlink(struct inode *inode) 67 { 68 int ea_blocks = EXT4_I(inode)->i_file_acl ? 69 (inode->i_sb->s_blocksize >> 9) : 0; 70 71 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 72 } 73 74 /* 75 * Work out how many blocks we need to proceed with the next chunk of a 76 * truncate transaction. 77 */ 78 static unsigned long blocks_for_truncate(struct inode *inode) 79 { 80 ext4_lblk_t needed; 81 82 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 83 84 /* Give ourselves just enough room to cope with inodes in which 85 * i_blocks is corrupt: we've seen disk corruptions in the past 86 * which resulted in random data in an inode which looked enough 87 * like a regular file for ext4 to try to delete it. Things 88 * will go a bit crazy if that happens, but at least we should 89 * try not to panic the whole kernel. */ 90 if (needed < 2) 91 needed = 2; 92 93 /* But we need to bound the transaction so we don't overflow the 94 * journal. */ 95 if (needed > EXT4_MAX_TRANS_DATA) 96 needed = EXT4_MAX_TRANS_DATA; 97 98 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 99 } 100 101 /* 102 * Truncate transactions can be complex and absolutely huge. So we need to 103 * be able to restart the transaction at a conventient checkpoint to make 104 * sure we don't overflow the journal. 105 * 106 * start_transaction gets us a new handle for a truncate transaction, 107 * and extend_transaction tries to extend the existing one a bit. If 108 * extend fails, we need to propagate the failure up and restart the 109 * transaction in the top-level truncate loop. --sct 110 */ 111 static handle_t *start_transaction(struct inode *inode) 112 { 113 handle_t *result; 114 115 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 116 if (!IS_ERR(result)) 117 return result; 118 119 ext4_std_error(inode->i_sb, PTR_ERR(result)); 120 return result; 121 } 122 123 /* 124 * Try to extend this transaction for the purposes of truncation. 125 * 126 * Returns 0 if we managed to create more room. If we can't create more 127 * room, and the transaction must be restarted we return 1. 128 */ 129 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 130 { 131 if (!ext4_handle_valid(handle)) 132 return 0; 133 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 134 return 0; 135 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 136 return 0; 137 return 1; 138 } 139 140 /* 141 * Restart the transaction associated with *handle. This does a commit, 142 * so before we call here everything must be consistently dirtied against 143 * this transaction. 144 */ 145 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 146 int nblocks) 147 { 148 int ret; 149 150 /* 151 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this 152 * moment, get_block can be called only for blocks inside i_size since 153 * page cache has been already dropped and writes are blocked by 154 * i_mutex. So we can safely drop the i_data_sem here. 155 */ 156 BUG_ON(EXT4_JOURNAL(inode) == NULL); 157 jbd_debug(2, "restarting handle %p\n", handle); 158 up_write(&EXT4_I(inode)->i_data_sem); 159 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 160 down_write(&EXT4_I(inode)->i_data_sem); 161 ext4_discard_preallocations(inode); 162 163 return ret; 164 } 165 166 /* 167 * Called at the last iput() if i_nlink is zero. 168 */ 169 void ext4_delete_inode(struct inode *inode) 170 { 171 handle_t *handle; 172 int err; 173 174 if (!is_bad_inode(inode)) 175 dquot_initialize(inode); 176 177 if (ext4_should_order_data(inode)) 178 ext4_begin_ordered_truncate(inode, 0); 179 truncate_inode_pages(&inode->i_data, 0); 180 181 if (is_bad_inode(inode)) 182 goto no_delete; 183 184 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 185 if (IS_ERR(handle)) { 186 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 187 /* 188 * If we're going to skip the normal cleanup, we still need to 189 * make sure that the in-core orphan linked list is properly 190 * cleaned up. 191 */ 192 ext4_orphan_del(NULL, inode); 193 goto no_delete; 194 } 195 196 if (IS_SYNC(inode)) 197 ext4_handle_sync(handle); 198 inode->i_size = 0; 199 err = ext4_mark_inode_dirty(handle, inode); 200 if (err) { 201 ext4_warning(inode->i_sb, 202 "couldn't mark inode dirty (err %d)", err); 203 goto stop_handle; 204 } 205 if (inode->i_blocks) 206 ext4_truncate(inode); 207 208 /* 209 * ext4_ext_truncate() doesn't reserve any slop when it 210 * restarts journal transactions; therefore there may not be 211 * enough credits left in the handle to remove the inode from 212 * the orphan list and set the dtime field. 213 */ 214 if (!ext4_handle_has_enough_credits(handle, 3)) { 215 err = ext4_journal_extend(handle, 3); 216 if (err > 0) 217 err = ext4_journal_restart(handle, 3); 218 if (err != 0) { 219 ext4_warning(inode->i_sb, 220 "couldn't extend journal (err %d)", err); 221 stop_handle: 222 ext4_journal_stop(handle); 223 goto no_delete; 224 } 225 } 226 227 /* 228 * Kill off the orphan record which ext4_truncate created. 229 * AKPM: I think this can be inside the above `if'. 230 * Note that ext4_orphan_del() has to be able to cope with the 231 * deletion of a non-existent orphan - this is because we don't 232 * know if ext4_truncate() actually created an orphan record. 233 * (Well, we could do this if we need to, but heck - it works) 234 */ 235 ext4_orphan_del(handle, inode); 236 EXT4_I(inode)->i_dtime = get_seconds(); 237 238 /* 239 * One subtle ordering requirement: if anything has gone wrong 240 * (transaction abort, IO errors, whatever), then we can still 241 * do these next steps (the fs will already have been marked as 242 * having errors), but we can't free the inode if the mark_dirty 243 * fails. 244 */ 245 if (ext4_mark_inode_dirty(handle, inode)) 246 /* If that failed, just do the required in-core inode clear. */ 247 clear_inode(inode); 248 else 249 ext4_free_inode(handle, inode); 250 ext4_journal_stop(handle); 251 return; 252 no_delete: 253 clear_inode(inode); /* We must guarantee clearing of inode... */ 254 } 255 256 typedef struct { 257 __le32 *p; 258 __le32 key; 259 struct buffer_head *bh; 260 } Indirect; 261 262 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 263 { 264 p->key = *(p->p = v); 265 p->bh = bh; 266 } 267 268 /** 269 * ext4_block_to_path - parse the block number into array of offsets 270 * @inode: inode in question (we are only interested in its superblock) 271 * @i_block: block number to be parsed 272 * @offsets: array to store the offsets in 273 * @boundary: set this non-zero if the referred-to block is likely to be 274 * followed (on disk) by an indirect block. 275 * 276 * To store the locations of file's data ext4 uses a data structure common 277 * for UNIX filesystems - tree of pointers anchored in the inode, with 278 * data blocks at leaves and indirect blocks in intermediate nodes. 279 * This function translates the block number into path in that tree - 280 * return value is the path length and @offsets[n] is the offset of 281 * pointer to (n+1)th node in the nth one. If @block is out of range 282 * (negative or too large) warning is printed and zero returned. 283 * 284 * Note: function doesn't find node addresses, so no IO is needed. All 285 * we need to know is the capacity of indirect blocks (taken from the 286 * inode->i_sb). 287 */ 288 289 /* 290 * Portability note: the last comparison (check that we fit into triple 291 * indirect block) is spelled differently, because otherwise on an 292 * architecture with 32-bit longs and 8Kb pages we might get into trouble 293 * if our filesystem had 8Kb blocks. We might use long long, but that would 294 * kill us on x86. Oh, well, at least the sign propagation does not matter - 295 * i_block would have to be negative in the very beginning, so we would not 296 * get there at all. 297 */ 298 299 static int ext4_block_to_path(struct inode *inode, 300 ext4_lblk_t i_block, 301 ext4_lblk_t offsets[4], int *boundary) 302 { 303 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 304 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 305 const long direct_blocks = EXT4_NDIR_BLOCKS, 306 indirect_blocks = ptrs, 307 double_blocks = (1 << (ptrs_bits * 2)); 308 int n = 0; 309 int final = 0; 310 311 if (i_block < direct_blocks) { 312 offsets[n++] = i_block; 313 final = direct_blocks; 314 } else if ((i_block -= direct_blocks) < indirect_blocks) { 315 offsets[n++] = EXT4_IND_BLOCK; 316 offsets[n++] = i_block; 317 final = ptrs; 318 } else if ((i_block -= indirect_blocks) < double_blocks) { 319 offsets[n++] = EXT4_DIND_BLOCK; 320 offsets[n++] = i_block >> ptrs_bits; 321 offsets[n++] = i_block & (ptrs - 1); 322 final = ptrs; 323 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 324 offsets[n++] = EXT4_TIND_BLOCK; 325 offsets[n++] = i_block >> (ptrs_bits * 2); 326 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 327 offsets[n++] = i_block & (ptrs - 1); 328 final = ptrs; 329 } else { 330 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 331 i_block + direct_blocks + 332 indirect_blocks + double_blocks, inode->i_ino); 333 } 334 if (boundary) 335 *boundary = final - 1 - (i_block & (ptrs - 1)); 336 return n; 337 } 338 339 static int __ext4_check_blockref(const char *function, struct inode *inode, 340 __le32 *p, unsigned int max) 341 { 342 __le32 *bref = p; 343 unsigned int blk; 344 345 while (bref < p+max) { 346 blk = le32_to_cpu(*bref++); 347 if (blk && 348 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 349 blk, 1))) { 350 __ext4_error(inode->i_sb, function, 351 "invalid block reference %u " 352 "in inode #%lu", blk, inode->i_ino); 353 return -EIO; 354 } 355 } 356 return 0; 357 } 358 359 360 #define ext4_check_indirect_blockref(inode, bh) \ 361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 362 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 363 364 #define ext4_check_inode_blockref(inode) \ 365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 366 EXT4_NDIR_BLOCKS) 367 368 /** 369 * ext4_get_branch - read the chain of indirect blocks leading to data 370 * @inode: inode in question 371 * @depth: depth of the chain (1 - direct pointer, etc.) 372 * @offsets: offsets of pointers in inode/indirect blocks 373 * @chain: place to store the result 374 * @err: here we store the error value 375 * 376 * Function fills the array of triples <key, p, bh> and returns %NULL 377 * if everything went OK or the pointer to the last filled triple 378 * (incomplete one) otherwise. Upon the return chain[i].key contains 379 * the number of (i+1)-th block in the chain (as it is stored in memory, 380 * i.e. little-endian 32-bit), chain[i].p contains the address of that 381 * number (it points into struct inode for i==0 and into the bh->b_data 382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 383 * block for i>0 and NULL for i==0. In other words, it holds the block 384 * numbers of the chain, addresses they were taken from (and where we can 385 * verify that chain did not change) and buffer_heads hosting these 386 * numbers. 387 * 388 * Function stops when it stumbles upon zero pointer (absent block) 389 * (pointer to last triple returned, *@err == 0) 390 * or when it gets an IO error reading an indirect block 391 * (ditto, *@err == -EIO) 392 * or when it reads all @depth-1 indirect blocks successfully and finds 393 * the whole chain, all way to the data (returns %NULL, *err == 0). 394 * 395 * Need to be called with 396 * down_read(&EXT4_I(inode)->i_data_sem) 397 */ 398 static Indirect *ext4_get_branch(struct inode *inode, int depth, 399 ext4_lblk_t *offsets, 400 Indirect chain[4], int *err) 401 { 402 struct super_block *sb = inode->i_sb; 403 Indirect *p = chain; 404 struct buffer_head *bh; 405 406 *err = 0; 407 /* i_data is not going away, no lock needed */ 408 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 409 if (!p->key) 410 goto no_block; 411 while (--depth) { 412 bh = sb_getblk(sb, le32_to_cpu(p->key)); 413 if (unlikely(!bh)) 414 goto failure; 415 416 if (!bh_uptodate_or_lock(bh)) { 417 if (bh_submit_read(bh) < 0) { 418 put_bh(bh); 419 goto failure; 420 } 421 /* validate block references */ 422 if (ext4_check_indirect_blockref(inode, bh)) { 423 put_bh(bh); 424 goto failure; 425 } 426 } 427 428 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 429 /* Reader: end */ 430 if (!p->key) 431 goto no_block; 432 } 433 return NULL; 434 435 failure: 436 *err = -EIO; 437 no_block: 438 return p; 439 } 440 441 /** 442 * ext4_find_near - find a place for allocation with sufficient locality 443 * @inode: owner 444 * @ind: descriptor of indirect block. 445 * 446 * This function returns the preferred place for block allocation. 447 * It is used when heuristic for sequential allocation fails. 448 * Rules are: 449 * + if there is a block to the left of our position - allocate near it. 450 * + if pointer will live in indirect block - allocate near that block. 451 * + if pointer will live in inode - allocate in the same 452 * cylinder group. 453 * 454 * In the latter case we colour the starting block by the callers PID to 455 * prevent it from clashing with concurrent allocations for a different inode 456 * in the same block group. The PID is used here so that functionally related 457 * files will be close-by on-disk. 458 * 459 * Caller must make sure that @ind is valid and will stay that way. 460 */ 461 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 462 { 463 struct ext4_inode_info *ei = EXT4_I(inode); 464 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 465 __le32 *p; 466 ext4_fsblk_t bg_start; 467 ext4_fsblk_t last_block; 468 ext4_grpblk_t colour; 469 ext4_group_t block_group; 470 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 471 472 /* Try to find previous block */ 473 for (p = ind->p - 1; p >= start; p--) { 474 if (*p) 475 return le32_to_cpu(*p); 476 } 477 478 /* No such thing, so let's try location of indirect block */ 479 if (ind->bh) 480 return ind->bh->b_blocknr; 481 482 /* 483 * It is going to be referred to from the inode itself? OK, just put it 484 * into the same cylinder group then. 485 */ 486 block_group = ei->i_block_group; 487 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 488 block_group &= ~(flex_size-1); 489 if (S_ISREG(inode->i_mode)) 490 block_group++; 491 } 492 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 493 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 494 495 /* 496 * If we are doing delayed allocation, we don't need take 497 * colour into account. 498 */ 499 if (test_opt(inode->i_sb, DELALLOC)) 500 return bg_start; 501 502 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 503 colour = (current->pid % 16) * 504 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 505 else 506 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 507 return bg_start + colour; 508 } 509 510 /** 511 * ext4_find_goal - find a preferred place for allocation. 512 * @inode: owner 513 * @block: block we want 514 * @partial: pointer to the last triple within a chain 515 * 516 * Normally this function find the preferred place for block allocation, 517 * returns it. 518 * Because this is only used for non-extent files, we limit the block nr 519 * to 32 bits. 520 */ 521 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 522 Indirect *partial) 523 { 524 ext4_fsblk_t goal; 525 526 /* 527 * XXX need to get goal block from mballoc's data structures 528 */ 529 530 goal = ext4_find_near(inode, partial); 531 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 532 return goal; 533 } 534 535 /** 536 * ext4_blks_to_allocate: Look up the block map and count the number 537 * of direct blocks need to be allocated for the given branch. 538 * 539 * @branch: chain of indirect blocks 540 * @k: number of blocks need for indirect blocks 541 * @blks: number of data blocks to be mapped. 542 * @blocks_to_boundary: the offset in the indirect block 543 * 544 * return the total number of blocks to be allocate, including the 545 * direct and indirect blocks. 546 */ 547 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 548 int blocks_to_boundary) 549 { 550 unsigned int count = 0; 551 552 /* 553 * Simple case, [t,d]Indirect block(s) has not allocated yet 554 * then it's clear blocks on that path have not allocated 555 */ 556 if (k > 0) { 557 /* right now we don't handle cross boundary allocation */ 558 if (blks < blocks_to_boundary + 1) 559 count += blks; 560 else 561 count += blocks_to_boundary + 1; 562 return count; 563 } 564 565 count++; 566 while (count < blks && count <= blocks_to_boundary && 567 le32_to_cpu(*(branch[0].p + count)) == 0) { 568 count++; 569 } 570 return count; 571 } 572 573 /** 574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 575 * @indirect_blks: the number of blocks need to allocate for indirect 576 * blocks 577 * 578 * @new_blocks: on return it will store the new block numbers for 579 * the indirect blocks(if needed) and the first direct block, 580 * @blks: on return it will store the total number of allocated 581 * direct blocks 582 */ 583 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 584 ext4_lblk_t iblock, ext4_fsblk_t goal, 585 int indirect_blks, int blks, 586 ext4_fsblk_t new_blocks[4], int *err) 587 { 588 struct ext4_allocation_request ar; 589 int target, i; 590 unsigned long count = 0, blk_allocated = 0; 591 int index = 0; 592 ext4_fsblk_t current_block = 0; 593 int ret = 0; 594 595 /* 596 * Here we try to allocate the requested multiple blocks at once, 597 * on a best-effort basis. 598 * To build a branch, we should allocate blocks for 599 * the indirect blocks(if not allocated yet), and at least 600 * the first direct block of this branch. That's the 601 * minimum number of blocks need to allocate(required) 602 */ 603 /* first we try to allocate the indirect blocks */ 604 target = indirect_blks; 605 while (target > 0) { 606 count = target; 607 /* allocating blocks for indirect blocks and direct blocks */ 608 current_block = ext4_new_meta_blocks(handle, inode, 609 goal, &count, err); 610 if (*err) 611 goto failed_out; 612 613 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 614 EXT4_ERROR_INODE(inode, 615 "current_block %llu + count %lu > %d!", 616 current_block, count, 617 EXT4_MAX_BLOCK_FILE_PHYS); 618 *err = -EIO; 619 goto failed_out; 620 } 621 622 target -= count; 623 /* allocate blocks for indirect blocks */ 624 while (index < indirect_blks && count) { 625 new_blocks[index++] = current_block++; 626 count--; 627 } 628 if (count > 0) { 629 /* 630 * save the new block number 631 * for the first direct block 632 */ 633 new_blocks[index] = current_block; 634 printk(KERN_INFO "%s returned more blocks than " 635 "requested\n", __func__); 636 WARN_ON(1); 637 break; 638 } 639 } 640 641 target = blks - count ; 642 blk_allocated = count; 643 if (!target) 644 goto allocated; 645 /* Now allocate data blocks */ 646 memset(&ar, 0, sizeof(ar)); 647 ar.inode = inode; 648 ar.goal = goal; 649 ar.len = target; 650 ar.logical = iblock; 651 if (S_ISREG(inode->i_mode)) 652 /* enable in-core preallocation only for regular files */ 653 ar.flags = EXT4_MB_HINT_DATA; 654 655 current_block = ext4_mb_new_blocks(handle, &ar, err); 656 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 657 EXT4_ERROR_INODE(inode, 658 "current_block %llu + ar.len %d > %d!", 659 current_block, ar.len, 660 EXT4_MAX_BLOCK_FILE_PHYS); 661 *err = -EIO; 662 goto failed_out; 663 } 664 665 if (*err && (target == blks)) { 666 /* 667 * if the allocation failed and we didn't allocate 668 * any blocks before 669 */ 670 goto failed_out; 671 } 672 if (!*err) { 673 if (target == blks) { 674 /* 675 * save the new block number 676 * for the first direct block 677 */ 678 new_blocks[index] = current_block; 679 } 680 blk_allocated += ar.len; 681 } 682 allocated: 683 /* total number of blocks allocated for direct blocks */ 684 ret = blk_allocated; 685 *err = 0; 686 return ret; 687 failed_out: 688 for (i = 0; i < index; i++) 689 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 690 return ret; 691 } 692 693 /** 694 * ext4_alloc_branch - allocate and set up a chain of blocks. 695 * @inode: owner 696 * @indirect_blks: number of allocated indirect blocks 697 * @blks: number of allocated direct blocks 698 * @offsets: offsets (in the blocks) to store the pointers to next. 699 * @branch: place to store the chain in. 700 * 701 * This function allocates blocks, zeroes out all but the last one, 702 * links them into chain and (if we are synchronous) writes them to disk. 703 * In other words, it prepares a branch that can be spliced onto the 704 * inode. It stores the information about that chain in the branch[], in 705 * the same format as ext4_get_branch() would do. We are calling it after 706 * we had read the existing part of chain and partial points to the last 707 * triple of that (one with zero ->key). Upon the exit we have the same 708 * picture as after the successful ext4_get_block(), except that in one 709 * place chain is disconnected - *branch->p is still zero (we did not 710 * set the last link), but branch->key contains the number that should 711 * be placed into *branch->p to fill that gap. 712 * 713 * If allocation fails we free all blocks we've allocated (and forget 714 * their buffer_heads) and return the error value the from failed 715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 716 * as described above and return 0. 717 */ 718 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 719 ext4_lblk_t iblock, int indirect_blks, 720 int *blks, ext4_fsblk_t goal, 721 ext4_lblk_t *offsets, Indirect *branch) 722 { 723 int blocksize = inode->i_sb->s_blocksize; 724 int i, n = 0; 725 int err = 0; 726 struct buffer_head *bh; 727 int num; 728 ext4_fsblk_t new_blocks[4]; 729 ext4_fsblk_t current_block; 730 731 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 732 *blks, new_blocks, &err); 733 if (err) 734 return err; 735 736 branch[0].key = cpu_to_le32(new_blocks[0]); 737 /* 738 * metadata blocks and data blocks are allocated. 739 */ 740 for (n = 1; n <= indirect_blks; n++) { 741 /* 742 * Get buffer_head for parent block, zero it out 743 * and set the pointer to new one, then send 744 * parent to disk. 745 */ 746 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 747 branch[n].bh = bh; 748 lock_buffer(bh); 749 BUFFER_TRACE(bh, "call get_create_access"); 750 err = ext4_journal_get_create_access(handle, bh); 751 if (err) { 752 /* Don't brelse(bh) here; it's done in 753 * ext4_journal_forget() below */ 754 unlock_buffer(bh); 755 goto failed; 756 } 757 758 memset(bh->b_data, 0, blocksize); 759 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 760 branch[n].key = cpu_to_le32(new_blocks[n]); 761 *branch[n].p = branch[n].key; 762 if (n == indirect_blks) { 763 current_block = new_blocks[n]; 764 /* 765 * End of chain, update the last new metablock of 766 * the chain to point to the new allocated 767 * data blocks numbers 768 */ 769 for (i = 1; i < num; i++) 770 *(branch[n].p + i) = cpu_to_le32(++current_block); 771 } 772 BUFFER_TRACE(bh, "marking uptodate"); 773 set_buffer_uptodate(bh); 774 unlock_buffer(bh); 775 776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 777 err = ext4_handle_dirty_metadata(handle, inode, bh); 778 if (err) 779 goto failed; 780 } 781 *blks = num; 782 return err; 783 failed: 784 /* Allocation failed, free what we already allocated */ 785 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 786 for (i = 1; i <= n ; i++) { 787 /* 788 * branch[i].bh is newly allocated, so there is no 789 * need to revoke the block, which is why we don't 790 * need to set EXT4_FREE_BLOCKS_METADATA. 791 */ 792 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 793 EXT4_FREE_BLOCKS_FORGET); 794 } 795 for (i = n+1; i < indirect_blks; i++) 796 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 797 798 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 799 800 return err; 801 } 802 803 /** 804 * ext4_splice_branch - splice the allocated branch onto inode. 805 * @inode: owner 806 * @block: (logical) number of block we are adding 807 * @chain: chain of indirect blocks (with a missing link - see 808 * ext4_alloc_branch) 809 * @where: location of missing link 810 * @num: number of indirect blocks we are adding 811 * @blks: number of direct blocks we are adding 812 * 813 * This function fills the missing link and does all housekeeping needed in 814 * inode (->i_blocks, etc.). In case of success we end up with the full 815 * chain to new block and return 0. 816 */ 817 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 818 ext4_lblk_t block, Indirect *where, int num, 819 int blks) 820 { 821 int i; 822 int err = 0; 823 ext4_fsblk_t current_block; 824 825 /* 826 * If we're splicing into a [td]indirect block (as opposed to the 827 * inode) then we need to get write access to the [td]indirect block 828 * before the splice. 829 */ 830 if (where->bh) { 831 BUFFER_TRACE(where->bh, "get_write_access"); 832 err = ext4_journal_get_write_access(handle, where->bh); 833 if (err) 834 goto err_out; 835 } 836 /* That's it */ 837 838 *where->p = where->key; 839 840 /* 841 * Update the host buffer_head or inode to point to more just allocated 842 * direct blocks blocks 843 */ 844 if (num == 0 && blks > 1) { 845 current_block = le32_to_cpu(where->key) + 1; 846 for (i = 1; i < blks; i++) 847 *(where->p + i) = cpu_to_le32(current_block++); 848 } 849 850 /* We are done with atomic stuff, now do the rest of housekeeping */ 851 /* had we spliced it onto indirect block? */ 852 if (where->bh) { 853 /* 854 * If we spliced it onto an indirect block, we haven't 855 * altered the inode. Note however that if it is being spliced 856 * onto an indirect block at the very end of the file (the 857 * file is growing) then we *will* alter the inode to reflect 858 * the new i_size. But that is not done here - it is done in 859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 860 */ 861 jbd_debug(5, "splicing indirect only\n"); 862 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 863 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 864 if (err) 865 goto err_out; 866 } else { 867 /* 868 * OK, we spliced it into the inode itself on a direct block. 869 */ 870 ext4_mark_inode_dirty(handle, inode); 871 jbd_debug(5, "splicing direct\n"); 872 } 873 return err; 874 875 err_out: 876 for (i = 1; i <= num; i++) { 877 /* 878 * branch[i].bh is newly allocated, so there is no 879 * need to revoke the block, which is why we don't 880 * need to set EXT4_FREE_BLOCKS_METADATA. 881 */ 882 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 883 EXT4_FREE_BLOCKS_FORGET); 884 } 885 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 886 blks, 0); 887 888 return err; 889 } 890 891 /* 892 * The ext4_ind_get_blocks() function handles non-extents inodes 893 * (i.e., using the traditional indirect/double-indirect i_blocks 894 * scheme) for ext4_get_blocks(). 895 * 896 * Allocation strategy is simple: if we have to allocate something, we will 897 * have to go the whole way to leaf. So let's do it before attaching anything 898 * to tree, set linkage between the newborn blocks, write them if sync is 899 * required, recheck the path, free and repeat if check fails, otherwise 900 * set the last missing link (that will protect us from any truncate-generated 901 * removals - all blocks on the path are immune now) and possibly force the 902 * write on the parent block. 903 * That has a nice additional property: no special recovery from the failed 904 * allocations is needed - we simply release blocks and do not touch anything 905 * reachable from inode. 906 * 907 * `handle' can be NULL if create == 0. 908 * 909 * return > 0, # of blocks mapped or allocated. 910 * return = 0, if plain lookup failed. 911 * return < 0, error case. 912 * 913 * The ext4_ind_get_blocks() function should be called with 914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 917 * blocks. 918 */ 919 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode, 920 ext4_lblk_t iblock, unsigned int maxblocks, 921 struct buffer_head *bh_result, 922 int flags) 923 { 924 int err = -EIO; 925 ext4_lblk_t offsets[4]; 926 Indirect chain[4]; 927 Indirect *partial; 928 ext4_fsblk_t goal; 929 int indirect_blks; 930 int blocks_to_boundary = 0; 931 int depth; 932 int count = 0; 933 ext4_fsblk_t first_block = 0; 934 935 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 936 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 937 depth = ext4_block_to_path(inode, iblock, offsets, 938 &blocks_to_boundary); 939 940 if (depth == 0) 941 goto out; 942 943 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 944 945 /* Simplest case - block found, no allocation needed */ 946 if (!partial) { 947 first_block = le32_to_cpu(chain[depth - 1].key); 948 clear_buffer_new(bh_result); 949 count++; 950 /*map more blocks*/ 951 while (count < maxblocks && count <= blocks_to_boundary) { 952 ext4_fsblk_t blk; 953 954 blk = le32_to_cpu(*(chain[depth-1].p + count)); 955 956 if (blk == first_block + count) 957 count++; 958 else 959 break; 960 } 961 goto got_it; 962 } 963 964 /* Next simple case - plain lookup or failed read of indirect block */ 965 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 966 goto cleanup; 967 968 /* 969 * Okay, we need to do block allocation. 970 */ 971 goal = ext4_find_goal(inode, iblock, partial); 972 973 /* the number of blocks need to allocate for [d,t]indirect blocks */ 974 indirect_blks = (chain + depth) - partial - 1; 975 976 /* 977 * Next look up the indirect map to count the totoal number of 978 * direct blocks to allocate for this branch. 979 */ 980 count = ext4_blks_to_allocate(partial, indirect_blks, 981 maxblocks, blocks_to_boundary); 982 /* 983 * Block out ext4_truncate while we alter the tree 984 */ 985 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 986 &count, goal, 987 offsets + (partial - chain), partial); 988 989 /* 990 * The ext4_splice_branch call will free and forget any buffers 991 * on the new chain if there is a failure, but that risks using 992 * up transaction credits, especially for bitmaps where the 993 * credits cannot be returned. Can we handle this somehow? We 994 * may need to return -EAGAIN upwards in the worst case. --sct 995 */ 996 if (!err) 997 err = ext4_splice_branch(handle, inode, iblock, 998 partial, indirect_blks, count); 999 if (err) 1000 goto cleanup; 1001 1002 set_buffer_new(bh_result); 1003 1004 ext4_update_inode_fsync_trans(handle, inode, 1); 1005 got_it: 1006 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 1007 if (count > blocks_to_boundary) 1008 set_buffer_boundary(bh_result); 1009 err = count; 1010 /* Clean up and exit */ 1011 partial = chain + depth - 1; /* the whole chain */ 1012 cleanup: 1013 while (partial > chain) { 1014 BUFFER_TRACE(partial->bh, "call brelse"); 1015 brelse(partial->bh); 1016 partial--; 1017 } 1018 BUFFER_TRACE(bh_result, "returned"); 1019 out: 1020 return err; 1021 } 1022 1023 #ifdef CONFIG_QUOTA 1024 qsize_t *ext4_get_reserved_space(struct inode *inode) 1025 { 1026 return &EXT4_I(inode)->i_reserved_quota; 1027 } 1028 #endif 1029 1030 /* 1031 * Calculate the number of metadata blocks need to reserve 1032 * to allocate a new block at @lblocks for non extent file based file 1033 */ 1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1035 sector_t lblock) 1036 { 1037 struct ext4_inode_info *ei = EXT4_I(inode); 1038 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1; 1039 int blk_bits; 1040 1041 if (lblock < EXT4_NDIR_BLOCKS) 1042 return 0; 1043 1044 lblock -= EXT4_NDIR_BLOCKS; 1045 1046 if (ei->i_da_metadata_calc_len && 1047 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1048 ei->i_da_metadata_calc_len++; 1049 return 0; 1050 } 1051 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1052 ei->i_da_metadata_calc_len = 1; 1053 blk_bits = roundup_pow_of_two(lblock + 1); 1054 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1055 } 1056 1057 /* 1058 * Calculate the number of metadata blocks need to reserve 1059 * to allocate a block located at @lblock 1060 */ 1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock) 1062 { 1063 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1064 return ext4_ext_calc_metadata_amount(inode, lblock); 1065 1066 return ext4_indirect_calc_metadata_amount(inode, lblock); 1067 } 1068 1069 /* 1070 * Called with i_data_sem down, which is important since we can call 1071 * ext4_discard_preallocations() from here. 1072 */ 1073 void ext4_da_update_reserve_space(struct inode *inode, 1074 int used, int quota_claim) 1075 { 1076 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1077 struct ext4_inode_info *ei = EXT4_I(inode); 1078 int mdb_free = 0, allocated_meta_blocks = 0; 1079 1080 spin_lock(&ei->i_block_reservation_lock); 1081 trace_ext4_da_update_reserve_space(inode, used); 1082 if (unlikely(used > ei->i_reserved_data_blocks)) { 1083 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1084 "with only %d reserved data blocks\n", 1085 __func__, inode->i_ino, used, 1086 ei->i_reserved_data_blocks); 1087 WARN_ON(1); 1088 used = ei->i_reserved_data_blocks; 1089 } 1090 1091 /* Update per-inode reservations */ 1092 ei->i_reserved_data_blocks -= used; 1093 used += ei->i_allocated_meta_blocks; 1094 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1095 allocated_meta_blocks = ei->i_allocated_meta_blocks; 1096 ei->i_allocated_meta_blocks = 0; 1097 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used); 1098 1099 if (ei->i_reserved_data_blocks == 0) { 1100 /* 1101 * We can release all of the reserved metadata blocks 1102 * only when we have written all of the delayed 1103 * allocation blocks. 1104 */ 1105 mdb_free = ei->i_reserved_meta_blocks; 1106 ei->i_reserved_meta_blocks = 0; 1107 ei->i_da_metadata_calc_len = 0; 1108 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1109 } 1110 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1111 1112 /* Update quota subsystem */ 1113 if (quota_claim) { 1114 dquot_claim_block(inode, used); 1115 if (mdb_free) 1116 dquot_release_reservation_block(inode, mdb_free); 1117 } else { 1118 /* 1119 * We did fallocate with an offset that is already delayed 1120 * allocated. So on delayed allocated writeback we should 1121 * not update the quota for allocated blocks. But then 1122 * converting an fallocate region to initialized region would 1123 * have caused a metadata allocation. So claim quota for 1124 * that 1125 */ 1126 if (allocated_meta_blocks) 1127 dquot_claim_block(inode, allocated_meta_blocks); 1128 dquot_release_reservation_block(inode, mdb_free + used); 1129 } 1130 1131 /* 1132 * If we have done all the pending block allocations and if 1133 * there aren't any writers on the inode, we can discard the 1134 * inode's preallocations. 1135 */ 1136 if ((ei->i_reserved_data_blocks == 0) && 1137 (atomic_read(&inode->i_writecount) == 0)) 1138 ext4_discard_preallocations(inode); 1139 } 1140 1141 static int check_block_validity(struct inode *inode, const char *msg, 1142 sector_t logical, sector_t phys, int len) 1143 { 1144 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1145 __ext4_error(inode->i_sb, msg, 1146 "inode #%lu logical block %llu mapped to %llu " 1147 "(size %d)", inode->i_ino, 1148 (unsigned long long) logical, 1149 (unsigned long long) phys, len); 1150 return -EIO; 1151 } 1152 return 0; 1153 } 1154 1155 /* 1156 * Return the number of contiguous dirty pages in a given inode 1157 * starting at page frame idx. 1158 */ 1159 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1160 unsigned int max_pages) 1161 { 1162 struct address_space *mapping = inode->i_mapping; 1163 pgoff_t index; 1164 struct pagevec pvec; 1165 pgoff_t num = 0; 1166 int i, nr_pages, done = 0; 1167 1168 if (max_pages == 0) 1169 return 0; 1170 pagevec_init(&pvec, 0); 1171 while (!done) { 1172 index = idx; 1173 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1174 PAGECACHE_TAG_DIRTY, 1175 (pgoff_t)PAGEVEC_SIZE); 1176 if (nr_pages == 0) 1177 break; 1178 for (i = 0; i < nr_pages; i++) { 1179 struct page *page = pvec.pages[i]; 1180 struct buffer_head *bh, *head; 1181 1182 lock_page(page); 1183 if (unlikely(page->mapping != mapping) || 1184 !PageDirty(page) || 1185 PageWriteback(page) || 1186 page->index != idx) { 1187 done = 1; 1188 unlock_page(page); 1189 break; 1190 } 1191 if (page_has_buffers(page)) { 1192 bh = head = page_buffers(page); 1193 do { 1194 if (!buffer_delay(bh) && 1195 !buffer_unwritten(bh)) 1196 done = 1; 1197 bh = bh->b_this_page; 1198 } while (!done && (bh != head)); 1199 } 1200 unlock_page(page); 1201 if (done) 1202 break; 1203 idx++; 1204 num++; 1205 if (num >= max_pages) 1206 break; 1207 } 1208 pagevec_release(&pvec); 1209 } 1210 return num; 1211 } 1212 1213 /* 1214 * The ext4_get_blocks() function tries to look up the requested blocks, 1215 * and returns if the blocks are already mapped. 1216 * 1217 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1218 * and store the allocated blocks in the result buffer head and mark it 1219 * mapped. 1220 * 1221 * If file type is extents based, it will call ext4_ext_get_blocks(), 1222 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping 1223 * based files 1224 * 1225 * On success, it returns the number of blocks being mapped or allocate. 1226 * if create==0 and the blocks are pre-allocated and uninitialized block, 1227 * the result buffer head is unmapped. If the create ==1, it will make sure 1228 * the buffer head is mapped. 1229 * 1230 * It returns 0 if plain look up failed (blocks have not been allocated), in 1231 * that casem, buffer head is unmapped 1232 * 1233 * It returns the error in case of allocation failure. 1234 */ 1235 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, 1236 unsigned int max_blocks, struct buffer_head *bh, 1237 int flags) 1238 { 1239 int retval; 1240 1241 clear_buffer_mapped(bh); 1242 clear_buffer_unwritten(bh); 1243 1244 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u," 1245 "logical block %lu\n", inode->i_ino, flags, max_blocks, 1246 (unsigned long)block); 1247 /* 1248 * Try to see if we can get the block without requesting a new 1249 * file system block. 1250 */ 1251 down_read((&EXT4_I(inode)->i_data_sem)); 1252 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1253 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1254 bh, 0); 1255 } else { 1256 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks, 1257 bh, 0); 1258 } 1259 up_read((&EXT4_I(inode)->i_data_sem)); 1260 1261 if (retval > 0 && buffer_mapped(bh)) { 1262 int ret = check_block_validity(inode, "file system corruption", 1263 block, bh->b_blocknr, retval); 1264 if (ret != 0) 1265 return ret; 1266 } 1267 1268 /* If it is only a block(s) look up */ 1269 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1270 return retval; 1271 1272 /* 1273 * Returns if the blocks have already allocated 1274 * 1275 * Note that if blocks have been preallocated 1276 * ext4_ext_get_block() returns th create = 0 1277 * with buffer head unmapped. 1278 */ 1279 if (retval > 0 && buffer_mapped(bh)) 1280 return retval; 1281 1282 /* 1283 * When we call get_blocks without the create flag, the 1284 * BH_Unwritten flag could have gotten set if the blocks 1285 * requested were part of a uninitialized extent. We need to 1286 * clear this flag now that we are committed to convert all or 1287 * part of the uninitialized extent to be an initialized 1288 * extent. This is because we need to avoid the combination 1289 * of BH_Unwritten and BH_Mapped flags being simultaneously 1290 * set on the buffer_head. 1291 */ 1292 clear_buffer_unwritten(bh); 1293 1294 /* 1295 * New blocks allocate and/or writing to uninitialized extent 1296 * will possibly result in updating i_data, so we take 1297 * the write lock of i_data_sem, and call get_blocks() 1298 * with create == 1 flag. 1299 */ 1300 down_write((&EXT4_I(inode)->i_data_sem)); 1301 1302 /* 1303 * if the caller is from delayed allocation writeout path 1304 * we have already reserved fs blocks for allocation 1305 * let the underlying get_block() function know to 1306 * avoid double accounting 1307 */ 1308 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1309 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1310 /* 1311 * We need to check for EXT4 here because migrate 1312 * could have changed the inode type in between 1313 */ 1314 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1315 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1316 bh, flags); 1317 } else { 1318 retval = ext4_ind_get_blocks(handle, inode, block, 1319 max_blocks, bh, flags); 1320 1321 if (retval > 0 && buffer_new(bh)) { 1322 /* 1323 * We allocated new blocks which will result in 1324 * i_data's format changing. Force the migrate 1325 * to fail by clearing migrate flags 1326 */ 1327 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1328 } 1329 1330 /* 1331 * Update reserved blocks/metadata blocks after successful 1332 * block allocation which had been deferred till now. We don't 1333 * support fallocate for non extent files. So we can update 1334 * reserve space here. 1335 */ 1336 if ((retval > 0) && 1337 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1338 ext4_da_update_reserve_space(inode, retval, 1); 1339 } 1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1341 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1342 1343 up_write((&EXT4_I(inode)->i_data_sem)); 1344 if (retval > 0 && buffer_mapped(bh)) { 1345 int ret = check_block_validity(inode, "file system " 1346 "corruption after allocation", 1347 block, bh->b_blocknr, retval); 1348 if (ret != 0) 1349 return ret; 1350 } 1351 return retval; 1352 } 1353 1354 /* Maximum number of blocks we map for direct IO at once. */ 1355 #define DIO_MAX_BLOCKS 4096 1356 1357 int ext4_get_block(struct inode *inode, sector_t iblock, 1358 struct buffer_head *bh_result, int create) 1359 { 1360 handle_t *handle = ext4_journal_current_handle(); 1361 int ret = 0, started = 0; 1362 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1363 int dio_credits; 1364 1365 if (create && !handle) { 1366 /* Direct IO write... */ 1367 if (max_blocks > DIO_MAX_BLOCKS) 1368 max_blocks = DIO_MAX_BLOCKS; 1369 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1370 handle = ext4_journal_start(inode, dio_credits); 1371 if (IS_ERR(handle)) { 1372 ret = PTR_ERR(handle); 1373 goto out; 1374 } 1375 started = 1; 1376 } 1377 1378 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 1379 create ? EXT4_GET_BLOCKS_CREATE : 0); 1380 if (ret > 0) { 1381 bh_result->b_size = (ret << inode->i_blkbits); 1382 ret = 0; 1383 } 1384 if (started) 1385 ext4_journal_stop(handle); 1386 out: 1387 return ret; 1388 } 1389 1390 /* 1391 * `handle' can be NULL if create is zero 1392 */ 1393 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1394 ext4_lblk_t block, int create, int *errp) 1395 { 1396 struct buffer_head dummy; 1397 int fatal = 0, err; 1398 int flags = 0; 1399 1400 J_ASSERT(handle != NULL || create == 0); 1401 1402 dummy.b_state = 0; 1403 dummy.b_blocknr = -1000; 1404 buffer_trace_init(&dummy.b_history); 1405 if (create) 1406 flags |= EXT4_GET_BLOCKS_CREATE; 1407 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags); 1408 /* 1409 * ext4_get_blocks() returns number of blocks mapped. 0 in 1410 * case of a HOLE. 1411 */ 1412 if (err > 0) { 1413 if (err > 1) 1414 WARN_ON(1); 1415 err = 0; 1416 } 1417 *errp = err; 1418 if (!err && buffer_mapped(&dummy)) { 1419 struct buffer_head *bh; 1420 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1421 if (!bh) { 1422 *errp = -EIO; 1423 goto err; 1424 } 1425 if (buffer_new(&dummy)) { 1426 J_ASSERT(create != 0); 1427 J_ASSERT(handle != NULL); 1428 1429 /* 1430 * Now that we do not always journal data, we should 1431 * keep in mind whether this should always journal the 1432 * new buffer as metadata. For now, regular file 1433 * writes use ext4_get_block instead, so it's not a 1434 * problem. 1435 */ 1436 lock_buffer(bh); 1437 BUFFER_TRACE(bh, "call get_create_access"); 1438 fatal = ext4_journal_get_create_access(handle, bh); 1439 if (!fatal && !buffer_uptodate(bh)) { 1440 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1441 set_buffer_uptodate(bh); 1442 } 1443 unlock_buffer(bh); 1444 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1445 err = ext4_handle_dirty_metadata(handle, inode, bh); 1446 if (!fatal) 1447 fatal = err; 1448 } else { 1449 BUFFER_TRACE(bh, "not a new buffer"); 1450 } 1451 if (fatal) { 1452 *errp = fatal; 1453 brelse(bh); 1454 bh = NULL; 1455 } 1456 return bh; 1457 } 1458 err: 1459 return NULL; 1460 } 1461 1462 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1463 ext4_lblk_t block, int create, int *err) 1464 { 1465 struct buffer_head *bh; 1466 1467 bh = ext4_getblk(handle, inode, block, create, err); 1468 if (!bh) 1469 return bh; 1470 if (buffer_uptodate(bh)) 1471 return bh; 1472 ll_rw_block(READ_META, 1, &bh); 1473 wait_on_buffer(bh); 1474 if (buffer_uptodate(bh)) 1475 return bh; 1476 put_bh(bh); 1477 *err = -EIO; 1478 return NULL; 1479 } 1480 1481 static int walk_page_buffers(handle_t *handle, 1482 struct buffer_head *head, 1483 unsigned from, 1484 unsigned to, 1485 int *partial, 1486 int (*fn)(handle_t *handle, 1487 struct buffer_head *bh)) 1488 { 1489 struct buffer_head *bh; 1490 unsigned block_start, block_end; 1491 unsigned blocksize = head->b_size; 1492 int err, ret = 0; 1493 struct buffer_head *next; 1494 1495 for (bh = head, block_start = 0; 1496 ret == 0 && (bh != head || !block_start); 1497 block_start = block_end, bh = next) { 1498 next = bh->b_this_page; 1499 block_end = block_start + blocksize; 1500 if (block_end <= from || block_start >= to) { 1501 if (partial && !buffer_uptodate(bh)) 1502 *partial = 1; 1503 continue; 1504 } 1505 err = (*fn)(handle, bh); 1506 if (!ret) 1507 ret = err; 1508 } 1509 return ret; 1510 } 1511 1512 /* 1513 * To preserve ordering, it is essential that the hole instantiation and 1514 * the data write be encapsulated in a single transaction. We cannot 1515 * close off a transaction and start a new one between the ext4_get_block() 1516 * and the commit_write(). So doing the jbd2_journal_start at the start of 1517 * prepare_write() is the right place. 1518 * 1519 * Also, this function can nest inside ext4_writepage() -> 1520 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1521 * has generated enough buffer credits to do the whole page. So we won't 1522 * block on the journal in that case, which is good, because the caller may 1523 * be PF_MEMALLOC. 1524 * 1525 * By accident, ext4 can be reentered when a transaction is open via 1526 * quota file writes. If we were to commit the transaction while thus 1527 * reentered, there can be a deadlock - we would be holding a quota 1528 * lock, and the commit would never complete if another thread had a 1529 * transaction open and was blocking on the quota lock - a ranking 1530 * violation. 1531 * 1532 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1533 * will _not_ run commit under these circumstances because handle->h_ref 1534 * is elevated. We'll still have enough credits for the tiny quotafile 1535 * write. 1536 */ 1537 static int do_journal_get_write_access(handle_t *handle, 1538 struct buffer_head *bh) 1539 { 1540 if (!buffer_mapped(bh) || buffer_freed(bh)) 1541 return 0; 1542 return ext4_journal_get_write_access(handle, bh); 1543 } 1544 1545 /* 1546 * Truncate blocks that were not used by write. We have to truncate the 1547 * pagecache as well so that corresponding buffers get properly unmapped. 1548 */ 1549 static void ext4_truncate_failed_write(struct inode *inode) 1550 { 1551 truncate_inode_pages(inode->i_mapping, inode->i_size); 1552 ext4_truncate(inode); 1553 } 1554 1555 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1556 struct buffer_head *bh_result, int create); 1557 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1558 loff_t pos, unsigned len, unsigned flags, 1559 struct page **pagep, void **fsdata) 1560 { 1561 struct inode *inode = mapping->host; 1562 int ret, needed_blocks; 1563 handle_t *handle; 1564 int retries = 0; 1565 struct page *page; 1566 pgoff_t index; 1567 unsigned from, to; 1568 1569 trace_ext4_write_begin(inode, pos, len, flags); 1570 /* 1571 * Reserve one block more for addition to orphan list in case 1572 * we allocate blocks but write fails for some reason 1573 */ 1574 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1575 index = pos >> PAGE_CACHE_SHIFT; 1576 from = pos & (PAGE_CACHE_SIZE - 1); 1577 to = from + len; 1578 1579 retry: 1580 handle = ext4_journal_start(inode, needed_blocks); 1581 if (IS_ERR(handle)) { 1582 ret = PTR_ERR(handle); 1583 goto out; 1584 } 1585 1586 /* We cannot recurse into the filesystem as the transaction is already 1587 * started */ 1588 flags |= AOP_FLAG_NOFS; 1589 1590 page = grab_cache_page_write_begin(mapping, index, flags); 1591 if (!page) { 1592 ext4_journal_stop(handle); 1593 ret = -ENOMEM; 1594 goto out; 1595 } 1596 *pagep = page; 1597 1598 if (ext4_should_dioread_nolock(inode)) 1599 ret = block_write_begin(file, mapping, pos, len, flags, pagep, 1600 fsdata, ext4_get_block_write); 1601 else 1602 ret = block_write_begin(file, mapping, pos, len, flags, pagep, 1603 fsdata, ext4_get_block); 1604 1605 if (!ret && ext4_should_journal_data(inode)) { 1606 ret = walk_page_buffers(handle, page_buffers(page), 1607 from, to, NULL, do_journal_get_write_access); 1608 } 1609 1610 if (ret) { 1611 unlock_page(page); 1612 page_cache_release(page); 1613 /* 1614 * block_write_begin may have instantiated a few blocks 1615 * outside i_size. Trim these off again. Don't need 1616 * i_size_read because we hold i_mutex. 1617 * 1618 * Add inode to orphan list in case we crash before 1619 * truncate finishes 1620 */ 1621 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1622 ext4_orphan_add(handle, inode); 1623 1624 ext4_journal_stop(handle); 1625 if (pos + len > inode->i_size) { 1626 ext4_truncate_failed_write(inode); 1627 /* 1628 * If truncate failed early the inode might 1629 * still be on the orphan list; we need to 1630 * make sure the inode is removed from the 1631 * orphan list in that case. 1632 */ 1633 if (inode->i_nlink) 1634 ext4_orphan_del(NULL, inode); 1635 } 1636 } 1637 1638 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1639 goto retry; 1640 out: 1641 return ret; 1642 } 1643 1644 /* For write_end() in data=journal mode */ 1645 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1646 { 1647 if (!buffer_mapped(bh) || buffer_freed(bh)) 1648 return 0; 1649 set_buffer_uptodate(bh); 1650 return ext4_handle_dirty_metadata(handle, NULL, bh); 1651 } 1652 1653 static int ext4_generic_write_end(struct file *file, 1654 struct address_space *mapping, 1655 loff_t pos, unsigned len, unsigned copied, 1656 struct page *page, void *fsdata) 1657 { 1658 int i_size_changed = 0; 1659 struct inode *inode = mapping->host; 1660 handle_t *handle = ext4_journal_current_handle(); 1661 1662 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1663 1664 /* 1665 * No need to use i_size_read() here, the i_size 1666 * cannot change under us because we hold i_mutex. 1667 * 1668 * But it's important to update i_size while still holding page lock: 1669 * page writeout could otherwise come in and zero beyond i_size. 1670 */ 1671 if (pos + copied > inode->i_size) { 1672 i_size_write(inode, pos + copied); 1673 i_size_changed = 1; 1674 } 1675 1676 if (pos + copied > EXT4_I(inode)->i_disksize) { 1677 /* We need to mark inode dirty even if 1678 * new_i_size is less that inode->i_size 1679 * bu greater than i_disksize.(hint delalloc) 1680 */ 1681 ext4_update_i_disksize(inode, (pos + copied)); 1682 i_size_changed = 1; 1683 } 1684 unlock_page(page); 1685 page_cache_release(page); 1686 1687 /* 1688 * Don't mark the inode dirty under page lock. First, it unnecessarily 1689 * makes the holding time of page lock longer. Second, it forces lock 1690 * ordering of page lock and transaction start for journaling 1691 * filesystems. 1692 */ 1693 if (i_size_changed) 1694 ext4_mark_inode_dirty(handle, inode); 1695 1696 return copied; 1697 } 1698 1699 /* 1700 * We need to pick up the new inode size which generic_commit_write gave us 1701 * `file' can be NULL - eg, when called from page_symlink(). 1702 * 1703 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1704 * buffers are managed internally. 1705 */ 1706 static int ext4_ordered_write_end(struct file *file, 1707 struct address_space *mapping, 1708 loff_t pos, unsigned len, unsigned copied, 1709 struct page *page, void *fsdata) 1710 { 1711 handle_t *handle = ext4_journal_current_handle(); 1712 struct inode *inode = mapping->host; 1713 int ret = 0, ret2; 1714 1715 trace_ext4_ordered_write_end(inode, pos, len, copied); 1716 ret = ext4_jbd2_file_inode(handle, inode); 1717 1718 if (ret == 0) { 1719 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1720 page, fsdata); 1721 copied = ret2; 1722 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1723 /* if we have allocated more blocks and copied 1724 * less. We will have blocks allocated outside 1725 * inode->i_size. So truncate them 1726 */ 1727 ext4_orphan_add(handle, inode); 1728 if (ret2 < 0) 1729 ret = ret2; 1730 } 1731 ret2 = ext4_journal_stop(handle); 1732 if (!ret) 1733 ret = ret2; 1734 1735 if (pos + len > inode->i_size) { 1736 ext4_truncate_failed_write(inode); 1737 /* 1738 * If truncate failed early the inode might still be 1739 * on the orphan list; we need to make sure the inode 1740 * is removed from the orphan list in that case. 1741 */ 1742 if (inode->i_nlink) 1743 ext4_orphan_del(NULL, inode); 1744 } 1745 1746 1747 return ret ? ret : copied; 1748 } 1749 1750 static int ext4_writeback_write_end(struct file *file, 1751 struct address_space *mapping, 1752 loff_t pos, unsigned len, unsigned copied, 1753 struct page *page, void *fsdata) 1754 { 1755 handle_t *handle = ext4_journal_current_handle(); 1756 struct inode *inode = mapping->host; 1757 int ret = 0, ret2; 1758 1759 trace_ext4_writeback_write_end(inode, pos, len, copied); 1760 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1761 page, fsdata); 1762 copied = ret2; 1763 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1764 /* if we have allocated more blocks and copied 1765 * less. We will have blocks allocated outside 1766 * inode->i_size. So truncate them 1767 */ 1768 ext4_orphan_add(handle, inode); 1769 1770 if (ret2 < 0) 1771 ret = ret2; 1772 1773 ret2 = ext4_journal_stop(handle); 1774 if (!ret) 1775 ret = ret2; 1776 1777 if (pos + len > inode->i_size) { 1778 ext4_truncate_failed_write(inode); 1779 /* 1780 * If truncate failed early the inode might still be 1781 * on the orphan list; we need to make sure the inode 1782 * is removed from the orphan list in that case. 1783 */ 1784 if (inode->i_nlink) 1785 ext4_orphan_del(NULL, inode); 1786 } 1787 1788 return ret ? ret : copied; 1789 } 1790 1791 static int ext4_journalled_write_end(struct file *file, 1792 struct address_space *mapping, 1793 loff_t pos, unsigned len, unsigned copied, 1794 struct page *page, void *fsdata) 1795 { 1796 handle_t *handle = ext4_journal_current_handle(); 1797 struct inode *inode = mapping->host; 1798 int ret = 0, ret2; 1799 int partial = 0; 1800 unsigned from, to; 1801 loff_t new_i_size; 1802 1803 trace_ext4_journalled_write_end(inode, pos, len, copied); 1804 from = pos & (PAGE_CACHE_SIZE - 1); 1805 to = from + len; 1806 1807 if (copied < len) { 1808 if (!PageUptodate(page)) 1809 copied = 0; 1810 page_zero_new_buffers(page, from+copied, to); 1811 } 1812 1813 ret = walk_page_buffers(handle, page_buffers(page), from, 1814 to, &partial, write_end_fn); 1815 if (!partial) 1816 SetPageUptodate(page); 1817 new_i_size = pos + copied; 1818 if (new_i_size > inode->i_size) 1819 i_size_write(inode, pos+copied); 1820 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1821 if (new_i_size > EXT4_I(inode)->i_disksize) { 1822 ext4_update_i_disksize(inode, new_i_size); 1823 ret2 = ext4_mark_inode_dirty(handle, inode); 1824 if (!ret) 1825 ret = ret2; 1826 } 1827 1828 unlock_page(page); 1829 page_cache_release(page); 1830 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1831 /* if we have allocated more blocks and copied 1832 * less. We will have blocks allocated outside 1833 * inode->i_size. So truncate them 1834 */ 1835 ext4_orphan_add(handle, inode); 1836 1837 ret2 = ext4_journal_stop(handle); 1838 if (!ret) 1839 ret = ret2; 1840 if (pos + len > inode->i_size) { 1841 ext4_truncate_failed_write(inode); 1842 /* 1843 * If truncate failed early the inode might still be 1844 * on the orphan list; we need to make sure the inode 1845 * is removed from the orphan list in that case. 1846 */ 1847 if (inode->i_nlink) 1848 ext4_orphan_del(NULL, inode); 1849 } 1850 1851 return ret ? ret : copied; 1852 } 1853 1854 /* 1855 * Reserve a single block located at lblock 1856 */ 1857 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock) 1858 { 1859 int retries = 0; 1860 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1861 struct ext4_inode_info *ei = EXT4_I(inode); 1862 unsigned long md_needed, md_reserved; 1863 int ret; 1864 1865 /* 1866 * recalculate the amount of metadata blocks to reserve 1867 * in order to allocate nrblocks 1868 * worse case is one extent per block 1869 */ 1870 repeat: 1871 spin_lock(&ei->i_block_reservation_lock); 1872 md_reserved = ei->i_reserved_meta_blocks; 1873 md_needed = ext4_calc_metadata_amount(inode, lblock); 1874 trace_ext4_da_reserve_space(inode, md_needed); 1875 spin_unlock(&ei->i_block_reservation_lock); 1876 1877 /* 1878 * Make quota reservation here to prevent quota overflow 1879 * later. Real quota accounting is done at pages writeout 1880 * time. 1881 */ 1882 ret = dquot_reserve_block(inode, md_needed + 1); 1883 if (ret) 1884 return ret; 1885 1886 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1887 dquot_release_reservation_block(inode, md_needed + 1); 1888 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1889 yield(); 1890 goto repeat; 1891 } 1892 return -ENOSPC; 1893 } 1894 spin_lock(&ei->i_block_reservation_lock); 1895 ei->i_reserved_data_blocks++; 1896 ei->i_reserved_meta_blocks += md_needed; 1897 spin_unlock(&ei->i_block_reservation_lock); 1898 1899 return 0; /* success */ 1900 } 1901 1902 static void ext4_da_release_space(struct inode *inode, int to_free) 1903 { 1904 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1905 struct ext4_inode_info *ei = EXT4_I(inode); 1906 1907 if (!to_free) 1908 return; /* Nothing to release, exit */ 1909 1910 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1911 1912 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1913 /* 1914 * if there aren't enough reserved blocks, then the 1915 * counter is messed up somewhere. Since this 1916 * function is called from invalidate page, it's 1917 * harmless to return without any action. 1918 */ 1919 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1920 "ino %lu, to_free %d with only %d reserved " 1921 "data blocks\n", inode->i_ino, to_free, 1922 ei->i_reserved_data_blocks); 1923 WARN_ON(1); 1924 to_free = ei->i_reserved_data_blocks; 1925 } 1926 ei->i_reserved_data_blocks -= to_free; 1927 1928 if (ei->i_reserved_data_blocks == 0) { 1929 /* 1930 * We can release all of the reserved metadata blocks 1931 * only when we have written all of the delayed 1932 * allocation blocks. 1933 */ 1934 to_free += ei->i_reserved_meta_blocks; 1935 ei->i_reserved_meta_blocks = 0; 1936 ei->i_da_metadata_calc_len = 0; 1937 } 1938 1939 /* update fs dirty blocks counter */ 1940 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1941 1942 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1943 1944 dquot_release_reservation_block(inode, to_free); 1945 } 1946 1947 static void ext4_da_page_release_reservation(struct page *page, 1948 unsigned long offset) 1949 { 1950 int to_release = 0; 1951 struct buffer_head *head, *bh; 1952 unsigned int curr_off = 0; 1953 1954 head = page_buffers(page); 1955 bh = head; 1956 do { 1957 unsigned int next_off = curr_off + bh->b_size; 1958 1959 if ((offset <= curr_off) && (buffer_delay(bh))) { 1960 to_release++; 1961 clear_buffer_delay(bh); 1962 } 1963 curr_off = next_off; 1964 } while ((bh = bh->b_this_page) != head); 1965 ext4_da_release_space(page->mapping->host, to_release); 1966 } 1967 1968 /* 1969 * Delayed allocation stuff 1970 */ 1971 1972 /* 1973 * mpage_da_submit_io - walks through extent of pages and try to write 1974 * them with writepage() call back 1975 * 1976 * @mpd->inode: inode 1977 * @mpd->first_page: first page of the extent 1978 * @mpd->next_page: page after the last page of the extent 1979 * 1980 * By the time mpage_da_submit_io() is called we expect all blocks 1981 * to be allocated. this may be wrong if allocation failed. 1982 * 1983 * As pages are already locked by write_cache_pages(), we can't use it 1984 */ 1985 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1986 { 1987 long pages_skipped; 1988 struct pagevec pvec; 1989 unsigned long index, end; 1990 int ret = 0, err, nr_pages, i; 1991 struct inode *inode = mpd->inode; 1992 struct address_space *mapping = inode->i_mapping; 1993 1994 BUG_ON(mpd->next_page <= mpd->first_page); 1995 /* 1996 * We need to start from the first_page to the next_page - 1 1997 * to make sure we also write the mapped dirty buffer_heads. 1998 * If we look at mpd->b_blocknr we would only be looking 1999 * at the currently mapped buffer_heads. 2000 */ 2001 index = mpd->first_page; 2002 end = mpd->next_page - 1; 2003 2004 pagevec_init(&pvec, 0); 2005 while (index <= end) { 2006 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2007 if (nr_pages == 0) 2008 break; 2009 for (i = 0; i < nr_pages; i++) { 2010 struct page *page = pvec.pages[i]; 2011 2012 index = page->index; 2013 if (index > end) 2014 break; 2015 index++; 2016 2017 BUG_ON(!PageLocked(page)); 2018 BUG_ON(PageWriteback(page)); 2019 2020 pages_skipped = mpd->wbc->pages_skipped; 2021 err = mapping->a_ops->writepage(page, mpd->wbc); 2022 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 2023 /* 2024 * have successfully written the page 2025 * without skipping the same 2026 */ 2027 mpd->pages_written++; 2028 /* 2029 * In error case, we have to continue because 2030 * remaining pages are still locked 2031 * XXX: unlock and re-dirty them? 2032 */ 2033 if (ret == 0) 2034 ret = err; 2035 } 2036 pagevec_release(&pvec); 2037 } 2038 return ret; 2039 } 2040 2041 /* 2042 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2043 * 2044 * @mpd->inode - inode to walk through 2045 * @exbh->b_blocknr - first block on a disk 2046 * @exbh->b_size - amount of space in bytes 2047 * @logical - first logical block to start assignment with 2048 * 2049 * the function goes through all passed space and put actual disk 2050 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2051 */ 2052 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 2053 struct buffer_head *exbh) 2054 { 2055 struct inode *inode = mpd->inode; 2056 struct address_space *mapping = inode->i_mapping; 2057 int blocks = exbh->b_size >> inode->i_blkbits; 2058 sector_t pblock = exbh->b_blocknr, cur_logical; 2059 struct buffer_head *head, *bh; 2060 pgoff_t index, end; 2061 struct pagevec pvec; 2062 int nr_pages, i; 2063 2064 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2065 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2066 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2067 2068 pagevec_init(&pvec, 0); 2069 2070 while (index <= end) { 2071 /* XXX: optimize tail */ 2072 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2073 if (nr_pages == 0) 2074 break; 2075 for (i = 0; i < nr_pages; i++) { 2076 struct page *page = pvec.pages[i]; 2077 2078 index = page->index; 2079 if (index > end) 2080 break; 2081 index++; 2082 2083 BUG_ON(!PageLocked(page)); 2084 BUG_ON(PageWriteback(page)); 2085 BUG_ON(!page_has_buffers(page)); 2086 2087 bh = page_buffers(page); 2088 head = bh; 2089 2090 /* skip blocks out of the range */ 2091 do { 2092 if (cur_logical >= logical) 2093 break; 2094 cur_logical++; 2095 } while ((bh = bh->b_this_page) != head); 2096 2097 do { 2098 if (cur_logical >= logical + blocks) 2099 break; 2100 2101 if (buffer_delay(bh) || 2102 buffer_unwritten(bh)) { 2103 2104 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2105 2106 if (buffer_delay(bh)) { 2107 clear_buffer_delay(bh); 2108 bh->b_blocknr = pblock; 2109 } else { 2110 /* 2111 * unwritten already should have 2112 * blocknr assigned. Verify that 2113 */ 2114 clear_buffer_unwritten(bh); 2115 BUG_ON(bh->b_blocknr != pblock); 2116 } 2117 2118 } else if (buffer_mapped(bh)) 2119 BUG_ON(bh->b_blocknr != pblock); 2120 2121 if (buffer_uninit(exbh)) 2122 set_buffer_uninit(bh); 2123 cur_logical++; 2124 pblock++; 2125 } while ((bh = bh->b_this_page) != head); 2126 } 2127 pagevec_release(&pvec); 2128 } 2129 } 2130 2131 2132 /* 2133 * __unmap_underlying_blocks - just a helper function to unmap 2134 * set of blocks described by @bh 2135 */ 2136 static inline void __unmap_underlying_blocks(struct inode *inode, 2137 struct buffer_head *bh) 2138 { 2139 struct block_device *bdev = inode->i_sb->s_bdev; 2140 int blocks, i; 2141 2142 blocks = bh->b_size >> inode->i_blkbits; 2143 for (i = 0; i < blocks; i++) 2144 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 2145 } 2146 2147 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2148 sector_t logical, long blk_cnt) 2149 { 2150 int nr_pages, i; 2151 pgoff_t index, end; 2152 struct pagevec pvec; 2153 struct inode *inode = mpd->inode; 2154 struct address_space *mapping = inode->i_mapping; 2155 2156 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2157 end = (logical + blk_cnt - 1) >> 2158 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2159 while (index <= end) { 2160 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2161 if (nr_pages == 0) 2162 break; 2163 for (i = 0; i < nr_pages; i++) { 2164 struct page *page = pvec.pages[i]; 2165 if (page->index > end) 2166 break; 2167 BUG_ON(!PageLocked(page)); 2168 BUG_ON(PageWriteback(page)); 2169 block_invalidatepage(page, 0); 2170 ClearPageUptodate(page); 2171 unlock_page(page); 2172 } 2173 index = pvec.pages[nr_pages - 1]->index + 1; 2174 pagevec_release(&pvec); 2175 } 2176 return; 2177 } 2178 2179 static void ext4_print_free_blocks(struct inode *inode) 2180 { 2181 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2182 printk(KERN_CRIT "Total free blocks count %lld\n", 2183 ext4_count_free_blocks(inode->i_sb)); 2184 printk(KERN_CRIT "Free/Dirty block details\n"); 2185 printk(KERN_CRIT "free_blocks=%lld\n", 2186 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2187 printk(KERN_CRIT "dirty_blocks=%lld\n", 2188 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2189 printk(KERN_CRIT "Block reservation details\n"); 2190 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2191 EXT4_I(inode)->i_reserved_data_blocks); 2192 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2193 EXT4_I(inode)->i_reserved_meta_blocks); 2194 return; 2195 } 2196 2197 /* 2198 * mpage_da_map_blocks - go through given space 2199 * 2200 * @mpd - bh describing space 2201 * 2202 * The function skips space we know is already mapped to disk blocks. 2203 * 2204 */ 2205 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2206 { 2207 int err, blks, get_blocks_flags; 2208 struct buffer_head new; 2209 sector_t next = mpd->b_blocknr; 2210 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2211 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2212 handle_t *handle = NULL; 2213 2214 /* 2215 * We consider only non-mapped and non-allocated blocks 2216 */ 2217 if ((mpd->b_state & (1 << BH_Mapped)) && 2218 !(mpd->b_state & (1 << BH_Delay)) && 2219 !(mpd->b_state & (1 << BH_Unwritten))) 2220 return 0; 2221 2222 /* 2223 * If we didn't accumulate anything to write simply return 2224 */ 2225 if (!mpd->b_size) 2226 return 0; 2227 2228 handle = ext4_journal_current_handle(); 2229 BUG_ON(!handle); 2230 2231 /* 2232 * Call ext4_get_blocks() to allocate any delayed allocation 2233 * blocks, or to convert an uninitialized extent to be 2234 * initialized (in the case where we have written into 2235 * one or more preallocated blocks). 2236 * 2237 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2238 * indicate that we are on the delayed allocation path. This 2239 * affects functions in many different parts of the allocation 2240 * call path. This flag exists primarily because we don't 2241 * want to change *many* call functions, so ext4_get_blocks() 2242 * will set the magic i_delalloc_reserved_flag once the 2243 * inode's allocation semaphore is taken. 2244 * 2245 * If the blocks in questions were delalloc blocks, set 2246 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2247 * variables are updated after the blocks have been allocated. 2248 */ 2249 new.b_state = 0; 2250 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2251 if (ext4_should_dioread_nolock(mpd->inode)) 2252 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2253 if (mpd->b_state & (1 << BH_Delay)) 2254 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2255 2256 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks, 2257 &new, get_blocks_flags); 2258 if (blks < 0) { 2259 err = blks; 2260 /* 2261 * If get block returns with error we simply 2262 * return. Later writepage will redirty the page and 2263 * writepages will find the dirty page again 2264 */ 2265 if (err == -EAGAIN) 2266 return 0; 2267 2268 if (err == -ENOSPC && 2269 ext4_count_free_blocks(mpd->inode->i_sb)) { 2270 mpd->retval = err; 2271 return 0; 2272 } 2273 2274 /* 2275 * get block failure will cause us to loop in 2276 * writepages, because a_ops->writepage won't be able 2277 * to make progress. The page will be redirtied by 2278 * writepage and writepages will again try to write 2279 * the same. 2280 */ 2281 ext4_msg(mpd->inode->i_sb, KERN_CRIT, 2282 "delayed block allocation failed for inode %lu at " 2283 "logical offset %llu with max blocks %zd with " 2284 "error %d\n", mpd->inode->i_ino, 2285 (unsigned long long) next, 2286 mpd->b_size >> mpd->inode->i_blkbits, err); 2287 printk(KERN_CRIT "This should not happen!! " 2288 "Data will be lost\n"); 2289 if (err == -ENOSPC) { 2290 ext4_print_free_blocks(mpd->inode); 2291 } 2292 /* invalidate all the pages */ 2293 ext4_da_block_invalidatepages(mpd, next, 2294 mpd->b_size >> mpd->inode->i_blkbits); 2295 return err; 2296 } 2297 BUG_ON(blks == 0); 2298 2299 new.b_size = (blks << mpd->inode->i_blkbits); 2300 2301 if (buffer_new(&new)) 2302 __unmap_underlying_blocks(mpd->inode, &new); 2303 2304 /* 2305 * If blocks are delayed marked, we need to 2306 * put actual blocknr and drop delayed bit 2307 */ 2308 if ((mpd->b_state & (1 << BH_Delay)) || 2309 (mpd->b_state & (1 << BH_Unwritten))) 2310 mpage_put_bnr_to_bhs(mpd, next, &new); 2311 2312 if (ext4_should_order_data(mpd->inode)) { 2313 err = ext4_jbd2_file_inode(handle, mpd->inode); 2314 if (err) 2315 return err; 2316 } 2317 2318 /* 2319 * Update on-disk size along with block allocation. 2320 */ 2321 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2322 if (disksize > i_size_read(mpd->inode)) 2323 disksize = i_size_read(mpd->inode); 2324 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2325 ext4_update_i_disksize(mpd->inode, disksize); 2326 return ext4_mark_inode_dirty(handle, mpd->inode); 2327 } 2328 2329 return 0; 2330 } 2331 2332 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2333 (1 << BH_Delay) | (1 << BH_Unwritten)) 2334 2335 /* 2336 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2337 * 2338 * @mpd->lbh - extent of blocks 2339 * @logical - logical number of the block in the file 2340 * @bh - bh of the block (used to access block's state) 2341 * 2342 * the function is used to collect contig. blocks in same state 2343 */ 2344 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2345 sector_t logical, size_t b_size, 2346 unsigned long b_state) 2347 { 2348 sector_t next; 2349 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2350 2351 /* check if thereserved journal credits might overflow */ 2352 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2353 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2354 /* 2355 * With non-extent format we are limited by the journal 2356 * credit available. Total credit needed to insert 2357 * nrblocks contiguous blocks is dependent on the 2358 * nrblocks. So limit nrblocks. 2359 */ 2360 goto flush_it; 2361 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2362 EXT4_MAX_TRANS_DATA) { 2363 /* 2364 * Adding the new buffer_head would make it cross the 2365 * allowed limit for which we have journal credit 2366 * reserved. So limit the new bh->b_size 2367 */ 2368 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2369 mpd->inode->i_blkbits; 2370 /* we will do mpage_da_submit_io in the next loop */ 2371 } 2372 } 2373 /* 2374 * First block in the extent 2375 */ 2376 if (mpd->b_size == 0) { 2377 mpd->b_blocknr = logical; 2378 mpd->b_size = b_size; 2379 mpd->b_state = b_state & BH_FLAGS; 2380 return; 2381 } 2382 2383 next = mpd->b_blocknr + nrblocks; 2384 /* 2385 * Can we merge the block to our big extent? 2386 */ 2387 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2388 mpd->b_size += b_size; 2389 return; 2390 } 2391 2392 flush_it: 2393 /* 2394 * We couldn't merge the block to our extent, so we 2395 * need to flush current extent and start new one 2396 */ 2397 if (mpage_da_map_blocks(mpd) == 0) 2398 mpage_da_submit_io(mpd); 2399 mpd->io_done = 1; 2400 return; 2401 } 2402 2403 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2404 { 2405 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2406 } 2407 2408 /* 2409 * __mpage_da_writepage - finds extent of pages and blocks 2410 * 2411 * @page: page to consider 2412 * @wbc: not used, we just follow rules 2413 * @data: context 2414 * 2415 * The function finds extents of pages and scan them for all blocks. 2416 */ 2417 static int __mpage_da_writepage(struct page *page, 2418 struct writeback_control *wbc, void *data) 2419 { 2420 struct mpage_da_data *mpd = data; 2421 struct inode *inode = mpd->inode; 2422 struct buffer_head *bh, *head; 2423 sector_t logical; 2424 2425 if (mpd->io_done) { 2426 /* 2427 * Rest of the page in the page_vec 2428 * redirty then and skip then. We will 2429 * try to write them again after 2430 * starting a new transaction 2431 */ 2432 redirty_page_for_writepage(wbc, page); 2433 unlock_page(page); 2434 return MPAGE_DA_EXTENT_TAIL; 2435 } 2436 /* 2437 * Can we merge this page to current extent? 2438 */ 2439 if (mpd->next_page != page->index) { 2440 /* 2441 * Nope, we can't. So, we map non-allocated blocks 2442 * and start IO on them using writepage() 2443 */ 2444 if (mpd->next_page != mpd->first_page) { 2445 if (mpage_da_map_blocks(mpd) == 0) 2446 mpage_da_submit_io(mpd); 2447 /* 2448 * skip rest of the page in the page_vec 2449 */ 2450 mpd->io_done = 1; 2451 redirty_page_for_writepage(wbc, page); 2452 unlock_page(page); 2453 return MPAGE_DA_EXTENT_TAIL; 2454 } 2455 2456 /* 2457 * Start next extent of pages ... 2458 */ 2459 mpd->first_page = page->index; 2460 2461 /* 2462 * ... and blocks 2463 */ 2464 mpd->b_size = 0; 2465 mpd->b_state = 0; 2466 mpd->b_blocknr = 0; 2467 } 2468 2469 mpd->next_page = page->index + 1; 2470 logical = (sector_t) page->index << 2471 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2472 2473 if (!page_has_buffers(page)) { 2474 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2475 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2476 if (mpd->io_done) 2477 return MPAGE_DA_EXTENT_TAIL; 2478 } else { 2479 /* 2480 * Page with regular buffer heads, just add all dirty ones 2481 */ 2482 head = page_buffers(page); 2483 bh = head; 2484 do { 2485 BUG_ON(buffer_locked(bh)); 2486 /* 2487 * We need to try to allocate 2488 * unmapped blocks in the same page. 2489 * Otherwise we won't make progress 2490 * with the page in ext4_writepage 2491 */ 2492 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2493 mpage_add_bh_to_extent(mpd, logical, 2494 bh->b_size, 2495 bh->b_state); 2496 if (mpd->io_done) 2497 return MPAGE_DA_EXTENT_TAIL; 2498 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2499 /* 2500 * mapped dirty buffer. We need to update 2501 * the b_state because we look at 2502 * b_state in mpage_da_map_blocks. We don't 2503 * update b_size because if we find an 2504 * unmapped buffer_head later we need to 2505 * use the b_state flag of that buffer_head. 2506 */ 2507 if (mpd->b_size == 0) 2508 mpd->b_state = bh->b_state & BH_FLAGS; 2509 } 2510 logical++; 2511 } while ((bh = bh->b_this_page) != head); 2512 } 2513 2514 return 0; 2515 } 2516 2517 /* 2518 * This is a special get_blocks_t callback which is used by 2519 * ext4_da_write_begin(). It will either return mapped block or 2520 * reserve space for a single block. 2521 * 2522 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2523 * We also have b_blocknr = -1 and b_bdev initialized properly 2524 * 2525 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2526 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2527 * initialized properly. 2528 */ 2529 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2530 struct buffer_head *bh_result, int create) 2531 { 2532 int ret = 0; 2533 sector_t invalid_block = ~((sector_t) 0xffff); 2534 2535 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2536 invalid_block = ~0; 2537 2538 BUG_ON(create == 0); 2539 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2540 2541 /* 2542 * first, we need to know whether the block is allocated already 2543 * preallocated blocks are unmapped but should treated 2544 * the same as allocated blocks. 2545 */ 2546 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0); 2547 if ((ret == 0) && !buffer_delay(bh_result)) { 2548 /* the block isn't (pre)allocated yet, let's reserve space */ 2549 /* 2550 * XXX: __block_prepare_write() unmaps passed block, 2551 * is it OK? 2552 */ 2553 ret = ext4_da_reserve_space(inode, iblock); 2554 if (ret) 2555 /* not enough space to reserve */ 2556 return ret; 2557 2558 map_bh(bh_result, inode->i_sb, invalid_block); 2559 set_buffer_new(bh_result); 2560 set_buffer_delay(bh_result); 2561 } else if (ret > 0) { 2562 bh_result->b_size = (ret << inode->i_blkbits); 2563 if (buffer_unwritten(bh_result)) { 2564 /* A delayed write to unwritten bh should 2565 * be marked new and mapped. Mapped ensures 2566 * that we don't do get_block multiple times 2567 * when we write to the same offset and new 2568 * ensures that we do proper zero out for 2569 * partial write. 2570 */ 2571 set_buffer_new(bh_result); 2572 set_buffer_mapped(bh_result); 2573 } 2574 ret = 0; 2575 } 2576 2577 return ret; 2578 } 2579 2580 /* 2581 * This function is used as a standard get_block_t calback function 2582 * when there is no desire to allocate any blocks. It is used as a 2583 * callback function for block_prepare_write(), nobh_writepage(), and 2584 * block_write_full_page(). These functions should only try to map a 2585 * single block at a time. 2586 * 2587 * Since this function doesn't do block allocations even if the caller 2588 * requests it by passing in create=1, it is critically important that 2589 * any caller checks to make sure that any buffer heads are returned 2590 * by this function are either all already mapped or marked for 2591 * delayed allocation before calling nobh_writepage() or 2592 * block_write_full_page(). Otherwise, b_blocknr could be left 2593 * unitialized, and the page write functions will be taken by 2594 * surprise. 2595 */ 2596 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2597 struct buffer_head *bh_result, int create) 2598 { 2599 int ret = 0; 2600 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2601 2602 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2603 2604 /* 2605 * we don't want to do block allocation in writepage 2606 * so call get_block_wrap with create = 0 2607 */ 2608 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0); 2609 if (ret > 0) { 2610 bh_result->b_size = (ret << inode->i_blkbits); 2611 ret = 0; 2612 } 2613 return ret; 2614 } 2615 2616 static int bget_one(handle_t *handle, struct buffer_head *bh) 2617 { 2618 get_bh(bh); 2619 return 0; 2620 } 2621 2622 static int bput_one(handle_t *handle, struct buffer_head *bh) 2623 { 2624 put_bh(bh); 2625 return 0; 2626 } 2627 2628 static int __ext4_journalled_writepage(struct page *page, 2629 unsigned int len) 2630 { 2631 struct address_space *mapping = page->mapping; 2632 struct inode *inode = mapping->host; 2633 struct buffer_head *page_bufs; 2634 handle_t *handle = NULL; 2635 int ret = 0; 2636 int err; 2637 2638 page_bufs = page_buffers(page); 2639 BUG_ON(!page_bufs); 2640 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2641 /* As soon as we unlock the page, it can go away, but we have 2642 * references to buffers so we are safe */ 2643 unlock_page(page); 2644 2645 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2646 if (IS_ERR(handle)) { 2647 ret = PTR_ERR(handle); 2648 goto out; 2649 } 2650 2651 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2652 do_journal_get_write_access); 2653 2654 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2655 write_end_fn); 2656 if (ret == 0) 2657 ret = err; 2658 err = ext4_journal_stop(handle); 2659 if (!ret) 2660 ret = err; 2661 2662 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2663 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2664 out: 2665 return ret; 2666 } 2667 2668 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2669 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2670 2671 /* 2672 * Note that we don't need to start a transaction unless we're journaling data 2673 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2674 * need to file the inode to the transaction's list in ordered mode because if 2675 * we are writing back data added by write(), the inode is already there and if 2676 * we are writing back data modified via mmap(), noone guarantees in which 2677 * transaction the data will hit the disk. In case we are journaling data, we 2678 * cannot start transaction directly because transaction start ranks above page 2679 * lock so we have to do some magic. 2680 * 2681 * This function can get called via... 2682 * - ext4_da_writepages after taking page lock (have journal handle) 2683 * - journal_submit_inode_data_buffers (no journal handle) 2684 * - shrink_page_list via pdflush (no journal handle) 2685 * - grab_page_cache when doing write_begin (have journal handle) 2686 * 2687 * We don't do any block allocation in this function. If we have page with 2688 * multiple blocks we need to write those buffer_heads that are mapped. This 2689 * is important for mmaped based write. So if we do with blocksize 1K 2690 * truncate(f, 1024); 2691 * a = mmap(f, 0, 4096); 2692 * a[0] = 'a'; 2693 * truncate(f, 4096); 2694 * we have in the page first buffer_head mapped via page_mkwrite call back 2695 * but other bufer_heads would be unmapped but dirty(dirty done via the 2696 * do_wp_page). So writepage should write the first block. If we modify 2697 * the mmap area beyond 1024 we will again get a page_fault and the 2698 * page_mkwrite callback will do the block allocation and mark the 2699 * buffer_heads mapped. 2700 * 2701 * We redirty the page if we have any buffer_heads that is either delay or 2702 * unwritten in the page. 2703 * 2704 * We can get recursively called as show below. 2705 * 2706 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2707 * ext4_writepage() 2708 * 2709 * But since we don't do any block allocation we should not deadlock. 2710 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2711 */ 2712 static int ext4_writepage(struct page *page, 2713 struct writeback_control *wbc) 2714 { 2715 int ret = 0; 2716 loff_t size; 2717 unsigned int len; 2718 struct buffer_head *page_bufs = NULL; 2719 struct inode *inode = page->mapping->host; 2720 2721 trace_ext4_writepage(inode, page); 2722 size = i_size_read(inode); 2723 if (page->index == size >> PAGE_CACHE_SHIFT) 2724 len = size & ~PAGE_CACHE_MASK; 2725 else 2726 len = PAGE_CACHE_SIZE; 2727 2728 if (page_has_buffers(page)) { 2729 page_bufs = page_buffers(page); 2730 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2731 ext4_bh_delay_or_unwritten)) { 2732 /* 2733 * We don't want to do block allocation 2734 * So redirty the page and return 2735 * We may reach here when we do a journal commit 2736 * via journal_submit_inode_data_buffers. 2737 * If we don't have mapping block we just ignore 2738 * them. We can also reach here via shrink_page_list 2739 */ 2740 redirty_page_for_writepage(wbc, page); 2741 unlock_page(page); 2742 return 0; 2743 } 2744 } else { 2745 /* 2746 * The test for page_has_buffers() is subtle: 2747 * We know the page is dirty but it lost buffers. That means 2748 * that at some moment in time after write_begin()/write_end() 2749 * has been called all buffers have been clean and thus they 2750 * must have been written at least once. So they are all 2751 * mapped and we can happily proceed with mapping them 2752 * and writing the page. 2753 * 2754 * Try to initialize the buffer_heads and check whether 2755 * all are mapped and non delay. We don't want to 2756 * do block allocation here. 2757 */ 2758 ret = block_prepare_write(page, 0, len, 2759 noalloc_get_block_write); 2760 if (!ret) { 2761 page_bufs = page_buffers(page); 2762 /* check whether all are mapped and non delay */ 2763 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2764 ext4_bh_delay_or_unwritten)) { 2765 redirty_page_for_writepage(wbc, page); 2766 unlock_page(page); 2767 return 0; 2768 } 2769 } else { 2770 /* 2771 * We can't do block allocation here 2772 * so just redity the page and unlock 2773 * and return 2774 */ 2775 redirty_page_for_writepage(wbc, page); 2776 unlock_page(page); 2777 return 0; 2778 } 2779 /* now mark the buffer_heads as dirty and uptodate */ 2780 block_commit_write(page, 0, len); 2781 } 2782 2783 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2784 /* 2785 * It's mmapped pagecache. Add buffers and journal it. There 2786 * doesn't seem much point in redirtying the page here. 2787 */ 2788 ClearPageChecked(page); 2789 return __ext4_journalled_writepage(page, len); 2790 } 2791 2792 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2793 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2794 else if (page_bufs && buffer_uninit(page_bufs)) { 2795 ext4_set_bh_endio(page_bufs, inode); 2796 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2797 wbc, ext4_end_io_buffer_write); 2798 } else 2799 ret = block_write_full_page(page, noalloc_get_block_write, 2800 wbc); 2801 2802 return ret; 2803 } 2804 2805 /* 2806 * This is called via ext4_da_writepages() to 2807 * calulate the total number of credits to reserve to fit 2808 * a single extent allocation into a single transaction, 2809 * ext4_da_writpeages() will loop calling this before 2810 * the block allocation. 2811 */ 2812 2813 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2814 { 2815 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2816 2817 /* 2818 * With non-extent format the journal credit needed to 2819 * insert nrblocks contiguous block is dependent on 2820 * number of contiguous block. So we will limit 2821 * number of contiguous block to a sane value 2822 */ 2823 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) && 2824 (max_blocks > EXT4_MAX_TRANS_DATA)) 2825 max_blocks = EXT4_MAX_TRANS_DATA; 2826 2827 return ext4_chunk_trans_blocks(inode, max_blocks); 2828 } 2829 2830 static int ext4_da_writepages(struct address_space *mapping, 2831 struct writeback_control *wbc) 2832 { 2833 pgoff_t index; 2834 int range_whole = 0; 2835 handle_t *handle = NULL; 2836 struct mpage_da_data mpd; 2837 struct inode *inode = mapping->host; 2838 int no_nrwrite_index_update; 2839 int pages_written = 0; 2840 long pages_skipped; 2841 unsigned int max_pages; 2842 int range_cyclic, cycled = 1, io_done = 0; 2843 int needed_blocks, ret = 0; 2844 long desired_nr_to_write, nr_to_writebump = 0; 2845 loff_t range_start = wbc->range_start; 2846 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2847 2848 trace_ext4_da_writepages(inode, wbc); 2849 2850 /* 2851 * No pages to write? This is mainly a kludge to avoid starting 2852 * a transaction for special inodes like journal inode on last iput() 2853 * because that could violate lock ordering on umount 2854 */ 2855 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2856 return 0; 2857 2858 /* 2859 * If the filesystem has aborted, it is read-only, so return 2860 * right away instead of dumping stack traces later on that 2861 * will obscure the real source of the problem. We test 2862 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2863 * the latter could be true if the filesystem is mounted 2864 * read-only, and in that case, ext4_da_writepages should 2865 * *never* be called, so if that ever happens, we would want 2866 * the stack trace. 2867 */ 2868 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2869 return -EROFS; 2870 2871 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2872 range_whole = 1; 2873 2874 range_cyclic = wbc->range_cyclic; 2875 if (wbc->range_cyclic) { 2876 index = mapping->writeback_index; 2877 if (index) 2878 cycled = 0; 2879 wbc->range_start = index << PAGE_CACHE_SHIFT; 2880 wbc->range_end = LLONG_MAX; 2881 wbc->range_cyclic = 0; 2882 } else 2883 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2884 2885 /* 2886 * This works around two forms of stupidity. The first is in 2887 * the writeback code, which caps the maximum number of pages 2888 * written to be 1024 pages. This is wrong on multiple 2889 * levels; different architectues have a different page size, 2890 * which changes the maximum amount of data which gets 2891 * written. Secondly, 4 megabytes is way too small. XFS 2892 * forces this value to be 16 megabytes by multiplying 2893 * nr_to_write parameter by four, and then relies on its 2894 * allocator to allocate larger extents to make them 2895 * contiguous. Unfortunately this brings us to the second 2896 * stupidity, which is that ext4's mballoc code only allocates 2897 * at most 2048 blocks. So we force contiguous writes up to 2898 * the number of dirty blocks in the inode, or 2899 * sbi->max_writeback_mb_bump whichever is smaller. 2900 */ 2901 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2902 if (!range_cyclic && range_whole) 2903 desired_nr_to_write = wbc->nr_to_write * 8; 2904 else 2905 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2906 max_pages); 2907 if (desired_nr_to_write > max_pages) 2908 desired_nr_to_write = max_pages; 2909 2910 if (wbc->nr_to_write < desired_nr_to_write) { 2911 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2912 wbc->nr_to_write = desired_nr_to_write; 2913 } 2914 2915 mpd.wbc = wbc; 2916 mpd.inode = mapping->host; 2917 2918 /* 2919 * we don't want write_cache_pages to update 2920 * nr_to_write and writeback_index 2921 */ 2922 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2923 wbc->no_nrwrite_index_update = 1; 2924 pages_skipped = wbc->pages_skipped; 2925 2926 retry: 2927 while (!ret && wbc->nr_to_write > 0) { 2928 2929 /* 2930 * we insert one extent at a time. So we need 2931 * credit needed for single extent allocation. 2932 * journalled mode is currently not supported 2933 * by delalloc 2934 */ 2935 BUG_ON(ext4_should_journal_data(inode)); 2936 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2937 2938 /* start a new transaction*/ 2939 handle = ext4_journal_start(inode, needed_blocks); 2940 if (IS_ERR(handle)) { 2941 ret = PTR_ERR(handle); 2942 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2943 "%ld pages, ino %lu; err %d\n", __func__, 2944 wbc->nr_to_write, inode->i_ino, ret); 2945 goto out_writepages; 2946 } 2947 2948 /* 2949 * Now call __mpage_da_writepage to find the next 2950 * contiguous region of logical blocks that need 2951 * blocks to be allocated by ext4. We don't actually 2952 * submit the blocks for I/O here, even though 2953 * write_cache_pages thinks it will, and will set the 2954 * pages as clean for write before calling 2955 * __mpage_da_writepage(). 2956 */ 2957 mpd.b_size = 0; 2958 mpd.b_state = 0; 2959 mpd.b_blocknr = 0; 2960 mpd.first_page = 0; 2961 mpd.next_page = 0; 2962 mpd.io_done = 0; 2963 mpd.pages_written = 0; 2964 mpd.retval = 0; 2965 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2966 &mpd); 2967 /* 2968 * If we have a contiguous extent of pages and we 2969 * haven't done the I/O yet, map the blocks and submit 2970 * them for I/O. 2971 */ 2972 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2973 if (mpage_da_map_blocks(&mpd) == 0) 2974 mpage_da_submit_io(&mpd); 2975 mpd.io_done = 1; 2976 ret = MPAGE_DA_EXTENT_TAIL; 2977 } 2978 trace_ext4_da_write_pages(inode, &mpd); 2979 wbc->nr_to_write -= mpd.pages_written; 2980 2981 ext4_journal_stop(handle); 2982 2983 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2984 /* commit the transaction which would 2985 * free blocks released in the transaction 2986 * and try again 2987 */ 2988 jbd2_journal_force_commit_nested(sbi->s_journal); 2989 wbc->pages_skipped = pages_skipped; 2990 ret = 0; 2991 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2992 /* 2993 * got one extent now try with 2994 * rest of the pages 2995 */ 2996 pages_written += mpd.pages_written; 2997 wbc->pages_skipped = pages_skipped; 2998 ret = 0; 2999 io_done = 1; 3000 } else if (wbc->nr_to_write) 3001 /* 3002 * There is no more writeout needed 3003 * or we requested for a noblocking writeout 3004 * and we found the device congested 3005 */ 3006 break; 3007 } 3008 if (!io_done && !cycled) { 3009 cycled = 1; 3010 index = 0; 3011 wbc->range_start = index << PAGE_CACHE_SHIFT; 3012 wbc->range_end = mapping->writeback_index - 1; 3013 goto retry; 3014 } 3015 if (pages_skipped != wbc->pages_skipped) 3016 ext4_msg(inode->i_sb, KERN_CRIT, 3017 "This should not happen leaving %s " 3018 "with nr_to_write = %ld ret = %d\n", 3019 __func__, wbc->nr_to_write, ret); 3020 3021 /* Update index */ 3022 index += pages_written; 3023 wbc->range_cyclic = range_cyclic; 3024 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3025 /* 3026 * set the writeback_index so that range_cyclic 3027 * mode will write it back later 3028 */ 3029 mapping->writeback_index = index; 3030 3031 out_writepages: 3032 if (!no_nrwrite_index_update) 3033 wbc->no_nrwrite_index_update = 0; 3034 wbc->nr_to_write -= nr_to_writebump; 3035 wbc->range_start = range_start; 3036 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3037 return ret; 3038 } 3039 3040 #define FALL_BACK_TO_NONDELALLOC 1 3041 static int ext4_nonda_switch(struct super_block *sb) 3042 { 3043 s64 free_blocks, dirty_blocks; 3044 struct ext4_sb_info *sbi = EXT4_SB(sb); 3045 3046 /* 3047 * switch to non delalloc mode if we are running low 3048 * on free block. The free block accounting via percpu 3049 * counters can get slightly wrong with percpu_counter_batch getting 3050 * accumulated on each CPU without updating global counters 3051 * Delalloc need an accurate free block accounting. So switch 3052 * to non delalloc when we are near to error range. 3053 */ 3054 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3055 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3056 if (2 * free_blocks < 3 * dirty_blocks || 3057 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3058 /* 3059 * free block count is less than 150% of dirty blocks 3060 * or free blocks is less than watermark 3061 */ 3062 return 1; 3063 } 3064 /* 3065 * Even if we don't switch but are nearing capacity, 3066 * start pushing delalloc when 1/2 of free blocks are dirty. 3067 */ 3068 if (free_blocks < 2 * dirty_blocks) 3069 writeback_inodes_sb_if_idle(sb); 3070 3071 return 0; 3072 } 3073 3074 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3075 loff_t pos, unsigned len, unsigned flags, 3076 struct page **pagep, void **fsdata) 3077 { 3078 int ret, retries = 0, quota_retries = 0; 3079 struct page *page; 3080 pgoff_t index; 3081 unsigned from, to; 3082 struct inode *inode = mapping->host; 3083 handle_t *handle; 3084 3085 index = pos >> PAGE_CACHE_SHIFT; 3086 from = pos & (PAGE_CACHE_SIZE - 1); 3087 to = from + len; 3088 3089 if (ext4_nonda_switch(inode->i_sb)) { 3090 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3091 return ext4_write_begin(file, mapping, pos, 3092 len, flags, pagep, fsdata); 3093 } 3094 *fsdata = (void *)0; 3095 trace_ext4_da_write_begin(inode, pos, len, flags); 3096 retry: 3097 /* 3098 * With delayed allocation, we don't log the i_disksize update 3099 * if there is delayed block allocation. But we still need 3100 * to journalling the i_disksize update if writes to the end 3101 * of file which has an already mapped buffer. 3102 */ 3103 handle = ext4_journal_start(inode, 1); 3104 if (IS_ERR(handle)) { 3105 ret = PTR_ERR(handle); 3106 goto out; 3107 } 3108 /* We cannot recurse into the filesystem as the transaction is already 3109 * started */ 3110 flags |= AOP_FLAG_NOFS; 3111 3112 page = grab_cache_page_write_begin(mapping, index, flags); 3113 if (!page) { 3114 ext4_journal_stop(handle); 3115 ret = -ENOMEM; 3116 goto out; 3117 } 3118 *pagep = page; 3119 3120 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 3121 ext4_da_get_block_prep); 3122 if (ret < 0) { 3123 unlock_page(page); 3124 ext4_journal_stop(handle); 3125 page_cache_release(page); 3126 /* 3127 * block_write_begin may have instantiated a few blocks 3128 * outside i_size. Trim these off again. Don't need 3129 * i_size_read because we hold i_mutex. 3130 */ 3131 if (pos + len > inode->i_size) 3132 ext4_truncate_failed_write(inode); 3133 } 3134 3135 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3136 goto retry; 3137 3138 if ((ret == -EDQUOT) && 3139 EXT4_I(inode)->i_reserved_meta_blocks && 3140 (quota_retries++ < 3)) { 3141 /* 3142 * Since we often over-estimate the number of meta 3143 * data blocks required, we may sometimes get a 3144 * spurios out of quota error even though there would 3145 * be enough space once we write the data blocks and 3146 * find out how many meta data blocks were _really_ 3147 * required. So try forcing the inode write to see if 3148 * that helps. 3149 */ 3150 write_inode_now(inode, (quota_retries == 3)); 3151 goto retry; 3152 } 3153 out: 3154 return ret; 3155 } 3156 3157 /* 3158 * Check if we should update i_disksize 3159 * when write to the end of file but not require block allocation 3160 */ 3161 static int ext4_da_should_update_i_disksize(struct page *page, 3162 unsigned long offset) 3163 { 3164 struct buffer_head *bh; 3165 struct inode *inode = page->mapping->host; 3166 unsigned int idx; 3167 int i; 3168 3169 bh = page_buffers(page); 3170 idx = offset >> inode->i_blkbits; 3171 3172 for (i = 0; i < idx; i++) 3173 bh = bh->b_this_page; 3174 3175 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3176 return 0; 3177 return 1; 3178 } 3179 3180 static int ext4_da_write_end(struct file *file, 3181 struct address_space *mapping, 3182 loff_t pos, unsigned len, unsigned copied, 3183 struct page *page, void *fsdata) 3184 { 3185 struct inode *inode = mapping->host; 3186 int ret = 0, ret2; 3187 handle_t *handle = ext4_journal_current_handle(); 3188 loff_t new_i_size; 3189 unsigned long start, end; 3190 int write_mode = (int)(unsigned long)fsdata; 3191 3192 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3193 if (ext4_should_order_data(inode)) { 3194 return ext4_ordered_write_end(file, mapping, pos, 3195 len, copied, page, fsdata); 3196 } else if (ext4_should_writeback_data(inode)) { 3197 return ext4_writeback_write_end(file, mapping, pos, 3198 len, copied, page, fsdata); 3199 } else { 3200 BUG(); 3201 } 3202 } 3203 3204 trace_ext4_da_write_end(inode, pos, len, copied); 3205 start = pos & (PAGE_CACHE_SIZE - 1); 3206 end = start + copied - 1; 3207 3208 /* 3209 * generic_write_end() will run mark_inode_dirty() if i_size 3210 * changes. So let's piggyback the i_disksize mark_inode_dirty 3211 * into that. 3212 */ 3213 3214 new_i_size = pos + copied; 3215 if (new_i_size > EXT4_I(inode)->i_disksize) { 3216 if (ext4_da_should_update_i_disksize(page, end)) { 3217 down_write(&EXT4_I(inode)->i_data_sem); 3218 if (new_i_size > EXT4_I(inode)->i_disksize) { 3219 /* 3220 * Updating i_disksize when extending file 3221 * without needing block allocation 3222 */ 3223 if (ext4_should_order_data(inode)) 3224 ret = ext4_jbd2_file_inode(handle, 3225 inode); 3226 3227 EXT4_I(inode)->i_disksize = new_i_size; 3228 } 3229 up_write(&EXT4_I(inode)->i_data_sem); 3230 /* We need to mark inode dirty even if 3231 * new_i_size is less that inode->i_size 3232 * bu greater than i_disksize.(hint delalloc) 3233 */ 3234 ext4_mark_inode_dirty(handle, inode); 3235 } 3236 } 3237 ret2 = generic_write_end(file, mapping, pos, len, copied, 3238 page, fsdata); 3239 copied = ret2; 3240 if (ret2 < 0) 3241 ret = ret2; 3242 ret2 = ext4_journal_stop(handle); 3243 if (!ret) 3244 ret = ret2; 3245 3246 return ret ? ret : copied; 3247 } 3248 3249 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3250 { 3251 /* 3252 * Drop reserved blocks 3253 */ 3254 BUG_ON(!PageLocked(page)); 3255 if (!page_has_buffers(page)) 3256 goto out; 3257 3258 ext4_da_page_release_reservation(page, offset); 3259 3260 out: 3261 ext4_invalidatepage(page, offset); 3262 3263 return; 3264 } 3265 3266 /* 3267 * Force all delayed allocation blocks to be allocated for a given inode. 3268 */ 3269 int ext4_alloc_da_blocks(struct inode *inode) 3270 { 3271 trace_ext4_alloc_da_blocks(inode); 3272 3273 if (!EXT4_I(inode)->i_reserved_data_blocks && 3274 !EXT4_I(inode)->i_reserved_meta_blocks) 3275 return 0; 3276 3277 /* 3278 * We do something simple for now. The filemap_flush() will 3279 * also start triggering a write of the data blocks, which is 3280 * not strictly speaking necessary (and for users of 3281 * laptop_mode, not even desirable). However, to do otherwise 3282 * would require replicating code paths in: 3283 * 3284 * ext4_da_writepages() -> 3285 * write_cache_pages() ---> (via passed in callback function) 3286 * __mpage_da_writepage() --> 3287 * mpage_add_bh_to_extent() 3288 * mpage_da_map_blocks() 3289 * 3290 * The problem is that write_cache_pages(), located in 3291 * mm/page-writeback.c, marks pages clean in preparation for 3292 * doing I/O, which is not desirable if we're not planning on 3293 * doing I/O at all. 3294 * 3295 * We could call write_cache_pages(), and then redirty all of 3296 * the pages by calling redirty_page_for_writeback() but that 3297 * would be ugly in the extreme. So instead we would need to 3298 * replicate parts of the code in the above functions, 3299 * simplifying them becuase we wouldn't actually intend to 3300 * write out the pages, but rather only collect contiguous 3301 * logical block extents, call the multi-block allocator, and 3302 * then update the buffer heads with the block allocations. 3303 * 3304 * For now, though, we'll cheat by calling filemap_flush(), 3305 * which will map the blocks, and start the I/O, but not 3306 * actually wait for the I/O to complete. 3307 */ 3308 return filemap_flush(inode->i_mapping); 3309 } 3310 3311 /* 3312 * bmap() is special. It gets used by applications such as lilo and by 3313 * the swapper to find the on-disk block of a specific piece of data. 3314 * 3315 * Naturally, this is dangerous if the block concerned is still in the 3316 * journal. If somebody makes a swapfile on an ext4 data-journaling 3317 * filesystem and enables swap, then they may get a nasty shock when the 3318 * data getting swapped to that swapfile suddenly gets overwritten by 3319 * the original zero's written out previously to the journal and 3320 * awaiting writeback in the kernel's buffer cache. 3321 * 3322 * So, if we see any bmap calls here on a modified, data-journaled file, 3323 * take extra steps to flush any blocks which might be in the cache. 3324 */ 3325 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3326 { 3327 struct inode *inode = mapping->host; 3328 journal_t *journal; 3329 int err; 3330 3331 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3332 test_opt(inode->i_sb, DELALLOC)) { 3333 /* 3334 * With delalloc we want to sync the file 3335 * so that we can make sure we allocate 3336 * blocks for file 3337 */ 3338 filemap_write_and_wait(mapping); 3339 } 3340 3341 if (EXT4_JOURNAL(inode) && 3342 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3343 /* 3344 * This is a REALLY heavyweight approach, but the use of 3345 * bmap on dirty files is expected to be extremely rare: 3346 * only if we run lilo or swapon on a freshly made file 3347 * do we expect this to happen. 3348 * 3349 * (bmap requires CAP_SYS_RAWIO so this does not 3350 * represent an unprivileged user DOS attack --- we'd be 3351 * in trouble if mortal users could trigger this path at 3352 * will.) 3353 * 3354 * NB. EXT4_STATE_JDATA is not set on files other than 3355 * regular files. If somebody wants to bmap a directory 3356 * or symlink and gets confused because the buffer 3357 * hasn't yet been flushed to disk, they deserve 3358 * everything they get. 3359 */ 3360 3361 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3362 journal = EXT4_JOURNAL(inode); 3363 jbd2_journal_lock_updates(journal); 3364 err = jbd2_journal_flush(journal); 3365 jbd2_journal_unlock_updates(journal); 3366 3367 if (err) 3368 return 0; 3369 } 3370 3371 return generic_block_bmap(mapping, block, ext4_get_block); 3372 } 3373 3374 static int ext4_readpage(struct file *file, struct page *page) 3375 { 3376 return mpage_readpage(page, ext4_get_block); 3377 } 3378 3379 static int 3380 ext4_readpages(struct file *file, struct address_space *mapping, 3381 struct list_head *pages, unsigned nr_pages) 3382 { 3383 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3384 } 3385 3386 static void ext4_free_io_end(ext4_io_end_t *io) 3387 { 3388 BUG_ON(!io); 3389 if (io->page) 3390 put_page(io->page); 3391 iput(io->inode); 3392 kfree(io); 3393 } 3394 3395 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3396 { 3397 struct buffer_head *head, *bh; 3398 unsigned int curr_off = 0; 3399 3400 if (!page_has_buffers(page)) 3401 return; 3402 head = bh = page_buffers(page); 3403 do { 3404 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3405 && bh->b_private) { 3406 ext4_free_io_end(bh->b_private); 3407 bh->b_private = NULL; 3408 bh->b_end_io = NULL; 3409 } 3410 curr_off = curr_off + bh->b_size; 3411 bh = bh->b_this_page; 3412 } while (bh != head); 3413 } 3414 3415 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3416 { 3417 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3418 3419 /* 3420 * free any io_end structure allocated for buffers to be discarded 3421 */ 3422 if (ext4_should_dioread_nolock(page->mapping->host)) 3423 ext4_invalidatepage_free_endio(page, offset); 3424 /* 3425 * If it's a full truncate we just forget about the pending dirtying 3426 */ 3427 if (offset == 0) 3428 ClearPageChecked(page); 3429 3430 if (journal) 3431 jbd2_journal_invalidatepage(journal, page, offset); 3432 else 3433 block_invalidatepage(page, offset); 3434 } 3435 3436 static int ext4_releasepage(struct page *page, gfp_t wait) 3437 { 3438 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3439 3440 WARN_ON(PageChecked(page)); 3441 if (!page_has_buffers(page)) 3442 return 0; 3443 if (journal) 3444 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3445 else 3446 return try_to_free_buffers(page); 3447 } 3448 3449 /* 3450 * O_DIRECT for ext3 (or indirect map) based files 3451 * 3452 * If the O_DIRECT write will extend the file then add this inode to the 3453 * orphan list. So recovery will truncate it back to the original size 3454 * if the machine crashes during the write. 3455 * 3456 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3457 * crashes then stale disk data _may_ be exposed inside the file. But current 3458 * VFS code falls back into buffered path in that case so we are safe. 3459 */ 3460 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3461 const struct iovec *iov, loff_t offset, 3462 unsigned long nr_segs) 3463 { 3464 struct file *file = iocb->ki_filp; 3465 struct inode *inode = file->f_mapping->host; 3466 struct ext4_inode_info *ei = EXT4_I(inode); 3467 handle_t *handle; 3468 ssize_t ret; 3469 int orphan = 0; 3470 size_t count = iov_length(iov, nr_segs); 3471 int retries = 0; 3472 3473 if (rw == WRITE) { 3474 loff_t final_size = offset + count; 3475 3476 if (final_size > inode->i_size) { 3477 /* Credits for sb + inode write */ 3478 handle = ext4_journal_start(inode, 2); 3479 if (IS_ERR(handle)) { 3480 ret = PTR_ERR(handle); 3481 goto out; 3482 } 3483 ret = ext4_orphan_add(handle, inode); 3484 if (ret) { 3485 ext4_journal_stop(handle); 3486 goto out; 3487 } 3488 orphan = 1; 3489 ei->i_disksize = inode->i_size; 3490 ext4_journal_stop(handle); 3491 } 3492 } 3493 3494 retry: 3495 if (rw == READ && ext4_should_dioread_nolock(inode)) 3496 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 3497 inode->i_sb->s_bdev, iov, 3498 offset, nr_segs, 3499 ext4_get_block, NULL); 3500 else 3501 ret = blockdev_direct_IO(rw, iocb, inode, 3502 inode->i_sb->s_bdev, iov, 3503 offset, nr_segs, 3504 ext4_get_block, NULL); 3505 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3506 goto retry; 3507 3508 if (orphan) { 3509 int err; 3510 3511 /* Credits for sb + inode write */ 3512 handle = ext4_journal_start(inode, 2); 3513 if (IS_ERR(handle)) { 3514 /* This is really bad luck. We've written the data 3515 * but cannot extend i_size. Bail out and pretend 3516 * the write failed... */ 3517 ret = PTR_ERR(handle); 3518 if (inode->i_nlink) 3519 ext4_orphan_del(NULL, inode); 3520 3521 goto out; 3522 } 3523 if (inode->i_nlink) 3524 ext4_orphan_del(handle, inode); 3525 if (ret > 0) { 3526 loff_t end = offset + ret; 3527 if (end > inode->i_size) { 3528 ei->i_disksize = end; 3529 i_size_write(inode, end); 3530 /* 3531 * We're going to return a positive `ret' 3532 * here due to non-zero-length I/O, so there's 3533 * no way of reporting error returns from 3534 * ext4_mark_inode_dirty() to userspace. So 3535 * ignore it. 3536 */ 3537 ext4_mark_inode_dirty(handle, inode); 3538 } 3539 } 3540 err = ext4_journal_stop(handle); 3541 if (ret == 0) 3542 ret = err; 3543 } 3544 out: 3545 return ret; 3546 } 3547 3548 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3549 struct buffer_head *bh_result, int create) 3550 { 3551 handle_t *handle = ext4_journal_current_handle(); 3552 int ret = 0; 3553 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 3554 int dio_credits; 3555 int started = 0; 3556 3557 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3558 inode->i_ino, create); 3559 /* 3560 * ext4_get_block in prepare for a DIO write or buffer write. 3561 * We allocate an uinitialized extent if blocks haven't been allocated. 3562 * The extent will be converted to initialized after IO complete. 3563 */ 3564 create = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3565 3566 if (!handle) { 3567 if (max_blocks > DIO_MAX_BLOCKS) 3568 max_blocks = DIO_MAX_BLOCKS; 3569 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 3570 handle = ext4_journal_start(inode, dio_credits); 3571 if (IS_ERR(handle)) { 3572 ret = PTR_ERR(handle); 3573 goto out; 3574 } 3575 started = 1; 3576 } 3577 3578 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 3579 create); 3580 if (ret > 0) { 3581 bh_result->b_size = (ret << inode->i_blkbits); 3582 ret = 0; 3583 } 3584 if (started) 3585 ext4_journal_stop(handle); 3586 out: 3587 return ret; 3588 } 3589 3590 static void dump_completed_IO(struct inode * inode) 3591 { 3592 #ifdef EXT4_DEBUG 3593 struct list_head *cur, *before, *after; 3594 ext4_io_end_t *io, *io0, *io1; 3595 unsigned long flags; 3596 3597 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){ 3598 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino); 3599 return; 3600 } 3601 3602 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino); 3603 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3604 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){ 3605 cur = &io->list; 3606 before = cur->prev; 3607 io0 = container_of(before, ext4_io_end_t, list); 3608 after = cur->next; 3609 io1 = container_of(after, ext4_io_end_t, list); 3610 3611 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3612 io, inode->i_ino, io0, io1); 3613 } 3614 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3615 #endif 3616 } 3617 3618 /* 3619 * check a range of space and convert unwritten extents to written. 3620 */ 3621 static int ext4_end_io_nolock(ext4_io_end_t *io) 3622 { 3623 struct inode *inode = io->inode; 3624 loff_t offset = io->offset; 3625 ssize_t size = io->size; 3626 int ret = 0; 3627 3628 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 3629 "list->prev 0x%p\n", 3630 io, inode->i_ino, io->list.next, io->list.prev); 3631 3632 if (list_empty(&io->list)) 3633 return ret; 3634 3635 if (io->flag != EXT4_IO_UNWRITTEN) 3636 return ret; 3637 3638 ret = ext4_convert_unwritten_extents(inode, offset, size); 3639 if (ret < 0) { 3640 printk(KERN_EMERG "%s: failed to convert unwritten" 3641 "extents to written extents, error is %d" 3642 " io is still on inode %lu aio dio list\n", 3643 __func__, ret, inode->i_ino); 3644 return ret; 3645 } 3646 3647 /* clear the DIO AIO unwritten flag */ 3648 io->flag = 0; 3649 return ret; 3650 } 3651 3652 /* 3653 * work on completed aio dio IO, to convert unwritten extents to extents 3654 */ 3655 static void ext4_end_io_work(struct work_struct *work) 3656 { 3657 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3658 struct inode *inode = io->inode; 3659 struct ext4_inode_info *ei = EXT4_I(inode); 3660 unsigned long flags; 3661 int ret; 3662 3663 mutex_lock(&inode->i_mutex); 3664 ret = ext4_end_io_nolock(io); 3665 if (ret < 0) { 3666 mutex_unlock(&inode->i_mutex); 3667 return; 3668 } 3669 3670 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3671 if (!list_empty(&io->list)) 3672 list_del_init(&io->list); 3673 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3674 mutex_unlock(&inode->i_mutex); 3675 ext4_free_io_end(io); 3676 } 3677 3678 /* 3679 * This function is called from ext4_sync_file(). 3680 * 3681 * When IO is completed, the work to convert unwritten extents to 3682 * written is queued on workqueue but may not get immediately 3683 * scheduled. When fsync is called, we need to ensure the 3684 * conversion is complete before fsync returns. 3685 * The inode keeps track of a list of pending/completed IO that 3686 * might needs to do the conversion. This function walks through 3687 * the list and convert the related unwritten extents for completed IO 3688 * to written. 3689 * The function return the number of pending IOs on success. 3690 */ 3691 int flush_completed_IO(struct inode *inode) 3692 { 3693 ext4_io_end_t *io; 3694 struct ext4_inode_info *ei = EXT4_I(inode); 3695 unsigned long flags; 3696 int ret = 0; 3697 int ret2 = 0; 3698 3699 if (list_empty(&ei->i_completed_io_list)) 3700 return ret; 3701 3702 dump_completed_IO(inode); 3703 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3704 while (!list_empty(&ei->i_completed_io_list)){ 3705 io = list_entry(ei->i_completed_io_list.next, 3706 ext4_io_end_t, list); 3707 /* 3708 * Calling ext4_end_io_nolock() to convert completed 3709 * IO to written. 3710 * 3711 * When ext4_sync_file() is called, run_queue() may already 3712 * about to flush the work corresponding to this io structure. 3713 * It will be upset if it founds the io structure related 3714 * to the work-to-be schedule is freed. 3715 * 3716 * Thus we need to keep the io structure still valid here after 3717 * convertion finished. The io structure has a flag to 3718 * avoid double converting from both fsync and background work 3719 * queue work. 3720 */ 3721 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3722 ret = ext4_end_io_nolock(io); 3723 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3724 if (ret < 0) 3725 ret2 = ret; 3726 else 3727 list_del_init(&io->list); 3728 } 3729 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3730 return (ret2 < 0) ? ret2 : 0; 3731 } 3732 3733 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags) 3734 { 3735 ext4_io_end_t *io = NULL; 3736 3737 io = kmalloc(sizeof(*io), flags); 3738 3739 if (io) { 3740 igrab(inode); 3741 io->inode = inode; 3742 io->flag = 0; 3743 io->offset = 0; 3744 io->size = 0; 3745 io->page = NULL; 3746 INIT_WORK(&io->work, ext4_end_io_work); 3747 INIT_LIST_HEAD(&io->list); 3748 } 3749 3750 return io; 3751 } 3752 3753 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3754 ssize_t size, void *private) 3755 { 3756 ext4_io_end_t *io_end = iocb->private; 3757 struct workqueue_struct *wq; 3758 unsigned long flags; 3759 struct ext4_inode_info *ei; 3760 3761 /* if not async direct IO or dio with 0 bytes write, just return */ 3762 if (!io_end || !size) 3763 return; 3764 3765 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3767 iocb->private, io_end->inode->i_ino, iocb, offset, 3768 size); 3769 3770 /* if not aio dio with unwritten extents, just free io and return */ 3771 if (io_end->flag != EXT4_IO_UNWRITTEN){ 3772 ext4_free_io_end(io_end); 3773 iocb->private = NULL; 3774 return; 3775 } 3776 3777 io_end->offset = offset; 3778 io_end->size = size; 3779 io_end->flag = EXT4_IO_UNWRITTEN; 3780 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3781 3782 /* queue the work to convert unwritten extents to written */ 3783 queue_work(wq, &io_end->work); 3784 3785 /* Add the io_end to per-inode completed aio dio list*/ 3786 ei = EXT4_I(io_end->inode); 3787 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3788 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3789 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3790 iocb->private = NULL; 3791 } 3792 3793 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3794 { 3795 ext4_io_end_t *io_end = bh->b_private; 3796 struct workqueue_struct *wq; 3797 struct inode *inode; 3798 unsigned long flags; 3799 3800 if (!test_clear_buffer_uninit(bh) || !io_end) 3801 goto out; 3802 3803 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3804 printk("sb umounted, discard end_io request for inode %lu\n", 3805 io_end->inode->i_ino); 3806 ext4_free_io_end(io_end); 3807 goto out; 3808 } 3809 3810 io_end->flag = EXT4_IO_UNWRITTEN; 3811 inode = io_end->inode; 3812 3813 /* Add the io_end to per-inode completed io list*/ 3814 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3815 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3816 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3817 3818 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3819 /* queue the work to convert unwritten extents to written */ 3820 queue_work(wq, &io_end->work); 3821 out: 3822 bh->b_private = NULL; 3823 bh->b_end_io = NULL; 3824 clear_buffer_uninit(bh); 3825 end_buffer_async_write(bh, uptodate); 3826 } 3827 3828 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3829 { 3830 ext4_io_end_t *io_end; 3831 struct page *page = bh->b_page; 3832 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3833 size_t size = bh->b_size; 3834 3835 retry: 3836 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3837 if (!io_end) { 3838 if (printk_ratelimit()) 3839 printk(KERN_WARNING "%s: allocation fail\n", __func__); 3840 schedule(); 3841 goto retry; 3842 } 3843 io_end->offset = offset; 3844 io_end->size = size; 3845 /* 3846 * We need to hold a reference to the page to make sure it 3847 * doesn't get evicted before ext4_end_io_work() has a chance 3848 * to convert the extent from written to unwritten. 3849 */ 3850 io_end->page = page; 3851 get_page(io_end->page); 3852 3853 bh->b_private = io_end; 3854 bh->b_end_io = ext4_end_io_buffer_write; 3855 return 0; 3856 } 3857 3858 /* 3859 * For ext4 extent files, ext4 will do direct-io write to holes, 3860 * preallocated extents, and those write extend the file, no need to 3861 * fall back to buffered IO. 3862 * 3863 * For holes, we fallocate those blocks, mark them as unintialized 3864 * If those blocks were preallocated, we mark sure they are splited, but 3865 * still keep the range to write as unintialized. 3866 * 3867 * The unwrritten extents will be converted to written when DIO is completed. 3868 * For async direct IO, since the IO may still pending when return, we 3869 * set up an end_io call back function, which will do the convertion 3870 * when async direct IO completed. 3871 * 3872 * If the O_DIRECT write will extend the file then add this inode to the 3873 * orphan list. So recovery will truncate it back to the original size 3874 * if the machine crashes during the write. 3875 * 3876 */ 3877 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3878 const struct iovec *iov, loff_t offset, 3879 unsigned long nr_segs) 3880 { 3881 struct file *file = iocb->ki_filp; 3882 struct inode *inode = file->f_mapping->host; 3883 ssize_t ret; 3884 size_t count = iov_length(iov, nr_segs); 3885 3886 loff_t final_size = offset + count; 3887 if (rw == WRITE && final_size <= inode->i_size) { 3888 /* 3889 * We could direct write to holes and fallocate. 3890 * 3891 * Allocated blocks to fill the hole are marked as uninitialized 3892 * to prevent paralel buffered read to expose the stale data 3893 * before DIO complete the data IO. 3894 * 3895 * As to previously fallocated extents, ext4 get_block 3896 * will just simply mark the buffer mapped but still 3897 * keep the extents uninitialized. 3898 * 3899 * for non AIO case, we will convert those unwritten extents 3900 * to written after return back from blockdev_direct_IO. 3901 * 3902 * for async DIO, the conversion needs to be defered when 3903 * the IO is completed. The ext4 end_io callback function 3904 * will be called to take care of the conversion work. 3905 * Here for async case, we allocate an io_end structure to 3906 * hook to the iocb. 3907 */ 3908 iocb->private = NULL; 3909 EXT4_I(inode)->cur_aio_dio = NULL; 3910 if (!is_sync_kiocb(iocb)) { 3911 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3912 if (!iocb->private) 3913 return -ENOMEM; 3914 /* 3915 * we save the io structure for current async 3916 * direct IO, so that later ext4_get_blocks() 3917 * could flag the io structure whether there 3918 * is a unwritten extents needs to be converted 3919 * when IO is completed. 3920 */ 3921 EXT4_I(inode)->cur_aio_dio = iocb->private; 3922 } 3923 3924 ret = blockdev_direct_IO(rw, iocb, inode, 3925 inode->i_sb->s_bdev, iov, 3926 offset, nr_segs, 3927 ext4_get_block_write, 3928 ext4_end_io_dio); 3929 if (iocb->private) 3930 EXT4_I(inode)->cur_aio_dio = NULL; 3931 /* 3932 * The io_end structure takes a reference to the inode, 3933 * that structure needs to be destroyed and the 3934 * reference to the inode need to be dropped, when IO is 3935 * complete, even with 0 byte write, or failed. 3936 * 3937 * In the successful AIO DIO case, the io_end structure will be 3938 * desctroyed and the reference to the inode will be dropped 3939 * after the end_io call back function is called. 3940 * 3941 * In the case there is 0 byte write, or error case, since 3942 * VFS direct IO won't invoke the end_io call back function, 3943 * we need to free the end_io structure here. 3944 */ 3945 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3946 ext4_free_io_end(iocb->private); 3947 iocb->private = NULL; 3948 } else if (ret > 0 && ext4_test_inode_state(inode, 3949 EXT4_STATE_DIO_UNWRITTEN)) { 3950 int err; 3951 /* 3952 * for non AIO case, since the IO is already 3953 * completed, we could do the convertion right here 3954 */ 3955 err = ext4_convert_unwritten_extents(inode, 3956 offset, ret); 3957 if (err < 0) 3958 ret = err; 3959 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3960 } 3961 return ret; 3962 } 3963 3964 /* for write the the end of file case, we fall back to old way */ 3965 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3966 } 3967 3968 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3969 const struct iovec *iov, loff_t offset, 3970 unsigned long nr_segs) 3971 { 3972 struct file *file = iocb->ki_filp; 3973 struct inode *inode = file->f_mapping->host; 3974 3975 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3976 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3977 3978 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3979 } 3980 3981 /* 3982 * Pages can be marked dirty completely asynchronously from ext4's journalling 3983 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3984 * much here because ->set_page_dirty is called under VFS locks. The page is 3985 * not necessarily locked. 3986 * 3987 * We cannot just dirty the page and leave attached buffers clean, because the 3988 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3989 * or jbddirty because all the journalling code will explode. 3990 * 3991 * So what we do is to mark the page "pending dirty" and next time writepage 3992 * is called, propagate that into the buffers appropriately. 3993 */ 3994 static int ext4_journalled_set_page_dirty(struct page *page) 3995 { 3996 SetPageChecked(page); 3997 return __set_page_dirty_nobuffers(page); 3998 } 3999 4000 static const struct address_space_operations ext4_ordered_aops = { 4001 .readpage = ext4_readpage, 4002 .readpages = ext4_readpages, 4003 .writepage = ext4_writepage, 4004 .sync_page = block_sync_page, 4005 .write_begin = ext4_write_begin, 4006 .write_end = ext4_ordered_write_end, 4007 .bmap = ext4_bmap, 4008 .invalidatepage = ext4_invalidatepage, 4009 .releasepage = ext4_releasepage, 4010 .direct_IO = ext4_direct_IO, 4011 .migratepage = buffer_migrate_page, 4012 .is_partially_uptodate = block_is_partially_uptodate, 4013 .error_remove_page = generic_error_remove_page, 4014 }; 4015 4016 static const struct address_space_operations ext4_writeback_aops = { 4017 .readpage = ext4_readpage, 4018 .readpages = ext4_readpages, 4019 .writepage = ext4_writepage, 4020 .sync_page = block_sync_page, 4021 .write_begin = ext4_write_begin, 4022 .write_end = ext4_writeback_write_end, 4023 .bmap = ext4_bmap, 4024 .invalidatepage = ext4_invalidatepage, 4025 .releasepage = ext4_releasepage, 4026 .direct_IO = ext4_direct_IO, 4027 .migratepage = buffer_migrate_page, 4028 .is_partially_uptodate = block_is_partially_uptodate, 4029 .error_remove_page = generic_error_remove_page, 4030 }; 4031 4032 static const struct address_space_operations ext4_journalled_aops = { 4033 .readpage = ext4_readpage, 4034 .readpages = ext4_readpages, 4035 .writepage = ext4_writepage, 4036 .sync_page = block_sync_page, 4037 .write_begin = ext4_write_begin, 4038 .write_end = ext4_journalled_write_end, 4039 .set_page_dirty = ext4_journalled_set_page_dirty, 4040 .bmap = ext4_bmap, 4041 .invalidatepage = ext4_invalidatepage, 4042 .releasepage = ext4_releasepage, 4043 .is_partially_uptodate = block_is_partially_uptodate, 4044 .error_remove_page = generic_error_remove_page, 4045 }; 4046 4047 static const struct address_space_operations ext4_da_aops = { 4048 .readpage = ext4_readpage, 4049 .readpages = ext4_readpages, 4050 .writepage = ext4_writepage, 4051 .writepages = ext4_da_writepages, 4052 .sync_page = block_sync_page, 4053 .write_begin = ext4_da_write_begin, 4054 .write_end = ext4_da_write_end, 4055 .bmap = ext4_bmap, 4056 .invalidatepage = ext4_da_invalidatepage, 4057 .releasepage = ext4_releasepage, 4058 .direct_IO = ext4_direct_IO, 4059 .migratepage = buffer_migrate_page, 4060 .is_partially_uptodate = block_is_partially_uptodate, 4061 .error_remove_page = generic_error_remove_page, 4062 }; 4063 4064 void ext4_set_aops(struct inode *inode) 4065 { 4066 if (ext4_should_order_data(inode) && 4067 test_opt(inode->i_sb, DELALLOC)) 4068 inode->i_mapping->a_ops = &ext4_da_aops; 4069 else if (ext4_should_order_data(inode)) 4070 inode->i_mapping->a_ops = &ext4_ordered_aops; 4071 else if (ext4_should_writeback_data(inode) && 4072 test_opt(inode->i_sb, DELALLOC)) 4073 inode->i_mapping->a_ops = &ext4_da_aops; 4074 else if (ext4_should_writeback_data(inode)) 4075 inode->i_mapping->a_ops = &ext4_writeback_aops; 4076 else 4077 inode->i_mapping->a_ops = &ext4_journalled_aops; 4078 } 4079 4080 /* 4081 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4082 * up to the end of the block which corresponds to `from'. 4083 * This required during truncate. We need to physically zero the tail end 4084 * of that block so it doesn't yield old data if the file is later grown. 4085 */ 4086 int ext4_block_truncate_page(handle_t *handle, 4087 struct address_space *mapping, loff_t from) 4088 { 4089 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 4090 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4091 unsigned blocksize, length, pos; 4092 ext4_lblk_t iblock; 4093 struct inode *inode = mapping->host; 4094 struct buffer_head *bh; 4095 struct page *page; 4096 int err = 0; 4097 4098 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4099 mapping_gfp_mask(mapping) & ~__GFP_FS); 4100 if (!page) 4101 return -EINVAL; 4102 4103 blocksize = inode->i_sb->s_blocksize; 4104 length = blocksize - (offset & (blocksize - 1)); 4105 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4106 4107 /* 4108 * For "nobh" option, we can only work if we don't need to 4109 * read-in the page - otherwise we create buffers to do the IO. 4110 */ 4111 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 4112 ext4_should_writeback_data(inode) && PageUptodate(page)) { 4113 zero_user(page, offset, length); 4114 set_page_dirty(page); 4115 goto unlock; 4116 } 4117 4118 if (!page_has_buffers(page)) 4119 create_empty_buffers(page, blocksize, 0); 4120 4121 /* Find the buffer that contains "offset" */ 4122 bh = page_buffers(page); 4123 pos = blocksize; 4124 while (offset >= pos) { 4125 bh = bh->b_this_page; 4126 iblock++; 4127 pos += blocksize; 4128 } 4129 4130 err = 0; 4131 if (buffer_freed(bh)) { 4132 BUFFER_TRACE(bh, "freed: skip"); 4133 goto unlock; 4134 } 4135 4136 if (!buffer_mapped(bh)) { 4137 BUFFER_TRACE(bh, "unmapped"); 4138 ext4_get_block(inode, iblock, bh, 0); 4139 /* unmapped? It's a hole - nothing to do */ 4140 if (!buffer_mapped(bh)) { 4141 BUFFER_TRACE(bh, "still unmapped"); 4142 goto unlock; 4143 } 4144 } 4145 4146 /* Ok, it's mapped. Make sure it's up-to-date */ 4147 if (PageUptodate(page)) 4148 set_buffer_uptodate(bh); 4149 4150 if (!buffer_uptodate(bh)) { 4151 err = -EIO; 4152 ll_rw_block(READ, 1, &bh); 4153 wait_on_buffer(bh); 4154 /* Uhhuh. Read error. Complain and punt. */ 4155 if (!buffer_uptodate(bh)) 4156 goto unlock; 4157 } 4158 4159 if (ext4_should_journal_data(inode)) { 4160 BUFFER_TRACE(bh, "get write access"); 4161 err = ext4_journal_get_write_access(handle, bh); 4162 if (err) 4163 goto unlock; 4164 } 4165 4166 zero_user(page, offset, length); 4167 4168 BUFFER_TRACE(bh, "zeroed end of block"); 4169 4170 err = 0; 4171 if (ext4_should_journal_data(inode)) { 4172 err = ext4_handle_dirty_metadata(handle, inode, bh); 4173 } else { 4174 if (ext4_should_order_data(inode)) 4175 err = ext4_jbd2_file_inode(handle, inode); 4176 mark_buffer_dirty(bh); 4177 } 4178 4179 unlock: 4180 unlock_page(page); 4181 page_cache_release(page); 4182 return err; 4183 } 4184 4185 /* 4186 * Probably it should be a library function... search for first non-zero word 4187 * or memcmp with zero_page, whatever is better for particular architecture. 4188 * Linus? 4189 */ 4190 static inline int all_zeroes(__le32 *p, __le32 *q) 4191 { 4192 while (p < q) 4193 if (*p++) 4194 return 0; 4195 return 1; 4196 } 4197 4198 /** 4199 * ext4_find_shared - find the indirect blocks for partial truncation. 4200 * @inode: inode in question 4201 * @depth: depth of the affected branch 4202 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4203 * @chain: place to store the pointers to partial indirect blocks 4204 * @top: place to the (detached) top of branch 4205 * 4206 * This is a helper function used by ext4_truncate(). 4207 * 4208 * When we do truncate() we may have to clean the ends of several 4209 * indirect blocks but leave the blocks themselves alive. Block is 4210 * partially truncated if some data below the new i_size is refered 4211 * from it (and it is on the path to the first completely truncated 4212 * data block, indeed). We have to free the top of that path along 4213 * with everything to the right of the path. Since no allocation 4214 * past the truncation point is possible until ext4_truncate() 4215 * finishes, we may safely do the latter, but top of branch may 4216 * require special attention - pageout below the truncation point 4217 * might try to populate it. 4218 * 4219 * We atomically detach the top of branch from the tree, store the 4220 * block number of its root in *@top, pointers to buffer_heads of 4221 * partially truncated blocks - in @chain[].bh and pointers to 4222 * their last elements that should not be removed - in 4223 * @chain[].p. Return value is the pointer to last filled element 4224 * of @chain. 4225 * 4226 * The work left to caller to do the actual freeing of subtrees: 4227 * a) free the subtree starting from *@top 4228 * b) free the subtrees whose roots are stored in 4229 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4230 * c) free the subtrees growing from the inode past the @chain[0]. 4231 * (no partially truncated stuff there). */ 4232 4233 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4234 ext4_lblk_t offsets[4], Indirect chain[4], 4235 __le32 *top) 4236 { 4237 Indirect *partial, *p; 4238 int k, err; 4239 4240 *top = 0; 4241 /* Make k index the deepest non-null offset + 1 */ 4242 for (k = depth; k > 1 && !offsets[k-1]; k--) 4243 ; 4244 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4245 /* Writer: pointers */ 4246 if (!partial) 4247 partial = chain + k-1; 4248 /* 4249 * If the branch acquired continuation since we've looked at it - 4250 * fine, it should all survive and (new) top doesn't belong to us. 4251 */ 4252 if (!partial->key && *partial->p) 4253 /* Writer: end */ 4254 goto no_top; 4255 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4256 ; 4257 /* 4258 * OK, we've found the last block that must survive. The rest of our 4259 * branch should be detached before unlocking. However, if that rest 4260 * of branch is all ours and does not grow immediately from the inode 4261 * it's easier to cheat and just decrement partial->p. 4262 */ 4263 if (p == chain + k - 1 && p > chain) { 4264 p->p--; 4265 } else { 4266 *top = *p->p; 4267 /* Nope, don't do this in ext4. Must leave the tree intact */ 4268 #if 0 4269 *p->p = 0; 4270 #endif 4271 } 4272 /* Writer: end */ 4273 4274 while (partial > p) { 4275 brelse(partial->bh); 4276 partial--; 4277 } 4278 no_top: 4279 return partial; 4280 } 4281 4282 /* 4283 * Zero a number of block pointers in either an inode or an indirect block. 4284 * If we restart the transaction we must again get write access to the 4285 * indirect block for further modification. 4286 * 4287 * We release `count' blocks on disk, but (last - first) may be greater 4288 * than `count' because there can be holes in there. 4289 */ 4290 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4291 struct buffer_head *bh, 4292 ext4_fsblk_t block_to_free, 4293 unsigned long count, __le32 *first, 4294 __le32 *last) 4295 { 4296 __le32 *p; 4297 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4298 4299 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4300 flags |= EXT4_FREE_BLOCKS_METADATA; 4301 4302 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4303 count)) { 4304 ext4_error(inode->i_sb, "inode #%lu: " 4305 "attempt to clear blocks %llu len %lu, invalid", 4306 inode->i_ino, (unsigned long long) block_to_free, 4307 count); 4308 return 1; 4309 } 4310 4311 if (try_to_extend_transaction(handle, inode)) { 4312 if (bh) { 4313 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4314 ext4_handle_dirty_metadata(handle, inode, bh); 4315 } 4316 ext4_mark_inode_dirty(handle, inode); 4317 ext4_truncate_restart_trans(handle, inode, 4318 blocks_for_truncate(inode)); 4319 if (bh) { 4320 BUFFER_TRACE(bh, "retaking write access"); 4321 ext4_journal_get_write_access(handle, bh); 4322 } 4323 } 4324 4325 for (p = first; p < last; p++) 4326 *p = 0; 4327 4328 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4329 return 0; 4330 } 4331 4332 /** 4333 * ext4_free_data - free a list of data blocks 4334 * @handle: handle for this transaction 4335 * @inode: inode we are dealing with 4336 * @this_bh: indirect buffer_head which contains *@first and *@last 4337 * @first: array of block numbers 4338 * @last: points immediately past the end of array 4339 * 4340 * We are freeing all blocks refered from that array (numbers are stored as 4341 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4342 * 4343 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4344 * blocks are contiguous then releasing them at one time will only affect one 4345 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4346 * actually use a lot of journal space. 4347 * 4348 * @this_bh will be %NULL if @first and @last point into the inode's direct 4349 * block pointers. 4350 */ 4351 static void ext4_free_data(handle_t *handle, struct inode *inode, 4352 struct buffer_head *this_bh, 4353 __le32 *first, __le32 *last) 4354 { 4355 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4356 unsigned long count = 0; /* Number of blocks in the run */ 4357 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4358 corresponding to 4359 block_to_free */ 4360 ext4_fsblk_t nr; /* Current block # */ 4361 __le32 *p; /* Pointer into inode/ind 4362 for current block */ 4363 int err; 4364 4365 if (this_bh) { /* For indirect block */ 4366 BUFFER_TRACE(this_bh, "get_write_access"); 4367 err = ext4_journal_get_write_access(handle, this_bh); 4368 /* Important: if we can't update the indirect pointers 4369 * to the blocks, we can't free them. */ 4370 if (err) 4371 return; 4372 } 4373 4374 for (p = first; p < last; p++) { 4375 nr = le32_to_cpu(*p); 4376 if (nr) { 4377 /* accumulate blocks to free if they're contiguous */ 4378 if (count == 0) { 4379 block_to_free = nr; 4380 block_to_free_p = p; 4381 count = 1; 4382 } else if (nr == block_to_free + count) { 4383 count++; 4384 } else { 4385 if (ext4_clear_blocks(handle, inode, this_bh, 4386 block_to_free, count, 4387 block_to_free_p, p)) 4388 break; 4389 block_to_free = nr; 4390 block_to_free_p = p; 4391 count = 1; 4392 } 4393 } 4394 } 4395 4396 if (count > 0) 4397 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4398 count, block_to_free_p, p); 4399 4400 if (this_bh) { 4401 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4402 4403 /* 4404 * The buffer head should have an attached journal head at this 4405 * point. However, if the data is corrupted and an indirect 4406 * block pointed to itself, it would have been detached when 4407 * the block was cleared. Check for this instead of OOPSing. 4408 */ 4409 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4410 ext4_handle_dirty_metadata(handle, inode, this_bh); 4411 else 4412 ext4_error(inode->i_sb, 4413 "circular indirect block detected, " 4414 "inode=%lu, block=%llu", 4415 inode->i_ino, 4416 (unsigned long long) this_bh->b_blocknr); 4417 } 4418 } 4419 4420 /** 4421 * ext4_free_branches - free an array of branches 4422 * @handle: JBD handle for this transaction 4423 * @inode: inode we are dealing with 4424 * @parent_bh: the buffer_head which contains *@first and *@last 4425 * @first: array of block numbers 4426 * @last: pointer immediately past the end of array 4427 * @depth: depth of the branches to free 4428 * 4429 * We are freeing all blocks refered from these branches (numbers are 4430 * stored as little-endian 32-bit) and updating @inode->i_blocks 4431 * appropriately. 4432 */ 4433 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4434 struct buffer_head *parent_bh, 4435 __le32 *first, __le32 *last, int depth) 4436 { 4437 ext4_fsblk_t nr; 4438 __le32 *p; 4439 4440 if (ext4_handle_is_aborted(handle)) 4441 return; 4442 4443 if (depth--) { 4444 struct buffer_head *bh; 4445 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4446 p = last; 4447 while (--p >= first) { 4448 nr = le32_to_cpu(*p); 4449 if (!nr) 4450 continue; /* A hole */ 4451 4452 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4453 nr, 1)) { 4454 ext4_error(inode->i_sb, 4455 "indirect mapped block in inode " 4456 "#%lu invalid (level %d, blk #%lu)", 4457 inode->i_ino, depth, 4458 (unsigned long) nr); 4459 break; 4460 } 4461 4462 /* Go read the buffer for the next level down */ 4463 bh = sb_bread(inode->i_sb, nr); 4464 4465 /* 4466 * A read failure? Report error and clear slot 4467 * (should be rare). 4468 */ 4469 if (!bh) { 4470 ext4_error(inode->i_sb, 4471 "Read failure, inode=%lu, block=%llu", 4472 inode->i_ino, nr); 4473 continue; 4474 } 4475 4476 /* This zaps the entire block. Bottom up. */ 4477 BUFFER_TRACE(bh, "free child branches"); 4478 ext4_free_branches(handle, inode, bh, 4479 (__le32 *) bh->b_data, 4480 (__le32 *) bh->b_data + addr_per_block, 4481 depth); 4482 4483 /* 4484 * We've probably journalled the indirect block several 4485 * times during the truncate. But it's no longer 4486 * needed and we now drop it from the transaction via 4487 * jbd2_journal_revoke(). 4488 * 4489 * That's easy if it's exclusively part of this 4490 * transaction. But if it's part of the committing 4491 * transaction then jbd2_journal_forget() will simply 4492 * brelse() it. That means that if the underlying 4493 * block is reallocated in ext4_get_block(), 4494 * unmap_underlying_metadata() will find this block 4495 * and will try to get rid of it. damn, damn. 4496 * 4497 * If this block has already been committed to the 4498 * journal, a revoke record will be written. And 4499 * revoke records must be emitted *before* clearing 4500 * this block's bit in the bitmaps. 4501 */ 4502 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 4503 4504 /* 4505 * Everything below this this pointer has been 4506 * released. Now let this top-of-subtree go. 4507 * 4508 * We want the freeing of this indirect block to be 4509 * atomic in the journal with the updating of the 4510 * bitmap block which owns it. So make some room in 4511 * the journal. 4512 * 4513 * We zero the parent pointer *after* freeing its 4514 * pointee in the bitmaps, so if extend_transaction() 4515 * for some reason fails to put the bitmap changes and 4516 * the release into the same transaction, recovery 4517 * will merely complain about releasing a free block, 4518 * rather than leaking blocks. 4519 */ 4520 if (ext4_handle_is_aborted(handle)) 4521 return; 4522 if (try_to_extend_transaction(handle, inode)) { 4523 ext4_mark_inode_dirty(handle, inode); 4524 ext4_truncate_restart_trans(handle, inode, 4525 blocks_for_truncate(inode)); 4526 } 4527 4528 ext4_free_blocks(handle, inode, 0, nr, 1, 4529 EXT4_FREE_BLOCKS_METADATA); 4530 4531 if (parent_bh) { 4532 /* 4533 * The block which we have just freed is 4534 * pointed to by an indirect block: journal it 4535 */ 4536 BUFFER_TRACE(parent_bh, "get_write_access"); 4537 if (!ext4_journal_get_write_access(handle, 4538 parent_bh)){ 4539 *p = 0; 4540 BUFFER_TRACE(parent_bh, 4541 "call ext4_handle_dirty_metadata"); 4542 ext4_handle_dirty_metadata(handle, 4543 inode, 4544 parent_bh); 4545 } 4546 } 4547 } 4548 } else { 4549 /* We have reached the bottom of the tree. */ 4550 BUFFER_TRACE(parent_bh, "free data blocks"); 4551 ext4_free_data(handle, inode, parent_bh, first, last); 4552 } 4553 } 4554 4555 int ext4_can_truncate(struct inode *inode) 4556 { 4557 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4558 return 0; 4559 if (S_ISREG(inode->i_mode)) 4560 return 1; 4561 if (S_ISDIR(inode->i_mode)) 4562 return 1; 4563 if (S_ISLNK(inode->i_mode)) 4564 return !ext4_inode_is_fast_symlink(inode); 4565 return 0; 4566 } 4567 4568 /* 4569 * ext4_truncate() 4570 * 4571 * We block out ext4_get_block() block instantiations across the entire 4572 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4573 * simultaneously on behalf of the same inode. 4574 * 4575 * As we work through the truncate and commmit bits of it to the journal there 4576 * is one core, guiding principle: the file's tree must always be consistent on 4577 * disk. We must be able to restart the truncate after a crash. 4578 * 4579 * The file's tree may be transiently inconsistent in memory (although it 4580 * probably isn't), but whenever we close off and commit a journal transaction, 4581 * the contents of (the filesystem + the journal) must be consistent and 4582 * restartable. It's pretty simple, really: bottom up, right to left (although 4583 * left-to-right works OK too). 4584 * 4585 * Note that at recovery time, journal replay occurs *before* the restart of 4586 * truncate against the orphan inode list. 4587 * 4588 * The committed inode has the new, desired i_size (which is the same as 4589 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4590 * that this inode's truncate did not complete and it will again call 4591 * ext4_truncate() to have another go. So there will be instantiated blocks 4592 * to the right of the truncation point in a crashed ext4 filesystem. But 4593 * that's fine - as long as they are linked from the inode, the post-crash 4594 * ext4_truncate() run will find them and release them. 4595 */ 4596 void ext4_truncate(struct inode *inode) 4597 { 4598 handle_t *handle; 4599 struct ext4_inode_info *ei = EXT4_I(inode); 4600 __le32 *i_data = ei->i_data; 4601 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4602 struct address_space *mapping = inode->i_mapping; 4603 ext4_lblk_t offsets[4]; 4604 Indirect chain[4]; 4605 Indirect *partial; 4606 __le32 nr = 0; 4607 int n; 4608 ext4_lblk_t last_block; 4609 unsigned blocksize = inode->i_sb->s_blocksize; 4610 4611 if (!ext4_can_truncate(inode)) 4612 return; 4613 4614 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL; 4615 4616 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4617 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4618 4619 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 4620 ext4_ext_truncate(inode); 4621 return; 4622 } 4623 4624 handle = start_transaction(inode); 4625 if (IS_ERR(handle)) 4626 return; /* AKPM: return what? */ 4627 4628 last_block = (inode->i_size + blocksize-1) 4629 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4630 4631 if (inode->i_size & (blocksize - 1)) 4632 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4633 goto out_stop; 4634 4635 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4636 if (n == 0) 4637 goto out_stop; /* error */ 4638 4639 /* 4640 * OK. This truncate is going to happen. We add the inode to the 4641 * orphan list, so that if this truncate spans multiple transactions, 4642 * and we crash, we will resume the truncate when the filesystem 4643 * recovers. It also marks the inode dirty, to catch the new size. 4644 * 4645 * Implication: the file must always be in a sane, consistent 4646 * truncatable state while each transaction commits. 4647 */ 4648 if (ext4_orphan_add(handle, inode)) 4649 goto out_stop; 4650 4651 /* 4652 * From here we block out all ext4_get_block() callers who want to 4653 * modify the block allocation tree. 4654 */ 4655 down_write(&ei->i_data_sem); 4656 4657 ext4_discard_preallocations(inode); 4658 4659 /* 4660 * The orphan list entry will now protect us from any crash which 4661 * occurs before the truncate completes, so it is now safe to propagate 4662 * the new, shorter inode size (held for now in i_size) into the 4663 * on-disk inode. We do this via i_disksize, which is the value which 4664 * ext4 *really* writes onto the disk inode. 4665 */ 4666 ei->i_disksize = inode->i_size; 4667 4668 if (n == 1) { /* direct blocks */ 4669 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4670 i_data + EXT4_NDIR_BLOCKS); 4671 goto do_indirects; 4672 } 4673 4674 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4675 /* Kill the top of shared branch (not detached) */ 4676 if (nr) { 4677 if (partial == chain) { 4678 /* Shared branch grows from the inode */ 4679 ext4_free_branches(handle, inode, NULL, 4680 &nr, &nr+1, (chain+n-1) - partial); 4681 *partial->p = 0; 4682 /* 4683 * We mark the inode dirty prior to restart, 4684 * and prior to stop. No need for it here. 4685 */ 4686 } else { 4687 /* Shared branch grows from an indirect block */ 4688 BUFFER_TRACE(partial->bh, "get_write_access"); 4689 ext4_free_branches(handle, inode, partial->bh, 4690 partial->p, 4691 partial->p+1, (chain+n-1) - partial); 4692 } 4693 } 4694 /* Clear the ends of indirect blocks on the shared branch */ 4695 while (partial > chain) { 4696 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4697 (__le32*)partial->bh->b_data+addr_per_block, 4698 (chain+n-1) - partial); 4699 BUFFER_TRACE(partial->bh, "call brelse"); 4700 brelse(partial->bh); 4701 partial--; 4702 } 4703 do_indirects: 4704 /* Kill the remaining (whole) subtrees */ 4705 switch (offsets[0]) { 4706 default: 4707 nr = i_data[EXT4_IND_BLOCK]; 4708 if (nr) { 4709 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4710 i_data[EXT4_IND_BLOCK] = 0; 4711 } 4712 case EXT4_IND_BLOCK: 4713 nr = i_data[EXT4_DIND_BLOCK]; 4714 if (nr) { 4715 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4716 i_data[EXT4_DIND_BLOCK] = 0; 4717 } 4718 case EXT4_DIND_BLOCK: 4719 nr = i_data[EXT4_TIND_BLOCK]; 4720 if (nr) { 4721 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4722 i_data[EXT4_TIND_BLOCK] = 0; 4723 } 4724 case EXT4_TIND_BLOCK: 4725 ; 4726 } 4727 4728 up_write(&ei->i_data_sem); 4729 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4730 ext4_mark_inode_dirty(handle, inode); 4731 4732 /* 4733 * In a multi-transaction truncate, we only make the final transaction 4734 * synchronous 4735 */ 4736 if (IS_SYNC(inode)) 4737 ext4_handle_sync(handle); 4738 out_stop: 4739 /* 4740 * If this was a simple ftruncate(), and the file will remain alive 4741 * then we need to clear up the orphan record which we created above. 4742 * However, if this was a real unlink then we were called by 4743 * ext4_delete_inode(), and we allow that function to clean up the 4744 * orphan info for us. 4745 */ 4746 if (inode->i_nlink) 4747 ext4_orphan_del(handle, inode); 4748 4749 ext4_journal_stop(handle); 4750 } 4751 4752 /* 4753 * ext4_get_inode_loc returns with an extra refcount against the inode's 4754 * underlying buffer_head on success. If 'in_mem' is true, we have all 4755 * data in memory that is needed to recreate the on-disk version of this 4756 * inode. 4757 */ 4758 static int __ext4_get_inode_loc(struct inode *inode, 4759 struct ext4_iloc *iloc, int in_mem) 4760 { 4761 struct ext4_group_desc *gdp; 4762 struct buffer_head *bh; 4763 struct super_block *sb = inode->i_sb; 4764 ext4_fsblk_t block; 4765 int inodes_per_block, inode_offset; 4766 4767 iloc->bh = NULL; 4768 if (!ext4_valid_inum(sb, inode->i_ino)) 4769 return -EIO; 4770 4771 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4772 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4773 if (!gdp) 4774 return -EIO; 4775 4776 /* 4777 * Figure out the offset within the block group inode table 4778 */ 4779 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4780 inode_offset = ((inode->i_ino - 1) % 4781 EXT4_INODES_PER_GROUP(sb)); 4782 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4783 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4784 4785 bh = sb_getblk(sb, block); 4786 if (!bh) { 4787 ext4_error(sb, "unable to read inode block - " 4788 "inode=%lu, block=%llu", inode->i_ino, block); 4789 return -EIO; 4790 } 4791 if (!buffer_uptodate(bh)) { 4792 lock_buffer(bh); 4793 4794 /* 4795 * If the buffer has the write error flag, we have failed 4796 * to write out another inode in the same block. In this 4797 * case, we don't have to read the block because we may 4798 * read the old inode data successfully. 4799 */ 4800 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4801 set_buffer_uptodate(bh); 4802 4803 if (buffer_uptodate(bh)) { 4804 /* someone brought it uptodate while we waited */ 4805 unlock_buffer(bh); 4806 goto has_buffer; 4807 } 4808 4809 /* 4810 * If we have all information of the inode in memory and this 4811 * is the only valid inode in the block, we need not read the 4812 * block. 4813 */ 4814 if (in_mem) { 4815 struct buffer_head *bitmap_bh; 4816 int i, start; 4817 4818 start = inode_offset & ~(inodes_per_block - 1); 4819 4820 /* Is the inode bitmap in cache? */ 4821 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4822 if (!bitmap_bh) 4823 goto make_io; 4824 4825 /* 4826 * If the inode bitmap isn't in cache then the 4827 * optimisation may end up performing two reads instead 4828 * of one, so skip it. 4829 */ 4830 if (!buffer_uptodate(bitmap_bh)) { 4831 brelse(bitmap_bh); 4832 goto make_io; 4833 } 4834 for (i = start; i < start + inodes_per_block; i++) { 4835 if (i == inode_offset) 4836 continue; 4837 if (ext4_test_bit(i, bitmap_bh->b_data)) 4838 break; 4839 } 4840 brelse(bitmap_bh); 4841 if (i == start + inodes_per_block) { 4842 /* all other inodes are free, so skip I/O */ 4843 memset(bh->b_data, 0, bh->b_size); 4844 set_buffer_uptodate(bh); 4845 unlock_buffer(bh); 4846 goto has_buffer; 4847 } 4848 } 4849 4850 make_io: 4851 /* 4852 * If we need to do any I/O, try to pre-readahead extra 4853 * blocks from the inode table. 4854 */ 4855 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4856 ext4_fsblk_t b, end, table; 4857 unsigned num; 4858 4859 table = ext4_inode_table(sb, gdp); 4860 /* s_inode_readahead_blks is always a power of 2 */ 4861 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4862 if (table > b) 4863 b = table; 4864 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4865 num = EXT4_INODES_PER_GROUP(sb); 4866 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4867 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4868 num -= ext4_itable_unused_count(sb, gdp); 4869 table += num / inodes_per_block; 4870 if (end > table) 4871 end = table; 4872 while (b <= end) 4873 sb_breadahead(sb, b++); 4874 } 4875 4876 /* 4877 * There are other valid inodes in the buffer, this inode 4878 * has in-inode xattrs, or we don't have this inode in memory. 4879 * Read the block from disk. 4880 */ 4881 get_bh(bh); 4882 bh->b_end_io = end_buffer_read_sync; 4883 submit_bh(READ_META, bh); 4884 wait_on_buffer(bh); 4885 if (!buffer_uptodate(bh)) { 4886 ext4_error(sb, "unable to read inode block - inode=%lu," 4887 " block=%llu", inode->i_ino, block); 4888 brelse(bh); 4889 return -EIO; 4890 } 4891 } 4892 has_buffer: 4893 iloc->bh = bh; 4894 return 0; 4895 } 4896 4897 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4898 { 4899 /* We have all inode data except xattrs in memory here. */ 4900 return __ext4_get_inode_loc(inode, iloc, 4901 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4902 } 4903 4904 void ext4_set_inode_flags(struct inode *inode) 4905 { 4906 unsigned int flags = EXT4_I(inode)->i_flags; 4907 4908 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4909 if (flags & EXT4_SYNC_FL) 4910 inode->i_flags |= S_SYNC; 4911 if (flags & EXT4_APPEND_FL) 4912 inode->i_flags |= S_APPEND; 4913 if (flags & EXT4_IMMUTABLE_FL) 4914 inode->i_flags |= S_IMMUTABLE; 4915 if (flags & EXT4_NOATIME_FL) 4916 inode->i_flags |= S_NOATIME; 4917 if (flags & EXT4_DIRSYNC_FL) 4918 inode->i_flags |= S_DIRSYNC; 4919 } 4920 4921 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4922 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4923 { 4924 unsigned int flags = ei->vfs_inode.i_flags; 4925 4926 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4927 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4928 if (flags & S_SYNC) 4929 ei->i_flags |= EXT4_SYNC_FL; 4930 if (flags & S_APPEND) 4931 ei->i_flags |= EXT4_APPEND_FL; 4932 if (flags & S_IMMUTABLE) 4933 ei->i_flags |= EXT4_IMMUTABLE_FL; 4934 if (flags & S_NOATIME) 4935 ei->i_flags |= EXT4_NOATIME_FL; 4936 if (flags & S_DIRSYNC) 4937 ei->i_flags |= EXT4_DIRSYNC_FL; 4938 } 4939 4940 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4941 struct ext4_inode_info *ei) 4942 { 4943 blkcnt_t i_blocks ; 4944 struct inode *inode = &(ei->vfs_inode); 4945 struct super_block *sb = inode->i_sb; 4946 4947 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4948 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4949 /* we are using combined 48 bit field */ 4950 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4951 le32_to_cpu(raw_inode->i_blocks_lo); 4952 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4953 /* i_blocks represent file system block size */ 4954 return i_blocks << (inode->i_blkbits - 9); 4955 } else { 4956 return i_blocks; 4957 } 4958 } else { 4959 return le32_to_cpu(raw_inode->i_blocks_lo); 4960 } 4961 } 4962 4963 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4964 { 4965 struct ext4_iloc iloc; 4966 struct ext4_inode *raw_inode; 4967 struct ext4_inode_info *ei; 4968 struct inode *inode; 4969 journal_t *journal = EXT4_SB(sb)->s_journal; 4970 long ret; 4971 int block; 4972 4973 inode = iget_locked(sb, ino); 4974 if (!inode) 4975 return ERR_PTR(-ENOMEM); 4976 if (!(inode->i_state & I_NEW)) 4977 return inode; 4978 4979 ei = EXT4_I(inode); 4980 iloc.bh = 0; 4981 4982 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4983 if (ret < 0) 4984 goto bad_inode; 4985 raw_inode = ext4_raw_inode(&iloc); 4986 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4987 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4988 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4989 if (!(test_opt(inode->i_sb, NO_UID32))) { 4990 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4991 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4992 } 4993 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4994 4995 ei->i_state_flags = 0; 4996 ei->i_dir_start_lookup = 0; 4997 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4998 /* We now have enough fields to check if the inode was active or not. 4999 * This is needed because nfsd might try to access dead inodes 5000 * the test is that same one that e2fsck uses 5001 * NeilBrown 1999oct15 5002 */ 5003 if (inode->i_nlink == 0) { 5004 if (inode->i_mode == 0 || 5005 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 5006 /* this inode is deleted */ 5007 ret = -ESTALE; 5008 goto bad_inode; 5009 } 5010 /* The only unlinked inodes we let through here have 5011 * valid i_mode and are being read by the orphan 5012 * recovery code: that's fine, we're about to complete 5013 * the process of deleting those. */ 5014 } 5015 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5016 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5017 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5018 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 5019 ei->i_file_acl |= 5020 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5021 inode->i_size = ext4_isize(raw_inode); 5022 ei->i_disksize = inode->i_size; 5023 #ifdef CONFIG_QUOTA 5024 ei->i_reserved_quota = 0; 5025 #endif 5026 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5027 ei->i_block_group = iloc.block_group; 5028 ei->i_last_alloc_group = ~0; 5029 /* 5030 * NOTE! The in-memory inode i_data array is in little-endian order 5031 * even on big-endian machines: we do NOT byteswap the block numbers! 5032 */ 5033 for (block = 0; block < EXT4_N_BLOCKS; block++) 5034 ei->i_data[block] = raw_inode->i_block[block]; 5035 INIT_LIST_HEAD(&ei->i_orphan); 5036 5037 /* 5038 * Set transaction id's of transactions that have to be committed 5039 * to finish f[data]sync. We set them to currently running transaction 5040 * as we cannot be sure that the inode or some of its metadata isn't 5041 * part of the transaction - the inode could have been reclaimed and 5042 * now it is reread from disk. 5043 */ 5044 if (journal) { 5045 transaction_t *transaction; 5046 tid_t tid; 5047 5048 spin_lock(&journal->j_state_lock); 5049 if (journal->j_running_transaction) 5050 transaction = journal->j_running_transaction; 5051 else 5052 transaction = journal->j_committing_transaction; 5053 if (transaction) 5054 tid = transaction->t_tid; 5055 else 5056 tid = journal->j_commit_sequence; 5057 spin_unlock(&journal->j_state_lock); 5058 ei->i_sync_tid = tid; 5059 ei->i_datasync_tid = tid; 5060 } 5061 5062 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5063 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5064 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5065 EXT4_INODE_SIZE(inode->i_sb)) { 5066 ret = -EIO; 5067 goto bad_inode; 5068 } 5069 if (ei->i_extra_isize == 0) { 5070 /* The extra space is currently unused. Use it. */ 5071 ei->i_extra_isize = sizeof(struct ext4_inode) - 5072 EXT4_GOOD_OLD_INODE_SIZE; 5073 } else { 5074 __le32 *magic = (void *)raw_inode + 5075 EXT4_GOOD_OLD_INODE_SIZE + 5076 ei->i_extra_isize; 5077 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 5078 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5079 } 5080 } else 5081 ei->i_extra_isize = 0; 5082 5083 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5084 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5085 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5086 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5087 5088 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 5089 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5090 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5091 inode->i_version |= 5092 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5093 } 5094 5095 ret = 0; 5096 if (ei->i_file_acl && 5097 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5098 ext4_error(sb, "bad extended attribute block %llu inode #%lu", 5099 ei->i_file_acl, inode->i_ino); 5100 ret = -EIO; 5101 goto bad_inode; 5102 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 5103 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5104 (S_ISLNK(inode->i_mode) && 5105 !ext4_inode_is_fast_symlink(inode))) 5106 /* Validate extent which is part of inode */ 5107 ret = ext4_ext_check_inode(inode); 5108 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5109 (S_ISLNK(inode->i_mode) && 5110 !ext4_inode_is_fast_symlink(inode))) { 5111 /* Validate block references which are part of inode */ 5112 ret = ext4_check_inode_blockref(inode); 5113 } 5114 if (ret) 5115 goto bad_inode; 5116 5117 if (S_ISREG(inode->i_mode)) { 5118 inode->i_op = &ext4_file_inode_operations; 5119 inode->i_fop = &ext4_file_operations; 5120 ext4_set_aops(inode); 5121 } else if (S_ISDIR(inode->i_mode)) { 5122 inode->i_op = &ext4_dir_inode_operations; 5123 inode->i_fop = &ext4_dir_operations; 5124 } else if (S_ISLNK(inode->i_mode)) { 5125 if (ext4_inode_is_fast_symlink(inode)) { 5126 inode->i_op = &ext4_fast_symlink_inode_operations; 5127 nd_terminate_link(ei->i_data, inode->i_size, 5128 sizeof(ei->i_data) - 1); 5129 } else { 5130 inode->i_op = &ext4_symlink_inode_operations; 5131 ext4_set_aops(inode); 5132 } 5133 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5134 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5135 inode->i_op = &ext4_special_inode_operations; 5136 if (raw_inode->i_block[0]) 5137 init_special_inode(inode, inode->i_mode, 5138 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5139 else 5140 init_special_inode(inode, inode->i_mode, 5141 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5142 } else { 5143 ret = -EIO; 5144 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu", 5145 inode->i_mode, inode->i_ino); 5146 goto bad_inode; 5147 } 5148 brelse(iloc.bh); 5149 ext4_set_inode_flags(inode); 5150 unlock_new_inode(inode); 5151 return inode; 5152 5153 bad_inode: 5154 brelse(iloc.bh); 5155 iget_failed(inode); 5156 return ERR_PTR(ret); 5157 } 5158 5159 static int ext4_inode_blocks_set(handle_t *handle, 5160 struct ext4_inode *raw_inode, 5161 struct ext4_inode_info *ei) 5162 { 5163 struct inode *inode = &(ei->vfs_inode); 5164 u64 i_blocks = inode->i_blocks; 5165 struct super_block *sb = inode->i_sb; 5166 5167 if (i_blocks <= ~0U) { 5168 /* 5169 * i_blocks can be represnted in a 32 bit variable 5170 * as multiple of 512 bytes 5171 */ 5172 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5173 raw_inode->i_blocks_high = 0; 5174 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5175 return 0; 5176 } 5177 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5178 return -EFBIG; 5179 5180 if (i_blocks <= 0xffffffffffffULL) { 5181 /* 5182 * i_blocks can be represented in a 48 bit variable 5183 * as multiple of 512 bytes 5184 */ 5185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5186 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5187 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5188 } else { 5189 ei->i_flags |= EXT4_HUGE_FILE_FL; 5190 /* i_block is stored in file system block size */ 5191 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5193 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5194 } 5195 return 0; 5196 } 5197 5198 /* 5199 * Post the struct inode info into an on-disk inode location in the 5200 * buffer-cache. This gobbles the caller's reference to the 5201 * buffer_head in the inode location struct. 5202 * 5203 * The caller must have write access to iloc->bh. 5204 */ 5205 static int ext4_do_update_inode(handle_t *handle, 5206 struct inode *inode, 5207 struct ext4_iloc *iloc) 5208 { 5209 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5210 struct ext4_inode_info *ei = EXT4_I(inode); 5211 struct buffer_head *bh = iloc->bh; 5212 int err = 0, rc, block; 5213 5214 /* For fields not not tracking in the in-memory inode, 5215 * initialise them to zero for new inodes. */ 5216 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5217 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5218 5219 ext4_get_inode_flags(ei); 5220 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5221 if (!(test_opt(inode->i_sb, NO_UID32))) { 5222 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5223 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5224 /* 5225 * Fix up interoperability with old kernels. Otherwise, old inodes get 5226 * re-used with the upper 16 bits of the uid/gid intact 5227 */ 5228 if (!ei->i_dtime) { 5229 raw_inode->i_uid_high = 5230 cpu_to_le16(high_16_bits(inode->i_uid)); 5231 raw_inode->i_gid_high = 5232 cpu_to_le16(high_16_bits(inode->i_gid)); 5233 } else { 5234 raw_inode->i_uid_high = 0; 5235 raw_inode->i_gid_high = 0; 5236 } 5237 } else { 5238 raw_inode->i_uid_low = 5239 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5240 raw_inode->i_gid_low = 5241 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5242 raw_inode->i_uid_high = 0; 5243 raw_inode->i_gid_high = 0; 5244 } 5245 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5246 5247 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5248 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5249 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5250 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5251 5252 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5253 goto out_brelse; 5254 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5255 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5256 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5257 cpu_to_le32(EXT4_OS_HURD)) 5258 raw_inode->i_file_acl_high = 5259 cpu_to_le16(ei->i_file_acl >> 32); 5260 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5261 ext4_isize_set(raw_inode, ei->i_disksize); 5262 if (ei->i_disksize > 0x7fffffffULL) { 5263 struct super_block *sb = inode->i_sb; 5264 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5265 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5266 EXT4_SB(sb)->s_es->s_rev_level == 5267 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5268 /* If this is the first large file 5269 * created, add a flag to the superblock. 5270 */ 5271 err = ext4_journal_get_write_access(handle, 5272 EXT4_SB(sb)->s_sbh); 5273 if (err) 5274 goto out_brelse; 5275 ext4_update_dynamic_rev(sb); 5276 EXT4_SET_RO_COMPAT_FEATURE(sb, 5277 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5278 sb->s_dirt = 1; 5279 ext4_handle_sync(handle); 5280 err = ext4_handle_dirty_metadata(handle, NULL, 5281 EXT4_SB(sb)->s_sbh); 5282 } 5283 } 5284 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5285 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5286 if (old_valid_dev(inode->i_rdev)) { 5287 raw_inode->i_block[0] = 5288 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5289 raw_inode->i_block[1] = 0; 5290 } else { 5291 raw_inode->i_block[0] = 0; 5292 raw_inode->i_block[1] = 5293 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5294 raw_inode->i_block[2] = 0; 5295 } 5296 } else 5297 for (block = 0; block < EXT4_N_BLOCKS; block++) 5298 raw_inode->i_block[block] = ei->i_data[block]; 5299 5300 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5301 if (ei->i_extra_isize) { 5302 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5303 raw_inode->i_version_hi = 5304 cpu_to_le32(inode->i_version >> 32); 5305 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5306 } 5307 5308 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5309 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5310 if (!err) 5311 err = rc; 5312 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5313 5314 ext4_update_inode_fsync_trans(handle, inode, 0); 5315 out_brelse: 5316 brelse(bh); 5317 ext4_std_error(inode->i_sb, err); 5318 return err; 5319 } 5320 5321 /* 5322 * ext4_write_inode() 5323 * 5324 * We are called from a few places: 5325 * 5326 * - Within generic_file_write() for O_SYNC files. 5327 * Here, there will be no transaction running. We wait for any running 5328 * trasnaction to commit. 5329 * 5330 * - Within sys_sync(), kupdate and such. 5331 * We wait on commit, if tol to. 5332 * 5333 * - Within prune_icache() (PF_MEMALLOC == true) 5334 * Here we simply return. We can't afford to block kswapd on the 5335 * journal commit. 5336 * 5337 * In all cases it is actually safe for us to return without doing anything, 5338 * because the inode has been copied into a raw inode buffer in 5339 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5340 * knfsd. 5341 * 5342 * Note that we are absolutely dependent upon all inode dirtiers doing the 5343 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5344 * which we are interested. 5345 * 5346 * It would be a bug for them to not do this. The code: 5347 * 5348 * mark_inode_dirty(inode) 5349 * stuff(); 5350 * inode->i_size = expr; 5351 * 5352 * is in error because a kswapd-driven write_inode() could occur while 5353 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5354 * will no longer be on the superblock's dirty inode list. 5355 */ 5356 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5357 { 5358 int err; 5359 5360 if (current->flags & PF_MEMALLOC) 5361 return 0; 5362 5363 if (EXT4_SB(inode->i_sb)->s_journal) { 5364 if (ext4_journal_current_handle()) { 5365 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5366 dump_stack(); 5367 return -EIO; 5368 } 5369 5370 if (wbc->sync_mode != WB_SYNC_ALL) 5371 return 0; 5372 5373 err = ext4_force_commit(inode->i_sb); 5374 } else { 5375 struct ext4_iloc iloc; 5376 5377 err = ext4_get_inode_loc(inode, &iloc); 5378 if (err) 5379 return err; 5380 if (wbc->sync_mode == WB_SYNC_ALL) 5381 sync_dirty_buffer(iloc.bh); 5382 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5383 ext4_error(inode->i_sb, "IO error syncing inode, " 5384 "inode=%lu, block=%llu", inode->i_ino, 5385 (unsigned long long)iloc.bh->b_blocknr); 5386 err = -EIO; 5387 } 5388 } 5389 return err; 5390 } 5391 5392 /* 5393 * ext4_setattr() 5394 * 5395 * Called from notify_change. 5396 * 5397 * We want to trap VFS attempts to truncate the file as soon as 5398 * possible. In particular, we want to make sure that when the VFS 5399 * shrinks i_size, we put the inode on the orphan list and modify 5400 * i_disksize immediately, so that during the subsequent flushing of 5401 * dirty pages and freeing of disk blocks, we can guarantee that any 5402 * commit will leave the blocks being flushed in an unused state on 5403 * disk. (On recovery, the inode will get truncated and the blocks will 5404 * be freed, so we have a strong guarantee that no future commit will 5405 * leave these blocks visible to the user.) 5406 * 5407 * Another thing we have to assure is that if we are in ordered mode 5408 * and inode is still attached to the committing transaction, we must 5409 * we start writeout of all the dirty pages which are being truncated. 5410 * This way we are sure that all the data written in the previous 5411 * transaction are already on disk (truncate waits for pages under 5412 * writeback). 5413 * 5414 * Called with inode->i_mutex down. 5415 */ 5416 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5417 { 5418 struct inode *inode = dentry->d_inode; 5419 int error, rc = 0; 5420 const unsigned int ia_valid = attr->ia_valid; 5421 5422 error = inode_change_ok(inode, attr); 5423 if (error) 5424 return error; 5425 5426 if (ia_valid & ATTR_SIZE) 5427 dquot_initialize(inode); 5428 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5429 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5430 handle_t *handle; 5431 5432 /* (user+group)*(old+new) structure, inode write (sb, 5433 * inode block, ? - but truncate inode update has it) */ 5434 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5435 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5436 if (IS_ERR(handle)) { 5437 error = PTR_ERR(handle); 5438 goto err_out; 5439 } 5440 error = dquot_transfer(inode, attr); 5441 if (error) { 5442 ext4_journal_stop(handle); 5443 return error; 5444 } 5445 /* Update corresponding info in inode so that everything is in 5446 * one transaction */ 5447 if (attr->ia_valid & ATTR_UID) 5448 inode->i_uid = attr->ia_uid; 5449 if (attr->ia_valid & ATTR_GID) 5450 inode->i_gid = attr->ia_gid; 5451 error = ext4_mark_inode_dirty(handle, inode); 5452 ext4_journal_stop(handle); 5453 } 5454 5455 if (attr->ia_valid & ATTR_SIZE) { 5456 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 5457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5458 5459 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5460 error = -EFBIG; 5461 goto err_out; 5462 } 5463 } 5464 } 5465 5466 if (S_ISREG(inode->i_mode) && 5467 attr->ia_valid & ATTR_SIZE && 5468 (attr->ia_size < inode->i_size || 5469 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) { 5470 handle_t *handle; 5471 5472 handle = ext4_journal_start(inode, 3); 5473 if (IS_ERR(handle)) { 5474 error = PTR_ERR(handle); 5475 goto err_out; 5476 } 5477 5478 error = ext4_orphan_add(handle, inode); 5479 EXT4_I(inode)->i_disksize = attr->ia_size; 5480 rc = ext4_mark_inode_dirty(handle, inode); 5481 if (!error) 5482 error = rc; 5483 ext4_journal_stop(handle); 5484 5485 if (ext4_should_order_data(inode)) { 5486 error = ext4_begin_ordered_truncate(inode, 5487 attr->ia_size); 5488 if (error) { 5489 /* Do as much error cleanup as possible */ 5490 handle = ext4_journal_start(inode, 3); 5491 if (IS_ERR(handle)) { 5492 ext4_orphan_del(NULL, inode); 5493 goto err_out; 5494 } 5495 ext4_orphan_del(handle, inode); 5496 ext4_journal_stop(handle); 5497 goto err_out; 5498 } 5499 } 5500 /* ext4_truncate will clear the flag */ 5501 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL)) 5502 ext4_truncate(inode); 5503 } 5504 5505 rc = inode_setattr(inode, attr); 5506 5507 /* If inode_setattr's call to ext4_truncate failed to get a 5508 * transaction handle at all, we need to clean up the in-core 5509 * orphan list manually. */ 5510 if (inode->i_nlink) 5511 ext4_orphan_del(NULL, inode); 5512 5513 if (!rc && (ia_valid & ATTR_MODE)) 5514 rc = ext4_acl_chmod(inode); 5515 5516 err_out: 5517 ext4_std_error(inode->i_sb, error); 5518 if (!error) 5519 error = rc; 5520 return error; 5521 } 5522 5523 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5524 struct kstat *stat) 5525 { 5526 struct inode *inode; 5527 unsigned long delalloc_blocks; 5528 5529 inode = dentry->d_inode; 5530 generic_fillattr(inode, stat); 5531 5532 /* 5533 * We can't update i_blocks if the block allocation is delayed 5534 * otherwise in the case of system crash before the real block 5535 * allocation is done, we will have i_blocks inconsistent with 5536 * on-disk file blocks. 5537 * We always keep i_blocks updated together with real 5538 * allocation. But to not confuse with user, stat 5539 * will return the blocks that include the delayed allocation 5540 * blocks for this file. 5541 */ 5542 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5543 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5545 5546 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5547 return 0; 5548 } 5549 5550 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5551 int chunk) 5552 { 5553 int indirects; 5554 5555 /* if nrblocks are contiguous */ 5556 if (chunk) { 5557 /* 5558 * With N contiguous data blocks, it need at most 5559 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5560 * 2 dindirect blocks 5561 * 1 tindirect block 5562 */ 5563 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5564 return indirects + 3; 5565 } 5566 /* 5567 * if nrblocks are not contiguous, worse case, each block touch 5568 * a indirect block, and each indirect block touch a double indirect 5569 * block, plus a triple indirect block 5570 */ 5571 indirects = nrblocks * 2 + 1; 5572 return indirects; 5573 } 5574 5575 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5576 { 5577 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 5578 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5579 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5580 } 5581 5582 /* 5583 * Account for index blocks, block groups bitmaps and block group 5584 * descriptor blocks if modify datablocks and index blocks 5585 * worse case, the indexs blocks spread over different block groups 5586 * 5587 * If datablocks are discontiguous, they are possible to spread over 5588 * different block groups too. If they are contiuguous, with flexbg, 5589 * they could still across block group boundary. 5590 * 5591 * Also account for superblock, inode, quota and xattr blocks 5592 */ 5593 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5594 { 5595 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5596 int gdpblocks; 5597 int idxblocks; 5598 int ret = 0; 5599 5600 /* 5601 * How many index blocks need to touch to modify nrblocks? 5602 * The "Chunk" flag indicating whether the nrblocks is 5603 * physically contiguous on disk 5604 * 5605 * For Direct IO and fallocate, they calls get_block to allocate 5606 * one single extent at a time, so they could set the "Chunk" flag 5607 */ 5608 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5609 5610 ret = idxblocks; 5611 5612 /* 5613 * Now let's see how many group bitmaps and group descriptors need 5614 * to account 5615 */ 5616 groups = idxblocks; 5617 if (chunk) 5618 groups += 1; 5619 else 5620 groups += nrblocks; 5621 5622 gdpblocks = groups; 5623 if (groups > ngroups) 5624 groups = ngroups; 5625 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5626 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5627 5628 /* bitmaps and block group descriptor blocks */ 5629 ret += groups + gdpblocks; 5630 5631 /* Blocks for super block, inode, quota and xattr blocks */ 5632 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5633 5634 return ret; 5635 } 5636 5637 /* 5638 * Calulate the total number of credits to reserve to fit 5639 * the modification of a single pages into a single transaction, 5640 * which may include multiple chunks of block allocations. 5641 * 5642 * This could be called via ext4_write_begin() 5643 * 5644 * We need to consider the worse case, when 5645 * one new block per extent. 5646 */ 5647 int ext4_writepage_trans_blocks(struct inode *inode) 5648 { 5649 int bpp = ext4_journal_blocks_per_page(inode); 5650 int ret; 5651 5652 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5653 5654 /* Account for data blocks for journalled mode */ 5655 if (ext4_should_journal_data(inode)) 5656 ret += bpp; 5657 return ret; 5658 } 5659 5660 /* 5661 * Calculate the journal credits for a chunk of data modification. 5662 * 5663 * This is called from DIO, fallocate or whoever calling 5664 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks. 5665 * 5666 * journal buffers for data blocks are not included here, as DIO 5667 * and fallocate do no need to journal data buffers. 5668 */ 5669 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5670 { 5671 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5672 } 5673 5674 /* 5675 * The caller must have previously called ext4_reserve_inode_write(). 5676 * Give this, we know that the caller already has write access to iloc->bh. 5677 */ 5678 int ext4_mark_iloc_dirty(handle_t *handle, 5679 struct inode *inode, struct ext4_iloc *iloc) 5680 { 5681 int err = 0; 5682 5683 if (test_opt(inode->i_sb, I_VERSION)) 5684 inode_inc_iversion(inode); 5685 5686 /* the do_update_inode consumes one bh->b_count */ 5687 get_bh(iloc->bh); 5688 5689 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5690 err = ext4_do_update_inode(handle, inode, iloc); 5691 put_bh(iloc->bh); 5692 return err; 5693 } 5694 5695 /* 5696 * On success, We end up with an outstanding reference count against 5697 * iloc->bh. This _must_ be cleaned up later. 5698 */ 5699 5700 int 5701 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5702 struct ext4_iloc *iloc) 5703 { 5704 int err; 5705 5706 err = ext4_get_inode_loc(inode, iloc); 5707 if (!err) { 5708 BUFFER_TRACE(iloc->bh, "get_write_access"); 5709 err = ext4_journal_get_write_access(handle, iloc->bh); 5710 if (err) { 5711 brelse(iloc->bh); 5712 iloc->bh = NULL; 5713 } 5714 } 5715 ext4_std_error(inode->i_sb, err); 5716 return err; 5717 } 5718 5719 /* 5720 * Expand an inode by new_extra_isize bytes. 5721 * Returns 0 on success or negative error number on failure. 5722 */ 5723 static int ext4_expand_extra_isize(struct inode *inode, 5724 unsigned int new_extra_isize, 5725 struct ext4_iloc iloc, 5726 handle_t *handle) 5727 { 5728 struct ext4_inode *raw_inode; 5729 struct ext4_xattr_ibody_header *header; 5730 struct ext4_xattr_entry *entry; 5731 5732 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5733 return 0; 5734 5735 raw_inode = ext4_raw_inode(&iloc); 5736 5737 header = IHDR(inode, raw_inode); 5738 entry = IFIRST(header); 5739 5740 /* No extended attributes present */ 5741 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5742 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5743 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5744 new_extra_isize); 5745 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5746 return 0; 5747 } 5748 5749 /* try to expand with EAs present */ 5750 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5751 raw_inode, handle); 5752 } 5753 5754 /* 5755 * What we do here is to mark the in-core inode as clean with respect to inode 5756 * dirtiness (it may still be data-dirty). 5757 * This means that the in-core inode may be reaped by prune_icache 5758 * without having to perform any I/O. This is a very good thing, 5759 * because *any* task may call prune_icache - even ones which 5760 * have a transaction open against a different journal. 5761 * 5762 * Is this cheating? Not really. Sure, we haven't written the 5763 * inode out, but prune_icache isn't a user-visible syncing function. 5764 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5765 * we start and wait on commits. 5766 * 5767 * Is this efficient/effective? Well, we're being nice to the system 5768 * by cleaning up our inodes proactively so they can be reaped 5769 * without I/O. But we are potentially leaving up to five seconds' 5770 * worth of inodes floating about which prune_icache wants us to 5771 * write out. One way to fix that would be to get prune_icache() 5772 * to do a write_super() to free up some memory. It has the desired 5773 * effect. 5774 */ 5775 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5776 { 5777 struct ext4_iloc iloc; 5778 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5779 static unsigned int mnt_count; 5780 int err, ret; 5781 5782 might_sleep(); 5783 err = ext4_reserve_inode_write(handle, inode, &iloc); 5784 if (ext4_handle_valid(handle) && 5785 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5786 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5787 /* 5788 * We need extra buffer credits since we may write into EA block 5789 * with this same handle. If journal_extend fails, then it will 5790 * only result in a minor loss of functionality for that inode. 5791 * If this is felt to be critical, then e2fsck should be run to 5792 * force a large enough s_min_extra_isize. 5793 */ 5794 if ((jbd2_journal_extend(handle, 5795 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5796 ret = ext4_expand_extra_isize(inode, 5797 sbi->s_want_extra_isize, 5798 iloc, handle); 5799 if (ret) { 5800 ext4_set_inode_state(inode, 5801 EXT4_STATE_NO_EXPAND); 5802 if (mnt_count != 5803 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5804 ext4_warning(inode->i_sb, 5805 "Unable to expand inode %lu. Delete" 5806 " some EAs or run e2fsck.", 5807 inode->i_ino); 5808 mnt_count = 5809 le16_to_cpu(sbi->s_es->s_mnt_count); 5810 } 5811 } 5812 } 5813 } 5814 if (!err) 5815 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5816 return err; 5817 } 5818 5819 /* 5820 * ext4_dirty_inode() is called from __mark_inode_dirty() 5821 * 5822 * We're really interested in the case where a file is being extended. 5823 * i_size has been changed by generic_commit_write() and we thus need 5824 * to include the updated inode in the current transaction. 5825 * 5826 * Also, dquot_alloc_block() will always dirty the inode when blocks 5827 * are allocated to the file. 5828 * 5829 * If the inode is marked synchronous, we don't honour that here - doing 5830 * so would cause a commit on atime updates, which we don't bother doing. 5831 * We handle synchronous inodes at the highest possible level. 5832 */ 5833 void ext4_dirty_inode(struct inode *inode) 5834 { 5835 handle_t *handle; 5836 5837 handle = ext4_journal_start(inode, 2); 5838 if (IS_ERR(handle)) 5839 goto out; 5840 5841 ext4_mark_inode_dirty(handle, inode); 5842 5843 ext4_journal_stop(handle); 5844 out: 5845 return; 5846 } 5847 5848 #if 0 5849 /* 5850 * Bind an inode's backing buffer_head into this transaction, to prevent 5851 * it from being flushed to disk early. Unlike 5852 * ext4_reserve_inode_write, this leaves behind no bh reference and 5853 * returns no iloc structure, so the caller needs to repeat the iloc 5854 * lookup to mark the inode dirty later. 5855 */ 5856 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5857 { 5858 struct ext4_iloc iloc; 5859 5860 int err = 0; 5861 if (handle) { 5862 err = ext4_get_inode_loc(inode, &iloc); 5863 if (!err) { 5864 BUFFER_TRACE(iloc.bh, "get_write_access"); 5865 err = jbd2_journal_get_write_access(handle, iloc.bh); 5866 if (!err) 5867 err = ext4_handle_dirty_metadata(handle, 5868 NULL, 5869 iloc.bh); 5870 brelse(iloc.bh); 5871 } 5872 } 5873 ext4_std_error(inode->i_sb, err); 5874 return err; 5875 } 5876 #endif 5877 5878 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5879 { 5880 journal_t *journal; 5881 handle_t *handle; 5882 int err; 5883 5884 /* 5885 * We have to be very careful here: changing a data block's 5886 * journaling status dynamically is dangerous. If we write a 5887 * data block to the journal, change the status and then delete 5888 * that block, we risk forgetting to revoke the old log record 5889 * from the journal and so a subsequent replay can corrupt data. 5890 * So, first we make sure that the journal is empty and that 5891 * nobody is changing anything. 5892 */ 5893 5894 journal = EXT4_JOURNAL(inode); 5895 if (!journal) 5896 return 0; 5897 if (is_journal_aborted(journal)) 5898 return -EROFS; 5899 5900 jbd2_journal_lock_updates(journal); 5901 jbd2_journal_flush(journal); 5902 5903 /* 5904 * OK, there are no updates running now, and all cached data is 5905 * synced to disk. We are now in a completely consistent state 5906 * which doesn't have anything in the journal, and we know that 5907 * no filesystem updates are running, so it is safe to modify 5908 * the inode's in-core data-journaling state flag now. 5909 */ 5910 5911 if (val) 5912 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5913 else 5914 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5915 ext4_set_aops(inode); 5916 5917 jbd2_journal_unlock_updates(journal); 5918 5919 /* Finally we can mark the inode as dirty. */ 5920 5921 handle = ext4_journal_start(inode, 1); 5922 if (IS_ERR(handle)) 5923 return PTR_ERR(handle); 5924 5925 err = ext4_mark_inode_dirty(handle, inode); 5926 ext4_handle_sync(handle); 5927 ext4_journal_stop(handle); 5928 ext4_std_error(inode->i_sb, err); 5929 5930 return err; 5931 } 5932 5933 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5934 { 5935 return !buffer_mapped(bh); 5936 } 5937 5938 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5939 { 5940 struct page *page = vmf->page; 5941 loff_t size; 5942 unsigned long len; 5943 int ret = -EINVAL; 5944 void *fsdata; 5945 struct file *file = vma->vm_file; 5946 struct inode *inode = file->f_path.dentry->d_inode; 5947 struct address_space *mapping = inode->i_mapping; 5948 5949 /* 5950 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5951 * get i_mutex because we are already holding mmap_sem. 5952 */ 5953 down_read(&inode->i_alloc_sem); 5954 size = i_size_read(inode); 5955 if (page->mapping != mapping || size <= page_offset(page) 5956 || !PageUptodate(page)) { 5957 /* page got truncated from under us? */ 5958 goto out_unlock; 5959 } 5960 ret = 0; 5961 if (PageMappedToDisk(page)) 5962 goto out_unlock; 5963 5964 if (page->index == size >> PAGE_CACHE_SHIFT) 5965 len = size & ~PAGE_CACHE_MASK; 5966 else 5967 len = PAGE_CACHE_SIZE; 5968 5969 lock_page(page); 5970 /* 5971 * return if we have all the buffers mapped. This avoid 5972 * the need to call write_begin/write_end which does a 5973 * journal_start/journal_stop which can block and take 5974 * long time 5975 */ 5976 if (page_has_buffers(page)) { 5977 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5978 ext4_bh_unmapped)) { 5979 unlock_page(page); 5980 goto out_unlock; 5981 } 5982 } 5983 unlock_page(page); 5984 /* 5985 * OK, we need to fill the hole... Do write_begin write_end 5986 * to do block allocation/reservation.We are not holding 5987 * inode.i__mutex here. That allow * parallel write_begin, 5988 * write_end call. lock_page prevent this from happening 5989 * on the same page though 5990 */ 5991 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5992 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5993 if (ret < 0) 5994 goto out_unlock; 5995 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5996 len, len, page, fsdata); 5997 if (ret < 0) 5998 goto out_unlock; 5999 ret = 0; 6000 out_unlock: 6001 if (ret) 6002 ret = VM_FAULT_SIGBUS; 6003 up_read(&inode->i_alloc_sem); 6004 return ret; 6005 } 6006