xref: /linux/fs/ext4/inode.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	return jbd2_journal_begin_ordered_truncate(
55 					EXT4_SB(inode->i_sb)->s_journal,
56 					&EXT4_I(inode)->jinode,
57 					new_size);
58 }
59 
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61 
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 		(inode->i_sb->s_blocksize >> 9) : 0;
69 
70 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72 
73 /*
74  * The ext4 forget function must perform a revoke if we are freeing data
75  * which has been journaled.  Metadata (eg. indirect blocks) must be
76  * revoked in all cases.
77  *
78  * "bh" may be NULL: a metadata block may have been freed from memory
79  * but there may still be a record of it in the journal, and that record
80  * still needs to be revoked.
81  *
82  * If the handle isn't valid we're not journaling, but we still need to
83  * call into ext4_journal_revoke() to put the buffer head.
84  */
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 		struct buffer_head *bh, ext4_fsblk_t blocknr)
87 {
88 	int err;
89 
90 	might_sleep();
91 
92 	BUFFER_TRACE(bh, "enter");
93 
94 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 		  "data mode %x\n",
96 		  bh, is_metadata, inode->i_mode,
97 		  test_opt(inode->i_sb, DATA_FLAGS));
98 
99 	/* Never use the revoke function if we are doing full data
100 	 * journaling: there is no need to, and a V1 superblock won't
101 	 * support it.  Otherwise, only skip the revoke on un-journaled
102 	 * data blocks. */
103 
104 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 	    (!is_metadata && !ext4_should_journal_data(inode))) {
106 		if (bh) {
107 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 			return ext4_journal_forget(handle, bh);
109 		}
110 		return 0;
111 	}
112 
113 	/*
114 	 * data!=journal && (is_metadata || should_journal_data(inode))
115 	 */
116 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 	err = ext4_journal_revoke(handle, blocknr, bh);
118 	if (err)
119 		ext4_abort(inode->i_sb, __func__,
120 			   "error %d when attempting revoke", err);
121 	BUFFER_TRACE(bh, "exit");
122 	return err;
123 }
124 
125 /*
126  * Work out how many blocks we need to proceed with the next chunk of a
127  * truncate transaction.
128  */
129 static unsigned long blocks_for_truncate(struct inode *inode)
130 {
131 	ext4_lblk_t needed;
132 
133 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134 
135 	/* Give ourselves just enough room to cope with inodes in which
136 	 * i_blocks is corrupt: we've seen disk corruptions in the past
137 	 * which resulted in random data in an inode which looked enough
138 	 * like a regular file for ext4 to try to delete it.  Things
139 	 * will go a bit crazy if that happens, but at least we should
140 	 * try not to panic the whole kernel. */
141 	if (needed < 2)
142 		needed = 2;
143 
144 	/* But we need to bound the transaction so we don't overflow the
145 	 * journal. */
146 	if (needed > EXT4_MAX_TRANS_DATA)
147 		needed = EXT4_MAX_TRANS_DATA;
148 
149 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
150 }
151 
152 /*
153  * Truncate transactions can be complex and absolutely huge.  So we need to
154  * be able to restart the transaction at a conventient checkpoint to make
155  * sure we don't overflow the journal.
156  *
157  * start_transaction gets us a new handle for a truncate transaction,
158  * and extend_transaction tries to extend the existing one a bit.  If
159  * extend fails, we need to propagate the failure up and restart the
160  * transaction in the top-level truncate loop. --sct
161  */
162 static handle_t *start_transaction(struct inode *inode)
163 {
164 	handle_t *result;
165 
166 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 	if (!IS_ERR(result))
168 		return result;
169 
170 	ext4_std_error(inode->i_sb, PTR_ERR(result));
171 	return result;
172 }
173 
174 /*
175  * Try to extend this transaction for the purposes of truncation.
176  *
177  * Returns 0 if we managed to create more room.  If we can't create more
178  * room, and the transaction must be restarted we return 1.
179  */
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 {
182 	if (!ext4_handle_valid(handle))
183 		return 0;
184 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 		return 0;
186 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 		return 0;
188 	return 1;
189 }
190 
191 /*
192  * Restart the transaction associated with *handle.  This does a commit,
193  * so before we call here everything must be consistently dirtied against
194  * this transaction.
195  */
196  int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 				 int nblocks)
198 {
199 	int ret;
200 
201 	/*
202 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 	 * moment, get_block can be called only for blocks inside i_size since
204 	 * page cache has been already dropped and writes are blocked by
205 	 * i_mutex. So we can safely drop the i_data_sem here.
206 	 */
207 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 	jbd_debug(2, "restarting handle %p\n", handle);
209 	up_write(&EXT4_I(inode)->i_data_sem);
210 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 	down_write(&EXT4_I(inode)->i_data_sem);
212 
213 	return ret;
214 }
215 
216 /*
217  * Called at the last iput() if i_nlink is zero.
218  */
219 void ext4_delete_inode(struct inode *inode)
220 {
221 	handle_t *handle;
222 	int err;
223 
224 	if (ext4_should_order_data(inode))
225 		ext4_begin_ordered_truncate(inode, 0);
226 	truncate_inode_pages(&inode->i_data, 0);
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 
231 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
232 	if (IS_ERR(handle)) {
233 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
234 		/*
235 		 * If we're going to skip the normal cleanup, we still need to
236 		 * make sure that the in-core orphan linked list is properly
237 		 * cleaned up.
238 		 */
239 		ext4_orphan_del(NULL, inode);
240 		goto no_delete;
241 	}
242 
243 	if (IS_SYNC(inode))
244 		ext4_handle_sync(handle);
245 	inode->i_size = 0;
246 	err = ext4_mark_inode_dirty(handle, inode);
247 	if (err) {
248 		ext4_warning(inode->i_sb, __func__,
249 			     "couldn't mark inode dirty (err %d)", err);
250 		goto stop_handle;
251 	}
252 	if (inode->i_blocks)
253 		ext4_truncate(inode);
254 
255 	/*
256 	 * ext4_ext_truncate() doesn't reserve any slop when it
257 	 * restarts journal transactions; therefore there may not be
258 	 * enough credits left in the handle to remove the inode from
259 	 * the orphan list and set the dtime field.
260 	 */
261 	if (!ext4_handle_has_enough_credits(handle, 3)) {
262 		err = ext4_journal_extend(handle, 3);
263 		if (err > 0)
264 			err = ext4_journal_restart(handle, 3);
265 		if (err != 0) {
266 			ext4_warning(inode->i_sb, __func__,
267 				     "couldn't extend journal (err %d)", err);
268 		stop_handle:
269 			ext4_journal_stop(handle);
270 			goto no_delete;
271 		}
272 	}
273 
274 	/*
275 	 * Kill off the orphan record which ext4_truncate created.
276 	 * AKPM: I think this can be inside the above `if'.
277 	 * Note that ext4_orphan_del() has to be able to cope with the
278 	 * deletion of a non-existent orphan - this is because we don't
279 	 * know if ext4_truncate() actually created an orphan record.
280 	 * (Well, we could do this if we need to, but heck - it works)
281 	 */
282 	ext4_orphan_del(handle, inode);
283 	EXT4_I(inode)->i_dtime	= get_seconds();
284 
285 	/*
286 	 * One subtle ordering requirement: if anything has gone wrong
287 	 * (transaction abort, IO errors, whatever), then we can still
288 	 * do these next steps (the fs will already have been marked as
289 	 * having errors), but we can't free the inode if the mark_dirty
290 	 * fails.
291 	 */
292 	if (ext4_mark_inode_dirty(handle, inode))
293 		/* If that failed, just do the required in-core inode clear. */
294 		clear_inode(inode);
295 	else
296 		ext4_free_inode(handle, inode);
297 	ext4_journal_stop(handle);
298 	return;
299 no_delete:
300 	clear_inode(inode);	/* We must guarantee clearing of inode... */
301 }
302 
303 typedef struct {
304 	__le32	*p;
305 	__le32	key;
306 	struct buffer_head *bh;
307 } Indirect;
308 
309 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
310 {
311 	p->key = *(p->p = v);
312 	p->bh = bh;
313 }
314 
315 /**
316  *	ext4_block_to_path - parse the block number into array of offsets
317  *	@inode: inode in question (we are only interested in its superblock)
318  *	@i_block: block number to be parsed
319  *	@offsets: array to store the offsets in
320  *	@boundary: set this non-zero if the referred-to block is likely to be
321  *	       followed (on disk) by an indirect block.
322  *
323  *	To store the locations of file's data ext4 uses a data structure common
324  *	for UNIX filesystems - tree of pointers anchored in the inode, with
325  *	data blocks at leaves and indirect blocks in intermediate nodes.
326  *	This function translates the block number into path in that tree -
327  *	return value is the path length and @offsets[n] is the offset of
328  *	pointer to (n+1)th node in the nth one. If @block is out of range
329  *	(negative or too large) warning is printed and zero returned.
330  *
331  *	Note: function doesn't find node addresses, so no IO is needed. All
332  *	we need to know is the capacity of indirect blocks (taken from the
333  *	inode->i_sb).
334  */
335 
336 /*
337  * Portability note: the last comparison (check that we fit into triple
338  * indirect block) is spelled differently, because otherwise on an
339  * architecture with 32-bit longs and 8Kb pages we might get into trouble
340  * if our filesystem had 8Kb blocks. We might use long long, but that would
341  * kill us on x86. Oh, well, at least the sign propagation does not matter -
342  * i_block would have to be negative in the very beginning, so we would not
343  * get there at all.
344  */
345 
346 static int ext4_block_to_path(struct inode *inode,
347 			      ext4_lblk_t i_block,
348 			      ext4_lblk_t offsets[4], int *boundary)
349 {
350 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
351 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
352 	const long direct_blocks = EXT4_NDIR_BLOCKS,
353 		indirect_blocks = ptrs,
354 		double_blocks = (1 << (ptrs_bits * 2));
355 	int n = 0;
356 	int final = 0;
357 
358 	if (i_block < direct_blocks) {
359 		offsets[n++] = i_block;
360 		final = direct_blocks;
361 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
362 		offsets[n++] = EXT4_IND_BLOCK;
363 		offsets[n++] = i_block;
364 		final = ptrs;
365 	} else if ((i_block -= indirect_blocks) < double_blocks) {
366 		offsets[n++] = EXT4_DIND_BLOCK;
367 		offsets[n++] = i_block >> ptrs_bits;
368 		offsets[n++] = i_block & (ptrs - 1);
369 		final = ptrs;
370 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
371 		offsets[n++] = EXT4_TIND_BLOCK;
372 		offsets[n++] = i_block >> (ptrs_bits * 2);
373 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
374 		offsets[n++] = i_block & (ptrs - 1);
375 		final = ptrs;
376 	} else {
377 		ext4_warning(inode->i_sb, "ext4_block_to_path",
378 			     "block %lu > max in inode %lu",
379 			     i_block + direct_blocks +
380 			     indirect_blocks + double_blocks, inode->i_ino);
381 	}
382 	if (boundary)
383 		*boundary = final - 1 - (i_block & (ptrs - 1));
384 	return n;
385 }
386 
387 static int __ext4_check_blockref(const char *function, struct inode *inode,
388 				 __le32 *p, unsigned int max)
389 {
390 	__le32 *bref = p;
391 	unsigned int blk;
392 
393 	while (bref < p+max) {
394 		blk = le32_to_cpu(*bref++);
395 		if (blk &&
396 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
397 						    blk, 1))) {
398 			ext4_error(inode->i_sb, function,
399 				   "invalid block reference %u "
400 				   "in inode #%lu", blk, inode->i_ino);
401 			return -EIO;
402 		}
403 	}
404 	return 0;
405 }
406 
407 
408 #define ext4_check_indirect_blockref(inode, bh)                         \
409 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
410 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
411 
412 #define ext4_check_inode_blockref(inode)                                \
413 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
414 			      EXT4_NDIR_BLOCKS)
415 
416 /**
417  *	ext4_get_branch - read the chain of indirect blocks leading to data
418  *	@inode: inode in question
419  *	@depth: depth of the chain (1 - direct pointer, etc.)
420  *	@offsets: offsets of pointers in inode/indirect blocks
421  *	@chain: place to store the result
422  *	@err: here we store the error value
423  *
424  *	Function fills the array of triples <key, p, bh> and returns %NULL
425  *	if everything went OK or the pointer to the last filled triple
426  *	(incomplete one) otherwise. Upon the return chain[i].key contains
427  *	the number of (i+1)-th block in the chain (as it is stored in memory,
428  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
429  *	number (it points into struct inode for i==0 and into the bh->b_data
430  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
431  *	block for i>0 and NULL for i==0. In other words, it holds the block
432  *	numbers of the chain, addresses they were taken from (and where we can
433  *	verify that chain did not change) and buffer_heads hosting these
434  *	numbers.
435  *
436  *	Function stops when it stumbles upon zero pointer (absent block)
437  *		(pointer to last triple returned, *@err == 0)
438  *	or when it gets an IO error reading an indirect block
439  *		(ditto, *@err == -EIO)
440  *	or when it reads all @depth-1 indirect blocks successfully and finds
441  *	the whole chain, all way to the data (returns %NULL, *err == 0).
442  *
443  *      Need to be called with
444  *      down_read(&EXT4_I(inode)->i_data_sem)
445  */
446 static Indirect *ext4_get_branch(struct inode *inode, int depth,
447 				 ext4_lblk_t  *offsets,
448 				 Indirect chain[4], int *err)
449 {
450 	struct super_block *sb = inode->i_sb;
451 	Indirect *p = chain;
452 	struct buffer_head *bh;
453 
454 	*err = 0;
455 	/* i_data is not going away, no lock needed */
456 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
457 	if (!p->key)
458 		goto no_block;
459 	while (--depth) {
460 		bh = sb_getblk(sb, le32_to_cpu(p->key));
461 		if (unlikely(!bh))
462 			goto failure;
463 
464 		if (!bh_uptodate_or_lock(bh)) {
465 			if (bh_submit_read(bh) < 0) {
466 				put_bh(bh);
467 				goto failure;
468 			}
469 			/* validate block references */
470 			if (ext4_check_indirect_blockref(inode, bh)) {
471 				put_bh(bh);
472 				goto failure;
473 			}
474 		}
475 
476 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
477 		/* Reader: end */
478 		if (!p->key)
479 			goto no_block;
480 	}
481 	return NULL;
482 
483 failure:
484 	*err = -EIO;
485 no_block:
486 	return p;
487 }
488 
489 /**
490  *	ext4_find_near - find a place for allocation with sufficient locality
491  *	@inode: owner
492  *	@ind: descriptor of indirect block.
493  *
494  *	This function returns the preferred place for block allocation.
495  *	It is used when heuristic for sequential allocation fails.
496  *	Rules are:
497  *	  + if there is a block to the left of our position - allocate near it.
498  *	  + if pointer will live in indirect block - allocate near that block.
499  *	  + if pointer will live in inode - allocate in the same
500  *	    cylinder group.
501  *
502  * In the latter case we colour the starting block by the callers PID to
503  * prevent it from clashing with concurrent allocations for a different inode
504  * in the same block group.   The PID is used here so that functionally related
505  * files will be close-by on-disk.
506  *
507  *	Caller must make sure that @ind is valid and will stay that way.
508  */
509 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
510 {
511 	struct ext4_inode_info *ei = EXT4_I(inode);
512 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
513 	__le32 *p;
514 	ext4_fsblk_t bg_start;
515 	ext4_fsblk_t last_block;
516 	ext4_grpblk_t colour;
517 	ext4_group_t block_group;
518 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
519 
520 	/* Try to find previous block */
521 	for (p = ind->p - 1; p >= start; p--) {
522 		if (*p)
523 			return le32_to_cpu(*p);
524 	}
525 
526 	/* No such thing, so let's try location of indirect block */
527 	if (ind->bh)
528 		return ind->bh->b_blocknr;
529 
530 	/*
531 	 * It is going to be referred to from the inode itself? OK, just put it
532 	 * into the same cylinder group then.
533 	 */
534 	block_group = ei->i_block_group;
535 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
536 		block_group &= ~(flex_size-1);
537 		if (S_ISREG(inode->i_mode))
538 			block_group++;
539 	}
540 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
541 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
542 
543 	/*
544 	 * If we are doing delayed allocation, we don't need take
545 	 * colour into account.
546 	 */
547 	if (test_opt(inode->i_sb, DELALLOC))
548 		return bg_start;
549 
550 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
551 		colour = (current->pid % 16) *
552 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
553 	else
554 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
555 	return bg_start + colour;
556 }
557 
558 /**
559  *	ext4_find_goal - find a preferred place for allocation.
560  *	@inode: owner
561  *	@block:  block we want
562  *	@partial: pointer to the last triple within a chain
563  *
564  *	Normally this function find the preferred place for block allocation,
565  *	returns it.
566  *	Because this is only used for non-extent files, we limit the block nr
567  *	to 32 bits.
568  */
569 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
570 				   Indirect *partial)
571 {
572 	ext4_fsblk_t goal;
573 
574 	/*
575 	 * XXX need to get goal block from mballoc's data structures
576 	 */
577 
578 	goal = ext4_find_near(inode, partial);
579 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
580 	return goal;
581 }
582 
583 /**
584  *	ext4_blks_to_allocate: Look up the block map and count the number
585  *	of direct blocks need to be allocated for the given branch.
586  *
587  *	@branch: chain of indirect blocks
588  *	@k: number of blocks need for indirect blocks
589  *	@blks: number of data blocks to be mapped.
590  *	@blocks_to_boundary:  the offset in the indirect block
591  *
592  *	return the total number of blocks to be allocate, including the
593  *	direct and indirect blocks.
594  */
595 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
596 				 int blocks_to_boundary)
597 {
598 	unsigned int count = 0;
599 
600 	/*
601 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
602 	 * then it's clear blocks on that path have not allocated
603 	 */
604 	if (k > 0) {
605 		/* right now we don't handle cross boundary allocation */
606 		if (blks < blocks_to_boundary + 1)
607 			count += blks;
608 		else
609 			count += blocks_to_boundary + 1;
610 		return count;
611 	}
612 
613 	count++;
614 	while (count < blks && count <= blocks_to_boundary &&
615 		le32_to_cpu(*(branch[0].p + count)) == 0) {
616 		count++;
617 	}
618 	return count;
619 }
620 
621 /**
622  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
623  *	@indirect_blks: the number of blocks need to allocate for indirect
624  *			blocks
625  *
626  *	@new_blocks: on return it will store the new block numbers for
627  *	the indirect blocks(if needed) and the first direct block,
628  *	@blks:	on return it will store the total number of allocated
629  *		direct blocks
630  */
631 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
632 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
633 			     int indirect_blks, int blks,
634 			     ext4_fsblk_t new_blocks[4], int *err)
635 {
636 	struct ext4_allocation_request ar;
637 	int target, i;
638 	unsigned long count = 0, blk_allocated = 0;
639 	int index = 0;
640 	ext4_fsblk_t current_block = 0;
641 	int ret = 0;
642 
643 	/*
644 	 * Here we try to allocate the requested multiple blocks at once,
645 	 * on a best-effort basis.
646 	 * To build a branch, we should allocate blocks for
647 	 * the indirect blocks(if not allocated yet), and at least
648 	 * the first direct block of this branch.  That's the
649 	 * minimum number of blocks need to allocate(required)
650 	 */
651 	/* first we try to allocate the indirect blocks */
652 	target = indirect_blks;
653 	while (target > 0) {
654 		count = target;
655 		/* allocating blocks for indirect blocks and direct blocks */
656 		current_block = ext4_new_meta_blocks(handle, inode,
657 							goal, &count, err);
658 		if (*err)
659 			goto failed_out;
660 
661 		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
662 
663 		target -= count;
664 		/* allocate blocks for indirect blocks */
665 		while (index < indirect_blks && count) {
666 			new_blocks[index++] = current_block++;
667 			count--;
668 		}
669 		if (count > 0) {
670 			/*
671 			 * save the new block number
672 			 * for the first direct block
673 			 */
674 			new_blocks[index] = current_block;
675 			printk(KERN_INFO "%s returned more blocks than "
676 						"requested\n", __func__);
677 			WARN_ON(1);
678 			break;
679 		}
680 	}
681 
682 	target = blks - count ;
683 	blk_allocated = count;
684 	if (!target)
685 		goto allocated;
686 	/* Now allocate data blocks */
687 	memset(&ar, 0, sizeof(ar));
688 	ar.inode = inode;
689 	ar.goal = goal;
690 	ar.len = target;
691 	ar.logical = iblock;
692 	if (S_ISREG(inode->i_mode))
693 		/* enable in-core preallocation only for regular files */
694 		ar.flags = EXT4_MB_HINT_DATA;
695 
696 	current_block = ext4_mb_new_blocks(handle, &ar, err);
697 	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
698 
699 	if (*err && (target == blks)) {
700 		/*
701 		 * if the allocation failed and we didn't allocate
702 		 * any blocks before
703 		 */
704 		goto failed_out;
705 	}
706 	if (!*err) {
707 		if (target == blks) {
708 			/*
709 			 * save the new block number
710 			 * for the first direct block
711 			 */
712 			new_blocks[index] = current_block;
713 		}
714 		blk_allocated += ar.len;
715 	}
716 allocated:
717 	/* total number of blocks allocated for direct blocks */
718 	ret = blk_allocated;
719 	*err = 0;
720 	return ret;
721 failed_out:
722 	for (i = 0; i < index; i++)
723 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
724 	return ret;
725 }
726 
727 /**
728  *	ext4_alloc_branch - allocate and set up a chain of blocks.
729  *	@inode: owner
730  *	@indirect_blks: number of allocated indirect blocks
731  *	@blks: number of allocated direct blocks
732  *	@offsets: offsets (in the blocks) to store the pointers to next.
733  *	@branch: place to store the chain in.
734  *
735  *	This function allocates blocks, zeroes out all but the last one,
736  *	links them into chain and (if we are synchronous) writes them to disk.
737  *	In other words, it prepares a branch that can be spliced onto the
738  *	inode. It stores the information about that chain in the branch[], in
739  *	the same format as ext4_get_branch() would do. We are calling it after
740  *	we had read the existing part of chain and partial points to the last
741  *	triple of that (one with zero ->key). Upon the exit we have the same
742  *	picture as after the successful ext4_get_block(), except that in one
743  *	place chain is disconnected - *branch->p is still zero (we did not
744  *	set the last link), but branch->key contains the number that should
745  *	be placed into *branch->p to fill that gap.
746  *
747  *	If allocation fails we free all blocks we've allocated (and forget
748  *	their buffer_heads) and return the error value the from failed
749  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
750  *	as described above and return 0.
751  */
752 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
753 			     ext4_lblk_t iblock, int indirect_blks,
754 			     int *blks, ext4_fsblk_t goal,
755 			     ext4_lblk_t *offsets, Indirect *branch)
756 {
757 	int blocksize = inode->i_sb->s_blocksize;
758 	int i, n = 0;
759 	int err = 0;
760 	struct buffer_head *bh;
761 	int num;
762 	ext4_fsblk_t new_blocks[4];
763 	ext4_fsblk_t current_block;
764 
765 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
766 				*blks, new_blocks, &err);
767 	if (err)
768 		return err;
769 
770 	branch[0].key = cpu_to_le32(new_blocks[0]);
771 	/*
772 	 * metadata blocks and data blocks are allocated.
773 	 */
774 	for (n = 1; n <= indirect_blks;  n++) {
775 		/*
776 		 * Get buffer_head for parent block, zero it out
777 		 * and set the pointer to new one, then send
778 		 * parent to disk.
779 		 */
780 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
781 		branch[n].bh = bh;
782 		lock_buffer(bh);
783 		BUFFER_TRACE(bh, "call get_create_access");
784 		err = ext4_journal_get_create_access(handle, bh);
785 		if (err) {
786 			/* Don't brelse(bh) here; it's done in
787 			 * ext4_journal_forget() below */
788 			unlock_buffer(bh);
789 			goto failed;
790 		}
791 
792 		memset(bh->b_data, 0, blocksize);
793 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
794 		branch[n].key = cpu_to_le32(new_blocks[n]);
795 		*branch[n].p = branch[n].key;
796 		if (n == indirect_blks) {
797 			current_block = new_blocks[n];
798 			/*
799 			 * End of chain, update the last new metablock of
800 			 * the chain to point to the new allocated
801 			 * data blocks numbers
802 			 */
803 			for (i = 1; i < num; i++)
804 				*(branch[n].p + i) = cpu_to_le32(++current_block);
805 		}
806 		BUFFER_TRACE(bh, "marking uptodate");
807 		set_buffer_uptodate(bh);
808 		unlock_buffer(bh);
809 
810 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
811 		err = ext4_handle_dirty_metadata(handle, inode, bh);
812 		if (err)
813 			goto failed;
814 	}
815 	*blks = num;
816 	return err;
817 failed:
818 	/* Allocation failed, free what we already allocated */
819 	for (i = 1; i <= n ; i++) {
820 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
821 		ext4_journal_forget(handle, branch[i].bh);
822 	}
823 	for (i = 0; i < indirect_blks; i++)
824 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
825 
826 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
827 
828 	return err;
829 }
830 
831 /**
832  * ext4_splice_branch - splice the allocated branch onto inode.
833  * @inode: owner
834  * @block: (logical) number of block we are adding
835  * @chain: chain of indirect blocks (with a missing link - see
836  *	ext4_alloc_branch)
837  * @where: location of missing link
838  * @num:   number of indirect blocks we are adding
839  * @blks:  number of direct blocks we are adding
840  *
841  * This function fills the missing link and does all housekeeping needed in
842  * inode (->i_blocks, etc.). In case of success we end up with the full
843  * chain to new block and return 0.
844  */
845 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
846 			      ext4_lblk_t block, Indirect *where, int num,
847 			      int blks)
848 {
849 	int i;
850 	int err = 0;
851 	ext4_fsblk_t current_block;
852 
853 	/*
854 	 * If we're splicing into a [td]indirect block (as opposed to the
855 	 * inode) then we need to get write access to the [td]indirect block
856 	 * before the splice.
857 	 */
858 	if (where->bh) {
859 		BUFFER_TRACE(where->bh, "get_write_access");
860 		err = ext4_journal_get_write_access(handle, where->bh);
861 		if (err)
862 			goto err_out;
863 	}
864 	/* That's it */
865 
866 	*where->p = where->key;
867 
868 	/*
869 	 * Update the host buffer_head or inode to point to more just allocated
870 	 * direct blocks blocks
871 	 */
872 	if (num == 0 && blks > 1) {
873 		current_block = le32_to_cpu(where->key) + 1;
874 		for (i = 1; i < blks; i++)
875 			*(where->p + i) = cpu_to_le32(current_block++);
876 	}
877 
878 	/* We are done with atomic stuff, now do the rest of housekeeping */
879 	/* had we spliced it onto indirect block? */
880 	if (where->bh) {
881 		/*
882 		 * If we spliced it onto an indirect block, we haven't
883 		 * altered the inode.  Note however that if it is being spliced
884 		 * onto an indirect block at the very end of the file (the
885 		 * file is growing) then we *will* alter the inode to reflect
886 		 * the new i_size.  But that is not done here - it is done in
887 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
888 		 */
889 		jbd_debug(5, "splicing indirect only\n");
890 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
891 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
892 		if (err)
893 			goto err_out;
894 	} else {
895 		/*
896 		 * OK, we spliced it into the inode itself on a direct block.
897 		 */
898 		ext4_mark_inode_dirty(handle, inode);
899 		jbd_debug(5, "splicing direct\n");
900 	}
901 	return err;
902 
903 err_out:
904 	for (i = 1; i <= num; i++) {
905 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
906 		ext4_journal_forget(handle, where[i].bh);
907 		ext4_free_blocks(handle, inode,
908 					le32_to_cpu(where[i-1].key), 1, 0);
909 	}
910 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
911 
912 	return err;
913 }
914 
915 /*
916  * The ext4_ind_get_blocks() function handles non-extents inodes
917  * (i.e., using the traditional indirect/double-indirect i_blocks
918  * scheme) for ext4_get_blocks().
919  *
920  * Allocation strategy is simple: if we have to allocate something, we will
921  * have to go the whole way to leaf. So let's do it before attaching anything
922  * to tree, set linkage between the newborn blocks, write them if sync is
923  * required, recheck the path, free and repeat if check fails, otherwise
924  * set the last missing link (that will protect us from any truncate-generated
925  * removals - all blocks on the path are immune now) and possibly force the
926  * write on the parent block.
927  * That has a nice additional property: no special recovery from the failed
928  * allocations is needed - we simply release blocks and do not touch anything
929  * reachable from inode.
930  *
931  * `handle' can be NULL if create == 0.
932  *
933  * return > 0, # of blocks mapped or allocated.
934  * return = 0, if plain lookup failed.
935  * return < 0, error case.
936  *
937  * The ext4_ind_get_blocks() function should be called with
938  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
939  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
940  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
941  * blocks.
942  */
943 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
944 			       ext4_lblk_t iblock, unsigned int maxblocks,
945 			       struct buffer_head *bh_result,
946 			       int flags)
947 {
948 	int err = -EIO;
949 	ext4_lblk_t offsets[4];
950 	Indirect chain[4];
951 	Indirect *partial;
952 	ext4_fsblk_t goal;
953 	int indirect_blks;
954 	int blocks_to_boundary = 0;
955 	int depth;
956 	int count = 0;
957 	ext4_fsblk_t first_block = 0;
958 
959 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
960 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
961 	depth = ext4_block_to_path(inode, iblock, offsets,
962 				   &blocks_to_boundary);
963 
964 	if (depth == 0)
965 		goto out;
966 
967 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
968 
969 	/* Simplest case - block found, no allocation needed */
970 	if (!partial) {
971 		first_block = le32_to_cpu(chain[depth - 1].key);
972 		clear_buffer_new(bh_result);
973 		count++;
974 		/*map more blocks*/
975 		while (count < maxblocks && count <= blocks_to_boundary) {
976 			ext4_fsblk_t blk;
977 
978 			blk = le32_to_cpu(*(chain[depth-1].p + count));
979 
980 			if (blk == first_block + count)
981 				count++;
982 			else
983 				break;
984 		}
985 		goto got_it;
986 	}
987 
988 	/* Next simple case - plain lookup or failed read of indirect block */
989 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
990 		goto cleanup;
991 
992 	/*
993 	 * Okay, we need to do block allocation.
994 	*/
995 	goal = ext4_find_goal(inode, iblock, partial);
996 
997 	/* the number of blocks need to allocate for [d,t]indirect blocks */
998 	indirect_blks = (chain + depth) - partial - 1;
999 
1000 	/*
1001 	 * Next look up the indirect map to count the totoal number of
1002 	 * direct blocks to allocate for this branch.
1003 	 */
1004 	count = ext4_blks_to_allocate(partial, indirect_blks,
1005 					maxblocks, blocks_to_boundary);
1006 	/*
1007 	 * Block out ext4_truncate while we alter the tree
1008 	 */
1009 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1010 				&count, goal,
1011 				offsets + (partial - chain), partial);
1012 
1013 	/*
1014 	 * The ext4_splice_branch call will free and forget any buffers
1015 	 * on the new chain if there is a failure, but that risks using
1016 	 * up transaction credits, especially for bitmaps where the
1017 	 * credits cannot be returned.  Can we handle this somehow?  We
1018 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1019 	 */
1020 	if (!err)
1021 		err = ext4_splice_branch(handle, inode, iblock,
1022 					 partial, indirect_blks, count);
1023 	else
1024 		goto cleanup;
1025 
1026 	set_buffer_new(bh_result);
1027 got_it:
1028 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1029 	if (count > blocks_to_boundary)
1030 		set_buffer_boundary(bh_result);
1031 	err = count;
1032 	/* Clean up and exit */
1033 	partial = chain + depth - 1;	/* the whole chain */
1034 cleanup:
1035 	while (partial > chain) {
1036 		BUFFER_TRACE(partial->bh, "call brelse");
1037 		brelse(partial->bh);
1038 		partial--;
1039 	}
1040 	BUFFER_TRACE(bh_result, "returned");
1041 out:
1042 	return err;
1043 }
1044 
1045 qsize_t ext4_get_reserved_space(struct inode *inode)
1046 {
1047 	unsigned long long total;
1048 
1049 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1050 	total = EXT4_I(inode)->i_reserved_data_blocks +
1051 		EXT4_I(inode)->i_reserved_meta_blocks;
1052 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1053 
1054 	return total;
1055 }
1056 /*
1057  * Calculate the number of metadata blocks need to reserve
1058  * to allocate @blocks for non extent file based file
1059  */
1060 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1061 {
1062 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1063 	int ind_blks, dind_blks, tind_blks;
1064 
1065 	/* number of new indirect blocks needed */
1066 	ind_blks = (blocks + icap - 1) / icap;
1067 
1068 	dind_blks = (ind_blks + icap - 1) / icap;
1069 
1070 	tind_blks = 1;
1071 
1072 	return ind_blks + dind_blks + tind_blks;
1073 }
1074 
1075 /*
1076  * Calculate the number of metadata blocks need to reserve
1077  * to allocate given number of blocks
1078  */
1079 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1080 {
1081 	if (!blocks)
1082 		return 0;
1083 
1084 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1085 		return ext4_ext_calc_metadata_amount(inode, blocks);
1086 
1087 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1088 }
1089 
1090 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1091 {
1092 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093 	int total, mdb, mdb_free;
1094 
1095 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1096 	/* recalculate the number of metablocks still need to be reserved */
1097 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1098 	mdb = ext4_calc_metadata_amount(inode, total);
1099 
1100 	/* figure out how many metablocks to release */
1101 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1102 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1103 
1104 	if (mdb_free) {
1105 		/* Account for allocated meta_blocks */
1106 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1107 
1108 		/* update fs dirty blocks counter */
1109 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1110 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1111 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1112 	}
1113 
1114 	/* update per-inode reservations */
1115 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1116 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1117 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1118 
1119 	/*
1120 	 * free those over-booking quota for metadata blocks
1121 	 */
1122 	if (mdb_free)
1123 		vfs_dq_release_reservation_block(inode, mdb_free);
1124 
1125 	/*
1126 	 * If we have done all the pending block allocations and if
1127 	 * there aren't any writers on the inode, we can discard the
1128 	 * inode's preallocations.
1129 	 */
1130 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1131 		ext4_discard_preallocations(inode);
1132 }
1133 
1134 static int check_block_validity(struct inode *inode, const char *msg,
1135 				sector_t logical, sector_t phys, int len)
1136 {
1137 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1138 		ext4_error(inode->i_sb, msg,
1139 			   "inode #%lu logical block %llu mapped to %llu "
1140 			   "(size %d)", inode->i_ino,
1141 			   (unsigned long long) logical,
1142 			   (unsigned long long) phys, len);
1143 		return -EIO;
1144 	}
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Return the number of contiguous dirty pages in a given inode
1150  * starting at page frame idx.
1151  */
1152 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1153 				    unsigned int max_pages)
1154 {
1155 	struct address_space *mapping = inode->i_mapping;
1156 	pgoff_t	index;
1157 	struct pagevec pvec;
1158 	pgoff_t num = 0;
1159 	int i, nr_pages, done = 0;
1160 
1161 	if (max_pages == 0)
1162 		return 0;
1163 	pagevec_init(&pvec, 0);
1164 	while (!done) {
1165 		index = idx;
1166 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1167 					      PAGECACHE_TAG_DIRTY,
1168 					      (pgoff_t)PAGEVEC_SIZE);
1169 		if (nr_pages == 0)
1170 			break;
1171 		for (i = 0; i < nr_pages; i++) {
1172 			struct page *page = pvec.pages[i];
1173 			struct buffer_head *bh, *head;
1174 
1175 			lock_page(page);
1176 			if (unlikely(page->mapping != mapping) ||
1177 			    !PageDirty(page) ||
1178 			    PageWriteback(page) ||
1179 			    page->index != idx) {
1180 				done = 1;
1181 				unlock_page(page);
1182 				break;
1183 			}
1184 			if (page_has_buffers(page)) {
1185 				bh = head = page_buffers(page);
1186 				do {
1187 					if (!buffer_delay(bh) &&
1188 					    !buffer_unwritten(bh))
1189 						done = 1;
1190 					bh = bh->b_this_page;
1191 				} while (!done && (bh != head));
1192 			}
1193 			unlock_page(page);
1194 			if (done)
1195 				break;
1196 			idx++;
1197 			num++;
1198 			if (num >= max_pages)
1199 				break;
1200 		}
1201 		pagevec_release(&pvec);
1202 	}
1203 	return num;
1204 }
1205 
1206 /*
1207  * The ext4_get_blocks() function tries to look up the requested blocks,
1208  * and returns if the blocks are already mapped.
1209  *
1210  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1211  * and store the allocated blocks in the result buffer head and mark it
1212  * mapped.
1213  *
1214  * If file type is extents based, it will call ext4_ext_get_blocks(),
1215  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1216  * based files
1217  *
1218  * On success, it returns the number of blocks being mapped or allocate.
1219  * if create==0 and the blocks are pre-allocated and uninitialized block,
1220  * the result buffer head is unmapped. If the create ==1, it will make sure
1221  * the buffer head is mapped.
1222  *
1223  * It returns 0 if plain look up failed (blocks have not been allocated), in
1224  * that casem, buffer head is unmapped
1225  *
1226  * It returns the error in case of allocation failure.
1227  */
1228 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1229 		    unsigned int max_blocks, struct buffer_head *bh,
1230 		    int flags)
1231 {
1232 	int retval;
1233 
1234 	clear_buffer_mapped(bh);
1235 	clear_buffer_unwritten(bh);
1236 
1237 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1238 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1239 		  (unsigned long)block);
1240 	/*
1241 	 * Try to see if we can get the block without requesting a new
1242 	 * file system block.
1243 	 */
1244 	down_read((&EXT4_I(inode)->i_data_sem));
1245 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1246 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1247 				bh, 0);
1248 	} else {
1249 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1250 					     bh, 0);
1251 	}
1252 	up_read((&EXT4_I(inode)->i_data_sem));
1253 
1254 	if (retval > 0 && buffer_mapped(bh)) {
1255 		int ret = check_block_validity(inode, "file system corruption",
1256 					       block, bh->b_blocknr, retval);
1257 		if (ret != 0)
1258 			return ret;
1259 	}
1260 
1261 	/* If it is only a block(s) look up */
1262 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1263 		return retval;
1264 
1265 	/*
1266 	 * Returns if the blocks have already allocated
1267 	 *
1268 	 * Note that if blocks have been preallocated
1269 	 * ext4_ext_get_block() returns th create = 0
1270 	 * with buffer head unmapped.
1271 	 */
1272 	if (retval > 0 && buffer_mapped(bh))
1273 		return retval;
1274 
1275 	/*
1276 	 * When we call get_blocks without the create flag, the
1277 	 * BH_Unwritten flag could have gotten set if the blocks
1278 	 * requested were part of a uninitialized extent.  We need to
1279 	 * clear this flag now that we are committed to convert all or
1280 	 * part of the uninitialized extent to be an initialized
1281 	 * extent.  This is because we need to avoid the combination
1282 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1283 	 * set on the buffer_head.
1284 	 */
1285 	clear_buffer_unwritten(bh);
1286 
1287 	/*
1288 	 * New blocks allocate and/or writing to uninitialized extent
1289 	 * will possibly result in updating i_data, so we take
1290 	 * the write lock of i_data_sem, and call get_blocks()
1291 	 * with create == 1 flag.
1292 	 */
1293 	down_write((&EXT4_I(inode)->i_data_sem));
1294 
1295 	/*
1296 	 * if the caller is from delayed allocation writeout path
1297 	 * we have already reserved fs blocks for allocation
1298 	 * let the underlying get_block() function know to
1299 	 * avoid double accounting
1300 	 */
1301 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1302 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1303 	/*
1304 	 * We need to check for EXT4 here because migrate
1305 	 * could have changed the inode type in between
1306 	 */
1307 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1308 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1309 					      bh, flags);
1310 	} else {
1311 		retval = ext4_ind_get_blocks(handle, inode, block,
1312 					     max_blocks, bh, flags);
1313 
1314 		if (retval > 0 && buffer_new(bh)) {
1315 			/*
1316 			 * We allocated new blocks which will result in
1317 			 * i_data's format changing.  Force the migrate
1318 			 * to fail by clearing migrate flags
1319 			 */
1320 			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1321 		}
1322 	}
1323 
1324 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1325 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326 
1327 	/*
1328 	 * Update reserved blocks/metadata blocks after successful
1329 	 * block allocation which had been deferred till now.
1330 	 */
1331 	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1332 		ext4_da_update_reserve_space(inode, retval);
1333 
1334 	up_write((&EXT4_I(inode)->i_data_sem));
1335 	if (retval > 0 && buffer_mapped(bh)) {
1336 		int ret = check_block_validity(inode, "file system "
1337 					       "corruption after allocation",
1338 					       block, bh->b_blocknr, retval);
1339 		if (ret != 0)
1340 			return ret;
1341 	}
1342 	return retval;
1343 }
1344 
1345 /* Maximum number of blocks we map for direct IO at once. */
1346 #define DIO_MAX_BLOCKS 4096
1347 
1348 int ext4_get_block(struct inode *inode, sector_t iblock,
1349 		   struct buffer_head *bh_result, int create)
1350 {
1351 	handle_t *handle = ext4_journal_current_handle();
1352 	int ret = 0, started = 0;
1353 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1354 	int dio_credits;
1355 
1356 	if (create && !handle) {
1357 		/* Direct IO write... */
1358 		if (max_blocks > DIO_MAX_BLOCKS)
1359 			max_blocks = DIO_MAX_BLOCKS;
1360 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1361 		handle = ext4_journal_start(inode, dio_credits);
1362 		if (IS_ERR(handle)) {
1363 			ret = PTR_ERR(handle);
1364 			goto out;
1365 		}
1366 		started = 1;
1367 	}
1368 
1369 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1370 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1371 	if (ret > 0) {
1372 		bh_result->b_size = (ret << inode->i_blkbits);
1373 		ret = 0;
1374 	}
1375 	if (started)
1376 		ext4_journal_stop(handle);
1377 out:
1378 	return ret;
1379 }
1380 
1381 /*
1382  * `handle' can be NULL if create is zero
1383  */
1384 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1385 				ext4_lblk_t block, int create, int *errp)
1386 {
1387 	struct buffer_head dummy;
1388 	int fatal = 0, err;
1389 	int flags = 0;
1390 
1391 	J_ASSERT(handle != NULL || create == 0);
1392 
1393 	dummy.b_state = 0;
1394 	dummy.b_blocknr = -1000;
1395 	buffer_trace_init(&dummy.b_history);
1396 	if (create)
1397 		flags |= EXT4_GET_BLOCKS_CREATE;
1398 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1399 	/*
1400 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1401 	 * case of a HOLE.
1402 	 */
1403 	if (err > 0) {
1404 		if (err > 1)
1405 			WARN_ON(1);
1406 		err = 0;
1407 	}
1408 	*errp = err;
1409 	if (!err && buffer_mapped(&dummy)) {
1410 		struct buffer_head *bh;
1411 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1412 		if (!bh) {
1413 			*errp = -EIO;
1414 			goto err;
1415 		}
1416 		if (buffer_new(&dummy)) {
1417 			J_ASSERT(create != 0);
1418 			J_ASSERT(handle != NULL);
1419 
1420 			/*
1421 			 * Now that we do not always journal data, we should
1422 			 * keep in mind whether this should always journal the
1423 			 * new buffer as metadata.  For now, regular file
1424 			 * writes use ext4_get_block instead, so it's not a
1425 			 * problem.
1426 			 */
1427 			lock_buffer(bh);
1428 			BUFFER_TRACE(bh, "call get_create_access");
1429 			fatal = ext4_journal_get_create_access(handle, bh);
1430 			if (!fatal && !buffer_uptodate(bh)) {
1431 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1432 				set_buffer_uptodate(bh);
1433 			}
1434 			unlock_buffer(bh);
1435 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1436 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1437 			if (!fatal)
1438 				fatal = err;
1439 		} else {
1440 			BUFFER_TRACE(bh, "not a new buffer");
1441 		}
1442 		if (fatal) {
1443 			*errp = fatal;
1444 			brelse(bh);
1445 			bh = NULL;
1446 		}
1447 		return bh;
1448 	}
1449 err:
1450 	return NULL;
1451 }
1452 
1453 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1454 			       ext4_lblk_t block, int create, int *err)
1455 {
1456 	struct buffer_head *bh;
1457 
1458 	bh = ext4_getblk(handle, inode, block, create, err);
1459 	if (!bh)
1460 		return bh;
1461 	if (buffer_uptodate(bh))
1462 		return bh;
1463 	ll_rw_block(READ_META, 1, &bh);
1464 	wait_on_buffer(bh);
1465 	if (buffer_uptodate(bh))
1466 		return bh;
1467 	put_bh(bh);
1468 	*err = -EIO;
1469 	return NULL;
1470 }
1471 
1472 static int walk_page_buffers(handle_t *handle,
1473 			     struct buffer_head *head,
1474 			     unsigned from,
1475 			     unsigned to,
1476 			     int *partial,
1477 			     int (*fn)(handle_t *handle,
1478 				       struct buffer_head *bh))
1479 {
1480 	struct buffer_head *bh;
1481 	unsigned block_start, block_end;
1482 	unsigned blocksize = head->b_size;
1483 	int err, ret = 0;
1484 	struct buffer_head *next;
1485 
1486 	for (bh = head, block_start = 0;
1487 	     ret == 0 && (bh != head || !block_start);
1488 	     block_start = block_end, bh = next) {
1489 		next = bh->b_this_page;
1490 		block_end = block_start + blocksize;
1491 		if (block_end <= from || block_start >= to) {
1492 			if (partial && !buffer_uptodate(bh))
1493 				*partial = 1;
1494 			continue;
1495 		}
1496 		err = (*fn)(handle, bh);
1497 		if (!ret)
1498 			ret = err;
1499 	}
1500 	return ret;
1501 }
1502 
1503 /*
1504  * To preserve ordering, it is essential that the hole instantiation and
1505  * the data write be encapsulated in a single transaction.  We cannot
1506  * close off a transaction and start a new one between the ext4_get_block()
1507  * and the commit_write().  So doing the jbd2_journal_start at the start of
1508  * prepare_write() is the right place.
1509  *
1510  * Also, this function can nest inside ext4_writepage() ->
1511  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1512  * has generated enough buffer credits to do the whole page.  So we won't
1513  * block on the journal in that case, which is good, because the caller may
1514  * be PF_MEMALLOC.
1515  *
1516  * By accident, ext4 can be reentered when a transaction is open via
1517  * quota file writes.  If we were to commit the transaction while thus
1518  * reentered, there can be a deadlock - we would be holding a quota
1519  * lock, and the commit would never complete if another thread had a
1520  * transaction open and was blocking on the quota lock - a ranking
1521  * violation.
1522  *
1523  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1524  * will _not_ run commit under these circumstances because handle->h_ref
1525  * is elevated.  We'll still have enough credits for the tiny quotafile
1526  * write.
1527  */
1528 static int do_journal_get_write_access(handle_t *handle,
1529 				       struct buffer_head *bh)
1530 {
1531 	if (!buffer_mapped(bh) || buffer_freed(bh))
1532 		return 0;
1533 	return ext4_journal_get_write_access(handle, bh);
1534 }
1535 
1536 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1537 			    loff_t pos, unsigned len, unsigned flags,
1538 			    struct page **pagep, void **fsdata)
1539 {
1540 	struct inode *inode = mapping->host;
1541 	int ret, needed_blocks;
1542 	handle_t *handle;
1543 	int retries = 0;
1544 	struct page *page;
1545 	pgoff_t index;
1546 	unsigned from, to;
1547 
1548 	trace_ext4_write_begin(inode, pos, len, flags);
1549 	/*
1550 	 * Reserve one block more for addition to orphan list in case
1551 	 * we allocate blocks but write fails for some reason
1552 	 */
1553 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1554 	index = pos >> PAGE_CACHE_SHIFT;
1555 	from = pos & (PAGE_CACHE_SIZE - 1);
1556 	to = from + len;
1557 
1558 retry:
1559 	handle = ext4_journal_start(inode, needed_blocks);
1560 	if (IS_ERR(handle)) {
1561 		ret = PTR_ERR(handle);
1562 		goto out;
1563 	}
1564 
1565 	/* We cannot recurse into the filesystem as the transaction is already
1566 	 * started */
1567 	flags |= AOP_FLAG_NOFS;
1568 
1569 	page = grab_cache_page_write_begin(mapping, index, flags);
1570 	if (!page) {
1571 		ext4_journal_stop(handle);
1572 		ret = -ENOMEM;
1573 		goto out;
1574 	}
1575 	*pagep = page;
1576 
1577 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1578 				ext4_get_block);
1579 
1580 	if (!ret && ext4_should_journal_data(inode)) {
1581 		ret = walk_page_buffers(handle, page_buffers(page),
1582 				from, to, NULL, do_journal_get_write_access);
1583 	}
1584 
1585 	if (ret) {
1586 		unlock_page(page);
1587 		page_cache_release(page);
1588 		/*
1589 		 * block_write_begin may have instantiated a few blocks
1590 		 * outside i_size.  Trim these off again. Don't need
1591 		 * i_size_read because we hold i_mutex.
1592 		 *
1593 		 * Add inode to orphan list in case we crash before
1594 		 * truncate finishes
1595 		 */
1596 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1597 			ext4_orphan_add(handle, inode);
1598 
1599 		ext4_journal_stop(handle);
1600 		if (pos + len > inode->i_size) {
1601 			ext4_truncate(inode);
1602 			/*
1603 			 * If truncate failed early the inode might
1604 			 * still be on the orphan list; we need to
1605 			 * make sure the inode is removed from the
1606 			 * orphan list in that case.
1607 			 */
1608 			if (inode->i_nlink)
1609 				ext4_orphan_del(NULL, inode);
1610 		}
1611 	}
1612 
1613 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1614 		goto retry;
1615 out:
1616 	return ret;
1617 }
1618 
1619 /* For write_end() in data=journal mode */
1620 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1621 {
1622 	if (!buffer_mapped(bh) || buffer_freed(bh))
1623 		return 0;
1624 	set_buffer_uptodate(bh);
1625 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1626 }
1627 
1628 static int ext4_generic_write_end(struct file *file,
1629 				  struct address_space *mapping,
1630 				  loff_t pos, unsigned len, unsigned copied,
1631 				  struct page *page, void *fsdata)
1632 {
1633 	int i_size_changed = 0;
1634 	struct inode *inode = mapping->host;
1635 	handle_t *handle = ext4_journal_current_handle();
1636 
1637 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1638 
1639 	/*
1640 	 * No need to use i_size_read() here, the i_size
1641 	 * cannot change under us because we hold i_mutex.
1642 	 *
1643 	 * But it's important to update i_size while still holding page lock:
1644 	 * page writeout could otherwise come in and zero beyond i_size.
1645 	 */
1646 	if (pos + copied > inode->i_size) {
1647 		i_size_write(inode, pos + copied);
1648 		i_size_changed = 1;
1649 	}
1650 
1651 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1652 		/* We need to mark inode dirty even if
1653 		 * new_i_size is less that inode->i_size
1654 		 * bu greater than i_disksize.(hint delalloc)
1655 		 */
1656 		ext4_update_i_disksize(inode, (pos + copied));
1657 		i_size_changed = 1;
1658 	}
1659 	unlock_page(page);
1660 	page_cache_release(page);
1661 
1662 	/*
1663 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1664 	 * makes the holding time of page lock longer. Second, it forces lock
1665 	 * ordering of page lock and transaction start for journaling
1666 	 * filesystems.
1667 	 */
1668 	if (i_size_changed)
1669 		ext4_mark_inode_dirty(handle, inode);
1670 
1671 	return copied;
1672 }
1673 
1674 /*
1675  * We need to pick up the new inode size which generic_commit_write gave us
1676  * `file' can be NULL - eg, when called from page_symlink().
1677  *
1678  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1679  * buffers are managed internally.
1680  */
1681 static int ext4_ordered_write_end(struct file *file,
1682 				  struct address_space *mapping,
1683 				  loff_t pos, unsigned len, unsigned copied,
1684 				  struct page *page, void *fsdata)
1685 {
1686 	handle_t *handle = ext4_journal_current_handle();
1687 	struct inode *inode = mapping->host;
1688 	int ret = 0, ret2;
1689 
1690 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1691 	ret = ext4_jbd2_file_inode(handle, inode);
1692 
1693 	if (ret == 0) {
1694 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1695 							page, fsdata);
1696 		copied = ret2;
1697 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698 			/* if we have allocated more blocks and copied
1699 			 * less. We will have blocks allocated outside
1700 			 * inode->i_size. So truncate them
1701 			 */
1702 			ext4_orphan_add(handle, inode);
1703 		if (ret2 < 0)
1704 			ret = ret2;
1705 	}
1706 	ret2 = ext4_journal_stop(handle);
1707 	if (!ret)
1708 		ret = ret2;
1709 
1710 	if (pos + len > inode->i_size) {
1711 		ext4_truncate(inode);
1712 		/*
1713 		 * If truncate failed early the inode might still be
1714 		 * on the orphan list; we need to make sure the inode
1715 		 * is removed from the orphan list in that case.
1716 		 */
1717 		if (inode->i_nlink)
1718 			ext4_orphan_del(NULL, inode);
1719 	}
1720 
1721 
1722 	return ret ? ret : copied;
1723 }
1724 
1725 static int ext4_writeback_write_end(struct file *file,
1726 				    struct address_space *mapping,
1727 				    loff_t pos, unsigned len, unsigned copied,
1728 				    struct page *page, void *fsdata)
1729 {
1730 	handle_t *handle = ext4_journal_current_handle();
1731 	struct inode *inode = mapping->host;
1732 	int ret = 0, ret2;
1733 
1734 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1735 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1736 							page, fsdata);
1737 	copied = ret2;
1738 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1739 		/* if we have allocated more blocks and copied
1740 		 * less. We will have blocks allocated outside
1741 		 * inode->i_size. So truncate them
1742 		 */
1743 		ext4_orphan_add(handle, inode);
1744 
1745 	if (ret2 < 0)
1746 		ret = ret2;
1747 
1748 	ret2 = ext4_journal_stop(handle);
1749 	if (!ret)
1750 		ret = ret2;
1751 
1752 	if (pos + len > inode->i_size) {
1753 		ext4_truncate(inode);
1754 		/*
1755 		 * If truncate failed early the inode might still be
1756 		 * on the orphan list; we need to make sure the inode
1757 		 * is removed from the orphan list in that case.
1758 		 */
1759 		if (inode->i_nlink)
1760 			ext4_orphan_del(NULL, inode);
1761 	}
1762 
1763 	return ret ? ret : copied;
1764 }
1765 
1766 static int ext4_journalled_write_end(struct file *file,
1767 				     struct address_space *mapping,
1768 				     loff_t pos, unsigned len, unsigned copied,
1769 				     struct page *page, void *fsdata)
1770 {
1771 	handle_t *handle = ext4_journal_current_handle();
1772 	struct inode *inode = mapping->host;
1773 	int ret = 0, ret2;
1774 	int partial = 0;
1775 	unsigned from, to;
1776 	loff_t new_i_size;
1777 
1778 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1779 	from = pos & (PAGE_CACHE_SIZE - 1);
1780 	to = from + len;
1781 
1782 	if (copied < len) {
1783 		if (!PageUptodate(page))
1784 			copied = 0;
1785 		page_zero_new_buffers(page, from+copied, to);
1786 	}
1787 
1788 	ret = walk_page_buffers(handle, page_buffers(page), from,
1789 				to, &partial, write_end_fn);
1790 	if (!partial)
1791 		SetPageUptodate(page);
1792 	new_i_size = pos + copied;
1793 	if (new_i_size > inode->i_size)
1794 		i_size_write(inode, pos+copied);
1795 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1796 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1797 		ext4_update_i_disksize(inode, new_i_size);
1798 		ret2 = ext4_mark_inode_dirty(handle, inode);
1799 		if (!ret)
1800 			ret = ret2;
1801 	}
1802 
1803 	unlock_page(page);
1804 	page_cache_release(page);
1805 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 		/* if we have allocated more blocks and copied
1807 		 * less. We will have blocks allocated outside
1808 		 * inode->i_size. So truncate them
1809 		 */
1810 		ext4_orphan_add(handle, inode);
1811 
1812 	ret2 = ext4_journal_stop(handle);
1813 	if (!ret)
1814 		ret = ret2;
1815 	if (pos + len > inode->i_size) {
1816 		ext4_truncate(inode);
1817 		/*
1818 		 * If truncate failed early the inode might still be
1819 		 * on the orphan list; we need to make sure the inode
1820 		 * is removed from the orphan list in that case.
1821 		 */
1822 		if (inode->i_nlink)
1823 			ext4_orphan_del(NULL, inode);
1824 	}
1825 
1826 	return ret ? ret : copied;
1827 }
1828 
1829 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1830 {
1831 	int retries = 0;
1832 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1833 	unsigned long md_needed, mdblocks, total = 0;
1834 
1835 	/*
1836 	 * recalculate the amount of metadata blocks to reserve
1837 	 * in order to allocate nrblocks
1838 	 * worse case is one extent per block
1839 	 */
1840 repeat:
1841 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1842 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1843 	mdblocks = ext4_calc_metadata_amount(inode, total);
1844 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1845 
1846 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1847 	total = md_needed + nrblocks;
1848 
1849 	/*
1850 	 * Make quota reservation here to prevent quota overflow
1851 	 * later. Real quota accounting is done at pages writeout
1852 	 * time.
1853 	 */
1854 	if (vfs_dq_reserve_block(inode, total)) {
1855 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1856 		return -EDQUOT;
1857 	}
1858 
1859 	if (ext4_claim_free_blocks(sbi, total)) {
1860 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1861 		vfs_dq_release_reservation_block(inode, total);
1862 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1863 			yield();
1864 			goto repeat;
1865 		}
1866 		return -ENOSPC;
1867 	}
1868 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1869 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1870 
1871 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1872 	return 0;       /* success */
1873 }
1874 
1875 static void ext4_da_release_space(struct inode *inode, int to_free)
1876 {
1877 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878 	int total, mdb, mdb_free, release;
1879 
1880 	if (!to_free)
1881 		return;		/* Nothing to release, exit */
1882 
1883 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1884 
1885 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1886 		/*
1887 		 * if there is no reserved blocks, but we try to free some
1888 		 * then the counter is messed up somewhere.
1889 		 * but since this function is called from invalidate
1890 		 * page, it's harmless to return without any action
1891 		 */
1892 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1893 			    "blocks for inode %lu, but there is no reserved "
1894 			    "data blocks\n", to_free, inode->i_ino);
1895 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1896 		return;
1897 	}
1898 
1899 	/* recalculate the number of metablocks still need to be reserved */
1900 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1901 	mdb = ext4_calc_metadata_amount(inode, total);
1902 
1903 	/* figure out how many metablocks to release */
1904 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1905 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1906 
1907 	release = to_free + mdb_free;
1908 
1909 	/* update fs dirty blocks counter for truncate case */
1910 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1911 
1912 	/* update per-inode reservations */
1913 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1914 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1915 
1916 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1917 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1918 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1919 
1920 	vfs_dq_release_reservation_block(inode, release);
1921 }
1922 
1923 static void ext4_da_page_release_reservation(struct page *page,
1924 					     unsigned long offset)
1925 {
1926 	int to_release = 0;
1927 	struct buffer_head *head, *bh;
1928 	unsigned int curr_off = 0;
1929 
1930 	head = page_buffers(page);
1931 	bh = head;
1932 	do {
1933 		unsigned int next_off = curr_off + bh->b_size;
1934 
1935 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1936 			to_release++;
1937 			clear_buffer_delay(bh);
1938 		}
1939 		curr_off = next_off;
1940 	} while ((bh = bh->b_this_page) != head);
1941 	ext4_da_release_space(page->mapping->host, to_release);
1942 }
1943 
1944 /*
1945  * Delayed allocation stuff
1946  */
1947 
1948 /*
1949  * mpage_da_submit_io - walks through extent of pages and try to write
1950  * them with writepage() call back
1951  *
1952  * @mpd->inode: inode
1953  * @mpd->first_page: first page of the extent
1954  * @mpd->next_page: page after the last page of the extent
1955  *
1956  * By the time mpage_da_submit_io() is called we expect all blocks
1957  * to be allocated. this may be wrong if allocation failed.
1958  *
1959  * As pages are already locked by write_cache_pages(), we can't use it
1960  */
1961 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1962 {
1963 	long pages_skipped;
1964 	struct pagevec pvec;
1965 	unsigned long index, end;
1966 	int ret = 0, err, nr_pages, i;
1967 	struct inode *inode = mpd->inode;
1968 	struct address_space *mapping = inode->i_mapping;
1969 
1970 	BUG_ON(mpd->next_page <= mpd->first_page);
1971 	/*
1972 	 * We need to start from the first_page to the next_page - 1
1973 	 * to make sure we also write the mapped dirty buffer_heads.
1974 	 * If we look at mpd->b_blocknr we would only be looking
1975 	 * at the currently mapped buffer_heads.
1976 	 */
1977 	index = mpd->first_page;
1978 	end = mpd->next_page - 1;
1979 
1980 	pagevec_init(&pvec, 0);
1981 	while (index <= end) {
1982 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1983 		if (nr_pages == 0)
1984 			break;
1985 		for (i = 0; i < nr_pages; i++) {
1986 			struct page *page = pvec.pages[i];
1987 
1988 			index = page->index;
1989 			if (index > end)
1990 				break;
1991 			index++;
1992 
1993 			BUG_ON(!PageLocked(page));
1994 			BUG_ON(PageWriteback(page));
1995 
1996 			pages_skipped = mpd->wbc->pages_skipped;
1997 			err = mapping->a_ops->writepage(page, mpd->wbc);
1998 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1999 				/*
2000 				 * have successfully written the page
2001 				 * without skipping the same
2002 				 */
2003 				mpd->pages_written++;
2004 			/*
2005 			 * In error case, we have to continue because
2006 			 * remaining pages are still locked
2007 			 * XXX: unlock and re-dirty them?
2008 			 */
2009 			if (ret == 0)
2010 				ret = err;
2011 		}
2012 		pagevec_release(&pvec);
2013 	}
2014 	return ret;
2015 }
2016 
2017 /*
2018  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2019  *
2020  * @mpd->inode - inode to walk through
2021  * @exbh->b_blocknr - first block on a disk
2022  * @exbh->b_size - amount of space in bytes
2023  * @logical - first logical block to start assignment with
2024  *
2025  * the function goes through all passed space and put actual disk
2026  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2027  */
2028 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2029 				 struct buffer_head *exbh)
2030 {
2031 	struct inode *inode = mpd->inode;
2032 	struct address_space *mapping = inode->i_mapping;
2033 	int blocks = exbh->b_size >> inode->i_blkbits;
2034 	sector_t pblock = exbh->b_blocknr, cur_logical;
2035 	struct buffer_head *head, *bh;
2036 	pgoff_t index, end;
2037 	struct pagevec pvec;
2038 	int nr_pages, i;
2039 
2040 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043 
2044 	pagevec_init(&pvec, 0);
2045 
2046 	while (index <= end) {
2047 		/* XXX: optimize tail */
2048 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2049 		if (nr_pages == 0)
2050 			break;
2051 		for (i = 0; i < nr_pages; i++) {
2052 			struct page *page = pvec.pages[i];
2053 
2054 			index = page->index;
2055 			if (index > end)
2056 				break;
2057 			index++;
2058 
2059 			BUG_ON(!PageLocked(page));
2060 			BUG_ON(PageWriteback(page));
2061 			BUG_ON(!page_has_buffers(page));
2062 
2063 			bh = page_buffers(page);
2064 			head = bh;
2065 
2066 			/* skip blocks out of the range */
2067 			do {
2068 				if (cur_logical >= logical)
2069 					break;
2070 				cur_logical++;
2071 			} while ((bh = bh->b_this_page) != head);
2072 
2073 			do {
2074 				if (cur_logical >= logical + blocks)
2075 					break;
2076 
2077 				if (buffer_delay(bh) ||
2078 						buffer_unwritten(bh)) {
2079 
2080 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2081 
2082 					if (buffer_delay(bh)) {
2083 						clear_buffer_delay(bh);
2084 						bh->b_blocknr = pblock;
2085 					} else {
2086 						/*
2087 						 * unwritten already should have
2088 						 * blocknr assigned. Verify that
2089 						 */
2090 						clear_buffer_unwritten(bh);
2091 						BUG_ON(bh->b_blocknr != pblock);
2092 					}
2093 
2094 				} else if (buffer_mapped(bh))
2095 					BUG_ON(bh->b_blocknr != pblock);
2096 
2097 				cur_logical++;
2098 				pblock++;
2099 			} while ((bh = bh->b_this_page) != head);
2100 		}
2101 		pagevec_release(&pvec);
2102 	}
2103 }
2104 
2105 
2106 /*
2107  * __unmap_underlying_blocks - just a helper function to unmap
2108  * set of blocks described by @bh
2109  */
2110 static inline void __unmap_underlying_blocks(struct inode *inode,
2111 					     struct buffer_head *bh)
2112 {
2113 	struct block_device *bdev = inode->i_sb->s_bdev;
2114 	int blocks, i;
2115 
2116 	blocks = bh->b_size >> inode->i_blkbits;
2117 	for (i = 0; i < blocks; i++)
2118 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2119 }
2120 
2121 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2122 					sector_t logical, long blk_cnt)
2123 {
2124 	int nr_pages, i;
2125 	pgoff_t index, end;
2126 	struct pagevec pvec;
2127 	struct inode *inode = mpd->inode;
2128 	struct address_space *mapping = inode->i_mapping;
2129 
2130 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 	end   = (logical + blk_cnt - 1) >>
2132 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2133 	while (index <= end) {
2134 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2135 		if (nr_pages == 0)
2136 			break;
2137 		for (i = 0; i < nr_pages; i++) {
2138 			struct page *page = pvec.pages[i];
2139 			index = page->index;
2140 			if (index > end)
2141 				break;
2142 			index++;
2143 
2144 			BUG_ON(!PageLocked(page));
2145 			BUG_ON(PageWriteback(page));
2146 			block_invalidatepage(page, 0);
2147 			ClearPageUptodate(page);
2148 			unlock_page(page);
2149 		}
2150 	}
2151 	return;
2152 }
2153 
2154 static void ext4_print_free_blocks(struct inode *inode)
2155 {
2156 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2157 	printk(KERN_CRIT "Total free blocks count %lld\n",
2158 	       ext4_count_free_blocks(inode->i_sb));
2159 	printk(KERN_CRIT "Free/Dirty block details\n");
2160 	printk(KERN_CRIT "free_blocks=%lld\n",
2161 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2162 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2163 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2164 	printk(KERN_CRIT "Block reservation details\n");
2165 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2166 	       EXT4_I(inode)->i_reserved_data_blocks);
2167 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2168 	       EXT4_I(inode)->i_reserved_meta_blocks);
2169 	return;
2170 }
2171 
2172 /*
2173  * mpage_da_map_blocks - go through given space
2174  *
2175  * @mpd - bh describing space
2176  *
2177  * The function skips space we know is already mapped to disk blocks.
2178  *
2179  */
2180 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2181 {
2182 	int err, blks, get_blocks_flags;
2183 	struct buffer_head new;
2184 	sector_t next = mpd->b_blocknr;
2185 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2186 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2187 	handle_t *handle = NULL;
2188 
2189 	/*
2190 	 * We consider only non-mapped and non-allocated blocks
2191 	 */
2192 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2193 		!(mpd->b_state & (1 << BH_Delay)) &&
2194 		!(mpd->b_state & (1 << BH_Unwritten)))
2195 		return 0;
2196 
2197 	/*
2198 	 * If we didn't accumulate anything to write simply return
2199 	 */
2200 	if (!mpd->b_size)
2201 		return 0;
2202 
2203 	handle = ext4_journal_current_handle();
2204 	BUG_ON(!handle);
2205 
2206 	/*
2207 	 * Call ext4_get_blocks() to allocate any delayed allocation
2208 	 * blocks, or to convert an uninitialized extent to be
2209 	 * initialized (in the case where we have written into
2210 	 * one or more preallocated blocks).
2211 	 *
2212 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2213 	 * indicate that we are on the delayed allocation path.  This
2214 	 * affects functions in many different parts of the allocation
2215 	 * call path.  This flag exists primarily because we don't
2216 	 * want to change *many* call functions, so ext4_get_blocks()
2217 	 * will set the magic i_delalloc_reserved_flag once the
2218 	 * inode's allocation semaphore is taken.
2219 	 *
2220 	 * If the blocks in questions were delalloc blocks, set
2221 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2222 	 * variables are updated after the blocks have been allocated.
2223 	 */
2224 	new.b_state = 0;
2225 	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2226 			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2227 	if (mpd->b_state & (1 << BH_Delay))
2228 		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2229 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2230 			       &new, get_blocks_flags);
2231 	if (blks < 0) {
2232 		err = blks;
2233 		/*
2234 		 * If get block returns with error we simply
2235 		 * return. Later writepage will redirty the page and
2236 		 * writepages will find the dirty page again
2237 		 */
2238 		if (err == -EAGAIN)
2239 			return 0;
2240 
2241 		if (err == -ENOSPC &&
2242 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2243 			mpd->retval = err;
2244 			return 0;
2245 		}
2246 
2247 		/*
2248 		 * get block failure will cause us to loop in
2249 		 * writepages, because a_ops->writepage won't be able
2250 		 * to make progress. The page will be redirtied by
2251 		 * writepage and writepages will again try to write
2252 		 * the same.
2253 		 */
2254 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2255 			 "delayed block allocation failed for inode %lu at "
2256 			 "logical offset %llu with max blocks %zd with "
2257 			 "error %d\n", mpd->inode->i_ino,
2258 			 (unsigned long long) next,
2259 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2260 		printk(KERN_CRIT "This should not happen!!  "
2261 		       "Data will be lost\n");
2262 		if (err == -ENOSPC) {
2263 			ext4_print_free_blocks(mpd->inode);
2264 		}
2265 		/* invalidate all the pages */
2266 		ext4_da_block_invalidatepages(mpd, next,
2267 				mpd->b_size >> mpd->inode->i_blkbits);
2268 		return err;
2269 	}
2270 	BUG_ON(blks == 0);
2271 
2272 	new.b_size = (blks << mpd->inode->i_blkbits);
2273 
2274 	if (buffer_new(&new))
2275 		__unmap_underlying_blocks(mpd->inode, &new);
2276 
2277 	/*
2278 	 * If blocks are delayed marked, we need to
2279 	 * put actual blocknr and drop delayed bit
2280 	 */
2281 	if ((mpd->b_state & (1 << BH_Delay)) ||
2282 	    (mpd->b_state & (1 << BH_Unwritten)))
2283 		mpage_put_bnr_to_bhs(mpd, next, &new);
2284 
2285 	if (ext4_should_order_data(mpd->inode)) {
2286 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2287 		if (err)
2288 			return err;
2289 	}
2290 
2291 	/*
2292 	 * Update on-disk size along with block allocation.
2293 	 */
2294 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2295 	if (disksize > i_size_read(mpd->inode))
2296 		disksize = i_size_read(mpd->inode);
2297 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2298 		ext4_update_i_disksize(mpd->inode, disksize);
2299 		return ext4_mark_inode_dirty(handle, mpd->inode);
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2306 		(1 << BH_Delay) | (1 << BH_Unwritten))
2307 
2308 /*
2309  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2310  *
2311  * @mpd->lbh - extent of blocks
2312  * @logical - logical number of the block in the file
2313  * @bh - bh of the block (used to access block's state)
2314  *
2315  * the function is used to collect contig. blocks in same state
2316  */
2317 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2318 				   sector_t logical, size_t b_size,
2319 				   unsigned long b_state)
2320 {
2321 	sector_t next;
2322 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2323 
2324 	/* check if thereserved journal credits might overflow */
2325 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2326 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2327 			/*
2328 			 * With non-extent format we are limited by the journal
2329 			 * credit available.  Total credit needed to insert
2330 			 * nrblocks contiguous blocks is dependent on the
2331 			 * nrblocks.  So limit nrblocks.
2332 			 */
2333 			goto flush_it;
2334 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2335 				EXT4_MAX_TRANS_DATA) {
2336 			/*
2337 			 * Adding the new buffer_head would make it cross the
2338 			 * allowed limit for which we have journal credit
2339 			 * reserved. So limit the new bh->b_size
2340 			 */
2341 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2342 						mpd->inode->i_blkbits;
2343 			/* we will do mpage_da_submit_io in the next loop */
2344 		}
2345 	}
2346 	/*
2347 	 * First block in the extent
2348 	 */
2349 	if (mpd->b_size == 0) {
2350 		mpd->b_blocknr = logical;
2351 		mpd->b_size = b_size;
2352 		mpd->b_state = b_state & BH_FLAGS;
2353 		return;
2354 	}
2355 
2356 	next = mpd->b_blocknr + nrblocks;
2357 	/*
2358 	 * Can we merge the block to our big extent?
2359 	 */
2360 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2361 		mpd->b_size += b_size;
2362 		return;
2363 	}
2364 
2365 flush_it:
2366 	/*
2367 	 * We couldn't merge the block to our extent, so we
2368 	 * need to flush current  extent and start new one
2369 	 */
2370 	if (mpage_da_map_blocks(mpd) == 0)
2371 		mpage_da_submit_io(mpd);
2372 	mpd->io_done = 1;
2373 	return;
2374 }
2375 
2376 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2377 {
2378 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2379 }
2380 
2381 /*
2382  * __mpage_da_writepage - finds extent of pages and blocks
2383  *
2384  * @page: page to consider
2385  * @wbc: not used, we just follow rules
2386  * @data: context
2387  *
2388  * The function finds extents of pages and scan them for all blocks.
2389  */
2390 static int __mpage_da_writepage(struct page *page,
2391 				struct writeback_control *wbc, void *data)
2392 {
2393 	struct mpage_da_data *mpd = data;
2394 	struct inode *inode = mpd->inode;
2395 	struct buffer_head *bh, *head;
2396 	sector_t logical;
2397 
2398 	if (mpd->io_done) {
2399 		/*
2400 		 * Rest of the page in the page_vec
2401 		 * redirty then and skip then. We will
2402 		 * try to write them again after
2403 		 * starting a new transaction
2404 		 */
2405 		redirty_page_for_writepage(wbc, page);
2406 		unlock_page(page);
2407 		return MPAGE_DA_EXTENT_TAIL;
2408 	}
2409 	/*
2410 	 * Can we merge this page to current extent?
2411 	 */
2412 	if (mpd->next_page != page->index) {
2413 		/*
2414 		 * Nope, we can't. So, we map non-allocated blocks
2415 		 * and start IO on them using writepage()
2416 		 */
2417 		if (mpd->next_page != mpd->first_page) {
2418 			if (mpage_da_map_blocks(mpd) == 0)
2419 				mpage_da_submit_io(mpd);
2420 			/*
2421 			 * skip rest of the page in the page_vec
2422 			 */
2423 			mpd->io_done = 1;
2424 			redirty_page_for_writepage(wbc, page);
2425 			unlock_page(page);
2426 			return MPAGE_DA_EXTENT_TAIL;
2427 		}
2428 
2429 		/*
2430 		 * Start next extent of pages ...
2431 		 */
2432 		mpd->first_page = page->index;
2433 
2434 		/*
2435 		 * ... and blocks
2436 		 */
2437 		mpd->b_size = 0;
2438 		mpd->b_state = 0;
2439 		mpd->b_blocknr = 0;
2440 	}
2441 
2442 	mpd->next_page = page->index + 1;
2443 	logical = (sector_t) page->index <<
2444 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2445 
2446 	if (!page_has_buffers(page)) {
2447 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2448 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2449 		if (mpd->io_done)
2450 			return MPAGE_DA_EXTENT_TAIL;
2451 	} else {
2452 		/*
2453 		 * Page with regular buffer heads, just add all dirty ones
2454 		 */
2455 		head = page_buffers(page);
2456 		bh = head;
2457 		do {
2458 			BUG_ON(buffer_locked(bh));
2459 			/*
2460 			 * We need to try to allocate
2461 			 * unmapped blocks in the same page.
2462 			 * Otherwise we won't make progress
2463 			 * with the page in ext4_writepage
2464 			 */
2465 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2466 				mpage_add_bh_to_extent(mpd, logical,
2467 						       bh->b_size,
2468 						       bh->b_state);
2469 				if (mpd->io_done)
2470 					return MPAGE_DA_EXTENT_TAIL;
2471 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2472 				/*
2473 				 * mapped dirty buffer. We need to update
2474 				 * the b_state because we look at
2475 				 * b_state in mpage_da_map_blocks. We don't
2476 				 * update b_size because if we find an
2477 				 * unmapped buffer_head later we need to
2478 				 * use the b_state flag of that buffer_head.
2479 				 */
2480 				if (mpd->b_size == 0)
2481 					mpd->b_state = bh->b_state & BH_FLAGS;
2482 			}
2483 			logical++;
2484 		} while ((bh = bh->b_this_page) != head);
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * This is a special get_blocks_t callback which is used by
2492  * ext4_da_write_begin().  It will either return mapped block or
2493  * reserve space for a single block.
2494  *
2495  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2496  * We also have b_blocknr = -1 and b_bdev initialized properly
2497  *
2498  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2499  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2500  * initialized properly.
2501  */
2502 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2503 				  struct buffer_head *bh_result, int create)
2504 {
2505 	int ret = 0;
2506 	sector_t invalid_block = ~((sector_t) 0xffff);
2507 
2508 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2509 		invalid_block = ~0;
2510 
2511 	BUG_ON(create == 0);
2512 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2513 
2514 	/*
2515 	 * first, we need to know whether the block is allocated already
2516 	 * preallocated blocks are unmapped but should treated
2517 	 * the same as allocated blocks.
2518 	 */
2519 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2520 	if ((ret == 0) && !buffer_delay(bh_result)) {
2521 		/* the block isn't (pre)allocated yet, let's reserve space */
2522 		/*
2523 		 * XXX: __block_prepare_write() unmaps passed block,
2524 		 * is it OK?
2525 		 */
2526 		ret = ext4_da_reserve_space(inode, 1);
2527 		if (ret)
2528 			/* not enough space to reserve */
2529 			return ret;
2530 
2531 		map_bh(bh_result, inode->i_sb, invalid_block);
2532 		set_buffer_new(bh_result);
2533 		set_buffer_delay(bh_result);
2534 	} else if (ret > 0) {
2535 		bh_result->b_size = (ret << inode->i_blkbits);
2536 		if (buffer_unwritten(bh_result)) {
2537 			/* A delayed write to unwritten bh should
2538 			 * be marked new and mapped.  Mapped ensures
2539 			 * that we don't do get_block multiple times
2540 			 * when we write to the same offset and new
2541 			 * ensures that we do proper zero out for
2542 			 * partial write.
2543 			 */
2544 			set_buffer_new(bh_result);
2545 			set_buffer_mapped(bh_result);
2546 		}
2547 		ret = 0;
2548 	}
2549 
2550 	return ret;
2551 }
2552 
2553 /*
2554  * This function is used as a standard get_block_t calback function
2555  * when there is no desire to allocate any blocks.  It is used as a
2556  * callback function for block_prepare_write(), nobh_writepage(), and
2557  * block_write_full_page().  These functions should only try to map a
2558  * single block at a time.
2559  *
2560  * Since this function doesn't do block allocations even if the caller
2561  * requests it by passing in create=1, it is critically important that
2562  * any caller checks to make sure that any buffer heads are returned
2563  * by this function are either all already mapped or marked for
2564  * delayed allocation before calling nobh_writepage() or
2565  * block_write_full_page().  Otherwise, b_blocknr could be left
2566  * unitialized, and the page write functions will be taken by
2567  * surprise.
2568  */
2569 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2570 				   struct buffer_head *bh_result, int create)
2571 {
2572 	int ret = 0;
2573 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2574 
2575 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2576 
2577 	/*
2578 	 * we don't want to do block allocation in writepage
2579 	 * so call get_block_wrap with create = 0
2580 	 */
2581 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2582 	if (ret > 0) {
2583 		bh_result->b_size = (ret << inode->i_blkbits);
2584 		ret = 0;
2585 	}
2586 	return ret;
2587 }
2588 
2589 static int bget_one(handle_t *handle, struct buffer_head *bh)
2590 {
2591 	get_bh(bh);
2592 	return 0;
2593 }
2594 
2595 static int bput_one(handle_t *handle, struct buffer_head *bh)
2596 {
2597 	put_bh(bh);
2598 	return 0;
2599 }
2600 
2601 static int __ext4_journalled_writepage(struct page *page,
2602 				       struct writeback_control *wbc,
2603 				       unsigned int len)
2604 {
2605 	struct address_space *mapping = page->mapping;
2606 	struct inode *inode = mapping->host;
2607 	struct buffer_head *page_bufs;
2608 	handle_t *handle = NULL;
2609 	int ret = 0;
2610 	int err;
2611 
2612 	page_bufs = page_buffers(page);
2613 	BUG_ON(!page_bufs);
2614 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2615 	/* As soon as we unlock the page, it can go away, but we have
2616 	 * references to buffers so we are safe */
2617 	unlock_page(page);
2618 
2619 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2620 	if (IS_ERR(handle)) {
2621 		ret = PTR_ERR(handle);
2622 		goto out;
2623 	}
2624 
2625 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2626 				do_journal_get_write_access);
2627 
2628 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2629 				write_end_fn);
2630 	if (ret == 0)
2631 		ret = err;
2632 	err = ext4_journal_stop(handle);
2633 	if (!ret)
2634 		ret = err;
2635 
2636 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2637 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2638 out:
2639 	return ret;
2640 }
2641 
2642 /*
2643  * Note that we don't need to start a transaction unless we're journaling data
2644  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2645  * need to file the inode to the transaction's list in ordered mode because if
2646  * we are writing back data added by write(), the inode is already there and if
2647  * we are writing back data modified via mmap(), noone guarantees in which
2648  * transaction the data will hit the disk. In case we are journaling data, we
2649  * cannot start transaction directly because transaction start ranks above page
2650  * lock so we have to do some magic.
2651  *
2652  * This function can get called via...
2653  *   - ext4_da_writepages after taking page lock (have journal handle)
2654  *   - journal_submit_inode_data_buffers (no journal handle)
2655  *   - shrink_page_list via pdflush (no journal handle)
2656  *   - grab_page_cache when doing write_begin (have journal handle)
2657  *
2658  * We don't do any block allocation in this function. If we have page with
2659  * multiple blocks we need to write those buffer_heads that are mapped. This
2660  * is important for mmaped based write. So if we do with blocksize 1K
2661  * truncate(f, 1024);
2662  * a = mmap(f, 0, 4096);
2663  * a[0] = 'a';
2664  * truncate(f, 4096);
2665  * we have in the page first buffer_head mapped via page_mkwrite call back
2666  * but other bufer_heads would be unmapped but dirty(dirty done via the
2667  * do_wp_page). So writepage should write the first block. If we modify
2668  * the mmap area beyond 1024 we will again get a page_fault and the
2669  * page_mkwrite callback will do the block allocation and mark the
2670  * buffer_heads mapped.
2671  *
2672  * We redirty the page if we have any buffer_heads that is either delay or
2673  * unwritten in the page.
2674  *
2675  * We can get recursively called as show below.
2676  *
2677  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2678  *		ext4_writepage()
2679  *
2680  * But since we don't do any block allocation we should not deadlock.
2681  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2682  */
2683 static int ext4_writepage(struct page *page,
2684 			  struct writeback_control *wbc)
2685 {
2686 	int ret = 0;
2687 	loff_t size;
2688 	unsigned int len;
2689 	struct buffer_head *page_bufs;
2690 	struct inode *inode = page->mapping->host;
2691 
2692 	trace_ext4_writepage(inode, page);
2693 	size = i_size_read(inode);
2694 	if (page->index == size >> PAGE_CACHE_SHIFT)
2695 		len = size & ~PAGE_CACHE_MASK;
2696 	else
2697 		len = PAGE_CACHE_SIZE;
2698 
2699 	if (page_has_buffers(page)) {
2700 		page_bufs = page_buffers(page);
2701 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2702 					ext4_bh_delay_or_unwritten)) {
2703 			/*
2704 			 * We don't want to do  block allocation
2705 			 * So redirty the page and return
2706 			 * We may reach here when we do a journal commit
2707 			 * via journal_submit_inode_data_buffers.
2708 			 * If we don't have mapping block we just ignore
2709 			 * them. We can also reach here via shrink_page_list
2710 			 */
2711 			redirty_page_for_writepage(wbc, page);
2712 			unlock_page(page);
2713 			return 0;
2714 		}
2715 	} else {
2716 		/*
2717 		 * The test for page_has_buffers() is subtle:
2718 		 * We know the page is dirty but it lost buffers. That means
2719 		 * that at some moment in time after write_begin()/write_end()
2720 		 * has been called all buffers have been clean and thus they
2721 		 * must have been written at least once. So they are all
2722 		 * mapped and we can happily proceed with mapping them
2723 		 * and writing the page.
2724 		 *
2725 		 * Try to initialize the buffer_heads and check whether
2726 		 * all are mapped and non delay. We don't want to
2727 		 * do block allocation here.
2728 		 */
2729 		ret = block_prepare_write(page, 0, len,
2730 					  noalloc_get_block_write);
2731 		if (!ret) {
2732 			page_bufs = page_buffers(page);
2733 			/* check whether all are mapped and non delay */
2734 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2735 						ext4_bh_delay_or_unwritten)) {
2736 				redirty_page_for_writepage(wbc, page);
2737 				unlock_page(page);
2738 				return 0;
2739 			}
2740 		} else {
2741 			/*
2742 			 * We can't do block allocation here
2743 			 * so just redity the page and unlock
2744 			 * and return
2745 			 */
2746 			redirty_page_for_writepage(wbc, page);
2747 			unlock_page(page);
2748 			return 0;
2749 		}
2750 		/* now mark the buffer_heads as dirty and uptodate */
2751 		block_commit_write(page, 0, len);
2752 	}
2753 
2754 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2755 		/*
2756 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2757 		 * doesn't seem much point in redirtying the page here.
2758 		 */
2759 		ClearPageChecked(page);
2760 		return __ext4_journalled_writepage(page, wbc, len);
2761 	}
2762 
2763 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2764 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2765 	else
2766 		ret = block_write_full_page(page, noalloc_get_block_write,
2767 					    wbc);
2768 
2769 	return ret;
2770 }
2771 
2772 /*
2773  * This is called via ext4_da_writepages() to
2774  * calulate the total number of credits to reserve to fit
2775  * a single extent allocation into a single transaction,
2776  * ext4_da_writpeages() will loop calling this before
2777  * the block allocation.
2778  */
2779 
2780 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2781 {
2782 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2783 
2784 	/*
2785 	 * With non-extent format the journal credit needed to
2786 	 * insert nrblocks contiguous block is dependent on
2787 	 * number of contiguous block. So we will limit
2788 	 * number of contiguous block to a sane value
2789 	 */
2790 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2791 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2792 		max_blocks = EXT4_MAX_TRANS_DATA;
2793 
2794 	return ext4_chunk_trans_blocks(inode, max_blocks);
2795 }
2796 
2797 static int ext4_da_writepages(struct address_space *mapping,
2798 			      struct writeback_control *wbc)
2799 {
2800 	pgoff_t	index;
2801 	int range_whole = 0;
2802 	handle_t *handle = NULL;
2803 	struct mpage_da_data mpd;
2804 	struct inode *inode = mapping->host;
2805 	int no_nrwrite_index_update;
2806 	int pages_written = 0;
2807 	long pages_skipped;
2808 	unsigned int max_pages;
2809 	int range_cyclic, cycled = 1, io_done = 0;
2810 	int needed_blocks, ret = 0;
2811 	long desired_nr_to_write, nr_to_writebump = 0;
2812 	loff_t range_start = wbc->range_start;
2813 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2814 
2815 	trace_ext4_da_writepages(inode, wbc);
2816 
2817 	/*
2818 	 * No pages to write? This is mainly a kludge to avoid starting
2819 	 * a transaction for special inodes like journal inode on last iput()
2820 	 * because that could violate lock ordering on umount
2821 	 */
2822 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2823 		return 0;
2824 
2825 	/*
2826 	 * If the filesystem has aborted, it is read-only, so return
2827 	 * right away instead of dumping stack traces later on that
2828 	 * will obscure the real source of the problem.  We test
2829 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2830 	 * the latter could be true if the filesystem is mounted
2831 	 * read-only, and in that case, ext4_da_writepages should
2832 	 * *never* be called, so if that ever happens, we would want
2833 	 * the stack trace.
2834 	 */
2835 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2836 		return -EROFS;
2837 
2838 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2839 		range_whole = 1;
2840 
2841 	range_cyclic = wbc->range_cyclic;
2842 	if (wbc->range_cyclic) {
2843 		index = mapping->writeback_index;
2844 		if (index)
2845 			cycled = 0;
2846 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2847 		wbc->range_end  = LLONG_MAX;
2848 		wbc->range_cyclic = 0;
2849 	} else
2850 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2851 
2852 	/*
2853 	 * This works around two forms of stupidity.  The first is in
2854 	 * the writeback code, which caps the maximum number of pages
2855 	 * written to be 1024 pages.  This is wrong on multiple
2856 	 * levels; different architectues have a different page size,
2857 	 * which changes the maximum amount of data which gets
2858 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2859 	 * forces this value to be 16 megabytes by multiplying
2860 	 * nr_to_write parameter by four, and then relies on its
2861 	 * allocator to allocate larger extents to make them
2862 	 * contiguous.  Unfortunately this brings us to the second
2863 	 * stupidity, which is that ext4's mballoc code only allocates
2864 	 * at most 2048 blocks.  So we force contiguous writes up to
2865 	 * the number of dirty blocks in the inode, or
2866 	 * sbi->max_writeback_mb_bump whichever is smaller.
2867 	 */
2868 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2869 	if (!range_cyclic && range_whole)
2870 		desired_nr_to_write = wbc->nr_to_write * 8;
2871 	else
2872 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2873 							   max_pages);
2874 	if (desired_nr_to_write > max_pages)
2875 		desired_nr_to_write = max_pages;
2876 
2877 	if (wbc->nr_to_write < desired_nr_to_write) {
2878 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2879 		wbc->nr_to_write = desired_nr_to_write;
2880 	}
2881 
2882 	mpd.wbc = wbc;
2883 	mpd.inode = mapping->host;
2884 
2885 	/*
2886 	 * we don't want write_cache_pages to update
2887 	 * nr_to_write and writeback_index
2888 	 */
2889 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2890 	wbc->no_nrwrite_index_update = 1;
2891 	pages_skipped = wbc->pages_skipped;
2892 
2893 retry:
2894 	while (!ret && wbc->nr_to_write > 0) {
2895 
2896 		/*
2897 		 * we  insert one extent at a time. So we need
2898 		 * credit needed for single extent allocation.
2899 		 * journalled mode is currently not supported
2900 		 * by delalloc
2901 		 */
2902 		BUG_ON(ext4_should_journal_data(inode));
2903 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2904 
2905 		/* start a new transaction*/
2906 		handle = ext4_journal_start(inode, needed_blocks);
2907 		if (IS_ERR(handle)) {
2908 			ret = PTR_ERR(handle);
2909 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2910 			       "%ld pages, ino %lu; err %d\n", __func__,
2911 				wbc->nr_to_write, inode->i_ino, ret);
2912 			goto out_writepages;
2913 		}
2914 
2915 		/*
2916 		 * Now call __mpage_da_writepage to find the next
2917 		 * contiguous region of logical blocks that need
2918 		 * blocks to be allocated by ext4.  We don't actually
2919 		 * submit the blocks for I/O here, even though
2920 		 * write_cache_pages thinks it will, and will set the
2921 		 * pages as clean for write before calling
2922 		 * __mpage_da_writepage().
2923 		 */
2924 		mpd.b_size = 0;
2925 		mpd.b_state = 0;
2926 		mpd.b_blocknr = 0;
2927 		mpd.first_page = 0;
2928 		mpd.next_page = 0;
2929 		mpd.io_done = 0;
2930 		mpd.pages_written = 0;
2931 		mpd.retval = 0;
2932 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2933 					&mpd);
2934 		/*
2935 		 * If we have a contigous extent of pages and we
2936 		 * haven't done the I/O yet, map the blocks and submit
2937 		 * them for I/O.
2938 		 */
2939 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2940 			if (mpage_da_map_blocks(&mpd) == 0)
2941 				mpage_da_submit_io(&mpd);
2942 			mpd.io_done = 1;
2943 			ret = MPAGE_DA_EXTENT_TAIL;
2944 		}
2945 		trace_ext4_da_write_pages(inode, &mpd);
2946 		wbc->nr_to_write -= mpd.pages_written;
2947 
2948 		ext4_journal_stop(handle);
2949 
2950 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2951 			/* commit the transaction which would
2952 			 * free blocks released in the transaction
2953 			 * and try again
2954 			 */
2955 			jbd2_journal_force_commit_nested(sbi->s_journal);
2956 			wbc->pages_skipped = pages_skipped;
2957 			ret = 0;
2958 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2959 			/*
2960 			 * got one extent now try with
2961 			 * rest of the pages
2962 			 */
2963 			pages_written += mpd.pages_written;
2964 			wbc->pages_skipped = pages_skipped;
2965 			ret = 0;
2966 			io_done = 1;
2967 		} else if (wbc->nr_to_write)
2968 			/*
2969 			 * There is no more writeout needed
2970 			 * or we requested for a noblocking writeout
2971 			 * and we found the device congested
2972 			 */
2973 			break;
2974 	}
2975 	if (!io_done && !cycled) {
2976 		cycled = 1;
2977 		index = 0;
2978 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2979 		wbc->range_end  = mapping->writeback_index - 1;
2980 		goto retry;
2981 	}
2982 	if (pages_skipped != wbc->pages_skipped)
2983 		ext4_msg(inode->i_sb, KERN_CRIT,
2984 			 "This should not happen leaving %s "
2985 			 "with nr_to_write = %ld ret = %d\n",
2986 			 __func__, wbc->nr_to_write, ret);
2987 
2988 	/* Update index */
2989 	index += pages_written;
2990 	wbc->range_cyclic = range_cyclic;
2991 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2992 		/*
2993 		 * set the writeback_index so that range_cyclic
2994 		 * mode will write it back later
2995 		 */
2996 		mapping->writeback_index = index;
2997 
2998 out_writepages:
2999 	if (!no_nrwrite_index_update)
3000 		wbc->no_nrwrite_index_update = 0;
3001 	if (wbc->nr_to_write > nr_to_writebump)
3002 		wbc->nr_to_write -= nr_to_writebump;
3003 	wbc->range_start = range_start;
3004 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3005 	return ret;
3006 }
3007 
3008 #define FALL_BACK_TO_NONDELALLOC 1
3009 static int ext4_nonda_switch(struct super_block *sb)
3010 {
3011 	s64 free_blocks, dirty_blocks;
3012 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3013 
3014 	/*
3015 	 * switch to non delalloc mode if we are running low
3016 	 * on free block. The free block accounting via percpu
3017 	 * counters can get slightly wrong with percpu_counter_batch getting
3018 	 * accumulated on each CPU without updating global counters
3019 	 * Delalloc need an accurate free block accounting. So switch
3020 	 * to non delalloc when we are near to error range.
3021 	 */
3022 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3023 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3024 	if (2 * free_blocks < 3 * dirty_blocks ||
3025 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3026 		/*
3027 		 * free block count is less that 150% of dirty blocks
3028 		 * or free blocks is less that watermark
3029 		 */
3030 		return 1;
3031 	}
3032 	return 0;
3033 }
3034 
3035 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3036 			       loff_t pos, unsigned len, unsigned flags,
3037 			       struct page **pagep, void **fsdata)
3038 {
3039 	int ret, retries = 0;
3040 	struct page *page;
3041 	pgoff_t index;
3042 	unsigned from, to;
3043 	struct inode *inode = mapping->host;
3044 	handle_t *handle;
3045 
3046 	index = pos >> PAGE_CACHE_SHIFT;
3047 	from = pos & (PAGE_CACHE_SIZE - 1);
3048 	to = from + len;
3049 
3050 	if (ext4_nonda_switch(inode->i_sb)) {
3051 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3052 		return ext4_write_begin(file, mapping, pos,
3053 					len, flags, pagep, fsdata);
3054 	}
3055 	*fsdata = (void *)0;
3056 	trace_ext4_da_write_begin(inode, pos, len, flags);
3057 retry:
3058 	/*
3059 	 * With delayed allocation, we don't log the i_disksize update
3060 	 * if there is delayed block allocation. But we still need
3061 	 * to journalling the i_disksize update if writes to the end
3062 	 * of file which has an already mapped buffer.
3063 	 */
3064 	handle = ext4_journal_start(inode, 1);
3065 	if (IS_ERR(handle)) {
3066 		ret = PTR_ERR(handle);
3067 		goto out;
3068 	}
3069 	/* We cannot recurse into the filesystem as the transaction is already
3070 	 * started */
3071 	flags |= AOP_FLAG_NOFS;
3072 
3073 	page = grab_cache_page_write_begin(mapping, index, flags);
3074 	if (!page) {
3075 		ext4_journal_stop(handle);
3076 		ret = -ENOMEM;
3077 		goto out;
3078 	}
3079 	*pagep = page;
3080 
3081 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3082 				ext4_da_get_block_prep);
3083 	if (ret < 0) {
3084 		unlock_page(page);
3085 		ext4_journal_stop(handle);
3086 		page_cache_release(page);
3087 		/*
3088 		 * block_write_begin may have instantiated a few blocks
3089 		 * outside i_size.  Trim these off again. Don't need
3090 		 * i_size_read because we hold i_mutex.
3091 		 */
3092 		if (pos + len > inode->i_size)
3093 			ext4_truncate(inode);
3094 	}
3095 
3096 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3097 		goto retry;
3098 out:
3099 	return ret;
3100 }
3101 
3102 /*
3103  * Check if we should update i_disksize
3104  * when write to the end of file but not require block allocation
3105  */
3106 static int ext4_da_should_update_i_disksize(struct page *page,
3107 					    unsigned long offset)
3108 {
3109 	struct buffer_head *bh;
3110 	struct inode *inode = page->mapping->host;
3111 	unsigned int idx;
3112 	int i;
3113 
3114 	bh = page_buffers(page);
3115 	idx = offset >> inode->i_blkbits;
3116 
3117 	for (i = 0; i < idx; i++)
3118 		bh = bh->b_this_page;
3119 
3120 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3121 		return 0;
3122 	return 1;
3123 }
3124 
3125 static int ext4_da_write_end(struct file *file,
3126 			     struct address_space *mapping,
3127 			     loff_t pos, unsigned len, unsigned copied,
3128 			     struct page *page, void *fsdata)
3129 {
3130 	struct inode *inode = mapping->host;
3131 	int ret = 0, ret2;
3132 	handle_t *handle = ext4_journal_current_handle();
3133 	loff_t new_i_size;
3134 	unsigned long start, end;
3135 	int write_mode = (int)(unsigned long)fsdata;
3136 
3137 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3138 		if (ext4_should_order_data(inode)) {
3139 			return ext4_ordered_write_end(file, mapping, pos,
3140 					len, copied, page, fsdata);
3141 		} else if (ext4_should_writeback_data(inode)) {
3142 			return ext4_writeback_write_end(file, mapping, pos,
3143 					len, copied, page, fsdata);
3144 		} else {
3145 			BUG();
3146 		}
3147 	}
3148 
3149 	trace_ext4_da_write_end(inode, pos, len, copied);
3150 	start = pos & (PAGE_CACHE_SIZE - 1);
3151 	end = start + copied - 1;
3152 
3153 	/*
3154 	 * generic_write_end() will run mark_inode_dirty() if i_size
3155 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3156 	 * into that.
3157 	 */
3158 
3159 	new_i_size = pos + copied;
3160 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3161 		if (ext4_da_should_update_i_disksize(page, end)) {
3162 			down_write(&EXT4_I(inode)->i_data_sem);
3163 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3164 				/*
3165 				 * Updating i_disksize when extending file
3166 				 * without needing block allocation
3167 				 */
3168 				if (ext4_should_order_data(inode))
3169 					ret = ext4_jbd2_file_inode(handle,
3170 								   inode);
3171 
3172 				EXT4_I(inode)->i_disksize = new_i_size;
3173 			}
3174 			up_write(&EXT4_I(inode)->i_data_sem);
3175 			/* We need to mark inode dirty even if
3176 			 * new_i_size is less that inode->i_size
3177 			 * bu greater than i_disksize.(hint delalloc)
3178 			 */
3179 			ext4_mark_inode_dirty(handle, inode);
3180 		}
3181 	}
3182 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3183 							page, fsdata);
3184 	copied = ret2;
3185 	if (ret2 < 0)
3186 		ret = ret2;
3187 	ret2 = ext4_journal_stop(handle);
3188 	if (!ret)
3189 		ret = ret2;
3190 
3191 	return ret ? ret : copied;
3192 }
3193 
3194 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3195 {
3196 	/*
3197 	 * Drop reserved blocks
3198 	 */
3199 	BUG_ON(!PageLocked(page));
3200 	if (!page_has_buffers(page))
3201 		goto out;
3202 
3203 	ext4_da_page_release_reservation(page, offset);
3204 
3205 out:
3206 	ext4_invalidatepage(page, offset);
3207 
3208 	return;
3209 }
3210 
3211 /*
3212  * Force all delayed allocation blocks to be allocated for a given inode.
3213  */
3214 int ext4_alloc_da_blocks(struct inode *inode)
3215 {
3216 	trace_ext4_alloc_da_blocks(inode);
3217 
3218 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3219 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3220 		return 0;
3221 
3222 	/*
3223 	 * We do something simple for now.  The filemap_flush() will
3224 	 * also start triggering a write of the data blocks, which is
3225 	 * not strictly speaking necessary (and for users of
3226 	 * laptop_mode, not even desirable).  However, to do otherwise
3227 	 * would require replicating code paths in:
3228 	 *
3229 	 * ext4_da_writepages() ->
3230 	 *    write_cache_pages() ---> (via passed in callback function)
3231 	 *        __mpage_da_writepage() -->
3232 	 *           mpage_add_bh_to_extent()
3233 	 *           mpage_da_map_blocks()
3234 	 *
3235 	 * The problem is that write_cache_pages(), located in
3236 	 * mm/page-writeback.c, marks pages clean in preparation for
3237 	 * doing I/O, which is not desirable if we're not planning on
3238 	 * doing I/O at all.
3239 	 *
3240 	 * We could call write_cache_pages(), and then redirty all of
3241 	 * the pages by calling redirty_page_for_writeback() but that
3242 	 * would be ugly in the extreme.  So instead we would need to
3243 	 * replicate parts of the code in the above functions,
3244 	 * simplifying them becuase we wouldn't actually intend to
3245 	 * write out the pages, but rather only collect contiguous
3246 	 * logical block extents, call the multi-block allocator, and
3247 	 * then update the buffer heads with the block allocations.
3248 	 *
3249 	 * For now, though, we'll cheat by calling filemap_flush(),
3250 	 * which will map the blocks, and start the I/O, but not
3251 	 * actually wait for the I/O to complete.
3252 	 */
3253 	return filemap_flush(inode->i_mapping);
3254 }
3255 
3256 /*
3257  * bmap() is special.  It gets used by applications such as lilo and by
3258  * the swapper to find the on-disk block of a specific piece of data.
3259  *
3260  * Naturally, this is dangerous if the block concerned is still in the
3261  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3262  * filesystem and enables swap, then they may get a nasty shock when the
3263  * data getting swapped to that swapfile suddenly gets overwritten by
3264  * the original zero's written out previously to the journal and
3265  * awaiting writeback in the kernel's buffer cache.
3266  *
3267  * So, if we see any bmap calls here on a modified, data-journaled file,
3268  * take extra steps to flush any blocks which might be in the cache.
3269  */
3270 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3271 {
3272 	struct inode *inode = mapping->host;
3273 	journal_t *journal;
3274 	int err;
3275 
3276 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277 			test_opt(inode->i_sb, DELALLOC)) {
3278 		/*
3279 		 * With delalloc we want to sync the file
3280 		 * so that we can make sure we allocate
3281 		 * blocks for file
3282 		 */
3283 		filemap_write_and_wait(mapping);
3284 	}
3285 
3286 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3287 		/*
3288 		 * This is a REALLY heavyweight approach, but the use of
3289 		 * bmap on dirty files is expected to be extremely rare:
3290 		 * only if we run lilo or swapon on a freshly made file
3291 		 * do we expect this to happen.
3292 		 *
3293 		 * (bmap requires CAP_SYS_RAWIO so this does not
3294 		 * represent an unprivileged user DOS attack --- we'd be
3295 		 * in trouble if mortal users could trigger this path at
3296 		 * will.)
3297 		 *
3298 		 * NB. EXT4_STATE_JDATA is not set on files other than
3299 		 * regular files.  If somebody wants to bmap a directory
3300 		 * or symlink and gets confused because the buffer
3301 		 * hasn't yet been flushed to disk, they deserve
3302 		 * everything they get.
3303 		 */
3304 
3305 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3306 		journal = EXT4_JOURNAL(inode);
3307 		jbd2_journal_lock_updates(journal);
3308 		err = jbd2_journal_flush(journal);
3309 		jbd2_journal_unlock_updates(journal);
3310 
3311 		if (err)
3312 			return 0;
3313 	}
3314 
3315 	return generic_block_bmap(mapping, block, ext4_get_block);
3316 }
3317 
3318 static int ext4_readpage(struct file *file, struct page *page)
3319 {
3320 	return mpage_readpage(page, ext4_get_block);
3321 }
3322 
3323 static int
3324 ext4_readpages(struct file *file, struct address_space *mapping,
3325 		struct list_head *pages, unsigned nr_pages)
3326 {
3327 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3328 }
3329 
3330 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3331 {
3332 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3333 
3334 	/*
3335 	 * If it's a full truncate we just forget about the pending dirtying
3336 	 */
3337 	if (offset == 0)
3338 		ClearPageChecked(page);
3339 
3340 	if (journal)
3341 		jbd2_journal_invalidatepage(journal, page, offset);
3342 	else
3343 		block_invalidatepage(page, offset);
3344 }
3345 
3346 static int ext4_releasepage(struct page *page, gfp_t wait)
3347 {
3348 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3349 
3350 	WARN_ON(PageChecked(page));
3351 	if (!page_has_buffers(page))
3352 		return 0;
3353 	if (journal)
3354 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355 	else
3356 		return try_to_free_buffers(page);
3357 }
3358 
3359 /*
3360  * O_DIRECT for ext3 (or indirect map) based files
3361  *
3362  * If the O_DIRECT write will extend the file then add this inode to the
3363  * orphan list.  So recovery will truncate it back to the original size
3364  * if the machine crashes during the write.
3365  *
3366  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3367  * crashes then stale disk data _may_ be exposed inside the file. But current
3368  * VFS code falls back into buffered path in that case so we are safe.
3369  */
3370 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3371 			      const struct iovec *iov, loff_t offset,
3372 			      unsigned long nr_segs)
3373 {
3374 	struct file *file = iocb->ki_filp;
3375 	struct inode *inode = file->f_mapping->host;
3376 	struct ext4_inode_info *ei = EXT4_I(inode);
3377 	handle_t *handle;
3378 	ssize_t ret;
3379 	int orphan = 0;
3380 	size_t count = iov_length(iov, nr_segs);
3381 	int retries = 0;
3382 
3383 	if (rw == WRITE) {
3384 		loff_t final_size = offset + count;
3385 
3386 		if (final_size > inode->i_size) {
3387 			/* Credits for sb + inode write */
3388 			handle = ext4_journal_start(inode, 2);
3389 			if (IS_ERR(handle)) {
3390 				ret = PTR_ERR(handle);
3391 				goto out;
3392 			}
3393 			ret = ext4_orphan_add(handle, inode);
3394 			if (ret) {
3395 				ext4_journal_stop(handle);
3396 				goto out;
3397 			}
3398 			orphan = 1;
3399 			ei->i_disksize = inode->i_size;
3400 			ext4_journal_stop(handle);
3401 		}
3402 	}
3403 
3404 retry:
3405 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3406 				 offset, nr_segs,
3407 				 ext4_get_block, NULL);
3408 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3409 		goto retry;
3410 
3411 	if (orphan) {
3412 		int err;
3413 
3414 		/* Credits for sb + inode write */
3415 		handle = ext4_journal_start(inode, 2);
3416 		if (IS_ERR(handle)) {
3417 			/* This is really bad luck. We've written the data
3418 			 * but cannot extend i_size. Bail out and pretend
3419 			 * the write failed... */
3420 			ret = PTR_ERR(handle);
3421 			goto out;
3422 		}
3423 		if (inode->i_nlink)
3424 			ext4_orphan_del(handle, inode);
3425 		if (ret > 0) {
3426 			loff_t end = offset + ret;
3427 			if (end > inode->i_size) {
3428 				ei->i_disksize = end;
3429 				i_size_write(inode, end);
3430 				/*
3431 				 * We're going to return a positive `ret'
3432 				 * here due to non-zero-length I/O, so there's
3433 				 * no way of reporting error returns from
3434 				 * ext4_mark_inode_dirty() to userspace.  So
3435 				 * ignore it.
3436 				 */
3437 				ext4_mark_inode_dirty(handle, inode);
3438 			}
3439 		}
3440 		err = ext4_journal_stop(handle);
3441 		if (ret == 0)
3442 			ret = err;
3443 	}
3444 out:
3445 	return ret;
3446 }
3447 
3448 /* Maximum number of blocks we map for direct IO at once. */
3449 
3450 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3451 		   struct buffer_head *bh_result, int create)
3452 {
3453 	handle_t *handle = NULL;
3454 	int ret = 0;
3455 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3456 	int dio_credits;
3457 
3458 	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3459 		   inode->i_ino, create);
3460 	/*
3461 	 * DIO VFS code passes create = 0 flag for write to
3462 	 * the middle of file. It does this to avoid block
3463 	 * allocation for holes, to prevent expose stale data
3464 	 * out when there is parallel buffered read (which does
3465 	 * not hold the i_mutex lock) while direct IO write has
3466 	 * not completed. DIO request on holes finally falls back
3467 	 * to buffered IO for this reason.
3468 	 *
3469 	 * For ext4 extent based file, since we support fallocate,
3470 	 * new allocated extent as uninitialized, for holes, we
3471 	 * could fallocate blocks for holes, thus parallel
3472 	 * buffered IO read will zero out the page when read on
3473 	 * a hole while parallel DIO write to the hole has not completed.
3474 	 *
3475 	 * when we come here, we know it's a direct IO write to
3476 	 * to the middle of file (<i_size)
3477 	 * so it's safe to override the create flag from VFS.
3478 	 */
3479 	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3480 
3481 	if (max_blocks > DIO_MAX_BLOCKS)
3482 		max_blocks = DIO_MAX_BLOCKS;
3483 	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3484 	handle = ext4_journal_start(inode, dio_credits);
3485 	if (IS_ERR(handle)) {
3486 		ret = PTR_ERR(handle);
3487 		goto out;
3488 	}
3489 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3490 			      create);
3491 	if (ret > 0) {
3492 		bh_result->b_size = (ret << inode->i_blkbits);
3493 		ret = 0;
3494 	}
3495 	ext4_journal_stop(handle);
3496 out:
3497 	return ret;
3498 }
3499 
3500 static void ext4_free_io_end(ext4_io_end_t *io)
3501 {
3502 	BUG_ON(!io);
3503 	iput(io->inode);
3504 	kfree(io);
3505 }
3506 static void dump_aio_dio_list(struct inode * inode)
3507 {
3508 #ifdef	EXT4_DEBUG
3509 	struct list_head *cur, *before, *after;
3510 	ext4_io_end_t *io, *io0, *io1;
3511 
3512 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3513 		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3514 		return;
3515 	}
3516 
3517 	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3518 	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3519 		cur = &io->list;
3520 		before = cur->prev;
3521 		io0 = container_of(before, ext4_io_end_t, list);
3522 		after = cur->next;
3523 		io1 = container_of(after, ext4_io_end_t, list);
3524 
3525 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3526 			    io, inode->i_ino, io0, io1);
3527 	}
3528 #endif
3529 }
3530 
3531 /*
3532  * check a range of space and convert unwritten extents to written.
3533  */
3534 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3535 {
3536 	struct inode *inode = io->inode;
3537 	loff_t offset = io->offset;
3538 	size_t size = io->size;
3539 	int ret = 0;
3540 
3541 	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3542 		   "list->prev 0x%p\n",
3543 	           io, inode->i_ino, io->list.next, io->list.prev);
3544 
3545 	if (list_empty(&io->list))
3546 		return ret;
3547 
3548 	if (io->flag != DIO_AIO_UNWRITTEN)
3549 		return ret;
3550 
3551 	if (offset + size <= i_size_read(inode))
3552 		ret = ext4_convert_unwritten_extents(inode, offset, size);
3553 
3554 	if (ret < 0) {
3555 		printk(KERN_EMERG "%s: failed to convert unwritten"
3556 			"extents to written extents, error is %d"
3557 			" io is still on inode %lu aio dio list\n",
3558                        __func__, ret, inode->i_ino);
3559 		return ret;
3560 	}
3561 
3562 	/* clear the DIO AIO unwritten flag */
3563 	io->flag = 0;
3564 	return ret;
3565 }
3566 /*
3567  * work on completed aio dio IO, to convert unwritten extents to extents
3568  */
3569 static void ext4_end_aio_dio_work(struct work_struct *work)
3570 {
3571 	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3572 	struct inode *inode = io->inode;
3573 	int ret = 0;
3574 
3575 	mutex_lock(&inode->i_mutex);
3576 	ret = ext4_end_aio_dio_nolock(io);
3577 	if (ret >= 0) {
3578 		if (!list_empty(&io->list))
3579 			list_del_init(&io->list);
3580 		ext4_free_io_end(io);
3581 	}
3582 	mutex_unlock(&inode->i_mutex);
3583 }
3584 /*
3585  * This function is called from ext4_sync_file().
3586  *
3587  * When AIO DIO IO is completed, the work to convert unwritten
3588  * extents to written is queued on workqueue but may not get immediately
3589  * scheduled. When fsync is called, we need to ensure the
3590  * conversion is complete before fsync returns.
3591  * The inode keeps track of a list of completed AIO from DIO path
3592  * that might needs to do the conversion. This function walks through
3593  * the list and convert the related unwritten extents to written.
3594  */
3595 int flush_aio_dio_completed_IO(struct inode *inode)
3596 {
3597 	ext4_io_end_t *io;
3598 	int ret = 0;
3599 	int ret2 = 0;
3600 
3601 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3602 		return ret;
3603 
3604 	dump_aio_dio_list(inode);
3605 	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3606 		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3607 				ext4_io_end_t, list);
3608 		/*
3609 		 * Calling ext4_end_aio_dio_nolock() to convert completed
3610 		 * IO to written.
3611 		 *
3612 		 * When ext4_sync_file() is called, run_queue() may already
3613 		 * about to flush the work corresponding to this io structure.
3614 		 * It will be upset if it founds the io structure related
3615 		 * to the work-to-be schedule is freed.
3616 		 *
3617 		 * Thus we need to keep the io structure still valid here after
3618 		 * convertion finished. The io structure has a flag to
3619 		 * avoid double converting from both fsync and background work
3620 		 * queue work.
3621 		 */
3622 		ret = ext4_end_aio_dio_nolock(io);
3623 		if (ret < 0)
3624 			ret2 = ret;
3625 		else
3626 			list_del_init(&io->list);
3627 	}
3628 	return (ret2 < 0) ? ret2 : 0;
3629 }
3630 
3631 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3632 {
3633 	ext4_io_end_t *io = NULL;
3634 
3635 	io = kmalloc(sizeof(*io), GFP_NOFS);
3636 
3637 	if (io) {
3638 		igrab(inode);
3639 		io->inode = inode;
3640 		io->flag = 0;
3641 		io->offset = 0;
3642 		io->size = 0;
3643 		io->error = 0;
3644 		INIT_WORK(&io->work, ext4_end_aio_dio_work);
3645 		INIT_LIST_HEAD(&io->list);
3646 	}
3647 
3648 	return io;
3649 }
3650 
3651 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3652 			    ssize_t size, void *private)
3653 {
3654         ext4_io_end_t *io_end = iocb->private;
3655 	struct workqueue_struct *wq;
3656 
3657 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3658 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3659  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3660 		  size);
3661 	/* if not async direct IO or dio with 0 bytes write, just return */
3662 	if (!io_end || !size)
3663 		return;
3664 
3665 	/* if not aio dio with unwritten extents, just free io and return */
3666 	if (io_end->flag != DIO_AIO_UNWRITTEN){
3667 		ext4_free_io_end(io_end);
3668 		iocb->private = NULL;
3669 		return;
3670 	}
3671 
3672 	io_end->offset = offset;
3673 	io_end->size = size;
3674 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3675 
3676 	/* queue the work to convert unwritten extents to written */
3677 	queue_work(wq, &io_end->work);
3678 
3679 	/* Add the io_end to per-inode completed aio dio list*/
3680 	list_add_tail(&io_end->list,
3681 		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3682 	iocb->private = NULL;
3683 }
3684 /*
3685  * For ext4 extent files, ext4 will do direct-io write to holes,
3686  * preallocated extents, and those write extend the file, no need to
3687  * fall back to buffered IO.
3688  *
3689  * For holes, we fallocate those blocks, mark them as unintialized
3690  * If those blocks were preallocated, we mark sure they are splited, but
3691  * still keep the range to write as unintialized.
3692  *
3693  * The unwrritten extents will be converted to written when DIO is completed.
3694  * For async direct IO, since the IO may still pending when return, we
3695  * set up an end_io call back function, which will do the convertion
3696  * when async direct IO completed.
3697  *
3698  * If the O_DIRECT write will extend the file then add this inode to the
3699  * orphan list.  So recovery will truncate it back to the original size
3700  * if the machine crashes during the write.
3701  *
3702  */
3703 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3704 			      const struct iovec *iov, loff_t offset,
3705 			      unsigned long nr_segs)
3706 {
3707 	struct file *file = iocb->ki_filp;
3708 	struct inode *inode = file->f_mapping->host;
3709 	ssize_t ret;
3710 	size_t count = iov_length(iov, nr_segs);
3711 
3712 	loff_t final_size = offset + count;
3713 	if (rw == WRITE && final_size <= inode->i_size) {
3714 		/*
3715  		 * We could direct write to holes and fallocate.
3716 		 *
3717  		 * Allocated blocks to fill the hole are marked as uninitialized
3718  		 * to prevent paralel buffered read to expose the stale data
3719  		 * before DIO complete the data IO.
3720 		 *
3721  		 * As to previously fallocated extents, ext4 get_block
3722  		 * will just simply mark the buffer mapped but still
3723  		 * keep the extents uninitialized.
3724  		 *
3725 		 * for non AIO case, we will convert those unwritten extents
3726 		 * to written after return back from blockdev_direct_IO.
3727 		 *
3728 		 * for async DIO, the conversion needs to be defered when
3729 		 * the IO is completed. The ext4 end_io callback function
3730 		 * will be called to take care of the conversion work.
3731 		 * Here for async case, we allocate an io_end structure to
3732 		 * hook to the iocb.
3733  		 */
3734 		iocb->private = NULL;
3735 		EXT4_I(inode)->cur_aio_dio = NULL;
3736 		if (!is_sync_kiocb(iocb)) {
3737 			iocb->private = ext4_init_io_end(inode);
3738 			if (!iocb->private)
3739 				return -ENOMEM;
3740 			/*
3741 			 * we save the io structure for current async
3742 			 * direct IO, so that later ext4_get_blocks()
3743 			 * could flag the io structure whether there
3744 			 * is a unwritten extents needs to be converted
3745 			 * when IO is completed.
3746 			 */
3747 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3748 		}
3749 
3750 		ret = blockdev_direct_IO(rw, iocb, inode,
3751 					 inode->i_sb->s_bdev, iov,
3752 					 offset, nr_segs,
3753 					 ext4_get_block_dio_write,
3754 					 ext4_end_io_dio);
3755 		if (iocb->private)
3756 			EXT4_I(inode)->cur_aio_dio = NULL;
3757 		/*
3758 		 * The io_end structure takes a reference to the inode,
3759 		 * that structure needs to be destroyed and the
3760 		 * reference to the inode need to be dropped, when IO is
3761 		 * complete, even with 0 byte write, or failed.
3762 		 *
3763 		 * In the successful AIO DIO case, the io_end structure will be
3764 		 * desctroyed and the reference to the inode will be dropped
3765 		 * after the end_io call back function is called.
3766 		 *
3767 		 * In the case there is 0 byte write, or error case, since
3768 		 * VFS direct IO won't invoke the end_io call back function,
3769 		 * we need to free the end_io structure here.
3770 		 */
3771 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3772 			ext4_free_io_end(iocb->private);
3773 			iocb->private = NULL;
3774 		} else if (ret > 0)
3775 			/*
3776 			 * for non AIO case, since the IO is already
3777 			 * completed, we could do the convertion right here
3778 			 */
3779 			ret = ext4_convert_unwritten_extents(inode,
3780 								offset, ret);
3781 		return ret;
3782 	}
3783 
3784 	/* for write the the end of file case, we fall back to old way */
3785 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3786 }
3787 
3788 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3789 			      const struct iovec *iov, loff_t offset,
3790 			      unsigned long nr_segs)
3791 {
3792 	struct file *file = iocb->ki_filp;
3793 	struct inode *inode = file->f_mapping->host;
3794 
3795 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3796 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3797 
3798 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3799 }
3800 
3801 /*
3802  * Pages can be marked dirty completely asynchronously from ext4's journalling
3803  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3804  * much here because ->set_page_dirty is called under VFS locks.  The page is
3805  * not necessarily locked.
3806  *
3807  * We cannot just dirty the page and leave attached buffers clean, because the
3808  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3809  * or jbddirty because all the journalling code will explode.
3810  *
3811  * So what we do is to mark the page "pending dirty" and next time writepage
3812  * is called, propagate that into the buffers appropriately.
3813  */
3814 static int ext4_journalled_set_page_dirty(struct page *page)
3815 {
3816 	SetPageChecked(page);
3817 	return __set_page_dirty_nobuffers(page);
3818 }
3819 
3820 static const struct address_space_operations ext4_ordered_aops = {
3821 	.readpage		= ext4_readpage,
3822 	.readpages		= ext4_readpages,
3823 	.writepage		= ext4_writepage,
3824 	.sync_page		= block_sync_page,
3825 	.write_begin		= ext4_write_begin,
3826 	.write_end		= ext4_ordered_write_end,
3827 	.bmap			= ext4_bmap,
3828 	.invalidatepage		= ext4_invalidatepage,
3829 	.releasepage		= ext4_releasepage,
3830 	.direct_IO		= ext4_direct_IO,
3831 	.migratepage		= buffer_migrate_page,
3832 	.is_partially_uptodate  = block_is_partially_uptodate,
3833 	.error_remove_page	= generic_error_remove_page,
3834 };
3835 
3836 static const struct address_space_operations ext4_writeback_aops = {
3837 	.readpage		= ext4_readpage,
3838 	.readpages		= ext4_readpages,
3839 	.writepage		= ext4_writepage,
3840 	.sync_page		= block_sync_page,
3841 	.write_begin		= ext4_write_begin,
3842 	.write_end		= ext4_writeback_write_end,
3843 	.bmap			= ext4_bmap,
3844 	.invalidatepage		= ext4_invalidatepage,
3845 	.releasepage		= ext4_releasepage,
3846 	.direct_IO		= ext4_direct_IO,
3847 	.migratepage		= buffer_migrate_page,
3848 	.is_partially_uptodate  = block_is_partially_uptodate,
3849 	.error_remove_page	= generic_error_remove_page,
3850 };
3851 
3852 static const struct address_space_operations ext4_journalled_aops = {
3853 	.readpage		= ext4_readpage,
3854 	.readpages		= ext4_readpages,
3855 	.writepage		= ext4_writepage,
3856 	.sync_page		= block_sync_page,
3857 	.write_begin		= ext4_write_begin,
3858 	.write_end		= ext4_journalled_write_end,
3859 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3860 	.bmap			= ext4_bmap,
3861 	.invalidatepage		= ext4_invalidatepage,
3862 	.releasepage		= ext4_releasepage,
3863 	.is_partially_uptodate  = block_is_partially_uptodate,
3864 	.error_remove_page	= generic_error_remove_page,
3865 };
3866 
3867 static const struct address_space_operations ext4_da_aops = {
3868 	.readpage		= ext4_readpage,
3869 	.readpages		= ext4_readpages,
3870 	.writepage		= ext4_writepage,
3871 	.writepages		= ext4_da_writepages,
3872 	.sync_page		= block_sync_page,
3873 	.write_begin		= ext4_da_write_begin,
3874 	.write_end		= ext4_da_write_end,
3875 	.bmap			= ext4_bmap,
3876 	.invalidatepage		= ext4_da_invalidatepage,
3877 	.releasepage		= ext4_releasepage,
3878 	.direct_IO		= ext4_direct_IO,
3879 	.migratepage		= buffer_migrate_page,
3880 	.is_partially_uptodate  = block_is_partially_uptodate,
3881 	.error_remove_page	= generic_error_remove_page,
3882 };
3883 
3884 void ext4_set_aops(struct inode *inode)
3885 {
3886 	if (ext4_should_order_data(inode) &&
3887 		test_opt(inode->i_sb, DELALLOC))
3888 		inode->i_mapping->a_ops = &ext4_da_aops;
3889 	else if (ext4_should_order_data(inode))
3890 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3891 	else if (ext4_should_writeback_data(inode) &&
3892 		 test_opt(inode->i_sb, DELALLOC))
3893 		inode->i_mapping->a_ops = &ext4_da_aops;
3894 	else if (ext4_should_writeback_data(inode))
3895 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3896 	else
3897 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3898 }
3899 
3900 /*
3901  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3902  * up to the end of the block which corresponds to `from'.
3903  * This required during truncate. We need to physically zero the tail end
3904  * of that block so it doesn't yield old data if the file is later grown.
3905  */
3906 int ext4_block_truncate_page(handle_t *handle,
3907 		struct address_space *mapping, loff_t from)
3908 {
3909 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3910 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3911 	unsigned blocksize, length, pos;
3912 	ext4_lblk_t iblock;
3913 	struct inode *inode = mapping->host;
3914 	struct buffer_head *bh;
3915 	struct page *page;
3916 	int err = 0;
3917 
3918 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3919 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3920 	if (!page)
3921 		return -EINVAL;
3922 
3923 	blocksize = inode->i_sb->s_blocksize;
3924 	length = blocksize - (offset & (blocksize - 1));
3925 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3926 
3927 	/*
3928 	 * For "nobh" option,  we can only work if we don't need to
3929 	 * read-in the page - otherwise we create buffers to do the IO.
3930 	 */
3931 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3932 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3933 		zero_user(page, offset, length);
3934 		set_page_dirty(page);
3935 		goto unlock;
3936 	}
3937 
3938 	if (!page_has_buffers(page))
3939 		create_empty_buffers(page, blocksize, 0);
3940 
3941 	/* Find the buffer that contains "offset" */
3942 	bh = page_buffers(page);
3943 	pos = blocksize;
3944 	while (offset >= pos) {
3945 		bh = bh->b_this_page;
3946 		iblock++;
3947 		pos += blocksize;
3948 	}
3949 
3950 	err = 0;
3951 	if (buffer_freed(bh)) {
3952 		BUFFER_TRACE(bh, "freed: skip");
3953 		goto unlock;
3954 	}
3955 
3956 	if (!buffer_mapped(bh)) {
3957 		BUFFER_TRACE(bh, "unmapped");
3958 		ext4_get_block(inode, iblock, bh, 0);
3959 		/* unmapped? It's a hole - nothing to do */
3960 		if (!buffer_mapped(bh)) {
3961 			BUFFER_TRACE(bh, "still unmapped");
3962 			goto unlock;
3963 		}
3964 	}
3965 
3966 	/* Ok, it's mapped. Make sure it's up-to-date */
3967 	if (PageUptodate(page))
3968 		set_buffer_uptodate(bh);
3969 
3970 	if (!buffer_uptodate(bh)) {
3971 		err = -EIO;
3972 		ll_rw_block(READ, 1, &bh);
3973 		wait_on_buffer(bh);
3974 		/* Uhhuh. Read error. Complain and punt. */
3975 		if (!buffer_uptodate(bh))
3976 			goto unlock;
3977 	}
3978 
3979 	if (ext4_should_journal_data(inode)) {
3980 		BUFFER_TRACE(bh, "get write access");
3981 		err = ext4_journal_get_write_access(handle, bh);
3982 		if (err)
3983 			goto unlock;
3984 	}
3985 
3986 	zero_user(page, offset, length);
3987 
3988 	BUFFER_TRACE(bh, "zeroed end of block");
3989 
3990 	err = 0;
3991 	if (ext4_should_journal_data(inode)) {
3992 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3993 	} else {
3994 		if (ext4_should_order_data(inode))
3995 			err = ext4_jbd2_file_inode(handle, inode);
3996 		mark_buffer_dirty(bh);
3997 	}
3998 
3999 unlock:
4000 	unlock_page(page);
4001 	page_cache_release(page);
4002 	return err;
4003 }
4004 
4005 /*
4006  * Probably it should be a library function... search for first non-zero word
4007  * or memcmp with zero_page, whatever is better for particular architecture.
4008  * Linus?
4009  */
4010 static inline int all_zeroes(__le32 *p, __le32 *q)
4011 {
4012 	while (p < q)
4013 		if (*p++)
4014 			return 0;
4015 	return 1;
4016 }
4017 
4018 /**
4019  *	ext4_find_shared - find the indirect blocks for partial truncation.
4020  *	@inode:	  inode in question
4021  *	@depth:	  depth of the affected branch
4022  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4023  *	@chain:	  place to store the pointers to partial indirect blocks
4024  *	@top:	  place to the (detached) top of branch
4025  *
4026  *	This is a helper function used by ext4_truncate().
4027  *
4028  *	When we do truncate() we may have to clean the ends of several
4029  *	indirect blocks but leave the blocks themselves alive. Block is
4030  *	partially truncated if some data below the new i_size is refered
4031  *	from it (and it is on the path to the first completely truncated
4032  *	data block, indeed).  We have to free the top of that path along
4033  *	with everything to the right of the path. Since no allocation
4034  *	past the truncation point is possible until ext4_truncate()
4035  *	finishes, we may safely do the latter, but top of branch may
4036  *	require special attention - pageout below the truncation point
4037  *	might try to populate it.
4038  *
4039  *	We atomically detach the top of branch from the tree, store the
4040  *	block number of its root in *@top, pointers to buffer_heads of
4041  *	partially truncated blocks - in @chain[].bh and pointers to
4042  *	their last elements that should not be removed - in
4043  *	@chain[].p. Return value is the pointer to last filled element
4044  *	of @chain.
4045  *
4046  *	The work left to caller to do the actual freeing of subtrees:
4047  *		a) free the subtree starting from *@top
4048  *		b) free the subtrees whose roots are stored in
4049  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4050  *		c) free the subtrees growing from the inode past the @chain[0].
4051  *			(no partially truncated stuff there).  */
4052 
4053 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4054 				  ext4_lblk_t offsets[4], Indirect chain[4],
4055 				  __le32 *top)
4056 {
4057 	Indirect *partial, *p;
4058 	int k, err;
4059 
4060 	*top = 0;
4061 	/* Make k index the deepest non-null offest + 1 */
4062 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4063 		;
4064 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4065 	/* Writer: pointers */
4066 	if (!partial)
4067 		partial = chain + k-1;
4068 	/*
4069 	 * If the branch acquired continuation since we've looked at it -
4070 	 * fine, it should all survive and (new) top doesn't belong to us.
4071 	 */
4072 	if (!partial->key && *partial->p)
4073 		/* Writer: end */
4074 		goto no_top;
4075 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4076 		;
4077 	/*
4078 	 * OK, we've found the last block that must survive. The rest of our
4079 	 * branch should be detached before unlocking. However, if that rest
4080 	 * of branch is all ours and does not grow immediately from the inode
4081 	 * it's easier to cheat and just decrement partial->p.
4082 	 */
4083 	if (p == chain + k - 1 && p > chain) {
4084 		p->p--;
4085 	} else {
4086 		*top = *p->p;
4087 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4088 #if 0
4089 		*p->p = 0;
4090 #endif
4091 	}
4092 	/* Writer: end */
4093 
4094 	while (partial > p) {
4095 		brelse(partial->bh);
4096 		partial--;
4097 	}
4098 no_top:
4099 	return partial;
4100 }
4101 
4102 /*
4103  * Zero a number of block pointers in either an inode or an indirect block.
4104  * If we restart the transaction we must again get write access to the
4105  * indirect block for further modification.
4106  *
4107  * We release `count' blocks on disk, but (last - first) may be greater
4108  * than `count' because there can be holes in there.
4109  */
4110 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4111 			      struct buffer_head *bh,
4112 			      ext4_fsblk_t block_to_free,
4113 			      unsigned long count, __le32 *first,
4114 			      __le32 *last)
4115 {
4116 	__le32 *p;
4117 	if (try_to_extend_transaction(handle, inode)) {
4118 		if (bh) {
4119 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4120 			ext4_handle_dirty_metadata(handle, inode, bh);
4121 		}
4122 		ext4_mark_inode_dirty(handle, inode);
4123 		ext4_truncate_restart_trans(handle, inode,
4124 					    blocks_for_truncate(inode));
4125 		if (bh) {
4126 			BUFFER_TRACE(bh, "retaking write access");
4127 			ext4_journal_get_write_access(handle, bh);
4128 		}
4129 	}
4130 
4131 	/*
4132 	 * Any buffers which are on the journal will be in memory. We
4133 	 * find them on the hash table so jbd2_journal_revoke() will
4134 	 * run jbd2_journal_forget() on them.  We've already detached
4135 	 * each block from the file, so bforget() in
4136 	 * jbd2_journal_forget() should be safe.
4137 	 *
4138 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4139 	 */
4140 	for (p = first; p < last; p++) {
4141 		u32 nr = le32_to_cpu(*p);
4142 		if (nr) {
4143 			struct buffer_head *tbh;
4144 
4145 			*p = 0;
4146 			tbh = sb_find_get_block(inode->i_sb, nr);
4147 			ext4_forget(handle, 0, inode, tbh, nr);
4148 		}
4149 	}
4150 
4151 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
4152 }
4153 
4154 /**
4155  * ext4_free_data - free a list of data blocks
4156  * @handle:	handle for this transaction
4157  * @inode:	inode we are dealing with
4158  * @this_bh:	indirect buffer_head which contains *@first and *@last
4159  * @first:	array of block numbers
4160  * @last:	points immediately past the end of array
4161  *
4162  * We are freeing all blocks refered from that array (numbers are stored as
4163  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4164  *
4165  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4166  * blocks are contiguous then releasing them at one time will only affect one
4167  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4168  * actually use a lot of journal space.
4169  *
4170  * @this_bh will be %NULL if @first and @last point into the inode's direct
4171  * block pointers.
4172  */
4173 static void ext4_free_data(handle_t *handle, struct inode *inode,
4174 			   struct buffer_head *this_bh,
4175 			   __le32 *first, __le32 *last)
4176 {
4177 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4178 	unsigned long count = 0;	    /* Number of blocks in the run */
4179 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4180 					       corresponding to
4181 					       block_to_free */
4182 	ext4_fsblk_t nr;		    /* Current block # */
4183 	__le32 *p;			    /* Pointer into inode/ind
4184 					       for current block */
4185 	int err;
4186 
4187 	if (this_bh) {				/* For indirect block */
4188 		BUFFER_TRACE(this_bh, "get_write_access");
4189 		err = ext4_journal_get_write_access(handle, this_bh);
4190 		/* Important: if we can't update the indirect pointers
4191 		 * to the blocks, we can't free them. */
4192 		if (err)
4193 			return;
4194 	}
4195 
4196 	for (p = first; p < last; p++) {
4197 		nr = le32_to_cpu(*p);
4198 		if (nr) {
4199 			/* accumulate blocks to free if they're contiguous */
4200 			if (count == 0) {
4201 				block_to_free = nr;
4202 				block_to_free_p = p;
4203 				count = 1;
4204 			} else if (nr == block_to_free + count) {
4205 				count++;
4206 			} else {
4207 				ext4_clear_blocks(handle, inode, this_bh,
4208 						  block_to_free,
4209 						  count, block_to_free_p, p);
4210 				block_to_free = nr;
4211 				block_to_free_p = p;
4212 				count = 1;
4213 			}
4214 		}
4215 	}
4216 
4217 	if (count > 0)
4218 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4219 				  count, block_to_free_p, p);
4220 
4221 	if (this_bh) {
4222 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4223 
4224 		/*
4225 		 * The buffer head should have an attached journal head at this
4226 		 * point. However, if the data is corrupted and an indirect
4227 		 * block pointed to itself, it would have been detached when
4228 		 * the block was cleared. Check for this instead of OOPSing.
4229 		 */
4230 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4231 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4232 		else
4233 			ext4_error(inode->i_sb, __func__,
4234 				   "circular indirect block detected, "
4235 				   "inode=%lu, block=%llu",
4236 				   inode->i_ino,
4237 				   (unsigned long long) this_bh->b_blocknr);
4238 	}
4239 }
4240 
4241 /**
4242  *	ext4_free_branches - free an array of branches
4243  *	@handle: JBD handle for this transaction
4244  *	@inode:	inode we are dealing with
4245  *	@parent_bh: the buffer_head which contains *@first and *@last
4246  *	@first:	array of block numbers
4247  *	@last:	pointer immediately past the end of array
4248  *	@depth:	depth of the branches to free
4249  *
4250  *	We are freeing all blocks refered from these branches (numbers are
4251  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4252  *	appropriately.
4253  */
4254 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4255 			       struct buffer_head *parent_bh,
4256 			       __le32 *first, __le32 *last, int depth)
4257 {
4258 	ext4_fsblk_t nr;
4259 	__le32 *p;
4260 
4261 	if (ext4_handle_is_aborted(handle))
4262 		return;
4263 
4264 	if (depth--) {
4265 		struct buffer_head *bh;
4266 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4267 		p = last;
4268 		while (--p >= first) {
4269 			nr = le32_to_cpu(*p);
4270 			if (!nr)
4271 				continue;		/* A hole */
4272 
4273 			/* Go read the buffer for the next level down */
4274 			bh = sb_bread(inode->i_sb, nr);
4275 
4276 			/*
4277 			 * A read failure? Report error and clear slot
4278 			 * (should be rare).
4279 			 */
4280 			if (!bh) {
4281 				ext4_error(inode->i_sb, "ext4_free_branches",
4282 					   "Read failure, inode=%lu, block=%llu",
4283 					   inode->i_ino, nr);
4284 				continue;
4285 			}
4286 
4287 			/* This zaps the entire block.  Bottom up. */
4288 			BUFFER_TRACE(bh, "free child branches");
4289 			ext4_free_branches(handle, inode, bh,
4290 					(__le32 *) bh->b_data,
4291 					(__le32 *) bh->b_data + addr_per_block,
4292 					depth);
4293 
4294 			/*
4295 			 * We've probably journalled the indirect block several
4296 			 * times during the truncate.  But it's no longer
4297 			 * needed and we now drop it from the transaction via
4298 			 * jbd2_journal_revoke().
4299 			 *
4300 			 * That's easy if it's exclusively part of this
4301 			 * transaction.  But if it's part of the committing
4302 			 * transaction then jbd2_journal_forget() will simply
4303 			 * brelse() it.  That means that if the underlying
4304 			 * block is reallocated in ext4_get_block(),
4305 			 * unmap_underlying_metadata() will find this block
4306 			 * and will try to get rid of it.  damn, damn.
4307 			 *
4308 			 * If this block has already been committed to the
4309 			 * journal, a revoke record will be written.  And
4310 			 * revoke records must be emitted *before* clearing
4311 			 * this block's bit in the bitmaps.
4312 			 */
4313 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4314 
4315 			/*
4316 			 * Everything below this this pointer has been
4317 			 * released.  Now let this top-of-subtree go.
4318 			 *
4319 			 * We want the freeing of this indirect block to be
4320 			 * atomic in the journal with the updating of the
4321 			 * bitmap block which owns it.  So make some room in
4322 			 * the journal.
4323 			 *
4324 			 * We zero the parent pointer *after* freeing its
4325 			 * pointee in the bitmaps, so if extend_transaction()
4326 			 * for some reason fails to put the bitmap changes and
4327 			 * the release into the same transaction, recovery
4328 			 * will merely complain about releasing a free block,
4329 			 * rather than leaking blocks.
4330 			 */
4331 			if (ext4_handle_is_aborted(handle))
4332 				return;
4333 			if (try_to_extend_transaction(handle, inode)) {
4334 				ext4_mark_inode_dirty(handle, inode);
4335 				ext4_truncate_restart_trans(handle, inode,
4336 					    blocks_for_truncate(inode));
4337 			}
4338 
4339 			ext4_free_blocks(handle, inode, nr, 1, 1);
4340 
4341 			if (parent_bh) {
4342 				/*
4343 				 * The block which we have just freed is
4344 				 * pointed to by an indirect block: journal it
4345 				 */
4346 				BUFFER_TRACE(parent_bh, "get_write_access");
4347 				if (!ext4_journal_get_write_access(handle,
4348 								   parent_bh)){
4349 					*p = 0;
4350 					BUFFER_TRACE(parent_bh,
4351 					"call ext4_handle_dirty_metadata");
4352 					ext4_handle_dirty_metadata(handle,
4353 								   inode,
4354 								   parent_bh);
4355 				}
4356 			}
4357 		}
4358 	} else {
4359 		/* We have reached the bottom of the tree. */
4360 		BUFFER_TRACE(parent_bh, "free data blocks");
4361 		ext4_free_data(handle, inode, parent_bh, first, last);
4362 	}
4363 }
4364 
4365 int ext4_can_truncate(struct inode *inode)
4366 {
4367 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4368 		return 0;
4369 	if (S_ISREG(inode->i_mode))
4370 		return 1;
4371 	if (S_ISDIR(inode->i_mode))
4372 		return 1;
4373 	if (S_ISLNK(inode->i_mode))
4374 		return !ext4_inode_is_fast_symlink(inode);
4375 	return 0;
4376 }
4377 
4378 /*
4379  * ext4_truncate()
4380  *
4381  * We block out ext4_get_block() block instantiations across the entire
4382  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4383  * simultaneously on behalf of the same inode.
4384  *
4385  * As we work through the truncate and commmit bits of it to the journal there
4386  * is one core, guiding principle: the file's tree must always be consistent on
4387  * disk.  We must be able to restart the truncate after a crash.
4388  *
4389  * The file's tree may be transiently inconsistent in memory (although it
4390  * probably isn't), but whenever we close off and commit a journal transaction,
4391  * the contents of (the filesystem + the journal) must be consistent and
4392  * restartable.  It's pretty simple, really: bottom up, right to left (although
4393  * left-to-right works OK too).
4394  *
4395  * Note that at recovery time, journal replay occurs *before* the restart of
4396  * truncate against the orphan inode list.
4397  *
4398  * The committed inode has the new, desired i_size (which is the same as
4399  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4400  * that this inode's truncate did not complete and it will again call
4401  * ext4_truncate() to have another go.  So there will be instantiated blocks
4402  * to the right of the truncation point in a crashed ext4 filesystem.  But
4403  * that's fine - as long as they are linked from the inode, the post-crash
4404  * ext4_truncate() run will find them and release them.
4405  */
4406 void ext4_truncate(struct inode *inode)
4407 {
4408 	handle_t *handle;
4409 	struct ext4_inode_info *ei = EXT4_I(inode);
4410 	__le32 *i_data = ei->i_data;
4411 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4412 	struct address_space *mapping = inode->i_mapping;
4413 	ext4_lblk_t offsets[4];
4414 	Indirect chain[4];
4415 	Indirect *partial;
4416 	__le32 nr = 0;
4417 	int n;
4418 	ext4_lblk_t last_block;
4419 	unsigned blocksize = inode->i_sb->s_blocksize;
4420 
4421 	if (!ext4_can_truncate(inode))
4422 		return;
4423 
4424 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4425 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4426 
4427 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4428 		ext4_ext_truncate(inode);
4429 		return;
4430 	}
4431 
4432 	handle = start_transaction(inode);
4433 	if (IS_ERR(handle))
4434 		return;		/* AKPM: return what? */
4435 
4436 	last_block = (inode->i_size + blocksize-1)
4437 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4438 
4439 	if (inode->i_size & (blocksize - 1))
4440 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4441 			goto out_stop;
4442 
4443 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4444 	if (n == 0)
4445 		goto out_stop;	/* error */
4446 
4447 	/*
4448 	 * OK.  This truncate is going to happen.  We add the inode to the
4449 	 * orphan list, so that if this truncate spans multiple transactions,
4450 	 * and we crash, we will resume the truncate when the filesystem
4451 	 * recovers.  It also marks the inode dirty, to catch the new size.
4452 	 *
4453 	 * Implication: the file must always be in a sane, consistent
4454 	 * truncatable state while each transaction commits.
4455 	 */
4456 	if (ext4_orphan_add(handle, inode))
4457 		goto out_stop;
4458 
4459 	/*
4460 	 * From here we block out all ext4_get_block() callers who want to
4461 	 * modify the block allocation tree.
4462 	 */
4463 	down_write(&ei->i_data_sem);
4464 
4465 	ext4_discard_preallocations(inode);
4466 
4467 	/*
4468 	 * The orphan list entry will now protect us from any crash which
4469 	 * occurs before the truncate completes, so it is now safe to propagate
4470 	 * the new, shorter inode size (held for now in i_size) into the
4471 	 * on-disk inode. We do this via i_disksize, which is the value which
4472 	 * ext4 *really* writes onto the disk inode.
4473 	 */
4474 	ei->i_disksize = inode->i_size;
4475 
4476 	if (n == 1) {		/* direct blocks */
4477 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4478 			       i_data + EXT4_NDIR_BLOCKS);
4479 		goto do_indirects;
4480 	}
4481 
4482 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4483 	/* Kill the top of shared branch (not detached) */
4484 	if (nr) {
4485 		if (partial == chain) {
4486 			/* Shared branch grows from the inode */
4487 			ext4_free_branches(handle, inode, NULL,
4488 					   &nr, &nr+1, (chain+n-1) - partial);
4489 			*partial->p = 0;
4490 			/*
4491 			 * We mark the inode dirty prior to restart,
4492 			 * and prior to stop.  No need for it here.
4493 			 */
4494 		} else {
4495 			/* Shared branch grows from an indirect block */
4496 			BUFFER_TRACE(partial->bh, "get_write_access");
4497 			ext4_free_branches(handle, inode, partial->bh,
4498 					partial->p,
4499 					partial->p+1, (chain+n-1) - partial);
4500 		}
4501 	}
4502 	/* Clear the ends of indirect blocks on the shared branch */
4503 	while (partial > chain) {
4504 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4505 				   (__le32*)partial->bh->b_data+addr_per_block,
4506 				   (chain+n-1) - partial);
4507 		BUFFER_TRACE(partial->bh, "call brelse");
4508 		brelse(partial->bh);
4509 		partial--;
4510 	}
4511 do_indirects:
4512 	/* Kill the remaining (whole) subtrees */
4513 	switch (offsets[0]) {
4514 	default:
4515 		nr = i_data[EXT4_IND_BLOCK];
4516 		if (nr) {
4517 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4518 			i_data[EXT4_IND_BLOCK] = 0;
4519 		}
4520 	case EXT4_IND_BLOCK:
4521 		nr = i_data[EXT4_DIND_BLOCK];
4522 		if (nr) {
4523 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4524 			i_data[EXT4_DIND_BLOCK] = 0;
4525 		}
4526 	case EXT4_DIND_BLOCK:
4527 		nr = i_data[EXT4_TIND_BLOCK];
4528 		if (nr) {
4529 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4530 			i_data[EXT4_TIND_BLOCK] = 0;
4531 		}
4532 	case EXT4_TIND_BLOCK:
4533 		;
4534 	}
4535 
4536 	up_write(&ei->i_data_sem);
4537 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4538 	ext4_mark_inode_dirty(handle, inode);
4539 
4540 	/*
4541 	 * In a multi-transaction truncate, we only make the final transaction
4542 	 * synchronous
4543 	 */
4544 	if (IS_SYNC(inode))
4545 		ext4_handle_sync(handle);
4546 out_stop:
4547 	/*
4548 	 * If this was a simple ftruncate(), and the file will remain alive
4549 	 * then we need to clear up the orphan record which we created above.
4550 	 * However, if this was a real unlink then we were called by
4551 	 * ext4_delete_inode(), and we allow that function to clean up the
4552 	 * orphan info for us.
4553 	 */
4554 	if (inode->i_nlink)
4555 		ext4_orphan_del(handle, inode);
4556 
4557 	ext4_journal_stop(handle);
4558 }
4559 
4560 /*
4561  * ext4_get_inode_loc returns with an extra refcount against the inode's
4562  * underlying buffer_head on success. If 'in_mem' is true, we have all
4563  * data in memory that is needed to recreate the on-disk version of this
4564  * inode.
4565  */
4566 static int __ext4_get_inode_loc(struct inode *inode,
4567 				struct ext4_iloc *iloc, int in_mem)
4568 {
4569 	struct ext4_group_desc	*gdp;
4570 	struct buffer_head	*bh;
4571 	struct super_block	*sb = inode->i_sb;
4572 	ext4_fsblk_t		block;
4573 	int			inodes_per_block, inode_offset;
4574 
4575 	iloc->bh = NULL;
4576 	if (!ext4_valid_inum(sb, inode->i_ino))
4577 		return -EIO;
4578 
4579 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4580 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4581 	if (!gdp)
4582 		return -EIO;
4583 
4584 	/*
4585 	 * Figure out the offset within the block group inode table
4586 	 */
4587 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4588 	inode_offset = ((inode->i_ino - 1) %
4589 			EXT4_INODES_PER_GROUP(sb));
4590 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4591 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4592 
4593 	bh = sb_getblk(sb, block);
4594 	if (!bh) {
4595 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4596 			   "inode block - inode=%lu, block=%llu",
4597 			   inode->i_ino, block);
4598 		return -EIO;
4599 	}
4600 	if (!buffer_uptodate(bh)) {
4601 		lock_buffer(bh);
4602 
4603 		/*
4604 		 * If the buffer has the write error flag, we have failed
4605 		 * to write out another inode in the same block.  In this
4606 		 * case, we don't have to read the block because we may
4607 		 * read the old inode data successfully.
4608 		 */
4609 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4610 			set_buffer_uptodate(bh);
4611 
4612 		if (buffer_uptodate(bh)) {
4613 			/* someone brought it uptodate while we waited */
4614 			unlock_buffer(bh);
4615 			goto has_buffer;
4616 		}
4617 
4618 		/*
4619 		 * If we have all information of the inode in memory and this
4620 		 * is the only valid inode in the block, we need not read the
4621 		 * block.
4622 		 */
4623 		if (in_mem) {
4624 			struct buffer_head *bitmap_bh;
4625 			int i, start;
4626 
4627 			start = inode_offset & ~(inodes_per_block - 1);
4628 
4629 			/* Is the inode bitmap in cache? */
4630 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4631 			if (!bitmap_bh)
4632 				goto make_io;
4633 
4634 			/*
4635 			 * If the inode bitmap isn't in cache then the
4636 			 * optimisation may end up performing two reads instead
4637 			 * of one, so skip it.
4638 			 */
4639 			if (!buffer_uptodate(bitmap_bh)) {
4640 				brelse(bitmap_bh);
4641 				goto make_io;
4642 			}
4643 			for (i = start; i < start + inodes_per_block; i++) {
4644 				if (i == inode_offset)
4645 					continue;
4646 				if (ext4_test_bit(i, bitmap_bh->b_data))
4647 					break;
4648 			}
4649 			brelse(bitmap_bh);
4650 			if (i == start + inodes_per_block) {
4651 				/* all other inodes are free, so skip I/O */
4652 				memset(bh->b_data, 0, bh->b_size);
4653 				set_buffer_uptodate(bh);
4654 				unlock_buffer(bh);
4655 				goto has_buffer;
4656 			}
4657 		}
4658 
4659 make_io:
4660 		/*
4661 		 * If we need to do any I/O, try to pre-readahead extra
4662 		 * blocks from the inode table.
4663 		 */
4664 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4665 			ext4_fsblk_t b, end, table;
4666 			unsigned num;
4667 
4668 			table = ext4_inode_table(sb, gdp);
4669 			/* s_inode_readahead_blks is always a power of 2 */
4670 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4671 			if (table > b)
4672 				b = table;
4673 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4674 			num = EXT4_INODES_PER_GROUP(sb);
4675 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4676 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4677 				num -= ext4_itable_unused_count(sb, gdp);
4678 			table += num / inodes_per_block;
4679 			if (end > table)
4680 				end = table;
4681 			while (b <= end)
4682 				sb_breadahead(sb, b++);
4683 		}
4684 
4685 		/*
4686 		 * There are other valid inodes in the buffer, this inode
4687 		 * has in-inode xattrs, or we don't have this inode in memory.
4688 		 * Read the block from disk.
4689 		 */
4690 		get_bh(bh);
4691 		bh->b_end_io = end_buffer_read_sync;
4692 		submit_bh(READ_META, bh);
4693 		wait_on_buffer(bh);
4694 		if (!buffer_uptodate(bh)) {
4695 			ext4_error(sb, __func__,
4696 				   "unable to read inode block - inode=%lu, "
4697 				   "block=%llu", inode->i_ino, block);
4698 			brelse(bh);
4699 			return -EIO;
4700 		}
4701 	}
4702 has_buffer:
4703 	iloc->bh = bh;
4704 	return 0;
4705 }
4706 
4707 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4708 {
4709 	/* We have all inode data except xattrs in memory here. */
4710 	return __ext4_get_inode_loc(inode, iloc,
4711 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4712 }
4713 
4714 void ext4_set_inode_flags(struct inode *inode)
4715 {
4716 	unsigned int flags = EXT4_I(inode)->i_flags;
4717 
4718 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4719 	if (flags & EXT4_SYNC_FL)
4720 		inode->i_flags |= S_SYNC;
4721 	if (flags & EXT4_APPEND_FL)
4722 		inode->i_flags |= S_APPEND;
4723 	if (flags & EXT4_IMMUTABLE_FL)
4724 		inode->i_flags |= S_IMMUTABLE;
4725 	if (flags & EXT4_NOATIME_FL)
4726 		inode->i_flags |= S_NOATIME;
4727 	if (flags & EXT4_DIRSYNC_FL)
4728 		inode->i_flags |= S_DIRSYNC;
4729 }
4730 
4731 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4732 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4733 {
4734 	unsigned int flags = ei->vfs_inode.i_flags;
4735 
4736 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4737 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4738 	if (flags & S_SYNC)
4739 		ei->i_flags |= EXT4_SYNC_FL;
4740 	if (flags & S_APPEND)
4741 		ei->i_flags |= EXT4_APPEND_FL;
4742 	if (flags & S_IMMUTABLE)
4743 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4744 	if (flags & S_NOATIME)
4745 		ei->i_flags |= EXT4_NOATIME_FL;
4746 	if (flags & S_DIRSYNC)
4747 		ei->i_flags |= EXT4_DIRSYNC_FL;
4748 }
4749 
4750 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4751 				  struct ext4_inode_info *ei)
4752 {
4753 	blkcnt_t i_blocks ;
4754 	struct inode *inode = &(ei->vfs_inode);
4755 	struct super_block *sb = inode->i_sb;
4756 
4757 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4758 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4759 		/* we are using combined 48 bit field */
4760 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4761 					le32_to_cpu(raw_inode->i_blocks_lo);
4762 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4763 			/* i_blocks represent file system block size */
4764 			return i_blocks  << (inode->i_blkbits - 9);
4765 		} else {
4766 			return i_blocks;
4767 		}
4768 	} else {
4769 		return le32_to_cpu(raw_inode->i_blocks_lo);
4770 	}
4771 }
4772 
4773 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4774 {
4775 	struct ext4_iloc iloc;
4776 	struct ext4_inode *raw_inode;
4777 	struct ext4_inode_info *ei;
4778 	struct buffer_head *bh;
4779 	struct inode *inode;
4780 	long ret;
4781 	int block;
4782 
4783 	inode = iget_locked(sb, ino);
4784 	if (!inode)
4785 		return ERR_PTR(-ENOMEM);
4786 	if (!(inode->i_state & I_NEW))
4787 		return inode;
4788 
4789 	ei = EXT4_I(inode);
4790 
4791 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4792 	if (ret < 0)
4793 		goto bad_inode;
4794 	bh = iloc.bh;
4795 	raw_inode = ext4_raw_inode(&iloc);
4796 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4797 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4798 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4799 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4800 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4801 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4802 	}
4803 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4804 
4805 	ei->i_state = 0;
4806 	ei->i_dir_start_lookup = 0;
4807 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4808 	/* We now have enough fields to check if the inode was active or not.
4809 	 * This is needed because nfsd might try to access dead inodes
4810 	 * the test is that same one that e2fsck uses
4811 	 * NeilBrown 1999oct15
4812 	 */
4813 	if (inode->i_nlink == 0) {
4814 		if (inode->i_mode == 0 ||
4815 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4816 			/* this inode is deleted */
4817 			brelse(bh);
4818 			ret = -ESTALE;
4819 			goto bad_inode;
4820 		}
4821 		/* The only unlinked inodes we let through here have
4822 		 * valid i_mode and are being read by the orphan
4823 		 * recovery code: that's fine, we're about to complete
4824 		 * the process of deleting those. */
4825 	}
4826 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4827 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4828 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4829 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4830 		ei->i_file_acl |=
4831 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4832 	inode->i_size = ext4_isize(raw_inode);
4833 	ei->i_disksize = inode->i_size;
4834 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4835 	ei->i_block_group = iloc.block_group;
4836 	ei->i_last_alloc_group = ~0;
4837 	/*
4838 	 * NOTE! The in-memory inode i_data array is in little-endian order
4839 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4840 	 */
4841 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4842 		ei->i_data[block] = raw_inode->i_block[block];
4843 	INIT_LIST_HEAD(&ei->i_orphan);
4844 
4845 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4846 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4847 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4848 		    EXT4_INODE_SIZE(inode->i_sb)) {
4849 			brelse(bh);
4850 			ret = -EIO;
4851 			goto bad_inode;
4852 		}
4853 		if (ei->i_extra_isize == 0) {
4854 			/* The extra space is currently unused. Use it. */
4855 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4856 					    EXT4_GOOD_OLD_INODE_SIZE;
4857 		} else {
4858 			__le32 *magic = (void *)raw_inode +
4859 					EXT4_GOOD_OLD_INODE_SIZE +
4860 					ei->i_extra_isize;
4861 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4862 				ei->i_state |= EXT4_STATE_XATTR;
4863 		}
4864 	} else
4865 		ei->i_extra_isize = 0;
4866 
4867 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4868 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4869 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4870 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4871 
4872 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4873 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4874 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4875 			inode->i_version |=
4876 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4877 	}
4878 
4879 	ret = 0;
4880 	if (ei->i_file_acl &&
4881 	    ((ei->i_file_acl <
4882 	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4883 	       EXT4_SB(sb)->s_gdb_count)) ||
4884 	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4885 		ext4_error(sb, __func__,
4886 			   "bad extended attribute block %llu in inode #%lu",
4887 			   ei->i_file_acl, inode->i_ino);
4888 		ret = -EIO;
4889 		goto bad_inode;
4890 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4891 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4892 		    (S_ISLNK(inode->i_mode) &&
4893 		     !ext4_inode_is_fast_symlink(inode)))
4894 			/* Validate extent which is part of inode */
4895 			ret = ext4_ext_check_inode(inode);
4896 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4897 		   (S_ISLNK(inode->i_mode) &&
4898 		    !ext4_inode_is_fast_symlink(inode))) {
4899 		/* Validate block references which are part of inode */
4900 		ret = ext4_check_inode_blockref(inode);
4901 	}
4902 	if (ret) {
4903 		brelse(bh);
4904 		goto bad_inode;
4905 	}
4906 
4907 	if (S_ISREG(inode->i_mode)) {
4908 		inode->i_op = &ext4_file_inode_operations;
4909 		inode->i_fop = &ext4_file_operations;
4910 		ext4_set_aops(inode);
4911 	} else if (S_ISDIR(inode->i_mode)) {
4912 		inode->i_op = &ext4_dir_inode_operations;
4913 		inode->i_fop = &ext4_dir_operations;
4914 	} else if (S_ISLNK(inode->i_mode)) {
4915 		if (ext4_inode_is_fast_symlink(inode)) {
4916 			inode->i_op = &ext4_fast_symlink_inode_operations;
4917 			nd_terminate_link(ei->i_data, inode->i_size,
4918 				sizeof(ei->i_data) - 1);
4919 		} else {
4920 			inode->i_op = &ext4_symlink_inode_operations;
4921 			ext4_set_aops(inode);
4922 		}
4923 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4924 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4925 		inode->i_op = &ext4_special_inode_operations;
4926 		if (raw_inode->i_block[0])
4927 			init_special_inode(inode, inode->i_mode,
4928 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4929 		else
4930 			init_special_inode(inode, inode->i_mode,
4931 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4932 	} else {
4933 		brelse(bh);
4934 		ret = -EIO;
4935 		ext4_error(inode->i_sb, __func__,
4936 			   "bogus i_mode (%o) for inode=%lu",
4937 			   inode->i_mode, inode->i_ino);
4938 		goto bad_inode;
4939 	}
4940 	brelse(iloc.bh);
4941 	ext4_set_inode_flags(inode);
4942 	unlock_new_inode(inode);
4943 	return inode;
4944 
4945 bad_inode:
4946 	iget_failed(inode);
4947 	return ERR_PTR(ret);
4948 }
4949 
4950 static int ext4_inode_blocks_set(handle_t *handle,
4951 				struct ext4_inode *raw_inode,
4952 				struct ext4_inode_info *ei)
4953 {
4954 	struct inode *inode = &(ei->vfs_inode);
4955 	u64 i_blocks = inode->i_blocks;
4956 	struct super_block *sb = inode->i_sb;
4957 
4958 	if (i_blocks <= ~0U) {
4959 		/*
4960 		 * i_blocks can be represnted in a 32 bit variable
4961 		 * as multiple of 512 bytes
4962 		 */
4963 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4964 		raw_inode->i_blocks_high = 0;
4965 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4966 		return 0;
4967 	}
4968 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4969 		return -EFBIG;
4970 
4971 	if (i_blocks <= 0xffffffffffffULL) {
4972 		/*
4973 		 * i_blocks can be represented in a 48 bit variable
4974 		 * as multiple of 512 bytes
4975 		 */
4976 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4977 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4978 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4979 	} else {
4980 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4981 		/* i_block is stored in file system block size */
4982 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4983 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4984 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4985 	}
4986 	return 0;
4987 }
4988 
4989 /*
4990  * Post the struct inode info into an on-disk inode location in the
4991  * buffer-cache.  This gobbles the caller's reference to the
4992  * buffer_head in the inode location struct.
4993  *
4994  * The caller must have write access to iloc->bh.
4995  */
4996 static int ext4_do_update_inode(handle_t *handle,
4997 				struct inode *inode,
4998 				struct ext4_iloc *iloc)
4999 {
5000 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5001 	struct ext4_inode_info *ei = EXT4_I(inode);
5002 	struct buffer_head *bh = iloc->bh;
5003 	int err = 0, rc, block;
5004 
5005 	/* For fields not not tracking in the in-memory inode,
5006 	 * initialise them to zero for new inodes. */
5007 	if (ei->i_state & EXT4_STATE_NEW)
5008 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5009 
5010 	ext4_get_inode_flags(ei);
5011 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5012 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5013 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5014 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5015 /*
5016  * Fix up interoperability with old kernels. Otherwise, old inodes get
5017  * re-used with the upper 16 bits of the uid/gid intact
5018  */
5019 		if (!ei->i_dtime) {
5020 			raw_inode->i_uid_high =
5021 				cpu_to_le16(high_16_bits(inode->i_uid));
5022 			raw_inode->i_gid_high =
5023 				cpu_to_le16(high_16_bits(inode->i_gid));
5024 		} else {
5025 			raw_inode->i_uid_high = 0;
5026 			raw_inode->i_gid_high = 0;
5027 		}
5028 	} else {
5029 		raw_inode->i_uid_low =
5030 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5031 		raw_inode->i_gid_low =
5032 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5033 		raw_inode->i_uid_high = 0;
5034 		raw_inode->i_gid_high = 0;
5035 	}
5036 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5037 
5038 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5039 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5040 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5041 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5042 
5043 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5044 		goto out_brelse;
5045 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5046 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5047 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5048 	    cpu_to_le32(EXT4_OS_HURD))
5049 		raw_inode->i_file_acl_high =
5050 			cpu_to_le16(ei->i_file_acl >> 32);
5051 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5052 	ext4_isize_set(raw_inode, ei->i_disksize);
5053 	if (ei->i_disksize > 0x7fffffffULL) {
5054 		struct super_block *sb = inode->i_sb;
5055 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5056 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5057 				EXT4_SB(sb)->s_es->s_rev_level ==
5058 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5059 			/* If this is the first large file
5060 			 * created, add a flag to the superblock.
5061 			 */
5062 			err = ext4_journal_get_write_access(handle,
5063 					EXT4_SB(sb)->s_sbh);
5064 			if (err)
5065 				goto out_brelse;
5066 			ext4_update_dynamic_rev(sb);
5067 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5068 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5069 			sb->s_dirt = 1;
5070 			ext4_handle_sync(handle);
5071 			err = ext4_handle_dirty_metadata(handle, inode,
5072 					EXT4_SB(sb)->s_sbh);
5073 		}
5074 	}
5075 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5076 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5077 		if (old_valid_dev(inode->i_rdev)) {
5078 			raw_inode->i_block[0] =
5079 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5080 			raw_inode->i_block[1] = 0;
5081 		} else {
5082 			raw_inode->i_block[0] = 0;
5083 			raw_inode->i_block[1] =
5084 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5085 			raw_inode->i_block[2] = 0;
5086 		}
5087 	} else
5088 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5089 			raw_inode->i_block[block] = ei->i_data[block];
5090 
5091 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5092 	if (ei->i_extra_isize) {
5093 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5094 			raw_inode->i_version_hi =
5095 			cpu_to_le32(inode->i_version >> 32);
5096 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5097 	}
5098 
5099 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5100 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
5101 	if (!err)
5102 		err = rc;
5103 	ei->i_state &= ~EXT4_STATE_NEW;
5104 
5105 out_brelse:
5106 	brelse(bh);
5107 	ext4_std_error(inode->i_sb, err);
5108 	return err;
5109 }
5110 
5111 /*
5112  * ext4_write_inode()
5113  *
5114  * We are called from a few places:
5115  *
5116  * - Within generic_file_write() for O_SYNC files.
5117  *   Here, there will be no transaction running. We wait for any running
5118  *   trasnaction to commit.
5119  *
5120  * - Within sys_sync(), kupdate and such.
5121  *   We wait on commit, if tol to.
5122  *
5123  * - Within prune_icache() (PF_MEMALLOC == true)
5124  *   Here we simply return.  We can't afford to block kswapd on the
5125  *   journal commit.
5126  *
5127  * In all cases it is actually safe for us to return without doing anything,
5128  * because the inode has been copied into a raw inode buffer in
5129  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5130  * knfsd.
5131  *
5132  * Note that we are absolutely dependent upon all inode dirtiers doing the
5133  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5134  * which we are interested.
5135  *
5136  * It would be a bug for them to not do this.  The code:
5137  *
5138  *	mark_inode_dirty(inode)
5139  *	stuff();
5140  *	inode->i_size = expr;
5141  *
5142  * is in error because a kswapd-driven write_inode() could occur while
5143  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5144  * will no longer be on the superblock's dirty inode list.
5145  */
5146 int ext4_write_inode(struct inode *inode, int wait)
5147 {
5148 	int err;
5149 
5150 	if (current->flags & PF_MEMALLOC)
5151 		return 0;
5152 
5153 	if (EXT4_SB(inode->i_sb)->s_journal) {
5154 		if (ext4_journal_current_handle()) {
5155 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5156 			dump_stack();
5157 			return -EIO;
5158 		}
5159 
5160 		if (!wait)
5161 			return 0;
5162 
5163 		err = ext4_force_commit(inode->i_sb);
5164 	} else {
5165 		struct ext4_iloc iloc;
5166 
5167 		err = ext4_get_inode_loc(inode, &iloc);
5168 		if (err)
5169 			return err;
5170 		if (wait)
5171 			sync_dirty_buffer(iloc.bh);
5172 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5173 			ext4_error(inode->i_sb, __func__,
5174 				   "IO error syncing inode, "
5175 				   "inode=%lu, block=%llu",
5176 				   inode->i_ino,
5177 				   (unsigned long long)iloc.bh->b_blocknr);
5178 			err = -EIO;
5179 		}
5180 	}
5181 	return err;
5182 }
5183 
5184 /*
5185  * ext4_setattr()
5186  *
5187  * Called from notify_change.
5188  *
5189  * We want to trap VFS attempts to truncate the file as soon as
5190  * possible.  In particular, we want to make sure that when the VFS
5191  * shrinks i_size, we put the inode on the orphan list and modify
5192  * i_disksize immediately, so that during the subsequent flushing of
5193  * dirty pages and freeing of disk blocks, we can guarantee that any
5194  * commit will leave the blocks being flushed in an unused state on
5195  * disk.  (On recovery, the inode will get truncated and the blocks will
5196  * be freed, so we have a strong guarantee that no future commit will
5197  * leave these blocks visible to the user.)
5198  *
5199  * Another thing we have to assure is that if we are in ordered mode
5200  * and inode is still attached to the committing transaction, we must
5201  * we start writeout of all the dirty pages which are being truncated.
5202  * This way we are sure that all the data written in the previous
5203  * transaction are already on disk (truncate waits for pages under
5204  * writeback).
5205  *
5206  * Called with inode->i_mutex down.
5207  */
5208 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5209 {
5210 	struct inode *inode = dentry->d_inode;
5211 	int error, rc = 0;
5212 	const unsigned int ia_valid = attr->ia_valid;
5213 
5214 	error = inode_change_ok(inode, attr);
5215 	if (error)
5216 		return error;
5217 
5218 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5219 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5220 		handle_t *handle;
5221 
5222 		/* (user+group)*(old+new) structure, inode write (sb,
5223 		 * inode block, ? - but truncate inode update has it) */
5224 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5225 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5226 		if (IS_ERR(handle)) {
5227 			error = PTR_ERR(handle);
5228 			goto err_out;
5229 		}
5230 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5231 		if (error) {
5232 			ext4_journal_stop(handle);
5233 			return error;
5234 		}
5235 		/* Update corresponding info in inode so that everything is in
5236 		 * one transaction */
5237 		if (attr->ia_valid & ATTR_UID)
5238 			inode->i_uid = attr->ia_uid;
5239 		if (attr->ia_valid & ATTR_GID)
5240 			inode->i_gid = attr->ia_gid;
5241 		error = ext4_mark_inode_dirty(handle, inode);
5242 		ext4_journal_stop(handle);
5243 	}
5244 
5245 	if (attr->ia_valid & ATTR_SIZE) {
5246 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5247 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5248 
5249 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5250 				error = -EFBIG;
5251 				goto err_out;
5252 			}
5253 		}
5254 	}
5255 
5256 	if (S_ISREG(inode->i_mode) &&
5257 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5258 		handle_t *handle;
5259 
5260 		handle = ext4_journal_start(inode, 3);
5261 		if (IS_ERR(handle)) {
5262 			error = PTR_ERR(handle);
5263 			goto err_out;
5264 		}
5265 
5266 		error = ext4_orphan_add(handle, inode);
5267 		EXT4_I(inode)->i_disksize = attr->ia_size;
5268 		rc = ext4_mark_inode_dirty(handle, inode);
5269 		if (!error)
5270 			error = rc;
5271 		ext4_journal_stop(handle);
5272 
5273 		if (ext4_should_order_data(inode)) {
5274 			error = ext4_begin_ordered_truncate(inode,
5275 							    attr->ia_size);
5276 			if (error) {
5277 				/* Do as much error cleanup as possible */
5278 				handle = ext4_journal_start(inode, 3);
5279 				if (IS_ERR(handle)) {
5280 					ext4_orphan_del(NULL, inode);
5281 					goto err_out;
5282 				}
5283 				ext4_orphan_del(handle, inode);
5284 				ext4_journal_stop(handle);
5285 				goto err_out;
5286 			}
5287 		}
5288 	}
5289 
5290 	rc = inode_setattr(inode, attr);
5291 
5292 	/* If inode_setattr's call to ext4_truncate failed to get a
5293 	 * transaction handle at all, we need to clean up the in-core
5294 	 * orphan list manually. */
5295 	if (inode->i_nlink)
5296 		ext4_orphan_del(NULL, inode);
5297 
5298 	if (!rc && (ia_valid & ATTR_MODE))
5299 		rc = ext4_acl_chmod(inode);
5300 
5301 err_out:
5302 	ext4_std_error(inode->i_sb, error);
5303 	if (!error)
5304 		error = rc;
5305 	return error;
5306 }
5307 
5308 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5309 		 struct kstat *stat)
5310 {
5311 	struct inode *inode;
5312 	unsigned long delalloc_blocks;
5313 
5314 	inode = dentry->d_inode;
5315 	generic_fillattr(inode, stat);
5316 
5317 	/*
5318 	 * We can't update i_blocks if the block allocation is delayed
5319 	 * otherwise in the case of system crash before the real block
5320 	 * allocation is done, we will have i_blocks inconsistent with
5321 	 * on-disk file blocks.
5322 	 * We always keep i_blocks updated together with real
5323 	 * allocation. But to not confuse with user, stat
5324 	 * will return the blocks that include the delayed allocation
5325 	 * blocks for this file.
5326 	 */
5327 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5328 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5329 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5330 
5331 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5332 	return 0;
5333 }
5334 
5335 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5336 				      int chunk)
5337 {
5338 	int indirects;
5339 
5340 	/* if nrblocks are contiguous */
5341 	if (chunk) {
5342 		/*
5343 		 * With N contiguous data blocks, it need at most
5344 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5345 		 * 2 dindirect blocks
5346 		 * 1 tindirect block
5347 		 */
5348 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5349 		return indirects + 3;
5350 	}
5351 	/*
5352 	 * if nrblocks are not contiguous, worse case, each block touch
5353 	 * a indirect block, and each indirect block touch a double indirect
5354 	 * block, plus a triple indirect block
5355 	 */
5356 	indirects = nrblocks * 2 + 1;
5357 	return indirects;
5358 }
5359 
5360 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5361 {
5362 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5363 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5364 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5365 }
5366 
5367 /*
5368  * Account for index blocks, block groups bitmaps and block group
5369  * descriptor blocks if modify datablocks and index blocks
5370  * worse case, the indexs blocks spread over different block groups
5371  *
5372  * If datablocks are discontiguous, they are possible to spread over
5373  * different block groups too. If they are contiugous, with flexbg,
5374  * they could still across block group boundary.
5375  *
5376  * Also account for superblock, inode, quota and xattr blocks
5377  */
5378 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5379 {
5380 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5381 	int gdpblocks;
5382 	int idxblocks;
5383 	int ret = 0;
5384 
5385 	/*
5386 	 * How many index blocks need to touch to modify nrblocks?
5387 	 * The "Chunk" flag indicating whether the nrblocks is
5388 	 * physically contiguous on disk
5389 	 *
5390 	 * For Direct IO and fallocate, they calls get_block to allocate
5391 	 * one single extent at a time, so they could set the "Chunk" flag
5392 	 */
5393 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5394 
5395 	ret = idxblocks;
5396 
5397 	/*
5398 	 * Now let's see how many group bitmaps and group descriptors need
5399 	 * to account
5400 	 */
5401 	groups = idxblocks;
5402 	if (chunk)
5403 		groups += 1;
5404 	else
5405 		groups += nrblocks;
5406 
5407 	gdpblocks = groups;
5408 	if (groups > ngroups)
5409 		groups = ngroups;
5410 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5411 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5412 
5413 	/* bitmaps and block group descriptor blocks */
5414 	ret += groups + gdpblocks;
5415 
5416 	/* Blocks for super block, inode, quota and xattr blocks */
5417 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5418 
5419 	return ret;
5420 }
5421 
5422 /*
5423  * Calulate the total number of credits to reserve to fit
5424  * the modification of a single pages into a single transaction,
5425  * which may include multiple chunks of block allocations.
5426  *
5427  * This could be called via ext4_write_begin()
5428  *
5429  * We need to consider the worse case, when
5430  * one new block per extent.
5431  */
5432 int ext4_writepage_trans_blocks(struct inode *inode)
5433 {
5434 	int bpp = ext4_journal_blocks_per_page(inode);
5435 	int ret;
5436 
5437 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5438 
5439 	/* Account for data blocks for journalled mode */
5440 	if (ext4_should_journal_data(inode))
5441 		ret += bpp;
5442 	return ret;
5443 }
5444 
5445 /*
5446  * Calculate the journal credits for a chunk of data modification.
5447  *
5448  * This is called from DIO, fallocate or whoever calling
5449  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5450  *
5451  * journal buffers for data blocks are not included here, as DIO
5452  * and fallocate do no need to journal data buffers.
5453  */
5454 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5455 {
5456 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5457 }
5458 
5459 /*
5460  * The caller must have previously called ext4_reserve_inode_write().
5461  * Give this, we know that the caller already has write access to iloc->bh.
5462  */
5463 int ext4_mark_iloc_dirty(handle_t *handle,
5464 			 struct inode *inode, struct ext4_iloc *iloc)
5465 {
5466 	int err = 0;
5467 
5468 	if (test_opt(inode->i_sb, I_VERSION))
5469 		inode_inc_iversion(inode);
5470 
5471 	/* the do_update_inode consumes one bh->b_count */
5472 	get_bh(iloc->bh);
5473 
5474 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5475 	err = ext4_do_update_inode(handle, inode, iloc);
5476 	put_bh(iloc->bh);
5477 	return err;
5478 }
5479 
5480 /*
5481  * On success, We end up with an outstanding reference count against
5482  * iloc->bh.  This _must_ be cleaned up later.
5483  */
5484 
5485 int
5486 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5487 			 struct ext4_iloc *iloc)
5488 {
5489 	int err;
5490 
5491 	err = ext4_get_inode_loc(inode, iloc);
5492 	if (!err) {
5493 		BUFFER_TRACE(iloc->bh, "get_write_access");
5494 		err = ext4_journal_get_write_access(handle, iloc->bh);
5495 		if (err) {
5496 			brelse(iloc->bh);
5497 			iloc->bh = NULL;
5498 		}
5499 	}
5500 	ext4_std_error(inode->i_sb, err);
5501 	return err;
5502 }
5503 
5504 /*
5505  * Expand an inode by new_extra_isize bytes.
5506  * Returns 0 on success or negative error number on failure.
5507  */
5508 static int ext4_expand_extra_isize(struct inode *inode,
5509 				   unsigned int new_extra_isize,
5510 				   struct ext4_iloc iloc,
5511 				   handle_t *handle)
5512 {
5513 	struct ext4_inode *raw_inode;
5514 	struct ext4_xattr_ibody_header *header;
5515 	struct ext4_xattr_entry *entry;
5516 
5517 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5518 		return 0;
5519 
5520 	raw_inode = ext4_raw_inode(&iloc);
5521 
5522 	header = IHDR(inode, raw_inode);
5523 	entry = IFIRST(header);
5524 
5525 	/* No extended attributes present */
5526 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5527 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5528 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5529 			new_extra_isize);
5530 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5531 		return 0;
5532 	}
5533 
5534 	/* try to expand with EAs present */
5535 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5536 					  raw_inode, handle);
5537 }
5538 
5539 /*
5540  * What we do here is to mark the in-core inode as clean with respect to inode
5541  * dirtiness (it may still be data-dirty).
5542  * This means that the in-core inode may be reaped by prune_icache
5543  * without having to perform any I/O.  This is a very good thing,
5544  * because *any* task may call prune_icache - even ones which
5545  * have a transaction open against a different journal.
5546  *
5547  * Is this cheating?  Not really.  Sure, we haven't written the
5548  * inode out, but prune_icache isn't a user-visible syncing function.
5549  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5550  * we start and wait on commits.
5551  *
5552  * Is this efficient/effective?  Well, we're being nice to the system
5553  * by cleaning up our inodes proactively so they can be reaped
5554  * without I/O.  But we are potentially leaving up to five seconds'
5555  * worth of inodes floating about which prune_icache wants us to
5556  * write out.  One way to fix that would be to get prune_icache()
5557  * to do a write_super() to free up some memory.  It has the desired
5558  * effect.
5559  */
5560 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5561 {
5562 	struct ext4_iloc iloc;
5563 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5564 	static unsigned int mnt_count;
5565 	int err, ret;
5566 
5567 	might_sleep();
5568 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5569 	if (ext4_handle_valid(handle) &&
5570 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5571 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5572 		/*
5573 		 * We need extra buffer credits since we may write into EA block
5574 		 * with this same handle. If journal_extend fails, then it will
5575 		 * only result in a minor loss of functionality for that inode.
5576 		 * If this is felt to be critical, then e2fsck should be run to
5577 		 * force a large enough s_min_extra_isize.
5578 		 */
5579 		if ((jbd2_journal_extend(handle,
5580 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5581 			ret = ext4_expand_extra_isize(inode,
5582 						      sbi->s_want_extra_isize,
5583 						      iloc, handle);
5584 			if (ret) {
5585 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5586 				if (mnt_count !=
5587 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5588 					ext4_warning(inode->i_sb, __func__,
5589 					"Unable to expand inode %lu. Delete"
5590 					" some EAs or run e2fsck.",
5591 					inode->i_ino);
5592 					mnt_count =
5593 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5594 				}
5595 			}
5596 		}
5597 	}
5598 	if (!err)
5599 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5600 	return err;
5601 }
5602 
5603 /*
5604  * ext4_dirty_inode() is called from __mark_inode_dirty()
5605  *
5606  * We're really interested in the case where a file is being extended.
5607  * i_size has been changed by generic_commit_write() and we thus need
5608  * to include the updated inode in the current transaction.
5609  *
5610  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5611  * are allocated to the file.
5612  *
5613  * If the inode is marked synchronous, we don't honour that here - doing
5614  * so would cause a commit on atime updates, which we don't bother doing.
5615  * We handle synchronous inodes at the highest possible level.
5616  */
5617 void ext4_dirty_inode(struct inode *inode)
5618 {
5619 	handle_t *handle;
5620 
5621 	handle = ext4_journal_start(inode, 2);
5622 	if (IS_ERR(handle))
5623 		goto out;
5624 
5625 	ext4_mark_inode_dirty(handle, inode);
5626 
5627 	ext4_journal_stop(handle);
5628 out:
5629 	return;
5630 }
5631 
5632 #if 0
5633 /*
5634  * Bind an inode's backing buffer_head into this transaction, to prevent
5635  * it from being flushed to disk early.  Unlike
5636  * ext4_reserve_inode_write, this leaves behind no bh reference and
5637  * returns no iloc structure, so the caller needs to repeat the iloc
5638  * lookup to mark the inode dirty later.
5639  */
5640 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5641 {
5642 	struct ext4_iloc iloc;
5643 
5644 	int err = 0;
5645 	if (handle) {
5646 		err = ext4_get_inode_loc(inode, &iloc);
5647 		if (!err) {
5648 			BUFFER_TRACE(iloc.bh, "get_write_access");
5649 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5650 			if (!err)
5651 				err = ext4_handle_dirty_metadata(handle,
5652 								 inode,
5653 								 iloc.bh);
5654 			brelse(iloc.bh);
5655 		}
5656 	}
5657 	ext4_std_error(inode->i_sb, err);
5658 	return err;
5659 }
5660 #endif
5661 
5662 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5663 {
5664 	journal_t *journal;
5665 	handle_t *handle;
5666 	int err;
5667 
5668 	/*
5669 	 * We have to be very careful here: changing a data block's
5670 	 * journaling status dynamically is dangerous.  If we write a
5671 	 * data block to the journal, change the status and then delete
5672 	 * that block, we risk forgetting to revoke the old log record
5673 	 * from the journal and so a subsequent replay can corrupt data.
5674 	 * So, first we make sure that the journal is empty and that
5675 	 * nobody is changing anything.
5676 	 */
5677 
5678 	journal = EXT4_JOURNAL(inode);
5679 	if (!journal)
5680 		return 0;
5681 	if (is_journal_aborted(journal))
5682 		return -EROFS;
5683 
5684 	jbd2_journal_lock_updates(journal);
5685 	jbd2_journal_flush(journal);
5686 
5687 	/*
5688 	 * OK, there are no updates running now, and all cached data is
5689 	 * synced to disk.  We are now in a completely consistent state
5690 	 * which doesn't have anything in the journal, and we know that
5691 	 * no filesystem updates are running, so it is safe to modify
5692 	 * the inode's in-core data-journaling state flag now.
5693 	 */
5694 
5695 	if (val)
5696 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5697 	else
5698 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5699 	ext4_set_aops(inode);
5700 
5701 	jbd2_journal_unlock_updates(journal);
5702 
5703 	/* Finally we can mark the inode as dirty. */
5704 
5705 	handle = ext4_journal_start(inode, 1);
5706 	if (IS_ERR(handle))
5707 		return PTR_ERR(handle);
5708 
5709 	err = ext4_mark_inode_dirty(handle, inode);
5710 	ext4_handle_sync(handle);
5711 	ext4_journal_stop(handle);
5712 	ext4_std_error(inode->i_sb, err);
5713 
5714 	return err;
5715 }
5716 
5717 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5718 {
5719 	return !buffer_mapped(bh);
5720 }
5721 
5722 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5723 {
5724 	struct page *page = vmf->page;
5725 	loff_t size;
5726 	unsigned long len;
5727 	int ret = -EINVAL;
5728 	void *fsdata;
5729 	struct file *file = vma->vm_file;
5730 	struct inode *inode = file->f_path.dentry->d_inode;
5731 	struct address_space *mapping = inode->i_mapping;
5732 
5733 	/*
5734 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5735 	 * get i_mutex because we are already holding mmap_sem.
5736 	 */
5737 	down_read(&inode->i_alloc_sem);
5738 	size = i_size_read(inode);
5739 	if (page->mapping != mapping || size <= page_offset(page)
5740 	    || !PageUptodate(page)) {
5741 		/* page got truncated from under us? */
5742 		goto out_unlock;
5743 	}
5744 	ret = 0;
5745 	if (PageMappedToDisk(page))
5746 		goto out_unlock;
5747 
5748 	if (page->index == size >> PAGE_CACHE_SHIFT)
5749 		len = size & ~PAGE_CACHE_MASK;
5750 	else
5751 		len = PAGE_CACHE_SIZE;
5752 
5753 	lock_page(page);
5754 	/*
5755 	 * return if we have all the buffers mapped. This avoid
5756 	 * the need to call write_begin/write_end which does a
5757 	 * journal_start/journal_stop which can block and take
5758 	 * long time
5759 	 */
5760 	if (page_has_buffers(page)) {
5761 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5762 					ext4_bh_unmapped)) {
5763 			unlock_page(page);
5764 			goto out_unlock;
5765 		}
5766 	}
5767 	unlock_page(page);
5768 	/*
5769 	 * OK, we need to fill the hole... Do write_begin write_end
5770 	 * to do block allocation/reservation.We are not holding
5771 	 * inode.i__mutex here. That allow * parallel write_begin,
5772 	 * write_end call. lock_page prevent this from happening
5773 	 * on the same page though
5774 	 */
5775 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5776 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5777 	if (ret < 0)
5778 		goto out_unlock;
5779 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5780 			len, len, page, fsdata);
5781 	if (ret < 0)
5782 		goto out_unlock;
5783 	ret = 0;
5784 out_unlock:
5785 	if (ret)
5786 		ret = VM_FAULT_SIGBUS;
5787 	up_read(&inode->i_alloc_sem);
5788 	return ret;
5789 }
5790