1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 trace_ext4_begin_ordered_truncate(inode, new_size); 55 /* 56 * If jinode is zero, then we never opened the file for 57 * writing, so there's no need to call 58 * jbd2_journal_begin_ordered_truncate() since there's no 59 * outstanding writes we need to flush. 60 */ 61 if (!EXT4_I(inode)->jinode) 62 return 0; 63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 64 EXT4_I(inode)->jinode, 65 new_size); 66 } 67 68 static void ext4_invalidatepage(struct page *page, unsigned long offset); 69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 70 struct buffer_head *bh_result, int create); 71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 73 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 75 76 /* 77 * Test whether an inode is a fast symlink. 78 */ 79 static int ext4_inode_is_fast_symlink(struct inode *inode) 80 { 81 int ea_blocks = EXT4_I(inode)->i_file_acl ? 82 (inode->i_sb->s_blocksize >> 9) : 0; 83 84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 85 } 86 87 /* 88 * Restart the transaction associated with *handle. This does a commit, 89 * so before we call here everything must be consistently dirtied against 90 * this transaction. 91 */ 92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 93 int nblocks) 94 { 95 int ret; 96 97 /* 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 99 * moment, get_block can be called only for blocks inside i_size since 100 * page cache has been already dropped and writes are blocked by 101 * i_mutex. So we can safely drop the i_data_sem here. 102 */ 103 BUG_ON(EXT4_JOURNAL(inode) == NULL); 104 jbd_debug(2, "restarting handle %p\n", handle); 105 up_write(&EXT4_I(inode)->i_data_sem); 106 ret = ext4_journal_restart(handle, nblocks); 107 down_write(&EXT4_I(inode)->i_data_sem); 108 ext4_discard_preallocations(inode); 109 110 return ret; 111 } 112 113 /* 114 * Called at the last iput() if i_nlink is zero. 115 */ 116 void ext4_evict_inode(struct inode *inode) 117 { 118 handle_t *handle; 119 int err; 120 121 trace_ext4_evict_inode(inode); 122 123 ext4_ioend_wait(inode); 124 125 if (inode->i_nlink) { 126 /* 127 * When journalling data dirty buffers are tracked only in the 128 * journal. So although mm thinks everything is clean and 129 * ready for reaping the inode might still have some pages to 130 * write in the running transaction or waiting to be 131 * checkpointed. Thus calling jbd2_journal_invalidatepage() 132 * (via truncate_inode_pages()) to discard these buffers can 133 * cause data loss. Also even if we did not discard these 134 * buffers, we would have no way to find them after the inode 135 * is reaped and thus user could see stale data if he tries to 136 * read them before the transaction is checkpointed. So be 137 * careful and force everything to disk here... We use 138 * ei->i_datasync_tid to store the newest transaction 139 * containing inode's data. 140 * 141 * Note that directories do not have this problem because they 142 * don't use page cache. 143 */ 144 if (ext4_should_journal_data(inode) && 145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 148 149 jbd2_log_start_commit(journal, commit_tid); 150 jbd2_log_wait_commit(journal, commit_tid); 151 filemap_write_and_wait(&inode->i_data); 152 } 153 truncate_inode_pages(&inode->i_data, 0); 154 goto no_delete; 155 } 156 157 if (!is_bad_inode(inode)) 158 dquot_initialize(inode); 159 160 if (ext4_should_order_data(inode)) 161 ext4_begin_ordered_truncate(inode, 0); 162 truncate_inode_pages(&inode->i_data, 0); 163 164 if (is_bad_inode(inode)) 165 goto no_delete; 166 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 168 if (IS_ERR(handle)) { 169 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 170 /* 171 * If we're going to skip the normal cleanup, we still need to 172 * make sure that the in-core orphan linked list is properly 173 * cleaned up. 174 */ 175 ext4_orphan_del(NULL, inode); 176 goto no_delete; 177 } 178 179 if (IS_SYNC(inode)) 180 ext4_handle_sync(handle); 181 inode->i_size = 0; 182 err = ext4_mark_inode_dirty(handle, inode); 183 if (err) { 184 ext4_warning(inode->i_sb, 185 "couldn't mark inode dirty (err %d)", err); 186 goto stop_handle; 187 } 188 if (inode->i_blocks) 189 ext4_truncate(inode); 190 191 /* 192 * ext4_ext_truncate() doesn't reserve any slop when it 193 * restarts journal transactions; therefore there may not be 194 * enough credits left in the handle to remove the inode from 195 * the orphan list and set the dtime field. 196 */ 197 if (!ext4_handle_has_enough_credits(handle, 3)) { 198 err = ext4_journal_extend(handle, 3); 199 if (err > 0) 200 err = ext4_journal_restart(handle, 3); 201 if (err != 0) { 202 ext4_warning(inode->i_sb, 203 "couldn't extend journal (err %d)", err); 204 stop_handle: 205 ext4_journal_stop(handle); 206 ext4_orphan_del(NULL, inode); 207 goto no_delete; 208 } 209 } 210 211 /* 212 * Kill off the orphan record which ext4_truncate created. 213 * AKPM: I think this can be inside the above `if'. 214 * Note that ext4_orphan_del() has to be able to cope with the 215 * deletion of a non-existent orphan - this is because we don't 216 * know if ext4_truncate() actually created an orphan record. 217 * (Well, we could do this if we need to, but heck - it works) 218 */ 219 ext4_orphan_del(handle, inode); 220 EXT4_I(inode)->i_dtime = get_seconds(); 221 222 /* 223 * One subtle ordering requirement: if anything has gone wrong 224 * (transaction abort, IO errors, whatever), then we can still 225 * do these next steps (the fs will already have been marked as 226 * having errors), but we can't free the inode if the mark_dirty 227 * fails. 228 */ 229 if (ext4_mark_inode_dirty(handle, inode)) 230 /* If that failed, just do the required in-core inode clear. */ 231 ext4_clear_inode(inode); 232 else 233 ext4_free_inode(handle, inode); 234 ext4_journal_stop(handle); 235 return; 236 no_delete: 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 238 } 239 240 #ifdef CONFIG_QUOTA 241 qsize_t *ext4_get_reserved_space(struct inode *inode) 242 { 243 return &EXT4_I(inode)->i_reserved_quota; 244 } 245 #endif 246 247 /* 248 * Calculate the number of metadata blocks need to reserve 249 * to allocate a block located at @lblock 250 */ 251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 252 { 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 254 return ext4_ext_calc_metadata_amount(inode, lblock); 255 256 return ext4_ind_calc_metadata_amount(inode, lblock); 257 } 258 259 /* 260 * Called with i_data_sem down, which is important since we can call 261 * ext4_discard_preallocations() from here. 262 */ 263 void ext4_da_update_reserve_space(struct inode *inode, 264 int used, int quota_claim) 265 { 266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 267 struct ext4_inode_info *ei = EXT4_I(inode); 268 269 spin_lock(&ei->i_block_reservation_lock); 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 271 if (unlikely(used > ei->i_reserved_data_blocks)) { 272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 273 "with only %d reserved data blocks\n", 274 __func__, inode->i_ino, used, 275 ei->i_reserved_data_blocks); 276 WARN_ON(1); 277 used = ei->i_reserved_data_blocks; 278 } 279 280 /* Update per-inode reservations */ 281 ei->i_reserved_data_blocks -= used; 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 284 used + ei->i_allocated_meta_blocks); 285 ei->i_allocated_meta_blocks = 0; 286 287 if (ei->i_reserved_data_blocks == 0) { 288 /* 289 * We can release all of the reserved metadata blocks 290 * only when we have written all of the delayed 291 * allocation blocks. 292 */ 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 294 ei->i_reserved_meta_blocks); 295 ei->i_reserved_meta_blocks = 0; 296 ei->i_da_metadata_calc_len = 0; 297 } 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 299 300 /* Update quota subsystem for data blocks */ 301 if (quota_claim) 302 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 303 else { 304 /* 305 * We did fallocate with an offset that is already delayed 306 * allocated. So on delayed allocated writeback we should 307 * not re-claim the quota for fallocated blocks. 308 */ 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 310 } 311 312 /* 313 * If we have done all the pending block allocations and if 314 * there aren't any writers on the inode, we can discard the 315 * inode's preallocations. 316 */ 317 if ((ei->i_reserved_data_blocks == 0) && 318 (atomic_read(&inode->i_writecount) == 0)) 319 ext4_discard_preallocations(inode); 320 } 321 322 static int __check_block_validity(struct inode *inode, const char *func, 323 unsigned int line, 324 struct ext4_map_blocks *map) 325 { 326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 327 map->m_len)) { 328 ext4_error_inode(inode, func, line, map->m_pblk, 329 "lblock %lu mapped to illegal pblock " 330 "(length %d)", (unsigned long) map->m_lblk, 331 map->m_len); 332 return -EIO; 333 } 334 return 0; 335 } 336 337 #define check_block_validity(inode, map) \ 338 __check_block_validity((inode), __func__, __LINE__, (map)) 339 340 /* 341 * Return the number of contiguous dirty pages in a given inode 342 * starting at page frame idx. 343 */ 344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 345 unsigned int max_pages) 346 { 347 struct address_space *mapping = inode->i_mapping; 348 pgoff_t index; 349 struct pagevec pvec; 350 pgoff_t num = 0; 351 int i, nr_pages, done = 0; 352 353 if (max_pages == 0) 354 return 0; 355 pagevec_init(&pvec, 0); 356 while (!done) { 357 index = idx; 358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 359 PAGECACHE_TAG_DIRTY, 360 (pgoff_t)PAGEVEC_SIZE); 361 if (nr_pages == 0) 362 break; 363 for (i = 0; i < nr_pages; i++) { 364 struct page *page = pvec.pages[i]; 365 struct buffer_head *bh, *head; 366 367 lock_page(page); 368 if (unlikely(page->mapping != mapping) || 369 !PageDirty(page) || 370 PageWriteback(page) || 371 page->index != idx) { 372 done = 1; 373 unlock_page(page); 374 break; 375 } 376 if (page_has_buffers(page)) { 377 bh = head = page_buffers(page); 378 do { 379 if (!buffer_delay(bh) && 380 !buffer_unwritten(bh)) 381 done = 1; 382 bh = bh->b_this_page; 383 } while (!done && (bh != head)); 384 } 385 unlock_page(page); 386 if (done) 387 break; 388 idx++; 389 num++; 390 if (num >= max_pages) { 391 done = 1; 392 break; 393 } 394 } 395 pagevec_release(&pvec); 396 } 397 return num; 398 } 399 400 /* 401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 402 */ 403 static void set_buffers_da_mapped(struct inode *inode, 404 struct ext4_map_blocks *map) 405 { 406 struct address_space *mapping = inode->i_mapping; 407 struct pagevec pvec; 408 int i, nr_pages; 409 pgoff_t index, end; 410 411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 412 end = (map->m_lblk + map->m_len - 1) >> 413 (PAGE_CACHE_SHIFT - inode->i_blkbits); 414 415 pagevec_init(&pvec, 0); 416 while (index <= end) { 417 nr_pages = pagevec_lookup(&pvec, mapping, index, 418 min(end - index + 1, 419 (pgoff_t)PAGEVEC_SIZE)); 420 if (nr_pages == 0) 421 break; 422 for (i = 0; i < nr_pages; i++) { 423 struct page *page = pvec.pages[i]; 424 struct buffer_head *bh, *head; 425 426 if (unlikely(page->mapping != mapping) || 427 !PageDirty(page)) 428 break; 429 430 if (page_has_buffers(page)) { 431 bh = head = page_buffers(page); 432 do { 433 set_buffer_da_mapped(bh); 434 bh = bh->b_this_page; 435 } while (bh != head); 436 } 437 index++; 438 } 439 pagevec_release(&pvec); 440 } 441 } 442 443 /* 444 * The ext4_map_blocks() function tries to look up the requested blocks, 445 * and returns if the blocks are already mapped. 446 * 447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 448 * and store the allocated blocks in the result buffer head and mark it 449 * mapped. 450 * 451 * If file type is extents based, it will call ext4_ext_map_blocks(), 452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 453 * based files 454 * 455 * On success, it returns the number of blocks being mapped or allocate. 456 * if create==0 and the blocks are pre-allocated and uninitialized block, 457 * the result buffer head is unmapped. If the create ==1, it will make sure 458 * the buffer head is mapped. 459 * 460 * It returns 0 if plain look up failed (blocks have not been allocated), in 461 * that case, buffer head is unmapped 462 * 463 * It returns the error in case of allocation failure. 464 */ 465 int ext4_map_blocks(handle_t *handle, struct inode *inode, 466 struct ext4_map_blocks *map, int flags) 467 { 468 int retval; 469 470 map->m_flags = 0; 471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 472 "logical block %lu\n", inode->i_ino, flags, map->m_len, 473 (unsigned long) map->m_lblk); 474 /* 475 * Try to see if we can get the block without requesting a new 476 * file system block. 477 */ 478 down_read((&EXT4_I(inode)->i_data_sem)); 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 480 retval = ext4_ext_map_blocks(handle, inode, map, flags & 481 EXT4_GET_BLOCKS_KEEP_SIZE); 482 } else { 483 retval = ext4_ind_map_blocks(handle, inode, map, flags & 484 EXT4_GET_BLOCKS_KEEP_SIZE); 485 } 486 up_read((&EXT4_I(inode)->i_data_sem)); 487 488 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 489 int ret = check_block_validity(inode, map); 490 if (ret != 0) 491 return ret; 492 } 493 494 /* If it is only a block(s) look up */ 495 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 496 return retval; 497 498 /* 499 * Returns if the blocks have already allocated 500 * 501 * Note that if blocks have been preallocated 502 * ext4_ext_get_block() returns the create = 0 503 * with buffer head unmapped. 504 */ 505 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 506 return retval; 507 508 /* 509 * When we call get_blocks without the create flag, the 510 * BH_Unwritten flag could have gotten set if the blocks 511 * requested were part of a uninitialized extent. We need to 512 * clear this flag now that we are committed to convert all or 513 * part of the uninitialized extent to be an initialized 514 * extent. This is because we need to avoid the combination 515 * of BH_Unwritten and BH_Mapped flags being simultaneously 516 * set on the buffer_head. 517 */ 518 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 519 520 /* 521 * New blocks allocate and/or writing to uninitialized extent 522 * will possibly result in updating i_data, so we take 523 * the write lock of i_data_sem, and call get_blocks() 524 * with create == 1 flag. 525 */ 526 down_write((&EXT4_I(inode)->i_data_sem)); 527 528 /* 529 * if the caller is from delayed allocation writeout path 530 * we have already reserved fs blocks for allocation 531 * let the underlying get_block() function know to 532 * avoid double accounting 533 */ 534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 535 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 536 /* 537 * We need to check for EXT4 here because migrate 538 * could have changed the inode type in between 539 */ 540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 541 retval = ext4_ext_map_blocks(handle, inode, map, flags); 542 } else { 543 retval = ext4_ind_map_blocks(handle, inode, map, flags); 544 545 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 546 /* 547 * We allocated new blocks which will result in 548 * i_data's format changing. Force the migrate 549 * to fail by clearing migrate flags 550 */ 551 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 552 } 553 554 /* 555 * Update reserved blocks/metadata blocks after successful 556 * block allocation which had been deferred till now. We don't 557 * support fallocate for non extent files. So we can update 558 * reserve space here. 559 */ 560 if ((retval > 0) && 561 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 562 ext4_da_update_reserve_space(inode, retval, 1); 563 } 564 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 565 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 566 567 /* If we have successfully mapped the delayed allocated blocks, 568 * set the BH_Da_Mapped bit on them. Its important to do this 569 * under the protection of i_data_sem. 570 */ 571 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 572 set_buffers_da_mapped(inode, map); 573 } 574 575 up_write((&EXT4_I(inode)->i_data_sem)); 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 int ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 return retval; 582 } 583 584 /* Maximum number of blocks we map for direct IO at once. */ 585 #define DIO_MAX_BLOCKS 4096 586 587 static int _ext4_get_block(struct inode *inode, sector_t iblock, 588 struct buffer_head *bh, int flags) 589 { 590 handle_t *handle = ext4_journal_current_handle(); 591 struct ext4_map_blocks map; 592 int ret = 0, started = 0; 593 int dio_credits; 594 595 map.m_lblk = iblock; 596 map.m_len = bh->b_size >> inode->i_blkbits; 597 598 if (flags && !handle) { 599 /* Direct IO write... */ 600 if (map.m_len > DIO_MAX_BLOCKS) 601 map.m_len = DIO_MAX_BLOCKS; 602 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 603 handle = ext4_journal_start(inode, dio_credits); 604 if (IS_ERR(handle)) { 605 ret = PTR_ERR(handle); 606 return ret; 607 } 608 started = 1; 609 } 610 611 ret = ext4_map_blocks(handle, inode, &map, flags); 612 if (ret > 0) { 613 map_bh(bh, inode->i_sb, map.m_pblk); 614 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 615 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 616 ret = 0; 617 } 618 if (started) 619 ext4_journal_stop(handle); 620 return ret; 621 } 622 623 int ext4_get_block(struct inode *inode, sector_t iblock, 624 struct buffer_head *bh, int create) 625 { 626 return _ext4_get_block(inode, iblock, bh, 627 create ? EXT4_GET_BLOCKS_CREATE : 0); 628 } 629 630 /* 631 * `handle' can be NULL if create is zero 632 */ 633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 634 ext4_lblk_t block, int create, int *errp) 635 { 636 struct ext4_map_blocks map; 637 struct buffer_head *bh; 638 int fatal = 0, err; 639 640 J_ASSERT(handle != NULL || create == 0); 641 642 map.m_lblk = block; 643 map.m_len = 1; 644 err = ext4_map_blocks(handle, inode, &map, 645 create ? EXT4_GET_BLOCKS_CREATE : 0); 646 647 if (err < 0) 648 *errp = err; 649 if (err <= 0) 650 return NULL; 651 *errp = 0; 652 653 bh = sb_getblk(inode->i_sb, map.m_pblk); 654 if (!bh) { 655 *errp = -EIO; 656 return NULL; 657 } 658 if (map.m_flags & EXT4_MAP_NEW) { 659 J_ASSERT(create != 0); 660 J_ASSERT(handle != NULL); 661 662 /* 663 * Now that we do not always journal data, we should 664 * keep in mind whether this should always journal the 665 * new buffer as metadata. For now, regular file 666 * writes use ext4_get_block instead, so it's not a 667 * problem. 668 */ 669 lock_buffer(bh); 670 BUFFER_TRACE(bh, "call get_create_access"); 671 fatal = ext4_journal_get_create_access(handle, bh); 672 if (!fatal && !buffer_uptodate(bh)) { 673 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 674 set_buffer_uptodate(bh); 675 } 676 unlock_buffer(bh); 677 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 678 err = ext4_handle_dirty_metadata(handle, inode, bh); 679 if (!fatal) 680 fatal = err; 681 } else { 682 BUFFER_TRACE(bh, "not a new buffer"); 683 } 684 if (fatal) { 685 *errp = fatal; 686 brelse(bh); 687 bh = NULL; 688 } 689 return bh; 690 } 691 692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 693 ext4_lblk_t block, int create, int *err) 694 { 695 struct buffer_head *bh; 696 697 bh = ext4_getblk(handle, inode, block, create, err); 698 if (!bh) 699 return bh; 700 if (buffer_uptodate(bh)) 701 return bh; 702 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 703 wait_on_buffer(bh); 704 if (buffer_uptodate(bh)) 705 return bh; 706 put_bh(bh); 707 *err = -EIO; 708 return NULL; 709 } 710 711 static int walk_page_buffers(handle_t *handle, 712 struct buffer_head *head, 713 unsigned from, 714 unsigned to, 715 int *partial, 716 int (*fn)(handle_t *handle, 717 struct buffer_head *bh)) 718 { 719 struct buffer_head *bh; 720 unsigned block_start, block_end; 721 unsigned blocksize = head->b_size; 722 int err, ret = 0; 723 struct buffer_head *next; 724 725 for (bh = head, block_start = 0; 726 ret == 0 && (bh != head || !block_start); 727 block_start = block_end, bh = next) { 728 next = bh->b_this_page; 729 block_end = block_start + blocksize; 730 if (block_end <= from || block_start >= to) { 731 if (partial && !buffer_uptodate(bh)) 732 *partial = 1; 733 continue; 734 } 735 err = (*fn)(handle, bh); 736 if (!ret) 737 ret = err; 738 } 739 return ret; 740 } 741 742 /* 743 * To preserve ordering, it is essential that the hole instantiation and 744 * the data write be encapsulated in a single transaction. We cannot 745 * close off a transaction and start a new one between the ext4_get_block() 746 * and the commit_write(). So doing the jbd2_journal_start at the start of 747 * prepare_write() is the right place. 748 * 749 * Also, this function can nest inside ext4_writepage() -> 750 * block_write_full_page(). In that case, we *know* that ext4_writepage() 751 * has generated enough buffer credits to do the whole page. So we won't 752 * block on the journal in that case, which is good, because the caller may 753 * be PF_MEMALLOC. 754 * 755 * By accident, ext4 can be reentered when a transaction is open via 756 * quota file writes. If we were to commit the transaction while thus 757 * reentered, there can be a deadlock - we would be holding a quota 758 * lock, and the commit would never complete if another thread had a 759 * transaction open and was blocking on the quota lock - a ranking 760 * violation. 761 * 762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 763 * will _not_ run commit under these circumstances because handle->h_ref 764 * is elevated. We'll still have enough credits for the tiny quotafile 765 * write. 766 */ 767 static int do_journal_get_write_access(handle_t *handle, 768 struct buffer_head *bh) 769 { 770 int dirty = buffer_dirty(bh); 771 int ret; 772 773 if (!buffer_mapped(bh) || buffer_freed(bh)) 774 return 0; 775 /* 776 * __block_write_begin() could have dirtied some buffers. Clean 777 * the dirty bit as jbd2_journal_get_write_access() could complain 778 * otherwise about fs integrity issues. Setting of the dirty bit 779 * by __block_write_begin() isn't a real problem here as we clear 780 * the bit before releasing a page lock and thus writeback cannot 781 * ever write the buffer. 782 */ 783 if (dirty) 784 clear_buffer_dirty(bh); 785 ret = ext4_journal_get_write_access(handle, bh); 786 if (!ret && dirty) 787 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 788 return ret; 789 } 790 791 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 792 struct buffer_head *bh_result, int create); 793 static int ext4_write_begin(struct file *file, struct address_space *mapping, 794 loff_t pos, unsigned len, unsigned flags, 795 struct page **pagep, void **fsdata) 796 { 797 struct inode *inode = mapping->host; 798 int ret, needed_blocks; 799 handle_t *handle; 800 int retries = 0; 801 struct page *page; 802 pgoff_t index; 803 unsigned from, to; 804 805 trace_ext4_write_begin(inode, pos, len, flags); 806 /* 807 * Reserve one block more for addition to orphan list in case 808 * we allocate blocks but write fails for some reason 809 */ 810 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 811 index = pos >> PAGE_CACHE_SHIFT; 812 from = pos & (PAGE_CACHE_SIZE - 1); 813 to = from + len; 814 815 retry: 816 handle = ext4_journal_start(inode, needed_blocks); 817 if (IS_ERR(handle)) { 818 ret = PTR_ERR(handle); 819 goto out; 820 } 821 822 /* We cannot recurse into the filesystem as the transaction is already 823 * started */ 824 flags |= AOP_FLAG_NOFS; 825 826 page = grab_cache_page_write_begin(mapping, index, flags); 827 if (!page) { 828 ext4_journal_stop(handle); 829 ret = -ENOMEM; 830 goto out; 831 } 832 *pagep = page; 833 834 if (ext4_should_dioread_nolock(inode)) 835 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 836 else 837 ret = __block_write_begin(page, pos, len, ext4_get_block); 838 839 if (!ret && ext4_should_journal_data(inode)) { 840 ret = walk_page_buffers(handle, page_buffers(page), 841 from, to, NULL, do_journal_get_write_access); 842 } 843 844 if (ret) { 845 unlock_page(page); 846 page_cache_release(page); 847 /* 848 * __block_write_begin may have instantiated a few blocks 849 * outside i_size. Trim these off again. Don't need 850 * i_size_read because we hold i_mutex. 851 * 852 * Add inode to orphan list in case we crash before 853 * truncate finishes 854 */ 855 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 856 ext4_orphan_add(handle, inode); 857 858 ext4_journal_stop(handle); 859 if (pos + len > inode->i_size) { 860 ext4_truncate_failed_write(inode); 861 /* 862 * If truncate failed early the inode might 863 * still be on the orphan list; we need to 864 * make sure the inode is removed from the 865 * orphan list in that case. 866 */ 867 if (inode->i_nlink) 868 ext4_orphan_del(NULL, inode); 869 } 870 } 871 872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 873 goto retry; 874 out: 875 return ret; 876 } 877 878 /* For write_end() in data=journal mode */ 879 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 880 { 881 if (!buffer_mapped(bh) || buffer_freed(bh)) 882 return 0; 883 set_buffer_uptodate(bh); 884 return ext4_handle_dirty_metadata(handle, NULL, bh); 885 } 886 887 static int ext4_generic_write_end(struct file *file, 888 struct address_space *mapping, 889 loff_t pos, unsigned len, unsigned copied, 890 struct page *page, void *fsdata) 891 { 892 int i_size_changed = 0; 893 struct inode *inode = mapping->host; 894 handle_t *handle = ext4_journal_current_handle(); 895 896 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 897 898 /* 899 * No need to use i_size_read() here, the i_size 900 * cannot change under us because we hold i_mutex. 901 * 902 * But it's important to update i_size while still holding page lock: 903 * page writeout could otherwise come in and zero beyond i_size. 904 */ 905 if (pos + copied > inode->i_size) { 906 i_size_write(inode, pos + copied); 907 i_size_changed = 1; 908 } 909 910 if (pos + copied > EXT4_I(inode)->i_disksize) { 911 /* We need to mark inode dirty even if 912 * new_i_size is less that inode->i_size 913 * bu greater than i_disksize.(hint delalloc) 914 */ 915 ext4_update_i_disksize(inode, (pos + copied)); 916 i_size_changed = 1; 917 } 918 unlock_page(page); 919 page_cache_release(page); 920 921 /* 922 * Don't mark the inode dirty under page lock. First, it unnecessarily 923 * makes the holding time of page lock longer. Second, it forces lock 924 * ordering of page lock and transaction start for journaling 925 * filesystems. 926 */ 927 if (i_size_changed) 928 ext4_mark_inode_dirty(handle, inode); 929 930 return copied; 931 } 932 933 /* 934 * We need to pick up the new inode size which generic_commit_write gave us 935 * `file' can be NULL - eg, when called from page_symlink(). 936 * 937 * ext4 never places buffers on inode->i_mapping->private_list. metadata 938 * buffers are managed internally. 939 */ 940 static int ext4_ordered_write_end(struct file *file, 941 struct address_space *mapping, 942 loff_t pos, unsigned len, unsigned copied, 943 struct page *page, void *fsdata) 944 { 945 handle_t *handle = ext4_journal_current_handle(); 946 struct inode *inode = mapping->host; 947 int ret = 0, ret2; 948 949 trace_ext4_ordered_write_end(inode, pos, len, copied); 950 ret = ext4_jbd2_file_inode(handle, inode); 951 952 if (ret == 0) { 953 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 954 page, fsdata); 955 copied = ret2; 956 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 957 /* if we have allocated more blocks and copied 958 * less. We will have blocks allocated outside 959 * inode->i_size. So truncate them 960 */ 961 ext4_orphan_add(handle, inode); 962 if (ret2 < 0) 963 ret = ret2; 964 } else { 965 unlock_page(page); 966 page_cache_release(page); 967 } 968 969 ret2 = ext4_journal_stop(handle); 970 if (!ret) 971 ret = ret2; 972 973 if (pos + len > inode->i_size) { 974 ext4_truncate_failed_write(inode); 975 /* 976 * If truncate failed early the inode might still be 977 * on the orphan list; we need to make sure the inode 978 * is removed from the orphan list in that case. 979 */ 980 if (inode->i_nlink) 981 ext4_orphan_del(NULL, inode); 982 } 983 984 985 return ret ? ret : copied; 986 } 987 988 static int ext4_writeback_write_end(struct file *file, 989 struct address_space *mapping, 990 loff_t pos, unsigned len, unsigned copied, 991 struct page *page, void *fsdata) 992 { 993 handle_t *handle = ext4_journal_current_handle(); 994 struct inode *inode = mapping->host; 995 int ret = 0, ret2; 996 997 trace_ext4_writeback_write_end(inode, pos, len, copied); 998 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 999 page, fsdata); 1000 copied = ret2; 1001 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1002 /* if we have allocated more blocks and copied 1003 * less. We will have blocks allocated outside 1004 * inode->i_size. So truncate them 1005 */ 1006 ext4_orphan_add(handle, inode); 1007 1008 if (ret2 < 0) 1009 ret = ret2; 1010 1011 ret2 = ext4_journal_stop(handle); 1012 if (!ret) 1013 ret = ret2; 1014 1015 if (pos + len > inode->i_size) { 1016 ext4_truncate_failed_write(inode); 1017 /* 1018 * If truncate failed early the inode might still be 1019 * on the orphan list; we need to make sure the inode 1020 * is removed from the orphan list in that case. 1021 */ 1022 if (inode->i_nlink) 1023 ext4_orphan_del(NULL, inode); 1024 } 1025 1026 return ret ? ret : copied; 1027 } 1028 1029 static int ext4_journalled_write_end(struct file *file, 1030 struct address_space *mapping, 1031 loff_t pos, unsigned len, unsigned copied, 1032 struct page *page, void *fsdata) 1033 { 1034 handle_t *handle = ext4_journal_current_handle(); 1035 struct inode *inode = mapping->host; 1036 int ret = 0, ret2; 1037 int partial = 0; 1038 unsigned from, to; 1039 loff_t new_i_size; 1040 1041 trace_ext4_journalled_write_end(inode, pos, len, copied); 1042 from = pos & (PAGE_CACHE_SIZE - 1); 1043 to = from + len; 1044 1045 BUG_ON(!ext4_handle_valid(handle)); 1046 1047 if (copied < len) { 1048 if (!PageUptodate(page)) 1049 copied = 0; 1050 page_zero_new_buffers(page, from+copied, to); 1051 } 1052 1053 ret = walk_page_buffers(handle, page_buffers(page), from, 1054 to, &partial, write_end_fn); 1055 if (!partial) 1056 SetPageUptodate(page); 1057 new_i_size = pos + copied; 1058 if (new_i_size > inode->i_size) 1059 i_size_write(inode, pos+copied); 1060 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1062 if (new_i_size > EXT4_I(inode)->i_disksize) { 1063 ext4_update_i_disksize(inode, new_i_size); 1064 ret2 = ext4_mark_inode_dirty(handle, inode); 1065 if (!ret) 1066 ret = ret2; 1067 } 1068 1069 unlock_page(page); 1070 page_cache_release(page); 1071 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1072 /* if we have allocated more blocks and copied 1073 * less. We will have blocks allocated outside 1074 * inode->i_size. So truncate them 1075 */ 1076 ext4_orphan_add(handle, inode); 1077 1078 ret2 = ext4_journal_stop(handle); 1079 if (!ret) 1080 ret = ret2; 1081 if (pos + len > inode->i_size) { 1082 ext4_truncate_failed_write(inode); 1083 /* 1084 * If truncate failed early the inode might still be 1085 * on the orphan list; we need to make sure the inode 1086 * is removed from the orphan list in that case. 1087 */ 1088 if (inode->i_nlink) 1089 ext4_orphan_del(NULL, inode); 1090 } 1091 1092 return ret ? ret : copied; 1093 } 1094 1095 /* 1096 * Reserve a single cluster located at lblock 1097 */ 1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1099 { 1100 int retries = 0; 1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1102 struct ext4_inode_info *ei = EXT4_I(inode); 1103 unsigned int md_needed; 1104 int ret; 1105 1106 /* 1107 * recalculate the amount of metadata blocks to reserve 1108 * in order to allocate nrblocks 1109 * worse case is one extent per block 1110 */ 1111 repeat: 1112 spin_lock(&ei->i_block_reservation_lock); 1113 md_needed = EXT4_NUM_B2C(sbi, 1114 ext4_calc_metadata_amount(inode, lblock)); 1115 trace_ext4_da_reserve_space(inode, md_needed); 1116 spin_unlock(&ei->i_block_reservation_lock); 1117 1118 /* 1119 * We will charge metadata quota at writeout time; this saves 1120 * us from metadata over-estimation, though we may go over by 1121 * a small amount in the end. Here we just reserve for data. 1122 */ 1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1124 if (ret) 1125 return ret; 1126 /* 1127 * We do still charge estimated metadata to the sb though; 1128 * we cannot afford to run out of free blocks. 1129 */ 1130 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1131 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1132 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1133 yield(); 1134 goto repeat; 1135 } 1136 return -ENOSPC; 1137 } 1138 spin_lock(&ei->i_block_reservation_lock); 1139 ei->i_reserved_data_blocks++; 1140 ei->i_reserved_meta_blocks += md_needed; 1141 spin_unlock(&ei->i_block_reservation_lock); 1142 1143 return 0; /* success */ 1144 } 1145 1146 static void ext4_da_release_space(struct inode *inode, int to_free) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1149 struct ext4_inode_info *ei = EXT4_I(inode); 1150 1151 if (!to_free) 1152 return; /* Nothing to release, exit */ 1153 1154 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1155 1156 trace_ext4_da_release_space(inode, to_free); 1157 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1158 /* 1159 * if there aren't enough reserved blocks, then the 1160 * counter is messed up somewhere. Since this 1161 * function is called from invalidate page, it's 1162 * harmless to return without any action. 1163 */ 1164 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1165 "ino %lu, to_free %d with only %d reserved " 1166 "data blocks\n", inode->i_ino, to_free, 1167 ei->i_reserved_data_blocks); 1168 WARN_ON(1); 1169 to_free = ei->i_reserved_data_blocks; 1170 } 1171 ei->i_reserved_data_blocks -= to_free; 1172 1173 if (ei->i_reserved_data_blocks == 0) { 1174 /* 1175 * We can release all of the reserved metadata blocks 1176 * only when we have written all of the delayed 1177 * allocation blocks. 1178 * Note that in case of bigalloc, i_reserved_meta_blocks, 1179 * i_reserved_data_blocks, etc. refer to number of clusters. 1180 */ 1181 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1182 ei->i_reserved_meta_blocks); 1183 ei->i_reserved_meta_blocks = 0; 1184 ei->i_da_metadata_calc_len = 0; 1185 } 1186 1187 /* update fs dirty data blocks counter */ 1188 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1189 1190 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1191 1192 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1193 } 1194 1195 static void ext4_da_page_release_reservation(struct page *page, 1196 unsigned long offset) 1197 { 1198 int to_release = 0; 1199 struct buffer_head *head, *bh; 1200 unsigned int curr_off = 0; 1201 struct inode *inode = page->mapping->host; 1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1203 int num_clusters; 1204 1205 head = page_buffers(page); 1206 bh = head; 1207 do { 1208 unsigned int next_off = curr_off + bh->b_size; 1209 1210 if ((offset <= curr_off) && (buffer_delay(bh))) { 1211 to_release++; 1212 clear_buffer_delay(bh); 1213 clear_buffer_da_mapped(bh); 1214 } 1215 curr_off = next_off; 1216 } while ((bh = bh->b_this_page) != head); 1217 1218 /* If we have released all the blocks belonging to a cluster, then we 1219 * need to release the reserved space for that cluster. */ 1220 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1221 while (num_clusters > 0) { 1222 ext4_fsblk_t lblk; 1223 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1224 ((num_clusters - 1) << sbi->s_cluster_bits); 1225 if (sbi->s_cluster_ratio == 1 || 1226 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1227 ext4_da_release_space(inode, 1); 1228 1229 num_clusters--; 1230 } 1231 } 1232 1233 /* 1234 * Delayed allocation stuff 1235 */ 1236 1237 /* 1238 * mpage_da_submit_io - walks through extent of pages and try to write 1239 * them with writepage() call back 1240 * 1241 * @mpd->inode: inode 1242 * @mpd->first_page: first page of the extent 1243 * @mpd->next_page: page after the last page of the extent 1244 * 1245 * By the time mpage_da_submit_io() is called we expect all blocks 1246 * to be allocated. this may be wrong if allocation failed. 1247 * 1248 * As pages are already locked by write_cache_pages(), we can't use it 1249 */ 1250 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1251 struct ext4_map_blocks *map) 1252 { 1253 struct pagevec pvec; 1254 unsigned long index, end; 1255 int ret = 0, err, nr_pages, i; 1256 struct inode *inode = mpd->inode; 1257 struct address_space *mapping = inode->i_mapping; 1258 loff_t size = i_size_read(inode); 1259 unsigned int len, block_start; 1260 struct buffer_head *bh, *page_bufs = NULL; 1261 int journal_data = ext4_should_journal_data(inode); 1262 sector_t pblock = 0, cur_logical = 0; 1263 struct ext4_io_submit io_submit; 1264 1265 BUG_ON(mpd->next_page <= mpd->first_page); 1266 memset(&io_submit, 0, sizeof(io_submit)); 1267 /* 1268 * We need to start from the first_page to the next_page - 1 1269 * to make sure we also write the mapped dirty buffer_heads. 1270 * If we look at mpd->b_blocknr we would only be looking 1271 * at the currently mapped buffer_heads. 1272 */ 1273 index = mpd->first_page; 1274 end = mpd->next_page - 1; 1275 1276 pagevec_init(&pvec, 0); 1277 while (index <= end) { 1278 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1279 if (nr_pages == 0) 1280 break; 1281 for (i = 0; i < nr_pages; i++) { 1282 int commit_write = 0, skip_page = 0; 1283 struct page *page = pvec.pages[i]; 1284 1285 index = page->index; 1286 if (index > end) 1287 break; 1288 1289 if (index == size >> PAGE_CACHE_SHIFT) 1290 len = size & ~PAGE_CACHE_MASK; 1291 else 1292 len = PAGE_CACHE_SIZE; 1293 if (map) { 1294 cur_logical = index << (PAGE_CACHE_SHIFT - 1295 inode->i_blkbits); 1296 pblock = map->m_pblk + (cur_logical - 1297 map->m_lblk); 1298 } 1299 index++; 1300 1301 BUG_ON(!PageLocked(page)); 1302 BUG_ON(PageWriteback(page)); 1303 1304 /* 1305 * If the page does not have buffers (for 1306 * whatever reason), try to create them using 1307 * __block_write_begin. If this fails, 1308 * skip the page and move on. 1309 */ 1310 if (!page_has_buffers(page)) { 1311 if (__block_write_begin(page, 0, len, 1312 noalloc_get_block_write)) { 1313 skip_page: 1314 unlock_page(page); 1315 continue; 1316 } 1317 commit_write = 1; 1318 } 1319 1320 bh = page_bufs = page_buffers(page); 1321 block_start = 0; 1322 do { 1323 if (!bh) 1324 goto skip_page; 1325 if (map && (cur_logical >= map->m_lblk) && 1326 (cur_logical <= (map->m_lblk + 1327 (map->m_len - 1)))) { 1328 if (buffer_delay(bh)) { 1329 clear_buffer_delay(bh); 1330 bh->b_blocknr = pblock; 1331 } 1332 if (buffer_da_mapped(bh)) 1333 clear_buffer_da_mapped(bh); 1334 if (buffer_unwritten(bh) || 1335 buffer_mapped(bh)) 1336 BUG_ON(bh->b_blocknr != pblock); 1337 if (map->m_flags & EXT4_MAP_UNINIT) 1338 set_buffer_uninit(bh); 1339 clear_buffer_unwritten(bh); 1340 } 1341 1342 /* 1343 * skip page if block allocation undone and 1344 * block is dirty 1345 */ 1346 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1347 skip_page = 1; 1348 bh = bh->b_this_page; 1349 block_start += bh->b_size; 1350 cur_logical++; 1351 pblock++; 1352 } while (bh != page_bufs); 1353 1354 if (skip_page) 1355 goto skip_page; 1356 1357 if (commit_write) 1358 /* mark the buffer_heads as dirty & uptodate */ 1359 block_commit_write(page, 0, len); 1360 1361 clear_page_dirty_for_io(page); 1362 /* 1363 * Delalloc doesn't support data journalling, 1364 * but eventually maybe we'll lift this 1365 * restriction. 1366 */ 1367 if (unlikely(journal_data && PageChecked(page))) 1368 err = __ext4_journalled_writepage(page, len); 1369 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1370 err = ext4_bio_write_page(&io_submit, page, 1371 len, mpd->wbc); 1372 else if (buffer_uninit(page_bufs)) { 1373 ext4_set_bh_endio(page_bufs, inode); 1374 err = block_write_full_page_endio(page, 1375 noalloc_get_block_write, 1376 mpd->wbc, ext4_end_io_buffer_write); 1377 } else 1378 err = block_write_full_page(page, 1379 noalloc_get_block_write, mpd->wbc); 1380 1381 if (!err) 1382 mpd->pages_written++; 1383 /* 1384 * In error case, we have to continue because 1385 * remaining pages are still locked 1386 */ 1387 if (ret == 0) 1388 ret = err; 1389 } 1390 pagevec_release(&pvec); 1391 } 1392 ext4_io_submit(&io_submit); 1393 return ret; 1394 } 1395 1396 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1397 { 1398 int nr_pages, i; 1399 pgoff_t index, end; 1400 struct pagevec pvec; 1401 struct inode *inode = mpd->inode; 1402 struct address_space *mapping = inode->i_mapping; 1403 1404 index = mpd->first_page; 1405 end = mpd->next_page - 1; 1406 while (index <= end) { 1407 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1408 if (nr_pages == 0) 1409 break; 1410 for (i = 0; i < nr_pages; i++) { 1411 struct page *page = pvec.pages[i]; 1412 if (page->index > end) 1413 break; 1414 BUG_ON(!PageLocked(page)); 1415 BUG_ON(PageWriteback(page)); 1416 block_invalidatepage(page, 0); 1417 ClearPageUptodate(page); 1418 unlock_page(page); 1419 } 1420 index = pvec.pages[nr_pages - 1]->index + 1; 1421 pagevec_release(&pvec); 1422 } 1423 return; 1424 } 1425 1426 static void ext4_print_free_blocks(struct inode *inode) 1427 { 1428 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1429 printk(KERN_CRIT "Total free blocks count %lld\n", 1430 EXT4_C2B(EXT4_SB(inode->i_sb), 1431 ext4_count_free_clusters(inode->i_sb))); 1432 printk(KERN_CRIT "Free/Dirty block details\n"); 1433 printk(KERN_CRIT "free_blocks=%lld\n", 1434 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1435 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1436 printk(KERN_CRIT "dirty_blocks=%lld\n", 1437 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1438 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1439 printk(KERN_CRIT "Block reservation details\n"); 1440 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1441 EXT4_I(inode)->i_reserved_data_blocks); 1442 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1443 EXT4_I(inode)->i_reserved_meta_blocks); 1444 return; 1445 } 1446 1447 /* 1448 * mpage_da_map_and_submit - go through given space, map them 1449 * if necessary, and then submit them for I/O 1450 * 1451 * @mpd - bh describing space 1452 * 1453 * The function skips space we know is already mapped to disk blocks. 1454 * 1455 */ 1456 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1457 { 1458 int err, blks, get_blocks_flags; 1459 struct ext4_map_blocks map, *mapp = NULL; 1460 sector_t next = mpd->b_blocknr; 1461 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1462 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1463 handle_t *handle = NULL; 1464 1465 /* 1466 * If the blocks are mapped already, or we couldn't accumulate 1467 * any blocks, then proceed immediately to the submission stage. 1468 */ 1469 if ((mpd->b_size == 0) || 1470 ((mpd->b_state & (1 << BH_Mapped)) && 1471 !(mpd->b_state & (1 << BH_Delay)) && 1472 !(mpd->b_state & (1 << BH_Unwritten)))) 1473 goto submit_io; 1474 1475 handle = ext4_journal_current_handle(); 1476 BUG_ON(!handle); 1477 1478 /* 1479 * Call ext4_map_blocks() to allocate any delayed allocation 1480 * blocks, or to convert an uninitialized extent to be 1481 * initialized (in the case where we have written into 1482 * one or more preallocated blocks). 1483 * 1484 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1485 * indicate that we are on the delayed allocation path. This 1486 * affects functions in many different parts of the allocation 1487 * call path. This flag exists primarily because we don't 1488 * want to change *many* call functions, so ext4_map_blocks() 1489 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1490 * inode's allocation semaphore is taken. 1491 * 1492 * If the blocks in questions were delalloc blocks, set 1493 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1494 * variables are updated after the blocks have been allocated. 1495 */ 1496 map.m_lblk = next; 1497 map.m_len = max_blocks; 1498 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1499 if (ext4_should_dioread_nolock(mpd->inode)) 1500 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1501 if (mpd->b_state & (1 << BH_Delay)) 1502 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1503 1504 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1505 if (blks < 0) { 1506 struct super_block *sb = mpd->inode->i_sb; 1507 1508 err = blks; 1509 /* 1510 * If get block returns EAGAIN or ENOSPC and there 1511 * appears to be free blocks we will just let 1512 * mpage_da_submit_io() unlock all of the pages. 1513 */ 1514 if (err == -EAGAIN) 1515 goto submit_io; 1516 1517 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1518 mpd->retval = err; 1519 goto submit_io; 1520 } 1521 1522 /* 1523 * get block failure will cause us to loop in 1524 * writepages, because a_ops->writepage won't be able 1525 * to make progress. The page will be redirtied by 1526 * writepage and writepages will again try to write 1527 * the same. 1528 */ 1529 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1530 ext4_msg(sb, KERN_CRIT, 1531 "delayed block allocation failed for inode %lu " 1532 "at logical offset %llu with max blocks %zd " 1533 "with error %d", mpd->inode->i_ino, 1534 (unsigned long long) next, 1535 mpd->b_size >> mpd->inode->i_blkbits, err); 1536 ext4_msg(sb, KERN_CRIT, 1537 "This should not happen!! Data will be lost\n"); 1538 if (err == -ENOSPC) 1539 ext4_print_free_blocks(mpd->inode); 1540 } 1541 /* invalidate all the pages */ 1542 ext4_da_block_invalidatepages(mpd); 1543 1544 /* Mark this page range as having been completed */ 1545 mpd->io_done = 1; 1546 return; 1547 } 1548 BUG_ON(blks == 0); 1549 1550 mapp = ↦ 1551 if (map.m_flags & EXT4_MAP_NEW) { 1552 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1553 int i; 1554 1555 for (i = 0; i < map.m_len; i++) 1556 unmap_underlying_metadata(bdev, map.m_pblk + i); 1557 1558 if (ext4_should_order_data(mpd->inode)) { 1559 err = ext4_jbd2_file_inode(handle, mpd->inode); 1560 if (err) { 1561 /* Only if the journal is aborted */ 1562 mpd->retval = err; 1563 goto submit_io; 1564 } 1565 } 1566 } 1567 1568 /* 1569 * Update on-disk size along with block allocation. 1570 */ 1571 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1572 if (disksize > i_size_read(mpd->inode)) 1573 disksize = i_size_read(mpd->inode); 1574 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1575 ext4_update_i_disksize(mpd->inode, disksize); 1576 err = ext4_mark_inode_dirty(handle, mpd->inode); 1577 if (err) 1578 ext4_error(mpd->inode->i_sb, 1579 "Failed to mark inode %lu dirty", 1580 mpd->inode->i_ino); 1581 } 1582 1583 submit_io: 1584 mpage_da_submit_io(mpd, mapp); 1585 mpd->io_done = 1; 1586 } 1587 1588 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1589 (1 << BH_Delay) | (1 << BH_Unwritten)) 1590 1591 /* 1592 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1593 * 1594 * @mpd->lbh - extent of blocks 1595 * @logical - logical number of the block in the file 1596 * @bh - bh of the block (used to access block's state) 1597 * 1598 * the function is used to collect contig. blocks in same state 1599 */ 1600 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1601 sector_t logical, size_t b_size, 1602 unsigned long b_state) 1603 { 1604 sector_t next; 1605 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1606 1607 /* 1608 * XXX Don't go larger than mballoc is willing to allocate 1609 * This is a stopgap solution. We eventually need to fold 1610 * mpage_da_submit_io() into this function and then call 1611 * ext4_map_blocks() multiple times in a loop 1612 */ 1613 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1614 goto flush_it; 1615 1616 /* check if thereserved journal credits might overflow */ 1617 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1618 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1619 /* 1620 * With non-extent format we are limited by the journal 1621 * credit available. Total credit needed to insert 1622 * nrblocks contiguous blocks is dependent on the 1623 * nrblocks. So limit nrblocks. 1624 */ 1625 goto flush_it; 1626 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1627 EXT4_MAX_TRANS_DATA) { 1628 /* 1629 * Adding the new buffer_head would make it cross the 1630 * allowed limit for which we have journal credit 1631 * reserved. So limit the new bh->b_size 1632 */ 1633 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1634 mpd->inode->i_blkbits; 1635 /* we will do mpage_da_submit_io in the next loop */ 1636 } 1637 } 1638 /* 1639 * First block in the extent 1640 */ 1641 if (mpd->b_size == 0) { 1642 mpd->b_blocknr = logical; 1643 mpd->b_size = b_size; 1644 mpd->b_state = b_state & BH_FLAGS; 1645 return; 1646 } 1647 1648 next = mpd->b_blocknr + nrblocks; 1649 /* 1650 * Can we merge the block to our big extent? 1651 */ 1652 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1653 mpd->b_size += b_size; 1654 return; 1655 } 1656 1657 flush_it: 1658 /* 1659 * We couldn't merge the block to our extent, so we 1660 * need to flush current extent and start new one 1661 */ 1662 mpage_da_map_and_submit(mpd); 1663 return; 1664 } 1665 1666 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1667 { 1668 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1669 } 1670 1671 /* 1672 * This function is grabs code from the very beginning of 1673 * ext4_map_blocks, but assumes that the caller is from delayed write 1674 * time. This function looks up the requested blocks and sets the 1675 * buffer delay bit under the protection of i_data_sem. 1676 */ 1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1678 struct ext4_map_blocks *map, 1679 struct buffer_head *bh) 1680 { 1681 int retval; 1682 sector_t invalid_block = ~((sector_t) 0xffff); 1683 1684 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1685 invalid_block = ~0; 1686 1687 map->m_flags = 0; 1688 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1689 "logical block %lu\n", inode->i_ino, map->m_len, 1690 (unsigned long) map->m_lblk); 1691 /* 1692 * Try to see if we can get the block without requesting a new 1693 * file system block. 1694 */ 1695 down_read((&EXT4_I(inode)->i_data_sem)); 1696 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1697 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1698 else 1699 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1700 1701 if (retval == 0) { 1702 /* 1703 * XXX: __block_prepare_write() unmaps passed block, 1704 * is it OK? 1705 */ 1706 /* If the block was allocated from previously allocated cluster, 1707 * then we dont need to reserve it again. */ 1708 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1709 retval = ext4_da_reserve_space(inode, iblock); 1710 if (retval) 1711 /* not enough space to reserve */ 1712 goto out_unlock; 1713 } 1714 1715 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1716 * and it should not appear on the bh->b_state. 1717 */ 1718 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1719 1720 map_bh(bh, inode->i_sb, invalid_block); 1721 set_buffer_new(bh); 1722 set_buffer_delay(bh); 1723 } 1724 1725 out_unlock: 1726 up_read((&EXT4_I(inode)->i_data_sem)); 1727 1728 return retval; 1729 } 1730 1731 /* 1732 * This is a special get_blocks_t callback which is used by 1733 * ext4_da_write_begin(). It will either return mapped block or 1734 * reserve space for a single block. 1735 * 1736 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1737 * We also have b_blocknr = -1 and b_bdev initialized properly 1738 * 1739 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1740 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1741 * initialized properly. 1742 */ 1743 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1744 struct buffer_head *bh, int create) 1745 { 1746 struct ext4_map_blocks map; 1747 int ret = 0; 1748 1749 BUG_ON(create == 0); 1750 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1751 1752 map.m_lblk = iblock; 1753 map.m_len = 1; 1754 1755 /* 1756 * first, we need to know whether the block is allocated already 1757 * preallocated blocks are unmapped but should treated 1758 * the same as allocated blocks. 1759 */ 1760 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1761 if (ret <= 0) 1762 return ret; 1763 1764 map_bh(bh, inode->i_sb, map.m_pblk); 1765 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1766 1767 if (buffer_unwritten(bh)) { 1768 /* A delayed write to unwritten bh should be marked 1769 * new and mapped. Mapped ensures that we don't do 1770 * get_block multiple times when we write to the same 1771 * offset and new ensures that we do proper zero out 1772 * for partial write. 1773 */ 1774 set_buffer_new(bh); 1775 set_buffer_mapped(bh); 1776 } 1777 return 0; 1778 } 1779 1780 /* 1781 * This function is used as a standard get_block_t calback function 1782 * when there is no desire to allocate any blocks. It is used as a 1783 * callback function for block_write_begin() and block_write_full_page(). 1784 * These functions should only try to map a single block at a time. 1785 * 1786 * Since this function doesn't do block allocations even if the caller 1787 * requests it by passing in create=1, it is critically important that 1788 * any caller checks to make sure that any buffer heads are returned 1789 * by this function are either all already mapped or marked for 1790 * delayed allocation before calling block_write_full_page(). Otherwise, 1791 * b_blocknr could be left unitialized, and the page write functions will 1792 * be taken by surprise. 1793 */ 1794 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1795 struct buffer_head *bh_result, int create) 1796 { 1797 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1798 return _ext4_get_block(inode, iblock, bh_result, 0); 1799 } 1800 1801 static int bget_one(handle_t *handle, struct buffer_head *bh) 1802 { 1803 get_bh(bh); 1804 return 0; 1805 } 1806 1807 static int bput_one(handle_t *handle, struct buffer_head *bh) 1808 { 1809 put_bh(bh); 1810 return 0; 1811 } 1812 1813 static int __ext4_journalled_writepage(struct page *page, 1814 unsigned int len) 1815 { 1816 struct address_space *mapping = page->mapping; 1817 struct inode *inode = mapping->host; 1818 struct buffer_head *page_bufs; 1819 handle_t *handle = NULL; 1820 int ret = 0; 1821 int err; 1822 1823 ClearPageChecked(page); 1824 page_bufs = page_buffers(page); 1825 BUG_ON(!page_bufs); 1826 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1827 /* As soon as we unlock the page, it can go away, but we have 1828 * references to buffers so we are safe */ 1829 unlock_page(page); 1830 1831 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1832 if (IS_ERR(handle)) { 1833 ret = PTR_ERR(handle); 1834 goto out; 1835 } 1836 1837 BUG_ON(!ext4_handle_valid(handle)); 1838 1839 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1840 do_journal_get_write_access); 1841 1842 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1843 write_end_fn); 1844 if (ret == 0) 1845 ret = err; 1846 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1847 err = ext4_journal_stop(handle); 1848 if (!ret) 1849 ret = err; 1850 1851 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1852 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1853 out: 1854 return ret; 1855 } 1856 1857 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1858 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1859 1860 /* 1861 * Note that we don't need to start a transaction unless we're journaling data 1862 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1863 * need to file the inode to the transaction's list in ordered mode because if 1864 * we are writing back data added by write(), the inode is already there and if 1865 * we are writing back data modified via mmap(), no one guarantees in which 1866 * transaction the data will hit the disk. In case we are journaling data, we 1867 * cannot start transaction directly because transaction start ranks above page 1868 * lock so we have to do some magic. 1869 * 1870 * This function can get called via... 1871 * - ext4_da_writepages after taking page lock (have journal handle) 1872 * - journal_submit_inode_data_buffers (no journal handle) 1873 * - shrink_page_list via pdflush (no journal handle) 1874 * - grab_page_cache when doing write_begin (have journal handle) 1875 * 1876 * We don't do any block allocation in this function. If we have page with 1877 * multiple blocks we need to write those buffer_heads that are mapped. This 1878 * is important for mmaped based write. So if we do with blocksize 1K 1879 * truncate(f, 1024); 1880 * a = mmap(f, 0, 4096); 1881 * a[0] = 'a'; 1882 * truncate(f, 4096); 1883 * we have in the page first buffer_head mapped via page_mkwrite call back 1884 * but other buffer_heads would be unmapped but dirty (dirty done via the 1885 * do_wp_page). So writepage should write the first block. If we modify 1886 * the mmap area beyond 1024 we will again get a page_fault and the 1887 * page_mkwrite callback will do the block allocation and mark the 1888 * buffer_heads mapped. 1889 * 1890 * We redirty the page if we have any buffer_heads that is either delay or 1891 * unwritten in the page. 1892 * 1893 * We can get recursively called as show below. 1894 * 1895 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1896 * ext4_writepage() 1897 * 1898 * But since we don't do any block allocation we should not deadlock. 1899 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1900 */ 1901 static int ext4_writepage(struct page *page, 1902 struct writeback_control *wbc) 1903 { 1904 int ret = 0, commit_write = 0; 1905 loff_t size; 1906 unsigned int len; 1907 struct buffer_head *page_bufs = NULL; 1908 struct inode *inode = page->mapping->host; 1909 1910 trace_ext4_writepage(page); 1911 size = i_size_read(inode); 1912 if (page->index == size >> PAGE_CACHE_SHIFT) 1913 len = size & ~PAGE_CACHE_MASK; 1914 else 1915 len = PAGE_CACHE_SIZE; 1916 1917 /* 1918 * If the page does not have buffers (for whatever reason), 1919 * try to create them using __block_write_begin. If this 1920 * fails, redirty the page and move on. 1921 */ 1922 if (!page_has_buffers(page)) { 1923 if (__block_write_begin(page, 0, len, 1924 noalloc_get_block_write)) { 1925 redirty_page: 1926 redirty_page_for_writepage(wbc, page); 1927 unlock_page(page); 1928 return 0; 1929 } 1930 commit_write = 1; 1931 } 1932 page_bufs = page_buffers(page); 1933 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1934 ext4_bh_delay_or_unwritten)) { 1935 /* 1936 * We don't want to do block allocation, so redirty 1937 * the page and return. We may reach here when we do 1938 * a journal commit via journal_submit_inode_data_buffers. 1939 * We can also reach here via shrink_page_list but it 1940 * should never be for direct reclaim so warn if that 1941 * happens 1942 */ 1943 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1944 PF_MEMALLOC); 1945 goto redirty_page; 1946 } 1947 if (commit_write) 1948 /* now mark the buffer_heads as dirty and uptodate */ 1949 block_commit_write(page, 0, len); 1950 1951 if (PageChecked(page) && ext4_should_journal_data(inode)) 1952 /* 1953 * It's mmapped pagecache. Add buffers and journal it. There 1954 * doesn't seem much point in redirtying the page here. 1955 */ 1956 return __ext4_journalled_writepage(page, len); 1957 1958 if (buffer_uninit(page_bufs)) { 1959 ext4_set_bh_endio(page_bufs, inode); 1960 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1961 wbc, ext4_end_io_buffer_write); 1962 } else 1963 ret = block_write_full_page(page, noalloc_get_block_write, 1964 wbc); 1965 1966 return ret; 1967 } 1968 1969 /* 1970 * This is called via ext4_da_writepages() to 1971 * calculate the total number of credits to reserve to fit 1972 * a single extent allocation into a single transaction, 1973 * ext4_da_writpeages() will loop calling this before 1974 * the block allocation. 1975 */ 1976 1977 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1978 { 1979 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1980 1981 /* 1982 * With non-extent format the journal credit needed to 1983 * insert nrblocks contiguous block is dependent on 1984 * number of contiguous block. So we will limit 1985 * number of contiguous block to a sane value 1986 */ 1987 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1988 (max_blocks > EXT4_MAX_TRANS_DATA)) 1989 max_blocks = EXT4_MAX_TRANS_DATA; 1990 1991 return ext4_chunk_trans_blocks(inode, max_blocks); 1992 } 1993 1994 /* 1995 * write_cache_pages_da - walk the list of dirty pages of the given 1996 * address space and accumulate pages that need writing, and call 1997 * mpage_da_map_and_submit to map a single contiguous memory region 1998 * and then write them. 1999 */ 2000 static int write_cache_pages_da(struct address_space *mapping, 2001 struct writeback_control *wbc, 2002 struct mpage_da_data *mpd, 2003 pgoff_t *done_index) 2004 { 2005 struct buffer_head *bh, *head; 2006 struct inode *inode = mapping->host; 2007 struct pagevec pvec; 2008 unsigned int nr_pages; 2009 sector_t logical; 2010 pgoff_t index, end; 2011 long nr_to_write = wbc->nr_to_write; 2012 int i, tag, ret = 0; 2013 2014 memset(mpd, 0, sizeof(struct mpage_da_data)); 2015 mpd->wbc = wbc; 2016 mpd->inode = inode; 2017 pagevec_init(&pvec, 0); 2018 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2019 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2020 2021 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2022 tag = PAGECACHE_TAG_TOWRITE; 2023 else 2024 tag = PAGECACHE_TAG_DIRTY; 2025 2026 *done_index = index; 2027 while (index <= end) { 2028 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2029 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2030 if (nr_pages == 0) 2031 return 0; 2032 2033 for (i = 0; i < nr_pages; i++) { 2034 struct page *page = pvec.pages[i]; 2035 2036 /* 2037 * At this point, the page may be truncated or 2038 * invalidated (changing page->mapping to NULL), or 2039 * even swizzled back from swapper_space to tmpfs file 2040 * mapping. However, page->index will not change 2041 * because we have a reference on the page. 2042 */ 2043 if (page->index > end) 2044 goto out; 2045 2046 *done_index = page->index + 1; 2047 2048 /* 2049 * If we can't merge this page, and we have 2050 * accumulated an contiguous region, write it 2051 */ 2052 if ((mpd->next_page != page->index) && 2053 (mpd->next_page != mpd->first_page)) { 2054 mpage_da_map_and_submit(mpd); 2055 goto ret_extent_tail; 2056 } 2057 2058 lock_page(page); 2059 2060 /* 2061 * If the page is no longer dirty, or its 2062 * mapping no longer corresponds to inode we 2063 * are writing (which means it has been 2064 * truncated or invalidated), or the page is 2065 * already under writeback and we are not 2066 * doing a data integrity writeback, skip the page 2067 */ 2068 if (!PageDirty(page) || 2069 (PageWriteback(page) && 2070 (wbc->sync_mode == WB_SYNC_NONE)) || 2071 unlikely(page->mapping != mapping)) { 2072 unlock_page(page); 2073 continue; 2074 } 2075 2076 wait_on_page_writeback(page); 2077 BUG_ON(PageWriteback(page)); 2078 2079 if (mpd->next_page != page->index) 2080 mpd->first_page = page->index; 2081 mpd->next_page = page->index + 1; 2082 logical = (sector_t) page->index << 2083 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2084 2085 if (!page_has_buffers(page)) { 2086 mpage_add_bh_to_extent(mpd, logical, 2087 PAGE_CACHE_SIZE, 2088 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2089 if (mpd->io_done) 2090 goto ret_extent_tail; 2091 } else { 2092 /* 2093 * Page with regular buffer heads, 2094 * just add all dirty ones 2095 */ 2096 head = page_buffers(page); 2097 bh = head; 2098 do { 2099 BUG_ON(buffer_locked(bh)); 2100 /* 2101 * We need to try to allocate 2102 * unmapped blocks in the same page. 2103 * Otherwise we won't make progress 2104 * with the page in ext4_writepage 2105 */ 2106 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2107 mpage_add_bh_to_extent(mpd, logical, 2108 bh->b_size, 2109 bh->b_state); 2110 if (mpd->io_done) 2111 goto ret_extent_tail; 2112 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2113 /* 2114 * mapped dirty buffer. We need 2115 * to update the b_state 2116 * because we look at b_state 2117 * in mpage_da_map_blocks. We 2118 * don't update b_size because 2119 * if we find an unmapped 2120 * buffer_head later we need to 2121 * use the b_state flag of that 2122 * buffer_head. 2123 */ 2124 if (mpd->b_size == 0) 2125 mpd->b_state = bh->b_state & BH_FLAGS; 2126 } 2127 logical++; 2128 } while ((bh = bh->b_this_page) != head); 2129 } 2130 2131 if (nr_to_write > 0) { 2132 nr_to_write--; 2133 if (nr_to_write == 0 && 2134 wbc->sync_mode == WB_SYNC_NONE) 2135 /* 2136 * We stop writing back only if we are 2137 * not doing integrity sync. In case of 2138 * integrity sync we have to keep going 2139 * because someone may be concurrently 2140 * dirtying pages, and we might have 2141 * synced a lot of newly appeared dirty 2142 * pages, but have not synced all of the 2143 * old dirty pages. 2144 */ 2145 goto out; 2146 } 2147 } 2148 pagevec_release(&pvec); 2149 cond_resched(); 2150 } 2151 return 0; 2152 ret_extent_tail: 2153 ret = MPAGE_DA_EXTENT_TAIL; 2154 out: 2155 pagevec_release(&pvec); 2156 cond_resched(); 2157 return ret; 2158 } 2159 2160 2161 static int ext4_da_writepages(struct address_space *mapping, 2162 struct writeback_control *wbc) 2163 { 2164 pgoff_t index; 2165 int range_whole = 0; 2166 handle_t *handle = NULL; 2167 struct mpage_da_data mpd; 2168 struct inode *inode = mapping->host; 2169 int pages_written = 0; 2170 unsigned int max_pages; 2171 int range_cyclic, cycled = 1, io_done = 0; 2172 int needed_blocks, ret = 0; 2173 long desired_nr_to_write, nr_to_writebump = 0; 2174 loff_t range_start = wbc->range_start; 2175 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2176 pgoff_t done_index = 0; 2177 pgoff_t end; 2178 struct blk_plug plug; 2179 2180 trace_ext4_da_writepages(inode, wbc); 2181 2182 /* 2183 * No pages to write? This is mainly a kludge to avoid starting 2184 * a transaction for special inodes like journal inode on last iput() 2185 * because that could violate lock ordering on umount 2186 */ 2187 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2188 return 0; 2189 2190 /* 2191 * If the filesystem has aborted, it is read-only, so return 2192 * right away instead of dumping stack traces later on that 2193 * will obscure the real source of the problem. We test 2194 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2195 * the latter could be true if the filesystem is mounted 2196 * read-only, and in that case, ext4_da_writepages should 2197 * *never* be called, so if that ever happens, we would want 2198 * the stack trace. 2199 */ 2200 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2201 return -EROFS; 2202 2203 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2204 range_whole = 1; 2205 2206 range_cyclic = wbc->range_cyclic; 2207 if (wbc->range_cyclic) { 2208 index = mapping->writeback_index; 2209 if (index) 2210 cycled = 0; 2211 wbc->range_start = index << PAGE_CACHE_SHIFT; 2212 wbc->range_end = LLONG_MAX; 2213 wbc->range_cyclic = 0; 2214 end = -1; 2215 } else { 2216 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2217 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2218 } 2219 2220 /* 2221 * This works around two forms of stupidity. The first is in 2222 * the writeback code, which caps the maximum number of pages 2223 * written to be 1024 pages. This is wrong on multiple 2224 * levels; different architectues have a different page size, 2225 * which changes the maximum amount of data which gets 2226 * written. Secondly, 4 megabytes is way too small. XFS 2227 * forces this value to be 16 megabytes by multiplying 2228 * nr_to_write parameter by four, and then relies on its 2229 * allocator to allocate larger extents to make them 2230 * contiguous. Unfortunately this brings us to the second 2231 * stupidity, which is that ext4's mballoc code only allocates 2232 * at most 2048 blocks. So we force contiguous writes up to 2233 * the number of dirty blocks in the inode, or 2234 * sbi->max_writeback_mb_bump whichever is smaller. 2235 */ 2236 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2237 if (!range_cyclic && range_whole) { 2238 if (wbc->nr_to_write == LONG_MAX) 2239 desired_nr_to_write = wbc->nr_to_write; 2240 else 2241 desired_nr_to_write = wbc->nr_to_write * 8; 2242 } else 2243 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2244 max_pages); 2245 if (desired_nr_to_write > max_pages) 2246 desired_nr_to_write = max_pages; 2247 2248 if (wbc->nr_to_write < desired_nr_to_write) { 2249 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2250 wbc->nr_to_write = desired_nr_to_write; 2251 } 2252 2253 retry: 2254 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2255 tag_pages_for_writeback(mapping, index, end); 2256 2257 blk_start_plug(&plug); 2258 while (!ret && wbc->nr_to_write > 0) { 2259 2260 /* 2261 * we insert one extent at a time. So we need 2262 * credit needed for single extent allocation. 2263 * journalled mode is currently not supported 2264 * by delalloc 2265 */ 2266 BUG_ON(ext4_should_journal_data(inode)); 2267 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2268 2269 /* start a new transaction*/ 2270 handle = ext4_journal_start(inode, needed_blocks); 2271 if (IS_ERR(handle)) { 2272 ret = PTR_ERR(handle); 2273 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2274 "%ld pages, ino %lu; err %d", __func__, 2275 wbc->nr_to_write, inode->i_ino, ret); 2276 blk_finish_plug(&plug); 2277 goto out_writepages; 2278 } 2279 2280 /* 2281 * Now call write_cache_pages_da() to find the next 2282 * contiguous region of logical blocks that need 2283 * blocks to be allocated by ext4 and submit them. 2284 */ 2285 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2286 /* 2287 * If we have a contiguous extent of pages and we 2288 * haven't done the I/O yet, map the blocks and submit 2289 * them for I/O. 2290 */ 2291 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2292 mpage_da_map_and_submit(&mpd); 2293 ret = MPAGE_DA_EXTENT_TAIL; 2294 } 2295 trace_ext4_da_write_pages(inode, &mpd); 2296 wbc->nr_to_write -= mpd.pages_written; 2297 2298 ext4_journal_stop(handle); 2299 2300 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2301 /* commit the transaction which would 2302 * free blocks released in the transaction 2303 * and try again 2304 */ 2305 jbd2_journal_force_commit_nested(sbi->s_journal); 2306 ret = 0; 2307 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2308 /* 2309 * Got one extent now try with rest of the pages. 2310 * If mpd.retval is set -EIO, journal is aborted. 2311 * So we don't need to write any more. 2312 */ 2313 pages_written += mpd.pages_written; 2314 ret = mpd.retval; 2315 io_done = 1; 2316 } else if (wbc->nr_to_write) 2317 /* 2318 * There is no more writeout needed 2319 * or we requested for a noblocking writeout 2320 * and we found the device congested 2321 */ 2322 break; 2323 } 2324 blk_finish_plug(&plug); 2325 if (!io_done && !cycled) { 2326 cycled = 1; 2327 index = 0; 2328 wbc->range_start = index << PAGE_CACHE_SHIFT; 2329 wbc->range_end = mapping->writeback_index - 1; 2330 goto retry; 2331 } 2332 2333 /* Update index */ 2334 wbc->range_cyclic = range_cyclic; 2335 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2336 /* 2337 * set the writeback_index so that range_cyclic 2338 * mode will write it back later 2339 */ 2340 mapping->writeback_index = done_index; 2341 2342 out_writepages: 2343 wbc->nr_to_write -= nr_to_writebump; 2344 wbc->range_start = range_start; 2345 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2346 return ret; 2347 } 2348 2349 #define FALL_BACK_TO_NONDELALLOC 1 2350 static int ext4_nonda_switch(struct super_block *sb) 2351 { 2352 s64 free_blocks, dirty_blocks; 2353 struct ext4_sb_info *sbi = EXT4_SB(sb); 2354 2355 /* 2356 * switch to non delalloc mode if we are running low 2357 * on free block. The free block accounting via percpu 2358 * counters can get slightly wrong with percpu_counter_batch getting 2359 * accumulated on each CPU without updating global counters 2360 * Delalloc need an accurate free block accounting. So switch 2361 * to non delalloc when we are near to error range. 2362 */ 2363 free_blocks = EXT4_C2B(sbi, 2364 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2365 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2366 if (2 * free_blocks < 3 * dirty_blocks || 2367 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2368 /* 2369 * free block count is less than 150% of dirty blocks 2370 * or free blocks is less than watermark 2371 */ 2372 return 1; 2373 } 2374 /* 2375 * Even if we don't switch but are nearing capacity, 2376 * start pushing delalloc when 1/2 of free blocks are dirty. 2377 */ 2378 if (free_blocks < 2 * dirty_blocks) 2379 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2380 2381 return 0; 2382 } 2383 2384 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2385 loff_t pos, unsigned len, unsigned flags, 2386 struct page **pagep, void **fsdata) 2387 { 2388 int ret, retries = 0; 2389 struct page *page; 2390 pgoff_t index; 2391 struct inode *inode = mapping->host; 2392 handle_t *handle; 2393 2394 index = pos >> PAGE_CACHE_SHIFT; 2395 2396 if (ext4_nonda_switch(inode->i_sb)) { 2397 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2398 return ext4_write_begin(file, mapping, pos, 2399 len, flags, pagep, fsdata); 2400 } 2401 *fsdata = (void *)0; 2402 trace_ext4_da_write_begin(inode, pos, len, flags); 2403 retry: 2404 /* 2405 * With delayed allocation, we don't log the i_disksize update 2406 * if there is delayed block allocation. But we still need 2407 * to journalling the i_disksize update if writes to the end 2408 * of file which has an already mapped buffer. 2409 */ 2410 handle = ext4_journal_start(inode, 1); 2411 if (IS_ERR(handle)) { 2412 ret = PTR_ERR(handle); 2413 goto out; 2414 } 2415 /* We cannot recurse into the filesystem as the transaction is already 2416 * started */ 2417 flags |= AOP_FLAG_NOFS; 2418 2419 page = grab_cache_page_write_begin(mapping, index, flags); 2420 if (!page) { 2421 ext4_journal_stop(handle); 2422 ret = -ENOMEM; 2423 goto out; 2424 } 2425 *pagep = page; 2426 2427 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2428 if (ret < 0) { 2429 unlock_page(page); 2430 ext4_journal_stop(handle); 2431 page_cache_release(page); 2432 /* 2433 * block_write_begin may have instantiated a few blocks 2434 * outside i_size. Trim these off again. Don't need 2435 * i_size_read because we hold i_mutex. 2436 */ 2437 if (pos + len > inode->i_size) 2438 ext4_truncate_failed_write(inode); 2439 } 2440 2441 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2442 goto retry; 2443 out: 2444 return ret; 2445 } 2446 2447 /* 2448 * Check if we should update i_disksize 2449 * when write to the end of file but not require block allocation 2450 */ 2451 static int ext4_da_should_update_i_disksize(struct page *page, 2452 unsigned long offset) 2453 { 2454 struct buffer_head *bh; 2455 struct inode *inode = page->mapping->host; 2456 unsigned int idx; 2457 int i; 2458 2459 bh = page_buffers(page); 2460 idx = offset >> inode->i_blkbits; 2461 2462 for (i = 0; i < idx; i++) 2463 bh = bh->b_this_page; 2464 2465 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2466 return 0; 2467 return 1; 2468 } 2469 2470 static int ext4_da_write_end(struct file *file, 2471 struct address_space *mapping, 2472 loff_t pos, unsigned len, unsigned copied, 2473 struct page *page, void *fsdata) 2474 { 2475 struct inode *inode = mapping->host; 2476 int ret = 0, ret2; 2477 handle_t *handle = ext4_journal_current_handle(); 2478 loff_t new_i_size; 2479 unsigned long start, end; 2480 int write_mode = (int)(unsigned long)fsdata; 2481 2482 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2483 if (ext4_should_order_data(inode)) { 2484 return ext4_ordered_write_end(file, mapping, pos, 2485 len, copied, page, fsdata); 2486 } else if (ext4_should_writeback_data(inode)) { 2487 return ext4_writeback_write_end(file, mapping, pos, 2488 len, copied, page, fsdata); 2489 } else { 2490 BUG(); 2491 } 2492 } 2493 2494 trace_ext4_da_write_end(inode, pos, len, copied); 2495 start = pos & (PAGE_CACHE_SIZE - 1); 2496 end = start + copied - 1; 2497 2498 /* 2499 * generic_write_end() will run mark_inode_dirty() if i_size 2500 * changes. So let's piggyback the i_disksize mark_inode_dirty 2501 * into that. 2502 */ 2503 2504 new_i_size = pos + copied; 2505 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2506 if (ext4_da_should_update_i_disksize(page, end)) { 2507 down_write(&EXT4_I(inode)->i_data_sem); 2508 if (new_i_size > EXT4_I(inode)->i_disksize) { 2509 /* 2510 * Updating i_disksize when extending file 2511 * without needing block allocation 2512 */ 2513 if (ext4_should_order_data(inode)) 2514 ret = ext4_jbd2_file_inode(handle, 2515 inode); 2516 2517 EXT4_I(inode)->i_disksize = new_i_size; 2518 } 2519 up_write(&EXT4_I(inode)->i_data_sem); 2520 /* We need to mark inode dirty even if 2521 * new_i_size is less that inode->i_size 2522 * bu greater than i_disksize.(hint delalloc) 2523 */ 2524 ext4_mark_inode_dirty(handle, inode); 2525 } 2526 } 2527 ret2 = generic_write_end(file, mapping, pos, len, copied, 2528 page, fsdata); 2529 copied = ret2; 2530 if (ret2 < 0) 2531 ret = ret2; 2532 ret2 = ext4_journal_stop(handle); 2533 if (!ret) 2534 ret = ret2; 2535 2536 return ret ? ret : copied; 2537 } 2538 2539 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2540 { 2541 /* 2542 * Drop reserved blocks 2543 */ 2544 BUG_ON(!PageLocked(page)); 2545 if (!page_has_buffers(page)) 2546 goto out; 2547 2548 ext4_da_page_release_reservation(page, offset); 2549 2550 out: 2551 ext4_invalidatepage(page, offset); 2552 2553 return; 2554 } 2555 2556 /* 2557 * Force all delayed allocation blocks to be allocated for a given inode. 2558 */ 2559 int ext4_alloc_da_blocks(struct inode *inode) 2560 { 2561 trace_ext4_alloc_da_blocks(inode); 2562 2563 if (!EXT4_I(inode)->i_reserved_data_blocks && 2564 !EXT4_I(inode)->i_reserved_meta_blocks) 2565 return 0; 2566 2567 /* 2568 * We do something simple for now. The filemap_flush() will 2569 * also start triggering a write of the data blocks, which is 2570 * not strictly speaking necessary (and for users of 2571 * laptop_mode, not even desirable). However, to do otherwise 2572 * would require replicating code paths in: 2573 * 2574 * ext4_da_writepages() -> 2575 * write_cache_pages() ---> (via passed in callback function) 2576 * __mpage_da_writepage() --> 2577 * mpage_add_bh_to_extent() 2578 * mpage_da_map_blocks() 2579 * 2580 * The problem is that write_cache_pages(), located in 2581 * mm/page-writeback.c, marks pages clean in preparation for 2582 * doing I/O, which is not desirable if we're not planning on 2583 * doing I/O at all. 2584 * 2585 * We could call write_cache_pages(), and then redirty all of 2586 * the pages by calling redirty_page_for_writepage() but that 2587 * would be ugly in the extreme. So instead we would need to 2588 * replicate parts of the code in the above functions, 2589 * simplifying them because we wouldn't actually intend to 2590 * write out the pages, but rather only collect contiguous 2591 * logical block extents, call the multi-block allocator, and 2592 * then update the buffer heads with the block allocations. 2593 * 2594 * For now, though, we'll cheat by calling filemap_flush(), 2595 * which will map the blocks, and start the I/O, but not 2596 * actually wait for the I/O to complete. 2597 */ 2598 return filemap_flush(inode->i_mapping); 2599 } 2600 2601 /* 2602 * bmap() is special. It gets used by applications such as lilo and by 2603 * the swapper to find the on-disk block of a specific piece of data. 2604 * 2605 * Naturally, this is dangerous if the block concerned is still in the 2606 * journal. If somebody makes a swapfile on an ext4 data-journaling 2607 * filesystem and enables swap, then they may get a nasty shock when the 2608 * data getting swapped to that swapfile suddenly gets overwritten by 2609 * the original zero's written out previously to the journal and 2610 * awaiting writeback in the kernel's buffer cache. 2611 * 2612 * So, if we see any bmap calls here on a modified, data-journaled file, 2613 * take extra steps to flush any blocks which might be in the cache. 2614 */ 2615 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2616 { 2617 struct inode *inode = mapping->host; 2618 journal_t *journal; 2619 int err; 2620 2621 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2622 test_opt(inode->i_sb, DELALLOC)) { 2623 /* 2624 * With delalloc we want to sync the file 2625 * so that we can make sure we allocate 2626 * blocks for file 2627 */ 2628 filemap_write_and_wait(mapping); 2629 } 2630 2631 if (EXT4_JOURNAL(inode) && 2632 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2633 /* 2634 * This is a REALLY heavyweight approach, but the use of 2635 * bmap on dirty files is expected to be extremely rare: 2636 * only if we run lilo or swapon on a freshly made file 2637 * do we expect this to happen. 2638 * 2639 * (bmap requires CAP_SYS_RAWIO so this does not 2640 * represent an unprivileged user DOS attack --- we'd be 2641 * in trouble if mortal users could trigger this path at 2642 * will.) 2643 * 2644 * NB. EXT4_STATE_JDATA is not set on files other than 2645 * regular files. If somebody wants to bmap a directory 2646 * or symlink and gets confused because the buffer 2647 * hasn't yet been flushed to disk, they deserve 2648 * everything they get. 2649 */ 2650 2651 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2652 journal = EXT4_JOURNAL(inode); 2653 jbd2_journal_lock_updates(journal); 2654 err = jbd2_journal_flush(journal); 2655 jbd2_journal_unlock_updates(journal); 2656 2657 if (err) 2658 return 0; 2659 } 2660 2661 return generic_block_bmap(mapping, block, ext4_get_block); 2662 } 2663 2664 static int ext4_readpage(struct file *file, struct page *page) 2665 { 2666 trace_ext4_readpage(page); 2667 return mpage_readpage(page, ext4_get_block); 2668 } 2669 2670 static int 2671 ext4_readpages(struct file *file, struct address_space *mapping, 2672 struct list_head *pages, unsigned nr_pages) 2673 { 2674 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2675 } 2676 2677 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2678 { 2679 struct buffer_head *head, *bh; 2680 unsigned int curr_off = 0; 2681 2682 if (!page_has_buffers(page)) 2683 return; 2684 head = bh = page_buffers(page); 2685 do { 2686 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2687 && bh->b_private) { 2688 ext4_free_io_end(bh->b_private); 2689 bh->b_private = NULL; 2690 bh->b_end_io = NULL; 2691 } 2692 curr_off = curr_off + bh->b_size; 2693 bh = bh->b_this_page; 2694 } while (bh != head); 2695 } 2696 2697 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2698 { 2699 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2700 2701 trace_ext4_invalidatepage(page, offset); 2702 2703 /* 2704 * free any io_end structure allocated for buffers to be discarded 2705 */ 2706 if (ext4_should_dioread_nolock(page->mapping->host)) 2707 ext4_invalidatepage_free_endio(page, offset); 2708 /* 2709 * If it's a full truncate we just forget about the pending dirtying 2710 */ 2711 if (offset == 0) 2712 ClearPageChecked(page); 2713 2714 if (journal) 2715 jbd2_journal_invalidatepage(journal, page, offset); 2716 else 2717 block_invalidatepage(page, offset); 2718 } 2719 2720 static int ext4_releasepage(struct page *page, gfp_t wait) 2721 { 2722 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2723 2724 trace_ext4_releasepage(page); 2725 2726 WARN_ON(PageChecked(page)); 2727 if (!page_has_buffers(page)) 2728 return 0; 2729 if (journal) 2730 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2731 else 2732 return try_to_free_buffers(page); 2733 } 2734 2735 /* 2736 * ext4_get_block used when preparing for a DIO write or buffer write. 2737 * We allocate an uinitialized extent if blocks haven't been allocated. 2738 * The extent will be converted to initialized after the IO is complete. 2739 */ 2740 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2741 struct buffer_head *bh_result, int create) 2742 { 2743 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2744 inode->i_ino, create); 2745 return _ext4_get_block(inode, iblock, bh_result, 2746 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2747 } 2748 2749 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2750 ssize_t size, void *private, int ret, 2751 bool is_async) 2752 { 2753 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2754 ext4_io_end_t *io_end = iocb->private; 2755 struct workqueue_struct *wq; 2756 unsigned long flags; 2757 struct ext4_inode_info *ei; 2758 2759 /* if not async direct IO or dio with 0 bytes write, just return */ 2760 if (!io_end || !size) 2761 goto out; 2762 2763 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2764 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2765 iocb->private, io_end->inode->i_ino, iocb, offset, 2766 size); 2767 2768 iocb->private = NULL; 2769 2770 /* if not aio dio with unwritten extents, just free io and return */ 2771 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2772 ext4_free_io_end(io_end); 2773 out: 2774 if (is_async) 2775 aio_complete(iocb, ret, 0); 2776 inode_dio_done(inode); 2777 return; 2778 } 2779 2780 io_end->offset = offset; 2781 io_end->size = size; 2782 if (is_async) { 2783 io_end->iocb = iocb; 2784 io_end->result = ret; 2785 } 2786 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2787 2788 /* Add the io_end to per-inode completed aio dio list*/ 2789 ei = EXT4_I(io_end->inode); 2790 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2791 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2792 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2793 2794 /* queue the work to convert unwritten extents to written */ 2795 queue_work(wq, &io_end->work); 2796 2797 /* XXX: probably should move into the real I/O completion handler */ 2798 inode_dio_done(inode); 2799 } 2800 2801 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2802 { 2803 ext4_io_end_t *io_end = bh->b_private; 2804 struct workqueue_struct *wq; 2805 struct inode *inode; 2806 unsigned long flags; 2807 2808 if (!test_clear_buffer_uninit(bh) || !io_end) 2809 goto out; 2810 2811 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2812 printk("sb umounted, discard end_io request for inode %lu\n", 2813 io_end->inode->i_ino); 2814 ext4_free_io_end(io_end); 2815 goto out; 2816 } 2817 2818 /* 2819 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2820 * but being more careful is always safe for the future change. 2821 */ 2822 inode = io_end->inode; 2823 ext4_set_io_unwritten_flag(inode, io_end); 2824 2825 /* Add the io_end to per-inode completed io list*/ 2826 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2827 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2828 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2829 2830 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2831 /* queue the work to convert unwritten extents to written */ 2832 queue_work(wq, &io_end->work); 2833 out: 2834 bh->b_private = NULL; 2835 bh->b_end_io = NULL; 2836 clear_buffer_uninit(bh); 2837 end_buffer_async_write(bh, uptodate); 2838 } 2839 2840 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2841 { 2842 ext4_io_end_t *io_end; 2843 struct page *page = bh->b_page; 2844 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2845 size_t size = bh->b_size; 2846 2847 retry: 2848 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2849 if (!io_end) { 2850 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2851 schedule(); 2852 goto retry; 2853 } 2854 io_end->offset = offset; 2855 io_end->size = size; 2856 /* 2857 * We need to hold a reference to the page to make sure it 2858 * doesn't get evicted before ext4_end_io_work() has a chance 2859 * to convert the extent from written to unwritten. 2860 */ 2861 io_end->page = page; 2862 get_page(io_end->page); 2863 2864 bh->b_private = io_end; 2865 bh->b_end_io = ext4_end_io_buffer_write; 2866 return 0; 2867 } 2868 2869 /* 2870 * For ext4 extent files, ext4 will do direct-io write to holes, 2871 * preallocated extents, and those write extend the file, no need to 2872 * fall back to buffered IO. 2873 * 2874 * For holes, we fallocate those blocks, mark them as uninitialized 2875 * If those blocks were preallocated, we mark sure they are splited, but 2876 * still keep the range to write as uninitialized. 2877 * 2878 * The unwrritten extents will be converted to written when DIO is completed. 2879 * For async direct IO, since the IO may still pending when return, we 2880 * set up an end_io call back function, which will do the conversion 2881 * when async direct IO completed. 2882 * 2883 * If the O_DIRECT write will extend the file then add this inode to the 2884 * orphan list. So recovery will truncate it back to the original size 2885 * if the machine crashes during the write. 2886 * 2887 */ 2888 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2889 const struct iovec *iov, loff_t offset, 2890 unsigned long nr_segs) 2891 { 2892 struct file *file = iocb->ki_filp; 2893 struct inode *inode = file->f_mapping->host; 2894 ssize_t ret; 2895 size_t count = iov_length(iov, nr_segs); 2896 2897 loff_t final_size = offset + count; 2898 if (rw == WRITE && final_size <= inode->i_size) { 2899 /* 2900 * We could direct write to holes and fallocate. 2901 * 2902 * Allocated blocks to fill the hole are marked as uninitialized 2903 * to prevent parallel buffered read to expose the stale data 2904 * before DIO complete the data IO. 2905 * 2906 * As to previously fallocated extents, ext4 get_block 2907 * will just simply mark the buffer mapped but still 2908 * keep the extents uninitialized. 2909 * 2910 * for non AIO case, we will convert those unwritten extents 2911 * to written after return back from blockdev_direct_IO. 2912 * 2913 * for async DIO, the conversion needs to be defered when 2914 * the IO is completed. The ext4 end_io callback function 2915 * will be called to take care of the conversion work. 2916 * Here for async case, we allocate an io_end structure to 2917 * hook to the iocb. 2918 */ 2919 iocb->private = NULL; 2920 EXT4_I(inode)->cur_aio_dio = NULL; 2921 if (!is_sync_kiocb(iocb)) { 2922 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2923 if (!iocb->private) 2924 return -ENOMEM; 2925 /* 2926 * we save the io structure for current async 2927 * direct IO, so that later ext4_map_blocks() 2928 * could flag the io structure whether there 2929 * is a unwritten extents needs to be converted 2930 * when IO is completed. 2931 */ 2932 EXT4_I(inode)->cur_aio_dio = iocb->private; 2933 } 2934 2935 ret = __blockdev_direct_IO(rw, iocb, inode, 2936 inode->i_sb->s_bdev, iov, 2937 offset, nr_segs, 2938 ext4_get_block_write, 2939 ext4_end_io_dio, 2940 NULL, 2941 DIO_LOCKING | DIO_SKIP_HOLES); 2942 if (iocb->private) 2943 EXT4_I(inode)->cur_aio_dio = NULL; 2944 /* 2945 * The io_end structure takes a reference to the inode, 2946 * that structure needs to be destroyed and the 2947 * reference to the inode need to be dropped, when IO is 2948 * complete, even with 0 byte write, or failed. 2949 * 2950 * In the successful AIO DIO case, the io_end structure will be 2951 * desctroyed and the reference to the inode will be dropped 2952 * after the end_io call back function is called. 2953 * 2954 * In the case there is 0 byte write, or error case, since 2955 * VFS direct IO won't invoke the end_io call back function, 2956 * we need to free the end_io structure here. 2957 */ 2958 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2959 ext4_free_io_end(iocb->private); 2960 iocb->private = NULL; 2961 } else if (ret > 0 && ext4_test_inode_state(inode, 2962 EXT4_STATE_DIO_UNWRITTEN)) { 2963 int err; 2964 /* 2965 * for non AIO case, since the IO is already 2966 * completed, we could do the conversion right here 2967 */ 2968 err = ext4_convert_unwritten_extents(inode, 2969 offset, ret); 2970 if (err < 0) 2971 ret = err; 2972 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2973 } 2974 return ret; 2975 } 2976 2977 /* for write the the end of file case, we fall back to old way */ 2978 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2979 } 2980 2981 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2982 const struct iovec *iov, loff_t offset, 2983 unsigned long nr_segs) 2984 { 2985 struct file *file = iocb->ki_filp; 2986 struct inode *inode = file->f_mapping->host; 2987 ssize_t ret; 2988 2989 /* 2990 * If we are doing data journalling we don't support O_DIRECT 2991 */ 2992 if (ext4_should_journal_data(inode)) 2993 return 0; 2994 2995 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 2996 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 2997 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 2998 else 2999 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3000 trace_ext4_direct_IO_exit(inode, offset, 3001 iov_length(iov, nr_segs), rw, ret); 3002 return ret; 3003 } 3004 3005 /* 3006 * Pages can be marked dirty completely asynchronously from ext4's journalling 3007 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3008 * much here because ->set_page_dirty is called under VFS locks. The page is 3009 * not necessarily locked. 3010 * 3011 * We cannot just dirty the page and leave attached buffers clean, because the 3012 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3013 * or jbddirty because all the journalling code will explode. 3014 * 3015 * So what we do is to mark the page "pending dirty" and next time writepage 3016 * is called, propagate that into the buffers appropriately. 3017 */ 3018 static int ext4_journalled_set_page_dirty(struct page *page) 3019 { 3020 SetPageChecked(page); 3021 return __set_page_dirty_nobuffers(page); 3022 } 3023 3024 static const struct address_space_operations ext4_ordered_aops = { 3025 .readpage = ext4_readpage, 3026 .readpages = ext4_readpages, 3027 .writepage = ext4_writepage, 3028 .write_begin = ext4_write_begin, 3029 .write_end = ext4_ordered_write_end, 3030 .bmap = ext4_bmap, 3031 .invalidatepage = ext4_invalidatepage, 3032 .releasepage = ext4_releasepage, 3033 .direct_IO = ext4_direct_IO, 3034 .migratepage = buffer_migrate_page, 3035 .is_partially_uptodate = block_is_partially_uptodate, 3036 .error_remove_page = generic_error_remove_page, 3037 }; 3038 3039 static const struct address_space_operations ext4_writeback_aops = { 3040 .readpage = ext4_readpage, 3041 .readpages = ext4_readpages, 3042 .writepage = ext4_writepage, 3043 .write_begin = ext4_write_begin, 3044 .write_end = ext4_writeback_write_end, 3045 .bmap = ext4_bmap, 3046 .invalidatepage = ext4_invalidatepage, 3047 .releasepage = ext4_releasepage, 3048 .direct_IO = ext4_direct_IO, 3049 .migratepage = buffer_migrate_page, 3050 .is_partially_uptodate = block_is_partially_uptodate, 3051 .error_remove_page = generic_error_remove_page, 3052 }; 3053 3054 static const struct address_space_operations ext4_journalled_aops = { 3055 .readpage = ext4_readpage, 3056 .readpages = ext4_readpages, 3057 .writepage = ext4_writepage, 3058 .write_begin = ext4_write_begin, 3059 .write_end = ext4_journalled_write_end, 3060 .set_page_dirty = ext4_journalled_set_page_dirty, 3061 .bmap = ext4_bmap, 3062 .invalidatepage = ext4_invalidatepage, 3063 .releasepage = ext4_releasepage, 3064 .direct_IO = ext4_direct_IO, 3065 .is_partially_uptodate = block_is_partially_uptodate, 3066 .error_remove_page = generic_error_remove_page, 3067 }; 3068 3069 static const struct address_space_operations ext4_da_aops = { 3070 .readpage = ext4_readpage, 3071 .readpages = ext4_readpages, 3072 .writepage = ext4_writepage, 3073 .writepages = ext4_da_writepages, 3074 .write_begin = ext4_da_write_begin, 3075 .write_end = ext4_da_write_end, 3076 .bmap = ext4_bmap, 3077 .invalidatepage = ext4_da_invalidatepage, 3078 .releasepage = ext4_releasepage, 3079 .direct_IO = ext4_direct_IO, 3080 .migratepage = buffer_migrate_page, 3081 .is_partially_uptodate = block_is_partially_uptodate, 3082 .error_remove_page = generic_error_remove_page, 3083 }; 3084 3085 void ext4_set_aops(struct inode *inode) 3086 { 3087 if (ext4_should_order_data(inode) && 3088 test_opt(inode->i_sb, DELALLOC)) 3089 inode->i_mapping->a_ops = &ext4_da_aops; 3090 else if (ext4_should_order_data(inode)) 3091 inode->i_mapping->a_ops = &ext4_ordered_aops; 3092 else if (ext4_should_writeback_data(inode) && 3093 test_opt(inode->i_sb, DELALLOC)) 3094 inode->i_mapping->a_ops = &ext4_da_aops; 3095 else if (ext4_should_writeback_data(inode)) 3096 inode->i_mapping->a_ops = &ext4_writeback_aops; 3097 else 3098 inode->i_mapping->a_ops = &ext4_journalled_aops; 3099 } 3100 3101 3102 /* 3103 * ext4_discard_partial_page_buffers() 3104 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3105 * This function finds and locks the page containing the offset 3106 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3107 * Calling functions that already have the page locked should call 3108 * ext4_discard_partial_page_buffers_no_lock directly. 3109 */ 3110 int ext4_discard_partial_page_buffers(handle_t *handle, 3111 struct address_space *mapping, loff_t from, 3112 loff_t length, int flags) 3113 { 3114 struct inode *inode = mapping->host; 3115 struct page *page; 3116 int err = 0; 3117 3118 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3119 mapping_gfp_mask(mapping) & ~__GFP_FS); 3120 if (!page) 3121 return -ENOMEM; 3122 3123 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3124 from, length, flags); 3125 3126 unlock_page(page); 3127 page_cache_release(page); 3128 return err; 3129 } 3130 3131 /* 3132 * ext4_discard_partial_page_buffers_no_lock() 3133 * Zeros a page range of length 'length' starting from offset 'from'. 3134 * Buffer heads that correspond to the block aligned regions of the 3135 * zeroed range will be unmapped. Unblock aligned regions 3136 * will have the corresponding buffer head mapped if needed so that 3137 * that region of the page can be updated with the partial zero out. 3138 * 3139 * This function assumes that the page has already been locked. The 3140 * The range to be discarded must be contained with in the given page. 3141 * If the specified range exceeds the end of the page it will be shortened 3142 * to the end of the page that corresponds to 'from'. This function is 3143 * appropriate for updating a page and it buffer heads to be unmapped and 3144 * zeroed for blocks that have been either released, or are going to be 3145 * released. 3146 * 3147 * handle: The journal handle 3148 * inode: The files inode 3149 * page: A locked page that contains the offset "from" 3150 * from: The starting byte offset (from the begining of the file) 3151 * to begin discarding 3152 * len: The length of bytes to discard 3153 * flags: Optional flags that may be used: 3154 * 3155 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3156 * Only zero the regions of the page whose buffer heads 3157 * have already been unmapped. This flag is appropriate 3158 * for updateing the contents of a page whose blocks may 3159 * have already been released, and we only want to zero 3160 * out the regions that correspond to those released blocks. 3161 * 3162 * Returns zero on sucess or negative on failure. 3163 */ 3164 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3165 struct inode *inode, struct page *page, loff_t from, 3166 loff_t length, int flags) 3167 { 3168 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3169 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3170 unsigned int blocksize, max, pos; 3171 ext4_lblk_t iblock; 3172 struct buffer_head *bh; 3173 int err = 0; 3174 3175 blocksize = inode->i_sb->s_blocksize; 3176 max = PAGE_CACHE_SIZE - offset; 3177 3178 if (index != page->index) 3179 return -EINVAL; 3180 3181 /* 3182 * correct length if it does not fall between 3183 * 'from' and the end of the page 3184 */ 3185 if (length > max || length < 0) 3186 length = max; 3187 3188 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3189 3190 if (!page_has_buffers(page)) 3191 create_empty_buffers(page, blocksize, 0); 3192 3193 /* Find the buffer that contains "offset" */ 3194 bh = page_buffers(page); 3195 pos = blocksize; 3196 while (offset >= pos) { 3197 bh = bh->b_this_page; 3198 iblock++; 3199 pos += blocksize; 3200 } 3201 3202 pos = offset; 3203 while (pos < offset + length) { 3204 unsigned int end_of_block, range_to_discard; 3205 3206 err = 0; 3207 3208 /* The length of space left to zero and unmap */ 3209 range_to_discard = offset + length - pos; 3210 3211 /* The length of space until the end of the block */ 3212 end_of_block = blocksize - (pos & (blocksize-1)); 3213 3214 /* 3215 * Do not unmap or zero past end of block 3216 * for this buffer head 3217 */ 3218 if (range_to_discard > end_of_block) 3219 range_to_discard = end_of_block; 3220 3221 3222 /* 3223 * Skip this buffer head if we are only zeroing unampped 3224 * regions of the page 3225 */ 3226 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3227 buffer_mapped(bh)) 3228 goto next; 3229 3230 /* If the range is block aligned, unmap */ 3231 if (range_to_discard == blocksize) { 3232 clear_buffer_dirty(bh); 3233 bh->b_bdev = NULL; 3234 clear_buffer_mapped(bh); 3235 clear_buffer_req(bh); 3236 clear_buffer_new(bh); 3237 clear_buffer_delay(bh); 3238 clear_buffer_unwritten(bh); 3239 clear_buffer_uptodate(bh); 3240 zero_user(page, pos, range_to_discard); 3241 BUFFER_TRACE(bh, "Buffer discarded"); 3242 goto next; 3243 } 3244 3245 /* 3246 * If this block is not completely contained in the range 3247 * to be discarded, then it is not going to be released. Because 3248 * we need to keep this block, we need to make sure this part 3249 * of the page is uptodate before we modify it by writeing 3250 * partial zeros on it. 3251 */ 3252 if (!buffer_mapped(bh)) { 3253 /* 3254 * Buffer head must be mapped before we can read 3255 * from the block 3256 */ 3257 BUFFER_TRACE(bh, "unmapped"); 3258 ext4_get_block(inode, iblock, bh, 0); 3259 /* unmapped? It's a hole - nothing to do */ 3260 if (!buffer_mapped(bh)) { 3261 BUFFER_TRACE(bh, "still unmapped"); 3262 goto next; 3263 } 3264 } 3265 3266 /* Ok, it's mapped. Make sure it's up-to-date */ 3267 if (PageUptodate(page)) 3268 set_buffer_uptodate(bh); 3269 3270 if (!buffer_uptodate(bh)) { 3271 err = -EIO; 3272 ll_rw_block(READ, 1, &bh); 3273 wait_on_buffer(bh); 3274 /* Uhhuh. Read error. Complain and punt.*/ 3275 if (!buffer_uptodate(bh)) 3276 goto next; 3277 } 3278 3279 if (ext4_should_journal_data(inode)) { 3280 BUFFER_TRACE(bh, "get write access"); 3281 err = ext4_journal_get_write_access(handle, bh); 3282 if (err) 3283 goto next; 3284 } 3285 3286 zero_user(page, pos, range_to_discard); 3287 3288 err = 0; 3289 if (ext4_should_journal_data(inode)) { 3290 err = ext4_handle_dirty_metadata(handle, inode, bh); 3291 } else 3292 mark_buffer_dirty(bh); 3293 3294 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3295 next: 3296 bh = bh->b_this_page; 3297 iblock++; 3298 pos += range_to_discard; 3299 } 3300 3301 return err; 3302 } 3303 3304 /* 3305 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3306 * up to the end of the block which corresponds to `from'. 3307 * This required during truncate. We need to physically zero the tail end 3308 * of that block so it doesn't yield old data if the file is later grown. 3309 */ 3310 int ext4_block_truncate_page(handle_t *handle, 3311 struct address_space *mapping, loff_t from) 3312 { 3313 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3314 unsigned length; 3315 unsigned blocksize; 3316 struct inode *inode = mapping->host; 3317 3318 blocksize = inode->i_sb->s_blocksize; 3319 length = blocksize - (offset & (blocksize - 1)); 3320 3321 return ext4_block_zero_page_range(handle, mapping, from, length); 3322 } 3323 3324 /* 3325 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3326 * starting from file offset 'from'. The range to be zero'd must 3327 * be contained with in one block. If the specified range exceeds 3328 * the end of the block it will be shortened to end of the block 3329 * that cooresponds to 'from' 3330 */ 3331 int ext4_block_zero_page_range(handle_t *handle, 3332 struct address_space *mapping, loff_t from, loff_t length) 3333 { 3334 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3335 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3336 unsigned blocksize, max, pos; 3337 ext4_lblk_t iblock; 3338 struct inode *inode = mapping->host; 3339 struct buffer_head *bh; 3340 struct page *page; 3341 int err = 0; 3342 3343 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3344 mapping_gfp_mask(mapping) & ~__GFP_FS); 3345 if (!page) 3346 return -ENOMEM; 3347 3348 blocksize = inode->i_sb->s_blocksize; 3349 max = blocksize - (offset & (blocksize - 1)); 3350 3351 /* 3352 * correct length if it does not fall between 3353 * 'from' and the end of the block 3354 */ 3355 if (length > max || length < 0) 3356 length = max; 3357 3358 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3359 3360 if (!page_has_buffers(page)) 3361 create_empty_buffers(page, blocksize, 0); 3362 3363 /* Find the buffer that contains "offset" */ 3364 bh = page_buffers(page); 3365 pos = blocksize; 3366 while (offset >= pos) { 3367 bh = bh->b_this_page; 3368 iblock++; 3369 pos += blocksize; 3370 } 3371 3372 err = 0; 3373 if (buffer_freed(bh)) { 3374 BUFFER_TRACE(bh, "freed: skip"); 3375 goto unlock; 3376 } 3377 3378 if (!buffer_mapped(bh)) { 3379 BUFFER_TRACE(bh, "unmapped"); 3380 ext4_get_block(inode, iblock, bh, 0); 3381 /* unmapped? It's a hole - nothing to do */ 3382 if (!buffer_mapped(bh)) { 3383 BUFFER_TRACE(bh, "still unmapped"); 3384 goto unlock; 3385 } 3386 } 3387 3388 /* Ok, it's mapped. Make sure it's up-to-date */ 3389 if (PageUptodate(page)) 3390 set_buffer_uptodate(bh); 3391 3392 if (!buffer_uptodate(bh)) { 3393 err = -EIO; 3394 ll_rw_block(READ, 1, &bh); 3395 wait_on_buffer(bh); 3396 /* Uhhuh. Read error. Complain and punt. */ 3397 if (!buffer_uptodate(bh)) 3398 goto unlock; 3399 } 3400 3401 if (ext4_should_journal_data(inode)) { 3402 BUFFER_TRACE(bh, "get write access"); 3403 err = ext4_journal_get_write_access(handle, bh); 3404 if (err) 3405 goto unlock; 3406 } 3407 3408 zero_user(page, offset, length); 3409 3410 BUFFER_TRACE(bh, "zeroed end of block"); 3411 3412 err = 0; 3413 if (ext4_should_journal_data(inode)) { 3414 err = ext4_handle_dirty_metadata(handle, inode, bh); 3415 } else 3416 mark_buffer_dirty(bh); 3417 3418 unlock: 3419 unlock_page(page); 3420 page_cache_release(page); 3421 return err; 3422 } 3423 3424 int ext4_can_truncate(struct inode *inode) 3425 { 3426 if (S_ISREG(inode->i_mode)) 3427 return 1; 3428 if (S_ISDIR(inode->i_mode)) 3429 return 1; 3430 if (S_ISLNK(inode->i_mode)) 3431 return !ext4_inode_is_fast_symlink(inode); 3432 return 0; 3433 } 3434 3435 /* 3436 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3437 * associated with the given offset and length 3438 * 3439 * @inode: File inode 3440 * @offset: The offset where the hole will begin 3441 * @len: The length of the hole 3442 * 3443 * Returns: 0 on sucess or negative on failure 3444 */ 3445 3446 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3447 { 3448 struct inode *inode = file->f_path.dentry->d_inode; 3449 if (!S_ISREG(inode->i_mode)) 3450 return -ENOTSUPP; 3451 3452 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3453 /* TODO: Add support for non extent hole punching */ 3454 return -ENOTSUPP; 3455 } 3456 3457 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3458 /* TODO: Add support for bigalloc file systems */ 3459 return -ENOTSUPP; 3460 } 3461 3462 return ext4_ext_punch_hole(file, offset, length); 3463 } 3464 3465 /* 3466 * ext4_truncate() 3467 * 3468 * We block out ext4_get_block() block instantiations across the entire 3469 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3470 * simultaneously on behalf of the same inode. 3471 * 3472 * As we work through the truncate and commit bits of it to the journal there 3473 * is one core, guiding principle: the file's tree must always be consistent on 3474 * disk. We must be able to restart the truncate after a crash. 3475 * 3476 * The file's tree may be transiently inconsistent in memory (although it 3477 * probably isn't), but whenever we close off and commit a journal transaction, 3478 * the contents of (the filesystem + the journal) must be consistent and 3479 * restartable. It's pretty simple, really: bottom up, right to left (although 3480 * left-to-right works OK too). 3481 * 3482 * Note that at recovery time, journal replay occurs *before* the restart of 3483 * truncate against the orphan inode list. 3484 * 3485 * The committed inode has the new, desired i_size (which is the same as 3486 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3487 * that this inode's truncate did not complete and it will again call 3488 * ext4_truncate() to have another go. So there will be instantiated blocks 3489 * to the right of the truncation point in a crashed ext4 filesystem. But 3490 * that's fine - as long as they are linked from the inode, the post-crash 3491 * ext4_truncate() run will find them and release them. 3492 */ 3493 void ext4_truncate(struct inode *inode) 3494 { 3495 trace_ext4_truncate_enter(inode); 3496 3497 if (!ext4_can_truncate(inode)) 3498 return; 3499 3500 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3501 3502 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3503 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3504 3505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3506 ext4_ext_truncate(inode); 3507 else 3508 ext4_ind_truncate(inode); 3509 3510 trace_ext4_truncate_exit(inode); 3511 } 3512 3513 /* 3514 * ext4_get_inode_loc returns with an extra refcount against the inode's 3515 * underlying buffer_head on success. If 'in_mem' is true, we have all 3516 * data in memory that is needed to recreate the on-disk version of this 3517 * inode. 3518 */ 3519 static int __ext4_get_inode_loc(struct inode *inode, 3520 struct ext4_iloc *iloc, int in_mem) 3521 { 3522 struct ext4_group_desc *gdp; 3523 struct buffer_head *bh; 3524 struct super_block *sb = inode->i_sb; 3525 ext4_fsblk_t block; 3526 int inodes_per_block, inode_offset; 3527 3528 iloc->bh = NULL; 3529 if (!ext4_valid_inum(sb, inode->i_ino)) 3530 return -EIO; 3531 3532 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3533 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3534 if (!gdp) 3535 return -EIO; 3536 3537 /* 3538 * Figure out the offset within the block group inode table 3539 */ 3540 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3541 inode_offset = ((inode->i_ino - 1) % 3542 EXT4_INODES_PER_GROUP(sb)); 3543 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3544 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3545 3546 bh = sb_getblk(sb, block); 3547 if (!bh) { 3548 EXT4_ERROR_INODE_BLOCK(inode, block, 3549 "unable to read itable block"); 3550 return -EIO; 3551 } 3552 if (!buffer_uptodate(bh)) { 3553 lock_buffer(bh); 3554 3555 /* 3556 * If the buffer has the write error flag, we have failed 3557 * to write out another inode in the same block. In this 3558 * case, we don't have to read the block because we may 3559 * read the old inode data successfully. 3560 */ 3561 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3562 set_buffer_uptodate(bh); 3563 3564 if (buffer_uptodate(bh)) { 3565 /* someone brought it uptodate while we waited */ 3566 unlock_buffer(bh); 3567 goto has_buffer; 3568 } 3569 3570 /* 3571 * If we have all information of the inode in memory and this 3572 * is the only valid inode in the block, we need not read the 3573 * block. 3574 */ 3575 if (in_mem) { 3576 struct buffer_head *bitmap_bh; 3577 int i, start; 3578 3579 start = inode_offset & ~(inodes_per_block - 1); 3580 3581 /* Is the inode bitmap in cache? */ 3582 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3583 if (!bitmap_bh) 3584 goto make_io; 3585 3586 /* 3587 * If the inode bitmap isn't in cache then the 3588 * optimisation may end up performing two reads instead 3589 * of one, so skip it. 3590 */ 3591 if (!buffer_uptodate(bitmap_bh)) { 3592 brelse(bitmap_bh); 3593 goto make_io; 3594 } 3595 for (i = start; i < start + inodes_per_block; i++) { 3596 if (i == inode_offset) 3597 continue; 3598 if (ext4_test_bit(i, bitmap_bh->b_data)) 3599 break; 3600 } 3601 brelse(bitmap_bh); 3602 if (i == start + inodes_per_block) { 3603 /* all other inodes are free, so skip I/O */ 3604 memset(bh->b_data, 0, bh->b_size); 3605 set_buffer_uptodate(bh); 3606 unlock_buffer(bh); 3607 goto has_buffer; 3608 } 3609 } 3610 3611 make_io: 3612 /* 3613 * If we need to do any I/O, try to pre-readahead extra 3614 * blocks from the inode table. 3615 */ 3616 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3617 ext4_fsblk_t b, end, table; 3618 unsigned num; 3619 3620 table = ext4_inode_table(sb, gdp); 3621 /* s_inode_readahead_blks is always a power of 2 */ 3622 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3623 if (table > b) 3624 b = table; 3625 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3626 num = EXT4_INODES_PER_GROUP(sb); 3627 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3628 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3629 num -= ext4_itable_unused_count(sb, gdp); 3630 table += num / inodes_per_block; 3631 if (end > table) 3632 end = table; 3633 while (b <= end) 3634 sb_breadahead(sb, b++); 3635 } 3636 3637 /* 3638 * There are other valid inodes in the buffer, this inode 3639 * has in-inode xattrs, or we don't have this inode in memory. 3640 * Read the block from disk. 3641 */ 3642 trace_ext4_load_inode(inode); 3643 get_bh(bh); 3644 bh->b_end_io = end_buffer_read_sync; 3645 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3646 wait_on_buffer(bh); 3647 if (!buffer_uptodate(bh)) { 3648 EXT4_ERROR_INODE_BLOCK(inode, block, 3649 "unable to read itable block"); 3650 brelse(bh); 3651 return -EIO; 3652 } 3653 } 3654 has_buffer: 3655 iloc->bh = bh; 3656 return 0; 3657 } 3658 3659 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3660 { 3661 /* We have all inode data except xattrs in memory here. */ 3662 return __ext4_get_inode_loc(inode, iloc, 3663 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3664 } 3665 3666 void ext4_set_inode_flags(struct inode *inode) 3667 { 3668 unsigned int flags = EXT4_I(inode)->i_flags; 3669 3670 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3671 if (flags & EXT4_SYNC_FL) 3672 inode->i_flags |= S_SYNC; 3673 if (flags & EXT4_APPEND_FL) 3674 inode->i_flags |= S_APPEND; 3675 if (flags & EXT4_IMMUTABLE_FL) 3676 inode->i_flags |= S_IMMUTABLE; 3677 if (flags & EXT4_NOATIME_FL) 3678 inode->i_flags |= S_NOATIME; 3679 if (flags & EXT4_DIRSYNC_FL) 3680 inode->i_flags |= S_DIRSYNC; 3681 } 3682 3683 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3684 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3685 { 3686 unsigned int vfs_fl; 3687 unsigned long old_fl, new_fl; 3688 3689 do { 3690 vfs_fl = ei->vfs_inode.i_flags; 3691 old_fl = ei->i_flags; 3692 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3693 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3694 EXT4_DIRSYNC_FL); 3695 if (vfs_fl & S_SYNC) 3696 new_fl |= EXT4_SYNC_FL; 3697 if (vfs_fl & S_APPEND) 3698 new_fl |= EXT4_APPEND_FL; 3699 if (vfs_fl & S_IMMUTABLE) 3700 new_fl |= EXT4_IMMUTABLE_FL; 3701 if (vfs_fl & S_NOATIME) 3702 new_fl |= EXT4_NOATIME_FL; 3703 if (vfs_fl & S_DIRSYNC) 3704 new_fl |= EXT4_DIRSYNC_FL; 3705 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3706 } 3707 3708 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3709 struct ext4_inode_info *ei) 3710 { 3711 blkcnt_t i_blocks ; 3712 struct inode *inode = &(ei->vfs_inode); 3713 struct super_block *sb = inode->i_sb; 3714 3715 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3716 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3717 /* we are using combined 48 bit field */ 3718 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3719 le32_to_cpu(raw_inode->i_blocks_lo); 3720 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3721 /* i_blocks represent file system block size */ 3722 return i_blocks << (inode->i_blkbits - 9); 3723 } else { 3724 return i_blocks; 3725 } 3726 } else { 3727 return le32_to_cpu(raw_inode->i_blocks_lo); 3728 } 3729 } 3730 3731 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3732 { 3733 struct ext4_iloc iloc; 3734 struct ext4_inode *raw_inode; 3735 struct ext4_inode_info *ei; 3736 struct inode *inode; 3737 journal_t *journal = EXT4_SB(sb)->s_journal; 3738 long ret; 3739 int block; 3740 3741 inode = iget_locked(sb, ino); 3742 if (!inode) 3743 return ERR_PTR(-ENOMEM); 3744 if (!(inode->i_state & I_NEW)) 3745 return inode; 3746 3747 ei = EXT4_I(inode); 3748 iloc.bh = NULL; 3749 3750 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3751 if (ret < 0) 3752 goto bad_inode; 3753 raw_inode = ext4_raw_inode(&iloc); 3754 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3755 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3756 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3757 if (!(test_opt(inode->i_sb, NO_UID32))) { 3758 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3759 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3760 } 3761 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3762 3763 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3764 ei->i_dir_start_lookup = 0; 3765 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3766 /* We now have enough fields to check if the inode was active or not. 3767 * This is needed because nfsd might try to access dead inodes 3768 * the test is that same one that e2fsck uses 3769 * NeilBrown 1999oct15 3770 */ 3771 if (inode->i_nlink == 0) { 3772 if (inode->i_mode == 0 || 3773 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3774 /* this inode is deleted */ 3775 ret = -ESTALE; 3776 goto bad_inode; 3777 } 3778 /* The only unlinked inodes we let through here have 3779 * valid i_mode and are being read by the orphan 3780 * recovery code: that's fine, we're about to complete 3781 * the process of deleting those. */ 3782 } 3783 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3784 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3785 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3786 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3787 ei->i_file_acl |= 3788 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3789 inode->i_size = ext4_isize(raw_inode); 3790 ei->i_disksize = inode->i_size; 3791 #ifdef CONFIG_QUOTA 3792 ei->i_reserved_quota = 0; 3793 #endif 3794 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3795 ei->i_block_group = iloc.block_group; 3796 ei->i_last_alloc_group = ~0; 3797 /* 3798 * NOTE! The in-memory inode i_data array is in little-endian order 3799 * even on big-endian machines: we do NOT byteswap the block numbers! 3800 */ 3801 for (block = 0; block < EXT4_N_BLOCKS; block++) 3802 ei->i_data[block] = raw_inode->i_block[block]; 3803 INIT_LIST_HEAD(&ei->i_orphan); 3804 3805 /* 3806 * Set transaction id's of transactions that have to be committed 3807 * to finish f[data]sync. We set them to currently running transaction 3808 * as we cannot be sure that the inode or some of its metadata isn't 3809 * part of the transaction - the inode could have been reclaimed and 3810 * now it is reread from disk. 3811 */ 3812 if (journal) { 3813 transaction_t *transaction; 3814 tid_t tid; 3815 3816 read_lock(&journal->j_state_lock); 3817 if (journal->j_running_transaction) 3818 transaction = journal->j_running_transaction; 3819 else 3820 transaction = journal->j_committing_transaction; 3821 if (transaction) 3822 tid = transaction->t_tid; 3823 else 3824 tid = journal->j_commit_sequence; 3825 read_unlock(&journal->j_state_lock); 3826 ei->i_sync_tid = tid; 3827 ei->i_datasync_tid = tid; 3828 } 3829 3830 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3831 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3832 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3833 EXT4_INODE_SIZE(inode->i_sb)) { 3834 ret = -EIO; 3835 goto bad_inode; 3836 } 3837 if (ei->i_extra_isize == 0) { 3838 /* The extra space is currently unused. Use it. */ 3839 ei->i_extra_isize = sizeof(struct ext4_inode) - 3840 EXT4_GOOD_OLD_INODE_SIZE; 3841 } else { 3842 __le32 *magic = (void *)raw_inode + 3843 EXT4_GOOD_OLD_INODE_SIZE + 3844 ei->i_extra_isize; 3845 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3846 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3847 } 3848 } else 3849 ei->i_extra_isize = 0; 3850 3851 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3852 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3853 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3854 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3855 3856 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3857 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3858 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3859 inode->i_version |= 3860 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3861 } 3862 3863 ret = 0; 3864 if (ei->i_file_acl && 3865 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3866 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3867 ei->i_file_acl); 3868 ret = -EIO; 3869 goto bad_inode; 3870 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3871 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3872 (S_ISLNK(inode->i_mode) && 3873 !ext4_inode_is_fast_symlink(inode))) 3874 /* Validate extent which is part of inode */ 3875 ret = ext4_ext_check_inode(inode); 3876 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3877 (S_ISLNK(inode->i_mode) && 3878 !ext4_inode_is_fast_symlink(inode))) { 3879 /* Validate block references which are part of inode */ 3880 ret = ext4_ind_check_inode(inode); 3881 } 3882 if (ret) 3883 goto bad_inode; 3884 3885 if (S_ISREG(inode->i_mode)) { 3886 inode->i_op = &ext4_file_inode_operations; 3887 inode->i_fop = &ext4_file_operations; 3888 ext4_set_aops(inode); 3889 } else if (S_ISDIR(inode->i_mode)) { 3890 inode->i_op = &ext4_dir_inode_operations; 3891 inode->i_fop = &ext4_dir_operations; 3892 } else if (S_ISLNK(inode->i_mode)) { 3893 if (ext4_inode_is_fast_symlink(inode)) { 3894 inode->i_op = &ext4_fast_symlink_inode_operations; 3895 nd_terminate_link(ei->i_data, inode->i_size, 3896 sizeof(ei->i_data) - 1); 3897 } else { 3898 inode->i_op = &ext4_symlink_inode_operations; 3899 ext4_set_aops(inode); 3900 } 3901 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3902 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3903 inode->i_op = &ext4_special_inode_operations; 3904 if (raw_inode->i_block[0]) 3905 init_special_inode(inode, inode->i_mode, 3906 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3907 else 3908 init_special_inode(inode, inode->i_mode, 3909 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3910 } else { 3911 ret = -EIO; 3912 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3913 goto bad_inode; 3914 } 3915 brelse(iloc.bh); 3916 ext4_set_inode_flags(inode); 3917 unlock_new_inode(inode); 3918 return inode; 3919 3920 bad_inode: 3921 brelse(iloc.bh); 3922 iget_failed(inode); 3923 return ERR_PTR(ret); 3924 } 3925 3926 static int ext4_inode_blocks_set(handle_t *handle, 3927 struct ext4_inode *raw_inode, 3928 struct ext4_inode_info *ei) 3929 { 3930 struct inode *inode = &(ei->vfs_inode); 3931 u64 i_blocks = inode->i_blocks; 3932 struct super_block *sb = inode->i_sb; 3933 3934 if (i_blocks <= ~0U) { 3935 /* 3936 * i_blocks can be represnted in a 32 bit variable 3937 * as multiple of 512 bytes 3938 */ 3939 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3940 raw_inode->i_blocks_high = 0; 3941 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3942 return 0; 3943 } 3944 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3945 return -EFBIG; 3946 3947 if (i_blocks <= 0xffffffffffffULL) { 3948 /* 3949 * i_blocks can be represented in a 48 bit variable 3950 * as multiple of 512 bytes 3951 */ 3952 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3953 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3954 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3955 } else { 3956 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3957 /* i_block is stored in file system block size */ 3958 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3959 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3960 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3961 } 3962 return 0; 3963 } 3964 3965 /* 3966 * Post the struct inode info into an on-disk inode location in the 3967 * buffer-cache. This gobbles the caller's reference to the 3968 * buffer_head in the inode location struct. 3969 * 3970 * The caller must have write access to iloc->bh. 3971 */ 3972 static int ext4_do_update_inode(handle_t *handle, 3973 struct inode *inode, 3974 struct ext4_iloc *iloc) 3975 { 3976 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3977 struct ext4_inode_info *ei = EXT4_I(inode); 3978 struct buffer_head *bh = iloc->bh; 3979 int err = 0, rc, block; 3980 3981 /* For fields not not tracking in the in-memory inode, 3982 * initialise them to zero for new inodes. */ 3983 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3984 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3985 3986 ext4_get_inode_flags(ei); 3987 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3988 if (!(test_opt(inode->i_sb, NO_UID32))) { 3989 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3990 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3991 /* 3992 * Fix up interoperability with old kernels. Otherwise, old inodes get 3993 * re-used with the upper 16 bits of the uid/gid intact 3994 */ 3995 if (!ei->i_dtime) { 3996 raw_inode->i_uid_high = 3997 cpu_to_le16(high_16_bits(inode->i_uid)); 3998 raw_inode->i_gid_high = 3999 cpu_to_le16(high_16_bits(inode->i_gid)); 4000 } else { 4001 raw_inode->i_uid_high = 0; 4002 raw_inode->i_gid_high = 0; 4003 } 4004 } else { 4005 raw_inode->i_uid_low = 4006 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4007 raw_inode->i_gid_low = 4008 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4009 raw_inode->i_uid_high = 0; 4010 raw_inode->i_gid_high = 0; 4011 } 4012 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4013 4014 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4015 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4016 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4017 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4018 4019 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4020 goto out_brelse; 4021 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4022 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4023 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4024 cpu_to_le32(EXT4_OS_HURD)) 4025 raw_inode->i_file_acl_high = 4026 cpu_to_le16(ei->i_file_acl >> 32); 4027 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4028 ext4_isize_set(raw_inode, ei->i_disksize); 4029 if (ei->i_disksize > 0x7fffffffULL) { 4030 struct super_block *sb = inode->i_sb; 4031 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4032 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4033 EXT4_SB(sb)->s_es->s_rev_level == 4034 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4035 /* If this is the first large file 4036 * created, add a flag to the superblock. 4037 */ 4038 err = ext4_journal_get_write_access(handle, 4039 EXT4_SB(sb)->s_sbh); 4040 if (err) 4041 goto out_brelse; 4042 ext4_update_dynamic_rev(sb); 4043 EXT4_SET_RO_COMPAT_FEATURE(sb, 4044 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4045 sb->s_dirt = 1; 4046 ext4_handle_sync(handle); 4047 err = ext4_handle_dirty_metadata(handle, NULL, 4048 EXT4_SB(sb)->s_sbh); 4049 } 4050 } 4051 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4052 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4053 if (old_valid_dev(inode->i_rdev)) { 4054 raw_inode->i_block[0] = 4055 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4056 raw_inode->i_block[1] = 0; 4057 } else { 4058 raw_inode->i_block[0] = 0; 4059 raw_inode->i_block[1] = 4060 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4061 raw_inode->i_block[2] = 0; 4062 } 4063 } else 4064 for (block = 0; block < EXT4_N_BLOCKS; block++) 4065 raw_inode->i_block[block] = ei->i_data[block]; 4066 4067 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4068 if (ei->i_extra_isize) { 4069 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4070 raw_inode->i_version_hi = 4071 cpu_to_le32(inode->i_version >> 32); 4072 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4073 } 4074 4075 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4076 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4077 if (!err) 4078 err = rc; 4079 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4080 4081 ext4_update_inode_fsync_trans(handle, inode, 0); 4082 out_brelse: 4083 brelse(bh); 4084 ext4_std_error(inode->i_sb, err); 4085 return err; 4086 } 4087 4088 /* 4089 * ext4_write_inode() 4090 * 4091 * We are called from a few places: 4092 * 4093 * - Within generic_file_write() for O_SYNC files. 4094 * Here, there will be no transaction running. We wait for any running 4095 * trasnaction to commit. 4096 * 4097 * - Within sys_sync(), kupdate and such. 4098 * We wait on commit, if tol to. 4099 * 4100 * - Within prune_icache() (PF_MEMALLOC == true) 4101 * Here we simply return. We can't afford to block kswapd on the 4102 * journal commit. 4103 * 4104 * In all cases it is actually safe for us to return without doing anything, 4105 * because the inode has been copied into a raw inode buffer in 4106 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4107 * knfsd. 4108 * 4109 * Note that we are absolutely dependent upon all inode dirtiers doing the 4110 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4111 * which we are interested. 4112 * 4113 * It would be a bug for them to not do this. The code: 4114 * 4115 * mark_inode_dirty(inode) 4116 * stuff(); 4117 * inode->i_size = expr; 4118 * 4119 * is in error because a kswapd-driven write_inode() could occur while 4120 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4121 * will no longer be on the superblock's dirty inode list. 4122 */ 4123 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4124 { 4125 int err; 4126 4127 if (current->flags & PF_MEMALLOC) 4128 return 0; 4129 4130 if (EXT4_SB(inode->i_sb)->s_journal) { 4131 if (ext4_journal_current_handle()) { 4132 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4133 dump_stack(); 4134 return -EIO; 4135 } 4136 4137 if (wbc->sync_mode != WB_SYNC_ALL) 4138 return 0; 4139 4140 err = ext4_force_commit(inode->i_sb); 4141 } else { 4142 struct ext4_iloc iloc; 4143 4144 err = __ext4_get_inode_loc(inode, &iloc, 0); 4145 if (err) 4146 return err; 4147 if (wbc->sync_mode == WB_SYNC_ALL) 4148 sync_dirty_buffer(iloc.bh); 4149 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4150 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4151 "IO error syncing inode"); 4152 err = -EIO; 4153 } 4154 brelse(iloc.bh); 4155 } 4156 return err; 4157 } 4158 4159 /* 4160 * ext4_setattr() 4161 * 4162 * Called from notify_change. 4163 * 4164 * We want to trap VFS attempts to truncate the file as soon as 4165 * possible. In particular, we want to make sure that when the VFS 4166 * shrinks i_size, we put the inode on the orphan list and modify 4167 * i_disksize immediately, so that during the subsequent flushing of 4168 * dirty pages and freeing of disk blocks, we can guarantee that any 4169 * commit will leave the blocks being flushed in an unused state on 4170 * disk. (On recovery, the inode will get truncated and the blocks will 4171 * be freed, so we have a strong guarantee that no future commit will 4172 * leave these blocks visible to the user.) 4173 * 4174 * Another thing we have to assure is that if we are in ordered mode 4175 * and inode is still attached to the committing transaction, we must 4176 * we start writeout of all the dirty pages which are being truncated. 4177 * This way we are sure that all the data written in the previous 4178 * transaction are already on disk (truncate waits for pages under 4179 * writeback). 4180 * 4181 * Called with inode->i_mutex down. 4182 */ 4183 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4184 { 4185 struct inode *inode = dentry->d_inode; 4186 int error, rc = 0; 4187 int orphan = 0; 4188 const unsigned int ia_valid = attr->ia_valid; 4189 4190 error = inode_change_ok(inode, attr); 4191 if (error) 4192 return error; 4193 4194 if (is_quota_modification(inode, attr)) 4195 dquot_initialize(inode); 4196 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4197 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4198 handle_t *handle; 4199 4200 /* (user+group)*(old+new) structure, inode write (sb, 4201 * inode block, ? - but truncate inode update has it) */ 4202 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4203 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4204 if (IS_ERR(handle)) { 4205 error = PTR_ERR(handle); 4206 goto err_out; 4207 } 4208 error = dquot_transfer(inode, attr); 4209 if (error) { 4210 ext4_journal_stop(handle); 4211 return error; 4212 } 4213 /* Update corresponding info in inode so that everything is in 4214 * one transaction */ 4215 if (attr->ia_valid & ATTR_UID) 4216 inode->i_uid = attr->ia_uid; 4217 if (attr->ia_valid & ATTR_GID) 4218 inode->i_gid = attr->ia_gid; 4219 error = ext4_mark_inode_dirty(handle, inode); 4220 ext4_journal_stop(handle); 4221 } 4222 4223 if (attr->ia_valid & ATTR_SIZE) { 4224 inode_dio_wait(inode); 4225 4226 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4227 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4228 4229 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4230 return -EFBIG; 4231 } 4232 } 4233 4234 if (S_ISREG(inode->i_mode) && 4235 attr->ia_valid & ATTR_SIZE && 4236 (attr->ia_size < inode->i_size)) { 4237 handle_t *handle; 4238 4239 handle = ext4_journal_start(inode, 3); 4240 if (IS_ERR(handle)) { 4241 error = PTR_ERR(handle); 4242 goto err_out; 4243 } 4244 if (ext4_handle_valid(handle)) { 4245 error = ext4_orphan_add(handle, inode); 4246 orphan = 1; 4247 } 4248 EXT4_I(inode)->i_disksize = attr->ia_size; 4249 rc = ext4_mark_inode_dirty(handle, inode); 4250 if (!error) 4251 error = rc; 4252 ext4_journal_stop(handle); 4253 4254 if (ext4_should_order_data(inode)) { 4255 error = ext4_begin_ordered_truncate(inode, 4256 attr->ia_size); 4257 if (error) { 4258 /* Do as much error cleanup as possible */ 4259 handle = ext4_journal_start(inode, 3); 4260 if (IS_ERR(handle)) { 4261 ext4_orphan_del(NULL, inode); 4262 goto err_out; 4263 } 4264 ext4_orphan_del(handle, inode); 4265 orphan = 0; 4266 ext4_journal_stop(handle); 4267 goto err_out; 4268 } 4269 } 4270 } 4271 4272 if (attr->ia_valid & ATTR_SIZE) { 4273 if (attr->ia_size != i_size_read(inode)) { 4274 truncate_setsize(inode, attr->ia_size); 4275 ext4_truncate(inode); 4276 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 4277 ext4_truncate(inode); 4278 } 4279 4280 if (!rc) { 4281 setattr_copy(inode, attr); 4282 mark_inode_dirty(inode); 4283 } 4284 4285 /* 4286 * If the call to ext4_truncate failed to get a transaction handle at 4287 * all, we need to clean up the in-core orphan list manually. 4288 */ 4289 if (orphan && inode->i_nlink) 4290 ext4_orphan_del(NULL, inode); 4291 4292 if (!rc && (ia_valid & ATTR_MODE)) 4293 rc = ext4_acl_chmod(inode); 4294 4295 err_out: 4296 ext4_std_error(inode->i_sb, error); 4297 if (!error) 4298 error = rc; 4299 return error; 4300 } 4301 4302 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4303 struct kstat *stat) 4304 { 4305 struct inode *inode; 4306 unsigned long delalloc_blocks; 4307 4308 inode = dentry->d_inode; 4309 generic_fillattr(inode, stat); 4310 4311 /* 4312 * We can't update i_blocks if the block allocation is delayed 4313 * otherwise in the case of system crash before the real block 4314 * allocation is done, we will have i_blocks inconsistent with 4315 * on-disk file blocks. 4316 * We always keep i_blocks updated together with real 4317 * allocation. But to not confuse with user, stat 4318 * will return the blocks that include the delayed allocation 4319 * blocks for this file. 4320 */ 4321 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4322 4323 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4324 return 0; 4325 } 4326 4327 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4328 { 4329 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4330 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4331 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4332 } 4333 4334 /* 4335 * Account for index blocks, block groups bitmaps and block group 4336 * descriptor blocks if modify datablocks and index blocks 4337 * worse case, the indexs blocks spread over different block groups 4338 * 4339 * If datablocks are discontiguous, they are possible to spread over 4340 * different block groups too. If they are contiuguous, with flexbg, 4341 * they could still across block group boundary. 4342 * 4343 * Also account for superblock, inode, quota and xattr blocks 4344 */ 4345 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4346 { 4347 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4348 int gdpblocks; 4349 int idxblocks; 4350 int ret = 0; 4351 4352 /* 4353 * How many index blocks need to touch to modify nrblocks? 4354 * The "Chunk" flag indicating whether the nrblocks is 4355 * physically contiguous on disk 4356 * 4357 * For Direct IO and fallocate, they calls get_block to allocate 4358 * one single extent at a time, so they could set the "Chunk" flag 4359 */ 4360 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4361 4362 ret = idxblocks; 4363 4364 /* 4365 * Now let's see how many group bitmaps and group descriptors need 4366 * to account 4367 */ 4368 groups = idxblocks; 4369 if (chunk) 4370 groups += 1; 4371 else 4372 groups += nrblocks; 4373 4374 gdpblocks = groups; 4375 if (groups > ngroups) 4376 groups = ngroups; 4377 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4378 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4379 4380 /* bitmaps and block group descriptor blocks */ 4381 ret += groups + gdpblocks; 4382 4383 /* Blocks for super block, inode, quota and xattr blocks */ 4384 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4385 4386 return ret; 4387 } 4388 4389 /* 4390 * Calculate the total number of credits to reserve to fit 4391 * the modification of a single pages into a single transaction, 4392 * which may include multiple chunks of block allocations. 4393 * 4394 * This could be called via ext4_write_begin() 4395 * 4396 * We need to consider the worse case, when 4397 * one new block per extent. 4398 */ 4399 int ext4_writepage_trans_blocks(struct inode *inode) 4400 { 4401 int bpp = ext4_journal_blocks_per_page(inode); 4402 int ret; 4403 4404 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4405 4406 /* Account for data blocks for journalled mode */ 4407 if (ext4_should_journal_data(inode)) 4408 ret += bpp; 4409 return ret; 4410 } 4411 4412 /* 4413 * Calculate the journal credits for a chunk of data modification. 4414 * 4415 * This is called from DIO, fallocate or whoever calling 4416 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4417 * 4418 * journal buffers for data blocks are not included here, as DIO 4419 * and fallocate do no need to journal data buffers. 4420 */ 4421 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4422 { 4423 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4424 } 4425 4426 /* 4427 * The caller must have previously called ext4_reserve_inode_write(). 4428 * Give this, we know that the caller already has write access to iloc->bh. 4429 */ 4430 int ext4_mark_iloc_dirty(handle_t *handle, 4431 struct inode *inode, struct ext4_iloc *iloc) 4432 { 4433 int err = 0; 4434 4435 if (test_opt(inode->i_sb, I_VERSION)) 4436 inode_inc_iversion(inode); 4437 4438 /* the do_update_inode consumes one bh->b_count */ 4439 get_bh(iloc->bh); 4440 4441 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4442 err = ext4_do_update_inode(handle, inode, iloc); 4443 put_bh(iloc->bh); 4444 return err; 4445 } 4446 4447 /* 4448 * On success, We end up with an outstanding reference count against 4449 * iloc->bh. This _must_ be cleaned up later. 4450 */ 4451 4452 int 4453 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4454 struct ext4_iloc *iloc) 4455 { 4456 int err; 4457 4458 err = ext4_get_inode_loc(inode, iloc); 4459 if (!err) { 4460 BUFFER_TRACE(iloc->bh, "get_write_access"); 4461 err = ext4_journal_get_write_access(handle, iloc->bh); 4462 if (err) { 4463 brelse(iloc->bh); 4464 iloc->bh = NULL; 4465 } 4466 } 4467 ext4_std_error(inode->i_sb, err); 4468 return err; 4469 } 4470 4471 /* 4472 * Expand an inode by new_extra_isize bytes. 4473 * Returns 0 on success or negative error number on failure. 4474 */ 4475 static int ext4_expand_extra_isize(struct inode *inode, 4476 unsigned int new_extra_isize, 4477 struct ext4_iloc iloc, 4478 handle_t *handle) 4479 { 4480 struct ext4_inode *raw_inode; 4481 struct ext4_xattr_ibody_header *header; 4482 4483 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4484 return 0; 4485 4486 raw_inode = ext4_raw_inode(&iloc); 4487 4488 header = IHDR(inode, raw_inode); 4489 4490 /* No extended attributes present */ 4491 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4492 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4493 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4494 new_extra_isize); 4495 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4496 return 0; 4497 } 4498 4499 /* try to expand with EAs present */ 4500 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4501 raw_inode, handle); 4502 } 4503 4504 /* 4505 * What we do here is to mark the in-core inode as clean with respect to inode 4506 * dirtiness (it may still be data-dirty). 4507 * This means that the in-core inode may be reaped by prune_icache 4508 * without having to perform any I/O. This is a very good thing, 4509 * because *any* task may call prune_icache - even ones which 4510 * have a transaction open against a different journal. 4511 * 4512 * Is this cheating? Not really. Sure, we haven't written the 4513 * inode out, but prune_icache isn't a user-visible syncing function. 4514 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4515 * we start and wait on commits. 4516 * 4517 * Is this efficient/effective? Well, we're being nice to the system 4518 * by cleaning up our inodes proactively so they can be reaped 4519 * without I/O. But we are potentially leaving up to five seconds' 4520 * worth of inodes floating about which prune_icache wants us to 4521 * write out. One way to fix that would be to get prune_icache() 4522 * to do a write_super() to free up some memory. It has the desired 4523 * effect. 4524 */ 4525 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4526 { 4527 struct ext4_iloc iloc; 4528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4529 static unsigned int mnt_count; 4530 int err, ret; 4531 4532 might_sleep(); 4533 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4534 err = ext4_reserve_inode_write(handle, inode, &iloc); 4535 if (ext4_handle_valid(handle) && 4536 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4537 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4538 /* 4539 * We need extra buffer credits since we may write into EA block 4540 * with this same handle. If journal_extend fails, then it will 4541 * only result in a minor loss of functionality for that inode. 4542 * If this is felt to be critical, then e2fsck should be run to 4543 * force a large enough s_min_extra_isize. 4544 */ 4545 if ((jbd2_journal_extend(handle, 4546 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4547 ret = ext4_expand_extra_isize(inode, 4548 sbi->s_want_extra_isize, 4549 iloc, handle); 4550 if (ret) { 4551 ext4_set_inode_state(inode, 4552 EXT4_STATE_NO_EXPAND); 4553 if (mnt_count != 4554 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4555 ext4_warning(inode->i_sb, 4556 "Unable to expand inode %lu. Delete" 4557 " some EAs or run e2fsck.", 4558 inode->i_ino); 4559 mnt_count = 4560 le16_to_cpu(sbi->s_es->s_mnt_count); 4561 } 4562 } 4563 } 4564 } 4565 if (!err) 4566 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4567 return err; 4568 } 4569 4570 /* 4571 * ext4_dirty_inode() is called from __mark_inode_dirty() 4572 * 4573 * We're really interested in the case where a file is being extended. 4574 * i_size has been changed by generic_commit_write() and we thus need 4575 * to include the updated inode in the current transaction. 4576 * 4577 * Also, dquot_alloc_block() will always dirty the inode when blocks 4578 * are allocated to the file. 4579 * 4580 * If the inode is marked synchronous, we don't honour that here - doing 4581 * so would cause a commit on atime updates, which we don't bother doing. 4582 * We handle synchronous inodes at the highest possible level. 4583 */ 4584 void ext4_dirty_inode(struct inode *inode, int flags) 4585 { 4586 handle_t *handle; 4587 4588 handle = ext4_journal_start(inode, 2); 4589 if (IS_ERR(handle)) 4590 goto out; 4591 4592 ext4_mark_inode_dirty(handle, inode); 4593 4594 ext4_journal_stop(handle); 4595 out: 4596 return; 4597 } 4598 4599 #if 0 4600 /* 4601 * Bind an inode's backing buffer_head into this transaction, to prevent 4602 * it from being flushed to disk early. Unlike 4603 * ext4_reserve_inode_write, this leaves behind no bh reference and 4604 * returns no iloc structure, so the caller needs to repeat the iloc 4605 * lookup to mark the inode dirty later. 4606 */ 4607 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4608 { 4609 struct ext4_iloc iloc; 4610 4611 int err = 0; 4612 if (handle) { 4613 err = ext4_get_inode_loc(inode, &iloc); 4614 if (!err) { 4615 BUFFER_TRACE(iloc.bh, "get_write_access"); 4616 err = jbd2_journal_get_write_access(handle, iloc.bh); 4617 if (!err) 4618 err = ext4_handle_dirty_metadata(handle, 4619 NULL, 4620 iloc.bh); 4621 brelse(iloc.bh); 4622 } 4623 } 4624 ext4_std_error(inode->i_sb, err); 4625 return err; 4626 } 4627 #endif 4628 4629 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4630 { 4631 journal_t *journal; 4632 handle_t *handle; 4633 int err; 4634 4635 /* 4636 * We have to be very careful here: changing a data block's 4637 * journaling status dynamically is dangerous. If we write a 4638 * data block to the journal, change the status and then delete 4639 * that block, we risk forgetting to revoke the old log record 4640 * from the journal and so a subsequent replay can corrupt data. 4641 * So, first we make sure that the journal is empty and that 4642 * nobody is changing anything. 4643 */ 4644 4645 journal = EXT4_JOURNAL(inode); 4646 if (!journal) 4647 return 0; 4648 if (is_journal_aborted(journal)) 4649 return -EROFS; 4650 4651 jbd2_journal_lock_updates(journal); 4652 jbd2_journal_flush(journal); 4653 4654 /* 4655 * OK, there are no updates running now, and all cached data is 4656 * synced to disk. We are now in a completely consistent state 4657 * which doesn't have anything in the journal, and we know that 4658 * no filesystem updates are running, so it is safe to modify 4659 * the inode's in-core data-journaling state flag now. 4660 */ 4661 4662 if (val) 4663 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4664 else 4665 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4666 ext4_set_aops(inode); 4667 4668 jbd2_journal_unlock_updates(journal); 4669 4670 /* Finally we can mark the inode as dirty. */ 4671 4672 handle = ext4_journal_start(inode, 1); 4673 if (IS_ERR(handle)) 4674 return PTR_ERR(handle); 4675 4676 err = ext4_mark_inode_dirty(handle, inode); 4677 ext4_handle_sync(handle); 4678 ext4_journal_stop(handle); 4679 ext4_std_error(inode->i_sb, err); 4680 4681 return err; 4682 } 4683 4684 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4685 { 4686 return !buffer_mapped(bh); 4687 } 4688 4689 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4690 { 4691 struct page *page = vmf->page; 4692 loff_t size; 4693 unsigned long len; 4694 int ret; 4695 struct file *file = vma->vm_file; 4696 struct inode *inode = file->f_path.dentry->d_inode; 4697 struct address_space *mapping = inode->i_mapping; 4698 handle_t *handle; 4699 get_block_t *get_block; 4700 int retries = 0; 4701 4702 /* 4703 * This check is racy but catches the common case. We rely on 4704 * __block_page_mkwrite() to do a reliable check. 4705 */ 4706 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4707 /* Delalloc case is easy... */ 4708 if (test_opt(inode->i_sb, DELALLOC) && 4709 !ext4_should_journal_data(inode) && 4710 !ext4_nonda_switch(inode->i_sb)) { 4711 do { 4712 ret = __block_page_mkwrite(vma, vmf, 4713 ext4_da_get_block_prep); 4714 } while (ret == -ENOSPC && 4715 ext4_should_retry_alloc(inode->i_sb, &retries)); 4716 goto out_ret; 4717 } 4718 4719 lock_page(page); 4720 size = i_size_read(inode); 4721 /* Page got truncated from under us? */ 4722 if (page->mapping != mapping || page_offset(page) > size) { 4723 unlock_page(page); 4724 ret = VM_FAULT_NOPAGE; 4725 goto out; 4726 } 4727 4728 if (page->index == size >> PAGE_CACHE_SHIFT) 4729 len = size & ~PAGE_CACHE_MASK; 4730 else 4731 len = PAGE_CACHE_SIZE; 4732 /* 4733 * Return if we have all the buffers mapped. This avoids the need to do 4734 * journal_start/journal_stop which can block and take a long time 4735 */ 4736 if (page_has_buffers(page)) { 4737 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4738 ext4_bh_unmapped)) { 4739 /* Wait so that we don't change page under IO */ 4740 wait_on_page_writeback(page); 4741 ret = VM_FAULT_LOCKED; 4742 goto out; 4743 } 4744 } 4745 unlock_page(page); 4746 /* OK, we need to fill the hole... */ 4747 if (ext4_should_dioread_nolock(inode)) 4748 get_block = ext4_get_block_write; 4749 else 4750 get_block = ext4_get_block; 4751 retry_alloc: 4752 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4753 if (IS_ERR(handle)) { 4754 ret = VM_FAULT_SIGBUS; 4755 goto out; 4756 } 4757 ret = __block_page_mkwrite(vma, vmf, get_block); 4758 if (!ret && ext4_should_journal_data(inode)) { 4759 if (walk_page_buffers(handle, page_buffers(page), 0, 4760 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4761 unlock_page(page); 4762 ret = VM_FAULT_SIGBUS; 4763 ext4_journal_stop(handle); 4764 goto out; 4765 } 4766 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4767 } 4768 ext4_journal_stop(handle); 4769 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4770 goto retry_alloc; 4771 out_ret: 4772 ret = block_page_mkwrite_return(ret); 4773 out: 4774 return ret; 4775 } 4776