1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (is_bad_inode(inode)) 224 goto no_delete; 225 dquot_initialize(inode); 226 227 if (ext4_should_order_data(inode)) 228 ext4_begin_ordered_truncate(inode, 0); 229 truncate_inode_pages_final(&inode->i_data); 230 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Called with i_data_sem down, which is important since we can call 324 * ext4_discard_preallocations() from here. 325 */ 326 void ext4_da_update_reserve_space(struct inode *inode, 327 int used, int quota_claim) 328 { 329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 330 struct ext4_inode_info *ei = EXT4_I(inode); 331 332 spin_lock(&ei->i_block_reservation_lock); 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 334 if (unlikely(used > ei->i_reserved_data_blocks)) { 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 336 "with only %d reserved data blocks", 337 __func__, inode->i_ino, used, 338 ei->i_reserved_data_blocks); 339 WARN_ON(1); 340 used = ei->i_reserved_data_blocks; 341 } 342 343 /* Update per-inode reservations */ 344 ei->i_reserved_data_blocks -= used; 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 346 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 348 349 /* Update quota subsystem for data blocks */ 350 if (quota_claim) 351 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 352 else { 353 /* 354 * We did fallocate with an offset that is already delayed 355 * allocated. So on delayed allocated writeback we should 356 * not re-claim the quota for fallocated blocks. 357 */ 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 359 } 360 361 /* 362 * If we have done all the pending block allocations and if 363 * there aren't any writers on the inode, we can discard the 364 * inode's preallocations. 365 */ 366 if ((ei->i_reserved_data_blocks == 0) && 367 (atomic_read(&inode->i_writecount) == 0)) 368 ext4_discard_preallocations(inode); 369 } 370 371 static int __check_block_validity(struct inode *inode, const char *func, 372 unsigned int line, 373 struct ext4_map_blocks *map) 374 { 375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 376 map->m_len)) { 377 ext4_error_inode(inode, func, line, map->m_pblk, 378 "lblock %lu mapped to illegal pblock " 379 "(length %d)", (unsigned long) map->m_lblk, 380 map->m_len); 381 return -EFSCORRUPTED; 382 } 383 return 0; 384 } 385 386 #define check_block_validity(inode, map) \ 387 __check_block_validity((inode), __func__, __LINE__, (map)) 388 389 #ifdef ES_AGGRESSIVE_TEST 390 static void ext4_map_blocks_es_recheck(handle_t *handle, 391 struct inode *inode, 392 struct ext4_map_blocks *es_map, 393 struct ext4_map_blocks *map, 394 int flags) 395 { 396 int retval; 397 398 map->m_flags = 0; 399 /* 400 * There is a race window that the result is not the same. 401 * e.g. xfstests #223 when dioread_nolock enables. The reason 402 * is that we lookup a block mapping in extent status tree with 403 * out taking i_data_sem. So at the time the unwritten extent 404 * could be converted. 405 */ 406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 407 down_read(&EXT4_I(inode)->i_data_sem); 408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 409 retval = ext4_ext_map_blocks(handle, inode, map, flags & 410 EXT4_GET_BLOCKS_KEEP_SIZE); 411 } else { 412 retval = ext4_ind_map_blocks(handle, inode, map, flags & 413 EXT4_GET_BLOCKS_KEEP_SIZE); 414 } 415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 416 up_read((&EXT4_I(inode)->i_data_sem)); 417 418 /* 419 * We don't check m_len because extent will be collpased in status 420 * tree. So the m_len might not equal. 421 */ 422 if (es_map->m_lblk != map->m_lblk || 423 es_map->m_flags != map->m_flags || 424 es_map->m_pblk != map->m_pblk) { 425 printk("ES cache assertion failed for inode: %lu " 426 "es_cached ex [%d/%d/%llu/%x] != " 427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 428 inode->i_ino, es_map->m_lblk, es_map->m_len, 429 es_map->m_pblk, es_map->m_flags, map->m_lblk, 430 map->m_len, map->m_pblk, map->m_flags, 431 retval, flags); 432 } 433 } 434 #endif /* ES_AGGRESSIVE_TEST */ 435 436 /* 437 * The ext4_map_blocks() function tries to look up the requested blocks, 438 * and returns if the blocks are already mapped. 439 * 440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 441 * and store the allocated blocks in the result buffer head and mark it 442 * mapped. 443 * 444 * If file type is extents based, it will call ext4_ext_map_blocks(), 445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 446 * based files 447 * 448 * On success, it returns the number of blocks being mapped or allocated. 449 * if create==0 and the blocks are pre-allocated and unwritten block, 450 * the result buffer head is unmapped. If the create ==1, it will make sure 451 * the buffer head is mapped. 452 * 453 * It returns 0 if plain look up failed (blocks have not been allocated), in 454 * that case, buffer head is unmapped 455 * 456 * It returns the error in case of allocation failure. 457 */ 458 int ext4_map_blocks(handle_t *handle, struct inode *inode, 459 struct ext4_map_blocks *map, int flags) 460 { 461 struct extent_status es; 462 int retval; 463 int ret = 0; 464 #ifdef ES_AGGRESSIVE_TEST 465 struct ext4_map_blocks orig_map; 466 467 memcpy(&orig_map, map, sizeof(*map)); 468 #endif 469 470 map->m_flags = 0; 471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 472 "logical block %lu\n", inode->i_ino, flags, map->m_len, 473 (unsigned long) map->m_lblk); 474 475 /* 476 * ext4_map_blocks returns an int, and m_len is an unsigned int 477 */ 478 if (unlikely(map->m_len > INT_MAX)) 479 map->m_len = INT_MAX; 480 481 /* We can handle the block number less than EXT_MAX_BLOCKS */ 482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 483 return -EFSCORRUPTED; 484 485 /* Lookup extent status tree firstly */ 486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 488 map->m_pblk = ext4_es_pblock(&es) + 489 map->m_lblk - es.es_lblk; 490 map->m_flags |= ext4_es_is_written(&es) ? 491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 492 retval = es.es_len - (map->m_lblk - es.es_lblk); 493 if (retval > map->m_len) 494 retval = map->m_len; 495 map->m_len = retval; 496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 497 retval = 0; 498 } else { 499 BUG_ON(1); 500 } 501 #ifdef ES_AGGRESSIVE_TEST 502 ext4_map_blocks_es_recheck(handle, inode, map, 503 &orig_map, flags); 504 #endif 505 goto found; 506 } 507 508 /* 509 * Try to see if we can get the block without requesting a new 510 * file system block. 511 */ 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 513 down_read(&EXT4_I(inode)->i_data_sem); 514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 515 retval = ext4_ext_map_blocks(handle, inode, map, flags & 516 EXT4_GET_BLOCKS_KEEP_SIZE); 517 } else { 518 retval = ext4_ind_map_blocks(handle, inode, map, flags & 519 EXT4_GET_BLOCKS_KEEP_SIZE); 520 } 521 if (retval > 0) { 522 unsigned int status; 523 524 if (unlikely(retval != map->m_len)) { 525 ext4_warning(inode->i_sb, 526 "ES len assertion failed for inode " 527 "%lu: retval %d != map->m_len %d", 528 inode->i_ino, retval, map->m_len); 529 WARN_ON(1); 530 } 531 532 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 535 !(status & EXTENT_STATUS_WRITTEN) && 536 ext4_find_delalloc_range(inode, map->m_lblk, 537 map->m_lblk + map->m_len - 1)) 538 status |= EXTENT_STATUS_DELAYED; 539 ret = ext4_es_insert_extent(inode, map->m_lblk, 540 map->m_len, map->m_pblk, status); 541 if (ret < 0) 542 retval = ret; 543 } 544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 545 up_read((&EXT4_I(inode)->i_data_sem)); 546 547 found: 548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 549 ret = check_block_validity(inode, map); 550 if (ret != 0) 551 return ret; 552 } 553 554 /* If it is only a block(s) look up */ 555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 556 return retval; 557 558 /* 559 * Returns if the blocks have already allocated 560 * 561 * Note that if blocks have been preallocated 562 * ext4_ext_get_block() returns the create = 0 563 * with buffer head unmapped. 564 */ 565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 566 /* 567 * If we need to convert extent to unwritten 568 * we continue and do the actual work in 569 * ext4_ext_map_blocks() 570 */ 571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 572 return retval; 573 574 /* 575 * Here we clear m_flags because after allocating an new extent, 576 * it will be set again. 577 */ 578 map->m_flags &= ~EXT4_MAP_FLAGS; 579 580 /* 581 * New blocks allocate and/or writing to unwritten extent 582 * will possibly result in updating i_data, so we take 583 * the write lock of i_data_sem, and call get_block() 584 * with create == 1 flag. 585 */ 586 down_write(&EXT4_I(inode)->i_data_sem); 587 588 /* 589 * We need to check for EXT4 here because migrate 590 * could have changed the inode type in between 591 */ 592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 593 retval = ext4_ext_map_blocks(handle, inode, map, flags); 594 } else { 595 retval = ext4_ind_map_blocks(handle, inode, map, flags); 596 597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 598 /* 599 * We allocated new blocks which will result in 600 * i_data's format changing. Force the migrate 601 * to fail by clearing migrate flags 602 */ 603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 604 } 605 606 /* 607 * Update reserved blocks/metadata blocks after successful 608 * block allocation which had been deferred till now. We don't 609 * support fallocate for non extent files. So we can update 610 * reserve space here. 611 */ 612 if ((retval > 0) && 613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 614 ext4_da_update_reserve_space(inode, retval, 1); 615 } 616 617 if (retval > 0) { 618 unsigned int status; 619 620 if (unlikely(retval != map->m_len)) { 621 ext4_warning(inode->i_sb, 622 "ES len assertion failed for inode " 623 "%lu: retval %d != map->m_len %d", 624 inode->i_ino, retval, map->m_len); 625 WARN_ON(1); 626 } 627 628 /* 629 * If the extent has been zeroed out, we don't need to update 630 * extent status tree. 631 */ 632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 634 if (ext4_es_is_written(&es)) 635 goto has_zeroout; 636 } 637 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 640 !(status & EXTENT_STATUS_WRITTEN) && 641 ext4_find_delalloc_range(inode, map->m_lblk, 642 map->m_lblk + map->m_len - 1)) 643 status |= EXTENT_STATUS_DELAYED; 644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 645 map->m_pblk, status); 646 if (ret < 0) 647 retval = ret; 648 } 649 650 has_zeroout: 651 up_write((&EXT4_I(inode)->i_data_sem)); 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 653 ret = check_block_validity(inode, map); 654 if (ret != 0) 655 return ret; 656 } 657 return retval; 658 } 659 660 /* Maximum number of blocks we map for direct IO at once. */ 661 #define DIO_MAX_BLOCKS 4096 662 663 static int _ext4_get_block(struct inode *inode, sector_t iblock, 664 struct buffer_head *bh, int flags) 665 { 666 handle_t *handle = ext4_journal_current_handle(); 667 struct ext4_map_blocks map; 668 int ret = 0, started = 0; 669 int dio_credits; 670 671 if (ext4_has_inline_data(inode)) 672 return -ERANGE; 673 674 map.m_lblk = iblock; 675 map.m_len = bh->b_size >> inode->i_blkbits; 676 677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 678 /* Direct IO write... */ 679 if (map.m_len > DIO_MAX_BLOCKS) 680 map.m_len = DIO_MAX_BLOCKS; 681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 683 dio_credits); 684 if (IS_ERR(handle)) { 685 ret = PTR_ERR(handle); 686 return ret; 687 } 688 started = 1; 689 } 690 691 ret = ext4_map_blocks(handle, inode, &map, flags); 692 if (ret > 0) { 693 ext4_io_end_t *io_end = ext4_inode_aio(inode); 694 695 map_bh(bh, inode->i_sb, map.m_pblk); 696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 697 if (IS_DAX(inode) && buffer_unwritten(bh)) { 698 /* 699 * dgc: I suspect unwritten conversion on ext4+DAX is 700 * fundamentally broken here when there are concurrent 701 * read/write in progress on this inode. 702 */ 703 WARN_ON_ONCE(io_end); 704 bh->b_assoc_map = inode->i_mapping; 705 bh->b_private = (void *)(unsigned long)iblock; 706 } 707 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 708 set_buffer_defer_completion(bh); 709 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 710 ret = 0; 711 } 712 if (started) 713 ext4_journal_stop(handle); 714 return ret; 715 } 716 717 int ext4_get_block(struct inode *inode, sector_t iblock, 718 struct buffer_head *bh, int create) 719 { 720 return _ext4_get_block(inode, iblock, bh, 721 create ? EXT4_GET_BLOCKS_CREATE : 0); 722 } 723 724 /* 725 * `handle' can be NULL if create is zero 726 */ 727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 728 ext4_lblk_t block, int map_flags) 729 { 730 struct ext4_map_blocks map; 731 struct buffer_head *bh; 732 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 733 int err; 734 735 J_ASSERT(handle != NULL || create == 0); 736 737 map.m_lblk = block; 738 map.m_len = 1; 739 err = ext4_map_blocks(handle, inode, &map, map_flags); 740 741 if (err == 0) 742 return create ? ERR_PTR(-ENOSPC) : NULL; 743 if (err < 0) 744 return ERR_PTR(err); 745 746 bh = sb_getblk(inode->i_sb, map.m_pblk); 747 if (unlikely(!bh)) 748 return ERR_PTR(-ENOMEM); 749 if (map.m_flags & EXT4_MAP_NEW) { 750 J_ASSERT(create != 0); 751 J_ASSERT(handle != NULL); 752 753 /* 754 * Now that we do not always journal data, we should 755 * keep in mind whether this should always journal the 756 * new buffer as metadata. For now, regular file 757 * writes use ext4_get_block instead, so it's not a 758 * problem. 759 */ 760 lock_buffer(bh); 761 BUFFER_TRACE(bh, "call get_create_access"); 762 err = ext4_journal_get_create_access(handle, bh); 763 if (unlikely(err)) { 764 unlock_buffer(bh); 765 goto errout; 766 } 767 if (!buffer_uptodate(bh)) { 768 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 769 set_buffer_uptodate(bh); 770 } 771 unlock_buffer(bh); 772 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 773 err = ext4_handle_dirty_metadata(handle, inode, bh); 774 if (unlikely(err)) 775 goto errout; 776 } else 777 BUFFER_TRACE(bh, "not a new buffer"); 778 return bh; 779 errout: 780 brelse(bh); 781 return ERR_PTR(err); 782 } 783 784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 785 ext4_lblk_t block, int map_flags) 786 { 787 struct buffer_head *bh; 788 789 bh = ext4_getblk(handle, inode, block, map_flags); 790 if (IS_ERR(bh)) 791 return bh; 792 if (!bh || buffer_uptodate(bh)) 793 return bh; 794 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 795 wait_on_buffer(bh); 796 if (buffer_uptodate(bh)) 797 return bh; 798 put_bh(bh); 799 return ERR_PTR(-EIO); 800 } 801 802 int ext4_walk_page_buffers(handle_t *handle, 803 struct buffer_head *head, 804 unsigned from, 805 unsigned to, 806 int *partial, 807 int (*fn)(handle_t *handle, 808 struct buffer_head *bh)) 809 { 810 struct buffer_head *bh; 811 unsigned block_start, block_end; 812 unsigned blocksize = head->b_size; 813 int err, ret = 0; 814 struct buffer_head *next; 815 816 for (bh = head, block_start = 0; 817 ret == 0 && (bh != head || !block_start); 818 block_start = block_end, bh = next) { 819 next = bh->b_this_page; 820 block_end = block_start + blocksize; 821 if (block_end <= from || block_start >= to) { 822 if (partial && !buffer_uptodate(bh)) 823 *partial = 1; 824 continue; 825 } 826 err = (*fn)(handle, bh); 827 if (!ret) 828 ret = err; 829 } 830 return ret; 831 } 832 833 /* 834 * To preserve ordering, it is essential that the hole instantiation and 835 * the data write be encapsulated in a single transaction. We cannot 836 * close off a transaction and start a new one between the ext4_get_block() 837 * and the commit_write(). So doing the jbd2_journal_start at the start of 838 * prepare_write() is the right place. 839 * 840 * Also, this function can nest inside ext4_writepage(). In that case, we 841 * *know* that ext4_writepage() has generated enough buffer credits to do the 842 * whole page. So we won't block on the journal in that case, which is good, 843 * because the caller may be PF_MEMALLOC. 844 * 845 * By accident, ext4 can be reentered when a transaction is open via 846 * quota file writes. If we were to commit the transaction while thus 847 * reentered, there can be a deadlock - we would be holding a quota 848 * lock, and the commit would never complete if another thread had a 849 * transaction open and was blocking on the quota lock - a ranking 850 * violation. 851 * 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 853 * will _not_ run commit under these circumstances because handle->h_ref 854 * is elevated. We'll still have enough credits for the tiny quotafile 855 * write. 856 */ 857 int do_journal_get_write_access(handle_t *handle, 858 struct buffer_head *bh) 859 { 860 int dirty = buffer_dirty(bh); 861 int ret; 862 863 if (!buffer_mapped(bh) || buffer_freed(bh)) 864 return 0; 865 /* 866 * __block_write_begin() could have dirtied some buffers. Clean 867 * the dirty bit as jbd2_journal_get_write_access() could complain 868 * otherwise about fs integrity issues. Setting of the dirty bit 869 * by __block_write_begin() isn't a real problem here as we clear 870 * the bit before releasing a page lock and thus writeback cannot 871 * ever write the buffer. 872 */ 873 if (dirty) 874 clear_buffer_dirty(bh); 875 BUFFER_TRACE(bh, "get write access"); 876 ret = ext4_journal_get_write_access(handle, bh); 877 if (!ret && dirty) 878 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 879 return ret; 880 } 881 882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 883 struct buffer_head *bh_result, int create); 884 885 #ifdef CONFIG_EXT4_FS_ENCRYPTION 886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 887 get_block_t *get_block) 888 { 889 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 890 unsigned to = from + len; 891 struct inode *inode = page->mapping->host; 892 unsigned block_start, block_end; 893 sector_t block; 894 int err = 0; 895 unsigned blocksize = inode->i_sb->s_blocksize; 896 unsigned bbits; 897 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 898 bool decrypt = false; 899 900 BUG_ON(!PageLocked(page)); 901 BUG_ON(from > PAGE_CACHE_SIZE); 902 BUG_ON(to > PAGE_CACHE_SIZE); 903 BUG_ON(from > to); 904 905 if (!page_has_buffers(page)) 906 create_empty_buffers(page, blocksize, 0); 907 head = page_buffers(page); 908 bbits = ilog2(blocksize); 909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 910 911 for (bh = head, block_start = 0; bh != head || !block_start; 912 block++, block_start = block_end, bh = bh->b_this_page) { 913 block_end = block_start + blocksize; 914 if (block_end <= from || block_start >= to) { 915 if (PageUptodate(page)) { 916 if (!buffer_uptodate(bh)) 917 set_buffer_uptodate(bh); 918 } 919 continue; 920 } 921 if (buffer_new(bh)) 922 clear_buffer_new(bh); 923 if (!buffer_mapped(bh)) { 924 WARN_ON(bh->b_size != blocksize); 925 err = get_block(inode, block, bh, 1); 926 if (err) 927 break; 928 if (buffer_new(bh)) { 929 unmap_underlying_metadata(bh->b_bdev, 930 bh->b_blocknr); 931 if (PageUptodate(page)) { 932 clear_buffer_new(bh); 933 set_buffer_uptodate(bh); 934 mark_buffer_dirty(bh); 935 continue; 936 } 937 if (block_end > to || block_start < from) 938 zero_user_segments(page, to, block_end, 939 block_start, from); 940 continue; 941 } 942 } 943 if (PageUptodate(page)) { 944 if (!buffer_uptodate(bh)) 945 set_buffer_uptodate(bh); 946 continue; 947 } 948 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 949 !buffer_unwritten(bh) && 950 (block_start < from || block_end > to)) { 951 ll_rw_block(READ, 1, &bh); 952 *wait_bh++ = bh; 953 decrypt = ext4_encrypted_inode(inode) && 954 S_ISREG(inode->i_mode); 955 } 956 } 957 /* 958 * If we issued read requests, let them complete. 959 */ 960 while (wait_bh > wait) { 961 wait_on_buffer(*--wait_bh); 962 if (!buffer_uptodate(*wait_bh)) 963 err = -EIO; 964 } 965 if (unlikely(err)) 966 page_zero_new_buffers(page, from, to); 967 else if (decrypt) 968 err = ext4_decrypt(page); 969 return err; 970 } 971 #endif 972 973 static int ext4_write_begin(struct file *file, struct address_space *mapping, 974 loff_t pos, unsigned len, unsigned flags, 975 struct page **pagep, void **fsdata) 976 { 977 struct inode *inode = mapping->host; 978 int ret, needed_blocks; 979 handle_t *handle; 980 int retries = 0; 981 struct page *page; 982 pgoff_t index; 983 unsigned from, to; 984 985 trace_ext4_write_begin(inode, pos, len, flags); 986 /* 987 * Reserve one block more for addition to orphan list in case 988 * we allocate blocks but write fails for some reason 989 */ 990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 991 index = pos >> PAGE_CACHE_SHIFT; 992 from = pos & (PAGE_CACHE_SIZE - 1); 993 to = from + len; 994 995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 997 flags, pagep); 998 if (ret < 0) 999 return ret; 1000 if (ret == 1) 1001 return 0; 1002 } 1003 1004 /* 1005 * grab_cache_page_write_begin() can take a long time if the 1006 * system is thrashing due to memory pressure, or if the page 1007 * is being written back. So grab it first before we start 1008 * the transaction handle. This also allows us to allocate 1009 * the page (if needed) without using GFP_NOFS. 1010 */ 1011 retry_grab: 1012 page = grab_cache_page_write_begin(mapping, index, flags); 1013 if (!page) 1014 return -ENOMEM; 1015 unlock_page(page); 1016 1017 retry_journal: 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1019 if (IS_ERR(handle)) { 1020 page_cache_release(page); 1021 return PTR_ERR(handle); 1022 } 1023 1024 lock_page(page); 1025 if (page->mapping != mapping) { 1026 /* The page got truncated from under us */ 1027 unlock_page(page); 1028 page_cache_release(page); 1029 ext4_journal_stop(handle); 1030 goto retry_grab; 1031 } 1032 /* In case writeback began while the page was unlocked */ 1033 wait_for_stable_page(page); 1034 1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1036 if (ext4_should_dioread_nolock(inode)) 1037 ret = ext4_block_write_begin(page, pos, len, 1038 ext4_get_block_write); 1039 else 1040 ret = ext4_block_write_begin(page, pos, len, 1041 ext4_get_block); 1042 #else 1043 if (ext4_should_dioread_nolock(inode)) 1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1045 else 1046 ret = __block_write_begin(page, pos, len, ext4_get_block); 1047 #endif 1048 if (!ret && ext4_should_journal_data(inode)) { 1049 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1050 from, to, NULL, 1051 do_journal_get_write_access); 1052 } 1053 1054 if (ret) { 1055 unlock_page(page); 1056 /* 1057 * __block_write_begin may have instantiated a few blocks 1058 * outside i_size. Trim these off again. Don't need 1059 * i_size_read because we hold i_mutex. 1060 * 1061 * Add inode to orphan list in case we crash before 1062 * truncate finishes 1063 */ 1064 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1065 ext4_orphan_add(handle, inode); 1066 1067 ext4_journal_stop(handle); 1068 if (pos + len > inode->i_size) { 1069 ext4_truncate_failed_write(inode); 1070 /* 1071 * If truncate failed early the inode might 1072 * still be on the orphan list; we need to 1073 * make sure the inode is removed from the 1074 * orphan list in that case. 1075 */ 1076 if (inode->i_nlink) 1077 ext4_orphan_del(NULL, inode); 1078 } 1079 1080 if (ret == -ENOSPC && 1081 ext4_should_retry_alloc(inode->i_sb, &retries)) 1082 goto retry_journal; 1083 page_cache_release(page); 1084 return ret; 1085 } 1086 *pagep = page; 1087 return ret; 1088 } 1089 1090 /* For write_end() in data=journal mode */ 1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1092 { 1093 int ret; 1094 if (!buffer_mapped(bh) || buffer_freed(bh)) 1095 return 0; 1096 set_buffer_uptodate(bh); 1097 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1098 clear_buffer_meta(bh); 1099 clear_buffer_prio(bh); 1100 return ret; 1101 } 1102 1103 /* 1104 * We need to pick up the new inode size which generic_commit_write gave us 1105 * `file' can be NULL - eg, when called from page_symlink(). 1106 * 1107 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1108 * buffers are managed internally. 1109 */ 1110 static int ext4_write_end(struct file *file, 1111 struct address_space *mapping, 1112 loff_t pos, unsigned len, unsigned copied, 1113 struct page *page, void *fsdata) 1114 { 1115 handle_t *handle = ext4_journal_current_handle(); 1116 struct inode *inode = mapping->host; 1117 loff_t old_size = inode->i_size; 1118 int ret = 0, ret2; 1119 int i_size_changed = 0; 1120 1121 trace_ext4_write_end(inode, pos, len, copied); 1122 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1123 ret = ext4_jbd2_file_inode(handle, inode); 1124 if (ret) { 1125 unlock_page(page); 1126 page_cache_release(page); 1127 goto errout; 1128 } 1129 } 1130 1131 if (ext4_has_inline_data(inode)) { 1132 ret = ext4_write_inline_data_end(inode, pos, len, 1133 copied, page); 1134 if (ret < 0) 1135 goto errout; 1136 copied = ret; 1137 } else 1138 copied = block_write_end(file, mapping, pos, 1139 len, copied, page, fsdata); 1140 /* 1141 * it's important to update i_size while still holding page lock: 1142 * page writeout could otherwise come in and zero beyond i_size. 1143 */ 1144 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1145 unlock_page(page); 1146 page_cache_release(page); 1147 1148 if (old_size < pos) 1149 pagecache_isize_extended(inode, old_size, pos); 1150 /* 1151 * Don't mark the inode dirty under page lock. First, it unnecessarily 1152 * makes the holding time of page lock longer. Second, it forces lock 1153 * ordering of page lock and transaction start for journaling 1154 * filesystems. 1155 */ 1156 if (i_size_changed) 1157 ext4_mark_inode_dirty(handle, inode); 1158 1159 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1160 /* if we have allocated more blocks and copied 1161 * less. We will have blocks allocated outside 1162 * inode->i_size. So truncate them 1163 */ 1164 ext4_orphan_add(handle, inode); 1165 errout: 1166 ret2 = ext4_journal_stop(handle); 1167 if (!ret) 1168 ret = ret2; 1169 1170 if (pos + len > inode->i_size) { 1171 ext4_truncate_failed_write(inode); 1172 /* 1173 * If truncate failed early the inode might still be 1174 * on the orphan list; we need to make sure the inode 1175 * is removed from the orphan list in that case. 1176 */ 1177 if (inode->i_nlink) 1178 ext4_orphan_del(NULL, inode); 1179 } 1180 1181 return ret ? ret : copied; 1182 } 1183 1184 /* 1185 * This is a private version of page_zero_new_buffers() which doesn't 1186 * set the buffer to be dirty, since in data=journalled mode we need 1187 * to call ext4_handle_dirty_metadata() instead. 1188 */ 1189 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1190 { 1191 unsigned int block_start = 0, block_end; 1192 struct buffer_head *head, *bh; 1193 1194 bh = head = page_buffers(page); 1195 do { 1196 block_end = block_start + bh->b_size; 1197 if (buffer_new(bh)) { 1198 if (block_end > from && block_start < to) { 1199 if (!PageUptodate(page)) { 1200 unsigned start, size; 1201 1202 start = max(from, block_start); 1203 size = min(to, block_end) - start; 1204 1205 zero_user(page, start, size); 1206 set_buffer_uptodate(bh); 1207 } 1208 clear_buffer_new(bh); 1209 } 1210 } 1211 block_start = block_end; 1212 bh = bh->b_this_page; 1213 } while (bh != head); 1214 } 1215 1216 static int ext4_journalled_write_end(struct file *file, 1217 struct address_space *mapping, 1218 loff_t pos, unsigned len, unsigned copied, 1219 struct page *page, void *fsdata) 1220 { 1221 handle_t *handle = ext4_journal_current_handle(); 1222 struct inode *inode = mapping->host; 1223 loff_t old_size = inode->i_size; 1224 int ret = 0, ret2; 1225 int partial = 0; 1226 unsigned from, to; 1227 int size_changed = 0; 1228 1229 trace_ext4_journalled_write_end(inode, pos, len, copied); 1230 from = pos & (PAGE_CACHE_SIZE - 1); 1231 to = from + len; 1232 1233 BUG_ON(!ext4_handle_valid(handle)); 1234 1235 if (ext4_has_inline_data(inode)) 1236 copied = ext4_write_inline_data_end(inode, pos, len, 1237 copied, page); 1238 else { 1239 if (copied < len) { 1240 if (!PageUptodate(page)) 1241 copied = 0; 1242 zero_new_buffers(page, from+copied, to); 1243 } 1244 1245 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1246 to, &partial, write_end_fn); 1247 if (!partial) 1248 SetPageUptodate(page); 1249 } 1250 size_changed = ext4_update_inode_size(inode, pos + copied); 1251 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1252 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1253 unlock_page(page); 1254 page_cache_release(page); 1255 1256 if (old_size < pos) 1257 pagecache_isize_extended(inode, old_size, pos); 1258 1259 if (size_changed) { 1260 ret2 = ext4_mark_inode_dirty(handle, inode); 1261 if (!ret) 1262 ret = ret2; 1263 } 1264 1265 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1266 /* if we have allocated more blocks and copied 1267 * less. We will have blocks allocated outside 1268 * inode->i_size. So truncate them 1269 */ 1270 ext4_orphan_add(handle, inode); 1271 1272 ret2 = ext4_journal_stop(handle); 1273 if (!ret) 1274 ret = ret2; 1275 if (pos + len > inode->i_size) { 1276 ext4_truncate_failed_write(inode); 1277 /* 1278 * If truncate failed early the inode might still be 1279 * on the orphan list; we need to make sure the inode 1280 * is removed from the orphan list in that case. 1281 */ 1282 if (inode->i_nlink) 1283 ext4_orphan_del(NULL, inode); 1284 } 1285 1286 return ret ? ret : copied; 1287 } 1288 1289 /* 1290 * Reserve space for a single cluster 1291 */ 1292 static int ext4_da_reserve_space(struct inode *inode) 1293 { 1294 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1295 struct ext4_inode_info *ei = EXT4_I(inode); 1296 int ret; 1297 1298 /* 1299 * We will charge metadata quota at writeout time; this saves 1300 * us from metadata over-estimation, though we may go over by 1301 * a small amount in the end. Here we just reserve for data. 1302 */ 1303 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1304 if (ret) 1305 return ret; 1306 1307 spin_lock(&ei->i_block_reservation_lock); 1308 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1309 spin_unlock(&ei->i_block_reservation_lock); 1310 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1311 return -ENOSPC; 1312 } 1313 ei->i_reserved_data_blocks++; 1314 trace_ext4_da_reserve_space(inode); 1315 spin_unlock(&ei->i_block_reservation_lock); 1316 1317 return 0; /* success */ 1318 } 1319 1320 static void ext4_da_release_space(struct inode *inode, int to_free) 1321 { 1322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1323 struct ext4_inode_info *ei = EXT4_I(inode); 1324 1325 if (!to_free) 1326 return; /* Nothing to release, exit */ 1327 1328 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1329 1330 trace_ext4_da_release_space(inode, to_free); 1331 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1332 /* 1333 * if there aren't enough reserved blocks, then the 1334 * counter is messed up somewhere. Since this 1335 * function is called from invalidate page, it's 1336 * harmless to return without any action. 1337 */ 1338 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1339 "ino %lu, to_free %d with only %d reserved " 1340 "data blocks", inode->i_ino, to_free, 1341 ei->i_reserved_data_blocks); 1342 WARN_ON(1); 1343 to_free = ei->i_reserved_data_blocks; 1344 } 1345 ei->i_reserved_data_blocks -= to_free; 1346 1347 /* update fs dirty data blocks counter */ 1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1349 1350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1351 1352 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1353 } 1354 1355 static void ext4_da_page_release_reservation(struct page *page, 1356 unsigned int offset, 1357 unsigned int length) 1358 { 1359 int to_release = 0, contiguous_blks = 0; 1360 struct buffer_head *head, *bh; 1361 unsigned int curr_off = 0; 1362 struct inode *inode = page->mapping->host; 1363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1364 unsigned int stop = offset + length; 1365 int num_clusters; 1366 ext4_fsblk_t lblk; 1367 1368 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1369 1370 head = page_buffers(page); 1371 bh = head; 1372 do { 1373 unsigned int next_off = curr_off + bh->b_size; 1374 1375 if (next_off > stop) 1376 break; 1377 1378 if ((offset <= curr_off) && (buffer_delay(bh))) { 1379 to_release++; 1380 contiguous_blks++; 1381 clear_buffer_delay(bh); 1382 } else if (contiguous_blks) { 1383 lblk = page->index << 1384 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1385 lblk += (curr_off >> inode->i_blkbits) - 1386 contiguous_blks; 1387 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1388 contiguous_blks = 0; 1389 } 1390 curr_off = next_off; 1391 } while ((bh = bh->b_this_page) != head); 1392 1393 if (contiguous_blks) { 1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1395 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1396 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1397 } 1398 1399 /* If we have released all the blocks belonging to a cluster, then we 1400 * need to release the reserved space for that cluster. */ 1401 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1402 while (num_clusters > 0) { 1403 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1404 ((num_clusters - 1) << sbi->s_cluster_bits); 1405 if (sbi->s_cluster_ratio == 1 || 1406 !ext4_find_delalloc_cluster(inode, lblk)) 1407 ext4_da_release_space(inode, 1); 1408 1409 num_clusters--; 1410 } 1411 } 1412 1413 /* 1414 * Delayed allocation stuff 1415 */ 1416 1417 struct mpage_da_data { 1418 struct inode *inode; 1419 struct writeback_control *wbc; 1420 1421 pgoff_t first_page; /* The first page to write */ 1422 pgoff_t next_page; /* Current page to examine */ 1423 pgoff_t last_page; /* Last page to examine */ 1424 /* 1425 * Extent to map - this can be after first_page because that can be 1426 * fully mapped. We somewhat abuse m_flags to store whether the extent 1427 * is delalloc or unwritten. 1428 */ 1429 struct ext4_map_blocks map; 1430 struct ext4_io_submit io_submit; /* IO submission data */ 1431 }; 1432 1433 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1434 bool invalidate) 1435 { 1436 int nr_pages, i; 1437 pgoff_t index, end; 1438 struct pagevec pvec; 1439 struct inode *inode = mpd->inode; 1440 struct address_space *mapping = inode->i_mapping; 1441 1442 /* This is necessary when next_page == 0. */ 1443 if (mpd->first_page >= mpd->next_page) 1444 return; 1445 1446 index = mpd->first_page; 1447 end = mpd->next_page - 1; 1448 if (invalidate) { 1449 ext4_lblk_t start, last; 1450 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1451 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1452 ext4_es_remove_extent(inode, start, last - start + 1); 1453 } 1454 1455 pagevec_init(&pvec, 0); 1456 while (index <= end) { 1457 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1458 if (nr_pages == 0) 1459 break; 1460 for (i = 0; i < nr_pages; i++) { 1461 struct page *page = pvec.pages[i]; 1462 if (page->index > end) 1463 break; 1464 BUG_ON(!PageLocked(page)); 1465 BUG_ON(PageWriteback(page)); 1466 if (invalidate) { 1467 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1468 ClearPageUptodate(page); 1469 } 1470 unlock_page(page); 1471 } 1472 index = pvec.pages[nr_pages - 1]->index + 1; 1473 pagevec_release(&pvec); 1474 } 1475 } 1476 1477 static void ext4_print_free_blocks(struct inode *inode) 1478 { 1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1480 struct super_block *sb = inode->i_sb; 1481 struct ext4_inode_info *ei = EXT4_I(inode); 1482 1483 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1484 EXT4_C2B(EXT4_SB(inode->i_sb), 1485 ext4_count_free_clusters(sb))); 1486 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1487 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1488 (long long) EXT4_C2B(EXT4_SB(sb), 1489 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1490 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1491 (long long) EXT4_C2B(EXT4_SB(sb), 1492 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1493 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1494 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1495 ei->i_reserved_data_blocks); 1496 return; 1497 } 1498 1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1500 { 1501 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1502 } 1503 1504 /* 1505 * This function is grabs code from the very beginning of 1506 * ext4_map_blocks, but assumes that the caller is from delayed write 1507 * time. This function looks up the requested blocks and sets the 1508 * buffer delay bit under the protection of i_data_sem. 1509 */ 1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1511 struct ext4_map_blocks *map, 1512 struct buffer_head *bh) 1513 { 1514 struct extent_status es; 1515 int retval; 1516 sector_t invalid_block = ~((sector_t) 0xffff); 1517 #ifdef ES_AGGRESSIVE_TEST 1518 struct ext4_map_blocks orig_map; 1519 1520 memcpy(&orig_map, map, sizeof(*map)); 1521 #endif 1522 1523 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1524 invalid_block = ~0; 1525 1526 map->m_flags = 0; 1527 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1528 "logical block %lu\n", inode->i_ino, map->m_len, 1529 (unsigned long) map->m_lblk); 1530 1531 /* Lookup extent status tree firstly */ 1532 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1533 if (ext4_es_is_hole(&es)) { 1534 retval = 0; 1535 down_read(&EXT4_I(inode)->i_data_sem); 1536 goto add_delayed; 1537 } 1538 1539 /* 1540 * Delayed extent could be allocated by fallocate. 1541 * So we need to check it. 1542 */ 1543 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1544 map_bh(bh, inode->i_sb, invalid_block); 1545 set_buffer_new(bh); 1546 set_buffer_delay(bh); 1547 return 0; 1548 } 1549 1550 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1551 retval = es.es_len - (iblock - es.es_lblk); 1552 if (retval > map->m_len) 1553 retval = map->m_len; 1554 map->m_len = retval; 1555 if (ext4_es_is_written(&es)) 1556 map->m_flags |= EXT4_MAP_MAPPED; 1557 else if (ext4_es_is_unwritten(&es)) 1558 map->m_flags |= EXT4_MAP_UNWRITTEN; 1559 else 1560 BUG_ON(1); 1561 1562 #ifdef ES_AGGRESSIVE_TEST 1563 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1564 #endif 1565 return retval; 1566 } 1567 1568 /* 1569 * Try to see if we can get the block without requesting a new 1570 * file system block. 1571 */ 1572 down_read(&EXT4_I(inode)->i_data_sem); 1573 if (ext4_has_inline_data(inode)) 1574 retval = 0; 1575 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1576 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1577 else 1578 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1579 1580 add_delayed: 1581 if (retval == 0) { 1582 int ret; 1583 /* 1584 * XXX: __block_prepare_write() unmaps passed block, 1585 * is it OK? 1586 */ 1587 /* 1588 * If the block was allocated from previously allocated cluster, 1589 * then we don't need to reserve it again. However we still need 1590 * to reserve metadata for every block we're going to write. 1591 */ 1592 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1593 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1594 ret = ext4_da_reserve_space(inode); 1595 if (ret) { 1596 /* not enough space to reserve */ 1597 retval = ret; 1598 goto out_unlock; 1599 } 1600 } 1601 1602 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1603 ~0, EXTENT_STATUS_DELAYED); 1604 if (ret) { 1605 retval = ret; 1606 goto out_unlock; 1607 } 1608 1609 map_bh(bh, inode->i_sb, invalid_block); 1610 set_buffer_new(bh); 1611 set_buffer_delay(bh); 1612 } else if (retval > 0) { 1613 int ret; 1614 unsigned int status; 1615 1616 if (unlikely(retval != map->m_len)) { 1617 ext4_warning(inode->i_sb, 1618 "ES len assertion failed for inode " 1619 "%lu: retval %d != map->m_len %d", 1620 inode->i_ino, retval, map->m_len); 1621 WARN_ON(1); 1622 } 1623 1624 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1626 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1627 map->m_pblk, status); 1628 if (ret != 0) 1629 retval = ret; 1630 } 1631 1632 out_unlock: 1633 up_read((&EXT4_I(inode)->i_data_sem)); 1634 1635 return retval; 1636 } 1637 1638 /* 1639 * This is a special get_block_t callback which is used by 1640 * ext4_da_write_begin(). It will either return mapped block or 1641 * reserve space for a single block. 1642 * 1643 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1644 * We also have b_blocknr = -1 and b_bdev initialized properly 1645 * 1646 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1647 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1648 * initialized properly. 1649 */ 1650 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1651 struct buffer_head *bh, int create) 1652 { 1653 struct ext4_map_blocks map; 1654 int ret = 0; 1655 1656 BUG_ON(create == 0); 1657 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1658 1659 map.m_lblk = iblock; 1660 map.m_len = 1; 1661 1662 /* 1663 * first, we need to know whether the block is allocated already 1664 * preallocated blocks are unmapped but should treated 1665 * the same as allocated blocks. 1666 */ 1667 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1668 if (ret <= 0) 1669 return ret; 1670 1671 map_bh(bh, inode->i_sb, map.m_pblk); 1672 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1673 1674 if (buffer_unwritten(bh)) { 1675 /* A delayed write to unwritten bh should be marked 1676 * new and mapped. Mapped ensures that we don't do 1677 * get_block multiple times when we write to the same 1678 * offset and new ensures that we do proper zero out 1679 * for partial write. 1680 */ 1681 set_buffer_new(bh); 1682 set_buffer_mapped(bh); 1683 } 1684 return 0; 1685 } 1686 1687 static int bget_one(handle_t *handle, struct buffer_head *bh) 1688 { 1689 get_bh(bh); 1690 return 0; 1691 } 1692 1693 static int bput_one(handle_t *handle, struct buffer_head *bh) 1694 { 1695 put_bh(bh); 1696 return 0; 1697 } 1698 1699 static int __ext4_journalled_writepage(struct page *page, 1700 unsigned int len) 1701 { 1702 struct address_space *mapping = page->mapping; 1703 struct inode *inode = mapping->host; 1704 struct buffer_head *page_bufs = NULL; 1705 handle_t *handle = NULL; 1706 int ret = 0, err = 0; 1707 int inline_data = ext4_has_inline_data(inode); 1708 struct buffer_head *inode_bh = NULL; 1709 1710 ClearPageChecked(page); 1711 1712 if (inline_data) { 1713 BUG_ON(page->index != 0); 1714 BUG_ON(len > ext4_get_max_inline_size(inode)); 1715 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1716 if (inode_bh == NULL) 1717 goto out; 1718 } else { 1719 page_bufs = page_buffers(page); 1720 if (!page_bufs) { 1721 BUG(); 1722 goto out; 1723 } 1724 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1725 NULL, bget_one); 1726 } 1727 /* 1728 * We need to release the page lock before we start the 1729 * journal, so grab a reference so the page won't disappear 1730 * out from under us. 1731 */ 1732 get_page(page); 1733 unlock_page(page); 1734 1735 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1736 ext4_writepage_trans_blocks(inode)); 1737 if (IS_ERR(handle)) { 1738 ret = PTR_ERR(handle); 1739 put_page(page); 1740 goto out_no_pagelock; 1741 } 1742 BUG_ON(!ext4_handle_valid(handle)); 1743 1744 lock_page(page); 1745 put_page(page); 1746 if (page->mapping != mapping) { 1747 /* The page got truncated from under us */ 1748 ext4_journal_stop(handle); 1749 ret = 0; 1750 goto out; 1751 } 1752 1753 if (inline_data) { 1754 BUFFER_TRACE(inode_bh, "get write access"); 1755 ret = ext4_journal_get_write_access(handle, inode_bh); 1756 1757 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1758 1759 } else { 1760 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1761 do_journal_get_write_access); 1762 1763 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1764 write_end_fn); 1765 } 1766 if (ret == 0) 1767 ret = err; 1768 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1769 err = ext4_journal_stop(handle); 1770 if (!ret) 1771 ret = err; 1772 1773 if (!ext4_has_inline_data(inode)) 1774 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1775 NULL, bput_one); 1776 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1777 out: 1778 unlock_page(page); 1779 out_no_pagelock: 1780 brelse(inode_bh); 1781 return ret; 1782 } 1783 1784 /* 1785 * Note that we don't need to start a transaction unless we're journaling data 1786 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1787 * need to file the inode to the transaction's list in ordered mode because if 1788 * we are writing back data added by write(), the inode is already there and if 1789 * we are writing back data modified via mmap(), no one guarantees in which 1790 * transaction the data will hit the disk. In case we are journaling data, we 1791 * cannot start transaction directly because transaction start ranks above page 1792 * lock so we have to do some magic. 1793 * 1794 * This function can get called via... 1795 * - ext4_writepages after taking page lock (have journal handle) 1796 * - journal_submit_inode_data_buffers (no journal handle) 1797 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1798 * - grab_page_cache when doing write_begin (have journal handle) 1799 * 1800 * We don't do any block allocation in this function. If we have page with 1801 * multiple blocks we need to write those buffer_heads that are mapped. This 1802 * is important for mmaped based write. So if we do with blocksize 1K 1803 * truncate(f, 1024); 1804 * a = mmap(f, 0, 4096); 1805 * a[0] = 'a'; 1806 * truncate(f, 4096); 1807 * we have in the page first buffer_head mapped via page_mkwrite call back 1808 * but other buffer_heads would be unmapped but dirty (dirty done via the 1809 * do_wp_page). So writepage should write the first block. If we modify 1810 * the mmap area beyond 1024 we will again get a page_fault and the 1811 * page_mkwrite callback will do the block allocation and mark the 1812 * buffer_heads mapped. 1813 * 1814 * We redirty the page if we have any buffer_heads that is either delay or 1815 * unwritten in the page. 1816 * 1817 * We can get recursively called as show below. 1818 * 1819 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1820 * ext4_writepage() 1821 * 1822 * But since we don't do any block allocation we should not deadlock. 1823 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1824 */ 1825 static int ext4_writepage(struct page *page, 1826 struct writeback_control *wbc) 1827 { 1828 int ret = 0; 1829 loff_t size; 1830 unsigned int len; 1831 struct buffer_head *page_bufs = NULL; 1832 struct inode *inode = page->mapping->host; 1833 struct ext4_io_submit io_submit; 1834 bool keep_towrite = false; 1835 1836 trace_ext4_writepage(page); 1837 size = i_size_read(inode); 1838 if (page->index == size >> PAGE_CACHE_SHIFT) 1839 len = size & ~PAGE_CACHE_MASK; 1840 else 1841 len = PAGE_CACHE_SIZE; 1842 1843 page_bufs = page_buffers(page); 1844 /* 1845 * We cannot do block allocation or other extent handling in this 1846 * function. If there are buffers needing that, we have to redirty 1847 * the page. But we may reach here when we do a journal commit via 1848 * journal_submit_inode_data_buffers() and in that case we must write 1849 * allocated buffers to achieve data=ordered mode guarantees. 1850 * 1851 * Also, if there is only one buffer per page (the fs block 1852 * size == the page size), if one buffer needs block 1853 * allocation or needs to modify the extent tree to clear the 1854 * unwritten flag, we know that the page can't be written at 1855 * all, so we might as well refuse the write immediately. 1856 * Unfortunately if the block size != page size, we can't as 1857 * easily detect this case using ext4_walk_page_buffers(), but 1858 * for the extremely common case, this is an optimization that 1859 * skips a useless round trip through ext4_bio_write_page(). 1860 */ 1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1862 ext4_bh_delay_or_unwritten)) { 1863 redirty_page_for_writepage(wbc, page); 1864 if ((current->flags & PF_MEMALLOC) || 1865 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) { 1866 /* 1867 * For memory cleaning there's no point in writing only 1868 * some buffers. So just bail out. Warn if we came here 1869 * from direct reclaim. 1870 */ 1871 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1872 == PF_MEMALLOC); 1873 unlock_page(page); 1874 return 0; 1875 } 1876 keep_towrite = true; 1877 } 1878 1879 if (PageChecked(page) && ext4_should_journal_data(inode)) 1880 /* 1881 * It's mmapped pagecache. Add buffers and journal it. There 1882 * doesn't seem much point in redirtying the page here. 1883 */ 1884 return __ext4_journalled_writepage(page, len); 1885 1886 ext4_io_submit_init(&io_submit, wbc); 1887 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1888 if (!io_submit.io_end) { 1889 redirty_page_for_writepage(wbc, page); 1890 unlock_page(page); 1891 return -ENOMEM; 1892 } 1893 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1894 ext4_io_submit(&io_submit); 1895 /* Drop io_end reference we got from init */ 1896 ext4_put_io_end_defer(io_submit.io_end); 1897 return ret; 1898 } 1899 1900 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1901 { 1902 int len; 1903 loff_t size = i_size_read(mpd->inode); 1904 int err; 1905 1906 BUG_ON(page->index != mpd->first_page); 1907 if (page->index == size >> PAGE_CACHE_SHIFT) 1908 len = size & ~PAGE_CACHE_MASK; 1909 else 1910 len = PAGE_CACHE_SIZE; 1911 clear_page_dirty_for_io(page); 1912 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1913 if (!err) 1914 mpd->wbc->nr_to_write--; 1915 mpd->first_page++; 1916 1917 return err; 1918 } 1919 1920 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1921 1922 /* 1923 * mballoc gives us at most this number of blocks... 1924 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1925 * The rest of mballoc seems to handle chunks up to full group size. 1926 */ 1927 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1928 1929 /* 1930 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1931 * 1932 * @mpd - extent of blocks 1933 * @lblk - logical number of the block in the file 1934 * @bh - buffer head we want to add to the extent 1935 * 1936 * The function is used to collect contig. blocks in the same state. If the 1937 * buffer doesn't require mapping for writeback and we haven't started the 1938 * extent of buffers to map yet, the function returns 'true' immediately - the 1939 * caller can write the buffer right away. Otherwise the function returns true 1940 * if the block has been added to the extent, false if the block couldn't be 1941 * added. 1942 */ 1943 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1944 struct buffer_head *bh) 1945 { 1946 struct ext4_map_blocks *map = &mpd->map; 1947 1948 /* Buffer that doesn't need mapping for writeback? */ 1949 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1950 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1951 /* So far no extent to map => we write the buffer right away */ 1952 if (map->m_len == 0) 1953 return true; 1954 return false; 1955 } 1956 1957 /* First block in the extent? */ 1958 if (map->m_len == 0) { 1959 map->m_lblk = lblk; 1960 map->m_len = 1; 1961 map->m_flags = bh->b_state & BH_FLAGS; 1962 return true; 1963 } 1964 1965 /* Don't go larger than mballoc is willing to allocate */ 1966 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1967 return false; 1968 1969 /* Can we merge the block to our big extent? */ 1970 if (lblk == map->m_lblk + map->m_len && 1971 (bh->b_state & BH_FLAGS) == map->m_flags) { 1972 map->m_len++; 1973 return true; 1974 } 1975 return false; 1976 } 1977 1978 /* 1979 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1980 * 1981 * @mpd - extent of blocks for mapping 1982 * @head - the first buffer in the page 1983 * @bh - buffer we should start processing from 1984 * @lblk - logical number of the block in the file corresponding to @bh 1985 * 1986 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1987 * the page for IO if all buffers in this page were mapped and there's no 1988 * accumulated extent of buffers to map or add buffers in the page to the 1989 * extent of buffers to map. The function returns 1 if the caller can continue 1990 * by processing the next page, 0 if it should stop adding buffers to the 1991 * extent to map because we cannot extend it anymore. It can also return value 1992 * < 0 in case of error during IO submission. 1993 */ 1994 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1995 struct buffer_head *head, 1996 struct buffer_head *bh, 1997 ext4_lblk_t lblk) 1998 { 1999 struct inode *inode = mpd->inode; 2000 int err; 2001 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2002 >> inode->i_blkbits; 2003 2004 do { 2005 BUG_ON(buffer_locked(bh)); 2006 2007 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2008 /* Found extent to map? */ 2009 if (mpd->map.m_len) 2010 return 0; 2011 /* Everything mapped so far and we hit EOF */ 2012 break; 2013 } 2014 } while (lblk++, (bh = bh->b_this_page) != head); 2015 /* So far everything mapped? Submit the page for IO. */ 2016 if (mpd->map.m_len == 0) { 2017 err = mpage_submit_page(mpd, head->b_page); 2018 if (err < 0) 2019 return err; 2020 } 2021 return lblk < blocks; 2022 } 2023 2024 /* 2025 * mpage_map_buffers - update buffers corresponding to changed extent and 2026 * submit fully mapped pages for IO 2027 * 2028 * @mpd - description of extent to map, on return next extent to map 2029 * 2030 * Scan buffers corresponding to changed extent (we expect corresponding pages 2031 * to be already locked) and update buffer state according to new extent state. 2032 * We map delalloc buffers to their physical location, clear unwritten bits, 2033 * and mark buffers as uninit when we perform writes to unwritten extents 2034 * and do extent conversion after IO is finished. If the last page is not fully 2035 * mapped, we update @map to the next extent in the last page that needs 2036 * mapping. Otherwise we submit the page for IO. 2037 */ 2038 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2039 { 2040 struct pagevec pvec; 2041 int nr_pages, i; 2042 struct inode *inode = mpd->inode; 2043 struct buffer_head *head, *bh; 2044 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2045 pgoff_t start, end; 2046 ext4_lblk_t lblk; 2047 sector_t pblock; 2048 int err; 2049 2050 start = mpd->map.m_lblk >> bpp_bits; 2051 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2052 lblk = start << bpp_bits; 2053 pblock = mpd->map.m_pblk; 2054 2055 pagevec_init(&pvec, 0); 2056 while (start <= end) { 2057 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2058 PAGEVEC_SIZE); 2059 if (nr_pages == 0) 2060 break; 2061 for (i = 0; i < nr_pages; i++) { 2062 struct page *page = pvec.pages[i]; 2063 2064 if (page->index > end) 2065 break; 2066 /* Up to 'end' pages must be contiguous */ 2067 BUG_ON(page->index != start); 2068 bh = head = page_buffers(page); 2069 do { 2070 if (lblk < mpd->map.m_lblk) 2071 continue; 2072 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2073 /* 2074 * Buffer after end of mapped extent. 2075 * Find next buffer in the page to map. 2076 */ 2077 mpd->map.m_len = 0; 2078 mpd->map.m_flags = 0; 2079 /* 2080 * FIXME: If dioread_nolock supports 2081 * blocksize < pagesize, we need to make 2082 * sure we add size mapped so far to 2083 * io_end->size as the following call 2084 * can submit the page for IO. 2085 */ 2086 err = mpage_process_page_bufs(mpd, head, 2087 bh, lblk); 2088 pagevec_release(&pvec); 2089 if (err > 0) 2090 err = 0; 2091 return err; 2092 } 2093 if (buffer_delay(bh)) { 2094 clear_buffer_delay(bh); 2095 bh->b_blocknr = pblock++; 2096 } 2097 clear_buffer_unwritten(bh); 2098 } while (lblk++, (bh = bh->b_this_page) != head); 2099 2100 /* 2101 * FIXME: This is going to break if dioread_nolock 2102 * supports blocksize < pagesize as we will try to 2103 * convert potentially unmapped parts of inode. 2104 */ 2105 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2106 /* Page fully mapped - let IO run! */ 2107 err = mpage_submit_page(mpd, page); 2108 if (err < 0) { 2109 pagevec_release(&pvec); 2110 return err; 2111 } 2112 start++; 2113 } 2114 pagevec_release(&pvec); 2115 } 2116 /* Extent fully mapped and matches with page boundary. We are done. */ 2117 mpd->map.m_len = 0; 2118 mpd->map.m_flags = 0; 2119 return 0; 2120 } 2121 2122 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2123 { 2124 struct inode *inode = mpd->inode; 2125 struct ext4_map_blocks *map = &mpd->map; 2126 int get_blocks_flags; 2127 int err, dioread_nolock; 2128 2129 trace_ext4_da_write_pages_extent(inode, map); 2130 /* 2131 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2132 * to convert an unwritten extent to be initialized (in the case 2133 * where we have written into one or more preallocated blocks). It is 2134 * possible that we're going to need more metadata blocks than 2135 * previously reserved. However we must not fail because we're in 2136 * writeback and there is nothing we can do about it so it might result 2137 * in data loss. So use reserved blocks to allocate metadata if 2138 * possible. 2139 * 2140 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2141 * the blocks in question are delalloc blocks. This indicates 2142 * that the blocks and quotas has already been checked when 2143 * the data was copied into the page cache. 2144 */ 2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2146 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2147 dioread_nolock = ext4_should_dioread_nolock(inode); 2148 if (dioread_nolock) 2149 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2150 if (map->m_flags & (1 << BH_Delay)) 2151 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2152 2153 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2154 if (err < 0) 2155 return err; 2156 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2157 if (!mpd->io_submit.io_end->handle && 2158 ext4_handle_valid(handle)) { 2159 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2160 handle->h_rsv_handle = NULL; 2161 } 2162 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2163 } 2164 2165 BUG_ON(map->m_len == 0); 2166 if (map->m_flags & EXT4_MAP_NEW) { 2167 struct block_device *bdev = inode->i_sb->s_bdev; 2168 int i; 2169 2170 for (i = 0; i < map->m_len; i++) 2171 unmap_underlying_metadata(bdev, map->m_pblk + i); 2172 } 2173 return 0; 2174 } 2175 2176 /* 2177 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2178 * mpd->len and submit pages underlying it for IO 2179 * 2180 * @handle - handle for journal operations 2181 * @mpd - extent to map 2182 * @give_up_on_write - we set this to true iff there is a fatal error and there 2183 * is no hope of writing the data. The caller should discard 2184 * dirty pages to avoid infinite loops. 2185 * 2186 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2187 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2188 * them to initialized or split the described range from larger unwritten 2189 * extent. Note that we need not map all the described range since allocation 2190 * can return less blocks or the range is covered by more unwritten extents. We 2191 * cannot map more because we are limited by reserved transaction credits. On 2192 * the other hand we always make sure that the last touched page is fully 2193 * mapped so that it can be written out (and thus forward progress is 2194 * guaranteed). After mapping we submit all mapped pages for IO. 2195 */ 2196 static int mpage_map_and_submit_extent(handle_t *handle, 2197 struct mpage_da_data *mpd, 2198 bool *give_up_on_write) 2199 { 2200 struct inode *inode = mpd->inode; 2201 struct ext4_map_blocks *map = &mpd->map; 2202 int err; 2203 loff_t disksize; 2204 int progress = 0; 2205 2206 mpd->io_submit.io_end->offset = 2207 ((loff_t)map->m_lblk) << inode->i_blkbits; 2208 do { 2209 err = mpage_map_one_extent(handle, mpd); 2210 if (err < 0) { 2211 struct super_block *sb = inode->i_sb; 2212 2213 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2214 goto invalidate_dirty_pages; 2215 /* 2216 * Let the uper layers retry transient errors. 2217 * In the case of ENOSPC, if ext4_count_free_blocks() 2218 * is non-zero, a commit should free up blocks. 2219 */ 2220 if ((err == -ENOMEM) || 2221 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2222 if (progress) 2223 goto update_disksize; 2224 return err; 2225 } 2226 ext4_msg(sb, KERN_CRIT, 2227 "Delayed block allocation failed for " 2228 "inode %lu at logical offset %llu with" 2229 " max blocks %u with error %d", 2230 inode->i_ino, 2231 (unsigned long long)map->m_lblk, 2232 (unsigned)map->m_len, -err); 2233 ext4_msg(sb, KERN_CRIT, 2234 "This should not happen!! Data will " 2235 "be lost\n"); 2236 if (err == -ENOSPC) 2237 ext4_print_free_blocks(inode); 2238 invalidate_dirty_pages: 2239 *give_up_on_write = true; 2240 return err; 2241 } 2242 progress = 1; 2243 /* 2244 * Update buffer state, submit mapped pages, and get us new 2245 * extent to map 2246 */ 2247 err = mpage_map_and_submit_buffers(mpd); 2248 if (err < 0) 2249 goto update_disksize; 2250 } while (map->m_len); 2251 2252 update_disksize: 2253 /* 2254 * Update on-disk size after IO is submitted. Races with 2255 * truncate are avoided by checking i_size under i_data_sem. 2256 */ 2257 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2258 if (disksize > EXT4_I(inode)->i_disksize) { 2259 int err2; 2260 loff_t i_size; 2261 2262 down_write(&EXT4_I(inode)->i_data_sem); 2263 i_size = i_size_read(inode); 2264 if (disksize > i_size) 2265 disksize = i_size; 2266 if (disksize > EXT4_I(inode)->i_disksize) 2267 EXT4_I(inode)->i_disksize = disksize; 2268 err2 = ext4_mark_inode_dirty(handle, inode); 2269 up_write(&EXT4_I(inode)->i_data_sem); 2270 if (err2) 2271 ext4_error(inode->i_sb, 2272 "Failed to mark inode %lu dirty", 2273 inode->i_ino); 2274 if (!err) 2275 err = err2; 2276 } 2277 return err; 2278 } 2279 2280 /* 2281 * Calculate the total number of credits to reserve for one writepages 2282 * iteration. This is called from ext4_writepages(). We map an extent of 2283 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2284 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2285 * bpp - 1 blocks in bpp different extents. 2286 */ 2287 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2288 { 2289 int bpp = ext4_journal_blocks_per_page(inode); 2290 2291 return ext4_meta_trans_blocks(inode, 2292 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2293 } 2294 2295 /* 2296 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2297 * and underlying extent to map 2298 * 2299 * @mpd - where to look for pages 2300 * 2301 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2302 * IO immediately. When we find a page which isn't mapped we start accumulating 2303 * extent of buffers underlying these pages that needs mapping (formed by 2304 * either delayed or unwritten buffers). We also lock the pages containing 2305 * these buffers. The extent found is returned in @mpd structure (starting at 2306 * mpd->lblk with length mpd->len blocks). 2307 * 2308 * Note that this function can attach bios to one io_end structure which are 2309 * neither logically nor physically contiguous. Although it may seem as an 2310 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2311 * case as we need to track IO to all buffers underlying a page in one io_end. 2312 */ 2313 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2314 { 2315 struct address_space *mapping = mpd->inode->i_mapping; 2316 struct pagevec pvec; 2317 unsigned int nr_pages; 2318 long left = mpd->wbc->nr_to_write; 2319 pgoff_t index = mpd->first_page; 2320 pgoff_t end = mpd->last_page; 2321 int tag; 2322 int i, err = 0; 2323 int blkbits = mpd->inode->i_blkbits; 2324 ext4_lblk_t lblk; 2325 struct buffer_head *head; 2326 2327 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2328 tag = PAGECACHE_TAG_TOWRITE; 2329 else 2330 tag = PAGECACHE_TAG_DIRTY; 2331 2332 pagevec_init(&pvec, 0); 2333 mpd->map.m_len = 0; 2334 mpd->next_page = index; 2335 while (index <= end) { 2336 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2337 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2338 if (nr_pages == 0) 2339 goto out; 2340 2341 for (i = 0; i < nr_pages; i++) { 2342 struct page *page = pvec.pages[i]; 2343 2344 /* 2345 * At this point, the page may be truncated or 2346 * invalidated (changing page->mapping to NULL), or 2347 * even swizzled back from swapper_space to tmpfs file 2348 * mapping. However, page->index will not change 2349 * because we have a reference on the page. 2350 */ 2351 if (page->index > end) 2352 goto out; 2353 2354 /* 2355 * Accumulated enough dirty pages? This doesn't apply 2356 * to WB_SYNC_ALL mode. For integrity sync we have to 2357 * keep going because someone may be concurrently 2358 * dirtying pages, and we might have synced a lot of 2359 * newly appeared dirty pages, but have not synced all 2360 * of the old dirty pages. 2361 */ 2362 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2363 goto out; 2364 2365 /* If we can't merge this page, we are done. */ 2366 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2367 goto out; 2368 2369 lock_page(page); 2370 /* 2371 * If the page is no longer dirty, or its mapping no 2372 * longer corresponds to inode we are writing (which 2373 * means it has been truncated or invalidated), or the 2374 * page is already under writeback and we are not doing 2375 * a data integrity writeback, skip the page 2376 */ 2377 if (!PageDirty(page) || 2378 (PageWriteback(page) && 2379 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2380 unlikely(page->mapping != mapping)) { 2381 unlock_page(page); 2382 continue; 2383 } 2384 2385 wait_on_page_writeback(page); 2386 BUG_ON(PageWriteback(page)); 2387 2388 if (mpd->map.m_len == 0) 2389 mpd->first_page = page->index; 2390 mpd->next_page = page->index + 1; 2391 /* Add all dirty buffers to mpd */ 2392 lblk = ((ext4_lblk_t)page->index) << 2393 (PAGE_CACHE_SHIFT - blkbits); 2394 head = page_buffers(page); 2395 err = mpage_process_page_bufs(mpd, head, head, lblk); 2396 if (err <= 0) 2397 goto out; 2398 err = 0; 2399 left--; 2400 } 2401 pagevec_release(&pvec); 2402 cond_resched(); 2403 } 2404 return 0; 2405 out: 2406 pagevec_release(&pvec); 2407 return err; 2408 } 2409 2410 static int __writepage(struct page *page, struct writeback_control *wbc, 2411 void *data) 2412 { 2413 struct address_space *mapping = data; 2414 int ret = ext4_writepage(page, wbc); 2415 mapping_set_error(mapping, ret); 2416 return ret; 2417 } 2418 2419 static int ext4_writepages(struct address_space *mapping, 2420 struct writeback_control *wbc) 2421 { 2422 pgoff_t writeback_index = 0; 2423 long nr_to_write = wbc->nr_to_write; 2424 int range_whole = 0; 2425 int cycled = 1; 2426 handle_t *handle = NULL; 2427 struct mpage_da_data mpd; 2428 struct inode *inode = mapping->host; 2429 int needed_blocks, rsv_blocks = 0, ret = 0; 2430 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2431 bool done; 2432 struct blk_plug plug; 2433 bool give_up_on_write = false; 2434 2435 trace_ext4_writepages(inode, wbc); 2436 2437 /* 2438 * No pages to write? This is mainly a kludge to avoid starting 2439 * a transaction for special inodes like journal inode on last iput() 2440 * because that could violate lock ordering on umount 2441 */ 2442 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2443 goto out_writepages; 2444 2445 if (ext4_should_journal_data(inode)) { 2446 struct blk_plug plug; 2447 2448 blk_start_plug(&plug); 2449 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2450 blk_finish_plug(&plug); 2451 goto out_writepages; 2452 } 2453 2454 /* 2455 * If the filesystem has aborted, it is read-only, so return 2456 * right away instead of dumping stack traces later on that 2457 * will obscure the real source of the problem. We test 2458 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2459 * the latter could be true if the filesystem is mounted 2460 * read-only, and in that case, ext4_writepages should 2461 * *never* be called, so if that ever happens, we would want 2462 * the stack trace. 2463 */ 2464 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2465 ret = -EROFS; 2466 goto out_writepages; 2467 } 2468 2469 if (ext4_should_dioread_nolock(inode)) { 2470 /* 2471 * We may need to convert up to one extent per block in 2472 * the page and we may dirty the inode. 2473 */ 2474 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2475 } 2476 2477 /* 2478 * If we have inline data and arrive here, it means that 2479 * we will soon create the block for the 1st page, so 2480 * we'd better clear the inline data here. 2481 */ 2482 if (ext4_has_inline_data(inode)) { 2483 /* Just inode will be modified... */ 2484 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2485 if (IS_ERR(handle)) { 2486 ret = PTR_ERR(handle); 2487 goto out_writepages; 2488 } 2489 BUG_ON(ext4_test_inode_state(inode, 2490 EXT4_STATE_MAY_INLINE_DATA)); 2491 ext4_destroy_inline_data(handle, inode); 2492 ext4_journal_stop(handle); 2493 } 2494 2495 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2496 range_whole = 1; 2497 2498 if (wbc->range_cyclic) { 2499 writeback_index = mapping->writeback_index; 2500 if (writeback_index) 2501 cycled = 0; 2502 mpd.first_page = writeback_index; 2503 mpd.last_page = -1; 2504 } else { 2505 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2506 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2507 } 2508 2509 mpd.inode = inode; 2510 mpd.wbc = wbc; 2511 ext4_io_submit_init(&mpd.io_submit, wbc); 2512 retry: 2513 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2514 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2515 done = false; 2516 blk_start_plug(&plug); 2517 while (!done && mpd.first_page <= mpd.last_page) { 2518 /* For each extent of pages we use new io_end */ 2519 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2520 if (!mpd.io_submit.io_end) { 2521 ret = -ENOMEM; 2522 break; 2523 } 2524 2525 /* 2526 * We have two constraints: We find one extent to map and we 2527 * must always write out whole page (makes a difference when 2528 * blocksize < pagesize) so that we don't block on IO when we 2529 * try to write out the rest of the page. Journalled mode is 2530 * not supported by delalloc. 2531 */ 2532 BUG_ON(ext4_should_journal_data(inode)); 2533 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2534 2535 /* start a new transaction */ 2536 handle = ext4_journal_start_with_reserve(inode, 2537 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2538 if (IS_ERR(handle)) { 2539 ret = PTR_ERR(handle); 2540 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2541 "%ld pages, ino %lu; err %d", __func__, 2542 wbc->nr_to_write, inode->i_ino, ret); 2543 /* Release allocated io_end */ 2544 ext4_put_io_end(mpd.io_submit.io_end); 2545 break; 2546 } 2547 2548 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2549 ret = mpage_prepare_extent_to_map(&mpd); 2550 if (!ret) { 2551 if (mpd.map.m_len) 2552 ret = mpage_map_and_submit_extent(handle, &mpd, 2553 &give_up_on_write); 2554 else { 2555 /* 2556 * We scanned the whole range (or exhausted 2557 * nr_to_write), submitted what was mapped and 2558 * didn't find anything needing mapping. We are 2559 * done. 2560 */ 2561 done = true; 2562 } 2563 } 2564 ext4_journal_stop(handle); 2565 /* Submit prepared bio */ 2566 ext4_io_submit(&mpd.io_submit); 2567 /* Unlock pages we didn't use */ 2568 mpage_release_unused_pages(&mpd, give_up_on_write); 2569 /* Drop our io_end reference we got from init */ 2570 ext4_put_io_end(mpd.io_submit.io_end); 2571 2572 if (ret == -ENOSPC && sbi->s_journal) { 2573 /* 2574 * Commit the transaction which would 2575 * free blocks released in the transaction 2576 * and try again 2577 */ 2578 jbd2_journal_force_commit_nested(sbi->s_journal); 2579 ret = 0; 2580 continue; 2581 } 2582 /* Fatal error - ENOMEM, EIO... */ 2583 if (ret) 2584 break; 2585 } 2586 blk_finish_plug(&plug); 2587 if (!ret && !cycled && wbc->nr_to_write > 0) { 2588 cycled = 1; 2589 mpd.last_page = writeback_index - 1; 2590 mpd.first_page = 0; 2591 goto retry; 2592 } 2593 2594 /* Update index */ 2595 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2596 /* 2597 * Set the writeback_index so that range_cyclic 2598 * mode will write it back later 2599 */ 2600 mapping->writeback_index = mpd.first_page; 2601 2602 out_writepages: 2603 trace_ext4_writepages_result(inode, wbc, ret, 2604 nr_to_write - wbc->nr_to_write); 2605 return ret; 2606 } 2607 2608 static int ext4_nonda_switch(struct super_block *sb) 2609 { 2610 s64 free_clusters, dirty_clusters; 2611 struct ext4_sb_info *sbi = EXT4_SB(sb); 2612 2613 /* 2614 * switch to non delalloc mode if we are running low 2615 * on free block. The free block accounting via percpu 2616 * counters can get slightly wrong with percpu_counter_batch getting 2617 * accumulated on each CPU without updating global counters 2618 * Delalloc need an accurate free block accounting. So switch 2619 * to non delalloc when we are near to error range. 2620 */ 2621 free_clusters = 2622 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2623 dirty_clusters = 2624 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2625 /* 2626 * Start pushing delalloc when 1/2 of free blocks are dirty. 2627 */ 2628 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2629 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2630 2631 if (2 * free_clusters < 3 * dirty_clusters || 2632 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2633 /* 2634 * free block count is less than 150% of dirty blocks 2635 * or free blocks is less than watermark 2636 */ 2637 return 1; 2638 } 2639 return 0; 2640 } 2641 2642 /* We always reserve for an inode update; the superblock could be there too */ 2643 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2644 { 2645 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2646 return 1; 2647 2648 if (pos + len <= 0x7fffffffULL) 2649 return 1; 2650 2651 /* We might need to update the superblock to set LARGE_FILE */ 2652 return 2; 2653 } 2654 2655 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2656 loff_t pos, unsigned len, unsigned flags, 2657 struct page **pagep, void **fsdata) 2658 { 2659 int ret, retries = 0; 2660 struct page *page; 2661 pgoff_t index; 2662 struct inode *inode = mapping->host; 2663 handle_t *handle; 2664 2665 index = pos >> PAGE_CACHE_SHIFT; 2666 2667 if (ext4_nonda_switch(inode->i_sb)) { 2668 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2669 return ext4_write_begin(file, mapping, pos, 2670 len, flags, pagep, fsdata); 2671 } 2672 *fsdata = (void *)0; 2673 trace_ext4_da_write_begin(inode, pos, len, flags); 2674 2675 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2676 ret = ext4_da_write_inline_data_begin(mapping, inode, 2677 pos, len, flags, 2678 pagep, fsdata); 2679 if (ret < 0) 2680 return ret; 2681 if (ret == 1) 2682 return 0; 2683 } 2684 2685 /* 2686 * grab_cache_page_write_begin() can take a long time if the 2687 * system is thrashing due to memory pressure, or if the page 2688 * is being written back. So grab it first before we start 2689 * the transaction handle. This also allows us to allocate 2690 * the page (if needed) without using GFP_NOFS. 2691 */ 2692 retry_grab: 2693 page = grab_cache_page_write_begin(mapping, index, flags); 2694 if (!page) 2695 return -ENOMEM; 2696 unlock_page(page); 2697 2698 /* 2699 * With delayed allocation, we don't log the i_disksize update 2700 * if there is delayed block allocation. But we still need 2701 * to journalling the i_disksize update if writes to the end 2702 * of file which has an already mapped buffer. 2703 */ 2704 retry_journal: 2705 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2706 ext4_da_write_credits(inode, pos, len)); 2707 if (IS_ERR(handle)) { 2708 page_cache_release(page); 2709 return PTR_ERR(handle); 2710 } 2711 2712 lock_page(page); 2713 if (page->mapping != mapping) { 2714 /* The page got truncated from under us */ 2715 unlock_page(page); 2716 page_cache_release(page); 2717 ext4_journal_stop(handle); 2718 goto retry_grab; 2719 } 2720 /* In case writeback began while the page was unlocked */ 2721 wait_for_stable_page(page); 2722 2723 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2724 ret = ext4_block_write_begin(page, pos, len, 2725 ext4_da_get_block_prep); 2726 #else 2727 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2728 #endif 2729 if (ret < 0) { 2730 unlock_page(page); 2731 ext4_journal_stop(handle); 2732 /* 2733 * block_write_begin may have instantiated a few blocks 2734 * outside i_size. Trim these off again. Don't need 2735 * i_size_read because we hold i_mutex. 2736 */ 2737 if (pos + len > inode->i_size) 2738 ext4_truncate_failed_write(inode); 2739 2740 if (ret == -ENOSPC && 2741 ext4_should_retry_alloc(inode->i_sb, &retries)) 2742 goto retry_journal; 2743 2744 page_cache_release(page); 2745 return ret; 2746 } 2747 2748 *pagep = page; 2749 return ret; 2750 } 2751 2752 /* 2753 * Check if we should update i_disksize 2754 * when write to the end of file but not require block allocation 2755 */ 2756 static int ext4_da_should_update_i_disksize(struct page *page, 2757 unsigned long offset) 2758 { 2759 struct buffer_head *bh; 2760 struct inode *inode = page->mapping->host; 2761 unsigned int idx; 2762 int i; 2763 2764 bh = page_buffers(page); 2765 idx = offset >> inode->i_blkbits; 2766 2767 for (i = 0; i < idx; i++) 2768 bh = bh->b_this_page; 2769 2770 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2771 return 0; 2772 return 1; 2773 } 2774 2775 static int ext4_da_write_end(struct file *file, 2776 struct address_space *mapping, 2777 loff_t pos, unsigned len, unsigned copied, 2778 struct page *page, void *fsdata) 2779 { 2780 struct inode *inode = mapping->host; 2781 int ret = 0, ret2; 2782 handle_t *handle = ext4_journal_current_handle(); 2783 loff_t new_i_size; 2784 unsigned long start, end; 2785 int write_mode = (int)(unsigned long)fsdata; 2786 2787 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2788 return ext4_write_end(file, mapping, pos, 2789 len, copied, page, fsdata); 2790 2791 trace_ext4_da_write_end(inode, pos, len, copied); 2792 start = pos & (PAGE_CACHE_SIZE - 1); 2793 end = start + copied - 1; 2794 2795 /* 2796 * generic_write_end() will run mark_inode_dirty() if i_size 2797 * changes. So let's piggyback the i_disksize mark_inode_dirty 2798 * into that. 2799 */ 2800 new_i_size = pos + copied; 2801 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2802 if (ext4_has_inline_data(inode) || 2803 ext4_da_should_update_i_disksize(page, end)) { 2804 ext4_update_i_disksize(inode, new_i_size); 2805 /* We need to mark inode dirty even if 2806 * new_i_size is less that inode->i_size 2807 * bu greater than i_disksize.(hint delalloc) 2808 */ 2809 ext4_mark_inode_dirty(handle, inode); 2810 } 2811 } 2812 2813 if (write_mode != CONVERT_INLINE_DATA && 2814 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2815 ext4_has_inline_data(inode)) 2816 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2817 page); 2818 else 2819 ret2 = generic_write_end(file, mapping, pos, len, copied, 2820 page, fsdata); 2821 2822 copied = ret2; 2823 if (ret2 < 0) 2824 ret = ret2; 2825 ret2 = ext4_journal_stop(handle); 2826 if (!ret) 2827 ret = ret2; 2828 2829 return ret ? ret : copied; 2830 } 2831 2832 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2833 unsigned int length) 2834 { 2835 /* 2836 * Drop reserved blocks 2837 */ 2838 BUG_ON(!PageLocked(page)); 2839 if (!page_has_buffers(page)) 2840 goto out; 2841 2842 ext4_da_page_release_reservation(page, offset, length); 2843 2844 out: 2845 ext4_invalidatepage(page, offset, length); 2846 2847 return; 2848 } 2849 2850 /* 2851 * Force all delayed allocation blocks to be allocated for a given inode. 2852 */ 2853 int ext4_alloc_da_blocks(struct inode *inode) 2854 { 2855 trace_ext4_alloc_da_blocks(inode); 2856 2857 if (!EXT4_I(inode)->i_reserved_data_blocks) 2858 return 0; 2859 2860 /* 2861 * We do something simple for now. The filemap_flush() will 2862 * also start triggering a write of the data blocks, which is 2863 * not strictly speaking necessary (and for users of 2864 * laptop_mode, not even desirable). However, to do otherwise 2865 * would require replicating code paths in: 2866 * 2867 * ext4_writepages() -> 2868 * write_cache_pages() ---> (via passed in callback function) 2869 * __mpage_da_writepage() --> 2870 * mpage_add_bh_to_extent() 2871 * mpage_da_map_blocks() 2872 * 2873 * The problem is that write_cache_pages(), located in 2874 * mm/page-writeback.c, marks pages clean in preparation for 2875 * doing I/O, which is not desirable if we're not planning on 2876 * doing I/O at all. 2877 * 2878 * We could call write_cache_pages(), and then redirty all of 2879 * the pages by calling redirty_page_for_writepage() but that 2880 * would be ugly in the extreme. So instead we would need to 2881 * replicate parts of the code in the above functions, 2882 * simplifying them because we wouldn't actually intend to 2883 * write out the pages, but rather only collect contiguous 2884 * logical block extents, call the multi-block allocator, and 2885 * then update the buffer heads with the block allocations. 2886 * 2887 * For now, though, we'll cheat by calling filemap_flush(), 2888 * which will map the blocks, and start the I/O, but not 2889 * actually wait for the I/O to complete. 2890 */ 2891 return filemap_flush(inode->i_mapping); 2892 } 2893 2894 /* 2895 * bmap() is special. It gets used by applications such as lilo and by 2896 * the swapper to find the on-disk block of a specific piece of data. 2897 * 2898 * Naturally, this is dangerous if the block concerned is still in the 2899 * journal. If somebody makes a swapfile on an ext4 data-journaling 2900 * filesystem and enables swap, then they may get a nasty shock when the 2901 * data getting swapped to that swapfile suddenly gets overwritten by 2902 * the original zero's written out previously to the journal and 2903 * awaiting writeback in the kernel's buffer cache. 2904 * 2905 * So, if we see any bmap calls here on a modified, data-journaled file, 2906 * take extra steps to flush any blocks which might be in the cache. 2907 */ 2908 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2909 { 2910 struct inode *inode = mapping->host; 2911 journal_t *journal; 2912 int err; 2913 2914 /* 2915 * We can get here for an inline file via the FIBMAP ioctl 2916 */ 2917 if (ext4_has_inline_data(inode)) 2918 return 0; 2919 2920 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2921 test_opt(inode->i_sb, DELALLOC)) { 2922 /* 2923 * With delalloc we want to sync the file 2924 * so that we can make sure we allocate 2925 * blocks for file 2926 */ 2927 filemap_write_and_wait(mapping); 2928 } 2929 2930 if (EXT4_JOURNAL(inode) && 2931 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2932 /* 2933 * This is a REALLY heavyweight approach, but the use of 2934 * bmap on dirty files is expected to be extremely rare: 2935 * only if we run lilo or swapon on a freshly made file 2936 * do we expect this to happen. 2937 * 2938 * (bmap requires CAP_SYS_RAWIO so this does not 2939 * represent an unprivileged user DOS attack --- we'd be 2940 * in trouble if mortal users could trigger this path at 2941 * will.) 2942 * 2943 * NB. EXT4_STATE_JDATA is not set on files other than 2944 * regular files. If somebody wants to bmap a directory 2945 * or symlink and gets confused because the buffer 2946 * hasn't yet been flushed to disk, they deserve 2947 * everything they get. 2948 */ 2949 2950 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2951 journal = EXT4_JOURNAL(inode); 2952 jbd2_journal_lock_updates(journal); 2953 err = jbd2_journal_flush(journal); 2954 jbd2_journal_unlock_updates(journal); 2955 2956 if (err) 2957 return 0; 2958 } 2959 2960 return generic_block_bmap(mapping, block, ext4_get_block); 2961 } 2962 2963 static int ext4_readpage(struct file *file, struct page *page) 2964 { 2965 int ret = -EAGAIN; 2966 struct inode *inode = page->mapping->host; 2967 2968 trace_ext4_readpage(page); 2969 2970 if (ext4_has_inline_data(inode)) 2971 ret = ext4_readpage_inline(inode, page); 2972 2973 if (ret == -EAGAIN) 2974 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2975 2976 return ret; 2977 } 2978 2979 static int 2980 ext4_readpages(struct file *file, struct address_space *mapping, 2981 struct list_head *pages, unsigned nr_pages) 2982 { 2983 struct inode *inode = mapping->host; 2984 2985 /* If the file has inline data, no need to do readpages. */ 2986 if (ext4_has_inline_data(inode)) 2987 return 0; 2988 2989 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2990 } 2991 2992 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2993 unsigned int length) 2994 { 2995 trace_ext4_invalidatepage(page, offset, length); 2996 2997 /* No journalling happens on data buffers when this function is used */ 2998 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2999 3000 block_invalidatepage(page, offset, length); 3001 } 3002 3003 static int __ext4_journalled_invalidatepage(struct page *page, 3004 unsigned int offset, 3005 unsigned int length) 3006 { 3007 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3008 3009 trace_ext4_journalled_invalidatepage(page, offset, length); 3010 3011 /* 3012 * If it's a full truncate we just forget about the pending dirtying 3013 */ 3014 if (offset == 0 && length == PAGE_CACHE_SIZE) 3015 ClearPageChecked(page); 3016 3017 return jbd2_journal_invalidatepage(journal, page, offset, length); 3018 } 3019 3020 /* Wrapper for aops... */ 3021 static void ext4_journalled_invalidatepage(struct page *page, 3022 unsigned int offset, 3023 unsigned int length) 3024 { 3025 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3026 } 3027 3028 static int ext4_releasepage(struct page *page, gfp_t wait) 3029 { 3030 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3031 3032 trace_ext4_releasepage(page); 3033 3034 /* Page has dirty journalled data -> cannot release */ 3035 if (PageChecked(page)) 3036 return 0; 3037 if (journal) 3038 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3039 else 3040 return try_to_free_buffers(page); 3041 } 3042 3043 /* 3044 * ext4_get_block used when preparing for a DIO write or buffer write. 3045 * We allocate an uinitialized extent if blocks haven't been allocated. 3046 * The extent will be converted to initialized after the IO is complete. 3047 */ 3048 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3049 struct buffer_head *bh_result, int create) 3050 { 3051 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3052 inode->i_ino, create); 3053 return _ext4_get_block(inode, iblock, bh_result, 3054 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3055 } 3056 3057 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3058 struct buffer_head *bh_result, int create) 3059 { 3060 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3061 inode->i_ino, create); 3062 return _ext4_get_block(inode, iblock, bh_result, 3063 EXT4_GET_BLOCKS_NO_LOCK); 3064 } 3065 3066 int ext4_get_block_dax(struct inode *inode, sector_t iblock, 3067 struct buffer_head *bh_result, int create) 3068 { 3069 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT; 3070 if (create) 3071 flags |= EXT4_GET_BLOCKS_CREATE; 3072 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n", 3073 inode->i_ino, create); 3074 return _ext4_get_block(inode, iblock, bh_result, flags); 3075 } 3076 3077 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3078 ssize_t size, void *private) 3079 { 3080 ext4_io_end_t *io_end = iocb->private; 3081 3082 /* if not async direct IO just return */ 3083 if (!io_end) 3084 return; 3085 3086 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3087 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3088 iocb->private, io_end->inode->i_ino, iocb, offset, 3089 size); 3090 3091 iocb->private = NULL; 3092 io_end->offset = offset; 3093 io_end->size = size; 3094 ext4_put_io_end(io_end); 3095 } 3096 3097 /* 3098 * For ext4 extent files, ext4 will do direct-io write to holes, 3099 * preallocated extents, and those write extend the file, no need to 3100 * fall back to buffered IO. 3101 * 3102 * For holes, we fallocate those blocks, mark them as unwritten 3103 * If those blocks were preallocated, we mark sure they are split, but 3104 * still keep the range to write as unwritten. 3105 * 3106 * The unwritten extents will be converted to written when DIO is completed. 3107 * For async direct IO, since the IO may still pending when return, we 3108 * set up an end_io call back function, which will do the conversion 3109 * when async direct IO completed. 3110 * 3111 * If the O_DIRECT write will extend the file then add this inode to the 3112 * orphan list. So recovery will truncate it back to the original size 3113 * if the machine crashes during the write. 3114 * 3115 */ 3116 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3117 loff_t offset) 3118 { 3119 struct file *file = iocb->ki_filp; 3120 struct inode *inode = file->f_mapping->host; 3121 ssize_t ret; 3122 size_t count = iov_iter_count(iter); 3123 int overwrite = 0; 3124 get_block_t *get_block_func = NULL; 3125 int dio_flags = 0; 3126 loff_t final_size = offset + count; 3127 ext4_io_end_t *io_end = NULL; 3128 3129 /* Use the old path for reads and writes beyond i_size. */ 3130 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3131 return ext4_ind_direct_IO(iocb, iter, offset); 3132 3133 BUG_ON(iocb->private == NULL); 3134 3135 /* 3136 * Make all waiters for direct IO properly wait also for extent 3137 * conversion. This also disallows race between truncate() and 3138 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3139 */ 3140 if (iov_iter_rw(iter) == WRITE) 3141 inode_dio_begin(inode); 3142 3143 /* If we do a overwrite dio, i_mutex locking can be released */ 3144 overwrite = *((int *)iocb->private); 3145 3146 if (overwrite) { 3147 down_read(&EXT4_I(inode)->i_data_sem); 3148 mutex_unlock(&inode->i_mutex); 3149 } 3150 3151 /* 3152 * We could direct write to holes and fallocate. 3153 * 3154 * Allocated blocks to fill the hole are marked as 3155 * unwritten to prevent parallel buffered read to expose 3156 * the stale data before DIO complete the data IO. 3157 * 3158 * As to previously fallocated extents, ext4 get_block will 3159 * just simply mark the buffer mapped but still keep the 3160 * extents unwritten. 3161 * 3162 * For non AIO case, we will convert those unwritten extents 3163 * to written after return back from blockdev_direct_IO. 3164 * 3165 * For async DIO, the conversion needs to be deferred when the 3166 * IO is completed. The ext4 end_io callback function will be 3167 * called to take care of the conversion work. Here for async 3168 * case, we allocate an io_end structure to hook to the iocb. 3169 */ 3170 iocb->private = NULL; 3171 ext4_inode_aio_set(inode, NULL); 3172 if (!is_sync_kiocb(iocb)) { 3173 io_end = ext4_init_io_end(inode, GFP_NOFS); 3174 if (!io_end) { 3175 ret = -ENOMEM; 3176 goto retake_lock; 3177 } 3178 /* 3179 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3180 */ 3181 iocb->private = ext4_get_io_end(io_end); 3182 /* 3183 * we save the io structure for current async direct 3184 * IO, so that later ext4_map_blocks() could flag the 3185 * io structure whether there is a unwritten extents 3186 * needs to be converted when IO is completed. 3187 */ 3188 ext4_inode_aio_set(inode, io_end); 3189 } 3190 3191 if (overwrite) { 3192 get_block_func = ext4_get_block_write_nolock; 3193 } else { 3194 get_block_func = ext4_get_block_write; 3195 dio_flags = DIO_LOCKING; 3196 } 3197 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3198 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3199 #endif 3200 if (IS_DAX(inode)) 3201 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3202 ext4_end_io_dio, dio_flags); 3203 else 3204 ret = __blockdev_direct_IO(iocb, inode, 3205 inode->i_sb->s_bdev, iter, offset, 3206 get_block_func, 3207 ext4_end_io_dio, NULL, dio_flags); 3208 3209 /* 3210 * Put our reference to io_end. This can free the io_end structure e.g. 3211 * in sync IO case or in case of error. It can even perform extent 3212 * conversion if all bios we submitted finished before we got here. 3213 * Note that in that case iocb->private can be already set to NULL 3214 * here. 3215 */ 3216 if (io_end) { 3217 ext4_inode_aio_set(inode, NULL); 3218 ext4_put_io_end(io_end); 3219 /* 3220 * When no IO was submitted ext4_end_io_dio() was not 3221 * called so we have to put iocb's reference. 3222 */ 3223 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3224 WARN_ON(iocb->private != io_end); 3225 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3226 ext4_put_io_end(io_end); 3227 iocb->private = NULL; 3228 } 3229 } 3230 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3231 EXT4_STATE_DIO_UNWRITTEN)) { 3232 int err; 3233 /* 3234 * for non AIO case, since the IO is already 3235 * completed, we could do the conversion right here 3236 */ 3237 err = ext4_convert_unwritten_extents(NULL, inode, 3238 offset, ret); 3239 if (err < 0) 3240 ret = err; 3241 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3242 } 3243 3244 retake_lock: 3245 if (iov_iter_rw(iter) == WRITE) 3246 inode_dio_end(inode); 3247 /* take i_mutex locking again if we do a ovewrite dio */ 3248 if (overwrite) { 3249 up_read(&EXT4_I(inode)->i_data_sem); 3250 mutex_lock(&inode->i_mutex); 3251 } 3252 3253 return ret; 3254 } 3255 3256 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3257 loff_t offset) 3258 { 3259 struct file *file = iocb->ki_filp; 3260 struct inode *inode = file->f_mapping->host; 3261 size_t count = iov_iter_count(iter); 3262 ssize_t ret; 3263 3264 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3265 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3266 return 0; 3267 #endif 3268 3269 /* 3270 * If we are doing data journalling we don't support O_DIRECT 3271 */ 3272 if (ext4_should_journal_data(inode)) 3273 return 0; 3274 3275 /* Let buffer I/O handle the inline data case. */ 3276 if (ext4_has_inline_data(inode)) 3277 return 0; 3278 3279 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3280 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3281 ret = ext4_ext_direct_IO(iocb, iter, offset); 3282 else 3283 ret = ext4_ind_direct_IO(iocb, iter, offset); 3284 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3285 return ret; 3286 } 3287 3288 /* 3289 * Pages can be marked dirty completely asynchronously from ext4's journalling 3290 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3291 * much here because ->set_page_dirty is called under VFS locks. The page is 3292 * not necessarily locked. 3293 * 3294 * We cannot just dirty the page and leave attached buffers clean, because the 3295 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3296 * or jbddirty because all the journalling code will explode. 3297 * 3298 * So what we do is to mark the page "pending dirty" and next time writepage 3299 * is called, propagate that into the buffers appropriately. 3300 */ 3301 static int ext4_journalled_set_page_dirty(struct page *page) 3302 { 3303 SetPageChecked(page); 3304 return __set_page_dirty_nobuffers(page); 3305 } 3306 3307 static const struct address_space_operations ext4_aops = { 3308 .readpage = ext4_readpage, 3309 .readpages = ext4_readpages, 3310 .writepage = ext4_writepage, 3311 .writepages = ext4_writepages, 3312 .write_begin = ext4_write_begin, 3313 .write_end = ext4_write_end, 3314 .bmap = ext4_bmap, 3315 .invalidatepage = ext4_invalidatepage, 3316 .releasepage = ext4_releasepage, 3317 .direct_IO = ext4_direct_IO, 3318 .migratepage = buffer_migrate_page, 3319 .is_partially_uptodate = block_is_partially_uptodate, 3320 .error_remove_page = generic_error_remove_page, 3321 }; 3322 3323 static const struct address_space_operations ext4_journalled_aops = { 3324 .readpage = ext4_readpage, 3325 .readpages = ext4_readpages, 3326 .writepage = ext4_writepage, 3327 .writepages = ext4_writepages, 3328 .write_begin = ext4_write_begin, 3329 .write_end = ext4_journalled_write_end, 3330 .set_page_dirty = ext4_journalled_set_page_dirty, 3331 .bmap = ext4_bmap, 3332 .invalidatepage = ext4_journalled_invalidatepage, 3333 .releasepage = ext4_releasepage, 3334 .direct_IO = ext4_direct_IO, 3335 .is_partially_uptodate = block_is_partially_uptodate, 3336 .error_remove_page = generic_error_remove_page, 3337 }; 3338 3339 static const struct address_space_operations ext4_da_aops = { 3340 .readpage = ext4_readpage, 3341 .readpages = ext4_readpages, 3342 .writepage = ext4_writepage, 3343 .writepages = ext4_writepages, 3344 .write_begin = ext4_da_write_begin, 3345 .write_end = ext4_da_write_end, 3346 .bmap = ext4_bmap, 3347 .invalidatepage = ext4_da_invalidatepage, 3348 .releasepage = ext4_releasepage, 3349 .direct_IO = ext4_direct_IO, 3350 .migratepage = buffer_migrate_page, 3351 .is_partially_uptodate = block_is_partially_uptodate, 3352 .error_remove_page = generic_error_remove_page, 3353 }; 3354 3355 void ext4_set_aops(struct inode *inode) 3356 { 3357 switch (ext4_inode_journal_mode(inode)) { 3358 case EXT4_INODE_ORDERED_DATA_MODE: 3359 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3360 break; 3361 case EXT4_INODE_WRITEBACK_DATA_MODE: 3362 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3363 break; 3364 case EXT4_INODE_JOURNAL_DATA_MODE: 3365 inode->i_mapping->a_ops = &ext4_journalled_aops; 3366 return; 3367 default: 3368 BUG(); 3369 } 3370 if (test_opt(inode->i_sb, DELALLOC)) 3371 inode->i_mapping->a_ops = &ext4_da_aops; 3372 else 3373 inode->i_mapping->a_ops = &ext4_aops; 3374 } 3375 3376 static int __ext4_block_zero_page_range(handle_t *handle, 3377 struct address_space *mapping, loff_t from, loff_t length) 3378 { 3379 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3380 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3381 unsigned blocksize, pos; 3382 ext4_lblk_t iblock; 3383 struct inode *inode = mapping->host; 3384 struct buffer_head *bh; 3385 struct page *page; 3386 int err = 0; 3387 3388 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3389 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3390 if (!page) 3391 return -ENOMEM; 3392 3393 blocksize = inode->i_sb->s_blocksize; 3394 3395 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3396 3397 if (!page_has_buffers(page)) 3398 create_empty_buffers(page, blocksize, 0); 3399 3400 /* Find the buffer that contains "offset" */ 3401 bh = page_buffers(page); 3402 pos = blocksize; 3403 while (offset >= pos) { 3404 bh = bh->b_this_page; 3405 iblock++; 3406 pos += blocksize; 3407 } 3408 if (buffer_freed(bh)) { 3409 BUFFER_TRACE(bh, "freed: skip"); 3410 goto unlock; 3411 } 3412 if (!buffer_mapped(bh)) { 3413 BUFFER_TRACE(bh, "unmapped"); 3414 ext4_get_block(inode, iblock, bh, 0); 3415 /* unmapped? It's a hole - nothing to do */ 3416 if (!buffer_mapped(bh)) { 3417 BUFFER_TRACE(bh, "still unmapped"); 3418 goto unlock; 3419 } 3420 } 3421 3422 /* Ok, it's mapped. Make sure it's up-to-date */ 3423 if (PageUptodate(page)) 3424 set_buffer_uptodate(bh); 3425 3426 if (!buffer_uptodate(bh)) { 3427 err = -EIO; 3428 ll_rw_block(READ, 1, &bh); 3429 wait_on_buffer(bh); 3430 /* Uhhuh. Read error. Complain and punt. */ 3431 if (!buffer_uptodate(bh)) 3432 goto unlock; 3433 if (S_ISREG(inode->i_mode) && 3434 ext4_encrypted_inode(inode)) { 3435 /* We expect the key to be set. */ 3436 BUG_ON(!ext4_has_encryption_key(inode)); 3437 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3438 WARN_ON_ONCE(ext4_decrypt(page)); 3439 } 3440 } 3441 if (ext4_should_journal_data(inode)) { 3442 BUFFER_TRACE(bh, "get write access"); 3443 err = ext4_journal_get_write_access(handle, bh); 3444 if (err) 3445 goto unlock; 3446 } 3447 zero_user(page, offset, length); 3448 BUFFER_TRACE(bh, "zeroed end of block"); 3449 3450 if (ext4_should_journal_data(inode)) { 3451 err = ext4_handle_dirty_metadata(handle, inode, bh); 3452 } else { 3453 err = 0; 3454 mark_buffer_dirty(bh); 3455 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3456 err = ext4_jbd2_file_inode(handle, inode); 3457 } 3458 3459 unlock: 3460 unlock_page(page); 3461 page_cache_release(page); 3462 return err; 3463 } 3464 3465 /* 3466 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3467 * starting from file offset 'from'. The range to be zero'd must 3468 * be contained with in one block. If the specified range exceeds 3469 * the end of the block it will be shortened to end of the block 3470 * that cooresponds to 'from' 3471 */ 3472 static int ext4_block_zero_page_range(handle_t *handle, 3473 struct address_space *mapping, loff_t from, loff_t length) 3474 { 3475 struct inode *inode = mapping->host; 3476 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3477 unsigned blocksize = inode->i_sb->s_blocksize; 3478 unsigned max = blocksize - (offset & (blocksize - 1)); 3479 3480 /* 3481 * correct length if it does not fall between 3482 * 'from' and the end of the block 3483 */ 3484 if (length > max || length < 0) 3485 length = max; 3486 3487 if (IS_DAX(inode)) 3488 return dax_zero_page_range(inode, from, length, ext4_get_block); 3489 return __ext4_block_zero_page_range(handle, mapping, from, length); 3490 } 3491 3492 /* 3493 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3494 * up to the end of the block which corresponds to `from'. 3495 * This required during truncate. We need to physically zero the tail end 3496 * of that block so it doesn't yield old data if the file is later grown. 3497 */ 3498 static int ext4_block_truncate_page(handle_t *handle, 3499 struct address_space *mapping, loff_t from) 3500 { 3501 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3502 unsigned length; 3503 unsigned blocksize; 3504 struct inode *inode = mapping->host; 3505 3506 blocksize = inode->i_sb->s_blocksize; 3507 length = blocksize - (offset & (blocksize - 1)); 3508 3509 return ext4_block_zero_page_range(handle, mapping, from, length); 3510 } 3511 3512 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3513 loff_t lstart, loff_t length) 3514 { 3515 struct super_block *sb = inode->i_sb; 3516 struct address_space *mapping = inode->i_mapping; 3517 unsigned partial_start, partial_end; 3518 ext4_fsblk_t start, end; 3519 loff_t byte_end = (lstart + length - 1); 3520 int err = 0; 3521 3522 partial_start = lstart & (sb->s_blocksize - 1); 3523 partial_end = byte_end & (sb->s_blocksize - 1); 3524 3525 start = lstart >> sb->s_blocksize_bits; 3526 end = byte_end >> sb->s_blocksize_bits; 3527 3528 /* Handle partial zero within the single block */ 3529 if (start == end && 3530 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3531 err = ext4_block_zero_page_range(handle, mapping, 3532 lstart, length); 3533 return err; 3534 } 3535 /* Handle partial zero out on the start of the range */ 3536 if (partial_start) { 3537 err = ext4_block_zero_page_range(handle, mapping, 3538 lstart, sb->s_blocksize); 3539 if (err) 3540 return err; 3541 } 3542 /* Handle partial zero out on the end of the range */ 3543 if (partial_end != sb->s_blocksize - 1) 3544 err = ext4_block_zero_page_range(handle, mapping, 3545 byte_end - partial_end, 3546 partial_end + 1); 3547 return err; 3548 } 3549 3550 int ext4_can_truncate(struct inode *inode) 3551 { 3552 if (S_ISREG(inode->i_mode)) 3553 return 1; 3554 if (S_ISDIR(inode->i_mode)) 3555 return 1; 3556 if (S_ISLNK(inode->i_mode)) 3557 return !ext4_inode_is_fast_symlink(inode); 3558 return 0; 3559 } 3560 3561 /* 3562 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3563 * associated with the given offset and length 3564 * 3565 * @inode: File inode 3566 * @offset: The offset where the hole will begin 3567 * @len: The length of the hole 3568 * 3569 * Returns: 0 on success or negative on failure 3570 */ 3571 3572 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3573 { 3574 struct super_block *sb = inode->i_sb; 3575 ext4_lblk_t first_block, stop_block; 3576 struct address_space *mapping = inode->i_mapping; 3577 loff_t first_block_offset, last_block_offset; 3578 handle_t *handle; 3579 unsigned int credits; 3580 int ret = 0; 3581 3582 if (!S_ISREG(inode->i_mode)) 3583 return -EOPNOTSUPP; 3584 3585 trace_ext4_punch_hole(inode, offset, length, 0); 3586 3587 /* 3588 * Write out all dirty pages to avoid race conditions 3589 * Then release them. 3590 */ 3591 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3592 ret = filemap_write_and_wait_range(mapping, offset, 3593 offset + length - 1); 3594 if (ret) 3595 return ret; 3596 } 3597 3598 mutex_lock(&inode->i_mutex); 3599 3600 /* No need to punch hole beyond i_size */ 3601 if (offset >= inode->i_size) 3602 goto out_mutex; 3603 3604 /* 3605 * If the hole extends beyond i_size, set the hole 3606 * to end after the page that contains i_size 3607 */ 3608 if (offset + length > inode->i_size) { 3609 length = inode->i_size + 3610 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3611 offset; 3612 } 3613 3614 if (offset & (sb->s_blocksize - 1) || 3615 (offset + length) & (sb->s_blocksize - 1)) { 3616 /* 3617 * Attach jinode to inode for jbd2 if we do any zeroing of 3618 * partial block 3619 */ 3620 ret = ext4_inode_attach_jinode(inode); 3621 if (ret < 0) 3622 goto out_mutex; 3623 3624 } 3625 3626 first_block_offset = round_up(offset, sb->s_blocksize); 3627 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3628 3629 /* Now release the pages and zero block aligned part of pages*/ 3630 if (last_block_offset > first_block_offset) 3631 truncate_pagecache_range(inode, first_block_offset, 3632 last_block_offset); 3633 3634 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3635 ext4_inode_block_unlocked_dio(inode); 3636 inode_dio_wait(inode); 3637 3638 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3639 credits = ext4_writepage_trans_blocks(inode); 3640 else 3641 credits = ext4_blocks_for_truncate(inode); 3642 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3643 if (IS_ERR(handle)) { 3644 ret = PTR_ERR(handle); 3645 ext4_std_error(sb, ret); 3646 goto out_dio; 3647 } 3648 3649 ret = ext4_zero_partial_blocks(handle, inode, offset, 3650 length); 3651 if (ret) 3652 goto out_stop; 3653 3654 first_block = (offset + sb->s_blocksize - 1) >> 3655 EXT4_BLOCK_SIZE_BITS(sb); 3656 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3657 3658 /* If there are no blocks to remove, return now */ 3659 if (first_block >= stop_block) 3660 goto out_stop; 3661 3662 down_write(&EXT4_I(inode)->i_data_sem); 3663 ext4_discard_preallocations(inode); 3664 3665 ret = ext4_es_remove_extent(inode, first_block, 3666 stop_block - first_block); 3667 if (ret) { 3668 up_write(&EXT4_I(inode)->i_data_sem); 3669 goto out_stop; 3670 } 3671 3672 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3673 ret = ext4_ext_remove_space(inode, first_block, 3674 stop_block - 1); 3675 else 3676 ret = ext4_ind_remove_space(handle, inode, first_block, 3677 stop_block); 3678 3679 up_write(&EXT4_I(inode)->i_data_sem); 3680 if (IS_SYNC(inode)) 3681 ext4_handle_sync(handle); 3682 3683 /* Now release the pages again to reduce race window */ 3684 if (last_block_offset > first_block_offset) 3685 truncate_pagecache_range(inode, first_block_offset, 3686 last_block_offset); 3687 3688 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3689 ext4_mark_inode_dirty(handle, inode); 3690 out_stop: 3691 ext4_journal_stop(handle); 3692 out_dio: 3693 ext4_inode_resume_unlocked_dio(inode); 3694 out_mutex: 3695 mutex_unlock(&inode->i_mutex); 3696 return ret; 3697 } 3698 3699 int ext4_inode_attach_jinode(struct inode *inode) 3700 { 3701 struct ext4_inode_info *ei = EXT4_I(inode); 3702 struct jbd2_inode *jinode; 3703 3704 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3705 return 0; 3706 3707 jinode = jbd2_alloc_inode(GFP_KERNEL); 3708 spin_lock(&inode->i_lock); 3709 if (!ei->jinode) { 3710 if (!jinode) { 3711 spin_unlock(&inode->i_lock); 3712 return -ENOMEM; 3713 } 3714 ei->jinode = jinode; 3715 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3716 jinode = NULL; 3717 } 3718 spin_unlock(&inode->i_lock); 3719 if (unlikely(jinode != NULL)) 3720 jbd2_free_inode(jinode); 3721 return 0; 3722 } 3723 3724 /* 3725 * ext4_truncate() 3726 * 3727 * We block out ext4_get_block() block instantiations across the entire 3728 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3729 * simultaneously on behalf of the same inode. 3730 * 3731 * As we work through the truncate and commit bits of it to the journal there 3732 * is one core, guiding principle: the file's tree must always be consistent on 3733 * disk. We must be able to restart the truncate after a crash. 3734 * 3735 * The file's tree may be transiently inconsistent in memory (although it 3736 * probably isn't), but whenever we close off and commit a journal transaction, 3737 * the contents of (the filesystem + the journal) must be consistent and 3738 * restartable. It's pretty simple, really: bottom up, right to left (although 3739 * left-to-right works OK too). 3740 * 3741 * Note that at recovery time, journal replay occurs *before* the restart of 3742 * truncate against the orphan inode list. 3743 * 3744 * The committed inode has the new, desired i_size (which is the same as 3745 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3746 * that this inode's truncate did not complete and it will again call 3747 * ext4_truncate() to have another go. So there will be instantiated blocks 3748 * to the right of the truncation point in a crashed ext4 filesystem. But 3749 * that's fine - as long as they are linked from the inode, the post-crash 3750 * ext4_truncate() run will find them and release them. 3751 */ 3752 void ext4_truncate(struct inode *inode) 3753 { 3754 struct ext4_inode_info *ei = EXT4_I(inode); 3755 unsigned int credits; 3756 handle_t *handle; 3757 struct address_space *mapping = inode->i_mapping; 3758 3759 /* 3760 * There is a possibility that we're either freeing the inode 3761 * or it's a completely new inode. In those cases we might not 3762 * have i_mutex locked because it's not necessary. 3763 */ 3764 if (!(inode->i_state & (I_NEW|I_FREEING))) 3765 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3766 trace_ext4_truncate_enter(inode); 3767 3768 if (!ext4_can_truncate(inode)) 3769 return; 3770 3771 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3772 3773 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3774 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3775 3776 if (ext4_has_inline_data(inode)) { 3777 int has_inline = 1; 3778 3779 ext4_inline_data_truncate(inode, &has_inline); 3780 if (has_inline) 3781 return; 3782 } 3783 3784 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3785 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3786 if (ext4_inode_attach_jinode(inode) < 0) 3787 return; 3788 } 3789 3790 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3791 credits = ext4_writepage_trans_blocks(inode); 3792 else 3793 credits = ext4_blocks_for_truncate(inode); 3794 3795 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3796 if (IS_ERR(handle)) { 3797 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3798 return; 3799 } 3800 3801 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3802 ext4_block_truncate_page(handle, mapping, inode->i_size); 3803 3804 /* 3805 * We add the inode to the orphan list, so that if this 3806 * truncate spans multiple transactions, and we crash, we will 3807 * resume the truncate when the filesystem recovers. It also 3808 * marks the inode dirty, to catch the new size. 3809 * 3810 * Implication: the file must always be in a sane, consistent 3811 * truncatable state while each transaction commits. 3812 */ 3813 if (ext4_orphan_add(handle, inode)) 3814 goto out_stop; 3815 3816 down_write(&EXT4_I(inode)->i_data_sem); 3817 3818 ext4_discard_preallocations(inode); 3819 3820 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3821 ext4_ext_truncate(handle, inode); 3822 else 3823 ext4_ind_truncate(handle, inode); 3824 3825 up_write(&ei->i_data_sem); 3826 3827 if (IS_SYNC(inode)) 3828 ext4_handle_sync(handle); 3829 3830 out_stop: 3831 /* 3832 * If this was a simple ftruncate() and the file will remain alive, 3833 * then we need to clear up the orphan record which we created above. 3834 * However, if this was a real unlink then we were called by 3835 * ext4_evict_inode(), and we allow that function to clean up the 3836 * orphan info for us. 3837 */ 3838 if (inode->i_nlink) 3839 ext4_orphan_del(handle, inode); 3840 3841 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3842 ext4_mark_inode_dirty(handle, inode); 3843 ext4_journal_stop(handle); 3844 3845 trace_ext4_truncate_exit(inode); 3846 } 3847 3848 /* 3849 * ext4_get_inode_loc returns with an extra refcount against the inode's 3850 * underlying buffer_head on success. If 'in_mem' is true, we have all 3851 * data in memory that is needed to recreate the on-disk version of this 3852 * inode. 3853 */ 3854 static int __ext4_get_inode_loc(struct inode *inode, 3855 struct ext4_iloc *iloc, int in_mem) 3856 { 3857 struct ext4_group_desc *gdp; 3858 struct buffer_head *bh; 3859 struct super_block *sb = inode->i_sb; 3860 ext4_fsblk_t block; 3861 int inodes_per_block, inode_offset; 3862 3863 iloc->bh = NULL; 3864 if (!ext4_valid_inum(sb, inode->i_ino)) 3865 return -EFSCORRUPTED; 3866 3867 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3868 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3869 if (!gdp) 3870 return -EIO; 3871 3872 /* 3873 * Figure out the offset within the block group inode table 3874 */ 3875 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3876 inode_offset = ((inode->i_ino - 1) % 3877 EXT4_INODES_PER_GROUP(sb)); 3878 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3879 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3880 3881 bh = sb_getblk(sb, block); 3882 if (unlikely(!bh)) 3883 return -ENOMEM; 3884 if (!buffer_uptodate(bh)) { 3885 lock_buffer(bh); 3886 3887 /* 3888 * If the buffer has the write error flag, we have failed 3889 * to write out another inode in the same block. In this 3890 * case, we don't have to read the block because we may 3891 * read the old inode data successfully. 3892 */ 3893 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3894 set_buffer_uptodate(bh); 3895 3896 if (buffer_uptodate(bh)) { 3897 /* someone brought it uptodate while we waited */ 3898 unlock_buffer(bh); 3899 goto has_buffer; 3900 } 3901 3902 /* 3903 * If we have all information of the inode in memory and this 3904 * is the only valid inode in the block, we need not read the 3905 * block. 3906 */ 3907 if (in_mem) { 3908 struct buffer_head *bitmap_bh; 3909 int i, start; 3910 3911 start = inode_offset & ~(inodes_per_block - 1); 3912 3913 /* Is the inode bitmap in cache? */ 3914 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3915 if (unlikely(!bitmap_bh)) 3916 goto make_io; 3917 3918 /* 3919 * If the inode bitmap isn't in cache then the 3920 * optimisation may end up performing two reads instead 3921 * of one, so skip it. 3922 */ 3923 if (!buffer_uptodate(bitmap_bh)) { 3924 brelse(bitmap_bh); 3925 goto make_io; 3926 } 3927 for (i = start; i < start + inodes_per_block; i++) { 3928 if (i == inode_offset) 3929 continue; 3930 if (ext4_test_bit(i, bitmap_bh->b_data)) 3931 break; 3932 } 3933 brelse(bitmap_bh); 3934 if (i == start + inodes_per_block) { 3935 /* all other inodes are free, so skip I/O */ 3936 memset(bh->b_data, 0, bh->b_size); 3937 set_buffer_uptodate(bh); 3938 unlock_buffer(bh); 3939 goto has_buffer; 3940 } 3941 } 3942 3943 make_io: 3944 /* 3945 * If we need to do any I/O, try to pre-readahead extra 3946 * blocks from the inode table. 3947 */ 3948 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3949 ext4_fsblk_t b, end, table; 3950 unsigned num; 3951 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3952 3953 table = ext4_inode_table(sb, gdp); 3954 /* s_inode_readahead_blks is always a power of 2 */ 3955 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3956 if (table > b) 3957 b = table; 3958 end = b + ra_blks; 3959 num = EXT4_INODES_PER_GROUP(sb); 3960 if (ext4_has_group_desc_csum(sb)) 3961 num -= ext4_itable_unused_count(sb, gdp); 3962 table += num / inodes_per_block; 3963 if (end > table) 3964 end = table; 3965 while (b <= end) 3966 sb_breadahead(sb, b++); 3967 } 3968 3969 /* 3970 * There are other valid inodes in the buffer, this inode 3971 * has in-inode xattrs, or we don't have this inode in memory. 3972 * Read the block from disk. 3973 */ 3974 trace_ext4_load_inode(inode); 3975 get_bh(bh); 3976 bh->b_end_io = end_buffer_read_sync; 3977 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3978 wait_on_buffer(bh); 3979 if (!buffer_uptodate(bh)) { 3980 EXT4_ERROR_INODE_BLOCK(inode, block, 3981 "unable to read itable block"); 3982 brelse(bh); 3983 return -EIO; 3984 } 3985 } 3986 has_buffer: 3987 iloc->bh = bh; 3988 return 0; 3989 } 3990 3991 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3992 { 3993 /* We have all inode data except xattrs in memory here. */ 3994 return __ext4_get_inode_loc(inode, iloc, 3995 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3996 } 3997 3998 void ext4_set_inode_flags(struct inode *inode) 3999 { 4000 unsigned int flags = EXT4_I(inode)->i_flags; 4001 unsigned int new_fl = 0; 4002 4003 if (flags & EXT4_SYNC_FL) 4004 new_fl |= S_SYNC; 4005 if (flags & EXT4_APPEND_FL) 4006 new_fl |= S_APPEND; 4007 if (flags & EXT4_IMMUTABLE_FL) 4008 new_fl |= S_IMMUTABLE; 4009 if (flags & EXT4_NOATIME_FL) 4010 new_fl |= S_NOATIME; 4011 if (flags & EXT4_DIRSYNC_FL) 4012 new_fl |= S_DIRSYNC; 4013 if (test_opt(inode->i_sb, DAX)) 4014 new_fl |= S_DAX; 4015 inode_set_flags(inode, new_fl, 4016 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4017 } 4018 4019 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4020 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4021 { 4022 unsigned int vfs_fl; 4023 unsigned long old_fl, new_fl; 4024 4025 do { 4026 vfs_fl = ei->vfs_inode.i_flags; 4027 old_fl = ei->i_flags; 4028 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4029 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4030 EXT4_DIRSYNC_FL); 4031 if (vfs_fl & S_SYNC) 4032 new_fl |= EXT4_SYNC_FL; 4033 if (vfs_fl & S_APPEND) 4034 new_fl |= EXT4_APPEND_FL; 4035 if (vfs_fl & S_IMMUTABLE) 4036 new_fl |= EXT4_IMMUTABLE_FL; 4037 if (vfs_fl & S_NOATIME) 4038 new_fl |= EXT4_NOATIME_FL; 4039 if (vfs_fl & S_DIRSYNC) 4040 new_fl |= EXT4_DIRSYNC_FL; 4041 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4042 } 4043 4044 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4045 struct ext4_inode_info *ei) 4046 { 4047 blkcnt_t i_blocks ; 4048 struct inode *inode = &(ei->vfs_inode); 4049 struct super_block *sb = inode->i_sb; 4050 4051 if (ext4_has_feature_huge_file(sb)) { 4052 /* we are using combined 48 bit field */ 4053 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4054 le32_to_cpu(raw_inode->i_blocks_lo); 4055 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4056 /* i_blocks represent file system block size */ 4057 return i_blocks << (inode->i_blkbits - 9); 4058 } else { 4059 return i_blocks; 4060 } 4061 } else { 4062 return le32_to_cpu(raw_inode->i_blocks_lo); 4063 } 4064 } 4065 4066 static inline void ext4_iget_extra_inode(struct inode *inode, 4067 struct ext4_inode *raw_inode, 4068 struct ext4_inode_info *ei) 4069 { 4070 __le32 *magic = (void *)raw_inode + 4071 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4072 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4073 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4074 ext4_find_inline_data_nolock(inode); 4075 } else 4076 EXT4_I(inode)->i_inline_off = 0; 4077 } 4078 4079 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4080 { 4081 struct ext4_iloc iloc; 4082 struct ext4_inode *raw_inode; 4083 struct ext4_inode_info *ei; 4084 struct inode *inode; 4085 journal_t *journal = EXT4_SB(sb)->s_journal; 4086 long ret; 4087 int block; 4088 uid_t i_uid; 4089 gid_t i_gid; 4090 4091 inode = iget_locked(sb, ino); 4092 if (!inode) 4093 return ERR_PTR(-ENOMEM); 4094 if (!(inode->i_state & I_NEW)) 4095 return inode; 4096 4097 ei = EXT4_I(inode); 4098 iloc.bh = NULL; 4099 4100 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4101 if (ret < 0) 4102 goto bad_inode; 4103 raw_inode = ext4_raw_inode(&iloc); 4104 4105 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4106 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4107 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4108 EXT4_INODE_SIZE(inode->i_sb)) { 4109 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4110 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4111 EXT4_INODE_SIZE(inode->i_sb)); 4112 ret = -EFSCORRUPTED; 4113 goto bad_inode; 4114 } 4115 } else 4116 ei->i_extra_isize = 0; 4117 4118 /* Precompute checksum seed for inode metadata */ 4119 if (ext4_has_metadata_csum(sb)) { 4120 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4121 __u32 csum; 4122 __le32 inum = cpu_to_le32(inode->i_ino); 4123 __le32 gen = raw_inode->i_generation; 4124 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4125 sizeof(inum)); 4126 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4127 sizeof(gen)); 4128 } 4129 4130 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4131 EXT4_ERROR_INODE(inode, "checksum invalid"); 4132 ret = -EFSBADCRC; 4133 goto bad_inode; 4134 } 4135 4136 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4137 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4138 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4139 if (!(test_opt(inode->i_sb, NO_UID32))) { 4140 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4141 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4142 } 4143 i_uid_write(inode, i_uid); 4144 i_gid_write(inode, i_gid); 4145 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4146 4147 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4148 ei->i_inline_off = 0; 4149 ei->i_dir_start_lookup = 0; 4150 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4151 /* We now have enough fields to check if the inode was active or not. 4152 * This is needed because nfsd might try to access dead inodes 4153 * the test is that same one that e2fsck uses 4154 * NeilBrown 1999oct15 4155 */ 4156 if (inode->i_nlink == 0) { 4157 if ((inode->i_mode == 0 || 4158 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4159 ino != EXT4_BOOT_LOADER_INO) { 4160 /* this inode is deleted */ 4161 ret = -ESTALE; 4162 goto bad_inode; 4163 } 4164 /* The only unlinked inodes we let through here have 4165 * valid i_mode and are being read by the orphan 4166 * recovery code: that's fine, we're about to complete 4167 * the process of deleting those. 4168 * OR it is the EXT4_BOOT_LOADER_INO which is 4169 * not initialized on a new filesystem. */ 4170 } 4171 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4172 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4173 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4174 if (ext4_has_feature_64bit(sb)) 4175 ei->i_file_acl |= 4176 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4177 inode->i_size = ext4_isize(raw_inode); 4178 ei->i_disksize = inode->i_size; 4179 #ifdef CONFIG_QUOTA 4180 ei->i_reserved_quota = 0; 4181 #endif 4182 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4183 ei->i_block_group = iloc.block_group; 4184 ei->i_last_alloc_group = ~0; 4185 /* 4186 * NOTE! The in-memory inode i_data array is in little-endian order 4187 * even on big-endian machines: we do NOT byteswap the block numbers! 4188 */ 4189 for (block = 0; block < EXT4_N_BLOCKS; block++) 4190 ei->i_data[block] = raw_inode->i_block[block]; 4191 INIT_LIST_HEAD(&ei->i_orphan); 4192 4193 /* 4194 * Set transaction id's of transactions that have to be committed 4195 * to finish f[data]sync. We set them to currently running transaction 4196 * as we cannot be sure that the inode or some of its metadata isn't 4197 * part of the transaction - the inode could have been reclaimed and 4198 * now it is reread from disk. 4199 */ 4200 if (journal) { 4201 transaction_t *transaction; 4202 tid_t tid; 4203 4204 read_lock(&journal->j_state_lock); 4205 if (journal->j_running_transaction) 4206 transaction = journal->j_running_transaction; 4207 else 4208 transaction = journal->j_committing_transaction; 4209 if (transaction) 4210 tid = transaction->t_tid; 4211 else 4212 tid = journal->j_commit_sequence; 4213 read_unlock(&journal->j_state_lock); 4214 ei->i_sync_tid = tid; 4215 ei->i_datasync_tid = tid; 4216 } 4217 4218 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4219 if (ei->i_extra_isize == 0) { 4220 /* The extra space is currently unused. Use it. */ 4221 ei->i_extra_isize = sizeof(struct ext4_inode) - 4222 EXT4_GOOD_OLD_INODE_SIZE; 4223 } else { 4224 ext4_iget_extra_inode(inode, raw_inode, ei); 4225 } 4226 } 4227 4228 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4229 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4230 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4231 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4232 4233 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4234 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4235 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4236 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4237 inode->i_version |= 4238 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4239 } 4240 } 4241 4242 ret = 0; 4243 if (ei->i_file_acl && 4244 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4245 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4246 ei->i_file_acl); 4247 ret = -EFSCORRUPTED; 4248 goto bad_inode; 4249 } else if (!ext4_has_inline_data(inode)) { 4250 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4251 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4252 (S_ISLNK(inode->i_mode) && 4253 !ext4_inode_is_fast_symlink(inode)))) 4254 /* Validate extent which is part of inode */ 4255 ret = ext4_ext_check_inode(inode); 4256 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4257 (S_ISLNK(inode->i_mode) && 4258 !ext4_inode_is_fast_symlink(inode))) { 4259 /* Validate block references which are part of inode */ 4260 ret = ext4_ind_check_inode(inode); 4261 } 4262 } 4263 if (ret) 4264 goto bad_inode; 4265 4266 if (S_ISREG(inode->i_mode)) { 4267 inode->i_op = &ext4_file_inode_operations; 4268 inode->i_fop = &ext4_file_operations; 4269 ext4_set_aops(inode); 4270 } else if (S_ISDIR(inode->i_mode)) { 4271 inode->i_op = &ext4_dir_inode_operations; 4272 inode->i_fop = &ext4_dir_operations; 4273 } else if (S_ISLNK(inode->i_mode)) { 4274 if (ext4_encrypted_inode(inode)) { 4275 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4276 ext4_set_aops(inode); 4277 } else if (ext4_inode_is_fast_symlink(inode)) { 4278 inode->i_link = (char *)ei->i_data; 4279 inode->i_op = &ext4_fast_symlink_inode_operations; 4280 nd_terminate_link(ei->i_data, inode->i_size, 4281 sizeof(ei->i_data) - 1); 4282 } else { 4283 inode->i_op = &ext4_symlink_inode_operations; 4284 ext4_set_aops(inode); 4285 } 4286 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4287 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4288 inode->i_op = &ext4_special_inode_operations; 4289 if (raw_inode->i_block[0]) 4290 init_special_inode(inode, inode->i_mode, 4291 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4292 else 4293 init_special_inode(inode, inode->i_mode, 4294 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4295 } else if (ino == EXT4_BOOT_LOADER_INO) { 4296 make_bad_inode(inode); 4297 } else { 4298 ret = -EFSCORRUPTED; 4299 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4300 goto bad_inode; 4301 } 4302 brelse(iloc.bh); 4303 ext4_set_inode_flags(inode); 4304 unlock_new_inode(inode); 4305 return inode; 4306 4307 bad_inode: 4308 brelse(iloc.bh); 4309 iget_failed(inode); 4310 return ERR_PTR(ret); 4311 } 4312 4313 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4314 { 4315 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4316 return ERR_PTR(-EFSCORRUPTED); 4317 return ext4_iget(sb, ino); 4318 } 4319 4320 static int ext4_inode_blocks_set(handle_t *handle, 4321 struct ext4_inode *raw_inode, 4322 struct ext4_inode_info *ei) 4323 { 4324 struct inode *inode = &(ei->vfs_inode); 4325 u64 i_blocks = inode->i_blocks; 4326 struct super_block *sb = inode->i_sb; 4327 4328 if (i_blocks <= ~0U) { 4329 /* 4330 * i_blocks can be represented in a 32 bit variable 4331 * as multiple of 512 bytes 4332 */ 4333 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4334 raw_inode->i_blocks_high = 0; 4335 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4336 return 0; 4337 } 4338 if (!ext4_has_feature_huge_file(sb)) 4339 return -EFBIG; 4340 4341 if (i_blocks <= 0xffffffffffffULL) { 4342 /* 4343 * i_blocks can be represented in a 48 bit variable 4344 * as multiple of 512 bytes 4345 */ 4346 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4347 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4348 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4349 } else { 4350 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4351 /* i_block is stored in file system block size */ 4352 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4353 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4354 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4355 } 4356 return 0; 4357 } 4358 4359 struct other_inode { 4360 unsigned long orig_ino; 4361 struct ext4_inode *raw_inode; 4362 }; 4363 4364 static int other_inode_match(struct inode * inode, unsigned long ino, 4365 void *data) 4366 { 4367 struct other_inode *oi = (struct other_inode *) data; 4368 4369 if ((inode->i_ino != ino) || 4370 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4371 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4372 ((inode->i_state & I_DIRTY_TIME) == 0)) 4373 return 0; 4374 spin_lock(&inode->i_lock); 4375 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4376 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4377 (inode->i_state & I_DIRTY_TIME)) { 4378 struct ext4_inode_info *ei = EXT4_I(inode); 4379 4380 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4381 spin_unlock(&inode->i_lock); 4382 4383 spin_lock(&ei->i_raw_lock); 4384 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4385 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4386 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4387 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4388 spin_unlock(&ei->i_raw_lock); 4389 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4390 return -1; 4391 } 4392 spin_unlock(&inode->i_lock); 4393 return -1; 4394 } 4395 4396 /* 4397 * Opportunistically update the other time fields for other inodes in 4398 * the same inode table block. 4399 */ 4400 static void ext4_update_other_inodes_time(struct super_block *sb, 4401 unsigned long orig_ino, char *buf) 4402 { 4403 struct other_inode oi; 4404 unsigned long ino; 4405 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4406 int inode_size = EXT4_INODE_SIZE(sb); 4407 4408 oi.orig_ino = orig_ino; 4409 /* 4410 * Calculate the first inode in the inode table block. Inode 4411 * numbers are one-based. That is, the first inode in a block 4412 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4413 */ 4414 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4415 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4416 if (ino == orig_ino) 4417 continue; 4418 oi.raw_inode = (struct ext4_inode *) buf; 4419 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4420 } 4421 } 4422 4423 /* 4424 * Post the struct inode info into an on-disk inode location in the 4425 * buffer-cache. This gobbles the caller's reference to the 4426 * buffer_head in the inode location struct. 4427 * 4428 * The caller must have write access to iloc->bh. 4429 */ 4430 static int ext4_do_update_inode(handle_t *handle, 4431 struct inode *inode, 4432 struct ext4_iloc *iloc) 4433 { 4434 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4435 struct ext4_inode_info *ei = EXT4_I(inode); 4436 struct buffer_head *bh = iloc->bh; 4437 struct super_block *sb = inode->i_sb; 4438 int err = 0, rc, block; 4439 int need_datasync = 0, set_large_file = 0; 4440 uid_t i_uid; 4441 gid_t i_gid; 4442 4443 spin_lock(&ei->i_raw_lock); 4444 4445 /* For fields not tracked in the in-memory inode, 4446 * initialise them to zero for new inodes. */ 4447 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4448 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4449 4450 ext4_get_inode_flags(ei); 4451 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4452 i_uid = i_uid_read(inode); 4453 i_gid = i_gid_read(inode); 4454 if (!(test_opt(inode->i_sb, NO_UID32))) { 4455 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4456 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4457 /* 4458 * Fix up interoperability with old kernels. Otherwise, old inodes get 4459 * re-used with the upper 16 bits of the uid/gid intact 4460 */ 4461 if (!ei->i_dtime) { 4462 raw_inode->i_uid_high = 4463 cpu_to_le16(high_16_bits(i_uid)); 4464 raw_inode->i_gid_high = 4465 cpu_to_le16(high_16_bits(i_gid)); 4466 } else { 4467 raw_inode->i_uid_high = 0; 4468 raw_inode->i_gid_high = 0; 4469 } 4470 } else { 4471 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4472 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4473 raw_inode->i_uid_high = 0; 4474 raw_inode->i_gid_high = 0; 4475 } 4476 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4477 4478 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4479 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4480 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4481 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4482 4483 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4484 if (err) { 4485 spin_unlock(&ei->i_raw_lock); 4486 goto out_brelse; 4487 } 4488 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4489 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4490 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4491 raw_inode->i_file_acl_high = 4492 cpu_to_le16(ei->i_file_acl >> 32); 4493 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4494 if (ei->i_disksize != ext4_isize(raw_inode)) { 4495 ext4_isize_set(raw_inode, ei->i_disksize); 4496 need_datasync = 1; 4497 } 4498 if (ei->i_disksize > 0x7fffffffULL) { 4499 if (!ext4_has_feature_large_file(sb) || 4500 EXT4_SB(sb)->s_es->s_rev_level == 4501 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4502 set_large_file = 1; 4503 } 4504 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4505 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4506 if (old_valid_dev(inode->i_rdev)) { 4507 raw_inode->i_block[0] = 4508 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4509 raw_inode->i_block[1] = 0; 4510 } else { 4511 raw_inode->i_block[0] = 0; 4512 raw_inode->i_block[1] = 4513 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4514 raw_inode->i_block[2] = 0; 4515 } 4516 } else if (!ext4_has_inline_data(inode)) { 4517 for (block = 0; block < EXT4_N_BLOCKS; block++) 4518 raw_inode->i_block[block] = ei->i_data[block]; 4519 } 4520 4521 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4522 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4523 if (ei->i_extra_isize) { 4524 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4525 raw_inode->i_version_hi = 4526 cpu_to_le32(inode->i_version >> 32); 4527 raw_inode->i_extra_isize = 4528 cpu_to_le16(ei->i_extra_isize); 4529 } 4530 } 4531 ext4_inode_csum_set(inode, raw_inode, ei); 4532 spin_unlock(&ei->i_raw_lock); 4533 if (inode->i_sb->s_flags & MS_LAZYTIME) 4534 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4535 bh->b_data); 4536 4537 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4538 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4539 if (!err) 4540 err = rc; 4541 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4542 if (set_large_file) { 4543 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4544 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4545 if (err) 4546 goto out_brelse; 4547 ext4_update_dynamic_rev(sb); 4548 ext4_set_feature_large_file(sb); 4549 ext4_handle_sync(handle); 4550 err = ext4_handle_dirty_super(handle, sb); 4551 } 4552 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4553 out_brelse: 4554 brelse(bh); 4555 ext4_std_error(inode->i_sb, err); 4556 return err; 4557 } 4558 4559 /* 4560 * ext4_write_inode() 4561 * 4562 * We are called from a few places: 4563 * 4564 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4565 * Here, there will be no transaction running. We wait for any running 4566 * transaction to commit. 4567 * 4568 * - Within flush work (sys_sync(), kupdate and such). 4569 * We wait on commit, if told to. 4570 * 4571 * - Within iput_final() -> write_inode_now() 4572 * We wait on commit, if told to. 4573 * 4574 * In all cases it is actually safe for us to return without doing anything, 4575 * because the inode has been copied into a raw inode buffer in 4576 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4577 * writeback. 4578 * 4579 * Note that we are absolutely dependent upon all inode dirtiers doing the 4580 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4581 * which we are interested. 4582 * 4583 * It would be a bug for them to not do this. The code: 4584 * 4585 * mark_inode_dirty(inode) 4586 * stuff(); 4587 * inode->i_size = expr; 4588 * 4589 * is in error because write_inode() could occur while `stuff()' is running, 4590 * and the new i_size will be lost. Plus the inode will no longer be on the 4591 * superblock's dirty inode list. 4592 */ 4593 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4594 { 4595 int err; 4596 4597 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4598 return 0; 4599 4600 if (EXT4_SB(inode->i_sb)->s_journal) { 4601 if (ext4_journal_current_handle()) { 4602 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4603 dump_stack(); 4604 return -EIO; 4605 } 4606 4607 /* 4608 * No need to force transaction in WB_SYNC_NONE mode. Also 4609 * ext4_sync_fs() will force the commit after everything is 4610 * written. 4611 */ 4612 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4613 return 0; 4614 4615 err = ext4_force_commit(inode->i_sb); 4616 } else { 4617 struct ext4_iloc iloc; 4618 4619 err = __ext4_get_inode_loc(inode, &iloc, 0); 4620 if (err) 4621 return err; 4622 /* 4623 * sync(2) will flush the whole buffer cache. No need to do 4624 * it here separately for each inode. 4625 */ 4626 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4627 sync_dirty_buffer(iloc.bh); 4628 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4629 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4630 "IO error syncing inode"); 4631 err = -EIO; 4632 } 4633 brelse(iloc.bh); 4634 } 4635 return err; 4636 } 4637 4638 /* 4639 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4640 * buffers that are attached to a page stradding i_size and are undergoing 4641 * commit. In that case we have to wait for commit to finish and try again. 4642 */ 4643 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4644 { 4645 struct page *page; 4646 unsigned offset; 4647 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4648 tid_t commit_tid = 0; 4649 int ret; 4650 4651 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4652 /* 4653 * All buffers in the last page remain valid? Then there's nothing to 4654 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4655 * blocksize case 4656 */ 4657 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4658 return; 4659 while (1) { 4660 page = find_lock_page(inode->i_mapping, 4661 inode->i_size >> PAGE_CACHE_SHIFT); 4662 if (!page) 4663 return; 4664 ret = __ext4_journalled_invalidatepage(page, offset, 4665 PAGE_CACHE_SIZE - offset); 4666 unlock_page(page); 4667 page_cache_release(page); 4668 if (ret != -EBUSY) 4669 return; 4670 commit_tid = 0; 4671 read_lock(&journal->j_state_lock); 4672 if (journal->j_committing_transaction) 4673 commit_tid = journal->j_committing_transaction->t_tid; 4674 read_unlock(&journal->j_state_lock); 4675 if (commit_tid) 4676 jbd2_log_wait_commit(journal, commit_tid); 4677 } 4678 } 4679 4680 /* 4681 * ext4_setattr() 4682 * 4683 * Called from notify_change. 4684 * 4685 * We want to trap VFS attempts to truncate the file as soon as 4686 * possible. In particular, we want to make sure that when the VFS 4687 * shrinks i_size, we put the inode on the orphan list and modify 4688 * i_disksize immediately, so that during the subsequent flushing of 4689 * dirty pages and freeing of disk blocks, we can guarantee that any 4690 * commit will leave the blocks being flushed in an unused state on 4691 * disk. (On recovery, the inode will get truncated and the blocks will 4692 * be freed, so we have a strong guarantee that no future commit will 4693 * leave these blocks visible to the user.) 4694 * 4695 * Another thing we have to assure is that if we are in ordered mode 4696 * and inode is still attached to the committing transaction, we must 4697 * we start writeout of all the dirty pages which are being truncated. 4698 * This way we are sure that all the data written in the previous 4699 * transaction are already on disk (truncate waits for pages under 4700 * writeback). 4701 * 4702 * Called with inode->i_mutex down. 4703 */ 4704 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4705 { 4706 struct inode *inode = d_inode(dentry); 4707 int error, rc = 0; 4708 int orphan = 0; 4709 const unsigned int ia_valid = attr->ia_valid; 4710 4711 error = inode_change_ok(inode, attr); 4712 if (error) 4713 return error; 4714 4715 if (is_quota_modification(inode, attr)) { 4716 error = dquot_initialize(inode); 4717 if (error) 4718 return error; 4719 } 4720 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4721 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4722 handle_t *handle; 4723 4724 /* (user+group)*(old+new) structure, inode write (sb, 4725 * inode block, ? - but truncate inode update has it) */ 4726 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4727 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4728 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4729 if (IS_ERR(handle)) { 4730 error = PTR_ERR(handle); 4731 goto err_out; 4732 } 4733 error = dquot_transfer(inode, attr); 4734 if (error) { 4735 ext4_journal_stop(handle); 4736 return error; 4737 } 4738 /* Update corresponding info in inode so that everything is in 4739 * one transaction */ 4740 if (attr->ia_valid & ATTR_UID) 4741 inode->i_uid = attr->ia_uid; 4742 if (attr->ia_valid & ATTR_GID) 4743 inode->i_gid = attr->ia_gid; 4744 error = ext4_mark_inode_dirty(handle, inode); 4745 ext4_journal_stop(handle); 4746 } 4747 4748 if (attr->ia_valid & ATTR_SIZE) { 4749 handle_t *handle; 4750 loff_t oldsize = inode->i_size; 4751 int shrink = (attr->ia_size <= inode->i_size); 4752 4753 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4754 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4755 4756 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4757 return -EFBIG; 4758 } 4759 if (!S_ISREG(inode->i_mode)) 4760 return -EINVAL; 4761 4762 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4763 inode_inc_iversion(inode); 4764 4765 if (ext4_should_order_data(inode) && 4766 (attr->ia_size < inode->i_size)) { 4767 error = ext4_begin_ordered_truncate(inode, 4768 attr->ia_size); 4769 if (error) 4770 goto err_out; 4771 } 4772 if (attr->ia_size != inode->i_size) { 4773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4774 if (IS_ERR(handle)) { 4775 error = PTR_ERR(handle); 4776 goto err_out; 4777 } 4778 if (ext4_handle_valid(handle) && shrink) { 4779 error = ext4_orphan_add(handle, inode); 4780 orphan = 1; 4781 } 4782 /* 4783 * Update c/mtime on truncate up, ext4_truncate() will 4784 * update c/mtime in shrink case below 4785 */ 4786 if (!shrink) { 4787 inode->i_mtime = ext4_current_time(inode); 4788 inode->i_ctime = inode->i_mtime; 4789 } 4790 down_write(&EXT4_I(inode)->i_data_sem); 4791 EXT4_I(inode)->i_disksize = attr->ia_size; 4792 rc = ext4_mark_inode_dirty(handle, inode); 4793 if (!error) 4794 error = rc; 4795 /* 4796 * We have to update i_size under i_data_sem together 4797 * with i_disksize to avoid races with writeback code 4798 * running ext4_wb_update_i_disksize(). 4799 */ 4800 if (!error) 4801 i_size_write(inode, attr->ia_size); 4802 up_write(&EXT4_I(inode)->i_data_sem); 4803 ext4_journal_stop(handle); 4804 if (error) { 4805 if (orphan) 4806 ext4_orphan_del(NULL, inode); 4807 goto err_out; 4808 } 4809 } 4810 if (!shrink) 4811 pagecache_isize_extended(inode, oldsize, inode->i_size); 4812 4813 /* 4814 * Blocks are going to be removed from the inode. Wait 4815 * for dio in flight. Temporarily disable 4816 * dioread_nolock to prevent livelock. 4817 */ 4818 if (orphan) { 4819 if (!ext4_should_journal_data(inode)) { 4820 ext4_inode_block_unlocked_dio(inode); 4821 inode_dio_wait(inode); 4822 ext4_inode_resume_unlocked_dio(inode); 4823 } else 4824 ext4_wait_for_tail_page_commit(inode); 4825 } 4826 /* 4827 * Truncate pagecache after we've waited for commit 4828 * in data=journal mode to make pages freeable. 4829 */ 4830 truncate_pagecache(inode, inode->i_size); 4831 if (shrink) 4832 ext4_truncate(inode); 4833 } 4834 4835 if (!rc) { 4836 setattr_copy(inode, attr); 4837 mark_inode_dirty(inode); 4838 } 4839 4840 /* 4841 * If the call to ext4_truncate failed to get a transaction handle at 4842 * all, we need to clean up the in-core orphan list manually. 4843 */ 4844 if (orphan && inode->i_nlink) 4845 ext4_orphan_del(NULL, inode); 4846 4847 if (!rc && (ia_valid & ATTR_MODE)) 4848 rc = posix_acl_chmod(inode, inode->i_mode); 4849 4850 err_out: 4851 ext4_std_error(inode->i_sb, error); 4852 if (!error) 4853 error = rc; 4854 return error; 4855 } 4856 4857 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4858 struct kstat *stat) 4859 { 4860 struct inode *inode; 4861 unsigned long long delalloc_blocks; 4862 4863 inode = d_inode(dentry); 4864 generic_fillattr(inode, stat); 4865 4866 /* 4867 * If there is inline data in the inode, the inode will normally not 4868 * have data blocks allocated (it may have an external xattr block). 4869 * Report at least one sector for such files, so tools like tar, rsync, 4870 * others doen't incorrectly think the file is completely sparse. 4871 */ 4872 if (unlikely(ext4_has_inline_data(inode))) 4873 stat->blocks += (stat->size + 511) >> 9; 4874 4875 /* 4876 * We can't update i_blocks if the block allocation is delayed 4877 * otherwise in the case of system crash before the real block 4878 * allocation is done, we will have i_blocks inconsistent with 4879 * on-disk file blocks. 4880 * We always keep i_blocks updated together with real 4881 * allocation. But to not confuse with user, stat 4882 * will return the blocks that include the delayed allocation 4883 * blocks for this file. 4884 */ 4885 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4886 EXT4_I(inode)->i_reserved_data_blocks); 4887 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4888 return 0; 4889 } 4890 4891 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4892 int pextents) 4893 { 4894 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4895 return ext4_ind_trans_blocks(inode, lblocks); 4896 return ext4_ext_index_trans_blocks(inode, pextents); 4897 } 4898 4899 /* 4900 * Account for index blocks, block groups bitmaps and block group 4901 * descriptor blocks if modify datablocks and index blocks 4902 * worse case, the indexs blocks spread over different block groups 4903 * 4904 * If datablocks are discontiguous, they are possible to spread over 4905 * different block groups too. If they are contiguous, with flexbg, 4906 * they could still across block group boundary. 4907 * 4908 * Also account for superblock, inode, quota and xattr blocks 4909 */ 4910 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4911 int pextents) 4912 { 4913 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4914 int gdpblocks; 4915 int idxblocks; 4916 int ret = 0; 4917 4918 /* 4919 * How many index blocks need to touch to map @lblocks logical blocks 4920 * to @pextents physical extents? 4921 */ 4922 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4923 4924 ret = idxblocks; 4925 4926 /* 4927 * Now let's see how many group bitmaps and group descriptors need 4928 * to account 4929 */ 4930 groups = idxblocks + pextents; 4931 gdpblocks = groups; 4932 if (groups > ngroups) 4933 groups = ngroups; 4934 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4935 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4936 4937 /* bitmaps and block group descriptor blocks */ 4938 ret += groups + gdpblocks; 4939 4940 /* Blocks for super block, inode, quota and xattr blocks */ 4941 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4942 4943 return ret; 4944 } 4945 4946 /* 4947 * Calculate the total number of credits to reserve to fit 4948 * the modification of a single pages into a single transaction, 4949 * which may include multiple chunks of block allocations. 4950 * 4951 * This could be called via ext4_write_begin() 4952 * 4953 * We need to consider the worse case, when 4954 * one new block per extent. 4955 */ 4956 int ext4_writepage_trans_blocks(struct inode *inode) 4957 { 4958 int bpp = ext4_journal_blocks_per_page(inode); 4959 int ret; 4960 4961 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4962 4963 /* Account for data blocks for journalled mode */ 4964 if (ext4_should_journal_data(inode)) 4965 ret += bpp; 4966 return ret; 4967 } 4968 4969 /* 4970 * Calculate the journal credits for a chunk of data modification. 4971 * 4972 * This is called from DIO, fallocate or whoever calling 4973 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4974 * 4975 * journal buffers for data blocks are not included here, as DIO 4976 * and fallocate do no need to journal data buffers. 4977 */ 4978 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4979 { 4980 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4981 } 4982 4983 /* 4984 * The caller must have previously called ext4_reserve_inode_write(). 4985 * Give this, we know that the caller already has write access to iloc->bh. 4986 */ 4987 int ext4_mark_iloc_dirty(handle_t *handle, 4988 struct inode *inode, struct ext4_iloc *iloc) 4989 { 4990 int err = 0; 4991 4992 if (IS_I_VERSION(inode)) 4993 inode_inc_iversion(inode); 4994 4995 /* the do_update_inode consumes one bh->b_count */ 4996 get_bh(iloc->bh); 4997 4998 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4999 err = ext4_do_update_inode(handle, inode, iloc); 5000 put_bh(iloc->bh); 5001 return err; 5002 } 5003 5004 /* 5005 * On success, We end up with an outstanding reference count against 5006 * iloc->bh. This _must_ be cleaned up later. 5007 */ 5008 5009 int 5010 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5011 struct ext4_iloc *iloc) 5012 { 5013 int err; 5014 5015 err = ext4_get_inode_loc(inode, iloc); 5016 if (!err) { 5017 BUFFER_TRACE(iloc->bh, "get_write_access"); 5018 err = ext4_journal_get_write_access(handle, iloc->bh); 5019 if (err) { 5020 brelse(iloc->bh); 5021 iloc->bh = NULL; 5022 } 5023 } 5024 ext4_std_error(inode->i_sb, err); 5025 return err; 5026 } 5027 5028 /* 5029 * Expand an inode by new_extra_isize bytes. 5030 * Returns 0 on success or negative error number on failure. 5031 */ 5032 static int ext4_expand_extra_isize(struct inode *inode, 5033 unsigned int new_extra_isize, 5034 struct ext4_iloc iloc, 5035 handle_t *handle) 5036 { 5037 struct ext4_inode *raw_inode; 5038 struct ext4_xattr_ibody_header *header; 5039 5040 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5041 return 0; 5042 5043 raw_inode = ext4_raw_inode(&iloc); 5044 5045 header = IHDR(inode, raw_inode); 5046 5047 /* No extended attributes present */ 5048 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5049 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5050 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5051 new_extra_isize); 5052 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5053 return 0; 5054 } 5055 5056 /* try to expand with EAs present */ 5057 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5058 raw_inode, handle); 5059 } 5060 5061 /* 5062 * What we do here is to mark the in-core inode as clean with respect to inode 5063 * dirtiness (it may still be data-dirty). 5064 * This means that the in-core inode may be reaped by prune_icache 5065 * without having to perform any I/O. This is a very good thing, 5066 * because *any* task may call prune_icache - even ones which 5067 * have a transaction open against a different journal. 5068 * 5069 * Is this cheating? Not really. Sure, we haven't written the 5070 * inode out, but prune_icache isn't a user-visible syncing function. 5071 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5072 * we start and wait on commits. 5073 */ 5074 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5075 { 5076 struct ext4_iloc iloc; 5077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5078 static unsigned int mnt_count; 5079 int err, ret; 5080 5081 might_sleep(); 5082 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5083 err = ext4_reserve_inode_write(handle, inode, &iloc); 5084 if (ext4_handle_valid(handle) && 5085 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5086 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5087 /* 5088 * We need extra buffer credits since we may write into EA block 5089 * with this same handle. If journal_extend fails, then it will 5090 * only result in a minor loss of functionality for that inode. 5091 * If this is felt to be critical, then e2fsck should be run to 5092 * force a large enough s_min_extra_isize. 5093 */ 5094 if ((jbd2_journal_extend(handle, 5095 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5096 ret = ext4_expand_extra_isize(inode, 5097 sbi->s_want_extra_isize, 5098 iloc, handle); 5099 if (ret) { 5100 ext4_set_inode_state(inode, 5101 EXT4_STATE_NO_EXPAND); 5102 if (mnt_count != 5103 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5104 ext4_warning(inode->i_sb, 5105 "Unable to expand inode %lu. Delete" 5106 " some EAs or run e2fsck.", 5107 inode->i_ino); 5108 mnt_count = 5109 le16_to_cpu(sbi->s_es->s_mnt_count); 5110 } 5111 } 5112 } 5113 } 5114 if (!err) 5115 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5116 return err; 5117 } 5118 5119 /* 5120 * ext4_dirty_inode() is called from __mark_inode_dirty() 5121 * 5122 * We're really interested in the case where a file is being extended. 5123 * i_size has been changed by generic_commit_write() and we thus need 5124 * to include the updated inode in the current transaction. 5125 * 5126 * Also, dquot_alloc_block() will always dirty the inode when blocks 5127 * are allocated to the file. 5128 * 5129 * If the inode is marked synchronous, we don't honour that here - doing 5130 * so would cause a commit on atime updates, which we don't bother doing. 5131 * We handle synchronous inodes at the highest possible level. 5132 * 5133 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5134 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5135 * to copy into the on-disk inode structure are the timestamp files. 5136 */ 5137 void ext4_dirty_inode(struct inode *inode, int flags) 5138 { 5139 handle_t *handle; 5140 5141 if (flags == I_DIRTY_TIME) 5142 return; 5143 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5144 if (IS_ERR(handle)) 5145 goto out; 5146 5147 ext4_mark_inode_dirty(handle, inode); 5148 5149 ext4_journal_stop(handle); 5150 out: 5151 return; 5152 } 5153 5154 #if 0 5155 /* 5156 * Bind an inode's backing buffer_head into this transaction, to prevent 5157 * it from being flushed to disk early. Unlike 5158 * ext4_reserve_inode_write, this leaves behind no bh reference and 5159 * returns no iloc structure, so the caller needs to repeat the iloc 5160 * lookup to mark the inode dirty later. 5161 */ 5162 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5163 { 5164 struct ext4_iloc iloc; 5165 5166 int err = 0; 5167 if (handle) { 5168 err = ext4_get_inode_loc(inode, &iloc); 5169 if (!err) { 5170 BUFFER_TRACE(iloc.bh, "get_write_access"); 5171 err = jbd2_journal_get_write_access(handle, iloc.bh); 5172 if (!err) 5173 err = ext4_handle_dirty_metadata(handle, 5174 NULL, 5175 iloc.bh); 5176 brelse(iloc.bh); 5177 } 5178 } 5179 ext4_std_error(inode->i_sb, err); 5180 return err; 5181 } 5182 #endif 5183 5184 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5185 { 5186 journal_t *journal; 5187 handle_t *handle; 5188 int err; 5189 5190 /* 5191 * We have to be very careful here: changing a data block's 5192 * journaling status dynamically is dangerous. If we write a 5193 * data block to the journal, change the status and then delete 5194 * that block, we risk forgetting to revoke the old log record 5195 * from the journal and so a subsequent replay can corrupt data. 5196 * So, first we make sure that the journal is empty and that 5197 * nobody is changing anything. 5198 */ 5199 5200 journal = EXT4_JOURNAL(inode); 5201 if (!journal) 5202 return 0; 5203 if (is_journal_aborted(journal)) 5204 return -EROFS; 5205 /* We have to allocate physical blocks for delalloc blocks 5206 * before flushing journal. otherwise delalloc blocks can not 5207 * be allocated any more. even more truncate on delalloc blocks 5208 * could trigger BUG by flushing delalloc blocks in journal. 5209 * There is no delalloc block in non-journal data mode. 5210 */ 5211 if (val && test_opt(inode->i_sb, DELALLOC)) { 5212 err = ext4_alloc_da_blocks(inode); 5213 if (err < 0) 5214 return err; 5215 } 5216 5217 /* Wait for all existing dio workers */ 5218 ext4_inode_block_unlocked_dio(inode); 5219 inode_dio_wait(inode); 5220 5221 jbd2_journal_lock_updates(journal); 5222 5223 /* 5224 * OK, there are no updates running now, and all cached data is 5225 * synced to disk. We are now in a completely consistent state 5226 * which doesn't have anything in the journal, and we know that 5227 * no filesystem updates are running, so it is safe to modify 5228 * the inode's in-core data-journaling state flag now. 5229 */ 5230 5231 if (val) 5232 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5233 else { 5234 err = jbd2_journal_flush(journal); 5235 if (err < 0) { 5236 jbd2_journal_unlock_updates(journal); 5237 ext4_inode_resume_unlocked_dio(inode); 5238 return err; 5239 } 5240 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5241 } 5242 ext4_set_aops(inode); 5243 5244 jbd2_journal_unlock_updates(journal); 5245 ext4_inode_resume_unlocked_dio(inode); 5246 5247 /* Finally we can mark the inode as dirty. */ 5248 5249 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5250 if (IS_ERR(handle)) 5251 return PTR_ERR(handle); 5252 5253 err = ext4_mark_inode_dirty(handle, inode); 5254 ext4_handle_sync(handle); 5255 ext4_journal_stop(handle); 5256 ext4_std_error(inode->i_sb, err); 5257 5258 return err; 5259 } 5260 5261 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5262 { 5263 return !buffer_mapped(bh); 5264 } 5265 5266 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5267 { 5268 struct page *page = vmf->page; 5269 loff_t size; 5270 unsigned long len; 5271 int ret; 5272 struct file *file = vma->vm_file; 5273 struct inode *inode = file_inode(file); 5274 struct address_space *mapping = inode->i_mapping; 5275 handle_t *handle; 5276 get_block_t *get_block; 5277 int retries = 0; 5278 5279 sb_start_pagefault(inode->i_sb); 5280 file_update_time(vma->vm_file); 5281 /* Delalloc case is easy... */ 5282 if (test_opt(inode->i_sb, DELALLOC) && 5283 !ext4_should_journal_data(inode) && 5284 !ext4_nonda_switch(inode->i_sb)) { 5285 do { 5286 ret = block_page_mkwrite(vma, vmf, 5287 ext4_da_get_block_prep); 5288 } while (ret == -ENOSPC && 5289 ext4_should_retry_alloc(inode->i_sb, &retries)); 5290 goto out_ret; 5291 } 5292 5293 lock_page(page); 5294 size = i_size_read(inode); 5295 /* Page got truncated from under us? */ 5296 if (page->mapping != mapping || page_offset(page) > size) { 5297 unlock_page(page); 5298 ret = VM_FAULT_NOPAGE; 5299 goto out; 5300 } 5301 5302 if (page->index == size >> PAGE_CACHE_SHIFT) 5303 len = size & ~PAGE_CACHE_MASK; 5304 else 5305 len = PAGE_CACHE_SIZE; 5306 /* 5307 * Return if we have all the buffers mapped. This avoids the need to do 5308 * journal_start/journal_stop which can block and take a long time 5309 */ 5310 if (page_has_buffers(page)) { 5311 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5312 0, len, NULL, 5313 ext4_bh_unmapped)) { 5314 /* Wait so that we don't change page under IO */ 5315 wait_for_stable_page(page); 5316 ret = VM_FAULT_LOCKED; 5317 goto out; 5318 } 5319 } 5320 unlock_page(page); 5321 /* OK, we need to fill the hole... */ 5322 if (ext4_should_dioread_nolock(inode)) 5323 get_block = ext4_get_block_write; 5324 else 5325 get_block = ext4_get_block; 5326 retry_alloc: 5327 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5328 ext4_writepage_trans_blocks(inode)); 5329 if (IS_ERR(handle)) { 5330 ret = VM_FAULT_SIGBUS; 5331 goto out; 5332 } 5333 ret = block_page_mkwrite(vma, vmf, get_block); 5334 if (!ret && ext4_should_journal_data(inode)) { 5335 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5336 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5337 unlock_page(page); 5338 ret = VM_FAULT_SIGBUS; 5339 ext4_journal_stop(handle); 5340 goto out; 5341 } 5342 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5343 } 5344 ext4_journal_stop(handle); 5345 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5346 goto retry_alloc; 5347 out_ret: 5348 ret = block_page_mkwrite_return(ret); 5349 out: 5350 sb_end_pagefault(inode->i_sb); 5351 return ret; 5352 } 5353