xref: /linux/fs/ext4/inode.c (revision 9d8a2b033db179bef9b6b5bad492f611a0fe89b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static void ext4_journalled_zero_new_buffers(handle_t *handle,
53 					    struct inode *inode,
54 					    struct folio *folio,
55 					    unsigned from, unsigned to);
56 
57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58 			      struct ext4_inode_info *ei)
59 {
60 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61 	__u32 csum;
62 	__u16 dummy_csum = 0;
63 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 	unsigned int csum_size = sizeof(dummy_csum);
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68 	offset += csum_size;
69 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71 
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 		offset = offsetof(struct ext4_inode, i_checksum_hi);
74 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75 				   EXT4_GOOD_OLD_INODE_SIZE,
76 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
77 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79 					   csum_size);
80 			offset += csum_size;
81 		}
82 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
84 	}
85 
86 	return csum;
87 }
88 
89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90 				  struct ext4_inode_info *ei)
91 {
92 	__u32 provided, calculated;
93 
94 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95 	    cpu_to_le32(EXT4_OS_LINUX) ||
96 	    !ext4_has_metadata_csum(inode->i_sb))
97 		return 1;
98 
99 	provided = le16_to_cpu(raw->i_checksum_lo);
100 	calculated = ext4_inode_csum(inode, raw, ei);
101 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104 	else
105 		calculated &= 0xFFFF;
106 
107 	return provided == calculated;
108 }
109 
110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111 			 struct ext4_inode_info *ei)
112 {
113 	__u32 csum;
114 
115 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116 	    cpu_to_le32(EXT4_OS_LINUX) ||
117 	    !ext4_has_metadata_csum(inode->i_sb))
118 		return;
119 
120 	csum = ext4_inode_csum(inode, raw, ei);
121 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125 }
126 
127 static inline int ext4_begin_ordered_truncate(struct inode *inode,
128 					      loff_t new_size)
129 {
130 	trace_ext4_begin_ordered_truncate(inode, new_size);
131 	/*
132 	 * If jinode is zero, then we never opened the file for
133 	 * writing, so there's no need to call
134 	 * jbd2_journal_begin_ordered_truncate() since there's no
135 	 * outstanding writes we need to flush.
136 	 */
137 	if (!EXT4_I(inode)->jinode)
138 		return 0;
139 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140 						   EXT4_I(inode)->jinode,
141 						   new_size);
142 }
143 
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171 	handle_t *handle;
172 	int err;
173 	/*
174 	 * Credits for final inode cleanup and freeing:
175 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177 	 */
178 	int extra_credits = 6;
179 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
180 	bool freeze_protected = false;
181 
182 	trace_ext4_evict_inode(inode);
183 
184 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185 		ext4_evict_ea_inode(inode);
186 	if (inode->i_nlink) {
187 		truncate_inode_pages_final(&inode->i_data);
188 
189 		goto no_delete;
190 	}
191 
192 	if (is_bad_inode(inode))
193 		goto no_delete;
194 	dquot_initialize(inode);
195 
196 	if (ext4_should_order_data(inode))
197 		ext4_begin_ordered_truncate(inode, 0);
198 	truncate_inode_pages_final(&inode->i_data);
199 
200 	/*
201 	 * For inodes with journalled data, transaction commit could have
202 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203 	 * extents converting worker could merge extents and also have dirtied
204 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205 	 * we still need to remove the inode from the writeback lists.
206 	 */
207 	if (!list_empty_careful(&inode->i_io_list))
208 		inode_io_list_del(inode);
209 
210 	/*
211 	 * Protect us against freezing - iput() caller didn't have to have any
212 	 * protection against it. When we are in a running transaction though,
213 	 * we are already protected against freezing and we cannot grab further
214 	 * protection due to lock ordering constraints.
215 	 */
216 	if (!ext4_journal_current_handle()) {
217 		sb_start_intwrite(inode->i_sb);
218 		freeze_protected = true;
219 	}
220 
221 	if (!IS_NOQUOTA(inode))
222 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223 
224 	/*
225 	 * Block bitmap, group descriptor, and inode are accounted in both
226 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227 	 */
228 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
230 	if (IS_ERR(handle)) {
231 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
232 		/*
233 		 * If we're going to skip the normal cleanup, we still need to
234 		 * make sure that the in-core orphan linked list is properly
235 		 * cleaned up.
236 		 */
237 		ext4_orphan_del(NULL, inode);
238 		if (freeze_protected)
239 			sb_end_intwrite(inode->i_sb);
240 		goto no_delete;
241 	}
242 
243 	if (IS_SYNC(inode))
244 		ext4_handle_sync(handle);
245 
246 	/*
247 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
248 	 * special handling of symlinks here because i_size is used to
249 	 * determine whether ext4_inode_info->i_data contains symlink data or
250 	 * block mappings. Setting i_size to 0 will remove its fast symlink
251 	 * status. Erase i_data so that it becomes a valid empty block map.
252 	 */
253 	if (ext4_inode_is_fast_symlink(inode))
254 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks) {
263 		err = ext4_truncate(inode);
264 		if (err) {
265 			ext4_error_err(inode->i_sb, -err,
266 				       "couldn't truncate inode %lu (err %d)",
267 				       inode->i_ino, err);
268 			goto stop_handle;
269 		}
270 	}
271 
272 	/* Remove xattr references. */
273 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274 				      extra_credits);
275 	if (err) {
276 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277 stop_handle:
278 		ext4_journal_stop(handle);
279 		ext4_orphan_del(NULL, inode);
280 		if (freeze_protected)
281 			sb_end_intwrite(inode->i_sb);
282 		ext4_xattr_inode_array_free(ea_inode_array);
283 		goto no_delete;
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	if (freeze_protected)
311 		sb_end_intwrite(inode->i_sb);
312 	ext4_xattr_inode_array_free(ea_inode_array);
313 	return;
314 no_delete:
315 	/*
316 	 * Check out some where else accidentally dirty the evicting inode,
317 	 * which may probably cause inode use-after-free issues later.
318 	 */
319 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320 
321 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
322 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
324 }
325 
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 {
329 	return &EXT4_I(inode)->i_reserved_quota;
330 }
331 #endif
332 
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 					int used, int quota_claim)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 	struct ext4_inode_info *ei = EXT4_I(inode);
342 
343 	spin_lock(&ei->i_block_reservation_lock);
344 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 	if (unlikely(used > ei->i_reserved_data_blocks)) {
346 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 			 "with only %d reserved data blocks",
348 			 __func__, inode->i_ino, used,
349 			 ei->i_reserved_data_blocks);
350 		WARN_ON(1);
351 		used = ei->i_reserved_data_blocks;
352 	}
353 
354 	/* Update per-inode reservations */
355 	ei->i_reserved_data_blocks -= used;
356 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357 
358 	spin_unlock(&ei->i_block_reservation_lock);
359 
360 	/* Update quota subsystem for data blocks */
361 	if (quota_claim)
362 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 	else {
364 		/*
365 		 * We did fallocate with an offset that is already delayed
366 		 * allocated. So on delayed allocated writeback we should
367 		 * not re-claim the quota for fallocated blocks.
368 		 */
369 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370 	}
371 
372 	/*
373 	 * If we have done all the pending block allocations and if
374 	 * there aren't any writers on the inode, we can discard the
375 	 * inode's preallocations.
376 	 */
377 	if ((ei->i_reserved_data_blocks == 0) &&
378 	    !inode_is_open_for_write(inode))
379 		ext4_discard_preallocations(inode);
380 }
381 
382 static int __check_block_validity(struct inode *inode, const char *func,
383 				unsigned int line,
384 				struct ext4_map_blocks *map)
385 {
386 	if (ext4_has_feature_journal(inode->i_sb) &&
387 	    (inode->i_ino ==
388 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 		return 0;
390 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391 		ext4_error_inode(inode, func, line, map->m_pblk,
392 				 "lblock %lu mapped to illegal pblock %llu "
393 				 "(length %d)", (unsigned long) map->m_lblk,
394 				 map->m_pblk, map->m_len);
395 		return -EFSCORRUPTED;
396 	}
397 	return 0;
398 }
399 
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 		       ext4_lblk_t len)
402 {
403 	int ret;
404 
405 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
407 
408 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409 	if (ret > 0)
410 		ret = 0;
411 
412 	return ret;
413 }
414 
415 #define check_block_validity(inode, map)	\
416 	__check_block_validity((inode), __func__, __LINE__, (map))
417 
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420 				       struct inode *inode,
421 				       struct ext4_map_blocks *es_map,
422 				       struct ext4_map_blocks *map,
423 				       int flags)
424 {
425 	int retval;
426 
427 	map->m_flags = 0;
428 	/*
429 	 * There is a race window that the result is not the same.
430 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
431 	 * is that we lookup a block mapping in extent status tree with
432 	 * out taking i_data_sem.  So at the time the unwritten extent
433 	 * could be converted.
434 	 */
435 	down_read(&EXT4_I(inode)->i_data_sem);
436 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
438 	} else {
439 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
440 	}
441 	up_read((&EXT4_I(inode)->i_data_sem));
442 
443 	/*
444 	 * We don't check m_len because extent will be collpased in status
445 	 * tree.  So the m_len might not equal.
446 	 */
447 	if (es_map->m_lblk != map->m_lblk ||
448 	    es_map->m_flags != map->m_flags ||
449 	    es_map->m_pblk != map->m_pblk) {
450 		printk("ES cache assertion failed for inode: %lu "
451 		       "es_cached ex [%d/%d/%llu/%x] != "
452 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
454 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 		       map->m_len, map->m_pblk, map->m_flags,
456 		       retval, flags);
457 	}
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460 
461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462 				 struct ext4_map_blocks *map)
463 {
464 	unsigned int status;
465 	int retval;
466 
467 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
469 	else
470 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
471 
472 	if (retval <= 0)
473 		return retval;
474 
475 	if (unlikely(retval != map->m_len)) {
476 		ext4_warning(inode->i_sb,
477 			     "ES len assertion failed for inode "
478 			     "%lu: retval %d != map->m_len %d",
479 			     inode->i_ino, retval, map->m_len);
480 		WARN_ON(1);
481 	}
482 
483 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486 			      map->m_pblk, status, false);
487 	return retval;
488 }
489 
490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491 				  struct ext4_map_blocks *map, int flags)
492 {
493 	struct extent_status es;
494 	unsigned int status;
495 	int err, retval = 0;
496 
497 	/*
498 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499 	 * indicates that the blocks and quotas has already been
500 	 * checked when the data was copied into the page cache.
501 	 */
502 	if (map->m_flags & EXT4_MAP_DELAYED)
503 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504 
505 	/*
506 	 * Here we clear m_flags because after allocating an new extent,
507 	 * it will be set again.
508 	 */
509 	map->m_flags &= ~EXT4_MAP_FLAGS;
510 
511 	/*
512 	 * We need to check for EXT4 here because migrate could have
513 	 * changed the inode type in between.
514 	 */
515 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
517 	} else {
518 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
519 
520 		/*
521 		 * We allocated new blocks which will result in i_data's
522 		 * format changing. Force the migrate to fail by clearing
523 		 * migrate flags.
524 		 */
525 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527 	}
528 	if (retval <= 0)
529 		return retval;
530 
531 	if (unlikely(retval != map->m_len)) {
532 		ext4_warning(inode->i_sb,
533 			     "ES len assertion failed for inode %lu: "
534 			     "retval %d != map->m_len %d",
535 			     inode->i_ino, retval, map->m_len);
536 		WARN_ON(1);
537 	}
538 
539 	/*
540 	 * We have to zeroout blocks before inserting them into extent
541 	 * status tree. Otherwise someone could look them up there and
542 	 * use them before they are really zeroed. We also have to
543 	 * unmap metadata before zeroing as otherwise writeback can
544 	 * overwrite zeros with stale data from block device.
545 	 */
546 	if (flags & EXT4_GET_BLOCKS_ZERO &&
547 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549 					 map->m_len);
550 		if (err)
551 			return err;
552 	}
553 
554 	/*
555 	 * If the extent has been zeroed out, we don't need to update
556 	 * extent status tree.
557 	 */
558 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560 		if (ext4_es_is_written(&es))
561 			return retval;
562 	}
563 
564 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
567 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
568 
569 	return retval;
570 }
571 
572 /*
573  * The ext4_map_blocks() function tries to look up the requested blocks,
574  * and returns if the blocks are already mapped.
575  *
576  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577  * and store the allocated blocks in the result buffer head and mark it
578  * mapped.
579  *
580  * If file type is extents based, it will call ext4_ext_map_blocks(),
581  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582  * based files
583  *
584  * On success, it returns the number of blocks being mapped or allocated.
585  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588  *
589  * It returns 0 if plain look up failed (blocks have not been allocated), in
590  * that case, @map is returned as unmapped but we still do fill map->m_len to
591  * indicate the length of a hole starting at map->m_lblk.
592  *
593  * It returns the error in case of allocation failure.
594  */
595 int ext4_map_blocks(handle_t *handle, struct inode *inode,
596 		    struct ext4_map_blocks *map, int flags)
597 {
598 	struct extent_status es;
599 	int retval;
600 	int ret = 0;
601 #ifdef ES_AGGRESSIVE_TEST
602 	struct ext4_map_blocks orig_map;
603 
604 	memcpy(&orig_map, map, sizeof(*map));
605 #endif
606 
607 	map->m_flags = 0;
608 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609 		  flags, map->m_len, (unsigned long) map->m_lblk);
610 
611 	/*
612 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
613 	 */
614 	if (unlikely(map->m_len > INT_MAX))
615 		map->m_len = INT_MAX;
616 
617 	/* We can handle the block number less than EXT_MAX_BLOCKS */
618 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619 		return -EFSCORRUPTED;
620 
621 	/* Lookup extent status tree firstly */
622 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625 			map->m_pblk = ext4_es_pblock(&es) +
626 					map->m_lblk - es.es_lblk;
627 			map->m_flags |= ext4_es_is_written(&es) ?
628 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629 			retval = es.es_len - (map->m_lblk - es.es_lblk);
630 			if (retval > map->m_len)
631 				retval = map->m_len;
632 			map->m_len = retval;
633 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634 			map->m_pblk = 0;
635 			map->m_flags |= ext4_es_is_delayed(&es) ?
636 					EXT4_MAP_DELAYED : 0;
637 			retval = es.es_len - (map->m_lblk - es.es_lblk);
638 			if (retval > map->m_len)
639 				retval = map->m_len;
640 			map->m_len = retval;
641 			retval = 0;
642 		} else {
643 			BUG();
644 		}
645 
646 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647 			return retval;
648 #ifdef ES_AGGRESSIVE_TEST
649 		ext4_map_blocks_es_recheck(handle, inode, map,
650 					   &orig_map, flags);
651 #endif
652 		goto found;
653 	}
654 	/*
655 	 * In the query cache no-wait mode, nothing we can do more if we
656 	 * cannot find extent in the cache.
657 	 */
658 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659 		return 0;
660 
661 	/*
662 	 * Try to see if we can get the block without requesting a new
663 	 * file system block.
664 	 */
665 	down_read(&EXT4_I(inode)->i_data_sem);
666 	retval = ext4_map_query_blocks(handle, inode, map);
667 	up_read((&EXT4_I(inode)->i_data_sem));
668 
669 found:
670 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671 		ret = check_block_validity(inode, map);
672 		if (ret != 0)
673 			return ret;
674 	}
675 
676 	/* If it is only a block(s) look up */
677 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678 		return retval;
679 
680 	/*
681 	 * Returns if the blocks have already allocated
682 	 *
683 	 * Note that if blocks have been preallocated
684 	 * ext4_ext_map_blocks() returns with buffer head unmapped
685 	 */
686 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687 		/*
688 		 * If we need to convert extent to unwritten
689 		 * we continue and do the actual work in
690 		 * ext4_ext_map_blocks()
691 		 */
692 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693 			return retval;
694 
695 	/*
696 	 * New blocks allocate and/or writing to unwritten extent
697 	 * will possibly result in updating i_data, so we take
698 	 * the write lock of i_data_sem, and call get_block()
699 	 * with create == 1 flag.
700 	 */
701 	down_write(&EXT4_I(inode)->i_data_sem);
702 	retval = ext4_map_create_blocks(handle, inode, map, flags);
703 	up_write((&EXT4_I(inode)->i_data_sem));
704 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 		ret = check_block_validity(inode, map);
706 		if (ret != 0)
707 			return ret;
708 
709 		/*
710 		 * Inodes with freshly allocated blocks where contents will be
711 		 * visible after transaction commit must be on transaction's
712 		 * ordered data list.
713 		 */
714 		if (map->m_flags & EXT4_MAP_NEW &&
715 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 		    !ext4_is_quota_file(inode) &&
718 		    ext4_should_order_data(inode)) {
719 			loff_t start_byte =
720 				(loff_t)map->m_lblk << inode->i_blkbits;
721 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722 
723 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 				ret = ext4_jbd2_inode_add_wait(handle, inode,
725 						start_byte, length);
726 			else
727 				ret = ext4_jbd2_inode_add_write(handle, inode,
728 						start_byte, length);
729 			if (ret)
730 				return ret;
731 		}
732 	}
733 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734 				map->m_flags & EXT4_MAP_MAPPED))
735 		ext4_fc_track_range(handle, inode, map->m_lblk,
736 					map->m_lblk + map->m_len - 1);
737 	if (retval < 0)
738 		ext_debug(inode, "failed with err %d\n", retval);
739 	return retval;
740 }
741 
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748 	unsigned long old_state;
749 	unsigned long new_state;
750 
751 	flags &= EXT4_MAP_FLAGS;
752 
753 	/* Dummy buffer_head? Set non-atomically. */
754 	if (!bh->b_page) {
755 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 		return;
757 	}
758 	/*
759 	 * Someone else may be modifying b_state. Be careful! This is ugly but
760 	 * once we get rid of using bh as a container for mapping information
761 	 * to pass to / from get_block functions, this can go away.
762 	 */
763 	old_state = READ_ONCE(bh->b_state);
764 	do {
765 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767 }
768 
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 			   struct buffer_head *bh, int flags)
771 {
772 	struct ext4_map_blocks map;
773 	int ret = 0;
774 
775 	if (ext4_has_inline_data(inode))
776 		return -ERANGE;
777 
778 	map.m_lblk = iblock;
779 	map.m_len = bh->b_size >> inode->i_blkbits;
780 
781 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782 			      flags);
783 	if (ret > 0) {
784 		map_bh(bh, inode->i_sb, map.m_pblk);
785 		ext4_update_bh_state(bh, map.m_flags);
786 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787 		ret = 0;
788 	} else if (ret == 0) {
789 		/* hole case, need to fill in bh->b_size */
790 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 	}
792 	return ret;
793 }
794 
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796 		   struct buffer_head *bh, int create)
797 {
798 	return _ext4_get_block(inode, iblock, bh,
799 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801 
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 			     struct buffer_head *bh_result, int create)
809 {
810 	int ret = 0;
811 
812 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 		   inode->i_ino, create);
814 	ret = _ext4_get_block(inode, iblock, bh_result,
815 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816 
817 	/*
818 	 * If the buffer is marked unwritten, mark it as new to make sure it is
819 	 * zeroed out correctly in case of partial writes. Otherwise, there is
820 	 * a chance of stale data getting exposed.
821 	 */
822 	if (ret == 0 && buffer_unwritten(bh_result))
823 		set_buffer_new(bh_result);
824 
825 	return ret;
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841 	int err;
842 
843 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		    || handle != NULL || create == 0);
845 	ASSERT(create == 0 || !nowait);
846 
847 	map.m_lblk = block;
848 	map.m_len = 1;
849 	err = ext4_map_blocks(handle, inode, &map, map_flags);
850 
851 	if (err == 0)
852 		return create ? ERR_PTR(-ENOSPC) : NULL;
853 	if (err < 0)
854 		return ERR_PTR(err);
855 
856 	if (nowait)
857 		return sb_find_get_block(inode->i_sb, map.m_pblk);
858 
859 	/*
860 	 * Since bh could introduce extra ref count such as referred by
861 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
862 	 * as it may fail the migration when journal_head remains.
863 	 */
864 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
865 				inode->i_sb->s_blocksize);
866 
867 	if (unlikely(!bh))
868 		return ERR_PTR(-ENOMEM);
869 	if (map.m_flags & EXT4_MAP_NEW) {
870 		ASSERT(create != 0);
871 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 			    || (handle != NULL));
873 
874 		/*
875 		 * Now that we do not always journal data, we should
876 		 * keep in mind whether this should always journal the
877 		 * new buffer as metadata.  For now, regular file
878 		 * writes use ext4_get_block instead, so it's not a
879 		 * problem.
880 		 */
881 		lock_buffer(bh);
882 		BUFFER_TRACE(bh, "call get_create_access");
883 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884 						     EXT4_JTR_NONE);
885 		if (unlikely(err)) {
886 			unlock_buffer(bh);
887 			goto errout;
888 		}
889 		if (!buffer_uptodate(bh)) {
890 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 			set_buffer_uptodate(bh);
892 		}
893 		unlock_buffer(bh);
894 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 		err = ext4_handle_dirty_metadata(handle, inode, bh);
896 		if (unlikely(err))
897 			goto errout;
898 	} else
899 		BUFFER_TRACE(bh, "not a new buffer");
900 	return bh;
901 errout:
902 	brelse(bh);
903 	return ERR_PTR(err);
904 }
905 
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 			       ext4_lblk_t block, int map_flags)
908 {
909 	struct buffer_head *bh;
910 	int ret;
911 
912 	bh = ext4_getblk(handle, inode, block, map_flags);
913 	if (IS_ERR(bh))
914 		return bh;
915 	if (!bh || ext4_buffer_uptodate(bh))
916 		return bh;
917 
918 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919 	if (ret) {
920 		put_bh(bh);
921 		return ERR_PTR(ret);
922 	}
923 	return bh;
924 }
925 
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 		     bool wait, struct buffer_head **bhs)
929 {
930 	int i, err;
931 
932 	for (i = 0; i < bh_count; i++) {
933 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 		if (IS_ERR(bhs[i])) {
935 			err = PTR_ERR(bhs[i]);
936 			bh_count = i;
937 			goto out_brelse;
938 		}
939 	}
940 
941 	for (i = 0; i < bh_count; i++)
942 		/* Note that NULL bhs[i] is valid because of holes. */
943 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945 
946 	if (!wait)
947 		return 0;
948 
949 	for (i = 0; i < bh_count; i++)
950 		if (bhs[i])
951 			wait_on_buffer(bhs[i]);
952 
953 	for (i = 0; i < bh_count; i++) {
954 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
955 			err = -EIO;
956 			goto out_brelse;
957 		}
958 	}
959 	return 0;
960 
961 out_brelse:
962 	for (i = 0; i < bh_count; i++) {
963 		brelse(bhs[i]);
964 		bhs[i] = NULL;
965 	}
966 	return err;
967 }
968 
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 			   struct buffer_head *head,
971 			   unsigned from,
972 			   unsigned to,
973 			   int *partial,
974 			   int (*fn)(handle_t *handle, struct inode *inode,
975 				     struct buffer_head *bh))
976 {
977 	struct buffer_head *bh;
978 	unsigned block_start, block_end;
979 	unsigned blocksize = head->b_size;
980 	int err, ret = 0;
981 	struct buffer_head *next;
982 
983 	for (bh = head, block_start = 0;
984 	     ret == 0 && (bh != head || !block_start);
985 	     block_start = block_end, bh = next) {
986 		next = bh->b_this_page;
987 		block_end = block_start + blocksize;
988 		if (block_end <= from || block_start >= to) {
989 			if (partial && !buffer_uptodate(bh))
990 				*partial = 1;
991 			continue;
992 		}
993 		err = (*fn)(handle, inode, bh);
994 		if (!ret)
995 			ret = err;
996 	}
997 	return ret;
998 }
999 
1000 /*
1001  * Helper for handling dirtying of journalled data. We also mark the folio as
1002  * dirty so that writeback code knows about this page (and inode) contains
1003  * dirty data. ext4_writepages() then commits appropriate transaction to
1004  * make data stable.
1005  */
1006 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007 {
1008 	folio_mark_dirty(bh->b_folio);
1009 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010 }
1011 
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 				struct buffer_head *bh)
1014 {
1015 	if (!buffer_mapped(bh) || buffer_freed(bh))
1016 		return 0;
1017 	BUFFER_TRACE(bh, "get write access");
1018 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019 					    EXT4_JTR_NONE);
1020 }
1021 
1022 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023 			   loff_t pos, unsigned len,
1024 			   get_block_t *get_block)
1025 {
1026 	unsigned from = pos & (PAGE_SIZE - 1);
1027 	unsigned to = from + len;
1028 	struct inode *inode = folio->mapping->host;
1029 	unsigned block_start, block_end;
1030 	sector_t block;
1031 	int err = 0;
1032 	unsigned blocksize = inode->i_sb->s_blocksize;
1033 	unsigned bbits;
1034 	struct buffer_head *bh, *head, *wait[2];
1035 	int nr_wait = 0;
1036 	int i;
1037 	bool should_journal_data = ext4_should_journal_data(inode);
1038 
1039 	BUG_ON(!folio_test_locked(folio));
1040 	BUG_ON(from > PAGE_SIZE);
1041 	BUG_ON(to > PAGE_SIZE);
1042 	BUG_ON(from > to);
1043 
1044 	head = folio_buffers(folio);
1045 	if (!head)
1046 		head = create_empty_buffers(folio, blocksize, 0);
1047 	bbits = ilog2(blocksize);
1048 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049 
1050 	for (bh = head, block_start = 0; bh != head || !block_start;
1051 	    block++, block_start = block_end, bh = bh->b_this_page) {
1052 		block_end = block_start + blocksize;
1053 		if (block_end <= from || block_start >= to) {
1054 			if (folio_test_uptodate(folio)) {
1055 				set_buffer_uptodate(bh);
1056 			}
1057 			continue;
1058 		}
1059 		if (buffer_new(bh))
1060 			clear_buffer_new(bh);
1061 		if (!buffer_mapped(bh)) {
1062 			WARN_ON(bh->b_size != blocksize);
1063 			err = get_block(inode, block, bh, 1);
1064 			if (err)
1065 				break;
1066 			if (buffer_new(bh)) {
1067 				/*
1068 				 * We may be zeroing partial buffers or all new
1069 				 * buffers in case of failure. Prepare JBD2 for
1070 				 * that.
1071 				 */
1072 				if (should_journal_data)
1073 					do_journal_get_write_access(handle,
1074 								    inode, bh);
1075 				if (folio_test_uptodate(folio)) {
1076 					/*
1077 					 * Unlike __block_write_begin() we leave
1078 					 * dirtying of new uptodate buffers to
1079 					 * ->write_end() time or
1080 					 * folio_zero_new_buffers().
1081 					 */
1082 					set_buffer_uptodate(bh);
1083 					continue;
1084 				}
1085 				if (block_end > to || block_start < from)
1086 					folio_zero_segments(folio, to,
1087 							    block_end,
1088 							    block_start, from);
1089 				continue;
1090 			}
1091 		}
1092 		if (folio_test_uptodate(folio)) {
1093 			set_buffer_uptodate(bh);
1094 			continue;
1095 		}
1096 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097 		    !buffer_unwritten(bh) &&
1098 		    (block_start < from || block_end > to)) {
1099 			ext4_read_bh_lock(bh, 0, false);
1100 			wait[nr_wait++] = bh;
1101 		}
1102 	}
1103 	/*
1104 	 * If we issued read requests, let them complete.
1105 	 */
1106 	for (i = 0; i < nr_wait; i++) {
1107 		wait_on_buffer(wait[i]);
1108 		if (!buffer_uptodate(wait[i]))
1109 			err = -EIO;
1110 	}
1111 	if (unlikely(err)) {
1112 		if (should_journal_data)
1113 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114 							 from, to);
1115 		else
1116 			folio_zero_new_buffers(folio, from, to);
1117 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 		for (i = 0; i < nr_wait; i++) {
1119 			int err2;
1120 
1121 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122 						blocksize, bh_offset(wait[i]));
1123 			if (err2) {
1124 				clear_buffer_uptodate(wait[i]);
1125 				err = err2;
1126 			}
1127 		}
1128 	}
1129 
1130 	return err;
1131 }
1132 
1133 /*
1134  * To preserve ordering, it is essential that the hole instantiation and
1135  * the data write be encapsulated in a single transaction.  We cannot
1136  * close off a transaction and start a new one between the ext4_get_block()
1137  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138  * ext4_write_begin() is the right place.
1139  */
1140 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141 			    loff_t pos, unsigned len,
1142 			    struct folio **foliop, void **fsdata)
1143 {
1144 	struct inode *inode = mapping->host;
1145 	int ret, needed_blocks;
1146 	handle_t *handle;
1147 	int retries = 0;
1148 	struct folio *folio;
1149 	pgoff_t index;
1150 	unsigned from, to;
1151 
1152 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153 		return -EIO;
1154 
1155 	trace_ext4_write_begin(inode, pos, len);
1156 	/*
1157 	 * Reserve one block more for addition to orphan list in case
1158 	 * we allocate blocks but write fails for some reason
1159 	 */
1160 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161 	index = pos >> PAGE_SHIFT;
1162 	from = pos & (PAGE_SIZE - 1);
1163 	to = from + len;
1164 
1165 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 						    foliop);
1168 		if (ret < 0)
1169 			return ret;
1170 		if (ret == 1)
1171 			return 0;
1172 	}
1173 
1174 	/*
1175 	 * __filemap_get_folio() can take a long time if the
1176 	 * system is thrashing due to memory pressure, or if the folio
1177 	 * is being written back.  So grab it first before we start
1178 	 * the transaction handle.  This also allows us to allocate
1179 	 * the folio (if needed) without using GFP_NOFS.
1180 	 */
1181 retry_grab:
1182 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183 					mapping_gfp_mask(mapping));
1184 	if (IS_ERR(folio))
1185 		return PTR_ERR(folio);
1186 	/*
1187 	 * The same as page allocation, we prealloc buffer heads before
1188 	 * starting the handle.
1189 	 */
1190 	if (!folio_buffers(folio))
1191 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192 
1193 	folio_unlock(folio);
1194 
1195 retry_journal:
1196 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197 	if (IS_ERR(handle)) {
1198 		folio_put(folio);
1199 		return PTR_ERR(handle);
1200 	}
1201 
1202 	folio_lock(folio);
1203 	if (folio->mapping != mapping) {
1204 		/* The folio got truncated from under us */
1205 		folio_unlock(folio);
1206 		folio_put(folio);
1207 		ext4_journal_stop(handle);
1208 		goto retry_grab;
1209 	}
1210 	/* In case writeback began while the folio was unlocked */
1211 	folio_wait_stable(folio);
1212 
1213 	if (ext4_should_dioread_nolock(inode))
1214 		ret = ext4_block_write_begin(handle, folio, pos, len,
1215 					     ext4_get_block_unwritten);
1216 	else
1217 		ret = ext4_block_write_begin(handle, folio, pos, len,
1218 					     ext4_get_block);
1219 	if (!ret && ext4_should_journal_data(inode)) {
1220 		ret = ext4_walk_page_buffers(handle, inode,
1221 					     folio_buffers(folio), from, to,
1222 					     NULL, do_journal_get_write_access);
1223 	}
1224 
1225 	if (ret) {
1226 		bool extended = (pos + len > inode->i_size) &&
1227 				!ext4_verity_in_progress(inode);
1228 
1229 		folio_unlock(folio);
1230 		/*
1231 		 * ext4_block_write_begin may have instantiated a few blocks
1232 		 * outside i_size.  Trim these off again. Don't need
1233 		 * i_size_read because we hold i_rwsem.
1234 		 *
1235 		 * Add inode to orphan list in case we crash before
1236 		 * truncate finishes
1237 		 */
1238 		if (extended && ext4_can_truncate(inode))
1239 			ext4_orphan_add(handle, inode);
1240 
1241 		ext4_journal_stop(handle);
1242 		if (extended) {
1243 			ext4_truncate_failed_write(inode);
1244 			/*
1245 			 * If truncate failed early the inode might
1246 			 * still be on the orphan list; we need to
1247 			 * make sure the inode is removed from the
1248 			 * orphan list in that case.
1249 			 */
1250 			if (inode->i_nlink)
1251 				ext4_orphan_del(NULL, inode);
1252 		}
1253 
1254 		if (ret == -ENOSPC &&
1255 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256 			goto retry_journal;
1257 		folio_put(folio);
1258 		return ret;
1259 	}
1260 	*foliop = folio;
1261 	return ret;
1262 }
1263 
1264 /* For write_end() in data=journal mode */
1265 static int write_end_fn(handle_t *handle, struct inode *inode,
1266 			struct buffer_head *bh)
1267 {
1268 	int ret;
1269 	if (!buffer_mapped(bh) || buffer_freed(bh))
1270 		return 0;
1271 	set_buffer_uptodate(bh);
1272 	ret = ext4_dirty_journalled_data(handle, bh);
1273 	clear_buffer_meta(bh);
1274 	clear_buffer_prio(bh);
1275 	return ret;
1276 }
1277 
1278 /*
1279  * We need to pick up the new inode size which generic_commit_write gave us
1280  * `file' can be NULL - eg, when called from page_symlink().
1281  *
1282  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283  * buffers are managed internally.
1284  */
1285 static int ext4_write_end(struct file *file,
1286 			  struct address_space *mapping,
1287 			  loff_t pos, unsigned len, unsigned copied,
1288 			  struct folio *folio, void *fsdata)
1289 {
1290 	handle_t *handle = ext4_journal_current_handle();
1291 	struct inode *inode = mapping->host;
1292 	loff_t old_size = inode->i_size;
1293 	int ret = 0, ret2;
1294 	int i_size_changed = 0;
1295 	bool verity = ext4_verity_in_progress(inode);
1296 
1297 	trace_ext4_write_end(inode, pos, len, copied);
1298 
1299 	if (ext4_has_inline_data(inode) &&
1300 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301 		return ext4_write_inline_data_end(inode, pos, len, copied,
1302 						  folio);
1303 
1304 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305 	/*
1306 	 * it's important to update i_size while still holding folio lock:
1307 	 * page writeout could otherwise come in and zero beyond i_size.
1308 	 *
1309 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310 	 * blocks are being written past EOF, so skip the i_size update.
1311 	 */
1312 	if (!verity)
1313 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314 	folio_unlock(folio);
1315 	folio_put(folio);
1316 
1317 	if (old_size < pos && !verity) {
1318 		pagecache_isize_extended(inode, old_size, pos);
1319 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320 	}
1321 	/*
1322 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323 	 * makes the holding time of folio lock longer. Second, it forces lock
1324 	 * ordering of folio lock and transaction start for journaling
1325 	 * filesystems.
1326 	 */
1327 	if (i_size_changed)
1328 		ret = ext4_mark_inode_dirty(handle, inode);
1329 
1330 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 		/* if we have allocated more blocks and copied
1332 		 * less. We will have blocks allocated outside
1333 		 * inode->i_size. So truncate them
1334 		 */
1335 		ext4_orphan_add(handle, inode);
1336 
1337 	ret2 = ext4_journal_stop(handle);
1338 	if (!ret)
1339 		ret = ret2;
1340 
1341 	if (pos + len > inode->i_size && !verity) {
1342 		ext4_truncate_failed_write(inode);
1343 		/*
1344 		 * If truncate failed early the inode might still be
1345 		 * on the orphan list; we need to make sure the inode
1346 		 * is removed from the orphan list in that case.
1347 		 */
1348 		if (inode->i_nlink)
1349 			ext4_orphan_del(NULL, inode);
1350 	}
1351 
1352 	return ret ? ret : copied;
1353 }
1354 
1355 /*
1356  * This is a private version of folio_zero_new_buffers() which doesn't
1357  * set the buffer to be dirty, since in data=journalled mode we need
1358  * to call ext4_dirty_journalled_data() instead.
1359  */
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 					    struct inode *inode,
1362 					    struct folio *folio,
1363 					    unsigned from, unsigned to)
1364 {
1365 	unsigned int block_start = 0, block_end;
1366 	struct buffer_head *head, *bh;
1367 
1368 	bh = head = folio_buffers(folio);
1369 	do {
1370 		block_end = block_start + bh->b_size;
1371 		if (buffer_new(bh)) {
1372 			if (block_end > from && block_start < to) {
1373 				if (!folio_test_uptodate(folio)) {
1374 					unsigned start, size;
1375 
1376 					start = max(from, block_start);
1377 					size = min(to, block_end) - start;
1378 
1379 					folio_zero_range(folio, start, size);
1380 				}
1381 				clear_buffer_new(bh);
1382 				write_end_fn(handle, inode, bh);
1383 			}
1384 		}
1385 		block_start = block_end;
1386 		bh = bh->b_this_page;
1387 	} while (bh != head);
1388 }
1389 
1390 static int ext4_journalled_write_end(struct file *file,
1391 				     struct address_space *mapping,
1392 				     loff_t pos, unsigned len, unsigned copied,
1393 				     struct folio *folio, void *fsdata)
1394 {
1395 	handle_t *handle = ext4_journal_current_handle();
1396 	struct inode *inode = mapping->host;
1397 	loff_t old_size = inode->i_size;
1398 	int ret = 0, ret2;
1399 	int partial = 0;
1400 	unsigned from, to;
1401 	int size_changed = 0;
1402 	bool verity = ext4_verity_in_progress(inode);
1403 
1404 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 	from = pos & (PAGE_SIZE - 1);
1406 	to = from + len;
1407 
1408 	BUG_ON(!ext4_handle_valid(handle));
1409 
1410 	if (ext4_has_inline_data(inode))
1411 		return ext4_write_inline_data_end(inode, pos, len, copied,
1412 						  folio);
1413 
1414 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415 		copied = 0;
1416 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417 						 from, to);
1418 	} else {
1419 		if (unlikely(copied < len))
1420 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421 							 from + copied, to);
1422 		ret = ext4_walk_page_buffers(handle, inode,
1423 					     folio_buffers(folio),
1424 					     from, from + copied, &partial,
1425 					     write_end_fn);
1426 		if (!partial)
1427 			folio_mark_uptodate(folio);
1428 	}
1429 	if (!verity)
1430 		size_changed = ext4_update_inode_size(inode, pos + copied);
1431 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 	folio_unlock(folio);
1433 	folio_put(folio);
1434 
1435 	if (old_size < pos && !verity) {
1436 		pagecache_isize_extended(inode, old_size, pos);
1437 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438 	}
1439 
1440 	if (size_changed) {
1441 		ret2 = ext4_mark_inode_dirty(handle, inode);
1442 		if (!ret)
1443 			ret = ret2;
1444 	}
1445 
1446 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447 		/* if we have allocated more blocks and copied
1448 		 * less. We will have blocks allocated outside
1449 		 * inode->i_size. So truncate them
1450 		 */
1451 		ext4_orphan_add(handle, inode);
1452 
1453 	ret2 = ext4_journal_stop(handle);
1454 	if (!ret)
1455 		ret = ret2;
1456 	if (pos + len > inode->i_size && !verity) {
1457 		ext4_truncate_failed_write(inode);
1458 		/*
1459 		 * If truncate failed early the inode might still be
1460 		 * on the orphan list; we need to make sure the inode
1461 		 * is removed from the orphan list in that case.
1462 		 */
1463 		if (inode->i_nlink)
1464 			ext4_orphan_del(NULL, inode);
1465 	}
1466 
1467 	return ret ? ret : copied;
1468 }
1469 
1470 /*
1471  * Reserve space for 'nr_resv' clusters
1472  */
1473 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474 {
1475 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 	struct ext4_inode_info *ei = EXT4_I(inode);
1477 	int ret;
1478 
1479 	/*
1480 	 * We will charge metadata quota at writeout time; this saves
1481 	 * us from metadata over-estimation, though we may go over by
1482 	 * a small amount in the end.  Here we just reserve for data.
1483 	 */
1484 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485 	if (ret)
1486 		return ret;
1487 
1488 	spin_lock(&ei->i_block_reservation_lock);
1489 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490 		spin_unlock(&ei->i_block_reservation_lock);
1491 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492 		return -ENOSPC;
1493 	}
1494 	ei->i_reserved_data_blocks += nr_resv;
1495 	trace_ext4_da_reserve_space(inode, nr_resv);
1496 	spin_unlock(&ei->i_block_reservation_lock);
1497 
1498 	return 0;       /* success */
1499 }
1500 
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1502 {
1503 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 	struct ext4_inode_info *ei = EXT4_I(inode);
1505 
1506 	if (!to_free)
1507 		return;		/* Nothing to release, exit */
1508 
1509 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510 
1511 	trace_ext4_da_release_space(inode, to_free);
1512 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 		/*
1514 		 * if there aren't enough reserved blocks, then the
1515 		 * counter is messed up somewhere.  Since this
1516 		 * function is called from invalidate page, it's
1517 		 * harmless to return without any action.
1518 		 */
1519 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 			 "ino %lu, to_free %d with only %d reserved "
1521 			 "data blocks", inode->i_ino, to_free,
1522 			 ei->i_reserved_data_blocks);
1523 		WARN_ON(1);
1524 		to_free = ei->i_reserved_data_blocks;
1525 	}
1526 	ei->i_reserved_data_blocks -= to_free;
1527 
1528 	/* update fs dirty data blocks counter */
1529 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530 
1531 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532 
1533 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534 }
1535 
1536 /*
1537  * Delayed allocation stuff
1538  */
1539 
1540 struct mpage_da_data {
1541 	/* These are input fields for ext4_do_writepages() */
1542 	struct inode *inode;
1543 	struct writeback_control *wbc;
1544 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545 
1546 	/* These are internal state of ext4_do_writepages() */
1547 	pgoff_t first_page;	/* The first page to write */
1548 	pgoff_t next_page;	/* Current page to examine */
1549 	pgoff_t last_page;	/* Last page to examine */
1550 	/*
1551 	 * Extent to map - this can be after first_page because that can be
1552 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553 	 * is delalloc or unwritten.
1554 	 */
1555 	struct ext4_map_blocks map;
1556 	struct ext4_io_submit io_submit;	/* IO submission data */
1557 	unsigned int do_map:1;
1558 	unsigned int scanned_until_end:1;
1559 	unsigned int journalled_more_data:1;
1560 };
1561 
1562 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 				       bool invalidate)
1564 {
1565 	unsigned nr, i;
1566 	pgoff_t index, end;
1567 	struct folio_batch fbatch;
1568 	struct inode *inode = mpd->inode;
1569 	struct address_space *mapping = inode->i_mapping;
1570 
1571 	/* This is necessary when next_page == 0. */
1572 	if (mpd->first_page >= mpd->next_page)
1573 		return;
1574 
1575 	mpd->scanned_until_end = 0;
1576 	index = mpd->first_page;
1577 	end   = mpd->next_page - 1;
1578 	if (invalidate) {
1579 		ext4_lblk_t start, last;
1580 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582 
1583 		/*
1584 		 * avoid racing with extent status tree scans made by
1585 		 * ext4_insert_delayed_block()
1586 		 */
1587 		down_write(&EXT4_I(inode)->i_data_sem);
1588 		ext4_es_remove_extent(inode, start, last - start + 1);
1589 		up_write(&EXT4_I(inode)->i_data_sem);
1590 	}
1591 
1592 	folio_batch_init(&fbatch);
1593 	while (index <= end) {
1594 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595 		if (nr == 0)
1596 			break;
1597 		for (i = 0; i < nr; i++) {
1598 			struct folio *folio = fbatch.folios[i];
1599 
1600 			if (folio->index < mpd->first_page)
1601 				continue;
1602 			if (folio_next_index(folio) - 1 > end)
1603 				continue;
1604 			BUG_ON(!folio_test_locked(folio));
1605 			BUG_ON(folio_test_writeback(folio));
1606 			if (invalidate) {
1607 				if (folio_mapped(folio))
1608 					folio_clear_dirty_for_io(folio);
1609 				block_invalidate_folio(folio, 0,
1610 						folio_size(folio));
1611 				folio_clear_uptodate(folio);
1612 			}
1613 			folio_unlock(folio);
1614 		}
1615 		folio_batch_release(&fbatch);
1616 	}
1617 }
1618 
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 	struct super_block *sb = inode->i_sb;
1623 	struct ext4_inode_info *ei = EXT4_I(inode);
1624 
1625 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627 			ext4_count_free_clusters(sb)));
1628 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630 	       (long long) EXT4_C2B(EXT4_SB(sb),
1631 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633 	       (long long) EXT4_C2B(EXT4_SB(sb),
1634 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637 		 ei->i_reserved_data_blocks);
1638 	return;
1639 }
1640 
1641 /*
1642  * Check whether the cluster containing lblk has been allocated or has
1643  * delalloc reservation.
1644  *
1645  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646  * reservation, 2 if it's already been allocated, negative error code on
1647  * failure.
1648  */
1649 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650 {
1651 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 	int ret;
1653 
1654 	/* Has delalloc reservation? */
1655 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656 		return 1;
1657 
1658 	/* Already been allocated? */
1659 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660 		return 2;
1661 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662 	if (ret < 0)
1663 		return ret;
1664 	if (ret > 0)
1665 		return 2;
1666 
1667 	return 0;
1668 }
1669 
1670 /*
1671  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672  *                              status tree, incrementing the reserved
1673  *                              cluster/block count or making pending
1674  *                              reservations where needed
1675  *
1676  * @inode - file containing the newly added block
1677  * @lblk - start logical block to be added
1678  * @len - length of blocks to be added
1679  *
1680  * Returns 0 on success, negative error code on failure.
1681  */
1682 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683 				      ext4_lblk_t len)
1684 {
1685 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686 	int ret;
1687 	bool lclu_allocated = false;
1688 	bool end_allocated = false;
1689 	ext4_lblk_t resv_clu;
1690 	ext4_lblk_t end = lblk + len - 1;
1691 
1692 	/*
1693 	 * If the cluster containing lblk or end is shared with a delayed,
1694 	 * written, or unwritten extent in a bigalloc file system, it's
1695 	 * already been accounted for and does not need to be reserved.
1696 	 * A pending reservation must be made for the cluster if it's
1697 	 * shared with a written or unwritten extent and doesn't already
1698 	 * have one.  Written and unwritten extents can be purged from the
1699 	 * extents status tree if the system is under memory pressure, so
1700 	 * it's necessary to examine the extent tree if a search of the
1701 	 * extents status tree doesn't get a match.
1702 	 */
1703 	if (sbi->s_cluster_ratio == 1) {
1704 		ret = ext4_da_reserve_space(inode, len);
1705 		if (ret != 0)   /* ENOSPC */
1706 			return ret;
1707 	} else {   /* bigalloc */
1708 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709 
1710 		ret = ext4_clu_alloc_state(inode, lblk);
1711 		if (ret < 0)
1712 			return ret;
1713 		if (ret > 0) {
1714 			resv_clu--;
1715 			lclu_allocated = (ret == 2);
1716 		}
1717 
1718 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719 			ret = ext4_clu_alloc_state(inode, end);
1720 			if (ret < 0)
1721 				return ret;
1722 			if (ret > 0) {
1723 				resv_clu--;
1724 				end_allocated = (ret == 2);
1725 			}
1726 		}
1727 
1728 		if (resv_clu) {
1729 			ret = ext4_da_reserve_space(inode, resv_clu);
1730 			if (ret != 0)   /* ENOSPC */
1731 				return ret;
1732 		}
1733 	}
1734 
1735 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736 				      end_allocated);
1737 	return 0;
1738 }
1739 
1740 /*
1741  * Looks up the requested blocks and sets the delalloc extent map.
1742  * First try to look up for the extent entry that contains the requested
1743  * blocks in the extent status tree without i_data_sem, then try to look
1744  * up for the ondisk extent mapping with i_data_sem in read mode,
1745  * finally hold i_data_sem in write mode, looks up again and add a
1746  * delalloc extent entry if it still couldn't find any extent. Pass out
1747  * the mapped extent through @map and return 0 on success.
1748  */
1749 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750 {
1751 	struct extent_status es;
1752 	int retval;
1753 #ifdef ES_AGGRESSIVE_TEST
1754 	struct ext4_map_blocks orig_map;
1755 
1756 	memcpy(&orig_map, map, sizeof(*map));
1757 #endif
1758 
1759 	map->m_flags = 0;
1760 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761 		  (unsigned long) map->m_lblk);
1762 
1763 	/* Lookup extent status tree firstly */
1764 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765 		map->m_len = min_t(unsigned int, map->m_len,
1766 				   es.es_len - (map->m_lblk - es.es_lblk));
1767 
1768 		if (ext4_es_is_hole(&es))
1769 			goto add_delayed;
1770 
1771 found:
1772 		/*
1773 		 * Delayed extent could be allocated by fallocate.
1774 		 * So we need to check it.
1775 		 */
1776 		if (ext4_es_is_delayed(&es)) {
1777 			map->m_flags |= EXT4_MAP_DELAYED;
1778 			return 0;
1779 		}
1780 
1781 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1782 		if (ext4_es_is_written(&es))
1783 			map->m_flags |= EXT4_MAP_MAPPED;
1784 		else if (ext4_es_is_unwritten(&es))
1785 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786 		else
1787 			BUG();
1788 
1789 #ifdef ES_AGGRESSIVE_TEST
1790 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791 #endif
1792 		return 0;
1793 	}
1794 
1795 	/*
1796 	 * Try to see if we can get the block without requesting a new
1797 	 * file system block.
1798 	 */
1799 	down_read(&EXT4_I(inode)->i_data_sem);
1800 	if (ext4_has_inline_data(inode))
1801 		retval = 0;
1802 	else
1803 		retval = ext4_map_query_blocks(NULL, inode, map);
1804 	up_read(&EXT4_I(inode)->i_data_sem);
1805 	if (retval)
1806 		return retval < 0 ? retval : 0;
1807 
1808 add_delayed:
1809 	down_write(&EXT4_I(inode)->i_data_sem);
1810 	/*
1811 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812 	 * and fallocate path (no folio lock) can race. Make sure we
1813 	 * lookup the extent status tree here again while i_data_sem
1814 	 * is held in write mode, before inserting a new da entry in
1815 	 * the extent status tree.
1816 	 */
1817 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818 		map->m_len = min_t(unsigned int, map->m_len,
1819 				   es.es_len - (map->m_lblk - es.es_lblk));
1820 
1821 		if (!ext4_es_is_hole(&es)) {
1822 			up_write(&EXT4_I(inode)->i_data_sem);
1823 			goto found;
1824 		}
1825 	} else if (!ext4_has_inline_data(inode)) {
1826 		retval = ext4_map_query_blocks(NULL, inode, map);
1827 		if (retval) {
1828 			up_write(&EXT4_I(inode)->i_data_sem);
1829 			return retval < 0 ? retval : 0;
1830 		}
1831 	}
1832 
1833 	map->m_flags |= EXT4_MAP_DELAYED;
1834 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835 	up_write(&EXT4_I(inode)->i_data_sem);
1836 
1837 	return retval;
1838 }
1839 
1840 /*
1841  * This is a special get_block_t callback which is used by
1842  * ext4_da_write_begin().  It will either return mapped block or
1843  * reserve space for a single block.
1844  *
1845  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846  * We also have b_blocknr = -1 and b_bdev initialized properly
1847  *
1848  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850  * initialized properly.
1851  */
1852 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853 			   struct buffer_head *bh, int create)
1854 {
1855 	struct ext4_map_blocks map;
1856 	sector_t invalid_block = ~((sector_t) 0xffff);
1857 	int ret = 0;
1858 
1859 	BUG_ON(create == 0);
1860 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861 
1862 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863 		invalid_block = ~0;
1864 
1865 	map.m_lblk = iblock;
1866 	map.m_len = 1;
1867 
1868 	/*
1869 	 * first, we need to know whether the block is allocated already
1870 	 * preallocated blocks are unmapped but should treated
1871 	 * the same as allocated blocks.
1872 	 */
1873 	ret = ext4_da_map_blocks(inode, &map);
1874 	if (ret < 0)
1875 		return ret;
1876 
1877 	if (map.m_flags & EXT4_MAP_DELAYED) {
1878 		map_bh(bh, inode->i_sb, invalid_block);
1879 		set_buffer_new(bh);
1880 		set_buffer_delay(bh);
1881 		return 0;
1882 	}
1883 
1884 	map_bh(bh, inode->i_sb, map.m_pblk);
1885 	ext4_update_bh_state(bh, map.m_flags);
1886 
1887 	if (buffer_unwritten(bh)) {
1888 		/* A delayed write to unwritten bh should be marked
1889 		 * new and mapped.  Mapped ensures that we don't do
1890 		 * get_block multiple times when we write to the same
1891 		 * offset and new ensures that we do proper zero out
1892 		 * for partial write.
1893 		 */
1894 		set_buffer_new(bh);
1895 		set_buffer_mapped(bh);
1896 	}
1897 	return 0;
1898 }
1899 
1900 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901 {
1902 	mpd->first_page += folio_nr_pages(folio);
1903 	folio_unlock(folio);
1904 }
1905 
1906 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907 {
1908 	size_t len;
1909 	loff_t size;
1910 	int err;
1911 
1912 	BUG_ON(folio->index != mpd->first_page);
1913 	folio_clear_dirty_for_io(folio);
1914 	/*
1915 	 * We have to be very careful here!  Nothing protects writeback path
1916 	 * against i_size changes and the page can be writeably mapped into
1917 	 * page tables. So an application can be growing i_size and writing
1918 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919 	 * write-protects our page in page tables and the page cannot get
1920 	 * written to again until we release folio lock. So only after
1921 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923 	 * on the barrier provided by folio_test_clear_dirty() in
1924 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925 	 * after page tables are updated.
1926 	 */
1927 	size = i_size_read(mpd->inode);
1928 	len = folio_size(folio);
1929 	if (folio_pos(folio) + len > size &&
1930 	    !ext4_verity_in_progress(mpd->inode))
1931 		len = size & (len - 1);
1932 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933 	if (!err)
1934 		mpd->wbc->nr_to_write--;
1935 
1936 	return err;
1937 }
1938 
1939 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940 
1941 /*
1942  * mballoc gives us at most this number of blocks...
1943  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944  * The rest of mballoc seems to handle chunks up to full group size.
1945  */
1946 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1947 
1948 /*
1949  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950  *
1951  * @mpd - extent of blocks
1952  * @lblk - logical number of the block in the file
1953  * @bh - buffer head we want to add to the extent
1954  *
1955  * The function is used to collect contig. blocks in the same state. If the
1956  * buffer doesn't require mapping for writeback and we haven't started the
1957  * extent of buffers to map yet, the function returns 'true' immediately - the
1958  * caller can write the buffer right away. Otherwise the function returns true
1959  * if the block has been added to the extent, false if the block couldn't be
1960  * added.
1961  */
1962 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963 				   struct buffer_head *bh)
1964 {
1965 	struct ext4_map_blocks *map = &mpd->map;
1966 
1967 	/* Buffer that doesn't need mapping for writeback? */
1968 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970 		/* So far no extent to map => we write the buffer right away */
1971 		if (map->m_len == 0)
1972 			return true;
1973 		return false;
1974 	}
1975 
1976 	/* First block in the extent? */
1977 	if (map->m_len == 0) {
1978 		/* We cannot map unless handle is started... */
1979 		if (!mpd->do_map)
1980 			return false;
1981 		map->m_lblk = lblk;
1982 		map->m_len = 1;
1983 		map->m_flags = bh->b_state & BH_FLAGS;
1984 		return true;
1985 	}
1986 
1987 	/* Don't go larger than mballoc is willing to allocate */
1988 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989 		return false;
1990 
1991 	/* Can we merge the block to our big extent? */
1992 	if (lblk == map->m_lblk + map->m_len &&
1993 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994 		map->m_len++;
1995 		return true;
1996 	}
1997 	return false;
1998 }
1999 
2000 /*
2001  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002  *
2003  * @mpd - extent of blocks for mapping
2004  * @head - the first buffer in the page
2005  * @bh - buffer we should start processing from
2006  * @lblk - logical number of the block in the file corresponding to @bh
2007  *
2008  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009  * the page for IO if all buffers in this page were mapped and there's no
2010  * accumulated extent of buffers to map or add buffers in the page to the
2011  * extent of buffers to map. The function returns 1 if the caller can continue
2012  * by processing the next page, 0 if it should stop adding buffers to the
2013  * extent to map because we cannot extend it anymore. It can also return value
2014  * < 0 in case of error during IO submission.
2015  */
2016 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017 				   struct buffer_head *head,
2018 				   struct buffer_head *bh,
2019 				   ext4_lblk_t lblk)
2020 {
2021 	struct inode *inode = mpd->inode;
2022 	int err;
2023 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024 							>> inode->i_blkbits;
2025 
2026 	if (ext4_verity_in_progress(inode))
2027 		blocks = EXT_MAX_BLOCKS;
2028 
2029 	do {
2030 		BUG_ON(buffer_locked(bh));
2031 
2032 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033 			/* Found extent to map? */
2034 			if (mpd->map.m_len)
2035 				return 0;
2036 			/* Buffer needs mapping and handle is not started? */
2037 			if (!mpd->do_map)
2038 				return 0;
2039 			/* Everything mapped so far and we hit EOF */
2040 			break;
2041 		}
2042 	} while (lblk++, (bh = bh->b_this_page) != head);
2043 	/* So far everything mapped? Submit the page for IO. */
2044 	if (mpd->map.m_len == 0) {
2045 		err = mpage_submit_folio(mpd, head->b_folio);
2046 		if (err < 0)
2047 			return err;
2048 		mpage_folio_done(mpd, head->b_folio);
2049 	}
2050 	if (lblk >= blocks) {
2051 		mpd->scanned_until_end = 1;
2052 		return 0;
2053 	}
2054 	return 1;
2055 }
2056 
2057 /*
2058  * mpage_process_folio - update folio buffers corresponding to changed extent
2059  *			 and may submit fully mapped page for IO
2060  * @mpd: description of extent to map, on return next extent to map
2061  * @folio: Contains these buffers.
2062  * @m_lblk: logical block mapping.
2063  * @m_pblk: corresponding physical mapping.
2064  * @map_bh: determines on return whether this page requires any further
2065  *		  mapping or not.
2066  *
2067  * Scan given folio buffers corresponding to changed extent and update buffer
2068  * state according to new extent state.
2069  * We map delalloc buffers to their physical location, clear unwritten bits.
2070  * If the given folio is not fully mapped, we update @mpd to the next extent in
2071  * the given folio that needs mapping & return @map_bh as true.
2072  */
2073 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075 			      bool *map_bh)
2076 {
2077 	struct buffer_head *head, *bh;
2078 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079 	ext4_lblk_t lblk = *m_lblk;
2080 	ext4_fsblk_t pblock = *m_pblk;
2081 	int err = 0;
2082 	int blkbits = mpd->inode->i_blkbits;
2083 	ssize_t io_end_size = 0;
2084 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085 
2086 	bh = head = folio_buffers(folio);
2087 	do {
2088 		if (lblk < mpd->map.m_lblk)
2089 			continue;
2090 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091 			/*
2092 			 * Buffer after end of mapped extent.
2093 			 * Find next buffer in the folio to map.
2094 			 */
2095 			mpd->map.m_len = 0;
2096 			mpd->map.m_flags = 0;
2097 			io_end_vec->size += io_end_size;
2098 
2099 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100 			if (err > 0)
2101 				err = 0;
2102 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104 				if (IS_ERR(io_end_vec)) {
2105 					err = PTR_ERR(io_end_vec);
2106 					goto out;
2107 				}
2108 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109 			}
2110 			*map_bh = true;
2111 			goto out;
2112 		}
2113 		if (buffer_delay(bh)) {
2114 			clear_buffer_delay(bh);
2115 			bh->b_blocknr = pblock++;
2116 		}
2117 		clear_buffer_unwritten(bh);
2118 		io_end_size += (1 << blkbits);
2119 	} while (lblk++, (bh = bh->b_this_page) != head);
2120 
2121 	io_end_vec->size += io_end_size;
2122 	*map_bh = false;
2123 out:
2124 	*m_lblk = lblk;
2125 	*m_pblk = pblock;
2126 	return err;
2127 }
2128 
2129 /*
2130  * mpage_map_buffers - update buffers corresponding to changed extent and
2131  *		       submit fully mapped pages for IO
2132  *
2133  * @mpd - description of extent to map, on return next extent to map
2134  *
2135  * Scan buffers corresponding to changed extent (we expect corresponding pages
2136  * to be already locked) and update buffer state according to new extent state.
2137  * We map delalloc buffers to their physical location, clear unwritten bits,
2138  * and mark buffers as uninit when we perform writes to unwritten extents
2139  * and do extent conversion after IO is finished. If the last page is not fully
2140  * mapped, we update @map to the next extent in the last page that needs
2141  * mapping. Otherwise we submit the page for IO.
2142  */
2143 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144 {
2145 	struct folio_batch fbatch;
2146 	unsigned nr, i;
2147 	struct inode *inode = mpd->inode;
2148 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149 	pgoff_t start, end;
2150 	ext4_lblk_t lblk;
2151 	ext4_fsblk_t pblock;
2152 	int err;
2153 	bool map_bh = false;
2154 
2155 	start = mpd->map.m_lblk >> bpp_bits;
2156 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157 	lblk = start << bpp_bits;
2158 	pblock = mpd->map.m_pblk;
2159 
2160 	folio_batch_init(&fbatch);
2161 	while (start <= end) {
2162 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163 		if (nr == 0)
2164 			break;
2165 		for (i = 0; i < nr; i++) {
2166 			struct folio *folio = fbatch.folios[i];
2167 
2168 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169 						 &map_bh);
2170 			/*
2171 			 * If map_bh is true, means page may require further bh
2172 			 * mapping, or maybe the page was submitted for IO.
2173 			 * So we return to call further extent mapping.
2174 			 */
2175 			if (err < 0 || map_bh)
2176 				goto out;
2177 			/* Page fully mapped - let IO run! */
2178 			err = mpage_submit_folio(mpd, folio);
2179 			if (err < 0)
2180 				goto out;
2181 			mpage_folio_done(mpd, folio);
2182 		}
2183 		folio_batch_release(&fbatch);
2184 	}
2185 	/* Extent fully mapped and matches with page boundary. We are done. */
2186 	mpd->map.m_len = 0;
2187 	mpd->map.m_flags = 0;
2188 	return 0;
2189 out:
2190 	folio_batch_release(&fbatch);
2191 	return err;
2192 }
2193 
2194 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195 {
2196 	struct inode *inode = mpd->inode;
2197 	struct ext4_map_blocks *map = &mpd->map;
2198 	int get_blocks_flags;
2199 	int err, dioread_nolock;
2200 
2201 	trace_ext4_da_write_pages_extent(inode, map);
2202 	/*
2203 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204 	 * to convert an unwritten extent to be initialized (in the case
2205 	 * where we have written into one or more preallocated blocks).  It is
2206 	 * possible that we're going to need more metadata blocks than
2207 	 * previously reserved. However we must not fail because we're in
2208 	 * writeback and there is nothing we can do about it so it might result
2209 	 * in data loss.  So use reserved blocks to allocate metadata if
2210 	 * possible.
2211 	 */
2212 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215 	dioread_nolock = ext4_should_dioread_nolock(inode);
2216 	if (dioread_nolock)
2217 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2218 
2219 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220 	if (err < 0)
2221 		return err;
2222 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223 		if (!mpd->io_submit.io_end->handle &&
2224 		    ext4_handle_valid(handle)) {
2225 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226 			handle->h_rsv_handle = NULL;
2227 		}
2228 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229 	}
2230 
2231 	BUG_ON(map->m_len == 0);
2232 	return 0;
2233 }
2234 
2235 /*
2236  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237  *				 mpd->len and submit pages underlying it for IO
2238  *
2239  * @handle - handle for journal operations
2240  * @mpd - extent to map
2241  * @give_up_on_write - we set this to true iff there is a fatal error and there
2242  *                     is no hope of writing the data. The caller should discard
2243  *                     dirty pages to avoid infinite loops.
2244  *
2245  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247  * them to initialized or split the described range from larger unwritten
2248  * extent. Note that we need not map all the described range since allocation
2249  * can return less blocks or the range is covered by more unwritten extents. We
2250  * cannot map more because we are limited by reserved transaction credits. On
2251  * the other hand we always make sure that the last touched page is fully
2252  * mapped so that it can be written out (and thus forward progress is
2253  * guaranteed). After mapping we submit all mapped pages for IO.
2254  */
2255 static int mpage_map_and_submit_extent(handle_t *handle,
2256 				       struct mpage_da_data *mpd,
2257 				       bool *give_up_on_write)
2258 {
2259 	struct inode *inode = mpd->inode;
2260 	struct ext4_map_blocks *map = &mpd->map;
2261 	int err;
2262 	loff_t disksize;
2263 	int progress = 0;
2264 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265 	struct ext4_io_end_vec *io_end_vec;
2266 
2267 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268 	if (IS_ERR(io_end_vec))
2269 		return PTR_ERR(io_end_vec);
2270 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271 	do {
2272 		err = mpage_map_one_extent(handle, mpd);
2273 		if (err < 0) {
2274 			struct super_block *sb = inode->i_sb;
2275 
2276 			if (ext4_forced_shutdown(sb))
2277 				goto invalidate_dirty_pages;
2278 			/*
2279 			 * Let the uper layers retry transient errors.
2280 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281 			 * is non-zero, a commit should free up blocks.
2282 			 */
2283 			if ((err == -ENOMEM) ||
2284 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285 				if (progress)
2286 					goto update_disksize;
2287 				return err;
2288 			}
2289 			ext4_msg(sb, KERN_CRIT,
2290 				 "Delayed block allocation failed for "
2291 				 "inode %lu at logical offset %llu with"
2292 				 " max blocks %u with error %d",
2293 				 inode->i_ino,
2294 				 (unsigned long long)map->m_lblk,
2295 				 (unsigned)map->m_len, -err);
2296 			ext4_msg(sb, KERN_CRIT,
2297 				 "This should not happen!! Data will "
2298 				 "be lost\n");
2299 			if (err == -ENOSPC)
2300 				ext4_print_free_blocks(inode);
2301 		invalidate_dirty_pages:
2302 			*give_up_on_write = true;
2303 			return err;
2304 		}
2305 		progress = 1;
2306 		/*
2307 		 * Update buffer state, submit mapped pages, and get us new
2308 		 * extent to map
2309 		 */
2310 		err = mpage_map_and_submit_buffers(mpd);
2311 		if (err < 0)
2312 			goto update_disksize;
2313 	} while (map->m_len);
2314 
2315 update_disksize:
2316 	/*
2317 	 * Update on-disk size after IO is submitted.  Races with
2318 	 * truncate are avoided by checking i_size under i_data_sem.
2319 	 */
2320 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322 		int err2;
2323 		loff_t i_size;
2324 
2325 		down_write(&EXT4_I(inode)->i_data_sem);
2326 		i_size = i_size_read(inode);
2327 		if (disksize > i_size)
2328 			disksize = i_size;
2329 		if (disksize > EXT4_I(inode)->i_disksize)
2330 			EXT4_I(inode)->i_disksize = disksize;
2331 		up_write(&EXT4_I(inode)->i_data_sem);
2332 		err2 = ext4_mark_inode_dirty(handle, inode);
2333 		if (err2) {
2334 			ext4_error_err(inode->i_sb, -err2,
2335 				       "Failed to mark inode %lu dirty",
2336 				       inode->i_ino);
2337 		}
2338 		if (!err)
2339 			err = err2;
2340 	}
2341 	return err;
2342 }
2343 
2344 /*
2345  * Calculate the total number of credits to reserve for one writepages
2346  * iteration. This is called from ext4_writepages(). We map an extent of
2347  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349  * bpp - 1 blocks in bpp different extents.
2350  */
2351 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352 {
2353 	int bpp = ext4_journal_blocks_per_page(inode);
2354 
2355 	return ext4_meta_trans_blocks(inode,
2356 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357 }
2358 
2359 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360 				     size_t len)
2361 {
2362 	struct buffer_head *page_bufs = folio_buffers(folio);
2363 	struct inode *inode = folio->mapping->host;
2364 	int ret, err;
2365 
2366 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367 				     NULL, do_journal_get_write_access);
2368 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369 				     NULL, write_end_fn);
2370 	if (ret == 0)
2371 		ret = err;
2372 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373 	if (ret == 0)
2374 		ret = err;
2375 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376 
2377 	return ret;
2378 }
2379 
2380 static int mpage_journal_page_buffers(handle_t *handle,
2381 				      struct mpage_da_data *mpd,
2382 				      struct folio *folio)
2383 {
2384 	struct inode *inode = mpd->inode;
2385 	loff_t size = i_size_read(inode);
2386 	size_t len = folio_size(folio);
2387 
2388 	folio_clear_checked(folio);
2389 	mpd->wbc->nr_to_write--;
2390 
2391 	if (folio_pos(folio) + len > size &&
2392 	    !ext4_verity_in_progress(inode))
2393 		len = size & (len - 1);
2394 
2395 	return ext4_journal_folio_buffers(handle, folio, len);
2396 }
2397 
2398 /*
2399  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400  * 				 needing mapping, submit mapped pages
2401  *
2402  * @mpd - where to look for pages
2403  *
2404  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405  * IO immediately. If we cannot map blocks, we submit just already mapped
2406  * buffers in the page for IO and keep page dirty. When we can map blocks and
2407  * we find a page which isn't mapped we start accumulating extent of buffers
2408  * underlying these pages that needs mapping (formed by either delayed or
2409  * unwritten buffers). We also lock the pages containing these buffers. The
2410  * extent found is returned in @mpd structure (starting at mpd->lblk with
2411  * length mpd->len blocks).
2412  *
2413  * Note that this function can attach bios to one io_end structure which are
2414  * neither logically nor physically contiguous. Although it may seem as an
2415  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416  * case as we need to track IO to all buffers underlying a page in one io_end.
2417  */
2418 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419 {
2420 	struct address_space *mapping = mpd->inode->i_mapping;
2421 	struct folio_batch fbatch;
2422 	unsigned int nr_folios;
2423 	pgoff_t index = mpd->first_page;
2424 	pgoff_t end = mpd->last_page;
2425 	xa_mark_t tag;
2426 	int i, err = 0;
2427 	int blkbits = mpd->inode->i_blkbits;
2428 	ext4_lblk_t lblk;
2429 	struct buffer_head *head;
2430 	handle_t *handle = NULL;
2431 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432 
2433 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434 		tag = PAGECACHE_TAG_TOWRITE;
2435 	else
2436 		tag = PAGECACHE_TAG_DIRTY;
2437 
2438 	mpd->map.m_len = 0;
2439 	mpd->next_page = index;
2440 	if (ext4_should_journal_data(mpd->inode)) {
2441 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442 					    bpp);
2443 		if (IS_ERR(handle))
2444 			return PTR_ERR(handle);
2445 	}
2446 	folio_batch_init(&fbatch);
2447 	while (index <= end) {
2448 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449 				tag, &fbatch);
2450 		if (nr_folios == 0)
2451 			break;
2452 
2453 		for (i = 0; i < nr_folios; i++) {
2454 			struct folio *folio = fbatch.folios[i];
2455 
2456 			/*
2457 			 * Accumulated enough dirty pages? This doesn't apply
2458 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459 			 * keep going because someone may be concurrently
2460 			 * dirtying pages, and we might have synced a lot of
2461 			 * newly appeared dirty pages, but have not synced all
2462 			 * of the old dirty pages.
2463 			 */
2464 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465 			    mpd->wbc->nr_to_write <=
2466 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467 				goto out;
2468 
2469 			/* If we can't merge this page, we are done. */
2470 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471 				goto out;
2472 
2473 			if (handle) {
2474 				err = ext4_journal_ensure_credits(handle, bpp,
2475 								  0);
2476 				if (err < 0)
2477 					goto out;
2478 			}
2479 
2480 			folio_lock(folio);
2481 			/*
2482 			 * If the page is no longer dirty, or its mapping no
2483 			 * longer corresponds to inode we are writing (which
2484 			 * means it has been truncated or invalidated), or the
2485 			 * page is already under writeback and we are not doing
2486 			 * a data integrity writeback, skip the page
2487 			 */
2488 			if (!folio_test_dirty(folio) ||
2489 			    (folio_test_writeback(folio) &&
2490 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491 			    unlikely(folio->mapping != mapping)) {
2492 				folio_unlock(folio);
2493 				continue;
2494 			}
2495 
2496 			folio_wait_writeback(folio);
2497 			BUG_ON(folio_test_writeback(folio));
2498 
2499 			/*
2500 			 * Should never happen but for buggy code in
2501 			 * other subsystems that call
2502 			 * set_page_dirty() without properly warning
2503 			 * the file system first.  See [1] for more
2504 			 * information.
2505 			 *
2506 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507 			 */
2508 			if (!folio_buffers(folio)) {
2509 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510 				folio_clear_dirty(folio);
2511 				folio_unlock(folio);
2512 				continue;
2513 			}
2514 
2515 			if (mpd->map.m_len == 0)
2516 				mpd->first_page = folio->index;
2517 			mpd->next_page = folio_next_index(folio);
2518 			/*
2519 			 * Writeout when we cannot modify metadata is simple.
2520 			 * Just submit the page. For data=journal mode we
2521 			 * first handle writeout of the page for checkpoint and
2522 			 * only after that handle delayed page dirtying. This
2523 			 * makes sure current data is checkpointed to the final
2524 			 * location before possibly journalling it again which
2525 			 * is desirable when the page is frequently dirtied
2526 			 * through a pin.
2527 			 */
2528 			if (!mpd->can_map) {
2529 				err = mpage_submit_folio(mpd, folio);
2530 				if (err < 0)
2531 					goto out;
2532 				/* Pending dirtying of journalled data? */
2533 				if (folio_test_checked(folio)) {
2534 					err = mpage_journal_page_buffers(handle,
2535 						mpd, folio);
2536 					if (err < 0)
2537 						goto out;
2538 					mpd->journalled_more_data = 1;
2539 				}
2540 				mpage_folio_done(mpd, folio);
2541 			} else {
2542 				/* Add all dirty buffers to mpd */
2543 				lblk = ((ext4_lblk_t)folio->index) <<
2544 					(PAGE_SHIFT - blkbits);
2545 				head = folio_buffers(folio);
2546 				err = mpage_process_page_bufs(mpd, head, head,
2547 						lblk);
2548 				if (err <= 0)
2549 					goto out;
2550 				err = 0;
2551 			}
2552 		}
2553 		folio_batch_release(&fbatch);
2554 		cond_resched();
2555 	}
2556 	mpd->scanned_until_end = 1;
2557 	if (handle)
2558 		ext4_journal_stop(handle);
2559 	return 0;
2560 out:
2561 	folio_batch_release(&fbatch);
2562 	if (handle)
2563 		ext4_journal_stop(handle);
2564 	return err;
2565 }
2566 
2567 static int ext4_do_writepages(struct mpage_da_data *mpd)
2568 {
2569 	struct writeback_control *wbc = mpd->wbc;
2570 	pgoff_t	writeback_index = 0;
2571 	long nr_to_write = wbc->nr_to_write;
2572 	int range_whole = 0;
2573 	int cycled = 1;
2574 	handle_t *handle = NULL;
2575 	struct inode *inode = mpd->inode;
2576 	struct address_space *mapping = inode->i_mapping;
2577 	int needed_blocks, rsv_blocks = 0, ret = 0;
2578 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579 	struct blk_plug plug;
2580 	bool give_up_on_write = false;
2581 
2582 	trace_ext4_writepages(inode, wbc);
2583 
2584 	/*
2585 	 * No pages to write? This is mainly a kludge to avoid starting
2586 	 * a transaction for special inodes like journal inode on last iput()
2587 	 * because that could violate lock ordering on umount
2588 	 */
2589 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590 		goto out_writepages;
2591 
2592 	/*
2593 	 * If the filesystem has aborted, it is read-only, so return
2594 	 * right away instead of dumping stack traces later on that
2595 	 * will obscure the real source of the problem.  We test
2596 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597 	 * the latter could be true if the filesystem is mounted
2598 	 * read-only, and in that case, ext4_writepages should
2599 	 * *never* be called, so if that ever happens, we would want
2600 	 * the stack trace.
2601 	 */
2602 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603 		ret = -EROFS;
2604 		goto out_writepages;
2605 	}
2606 
2607 	/*
2608 	 * If we have inline data and arrive here, it means that
2609 	 * we will soon create the block for the 1st page, so
2610 	 * we'd better clear the inline data here.
2611 	 */
2612 	if (ext4_has_inline_data(inode)) {
2613 		/* Just inode will be modified... */
2614 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615 		if (IS_ERR(handle)) {
2616 			ret = PTR_ERR(handle);
2617 			goto out_writepages;
2618 		}
2619 		BUG_ON(ext4_test_inode_state(inode,
2620 				EXT4_STATE_MAY_INLINE_DATA));
2621 		ext4_destroy_inline_data(handle, inode);
2622 		ext4_journal_stop(handle);
2623 	}
2624 
2625 	/*
2626 	 * data=journal mode does not do delalloc so we just need to writeout /
2627 	 * journal already mapped buffers. On the other hand we need to commit
2628 	 * transaction to make data stable. We expect all the data to be
2629 	 * already in the journal (the only exception are DMA pinned pages
2630 	 * dirtied behind our back) so we commit transaction here and run the
2631 	 * writeback loop to checkpoint them. The checkpointing is not actually
2632 	 * necessary to make data persistent *but* quite a few places (extent
2633 	 * shifting operations, fsverity, ...) depend on being able to drop
2634 	 * pagecache pages after calling filemap_write_and_wait() and for that
2635 	 * checkpointing needs to happen.
2636 	 */
2637 	if (ext4_should_journal_data(inode)) {
2638 		mpd->can_map = 0;
2639 		if (wbc->sync_mode == WB_SYNC_ALL)
2640 			ext4_fc_commit(sbi->s_journal,
2641 				       EXT4_I(inode)->i_datasync_tid);
2642 	}
2643 	mpd->journalled_more_data = 0;
2644 
2645 	if (ext4_should_dioread_nolock(inode)) {
2646 		/*
2647 		 * We may need to convert up to one extent per block in
2648 		 * the page and we may dirty the inode.
2649 		 */
2650 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651 						PAGE_SIZE >> inode->i_blkbits);
2652 	}
2653 
2654 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655 		range_whole = 1;
2656 
2657 	if (wbc->range_cyclic) {
2658 		writeback_index = mapping->writeback_index;
2659 		if (writeback_index)
2660 			cycled = 0;
2661 		mpd->first_page = writeback_index;
2662 		mpd->last_page = -1;
2663 	} else {
2664 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666 	}
2667 
2668 	ext4_io_submit_init(&mpd->io_submit, wbc);
2669 retry:
2670 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671 		tag_pages_for_writeback(mapping, mpd->first_page,
2672 					mpd->last_page);
2673 	blk_start_plug(&plug);
2674 
2675 	/*
2676 	 * First writeback pages that don't need mapping - we can avoid
2677 	 * starting a transaction unnecessarily and also avoid being blocked
2678 	 * in the block layer on device congestion while having transaction
2679 	 * started.
2680 	 */
2681 	mpd->do_map = 0;
2682 	mpd->scanned_until_end = 0;
2683 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684 	if (!mpd->io_submit.io_end) {
2685 		ret = -ENOMEM;
2686 		goto unplug;
2687 	}
2688 	ret = mpage_prepare_extent_to_map(mpd);
2689 	/* Unlock pages we didn't use */
2690 	mpage_release_unused_pages(mpd, false);
2691 	/* Submit prepared bio */
2692 	ext4_io_submit(&mpd->io_submit);
2693 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694 	mpd->io_submit.io_end = NULL;
2695 	if (ret < 0)
2696 		goto unplug;
2697 
2698 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699 		/* For each extent of pages we use new io_end */
2700 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701 		if (!mpd->io_submit.io_end) {
2702 			ret = -ENOMEM;
2703 			break;
2704 		}
2705 
2706 		WARN_ON_ONCE(!mpd->can_map);
2707 		/*
2708 		 * We have two constraints: We find one extent to map and we
2709 		 * must always write out whole page (makes a difference when
2710 		 * blocksize < pagesize) so that we don't block on IO when we
2711 		 * try to write out the rest of the page. Journalled mode is
2712 		 * not supported by delalloc.
2713 		 */
2714 		BUG_ON(ext4_should_journal_data(inode));
2715 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716 
2717 		/* start a new transaction */
2718 		handle = ext4_journal_start_with_reserve(inode,
2719 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720 		if (IS_ERR(handle)) {
2721 			ret = PTR_ERR(handle);
2722 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723 			       "%ld pages, ino %lu; err %d", __func__,
2724 				wbc->nr_to_write, inode->i_ino, ret);
2725 			/* Release allocated io_end */
2726 			ext4_put_io_end(mpd->io_submit.io_end);
2727 			mpd->io_submit.io_end = NULL;
2728 			break;
2729 		}
2730 		mpd->do_map = 1;
2731 
2732 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733 		ret = mpage_prepare_extent_to_map(mpd);
2734 		if (!ret && mpd->map.m_len)
2735 			ret = mpage_map_and_submit_extent(handle, mpd,
2736 					&give_up_on_write);
2737 		/*
2738 		 * Caution: If the handle is synchronous,
2739 		 * ext4_journal_stop() can wait for transaction commit
2740 		 * to finish which may depend on writeback of pages to
2741 		 * complete or on page lock to be released.  In that
2742 		 * case, we have to wait until after we have
2743 		 * submitted all the IO, released page locks we hold,
2744 		 * and dropped io_end reference (for extent conversion
2745 		 * to be able to complete) before stopping the handle.
2746 		 */
2747 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748 			ext4_journal_stop(handle);
2749 			handle = NULL;
2750 			mpd->do_map = 0;
2751 		}
2752 		/* Unlock pages we didn't use */
2753 		mpage_release_unused_pages(mpd, give_up_on_write);
2754 		/* Submit prepared bio */
2755 		ext4_io_submit(&mpd->io_submit);
2756 
2757 		/*
2758 		 * Drop our io_end reference we got from init. We have
2759 		 * to be careful and use deferred io_end finishing if
2760 		 * we are still holding the transaction as we can
2761 		 * release the last reference to io_end which may end
2762 		 * up doing unwritten extent conversion.
2763 		 */
2764 		if (handle) {
2765 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766 			ext4_journal_stop(handle);
2767 		} else
2768 			ext4_put_io_end(mpd->io_submit.io_end);
2769 		mpd->io_submit.io_end = NULL;
2770 
2771 		if (ret == -ENOSPC && sbi->s_journal) {
2772 			/*
2773 			 * Commit the transaction which would
2774 			 * free blocks released in the transaction
2775 			 * and try again
2776 			 */
2777 			jbd2_journal_force_commit_nested(sbi->s_journal);
2778 			ret = 0;
2779 			continue;
2780 		}
2781 		/* Fatal error - ENOMEM, EIO... */
2782 		if (ret)
2783 			break;
2784 	}
2785 unplug:
2786 	blk_finish_plug(&plug);
2787 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788 		cycled = 1;
2789 		mpd->last_page = writeback_index - 1;
2790 		mpd->first_page = 0;
2791 		goto retry;
2792 	}
2793 
2794 	/* Update index */
2795 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796 		/*
2797 		 * Set the writeback_index so that range_cyclic
2798 		 * mode will write it back later
2799 		 */
2800 		mapping->writeback_index = mpd->first_page;
2801 
2802 out_writepages:
2803 	trace_ext4_writepages_result(inode, wbc, ret,
2804 				     nr_to_write - wbc->nr_to_write);
2805 	return ret;
2806 }
2807 
2808 static int ext4_writepages(struct address_space *mapping,
2809 			   struct writeback_control *wbc)
2810 {
2811 	struct super_block *sb = mapping->host->i_sb;
2812 	struct mpage_da_data mpd = {
2813 		.inode = mapping->host,
2814 		.wbc = wbc,
2815 		.can_map = 1,
2816 	};
2817 	int ret;
2818 	int alloc_ctx;
2819 
2820 	if (unlikely(ext4_forced_shutdown(sb)))
2821 		return -EIO;
2822 
2823 	alloc_ctx = ext4_writepages_down_read(sb);
2824 	ret = ext4_do_writepages(&mpd);
2825 	/*
2826 	 * For data=journal writeback we could have come across pages marked
2827 	 * for delayed dirtying (PageChecked) which were just added to the
2828 	 * running transaction. Try once more to get them to stable storage.
2829 	 */
2830 	if (!ret && mpd.journalled_more_data)
2831 		ret = ext4_do_writepages(&mpd);
2832 	ext4_writepages_up_read(sb, alloc_ctx);
2833 
2834 	return ret;
2835 }
2836 
2837 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838 {
2839 	struct writeback_control wbc = {
2840 		.sync_mode = WB_SYNC_ALL,
2841 		.nr_to_write = LONG_MAX,
2842 		.range_start = jinode->i_dirty_start,
2843 		.range_end = jinode->i_dirty_end,
2844 	};
2845 	struct mpage_da_data mpd = {
2846 		.inode = jinode->i_vfs_inode,
2847 		.wbc = &wbc,
2848 		.can_map = 0,
2849 	};
2850 	return ext4_do_writepages(&mpd);
2851 }
2852 
2853 static int ext4_dax_writepages(struct address_space *mapping,
2854 			       struct writeback_control *wbc)
2855 {
2856 	int ret;
2857 	long nr_to_write = wbc->nr_to_write;
2858 	struct inode *inode = mapping->host;
2859 	int alloc_ctx;
2860 
2861 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862 		return -EIO;
2863 
2864 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865 	trace_ext4_writepages(inode, wbc);
2866 
2867 	ret = dax_writeback_mapping_range(mapping,
2868 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869 	trace_ext4_writepages_result(inode, wbc, ret,
2870 				     nr_to_write - wbc->nr_to_write);
2871 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872 	return ret;
2873 }
2874 
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877 	s64 free_clusters, dirty_clusters;
2878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879 
2880 	/*
2881 	 * switch to non delalloc mode if we are running low
2882 	 * on free block. The free block accounting via percpu
2883 	 * counters can get slightly wrong with percpu_counter_batch getting
2884 	 * accumulated on each CPU without updating global counters
2885 	 * Delalloc need an accurate free block accounting. So switch
2886 	 * to non delalloc when we are near to error range.
2887 	 */
2888 	free_clusters =
2889 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 	dirty_clusters =
2891 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 	/*
2893 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 	 */
2895 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897 
2898 	if (2 * free_clusters < 3 * dirty_clusters ||
2899 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 		/*
2901 		 * free block count is less than 150% of dirty blocks
2902 		 * or free blocks is less than watermark
2903 		 */
2904 		return 1;
2905 	}
2906 	return 0;
2907 }
2908 
2909 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910 			       loff_t pos, unsigned len,
2911 			       struct folio **foliop, void **fsdata)
2912 {
2913 	int ret, retries = 0;
2914 	struct folio *folio;
2915 	pgoff_t index;
2916 	struct inode *inode = mapping->host;
2917 
2918 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919 		return -EIO;
2920 
2921 	index = pos >> PAGE_SHIFT;
2922 
2923 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925 		return ext4_write_begin(file, mapping, pos,
2926 					len, foliop, fsdata);
2927 	}
2928 	*fsdata = (void *)0;
2929 	trace_ext4_da_write_begin(inode, pos, len);
2930 
2931 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933 						      foliop, fsdata);
2934 		if (ret < 0)
2935 			return ret;
2936 		if (ret == 1)
2937 			return 0;
2938 	}
2939 
2940 retry:
2941 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942 			mapping_gfp_mask(mapping));
2943 	if (IS_ERR(folio))
2944 		return PTR_ERR(folio);
2945 
2946 	ret = ext4_block_write_begin(NULL, folio, pos, len,
2947 				     ext4_da_get_block_prep);
2948 	if (ret < 0) {
2949 		folio_unlock(folio);
2950 		folio_put(folio);
2951 		/*
2952 		 * block_write_begin may have instantiated a few blocks
2953 		 * outside i_size.  Trim these off again. Don't need
2954 		 * i_size_read because we hold inode lock.
2955 		 */
2956 		if (pos + len > inode->i_size)
2957 			ext4_truncate_failed_write(inode);
2958 
2959 		if (ret == -ENOSPC &&
2960 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961 			goto retry;
2962 		return ret;
2963 	}
2964 
2965 	*foliop = folio;
2966 	return ret;
2967 }
2968 
2969 /*
2970  * Check if we should update i_disksize
2971  * when write to the end of file but not require block allocation
2972  */
2973 static int ext4_da_should_update_i_disksize(struct folio *folio,
2974 					    unsigned long offset)
2975 {
2976 	struct buffer_head *bh;
2977 	struct inode *inode = folio->mapping->host;
2978 	unsigned int idx;
2979 	int i;
2980 
2981 	bh = folio_buffers(folio);
2982 	idx = offset >> inode->i_blkbits;
2983 
2984 	for (i = 0; i < idx; i++)
2985 		bh = bh->b_this_page;
2986 
2987 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988 		return 0;
2989 	return 1;
2990 }
2991 
2992 static int ext4_da_do_write_end(struct address_space *mapping,
2993 			loff_t pos, unsigned len, unsigned copied,
2994 			struct folio *folio)
2995 {
2996 	struct inode *inode = mapping->host;
2997 	loff_t old_size = inode->i_size;
2998 	bool disksize_changed = false;
2999 	loff_t new_i_size, zero_len = 0;
3000 	handle_t *handle;
3001 
3002 	if (unlikely(!folio_buffers(folio))) {
3003 		folio_unlock(folio);
3004 		folio_put(folio);
3005 		return -EIO;
3006 	}
3007 	/*
3008 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009 	 * flag, which all that's needed to trigger page writeback.
3010 	 */
3011 	copied = block_write_end(NULL, mapping, pos, len, copied,
3012 			folio, NULL);
3013 	new_i_size = pos + copied;
3014 
3015 	/*
3016 	 * It's important to update i_size while still holding folio lock,
3017 	 * because folio writeout could otherwise come in and zero beyond
3018 	 * i_size.
3019 	 *
3020 	 * Since we are holding inode lock, we are sure i_disksize <=
3021 	 * i_size. We also know that if i_disksize < i_size, there are
3022 	 * delalloc writes pending in the range up to i_size. If the end of
3023 	 * the current write is <= i_size, there's no need to touch
3024 	 * i_disksize since writeback will push i_disksize up to i_size
3025 	 * eventually. If the end of the current write is > i_size and
3026 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027 	 * checked, we need to update i_disksize here as certain
3028 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029 	 */
3030 	if (new_i_size > inode->i_size) {
3031 		unsigned long end;
3032 
3033 		i_size_write(inode, new_i_size);
3034 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036 			ext4_update_i_disksize(inode, new_i_size);
3037 			disksize_changed = true;
3038 		}
3039 	}
3040 
3041 	folio_unlock(folio);
3042 	folio_put(folio);
3043 
3044 	if (pos > old_size) {
3045 		pagecache_isize_extended(inode, old_size, pos);
3046 		zero_len = pos - old_size;
3047 	}
3048 
3049 	if (!disksize_changed && !zero_len)
3050 		return copied;
3051 
3052 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053 	if (IS_ERR(handle))
3054 		return PTR_ERR(handle);
3055 	if (zero_len)
3056 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057 	ext4_mark_inode_dirty(handle, inode);
3058 	ext4_journal_stop(handle);
3059 
3060 	return copied;
3061 }
3062 
3063 static int ext4_da_write_end(struct file *file,
3064 			     struct address_space *mapping,
3065 			     loff_t pos, unsigned len, unsigned copied,
3066 			     struct folio *folio, void *fsdata)
3067 {
3068 	struct inode *inode = mapping->host;
3069 	int write_mode = (int)(unsigned long)fsdata;
3070 
3071 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072 		return ext4_write_end(file, mapping, pos,
3073 				      len, copied, folio, fsdata);
3074 
3075 	trace_ext4_da_write_end(inode, pos, len, copied);
3076 
3077 	if (write_mode != CONVERT_INLINE_DATA &&
3078 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079 	    ext4_has_inline_data(inode))
3080 		return ext4_write_inline_data_end(inode, pos, len, copied,
3081 						  folio);
3082 
3083 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084 		copied = 0;
3085 
3086 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087 }
3088 
3089 /*
3090  * Force all delayed allocation blocks to be allocated for a given inode.
3091  */
3092 int ext4_alloc_da_blocks(struct inode *inode)
3093 {
3094 	trace_ext4_alloc_da_blocks(inode);
3095 
3096 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 		return 0;
3098 
3099 	/*
3100 	 * We do something simple for now.  The filemap_flush() will
3101 	 * also start triggering a write of the data blocks, which is
3102 	 * not strictly speaking necessary (and for users of
3103 	 * laptop_mode, not even desirable).  However, to do otherwise
3104 	 * would require replicating code paths in:
3105 	 *
3106 	 * ext4_writepages() ->
3107 	 *    write_cache_pages() ---> (via passed in callback function)
3108 	 *        __mpage_da_writepage() -->
3109 	 *           mpage_add_bh_to_extent()
3110 	 *           mpage_da_map_blocks()
3111 	 *
3112 	 * The problem is that write_cache_pages(), located in
3113 	 * mm/page-writeback.c, marks pages clean in preparation for
3114 	 * doing I/O, which is not desirable if we're not planning on
3115 	 * doing I/O at all.
3116 	 *
3117 	 * We could call write_cache_pages(), and then redirty all of
3118 	 * the pages by calling redirty_page_for_writepage() but that
3119 	 * would be ugly in the extreme.  So instead we would need to
3120 	 * replicate parts of the code in the above functions,
3121 	 * simplifying them because we wouldn't actually intend to
3122 	 * write out the pages, but rather only collect contiguous
3123 	 * logical block extents, call the multi-block allocator, and
3124 	 * then update the buffer heads with the block allocations.
3125 	 *
3126 	 * For now, though, we'll cheat by calling filemap_flush(),
3127 	 * which will map the blocks, and start the I/O, but not
3128 	 * actually wait for the I/O to complete.
3129 	 */
3130 	return filemap_flush(inode->i_mapping);
3131 }
3132 
3133 /*
3134  * bmap() is special.  It gets used by applications such as lilo and by
3135  * the swapper to find the on-disk block of a specific piece of data.
3136  *
3137  * Naturally, this is dangerous if the block concerned is still in the
3138  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139  * filesystem and enables swap, then they may get a nasty shock when the
3140  * data getting swapped to that swapfile suddenly gets overwritten by
3141  * the original zero's written out previously to the journal and
3142  * awaiting writeback in the kernel's buffer cache.
3143  *
3144  * So, if we see any bmap calls here on a modified, data-journaled file,
3145  * take extra steps to flush any blocks which might be in the cache.
3146  */
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148 {
3149 	struct inode *inode = mapping->host;
3150 	sector_t ret = 0;
3151 
3152 	inode_lock_shared(inode);
3153 	/*
3154 	 * We can get here for an inline file via the FIBMAP ioctl
3155 	 */
3156 	if (ext4_has_inline_data(inode))
3157 		goto out;
3158 
3159 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 	    (test_opt(inode->i_sb, DELALLOC) ||
3161 	     ext4_should_journal_data(inode))) {
3162 		/*
3163 		 * With delalloc or journalled data we want to sync the file so
3164 		 * that we can make sure we allocate blocks for file and data
3165 		 * is in place for the user to see it
3166 		 */
3167 		filemap_write_and_wait(mapping);
3168 	}
3169 
3170 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171 
3172 out:
3173 	inode_unlock_shared(inode);
3174 	return ret;
3175 }
3176 
3177 static int ext4_read_folio(struct file *file, struct folio *folio)
3178 {
3179 	int ret = -EAGAIN;
3180 	struct inode *inode = folio->mapping->host;
3181 
3182 	trace_ext4_read_folio(inode, folio);
3183 
3184 	if (ext4_has_inline_data(inode))
3185 		ret = ext4_readpage_inline(inode, folio);
3186 
3187 	if (ret == -EAGAIN)
3188 		return ext4_mpage_readpages(inode, NULL, folio);
3189 
3190 	return ret;
3191 }
3192 
3193 static void ext4_readahead(struct readahead_control *rac)
3194 {
3195 	struct inode *inode = rac->mapping->host;
3196 
3197 	/* If the file has inline data, no need to do readahead. */
3198 	if (ext4_has_inline_data(inode))
3199 		return;
3200 
3201 	ext4_mpage_readpages(inode, rac, NULL);
3202 }
3203 
3204 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205 				size_t length)
3206 {
3207 	trace_ext4_invalidate_folio(folio, offset, length);
3208 
3209 	/* No journalling happens on data buffers when this function is used */
3210 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211 
3212 	block_invalidate_folio(folio, offset, length);
3213 }
3214 
3215 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216 					    size_t offset, size_t length)
3217 {
3218 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219 
3220 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221 
3222 	/*
3223 	 * If it's a full truncate we just forget about the pending dirtying
3224 	 */
3225 	if (offset == 0 && length == folio_size(folio))
3226 		folio_clear_checked(folio);
3227 
3228 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229 }
3230 
3231 /* Wrapper for aops... */
3232 static void ext4_journalled_invalidate_folio(struct folio *folio,
3233 					   size_t offset,
3234 					   size_t length)
3235 {
3236 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237 }
3238 
3239 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240 {
3241 	struct inode *inode = folio->mapping->host;
3242 	journal_t *journal = EXT4_JOURNAL(inode);
3243 
3244 	trace_ext4_release_folio(inode, folio);
3245 
3246 	/* Page has dirty journalled data -> cannot release */
3247 	if (folio_test_checked(folio))
3248 		return false;
3249 	if (journal)
3250 		return jbd2_journal_try_to_free_buffers(journal, folio);
3251 	else
3252 		return try_to_free_buffers(folio);
3253 }
3254 
3255 static bool ext4_inode_datasync_dirty(struct inode *inode)
3256 {
3257 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258 
3259 	if (journal) {
3260 		if (jbd2_transaction_committed(journal,
3261 			EXT4_I(inode)->i_datasync_tid))
3262 			return false;
3263 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265 		return true;
3266 	}
3267 
3268 	/* Any metadata buffers to write? */
3269 	if (!list_empty(&inode->i_mapping->i_private_list))
3270 		return true;
3271 	return inode->i_state & I_DIRTY_DATASYNC;
3272 }
3273 
3274 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275 			   struct ext4_map_blocks *map, loff_t offset,
3276 			   loff_t length, unsigned int flags)
3277 {
3278 	u8 blkbits = inode->i_blkbits;
3279 
3280 	/*
3281 	 * Writes that span EOF might trigger an I/O size update on completion,
3282 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283 	 * there is no other metadata changes being made or are pending.
3284 	 */
3285 	iomap->flags = 0;
3286 	if (ext4_inode_datasync_dirty(inode) ||
3287 	    offset + length > i_size_read(inode))
3288 		iomap->flags |= IOMAP_F_DIRTY;
3289 
3290 	if (map->m_flags & EXT4_MAP_NEW)
3291 		iomap->flags |= IOMAP_F_NEW;
3292 
3293 	if (flags & IOMAP_DAX)
3294 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295 	else
3296 		iomap->bdev = inode->i_sb->s_bdev;
3297 	iomap->offset = (u64) map->m_lblk << blkbits;
3298 	iomap->length = (u64) map->m_len << blkbits;
3299 
3300 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302 		iomap->flags |= IOMAP_F_MERGED;
3303 
3304 	/*
3305 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307 	 * set. In order for any allocated unwritten extents to be converted
3308 	 * into written extents correctly within the ->end_io() handler, we
3309 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3310 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311 	 * been set first.
3312 	 */
3313 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314 		iomap->type = IOMAP_UNWRITTEN;
3315 		iomap->addr = (u64) map->m_pblk << blkbits;
3316 		if (flags & IOMAP_DAX)
3317 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3319 		iomap->type = IOMAP_MAPPED;
3320 		iomap->addr = (u64) map->m_pblk << blkbits;
3321 		if (flags & IOMAP_DAX)
3322 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3324 		iomap->type = IOMAP_DELALLOC;
3325 		iomap->addr = IOMAP_NULL_ADDR;
3326 	} else {
3327 		iomap->type = IOMAP_HOLE;
3328 		iomap->addr = IOMAP_NULL_ADDR;
3329 	}
3330 }
3331 
3332 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333 			    unsigned int flags)
3334 {
3335 	handle_t *handle;
3336 	u8 blkbits = inode->i_blkbits;
3337 	int ret, dio_credits, m_flags = 0, retries = 0;
3338 
3339 	/*
3340 	 * Trim the mapping request to the maximum value that we can map at
3341 	 * once for direct I/O.
3342 	 */
3343 	if (map->m_len > DIO_MAX_BLOCKS)
3344 		map->m_len = DIO_MAX_BLOCKS;
3345 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346 
3347 retry:
3348 	/*
3349 	 * Either we allocate blocks and then don't get an unwritten extent, so
3350 	 * in that case we have reserved enough credits. Or, the blocks are
3351 	 * already allocated and unwritten. In that case, the extent conversion
3352 	 * fits into the credits as well.
3353 	 */
3354 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355 	if (IS_ERR(handle))
3356 		return PTR_ERR(handle);
3357 
3358 	/*
3359 	 * DAX and direct I/O are the only two operations that are currently
3360 	 * supported with IOMAP_WRITE.
3361 	 */
3362 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363 	if (flags & IOMAP_DAX)
3364 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365 	/*
3366 	 * We use i_size instead of i_disksize here because delalloc writeback
3367 	 * can complete at any point during the I/O and subsequently push the
3368 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3369 	 * happening and thus expose allocated blocks to direct I/O reads.
3370 	 */
3371 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372 		m_flags = EXT4_GET_BLOCKS_CREATE;
3373 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375 
3376 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3377 
3378 	/*
3379 	 * We cannot fill holes in indirect tree based inodes as that could
3380 	 * expose stale data in the case of a crash. Use the magic error code
3381 	 * to fallback to buffered I/O.
3382 	 */
3383 	if (!m_flags && !ret)
3384 		ret = -ENOTBLK;
3385 
3386 	ext4_journal_stop(handle);
3387 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388 		goto retry;
3389 
3390 	return ret;
3391 }
3392 
3393 
3394 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396 {
3397 	int ret;
3398 	struct ext4_map_blocks map;
3399 	u8 blkbits = inode->i_blkbits;
3400 
3401 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402 		return -EINVAL;
3403 
3404 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405 		return -ERANGE;
3406 
3407 	/*
3408 	 * Calculate the first and last logical blocks respectively.
3409 	 */
3410 	map.m_lblk = offset >> blkbits;
3411 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413 
3414 	if (flags & IOMAP_WRITE) {
3415 		/*
3416 		 * We check here if the blocks are already allocated, then we
3417 		 * don't need to start a journal txn and we can directly return
3418 		 * the mapping information. This could boost performance
3419 		 * especially in multi-threaded overwrite requests.
3420 		 */
3421 		if (offset + length <= i_size_read(inode)) {
3422 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3423 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424 				goto out;
3425 		}
3426 		ret = ext4_iomap_alloc(inode, &map, flags);
3427 	} else {
3428 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3429 	}
3430 
3431 	if (ret < 0)
3432 		return ret;
3433 out:
3434 	/*
3435 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3437 	 * limiting the length of the mapping returned.
3438 	 */
3439 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440 
3441 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442 
3443 	return 0;
3444 }
3445 
3446 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447 		loff_t length, unsigned flags, struct iomap *iomap,
3448 		struct iomap *srcmap)
3449 {
3450 	int ret;
3451 
3452 	/*
3453 	 * Even for writes we don't need to allocate blocks, so just pretend
3454 	 * we are reading to save overhead of starting a transaction.
3455 	 */
3456 	flags &= ~IOMAP_WRITE;
3457 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459 	return ret;
3460 }
3461 
3462 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463 {
3464 	/* must be a directio to fall back to buffered */
3465 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466 		    (IOMAP_WRITE | IOMAP_DIRECT))
3467 		return false;
3468 
3469 	/* atomic writes are all-or-nothing */
3470 	if (flags & IOMAP_ATOMIC)
3471 		return false;
3472 
3473 	/* can only try again if we wrote nothing */
3474 	return written == 0;
3475 }
3476 
3477 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478 			  ssize_t written, unsigned flags, struct iomap *iomap)
3479 {
3480 	/*
3481 	 * Check to see whether an error occurred while writing out the data to
3482 	 * the allocated blocks. If so, return the magic error code for
3483 	 * non-atomic write so that we fallback to buffered I/O and attempt to
3484 	 * complete the remainder of the I/O.
3485 	 * For non-atomic writes, any blocks that may have been
3486 	 * allocated in preparation for the direct I/O will be reused during
3487 	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488 	 */
3489 	if (ext4_want_directio_fallback(flags, written))
3490 		return -ENOTBLK;
3491 
3492 	return 0;
3493 }
3494 
3495 const struct iomap_ops ext4_iomap_ops = {
3496 	.iomap_begin		= ext4_iomap_begin,
3497 	.iomap_end		= ext4_iomap_end,
3498 };
3499 
3500 const struct iomap_ops ext4_iomap_overwrite_ops = {
3501 	.iomap_begin		= ext4_iomap_overwrite_begin,
3502 	.iomap_end		= ext4_iomap_end,
3503 };
3504 
3505 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506 				   loff_t length, unsigned int flags,
3507 				   struct iomap *iomap, struct iomap *srcmap)
3508 {
3509 	int ret;
3510 	struct ext4_map_blocks map;
3511 	u8 blkbits = inode->i_blkbits;
3512 
3513 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514 		return -EINVAL;
3515 
3516 	if (ext4_has_inline_data(inode)) {
3517 		ret = ext4_inline_data_iomap(inode, iomap);
3518 		if (ret != -EAGAIN) {
3519 			if (ret == 0 && offset >= iomap->length)
3520 				ret = -ENOENT;
3521 			return ret;
3522 		}
3523 	}
3524 
3525 	/*
3526 	 * Calculate the first and last logical block respectively.
3527 	 */
3528 	map.m_lblk = offset >> blkbits;
3529 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531 
3532 	/*
3533 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534 	 * So handle it here itself instead of querying ext4_map_blocks().
3535 	 * Since ext4_map_blocks() will warn about it and will return
3536 	 * -EIO error.
3537 	 */
3538 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540 
3541 		if (offset >= sbi->s_bitmap_maxbytes) {
3542 			map.m_flags = 0;
3543 			goto set_iomap;
3544 		}
3545 	}
3546 
3547 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3548 	if (ret < 0)
3549 		return ret;
3550 set_iomap:
3551 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552 
3553 	return 0;
3554 }
3555 
3556 const struct iomap_ops ext4_iomap_report_ops = {
3557 	.iomap_begin = ext4_iomap_begin_report,
3558 };
3559 
3560 /*
3561  * For data=journal mode, folio should be marked dirty only when it was
3562  * writeably mapped. When that happens, it was already attached to the
3563  * transaction and marked as jbddirty (we take care of this in
3564  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565  * so we should have nothing to do here, except for the case when someone
3566  * had the page pinned and dirtied the page through this pin (e.g. by doing
3567  * direct IO to it). In that case we'd need to attach buffers here to the
3568  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569  * folio and leave attached buffers clean, because the buffers' dirty state is
3570  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571  * the journalling code will explode.  So what we do is to mark the folio
3572  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573  * to the transaction appropriately.
3574  */
3575 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576 		struct folio *folio)
3577 {
3578 	WARN_ON_ONCE(!folio_buffers(folio));
3579 	if (folio_maybe_dma_pinned(folio))
3580 		folio_set_checked(folio);
3581 	return filemap_dirty_folio(mapping, folio);
3582 }
3583 
3584 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585 {
3586 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587 	WARN_ON_ONCE(!folio_buffers(folio));
3588 	return block_dirty_folio(mapping, folio);
3589 }
3590 
3591 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592 				    struct file *file, sector_t *span)
3593 {
3594 	return iomap_swapfile_activate(sis, file, span,
3595 				       &ext4_iomap_report_ops);
3596 }
3597 
3598 static const struct address_space_operations ext4_aops = {
3599 	.read_folio		= ext4_read_folio,
3600 	.readahead		= ext4_readahead,
3601 	.writepages		= ext4_writepages,
3602 	.write_begin		= ext4_write_begin,
3603 	.write_end		= ext4_write_end,
3604 	.dirty_folio		= ext4_dirty_folio,
3605 	.bmap			= ext4_bmap,
3606 	.invalidate_folio	= ext4_invalidate_folio,
3607 	.release_folio		= ext4_release_folio,
3608 	.migrate_folio		= buffer_migrate_folio,
3609 	.is_partially_uptodate  = block_is_partially_uptodate,
3610 	.error_remove_folio	= generic_error_remove_folio,
3611 	.swap_activate		= ext4_iomap_swap_activate,
3612 };
3613 
3614 static const struct address_space_operations ext4_journalled_aops = {
3615 	.read_folio		= ext4_read_folio,
3616 	.readahead		= ext4_readahead,
3617 	.writepages		= ext4_writepages,
3618 	.write_begin		= ext4_write_begin,
3619 	.write_end		= ext4_journalled_write_end,
3620 	.dirty_folio		= ext4_journalled_dirty_folio,
3621 	.bmap			= ext4_bmap,
3622 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3623 	.release_folio		= ext4_release_folio,
3624 	.migrate_folio		= buffer_migrate_folio_norefs,
3625 	.is_partially_uptodate  = block_is_partially_uptodate,
3626 	.error_remove_folio	= generic_error_remove_folio,
3627 	.swap_activate		= ext4_iomap_swap_activate,
3628 };
3629 
3630 static const struct address_space_operations ext4_da_aops = {
3631 	.read_folio		= ext4_read_folio,
3632 	.readahead		= ext4_readahead,
3633 	.writepages		= ext4_writepages,
3634 	.write_begin		= ext4_da_write_begin,
3635 	.write_end		= ext4_da_write_end,
3636 	.dirty_folio		= ext4_dirty_folio,
3637 	.bmap			= ext4_bmap,
3638 	.invalidate_folio	= ext4_invalidate_folio,
3639 	.release_folio		= ext4_release_folio,
3640 	.migrate_folio		= buffer_migrate_folio,
3641 	.is_partially_uptodate  = block_is_partially_uptodate,
3642 	.error_remove_folio	= generic_error_remove_folio,
3643 	.swap_activate		= ext4_iomap_swap_activate,
3644 };
3645 
3646 static const struct address_space_operations ext4_dax_aops = {
3647 	.writepages		= ext4_dax_writepages,
3648 	.dirty_folio		= noop_dirty_folio,
3649 	.bmap			= ext4_bmap,
3650 	.swap_activate		= ext4_iomap_swap_activate,
3651 };
3652 
3653 void ext4_set_aops(struct inode *inode)
3654 {
3655 	switch (ext4_inode_journal_mode(inode)) {
3656 	case EXT4_INODE_ORDERED_DATA_MODE:
3657 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3658 		break;
3659 	case EXT4_INODE_JOURNAL_DATA_MODE:
3660 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661 		return;
3662 	default:
3663 		BUG();
3664 	}
3665 	if (IS_DAX(inode))
3666 		inode->i_mapping->a_ops = &ext4_dax_aops;
3667 	else if (test_opt(inode->i_sb, DELALLOC))
3668 		inode->i_mapping->a_ops = &ext4_da_aops;
3669 	else
3670 		inode->i_mapping->a_ops = &ext4_aops;
3671 }
3672 
3673 /*
3674  * Here we can't skip an unwritten buffer even though it usually reads zero
3675  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677  * racing writeback can come later and flush the stale pagecache to disk.
3678  */
3679 static int __ext4_block_zero_page_range(handle_t *handle,
3680 		struct address_space *mapping, loff_t from, loff_t length)
3681 {
3682 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3683 	unsigned offset = from & (PAGE_SIZE-1);
3684 	unsigned blocksize, pos;
3685 	ext4_lblk_t iblock;
3686 	struct inode *inode = mapping->host;
3687 	struct buffer_head *bh;
3688 	struct folio *folio;
3689 	int err = 0;
3690 
3691 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3694 	if (IS_ERR(folio))
3695 		return PTR_ERR(folio);
3696 
3697 	blocksize = inode->i_sb->s_blocksize;
3698 
3699 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700 
3701 	bh = folio_buffers(folio);
3702 	if (!bh)
3703 		bh = create_empty_buffers(folio, blocksize, 0);
3704 
3705 	/* Find the buffer that contains "offset" */
3706 	pos = blocksize;
3707 	while (offset >= pos) {
3708 		bh = bh->b_this_page;
3709 		iblock++;
3710 		pos += blocksize;
3711 	}
3712 	if (buffer_freed(bh)) {
3713 		BUFFER_TRACE(bh, "freed: skip");
3714 		goto unlock;
3715 	}
3716 	if (!buffer_mapped(bh)) {
3717 		BUFFER_TRACE(bh, "unmapped");
3718 		ext4_get_block(inode, iblock, bh, 0);
3719 		/* unmapped? It's a hole - nothing to do */
3720 		if (!buffer_mapped(bh)) {
3721 			BUFFER_TRACE(bh, "still unmapped");
3722 			goto unlock;
3723 		}
3724 	}
3725 
3726 	/* Ok, it's mapped. Make sure it's up-to-date */
3727 	if (folio_test_uptodate(folio))
3728 		set_buffer_uptodate(bh);
3729 
3730 	if (!buffer_uptodate(bh)) {
3731 		err = ext4_read_bh_lock(bh, 0, true);
3732 		if (err)
3733 			goto unlock;
3734 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735 			/* We expect the key to be set. */
3736 			BUG_ON(!fscrypt_has_encryption_key(inode));
3737 			err = fscrypt_decrypt_pagecache_blocks(folio,
3738 							       blocksize,
3739 							       bh_offset(bh));
3740 			if (err) {
3741 				clear_buffer_uptodate(bh);
3742 				goto unlock;
3743 			}
3744 		}
3745 	}
3746 	if (ext4_should_journal_data(inode)) {
3747 		BUFFER_TRACE(bh, "get write access");
3748 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749 						    EXT4_JTR_NONE);
3750 		if (err)
3751 			goto unlock;
3752 	}
3753 	folio_zero_range(folio, offset, length);
3754 	BUFFER_TRACE(bh, "zeroed end of block");
3755 
3756 	if (ext4_should_journal_data(inode)) {
3757 		err = ext4_dirty_journalled_data(handle, bh);
3758 	} else {
3759 		err = 0;
3760 		mark_buffer_dirty(bh);
3761 		if (ext4_should_order_data(inode))
3762 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3763 					length);
3764 	}
3765 
3766 unlock:
3767 	folio_unlock(folio);
3768 	folio_put(folio);
3769 	return err;
3770 }
3771 
3772 /*
3773  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774  * starting from file offset 'from'.  The range to be zero'd must
3775  * be contained with in one block.  If the specified range exceeds
3776  * the end of the block it will be shortened to end of the block
3777  * that corresponds to 'from'
3778  */
3779 static int ext4_block_zero_page_range(handle_t *handle,
3780 		struct address_space *mapping, loff_t from, loff_t length)
3781 {
3782 	struct inode *inode = mapping->host;
3783 	unsigned offset = from & (PAGE_SIZE-1);
3784 	unsigned blocksize = inode->i_sb->s_blocksize;
3785 	unsigned max = blocksize - (offset & (blocksize - 1));
3786 
3787 	/*
3788 	 * correct length if it does not fall between
3789 	 * 'from' and the end of the block
3790 	 */
3791 	if (length > max || length < 0)
3792 		length = max;
3793 
3794 	if (IS_DAX(inode)) {
3795 		return dax_zero_range(inode, from, length, NULL,
3796 				      &ext4_iomap_ops);
3797 	}
3798 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3799 }
3800 
3801 /*
3802  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803  * up to the end of the block which corresponds to `from'.
3804  * This required during truncate. We need to physically zero the tail end
3805  * of that block so it doesn't yield old data if the file is later grown.
3806  */
3807 static int ext4_block_truncate_page(handle_t *handle,
3808 		struct address_space *mapping, loff_t from)
3809 {
3810 	unsigned offset = from & (PAGE_SIZE-1);
3811 	unsigned length;
3812 	unsigned blocksize;
3813 	struct inode *inode = mapping->host;
3814 
3815 	/* If we are processing an encrypted inode during orphan list handling */
3816 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817 		return 0;
3818 
3819 	blocksize = inode->i_sb->s_blocksize;
3820 	length = blocksize - (offset & (blocksize - 1));
3821 
3822 	return ext4_block_zero_page_range(handle, mapping, from, length);
3823 }
3824 
3825 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826 			     loff_t lstart, loff_t length)
3827 {
3828 	struct super_block *sb = inode->i_sb;
3829 	struct address_space *mapping = inode->i_mapping;
3830 	unsigned partial_start, partial_end;
3831 	ext4_fsblk_t start, end;
3832 	loff_t byte_end = (lstart + length - 1);
3833 	int err = 0;
3834 
3835 	partial_start = lstart & (sb->s_blocksize - 1);
3836 	partial_end = byte_end & (sb->s_blocksize - 1);
3837 
3838 	start = lstart >> sb->s_blocksize_bits;
3839 	end = byte_end >> sb->s_blocksize_bits;
3840 
3841 	/* Handle partial zero within the single block */
3842 	if (start == end &&
3843 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844 		err = ext4_block_zero_page_range(handle, mapping,
3845 						 lstart, length);
3846 		return err;
3847 	}
3848 	/* Handle partial zero out on the start of the range */
3849 	if (partial_start) {
3850 		err = ext4_block_zero_page_range(handle, mapping,
3851 						 lstart, sb->s_blocksize);
3852 		if (err)
3853 			return err;
3854 	}
3855 	/* Handle partial zero out on the end of the range */
3856 	if (partial_end != sb->s_blocksize - 1)
3857 		err = ext4_block_zero_page_range(handle, mapping,
3858 						 byte_end - partial_end,
3859 						 partial_end + 1);
3860 	return err;
3861 }
3862 
3863 int ext4_can_truncate(struct inode *inode)
3864 {
3865 	if (S_ISREG(inode->i_mode))
3866 		return 1;
3867 	if (S_ISDIR(inode->i_mode))
3868 		return 1;
3869 	if (S_ISLNK(inode->i_mode))
3870 		return !ext4_inode_is_fast_symlink(inode);
3871 	return 0;
3872 }
3873 
3874 /*
3875  * We have to make sure i_disksize gets properly updated before we truncate
3876  * page cache due to hole punching or zero range. Otherwise i_disksize update
3877  * can get lost as it may have been postponed to submission of writeback but
3878  * that will never happen after we truncate page cache.
3879  */
3880 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881 				      loff_t len)
3882 {
3883 	handle_t *handle;
3884 	int ret;
3885 
3886 	loff_t size = i_size_read(inode);
3887 
3888 	WARN_ON(!inode_is_locked(inode));
3889 	if (offset > size || offset + len < size)
3890 		return 0;
3891 
3892 	if (EXT4_I(inode)->i_disksize >= size)
3893 		return 0;
3894 
3895 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896 	if (IS_ERR(handle))
3897 		return PTR_ERR(handle);
3898 	ext4_update_i_disksize(inode, size);
3899 	ret = ext4_mark_inode_dirty(handle, inode);
3900 	ext4_journal_stop(handle);
3901 
3902 	return ret;
3903 }
3904 
3905 static void ext4_wait_dax_page(struct inode *inode)
3906 {
3907 	filemap_invalidate_unlock(inode->i_mapping);
3908 	schedule();
3909 	filemap_invalidate_lock(inode->i_mapping);
3910 }
3911 
3912 int ext4_break_layouts(struct inode *inode)
3913 {
3914 	struct page *page;
3915 	int error;
3916 
3917 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918 		return -EINVAL;
3919 
3920 	do {
3921 		page = dax_layout_busy_page(inode->i_mapping);
3922 		if (!page)
3923 			return 0;
3924 
3925 		error = ___wait_var_event(&page->_refcount,
3926 				atomic_read(&page->_refcount) == 1,
3927 				TASK_INTERRUPTIBLE, 0, 0,
3928 				ext4_wait_dax_page(inode));
3929 	} while (error == 0);
3930 
3931 	return error;
3932 }
3933 
3934 /*
3935  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936  * associated with the given offset and length
3937  *
3938  * @inode:  File inode
3939  * @offset: The offset where the hole will begin
3940  * @len:    The length of the hole
3941  *
3942  * Returns: 0 on success or negative on failure
3943  */
3944 
3945 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946 {
3947 	struct inode *inode = file_inode(file);
3948 	struct super_block *sb = inode->i_sb;
3949 	ext4_lblk_t first_block, stop_block;
3950 	struct address_space *mapping = inode->i_mapping;
3951 	loff_t first_block_offset, last_block_offset, max_length;
3952 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953 	handle_t *handle;
3954 	unsigned int credits;
3955 	int ret = 0, ret2 = 0;
3956 
3957 	trace_ext4_punch_hole(inode, offset, length, 0);
3958 
3959 	/*
3960 	 * Write out all dirty pages to avoid race conditions
3961 	 * Then release them.
3962 	 */
3963 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964 		ret = filemap_write_and_wait_range(mapping, offset,
3965 						   offset + length - 1);
3966 		if (ret)
3967 			return ret;
3968 	}
3969 
3970 	inode_lock(inode);
3971 
3972 	/* No need to punch hole beyond i_size */
3973 	if (offset >= inode->i_size)
3974 		goto out_mutex;
3975 
3976 	/*
3977 	 * If the hole extends beyond i_size, set the hole
3978 	 * to end after the page that contains i_size
3979 	 */
3980 	if (offset + length > inode->i_size) {
3981 		length = inode->i_size +
3982 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983 		   offset;
3984 	}
3985 
3986 	/*
3987 	 * For punch hole the length + offset needs to be within one block
3988 	 * before last range. Adjust the length if it goes beyond that limit.
3989 	 */
3990 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991 	if (offset + length > max_length)
3992 		length = max_length - offset;
3993 
3994 	if (offset & (sb->s_blocksize - 1) ||
3995 	    (offset + length) & (sb->s_blocksize - 1)) {
3996 		/*
3997 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998 		 * partial block
3999 		 */
4000 		ret = ext4_inode_attach_jinode(inode);
4001 		if (ret < 0)
4002 			goto out_mutex;
4003 
4004 	}
4005 
4006 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4007 	inode_dio_wait(inode);
4008 
4009 	ret = file_modified(file);
4010 	if (ret)
4011 		goto out_mutex;
4012 
4013 	/*
4014 	 * Prevent page faults from reinstantiating pages we have released from
4015 	 * page cache.
4016 	 */
4017 	filemap_invalidate_lock(mapping);
4018 
4019 	ret = ext4_break_layouts(inode);
4020 	if (ret)
4021 		goto out_dio;
4022 
4023 	first_block_offset = round_up(offset, sb->s_blocksize);
4024 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025 
4026 	/* Now release the pages and zero block aligned part of pages*/
4027 	if (last_block_offset > first_block_offset) {
4028 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029 		if (ret)
4030 			goto out_dio;
4031 		truncate_pagecache_range(inode, first_block_offset,
4032 					 last_block_offset);
4033 	}
4034 
4035 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036 		credits = ext4_writepage_trans_blocks(inode);
4037 	else
4038 		credits = ext4_blocks_for_truncate(inode);
4039 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040 	if (IS_ERR(handle)) {
4041 		ret = PTR_ERR(handle);
4042 		ext4_std_error(sb, ret);
4043 		goto out_dio;
4044 	}
4045 
4046 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047 				       length);
4048 	if (ret)
4049 		goto out_stop;
4050 
4051 	first_block = (offset + sb->s_blocksize - 1) >>
4052 		EXT4_BLOCK_SIZE_BITS(sb);
4053 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054 
4055 	/* If there are blocks to remove, do it */
4056 	if (stop_block > first_block) {
4057 		ext4_lblk_t hole_len = stop_block - first_block;
4058 
4059 		down_write(&EXT4_I(inode)->i_data_sem);
4060 		ext4_discard_preallocations(inode);
4061 
4062 		ext4_es_remove_extent(inode, first_block, hole_len);
4063 
4064 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065 			ret = ext4_ext_remove_space(inode, first_block,
4066 						    stop_block - 1);
4067 		else
4068 			ret = ext4_ind_remove_space(handle, inode, first_block,
4069 						    stop_block);
4070 
4071 		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072 				      EXTENT_STATUS_HOLE, 0);
4073 		up_write(&EXT4_I(inode)->i_data_sem);
4074 	}
4075 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4076 	if (IS_SYNC(inode))
4077 		ext4_handle_sync(handle);
4078 
4079 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080 	ret2 = ext4_mark_inode_dirty(handle, inode);
4081 	if (unlikely(ret2))
4082 		ret = ret2;
4083 	if (ret >= 0)
4084 		ext4_update_inode_fsync_trans(handle, inode, 1);
4085 out_stop:
4086 	ext4_journal_stop(handle);
4087 out_dio:
4088 	filemap_invalidate_unlock(mapping);
4089 out_mutex:
4090 	inode_unlock(inode);
4091 	return ret;
4092 }
4093 
4094 int ext4_inode_attach_jinode(struct inode *inode)
4095 {
4096 	struct ext4_inode_info *ei = EXT4_I(inode);
4097 	struct jbd2_inode *jinode;
4098 
4099 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100 		return 0;
4101 
4102 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103 	spin_lock(&inode->i_lock);
4104 	if (!ei->jinode) {
4105 		if (!jinode) {
4106 			spin_unlock(&inode->i_lock);
4107 			return -ENOMEM;
4108 		}
4109 		ei->jinode = jinode;
4110 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111 		jinode = NULL;
4112 	}
4113 	spin_unlock(&inode->i_lock);
4114 	if (unlikely(jinode != NULL))
4115 		jbd2_free_inode(jinode);
4116 	return 0;
4117 }
4118 
4119 /*
4120  * ext4_truncate()
4121  *
4122  * We block out ext4_get_block() block instantiations across the entire
4123  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124  * simultaneously on behalf of the same inode.
4125  *
4126  * As we work through the truncate and commit bits of it to the journal there
4127  * is one core, guiding principle: the file's tree must always be consistent on
4128  * disk.  We must be able to restart the truncate after a crash.
4129  *
4130  * The file's tree may be transiently inconsistent in memory (although it
4131  * probably isn't), but whenever we close off and commit a journal transaction,
4132  * the contents of (the filesystem + the journal) must be consistent and
4133  * restartable.  It's pretty simple, really: bottom up, right to left (although
4134  * left-to-right works OK too).
4135  *
4136  * Note that at recovery time, journal replay occurs *before* the restart of
4137  * truncate against the orphan inode list.
4138  *
4139  * The committed inode has the new, desired i_size (which is the same as
4140  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141  * that this inode's truncate did not complete and it will again call
4142  * ext4_truncate() to have another go.  So there will be instantiated blocks
4143  * to the right of the truncation point in a crashed ext4 filesystem.  But
4144  * that's fine - as long as they are linked from the inode, the post-crash
4145  * ext4_truncate() run will find them and release them.
4146  */
4147 int ext4_truncate(struct inode *inode)
4148 {
4149 	struct ext4_inode_info *ei = EXT4_I(inode);
4150 	unsigned int credits;
4151 	int err = 0, err2;
4152 	handle_t *handle;
4153 	struct address_space *mapping = inode->i_mapping;
4154 
4155 	/*
4156 	 * There is a possibility that we're either freeing the inode
4157 	 * or it's a completely new inode. In those cases we might not
4158 	 * have i_rwsem locked because it's not necessary.
4159 	 */
4160 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161 		WARN_ON(!inode_is_locked(inode));
4162 	trace_ext4_truncate_enter(inode);
4163 
4164 	if (!ext4_can_truncate(inode))
4165 		goto out_trace;
4166 
4167 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169 
4170 	if (ext4_has_inline_data(inode)) {
4171 		int has_inline = 1;
4172 
4173 		err = ext4_inline_data_truncate(inode, &has_inline);
4174 		if (err || has_inline)
4175 			goto out_trace;
4176 	}
4177 
4178 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 		err = ext4_inode_attach_jinode(inode);
4181 		if (err)
4182 			goto out_trace;
4183 	}
4184 
4185 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186 		credits = ext4_writepage_trans_blocks(inode);
4187 	else
4188 		credits = ext4_blocks_for_truncate(inode);
4189 
4190 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191 	if (IS_ERR(handle)) {
4192 		err = PTR_ERR(handle);
4193 		goto out_trace;
4194 	}
4195 
4196 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198 
4199 	/*
4200 	 * We add the inode to the orphan list, so that if this
4201 	 * truncate spans multiple transactions, and we crash, we will
4202 	 * resume the truncate when the filesystem recovers.  It also
4203 	 * marks the inode dirty, to catch the new size.
4204 	 *
4205 	 * Implication: the file must always be in a sane, consistent
4206 	 * truncatable state while each transaction commits.
4207 	 */
4208 	err = ext4_orphan_add(handle, inode);
4209 	if (err)
4210 		goto out_stop;
4211 
4212 	down_write(&EXT4_I(inode)->i_data_sem);
4213 
4214 	ext4_discard_preallocations(inode);
4215 
4216 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217 		err = ext4_ext_truncate(handle, inode);
4218 	else
4219 		ext4_ind_truncate(handle, inode);
4220 
4221 	up_write(&ei->i_data_sem);
4222 	if (err)
4223 		goto out_stop;
4224 
4225 	if (IS_SYNC(inode))
4226 		ext4_handle_sync(handle);
4227 
4228 out_stop:
4229 	/*
4230 	 * If this was a simple ftruncate() and the file will remain alive,
4231 	 * then we need to clear up the orphan record which we created above.
4232 	 * However, if this was a real unlink then we were called by
4233 	 * ext4_evict_inode(), and we allow that function to clean up the
4234 	 * orphan info for us.
4235 	 */
4236 	if (inode->i_nlink)
4237 		ext4_orphan_del(handle, inode);
4238 
4239 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240 	err2 = ext4_mark_inode_dirty(handle, inode);
4241 	if (unlikely(err2 && !err))
4242 		err = err2;
4243 	ext4_journal_stop(handle);
4244 
4245 out_trace:
4246 	trace_ext4_truncate_exit(inode);
4247 	return err;
4248 }
4249 
4250 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251 {
4252 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253 		return inode_peek_iversion_raw(inode);
4254 	else
4255 		return inode_peek_iversion(inode);
4256 }
4257 
4258 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259 				 struct ext4_inode_info *ei)
4260 {
4261 	struct inode *inode = &(ei->vfs_inode);
4262 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4263 	struct super_block *sb = inode->i_sb;
4264 
4265 	if (i_blocks <= ~0U) {
4266 		/*
4267 		 * i_blocks can be represented in a 32 bit variable
4268 		 * as multiple of 512 bytes
4269 		 */
4270 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271 		raw_inode->i_blocks_high = 0;
4272 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273 		return 0;
4274 	}
4275 
4276 	/*
4277 	 * This should never happen since sb->s_maxbytes should not have
4278 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4279 	 * feature in ext4_fill_super().
4280 	 */
4281 	if (!ext4_has_feature_huge_file(sb))
4282 		return -EFSCORRUPTED;
4283 
4284 	if (i_blocks <= 0xffffffffffffULL) {
4285 		/*
4286 		 * i_blocks can be represented in a 48 bit variable
4287 		 * as multiple of 512 bytes
4288 		 */
4289 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292 	} else {
4293 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294 		/* i_block is stored in file system block size */
4295 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298 	}
4299 	return 0;
4300 }
4301 
4302 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303 {
4304 	struct ext4_inode_info *ei = EXT4_I(inode);
4305 	uid_t i_uid;
4306 	gid_t i_gid;
4307 	projid_t i_projid;
4308 	int block;
4309 	int err;
4310 
4311 	err = ext4_inode_blocks_set(raw_inode, ei);
4312 
4313 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314 	i_uid = i_uid_read(inode);
4315 	i_gid = i_gid_read(inode);
4316 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4318 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320 		/*
4321 		 * Fix up interoperability with old kernels. Otherwise,
4322 		 * old inodes get re-used with the upper 16 bits of the
4323 		 * uid/gid intact.
4324 		 */
4325 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326 			raw_inode->i_uid_high = 0;
4327 			raw_inode->i_gid_high = 0;
4328 		} else {
4329 			raw_inode->i_uid_high =
4330 				cpu_to_le16(high_16_bits(i_uid));
4331 			raw_inode->i_gid_high =
4332 				cpu_to_le16(high_16_bits(i_gid));
4333 		}
4334 	} else {
4335 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337 		raw_inode->i_uid_high = 0;
4338 		raw_inode->i_gid_high = 0;
4339 	}
4340 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341 
4342 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4343 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4344 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4345 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346 
4347 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350 		raw_inode->i_file_acl_high =
4351 			cpu_to_le16(ei->i_file_acl >> 32);
4352 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353 	ext4_isize_set(raw_inode, ei->i_disksize);
4354 
4355 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357 		if (old_valid_dev(inode->i_rdev)) {
4358 			raw_inode->i_block[0] =
4359 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4360 			raw_inode->i_block[1] = 0;
4361 		} else {
4362 			raw_inode->i_block[0] = 0;
4363 			raw_inode->i_block[1] =
4364 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4365 			raw_inode->i_block[2] = 0;
4366 		}
4367 	} else if (!ext4_has_inline_data(inode)) {
4368 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4369 			raw_inode->i_block[block] = ei->i_data[block];
4370 	}
4371 
4372 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373 		u64 ivers = ext4_inode_peek_iversion(inode);
4374 
4375 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4376 		if (ei->i_extra_isize) {
4377 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378 				raw_inode->i_version_hi =
4379 					cpu_to_le32(ivers >> 32);
4380 			raw_inode->i_extra_isize =
4381 				cpu_to_le16(ei->i_extra_isize);
4382 		}
4383 	}
4384 
4385 	if (i_projid != EXT4_DEF_PROJID &&
4386 	    !ext4_has_feature_project(inode->i_sb))
4387 		err = err ?: -EFSCORRUPTED;
4388 
4389 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391 		raw_inode->i_projid = cpu_to_le32(i_projid);
4392 
4393 	ext4_inode_csum_set(inode, raw_inode, ei);
4394 	return err;
4395 }
4396 
4397 /*
4398  * ext4_get_inode_loc returns with an extra refcount against the inode's
4399  * underlying buffer_head on success. If we pass 'inode' and it does not
4400  * have in-inode xattr, we have all inode data in memory that is needed
4401  * to recreate the on-disk version of this inode.
4402  */
4403 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404 				struct inode *inode, struct ext4_iloc *iloc,
4405 				ext4_fsblk_t *ret_block)
4406 {
4407 	struct ext4_group_desc	*gdp;
4408 	struct buffer_head	*bh;
4409 	ext4_fsblk_t		block;
4410 	struct blk_plug		plug;
4411 	int			inodes_per_block, inode_offset;
4412 
4413 	iloc->bh = NULL;
4414 	if (ino < EXT4_ROOT_INO ||
4415 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416 		return -EFSCORRUPTED;
4417 
4418 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420 	if (!gdp)
4421 		return -EIO;
4422 
4423 	/*
4424 	 * Figure out the offset within the block group inode table
4425 	 */
4426 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427 	inode_offset = ((ino - 1) %
4428 			EXT4_INODES_PER_GROUP(sb));
4429 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430 
4431 	block = ext4_inode_table(sb, gdp);
4432 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434 		ext4_error(sb, "Invalid inode table block %llu in "
4435 			   "block_group %u", block, iloc->block_group);
4436 		return -EFSCORRUPTED;
4437 	}
4438 	block += (inode_offset / inodes_per_block);
4439 
4440 	bh = sb_getblk(sb, block);
4441 	if (unlikely(!bh))
4442 		return -ENOMEM;
4443 	if (ext4_buffer_uptodate(bh))
4444 		goto has_buffer;
4445 
4446 	lock_buffer(bh);
4447 	if (ext4_buffer_uptodate(bh)) {
4448 		/* Someone brought it uptodate while we waited */
4449 		unlock_buffer(bh);
4450 		goto has_buffer;
4451 	}
4452 
4453 	/*
4454 	 * If we have all information of the inode in memory and this
4455 	 * is the only valid inode in the block, we need not read the
4456 	 * block.
4457 	 */
4458 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459 		struct buffer_head *bitmap_bh;
4460 		int i, start;
4461 
4462 		start = inode_offset & ~(inodes_per_block - 1);
4463 
4464 		/* Is the inode bitmap in cache? */
4465 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466 		if (unlikely(!bitmap_bh))
4467 			goto make_io;
4468 
4469 		/*
4470 		 * If the inode bitmap isn't in cache then the
4471 		 * optimisation may end up performing two reads instead
4472 		 * of one, so skip it.
4473 		 */
4474 		if (!buffer_uptodate(bitmap_bh)) {
4475 			brelse(bitmap_bh);
4476 			goto make_io;
4477 		}
4478 		for (i = start; i < start + inodes_per_block; i++) {
4479 			if (i == inode_offset)
4480 				continue;
4481 			if (ext4_test_bit(i, bitmap_bh->b_data))
4482 				break;
4483 		}
4484 		brelse(bitmap_bh);
4485 		if (i == start + inodes_per_block) {
4486 			struct ext4_inode *raw_inode =
4487 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4488 
4489 			/* all other inodes are free, so skip I/O */
4490 			memset(bh->b_data, 0, bh->b_size);
4491 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492 				ext4_fill_raw_inode(inode, raw_inode);
4493 			set_buffer_uptodate(bh);
4494 			unlock_buffer(bh);
4495 			goto has_buffer;
4496 		}
4497 	}
4498 
4499 make_io:
4500 	/*
4501 	 * If we need to do any I/O, try to pre-readahead extra
4502 	 * blocks from the inode table.
4503 	 */
4504 	blk_start_plug(&plug);
4505 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506 		ext4_fsblk_t b, end, table;
4507 		unsigned num;
4508 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509 
4510 		table = ext4_inode_table(sb, gdp);
4511 		/* s_inode_readahead_blks is always a power of 2 */
4512 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513 		if (table > b)
4514 			b = table;
4515 		end = b + ra_blks;
4516 		num = EXT4_INODES_PER_GROUP(sb);
4517 		if (ext4_has_group_desc_csum(sb))
4518 			num -= ext4_itable_unused_count(sb, gdp);
4519 		table += num / inodes_per_block;
4520 		if (end > table)
4521 			end = table;
4522 		while (b <= end)
4523 			ext4_sb_breadahead_unmovable(sb, b++);
4524 	}
4525 
4526 	/*
4527 	 * There are other valid inodes in the buffer, this inode
4528 	 * has in-inode xattrs, or we don't have this inode in memory.
4529 	 * Read the block from disk.
4530 	 */
4531 	trace_ext4_load_inode(sb, ino);
4532 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534 	blk_finish_plug(&plug);
4535 	wait_on_buffer(bh);
4536 	if (!buffer_uptodate(bh)) {
4537 		if (ret_block)
4538 			*ret_block = block;
4539 		brelse(bh);
4540 		return -EIO;
4541 	}
4542 has_buffer:
4543 	iloc->bh = bh;
4544 	return 0;
4545 }
4546 
4547 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548 					struct ext4_iloc *iloc)
4549 {
4550 	ext4_fsblk_t err_blk = 0;
4551 	int ret;
4552 
4553 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554 					&err_blk);
4555 
4556 	if (ret == -EIO)
4557 		ext4_error_inode_block(inode, err_blk, EIO,
4558 					"unable to read itable block");
4559 
4560 	return ret;
4561 }
4562 
4563 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564 {
4565 	ext4_fsblk_t err_blk = 0;
4566 	int ret;
4567 
4568 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569 					&err_blk);
4570 
4571 	if (ret == -EIO)
4572 		ext4_error_inode_block(inode, err_blk, EIO,
4573 					"unable to read itable block");
4574 
4575 	return ret;
4576 }
4577 
4578 
4579 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580 			  struct ext4_iloc *iloc)
4581 {
4582 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583 }
4584 
4585 static bool ext4_should_enable_dax(struct inode *inode)
4586 {
4587 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588 
4589 	if (test_opt2(inode->i_sb, DAX_NEVER))
4590 		return false;
4591 	if (!S_ISREG(inode->i_mode))
4592 		return false;
4593 	if (ext4_should_journal_data(inode))
4594 		return false;
4595 	if (ext4_has_inline_data(inode))
4596 		return false;
4597 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598 		return false;
4599 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600 		return false;
4601 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602 		return false;
4603 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4604 		return true;
4605 
4606 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607 }
4608 
4609 void ext4_set_inode_flags(struct inode *inode, bool init)
4610 {
4611 	unsigned int flags = EXT4_I(inode)->i_flags;
4612 	unsigned int new_fl = 0;
4613 
4614 	WARN_ON_ONCE(IS_DAX(inode) && init);
4615 
4616 	if (flags & EXT4_SYNC_FL)
4617 		new_fl |= S_SYNC;
4618 	if (flags & EXT4_APPEND_FL)
4619 		new_fl |= S_APPEND;
4620 	if (flags & EXT4_IMMUTABLE_FL)
4621 		new_fl |= S_IMMUTABLE;
4622 	if (flags & EXT4_NOATIME_FL)
4623 		new_fl |= S_NOATIME;
4624 	if (flags & EXT4_DIRSYNC_FL)
4625 		new_fl |= S_DIRSYNC;
4626 
4627 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4628 	 * here if already set. */
4629 	new_fl |= (inode->i_flags & S_DAX);
4630 	if (init && ext4_should_enable_dax(inode))
4631 		new_fl |= S_DAX;
4632 
4633 	if (flags & EXT4_ENCRYPT_FL)
4634 		new_fl |= S_ENCRYPTED;
4635 	if (flags & EXT4_CASEFOLD_FL)
4636 		new_fl |= S_CASEFOLD;
4637 	if (flags & EXT4_VERITY_FL)
4638 		new_fl |= S_VERITY;
4639 	inode_set_flags(inode, new_fl,
4640 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4642 }
4643 
4644 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645 				  struct ext4_inode_info *ei)
4646 {
4647 	blkcnt_t i_blocks ;
4648 	struct inode *inode = &(ei->vfs_inode);
4649 	struct super_block *sb = inode->i_sb;
4650 
4651 	if (ext4_has_feature_huge_file(sb)) {
4652 		/* we are using combined 48 bit field */
4653 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654 					le32_to_cpu(raw_inode->i_blocks_lo);
4655 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656 			/* i_blocks represent file system block size */
4657 			return i_blocks  << (inode->i_blkbits - 9);
4658 		} else {
4659 			return i_blocks;
4660 		}
4661 	} else {
4662 		return le32_to_cpu(raw_inode->i_blocks_lo);
4663 	}
4664 }
4665 
4666 static inline int ext4_iget_extra_inode(struct inode *inode,
4667 					 struct ext4_inode *raw_inode,
4668 					 struct ext4_inode_info *ei)
4669 {
4670 	__le32 *magic = (void *)raw_inode +
4671 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672 
4673 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675 		int err;
4676 
4677 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678 		err = ext4_find_inline_data_nolock(inode);
4679 		if (!err && ext4_has_inline_data(inode))
4680 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681 		return err;
4682 	} else
4683 		EXT4_I(inode)->i_inline_off = 0;
4684 	return 0;
4685 }
4686 
4687 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688 {
4689 	if (!ext4_has_feature_project(inode->i_sb))
4690 		return -EOPNOTSUPP;
4691 	*projid = EXT4_I(inode)->i_projid;
4692 	return 0;
4693 }
4694 
4695 /*
4696  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698  * set.
4699  */
4700 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701 {
4702 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703 		inode_set_iversion_raw(inode, val);
4704 	else
4705 		inode_set_iversion_queried(inode, val);
4706 }
4707 
4708 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709 
4710 {
4711 	if (flags & EXT4_IGET_EA_INODE) {
4712 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713 			return "missing EA_INODE flag";
4714 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715 		    EXT4_I(inode)->i_file_acl)
4716 			return "ea_inode with extended attributes";
4717 	} else {
4718 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719 			return "unexpected EA_INODE flag";
4720 	}
4721 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4723 	return NULL;
4724 }
4725 
4726 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727 			  ext4_iget_flags flags, const char *function,
4728 			  unsigned int line)
4729 {
4730 	struct ext4_iloc iloc;
4731 	struct ext4_inode *raw_inode;
4732 	struct ext4_inode_info *ei;
4733 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734 	struct inode *inode;
4735 	const char *err_str;
4736 	journal_t *journal = EXT4_SB(sb)->s_journal;
4737 	long ret;
4738 	loff_t size;
4739 	int block;
4740 	uid_t i_uid;
4741 	gid_t i_gid;
4742 	projid_t i_projid;
4743 
4744 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4745 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750 	    (ino < EXT4_ROOT_INO) ||
4751 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4752 		if (flags & EXT4_IGET_HANDLE)
4753 			return ERR_PTR(-ESTALE);
4754 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755 			     "inode #%lu: comm %s: iget: illegal inode #",
4756 			     ino, current->comm);
4757 		return ERR_PTR(-EFSCORRUPTED);
4758 	}
4759 
4760 	inode = iget_locked(sb, ino);
4761 	if (!inode)
4762 		return ERR_PTR(-ENOMEM);
4763 	if (!(inode->i_state & I_NEW)) {
4764 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765 			ext4_error_inode(inode, function, line, 0, err_str);
4766 			iput(inode);
4767 			return ERR_PTR(-EFSCORRUPTED);
4768 		}
4769 		return inode;
4770 	}
4771 
4772 	ei = EXT4_I(inode);
4773 	iloc.bh = NULL;
4774 
4775 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776 	if (ret < 0)
4777 		goto bad_inode;
4778 	raw_inode = ext4_raw_inode(&iloc);
4779 
4780 	if ((flags & EXT4_IGET_HANDLE) &&
4781 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782 		ret = -ESTALE;
4783 		goto bad_inode;
4784 	}
4785 
4786 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789 			EXT4_INODE_SIZE(inode->i_sb) ||
4790 		    (ei->i_extra_isize & 3)) {
4791 			ext4_error_inode(inode, function, line, 0,
4792 					 "iget: bad extra_isize %u "
4793 					 "(inode size %u)",
4794 					 ei->i_extra_isize,
4795 					 EXT4_INODE_SIZE(inode->i_sb));
4796 			ret = -EFSCORRUPTED;
4797 			goto bad_inode;
4798 		}
4799 	} else
4800 		ei->i_extra_isize = 0;
4801 
4802 	/* Precompute checksum seed for inode metadata */
4803 	if (ext4_has_metadata_csum(sb)) {
4804 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805 		__u32 csum;
4806 		__le32 inum = cpu_to_le32(inode->i_ino);
4807 		__le32 gen = raw_inode->i_generation;
4808 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809 				   sizeof(inum));
4810 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811 					      sizeof(gen));
4812 	}
4813 
4814 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817 		ext4_error_inode_err(inode, function, line, 0,
4818 				EFSBADCRC, "iget: checksum invalid");
4819 		ret = -EFSBADCRC;
4820 		goto bad_inode;
4821 	}
4822 
4823 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826 	if (ext4_has_feature_project(sb) &&
4827 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830 	else
4831 		i_projid = EXT4_DEF_PROJID;
4832 
4833 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836 	}
4837 	i_uid_write(inode, i_uid);
4838 	i_gid_write(inode, i_gid);
4839 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841 
4842 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843 	ei->i_inline_off = 0;
4844 	ei->i_dir_start_lookup = 0;
4845 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846 	/* We now have enough fields to check if the inode was active or not.
4847 	 * This is needed because nfsd might try to access dead inodes
4848 	 * the test is that same one that e2fsck uses
4849 	 * NeilBrown 1999oct15
4850 	 */
4851 	if (inode->i_nlink == 0) {
4852 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854 		    ino != EXT4_BOOT_LOADER_INO) {
4855 			/* this inode is deleted or unallocated */
4856 			if (flags & EXT4_IGET_SPECIAL) {
4857 				ext4_error_inode(inode, function, line, 0,
4858 						 "iget: special inode unallocated");
4859 				ret = -EFSCORRUPTED;
4860 			} else
4861 				ret = -ESTALE;
4862 			goto bad_inode;
4863 		}
4864 		/* The only unlinked inodes we let through here have
4865 		 * valid i_mode and are being read by the orphan
4866 		 * recovery code: that's fine, we're about to complete
4867 		 * the process of deleting those.
4868 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4869 		 * not initialized on a new filesystem. */
4870 	}
4871 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872 	ext4_set_inode_flags(inode, true);
4873 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875 	if (ext4_has_feature_64bit(sb))
4876 		ei->i_file_acl |=
4877 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878 	inode->i_size = ext4_isize(sb, raw_inode);
4879 	if ((size = i_size_read(inode)) < 0) {
4880 		ext4_error_inode(inode, function, line, 0,
4881 				 "iget: bad i_size value: %lld", size);
4882 		ret = -EFSCORRUPTED;
4883 		goto bad_inode;
4884 	}
4885 	/*
4886 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4887 	 * we'd normally treat htree data as empty space. But with metadata
4888 	 * checksumming that corrupts checksums so forbid that.
4889 	 */
4890 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892 		ext4_error_inode(inode, function, line, 0,
4893 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4894 		ret = -EFSCORRUPTED;
4895 		goto bad_inode;
4896 	}
4897 	ei->i_disksize = inode->i_size;
4898 #ifdef CONFIG_QUOTA
4899 	ei->i_reserved_quota = 0;
4900 #endif
4901 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902 	ei->i_block_group = iloc.block_group;
4903 	ei->i_last_alloc_group = ~0;
4904 	/*
4905 	 * NOTE! The in-memory inode i_data array is in little-endian order
4906 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4907 	 */
4908 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4909 		ei->i_data[block] = raw_inode->i_block[block];
4910 	INIT_LIST_HEAD(&ei->i_orphan);
4911 	ext4_fc_init_inode(&ei->vfs_inode);
4912 
4913 	/*
4914 	 * Set transaction id's of transactions that have to be committed
4915 	 * to finish f[data]sync. We set them to currently running transaction
4916 	 * as we cannot be sure that the inode or some of its metadata isn't
4917 	 * part of the transaction - the inode could have been reclaimed and
4918 	 * now it is reread from disk.
4919 	 */
4920 	if (journal) {
4921 		transaction_t *transaction;
4922 		tid_t tid;
4923 
4924 		read_lock(&journal->j_state_lock);
4925 		if (journal->j_running_transaction)
4926 			transaction = journal->j_running_transaction;
4927 		else
4928 			transaction = journal->j_committing_transaction;
4929 		if (transaction)
4930 			tid = transaction->t_tid;
4931 		else
4932 			tid = journal->j_commit_sequence;
4933 		read_unlock(&journal->j_state_lock);
4934 		ei->i_sync_tid = tid;
4935 		ei->i_datasync_tid = tid;
4936 	}
4937 
4938 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939 		if (ei->i_extra_isize == 0) {
4940 			/* The extra space is currently unused. Use it. */
4941 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4943 					    EXT4_GOOD_OLD_INODE_SIZE;
4944 		} else {
4945 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946 			if (ret)
4947 				goto bad_inode;
4948 		}
4949 	}
4950 
4951 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4952 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4953 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4954 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955 
4956 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958 
4959 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961 				ivers |=
4962 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963 		}
4964 		ext4_inode_set_iversion_queried(inode, ivers);
4965 	}
4966 
4967 	ret = 0;
4968 	if (ei->i_file_acl &&
4969 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970 		ext4_error_inode(inode, function, line, 0,
4971 				 "iget: bad extended attribute block %llu",
4972 				 ei->i_file_acl);
4973 		ret = -EFSCORRUPTED;
4974 		goto bad_inode;
4975 	} else if (!ext4_has_inline_data(inode)) {
4976 		/* validate the block references in the inode */
4977 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979 			(S_ISLNK(inode->i_mode) &&
4980 			!ext4_inode_is_fast_symlink(inode)))) {
4981 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982 				ret = ext4_ext_check_inode(inode);
4983 			else
4984 				ret = ext4_ind_check_inode(inode);
4985 		}
4986 	}
4987 	if (ret)
4988 		goto bad_inode;
4989 
4990 	if (S_ISREG(inode->i_mode)) {
4991 		inode->i_op = &ext4_file_inode_operations;
4992 		inode->i_fop = &ext4_file_operations;
4993 		ext4_set_aops(inode);
4994 	} else if (S_ISDIR(inode->i_mode)) {
4995 		inode->i_op = &ext4_dir_inode_operations;
4996 		inode->i_fop = &ext4_dir_operations;
4997 	} else if (S_ISLNK(inode->i_mode)) {
4998 		/* VFS does not allow setting these so must be corruption */
4999 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000 			ext4_error_inode(inode, function, line, 0,
5001 					 "iget: immutable or append flags "
5002 					 "not allowed on symlinks");
5003 			ret = -EFSCORRUPTED;
5004 			goto bad_inode;
5005 		}
5006 		if (IS_ENCRYPTED(inode)) {
5007 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008 		} else if (ext4_inode_is_fast_symlink(inode)) {
5009 			inode->i_link = (char *)ei->i_data;
5010 			inode->i_op = &ext4_fast_symlink_inode_operations;
5011 			nd_terminate_link(ei->i_data, inode->i_size,
5012 				sizeof(ei->i_data) - 1);
5013 		} else {
5014 			inode->i_op = &ext4_symlink_inode_operations;
5015 		}
5016 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018 		inode->i_op = &ext4_special_inode_operations;
5019 		if (raw_inode->i_block[0])
5020 			init_special_inode(inode, inode->i_mode,
5021 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022 		else
5023 			init_special_inode(inode, inode->i_mode,
5024 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5026 		make_bad_inode(inode);
5027 	} else {
5028 		ret = -EFSCORRUPTED;
5029 		ext4_error_inode(inode, function, line, 0,
5030 				 "iget: bogus i_mode (%o)", inode->i_mode);
5031 		goto bad_inode;
5032 	}
5033 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034 		ext4_error_inode(inode, function, line, 0,
5035 				 "casefold flag without casefold feature");
5036 		ret = -EFSCORRUPTED;
5037 		goto bad_inode;
5038 	}
5039 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040 		ext4_error_inode(inode, function, line, 0, err_str);
5041 		ret = -EFSCORRUPTED;
5042 		goto bad_inode;
5043 	}
5044 
5045 	brelse(iloc.bh);
5046 	unlock_new_inode(inode);
5047 	return inode;
5048 
5049 bad_inode:
5050 	brelse(iloc.bh);
5051 	iget_failed(inode);
5052 	return ERR_PTR(ret);
5053 }
5054 
5055 static void __ext4_update_other_inode_time(struct super_block *sb,
5056 					   unsigned long orig_ino,
5057 					   unsigned long ino,
5058 					   struct ext4_inode *raw_inode)
5059 {
5060 	struct inode *inode;
5061 
5062 	inode = find_inode_by_ino_rcu(sb, ino);
5063 	if (!inode)
5064 		return;
5065 
5066 	if (!inode_is_dirtytime_only(inode))
5067 		return;
5068 
5069 	spin_lock(&inode->i_lock);
5070 	if (inode_is_dirtytime_only(inode)) {
5071 		struct ext4_inode_info	*ei = EXT4_I(inode);
5072 
5073 		inode->i_state &= ~I_DIRTY_TIME;
5074 		spin_unlock(&inode->i_lock);
5075 
5076 		spin_lock(&ei->i_raw_lock);
5077 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5078 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5079 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5080 		ext4_inode_csum_set(inode, raw_inode, ei);
5081 		spin_unlock(&ei->i_raw_lock);
5082 		trace_ext4_other_inode_update_time(inode, orig_ino);
5083 		return;
5084 	}
5085 	spin_unlock(&inode->i_lock);
5086 }
5087 
5088 /*
5089  * Opportunistically update the other time fields for other inodes in
5090  * the same inode table block.
5091  */
5092 static void ext4_update_other_inodes_time(struct super_block *sb,
5093 					  unsigned long orig_ino, char *buf)
5094 {
5095 	unsigned long ino;
5096 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097 	int inode_size = EXT4_INODE_SIZE(sb);
5098 
5099 	/*
5100 	 * Calculate the first inode in the inode table block.  Inode
5101 	 * numbers are one-based.  That is, the first inode in a block
5102 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103 	 */
5104 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105 	rcu_read_lock();
5106 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107 		if (ino == orig_ino)
5108 			continue;
5109 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5110 					       (struct ext4_inode *)buf);
5111 	}
5112 	rcu_read_unlock();
5113 }
5114 
5115 /*
5116  * Post the struct inode info into an on-disk inode location in the
5117  * buffer-cache.  This gobbles the caller's reference to the
5118  * buffer_head in the inode location struct.
5119  *
5120  * The caller must have write access to iloc->bh.
5121  */
5122 static int ext4_do_update_inode(handle_t *handle,
5123 				struct inode *inode,
5124 				struct ext4_iloc *iloc)
5125 {
5126 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127 	struct ext4_inode_info *ei = EXT4_I(inode);
5128 	struct buffer_head *bh = iloc->bh;
5129 	struct super_block *sb = inode->i_sb;
5130 	int err;
5131 	int need_datasync = 0, set_large_file = 0;
5132 
5133 	spin_lock(&ei->i_raw_lock);
5134 
5135 	/*
5136 	 * For fields not tracked in the in-memory inode, initialise them
5137 	 * to zero for new inodes.
5138 	 */
5139 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141 
5142 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5143 		need_datasync = 1;
5144 	if (ei->i_disksize > 0x7fffffffULL) {
5145 		if (!ext4_has_feature_large_file(sb) ||
5146 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5147 			set_large_file = 1;
5148 	}
5149 
5150 	err = ext4_fill_raw_inode(inode, raw_inode);
5151 	spin_unlock(&ei->i_raw_lock);
5152 	if (err) {
5153 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154 		goto out_brelse;
5155 	}
5156 
5157 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5158 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159 					      bh->b_data);
5160 
5161 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163 	if (err)
5164 		goto out_error;
5165 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166 	if (set_large_file) {
5167 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168 		err = ext4_journal_get_write_access(handle, sb,
5169 						    EXT4_SB(sb)->s_sbh,
5170 						    EXT4_JTR_NONE);
5171 		if (err)
5172 			goto out_error;
5173 		lock_buffer(EXT4_SB(sb)->s_sbh);
5174 		ext4_set_feature_large_file(sb);
5175 		ext4_superblock_csum_set(sb);
5176 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5177 		ext4_handle_sync(handle);
5178 		err = ext4_handle_dirty_metadata(handle, NULL,
5179 						 EXT4_SB(sb)->s_sbh);
5180 	}
5181 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182 out_error:
5183 	ext4_std_error(inode->i_sb, err);
5184 out_brelse:
5185 	brelse(bh);
5186 	return err;
5187 }
5188 
5189 /*
5190  * ext4_write_inode()
5191  *
5192  * We are called from a few places:
5193  *
5194  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195  *   Here, there will be no transaction running. We wait for any running
5196  *   transaction to commit.
5197  *
5198  * - Within flush work (sys_sync(), kupdate and such).
5199  *   We wait on commit, if told to.
5200  *
5201  * - Within iput_final() -> write_inode_now()
5202  *   We wait on commit, if told to.
5203  *
5204  * In all cases it is actually safe for us to return without doing anything,
5205  * because the inode has been copied into a raw inode buffer in
5206  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5207  * writeback.
5208  *
5209  * Note that we are absolutely dependent upon all inode dirtiers doing the
5210  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211  * which we are interested.
5212  *
5213  * It would be a bug for them to not do this.  The code:
5214  *
5215  *	mark_inode_dirty(inode)
5216  *	stuff();
5217  *	inode->i_size = expr;
5218  *
5219  * is in error because write_inode() could occur while `stuff()' is running,
5220  * and the new i_size will be lost.  Plus the inode will no longer be on the
5221  * superblock's dirty inode list.
5222  */
5223 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224 {
5225 	int err;
5226 
5227 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228 		return 0;
5229 
5230 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231 		return -EIO;
5232 
5233 	if (EXT4_SB(inode->i_sb)->s_journal) {
5234 		if (ext4_journal_current_handle()) {
5235 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236 			dump_stack();
5237 			return -EIO;
5238 		}
5239 
5240 		/*
5241 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5242 		 * ext4_sync_fs() will force the commit after everything is
5243 		 * written.
5244 		 */
5245 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246 			return 0;
5247 
5248 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249 						EXT4_I(inode)->i_sync_tid);
5250 	} else {
5251 		struct ext4_iloc iloc;
5252 
5253 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254 		if (err)
5255 			return err;
5256 		/*
5257 		 * sync(2) will flush the whole buffer cache. No need to do
5258 		 * it here separately for each inode.
5259 		 */
5260 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261 			sync_dirty_buffer(iloc.bh);
5262 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264 					       "IO error syncing inode");
5265 			err = -EIO;
5266 		}
5267 		brelse(iloc.bh);
5268 	}
5269 	return err;
5270 }
5271 
5272 /*
5273  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274  * buffers that are attached to a folio straddling i_size and are undergoing
5275  * commit. In that case we have to wait for commit to finish and try again.
5276  */
5277 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278 {
5279 	unsigned offset;
5280 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281 	tid_t commit_tid;
5282 	int ret;
5283 	bool has_transaction;
5284 
5285 	offset = inode->i_size & (PAGE_SIZE - 1);
5286 	/*
5287 	 * If the folio is fully truncated, we don't need to wait for any commit
5288 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289 	 * strip all buffers from the folio but keep the folio dirty which can then
5290 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291 	 * buffers). Also we don't need to wait for any commit if all buffers in
5292 	 * the folio remain valid. This is most beneficial for the common case of
5293 	 * blocksize == PAGESIZE.
5294 	 */
5295 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296 		return;
5297 	while (1) {
5298 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299 				      inode->i_size >> PAGE_SHIFT);
5300 		if (IS_ERR(folio))
5301 			return;
5302 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303 						folio_size(folio) - offset);
5304 		folio_unlock(folio);
5305 		folio_put(folio);
5306 		if (ret != -EBUSY)
5307 			return;
5308 		has_transaction = false;
5309 		read_lock(&journal->j_state_lock);
5310 		if (journal->j_committing_transaction) {
5311 			commit_tid = journal->j_committing_transaction->t_tid;
5312 			has_transaction = true;
5313 		}
5314 		read_unlock(&journal->j_state_lock);
5315 		if (has_transaction)
5316 			jbd2_log_wait_commit(journal, commit_tid);
5317 	}
5318 }
5319 
5320 /*
5321  * ext4_setattr()
5322  *
5323  * Called from notify_change.
5324  *
5325  * We want to trap VFS attempts to truncate the file as soon as
5326  * possible.  In particular, we want to make sure that when the VFS
5327  * shrinks i_size, we put the inode on the orphan list and modify
5328  * i_disksize immediately, so that during the subsequent flushing of
5329  * dirty pages and freeing of disk blocks, we can guarantee that any
5330  * commit will leave the blocks being flushed in an unused state on
5331  * disk.  (On recovery, the inode will get truncated and the blocks will
5332  * be freed, so we have a strong guarantee that no future commit will
5333  * leave these blocks visible to the user.)
5334  *
5335  * Another thing we have to assure is that if we are in ordered mode
5336  * and inode is still attached to the committing transaction, we must
5337  * we start writeout of all the dirty pages which are being truncated.
5338  * This way we are sure that all the data written in the previous
5339  * transaction are already on disk (truncate waits for pages under
5340  * writeback).
5341  *
5342  * Called with inode->i_rwsem down.
5343  */
5344 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345 		 struct iattr *attr)
5346 {
5347 	struct inode *inode = d_inode(dentry);
5348 	int error, rc = 0;
5349 	int orphan = 0;
5350 	const unsigned int ia_valid = attr->ia_valid;
5351 	bool inc_ivers = true;
5352 
5353 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354 		return -EIO;
5355 
5356 	if (unlikely(IS_IMMUTABLE(inode)))
5357 		return -EPERM;
5358 
5359 	if (unlikely(IS_APPEND(inode) &&
5360 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5361 				  ATTR_GID | ATTR_TIMES_SET))))
5362 		return -EPERM;
5363 
5364 	error = setattr_prepare(idmap, dentry, attr);
5365 	if (error)
5366 		return error;
5367 
5368 	error = fscrypt_prepare_setattr(dentry, attr);
5369 	if (error)
5370 		return error;
5371 
5372 	error = fsverity_prepare_setattr(dentry, attr);
5373 	if (error)
5374 		return error;
5375 
5376 	if (is_quota_modification(idmap, inode, attr)) {
5377 		error = dquot_initialize(inode);
5378 		if (error)
5379 			return error;
5380 	}
5381 
5382 	if (i_uid_needs_update(idmap, attr, inode) ||
5383 	    i_gid_needs_update(idmap, attr, inode)) {
5384 		handle_t *handle;
5385 
5386 		/* (user+group)*(old+new) structure, inode write (sb,
5387 		 * inode block, ? - but truncate inode update has it) */
5388 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391 		if (IS_ERR(handle)) {
5392 			error = PTR_ERR(handle);
5393 			goto err_out;
5394 		}
5395 
5396 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5397 		 * counts xattr inode references.
5398 		 */
5399 		down_read(&EXT4_I(inode)->xattr_sem);
5400 		error = dquot_transfer(idmap, inode, attr);
5401 		up_read(&EXT4_I(inode)->xattr_sem);
5402 
5403 		if (error) {
5404 			ext4_journal_stop(handle);
5405 			return error;
5406 		}
5407 		/* Update corresponding info in inode so that everything is in
5408 		 * one transaction */
5409 		i_uid_update(idmap, attr, inode);
5410 		i_gid_update(idmap, attr, inode);
5411 		error = ext4_mark_inode_dirty(handle, inode);
5412 		ext4_journal_stop(handle);
5413 		if (unlikely(error)) {
5414 			return error;
5415 		}
5416 	}
5417 
5418 	if (attr->ia_valid & ATTR_SIZE) {
5419 		handle_t *handle;
5420 		loff_t oldsize = inode->i_size;
5421 		loff_t old_disksize;
5422 		int shrink = (attr->ia_size < inode->i_size);
5423 
5424 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426 
5427 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428 				return -EFBIG;
5429 			}
5430 		}
5431 		if (!S_ISREG(inode->i_mode)) {
5432 			return -EINVAL;
5433 		}
5434 
5435 		if (attr->ia_size == inode->i_size)
5436 			inc_ivers = false;
5437 
5438 		if (shrink) {
5439 			if (ext4_should_order_data(inode)) {
5440 				error = ext4_begin_ordered_truncate(inode,
5441 							    attr->ia_size);
5442 				if (error)
5443 					goto err_out;
5444 			}
5445 			/*
5446 			 * Blocks are going to be removed from the inode. Wait
5447 			 * for dio in flight.
5448 			 */
5449 			inode_dio_wait(inode);
5450 		}
5451 
5452 		filemap_invalidate_lock(inode->i_mapping);
5453 
5454 		rc = ext4_break_layouts(inode);
5455 		if (rc) {
5456 			filemap_invalidate_unlock(inode->i_mapping);
5457 			goto err_out;
5458 		}
5459 
5460 		if (attr->ia_size != inode->i_size) {
5461 			/* attach jbd2 jinode for EOF folio tail zeroing */
5462 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5464 				error = ext4_inode_attach_jinode(inode);
5465 				if (error)
5466 					goto err_out;
5467 			}
5468 
5469 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470 			if (IS_ERR(handle)) {
5471 				error = PTR_ERR(handle);
5472 				goto out_mmap_sem;
5473 			}
5474 			if (ext4_handle_valid(handle) && shrink) {
5475 				error = ext4_orphan_add(handle, inode);
5476 				orphan = 1;
5477 			}
5478 			/*
5479 			 * Update c/mtime and tail zero the EOF folio on
5480 			 * truncate up. ext4_truncate() handles the shrink case
5481 			 * below.
5482 			 */
5483 			if (!shrink) {
5484 				inode_set_mtime_to_ts(inode,
5485 						      inode_set_ctime_current(inode));
5486 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5487 					ext4_block_truncate_page(handle,
5488 							inode->i_mapping, oldsize);
5489 			}
5490 
5491 			if (shrink)
5492 				ext4_fc_track_range(handle, inode,
5493 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494 					inode->i_sb->s_blocksize_bits,
5495 					EXT_MAX_BLOCKS - 1);
5496 			else
5497 				ext4_fc_track_range(
5498 					handle, inode,
5499 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5500 					inode->i_sb->s_blocksize_bits,
5501 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502 					inode->i_sb->s_blocksize_bits);
5503 
5504 			down_write(&EXT4_I(inode)->i_data_sem);
5505 			old_disksize = EXT4_I(inode)->i_disksize;
5506 			EXT4_I(inode)->i_disksize = attr->ia_size;
5507 			rc = ext4_mark_inode_dirty(handle, inode);
5508 			if (!error)
5509 				error = rc;
5510 			/*
5511 			 * We have to update i_size under i_data_sem together
5512 			 * with i_disksize to avoid races with writeback code
5513 			 * running ext4_wb_update_i_disksize().
5514 			 */
5515 			if (!error)
5516 				i_size_write(inode, attr->ia_size);
5517 			else
5518 				EXT4_I(inode)->i_disksize = old_disksize;
5519 			up_write(&EXT4_I(inode)->i_data_sem);
5520 			ext4_journal_stop(handle);
5521 			if (error)
5522 				goto out_mmap_sem;
5523 			if (!shrink) {
5524 				pagecache_isize_extended(inode, oldsize,
5525 							 inode->i_size);
5526 			} else if (ext4_should_journal_data(inode)) {
5527 				ext4_wait_for_tail_page_commit(inode);
5528 			}
5529 		}
5530 
5531 		/*
5532 		 * Truncate pagecache after we've waited for commit
5533 		 * in data=journal mode to make pages freeable.
5534 		 */
5535 		truncate_pagecache(inode, inode->i_size);
5536 		/*
5537 		 * Call ext4_truncate() even if i_size didn't change to
5538 		 * truncate possible preallocated blocks.
5539 		 */
5540 		if (attr->ia_size <= oldsize) {
5541 			rc = ext4_truncate(inode);
5542 			if (rc)
5543 				error = rc;
5544 		}
5545 out_mmap_sem:
5546 		filemap_invalidate_unlock(inode->i_mapping);
5547 	}
5548 
5549 	if (!error) {
5550 		if (inc_ivers)
5551 			inode_inc_iversion(inode);
5552 		setattr_copy(idmap, inode, attr);
5553 		mark_inode_dirty(inode);
5554 	}
5555 
5556 	/*
5557 	 * If the call to ext4_truncate failed to get a transaction handle at
5558 	 * all, we need to clean up the in-core orphan list manually.
5559 	 */
5560 	if (orphan && inode->i_nlink)
5561 		ext4_orphan_del(NULL, inode);
5562 
5563 	if (!error && (ia_valid & ATTR_MODE))
5564 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565 
5566 err_out:
5567 	if  (error)
5568 		ext4_std_error(inode->i_sb, error);
5569 	if (!error)
5570 		error = rc;
5571 	return error;
5572 }
5573 
5574 u32 ext4_dio_alignment(struct inode *inode)
5575 {
5576 	if (fsverity_active(inode))
5577 		return 0;
5578 	if (ext4_should_journal_data(inode))
5579 		return 0;
5580 	if (ext4_has_inline_data(inode))
5581 		return 0;
5582 	if (IS_ENCRYPTED(inode)) {
5583 		if (!fscrypt_dio_supported(inode))
5584 			return 0;
5585 		return i_blocksize(inode);
5586 	}
5587 	return 1; /* use the iomap defaults */
5588 }
5589 
5590 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592 {
5593 	struct inode *inode = d_inode(path->dentry);
5594 	struct ext4_inode *raw_inode;
5595 	struct ext4_inode_info *ei = EXT4_I(inode);
5596 	unsigned int flags;
5597 
5598 	if ((request_mask & STATX_BTIME) &&
5599 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600 		stat->result_mask |= STATX_BTIME;
5601 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603 	}
5604 
5605 	/*
5606 	 * Return the DIO alignment restrictions if requested.  We only return
5607 	 * this information when requested, since on encrypted files it might
5608 	 * take a fair bit of work to get if the file wasn't opened recently.
5609 	 */
5610 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611 		u32 dio_align = ext4_dio_alignment(inode);
5612 
5613 		stat->result_mask |= STATX_DIOALIGN;
5614 		if (dio_align == 1) {
5615 			struct block_device *bdev = inode->i_sb->s_bdev;
5616 
5617 			/* iomap defaults */
5618 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5620 		} else {
5621 			stat->dio_mem_align = dio_align;
5622 			stat->dio_offset_align = dio_align;
5623 		}
5624 	}
5625 
5626 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628 		unsigned int awu_min = 0, awu_max = 0;
5629 
5630 		if (ext4_inode_can_atomic_write(inode)) {
5631 			awu_min = sbi->s_awu_min;
5632 			awu_max = sbi->s_awu_max;
5633 		}
5634 
5635 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636 	}
5637 
5638 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639 	if (flags & EXT4_APPEND_FL)
5640 		stat->attributes |= STATX_ATTR_APPEND;
5641 	if (flags & EXT4_COMPR_FL)
5642 		stat->attributes |= STATX_ATTR_COMPRESSED;
5643 	if (flags & EXT4_ENCRYPT_FL)
5644 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5645 	if (flags & EXT4_IMMUTABLE_FL)
5646 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5647 	if (flags & EXT4_NODUMP_FL)
5648 		stat->attributes |= STATX_ATTR_NODUMP;
5649 	if (flags & EXT4_VERITY_FL)
5650 		stat->attributes |= STATX_ATTR_VERITY;
5651 
5652 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5653 				  STATX_ATTR_COMPRESSED |
5654 				  STATX_ATTR_ENCRYPTED |
5655 				  STATX_ATTR_IMMUTABLE |
5656 				  STATX_ATTR_NODUMP |
5657 				  STATX_ATTR_VERITY);
5658 
5659 	generic_fillattr(idmap, request_mask, inode, stat);
5660 	return 0;
5661 }
5662 
5663 int ext4_file_getattr(struct mnt_idmap *idmap,
5664 		      const struct path *path, struct kstat *stat,
5665 		      u32 request_mask, unsigned int query_flags)
5666 {
5667 	struct inode *inode = d_inode(path->dentry);
5668 	u64 delalloc_blocks;
5669 
5670 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671 
5672 	/*
5673 	 * If there is inline data in the inode, the inode will normally not
5674 	 * have data blocks allocated (it may have an external xattr block).
5675 	 * Report at least one sector for such files, so tools like tar, rsync,
5676 	 * others don't incorrectly think the file is completely sparse.
5677 	 */
5678 	if (unlikely(ext4_has_inline_data(inode)))
5679 		stat->blocks += (stat->size + 511) >> 9;
5680 
5681 	/*
5682 	 * We can't update i_blocks if the block allocation is delayed
5683 	 * otherwise in the case of system crash before the real block
5684 	 * allocation is done, we will have i_blocks inconsistent with
5685 	 * on-disk file blocks.
5686 	 * We always keep i_blocks updated together with real
5687 	 * allocation. But to not confuse with user, stat
5688 	 * will return the blocks that include the delayed allocation
5689 	 * blocks for this file.
5690 	 */
5691 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692 				   EXT4_I(inode)->i_reserved_data_blocks);
5693 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694 	return 0;
5695 }
5696 
5697 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698 				   int pextents)
5699 {
5700 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701 		return ext4_ind_trans_blocks(inode, lblocks);
5702 	return ext4_ext_index_trans_blocks(inode, pextents);
5703 }
5704 
5705 /*
5706  * Account for index blocks, block groups bitmaps and block group
5707  * descriptor blocks if modify datablocks and index blocks
5708  * worse case, the indexs blocks spread over different block groups
5709  *
5710  * If datablocks are discontiguous, they are possible to spread over
5711  * different block groups too. If they are contiguous, with flexbg,
5712  * they could still across block group boundary.
5713  *
5714  * Also account for superblock, inode, quota and xattr blocks
5715  */
5716 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717 				  int pextents)
5718 {
5719 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720 	int gdpblocks;
5721 	int idxblocks;
5722 	int ret;
5723 
5724 	/*
5725 	 * How many index blocks need to touch to map @lblocks logical blocks
5726 	 * to @pextents physical extents?
5727 	 */
5728 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729 
5730 	ret = idxblocks;
5731 
5732 	/*
5733 	 * Now let's see how many group bitmaps and group descriptors need
5734 	 * to account
5735 	 */
5736 	groups = idxblocks + pextents;
5737 	gdpblocks = groups;
5738 	if (groups > ngroups)
5739 		groups = ngroups;
5740 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742 
5743 	/* bitmaps and block group descriptor blocks */
5744 	ret += groups + gdpblocks;
5745 
5746 	/* Blocks for super block, inode, quota and xattr blocks */
5747 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748 
5749 	return ret;
5750 }
5751 
5752 /*
5753  * Calculate the total number of credits to reserve to fit
5754  * the modification of a single pages into a single transaction,
5755  * which may include multiple chunks of block allocations.
5756  *
5757  * This could be called via ext4_write_begin()
5758  *
5759  * We need to consider the worse case, when
5760  * one new block per extent.
5761  */
5762 int ext4_writepage_trans_blocks(struct inode *inode)
5763 {
5764 	int bpp = ext4_journal_blocks_per_page(inode);
5765 	int ret;
5766 
5767 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768 
5769 	/* Account for data blocks for journalled mode */
5770 	if (ext4_should_journal_data(inode))
5771 		ret += bpp;
5772 	return ret;
5773 }
5774 
5775 /*
5776  * Calculate the journal credits for a chunk of data modification.
5777  *
5778  * This is called from DIO, fallocate or whoever calling
5779  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780  *
5781  * journal buffers for data blocks are not included here, as DIO
5782  * and fallocate do no need to journal data buffers.
5783  */
5784 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785 {
5786 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787 }
5788 
5789 /*
5790  * The caller must have previously called ext4_reserve_inode_write().
5791  * Give this, we know that the caller already has write access to iloc->bh.
5792  */
5793 int ext4_mark_iloc_dirty(handle_t *handle,
5794 			 struct inode *inode, struct ext4_iloc *iloc)
5795 {
5796 	int err = 0;
5797 
5798 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799 		put_bh(iloc->bh);
5800 		return -EIO;
5801 	}
5802 	ext4_fc_track_inode(handle, inode);
5803 
5804 	/* the do_update_inode consumes one bh->b_count */
5805 	get_bh(iloc->bh);
5806 
5807 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808 	err = ext4_do_update_inode(handle, inode, iloc);
5809 	put_bh(iloc->bh);
5810 	return err;
5811 }
5812 
5813 /*
5814  * On success, We end up with an outstanding reference count against
5815  * iloc->bh.  This _must_ be cleaned up later.
5816  */
5817 
5818 int
5819 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820 			 struct ext4_iloc *iloc)
5821 {
5822 	int err;
5823 
5824 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825 		return -EIO;
5826 
5827 	err = ext4_get_inode_loc(inode, iloc);
5828 	if (!err) {
5829 		BUFFER_TRACE(iloc->bh, "get_write_access");
5830 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5831 						    iloc->bh, EXT4_JTR_NONE);
5832 		if (err) {
5833 			brelse(iloc->bh);
5834 			iloc->bh = NULL;
5835 		}
5836 	}
5837 	ext4_std_error(inode->i_sb, err);
5838 	return err;
5839 }
5840 
5841 static int __ext4_expand_extra_isize(struct inode *inode,
5842 				     unsigned int new_extra_isize,
5843 				     struct ext4_iloc *iloc,
5844 				     handle_t *handle, int *no_expand)
5845 {
5846 	struct ext4_inode *raw_inode;
5847 	struct ext4_xattr_ibody_header *header;
5848 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849 	struct ext4_inode_info *ei = EXT4_I(inode);
5850 	int error;
5851 
5852 	/* this was checked at iget time, but double check for good measure */
5853 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854 	    (ei->i_extra_isize & 3)) {
5855 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856 				 ei->i_extra_isize,
5857 				 EXT4_INODE_SIZE(inode->i_sb));
5858 		return -EFSCORRUPTED;
5859 	}
5860 	if ((new_extra_isize < ei->i_extra_isize) ||
5861 	    (new_extra_isize < 4) ||
5862 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863 		return -EINVAL;	/* Should never happen */
5864 
5865 	raw_inode = ext4_raw_inode(iloc);
5866 
5867 	header = IHDR(inode, raw_inode);
5868 
5869 	/* No extended attributes present */
5870 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873 		       EXT4_I(inode)->i_extra_isize, 0,
5874 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876 		return 0;
5877 	}
5878 
5879 	/*
5880 	 * We may need to allocate external xattr block so we need quotas
5881 	 * initialized. Here we can be called with various locks held so we
5882 	 * cannot affort to initialize quotas ourselves. So just bail.
5883 	 */
5884 	if (dquot_initialize_needed(inode))
5885 		return -EAGAIN;
5886 
5887 	/* try to expand with EAs present */
5888 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889 					   raw_inode, handle);
5890 	if (error) {
5891 		/*
5892 		 * Inode size expansion failed; don't try again
5893 		 */
5894 		*no_expand = 1;
5895 	}
5896 
5897 	return error;
5898 }
5899 
5900 /*
5901  * Expand an inode by new_extra_isize bytes.
5902  * Returns 0 on success or negative error number on failure.
5903  */
5904 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905 					  unsigned int new_extra_isize,
5906 					  struct ext4_iloc iloc,
5907 					  handle_t *handle)
5908 {
5909 	int no_expand;
5910 	int error;
5911 
5912 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913 		return -EOVERFLOW;
5914 
5915 	/*
5916 	 * In nojournal mode, we can immediately attempt to expand
5917 	 * the inode.  When journaled, we first need to obtain extra
5918 	 * buffer credits since we may write into the EA block
5919 	 * with this same handle. If journal_extend fails, then it will
5920 	 * only result in a minor loss of functionality for that inode.
5921 	 * If this is felt to be critical, then e2fsck should be run to
5922 	 * force a large enough s_min_extra_isize.
5923 	 */
5924 	if (ext4_journal_extend(handle,
5925 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926 		return -ENOSPC;
5927 
5928 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929 		return -EBUSY;
5930 
5931 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932 					  handle, &no_expand);
5933 	ext4_write_unlock_xattr(inode, &no_expand);
5934 
5935 	return error;
5936 }
5937 
5938 int ext4_expand_extra_isize(struct inode *inode,
5939 			    unsigned int new_extra_isize,
5940 			    struct ext4_iloc *iloc)
5941 {
5942 	handle_t *handle;
5943 	int no_expand;
5944 	int error, rc;
5945 
5946 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947 		brelse(iloc->bh);
5948 		return -EOVERFLOW;
5949 	}
5950 
5951 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953 	if (IS_ERR(handle)) {
5954 		error = PTR_ERR(handle);
5955 		brelse(iloc->bh);
5956 		return error;
5957 	}
5958 
5959 	ext4_write_lock_xattr(inode, &no_expand);
5960 
5961 	BUFFER_TRACE(iloc->bh, "get_write_access");
5962 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963 					      EXT4_JTR_NONE);
5964 	if (error) {
5965 		brelse(iloc->bh);
5966 		goto out_unlock;
5967 	}
5968 
5969 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970 					  handle, &no_expand);
5971 
5972 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973 	if (!error)
5974 		error = rc;
5975 
5976 out_unlock:
5977 	ext4_write_unlock_xattr(inode, &no_expand);
5978 	ext4_journal_stop(handle);
5979 	return error;
5980 }
5981 
5982 /*
5983  * What we do here is to mark the in-core inode as clean with respect to inode
5984  * dirtiness (it may still be data-dirty).
5985  * This means that the in-core inode may be reaped by prune_icache
5986  * without having to perform any I/O.  This is a very good thing,
5987  * because *any* task may call prune_icache - even ones which
5988  * have a transaction open against a different journal.
5989  *
5990  * Is this cheating?  Not really.  Sure, we haven't written the
5991  * inode out, but prune_icache isn't a user-visible syncing function.
5992  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993  * we start and wait on commits.
5994  */
5995 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996 				const char *func, unsigned int line)
5997 {
5998 	struct ext4_iloc iloc;
5999 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000 	int err;
6001 
6002 	might_sleep();
6003 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6005 	if (err)
6006 		goto out;
6007 
6008 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010 					       iloc, handle);
6011 
6012 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013 out:
6014 	if (unlikely(err))
6015 		ext4_error_inode_err(inode, func, line, 0, err,
6016 					"mark_inode_dirty error");
6017 	return err;
6018 }
6019 
6020 /*
6021  * ext4_dirty_inode() is called from __mark_inode_dirty()
6022  *
6023  * We're really interested in the case where a file is being extended.
6024  * i_size has been changed by generic_commit_write() and we thus need
6025  * to include the updated inode in the current transaction.
6026  *
6027  * Also, dquot_alloc_block() will always dirty the inode when blocks
6028  * are allocated to the file.
6029  *
6030  * If the inode is marked synchronous, we don't honour that here - doing
6031  * so would cause a commit on atime updates, which we don't bother doing.
6032  * We handle synchronous inodes at the highest possible level.
6033  */
6034 void ext4_dirty_inode(struct inode *inode, int flags)
6035 {
6036 	handle_t *handle;
6037 
6038 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039 	if (IS_ERR(handle))
6040 		return;
6041 	ext4_mark_inode_dirty(handle, inode);
6042 	ext4_journal_stop(handle);
6043 }
6044 
6045 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046 {
6047 	journal_t *journal;
6048 	handle_t *handle;
6049 	int err;
6050 	int alloc_ctx;
6051 
6052 	/*
6053 	 * We have to be very careful here: changing a data block's
6054 	 * journaling status dynamically is dangerous.  If we write a
6055 	 * data block to the journal, change the status and then delete
6056 	 * that block, we risk forgetting to revoke the old log record
6057 	 * from the journal and so a subsequent replay can corrupt data.
6058 	 * So, first we make sure that the journal is empty and that
6059 	 * nobody is changing anything.
6060 	 */
6061 
6062 	journal = EXT4_JOURNAL(inode);
6063 	if (!journal)
6064 		return 0;
6065 	if (is_journal_aborted(journal))
6066 		return -EROFS;
6067 
6068 	/* Wait for all existing dio workers */
6069 	inode_dio_wait(inode);
6070 
6071 	/*
6072 	 * Before flushing the journal and switching inode's aops, we have
6073 	 * to flush all dirty data the inode has. There can be outstanding
6074 	 * delayed allocations, there can be unwritten extents created by
6075 	 * fallocate or buffered writes in dioread_nolock mode covered by
6076 	 * dirty data which can be converted only after flushing the dirty
6077 	 * data (and journalled aops don't know how to handle these cases).
6078 	 */
6079 	if (val) {
6080 		filemap_invalidate_lock(inode->i_mapping);
6081 		err = filemap_write_and_wait(inode->i_mapping);
6082 		if (err < 0) {
6083 			filemap_invalidate_unlock(inode->i_mapping);
6084 			return err;
6085 		}
6086 	}
6087 
6088 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089 	jbd2_journal_lock_updates(journal);
6090 
6091 	/*
6092 	 * OK, there are no updates running now, and all cached data is
6093 	 * synced to disk.  We are now in a completely consistent state
6094 	 * which doesn't have anything in the journal, and we know that
6095 	 * no filesystem updates are running, so it is safe to modify
6096 	 * the inode's in-core data-journaling state flag now.
6097 	 */
6098 
6099 	if (val)
6100 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101 	else {
6102 		err = jbd2_journal_flush(journal, 0);
6103 		if (err < 0) {
6104 			jbd2_journal_unlock_updates(journal);
6105 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106 			return err;
6107 		}
6108 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109 	}
6110 	ext4_set_aops(inode);
6111 
6112 	jbd2_journal_unlock_updates(journal);
6113 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114 
6115 	if (val)
6116 		filemap_invalidate_unlock(inode->i_mapping);
6117 
6118 	/* Finally we can mark the inode as dirty. */
6119 
6120 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121 	if (IS_ERR(handle))
6122 		return PTR_ERR(handle);
6123 
6124 	ext4_fc_mark_ineligible(inode->i_sb,
6125 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126 	err = ext4_mark_inode_dirty(handle, inode);
6127 	ext4_handle_sync(handle);
6128 	ext4_journal_stop(handle);
6129 	ext4_std_error(inode->i_sb, err);
6130 
6131 	return err;
6132 }
6133 
6134 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135 			    struct buffer_head *bh)
6136 {
6137 	return !buffer_mapped(bh);
6138 }
6139 
6140 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141 {
6142 	struct vm_area_struct *vma = vmf->vma;
6143 	struct folio *folio = page_folio(vmf->page);
6144 	loff_t size;
6145 	unsigned long len;
6146 	int err;
6147 	vm_fault_t ret;
6148 	struct file *file = vma->vm_file;
6149 	struct inode *inode = file_inode(file);
6150 	struct address_space *mapping = inode->i_mapping;
6151 	handle_t *handle;
6152 	get_block_t *get_block;
6153 	int retries = 0;
6154 
6155 	if (unlikely(IS_IMMUTABLE(inode)))
6156 		return VM_FAULT_SIGBUS;
6157 
6158 	sb_start_pagefault(inode->i_sb);
6159 	file_update_time(vma->vm_file);
6160 
6161 	filemap_invalidate_lock_shared(mapping);
6162 
6163 	err = ext4_convert_inline_data(inode);
6164 	if (err)
6165 		goto out_ret;
6166 
6167 	/*
6168 	 * On data journalling we skip straight to the transaction handle:
6169 	 * there's no delalloc; page truncated will be checked later; the
6170 	 * early return w/ all buffers mapped (calculates size/len) can't
6171 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172 	 */
6173 	if (ext4_should_journal_data(inode))
6174 		goto retry_alloc;
6175 
6176 	/* Delalloc case is easy... */
6177 	if (test_opt(inode->i_sb, DELALLOC) &&
6178 	    !ext4_nonda_switch(inode->i_sb)) {
6179 		do {
6180 			err = block_page_mkwrite(vma, vmf,
6181 						   ext4_da_get_block_prep);
6182 		} while (err == -ENOSPC &&
6183 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6184 		goto out_ret;
6185 	}
6186 
6187 	folio_lock(folio);
6188 	size = i_size_read(inode);
6189 	/* Page got truncated from under us? */
6190 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6191 		folio_unlock(folio);
6192 		ret = VM_FAULT_NOPAGE;
6193 		goto out;
6194 	}
6195 
6196 	len = folio_size(folio);
6197 	if (folio_pos(folio) + len > size)
6198 		len = size - folio_pos(folio);
6199 	/*
6200 	 * Return if we have all the buffers mapped. This avoids the need to do
6201 	 * journal_start/journal_stop which can block and take a long time
6202 	 *
6203 	 * This cannot be done for data journalling, as we have to add the
6204 	 * inode to the transaction's list to writeprotect pages on commit.
6205 	 */
6206 	if (folio_buffers(folio)) {
6207 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208 					    0, len, NULL,
6209 					    ext4_bh_unmapped)) {
6210 			/* Wait so that we don't change page under IO */
6211 			folio_wait_stable(folio);
6212 			ret = VM_FAULT_LOCKED;
6213 			goto out;
6214 		}
6215 	}
6216 	folio_unlock(folio);
6217 	/* OK, we need to fill the hole... */
6218 	if (ext4_should_dioread_nolock(inode))
6219 		get_block = ext4_get_block_unwritten;
6220 	else
6221 		get_block = ext4_get_block;
6222 retry_alloc:
6223 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224 				    ext4_writepage_trans_blocks(inode));
6225 	if (IS_ERR(handle)) {
6226 		ret = VM_FAULT_SIGBUS;
6227 		goto out;
6228 	}
6229 	/*
6230 	 * Data journalling can't use block_page_mkwrite() because it
6231 	 * will set_buffer_dirty() before do_journal_get_write_access()
6232 	 * thus might hit warning messages for dirty metadata buffers.
6233 	 */
6234 	if (!ext4_should_journal_data(inode)) {
6235 		err = block_page_mkwrite(vma, vmf, get_block);
6236 	} else {
6237 		folio_lock(folio);
6238 		size = i_size_read(inode);
6239 		/* Page got truncated from under us? */
6240 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6241 			ret = VM_FAULT_NOPAGE;
6242 			goto out_error;
6243 		}
6244 
6245 		len = folio_size(folio);
6246 		if (folio_pos(folio) + len > size)
6247 			len = size - folio_pos(folio);
6248 
6249 		err = ext4_block_write_begin(handle, folio, 0, len,
6250 					     ext4_get_block);
6251 		if (!err) {
6252 			ret = VM_FAULT_SIGBUS;
6253 			if (ext4_journal_folio_buffers(handle, folio, len))
6254 				goto out_error;
6255 		} else {
6256 			folio_unlock(folio);
6257 		}
6258 	}
6259 	ext4_journal_stop(handle);
6260 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261 		goto retry_alloc;
6262 out_ret:
6263 	ret = vmf_fs_error(err);
6264 out:
6265 	filemap_invalidate_unlock_shared(mapping);
6266 	sb_end_pagefault(inode->i_sb);
6267 	return ret;
6268 out_error:
6269 	folio_unlock(folio);
6270 	ext4_journal_stop(handle);
6271 	goto out;
6272 }
6273