1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "ext4_extents.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 return jbd2_journal_begin_ordered_truncate( 55 EXT4_SB(inode->i_sb)->s_journal, 56 &EXT4_I(inode)->jinode, 57 new_size); 58 } 59 60 static void ext4_invalidatepage(struct page *page, unsigned long offset); 61 62 /* 63 * Test whether an inode is a fast symlink. 64 */ 65 static int ext4_inode_is_fast_symlink(struct inode *inode) 66 { 67 int ea_blocks = EXT4_I(inode)->i_file_acl ? 68 (inode->i_sb->s_blocksize >> 9) : 0; 69 70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 71 } 72 73 /* 74 * The ext4 forget function must perform a revoke if we are freeing data 75 * which has been journaled. Metadata (eg. indirect blocks) must be 76 * revoked in all cases. 77 * 78 * "bh" may be NULL: a metadata block may have been freed from memory 79 * but there may still be a record of it in the journal, and that record 80 * still needs to be revoked. 81 * 82 * If the handle isn't valid we're not journaling, but we still need to 83 * call into ext4_journal_revoke() to put the buffer head. 84 */ 85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 86 struct buffer_head *bh, ext4_fsblk_t blocknr) 87 { 88 int err; 89 90 might_sleep(); 91 92 BUFFER_TRACE(bh, "enter"); 93 94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 95 "data mode %x\n", 96 bh, is_metadata, inode->i_mode, 97 test_opt(inode->i_sb, DATA_FLAGS)); 98 99 /* Never use the revoke function if we are doing full data 100 * journaling: there is no need to, and a V1 superblock won't 101 * support it. Otherwise, only skip the revoke on un-journaled 102 * data blocks. */ 103 104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 105 (!is_metadata && !ext4_should_journal_data(inode))) { 106 if (bh) { 107 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 108 return ext4_journal_forget(handle, bh); 109 } 110 return 0; 111 } 112 113 /* 114 * data!=journal && (is_metadata || should_journal_data(inode)) 115 */ 116 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 117 err = ext4_journal_revoke(handle, blocknr, bh); 118 if (err) 119 ext4_abort(inode->i_sb, __func__, 120 "error %d when attempting revoke", err); 121 BUFFER_TRACE(bh, "exit"); 122 return err; 123 } 124 125 /* 126 * Work out how many blocks we need to proceed with the next chunk of a 127 * truncate transaction. 128 */ 129 static unsigned long blocks_for_truncate(struct inode *inode) 130 { 131 ext4_lblk_t needed; 132 133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 134 135 /* Give ourselves just enough room to cope with inodes in which 136 * i_blocks is corrupt: we've seen disk corruptions in the past 137 * which resulted in random data in an inode which looked enough 138 * like a regular file for ext4 to try to delete it. Things 139 * will go a bit crazy if that happens, but at least we should 140 * try not to panic the whole kernel. */ 141 if (needed < 2) 142 needed = 2; 143 144 /* But we need to bound the transaction so we don't overflow the 145 * journal. */ 146 if (needed > EXT4_MAX_TRANS_DATA) 147 needed = EXT4_MAX_TRANS_DATA; 148 149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 150 } 151 152 /* 153 * Truncate transactions can be complex and absolutely huge. So we need to 154 * be able to restart the transaction at a conventient checkpoint to make 155 * sure we don't overflow the journal. 156 * 157 * start_transaction gets us a new handle for a truncate transaction, 158 * and extend_transaction tries to extend the existing one a bit. If 159 * extend fails, we need to propagate the failure up and restart the 160 * transaction in the top-level truncate loop. --sct 161 */ 162 static handle_t *start_transaction(struct inode *inode) 163 { 164 handle_t *result; 165 166 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 167 if (!IS_ERR(result)) 168 return result; 169 170 ext4_std_error(inode->i_sb, PTR_ERR(result)); 171 return result; 172 } 173 174 /* 175 * Try to extend this transaction for the purposes of truncation. 176 * 177 * Returns 0 if we managed to create more room. If we can't create more 178 * room, and the transaction must be restarted we return 1. 179 */ 180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 181 { 182 if (!ext4_handle_valid(handle)) 183 return 0; 184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 185 return 0; 186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 187 return 0; 188 return 1; 189 } 190 191 /* 192 * Restart the transaction associated with *handle. This does a commit, 193 * so before we call here everything must be consistently dirtied against 194 * this transaction. 195 */ 196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 197 int nblocks) 198 { 199 int ret; 200 201 /* 202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this 203 * moment, get_block can be called only for blocks inside i_size since 204 * page cache has been already dropped and writes are blocked by 205 * i_mutex. So we can safely drop the i_data_sem here. 206 */ 207 BUG_ON(EXT4_JOURNAL(inode) == NULL); 208 jbd_debug(2, "restarting handle %p\n", handle); 209 up_write(&EXT4_I(inode)->i_data_sem); 210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 211 down_write(&EXT4_I(inode)->i_data_sem); 212 213 return ret; 214 } 215 216 /* 217 * Called at the last iput() if i_nlink is zero. 218 */ 219 void ext4_delete_inode(struct inode *inode) 220 { 221 handle_t *handle; 222 int err; 223 224 if (ext4_should_order_data(inode)) 225 ext4_begin_ordered_truncate(inode, 0); 226 truncate_inode_pages(&inode->i_data, 0); 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 231 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 232 if (IS_ERR(handle)) { 233 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 234 /* 235 * If we're going to skip the normal cleanup, we still need to 236 * make sure that the in-core orphan linked list is properly 237 * cleaned up. 238 */ 239 ext4_orphan_del(NULL, inode); 240 goto no_delete; 241 } 242 243 if (IS_SYNC(inode)) 244 ext4_handle_sync(handle); 245 inode->i_size = 0; 246 err = ext4_mark_inode_dirty(handle, inode); 247 if (err) { 248 ext4_warning(inode->i_sb, __func__, 249 "couldn't mark inode dirty (err %d)", err); 250 goto stop_handle; 251 } 252 if (inode->i_blocks) 253 ext4_truncate(inode); 254 255 /* 256 * ext4_ext_truncate() doesn't reserve any slop when it 257 * restarts journal transactions; therefore there may not be 258 * enough credits left in the handle to remove the inode from 259 * the orphan list and set the dtime field. 260 */ 261 if (!ext4_handle_has_enough_credits(handle, 3)) { 262 err = ext4_journal_extend(handle, 3); 263 if (err > 0) 264 err = ext4_journal_restart(handle, 3); 265 if (err != 0) { 266 ext4_warning(inode->i_sb, __func__, 267 "couldn't extend journal (err %d)", err); 268 stop_handle: 269 ext4_journal_stop(handle); 270 goto no_delete; 271 } 272 } 273 274 /* 275 * Kill off the orphan record which ext4_truncate created. 276 * AKPM: I think this can be inside the above `if'. 277 * Note that ext4_orphan_del() has to be able to cope with the 278 * deletion of a non-existent orphan - this is because we don't 279 * know if ext4_truncate() actually created an orphan record. 280 * (Well, we could do this if we need to, but heck - it works) 281 */ 282 ext4_orphan_del(handle, inode); 283 EXT4_I(inode)->i_dtime = get_seconds(); 284 285 /* 286 * One subtle ordering requirement: if anything has gone wrong 287 * (transaction abort, IO errors, whatever), then we can still 288 * do these next steps (the fs will already have been marked as 289 * having errors), but we can't free the inode if the mark_dirty 290 * fails. 291 */ 292 if (ext4_mark_inode_dirty(handle, inode)) 293 /* If that failed, just do the required in-core inode clear. */ 294 clear_inode(inode); 295 else 296 ext4_free_inode(handle, inode); 297 ext4_journal_stop(handle); 298 return; 299 no_delete: 300 clear_inode(inode); /* We must guarantee clearing of inode... */ 301 } 302 303 typedef struct { 304 __le32 *p; 305 __le32 key; 306 struct buffer_head *bh; 307 } Indirect; 308 309 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 310 { 311 p->key = *(p->p = v); 312 p->bh = bh; 313 } 314 315 /** 316 * ext4_block_to_path - parse the block number into array of offsets 317 * @inode: inode in question (we are only interested in its superblock) 318 * @i_block: block number to be parsed 319 * @offsets: array to store the offsets in 320 * @boundary: set this non-zero if the referred-to block is likely to be 321 * followed (on disk) by an indirect block. 322 * 323 * To store the locations of file's data ext4 uses a data structure common 324 * for UNIX filesystems - tree of pointers anchored in the inode, with 325 * data blocks at leaves and indirect blocks in intermediate nodes. 326 * This function translates the block number into path in that tree - 327 * return value is the path length and @offsets[n] is the offset of 328 * pointer to (n+1)th node in the nth one. If @block is out of range 329 * (negative or too large) warning is printed and zero returned. 330 * 331 * Note: function doesn't find node addresses, so no IO is needed. All 332 * we need to know is the capacity of indirect blocks (taken from the 333 * inode->i_sb). 334 */ 335 336 /* 337 * Portability note: the last comparison (check that we fit into triple 338 * indirect block) is spelled differently, because otherwise on an 339 * architecture with 32-bit longs and 8Kb pages we might get into trouble 340 * if our filesystem had 8Kb blocks. We might use long long, but that would 341 * kill us on x86. Oh, well, at least the sign propagation does not matter - 342 * i_block would have to be negative in the very beginning, so we would not 343 * get there at all. 344 */ 345 346 static int ext4_block_to_path(struct inode *inode, 347 ext4_lblk_t i_block, 348 ext4_lblk_t offsets[4], int *boundary) 349 { 350 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 351 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 352 const long direct_blocks = EXT4_NDIR_BLOCKS, 353 indirect_blocks = ptrs, 354 double_blocks = (1 << (ptrs_bits * 2)); 355 int n = 0; 356 int final = 0; 357 358 if (i_block < direct_blocks) { 359 offsets[n++] = i_block; 360 final = direct_blocks; 361 } else if ((i_block -= direct_blocks) < indirect_blocks) { 362 offsets[n++] = EXT4_IND_BLOCK; 363 offsets[n++] = i_block; 364 final = ptrs; 365 } else if ((i_block -= indirect_blocks) < double_blocks) { 366 offsets[n++] = EXT4_DIND_BLOCK; 367 offsets[n++] = i_block >> ptrs_bits; 368 offsets[n++] = i_block & (ptrs - 1); 369 final = ptrs; 370 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 371 offsets[n++] = EXT4_TIND_BLOCK; 372 offsets[n++] = i_block >> (ptrs_bits * 2); 373 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 374 offsets[n++] = i_block & (ptrs - 1); 375 final = ptrs; 376 } else { 377 ext4_warning(inode->i_sb, "ext4_block_to_path", 378 "block %lu > max in inode %lu", 379 i_block + direct_blocks + 380 indirect_blocks + double_blocks, inode->i_ino); 381 } 382 if (boundary) 383 *boundary = final - 1 - (i_block & (ptrs - 1)); 384 return n; 385 } 386 387 static int __ext4_check_blockref(const char *function, struct inode *inode, 388 __le32 *p, unsigned int max) 389 { 390 __le32 *bref = p; 391 unsigned int blk; 392 393 while (bref < p+max) { 394 blk = le32_to_cpu(*bref++); 395 if (blk && 396 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 397 blk, 1))) { 398 ext4_error(inode->i_sb, function, 399 "invalid block reference %u " 400 "in inode #%lu", blk, inode->i_ino); 401 return -EIO; 402 } 403 } 404 return 0; 405 } 406 407 408 #define ext4_check_indirect_blockref(inode, bh) \ 409 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 410 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 411 412 #define ext4_check_inode_blockref(inode) \ 413 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 414 EXT4_NDIR_BLOCKS) 415 416 /** 417 * ext4_get_branch - read the chain of indirect blocks leading to data 418 * @inode: inode in question 419 * @depth: depth of the chain (1 - direct pointer, etc.) 420 * @offsets: offsets of pointers in inode/indirect blocks 421 * @chain: place to store the result 422 * @err: here we store the error value 423 * 424 * Function fills the array of triples <key, p, bh> and returns %NULL 425 * if everything went OK or the pointer to the last filled triple 426 * (incomplete one) otherwise. Upon the return chain[i].key contains 427 * the number of (i+1)-th block in the chain (as it is stored in memory, 428 * i.e. little-endian 32-bit), chain[i].p contains the address of that 429 * number (it points into struct inode for i==0 and into the bh->b_data 430 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 431 * block for i>0 and NULL for i==0. In other words, it holds the block 432 * numbers of the chain, addresses they were taken from (and where we can 433 * verify that chain did not change) and buffer_heads hosting these 434 * numbers. 435 * 436 * Function stops when it stumbles upon zero pointer (absent block) 437 * (pointer to last triple returned, *@err == 0) 438 * or when it gets an IO error reading an indirect block 439 * (ditto, *@err == -EIO) 440 * or when it reads all @depth-1 indirect blocks successfully and finds 441 * the whole chain, all way to the data (returns %NULL, *err == 0). 442 * 443 * Need to be called with 444 * down_read(&EXT4_I(inode)->i_data_sem) 445 */ 446 static Indirect *ext4_get_branch(struct inode *inode, int depth, 447 ext4_lblk_t *offsets, 448 Indirect chain[4], int *err) 449 { 450 struct super_block *sb = inode->i_sb; 451 Indirect *p = chain; 452 struct buffer_head *bh; 453 454 *err = 0; 455 /* i_data is not going away, no lock needed */ 456 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 457 if (!p->key) 458 goto no_block; 459 while (--depth) { 460 bh = sb_getblk(sb, le32_to_cpu(p->key)); 461 if (unlikely(!bh)) 462 goto failure; 463 464 if (!bh_uptodate_or_lock(bh)) { 465 if (bh_submit_read(bh) < 0) { 466 put_bh(bh); 467 goto failure; 468 } 469 /* validate block references */ 470 if (ext4_check_indirect_blockref(inode, bh)) { 471 put_bh(bh); 472 goto failure; 473 } 474 } 475 476 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 477 /* Reader: end */ 478 if (!p->key) 479 goto no_block; 480 } 481 return NULL; 482 483 failure: 484 *err = -EIO; 485 no_block: 486 return p; 487 } 488 489 /** 490 * ext4_find_near - find a place for allocation with sufficient locality 491 * @inode: owner 492 * @ind: descriptor of indirect block. 493 * 494 * This function returns the preferred place for block allocation. 495 * It is used when heuristic for sequential allocation fails. 496 * Rules are: 497 * + if there is a block to the left of our position - allocate near it. 498 * + if pointer will live in indirect block - allocate near that block. 499 * + if pointer will live in inode - allocate in the same 500 * cylinder group. 501 * 502 * In the latter case we colour the starting block by the callers PID to 503 * prevent it from clashing with concurrent allocations for a different inode 504 * in the same block group. The PID is used here so that functionally related 505 * files will be close-by on-disk. 506 * 507 * Caller must make sure that @ind is valid and will stay that way. 508 */ 509 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 510 { 511 struct ext4_inode_info *ei = EXT4_I(inode); 512 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 513 __le32 *p; 514 ext4_fsblk_t bg_start; 515 ext4_fsblk_t last_block; 516 ext4_grpblk_t colour; 517 ext4_group_t block_group; 518 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 519 520 /* Try to find previous block */ 521 for (p = ind->p - 1; p >= start; p--) { 522 if (*p) 523 return le32_to_cpu(*p); 524 } 525 526 /* No such thing, so let's try location of indirect block */ 527 if (ind->bh) 528 return ind->bh->b_blocknr; 529 530 /* 531 * It is going to be referred to from the inode itself? OK, just put it 532 * into the same cylinder group then. 533 */ 534 block_group = ei->i_block_group; 535 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 536 block_group &= ~(flex_size-1); 537 if (S_ISREG(inode->i_mode)) 538 block_group++; 539 } 540 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 541 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 542 543 /* 544 * If we are doing delayed allocation, we don't need take 545 * colour into account. 546 */ 547 if (test_opt(inode->i_sb, DELALLOC)) 548 return bg_start; 549 550 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 551 colour = (current->pid % 16) * 552 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 553 else 554 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 555 return bg_start + colour; 556 } 557 558 /** 559 * ext4_find_goal - find a preferred place for allocation. 560 * @inode: owner 561 * @block: block we want 562 * @partial: pointer to the last triple within a chain 563 * 564 * Normally this function find the preferred place for block allocation, 565 * returns it. 566 * Because this is only used for non-extent files, we limit the block nr 567 * to 32 bits. 568 */ 569 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 570 Indirect *partial) 571 { 572 ext4_fsblk_t goal; 573 574 /* 575 * XXX need to get goal block from mballoc's data structures 576 */ 577 578 goal = ext4_find_near(inode, partial); 579 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 580 return goal; 581 } 582 583 /** 584 * ext4_blks_to_allocate: Look up the block map and count the number 585 * of direct blocks need to be allocated for the given branch. 586 * 587 * @branch: chain of indirect blocks 588 * @k: number of blocks need for indirect blocks 589 * @blks: number of data blocks to be mapped. 590 * @blocks_to_boundary: the offset in the indirect block 591 * 592 * return the total number of blocks to be allocate, including the 593 * direct and indirect blocks. 594 */ 595 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 596 int blocks_to_boundary) 597 { 598 unsigned int count = 0; 599 600 /* 601 * Simple case, [t,d]Indirect block(s) has not allocated yet 602 * then it's clear blocks on that path have not allocated 603 */ 604 if (k > 0) { 605 /* right now we don't handle cross boundary allocation */ 606 if (blks < blocks_to_boundary + 1) 607 count += blks; 608 else 609 count += blocks_to_boundary + 1; 610 return count; 611 } 612 613 count++; 614 while (count < blks && count <= blocks_to_boundary && 615 le32_to_cpu(*(branch[0].p + count)) == 0) { 616 count++; 617 } 618 return count; 619 } 620 621 /** 622 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 623 * @indirect_blks: the number of blocks need to allocate for indirect 624 * blocks 625 * 626 * @new_blocks: on return it will store the new block numbers for 627 * the indirect blocks(if needed) and the first direct block, 628 * @blks: on return it will store the total number of allocated 629 * direct blocks 630 */ 631 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 632 ext4_lblk_t iblock, ext4_fsblk_t goal, 633 int indirect_blks, int blks, 634 ext4_fsblk_t new_blocks[4], int *err) 635 { 636 struct ext4_allocation_request ar; 637 int target, i; 638 unsigned long count = 0, blk_allocated = 0; 639 int index = 0; 640 ext4_fsblk_t current_block = 0; 641 int ret = 0; 642 643 /* 644 * Here we try to allocate the requested multiple blocks at once, 645 * on a best-effort basis. 646 * To build a branch, we should allocate blocks for 647 * the indirect blocks(if not allocated yet), and at least 648 * the first direct block of this branch. That's the 649 * minimum number of blocks need to allocate(required) 650 */ 651 /* first we try to allocate the indirect blocks */ 652 target = indirect_blks; 653 while (target > 0) { 654 count = target; 655 /* allocating blocks for indirect blocks and direct blocks */ 656 current_block = ext4_new_meta_blocks(handle, inode, 657 goal, &count, err); 658 if (*err) 659 goto failed_out; 660 661 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS); 662 663 target -= count; 664 /* allocate blocks for indirect blocks */ 665 while (index < indirect_blks && count) { 666 new_blocks[index++] = current_block++; 667 count--; 668 } 669 if (count > 0) { 670 /* 671 * save the new block number 672 * for the first direct block 673 */ 674 new_blocks[index] = current_block; 675 printk(KERN_INFO "%s returned more blocks than " 676 "requested\n", __func__); 677 WARN_ON(1); 678 break; 679 } 680 } 681 682 target = blks - count ; 683 blk_allocated = count; 684 if (!target) 685 goto allocated; 686 /* Now allocate data blocks */ 687 memset(&ar, 0, sizeof(ar)); 688 ar.inode = inode; 689 ar.goal = goal; 690 ar.len = target; 691 ar.logical = iblock; 692 if (S_ISREG(inode->i_mode)) 693 /* enable in-core preallocation only for regular files */ 694 ar.flags = EXT4_MB_HINT_DATA; 695 696 current_block = ext4_mb_new_blocks(handle, &ar, err); 697 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS); 698 699 if (*err && (target == blks)) { 700 /* 701 * if the allocation failed and we didn't allocate 702 * any blocks before 703 */ 704 goto failed_out; 705 } 706 if (!*err) { 707 if (target == blks) { 708 /* 709 * save the new block number 710 * for the first direct block 711 */ 712 new_blocks[index] = current_block; 713 } 714 blk_allocated += ar.len; 715 } 716 allocated: 717 /* total number of blocks allocated for direct blocks */ 718 ret = blk_allocated; 719 *err = 0; 720 return ret; 721 failed_out: 722 for (i = 0; i < index; i++) 723 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 724 return ret; 725 } 726 727 /** 728 * ext4_alloc_branch - allocate and set up a chain of blocks. 729 * @inode: owner 730 * @indirect_blks: number of allocated indirect blocks 731 * @blks: number of allocated direct blocks 732 * @offsets: offsets (in the blocks) to store the pointers to next. 733 * @branch: place to store the chain in. 734 * 735 * This function allocates blocks, zeroes out all but the last one, 736 * links them into chain and (if we are synchronous) writes them to disk. 737 * In other words, it prepares a branch that can be spliced onto the 738 * inode. It stores the information about that chain in the branch[], in 739 * the same format as ext4_get_branch() would do. We are calling it after 740 * we had read the existing part of chain and partial points to the last 741 * triple of that (one with zero ->key). Upon the exit we have the same 742 * picture as after the successful ext4_get_block(), except that in one 743 * place chain is disconnected - *branch->p is still zero (we did not 744 * set the last link), but branch->key contains the number that should 745 * be placed into *branch->p to fill that gap. 746 * 747 * If allocation fails we free all blocks we've allocated (and forget 748 * their buffer_heads) and return the error value the from failed 749 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 750 * as described above and return 0. 751 */ 752 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 753 ext4_lblk_t iblock, int indirect_blks, 754 int *blks, ext4_fsblk_t goal, 755 ext4_lblk_t *offsets, Indirect *branch) 756 { 757 int blocksize = inode->i_sb->s_blocksize; 758 int i, n = 0; 759 int err = 0; 760 struct buffer_head *bh; 761 int num; 762 ext4_fsblk_t new_blocks[4]; 763 ext4_fsblk_t current_block; 764 765 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 766 *blks, new_blocks, &err); 767 if (err) 768 return err; 769 770 branch[0].key = cpu_to_le32(new_blocks[0]); 771 /* 772 * metadata blocks and data blocks are allocated. 773 */ 774 for (n = 1; n <= indirect_blks; n++) { 775 /* 776 * Get buffer_head for parent block, zero it out 777 * and set the pointer to new one, then send 778 * parent to disk. 779 */ 780 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 781 branch[n].bh = bh; 782 lock_buffer(bh); 783 BUFFER_TRACE(bh, "call get_create_access"); 784 err = ext4_journal_get_create_access(handle, bh); 785 if (err) { 786 /* Don't brelse(bh) here; it's done in 787 * ext4_journal_forget() below */ 788 unlock_buffer(bh); 789 goto failed; 790 } 791 792 memset(bh->b_data, 0, blocksize); 793 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 794 branch[n].key = cpu_to_le32(new_blocks[n]); 795 *branch[n].p = branch[n].key; 796 if (n == indirect_blks) { 797 current_block = new_blocks[n]; 798 /* 799 * End of chain, update the last new metablock of 800 * the chain to point to the new allocated 801 * data blocks numbers 802 */ 803 for (i = 1; i < num; i++) 804 *(branch[n].p + i) = cpu_to_le32(++current_block); 805 } 806 BUFFER_TRACE(bh, "marking uptodate"); 807 set_buffer_uptodate(bh); 808 unlock_buffer(bh); 809 810 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 811 err = ext4_handle_dirty_metadata(handle, inode, bh); 812 if (err) 813 goto failed; 814 } 815 *blks = num; 816 return err; 817 failed: 818 /* Allocation failed, free what we already allocated */ 819 for (i = 1; i <= n ; i++) { 820 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 821 ext4_journal_forget(handle, branch[i].bh); 822 } 823 for (i = 0; i < indirect_blks; i++) 824 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 825 826 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 827 828 return err; 829 } 830 831 /** 832 * ext4_splice_branch - splice the allocated branch onto inode. 833 * @inode: owner 834 * @block: (logical) number of block we are adding 835 * @chain: chain of indirect blocks (with a missing link - see 836 * ext4_alloc_branch) 837 * @where: location of missing link 838 * @num: number of indirect blocks we are adding 839 * @blks: number of direct blocks we are adding 840 * 841 * This function fills the missing link and does all housekeeping needed in 842 * inode (->i_blocks, etc.). In case of success we end up with the full 843 * chain to new block and return 0. 844 */ 845 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 846 ext4_lblk_t block, Indirect *where, int num, 847 int blks) 848 { 849 int i; 850 int err = 0; 851 ext4_fsblk_t current_block; 852 853 /* 854 * If we're splicing into a [td]indirect block (as opposed to the 855 * inode) then we need to get write access to the [td]indirect block 856 * before the splice. 857 */ 858 if (where->bh) { 859 BUFFER_TRACE(where->bh, "get_write_access"); 860 err = ext4_journal_get_write_access(handle, where->bh); 861 if (err) 862 goto err_out; 863 } 864 /* That's it */ 865 866 *where->p = where->key; 867 868 /* 869 * Update the host buffer_head or inode to point to more just allocated 870 * direct blocks blocks 871 */ 872 if (num == 0 && blks > 1) { 873 current_block = le32_to_cpu(where->key) + 1; 874 for (i = 1; i < blks; i++) 875 *(where->p + i) = cpu_to_le32(current_block++); 876 } 877 878 /* We are done with atomic stuff, now do the rest of housekeeping */ 879 /* had we spliced it onto indirect block? */ 880 if (where->bh) { 881 /* 882 * If we spliced it onto an indirect block, we haven't 883 * altered the inode. Note however that if it is being spliced 884 * onto an indirect block at the very end of the file (the 885 * file is growing) then we *will* alter the inode to reflect 886 * the new i_size. But that is not done here - it is done in 887 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 888 */ 889 jbd_debug(5, "splicing indirect only\n"); 890 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 891 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 892 if (err) 893 goto err_out; 894 } else { 895 /* 896 * OK, we spliced it into the inode itself on a direct block. 897 */ 898 ext4_mark_inode_dirty(handle, inode); 899 jbd_debug(5, "splicing direct\n"); 900 } 901 return err; 902 903 err_out: 904 for (i = 1; i <= num; i++) { 905 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 906 ext4_journal_forget(handle, where[i].bh); 907 ext4_free_blocks(handle, inode, 908 le32_to_cpu(where[i-1].key), 1, 0); 909 } 910 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 911 912 return err; 913 } 914 915 /* 916 * The ext4_ind_get_blocks() function handles non-extents inodes 917 * (i.e., using the traditional indirect/double-indirect i_blocks 918 * scheme) for ext4_get_blocks(). 919 * 920 * Allocation strategy is simple: if we have to allocate something, we will 921 * have to go the whole way to leaf. So let's do it before attaching anything 922 * to tree, set linkage between the newborn blocks, write them if sync is 923 * required, recheck the path, free and repeat if check fails, otherwise 924 * set the last missing link (that will protect us from any truncate-generated 925 * removals - all blocks on the path are immune now) and possibly force the 926 * write on the parent block. 927 * That has a nice additional property: no special recovery from the failed 928 * allocations is needed - we simply release blocks and do not touch anything 929 * reachable from inode. 930 * 931 * `handle' can be NULL if create == 0. 932 * 933 * return > 0, # of blocks mapped or allocated. 934 * return = 0, if plain lookup failed. 935 * return < 0, error case. 936 * 937 * The ext4_ind_get_blocks() function should be called with 938 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 939 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 940 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 941 * blocks. 942 */ 943 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode, 944 ext4_lblk_t iblock, unsigned int maxblocks, 945 struct buffer_head *bh_result, 946 int flags) 947 { 948 int err = -EIO; 949 ext4_lblk_t offsets[4]; 950 Indirect chain[4]; 951 Indirect *partial; 952 ext4_fsblk_t goal; 953 int indirect_blks; 954 int blocks_to_boundary = 0; 955 int depth; 956 int count = 0; 957 ext4_fsblk_t first_block = 0; 958 959 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 960 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 961 depth = ext4_block_to_path(inode, iblock, offsets, 962 &blocks_to_boundary); 963 964 if (depth == 0) 965 goto out; 966 967 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 968 969 /* Simplest case - block found, no allocation needed */ 970 if (!partial) { 971 first_block = le32_to_cpu(chain[depth - 1].key); 972 clear_buffer_new(bh_result); 973 count++; 974 /*map more blocks*/ 975 while (count < maxblocks && count <= blocks_to_boundary) { 976 ext4_fsblk_t blk; 977 978 blk = le32_to_cpu(*(chain[depth-1].p + count)); 979 980 if (blk == first_block + count) 981 count++; 982 else 983 break; 984 } 985 goto got_it; 986 } 987 988 /* Next simple case - plain lookup or failed read of indirect block */ 989 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 990 goto cleanup; 991 992 /* 993 * Okay, we need to do block allocation. 994 */ 995 goal = ext4_find_goal(inode, iblock, partial); 996 997 /* the number of blocks need to allocate for [d,t]indirect blocks */ 998 indirect_blks = (chain + depth) - partial - 1; 999 1000 /* 1001 * Next look up the indirect map to count the totoal number of 1002 * direct blocks to allocate for this branch. 1003 */ 1004 count = ext4_blks_to_allocate(partial, indirect_blks, 1005 maxblocks, blocks_to_boundary); 1006 /* 1007 * Block out ext4_truncate while we alter the tree 1008 */ 1009 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 1010 &count, goal, 1011 offsets + (partial - chain), partial); 1012 1013 /* 1014 * The ext4_splice_branch call will free and forget any buffers 1015 * on the new chain if there is a failure, but that risks using 1016 * up transaction credits, especially for bitmaps where the 1017 * credits cannot be returned. Can we handle this somehow? We 1018 * may need to return -EAGAIN upwards in the worst case. --sct 1019 */ 1020 if (!err) 1021 err = ext4_splice_branch(handle, inode, iblock, 1022 partial, indirect_blks, count); 1023 else 1024 goto cleanup; 1025 1026 set_buffer_new(bh_result); 1027 got_it: 1028 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 1029 if (count > blocks_to_boundary) 1030 set_buffer_boundary(bh_result); 1031 err = count; 1032 /* Clean up and exit */ 1033 partial = chain + depth - 1; /* the whole chain */ 1034 cleanup: 1035 while (partial > chain) { 1036 BUFFER_TRACE(partial->bh, "call brelse"); 1037 brelse(partial->bh); 1038 partial--; 1039 } 1040 BUFFER_TRACE(bh_result, "returned"); 1041 out: 1042 return err; 1043 } 1044 1045 qsize_t ext4_get_reserved_space(struct inode *inode) 1046 { 1047 unsigned long long total; 1048 1049 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1050 total = EXT4_I(inode)->i_reserved_data_blocks + 1051 EXT4_I(inode)->i_reserved_meta_blocks; 1052 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1053 1054 return total; 1055 } 1056 /* 1057 * Calculate the number of metadata blocks need to reserve 1058 * to allocate @blocks for non extent file based file 1059 */ 1060 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 1061 { 1062 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1063 int ind_blks, dind_blks, tind_blks; 1064 1065 /* number of new indirect blocks needed */ 1066 ind_blks = (blocks + icap - 1) / icap; 1067 1068 dind_blks = (ind_blks + icap - 1) / icap; 1069 1070 tind_blks = 1; 1071 1072 return ind_blks + dind_blks + tind_blks; 1073 } 1074 1075 /* 1076 * Calculate the number of metadata blocks need to reserve 1077 * to allocate given number of blocks 1078 */ 1079 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1080 { 1081 if (!blocks) 1082 return 0; 1083 1084 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1085 return ext4_ext_calc_metadata_amount(inode, blocks); 1086 1087 return ext4_indirect_calc_metadata_amount(inode, blocks); 1088 } 1089 1090 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1091 { 1092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1093 int total, mdb, mdb_free; 1094 1095 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1096 /* recalculate the number of metablocks still need to be reserved */ 1097 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1098 mdb = ext4_calc_metadata_amount(inode, total); 1099 1100 /* figure out how many metablocks to release */ 1101 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1102 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1103 1104 if (mdb_free) { 1105 /* Account for allocated meta_blocks */ 1106 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1107 1108 /* update fs dirty blocks counter */ 1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1110 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1111 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1112 } 1113 1114 /* update per-inode reservations */ 1115 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1116 EXT4_I(inode)->i_reserved_data_blocks -= used; 1117 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1118 1119 /* 1120 * free those over-booking quota for metadata blocks 1121 */ 1122 if (mdb_free) 1123 vfs_dq_release_reservation_block(inode, mdb_free); 1124 1125 /* 1126 * If we have done all the pending block allocations and if 1127 * there aren't any writers on the inode, we can discard the 1128 * inode's preallocations. 1129 */ 1130 if (!total && (atomic_read(&inode->i_writecount) == 0)) 1131 ext4_discard_preallocations(inode); 1132 } 1133 1134 static int check_block_validity(struct inode *inode, const char *msg, 1135 sector_t logical, sector_t phys, int len) 1136 { 1137 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1138 ext4_error(inode->i_sb, msg, 1139 "inode #%lu logical block %llu mapped to %llu " 1140 "(size %d)", inode->i_ino, 1141 (unsigned long long) logical, 1142 (unsigned long long) phys, len); 1143 return -EIO; 1144 } 1145 return 0; 1146 } 1147 1148 /* 1149 * Return the number of contiguous dirty pages in a given inode 1150 * starting at page frame idx. 1151 */ 1152 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1153 unsigned int max_pages) 1154 { 1155 struct address_space *mapping = inode->i_mapping; 1156 pgoff_t index; 1157 struct pagevec pvec; 1158 pgoff_t num = 0; 1159 int i, nr_pages, done = 0; 1160 1161 if (max_pages == 0) 1162 return 0; 1163 pagevec_init(&pvec, 0); 1164 while (!done) { 1165 index = idx; 1166 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1167 PAGECACHE_TAG_DIRTY, 1168 (pgoff_t)PAGEVEC_SIZE); 1169 if (nr_pages == 0) 1170 break; 1171 for (i = 0; i < nr_pages; i++) { 1172 struct page *page = pvec.pages[i]; 1173 struct buffer_head *bh, *head; 1174 1175 lock_page(page); 1176 if (unlikely(page->mapping != mapping) || 1177 !PageDirty(page) || 1178 PageWriteback(page) || 1179 page->index != idx) { 1180 done = 1; 1181 unlock_page(page); 1182 break; 1183 } 1184 if (page_has_buffers(page)) { 1185 bh = head = page_buffers(page); 1186 do { 1187 if (!buffer_delay(bh) && 1188 !buffer_unwritten(bh)) 1189 done = 1; 1190 bh = bh->b_this_page; 1191 } while (!done && (bh != head)); 1192 } 1193 unlock_page(page); 1194 if (done) 1195 break; 1196 idx++; 1197 num++; 1198 if (num >= max_pages) 1199 break; 1200 } 1201 pagevec_release(&pvec); 1202 } 1203 return num; 1204 } 1205 1206 /* 1207 * The ext4_get_blocks() function tries to look up the requested blocks, 1208 * and returns if the blocks are already mapped. 1209 * 1210 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1211 * and store the allocated blocks in the result buffer head and mark it 1212 * mapped. 1213 * 1214 * If file type is extents based, it will call ext4_ext_get_blocks(), 1215 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping 1216 * based files 1217 * 1218 * On success, it returns the number of blocks being mapped or allocate. 1219 * if create==0 and the blocks are pre-allocated and uninitialized block, 1220 * the result buffer head is unmapped. If the create ==1, it will make sure 1221 * the buffer head is mapped. 1222 * 1223 * It returns 0 if plain look up failed (blocks have not been allocated), in 1224 * that casem, buffer head is unmapped 1225 * 1226 * It returns the error in case of allocation failure. 1227 */ 1228 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, 1229 unsigned int max_blocks, struct buffer_head *bh, 1230 int flags) 1231 { 1232 int retval; 1233 1234 clear_buffer_mapped(bh); 1235 clear_buffer_unwritten(bh); 1236 1237 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u," 1238 "logical block %lu\n", inode->i_ino, flags, max_blocks, 1239 (unsigned long)block); 1240 /* 1241 * Try to see if we can get the block without requesting a new 1242 * file system block. 1243 */ 1244 down_read((&EXT4_I(inode)->i_data_sem)); 1245 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1246 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1247 bh, 0); 1248 } else { 1249 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks, 1250 bh, 0); 1251 } 1252 up_read((&EXT4_I(inode)->i_data_sem)); 1253 1254 if (retval > 0 && buffer_mapped(bh)) { 1255 int ret = check_block_validity(inode, "file system corruption", 1256 block, bh->b_blocknr, retval); 1257 if (ret != 0) 1258 return ret; 1259 } 1260 1261 /* If it is only a block(s) look up */ 1262 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1263 return retval; 1264 1265 /* 1266 * Returns if the blocks have already allocated 1267 * 1268 * Note that if blocks have been preallocated 1269 * ext4_ext_get_block() returns th create = 0 1270 * with buffer head unmapped. 1271 */ 1272 if (retval > 0 && buffer_mapped(bh)) 1273 return retval; 1274 1275 /* 1276 * When we call get_blocks without the create flag, the 1277 * BH_Unwritten flag could have gotten set if the blocks 1278 * requested were part of a uninitialized extent. We need to 1279 * clear this flag now that we are committed to convert all or 1280 * part of the uninitialized extent to be an initialized 1281 * extent. This is because we need to avoid the combination 1282 * of BH_Unwritten and BH_Mapped flags being simultaneously 1283 * set on the buffer_head. 1284 */ 1285 clear_buffer_unwritten(bh); 1286 1287 /* 1288 * New blocks allocate and/or writing to uninitialized extent 1289 * will possibly result in updating i_data, so we take 1290 * the write lock of i_data_sem, and call get_blocks() 1291 * with create == 1 flag. 1292 */ 1293 down_write((&EXT4_I(inode)->i_data_sem)); 1294 1295 /* 1296 * if the caller is from delayed allocation writeout path 1297 * we have already reserved fs blocks for allocation 1298 * let the underlying get_block() function know to 1299 * avoid double accounting 1300 */ 1301 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1302 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1303 /* 1304 * We need to check for EXT4 here because migrate 1305 * could have changed the inode type in between 1306 */ 1307 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1308 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1309 bh, flags); 1310 } else { 1311 retval = ext4_ind_get_blocks(handle, inode, block, 1312 max_blocks, bh, flags); 1313 1314 if (retval > 0 && buffer_new(bh)) { 1315 /* 1316 * We allocated new blocks which will result in 1317 * i_data's format changing. Force the migrate 1318 * to fail by clearing migrate flags 1319 */ 1320 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE; 1321 } 1322 } 1323 1324 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1325 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1326 1327 /* 1328 * Update reserved blocks/metadata blocks after successful 1329 * block allocation which had been deferred till now. 1330 */ 1331 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE)) 1332 ext4_da_update_reserve_space(inode, retval); 1333 1334 up_write((&EXT4_I(inode)->i_data_sem)); 1335 if (retval > 0 && buffer_mapped(bh)) { 1336 int ret = check_block_validity(inode, "file system " 1337 "corruption after allocation", 1338 block, bh->b_blocknr, retval); 1339 if (ret != 0) 1340 return ret; 1341 } 1342 return retval; 1343 } 1344 1345 /* Maximum number of blocks we map for direct IO at once. */ 1346 #define DIO_MAX_BLOCKS 4096 1347 1348 int ext4_get_block(struct inode *inode, sector_t iblock, 1349 struct buffer_head *bh_result, int create) 1350 { 1351 handle_t *handle = ext4_journal_current_handle(); 1352 int ret = 0, started = 0; 1353 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1354 int dio_credits; 1355 1356 if (create && !handle) { 1357 /* Direct IO write... */ 1358 if (max_blocks > DIO_MAX_BLOCKS) 1359 max_blocks = DIO_MAX_BLOCKS; 1360 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1361 handle = ext4_journal_start(inode, dio_credits); 1362 if (IS_ERR(handle)) { 1363 ret = PTR_ERR(handle); 1364 goto out; 1365 } 1366 started = 1; 1367 } 1368 1369 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 1370 create ? EXT4_GET_BLOCKS_CREATE : 0); 1371 if (ret > 0) { 1372 bh_result->b_size = (ret << inode->i_blkbits); 1373 ret = 0; 1374 } 1375 if (started) 1376 ext4_journal_stop(handle); 1377 out: 1378 return ret; 1379 } 1380 1381 /* 1382 * `handle' can be NULL if create is zero 1383 */ 1384 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1385 ext4_lblk_t block, int create, int *errp) 1386 { 1387 struct buffer_head dummy; 1388 int fatal = 0, err; 1389 int flags = 0; 1390 1391 J_ASSERT(handle != NULL || create == 0); 1392 1393 dummy.b_state = 0; 1394 dummy.b_blocknr = -1000; 1395 buffer_trace_init(&dummy.b_history); 1396 if (create) 1397 flags |= EXT4_GET_BLOCKS_CREATE; 1398 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags); 1399 /* 1400 * ext4_get_blocks() returns number of blocks mapped. 0 in 1401 * case of a HOLE. 1402 */ 1403 if (err > 0) { 1404 if (err > 1) 1405 WARN_ON(1); 1406 err = 0; 1407 } 1408 *errp = err; 1409 if (!err && buffer_mapped(&dummy)) { 1410 struct buffer_head *bh; 1411 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1412 if (!bh) { 1413 *errp = -EIO; 1414 goto err; 1415 } 1416 if (buffer_new(&dummy)) { 1417 J_ASSERT(create != 0); 1418 J_ASSERT(handle != NULL); 1419 1420 /* 1421 * Now that we do not always journal data, we should 1422 * keep in mind whether this should always journal the 1423 * new buffer as metadata. For now, regular file 1424 * writes use ext4_get_block instead, so it's not a 1425 * problem. 1426 */ 1427 lock_buffer(bh); 1428 BUFFER_TRACE(bh, "call get_create_access"); 1429 fatal = ext4_journal_get_create_access(handle, bh); 1430 if (!fatal && !buffer_uptodate(bh)) { 1431 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1432 set_buffer_uptodate(bh); 1433 } 1434 unlock_buffer(bh); 1435 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1436 err = ext4_handle_dirty_metadata(handle, inode, bh); 1437 if (!fatal) 1438 fatal = err; 1439 } else { 1440 BUFFER_TRACE(bh, "not a new buffer"); 1441 } 1442 if (fatal) { 1443 *errp = fatal; 1444 brelse(bh); 1445 bh = NULL; 1446 } 1447 return bh; 1448 } 1449 err: 1450 return NULL; 1451 } 1452 1453 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1454 ext4_lblk_t block, int create, int *err) 1455 { 1456 struct buffer_head *bh; 1457 1458 bh = ext4_getblk(handle, inode, block, create, err); 1459 if (!bh) 1460 return bh; 1461 if (buffer_uptodate(bh)) 1462 return bh; 1463 ll_rw_block(READ_META, 1, &bh); 1464 wait_on_buffer(bh); 1465 if (buffer_uptodate(bh)) 1466 return bh; 1467 put_bh(bh); 1468 *err = -EIO; 1469 return NULL; 1470 } 1471 1472 static int walk_page_buffers(handle_t *handle, 1473 struct buffer_head *head, 1474 unsigned from, 1475 unsigned to, 1476 int *partial, 1477 int (*fn)(handle_t *handle, 1478 struct buffer_head *bh)) 1479 { 1480 struct buffer_head *bh; 1481 unsigned block_start, block_end; 1482 unsigned blocksize = head->b_size; 1483 int err, ret = 0; 1484 struct buffer_head *next; 1485 1486 for (bh = head, block_start = 0; 1487 ret == 0 && (bh != head || !block_start); 1488 block_start = block_end, bh = next) { 1489 next = bh->b_this_page; 1490 block_end = block_start + blocksize; 1491 if (block_end <= from || block_start >= to) { 1492 if (partial && !buffer_uptodate(bh)) 1493 *partial = 1; 1494 continue; 1495 } 1496 err = (*fn)(handle, bh); 1497 if (!ret) 1498 ret = err; 1499 } 1500 return ret; 1501 } 1502 1503 /* 1504 * To preserve ordering, it is essential that the hole instantiation and 1505 * the data write be encapsulated in a single transaction. We cannot 1506 * close off a transaction and start a new one between the ext4_get_block() 1507 * and the commit_write(). So doing the jbd2_journal_start at the start of 1508 * prepare_write() is the right place. 1509 * 1510 * Also, this function can nest inside ext4_writepage() -> 1511 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1512 * has generated enough buffer credits to do the whole page. So we won't 1513 * block on the journal in that case, which is good, because the caller may 1514 * be PF_MEMALLOC. 1515 * 1516 * By accident, ext4 can be reentered when a transaction is open via 1517 * quota file writes. If we were to commit the transaction while thus 1518 * reentered, there can be a deadlock - we would be holding a quota 1519 * lock, and the commit would never complete if another thread had a 1520 * transaction open and was blocking on the quota lock - a ranking 1521 * violation. 1522 * 1523 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1524 * will _not_ run commit under these circumstances because handle->h_ref 1525 * is elevated. We'll still have enough credits for the tiny quotafile 1526 * write. 1527 */ 1528 static int do_journal_get_write_access(handle_t *handle, 1529 struct buffer_head *bh) 1530 { 1531 if (!buffer_mapped(bh) || buffer_freed(bh)) 1532 return 0; 1533 return ext4_journal_get_write_access(handle, bh); 1534 } 1535 1536 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1537 loff_t pos, unsigned len, unsigned flags, 1538 struct page **pagep, void **fsdata) 1539 { 1540 struct inode *inode = mapping->host; 1541 int ret, needed_blocks; 1542 handle_t *handle; 1543 int retries = 0; 1544 struct page *page; 1545 pgoff_t index; 1546 unsigned from, to; 1547 1548 trace_ext4_write_begin(inode, pos, len, flags); 1549 /* 1550 * Reserve one block more for addition to orphan list in case 1551 * we allocate blocks but write fails for some reason 1552 */ 1553 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1554 index = pos >> PAGE_CACHE_SHIFT; 1555 from = pos & (PAGE_CACHE_SIZE - 1); 1556 to = from + len; 1557 1558 retry: 1559 handle = ext4_journal_start(inode, needed_blocks); 1560 if (IS_ERR(handle)) { 1561 ret = PTR_ERR(handle); 1562 goto out; 1563 } 1564 1565 /* We cannot recurse into the filesystem as the transaction is already 1566 * started */ 1567 flags |= AOP_FLAG_NOFS; 1568 1569 page = grab_cache_page_write_begin(mapping, index, flags); 1570 if (!page) { 1571 ext4_journal_stop(handle); 1572 ret = -ENOMEM; 1573 goto out; 1574 } 1575 *pagep = page; 1576 1577 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1578 ext4_get_block); 1579 1580 if (!ret && ext4_should_journal_data(inode)) { 1581 ret = walk_page_buffers(handle, page_buffers(page), 1582 from, to, NULL, do_journal_get_write_access); 1583 } 1584 1585 if (ret) { 1586 unlock_page(page); 1587 page_cache_release(page); 1588 /* 1589 * block_write_begin may have instantiated a few blocks 1590 * outside i_size. Trim these off again. Don't need 1591 * i_size_read because we hold i_mutex. 1592 * 1593 * Add inode to orphan list in case we crash before 1594 * truncate finishes 1595 */ 1596 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1597 ext4_orphan_add(handle, inode); 1598 1599 ext4_journal_stop(handle); 1600 if (pos + len > inode->i_size) { 1601 ext4_truncate(inode); 1602 /* 1603 * If truncate failed early the inode might 1604 * still be on the orphan list; we need to 1605 * make sure the inode is removed from the 1606 * orphan list in that case. 1607 */ 1608 if (inode->i_nlink) 1609 ext4_orphan_del(NULL, inode); 1610 } 1611 } 1612 1613 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1614 goto retry; 1615 out: 1616 return ret; 1617 } 1618 1619 /* For write_end() in data=journal mode */ 1620 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1621 { 1622 if (!buffer_mapped(bh) || buffer_freed(bh)) 1623 return 0; 1624 set_buffer_uptodate(bh); 1625 return ext4_handle_dirty_metadata(handle, NULL, bh); 1626 } 1627 1628 static int ext4_generic_write_end(struct file *file, 1629 struct address_space *mapping, 1630 loff_t pos, unsigned len, unsigned copied, 1631 struct page *page, void *fsdata) 1632 { 1633 int i_size_changed = 0; 1634 struct inode *inode = mapping->host; 1635 handle_t *handle = ext4_journal_current_handle(); 1636 1637 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1638 1639 /* 1640 * No need to use i_size_read() here, the i_size 1641 * cannot change under us because we hold i_mutex. 1642 * 1643 * But it's important to update i_size while still holding page lock: 1644 * page writeout could otherwise come in and zero beyond i_size. 1645 */ 1646 if (pos + copied > inode->i_size) { 1647 i_size_write(inode, pos + copied); 1648 i_size_changed = 1; 1649 } 1650 1651 if (pos + copied > EXT4_I(inode)->i_disksize) { 1652 /* We need to mark inode dirty even if 1653 * new_i_size is less that inode->i_size 1654 * bu greater than i_disksize.(hint delalloc) 1655 */ 1656 ext4_update_i_disksize(inode, (pos + copied)); 1657 i_size_changed = 1; 1658 } 1659 unlock_page(page); 1660 page_cache_release(page); 1661 1662 /* 1663 * Don't mark the inode dirty under page lock. First, it unnecessarily 1664 * makes the holding time of page lock longer. Second, it forces lock 1665 * ordering of page lock and transaction start for journaling 1666 * filesystems. 1667 */ 1668 if (i_size_changed) 1669 ext4_mark_inode_dirty(handle, inode); 1670 1671 return copied; 1672 } 1673 1674 /* 1675 * We need to pick up the new inode size which generic_commit_write gave us 1676 * `file' can be NULL - eg, when called from page_symlink(). 1677 * 1678 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1679 * buffers are managed internally. 1680 */ 1681 static int ext4_ordered_write_end(struct file *file, 1682 struct address_space *mapping, 1683 loff_t pos, unsigned len, unsigned copied, 1684 struct page *page, void *fsdata) 1685 { 1686 handle_t *handle = ext4_journal_current_handle(); 1687 struct inode *inode = mapping->host; 1688 int ret = 0, ret2; 1689 1690 trace_ext4_ordered_write_end(inode, pos, len, copied); 1691 ret = ext4_jbd2_file_inode(handle, inode); 1692 1693 if (ret == 0) { 1694 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1695 page, fsdata); 1696 copied = ret2; 1697 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1698 /* if we have allocated more blocks and copied 1699 * less. We will have blocks allocated outside 1700 * inode->i_size. So truncate them 1701 */ 1702 ext4_orphan_add(handle, inode); 1703 if (ret2 < 0) 1704 ret = ret2; 1705 } 1706 ret2 = ext4_journal_stop(handle); 1707 if (!ret) 1708 ret = ret2; 1709 1710 if (pos + len > inode->i_size) { 1711 ext4_truncate(inode); 1712 /* 1713 * If truncate failed early the inode might still be 1714 * on the orphan list; we need to make sure the inode 1715 * is removed from the orphan list in that case. 1716 */ 1717 if (inode->i_nlink) 1718 ext4_orphan_del(NULL, inode); 1719 } 1720 1721 1722 return ret ? ret : copied; 1723 } 1724 1725 static int ext4_writeback_write_end(struct file *file, 1726 struct address_space *mapping, 1727 loff_t pos, unsigned len, unsigned copied, 1728 struct page *page, void *fsdata) 1729 { 1730 handle_t *handle = ext4_journal_current_handle(); 1731 struct inode *inode = mapping->host; 1732 int ret = 0, ret2; 1733 1734 trace_ext4_writeback_write_end(inode, pos, len, copied); 1735 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1736 page, fsdata); 1737 copied = ret2; 1738 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1739 /* if we have allocated more blocks and copied 1740 * less. We will have blocks allocated outside 1741 * inode->i_size. So truncate them 1742 */ 1743 ext4_orphan_add(handle, inode); 1744 1745 if (ret2 < 0) 1746 ret = ret2; 1747 1748 ret2 = ext4_journal_stop(handle); 1749 if (!ret) 1750 ret = ret2; 1751 1752 if (pos + len > inode->i_size) { 1753 ext4_truncate(inode); 1754 /* 1755 * If truncate failed early the inode might still be 1756 * on the orphan list; we need to make sure the inode 1757 * is removed from the orphan list in that case. 1758 */ 1759 if (inode->i_nlink) 1760 ext4_orphan_del(NULL, inode); 1761 } 1762 1763 return ret ? ret : copied; 1764 } 1765 1766 static int ext4_journalled_write_end(struct file *file, 1767 struct address_space *mapping, 1768 loff_t pos, unsigned len, unsigned copied, 1769 struct page *page, void *fsdata) 1770 { 1771 handle_t *handle = ext4_journal_current_handle(); 1772 struct inode *inode = mapping->host; 1773 int ret = 0, ret2; 1774 int partial = 0; 1775 unsigned from, to; 1776 loff_t new_i_size; 1777 1778 trace_ext4_journalled_write_end(inode, pos, len, copied); 1779 from = pos & (PAGE_CACHE_SIZE - 1); 1780 to = from + len; 1781 1782 if (copied < len) { 1783 if (!PageUptodate(page)) 1784 copied = 0; 1785 page_zero_new_buffers(page, from+copied, to); 1786 } 1787 1788 ret = walk_page_buffers(handle, page_buffers(page), from, 1789 to, &partial, write_end_fn); 1790 if (!partial) 1791 SetPageUptodate(page); 1792 new_i_size = pos + copied; 1793 if (new_i_size > inode->i_size) 1794 i_size_write(inode, pos+copied); 1795 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1796 if (new_i_size > EXT4_I(inode)->i_disksize) { 1797 ext4_update_i_disksize(inode, new_i_size); 1798 ret2 = ext4_mark_inode_dirty(handle, inode); 1799 if (!ret) 1800 ret = ret2; 1801 } 1802 1803 unlock_page(page); 1804 page_cache_release(page); 1805 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1806 /* if we have allocated more blocks and copied 1807 * less. We will have blocks allocated outside 1808 * inode->i_size. So truncate them 1809 */ 1810 ext4_orphan_add(handle, inode); 1811 1812 ret2 = ext4_journal_stop(handle); 1813 if (!ret) 1814 ret = ret2; 1815 if (pos + len > inode->i_size) { 1816 ext4_truncate(inode); 1817 /* 1818 * If truncate failed early the inode might still be 1819 * on the orphan list; we need to make sure the inode 1820 * is removed from the orphan list in that case. 1821 */ 1822 if (inode->i_nlink) 1823 ext4_orphan_del(NULL, inode); 1824 } 1825 1826 return ret ? ret : copied; 1827 } 1828 1829 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1830 { 1831 int retries = 0; 1832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1833 unsigned long md_needed, mdblocks, total = 0; 1834 1835 /* 1836 * recalculate the amount of metadata blocks to reserve 1837 * in order to allocate nrblocks 1838 * worse case is one extent per block 1839 */ 1840 repeat: 1841 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1842 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1843 mdblocks = ext4_calc_metadata_amount(inode, total); 1844 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1845 1846 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1847 total = md_needed + nrblocks; 1848 1849 /* 1850 * Make quota reservation here to prevent quota overflow 1851 * later. Real quota accounting is done at pages writeout 1852 * time. 1853 */ 1854 if (vfs_dq_reserve_block(inode, total)) { 1855 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1856 return -EDQUOT; 1857 } 1858 1859 if (ext4_claim_free_blocks(sbi, total)) { 1860 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1861 vfs_dq_release_reservation_block(inode, total); 1862 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1863 yield(); 1864 goto repeat; 1865 } 1866 return -ENOSPC; 1867 } 1868 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1869 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1870 1871 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1872 return 0; /* success */ 1873 } 1874 1875 static void ext4_da_release_space(struct inode *inode, int to_free) 1876 { 1877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1878 int total, mdb, mdb_free, release; 1879 1880 if (!to_free) 1881 return; /* Nothing to release, exit */ 1882 1883 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1884 1885 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1886 /* 1887 * if there is no reserved blocks, but we try to free some 1888 * then the counter is messed up somewhere. 1889 * but since this function is called from invalidate 1890 * page, it's harmless to return without any action 1891 */ 1892 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1893 "blocks for inode %lu, but there is no reserved " 1894 "data blocks\n", to_free, inode->i_ino); 1895 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1896 return; 1897 } 1898 1899 /* recalculate the number of metablocks still need to be reserved */ 1900 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1901 mdb = ext4_calc_metadata_amount(inode, total); 1902 1903 /* figure out how many metablocks to release */ 1904 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1905 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1906 1907 release = to_free + mdb_free; 1908 1909 /* update fs dirty blocks counter for truncate case */ 1910 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1911 1912 /* update per-inode reservations */ 1913 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1914 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1915 1916 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1917 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1918 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1919 1920 vfs_dq_release_reservation_block(inode, release); 1921 } 1922 1923 static void ext4_da_page_release_reservation(struct page *page, 1924 unsigned long offset) 1925 { 1926 int to_release = 0; 1927 struct buffer_head *head, *bh; 1928 unsigned int curr_off = 0; 1929 1930 head = page_buffers(page); 1931 bh = head; 1932 do { 1933 unsigned int next_off = curr_off + bh->b_size; 1934 1935 if ((offset <= curr_off) && (buffer_delay(bh))) { 1936 to_release++; 1937 clear_buffer_delay(bh); 1938 } 1939 curr_off = next_off; 1940 } while ((bh = bh->b_this_page) != head); 1941 ext4_da_release_space(page->mapping->host, to_release); 1942 } 1943 1944 /* 1945 * Delayed allocation stuff 1946 */ 1947 1948 /* 1949 * mpage_da_submit_io - walks through extent of pages and try to write 1950 * them with writepage() call back 1951 * 1952 * @mpd->inode: inode 1953 * @mpd->first_page: first page of the extent 1954 * @mpd->next_page: page after the last page of the extent 1955 * 1956 * By the time mpage_da_submit_io() is called we expect all blocks 1957 * to be allocated. this may be wrong if allocation failed. 1958 * 1959 * As pages are already locked by write_cache_pages(), we can't use it 1960 */ 1961 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1962 { 1963 long pages_skipped; 1964 struct pagevec pvec; 1965 unsigned long index, end; 1966 int ret = 0, err, nr_pages, i; 1967 struct inode *inode = mpd->inode; 1968 struct address_space *mapping = inode->i_mapping; 1969 1970 BUG_ON(mpd->next_page <= mpd->first_page); 1971 /* 1972 * We need to start from the first_page to the next_page - 1 1973 * to make sure we also write the mapped dirty buffer_heads. 1974 * If we look at mpd->b_blocknr we would only be looking 1975 * at the currently mapped buffer_heads. 1976 */ 1977 index = mpd->first_page; 1978 end = mpd->next_page - 1; 1979 1980 pagevec_init(&pvec, 0); 1981 while (index <= end) { 1982 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1983 if (nr_pages == 0) 1984 break; 1985 for (i = 0; i < nr_pages; i++) { 1986 struct page *page = pvec.pages[i]; 1987 1988 index = page->index; 1989 if (index > end) 1990 break; 1991 index++; 1992 1993 BUG_ON(!PageLocked(page)); 1994 BUG_ON(PageWriteback(page)); 1995 1996 pages_skipped = mpd->wbc->pages_skipped; 1997 err = mapping->a_ops->writepage(page, mpd->wbc); 1998 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1999 /* 2000 * have successfully written the page 2001 * without skipping the same 2002 */ 2003 mpd->pages_written++; 2004 /* 2005 * In error case, we have to continue because 2006 * remaining pages are still locked 2007 * XXX: unlock and re-dirty them? 2008 */ 2009 if (ret == 0) 2010 ret = err; 2011 } 2012 pagevec_release(&pvec); 2013 } 2014 return ret; 2015 } 2016 2017 /* 2018 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2019 * 2020 * @mpd->inode - inode to walk through 2021 * @exbh->b_blocknr - first block on a disk 2022 * @exbh->b_size - amount of space in bytes 2023 * @logical - first logical block to start assignment with 2024 * 2025 * the function goes through all passed space and put actual disk 2026 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2027 */ 2028 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 2029 struct buffer_head *exbh) 2030 { 2031 struct inode *inode = mpd->inode; 2032 struct address_space *mapping = inode->i_mapping; 2033 int blocks = exbh->b_size >> inode->i_blkbits; 2034 sector_t pblock = exbh->b_blocknr, cur_logical; 2035 struct buffer_head *head, *bh; 2036 pgoff_t index, end; 2037 struct pagevec pvec; 2038 int nr_pages, i; 2039 2040 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2041 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2042 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2043 2044 pagevec_init(&pvec, 0); 2045 2046 while (index <= end) { 2047 /* XXX: optimize tail */ 2048 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2049 if (nr_pages == 0) 2050 break; 2051 for (i = 0; i < nr_pages; i++) { 2052 struct page *page = pvec.pages[i]; 2053 2054 index = page->index; 2055 if (index > end) 2056 break; 2057 index++; 2058 2059 BUG_ON(!PageLocked(page)); 2060 BUG_ON(PageWriteback(page)); 2061 BUG_ON(!page_has_buffers(page)); 2062 2063 bh = page_buffers(page); 2064 head = bh; 2065 2066 /* skip blocks out of the range */ 2067 do { 2068 if (cur_logical >= logical) 2069 break; 2070 cur_logical++; 2071 } while ((bh = bh->b_this_page) != head); 2072 2073 do { 2074 if (cur_logical >= logical + blocks) 2075 break; 2076 2077 if (buffer_delay(bh) || 2078 buffer_unwritten(bh)) { 2079 2080 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2081 2082 if (buffer_delay(bh)) { 2083 clear_buffer_delay(bh); 2084 bh->b_blocknr = pblock; 2085 } else { 2086 /* 2087 * unwritten already should have 2088 * blocknr assigned. Verify that 2089 */ 2090 clear_buffer_unwritten(bh); 2091 BUG_ON(bh->b_blocknr != pblock); 2092 } 2093 2094 } else if (buffer_mapped(bh)) 2095 BUG_ON(bh->b_blocknr != pblock); 2096 2097 cur_logical++; 2098 pblock++; 2099 } while ((bh = bh->b_this_page) != head); 2100 } 2101 pagevec_release(&pvec); 2102 } 2103 } 2104 2105 2106 /* 2107 * __unmap_underlying_blocks - just a helper function to unmap 2108 * set of blocks described by @bh 2109 */ 2110 static inline void __unmap_underlying_blocks(struct inode *inode, 2111 struct buffer_head *bh) 2112 { 2113 struct block_device *bdev = inode->i_sb->s_bdev; 2114 int blocks, i; 2115 2116 blocks = bh->b_size >> inode->i_blkbits; 2117 for (i = 0; i < blocks; i++) 2118 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 2119 } 2120 2121 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2122 sector_t logical, long blk_cnt) 2123 { 2124 int nr_pages, i; 2125 pgoff_t index, end; 2126 struct pagevec pvec; 2127 struct inode *inode = mpd->inode; 2128 struct address_space *mapping = inode->i_mapping; 2129 2130 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2131 end = (logical + blk_cnt - 1) >> 2132 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2133 while (index <= end) { 2134 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2135 if (nr_pages == 0) 2136 break; 2137 for (i = 0; i < nr_pages; i++) { 2138 struct page *page = pvec.pages[i]; 2139 index = page->index; 2140 if (index > end) 2141 break; 2142 index++; 2143 2144 BUG_ON(!PageLocked(page)); 2145 BUG_ON(PageWriteback(page)); 2146 block_invalidatepage(page, 0); 2147 ClearPageUptodate(page); 2148 unlock_page(page); 2149 } 2150 } 2151 return; 2152 } 2153 2154 static void ext4_print_free_blocks(struct inode *inode) 2155 { 2156 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2157 printk(KERN_CRIT "Total free blocks count %lld\n", 2158 ext4_count_free_blocks(inode->i_sb)); 2159 printk(KERN_CRIT "Free/Dirty block details\n"); 2160 printk(KERN_CRIT "free_blocks=%lld\n", 2161 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2162 printk(KERN_CRIT "dirty_blocks=%lld\n", 2163 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2164 printk(KERN_CRIT "Block reservation details\n"); 2165 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2166 EXT4_I(inode)->i_reserved_data_blocks); 2167 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2168 EXT4_I(inode)->i_reserved_meta_blocks); 2169 return; 2170 } 2171 2172 /* 2173 * mpage_da_map_blocks - go through given space 2174 * 2175 * @mpd - bh describing space 2176 * 2177 * The function skips space we know is already mapped to disk blocks. 2178 * 2179 */ 2180 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2181 { 2182 int err, blks, get_blocks_flags; 2183 struct buffer_head new; 2184 sector_t next = mpd->b_blocknr; 2185 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2186 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2187 handle_t *handle = NULL; 2188 2189 /* 2190 * We consider only non-mapped and non-allocated blocks 2191 */ 2192 if ((mpd->b_state & (1 << BH_Mapped)) && 2193 !(mpd->b_state & (1 << BH_Delay)) && 2194 !(mpd->b_state & (1 << BH_Unwritten))) 2195 return 0; 2196 2197 /* 2198 * If we didn't accumulate anything to write simply return 2199 */ 2200 if (!mpd->b_size) 2201 return 0; 2202 2203 handle = ext4_journal_current_handle(); 2204 BUG_ON(!handle); 2205 2206 /* 2207 * Call ext4_get_blocks() to allocate any delayed allocation 2208 * blocks, or to convert an uninitialized extent to be 2209 * initialized (in the case where we have written into 2210 * one or more preallocated blocks). 2211 * 2212 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2213 * indicate that we are on the delayed allocation path. This 2214 * affects functions in many different parts of the allocation 2215 * call path. This flag exists primarily because we don't 2216 * want to change *many* call functions, so ext4_get_blocks() 2217 * will set the magic i_delalloc_reserved_flag once the 2218 * inode's allocation semaphore is taken. 2219 * 2220 * If the blocks in questions were delalloc blocks, set 2221 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2222 * variables are updated after the blocks have been allocated. 2223 */ 2224 new.b_state = 0; 2225 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE | 2226 EXT4_GET_BLOCKS_DELALLOC_RESERVE); 2227 if (mpd->b_state & (1 << BH_Delay)) 2228 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE; 2229 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks, 2230 &new, get_blocks_flags); 2231 if (blks < 0) { 2232 err = blks; 2233 /* 2234 * If get block returns with error we simply 2235 * return. Later writepage will redirty the page and 2236 * writepages will find the dirty page again 2237 */ 2238 if (err == -EAGAIN) 2239 return 0; 2240 2241 if (err == -ENOSPC && 2242 ext4_count_free_blocks(mpd->inode->i_sb)) { 2243 mpd->retval = err; 2244 return 0; 2245 } 2246 2247 /* 2248 * get block failure will cause us to loop in 2249 * writepages, because a_ops->writepage won't be able 2250 * to make progress. The page will be redirtied by 2251 * writepage and writepages will again try to write 2252 * the same. 2253 */ 2254 ext4_msg(mpd->inode->i_sb, KERN_CRIT, 2255 "delayed block allocation failed for inode %lu at " 2256 "logical offset %llu with max blocks %zd with " 2257 "error %d\n", mpd->inode->i_ino, 2258 (unsigned long long) next, 2259 mpd->b_size >> mpd->inode->i_blkbits, err); 2260 printk(KERN_CRIT "This should not happen!! " 2261 "Data will be lost\n"); 2262 if (err == -ENOSPC) { 2263 ext4_print_free_blocks(mpd->inode); 2264 } 2265 /* invalidate all the pages */ 2266 ext4_da_block_invalidatepages(mpd, next, 2267 mpd->b_size >> mpd->inode->i_blkbits); 2268 return err; 2269 } 2270 BUG_ON(blks == 0); 2271 2272 new.b_size = (blks << mpd->inode->i_blkbits); 2273 2274 if (buffer_new(&new)) 2275 __unmap_underlying_blocks(mpd->inode, &new); 2276 2277 /* 2278 * If blocks are delayed marked, we need to 2279 * put actual blocknr and drop delayed bit 2280 */ 2281 if ((mpd->b_state & (1 << BH_Delay)) || 2282 (mpd->b_state & (1 << BH_Unwritten))) 2283 mpage_put_bnr_to_bhs(mpd, next, &new); 2284 2285 if (ext4_should_order_data(mpd->inode)) { 2286 err = ext4_jbd2_file_inode(handle, mpd->inode); 2287 if (err) 2288 return err; 2289 } 2290 2291 /* 2292 * Update on-disk size along with block allocation. 2293 */ 2294 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2295 if (disksize > i_size_read(mpd->inode)) 2296 disksize = i_size_read(mpd->inode); 2297 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2298 ext4_update_i_disksize(mpd->inode, disksize); 2299 return ext4_mark_inode_dirty(handle, mpd->inode); 2300 } 2301 2302 return 0; 2303 } 2304 2305 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2306 (1 << BH_Delay) | (1 << BH_Unwritten)) 2307 2308 /* 2309 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2310 * 2311 * @mpd->lbh - extent of blocks 2312 * @logical - logical number of the block in the file 2313 * @bh - bh of the block (used to access block's state) 2314 * 2315 * the function is used to collect contig. blocks in same state 2316 */ 2317 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2318 sector_t logical, size_t b_size, 2319 unsigned long b_state) 2320 { 2321 sector_t next; 2322 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2323 2324 /* check if thereserved journal credits might overflow */ 2325 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2326 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2327 /* 2328 * With non-extent format we are limited by the journal 2329 * credit available. Total credit needed to insert 2330 * nrblocks contiguous blocks is dependent on the 2331 * nrblocks. So limit nrblocks. 2332 */ 2333 goto flush_it; 2334 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2335 EXT4_MAX_TRANS_DATA) { 2336 /* 2337 * Adding the new buffer_head would make it cross the 2338 * allowed limit for which we have journal credit 2339 * reserved. So limit the new bh->b_size 2340 */ 2341 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2342 mpd->inode->i_blkbits; 2343 /* we will do mpage_da_submit_io in the next loop */ 2344 } 2345 } 2346 /* 2347 * First block in the extent 2348 */ 2349 if (mpd->b_size == 0) { 2350 mpd->b_blocknr = logical; 2351 mpd->b_size = b_size; 2352 mpd->b_state = b_state & BH_FLAGS; 2353 return; 2354 } 2355 2356 next = mpd->b_blocknr + nrblocks; 2357 /* 2358 * Can we merge the block to our big extent? 2359 */ 2360 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2361 mpd->b_size += b_size; 2362 return; 2363 } 2364 2365 flush_it: 2366 /* 2367 * We couldn't merge the block to our extent, so we 2368 * need to flush current extent and start new one 2369 */ 2370 if (mpage_da_map_blocks(mpd) == 0) 2371 mpage_da_submit_io(mpd); 2372 mpd->io_done = 1; 2373 return; 2374 } 2375 2376 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2377 { 2378 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2379 } 2380 2381 /* 2382 * __mpage_da_writepage - finds extent of pages and blocks 2383 * 2384 * @page: page to consider 2385 * @wbc: not used, we just follow rules 2386 * @data: context 2387 * 2388 * The function finds extents of pages and scan them for all blocks. 2389 */ 2390 static int __mpage_da_writepage(struct page *page, 2391 struct writeback_control *wbc, void *data) 2392 { 2393 struct mpage_da_data *mpd = data; 2394 struct inode *inode = mpd->inode; 2395 struct buffer_head *bh, *head; 2396 sector_t logical; 2397 2398 if (mpd->io_done) { 2399 /* 2400 * Rest of the page in the page_vec 2401 * redirty then and skip then. We will 2402 * try to write them again after 2403 * starting a new transaction 2404 */ 2405 redirty_page_for_writepage(wbc, page); 2406 unlock_page(page); 2407 return MPAGE_DA_EXTENT_TAIL; 2408 } 2409 /* 2410 * Can we merge this page to current extent? 2411 */ 2412 if (mpd->next_page != page->index) { 2413 /* 2414 * Nope, we can't. So, we map non-allocated blocks 2415 * and start IO on them using writepage() 2416 */ 2417 if (mpd->next_page != mpd->first_page) { 2418 if (mpage_da_map_blocks(mpd) == 0) 2419 mpage_da_submit_io(mpd); 2420 /* 2421 * skip rest of the page in the page_vec 2422 */ 2423 mpd->io_done = 1; 2424 redirty_page_for_writepage(wbc, page); 2425 unlock_page(page); 2426 return MPAGE_DA_EXTENT_TAIL; 2427 } 2428 2429 /* 2430 * Start next extent of pages ... 2431 */ 2432 mpd->first_page = page->index; 2433 2434 /* 2435 * ... and blocks 2436 */ 2437 mpd->b_size = 0; 2438 mpd->b_state = 0; 2439 mpd->b_blocknr = 0; 2440 } 2441 2442 mpd->next_page = page->index + 1; 2443 logical = (sector_t) page->index << 2444 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2445 2446 if (!page_has_buffers(page)) { 2447 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2448 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2449 if (mpd->io_done) 2450 return MPAGE_DA_EXTENT_TAIL; 2451 } else { 2452 /* 2453 * Page with regular buffer heads, just add all dirty ones 2454 */ 2455 head = page_buffers(page); 2456 bh = head; 2457 do { 2458 BUG_ON(buffer_locked(bh)); 2459 /* 2460 * We need to try to allocate 2461 * unmapped blocks in the same page. 2462 * Otherwise we won't make progress 2463 * with the page in ext4_writepage 2464 */ 2465 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2466 mpage_add_bh_to_extent(mpd, logical, 2467 bh->b_size, 2468 bh->b_state); 2469 if (mpd->io_done) 2470 return MPAGE_DA_EXTENT_TAIL; 2471 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2472 /* 2473 * mapped dirty buffer. We need to update 2474 * the b_state because we look at 2475 * b_state in mpage_da_map_blocks. We don't 2476 * update b_size because if we find an 2477 * unmapped buffer_head later we need to 2478 * use the b_state flag of that buffer_head. 2479 */ 2480 if (mpd->b_size == 0) 2481 mpd->b_state = bh->b_state & BH_FLAGS; 2482 } 2483 logical++; 2484 } while ((bh = bh->b_this_page) != head); 2485 } 2486 2487 return 0; 2488 } 2489 2490 /* 2491 * This is a special get_blocks_t callback which is used by 2492 * ext4_da_write_begin(). It will either return mapped block or 2493 * reserve space for a single block. 2494 * 2495 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2496 * We also have b_blocknr = -1 and b_bdev initialized properly 2497 * 2498 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2499 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2500 * initialized properly. 2501 */ 2502 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2503 struct buffer_head *bh_result, int create) 2504 { 2505 int ret = 0; 2506 sector_t invalid_block = ~((sector_t) 0xffff); 2507 2508 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2509 invalid_block = ~0; 2510 2511 BUG_ON(create == 0); 2512 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2513 2514 /* 2515 * first, we need to know whether the block is allocated already 2516 * preallocated blocks are unmapped but should treated 2517 * the same as allocated blocks. 2518 */ 2519 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0); 2520 if ((ret == 0) && !buffer_delay(bh_result)) { 2521 /* the block isn't (pre)allocated yet, let's reserve space */ 2522 /* 2523 * XXX: __block_prepare_write() unmaps passed block, 2524 * is it OK? 2525 */ 2526 ret = ext4_da_reserve_space(inode, 1); 2527 if (ret) 2528 /* not enough space to reserve */ 2529 return ret; 2530 2531 map_bh(bh_result, inode->i_sb, invalid_block); 2532 set_buffer_new(bh_result); 2533 set_buffer_delay(bh_result); 2534 } else if (ret > 0) { 2535 bh_result->b_size = (ret << inode->i_blkbits); 2536 if (buffer_unwritten(bh_result)) { 2537 /* A delayed write to unwritten bh should 2538 * be marked new and mapped. Mapped ensures 2539 * that we don't do get_block multiple times 2540 * when we write to the same offset and new 2541 * ensures that we do proper zero out for 2542 * partial write. 2543 */ 2544 set_buffer_new(bh_result); 2545 set_buffer_mapped(bh_result); 2546 } 2547 ret = 0; 2548 } 2549 2550 return ret; 2551 } 2552 2553 /* 2554 * This function is used as a standard get_block_t calback function 2555 * when there is no desire to allocate any blocks. It is used as a 2556 * callback function for block_prepare_write(), nobh_writepage(), and 2557 * block_write_full_page(). These functions should only try to map a 2558 * single block at a time. 2559 * 2560 * Since this function doesn't do block allocations even if the caller 2561 * requests it by passing in create=1, it is critically important that 2562 * any caller checks to make sure that any buffer heads are returned 2563 * by this function are either all already mapped or marked for 2564 * delayed allocation before calling nobh_writepage() or 2565 * block_write_full_page(). Otherwise, b_blocknr could be left 2566 * unitialized, and the page write functions will be taken by 2567 * surprise. 2568 */ 2569 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2570 struct buffer_head *bh_result, int create) 2571 { 2572 int ret = 0; 2573 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2574 2575 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2576 2577 /* 2578 * we don't want to do block allocation in writepage 2579 * so call get_block_wrap with create = 0 2580 */ 2581 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0); 2582 if (ret > 0) { 2583 bh_result->b_size = (ret << inode->i_blkbits); 2584 ret = 0; 2585 } 2586 return ret; 2587 } 2588 2589 static int bget_one(handle_t *handle, struct buffer_head *bh) 2590 { 2591 get_bh(bh); 2592 return 0; 2593 } 2594 2595 static int bput_one(handle_t *handle, struct buffer_head *bh) 2596 { 2597 put_bh(bh); 2598 return 0; 2599 } 2600 2601 static int __ext4_journalled_writepage(struct page *page, 2602 struct writeback_control *wbc, 2603 unsigned int len) 2604 { 2605 struct address_space *mapping = page->mapping; 2606 struct inode *inode = mapping->host; 2607 struct buffer_head *page_bufs; 2608 handle_t *handle = NULL; 2609 int ret = 0; 2610 int err; 2611 2612 page_bufs = page_buffers(page); 2613 BUG_ON(!page_bufs); 2614 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2615 /* As soon as we unlock the page, it can go away, but we have 2616 * references to buffers so we are safe */ 2617 unlock_page(page); 2618 2619 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2620 if (IS_ERR(handle)) { 2621 ret = PTR_ERR(handle); 2622 goto out; 2623 } 2624 2625 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2626 do_journal_get_write_access); 2627 2628 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2629 write_end_fn); 2630 if (ret == 0) 2631 ret = err; 2632 err = ext4_journal_stop(handle); 2633 if (!ret) 2634 ret = err; 2635 2636 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2637 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2638 out: 2639 return ret; 2640 } 2641 2642 /* 2643 * Note that we don't need to start a transaction unless we're journaling data 2644 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2645 * need to file the inode to the transaction's list in ordered mode because if 2646 * we are writing back data added by write(), the inode is already there and if 2647 * we are writing back data modified via mmap(), noone guarantees in which 2648 * transaction the data will hit the disk. In case we are journaling data, we 2649 * cannot start transaction directly because transaction start ranks above page 2650 * lock so we have to do some magic. 2651 * 2652 * This function can get called via... 2653 * - ext4_da_writepages after taking page lock (have journal handle) 2654 * - journal_submit_inode_data_buffers (no journal handle) 2655 * - shrink_page_list via pdflush (no journal handle) 2656 * - grab_page_cache when doing write_begin (have journal handle) 2657 * 2658 * We don't do any block allocation in this function. If we have page with 2659 * multiple blocks we need to write those buffer_heads that are mapped. This 2660 * is important for mmaped based write. So if we do with blocksize 1K 2661 * truncate(f, 1024); 2662 * a = mmap(f, 0, 4096); 2663 * a[0] = 'a'; 2664 * truncate(f, 4096); 2665 * we have in the page first buffer_head mapped via page_mkwrite call back 2666 * but other bufer_heads would be unmapped but dirty(dirty done via the 2667 * do_wp_page). So writepage should write the first block. If we modify 2668 * the mmap area beyond 1024 we will again get a page_fault and the 2669 * page_mkwrite callback will do the block allocation and mark the 2670 * buffer_heads mapped. 2671 * 2672 * We redirty the page if we have any buffer_heads that is either delay or 2673 * unwritten in the page. 2674 * 2675 * We can get recursively called as show below. 2676 * 2677 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2678 * ext4_writepage() 2679 * 2680 * But since we don't do any block allocation we should not deadlock. 2681 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2682 */ 2683 static int ext4_writepage(struct page *page, 2684 struct writeback_control *wbc) 2685 { 2686 int ret = 0; 2687 loff_t size; 2688 unsigned int len; 2689 struct buffer_head *page_bufs; 2690 struct inode *inode = page->mapping->host; 2691 2692 trace_ext4_writepage(inode, page); 2693 size = i_size_read(inode); 2694 if (page->index == size >> PAGE_CACHE_SHIFT) 2695 len = size & ~PAGE_CACHE_MASK; 2696 else 2697 len = PAGE_CACHE_SIZE; 2698 2699 if (page_has_buffers(page)) { 2700 page_bufs = page_buffers(page); 2701 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2702 ext4_bh_delay_or_unwritten)) { 2703 /* 2704 * We don't want to do block allocation 2705 * So redirty the page and return 2706 * We may reach here when we do a journal commit 2707 * via journal_submit_inode_data_buffers. 2708 * If we don't have mapping block we just ignore 2709 * them. We can also reach here via shrink_page_list 2710 */ 2711 redirty_page_for_writepage(wbc, page); 2712 unlock_page(page); 2713 return 0; 2714 } 2715 } else { 2716 /* 2717 * The test for page_has_buffers() is subtle: 2718 * We know the page is dirty but it lost buffers. That means 2719 * that at some moment in time after write_begin()/write_end() 2720 * has been called all buffers have been clean and thus they 2721 * must have been written at least once. So they are all 2722 * mapped and we can happily proceed with mapping them 2723 * and writing the page. 2724 * 2725 * Try to initialize the buffer_heads and check whether 2726 * all are mapped and non delay. We don't want to 2727 * do block allocation here. 2728 */ 2729 ret = block_prepare_write(page, 0, len, 2730 noalloc_get_block_write); 2731 if (!ret) { 2732 page_bufs = page_buffers(page); 2733 /* check whether all are mapped and non delay */ 2734 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2735 ext4_bh_delay_or_unwritten)) { 2736 redirty_page_for_writepage(wbc, page); 2737 unlock_page(page); 2738 return 0; 2739 } 2740 } else { 2741 /* 2742 * We can't do block allocation here 2743 * so just redity the page and unlock 2744 * and return 2745 */ 2746 redirty_page_for_writepage(wbc, page); 2747 unlock_page(page); 2748 return 0; 2749 } 2750 /* now mark the buffer_heads as dirty and uptodate */ 2751 block_commit_write(page, 0, len); 2752 } 2753 2754 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2755 /* 2756 * It's mmapped pagecache. Add buffers and journal it. There 2757 * doesn't seem much point in redirtying the page here. 2758 */ 2759 ClearPageChecked(page); 2760 return __ext4_journalled_writepage(page, wbc, len); 2761 } 2762 2763 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2764 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2765 else 2766 ret = block_write_full_page(page, noalloc_get_block_write, 2767 wbc); 2768 2769 return ret; 2770 } 2771 2772 /* 2773 * This is called via ext4_da_writepages() to 2774 * calulate the total number of credits to reserve to fit 2775 * a single extent allocation into a single transaction, 2776 * ext4_da_writpeages() will loop calling this before 2777 * the block allocation. 2778 */ 2779 2780 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2781 { 2782 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2783 2784 /* 2785 * With non-extent format the journal credit needed to 2786 * insert nrblocks contiguous block is dependent on 2787 * number of contiguous block. So we will limit 2788 * number of contiguous block to a sane value 2789 */ 2790 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2791 (max_blocks > EXT4_MAX_TRANS_DATA)) 2792 max_blocks = EXT4_MAX_TRANS_DATA; 2793 2794 return ext4_chunk_trans_blocks(inode, max_blocks); 2795 } 2796 2797 static int ext4_da_writepages(struct address_space *mapping, 2798 struct writeback_control *wbc) 2799 { 2800 pgoff_t index; 2801 int range_whole = 0; 2802 handle_t *handle = NULL; 2803 struct mpage_da_data mpd; 2804 struct inode *inode = mapping->host; 2805 int no_nrwrite_index_update; 2806 int pages_written = 0; 2807 long pages_skipped; 2808 unsigned int max_pages; 2809 int range_cyclic, cycled = 1, io_done = 0; 2810 int needed_blocks, ret = 0; 2811 long desired_nr_to_write, nr_to_writebump = 0; 2812 loff_t range_start = wbc->range_start; 2813 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2814 2815 trace_ext4_da_writepages(inode, wbc); 2816 2817 /* 2818 * No pages to write? This is mainly a kludge to avoid starting 2819 * a transaction for special inodes like journal inode on last iput() 2820 * because that could violate lock ordering on umount 2821 */ 2822 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2823 return 0; 2824 2825 /* 2826 * If the filesystem has aborted, it is read-only, so return 2827 * right away instead of dumping stack traces later on that 2828 * will obscure the real source of the problem. We test 2829 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2830 * the latter could be true if the filesystem is mounted 2831 * read-only, and in that case, ext4_da_writepages should 2832 * *never* be called, so if that ever happens, we would want 2833 * the stack trace. 2834 */ 2835 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2836 return -EROFS; 2837 2838 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2839 range_whole = 1; 2840 2841 range_cyclic = wbc->range_cyclic; 2842 if (wbc->range_cyclic) { 2843 index = mapping->writeback_index; 2844 if (index) 2845 cycled = 0; 2846 wbc->range_start = index << PAGE_CACHE_SHIFT; 2847 wbc->range_end = LLONG_MAX; 2848 wbc->range_cyclic = 0; 2849 } else 2850 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2851 2852 /* 2853 * This works around two forms of stupidity. The first is in 2854 * the writeback code, which caps the maximum number of pages 2855 * written to be 1024 pages. This is wrong on multiple 2856 * levels; different architectues have a different page size, 2857 * which changes the maximum amount of data which gets 2858 * written. Secondly, 4 megabytes is way too small. XFS 2859 * forces this value to be 16 megabytes by multiplying 2860 * nr_to_write parameter by four, and then relies on its 2861 * allocator to allocate larger extents to make them 2862 * contiguous. Unfortunately this brings us to the second 2863 * stupidity, which is that ext4's mballoc code only allocates 2864 * at most 2048 blocks. So we force contiguous writes up to 2865 * the number of dirty blocks in the inode, or 2866 * sbi->max_writeback_mb_bump whichever is smaller. 2867 */ 2868 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2869 if (!range_cyclic && range_whole) 2870 desired_nr_to_write = wbc->nr_to_write * 8; 2871 else 2872 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2873 max_pages); 2874 if (desired_nr_to_write > max_pages) 2875 desired_nr_to_write = max_pages; 2876 2877 if (wbc->nr_to_write < desired_nr_to_write) { 2878 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2879 wbc->nr_to_write = desired_nr_to_write; 2880 } 2881 2882 mpd.wbc = wbc; 2883 mpd.inode = mapping->host; 2884 2885 /* 2886 * we don't want write_cache_pages to update 2887 * nr_to_write and writeback_index 2888 */ 2889 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2890 wbc->no_nrwrite_index_update = 1; 2891 pages_skipped = wbc->pages_skipped; 2892 2893 retry: 2894 while (!ret && wbc->nr_to_write > 0) { 2895 2896 /* 2897 * we insert one extent at a time. So we need 2898 * credit needed for single extent allocation. 2899 * journalled mode is currently not supported 2900 * by delalloc 2901 */ 2902 BUG_ON(ext4_should_journal_data(inode)); 2903 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2904 2905 /* start a new transaction*/ 2906 handle = ext4_journal_start(inode, needed_blocks); 2907 if (IS_ERR(handle)) { 2908 ret = PTR_ERR(handle); 2909 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2910 "%ld pages, ino %lu; err %d\n", __func__, 2911 wbc->nr_to_write, inode->i_ino, ret); 2912 goto out_writepages; 2913 } 2914 2915 /* 2916 * Now call __mpage_da_writepage to find the next 2917 * contiguous region of logical blocks that need 2918 * blocks to be allocated by ext4. We don't actually 2919 * submit the blocks for I/O here, even though 2920 * write_cache_pages thinks it will, and will set the 2921 * pages as clean for write before calling 2922 * __mpage_da_writepage(). 2923 */ 2924 mpd.b_size = 0; 2925 mpd.b_state = 0; 2926 mpd.b_blocknr = 0; 2927 mpd.first_page = 0; 2928 mpd.next_page = 0; 2929 mpd.io_done = 0; 2930 mpd.pages_written = 0; 2931 mpd.retval = 0; 2932 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2933 &mpd); 2934 /* 2935 * If we have a contigous extent of pages and we 2936 * haven't done the I/O yet, map the blocks and submit 2937 * them for I/O. 2938 */ 2939 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2940 if (mpage_da_map_blocks(&mpd) == 0) 2941 mpage_da_submit_io(&mpd); 2942 mpd.io_done = 1; 2943 ret = MPAGE_DA_EXTENT_TAIL; 2944 } 2945 trace_ext4_da_write_pages(inode, &mpd); 2946 wbc->nr_to_write -= mpd.pages_written; 2947 2948 ext4_journal_stop(handle); 2949 2950 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2951 /* commit the transaction which would 2952 * free blocks released in the transaction 2953 * and try again 2954 */ 2955 jbd2_journal_force_commit_nested(sbi->s_journal); 2956 wbc->pages_skipped = pages_skipped; 2957 ret = 0; 2958 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2959 /* 2960 * got one extent now try with 2961 * rest of the pages 2962 */ 2963 pages_written += mpd.pages_written; 2964 wbc->pages_skipped = pages_skipped; 2965 ret = 0; 2966 io_done = 1; 2967 } else if (wbc->nr_to_write) 2968 /* 2969 * There is no more writeout needed 2970 * or we requested for a noblocking writeout 2971 * and we found the device congested 2972 */ 2973 break; 2974 } 2975 if (!io_done && !cycled) { 2976 cycled = 1; 2977 index = 0; 2978 wbc->range_start = index << PAGE_CACHE_SHIFT; 2979 wbc->range_end = mapping->writeback_index - 1; 2980 goto retry; 2981 } 2982 if (pages_skipped != wbc->pages_skipped) 2983 ext4_msg(inode->i_sb, KERN_CRIT, 2984 "This should not happen leaving %s " 2985 "with nr_to_write = %ld ret = %d\n", 2986 __func__, wbc->nr_to_write, ret); 2987 2988 /* Update index */ 2989 index += pages_written; 2990 wbc->range_cyclic = range_cyclic; 2991 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2992 /* 2993 * set the writeback_index so that range_cyclic 2994 * mode will write it back later 2995 */ 2996 mapping->writeback_index = index; 2997 2998 out_writepages: 2999 if (!no_nrwrite_index_update) 3000 wbc->no_nrwrite_index_update = 0; 3001 if (wbc->nr_to_write > nr_to_writebump) 3002 wbc->nr_to_write -= nr_to_writebump; 3003 wbc->range_start = range_start; 3004 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3005 return ret; 3006 } 3007 3008 #define FALL_BACK_TO_NONDELALLOC 1 3009 static int ext4_nonda_switch(struct super_block *sb) 3010 { 3011 s64 free_blocks, dirty_blocks; 3012 struct ext4_sb_info *sbi = EXT4_SB(sb); 3013 3014 /* 3015 * switch to non delalloc mode if we are running low 3016 * on free block. The free block accounting via percpu 3017 * counters can get slightly wrong with percpu_counter_batch getting 3018 * accumulated on each CPU without updating global counters 3019 * Delalloc need an accurate free block accounting. So switch 3020 * to non delalloc when we are near to error range. 3021 */ 3022 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3023 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3024 if (2 * free_blocks < 3 * dirty_blocks || 3025 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3026 /* 3027 * free block count is less that 150% of dirty blocks 3028 * or free blocks is less that watermark 3029 */ 3030 return 1; 3031 } 3032 return 0; 3033 } 3034 3035 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3036 loff_t pos, unsigned len, unsigned flags, 3037 struct page **pagep, void **fsdata) 3038 { 3039 int ret, retries = 0; 3040 struct page *page; 3041 pgoff_t index; 3042 unsigned from, to; 3043 struct inode *inode = mapping->host; 3044 handle_t *handle; 3045 3046 index = pos >> PAGE_CACHE_SHIFT; 3047 from = pos & (PAGE_CACHE_SIZE - 1); 3048 to = from + len; 3049 3050 if (ext4_nonda_switch(inode->i_sb)) { 3051 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3052 return ext4_write_begin(file, mapping, pos, 3053 len, flags, pagep, fsdata); 3054 } 3055 *fsdata = (void *)0; 3056 trace_ext4_da_write_begin(inode, pos, len, flags); 3057 retry: 3058 /* 3059 * With delayed allocation, we don't log the i_disksize update 3060 * if there is delayed block allocation. But we still need 3061 * to journalling the i_disksize update if writes to the end 3062 * of file which has an already mapped buffer. 3063 */ 3064 handle = ext4_journal_start(inode, 1); 3065 if (IS_ERR(handle)) { 3066 ret = PTR_ERR(handle); 3067 goto out; 3068 } 3069 /* We cannot recurse into the filesystem as the transaction is already 3070 * started */ 3071 flags |= AOP_FLAG_NOFS; 3072 3073 page = grab_cache_page_write_begin(mapping, index, flags); 3074 if (!page) { 3075 ext4_journal_stop(handle); 3076 ret = -ENOMEM; 3077 goto out; 3078 } 3079 *pagep = page; 3080 3081 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 3082 ext4_da_get_block_prep); 3083 if (ret < 0) { 3084 unlock_page(page); 3085 ext4_journal_stop(handle); 3086 page_cache_release(page); 3087 /* 3088 * block_write_begin may have instantiated a few blocks 3089 * outside i_size. Trim these off again. Don't need 3090 * i_size_read because we hold i_mutex. 3091 */ 3092 if (pos + len > inode->i_size) 3093 ext4_truncate(inode); 3094 } 3095 3096 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3097 goto retry; 3098 out: 3099 return ret; 3100 } 3101 3102 /* 3103 * Check if we should update i_disksize 3104 * when write to the end of file but not require block allocation 3105 */ 3106 static int ext4_da_should_update_i_disksize(struct page *page, 3107 unsigned long offset) 3108 { 3109 struct buffer_head *bh; 3110 struct inode *inode = page->mapping->host; 3111 unsigned int idx; 3112 int i; 3113 3114 bh = page_buffers(page); 3115 idx = offset >> inode->i_blkbits; 3116 3117 for (i = 0; i < idx; i++) 3118 bh = bh->b_this_page; 3119 3120 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3121 return 0; 3122 return 1; 3123 } 3124 3125 static int ext4_da_write_end(struct file *file, 3126 struct address_space *mapping, 3127 loff_t pos, unsigned len, unsigned copied, 3128 struct page *page, void *fsdata) 3129 { 3130 struct inode *inode = mapping->host; 3131 int ret = 0, ret2; 3132 handle_t *handle = ext4_journal_current_handle(); 3133 loff_t new_i_size; 3134 unsigned long start, end; 3135 int write_mode = (int)(unsigned long)fsdata; 3136 3137 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3138 if (ext4_should_order_data(inode)) { 3139 return ext4_ordered_write_end(file, mapping, pos, 3140 len, copied, page, fsdata); 3141 } else if (ext4_should_writeback_data(inode)) { 3142 return ext4_writeback_write_end(file, mapping, pos, 3143 len, copied, page, fsdata); 3144 } else { 3145 BUG(); 3146 } 3147 } 3148 3149 trace_ext4_da_write_end(inode, pos, len, copied); 3150 start = pos & (PAGE_CACHE_SIZE - 1); 3151 end = start + copied - 1; 3152 3153 /* 3154 * generic_write_end() will run mark_inode_dirty() if i_size 3155 * changes. So let's piggyback the i_disksize mark_inode_dirty 3156 * into that. 3157 */ 3158 3159 new_i_size = pos + copied; 3160 if (new_i_size > EXT4_I(inode)->i_disksize) { 3161 if (ext4_da_should_update_i_disksize(page, end)) { 3162 down_write(&EXT4_I(inode)->i_data_sem); 3163 if (new_i_size > EXT4_I(inode)->i_disksize) { 3164 /* 3165 * Updating i_disksize when extending file 3166 * without needing block allocation 3167 */ 3168 if (ext4_should_order_data(inode)) 3169 ret = ext4_jbd2_file_inode(handle, 3170 inode); 3171 3172 EXT4_I(inode)->i_disksize = new_i_size; 3173 } 3174 up_write(&EXT4_I(inode)->i_data_sem); 3175 /* We need to mark inode dirty even if 3176 * new_i_size is less that inode->i_size 3177 * bu greater than i_disksize.(hint delalloc) 3178 */ 3179 ext4_mark_inode_dirty(handle, inode); 3180 } 3181 } 3182 ret2 = generic_write_end(file, mapping, pos, len, copied, 3183 page, fsdata); 3184 copied = ret2; 3185 if (ret2 < 0) 3186 ret = ret2; 3187 ret2 = ext4_journal_stop(handle); 3188 if (!ret) 3189 ret = ret2; 3190 3191 return ret ? ret : copied; 3192 } 3193 3194 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3195 { 3196 /* 3197 * Drop reserved blocks 3198 */ 3199 BUG_ON(!PageLocked(page)); 3200 if (!page_has_buffers(page)) 3201 goto out; 3202 3203 ext4_da_page_release_reservation(page, offset); 3204 3205 out: 3206 ext4_invalidatepage(page, offset); 3207 3208 return; 3209 } 3210 3211 /* 3212 * Force all delayed allocation blocks to be allocated for a given inode. 3213 */ 3214 int ext4_alloc_da_blocks(struct inode *inode) 3215 { 3216 trace_ext4_alloc_da_blocks(inode); 3217 3218 if (!EXT4_I(inode)->i_reserved_data_blocks && 3219 !EXT4_I(inode)->i_reserved_meta_blocks) 3220 return 0; 3221 3222 /* 3223 * We do something simple for now. The filemap_flush() will 3224 * also start triggering a write of the data blocks, which is 3225 * not strictly speaking necessary (and for users of 3226 * laptop_mode, not even desirable). However, to do otherwise 3227 * would require replicating code paths in: 3228 * 3229 * ext4_da_writepages() -> 3230 * write_cache_pages() ---> (via passed in callback function) 3231 * __mpage_da_writepage() --> 3232 * mpage_add_bh_to_extent() 3233 * mpage_da_map_blocks() 3234 * 3235 * The problem is that write_cache_pages(), located in 3236 * mm/page-writeback.c, marks pages clean in preparation for 3237 * doing I/O, which is not desirable if we're not planning on 3238 * doing I/O at all. 3239 * 3240 * We could call write_cache_pages(), and then redirty all of 3241 * the pages by calling redirty_page_for_writeback() but that 3242 * would be ugly in the extreme. So instead we would need to 3243 * replicate parts of the code in the above functions, 3244 * simplifying them becuase we wouldn't actually intend to 3245 * write out the pages, but rather only collect contiguous 3246 * logical block extents, call the multi-block allocator, and 3247 * then update the buffer heads with the block allocations. 3248 * 3249 * For now, though, we'll cheat by calling filemap_flush(), 3250 * which will map the blocks, and start the I/O, but not 3251 * actually wait for the I/O to complete. 3252 */ 3253 return filemap_flush(inode->i_mapping); 3254 } 3255 3256 /* 3257 * bmap() is special. It gets used by applications such as lilo and by 3258 * the swapper to find the on-disk block of a specific piece of data. 3259 * 3260 * Naturally, this is dangerous if the block concerned is still in the 3261 * journal. If somebody makes a swapfile on an ext4 data-journaling 3262 * filesystem and enables swap, then they may get a nasty shock when the 3263 * data getting swapped to that swapfile suddenly gets overwritten by 3264 * the original zero's written out previously to the journal and 3265 * awaiting writeback in the kernel's buffer cache. 3266 * 3267 * So, if we see any bmap calls here on a modified, data-journaled file, 3268 * take extra steps to flush any blocks which might be in the cache. 3269 */ 3270 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3271 { 3272 struct inode *inode = mapping->host; 3273 journal_t *journal; 3274 int err; 3275 3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3277 test_opt(inode->i_sb, DELALLOC)) { 3278 /* 3279 * With delalloc we want to sync the file 3280 * so that we can make sure we allocate 3281 * blocks for file 3282 */ 3283 filemap_write_and_wait(mapping); 3284 } 3285 3286 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 3287 /* 3288 * This is a REALLY heavyweight approach, but the use of 3289 * bmap on dirty files is expected to be extremely rare: 3290 * only if we run lilo or swapon on a freshly made file 3291 * do we expect this to happen. 3292 * 3293 * (bmap requires CAP_SYS_RAWIO so this does not 3294 * represent an unprivileged user DOS attack --- we'd be 3295 * in trouble if mortal users could trigger this path at 3296 * will.) 3297 * 3298 * NB. EXT4_STATE_JDATA is not set on files other than 3299 * regular files. If somebody wants to bmap a directory 3300 * or symlink and gets confused because the buffer 3301 * hasn't yet been flushed to disk, they deserve 3302 * everything they get. 3303 */ 3304 3305 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 3306 journal = EXT4_JOURNAL(inode); 3307 jbd2_journal_lock_updates(journal); 3308 err = jbd2_journal_flush(journal); 3309 jbd2_journal_unlock_updates(journal); 3310 3311 if (err) 3312 return 0; 3313 } 3314 3315 return generic_block_bmap(mapping, block, ext4_get_block); 3316 } 3317 3318 static int ext4_readpage(struct file *file, struct page *page) 3319 { 3320 return mpage_readpage(page, ext4_get_block); 3321 } 3322 3323 static int 3324 ext4_readpages(struct file *file, struct address_space *mapping, 3325 struct list_head *pages, unsigned nr_pages) 3326 { 3327 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3328 } 3329 3330 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3331 { 3332 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3333 3334 /* 3335 * If it's a full truncate we just forget about the pending dirtying 3336 */ 3337 if (offset == 0) 3338 ClearPageChecked(page); 3339 3340 if (journal) 3341 jbd2_journal_invalidatepage(journal, page, offset); 3342 else 3343 block_invalidatepage(page, offset); 3344 } 3345 3346 static int ext4_releasepage(struct page *page, gfp_t wait) 3347 { 3348 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3349 3350 WARN_ON(PageChecked(page)); 3351 if (!page_has_buffers(page)) 3352 return 0; 3353 if (journal) 3354 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3355 else 3356 return try_to_free_buffers(page); 3357 } 3358 3359 /* 3360 * O_DIRECT for ext3 (or indirect map) based files 3361 * 3362 * If the O_DIRECT write will extend the file then add this inode to the 3363 * orphan list. So recovery will truncate it back to the original size 3364 * if the machine crashes during the write. 3365 * 3366 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3367 * crashes then stale disk data _may_ be exposed inside the file. But current 3368 * VFS code falls back into buffered path in that case so we are safe. 3369 */ 3370 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3371 const struct iovec *iov, loff_t offset, 3372 unsigned long nr_segs) 3373 { 3374 struct file *file = iocb->ki_filp; 3375 struct inode *inode = file->f_mapping->host; 3376 struct ext4_inode_info *ei = EXT4_I(inode); 3377 handle_t *handle; 3378 ssize_t ret; 3379 int orphan = 0; 3380 size_t count = iov_length(iov, nr_segs); 3381 int retries = 0; 3382 3383 if (rw == WRITE) { 3384 loff_t final_size = offset + count; 3385 3386 if (final_size > inode->i_size) { 3387 /* Credits for sb + inode write */ 3388 handle = ext4_journal_start(inode, 2); 3389 if (IS_ERR(handle)) { 3390 ret = PTR_ERR(handle); 3391 goto out; 3392 } 3393 ret = ext4_orphan_add(handle, inode); 3394 if (ret) { 3395 ext4_journal_stop(handle); 3396 goto out; 3397 } 3398 orphan = 1; 3399 ei->i_disksize = inode->i_size; 3400 ext4_journal_stop(handle); 3401 } 3402 } 3403 3404 retry: 3405 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3406 offset, nr_segs, 3407 ext4_get_block, NULL); 3408 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3409 goto retry; 3410 3411 if (orphan) { 3412 int err; 3413 3414 /* Credits for sb + inode write */ 3415 handle = ext4_journal_start(inode, 2); 3416 if (IS_ERR(handle)) { 3417 /* This is really bad luck. We've written the data 3418 * but cannot extend i_size. Bail out and pretend 3419 * the write failed... */ 3420 ret = PTR_ERR(handle); 3421 goto out; 3422 } 3423 if (inode->i_nlink) 3424 ext4_orphan_del(handle, inode); 3425 if (ret > 0) { 3426 loff_t end = offset + ret; 3427 if (end > inode->i_size) { 3428 ei->i_disksize = end; 3429 i_size_write(inode, end); 3430 /* 3431 * We're going to return a positive `ret' 3432 * here due to non-zero-length I/O, so there's 3433 * no way of reporting error returns from 3434 * ext4_mark_inode_dirty() to userspace. So 3435 * ignore it. 3436 */ 3437 ext4_mark_inode_dirty(handle, inode); 3438 } 3439 } 3440 err = ext4_journal_stop(handle); 3441 if (ret == 0) 3442 ret = err; 3443 } 3444 out: 3445 return ret; 3446 } 3447 3448 /* Maximum number of blocks we map for direct IO at once. */ 3449 3450 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock, 3451 struct buffer_head *bh_result, int create) 3452 { 3453 handle_t *handle = NULL; 3454 int ret = 0; 3455 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 3456 int dio_credits; 3457 3458 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n", 3459 inode->i_ino, create); 3460 /* 3461 * DIO VFS code passes create = 0 flag for write to 3462 * the middle of file. It does this to avoid block 3463 * allocation for holes, to prevent expose stale data 3464 * out when there is parallel buffered read (which does 3465 * not hold the i_mutex lock) while direct IO write has 3466 * not completed. DIO request on holes finally falls back 3467 * to buffered IO for this reason. 3468 * 3469 * For ext4 extent based file, since we support fallocate, 3470 * new allocated extent as uninitialized, for holes, we 3471 * could fallocate blocks for holes, thus parallel 3472 * buffered IO read will zero out the page when read on 3473 * a hole while parallel DIO write to the hole has not completed. 3474 * 3475 * when we come here, we know it's a direct IO write to 3476 * to the middle of file (<i_size) 3477 * so it's safe to override the create flag from VFS. 3478 */ 3479 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT; 3480 3481 if (max_blocks > DIO_MAX_BLOCKS) 3482 max_blocks = DIO_MAX_BLOCKS; 3483 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 3484 handle = ext4_journal_start(inode, dio_credits); 3485 if (IS_ERR(handle)) { 3486 ret = PTR_ERR(handle); 3487 goto out; 3488 } 3489 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 3490 create); 3491 if (ret > 0) { 3492 bh_result->b_size = (ret << inode->i_blkbits); 3493 ret = 0; 3494 } 3495 ext4_journal_stop(handle); 3496 out: 3497 return ret; 3498 } 3499 3500 static void ext4_free_io_end(ext4_io_end_t *io) 3501 { 3502 BUG_ON(!io); 3503 iput(io->inode); 3504 kfree(io); 3505 } 3506 static void dump_aio_dio_list(struct inode * inode) 3507 { 3508 #ifdef EXT4_DEBUG 3509 struct list_head *cur, *before, *after; 3510 ext4_io_end_t *io, *io0, *io1; 3511 3512 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ 3513 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino); 3514 return; 3515 } 3516 3517 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino); 3518 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){ 3519 cur = &io->list; 3520 before = cur->prev; 3521 io0 = container_of(before, ext4_io_end_t, list); 3522 after = cur->next; 3523 io1 = container_of(after, ext4_io_end_t, list); 3524 3525 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3526 io, inode->i_ino, io0, io1); 3527 } 3528 #endif 3529 } 3530 3531 /* 3532 * check a range of space and convert unwritten extents to written. 3533 */ 3534 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io) 3535 { 3536 struct inode *inode = io->inode; 3537 loff_t offset = io->offset; 3538 size_t size = io->size; 3539 int ret = 0; 3540 3541 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p," 3542 "list->prev 0x%p\n", 3543 io, inode->i_ino, io->list.next, io->list.prev); 3544 3545 if (list_empty(&io->list)) 3546 return ret; 3547 3548 if (io->flag != DIO_AIO_UNWRITTEN) 3549 return ret; 3550 3551 if (offset + size <= i_size_read(inode)) 3552 ret = ext4_convert_unwritten_extents(inode, offset, size); 3553 3554 if (ret < 0) { 3555 printk(KERN_EMERG "%s: failed to convert unwritten" 3556 "extents to written extents, error is %d" 3557 " io is still on inode %lu aio dio list\n", 3558 __func__, ret, inode->i_ino); 3559 return ret; 3560 } 3561 3562 /* clear the DIO AIO unwritten flag */ 3563 io->flag = 0; 3564 return ret; 3565 } 3566 /* 3567 * work on completed aio dio IO, to convert unwritten extents to extents 3568 */ 3569 static void ext4_end_aio_dio_work(struct work_struct *work) 3570 { 3571 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3572 struct inode *inode = io->inode; 3573 int ret = 0; 3574 3575 mutex_lock(&inode->i_mutex); 3576 ret = ext4_end_aio_dio_nolock(io); 3577 if (ret >= 0) { 3578 if (!list_empty(&io->list)) 3579 list_del_init(&io->list); 3580 ext4_free_io_end(io); 3581 } 3582 mutex_unlock(&inode->i_mutex); 3583 } 3584 /* 3585 * This function is called from ext4_sync_file(). 3586 * 3587 * When AIO DIO IO is completed, the work to convert unwritten 3588 * extents to written is queued on workqueue but may not get immediately 3589 * scheduled. When fsync is called, we need to ensure the 3590 * conversion is complete before fsync returns. 3591 * The inode keeps track of a list of completed AIO from DIO path 3592 * that might needs to do the conversion. This function walks through 3593 * the list and convert the related unwritten extents to written. 3594 */ 3595 int flush_aio_dio_completed_IO(struct inode *inode) 3596 { 3597 ext4_io_end_t *io; 3598 int ret = 0; 3599 int ret2 = 0; 3600 3601 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)) 3602 return ret; 3603 3604 dump_aio_dio_list(inode); 3605 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ 3606 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next, 3607 ext4_io_end_t, list); 3608 /* 3609 * Calling ext4_end_aio_dio_nolock() to convert completed 3610 * IO to written. 3611 * 3612 * When ext4_sync_file() is called, run_queue() may already 3613 * about to flush the work corresponding to this io structure. 3614 * It will be upset if it founds the io structure related 3615 * to the work-to-be schedule is freed. 3616 * 3617 * Thus we need to keep the io structure still valid here after 3618 * convertion finished. The io structure has a flag to 3619 * avoid double converting from both fsync and background work 3620 * queue work. 3621 */ 3622 ret = ext4_end_aio_dio_nolock(io); 3623 if (ret < 0) 3624 ret2 = ret; 3625 else 3626 list_del_init(&io->list); 3627 } 3628 return (ret2 < 0) ? ret2 : 0; 3629 } 3630 3631 static ext4_io_end_t *ext4_init_io_end (struct inode *inode) 3632 { 3633 ext4_io_end_t *io = NULL; 3634 3635 io = kmalloc(sizeof(*io), GFP_NOFS); 3636 3637 if (io) { 3638 igrab(inode); 3639 io->inode = inode; 3640 io->flag = 0; 3641 io->offset = 0; 3642 io->size = 0; 3643 io->error = 0; 3644 INIT_WORK(&io->work, ext4_end_aio_dio_work); 3645 INIT_LIST_HEAD(&io->list); 3646 } 3647 3648 return io; 3649 } 3650 3651 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3652 ssize_t size, void *private) 3653 { 3654 ext4_io_end_t *io_end = iocb->private; 3655 struct workqueue_struct *wq; 3656 3657 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3658 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3659 iocb->private, io_end->inode->i_ino, iocb, offset, 3660 size); 3661 /* if not async direct IO or dio with 0 bytes write, just return */ 3662 if (!io_end || !size) 3663 return; 3664 3665 /* if not aio dio with unwritten extents, just free io and return */ 3666 if (io_end->flag != DIO_AIO_UNWRITTEN){ 3667 ext4_free_io_end(io_end); 3668 iocb->private = NULL; 3669 return; 3670 } 3671 3672 io_end->offset = offset; 3673 io_end->size = size; 3674 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3675 3676 /* queue the work to convert unwritten extents to written */ 3677 queue_work(wq, &io_end->work); 3678 3679 /* Add the io_end to per-inode completed aio dio list*/ 3680 list_add_tail(&io_end->list, 3681 &EXT4_I(io_end->inode)->i_aio_dio_complete_list); 3682 iocb->private = NULL; 3683 } 3684 /* 3685 * For ext4 extent files, ext4 will do direct-io write to holes, 3686 * preallocated extents, and those write extend the file, no need to 3687 * fall back to buffered IO. 3688 * 3689 * For holes, we fallocate those blocks, mark them as unintialized 3690 * If those blocks were preallocated, we mark sure they are splited, but 3691 * still keep the range to write as unintialized. 3692 * 3693 * The unwrritten extents will be converted to written when DIO is completed. 3694 * For async direct IO, since the IO may still pending when return, we 3695 * set up an end_io call back function, which will do the convertion 3696 * when async direct IO completed. 3697 * 3698 * If the O_DIRECT write will extend the file then add this inode to the 3699 * orphan list. So recovery will truncate it back to the original size 3700 * if the machine crashes during the write. 3701 * 3702 */ 3703 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3704 const struct iovec *iov, loff_t offset, 3705 unsigned long nr_segs) 3706 { 3707 struct file *file = iocb->ki_filp; 3708 struct inode *inode = file->f_mapping->host; 3709 ssize_t ret; 3710 size_t count = iov_length(iov, nr_segs); 3711 3712 loff_t final_size = offset + count; 3713 if (rw == WRITE && final_size <= inode->i_size) { 3714 /* 3715 * We could direct write to holes and fallocate. 3716 * 3717 * Allocated blocks to fill the hole are marked as uninitialized 3718 * to prevent paralel buffered read to expose the stale data 3719 * before DIO complete the data IO. 3720 * 3721 * As to previously fallocated extents, ext4 get_block 3722 * will just simply mark the buffer mapped but still 3723 * keep the extents uninitialized. 3724 * 3725 * for non AIO case, we will convert those unwritten extents 3726 * to written after return back from blockdev_direct_IO. 3727 * 3728 * for async DIO, the conversion needs to be defered when 3729 * the IO is completed. The ext4 end_io callback function 3730 * will be called to take care of the conversion work. 3731 * Here for async case, we allocate an io_end structure to 3732 * hook to the iocb. 3733 */ 3734 iocb->private = NULL; 3735 EXT4_I(inode)->cur_aio_dio = NULL; 3736 if (!is_sync_kiocb(iocb)) { 3737 iocb->private = ext4_init_io_end(inode); 3738 if (!iocb->private) 3739 return -ENOMEM; 3740 /* 3741 * we save the io structure for current async 3742 * direct IO, so that later ext4_get_blocks() 3743 * could flag the io structure whether there 3744 * is a unwritten extents needs to be converted 3745 * when IO is completed. 3746 */ 3747 EXT4_I(inode)->cur_aio_dio = iocb->private; 3748 } 3749 3750 ret = blockdev_direct_IO(rw, iocb, inode, 3751 inode->i_sb->s_bdev, iov, 3752 offset, nr_segs, 3753 ext4_get_block_dio_write, 3754 ext4_end_io_dio); 3755 if (iocb->private) 3756 EXT4_I(inode)->cur_aio_dio = NULL; 3757 /* 3758 * The io_end structure takes a reference to the inode, 3759 * that structure needs to be destroyed and the 3760 * reference to the inode need to be dropped, when IO is 3761 * complete, even with 0 byte write, or failed. 3762 * 3763 * In the successful AIO DIO case, the io_end structure will be 3764 * desctroyed and the reference to the inode will be dropped 3765 * after the end_io call back function is called. 3766 * 3767 * In the case there is 0 byte write, or error case, since 3768 * VFS direct IO won't invoke the end_io call back function, 3769 * we need to free the end_io structure here. 3770 */ 3771 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3772 ext4_free_io_end(iocb->private); 3773 iocb->private = NULL; 3774 } else if (ret > 0) 3775 /* 3776 * for non AIO case, since the IO is already 3777 * completed, we could do the convertion right here 3778 */ 3779 ret = ext4_convert_unwritten_extents(inode, 3780 offset, ret); 3781 return ret; 3782 } 3783 3784 /* for write the the end of file case, we fall back to old way */ 3785 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3786 } 3787 3788 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3789 const struct iovec *iov, loff_t offset, 3790 unsigned long nr_segs) 3791 { 3792 struct file *file = iocb->ki_filp; 3793 struct inode *inode = file->f_mapping->host; 3794 3795 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3796 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3797 3798 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3799 } 3800 3801 /* 3802 * Pages can be marked dirty completely asynchronously from ext4's journalling 3803 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3804 * much here because ->set_page_dirty is called under VFS locks. The page is 3805 * not necessarily locked. 3806 * 3807 * We cannot just dirty the page and leave attached buffers clean, because the 3808 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3809 * or jbddirty because all the journalling code will explode. 3810 * 3811 * So what we do is to mark the page "pending dirty" and next time writepage 3812 * is called, propagate that into the buffers appropriately. 3813 */ 3814 static int ext4_journalled_set_page_dirty(struct page *page) 3815 { 3816 SetPageChecked(page); 3817 return __set_page_dirty_nobuffers(page); 3818 } 3819 3820 static const struct address_space_operations ext4_ordered_aops = { 3821 .readpage = ext4_readpage, 3822 .readpages = ext4_readpages, 3823 .writepage = ext4_writepage, 3824 .sync_page = block_sync_page, 3825 .write_begin = ext4_write_begin, 3826 .write_end = ext4_ordered_write_end, 3827 .bmap = ext4_bmap, 3828 .invalidatepage = ext4_invalidatepage, 3829 .releasepage = ext4_releasepage, 3830 .direct_IO = ext4_direct_IO, 3831 .migratepage = buffer_migrate_page, 3832 .is_partially_uptodate = block_is_partially_uptodate, 3833 .error_remove_page = generic_error_remove_page, 3834 }; 3835 3836 static const struct address_space_operations ext4_writeback_aops = { 3837 .readpage = ext4_readpage, 3838 .readpages = ext4_readpages, 3839 .writepage = ext4_writepage, 3840 .sync_page = block_sync_page, 3841 .write_begin = ext4_write_begin, 3842 .write_end = ext4_writeback_write_end, 3843 .bmap = ext4_bmap, 3844 .invalidatepage = ext4_invalidatepage, 3845 .releasepage = ext4_releasepage, 3846 .direct_IO = ext4_direct_IO, 3847 .migratepage = buffer_migrate_page, 3848 .is_partially_uptodate = block_is_partially_uptodate, 3849 .error_remove_page = generic_error_remove_page, 3850 }; 3851 3852 static const struct address_space_operations ext4_journalled_aops = { 3853 .readpage = ext4_readpage, 3854 .readpages = ext4_readpages, 3855 .writepage = ext4_writepage, 3856 .sync_page = block_sync_page, 3857 .write_begin = ext4_write_begin, 3858 .write_end = ext4_journalled_write_end, 3859 .set_page_dirty = ext4_journalled_set_page_dirty, 3860 .bmap = ext4_bmap, 3861 .invalidatepage = ext4_invalidatepage, 3862 .releasepage = ext4_releasepage, 3863 .is_partially_uptodate = block_is_partially_uptodate, 3864 .error_remove_page = generic_error_remove_page, 3865 }; 3866 3867 static const struct address_space_operations ext4_da_aops = { 3868 .readpage = ext4_readpage, 3869 .readpages = ext4_readpages, 3870 .writepage = ext4_writepage, 3871 .writepages = ext4_da_writepages, 3872 .sync_page = block_sync_page, 3873 .write_begin = ext4_da_write_begin, 3874 .write_end = ext4_da_write_end, 3875 .bmap = ext4_bmap, 3876 .invalidatepage = ext4_da_invalidatepage, 3877 .releasepage = ext4_releasepage, 3878 .direct_IO = ext4_direct_IO, 3879 .migratepage = buffer_migrate_page, 3880 .is_partially_uptodate = block_is_partially_uptodate, 3881 .error_remove_page = generic_error_remove_page, 3882 }; 3883 3884 void ext4_set_aops(struct inode *inode) 3885 { 3886 if (ext4_should_order_data(inode) && 3887 test_opt(inode->i_sb, DELALLOC)) 3888 inode->i_mapping->a_ops = &ext4_da_aops; 3889 else if (ext4_should_order_data(inode)) 3890 inode->i_mapping->a_ops = &ext4_ordered_aops; 3891 else if (ext4_should_writeback_data(inode) && 3892 test_opt(inode->i_sb, DELALLOC)) 3893 inode->i_mapping->a_ops = &ext4_da_aops; 3894 else if (ext4_should_writeback_data(inode)) 3895 inode->i_mapping->a_ops = &ext4_writeback_aops; 3896 else 3897 inode->i_mapping->a_ops = &ext4_journalled_aops; 3898 } 3899 3900 /* 3901 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3902 * up to the end of the block which corresponds to `from'. 3903 * This required during truncate. We need to physically zero the tail end 3904 * of that block so it doesn't yield old data if the file is later grown. 3905 */ 3906 int ext4_block_truncate_page(handle_t *handle, 3907 struct address_space *mapping, loff_t from) 3908 { 3909 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3910 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3911 unsigned blocksize, length, pos; 3912 ext4_lblk_t iblock; 3913 struct inode *inode = mapping->host; 3914 struct buffer_head *bh; 3915 struct page *page; 3916 int err = 0; 3917 3918 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3919 mapping_gfp_mask(mapping) & ~__GFP_FS); 3920 if (!page) 3921 return -EINVAL; 3922 3923 blocksize = inode->i_sb->s_blocksize; 3924 length = blocksize - (offset & (blocksize - 1)); 3925 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3926 3927 /* 3928 * For "nobh" option, we can only work if we don't need to 3929 * read-in the page - otherwise we create buffers to do the IO. 3930 */ 3931 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3932 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3933 zero_user(page, offset, length); 3934 set_page_dirty(page); 3935 goto unlock; 3936 } 3937 3938 if (!page_has_buffers(page)) 3939 create_empty_buffers(page, blocksize, 0); 3940 3941 /* Find the buffer that contains "offset" */ 3942 bh = page_buffers(page); 3943 pos = blocksize; 3944 while (offset >= pos) { 3945 bh = bh->b_this_page; 3946 iblock++; 3947 pos += blocksize; 3948 } 3949 3950 err = 0; 3951 if (buffer_freed(bh)) { 3952 BUFFER_TRACE(bh, "freed: skip"); 3953 goto unlock; 3954 } 3955 3956 if (!buffer_mapped(bh)) { 3957 BUFFER_TRACE(bh, "unmapped"); 3958 ext4_get_block(inode, iblock, bh, 0); 3959 /* unmapped? It's a hole - nothing to do */ 3960 if (!buffer_mapped(bh)) { 3961 BUFFER_TRACE(bh, "still unmapped"); 3962 goto unlock; 3963 } 3964 } 3965 3966 /* Ok, it's mapped. Make sure it's up-to-date */ 3967 if (PageUptodate(page)) 3968 set_buffer_uptodate(bh); 3969 3970 if (!buffer_uptodate(bh)) { 3971 err = -EIO; 3972 ll_rw_block(READ, 1, &bh); 3973 wait_on_buffer(bh); 3974 /* Uhhuh. Read error. Complain and punt. */ 3975 if (!buffer_uptodate(bh)) 3976 goto unlock; 3977 } 3978 3979 if (ext4_should_journal_data(inode)) { 3980 BUFFER_TRACE(bh, "get write access"); 3981 err = ext4_journal_get_write_access(handle, bh); 3982 if (err) 3983 goto unlock; 3984 } 3985 3986 zero_user(page, offset, length); 3987 3988 BUFFER_TRACE(bh, "zeroed end of block"); 3989 3990 err = 0; 3991 if (ext4_should_journal_data(inode)) { 3992 err = ext4_handle_dirty_metadata(handle, inode, bh); 3993 } else { 3994 if (ext4_should_order_data(inode)) 3995 err = ext4_jbd2_file_inode(handle, inode); 3996 mark_buffer_dirty(bh); 3997 } 3998 3999 unlock: 4000 unlock_page(page); 4001 page_cache_release(page); 4002 return err; 4003 } 4004 4005 /* 4006 * Probably it should be a library function... search for first non-zero word 4007 * or memcmp with zero_page, whatever is better for particular architecture. 4008 * Linus? 4009 */ 4010 static inline int all_zeroes(__le32 *p, __le32 *q) 4011 { 4012 while (p < q) 4013 if (*p++) 4014 return 0; 4015 return 1; 4016 } 4017 4018 /** 4019 * ext4_find_shared - find the indirect blocks for partial truncation. 4020 * @inode: inode in question 4021 * @depth: depth of the affected branch 4022 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4023 * @chain: place to store the pointers to partial indirect blocks 4024 * @top: place to the (detached) top of branch 4025 * 4026 * This is a helper function used by ext4_truncate(). 4027 * 4028 * When we do truncate() we may have to clean the ends of several 4029 * indirect blocks but leave the blocks themselves alive. Block is 4030 * partially truncated if some data below the new i_size is refered 4031 * from it (and it is on the path to the first completely truncated 4032 * data block, indeed). We have to free the top of that path along 4033 * with everything to the right of the path. Since no allocation 4034 * past the truncation point is possible until ext4_truncate() 4035 * finishes, we may safely do the latter, but top of branch may 4036 * require special attention - pageout below the truncation point 4037 * might try to populate it. 4038 * 4039 * We atomically detach the top of branch from the tree, store the 4040 * block number of its root in *@top, pointers to buffer_heads of 4041 * partially truncated blocks - in @chain[].bh and pointers to 4042 * their last elements that should not be removed - in 4043 * @chain[].p. Return value is the pointer to last filled element 4044 * of @chain. 4045 * 4046 * The work left to caller to do the actual freeing of subtrees: 4047 * a) free the subtree starting from *@top 4048 * b) free the subtrees whose roots are stored in 4049 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4050 * c) free the subtrees growing from the inode past the @chain[0]. 4051 * (no partially truncated stuff there). */ 4052 4053 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4054 ext4_lblk_t offsets[4], Indirect chain[4], 4055 __le32 *top) 4056 { 4057 Indirect *partial, *p; 4058 int k, err; 4059 4060 *top = 0; 4061 /* Make k index the deepest non-null offest + 1 */ 4062 for (k = depth; k > 1 && !offsets[k-1]; k--) 4063 ; 4064 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4065 /* Writer: pointers */ 4066 if (!partial) 4067 partial = chain + k-1; 4068 /* 4069 * If the branch acquired continuation since we've looked at it - 4070 * fine, it should all survive and (new) top doesn't belong to us. 4071 */ 4072 if (!partial->key && *partial->p) 4073 /* Writer: end */ 4074 goto no_top; 4075 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4076 ; 4077 /* 4078 * OK, we've found the last block that must survive. The rest of our 4079 * branch should be detached before unlocking. However, if that rest 4080 * of branch is all ours and does not grow immediately from the inode 4081 * it's easier to cheat and just decrement partial->p. 4082 */ 4083 if (p == chain + k - 1 && p > chain) { 4084 p->p--; 4085 } else { 4086 *top = *p->p; 4087 /* Nope, don't do this in ext4. Must leave the tree intact */ 4088 #if 0 4089 *p->p = 0; 4090 #endif 4091 } 4092 /* Writer: end */ 4093 4094 while (partial > p) { 4095 brelse(partial->bh); 4096 partial--; 4097 } 4098 no_top: 4099 return partial; 4100 } 4101 4102 /* 4103 * Zero a number of block pointers in either an inode or an indirect block. 4104 * If we restart the transaction we must again get write access to the 4105 * indirect block for further modification. 4106 * 4107 * We release `count' blocks on disk, but (last - first) may be greater 4108 * than `count' because there can be holes in there. 4109 */ 4110 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 4111 struct buffer_head *bh, 4112 ext4_fsblk_t block_to_free, 4113 unsigned long count, __le32 *first, 4114 __le32 *last) 4115 { 4116 __le32 *p; 4117 if (try_to_extend_transaction(handle, inode)) { 4118 if (bh) { 4119 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4120 ext4_handle_dirty_metadata(handle, inode, bh); 4121 } 4122 ext4_mark_inode_dirty(handle, inode); 4123 ext4_truncate_restart_trans(handle, inode, 4124 blocks_for_truncate(inode)); 4125 if (bh) { 4126 BUFFER_TRACE(bh, "retaking write access"); 4127 ext4_journal_get_write_access(handle, bh); 4128 } 4129 } 4130 4131 /* 4132 * Any buffers which are on the journal will be in memory. We 4133 * find them on the hash table so jbd2_journal_revoke() will 4134 * run jbd2_journal_forget() on them. We've already detached 4135 * each block from the file, so bforget() in 4136 * jbd2_journal_forget() should be safe. 4137 * 4138 * AKPM: turn on bforget in jbd2_journal_forget()!!! 4139 */ 4140 for (p = first; p < last; p++) { 4141 u32 nr = le32_to_cpu(*p); 4142 if (nr) { 4143 struct buffer_head *tbh; 4144 4145 *p = 0; 4146 tbh = sb_find_get_block(inode->i_sb, nr); 4147 ext4_forget(handle, 0, inode, tbh, nr); 4148 } 4149 } 4150 4151 ext4_free_blocks(handle, inode, block_to_free, count, 0); 4152 } 4153 4154 /** 4155 * ext4_free_data - free a list of data blocks 4156 * @handle: handle for this transaction 4157 * @inode: inode we are dealing with 4158 * @this_bh: indirect buffer_head which contains *@first and *@last 4159 * @first: array of block numbers 4160 * @last: points immediately past the end of array 4161 * 4162 * We are freeing all blocks refered from that array (numbers are stored as 4163 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4164 * 4165 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4166 * blocks are contiguous then releasing them at one time will only affect one 4167 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4168 * actually use a lot of journal space. 4169 * 4170 * @this_bh will be %NULL if @first and @last point into the inode's direct 4171 * block pointers. 4172 */ 4173 static void ext4_free_data(handle_t *handle, struct inode *inode, 4174 struct buffer_head *this_bh, 4175 __le32 *first, __le32 *last) 4176 { 4177 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4178 unsigned long count = 0; /* Number of blocks in the run */ 4179 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4180 corresponding to 4181 block_to_free */ 4182 ext4_fsblk_t nr; /* Current block # */ 4183 __le32 *p; /* Pointer into inode/ind 4184 for current block */ 4185 int err; 4186 4187 if (this_bh) { /* For indirect block */ 4188 BUFFER_TRACE(this_bh, "get_write_access"); 4189 err = ext4_journal_get_write_access(handle, this_bh); 4190 /* Important: if we can't update the indirect pointers 4191 * to the blocks, we can't free them. */ 4192 if (err) 4193 return; 4194 } 4195 4196 for (p = first; p < last; p++) { 4197 nr = le32_to_cpu(*p); 4198 if (nr) { 4199 /* accumulate blocks to free if they're contiguous */ 4200 if (count == 0) { 4201 block_to_free = nr; 4202 block_to_free_p = p; 4203 count = 1; 4204 } else if (nr == block_to_free + count) { 4205 count++; 4206 } else { 4207 ext4_clear_blocks(handle, inode, this_bh, 4208 block_to_free, 4209 count, block_to_free_p, p); 4210 block_to_free = nr; 4211 block_to_free_p = p; 4212 count = 1; 4213 } 4214 } 4215 } 4216 4217 if (count > 0) 4218 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4219 count, block_to_free_p, p); 4220 4221 if (this_bh) { 4222 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4223 4224 /* 4225 * The buffer head should have an attached journal head at this 4226 * point. However, if the data is corrupted and an indirect 4227 * block pointed to itself, it would have been detached when 4228 * the block was cleared. Check for this instead of OOPSing. 4229 */ 4230 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4231 ext4_handle_dirty_metadata(handle, inode, this_bh); 4232 else 4233 ext4_error(inode->i_sb, __func__, 4234 "circular indirect block detected, " 4235 "inode=%lu, block=%llu", 4236 inode->i_ino, 4237 (unsigned long long) this_bh->b_blocknr); 4238 } 4239 } 4240 4241 /** 4242 * ext4_free_branches - free an array of branches 4243 * @handle: JBD handle for this transaction 4244 * @inode: inode we are dealing with 4245 * @parent_bh: the buffer_head which contains *@first and *@last 4246 * @first: array of block numbers 4247 * @last: pointer immediately past the end of array 4248 * @depth: depth of the branches to free 4249 * 4250 * We are freeing all blocks refered from these branches (numbers are 4251 * stored as little-endian 32-bit) and updating @inode->i_blocks 4252 * appropriately. 4253 */ 4254 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4255 struct buffer_head *parent_bh, 4256 __le32 *first, __le32 *last, int depth) 4257 { 4258 ext4_fsblk_t nr; 4259 __le32 *p; 4260 4261 if (ext4_handle_is_aborted(handle)) 4262 return; 4263 4264 if (depth--) { 4265 struct buffer_head *bh; 4266 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4267 p = last; 4268 while (--p >= first) { 4269 nr = le32_to_cpu(*p); 4270 if (!nr) 4271 continue; /* A hole */ 4272 4273 /* Go read the buffer for the next level down */ 4274 bh = sb_bread(inode->i_sb, nr); 4275 4276 /* 4277 * A read failure? Report error and clear slot 4278 * (should be rare). 4279 */ 4280 if (!bh) { 4281 ext4_error(inode->i_sb, "ext4_free_branches", 4282 "Read failure, inode=%lu, block=%llu", 4283 inode->i_ino, nr); 4284 continue; 4285 } 4286 4287 /* This zaps the entire block. Bottom up. */ 4288 BUFFER_TRACE(bh, "free child branches"); 4289 ext4_free_branches(handle, inode, bh, 4290 (__le32 *) bh->b_data, 4291 (__le32 *) bh->b_data + addr_per_block, 4292 depth); 4293 4294 /* 4295 * We've probably journalled the indirect block several 4296 * times during the truncate. But it's no longer 4297 * needed and we now drop it from the transaction via 4298 * jbd2_journal_revoke(). 4299 * 4300 * That's easy if it's exclusively part of this 4301 * transaction. But if it's part of the committing 4302 * transaction then jbd2_journal_forget() will simply 4303 * brelse() it. That means that if the underlying 4304 * block is reallocated in ext4_get_block(), 4305 * unmap_underlying_metadata() will find this block 4306 * and will try to get rid of it. damn, damn. 4307 * 4308 * If this block has already been committed to the 4309 * journal, a revoke record will be written. And 4310 * revoke records must be emitted *before* clearing 4311 * this block's bit in the bitmaps. 4312 */ 4313 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 4314 4315 /* 4316 * Everything below this this pointer has been 4317 * released. Now let this top-of-subtree go. 4318 * 4319 * We want the freeing of this indirect block to be 4320 * atomic in the journal with the updating of the 4321 * bitmap block which owns it. So make some room in 4322 * the journal. 4323 * 4324 * We zero the parent pointer *after* freeing its 4325 * pointee in the bitmaps, so if extend_transaction() 4326 * for some reason fails to put the bitmap changes and 4327 * the release into the same transaction, recovery 4328 * will merely complain about releasing a free block, 4329 * rather than leaking blocks. 4330 */ 4331 if (ext4_handle_is_aborted(handle)) 4332 return; 4333 if (try_to_extend_transaction(handle, inode)) { 4334 ext4_mark_inode_dirty(handle, inode); 4335 ext4_truncate_restart_trans(handle, inode, 4336 blocks_for_truncate(inode)); 4337 } 4338 4339 ext4_free_blocks(handle, inode, nr, 1, 1); 4340 4341 if (parent_bh) { 4342 /* 4343 * The block which we have just freed is 4344 * pointed to by an indirect block: journal it 4345 */ 4346 BUFFER_TRACE(parent_bh, "get_write_access"); 4347 if (!ext4_journal_get_write_access(handle, 4348 parent_bh)){ 4349 *p = 0; 4350 BUFFER_TRACE(parent_bh, 4351 "call ext4_handle_dirty_metadata"); 4352 ext4_handle_dirty_metadata(handle, 4353 inode, 4354 parent_bh); 4355 } 4356 } 4357 } 4358 } else { 4359 /* We have reached the bottom of the tree. */ 4360 BUFFER_TRACE(parent_bh, "free data blocks"); 4361 ext4_free_data(handle, inode, parent_bh, first, last); 4362 } 4363 } 4364 4365 int ext4_can_truncate(struct inode *inode) 4366 { 4367 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4368 return 0; 4369 if (S_ISREG(inode->i_mode)) 4370 return 1; 4371 if (S_ISDIR(inode->i_mode)) 4372 return 1; 4373 if (S_ISLNK(inode->i_mode)) 4374 return !ext4_inode_is_fast_symlink(inode); 4375 return 0; 4376 } 4377 4378 /* 4379 * ext4_truncate() 4380 * 4381 * We block out ext4_get_block() block instantiations across the entire 4382 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4383 * simultaneously on behalf of the same inode. 4384 * 4385 * As we work through the truncate and commmit bits of it to the journal there 4386 * is one core, guiding principle: the file's tree must always be consistent on 4387 * disk. We must be able to restart the truncate after a crash. 4388 * 4389 * The file's tree may be transiently inconsistent in memory (although it 4390 * probably isn't), but whenever we close off and commit a journal transaction, 4391 * the contents of (the filesystem + the journal) must be consistent and 4392 * restartable. It's pretty simple, really: bottom up, right to left (although 4393 * left-to-right works OK too). 4394 * 4395 * Note that at recovery time, journal replay occurs *before* the restart of 4396 * truncate against the orphan inode list. 4397 * 4398 * The committed inode has the new, desired i_size (which is the same as 4399 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4400 * that this inode's truncate did not complete and it will again call 4401 * ext4_truncate() to have another go. So there will be instantiated blocks 4402 * to the right of the truncation point in a crashed ext4 filesystem. But 4403 * that's fine - as long as they are linked from the inode, the post-crash 4404 * ext4_truncate() run will find them and release them. 4405 */ 4406 void ext4_truncate(struct inode *inode) 4407 { 4408 handle_t *handle; 4409 struct ext4_inode_info *ei = EXT4_I(inode); 4410 __le32 *i_data = ei->i_data; 4411 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4412 struct address_space *mapping = inode->i_mapping; 4413 ext4_lblk_t offsets[4]; 4414 Indirect chain[4]; 4415 Indirect *partial; 4416 __le32 nr = 0; 4417 int n; 4418 ext4_lblk_t last_block; 4419 unsigned blocksize = inode->i_sb->s_blocksize; 4420 4421 if (!ext4_can_truncate(inode)) 4422 return; 4423 4424 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4425 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE; 4426 4427 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 4428 ext4_ext_truncate(inode); 4429 return; 4430 } 4431 4432 handle = start_transaction(inode); 4433 if (IS_ERR(handle)) 4434 return; /* AKPM: return what? */ 4435 4436 last_block = (inode->i_size + blocksize-1) 4437 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4438 4439 if (inode->i_size & (blocksize - 1)) 4440 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4441 goto out_stop; 4442 4443 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4444 if (n == 0) 4445 goto out_stop; /* error */ 4446 4447 /* 4448 * OK. This truncate is going to happen. We add the inode to the 4449 * orphan list, so that if this truncate spans multiple transactions, 4450 * and we crash, we will resume the truncate when the filesystem 4451 * recovers. It also marks the inode dirty, to catch the new size. 4452 * 4453 * Implication: the file must always be in a sane, consistent 4454 * truncatable state while each transaction commits. 4455 */ 4456 if (ext4_orphan_add(handle, inode)) 4457 goto out_stop; 4458 4459 /* 4460 * From here we block out all ext4_get_block() callers who want to 4461 * modify the block allocation tree. 4462 */ 4463 down_write(&ei->i_data_sem); 4464 4465 ext4_discard_preallocations(inode); 4466 4467 /* 4468 * The orphan list entry will now protect us from any crash which 4469 * occurs before the truncate completes, so it is now safe to propagate 4470 * the new, shorter inode size (held for now in i_size) into the 4471 * on-disk inode. We do this via i_disksize, which is the value which 4472 * ext4 *really* writes onto the disk inode. 4473 */ 4474 ei->i_disksize = inode->i_size; 4475 4476 if (n == 1) { /* direct blocks */ 4477 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4478 i_data + EXT4_NDIR_BLOCKS); 4479 goto do_indirects; 4480 } 4481 4482 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4483 /* Kill the top of shared branch (not detached) */ 4484 if (nr) { 4485 if (partial == chain) { 4486 /* Shared branch grows from the inode */ 4487 ext4_free_branches(handle, inode, NULL, 4488 &nr, &nr+1, (chain+n-1) - partial); 4489 *partial->p = 0; 4490 /* 4491 * We mark the inode dirty prior to restart, 4492 * and prior to stop. No need for it here. 4493 */ 4494 } else { 4495 /* Shared branch grows from an indirect block */ 4496 BUFFER_TRACE(partial->bh, "get_write_access"); 4497 ext4_free_branches(handle, inode, partial->bh, 4498 partial->p, 4499 partial->p+1, (chain+n-1) - partial); 4500 } 4501 } 4502 /* Clear the ends of indirect blocks on the shared branch */ 4503 while (partial > chain) { 4504 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4505 (__le32*)partial->bh->b_data+addr_per_block, 4506 (chain+n-1) - partial); 4507 BUFFER_TRACE(partial->bh, "call brelse"); 4508 brelse(partial->bh); 4509 partial--; 4510 } 4511 do_indirects: 4512 /* Kill the remaining (whole) subtrees */ 4513 switch (offsets[0]) { 4514 default: 4515 nr = i_data[EXT4_IND_BLOCK]; 4516 if (nr) { 4517 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4518 i_data[EXT4_IND_BLOCK] = 0; 4519 } 4520 case EXT4_IND_BLOCK: 4521 nr = i_data[EXT4_DIND_BLOCK]; 4522 if (nr) { 4523 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4524 i_data[EXT4_DIND_BLOCK] = 0; 4525 } 4526 case EXT4_DIND_BLOCK: 4527 nr = i_data[EXT4_TIND_BLOCK]; 4528 if (nr) { 4529 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4530 i_data[EXT4_TIND_BLOCK] = 0; 4531 } 4532 case EXT4_TIND_BLOCK: 4533 ; 4534 } 4535 4536 up_write(&ei->i_data_sem); 4537 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4538 ext4_mark_inode_dirty(handle, inode); 4539 4540 /* 4541 * In a multi-transaction truncate, we only make the final transaction 4542 * synchronous 4543 */ 4544 if (IS_SYNC(inode)) 4545 ext4_handle_sync(handle); 4546 out_stop: 4547 /* 4548 * If this was a simple ftruncate(), and the file will remain alive 4549 * then we need to clear up the orphan record which we created above. 4550 * However, if this was a real unlink then we were called by 4551 * ext4_delete_inode(), and we allow that function to clean up the 4552 * orphan info for us. 4553 */ 4554 if (inode->i_nlink) 4555 ext4_orphan_del(handle, inode); 4556 4557 ext4_journal_stop(handle); 4558 } 4559 4560 /* 4561 * ext4_get_inode_loc returns with an extra refcount against the inode's 4562 * underlying buffer_head on success. If 'in_mem' is true, we have all 4563 * data in memory that is needed to recreate the on-disk version of this 4564 * inode. 4565 */ 4566 static int __ext4_get_inode_loc(struct inode *inode, 4567 struct ext4_iloc *iloc, int in_mem) 4568 { 4569 struct ext4_group_desc *gdp; 4570 struct buffer_head *bh; 4571 struct super_block *sb = inode->i_sb; 4572 ext4_fsblk_t block; 4573 int inodes_per_block, inode_offset; 4574 4575 iloc->bh = NULL; 4576 if (!ext4_valid_inum(sb, inode->i_ino)) 4577 return -EIO; 4578 4579 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4580 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4581 if (!gdp) 4582 return -EIO; 4583 4584 /* 4585 * Figure out the offset within the block group inode table 4586 */ 4587 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4588 inode_offset = ((inode->i_ino - 1) % 4589 EXT4_INODES_PER_GROUP(sb)); 4590 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4591 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4592 4593 bh = sb_getblk(sb, block); 4594 if (!bh) { 4595 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 4596 "inode block - inode=%lu, block=%llu", 4597 inode->i_ino, block); 4598 return -EIO; 4599 } 4600 if (!buffer_uptodate(bh)) { 4601 lock_buffer(bh); 4602 4603 /* 4604 * If the buffer has the write error flag, we have failed 4605 * to write out another inode in the same block. In this 4606 * case, we don't have to read the block because we may 4607 * read the old inode data successfully. 4608 */ 4609 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4610 set_buffer_uptodate(bh); 4611 4612 if (buffer_uptodate(bh)) { 4613 /* someone brought it uptodate while we waited */ 4614 unlock_buffer(bh); 4615 goto has_buffer; 4616 } 4617 4618 /* 4619 * If we have all information of the inode in memory and this 4620 * is the only valid inode in the block, we need not read the 4621 * block. 4622 */ 4623 if (in_mem) { 4624 struct buffer_head *bitmap_bh; 4625 int i, start; 4626 4627 start = inode_offset & ~(inodes_per_block - 1); 4628 4629 /* Is the inode bitmap in cache? */ 4630 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4631 if (!bitmap_bh) 4632 goto make_io; 4633 4634 /* 4635 * If the inode bitmap isn't in cache then the 4636 * optimisation may end up performing two reads instead 4637 * of one, so skip it. 4638 */ 4639 if (!buffer_uptodate(bitmap_bh)) { 4640 brelse(bitmap_bh); 4641 goto make_io; 4642 } 4643 for (i = start; i < start + inodes_per_block; i++) { 4644 if (i == inode_offset) 4645 continue; 4646 if (ext4_test_bit(i, bitmap_bh->b_data)) 4647 break; 4648 } 4649 brelse(bitmap_bh); 4650 if (i == start + inodes_per_block) { 4651 /* all other inodes are free, so skip I/O */ 4652 memset(bh->b_data, 0, bh->b_size); 4653 set_buffer_uptodate(bh); 4654 unlock_buffer(bh); 4655 goto has_buffer; 4656 } 4657 } 4658 4659 make_io: 4660 /* 4661 * If we need to do any I/O, try to pre-readahead extra 4662 * blocks from the inode table. 4663 */ 4664 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4665 ext4_fsblk_t b, end, table; 4666 unsigned num; 4667 4668 table = ext4_inode_table(sb, gdp); 4669 /* s_inode_readahead_blks is always a power of 2 */ 4670 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4671 if (table > b) 4672 b = table; 4673 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4674 num = EXT4_INODES_PER_GROUP(sb); 4675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4676 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4677 num -= ext4_itable_unused_count(sb, gdp); 4678 table += num / inodes_per_block; 4679 if (end > table) 4680 end = table; 4681 while (b <= end) 4682 sb_breadahead(sb, b++); 4683 } 4684 4685 /* 4686 * There are other valid inodes in the buffer, this inode 4687 * has in-inode xattrs, or we don't have this inode in memory. 4688 * Read the block from disk. 4689 */ 4690 get_bh(bh); 4691 bh->b_end_io = end_buffer_read_sync; 4692 submit_bh(READ_META, bh); 4693 wait_on_buffer(bh); 4694 if (!buffer_uptodate(bh)) { 4695 ext4_error(sb, __func__, 4696 "unable to read inode block - inode=%lu, " 4697 "block=%llu", inode->i_ino, block); 4698 brelse(bh); 4699 return -EIO; 4700 } 4701 } 4702 has_buffer: 4703 iloc->bh = bh; 4704 return 0; 4705 } 4706 4707 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4708 { 4709 /* We have all inode data except xattrs in memory here. */ 4710 return __ext4_get_inode_loc(inode, iloc, 4711 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 4712 } 4713 4714 void ext4_set_inode_flags(struct inode *inode) 4715 { 4716 unsigned int flags = EXT4_I(inode)->i_flags; 4717 4718 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4719 if (flags & EXT4_SYNC_FL) 4720 inode->i_flags |= S_SYNC; 4721 if (flags & EXT4_APPEND_FL) 4722 inode->i_flags |= S_APPEND; 4723 if (flags & EXT4_IMMUTABLE_FL) 4724 inode->i_flags |= S_IMMUTABLE; 4725 if (flags & EXT4_NOATIME_FL) 4726 inode->i_flags |= S_NOATIME; 4727 if (flags & EXT4_DIRSYNC_FL) 4728 inode->i_flags |= S_DIRSYNC; 4729 } 4730 4731 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4732 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4733 { 4734 unsigned int flags = ei->vfs_inode.i_flags; 4735 4736 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4737 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4738 if (flags & S_SYNC) 4739 ei->i_flags |= EXT4_SYNC_FL; 4740 if (flags & S_APPEND) 4741 ei->i_flags |= EXT4_APPEND_FL; 4742 if (flags & S_IMMUTABLE) 4743 ei->i_flags |= EXT4_IMMUTABLE_FL; 4744 if (flags & S_NOATIME) 4745 ei->i_flags |= EXT4_NOATIME_FL; 4746 if (flags & S_DIRSYNC) 4747 ei->i_flags |= EXT4_DIRSYNC_FL; 4748 } 4749 4750 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4751 struct ext4_inode_info *ei) 4752 { 4753 blkcnt_t i_blocks ; 4754 struct inode *inode = &(ei->vfs_inode); 4755 struct super_block *sb = inode->i_sb; 4756 4757 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4758 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4759 /* we are using combined 48 bit field */ 4760 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4761 le32_to_cpu(raw_inode->i_blocks_lo); 4762 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4763 /* i_blocks represent file system block size */ 4764 return i_blocks << (inode->i_blkbits - 9); 4765 } else { 4766 return i_blocks; 4767 } 4768 } else { 4769 return le32_to_cpu(raw_inode->i_blocks_lo); 4770 } 4771 } 4772 4773 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4774 { 4775 struct ext4_iloc iloc; 4776 struct ext4_inode *raw_inode; 4777 struct ext4_inode_info *ei; 4778 struct buffer_head *bh; 4779 struct inode *inode; 4780 long ret; 4781 int block; 4782 4783 inode = iget_locked(sb, ino); 4784 if (!inode) 4785 return ERR_PTR(-ENOMEM); 4786 if (!(inode->i_state & I_NEW)) 4787 return inode; 4788 4789 ei = EXT4_I(inode); 4790 4791 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4792 if (ret < 0) 4793 goto bad_inode; 4794 bh = iloc.bh; 4795 raw_inode = ext4_raw_inode(&iloc); 4796 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4797 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4798 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4799 if (!(test_opt(inode->i_sb, NO_UID32))) { 4800 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4801 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4802 } 4803 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4804 4805 ei->i_state = 0; 4806 ei->i_dir_start_lookup = 0; 4807 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4808 /* We now have enough fields to check if the inode was active or not. 4809 * This is needed because nfsd might try to access dead inodes 4810 * the test is that same one that e2fsck uses 4811 * NeilBrown 1999oct15 4812 */ 4813 if (inode->i_nlink == 0) { 4814 if (inode->i_mode == 0 || 4815 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4816 /* this inode is deleted */ 4817 brelse(bh); 4818 ret = -ESTALE; 4819 goto bad_inode; 4820 } 4821 /* The only unlinked inodes we let through here have 4822 * valid i_mode and are being read by the orphan 4823 * recovery code: that's fine, we're about to complete 4824 * the process of deleting those. */ 4825 } 4826 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4827 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4828 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4829 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4830 ei->i_file_acl |= 4831 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4832 inode->i_size = ext4_isize(raw_inode); 4833 ei->i_disksize = inode->i_size; 4834 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4835 ei->i_block_group = iloc.block_group; 4836 ei->i_last_alloc_group = ~0; 4837 /* 4838 * NOTE! The in-memory inode i_data array is in little-endian order 4839 * even on big-endian machines: we do NOT byteswap the block numbers! 4840 */ 4841 for (block = 0; block < EXT4_N_BLOCKS; block++) 4842 ei->i_data[block] = raw_inode->i_block[block]; 4843 INIT_LIST_HEAD(&ei->i_orphan); 4844 4845 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4846 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4847 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4848 EXT4_INODE_SIZE(inode->i_sb)) { 4849 brelse(bh); 4850 ret = -EIO; 4851 goto bad_inode; 4852 } 4853 if (ei->i_extra_isize == 0) { 4854 /* The extra space is currently unused. Use it. */ 4855 ei->i_extra_isize = sizeof(struct ext4_inode) - 4856 EXT4_GOOD_OLD_INODE_SIZE; 4857 } else { 4858 __le32 *magic = (void *)raw_inode + 4859 EXT4_GOOD_OLD_INODE_SIZE + 4860 ei->i_extra_isize; 4861 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4862 ei->i_state |= EXT4_STATE_XATTR; 4863 } 4864 } else 4865 ei->i_extra_isize = 0; 4866 4867 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4868 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4869 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4870 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4871 4872 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4873 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4874 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4875 inode->i_version |= 4876 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4877 } 4878 4879 ret = 0; 4880 if (ei->i_file_acl && 4881 ((ei->i_file_acl < 4882 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) + 4883 EXT4_SB(sb)->s_gdb_count)) || 4884 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) { 4885 ext4_error(sb, __func__, 4886 "bad extended attribute block %llu in inode #%lu", 4887 ei->i_file_acl, inode->i_ino); 4888 ret = -EIO; 4889 goto bad_inode; 4890 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 4891 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4892 (S_ISLNK(inode->i_mode) && 4893 !ext4_inode_is_fast_symlink(inode))) 4894 /* Validate extent which is part of inode */ 4895 ret = ext4_ext_check_inode(inode); 4896 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4897 (S_ISLNK(inode->i_mode) && 4898 !ext4_inode_is_fast_symlink(inode))) { 4899 /* Validate block references which are part of inode */ 4900 ret = ext4_check_inode_blockref(inode); 4901 } 4902 if (ret) { 4903 brelse(bh); 4904 goto bad_inode; 4905 } 4906 4907 if (S_ISREG(inode->i_mode)) { 4908 inode->i_op = &ext4_file_inode_operations; 4909 inode->i_fop = &ext4_file_operations; 4910 ext4_set_aops(inode); 4911 } else if (S_ISDIR(inode->i_mode)) { 4912 inode->i_op = &ext4_dir_inode_operations; 4913 inode->i_fop = &ext4_dir_operations; 4914 } else if (S_ISLNK(inode->i_mode)) { 4915 if (ext4_inode_is_fast_symlink(inode)) { 4916 inode->i_op = &ext4_fast_symlink_inode_operations; 4917 nd_terminate_link(ei->i_data, inode->i_size, 4918 sizeof(ei->i_data) - 1); 4919 } else { 4920 inode->i_op = &ext4_symlink_inode_operations; 4921 ext4_set_aops(inode); 4922 } 4923 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4924 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4925 inode->i_op = &ext4_special_inode_operations; 4926 if (raw_inode->i_block[0]) 4927 init_special_inode(inode, inode->i_mode, 4928 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4929 else 4930 init_special_inode(inode, inode->i_mode, 4931 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4932 } else { 4933 brelse(bh); 4934 ret = -EIO; 4935 ext4_error(inode->i_sb, __func__, 4936 "bogus i_mode (%o) for inode=%lu", 4937 inode->i_mode, inode->i_ino); 4938 goto bad_inode; 4939 } 4940 brelse(iloc.bh); 4941 ext4_set_inode_flags(inode); 4942 unlock_new_inode(inode); 4943 return inode; 4944 4945 bad_inode: 4946 iget_failed(inode); 4947 return ERR_PTR(ret); 4948 } 4949 4950 static int ext4_inode_blocks_set(handle_t *handle, 4951 struct ext4_inode *raw_inode, 4952 struct ext4_inode_info *ei) 4953 { 4954 struct inode *inode = &(ei->vfs_inode); 4955 u64 i_blocks = inode->i_blocks; 4956 struct super_block *sb = inode->i_sb; 4957 4958 if (i_blocks <= ~0U) { 4959 /* 4960 * i_blocks can be represnted in a 32 bit variable 4961 * as multiple of 512 bytes 4962 */ 4963 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4964 raw_inode->i_blocks_high = 0; 4965 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4966 return 0; 4967 } 4968 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4969 return -EFBIG; 4970 4971 if (i_blocks <= 0xffffffffffffULL) { 4972 /* 4973 * i_blocks can be represented in a 48 bit variable 4974 * as multiple of 512 bytes 4975 */ 4976 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4977 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4978 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4979 } else { 4980 ei->i_flags |= EXT4_HUGE_FILE_FL; 4981 /* i_block is stored in file system block size */ 4982 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4983 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4984 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4985 } 4986 return 0; 4987 } 4988 4989 /* 4990 * Post the struct inode info into an on-disk inode location in the 4991 * buffer-cache. This gobbles the caller's reference to the 4992 * buffer_head in the inode location struct. 4993 * 4994 * The caller must have write access to iloc->bh. 4995 */ 4996 static int ext4_do_update_inode(handle_t *handle, 4997 struct inode *inode, 4998 struct ext4_iloc *iloc) 4999 { 5000 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5001 struct ext4_inode_info *ei = EXT4_I(inode); 5002 struct buffer_head *bh = iloc->bh; 5003 int err = 0, rc, block; 5004 5005 /* For fields not not tracking in the in-memory inode, 5006 * initialise them to zero for new inodes. */ 5007 if (ei->i_state & EXT4_STATE_NEW) 5008 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5009 5010 ext4_get_inode_flags(ei); 5011 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5012 if (!(test_opt(inode->i_sb, NO_UID32))) { 5013 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5014 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5015 /* 5016 * Fix up interoperability with old kernels. Otherwise, old inodes get 5017 * re-used with the upper 16 bits of the uid/gid intact 5018 */ 5019 if (!ei->i_dtime) { 5020 raw_inode->i_uid_high = 5021 cpu_to_le16(high_16_bits(inode->i_uid)); 5022 raw_inode->i_gid_high = 5023 cpu_to_le16(high_16_bits(inode->i_gid)); 5024 } else { 5025 raw_inode->i_uid_high = 0; 5026 raw_inode->i_gid_high = 0; 5027 } 5028 } else { 5029 raw_inode->i_uid_low = 5030 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5031 raw_inode->i_gid_low = 5032 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5033 raw_inode->i_uid_high = 0; 5034 raw_inode->i_gid_high = 0; 5035 } 5036 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5037 5038 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5039 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5040 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5041 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5042 5043 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5044 goto out_brelse; 5045 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5046 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5047 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5048 cpu_to_le32(EXT4_OS_HURD)) 5049 raw_inode->i_file_acl_high = 5050 cpu_to_le16(ei->i_file_acl >> 32); 5051 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5052 ext4_isize_set(raw_inode, ei->i_disksize); 5053 if (ei->i_disksize > 0x7fffffffULL) { 5054 struct super_block *sb = inode->i_sb; 5055 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5056 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5057 EXT4_SB(sb)->s_es->s_rev_level == 5058 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5059 /* If this is the first large file 5060 * created, add a flag to the superblock. 5061 */ 5062 err = ext4_journal_get_write_access(handle, 5063 EXT4_SB(sb)->s_sbh); 5064 if (err) 5065 goto out_brelse; 5066 ext4_update_dynamic_rev(sb); 5067 EXT4_SET_RO_COMPAT_FEATURE(sb, 5068 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5069 sb->s_dirt = 1; 5070 ext4_handle_sync(handle); 5071 err = ext4_handle_dirty_metadata(handle, inode, 5072 EXT4_SB(sb)->s_sbh); 5073 } 5074 } 5075 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5076 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5077 if (old_valid_dev(inode->i_rdev)) { 5078 raw_inode->i_block[0] = 5079 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5080 raw_inode->i_block[1] = 0; 5081 } else { 5082 raw_inode->i_block[0] = 0; 5083 raw_inode->i_block[1] = 5084 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5085 raw_inode->i_block[2] = 0; 5086 } 5087 } else 5088 for (block = 0; block < EXT4_N_BLOCKS; block++) 5089 raw_inode->i_block[block] = ei->i_data[block]; 5090 5091 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5092 if (ei->i_extra_isize) { 5093 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5094 raw_inode->i_version_hi = 5095 cpu_to_le32(inode->i_version >> 32); 5096 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5097 } 5098 5099 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5100 rc = ext4_handle_dirty_metadata(handle, inode, bh); 5101 if (!err) 5102 err = rc; 5103 ei->i_state &= ~EXT4_STATE_NEW; 5104 5105 out_brelse: 5106 brelse(bh); 5107 ext4_std_error(inode->i_sb, err); 5108 return err; 5109 } 5110 5111 /* 5112 * ext4_write_inode() 5113 * 5114 * We are called from a few places: 5115 * 5116 * - Within generic_file_write() for O_SYNC files. 5117 * Here, there will be no transaction running. We wait for any running 5118 * trasnaction to commit. 5119 * 5120 * - Within sys_sync(), kupdate and such. 5121 * We wait on commit, if tol to. 5122 * 5123 * - Within prune_icache() (PF_MEMALLOC == true) 5124 * Here we simply return. We can't afford to block kswapd on the 5125 * journal commit. 5126 * 5127 * In all cases it is actually safe for us to return without doing anything, 5128 * because the inode has been copied into a raw inode buffer in 5129 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5130 * knfsd. 5131 * 5132 * Note that we are absolutely dependent upon all inode dirtiers doing the 5133 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5134 * which we are interested. 5135 * 5136 * It would be a bug for them to not do this. The code: 5137 * 5138 * mark_inode_dirty(inode) 5139 * stuff(); 5140 * inode->i_size = expr; 5141 * 5142 * is in error because a kswapd-driven write_inode() could occur while 5143 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5144 * will no longer be on the superblock's dirty inode list. 5145 */ 5146 int ext4_write_inode(struct inode *inode, int wait) 5147 { 5148 int err; 5149 5150 if (current->flags & PF_MEMALLOC) 5151 return 0; 5152 5153 if (EXT4_SB(inode->i_sb)->s_journal) { 5154 if (ext4_journal_current_handle()) { 5155 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5156 dump_stack(); 5157 return -EIO; 5158 } 5159 5160 if (!wait) 5161 return 0; 5162 5163 err = ext4_force_commit(inode->i_sb); 5164 } else { 5165 struct ext4_iloc iloc; 5166 5167 err = ext4_get_inode_loc(inode, &iloc); 5168 if (err) 5169 return err; 5170 if (wait) 5171 sync_dirty_buffer(iloc.bh); 5172 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5173 ext4_error(inode->i_sb, __func__, 5174 "IO error syncing inode, " 5175 "inode=%lu, block=%llu", 5176 inode->i_ino, 5177 (unsigned long long)iloc.bh->b_blocknr); 5178 err = -EIO; 5179 } 5180 } 5181 return err; 5182 } 5183 5184 /* 5185 * ext4_setattr() 5186 * 5187 * Called from notify_change. 5188 * 5189 * We want to trap VFS attempts to truncate the file as soon as 5190 * possible. In particular, we want to make sure that when the VFS 5191 * shrinks i_size, we put the inode on the orphan list and modify 5192 * i_disksize immediately, so that during the subsequent flushing of 5193 * dirty pages and freeing of disk blocks, we can guarantee that any 5194 * commit will leave the blocks being flushed in an unused state on 5195 * disk. (On recovery, the inode will get truncated and the blocks will 5196 * be freed, so we have a strong guarantee that no future commit will 5197 * leave these blocks visible to the user.) 5198 * 5199 * Another thing we have to assure is that if we are in ordered mode 5200 * and inode is still attached to the committing transaction, we must 5201 * we start writeout of all the dirty pages which are being truncated. 5202 * This way we are sure that all the data written in the previous 5203 * transaction are already on disk (truncate waits for pages under 5204 * writeback). 5205 * 5206 * Called with inode->i_mutex down. 5207 */ 5208 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5209 { 5210 struct inode *inode = dentry->d_inode; 5211 int error, rc = 0; 5212 const unsigned int ia_valid = attr->ia_valid; 5213 5214 error = inode_change_ok(inode, attr); 5215 if (error) 5216 return error; 5217 5218 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5219 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5220 handle_t *handle; 5221 5222 /* (user+group)*(old+new) structure, inode write (sb, 5223 * inode block, ? - but truncate inode update has it) */ 5224 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 5225 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 5226 if (IS_ERR(handle)) { 5227 error = PTR_ERR(handle); 5228 goto err_out; 5229 } 5230 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 5231 if (error) { 5232 ext4_journal_stop(handle); 5233 return error; 5234 } 5235 /* Update corresponding info in inode so that everything is in 5236 * one transaction */ 5237 if (attr->ia_valid & ATTR_UID) 5238 inode->i_uid = attr->ia_uid; 5239 if (attr->ia_valid & ATTR_GID) 5240 inode->i_gid = attr->ia_gid; 5241 error = ext4_mark_inode_dirty(handle, inode); 5242 ext4_journal_stop(handle); 5243 } 5244 5245 if (attr->ia_valid & ATTR_SIZE) { 5246 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 5247 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5248 5249 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5250 error = -EFBIG; 5251 goto err_out; 5252 } 5253 } 5254 } 5255 5256 if (S_ISREG(inode->i_mode) && 5257 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 5258 handle_t *handle; 5259 5260 handle = ext4_journal_start(inode, 3); 5261 if (IS_ERR(handle)) { 5262 error = PTR_ERR(handle); 5263 goto err_out; 5264 } 5265 5266 error = ext4_orphan_add(handle, inode); 5267 EXT4_I(inode)->i_disksize = attr->ia_size; 5268 rc = ext4_mark_inode_dirty(handle, inode); 5269 if (!error) 5270 error = rc; 5271 ext4_journal_stop(handle); 5272 5273 if (ext4_should_order_data(inode)) { 5274 error = ext4_begin_ordered_truncate(inode, 5275 attr->ia_size); 5276 if (error) { 5277 /* Do as much error cleanup as possible */ 5278 handle = ext4_journal_start(inode, 3); 5279 if (IS_ERR(handle)) { 5280 ext4_orphan_del(NULL, inode); 5281 goto err_out; 5282 } 5283 ext4_orphan_del(handle, inode); 5284 ext4_journal_stop(handle); 5285 goto err_out; 5286 } 5287 } 5288 } 5289 5290 rc = inode_setattr(inode, attr); 5291 5292 /* If inode_setattr's call to ext4_truncate failed to get a 5293 * transaction handle at all, we need to clean up the in-core 5294 * orphan list manually. */ 5295 if (inode->i_nlink) 5296 ext4_orphan_del(NULL, inode); 5297 5298 if (!rc && (ia_valid & ATTR_MODE)) 5299 rc = ext4_acl_chmod(inode); 5300 5301 err_out: 5302 ext4_std_error(inode->i_sb, error); 5303 if (!error) 5304 error = rc; 5305 return error; 5306 } 5307 5308 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5309 struct kstat *stat) 5310 { 5311 struct inode *inode; 5312 unsigned long delalloc_blocks; 5313 5314 inode = dentry->d_inode; 5315 generic_fillattr(inode, stat); 5316 5317 /* 5318 * We can't update i_blocks if the block allocation is delayed 5319 * otherwise in the case of system crash before the real block 5320 * allocation is done, we will have i_blocks inconsistent with 5321 * on-disk file blocks. 5322 * We always keep i_blocks updated together with real 5323 * allocation. But to not confuse with user, stat 5324 * will return the blocks that include the delayed allocation 5325 * blocks for this file. 5326 */ 5327 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5328 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5329 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5330 5331 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5332 return 0; 5333 } 5334 5335 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5336 int chunk) 5337 { 5338 int indirects; 5339 5340 /* if nrblocks are contiguous */ 5341 if (chunk) { 5342 /* 5343 * With N contiguous data blocks, it need at most 5344 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5345 * 2 dindirect blocks 5346 * 1 tindirect block 5347 */ 5348 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5349 return indirects + 3; 5350 } 5351 /* 5352 * if nrblocks are not contiguous, worse case, each block touch 5353 * a indirect block, and each indirect block touch a double indirect 5354 * block, plus a triple indirect block 5355 */ 5356 indirects = nrblocks * 2 + 1; 5357 return indirects; 5358 } 5359 5360 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5361 { 5362 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 5363 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5364 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5365 } 5366 5367 /* 5368 * Account for index blocks, block groups bitmaps and block group 5369 * descriptor blocks if modify datablocks and index blocks 5370 * worse case, the indexs blocks spread over different block groups 5371 * 5372 * If datablocks are discontiguous, they are possible to spread over 5373 * different block groups too. If they are contiugous, with flexbg, 5374 * they could still across block group boundary. 5375 * 5376 * Also account for superblock, inode, quota and xattr blocks 5377 */ 5378 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5379 { 5380 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5381 int gdpblocks; 5382 int idxblocks; 5383 int ret = 0; 5384 5385 /* 5386 * How many index blocks need to touch to modify nrblocks? 5387 * The "Chunk" flag indicating whether the nrblocks is 5388 * physically contiguous on disk 5389 * 5390 * For Direct IO and fallocate, they calls get_block to allocate 5391 * one single extent at a time, so they could set the "Chunk" flag 5392 */ 5393 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5394 5395 ret = idxblocks; 5396 5397 /* 5398 * Now let's see how many group bitmaps and group descriptors need 5399 * to account 5400 */ 5401 groups = idxblocks; 5402 if (chunk) 5403 groups += 1; 5404 else 5405 groups += nrblocks; 5406 5407 gdpblocks = groups; 5408 if (groups > ngroups) 5409 groups = ngroups; 5410 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5411 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5412 5413 /* bitmaps and block group descriptor blocks */ 5414 ret += groups + gdpblocks; 5415 5416 /* Blocks for super block, inode, quota and xattr blocks */ 5417 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5418 5419 return ret; 5420 } 5421 5422 /* 5423 * Calulate the total number of credits to reserve to fit 5424 * the modification of a single pages into a single transaction, 5425 * which may include multiple chunks of block allocations. 5426 * 5427 * This could be called via ext4_write_begin() 5428 * 5429 * We need to consider the worse case, when 5430 * one new block per extent. 5431 */ 5432 int ext4_writepage_trans_blocks(struct inode *inode) 5433 { 5434 int bpp = ext4_journal_blocks_per_page(inode); 5435 int ret; 5436 5437 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5438 5439 /* Account for data blocks for journalled mode */ 5440 if (ext4_should_journal_data(inode)) 5441 ret += bpp; 5442 return ret; 5443 } 5444 5445 /* 5446 * Calculate the journal credits for a chunk of data modification. 5447 * 5448 * This is called from DIO, fallocate or whoever calling 5449 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks. 5450 * 5451 * journal buffers for data blocks are not included here, as DIO 5452 * and fallocate do no need to journal data buffers. 5453 */ 5454 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5455 { 5456 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5457 } 5458 5459 /* 5460 * The caller must have previously called ext4_reserve_inode_write(). 5461 * Give this, we know that the caller already has write access to iloc->bh. 5462 */ 5463 int ext4_mark_iloc_dirty(handle_t *handle, 5464 struct inode *inode, struct ext4_iloc *iloc) 5465 { 5466 int err = 0; 5467 5468 if (test_opt(inode->i_sb, I_VERSION)) 5469 inode_inc_iversion(inode); 5470 5471 /* the do_update_inode consumes one bh->b_count */ 5472 get_bh(iloc->bh); 5473 5474 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5475 err = ext4_do_update_inode(handle, inode, iloc); 5476 put_bh(iloc->bh); 5477 return err; 5478 } 5479 5480 /* 5481 * On success, We end up with an outstanding reference count against 5482 * iloc->bh. This _must_ be cleaned up later. 5483 */ 5484 5485 int 5486 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5487 struct ext4_iloc *iloc) 5488 { 5489 int err; 5490 5491 err = ext4_get_inode_loc(inode, iloc); 5492 if (!err) { 5493 BUFFER_TRACE(iloc->bh, "get_write_access"); 5494 err = ext4_journal_get_write_access(handle, iloc->bh); 5495 if (err) { 5496 brelse(iloc->bh); 5497 iloc->bh = NULL; 5498 } 5499 } 5500 ext4_std_error(inode->i_sb, err); 5501 return err; 5502 } 5503 5504 /* 5505 * Expand an inode by new_extra_isize bytes. 5506 * Returns 0 on success or negative error number on failure. 5507 */ 5508 static int ext4_expand_extra_isize(struct inode *inode, 5509 unsigned int new_extra_isize, 5510 struct ext4_iloc iloc, 5511 handle_t *handle) 5512 { 5513 struct ext4_inode *raw_inode; 5514 struct ext4_xattr_ibody_header *header; 5515 struct ext4_xattr_entry *entry; 5516 5517 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5518 return 0; 5519 5520 raw_inode = ext4_raw_inode(&iloc); 5521 5522 header = IHDR(inode, raw_inode); 5523 entry = IFIRST(header); 5524 5525 /* No extended attributes present */ 5526 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 5527 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5528 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5529 new_extra_isize); 5530 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5531 return 0; 5532 } 5533 5534 /* try to expand with EAs present */ 5535 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5536 raw_inode, handle); 5537 } 5538 5539 /* 5540 * What we do here is to mark the in-core inode as clean with respect to inode 5541 * dirtiness (it may still be data-dirty). 5542 * This means that the in-core inode may be reaped by prune_icache 5543 * without having to perform any I/O. This is a very good thing, 5544 * because *any* task may call prune_icache - even ones which 5545 * have a transaction open against a different journal. 5546 * 5547 * Is this cheating? Not really. Sure, we haven't written the 5548 * inode out, but prune_icache isn't a user-visible syncing function. 5549 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5550 * we start and wait on commits. 5551 * 5552 * Is this efficient/effective? Well, we're being nice to the system 5553 * by cleaning up our inodes proactively so they can be reaped 5554 * without I/O. But we are potentially leaving up to five seconds' 5555 * worth of inodes floating about which prune_icache wants us to 5556 * write out. One way to fix that would be to get prune_icache() 5557 * to do a write_super() to free up some memory. It has the desired 5558 * effect. 5559 */ 5560 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5561 { 5562 struct ext4_iloc iloc; 5563 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5564 static unsigned int mnt_count; 5565 int err, ret; 5566 5567 might_sleep(); 5568 err = ext4_reserve_inode_write(handle, inode, &iloc); 5569 if (ext4_handle_valid(handle) && 5570 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5571 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 5572 /* 5573 * We need extra buffer credits since we may write into EA block 5574 * with this same handle. If journal_extend fails, then it will 5575 * only result in a minor loss of functionality for that inode. 5576 * If this is felt to be critical, then e2fsck should be run to 5577 * force a large enough s_min_extra_isize. 5578 */ 5579 if ((jbd2_journal_extend(handle, 5580 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5581 ret = ext4_expand_extra_isize(inode, 5582 sbi->s_want_extra_isize, 5583 iloc, handle); 5584 if (ret) { 5585 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 5586 if (mnt_count != 5587 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5588 ext4_warning(inode->i_sb, __func__, 5589 "Unable to expand inode %lu. Delete" 5590 " some EAs or run e2fsck.", 5591 inode->i_ino); 5592 mnt_count = 5593 le16_to_cpu(sbi->s_es->s_mnt_count); 5594 } 5595 } 5596 } 5597 } 5598 if (!err) 5599 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5600 return err; 5601 } 5602 5603 /* 5604 * ext4_dirty_inode() is called from __mark_inode_dirty() 5605 * 5606 * We're really interested in the case where a file is being extended. 5607 * i_size has been changed by generic_commit_write() and we thus need 5608 * to include the updated inode in the current transaction. 5609 * 5610 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks 5611 * are allocated to the file. 5612 * 5613 * If the inode is marked synchronous, we don't honour that here - doing 5614 * so would cause a commit on atime updates, which we don't bother doing. 5615 * We handle synchronous inodes at the highest possible level. 5616 */ 5617 void ext4_dirty_inode(struct inode *inode) 5618 { 5619 handle_t *handle; 5620 5621 handle = ext4_journal_start(inode, 2); 5622 if (IS_ERR(handle)) 5623 goto out; 5624 5625 ext4_mark_inode_dirty(handle, inode); 5626 5627 ext4_journal_stop(handle); 5628 out: 5629 return; 5630 } 5631 5632 #if 0 5633 /* 5634 * Bind an inode's backing buffer_head into this transaction, to prevent 5635 * it from being flushed to disk early. Unlike 5636 * ext4_reserve_inode_write, this leaves behind no bh reference and 5637 * returns no iloc structure, so the caller needs to repeat the iloc 5638 * lookup to mark the inode dirty later. 5639 */ 5640 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5641 { 5642 struct ext4_iloc iloc; 5643 5644 int err = 0; 5645 if (handle) { 5646 err = ext4_get_inode_loc(inode, &iloc); 5647 if (!err) { 5648 BUFFER_TRACE(iloc.bh, "get_write_access"); 5649 err = jbd2_journal_get_write_access(handle, iloc.bh); 5650 if (!err) 5651 err = ext4_handle_dirty_metadata(handle, 5652 inode, 5653 iloc.bh); 5654 brelse(iloc.bh); 5655 } 5656 } 5657 ext4_std_error(inode->i_sb, err); 5658 return err; 5659 } 5660 #endif 5661 5662 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5663 { 5664 journal_t *journal; 5665 handle_t *handle; 5666 int err; 5667 5668 /* 5669 * We have to be very careful here: changing a data block's 5670 * journaling status dynamically is dangerous. If we write a 5671 * data block to the journal, change the status and then delete 5672 * that block, we risk forgetting to revoke the old log record 5673 * from the journal and so a subsequent replay can corrupt data. 5674 * So, first we make sure that the journal is empty and that 5675 * nobody is changing anything. 5676 */ 5677 5678 journal = EXT4_JOURNAL(inode); 5679 if (!journal) 5680 return 0; 5681 if (is_journal_aborted(journal)) 5682 return -EROFS; 5683 5684 jbd2_journal_lock_updates(journal); 5685 jbd2_journal_flush(journal); 5686 5687 /* 5688 * OK, there are no updates running now, and all cached data is 5689 * synced to disk. We are now in a completely consistent state 5690 * which doesn't have anything in the journal, and we know that 5691 * no filesystem updates are running, so it is safe to modify 5692 * the inode's in-core data-journaling state flag now. 5693 */ 5694 5695 if (val) 5696 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5697 else 5698 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5699 ext4_set_aops(inode); 5700 5701 jbd2_journal_unlock_updates(journal); 5702 5703 /* Finally we can mark the inode as dirty. */ 5704 5705 handle = ext4_journal_start(inode, 1); 5706 if (IS_ERR(handle)) 5707 return PTR_ERR(handle); 5708 5709 err = ext4_mark_inode_dirty(handle, inode); 5710 ext4_handle_sync(handle); 5711 ext4_journal_stop(handle); 5712 ext4_std_error(inode->i_sb, err); 5713 5714 return err; 5715 } 5716 5717 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5718 { 5719 return !buffer_mapped(bh); 5720 } 5721 5722 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5723 { 5724 struct page *page = vmf->page; 5725 loff_t size; 5726 unsigned long len; 5727 int ret = -EINVAL; 5728 void *fsdata; 5729 struct file *file = vma->vm_file; 5730 struct inode *inode = file->f_path.dentry->d_inode; 5731 struct address_space *mapping = inode->i_mapping; 5732 5733 /* 5734 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5735 * get i_mutex because we are already holding mmap_sem. 5736 */ 5737 down_read(&inode->i_alloc_sem); 5738 size = i_size_read(inode); 5739 if (page->mapping != mapping || size <= page_offset(page) 5740 || !PageUptodate(page)) { 5741 /* page got truncated from under us? */ 5742 goto out_unlock; 5743 } 5744 ret = 0; 5745 if (PageMappedToDisk(page)) 5746 goto out_unlock; 5747 5748 if (page->index == size >> PAGE_CACHE_SHIFT) 5749 len = size & ~PAGE_CACHE_MASK; 5750 else 5751 len = PAGE_CACHE_SIZE; 5752 5753 lock_page(page); 5754 /* 5755 * return if we have all the buffers mapped. This avoid 5756 * the need to call write_begin/write_end which does a 5757 * journal_start/journal_stop which can block and take 5758 * long time 5759 */ 5760 if (page_has_buffers(page)) { 5761 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5762 ext4_bh_unmapped)) { 5763 unlock_page(page); 5764 goto out_unlock; 5765 } 5766 } 5767 unlock_page(page); 5768 /* 5769 * OK, we need to fill the hole... Do write_begin write_end 5770 * to do block allocation/reservation.We are not holding 5771 * inode.i__mutex here. That allow * parallel write_begin, 5772 * write_end call. lock_page prevent this from happening 5773 * on the same page though 5774 */ 5775 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5776 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5777 if (ret < 0) 5778 goto out_unlock; 5779 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5780 len, len, page, fsdata); 5781 if (ret < 0) 5782 goto out_unlock; 5783 ret = 0; 5784 out_unlock: 5785 if (ret) 5786 ret = VM_FAULT_SIGBUS; 5787 up_read(&inode->i_alloc_sem); 5788 return ret; 5789 } 5790