xref: /linux/fs/ext4/inode.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	trace_ext4_begin_ordered_truncate(inode, new_size);
55 	/*
56 	 * If jinode is zero, then we never opened the file for
57 	 * writing, so there's no need to call
58 	 * jbd2_journal_begin_ordered_truncate() since there's no
59 	 * outstanding writes we need to flush.
60 	 */
61 	if (!EXT4_I(inode)->jinode)
62 		return 0;
63 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 						   EXT4_I(inode)->jinode,
65 						   new_size);
66 }
67 
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 				   struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75 
76 /*
77  * Test whether an inode is a fast symlink.
78  */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 		(inode->i_sb->s_blocksize >> 9) : 0;
83 
84 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86 
87 /*
88  * Restart the transaction associated with *handle.  This does a commit,
89  * so before we call here everything must be consistently dirtied against
90  * this transaction.
91  */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 				 int nblocks)
94 {
95 	int ret;
96 
97 	/*
98 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99 	 * moment, get_block can be called only for blocks inside i_size since
100 	 * page cache has been already dropped and writes are blocked by
101 	 * i_mutex. So we can safely drop the i_data_sem here.
102 	 */
103 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 	jbd_debug(2, "restarting handle %p\n", handle);
105 	up_write(&EXT4_I(inode)->i_data_sem);
106 	ret = ext4_journal_restart(handle, nblocks);
107 	down_write(&EXT4_I(inode)->i_data_sem);
108 	ext4_discard_preallocations(inode);
109 
110 	return ret;
111 }
112 
113 /*
114  * Called at the last iput() if i_nlink is zero.
115  */
116 void ext4_evict_inode(struct inode *inode)
117 {
118 	handle_t *handle;
119 	int err;
120 
121 	trace_ext4_evict_inode(inode);
122 
123 	ext4_ioend_wait(inode);
124 
125 	if (inode->i_nlink) {
126 		/*
127 		 * When journalling data dirty buffers are tracked only in the
128 		 * journal. So although mm thinks everything is clean and
129 		 * ready for reaping the inode might still have some pages to
130 		 * write in the running transaction or waiting to be
131 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 		 * (via truncate_inode_pages()) to discard these buffers can
133 		 * cause data loss. Also even if we did not discard these
134 		 * buffers, we would have no way to find them after the inode
135 		 * is reaped and thus user could see stale data if he tries to
136 		 * read them before the transaction is checkpointed. So be
137 		 * careful and force everything to disk here... We use
138 		 * ei->i_datasync_tid to store the newest transaction
139 		 * containing inode's data.
140 		 *
141 		 * Note that directories do not have this problem because they
142 		 * don't use page cache.
143 		 */
144 		if (ext4_should_journal_data(inode) &&
145 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148 
149 			jbd2_log_start_commit(journal, commit_tid);
150 			jbd2_log_wait_commit(journal, commit_tid);
151 			filemap_write_and_wait(&inode->i_data);
152 		}
153 		truncate_inode_pages(&inode->i_data, 0);
154 		goto no_delete;
155 	}
156 
157 	if (!is_bad_inode(inode))
158 		dquot_initialize(inode);
159 
160 	if (ext4_should_order_data(inode))
161 		ext4_begin_ordered_truncate(inode, 0);
162 	truncate_inode_pages(&inode->i_data, 0);
163 
164 	if (is_bad_inode(inode))
165 		goto no_delete;
166 
167 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 	if (IS_ERR(handle)) {
169 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 		/*
171 		 * If we're going to skip the normal cleanup, we still need to
172 		 * make sure that the in-core orphan linked list is properly
173 		 * cleaned up.
174 		 */
175 		ext4_orphan_del(NULL, inode);
176 		goto no_delete;
177 	}
178 
179 	if (IS_SYNC(inode))
180 		ext4_handle_sync(handle);
181 	inode->i_size = 0;
182 	err = ext4_mark_inode_dirty(handle, inode);
183 	if (err) {
184 		ext4_warning(inode->i_sb,
185 			     "couldn't mark inode dirty (err %d)", err);
186 		goto stop_handle;
187 	}
188 	if (inode->i_blocks)
189 		ext4_truncate(inode);
190 
191 	/*
192 	 * ext4_ext_truncate() doesn't reserve any slop when it
193 	 * restarts journal transactions; therefore there may not be
194 	 * enough credits left in the handle to remove the inode from
195 	 * the orphan list and set the dtime field.
196 	 */
197 	if (!ext4_handle_has_enough_credits(handle, 3)) {
198 		err = ext4_journal_extend(handle, 3);
199 		if (err > 0)
200 			err = ext4_journal_restart(handle, 3);
201 		if (err != 0) {
202 			ext4_warning(inode->i_sb,
203 				     "couldn't extend journal (err %d)", err);
204 		stop_handle:
205 			ext4_journal_stop(handle);
206 			ext4_orphan_del(NULL, inode);
207 			goto no_delete;
208 		}
209 	}
210 
211 	/*
212 	 * Kill off the orphan record which ext4_truncate created.
213 	 * AKPM: I think this can be inside the above `if'.
214 	 * Note that ext4_orphan_del() has to be able to cope with the
215 	 * deletion of a non-existent orphan - this is because we don't
216 	 * know if ext4_truncate() actually created an orphan record.
217 	 * (Well, we could do this if we need to, but heck - it works)
218 	 */
219 	ext4_orphan_del(handle, inode);
220 	EXT4_I(inode)->i_dtime	= get_seconds();
221 
222 	/*
223 	 * One subtle ordering requirement: if anything has gone wrong
224 	 * (transaction abort, IO errors, whatever), then we can still
225 	 * do these next steps (the fs will already have been marked as
226 	 * having errors), but we can't free the inode if the mark_dirty
227 	 * fails.
228 	 */
229 	if (ext4_mark_inode_dirty(handle, inode))
230 		/* If that failed, just do the required in-core inode clear. */
231 		ext4_clear_inode(inode);
232 	else
233 		ext4_free_inode(handle, inode);
234 	ext4_journal_stop(handle);
235 	return;
236 no_delete:
237 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
238 }
239 
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243 	return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246 
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 		return ext4_ext_calc_metadata_amount(inode, lblock);
255 
256 	return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258 
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264 					int used, int quota_claim)
265 {
266 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 	struct ext4_inode_info *ei = EXT4_I(inode);
268 
269 	spin_lock(&ei->i_block_reservation_lock);
270 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 	if (unlikely(used > ei->i_reserved_data_blocks)) {
272 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 			 "with only %d reserved data blocks\n",
274 			 __func__, inode->i_ino, used,
275 			 ei->i_reserved_data_blocks);
276 		WARN_ON(1);
277 		used = ei->i_reserved_data_blocks;
278 	}
279 
280 	/* Update per-inode reservations */
281 	ei->i_reserved_data_blocks -= used;
282 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 			   used + ei->i_allocated_meta_blocks);
285 	ei->i_allocated_meta_blocks = 0;
286 
287 	if (ei->i_reserved_data_blocks == 0) {
288 		/*
289 		 * We can release all of the reserved metadata blocks
290 		 * only when we have written all of the delayed
291 		 * allocation blocks.
292 		 */
293 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 				   ei->i_reserved_meta_blocks);
295 		ei->i_reserved_meta_blocks = 0;
296 		ei->i_da_metadata_calc_len = 0;
297 	}
298 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299 
300 	/* Update quota subsystem for data blocks */
301 	if (quota_claim)
302 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 	else {
304 		/*
305 		 * We did fallocate with an offset that is already delayed
306 		 * allocated. So on delayed allocated writeback we should
307 		 * not re-claim the quota for fallocated blocks.
308 		 */
309 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310 	}
311 
312 	/*
313 	 * If we have done all the pending block allocations and if
314 	 * there aren't any writers on the inode, we can discard the
315 	 * inode's preallocations.
316 	 */
317 	if ((ei->i_reserved_data_blocks == 0) &&
318 	    (atomic_read(&inode->i_writecount) == 0))
319 		ext4_discard_preallocations(inode);
320 }
321 
322 static int __check_block_validity(struct inode *inode, const char *func,
323 				unsigned int line,
324 				struct ext4_map_blocks *map)
325 {
326 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 				   map->m_len)) {
328 		ext4_error_inode(inode, func, line, map->m_pblk,
329 				 "lblock %lu mapped to illegal pblock "
330 				 "(length %d)", (unsigned long) map->m_lblk,
331 				 map->m_len);
332 		return -EIO;
333 	}
334 	return 0;
335 }
336 
337 #define check_block_validity(inode, map)	\
338 	__check_block_validity((inode), __func__, __LINE__, (map))
339 
340 /*
341  * Return the number of contiguous dirty pages in a given inode
342  * starting at page frame idx.
343  */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 				    unsigned int max_pages)
346 {
347 	struct address_space *mapping = inode->i_mapping;
348 	pgoff_t	index;
349 	struct pagevec pvec;
350 	pgoff_t num = 0;
351 	int i, nr_pages, done = 0;
352 
353 	if (max_pages == 0)
354 		return 0;
355 	pagevec_init(&pvec, 0);
356 	while (!done) {
357 		index = idx;
358 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 					      PAGECACHE_TAG_DIRTY,
360 					      (pgoff_t)PAGEVEC_SIZE);
361 		if (nr_pages == 0)
362 			break;
363 		for (i = 0; i < nr_pages; i++) {
364 			struct page *page = pvec.pages[i];
365 			struct buffer_head *bh, *head;
366 
367 			lock_page(page);
368 			if (unlikely(page->mapping != mapping) ||
369 			    !PageDirty(page) ||
370 			    PageWriteback(page) ||
371 			    page->index != idx) {
372 				done = 1;
373 				unlock_page(page);
374 				break;
375 			}
376 			if (page_has_buffers(page)) {
377 				bh = head = page_buffers(page);
378 				do {
379 					if (!buffer_delay(bh) &&
380 					    !buffer_unwritten(bh))
381 						done = 1;
382 					bh = bh->b_this_page;
383 				} while (!done && (bh != head));
384 			}
385 			unlock_page(page);
386 			if (done)
387 				break;
388 			idx++;
389 			num++;
390 			if (num >= max_pages) {
391 				done = 1;
392 				break;
393 			}
394 		}
395 		pagevec_release(&pvec);
396 	}
397 	return num;
398 }
399 
400 /*
401  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402  */
403 static void set_buffers_da_mapped(struct inode *inode,
404 				   struct ext4_map_blocks *map)
405 {
406 	struct address_space *mapping = inode->i_mapping;
407 	struct pagevec pvec;
408 	int i, nr_pages;
409 	pgoff_t index, end;
410 
411 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 	end = (map->m_lblk + map->m_len - 1) >>
413 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
414 
415 	pagevec_init(&pvec, 0);
416 	while (index <= end) {
417 		nr_pages = pagevec_lookup(&pvec, mapping, index,
418 					  min(end - index + 1,
419 					      (pgoff_t)PAGEVEC_SIZE));
420 		if (nr_pages == 0)
421 			break;
422 		for (i = 0; i < nr_pages; i++) {
423 			struct page *page = pvec.pages[i];
424 			struct buffer_head *bh, *head;
425 
426 			if (unlikely(page->mapping != mapping) ||
427 			    !PageDirty(page))
428 				break;
429 
430 			if (page_has_buffers(page)) {
431 				bh = head = page_buffers(page);
432 				do {
433 					set_buffer_da_mapped(bh);
434 					bh = bh->b_this_page;
435 				} while (bh != head);
436 			}
437 			index++;
438 		}
439 		pagevec_release(&pvec);
440 	}
441 }
442 
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocate.
456  * if create==0 and the blocks are pre-allocated and uninitialized block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 		    struct ext4_map_blocks *map, int flags)
467 {
468 	int retval;
469 
470 	map->m_flags = 0;
471 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 		  (unsigned long) map->m_lblk);
474 	/*
475 	 * Try to see if we can get the block without requesting a new
476 	 * file system block.
477 	 */
478 	down_read((&EXT4_I(inode)->i_data_sem));
479 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
481 					     EXT4_GET_BLOCKS_KEEP_SIZE);
482 	} else {
483 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
484 					     EXT4_GET_BLOCKS_KEEP_SIZE);
485 	}
486 	up_read((&EXT4_I(inode)->i_data_sem));
487 
488 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
489 		int ret = check_block_validity(inode, map);
490 		if (ret != 0)
491 			return ret;
492 	}
493 
494 	/* If it is only a block(s) look up */
495 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
496 		return retval;
497 
498 	/*
499 	 * Returns if the blocks have already allocated
500 	 *
501 	 * Note that if blocks have been preallocated
502 	 * ext4_ext_get_block() returns the create = 0
503 	 * with buffer head unmapped.
504 	 */
505 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
506 		return retval;
507 
508 	/*
509 	 * When we call get_blocks without the create flag, the
510 	 * BH_Unwritten flag could have gotten set if the blocks
511 	 * requested were part of a uninitialized extent.  We need to
512 	 * clear this flag now that we are committed to convert all or
513 	 * part of the uninitialized extent to be an initialized
514 	 * extent.  This is because we need to avoid the combination
515 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 	 * set on the buffer_head.
517 	 */
518 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
519 
520 	/*
521 	 * New blocks allocate and/or writing to uninitialized extent
522 	 * will possibly result in updating i_data, so we take
523 	 * the write lock of i_data_sem, and call get_blocks()
524 	 * with create == 1 flag.
525 	 */
526 	down_write((&EXT4_I(inode)->i_data_sem));
527 
528 	/*
529 	 * if the caller is from delayed allocation writeout path
530 	 * we have already reserved fs blocks for allocation
531 	 * let the underlying get_block() function know to
532 	 * avoid double accounting
533 	 */
534 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
535 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
536 	/*
537 	 * We need to check for EXT4 here because migrate
538 	 * could have changed the inode type in between
539 	 */
540 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
542 	} else {
543 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
544 
545 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
546 			/*
547 			 * We allocated new blocks which will result in
548 			 * i_data's format changing.  Force the migrate
549 			 * to fail by clearing migrate flags
550 			 */
551 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
552 		}
553 
554 		/*
555 		 * Update reserved blocks/metadata blocks after successful
556 		 * block allocation which had been deferred till now. We don't
557 		 * support fallocate for non extent files. So we can update
558 		 * reserve space here.
559 		 */
560 		if ((retval > 0) &&
561 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
562 			ext4_da_update_reserve_space(inode, retval, 1);
563 	}
564 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
565 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
566 
567 		/* If we have successfully mapped the delayed allocated blocks,
568 		 * set the BH_Da_Mapped bit on them. Its important to do this
569 		 * under the protection of i_data_sem.
570 		 */
571 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 			set_buffers_da_mapped(inode, map);
573 	}
574 
575 	up_write((&EXT4_I(inode)->i_data_sem));
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		int ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 	return retval;
582 }
583 
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
586 
587 static int _ext4_get_block(struct inode *inode, sector_t iblock,
588 			   struct buffer_head *bh, int flags)
589 {
590 	handle_t *handle = ext4_journal_current_handle();
591 	struct ext4_map_blocks map;
592 	int ret = 0, started = 0;
593 	int dio_credits;
594 
595 	map.m_lblk = iblock;
596 	map.m_len = bh->b_size >> inode->i_blkbits;
597 
598 	if (flags && !handle) {
599 		/* Direct IO write... */
600 		if (map.m_len > DIO_MAX_BLOCKS)
601 			map.m_len = DIO_MAX_BLOCKS;
602 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
603 		handle = ext4_journal_start(inode, dio_credits);
604 		if (IS_ERR(handle)) {
605 			ret = PTR_ERR(handle);
606 			return ret;
607 		}
608 		started = 1;
609 	}
610 
611 	ret = ext4_map_blocks(handle, inode, &map, flags);
612 	if (ret > 0) {
613 		map_bh(bh, inode->i_sb, map.m_pblk);
614 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
615 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
616 		ret = 0;
617 	}
618 	if (started)
619 		ext4_journal_stop(handle);
620 	return ret;
621 }
622 
623 int ext4_get_block(struct inode *inode, sector_t iblock,
624 		   struct buffer_head *bh, int create)
625 {
626 	return _ext4_get_block(inode, iblock, bh,
627 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
628 }
629 
630 /*
631  * `handle' can be NULL if create is zero
632  */
633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
634 				ext4_lblk_t block, int create, int *errp)
635 {
636 	struct ext4_map_blocks map;
637 	struct buffer_head *bh;
638 	int fatal = 0, err;
639 
640 	J_ASSERT(handle != NULL || create == 0);
641 
642 	map.m_lblk = block;
643 	map.m_len = 1;
644 	err = ext4_map_blocks(handle, inode, &map,
645 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
646 
647 	if (err < 0)
648 		*errp = err;
649 	if (err <= 0)
650 		return NULL;
651 	*errp = 0;
652 
653 	bh = sb_getblk(inode->i_sb, map.m_pblk);
654 	if (!bh) {
655 		*errp = -EIO;
656 		return NULL;
657 	}
658 	if (map.m_flags & EXT4_MAP_NEW) {
659 		J_ASSERT(create != 0);
660 		J_ASSERT(handle != NULL);
661 
662 		/*
663 		 * Now that we do not always journal data, we should
664 		 * keep in mind whether this should always journal the
665 		 * new buffer as metadata.  For now, regular file
666 		 * writes use ext4_get_block instead, so it's not a
667 		 * problem.
668 		 */
669 		lock_buffer(bh);
670 		BUFFER_TRACE(bh, "call get_create_access");
671 		fatal = ext4_journal_get_create_access(handle, bh);
672 		if (!fatal && !buffer_uptodate(bh)) {
673 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
674 			set_buffer_uptodate(bh);
675 		}
676 		unlock_buffer(bh);
677 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
678 		err = ext4_handle_dirty_metadata(handle, inode, bh);
679 		if (!fatal)
680 			fatal = err;
681 	} else {
682 		BUFFER_TRACE(bh, "not a new buffer");
683 	}
684 	if (fatal) {
685 		*errp = fatal;
686 		brelse(bh);
687 		bh = NULL;
688 	}
689 	return bh;
690 }
691 
692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
693 			       ext4_lblk_t block, int create, int *err)
694 {
695 	struct buffer_head *bh;
696 
697 	bh = ext4_getblk(handle, inode, block, create, err);
698 	if (!bh)
699 		return bh;
700 	if (buffer_uptodate(bh))
701 		return bh;
702 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
703 	wait_on_buffer(bh);
704 	if (buffer_uptodate(bh))
705 		return bh;
706 	put_bh(bh);
707 	*err = -EIO;
708 	return NULL;
709 }
710 
711 static int walk_page_buffers(handle_t *handle,
712 			     struct buffer_head *head,
713 			     unsigned from,
714 			     unsigned to,
715 			     int *partial,
716 			     int (*fn)(handle_t *handle,
717 				       struct buffer_head *bh))
718 {
719 	struct buffer_head *bh;
720 	unsigned block_start, block_end;
721 	unsigned blocksize = head->b_size;
722 	int err, ret = 0;
723 	struct buffer_head *next;
724 
725 	for (bh = head, block_start = 0;
726 	     ret == 0 && (bh != head || !block_start);
727 	     block_start = block_end, bh = next) {
728 		next = bh->b_this_page;
729 		block_end = block_start + blocksize;
730 		if (block_end <= from || block_start >= to) {
731 			if (partial && !buffer_uptodate(bh))
732 				*partial = 1;
733 			continue;
734 		}
735 		err = (*fn)(handle, bh);
736 		if (!ret)
737 			ret = err;
738 	}
739 	return ret;
740 }
741 
742 /*
743  * To preserve ordering, it is essential that the hole instantiation and
744  * the data write be encapsulated in a single transaction.  We cannot
745  * close off a transaction and start a new one between the ext4_get_block()
746  * and the commit_write().  So doing the jbd2_journal_start at the start of
747  * prepare_write() is the right place.
748  *
749  * Also, this function can nest inside ext4_writepage() ->
750  * block_write_full_page(). In that case, we *know* that ext4_writepage()
751  * has generated enough buffer credits to do the whole page.  So we won't
752  * block on the journal in that case, which is good, because the caller may
753  * be PF_MEMALLOC.
754  *
755  * By accident, ext4 can be reentered when a transaction is open via
756  * quota file writes.  If we were to commit the transaction while thus
757  * reentered, there can be a deadlock - we would be holding a quota
758  * lock, and the commit would never complete if another thread had a
759  * transaction open and was blocking on the quota lock - a ranking
760  * violation.
761  *
762  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763  * will _not_ run commit under these circumstances because handle->h_ref
764  * is elevated.  We'll still have enough credits for the tiny quotafile
765  * write.
766  */
767 static int do_journal_get_write_access(handle_t *handle,
768 				       struct buffer_head *bh)
769 {
770 	int dirty = buffer_dirty(bh);
771 	int ret;
772 
773 	if (!buffer_mapped(bh) || buffer_freed(bh))
774 		return 0;
775 	/*
776 	 * __block_write_begin() could have dirtied some buffers. Clean
777 	 * the dirty bit as jbd2_journal_get_write_access() could complain
778 	 * otherwise about fs integrity issues. Setting of the dirty bit
779 	 * by __block_write_begin() isn't a real problem here as we clear
780 	 * the bit before releasing a page lock and thus writeback cannot
781 	 * ever write the buffer.
782 	 */
783 	if (dirty)
784 		clear_buffer_dirty(bh);
785 	ret = ext4_journal_get_write_access(handle, bh);
786 	if (!ret && dirty)
787 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
788 	return ret;
789 }
790 
791 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
792 		   struct buffer_head *bh_result, int create);
793 static int ext4_write_begin(struct file *file, struct address_space *mapping,
794 			    loff_t pos, unsigned len, unsigned flags,
795 			    struct page **pagep, void **fsdata)
796 {
797 	struct inode *inode = mapping->host;
798 	int ret, needed_blocks;
799 	handle_t *handle;
800 	int retries = 0;
801 	struct page *page;
802 	pgoff_t index;
803 	unsigned from, to;
804 
805 	trace_ext4_write_begin(inode, pos, len, flags);
806 	/*
807 	 * Reserve one block more for addition to orphan list in case
808 	 * we allocate blocks but write fails for some reason
809 	 */
810 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
811 	index = pos >> PAGE_CACHE_SHIFT;
812 	from = pos & (PAGE_CACHE_SIZE - 1);
813 	to = from + len;
814 
815 retry:
816 	handle = ext4_journal_start(inode, needed_blocks);
817 	if (IS_ERR(handle)) {
818 		ret = PTR_ERR(handle);
819 		goto out;
820 	}
821 
822 	/* We cannot recurse into the filesystem as the transaction is already
823 	 * started */
824 	flags |= AOP_FLAG_NOFS;
825 
826 	page = grab_cache_page_write_begin(mapping, index, flags);
827 	if (!page) {
828 		ext4_journal_stop(handle);
829 		ret = -ENOMEM;
830 		goto out;
831 	}
832 	*pagep = page;
833 
834 	if (ext4_should_dioread_nolock(inode))
835 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
836 	else
837 		ret = __block_write_begin(page, pos, len, ext4_get_block);
838 
839 	if (!ret && ext4_should_journal_data(inode)) {
840 		ret = walk_page_buffers(handle, page_buffers(page),
841 				from, to, NULL, do_journal_get_write_access);
842 	}
843 
844 	if (ret) {
845 		unlock_page(page);
846 		page_cache_release(page);
847 		/*
848 		 * __block_write_begin may have instantiated a few blocks
849 		 * outside i_size.  Trim these off again. Don't need
850 		 * i_size_read because we hold i_mutex.
851 		 *
852 		 * Add inode to orphan list in case we crash before
853 		 * truncate finishes
854 		 */
855 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
856 			ext4_orphan_add(handle, inode);
857 
858 		ext4_journal_stop(handle);
859 		if (pos + len > inode->i_size) {
860 			ext4_truncate_failed_write(inode);
861 			/*
862 			 * If truncate failed early the inode might
863 			 * still be on the orphan list; we need to
864 			 * make sure the inode is removed from the
865 			 * orphan list in that case.
866 			 */
867 			if (inode->i_nlink)
868 				ext4_orphan_del(NULL, inode);
869 		}
870 	}
871 
872 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
873 		goto retry;
874 out:
875 	return ret;
876 }
877 
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
880 {
881 	if (!buffer_mapped(bh) || buffer_freed(bh))
882 		return 0;
883 	set_buffer_uptodate(bh);
884 	return ext4_handle_dirty_metadata(handle, NULL, bh);
885 }
886 
887 static int ext4_generic_write_end(struct file *file,
888 				  struct address_space *mapping,
889 				  loff_t pos, unsigned len, unsigned copied,
890 				  struct page *page, void *fsdata)
891 {
892 	int i_size_changed = 0;
893 	struct inode *inode = mapping->host;
894 	handle_t *handle = ext4_journal_current_handle();
895 
896 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
897 
898 	/*
899 	 * No need to use i_size_read() here, the i_size
900 	 * cannot change under us because we hold i_mutex.
901 	 *
902 	 * But it's important to update i_size while still holding page lock:
903 	 * page writeout could otherwise come in and zero beyond i_size.
904 	 */
905 	if (pos + copied > inode->i_size) {
906 		i_size_write(inode, pos + copied);
907 		i_size_changed = 1;
908 	}
909 
910 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
911 		/* We need to mark inode dirty even if
912 		 * new_i_size is less that inode->i_size
913 		 * bu greater than i_disksize.(hint delalloc)
914 		 */
915 		ext4_update_i_disksize(inode, (pos + copied));
916 		i_size_changed = 1;
917 	}
918 	unlock_page(page);
919 	page_cache_release(page);
920 
921 	/*
922 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 	 * makes the holding time of page lock longer. Second, it forces lock
924 	 * ordering of page lock and transaction start for journaling
925 	 * filesystems.
926 	 */
927 	if (i_size_changed)
928 		ext4_mark_inode_dirty(handle, inode);
929 
930 	return copied;
931 }
932 
933 /*
934  * We need to pick up the new inode size which generic_commit_write gave us
935  * `file' can be NULL - eg, when called from page_symlink().
936  *
937  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
938  * buffers are managed internally.
939  */
940 static int ext4_ordered_write_end(struct file *file,
941 				  struct address_space *mapping,
942 				  loff_t pos, unsigned len, unsigned copied,
943 				  struct page *page, void *fsdata)
944 {
945 	handle_t *handle = ext4_journal_current_handle();
946 	struct inode *inode = mapping->host;
947 	int ret = 0, ret2;
948 
949 	trace_ext4_ordered_write_end(inode, pos, len, copied);
950 	ret = ext4_jbd2_file_inode(handle, inode);
951 
952 	if (ret == 0) {
953 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
954 							page, fsdata);
955 		copied = ret2;
956 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
957 			/* if we have allocated more blocks and copied
958 			 * less. We will have blocks allocated outside
959 			 * inode->i_size. So truncate them
960 			 */
961 			ext4_orphan_add(handle, inode);
962 		if (ret2 < 0)
963 			ret = ret2;
964 	} else {
965 		unlock_page(page);
966 		page_cache_release(page);
967 	}
968 
969 	ret2 = ext4_journal_stop(handle);
970 	if (!ret)
971 		ret = ret2;
972 
973 	if (pos + len > inode->i_size) {
974 		ext4_truncate_failed_write(inode);
975 		/*
976 		 * If truncate failed early the inode might still be
977 		 * on the orphan list; we need to make sure the inode
978 		 * is removed from the orphan list in that case.
979 		 */
980 		if (inode->i_nlink)
981 			ext4_orphan_del(NULL, inode);
982 	}
983 
984 
985 	return ret ? ret : copied;
986 }
987 
988 static int ext4_writeback_write_end(struct file *file,
989 				    struct address_space *mapping,
990 				    loff_t pos, unsigned len, unsigned copied,
991 				    struct page *page, void *fsdata)
992 {
993 	handle_t *handle = ext4_journal_current_handle();
994 	struct inode *inode = mapping->host;
995 	int ret = 0, ret2;
996 
997 	trace_ext4_writeback_write_end(inode, pos, len, copied);
998 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
999 							page, fsdata);
1000 	copied = ret2;
1001 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002 		/* if we have allocated more blocks and copied
1003 		 * less. We will have blocks allocated outside
1004 		 * inode->i_size. So truncate them
1005 		 */
1006 		ext4_orphan_add(handle, inode);
1007 
1008 	if (ret2 < 0)
1009 		ret = ret2;
1010 
1011 	ret2 = ext4_journal_stop(handle);
1012 	if (!ret)
1013 		ret = ret2;
1014 
1015 	if (pos + len > inode->i_size) {
1016 		ext4_truncate_failed_write(inode);
1017 		/*
1018 		 * If truncate failed early the inode might still be
1019 		 * on the orphan list; we need to make sure the inode
1020 		 * is removed from the orphan list in that case.
1021 		 */
1022 		if (inode->i_nlink)
1023 			ext4_orphan_del(NULL, inode);
1024 	}
1025 
1026 	return ret ? ret : copied;
1027 }
1028 
1029 static int ext4_journalled_write_end(struct file *file,
1030 				     struct address_space *mapping,
1031 				     loff_t pos, unsigned len, unsigned copied,
1032 				     struct page *page, void *fsdata)
1033 {
1034 	handle_t *handle = ext4_journal_current_handle();
1035 	struct inode *inode = mapping->host;
1036 	int ret = 0, ret2;
1037 	int partial = 0;
1038 	unsigned from, to;
1039 	loff_t new_i_size;
1040 
1041 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1042 	from = pos & (PAGE_CACHE_SIZE - 1);
1043 	to = from + len;
1044 
1045 	BUG_ON(!ext4_handle_valid(handle));
1046 
1047 	if (copied < len) {
1048 		if (!PageUptodate(page))
1049 			copied = 0;
1050 		page_zero_new_buffers(page, from+copied, to);
1051 	}
1052 
1053 	ret = walk_page_buffers(handle, page_buffers(page), from,
1054 				to, &partial, write_end_fn);
1055 	if (!partial)
1056 		SetPageUptodate(page);
1057 	new_i_size = pos + copied;
1058 	if (new_i_size > inode->i_size)
1059 		i_size_write(inode, pos+copied);
1060 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1061 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1062 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1063 		ext4_update_i_disksize(inode, new_i_size);
1064 		ret2 = ext4_mark_inode_dirty(handle, inode);
1065 		if (!ret)
1066 			ret = ret2;
1067 	}
1068 
1069 	unlock_page(page);
1070 	page_cache_release(page);
1071 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072 		/* if we have allocated more blocks and copied
1073 		 * less. We will have blocks allocated outside
1074 		 * inode->i_size. So truncate them
1075 		 */
1076 		ext4_orphan_add(handle, inode);
1077 
1078 	ret2 = ext4_journal_stop(handle);
1079 	if (!ret)
1080 		ret = ret2;
1081 	if (pos + len > inode->i_size) {
1082 		ext4_truncate_failed_write(inode);
1083 		/*
1084 		 * If truncate failed early the inode might still be
1085 		 * on the orphan list; we need to make sure the inode
1086 		 * is removed from the orphan list in that case.
1087 		 */
1088 		if (inode->i_nlink)
1089 			ext4_orphan_del(NULL, inode);
1090 	}
1091 
1092 	return ret ? ret : copied;
1093 }
1094 
1095 /*
1096  * Reserve a single cluster located at lblock
1097  */
1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1099 {
1100 	int retries = 0;
1101 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102 	struct ext4_inode_info *ei = EXT4_I(inode);
1103 	unsigned int md_needed;
1104 	int ret;
1105 
1106 	/*
1107 	 * recalculate the amount of metadata blocks to reserve
1108 	 * in order to allocate nrblocks
1109 	 * worse case is one extent per block
1110 	 */
1111 repeat:
1112 	spin_lock(&ei->i_block_reservation_lock);
1113 	md_needed = EXT4_NUM_B2C(sbi,
1114 				 ext4_calc_metadata_amount(inode, lblock));
1115 	trace_ext4_da_reserve_space(inode, md_needed);
1116 	spin_unlock(&ei->i_block_reservation_lock);
1117 
1118 	/*
1119 	 * We will charge metadata quota at writeout time; this saves
1120 	 * us from metadata over-estimation, though we may go over by
1121 	 * a small amount in the end.  Here we just reserve for data.
1122 	 */
1123 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124 	if (ret)
1125 		return ret;
1126 	/*
1127 	 * We do still charge estimated metadata to the sb though;
1128 	 * we cannot afford to run out of free blocks.
1129 	 */
1130 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1131 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1132 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1133 			yield();
1134 			goto repeat;
1135 		}
1136 		return -ENOSPC;
1137 	}
1138 	spin_lock(&ei->i_block_reservation_lock);
1139 	ei->i_reserved_data_blocks++;
1140 	ei->i_reserved_meta_blocks += md_needed;
1141 	spin_unlock(&ei->i_block_reservation_lock);
1142 
1143 	return 0;       /* success */
1144 }
1145 
1146 static void ext4_da_release_space(struct inode *inode, int to_free)
1147 {
1148 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149 	struct ext4_inode_info *ei = EXT4_I(inode);
1150 
1151 	if (!to_free)
1152 		return;		/* Nothing to release, exit */
1153 
1154 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1155 
1156 	trace_ext4_da_release_space(inode, to_free);
1157 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1158 		/*
1159 		 * if there aren't enough reserved blocks, then the
1160 		 * counter is messed up somewhere.  Since this
1161 		 * function is called from invalidate page, it's
1162 		 * harmless to return without any action.
1163 		 */
1164 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1165 			 "ino %lu, to_free %d with only %d reserved "
1166 			 "data blocks\n", inode->i_ino, to_free,
1167 			 ei->i_reserved_data_blocks);
1168 		WARN_ON(1);
1169 		to_free = ei->i_reserved_data_blocks;
1170 	}
1171 	ei->i_reserved_data_blocks -= to_free;
1172 
1173 	if (ei->i_reserved_data_blocks == 0) {
1174 		/*
1175 		 * We can release all of the reserved metadata blocks
1176 		 * only when we have written all of the delayed
1177 		 * allocation blocks.
1178 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1180 		 */
1181 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1182 				   ei->i_reserved_meta_blocks);
1183 		ei->i_reserved_meta_blocks = 0;
1184 		ei->i_da_metadata_calc_len = 0;
1185 	}
1186 
1187 	/* update fs dirty data blocks counter */
1188 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1189 
1190 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1191 
1192 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1193 }
1194 
1195 static void ext4_da_page_release_reservation(struct page *page,
1196 					     unsigned long offset)
1197 {
1198 	int to_release = 0;
1199 	struct buffer_head *head, *bh;
1200 	unsigned int curr_off = 0;
1201 	struct inode *inode = page->mapping->host;
1202 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203 	int num_clusters;
1204 
1205 	head = page_buffers(page);
1206 	bh = head;
1207 	do {
1208 		unsigned int next_off = curr_off + bh->b_size;
1209 
1210 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1211 			to_release++;
1212 			clear_buffer_delay(bh);
1213 			clear_buffer_da_mapped(bh);
1214 		}
1215 		curr_off = next_off;
1216 	} while ((bh = bh->b_this_page) != head);
1217 
1218 	/* If we have released all the blocks belonging to a cluster, then we
1219 	 * need to release the reserved space for that cluster. */
1220 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1221 	while (num_clusters > 0) {
1222 		ext4_fsblk_t lblk;
1223 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1224 			((num_clusters - 1) << sbi->s_cluster_bits);
1225 		if (sbi->s_cluster_ratio == 1 ||
1226 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1227 			ext4_da_release_space(inode, 1);
1228 
1229 		num_clusters--;
1230 	}
1231 }
1232 
1233 /*
1234  * Delayed allocation stuff
1235  */
1236 
1237 /*
1238  * mpage_da_submit_io - walks through extent of pages and try to write
1239  * them with writepage() call back
1240  *
1241  * @mpd->inode: inode
1242  * @mpd->first_page: first page of the extent
1243  * @mpd->next_page: page after the last page of the extent
1244  *
1245  * By the time mpage_da_submit_io() is called we expect all blocks
1246  * to be allocated. this may be wrong if allocation failed.
1247  *
1248  * As pages are already locked by write_cache_pages(), we can't use it
1249  */
1250 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1251 			      struct ext4_map_blocks *map)
1252 {
1253 	struct pagevec pvec;
1254 	unsigned long index, end;
1255 	int ret = 0, err, nr_pages, i;
1256 	struct inode *inode = mpd->inode;
1257 	struct address_space *mapping = inode->i_mapping;
1258 	loff_t size = i_size_read(inode);
1259 	unsigned int len, block_start;
1260 	struct buffer_head *bh, *page_bufs = NULL;
1261 	int journal_data = ext4_should_journal_data(inode);
1262 	sector_t pblock = 0, cur_logical = 0;
1263 	struct ext4_io_submit io_submit;
1264 
1265 	BUG_ON(mpd->next_page <= mpd->first_page);
1266 	memset(&io_submit, 0, sizeof(io_submit));
1267 	/*
1268 	 * We need to start from the first_page to the next_page - 1
1269 	 * to make sure we also write the mapped dirty buffer_heads.
1270 	 * If we look at mpd->b_blocknr we would only be looking
1271 	 * at the currently mapped buffer_heads.
1272 	 */
1273 	index = mpd->first_page;
1274 	end = mpd->next_page - 1;
1275 
1276 	pagevec_init(&pvec, 0);
1277 	while (index <= end) {
1278 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1279 		if (nr_pages == 0)
1280 			break;
1281 		for (i = 0; i < nr_pages; i++) {
1282 			int commit_write = 0, skip_page = 0;
1283 			struct page *page = pvec.pages[i];
1284 
1285 			index = page->index;
1286 			if (index > end)
1287 				break;
1288 
1289 			if (index == size >> PAGE_CACHE_SHIFT)
1290 				len = size & ~PAGE_CACHE_MASK;
1291 			else
1292 				len = PAGE_CACHE_SIZE;
1293 			if (map) {
1294 				cur_logical = index << (PAGE_CACHE_SHIFT -
1295 							inode->i_blkbits);
1296 				pblock = map->m_pblk + (cur_logical -
1297 							map->m_lblk);
1298 			}
1299 			index++;
1300 
1301 			BUG_ON(!PageLocked(page));
1302 			BUG_ON(PageWriteback(page));
1303 
1304 			/*
1305 			 * If the page does not have buffers (for
1306 			 * whatever reason), try to create them using
1307 			 * __block_write_begin.  If this fails,
1308 			 * skip the page and move on.
1309 			 */
1310 			if (!page_has_buffers(page)) {
1311 				if (__block_write_begin(page, 0, len,
1312 						noalloc_get_block_write)) {
1313 				skip_page:
1314 					unlock_page(page);
1315 					continue;
1316 				}
1317 				commit_write = 1;
1318 			}
1319 
1320 			bh = page_bufs = page_buffers(page);
1321 			block_start = 0;
1322 			do {
1323 				if (!bh)
1324 					goto skip_page;
1325 				if (map && (cur_logical >= map->m_lblk) &&
1326 				    (cur_logical <= (map->m_lblk +
1327 						     (map->m_len - 1)))) {
1328 					if (buffer_delay(bh)) {
1329 						clear_buffer_delay(bh);
1330 						bh->b_blocknr = pblock;
1331 					}
1332 					if (buffer_da_mapped(bh))
1333 						clear_buffer_da_mapped(bh);
1334 					if (buffer_unwritten(bh) ||
1335 					    buffer_mapped(bh))
1336 						BUG_ON(bh->b_blocknr != pblock);
1337 					if (map->m_flags & EXT4_MAP_UNINIT)
1338 						set_buffer_uninit(bh);
1339 					clear_buffer_unwritten(bh);
1340 				}
1341 
1342 				/*
1343 				 * skip page if block allocation undone and
1344 				 * block is dirty
1345 				 */
1346 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1347 					skip_page = 1;
1348 				bh = bh->b_this_page;
1349 				block_start += bh->b_size;
1350 				cur_logical++;
1351 				pblock++;
1352 			} while (bh != page_bufs);
1353 
1354 			if (skip_page)
1355 				goto skip_page;
1356 
1357 			if (commit_write)
1358 				/* mark the buffer_heads as dirty & uptodate */
1359 				block_commit_write(page, 0, len);
1360 
1361 			clear_page_dirty_for_io(page);
1362 			/*
1363 			 * Delalloc doesn't support data journalling,
1364 			 * but eventually maybe we'll lift this
1365 			 * restriction.
1366 			 */
1367 			if (unlikely(journal_data && PageChecked(page)))
1368 				err = __ext4_journalled_writepage(page, len);
1369 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1370 				err = ext4_bio_write_page(&io_submit, page,
1371 							  len, mpd->wbc);
1372 			else if (buffer_uninit(page_bufs)) {
1373 				ext4_set_bh_endio(page_bufs, inode);
1374 				err = block_write_full_page_endio(page,
1375 					noalloc_get_block_write,
1376 					mpd->wbc, ext4_end_io_buffer_write);
1377 			} else
1378 				err = block_write_full_page(page,
1379 					noalloc_get_block_write, mpd->wbc);
1380 
1381 			if (!err)
1382 				mpd->pages_written++;
1383 			/*
1384 			 * In error case, we have to continue because
1385 			 * remaining pages are still locked
1386 			 */
1387 			if (ret == 0)
1388 				ret = err;
1389 		}
1390 		pagevec_release(&pvec);
1391 	}
1392 	ext4_io_submit(&io_submit);
1393 	return ret;
1394 }
1395 
1396 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1397 {
1398 	int nr_pages, i;
1399 	pgoff_t index, end;
1400 	struct pagevec pvec;
1401 	struct inode *inode = mpd->inode;
1402 	struct address_space *mapping = inode->i_mapping;
1403 
1404 	index = mpd->first_page;
1405 	end   = mpd->next_page - 1;
1406 	while (index <= end) {
1407 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1408 		if (nr_pages == 0)
1409 			break;
1410 		for (i = 0; i < nr_pages; i++) {
1411 			struct page *page = pvec.pages[i];
1412 			if (page->index > end)
1413 				break;
1414 			BUG_ON(!PageLocked(page));
1415 			BUG_ON(PageWriteback(page));
1416 			block_invalidatepage(page, 0);
1417 			ClearPageUptodate(page);
1418 			unlock_page(page);
1419 		}
1420 		index = pvec.pages[nr_pages - 1]->index + 1;
1421 		pagevec_release(&pvec);
1422 	}
1423 	return;
1424 }
1425 
1426 static void ext4_print_free_blocks(struct inode *inode)
1427 {
1428 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1429 	printk(KERN_CRIT "Total free blocks count %lld\n",
1430 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1431 			ext4_count_free_clusters(inode->i_sb)));
1432 	printk(KERN_CRIT "Free/Dirty block details\n");
1433 	printk(KERN_CRIT "free_blocks=%lld\n",
1434 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1435 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1436 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1437 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1438 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1439 	printk(KERN_CRIT "Block reservation details\n");
1440 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1441 	       EXT4_I(inode)->i_reserved_data_blocks);
1442 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1443 	       EXT4_I(inode)->i_reserved_meta_blocks);
1444 	return;
1445 }
1446 
1447 /*
1448  * mpage_da_map_and_submit - go through given space, map them
1449  *       if necessary, and then submit them for I/O
1450  *
1451  * @mpd - bh describing space
1452  *
1453  * The function skips space we know is already mapped to disk blocks.
1454  *
1455  */
1456 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1457 {
1458 	int err, blks, get_blocks_flags;
1459 	struct ext4_map_blocks map, *mapp = NULL;
1460 	sector_t next = mpd->b_blocknr;
1461 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1462 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1463 	handle_t *handle = NULL;
1464 
1465 	/*
1466 	 * If the blocks are mapped already, or we couldn't accumulate
1467 	 * any blocks, then proceed immediately to the submission stage.
1468 	 */
1469 	if ((mpd->b_size == 0) ||
1470 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1471 	     !(mpd->b_state & (1 << BH_Delay)) &&
1472 	     !(mpd->b_state & (1 << BH_Unwritten))))
1473 		goto submit_io;
1474 
1475 	handle = ext4_journal_current_handle();
1476 	BUG_ON(!handle);
1477 
1478 	/*
1479 	 * Call ext4_map_blocks() to allocate any delayed allocation
1480 	 * blocks, or to convert an uninitialized extent to be
1481 	 * initialized (in the case where we have written into
1482 	 * one or more preallocated blocks).
1483 	 *
1484 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1485 	 * indicate that we are on the delayed allocation path.  This
1486 	 * affects functions in many different parts of the allocation
1487 	 * call path.  This flag exists primarily because we don't
1488 	 * want to change *many* call functions, so ext4_map_blocks()
1489 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1490 	 * inode's allocation semaphore is taken.
1491 	 *
1492 	 * If the blocks in questions were delalloc blocks, set
1493 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1494 	 * variables are updated after the blocks have been allocated.
1495 	 */
1496 	map.m_lblk = next;
1497 	map.m_len = max_blocks;
1498 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1499 	if (ext4_should_dioread_nolock(mpd->inode))
1500 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1501 	if (mpd->b_state & (1 << BH_Delay))
1502 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1503 
1504 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1505 	if (blks < 0) {
1506 		struct super_block *sb = mpd->inode->i_sb;
1507 
1508 		err = blks;
1509 		/*
1510 		 * If get block returns EAGAIN or ENOSPC and there
1511 		 * appears to be free blocks we will just let
1512 		 * mpage_da_submit_io() unlock all of the pages.
1513 		 */
1514 		if (err == -EAGAIN)
1515 			goto submit_io;
1516 
1517 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1518 			mpd->retval = err;
1519 			goto submit_io;
1520 		}
1521 
1522 		/*
1523 		 * get block failure will cause us to loop in
1524 		 * writepages, because a_ops->writepage won't be able
1525 		 * to make progress. The page will be redirtied by
1526 		 * writepage and writepages will again try to write
1527 		 * the same.
1528 		 */
1529 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1530 			ext4_msg(sb, KERN_CRIT,
1531 				 "delayed block allocation failed for inode %lu "
1532 				 "at logical offset %llu with max blocks %zd "
1533 				 "with error %d", mpd->inode->i_ino,
1534 				 (unsigned long long) next,
1535 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1536 			ext4_msg(sb, KERN_CRIT,
1537 				"This should not happen!! Data will be lost\n");
1538 			if (err == -ENOSPC)
1539 				ext4_print_free_blocks(mpd->inode);
1540 		}
1541 		/* invalidate all the pages */
1542 		ext4_da_block_invalidatepages(mpd);
1543 
1544 		/* Mark this page range as having been completed */
1545 		mpd->io_done = 1;
1546 		return;
1547 	}
1548 	BUG_ON(blks == 0);
1549 
1550 	mapp = &map;
1551 	if (map.m_flags & EXT4_MAP_NEW) {
1552 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1553 		int i;
1554 
1555 		for (i = 0; i < map.m_len; i++)
1556 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1557 
1558 		if (ext4_should_order_data(mpd->inode)) {
1559 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1560 			if (err) {
1561 				/* Only if the journal is aborted */
1562 				mpd->retval = err;
1563 				goto submit_io;
1564 			}
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Update on-disk size along with block allocation.
1570 	 */
1571 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1572 	if (disksize > i_size_read(mpd->inode))
1573 		disksize = i_size_read(mpd->inode);
1574 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1575 		ext4_update_i_disksize(mpd->inode, disksize);
1576 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1577 		if (err)
1578 			ext4_error(mpd->inode->i_sb,
1579 				   "Failed to mark inode %lu dirty",
1580 				   mpd->inode->i_ino);
1581 	}
1582 
1583 submit_io:
1584 	mpage_da_submit_io(mpd, mapp);
1585 	mpd->io_done = 1;
1586 }
1587 
1588 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1589 		(1 << BH_Delay) | (1 << BH_Unwritten))
1590 
1591 /*
1592  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1593  *
1594  * @mpd->lbh - extent of blocks
1595  * @logical - logical number of the block in the file
1596  * @bh - bh of the block (used to access block's state)
1597  *
1598  * the function is used to collect contig. blocks in same state
1599  */
1600 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1601 				   sector_t logical, size_t b_size,
1602 				   unsigned long b_state)
1603 {
1604 	sector_t next;
1605 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1606 
1607 	/*
1608 	 * XXX Don't go larger than mballoc is willing to allocate
1609 	 * This is a stopgap solution.  We eventually need to fold
1610 	 * mpage_da_submit_io() into this function and then call
1611 	 * ext4_map_blocks() multiple times in a loop
1612 	 */
1613 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1614 		goto flush_it;
1615 
1616 	/* check if thereserved journal credits might overflow */
1617 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1618 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1619 			/*
1620 			 * With non-extent format we are limited by the journal
1621 			 * credit available.  Total credit needed to insert
1622 			 * nrblocks contiguous blocks is dependent on the
1623 			 * nrblocks.  So limit nrblocks.
1624 			 */
1625 			goto flush_it;
1626 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1627 				EXT4_MAX_TRANS_DATA) {
1628 			/*
1629 			 * Adding the new buffer_head would make it cross the
1630 			 * allowed limit for which we have journal credit
1631 			 * reserved. So limit the new bh->b_size
1632 			 */
1633 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1634 						mpd->inode->i_blkbits;
1635 			/* we will do mpage_da_submit_io in the next loop */
1636 		}
1637 	}
1638 	/*
1639 	 * First block in the extent
1640 	 */
1641 	if (mpd->b_size == 0) {
1642 		mpd->b_blocknr = logical;
1643 		mpd->b_size = b_size;
1644 		mpd->b_state = b_state & BH_FLAGS;
1645 		return;
1646 	}
1647 
1648 	next = mpd->b_blocknr + nrblocks;
1649 	/*
1650 	 * Can we merge the block to our big extent?
1651 	 */
1652 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1653 		mpd->b_size += b_size;
1654 		return;
1655 	}
1656 
1657 flush_it:
1658 	/*
1659 	 * We couldn't merge the block to our extent, so we
1660 	 * need to flush current  extent and start new one
1661 	 */
1662 	mpage_da_map_and_submit(mpd);
1663 	return;
1664 }
1665 
1666 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1667 {
1668 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1669 }
1670 
1671 /*
1672  * This function is grabs code from the very beginning of
1673  * ext4_map_blocks, but assumes that the caller is from delayed write
1674  * time. This function looks up the requested blocks and sets the
1675  * buffer delay bit under the protection of i_data_sem.
1676  */
1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1678 			      struct ext4_map_blocks *map,
1679 			      struct buffer_head *bh)
1680 {
1681 	int retval;
1682 	sector_t invalid_block = ~((sector_t) 0xffff);
1683 
1684 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1685 		invalid_block = ~0;
1686 
1687 	map->m_flags = 0;
1688 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1689 		  "logical block %lu\n", inode->i_ino, map->m_len,
1690 		  (unsigned long) map->m_lblk);
1691 	/*
1692 	 * Try to see if we can get the block without requesting a new
1693 	 * file system block.
1694 	 */
1695 	down_read((&EXT4_I(inode)->i_data_sem));
1696 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1697 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1698 	else
1699 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1700 
1701 	if (retval == 0) {
1702 		/*
1703 		 * XXX: __block_prepare_write() unmaps passed block,
1704 		 * is it OK?
1705 		 */
1706 		/* If the block was allocated from previously allocated cluster,
1707 		 * then we dont need to reserve it again. */
1708 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1709 			retval = ext4_da_reserve_space(inode, iblock);
1710 			if (retval)
1711 				/* not enough space to reserve */
1712 				goto out_unlock;
1713 		}
1714 
1715 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1716 		 * and it should not appear on the bh->b_state.
1717 		 */
1718 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1719 
1720 		map_bh(bh, inode->i_sb, invalid_block);
1721 		set_buffer_new(bh);
1722 		set_buffer_delay(bh);
1723 	}
1724 
1725 out_unlock:
1726 	up_read((&EXT4_I(inode)->i_data_sem));
1727 
1728 	return retval;
1729 }
1730 
1731 /*
1732  * This is a special get_blocks_t callback which is used by
1733  * ext4_da_write_begin().  It will either return mapped block or
1734  * reserve space for a single block.
1735  *
1736  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1737  * We also have b_blocknr = -1 and b_bdev initialized properly
1738  *
1739  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1740  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1741  * initialized properly.
1742  */
1743 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1744 				  struct buffer_head *bh, int create)
1745 {
1746 	struct ext4_map_blocks map;
1747 	int ret = 0;
1748 
1749 	BUG_ON(create == 0);
1750 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1751 
1752 	map.m_lblk = iblock;
1753 	map.m_len = 1;
1754 
1755 	/*
1756 	 * first, we need to know whether the block is allocated already
1757 	 * preallocated blocks are unmapped but should treated
1758 	 * the same as allocated blocks.
1759 	 */
1760 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1761 	if (ret <= 0)
1762 		return ret;
1763 
1764 	map_bh(bh, inode->i_sb, map.m_pblk);
1765 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1766 
1767 	if (buffer_unwritten(bh)) {
1768 		/* A delayed write to unwritten bh should be marked
1769 		 * new and mapped.  Mapped ensures that we don't do
1770 		 * get_block multiple times when we write to the same
1771 		 * offset and new ensures that we do proper zero out
1772 		 * for partial write.
1773 		 */
1774 		set_buffer_new(bh);
1775 		set_buffer_mapped(bh);
1776 	}
1777 	return 0;
1778 }
1779 
1780 /*
1781  * This function is used as a standard get_block_t calback function
1782  * when there is no desire to allocate any blocks.  It is used as a
1783  * callback function for block_write_begin() and block_write_full_page().
1784  * These functions should only try to map a single block at a time.
1785  *
1786  * Since this function doesn't do block allocations even if the caller
1787  * requests it by passing in create=1, it is critically important that
1788  * any caller checks to make sure that any buffer heads are returned
1789  * by this function are either all already mapped or marked for
1790  * delayed allocation before calling  block_write_full_page().  Otherwise,
1791  * b_blocknr could be left unitialized, and the page write functions will
1792  * be taken by surprise.
1793  */
1794 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1795 				   struct buffer_head *bh_result, int create)
1796 {
1797 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1798 	return _ext4_get_block(inode, iblock, bh_result, 0);
1799 }
1800 
1801 static int bget_one(handle_t *handle, struct buffer_head *bh)
1802 {
1803 	get_bh(bh);
1804 	return 0;
1805 }
1806 
1807 static int bput_one(handle_t *handle, struct buffer_head *bh)
1808 {
1809 	put_bh(bh);
1810 	return 0;
1811 }
1812 
1813 static int __ext4_journalled_writepage(struct page *page,
1814 				       unsigned int len)
1815 {
1816 	struct address_space *mapping = page->mapping;
1817 	struct inode *inode = mapping->host;
1818 	struct buffer_head *page_bufs;
1819 	handle_t *handle = NULL;
1820 	int ret = 0;
1821 	int err;
1822 
1823 	ClearPageChecked(page);
1824 	page_bufs = page_buffers(page);
1825 	BUG_ON(!page_bufs);
1826 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1827 	/* As soon as we unlock the page, it can go away, but we have
1828 	 * references to buffers so we are safe */
1829 	unlock_page(page);
1830 
1831 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1832 	if (IS_ERR(handle)) {
1833 		ret = PTR_ERR(handle);
1834 		goto out;
1835 	}
1836 
1837 	BUG_ON(!ext4_handle_valid(handle));
1838 
1839 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1840 				do_journal_get_write_access);
1841 
1842 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1843 				write_end_fn);
1844 	if (ret == 0)
1845 		ret = err;
1846 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1847 	err = ext4_journal_stop(handle);
1848 	if (!ret)
1849 		ret = err;
1850 
1851 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1852 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1853 out:
1854 	return ret;
1855 }
1856 
1857 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1858 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1859 
1860 /*
1861  * Note that we don't need to start a transaction unless we're journaling data
1862  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1863  * need to file the inode to the transaction's list in ordered mode because if
1864  * we are writing back data added by write(), the inode is already there and if
1865  * we are writing back data modified via mmap(), no one guarantees in which
1866  * transaction the data will hit the disk. In case we are journaling data, we
1867  * cannot start transaction directly because transaction start ranks above page
1868  * lock so we have to do some magic.
1869  *
1870  * This function can get called via...
1871  *   - ext4_da_writepages after taking page lock (have journal handle)
1872  *   - journal_submit_inode_data_buffers (no journal handle)
1873  *   - shrink_page_list via pdflush (no journal handle)
1874  *   - grab_page_cache when doing write_begin (have journal handle)
1875  *
1876  * We don't do any block allocation in this function. If we have page with
1877  * multiple blocks we need to write those buffer_heads that are mapped. This
1878  * is important for mmaped based write. So if we do with blocksize 1K
1879  * truncate(f, 1024);
1880  * a = mmap(f, 0, 4096);
1881  * a[0] = 'a';
1882  * truncate(f, 4096);
1883  * we have in the page first buffer_head mapped via page_mkwrite call back
1884  * but other buffer_heads would be unmapped but dirty (dirty done via the
1885  * do_wp_page). So writepage should write the first block. If we modify
1886  * the mmap area beyond 1024 we will again get a page_fault and the
1887  * page_mkwrite callback will do the block allocation and mark the
1888  * buffer_heads mapped.
1889  *
1890  * We redirty the page if we have any buffer_heads that is either delay or
1891  * unwritten in the page.
1892  *
1893  * We can get recursively called as show below.
1894  *
1895  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1896  *		ext4_writepage()
1897  *
1898  * But since we don't do any block allocation we should not deadlock.
1899  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1900  */
1901 static int ext4_writepage(struct page *page,
1902 			  struct writeback_control *wbc)
1903 {
1904 	int ret = 0, commit_write = 0;
1905 	loff_t size;
1906 	unsigned int len;
1907 	struct buffer_head *page_bufs = NULL;
1908 	struct inode *inode = page->mapping->host;
1909 
1910 	trace_ext4_writepage(page);
1911 	size = i_size_read(inode);
1912 	if (page->index == size >> PAGE_CACHE_SHIFT)
1913 		len = size & ~PAGE_CACHE_MASK;
1914 	else
1915 		len = PAGE_CACHE_SIZE;
1916 
1917 	/*
1918 	 * If the page does not have buffers (for whatever reason),
1919 	 * try to create them using __block_write_begin.  If this
1920 	 * fails, redirty the page and move on.
1921 	 */
1922 	if (!page_has_buffers(page)) {
1923 		if (__block_write_begin(page, 0, len,
1924 					noalloc_get_block_write)) {
1925 		redirty_page:
1926 			redirty_page_for_writepage(wbc, page);
1927 			unlock_page(page);
1928 			return 0;
1929 		}
1930 		commit_write = 1;
1931 	}
1932 	page_bufs = page_buffers(page);
1933 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1934 			      ext4_bh_delay_or_unwritten)) {
1935 		/*
1936 		 * We don't want to do block allocation, so redirty
1937 		 * the page and return.  We may reach here when we do
1938 		 * a journal commit via journal_submit_inode_data_buffers.
1939 		 * We can also reach here via shrink_page_list but it
1940 		 * should never be for direct reclaim so warn if that
1941 		 * happens
1942 		 */
1943 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1944 								PF_MEMALLOC);
1945 		goto redirty_page;
1946 	}
1947 	if (commit_write)
1948 		/* now mark the buffer_heads as dirty and uptodate */
1949 		block_commit_write(page, 0, len);
1950 
1951 	if (PageChecked(page) && ext4_should_journal_data(inode))
1952 		/*
1953 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1954 		 * doesn't seem much point in redirtying the page here.
1955 		 */
1956 		return __ext4_journalled_writepage(page, len);
1957 
1958 	if (buffer_uninit(page_bufs)) {
1959 		ext4_set_bh_endio(page_bufs, inode);
1960 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1961 					    wbc, ext4_end_io_buffer_write);
1962 	} else
1963 		ret = block_write_full_page(page, noalloc_get_block_write,
1964 					    wbc);
1965 
1966 	return ret;
1967 }
1968 
1969 /*
1970  * This is called via ext4_da_writepages() to
1971  * calculate the total number of credits to reserve to fit
1972  * a single extent allocation into a single transaction,
1973  * ext4_da_writpeages() will loop calling this before
1974  * the block allocation.
1975  */
1976 
1977 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1978 {
1979 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1980 
1981 	/*
1982 	 * With non-extent format the journal credit needed to
1983 	 * insert nrblocks contiguous block is dependent on
1984 	 * number of contiguous block. So we will limit
1985 	 * number of contiguous block to a sane value
1986 	 */
1987 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1988 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1989 		max_blocks = EXT4_MAX_TRANS_DATA;
1990 
1991 	return ext4_chunk_trans_blocks(inode, max_blocks);
1992 }
1993 
1994 /*
1995  * write_cache_pages_da - walk the list of dirty pages of the given
1996  * address space and accumulate pages that need writing, and call
1997  * mpage_da_map_and_submit to map a single contiguous memory region
1998  * and then write them.
1999  */
2000 static int write_cache_pages_da(struct address_space *mapping,
2001 				struct writeback_control *wbc,
2002 				struct mpage_da_data *mpd,
2003 				pgoff_t *done_index)
2004 {
2005 	struct buffer_head	*bh, *head;
2006 	struct inode		*inode = mapping->host;
2007 	struct pagevec		pvec;
2008 	unsigned int		nr_pages;
2009 	sector_t		logical;
2010 	pgoff_t			index, end;
2011 	long			nr_to_write = wbc->nr_to_write;
2012 	int			i, tag, ret = 0;
2013 
2014 	memset(mpd, 0, sizeof(struct mpage_da_data));
2015 	mpd->wbc = wbc;
2016 	mpd->inode = inode;
2017 	pagevec_init(&pvec, 0);
2018 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2019 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2020 
2021 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2022 		tag = PAGECACHE_TAG_TOWRITE;
2023 	else
2024 		tag = PAGECACHE_TAG_DIRTY;
2025 
2026 	*done_index = index;
2027 	while (index <= end) {
2028 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2029 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2030 		if (nr_pages == 0)
2031 			return 0;
2032 
2033 		for (i = 0; i < nr_pages; i++) {
2034 			struct page *page = pvec.pages[i];
2035 
2036 			/*
2037 			 * At this point, the page may be truncated or
2038 			 * invalidated (changing page->mapping to NULL), or
2039 			 * even swizzled back from swapper_space to tmpfs file
2040 			 * mapping. However, page->index will not change
2041 			 * because we have a reference on the page.
2042 			 */
2043 			if (page->index > end)
2044 				goto out;
2045 
2046 			*done_index = page->index + 1;
2047 
2048 			/*
2049 			 * If we can't merge this page, and we have
2050 			 * accumulated an contiguous region, write it
2051 			 */
2052 			if ((mpd->next_page != page->index) &&
2053 			    (mpd->next_page != mpd->first_page)) {
2054 				mpage_da_map_and_submit(mpd);
2055 				goto ret_extent_tail;
2056 			}
2057 
2058 			lock_page(page);
2059 
2060 			/*
2061 			 * If the page is no longer dirty, or its
2062 			 * mapping no longer corresponds to inode we
2063 			 * are writing (which means it has been
2064 			 * truncated or invalidated), or the page is
2065 			 * already under writeback and we are not
2066 			 * doing a data integrity writeback, skip the page
2067 			 */
2068 			if (!PageDirty(page) ||
2069 			    (PageWriteback(page) &&
2070 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2071 			    unlikely(page->mapping != mapping)) {
2072 				unlock_page(page);
2073 				continue;
2074 			}
2075 
2076 			wait_on_page_writeback(page);
2077 			BUG_ON(PageWriteback(page));
2078 
2079 			if (mpd->next_page != page->index)
2080 				mpd->first_page = page->index;
2081 			mpd->next_page = page->index + 1;
2082 			logical = (sector_t) page->index <<
2083 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2084 
2085 			if (!page_has_buffers(page)) {
2086 				mpage_add_bh_to_extent(mpd, logical,
2087 						       PAGE_CACHE_SIZE,
2088 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2089 				if (mpd->io_done)
2090 					goto ret_extent_tail;
2091 			} else {
2092 				/*
2093 				 * Page with regular buffer heads,
2094 				 * just add all dirty ones
2095 				 */
2096 				head = page_buffers(page);
2097 				bh = head;
2098 				do {
2099 					BUG_ON(buffer_locked(bh));
2100 					/*
2101 					 * We need to try to allocate
2102 					 * unmapped blocks in the same page.
2103 					 * Otherwise we won't make progress
2104 					 * with the page in ext4_writepage
2105 					 */
2106 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2107 						mpage_add_bh_to_extent(mpd, logical,
2108 								       bh->b_size,
2109 								       bh->b_state);
2110 						if (mpd->io_done)
2111 							goto ret_extent_tail;
2112 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2113 						/*
2114 						 * mapped dirty buffer. We need
2115 						 * to update the b_state
2116 						 * because we look at b_state
2117 						 * in mpage_da_map_blocks.  We
2118 						 * don't update b_size because
2119 						 * if we find an unmapped
2120 						 * buffer_head later we need to
2121 						 * use the b_state flag of that
2122 						 * buffer_head.
2123 						 */
2124 						if (mpd->b_size == 0)
2125 							mpd->b_state = bh->b_state & BH_FLAGS;
2126 					}
2127 					logical++;
2128 				} while ((bh = bh->b_this_page) != head);
2129 			}
2130 
2131 			if (nr_to_write > 0) {
2132 				nr_to_write--;
2133 				if (nr_to_write == 0 &&
2134 				    wbc->sync_mode == WB_SYNC_NONE)
2135 					/*
2136 					 * We stop writing back only if we are
2137 					 * not doing integrity sync. In case of
2138 					 * integrity sync we have to keep going
2139 					 * because someone may be concurrently
2140 					 * dirtying pages, and we might have
2141 					 * synced a lot of newly appeared dirty
2142 					 * pages, but have not synced all of the
2143 					 * old dirty pages.
2144 					 */
2145 					goto out;
2146 			}
2147 		}
2148 		pagevec_release(&pvec);
2149 		cond_resched();
2150 	}
2151 	return 0;
2152 ret_extent_tail:
2153 	ret = MPAGE_DA_EXTENT_TAIL;
2154 out:
2155 	pagevec_release(&pvec);
2156 	cond_resched();
2157 	return ret;
2158 }
2159 
2160 
2161 static int ext4_da_writepages(struct address_space *mapping,
2162 			      struct writeback_control *wbc)
2163 {
2164 	pgoff_t	index;
2165 	int range_whole = 0;
2166 	handle_t *handle = NULL;
2167 	struct mpage_da_data mpd;
2168 	struct inode *inode = mapping->host;
2169 	int pages_written = 0;
2170 	unsigned int max_pages;
2171 	int range_cyclic, cycled = 1, io_done = 0;
2172 	int needed_blocks, ret = 0;
2173 	long desired_nr_to_write, nr_to_writebump = 0;
2174 	loff_t range_start = wbc->range_start;
2175 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2176 	pgoff_t done_index = 0;
2177 	pgoff_t end;
2178 	struct blk_plug plug;
2179 
2180 	trace_ext4_da_writepages(inode, wbc);
2181 
2182 	/*
2183 	 * No pages to write? This is mainly a kludge to avoid starting
2184 	 * a transaction for special inodes like journal inode on last iput()
2185 	 * because that could violate lock ordering on umount
2186 	 */
2187 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2188 		return 0;
2189 
2190 	/*
2191 	 * If the filesystem has aborted, it is read-only, so return
2192 	 * right away instead of dumping stack traces later on that
2193 	 * will obscure the real source of the problem.  We test
2194 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2195 	 * the latter could be true if the filesystem is mounted
2196 	 * read-only, and in that case, ext4_da_writepages should
2197 	 * *never* be called, so if that ever happens, we would want
2198 	 * the stack trace.
2199 	 */
2200 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2201 		return -EROFS;
2202 
2203 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2204 		range_whole = 1;
2205 
2206 	range_cyclic = wbc->range_cyclic;
2207 	if (wbc->range_cyclic) {
2208 		index = mapping->writeback_index;
2209 		if (index)
2210 			cycled = 0;
2211 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2212 		wbc->range_end  = LLONG_MAX;
2213 		wbc->range_cyclic = 0;
2214 		end = -1;
2215 	} else {
2216 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2217 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2218 	}
2219 
2220 	/*
2221 	 * This works around two forms of stupidity.  The first is in
2222 	 * the writeback code, which caps the maximum number of pages
2223 	 * written to be 1024 pages.  This is wrong on multiple
2224 	 * levels; different architectues have a different page size,
2225 	 * which changes the maximum amount of data which gets
2226 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2227 	 * forces this value to be 16 megabytes by multiplying
2228 	 * nr_to_write parameter by four, and then relies on its
2229 	 * allocator to allocate larger extents to make them
2230 	 * contiguous.  Unfortunately this brings us to the second
2231 	 * stupidity, which is that ext4's mballoc code only allocates
2232 	 * at most 2048 blocks.  So we force contiguous writes up to
2233 	 * the number of dirty blocks in the inode, or
2234 	 * sbi->max_writeback_mb_bump whichever is smaller.
2235 	 */
2236 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2237 	if (!range_cyclic && range_whole) {
2238 		if (wbc->nr_to_write == LONG_MAX)
2239 			desired_nr_to_write = wbc->nr_to_write;
2240 		else
2241 			desired_nr_to_write = wbc->nr_to_write * 8;
2242 	} else
2243 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2244 							   max_pages);
2245 	if (desired_nr_to_write > max_pages)
2246 		desired_nr_to_write = max_pages;
2247 
2248 	if (wbc->nr_to_write < desired_nr_to_write) {
2249 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2250 		wbc->nr_to_write = desired_nr_to_write;
2251 	}
2252 
2253 retry:
2254 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2255 		tag_pages_for_writeback(mapping, index, end);
2256 
2257 	blk_start_plug(&plug);
2258 	while (!ret && wbc->nr_to_write > 0) {
2259 
2260 		/*
2261 		 * we  insert one extent at a time. So we need
2262 		 * credit needed for single extent allocation.
2263 		 * journalled mode is currently not supported
2264 		 * by delalloc
2265 		 */
2266 		BUG_ON(ext4_should_journal_data(inode));
2267 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2268 
2269 		/* start a new transaction*/
2270 		handle = ext4_journal_start(inode, needed_blocks);
2271 		if (IS_ERR(handle)) {
2272 			ret = PTR_ERR(handle);
2273 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2274 			       "%ld pages, ino %lu; err %d", __func__,
2275 				wbc->nr_to_write, inode->i_ino, ret);
2276 			blk_finish_plug(&plug);
2277 			goto out_writepages;
2278 		}
2279 
2280 		/*
2281 		 * Now call write_cache_pages_da() to find the next
2282 		 * contiguous region of logical blocks that need
2283 		 * blocks to be allocated by ext4 and submit them.
2284 		 */
2285 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2286 		/*
2287 		 * If we have a contiguous extent of pages and we
2288 		 * haven't done the I/O yet, map the blocks and submit
2289 		 * them for I/O.
2290 		 */
2291 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2292 			mpage_da_map_and_submit(&mpd);
2293 			ret = MPAGE_DA_EXTENT_TAIL;
2294 		}
2295 		trace_ext4_da_write_pages(inode, &mpd);
2296 		wbc->nr_to_write -= mpd.pages_written;
2297 
2298 		ext4_journal_stop(handle);
2299 
2300 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2301 			/* commit the transaction which would
2302 			 * free blocks released in the transaction
2303 			 * and try again
2304 			 */
2305 			jbd2_journal_force_commit_nested(sbi->s_journal);
2306 			ret = 0;
2307 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2308 			/*
2309 			 * Got one extent now try with rest of the pages.
2310 			 * If mpd.retval is set -EIO, journal is aborted.
2311 			 * So we don't need to write any more.
2312 			 */
2313 			pages_written += mpd.pages_written;
2314 			ret = mpd.retval;
2315 			io_done = 1;
2316 		} else if (wbc->nr_to_write)
2317 			/*
2318 			 * There is no more writeout needed
2319 			 * or we requested for a noblocking writeout
2320 			 * and we found the device congested
2321 			 */
2322 			break;
2323 	}
2324 	blk_finish_plug(&plug);
2325 	if (!io_done && !cycled) {
2326 		cycled = 1;
2327 		index = 0;
2328 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2329 		wbc->range_end  = mapping->writeback_index - 1;
2330 		goto retry;
2331 	}
2332 
2333 	/* Update index */
2334 	wbc->range_cyclic = range_cyclic;
2335 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2336 		/*
2337 		 * set the writeback_index so that range_cyclic
2338 		 * mode will write it back later
2339 		 */
2340 		mapping->writeback_index = done_index;
2341 
2342 out_writepages:
2343 	wbc->nr_to_write -= nr_to_writebump;
2344 	wbc->range_start = range_start;
2345 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2346 	return ret;
2347 }
2348 
2349 #define FALL_BACK_TO_NONDELALLOC 1
2350 static int ext4_nonda_switch(struct super_block *sb)
2351 {
2352 	s64 free_blocks, dirty_blocks;
2353 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2354 
2355 	/*
2356 	 * switch to non delalloc mode if we are running low
2357 	 * on free block. The free block accounting via percpu
2358 	 * counters can get slightly wrong with percpu_counter_batch getting
2359 	 * accumulated on each CPU without updating global counters
2360 	 * Delalloc need an accurate free block accounting. So switch
2361 	 * to non delalloc when we are near to error range.
2362 	 */
2363 	free_blocks  = EXT4_C2B(sbi,
2364 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2365 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2366 	if (2 * free_blocks < 3 * dirty_blocks ||
2367 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2368 		/*
2369 		 * free block count is less than 150% of dirty blocks
2370 		 * or free blocks is less than watermark
2371 		 */
2372 		return 1;
2373 	}
2374 	/*
2375 	 * Even if we don't switch but are nearing capacity,
2376 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2377 	 */
2378 	if (free_blocks < 2 * dirty_blocks)
2379 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2380 
2381 	return 0;
2382 }
2383 
2384 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2385 			       loff_t pos, unsigned len, unsigned flags,
2386 			       struct page **pagep, void **fsdata)
2387 {
2388 	int ret, retries = 0;
2389 	struct page *page;
2390 	pgoff_t index;
2391 	struct inode *inode = mapping->host;
2392 	handle_t *handle;
2393 
2394 	index = pos >> PAGE_CACHE_SHIFT;
2395 
2396 	if (ext4_nonda_switch(inode->i_sb)) {
2397 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2398 		return ext4_write_begin(file, mapping, pos,
2399 					len, flags, pagep, fsdata);
2400 	}
2401 	*fsdata = (void *)0;
2402 	trace_ext4_da_write_begin(inode, pos, len, flags);
2403 retry:
2404 	/*
2405 	 * With delayed allocation, we don't log the i_disksize update
2406 	 * if there is delayed block allocation. But we still need
2407 	 * to journalling the i_disksize update if writes to the end
2408 	 * of file which has an already mapped buffer.
2409 	 */
2410 	handle = ext4_journal_start(inode, 1);
2411 	if (IS_ERR(handle)) {
2412 		ret = PTR_ERR(handle);
2413 		goto out;
2414 	}
2415 	/* We cannot recurse into the filesystem as the transaction is already
2416 	 * started */
2417 	flags |= AOP_FLAG_NOFS;
2418 
2419 	page = grab_cache_page_write_begin(mapping, index, flags);
2420 	if (!page) {
2421 		ext4_journal_stop(handle);
2422 		ret = -ENOMEM;
2423 		goto out;
2424 	}
2425 	*pagep = page;
2426 
2427 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2428 	if (ret < 0) {
2429 		unlock_page(page);
2430 		ext4_journal_stop(handle);
2431 		page_cache_release(page);
2432 		/*
2433 		 * block_write_begin may have instantiated a few blocks
2434 		 * outside i_size.  Trim these off again. Don't need
2435 		 * i_size_read because we hold i_mutex.
2436 		 */
2437 		if (pos + len > inode->i_size)
2438 			ext4_truncate_failed_write(inode);
2439 	}
2440 
2441 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2442 		goto retry;
2443 out:
2444 	return ret;
2445 }
2446 
2447 /*
2448  * Check if we should update i_disksize
2449  * when write to the end of file but not require block allocation
2450  */
2451 static int ext4_da_should_update_i_disksize(struct page *page,
2452 					    unsigned long offset)
2453 {
2454 	struct buffer_head *bh;
2455 	struct inode *inode = page->mapping->host;
2456 	unsigned int idx;
2457 	int i;
2458 
2459 	bh = page_buffers(page);
2460 	idx = offset >> inode->i_blkbits;
2461 
2462 	for (i = 0; i < idx; i++)
2463 		bh = bh->b_this_page;
2464 
2465 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2466 		return 0;
2467 	return 1;
2468 }
2469 
2470 static int ext4_da_write_end(struct file *file,
2471 			     struct address_space *mapping,
2472 			     loff_t pos, unsigned len, unsigned copied,
2473 			     struct page *page, void *fsdata)
2474 {
2475 	struct inode *inode = mapping->host;
2476 	int ret = 0, ret2;
2477 	handle_t *handle = ext4_journal_current_handle();
2478 	loff_t new_i_size;
2479 	unsigned long start, end;
2480 	int write_mode = (int)(unsigned long)fsdata;
2481 
2482 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2483 		if (ext4_should_order_data(inode)) {
2484 			return ext4_ordered_write_end(file, mapping, pos,
2485 					len, copied, page, fsdata);
2486 		} else if (ext4_should_writeback_data(inode)) {
2487 			return ext4_writeback_write_end(file, mapping, pos,
2488 					len, copied, page, fsdata);
2489 		} else {
2490 			BUG();
2491 		}
2492 	}
2493 
2494 	trace_ext4_da_write_end(inode, pos, len, copied);
2495 	start = pos & (PAGE_CACHE_SIZE - 1);
2496 	end = start + copied - 1;
2497 
2498 	/*
2499 	 * generic_write_end() will run mark_inode_dirty() if i_size
2500 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2501 	 * into that.
2502 	 */
2503 
2504 	new_i_size = pos + copied;
2505 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2506 		if (ext4_da_should_update_i_disksize(page, end)) {
2507 			down_write(&EXT4_I(inode)->i_data_sem);
2508 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2509 				/*
2510 				 * Updating i_disksize when extending file
2511 				 * without needing block allocation
2512 				 */
2513 				if (ext4_should_order_data(inode))
2514 					ret = ext4_jbd2_file_inode(handle,
2515 								   inode);
2516 
2517 				EXT4_I(inode)->i_disksize = new_i_size;
2518 			}
2519 			up_write(&EXT4_I(inode)->i_data_sem);
2520 			/* We need to mark inode dirty even if
2521 			 * new_i_size is less that inode->i_size
2522 			 * bu greater than i_disksize.(hint delalloc)
2523 			 */
2524 			ext4_mark_inode_dirty(handle, inode);
2525 		}
2526 	}
2527 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2528 							page, fsdata);
2529 	copied = ret2;
2530 	if (ret2 < 0)
2531 		ret = ret2;
2532 	ret2 = ext4_journal_stop(handle);
2533 	if (!ret)
2534 		ret = ret2;
2535 
2536 	return ret ? ret : copied;
2537 }
2538 
2539 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2540 {
2541 	/*
2542 	 * Drop reserved blocks
2543 	 */
2544 	BUG_ON(!PageLocked(page));
2545 	if (!page_has_buffers(page))
2546 		goto out;
2547 
2548 	ext4_da_page_release_reservation(page, offset);
2549 
2550 out:
2551 	ext4_invalidatepage(page, offset);
2552 
2553 	return;
2554 }
2555 
2556 /*
2557  * Force all delayed allocation blocks to be allocated for a given inode.
2558  */
2559 int ext4_alloc_da_blocks(struct inode *inode)
2560 {
2561 	trace_ext4_alloc_da_blocks(inode);
2562 
2563 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2564 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2565 		return 0;
2566 
2567 	/*
2568 	 * We do something simple for now.  The filemap_flush() will
2569 	 * also start triggering a write of the data blocks, which is
2570 	 * not strictly speaking necessary (and for users of
2571 	 * laptop_mode, not even desirable).  However, to do otherwise
2572 	 * would require replicating code paths in:
2573 	 *
2574 	 * ext4_da_writepages() ->
2575 	 *    write_cache_pages() ---> (via passed in callback function)
2576 	 *        __mpage_da_writepage() -->
2577 	 *           mpage_add_bh_to_extent()
2578 	 *           mpage_da_map_blocks()
2579 	 *
2580 	 * The problem is that write_cache_pages(), located in
2581 	 * mm/page-writeback.c, marks pages clean in preparation for
2582 	 * doing I/O, which is not desirable if we're not planning on
2583 	 * doing I/O at all.
2584 	 *
2585 	 * We could call write_cache_pages(), and then redirty all of
2586 	 * the pages by calling redirty_page_for_writepage() but that
2587 	 * would be ugly in the extreme.  So instead we would need to
2588 	 * replicate parts of the code in the above functions,
2589 	 * simplifying them because we wouldn't actually intend to
2590 	 * write out the pages, but rather only collect contiguous
2591 	 * logical block extents, call the multi-block allocator, and
2592 	 * then update the buffer heads with the block allocations.
2593 	 *
2594 	 * For now, though, we'll cheat by calling filemap_flush(),
2595 	 * which will map the blocks, and start the I/O, but not
2596 	 * actually wait for the I/O to complete.
2597 	 */
2598 	return filemap_flush(inode->i_mapping);
2599 }
2600 
2601 /*
2602  * bmap() is special.  It gets used by applications such as lilo and by
2603  * the swapper to find the on-disk block of a specific piece of data.
2604  *
2605  * Naturally, this is dangerous if the block concerned is still in the
2606  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2607  * filesystem and enables swap, then they may get a nasty shock when the
2608  * data getting swapped to that swapfile suddenly gets overwritten by
2609  * the original zero's written out previously to the journal and
2610  * awaiting writeback in the kernel's buffer cache.
2611  *
2612  * So, if we see any bmap calls here on a modified, data-journaled file,
2613  * take extra steps to flush any blocks which might be in the cache.
2614  */
2615 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2616 {
2617 	struct inode *inode = mapping->host;
2618 	journal_t *journal;
2619 	int err;
2620 
2621 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2622 			test_opt(inode->i_sb, DELALLOC)) {
2623 		/*
2624 		 * With delalloc we want to sync the file
2625 		 * so that we can make sure we allocate
2626 		 * blocks for file
2627 		 */
2628 		filemap_write_and_wait(mapping);
2629 	}
2630 
2631 	if (EXT4_JOURNAL(inode) &&
2632 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2633 		/*
2634 		 * This is a REALLY heavyweight approach, but the use of
2635 		 * bmap on dirty files is expected to be extremely rare:
2636 		 * only if we run lilo or swapon on a freshly made file
2637 		 * do we expect this to happen.
2638 		 *
2639 		 * (bmap requires CAP_SYS_RAWIO so this does not
2640 		 * represent an unprivileged user DOS attack --- we'd be
2641 		 * in trouble if mortal users could trigger this path at
2642 		 * will.)
2643 		 *
2644 		 * NB. EXT4_STATE_JDATA is not set on files other than
2645 		 * regular files.  If somebody wants to bmap a directory
2646 		 * or symlink and gets confused because the buffer
2647 		 * hasn't yet been flushed to disk, they deserve
2648 		 * everything they get.
2649 		 */
2650 
2651 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2652 		journal = EXT4_JOURNAL(inode);
2653 		jbd2_journal_lock_updates(journal);
2654 		err = jbd2_journal_flush(journal);
2655 		jbd2_journal_unlock_updates(journal);
2656 
2657 		if (err)
2658 			return 0;
2659 	}
2660 
2661 	return generic_block_bmap(mapping, block, ext4_get_block);
2662 }
2663 
2664 static int ext4_readpage(struct file *file, struct page *page)
2665 {
2666 	trace_ext4_readpage(page);
2667 	return mpage_readpage(page, ext4_get_block);
2668 }
2669 
2670 static int
2671 ext4_readpages(struct file *file, struct address_space *mapping,
2672 		struct list_head *pages, unsigned nr_pages)
2673 {
2674 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2675 }
2676 
2677 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2678 {
2679 	struct buffer_head *head, *bh;
2680 	unsigned int curr_off = 0;
2681 
2682 	if (!page_has_buffers(page))
2683 		return;
2684 	head = bh = page_buffers(page);
2685 	do {
2686 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2687 					&& bh->b_private) {
2688 			ext4_free_io_end(bh->b_private);
2689 			bh->b_private = NULL;
2690 			bh->b_end_io = NULL;
2691 		}
2692 		curr_off = curr_off + bh->b_size;
2693 		bh = bh->b_this_page;
2694 	} while (bh != head);
2695 }
2696 
2697 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2698 {
2699 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2700 
2701 	trace_ext4_invalidatepage(page, offset);
2702 
2703 	/*
2704 	 * free any io_end structure allocated for buffers to be discarded
2705 	 */
2706 	if (ext4_should_dioread_nolock(page->mapping->host))
2707 		ext4_invalidatepage_free_endio(page, offset);
2708 	/*
2709 	 * If it's a full truncate we just forget about the pending dirtying
2710 	 */
2711 	if (offset == 0)
2712 		ClearPageChecked(page);
2713 
2714 	if (journal)
2715 		jbd2_journal_invalidatepage(journal, page, offset);
2716 	else
2717 		block_invalidatepage(page, offset);
2718 }
2719 
2720 static int ext4_releasepage(struct page *page, gfp_t wait)
2721 {
2722 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2723 
2724 	trace_ext4_releasepage(page);
2725 
2726 	WARN_ON(PageChecked(page));
2727 	if (!page_has_buffers(page))
2728 		return 0;
2729 	if (journal)
2730 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2731 	else
2732 		return try_to_free_buffers(page);
2733 }
2734 
2735 /*
2736  * ext4_get_block used when preparing for a DIO write or buffer write.
2737  * We allocate an uinitialized extent if blocks haven't been allocated.
2738  * The extent will be converted to initialized after the IO is complete.
2739  */
2740 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2741 		   struct buffer_head *bh_result, int create)
2742 {
2743 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2744 		   inode->i_ino, create);
2745 	return _ext4_get_block(inode, iblock, bh_result,
2746 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2747 }
2748 
2749 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2750 			    ssize_t size, void *private, int ret,
2751 			    bool is_async)
2752 {
2753 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2754         ext4_io_end_t *io_end = iocb->private;
2755 	struct workqueue_struct *wq;
2756 	unsigned long flags;
2757 	struct ext4_inode_info *ei;
2758 
2759 	/* if not async direct IO or dio with 0 bytes write, just return */
2760 	if (!io_end || !size)
2761 		goto out;
2762 
2763 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2764 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2765  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2766 		  size);
2767 
2768 	iocb->private = NULL;
2769 
2770 	/* if not aio dio with unwritten extents, just free io and return */
2771 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2772 		ext4_free_io_end(io_end);
2773 out:
2774 		if (is_async)
2775 			aio_complete(iocb, ret, 0);
2776 		inode_dio_done(inode);
2777 		return;
2778 	}
2779 
2780 	io_end->offset = offset;
2781 	io_end->size = size;
2782 	if (is_async) {
2783 		io_end->iocb = iocb;
2784 		io_end->result = ret;
2785 	}
2786 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2787 
2788 	/* Add the io_end to per-inode completed aio dio list*/
2789 	ei = EXT4_I(io_end->inode);
2790 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2791 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2792 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2793 
2794 	/* queue the work to convert unwritten extents to written */
2795 	queue_work(wq, &io_end->work);
2796 
2797 	/* XXX: probably should move into the real I/O completion handler */
2798 	inode_dio_done(inode);
2799 }
2800 
2801 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2802 {
2803 	ext4_io_end_t *io_end = bh->b_private;
2804 	struct workqueue_struct *wq;
2805 	struct inode *inode;
2806 	unsigned long flags;
2807 
2808 	if (!test_clear_buffer_uninit(bh) || !io_end)
2809 		goto out;
2810 
2811 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2812 		printk("sb umounted, discard end_io request for inode %lu\n",
2813 			io_end->inode->i_ino);
2814 		ext4_free_io_end(io_end);
2815 		goto out;
2816 	}
2817 
2818 	/*
2819 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2820 	 * but being more careful is always safe for the future change.
2821 	 */
2822 	inode = io_end->inode;
2823 	ext4_set_io_unwritten_flag(inode, io_end);
2824 
2825 	/* Add the io_end to per-inode completed io list*/
2826 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2827 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2828 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2829 
2830 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2831 	/* queue the work to convert unwritten extents to written */
2832 	queue_work(wq, &io_end->work);
2833 out:
2834 	bh->b_private = NULL;
2835 	bh->b_end_io = NULL;
2836 	clear_buffer_uninit(bh);
2837 	end_buffer_async_write(bh, uptodate);
2838 }
2839 
2840 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2841 {
2842 	ext4_io_end_t *io_end;
2843 	struct page *page = bh->b_page;
2844 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2845 	size_t size = bh->b_size;
2846 
2847 retry:
2848 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2849 	if (!io_end) {
2850 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2851 		schedule();
2852 		goto retry;
2853 	}
2854 	io_end->offset = offset;
2855 	io_end->size = size;
2856 	/*
2857 	 * We need to hold a reference to the page to make sure it
2858 	 * doesn't get evicted before ext4_end_io_work() has a chance
2859 	 * to convert the extent from written to unwritten.
2860 	 */
2861 	io_end->page = page;
2862 	get_page(io_end->page);
2863 
2864 	bh->b_private = io_end;
2865 	bh->b_end_io = ext4_end_io_buffer_write;
2866 	return 0;
2867 }
2868 
2869 /*
2870  * For ext4 extent files, ext4 will do direct-io write to holes,
2871  * preallocated extents, and those write extend the file, no need to
2872  * fall back to buffered IO.
2873  *
2874  * For holes, we fallocate those blocks, mark them as uninitialized
2875  * If those blocks were preallocated, we mark sure they are splited, but
2876  * still keep the range to write as uninitialized.
2877  *
2878  * The unwrritten extents will be converted to written when DIO is completed.
2879  * For async direct IO, since the IO may still pending when return, we
2880  * set up an end_io call back function, which will do the conversion
2881  * when async direct IO completed.
2882  *
2883  * If the O_DIRECT write will extend the file then add this inode to the
2884  * orphan list.  So recovery will truncate it back to the original size
2885  * if the machine crashes during the write.
2886  *
2887  */
2888 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2889 			      const struct iovec *iov, loff_t offset,
2890 			      unsigned long nr_segs)
2891 {
2892 	struct file *file = iocb->ki_filp;
2893 	struct inode *inode = file->f_mapping->host;
2894 	ssize_t ret;
2895 	size_t count = iov_length(iov, nr_segs);
2896 
2897 	loff_t final_size = offset + count;
2898 	if (rw == WRITE && final_size <= inode->i_size) {
2899 		/*
2900  		 * We could direct write to holes and fallocate.
2901 		 *
2902  		 * Allocated blocks to fill the hole are marked as uninitialized
2903  		 * to prevent parallel buffered read to expose the stale data
2904  		 * before DIO complete the data IO.
2905 		 *
2906  		 * As to previously fallocated extents, ext4 get_block
2907  		 * will just simply mark the buffer mapped but still
2908  		 * keep the extents uninitialized.
2909  		 *
2910 		 * for non AIO case, we will convert those unwritten extents
2911 		 * to written after return back from blockdev_direct_IO.
2912 		 *
2913 		 * for async DIO, the conversion needs to be defered when
2914 		 * the IO is completed. The ext4 end_io callback function
2915 		 * will be called to take care of the conversion work.
2916 		 * Here for async case, we allocate an io_end structure to
2917 		 * hook to the iocb.
2918  		 */
2919 		iocb->private = NULL;
2920 		EXT4_I(inode)->cur_aio_dio = NULL;
2921 		if (!is_sync_kiocb(iocb)) {
2922 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2923 			if (!iocb->private)
2924 				return -ENOMEM;
2925 			/*
2926 			 * we save the io structure for current async
2927 			 * direct IO, so that later ext4_map_blocks()
2928 			 * could flag the io structure whether there
2929 			 * is a unwritten extents needs to be converted
2930 			 * when IO is completed.
2931 			 */
2932 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2933 		}
2934 
2935 		ret = __blockdev_direct_IO(rw, iocb, inode,
2936 					 inode->i_sb->s_bdev, iov,
2937 					 offset, nr_segs,
2938 					 ext4_get_block_write,
2939 					 ext4_end_io_dio,
2940 					 NULL,
2941 					 DIO_LOCKING | DIO_SKIP_HOLES);
2942 		if (iocb->private)
2943 			EXT4_I(inode)->cur_aio_dio = NULL;
2944 		/*
2945 		 * The io_end structure takes a reference to the inode,
2946 		 * that structure needs to be destroyed and the
2947 		 * reference to the inode need to be dropped, when IO is
2948 		 * complete, even with 0 byte write, or failed.
2949 		 *
2950 		 * In the successful AIO DIO case, the io_end structure will be
2951 		 * desctroyed and the reference to the inode will be dropped
2952 		 * after the end_io call back function is called.
2953 		 *
2954 		 * In the case there is 0 byte write, or error case, since
2955 		 * VFS direct IO won't invoke the end_io call back function,
2956 		 * we need to free the end_io structure here.
2957 		 */
2958 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2959 			ext4_free_io_end(iocb->private);
2960 			iocb->private = NULL;
2961 		} else if (ret > 0 && ext4_test_inode_state(inode,
2962 						EXT4_STATE_DIO_UNWRITTEN)) {
2963 			int err;
2964 			/*
2965 			 * for non AIO case, since the IO is already
2966 			 * completed, we could do the conversion right here
2967 			 */
2968 			err = ext4_convert_unwritten_extents(inode,
2969 							     offset, ret);
2970 			if (err < 0)
2971 				ret = err;
2972 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2973 		}
2974 		return ret;
2975 	}
2976 
2977 	/* for write the the end of file case, we fall back to old way */
2978 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2979 }
2980 
2981 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2982 			      const struct iovec *iov, loff_t offset,
2983 			      unsigned long nr_segs)
2984 {
2985 	struct file *file = iocb->ki_filp;
2986 	struct inode *inode = file->f_mapping->host;
2987 	ssize_t ret;
2988 
2989 	/*
2990 	 * If we are doing data journalling we don't support O_DIRECT
2991 	 */
2992 	if (ext4_should_journal_data(inode))
2993 		return 0;
2994 
2995 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2996 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2997 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2998 	else
2999 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3000 	trace_ext4_direct_IO_exit(inode, offset,
3001 				iov_length(iov, nr_segs), rw, ret);
3002 	return ret;
3003 }
3004 
3005 /*
3006  * Pages can be marked dirty completely asynchronously from ext4's journalling
3007  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3008  * much here because ->set_page_dirty is called under VFS locks.  The page is
3009  * not necessarily locked.
3010  *
3011  * We cannot just dirty the page and leave attached buffers clean, because the
3012  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3013  * or jbddirty because all the journalling code will explode.
3014  *
3015  * So what we do is to mark the page "pending dirty" and next time writepage
3016  * is called, propagate that into the buffers appropriately.
3017  */
3018 static int ext4_journalled_set_page_dirty(struct page *page)
3019 {
3020 	SetPageChecked(page);
3021 	return __set_page_dirty_nobuffers(page);
3022 }
3023 
3024 static const struct address_space_operations ext4_ordered_aops = {
3025 	.readpage		= ext4_readpage,
3026 	.readpages		= ext4_readpages,
3027 	.writepage		= ext4_writepage,
3028 	.write_begin		= ext4_write_begin,
3029 	.write_end		= ext4_ordered_write_end,
3030 	.bmap			= ext4_bmap,
3031 	.invalidatepage		= ext4_invalidatepage,
3032 	.releasepage		= ext4_releasepage,
3033 	.direct_IO		= ext4_direct_IO,
3034 	.migratepage		= buffer_migrate_page,
3035 	.is_partially_uptodate  = block_is_partially_uptodate,
3036 	.error_remove_page	= generic_error_remove_page,
3037 };
3038 
3039 static const struct address_space_operations ext4_writeback_aops = {
3040 	.readpage		= ext4_readpage,
3041 	.readpages		= ext4_readpages,
3042 	.writepage		= ext4_writepage,
3043 	.write_begin		= ext4_write_begin,
3044 	.write_end		= ext4_writeback_write_end,
3045 	.bmap			= ext4_bmap,
3046 	.invalidatepage		= ext4_invalidatepage,
3047 	.releasepage		= ext4_releasepage,
3048 	.direct_IO		= ext4_direct_IO,
3049 	.migratepage		= buffer_migrate_page,
3050 	.is_partially_uptodate  = block_is_partially_uptodate,
3051 	.error_remove_page	= generic_error_remove_page,
3052 };
3053 
3054 static const struct address_space_operations ext4_journalled_aops = {
3055 	.readpage		= ext4_readpage,
3056 	.readpages		= ext4_readpages,
3057 	.writepage		= ext4_writepage,
3058 	.write_begin		= ext4_write_begin,
3059 	.write_end		= ext4_journalled_write_end,
3060 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3061 	.bmap			= ext4_bmap,
3062 	.invalidatepage		= ext4_invalidatepage,
3063 	.releasepage		= ext4_releasepage,
3064 	.direct_IO		= ext4_direct_IO,
3065 	.is_partially_uptodate  = block_is_partially_uptodate,
3066 	.error_remove_page	= generic_error_remove_page,
3067 };
3068 
3069 static const struct address_space_operations ext4_da_aops = {
3070 	.readpage		= ext4_readpage,
3071 	.readpages		= ext4_readpages,
3072 	.writepage		= ext4_writepage,
3073 	.writepages		= ext4_da_writepages,
3074 	.write_begin		= ext4_da_write_begin,
3075 	.write_end		= ext4_da_write_end,
3076 	.bmap			= ext4_bmap,
3077 	.invalidatepage		= ext4_da_invalidatepage,
3078 	.releasepage		= ext4_releasepage,
3079 	.direct_IO		= ext4_direct_IO,
3080 	.migratepage		= buffer_migrate_page,
3081 	.is_partially_uptodate  = block_is_partially_uptodate,
3082 	.error_remove_page	= generic_error_remove_page,
3083 };
3084 
3085 void ext4_set_aops(struct inode *inode)
3086 {
3087 	if (ext4_should_order_data(inode) &&
3088 		test_opt(inode->i_sb, DELALLOC))
3089 		inode->i_mapping->a_ops = &ext4_da_aops;
3090 	else if (ext4_should_order_data(inode))
3091 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3092 	else if (ext4_should_writeback_data(inode) &&
3093 		 test_opt(inode->i_sb, DELALLOC))
3094 		inode->i_mapping->a_ops = &ext4_da_aops;
3095 	else if (ext4_should_writeback_data(inode))
3096 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3097 	else
3098 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3099 }
3100 
3101 
3102 /*
3103  * ext4_discard_partial_page_buffers()
3104  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3105  * This function finds and locks the page containing the offset
3106  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3107  * Calling functions that already have the page locked should call
3108  * ext4_discard_partial_page_buffers_no_lock directly.
3109  */
3110 int ext4_discard_partial_page_buffers(handle_t *handle,
3111 		struct address_space *mapping, loff_t from,
3112 		loff_t length, int flags)
3113 {
3114 	struct inode *inode = mapping->host;
3115 	struct page *page;
3116 	int err = 0;
3117 
3118 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3119 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3120 	if (!page)
3121 		return -ENOMEM;
3122 
3123 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3124 		from, length, flags);
3125 
3126 	unlock_page(page);
3127 	page_cache_release(page);
3128 	return err;
3129 }
3130 
3131 /*
3132  * ext4_discard_partial_page_buffers_no_lock()
3133  * Zeros a page range of length 'length' starting from offset 'from'.
3134  * Buffer heads that correspond to the block aligned regions of the
3135  * zeroed range will be unmapped.  Unblock aligned regions
3136  * will have the corresponding buffer head mapped if needed so that
3137  * that region of the page can be updated with the partial zero out.
3138  *
3139  * This function assumes that the page has already been  locked.  The
3140  * The range to be discarded must be contained with in the given page.
3141  * If the specified range exceeds the end of the page it will be shortened
3142  * to the end of the page that corresponds to 'from'.  This function is
3143  * appropriate for updating a page and it buffer heads to be unmapped and
3144  * zeroed for blocks that have been either released, or are going to be
3145  * released.
3146  *
3147  * handle: The journal handle
3148  * inode:  The files inode
3149  * page:   A locked page that contains the offset "from"
3150  * from:   The starting byte offset (from the begining of the file)
3151  *         to begin discarding
3152  * len:    The length of bytes to discard
3153  * flags:  Optional flags that may be used:
3154  *
3155  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3156  *         Only zero the regions of the page whose buffer heads
3157  *         have already been unmapped.  This flag is appropriate
3158  *         for updateing the contents of a page whose blocks may
3159  *         have already been released, and we only want to zero
3160  *         out the regions that correspond to those released blocks.
3161  *
3162  * Returns zero on sucess or negative on failure.
3163  */
3164 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3165 		struct inode *inode, struct page *page, loff_t from,
3166 		loff_t length, int flags)
3167 {
3168 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3169 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3170 	unsigned int blocksize, max, pos;
3171 	ext4_lblk_t iblock;
3172 	struct buffer_head *bh;
3173 	int err = 0;
3174 
3175 	blocksize = inode->i_sb->s_blocksize;
3176 	max = PAGE_CACHE_SIZE - offset;
3177 
3178 	if (index != page->index)
3179 		return -EINVAL;
3180 
3181 	/*
3182 	 * correct length if it does not fall between
3183 	 * 'from' and the end of the page
3184 	 */
3185 	if (length > max || length < 0)
3186 		length = max;
3187 
3188 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3189 
3190 	if (!page_has_buffers(page))
3191 		create_empty_buffers(page, blocksize, 0);
3192 
3193 	/* Find the buffer that contains "offset" */
3194 	bh = page_buffers(page);
3195 	pos = blocksize;
3196 	while (offset >= pos) {
3197 		bh = bh->b_this_page;
3198 		iblock++;
3199 		pos += blocksize;
3200 	}
3201 
3202 	pos = offset;
3203 	while (pos < offset + length) {
3204 		unsigned int end_of_block, range_to_discard;
3205 
3206 		err = 0;
3207 
3208 		/* The length of space left to zero and unmap */
3209 		range_to_discard = offset + length - pos;
3210 
3211 		/* The length of space until the end of the block */
3212 		end_of_block = blocksize - (pos & (blocksize-1));
3213 
3214 		/*
3215 		 * Do not unmap or zero past end of block
3216 		 * for this buffer head
3217 		 */
3218 		if (range_to_discard > end_of_block)
3219 			range_to_discard = end_of_block;
3220 
3221 
3222 		/*
3223 		 * Skip this buffer head if we are only zeroing unampped
3224 		 * regions of the page
3225 		 */
3226 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3227 			buffer_mapped(bh))
3228 				goto next;
3229 
3230 		/* If the range is block aligned, unmap */
3231 		if (range_to_discard == blocksize) {
3232 			clear_buffer_dirty(bh);
3233 			bh->b_bdev = NULL;
3234 			clear_buffer_mapped(bh);
3235 			clear_buffer_req(bh);
3236 			clear_buffer_new(bh);
3237 			clear_buffer_delay(bh);
3238 			clear_buffer_unwritten(bh);
3239 			clear_buffer_uptodate(bh);
3240 			zero_user(page, pos, range_to_discard);
3241 			BUFFER_TRACE(bh, "Buffer discarded");
3242 			goto next;
3243 		}
3244 
3245 		/*
3246 		 * If this block is not completely contained in the range
3247 		 * to be discarded, then it is not going to be released. Because
3248 		 * we need to keep this block, we need to make sure this part
3249 		 * of the page is uptodate before we modify it by writeing
3250 		 * partial zeros on it.
3251 		 */
3252 		if (!buffer_mapped(bh)) {
3253 			/*
3254 			 * Buffer head must be mapped before we can read
3255 			 * from the block
3256 			 */
3257 			BUFFER_TRACE(bh, "unmapped");
3258 			ext4_get_block(inode, iblock, bh, 0);
3259 			/* unmapped? It's a hole - nothing to do */
3260 			if (!buffer_mapped(bh)) {
3261 				BUFFER_TRACE(bh, "still unmapped");
3262 				goto next;
3263 			}
3264 		}
3265 
3266 		/* Ok, it's mapped. Make sure it's up-to-date */
3267 		if (PageUptodate(page))
3268 			set_buffer_uptodate(bh);
3269 
3270 		if (!buffer_uptodate(bh)) {
3271 			err = -EIO;
3272 			ll_rw_block(READ, 1, &bh);
3273 			wait_on_buffer(bh);
3274 			/* Uhhuh. Read error. Complain and punt.*/
3275 			if (!buffer_uptodate(bh))
3276 				goto next;
3277 		}
3278 
3279 		if (ext4_should_journal_data(inode)) {
3280 			BUFFER_TRACE(bh, "get write access");
3281 			err = ext4_journal_get_write_access(handle, bh);
3282 			if (err)
3283 				goto next;
3284 		}
3285 
3286 		zero_user(page, pos, range_to_discard);
3287 
3288 		err = 0;
3289 		if (ext4_should_journal_data(inode)) {
3290 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3291 		} else
3292 			mark_buffer_dirty(bh);
3293 
3294 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3295 next:
3296 		bh = bh->b_this_page;
3297 		iblock++;
3298 		pos += range_to_discard;
3299 	}
3300 
3301 	return err;
3302 }
3303 
3304 /*
3305  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3306  * up to the end of the block which corresponds to `from'.
3307  * This required during truncate. We need to physically zero the tail end
3308  * of that block so it doesn't yield old data if the file is later grown.
3309  */
3310 int ext4_block_truncate_page(handle_t *handle,
3311 		struct address_space *mapping, loff_t from)
3312 {
3313 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3314 	unsigned length;
3315 	unsigned blocksize;
3316 	struct inode *inode = mapping->host;
3317 
3318 	blocksize = inode->i_sb->s_blocksize;
3319 	length = blocksize - (offset & (blocksize - 1));
3320 
3321 	return ext4_block_zero_page_range(handle, mapping, from, length);
3322 }
3323 
3324 /*
3325  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3326  * starting from file offset 'from'.  The range to be zero'd must
3327  * be contained with in one block.  If the specified range exceeds
3328  * the end of the block it will be shortened to end of the block
3329  * that cooresponds to 'from'
3330  */
3331 int ext4_block_zero_page_range(handle_t *handle,
3332 		struct address_space *mapping, loff_t from, loff_t length)
3333 {
3334 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3335 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336 	unsigned blocksize, max, pos;
3337 	ext4_lblk_t iblock;
3338 	struct inode *inode = mapping->host;
3339 	struct buffer_head *bh;
3340 	struct page *page;
3341 	int err = 0;
3342 
3343 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3344 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3345 	if (!page)
3346 		return -ENOMEM;
3347 
3348 	blocksize = inode->i_sb->s_blocksize;
3349 	max = blocksize - (offset & (blocksize - 1));
3350 
3351 	/*
3352 	 * correct length if it does not fall between
3353 	 * 'from' and the end of the block
3354 	 */
3355 	if (length > max || length < 0)
3356 		length = max;
3357 
3358 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3359 
3360 	if (!page_has_buffers(page))
3361 		create_empty_buffers(page, blocksize, 0);
3362 
3363 	/* Find the buffer that contains "offset" */
3364 	bh = page_buffers(page);
3365 	pos = blocksize;
3366 	while (offset >= pos) {
3367 		bh = bh->b_this_page;
3368 		iblock++;
3369 		pos += blocksize;
3370 	}
3371 
3372 	err = 0;
3373 	if (buffer_freed(bh)) {
3374 		BUFFER_TRACE(bh, "freed: skip");
3375 		goto unlock;
3376 	}
3377 
3378 	if (!buffer_mapped(bh)) {
3379 		BUFFER_TRACE(bh, "unmapped");
3380 		ext4_get_block(inode, iblock, bh, 0);
3381 		/* unmapped? It's a hole - nothing to do */
3382 		if (!buffer_mapped(bh)) {
3383 			BUFFER_TRACE(bh, "still unmapped");
3384 			goto unlock;
3385 		}
3386 	}
3387 
3388 	/* Ok, it's mapped. Make sure it's up-to-date */
3389 	if (PageUptodate(page))
3390 		set_buffer_uptodate(bh);
3391 
3392 	if (!buffer_uptodate(bh)) {
3393 		err = -EIO;
3394 		ll_rw_block(READ, 1, &bh);
3395 		wait_on_buffer(bh);
3396 		/* Uhhuh. Read error. Complain and punt. */
3397 		if (!buffer_uptodate(bh))
3398 			goto unlock;
3399 	}
3400 
3401 	if (ext4_should_journal_data(inode)) {
3402 		BUFFER_TRACE(bh, "get write access");
3403 		err = ext4_journal_get_write_access(handle, bh);
3404 		if (err)
3405 			goto unlock;
3406 	}
3407 
3408 	zero_user(page, offset, length);
3409 
3410 	BUFFER_TRACE(bh, "zeroed end of block");
3411 
3412 	err = 0;
3413 	if (ext4_should_journal_data(inode)) {
3414 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3415 	} else
3416 		mark_buffer_dirty(bh);
3417 
3418 unlock:
3419 	unlock_page(page);
3420 	page_cache_release(page);
3421 	return err;
3422 }
3423 
3424 int ext4_can_truncate(struct inode *inode)
3425 {
3426 	if (S_ISREG(inode->i_mode))
3427 		return 1;
3428 	if (S_ISDIR(inode->i_mode))
3429 		return 1;
3430 	if (S_ISLNK(inode->i_mode))
3431 		return !ext4_inode_is_fast_symlink(inode);
3432 	return 0;
3433 }
3434 
3435 /*
3436  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3437  * associated with the given offset and length
3438  *
3439  * @inode:  File inode
3440  * @offset: The offset where the hole will begin
3441  * @len:    The length of the hole
3442  *
3443  * Returns: 0 on sucess or negative on failure
3444  */
3445 
3446 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3447 {
3448 	struct inode *inode = file->f_path.dentry->d_inode;
3449 	if (!S_ISREG(inode->i_mode))
3450 		return -ENOTSUPP;
3451 
3452 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3453 		/* TODO: Add support for non extent hole punching */
3454 		return -ENOTSUPP;
3455 	}
3456 
3457 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3458 		/* TODO: Add support for bigalloc file systems */
3459 		return -ENOTSUPP;
3460 	}
3461 
3462 	return ext4_ext_punch_hole(file, offset, length);
3463 }
3464 
3465 /*
3466  * ext4_truncate()
3467  *
3468  * We block out ext4_get_block() block instantiations across the entire
3469  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3470  * simultaneously on behalf of the same inode.
3471  *
3472  * As we work through the truncate and commit bits of it to the journal there
3473  * is one core, guiding principle: the file's tree must always be consistent on
3474  * disk.  We must be able to restart the truncate after a crash.
3475  *
3476  * The file's tree may be transiently inconsistent in memory (although it
3477  * probably isn't), but whenever we close off and commit a journal transaction,
3478  * the contents of (the filesystem + the journal) must be consistent and
3479  * restartable.  It's pretty simple, really: bottom up, right to left (although
3480  * left-to-right works OK too).
3481  *
3482  * Note that at recovery time, journal replay occurs *before* the restart of
3483  * truncate against the orphan inode list.
3484  *
3485  * The committed inode has the new, desired i_size (which is the same as
3486  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3487  * that this inode's truncate did not complete and it will again call
3488  * ext4_truncate() to have another go.  So there will be instantiated blocks
3489  * to the right of the truncation point in a crashed ext4 filesystem.  But
3490  * that's fine - as long as they are linked from the inode, the post-crash
3491  * ext4_truncate() run will find them and release them.
3492  */
3493 void ext4_truncate(struct inode *inode)
3494 {
3495 	trace_ext4_truncate_enter(inode);
3496 
3497 	if (!ext4_can_truncate(inode))
3498 		return;
3499 
3500 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3501 
3502 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3503 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3504 
3505 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3506 		ext4_ext_truncate(inode);
3507 	else
3508 		ext4_ind_truncate(inode);
3509 
3510 	trace_ext4_truncate_exit(inode);
3511 }
3512 
3513 /*
3514  * ext4_get_inode_loc returns with an extra refcount against the inode's
3515  * underlying buffer_head on success. If 'in_mem' is true, we have all
3516  * data in memory that is needed to recreate the on-disk version of this
3517  * inode.
3518  */
3519 static int __ext4_get_inode_loc(struct inode *inode,
3520 				struct ext4_iloc *iloc, int in_mem)
3521 {
3522 	struct ext4_group_desc	*gdp;
3523 	struct buffer_head	*bh;
3524 	struct super_block	*sb = inode->i_sb;
3525 	ext4_fsblk_t		block;
3526 	int			inodes_per_block, inode_offset;
3527 
3528 	iloc->bh = NULL;
3529 	if (!ext4_valid_inum(sb, inode->i_ino))
3530 		return -EIO;
3531 
3532 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3533 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3534 	if (!gdp)
3535 		return -EIO;
3536 
3537 	/*
3538 	 * Figure out the offset within the block group inode table
3539 	 */
3540 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3541 	inode_offset = ((inode->i_ino - 1) %
3542 			EXT4_INODES_PER_GROUP(sb));
3543 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3544 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3545 
3546 	bh = sb_getblk(sb, block);
3547 	if (!bh) {
3548 		EXT4_ERROR_INODE_BLOCK(inode, block,
3549 				       "unable to read itable block");
3550 		return -EIO;
3551 	}
3552 	if (!buffer_uptodate(bh)) {
3553 		lock_buffer(bh);
3554 
3555 		/*
3556 		 * If the buffer has the write error flag, we have failed
3557 		 * to write out another inode in the same block.  In this
3558 		 * case, we don't have to read the block because we may
3559 		 * read the old inode data successfully.
3560 		 */
3561 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3562 			set_buffer_uptodate(bh);
3563 
3564 		if (buffer_uptodate(bh)) {
3565 			/* someone brought it uptodate while we waited */
3566 			unlock_buffer(bh);
3567 			goto has_buffer;
3568 		}
3569 
3570 		/*
3571 		 * If we have all information of the inode in memory and this
3572 		 * is the only valid inode in the block, we need not read the
3573 		 * block.
3574 		 */
3575 		if (in_mem) {
3576 			struct buffer_head *bitmap_bh;
3577 			int i, start;
3578 
3579 			start = inode_offset & ~(inodes_per_block - 1);
3580 
3581 			/* Is the inode bitmap in cache? */
3582 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3583 			if (!bitmap_bh)
3584 				goto make_io;
3585 
3586 			/*
3587 			 * If the inode bitmap isn't in cache then the
3588 			 * optimisation may end up performing two reads instead
3589 			 * of one, so skip it.
3590 			 */
3591 			if (!buffer_uptodate(bitmap_bh)) {
3592 				brelse(bitmap_bh);
3593 				goto make_io;
3594 			}
3595 			for (i = start; i < start + inodes_per_block; i++) {
3596 				if (i == inode_offset)
3597 					continue;
3598 				if (ext4_test_bit(i, bitmap_bh->b_data))
3599 					break;
3600 			}
3601 			brelse(bitmap_bh);
3602 			if (i == start + inodes_per_block) {
3603 				/* all other inodes are free, so skip I/O */
3604 				memset(bh->b_data, 0, bh->b_size);
3605 				set_buffer_uptodate(bh);
3606 				unlock_buffer(bh);
3607 				goto has_buffer;
3608 			}
3609 		}
3610 
3611 make_io:
3612 		/*
3613 		 * If we need to do any I/O, try to pre-readahead extra
3614 		 * blocks from the inode table.
3615 		 */
3616 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3617 			ext4_fsblk_t b, end, table;
3618 			unsigned num;
3619 
3620 			table = ext4_inode_table(sb, gdp);
3621 			/* s_inode_readahead_blks is always a power of 2 */
3622 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3623 			if (table > b)
3624 				b = table;
3625 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3626 			num = EXT4_INODES_PER_GROUP(sb);
3627 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3628 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3629 				num -= ext4_itable_unused_count(sb, gdp);
3630 			table += num / inodes_per_block;
3631 			if (end > table)
3632 				end = table;
3633 			while (b <= end)
3634 				sb_breadahead(sb, b++);
3635 		}
3636 
3637 		/*
3638 		 * There are other valid inodes in the buffer, this inode
3639 		 * has in-inode xattrs, or we don't have this inode in memory.
3640 		 * Read the block from disk.
3641 		 */
3642 		trace_ext4_load_inode(inode);
3643 		get_bh(bh);
3644 		bh->b_end_io = end_buffer_read_sync;
3645 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3646 		wait_on_buffer(bh);
3647 		if (!buffer_uptodate(bh)) {
3648 			EXT4_ERROR_INODE_BLOCK(inode, block,
3649 					       "unable to read itable block");
3650 			brelse(bh);
3651 			return -EIO;
3652 		}
3653 	}
3654 has_buffer:
3655 	iloc->bh = bh;
3656 	return 0;
3657 }
3658 
3659 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3660 {
3661 	/* We have all inode data except xattrs in memory here. */
3662 	return __ext4_get_inode_loc(inode, iloc,
3663 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3664 }
3665 
3666 void ext4_set_inode_flags(struct inode *inode)
3667 {
3668 	unsigned int flags = EXT4_I(inode)->i_flags;
3669 
3670 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3671 	if (flags & EXT4_SYNC_FL)
3672 		inode->i_flags |= S_SYNC;
3673 	if (flags & EXT4_APPEND_FL)
3674 		inode->i_flags |= S_APPEND;
3675 	if (flags & EXT4_IMMUTABLE_FL)
3676 		inode->i_flags |= S_IMMUTABLE;
3677 	if (flags & EXT4_NOATIME_FL)
3678 		inode->i_flags |= S_NOATIME;
3679 	if (flags & EXT4_DIRSYNC_FL)
3680 		inode->i_flags |= S_DIRSYNC;
3681 }
3682 
3683 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3684 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3685 {
3686 	unsigned int vfs_fl;
3687 	unsigned long old_fl, new_fl;
3688 
3689 	do {
3690 		vfs_fl = ei->vfs_inode.i_flags;
3691 		old_fl = ei->i_flags;
3692 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3693 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3694 				EXT4_DIRSYNC_FL);
3695 		if (vfs_fl & S_SYNC)
3696 			new_fl |= EXT4_SYNC_FL;
3697 		if (vfs_fl & S_APPEND)
3698 			new_fl |= EXT4_APPEND_FL;
3699 		if (vfs_fl & S_IMMUTABLE)
3700 			new_fl |= EXT4_IMMUTABLE_FL;
3701 		if (vfs_fl & S_NOATIME)
3702 			new_fl |= EXT4_NOATIME_FL;
3703 		if (vfs_fl & S_DIRSYNC)
3704 			new_fl |= EXT4_DIRSYNC_FL;
3705 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3706 }
3707 
3708 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3709 				  struct ext4_inode_info *ei)
3710 {
3711 	blkcnt_t i_blocks ;
3712 	struct inode *inode = &(ei->vfs_inode);
3713 	struct super_block *sb = inode->i_sb;
3714 
3715 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3716 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3717 		/* we are using combined 48 bit field */
3718 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3719 					le32_to_cpu(raw_inode->i_blocks_lo);
3720 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3721 			/* i_blocks represent file system block size */
3722 			return i_blocks  << (inode->i_blkbits - 9);
3723 		} else {
3724 			return i_blocks;
3725 		}
3726 	} else {
3727 		return le32_to_cpu(raw_inode->i_blocks_lo);
3728 	}
3729 }
3730 
3731 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3732 {
3733 	struct ext4_iloc iloc;
3734 	struct ext4_inode *raw_inode;
3735 	struct ext4_inode_info *ei;
3736 	struct inode *inode;
3737 	journal_t *journal = EXT4_SB(sb)->s_journal;
3738 	long ret;
3739 	int block;
3740 
3741 	inode = iget_locked(sb, ino);
3742 	if (!inode)
3743 		return ERR_PTR(-ENOMEM);
3744 	if (!(inode->i_state & I_NEW))
3745 		return inode;
3746 
3747 	ei = EXT4_I(inode);
3748 	iloc.bh = NULL;
3749 
3750 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3751 	if (ret < 0)
3752 		goto bad_inode;
3753 	raw_inode = ext4_raw_inode(&iloc);
3754 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3755 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3756 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3757 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3758 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3759 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3760 	}
3761 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3762 
3763 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3764 	ei->i_dir_start_lookup = 0;
3765 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3766 	/* We now have enough fields to check if the inode was active or not.
3767 	 * This is needed because nfsd might try to access dead inodes
3768 	 * the test is that same one that e2fsck uses
3769 	 * NeilBrown 1999oct15
3770 	 */
3771 	if (inode->i_nlink == 0) {
3772 		if (inode->i_mode == 0 ||
3773 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3774 			/* this inode is deleted */
3775 			ret = -ESTALE;
3776 			goto bad_inode;
3777 		}
3778 		/* The only unlinked inodes we let through here have
3779 		 * valid i_mode and are being read by the orphan
3780 		 * recovery code: that's fine, we're about to complete
3781 		 * the process of deleting those. */
3782 	}
3783 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3784 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3785 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3786 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3787 		ei->i_file_acl |=
3788 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3789 	inode->i_size = ext4_isize(raw_inode);
3790 	ei->i_disksize = inode->i_size;
3791 #ifdef CONFIG_QUOTA
3792 	ei->i_reserved_quota = 0;
3793 #endif
3794 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3795 	ei->i_block_group = iloc.block_group;
3796 	ei->i_last_alloc_group = ~0;
3797 	/*
3798 	 * NOTE! The in-memory inode i_data array is in little-endian order
3799 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3800 	 */
3801 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3802 		ei->i_data[block] = raw_inode->i_block[block];
3803 	INIT_LIST_HEAD(&ei->i_orphan);
3804 
3805 	/*
3806 	 * Set transaction id's of transactions that have to be committed
3807 	 * to finish f[data]sync. We set them to currently running transaction
3808 	 * as we cannot be sure that the inode or some of its metadata isn't
3809 	 * part of the transaction - the inode could have been reclaimed and
3810 	 * now it is reread from disk.
3811 	 */
3812 	if (journal) {
3813 		transaction_t *transaction;
3814 		tid_t tid;
3815 
3816 		read_lock(&journal->j_state_lock);
3817 		if (journal->j_running_transaction)
3818 			transaction = journal->j_running_transaction;
3819 		else
3820 			transaction = journal->j_committing_transaction;
3821 		if (transaction)
3822 			tid = transaction->t_tid;
3823 		else
3824 			tid = journal->j_commit_sequence;
3825 		read_unlock(&journal->j_state_lock);
3826 		ei->i_sync_tid = tid;
3827 		ei->i_datasync_tid = tid;
3828 	}
3829 
3830 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3831 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3832 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3833 		    EXT4_INODE_SIZE(inode->i_sb)) {
3834 			ret = -EIO;
3835 			goto bad_inode;
3836 		}
3837 		if (ei->i_extra_isize == 0) {
3838 			/* The extra space is currently unused. Use it. */
3839 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3840 					    EXT4_GOOD_OLD_INODE_SIZE;
3841 		} else {
3842 			__le32 *magic = (void *)raw_inode +
3843 					EXT4_GOOD_OLD_INODE_SIZE +
3844 					ei->i_extra_isize;
3845 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3846 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3847 		}
3848 	} else
3849 		ei->i_extra_isize = 0;
3850 
3851 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3852 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3853 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3854 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3855 
3856 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3857 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3858 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3859 			inode->i_version |=
3860 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3861 	}
3862 
3863 	ret = 0;
3864 	if (ei->i_file_acl &&
3865 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3866 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3867 				 ei->i_file_acl);
3868 		ret = -EIO;
3869 		goto bad_inode;
3870 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3871 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3872 		    (S_ISLNK(inode->i_mode) &&
3873 		     !ext4_inode_is_fast_symlink(inode)))
3874 			/* Validate extent which is part of inode */
3875 			ret = ext4_ext_check_inode(inode);
3876 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3877 		   (S_ISLNK(inode->i_mode) &&
3878 		    !ext4_inode_is_fast_symlink(inode))) {
3879 		/* Validate block references which are part of inode */
3880 		ret = ext4_ind_check_inode(inode);
3881 	}
3882 	if (ret)
3883 		goto bad_inode;
3884 
3885 	if (S_ISREG(inode->i_mode)) {
3886 		inode->i_op = &ext4_file_inode_operations;
3887 		inode->i_fop = &ext4_file_operations;
3888 		ext4_set_aops(inode);
3889 	} else if (S_ISDIR(inode->i_mode)) {
3890 		inode->i_op = &ext4_dir_inode_operations;
3891 		inode->i_fop = &ext4_dir_operations;
3892 	} else if (S_ISLNK(inode->i_mode)) {
3893 		if (ext4_inode_is_fast_symlink(inode)) {
3894 			inode->i_op = &ext4_fast_symlink_inode_operations;
3895 			nd_terminate_link(ei->i_data, inode->i_size,
3896 				sizeof(ei->i_data) - 1);
3897 		} else {
3898 			inode->i_op = &ext4_symlink_inode_operations;
3899 			ext4_set_aops(inode);
3900 		}
3901 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3902 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3903 		inode->i_op = &ext4_special_inode_operations;
3904 		if (raw_inode->i_block[0])
3905 			init_special_inode(inode, inode->i_mode,
3906 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3907 		else
3908 			init_special_inode(inode, inode->i_mode,
3909 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3910 	} else {
3911 		ret = -EIO;
3912 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3913 		goto bad_inode;
3914 	}
3915 	brelse(iloc.bh);
3916 	ext4_set_inode_flags(inode);
3917 	unlock_new_inode(inode);
3918 	return inode;
3919 
3920 bad_inode:
3921 	brelse(iloc.bh);
3922 	iget_failed(inode);
3923 	return ERR_PTR(ret);
3924 }
3925 
3926 static int ext4_inode_blocks_set(handle_t *handle,
3927 				struct ext4_inode *raw_inode,
3928 				struct ext4_inode_info *ei)
3929 {
3930 	struct inode *inode = &(ei->vfs_inode);
3931 	u64 i_blocks = inode->i_blocks;
3932 	struct super_block *sb = inode->i_sb;
3933 
3934 	if (i_blocks <= ~0U) {
3935 		/*
3936 		 * i_blocks can be represnted in a 32 bit variable
3937 		 * as multiple of 512 bytes
3938 		 */
3939 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3940 		raw_inode->i_blocks_high = 0;
3941 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3942 		return 0;
3943 	}
3944 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3945 		return -EFBIG;
3946 
3947 	if (i_blocks <= 0xffffffffffffULL) {
3948 		/*
3949 		 * i_blocks can be represented in a 48 bit variable
3950 		 * as multiple of 512 bytes
3951 		 */
3952 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3953 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3954 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3955 	} else {
3956 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3957 		/* i_block is stored in file system block size */
3958 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3959 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3960 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3961 	}
3962 	return 0;
3963 }
3964 
3965 /*
3966  * Post the struct inode info into an on-disk inode location in the
3967  * buffer-cache.  This gobbles the caller's reference to the
3968  * buffer_head in the inode location struct.
3969  *
3970  * The caller must have write access to iloc->bh.
3971  */
3972 static int ext4_do_update_inode(handle_t *handle,
3973 				struct inode *inode,
3974 				struct ext4_iloc *iloc)
3975 {
3976 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3977 	struct ext4_inode_info *ei = EXT4_I(inode);
3978 	struct buffer_head *bh = iloc->bh;
3979 	int err = 0, rc, block;
3980 
3981 	/* For fields not not tracking in the in-memory inode,
3982 	 * initialise them to zero for new inodes. */
3983 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3984 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3985 
3986 	ext4_get_inode_flags(ei);
3987 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3988 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3989 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3990 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3991 /*
3992  * Fix up interoperability with old kernels. Otherwise, old inodes get
3993  * re-used with the upper 16 bits of the uid/gid intact
3994  */
3995 		if (!ei->i_dtime) {
3996 			raw_inode->i_uid_high =
3997 				cpu_to_le16(high_16_bits(inode->i_uid));
3998 			raw_inode->i_gid_high =
3999 				cpu_to_le16(high_16_bits(inode->i_gid));
4000 		} else {
4001 			raw_inode->i_uid_high = 0;
4002 			raw_inode->i_gid_high = 0;
4003 		}
4004 	} else {
4005 		raw_inode->i_uid_low =
4006 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4007 		raw_inode->i_gid_low =
4008 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4009 		raw_inode->i_uid_high = 0;
4010 		raw_inode->i_gid_high = 0;
4011 	}
4012 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4013 
4014 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4015 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4016 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4017 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4018 
4019 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4020 		goto out_brelse;
4021 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4022 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4023 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4024 	    cpu_to_le32(EXT4_OS_HURD))
4025 		raw_inode->i_file_acl_high =
4026 			cpu_to_le16(ei->i_file_acl >> 32);
4027 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4028 	ext4_isize_set(raw_inode, ei->i_disksize);
4029 	if (ei->i_disksize > 0x7fffffffULL) {
4030 		struct super_block *sb = inode->i_sb;
4031 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4032 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4033 				EXT4_SB(sb)->s_es->s_rev_level ==
4034 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4035 			/* If this is the first large file
4036 			 * created, add a flag to the superblock.
4037 			 */
4038 			err = ext4_journal_get_write_access(handle,
4039 					EXT4_SB(sb)->s_sbh);
4040 			if (err)
4041 				goto out_brelse;
4042 			ext4_update_dynamic_rev(sb);
4043 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4044 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4045 			sb->s_dirt = 1;
4046 			ext4_handle_sync(handle);
4047 			err = ext4_handle_dirty_metadata(handle, NULL,
4048 					EXT4_SB(sb)->s_sbh);
4049 		}
4050 	}
4051 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4052 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4053 		if (old_valid_dev(inode->i_rdev)) {
4054 			raw_inode->i_block[0] =
4055 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4056 			raw_inode->i_block[1] = 0;
4057 		} else {
4058 			raw_inode->i_block[0] = 0;
4059 			raw_inode->i_block[1] =
4060 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4061 			raw_inode->i_block[2] = 0;
4062 		}
4063 	} else
4064 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4065 			raw_inode->i_block[block] = ei->i_data[block];
4066 
4067 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4068 	if (ei->i_extra_isize) {
4069 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4070 			raw_inode->i_version_hi =
4071 			cpu_to_le32(inode->i_version >> 32);
4072 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4073 	}
4074 
4075 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4076 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4077 	if (!err)
4078 		err = rc;
4079 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4080 
4081 	ext4_update_inode_fsync_trans(handle, inode, 0);
4082 out_brelse:
4083 	brelse(bh);
4084 	ext4_std_error(inode->i_sb, err);
4085 	return err;
4086 }
4087 
4088 /*
4089  * ext4_write_inode()
4090  *
4091  * We are called from a few places:
4092  *
4093  * - Within generic_file_write() for O_SYNC files.
4094  *   Here, there will be no transaction running. We wait for any running
4095  *   trasnaction to commit.
4096  *
4097  * - Within sys_sync(), kupdate and such.
4098  *   We wait on commit, if tol to.
4099  *
4100  * - Within prune_icache() (PF_MEMALLOC == true)
4101  *   Here we simply return.  We can't afford to block kswapd on the
4102  *   journal commit.
4103  *
4104  * In all cases it is actually safe for us to return without doing anything,
4105  * because the inode has been copied into a raw inode buffer in
4106  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4107  * knfsd.
4108  *
4109  * Note that we are absolutely dependent upon all inode dirtiers doing the
4110  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4111  * which we are interested.
4112  *
4113  * It would be a bug for them to not do this.  The code:
4114  *
4115  *	mark_inode_dirty(inode)
4116  *	stuff();
4117  *	inode->i_size = expr;
4118  *
4119  * is in error because a kswapd-driven write_inode() could occur while
4120  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4121  * will no longer be on the superblock's dirty inode list.
4122  */
4123 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4124 {
4125 	int err;
4126 
4127 	if (current->flags & PF_MEMALLOC)
4128 		return 0;
4129 
4130 	if (EXT4_SB(inode->i_sb)->s_journal) {
4131 		if (ext4_journal_current_handle()) {
4132 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4133 			dump_stack();
4134 			return -EIO;
4135 		}
4136 
4137 		if (wbc->sync_mode != WB_SYNC_ALL)
4138 			return 0;
4139 
4140 		err = ext4_force_commit(inode->i_sb);
4141 	} else {
4142 		struct ext4_iloc iloc;
4143 
4144 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4145 		if (err)
4146 			return err;
4147 		if (wbc->sync_mode == WB_SYNC_ALL)
4148 			sync_dirty_buffer(iloc.bh);
4149 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4150 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4151 					 "IO error syncing inode");
4152 			err = -EIO;
4153 		}
4154 		brelse(iloc.bh);
4155 	}
4156 	return err;
4157 }
4158 
4159 /*
4160  * ext4_setattr()
4161  *
4162  * Called from notify_change.
4163  *
4164  * We want to trap VFS attempts to truncate the file as soon as
4165  * possible.  In particular, we want to make sure that when the VFS
4166  * shrinks i_size, we put the inode on the orphan list and modify
4167  * i_disksize immediately, so that during the subsequent flushing of
4168  * dirty pages and freeing of disk blocks, we can guarantee that any
4169  * commit will leave the blocks being flushed in an unused state on
4170  * disk.  (On recovery, the inode will get truncated and the blocks will
4171  * be freed, so we have a strong guarantee that no future commit will
4172  * leave these blocks visible to the user.)
4173  *
4174  * Another thing we have to assure is that if we are in ordered mode
4175  * and inode is still attached to the committing transaction, we must
4176  * we start writeout of all the dirty pages which are being truncated.
4177  * This way we are sure that all the data written in the previous
4178  * transaction are already on disk (truncate waits for pages under
4179  * writeback).
4180  *
4181  * Called with inode->i_mutex down.
4182  */
4183 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4184 {
4185 	struct inode *inode = dentry->d_inode;
4186 	int error, rc = 0;
4187 	int orphan = 0;
4188 	const unsigned int ia_valid = attr->ia_valid;
4189 
4190 	error = inode_change_ok(inode, attr);
4191 	if (error)
4192 		return error;
4193 
4194 	if (is_quota_modification(inode, attr))
4195 		dquot_initialize(inode);
4196 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4197 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4198 		handle_t *handle;
4199 
4200 		/* (user+group)*(old+new) structure, inode write (sb,
4201 		 * inode block, ? - but truncate inode update has it) */
4202 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4203 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4204 		if (IS_ERR(handle)) {
4205 			error = PTR_ERR(handle);
4206 			goto err_out;
4207 		}
4208 		error = dquot_transfer(inode, attr);
4209 		if (error) {
4210 			ext4_journal_stop(handle);
4211 			return error;
4212 		}
4213 		/* Update corresponding info in inode so that everything is in
4214 		 * one transaction */
4215 		if (attr->ia_valid & ATTR_UID)
4216 			inode->i_uid = attr->ia_uid;
4217 		if (attr->ia_valid & ATTR_GID)
4218 			inode->i_gid = attr->ia_gid;
4219 		error = ext4_mark_inode_dirty(handle, inode);
4220 		ext4_journal_stop(handle);
4221 	}
4222 
4223 	if (attr->ia_valid & ATTR_SIZE) {
4224 		inode_dio_wait(inode);
4225 
4226 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4227 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4228 
4229 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4230 				return -EFBIG;
4231 		}
4232 	}
4233 
4234 	if (S_ISREG(inode->i_mode) &&
4235 	    attr->ia_valid & ATTR_SIZE &&
4236 	    (attr->ia_size < inode->i_size)) {
4237 		handle_t *handle;
4238 
4239 		handle = ext4_journal_start(inode, 3);
4240 		if (IS_ERR(handle)) {
4241 			error = PTR_ERR(handle);
4242 			goto err_out;
4243 		}
4244 		if (ext4_handle_valid(handle)) {
4245 			error = ext4_orphan_add(handle, inode);
4246 			orphan = 1;
4247 		}
4248 		EXT4_I(inode)->i_disksize = attr->ia_size;
4249 		rc = ext4_mark_inode_dirty(handle, inode);
4250 		if (!error)
4251 			error = rc;
4252 		ext4_journal_stop(handle);
4253 
4254 		if (ext4_should_order_data(inode)) {
4255 			error = ext4_begin_ordered_truncate(inode,
4256 							    attr->ia_size);
4257 			if (error) {
4258 				/* Do as much error cleanup as possible */
4259 				handle = ext4_journal_start(inode, 3);
4260 				if (IS_ERR(handle)) {
4261 					ext4_orphan_del(NULL, inode);
4262 					goto err_out;
4263 				}
4264 				ext4_orphan_del(handle, inode);
4265 				orphan = 0;
4266 				ext4_journal_stop(handle);
4267 				goto err_out;
4268 			}
4269 		}
4270 	}
4271 
4272 	if (attr->ia_valid & ATTR_SIZE) {
4273 		if (attr->ia_size != i_size_read(inode)) {
4274 			truncate_setsize(inode, attr->ia_size);
4275 			ext4_truncate(inode);
4276 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4277 			ext4_truncate(inode);
4278 	}
4279 
4280 	if (!rc) {
4281 		setattr_copy(inode, attr);
4282 		mark_inode_dirty(inode);
4283 	}
4284 
4285 	/*
4286 	 * If the call to ext4_truncate failed to get a transaction handle at
4287 	 * all, we need to clean up the in-core orphan list manually.
4288 	 */
4289 	if (orphan && inode->i_nlink)
4290 		ext4_orphan_del(NULL, inode);
4291 
4292 	if (!rc && (ia_valid & ATTR_MODE))
4293 		rc = ext4_acl_chmod(inode);
4294 
4295 err_out:
4296 	ext4_std_error(inode->i_sb, error);
4297 	if (!error)
4298 		error = rc;
4299 	return error;
4300 }
4301 
4302 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4303 		 struct kstat *stat)
4304 {
4305 	struct inode *inode;
4306 	unsigned long delalloc_blocks;
4307 
4308 	inode = dentry->d_inode;
4309 	generic_fillattr(inode, stat);
4310 
4311 	/*
4312 	 * We can't update i_blocks if the block allocation is delayed
4313 	 * otherwise in the case of system crash before the real block
4314 	 * allocation is done, we will have i_blocks inconsistent with
4315 	 * on-disk file blocks.
4316 	 * We always keep i_blocks updated together with real
4317 	 * allocation. But to not confuse with user, stat
4318 	 * will return the blocks that include the delayed allocation
4319 	 * blocks for this file.
4320 	 */
4321 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4322 
4323 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4324 	return 0;
4325 }
4326 
4327 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4328 {
4329 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4330 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4331 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4332 }
4333 
4334 /*
4335  * Account for index blocks, block groups bitmaps and block group
4336  * descriptor blocks if modify datablocks and index blocks
4337  * worse case, the indexs blocks spread over different block groups
4338  *
4339  * If datablocks are discontiguous, they are possible to spread over
4340  * different block groups too. If they are contiuguous, with flexbg,
4341  * they could still across block group boundary.
4342  *
4343  * Also account for superblock, inode, quota and xattr blocks
4344  */
4345 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4346 {
4347 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4348 	int gdpblocks;
4349 	int idxblocks;
4350 	int ret = 0;
4351 
4352 	/*
4353 	 * How many index blocks need to touch to modify nrblocks?
4354 	 * The "Chunk" flag indicating whether the nrblocks is
4355 	 * physically contiguous on disk
4356 	 *
4357 	 * For Direct IO and fallocate, they calls get_block to allocate
4358 	 * one single extent at a time, so they could set the "Chunk" flag
4359 	 */
4360 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4361 
4362 	ret = idxblocks;
4363 
4364 	/*
4365 	 * Now let's see how many group bitmaps and group descriptors need
4366 	 * to account
4367 	 */
4368 	groups = idxblocks;
4369 	if (chunk)
4370 		groups += 1;
4371 	else
4372 		groups += nrblocks;
4373 
4374 	gdpblocks = groups;
4375 	if (groups > ngroups)
4376 		groups = ngroups;
4377 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4378 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4379 
4380 	/* bitmaps and block group descriptor blocks */
4381 	ret += groups + gdpblocks;
4382 
4383 	/* Blocks for super block, inode, quota and xattr blocks */
4384 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4385 
4386 	return ret;
4387 }
4388 
4389 /*
4390  * Calculate the total number of credits to reserve to fit
4391  * the modification of a single pages into a single transaction,
4392  * which may include multiple chunks of block allocations.
4393  *
4394  * This could be called via ext4_write_begin()
4395  *
4396  * We need to consider the worse case, when
4397  * one new block per extent.
4398  */
4399 int ext4_writepage_trans_blocks(struct inode *inode)
4400 {
4401 	int bpp = ext4_journal_blocks_per_page(inode);
4402 	int ret;
4403 
4404 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4405 
4406 	/* Account for data blocks for journalled mode */
4407 	if (ext4_should_journal_data(inode))
4408 		ret += bpp;
4409 	return ret;
4410 }
4411 
4412 /*
4413  * Calculate the journal credits for a chunk of data modification.
4414  *
4415  * This is called from DIO, fallocate or whoever calling
4416  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4417  *
4418  * journal buffers for data blocks are not included here, as DIO
4419  * and fallocate do no need to journal data buffers.
4420  */
4421 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4422 {
4423 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4424 }
4425 
4426 /*
4427  * The caller must have previously called ext4_reserve_inode_write().
4428  * Give this, we know that the caller already has write access to iloc->bh.
4429  */
4430 int ext4_mark_iloc_dirty(handle_t *handle,
4431 			 struct inode *inode, struct ext4_iloc *iloc)
4432 {
4433 	int err = 0;
4434 
4435 	if (test_opt(inode->i_sb, I_VERSION))
4436 		inode_inc_iversion(inode);
4437 
4438 	/* the do_update_inode consumes one bh->b_count */
4439 	get_bh(iloc->bh);
4440 
4441 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4442 	err = ext4_do_update_inode(handle, inode, iloc);
4443 	put_bh(iloc->bh);
4444 	return err;
4445 }
4446 
4447 /*
4448  * On success, We end up with an outstanding reference count against
4449  * iloc->bh.  This _must_ be cleaned up later.
4450  */
4451 
4452 int
4453 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4454 			 struct ext4_iloc *iloc)
4455 {
4456 	int err;
4457 
4458 	err = ext4_get_inode_loc(inode, iloc);
4459 	if (!err) {
4460 		BUFFER_TRACE(iloc->bh, "get_write_access");
4461 		err = ext4_journal_get_write_access(handle, iloc->bh);
4462 		if (err) {
4463 			brelse(iloc->bh);
4464 			iloc->bh = NULL;
4465 		}
4466 	}
4467 	ext4_std_error(inode->i_sb, err);
4468 	return err;
4469 }
4470 
4471 /*
4472  * Expand an inode by new_extra_isize bytes.
4473  * Returns 0 on success or negative error number on failure.
4474  */
4475 static int ext4_expand_extra_isize(struct inode *inode,
4476 				   unsigned int new_extra_isize,
4477 				   struct ext4_iloc iloc,
4478 				   handle_t *handle)
4479 {
4480 	struct ext4_inode *raw_inode;
4481 	struct ext4_xattr_ibody_header *header;
4482 
4483 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4484 		return 0;
4485 
4486 	raw_inode = ext4_raw_inode(&iloc);
4487 
4488 	header = IHDR(inode, raw_inode);
4489 
4490 	/* No extended attributes present */
4491 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4492 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4493 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4494 			new_extra_isize);
4495 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4496 		return 0;
4497 	}
4498 
4499 	/* try to expand with EAs present */
4500 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4501 					  raw_inode, handle);
4502 }
4503 
4504 /*
4505  * What we do here is to mark the in-core inode as clean with respect to inode
4506  * dirtiness (it may still be data-dirty).
4507  * This means that the in-core inode may be reaped by prune_icache
4508  * without having to perform any I/O.  This is a very good thing,
4509  * because *any* task may call prune_icache - even ones which
4510  * have a transaction open against a different journal.
4511  *
4512  * Is this cheating?  Not really.  Sure, we haven't written the
4513  * inode out, but prune_icache isn't a user-visible syncing function.
4514  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4515  * we start and wait on commits.
4516  *
4517  * Is this efficient/effective?  Well, we're being nice to the system
4518  * by cleaning up our inodes proactively so they can be reaped
4519  * without I/O.  But we are potentially leaving up to five seconds'
4520  * worth of inodes floating about which prune_icache wants us to
4521  * write out.  One way to fix that would be to get prune_icache()
4522  * to do a write_super() to free up some memory.  It has the desired
4523  * effect.
4524  */
4525 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4526 {
4527 	struct ext4_iloc iloc;
4528 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4529 	static unsigned int mnt_count;
4530 	int err, ret;
4531 
4532 	might_sleep();
4533 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4534 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4535 	if (ext4_handle_valid(handle) &&
4536 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4537 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4538 		/*
4539 		 * We need extra buffer credits since we may write into EA block
4540 		 * with this same handle. If journal_extend fails, then it will
4541 		 * only result in a minor loss of functionality for that inode.
4542 		 * If this is felt to be critical, then e2fsck should be run to
4543 		 * force a large enough s_min_extra_isize.
4544 		 */
4545 		if ((jbd2_journal_extend(handle,
4546 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4547 			ret = ext4_expand_extra_isize(inode,
4548 						      sbi->s_want_extra_isize,
4549 						      iloc, handle);
4550 			if (ret) {
4551 				ext4_set_inode_state(inode,
4552 						     EXT4_STATE_NO_EXPAND);
4553 				if (mnt_count !=
4554 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4555 					ext4_warning(inode->i_sb,
4556 					"Unable to expand inode %lu. Delete"
4557 					" some EAs or run e2fsck.",
4558 					inode->i_ino);
4559 					mnt_count =
4560 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4561 				}
4562 			}
4563 		}
4564 	}
4565 	if (!err)
4566 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4567 	return err;
4568 }
4569 
4570 /*
4571  * ext4_dirty_inode() is called from __mark_inode_dirty()
4572  *
4573  * We're really interested in the case where a file is being extended.
4574  * i_size has been changed by generic_commit_write() and we thus need
4575  * to include the updated inode in the current transaction.
4576  *
4577  * Also, dquot_alloc_block() will always dirty the inode when blocks
4578  * are allocated to the file.
4579  *
4580  * If the inode is marked synchronous, we don't honour that here - doing
4581  * so would cause a commit on atime updates, which we don't bother doing.
4582  * We handle synchronous inodes at the highest possible level.
4583  */
4584 void ext4_dirty_inode(struct inode *inode, int flags)
4585 {
4586 	handle_t *handle;
4587 
4588 	handle = ext4_journal_start(inode, 2);
4589 	if (IS_ERR(handle))
4590 		goto out;
4591 
4592 	ext4_mark_inode_dirty(handle, inode);
4593 
4594 	ext4_journal_stop(handle);
4595 out:
4596 	return;
4597 }
4598 
4599 #if 0
4600 /*
4601  * Bind an inode's backing buffer_head into this transaction, to prevent
4602  * it from being flushed to disk early.  Unlike
4603  * ext4_reserve_inode_write, this leaves behind no bh reference and
4604  * returns no iloc structure, so the caller needs to repeat the iloc
4605  * lookup to mark the inode dirty later.
4606  */
4607 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4608 {
4609 	struct ext4_iloc iloc;
4610 
4611 	int err = 0;
4612 	if (handle) {
4613 		err = ext4_get_inode_loc(inode, &iloc);
4614 		if (!err) {
4615 			BUFFER_TRACE(iloc.bh, "get_write_access");
4616 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4617 			if (!err)
4618 				err = ext4_handle_dirty_metadata(handle,
4619 								 NULL,
4620 								 iloc.bh);
4621 			brelse(iloc.bh);
4622 		}
4623 	}
4624 	ext4_std_error(inode->i_sb, err);
4625 	return err;
4626 }
4627 #endif
4628 
4629 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4630 {
4631 	journal_t *journal;
4632 	handle_t *handle;
4633 	int err;
4634 
4635 	/*
4636 	 * We have to be very careful here: changing a data block's
4637 	 * journaling status dynamically is dangerous.  If we write a
4638 	 * data block to the journal, change the status and then delete
4639 	 * that block, we risk forgetting to revoke the old log record
4640 	 * from the journal and so a subsequent replay can corrupt data.
4641 	 * So, first we make sure that the journal is empty and that
4642 	 * nobody is changing anything.
4643 	 */
4644 
4645 	journal = EXT4_JOURNAL(inode);
4646 	if (!journal)
4647 		return 0;
4648 	if (is_journal_aborted(journal))
4649 		return -EROFS;
4650 
4651 	jbd2_journal_lock_updates(journal);
4652 	jbd2_journal_flush(journal);
4653 
4654 	/*
4655 	 * OK, there are no updates running now, and all cached data is
4656 	 * synced to disk.  We are now in a completely consistent state
4657 	 * which doesn't have anything in the journal, and we know that
4658 	 * no filesystem updates are running, so it is safe to modify
4659 	 * the inode's in-core data-journaling state flag now.
4660 	 */
4661 
4662 	if (val)
4663 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4664 	else
4665 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4666 	ext4_set_aops(inode);
4667 
4668 	jbd2_journal_unlock_updates(journal);
4669 
4670 	/* Finally we can mark the inode as dirty. */
4671 
4672 	handle = ext4_journal_start(inode, 1);
4673 	if (IS_ERR(handle))
4674 		return PTR_ERR(handle);
4675 
4676 	err = ext4_mark_inode_dirty(handle, inode);
4677 	ext4_handle_sync(handle);
4678 	ext4_journal_stop(handle);
4679 	ext4_std_error(inode->i_sb, err);
4680 
4681 	return err;
4682 }
4683 
4684 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4685 {
4686 	return !buffer_mapped(bh);
4687 }
4688 
4689 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4690 {
4691 	struct page *page = vmf->page;
4692 	loff_t size;
4693 	unsigned long len;
4694 	int ret;
4695 	struct file *file = vma->vm_file;
4696 	struct inode *inode = file->f_path.dentry->d_inode;
4697 	struct address_space *mapping = inode->i_mapping;
4698 	handle_t *handle;
4699 	get_block_t *get_block;
4700 	int retries = 0;
4701 
4702 	/*
4703 	 * This check is racy but catches the common case. We rely on
4704 	 * __block_page_mkwrite() to do a reliable check.
4705 	 */
4706 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4707 	/* Delalloc case is easy... */
4708 	if (test_opt(inode->i_sb, DELALLOC) &&
4709 	    !ext4_should_journal_data(inode) &&
4710 	    !ext4_nonda_switch(inode->i_sb)) {
4711 		do {
4712 			ret = __block_page_mkwrite(vma, vmf,
4713 						   ext4_da_get_block_prep);
4714 		} while (ret == -ENOSPC &&
4715 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4716 		goto out_ret;
4717 	}
4718 
4719 	lock_page(page);
4720 	size = i_size_read(inode);
4721 	/* Page got truncated from under us? */
4722 	if (page->mapping != mapping || page_offset(page) > size) {
4723 		unlock_page(page);
4724 		ret = VM_FAULT_NOPAGE;
4725 		goto out;
4726 	}
4727 
4728 	if (page->index == size >> PAGE_CACHE_SHIFT)
4729 		len = size & ~PAGE_CACHE_MASK;
4730 	else
4731 		len = PAGE_CACHE_SIZE;
4732 	/*
4733 	 * Return if we have all the buffers mapped. This avoids the need to do
4734 	 * journal_start/journal_stop which can block and take a long time
4735 	 */
4736 	if (page_has_buffers(page)) {
4737 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4738 					ext4_bh_unmapped)) {
4739 			/* Wait so that we don't change page under IO */
4740 			wait_on_page_writeback(page);
4741 			ret = VM_FAULT_LOCKED;
4742 			goto out;
4743 		}
4744 	}
4745 	unlock_page(page);
4746 	/* OK, we need to fill the hole... */
4747 	if (ext4_should_dioread_nolock(inode))
4748 		get_block = ext4_get_block_write;
4749 	else
4750 		get_block = ext4_get_block;
4751 retry_alloc:
4752 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4753 	if (IS_ERR(handle)) {
4754 		ret = VM_FAULT_SIGBUS;
4755 		goto out;
4756 	}
4757 	ret = __block_page_mkwrite(vma, vmf, get_block);
4758 	if (!ret && ext4_should_journal_data(inode)) {
4759 		if (walk_page_buffers(handle, page_buffers(page), 0,
4760 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4761 			unlock_page(page);
4762 			ret = VM_FAULT_SIGBUS;
4763 			ext4_journal_stop(handle);
4764 			goto out;
4765 		}
4766 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4767 	}
4768 	ext4_journal_stop(handle);
4769 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4770 		goto retry_alloc;
4771 out_ret:
4772 	ret = block_page_mkwrite_return(ret);
4773 out:
4774 	return ret;
4775 }
4776