1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 #define MPAGE_DA_EXTENT_TAIL 0x01 45 46 static inline int ext4_begin_ordered_truncate(struct inode *inode, 47 loff_t new_size) 48 { 49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 50 new_size); 51 } 52 53 static void ext4_invalidatepage(struct page *page, unsigned long offset); 54 55 /* 56 * Test whether an inode is a fast symlink. 57 */ 58 static int ext4_inode_is_fast_symlink(struct inode *inode) 59 { 60 int ea_blocks = EXT4_I(inode)->i_file_acl ? 61 (inode->i_sb->s_blocksize >> 9) : 0; 62 63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 64 } 65 66 /* 67 * The ext4 forget function must perform a revoke if we are freeing data 68 * which has been journaled. Metadata (eg. indirect blocks) must be 69 * revoked in all cases. 70 * 71 * "bh" may be NULL: a metadata block may have been freed from memory 72 * but there may still be a record of it in the journal, and that record 73 * still needs to be revoked. 74 */ 75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 76 struct buffer_head *bh, ext4_fsblk_t blocknr) 77 { 78 int err; 79 80 might_sleep(); 81 82 BUFFER_TRACE(bh, "enter"); 83 84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 85 "data mode %lx\n", 86 bh, is_metadata, inode->i_mode, 87 test_opt(inode->i_sb, DATA_FLAGS)); 88 89 /* Never use the revoke function if we are doing full data 90 * journaling: there is no need to, and a V1 superblock won't 91 * support it. Otherwise, only skip the revoke on un-journaled 92 * data blocks. */ 93 94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 95 (!is_metadata && !ext4_should_journal_data(inode))) { 96 if (bh) { 97 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 98 return ext4_journal_forget(handle, bh); 99 } 100 return 0; 101 } 102 103 /* 104 * data!=journal && (is_metadata || should_journal_data(inode)) 105 */ 106 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 107 err = ext4_journal_revoke(handle, blocknr, bh); 108 if (err) 109 ext4_abort(inode->i_sb, __func__, 110 "error %d when attempting revoke", err); 111 BUFFER_TRACE(bh, "exit"); 112 return err; 113 } 114 115 /* 116 * Work out how many blocks we need to proceed with the next chunk of a 117 * truncate transaction. 118 */ 119 static unsigned long blocks_for_truncate(struct inode *inode) 120 { 121 ext4_lblk_t needed; 122 123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 124 125 /* Give ourselves just enough room to cope with inodes in which 126 * i_blocks is corrupt: we've seen disk corruptions in the past 127 * which resulted in random data in an inode which looked enough 128 * like a regular file for ext4 to try to delete it. Things 129 * will go a bit crazy if that happens, but at least we should 130 * try not to panic the whole kernel. */ 131 if (needed < 2) 132 needed = 2; 133 134 /* But we need to bound the transaction so we don't overflow the 135 * journal. */ 136 if (needed > EXT4_MAX_TRANS_DATA) 137 needed = EXT4_MAX_TRANS_DATA; 138 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 140 } 141 142 /* 143 * Truncate transactions can be complex and absolutely huge. So we need to 144 * be able to restart the transaction at a conventient checkpoint to make 145 * sure we don't overflow the journal. 146 * 147 * start_transaction gets us a new handle for a truncate transaction, 148 * and extend_transaction tries to extend the existing one a bit. If 149 * extend fails, we need to propagate the failure up and restart the 150 * transaction in the top-level truncate loop. --sct 151 */ 152 static handle_t *start_transaction(struct inode *inode) 153 { 154 handle_t *result; 155 156 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 157 if (!IS_ERR(result)) 158 return result; 159 160 ext4_std_error(inode->i_sb, PTR_ERR(result)); 161 return result; 162 } 163 164 /* 165 * Try to extend this transaction for the purposes of truncation. 166 * 167 * Returns 0 if we managed to create more room. If we can't create more 168 * room, and the transaction must be restarted we return 1. 169 */ 170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 171 { 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 173 return 0; 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 175 return 0; 176 return 1; 177 } 178 179 /* 180 * Restart the transaction associated with *handle. This does a commit, 181 * so before we call here everything must be consistently dirtied against 182 * this transaction. 183 */ 184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 185 { 186 jbd_debug(2, "restarting handle %p\n", handle); 187 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 188 } 189 190 /* 191 * Called at the last iput() if i_nlink is zero. 192 */ 193 void ext4_delete_inode(struct inode *inode) 194 { 195 handle_t *handle; 196 int err; 197 198 if (ext4_should_order_data(inode)) 199 ext4_begin_ordered_truncate(inode, 0); 200 truncate_inode_pages(&inode->i_data, 0); 201 202 if (is_bad_inode(inode)) 203 goto no_delete; 204 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 206 if (IS_ERR(handle)) { 207 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 208 /* 209 * If we're going to skip the normal cleanup, we still need to 210 * make sure that the in-core orphan linked list is properly 211 * cleaned up. 212 */ 213 ext4_orphan_del(NULL, inode); 214 goto no_delete; 215 } 216 217 if (IS_SYNC(inode)) 218 handle->h_sync = 1; 219 inode->i_size = 0; 220 err = ext4_mark_inode_dirty(handle, inode); 221 if (err) { 222 ext4_warning(inode->i_sb, __func__, 223 "couldn't mark inode dirty (err %d)", err); 224 goto stop_handle; 225 } 226 if (inode->i_blocks) 227 ext4_truncate(inode); 228 229 /* 230 * ext4_ext_truncate() doesn't reserve any slop when it 231 * restarts journal transactions; therefore there may not be 232 * enough credits left in the handle to remove the inode from 233 * the orphan list and set the dtime field. 234 */ 235 if (handle->h_buffer_credits < 3) { 236 err = ext4_journal_extend(handle, 3); 237 if (err > 0) 238 err = ext4_journal_restart(handle, 3); 239 if (err != 0) { 240 ext4_warning(inode->i_sb, __func__, 241 "couldn't extend journal (err %d)", err); 242 stop_handle: 243 ext4_journal_stop(handle); 244 goto no_delete; 245 } 246 } 247 248 /* 249 * Kill off the orphan record which ext4_truncate created. 250 * AKPM: I think this can be inside the above `if'. 251 * Note that ext4_orphan_del() has to be able to cope with the 252 * deletion of a non-existent orphan - this is because we don't 253 * know if ext4_truncate() actually created an orphan record. 254 * (Well, we could do this if we need to, but heck - it works) 255 */ 256 ext4_orphan_del(handle, inode); 257 EXT4_I(inode)->i_dtime = get_seconds(); 258 259 /* 260 * One subtle ordering requirement: if anything has gone wrong 261 * (transaction abort, IO errors, whatever), then we can still 262 * do these next steps (the fs will already have been marked as 263 * having errors), but we can't free the inode if the mark_dirty 264 * fails. 265 */ 266 if (ext4_mark_inode_dirty(handle, inode)) 267 /* If that failed, just do the required in-core inode clear. */ 268 clear_inode(inode); 269 else 270 ext4_free_inode(handle, inode); 271 ext4_journal_stop(handle); 272 return; 273 no_delete: 274 clear_inode(inode); /* We must guarantee clearing of inode... */ 275 } 276 277 typedef struct { 278 __le32 *p; 279 __le32 key; 280 struct buffer_head *bh; 281 } Indirect; 282 283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 284 { 285 p->key = *(p->p = v); 286 p->bh = bh; 287 } 288 289 /** 290 * ext4_block_to_path - parse the block number into array of offsets 291 * @inode: inode in question (we are only interested in its superblock) 292 * @i_block: block number to be parsed 293 * @offsets: array to store the offsets in 294 * @boundary: set this non-zero if the referred-to block is likely to be 295 * followed (on disk) by an indirect block. 296 * 297 * To store the locations of file's data ext4 uses a data structure common 298 * for UNIX filesystems - tree of pointers anchored in the inode, with 299 * data blocks at leaves and indirect blocks in intermediate nodes. 300 * This function translates the block number into path in that tree - 301 * return value is the path length and @offsets[n] is the offset of 302 * pointer to (n+1)th node in the nth one. If @block is out of range 303 * (negative or too large) warning is printed and zero returned. 304 * 305 * Note: function doesn't find node addresses, so no IO is needed. All 306 * we need to know is the capacity of indirect blocks (taken from the 307 * inode->i_sb). 308 */ 309 310 /* 311 * Portability note: the last comparison (check that we fit into triple 312 * indirect block) is spelled differently, because otherwise on an 313 * architecture with 32-bit longs and 8Kb pages we might get into trouble 314 * if our filesystem had 8Kb blocks. We might use long long, but that would 315 * kill us on x86. Oh, well, at least the sign propagation does not matter - 316 * i_block would have to be negative in the very beginning, so we would not 317 * get there at all. 318 */ 319 320 static int ext4_block_to_path(struct inode *inode, 321 ext4_lblk_t i_block, 322 ext4_lblk_t offsets[4], int *boundary) 323 { 324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 326 const long direct_blocks = EXT4_NDIR_BLOCKS, 327 indirect_blocks = ptrs, 328 double_blocks = (1 << (ptrs_bits * 2)); 329 int n = 0; 330 int final = 0; 331 332 if (i_block < 0) { 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 334 } else if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "ext4_block_to_path", 354 "block %lu > max", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 /** 364 * ext4_get_branch - read the chain of indirect blocks leading to data 365 * @inode: inode in question 366 * @depth: depth of the chain (1 - direct pointer, etc.) 367 * @offsets: offsets of pointers in inode/indirect blocks 368 * @chain: place to store the result 369 * @err: here we store the error value 370 * 371 * Function fills the array of triples <key, p, bh> and returns %NULL 372 * if everything went OK or the pointer to the last filled triple 373 * (incomplete one) otherwise. Upon the return chain[i].key contains 374 * the number of (i+1)-th block in the chain (as it is stored in memory, 375 * i.e. little-endian 32-bit), chain[i].p contains the address of that 376 * number (it points into struct inode for i==0 and into the bh->b_data 377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 378 * block for i>0 and NULL for i==0. In other words, it holds the block 379 * numbers of the chain, addresses they were taken from (and where we can 380 * verify that chain did not change) and buffer_heads hosting these 381 * numbers. 382 * 383 * Function stops when it stumbles upon zero pointer (absent block) 384 * (pointer to last triple returned, *@err == 0) 385 * or when it gets an IO error reading an indirect block 386 * (ditto, *@err == -EIO) 387 * or when it reads all @depth-1 indirect blocks successfully and finds 388 * the whole chain, all way to the data (returns %NULL, *err == 0). 389 * 390 * Need to be called with 391 * down_read(&EXT4_I(inode)->i_data_sem) 392 */ 393 static Indirect *ext4_get_branch(struct inode *inode, int depth, 394 ext4_lblk_t *offsets, 395 Indirect chain[4], int *err) 396 { 397 struct super_block *sb = inode->i_sb; 398 Indirect *p = chain; 399 struct buffer_head *bh; 400 401 *err = 0; 402 /* i_data is not going away, no lock needed */ 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 404 if (!p->key) 405 goto no_block; 406 while (--depth) { 407 bh = sb_bread(sb, le32_to_cpu(p->key)); 408 if (!bh) 409 goto failure; 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 411 /* Reader: end */ 412 if (!p->key) 413 goto no_block; 414 } 415 return NULL; 416 417 failure: 418 *err = -EIO; 419 no_block: 420 return p; 421 } 422 423 /** 424 * ext4_find_near - find a place for allocation with sufficient locality 425 * @inode: owner 426 * @ind: descriptor of indirect block. 427 * 428 * This function returns the preferred place for block allocation. 429 * It is used when heuristic for sequential allocation fails. 430 * Rules are: 431 * + if there is a block to the left of our position - allocate near it. 432 * + if pointer will live in indirect block - allocate near that block. 433 * + if pointer will live in inode - allocate in the same 434 * cylinder group. 435 * 436 * In the latter case we colour the starting block by the callers PID to 437 * prevent it from clashing with concurrent allocations for a different inode 438 * in the same block group. The PID is used here so that functionally related 439 * files will be close-by on-disk. 440 * 441 * Caller must make sure that @ind is valid and will stay that way. 442 */ 443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 444 { 445 struct ext4_inode_info *ei = EXT4_I(inode); 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 447 __le32 *p; 448 ext4_fsblk_t bg_start; 449 ext4_fsblk_t last_block; 450 ext4_grpblk_t colour; 451 452 /* Try to find previous block */ 453 for (p = ind->p - 1; p >= start; p--) { 454 if (*p) 455 return le32_to_cpu(*p); 456 } 457 458 /* No such thing, so let's try location of indirect block */ 459 if (ind->bh) 460 return ind->bh->b_blocknr; 461 462 /* 463 * It is going to be referred to from the inode itself? OK, just put it 464 * into the same cylinder group then. 465 */ 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 468 469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 470 colour = (current->pid % 16) * 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 472 else 473 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 474 return bg_start + colour; 475 } 476 477 /** 478 * ext4_find_goal - find a preferred place for allocation. 479 * @inode: owner 480 * @block: block we want 481 * @partial: pointer to the last triple within a chain 482 * 483 * Normally this function find the preferred place for block allocation, 484 * returns it. 485 */ 486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 487 Indirect *partial) 488 { 489 /* 490 * XXX need to get goal block from mballoc's data structures 491 */ 492 493 return ext4_find_near(inode, partial); 494 } 495 496 /** 497 * ext4_blks_to_allocate: Look up the block map and count the number 498 * of direct blocks need to be allocated for the given branch. 499 * 500 * @branch: chain of indirect blocks 501 * @k: number of blocks need for indirect blocks 502 * @blks: number of data blocks to be mapped. 503 * @blocks_to_boundary: the offset in the indirect block 504 * 505 * return the total number of blocks to be allocate, including the 506 * direct and indirect blocks. 507 */ 508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 509 int blocks_to_boundary) 510 { 511 unsigned long count = 0; 512 513 /* 514 * Simple case, [t,d]Indirect block(s) has not allocated yet 515 * then it's clear blocks on that path have not allocated 516 */ 517 if (k > 0) { 518 /* right now we don't handle cross boundary allocation */ 519 if (blks < blocks_to_boundary + 1) 520 count += blks; 521 else 522 count += blocks_to_boundary + 1; 523 return count; 524 } 525 526 count++; 527 while (count < blks && count <= blocks_to_boundary && 528 le32_to_cpu(*(branch[0].p + count)) == 0) { 529 count++; 530 } 531 return count; 532 } 533 534 /** 535 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 536 * @indirect_blks: the number of blocks need to allocate for indirect 537 * blocks 538 * 539 * @new_blocks: on return it will store the new block numbers for 540 * the indirect blocks(if needed) and the first direct block, 541 * @blks: on return it will store the total number of allocated 542 * direct blocks 543 */ 544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 545 ext4_lblk_t iblock, ext4_fsblk_t goal, 546 int indirect_blks, int blks, 547 ext4_fsblk_t new_blocks[4], int *err) 548 { 549 int target, i; 550 unsigned long count = 0, blk_allocated = 0; 551 int index = 0; 552 ext4_fsblk_t current_block = 0; 553 int ret = 0; 554 555 /* 556 * Here we try to allocate the requested multiple blocks at once, 557 * on a best-effort basis. 558 * To build a branch, we should allocate blocks for 559 * the indirect blocks(if not allocated yet), and at least 560 * the first direct block of this branch. That's the 561 * minimum number of blocks need to allocate(required) 562 */ 563 /* first we try to allocate the indirect blocks */ 564 target = indirect_blks; 565 while (target > 0) { 566 count = target; 567 /* allocating blocks for indirect blocks and direct blocks */ 568 current_block = ext4_new_meta_blocks(handle, inode, 569 goal, &count, err); 570 if (*err) 571 goto failed_out; 572 573 target -= count; 574 /* allocate blocks for indirect blocks */ 575 while (index < indirect_blks && count) { 576 new_blocks[index++] = current_block++; 577 count--; 578 } 579 if (count > 0) { 580 /* 581 * save the new block number 582 * for the first direct block 583 */ 584 new_blocks[index] = current_block; 585 printk(KERN_INFO "%s returned more blocks than " 586 "requested\n", __func__); 587 WARN_ON(1); 588 break; 589 } 590 } 591 592 target = blks - count ; 593 blk_allocated = count; 594 if (!target) 595 goto allocated; 596 /* Now allocate data blocks */ 597 count = target; 598 /* allocating blocks for data blocks */ 599 current_block = ext4_new_blocks(handle, inode, iblock, 600 goal, &count, err); 601 if (*err && (target == blks)) { 602 /* 603 * if the allocation failed and we didn't allocate 604 * any blocks before 605 */ 606 goto failed_out; 607 } 608 if (!*err) { 609 if (target == blks) { 610 /* 611 * save the new block number 612 * for the first direct block 613 */ 614 new_blocks[index] = current_block; 615 } 616 blk_allocated += count; 617 } 618 allocated: 619 /* total number of blocks allocated for direct blocks */ 620 ret = blk_allocated; 621 *err = 0; 622 return ret; 623 failed_out: 624 for (i = 0; i < index; i++) 625 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 626 return ret; 627 } 628 629 /** 630 * ext4_alloc_branch - allocate and set up a chain of blocks. 631 * @inode: owner 632 * @indirect_blks: number of allocated indirect blocks 633 * @blks: number of allocated direct blocks 634 * @offsets: offsets (in the blocks) to store the pointers to next. 635 * @branch: place to store the chain in. 636 * 637 * This function allocates blocks, zeroes out all but the last one, 638 * links them into chain and (if we are synchronous) writes them to disk. 639 * In other words, it prepares a branch that can be spliced onto the 640 * inode. It stores the information about that chain in the branch[], in 641 * the same format as ext4_get_branch() would do. We are calling it after 642 * we had read the existing part of chain and partial points to the last 643 * triple of that (one with zero ->key). Upon the exit we have the same 644 * picture as after the successful ext4_get_block(), except that in one 645 * place chain is disconnected - *branch->p is still zero (we did not 646 * set the last link), but branch->key contains the number that should 647 * be placed into *branch->p to fill that gap. 648 * 649 * If allocation fails we free all blocks we've allocated (and forget 650 * their buffer_heads) and return the error value the from failed 651 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 652 * as described above and return 0. 653 */ 654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 655 ext4_lblk_t iblock, int indirect_blks, 656 int *blks, ext4_fsblk_t goal, 657 ext4_lblk_t *offsets, Indirect *branch) 658 { 659 int blocksize = inode->i_sb->s_blocksize; 660 int i, n = 0; 661 int err = 0; 662 struct buffer_head *bh; 663 int num; 664 ext4_fsblk_t new_blocks[4]; 665 ext4_fsblk_t current_block; 666 667 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 668 *blks, new_blocks, &err); 669 if (err) 670 return err; 671 672 branch[0].key = cpu_to_le32(new_blocks[0]); 673 /* 674 * metadata blocks and data blocks are allocated. 675 */ 676 for (n = 1; n <= indirect_blks; n++) { 677 /* 678 * Get buffer_head for parent block, zero it out 679 * and set the pointer to new one, then send 680 * parent to disk. 681 */ 682 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 683 branch[n].bh = bh; 684 lock_buffer(bh); 685 BUFFER_TRACE(bh, "call get_create_access"); 686 err = ext4_journal_get_create_access(handle, bh); 687 if (err) { 688 unlock_buffer(bh); 689 brelse(bh); 690 goto failed; 691 } 692 693 memset(bh->b_data, 0, blocksize); 694 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 695 branch[n].key = cpu_to_le32(new_blocks[n]); 696 *branch[n].p = branch[n].key; 697 if (n == indirect_blks) { 698 current_block = new_blocks[n]; 699 /* 700 * End of chain, update the last new metablock of 701 * the chain to point to the new allocated 702 * data blocks numbers 703 */ 704 for (i=1; i < num; i++) 705 *(branch[n].p + i) = cpu_to_le32(++current_block); 706 } 707 BUFFER_TRACE(bh, "marking uptodate"); 708 set_buffer_uptodate(bh); 709 unlock_buffer(bh); 710 711 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 712 err = ext4_journal_dirty_metadata(handle, bh); 713 if (err) 714 goto failed; 715 } 716 *blks = num; 717 return err; 718 failed: 719 /* Allocation failed, free what we already allocated */ 720 for (i = 1; i <= n ; i++) { 721 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 722 ext4_journal_forget(handle, branch[i].bh); 723 } 724 for (i = 0; i < indirect_blks; i++) 725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 726 727 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 728 729 return err; 730 } 731 732 /** 733 * ext4_splice_branch - splice the allocated branch onto inode. 734 * @inode: owner 735 * @block: (logical) number of block we are adding 736 * @chain: chain of indirect blocks (with a missing link - see 737 * ext4_alloc_branch) 738 * @where: location of missing link 739 * @num: number of indirect blocks we are adding 740 * @blks: number of direct blocks we are adding 741 * 742 * This function fills the missing link and does all housekeeping needed in 743 * inode (->i_blocks, etc.). In case of success we end up with the full 744 * chain to new block and return 0. 745 */ 746 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 747 ext4_lblk_t block, Indirect *where, int num, int blks) 748 { 749 int i; 750 int err = 0; 751 ext4_fsblk_t current_block; 752 753 /* 754 * If we're splicing into a [td]indirect block (as opposed to the 755 * inode) then we need to get write access to the [td]indirect block 756 * before the splice. 757 */ 758 if (where->bh) { 759 BUFFER_TRACE(where->bh, "get_write_access"); 760 err = ext4_journal_get_write_access(handle, where->bh); 761 if (err) 762 goto err_out; 763 } 764 /* That's it */ 765 766 *where->p = where->key; 767 768 /* 769 * Update the host buffer_head or inode to point to more just allocated 770 * direct blocks blocks 771 */ 772 if (num == 0 && blks > 1) { 773 current_block = le32_to_cpu(where->key) + 1; 774 for (i = 1; i < blks; i++) 775 *(where->p + i) = cpu_to_le32(current_block++); 776 } 777 778 /* We are done with atomic stuff, now do the rest of housekeeping */ 779 780 inode->i_ctime = ext4_current_time(inode); 781 ext4_mark_inode_dirty(handle, inode); 782 783 /* had we spliced it onto indirect block? */ 784 if (where->bh) { 785 /* 786 * If we spliced it onto an indirect block, we haven't 787 * altered the inode. Note however that if it is being spliced 788 * onto an indirect block at the very end of the file (the 789 * file is growing) then we *will* alter the inode to reflect 790 * the new i_size. But that is not done here - it is done in 791 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 792 */ 793 jbd_debug(5, "splicing indirect only\n"); 794 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 795 err = ext4_journal_dirty_metadata(handle, where->bh); 796 if (err) 797 goto err_out; 798 } else { 799 /* 800 * OK, we spliced it into the inode itself on a direct block. 801 * Inode was dirtied above. 802 */ 803 jbd_debug(5, "splicing direct\n"); 804 } 805 return err; 806 807 err_out: 808 for (i = 1; i <= num; i++) { 809 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 810 ext4_journal_forget(handle, where[i].bh); 811 ext4_free_blocks(handle, inode, 812 le32_to_cpu(where[i-1].key), 1, 0); 813 } 814 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 815 816 return err; 817 } 818 819 /* 820 * Allocation strategy is simple: if we have to allocate something, we will 821 * have to go the whole way to leaf. So let's do it before attaching anything 822 * to tree, set linkage between the newborn blocks, write them if sync is 823 * required, recheck the path, free and repeat if check fails, otherwise 824 * set the last missing link (that will protect us from any truncate-generated 825 * removals - all blocks on the path are immune now) and possibly force the 826 * write on the parent block. 827 * That has a nice additional property: no special recovery from the failed 828 * allocations is needed - we simply release blocks and do not touch anything 829 * reachable from inode. 830 * 831 * `handle' can be NULL if create == 0. 832 * 833 * return > 0, # of blocks mapped or allocated. 834 * return = 0, if plain lookup failed. 835 * return < 0, error case. 836 * 837 * 838 * Need to be called with 839 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 840 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 841 */ 842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 843 ext4_lblk_t iblock, unsigned long maxblocks, 844 struct buffer_head *bh_result, 845 int create, int extend_disksize) 846 { 847 int err = -EIO; 848 ext4_lblk_t offsets[4]; 849 Indirect chain[4]; 850 Indirect *partial; 851 ext4_fsblk_t goal; 852 int indirect_blks; 853 int blocks_to_boundary = 0; 854 int depth; 855 struct ext4_inode_info *ei = EXT4_I(inode); 856 int count = 0; 857 ext4_fsblk_t first_block = 0; 858 loff_t disksize; 859 860 861 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 862 J_ASSERT(handle != NULL || create == 0); 863 depth = ext4_block_to_path(inode, iblock, offsets, 864 &blocks_to_boundary); 865 866 if (depth == 0) 867 goto out; 868 869 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 870 871 /* Simplest case - block found, no allocation needed */ 872 if (!partial) { 873 first_block = le32_to_cpu(chain[depth - 1].key); 874 clear_buffer_new(bh_result); 875 count++; 876 /*map more blocks*/ 877 while (count < maxblocks && count <= blocks_to_boundary) { 878 ext4_fsblk_t blk; 879 880 blk = le32_to_cpu(*(chain[depth-1].p + count)); 881 882 if (blk == first_block + count) 883 count++; 884 else 885 break; 886 } 887 goto got_it; 888 } 889 890 /* Next simple case - plain lookup or failed read of indirect block */ 891 if (!create || err == -EIO) 892 goto cleanup; 893 894 /* 895 * Okay, we need to do block allocation. 896 */ 897 goal = ext4_find_goal(inode, iblock, partial); 898 899 /* the number of blocks need to allocate for [d,t]indirect blocks */ 900 indirect_blks = (chain + depth) - partial - 1; 901 902 /* 903 * Next look up the indirect map to count the totoal number of 904 * direct blocks to allocate for this branch. 905 */ 906 count = ext4_blks_to_allocate(partial, indirect_blks, 907 maxblocks, blocks_to_boundary); 908 /* 909 * Block out ext4_truncate while we alter the tree 910 */ 911 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 912 &count, goal, 913 offsets + (partial - chain), partial); 914 915 /* 916 * The ext4_splice_branch call will free and forget any buffers 917 * on the new chain if there is a failure, but that risks using 918 * up transaction credits, especially for bitmaps where the 919 * credits cannot be returned. Can we handle this somehow? We 920 * may need to return -EAGAIN upwards in the worst case. --sct 921 */ 922 if (!err) 923 err = ext4_splice_branch(handle, inode, iblock, 924 partial, indirect_blks, count); 925 /* 926 * i_disksize growing is protected by i_data_sem. Don't forget to 927 * protect it if you're about to implement concurrent 928 * ext4_get_block() -bzzz 929 */ 930 if (!err && extend_disksize) { 931 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 932 if (disksize > i_size_read(inode)) 933 disksize = i_size_read(inode); 934 if (disksize > ei->i_disksize) 935 ei->i_disksize = disksize; 936 } 937 if (err) 938 goto cleanup; 939 940 set_buffer_new(bh_result); 941 got_it: 942 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 943 if (count > blocks_to_boundary) 944 set_buffer_boundary(bh_result); 945 err = count; 946 /* Clean up and exit */ 947 partial = chain + depth - 1; /* the whole chain */ 948 cleanup: 949 while (partial > chain) { 950 BUFFER_TRACE(partial->bh, "call brelse"); 951 brelse(partial->bh); 952 partial--; 953 } 954 BUFFER_TRACE(bh_result, "returned"); 955 out: 956 return err; 957 } 958 959 /* 960 * Calculate the number of metadata blocks need to reserve 961 * to allocate @blocks for non extent file based file 962 */ 963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 964 { 965 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 966 int ind_blks, dind_blks, tind_blks; 967 968 /* number of new indirect blocks needed */ 969 ind_blks = (blocks + icap - 1) / icap; 970 971 dind_blks = (ind_blks + icap - 1) / icap; 972 973 tind_blks = 1; 974 975 return ind_blks + dind_blks + tind_blks; 976 } 977 978 /* 979 * Calculate the number of metadata blocks need to reserve 980 * to allocate given number of blocks 981 */ 982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 983 { 984 if (!blocks) 985 return 0; 986 987 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 988 return ext4_ext_calc_metadata_amount(inode, blocks); 989 990 return ext4_indirect_calc_metadata_amount(inode, blocks); 991 } 992 993 static void ext4_da_update_reserve_space(struct inode *inode, int used) 994 { 995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 996 int total, mdb, mdb_free; 997 998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 999 /* recalculate the number of metablocks still need to be reserved */ 1000 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1001 mdb = ext4_calc_metadata_amount(inode, total); 1002 1003 /* figure out how many metablocks to release */ 1004 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1005 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1006 1007 if (mdb_free) { 1008 /* Account for allocated meta_blocks */ 1009 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1010 1011 /* update fs dirty blocks counter */ 1012 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1013 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1014 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1015 } 1016 1017 /* update per-inode reservations */ 1018 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1019 EXT4_I(inode)->i_reserved_data_blocks -= used; 1020 1021 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1022 } 1023 1024 /* 1025 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1026 * and returns if the blocks are already mapped. 1027 * 1028 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1029 * and store the allocated blocks in the result buffer head and mark it 1030 * mapped. 1031 * 1032 * If file type is extents based, it will call ext4_ext_get_blocks(), 1033 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1034 * based files 1035 * 1036 * On success, it returns the number of blocks being mapped or allocate. 1037 * if create==0 and the blocks are pre-allocated and uninitialized block, 1038 * the result buffer head is unmapped. If the create ==1, it will make sure 1039 * the buffer head is mapped. 1040 * 1041 * It returns 0 if plain look up failed (blocks have not been allocated), in 1042 * that casem, buffer head is unmapped 1043 * 1044 * It returns the error in case of allocation failure. 1045 */ 1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1047 unsigned long max_blocks, struct buffer_head *bh, 1048 int create, int extend_disksize, int flag) 1049 { 1050 int retval; 1051 1052 clear_buffer_mapped(bh); 1053 1054 /* 1055 * Try to see if we can get the block without requesting 1056 * for new file system block. 1057 */ 1058 down_read((&EXT4_I(inode)->i_data_sem)); 1059 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1060 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1061 bh, 0, 0); 1062 } else { 1063 retval = ext4_get_blocks_handle(handle, 1064 inode, block, max_blocks, bh, 0, 0); 1065 } 1066 up_read((&EXT4_I(inode)->i_data_sem)); 1067 1068 /* If it is only a block(s) look up */ 1069 if (!create) 1070 return retval; 1071 1072 /* 1073 * Returns if the blocks have already allocated 1074 * 1075 * Note that if blocks have been preallocated 1076 * ext4_ext_get_block() returns th create = 0 1077 * with buffer head unmapped. 1078 */ 1079 if (retval > 0 && buffer_mapped(bh)) 1080 return retval; 1081 1082 /* 1083 * New blocks allocate and/or writing to uninitialized extent 1084 * will possibly result in updating i_data, so we take 1085 * the write lock of i_data_sem, and call get_blocks() 1086 * with create == 1 flag. 1087 */ 1088 down_write((&EXT4_I(inode)->i_data_sem)); 1089 1090 /* 1091 * if the caller is from delayed allocation writeout path 1092 * we have already reserved fs blocks for allocation 1093 * let the underlying get_block() function know to 1094 * avoid double accounting 1095 */ 1096 if (flag) 1097 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1098 /* 1099 * We need to check for EXT4 here because migrate 1100 * could have changed the inode type in between 1101 */ 1102 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1103 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1104 bh, create, extend_disksize); 1105 } else { 1106 retval = ext4_get_blocks_handle(handle, inode, block, 1107 max_blocks, bh, create, extend_disksize); 1108 1109 if (retval > 0 && buffer_new(bh)) { 1110 /* 1111 * We allocated new blocks which will result in 1112 * i_data's format changing. Force the migrate 1113 * to fail by clearing migrate flags 1114 */ 1115 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1116 ~EXT4_EXT_MIGRATE; 1117 } 1118 } 1119 1120 if (flag) { 1121 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1122 /* 1123 * Update reserved blocks/metadata blocks 1124 * after successful block allocation 1125 * which were deferred till now 1126 */ 1127 if ((retval > 0) && buffer_delay(bh)) 1128 ext4_da_update_reserve_space(inode, retval); 1129 } 1130 1131 up_write((&EXT4_I(inode)->i_data_sem)); 1132 return retval; 1133 } 1134 1135 /* Maximum number of blocks we map for direct IO at once. */ 1136 #define DIO_MAX_BLOCKS 4096 1137 1138 int ext4_get_block(struct inode *inode, sector_t iblock, 1139 struct buffer_head *bh_result, int create) 1140 { 1141 handle_t *handle = ext4_journal_current_handle(); 1142 int ret = 0, started = 0; 1143 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1144 int dio_credits; 1145 1146 if (create && !handle) { 1147 /* Direct IO write... */ 1148 if (max_blocks > DIO_MAX_BLOCKS) 1149 max_blocks = DIO_MAX_BLOCKS; 1150 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1151 handle = ext4_journal_start(inode, dio_credits); 1152 if (IS_ERR(handle)) { 1153 ret = PTR_ERR(handle); 1154 goto out; 1155 } 1156 started = 1; 1157 } 1158 1159 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1160 max_blocks, bh_result, create, 0, 0); 1161 if (ret > 0) { 1162 bh_result->b_size = (ret << inode->i_blkbits); 1163 ret = 0; 1164 } 1165 if (started) 1166 ext4_journal_stop(handle); 1167 out: 1168 return ret; 1169 } 1170 1171 /* 1172 * `handle' can be NULL if create is zero 1173 */ 1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1175 ext4_lblk_t block, int create, int *errp) 1176 { 1177 struct buffer_head dummy; 1178 int fatal = 0, err; 1179 1180 J_ASSERT(handle != NULL || create == 0); 1181 1182 dummy.b_state = 0; 1183 dummy.b_blocknr = -1000; 1184 buffer_trace_init(&dummy.b_history); 1185 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1186 &dummy, create, 1, 0); 1187 /* 1188 * ext4_get_blocks_handle() returns number of blocks 1189 * mapped. 0 in case of a HOLE. 1190 */ 1191 if (err > 0) { 1192 if (err > 1) 1193 WARN_ON(1); 1194 err = 0; 1195 } 1196 *errp = err; 1197 if (!err && buffer_mapped(&dummy)) { 1198 struct buffer_head *bh; 1199 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1200 if (!bh) { 1201 *errp = -EIO; 1202 goto err; 1203 } 1204 if (buffer_new(&dummy)) { 1205 J_ASSERT(create != 0); 1206 J_ASSERT(handle != NULL); 1207 1208 /* 1209 * Now that we do not always journal data, we should 1210 * keep in mind whether this should always journal the 1211 * new buffer as metadata. For now, regular file 1212 * writes use ext4_get_block instead, so it's not a 1213 * problem. 1214 */ 1215 lock_buffer(bh); 1216 BUFFER_TRACE(bh, "call get_create_access"); 1217 fatal = ext4_journal_get_create_access(handle, bh); 1218 if (!fatal && !buffer_uptodate(bh)) { 1219 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1220 set_buffer_uptodate(bh); 1221 } 1222 unlock_buffer(bh); 1223 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1224 err = ext4_journal_dirty_metadata(handle, bh); 1225 if (!fatal) 1226 fatal = err; 1227 } else { 1228 BUFFER_TRACE(bh, "not a new buffer"); 1229 } 1230 if (fatal) { 1231 *errp = fatal; 1232 brelse(bh); 1233 bh = NULL; 1234 } 1235 return bh; 1236 } 1237 err: 1238 return NULL; 1239 } 1240 1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1242 ext4_lblk_t block, int create, int *err) 1243 { 1244 struct buffer_head *bh; 1245 1246 bh = ext4_getblk(handle, inode, block, create, err); 1247 if (!bh) 1248 return bh; 1249 if (buffer_uptodate(bh)) 1250 return bh; 1251 ll_rw_block(READ_META, 1, &bh); 1252 wait_on_buffer(bh); 1253 if (buffer_uptodate(bh)) 1254 return bh; 1255 put_bh(bh); 1256 *err = -EIO; 1257 return NULL; 1258 } 1259 1260 static int walk_page_buffers(handle_t *handle, 1261 struct buffer_head *head, 1262 unsigned from, 1263 unsigned to, 1264 int *partial, 1265 int (*fn)(handle_t *handle, 1266 struct buffer_head *bh)) 1267 { 1268 struct buffer_head *bh; 1269 unsigned block_start, block_end; 1270 unsigned blocksize = head->b_size; 1271 int err, ret = 0; 1272 struct buffer_head *next; 1273 1274 for (bh = head, block_start = 0; 1275 ret == 0 && (bh != head || !block_start); 1276 block_start = block_end, bh = next) 1277 { 1278 next = bh->b_this_page; 1279 block_end = block_start + blocksize; 1280 if (block_end <= from || block_start >= to) { 1281 if (partial && !buffer_uptodate(bh)) 1282 *partial = 1; 1283 continue; 1284 } 1285 err = (*fn)(handle, bh); 1286 if (!ret) 1287 ret = err; 1288 } 1289 return ret; 1290 } 1291 1292 /* 1293 * To preserve ordering, it is essential that the hole instantiation and 1294 * the data write be encapsulated in a single transaction. We cannot 1295 * close off a transaction and start a new one between the ext4_get_block() 1296 * and the commit_write(). So doing the jbd2_journal_start at the start of 1297 * prepare_write() is the right place. 1298 * 1299 * Also, this function can nest inside ext4_writepage() -> 1300 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1301 * has generated enough buffer credits to do the whole page. So we won't 1302 * block on the journal in that case, which is good, because the caller may 1303 * be PF_MEMALLOC. 1304 * 1305 * By accident, ext4 can be reentered when a transaction is open via 1306 * quota file writes. If we were to commit the transaction while thus 1307 * reentered, there can be a deadlock - we would be holding a quota 1308 * lock, and the commit would never complete if another thread had a 1309 * transaction open and was blocking on the quota lock - a ranking 1310 * violation. 1311 * 1312 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1313 * will _not_ run commit under these circumstances because handle->h_ref 1314 * is elevated. We'll still have enough credits for the tiny quotafile 1315 * write. 1316 */ 1317 static int do_journal_get_write_access(handle_t *handle, 1318 struct buffer_head *bh) 1319 { 1320 if (!buffer_mapped(bh) || buffer_freed(bh)) 1321 return 0; 1322 return ext4_journal_get_write_access(handle, bh); 1323 } 1324 1325 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1326 loff_t pos, unsigned len, unsigned flags, 1327 struct page **pagep, void **fsdata) 1328 { 1329 struct inode *inode = mapping->host; 1330 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1331 handle_t *handle; 1332 int retries = 0; 1333 struct page *page; 1334 pgoff_t index; 1335 unsigned from, to; 1336 1337 index = pos >> PAGE_CACHE_SHIFT; 1338 from = pos & (PAGE_CACHE_SIZE - 1); 1339 to = from + len; 1340 1341 retry: 1342 handle = ext4_journal_start(inode, needed_blocks); 1343 if (IS_ERR(handle)) { 1344 ret = PTR_ERR(handle); 1345 goto out; 1346 } 1347 1348 page = __grab_cache_page(mapping, index); 1349 if (!page) { 1350 ext4_journal_stop(handle); 1351 ret = -ENOMEM; 1352 goto out; 1353 } 1354 *pagep = page; 1355 1356 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1357 ext4_get_block); 1358 1359 if (!ret && ext4_should_journal_data(inode)) { 1360 ret = walk_page_buffers(handle, page_buffers(page), 1361 from, to, NULL, do_journal_get_write_access); 1362 } 1363 1364 if (ret) { 1365 unlock_page(page); 1366 ext4_journal_stop(handle); 1367 page_cache_release(page); 1368 /* 1369 * block_write_begin may have instantiated a few blocks 1370 * outside i_size. Trim these off again. Don't need 1371 * i_size_read because we hold i_mutex. 1372 */ 1373 if (pos + len > inode->i_size) 1374 vmtruncate(inode, inode->i_size); 1375 } 1376 1377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1378 goto retry; 1379 out: 1380 return ret; 1381 } 1382 1383 /* For write_end() in data=journal mode */ 1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1385 { 1386 if (!buffer_mapped(bh) || buffer_freed(bh)) 1387 return 0; 1388 set_buffer_uptodate(bh); 1389 return ext4_journal_dirty_metadata(handle, bh); 1390 } 1391 1392 /* 1393 * We need to pick up the new inode size which generic_commit_write gave us 1394 * `file' can be NULL - eg, when called from page_symlink(). 1395 * 1396 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1397 * buffers are managed internally. 1398 */ 1399 static int ext4_ordered_write_end(struct file *file, 1400 struct address_space *mapping, 1401 loff_t pos, unsigned len, unsigned copied, 1402 struct page *page, void *fsdata) 1403 { 1404 handle_t *handle = ext4_journal_current_handle(); 1405 struct inode *inode = mapping->host; 1406 int ret = 0, ret2; 1407 1408 ret = ext4_jbd2_file_inode(handle, inode); 1409 1410 if (ret == 0) { 1411 loff_t new_i_size; 1412 1413 new_i_size = pos + copied; 1414 if (new_i_size > EXT4_I(inode)->i_disksize) { 1415 ext4_update_i_disksize(inode, new_i_size); 1416 /* We need to mark inode dirty even if 1417 * new_i_size is less that inode->i_size 1418 * bu greater than i_disksize.(hint delalloc) 1419 */ 1420 ext4_mark_inode_dirty(handle, inode); 1421 } 1422 1423 ret2 = generic_write_end(file, mapping, pos, len, copied, 1424 page, fsdata); 1425 copied = ret2; 1426 if (ret2 < 0) 1427 ret = ret2; 1428 } 1429 ret2 = ext4_journal_stop(handle); 1430 if (!ret) 1431 ret = ret2; 1432 1433 return ret ? ret : copied; 1434 } 1435 1436 static int ext4_writeback_write_end(struct file *file, 1437 struct address_space *mapping, 1438 loff_t pos, unsigned len, unsigned copied, 1439 struct page *page, void *fsdata) 1440 { 1441 handle_t *handle = ext4_journal_current_handle(); 1442 struct inode *inode = mapping->host; 1443 int ret = 0, ret2; 1444 loff_t new_i_size; 1445 1446 new_i_size = pos + copied; 1447 if (new_i_size > EXT4_I(inode)->i_disksize) { 1448 ext4_update_i_disksize(inode, new_i_size); 1449 /* We need to mark inode dirty even if 1450 * new_i_size is less that inode->i_size 1451 * bu greater than i_disksize.(hint delalloc) 1452 */ 1453 ext4_mark_inode_dirty(handle, inode); 1454 } 1455 1456 ret2 = generic_write_end(file, mapping, pos, len, copied, 1457 page, fsdata); 1458 copied = ret2; 1459 if (ret2 < 0) 1460 ret = ret2; 1461 1462 ret2 = ext4_journal_stop(handle); 1463 if (!ret) 1464 ret = ret2; 1465 1466 return ret ? ret : copied; 1467 } 1468 1469 static int ext4_journalled_write_end(struct file *file, 1470 struct address_space *mapping, 1471 loff_t pos, unsigned len, unsigned copied, 1472 struct page *page, void *fsdata) 1473 { 1474 handle_t *handle = ext4_journal_current_handle(); 1475 struct inode *inode = mapping->host; 1476 int ret = 0, ret2; 1477 int partial = 0; 1478 unsigned from, to; 1479 loff_t new_i_size; 1480 1481 from = pos & (PAGE_CACHE_SIZE - 1); 1482 to = from + len; 1483 1484 if (copied < len) { 1485 if (!PageUptodate(page)) 1486 copied = 0; 1487 page_zero_new_buffers(page, from+copied, to); 1488 } 1489 1490 ret = walk_page_buffers(handle, page_buffers(page), from, 1491 to, &partial, write_end_fn); 1492 if (!partial) 1493 SetPageUptodate(page); 1494 new_i_size = pos + copied; 1495 if (new_i_size > inode->i_size) 1496 i_size_write(inode, pos+copied); 1497 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1498 if (new_i_size > EXT4_I(inode)->i_disksize) { 1499 ext4_update_i_disksize(inode, new_i_size); 1500 ret2 = ext4_mark_inode_dirty(handle, inode); 1501 if (!ret) 1502 ret = ret2; 1503 } 1504 1505 unlock_page(page); 1506 ret2 = ext4_journal_stop(handle); 1507 if (!ret) 1508 ret = ret2; 1509 page_cache_release(page); 1510 1511 return ret ? ret : copied; 1512 } 1513 1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1515 { 1516 int retries = 0; 1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1518 unsigned long md_needed, mdblocks, total = 0; 1519 1520 /* 1521 * recalculate the amount of metadata blocks to reserve 1522 * in order to allocate nrblocks 1523 * worse case is one extent per block 1524 */ 1525 repeat: 1526 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1527 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1528 mdblocks = ext4_calc_metadata_amount(inode, total); 1529 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1530 1531 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1532 total = md_needed + nrblocks; 1533 1534 if (ext4_claim_free_blocks(sbi, total)) { 1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1536 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1537 yield(); 1538 goto repeat; 1539 } 1540 return -ENOSPC; 1541 } 1542 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1543 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1544 1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1546 return 0; /* success */ 1547 } 1548 1549 static void ext4_da_release_space(struct inode *inode, int to_free) 1550 { 1551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1552 int total, mdb, mdb_free, release; 1553 1554 if (!to_free) 1555 return; /* Nothing to release, exit */ 1556 1557 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1558 1559 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1560 /* 1561 * if there is no reserved blocks, but we try to free some 1562 * then the counter is messed up somewhere. 1563 * but since this function is called from invalidate 1564 * page, it's harmless to return without any action 1565 */ 1566 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1567 "blocks for inode %lu, but there is no reserved " 1568 "data blocks\n", to_free, inode->i_ino); 1569 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1570 return; 1571 } 1572 1573 /* recalculate the number of metablocks still need to be reserved */ 1574 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1575 mdb = ext4_calc_metadata_amount(inode, total); 1576 1577 /* figure out how many metablocks to release */ 1578 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1579 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1580 1581 release = to_free + mdb_free; 1582 1583 /* update fs dirty blocks counter for truncate case */ 1584 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1585 1586 /* update per-inode reservations */ 1587 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1588 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1589 1590 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1591 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1592 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1593 } 1594 1595 static void ext4_da_page_release_reservation(struct page *page, 1596 unsigned long offset) 1597 { 1598 int to_release = 0; 1599 struct buffer_head *head, *bh; 1600 unsigned int curr_off = 0; 1601 1602 head = page_buffers(page); 1603 bh = head; 1604 do { 1605 unsigned int next_off = curr_off + bh->b_size; 1606 1607 if ((offset <= curr_off) && (buffer_delay(bh))) { 1608 to_release++; 1609 clear_buffer_delay(bh); 1610 } 1611 curr_off = next_off; 1612 } while ((bh = bh->b_this_page) != head); 1613 ext4_da_release_space(page->mapping->host, to_release); 1614 } 1615 1616 /* 1617 * Delayed allocation stuff 1618 */ 1619 1620 struct mpage_da_data { 1621 struct inode *inode; 1622 struct buffer_head lbh; /* extent of blocks */ 1623 unsigned long first_page, next_page; /* extent of pages */ 1624 get_block_t *get_block; 1625 struct writeback_control *wbc; 1626 int io_done; 1627 long pages_written; 1628 int retval; 1629 }; 1630 1631 /* 1632 * mpage_da_submit_io - walks through extent of pages and try to write 1633 * them with writepage() call back 1634 * 1635 * @mpd->inode: inode 1636 * @mpd->first_page: first page of the extent 1637 * @mpd->next_page: page after the last page of the extent 1638 * @mpd->get_block: the filesystem's block mapper function 1639 * 1640 * By the time mpage_da_submit_io() is called we expect all blocks 1641 * to be allocated. this may be wrong if allocation failed. 1642 * 1643 * As pages are already locked by write_cache_pages(), we can't use it 1644 */ 1645 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1646 { 1647 struct address_space *mapping = mpd->inode->i_mapping; 1648 int ret = 0, err, nr_pages, i; 1649 unsigned long index, end; 1650 struct pagevec pvec; 1651 long pages_skipped; 1652 1653 BUG_ON(mpd->next_page <= mpd->first_page); 1654 pagevec_init(&pvec, 0); 1655 index = mpd->first_page; 1656 end = mpd->next_page - 1; 1657 1658 while (index <= end) { 1659 /* 1660 * We can use PAGECACHE_TAG_DIRTY lookup here because 1661 * even though we have cleared the dirty flag on the page 1662 * We still keep the page in the radix tree with tag 1663 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io. 1664 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback 1665 * which is called via the below writepage callback. 1666 */ 1667 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1668 PAGECACHE_TAG_DIRTY, 1669 min(end - index, 1670 (pgoff_t)PAGEVEC_SIZE-1) + 1); 1671 if (nr_pages == 0) 1672 break; 1673 for (i = 0; i < nr_pages; i++) { 1674 struct page *page = pvec.pages[i]; 1675 1676 pages_skipped = mpd->wbc->pages_skipped; 1677 err = mapping->a_ops->writepage(page, mpd->wbc); 1678 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1679 /* 1680 * have successfully written the page 1681 * without skipping the same 1682 */ 1683 mpd->pages_written++; 1684 /* 1685 * In error case, we have to continue because 1686 * remaining pages are still locked 1687 * XXX: unlock and re-dirty them? 1688 */ 1689 if (ret == 0) 1690 ret = err; 1691 } 1692 pagevec_release(&pvec); 1693 } 1694 return ret; 1695 } 1696 1697 /* 1698 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1699 * 1700 * @mpd->inode - inode to walk through 1701 * @exbh->b_blocknr - first block on a disk 1702 * @exbh->b_size - amount of space in bytes 1703 * @logical - first logical block to start assignment with 1704 * 1705 * the function goes through all passed space and put actual disk 1706 * block numbers into buffer heads, dropping BH_Delay 1707 */ 1708 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1709 struct buffer_head *exbh) 1710 { 1711 struct inode *inode = mpd->inode; 1712 struct address_space *mapping = inode->i_mapping; 1713 int blocks = exbh->b_size >> inode->i_blkbits; 1714 sector_t pblock = exbh->b_blocknr, cur_logical; 1715 struct buffer_head *head, *bh; 1716 pgoff_t index, end; 1717 struct pagevec pvec; 1718 int nr_pages, i; 1719 1720 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1721 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1722 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1723 1724 pagevec_init(&pvec, 0); 1725 1726 while (index <= end) { 1727 /* XXX: optimize tail */ 1728 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1729 if (nr_pages == 0) 1730 break; 1731 for (i = 0; i < nr_pages; i++) { 1732 struct page *page = pvec.pages[i]; 1733 1734 index = page->index; 1735 if (index > end) 1736 break; 1737 index++; 1738 1739 BUG_ON(!PageLocked(page)); 1740 BUG_ON(PageWriteback(page)); 1741 BUG_ON(!page_has_buffers(page)); 1742 1743 bh = page_buffers(page); 1744 head = bh; 1745 1746 /* skip blocks out of the range */ 1747 do { 1748 if (cur_logical >= logical) 1749 break; 1750 cur_logical++; 1751 } while ((bh = bh->b_this_page) != head); 1752 1753 do { 1754 if (cur_logical >= logical + blocks) 1755 break; 1756 if (buffer_delay(bh)) { 1757 bh->b_blocknr = pblock; 1758 clear_buffer_delay(bh); 1759 bh->b_bdev = inode->i_sb->s_bdev; 1760 } else if (buffer_unwritten(bh)) { 1761 bh->b_blocknr = pblock; 1762 clear_buffer_unwritten(bh); 1763 set_buffer_mapped(bh); 1764 set_buffer_new(bh); 1765 bh->b_bdev = inode->i_sb->s_bdev; 1766 } else if (buffer_mapped(bh)) 1767 BUG_ON(bh->b_blocknr != pblock); 1768 1769 cur_logical++; 1770 pblock++; 1771 } while ((bh = bh->b_this_page) != head); 1772 } 1773 pagevec_release(&pvec); 1774 } 1775 } 1776 1777 1778 /* 1779 * __unmap_underlying_blocks - just a helper function to unmap 1780 * set of blocks described by @bh 1781 */ 1782 static inline void __unmap_underlying_blocks(struct inode *inode, 1783 struct buffer_head *bh) 1784 { 1785 struct block_device *bdev = inode->i_sb->s_bdev; 1786 int blocks, i; 1787 1788 blocks = bh->b_size >> inode->i_blkbits; 1789 for (i = 0; i < blocks; i++) 1790 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1791 } 1792 1793 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1794 sector_t logical, long blk_cnt) 1795 { 1796 int nr_pages, i; 1797 pgoff_t index, end; 1798 struct pagevec pvec; 1799 struct inode *inode = mpd->inode; 1800 struct address_space *mapping = inode->i_mapping; 1801 1802 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1803 end = (logical + blk_cnt - 1) >> 1804 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1805 while (index <= end) { 1806 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1807 if (nr_pages == 0) 1808 break; 1809 for (i = 0; i < nr_pages; i++) { 1810 struct page *page = pvec.pages[i]; 1811 index = page->index; 1812 if (index > end) 1813 break; 1814 index++; 1815 1816 BUG_ON(!PageLocked(page)); 1817 BUG_ON(PageWriteback(page)); 1818 block_invalidatepage(page, 0); 1819 ClearPageUptodate(page); 1820 unlock_page(page); 1821 } 1822 } 1823 return; 1824 } 1825 1826 static void ext4_print_free_blocks(struct inode *inode) 1827 { 1828 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1829 printk(KERN_EMERG "Total free blocks count %lld\n", 1830 ext4_count_free_blocks(inode->i_sb)); 1831 printk(KERN_EMERG "Free/Dirty block details\n"); 1832 printk(KERN_EMERG "free_blocks=%lld\n", 1833 percpu_counter_sum(&sbi->s_freeblocks_counter)); 1834 printk(KERN_EMERG "dirty_blocks=%lld\n", 1835 percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1836 printk(KERN_EMERG "Block reservation details\n"); 1837 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n", 1838 EXT4_I(inode)->i_reserved_data_blocks); 1839 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n", 1840 EXT4_I(inode)->i_reserved_meta_blocks); 1841 return; 1842 } 1843 1844 /* 1845 * mpage_da_map_blocks - go through given space 1846 * 1847 * @mpd->lbh - bh describing space 1848 * @mpd->get_block - the filesystem's block mapper function 1849 * 1850 * The function skips space we know is already mapped to disk blocks. 1851 * 1852 */ 1853 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 1854 { 1855 int err = 0; 1856 struct buffer_head new; 1857 struct buffer_head *lbh = &mpd->lbh; 1858 sector_t next; 1859 1860 /* 1861 * We consider only non-mapped and non-allocated blocks 1862 */ 1863 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1864 return 0; 1865 new.b_state = lbh->b_state; 1866 new.b_blocknr = 0; 1867 new.b_size = lbh->b_size; 1868 next = lbh->b_blocknr; 1869 /* 1870 * If we didn't accumulate anything 1871 * to write simply return 1872 */ 1873 if (!new.b_size) 1874 return 0; 1875 err = mpd->get_block(mpd->inode, next, &new, 1); 1876 if (err) { 1877 1878 /* If get block returns with error 1879 * we simply return. Later writepage 1880 * will redirty the page and writepages 1881 * will find the dirty page again 1882 */ 1883 if (err == -EAGAIN) 1884 return 0; 1885 1886 if (err == -ENOSPC && 1887 ext4_count_free_blocks(mpd->inode->i_sb)) { 1888 mpd->retval = err; 1889 return 0; 1890 } 1891 1892 /* 1893 * get block failure will cause us 1894 * to loop in writepages. Because 1895 * a_ops->writepage won't be able to 1896 * make progress. The page will be redirtied 1897 * by writepage and writepages will again 1898 * try to write the same. 1899 */ 1900 printk(KERN_EMERG "%s block allocation failed for inode %lu " 1901 "at logical offset %llu with max blocks " 1902 "%zd with error %d\n", 1903 __func__, mpd->inode->i_ino, 1904 (unsigned long long)next, 1905 lbh->b_size >> mpd->inode->i_blkbits, err); 1906 printk(KERN_EMERG "This should not happen.!! " 1907 "Data will be lost\n"); 1908 if (err == -ENOSPC) { 1909 ext4_print_free_blocks(mpd->inode); 1910 } 1911 /* invlaidate all the pages */ 1912 ext4_da_block_invalidatepages(mpd, next, 1913 lbh->b_size >> mpd->inode->i_blkbits); 1914 return err; 1915 } 1916 BUG_ON(new.b_size == 0); 1917 1918 if (buffer_new(&new)) 1919 __unmap_underlying_blocks(mpd->inode, &new); 1920 1921 /* 1922 * If blocks are delayed marked, we need to 1923 * put actual blocknr and drop delayed bit 1924 */ 1925 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1926 mpage_put_bnr_to_bhs(mpd, next, &new); 1927 1928 return 0; 1929 } 1930 1931 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1932 (1 << BH_Delay) | (1 << BH_Unwritten)) 1933 1934 /* 1935 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1936 * 1937 * @mpd->lbh - extent of blocks 1938 * @logical - logical number of the block in the file 1939 * @bh - bh of the block (used to access block's state) 1940 * 1941 * the function is used to collect contig. blocks in same state 1942 */ 1943 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1944 sector_t logical, struct buffer_head *bh) 1945 { 1946 sector_t next; 1947 size_t b_size = bh->b_size; 1948 struct buffer_head *lbh = &mpd->lbh; 1949 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1950 1951 /* check if thereserved journal credits might overflow */ 1952 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1953 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1954 /* 1955 * With non-extent format we are limited by the journal 1956 * credit available. Total credit needed to insert 1957 * nrblocks contiguous blocks is dependent on the 1958 * nrblocks. So limit nrblocks. 1959 */ 1960 goto flush_it; 1961 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1962 EXT4_MAX_TRANS_DATA) { 1963 /* 1964 * Adding the new buffer_head would make it cross the 1965 * allowed limit for which we have journal credit 1966 * reserved. So limit the new bh->b_size 1967 */ 1968 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1969 mpd->inode->i_blkbits; 1970 /* we will do mpage_da_submit_io in the next loop */ 1971 } 1972 } 1973 /* 1974 * First block in the extent 1975 */ 1976 if (lbh->b_size == 0) { 1977 lbh->b_blocknr = logical; 1978 lbh->b_size = b_size; 1979 lbh->b_state = bh->b_state & BH_FLAGS; 1980 return; 1981 } 1982 1983 next = lbh->b_blocknr + nrblocks; 1984 /* 1985 * Can we merge the block to our big extent? 1986 */ 1987 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1988 lbh->b_size += b_size; 1989 return; 1990 } 1991 1992 flush_it: 1993 /* 1994 * We couldn't merge the block to our extent, so we 1995 * need to flush current extent and start new one 1996 */ 1997 if (mpage_da_map_blocks(mpd) == 0) 1998 mpage_da_submit_io(mpd); 1999 mpd->io_done = 1; 2000 return; 2001 } 2002 2003 /* 2004 * __mpage_da_writepage - finds extent of pages and blocks 2005 * 2006 * @page: page to consider 2007 * @wbc: not used, we just follow rules 2008 * @data: context 2009 * 2010 * The function finds extents of pages and scan them for all blocks. 2011 */ 2012 static int __mpage_da_writepage(struct page *page, 2013 struct writeback_control *wbc, void *data) 2014 { 2015 struct mpage_da_data *mpd = data; 2016 struct inode *inode = mpd->inode; 2017 struct buffer_head *bh, *head, fake; 2018 sector_t logical; 2019 2020 if (mpd->io_done) { 2021 /* 2022 * Rest of the page in the page_vec 2023 * redirty then and skip then. We will 2024 * try to to write them again after 2025 * starting a new transaction 2026 */ 2027 redirty_page_for_writepage(wbc, page); 2028 unlock_page(page); 2029 return MPAGE_DA_EXTENT_TAIL; 2030 } 2031 /* 2032 * Can we merge this page to current extent? 2033 */ 2034 if (mpd->next_page != page->index) { 2035 /* 2036 * Nope, we can't. So, we map non-allocated blocks 2037 * and start IO on them using writepage() 2038 */ 2039 if (mpd->next_page != mpd->first_page) { 2040 if (mpage_da_map_blocks(mpd) == 0) 2041 mpage_da_submit_io(mpd); 2042 /* 2043 * skip rest of the page in the page_vec 2044 */ 2045 mpd->io_done = 1; 2046 redirty_page_for_writepage(wbc, page); 2047 unlock_page(page); 2048 return MPAGE_DA_EXTENT_TAIL; 2049 } 2050 2051 /* 2052 * Start next extent of pages ... 2053 */ 2054 mpd->first_page = page->index; 2055 2056 /* 2057 * ... and blocks 2058 */ 2059 mpd->lbh.b_size = 0; 2060 mpd->lbh.b_state = 0; 2061 mpd->lbh.b_blocknr = 0; 2062 } 2063 2064 mpd->next_page = page->index + 1; 2065 logical = (sector_t) page->index << 2066 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2067 2068 if (!page_has_buffers(page)) { 2069 /* 2070 * There is no attached buffer heads yet (mmap?) 2071 * we treat the page asfull of dirty blocks 2072 */ 2073 bh = &fake; 2074 bh->b_size = PAGE_CACHE_SIZE; 2075 bh->b_state = 0; 2076 set_buffer_dirty(bh); 2077 set_buffer_uptodate(bh); 2078 mpage_add_bh_to_extent(mpd, logical, bh); 2079 if (mpd->io_done) 2080 return MPAGE_DA_EXTENT_TAIL; 2081 } else { 2082 /* 2083 * Page with regular buffer heads, just add all dirty ones 2084 */ 2085 head = page_buffers(page); 2086 bh = head; 2087 do { 2088 BUG_ON(buffer_locked(bh)); 2089 if (buffer_dirty(bh) && 2090 (!buffer_mapped(bh) || buffer_delay(bh))) { 2091 mpage_add_bh_to_extent(mpd, logical, bh); 2092 if (mpd->io_done) 2093 return MPAGE_DA_EXTENT_TAIL; 2094 } 2095 logical++; 2096 } while ((bh = bh->b_this_page) != head); 2097 } 2098 2099 return 0; 2100 } 2101 2102 /* 2103 * mpage_da_writepages - walk the list of dirty pages of the given 2104 * address space, allocates non-allocated blocks, maps newly-allocated 2105 * blocks to existing bhs and issue IO them 2106 * 2107 * @mapping: address space structure to write 2108 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2109 * @get_block: the filesystem's block mapper function. 2110 * 2111 * This is a library function, which implements the writepages() 2112 * address_space_operation. 2113 */ 2114 static int mpage_da_writepages(struct address_space *mapping, 2115 struct writeback_control *wbc, 2116 struct mpage_da_data *mpd) 2117 { 2118 int ret; 2119 2120 if (!mpd->get_block) 2121 return generic_writepages(mapping, wbc); 2122 2123 mpd->lbh.b_size = 0; 2124 mpd->lbh.b_state = 0; 2125 mpd->lbh.b_blocknr = 0; 2126 mpd->first_page = 0; 2127 mpd->next_page = 0; 2128 mpd->io_done = 0; 2129 mpd->pages_written = 0; 2130 mpd->retval = 0; 2131 2132 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd); 2133 /* 2134 * Handle last extent of pages 2135 */ 2136 if (!mpd->io_done && mpd->next_page != mpd->first_page) { 2137 if (mpage_da_map_blocks(mpd) == 0) 2138 mpage_da_submit_io(mpd); 2139 2140 mpd->io_done = 1; 2141 ret = MPAGE_DA_EXTENT_TAIL; 2142 } 2143 wbc->nr_to_write -= mpd->pages_written; 2144 return ret; 2145 } 2146 2147 /* 2148 * this is a special callback for ->write_begin() only 2149 * it's intention is to return mapped block or reserve space 2150 */ 2151 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2152 struct buffer_head *bh_result, int create) 2153 { 2154 int ret = 0; 2155 2156 BUG_ON(create == 0); 2157 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2158 2159 /* 2160 * first, we need to know whether the block is allocated already 2161 * preallocated blocks are unmapped but should treated 2162 * the same as allocated blocks. 2163 */ 2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2165 if ((ret == 0) && !buffer_delay(bh_result)) { 2166 /* the block isn't (pre)allocated yet, let's reserve space */ 2167 /* 2168 * XXX: __block_prepare_write() unmaps passed block, 2169 * is it OK? 2170 */ 2171 ret = ext4_da_reserve_space(inode, 1); 2172 if (ret) 2173 /* not enough space to reserve */ 2174 return ret; 2175 2176 map_bh(bh_result, inode->i_sb, 0); 2177 set_buffer_new(bh_result); 2178 set_buffer_delay(bh_result); 2179 } else if (ret > 0) { 2180 bh_result->b_size = (ret << inode->i_blkbits); 2181 ret = 0; 2182 } 2183 2184 return ret; 2185 } 2186 #define EXT4_DELALLOC_RSVED 1 2187 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2188 struct buffer_head *bh_result, int create) 2189 { 2190 int ret; 2191 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2192 loff_t disksize = EXT4_I(inode)->i_disksize; 2193 handle_t *handle = NULL; 2194 2195 handle = ext4_journal_current_handle(); 2196 BUG_ON(!handle); 2197 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2198 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2199 if (ret > 0) { 2200 2201 bh_result->b_size = (ret << inode->i_blkbits); 2202 2203 if (ext4_should_order_data(inode)) { 2204 int retval; 2205 retval = ext4_jbd2_file_inode(handle, inode); 2206 if (retval) 2207 /* 2208 * Failed to add inode for ordered 2209 * mode. Don't update file size 2210 */ 2211 return retval; 2212 } 2213 2214 /* 2215 * Update on-disk size along with block allocation 2216 * we don't use 'extend_disksize' as size may change 2217 * within already allocated block -bzzz 2218 */ 2219 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2220 if (disksize > i_size_read(inode)) 2221 disksize = i_size_read(inode); 2222 if (disksize > EXT4_I(inode)->i_disksize) { 2223 ext4_update_i_disksize(inode, disksize); 2224 ret = ext4_mark_inode_dirty(handle, inode); 2225 return ret; 2226 } 2227 ret = 0; 2228 } 2229 return ret; 2230 } 2231 2232 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2233 { 2234 /* 2235 * unmapped buffer is possible for holes. 2236 * delay buffer is possible with delayed allocation 2237 */ 2238 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2239 } 2240 2241 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2242 struct buffer_head *bh_result, int create) 2243 { 2244 int ret = 0; 2245 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2246 2247 /* 2248 * we don't want to do block allocation in writepage 2249 * so call get_block_wrap with create = 0 2250 */ 2251 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2252 bh_result, 0, 0, 0); 2253 if (ret > 0) { 2254 bh_result->b_size = (ret << inode->i_blkbits); 2255 ret = 0; 2256 } 2257 return ret; 2258 } 2259 2260 /* 2261 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2262 * get called via journal_submit_inode_data_buffers (no journal handle) 2263 * get called via shrink_page_list via pdflush (no journal handle) 2264 * or grab_page_cache when doing write_begin (have journal handle) 2265 */ 2266 static int ext4_da_writepage(struct page *page, 2267 struct writeback_control *wbc) 2268 { 2269 int ret = 0; 2270 loff_t size; 2271 unsigned long len; 2272 struct buffer_head *page_bufs; 2273 struct inode *inode = page->mapping->host; 2274 2275 size = i_size_read(inode); 2276 if (page->index == size >> PAGE_CACHE_SHIFT) 2277 len = size & ~PAGE_CACHE_MASK; 2278 else 2279 len = PAGE_CACHE_SIZE; 2280 2281 if (page_has_buffers(page)) { 2282 page_bufs = page_buffers(page); 2283 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2284 ext4_bh_unmapped_or_delay)) { 2285 /* 2286 * We don't want to do block allocation 2287 * So redirty the page and return 2288 * We may reach here when we do a journal commit 2289 * via journal_submit_inode_data_buffers. 2290 * If we don't have mapping block we just ignore 2291 * them. We can also reach here via shrink_page_list 2292 */ 2293 redirty_page_for_writepage(wbc, page); 2294 unlock_page(page); 2295 return 0; 2296 } 2297 } else { 2298 /* 2299 * The test for page_has_buffers() is subtle: 2300 * We know the page is dirty but it lost buffers. That means 2301 * that at some moment in time after write_begin()/write_end() 2302 * has been called all buffers have been clean and thus they 2303 * must have been written at least once. So they are all 2304 * mapped and we can happily proceed with mapping them 2305 * and writing the page. 2306 * 2307 * Try to initialize the buffer_heads and check whether 2308 * all are mapped and non delay. We don't want to 2309 * do block allocation here. 2310 */ 2311 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2312 ext4_normal_get_block_write); 2313 if (!ret) { 2314 page_bufs = page_buffers(page); 2315 /* check whether all are mapped and non delay */ 2316 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2317 ext4_bh_unmapped_or_delay)) { 2318 redirty_page_for_writepage(wbc, page); 2319 unlock_page(page); 2320 return 0; 2321 } 2322 } else { 2323 /* 2324 * We can't do block allocation here 2325 * so just redity the page and unlock 2326 * and return 2327 */ 2328 redirty_page_for_writepage(wbc, page); 2329 unlock_page(page); 2330 return 0; 2331 } 2332 /* now mark the buffer_heads as dirty and uptodate */ 2333 block_commit_write(page, 0, PAGE_CACHE_SIZE); 2334 } 2335 2336 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2337 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2338 else 2339 ret = block_write_full_page(page, 2340 ext4_normal_get_block_write, 2341 wbc); 2342 2343 return ret; 2344 } 2345 2346 /* 2347 * This is called via ext4_da_writepages() to 2348 * calulate the total number of credits to reserve to fit 2349 * a single extent allocation into a single transaction, 2350 * ext4_da_writpeages() will loop calling this before 2351 * the block allocation. 2352 */ 2353 2354 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2355 { 2356 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2357 2358 /* 2359 * With non-extent format the journal credit needed to 2360 * insert nrblocks contiguous block is dependent on 2361 * number of contiguous block. So we will limit 2362 * number of contiguous block to a sane value 2363 */ 2364 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2365 (max_blocks > EXT4_MAX_TRANS_DATA)) 2366 max_blocks = EXT4_MAX_TRANS_DATA; 2367 2368 return ext4_chunk_trans_blocks(inode, max_blocks); 2369 } 2370 2371 static int ext4_da_writepages(struct address_space *mapping, 2372 struct writeback_control *wbc) 2373 { 2374 pgoff_t index; 2375 int range_whole = 0; 2376 handle_t *handle = NULL; 2377 struct mpage_da_data mpd; 2378 struct inode *inode = mapping->host; 2379 int no_nrwrite_index_update; 2380 long pages_written = 0, pages_skipped; 2381 int needed_blocks, ret = 0, nr_to_writebump = 0; 2382 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2383 2384 /* 2385 * No pages to write? This is mainly a kludge to avoid starting 2386 * a transaction for special inodes like journal inode on last iput() 2387 * because that could violate lock ordering on umount 2388 */ 2389 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2390 return 0; 2391 /* 2392 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2393 * This make sure small files blocks are allocated in 2394 * single attempt. This ensure that small files 2395 * get less fragmented. 2396 */ 2397 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2398 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2399 wbc->nr_to_write = sbi->s_mb_stream_request; 2400 } 2401 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2402 range_whole = 1; 2403 2404 if (wbc->range_cyclic) 2405 index = mapping->writeback_index; 2406 else 2407 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2408 2409 mpd.wbc = wbc; 2410 mpd.inode = mapping->host; 2411 2412 /* 2413 * we don't want write_cache_pages to update 2414 * nr_to_write and writeback_index 2415 */ 2416 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2417 wbc->no_nrwrite_index_update = 1; 2418 pages_skipped = wbc->pages_skipped; 2419 2420 while (!ret && wbc->nr_to_write > 0) { 2421 2422 /* 2423 * we insert one extent at a time. So we need 2424 * credit needed for single extent allocation. 2425 * journalled mode is currently not supported 2426 * by delalloc 2427 */ 2428 BUG_ON(ext4_should_journal_data(inode)); 2429 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2430 2431 /* start a new transaction*/ 2432 handle = ext4_journal_start(inode, needed_blocks); 2433 if (IS_ERR(handle)) { 2434 ret = PTR_ERR(handle); 2435 printk(KERN_EMERG "%s: jbd2_start: " 2436 "%ld pages, ino %lu; err %d\n", __func__, 2437 wbc->nr_to_write, inode->i_ino, ret); 2438 dump_stack(); 2439 goto out_writepages; 2440 } 2441 mpd.get_block = ext4_da_get_block_write; 2442 ret = mpage_da_writepages(mapping, wbc, &mpd); 2443 2444 ext4_journal_stop(handle); 2445 2446 if (mpd.retval == -ENOSPC) { 2447 /* commit the transaction which would 2448 * free blocks released in the transaction 2449 * and try again 2450 */ 2451 jbd2_journal_force_commit_nested(sbi->s_journal); 2452 wbc->pages_skipped = pages_skipped; 2453 ret = 0; 2454 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2455 /* 2456 * got one extent now try with 2457 * rest of the pages 2458 */ 2459 pages_written += mpd.pages_written; 2460 wbc->pages_skipped = pages_skipped; 2461 ret = 0; 2462 } else if (wbc->nr_to_write) 2463 /* 2464 * There is no more writeout needed 2465 * or we requested for a noblocking writeout 2466 * and we found the device congested 2467 */ 2468 break; 2469 } 2470 if (pages_skipped != wbc->pages_skipped) 2471 printk(KERN_EMERG "This should not happen leaving %s " 2472 "with nr_to_write = %ld ret = %d\n", 2473 __func__, wbc->nr_to_write, ret); 2474 2475 /* Update index */ 2476 index += pages_written; 2477 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2478 /* 2479 * set the writeback_index so that range_cyclic 2480 * mode will write it back later 2481 */ 2482 mapping->writeback_index = index; 2483 2484 out_writepages: 2485 if (!no_nrwrite_index_update) 2486 wbc->no_nrwrite_index_update = 0; 2487 wbc->nr_to_write -= nr_to_writebump; 2488 return ret; 2489 } 2490 2491 #define FALL_BACK_TO_NONDELALLOC 1 2492 static int ext4_nonda_switch(struct super_block *sb) 2493 { 2494 s64 free_blocks, dirty_blocks; 2495 struct ext4_sb_info *sbi = EXT4_SB(sb); 2496 2497 /* 2498 * switch to non delalloc mode if we are running low 2499 * on free block. The free block accounting via percpu 2500 * counters can get slightly wrong with FBC_BATCH getting 2501 * accumulated on each CPU without updating global counters 2502 * Delalloc need an accurate free block accounting. So switch 2503 * to non delalloc when we are near to error range. 2504 */ 2505 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2506 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2507 if (2 * free_blocks < 3 * dirty_blocks || 2508 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2509 /* 2510 * free block count is less that 150% of dirty blocks 2511 * or free blocks is less that watermark 2512 */ 2513 return 1; 2514 } 2515 return 0; 2516 } 2517 2518 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2519 loff_t pos, unsigned len, unsigned flags, 2520 struct page **pagep, void **fsdata) 2521 { 2522 int ret, retries = 0; 2523 struct page *page; 2524 pgoff_t index; 2525 unsigned from, to; 2526 struct inode *inode = mapping->host; 2527 handle_t *handle; 2528 2529 index = pos >> PAGE_CACHE_SHIFT; 2530 from = pos & (PAGE_CACHE_SIZE - 1); 2531 to = from + len; 2532 2533 if (ext4_nonda_switch(inode->i_sb)) { 2534 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2535 return ext4_write_begin(file, mapping, pos, 2536 len, flags, pagep, fsdata); 2537 } 2538 *fsdata = (void *)0; 2539 retry: 2540 /* 2541 * With delayed allocation, we don't log the i_disksize update 2542 * if there is delayed block allocation. But we still need 2543 * to journalling the i_disksize update if writes to the end 2544 * of file which has an already mapped buffer. 2545 */ 2546 handle = ext4_journal_start(inode, 1); 2547 if (IS_ERR(handle)) { 2548 ret = PTR_ERR(handle); 2549 goto out; 2550 } 2551 2552 page = __grab_cache_page(mapping, index); 2553 if (!page) { 2554 ext4_journal_stop(handle); 2555 ret = -ENOMEM; 2556 goto out; 2557 } 2558 *pagep = page; 2559 2560 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2561 ext4_da_get_block_prep); 2562 if (ret < 0) { 2563 unlock_page(page); 2564 ext4_journal_stop(handle); 2565 page_cache_release(page); 2566 /* 2567 * block_write_begin may have instantiated a few blocks 2568 * outside i_size. Trim these off again. Don't need 2569 * i_size_read because we hold i_mutex. 2570 */ 2571 if (pos + len > inode->i_size) 2572 vmtruncate(inode, inode->i_size); 2573 } 2574 2575 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2576 goto retry; 2577 out: 2578 return ret; 2579 } 2580 2581 /* 2582 * Check if we should update i_disksize 2583 * when write to the end of file but not require block allocation 2584 */ 2585 static int ext4_da_should_update_i_disksize(struct page *page, 2586 unsigned long offset) 2587 { 2588 struct buffer_head *bh; 2589 struct inode *inode = page->mapping->host; 2590 unsigned int idx; 2591 int i; 2592 2593 bh = page_buffers(page); 2594 idx = offset >> inode->i_blkbits; 2595 2596 for (i = 0; i < idx; i++) 2597 bh = bh->b_this_page; 2598 2599 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2600 return 0; 2601 return 1; 2602 } 2603 2604 static int ext4_da_write_end(struct file *file, 2605 struct address_space *mapping, 2606 loff_t pos, unsigned len, unsigned copied, 2607 struct page *page, void *fsdata) 2608 { 2609 struct inode *inode = mapping->host; 2610 int ret = 0, ret2; 2611 handle_t *handle = ext4_journal_current_handle(); 2612 loff_t new_i_size; 2613 unsigned long start, end; 2614 int write_mode = (int)(unsigned long)fsdata; 2615 2616 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2617 if (ext4_should_order_data(inode)) { 2618 return ext4_ordered_write_end(file, mapping, pos, 2619 len, copied, page, fsdata); 2620 } else if (ext4_should_writeback_data(inode)) { 2621 return ext4_writeback_write_end(file, mapping, pos, 2622 len, copied, page, fsdata); 2623 } else { 2624 BUG(); 2625 } 2626 } 2627 2628 start = pos & (PAGE_CACHE_SIZE - 1); 2629 end = start + copied - 1; 2630 2631 /* 2632 * generic_write_end() will run mark_inode_dirty() if i_size 2633 * changes. So let's piggyback the i_disksize mark_inode_dirty 2634 * into that. 2635 */ 2636 2637 new_i_size = pos + copied; 2638 if (new_i_size > EXT4_I(inode)->i_disksize) { 2639 if (ext4_da_should_update_i_disksize(page, end)) { 2640 down_write(&EXT4_I(inode)->i_data_sem); 2641 if (new_i_size > EXT4_I(inode)->i_disksize) { 2642 /* 2643 * Updating i_disksize when extending file 2644 * without needing block allocation 2645 */ 2646 if (ext4_should_order_data(inode)) 2647 ret = ext4_jbd2_file_inode(handle, 2648 inode); 2649 2650 EXT4_I(inode)->i_disksize = new_i_size; 2651 } 2652 up_write(&EXT4_I(inode)->i_data_sem); 2653 /* We need to mark inode dirty even if 2654 * new_i_size is less that inode->i_size 2655 * bu greater than i_disksize.(hint delalloc) 2656 */ 2657 ext4_mark_inode_dirty(handle, inode); 2658 } 2659 } 2660 ret2 = generic_write_end(file, mapping, pos, len, copied, 2661 page, fsdata); 2662 copied = ret2; 2663 if (ret2 < 0) 2664 ret = ret2; 2665 ret2 = ext4_journal_stop(handle); 2666 if (!ret) 2667 ret = ret2; 2668 2669 return ret ? ret : copied; 2670 } 2671 2672 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2673 { 2674 /* 2675 * Drop reserved blocks 2676 */ 2677 BUG_ON(!PageLocked(page)); 2678 if (!page_has_buffers(page)) 2679 goto out; 2680 2681 ext4_da_page_release_reservation(page, offset); 2682 2683 out: 2684 ext4_invalidatepage(page, offset); 2685 2686 return; 2687 } 2688 2689 2690 /* 2691 * bmap() is special. It gets used by applications such as lilo and by 2692 * the swapper to find the on-disk block of a specific piece of data. 2693 * 2694 * Naturally, this is dangerous if the block concerned is still in the 2695 * journal. If somebody makes a swapfile on an ext4 data-journaling 2696 * filesystem and enables swap, then they may get a nasty shock when the 2697 * data getting swapped to that swapfile suddenly gets overwritten by 2698 * the original zero's written out previously to the journal and 2699 * awaiting writeback in the kernel's buffer cache. 2700 * 2701 * So, if we see any bmap calls here on a modified, data-journaled file, 2702 * take extra steps to flush any blocks which might be in the cache. 2703 */ 2704 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2705 { 2706 struct inode *inode = mapping->host; 2707 journal_t *journal; 2708 int err; 2709 2710 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2711 test_opt(inode->i_sb, DELALLOC)) { 2712 /* 2713 * With delalloc we want to sync the file 2714 * so that we can make sure we allocate 2715 * blocks for file 2716 */ 2717 filemap_write_and_wait(mapping); 2718 } 2719 2720 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2721 /* 2722 * This is a REALLY heavyweight approach, but the use of 2723 * bmap on dirty files is expected to be extremely rare: 2724 * only if we run lilo or swapon on a freshly made file 2725 * do we expect this to happen. 2726 * 2727 * (bmap requires CAP_SYS_RAWIO so this does not 2728 * represent an unprivileged user DOS attack --- we'd be 2729 * in trouble if mortal users could trigger this path at 2730 * will.) 2731 * 2732 * NB. EXT4_STATE_JDATA is not set on files other than 2733 * regular files. If somebody wants to bmap a directory 2734 * or symlink and gets confused because the buffer 2735 * hasn't yet been flushed to disk, they deserve 2736 * everything they get. 2737 */ 2738 2739 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2740 journal = EXT4_JOURNAL(inode); 2741 jbd2_journal_lock_updates(journal); 2742 err = jbd2_journal_flush(journal); 2743 jbd2_journal_unlock_updates(journal); 2744 2745 if (err) 2746 return 0; 2747 } 2748 2749 return generic_block_bmap(mapping, block, ext4_get_block); 2750 } 2751 2752 static int bget_one(handle_t *handle, struct buffer_head *bh) 2753 { 2754 get_bh(bh); 2755 return 0; 2756 } 2757 2758 static int bput_one(handle_t *handle, struct buffer_head *bh) 2759 { 2760 put_bh(bh); 2761 return 0; 2762 } 2763 2764 /* 2765 * Note that we don't need to start a transaction unless we're journaling data 2766 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2767 * need to file the inode to the transaction's list in ordered mode because if 2768 * we are writing back data added by write(), the inode is already there and if 2769 * we are writing back data modified via mmap(), noone guarantees in which 2770 * transaction the data will hit the disk. In case we are journaling data, we 2771 * cannot start transaction directly because transaction start ranks above page 2772 * lock so we have to do some magic. 2773 * 2774 * In all journaling modes block_write_full_page() will start the I/O. 2775 * 2776 * Problem: 2777 * 2778 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2779 * ext4_writepage() 2780 * 2781 * Similar for: 2782 * 2783 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2784 * 2785 * Same applies to ext4_get_block(). We will deadlock on various things like 2786 * lock_journal and i_data_sem 2787 * 2788 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2789 * allocations fail. 2790 * 2791 * 16May01: If we're reentered then journal_current_handle() will be 2792 * non-zero. We simply *return*. 2793 * 2794 * 1 July 2001: @@@ FIXME: 2795 * In journalled data mode, a data buffer may be metadata against the 2796 * current transaction. But the same file is part of a shared mapping 2797 * and someone does a writepage() on it. 2798 * 2799 * We will move the buffer onto the async_data list, but *after* it has 2800 * been dirtied. So there's a small window where we have dirty data on 2801 * BJ_Metadata. 2802 * 2803 * Note that this only applies to the last partial page in the file. The 2804 * bit which block_write_full_page() uses prepare/commit for. (That's 2805 * broken code anyway: it's wrong for msync()). 2806 * 2807 * It's a rare case: affects the final partial page, for journalled data 2808 * where the file is subject to bith write() and writepage() in the same 2809 * transction. To fix it we'll need a custom block_write_full_page(). 2810 * We'll probably need that anyway for journalling writepage() output. 2811 * 2812 * We don't honour synchronous mounts for writepage(). That would be 2813 * disastrous. Any write() or metadata operation will sync the fs for 2814 * us. 2815 * 2816 */ 2817 static int __ext4_normal_writepage(struct page *page, 2818 struct writeback_control *wbc) 2819 { 2820 struct inode *inode = page->mapping->host; 2821 2822 if (test_opt(inode->i_sb, NOBH)) 2823 return nobh_writepage(page, 2824 ext4_normal_get_block_write, wbc); 2825 else 2826 return block_write_full_page(page, 2827 ext4_normal_get_block_write, 2828 wbc); 2829 } 2830 2831 static int ext4_normal_writepage(struct page *page, 2832 struct writeback_control *wbc) 2833 { 2834 struct inode *inode = page->mapping->host; 2835 loff_t size = i_size_read(inode); 2836 loff_t len; 2837 2838 J_ASSERT(PageLocked(page)); 2839 if (page->index == size >> PAGE_CACHE_SHIFT) 2840 len = size & ~PAGE_CACHE_MASK; 2841 else 2842 len = PAGE_CACHE_SIZE; 2843 2844 if (page_has_buffers(page)) { 2845 /* if page has buffers it should all be mapped 2846 * and allocated. If there are not buffers attached 2847 * to the page we know the page is dirty but it lost 2848 * buffers. That means that at some moment in time 2849 * after write_begin() / write_end() has been called 2850 * all buffers have been clean and thus they must have been 2851 * written at least once. So they are all mapped and we can 2852 * happily proceed with mapping them and writing the page. 2853 */ 2854 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2855 ext4_bh_unmapped_or_delay)); 2856 } 2857 2858 if (!ext4_journal_current_handle()) 2859 return __ext4_normal_writepage(page, wbc); 2860 2861 redirty_page_for_writepage(wbc, page); 2862 unlock_page(page); 2863 return 0; 2864 } 2865 2866 static int __ext4_journalled_writepage(struct page *page, 2867 struct writeback_control *wbc) 2868 { 2869 struct address_space *mapping = page->mapping; 2870 struct inode *inode = mapping->host; 2871 struct buffer_head *page_bufs; 2872 handle_t *handle = NULL; 2873 int ret = 0; 2874 int err; 2875 2876 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2877 ext4_normal_get_block_write); 2878 if (ret != 0) 2879 goto out_unlock; 2880 2881 page_bufs = page_buffers(page); 2882 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2883 bget_one); 2884 /* As soon as we unlock the page, it can go away, but we have 2885 * references to buffers so we are safe */ 2886 unlock_page(page); 2887 2888 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2889 if (IS_ERR(handle)) { 2890 ret = PTR_ERR(handle); 2891 goto out; 2892 } 2893 2894 ret = walk_page_buffers(handle, page_bufs, 0, 2895 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2896 2897 err = walk_page_buffers(handle, page_bufs, 0, 2898 PAGE_CACHE_SIZE, NULL, write_end_fn); 2899 if (ret == 0) 2900 ret = err; 2901 err = ext4_journal_stop(handle); 2902 if (!ret) 2903 ret = err; 2904 2905 walk_page_buffers(handle, page_bufs, 0, 2906 PAGE_CACHE_SIZE, NULL, bput_one); 2907 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2908 goto out; 2909 2910 out_unlock: 2911 unlock_page(page); 2912 out: 2913 return ret; 2914 } 2915 2916 static int ext4_journalled_writepage(struct page *page, 2917 struct writeback_control *wbc) 2918 { 2919 struct inode *inode = page->mapping->host; 2920 loff_t size = i_size_read(inode); 2921 loff_t len; 2922 2923 J_ASSERT(PageLocked(page)); 2924 if (page->index == size >> PAGE_CACHE_SHIFT) 2925 len = size & ~PAGE_CACHE_MASK; 2926 else 2927 len = PAGE_CACHE_SIZE; 2928 2929 if (page_has_buffers(page)) { 2930 /* if page has buffers it should all be mapped 2931 * and allocated. If there are not buffers attached 2932 * to the page we know the page is dirty but it lost 2933 * buffers. That means that at some moment in time 2934 * after write_begin() / write_end() has been called 2935 * all buffers have been clean and thus they must have been 2936 * written at least once. So they are all mapped and we can 2937 * happily proceed with mapping them and writing the page. 2938 */ 2939 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2940 ext4_bh_unmapped_or_delay)); 2941 } 2942 2943 if (ext4_journal_current_handle()) 2944 goto no_write; 2945 2946 if (PageChecked(page)) { 2947 /* 2948 * It's mmapped pagecache. Add buffers and journal it. There 2949 * doesn't seem much point in redirtying the page here. 2950 */ 2951 ClearPageChecked(page); 2952 return __ext4_journalled_writepage(page, wbc); 2953 } else { 2954 /* 2955 * It may be a page full of checkpoint-mode buffers. We don't 2956 * really know unless we go poke around in the buffer_heads. 2957 * But block_write_full_page will do the right thing. 2958 */ 2959 return block_write_full_page(page, 2960 ext4_normal_get_block_write, 2961 wbc); 2962 } 2963 no_write: 2964 redirty_page_for_writepage(wbc, page); 2965 unlock_page(page); 2966 return 0; 2967 } 2968 2969 static int ext4_readpage(struct file *file, struct page *page) 2970 { 2971 return mpage_readpage(page, ext4_get_block); 2972 } 2973 2974 static int 2975 ext4_readpages(struct file *file, struct address_space *mapping, 2976 struct list_head *pages, unsigned nr_pages) 2977 { 2978 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2979 } 2980 2981 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2982 { 2983 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2984 2985 /* 2986 * If it's a full truncate we just forget about the pending dirtying 2987 */ 2988 if (offset == 0) 2989 ClearPageChecked(page); 2990 2991 jbd2_journal_invalidatepage(journal, page, offset); 2992 } 2993 2994 static int ext4_releasepage(struct page *page, gfp_t wait) 2995 { 2996 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2997 2998 WARN_ON(PageChecked(page)); 2999 if (!page_has_buffers(page)) 3000 return 0; 3001 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3002 } 3003 3004 /* 3005 * If the O_DIRECT write will extend the file then add this inode to the 3006 * orphan list. So recovery will truncate it back to the original size 3007 * if the machine crashes during the write. 3008 * 3009 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3010 * crashes then stale disk data _may_ be exposed inside the file. But current 3011 * VFS code falls back into buffered path in that case so we are safe. 3012 */ 3013 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3014 const struct iovec *iov, loff_t offset, 3015 unsigned long nr_segs) 3016 { 3017 struct file *file = iocb->ki_filp; 3018 struct inode *inode = file->f_mapping->host; 3019 struct ext4_inode_info *ei = EXT4_I(inode); 3020 handle_t *handle; 3021 ssize_t ret; 3022 int orphan = 0; 3023 size_t count = iov_length(iov, nr_segs); 3024 3025 if (rw == WRITE) { 3026 loff_t final_size = offset + count; 3027 3028 if (final_size > inode->i_size) { 3029 /* Credits for sb + inode write */ 3030 handle = ext4_journal_start(inode, 2); 3031 if (IS_ERR(handle)) { 3032 ret = PTR_ERR(handle); 3033 goto out; 3034 } 3035 ret = ext4_orphan_add(handle, inode); 3036 if (ret) { 3037 ext4_journal_stop(handle); 3038 goto out; 3039 } 3040 orphan = 1; 3041 ei->i_disksize = inode->i_size; 3042 ext4_journal_stop(handle); 3043 } 3044 } 3045 3046 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3047 offset, nr_segs, 3048 ext4_get_block, NULL); 3049 3050 if (orphan) { 3051 int err; 3052 3053 /* Credits for sb + inode write */ 3054 handle = ext4_journal_start(inode, 2); 3055 if (IS_ERR(handle)) { 3056 /* This is really bad luck. We've written the data 3057 * but cannot extend i_size. Bail out and pretend 3058 * the write failed... */ 3059 ret = PTR_ERR(handle); 3060 goto out; 3061 } 3062 if (inode->i_nlink) 3063 ext4_orphan_del(handle, inode); 3064 if (ret > 0) { 3065 loff_t end = offset + ret; 3066 if (end > inode->i_size) { 3067 ei->i_disksize = end; 3068 i_size_write(inode, end); 3069 /* 3070 * We're going to return a positive `ret' 3071 * here due to non-zero-length I/O, so there's 3072 * no way of reporting error returns from 3073 * ext4_mark_inode_dirty() to userspace. So 3074 * ignore it. 3075 */ 3076 ext4_mark_inode_dirty(handle, inode); 3077 } 3078 } 3079 err = ext4_journal_stop(handle); 3080 if (ret == 0) 3081 ret = err; 3082 } 3083 out: 3084 return ret; 3085 } 3086 3087 /* 3088 * Pages can be marked dirty completely asynchronously from ext4's journalling 3089 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3090 * much here because ->set_page_dirty is called under VFS locks. The page is 3091 * not necessarily locked. 3092 * 3093 * We cannot just dirty the page and leave attached buffers clean, because the 3094 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3095 * or jbddirty because all the journalling code will explode. 3096 * 3097 * So what we do is to mark the page "pending dirty" and next time writepage 3098 * is called, propagate that into the buffers appropriately. 3099 */ 3100 static int ext4_journalled_set_page_dirty(struct page *page) 3101 { 3102 SetPageChecked(page); 3103 return __set_page_dirty_nobuffers(page); 3104 } 3105 3106 static const struct address_space_operations ext4_ordered_aops = { 3107 .readpage = ext4_readpage, 3108 .readpages = ext4_readpages, 3109 .writepage = ext4_normal_writepage, 3110 .sync_page = block_sync_page, 3111 .write_begin = ext4_write_begin, 3112 .write_end = ext4_ordered_write_end, 3113 .bmap = ext4_bmap, 3114 .invalidatepage = ext4_invalidatepage, 3115 .releasepage = ext4_releasepage, 3116 .direct_IO = ext4_direct_IO, 3117 .migratepage = buffer_migrate_page, 3118 .is_partially_uptodate = block_is_partially_uptodate, 3119 }; 3120 3121 static const struct address_space_operations ext4_writeback_aops = { 3122 .readpage = ext4_readpage, 3123 .readpages = ext4_readpages, 3124 .writepage = ext4_normal_writepage, 3125 .sync_page = block_sync_page, 3126 .write_begin = ext4_write_begin, 3127 .write_end = ext4_writeback_write_end, 3128 .bmap = ext4_bmap, 3129 .invalidatepage = ext4_invalidatepage, 3130 .releasepage = ext4_releasepage, 3131 .direct_IO = ext4_direct_IO, 3132 .migratepage = buffer_migrate_page, 3133 .is_partially_uptodate = block_is_partially_uptodate, 3134 }; 3135 3136 static const struct address_space_operations ext4_journalled_aops = { 3137 .readpage = ext4_readpage, 3138 .readpages = ext4_readpages, 3139 .writepage = ext4_journalled_writepage, 3140 .sync_page = block_sync_page, 3141 .write_begin = ext4_write_begin, 3142 .write_end = ext4_journalled_write_end, 3143 .set_page_dirty = ext4_journalled_set_page_dirty, 3144 .bmap = ext4_bmap, 3145 .invalidatepage = ext4_invalidatepage, 3146 .releasepage = ext4_releasepage, 3147 .is_partially_uptodate = block_is_partially_uptodate, 3148 }; 3149 3150 static const struct address_space_operations ext4_da_aops = { 3151 .readpage = ext4_readpage, 3152 .readpages = ext4_readpages, 3153 .writepage = ext4_da_writepage, 3154 .writepages = ext4_da_writepages, 3155 .sync_page = block_sync_page, 3156 .write_begin = ext4_da_write_begin, 3157 .write_end = ext4_da_write_end, 3158 .bmap = ext4_bmap, 3159 .invalidatepage = ext4_da_invalidatepage, 3160 .releasepage = ext4_releasepage, 3161 .direct_IO = ext4_direct_IO, 3162 .migratepage = buffer_migrate_page, 3163 .is_partially_uptodate = block_is_partially_uptodate, 3164 }; 3165 3166 void ext4_set_aops(struct inode *inode) 3167 { 3168 if (ext4_should_order_data(inode) && 3169 test_opt(inode->i_sb, DELALLOC)) 3170 inode->i_mapping->a_ops = &ext4_da_aops; 3171 else if (ext4_should_order_data(inode)) 3172 inode->i_mapping->a_ops = &ext4_ordered_aops; 3173 else if (ext4_should_writeback_data(inode) && 3174 test_opt(inode->i_sb, DELALLOC)) 3175 inode->i_mapping->a_ops = &ext4_da_aops; 3176 else if (ext4_should_writeback_data(inode)) 3177 inode->i_mapping->a_ops = &ext4_writeback_aops; 3178 else 3179 inode->i_mapping->a_ops = &ext4_journalled_aops; 3180 } 3181 3182 /* 3183 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3184 * up to the end of the block which corresponds to `from'. 3185 * This required during truncate. We need to physically zero the tail end 3186 * of that block so it doesn't yield old data if the file is later grown. 3187 */ 3188 int ext4_block_truncate_page(handle_t *handle, 3189 struct address_space *mapping, loff_t from) 3190 { 3191 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3192 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3193 unsigned blocksize, length, pos; 3194 ext4_lblk_t iblock; 3195 struct inode *inode = mapping->host; 3196 struct buffer_head *bh; 3197 struct page *page; 3198 int err = 0; 3199 3200 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3201 if (!page) 3202 return -EINVAL; 3203 3204 blocksize = inode->i_sb->s_blocksize; 3205 length = blocksize - (offset & (blocksize - 1)); 3206 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3207 3208 /* 3209 * For "nobh" option, we can only work if we don't need to 3210 * read-in the page - otherwise we create buffers to do the IO. 3211 */ 3212 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3213 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3214 zero_user(page, offset, length); 3215 set_page_dirty(page); 3216 goto unlock; 3217 } 3218 3219 if (!page_has_buffers(page)) 3220 create_empty_buffers(page, blocksize, 0); 3221 3222 /* Find the buffer that contains "offset" */ 3223 bh = page_buffers(page); 3224 pos = blocksize; 3225 while (offset >= pos) { 3226 bh = bh->b_this_page; 3227 iblock++; 3228 pos += blocksize; 3229 } 3230 3231 err = 0; 3232 if (buffer_freed(bh)) { 3233 BUFFER_TRACE(bh, "freed: skip"); 3234 goto unlock; 3235 } 3236 3237 if (!buffer_mapped(bh)) { 3238 BUFFER_TRACE(bh, "unmapped"); 3239 ext4_get_block(inode, iblock, bh, 0); 3240 /* unmapped? It's a hole - nothing to do */ 3241 if (!buffer_mapped(bh)) { 3242 BUFFER_TRACE(bh, "still unmapped"); 3243 goto unlock; 3244 } 3245 } 3246 3247 /* Ok, it's mapped. Make sure it's up-to-date */ 3248 if (PageUptodate(page)) 3249 set_buffer_uptodate(bh); 3250 3251 if (!buffer_uptodate(bh)) { 3252 err = -EIO; 3253 ll_rw_block(READ, 1, &bh); 3254 wait_on_buffer(bh); 3255 /* Uhhuh. Read error. Complain and punt. */ 3256 if (!buffer_uptodate(bh)) 3257 goto unlock; 3258 } 3259 3260 if (ext4_should_journal_data(inode)) { 3261 BUFFER_TRACE(bh, "get write access"); 3262 err = ext4_journal_get_write_access(handle, bh); 3263 if (err) 3264 goto unlock; 3265 } 3266 3267 zero_user(page, offset, length); 3268 3269 BUFFER_TRACE(bh, "zeroed end of block"); 3270 3271 err = 0; 3272 if (ext4_should_journal_data(inode)) { 3273 err = ext4_journal_dirty_metadata(handle, bh); 3274 } else { 3275 if (ext4_should_order_data(inode)) 3276 err = ext4_jbd2_file_inode(handle, inode); 3277 mark_buffer_dirty(bh); 3278 } 3279 3280 unlock: 3281 unlock_page(page); 3282 page_cache_release(page); 3283 return err; 3284 } 3285 3286 /* 3287 * Probably it should be a library function... search for first non-zero word 3288 * or memcmp with zero_page, whatever is better for particular architecture. 3289 * Linus? 3290 */ 3291 static inline int all_zeroes(__le32 *p, __le32 *q) 3292 { 3293 while (p < q) 3294 if (*p++) 3295 return 0; 3296 return 1; 3297 } 3298 3299 /** 3300 * ext4_find_shared - find the indirect blocks for partial truncation. 3301 * @inode: inode in question 3302 * @depth: depth of the affected branch 3303 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3304 * @chain: place to store the pointers to partial indirect blocks 3305 * @top: place to the (detached) top of branch 3306 * 3307 * This is a helper function used by ext4_truncate(). 3308 * 3309 * When we do truncate() we may have to clean the ends of several 3310 * indirect blocks but leave the blocks themselves alive. Block is 3311 * partially truncated if some data below the new i_size is refered 3312 * from it (and it is on the path to the first completely truncated 3313 * data block, indeed). We have to free the top of that path along 3314 * with everything to the right of the path. Since no allocation 3315 * past the truncation point is possible until ext4_truncate() 3316 * finishes, we may safely do the latter, but top of branch may 3317 * require special attention - pageout below the truncation point 3318 * might try to populate it. 3319 * 3320 * We atomically detach the top of branch from the tree, store the 3321 * block number of its root in *@top, pointers to buffer_heads of 3322 * partially truncated blocks - in @chain[].bh and pointers to 3323 * their last elements that should not be removed - in 3324 * @chain[].p. Return value is the pointer to last filled element 3325 * of @chain. 3326 * 3327 * The work left to caller to do the actual freeing of subtrees: 3328 * a) free the subtree starting from *@top 3329 * b) free the subtrees whose roots are stored in 3330 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3331 * c) free the subtrees growing from the inode past the @chain[0]. 3332 * (no partially truncated stuff there). */ 3333 3334 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3335 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3336 { 3337 Indirect *partial, *p; 3338 int k, err; 3339 3340 *top = 0; 3341 /* Make k index the deepest non-null offest + 1 */ 3342 for (k = depth; k > 1 && !offsets[k-1]; k--) 3343 ; 3344 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3345 /* Writer: pointers */ 3346 if (!partial) 3347 partial = chain + k-1; 3348 /* 3349 * If the branch acquired continuation since we've looked at it - 3350 * fine, it should all survive and (new) top doesn't belong to us. 3351 */ 3352 if (!partial->key && *partial->p) 3353 /* Writer: end */ 3354 goto no_top; 3355 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3356 ; 3357 /* 3358 * OK, we've found the last block that must survive. The rest of our 3359 * branch should be detached before unlocking. However, if that rest 3360 * of branch is all ours and does not grow immediately from the inode 3361 * it's easier to cheat and just decrement partial->p. 3362 */ 3363 if (p == chain + k - 1 && p > chain) { 3364 p->p--; 3365 } else { 3366 *top = *p->p; 3367 /* Nope, don't do this in ext4. Must leave the tree intact */ 3368 #if 0 3369 *p->p = 0; 3370 #endif 3371 } 3372 /* Writer: end */ 3373 3374 while (partial > p) { 3375 brelse(partial->bh); 3376 partial--; 3377 } 3378 no_top: 3379 return partial; 3380 } 3381 3382 /* 3383 * Zero a number of block pointers in either an inode or an indirect block. 3384 * If we restart the transaction we must again get write access to the 3385 * indirect block for further modification. 3386 * 3387 * We release `count' blocks on disk, but (last - first) may be greater 3388 * than `count' because there can be holes in there. 3389 */ 3390 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3391 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3392 unsigned long count, __le32 *first, __le32 *last) 3393 { 3394 __le32 *p; 3395 if (try_to_extend_transaction(handle, inode)) { 3396 if (bh) { 3397 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3398 ext4_journal_dirty_metadata(handle, bh); 3399 } 3400 ext4_mark_inode_dirty(handle, inode); 3401 ext4_journal_test_restart(handle, inode); 3402 if (bh) { 3403 BUFFER_TRACE(bh, "retaking write access"); 3404 ext4_journal_get_write_access(handle, bh); 3405 } 3406 } 3407 3408 /* 3409 * Any buffers which are on the journal will be in memory. We find 3410 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3411 * on them. We've already detached each block from the file, so 3412 * bforget() in jbd2_journal_forget() should be safe. 3413 * 3414 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3415 */ 3416 for (p = first; p < last; p++) { 3417 u32 nr = le32_to_cpu(*p); 3418 if (nr) { 3419 struct buffer_head *tbh; 3420 3421 *p = 0; 3422 tbh = sb_find_get_block(inode->i_sb, nr); 3423 ext4_forget(handle, 0, inode, tbh, nr); 3424 } 3425 } 3426 3427 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3428 } 3429 3430 /** 3431 * ext4_free_data - free a list of data blocks 3432 * @handle: handle for this transaction 3433 * @inode: inode we are dealing with 3434 * @this_bh: indirect buffer_head which contains *@first and *@last 3435 * @first: array of block numbers 3436 * @last: points immediately past the end of array 3437 * 3438 * We are freeing all blocks refered from that array (numbers are stored as 3439 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3440 * 3441 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3442 * blocks are contiguous then releasing them at one time will only affect one 3443 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3444 * actually use a lot of journal space. 3445 * 3446 * @this_bh will be %NULL if @first and @last point into the inode's direct 3447 * block pointers. 3448 */ 3449 static void ext4_free_data(handle_t *handle, struct inode *inode, 3450 struct buffer_head *this_bh, 3451 __le32 *first, __le32 *last) 3452 { 3453 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3454 unsigned long count = 0; /* Number of blocks in the run */ 3455 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3456 corresponding to 3457 block_to_free */ 3458 ext4_fsblk_t nr; /* Current block # */ 3459 __le32 *p; /* Pointer into inode/ind 3460 for current block */ 3461 int err; 3462 3463 if (this_bh) { /* For indirect block */ 3464 BUFFER_TRACE(this_bh, "get_write_access"); 3465 err = ext4_journal_get_write_access(handle, this_bh); 3466 /* Important: if we can't update the indirect pointers 3467 * to the blocks, we can't free them. */ 3468 if (err) 3469 return; 3470 } 3471 3472 for (p = first; p < last; p++) { 3473 nr = le32_to_cpu(*p); 3474 if (nr) { 3475 /* accumulate blocks to free if they're contiguous */ 3476 if (count == 0) { 3477 block_to_free = nr; 3478 block_to_free_p = p; 3479 count = 1; 3480 } else if (nr == block_to_free + count) { 3481 count++; 3482 } else { 3483 ext4_clear_blocks(handle, inode, this_bh, 3484 block_to_free, 3485 count, block_to_free_p, p); 3486 block_to_free = nr; 3487 block_to_free_p = p; 3488 count = 1; 3489 } 3490 } 3491 } 3492 3493 if (count > 0) 3494 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3495 count, block_to_free_p, p); 3496 3497 if (this_bh) { 3498 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3499 3500 /* 3501 * The buffer head should have an attached journal head at this 3502 * point. However, if the data is corrupted and an indirect 3503 * block pointed to itself, it would have been detached when 3504 * the block was cleared. Check for this instead of OOPSing. 3505 */ 3506 if (bh2jh(this_bh)) 3507 ext4_journal_dirty_metadata(handle, this_bh); 3508 else 3509 ext4_error(inode->i_sb, __func__, 3510 "circular indirect block detected, " 3511 "inode=%lu, block=%llu", 3512 inode->i_ino, 3513 (unsigned long long) this_bh->b_blocknr); 3514 } 3515 } 3516 3517 /** 3518 * ext4_free_branches - free an array of branches 3519 * @handle: JBD handle for this transaction 3520 * @inode: inode we are dealing with 3521 * @parent_bh: the buffer_head which contains *@first and *@last 3522 * @first: array of block numbers 3523 * @last: pointer immediately past the end of array 3524 * @depth: depth of the branches to free 3525 * 3526 * We are freeing all blocks refered from these branches (numbers are 3527 * stored as little-endian 32-bit) and updating @inode->i_blocks 3528 * appropriately. 3529 */ 3530 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3531 struct buffer_head *parent_bh, 3532 __le32 *first, __le32 *last, int depth) 3533 { 3534 ext4_fsblk_t nr; 3535 __le32 *p; 3536 3537 if (is_handle_aborted(handle)) 3538 return; 3539 3540 if (depth--) { 3541 struct buffer_head *bh; 3542 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3543 p = last; 3544 while (--p >= first) { 3545 nr = le32_to_cpu(*p); 3546 if (!nr) 3547 continue; /* A hole */ 3548 3549 /* Go read the buffer for the next level down */ 3550 bh = sb_bread(inode->i_sb, nr); 3551 3552 /* 3553 * A read failure? Report error and clear slot 3554 * (should be rare). 3555 */ 3556 if (!bh) { 3557 ext4_error(inode->i_sb, "ext4_free_branches", 3558 "Read failure, inode=%lu, block=%llu", 3559 inode->i_ino, nr); 3560 continue; 3561 } 3562 3563 /* This zaps the entire block. Bottom up. */ 3564 BUFFER_TRACE(bh, "free child branches"); 3565 ext4_free_branches(handle, inode, bh, 3566 (__le32 *) bh->b_data, 3567 (__le32 *) bh->b_data + addr_per_block, 3568 depth); 3569 3570 /* 3571 * We've probably journalled the indirect block several 3572 * times during the truncate. But it's no longer 3573 * needed and we now drop it from the transaction via 3574 * jbd2_journal_revoke(). 3575 * 3576 * That's easy if it's exclusively part of this 3577 * transaction. But if it's part of the committing 3578 * transaction then jbd2_journal_forget() will simply 3579 * brelse() it. That means that if the underlying 3580 * block is reallocated in ext4_get_block(), 3581 * unmap_underlying_metadata() will find this block 3582 * and will try to get rid of it. damn, damn. 3583 * 3584 * If this block has already been committed to the 3585 * journal, a revoke record will be written. And 3586 * revoke records must be emitted *before* clearing 3587 * this block's bit in the bitmaps. 3588 */ 3589 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3590 3591 /* 3592 * Everything below this this pointer has been 3593 * released. Now let this top-of-subtree go. 3594 * 3595 * We want the freeing of this indirect block to be 3596 * atomic in the journal with the updating of the 3597 * bitmap block which owns it. So make some room in 3598 * the journal. 3599 * 3600 * We zero the parent pointer *after* freeing its 3601 * pointee in the bitmaps, so if extend_transaction() 3602 * for some reason fails to put the bitmap changes and 3603 * the release into the same transaction, recovery 3604 * will merely complain about releasing a free block, 3605 * rather than leaking blocks. 3606 */ 3607 if (is_handle_aborted(handle)) 3608 return; 3609 if (try_to_extend_transaction(handle, inode)) { 3610 ext4_mark_inode_dirty(handle, inode); 3611 ext4_journal_test_restart(handle, inode); 3612 } 3613 3614 ext4_free_blocks(handle, inode, nr, 1, 1); 3615 3616 if (parent_bh) { 3617 /* 3618 * The block which we have just freed is 3619 * pointed to by an indirect block: journal it 3620 */ 3621 BUFFER_TRACE(parent_bh, "get_write_access"); 3622 if (!ext4_journal_get_write_access(handle, 3623 parent_bh)){ 3624 *p = 0; 3625 BUFFER_TRACE(parent_bh, 3626 "call ext4_journal_dirty_metadata"); 3627 ext4_journal_dirty_metadata(handle, 3628 parent_bh); 3629 } 3630 } 3631 } 3632 } else { 3633 /* We have reached the bottom of the tree. */ 3634 BUFFER_TRACE(parent_bh, "free data blocks"); 3635 ext4_free_data(handle, inode, parent_bh, first, last); 3636 } 3637 } 3638 3639 int ext4_can_truncate(struct inode *inode) 3640 { 3641 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3642 return 0; 3643 if (S_ISREG(inode->i_mode)) 3644 return 1; 3645 if (S_ISDIR(inode->i_mode)) 3646 return 1; 3647 if (S_ISLNK(inode->i_mode)) 3648 return !ext4_inode_is_fast_symlink(inode); 3649 return 0; 3650 } 3651 3652 /* 3653 * ext4_truncate() 3654 * 3655 * We block out ext4_get_block() block instantiations across the entire 3656 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3657 * simultaneously on behalf of the same inode. 3658 * 3659 * As we work through the truncate and commmit bits of it to the journal there 3660 * is one core, guiding principle: the file's tree must always be consistent on 3661 * disk. We must be able to restart the truncate after a crash. 3662 * 3663 * The file's tree may be transiently inconsistent in memory (although it 3664 * probably isn't), but whenever we close off and commit a journal transaction, 3665 * the contents of (the filesystem + the journal) must be consistent and 3666 * restartable. It's pretty simple, really: bottom up, right to left (although 3667 * left-to-right works OK too). 3668 * 3669 * Note that at recovery time, journal replay occurs *before* the restart of 3670 * truncate against the orphan inode list. 3671 * 3672 * The committed inode has the new, desired i_size (which is the same as 3673 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3674 * that this inode's truncate did not complete and it will again call 3675 * ext4_truncate() to have another go. So there will be instantiated blocks 3676 * to the right of the truncation point in a crashed ext4 filesystem. But 3677 * that's fine - as long as they are linked from the inode, the post-crash 3678 * ext4_truncate() run will find them and release them. 3679 */ 3680 void ext4_truncate(struct inode *inode) 3681 { 3682 handle_t *handle; 3683 struct ext4_inode_info *ei = EXT4_I(inode); 3684 __le32 *i_data = ei->i_data; 3685 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3686 struct address_space *mapping = inode->i_mapping; 3687 ext4_lblk_t offsets[4]; 3688 Indirect chain[4]; 3689 Indirect *partial; 3690 __le32 nr = 0; 3691 int n; 3692 ext4_lblk_t last_block; 3693 unsigned blocksize = inode->i_sb->s_blocksize; 3694 3695 if (!ext4_can_truncate(inode)) 3696 return; 3697 3698 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3699 ext4_ext_truncate(inode); 3700 return; 3701 } 3702 3703 handle = start_transaction(inode); 3704 if (IS_ERR(handle)) 3705 return; /* AKPM: return what? */ 3706 3707 last_block = (inode->i_size + blocksize-1) 3708 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3709 3710 if (inode->i_size & (blocksize - 1)) 3711 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3712 goto out_stop; 3713 3714 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3715 if (n == 0) 3716 goto out_stop; /* error */ 3717 3718 /* 3719 * OK. This truncate is going to happen. We add the inode to the 3720 * orphan list, so that if this truncate spans multiple transactions, 3721 * and we crash, we will resume the truncate when the filesystem 3722 * recovers. It also marks the inode dirty, to catch the new size. 3723 * 3724 * Implication: the file must always be in a sane, consistent 3725 * truncatable state while each transaction commits. 3726 */ 3727 if (ext4_orphan_add(handle, inode)) 3728 goto out_stop; 3729 3730 /* 3731 * From here we block out all ext4_get_block() callers who want to 3732 * modify the block allocation tree. 3733 */ 3734 down_write(&ei->i_data_sem); 3735 3736 ext4_discard_preallocations(inode); 3737 3738 /* 3739 * The orphan list entry will now protect us from any crash which 3740 * occurs before the truncate completes, so it is now safe to propagate 3741 * the new, shorter inode size (held for now in i_size) into the 3742 * on-disk inode. We do this via i_disksize, which is the value which 3743 * ext4 *really* writes onto the disk inode. 3744 */ 3745 ei->i_disksize = inode->i_size; 3746 3747 if (n == 1) { /* direct blocks */ 3748 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3749 i_data + EXT4_NDIR_BLOCKS); 3750 goto do_indirects; 3751 } 3752 3753 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3754 /* Kill the top of shared branch (not detached) */ 3755 if (nr) { 3756 if (partial == chain) { 3757 /* Shared branch grows from the inode */ 3758 ext4_free_branches(handle, inode, NULL, 3759 &nr, &nr+1, (chain+n-1) - partial); 3760 *partial->p = 0; 3761 /* 3762 * We mark the inode dirty prior to restart, 3763 * and prior to stop. No need for it here. 3764 */ 3765 } else { 3766 /* Shared branch grows from an indirect block */ 3767 BUFFER_TRACE(partial->bh, "get_write_access"); 3768 ext4_free_branches(handle, inode, partial->bh, 3769 partial->p, 3770 partial->p+1, (chain+n-1) - partial); 3771 } 3772 } 3773 /* Clear the ends of indirect blocks on the shared branch */ 3774 while (partial > chain) { 3775 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3776 (__le32*)partial->bh->b_data+addr_per_block, 3777 (chain+n-1) - partial); 3778 BUFFER_TRACE(partial->bh, "call brelse"); 3779 brelse (partial->bh); 3780 partial--; 3781 } 3782 do_indirects: 3783 /* Kill the remaining (whole) subtrees */ 3784 switch (offsets[0]) { 3785 default: 3786 nr = i_data[EXT4_IND_BLOCK]; 3787 if (nr) { 3788 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3789 i_data[EXT4_IND_BLOCK] = 0; 3790 } 3791 case EXT4_IND_BLOCK: 3792 nr = i_data[EXT4_DIND_BLOCK]; 3793 if (nr) { 3794 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3795 i_data[EXT4_DIND_BLOCK] = 0; 3796 } 3797 case EXT4_DIND_BLOCK: 3798 nr = i_data[EXT4_TIND_BLOCK]; 3799 if (nr) { 3800 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3801 i_data[EXT4_TIND_BLOCK] = 0; 3802 } 3803 case EXT4_TIND_BLOCK: 3804 ; 3805 } 3806 3807 up_write(&ei->i_data_sem); 3808 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3809 ext4_mark_inode_dirty(handle, inode); 3810 3811 /* 3812 * In a multi-transaction truncate, we only make the final transaction 3813 * synchronous 3814 */ 3815 if (IS_SYNC(inode)) 3816 handle->h_sync = 1; 3817 out_stop: 3818 /* 3819 * If this was a simple ftruncate(), and the file will remain alive 3820 * then we need to clear up the orphan record which we created above. 3821 * However, if this was a real unlink then we were called by 3822 * ext4_delete_inode(), and we allow that function to clean up the 3823 * orphan info for us. 3824 */ 3825 if (inode->i_nlink) 3826 ext4_orphan_del(handle, inode); 3827 3828 ext4_journal_stop(handle); 3829 } 3830 3831 /* 3832 * ext4_get_inode_loc returns with an extra refcount against the inode's 3833 * underlying buffer_head on success. If 'in_mem' is true, we have all 3834 * data in memory that is needed to recreate the on-disk version of this 3835 * inode. 3836 */ 3837 static int __ext4_get_inode_loc(struct inode *inode, 3838 struct ext4_iloc *iloc, int in_mem) 3839 { 3840 struct ext4_group_desc *gdp; 3841 struct buffer_head *bh; 3842 struct super_block *sb = inode->i_sb; 3843 ext4_fsblk_t block; 3844 int inodes_per_block, inode_offset; 3845 3846 iloc->bh = 0; 3847 if (!ext4_valid_inum(sb, inode->i_ino)) 3848 return -EIO; 3849 3850 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3851 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3852 if (!gdp) 3853 return -EIO; 3854 3855 /* 3856 * Figure out the offset within the block group inode table 3857 */ 3858 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 3859 inode_offset = ((inode->i_ino - 1) % 3860 EXT4_INODES_PER_GROUP(sb)); 3861 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3862 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3863 3864 bh = sb_getblk(sb, block); 3865 if (!bh) { 3866 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 3867 "inode block - inode=%lu, block=%llu", 3868 inode->i_ino, block); 3869 return -EIO; 3870 } 3871 if (!buffer_uptodate(bh)) { 3872 lock_buffer(bh); 3873 3874 /* 3875 * If the buffer has the write error flag, we have failed 3876 * to write out another inode in the same block. In this 3877 * case, we don't have to read the block because we may 3878 * read the old inode data successfully. 3879 */ 3880 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3881 set_buffer_uptodate(bh); 3882 3883 if (buffer_uptodate(bh)) { 3884 /* someone brought it uptodate while we waited */ 3885 unlock_buffer(bh); 3886 goto has_buffer; 3887 } 3888 3889 /* 3890 * If we have all information of the inode in memory and this 3891 * is the only valid inode in the block, we need not read the 3892 * block. 3893 */ 3894 if (in_mem) { 3895 struct buffer_head *bitmap_bh; 3896 int i, start; 3897 3898 start = inode_offset & ~(inodes_per_block - 1); 3899 3900 /* Is the inode bitmap in cache? */ 3901 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3902 if (!bitmap_bh) 3903 goto make_io; 3904 3905 /* 3906 * If the inode bitmap isn't in cache then the 3907 * optimisation may end up performing two reads instead 3908 * of one, so skip it. 3909 */ 3910 if (!buffer_uptodate(bitmap_bh)) { 3911 brelse(bitmap_bh); 3912 goto make_io; 3913 } 3914 for (i = start; i < start + inodes_per_block; i++) { 3915 if (i == inode_offset) 3916 continue; 3917 if (ext4_test_bit(i, bitmap_bh->b_data)) 3918 break; 3919 } 3920 brelse(bitmap_bh); 3921 if (i == start + inodes_per_block) { 3922 /* all other inodes are free, so skip I/O */ 3923 memset(bh->b_data, 0, bh->b_size); 3924 set_buffer_uptodate(bh); 3925 unlock_buffer(bh); 3926 goto has_buffer; 3927 } 3928 } 3929 3930 make_io: 3931 /* 3932 * If we need to do any I/O, try to pre-readahead extra 3933 * blocks from the inode table. 3934 */ 3935 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3936 ext4_fsblk_t b, end, table; 3937 unsigned num; 3938 3939 table = ext4_inode_table(sb, gdp); 3940 /* Make sure s_inode_readahead_blks is a power of 2 */ 3941 while (EXT4_SB(sb)->s_inode_readahead_blks & 3942 (EXT4_SB(sb)->s_inode_readahead_blks-1)) 3943 EXT4_SB(sb)->s_inode_readahead_blks = 3944 (EXT4_SB(sb)->s_inode_readahead_blks & 3945 (EXT4_SB(sb)->s_inode_readahead_blks-1)); 3946 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3947 if (table > b) 3948 b = table; 3949 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3950 num = EXT4_INODES_PER_GROUP(sb); 3951 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3952 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3953 num -= le16_to_cpu(gdp->bg_itable_unused); 3954 table += num / inodes_per_block; 3955 if (end > table) 3956 end = table; 3957 while (b <= end) 3958 sb_breadahead(sb, b++); 3959 } 3960 3961 /* 3962 * There are other valid inodes in the buffer, this inode 3963 * has in-inode xattrs, or we don't have this inode in memory. 3964 * Read the block from disk. 3965 */ 3966 get_bh(bh); 3967 bh->b_end_io = end_buffer_read_sync; 3968 submit_bh(READ_META, bh); 3969 wait_on_buffer(bh); 3970 if (!buffer_uptodate(bh)) { 3971 ext4_error(sb, __func__, 3972 "unable to read inode block - inode=%lu, " 3973 "block=%llu", inode->i_ino, block); 3974 brelse(bh); 3975 return -EIO; 3976 } 3977 } 3978 has_buffer: 3979 iloc->bh = bh; 3980 return 0; 3981 } 3982 3983 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3984 { 3985 /* We have all inode data except xattrs in memory here. */ 3986 return __ext4_get_inode_loc(inode, iloc, 3987 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3988 } 3989 3990 void ext4_set_inode_flags(struct inode *inode) 3991 { 3992 unsigned int flags = EXT4_I(inode)->i_flags; 3993 3994 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3995 if (flags & EXT4_SYNC_FL) 3996 inode->i_flags |= S_SYNC; 3997 if (flags & EXT4_APPEND_FL) 3998 inode->i_flags |= S_APPEND; 3999 if (flags & EXT4_IMMUTABLE_FL) 4000 inode->i_flags |= S_IMMUTABLE; 4001 if (flags & EXT4_NOATIME_FL) 4002 inode->i_flags |= S_NOATIME; 4003 if (flags & EXT4_DIRSYNC_FL) 4004 inode->i_flags |= S_DIRSYNC; 4005 } 4006 4007 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4008 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4009 { 4010 unsigned int flags = ei->vfs_inode.i_flags; 4011 4012 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4013 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4014 if (flags & S_SYNC) 4015 ei->i_flags |= EXT4_SYNC_FL; 4016 if (flags & S_APPEND) 4017 ei->i_flags |= EXT4_APPEND_FL; 4018 if (flags & S_IMMUTABLE) 4019 ei->i_flags |= EXT4_IMMUTABLE_FL; 4020 if (flags & S_NOATIME) 4021 ei->i_flags |= EXT4_NOATIME_FL; 4022 if (flags & S_DIRSYNC) 4023 ei->i_flags |= EXT4_DIRSYNC_FL; 4024 } 4025 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4026 struct ext4_inode_info *ei) 4027 { 4028 blkcnt_t i_blocks ; 4029 struct inode *inode = &(ei->vfs_inode); 4030 struct super_block *sb = inode->i_sb; 4031 4032 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4033 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4034 /* we are using combined 48 bit field */ 4035 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4036 le32_to_cpu(raw_inode->i_blocks_lo); 4037 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4038 /* i_blocks represent file system block size */ 4039 return i_blocks << (inode->i_blkbits - 9); 4040 } else { 4041 return i_blocks; 4042 } 4043 } else { 4044 return le32_to_cpu(raw_inode->i_blocks_lo); 4045 } 4046 } 4047 4048 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4049 { 4050 struct ext4_iloc iloc; 4051 struct ext4_inode *raw_inode; 4052 struct ext4_inode_info *ei; 4053 struct buffer_head *bh; 4054 struct inode *inode; 4055 long ret; 4056 int block; 4057 4058 inode = iget_locked(sb, ino); 4059 if (!inode) 4060 return ERR_PTR(-ENOMEM); 4061 if (!(inode->i_state & I_NEW)) 4062 return inode; 4063 4064 ei = EXT4_I(inode); 4065 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4066 ei->i_acl = EXT4_ACL_NOT_CACHED; 4067 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 4068 #endif 4069 4070 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4071 if (ret < 0) 4072 goto bad_inode; 4073 bh = iloc.bh; 4074 raw_inode = ext4_raw_inode(&iloc); 4075 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4076 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4077 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4078 if (!(test_opt(inode->i_sb, NO_UID32))) { 4079 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4080 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4081 } 4082 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4083 4084 ei->i_state = 0; 4085 ei->i_dir_start_lookup = 0; 4086 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4087 /* We now have enough fields to check if the inode was active or not. 4088 * This is needed because nfsd might try to access dead inodes 4089 * the test is that same one that e2fsck uses 4090 * NeilBrown 1999oct15 4091 */ 4092 if (inode->i_nlink == 0) { 4093 if (inode->i_mode == 0 || 4094 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4095 /* this inode is deleted */ 4096 brelse(bh); 4097 ret = -ESTALE; 4098 goto bad_inode; 4099 } 4100 /* The only unlinked inodes we let through here have 4101 * valid i_mode and are being read by the orphan 4102 * recovery code: that's fine, we're about to complete 4103 * the process of deleting those. */ 4104 } 4105 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4106 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4107 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4108 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4109 cpu_to_le32(EXT4_OS_HURD)) { 4110 ei->i_file_acl |= 4111 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4112 } 4113 inode->i_size = ext4_isize(raw_inode); 4114 ei->i_disksize = inode->i_size; 4115 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4116 ei->i_block_group = iloc.block_group; 4117 /* 4118 * NOTE! The in-memory inode i_data array is in little-endian order 4119 * even on big-endian machines: we do NOT byteswap the block numbers! 4120 */ 4121 for (block = 0; block < EXT4_N_BLOCKS; block++) 4122 ei->i_data[block] = raw_inode->i_block[block]; 4123 INIT_LIST_HEAD(&ei->i_orphan); 4124 4125 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4126 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4127 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4128 EXT4_INODE_SIZE(inode->i_sb)) { 4129 brelse(bh); 4130 ret = -EIO; 4131 goto bad_inode; 4132 } 4133 if (ei->i_extra_isize == 0) { 4134 /* The extra space is currently unused. Use it. */ 4135 ei->i_extra_isize = sizeof(struct ext4_inode) - 4136 EXT4_GOOD_OLD_INODE_SIZE; 4137 } else { 4138 __le32 *magic = (void *)raw_inode + 4139 EXT4_GOOD_OLD_INODE_SIZE + 4140 ei->i_extra_isize; 4141 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4142 ei->i_state |= EXT4_STATE_XATTR; 4143 } 4144 } else 4145 ei->i_extra_isize = 0; 4146 4147 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4148 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4149 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4150 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4151 4152 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4153 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4154 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4155 inode->i_version |= 4156 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4157 } 4158 4159 if (S_ISREG(inode->i_mode)) { 4160 inode->i_op = &ext4_file_inode_operations; 4161 inode->i_fop = &ext4_file_operations; 4162 ext4_set_aops(inode); 4163 } else if (S_ISDIR(inode->i_mode)) { 4164 inode->i_op = &ext4_dir_inode_operations; 4165 inode->i_fop = &ext4_dir_operations; 4166 } else if (S_ISLNK(inode->i_mode)) { 4167 if (ext4_inode_is_fast_symlink(inode)) 4168 inode->i_op = &ext4_fast_symlink_inode_operations; 4169 else { 4170 inode->i_op = &ext4_symlink_inode_operations; 4171 ext4_set_aops(inode); 4172 } 4173 } else { 4174 inode->i_op = &ext4_special_inode_operations; 4175 if (raw_inode->i_block[0]) 4176 init_special_inode(inode, inode->i_mode, 4177 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4178 else 4179 init_special_inode(inode, inode->i_mode, 4180 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4181 } 4182 brelse(iloc.bh); 4183 ext4_set_inode_flags(inode); 4184 unlock_new_inode(inode); 4185 return inode; 4186 4187 bad_inode: 4188 iget_failed(inode); 4189 return ERR_PTR(ret); 4190 } 4191 4192 static int ext4_inode_blocks_set(handle_t *handle, 4193 struct ext4_inode *raw_inode, 4194 struct ext4_inode_info *ei) 4195 { 4196 struct inode *inode = &(ei->vfs_inode); 4197 u64 i_blocks = inode->i_blocks; 4198 struct super_block *sb = inode->i_sb; 4199 4200 if (i_blocks <= ~0U) { 4201 /* 4202 * i_blocks can be represnted in a 32 bit variable 4203 * as multiple of 512 bytes 4204 */ 4205 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4206 raw_inode->i_blocks_high = 0; 4207 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4208 return 0; 4209 } 4210 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4211 return -EFBIG; 4212 4213 if (i_blocks <= 0xffffffffffffULL) { 4214 /* 4215 * i_blocks can be represented in a 48 bit variable 4216 * as multiple of 512 bytes 4217 */ 4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4220 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4221 } else { 4222 ei->i_flags |= EXT4_HUGE_FILE_FL; 4223 /* i_block is stored in file system block size */ 4224 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4226 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4227 } 4228 return 0; 4229 } 4230 4231 /* 4232 * Post the struct inode info into an on-disk inode location in the 4233 * buffer-cache. This gobbles the caller's reference to the 4234 * buffer_head in the inode location struct. 4235 * 4236 * The caller must have write access to iloc->bh. 4237 */ 4238 static int ext4_do_update_inode(handle_t *handle, 4239 struct inode *inode, 4240 struct ext4_iloc *iloc) 4241 { 4242 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4243 struct ext4_inode_info *ei = EXT4_I(inode); 4244 struct buffer_head *bh = iloc->bh; 4245 int err = 0, rc, block; 4246 4247 /* For fields not not tracking in the in-memory inode, 4248 * initialise them to zero for new inodes. */ 4249 if (ei->i_state & EXT4_STATE_NEW) 4250 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4251 4252 ext4_get_inode_flags(ei); 4253 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4254 if (!(test_opt(inode->i_sb, NO_UID32))) { 4255 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4256 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4257 /* 4258 * Fix up interoperability with old kernels. Otherwise, old inodes get 4259 * re-used with the upper 16 bits of the uid/gid intact 4260 */ 4261 if (!ei->i_dtime) { 4262 raw_inode->i_uid_high = 4263 cpu_to_le16(high_16_bits(inode->i_uid)); 4264 raw_inode->i_gid_high = 4265 cpu_to_le16(high_16_bits(inode->i_gid)); 4266 } else { 4267 raw_inode->i_uid_high = 0; 4268 raw_inode->i_gid_high = 0; 4269 } 4270 } else { 4271 raw_inode->i_uid_low = 4272 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4273 raw_inode->i_gid_low = 4274 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4275 raw_inode->i_uid_high = 0; 4276 raw_inode->i_gid_high = 0; 4277 } 4278 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4279 4280 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4281 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4282 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4283 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4284 4285 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4286 goto out_brelse; 4287 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4288 /* clear the migrate flag in the raw_inode */ 4289 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4290 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4291 cpu_to_le32(EXT4_OS_HURD)) 4292 raw_inode->i_file_acl_high = 4293 cpu_to_le16(ei->i_file_acl >> 32); 4294 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4295 ext4_isize_set(raw_inode, ei->i_disksize); 4296 if (ei->i_disksize > 0x7fffffffULL) { 4297 struct super_block *sb = inode->i_sb; 4298 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4299 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4300 EXT4_SB(sb)->s_es->s_rev_level == 4301 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4302 /* If this is the first large file 4303 * created, add a flag to the superblock. 4304 */ 4305 err = ext4_journal_get_write_access(handle, 4306 EXT4_SB(sb)->s_sbh); 4307 if (err) 4308 goto out_brelse; 4309 ext4_update_dynamic_rev(sb); 4310 EXT4_SET_RO_COMPAT_FEATURE(sb, 4311 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4312 sb->s_dirt = 1; 4313 handle->h_sync = 1; 4314 err = ext4_journal_dirty_metadata(handle, 4315 EXT4_SB(sb)->s_sbh); 4316 } 4317 } 4318 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4319 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4320 if (old_valid_dev(inode->i_rdev)) { 4321 raw_inode->i_block[0] = 4322 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4323 raw_inode->i_block[1] = 0; 4324 } else { 4325 raw_inode->i_block[0] = 0; 4326 raw_inode->i_block[1] = 4327 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4328 raw_inode->i_block[2] = 0; 4329 } 4330 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4331 raw_inode->i_block[block] = ei->i_data[block]; 4332 4333 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4334 if (ei->i_extra_isize) { 4335 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4336 raw_inode->i_version_hi = 4337 cpu_to_le32(inode->i_version >> 32); 4338 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4339 } 4340 4341 4342 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4343 rc = ext4_journal_dirty_metadata(handle, bh); 4344 if (!err) 4345 err = rc; 4346 ei->i_state &= ~EXT4_STATE_NEW; 4347 4348 out_brelse: 4349 brelse(bh); 4350 ext4_std_error(inode->i_sb, err); 4351 return err; 4352 } 4353 4354 /* 4355 * ext4_write_inode() 4356 * 4357 * We are called from a few places: 4358 * 4359 * - Within generic_file_write() for O_SYNC files. 4360 * Here, there will be no transaction running. We wait for any running 4361 * trasnaction to commit. 4362 * 4363 * - Within sys_sync(), kupdate and such. 4364 * We wait on commit, if tol to. 4365 * 4366 * - Within prune_icache() (PF_MEMALLOC == true) 4367 * Here we simply return. We can't afford to block kswapd on the 4368 * journal commit. 4369 * 4370 * In all cases it is actually safe for us to return without doing anything, 4371 * because the inode has been copied into a raw inode buffer in 4372 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4373 * knfsd. 4374 * 4375 * Note that we are absolutely dependent upon all inode dirtiers doing the 4376 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4377 * which we are interested. 4378 * 4379 * It would be a bug for them to not do this. The code: 4380 * 4381 * mark_inode_dirty(inode) 4382 * stuff(); 4383 * inode->i_size = expr; 4384 * 4385 * is in error because a kswapd-driven write_inode() could occur while 4386 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4387 * will no longer be on the superblock's dirty inode list. 4388 */ 4389 int ext4_write_inode(struct inode *inode, int wait) 4390 { 4391 if (current->flags & PF_MEMALLOC) 4392 return 0; 4393 4394 if (ext4_journal_current_handle()) { 4395 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4396 dump_stack(); 4397 return -EIO; 4398 } 4399 4400 if (!wait) 4401 return 0; 4402 4403 return ext4_force_commit(inode->i_sb); 4404 } 4405 4406 /* 4407 * ext4_setattr() 4408 * 4409 * Called from notify_change. 4410 * 4411 * We want to trap VFS attempts to truncate the file as soon as 4412 * possible. In particular, we want to make sure that when the VFS 4413 * shrinks i_size, we put the inode on the orphan list and modify 4414 * i_disksize immediately, so that during the subsequent flushing of 4415 * dirty pages and freeing of disk blocks, we can guarantee that any 4416 * commit will leave the blocks being flushed in an unused state on 4417 * disk. (On recovery, the inode will get truncated and the blocks will 4418 * be freed, so we have a strong guarantee that no future commit will 4419 * leave these blocks visible to the user.) 4420 * 4421 * Another thing we have to assure is that if we are in ordered mode 4422 * and inode is still attached to the committing transaction, we must 4423 * we start writeout of all the dirty pages which are being truncated. 4424 * This way we are sure that all the data written in the previous 4425 * transaction are already on disk (truncate waits for pages under 4426 * writeback). 4427 * 4428 * Called with inode->i_mutex down. 4429 */ 4430 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4431 { 4432 struct inode *inode = dentry->d_inode; 4433 int error, rc = 0; 4434 const unsigned int ia_valid = attr->ia_valid; 4435 4436 error = inode_change_ok(inode, attr); 4437 if (error) 4438 return error; 4439 4440 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4441 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4442 handle_t *handle; 4443 4444 /* (user+group)*(old+new) structure, inode write (sb, 4445 * inode block, ? - but truncate inode update has it) */ 4446 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4447 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4448 if (IS_ERR(handle)) { 4449 error = PTR_ERR(handle); 4450 goto err_out; 4451 } 4452 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4453 if (error) { 4454 ext4_journal_stop(handle); 4455 return error; 4456 } 4457 /* Update corresponding info in inode so that everything is in 4458 * one transaction */ 4459 if (attr->ia_valid & ATTR_UID) 4460 inode->i_uid = attr->ia_uid; 4461 if (attr->ia_valid & ATTR_GID) 4462 inode->i_gid = attr->ia_gid; 4463 error = ext4_mark_inode_dirty(handle, inode); 4464 ext4_journal_stop(handle); 4465 } 4466 4467 if (attr->ia_valid & ATTR_SIZE) { 4468 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4469 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4470 4471 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4472 error = -EFBIG; 4473 goto err_out; 4474 } 4475 } 4476 } 4477 4478 if (S_ISREG(inode->i_mode) && 4479 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4480 handle_t *handle; 4481 4482 handle = ext4_journal_start(inode, 3); 4483 if (IS_ERR(handle)) { 4484 error = PTR_ERR(handle); 4485 goto err_out; 4486 } 4487 4488 error = ext4_orphan_add(handle, inode); 4489 EXT4_I(inode)->i_disksize = attr->ia_size; 4490 rc = ext4_mark_inode_dirty(handle, inode); 4491 if (!error) 4492 error = rc; 4493 ext4_journal_stop(handle); 4494 4495 if (ext4_should_order_data(inode)) { 4496 error = ext4_begin_ordered_truncate(inode, 4497 attr->ia_size); 4498 if (error) { 4499 /* Do as much error cleanup as possible */ 4500 handle = ext4_journal_start(inode, 3); 4501 if (IS_ERR(handle)) { 4502 ext4_orphan_del(NULL, inode); 4503 goto err_out; 4504 } 4505 ext4_orphan_del(handle, inode); 4506 ext4_journal_stop(handle); 4507 goto err_out; 4508 } 4509 } 4510 } 4511 4512 rc = inode_setattr(inode, attr); 4513 4514 /* If inode_setattr's call to ext4_truncate failed to get a 4515 * transaction handle at all, we need to clean up the in-core 4516 * orphan list manually. */ 4517 if (inode->i_nlink) 4518 ext4_orphan_del(NULL, inode); 4519 4520 if (!rc && (ia_valid & ATTR_MODE)) 4521 rc = ext4_acl_chmod(inode); 4522 4523 err_out: 4524 ext4_std_error(inode->i_sb, error); 4525 if (!error) 4526 error = rc; 4527 return error; 4528 } 4529 4530 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4531 struct kstat *stat) 4532 { 4533 struct inode *inode; 4534 unsigned long delalloc_blocks; 4535 4536 inode = dentry->d_inode; 4537 generic_fillattr(inode, stat); 4538 4539 /* 4540 * We can't update i_blocks if the block allocation is delayed 4541 * otherwise in the case of system crash before the real block 4542 * allocation is done, we will have i_blocks inconsistent with 4543 * on-disk file blocks. 4544 * We always keep i_blocks updated together with real 4545 * allocation. But to not confuse with user, stat 4546 * will return the blocks that include the delayed allocation 4547 * blocks for this file. 4548 */ 4549 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4550 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4551 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4552 4553 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4554 return 0; 4555 } 4556 4557 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4558 int chunk) 4559 { 4560 int indirects; 4561 4562 /* if nrblocks are contiguous */ 4563 if (chunk) { 4564 /* 4565 * With N contiguous data blocks, it need at most 4566 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4567 * 2 dindirect blocks 4568 * 1 tindirect block 4569 */ 4570 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4571 return indirects + 3; 4572 } 4573 /* 4574 * if nrblocks are not contiguous, worse case, each block touch 4575 * a indirect block, and each indirect block touch a double indirect 4576 * block, plus a triple indirect block 4577 */ 4578 indirects = nrblocks * 2 + 1; 4579 return indirects; 4580 } 4581 4582 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4583 { 4584 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4585 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 4586 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4587 } 4588 4589 /* 4590 * Account for index blocks, block groups bitmaps and block group 4591 * descriptor blocks if modify datablocks and index blocks 4592 * worse case, the indexs blocks spread over different block groups 4593 * 4594 * If datablocks are discontiguous, they are possible to spread over 4595 * different block groups too. If they are contiugous, with flexbg, 4596 * they could still across block group boundary. 4597 * 4598 * Also account for superblock, inode, quota and xattr blocks 4599 */ 4600 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4601 { 4602 int groups, gdpblocks; 4603 int idxblocks; 4604 int ret = 0; 4605 4606 /* 4607 * How many index blocks need to touch to modify nrblocks? 4608 * The "Chunk" flag indicating whether the nrblocks is 4609 * physically contiguous on disk 4610 * 4611 * For Direct IO and fallocate, they calls get_block to allocate 4612 * one single extent at a time, so they could set the "Chunk" flag 4613 */ 4614 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4615 4616 ret = idxblocks; 4617 4618 /* 4619 * Now let's see how many group bitmaps and group descriptors need 4620 * to account 4621 */ 4622 groups = idxblocks; 4623 if (chunk) 4624 groups += 1; 4625 else 4626 groups += nrblocks; 4627 4628 gdpblocks = groups; 4629 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4630 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4631 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4632 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4633 4634 /* bitmaps and block group descriptor blocks */ 4635 ret += groups + gdpblocks; 4636 4637 /* Blocks for super block, inode, quota and xattr blocks */ 4638 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4639 4640 return ret; 4641 } 4642 4643 /* 4644 * Calulate the total number of credits to reserve to fit 4645 * the modification of a single pages into a single transaction, 4646 * which may include multiple chunks of block allocations. 4647 * 4648 * This could be called via ext4_write_begin() 4649 * 4650 * We need to consider the worse case, when 4651 * one new block per extent. 4652 */ 4653 int ext4_writepage_trans_blocks(struct inode *inode) 4654 { 4655 int bpp = ext4_journal_blocks_per_page(inode); 4656 int ret; 4657 4658 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4659 4660 /* Account for data blocks for journalled mode */ 4661 if (ext4_should_journal_data(inode)) 4662 ret += bpp; 4663 return ret; 4664 } 4665 4666 /* 4667 * Calculate the journal credits for a chunk of data modification. 4668 * 4669 * This is called from DIO, fallocate or whoever calling 4670 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4671 * 4672 * journal buffers for data blocks are not included here, as DIO 4673 * and fallocate do no need to journal data buffers. 4674 */ 4675 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4676 { 4677 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4678 } 4679 4680 /* 4681 * The caller must have previously called ext4_reserve_inode_write(). 4682 * Give this, we know that the caller already has write access to iloc->bh. 4683 */ 4684 int ext4_mark_iloc_dirty(handle_t *handle, 4685 struct inode *inode, struct ext4_iloc *iloc) 4686 { 4687 int err = 0; 4688 4689 if (test_opt(inode->i_sb, I_VERSION)) 4690 inode_inc_iversion(inode); 4691 4692 /* the do_update_inode consumes one bh->b_count */ 4693 get_bh(iloc->bh); 4694 4695 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4696 err = ext4_do_update_inode(handle, inode, iloc); 4697 put_bh(iloc->bh); 4698 return err; 4699 } 4700 4701 /* 4702 * On success, We end up with an outstanding reference count against 4703 * iloc->bh. This _must_ be cleaned up later. 4704 */ 4705 4706 int 4707 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4708 struct ext4_iloc *iloc) 4709 { 4710 int err = 0; 4711 if (handle) { 4712 err = ext4_get_inode_loc(inode, iloc); 4713 if (!err) { 4714 BUFFER_TRACE(iloc->bh, "get_write_access"); 4715 err = ext4_journal_get_write_access(handle, iloc->bh); 4716 if (err) { 4717 brelse(iloc->bh); 4718 iloc->bh = NULL; 4719 } 4720 } 4721 } 4722 ext4_std_error(inode->i_sb, err); 4723 return err; 4724 } 4725 4726 /* 4727 * Expand an inode by new_extra_isize bytes. 4728 * Returns 0 on success or negative error number on failure. 4729 */ 4730 static int ext4_expand_extra_isize(struct inode *inode, 4731 unsigned int new_extra_isize, 4732 struct ext4_iloc iloc, 4733 handle_t *handle) 4734 { 4735 struct ext4_inode *raw_inode; 4736 struct ext4_xattr_ibody_header *header; 4737 struct ext4_xattr_entry *entry; 4738 4739 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4740 return 0; 4741 4742 raw_inode = ext4_raw_inode(&iloc); 4743 4744 header = IHDR(inode, raw_inode); 4745 entry = IFIRST(header); 4746 4747 /* No extended attributes present */ 4748 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4749 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4750 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4751 new_extra_isize); 4752 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4753 return 0; 4754 } 4755 4756 /* try to expand with EAs present */ 4757 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4758 raw_inode, handle); 4759 } 4760 4761 /* 4762 * What we do here is to mark the in-core inode as clean with respect to inode 4763 * dirtiness (it may still be data-dirty). 4764 * This means that the in-core inode may be reaped by prune_icache 4765 * without having to perform any I/O. This is a very good thing, 4766 * because *any* task may call prune_icache - even ones which 4767 * have a transaction open against a different journal. 4768 * 4769 * Is this cheating? Not really. Sure, we haven't written the 4770 * inode out, but prune_icache isn't a user-visible syncing function. 4771 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4772 * we start and wait on commits. 4773 * 4774 * Is this efficient/effective? Well, we're being nice to the system 4775 * by cleaning up our inodes proactively so they can be reaped 4776 * without I/O. But we are potentially leaving up to five seconds' 4777 * worth of inodes floating about which prune_icache wants us to 4778 * write out. One way to fix that would be to get prune_icache() 4779 * to do a write_super() to free up some memory. It has the desired 4780 * effect. 4781 */ 4782 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4783 { 4784 struct ext4_iloc iloc; 4785 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4786 static unsigned int mnt_count; 4787 int err, ret; 4788 4789 might_sleep(); 4790 err = ext4_reserve_inode_write(handle, inode, &iloc); 4791 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4792 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4793 /* 4794 * We need extra buffer credits since we may write into EA block 4795 * with this same handle. If journal_extend fails, then it will 4796 * only result in a minor loss of functionality for that inode. 4797 * If this is felt to be critical, then e2fsck should be run to 4798 * force a large enough s_min_extra_isize. 4799 */ 4800 if ((jbd2_journal_extend(handle, 4801 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4802 ret = ext4_expand_extra_isize(inode, 4803 sbi->s_want_extra_isize, 4804 iloc, handle); 4805 if (ret) { 4806 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4807 if (mnt_count != 4808 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4809 ext4_warning(inode->i_sb, __func__, 4810 "Unable to expand inode %lu. Delete" 4811 " some EAs or run e2fsck.", 4812 inode->i_ino); 4813 mnt_count = 4814 le16_to_cpu(sbi->s_es->s_mnt_count); 4815 } 4816 } 4817 } 4818 } 4819 if (!err) 4820 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4821 return err; 4822 } 4823 4824 /* 4825 * ext4_dirty_inode() is called from __mark_inode_dirty() 4826 * 4827 * We're really interested in the case where a file is being extended. 4828 * i_size has been changed by generic_commit_write() and we thus need 4829 * to include the updated inode in the current transaction. 4830 * 4831 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4832 * are allocated to the file. 4833 * 4834 * If the inode is marked synchronous, we don't honour that here - doing 4835 * so would cause a commit on atime updates, which we don't bother doing. 4836 * We handle synchronous inodes at the highest possible level. 4837 */ 4838 void ext4_dirty_inode(struct inode *inode) 4839 { 4840 handle_t *current_handle = ext4_journal_current_handle(); 4841 handle_t *handle; 4842 4843 handle = ext4_journal_start(inode, 2); 4844 if (IS_ERR(handle)) 4845 goto out; 4846 if (current_handle && 4847 current_handle->h_transaction != handle->h_transaction) { 4848 /* This task has a transaction open against a different fs */ 4849 printk(KERN_EMERG "%s: transactions do not match!\n", 4850 __func__); 4851 } else { 4852 jbd_debug(5, "marking dirty. outer handle=%p\n", 4853 current_handle); 4854 ext4_mark_inode_dirty(handle, inode); 4855 } 4856 ext4_journal_stop(handle); 4857 out: 4858 return; 4859 } 4860 4861 #if 0 4862 /* 4863 * Bind an inode's backing buffer_head into this transaction, to prevent 4864 * it from being flushed to disk early. Unlike 4865 * ext4_reserve_inode_write, this leaves behind no bh reference and 4866 * returns no iloc structure, so the caller needs to repeat the iloc 4867 * lookup to mark the inode dirty later. 4868 */ 4869 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4870 { 4871 struct ext4_iloc iloc; 4872 4873 int err = 0; 4874 if (handle) { 4875 err = ext4_get_inode_loc(inode, &iloc); 4876 if (!err) { 4877 BUFFER_TRACE(iloc.bh, "get_write_access"); 4878 err = jbd2_journal_get_write_access(handle, iloc.bh); 4879 if (!err) 4880 err = ext4_journal_dirty_metadata(handle, 4881 iloc.bh); 4882 brelse(iloc.bh); 4883 } 4884 } 4885 ext4_std_error(inode->i_sb, err); 4886 return err; 4887 } 4888 #endif 4889 4890 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4891 { 4892 journal_t *journal; 4893 handle_t *handle; 4894 int err; 4895 4896 /* 4897 * We have to be very careful here: changing a data block's 4898 * journaling status dynamically is dangerous. If we write a 4899 * data block to the journal, change the status and then delete 4900 * that block, we risk forgetting to revoke the old log record 4901 * from the journal and so a subsequent replay can corrupt data. 4902 * So, first we make sure that the journal is empty and that 4903 * nobody is changing anything. 4904 */ 4905 4906 journal = EXT4_JOURNAL(inode); 4907 if (is_journal_aborted(journal)) 4908 return -EROFS; 4909 4910 jbd2_journal_lock_updates(journal); 4911 jbd2_journal_flush(journal); 4912 4913 /* 4914 * OK, there are no updates running now, and all cached data is 4915 * synced to disk. We are now in a completely consistent state 4916 * which doesn't have anything in the journal, and we know that 4917 * no filesystem updates are running, so it is safe to modify 4918 * the inode's in-core data-journaling state flag now. 4919 */ 4920 4921 if (val) 4922 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4923 else 4924 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4925 ext4_set_aops(inode); 4926 4927 jbd2_journal_unlock_updates(journal); 4928 4929 /* Finally we can mark the inode as dirty. */ 4930 4931 handle = ext4_journal_start(inode, 1); 4932 if (IS_ERR(handle)) 4933 return PTR_ERR(handle); 4934 4935 err = ext4_mark_inode_dirty(handle, inode); 4936 handle->h_sync = 1; 4937 ext4_journal_stop(handle); 4938 ext4_std_error(inode->i_sb, err); 4939 4940 return err; 4941 } 4942 4943 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4944 { 4945 return !buffer_mapped(bh); 4946 } 4947 4948 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4949 { 4950 loff_t size; 4951 unsigned long len; 4952 int ret = -EINVAL; 4953 void *fsdata; 4954 struct file *file = vma->vm_file; 4955 struct inode *inode = file->f_path.dentry->d_inode; 4956 struct address_space *mapping = inode->i_mapping; 4957 4958 /* 4959 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4960 * get i_mutex because we are already holding mmap_sem. 4961 */ 4962 down_read(&inode->i_alloc_sem); 4963 size = i_size_read(inode); 4964 if (page->mapping != mapping || size <= page_offset(page) 4965 || !PageUptodate(page)) { 4966 /* page got truncated from under us? */ 4967 goto out_unlock; 4968 } 4969 ret = 0; 4970 if (PageMappedToDisk(page)) 4971 goto out_unlock; 4972 4973 if (page->index == size >> PAGE_CACHE_SHIFT) 4974 len = size & ~PAGE_CACHE_MASK; 4975 else 4976 len = PAGE_CACHE_SIZE; 4977 4978 if (page_has_buffers(page)) { 4979 /* return if we have all the buffers mapped */ 4980 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4981 ext4_bh_unmapped)) 4982 goto out_unlock; 4983 } 4984 /* 4985 * OK, we need to fill the hole... Do write_begin write_end 4986 * to do block allocation/reservation.We are not holding 4987 * inode.i__mutex here. That allow * parallel write_begin, 4988 * write_end call. lock_page prevent this from happening 4989 * on the same page though 4990 */ 4991 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4992 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 4993 if (ret < 0) 4994 goto out_unlock; 4995 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4996 len, len, page, fsdata); 4997 if (ret < 0) 4998 goto out_unlock; 4999 ret = 0; 5000 out_unlock: 5001 up_read(&inode->i_alloc_sem); 5002 return ret; 5003 } 5004