1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. 469 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 470 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 471 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 472 * 473 * It returns 0 if plain look up failed (blocks have not been allocated), in 474 * that case, @map is returned as unmapped but we still do fill map->m_len to 475 * indicate the length of a hole starting at map->m_lblk. 476 * 477 * It returns the error in case of allocation failure. 478 */ 479 int ext4_map_blocks(handle_t *handle, struct inode *inode, 480 struct ext4_map_blocks *map, int flags) 481 { 482 struct extent_status es; 483 int retval; 484 int ret = 0; 485 #ifdef ES_AGGRESSIVE_TEST 486 struct ext4_map_blocks orig_map; 487 488 memcpy(&orig_map, map, sizeof(*map)); 489 #endif 490 491 map->m_flags = 0; 492 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 493 flags, map->m_len, (unsigned long) map->m_lblk); 494 495 /* 496 * ext4_map_blocks returns an int, and m_len is an unsigned int 497 */ 498 if (unlikely(map->m_len > INT_MAX)) 499 map->m_len = INT_MAX; 500 501 /* We can handle the block number less than EXT_MAX_BLOCKS */ 502 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 503 return -EFSCORRUPTED; 504 505 /* Lookup extent status tree firstly */ 506 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 507 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 508 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 509 map->m_pblk = ext4_es_pblock(&es) + 510 map->m_lblk - es.es_lblk; 511 map->m_flags |= ext4_es_is_written(&es) ? 512 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 513 retval = es.es_len - (map->m_lblk - es.es_lblk); 514 if (retval > map->m_len) 515 retval = map->m_len; 516 map->m_len = retval; 517 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 518 map->m_pblk = 0; 519 map->m_flags |= ext4_es_is_delayed(&es) ? 520 EXT4_MAP_DELAYED : 0; 521 retval = es.es_len - (map->m_lblk - es.es_lblk); 522 if (retval > map->m_len) 523 retval = map->m_len; 524 map->m_len = retval; 525 retval = 0; 526 } else { 527 BUG(); 528 } 529 530 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 531 return retval; 532 #ifdef ES_AGGRESSIVE_TEST 533 ext4_map_blocks_es_recheck(handle, inode, map, 534 &orig_map, flags); 535 #endif 536 goto found; 537 } 538 /* 539 * In the query cache no-wait mode, nothing we can do more if we 540 * cannot find extent in the cache. 541 */ 542 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 543 return 0; 544 545 /* 546 * Try to see if we can get the block without requesting a new 547 * file system block. 548 */ 549 down_read(&EXT4_I(inode)->i_data_sem); 550 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 551 retval = ext4_ext_map_blocks(handle, inode, map, 0); 552 } else { 553 retval = ext4_ind_map_blocks(handle, inode, map, 0); 554 } 555 if (retval > 0) { 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 !(status & EXTENT_STATUS_WRITTEN) && 570 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 574 map->m_pblk, status); 575 } 576 up_read((&EXT4_I(inode)->i_data_sem)); 577 578 found: 579 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 580 ret = check_block_validity(inode, map); 581 if (ret != 0) 582 return ret; 583 } 584 585 /* If it is only a block(s) look up */ 586 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 587 return retval; 588 589 /* 590 * Returns if the blocks have already allocated 591 * 592 * Note that if blocks have been preallocated 593 * ext4_ext_map_blocks() returns with buffer head unmapped 594 */ 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 596 /* 597 * If we need to convert extent to unwritten 598 * we continue and do the actual work in 599 * ext4_ext_map_blocks() 600 */ 601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 602 return retval; 603 604 /* 605 * Here we clear m_flags because after allocating an new extent, 606 * it will be set again. 607 */ 608 map->m_flags &= ~EXT4_MAP_FLAGS; 609 610 /* 611 * New blocks allocate and/or writing to unwritten extent 612 * will possibly result in updating i_data, so we take 613 * the write lock of i_data_sem, and call get_block() 614 * with create == 1 flag. 615 */ 616 down_write(&EXT4_I(inode)->i_data_sem); 617 618 /* 619 * We need to check for EXT4 here because migrate 620 * could have changed the inode type in between 621 */ 622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 623 retval = ext4_ext_map_blocks(handle, inode, map, flags); 624 } else { 625 retval = ext4_ind_map_blocks(handle, inode, map, flags); 626 627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 628 /* 629 * We allocated new blocks which will result in 630 * i_data's format changing. Force the migrate 631 * to fail by clearing migrate flags 632 */ 633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 634 } 635 } 636 637 if (retval > 0) { 638 unsigned int status; 639 640 if (unlikely(retval != map->m_len)) { 641 ext4_warning(inode->i_sb, 642 "ES len assertion failed for inode " 643 "%lu: retval %d != map->m_len %d", 644 inode->i_ino, retval, map->m_len); 645 WARN_ON(1); 646 } 647 648 /* 649 * We have to zeroout blocks before inserting them into extent 650 * status tree. Otherwise someone could look them up there and 651 * use them before they are really zeroed. We also have to 652 * unmap metadata before zeroing as otherwise writeback can 653 * overwrite zeros with stale data from block device. 654 */ 655 if (flags & EXT4_GET_BLOCKS_ZERO && 656 map->m_flags & EXT4_MAP_MAPPED && 657 map->m_flags & EXT4_MAP_NEW) { 658 ret = ext4_issue_zeroout(inode, map->m_lblk, 659 map->m_pblk, map->m_len); 660 if (ret) { 661 retval = ret; 662 goto out_sem; 663 } 664 } 665 666 /* 667 * If the extent has been zeroed out, we don't need to update 668 * extent status tree. 669 */ 670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 671 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 672 if (ext4_es_is_written(&es)) 673 goto out_sem; 674 } 675 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 678 !(status & EXTENT_STATUS_WRITTEN) && 679 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 680 map->m_lblk + map->m_len - 1)) 681 status |= EXTENT_STATUS_DELAYED; 682 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 683 map->m_pblk, status); 684 } 685 686 out_sem: 687 up_write((&EXT4_I(inode)->i_data_sem)); 688 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 689 ret = check_block_validity(inode, map); 690 if (ret != 0) 691 return ret; 692 693 /* 694 * Inodes with freshly allocated blocks where contents will be 695 * visible after transaction commit must be on transaction's 696 * ordered data list. 697 */ 698 if (map->m_flags & EXT4_MAP_NEW && 699 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 700 !(flags & EXT4_GET_BLOCKS_ZERO) && 701 !ext4_is_quota_file(inode) && 702 ext4_should_order_data(inode)) { 703 loff_t start_byte = 704 (loff_t)map->m_lblk << inode->i_blkbits; 705 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 706 707 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 708 ret = ext4_jbd2_inode_add_wait(handle, inode, 709 start_byte, length); 710 else 711 ret = ext4_jbd2_inode_add_write(handle, inode, 712 start_byte, length); 713 if (ret) 714 return ret; 715 } 716 } 717 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 718 map->m_flags & EXT4_MAP_MAPPED)) 719 ext4_fc_track_range(handle, inode, map->m_lblk, 720 map->m_lblk + map->m_len - 1); 721 if (retval < 0) 722 ext_debug(inode, "failed with err %d\n", retval); 723 return retval; 724 } 725 726 /* 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 728 * we have to be careful as someone else may be manipulating b_state as well. 729 */ 730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 731 { 732 unsigned long old_state; 733 unsigned long new_state; 734 735 flags &= EXT4_MAP_FLAGS; 736 737 /* Dummy buffer_head? Set non-atomically. */ 738 if (!bh->b_page) { 739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 740 return; 741 } 742 /* 743 * Someone else may be modifying b_state. Be careful! This is ugly but 744 * once we get rid of using bh as a container for mapping information 745 * to pass to / from get_block functions, this can go away. 746 */ 747 old_state = READ_ONCE(bh->b_state); 748 do { 749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 750 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 751 } 752 753 static int _ext4_get_block(struct inode *inode, sector_t iblock, 754 struct buffer_head *bh, int flags) 755 { 756 struct ext4_map_blocks map; 757 int ret = 0; 758 759 if (ext4_has_inline_data(inode)) 760 return -ERANGE; 761 762 map.m_lblk = iblock; 763 map.m_len = bh->b_size >> inode->i_blkbits; 764 765 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 766 flags); 767 if (ret > 0) { 768 map_bh(bh, inode->i_sb, map.m_pblk); 769 ext4_update_bh_state(bh, map.m_flags); 770 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 771 ret = 0; 772 } else if (ret == 0) { 773 /* hole case, need to fill in bh->b_size */ 774 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 775 } 776 return ret; 777 } 778 779 int ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int create) 781 { 782 return _ext4_get_block(inode, iblock, bh, 783 create ? EXT4_GET_BLOCKS_CREATE : 0); 784 } 785 786 /* 787 * Get block function used when preparing for buffered write if we require 788 * creating an unwritten extent if blocks haven't been allocated. The extent 789 * will be converted to written after the IO is complete. 790 */ 791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 792 struct buffer_head *bh_result, int create) 793 { 794 int ret = 0; 795 796 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 797 inode->i_ino, create); 798 ret = _ext4_get_block(inode, iblock, bh_result, 799 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 800 801 /* 802 * If the buffer is marked unwritten, mark it as new to make sure it is 803 * zeroed out correctly in case of partial writes. Otherwise, there is 804 * a chance of stale data getting exposed. 805 */ 806 if (ret == 0 && buffer_unwritten(bh_result)) 807 set_buffer_new(bh_result); 808 809 return ret; 810 } 811 812 /* Maximum number of blocks we map for direct IO at once. */ 813 #define DIO_MAX_BLOCKS 4096 814 815 /* 816 * `handle' can be NULL if create is zero 817 */ 818 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 819 ext4_lblk_t block, int map_flags) 820 { 821 struct ext4_map_blocks map; 822 struct buffer_head *bh; 823 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 824 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 825 int err; 826 827 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 828 || handle != NULL || create == 0); 829 ASSERT(create == 0 || !nowait); 830 831 map.m_lblk = block; 832 map.m_len = 1; 833 err = ext4_map_blocks(handle, inode, &map, map_flags); 834 835 if (err == 0) 836 return create ? ERR_PTR(-ENOSPC) : NULL; 837 if (err < 0) 838 return ERR_PTR(err); 839 840 if (nowait) 841 return sb_find_get_block(inode->i_sb, map.m_pblk); 842 843 bh = sb_getblk(inode->i_sb, map.m_pblk); 844 if (unlikely(!bh)) 845 return ERR_PTR(-ENOMEM); 846 if (map.m_flags & EXT4_MAP_NEW) { 847 ASSERT(create != 0); 848 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 849 || (handle != NULL)); 850 851 /* 852 * Now that we do not always journal data, we should 853 * keep in mind whether this should always journal the 854 * new buffer as metadata. For now, regular file 855 * writes use ext4_get_block instead, so it's not a 856 * problem. 857 */ 858 lock_buffer(bh); 859 BUFFER_TRACE(bh, "call get_create_access"); 860 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 861 EXT4_JTR_NONE); 862 if (unlikely(err)) { 863 unlock_buffer(bh); 864 goto errout; 865 } 866 if (!buffer_uptodate(bh)) { 867 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 868 set_buffer_uptodate(bh); 869 } 870 unlock_buffer(bh); 871 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 872 err = ext4_handle_dirty_metadata(handle, inode, bh); 873 if (unlikely(err)) 874 goto errout; 875 } else 876 BUFFER_TRACE(bh, "not a new buffer"); 877 return bh; 878 errout: 879 brelse(bh); 880 return ERR_PTR(err); 881 } 882 883 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 884 ext4_lblk_t block, int map_flags) 885 { 886 struct buffer_head *bh; 887 int ret; 888 889 bh = ext4_getblk(handle, inode, block, map_flags); 890 if (IS_ERR(bh)) 891 return bh; 892 if (!bh || ext4_buffer_uptodate(bh)) 893 return bh; 894 895 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 896 if (ret) { 897 put_bh(bh); 898 return ERR_PTR(ret); 899 } 900 return bh; 901 } 902 903 /* Read a contiguous batch of blocks. */ 904 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 905 bool wait, struct buffer_head **bhs) 906 { 907 int i, err; 908 909 for (i = 0; i < bh_count; i++) { 910 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 911 if (IS_ERR(bhs[i])) { 912 err = PTR_ERR(bhs[i]); 913 bh_count = i; 914 goto out_brelse; 915 } 916 } 917 918 for (i = 0; i < bh_count; i++) 919 /* Note that NULL bhs[i] is valid because of holes. */ 920 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 921 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 922 923 if (!wait) 924 return 0; 925 926 for (i = 0; i < bh_count; i++) 927 if (bhs[i]) 928 wait_on_buffer(bhs[i]); 929 930 for (i = 0; i < bh_count; i++) { 931 if (bhs[i] && !buffer_uptodate(bhs[i])) { 932 err = -EIO; 933 goto out_brelse; 934 } 935 } 936 return 0; 937 938 out_brelse: 939 for (i = 0; i < bh_count; i++) { 940 brelse(bhs[i]); 941 bhs[i] = NULL; 942 } 943 return err; 944 } 945 946 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 947 struct buffer_head *head, 948 unsigned from, 949 unsigned to, 950 int *partial, 951 int (*fn)(handle_t *handle, struct inode *inode, 952 struct buffer_head *bh)) 953 { 954 struct buffer_head *bh; 955 unsigned block_start, block_end; 956 unsigned blocksize = head->b_size; 957 int err, ret = 0; 958 struct buffer_head *next; 959 960 for (bh = head, block_start = 0; 961 ret == 0 && (bh != head || !block_start); 962 block_start = block_end, bh = next) { 963 next = bh->b_this_page; 964 block_end = block_start + blocksize; 965 if (block_end <= from || block_start >= to) { 966 if (partial && !buffer_uptodate(bh)) 967 *partial = 1; 968 continue; 969 } 970 err = (*fn)(handle, inode, bh); 971 if (!ret) 972 ret = err; 973 } 974 return ret; 975 } 976 977 /* 978 * Helper for handling dirtying of journalled data. We also mark the folio as 979 * dirty so that writeback code knows about this page (and inode) contains 980 * dirty data. ext4_writepages() then commits appropriate transaction to 981 * make data stable. 982 */ 983 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 984 { 985 folio_mark_dirty(bh->b_folio); 986 return ext4_handle_dirty_metadata(handle, NULL, bh); 987 } 988 989 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 990 struct buffer_head *bh) 991 { 992 int dirty = buffer_dirty(bh); 993 int ret; 994 995 if (!buffer_mapped(bh) || buffer_freed(bh)) 996 return 0; 997 /* 998 * __block_write_begin() could have dirtied some buffers. Clean 999 * the dirty bit as jbd2_journal_get_write_access() could complain 1000 * otherwise about fs integrity issues. Setting of the dirty bit 1001 * by __block_write_begin() isn't a real problem here as we clear 1002 * the bit before releasing a page lock and thus writeback cannot 1003 * ever write the buffer. 1004 */ 1005 if (dirty) 1006 clear_buffer_dirty(bh); 1007 BUFFER_TRACE(bh, "get write access"); 1008 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1009 EXT4_JTR_NONE); 1010 if (!ret && dirty) 1011 ret = ext4_dirty_journalled_data(handle, bh); 1012 return ret; 1013 } 1014 1015 #ifdef CONFIG_FS_ENCRYPTION 1016 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1017 get_block_t *get_block) 1018 { 1019 unsigned from = pos & (PAGE_SIZE - 1); 1020 unsigned to = from + len; 1021 struct inode *inode = folio->mapping->host; 1022 unsigned block_start, block_end; 1023 sector_t block; 1024 int err = 0; 1025 unsigned blocksize = inode->i_sb->s_blocksize; 1026 unsigned bbits; 1027 struct buffer_head *bh, *head, *wait[2]; 1028 int nr_wait = 0; 1029 int i; 1030 1031 BUG_ON(!folio_test_locked(folio)); 1032 BUG_ON(from > PAGE_SIZE); 1033 BUG_ON(to > PAGE_SIZE); 1034 BUG_ON(from > to); 1035 1036 head = folio_buffers(folio); 1037 if (!head) 1038 head = create_empty_buffers(folio, blocksize, 0); 1039 bbits = ilog2(blocksize); 1040 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1041 1042 for (bh = head, block_start = 0; bh != head || !block_start; 1043 block++, block_start = block_end, bh = bh->b_this_page) { 1044 block_end = block_start + blocksize; 1045 if (block_end <= from || block_start >= to) { 1046 if (folio_test_uptodate(folio)) { 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (folio_test_uptodate(folio)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 folio_zero_segments(folio, to, 1067 block_end, 1068 block_start, from); 1069 continue; 1070 } 1071 } 1072 if (folio_test_uptodate(folio)) { 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ext4_read_bh_lock(bh, 0, false); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 folio_zero_new_buffers(folio, from, to); 1093 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1098 blocksize, bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 /* 1111 * To preserve ordering, it is essential that the hole instantiation and 1112 * the data write be encapsulated in a single transaction. We cannot 1113 * close off a transaction and start a new one between the ext4_get_block() 1114 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1115 * ext4_write_begin() is the right place. 1116 */ 1117 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1118 loff_t pos, unsigned len, 1119 struct page **pagep, void **fsdata) 1120 { 1121 struct inode *inode = mapping->host; 1122 int ret, needed_blocks; 1123 handle_t *handle; 1124 int retries = 0; 1125 struct folio *folio; 1126 pgoff_t index; 1127 unsigned from, to; 1128 1129 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1130 return -EIO; 1131 1132 trace_ext4_write_begin(inode, pos, len); 1133 /* 1134 * Reserve one block more for addition to orphan list in case 1135 * we allocate blocks but write fails for some reason 1136 */ 1137 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1138 index = pos >> PAGE_SHIFT; 1139 from = pos & (PAGE_SIZE - 1); 1140 to = from + len; 1141 1142 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1143 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1144 pagep); 1145 if (ret < 0) 1146 return ret; 1147 if (ret == 1) 1148 return 0; 1149 } 1150 1151 /* 1152 * __filemap_get_folio() can take a long time if the 1153 * system is thrashing due to memory pressure, or if the folio 1154 * is being written back. So grab it first before we start 1155 * the transaction handle. This also allows us to allocate 1156 * the folio (if needed) without using GFP_NOFS. 1157 */ 1158 retry_grab: 1159 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1160 mapping_gfp_mask(mapping)); 1161 if (IS_ERR(folio)) 1162 return PTR_ERR(folio); 1163 /* 1164 * The same as page allocation, we prealloc buffer heads before 1165 * starting the handle. 1166 */ 1167 if (!folio_buffers(folio)) 1168 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1169 1170 folio_unlock(folio); 1171 1172 retry_journal: 1173 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1174 if (IS_ERR(handle)) { 1175 folio_put(folio); 1176 return PTR_ERR(handle); 1177 } 1178 1179 folio_lock(folio); 1180 if (folio->mapping != mapping) { 1181 /* The folio got truncated from under us */ 1182 folio_unlock(folio); 1183 folio_put(folio); 1184 ext4_journal_stop(handle); 1185 goto retry_grab; 1186 } 1187 /* In case writeback began while the folio was unlocked */ 1188 folio_wait_stable(folio); 1189 1190 #ifdef CONFIG_FS_ENCRYPTION 1191 if (ext4_should_dioread_nolock(inode)) 1192 ret = ext4_block_write_begin(folio, pos, len, 1193 ext4_get_block_unwritten); 1194 else 1195 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1196 #else 1197 if (ext4_should_dioread_nolock(inode)) 1198 ret = __block_write_begin(&folio->page, pos, len, 1199 ext4_get_block_unwritten); 1200 else 1201 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1202 #endif 1203 if (!ret && ext4_should_journal_data(inode)) { 1204 ret = ext4_walk_page_buffers(handle, inode, 1205 folio_buffers(folio), from, to, 1206 NULL, do_journal_get_write_access); 1207 } 1208 1209 if (ret) { 1210 bool extended = (pos + len > inode->i_size) && 1211 !ext4_verity_in_progress(inode); 1212 1213 folio_unlock(folio); 1214 /* 1215 * __block_write_begin may have instantiated a few blocks 1216 * outside i_size. Trim these off again. Don't need 1217 * i_size_read because we hold i_rwsem. 1218 * 1219 * Add inode to orphan list in case we crash before 1220 * truncate finishes 1221 */ 1222 if (extended && ext4_can_truncate(inode)) 1223 ext4_orphan_add(handle, inode); 1224 1225 ext4_journal_stop(handle); 1226 if (extended) { 1227 ext4_truncate_failed_write(inode); 1228 /* 1229 * If truncate failed early the inode might 1230 * still be on the orphan list; we need to 1231 * make sure the inode is removed from the 1232 * orphan list in that case. 1233 */ 1234 if (inode->i_nlink) 1235 ext4_orphan_del(NULL, inode); 1236 } 1237 1238 if (ret == -ENOSPC && 1239 ext4_should_retry_alloc(inode->i_sb, &retries)) 1240 goto retry_journal; 1241 folio_put(folio); 1242 return ret; 1243 } 1244 *pagep = &folio->page; 1245 return ret; 1246 } 1247 1248 /* For write_end() in data=journal mode */ 1249 static int write_end_fn(handle_t *handle, struct inode *inode, 1250 struct buffer_head *bh) 1251 { 1252 int ret; 1253 if (!buffer_mapped(bh) || buffer_freed(bh)) 1254 return 0; 1255 set_buffer_uptodate(bh); 1256 ret = ext4_dirty_journalled_data(handle, bh); 1257 clear_buffer_meta(bh); 1258 clear_buffer_prio(bh); 1259 return ret; 1260 } 1261 1262 /* 1263 * We need to pick up the new inode size which generic_commit_write gave us 1264 * `file' can be NULL - eg, when called from page_symlink(). 1265 * 1266 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1267 * buffers are managed internally. 1268 */ 1269 static int ext4_write_end(struct file *file, 1270 struct address_space *mapping, 1271 loff_t pos, unsigned len, unsigned copied, 1272 struct page *page, void *fsdata) 1273 { 1274 struct folio *folio = page_folio(page); 1275 handle_t *handle = ext4_journal_current_handle(); 1276 struct inode *inode = mapping->host; 1277 loff_t old_size = inode->i_size; 1278 int ret = 0, ret2; 1279 int i_size_changed = 0; 1280 bool verity = ext4_verity_in_progress(inode); 1281 1282 trace_ext4_write_end(inode, pos, len, copied); 1283 1284 if (ext4_has_inline_data(inode) && 1285 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1286 return ext4_write_inline_data_end(inode, pos, len, copied, 1287 folio); 1288 1289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1290 /* 1291 * it's important to update i_size while still holding folio lock: 1292 * page writeout could otherwise come in and zero beyond i_size. 1293 * 1294 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1295 * blocks are being written past EOF, so skip the i_size update. 1296 */ 1297 if (!verity) 1298 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1299 folio_unlock(folio); 1300 folio_put(folio); 1301 1302 if (old_size < pos && !verity) 1303 pagecache_isize_extended(inode, old_size, pos); 1304 /* 1305 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1306 * makes the holding time of folio lock longer. Second, it forces lock 1307 * ordering of folio lock and transaction start for journaling 1308 * filesystems. 1309 */ 1310 if (i_size_changed) 1311 ret = ext4_mark_inode_dirty(handle, inode); 1312 1313 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1314 /* if we have allocated more blocks and copied 1315 * less. We will have blocks allocated outside 1316 * inode->i_size. So truncate them 1317 */ 1318 ext4_orphan_add(handle, inode); 1319 1320 ret2 = ext4_journal_stop(handle); 1321 if (!ret) 1322 ret = ret2; 1323 1324 if (pos + len > inode->i_size && !verity) { 1325 ext4_truncate_failed_write(inode); 1326 /* 1327 * If truncate failed early the inode might still be 1328 * on the orphan list; we need to make sure the inode 1329 * is removed from the orphan list in that case. 1330 */ 1331 if (inode->i_nlink) 1332 ext4_orphan_del(NULL, inode); 1333 } 1334 1335 return ret ? ret : copied; 1336 } 1337 1338 /* 1339 * This is a private version of folio_zero_new_buffers() which doesn't 1340 * set the buffer to be dirty, since in data=journalled mode we need 1341 * to call ext4_dirty_journalled_data() instead. 1342 */ 1343 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1344 struct inode *inode, 1345 struct folio *folio, 1346 unsigned from, unsigned to) 1347 { 1348 unsigned int block_start = 0, block_end; 1349 struct buffer_head *head, *bh; 1350 1351 bh = head = folio_buffers(folio); 1352 do { 1353 block_end = block_start + bh->b_size; 1354 if (buffer_new(bh)) { 1355 if (block_end > from && block_start < to) { 1356 if (!folio_test_uptodate(folio)) { 1357 unsigned start, size; 1358 1359 start = max(from, block_start); 1360 size = min(to, block_end) - start; 1361 1362 folio_zero_range(folio, start, size); 1363 write_end_fn(handle, inode, bh); 1364 } 1365 clear_buffer_new(bh); 1366 } 1367 } 1368 block_start = block_end; 1369 bh = bh->b_this_page; 1370 } while (bh != head); 1371 } 1372 1373 static int ext4_journalled_write_end(struct file *file, 1374 struct address_space *mapping, 1375 loff_t pos, unsigned len, unsigned copied, 1376 struct page *page, void *fsdata) 1377 { 1378 struct folio *folio = page_folio(page); 1379 handle_t *handle = ext4_journal_current_handle(); 1380 struct inode *inode = mapping->host; 1381 loff_t old_size = inode->i_size; 1382 int ret = 0, ret2; 1383 int partial = 0; 1384 unsigned from, to; 1385 int size_changed = 0; 1386 bool verity = ext4_verity_in_progress(inode); 1387 1388 trace_ext4_journalled_write_end(inode, pos, len, copied); 1389 from = pos & (PAGE_SIZE - 1); 1390 to = from + len; 1391 1392 BUG_ON(!ext4_handle_valid(handle)); 1393 1394 if (ext4_has_inline_data(inode)) 1395 return ext4_write_inline_data_end(inode, pos, len, copied, 1396 folio); 1397 1398 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1399 copied = 0; 1400 ext4_journalled_zero_new_buffers(handle, inode, folio, 1401 from, to); 1402 } else { 1403 if (unlikely(copied < len)) 1404 ext4_journalled_zero_new_buffers(handle, inode, folio, 1405 from + copied, to); 1406 ret = ext4_walk_page_buffers(handle, inode, 1407 folio_buffers(folio), 1408 from, from + copied, &partial, 1409 write_end_fn); 1410 if (!partial) 1411 folio_mark_uptodate(folio); 1412 } 1413 if (!verity) 1414 size_changed = ext4_update_inode_size(inode, pos + copied); 1415 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1416 folio_unlock(folio); 1417 folio_put(folio); 1418 1419 if (old_size < pos && !verity) 1420 pagecache_isize_extended(inode, old_size, pos); 1421 1422 if (size_changed) { 1423 ret2 = ext4_mark_inode_dirty(handle, inode); 1424 if (!ret) 1425 ret = ret2; 1426 } 1427 1428 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1429 /* if we have allocated more blocks and copied 1430 * less. We will have blocks allocated outside 1431 * inode->i_size. So truncate them 1432 */ 1433 ext4_orphan_add(handle, inode); 1434 1435 ret2 = ext4_journal_stop(handle); 1436 if (!ret) 1437 ret = ret2; 1438 if (pos + len > inode->i_size && !verity) { 1439 ext4_truncate_failed_write(inode); 1440 /* 1441 * If truncate failed early the inode might still be 1442 * on the orphan list; we need to make sure the inode 1443 * is removed from the orphan list in that case. 1444 */ 1445 if (inode->i_nlink) 1446 ext4_orphan_del(NULL, inode); 1447 } 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 /* 1453 * Reserve space for a single cluster 1454 */ 1455 static int ext4_da_reserve_space(struct inode *inode) 1456 { 1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 int ret; 1460 1461 /* 1462 * We will charge metadata quota at writeout time; this saves 1463 * us from metadata over-estimation, though we may go over by 1464 * a small amount in the end. Here we just reserve for data. 1465 */ 1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1467 if (ret) 1468 return ret; 1469 1470 spin_lock(&ei->i_block_reservation_lock); 1471 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1474 return -ENOSPC; 1475 } 1476 ei->i_reserved_data_blocks++; 1477 trace_ext4_da_reserve_space(inode); 1478 spin_unlock(&ei->i_block_reservation_lock); 1479 1480 return 0; /* success */ 1481 } 1482 1483 void ext4_da_release_space(struct inode *inode, int to_free) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1486 struct ext4_inode_info *ei = EXT4_I(inode); 1487 1488 if (!to_free) 1489 return; /* Nothing to release, exit */ 1490 1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1492 1493 trace_ext4_da_release_space(inode, to_free); 1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1495 /* 1496 * if there aren't enough reserved blocks, then the 1497 * counter is messed up somewhere. Since this 1498 * function is called from invalidate page, it's 1499 * harmless to return without any action. 1500 */ 1501 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1502 "ino %lu, to_free %d with only %d reserved " 1503 "data blocks", inode->i_ino, to_free, 1504 ei->i_reserved_data_blocks); 1505 WARN_ON(1); 1506 to_free = ei->i_reserved_data_blocks; 1507 } 1508 ei->i_reserved_data_blocks -= to_free; 1509 1510 /* update fs dirty data blocks counter */ 1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1512 1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1516 } 1517 1518 /* 1519 * Delayed allocation stuff 1520 */ 1521 1522 struct mpage_da_data { 1523 /* These are input fields for ext4_do_writepages() */ 1524 struct inode *inode; 1525 struct writeback_control *wbc; 1526 unsigned int can_map:1; /* Can writepages call map blocks? */ 1527 1528 /* These are internal state of ext4_do_writepages() */ 1529 pgoff_t first_page; /* The first page to write */ 1530 pgoff_t next_page; /* Current page to examine */ 1531 pgoff_t last_page; /* Last page to examine */ 1532 /* 1533 * Extent to map - this can be after first_page because that can be 1534 * fully mapped. We somewhat abuse m_flags to store whether the extent 1535 * is delalloc or unwritten. 1536 */ 1537 struct ext4_map_blocks map; 1538 struct ext4_io_submit io_submit; /* IO submission data */ 1539 unsigned int do_map:1; 1540 unsigned int scanned_until_end:1; 1541 unsigned int journalled_more_data:1; 1542 }; 1543 1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1545 bool invalidate) 1546 { 1547 unsigned nr, i; 1548 pgoff_t index, end; 1549 struct folio_batch fbatch; 1550 struct inode *inode = mpd->inode; 1551 struct address_space *mapping = inode->i_mapping; 1552 1553 /* This is necessary when next_page == 0. */ 1554 if (mpd->first_page >= mpd->next_page) 1555 return; 1556 1557 mpd->scanned_until_end = 0; 1558 index = mpd->first_page; 1559 end = mpd->next_page - 1; 1560 if (invalidate) { 1561 ext4_lblk_t start, last; 1562 start = index << (PAGE_SHIFT - inode->i_blkbits); 1563 last = end << (PAGE_SHIFT - inode->i_blkbits); 1564 1565 /* 1566 * avoid racing with extent status tree scans made by 1567 * ext4_insert_delayed_block() 1568 */ 1569 down_write(&EXT4_I(inode)->i_data_sem); 1570 ext4_es_remove_extent(inode, start, last - start + 1); 1571 up_write(&EXT4_I(inode)->i_data_sem); 1572 } 1573 1574 folio_batch_init(&fbatch); 1575 while (index <= end) { 1576 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1577 if (nr == 0) 1578 break; 1579 for (i = 0; i < nr; i++) { 1580 struct folio *folio = fbatch.folios[i]; 1581 1582 if (folio->index < mpd->first_page) 1583 continue; 1584 if (folio_next_index(folio) - 1 > end) 1585 continue; 1586 BUG_ON(!folio_test_locked(folio)); 1587 BUG_ON(folio_test_writeback(folio)); 1588 if (invalidate) { 1589 if (folio_mapped(folio)) 1590 folio_clear_dirty_for_io(folio); 1591 block_invalidate_folio(folio, 0, 1592 folio_size(folio)); 1593 folio_clear_uptodate(folio); 1594 } 1595 folio_unlock(folio); 1596 } 1597 folio_batch_release(&fbatch); 1598 } 1599 } 1600 1601 static void ext4_print_free_blocks(struct inode *inode) 1602 { 1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1604 struct super_block *sb = inode->i_sb; 1605 struct ext4_inode_info *ei = EXT4_I(inode); 1606 1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1608 EXT4_C2B(EXT4_SB(inode->i_sb), 1609 ext4_count_free_clusters(sb))); 1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1612 (long long) EXT4_C2B(EXT4_SB(sb), 1613 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1615 (long long) EXT4_C2B(EXT4_SB(sb), 1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1617 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1619 ei->i_reserved_data_blocks); 1620 return; 1621 } 1622 1623 /* 1624 * ext4_insert_delayed_block - adds a delayed block to the extents status 1625 * tree, incrementing the reserved cluster/block 1626 * count or making a pending reservation 1627 * where needed 1628 * 1629 * @inode - file containing the newly added block 1630 * @lblk - logical block to be added 1631 * 1632 * Returns 0 on success, negative error code on failure. 1633 */ 1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1635 { 1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1637 int ret; 1638 bool allocated = false; 1639 1640 /* 1641 * If the cluster containing lblk is shared with a delayed, 1642 * written, or unwritten extent in a bigalloc file system, it's 1643 * already been accounted for and does not need to be reserved. 1644 * A pending reservation must be made for the cluster if it's 1645 * shared with a written or unwritten extent and doesn't already 1646 * have one. Written and unwritten extents can be purged from the 1647 * extents status tree if the system is under memory pressure, so 1648 * it's necessary to examine the extent tree if a search of the 1649 * extents status tree doesn't get a match. 1650 */ 1651 if (sbi->s_cluster_ratio == 1) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { /* bigalloc */ 1656 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1657 if (!ext4_es_scan_clu(inode, 1658 &ext4_es_is_mapped, lblk)) { 1659 ret = ext4_clu_mapped(inode, 1660 EXT4_B2C(sbi, lblk)); 1661 if (ret < 0) 1662 return ret; 1663 if (ret == 0) { 1664 ret = ext4_da_reserve_space(inode); 1665 if (ret != 0) /* ENOSPC */ 1666 return ret; 1667 } else { 1668 allocated = true; 1669 } 1670 } else { 1671 allocated = true; 1672 } 1673 } 1674 } 1675 1676 ext4_es_insert_delayed_block(inode, lblk, allocated); 1677 return 0; 1678 } 1679 1680 /* 1681 * This function is grabs code from the very beginning of 1682 * ext4_map_blocks, but assumes that the caller is from delayed write 1683 * time. This function looks up the requested blocks and sets the 1684 * buffer delay bit under the protection of i_data_sem. 1685 */ 1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1687 struct ext4_map_blocks *map, 1688 struct buffer_head *bh) 1689 { 1690 struct extent_status es; 1691 int retval; 1692 sector_t invalid_block = ~((sector_t) 0xffff); 1693 #ifdef ES_AGGRESSIVE_TEST 1694 struct ext4_map_blocks orig_map; 1695 1696 memcpy(&orig_map, map, sizeof(*map)); 1697 #endif 1698 1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1700 invalid_block = ~0; 1701 1702 map->m_flags = 0; 1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1704 (unsigned long) map->m_lblk); 1705 1706 /* Lookup extent status tree firstly */ 1707 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1708 if (ext4_es_is_hole(&es)) 1709 goto add_delayed; 1710 1711 /* 1712 * Delayed extent could be allocated by fallocate. 1713 * So we need to check it. 1714 */ 1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1716 map_bh(bh, inode->i_sb, invalid_block); 1717 set_buffer_new(bh); 1718 set_buffer_delay(bh); 1719 return 0; 1720 } 1721 1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1723 retval = es.es_len - (iblock - es.es_lblk); 1724 if (retval > map->m_len) 1725 retval = map->m_len; 1726 map->m_len = retval; 1727 if (ext4_es_is_written(&es)) 1728 map->m_flags |= EXT4_MAP_MAPPED; 1729 else if (ext4_es_is_unwritten(&es)) 1730 map->m_flags |= EXT4_MAP_UNWRITTEN; 1731 else 1732 BUG(); 1733 1734 #ifdef ES_AGGRESSIVE_TEST 1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1736 #endif 1737 return retval; 1738 } 1739 1740 /* 1741 * Try to see if we can get the block without requesting a new 1742 * file system block. 1743 */ 1744 down_read(&EXT4_I(inode)->i_data_sem); 1745 if (ext4_has_inline_data(inode)) 1746 retval = 0; 1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1749 else 1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1751 if (retval < 0) { 1752 up_read(&EXT4_I(inode)->i_data_sem); 1753 return retval; 1754 } 1755 if (retval > 0) { 1756 unsigned int status; 1757 1758 if (unlikely(retval != map->m_len)) { 1759 ext4_warning(inode->i_sb, 1760 "ES len assertion failed for inode " 1761 "%lu: retval %d != map->m_len %d", 1762 inode->i_ino, retval, map->m_len); 1763 WARN_ON(1); 1764 } 1765 1766 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1767 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1768 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1769 map->m_pblk, status); 1770 up_read(&EXT4_I(inode)->i_data_sem); 1771 return retval; 1772 } 1773 up_read(&EXT4_I(inode)->i_data_sem); 1774 1775 add_delayed: 1776 down_write(&EXT4_I(inode)->i_data_sem); 1777 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1778 up_write(&EXT4_I(inode)->i_data_sem); 1779 if (retval) 1780 return retval; 1781 1782 map_bh(bh, inode->i_sb, invalid_block); 1783 set_buffer_new(bh); 1784 set_buffer_delay(bh); 1785 return retval; 1786 } 1787 1788 /* 1789 * This is a special get_block_t callback which is used by 1790 * ext4_da_write_begin(). It will either return mapped block or 1791 * reserve space for a single block. 1792 * 1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1794 * We also have b_blocknr = -1 and b_bdev initialized properly 1795 * 1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1798 * initialized properly. 1799 */ 1800 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1801 struct buffer_head *bh, int create) 1802 { 1803 struct ext4_map_blocks map; 1804 int ret = 0; 1805 1806 BUG_ON(create == 0); 1807 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1808 1809 map.m_lblk = iblock; 1810 map.m_len = 1; 1811 1812 /* 1813 * first, we need to know whether the block is allocated already 1814 * preallocated blocks are unmapped but should treated 1815 * the same as allocated blocks. 1816 */ 1817 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1818 if (ret <= 0) 1819 return ret; 1820 1821 map_bh(bh, inode->i_sb, map.m_pblk); 1822 ext4_update_bh_state(bh, map.m_flags); 1823 1824 if (buffer_unwritten(bh)) { 1825 /* A delayed write to unwritten bh should be marked 1826 * new and mapped. Mapped ensures that we don't do 1827 * get_block multiple times when we write to the same 1828 * offset and new ensures that we do proper zero out 1829 * for partial write. 1830 */ 1831 set_buffer_new(bh); 1832 set_buffer_mapped(bh); 1833 } 1834 return 0; 1835 } 1836 1837 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1838 { 1839 mpd->first_page += folio_nr_pages(folio); 1840 folio_unlock(folio); 1841 } 1842 1843 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1844 { 1845 size_t len; 1846 loff_t size; 1847 int err; 1848 1849 BUG_ON(folio->index != mpd->first_page); 1850 folio_clear_dirty_for_io(folio); 1851 /* 1852 * We have to be very careful here! Nothing protects writeback path 1853 * against i_size changes and the page can be writeably mapped into 1854 * page tables. So an application can be growing i_size and writing 1855 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1856 * write-protects our page in page tables and the page cannot get 1857 * written to again until we release folio lock. So only after 1858 * folio_clear_dirty_for_io() we are safe to sample i_size for 1859 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1860 * on the barrier provided by folio_test_clear_dirty() in 1861 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1862 * after page tables are updated. 1863 */ 1864 size = i_size_read(mpd->inode); 1865 len = folio_size(folio); 1866 if (folio_pos(folio) + len > size && 1867 !ext4_verity_in_progress(mpd->inode)) 1868 len = size & (len - 1); 1869 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1870 if (!err) 1871 mpd->wbc->nr_to_write--; 1872 1873 return err; 1874 } 1875 1876 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1877 1878 /* 1879 * mballoc gives us at most this number of blocks... 1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1881 * The rest of mballoc seems to handle chunks up to full group size. 1882 */ 1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1884 1885 /* 1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1887 * 1888 * @mpd - extent of blocks 1889 * @lblk - logical number of the block in the file 1890 * @bh - buffer head we want to add to the extent 1891 * 1892 * The function is used to collect contig. blocks in the same state. If the 1893 * buffer doesn't require mapping for writeback and we haven't started the 1894 * extent of buffers to map yet, the function returns 'true' immediately - the 1895 * caller can write the buffer right away. Otherwise the function returns true 1896 * if the block has been added to the extent, false if the block couldn't be 1897 * added. 1898 */ 1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1900 struct buffer_head *bh) 1901 { 1902 struct ext4_map_blocks *map = &mpd->map; 1903 1904 /* Buffer that doesn't need mapping for writeback? */ 1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1907 /* So far no extent to map => we write the buffer right away */ 1908 if (map->m_len == 0) 1909 return true; 1910 return false; 1911 } 1912 1913 /* First block in the extent? */ 1914 if (map->m_len == 0) { 1915 /* We cannot map unless handle is started... */ 1916 if (!mpd->do_map) 1917 return false; 1918 map->m_lblk = lblk; 1919 map->m_len = 1; 1920 map->m_flags = bh->b_state & BH_FLAGS; 1921 return true; 1922 } 1923 1924 /* Don't go larger than mballoc is willing to allocate */ 1925 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1926 return false; 1927 1928 /* Can we merge the block to our big extent? */ 1929 if (lblk == map->m_lblk + map->m_len && 1930 (bh->b_state & BH_FLAGS) == map->m_flags) { 1931 map->m_len++; 1932 return true; 1933 } 1934 return false; 1935 } 1936 1937 /* 1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1939 * 1940 * @mpd - extent of blocks for mapping 1941 * @head - the first buffer in the page 1942 * @bh - buffer we should start processing from 1943 * @lblk - logical number of the block in the file corresponding to @bh 1944 * 1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1946 * the page for IO if all buffers in this page were mapped and there's no 1947 * accumulated extent of buffers to map or add buffers in the page to the 1948 * extent of buffers to map. The function returns 1 if the caller can continue 1949 * by processing the next page, 0 if it should stop adding buffers to the 1950 * extent to map because we cannot extend it anymore. It can also return value 1951 * < 0 in case of error during IO submission. 1952 */ 1953 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1954 struct buffer_head *head, 1955 struct buffer_head *bh, 1956 ext4_lblk_t lblk) 1957 { 1958 struct inode *inode = mpd->inode; 1959 int err; 1960 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1961 >> inode->i_blkbits; 1962 1963 if (ext4_verity_in_progress(inode)) 1964 blocks = EXT_MAX_BLOCKS; 1965 1966 do { 1967 BUG_ON(buffer_locked(bh)); 1968 1969 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1970 /* Found extent to map? */ 1971 if (mpd->map.m_len) 1972 return 0; 1973 /* Buffer needs mapping and handle is not started? */ 1974 if (!mpd->do_map) 1975 return 0; 1976 /* Everything mapped so far and we hit EOF */ 1977 break; 1978 } 1979 } while (lblk++, (bh = bh->b_this_page) != head); 1980 /* So far everything mapped? Submit the page for IO. */ 1981 if (mpd->map.m_len == 0) { 1982 err = mpage_submit_folio(mpd, head->b_folio); 1983 if (err < 0) 1984 return err; 1985 mpage_folio_done(mpd, head->b_folio); 1986 } 1987 if (lblk >= blocks) { 1988 mpd->scanned_until_end = 1; 1989 return 0; 1990 } 1991 return 1; 1992 } 1993 1994 /* 1995 * mpage_process_folio - update folio buffers corresponding to changed extent 1996 * and may submit fully mapped page for IO 1997 * @mpd: description of extent to map, on return next extent to map 1998 * @folio: Contains these buffers. 1999 * @m_lblk: logical block mapping. 2000 * @m_pblk: corresponding physical mapping. 2001 * @map_bh: determines on return whether this page requires any further 2002 * mapping or not. 2003 * 2004 * Scan given folio buffers corresponding to changed extent and update buffer 2005 * state according to new extent state. 2006 * We map delalloc buffers to their physical location, clear unwritten bits. 2007 * If the given folio is not fully mapped, we update @mpd to the next extent in 2008 * the given folio that needs mapping & return @map_bh as true. 2009 */ 2010 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2011 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2012 bool *map_bh) 2013 { 2014 struct buffer_head *head, *bh; 2015 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2016 ext4_lblk_t lblk = *m_lblk; 2017 ext4_fsblk_t pblock = *m_pblk; 2018 int err = 0; 2019 int blkbits = mpd->inode->i_blkbits; 2020 ssize_t io_end_size = 0; 2021 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2022 2023 bh = head = folio_buffers(folio); 2024 do { 2025 if (lblk < mpd->map.m_lblk) 2026 continue; 2027 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2028 /* 2029 * Buffer after end of mapped extent. 2030 * Find next buffer in the folio to map. 2031 */ 2032 mpd->map.m_len = 0; 2033 mpd->map.m_flags = 0; 2034 io_end_vec->size += io_end_size; 2035 2036 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2037 if (err > 0) 2038 err = 0; 2039 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2040 io_end_vec = ext4_alloc_io_end_vec(io_end); 2041 if (IS_ERR(io_end_vec)) { 2042 err = PTR_ERR(io_end_vec); 2043 goto out; 2044 } 2045 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2046 } 2047 *map_bh = true; 2048 goto out; 2049 } 2050 if (buffer_delay(bh)) { 2051 clear_buffer_delay(bh); 2052 bh->b_blocknr = pblock++; 2053 } 2054 clear_buffer_unwritten(bh); 2055 io_end_size += (1 << blkbits); 2056 } while (lblk++, (bh = bh->b_this_page) != head); 2057 2058 io_end_vec->size += io_end_size; 2059 *map_bh = false; 2060 out: 2061 *m_lblk = lblk; 2062 *m_pblk = pblock; 2063 return err; 2064 } 2065 2066 /* 2067 * mpage_map_buffers - update buffers corresponding to changed extent and 2068 * submit fully mapped pages for IO 2069 * 2070 * @mpd - description of extent to map, on return next extent to map 2071 * 2072 * Scan buffers corresponding to changed extent (we expect corresponding pages 2073 * to be already locked) and update buffer state according to new extent state. 2074 * We map delalloc buffers to their physical location, clear unwritten bits, 2075 * and mark buffers as uninit when we perform writes to unwritten extents 2076 * and do extent conversion after IO is finished. If the last page is not fully 2077 * mapped, we update @map to the next extent in the last page that needs 2078 * mapping. Otherwise we submit the page for IO. 2079 */ 2080 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2081 { 2082 struct folio_batch fbatch; 2083 unsigned nr, i; 2084 struct inode *inode = mpd->inode; 2085 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2086 pgoff_t start, end; 2087 ext4_lblk_t lblk; 2088 ext4_fsblk_t pblock; 2089 int err; 2090 bool map_bh = false; 2091 2092 start = mpd->map.m_lblk >> bpp_bits; 2093 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2094 lblk = start << bpp_bits; 2095 pblock = mpd->map.m_pblk; 2096 2097 folio_batch_init(&fbatch); 2098 while (start <= end) { 2099 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2100 if (nr == 0) 2101 break; 2102 for (i = 0; i < nr; i++) { 2103 struct folio *folio = fbatch.folios[i]; 2104 2105 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2106 &map_bh); 2107 /* 2108 * If map_bh is true, means page may require further bh 2109 * mapping, or maybe the page was submitted for IO. 2110 * So we return to call further extent mapping. 2111 */ 2112 if (err < 0 || map_bh) 2113 goto out; 2114 /* Page fully mapped - let IO run! */ 2115 err = mpage_submit_folio(mpd, folio); 2116 if (err < 0) 2117 goto out; 2118 mpage_folio_done(mpd, folio); 2119 } 2120 folio_batch_release(&fbatch); 2121 } 2122 /* Extent fully mapped and matches with page boundary. We are done. */ 2123 mpd->map.m_len = 0; 2124 mpd->map.m_flags = 0; 2125 return 0; 2126 out: 2127 folio_batch_release(&fbatch); 2128 return err; 2129 } 2130 2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2132 { 2133 struct inode *inode = mpd->inode; 2134 struct ext4_map_blocks *map = &mpd->map; 2135 int get_blocks_flags; 2136 int err, dioread_nolock; 2137 2138 trace_ext4_da_write_pages_extent(inode, map); 2139 /* 2140 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2141 * to convert an unwritten extent to be initialized (in the case 2142 * where we have written into one or more preallocated blocks). It is 2143 * possible that we're going to need more metadata blocks than 2144 * previously reserved. However we must not fail because we're in 2145 * writeback and there is nothing we can do about it so it might result 2146 * in data loss. So use reserved blocks to allocate metadata if 2147 * possible. 2148 * 2149 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2150 * the blocks in question are delalloc blocks. This indicates 2151 * that the blocks and quotas has already been checked when 2152 * the data was copied into the page cache. 2153 */ 2154 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2155 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2156 EXT4_GET_BLOCKS_IO_SUBMIT; 2157 dioread_nolock = ext4_should_dioread_nolock(inode); 2158 if (dioread_nolock) 2159 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2160 if (map->m_flags & BIT(BH_Delay)) 2161 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2162 2163 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2164 if (err < 0) 2165 return err; 2166 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2167 if (!mpd->io_submit.io_end->handle && 2168 ext4_handle_valid(handle)) { 2169 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2170 handle->h_rsv_handle = NULL; 2171 } 2172 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2173 } 2174 2175 BUG_ON(map->m_len == 0); 2176 return 0; 2177 } 2178 2179 /* 2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2181 * mpd->len and submit pages underlying it for IO 2182 * 2183 * @handle - handle for journal operations 2184 * @mpd - extent to map 2185 * @give_up_on_write - we set this to true iff there is a fatal error and there 2186 * is no hope of writing the data. The caller should discard 2187 * dirty pages to avoid infinite loops. 2188 * 2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2191 * them to initialized or split the described range from larger unwritten 2192 * extent. Note that we need not map all the described range since allocation 2193 * can return less blocks or the range is covered by more unwritten extents. We 2194 * cannot map more because we are limited by reserved transaction credits. On 2195 * the other hand we always make sure that the last touched page is fully 2196 * mapped so that it can be written out (and thus forward progress is 2197 * guaranteed). After mapping we submit all mapped pages for IO. 2198 */ 2199 static int mpage_map_and_submit_extent(handle_t *handle, 2200 struct mpage_da_data *mpd, 2201 bool *give_up_on_write) 2202 { 2203 struct inode *inode = mpd->inode; 2204 struct ext4_map_blocks *map = &mpd->map; 2205 int err; 2206 loff_t disksize; 2207 int progress = 0; 2208 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2209 struct ext4_io_end_vec *io_end_vec; 2210 2211 io_end_vec = ext4_alloc_io_end_vec(io_end); 2212 if (IS_ERR(io_end_vec)) 2213 return PTR_ERR(io_end_vec); 2214 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2215 do { 2216 err = mpage_map_one_extent(handle, mpd); 2217 if (err < 0) { 2218 struct super_block *sb = inode->i_sb; 2219 2220 if (ext4_forced_shutdown(sb)) 2221 goto invalidate_dirty_pages; 2222 /* 2223 * Let the uper layers retry transient errors. 2224 * In the case of ENOSPC, if ext4_count_free_blocks() 2225 * is non-zero, a commit should free up blocks. 2226 */ 2227 if ((err == -ENOMEM) || 2228 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2229 if (progress) 2230 goto update_disksize; 2231 return err; 2232 } 2233 ext4_msg(sb, KERN_CRIT, 2234 "Delayed block allocation failed for " 2235 "inode %lu at logical offset %llu with" 2236 " max blocks %u with error %d", 2237 inode->i_ino, 2238 (unsigned long long)map->m_lblk, 2239 (unsigned)map->m_len, -err); 2240 ext4_msg(sb, KERN_CRIT, 2241 "This should not happen!! Data will " 2242 "be lost\n"); 2243 if (err == -ENOSPC) 2244 ext4_print_free_blocks(inode); 2245 invalidate_dirty_pages: 2246 *give_up_on_write = true; 2247 return err; 2248 } 2249 progress = 1; 2250 /* 2251 * Update buffer state, submit mapped pages, and get us new 2252 * extent to map 2253 */ 2254 err = mpage_map_and_submit_buffers(mpd); 2255 if (err < 0) 2256 goto update_disksize; 2257 } while (map->m_len); 2258 2259 update_disksize: 2260 /* 2261 * Update on-disk size after IO is submitted. Races with 2262 * truncate are avoided by checking i_size under i_data_sem. 2263 */ 2264 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2265 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2266 int err2; 2267 loff_t i_size; 2268 2269 down_write(&EXT4_I(inode)->i_data_sem); 2270 i_size = i_size_read(inode); 2271 if (disksize > i_size) 2272 disksize = i_size; 2273 if (disksize > EXT4_I(inode)->i_disksize) 2274 EXT4_I(inode)->i_disksize = disksize; 2275 up_write(&EXT4_I(inode)->i_data_sem); 2276 err2 = ext4_mark_inode_dirty(handle, inode); 2277 if (err2) { 2278 ext4_error_err(inode->i_sb, -err2, 2279 "Failed to mark inode %lu dirty", 2280 inode->i_ino); 2281 } 2282 if (!err) 2283 err = err2; 2284 } 2285 return err; 2286 } 2287 2288 /* 2289 * Calculate the total number of credits to reserve for one writepages 2290 * iteration. This is called from ext4_writepages(). We map an extent of 2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2293 * bpp - 1 blocks in bpp different extents. 2294 */ 2295 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2296 { 2297 int bpp = ext4_journal_blocks_per_page(inode); 2298 2299 return ext4_meta_trans_blocks(inode, 2300 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2301 } 2302 2303 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2304 size_t len) 2305 { 2306 struct buffer_head *page_bufs = folio_buffers(folio); 2307 struct inode *inode = folio->mapping->host; 2308 int ret, err; 2309 2310 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2311 NULL, do_journal_get_write_access); 2312 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2313 NULL, write_end_fn); 2314 if (ret == 0) 2315 ret = err; 2316 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2317 if (ret == 0) 2318 ret = err; 2319 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2320 2321 return ret; 2322 } 2323 2324 static int mpage_journal_page_buffers(handle_t *handle, 2325 struct mpage_da_data *mpd, 2326 struct folio *folio) 2327 { 2328 struct inode *inode = mpd->inode; 2329 loff_t size = i_size_read(inode); 2330 size_t len = folio_size(folio); 2331 2332 folio_clear_checked(folio); 2333 mpd->wbc->nr_to_write--; 2334 2335 if (folio_pos(folio) + len > size && 2336 !ext4_verity_in_progress(inode)) 2337 len = size & (len - 1); 2338 2339 return ext4_journal_folio_buffers(handle, folio, len); 2340 } 2341 2342 /* 2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2344 * needing mapping, submit mapped pages 2345 * 2346 * @mpd - where to look for pages 2347 * 2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2349 * IO immediately. If we cannot map blocks, we submit just already mapped 2350 * buffers in the page for IO and keep page dirty. When we can map blocks and 2351 * we find a page which isn't mapped we start accumulating extent of buffers 2352 * underlying these pages that needs mapping (formed by either delayed or 2353 * unwritten buffers). We also lock the pages containing these buffers. The 2354 * extent found is returned in @mpd structure (starting at mpd->lblk with 2355 * length mpd->len blocks). 2356 * 2357 * Note that this function can attach bios to one io_end structure which are 2358 * neither logically nor physically contiguous. Although it may seem as an 2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2360 * case as we need to track IO to all buffers underlying a page in one io_end. 2361 */ 2362 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2363 { 2364 struct address_space *mapping = mpd->inode->i_mapping; 2365 struct folio_batch fbatch; 2366 unsigned int nr_folios; 2367 pgoff_t index = mpd->first_page; 2368 pgoff_t end = mpd->last_page; 2369 xa_mark_t tag; 2370 int i, err = 0; 2371 int blkbits = mpd->inode->i_blkbits; 2372 ext4_lblk_t lblk; 2373 struct buffer_head *head; 2374 handle_t *handle = NULL; 2375 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2376 2377 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2378 tag = PAGECACHE_TAG_TOWRITE; 2379 else 2380 tag = PAGECACHE_TAG_DIRTY; 2381 2382 mpd->map.m_len = 0; 2383 mpd->next_page = index; 2384 if (ext4_should_journal_data(mpd->inode)) { 2385 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2386 bpp); 2387 if (IS_ERR(handle)) 2388 return PTR_ERR(handle); 2389 } 2390 folio_batch_init(&fbatch); 2391 while (index <= end) { 2392 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2393 tag, &fbatch); 2394 if (nr_folios == 0) 2395 break; 2396 2397 for (i = 0; i < nr_folios; i++) { 2398 struct folio *folio = fbatch.folios[i]; 2399 2400 /* 2401 * Accumulated enough dirty pages? This doesn't apply 2402 * to WB_SYNC_ALL mode. For integrity sync we have to 2403 * keep going because someone may be concurrently 2404 * dirtying pages, and we might have synced a lot of 2405 * newly appeared dirty pages, but have not synced all 2406 * of the old dirty pages. 2407 */ 2408 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2409 mpd->wbc->nr_to_write <= 2410 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2411 goto out; 2412 2413 /* If we can't merge this page, we are done. */ 2414 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2415 goto out; 2416 2417 if (handle) { 2418 err = ext4_journal_ensure_credits(handle, bpp, 2419 0); 2420 if (err < 0) 2421 goto out; 2422 } 2423 2424 folio_lock(folio); 2425 /* 2426 * If the page is no longer dirty, or its mapping no 2427 * longer corresponds to inode we are writing (which 2428 * means it has been truncated or invalidated), or the 2429 * page is already under writeback and we are not doing 2430 * a data integrity writeback, skip the page 2431 */ 2432 if (!folio_test_dirty(folio) || 2433 (folio_test_writeback(folio) && 2434 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2435 unlikely(folio->mapping != mapping)) { 2436 folio_unlock(folio); 2437 continue; 2438 } 2439 2440 folio_wait_writeback(folio); 2441 BUG_ON(folio_test_writeback(folio)); 2442 2443 /* 2444 * Should never happen but for buggy code in 2445 * other subsystems that call 2446 * set_page_dirty() without properly warning 2447 * the file system first. See [1] for more 2448 * information. 2449 * 2450 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2451 */ 2452 if (!folio_buffers(folio)) { 2453 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2454 folio_clear_dirty(folio); 2455 folio_unlock(folio); 2456 continue; 2457 } 2458 2459 if (mpd->map.m_len == 0) 2460 mpd->first_page = folio->index; 2461 mpd->next_page = folio_next_index(folio); 2462 /* 2463 * Writeout when we cannot modify metadata is simple. 2464 * Just submit the page. For data=journal mode we 2465 * first handle writeout of the page for checkpoint and 2466 * only after that handle delayed page dirtying. This 2467 * makes sure current data is checkpointed to the final 2468 * location before possibly journalling it again which 2469 * is desirable when the page is frequently dirtied 2470 * through a pin. 2471 */ 2472 if (!mpd->can_map) { 2473 err = mpage_submit_folio(mpd, folio); 2474 if (err < 0) 2475 goto out; 2476 /* Pending dirtying of journalled data? */ 2477 if (folio_test_checked(folio)) { 2478 err = mpage_journal_page_buffers(handle, 2479 mpd, folio); 2480 if (err < 0) 2481 goto out; 2482 mpd->journalled_more_data = 1; 2483 } 2484 mpage_folio_done(mpd, folio); 2485 } else { 2486 /* Add all dirty buffers to mpd */ 2487 lblk = ((ext4_lblk_t)folio->index) << 2488 (PAGE_SHIFT - blkbits); 2489 head = folio_buffers(folio); 2490 err = mpage_process_page_bufs(mpd, head, head, 2491 lblk); 2492 if (err <= 0) 2493 goto out; 2494 err = 0; 2495 } 2496 } 2497 folio_batch_release(&fbatch); 2498 cond_resched(); 2499 } 2500 mpd->scanned_until_end = 1; 2501 if (handle) 2502 ext4_journal_stop(handle); 2503 return 0; 2504 out: 2505 folio_batch_release(&fbatch); 2506 if (handle) 2507 ext4_journal_stop(handle); 2508 return err; 2509 } 2510 2511 static int ext4_do_writepages(struct mpage_da_data *mpd) 2512 { 2513 struct writeback_control *wbc = mpd->wbc; 2514 pgoff_t writeback_index = 0; 2515 long nr_to_write = wbc->nr_to_write; 2516 int range_whole = 0; 2517 int cycled = 1; 2518 handle_t *handle = NULL; 2519 struct inode *inode = mpd->inode; 2520 struct address_space *mapping = inode->i_mapping; 2521 int needed_blocks, rsv_blocks = 0, ret = 0; 2522 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2523 struct blk_plug plug; 2524 bool give_up_on_write = false; 2525 2526 trace_ext4_writepages(inode, wbc); 2527 2528 /* 2529 * No pages to write? This is mainly a kludge to avoid starting 2530 * a transaction for special inodes like journal inode on last iput() 2531 * because that could violate lock ordering on umount 2532 */ 2533 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2534 goto out_writepages; 2535 2536 /* 2537 * If the filesystem has aborted, it is read-only, so return 2538 * right away instead of dumping stack traces later on that 2539 * will obscure the real source of the problem. We test 2540 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2541 * the latter could be true if the filesystem is mounted 2542 * read-only, and in that case, ext4_writepages should 2543 * *never* be called, so if that ever happens, we would want 2544 * the stack trace. 2545 */ 2546 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2547 ret = -EROFS; 2548 goto out_writepages; 2549 } 2550 2551 /* 2552 * If we have inline data and arrive here, it means that 2553 * we will soon create the block for the 1st page, so 2554 * we'd better clear the inline data here. 2555 */ 2556 if (ext4_has_inline_data(inode)) { 2557 /* Just inode will be modified... */ 2558 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2559 if (IS_ERR(handle)) { 2560 ret = PTR_ERR(handle); 2561 goto out_writepages; 2562 } 2563 BUG_ON(ext4_test_inode_state(inode, 2564 EXT4_STATE_MAY_INLINE_DATA)); 2565 ext4_destroy_inline_data(handle, inode); 2566 ext4_journal_stop(handle); 2567 } 2568 2569 /* 2570 * data=journal mode does not do delalloc so we just need to writeout / 2571 * journal already mapped buffers. On the other hand we need to commit 2572 * transaction to make data stable. We expect all the data to be 2573 * already in the journal (the only exception are DMA pinned pages 2574 * dirtied behind our back) so we commit transaction here and run the 2575 * writeback loop to checkpoint them. The checkpointing is not actually 2576 * necessary to make data persistent *but* quite a few places (extent 2577 * shifting operations, fsverity, ...) depend on being able to drop 2578 * pagecache pages after calling filemap_write_and_wait() and for that 2579 * checkpointing needs to happen. 2580 */ 2581 if (ext4_should_journal_data(inode)) { 2582 mpd->can_map = 0; 2583 if (wbc->sync_mode == WB_SYNC_ALL) 2584 ext4_fc_commit(sbi->s_journal, 2585 EXT4_I(inode)->i_datasync_tid); 2586 } 2587 mpd->journalled_more_data = 0; 2588 2589 if (ext4_should_dioread_nolock(inode)) { 2590 /* 2591 * We may need to convert up to one extent per block in 2592 * the page and we may dirty the inode. 2593 */ 2594 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2595 PAGE_SIZE >> inode->i_blkbits); 2596 } 2597 2598 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2599 range_whole = 1; 2600 2601 if (wbc->range_cyclic) { 2602 writeback_index = mapping->writeback_index; 2603 if (writeback_index) 2604 cycled = 0; 2605 mpd->first_page = writeback_index; 2606 mpd->last_page = -1; 2607 } else { 2608 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2609 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2610 } 2611 2612 ext4_io_submit_init(&mpd->io_submit, wbc); 2613 retry: 2614 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2615 tag_pages_for_writeback(mapping, mpd->first_page, 2616 mpd->last_page); 2617 blk_start_plug(&plug); 2618 2619 /* 2620 * First writeback pages that don't need mapping - we can avoid 2621 * starting a transaction unnecessarily and also avoid being blocked 2622 * in the block layer on device congestion while having transaction 2623 * started. 2624 */ 2625 mpd->do_map = 0; 2626 mpd->scanned_until_end = 0; 2627 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2628 if (!mpd->io_submit.io_end) { 2629 ret = -ENOMEM; 2630 goto unplug; 2631 } 2632 ret = mpage_prepare_extent_to_map(mpd); 2633 /* Unlock pages we didn't use */ 2634 mpage_release_unused_pages(mpd, false); 2635 /* Submit prepared bio */ 2636 ext4_io_submit(&mpd->io_submit); 2637 ext4_put_io_end_defer(mpd->io_submit.io_end); 2638 mpd->io_submit.io_end = NULL; 2639 if (ret < 0) 2640 goto unplug; 2641 2642 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2643 /* For each extent of pages we use new io_end */ 2644 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2645 if (!mpd->io_submit.io_end) { 2646 ret = -ENOMEM; 2647 break; 2648 } 2649 2650 WARN_ON_ONCE(!mpd->can_map); 2651 /* 2652 * We have two constraints: We find one extent to map and we 2653 * must always write out whole page (makes a difference when 2654 * blocksize < pagesize) so that we don't block on IO when we 2655 * try to write out the rest of the page. Journalled mode is 2656 * not supported by delalloc. 2657 */ 2658 BUG_ON(ext4_should_journal_data(inode)); 2659 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2660 2661 /* start a new transaction */ 2662 handle = ext4_journal_start_with_reserve(inode, 2663 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2664 if (IS_ERR(handle)) { 2665 ret = PTR_ERR(handle); 2666 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2667 "%ld pages, ino %lu; err %d", __func__, 2668 wbc->nr_to_write, inode->i_ino, ret); 2669 /* Release allocated io_end */ 2670 ext4_put_io_end(mpd->io_submit.io_end); 2671 mpd->io_submit.io_end = NULL; 2672 break; 2673 } 2674 mpd->do_map = 1; 2675 2676 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2677 ret = mpage_prepare_extent_to_map(mpd); 2678 if (!ret && mpd->map.m_len) 2679 ret = mpage_map_and_submit_extent(handle, mpd, 2680 &give_up_on_write); 2681 /* 2682 * Caution: If the handle is synchronous, 2683 * ext4_journal_stop() can wait for transaction commit 2684 * to finish which may depend on writeback of pages to 2685 * complete or on page lock to be released. In that 2686 * case, we have to wait until after we have 2687 * submitted all the IO, released page locks we hold, 2688 * and dropped io_end reference (for extent conversion 2689 * to be able to complete) before stopping the handle. 2690 */ 2691 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2692 ext4_journal_stop(handle); 2693 handle = NULL; 2694 mpd->do_map = 0; 2695 } 2696 /* Unlock pages we didn't use */ 2697 mpage_release_unused_pages(mpd, give_up_on_write); 2698 /* Submit prepared bio */ 2699 ext4_io_submit(&mpd->io_submit); 2700 2701 /* 2702 * Drop our io_end reference we got from init. We have 2703 * to be careful and use deferred io_end finishing if 2704 * we are still holding the transaction as we can 2705 * release the last reference to io_end which may end 2706 * up doing unwritten extent conversion. 2707 */ 2708 if (handle) { 2709 ext4_put_io_end_defer(mpd->io_submit.io_end); 2710 ext4_journal_stop(handle); 2711 } else 2712 ext4_put_io_end(mpd->io_submit.io_end); 2713 mpd->io_submit.io_end = NULL; 2714 2715 if (ret == -ENOSPC && sbi->s_journal) { 2716 /* 2717 * Commit the transaction which would 2718 * free blocks released in the transaction 2719 * and try again 2720 */ 2721 jbd2_journal_force_commit_nested(sbi->s_journal); 2722 ret = 0; 2723 continue; 2724 } 2725 /* Fatal error - ENOMEM, EIO... */ 2726 if (ret) 2727 break; 2728 } 2729 unplug: 2730 blk_finish_plug(&plug); 2731 if (!ret && !cycled && wbc->nr_to_write > 0) { 2732 cycled = 1; 2733 mpd->last_page = writeback_index - 1; 2734 mpd->first_page = 0; 2735 goto retry; 2736 } 2737 2738 /* Update index */ 2739 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2740 /* 2741 * Set the writeback_index so that range_cyclic 2742 * mode will write it back later 2743 */ 2744 mapping->writeback_index = mpd->first_page; 2745 2746 out_writepages: 2747 trace_ext4_writepages_result(inode, wbc, ret, 2748 nr_to_write - wbc->nr_to_write); 2749 return ret; 2750 } 2751 2752 static int ext4_writepages(struct address_space *mapping, 2753 struct writeback_control *wbc) 2754 { 2755 struct super_block *sb = mapping->host->i_sb; 2756 struct mpage_da_data mpd = { 2757 .inode = mapping->host, 2758 .wbc = wbc, 2759 .can_map = 1, 2760 }; 2761 int ret; 2762 int alloc_ctx; 2763 2764 if (unlikely(ext4_forced_shutdown(sb))) 2765 return -EIO; 2766 2767 alloc_ctx = ext4_writepages_down_read(sb); 2768 ret = ext4_do_writepages(&mpd); 2769 /* 2770 * For data=journal writeback we could have come across pages marked 2771 * for delayed dirtying (PageChecked) which were just added to the 2772 * running transaction. Try once more to get them to stable storage. 2773 */ 2774 if (!ret && mpd.journalled_more_data) 2775 ret = ext4_do_writepages(&mpd); 2776 ext4_writepages_up_read(sb, alloc_ctx); 2777 2778 return ret; 2779 } 2780 2781 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2782 { 2783 struct writeback_control wbc = { 2784 .sync_mode = WB_SYNC_ALL, 2785 .nr_to_write = LONG_MAX, 2786 .range_start = jinode->i_dirty_start, 2787 .range_end = jinode->i_dirty_end, 2788 }; 2789 struct mpage_da_data mpd = { 2790 .inode = jinode->i_vfs_inode, 2791 .wbc = &wbc, 2792 .can_map = 0, 2793 }; 2794 return ext4_do_writepages(&mpd); 2795 } 2796 2797 static int ext4_dax_writepages(struct address_space *mapping, 2798 struct writeback_control *wbc) 2799 { 2800 int ret; 2801 long nr_to_write = wbc->nr_to_write; 2802 struct inode *inode = mapping->host; 2803 int alloc_ctx; 2804 2805 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2806 return -EIO; 2807 2808 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2809 trace_ext4_writepages(inode, wbc); 2810 2811 ret = dax_writeback_mapping_range(mapping, 2812 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2813 trace_ext4_writepages_result(inode, wbc, ret, 2814 nr_to_write - wbc->nr_to_write); 2815 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2816 return ret; 2817 } 2818 2819 static int ext4_nonda_switch(struct super_block *sb) 2820 { 2821 s64 free_clusters, dirty_clusters; 2822 struct ext4_sb_info *sbi = EXT4_SB(sb); 2823 2824 /* 2825 * switch to non delalloc mode if we are running low 2826 * on free block. The free block accounting via percpu 2827 * counters can get slightly wrong with percpu_counter_batch getting 2828 * accumulated on each CPU without updating global counters 2829 * Delalloc need an accurate free block accounting. So switch 2830 * to non delalloc when we are near to error range. 2831 */ 2832 free_clusters = 2833 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2834 dirty_clusters = 2835 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2836 /* 2837 * Start pushing delalloc when 1/2 of free blocks are dirty. 2838 */ 2839 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2840 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2841 2842 if (2 * free_clusters < 3 * dirty_clusters || 2843 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2844 /* 2845 * free block count is less than 150% of dirty blocks 2846 * or free blocks is less than watermark 2847 */ 2848 return 1; 2849 } 2850 return 0; 2851 } 2852 2853 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2854 loff_t pos, unsigned len, 2855 struct page **pagep, void **fsdata) 2856 { 2857 int ret, retries = 0; 2858 struct folio *folio; 2859 pgoff_t index; 2860 struct inode *inode = mapping->host; 2861 2862 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2863 return -EIO; 2864 2865 index = pos >> PAGE_SHIFT; 2866 2867 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2868 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2869 return ext4_write_begin(file, mapping, pos, 2870 len, pagep, fsdata); 2871 } 2872 *fsdata = (void *)0; 2873 trace_ext4_da_write_begin(inode, pos, len); 2874 2875 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2876 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2877 pagep, fsdata); 2878 if (ret < 0) 2879 return ret; 2880 if (ret == 1) 2881 return 0; 2882 } 2883 2884 retry: 2885 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2886 mapping_gfp_mask(mapping)); 2887 if (IS_ERR(folio)) 2888 return PTR_ERR(folio); 2889 2890 #ifdef CONFIG_FS_ENCRYPTION 2891 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2892 #else 2893 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2894 #endif 2895 if (ret < 0) { 2896 folio_unlock(folio); 2897 folio_put(folio); 2898 /* 2899 * block_write_begin may have instantiated a few blocks 2900 * outside i_size. Trim these off again. Don't need 2901 * i_size_read because we hold inode lock. 2902 */ 2903 if (pos + len > inode->i_size) 2904 ext4_truncate_failed_write(inode); 2905 2906 if (ret == -ENOSPC && 2907 ext4_should_retry_alloc(inode->i_sb, &retries)) 2908 goto retry; 2909 return ret; 2910 } 2911 2912 *pagep = &folio->page; 2913 return ret; 2914 } 2915 2916 /* 2917 * Check if we should update i_disksize 2918 * when write to the end of file but not require block allocation 2919 */ 2920 static int ext4_da_should_update_i_disksize(struct folio *folio, 2921 unsigned long offset) 2922 { 2923 struct buffer_head *bh; 2924 struct inode *inode = folio->mapping->host; 2925 unsigned int idx; 2926 int i; 2927 2928 bh = folio_buffers(folio); 2929 idx = offset >> inode->i_blkbits; 2930 2931 for (i = 0; i < idx; i++) 2932 bh = bh->b_this_page; 2933 2934 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2935 return 0; 2936 return 1; 2937 } 2938 2939 static int ext4_da_do_write_end(struct address_space *mapping, 2940 loff_t pos, unsigned len, unsigned copied, 2941 struct folio *folio) 2942 { 2943 struct inode *inode = mapping->host; 2944 loff_t old_size = inode->i_size; 2945 bool disksize_changed = false; 2946 loff_t new_i_size; 2947 2948 /* 2949 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2950 * flag, which all that's needed to trigger page writeback. 2951 */ 2952 copied = block_write_end(NULL, mapping, pos, len, copied, 2953 &folio->page, NULL); 2954 new_i_size = pos + copied; 2955 2956 /* 2957 * It's important to update i_size while still holding folio lock, 2958 * because folio writeout could otherwise come in and zero beyond 2959 * i_size. 2960 * 2961 * Since we are holding inode lock, we are sure i_disksize <= 2962 * i_size. We also know that if i_disksize < i_size, there are 2963 * delalloc writes pending in the range up to i_size. If the end of 2964 * the current write is <= i_size, there's no need to touch 2965 * i_disksize since writeback will push i_disksize up to i_size 2966 * eventually. If the end of the current write is > i_size and 2967 * inside an allocated block which ext4_da_should_update_i_disksize() 2968 * checked, we need to update i_disksize here as certain 2969 * ext4_writepages() paths not allocating blocks and update i_disksize. 2970 */ 2971 if (new_i_size > inode->i_size) { 2972 unsigned long end; 2973 2974 i_size_write(inode, new_i_size); 2975 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2976 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 2977 ext4_update_i_disksize(inode, new_i_size); 2978 disksize_changed = true; 2979 } 2980 } 2981 2982 folio_unlock(folio); 2983 folio_put(folio); 2984 2985 if (old_size < pos) 2986 pagecache_isize_extended(inode, old_size, pos); 2987 2988 if (disksize_changed) { 2989 handle_t *handle; 2990 2991 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 2992 if (IS_ERR(handle)) 2993 return PTR_ERR(handle); 2994 ext4_mark_inode_dirty(handle, inode); 2995 ext4_journal_stop(handle); 2996 } 2997 2998 return copied; 2999 } 3000 3001 static int ext4_da_write_end(struct file *file, 3002 struct address_space *mapping, 3003 loff_t pos, unsigned len, unsigned copied, 3004 struct page *page, void *fsdata) 3005 { 3006 struct inode *inode = mapping->host; 3007 int write_mode = (int)(unsigned long)fsdata; 3008 struct folio *folio = page_folio(page); 3009 3010 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3011 return ext4_write_end(file, mapping, pos, 3012 len, copied, &folio->page, fsdata); 3013 3014 trace_ext4_da_write_end(inode, pos, len, copied); 3015 3016 if (write_mode != CONVERT_INLINE_DATA && 3017 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3018 ext4_has_inline_data(inode)) 3019 return ext4_write_inline_data_end(inode, pos, len, copied, 3020 folio); 3021 3022 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3023 copied = 0; 3024 3025 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3026 } 3027 3028 /* 3029 * Force all delayed allocation blocks to be allocated for a given inode. 3030 */ 3031 int ext4_alloc_da_blocks(struct inode *inode) 3032 { 3033 trace_ext4_alloc_da_blocks(inode); 3034 3035 if (!EXT4_I(inode)->i_reserved_data_blocks) 3036 return 0; 3037 3038 /* 3039 * We do something simple for now. The filemap_flush() will 3040 * also start triggering a write of the data blocks, which is 3041 * not strictly speaking necessary (and for users of 3042 * laptop_mode, not even desirable). However, to do otherwise 3043 * would require replicating code paths in: 3044 * 3045 * ext4_writepages() -> 3046 * write_cache_pages() ---> (via passed in callback function) 3047 * __mpage_da_writepage() --> 3048 * mpage_add_bh_to_extent() 3049 * mpage_da_map_blocks() 3050 * 3051 * The problem is that write_cache_pages(), located in 3052 * mm/page-writeback.c, marks pages clean in preparation for 3053 * doing I/O, which is not desirable if we're not planning on 3054 * doing I/O at all. 3055 * 3056 * We could call write_cache_pages(), and then redirty all of 3057 * the pages by calling redirty_page_for_writepage() but that 3058 * would be ugly in the extreme. So instead we would need to 3059 * replicate parts of the code in the above functions, 3060 * simplifying them because we wouldn't actually intend to 3061 * write out the pages, but rather only collect contiguous 3062 * logical block extents, call the multi-block allocator, and 3063 * then update the buffer heads with the block allocations. 3064 * 3065 * For now, though, we'll cheat by calling filemap_flush(), 3066 * which will map the blocks, and start the I/O, but not 3067 * actually wait for the I/O to complete. 3068 */ 3069 return filemap_flush(inode->i_mapping); 3070 } 3071 3072 /* 3073 * bmap() is special. It gets used by applications such as lilo and by 3074 * the swapper to find the on-disk block of a specific piece of data. 3075 * 3076 * Naturally, this is dangerous if the block concerned is still in the 3077 * journal. If somebody makes a swapfile on an ext4 data-journaling 3078 * filesystem and enables swap, then they may get a nasty shock when the 3079 * data getting swapped to that swapfile suddenly gets overwritten by 3080 * the original zero's written out previously to the journal and 3081 * awaiting writeback in the kernel's buffer cache. 3082 * 3083 * So, if we see any bmap calls here on a modified, data-journaled file, 3084 * take extra steps to flush any blocks which might be in the cache. 3085 */ 3086 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3087 { 3088 struct inode *inode = mapping->host; 3089 sector_t ret = 0; 3090 3091 inode_lock_shared(inode); 3092 /* 3093 * We can get here for an inline file via the FIBMAP ioctl 3094 */ 3095 if (ext4_has_inline_data(inode)) 3096 goto out; 3097 3098 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3099 (test_opt(inode->i_sb, DELALLOC) || 3100 ext4_should_journal_data(inode))) { 3101 /* 3102 * With delalloc or journalled data we want to sync the file so 3103 * that we can make sure we allocate blocks for file and data 3104 * is in place for the user to see it 3105 */ 3106 filemap_write_and_wait(mapping); 3107 } 3108 3109 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3110 3111 out: 3112 inode_unlock_shared(inode); 3113 return ret; 3114 } 3115 3116 static int ext4_read_folio(struct file *file, struct folio *folio) 3117 { 3118 int ret = -EAGAIN; 3119 struct inode *inode = folio->mapping->host; 3120 3121 trace_ext4_read_folio(inode, folio); 3122 3123 if (ext4_has_inline_data(inode)) 3124 ret = ext4_readpage_inline(inode, folio); 3125 3126 if (ret == -EAGAIN) 3127 return ext4_mpage_readpages(inode, NULL, folio); 3128 3129 return ret; 3130 } 3131 3132 static void ext4_readahead(struct readahead_control *rac) 3133 { 3134 struct inode *inode = rac->mapping->host; 3135 3136 /* If the file has inline data, no need to do readahead. */ 3137 if (ext4_has_inline_data(inode)) 3138 return; 3139 3140 ext4_mpage_readpages(inode, rac, NULL); 3141 } 3142 3143 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3144 size_t length) 3145 { 3146 trace_ext4_invalidate_folio(folio, offset, length); 3147 3148 /* No journalling happens on data buffers when this function is used */ 3149 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3150 3151 block_invalidate_folio(folio, offset, length); 3152 } 3153 3154 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3155 size_t offset, size_t length) 3156 { 3157 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3158 3159 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3160 3161 /* 3162 * If it's a full truncate we just forget about the pending dirtying 3163 */ 3164 if (offset == 0 && length == folio_size(folio)) 3165 folio_clear_checked(folio); 3166 3167 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3168 } 3169 3170 /* Wrapper for aops... */ 3171 static void ext4_journalled_invalidate_folio(struct folio *folio, 3172 size_t offset, 3173 size_t length) 3174 { 3175 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3176 } 3177 3178 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3179 { 3180 struct inode *inode = folio->mapping->host; 3181 journal_t *journal = EXT4_JOURNAL(inode); 3182 3183 trace_ext4_release_folio(inode, folio); 3184 3185 /* Page has dirty journalled data -> cannot release */ 3186 if (folio_test_checked(folio)) 3187 return false; 3188 if (journal) 3189 return jbd2_journal_try_to_free_buffers(journal, folio); 3190 else 3191 return try_to_free_buffers(folio); 3192 } 3193 3194 static bool ext4_inode_datasync_dirty(struct inode *inode) 3195 { 3196 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3197 3198 if (journal) { 3199 if (jbd2_transaction_committed(journal, 3200 EXT4_I(inode)->i_datasync_tid)) 3201 return false; 3202 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3203 return !list_empty(&EXT4_I(inode)->i_fc_list); 3204 return true; 3205 } 3206 3207 /* Any metadata buffers to write? */ 3208 if (!list_empty(&inode->i_mapping->i_private_list)) 3209 return true; 3210 return inode->i_state & I_DIRTY_DATASYNC; 3211 } 3212 3213 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3214 struct ext4_map_blocks *map, loff_t offset, 3215 loff_t length, unsigned int flags) 3216 { 3217 u8 blkbits = inode->i_blkbits; 3218 3219 /* 3220 * Writes that span EOF might trigger an I/O size update on completion, 3221 * so consider them to be dirty for the purpose of O_DSYNC, even if 3222 * there is no other metadata changes being made or are pending. 3223 */ 3224 iomap->flags = 0; 3225 if (ext4_inode_datasync_dirty(inode) || 3226 offset + length > i_size_read(inode)) 3227 iomap->flags |= IOMAP_F_DIRTY; 3228 3229 if (map->m_flags & EXT4_MAP_NEW) 3230 iomap->flags |= IOMAP_F_NEW; 3231 3232 if (flags & IOMAP_DAX) 3233 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3234 else 3235 iomap->bdev = inode->i_sb->s_bdev; 3236 iomap->offset = (u64) map->m_lblk << blkbits; 3237 iomap->length = (u64) map->m_len << blkbits; 3238 3239 if ((map->m_flags & EXT4_MAP_MAPPED) && 3240 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3241 iomap->flags |= IOMAP_F_MERGED; 3242 3243 /* 3244 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3245 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3246 * set. In order for any allocated unwritten extents to be converted 3247 * into written extents correctly within the ->end_io() handler, we 3248 * need to ensure that the iomap->type is set appropriately. Hence, the 3249 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3250 * been set first. 3251 */ 3252 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3253 iomap->type = IOMAP_UNWRITTEN; 3254 iomap->addr = (u64) map->m_pblk << blkbits; 3255 if (flags & IOMAP_DAX) 3256 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3257 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3258 iomap->type = IOMAP_MAPPED; 3259 iomap->addr = (u64) map->m_pblk << blkbits; 3260 if (flags & IOMAP_DAX) 3261 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3262 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3263 iomap->type = IOMAP_DELALLOC; 3264 iomap->addr = IOMAP_NULL_ADDR; 3265 } else { 3266 iomap->type = IOMAP_HOLE; 3267 iomap->addr = IOMAP_NULL_ADDR; 3268 } 3269 } 3270 3271 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3272 unsigned int flags) 3273 { 3274 handle_t *handle; 3275 u8 blkbits = inode->i_blkbits; 3276 int ret, dio_credits, m_flags = 0, retries = 0; 3277 3278 /* 3279 * Trim the mapping request to the maximum value that we can map at 3280 * once for direct I/O. 3281 */ 3282 if (map->m_len > DIO_MAX_BLOCKS) 3283 map->m_len = DIO_MAX_BLOCKS; 3284 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3285 3286 retry: 3287 /* 3288 * Either we allocate blocks and then don't get an unwritten extent, so 3289 * in that case we have reserved enough credits. Or, the blocks are 3290 * already allocated and unwritten. In that case, the extent conversion 3291 * fits into the credits as well. 3292 */ 3293 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3294 if (IS_ERR(handle)) 3295 return PTR_ERR(handle); 3296 3297 /* 3298 * DAX and direct I/O are the only two operations that are currently 3299 * supported with IOMAP_WRITE. 3300 */ 3301 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3302 if (flags & IOMAP_DAX) 3303 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3304 /* 3305 * We use i_size instead of i_disksize here because delalloc writeback 3306 * can complete at any point during the I/O and subsequently push the 3307 * i_disksize out to i_size. This could be beyond where direct I/O is 3308 * happening and thus expose allocated blocks to direct I/O reads. 3309 */ 3310 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3311 m_flags = EXT4_GET_BLOCKS_CREATE; 3312 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3313 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3314 3315 ret = ext4_map_blocks(handle, inode, map, m_flags); 3316 3317 /* 3318 * We cannot fill holes in indirect tree based inodes as that could 3319 * expose stale data in the case of a crash. Use the magic error code 3320 * to fallback to buffered I/O. 3321 */ 3322 if (!m_flags && !ret) 3323 ret = -ENOTBLK; 3324 3325 ext4_journal_stop(handle); 3326 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3327 goto retry; 3328 3329 return ret; 3330 } 3331 3332 3333 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3334 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3335 { 3336 int ret; 3337 struct ext4_map_blocks map; 3338 u8 blkbits = inode->i_blkbits; 3339 3340 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3341 return -EINVAL; 3342 3343 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3344 return -ERANGE; 3345 3346 /* 3347 * Calculate the first and last logical blocks respectively. 3348 */ 3349 map.m_lblk = offset >> blkbits; 3350 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3351 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3352 3353 if (flags & IOMAP_WRITE) { 3354 /* 3355 * We check here if the blocks are already allocated, then we 3356 * don't need to start a journal txn and we can directly return 3357 * the mapping information. This could boost performance 3358 * especially in multi-threaded overwrite requests. 3359 */ 3360 if (offset + length <= i_size_read(inode)) { 3361 ret = ext4_map_blocks(NULL, inode, &map, 0); 3362 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3363 goto out; 3364 } 3365 ret = ext4_iomap_alloc(inode, &map, flags); 3366 } else { 3367 ret = ext4_map_blocks(NULL, inode, &map, 0); 3368 } 3369 3370 if (ret < 0) 3371 return ret; 3372 out: 3373 /* 3374 * When inline encryption is enabled, sometimes I/O to an encrypted file 3375 * has to be broken up to guarantee DUN contiguity. Handle this by 3376 * limiting the length of the mapping returned. 3377 */ 3378 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3379 3380 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3381 3382 return 0; 3383 } 3384 3385 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3386 loff_t length, unsigned flags, struct iomap *iomap, 3387 struct iomap *srcmap) 3388 { 3389 int ret; 3390 3391 /* 3392 * Even for writes we don't need to allocate blocks, so just pretend 3393 * we are reading to save overhead of starting a transaction. 3394 */ 3395 flags &= ~IOMAP_WRITE; 3396 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3397 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3398 return ret; 3399 } 3400 3401 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3402 ssize_t written, unsigned flags, struct iomap *iomap) 3403 { 3404 /* 3405 * Check to see whether an error occurred while writing out the data to 3406 * the allocated blocks. If so, return the magic error code so that we 3407 * fallback to buffered I/O and attempt to complete the remainder of 3408 * the I/O. Any blocks that may have been allocated in preparation for 3409 * the direct I/O will be reused during buffered I/O. 3410 */ 3411 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3412 return -ENOTBLK; 3413 3414 return 0; 3415 } 3416 3417 const struct iomap_ops ext4_iomap_ops = { 3418 .iomap_begin = ext4_iomap_begin, 3419 .iomap_end = ext4_iomap_end, 3420 }; 3421 3422 const struct iomap_ops ext4_iomap_overwrite_ops = { 3423 .iomap_begin = ext4_iomap_overwrite_begin, 3424 .iomap_end = ext4_iomap_end, 3425 }; 3426 3427 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3428 loff_t length, unsigned int flags, 3429 struct iomap *iomap, struct iomap *srcmap) 3430 { 3431 int ret; 3432 struct ext4_map_blocks map; 3433 u8 blkbits = inode->i_blkbits; 3434 3435 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3436 return -EINVAL; 3437 3438 if (ext4_has_inline_data(inode)) { 3439 ret = ext4_inline_data_iomap(inode, iomap); 3440 if (ret != -EAGAIN) { 3441 if (ret == 0 && offset >= iomap->length) 3442 ret = -ENOENT; 3443 return ret; 3444 } 3445 } 3446 3447 /* 3448 * Calculate the first and last logical block respectively. 3449 */ 3450 map.m_lblk = offset >> blkbits; 3451 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3452 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3453 3454 /* 3455 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3456 * So handle it here itself instead of querying ext4_map_blocks(). 3457 * Since ext4_map_blocks() will warn about it and will return 3458 * -EIO error. 3459 */ 3460 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3461 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3462 3463 if (offset >= sbi->s_bitmap_maxbytes) { 3464 map.m_flags = 0; 3465 goto set_iomap; 3466 } 3467 } 3468 3469 ret = ext4_map_blocks(NULL, inode, &map, 0); 3470 if (ret < 0) 3471 return ret; 3472 set_iomap: 3473 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3474 3475 return 0; 3476 } 3477 3478 const struct iomap_ops ext4_iomap_report_ops = { 3479 .iomap_begin = ext4_iomap_begin_report, 3480 }; 3481 3482 /* 3483 * For data=journal mode, folio should be marked dirty only when it was 3484 * writeably mapped. When that happens, it was already attached to the 3485 * transaction and marked as jbddirty (we take care of this in 3486 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3487 * so we should have nothing to do here, except for the case when someone 3488 * had the page pinned and dirtied the page through this pin (e.g. by doing 3489 * direct IO to it). In that case we'd need to attach buffers here to the 3490 * transaction but we cannot due to lock ordering. We cannot just dirty the 3491 * folio and leave attached buffers clean, because the buffers' dirty state is 3492 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3493 * the journalling code will explode. So what we do is to mark the folio 3494 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3495 * to the transaction appropriately. 3496 */ 3497 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3498 struct folio *folio) 3499 { 3500 WARN_ON_ONCE(!folio_buffers(folio)); 3501 if (folio_maybe_dma_pinned(folio)) 3502 folio_set_checked(folio); 3503 return filemap_dirty_folio(mapping, folio); 3504 } 3505 3506 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3507 { 3508 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3509 WARN_ON_ONCE(!folio_buffers(folio)); 3510 return block_dirty_folio(mapping, folio); 3511 } 3512 3513 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3514 struct file *file, sector_t *span) 3515 { 3516 return iomap_swapfile_activate(sis, file, span, 3517 &ext4_iomap_report_ops); 3518 } 3519 3520 static const struct address_space_operations ext4_aops = { 3521 .read_folio = ext4_read_folio, 3522 .readahead = ext4_readahead, 3523 .writepages = ext4_writepages, 3524 .write_begin = ext4_write_begin, 3525 .write_end = ext4_write_end, 3526 .dirty_folio = ext4_dirty_folio, 3527 .bmap = ext4_bmap, 3528 .invalidate_folio = ext4_invalidate_folio, 3529 .release_folio = ext4_release_folio, 3530 .migrate_folio = buffer_migrate_folio, 3531 .is_partially_uptodate = block_is_partially_uptodate, 3532 .error_remove_folio = generic_error_remove_folio, 3533 .swap_activate = ext4_iomap_swap_activate, 3534 }; 3535 3536 static const struct address_space_operations ext4_journalled_aops = { 3537 .read_folio = ext4_read_folio, 3538 .readahead = ext4_readahead, 3539 .writepages = ext4_writepages, 3540 .write_begin = ext4_write_begin, 3541 .write_end = ext4_journalled_write_end, 3542 .dirty_folio = ext4_journalled_dirty_folio, 3543 .bmap = ext4_bmap, 3544 .invalidate_folio = ext4_journalled_invalidate_folio, 3545 .release_folio = ext4_release_folio, 3546 .migrate_folio = buffer_migrate_folio_norefs, 3547 .is_partially_uptodate = block_is_partially_uptodate, 3548 .error_remove_folio = generic_error_remove_folio, 3549 .swap_activate = ext4_iomap_swap_activate, 3550 }; 3551 3552 static const struct address_space_operations ext4_da_aops = { 3553 .read_folio = ext4_read_folio, 3554 .readahead = ext4_readahead, 3555 .writepages = ext4_writepages, 3556 .write_begin = ext4_da_write_begin, 3557 .write_end = ext4_da_write_end, 3558 .dirty_folio = ext4_dirty_folio, 3559 .bmap = ext4_bmap, 3560 .invalidate_folio = ext4_invalidate_folio, 3561 .release_folio = ext4_release_folio, 3562 .migrate_folio = buffer_migrate_folio, 3563 .is_partially_uptodate = block_is_partially_uptodate, 3564 .error_remove_folio = generic_error_remove_folio, 3565 .swap_activate = ext4_iomap_swap_activate, 3566 }; 3567 3568 static const struct address_space_operations ext4_dax_aops = { 3569 .writepages = ext4_dax_writepages, 3570 .dirty_folio = noop_dirty_folio, 3571 .bmap = ext4_bmap, 3572 .swap_activate = ext4_iomap_swap_activate, 3573 }; 3574 3575 void ext4_set_aops(struct inode *inode) 3576 { 3577 switch (ext4_inode_journal_mode(inode)) { 3578 case EXT4_INODE_ORDERED_DATA_MODE: 3579 case EXT4_INODE_WRITEBACK_DATA_MODE: 3580 break; 3581 case EXT4_INODE_JOURNAL_DATA_MODE: 3582 inode->i_mapping->a_ops = &ext4_journalled_aops; 3583 return; 3584 default: 3585 BUG(); 3586 } 3587 if (IS_DAX(inode)) 3588 inode->i_mapping->a_ops = &ext4_dax_aops; 3589 else if (test_opt(inode->i_sb, DELALLOC)) 3590 inode->i_mapping->a_ops = &ext4_da_aops; 3591 else 3592 inode->i_mapping->a_ops = &ext4_aops; 3593 } 3594 3595 /* 3596 * Here we can't skip an unwritten buffer even though it usually reads zero 3597 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3598 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3599 * racing writeback can come later and flush the stale pagecache to disk. 3600 */ 3601 static int __ext4_block_zero_page_range(handle_t *handle, 3602 struct address_space *mapping, loff_t from, loff_t length) 3603 { 3604 ext4_fsblk_t index = from >> PAGE_SHIFT; 3605 unsigned offset = from & (PAGE_SIZE-1); 3606 unsigned blocksize, pos; 3607 ext4_lblk_t iblock; 3608 struct inode *inode = mapping->host; 3609 struct buffer_head *bh; 3610 struct folio *folio; 3611 int err = 0; 3612 3613 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3614 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3615 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3616 if (IS_ERR(folio)) 3617 return PTR_ERR(folio); 3618 3619 blocksize = inode->i_sb->s_blocksize; 3620 3621 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3622 3623 bh = folio_buffers(folio); 3624 if (!bh) 3625 bh = create_empty_buffers(folio, blocksize, 0); 3626 3627 /* Find the buffer that contains "offset" */ 3628 pos = blocksize; 3629 while (offset >= pos) { 3630 bh = bh->b_this_page; 3631 iblock++; 3632 pos += blocksize; 3633 } 3634 if (buffer_freed(bh)) { 3635 BUFFER_TRACE(bh, "freed: skip"); 3636 goto unlock; 3637 } 3638 if (!buffer_mapped(bh)) { 3639 BUFFER_TRACE(bh, "unmapped"); 3640 ext4_get_block(inode, iblock, bh, 0); 3641 /* unmapped? It's a hole - nothing to do */ 3642 if (!buffer_mapped(bh)) { 3643 BUFFER_TRACE(bh, "still unmapped"); 3644 goto unlock; 3645 } 3646 } 3647 3648 /* Ok, it's mapped. Make sure it's up-to-date */ 3649 if (folio_test_uptodate(folio)) 3650 set_buffer_uptodate(bh); 3651 3652 if (!buffer_uptodate(bh)) { 3653 err = ext4_read_bh_lock(bh, 0, true); 3654 if (err) 3655 goto unlock; 3656 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3657 /* We expect the key to be set. */ 3658 BUG_ON(!fscrypt_has_encryption_key(inode)); 3659 err = fscrypt_decrypt_pagecache_blocks(folio, 3660 blocksize, 3661 bh_offset(bh)); 3662 if (err) { 3663 clear_buffer_uptodate(bh); 3664 goto unlock; 3665 } 3666 } 3667 } 3668 if (ext4_should_journal_data(inode)) { 3669 BUFFER_TRACE(bh, "get write access"); 3670 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3671 EXT4_JTR_NONE); 3672 if (err) 3673 goto unlock; 3674 } 3675 folio_zero_range(folio, offset, length); 3676 BUFFER_TRACE(bh, "zeroed end of block"); 3677 3678 if (ext4_should_journal_data(inode)) { 3679 err = ext4_dirty_journalled_data(handle, bh); 3680 } else { 3681 err = 0; 3682 mark_buffer_dirty(bh); 3683 if (ext4_should_order_data(inode)) 3684 err = ext4_jbd2_inode_add_write(handle, inode, from, 3685 length); 3686 } 3687 3688 unlock: 3689 folio_unlock(folio); 3690 folio_put(folio); 3691 return err; 3692 } 3693 3694 /* 3695 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3696 * starting from file offset 'from'. The range to be zero'd must 3697 * be contained with in one block. If the specified range exceeds 3698 * the end of the block it will be shortened to end of the block 3699 * that corresponds to 'from' 3700 */ 3701 static int ext4_block_zero_page_range(handle_t *handle, 3702 struct address_space *mapping, loff_t from, loff_t length) 3703 { 3704 struct inode *inode = mapping->host; 3705 unsigned offset = from & (PAGE_SIZE-1); 3706 unsigned blocksize = inode->i_sb->s_blocksize; 3707 unsigned max = blocksize - (offset & (blocksize - 1)); 3708 3709 /* 3710 * correct length if it does not fall between 3711 * 'from' and the end of the block 3712 */ 3713 if (length > max || length < 0) 3714 length = max; 3715 3716 if (IS_DAX(inode)) { 3717 return dax_zero_range(inode, from, length, NULL, 3718 &ext4_iomap_ops); 3719 } 3720 return __ext4_block_zero_page_range(handle, mapping, from, length); 3721 } 3722 3723 /* 3724 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3725 * up to the end of the block which corresponds to `from'. 3726 * This required during truncate. We need to physically zero the tail end 3727 * of that block so it doesn't yield old data if the file is later grown. 3728 */ 3729 static int ext4_block_truncate_page(handle_t *handle, 3730 struct address_space *mapping, loff_t from) 3731 { 3732 unsigned offset = from & (PAGE_SIZE-1); 3733 unsigned length; 3734 unsigned blocksize; 3735 struct inode *inode = mapping->host; 3736 3737 /* If we are processing an encrypted inode during orphan list handling */ 3738 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3739 return 0; 3740 3741 blocksize = inode->i_sb->s_blocksize; 3742 length = blocksize - (offset & (blocksize - 1)); 3743 3744 return ext4_block_zero_page_range(handle, mapping, from, length); 3745 } 3746 3747 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3748 loff_t lstart, loff_t length) 3749 { 3750 struct super_block *sb = inode->i_sb; 3751 struct address_space *mapping = inode->i_mapping; 3752 unsigned partial_start, partial_end; 3753 ext4_fsblk_t start, end; 3754 loff_t byte_end = (lstart + length - 1); 3755 int err = 0; 3756 3757 partial_start = lstart & (sb->s_blocksize - 1); 3758 partial_end = byte_end & (sb->s_blocksize - 1); 3759 3760 start = lstart >> sb->s_blocksize_bits; 3761 end = byte_end >> sb->s_blocksize_bits; 3762 3763 /* Handle partial zero within the single block */ 3764 if (start == end && 3765 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3766 err = ext4_block_zero_page_range(handle, mapping, 3767 lstart, length); 3768 return err; 3769 } 3770 /* Handle partial zero out on the start of the range */ 3771 if (partial_start) { 3772 err = ext4_block_zero_page_range(handle, mapping, 3773 lstart, sb->s_blocksize); 3774 if (err) 3775 return err; 3776 } 3777 /* Handle partial zero out on the end of the range */ 3778 if (partial_end != sb->s_blocksize - 1) 3779 err = ext4_block_zero_page_range(handle, mapping, 3780 byte_end - partial_end, 3781 partial_end + 1); 3782 return err; 3783 } 3784 3785 int ext4_can_truncate(struct inode *inode) 3786 { 3787 if (S_ISREG(inode->i_mode)) 3788 return 1; 3789 if (S_ISDIR(inode->i_mode)) 3790 return 1; 3791 if (S_ISLNK(inode->i_mode)) 3792 return !ext4_inode_is_fast_symlink(inode); 3793 return 0; 3794 } 3795 3796 /* 3797 * We have to make sure i_disksize gets properly updated before we truncate 3798 * page cache due to hole punching or zero range. Otherwise i_disksize update 3799 * can get lost as it may have been postponed to submission of writeback but 3800 * that will never happen after we truncate page cache. 3801 */ 3802 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3803 loff_t len) 3804 { 3805 handle_t *handle; 3806 int ret; 3807 3808 loff_t size = i_size_read(inode); 3809 3810 WARN_ON(!inode_is_locked(inode)); 3811 if (offset > size || offset + len < size) 3812 return 0; 3813 3814 if (EXT4_I(inode)->i_disksize >= size) 3815 return 0; 3816 3817 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3818 if (IS_ERR(handle)) 3819 return PTR_ERR(handle); 3820 ext4_update_i_disksize(inode, size); 3821 ret = ext4_mark_inode_dirty(handle, inode); 3822 ext4_journal_stop(handle); 3823 3824 return ret; 3825 } 3826 3827 static void ext4_wait_dax_page(struct inode *inode) 3828 { 3829 filemap_invalidate_unlock(inode->i_mapping); 3830 schedule(); 3831 filemap_invalidate_lock(inode->i_mapping); 3832 } 3833 3834 int ext4_break_layouts(struct inode *inode) 3835 { 3836 struct page *page; 3837 int error; 3838 3839 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3840 return -EINVAL; 3841 3842 do { 3843 page = dax_layout_busy_page(inode->i_mapping); 3844 if (!page) 3845 return 0; 3846 3847 error = ___wait_var_event(&page->_refcount, 3848 atomic_read(&page->_refcount) == 1, 3849 TASK_INTERRUPTIBLE, 0, 0, 3850 ext4_wait_dax_page(inode)); 3851 } while (error == 0); 3852 3853 return error; 3854 } 3855 3856 /* 3857 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3858 * associated with the given offset and length 3859 * 3860 * @inode: File inode 3861 * @offset: The offset where the hole will begin 3862 * @len: The length of the hole 3863 * 3864 * Returns: 0 on success or negative on failure 3865 */ 3866 3867 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3868 { 3869 struct inode *inode = file_inode(file); 3870 struct super_block *sb = inode->i_sb; 3871 ext4_lblk_t first_block, stop_block; 3872 struct address_space *mapping = inode->i_mapping; 3873 loff_t first_block_offset, last_block_offset, max_length; 3874 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3875 handle_t *handle; 3876 unsigned int credits; 3877 int ret = 0, ret2 = 0; 3878 3879 trace_ext4_punch_hole(inode, offset, length, 0); 3880 3881 /* 3882 * Write out all dirty pages to avoid race conditions 3883 * Then release them. 3884 */ 3885 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3886 ret = filemap_write_and_wait_range(mapping, offset, 3887 offset + length - 1); 3888 if (ret) 3889 return ret; 3890 } 3891 3892 inode_lock(inode); 3893 3894 /* No need to punch hole beyond i_size */ 3895 if (offset >= inode->i_size) 3896 goto out_mutex; 3897 3898 /* 3899 * If the hole extends beyond i_size, set the hole 3900 * to end after the page that contains i_size 3901 */ 3902 if (offset + length > inode->i_size) { 3903 length = inode->i_size + 3904 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3905 offset; 3906 } 3907 3908 /* 3909 * For punch hole the length + offset needs to be within one block 3910 * before last range. Adjust the length if it goes beyond that limit. 3911 */ 3912 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3913 if (offset + length > max_length) 3914 length = max_length - offset; 3915 3916 if (offset & (sb->s_blocksize - 1) || 3917 (offset + length) & (sb->s_blocksize - 1)) { 3918 /* 3919 * Attach jinode to inode for jbd2 if we do any zeroing of 3920 * partial block 3921 */ 3922 ret = ext4_inode_attach_jinode(inode); 3923 if (ret < 0) 3924 goto out_mutex; 3925 3926 } 3927 3928 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3929 inode_dio_wait(inode); 3930 3931 ret = file_modified(file); 3932 if (ret) 3933 goto out_mutex; 3934 3935 /* 3936 * Prevent page faults from reinstantiating pages we have released from 3937 * page cache. 3938 */ 3939 filemap_invalidate_lock(mapping); 3940 3941 ret = ext4_break_layouts(inode); 3942 if (ret) 3943 goto out_dio; 3944 3945 first_block_offset = round_up(offset, sb->s_blocksize); 3946 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3947 3948 /* Now release the pages and zero block aligned part of pages*/ 3949 if (last_block_offset > first_block_offset) { 3950 ret = ext4_update_disksize_before_punch(inode, offset, length); 3951 if (ret) 3952 goto out_dio; 3953 truncate_pagecache_range(inode, first_block_offset, 3954 last_block_offset); 3955 } 3956 3957 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3958 credits = ext4_writepage_trans_blocks(inode); 3959 else 3960 credits = ext4_blocks_for_truncate(inode); 3961 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3962 if (IS_ERR(handle)) { 3963 ret = PTR_ERR(handle); 3964 ext4_std_error(sb, ret); 3965 goto out_dio; 3966 } 3967 3968 ret = ext4_zero_partial_blocks(handle, inode, offset, 3969 length); 3970 if (ret) 3971 goto out_stop; 3972 3973 first_block = (offset + sb->s_blocksize - 1) >> 3974 EXT4_BLOCK_SIZE_BITS(sb); 3975 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3976 3977 /* If there are blocks to remove, do it */ 3978 if (stop_block > first_block) { 3979 ext4_lblk_t hole_len = stop_block - first_block; 3980 3981 down_write(&EXT4_I(inode)->i_data_sem); 3982 ext4_discard_preallocations(inode); 3983 3984 ext4_es_remove_extent(inode, first_block, hole_len); 3985 3986 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3987 ret = ext4_ext_remove_space(inode, first_block, 3988 stop_block - 1); 3989 else 3990 ret = ext4_ind_remove_space(handle, inode, first_block, 3991 stop_block); 3992 3993 ext4_es_insert_extent(inode, first_block, hole_len, ~0, 3994 EXTENT_STATUS_HOLE); 3995 up_write(&EXT4_I(inode)->i_data_sem); 3996 } 3997 ext4_fc_track_range(handle, inode, first_block, stop_block); 3998 if (IS_SYNC(inode)) 3999 ext4_handle_sync(handle); 4000 4001 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4002 ret2 = ext4_mark_inode_dirty(handle, inode); 4003 if (unlikely(ret2)) 4004 ret = ret2; 4005 if (ret >= 0) 4006 ext4_update_inode_fsync_trans(handle, inode, 1); 4007 out_stop: 4008 ext4_journal_stop(handle); 4009 out_dio: 4010 filemap_invalidate_unlock(mapping); 4011 out_mutex: 4012 inode_unlock(inode); 4013 return ret; 4014 } 4015 4016 int ext4_inode_attach_jinode(struct inode *inode) 4017 { 4018 struct ext4_inode_info *ei = EXT4_I(inode); 4019 struct jbd2_inode *jinode; 4020 4021 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4022 return 0; 4023 4024 jinode = jbd2_alloc_inode(GFP_KERNEL); 4025 spin_lock(&inode->i_lock); 4026 if (!ei->jinode) { 4027 if (!jinode) { 4028 spin_unlock(&inode->i_lock); 4029 return -ENOMEM; 4030 } 4031 ei->jinode = jinode; 4032 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4033 jinode = NULL; 4034 } 4035 spin_unlock(&inode->i_lock); 4036 if (unlikely(jinode != NULL)) 4037 jbd2_free_inode(jinode); 4038 return 0; 4039 } 4040 4041 /* 4042 * ext4_truncate() 4043 * 4044 * We block out ext4_get_block() block instantiations across the entire 4045 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4046 * simultaneously on behalf of the same inode. 4047 * 4048 * As we work through the truncate and commit bits of it to the journal there 4049 * is one core, guiding principle: the file's tree must always be consistent on 4050 * disk. We must be able to restart the truncate after a crash. 4051 * 4052 * The file's tree may be transiently inconsistent in memory (although it 4053 * probably isn't), but whenever we close off and commit a journal transaction, 4054 * the contents of (the filesystem + the journal) must be consistent and 4055 * restartable. It's pretty simple, really: bottom up, right to left (although 4056 * left-to-right works OK too). 4057 * 4058 * Note that at recovery time, journal replay occurs *before* the restart of 4059 * truncate against the orphan inode list. 4060 * 4061 * The committed inode has the new, desired i_size (which is the same as 4062 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4063 * that this inode's truncate did not complete and it will again call 4064 * ext4_truncate() to have another go. So there will be instantiated blocks 4065 * to the right of the truncation point in a crashed ext4 filesystem. But 4066 * that's fine - as long as they are linked from the inode, the post-crash 4067 * ext4_truncate() run will find them and release them. 4068 */ 4069 int ext4_truncate(struct inode *inode) 4070 { 4071 struct ext4_inode_info *ei = EXT4_I(inode); 4072 unsigned int credits; 4073 int err = 0, err2; 4074 handle_t *handle; 4075 struct address_space *mapping = inode->i_mapping; 4076 4077 /* 4078 * There is a possibility that we're either freeing the inode 4079 * or it's a completely new inode. In those cases we might not 4080 * have i_rwsem locked because it's not necessary. 4081 */ 4082 if (!(inode->i_state & (I_NEW|I_FREEING))) 4083 WARN_ON(!inode_is_locked(inode)); 4084 trace_ext4_truncate_enter(inode); 4085 4086 if (!ext4_can_truncate(inode)) 4087 goto out_trace; 4088 4089 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4090 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4091 4092 if (ext4_has_inline_data(inode)) { 4093 int has_inline = 1; 4094 4095 err = ext4_inline_data_truncate(inode, &has_inline); 4096 if (err || has_inline) 4097 goto out_trace; 4098 } 4099 4100 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4101 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4102 err = ext4_inode_attach_jinode(inode); 4103 if (err) 4104 goto out_trace; 4105 } 4106 4107 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4108 credits = ext4_writepage_trans_blocks(inode); 4109 else 4110 credits = ext4_blocks_for_truncate(inode); 4111 4112 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4113 if (IS_ERR(handle)) { 4114 err = PTR_ERR(handle); 4115 goto out_trace; 4116 } 4117 4118 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4119 ext4_block_truncate_page(handle, mapping, inode->i_size); 4120 4121 /* 4122 * We add the inode to the orphan list, so that if this 4123 * truncate spans multiple transactions, and we crash, we will 4124 * resume the truncate when the filesystem recovers. It also 4125 * marks the inode dirty, to catch the new size. 4126 * 4127 * Implication: the file must always be in a sane, consistent 4128 * truncatable state while each transaction commits. 4129 */ 4130 err = ext4_orphan_add(handle, inode); 4131 if (err) 4132 goto out_stop; 4133 4134 down_write(&EXT4_I(inode)->i_data_sem); 4135 4136 ext4_discard_preallocations(inode); 4137 4138 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4139 err = ext4_ext_truncate(handle, inode); 4140 else 4141 ext4_ind_truncate(handle, inode); 4142 4143 up_write(&ei->i_data_sem); 4144 if (err) 4145 goto out_stop; 4146 4147 if (IS_SYNC(inode)) 4148 ext4_handle_sync(handle); 4149 4150 out_stop: 4151 /* 4152 * If this was a simple ftruncate() and the file will remain alive, 4153 * then we need to clear up the orphan record which we created above. 4154 * However, if this was a real unlink then we were called by 4155 * ext4_evict_inode(), and we allow that function to clean up the 4156 * orphan info for us. 4157 */ 4158 if (inode->i_nlink) 4159 ext4_orphan_del(handle, inode); 4160 4161 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4162 err2 = ext4_mark_inode_dirty(handle, inode); 4163 if (unlikely(err2 && !err)) 4164 err = err2; 4165 ext4_journal_stop(handle); 4166 4167 out_trace: 4168 trace_ext4_truncate_exit(inode); 4169 return err; 4170 } 4171 4172 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4173 { 4174 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4175 return inode_peek_iversion_raw(inode); 4176 else 4177 return inode_peek_iversion(inode); 4178 } 4179 4180 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4181 struct ext4_inode_info *ei) 4182 { 4183 struct inode *inode = &(ei->vfs_inode); 4184 u64 i_blocks = READ_ONCE(inode->i_blocks); 4185 struct super_block *sb = inode->i_sb; 4186 4187 if (i_blocks <= ~0U) { 4188 /* 4189 * i_blocks can be represented in a 32 bit variable 4190 * as multiple of 512 bytes 4191 */ 4192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4193 raw_inode->i_blocks_high = 0; 4194 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4195 return 0; 4196 } 4197 4198 /* 4199 * This should never happen since sb->s_maxbytes should not have 4200 * allowed this, sb->s_maxbytes was set according to the huge_file 4201 * feature in ext4_fill_super(). 4202 */ 4203 if (!ext4_has_feature_huge_file(sb)) 4204 return -EFSCORRUPTED; 4205 4206 if (i_blocks <= 0xffffffffffffULL) { 4207 /* 4208 * i_blocks can be represented in a 48 bit variable 4209 * as multiple of 512 bytes 4210 */ 4211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4213 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4214 } else { 4215 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4216 /* i_block is stored in file system block size */ 4217 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4220 } 4221 return 0; 4222 } 4223 4224 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4225 { 4226 struct ext4_inode_info *ei = EXT4_I(inode); 4227 uid_t i_uid; 4228 gid_t i_gid; 4229 projid_t i_projid; 4230 int block; 4231 int err; 4232 4233 err = ext4_inode_blocks_set(raw_inode, ei); 4234 4235 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4236 i_uid = i_uid_read(inode); 4237 i_gid = i_gid_read(inode); 4238 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4239 if (!(test_opt(inode->i_sb, NO_UID32))) { 4240 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4241 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4242 /* 4243 * Fix up interoperability with old kernels. Otherwise, 4244 * old inodes get re-used with the upper 16 bits of the 4245 * uid/gid intact. 4246 */ 4247 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4248 raw_inode->i_uid_high = 0; 4249 raw_inode->i_gid_high = 0; 4250 } else { 4251 raw_inode->i_uid_high = 4252 cpu_to_le16(high_16_bits(i_uid)); 4253 raw_inode->i_gid_high = 4254 cpu_to_le16(high_16_bits(i_gid)); 4255 } 4256 } else { 4257 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4258 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4259 raw_inode->i_uid_high = 0; 4260 raw_inode->i_gid_high = 0; 4261 } 4262 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4263 4264 EXT4_INODE_SET_CTIME(inode, raw_inode); 4265 EXT4_INODE_SET_MTIME(inode, raw_inode); 4266 EXT4_INODE_SET_ATIME(inode, raw_inode); 4267 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4268 4269 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4270 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4271 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4272 raw_inode->i_file_acl_high = 4273 cpu_to_le16(ei->i_file_acl >> 32); 4274 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4275 ext4_isize_set(raw_inode, ei->i_disksize); 4276 4277 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4278 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4279 if (old_valid_dev(inode->i_rdev)) { 4280 raw_inode->i_block[0] = 4281 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4282 raw_inode->i_block[1] = 0; 4283 } else { 4284 raw_inode->i_block[0] = 0; 4285 raw_inode->i_block[1] = 4286 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4287 raw_inode->i_block[2] = 0; 4288 } 4289 } else if (!ext4_has_inline_data(inode)) { 4290 for (block = 0; block < EXT4_N_BLOCKS; block++) 4291 raw_inode->i_block[block] = ei->i_data[block]; 4292 } 4293 4294 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4295 u64 ivers = ext4_inode_peek_iversion(inode); 4296 4297 raw_inode->i_disk_version = cpu_to_le32(ivers); 4298 if (ei->i_extra_isize) { 4299 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4300 raw_inode->i_version_hi = 4301 cpu_to_le32(ivers >> 32); 4302 raw_inode->i_extra_isize = 4303 cpu_to_le16(ei->i_extra_isize); 4304 } 4305 } 4306 4307 if (i_projid != EXT4_DEF_PROJID && 4308 !ext4_has_feature_project(inode->i_sb)) 4309 err = err ?: -EFSCORRUPTED; 4310 4311 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4312 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4313 raw_inode->i_projid = cpu_to_le32(i_projid); 4314 4315 ext4_inode_csum_set(inode, raw_inode, ei); 4316 return err; 4317 } 4318 4319 /* 4320 * ext4_get_inode_loc returns with an extra refcount against the inode's 4321 * underlying buffer_head on success. If we pass 'inode' and it does not 4322 * have in-inode xattr, we have all inode data in memory that is needed 4323 * to recreate the on-disk version of this inode. 4324 */ 4325 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4326 struct inode *inode, struct ext4_iloc *iloc, 4327 ext4_fsblk_t *ret_block) 4328 { 4329 struct ext4_group_desc *gdp; 4330 struct buffer_head *bh; 4331 ext4_fsblk_t block; 4332 struct blk_plug plug; 4333 int inodes_per_block, inode_offset; 4334 4335 iloc->bh = NULL; 4336 if (ino < EXT4_ROOT_INO || 4337 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4338 return -EFSCORRUPTED; 4339 4340 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4341 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4342 if (!gdp) 4343 return -EIO; 4344 4345 /* 4346 * Figure out the offset within the block group inode table 4347 */ 4348 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4349 inode_offset = ((ino - 1) % 4350 EXT4_INODES_PER_GROUP(sb)); 4351 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4352 4353 block = ext4_inode_table(sb, gdp); 4354 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4355 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4356 ext4_error(sb, "Invalid inode table block %llu in " 4357 "block_group %u", block, iloc->block_group); 4358 return -EFSCORRUPTED; 4359 } 4360 block += (inode_offset / inodes_per_block); 4361 4362 bh = sb_getblk(sb, block); 4363 if (unlikely(!bh)) 4364 return -ENOMEM; 4365 if (ext4_buffer_uptodate(bh)) 4366 goto has_buffer; 4367 4368 lock_buffer(bh); 4369 if (ext4_buffer_uptodate(bh)) { 4370 /* Someone brought it uptodate while we waited */ 4371 unlock_buffer(bh); 4372 goto has_buffer; 4373 } 4374 4375 /* 4376 * If we have all information of the inode in memory and this 4377 * is the only valid inode in the block, we need not read the 4378 * block. 4379 */ 4380 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4381 struct buffer_head *bitmap_bh; 4382 int i, start; 4383 4384 start = inode_offset & ~(inodes_per_block - 1); 4385 4386 /* Is the inode bitmap in cache? */ 4387 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4388 if (unlikely(!bitmap_bh)) 4389 goto make_io; 4390 4391 /* 4392 * If the inode bitmap isn't in cache then the 4393 * optimisation may end up performing two reads instead 4394 * of one, so skip it. 4395 */ 4396 if (!buffer_uptodate(bitmap_bh)) { 4397 brelse(bitmap_bh); 4398 goto make_io; 4399 } 4400 for (i = start; i < start + inodes_per_block; i++) { 4401 if (i == inode_offset) 4402 continue; 4403 if (ext4_test_bit(i, bitmap_bh->b_data)) 4404 break; 4405 } 4406 brelse(bitmap_bh); 4407 if (i == start + inodes_per_block) { 4408 struct ext4_inode *raw_inode = 4409 (struct ext4_inode *) (bh->b_data + iloc->offset); 4410 4411 /* all other inodes are free, so skip I/O */ 4412 memset(bh->b_data, 0, bh->b_size); 4413 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4414 ext4_fill_raw_inode(inode, raw_inode); 4415 set_buffer_uptodate(bh); 4416 unlock_buffer(bh); 4417 goto has_buffer; 4418 } 4419 } 4420 4421 make_io: 4422 /* 4423 * If we need to do any I/O, try to pre-readahead extra 4424 * blocks from the inode table. 4425 */ 4426 blk_start_plug(&plug); 4427 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4428 ext4_fsblk_t b, end, table; 4429 unsigned num; 4430 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4431 4432 table = ext4_inode_table(sb, gdp); 4433 /* s_inode_readahead_blks is always a power of 2 */ 4434 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4435 if (table > b) 4436 b = table; 4437 end = b + ra_blks; 4438 num = EXT4_INODES_PER_GROUP(sb); 4439 if (ext4_has_group_desc_csum(sb)) 4440 num -= ext4_itable_unused_count(sb, gdp); 4441 table += num / inodes_per_block; 4442 if (end > table) 4443 end = table; 4444 while (b <= end) 4445 ext4_sb_breadahead_unmovable(sb, b++); 4446 } 4447 4448 /* 4449 * There are other valid inodes in the buffer, this inode 4450 * has in-inode xattrs, or we don't have this inode in memory. 4451 * Read the block from disk. 4452 */ 4453 trace_ext4_load_inode(sb, ino); 4454 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4455 blk_finish_plug(&plug); 4456 wait_on_buffer(bh); 4457 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4458 if (!buffer_uptodate(bh)) { 4459 if (ret_block) 4460 *ret_block = block; 4461 brelse(bh); 4462 return -EIO; 4463 } 4464 has_buffer: 4465 iloc->bh = bh; 4466 return 0; 4467 } 4468 4469 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4470 struct ext4_iloc *iloc) 4471 { 4472 ext4_fsblk_t err_blk = 0; 4473 int ret; 4474 4475 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4476 &err_blk); 4477 4478 if (ret == -EIO) 4479 ext4_error_inode_block(inode, err_blk, EIO, 4480 "unable to read itable block"); 4481 4482 return ret; 4483 } 4484 4485 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4486 { 4487 ext4_fsblk_t err_blk = 0; 4488 int ret; 4489 4490 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4491 &err_blk); 4492 4493 if (ret == -EIO) 4494 ext4_error_inode_block(inode, err_blk, EIO, 4495 "unable to read itable block"); 4496 4497 return ret; 4498 } 4499 4500 4501 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4502 struct ext4_iloc *iloc) 4503 { 4504 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4505 } 4506 4507 static bool ext4_should_enable_dax(struct inode *inode) 4508 { 4509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4510 4511 if (test_opt2(inode->i_sb, DAX_NEVER)) 4512 return false; 4513 if (!S_ISREG(inode->i_mode)) 4514 return false; 4515 if (ext4_should_journal_data(inode)) 4516 return false; 4517 if (ext4_has_inline_data(inode)) 4518 return false; 4519 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4520 return false; 4521 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4522 return false; 4523 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4524 return false; 4525 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4526 return true; 4527 4528 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4529 } 4530 4531 void ext4_set_inode_flags(struct inode *inode, bool init) 4532 { 4533 unsigned int flags = EXT4_I(inode)->i_flags; 4534 unsigned int new_fl = 0; 4535 4536 WARN_ON_ONCE(IS_DAX(inode) && init); 4537 4538 if (flags & EXT4_SYNC_FL) 4539 new_fl |= S_SYNC; 4540 if (flags & EXT4_APPEND_FL) 4541 new_fl |= S_APPEND; 4542 if (flags & EXT4_IMMUTABLE_FL) 4543 new_fl |= S_IMMUTABLE; 4544 if (flags & EXT4_NOATIME_FL) 4545 new_fl |= S_NOATIME; 4546 if (flags & EXT4_DIRSYNC_FL) 4547 new_fl |= S_DIRSYNC; 4548 4549 /* Because of the way inode_set_flags() works we must preserve S_DAX 4550 * here if already set. */ 4551 new_fl |= (inode->i_flags & S_DAX); 4552 if (init && ext4_should_enable_dax(inode)) 4553 new_fl |= S_DAX; 4554 4555 if (flags & EXT4_ENCRYPT_FL) 4556 new_fl |= S_ENCRYPTED; 4557 if (flags & EXT4_CASEFOLD_FL) 4558 new_fl |= S_CASEFOLD; 4559 if (flags & EXT4_VERITY_FL) 4560 new_fl |= S_VERITY; 4561 inode_set_flags(inode, new_fl, 4562 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4563 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4564 } 4565 4566 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4567 struct ext4_inode_info *ei) 4568 { 4569 blkcnt_t i_blocks ; 4570 struct inode *inode = &(ei->vfs_inode); 4571 struct super_block *sb = inode->i_sb; 4572 4573 if (ext4_has_feature_huge_file(sb)) { 4574 /* we are using combined 48 bit field */ 4575 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4576 le32_to_cpu(raw_inode->i_blocks_lo); 4577 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4578 /* i_blocks represent file system block size */ 4579 return i_blocks << (inode->i_blkbits - 9); 4580 } else { 4581 return i_blocks; 4582 } 4583 } else { 4584 return le32_to_cpu(raw_inode->i_blocks_lo); 4585 } 4586 } 4587 4588 static inline int ext4_iget_extra_inode(struct inode *inode, 4589 struct ext4_inode *raw_inode, 4590 struct ext4_inode_info *ei) 4591 { 4592 __le32 *magic = (void *)raw_inode + 4593 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4594 4595 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4596 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4597 int err; 4598 4599 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4600 err = ext4_find_inline_data_nolock(inode); 4601 if (!err && ext4_has_inline_data(inode)) 4602 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4603 return err; 4604 } else 4605 EXT4_I(inode)->i_inline_off = 0; 4606 return 0; 4607 } 4608 4609 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4610 { 4611 if (!ext4_has_feature_project(inode->i_sb)) 4612 return -EOPNOTSUPP; 4613 *projid = EXT4_I(inode)->i_projid; 4614 return 0; 4615 } 4616 4617 /* 4618 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4619 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4620 * set. 4621 */ 4622 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4623 { 4624 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4625 inode_set_iversion_raw(inode, val); 4626 else 4627 inode_set_iversion_queried(inode, val); 4628 } 4629 4630 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4631 4632 { 4633 if (flags & EXT4_IGET_EA_INODE) { 4634 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4635 return "missing EA_INODE flag"; 4636 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4637 EXT4_I(inode)->i_file_acl) 4638 return "ea_inode with extended attributes"; 4639 } else { 4640 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4641 return "unexpected EA_INODE flag"; 4642 } 4643 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4644 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4645 return NULL; 4646 } 4647 4648 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4649 ext4_iget_flags flags, const char *function, 4650 unsigned int line) 4651 { 4652 struct ext4_iloc iloc; 4653 struct ext4_inode *raw_inode; 4654 struct ext4_inode_info *ei; 4655 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4656 struct inode *inode; 4657 const char *err_str; 4658 journal_t *journal = EXT4_SB(sb)->s_journal; 4659 long ret; 4660 loff_t size; 4661 int block; 4662 uid_t i_uid; 4663 gid_t i_gid; 4664 projid_t i_projid; 4665 4666 if ((!(flags & EXT4_IGET_SPECIAL) && 4667 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4668 ino == le32_to_cpu(es->s_usr_quota_inum) || 4669 ino == le32_to_cpu(es->s_grp_quota_inum) || 4670 ino == le32_to_cpu(es->s_prj_quota_inum) || 4671 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4672 (ino < EXT4_ROOT_INO) || 4673 (ino > le32_to_cpu(es->s_inodes_count))) { 4674 if (flags & EXT4_IGET_HANDLE) 4675 return ERR_PTR(-ESTALE); 4676 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4677 "inode #%lu: comm %s: iget: illegal inode #", 4678 ino, current->comm); 4679 return ERR_PTR(-EFSCORRUPTED); 4680 } 4681 4682 inode = iget_locked(sb, ino); 4683 if (!inode) 4684 return ERR_PTR(-ENOMEM); 4685 if (!(inode->i_state & I_NEW)) { 4686 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4687 ext4_error_inode(inode, function, line, 0, err_str); 4688 iput(inode); 4689 return ERR_PTR(-EFSCORRUPTED); 4690 } 4691 return inode; 4692 } 4693 4694 ei = EXT4_I(inode); 4695 iloc.bh = NULL; 4696 4697 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4698 if (ret < 0) 4699 goto bad_inode; 4700 raw_inode = ext4_raw_inode(&iloc); 4701 4702 if ((flags & EXT4_IGET_HANDLE) && 4703 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4704 ret = -ESTALE; 4705 goto bad_inode; 4706 } 4707 4708 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4709 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4710 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4711 EXT4_INODE_SIZE(inode->i_sb) || 4712 (ei->i_extra_isize & 3)) { 4713 ext4_error_inode(inode, function, line, 0, 4714 "iget: bad extra_isize %u " 4715 "(inode size %u)", 4716 ei->i_extra_isize, 4717 EXT4_INODE_SIZE(inode->i_sb)); 4718 ret = -EFSCORRUPTED; 4719 goto bad_inode; 4720 } 4721 } else 4722 ei->i_extra_isize = 0; 4723 4724 /* Precompute checksum seed for inode metadata */ 4725 if (ext4_has_metadata_csum(sb)) { 4726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4727 __u32 csum; 4728 __le32 inum = cpu_to_le32(inode->i_ino); 4729 __le32 gen = raw_inode->i_generation; 4730 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4731 sizeof(inum)); 4732 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4733 sizeof(gen)); 4734 } 4735 4736 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4737 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4738 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4739 ext4_error_inode_err(inode, function, line, 0, 4740 EFSBADCRC, "iget: checksum invalid"); 4741 ret = -EFSBADCRC; 4742 goto bad_inode; 4743 } 4744 4745 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4746 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4747 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4748 if (ext4_has_feature_project(sb) && 4749 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4750 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4751 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4752 else 4753 i_projid = EXT4_DEF_PROJID; 4754 4755 if (!(test_opt(inode->i_sb, NO_UID32))) { 4756 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4757 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4758 } 4759 i_uid_write(inode, i_uid); 4760 i_gid_write(inode, i_gid); 4761 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4762 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4763 4764 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4765 ei->i_inline_off = 0; 4766 ei->i_dir_start_lookup = 0; 4767 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4768 /* We now have enough fields to check if the inode was active or not. 4769 * This is needed because nfsd might try to access dead inodes 4770 * the test is that same one that e2fsck uses 4771 * NeilBrown 1999oct15 4772 */ 4773 if (inode->i_nlink == 0) { 4774 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4775 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4776 ino != EXT4_BOOT_LOADER_INO) { 4777 /* this inode is deleted or unallocated */ 4778 if (flags & EXT4_IGET_SPECIAL) { 4779 ext4_error_inode(inode, function, line, 0, 4780 "iget: special inode unallocated"); 4781 ret = -EFSCORRUPTED; 4782 } else 4783 ret = -ESTALE; 4784 goto bad_inode; 4785 } 4786 /* The only unlinked inodes we let through here have 4787 * valid i_mode and are being read by the orphan 4788 * recovery code: that's fine, we're about to complete 4789 * the process of deleting those. 4790 * OR it is the EXT4_BOOT_LOADER_INO which is 4791 * not initialized on a new filesystem. */ 4792 } 4793 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4794 ext4_set_inode_flags(inode, true); 4795 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4796 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4797 if (ext4_has_feature_64bit(sb)) 4798 ei->i_file_acl |= 4799 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4800 inode->i_size = ext4_isize(sb, raw_inode); 4801 if ((size = i_size_read(inode)) < 0) { 4802 ext4_error_inode(inode, function, line, 0, 4803 "iget: bad i_size value: %lld", size); 4804 ret = -EFSCORRUPTED; 4805 goto bad_inode; 4806 } 4807 /* 4808 * If dir_index is not enabled but there's dir with INDEX flag set, 4809 * we'd normally treat htree data as empty space. But with metadata 4810 * checksumming that corrupts checksums so forbid that. 4811 */ 4812 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4813 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4814 ext4_error_inode(inode, function, line, 0, 4815 "iget: Dir with htree data on filesystem without dir_index feature."); 4816 ret = -EFSCORRUPTED; 4817 goto bad_inode; 4818 } 4819 ei->i_disksize = inode->i_size; 4820 #ifdef CONFIG_QUOTA 4821 ei->i_reserved_quota = 0; 4822 #endif 4823 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4824 ei->i_block_group = iloc.block_group; 4825 ei->i_last_alloc_group = ~0; 4826 /* 4827 * NOTE! The in-memory inode i_data array is in little-endian order 4828 * even on big-endian machines: we do NOT byteswap the block numbers! 4829 */ 4830 for (block = 0; block < EXT4_N_BLOCKS; block++) 4831 ei->i_data[block] = raw_inode->i_block[block]; 4832 INIT_LIST_HEAD(&ei->i_orphan); 4833 ext4_fc_init_inode(&ei->vfs_inode); 4834 4835 /* 4836 * Set transaction id's of transactions that have to be committed 4837 * to finish f[data]sync. We set them to currently running transaction 4838 * as we cannot be sure that the inode or some of its metadata isn't 4839 * part of the transaction - the inode could have been reclaimed and 4840 * now it is reread from disk. 4841 */ 4842 if (journal) { 4843 transaction_t *transaction; 4844 tid_t tid; 4845 4846 read_lock(&journal->j_state_lock); 4847 if (journal->j_running_transaction) 4848 transaction = journal->j_running_transaction; 4849 else 4850 transaction = journal->j_committing_transaction; 4851 if (transaction) 4852 tid = transaction->t_tid; 4853 else 4854 tid = journal->j_commit_sequence; 4855 read_unlock(&journal->j_state_lock); 4856 ei->i_sync_tid = tid; 4857 ei->i_datasync_tid = tid; 4858 } 4859 4860 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4861 if (ei->i_extra_isize == 0) { 4862 /* The extra space is currently unused. Use it. */ 4863 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4864 ei->i_extra_isize = sizeof(struct ext4_inode) - 4865 EXT4_GOOD_OLD_INODE_SIZE; 4866 } else { 4867 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4868 if (ret) 4869 goto bad_inode; 4870 } 4871 } 4872 4873 EXT4_INODE_GET_CTIME(inode, raw_inode); 4874 EXT4_INODE_GET_ATIME(inode, raw_inode); 4875 EXT4_INODE_GET_MTIME(inode, raw_inode); 4876 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4877 4878 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4879 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4880 4881 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4882 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4883 ivers |= 4884 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4885 } 4886 ext4_inode_set_iversion_queried(inode, ivers); 4887 } 4888 4889 ret = 0; 4890 if (ei->i_file_acl && 4891 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4892 ext4_error_inode(inode, function, line, 0, 4893 "iget: bad extended attribute block %llu", 4894 ei->i_file_acl); 4895 ret = -EFSCORRUPTED; 4896 goto bad_inode; 4897 } else if (!ext4_has_inline_data(inode)) { 4898 /* validate the block references in the inode */ 4899 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4900 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4901 (S_ISLNK(inode->i_mode) && 4902 !ext4_inode_is_fast_symlink(inode)))) { 4903 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4904 ret = ext4_ext_check_inode(inode); 4905 else 4906 ret = ext4_ind_check_inode(inode); 4907 } 4908 } 4909 if (ret) 4910 goto bad_inode; 4911 4912 if (S_ISREG(inode->i_mode)) { 4913 inode->i_op = &ext4_file_inode_operations; 4914 inode->i_fop = &ext4_file_operations; 4915 ext4_set_aops(inode); 4916 } else if (S_ISDIR(inode->i_mode)) { 4917 inode->i_op = &ext4_dir_inode_operations; 4918 inode->i_fop = &ext4_dir_operations; 4919 } else if (S_ISLNK(inode->i_mode)) { 4920 /* VFS does not allow setting these so must be corruption */ 4921 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4922 ext4_error_inode(inode, function, line, 0, 4923 "iget: immutable or append flags " 4924 "not allowed on symlinks"); 4925 ret = -EFSCORRUPTED; 4926 goto bad_inode; 4927 } 4928 if (IS_ENCRYPTED(inode)) { 4929 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4930 } else if (ext4_inode_is_fast_symlink(inode)) { 4931 inode->i_link = (char *)ei->i_data; 4932 inode->i_op = &ext4_fast_symlink_inode_operations; 4933 nd_terminate_link(ei->i_data, inode->i_size, 4934 sizeof(ei->i_data) - 1); 4935 } else { 4936 inode->i_op = &ext4_symlink_inode_operations; 4937 } 4938 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4939 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4940 inode->i_op = &ext4_special_inode_operations; 4941 if (raw_inode->i_block[0]) 4942 init_special_inode(inode, inode->i_mode, 4943 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4944 else 4945 init_special_inode(inode, inode->i_mode, 4946 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4947 } else if (ino == EXT4_BOOT_LOADER_INO) { 4948 make_bad_inode(inode); 4949 } else { 4950 ret = -EFSCORRUPTED; 4951 ext4_error_inode(inode, function, line, 0, 4952 "iget: bogus i_mode (%o)", inode->i_mode); 4953 goto bad_inode; 4954 } 4955 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4956 ext4_error_inode(inode, function, line, 0, 4957 "casefold flag without casefold feature"); 4958 ret = -EFSCORRUPTED; 4959 goto bad_inode; 4960 } 4961 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4962 ext4_error_inode(inode, function, line, 0, err_str); 4963 ret = -EFSCORRUPTED; 4964 goto bad_inode; 4965 } 4966 4967 brelse(iloc.bh); 4968 unlock_new_inode(inode); 4969 return inode; 4970 4971 bad_inode: 4972 brelse(iloc.bh); 4973 iget_failed(inode); 4974 return ERR_PTR(ret); 4975 } 4976 4977 static void __ext4_update_other_inode_time(struct super_block *sb, 4978 unsigned long orig_ino, 4979 unsigned long ino, 4980 struct ext4_inode *raw_inode) 4981 { 4982 struct inode *inode; 4983 4984 inode = find_inode_by_ino_rcu(sb, ino); 4985 if (!inode) 4986 return; 4987 4988 if (!inode_is_dirtytime_only(inode)) 4989 return; 4990 4991 spin_lock(&inode->i_lock); 4992 if (inode_is_dirtytime_only(inode)) { 4993 struct ext4_inode_info *ei = EXT4_I(inode); 4994 4995 inode->i_state &= ~I_DIRTY_TIME; 4996 spin_unlock(&inode->i_lock); 4997 4998 spin_lock(&ei->i_raw_lock); 4999 EXT4_INODE_SET_CTIME(inode, raw_inode); 5000 EXT4_INODE_SET_MTIME(inode, raw_inode); 5001 EXT4_INODE_SET_ATIME(inode, raw_inode); 5002 ext4_inode_csum_set(inode, raw_inode, ei); 5003 spin_unlock(&ei->i_raw_lock); 5004 trace_ext4_other_inode_update_time(inode, orig_ino); 5005 return; 5006 } 5007 spin_unlock(&inode->i_lock); 5008 } 5009 5010 /* 5011 * Opportunistically update the other time fields for other inodes in 5012 * the same inode table block. 5013 */ 5014 static void ext4_update_other_inodes_time(struct super_block *sb, 5015 unsigned long orig_ino, char *buf) 5016 { 5017 unsigned long ino; 5018 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5019 int inode_size = EXT4_INODE_SIZE(sb); 5020 5021 /* 5022 * Calculate the first inode in the inode table block. Inode 5023 * numbers are one-based. That is, the first inode in a block 5024 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5025 */ 5026 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5027 rcu_read_lock(); 5028 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5029 if (ino == orig_ino) 5030 continue; 5031 __ext4_update_other_inode_time(sb, orig_ino, ino, 5032 (struct ext4_inode *)buf); 5033 } 5034 rcu_read_unlock(); 5035 } 5036 5037 /* 5038 * Post the struct inode info into an on-disk inode location in the 5039 * buffer-cache. This gobbles the caller's reference to the 5040 * buffer_head in the inode location struct. 5041 * 5042 * The caller must have write access to iloc->bh. 5043 */ 5044 static int ext4_do_update_inode(handle_t *handle, 5045 struct inode *inode, 5046 struct ext4_iloc *iloc) 5047 { 5048 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5049 struct ext4_inode_info *ei = EXT4_I(inode); 5050 struct buffer_head *bh = iloc->bh; 5051 struct super_block *sb = inode->i_sb; 5052 int err; 5053 int need_datasync = 0, set_large_file = 0; 5054 5055 spin_lock(&ei->i_raw_lock); 5056 5057 /* 5058 * For fields not tracked in the in-memory inode, initialise them 5059 * to zero for new inodes. 5060 */ 5061 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5062 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5063 5064 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5065 need_datasync = 1; 5066 if (ei->i_disksize > 0x7fffffffULL) { 5067 if (!ext4_has_feature_large_file(sb) || 5068 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5069 set_large_file = 1; 5070 } 5071 5072 err = ext4_fill_raw_inode(inode, raw_inode); 5073 spin_unlock(&ei->i_raw_lock); 5074 if (err) { 5075 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5076 goto out_brelse; 5077 } 5078 5079 if (inode->i_sb->s_flags & SB_LAZYTIME) 5080 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5081 bh->b_data); 5082 5083 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5084 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5085 if (err) 5086 goto out_error; 5087 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5088 if (set_large_file) { 5089 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5090 err = ext4_journal_get_write_access(handle, sb, 5091 EXT4_SB(sb)->s_sbh, 5092 EXT4_JTR_NONE); 5093 if (err) 5094 goto out_error; 5095 lock_buffer(EXT4_SB(sb)->s_sbh); 5096 ext4_set_feature_large_file(sb); 5097 ext4_superblock_csum_set(sb); 5098 unlock_buffer(EXT4_SB(sb)->s_sbh); 5099 ext4_handle_sync(handle); 5100 err = ext4_handle_dirty_metadata(handle, NULL, 5101 EXT4_SB(sb)->s_sbh); 5102 } 5103 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5104 out_error: 5105 ext4_std_error(inode->i_sb, err); 5106 out_brelse: 5107 brelse(bh); 5108 return err; 5109 } 5110 5111 /* 5112 * ext4_write_inode() 5113 * 5114 * We are called from a few places: 5115 * 5116 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5117 * Here, there will be no transaction running. We wait for any running 5118 * transaction to commit. 5119 * 5120 * - Within flush work (sys_sync(), kupdate and such). 5121 * We wait on commit, if told to. 5122 * 5123 * - Within iput_final() -> write_inode_now() 5124 * We wait on commit, if told to. 5125 * 5126 * In all cases it is actually safe for us to return without doing anything, 5127 * because the inode has been copied into a raw inode buffer in 5128 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5129 * writeback. 5130 * 5131 * Note that we are absolutely dependent upon all inode dirtiers doing the 5132 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5133 * which we are interested. 5134 * 5135 * It would be a bug for them to not do this. The code: 5136 * 5137 * mark_inode_dirty(inode) 5138 * stuff(); 5139 * inode->i_size = expr; 5140 * 5141 * is in error because write_inode() could occur while `stuff()' is running, 5142 * and the new i_size will be lost. Plus the inode will no longer be on the 5143 * superblock's dirty inode list. 5144 */ 5145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5146 { 5147 int err; 5148 5149 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5150 return 0; 5151 5152 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5153 return -EIO; 5154 5155 if (EXT4_SB(inode->i_sb)->s_journal) { 5156 if (ext4_journal_current_handle()) { 5157 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5158 dump_stack(); 5159 return -EIO; 5160 } 5161 5162 /* 5163 * No need to force transaction in WB_SYNC_NONE mode. Also 5164 * ext4_sync_fs() will force the commit after everything is 5165 * written. 5166 */ 5167 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5168 return 0; 5169 5170 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5171 EXT4_I(inode)->i_sync_tid); 5172 } else { 5173 struct ext4_iloc iloc; 5174 5175 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5176 if (err) 5177 return err; 5178 /* 5179 * sync(2) will flush the whole buffer cache. No need to do 5180 * it here separately for each inode. 5181 */ 5182 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5183 sync_dirty_buffer(iloc.bh); 5184 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5185 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5186 "IO error syncing inode"); 5187 err = -EIO; 5188 } 5189 brelse(iloc.bh); 5190 } 5191 return err; 5192 } 5193 5194 /* 5195 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5196 * buffers that are attached to a folio straddling i_size and are undergoing 5197 * commit. In that case we have to wait for commit to finish and try again. 5198 */ 5199 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5200 { 5201 unsigned offset; 5202 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5203 tid_t commit_tid = 0; 5204 int ret; 5205 5206 offset = inode->i_size & (PAGE_SIZE - 1); 5207 /* 5208 * If the folio is fully truncated, we don't need to wait for any commit 5209 * (and we even should not as __ext4_journalled_invalidate_folio() may 5210 * strip all buffers from the folio but keep the folio dirty which can then 5211 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5212 * buffers). Also we don't need to wait for any commit if all buffers in 5213 * the folio remain valid. This is most beneficial for the common case of 5214 * blocksize == PAGESIZE. 5215 */ 5216 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5217 return; 5218 while (1) { 5219 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5220 inode->i_size >> PAGE_SHIFT); 5221 if (IS_ERR(folio)) 5222 return; 5223 ret = __ext4_journalled_invalidate_folio(folio, offset, 5224 folio_size(folio) - offset); 5225 folio_unlock(folio); 5226 folio_put(folio); 5227 if (ret != -EBUSY) 5228 return; 5229 commit_tid = 0; 5230 read_lock(&journal->j_state_lock); 5231 if (journal->j_committing_transaction) 5232 commit_tid = journal->j_committing_transaction->t_tid; 5233 read_unlock(&journal->j_state_lock); 5234 if (commit_tid) 5235 jbd2_log_wait_commit(journal, commit_tid); 5236 } 5237 } 5238 5239 /* 5240 * ext4_setattr() 5241 * 5242 * Called from notify_change. 5243 * 5244 * We want to trap VFS attempts to truncate the file as soon as 5245 * possible. In particular, we want to make sure that when the VFS 5246 * shrinks i_size, we put the inode on the orphan list and modify 5247 * i_disksize immediately, so that during the subsequent flushing of 5248 * dirty pages and freeing of disk blocks, we can guarantee that any 5249 * commit will leave the blocks being flushed in an unused state on 5250 * disk. (On recovery, the inode will get truncated and the blocks will 5251 * be freed, so we have a strong guarantee that no future commit will 5252 * leave these blocks visible to the user.) 5253 * 5254 * Another thing we have to assure is that if we are in ordered mode 5255 * and inode is still attached to the committing transaction, we must 5256 * we start writeout of all the dirty pages which are being truncated. 5257 * This way we are sure that all the data written in the previous 5258 * transaction are already on disk (truncate waits for pages under 5259 * writeback). 5260 * 5261 * Called with inode->i_rwsem down. 5262 */ 5263 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5264 struct iattr *attr) 5265 { 5266 struct inode *inode = d_inode(dentry); 5267 int error, rc = 0; 5268 int orphan = 0; 5269 const unsigned int ia_valid = attr->ia_valid; 5270 bool inc_ivers = true; 5271 5272 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5273 return -EIO; 5274 5275 if (unlikely(IS_IMMUTABLE(inode))) 5276 return -EPERM; 5277 5278 if (unlikely(IS_APPEND(inode) && 5279 (ia_valid & (ATTR_MODE | ATTR_UID | 5280 ATTR_GID | ATTR_TIMES_SET)))) 5281 return -EPERM; 5282 5283 error = setattr_prepare(idmap, dentry, attr); 5284 if (error) 5285 return error; 5286 5287 error = fscrypt_prepare_setattr(dentry, attr); 5288 if (error) 5289 return error; 5290 5291 error = fsverity_prepare_setattr(dentry, attr); 5292 if (error) 5293 return error; 5294 5295 if (is_quota_modification(idmap, inode, attr)) { 5296 error = dquot_initialize(inode); 5297 if (error) 5298 return error; 5299 } 5300 5301 if (i_uid_needs_update(idmap, attr, inode) || 5302 i_gid_needs_update(idmap, attr, inode)) { 5303 handle_t *handle; 5304 5305 /* (user+group)*(old+new) structure, inode write (sb, 5306 * inode block, ? - but truncate inode update has it) */ 5307 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5308 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5309 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5310 if (IS_ERR(handle)) { 5311 error = PTR_ERR(handle); 5312 goto err_out; 5313 } 5314 5315 /* dquot_transfer() calls back ext4_get_inode_usage() which 5316 * counts xattr inode references. 5317 */ 5318 down_read(&EXT4_I(inode)->xattr_sem); 5319 error = dquot_transfer(idmap, inode, attr); 5320 up_read(&EXT4_I(inode)->xattr_sem); 5321 5322 if (error) { 5323 ext4_journal_stop(handle); 5324 return error; 5325 } 5326 /* Update corresponding info in inode so that everything is in 5327 * one transaction */ 5328 i_uid_update(idmap, attr, inode); 5329 i_gid_update(idmap, attr, inode); 5330 error = ext4_mark_inode_dirty(handle, inode); 5331 ext4_journal_stop(handle); 5332 if (unlikely(error)) { 5333 return error; 5334 } 5335 } 5336 5337 if (attr->ia_valid & ATTR_SIZE) { 5338 handle_t *handle; 5339 loff_t oldsize = inode->i_size; 5340 loff_t old_disksize; 5341 int shrink = (attr->ia_size < inode->i_size); 5342 5343 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5344 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5345 5346 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5347 return -EFBIG; 5348 } 5349 } 5350 if (!S_ISREG(inode->i_mode)) { 5351 return -EINVAL; 5352 } 5353 5354 if (attr->ia_size == inode->i_size) 5355 inc_ivers = false; 5356 5357 if (shrink) { 5358 if (ext4_should_order_data(inode)) { 5359 error = ext4_begin_ordered_truncate(inode, 5360 attr->ia_size); 5361 if (error) 5362 goto err_out; 5363 } 5364 /* 5365 * Blocks are going to be removed from the inode. Wait 5366 * for dio in flight. 5367 */ 5368 inode_dio_wait(inode); 5369 } 5370 5371 filemap_invalidate_lock(inode->i_mapping); 5372 5373 rc = ext4_break_layouts(inode); 5374 if (rc) { 5375 filemap_invalidate_unlock(inode->i_mapping); 5376 goto err_out; 5377 } 5378 5379 if (attr->ia_size != inode->i_size) { 5380 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5381 if (IS_ERR(handle)) { 5382 error = PTR_ERR(handle); 5383 goto out_mmap_sem; 5384 } 5385 if (ext4_handle_valid(handle) && shrink) { 5386 error = ext4_orphan_add(handle, inode); 5387 orphan = 1; 5388 } 5389 /* 5390 * Update c/mtime on truncate up, ext4_truncate() will 5391 * update c/mtime in shrink case below 5392 */ 5393 if (!shrink) 5394 inode_set_mtime_to_ts(inode, 5395 inode_set_ctime_current(inode)); 5396 5397 if (shrink) 5398 ext4_fc_track_range(handle, inode, 5399 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5400 inode->i_sb->s_blocksize_bits, 5401 EXT_MAX_BLOCKS - 1); 5402 else 5403 ext4_fc_track_range( 5404 handle, inode, 5405 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5406 inode->i_sb->s_blocksize_bits, 5407 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5408 inode->i_sb->s_blocksize_bits); 5409 5410 down_write(&EXT4_I(inode)->i_data_sem); 5411 old_disksize = EXT4_I(inode)->i_disksize; 5412 EXT4_I(inode)->i_disksize = attr->ia_size; 5413 rc = ext4_mark_inode_dirty(handle, inode); 5414 if (!error) 5415 error = rc; 5416 /* 5417 * We have to update i_size under i_data_sem together 5418 * with i_disksize to avoid races with writeback code 5419 * running ext4_wb_update_i_disksize(). 5420 */ 5421 if (!error) 5422 i_size_write(inode, attr->ia_size); 5423 else 5424 EXT4_I(inode)->i_disksize = old_disksize; 5425 up_write(&EXT4_I(inode)->i_data_sem); 5426 ext4_journal_stop(handle); 5427 if (error) 5428 goto out_mmap_sem; 5429 if (!shrink) { 5430 pagecache_isize_extended(inode, oldsize, 5431 inode->i_size); 5432 } else if (ext4_should_journal_data(inode)) { 5433 ext4_wait_for_tail_page_commit(inode); 5434 } 5435 } 5436 5437 /* 5438 * Truncate pagecache after we've waited for commit 5439 * in data=journal mode to make pages freeable. 5440 */ 5441 truncate_pagecache(inode, inode->i_size); 5442 /* 5443 * Call ext4_truncate() even if i_size didn't change to 5444 * truncate possible preallocated blocks. 5445 */ 5446 if (attr->ia_size <= oldsize) { 5447 rc = ext4_truncate(inode); 5448 if (rc) 5449 error = rc; 5450 } 5451 out_mmap_sem: 5452 filemap_invalidate_unlock(inode->i_mapping); 5453 } 5454 5455 if (!error) { 5456 if (inc_ivers) 5457 inode_inc_iversion(inode); 5458 setattr_copy(idmap, inode, attr); 5459 mark_inode_dirty(inode); 5460 } 5461 5462 /* 5463 * If the call to ext4_truncate failed to get a transaction handle at 5464 * all, we need to clean up the in-core orphan list manually. 5465 */ 5466 if (orphan && inode->i_nlink) 5467 ext4_orphan_del(NULL, inode); 5468 5469 if (!error && (ia_valid & ATTR_MODE)) 5470 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5471 5472 err_out: 5473 if (error) 5474 ext4_std_error(inode->i_sb, error); 5475 if (!error) 5476 error = rc; 5477 return error; 5478 } 5479 5480 u32 ext4_dio_alignment(struct inode *inode) 5481 { 5482 if (fsverity_active(inode)) 5483 return 0; 5484 if (ext4_should_journal_data(inode)) 5485 return 0; 5486 if (ext4_has_inline_data(inode)) 5487 return 0; 5488 if (IS_ENCRYPTED(inode)) { 5489 if (!fscrypt_dio_supported(inode)) 5490 return 0; 5491 return i_blocksize(inode); 5492 } 5493 return 1; /* use the iomap defaults */ 5494 } 5495 5496 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5497 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5498 { 5499 struct inode *inode = d_inode(path->dentry); 5500 struct ext4_inode *raw_inode; 5501 struct ext4_inode_info *ei = EXT4_I(inode); 5502 unsigned int flags; 5503 5504 if ((request_mask & STATX_BTIME) && 5505 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5506 stat->result_mask |= STATX_BTIME; 5507 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5508 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5509 } 5510 5511 /* 5512 * Return the DIO alignment restrictions if requested. We only return 5513 * this information when requested, since on encrypted files it might 5514 * take a fair bit of work to get if the file wasn't opened recently. 5515 */ 5516 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5517 u32 dio_align = ext4_dio_alignment(inode); 5518 5519 stat->result_mask |= STATX_DIOALIGN; 5520 if (dio_align == 1) { 5521 struct block_device *bdev = inode->i_sb->s_bdev; 5522 5523 /* iomap defaults */ 5524 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5525 stat->dio_offset_align = bdev_logical_block_size(bdev); 5526 } else { 5527 stat->dio_mem_align = dio_align; 5528 stat->dio_offset_align = dio_align; 5529 } 5530 } 5531 5532 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5533 if (flags & EXT4_APPEND_FL) 5534 stat->attributes |= STATX_ATTR_APPEND; 5535 if (flags & EXT4_COMPR_FL) 5536 stat->attributes |= STATX_ATTR_COMPRESSED; 5537 if (flags & EXT4_ENCRYPT_FL) 5538 stat->attributes |= STATX_ATTR_ENCRYPTED; 5539 if (flags & EXT4_IMMUTABLE_FL) 5540 stat->attributes |= STATX_ATTR_IMMUTABLE; 5541 if (flags & EXT4_NODUMP_FL) 5542 stat->attributes |= STATX_ATTR_NODUMP; 5543 if (flags & EXT4_VERITY_FL) 5544 stat->attributes |= STATX_ATTR_VERITY; 5545 5546 stat->attributes_mask |= (STATX_ATTR_APPEND | 5547 STATX_ATTR_COMPRESSED | 5548 STATX_ATTR_ENCRYPTED | 5549 STATX_ATTR_IMMUTABLE | 5550 STATX_ATTR_NODUMP | 5551 STATX_ATTR_VERITY); 5552 5553 generic_fillattr(idmap, request_mask, inode, stat); 5554 return 0; 5555 } 5556 5557 int ext4_file_getattr(struct mnt_idmap *idmap, 5558 const struct path *path, struct kstat *stat, 5559 u32 request_mask, unsigned int query_flags) 5560 { 5561 struct inode *inode = d_inode(path->dentry); 5562 u64 delalloc_blocks; 5563 5564 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5565 5566 /* 5567 * If there is inline data in the inode, the inode will normally not 5568 * have data blocks allocated (it may have an external xattr block). 5569 * Report at least one sector for such files, so tools like tar, rsync, 5570 * others don't incorrectly think the file is completely sparse. 5571 */ 5572 if (unlikely(ext4_has_inline_data(inode))) 5573 stat->blocks += (stat->size + 511) >> 9; 5574 5575 /* 5576 * We can't update i_blocks if the block allocation is delayed 5577 * otherwise in the case of system crash before the real block 5578 * allocation is done, we will have i_blocks inconsistent with 5579 * on-disk file blocks. 5580 * We always keep i_blocks updated together with real 5581 * allocation. But to not confuse with user, stat 5582 * will return the blocks that include the delayed allocation 5583 * blocks for this file. 5584 */ 5585 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5586 EXT4_I(inode)->i_reserved_data_blocks); 5587 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5588 return 0; 5589 } 5590 5591 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5592 int pextents) 5593 { 5594 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5595 return ext4_ind_trans_blocks(inode, lblocks); 5596 return ext4_ext_index_trans_blocks(inode, pextents); 5597 } 5598 5599 /* 5600 * Account for index blocks, block groups bitmaps and block group 5601 * descriptor blocks if modify datablocks and index blocks 5602 * worse case, the indexs blocks spread over different block groups 5603 * 5604 * If datablocks are discontiguous, they are possible to spread over 5605 * different block groups too. If they are contiguous, with flexbg, 5606 * they could still across block group boundary. 5607 * 5608 * Also account for superblock, inode, quota and xattr blocks 5609 */ 5610 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5611 int pextents) 5612 { 5613 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5614 int gdpblocks; 5615 int idxblocks; 5616 int ret; 5617 5618 /* 5619 * How many index blocks need to touch to map @lblocks logical blocks 5620 * to @pextents physical extents? 5621 */ 5622 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5623 5624 ret = idxblocks; 5625 5626 /* 5627 * Now let's see how many group bitmaps and group descriptors need 5628 * to account 5629 */ 5630 groups = idxblocks + pextents; 5631 gdpblocks = groups; 5632 if (groups > ngroups) 5633 groups = ngroups; 5634 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5635 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5636 5637 /* bitmaps and block group descriptor blocks */ 5638 ret += groups + gdpblocks; 5639 5640 /* Blocks for super block, inode, quota and xattr blocks */ 5641 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5642 5643 return ret; 5644 } 5645 5646 /* 5647 * Calculate the total number of credits to reserve to fit 5648 * the modification of a single pages into a single transaction, 5649 * which may include multiple chunks of block allocations. 5650 * 5651 * This could be called via ext4_write_begin() 5652 * 5653 * We need to consider the worse case, when 5654 * one new block per extent. 5655 */ 5656 int ext4_writepage_trans_blocks(struct inode *inode) 5657 { 5658 int bpp = ext4_journal_blocks_per_page(inode); 5659 int ret; 5660 5661 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5662 5663 /* Account for data blocks for journalled mode */ 5664 if (ext4_should_journal_data(inode)) 5665 ret += bpp; 5666 return ret; 5667 } 5668 5669 /* 5670 * Calculate the journal credits for a chunk of data modification. 5671 * 5672 * This is called from DIO, fallocate or whoever calling 5673 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5674 * 5675 * journal buffers for data blocks are not included here, as DIO 5676 * and fallocate do no need to journal data buffers. 5677 */ 5678 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5679 { 5680 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5681 } 5682 5683 /* 5684 * The caller must have previously called ext4_reserve_inode_write(). 5685 * Give this, we know that the caller already has write access to iloc->bh. 5686 */ 5687 int ext4_mark_iloc_dirty(handle_t *handle, 5688 struct inode *inode, struct ext4_iloc *iloc) 5689 { 5690 int err = 0; 5691 5692 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5693 put_bh(iloc->bh); 5694 return -EIO; 5695 } 5696 ext4_fc_track_inode(handle, inode); 5697 5698 /* the do_update_inode consumes one bh->b_count */ 5699 get_bh(iloc->bh); 5700 5701 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5702 err = ext4_do_update_inode(handle, inode, iloc); 5703 put_bh(iloc->bh); 5704 return err; 5705 } 5706 5707 /* 5708 * On success, We end up with an outstanding reference count against 5709 * iloc->bh. This _must_ be cleaned up later. 5710 */ 5711 5712 int 5713 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5714 struct ext4_iloc *iloc) 5715 { 5716 int err; 5717 5718 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5719 return -EIO; 5720 5721 err = ext4_get_inode_loc(inode, iloc); 5722 if (!err) { 5723 BUFFER_TRACE(iloc->bh, "get_write_access"); 5724 err = ext4_journal_get_write_access(handle, inode->i_sb, 5725 iloc->bh, EXT4_JTR_NONE); 5726 if (err) { 5727 brelse(iloc->bh); 5728 iloc->bh = NULL; 5729 } 5730 } 5731 ext4_std_error(inode->i_sb, err); 5732 return err; 5733 } 5734 5735 static int __ext4_expand_extra_isize(struct inode *inode, 5736 unsigned int new_extra_isize, 5737 struct ext4_iloc *iloc, 5738 handle_t *handle, int *no_expand) 5739 { 5740 struct ext4_inode *raw_inode; 5741 struct ext4_xattr_ibody_header *header; 5742 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5743 struct ext4_inode_info *ei = EXT4_I(inode); 5744 int error; 5745 5746 /* this was checked at iget time, but double check for good measure */ 5747 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5748 (ei->i_extra_isize & 3)) { 5749 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5750 ei->i_extra_isize, 5751 EXT4_INODE_SIZE(inode->i_sb)); 5752 return -EFSCORRUPTED; 5753 } 5754 if ((new_extra_isize < ei->i_extra_isize) || 5755 (new_extra_isize < 4) || 5756 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5757 return -EINVAL; /* Should never happen */ 5758 5759 raw_inode = ext4_raw_inode(iloc); 5760 5761 header = IHDR(inode, raw_inode); 5762 5763 /* No extended attributes present */ 5764 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5765 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5766 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5767 EXT4_I(inode)->i_extra_isize, 0, 5768 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5769 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5770 return 0; 5771 } 5772 5773 /* 5774 * We may need to allocate external xattr block so we need quotas 5775 * initialized. Here we can be called with various locks held so we 5776 * cannot affort to initialize quotas ourselves. So just bail. 5777 */ 5778 if (dquot_initialize_needed(inode)) 5779 return -EAGAIN; 5780 5781 /* try to expand with EAs present */ 5782 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5783 raw_inode, handle); 5784 if (error) { 5785 /* 5786 * Inode size expansion failed; don't try again 5787 */ 5788 *no_expand = 1; 5789 } 5790 5791 return error; 5792 } 5793 5794 /* 5795 * Expand an inode by new_extra_isize bytes. 5796 * Returns 0 on success or negative error number on failure. 5797 */ 5798 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5799 unsigned int new_extra_isize, 5800 struct ext4_iloc iloc, 5801 handle_t *handle) 5802 { 5803 int no_expand; 5804 int error; 5805 5806 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5807 return -EOVERFLOW; 5808 5809 /* 5810 * In nojournal mode, we can immediately attempt to expand 5811 * the inode. When journaled, we first need to obtain extra 5812 * buffer credits since we may write into the EA block 5813 * with this same handle. If journal_extend fails, then it will 5814 * only result in a minor loss of functionality for that inode. 5815 * If this is felt to be critical, then e2fsck should be run to 5816 * force a large enough s_min_extra_isize. 5817 */ 5818 if (ext4_journal_extend(handle, 5819 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5820 return -ENOSPC; 5821 5822 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5823 return -EBUSY; 5824 5825 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5826 handle, &no_expand); 5827 ext4_write_unlock_xattr(inode, &no_expand); 5828 5829 return error; 5830 } 5831 5832 int ext4_expand_extra_isize(struct inode *inode, 5833 unsigned int new_extra_isize, 5834 struct ext4_iloc *iloc) 5835 { 5836 handle_t *handle; 5837 int no_expand; 5838 int error, rc; 5839 5840 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5841 brelse(iloc->bh); 5842 return -EOVERFLOW; 5843 } 5844 5845 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5846 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5847 if (IS_ERR(handle)) { 5848 error = PTR_ERR(handle); 5849 brelse(iloc->bh); 5850 return error; 5851 } 5852 5853 ext4_write_lock_xattr(inode, &no_expand); 5854 5855 BUFFER_TRACE(iloc->bh, "get_write_access"); 5856 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5857 EXT4_JTR_NONE); 5858 if (error) { 5859 brelse(iloc->bh); 5860 goto out_unlock; 5861 } 5862 5863 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5864 handle, &no_expand); 5865 5866 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5867 if (!error) 5868 error = rc; 5869 5870 out_unlock: 5871 ext4_write_unlock_xattr(inode, &no_expand); 5872 ext4_journal_stop(handle); 5873 return error; 5874 } 5875 5876 /* 5877 * What we do here is to mark the in-core inode as clean with respect to inode 5878 * dirtiness (it may still be data-dirty). 5879 * This means that the in-core inode may be reaped by prune_icache 5880 * without having to perform any I/O. This is a very good thing, 5881 * because *any* task may call prune_icache - even ones which 5882 * have a transaction open against a different journal. 5883 * 5884 * Is this cheating? Not really. Sure, we haven't written the 5885 * inode out, but prune_icache isn't a user-visible syncing function. 5886 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5887 * we start and wait on commits. 5888 */ 5889 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5890 const char *func, unsigned int line) 5891 { 5892 struct ext4_iloc iloc; 5893 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5894 int err; 5895 5896 might_sleep(); 5897 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5898 err = ext4_reserve_inode_write(handle, inode, &iloc); 5899 if (err) 5900 goto out; 5901 5902 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5903 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5904 iloc, handle); 5905 5906 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5907 out: 5908 if (unlikely(err)) 5909 ext4_error_inode_err(inode, func, line, 0, err, 5910 "mark_inode_dirty error"); 5911 return err; 5912 } 5913 5914 /* 5915 * ext4_dirty_inode() is called from __mark_inode_dirty() 5916 * 5917 * We're really interested in the case where a file is being extended. 5918 * i_size has been changed by generic_commit_write() and we thus need 5919 * to include the updated inode in the current transaction. 5920 * 5921 * Also, dquot_alloc_block() will always dirty the inode when blocks 5922 * are allocated to the file. 5923 * 5924 * If the inode is marked synchronous, we don't honour that here - doing 5925 * so would cause a commit on atime updates, which we don't bother doing. 5926 * We handle synchronous inodes at the highest possible level. 5927 */ 5928 void ext4_dirty_inode(struct inode *inode, int flags) 5929 { 5930 handle_t *handle; 5931 5932 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5933 if (IS_ERR(handle)) 5934 return; 5935 ext4_mark_inode_dirty(handle, inode); 5936 ext4_journal_stop(handle); 5937 } 5938 5939 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5940 { 5941 journal_t *journal; 5942 handle_t *handle; 5943 int err; 5944 int alloc_ctx; 5945 5946 /* 5947 * We have to be very careful here: changing a data block's 5948 * journaling status dynamically is dangerous. If we write a 5949 * data block to the journal, change the status and then delete 5950 * that block, we risk forgetting to revoke the old log record 5951 * from the journal and so a subsequent replay can corrupt data. 5952 * So, first we make sure that the journal is empty and that 5953 * nobody is changing anything. 5954 */ 5955 5956 journal = EXT4_JOURNAL(inode); 5957 if (!journal) 5958 return 0; 5959 if (is_journal_aborted(journal)) 5960 return -EROFS; 5961 5962 /* Wait for all existing dio workers */ 5963 inode_dio_wait(inode); 5964 5965 /* 5966 * Before flushing the journal and switching inode's aops, we have 5967 * to flush all dirty data the inode has. There can be outstanding 5968 * delayed allocations, there can be unwritten extents created by 5969 * fallocate or buffered writes in dioread_nolock mode covered by 5970 * dirty data which can be converted only after flushing the dirty 5971 * data (and journalled aops don't know how to handle these cases). 5972 */ 5973 if (val) { 5974 filemap_invalidate_lock(inode->i_mapping); 5975 err = filemap_write_and_wait(inode->i_mapping); 5976 if (err < 0) { 5977 filemap_invalidate_unlock(inode->i_mapping); 5978 return err; 5979 } 5980 } 5981 5982 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 5983 jbd2_journal_lock_updates(journal); 5984 5985 /* 5986 * OK, there are no updates running now, and all cached data is 5987 * synced to disk. We are now in a completely consistent state 5988 * which doesn't have anything in the journal, and we know that 5989 * no filesystem updates are running, so it is safe to modify 5990 * the inode's in-core data-journaling state flag now. 5991 */ 5992 5993 if (val) 5994 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5995 else { 5996 err = jbd2_journal_flush(journal, 0); 5997 if (err < 0) { 5998 jbd2_journal_unlock_updates(journal); 5999 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6000 return err; 6001 } 6002 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6003 } 6004 ext4_set_aops(inode); 6005 6006 jbd2_journal_unlock_updates(journal); 6007 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6008 6009 if (val) 6010 filemap_invalidate_unlock(inode->i_mapping); 6011 6012 /* Finally we can mark the inode as dirty. */ 6013 6014 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6015 if (IS_ERR(handle)) 6016 return PTR_ERR(handle); 6017 6018 ext4_fc_mark_ineligible(inode->i_sb, 6019 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6020 err = ext4_mark_inode_dirty(handle, inode); 6021 ext4_handle_sync(handle); 6022 ext4_journal_stop(handle); 6023 ext4_std_error(inode->i_sb, err); 6024 6025 return err; 6026 } 6027 6028 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6029 struct buffer_head *bh) 6030 { 6031 return !buffer_mapped(bh); 6032 } 6033 6034 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6035 { 6036 struct vm_area_struct *vma = vmf->vma; 6037 struct folio *folio = page_folio(vmf->page); 6038 loff_t size; 6039 unsigned long len; 6040 int err; 6041 vm_fault_t ret; 6042 struct file *file = vma->vm_file; 6043 struct inode *inode = file_inode(file); 6044 struct address_space *mapping = inode->i_mapping; 6045 handle_t *handle; 6046 get_block_t *get_block; 6047 int retries = 0; 6048 6049 if (unlikely(IS_IMMUTABLE(inode))) 6050 return VM_FAULT_SIGBUS; 6051 6052 sb_start_pagefault(inode->i_sb); 6053 file_update_time(vma->vm_file); 6054 6055 filemap_invalidate_lock_shared(mapping); 6056 6057 err = ext4_convert_inline_data(inode); 6058 if (err) 6059 goto out_ret; 6060 6061 /* 6062 * On data journalling we skip straight to the transaction handle: 6063 * there's no delalloc; page truncated will be checked later; the 6064 * early return w/ all buffers mapped (calculates size/len) can't 6065 * be used; and there's no dioread_nolock, so only ext4_get_block. 6066 */ 6067 if (ext4_should_journal_data(inode)) 6068 goto retry_alloc; 6069 6070 /* Delalloc case is easy... */ 6071 if (test_opt(inode->i_sb, DELALLOC) && 6072 !ext4_nonda_switch(inode->i_sb)) { 6073 do { 6074 err = block_page_mkwrite(vma, vmf, 6075 ext4_da_get_block_prep); 6076 } while (err == -ENOSPC && 6077 ext4_should_retry_alloc(inode->i_sb, &retries)); 6078 goto out_ret; 6079 } 6080 6081 folio_lock(folio); 6082 size = i_size_read(inode); 6083 /* Page got truncated from under us? */ 6084 if (folio->mapping != mapping || folio_pos(folio) > size) { 6085 folio_unlock(folio); 6086 ret = VM_FAULT_NOPAGE; 6087 goto out; 6088 } 6089 6090 len = folio_size(folio); 6091 if (folio_pos(folio) + len > size) 6092 len = size - folio_pos(folio); 6093 /* 6094 * Return if we have all the buffers mapped. This avoids the need to do 6095 * journal_start/journal_stop which can block and take a long time 6096 * 6097 * This cannot be done for data journalling, as we have to add the 6098 * inode to the transaction's list to writeprotect pages on commit. 6099 */ 6100 if (folio_buffers(folio)) { 6101 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6102 0, len, NULL, 6103 ext4_bh_unmapped)) { 6104 /* Wait so that we don't change page under IO */ 6105 folio_wait_stable(folio); 6106 ret = VM_FAULT_LOCKED; 6107 goto out; 6108 } 6109 } 6110 folio_unlock(folio); 6111 /* OK, we need to fill the hole... */ 6112 if (ext4_should_dioread_nolock(inode)) 6113 get_block = ext4_get_block_unwritten; 6114 else 6115 get_block = ext4_get_block; 6116 retry_alloc: 6117 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6118 ext4_writepage_trans_blocks(inode)); 6119 if (IS_ERR(handle)) { 6120 ret = VM_FAULT_SIGBUS; 6121 goto out; 6122 } 6123 /* 6124 * Data journalling can't use block_page_mkwrite() because it 6125 * will set_buffer_dirty() before do_journal_get_write_access() 6126 * thus might hit warning messages for dirty metadata buffers. 6127 */ 6128 if (!ext4_should_journal_data(inode)) { 6129 err = block_page_mkwrite(vma, vmf, get_block); 6130 } else { 6131 folio_lock(folio); 6132 size = i_size_read(inode); 6133 /* Page got truncated from under us? */ 6134 if (folio->mapping != mapping || folio_pos(folio) > size) { 6135 ret = VM_FAULT_NOPAGE; 6136 goto out_error; 6137 } 6138 6139 len = folio_size(folio); 6140 if (folio_pos(folio) + len > size) 6141 len = size - folio_pos(folio); 6142 6143 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6144 if (!err) { 6145 ret = VM_FAULT_SIGBUS; 6146 if (ext4_journal_folio_buffers(handle, folio, len)) 6147 goto out_error; 6148 } else { 6149 folio_unlock(folio); 6150 } 6151 } 6152 ext4_journal_stop(handle); 6153 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6154 goto retry_alloc; 6155 out_ret: 6156 ret = vmf_fs_error(err); 6157 out: 6158 filemap_invalidate_unlock_shared(mapping); 6159 sb_end_pagefault(inode->i_sb); 6160 return ret; 6161 out_error: 6162 folio_unlock(folio); 6163 ext4_journal_stop(handle); 6164 goto out; 6165 } 6166