xref: /linux/fs/ext4/inode.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 
152 		if (ext4_has_inline_data(inode))
153 			return 0;
154 
155 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 	}
157 	return S_ISLNK(inode->i_mode) && inode->i_size &&
158 	       (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160 
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166 	handle_t *handle;
167 	int err;
168 	/*
169 	 * Credits for final inode cleanup and freeing:
170 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 	 */
173 	int extra_credits = 6;
174 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 	bool freeze_protected = false;
176 
177 	trace_ext4_evict_inode(inode);
178 
179 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 		ext4_evict_ea_inode(inode);
181 	if (inode->i_nlink) {
182 		truncate_inode_pages_final(&inode->i_data);
183 
184 		goto no_delete;
185 	}
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 	dquot_initialize(inode);
190 
191 	if (ext4_should_order_data(inode))
192 		ext4_begin_ordered_truncate(inode, 0);
193 	truncate_inode_pages_final(&inode->i_data);
194 
195 	/*
196 	 * For inodes with journalled data, transaction commit could have
197 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 	 * extents converting worker could merge extents and also have dirtied
199 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 	 * we still need to remove the inode from the writeback lists.
201 	 */
202 	if (!list_empty_careful(&inode->i_io_list))
203 		inode_io_list_del(inode);
204 
205 	/*
206 	 * Protect us against freezing - iput() caller didn't have to have any
207 	 * protection against it. When we are in a running transaction though,
208 	 * we are already protected against freezing and we cannot grab further
209 	 * protection due to lock ordering constraints.
210 	 */
211 	if (!ext4_journal_current_handle()) {
212 		sb_start_intwrite(inode->i_sb);
213 		freeze_protected = true;
214 	}
215 
216 	if (!IS_NOQUOTA(inode))
217 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218 
219 	/*
220 	 * Block bitmap, group descriptor, and inode are accounted in both
221 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 	 */
223 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 	if (IS_ERR(handle)) {
226 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 		/*
228 		 * If we're going to skip the normal cleanup, we still need to
229 		 * make sure that the in-core orphan linked list is properly
230 		 * cleaned up.
231 		 */
232 		ext4_orphan_del(NULL, inode);
233 		if (freeze_protected)
234 			sb_end_intwrite(inode->i_sb);
235 		goto no_delete;
236 	}
237 
238 	if (IS_SYNC(inode))
239 		ext4_handle_sync(handle);
240 
241 	/*
242 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 	 * special handling of symlinks here because i_size is used to
244 	 * determine whether ext4_inode_info->i_data contains symlink data or
245 	 * block mappings. Setting i_size to 0 will remove its fast symlink
246 	 * status. Erase i_data so that it becomes a valid empty block map.
247 	 */
248 	if (ext4_inode_is_fast_symlink(inode))
249 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks) {
258 		err = ext4_truncate(inode);
259 		if (err) {
260 			ext4_error_err(inode->i_sb, -err,
261 				       "couldn't truncate inode %lu (err %d)",
262 				       inode->i_ino, err);
263 			goto stop_handle;
264 		}
265 	}
266 
267 	/* Remove xattr references. */
268 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 				      extra_credits);
270 	if (err) {
271 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 		ext4_journal_stop(handle);
274 		ext4_orphan_del(NULL, inode);
275 		if (freeze_protected)
276 			sb_end_intwrite(inode->i_sb);
277 		ext4_xattr_inode_array_free(ea_inode_array);
278 		goto no_delete;
279 	}
280 
281 	/*
282 	 * Kill off the orphan record which ext4_truncate created.
283 	 * AKPM: I think this can be inside the above `if'.
284 	 * Note that ext4_orphan_del() has to be able to cope with the
285 	 * deletion of a non-existent orphan - this is because we don't
286 	 * know if ext4_truncate() actually created an orphan record.
287 	 * (Well, we could do this if we need to, but heck - it works)
288 	 */
289 	ext4_orphan_del(handle, inode);
290 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291 
292 	/*
293 	 * One subtle ordering requirement: if anything has gone wrong
294 	 * (transaction abort, IO errors, whatever), then we can still
295 	 * do these next steps (the fs will already have been marked as
296 	 * having errors), but we can't free the inode if the mark_dirty
297 	 * fails.
298 	 */
299 	if (ext4_mark_inode_dirty(handle, inode))
300 		/* If that failed, just do the required in-core inode clear. */
301 		ext4_clear_inode(inode);
302 	else
303 		ext4_free_inode(handle, inode);
304 	ext4_journal_stop(handle);
305 	if (freeze_protected)
306 		sb_end_intwrite(inode->i_sb);
307 	ext4_xattr_inode_array_free(ea_inode_array);
308 	return;
309 no_delete:
310 	/*
311 	 * Check out some where else accidentally dirty the evicting inode,
312 	 * which may probably cause inode use-after-free issues later.
313 	 */
314 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315 
316 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319 }
320 
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 	return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 
353 	spin_unlock(&ei->i_block_reservation_lock);
354 
355 	/* Update quota subsystem for data blocks */
356 	if (quota_claim)
357 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 	else {
359 		/*
360 		 * We did fallocate with an offset that is already delayed
361 		 * allocated. So on delayed allocated writeback we should
362 		 * not re-claim the quota for fallocated blocks.
363 		 */
364 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 	}
366 
367 	/*
368 	 * If we have done all the pending block allocations and if
369 	 * there aren't any writers on the inode, we can discard the
370 	 * inode's preallocations.
371 	 */
372 	if ((ei->i_reserved_data_blocks == 0) &&
373 	    !inode_is_open_for_write(inode))
374 		ext4_discard_preallocations(inode);
375 }
376 
377 static int __check_block_validity(struct inode *inode, const char *func,
378 				unsigned int line,
379 				struct ext4_map_blocks *map)
380 {
381 	if (ext4_has_feature_journal(inode->i_sb) &&
382 	    (inode->i_ino ==
383 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 		return 0;
385 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock %llu "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_pblk, map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 	} else {
434 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 	}
436 	up_read((&EXT4_I(inode)->i_data_sem));
437 
438 	/*
439 	 * We don't check m_len because extent will be collpased in status
440 	 * tree.  So the m_len might not equal.
441 	 */
442 	if (es_map->m_lblk != map->m_lblk ||
443 	    es_map->m_flags != map->m_flags ||
444 	    es_map->m_pblk != map->m_pblk) {
445 		printk("ES cache assertion failed for inode: %lu "
446 		       "es_cached ex [%d/%d/%llu/%x] != "
447 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 		       map->m_len, map->m_pblk, map->m_flags,
451 		       retval, flags);
452 	}
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455 
456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
457 				 struct ext4_map_blocks *map)
458 {
459 	unsigned int status;
460 	int retval;
461 
462 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
463 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 	else
465 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
466 
467 	if (retval <= 0)
468 		return retval;
469 
470 	if (unlikely(retval != map->m_len)) {
471 		ext4_warning(inode->i_sb,
472 			     "ES len assertion failed for inode "
473 			     "%lu: retval %d != map->m_len %d",
474 			     inode->i_ino, retval, map->m_len);
475 		WARN_ON(1);
476 	}
477 
478 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
479 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
480 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
481 			      map->m_pblk, status);
482 	return retval;
483 }
484 
485 /*
486  * The ext4_map_blocks() function tries to look up the requested blocks,
487  * and returns if the blocks are already mapped.
488  *
489  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490  * and store the allocated blocks in the result buffer head and mark it
491  * mapped.
492  *
493  * If file type is extents based, it will call ext4_ext_map_blocks(),
494  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495  * based files
496  *
497  * On success, it returns the number of blocks being mapped or allocated.
498  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
499  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
500  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
501  *
502  * It returns 0 if plain look up failed (blocks have not been allocated), in
503  * that case, @map is returned as unmapped but we still do fill map->m_len to
504  * indicate the length of a hole starting at map->m_lblk.
505  *
506  * It returns the error in case of allocation failure.
507  */
508 int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 		    struct ext4_map_blocks *map, int flags)
510 {
511 	struct extent_status es;
512 	int retval;
513 	int ret = 0;
514 #ifdef ES_AGGRESSIVE_TEST
515 	struct ext4_map_blocks orig_map;
516 
517 	memcpy(&orig_map, map, sizeof(*map));
518 #endif
519 
520 	map->m_flags = 0;
521 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
522 		  flags, map->m_len, (unsigned long) map->m_lblk);
523 
524 	/*
525 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
526 	 */
527 	if (unlikely(map->m_len > INT_MAX))
528 		map->m_len = INT_MAX;
529 
530 	/* We can handle the block number less than EXT_MAX_BLOCKS */
531 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
532 		return -EFSCORRUPTED;
533 
534 	/* Lookup extent status tree firstly */
535 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
536 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
537 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
538 			map->m_pblk = ext4_es_pblock(&es) +
539 					map->m_lblk - es.es_lblk;
540 			map->m_flags |= ext4_es_is_written(&es) ?
541 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
547 			map->m_pblk = 0;
548 			map->m_flags |= ext4_es_is_delayed(&es) ?
549 					EXT4_MAP_DELAYED : 0;
550 			retval = es.es_len - (map->m_lblk - es.es_lblk);
551 			if (retval > map->m_len)
552 				retval = map->m_len;
553 			map->m_len = retval;
554 			retval = 0;
555 		} else {
556 			BUG();
557 		}
558 
559 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
560 			return retval;
561 #ifdef ES_AGGRESSIVE_TEST
562 		ext4_map_blocks_es_recheck(handle, inode, map,
563 					   &orig_map, flags);
564 #endif
565 		goto found;
566 	}
567 	/*
568 	 * In the query cache no-wait mode, nothing we can do more if we
569 	 * cannot find extent in the cache.
570 	 */
571 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
572 		return 0;
573 
574 	/*
575 	 * Try to see if we can get the block without requesting a new
576 	 * file system block.
577 	 */
578 	down_read(&EXT4_I(inode)->i_data_sem);
579 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
580 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
581 	} else {
582 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
583 	}
584 	if (retval > 0) {
585 		unsigned int status;
586 
587 		if (unlikely(retval != map->m_len)) {
588 			ext4_warning(inode->i_sb,
589 				     "ES len assertion failed for inode "
590 				     "%lu: retval %d != map->m_len %d",
591 				     inode->i_ino, retval, map->m_len);
592 			WARN_ON(1);
593 		}
594 
595 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
596 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
597 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
598 		    !(status & EXTENT_STATUS_WRITTEN) &&
599 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
600 				       map->m_lblk + map->m_len - 1))
601 			status |= EXTENT_STATUS_DELAYED;
602 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
603 				      map->m_pblk, status);
604 	}
605 	up_read((&EXT4_I(inode)->i_data_sem));
606 
607 found:
608 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
609 		ret = check_block_validity(inode, map);
610 		if (ret != 0)
611 			return ret;
612 	}
613 
614 	/* If it is only a block(s) look up */
615 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
616 		return retval;
617 
618 	/*
619 	 * Returns if the blocks have already allocated
620 	 *
621 	 * Note that if blocks have been preallocated
622 	 * ext4_ext_map_blocks() returns with buffer head unmapped
623 	 */
624 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
625 		/*
626 		 * If we need to convert extent to unwritten
627 		 * we continue and do the actual work in
628 		 * ext4_ext_map_blocks()
629 		 */
630 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
631 			return retval;
632 
633 	/*
634 	 * Here we clear m_flags because after allocating an new extent,
635 	 * it will be set again.
636 	 */
637 	map->m_flags &= ~EXT4_MAP_FLAGS;
638 
639 	/*
640 	 * New blocks allocate and/or writing to unwritten extent
641 	 * will possibly result in updating i_data, so we take
642 	 * the write lock of i_data_sem, and call get_block()
643 	 * with create == 1 flag.
644 	 */
645 	down_write(&EXT4_I(inode)->i_data_sem);
646 
647 	/*
648 	 * We need to check for EXT4 here because migrate
649 	 * could have changed the inode type in between
650 	 */
651 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
652 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
653 	} else {
654 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
655 
656 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
657 			/*
658 			 * We allocated new blocks which will result in
659 			 * i_data's format changing.  Force the migrate
660 			 * to fail by clearing migrate flags
661 			 */
662 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
663 		}
664 	}
665 
666 	if (retval > 0) {
667 		unsigned int status;
668 
669 		if (unlikely(retval != map->m_len)) {
670 			ext4_warning(inode->i_sb,
671 				     "ES len assertion failed for inode "
672 				     "%lu: retval %d != map->m_len %d",
673 				     inode->i_ino, retval, map->m_len);
674 			WARN_ON(1);
675 		}
676 
677 		/*
678 		 * We have to zeroout blocks before inserting them into extent
679 		 * status tree. Otherwise someone could look them up there and
680 		 * use them before they are really zeroed. We also have to
681 		 * unmap metadata before zeroing as otherwise writeback can
682 		 * overwrite zeros with stale data from block device.
683 		 */
684 		if (flags & EXT4_GET_BLOCKS_ZERO &&
685 		    map->m_flags & EXT4_MAP_MAPPED &&
686 		    map->m_flags & EXT4_MAP_NEW) {
687 			ret = ext4_issue_zeroout(inode, map->m_lblk,
688 						 map->m_pblk, map->m_len);
689 			if (ret) {
690 				retval = ret;
691 				goto out_sem;
692 			}
693 		}
694 
695 		/*
696 		 * If the extent has been zeroed out, we don't need to update
697 		 * extent status tree.
698 		 */
699 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
700 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
701 			if (ext4_es_is_written(&es))
702 				goto out_sem;
703 		}
704 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
705 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
706 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
707 		    !(status & EXTENT_STATUS_WRITTEN) &&
708 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
709 				       map->m_lblk + map->m_len - 1))
710 			status |= EXTENT_STATUS_DELAYED;
711 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
712 				      map->m_pblk, status);
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 	}
746 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747 				map->m_flags & EXT4_MAP_MAPPED))
748 		ext4_fc_track_range(handle, inode, map->m_lblk,
749 					map->m_lblk + map->m_len - 1);
750 	if (retval < 0)
751 		ext_debug(inode, "failed with err %d\n", retval);
752 	return retval;
753 }
754 
755 /*
756  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757  * we have to be careful as someone else may be manipulating b_state as well.
758  */
759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761 	unsigned long old_state;
762 	unsigned long new_state;
763 
764 	flags &= EXT4_MAP_FLAGS;
765 
766 	/* Dummy buffer_head? Set non-atomically. */
767 	if (!bh->b_page) {
768 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769 		return;
770 	}
771 	/*
772 	 * Someone else may be modifying b_state. Be careful! This is ugly but
773 	 * once we get rid of using bh as a container for mapping information
774 	 * to pass to / from get_block functions, this can go away.
775 	 */
776 	old_state = READ_ONCE(bh->b_state);
777 	do {
778 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
780 }
781 
782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	int ret = 0;
824 
825 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
826 		   inode->i_ino, create);
827 	ret = _ext4_get_block(inode, iblock, bh_result,
828 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
829 
830 	/*
831 	 * If the buffer is marked unwritten, mark it as new to make sure it is
832 	 * zeroed out correctly in case of partial writes. Otherwise, there is
833 	 * a chance of stale data getting exposed.
834 	 */
835 	if (ret == 0 && buffer_unwritten(bh_result))
836 		set_buffer_new(bh_result);
837 
838 	return ret;
839 }
840 
841 /* Maximum number of blocks we map for direct IO at once. */
842 #define DIO_MAX_BLOCKS 4096
843 
844 /*
845  * `handle' can be NULL if create is zero
846  */
847 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
848 				ext4_lblk_t block, int map_flags)
849 {
850 	struct ext4_map_blocks map;
851 	struct buffer_head *bh;
852 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
853 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
854 	int err;
855 
856 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
857 		    || handle != NULL || create == 0);
858 	ASSERT(create == 0 || !nowait);
859 
860 	map.m_lblk = block;
861 	map.m_len = 1;
862 	err = ext4_map_blocks(handle, inode, &map, map_flags);
863 
864 	if (err == 0)
865 		return create ? ERR_PTR(-ENOSPC) : NULL;
866 	if (err < 0)
867 		return ERR_PTR(err);
868 
869 	if (nowait)
870 		return sb_find_get_block(inode->i_sb, map.m_pblk);
871 
872 	bh = sb_getblk(inode->i_sb, map.m_pblk);
873 	if (unlikely(!bh))
874 		return ERR_PTR(-ENOMEM);
875 	if (map.m_flags & EXT4_MAP_NEW) {
876 		ASSERT(create != 0);
877 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
878 			    || (handle != NULL));
879 
880 		/*
881 		 * Now that we do not always journal data, we should
882 		 * keep in mind whether this should always journal the
883 		 * new buffer as metadata.  For now, regular file
884 		 * writes use ext4_get_block instead, so it's not a
885 		 * problem.
886 		 */
887 		lock_buffer(bh);
888 		BUFFER_TRACE(bh, "call get_create_access");
889 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
890 						     EXT4_JTR_NONE);
891 		if (unlikely(err)) {
892 			unlock_buffer(bh);
893 			goto errout;
894 		}
895 		if (!buffer_uptodate(bh)) {
896 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
897 			set_buffer_uptodate(bh);
898 		}
899 		unlock_buffer(bh);
900 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
901 		err = ext4_handle_dirty_metadata(handle, inode, bh);
902 		if (unlikely(err))
903 			goto errout;
904 	} else
905 		BUFFER_TRACE(bh, "not a new buffer");
906 	return bh;
907 errout:
908 	brelse(bh);
909 	return ERR_PTR(err);
910 }
911 
912 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
913 			       ext4_lblk_t block, int map_flags)
914 {
915 	struct buffer_head *bh;
916 	int ret;
917 
918 	bh = ext4_getblk(handle, inode, block, map_flags);
919 	if (IS_ERR(bh))
920 		return bh;
921 	if (!bh || ext4_buffer_uptodate(bh))
922 		return bh;
923 
924 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
925 	if (ret) {
926 		put_bh(bh);
927 		return ERR_PTR(ret);
928 	}
929 	return bh;
930 }
931 
932 /* Read a contiguous batch of blocks. */
933 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
934 		     bool wait, struct buffer_head **bhs)
935 {
936 	int i, err;
937 
938 	for (i = 0; i < bh_count; i++) {
939 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
940 		if (IS_ERR(bhs[i])) {
941 			err = PTR_ERR(bhs[i]);
942 			bh_count = i;
943 			goto out_brelse;
944 		}
945 	}
946 
947 	for (i = 0; i < bh_count; i++)
948 		/* Note that NULL bhs[i] is valid because of holes. */
949 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
950 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
951 
952 	if (!wait)
953 		return 0;
954 
955 	for (i = 0; i < bh_count; i++)
956 		if (bhs[i])
957 			wait_on_buffer(bhs[i]);
958 
959 	for (i = 0; i < bh_count; i++) {
960 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
961 			err = -EIO;
962 			goto out_brelse;
963 		}
964 	}
965 	return 0;
966 
967 out_brelse:
968 	for (i = 0; i < bh_count; i++) {
969 		brelse(bhs[i]);
970 		bhs[i] = NULL;
971 	}
972 	return err;
973 }
974 
975 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
976 			   struct buffer_head *head,
977 			   unsigned from,
978 			   unsigned to,
979 			   int *partial,
980 			   int (*fn)(handle_t *handle, struct inode *inode,
981 				     struct buffer_head *bh))
982 {
983 	struct buffer_head *bh;
984 	unsigned block_start, block_end;
985 	unsigned blocksize = head->b_size;
986 	int err, ret = 0;
987 	struct buffer_head *next;
988 
989 	for (bh = head, block_start = 0;
990 	     ret == 0 && (bh != head || !block_start);
991 	     block_start = block_end, bh = next) {
992 		next = bh->b_this_page;
993 		block_end = block_start + blocksize;
994 		if (block_end <= from || block_start >= to) {
995 			if (partial && !buffer_uptodate(bh))
996 				*partial = 1;
997 			continue;
998 		}
999 		err = (*fn)(handle, inode, bh);
1000 		if (!ret)
1001 			ret = err;
1002 	}
1003 	return ret;
1004 }
1005 
1006 /*
1007  * Helper for handling dirtying of journalled data. We also mark the folio as
1008  * dirty so that writeback code knows about this page (and inode) contains
1009  * dirty data. ext4_writepages() then commits appropriate transaction to
1010  * make data stable.
1011  */
1012 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1013 {
1014 	folio_mark_dirty(bh->b_folio);
1015 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1016 }
1017 
1018 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1019 				struct buffer_head *bh)
1020 {
1021 	int dirty = buffer_dirty(bh);
1022 	int ret;
1023 
1024 	if (!buffer_mapped(bh) || buffer_freed(bh))
1025 		return 0;
1026 	/*
1027 	 * __block_write_begin() could have dirtied some buffers. Clean
1028 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1029 	 * otherwise about fs integrity issues. Setting of the dirty bit
1030 	 * by __block_write_begin() isn't a real problem here as we clear
1031 	 * the bit before releasing a page lock and thus writeback cannot
1032 	 * ever write the buffer.
1033 	 */
1034 	if (dirty)
1035 		clear_buffer_dirty(bh);
1036 	BUFFER_TRACE(bh, "get write access");
1037 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1038 					    EXT4_JTR_NONE);
1039 	if (!ret && dirty)
1040 		ret = ext4_dirty_journalled_data(handle, bh);
1041 	return ret;
1042 }
1043 
1044 #ifdef CONFIG_FS_ENCRYPTION
1045 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1046 				  get_block_t *get_block)
1047 {
1048 	unsigned from = pos & (PAGE_SIZE - 1);
1049 	unsigned to = from + len;
1050 	struct inode *inode = folio->mapping->host;
1051 	unsigned block_start, block_end;
1052 	sector_t block;
1053 	int err = 0;
1054 	unsigned blocksize = inode->i_sb->s_blocksize;
1055 	unsigned bbits;
1056 	struct buffer_head *bh, *head, *wait[2];
1057 	int nr_wait = 0;
1058 	int i;
1059 
1060 	BUG_ON(!folio_test_locked(folio));
1061 	BUG_ON(from > PAGE_SIZE);
1062 	BUG_ON(to > PAGE_SIZE);
1063 	BUG_ON(from > to);
1064 
1065 	head = folio_buffers(folio);
1066 	if (!head)
1067 		head = create_empty_buffers(folio, blocksize, 0);
1068 	bbits = ilog2(blocksize);
1069 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1070 
1071 	for (bh = head, block_start = 0; bh != head || !block_start;
1072 	    block++, block_start = block_end, bh = bh->b_this_page) {
1073 		block_end = block_start + blocksize;
1074 		if (block_end <= from || block_start >= to) {
1075 			if (folio_test_uptodate(folio)) {
1076 				set_buffer_uptodate(bh);
1077 			}
1078 			continue;
1079 		}
1080 		if (buffer_new(bh))
1081 			clear_buffer_new(bh);
1082 		if (!buffer_mapped(bh)) {
1083 			WARN_ON(bh->b_size != blocksize);
1084 			err = get_block(inode, block, bh, 1);
1085 			if (err)
1086 				break;
1087 			if (buffer_new(bh)) {
1088 				if (folio_test_uptodate(folio)) {
1089 					clear_buffer_new(bh);
1090 					set_buffer_uptodate(bh);
1091 					mark_buffer_dirty(bh);
1092 					continue;
1093 				}
1094 				if (block_end > to || block_start < from)
1095 					folio_zero_segments(folio, to,
1096 							    block_end,
1097 							    block_start, from);
1098 				continue;
1099 			}
1100 		}
1101 		if (folio_test_uptodate(folio)) {
1102 			set_buffer_uptodate(bh);
1103 			continue;
1104 		}
1105 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1106 		    !buffer_unwritten(bh) &&
1107 		    (block_start < from || block_end > to)) {
1108 			ext4_read_bh_lock(bh, 0, false);
1109 			wait[nr_wait++] = bh;
1110 		}
1111 	}
1112 	/*
1113 	 * If we issued read requests, let them complete.
1114 	 */
1115 	for (i = 0; i < nr_wait; i++) {
1116 		wait_on_buffer(wait[i]);
1117 		if (!buffer_uptodate(wait[i]))
1118 			err = -EIO;
1119 	}
1120 	if (unlikely(err)) {
1121 		folio_zero_new_buffers(folio, from, to);
1122 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1123 		for (i = 0; i < nr_wait; i++) {
1124 			int err2;
1125 
1126 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1127 						blocksize, bh_offset(wait[i]));
1128 			if (err2) {
1129 				clear_buffer_uptodate(wait[i]);
1130 				err = err2;
1131 			}
1132 		}
1133 	}
1134 
1135 	return err;
1136 }
1137 #endif
1138 
1139 /*
1140  * To preserve ordering, it is essential that the hole instantiation and
1141  * the data write be encapsulated in a single transaction.  We cannot
1142  * close off a transaction and start a new one between the ext4_get_block()
1143  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1144  * ext4_write_begin() is the right place.
1145  */
1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147 			    loff_t pos, unsigned len,
1148 			    struct page **pagep, void **fsdata)
1149 {
1150 	struct inode *inode = mapping->host;
1151 	int ret, needed_blocks;
1152 	handle_t *handle;
1153 	int retries = 0;
1154 	struct folio *folio;
1155 	pgoff_t index;
1156 	unsigned from, to;
1157 
1158 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1159 		return -EIO;
1160 
1161 	trace_ext4_write_begin(inode, pos, len);
1162 	/*
1163 	 * Reserve one block more for addition to orphan list in case
1164 	 * we allocate blocks but write fails for some reason
1165 	 */
1166 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167 	index = pos >> PAGE_SHIFT;
1168 	from = pos & (PAGE_SIZE - 1);
1169 	to = from + len;
1170 
1171 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173 						    pagep);
1174 		if (ret < 0)
1175 			return ret;
1176 		if (ret == 1)
1177 			return 0;
1178 	}
1179 
1180 	/*
1181 	 * __filemap_get_folio() can take a long time if the
1182 	 * system is thrashing due to memory pressure, or if the folio
1183 	 * is being written back.  So grab it first before we start
1184 	 * the transaction handle.  This also allows us to allocate
1185 	 * the folio (if needed) without using GFP_NOFS.
1186 	 */
1187 retry_grab:
1188 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1189 					mapping_gfp_mask(mapping));
1190 	if (IS_ERR(folio))
1191 		return PTR_ERR(folio);
1192 	/*
1193 	 * The same as page allocation, we prealloc buffer heads before
1194 	 * starting the handle.
1195 	 */
1196 	if (!folio_buffers(folio))
1197 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1198 
1199 	folio_unlock(folio);
1200 
1201 retry_journal:
1202 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1203 	if (IS_ERR(handle)) {
1204 		folio_put(folio);
1205 		return PTR_ERR(handle);
1206 	}
1207 
1208 	folio_lock(folio);
1209 	if (folio->mapping != mapping) {
1210 		/* The folio got truncated from under us */
1211 		folio_unlock(folio);
1212 		folio_put(folio);
1213 		ext4_journal_stop(handle);
1214 		goto retry_grab;
1215 	}
1216 	/* In case writeback began while the folio was unlocked */
1217 	folio_wait_stable(folio);
1218 
1219 #ifdef CONFIG_FS_ENCRYPTION
1220 	if (ext4_should_dioread_nolock(inode))
1221 		ret = ext4_block_write_begin(folio, pos, len,
1222 					     ext4_get_block_unwritten);
1223 	else
1224 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1225 #else
1226 	if (ext4_should_dioread_nolock(inode))
1227 		ret = __block_write_begin(&folio->page, pos, len,
1228 					  ext4_get_block_unwritten);
1229 	else
1230 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1231 #endif
1232 	if (!ret && ext4_should_journal_data(inode)) {
1233 		ret = ext4_walk_page_buffers(handle, inode,
1234 					     folio_buffers(folio), from, to,
1235 					     NULL, do_journal_get_write_access);
1236 	}
1237 
1238 	if (ret) {
1239 		bool extended = (pos + len > inode->i_size) &&
1240 				!ext4_verity_in_progress(inode);
1241 
1242 		folio_unlock(folio);
1243 		/*
1244 		 * __block_write_begin may have instantiated a few blocks
1245 		 * outside i_size.  Trim these off again. Don't need
1246 		 * i_size_read because we hold i_rwsem.
1247 		 *
1248 		 * Add inode to orphan list in case we crash before
1249 		 * truncate finishes
1250 		 */
1251 		if (extended && ext4_can_truncate(inode))
1252 			ext4_orphan_add(handle, inode);
1253 
1254 		ext4_journal_stop(handle);
1255 		if (extended) {
1256 			ext4_truncate_failed_write(inode);
1257 			/*
1258 			 * If truncate failed early the inode might
1259 			 * still be on the orphan list; we need to
1260 			 * make sure the inode is removed from the
1261 			 * orphan list in that case.
1262 			 */
1263 			if (inode->i_nlink)
1264 				ext4_orphan_del(NULL, inode);
1265 		}
1266 
1267 		if (ret == -ENOSPC &&
1268 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1269 			goto retry_journal;
1270 		folio_put(folio);
1271 		return ret;
1272 	}
1273 	*pagep = &folio->page;
1274 	return ret;
1275 }
1276 
1277 /* For write_end() in data=journal mode */
1278 static int write_end_fn(handle_t *handle, struct inode *inode,
1279 			struct buffer_head *bh)
1280 {
1281 	int ret;
1282 	if (!buffer_mapped(bh) || buffer_freed(bh))
1283 		return 0;
1284 	set_buffer_uptodate(bh);
1285 	ret = ext4_dirty_journalled_data(handle, bh);
1286 	clear_buffer_meta(bh);
1287 	clear_buffer_prio(bh);
1288 	return ret;
1289 }
1290 
1291 /*
1292  * We need to pick up the new inode size which generic_commit_write gave us
1293  * `file' can be NULL - eg, when called from page_symlink().
1294  *
1295  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1296  * buffers are managed internally.
1297  */
1298 static int ext4_write_end(struct file *file,
1299 			  struct address_space *mapping,
1300 			  loff_t pos, unsigned len, unsigned copied,
1301 			  struct page *page, void *fsdata)
1302 {
1303 	struct folio *folio = page_folio(page);
1304 	handle_t *handle = ext4_journal_current_handle();
1305 	struct inode *inode = mapping->host;
1306 	loff_t old_size = inode->i_size;
1307 	int ret = 0, ret2;
1308 	int i_size_changed = 0;
1309 	bool verity = ext4_verity_in_progress(inode);
1310 
1311 	trace_ext4_write_end(inode, pos, len, copied);
1312 
1313 	if (ext4_has_inline_data(inode) &&
1314 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1315 		return ext4_write_inline_data_end(inode, pos, len, copied,
1316 						  folio);
1317 
1318 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1319 	/*
1320 	 * it's important to update i_size while still holding folio lock:
1321 	 * page writeout could otherwise come in and zero beyond i_size.
1322 	 *
1323 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1324 	 * blocks are being written past EOF, so skip the i_size update.
1325 	 */
1326 	if (!verity)
1327 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1328 	folio_unlock(folio);
1329 	folio_put(folio);
1330 
1331 	if (old_size < pos && !verity)
1332 		pagecache_isize_extended(inode, old_size, pos);
1333 	/*
1334 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1335 	 * makes the holding time of folio lock longer. Second, it forces lock
1336 	 * ordering of folio lock and transaction start for journaling
1337 	 * filesystems.
1338 	 */
1339 	if (i_size_changed)
1340 		ret = ext4_mark_inode_dirty(handle, inode);
1341 
1342 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1343 		/* if we have allocated more blocks and copied
1344 		 * less. We will have blocks allocated outside
1345 		 * inode->i_size. So truncate them
1346 		 */
1347 		ext4_orphan_add(handle, inode);
1348 
1349 	ret2 = ext4_journal_stop(handle);
1350 	if (!ret)
1351 		ret = ret2;
1352 
1353 	if (pos + len > inode->i_size && !verity) {
1354 		ext4_truncate_failed_write(inode);
1355 		/*
1356 		 * If truncate failed early the inode might still be
1357 		 * on the orphan list; we need to make sure the inode
1358 		 * is removed from the orphan list in that case.
1359 		 */
1360 		if (inode->i_nlink)
1361 			ext4_orphan_del(NULL, inode);
1362 	}
1363 
1364 	return ret ? ret : copied;
1365 }
1366 
1367 /*
1368  * This is a private version of folio_zero_new_buffers() which doesn't
1369  * set the buffer to be dirty, since in data=journalled mode we need
1370  * to call ext4_dirty_journalled_data() instead.
1371  */
1372 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1373 					    struct inode *inode,
1374 					    struct folio *folio,
1375 					    unsigned from, unsigned to)
1376 {
1377 	unsigned int block_start = 0, block_end;
1378 	struct buffer_head *head, *bh;
1379 
1380 	bh = head = folio_buffers(folio);
1381 	do {
1382 		block_end = block_start + bh->b_size;
1383 		if (buffer_new(bh)) {
1384 			if (block_end > from && block_start < to) {
1385 				if (!folio_test_uptodate(folio)) {
1386 					unsigned start, size;
1387 
1388 					start = max(from, block_start);
1389 					size = min(to, block_end) - start;
1390 
1391 					folio_zero_range(folio, start, size);
1392 					write_end_fn(handle, inode, bh);
1393 				}
1394 				clear_buffer_new(bh);
1395 			}
1396 		}
1397 		block_start = block_end;
1398 		bh = bh->b_this_page;
1399 	} while (bh != head);
1400 }
1401 
1402 static int ext4_journalled_write_end(struct file *file,
1403 				     struct address_space *mapping,
1404 				     loff_t pos, unsigned len, unsigned copied,
1405 				     struct page *page, void *fsdata)
1406 {
1407 	struct folio *folio = page_folio(page);
1408 	handle_t *handle = ext4_journal_current_handle();
1409 	struct inode *inode = mapping->host;
1410 	loff_t old_size = inode->i_size;
1411 	int ret = 0, ret2;
1412 	int partial = 0;
1413 	unsigned from, to;
1414 	int size_changed = 0;
1415 	bool verity = ext4_verity_in_progress(inode);
1416 
1417 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1418 	from = pos & (PAGE_SIZE - 1);
1419 	to = from + len;
1420 
1421 	BUG_ON(!ext4_handle_valid(handle));
1422 
1423 	if (ext4_has_inline_data(inode))
1424 		return ext4_write_inline_data_end(inode, pos, len, copied,
1425 						  folio);
1426 
1427 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1428 		copied = 0;
1429 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1430 						 from, to);
1431 	} else {
1432 		if (unlikely(copied < len))
1433 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1434 							 from + copied, to);
1435 		ret = ext4_walk_page_buffers(handle, inode,
1436 					     folio_buffers(folio),
1437 					     from, from + copied, &partial,
1438 					     write_end_fn);
1439 		if (!partial)
1440 			folio_mark_uptodate(folio);
1441 	}
1442 	if (!verity)
1443 		size_changed = ext4_update_inode_size(inode, pos + copied);
1444 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1445 	folio_unlock(folio);
1446 	folio_put(folio);
1447 
1448 	if (old_size < pos && !verity)
1449 		pagecache_isize_extended(inode, old_size, pos);
1450 
1451 	if (size_changed) {
1452 		ret2 = ext4_mark_inode_dirty(handle, inode);
1453 		if (!ret)
1454 			ret = ret2;
1455 	}
1456 
1457 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1458 		/* if we have allocated more blocks and copied
1459 		 * less. We will have blocks allocated outside
1460 		 * inode->i_size. So truncate them
1461 		 */
1462 		ext4_orphan_add(handle, inode);
1463 
1464 	ret2 = ext4_journal_stop(handle);
1465 	if (!ret)
1466 		ret = ret2;
1467 	if (pos + len > inode->i_size && !verity) {
1468 		ext4_truncate_failed_write(inode);
1469 		/*
1470 		 * If truncate failed early the inode might still be
1471 		 * on the orphan list; we need to make sure the inode
1472 		 * is removed from the orphan list in that case.
1473 		 */
1474 		if (inode->i_nlink)
1475 			ext4_orphan_del(NULL, inode);
1476 	}
1477 
1478 	return ret ? ret : copied;
1479 }
1480 
1481 /*
1482  * Reserve space for 'nr_resv' clusters
1483  */
1484 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1485 {
1486 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487 	struct ext4_inode_info *ei = EXT4_I(inode);
1488 	int ret;
1489 
1490 	/*
1491 	 * We will charge metadata quota at writeout time; this saves
1492 	 * us from metadata over-estimation, though we may go over by
1493 	 * a small amount in the end.  Here we just reserve for data.
1494 	 */
1495 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1496 	if (ret)
1497 		return ret;
1498 
1499 	spin_lock(&ei->i_block_reservation_lock);
1500 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1501 		spin_unlock(&ei->i_block_reservation_lock);
1502 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1503 		return -ENOSPC;
1504 	}
1505 	ei->i_reserved_data_blocks += nr_resv;
1506 	trace_ext4_da_reserve_space(inode, nr_resv);
1507 	spin_unlock(&ei->i_block_reservation_lock);
1508 
1509 	return 0;       /* success */
1510 }
1511 
1512 void ext4_da_release_space(struct inode *inode, int to_free)
1513 {
1514 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1515 	struct ext4_inode_info *ei = EXT4_I(inode);
1516 
1517 	if (!to_free)
1518 		return;		/* Nothing to release, exit */
1519 
1520 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1521 
1522 	trace_ext4_da_release_space(inode, to_free);
1523 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1524 		/*
1525 		 * if there aren't enough reserved blocks, then the
1526 		 * counter is messed up somewhere.  Since this
1527 		 * function is called from invalidate page, it's
1528 		 * harmless to return without any action.
1529 		 */
1530 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1531 			 "ino %lu, to_free %d with only %d reserved "
1532 			 "data blocks", inode->i_ino, to_free,
1533 			 ei->i_reserved_data_blocks);
1534 		WARN_ON(1);
1535 		to_free = ei->i_reserved_data_blocks;
1536 	}
1537 	ei->i_reserved_data_blocks -= to_free;
1538 
1539 	/* update fs dirty data blocks counter */
1540 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1541 
1542 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1543 
1544 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1545 }
1546 
1547 /*
1548  * Delayed allocation stuff
1549  */
1550 
1551 struct mpage_da_data {
1552 	/* These are input fields for ext4_do_writepages() */
1553 	struct inode *inode;
1554 	struct writeback_control *wbc;
1555 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1556 
1557 	/* These are internal state of ext4_do_writepages() */
1558 	pgoff_t first_page;	/* The first page to write */
1559 	pgoff_t next_page;	/* Current page to examine */
1560 	pgoff_t last_page;	/* Last page to examine */
1561 	/*
1562 	 * Extent to map - this can be after first_page because that can be
1563 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1564 	 * is delalloc or unwritten.
1565 	 */
1566 	struct ext4_map_blocks map;
1567 	struct ext4_io_submit io_submit;	/* IO submission data */
1568 	unsigned int do_map:1;
1569 	unsigned int scanned_until_end:1;
1570 	unsigned int journalled_more_data:1;
1571 };
1572 
1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 				       bool invalidate)
1575 {
1576 	unsigned nr, i;
1577 	pgoff_t index, end;
1578 	struct folio_batch fbatch;
1579 	struct inode *inode = mpd->inode;
1580 	struct address_space *mapping = inode->i_mapping;
1581 
1582 	/* This is necessary when next_page == 0. */
1583 	if (mpd->first_page >= mpd->next_page)
1584 		return;
1585 
1586 	mpd->scanned_until_end = 0;
1587 	index = mpd->first_page;
1588 	end   = mpd->next_page - 1;
1589 	if (invalidate) {
1590 		ext4_lblk_t start, last;
1591 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1593 
1594 		/*
1595 		 * avoid racing with extent status tree scans made by
1596 		 * ext4_insert_delayed_block()
1597 		 */
1598 		down_write(&EXT4_I(inode)->i_data_sem);
1599 		ext4_es_remove_extent(inode, start, last - start + 1);
1600 		up_write(&EXT4_I(inode)->i_data_sem);
1601 	}
1602 
1603 	folio_batch_init(&fbatch);
1604 	while (index <= end) {
1605 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 		if (nr == 0)
1607 			break;
1608 		for (i = 0; i < nr; i++) {
1609 			struct folio *folio = fbatch.folios[i];
1610 
1611 			if (folio->index < mpd->first_page)
1612 				continue;
1613 			if (folio_next_index(folio) - 1 > end)
1614 				continue;
1615 			BUG_ON(!folio_test_locked(folio));
1616 			BUG_ON(folio_test_writeback(folio));
1617 			if (invalidate) {
1618 				if (folio_mapped(folio))
1619 					folio_clear_dirty_for_io(folio);
1620 				block_invalidate_folio(folio, 0,
1621 						folio_size(folio));
1622 				folio_clear_uptodate(folio);
1623 			}
1624 			folio_unlock(folio);
1625 		}
1626 		folio_batch_release(&fbatch);
1627 	}
1628 }
1629 
1630 static void ext4_print_free_blocks(struct inode *inode)
1631 {
1632 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 	struct super_block *sb = inode->i_sb;
1634 	struct ext4_inode_info *ei = EXT4_I(inode);
1635 
1636 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1638 			ext4_count_free_clusters(sb)));
1639 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 	       (long long) EXT4_C2B(EXT4_SB(sb),
1642 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 	       (long long) EXT4_C2B(EXT4_SB(sb),
1645 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 		 ei->i_reserved_data_blocks);
1649 	return;
1650 }
1651 
1652 /*
1653  * Check whether the cluster containing lblk has been allocated or has
1654  * delalloc reservation.
1655  *
1656  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1657  * reservation, 2 if it's already been allocated, negative error code on
1658  * failure.
1659  */
1660 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1661 {
1662 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1663 	int ret;
1664 
1665 	/* Has delalloc reservation? */
1666 	if (ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk))
1667 		return 1;
1668 
1669 	/* Already been allocated? */
1670 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1671 		return 2;
1672 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1673 	if (ret < 0)
1674 		return ret;
1675 	if (ret > 0)
1676 		return 2;
1677 
1678 	return 0;
1679 }
1680 
1681 /*
1682  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1683  *                              status tree, incrementing the reserved
1684  *                              cluster/block count or making pending
1685  *                              reservations where needed
1686  *
1687  * @inode - file containing the newly added block
1688  * @lblk - start logical block to be added
1689  * @len - length of blocks to be added
1690  *
1691  * Returns 0 on success, negative error code on failure.
1692  */
1693 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1694 				      ext4_lblk_t len)
1695 {
1696 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697 	int ret;
1698 	bool lclu_allocated = false;
1699 	bool end_allocated = false;
1700 	ext4_lblk_t resv_clu;
1701 	ext4_lblk_t end = lblk + len - 1;
1702 
1703 	/*
1704 	 * If the cluster containing lblk or end is shared with a delayed,
1705 	 * written, or unwritten extent in a bigalloc file system, it's
1706 	 * already been accounted for and does not need to be reserved.
1707 	 * A pending reservation must be made for the cluster if it's
1708 	 * shared with a written or unwritten extent and doesn't already
1709 	 * have one.  Written and unwritten extents can be purged from the
1710 	 * extents status tree if the system is under memory pressure, so
1711 	 * it's necessary to examine the extent tree if a search of the
1712 	 * extents status tree doesn't get a match.
1713 	 */
1714 	if (sbi->s_cluster_ratio == 1) {
1715 		ret = ext4_da_reserve_space(inode, len);
1716 		if (ret != 0)   /* ENOSPC */
1717 			return ret;
1718 	} else {   /* bigalloc */
1719 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1720 
1721 		ret = ext4_clu_alloc_state(inode, lblk);
1722 		if (ret < 0)
1723 			return ret;
1724 		if (ret > 0) {
1725 			resv_clu--;
1726 			lclu_allocated = (ret == 2);
1727 		}
1728 
1729 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1730 			ret = ext4_clu_alloc_state(inode, end);
1731 			if (ret < 0)
1732 				return ret;
1733 			if (ret > 0) {
1734 				resv_clu--;
1735 				end_allocated = (ret == 2);
1736 			}
1737 		}
1738 
1739 		if (resv_clu) {
1740 			ret = ext4_da_reserve_space(inode, resv_clu);
1741 			if (ret != 0)   /* ENOSPC */
1742 				return ret;
1743 		}
1744 	}
1745 
1746 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1747 				      end_allocated);
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Looks up the requested blocks and sets the delalloc extent map.
1753  * First try to look up for the extent entry that contains the requested
1754  * blocks in the extent status tree without i_data_sem, then try to look
1755  * up for the ondisk extent mapping with i_data_sem in read mode,
1756  * finally hold i_data_sem in write mode, looks up again and add a
1757  * delalloc extent entry if it still couldn't find any extent. Pass out
1758  * the mapped extent through @map and return 0 on success.
1759  */
1760 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1761 {
1762 	struct extent_status es;
1763 	int retval;
1764 #ifdef ES_AGGRESSIVE_TEST
1765 	struct ext4_map_blocks orig_map;
1766 
1767 	memcpy(&orig_map, map, sizeof(*map));
1768 #endif
1769 
1770 	map->m_flags = 0;
1771 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1772 		  (unsigned long) map->m_lblk);
1773 
1774 	/* Lookup extent status tree firstly */
1775 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1776 		map->m_len = min_t(unsigned int, map->m_len,
1777 				   es.es_len - (map->m_lblk - es.es_lblk));
1778 
1779 		if (ext4_es_is_hole(&es))
1780 			goto add_delayed;
1781 
1782 found:
1783 		/*
1784 		 * Delayed extent could be allocated by fallocate.
1785 		 * So we need to check it.
1786 		 */
1787 		if (ext4_es_is_delonly(&es)) {
1788 			map->m_flags |= EXT4_MAP_DELAYED;
1789 			return 0;
1790 		}
1791 
1792 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1793 		if (ext4_es_is_written(&es))
1794 			map->m_flags |= EXT4_MAP_MAPPED;
1795 		else if (ext4_es_is_unwritten(&es))
1796 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1797 		else
1798 			BUG();
1799 
1800 #ifdef ES_AGGRESSIVE_TEST
1801 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1802 #endif
1803 		return 0;
1804 	}
1805 
1806 	/*
1807 	 * Try to see if we can get the block without requesting a new
1808 	 * file system block.
1809 	 */
1810 	down_read(&EXT4_I(inode)->i_data_sem);
1811 	if (ext4_has_inline_data(inode))
1812 		retval = 0;
1813 	else
1814 		retval = ext4_map_query_blocks(NULL, inode, map);
1815 	up_read(&EXT4_I(inode)->i_data_sem);
1816 	if (retval)
1817 		return retval < 0 ? retval : 0;
1818 
1819 add_delayed:
1820 	down_write(&EXT4_I(inode)->i_data_sem);
1821 	/*
1822 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1823 	 * and fallocate path (no folio lock) can race. Make sure we
1824 	 * lookup the extent status tree here again while i_data_sem
1825 	 * is held in write mode, before inserting a new da entry in
1826 	 * the extent status tree.
1827 	 */
1828 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1829 		map->m_len = min_t(unsigned int, map->m_len,
1830 				   es.es_len - (map->m_lblk - es.es_lblk));
1831 
1832 		if (!ext4_es_is_hole(&es)) {
1833 			up_write(&EXT4_I(inode)->i_data_sem);
1834 			goto found;
1835 		}
1836 	} else if (!ext4_has_inline_data(inode)) {
1837 		retval = ext4_map_query_blocks(NULL, inode, map);
1838 		if (retval) {
1839 			up_write(&EXT4_I(inode)->i_data_sem);
1840 			return retval < 0 ? retval : 0;
1841 		}
1842 	}
1843 
1844 	map->m_flags |= EXT4_MAP_DELAYED;
1845 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1846 	up_write(&EXT4_I(inode)->i_data_sem);
1847 
1848 	return retval;
1849 }
1850 
1851 /*
1852  * This is a special get_block_t callback which is used by
1853  * ext4_da_write_begin().  It will either return mapped block or
1854  * reserve space for a single block.
1855  *
1856  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1857  * We also have b_blocknr = -1 and b_bdev initialized properly
1858  *
1859  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1860  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1861  * initialized properly.
1862  */
1863 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1864 			   struct buffer_head *bh, int create)
1865 {
1866 	struct ext4_map_blocks map;
1867 	sector_t invalid_block = ~((sector_t) 0xffff);
1868 	int ret = 0;
1869 
1870 	BUG_ON(create == 0);
1871 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1872 
1873 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1874 		invalid_block = ~0;
1875 
1876 	map.m_lblk = iblock;
1877 	map.m_len = 1;
1878 
1879 	/*
1880 	 * first, we need to know whether the block is allocated already
1881 	 * preallocated blocks are unmapped but should treated
1882 	 * the same as allocated blocks.
1883 	 */
1884 	ret = ext4_da_map_blocks(inode, &map);
1885 	if (ret < 0)
1886 		return ret;
1887 
1888 	if (map.m_flags & EXT4_MAP_DELAYED) {
1889 		map_bh(bh, inode->i_sb, invalid_block);
1890 		set_buffer_new(bh);
1891 		set_buffer_delay(bh);
1892 		return 0;
1893 	}
1894 
1895 	map_bh(bh, inode->i_sb, map.m_pblk);
1896 	ext4_update_bh_state(bh, map.m_flags);
1897 
1898 	if (buffer_unwritten(bh)) {
1899 		/* A delayed write to unwritten bh should be marked
1900 		 * new and mapped.  Mapped ensures that we don't do
1901 		 * get_block multiple times when we write to the same
1902 		 * offset and new ensures that we do proper zero out
1903 		 * for partial write.
1904 		 */
1905 		set_buffer_new(bh);
1906 		set_buffer_mapped(bh);
1907 	}
1908 	return 0;
1909 }
1910 
1911 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1912 {
1913 	mpd->first_page += folio_nr_pages(folio);
1914 	folio_unlock(folio);
1915 }
1916 
1917 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1918 {
1919 	size_t len;
1920 	loff_t size;
1921 	int err;
1922 
1923 	BUG_ON(folio->index != mpd->first_page);
1924 	folio_clear_dirty_for_io(folio);
1925 	/*
1926 	 * We have to be very careful here!  Nothing protects writeback path
1927 	 * against i_size changes and the page can be writeably mapped into
1928 	 * page tables. So an application can be growing i_size and writing
1929 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1930 	 * write-protects our page in page tables and the page cannot get
1931 	 * written to again until we release folio lock. So only after
1932 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1933 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1934 	 * on the barrier provided by folio_test_clear_dirty() in
1935 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1936 	 * after page tables are updated.
1937 	 */
1938 	size = i_size_read(mpd->inode);
1939 	len = folio_size(folio);
1940 	if (folio_pos(folio) + len > size &&
1941 	    !ext4_verity_in_progress(mpd->inode))
1942 		len = size & (len - 1);
1943 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1944 	if (!err)
1945 		mpd->wbc->nr_to_write--;
1946 
1947 	return err;
1948 }
1949 
1950 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1951 
1952 /*
1953  * mballoc gives us at most this number of blocks...
1954  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1955  * The rest of mballoc seems to handle chunks up to full group size.
1956  */
1957 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1958 
1959 /*
1960  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1961  *
1962  * @mpd - extent of blocks
1963  * @lblk - logical number of the block in the file
1964  * @bh - buffer head we want to add to the extent
1965  *
1966  * The function is used to collect contig. blocks in the same state. If the
1967  * buffer doesn't require mapping for writeback and we haven't started the
1968  * extent of buffers to map yet, the function returns 'true' immediately - the
1969  * caller can write the buffer right away. Otherwise the function returns true
1970  * if the block has been added to the extent, false if the block couldn't be
1971  * added.
1972  */
1973 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1974 				   struct buffer_head *bh)
1975 {
1976 	struct ext4_map_blocks *map = &mpd->map;
1977 
1978 	/* Buffer that doesn't need mapping for writeback? */
1979 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1980 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1981 		/* So far no extent to map => we write the buffer right away */
1982 		if (map->m_len == 0)
1983 			return true;
1984 		return false;
1985 	}
1986 
1987 	/* First block in the extent? */
1988 	if (map->m_len == 0) {
1989 		/* We cannot map unless handle is started... */
1990 		if (!mpd->do_map)
1991 			return false;
1992 		map->m_lblk = lblk;
1993 		map->m_len = 1;
1994 		map->m_flags = bh->b_state & BH_FLAGS;
1995 		return true;
1996 	}
1997 
1998 	/* Don't go larger than mballoc is willing to allocate */
1999 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2000 		return false;
2001 
2002 	/* Can we merge the block to our big extent? */
2003 	if (lblk == map->m_lblk + map->m_len &&
2004 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2005 		map->m_len++;
2006 		return true;
2007 	}
2008 	return false;
2009 }
2010 
2011 /*
2012  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2013  *
2014  * @mpd - extent of blocks for mapping
2015  * @head - the first buffer in the page
2016  * @bh - buffer we should start processing from
2017  * @lblk - logical number of the block in the file corresponding to @bh
2018  *
2019  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2020  * the page for IO if all buffers in this page were mapped and there's no
2021  * accumulated extent of buffers to map or add buffers in the page to the
2022  * extent of buffers to map. The function returns 1 if the caller can continue
2023  * by processing the next page, 0 if it should stop adding buffers to the
2024  * extent to map because we cannot extend it anymore. It can also return value
2025  * < 0 in case of error during IO submission.
2026  */
2027 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2028 				   struct buffer_head *head,
2029 				   struct buffer_head *bh,
2030 				   ext4_lblk_t lblk)
2031 {
2032 	struct inode *inode = mpd->inode;
2033 	int err;
2034 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2035 							>> inode->i_blkbits;
2036 
2037 	if (ext4_verity_in_progress(inode))
2038 		blocks = EXT_MAX_BLOCKS;
2039 
2040 	do {
2041 		BUG_ON(buffer_locked(bh));
2042 
2043 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2044 			/* Found extent to map? */
2045 			if (mpd->map.m_len)
2046 				return 0;
2047 			/* Buffer needs mapping and handle is not started? */
2048 			if (!mpd->do_map)
2049 				return 0;
2050 			/* Everything mapped so far and we hit EOF */
2051 			break;
2052 		}
2053 	} while (lblk++, (bh = bh->b_this_page) != head);
2054 	/* So far everything mapped? Submit the page for IO. */
2055 	if (mpd->map.m_len == 0) {
2056 		err = mpage_submit_folio(mpd, head->b_folio);
2057 		if (err < 0)
2058 			return err;
2059 		mpage_folio_done(mpd, head->b_folio);
2060 	}
2061 	if (lblk >= blocks) {
2062 		mpd->scanned_until_end = 1;
2063 		return 0;
2064 	}
2065 	return 1;
2066 }
2067 
2068 /*
2069  * mpage_process_folio - update folio buffers corresponding to changed extent
2070  *			 and may submit fully mapped page for IO
2071  * @mpd: description of extent to map, on return next extent to map
2072  * @folio: Contains these buffers.
2073  * @m_lblk: logical block mapping.
2074  * @m_pblk: corresponding physical mapping.
2075  * @map_bh: determines on return whether this page requires any further
2076  *		  mapping or not.
2077  *
2078  * Scan given folio buffers corresponding to changed extent and update buffer
2079  * state according to new extent state.
2080  * We map delalloc buffers to their physical location, clear unwritten bits.
2081  * If the given folio is not fully mapped, we update @mpd to the next extent in
2082  * the given folio that needs mapping & return @map_bh as true.
2083  */
2084 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2085 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2086 			      bool *map_bh)
2087 {
2088 	struct buffer_head *head, *bh;
2089 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2090 	ext4_lblk_t lblk = *m_lblk;
2091 	ext4_fsblk_t pblock = *m_pblk;
2092 	int err = 0;
2093 	int blkbits = mpd->inode->i_blkbits;
2094 	ssize_t io_end_size = 0;
2095 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2096 
2097 	bh = head = folio_buffers(folio);
2098 	do {
2099 		if (lblk < mpd->map.m_lblk)
2100 			continue;
2101 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2102 			/*
2103 			 * Buffer after end of mapped extent.
2104 			 * Find next buffer in the folio to map.
2105 			 */
2106 			mpd->map.m_len = 0;
2107 			mpd->map.m_flags = 0;
2108 			io_end_vec->size += io_end_size;
2109 
2110 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2111 			if (err > 0)
2112 				err = 0;
2113 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2114 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2115 				if (IS_ERR(io_end_vec)) {
2116 					err = PTR_ERR(io_end_vec);
2117 					goto out;
2118 				}
2119 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2120 			}
2121 			*map_bh = true;
2122 			goto out;
2123 		}
2124 		if (buffer_delay(bh)) {
2125 			clear_buffer_delay(bh);
2126 			bh->b_blocknr = pblock++;
2127 		}
2128 		clear_buffer_unwritten(bh);
2129 		io_end_size += (1 << blkbits);
2130 	} while (lblk++, (bh = bh->b_this_page) != head);
2131 
2132 	io_end_vec->size += io_end_size;
2133 	*map_bh = false;
2134 out:
2135 	*m_lblk = lblk;
2136 	*m_pblk = pblock;
2137 	return err;
2138 }
2139 
2140 /*
2141  * mpage_map_buffers - update buffers corresponding to changed extent and
2142  *		       submit fully mapped pages for IO
2143  *
2144  * @mpd - description of extent to map, on return next extent to map
2145  *
2146  * Scan buffers corresponding to changed extent (we expect corresponding pages
2147  * to be already locked) and update buffer state according to new extent state.
2148  * We map delalloc buffers to their physical location, clear unwritten bits,
2149  * and mark buffers as uninit when we perform writes to unwritten extents
2150  * and do extent conversion after IO is finished. If the last page is not fully
2151  * mapped, we update @map to the next extent in the last page that needs
2152  * mapping. Otherwise we submit the page for IO.
2153  */
2154 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2155 {
2156 	struct folio_batch fbatch;
2157 	unsigned nr, i;
2158 	struct inode *inode = mpd->inode;
2159 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2160 	pgoff_t start, end;
2161 	ext4_lblk_t lblk;
2162 	ext4_fsblk_t pblock;
2163 	int err;
2164 	bool map_bh = false;
2165 
2166 	start = mpd->map.m_lblk >> bpp_bits;
2167 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2168 	lblk = start << bpp_bits;
2169 	pblock = mpd->map.m_pblk;
2170 
2171 	folio_batch_init(&fbatch);
2172 	while (start <= end) {
2173 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2174 		if (nr == 0)
2175 			break;
2176 		for (i = 0; i < nr; i++) {
2177 			struct folio *folio = fbatch.folios[i];
2178 
2179 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2180 						 &map_bh);
2181 			/*
2182 			 * If map_bh is true, means page may require further bh
2183 			 * mapping, or maybe the page was submitted for IO.
2184 			 * So we return to call further extent mapping.
2185 			 */
2186 			if (err < 0 || map_bh)
2187 				goto out;
2188 			/* Page fully mapped - let IO run! */
2189 			err = mpage_submit_folio(mpd, folio);
2190 			if (err < 0)
2191 				goto out;
2192 			mpage_folio_done(mpd, folio);
2193 		}
2194 		folio_batch_release(&fbatch);
2195 	}
2196 	/* Extent fully mapped and matches with page boundary. We are done. */
2197 	mpd->map.m_len = 0;
2198 	mpd->map.m_flags = 0;
2199 	return 0;
2200 out:
2201 	folio_batch_release(&fbatch);
2202 	return err;
2203 }
2204 
2205 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2206 {
2207 	struct inode *inode = mpd->inode;
2208 	struct ext4_map_blocks *map = &mpd->map;
2209 	int get_blocks_flags;
2210 	int err, dioread_nolock;
2211 
2212 	trace_ext4_da_write_pages_extent(inode, map);
2213 	/*
2214 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2215 	 * to convert an unwritten extent to be initialized (in the case
2216 	 * where we have written into one or more preallocated blocks).  It is
2217 	 * possible that we're going to need more metadata blocks than
2218 	 * previously reserved. However we must not fail because we're in
2219 	 * writeback and there is nothing we can do about it so it might result
2220 	 * in data loss.  So use reserved blocks to allocate metadata if
2221 	 * possible.
2222 	 *
2223 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2224 	 * the blocks in question are delalloc blocks.  This indicates
2225 	 * that the blocks and quotas has already been checked when
2226 	 * the data was copied into the page cache.
2227 	 */
2228 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2229 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2230 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2231 	dioread_nolock = ext4_should_dioread_nolock(inode);
2232 	if (dioread_nolock)
2233 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2234 	if (map->m_flags & BIT(BH_Delay))
2235 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2236 
2237 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2238 	if (err < 0)
2239 		return err;
2240 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2241 		if (!mpd->io_submit.io_end->handle &&
2242 		    ext4_handle_valid(handle)) {
2243 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2244 			handle->h_rsv_handle = NULL;
2245 		}
2246 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2247 	}
2248 
2249 	BUG_ON(map->m_len == 0);
2250 	return 0;
2251 }
2252 
2253 /*
2254  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2255  *				 mpd->len and submit pages underlying it for IO
2256  *
2257  * @handle - handle for journal operations
2258  * @mpd - extent to map
2259  * @give_up_on_write - we set this to true iff there is a fatal error and there
2260  *                     is no hope of writing the data. The caller should discard
2261  *                     dirty pages to avoid infinite loops.
2262  *
2263  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2264  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2265  * them to initialized or split the described range from larger unwritten
2266  * extent. Note that we need not map all the described range since allocation
2267  * can return less blocks or the range is covered by more unwritten extents. We
2268  * cannot map more because we are limited by reserved transaction credits. On
2269  * the other hand we always make sure that the last touched page is fully
2270  * mapped so that it can be written out (and thus forward progress is
2271  * guaranteed). After mapping we submit all mapped pages for IO.
2272  */
2273 static int mpage_map_and_submit_extent(handle_t *handle,
2274 				       struct mpage_da_data *mpd,
2275 				       bool *give_up_on_write)
2276 {
2277 	struct inode *inode = mpd->inode;
2278 	struct ext4_map_blocks *map = &mpd->map;
2279 	int err;
2280 	loff_t disksize;
2281 	int progress = 0;
2282 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2283 	struct ext4_io_end_vec *io_end_vec;
2284 
2285 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2286 	if (IS_ERR(io_end_vec))
2287 		return PTR_ERR(io_end_vec);
2288 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2289 	do {
2290 		err = mpage_map_one_extent(handle, mpd);
2291 		if (err < 0) {
2292 			struct super_block *sb = inode->i_sb;
2293 
2294 			if (ext4_forced_shutdown(sb))
2295 				goto invalidate_dirty_pages;
2296 			/*
2297 			 * Let the uper layers retry transient errors.
2298 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2299 			 * is non-zero, a commit should free up blocks.
2300 			 */
2301 			if ((err == -ENOMEM) ||
2302 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2303 				if (progress)
2304 					goto update_disksize;
2305 				return err;
2306 			}
2307 			ext4_msg(sb, KERN_CRIT,
2308 				 "Delayed block allocation failed for "
2309 				 "inode %lu at logical offset %llu with"
2310 				 " max blocks %u with error %d",
2311 				 inode->i_ino,
2312 				 (unsigned long long)map->m_lblk,
2313 				 (unsigned)map->m_len, -err);
2314 			ext4_msg(sb, KERN_CRIT,
2315 				 "This should not happen!! Data will "
2316 				 "be lost\n");
2317 			if (err == -ENOSPC)
2318 				ext4_print_free_blocks(inode);
2319 		invalidate_dirty_pages:
2320 			*give_up_on_write = true;
2321 			return err;
2322 		}
2323 		progress = 1;
2324 		/*
2325 		 * Update buffer state, submit mapped pages, and get us new
2326 		 * extent to map
2327 		 */
2328 		err = mpage_map_and_submit_buffers(mpd);
2329 		if (err < 0)
2330 			goto update_disksize;
2331 	} while (map->m_len);
2332 
2333 update_disksize:
2334 	/*
2335 	 * Update on-disk size after IO is submitted.  Races with
2336 	 * truncate are avoided by checking i_size under i_data_sem.
2337 	 */
2338 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2339 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2340 		int err2;
2341 		loff_t i_size;
2342 
2343 		down_write(&EXT4_I(inode)->i_data_sem);
2344 		i_size = i_size_read(inode);
2345 		if (disksize > i_size)
2346 			disksize = i_size;
2347 		if (disksize > EXT4_I(inode)->i_disksize)
2348 			EXT4_I(inode)->i_disksize = disksize;
2349 		up_write(&EXT4_I(inode)->i_data_sem);
2350 		err2 = ext4_mark_inode_dirty(handle, inode);
2351 		if (err2) {
2352 			ext4_error_err(inode->i_sb, -err2,
2353 				       "Failed to mark inode %lu dirty",
2354 				       inode->i_ino);
2355 		}
2356 		if (!err)
2357 			err = err2;
2358 	}
2359 	return err;
2360 }
2361 
2362 /*
2363  * Calculate the total number of credits to reserve for one writepages
2364  * iteration. This is called from ext4_writepages(). We map an extent of
2365  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2366  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2367  * bpp - 1 blocks in bpp different extents.
2368  */
2369 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2370 {
2371 	int bpp = ext4_journal_blocks_per_page(inode);
2372 
2373 	return ext4_meta_trans_blocks(inode,
2374 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2375 }
2376 
2377 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2378 				     size_t len)
2379 {
2380 	struct buffer_head *page_bufs = folio_buffers(folio);
2381 	struct inode *inode = folio->mapping->host;
2382 	int ret, err;
2383 
2384 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2385 				     NULL, do_journal_get_write_access);
2386 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2387 				     NULL, write_end_fn);
2388 	if (ret == 0)
2389 		ret = err;
2390 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2391 	if (ret == 0)
2392 		ret = err;
2393 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2394 
2395 	return ret;
2396 }
2397 
2398 static int mpage_journal_page_buffers(handle_t *handle,
2399 				      struct mpage_da_data *mpd,
2400 				      struct folio *folio)
2401 {
2402 	struct inode *inode = mpd->inode;
2403 	loff_t size = i_size_read(inode);
2404 	size_t len = folio_size(folio);
2405 
2406 	folio_clear_checked(folio);
2407 	mpd->wbc->nr_to_write--;
2408 
2409 	if (folio_pos(folio) + len > size &&
2410 	    !ext4_verity_in_progress(inode))
2411 		len = size & (len - 1);
2412 
2413 	return ext4_journal_folio_buffers(handle, folio, len);
2414 }
2415 
2416 /*
2417  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2418  * 				 needing mapping, submit mapped pages
2419  *
2420  * @mpd - where to look for pages
2421  *
2422  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2423  * IO immediately. If we cannot map blocks, we submit just already mapped
2424  * buffers in the page for IO and keep page dirty. When we can map blocks and
2425  * we find a page which isn't mapped we start accumulating extent of buffers
2426  * underlying these pages that needs mapping (formed by either delayed or
2427  * unwritten buffers). We also lock the pages containing these buffers. The
2428  * extent found is returned in @mpd structure (starting at mpd->lblk with
2429  * length mpd->len blocks).
2430  *
2431  * Note that this function can attach bios to one io_end structure which are
2432  * neither logically nor physically contiguous. Although it may seem as an
2433  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2434  * case as we need to track IO to all buffers underlying a page in one io_end.
2435  */
2436 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2437 {
2438 	struct address_space *mapping = mpd->inode->i_mapping;
2439 	struct folio_batch fbatch;
2440 	unsigned int nr_folios;
2441 	pgoff_t index = mpd->first_page;
2442 	pgoff_t end = mpd->last_page;
2443 	xa_mark_t tag;
2444 	int i, err = 0;
2445 	int blkbits = mpd->inode->i_blkbits;
2446 	ext4_lblk_t lblk;
2447 	struct buffer_head *head;
2448 	handle_t *handle = NULL;
2449 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2450 
2451 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2452 		tag = PAGECACHE_TAG_TOWRITE;
2453 	else
2454 		tag = PAGECACHE_TAG_DIRTY;
2455 
2456 	mpd->map.m_len = 0;
2457 	mpd->next_page = index;
2458 	if (ext4_should_journal_data(mpd->inode)) {
2459 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2460 					    bpp);
2461 		if (IS_ERR(handle))
2462 			return PTR_ERR(handle);
2463 	}
2464 	folio_batch_init(&fbatch);
2465 	while (index <= end) {
2466 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2467 				tag, &fbatch);
2468 		if (nr_folios == 0)
2469 			break;
2470 
2471 		for (i = 0; i < nr_folios; i++) {
2472 			struct folio *folio = fbatch.folios[i];
2473 
2474 			/*
2475 			 * Accumulated enough dirty pages? This doesn't apply
2476 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2477 			 * keep going because someone may be concurrently
2478 			 * dirtying pages, and we might have synced a lot of
2479 			 * newly appeared dirty pages, but have not synced all
2480 			 * of the old dirty pages.
2481 			 */
2482 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2483 			    mpd->wbc->nr_to_write <=
2484 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2485 				goto out;
2486 
2487 			/* If we can't merge this page, we are done. */
2488 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2489 				goto out;
2490 
2491 			if (handle) {
2492 				err = ext4_journal_ensure_credits(handle, bpp,
2493 								  0);
2494 				if (err < 0)
2495 					goto out;
2496 			}
2497 
2498 			folio_lock(folio);
2499 			/*
2500 			 * If the page is no longer dirty, or its mapping no
2501 			 * longer corresponds to inode we are writing (which
2502 			 * means it has been truncated or invalidated), or the
2503 			 * page is already under writeback and we are not doing
2504 			 * a data integrity writeback, skip the page
2505 			 */
2506 			if (!folio_test_dirty(folio) ||
2507 			    (folio_test_writeback(folio) &&
2508 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2509 			    unlikely(folio->mapping != mapping)) {
2510 				folio_unlock(folio);
2511 				continue;
2512 			}
2513 
2514 			folio_wait_writeback(folio);
2515 			BUG_ON(folio_test_writeback(folio));
2516 
2517 			/*
2518 			 * Should never happen but for buggy code in
2519 			 * other subsystems that call
2520 			 * set_page_dirty() without properly warning
2521 			 * the file system first.  See [1] for more
2522 			 * information.
2523 			 *
2524 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2525 			 */
2526 			if (!folio_buffers(folio)) {
2527 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2528 				folio_clear_dirty(folio);
2529 				folio_unlock(folio);
2530 				continue;
2531 			}
2532 
2533 			if (mpd->map.m_len == 0)
2534 				mpd->first_page = folio->index;
2535 			mpd->next_page = folio_next_index(folio);
2536 			/*
2537 			 * Writeout when we cannot modify metadata is simple.
2538 			 * Just submit the page. For data=journal mode we
2539 			 * first handle writeout of the page for checkpoint and
2540 			 * only after that handle delayed page dirtying. This
2541 			 * makes sure current data is checkpointed to the final
2542 			 * location before possibly journalling it again which
2543 			 * is desirable when the page is frequently dirtied
2544 			 * through a pin.
2545 			 */
2546 			if (!mpd->can_map) {
2547 				err = mpage_submit_folio(mpd, folio);
2548 				if (err < 0)
2549 					goto out;
2550 				/* Pending dirtying of journalled data? */
2551 				if (folio_test_checked(folio)) {
2552 					err = mpage_journal_page_buffers(handle,
2553 						mpd, folio);
2554 					if (err < 0)
2555 						goto out;
2556 					mpd->journalled_more_data = 1;
2557 				}
2558 				mpage_folio_done(mpd, folio);
2559 			} else {
2560 				/* Add all dirty buffers to mpd */
2561 				lblk = ((ext4_lblk_t)folio->index) <<
2562 					(PAGE_SHIFT - blkbits);
2563 				head = folio_buffers(folio);
2564 				err = mpage_process_page_bufs(mpd, head, head,
2565 						lblk);
2566 				if (err <= 0)
2567 					goto out;
2568 				err = 0;
2569 			}
2570 		}
2571 		folio_batch_release(&fbatch);
2572 		cond_resched();
2573 	}
2574 	mpd->scanned_until_end = 1;
2575 	if (handle)
2576 		ext4_journal_stop(handle);
2577 	return 0;
2578 out:
2579 	folio_batch_release(&fbatch);
2580 	if (handle)
2581 		ext4_journal_stop(handle);
2582 	return err;
2583 }
2584 
2585 static int ext4_do_writepages(struct mpage_da_data *mpd)
2586 {
2587 	struct writeback_control *wbc = mpd->wbc;
2588 	pgoff_t	writeback_index = 0;
2589 	long nr_to_write = wbc->nr_to_write;
2590 	int range_whole = 0;
2591 	int cycled = 1;
2592 	handle_t *handle = NULL;
2593 	struct inode *inode = mpd->inode;
2594 	struct address_space *mapping = inode->i_mapping;
2595 	int needed_blocks, rsv_blocks = 0, ret = 0;
2596 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2597 	struct blk_plug plug;
2598 	bool give_up_on_write = false;
2599 
2600 	trace_ext4_writepages(inode, wbc);
2601 
2602 	/*
2603 	 * No pages to write? This is mainly a kludge to avoid starting
2604 	 * a transaction for special inodes like journal inode on last iput()
2605 	 * because that could violate lock ordering on umount
2606 	 */
2607 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2608 		goto out_writepages;
2609 
2610 	/*
2611 	 * If the filesystem has aborted, it is read-only, so return
2612 	 * right away instead of dumping stack traces later on that
2613 	 * will obscure the real source of the problem.  We test
2614 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2615 	 * the latter could be true if the filesystem is mounted
2616 	 * read-only, and in that case, ext4_writepages should
2617 	 * *never* be called, so if that ever happens, we would want
2618 	 * the stack trace.
2619 	 */
2620 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2621 		ret = -EROFS;
2622 		goto out_writepages;
2623 	}
2624 
2625 	/*
2626 	 * If we have inline data and arrive here, it means that
2627 	 * we will soon create the block for the 1st page, so
2628 	 * we'd better clear the inline data here.
2629 	 */
2630 	if (ext4_has_inline_data(inode)) {
2631 		/* Just inode will be modified... */
2632 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2633 		if (IS_ERR(handle)) {
2634 			ret = PTR_ERR(handle);
2635 			goto out_writepages;
2636 		}
2637 		BUG_ON(ext4_test_inode_state(inode,
2638 				EXT4_STATE_MAY_INLINE_DATA));
2639 		ext4_destroy_inline_data(handle, inode);
2640 		ext4_journal_stop(handle);
2641 	}
2642 
2643 	/*
2644 	 * data=journal mode does not do delalloc so we just need to writeout /
2645 	 * journal already mapped buffers. On the other hand we need to commit
2646 	 * transaction to make data stable. We expect all the data to be
2647 	 * already in the journal (the only exception are DMA pinned pages
2648 	 * dirtied behind our back) so we commit transaction here and run the
2649 	 * writeback loop to checkpoint them. The checkpointing is not actually
2650 	 * necessary to make data persistent *but* quite a few places (extent
2651 	 * shifting operations, fsverity, ...) depend on being able to drop
2652 	 * pagecache pages after calling filemap_write_and_wait() and for that
2653 	 * checkpointing needs to happen.
2654 	 */
2655 	if (ext4_should_journal_data(inode)) {
2656 		mpd->can_map = 0;
2657 		if (wbc->sync_mode == WB_SYNC_ALL)
2658 			ext4_fc_commit(sbi->s_journal,
2659 				       EXT4_I(inode)->i_datasync_tid);
2660 	}
2661 	mpd->journalled_more_data = 0;
2662 
2663 	if (ext4_should_dioread_nolock(inode)) {
2664 		/*
2665 		 * We may need to convert up to one extent per block in
2666 		 * the page and we may dirty the inode.
2667 		 */
2668 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2669 						PAGE_SIZE >> inode->i_blkbits);
2670 	}
2671 
2672 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2673 		range_whole = 1;
2674 
2675 	if (wbc->range_cyclic) {
2676 		writeback_index = mapping->writeback_index;
2677 		if (writeback_index)
2678 			cycled = 0;
2679 		mpd->first_page = writeback_index;
2680 		mpd->last_page = -1;
2681 	} else {
2682 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2683 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2684 	}
2685 
2686 	ext4_io_submit_init(&mpd->io_submit, wbc);
2687 retry:
2688 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2689 		tag_pages_for_writeback(mapping, mpd->first_page,
2690 					mpd->last_page);
2691 	blk_start_plug(&plug);
2692 
2693 	/*
2694 	 * First writeback pages that don't need mapping - we can avoid
2695 	 * starting a transaction unnecessarily and also avoid being blocked
2696 	 * in the block layer on device congestion while having transaction
2697 	 * started.
2698 	 */
2699 	mpd->do_map = 0;
2700 	mpd->scanned_until_end = 0;
2701 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2702 	if (!mpd->io_submit.io_end) {
2703 		ret = -ENOMEM;
2704 		goto unplug;
2705 	}
2706 	ret = mpage_prepare_extent_to_map(mpd);
2707 	/* Unlock pages we didn't use */
2708 	mpage_release_unused_pages(mpd, false);
2709 	/* Submit prepared bio */
2710 	ext4_io_submit(&mpd->io_submit);
2711 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2712 	mpd->io_submit.io_end = NULL;
2713 	if (ret < 0)
2714 		goto unplug;
2715 
2716 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2717 		/* For each extent of pages we use new io_end */
2718 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2719 		if (!mpd->io_submit.io_end) {
2720 			ret = -ENOMEM;
2721 			break;
2722 		}
2723 
2724 		WARN_ON_ONCE(!mpd->can_map);
2725 		/*
2726 		 * We have two constraints: We find one extent to map and we
2727 		 * must always write out whole page (makes a difference when
2728 		 * blocksize < pagesize) so that we don't block on IO when we
2729 		 * try to write out the rest of the page. Journalled mode is
2730 		 * not supported by delalloc.
2731 		 */
2732 		BUG_ON(ext4_should_journal_data(inode));
2733 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2734 
2735 		/* start a new transaction */
2736 		handle = ext4_journal_start_with_reserve(inode,
2737 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2738 		if (IS_ERR(handle)) {
2739 			ret = PTR_ERR(handle);
2740 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2741 			       "%ld pages, ino %lu; err %d", __func__,
2742 				wbc->nr_to_write, inode->i_ino, ret);
2743 			/* Release allocated io_end */
2744 			ext4_put_io_end(mpd->io_submit.io_end);
2745 			mpd->io_submit.io_end = NULL;
2746 			break;
2747 		}
2748 		mpd->do_map = 1;
2749 
2750 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2751 		ret = mpage_prepare_extent_to_map(mpd);
2752 		if (!ret && mpd->map.m_len)
2753 			ret = mpage_map_and_submit_extent(handle, mpd,
2754 					&give_up_on_write);
2755 		/*
2756 		 * Caution: If the handle is synchronous,
2757 		 * ext4_journal_stop() can wait for transaction commit
2758 		 * to finish which may depend on writeback of pages to
2759 		 * complete or on page lock to be released.  In that
2760 		 * case, we have to wait until after we have
2761 		 * submitted all the IO, released page locks we hold,
2762 		 * and dropped io_end reference (for extent conversion
2763 		 * to be able to complete) before stopping the handle.
2764 		 */
2765 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2766 			ext4_journal_stop(handle);
2767 			handle = NULL;
2768 			mpd->do_map = 0;
2769 		}
2770 		/* Unlock pages we didn't use */
2771 		mpage_release_unused_pages(mpd, give_up_on_write);
2772 		/* Submit prepared bio */
2773 		ext4_io_submit(&mpd->io_submit);
2774 
2775 		/*
2776 		 * Drop our io_end reference we got from init. We have
2777 		 * to be careful and use deferred io_end finishing if
2778 		 * we are still holding the transaction as we can
2779 		 * release the last reference to io_end which may end
2780 		 * up doing unwritten extent conversion.
2781 		 */
2782 		if (handle) {
2783 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2784 			ext4_journal_stop(handle);
2785 		} else
2786 			ext4_put_io_end(mpd->io_submit.io_end);
2787 		mpd->io_submit.io_end = NULL;
2788 
2789 		if (ret == -ENOSPC && sbi->s_journal) {
2790 			/*
2791 			 * Commit the transaction which would
2792 			 * free blocks released in the transaction
2793 			 * and try again
2794 			 */
2795 			jbd2_journal_force_commit_nested(sbi->s_journal);
2796 			ret = 0;
2797 			continue;
2798 		}
2799 		/* Fatal error - ENOMEM, EIO... */
2800 		if (ret)
2801 			break;
2802 	}
2803 unplug:
2804 	blk_finish_plug(&plug);
2805 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2806 		cycled = 1;
2807 		mpd->last_page = writeback_index - 1;
2808 		mpd->first_page = 0;
2809 		goto retry;
2810 	}
2811 
2812 	/* Update index */
2813 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2814 		/*
2815 		 * Set the writeback_index so that range_cyclic
2816 		 * mode will write it back later
2817 		 */
2818 		mapping->writeback_index = mpd->first_page;
2819 
2820 out_writepages:
2821 	trace_ext4_writepages_result(inode, wbc, ret,
2822 				     nr_to_write - wbc->nr_to_write);
2823 	return ret;
2824 }
2825 
2826 static int ext4_writepages(struct address_space *mapping,
2827 			   struct writeback_control *wbc)
2828 {
2829 	struct super_block *sb = mapping->host->i_sb;
2830 	struct mpage_da_data mpd = {
2831 		.inode = mapping->host,
2832 		.wbc = wbc,
2833 		.can_map = 1,
2834 	};
2835 	int ret;
2836 	int alloc_ctx;
2837 
2838 	if (unlikely(ext4_forced_shutdown(sb)))
2839 		return -EIO;
2840 
2841 	alloc_ctx = ext4_writepages_down_read(sb);
2842 	ret = ext4_do_writepages(&mpd);
2843 	/*
2844 	 * For data=journal writeback we could have come across pages marked
2845 	 * for delayed dirtying (PageChecked) which were just added to the
2846 	 * running transaction. Try once more to get them to stable storage.
2847 	 */
2848 	if (!ret && mpd.journalled_more_data)
2849 		ret = ext4_do_writepages(&mpd);
2850 	ext4_writepages_up_read(sb, alloc_ctx);
2851 
2852 	return ret;
2853 }
2854 
2855 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2856 {
2857 	struct writeback_control wbc = {
2858 		.sync_mode = WB_SYNC_ALL,
2859 		.nr_to_write = LONG_MAX,
2860 		.range_start = jinode->i_dirty_start,
2861 		.range_end = jinode->i_dirty_end,
2862 	};
2863 	struct mpage_da_data mpd = {
2864 		.inode = jinode->i_vfs_inode,
2865 		.wbc = &wbc,
2866 		.can_map = 0,
2867 	};
2868 	return ext4_do_writepages(&mpd);
2869 }
2870 
2871 static int ext4_dax_writepages(struct address_space *mapping,
2872 			       struct writeback_control *wbc)
2873 {
2874 	int ret;
2875 	long nr_to_write = wbc->nr_to_write;
2876 	struct inode *inode = mapping->host;
2877 	int alloc_ctx;
2878 
2879 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2880 		return -EIO;
2881 
2882 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2883 	trace_ext4_writepages(inode, wbc);
2884 
2885 	ret = dax_writeback_mapping_range(mapping,
2886 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2887 	trace_ext4_writepages_result(inode, wbc, ret,
2888 				     nr_to_write - wbc->nr_to_write);
2889 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2890 	return ret;
2891 }
2892 
2893 static int ext4_nonda_switch(struct super_block *sb)
2894 {
2895 	s64 free_clusters, dirty_clusters;
2896 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2897 
2898 	/*
2899 	 * switch to non delalloc mode if we are running low
2900 	 * on free block. The free block accounting via percpu
2901 	 * counters can get slightly wrong with percpu_counter_batch getting
2902 	 * accumulated on each CPU without updating global counters
2903 	 * Delalloc need an accurate free block accounting. So switch
2904 	 * to non delalloc when we are near to error range.
2905 	 */
2906 	free_clusters =
2907 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2908 	dirty_clusters =
2909 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2910 	/*
2911 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2912 	 */
2913 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2914 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2915 
2916 	if (2 * free_clusters < 3 * dirty_clusters ||
2917 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2918 		/*
2919 		 * free block count is less than 150% of dirty blocks
2920 		 * or free blocks is less than watermark
2921 		 */
2922 		return 1;
2923 	}
2924 	return 0;
2925 }
2926 
2927 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2928 			       loff_t pos, unsigned len,
2929 			       struct page **pagep, void **fsdata)
2930 {
2931 	int ret, retries = 0;
2932 	struct folio *folio;
2933 	pgoff_t index;
2934 	struct inode *inode = mapping->host;
2935 
2936 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2937 		return -EIO;
2938 
2939 	index = pos >> PAGE_SHIFT;
2940 
2941 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2942 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2943 		return ext4_write_begin(file, mapping, pos,
2944 					len, pagep, fsdata);
2945 	}
2946 	*fsdata = (void *)0;
2947 	trace_ext4_da_write_begin(inode, pos, len);
2948 
2949 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2950 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2951 						      pagep, fsdata);
2952 		if (ret < 0)
2953 			return ret;
2954 		if (ret == 1)
2955 			return 0;
2956 	}
2957 
2958 retry:
2959 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2960 			mapping_gfp_mask(mapping));
2961 	if (IS_ERR(folio))
2962 		return PTR_ERR(folio);
2963 
2964 #ifdef CONFIG_FS_ENCRYPTION
2965 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2966 #else
2967 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2968 #endif
2969 	if (ret < 0) {
2970 		folio_unlock(folio);
2971 		folio_put(folio);
2972 		/*
2973 		 * block_write_begin may have instantiated a few blocks
2974 		 * outside i_size.  Trim these off again. Don't need
2975 		 * i_size_read because we hold inode lock.
2976 		 */
2977 		if (pos + len > inode->i_size)
2978 			ext4_truncate_failed_write(inode);
2979 
2980 		if (ret == -ENOSPC &&
2981 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2982 			goto retry;
2983 		return ret;
2984 	}
2985 
2986 	*pagep = &folio->page;
2987 	return ret;
2988 }
2989 
2990 /*
2991  * Check if we should update i_disksize
2992  * when write to the end of file but not require block allocation
2993  */
2994 static int ext4_da_should_update_i_disksize(struct folio *folio,
2995 					    unsigned long offset)
2996 {
2997 	struct buffer_head *bh;
2998 	struct inode *inode = folio->mapping->host;
2999 	unsigned int idx;
3000 	int i;
3001 
3002 	bh = folio_buffers(folio);
3003 	idx = offset >> inode->i_blkbits;
3004 
3005 	for (i = 0; i < idx; i++)
3006 		bh = bh->b_this_page;
3007 
3008 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3009 		return 0;
3010 	return 1;
3011 }
3012 
3013 static int ext4_da_do_write_end(struct address_space *mapping,
3014 			loff_t pos, unsigned len, unsigned copied,
3015 			struct folio *folio)
3016 {
3017 	struct inode *inode = mapping->host;
3018 	loff_t old_size = inode->i_size;
3019 	bool disksize_changed = false;
3020 	loff_t new_i_size;
3021 
3022 	if (unlikely(!folio_buffers(folio))) {
3023 		folio_unlock(folio);
3024 		folio_put(folio);
3025 		return -EIO;
3026 	}
3027 	/*
3028 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3029 	 * flag, which all that's needed to trigger page writeback.
3030 	 */
3031 	copied = block_write_end(NULL, mapping, pos, len, copied,
3032 			&folio->page, NULL);
3033 	new_i_size = pos + copied;
3034 
3035 	/*
3036 	 * It's important to update i_size while still holding folio lock,
3037 	 * because folio writeout could otherwise come in and zero beyond
3038 	 * i_size.
3039 	 *
3040 	 * Since we are holding inode lock, we are sure i_disksize <=
3041 	 * i_size. We also know that if i_disksize < i_size, there are
3042 	 * delalloc writes pending in the range up to i_size. If the end of
3043 	 * the current write is <= i_size, there's no need to touch
3044 	 * i_disksize since writeback will push i_disksize up to i_size
3045 	 * eventually. If the end of the current write is > i_size and
3046 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3047 	 * checked, we need to update i_disksize here as certain
3048 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3049 	 */
3050 	if (new_i_size > inode->i_size) {
3051 		unsigned long end;
3052 
3053 		i_size_write(inode, new_i_size);
3054 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3055 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3056 			ext4_update_i_disksize(inode, new_i_size);
3057 			disksize_changed = true;
3058 		}
3059 	}
3060 
3061 	folio_unlock(folio);
3062 	folio_put(folio);
3063 
3064 	if (old_size < pos)
3065 		pagecache_isize_extended(inode, old_size, pos);
3066 
3067 	if (disksize_changed) {
3068 		handle_t *handle;
3069 
3070 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3071 		if (IS_ERR(handle))
3072 			return PTR_ERR(handle);
3073 		ext4_mark_inode_dirty(handle, inode);
3074 		ext4_journal_stop(handle);
3075 	}
3076 
3077 	return copied;
3078 }
3079 
3080 static int ext4_da_write_end(struct file *file,
3081 			     struct address_space *mapping,
3082 			     loff_t pos, unsigned len, unsigned copied,
3083 			     struct page *page, void *fsdata)
3084 {
3085 	struct inode *inode = mapping->host;
3086 	int write_mode = (int)(unsigned long)fsdata;
3087 	struct folio *folio = page_folio(page);
3088 
3089 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3090 		return ext4_write_end(file, mapping, pos,
3091 				      len, copied, &folio->page, fsdata);
3092 
3093 	trace_ext4_da_write_end(inode, pos, len, copied);
3094 
3095 	if (write_mode != CONVERT_INLINE_DATA &&
3096 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3097 	    ext4_has_inline_data(inode))
3098 		return ext4_write_inline_data_end(inode, pos, len, copied,
3099 						  folio);
3100 
3101 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3102 		copied = 0;
3103 
3104 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3105 }
3106 
3107 /*
3108  * Force all delayed allocation blocks to be allocated for a given inode.
3109  */
3110 int ext4_alloc_da_blocks(struct inode *inode)
3111 {
3112 	trace_ext4_alloc_da_blocks(inode);
3113 
3114 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3115 		return 0;
3116 
3117 	/*
3118 	 * We do something simple for now.  The filemap_flush() will
3119 	 * also start triggering a write of the data blocks, which is
3120 	 * not strictly speaking necessary (and for users of
3121 	 * laptop_mode, not even desirable).  However, to do otherwise
3122 	 * would require replicating code paths in:
3123 	 *
3124 	 * ext4_writepages() ->
3125 	 *    write_cache_pages() ---> (via passed in callback function)
3126 	 *        __mpage_da_writepage() -->
3127 	 *           mpage_add_bh_to_extent()
3128 	 *           mpage_da_map_blocks()
3129 	 *
3130 	 * The problem is that write_cache_pages(), located in
3131 	 * mm/page-writeback.c, marks pages clean in preparation for
3132 	 * doing I/O, which is not desirable if we're not planning on
3133 	 * doing I/O at all.
3134 	 *
3135 	 * We could call write_cache_pages(), and then redirty all of
3136 	 * the pages by calling redirty_page_for_writepage() but that
3137 	 * would be ugly in the extreme.  So instead we would need to
3138 	 * replicate parts of the code in the above functions,
3139 	 * simplifying them because we wouldn't actually intend to
3140 	 * write out the pages, but rather only collect contiguous
3141 	 * logical block extents, call the multi-block allocator, and
3142 	 * then update the buffer heads with the block allocations.
3143 	 *
3144 	 * For now, though, we'll cheat by calling filemap_flush(),
3145 	 * which will map the blocks, and start the I/O, but not
3146 	 * actually wait for the I/O to complete.
3147 	 */
3148 	return filemap_flush(inode->i_mapping);
3149 }
3150 
3151 /*
3152  * bmap() is special.  It gets used by applications such as lilo and by
3153  * the swapper to find the on-disk block of a specific piece of data.
3154  *
3155  * Naturally, this is dangerous if the block concerned is still in the
3156  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3157  * filesystem and enables swap, then they may get a nasty shock when the
3158  * data getting swapped to that swapfile suddenly gets overwritten by
3159  * the original zero's written out previously to the journal and
3160  * awaiting writeback in the kernel's buffer cache.
3161  *
3162  * So, if we see any bmap calls here on a modified, data-journaled file,
3163  * take extra steps to flush any blocks which might be in the cache.
3164  */
3165 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3166 {
3167 	struct inode *inode = mapping->host;
3168 	sector_t ret = 0;
3169 
3170 	inode_lock_shared(inode);
3171 	/*
3172 	 * We can get here for an inline file via the FIBMAP ioctl
3173 	 */
3174 	if (ext4_has_inline_data(inode))
3175 		goto out;
3176 
3177 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3178 	    (test_opt(inode->i_sb, DELALLOC) ||
3179 	     ext4_should_journal_data(inode))) {
3180 		/*
3181 		 * With delalloc or journalled data we want to sync the file so
3182 		 * that we can make sure we allocate blocks for file and data
3183 		 * is in place for the user to see it
3184 		 */
3185 		filemap_write_and_wait(mapping);
3186 	}
3187 
3188 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3189 
3190 out:
3191 	inode_unlock_shared(inode);
3192 	return ret;
3193 }
3194 
3195 static int ext4_read_folio(struct file *file, struct folio *folio)
3196 {
3197 	int ret = -EAGAIN;
3198 	struct inode *inode = folio->mapping->host;
3199 
3200 	trace_ext4_read_folio(inode, folio);
3201 
3202 	if (ext4_has_inline_data(inode))
3203 		ret = ext4_readpage_inline(inode, folio);
3204 
3205 	if (ret == -EAGAIN)
3206 		return ext4_mpage_readpages(inode, NULL, folio);
3207 
3208 	return ret;
3209 }
3210 
3211 static void ext4_readahead(struct readahead_control *rac)
3212 {
3213 	struct inode *inode = rac->mapping->host;
3214 
3215 	/* If the file has inline data, no need to do readahead. */
3216 	if (ext4_has_inline_data(inode))
3217 		return;
3218 
3219 	ext4_mpage_readpages(inode, rac, NULL);
3220 }
3221 
3222 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3223 				size_t length)
3224 {
3225 	trace_ext4_invalidate_folio(folio, offset, length);
3226 
3227 	/* No journalling happens on data buffers when this function is used */
3228 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3229 
3230 	block_invalidate_folio(folio, offset, length);
3231 }
3232 
3233 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3234 					    size_t offset, size_t length)
3235 {
3236 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3237 
3238 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3239 
3240 	/*
3241 	 * If it's a full truncate we just forget about the pending dirtying
3242 	 */
3243 	if (offset == 0 && length == folio_size(folio))
3244 		folio_clear_checked(folio);
3245 
3246 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3247 }
3248 
3249 /* Wrapper for aops... */
3250 static void ext4_journalled_invalidate_folio(struct folio *folio,
3251 					   size_t offset,
3252 					   size_t length)
3253 {
3254 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3255 }
3256 
3257 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3258 {
3259 	struct inode *inode = folio->mapping->host;
3260 	journal_t *journal = EXT4_JOURNAL(inode);
3261 
3262 	trace_ext4_release_folio(inode, folio);
3263 
3264 	/* Page has dirty journalled data -> cannot release */
3265 	if (folio_test_checked(folio))
3266 		return false;
3267 	if (journal)
3268 		return jbd2_journal_try_to_free_buffers(journal, folio);
3269 	else
3270 		return try_to_free_buffers(folio);
3271 }
3272 
3273 static bool ext4_inode_datasync_dirty(struct inode *inode)
3274 {
3275 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3276 
3277 	if (journal) {
3278 		if (jbd2_transaction_committed(journal,
3279 			EXT4_I(inode)->i_datasync_tid))
3280 			return false;
3281 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3282 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3283 		return true;
3284 	}
3285 
3286 	/* Any metadata buffers to write? */
3287 	if (!list_empty(&inode->i_mapping->i_private_list))
3288 		return true;
3289 	return inode->i_state & I_DIRTY_DATASYNC;
3290 }
3291 
3292 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3293 			   struct ext4_map_blocks *map, loff_t offset,
3294 			   loff_t length, unsigned int flags)
3295 {
3296 	u8 blkbits = inode->i_blkbits;
3297 
3298 	/*
3299 	 * Writes that span EOF might trigger an I/O size update on completion,
3300 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3301 	 * there is no other metadata changes being made or are pending.
3302 	 */
3303 	iomap->flags = 0;
3304 	if (ext4_inode_datasync_dirty(inode) ||
3305 	    offset + length > i_size_read(inode))
3306 		iomap->flags |= IOMAP_F_DIRTY;
3307 
3308 	if (map->m_flags & EXT4_MAP_NEW)
3309 		iomap->flags |= IOMAP_F_NEW;
3310 
3311 	if (flags & IOMAP_DAX)
3312 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3313 	else
3314 		iomap->bdev = inode->i_sb->s_bdev;
3315 	iomap->offset = (u64) map->m_lblk << blkbits;
3316 	iomap->length = (u64) map->m_len << blkbits;
3317 
3318 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3319 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3320 		iomap->flags |= IOMAP_F_MERGED;
3321 
3322 	/*
3323 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3324 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3325 	 * set. In order for any allocated unwritten extents to be converted
3326 	 * into written extents correctly within the ->end_io() handler, we
3327 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3328 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3329 	 * been set first.
3330 	 */
3331 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3332 		iomap->type = IOMAP_UNWRITTEN;
3333 		iomap->addr = (u64) map->m_pblk << blkbits;
3334 		if (flags & IOMAP_DAX)
3335 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3336 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3337 		iomap->type = IOMAP_MAPPED;
3338 		iomap->addr = (u64) map->m_pblk << blkbits;
3339 		if (flags & IOMAP_DAX)
3340 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3341 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3342 		iomap->type = IOMAP_DELALLOC;
3343 		iomap->addr = IOMAP_NULL_ADDR;
3344 	} else {
3345 		iomap->type = IOMAP_HOLE;
3346 		iomap->addr = IOMAP_NULL_ADDR;
3347 	}
3348 }
3349 
3350 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3351 			    unsigned int flags)
3352 {
3353 	handle_t *handle;
3354 	u8 blkbits = inode->i_blkbits;
3355 	int ret, dio_credits, m_flags = 0, retries = 0;
3356 
3357 	/*
3358 	 * Trim the mapping request to the maximum value that we can map at
3359 	 * once for direct I/O.
3360 	 */
3361 	if (map->m_len > DIO_MAX_BLOCKS)
3362 		map->m_len = DIO_MAX_BLOCKS;
3363 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3364 
3365 retry:
3366 	/*
3367 	 * Either we allocate blocks and then don't get an unwritten extent, so
3368 	 * in that case we have reserved enough credits. Or, the blocks are
3369 	 * already allocated and unwritten. In that case, the extent conversion
3370 	 * fits into the credits as well.
3371 	 */
3372 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3373 	if (IS_ERR(handle))
3374 		return PTR_ERR(handle);
3375 
3376 	/*
3377 	 * DAX and direct I/O are the only two operations that are currently
3378 	 * supported with IOMAP_WRITE.
3379 	 */
3380 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3381 	if (flags & IOMAP_DAX)
3382 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3383 	/*
3384 	 * We use i_size instead of i_disksize here because delalloc writeback
3385 	 * can complete at any point during the I/O and subsequently push the
3386 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3387 	 * happening and thus expose allocated blocks to direct I/O reads.
3388 	 */
3389 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3390 		m_flags = EXT4_GET_BLOCKS_CREATE;
3391 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3392 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3393 
3394 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3395 
3396 	/*
3397 	 * We cannot fill holes in indirect tree based inodes as that could
3398 	 * expose stale data in the case of a crash. Use the magic error code
3399 	 * to fallback to buffered I/O.
3400 	 */
3401 	if (!m_flags && !ret)
3402 		ret = -ENOTBLK;
3403 
3404 	ext4_journal_stop(handle);
3405 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3406 		goto retry;
3407 
3408 	return ret;
3409 }
3410 
3411 
3412 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3414 {
3415 	int ret;
3416 	struct ext4_map_blocks map;
3417 	u8 blkbits = inode->i_blkbits;
3418 
3419 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420 		return -EINVAL;
3421 
3422 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3423 		return -ERANGE;
3424 
3425 	/*
3426 	 * Calculate the first and last logical blocks respectively.
3427 	 */
3428 	map.m_lblk = offset >> blkbits;
3429 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3430 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3431 
3432 	if (flags & IOMAP_WRITE) {
3433 		/*
3434 		 * We check here if the blocks are already allocated, then we
3435 		 * don't need to start a journal txn and we can directly return
3436 		 * the mapping information. This could boost performance
3437 		 * especially in multi-threaded overwrite requests.
3438 		 */
3439 		if (offset + length <= i_size_read(inode)) {
3440 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3441 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3442 				goto out;
3443 		}
3444 		ret = ext4_iomap_alloc(inode, &map, flags);
3445 	} else {
3446 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3447 	}
3448 
3449 	if (ret < 0)
3450 		return ret;
3451 out:
3452 	/*
3453 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3454 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3455 	 * limiting the length of the mapping returned.
3456 	 */
3457 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3458 
3459 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3460 
3461 	return 0;
3462 }
3463 
3464 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3465 		loff_t length, unsigned flags, struct iomap *iomap,
3466 		struct iomap *srcmap)
3467 {
3468 	int ret;
3469 
3470 	/*
3471 	 * Even for writes we don't need to allocate blocks, so just pretend
3472 	 * we are reading to save overhead of starting a transaction.
3473 	 */
3474 	flags &= ~IOMAP_WRITE;
3475 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3476 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3477 	return ret;
3478 }
3479 
3480 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3481 			  ssize_t written, unsigned flags, struct iomap *iomap)
3482 {
3483 	/*
3484 	 * Check to see whether an error occurred while writing out the data to
3485 	 * the allocated blocks. If so, return the magic error code so that we
3486 	 * fallback to buffered I/O and attempt to complete the remainder of
3487 	 * the I/O. Any blocks that may have been allocated in preparation for
3488 	 * the direct I/O will be reused during buffered I/O.
3489 	 */
3490 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3491 		return -ENOTBLK;
3492 
3493 	return 0;
3494 }
3495 
3496 const struct iomap_ops ext4_iomap_ops = {
3497 	.iomap_begin		= ext4_iomap_begin,
3498 	.iomap_end		= ext4_iomap_end,
3499 };
3500 
3501 const struct iomap_ops ext4_iomap_overwrite_ops = {
3502 	.iomap_begin		= ext4_iomap_overwrite_begin,
3503 	.iomap_end		= ext4_iomap_end,
3504 };
3505 
3506 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3507 				   loff_t length, unsigned int flags,
3508 				   struct iomap *iomap, struct iomap *srcmap)
3509 {
3510 	int ret;
3511 	struct ext4_map_blocks map;
3512 	u8 blkbits = inode->i_blkbits;
3513 
3514 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3515 		return -EINVAL;
3516 
3517 	if (ext4_has_inline_data(inode)) {
3518 		ret = ext4_inline_data_iomap(inode, iomap);
3519 		if (ret != -EAGAIN) {
3520 			if (ret == 0 && offset >= iomap->length)
3521 				ret = -ENOENT;
3522 			return ret;
3523 		}
3524 	}
3525 
3526 	/*
3527 	 * Calculate the first and last logical block respectively.
3528 	 */
3529 	map.m_lblk = offset >> blkbits;
3530 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3531 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3532 
3533 	/*
3534 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3535 	 * So handle it here itself instead of querying ext4_map_blocks().
3536 	 * Since ext4_map_blocks() will warn about it and will return
3537 	 * -EIO error.
3538 	 */
3539 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3540 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3541 
3542 		if (offset >= sbi->s_bitmap_maxbytes) {
3543 			map.m_flags = 0;
3544 			goto set_iomap;
3545 		}
3546 	}
3547 
3548 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3549 	if (ret < 0)
3550 		return ret;
3551 set_iomap:
3552 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3553 
3554 	return 0;
3555 }
3556 
3557 const struct iomap_ops ext4_iomap_report_ops = {
3558 	.iomap_begin = ext4_iomap_begin_report,
3559 };
3560 
3561 /*
3562  * For data=journal mode, folio should be marked dirty only when it was
3563  * writeably mapped. When that happens, it was already attached to the
3564  * transaction and marked as jbddirty (we take care of this in
3565  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3566  * so we should have nothing to do here, except for the case when someone
3567  * had the page pinned and dirtied the page through this pin (e.g. by doing
3568  * direct IO to it). In that case we'd need to attach buffers here to the
3569  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3570  * folio and leave attached buffers clean, because the buffers' dirty state is
3571  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3572  * the journalling code will explode.  So what we do is to mark the folio
3573  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3574  * to the transaction appropriately.
3575  */
3576 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3577 		struct folio *folio)
3578 {
3579 	WARN_ON_ONCE(!folio_buffers(folio));
3580 	if (folio_maybe_dma_pinned(folio))
3581 		folio_set_checked(folio);
3582 	return filemap_dirty_folio(mapping, folio);
3583 }
3584 
3585 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3586 {
3587 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3588 	WARN_ON_ONCE(!folio_buffers(folio));
3589 	return block_dirty_folio(mapping, folio);
3590 }
3591 
3592 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3593 				    struct file *file, sector_t *span)
3594 {
3595 	return iomap_swapfile_activate(sis, file, span,
3596 				       &ext4_iomap_report_ops);
3597 }
3598 
3599 static const struct address_space_operations ext4_aops = {
3600 	.read_folio		= ext4_read_folio,
3601 	.readahead		= ext4_readahead,
3602 	.writepages		= ext4_writepages,
3603 	.write_begin		= ext4_write_begin,
3604 	.write_end		= ext4_write_end,
3605 	.dirty_folio		= ext4_dirty_folio,
3606 	.bmap			= ext4_bmap,
3607 	.invalidate_folio	= ext4_invalidate_folio,
3608 	.release_folio		= ext4_release_folio,
3609 	.migrate_folio		= buffer_migrate_folio,
3610 	.is_partially_uptodate  = block_is_partially_uptodate,
3611 	.error_remove_folio	= generic_error_remove_folio,
3612 	.swap_activate		= ext4_iomap_swap_activate,
3613 };
3614 
3615 static const struct address_space_operations ext4_journalled_aops = {
3616 	.read_folio		= ext4_read_folio,
3617 	.readahead		= ext4_readahead,
3618 	.writepages		= ext4_writepages,
3619 	.write_begin		= ext4_write_begin,
3620 	.write_end		= ext4_journalled_write_end,
3621 	.dirty_folio		= ext4_journalled_dirty_folio,
3622 	.bmap			= ext4_bmap,
3623 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3624 	.release_folio		= ext4_release_folio,
3625 	.migrate_folio		= buffer_migrate_folio_norefs,
3626 	.is_partially_uptodate  = block_is_partially_uptodate,
3627 	.error_remove_folio	= generic_error_remove_folio,
3628 	.swap_activate		= ext4_iomap_swap_activate,
3629 };
3630 
3631 static const struct address_space_operations ext4_da_aops = {
3632 	.read_folio		= ext4_read_folio,
3633 	.readahead		= ext4_readahead,
3634 	.writepages		= ext4_writepages,
3635 	.write_begin		= ext4_da_write_begin,
3636 	.write_end		= ext4_da_write_end,
3637 	.dirty_folio		= ext4_dirty_folio,
3638 	.bmap			= ext4_bmap,
3639 	.invalidate_folio	= ext4_invalidate_folio,
3640 	.release_folio		= ext4_release_folio,
3641 	.migrate_folio		= buffer_migrate_folio,
3642 	.is_partially_uptodate  = block_is_partially_uptodate,
3643 	.error_remove_folio	= generic_error_remove_folio,
3644 	.swap_activate		= ext4_iomap_swap_activate,
3645 };
3646 
3647 static const struct address_space_operations ext4_dax_aops = {
3648 	.writepages		= ext4_dax_writepages,
3649 	.dirty_folio		= noop_dirty_folio,
3650 	.bmap			= ext4_bmap,
3651 	.swap_activate		= ext4_iomap_swap_activate,
3652 };
3653 
3654 void ext4_set_aops(struct inode *inode)
3655 {
3656 	switch (ext4_inode_journal_mode(inode)) {
3657 	case EXT4_INODE_ORDERED_DATA_MODE:
3658 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3659 		break;
3660 	case EXT4_INODE_JOURNAL_DATA_MODE:
3661 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3662 		return;
3663 	default:
3664 		BUG();
3665 	}
3666 	if (IS_DAX(inode))
3667 		inode->i_mapping->a_ops = &ext4_dax_aops;
3668 	else if (test_opt(inode->i_sb, DELALLOC))
3669 		inode->i_mapping->a_ops = &ext4_da_aops;
3670 	else
3671 		inode->i_mapping->a_ops = &ext4_aops;
3672 }
3673 
3674 /*
3675  * Here we can't skip an unwritten buffer even though it usually reads zero
3676  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3677  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3678  * racing writeback can come later and flush the stale pagecache to disk.
3679  */
3680 static int __ext4_block_zero_page_range(handle_t *handle,
3681 		struct address_space *mapping, loff_t from, loff_t length)
3682 {
3683 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3684 	unsigned offset = from & (PAGE_SIZE-1);
3685 	unsigned blocksize, pos;
3686 	ext4_lblk_t iblock;
3687 	struct inode *inode = mapping->host;
3688 	struct buffer_head *bh;
3689 	struct folio *folio;
3690 	int err = 0;
3691 
3692 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3693 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3694 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3695 	if (IS_ERR(folio))
3696 		return PTR_ERR(folio);
3697 
3698 	blocksize = inode->i_sb->s_blocksize;
3699 
3700 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3701 
3702 	bh = folio_buffers(folio);
3703 	if (!bh)
3704 		bh = create_empty_buffers(folio, blocksize, 0);
3705 
3706 	/* Find the buffer that contains "offset" */
3707 	pos = blocksize;
3708 	while (offset >= pos) {
3709 		bh = bh->b_this_page;
3710 		iblock++;
3711 		pos += blocksize;
3712 	}
3713 	if (buffer_freed(bh)) {
3714 		BUFFER_TRACE(bh, "freed: skip");
3715 		goto unlock;
3716 	}
3717 	if (!buffer_mapped(bh)) {
3718 		BUFFER_TRACE(bh, "unmapped");
3719 		ext4_get_block(inode, iblock, bh, 0);
3720 		/* unmapped? It's a hole - nothing to do */
3721 		if (!buffer_mapped(bh)) {
3722 			BUFFER_TRACE(bh, "still unmapped");
3723 			goto unlock;
3724 		}
3725 	}
3726 
3727 	/* Ok, it's mapped. Make sure it's up-to-date */
3728 	if (folio_test_uptodate(folio))
3729 		set_buffer_uptodate(bh);
3730 
3731 	if (!buffer_uptodate(bh)) {
3732 		err = ext4_read_bh_lock(bh, 0, true);
3733 		if (err)
3734 			goto unlock;
3735 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3736 			/* We expect the key to be set. */
3737 			BUG_ON(!fscrypt_has_encryption_key(inode));
3738 			err = fscrypt_decrypt_pagecache_blocks(folio,
3739 							       blocksize,
3740 							       bh_offset(bh));
3741 			if (err) {
3742 				clear_buffer_uptodate(bh);
3743 				goto unlock;
3744 			}
3745 		}
3746 	}
3747 	if (ext4_should_journal_data(inode)) {
3748 		BUFFER_TRACE(bh, "get write access");
3749 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3750 						    EXT4_JTR_NONE);
3751 		if (err)
3752 			goto unlock;
3753 	}
3754 	folio_zero_range(folio, offset, length);
3755 	BUFFER_TRACE(bh, "zeroed end of block");
3756 
3757 	if (ext4_should_journal_data(inode)) {
3758 		err = ext4_dirty_journalled_data(handle, bh);
3759 	} else {
3760 		err = 0;
3761 		mark_buffer_dirty(bh);
3762 		if (ext4_should_order_data(inode))
3763 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3764 					length);
3765 	}
3766 
3767 unlock:
3768 	folio_unlock(folio);
3769 	folio_put(folio);
3770 	return err;
3771 }
3772 
3773 /*
3774  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3775  * starting from file offset 'from'.  The range to be zero'd must
3776  * be contained with in one block.  If the specified range exceeds
3777  * the end of the block it will be shortened to end of the block
3778  * that corresponds to 'from'
3779  */
3780 static int ext4_block_zero_page_range(handle_t *handle,
3781 		struct address_space *mapping, loff_t from, loff_t length)
3782 {
3783 	struct inode *inode = mapping->host;
3784 	unsigned offset = from & (PAGE_SIZE-1);
3785 	unsigned blocksize = inode->i_sb->s_blocksize;
3786 	unsigned max = blocksize - (offset & (blocksize - 1));
3787 
3788 	/*
3789 	 * correct length if it does not fall between
3790 	 * 'from' and the end of the block
3791 	 */
3792 	if (length > max || length < 0)
3793 		length = max;
3794 
3795 	if (IS_DAX(inode)) {
3796 		return dax_zero_range(inode, from, length, NULL,
3797 				      &ext4_iomap_ops);
3798 	}
3799 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3800 }
3801 
3802 /*
3803  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3804  * up to the end of the block which corresponds to `from'.
3805  * This required during truncate. We need to physically zero the tail end
3806  * of that block so it doesn't yield old data if the file is later grown.
3807  */
3808 static int ext4_block_truncate_page(handle_t *handle,
3809 		struct address_space *mapping, loff_t from)
3810 {
3811 	unsigned offset = from & (PAGE_SIZE-1);
3812 	unsigned length;
3813 	unsigned blocksize;
3814 	struct inode *inode = mapping->host;
3815 
3816 	/* If we are processing an encrypted inode during orphan list handling */
3817 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3818 		return 0;
3819 
3820 	blocksize = inode->i_sb->s_blocksize;
3821 	length = blocksize - (offset & (blocksize - 1));
3822 
3823 	return ext4_block_zero_page_range(handle, mapping, from, length);
3824 }
3825 
3826 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3827 			     loff_t lstart, loff_t length)
3828 {
3829 	struct super_block *sb = inode->i_sb;
3830 	struct address_space *mapping = inode->i_mapping;
3831 	unsigned partial_start, partial_end;
3832 	ext4_fsblk_t start, end;
3833 	loff_t byte_end = (lstart + length - 1);
3834 	int err = 0;
3835 
3836 	partial_start = lstart & (sb->s_blocksize - 1);
3837 	partial_end = byte_end & (sb->s_blocksize - 1);
3838 
3839 	start = lstart >> sb->s_blocksize_bits;
3840 	end = byte_end >> sb->s_blocksize_bits;
3841 
3842 	/* Handle partial zero within the single block */
3843 	if (start == end &&
3844 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3845 		err = ext4_block_zero_page_range(handle, mapping,
3846 						 lstart, length);
3847 		return err;
3848 	}
3849 	/* Handle partial zero out on the start of the range */
3850 	if (partial_start) {
3851 		err = ext4_block_zero_page_range(handle, mapping,
3852 						 lstart, sb->s_blocksize);
3853 		if (err)
3854 			return err;
3855 	}
3856 	/* Handle partial zero out on the end of the range */
3857 	if (partial_end != sb->s_blocksize - 1)
3858 		err = ext4_block_zero_page_range(handle, mapping,
3859 						 byte_end - partial_end,
3860 						 partial_end + 1);
3861 	return err;
3862 }
3863 
3864 int ext4_can_truncate(struct inode *inode)
3865 {
3866 	if (S_ISREG(inode->i_mode))
3867 		return 1;
3868 	if (S_ISDIR(inode->i_mode))
3869 		return 1;
3870 	if (S_ISLNK(inode->i_mode))
3871 		return !ext4_inode_is_fast_symlink(inode);
3872 	return 0;
3873 }
3874 
3875 /*
3876  * We have to make sure i_disksize gets properly updated before we truncate
3877  * page cache due to hole punching or zero range. Otherwise i_disksize update
3878  * can get lost as it may have been postponed to submission of writeback but
3879  * that will never happen after we truncate page cache.
3880  */
3881 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3882 				      loff_t len)
3883 {
3884 	handle_t *handle;
3885 	int ret;
3886 
3887 	loff_t size = i_size_read(inode);
3888 
3889 	WARN_ON(!inode_is_locked(inode));
3890 	if (offset > size || offset + len < size)
3891 		return 0;
3892 
3893 	if (EXT4_I(inode)->i_disksize >= size)
3894 		return 0;
3895 
3896 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3897 	if (IS_ERR(handle))
3898 		return PTR_ERR(handle);
3899 	ext4_update_i_disksize(inode, size);
3900 	ret = ext4_mark_inode_dirty(handle, inode);
3901 	ext4_journal_stop(handle);
3902 
3903 	return ret;
3904 }
3905 
3906 static void ext4_wait_dax_page(struct inode *inode)
3907 {
3908 	filemap_invalidate_unlock(inode->i_mapping);
3909 	schedule();
3910 	filemap_invalidate_lock(inode->i_mapping);
3911 }
3912 
3913 int ext4_break_layouts(struct inode *inode)
3914 {
3915 	struct page *page;
3916 	int error;
3917 
3918 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3919 		return -EINVAL;
3920 
3921 	do {
3922 		page = dax_layout_busy_page(inode->i_mapping);
3923 		if (!page)
3924 			return 0;
3925 
3926 		error = ___wait_var_event(&page->_refcount,
3927 				atomic_read(&page->_refcount) == 1,
3928 				TASK_INTERRUPTIBLE, 0, 0,
3929 				ext4_wait_dax_page(inode));
3930 	} while (error == 0);
3931 
3932 	return error;
3933 }
3934 
3935 /*
3936  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3937  * associated with the given offset and length
3938  *
3939  * @inode:  File inode
3940  * @offset: The offset where the hole will begin
3941  * @len:    The length of the hole
3942  *
3943  * Returns: 0 on success or negative on failure
3944  */
3945 
3946 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3947 {
3948 	struct inode *inode = file_inode(file);
3949 	struct super_block *sb = inode->i_sb;
3950 	ext4_lblk_t first_block, stop_block;
3951 	struct address_space *mapping = inode->i_mapping;
3952 	loff_t first_block_offset, last_block_offset, max_length;
3953 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3954 	handle_t *handle;
3955 	unsigned int credits;
3956 	int ret = 0, ret2 = 0;
3957 
3958 	trace_ext4_punch_hole(inode, offset, length, 0);
3959 
3960 	/*
3961 	 * Write out all dirty pages to avoid race conditions
3962 	 * Then release them.
3963 	 */
3964 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3965 		ret = filemap_write_and_wait_range(mapping, offset,
3966 						   offset + length - 1);
3967 		if (ret)
3968 			return ret;
3969 	}
3970 
3971 	inode_lock(inode);
3972 
3973 	/* No need to punch hole beyond i_size */
3974 	if (offset >= inode->i_size)
3975 		goto out_mutex;
3976 
3977 	/*
3978 	 * If the hole extends beyond i_size, set the hole
3979 	 * to end after the page that contains i_size
3980 	 */
3981 	if (offset + length > inode->i_size) {
3982 		length = inode->i_size +
3983 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3984 		   offset;
3985 	}
3986 
3987 	/*
3988 	 * For punch hole the length + offset needs to be within one block
3989 	 * before last range. Adjust the length if it goes beyond that limit.
3990 	 */
3991 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3992 	if (offset + length > max_length)
3993 		length = max_length - offset;
3994 
3995 	if (offset & (sb->s_blocksize - 1) ||
3996 	    (offset + length) & (sb->s_blocksize - 1)) {
3997 		/*
3998 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3999 		 * partial block
4000 		 */
4001 		ret = ext4_inode_attach_jinode(inode);
4002 		if (ret < 0)
4003 			goto out_mutex;
4004 
4005 	}
4006 
4007 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4008 	inode_dio_wait(inode);
4009 
4010 	ret = file_modified(file);
4011 	if (ret)
4012 		goto out_mutex;
4013 
4014 	/*
4015 	 * Prevent page faults from reinstantiating pages we have released from
4016 	 * page cache.
4017 	 */
4018 	filemap_invalidate_lock(mapping);
4019 
4020 	ret = ext4_break_layouts(inode);
4021 	if (ret)
4022 		goto out_dio;
4023 
4024 	first_block_offset = round_up(offset, sb->s_blocksize);
4025 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4026 
4027 	/* Now release the pages and zero block aligned part of pages*/
4028 	if (last_block_offset > first_block_offset) {
4029 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4030 		if (ret)
4031 			goto out_dio;
4032 		truncate_pagecache_range(inode, first_block_offset,
4033 					 last_block_offset);
4034 	}
4035 
4036 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4037 		credits = ext4_writepage_trans_blocks(inode);
4038 	else
4039 		credits = ext4_blocks_for_truncate(inode);
4040 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4041 	if (IS_ERR(handle)) {
4042 		ret = PTR_ERR(handle);
4043 		ext4_std_error(sb, ret);
4044 		goto out_dio;
4045 	}
4046 
4047 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4048 				       length);
4049 	if (ret)
4050 		goto out_stop;
4051 
4052 	first_block = (offset + sb->s_blocksize - 1) >>
4053 		EXT4_BLOCK_SIZE_BITS(sb);
4054 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4055 
4056 	/* If there are blocks to remove, do it */
4057 	if (stop_block > first_block) {
4058 		ext4_lblk_t hole_len = stop_block - first_block;
4059 
4060 		down_write(&EXT4_I(inode)->i_data_sem);
4061 		ext4_discard_preallocations(inode);
4062 
4063 		ext4_es_remove_extent(inode, first_block, hole_len);
4064 
4065 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4066 			ret = ext4_ext_remove_space(inode, first_block,
4067 						    stop_block - 1);
4068 		else
4069 			ret = ext4_ind_remove_space(handle, inode, first_block,
4070 						    stop_block);
4071 
4072 		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4073 				      EXTENT_STATUS_HOLE);
4074 		up_write(&EXT4_I(inode)->i_data_sem);
4075 	}
4076 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4077 	if (IS_SYNC(inode))
4078 		ext4_handle_sync(handle);
4079 
4080 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4081 	ret2 = ext4_mark_inode_dirty(handle, inode);
4082 	if (unlikely(ret2))
4083 		ret = ret2;
4084 	if (ret >= 0)
4085 		ext4_update_inode_fsync_trans(handle, inode, 1);
4086 out_stop:
4087 	ext4_journal_stop(handle);
4088 out_dio:
4089 	filemap_invalidate_unlock(mapping);
4090 out_mutex:
4091 	inode_unlock(inode);
4092 	return ret;
4093 }
4094 
4095 int ext4_inode_attach_jinode(struct inode *inode)
4096 {
4097 	struct ext4_inode_info *ei = EXT4_I(inode);
4098 	struct jbd2_inode *jinode;
4099 
4100 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4101 		return 0;
4102 
4103 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4104 	spin_lock(&inode->i_lock);
4105 	if (!ei->jinode) {
4106 		if (!jinode) {
4107 			spin_unlock(&inode->i_lock);
4108 			return -ENOMEM;
4109 		}
4110 		ei->jinode = jinode;
4111 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4112 		jinode = NULL;
4113 	}
4114 	spin_unlock(&inode->i_lock);
4115 	if (unlikely(jinode != NULL))
4116 		jbd2_free_inode(jinode);
4117 	return 0;
4118 }
4119 
4120 /*
4121  * ext4_truncate()
4122  *
4123  * We block out ext4_get_block() block instantiations across the entire
4124  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4125  * simultaneously on behalf of the same inode.
4126  *
4127  * As we work through the truncate and commit bits of it to the journal there
4128  * is one core, guiding principle: the file's tree must always be consistent on
4129  * disk.  We must be able to restart the truncate after a crash.
4130  *
4131  * The file's tree may be transiently inconsistent in memory (although it
4132  * probably isn't), but whenever we close off and commit a journal transaction,
4133  * the contents of (the filesystem + the journal) must be consistent and
4134  * restartable.  It's pretty simple, really: bottom up, right to left (although
4135  * left-to-right works OK too).
4136  *
4137  * Note that at recovery time, journal replay occurs *before* the restart of
4138  * truncate against the orphan inode list.
4139  *
4140  * The committed inode has the new, desired i_size (which is the same as
4141  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4142  * that this inode's truncate did not complete and it will again call
4143  * ext4_truncate() to have another go.  So there will be instantiated blocks
4144  * to the right of the truncation point in a crashed ext4 filesystem.  But
4145  * that's fine - as long as they are linked from the inode, the post-crash
4146  * ext4_truncate() run will find them and release them.
4147  */
4148 int ext4_truncate(struct inode *inode)
4149 {
4150 	struct ext4_inode_info *ei = EXT4_I(inode);
4151 	unsigned int credits;
4152 	int err = 0, err2;
4153 	handle_t *handle;
4154 	struct address_space *mapping = inode->i_mapping;
4155 
4156 	/*
4157 	 * There is a possibility that we're either freeing the inode
4158 	 * or it's a completely new inode. In those cases we might not
4159 	 * have i_rwsem locked because it's not necessary.
4160 	 */
4161 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4162 		WARN_ON(!inode_is_locked(inode));
4163 	trace_ext4_truncate_enter(inode);
4164 
4165 	if (!ext4_can_truncate(inode))
4166 		goto out_trace;
4167 
4168 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4169 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4170 
4171 	if (ext4_has_inline_data(inode)) {
4172 		int has_inline = 1;
4173 
4174 		err = ext4_inline_data_truncate(inode, &has_inline);
4175 		if (err || has_inline)
4176 			goto out_trace;
4177 	}
4178 
4179 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4180 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4181 		err = ext4_inode_attach_jinode(inode);
4182 		if (err)
4183 			goto out_trace;
4184 	}
4185 
4186 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4187 		credits = ext4_writepage_trans_blocks(inode);
4188 	else
4189 		credits = ext4_blocks_for_truncate(inode);
4190 
4191 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4192 	if (IS_ERR(handle)) {
4193 		err = PTR_ERR(handle);
4194 		goto out_trace;
4195 	}
4196 
4197 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4198 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4199 
4200 	/*
4201 	 * We add the inode to the orphan list, so that if this
4202 	 * truncate spans multiple transactions, and we crash, we will
4203 	 * resume the truncate when the filesystem recovers.  It also
4204 	 * marks the inode dirty, to catch the new size.
4205 	 *
4206 	 * Implication: the file must always be in a sane, consistent
4207 	 * truncatable state while each transaction commits.
4208 	 */
4209 	err = ext4_orphan_add(handle, inode);
4210 	if (err)
4211 		goto out_stop;
4212 
4213 	down_write(&EXT4_I(inode)->i_data_sem);
4214 
4215 	ext4_discard_preallocations(inode);
4216 
4217 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4218 		err = ext4_ext_truncate(handle, inode);
4219 	else
4220 		ext4_ind_truncate(handle, inode);
4221 
4222 	up_write(&ei->i_data_sem);
4223 	if (err)
4224 		goto out_stop;
4225 
4226 	if (IS_SYNC(inode))
4227 		ext4_handle_sync(handle);
4228 
4229 out_stop:
4230 	/*
4231 	 * If this was a simple ftruncate() and the file will remain alive,
4232 	 * then we need to clear up the orphan record which we created above.
4233 	 * However, if this was a real unlink then we were called by
4234 	 * ext4_evict_inode(), and we allow that function to clean up the
4235 	 * orphan info for us.
4236 	 */
4237 	if (inode->i_nlink)
4238 		ext4_orphan_del(handle, inode);
4239 
4240 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4241 	err2 = ext4_mark_inode_dirty(handle, inode);
4242 	if (unlikely(err2 && !err))
4243 		err = err2;
4244 	ext4_journal_stop(handle);
4245 
4246 out_trace:
4247 	trace_ext4_truncate_exit(inode);
4248 	return err;
4249 }
4250 
4251 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4252 {
4253 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4254 		return inode_peek_iversion_raw(inode);
4255 	else
4256 		return inode_peek_iversion(inode);
4257 }
4258 
4259 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4260 				 struct ext4_inode_info *ei)
4261 {
4262 	struct inode *inode = &(ei->vfs_inode);
4263 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4264 	struct super_block *sb = inode->i_sb;
4265 
4266 	if (i_blocks <= ~0U) {
4267 		/*
4268 		 * i_blocks can be represented in a 32 bit variable
4269 		 * as multiple of 512 bytes
4270 		 */
4271 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4272 		raw_inode->i_blocks_high = 0;
4273 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4274 		return 0;
4275 	}
4276 
4277 	/*
4278 	 * This should never happen since sb->s_maxbytes should not have
4279 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4280 	 * feature in ext4_fill_super().
4281 	 */
4282 	if (!ext4_has_feature_huge_file(sb))
4283 		return -EFSCORRUPTED;
4284 
4285 	if (i_blocks <= 0xffffffffffffULL) {
4286 		/*
4287 		 * i_blocks can be represented in a 48 bit variable
4288 		 * as multiple of 512 bytes
4289 		 */
4290 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4291 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4292 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4293 	} else {
4294 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4295 		/* i_block is stored in file system block size */
4296 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4297 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4298 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4299 	}
4300 	return 0;
4301 }
4302 
4303 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4304 {
4305 	struct ext4_inode_info *ei = EXT4_I(inode);
4306 	uid_t i_uid;
4307 	gid_t i_gid;
4308 	projid_t i_projid;
4309 	int block;
4310 	int err;
4311 
4312 	err = ext4_inode_blocks_set(raw_inode, ei);
4313 
4314 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4315 	i_uid = i_uid_read(inode);
4316 	i_gid = i_gid_read(inode);
4317 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4318 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4319 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4320 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4321 		/*
4322 		 * Fix up interoperability with old kernels. Otherwise,
4323 		 * old inodes get re-used with the upper 16 bits of the
4324 		 * uid/gid intact.
4325 		 */
4326 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4327 			raw_inode->i_uid_high = 0;
4328 			raw_inode->i_gid_high = 0;
4329 		} else {
4330 			raw_inode->i_uid_high =
4331 				cpu_to_le16(high_16_bits(i_uid));
4332 			raw_inode->i_gid_high =
4333 				cpu_to_le16(high_16_bits(i_gid));
4334 		}
4335 	} else {
4336 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4337 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4338 		raw_inode->i_uid_high = 0;
4339 		raw_inode->i_gid_high = 0;
4340 	}
4341 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4342 
4343 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4344 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4345 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4346 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4347 
4348 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4349 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4350 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4351 		raw_inode->i_file_acl_high =
4352 			cpu_to_le16(ei->i_file_acl >> 32);
4353 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4354 	ext4_isize_set(raw_inode, ei->i_disksize);
4355 
4356 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4357 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4358 		if (old_valid_dev(inode->i_rdev)) {
4359 			raw_inode->i_block[0] =
4360 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4361 			raw_inode->i_block[1] = 0;
4362 		} else {
4363 			raw_inode->i_block[0] = 0;
4364 			raw_inode->i_block[1] =
4365 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4366 			raw_inode->i_block[2] = 0;
4367 		}
4368 	} else if (!ext4_has_inline_data(inode)) {
4369 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4370 			raw_inode->i_block[block] = ei->i_data[block];
4371 	}
4372 
4373 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4374 		u64 ivers = ext4_inode_peek_iversion(inode);
4375 
4376 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4377 		if (ei->i_extra_isize) {
4378 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4379 				raw_inode->i_version_hi =
4380 					cpu_to_le32(ivers >> 32);
4381 			raw_inode->i_extra_isize =
4382 				cpu_to_le16(ei->i_extra_isize);
4383 		}
4384 	}
4385 
4386 	if (i_projid != EXT4_DEF_PROJID &&
4387 	    !ext4_has_feature_project(inode->i_sb))
4388 		err = err ?: -EFSCORRUPTED;
4389 
4390 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4391 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4392 		raw_inode->i_projid = cpu_to_le32(i_projid);
4393 
4394 	ext4_inode_csum_set(inode, raw_inode, ei);
4395 	return err;
4396 }
4397 
4398 /*
4399  * ext4_get_inode_loc returns with an extra refcount against the inode's
4400  * underlying buffer_head on success. If we pass 'inode' and it does not
4401  * have in-inode xattr, we have all inode data in memory that is needed
4402  * to recreate the on-disk version of this inode.
4403  */
4404 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4405 				struct inode *inode, struct ext4_iloc *iloc,
4406 				ext4_fsblk_t *ret_block)
4407 {
4408 	struct ext4_group_desc	*gdp;
4409 	struct buffer_head	*bh;
4410 	ext4_fsblk_t		block;
4411 	struct blk_plug		plug;
4412 	int			inodes_per_block, inode_offset;
4413 
4414 	iloc->bh = NULL;
4415 	if (ino < EXT4_ROOT_INO ||
4416 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4417 		return -EFSCORRUPTED;
4418 
4419 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4420 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4421 	if (!gdp)
4422 		return -EIO;
4423 
4424 	/*
4425 	 * Figure out the offset within the block group inode table
4426 	 */
4427 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4428 	inode_offset = ((ino - 1) %
4429 			EXT4_INODES_PER_GROUP(sb));
4430 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4431 
4432 	block = ext4_inode_table(sb, gdp);
4433 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4434 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4435 		ext4_error(sb, "Invalid inode table block %llu in "
4436 			   "block_group %u", block, iloc->block_group);
4437 		return -EFSCORRUPTED;
4438 	}
4439 	block += (inode_offset / inodes_per_block);
4440 
4441 	bh = sb_getblk(sb, block);
4442 	if (unlikely(!bh))
4443 		return -ENOMEM;
4444 	if (ext4_buffer_uptodate(bh))
4445 		goto has_buffer;
4446 
4447 	lock_buffer(bh);
4448 	if (ext4_buffer_uptodate(bh)) {
4449 		/* Someone brought it uptodate while we waited */
4450 		unlock_buffer(bh);
4451 		goto has_buffer;
4452 	}
4453 
4454 	/*
4455 	 * If we have all information of the inode in memory and this
4456 	 * is the only valid inode in the block, we need not read the
4457 	 * block.
4458 	 */
4459 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4460 		struct buffer_head *bitmap_bh;
4461 		int i, start;
4462 
4463 		start = inode_offset & ~(inodes_per_block - 1);
4464 
4465 		/* Is the inode bitmap in cache? */
4466 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4467 		if (unlikely(!bitmap_bh))
4468 			goto make_io;
4469 
4470 		/*
4471 		 * If the inode bitmap isn't in cache then the
4472 		 * optimisation may end up performing two reads instead
4473 		 * of one, so skip it.
4474 		 */
4475 		if (!buffer_uptodate(bitmap_bh)) {
4476 			brelse(bitmap_bh);
4477 			goto make_io;
4478 		}
4479 		for (i = start; i < start + inodes_per_block; i++) {
4480 			if (i == inode_offset)
4481 				continue;
4482 			if (ext4_test_bit(i, bitmap_bh->b_data))
4483 				break;
4484 		}
4485 		brelse(bitmap_bh);
4486 		if (i == start + inodes_per_block) {
4487 			struct ext4_inode *raw_inode =
4488 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4489 
4490 			/* all other inodes are free, so skip I/O */
4491 			memset(bh->b_data, 0, bh->b_size);
4492 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4493 				ext4_fill_raw_inode(inode, raw_inode);
4494 			set_buffer_uptodate(bh);
4495 			unlock_buffer(bh);
4496 			goto has_buffer;
4497 		}
4498 	}
4499 
4500 make_io:
4501 	/*
4502 	 * If we need to do any I/O, try to pre-readahead extra
4503 	 * blocks from the inode table.
4504 	 */
4505 	blk_start_plug(&plug);
4506 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4507 		ext4_fsblk_t b, end, table;
4508 		unsigned num;
4509 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4510 
4511 		table = ext4_inode_table(sb, gdp);
4512 		/* s_inode_readahead_blks is always a power of 2 */
4513 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4514 		if (table > b)
4515 			b = table;
4516 		end = b + ra_blks;
4517 		num = EXT4_INODES_PER_GROUP(sb);
4518 		if (ext4_has_group_desc_csum(sb))
4519 			num -= ext4_itable_unused_count(sb, gdp);
4520 		table += num / inodes_per_block;
4521 		if (end > table)
4522 			end = table;
4523 		while (b <= end)
4524 			ext4_sb_breadahead_unmovable(sb, b++);
4525 	}
4526 
4527 	/*
4528 	 * There are other valid inodes in the buffer, this inode
4529 	 * has in-inode xattrs, or we don't have this inode in memory.
4530 	 * Read the block from disk.
4531 	 */
4532 	trace_ext4_load_inode(sb, ino);
4533 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4534 	blk_finish_plug(&plug);
4535 	wait_on_buffer(bh);
4536 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4537 	if (!buffer_uptodate(bh)) {
4538 		if (ret_block)
4539 			*ret_block = block;
4540 		brelse(bh);
4541 		return -EIO;
4542 	}
4543 has_buffer:
4544 	iloc->bh = bh;
4545 	return 0;
4546 }
4547 
4548 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4549 					struct ext4_iloc *iloc)
4550 {
4551 	ext4_fsblk_t err_blk = 0;
4552 	int ret;
4553 
4554 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4555 					&err_blk);
4556 
4557 	if (ret == -EIO)
4558 		ext4_error_inode_block(inode, err_blk, EIO,
4559 					"unable to read itable block");
4560 
4561 	return ret;
4562 }
4563 
4564 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4565 {
4566 	ext4_fsblk_t err_blk = 0;
4567 	int ret;
4568 
4569 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4570 					&err_blk);
4571 
4572 	if (ret == -EIO)
4573 		ext4_error_inode_block(inode, err_blk, EIO,
4574 					"unable to read itable block");
4575 
4576 	return ret;
4577 }
4578 
4579 
4580 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4581 			  struct ext4_iloc *iloc)
4582 {
4583 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4584 }
4585 
4586 static bool ext4_should_enable_dax(struct inode *inode)
4587 {
4588 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4589 
4590 	if (test_opt2(inode->i_sb, DAX_NEVER))
4591 		return false;
4592 	if (!S_ISREG(inode->i_mode))
4593 		return false;
4594 	if (ext4_should_journal_data(inode))
4595 		return false;
4596 	if (ext4_has_inline_data(inode))
4597 		return false;
4598 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4599 		return false;
4600 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4601 		return false;
4602 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4603 		return false;
4604 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4605 		return true;
4606 
4607 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4608 }
4609 
4610 void ext4_set_inode_flags(struct inode *inode, bool init)
4611 {
4612 	unsigned int flags = EXT4_I(inode)->i_flags;
4613 	unsigned int new_fl = 0;
4614 
4615 	WARN_ON_ONCE(IS_DAX(inode) && init);
4616 
4617 	if (flags & EXT4_SYNC_FL)
4618 		new_fl |= S_SYNC;
4619 	if (flags & EXT4_APPEND_FL)
4620 		new_fl |= S_APPEND;
4621 	if (flags & EXT4_IMMUTABLE_FL)
4622 		new_fl |= S_IMMUTABLE;
4623 	if (flags & EXT4_NOATIME_FL)
4624 		new_fl |= S_NOATIME;
4625 	if (flags & EXT4_DIRSYNC_FL)
4626 		new_fl |= S_DIRSYNC;
4627 
4628 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4629 	 * here if already set. */
4630 	new_fl |= (inode->i_flags & S_DAX);
4631 	if (init && ext4_should_enable_dax(inode))
4632 		new_fl |= S_DAX;
4633 
4634 	if (flags & EXT4_ENCRYPT_FL)
4635 		new_fl |= S_ENCRYPTED;
4636 	if (flags & EXT4_CASEFOLD_FL)
4637 		new_fl |= S_CASEFOLD;
4638 	if (flags & EXT4_VERITY_FL)
4639 		new_fl |= S_VERITY;
4640 	inode_set_flags(inode, new_fl,
4641 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4642 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4643 }
4644 
4645 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4646 				  struct ext4_inode_info *ei)
4647 {
4648 	blkcnt_t i_blocks ;
4649 	struct inode *inode = &(ei->vfs_inode);
4650 	struct super_block *sb = inode->i_sb;
4651 
4652 	if (ext4_has_feature_huge_file(sb)) {
4653 		/* we are using combined 48 bit field */
4654 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4655 					le32_to_cpu(raw_inode->i_blocks_lo);
4656 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4657 			/* i_blocks represent file system block size */
4658 			return i_blocks  << (inode->i_blkbits - 9);
4659 		} else {
4660 			return i_blocks;
4661 		}
4662 	} else {
4663 		return le32_to_cpu(raw_inode->i_blocks_lo);
4664 	}
4665 }
4666 
4667 static inline int ext4_iget_extra_inode(struct inode *inode,
4668 					 struct ext4_inode *raw_inode,
4669 					 struct ext4_inode_info *ei)
4670 {
4671 	__le32 *magic = (void *)raw_inode +
4672 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4673 
4674 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4675 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4676 		int err;
4677 
4678 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4679 		err = ext4_find_inline_data_nolock(inode);
4680 		if (!err && ext4_has_inline_data(inode))
4681 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4682 		return err;
4683 	} else
4684 		EXT4_I(inode)->i_inline_off = 0;
4685 	return 0;
4686 }
4687 
4688 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4689 {
4690 	if (!ext4_has_feature_project(inode->i_sb))
4691 		return -EOPNOTSUPP;
4692 	*projid = EXT4_I(inode)->i_projid;
4693 	return 0;
4694 }
4695 
4696 /*
4697  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4698  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4699  * set.
4700  */
4701 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4702 {
4703 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4704 		inode_set_iversion_raw(inode, val);
4705 	else
4706 		inode_set_iversion_queried(inode, val);
4707 }
4708 
4709 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4710 
4711 {
4712 	if (flags & EXT4_IGET_EA_INODE) {
4713 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4714 			return "missing EA_INODE flag";
4715 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4716 		    EXT4_I(inode)->i_file_acl)
4717 			return "ea_inode with extended attributes";
4718 	} else {
4719 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4720 			return "unexpected EA_INODE flag";
4721 	}
4722 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4723 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4724 	return NULL;
4725 }
4726 
4727 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4728 			  ext4_iget_flags flags, const char *function,
4729 			  unsigned int line)
4730 {
4731 	struct ext4_iloc iloc;
4732 	struct ext4_inode *raw_inode;
4733 	struct ext4_inode_info *ei;
4734 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4735 	struct inode *inode;
4736 	const char *err_str;
4737 	journal_t *journal = EXT4_SB(sb)->s_journal;
4738 	long ret;
4739 	loff_t size;
4740 	int block;
4741 	uid_t i_uid;
4742 	gid_t i_gid;
4743 	projid_t i_projid;
4744 
4745 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4746 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4747 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4748 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4749 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4750 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4751 	    (ino < EXT4_ROOT_INO) ||
4752 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4753 		if (flags & EXT4_IGET_HANDLE)
4754 			return ERR_PTR(-ESTALE);
4755 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4756 			     "inode #%lu: comm %s: iget: illegal inode #",
4757 			     ino, current->comm);
4758 		return ERR_PTR(-EFSCORRUPTED);
4759 	}
4760 
4761 	inode = iget_locked(sb, ino);
4762 	if (!inode)
4763 		return ERR_PTR(-ENOMEM);
4764 	if (!(inode->i_state & I_NEW)) {
4765 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4766 			ext4_error_inode(inode, function, line, 0, err_str);
4767 			iput(inode);
4768 			return ERR_PTR(-EFSCORRUPTED);
4769 		}
4770 		return inode;
4771 	}
4772 
4773 	ei = EXT4_I(inode);
4774 	iloc.bh = NULL;
4775 
4776 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4777 	if (ret < 0)
4778 		goto bad_inode;
4779 	raw_inode = ext4_raw_inode(&iloc);
4780 
4781 	if ((flags & EXT4_IGET_HANDLE) &&
4782 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4783 		ret = -ESTALE;
4784 		goto bad_inode;
4785 	}
4786 
4787 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4788 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4789 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4790 			EXT4_INODE_SIZE(inode->i_sb) ||
4791 		    (ei->i_extra_isize & 3)) {
4792 			ext4_error_inode(inode, function, line, 0,
4793 					 "iget: bad extra_isize %u "
4794 					 "(inode size %u)",
4795 					 ei->i_extra_isize,
4796 					 EXT4_INODE_SIZE(inode->i_sb));
4797 			ret = -EFSCORRUPTED;
4798 			goto bad_inode;
4799 		}
4800 	} else
4801 		ei->i_extra_isize = 0;
4802 
4803 	/* Precompute checksum seed for inode metadata */
4804 	if (ext4_has_metadata_csum(sb)) {
4805 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4806 		__u32 csum;
4807 		__le32 inum = cpu_to_le32(inode->i_ino);
4808 		__le32 gen = raw_inode->i_generation;
4809 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4810 				   sizeof(inum));
4811 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4812 					      sizeof(gen));
4813 	}
4814 
4815 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4816 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4817 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4818 		ext4_error_inode_err(inode, function, line, 0,
4819 				EFSBADCRC, "iget: checksum invalid");
4820 		ret = -EFSBADCRC;
4821 		goto bad_inode;
4822 	}
4823 
4824 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4825 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4826 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4827 	if (ext4_has_feature_project(sb) &&
4828 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4829 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4830 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4831 	else
4832 		i_projid = EXT4_DEF_PROJID;
4833 
4834 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4835 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4836 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4837 	}
4838 	i_uid_write(inode, i_uid);
4839 	i_gid_write(inode, i_gid);
4840 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4841 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4842 
4843 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4844 	ei->i_inline_off = 0;
4845 	ei->i_dir_start_lookup = 0;
4846 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4847 	/* We now have enough fields to check if the inode was active or not.
4848 	 * This is needed because nfsd might try to access dead inodes
4849 	 * the test is that same one that e2fsck uses
4850 	 * NeilBrown 1999oct15
4851 	 */
4852 	if (inode->i_nlink == 0) {
4853 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4854 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4855 		    ino != EXT4_BOOT_LOADER_INO) {
4856 			/* this inode is deleted or unallocated */
4857 			if (flags & EXT4_IGET_SPECIAL) {
4858 				ext4_error_inode(inode, function, line, 0,
4859 						 "iget: special inode unallocated");
4860 				ret = -EFSCORRUPTED;
4861 			} else
4862 				ret = -ESTALE;
4863 			goto bad_inode;
4864 		}
4865 		/* The only unlinked inodes we let through here have
4866 		 * valid i_mode and are being read by the orphan
4867 		 * recovery code: that's fine, we're about to complete
4868 		 * the process of deleting those.
4869 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4870 		 * not initialized on a new filesystem. */
4871 	}
4872 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4873 	ext4_set_inode_flags(inode, true);
4874 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4875 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4876 	if (ext4_has_feature_64bit(sb))
4877 		ei->i_file_acl |=
4878 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4879 	inode->i_size = ext4_isize(sb, raw_inode);
4880 	if ((size = i_size_read(inode)) < 0) {
4881 		ext4_error_inode(inode, function, line, 0,
4882 				 "iget: bad i_size value: %lld", size);
4883 		ret = -EFSCORRUPTED;
4884 		goto bad_inode;
4885 	}
4886 	/*
4887 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4888 	 * we'd normally treat htree data as empty space. But with metadata
4889 	 * checksumming that corrupts checksums so forbid that.
4890 	 */
4891 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4892 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4893 		ext4_error_inode(inode, function, line, 0,
4894 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4895 		ret = -EFSCORRUPTED;
4896 		goto bad_inode;
4897 	}
4898 	ei->i_disksize = inode->i_size;
4899 #ifdef CONFIG_QUOTA
4900 	ei->i_reserved_quota = 0;
4901 #endif
4902 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4903 	ei->i_block_group = iloc.block_group;
4904 	ei->i_last_alloc_group = ~0;
4905 	/*
4906 	 * NOTE! The in-memory inode i_data array is in little-endian order
4907 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4908 	 */
4909 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4910 		ei->i_data[block] = raw_inode->i_block[block];
4911 	INIT_LIST_HEAD(&ei->i_orphan);
4912 	ext4_fc_init_inode(&ei->vfs_inode);
4913 
4914 	/*
4915 	 * Set transaction id's of transactions that have to be committed
4916 	 * to finish f[data]sync. We set them to currently running transaction
4917 	 * as we cannot be sure that the inode or some of its metadata isn't
4918 	 * part of the transaction - the inode could have been reclaimed and
4919 	 * now it is reread from disk.
4920 	 */
4921 	if (journal) {
4922 		transaction_t *transaction;
4923 		tid_t tid;
4924 
4925 		read_lock(&journal->j_state_lock);
4926 		if (journal->j_running_transaction)
4927 			transaction = journal->j_running_transaction;
4928 		else
4929 			transaction = journal->j_committing_transaction;
4930 		if (transaction)
4931 			tid = transaction->t_tid;
4932 		else
4933 			tid = journal->j_commit_sequence;
4934 		read_unlock(&journal->j_state_lock);
4935 		ei->i_sync_tid = tid;
4936 		ei->i_datasync_tid = tid;
4937 	}
4938 
4939 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4940 		if (ei->i_extra_isize == 0) {
4941 			/* The extra space is currently unused. Use it. */
4942 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4943 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4944 					    EXT4_GOOD_OLD_INODE_SIZE;
4945 		} else {
4946 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4947 			if (ret)
4948 				goto bad_inode;
4949 		}
4950 	}
4951 
4952 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4953 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4954 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4955 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4956 
4957 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4958 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4959 
4960 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4961 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4962 				ivers |=
4963 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4964 		}
4965 		ext4_inode_set_iversion_queried(inode, ivers);
4966 	}
4967 
4968 	ret = 0;
4969 	if (ei->i_file_acl &&
4970 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4971 		ext4_error_inode(inode, function, line, 0,
4972 				 "iget: bad extended attribute block %llu",
4973 				 ei->i_file_acl);
4974 		ret = -EFSCORRUPTED;
4975 		goto bad_inode;
4976 	} else if (!ext4_has_inline_data(inode)) {
4977 		/* validate the block references in the inode */
4978 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4979 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4980 			(S_ISLNK(inode->i_mode) &&
4981 			!ext4_inode_is_fast_symlink(inode)))) {
4982 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4983 				ret = ext4_ext_check_inode(inode);
4984 			else
4985 				ret = ext4_ind_check_inode(inode);
4986 		}
4987 	}
4988 	if (ret)
4989 		goto bad_inode;
4990 
4991 	if (S_ISREG(inode->i_mode)) {
4992 		inode->i_op = &ext4_file_inode_operations;
4993 		inode->i_fop = &ext4_file_operations;
4994 		ext4_set_aops(inode);
4995 	} else if (S_ISDIR(inode->i_mode)) {
4996 		inode->i_op = &ext4_dir_inode_operations;
4997 		inode->i_fop = &ext4_dir_operations;
4998 	} else if (S_ISLNK(inode->i_mode)) {
4999 		/* VFS does not allow setting these so must be corruption */
5000 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5001 			ext4_error_inode(inode, function, line, 0,
5002 					 "iget: immutable or append flags "
5003 					 "not allowed on symlinks");
5004 			ret = -EFSCORRUPTED;
5005 			goto bad_inode;
5006 		}
5007 		if (IS_ENCRYPTED(inode)) {
5008 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5009 		} else if (ext4_inode_is_fast_symlink(inode)) {
5010 			inode->i_link = (char *)ei->i_data;
5011 			inode->i_op = &ext4_fast_symlink_inode_operations;
5012 			nd_terminate_link(ei->i_data, inode->i_size,
5013 				sizeof(ei->i_data) - 1);
5014 		} else {
5015 			inode->i_op = &ext4_symlink_inode_operations;
5016 		}
5017 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5018 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5019 		inode->i_op = &ext4_special_inode_operations;
5020 		if (raw_inode->i_block[0])
5021 			init_special_inode(inode, inode->i_mode,
5022 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5023 		else
5024 			init_special_inode(inode, inode->i_mode,
5025 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5026 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5027 		make_bad_inode(inode);
5028 	} else {
5029 		ret = -EFSCORRUPTED;
5030 		ext4_error_inode(inode, function, line, 0,
5031 				 "iget: bogus i_mode (%o)", inode->i_mode);
5032 		goto bad_inode;
5033 	}
5034 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5035 		ext4_error_inode(inode, function, line, 0,
5036 				 "casefold flag without casefold feature");
5037 		ret = -EFSCORRUPTED;
5038 		goto bad_inode;
5039 	}
5040 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5041 		ext4_error_inode(inode, function, line, 0, err_str);
5042 		ret = -EFSCORRUPTED;
5043 		goto bad_inode;
5044 	}
5045 
5046 	brelse(iloc.bh);
5047 	unlock_new_inode(inode);
5048 	return inode;
5049 
5050 bad_inode:
5051 	brelse(iloc.bh);
5052 	iget_failed(inode);
5053 	return ERR_PTR(ret);
5054 }
5055 
5056 static void __ext4_update_other_inode_time(struct super_block *sb,
5057 					   unsigned long orig_ino,
5058 					   unsigned long ino,
5059 					   struct ext4_inode *raw_inode)
5060 {
5061 	struct inode *inode;
5062 
5063 	inode = find_inode_by_ino_rcu(sb, ino);
5064 	if (!inode)
5065 		return;
5066 
5067 	if (!inode_is_dirtytime_only(inode))
5068 		return;
5069 
5070 	spin_lock(&inode->i_lock);
5071 	if (inode_is_dirtytime_only(inode)) {
5072 		struct ext4_inode_info	*ei = EXT4_I(inode);
5073 
5074 		inode->i_state &= ~I_DIRTY_TIME;
5075 		spin_unlock(&inode->i_lock);
5076 
5077 		spin_lock(&ei->i_raw_lock);
5078 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5079 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5080 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5081 		ext4_inode_csum_set(inode, raw_inode, ei);
5082 		spin_unlock(&ei->i_raw_lock);
5083 		trace_ext4_other_inode_update_time(inode, orig_ino);
5084 		return;
5085 	}
5086 	spin_unlock(&inode->i_lock);
5087 }
5088 
5089 /*
5090  * Opportunistically update the other time fields for other inodes in
5091  * the same inode table block.
5092  */
5093 static void ext4_update_other_inodes_time(struct super_block *sb,
5094 					  unsigned long orig_ino, char *buf)
5095 {
5096 	unsigned long ino;
5097 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5098 	int inode_size = EXT4_INODE_SIZE(sb);
5099 
5100 	/*
5101 	 * Calculate the first inode in the inode table block.  Inode
5102 	 * numbers are one-based.  That is, the first inode in a block
5103 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5104 	 */
5105 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5106 	rcu_read_lock();
5107 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5108 		if (ino == orig_ino)
5109 			continue;
5110 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5111 					       (struct ext4_inode *)buf);
5112 	}
5113 	rcu_read_unlock();
5114 }
5115 
5116 /*
5117  * Post the struct inode info into an on-disk inode location in the
5118  * buffer-cache.  This gobbles the caller's reference to the
5119  * buffer_head in the inode location struct.
5120  *
5121  * The caller must have write access to iloc->bh.
5122  */
5123 static int ext4_do_update_inode(handle_t *handle,
5124 				struct inode *inode,
5125 				struct ext4_iloc *iloc)
5126 {
5127 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5128 	struct ext4_inode_info *ei = EXT4_I(inode);
5129 	struct buffer_head *bh = iloc->bh;
5130 	struct super_block *sb = inode->i_sb;
5131 	int err;
5132 	int need_datasync = 0, set_large_file = 0;
5133 
5134 	spin_lock(&ei->i_raw_lock);
5135 
5136 	/*
5137 	 * For fields not tracked in the in-memory inode, initialise them
5138 	 * to zero for new inodes.
5139 	 */
5140 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5141 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5142 
5143 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5144 		need_datasync = 1;
5145 	if (ei->i_disksize > 0x7fffffffULL) {
5146 		if (!ext4_has_feature_large_file(sb) ||
5147 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5148 			set_large_file = 1;
5149 	}
5150 
5151 	err = ext4_fill_raw_inode(inode, raw_inode);
5152 	spin_unlock(&ei->i_raw_lock);
5153 	if (err) {
5154 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5155 		goto out_brelse;
5156 	}
5157 
5158 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5159 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5160 					      bh->b_data);
5161 
5162 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5163 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5164 	if (err)
5165 		goto out_error;
5166 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5167 	if (set_large_file) {
5168 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5169 		err = ext4_journal_get_write_access(handle, sb,
5170 						    EXT4_SB(sb)->s_sbh,
5171 						    EXT4_JTR_NONE);
5172 		if (err)
5173 			goto out_error;
5174 		lock_buffer(EXT4_SB(sb)->s_sbh);
5175 		ext4_set_feature_large_file(sb);
5176 		ext4_superblock_csum_set(sb);
5177 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5178 		ext4_handle_sync(handle);
5179 		err = ext4_handle_dirty_metadata(handle, NULL,
5180 						 EXT4_SB(sb)->s_sbh);
5181 	}
5182 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5183 out_error:
5184 	ext4_std_error(inode->i_sb, err);
5185 out_brelse:
5186 	brelse(bh);
5187 	return err;
5188 }
5189 
5190 /*
5191  * ext4_write_inode()
5192  *
5193  * We are called from a few places:
5194  *
5195  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5196  *   Here, there will be no transaction running. We wait for any running
5197  *   transaction to commit.
5198  *
5199  * - Within flush work (sys_sync(), kupdate and such).
5200  *   We wait on commit, if told to.
5201  *
5202  * - Within iput_final() -> write_inode_now()
5203  *   We wait on commit, if told to.
5204  *
5205  * In all cases it is actually safe for us to return without doing anything,
5206  * because the inode has been copied into a raw inode buffer in
5207  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5208  * writeback.
5209  *
5210  * Note that we are absolutely dependent upon all inode dirtiers doing the
5211  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5212  * which we are interested.
5213  *
5214  * It would be a bug for them to not do this.  The code:
5215  *
5216  *	mark_inode_dirty(inode)
5217  *	stuff();
5218  *	inode->i_size = expr;
5219  *
5220  * is in error because write_inode() could occur while `stuff()' is running,
5221  * and the new i_size will be lost.  Plus the inode will no longer be on the
5222  * superblock's dirty inode list.
5223  */
5224 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5225 {
5226 	int err;
5227 
5228 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5229 		return 0;
5230 
5231 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5232 		return -EIO;
5233 
5234 	if (EXT4_SB(inode->i_sb)->s_journal) {
5235 		if (ext4_journal_current_handle()) {
5236 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5237 			dump_stack();
5238 			return -EIO;
5239 		}
5240 
5241 		/*
5242 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5243 		 * ext4_sync_fs() will force the commit after everything is
5244 		 * written.
5245 		 */
5246 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5247 			return 0;
5248 
5249 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5250 						EXT4_I(inode)->i_sync_tid);
5251 	} else {
5252 		struct ext4_iloc iloc;
5253 
5254 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5255 		if (err)
5256 			return err;
5257 		/*
5258 		 * sync(2) will flush the whole buffer cache. No need to do
5259 		 * it here separately for each inode.
5260 		 */
5261 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5262 			sync_dirty_buffer(iloc.bh);
5263 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5264 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5265 					       "IO error syncing inode");
5266 			err = -EIO;
5267 		}
5268 		brelse(iloc.bh);
5269 	}
5270 	return err;
5271 }
5272 
5273 /*
5274  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5275  * buffers that are attached to a folio straddling i_size and are undergoing
5276  * commit. In that case we have to wait for commit to finish and try again.
5277  */
5278 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5279 {
5280 	unsigned offset;
5281 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5282 	tid_t commit_tid = 0;
5283 	int ret;
5284 
5285 	offset = inode->i_size & (PAGE_SIZE - 1);
5286 	/*
5287 	 * If the folio is fully truncated, we don't need to wait for any commit
5288 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289 	 * strip all buffers from the folio but keep the folio dirty which can then
5290 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291 	 * buffers). Also we don't need to wait for any commit if all buffers in
5292 	 * the folio remain valid. This is most beneficial for the common case of
5293 	 * blocksize == PAGESIZE.
5294 	 */
5295 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296 		return;
5297 	while (1) {
5298 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299 				      inode->i_size >> PAGE_SHIFT);
5300 		if (IS_ERR(folio))
5301 			return;
5302 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303 						folio_size(folio) - offset);
5304 		folio_unlock(folio);
5305 		folio_put(folio);
5306 		if (ret != -EBUSY)
5307 			return;
5308 		commit_tid = 0;
5309 		read_lock(&journal->j_state_lock);
5310 		if (journal->j_committing_transaction)
5311 			commit_tid = journal->j_committing_transaction->t_tid;
5312 		read_unlock(&journal->j_state_lock);
5313 		if (commit_tid)
5314 			jbd2_log_wait_commit(journal, commit_tid);
5315 	}
5316 }
5317 
5318 /*
5319  * ext4_setattr()
5320  *
5321  * Called from notify_change.
5322  *
5323  * We want to trap VFS attempts to truncate the file as soon as
5324  * possible.  In particular, we want to make sure that when the VFS
5325  * shrinks i_size, we put the inode on the orphan list and modify
5326  * i_disksize immediately, so that during the subsequent flushing of
5327  * dirty pages and freeing of disk blocks, we can guarantee that any
5328  * commit will leave the blocks being flushed in an unused state on
5329  * disk.  (On recovery, the inode will get truncated and the blocks will
5330  * be freed, so we have a strong guarantee that no future commit will
5331  * leave these blocks visible to the user.)
5332  *
5333  * Another thing we have to assure is that if we are in ordered mode
5334  * and inode is still attached to the committing transaction, we must
5335  * we start writeout of all the dirty pages which are being truncated.
5336  * This way we are sure that all the data written in the previous
5337  * transaction are already on disk (truncate waits for pages under
5338  * writeback).
5339  *
5340  * Called with inode->i_rwsem down.
5341  */
5342 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5343 		 struct iattr *attr)
5344 {
5345 	struct inode *inode = d_inode(dentry);
5346 	int error, rc = 0;
5347 	int orphan = 0;
5348 	const unsigned int ia_valid = attr->ia_valid;
5349 	bool inc_ivers = true;
5350 
5351 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5352 		return -EIO;
5353 
5354 	if (unlikely(IS_IMMUTABLE(inode)))
5355 		return -EPERM;
5356 
5357 	if (unlikely(IS_APPEND(inode) &&
5358 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5359 				  ATTR_GID | ATTR_TIMES_SET))))
5360 		return -EPERM;
5361 
5362 	error = setattr_prepare(idmap, dentry, attr);
5363 	if (error)
5364 		return error;
5365 
5366 	error = fscrypt_prepare_setattr(dentry, attr);
5367 	if (error)
5368 		return error;
5369 
5370 	error = fsverity_prepare_setattr(dentry, attr);
5371 	if (error)
5372 		return error;
5373 
5374 	if (is_quota_modification(idmap, inode, attr)) {
5375 		error = dquot_initialize(inode);
5376 		if (error)
5377 			return error;
5378 	}
5379 
5380 	if (i_uid_needs_update(idmap, attr, inode) ||
5381 	    i_gid_needs_update(idmap, attr, inode)) {
5382 		handle_t *handle;
5383 
5384 		/* (user+group)*(old+new) structure, inode write (sb,
5385 		 * inode block, ? - but truncate inode update has it) */
5386 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5387 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5388 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5389 		if (IS_ERR(handle)) {
5390 			error = PTR_ERR(handle);
5391 			goto err_out;
5392 		}
5393 
5394 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5395 		 * counts xattr inode references.
5396 		 */
5397 		down_read(&EXT4_I(inode)->xattr_sem);
5398 		error = dquot_transfer(idmap, inode, attr);
5399 		up_read(&EXT4_I(inode)->xattr_sem);
5400 
5401 		if (error) {
5402 			ext4_journal_stop(handle);
5403 			return error;
5404 		}
5405 		/* Update corresponding info in inode so that everything is in
5406 		 * one transaction */
5407 		i_uid_update(idmap, attr, inode);
5408 		i_gid_update(idmap, attr, inode);
5409 		error = ext4_mark_inode_dirty(handle, inode);
5410 		ext4_journal_stop(handle);
5411 		if (unlikely(error)) {
5412 			return error;
5413 		}
5414 	}
5415 
5416 	if (attr->ia_valid & ATTR_SIZE) {
5417 		handle_t *handle;
5418 		loff_t oldsize = inode->i_size;
5419 		loff_t old_disksize;
5420 		int shrink = (attr->ia_size < inode->i_size);
5421 
5422 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5423 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5424 
5425 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5426 				return -EFBIG;
5427 			}
5428 		}
5429 		if (!S_ISREG(inode->i_mode)) {
5430 			return -EINVAL;
5431 		}
5432 
5433 		if (attr->ia_size == inode->i_size)
5434 			inc_ivers = false;
5435 
5436 		if (shrink) {
5437 			if (ext4_should_order_data(inode)) {
5438 				error = ext4_begin_ordered_truncate(inode,
5439 							    attr->ia_size);
5440 				if (error)
5441 					goto err_out;
5442 			}
5443 			/*
5444 			 * Blocks are going to be removed from the inode. Wait
5445 			 * for dio in flight.
5446 			 */
5447 			inode_dio_wait(inode);
5448 		}
5449 
5450 		filemap_invalidate_lock(inode->i_mapping);
5451 
5452 		rc = ext4_break_layouts(inode);
5453 		if (rc) {
5454 			filemap_invalidate_unlock(inode->i_mapping);
5455 			goto err_out;
5456 		}
5457 
5458 		if (attr->ia_size != inode->i_size) {
5459 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5460 			if (IS_ERR(handle)) {
5461 				error = PTR_ERR(handle);
5462 				goto out_mmap_sem;
5463 			}
5464 			if (ext4_handle_valid(handle) && shrink) {
5465 				error = ext4_orphan_add(handle, inode);
5466 				orphan = 1;
5467 			}
5468 			/*
5469 			 * Update c/mtime on truncate up, ext4_truncate() will
5470 			 * update c/mtime in shrink case below
5471 			 */
5472 			if (!shrink)
5473 				inode_set_mtime_to_ts(inode,
5474 						      inode_set_ctime_current(inode));
5475 
5476 			if (shrink)
5477 				ext4_fc_track_range(handle, inode,
5478 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5479 					inode->i_sb->s_blocksize_bits,
5480 					EXT_MAX_BLOCKS - 1);
5481 			else
5482 				ext4_fc_track_range(
5483 					handle, inode,
5484 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5485 					inode->i_sb->s_blocksize_bits,
5486 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5487 					inode->i_sb->s_blocksize_bits);
5488 
5489 			down_write(&EXT4_I(inode)->i_data_sem);
5490 			old_disksize = EXT4_I(inode)->i_disksize;
5491 			EXT4_I(inode)->i_disksize = attr->ia_size;
5492 			rc = ext4_mark_inode_dirty(handle, inode);
5493 			if (!error)
5494 				error = rc;
5495 			/*
5496 			 * We have to update i_size under i_data_sem together
5497 			 * with i_disksize to avoid races with writeback code
5498 			 * running ext4_wb_update_i_disksize().
5499 			 */
5500 			if (!error)
5501 				i_size_write(inode, attr->ia_size);
5502 			else
5503 				EXT4_I(inode)->i_disksize = old_disksize;
5504 			up_write(&EXT4_I(inode)->i_data_sem);
5505 			ext4_journal_stop(handle);
5506 			if (error)
5507 				goto out_mmap_sem;
5508 			if (!shrink) {
5509 				pagecache_isize_extended(inode, oldsize,
5510 							 inode->i_size);
5511 			} else if (ext4_should_journal_data(inode)) {
5512 				ext4_wait_for_tail_page_commit(inode);
5513 			}
5514 		}
5515 
5516 		/*
5517 		 * Truncate pagecache after we've waited for commit
5518 		 * in data=journal mode to make pages freeable.
5519 		 */
5520 		truncate_pagecache(inode, inode->i_size);
5521 		/*
5522 		 * Call ext4_truncate() even if i_size didn't change to
5523 		 * truncate possible preallocated blocks.
5524 		 */
5525 		if (attr->ia_size <= oldsize) {
5526 			rc = ext4_truncate(inode);
5527 			if (rc)
5528 				error = rc;
5529 		}
5530 out_mmap_sem:
5531 		filemap_invalidate_unlock(inode->i_mapping);
5532 	}
5533 
5534 	if (!error) {
5535 		if (inc_ivers)
5536 			inode_inc_iversion(inode);
5537 		setattr_copy(idmap, inode, attr);
5538 		mark_inode_dirty(inode);
5539 	}
5540 
5541 	/*
5542 	 * If the call to ext4_truncate failed to get a transaction handle at
5543 	 * all, we need to clean up the in-core orphan list manually.
5544 	 */
5545 	if (orphan && inode->i_nlink)
5546 		ext4_orphan_del(NULL, inode);
5547 
5548 	if (!error && (ia_valid & ATTR_MODE))
5549 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5550 
5551 err_out:
5552 	if  (error)
5553 		ext4_std_error(inode->i_sb, error);
5554 	if (!error)
5555 		error = rc;
5556 	return error;
5557 }
5558 
5559 u32 ext4_dio_alignment(struct inode *inode)
5560 {
5561 	if (fsverity_active(inode))
5562 		return 0;
5563 	if (ext4_should_journal_data(inode))
5564 		return 0;
5565 	if (ext4_has_inline_data(inode))
5566 		return 0;
5567 	if (IS_ENCRYPTED(inode)) {
5568 		if (!fscrypt_dio_supported(inode))
5569 			return 0;
5570 		return i_blocksize(inode);
5571 	}
5572 	return 1; /* use the iomap defaults */
5573 }
5574 
5575 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5576 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5577 {
5578 	struct inode *inode = d_inode(path->dentry);
5579 	struct ext4_inode *raw_inode;
5580 	struct ext4_inode_info *ei = EXT4_I(inode);
5581 	unsigned int flags;
5582 
5583 	if ((request_mask & STATX_BTIME) &&
5584 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5585 		stat->result_mask |= STATX_BTIME;
5586 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5587 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5588 	}
5589 
5590 	/*
5591 	 * Return the DIO alignment restrictions if requested.  We only return
5592 	 * this information when requested, since on encrypted files it might
5593 	 * take a fair bit of work to get if the file wasn't opened recently.
5594 	 */
5595 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5596 		u32 dio_align = ext4_dio_alignment(inode);
5597 
5598 		stat->result_mask |= STATX_DIOALIGN;
5599 		if (dio_align == 1) {
5600 			struct block_device *bdev = inode->i_sb->s_bdev;
5601 
5602 			/* iomap defaults */
5603 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5604 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5605 		} else {
5606 			stat->dio_mem_align = dio_align;
5607 			stat->dio_offset_align = dio_align;
5608 		}
5609 	}
5610 
5611 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5612 	if (flags & EXT4_APPEND_FL)
5613 		stat->attributes |= STATX_ATTR_APPEND;
5614 	if (flags & EXT4_COMPR_FL)
5615 		stat->attributes |= STATX_ATTR_COMPRESSED;
5616 	if (flags & EXT4_ENCRYPT_FL)
5617 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5618 	if (flags & EXT4_IMMUTABLE_FL)
5619 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5620 	if (flags & EXT4_NODUMP_FL)
5621 		stat->attributes |= STATX_ATTR_NODUMP;
5622 	if (flags & EXT4_VERITY_FL)
5623 		stat->attributes |= STATX_ATTR_VERITY;
5624 
5625 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5626 				  STATX_ATTR_COMPRESSED |
5627 				  STATX_ATTR_ENCRYPTED |
5628 				  STATX_ATTR_IMMUTABLE |
5629 				  STATX_ATTR_NODUMP |
5630 				  STATX_ATTR_VERITY);
5631 
5632 	generic_fillattr(idmap, request_mask, inode, stat);
5633 	return 0;
5634 }
5635 
5636 int ext4_file_getattr(struct mnt_idmap *idmap,
5637 		      const struct path *path, struct kstat *stat,
5638 		      u32 request_mask, unsigned int query_flags)
5639 {
5640 	struct inode *inode = d_inode(path->dentry);
5641 	u64 delalloc_blocks;
5642 
5643 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5644 
5645 	/*
5646 	 * If there is inline data in the inode, the inode will normally not
5647 	 * have data blocks allocated (it may have an external xattr block).
5648 	 * Report at least one sector for such files, so tools like tar, rsync,
5649 	 * others don't incorrectly think the file is completely sparse.
5650 	 */
5651 	if (unlikely(ext4_has_inline_data(inode)))
5652 		stat->blocks += (stat->size + 511) >> 9;
5653 
5654 	/*
5655 	 * We can't update i_blocks if the block allocation is delayed
5656 	 * otherwise in the case of system crash before the real block
5657 	 * allocation is done, we will have i_blocks inconsistent with
5658 	 * on-disk file blocks.
5659 	 * We always keep i_blocks updated together with real
5660 	 * allocation. But to not confuse with user, stat
5661 	 * will return the blocks that include the delayed allocation
5662 	 * blocks for this file.
5663 	 */
5664 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5665 				   EXT4_I(inode)->i_reserved_data_blocks);
5666 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5667 	return 0;
5668 }
5669 
5670 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5671 				   int pextents)
5672 {
5673 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5674 		return ext4_ind_trans_blocks(inode, lblocks);
5675 	return ext4_ext_index_trans_blocks(inode, pextents);
5676 }
5677 
5678 /*
5679  * Account for index blocks, block groups bitmaps and block group
5680  * descriptor blocks if modify datablocks and index blocks
5681  * worse case, the indexs blocks spread over different block groups
5682  *
5683  * If datablocks are discontiguous, they are possible to spread over
5684  * different block groups too. If they are contiguous, with flexbg,
5685  * they could still across block group boundary.
5686  *
5687  * Also account for superblock, inode, quota and xattr blocks
5688  */
5689 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5690 				  int pextents)
5691 {
5692 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5693 	int gdpblocks;
5694 	int idxblocks;
5695 	int ret;
5696 
5697 	/*
5698 	 * How many index blocks need to touch to map @lblocks logical blocks
5699 	 * to @pextents physical extents?
5700 	 */
5701 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5702 
5703 	ret = idxblocks;
5704 
5705 	/*
5706 	 * Now let's see how many group bitmaps and group descriptors need
5707 	 * to account
5708 	 */
5709 	groups = idxblocks + pextents;
5710 	gdpblocks = groups;
5711 	if (groups > ngroups)
5712 		groups = ngroups;
5713 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5714 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5715 
5716 	/* bitmaps and block group descriptor blocks */
5717 	ret += groups + gdpblocks;
5718 
5719 	/* Blocks for super block, inode, quota and xattr blocks */
5720 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5721 
5722 	return ret;
5723 }
5724 
5725 /*
5726  * Calculate the total number of credits to reserve to fit
5727  * the modification of a single pages into a single transaction,
5728  * which may include multiple chunks of block allocations.
5729  *
5730  * This could be called via ext4_write_begin()
5731  *
5732  * We need to consider the worse case, when
5733  * one new block per extent.
5734  */
5735 int ext4_writepage_trans_blocks(struct inode *inode)
5736 {
5737 	int bpp = ext4_journal_blocks_per_page(inode);
5738 	int ret;
5739 
5740 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5741 
5742 	/* Account for data blocks for journalled mode */
5743 	if (ext4_should_journal_data(inode))
5744 		ret += bpp;
5745 	return ret;
5746 }
5747 
5748 /*
5749  * Calculate the journal credits for a chunk of data modification.
5750  *
5751  * This is called from DIO, fallocate or whoever calling
5752  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5753  *
5754  * journal buffers for data blocks are not included here, as DIO
5755  * and fallocate do no need to journal data buffers.
5756  */
5757 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5758 {
5759 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5760 }
5761 
5762 /*
5763  * The caller must have previously called ext4_reserve_inode_write().
5764  * Give this, we know that the caller already has write access to iloc->bh.
5765  */
5766 int ext4_mark_iloc_dirty(handle_t *handle,
5767 			 struct inode *inode, struct ext4_iloc *iloc)
5768 {
5769 	int err = 0;
5770 
5771 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5772 		put_bh(iloc->bh);
5773 		return -EIO;
5774 	}
5775 	ext4_fc_track_inode(handle, inode);
5776 
5777 	/* the do_update_inode consumes one bh->b_count */
5778 	get_bh(iloc->bh);
5779 
5780 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5781 	err = ext4_do_update_inode(handle, inode, iloc);
5782 	put_bh(iloc->bh);
5783 	return err;
5784 }
5785 
5786 /*
5787  * On success, We end up with an outstanding reference count against
5788  * iloc->bh.  This _must_ be cleaned up later.
5789  */
5790 
5791 int
5792 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5793 			 struct ext4_iloc *iloc)
5794 {
5795 	int err;
5796 
5797 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5798 		return -EIO;
5799 
5800 	err = ext4_get_inode_loc(inode, iloc);
5801 	if (!err) {
5802 		BUFFER_TRACE(iloc->bh, "get_write_access");
5803 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5804 						    iloc->bh, EXT4_JTR_NONE);
5805 		if (err) {
5806 			brelse(iloc->bh);
5807 			iloc->bh = NULL;
5808 		}
5809 	}
5810 	ext4_std_error(inode->i_sb, err);
5811 	return err;
5812 }
5813 
5814 static int __ext4_expand_extra_isize(struct inode *inode,
5815 				     unsigned int new_extra_isize,
5816 				     struct ext4_iloc *iloc,
5817 				     handle_t *handle, int *no_expand)
5818 {
5819 	struct ext4_inode *raw_inode;
5820 	struct ext4_xattr_ibody_header *header;
5821 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5822 	struct ext4_inode_info *ei = EXT4_I(inode);
5823 	int error;
5824 
5825 	/* this was checked at iget time, but double check for good measure */
5826 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5827 	    (ei->i_extra_isize & 3)) {
5828 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5829 				 ei->i_extra_isize,
5830 				 EXT4_INODE_SIZE(inode->i_sb));
5831 		return -EFSCORRUPTED;
5832 	}
5833 	if ((new_extra_isize < ei->i_extra_isize) ||
5834 	    (new_extra_isize < 4) ||
5835 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5836 		return -EINVAL;	/* Should never happen */
5837 
5838 	raw_inode = ext4_raw_inode(iloc);
5839 
5840 	header = IHDR(inode, raw_inode);
5841 
5842 	/* No extended attributes present */
5843 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5844 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5845 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5846 		       EXT4_I(inode)->i_extra_isize, 0,
5847 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5848 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5849 		return 0;
5850 	}
5851 
5852 	/*
5853 	 * We may need to allocate external xattr block so we need quotas
5854 	 * initialized. Here we can be called with various locks held so we
5855 	 * cannot affort to initialize quotas ourselves. So just bail.
5856 	 */
5857 	if (dquot_initialize_needed(inode))
5858 		return -EAGAIN;
5859 
5860 	/* try to expand with EAs present */
5861 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5862 					   raw_inode, handle);
5863 	if (error) {
5864 		/*
5865 		 * Inode size expansion failed; don't try again
5866 		 */
5867 		*no_expand = 1;
5868 	}
5869 
5870 	return error;
5871 }
5872 
5873 /*
5874  * Expand an inode by new_extra_isize bytes.
5875  * Returns 0 on success or negative error number on failure.
5876  */
5877 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5878 					  unsigned int new_extra_isize,
5879 					  struct ext4_iloc iloc,
5880 					  handle_t *handle)
5881 {
5882 	int no_expand;
5883 	int error;
5884 
5885 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5886 		return -EOVERFLOW;
5887 
5888 	/*
5889 	 * In nojournal mode, we can immediately attempt to expand
5890 	 * the inode.  When journaled, we first need to obtain extra
5891 	 * buffer credits since we may write into the EA block
5892 	 * with this same handle. If journal_extend fails, then it will
5893 	 * only result in a minor loss of functionality for that inode.
5894 	 * If this is felt to be critical, then e2fsck should be run to
5895 	 * force a large enough s_min_extra_isize.
5896 	 */
5897 	if (ext4_journal_extend(handle,
5898 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5899 		return -ENOSPC;
5900 
5901 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5902 		return -EBUSY;
5903 
5904 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5905 					  handle, &no_expand);
5906 	ext4_write_unlock_xattr(inode, &no_expand);
5907 
5908 	return error;
5909 }
5910 
5911 int ext4_expand_extra_isize(struct inode *inode,
5912 			    unsigned int new_extra_isize,
5913 			    struct ext4_iloc *iloc)
5914 {
5915 	handle_t *handle;
5916 	int no_expand;
5917 	int error, rc;
5918 
5919 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5920 		brelse(iloc->bh);
5921 		return -EOVERFLOW;
5922 	}
5923 
5924 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5925 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5926 	if (IS_ERR(handle)) {
5927 		error = PTR_ERR(handle);
5928 		brelse(iloc->bh);
5929 		return error;
5930 	}
5931 
5932 	ext4_write_lock_xattr(inode, &no_expand);
5933 
5934 	BUFFER_TRACE(iloc->bh, "get_write_access");
5935 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5936 					      EXT4_JTR_NONE);
5937 	if (error) {
5938 		brelse(iloc->bh);
5939 		goto out_unlock;
5940 	}
5941 
5942 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5943 					  handle, &no_expand);
5944 
5945 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5946 	if (!error)
5947 		error = rc;
5948 
5949 out_unlock:
5950 	ext4_write_unlock_xattr(inode, &no_expand);
5951 	ext4_journal_stop(handle);
5952 	return error;
5953 }
5954 
5955 /*
5956  * What we do here is to mark the in-core inode as clean with respect to inode
5957  * dirtiness (it may still be data-dirty).
5958  * This means that the in-core inode may be reaped by prune_icache
5959  * without having to perform any I/O.  This is a very good thing,
5960  * because *any* task may call prune_icache - even ones which
5961  * have a transaction open against a different journal.
5962  *
5963  * Is this cheating?  Not really.  Sure, we haven't written the
5964  * inode out, but prune_icache isn't a user-visible syncing function.
5965  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5966  * we start and wait on commits.
5967  */
5968 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5969 				const char *func, unsigned int line)
5970 {
5971 	struct ext4_iloc iloc;
5972 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5973 	int err;
5974 
5975 	might_sleep();
5976 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5977 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5978 	if (err)
5979 		goto out;
5980 
5981 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5982 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5983 					       iloc, handle);
5984 
5985 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5986 out:
5987 	if (unlikely(err))
5988 		ext4_error_inode_err(inode, func, line, 0, err,
5989 					"mark_inode_dirty error");
5990 	return err;
5991 }
5992 
5993 /*
5994  * ext4_dirty_inode() is called from __mark_inode_dirty()
5995  *
5996  * We're really interested in the case where a file is being extended.
5997  * i_size has been changed by generic_commit_write() and we thus need
5998  * to include the updated inode in the current transaction.
5999  *
6000  * Also, dquot_alloc_block() will always dirty the inode when blocks
6001  * are allocated to the file.
6002  *
6003  * If the inode is marked synchronous, we don't honour that here - doing
6004  * so would cause a commit on atime updates, which we don't bother doing.
6005  * We handle synchronous inodes at the highest possible level.
6006  */
6007 void ext4_dirty_inode(struct inode *inode, int flags)
6008 {
6009 	handle_t *handle;
6010 
6011 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6012 	if (IS_ERR(handle))
6013 		return;
6014 	ext4_mark_inode_dirty(handle, inode);
6015 	ext4_journal_stop(handle);
6016 }
6017 
6018 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6019 {
6020 	journal_t *journal;
6021 	handle_t *handle;
6022 	int err;
6023 	int alloc_ctx;
6024 
6025 	/*
6026 	 * We have to be very careful here: changing a data block's
6027 	 * journaling status dynamically is dangerous.  If we write a
6028 	 * data block to the journal, change the status and then delete
6029 	 * that block, we risk forgetting to revoke the old log record
6030 	 * from the journal and so a subsequent replay can corrupt data.
6031 	 * So, first we make sure that the journal is empty and that
6032 	 * nobody is changing anything.
6033 	 */
6034 
6035 	journal = EXT4_JOURNAL(inode);
6036 	if (!journal)
6037 		return 0;
6038 	if (is_journal_aborted(journal))
6039 		return -EROFS;
6040 
6041 	/* Wait for all existing dio workers */
6042 	inode_dio_wait(inode);
6043 
6044 	/*
6045 	 * Before flushing the journal and switching inode's aops, we have
6046 	 * to flush all dirty data the inode has. There can be outstanding
6047 	 * delayed allocations, there can be unwritten extents created by
6048 	 * fallocate or buffered writes in dioread_nolock mode covered by
6049 	 * dirty data which can be converted only after flushing the dirty
6050 	 * data (and journalled aops don't know how to handle these cases).
6051 	 */
6052 	if (val) {
6053 		filemap_invalidate_lock(inode->i_mapping);
6054 		err = filemap_write_and_wait(inode->i_mapping);
6055 		if (err < 0) {
6056 			filemap_invalidate_unlock(inode->i_mapping);
6057 			return err;
6058 		}
6059 	}
6060 
6061 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6062 	jbd2_journal_lock_updates(journal);
6063 
6064 	/*
6065 	 * OK, there are no updates running now, and all cached data is
6066 	 * synced to disk.  We are now in a completely consistent state
6067 	 * which doesn't have anything in the journal, and we know that
6068 	 * no filesystem updates are running, so it is safe to modify
6069 	 * the inode's in-core data-journaling state flag now.
6070 	 */
6071 
6072 	if (val)
6073 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6074 	else {
6075 		err = jbd2_journal_flush(journal, 0);
6076 		if (err < 0) {
6077 			jbd2_journal_unlock_updates(journal);
6078 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6079 			return err;
6080 		}
6081 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6082 	}
6083 	ext4_set_aops(inode);
6084 
6085 	jbd2_journal_unlock_updates(journal);
6086 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6087 
6088 	if (val)
6089 		filemap_invalidate_unlock(inode->i_mapping);
6090 
6091 	/* Finally we can mark the inode as dirty. */
6092 
6093 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6094 	if (IS_ERR(handle))
6095 		return PTR_ERR(handle);
6096 
6097 	ext4_fc_mark_ineligible(inode->i_sb,
6098 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6099 	err = ext4_mark_inode_dirty(handle, inode);
6100 	ext4_handle_sync(handle);
6101 	ext4_journal_stop(handle);
6102 	ext4_std_error(inode->i_sb, err);
6103 
6104 	return err;
6105 }
6106 
6107 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6108 			    struct buffer_head *bh)
6109 {
6110 	return !buffer_mapped(bh);
6111 }
6112 
6113 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6114 {
6115 	struct vm_area_struct *vma = vmf->vma;
6116 	struct folio *folio = page_folio(vmf->page);
6117 	loff_t size;
6118 	unsigned long len;
6119 	int err;
6120 	vm_fault_t ret;
6121 	struct file *file = vma->vm_file;
6122 	struct inode *inode = file_inode(file);
6123 	struct address_space *mapping = inode->i_mapping;
6124 	handle_t *handle;
6125 	get_block_t *get_block;
6126 	int retries = 0;
6127 
6128 	if (unlikely(IS_IMMUTABLE(inode)))
6129 		return VM_FAULT_SIGBUS;
6130 
6131 	sb_start_pagefault(inode->i_sb);
6132 	file_update_time(vma->vm_file);
6133 
6134 	filemap_invalidate_lock_shared(mapping);
6135 
6136 	err = ext4_convert_inline_data(inode);
6137 	if (err)
6138 		goto out_ret;
6139 
6140 	/*
6141 	 * On data journalling we skip straight to the transaction handle:
6142 	 * there's no delalloc; page truncated will be checked later; the
6143 	 * early return w/ all buffers mapped (calculates size/len) can't
6144 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6145 	 */
6146 	if (ext4_should_journal_data(inode))
6147 		goto retry_alloc;
6148 
6149 	/* Delalloc case is easy... */
6150 	if (test_opt(inode->i_sb, DELALLOC) &&
6151 	    !ext4_nonda_switch(inode->i_sb)) {
6152 		do {
6153 			err = block_page_mkwrite(vma, vmf,
6154 						   ext4_da_get_block_prep);
6155 		} while (err == -ENOSPC &&
6156 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6157 		goto out_ret;
6158 	}
6159 
6160 	folio_lock(folio);
6161 	size = i_size_read(inode);
6162 	/* Page got truncated from under us? */
6163 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6164 		folio_unlock(folio);
6165 		ret = VM_FAULT_NOPAGE;
6166 		goto out;
6167 	}
6168 
6169 	len = folio_size(folio);
6170 	if (folio_pos(folio) + len > size)
6171 		len = size - folio_pos(folio);
6172 	/*
6173 	 * Return if we have all the buffers mapped. This avoids the need to do
6174 	 * journal_start/journal_stop which can block and take a long time
6175 	 *
6176 	 * This cannot be done for data journalling, as we have to add the
6177 	 * inode to the transaction's list to writeprotect pages on commit.
6178 	 */
6179 	if (folio_buffers(folio)) {
6180 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6181 					    0, len, NULL,
6182 					    ext4_bh_unmapped)) {
6183 			/* Wait so that we don't change page under IO */
6184 			folio_wait_stable(folio);
6185 			ret = VM_FAULT_LOCKED;
6186 			goto out;
6187 		}
6188 	}
6189 	folio_unlock(folio);
6190 	/* OK, we need to fill the hole... */
6191 	if (ext4_should_dioread_nolock(inode))
6192 		get_block = ext4_get_block_unwritten;
6193 	else
6194 		get_block = ext4_get_block;
6195 retry_alloc:
6196 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6197 				    ext4_writepage_trans_blocks(inode));
6198 	if (IS_ERR(handle)) {
6199 		ret = VM_FAULT_SIGBUS;
6200 		goto out;
6201 	}
6202 	/*
6203 	 * Data journalling can't use block_page_mkwrite() because it
6204 	 * will set_buffer_dirty() before do_journal_get_write_access()
6205 	 * thus might hit warning messages for dirty metadata buffers.
6206 	 */
6207 	if (!ext4_should_journal_data(inode)) {
6208 		err = block_page_mkwrite(vma, vmf, get_block);
6209 	} else {
6210 		folio_lock(folio);
6211 		size = i_size_read(inode);
6212 		/* Page got truncated from under us? */
6213 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6214 			ret = VM_FAULT_NOPAGE;
6215 			goto out_error;
6216 		}
6217 
6218 		len = folio_size(folio);
6219 		if (folio_pos(folio) + len > size)
6220 			len = size - folio_pos(folio);
6221 
6222 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6223 		if (!err) {
6224 			ret = VM_FAULT_SIGBUS;
6225 			if (ext4_journal_folio_buffers(handle, folio, len))
6226 				goto out_error;
6227 		} else {
6228 			folio_unlock(folio);
6229 		}
6230 	}
6231 	ext4_journal_stop(handle);
6232 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6233 		goto retry_alloc;
6234 out_ret:
6235 	ret = vmf_fs_error(err);
6236 out:
6237 	filemap_invalidate_unlock_shared(mapping);
6238 	sb_end_pagefault(inode->i_sb);
6239 	return ret;
6240 out_error:
6241 	folio_unlock(folio);
6242 	ext4_journal_stop(handle);
6243 	goto out;
6244 }
6245