xref: /linux/fs/ext4/inode.c (revision 804382d59b81b331735d37a18149ea0d36d5936a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static void ext4_journalled_zero_new_buffers(handle_t *handle,
53 					    struct inode *inode,
54 					    struct folio *folio,
55 					    unsigned from, unsigned to);
56 
57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58 			      struct ext4_inode_info *ei)
59 {
60 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61 	__u32 csum;
62 	__u16 dummy_csum = 0;
63 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 	unsigned int csum_size = sizeof(dummy_csum);
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68 	offset += csum_size;
69 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71 
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 		offset = offsetof(struct ext4_inode, i_checksum_hi);
74 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75 				   EXT4_GOOD_OLD_INODE_SIZE,
76 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
77 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79 					   csum_size);
80 			offset += csum_size;
81 		}
82 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
84 	}
85 
86 	return csum;
87 }
88 
89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90 				  struct ext4_inode_info *ei)
91 {
92 	__u32 provided, calculated;
93 
94 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95 	    cpu_to_le32(EXT4_OS_LINUX) ||
96 	    !ext4_has_metadata_csum(inode->i_sb))
97 		return 1;
98 
99 	provided = le16_to_cpu(raw->i_checksum_lo);
100 	calculated = ext4_inode_csum(inode, raw, ei);
101 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104 	else
105 		calculated &= 0xFFFF;
106 
107 	return provided == calculated;
108 }
109 
110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111 			 struct ext4_inode_info *ei)
112 {
113 	__u32 csum;
114 
115 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116 	    cpu_to_le32(EXT4_OS_LINUX) ||
117 	    !ext4_has_metadata_csum(inode->i_sb))
118 		return;
119 
120 	csum = ext4_inode_csum(inode, raw, ei);
121 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125 }
126 
127 static inline int ext4_begin_ordered_truncate(struct inode *inode,
128 					      loff_t new_size)
129 {
130 	trace_ext4_begin_ordered_truncate(inode, new_size);
131 	/*
132 	 * If jinode is zero, then we never opened the file for
133 	 * writing, so there's no need to call
134 	 * jbd2_journal_begin_ordered_truncate() since there's no
135 	 * outstanding writes we need to flush.
136 	 */
137 	if (!EXT4_I(inode)->jinode)
138 		return 0;
139 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140 						   EXT4_I(inode)->jinode,
141 						   new_size);
142 }
143 
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171 	handle_t *handle;
172 	int err;
173 	/*
174 	 * Credits for final inode cleanup and freeing:
175 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177 	 */
178 	int extra_credits = 6;
179 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
180 	bool freeze_protected = false;
181 
182 	trace_ext4_evict_inode(inode);
183 
184 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185 		ext4_evict_ea_inode(inode);
186 	if (inode->i_nlink) {
187 		truncate_inode_pages_final(&inode->i_data);
188 
189 		goto no_delete;
190 	}
191 
192 	if (is_bad_inode(inode))
193 		goto no_delete;
194 	dquot_initialize(inode);
195 
196 	if (ext4_should_order_data(inode))
197 		ext4_begin_ordered_truncate(inode, 0);
198 	truncate_inode_pages_final(&inode->i_data);
199 
200 	/*
201 	 * For inodes with journalled data, transaction commit could have
202 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203 	 * extents converting worker could merge extents and also have dirtied
204 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205 	 * we still need to remove the inode from the writeback lists.
206 	 */
207 	if (!list_empty_careful(&inode->i_io_list))
208 		inode_io_list_del(inode);
209 
210 	/*
211 	 * Protect us against freezing - iput() caller didn't have to have any
212 	 * protection against it. When we are in a running transaction though,
213 	 * we are already protected against freezing and we cannot grab further
214 	 * protection due to lock ordering constraints.
215 	 */
216 	if (!ext4_journal_current_handle()) {
217 		sb_start_intwrite(inode->i_sb);
218 		freeze_protected = true;
219 	}
220 
221 	if (!IS_NOQUOTA(inode))
222 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223 
224 	/*
225 	 * Block bitmap, group descriptor, and inode are accounted in both
226 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227 	 */
228 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
230 	if (IS_ERR(handle)) {
231 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
232 		/*
233 		 * If we're going to skip the normal cleanup, we still need to
234 		 * make sure that the in-core orphan linked list is properly
235 		 * cleaned up.
236 		 */
237 		ext4_orphan_del(NULL, inode);
238 		if (freeze_protected)
239 			sb_end_intwrite(inode->i_sb);
240 		goto no_delete;
241 	}
242 
243 	if (IS_SYNC(inode))
244 		ext4_handle_sync(handle);
245 
246 	/*
247 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
248 	 * special handling of symlinks here because i_size is used to
249 	 * determine whether ext4_inode_info->i_data contains symlink data or
250 	 * block mappings. Setting i_size to 0 will remove its fast symlink
251 	 * status. Erase i_data so that it becomes a valid empty block map.
252 	 */
253 	if (ext4_inode_is_fast_symlink(inode))
254 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks) {
263 		err = ext4_truncate(inode);
264 		if (err) {
265 			ext4_error_err(inode->i_sb, -err,
266 				       "couldn't truncate inode %lu (err %d)",
267 				       inode->i_ino, err);
268 			goto stop_handle;
269 		}
270 	}
271 
272 	/* Remove xattr references. */
273 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274 				      extra_credits);
275 	if (err) {
276 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277 stop_handle:
278 		ext4_journal_stop(handle);
279 		ext4_orphan_del(NULL, inode);
280 		if (freeze_protected)
281 			sb_end_intwrite(inode->i_sb);
282 		ext4_xattr_inode_array_free(ea_inode_array);
283 		goto no_delete;
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	if (freeze_protected)
311 		sb_end_intwrite(inode->i_sb);
312 	ext4_xattr_inode_array_free(ea_inode_array);
313 	return;
314 no_delete:
315 	/*
316 	 * Check out some where else accidentally dirty the evicting inode,
317 	 * which may probably cause inode use-after-free issues later.
318 	 */
319 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320 
321 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
322 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
324 }
325 
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 {
329 	return &EXT4_I(inode)->i_reserved_quota;
330 }
331 #endif
332 
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 					int used, int quota_claim)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 	struct ext4_inode_info *ei = EXT4_I(inode);
342 
343 	spin_lock(&ei->i_block_reservation_lock);
344 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 	if (unlikely(used > ei->i_reserved_data_blocks)) {
346 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 			 "with only %d reserved data blocks",
348 			 __func__, inode->i_ino, used,
349 			 ei->i_reserved_data_blocks);
350 		WARN_ON(1);
351 		used = ei->i_reserved_data_blocks;
352 	}
353 
354 	/* Update per-inode reservations */
355 	ei->i_reserved_data_blocks -= used;
356 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357 
358 	spin_unlock(&ei->i_block_reservation_lock);
359 
360 	/* Update quota subsystem for data blocks */
361 	if (quota_claim)
362 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 	else {
364 		/*
365 		 * We did fallocate with an offset that is already delayed
366 		 * allocated. So on delayed allocated writeback we should
367 		 * not re-claim the quota for fallocated blocks.
368 		 */
369 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370 	}
371 
372 	/*
373 	 * If we have done all the pending block allocations and if
374 	 * there aren't any writers on the inode, we can discard the
375 	 * inode's preallocations.
376 	 */
377 	if ((ei->i_reserved_data_blocks == 0) &&
378 	    !inode_is_open_for_write(inode))
379 		ext4_discard_preallocations(inode);
380 }
381 
382 static int __check_block_validity(struct inode *inode, const char *func,
383 				unsigned int line,
384 				struct ext4_map_blocks *map)
385 {
386 	if (ext4_has_feature_journal(inode->i_sb) &&
387 	    (inode->i_ino ==
388 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 		return 0;
390 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391 		ext4_error_inode(inode, func, line, map->m_pblk,
392 				 "lblock %lu mapped to illegal pblock %llu "
393 				 "(length %d)", (unsigned long) map->m_lblk,
394 				 map->m_pblk, map->m_len);
395 		return -EFSCORRUPTED;
396 	}
397 	return 0;
398 }
399 
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 		       ext4_lblk_t len)
402 {
403 	int ret;
404 
405 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
407 
408 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409 	if (ret > 0)
410 		ret = 0;
411 
412 	return ret;
413 }
414 
415 #define check_block_validity(inode, map)	\
416 	__check_block_validity((inode), __func__, __LINE__, (map))
417 
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420 				       struct inode *inode,
421 				       struct ext4_map_blocks *es_map,
422 				       struct ext4_map_blocks *map,
423 				       int flags)
424 {
425 	int retval;
426 
427 	map->m_flags = 0;
428 	/*
429 	 * There is a race window that the result is not the same.
430 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
431 	 * is that we lookup a block mapping in extent status tree with
432 	 * out taking i_data_sem.  So at the time the unwritten extent
433 	 * could be converted.
434 	 */
435 	down_read(&EXT4_I(inode)->i_data_sem);
436 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
438 	} else {
439 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
440 	}
441 	up_read((&EXT4_I(inode)->i_data_sem));
442 
443 	/*
444 	 * We don't check m_len because extent will be collpased in status
445 	 * tree.  So the m_len might not equal.
446 	 */
447 	if (es_map->m_lblk != map->m_lblk ||
448 	    es_map->m_flags != map->m_flags ||
449 	    es_map->m_pblk != map->m_pblk) {
450 		printk("ES cache assertion failed for inode: %lu "
451 		       "es_cached ex [%d/%d/%llu/%x] != "
452 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
454 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 		       map->m_len, map->m_pblk, map->m_flags,
456 		       retval, flags);
457 	}
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460 
461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462 				 struct ext4_map_blocks *map)
463 {
464 	unsigned int status;
465 	int retval;
466 
467 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
469 	else
470 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
471 
472 	if (retval <= 0)
473 		return retval;
474 
475 	if (unlikely(retval != map->m_len)) {
476 		ext4_warning(inode->i_sb,
477 			     "ES len assertion failed for inode "
478 			     "%lu: retval %d != map->m_len %d",
479 			     inode->i_ino, retval, map->m_len);
480 		WARN_ON(1);
481 	}
482 
483 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486 			      map->m_pblk, status, false);
487 	return retval;
488 }
489 
490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491 				  struct ext4_map_blocks *map, int flags)
492 {
493 	struct extent_status es;
494 	unsigned int status;
495 	int err, retval = 0;
496 
497 	/*
498 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499 	 * indicates that the blocks and quotas has already been
500 	 * checked when the data was copied into the page cache.
501 	 */
502 	if (map->m_flags & EXT4_MAP_DELAYED)
503 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504 
505 	/*
506 	 * Here we clear m_flags because after allocating an new extent,
507 	 * it will be set again.
508 	 */
509 	map->m_flags &= ~EXT4_MAP_FLAGS;
510 
511 	/*
512 	 * We need to check for EXT4 here because migrate could have
513 	 * changed the inode type in between.
514 	 */
515 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
517 	} else {
518 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
519 
520 		/*
521 		 * We allocated new blocks which will result in i_data's
522 		 * format changing. Force the migrate to fail by clearing
523 		 * migrate flags.
524 		 */
525 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527 	}
528 	if (retval <= 0)
529 		return retval;
530 
531 	if (unlikely(retval != map->m_len)) {
532 		ext4_warning(inode->i_sb,
533 			     "ES len assertion failed for inode %lu: "
534 			     "retval %d != map->m_len %d",
535 			     inode->i_ino, retval, map->m_len);
536 		WARN_ON(1);
537 	}
538 
539 	/*
540 	 * We have to zeroout blocks before inserting them into extent
541 	 * status tree. Otherwise someone could look them up there and
542 	 * use them before they are really zeroed. We also have to
543 	 * unmap metadata before zeroing as otherwise writeback can
544 	 * overwrite zeros with stale data from block device.
545 	 */
546 	if (flags & EXT4_GET_BLOCKS_ZERO &&
547 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549 					 map->m_len);
550 		if (err)
551 			return err;
552 	}
553 
554 	/*
555 	 * If the extent has been zeroed out, we don't need to update
556 	 * extent status tree.
557 	 */
558 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560 		if (ext4_es_is_written(&es))
561 			return retval;
562 	}
563 
564 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
567 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
568 
569 	return retval;
570 }
571 
572 /*
573  * The ext4_map_blocks() function tries to look up the requested blocks,
574  * and returns if the blocks are already mapped.
575  *
576  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577  * and store the allocated blocks in the result buffer head and mark it
578  * mapped.
579  *
580  * If file type is extents based, it will call ext4_ext_map_blocks(),
581  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582  * based files
583  *
584  * On success, it returns the number of blocks being mapped or allocated.
585  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588  *
589  * It returns 0 if plain look up failed (blocks have not been allocated), in
590  * that case, @map is returned as unmapped but we still do fill map->m_len to
591  * indicate the length of a hole starting at map->m_lblk.
592  *
593  * It returns the error in case of allocation failure.
594  */
595 int ext4_map_blocks(handle_t *handle, struct inode *inode,
596 		    struct ext4_map_blocks *map, int flags)
597 {
598 	struct extent_status es;
599 	int retval;
600 	int ret = 0;
601 #ifdef ES_AGGRESSIVE_TEST
602 	struct ext4_map_blocks orig_map;
603 
604 	memcpy(&orig_map, map, sizeof(*map));
605 #endif
606 
607 	map->m_flags = 0;
608 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609 		  flags, map->m_len, (unsigned long) map->m_lblk);
610 
611 	/*
612 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
613 	 */
614 	if (unlikely(map->m_len > INT_MAX))
615 		map->m_len = INT_MAX;
616 
617 	/* We can handle the block number less than EXT_MAX_BLOCKS */
618 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619 		return -EFSCORRUPTED;
620 
621 	/* Lookup extent status tree firstly */
622 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625 			map->m_pblk = ext4_es_pblock(&es) +
626 					map->m_lblk - es.es_lblk;
627 			map->m_flags |= ext4_es_is_written(&es) ?
628 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629 			retval = es.es_len - (map->m_lblk - es.es_lblk);
630 			if (retval > map->m_len)
631 				retval = map->m_len;
632 			map->m_len = retval;
633 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634 			map->m_pblk = 0;
635 			map->m_flags |= ext4_es_is_delayed(&es) ?
636 					EXT4_MAP_DELAYED : 0;
637 			retval = es.es_len - (map->m_lblk - es.es_lblk);
638 			if (retval > map->m_len)
639 				retval = map->m_len;
640 			map->m_len = retval;
641 			retval = 0;
642 		} else {
643 			BUG();
644 		}
645 
646 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647 			return retval;
648 #ifdef ES_AGGRESSIVE_TEST
649 		ext4_map_blocks_es_recheck(handle, inode, map,
650 					   &orig_map, flags);
651 #endif
652 		goto found;
653 	}
654 	/*
655 	 * In the query cache no-wait mode, nothing we can do more if we
656 	 * cannot find extent in the cache.
657 	 */
658 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659 		return 0;
660 
661 	/*
662 	 * Try to see if we can get the block without requesting a new
663 	 * file system block.
664 	 */
665 	down_read(&EXT4_I(inode)->i_data_sem);
666 	retval = ext4_map_query_blocks(handle, inode, map);
667 	up_read((&EXT4_I(inode)->i_data_sem));
668 
669 found:
670 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671 		ret = check_block_validity(inode, map);
672 		if (ret != 0)
673 			return ret;
674 	}
675 
676 	/* If it is only a block(s) look up */
677 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678 		return retval;
679 
680 	/*
681 	 * Returns if the blocks have already allocated
682 	 *
683 	 * Note that if blocks have been preallocated
684 	 * ext4_ext_map_blocks() returns with buffer head unmapped
685 	 */
686 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687 		/*
688 		 * If we need to convert extent to unwritten
689 		 * we continue and do the actual work in
690 		 * ext4_ext_map_blocks()
691 		 */
692 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693 			return retval;
694 
695 	/*
696 	 * New blocks allocate and/or writing to unwritten extent
697 	 * will possibly result in updating i_data, so we take
698 	 * the write lock of i_data_sem, and call get_block()
699 	 * with create == 1 flag.
700 	 */
701 	down_write(&EXT4_I(inode)->i_data_sem);
702 	retval = ext4_map_create_blocks(handle, inode, map, flags);
703 	up_write((&EXT4_I(inode)->i_data_sem));
704 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 		ret = check_block_validity(inode, map);
706 		if (ret != 0)
707 			return ret;
708 
709 		/*
710 		 * Inodes with freshly allocated blocks where contents will be
711 		 * visible after transaction commit must be on transaction's
712 		 * ordered data list.
713 		 */
714 		if (map->m_flags & EXT4_MAP_NEW &&
715 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 		    !ext4_is_quota_file(inode) &&
718 		    ext4_should_order_data(inode)) {
719 			loff_t start_byte =
720 				(loff_t)map->m_lblk << inode->i_blkbits;
721 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722 
723 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 				ret = ext4_jbd2_inode_add_wait(handle, inode,
725 						start_byte, length);
726 			else
727 				ret = ext4_jbd2_inode_add_write(handle, inode,
728 						start_byte, length);
729 			if (ret)
730 				return ret;
731 		}
732 	}
733 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734 				map->m_flags & EXT4_MAP_MAPPED))
735 		ext4_fc_track_range(handle, inode, map->m_lblk,
736 					map->m_lblk + map->m_len - 1);
737 	if (retval < 0)
738 		ext_debug(inode, "failed with err %d\n", retval);
739 	return retval;
740 }
741 
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748 	unsigned long old_state;
749 	unsigned long new_state;
750 
751 	flags &= EXT4_MAP_FLAGS;
752 
753 	/* Dummy buffer_head? Set non-atomically. */
754 	if (!bh->b_page) {
755 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 		return;
757 	}
758 	/*
759 	 * Someone else may be modifying b_state. Be careful! This is ugly but
760 	 * once we get rid of using bh as a container for mapping information
761 	 * to pass to / from get_block functions, this can go away.
762 	 */
763 	old_state = READ_ONCE(bh->b_state);
764 	do {
765 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767 }
768 
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 			   struct buffer_head *bh, int flags)
771 {
772 	struct ext4_map_blocks map;
773 	int ret = 0;
774 
775 	if (ext4_has_inline_data(inode))
776 		return -ERANGE;
777 
778 	map.m_lblk = iblock;
779 	map.m_len = bh->b_size >> inode->i_blkbits;
780 
781 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782 			      flags);
783 	if (ret > 0) {
784 		map_bh(bh, inode->i_sb, map.m_pblk);
785 		ext4_update_bh_state(bh, map.m_flags);
786 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787 		ret = 0;
788 	} else if (ret == 0) {
789 		/* hole case, need to fill in bh->b_size */
790 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 	}
792 	return ret;
793 }
794 
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796 		   struct buffer_head *bh, int create)
797 {
798 	return _ext4_get_block(inode, iblock, bh,
799 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801 
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 			     struct buffer_head *bh_result, int create)
809 {
810 	int ret = 0;
811 
812 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 		   inode->i_ino, create);
814 	ret = _ext4_get_block(inode, iblock, bh_result,
815 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816 
817 	/*
818 	 * If the buffer is marked unwritten, mark it as new to make sure it is
819 	 * zeroed out correctly in case of partial writes. Otherwise, there is
820 	 * a chance of stale data getting exposed.
821 	 */
822 	if (ret == 0 && buffer_unwritten(bh_result))
823 		set_buffer_new(bh_result);
824 
825 	return ret;
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841 	int err;
842 
843 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		    || handle != NULL || create == 0);
845 	ASSERT(create == 0 || !nowait);
846 
847 	map.m_lblk = block;
848 	map.m_len = 1;
849 	err = ext4_map_blocks(handle, inode, &map, map_flags);
850 
851 	if (err == 0)
852 		return create ? ERR_PTR(-ENOSPC) : NULL;
853 	if (err < 0)
854 		return ERR_PTR(err);
855 
856 	if (nowait)
857 		return sb_find_get_block(inode->i_sb, map.m_pblk);
858 
859 	/*
860 	 * Since bh could introduce extra ref count such as referred by
861 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
862 	 * as it may fail the migration when journal_head remains.
863 	 */
864 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
865 				inode->i_sb->s_blocksize);
866 
867 	if (unlikely(!bh))
868 		return ERR_PTR(-ENOMEM);
869 	if (map.m_flags & EXT4_MAP_NEW) {
870 		ASSERT(create != 0);
871 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 			    || (handle != NULL));
873 
874 		/*
875 		 * Now that we do not always journal data, we should
876 		 * keep in mind whether this should always journal the
877 		 * new buffer as metadata.  For now, regular file
878 		 * writes use ext4_get_block instead, so it's not a
879 		 * problem.
880 		 */
881 		lock_buffer(bh);
882 		BUFFER_TRACE(bh, "call get_create_access");
883 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884 						     EXT4_JTR_NONE);
885 		if (unlikely(err)) {
886 			unlock_buffer(bh);
887 			goto errout;
888 		}
889 		if (!buffer_uptodate(bh)) {
890 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 			set_buffer_uptodate(bh);
892 		}
893 		unlock_buffer(bh);
894 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 		err = ext4_handle_dirty_metadata(handle, inode, bh);
896 		if (unlikely(err))
897 			goto errout;
898 	} else
899 		BUFFER_TRACE(bh, "not a new buffer");
900 	return bh;
901 errout:
902 	brelse(bh);
903 	return ERR_PTR(err);
904 }
905 
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 			       ext4_lblk_t block, int map_flags)
908 {
909 	struct buffer_head *bh;
910 	int ret;
911 
912 	bh = ext4_getblk(handle, inode, block, map_flags);
913 	if (IS_ERR(bh))
914 		return bh;
915 	if (!bh || ext4_buffer_uptodate(bh))
916 		return bh;
917 
918 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919 	if (ret) {
920 		put_bh(bh);
921 		return ERR_PTR(ret);
922 	}
923 	return bh;
924 }
925 
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 		     bool wait, struct buffer_head **bhs)
929 {
930 	int i, err;
931 
932 	for (i = 0; i < bh_count; i++) {
933 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 		if (IS_ERR(bhs[i])) {
935 			err = PTR_ERR(bhs[i]);
936 			bh_count = i;
937 			goto out_brelse;
938 		}
939 	}
940 
941 	for (i = 0; i < bh_count; i++)
942 		/* Note that NULL bhs[i] is valid because of holes. */
943 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945 
946 	if (!wait)
947 		return 0;
948 
949 	for (i = 0; i < bh_count; i++)
950 		if (bhs[i])
951 			wait_on_buffer(bhs[i]);
952 
953 	for (i = 0; i < bh_count; i++) {
954 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
955 			err = -EIO;
956 			goto out_brelse;
957 		}
958 	}
959 	return 0;
960 
961 out_brelse:
962 	for (i = 0; i < bh_count; i++) {
963 		brelse(bhs[i]);
964 		bhs[i] = NULL;
965 	}
966 	return err;
967 }
968 
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 			   struct buffer_head *head,
971 			   unsigned from,
972 			   unsigned to,
973 			   int *partial,
974 			   int (*fn)(handle_t *handle, struct inode *inode,
975 				     struct buffer_head *bh))
976 {
977 	struct buffer_head *bh;
978 	unsigned block_start, block_end;
979 	unsigned blocksize = head->b_size;
980 	int err, ret = 0;
981 	struct buffer_head *next;
982 
983 	for (bh = head, block_start = 0;
984 	     ret == 0 && (bh != head || !block_start);
985 	     block_start = block_end, bh = next) {
986 		next = bh->b_this_page;
987 		block_end = block_start + blocksize;
988 		if (block_end <= from || block_start >= to) {
989 			if (partial && !buffer_uptodate(bh))
990 				*partial = 1;
991 			continue;
992 		}
993 		err = (*fn)(handle, inode, bh);
994 		if (!ret)
995 			ret = err;
996 	}
997 	return ret;
998 }
999 
1000 /*
1001  * Helper for handling dirtying of journalled data. We also mark the folio as
1002  * dirty so that writeback code knows about this page (and inode) contains
1003  * dirty data. ext4_writepages() then commits appropriate transaction to
1004  * make data stable.
1005  */
1006 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007 {
1008 	folio_mark_dirty(bh->b_folio);
1009 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010 }
1011 
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 				struct buffer_head *bh)
1014 {
1015 	if (!buffer_mapped(bh) || buffer_freed(bh))
1016 		return 0;
1017 	BUFFER_TRACE(bh, "get write access");
1018 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019 					    EXT4_JTR_NONE);
1020 }
1021 
1022 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023 			   loff_t pos, unsigned len,
1024 			   get_block_t *get_block)
1025 {
1026 	unsigned from = pos & (PAGE_SIZE - 1);
1027 	unsigned to = from + len;
1028 	struct inode *inode = folio->mapping->host;
1029 	unsigned block_start, block_end;
1030 	sector_t block;
1031 	int err = 0;
1032 	unsigned blocksize = inode->i_sb->s_blocksize;
1033 	unsigned bbits;
1034 	struct buffer_head *bh, *head, *wait[2];
1035 	int nr_wait = 0;
1036 	int i;
1037 	bool should_journal_data = ext4_should_journal_data(inode);
1038 
1039 	BUG_ON(!folio_test_locked(folio));
1040 	BUG_ON(from > PAGE_SIZE);
1041 	BUG_ON(to > PAGE_SIZE);
1042 	BUG_ON(from > to);
1043 
1044 	head = folio_buffers(folio);
1045 	if (!head)
1046 		head = create_empty_buffers(folio, blocksize, 0);
1047 	bbits = ilog2(blocksize);
1048 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049 
1050 	for (bh = head, block_start = 0; bh != head || !block_start;
1051 	    block++, block_start = block_end, bh = bh->b_this_page) {
1052 		block_end = block_start + blocksize;
1053 		if (block_end <= from || block_start >= to) {
1054 			if (folio_test_uptodate(folio)) {
1055 				set_buffer_uptodate(bh);
1056 			}
1057 			continue;
1058 		}
1059 		if (buffer_new(bh))
1060 			clear_buffer_new(bh);
1061 		if (!buffer_mapped(bh)) {
1062 			WARN_ON(bh->b_size != blocksize);
1063 			err = get_block(inode, block, bh, 1);
1064 			if (err)
1065 				break;
1066 			if (buffer_new(bh)) {
1067 				/*
1068 				 * We may be zeroing partial buffers or all new
1069 				 * buffers in case of failure. Prepare JBD2 for
1070 				 * that.
1071 				 */
1072 				if (should_journal_data)
1073 					do_journal_get_write_access(handle,
1074 								    inode, bh);
1075 				if (folio_test_uptodate(folio)) {
1076 					/*
1077 					 * Unlike __block_write_begin() we leave
1078 					 * dirtying of new uptodate buffers to
1079 					 * ->write_end() time or
1080 					 * folio_zero_new_buffers().
1081 					 */
1082 					set_buffer_uptodate(bh);
1083 					continue;
1084 				}
1085 				if (block_end > to || block_start < from)
1086 					folio_zero_segments(folio, to,
1087 							    block_end,
1088 							    block_start, from);
1089 				continue;
1090 			}
1091 		}
1092 		if (folio_test_uptodate(folio)) {
1093 			set_buffer_uptodate(bh);
1094 			continue;
1095 		}
1096 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097 		    !buffer_unwritten(bh) &&
1098 		    (block_start < from || block_end > to)) {
1099 			ext4_read_bh_lock(bh, 0, false);
1100 			wait[nr_wait++] = bh;
1101 		}
1102 	}
1103 	/*
1104 	 * If we issued read requests, let them complete.
1105 	 */
1106 	for (i = 0; i < nr_wait; i++) {
1107 		wait_on_buffer(wait[i]);
1108 		if (!buffer_uptodate(wait[i]))
1109 			err = -EIO;
1110 	}
1111 	if (unlikely(err)) {
1112 		if (should_journal_data)
1113 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114 							 from, to);
1115 		else
1116 			folio_zero_new_buffers(folio, from, to);
1117 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 		for (i = 0; i < nr_wait; i++) {
1119 			int err2;
1120 
1121 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122 						blocksize, bh_offset(wait[i]));
1123 			if (err2) {
1124 				clear_buffer_uptodate(wait[i]);
1125 				err = err2;
1126 			}
1127 		}
1128 	}
1129 
1130 	return err;
1131 }
1132 
1133 /*
1134  * To preserve ordering, it is essential that the hole instantiation and
1135  * the data write be encapsulated in a single transaction.  We cannot
1136  * close off a transaction and start a new one between the ext4_get_block()
1137  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138  * ext4_write_begin() is the right place.
1139  */
1140 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141 			    loff_t pos, unsigned len,
1142 			    struct folio **foliop, void **fsdata)
1143 {
1144 	struct inode *inode = mapping->host;
1145 	int ret, needed_blocks;
1146 	handle_t *handle;
1147 	int retries = 0;
1148 	struct folio *folio;
1149 	pgoff_t index;
1150 	unsigned from, to;
1151 
1152 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153 		return -EIO;
1154 
1155 	trace_ext4_write_begin(inode, pos, len);
1156 	/*
1157 	 * Reserve one block more for addition to orphan list in case
1158 	 * we allocate blocks but write fails for some reason
1159 	 */
1160 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161 	index = pos >> PAGE_SHIFT;
1162 	from = pos & (PAGE_SIZE - 1);
1163 	to = from + len;
1164 
1165 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 						    foliop);
1168 		if (ret < 0)
1169 			return ret;
1170 		if (ret == 1)
1171 			return 0;
1172 	}
1173 
1174 	/*
1175 	 * __filemap_get_folio() can take a long time if the
1176 	 * system is thrashing due to memory pressure, or if the folio
1177 	 * is being written back.  So grab it first before we start
1178 	 * the transaction handle.  This also allows us to allocate
1179 	 * the folio (if needed) without using GFP_NOFS.
1180 	 */
1181 retry_grab:
1182 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183 					mapping_gfp_mask(mapping));
1184 	if (IS_ERR(folio))
1185 		return PTR_ERR(folio);
1186 	/*
1187 	 * The same as page allocation, we prealloc buffer heads before
1188 	 * starting the handle.
1189 	 */
1190 	if (!folio_buffers(folio))
1191 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192 
1193 	folio_unlock(folio);
1194 
1195 retry_journal:
1196 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197 	if (IS_ERR(handle)) {
1198 		folio_put(folio);
1199 		return PTR_ERR(handle);
1200 	}
1201 
1202 	folio_lock(folio);
1203 	if (folio->mapping != mapping) {
1204 		/* The folio got truncated from under us */
1205 		folio_unlock(folio);
1206 		folio_put(folio);
1207 		ext4_journal_stop(handle);
1208 		goto retry_grab;
1209 	}
1210 	/* In case writeback began while the folio was unlocked */
1211 	folio_wait_stable(folio);
1212 
1213 	if (ext4_should_dioread_nolock(inode))
1214 		ret = ext4_block_write_begin(handle, folio, pos, len,
1215 					     ext4_get_block_unwritten);
1216 	else
1217 		ret = ext4_block_write_begin(handle, folio, pos, len,
1218 					     ext4_get_block);
1219 	if (!ret && ext4_should_journal_data(inode)) {
1220 		ret = ext4_walk_page_buffers(handle, inode,
1221 					     folio_buffers(folio), from, to,
1222 					     NULL, do_journal_get_write_access);
1223 	}
1224 
1225 	if (ret) {
1226 		bool extended = (pos + len > inode->i_size) &&
1227 				!ext4_verity_in_progress(inode);
1228 
1229 		folio_unlock(folio);
1230 		/*
1231 		 * ext4_block_write_begin may have instantiated a few blocks
1232 		 * outside i_size.  Trim these off again. Don't need
1233 		 * i_size_read because we hold i_rwsem.
1234 		 *
1235 		 * Add inode to orphan list in case we crash before
1236 		 * truncate finishes
1237 		 */
1238 		if (extended && ext4_can_truncate(inode))
1239 			ext4_orphan_add(handle, inode);
1240 
1241 		ext4_journal_stop(handle);
1242 		if (extended) {
1243 			ext4_truncate_failed_write(inode);
1244 			/*
1245 			 * If truncate failed early the inode might
1246 			 * still be on the orphan list; we need to
1247 			 * make sure the inode is removed from the
1248 			 * orphan list in that case.
1249 			 */
1250 			if (inode->i_nlink)
1251 				ext4_orphan_del(NULL, inode);
1252 		}
1253 
1254 		if (ret == -ENOSPC &&
1255 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256 			goto retry_journal;
1257 		folio_put(folio);
1258 		return ret;
1259 	}
1260 	*foliop = folio;
1261 	return ret;
1262 }
1263 
1264 /* For write_end() in data=journal mode */
1265 static int write_end_fn(handle_t *handle, struct inode *inode,
1266 			struct buffer_head *bh)
1267 {
1268 	int ret;
1269 	if (!buffer_mapped(bh) || buffer_freed(bh))
1270 		return 0;
1271 	set_buffer_uptodate(bh);
1272 	ret = ext4_dirty_journalled_data(handle, bh);
1273 	clear_buffer_meta(bh);
1274 	clear_buffer_prio(bh);
1275 	return ret;
1276 }
1277 
1278 /*
1279  * We need to pick up the new inode size which generic_commit_write gave us
1280  * `file' can be NULL - eg, when called from page_symlink().
1281  *
1282  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283  * buffers are managed internally.
1284  */
1285 static int ext4_write_end(struct file *file,
1286 			  struct address_space *mapping,
1287 			  loff_t pos, unsigned len, unsigned copied,
1288 			  struct folio *folio, void *fsdata)
1289 {
1290 	handle_t *handle = ext4_journal_current_handle();
1291 	struct inode *inode = mapping->host;
1292 	loff_t old_size = inode->i_size;
1293 	int ret = 0, ret2;
1294 	int i_size_changed = 0;
1295 	bool verity = ext4_verity_in_progress(inode);
1296 
1297 	trace_ext4_write_end(inode, pos, len, copied);
1298 
1299 	if (ext4_has_inline_data(inode) &&
1300 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301 		return ext4_write_inline_data_end(inode, pos, len, copied,
1302 						  folio);
1303 
1304 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305 	/*
1306 	 * it's important to update i_size while still holding folio lock:
1307 	 * page writeout could otherwise come in and zero beyond i_size.
1308 	 *
1309 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310 	 * blocks are being written past EOF, so skip the i_size update.
1311 	 */
1312 	if (!verity)
1313 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314 	folio_unlock(folio);
1315 	folio_put(folio);
1316 
1317 	if (old_size < pos && !verity) {
1318 		pagecache_isize_extended(inode, old_size, pos);
1319 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320 	}
1321 	/*
1322 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323 	 * makes the holding time of folio lock longer. Second, it forces lock
1324 	 * ordering of folio lock and transaction start for journaling
1325 	 * filesystems.
1326 	 */
1327 	if (i_size_changed)
1328 		ret = ext4_mark_inode_dirty(handle, inode);
1329 
1330 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 		/* if we have allocated more blocks and copied
1332 		 * less. We will have blocks allocated outside
1333 		 * inode->i_size. So truncate them
1334 		 */
1335 		ext4_orphan_add(handle, inode);
1336 
1337 	ret2 = ext4_journal_stop(handle);
1338 	if (!ret)
1339 		ret = ret2;
1340 
1341 	if (pos + len > inode->i_size && !verity) {
1342 		ext4_truncate_failed_write(inode);
1343 		/*
1344 		 * If truncate failed early the inode might still be
1345 		 * on the orphan list; we need to make sure the inode
1346 		 * is removed from the orphan list in that case.
1347 		 */
1348 		if (inode->i_nlink)
1349 			ext4_orphan_del(NULL, inode);
1350 	}
1351 
1352 	return ret ? ret : copied;
1353 }
1354 
1355 /*
1356  * This is a private version of folio_zero_new_buffers() which doesn't
1357  * set the buffer to be dirty, since in data=journalled mode we need
1358  * to call ext4_dirty_journalled_data() instead.
1359  */
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 					    struct inode *inode,
1362 					    struct folio *folio,
1363 					    unsigned from, unsigned to)
1364 {
1365 	unsigned int block_start = 0, block_end;
1366 	struct buffer_head *head, *bh;
1367 
1368 	bh = head = folio_buffers(folio);
1369 	do {
1370 		block_end = block_start + bh->b_size;
1371 		if (buffer_new(bh)) {
1372 			if (block_end > from && block_start < to) {
1373 				if (!folio_test_uptodate(folio)) {
1374 					unsigned start, size;
1375 
1376 					start = max(from, block_start);
1377 					size = min(to, block_end) - start;
1378 
1379 					folio_zero_range(folio, start, size);
1380 				}
1381 				clear_buffer_new(bh);
1382 				write_end_fn(handle, inode, bh);
1383 			}
1384 		}
1385 		block_start = block_end;
1386 		bh = bh->b_this_page;
1387 	} while (bh != head);
1388 }
1389 
1390 static int ext4_journalled_write_end(struct file *file,
1391 				     struct address_space *mapping,
1392 				     loff_t pos, unsigned len, unsigned copied,
1393 				     struct folio *folio, void *fsdata)
1394 {
1395 	handle_t *handle = ext4_journal_current_handle();
1396 	struct inode *inode = mapping->host;
1397 	loff_t old_size = inode->i_size;
1398 	int ret = 0, ret2;
1399 	int partial = 0;
1400 	unsigned from, to;
1401 	int size_changed = 0;
1402 	bool verity = ext4_verity_in_progress(inode);
1403 
1404 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 	from = pos & (PAGE_SIZE - 1);
1406 	to = from + len;
1407 
1408 	BUG_ON(!ext4_handle_valid(handle));
1409 
1410 	if (ext4_has_inline_data(inode))
1411 		return ext4_write_inline_data_end(inode, pos, len, copied,
1412 						  folio);
1413 
1414 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415 		copied = 0;
1416 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417 						 from, to);
1418 	} else {
1419 		if (unlikely(copied < len))
1420 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421 							 from + copied, to);
1422 		ret = ext4_walk_page_buffers(handle, inode,
1423 					     folio_buffers(folio),
1424 					     from, from + copied, &partial,
1425 					     write_end_fn);
1426 		if (!partial)
1427 			folio_mark_uptodate(folio);
1428 	}
1429 	if (!verity)
1430 		size_changed = ext4_update_inode_size(inode, pos + copied);
1431 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 	folio_unlock(folio);
1433 	folio_put(folio);
1434 
1435 	if (old_size < pos && !verity) {
1436 		pagecache_isize_extended(inode, old_size, pos);
1437 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438 	}
1439 
1440 	if (size_changed) {
1441 		ret2 = ext4_mark_inode_dirty(handle, inode);
1442 		if (!ret)
1443 			ret = ret2;
1444 	}
1445 
1446 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447 		/* if we have allocated more blocks and copied
1448 		 * less. We will have blocks allocated outside
1449 		 * inode->i_size. So truncate them
1450 		 */
1451 		ext4_orphan_add(handle, inode);
1452 
1453 	ret2 = ext4_journal_stop(handle);
1454 	if (!ret)
1455 		ret = ret2;
1456 	if (pos + len > inode->i_size && !verity) {
1457 		ext4_truncate_failed_write(inode);
1458 		/*
1459 		 * If truncate failed early the inode might still be
1460 		 * on the orphan list; we need to make sure the inode
1461 		 * is removed from the orphan list in that case.
1462 		 */
1463 		if (inode->i_nlink)
1464 			ext4_orphan_del(NULL, inode);
1465 	}
1466 
1467 	return ret ? ret : copied;
1468 }
1469 
1470 /*
1471  * Reserve space for 'nr_resv' clusters
1472  */
1473 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474 {
1475 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 	struct ext4_inode_info *ei = EXT4_I(inode);
1477 	int ret;
1478 
1479 	/*
1480 	 * We will charge metadata quota at writeout time; this saves
1481 	 * us from metadata over-estimation, though we may go over by
1482 	 * a small amount in the end.  Here we just reserve for data.
1483 	 */
1484 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485 	if (ret)
1486 		return ret;
1487 
1488 	spin_lock(&ei->i_block_reservation_lock);
1489 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490 		spin_unlock(&ei->i_block_reservation_lock);
1491 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492 		return -ENOSPC;
1493 	}
1494 	ei->i_reserved_data_blocks += nr_resv;
1495 	trace_ext4_da_reserve_space(inode, nr_resv);
1496 	spin_unlock(&ei->i_block_reservation_lock);
1497 
1498 	return 0;       /* success */
1499 }
1500 
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1502 {
1503 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 	struct ext4_inode_info *ei = EXT4_I(inode);
1505 
1506 	if (!to_free)
1507 		return;		/* Nothing to release, exit */
1508 
1509 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510 
1511 	trace_ext4_da_release_space(inode, to_free);
1512 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 		/*
1514 		 * if there aren't enough reserved blocks, then the
1515 		 * counter is messed up somewhere.  Since this
1516 		 * function is called from invalidate page, it's
1517 		 * harmless to return without any action.
1518 		 */
1519 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 			 "ino %lu, to_free %d with only %d reserved "
1521 			 "data blocks", inode->i_ino, to_free,
1522 			 ei->i_reserved_data_blocks);
1523 		WARN_ON(1);
1524 		to_free = ei->i_reserved_data_blocks;
1525 	}
1526 	ei->i_reserved_data_blocks -= to_free;
1527 
1528 	/* update fs dirty data blocks counter */
1529 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530 
1531 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532 
1533 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534 }
1535 
1536 /*
1537  * Delayed allocation stuff
1538  */
1539 
1540 struct mpage_da_data {
1541 	/* These are input fields for ext4_do_writepages() */
1542 	struct inode *inode;
1543 	struct writeback_control *wbc;
1544 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545 
1546 	/* These are internal state of ext4_do_writepages() */
1547 	pgoff_t first_page;	/* The first page to write */
1548 	pgoff_t next_page;	/* Current page to examine */
1549 	pgoff_t last_page;	/* Last page to examine */
1550 	/*
1551 	 * Extent to map - this can be after first_page because that can be
1552 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553 	 * is delalloc or unwritten.
1554 	 */
1555 	struct ext4_map_blocks map;
1556 	struct ext4_io_submit io_submit;	/* IO submission data */
1557 	unsigned int do_map:1;
1558 	unsigned int scanned_until_end:1;
1559 	unsigned int journalled_more_data:1;
1560 };
1561 
1562 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 				       bool invalidate)
1564 {
1565 	unsigned nr, i;
1566 	pgoff_t index, end;
1567 	struct folio_batch fbatch;
1568 	struct inode *inode = mpd->inode;
1569 	struct address_space *mapping = inode->i_mapping;
1570 
1571 	/* This is necessary when next_page == 0. */
1572 	if (mpd->first_page >= mpd->next_page)
1573 		return;
1574 
1575 	mpd->scanned_until_end = 0;
1576 	index = mpd->first_page;
1577 	end   = mpd->next_page - 1;
1578 	if (invalidate) {
1579 		ext4_lblk_t start, last;
1580 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582 
1583 		/*
1584 		 * avoid racing with extent status tree scans made by
1585 		 * ext4_insert_delayed_block()
1586 		 */
1587 		down_write(&EXT4_I(inode)->i_data_sem);
1588 		ext4_es_remove_extent(inode, start, last - start + 1);
1589 		up_write(&EXT4_I(inode)->i_data_sem);
1590 	}
1591 
1592 	folio_batch_init(&fbatch);
1593 	while (index <= end) {
1594 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595 		if (nr == 0)
1596 			break;
1597 		for (i = 0; i < nr; i++) {
1598 			struct folio *folio = fbatch.folios[i];
1599 
1600 			if (folio->index < mpd->first_page)
1601 				continue;
1602 			if (folio_next_index(folio) - 1 > end)
1603 				continue;
1604 			BUG_ON(!folio_test_locked(folio));
1605 			BUG_ON(folio_test_writeback(folio));
1606 			if (invalidate) {
1607 				if (folio_mapped(folio))
1608 					folio_clear_dirty_for_io(folio);
1609 				block_invalidate_folio(folio, 0,
1610 						folio_size(folio));
1611 				folio_clear_uptodate(folio);
1612 			}
1613 			folio_unlock(folio);
1614 		}
1615 		folio_batch_release(&fbatch);
1616 	}
1617 }
1618 
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 	struct super_block *sb = inode->i_sb;
1623 	struct ext4_inode_info *ei = EXT4_I(inode);
1624 
1625 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627 			ext4_count_free_clusters(sb)));
1628 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630 	       (long long) EXT4_C2B(EXT4_SB(sb),
1631 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633 	       (long long) EXT4_C2B(EXT4_SB(sb),
1634 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637 		 ei->i_reserved_data_blocks);
1638 	return;
1639 }
1640 
1641 /*
1642  * Check whether the cluster containing lblk has been allocated or has
1643  * delalloc reservation.
1644  *
1645  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646  * reservation, 2 if it's already been allocated, negative error code on
1647  * failure.
1648  */
1649 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650 {
1651 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 	int ret;
1653 
1654 	/* Has delalloc reservation? */
1655 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656 		return 1;
1657 
1658 	/* Already been allocated? */
1659 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660 		return 2;
1661 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662 	if (ret < 0)
1663 		return ret;
1664 	if (ret > 0)
1665 		return 2;
1666 
1667 	return 0;
1668 }
1669 
1670 /*
1671  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672  *                              status tree, incrementing the reserved
1673  *                              cluster/block count or making pending
1674  *                              reservations where needed
1675  *
1676  * @inode - file containing the newly added block
1677  * @lblk - start logical block to be added
1678  * @len - length of blocks to be added
1679  *
1680  * Returns 0 on success, negative error code on failure.
1681  */
1682 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683 				      ext4_lblk_t len)
1684 {
1685 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686 	int ret;
1687 	bool lclu_allocated = false;
1688 	bool end_allocated = false;
1689 	ext4_lblk_t resv_clu;
1690 	ext4_lblk_t end = lblk + len - 1;
1691 
1692 	/*
1693 	 * If the cluster containing lblk or end is shared with a delayed,
1694 	 * written, or unwritten extent in a bigalloc file system, it's
1695 	 * already been accounted for and does not need to be reserved.
1696 	 * A pending reservation must be made for the cluster if it's
1697 	 * shared with a written or unwritten extent and doesn't already
1698 	 * have one.  Written and unwritten extents can be purged from the
1699 	 * extents status tree if the system is under memory pressure, so
1700 	 * it's necessary to examine the extent tree if a search of the
1701 	 * extents status tree doesn't get a match.
1702 	 */
1703 	if (sbi->s_cluster_ratio == 1) {
1704 		ret = ext4_da_reserve_space(inode, len);
1705 		if (ret != 0)   /* ENOSPC */
1706 			return ret;
1707 	} else {   /* bigalloc */
1708 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709 
1710 		ret = ext4_clu_alloc_state(inode, lblk);
1711 		if (ret < 0)
1712 			return ret;
1713 		if (ret > 0) {
1714 			resv_clu--;
1715 			lclu_allocated = (ret == 2);
1716 		}
1717 
1718 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719 			ret = ext4_clu_alloc_state(inode, end);
1720 			if (ret < 0)
1721 				return ret;
1722 			if (ret > 0) {
1723 				resv_clu--;
1724 				end_allocated = (ret == 2);
1725 			}
1726 		}
1727 
1728 		if (resv_clu) {
1729 			ret = ext4_da_reserve_space(inode, resv_clu);
1730 			if (ret != 0)   /* ENOSPC */
1731 				return ret;
1732 		}
1733 	}
1734 
1735 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736 				      end_allocated);
1737 	return 0;
1738 }
1739 
1740 /*
1741  * Looks up the requested blocks and sets the delalloc extent map.
1742  * First try to look up for the extent entry that contains the requested
1743  * blocks in the extent status tree without i_data_sem, then try to look
1744  * up for the ondisk extent mapping with i_data_sem in read mode,
1745  * finally hold i_data_sem in write mode, looks up again and add a
1746  * delalloc extent entry if it still couldn't find any extent. Pass out
1747  * the mapped extent through @map and return 0 on success.
1748  */
1749 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750 {
1751 	struct extent_status es;
1752 	int retval;
1753 #ifdef ES_AGGRESSIVE_TEST
1754 	struct ext4_map_blocks orig_map;
1755 
1756 	memcpy(&orig_map, map, sizeof(*map));
1757 #endif
1758 
1759 	map->m_flags = 0;
1760 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761 		  (unsigned long) map->m_lblk);
1762 
1763 	/* Lookup extent status tree firstly */
1764 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765 		map->m_len = min_t(unsigned int, map->m_len,
1766 				   es.es_len - (map->m_lblk - es.es_lblk));
1767 
1768 		if (ext4_es_is_hole(&es))
1769 			goto add_delayed;
1770 
1771 found:
1772 		/*
1773 		 * Delayed extent could be allocated by fallocate.
1774 		 * So we need to check it.
1775 		 */
1776 		if (ext4_es_is_delayed(&es)) {
1777 			map->m_flags |= EXT4_MAP_DELAYED;
1778 			return 0;
1779 		}
1780 
1781 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1782 		if (ext4_es_is_written(&es))
1783 			map->m_flags |= EXT4_MAP_MAPPED;
1784 		else if (ext4_es_is_unwritten(&es))
1785 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786 		else
1787 			BUG();
1788 
1789 #ifdef ES_AGGRESSIVE_TEST
1790 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791 #endif
1792 		return 0;
1793 	}
1794 
1795 	/*
1796 	 * Try to see if we can get the block without requesting a new
1797 	 * file system block.
1798 	 */
1799 	down_read(&EXT4_I(inode)->i_data_sem);
1800 	if (ext4_has_inline_data(inode))
1801 		retval = 0;
1802 	else
1803 		retval = ext4_map_query_blocks(NULL, inode, map);
1804 	up_read(&EXT4_I(inode)->i_data_sem);
1805 	if (retval)
1806 		return retval < 0 ? retval : 0;
1807 
1808 add_delayed:
1809 	down_write(&EXT4_I(inode)->i_data_sem);
1810 	/*
1811 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812 	 * and fallocate path (no folio lock) can race. Make sure we
1813 	 * lookup the extent status tree here again while i_data_sem
1814 	 * is held in write mode, before inserting a new da entry in
1815 	 * the extent status tree.
1816 	 */
1817 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818 		map->m_len = min_t(unsigned int, map->m_len,
1819 				   es.es_len - (map->m_lblk - es.es_lblk));
1820 
1821 		if (!ext4_es_is_hole(&es)) {
1822 			up_write(&EXT4_I(inode)->i_data_sem);
1823 			goto found;
1824 		}
1825 	} else if (!ext4_has_inline_data(inode)) {
1826 		retval = ext4_map_query_blocks(NULL, inode, map);
1827 		if (retval) {
1828 			up_write(&EXT4_I(inode)->i_data_sem);
1829 			return retval < 0 ? retval : 0;
1830 		}
1831 	}
1832 
1833 	map->m_flags |= EXT4_MAP_DELAYED;
1834 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835 	up_write(&EXT4_I(inode)->i_data_sem);
1836 
1837 	return retval;
1838 }
1839 
1840 /*
1841  * This is a special get_block_t callback which is used by
1842  * ext4_da_write_begin().  It will either return mapped block or
1843  * reserve space for a single block.
1844  *
1845  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846  * We also have b_blocknr = -1 and b_bdev initialized properly
1847  *
1848  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850  * initialized properly.
1851  */
1852 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853 			   struct buffer_head *bh, int create)
1854 {
1855 	struct ext4_map_blocks map;
1856 	sector_t invalid_block = ~((sector_t) 0xffff);
1857 	int ret = 0;
1858 
1859 	BUG_ON(create == 0);
1860 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861 
1862 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863 		invalid_block = ~0;
1864 
1865 	map.m_lblk = iblock;
1866 	map.m_len = 1;
1867 
1868 	/*
1869 	 * first, we need to know whether the block is allocated already
1870 	 * preallocated blocks are unmapped but should treated
1871 	 * the same as allocated blocks.
1872 	 */
1873 	ret = ext4_da_map_blocks(inode, &map);
1874 	if (ret < 0)
1875 		return ret;
1876 
1877 	if (map.m_flags & EXT4_MAP_DELAYED) {
1878 		map_bh(bh, inode->i_sb, invalid_block);
1879 		set_buffer_new(bh);
1880 		set_buffer_delay(bh);
1881 		return 0;
1882 	}
1883 
1884 	map_bh(bh, inode->i_sb, map.m_pblk);
1885 	ext4_update_bh_state(bh, map.m_flags);
1886 
1887 	if (buffer_unwritten(bh)) {
1888 		/* A delayed write to unwritten bh should be marked
1889 		 * new and mapped.  Mapped ensures that we don't do
1890 		 * get_block multiple times when we write to the same
1891 		 * offset and new ensures that we do proper zero out
1892 		 * for partial write.
1893 		 */
1894 		set_buffer_new(bh);
1895 		set_buffer_mapped(bh);
1896 	}
1897 	return 0;
1898 }
1899 
1900 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901 {
1902 	mpd->first_page += folio_nr_pages(folio);
1903 	folio_unlock(folio);
1904 }
1905 
1906 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907 {
1908 	size_t len;
1909 	loff_t size;
1910 	int err;
1911 
1912 	BUG_ON(folio->index != mpd->first_page);
1913 	folio_clear_dirty_for_io(folio);
1914 	/*
1915 	 * We have to be very careful here!  Nothing protects writeback path
1916 	 * against i_size changes and the page can be writeably mapped into
1917 	 * page tables. So an application can be growing i_size and writing
1918 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919 	 * write-protects our page in page tables and the page cannot get
1920 	 * written to again until we release folio lock. So only after
1921 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923 	 * on the barrier provided by folio_test_clear_dirty() in
1924 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925 	 * after page tables are updated.
1926 	 */
1927 	size = i_size_read(mpd->inode);
1928 	len = folio_size(folio);
1929 	if (folio_pos(folio) + len > size &&
1930 	    !ext4_verity_in_progress(mpd->inode))
1931 		len = size & (len - 1);
1932 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933 	if (!err)
1934 		mpd->wbc->nr_to_write--;
1935 
1936 	return err;
1937 }
1938 
1939 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940 
1941 /*
1942  * mballoc gives us at most this number of blocks...
1943  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944  * The rest of mballoc seems to handle chunks up to full group size.
1945  */
1946 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1947 
1948 /*
1949  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950  *
1951  * @mpd - extent of blocks
1952  * @lblk - logical number of the block in the file
1953  * @bh - buffer head we want to add to the extent
1954  *
1955  * The function is used to collect contig. blocks in the same state. If the
1956  * buffer doesn't require mapping for writeback and we haven't started the
1957  * extent of buffers to map yet, the function returns 'true' immediately - the
1958  * caller can write the buffer right away. Otherwise the function returns true
1959  * if the block has been added to the extent, false if the block couldn't be
1960  * added.
1961  */
1962 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963 				   struct buffer_head *bh)
1964 {
1965 	struct ext4_map_blocks *map = &mpd->map;
1966 
1967 	/* Buffer that doesn't need mapping for writeback? */
1968 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970 		/* So far no extent to map => we write the buffer right away */
1971 		if (map->m_len == 0)
1972 			return true;
1973 		return false;
1974 	}
1975 
1976 	/* First block in the extent? */
1977 	if (map->m_len == 0) {
1978 		/* We cannot map unless handle is started... */
1979 		if (!mpd->do_map)
1980 			return false;
1981 		map->m_lblk = lblk;
1982 		map->m_len = 1;
1983 		map->m_flags = bh->b_state & BH_FLAGS;
1984 		return true;
1985 	}
1986 
1987 	/* Don't go larger than mballoc is willing to allocate */
1988 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989 		return false;
1990 
1991 	/* Can we merge the block to our big extent? */
1992 	if (lblk == map->m_lblk + map->m_len &&
1993 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994 		map->m_len++;
1995 		return true;
1996 	}
1997 	return false;
1998 }
1999 
2000 /*
2001  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002  *
2003  * @mpd - extent of blocks for mapping
2004  * @head - the first buffer in the page
2005  * @bh - buffer we should start processing from
2006  * @lblk - logical number of the block in the file corresponding to @bh
2007  *
2008  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009  * the page for IO if all buffers in this page were mapped and there's no
2010  * accumulated extent of buffers to map or add buffers in the page to the
2011  * extent of buffers to map. The function returns 1 if the caller can continue
2012  * by processing the next page, 0 if it should stop adding buffers to the
2013  * extent to map because we cannot extend it anymore. It can also return value
2014  * < 0 in case of error during IO submission.
2015  */
2016 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017 				   struct buffer_head *head,
2018 				   struct buffer_head *bh,
2019 				   ext4_lblk_t lblk)
2020 {
2021 	struct inode *inode = mpd->inode;
2022 	int err;
2023 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024 							>> inode->i_blkbits;
2025 
2026 	if (ext4_verity_in_progress(inode))
2027 		blocks = EXT_MAX_BLOCKS;
2028 
2029 	do {
2030 		BUG_ON(buffer_locked(bh));
2031 
2032 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033 			/* Found extent to map? */
2034 			if (mpd->map.m_len)
2035 				return 0;
2036 			/* Buffer needs mapping and handle is not started? */
2037 			if (!mpd->do_map)
2038 				return 0;
2039 			/* Everything mapped so far and we hit EOF */
2040 			break;
2041 		}
2042 	} while (lblk++, (bh = bh->b_this_page) != head);
2043 	/* So far everything mapped? Submit the page for IO. */
2044 	if (mpd->map.m_len == 0) {
2045 		err = mpage_submit_folio(mpd, head->b_folio);
2046 		if (err < 0)
2047 			return err;
2048 		mpage_folio_done(mpd, head->b_folio);
2049 	}
2050 	if (lblk >= blocks) {
2051 		mpd->scanned_until_end = 1;
2052 		return 0;
2053 	}
2054 	return 1;
2055 }
2056 
2057 /*
2058  * mpage_process_folio - update folio buffers corresponding to changed extent
2059  *			 and may submit fully mapped page for IO
2060  * @mpd: description of extent to map, on return next extent to map
2061  * @folio: Contains these buffers.
2062  * @m_lblk: logical block mapping.
2063  * @m_pblk: corresponding physical mapping.
2064  * @map_bh: determines on return whether this page requires any further
2065  *		  mapping or not.
2066  *
2067  * Scan given folio buffers corresponding to changed extent and update buffer
2068  * state according to new extent state.
2069  * We map delalloc buffers to their physical location, clear unwritten bits.
2070  * If the given folio is not fully mapped, we update @mpd to the next extent in
2071  * the given folio that needs mapping & return @map_bh as true.
2072  */
2073 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075 			      bool *map_bh)
2076 {
2077 	struct buffer_head *head, *bh;
2078 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079 	ext4_lblk_t lblk = *m_lblk;
2080 	ext4_fsblk_t pblock = *m_pblk;
2081 	int err = 0;
2082 	int blkbits = mpd->inode->i_blkbits;
2083 	ssize_t io_end_size = 0;
2084 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085 
2086 	bh = head = folio_buffers(folio);
2087 	do {
2088 		if (lblk < mpd->map.m_lblk)
2089 			continue;
2090 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091 			/*
2092 			 * Buffer after end of mapped extent.
2093 			 * Find next buffer in the folio to map.
2094 			 */
2095 			mpd->map.m_len = 0;
2096 			mpd->map.m_flags = 0;
2097 			io_end_vec->size += io_end_size;
2098 
2099 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100 			if (err > 0)
2101 				err = 0;
2102 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104 				if (IS_ERR(io_end_vec)) {
2105 					err = PTR_ERR(io_end_vec);
2106 					goto out;
2107 				}
2108 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109 			}
2110 			*map_bh = true;
2111 			goto out;
2112 		}
2113 		if (buffer_delay(bh)) {
2114 			clear_buffer_delay(bh);
2115 			bh->b_blocknr = pblock++;
2116 		}
2117 		clear_buffer_unwritten(bh);
2118 		io_end_size += (1 << blkbits);
2119 	} while (lblk++, (bh = bh->b_this_page) != head);
2120 
2121 	io_end_vec->size += io_end_size;
2122 	*map_bh = false;
2123 out:
2124 	*m_lblk = lblk;
2125 	*m_pblk = pblock;
2126 	return err;
2127 }
2128 
2129 /*
2130  * mpage_map_buffers - update buffers corresponding to changed extent and
2131  *		       submit fully mapped pages for IO
2132  *
2133  * @mpd - description of extent to map, on return next extent to map
2134  *
2135  * Scan buffers corresponding to changed extent (we expect corresponding pages
2136  * to be already locked) and update buffer state according to new extent state.
2137  * We map delalloc buffers to their physical location, clear unwritten bits,
2138  * and mark buffers as uninit when we perform writes to unwritten extents
2139  * and do extent conversion after IO is finished. If the last page is not fully
2140  * mapped, we update @map to the next extent in the last page that needs
2141  * mapping. Otherwise we submit the page for IO.
2142  */
2143 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144 {
2145 	struct folio_batch fbatch;
2146 	unsigned nr, i;
2147 	struct inode *inode = mpd->inode;
2148 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149 	pgoff_t start, end;
2150 	ext4_lblk_t lblk;
2151 	ext4_fsblk_t pblock;
2152 	int err;
2153 	bool map_bh = false;
2154 
2155 	start = mpd->map.m_lblk >> bpp_bits;
2156 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157 	lblk = start << bpp_bits;
2158 	pblock = mpd->map.m_pblk;
2159 
2160 	folio_batch_init(&fbatch);
2161 	while (start <= end) {
2162 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163 		if (nr == 0)
2164 			break;
2165 		for (i = 0; i < nr; i++) {
2166 			struct folio *folio = fbatch.folios[i];
2167 
2168 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169 						 &map_bh);
2170 			/*
2171 			 * If map_bh is true, means page may require further bh
2172 			 * mapping, or maybe the page was submitted for IO.
2173 			 * So we return to call further extent mapping.
2174 			 */
2175 			if (err < 0 || map_bh)
2176 				goto out;
2177 			/* Page fully mapped - let IO run! */
2178 			err = mpage_submit_folio(mpd, folio);
2179 			if (err < 0)
2180 				goto out;
2181 			mpage_folio_done(mpd, folio);
2182 		}
2183 		folio_batch_release(&fbatch);
2184 	}
2185 	/* Extent fully mapped and matches with page boundary. We are done. */
2186 	mpd->map.m_len = 0;
2187 	mpd->map.m_flags = 0;
2188 	return 0;
2189 out:
2190 	folio_batch_release(&fbatch);
2191 	return err;
2192 }
2193 
2194 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195 {
2196 	struct inode *inode = mpd->inode;
2197 	struct ext4_map_blocks *map = &mpd->map;
2198 	int get_blocks_flags;
2199 	int err, dioread_nolock;
2200 
2201 	trace_ext4_da_write_pages_extent(inode, map);
2202 	/*
2203 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204 	 * to convert an unwritten extent to be initialized (in the case
2205 	 * where we have written into one or more preallocated blocks).  It is
2206 	 * possible that we're going to need more metadata blocks than
2207 	 * previously reserved. However we must not fail because we're in
2208 	 * writeback and there is nothing we can do about it so it might result
2209 	 * in data loss.  So use reserved blocks to allocate metadata if
2210 	 * possible.
2211 	 */
2212 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215 	dioread_nolock = ext4_should_dioread_nolock(inode);
2216 	if (dioread_nolock)
2217 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2218 
2219 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220 	if (err < 0)
2221 		return err;
2222 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223 		if (!mpd->io_submit.io_end->handle &&
2224 		    ext4_handle_valid(handle)) {
2225 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226 			handle->h_rsv_handle = NULL;
2227 		}
2228 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229 	}
2230 
2231 	BUG_ON(map->m_len == 0);
2232 	return 0;
2233 }
2234 
2235 /*
2236  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237  *				 mpd->len and submit pages underlying it for IO
2238  *
2239  * @handle - handle for journal operations
2240  * @mpd - extent to map
2241  * @give_up_on_write - we set this to true iff there is a fatal error and there
2242  *                     is no hope of writing the data. The caller should discard
2243  *                     dirty pages to avoid infinite loops.
2244  *
2245  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247  * them to initialized or split the described range from larger unwritten
2248  * extent. Note that we need not map all the described range since allocation
2249  * can return less blocks or the range is covered by more unwritten extents. We
2250  * cannot map more because we are limited by reserved transaction credits. On
2251  * the other hand we always make sure that the last touched page is fully
2252  * mapped so that it can be written out (and thus forward progress is
2253  * guaranteed). After mapping we submit all mapped pages for IO.
2254  */
2255 static int mpage_map_and_submit_extent(handle_t *handle,
2256 				       struct mpage_da_data *mpd,
2257 				       bool *give_up_on_write)
2258 {
2259 	struct inode *inode = mpd->inode;
2260 	struct ext4_map_blocks *map = &mpd->map;
2261 	int err;
2262 	loff_t disksize;
2263 	int progress = 0;
2264 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265 	struct ext4_io_end_vec *io_end_vec;
2266 
2267 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268 	if (IS_ERR(io_end_vec))
2269 		return PTR_ERR(io_end_vec);
2270 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271 	do {
2272 		err = mpage_map_one_extent(handle, mpd);
2273 		if (err < 0) {
2274 			struct super_block *sb = inode->i_sb;
2275 
2276 			if (ext4_forced_shutdown(sb))
2277 				goto invalidate_dirty_pages;
2278 			/*
2279 			 * Let the uper layers retry transient errors.
2280 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281 			 * is non-zero, a commit should free up blocks.
2282 			 */
2283 			if ((err == -ENOMEM) ||
2284 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285 				if (progress)
2286 					goto update_disksize;
2287 				return err;
2288 			}
2289 			ext4_msg(sb, KERN_CRIT,
2290 				 "Delayed block allocation failed for "
2291 				 "inode %lu at logical offset %llu with"
2292 				 " max blocks %u with error %d",
2293 				 inode->i_ino,
2294 				 (unsigned long long)map->m_lblk,
2295 				 (unsigned)map->m_len, -err);
2296 			ext4_msg(sb, KERN_CRIT,
2297 				 "This should not happen!! Data will "
2298 				 "be lost\n");
2299 			if (err == -ENOSPC)
2300 				ext4_print_free_blocks(inode);
2301 		invalidate_dirty_pages:
2302 			*give_up_on_write = true;
2303 			return err;
2304 		}
2305 		progress = 1;
2306 		/*
2307 		 * Update buffer state, submit mapped pages, and get us new
2308 		 * extent to map
2309 		 */
2310 		err = mpage_map_and_submit_buffers(mpd);
2311 		if (err < 0)
2312 			goto update_disksize;
2313 	} while (map->m_len);
2314 
2315 update_disksize:
2316 	/*
2317 	 * Update on-disk size after IO is submitted.  Races with
2318 	 * truncate are avoided by checking i_size under i_data_sem.
2319 	 */
2320 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322 		int err2;
2323 		loff_t i_size;
2324 
2325 		down_write(&EXT4_I(inode)->i_data_sem);
2326 		i_size = i_size_read(inode);
2327 		if (disksize > i_size)
2328 			disksize = i_size;
2329 		if (disksize > EXT4_I(inode)->i_disksize)
2330 			EXT4_I(inode)->i_disksize = disksize;
2331 		up_write(&EXT4_I(inode)->i_data_sem);
2332 		err2 = ext4_mark_inode_dirty(handle, inode);
2333 		if (err2) {
2334 			ext4_error_err(inode->i_sb, -err2,
2335 				       "Failed to mark inode %lu dirty",
2336 				       inode->i_ino);
2337 		}
2338 		if (!err)
2339 			err = err2;
2340 	}
2341 	return err;
2342 }
2343 
2344 /*
2345  * Calculate the total number of credits to reserve for one writepages
2346  * iteration. This is called from ext4_writepages(). We map an extent of
2347  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349  * bpp - 1 blocks in bpp different extents.
2350  */
2351 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352 {
2353 	int bpp = ext4_journal_blocks_per_page(inode);
2354 
2355 	return ext4_meta_trans_blocks(inode,
2356 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357 }
2358 
2359 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360 				     size_t len)
2361 {
2362 	struct buffer_head *page_bufs = folio_buffers(folio);
2363 	struct inode *inode = folio->mapping->host;
2364 	int ret, err;
2365 
2366 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367 				     NULL, do_journal_get_write_access);
2368 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369 				     NULL, write_end_fn);
2370 	if (ret == 0)
2371 		ret = err;
2372 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373 	if (ret == 0)
2374 		ret = err;
2375 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376 
2377 	return ret;
2378 }
2379 
2380 static int mpage_journal_page_buffers(handle_t *handle,
2381 				      struct mpage_da_data *mpd,
2382 				      struct folio *folio)
2383 {
2384 	struct inode *inode = mpd->inode;
2385 	loff_t size = i_size_read(inode);
2386 	size_t len = folio_size(folio);
2387 
2388 	folio_clear_checked(folio);
2389 	mpd->wbc->nr_to_write--;
2390 
2391 	if (folio_pos(folio) + len > size &&
2392 	    !ext4_verity_in_progress(inode))
2393 		len = size & (len - 1);
2394 
2395 	return ext4_journal_folio_buffers(handle, folio, len);
2396 }
2397 
2398 /*
2399  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400  * 				 needing mapping, submit mapped pages
2401  *
2402  * @mpd - where to look for pages
2403  *
2404  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405  * IO immediately. If we cannot map blocks, we submit just already mapped
2406  * buffers in the page for IO and keep page dirty. When we can map blocks and
2407  * we find a page which isn't mapped we start accumulating extent of buffers
2408  * underlying these pages that needs mapping (formed by either delayed or
2409  * unwritten buffers). We also lock the pages containing these buffers. The
2410  * extent found is returned in @mpd structure (starting at mpd->lblk with
2411  * length mpd->len blocks).
2412  *
2413  * Note that this function can attach bios to one io_end structure which are
2414  * neither logically nor physically contiguous. Although it may seem as an
2415  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416  * case as we need to track IO to all buffers underlying a page in one io_end.
2417  */
2418 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419 {
2420 	struct address_space *mapping = mpd->inode->i_mapping;
2421 	struct folio_batch fbatch;
2422 	unsigned int nr_folios;
2423 	pgoff_t index = mpd->first_page;
2424 	pgoff_t end = mpd->last_page;
2425 	xa_mark_t tag;
2426 	int i, err = 0;
2427 	int blkbits = mpd->inode->i_blkbits;
2428 	ext4_lblk_t lblk;
2429 	struct buffer_head *head;
2430 	handle_t *handle = NULL;
2431 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432 
2433 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434 		tag = PAGECACHE_TAG_TOWRITE;
2435 	else
2436 		tag = PAGECACHE_TAG_DIRTY;
2437 
2438 	mpd->map.m_len = 0;
2439 	mpd->next_page = index;
2440 	if (ext4_should_journal_data(mpd->inode)) {
2441 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442 					    bpp);
2443 		if (IS_ERR(handle))
2444 			return PTR_ERR(handle);
2445 	}
2446 	folio_batch_init(&fbatch);
2447 	while (index <= end) {
2448 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449 				tag, &fbatch);
2450 		if (nr_folios == 0)
2451 			break;
2452 
2453 		for (i = 0; i < nr_folios; i++) {
2454 			struct folio *folio = fbatch.folios[i];
2455 
2456 			/*
2457 			 * Accumulated enough dirty pages? This doesn't apply
2458 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459 			 * keep going because someone may be concurrently
2460 			 * dirtying pages, and we might have synced a lot of
2461 			 * newly appeared dirty pages, but have not synced all
2462 			 * of the old dirty pages.
2463 			 */
2464 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465 			    mpd->wbc->nr_to_write <=
2466 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467 				goto out;
2468 
2469 			/* If we can't merge this page, we are done. */
2470 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471 				goto out;
2472 
2473 			if (handle) {
2474 				err = ext4_journal_ensure_credits(handle, bpp,
2475 								  0);
2476 				if (err < 0)
2477 					goto out;
2478 			}
2479 
2480 			folio_lock(folio);
2481 			/*
2482 			 * If the page is no longer dirty, or its mapping no
2483 			 * longer corresponds to inode we are writing (which
2484 			 * means it has been truncated or invalidated), or the
2485 			 * page is already under writeback and we are not doing
2486 			 * a data integrity writeback, skip the page
2487 			 */
2488 			if (!folio_test_dirty(folio) ||
2489 			    (folio_test_writeback(folio) &&
2490 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491 			    unlikely(folio->mapping != mapping)) {
2492 				folio_unlock(folio);
2493 				continue;
2494 			}
2495 
2496 			folio_wait_writeback(folio);
2497 			BUG_ON(folio_test_writeback(folio));
2498 
2499 			/*
2500 			 * Should never happen but for buggy code in
2501 			 * other subsystems that call
2502 			 * set_page_dirty() without properly warning
2503 			 * the file system first.  See [1] for more
2504 			 * information.
2505 			 *
2506 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507 			 */
2508 			if (!folio_buffers(folio)) {
2509 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510 				folio_clear_dirty(folio);
2511 				folio_unlock(folio);
2512 				continue;
2513 			}
2514 
2515 			if (mpd->map.m_len == 0)
2516 				mpd->first_page = folio->index;
2517 			mpd->next_page = folio_next_index(folio);
2518 			/*
2519 			 * Writeout when we cannot modify metadata is simple.
2520 			 * Just submit the page. For data=journal mode we
2521 			 * first handle writeout of the page for checkpoint and
2522 			 * only after that handle delayed page dirtying. This
2523 			 * makes sure current data is checkpointed to the final
2524 			 * location before possibly journalling it again which
2525 			 * is desirable when the page is frequently dirtied
2526 			 * through a pin.
2527 			 */
2528 			if (!mpd->can_map) {
2529 				err = mpage_submit_folio(mpd, folio);
2530 				if (err < 0)
2531 					goto out;
2532 				/* Pending dirtying of journalled data? */
2533 				if (folio_test_checked(folio)) {
2534 					err = mpage_journal_page_buffers(handle,
2535 						mpd, folio);
2536 					if (err < 0)
2537 						goto out;
2538 					mpd->journalled_more_data = 1;
2539 				}
2540 				mpage_folio_done(mpd, folio);
2541 			} else {
2542 				/* Add all dirty buffers to mpd */
2543 				lblk = ((ext4_lblk_t)folio->index) <<
2544 					(PAGE_SHIFT - blkbits);
2545 				head = folio_buffers(folio);
2546 				err = mpage_process_page_bufs(mpd, head, head,
2547 						lblk);
2548 				if (err <= 0)
2549 					goto out;
2550 				err = 0;
2551 			}
2552 		}
2553 		folio_batch_release(&fbatch);
2554 		cond_resched();
2555 	}
2556 	mpd->scanned_until_end = 1;
2557 	if (handle)
2558 		ext4_journal_stop(handle);
2559 	return 0;
2560 out:
2561 	folio_batch_release(&fbatch);
2562 	if (handle)
2563 		ext4_journal_stop(handle);
2564 	return err;
2565 }
2566 
2567 static int ext4_do_writepages(struct mpage_da_data *mpd)
2568 {
2569 	struct writeback_control *wbc = mpd->wbc;
2570 	pgoff_t	writeback_index = 0;
2571 	long nr_to_write = wbc->nr_to_write;
2572 	int range_whole = 0;
2573 	int cycled = 1;
2574 	handle_t *handle = NULL;
2575 	struct inode *inode = mpd->inode;
2576 	struct address_space *mapping = inode->i_mapping;
2577 	int needed_blocks, rsv_blocks = 0, ret = 0;
2578 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579 	struct blk_plug plug;
2580 	bool give_up_on_write = false;
2581 
2582 	trace_ext4_writepages(inode, wbc);
2583 
2584 	/*
2585 	 * No pages to write? This is mainly a kludge to avoid starting
2586 	 * a transaction for special inodes like journal inode on last iput()
2587 	 * because that could violate lock ordering on umount
2588 	 */
2589 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590 		goto out_writepages;
2591 
2592 	/*
2593 	 * If the filesystem has aborted, it is read-only, so return
2594 	 * right away instead of dumping stack traces later on that
2595 	 * will obscure the real source of the problem.  We test
2596 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597 	 * the latter could be true if the filesystem is mounted
2598 	 * read-only, and in that case, ext4_writepages should
2599 	 * *never* be called, so if that ever happens, we would want
2600 	 * the stack trace.
2601 	 */
2602 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603 		ret = -EROFS;
2604 		goto out_writepages;
2605 	}
2606 
2607 	/*
2608 	 * If we have inline data and arrive here, it means that
2609 	 * we will soon create the block for the 1st page, so
2610 	 * we'd better clear the inline data here.
2611 	 */
2612 	if (ext4_has_inline_data(inode)) {
2613 		/* Just inode will be modified... */
2614 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615 		if (IS_ERR(handle)) {
2616 			ret = PTR_ERR(handle);
2617 			goto out_writepages;
2618 		}
2619 		BUG_ON(ext4_test_inode_state(inode,
2620 				EXT4_STATE_MAY_INLINE_DATA));
2621 		ext4_destroy_inline_data(handle, inode);
2622 		ext4_journal_stop(handle);
2623 	}
2624 
2625 	/*
2626 	 * data=journal mode does not do delalloc so we just need to writeout /
2627 	 * journal already mapped buffers. On the other hand we need to commit
2628 	 * transaction to make data stable. We expect all the data to be
2629 	 * already in the journal (the only exception are DMA pinned pages
2630 	 * dirtied behind our back) so we commit transaction here and run the
2631 	 * writeback loop to checkpoint them. The checkpointing is not actually
2632 	 * necessary to make data persistent *but* quite a few places (extent
2633 	 * shifting operations, fsverity, ...) depend on being able to drop
2634 	 * pagecache pages after calling filemap_write_and_wait() and for that
2635 	 * checkpointing needs to happen.
2636 	 */
2637 	if (ext4_should_journal_data(inode)) {
2638 		mpd->can_map = 0;
2639 		if (wbc->sync_mode == WB_SYNC_ALL)
2640 			ext4_fc_commit(sbi->s_journal,
2641 				       EXT4_I(inode)->i_datasync_tid);
2642 	}
2643 	mpd->journalled_more_data = 0;
2644 
2645 	if (ext4_should_dioread_nolock(inode)) {
2646 		/*
2647 		 * We may need to convert up to one extent per block in
2648 		 * the page and we may dirty the inode.
2649 		 */
2650 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651 						PAGE_SIZE >> inode->i_blkbits);
2652 	}
2653 
2654 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655 		range_whole = 1;
2656 
2657 	if (wbc->range_cyclic) {
2658 		writeback_index = mapping->writeback_index;
2659 		if (writeback_index)
2660 			cycled = 0;
2661 		mpd->first_page = writeback_index;
2662 		mpd->last_page = -1;
2663 	} else {
2664 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666 	}
2667 
2668 	ext4_io_submit_init(&mpd->io_submit, wbc);
2669 retry:
2670 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671 		tag_pages_for_writeback(mapping, mpd->first_page,
2672 					mpd->last_page);
2673 	blk_start_plug(&plug);
2674 
2675 	/*
2676 	 * First writeback pages that don't need mapping - we can avoid
2677 	 * starting a transaction unnecessarily and also avoid being blocked
2678 	 * in the block layer on device congestion while having transaction
2679 	 * started.
2680 	 */
2681 	mpd->do_map = 0;
2682 	mpd->scanned_until_end = 0;
2683 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684 	if (!mpd->io_submit.io_end) {
2685 		ret = -ENOMEM;
2686 		goto unplug;
2687 	}
2688 	ret = mpage_prepare_extent_to_map(mpd);
2689 	/* Unlock pages we didn't use */
2690 	mpage_release_unused_pages(mpd, false);
2691 	/* Submit prepared bio */
2692 	ext4_io_submit(&mpd->io_submit);
2693 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694 	mpd->io_submit.io_end = NULL;
2695 	if (ret < 0)
2696 		goto unplug;
2697 
2698 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699 		/* For each extent of pages we use new io_end */
2700 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701 		if (!mpd->io_submit.io_end) {
2702 			ret = -ENOMEM;
2703 			break;
2704 		}
2705 
2706 		WARN_ON_ONCE(!mpd->can_map);
2707 		/*
2708 		 * We have two constraints: We find one extent to map and we
2709 		 * must always write out whole page (makes a difference when
2710 		 * blocksize < pagesize) so that we don't block on IO when we
2711 		 * try to write out the rest of the page. Journalled mode is
2712 		 * not supported by delalloc.
2713 		 */
2714 		BUG_ON(ext4_should_journal_data(inode));
2715 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716 
2717 		/* start a new transaction */
2718 		handle = ext4_journal_start_with_reserve(inode,
2719 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720 		if (IS_ERR(handle)) {
2721 			ret = PTR_ERR(handle);
2722 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723 			       "%ld pages, ino %lu; err %d", __func__,
2724 				wbc->nr_to_write, inode->i_ino, ret);
2725 			/* Release allocated io_end */
2726 			ext4_put_io_end(mpd->io_submit.io_end);
2727 			mpd->io_submit.io_end = NULL;
2728 			break;
2729 		}
2730 		mpd->do_map = 1;
2731 
2732 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733 		ret = mpage_prepare_extent_to_map(mpd);
2734 		if (!ret && mpd->map.m_len)
2735 			ret = mpage_map_and_submit_extent(handle, mpd,
2736 					&give_up_on_write);
2737 		/*
2738 		 * Caution: If the handle is synchronous,
2739 		 * ext4_journal_stop() can wait for transaction commit
2740 		 * to finish which may depend on writeback of pages to
2741 		 * complete or on page lock to be released.  In that
2742 		 * case, we have to wait until after we have
2743 		 * submitted all the IO, released page locks we hold,
2744 		 * and dropped io_end reference (for extent conversion
2745 		 * to be able to complete) before stopping the handle.
2746 		 */
2747 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748 			ext4_journal_stop(handle);
2749 			handle = NULL;
2750 			mpd->do_map = 0;
2751 		}
2752 		/* Unlock pages we didn't use */
2753 		mpage_release_unused_pages(mpd, give_up_on_write);
2754 		/* Submit prepared bio */
2755 		ext4_io_submit(&mpd->io_submit);
2756 
2757 		/*
2758 		 * Drop our io_end reference we got from init. We have
2759 		 * to be careful and use deferred io_end finishing if
2760 		 * we are still holding the transaction as we can
2761 		 * release the last reference to io_end which may end
2762 		 * up doing unwritten extent conversion.
2763 		 */
2764 		if (handle) {
2765 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766 			ext4_journal_stop(handle);
2767 		} else
2768 			ext4_put_io_end(mpd->io_submit.io_end);
2769 		mpd->io_submit.io_end = NULL;
2770 
2771 		if (ret == -ENOSPC && sbi->s_journal) {
2772 			/*
2773 			 * Commit the transaction which would
2774 			 * free blocks released in the transaction
2775 			 * and try again
2776 			 */
2777 			jbd2_journal_force_commit_nested(sbi->s_journal);
2778 			ret = 0;
2779 			continue;
2780 		}
2781 		/* Fatal error - ENOMEM, EIO... */
2782 		if (ret)
2783 			break;
2784 	}
2785 unplug:
2786 	blk_finish_plug(&plug);
2787 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788 		cycled = 1;
2789 		mpd->last_page = writeback_index - 1;
2790 		mpd->first_page = 0;
2791 		goto retry;
2792 	}
2793 
2794 	/* Update index */
2795 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796 		/*
2797 		 * Set the writeback_index so that range_cyclic
2798 		 * mode will write it back later
2799 		 */
2800 		mapping->writeback_index = mpd->first_page;
2801 
2802 out_writepages:
2803 	trace_ext4_writepages_result(inode, wbc, ret,
2804 				     nr_to_write - wbc->nr_to_write);
2805 	return ret;
2806 }
2807 
2808 static int ext4_writepages(struct address_space *mapping,
2809 			   struct writeback_control *wbc)
2810 {
2811 	struct super_block *sb = mapping->host->i_sb;
2812 	struct mpage_da_data mpd = {
2813 		.inode = mapping->host,
2814 		.wbc = wbc,
2815 		.can_map = 1,
2816 	};
2817 	int ret;
2818 	int alloc_ctx;
2819 
2820 	if (unlikely(ext4_forced_shutdown(sb)))
2821 		return -EIO;
2822 
2823 	alloc_ctx = ext4_writepages_down_read(sb);
2824 	ret = ext4_do_writepages(&mpd);
2825 	/*
2826 	 * For data=journal writeback we could have come across pages marked
2827 	 * for delayed dirtying (PageChecked) which were just added to the
2828 	 * running transaction. Try once more to get them to stable storage.
2829 	 */
2830 	if (!ret && mpd.journalled_more_data)
2831 		ret = ext4_do_writepages(&mpd);
2832 	ext4_writepages_up_read(sb, alloc_ctx);
2833 
2834 	return ret;
2835 }
2836 
2837 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838 {
2839 	struct writeback_control wbc = {
2840 		.sync_mode = WB_SYNC_ALL,
2841 		.nr_to_write = LONG_MAX,
2842 		.range_start = jinode->i_dirty_start,
2843 		.range_end = jinode->i_dirty_end,
2844 	};
2845 	struct mpage_da_data mpd = {
2846 		.inode = jinode->i_vfs_inode,
2847 		.wbc = &wbc,
2848 		.can_map = 0,
2849 	};
2850 	return ext4_do_writepages(&mpd);
2851 }
2852 
2853 static int ext4_dax_writepages(struct address_space *mapping,
2854 			       struct writeback_control *wbc)
2855 {
2856 	int ret;
2857 	long nr_to_write = wbc->nr_to_write;
2858 	struct inode *inode = mapping->host;
2859 	int alloc_ctx;
2860 
2861 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862 		return -EIO;
2863 
2864 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865 	trace_ext4_writepages(inode, wbc);
2866 
2867 	ret = dax_writeback_mapping_range(mapping,
2868 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869 	trace_ext4_writepages_result(inode, wbc, ret,
2870 				     nr_to_write - wbc->nr_to_write);
2871 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872 	return ret;
2873 }
2874 
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877 	s64 free_clusters, dirty_clusters;
2878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879 
2880 	/*
2881 	 * switch to non delalloc mode if we are running low
2882 	 * on free block. The free block accounting via percpu
2883 	 * counters can get slightly wrong with percpu_counter_batch getting
2884 	 * accumulated on each CPU without updating global counters
2885 	 * Delalloc need an accurate free block accounting. So switch
2886 	 * to non delalloc when we are near to error range.
2887 	 */
2888 	free_clusters =
2889 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 	dirty_clusters =
2891 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 	/*
2893 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 	 */
2895 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897 
2898 	if (2 * free_clusters < 3 * dirty_clusters ||
2899 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 		/*
2901 		 * free block count is less than 150% of dirty blocks
2902 		 * or free blocks is less than watermark
2903 		 */
2904 		return 1;
2905 	}
2906 	return 0;
2907 }
2908 
2909 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910 			       loff_t pos, unsigned len,
2911 			       struct folio **foliop, void **fsdata)
2912 {
2913 	int ret, retries = 0;
2914 	struct folio *folio;
2915 	pgoff_t index;
2916 	struct inode *inode = mapping->host;
2917 
2918 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919 		return -EIO;
2920 
2921 	index = pos >> PAGE_SHIFT;
2922 
2923 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925 		return ext4_write_begin(file, mapping, pos,
2926 					len, foliop, fsdata);
2927 	}
2928 	*fsdata = (void *)0;
2929 	trace_ext4_da_write_begin(inode, pos, len);
2930 
2931 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933 						      foliop, fsdata);
2934 		if (ret < 0)
2935 			return ret;
2936 		if (ret == 1)
2937 			return 0;
2938 	}
2939 
2940 retry:
2941 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942 			mapping_gfp_mask(mapping));
2943 	if (IS_ERR(folio))
2944 		return PTR_ERR(folio);
2945 
2946 	ret = ext4_block_write_begin(NULL, folio, pos, len,
2947 				     ext4_da_get_block_prep);
2948 	if (ret < 0) {
2949 		folio_unlock(folio);
2950 		folio_put(folio);
2951 		/*
2952 		 * block_write_begin may have instantiated a few blocks
2953 		 * outside i_size.  Trim these off again. Don't need
2954 		 * i_size_read because we hold inode lock.
2955 		 */
2956 		if (pos + len > inode->i_size)
2957 			ext4_truncate_failed_write(inode);
2958 
2959 		if (ret == -ENOSPC &&
2960 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961 			goto retry;
2962 		return ret;
2963 	}
2964 
2965 	*foliop = folio;
2966 	return ret;
2967 }
2968 
2969 /*
2970  * Check if we should update i_disksize
2971  * when write to the end of file but not require block allocation
2972  */
2973 static int ext4_da_should_update_i_disksize(struct folio *folio,
2974 					    unsigned long offset)
2975 {
2976 	struct buffer_head *bh;
2977 	struct inode *inode = folio->mapping->host;
2978 	unsigned int idx;
2979 	int i;
2980 
2981 	bh = folio_buffers(folio);
2982 	idx = offset >> inode->i_blkbits;
2983 
2984 	for (i = 0; i < idx; i++)
2985 		bh = bh->b_this_page;
2986 
2987 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988 		return 0;
2989 	return 1;
2990 }
2991 
2992 static int ext4_da_do_write_end(struct address_space *mapping,
2993 			loff_t pos, unsigned len, unsigned copied,
2994 			struct folio *folio)
2995 {
2996 	struct inode *inode = mapping->host;
2997 	loff_t old_size = inode->i_size;
2998 	bool disksize_changed = false;
2999 	loff_t new_i_size, zero_len = 0;
3000 	handle_t *handle;
3001 
3002 	if (unlikely(!folio_buffers(folio))) {
3003 		folio_unlock(folio);
3004 		folio_put(folio);
3005 		return -EIO;
3006 	}
3007 	/*
3008 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009 	 * flag, which all that's needed to trigger page writeback.
3010 	 */
3011 	copied = block_write_end(NULL, mapping, pos, len, copied,
3012 			folio, NULL);
3013 	new_i_size = pos + copied;
3014 
3015 	/*
3016 	 * It's important to update i_size while still holding folio lock,
3017 	 * because folio writeout could otherwise come in and zero beyond
3018 	 * i_size.
3019 	 *
3020 	 * Since we are holding inode lock, we are sure i_disksize <=
3021 	 * i_size. We also know that if i_disksize < i_size, there are
3022 	 * delalloc writes pending in the range up to i_size. If the end of
3023 	 * the current write is <= i_size, there's no need to touch
3024 	 * i_disksize since writeback will push i_disksize up to i_size
3025 	 * eventually. If the end of the current write is > i_size and
3026 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027 	 * checked, we need to update i_disksize here as certain
3028 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029 	 */
3030 	if (new_i_size > inode->i_size) {
3031 		unsigned long end;
3032 
3033 		i_size_write(inode, new_i_size);
3034 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036 			ext4_update_i_disksize(inode, new_i_size);
3037 			disksize_changed = true;
3038 		}
3039 	}
3040 
3041 	folio_unlock(folio);
3042 	folio_put(folio);
3043 
3044 	if (pos > old_size) {
3045 		pagecache_isize_extended(inode, old_size, pos);
3046 		zero_len = pos - old_size;
3047 	}
3048 
3049 	if (!disksize_changed && !zero_len)
3050 		return copied;
3051 
3052 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053 	if (IS_ERR(handle))
3054 		return PTR_ERR(handle);
3055 	if (zero_len)
3056 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057 	ext4_mark_inode_dirty(handle, inode);
3058 	ext4_journal_stop(handle);
3059 
3060 	return copied;
3061 }
3062 
3063 static int ext4_da_write_end(struct file *file,
3064 			     struct address_space *mapping,
3065 			     loff_t pos, unsigned len, unsigned copied,
3066 			     struct folio *folio, void *fsdata)
3067 {
3068 	struct inode *inode = mapping->host;
3069 	int write_mode = (int)(unsigned long)fsdata;
3070 
3071 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072 		return ext4_write_end(file, mapping, pos,
3073 				      len, copied, folio, fsdata);
3074 
3075 	trace_ext4_da_write_end(inode, pos, len, copied);
3076 
3077 	if (write_mode != CONVERT_INLINE_DATA &&
3078 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079 	    ext4_has_inline_data(inode))
3080 		return ext4_write_inline_data_end(inode, pos, len, copied,
3081 						  folio);
3082 
3083 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084 		copied = 0;
3085 
3086 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087 }
3088 
3089 /*
3090  * Force all delayed allocation blocks to be allocated for a given inode.
3091  */
3092 int ext4_alloc_da_blocks(struct inode *inode)
3093 {
3094 	trace_ext4_alloc_da_blocks(inode);
3095 
3096 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 		return 0;
3098 
3099 	/*
3100 	 * We do something simple for now.  The filemap_flush() will
3101 	 * also start triggering a write of the data blocks, which is
3102 	 * not strictly speaking necessary (and for users of
3103 	 * laptop_mode, not even desirable).  However, to do otherwise
3104 	 * would require replicating code paths in:
3105 	 *
3106 	 * ext4_writepages() ->
3107 	 *    write_cache_pages() ---> (via passed in callback function)
3108 	 *        __mpage_da_writepage() -->
3109 	 *           mpage_add_bh_to_extent()
3110 	 *           mpage_da_map_blocks()
3111 	 *
3112 	 * The problem is that write_cache_pages(), located in
3113 	 * mm/page-writeback.c, marks pages clean in preparation for
3114 	 * doing I/O, which is not desirable if we're not planning on
3115 	 * doing I/O at all.
3116 	 *
3117 	 * We could call write_cache_pages(), and then redirty all of
3118 	 * the pages by calling redirty_page_for_writepage() but that
3119 	 * would be ugly in the extreme.  So instead we would need to
3120 	 * replicate parts of the code in the above functions,
3121 	 * simplifying them because we wouldn't actually intend to
3122 	 * write out the pages, but rather only collect contiguous
3123 	 * logical block extents, call the multi-block allocator, and
3124 	 * then update the buffer heads with the block allocations.
3125 	 *
3126 	 * For now, though, we'll cheat by calling filemap_flush(),
3127 	 * which will map the blocks, and start the I/O, but not
3128 	 * actually wait for the I/O to complete.
3129 	 */
3130 	return filemap_flush(inode->i_mapping);
3131 }
3132 
3133 /*
3134  * bmap() is special.  It gets used by applications such as lilo and by
3135  * the swapper to find the on-disk block of a specific piece of data.
3136  *
3137  * Naturally, this is dangerous if the block concerned is still in the
3138  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139  * filesystem and enables swap, then they may get a nasty shock when the
3140  * data getting swapped to that swapfile suddenly gets overwritten by
3141  * the original zero's written out previously to the journal and
3142  * awaiting writeback in the kernel's buffer cache.
3143  *
3144  * So, if we see any bmap calls here on a modified, data-journaled file,
3145  * take extra steps to flush any blocks which might be in the cache.
3146  */
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148 {
3149 	struct inode *inode = mapping->host;
3150 	sector_t ret = 0;
3151 
3152 	inode_lock_shared(inode);
3153 	/*
3154 	 * We can get here for an inline file via the FIBMAP ioctl
3155 	 */
3156 	if (ext4_has_inline_data(inode))
3157 		goto out;
3158 
3159 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 	    (test_opt(inode->i_sb, DELALLOC) ||
3161 	     ext4_should_journal_data(inode))) {
3162 		/*
3163 		 * With delalloc or journalled data we want to sync the file so
3164 		 * that we can make sure we allocate blocks for file and data
3165 		 * is in place for the user to see it
3166 		 */
3167 		filemap_write_and_wait(mapping);
3168 	}
3169 
3170 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171 
3172 out:
3173 	inode_unlock_shared(inode);
3174 	return ret;
3175 }
3176 
3177 static int ext4_read_folio(struct file *file, struct folio *folio)
3178 {
3179 	int ret = -EAGAIN;
3180 	struct inode *inode = folio->mapping->host;
3181 
3182 	trace_ext4_read_folio(inode, folio);
3183 
3184 	if (ext4_has_inline_data(inode))
3185 		ret = ext4_readpage_inline(inode, folio);
3186 
3187 	if (ret == -EAGAIN)
3188 		return ext4_mpage_readpages(inode, NULL, folio);
3189 
3190 	return ret;
3191 }
3192 
3193 static void ext4_readahead(struct readahead_control *rac)
3194 {
3195 	struct inode *inode = rac->mapping->host;
3196 
3197 	/* If the file has inline data, no need to do readahead. */
3198 	if (ext4_has_inline_data(inode))
3199 		return;
3200 
3201 	ext4_mpage_readpages(inode, rac, NULL);
3202 }
3203 
3204 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205 				size_t length)
3206 {
3207 	trace_ext4_invalidate_folio(folio, offset, length);
3208 
3209 	/* No journalling happens on data buffers when this function is used */
3210 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211 
3212 	block_invalidate_folio(folio, offset, length);
3213 }
3214 
3215 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216 					    size_t offset, size_t length)
3217 {
3218 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219 
3220 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221 
3222 	/*
3223 	 * If it's a full truncate we just forget about the pending dirtying
3224 	 */
3225 	if (offset == 0 && length == folio_size(folio))
3226 		folio_clear_checked(folio);
3227 
3228 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229 }
3230 
3231 /* Wrapper for aops... */
3232 static void ext4_journalled_invalidate_folio(struct folio *folio,
3233 					   size_t offset,
3234 					   size_t length)
3235 {
3236 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237 }
3238 
3239 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240 {
3241 	struct inode *inode = folio->mapping->host;
3242 	journal_t *journal = EXT4_JOURNAL(inode);
3243 
3244 	trace_ext4_release_folio(inode, folio);
3245 
3246 	/* Page has dirty journalled data -> cannot release */
3247 	if (folio_test_checked(folio))
3248 		return false;
3249 	if (journal)
3250 		return jbd2_journal_try_to_free_buffers(journal, folio);
3251 	else
3252 		return try_to_free_buffers(folio);
3253 }
3254 
3255 static bool ext4_inode_datasync_dirty(struct inode *inode)
3256 {
3257 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258 
3259 	if (journal) {
3260 		if (jbd2_transaction_committed(journal,
3261 			EXT4_I(inode)->i_datasync_tid))
3262 			return false;
3263 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265 		return true;
3266 	}
3267 
3268 	/* Any metadata buffers to write? */
3269 	if (!list_empty(&inode->i_mapping->i_private_list))
3270 		return true;
3271 	return inode->i_state & I_DIRTY_DATASYNC;
3272 }
3273 
3274 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275 			   struct ext4_map_blocks *map, loff_t offset,
3276 			   loff_t length, unsigned int flags)
3277 {
3278 	u8 blkbits = inode->i_blkbits;
3279 
3280 	/*
3281 	 * Writes that span EOF might trigger an I/O size update on completion,
3282 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283 	 * there is no other metadata changes being made or are pending.
3284 	 */
3285 	iomap->flags = 0;
3286 	if (ext4_inode_datasync_dirty(inode) ||
3287 	    offset + length > i_size_read(inode))
3288 		iomap->flags |= IOMAP_F_DIRTY;
3289 
3290 	if (map->m_flags & EXT4_MAP_NEW)
3291 		iomap->flags |= IOMAP_F_NEW;
3292 
3293 	/* HW-offload atomics are always used */
3294 	if (flags & IOMAP_ATOMIC)
3295 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3296 
3297 	if (flags & IOMAP_DAX)
3298 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3299 	else
3300 		iomap->bdev = inode->i_sb->s_bdev;
3301 	iomap->offset = (u64) map->m_lblk << blkbits;
3302 	iomap->length = (u64) map->m_len << blkbits;
3303 
3304 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3305 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3306 		iomap->flags |= IOMAP_F_MERGED;
3307 
3308 	/*
3309 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3310 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3311 	 * set. In order for any allocated unwritten extents to be converted
3312 	 * into written extents correctly within the ->end_io() handler, we
3313 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3314 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3315 	 * been set first.
3316 	 */
3317 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3318 		iomap->type = IOMAP_UNWRITTEN;
3319 		iomap->addr = (u64) map->m_pblk << blkbits;
3320 		if (flags & IOMAP_DAX)
3321 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3322 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3323 		iomap->type = IOMAP_MAPPED;
3324 		iomap->addr = (u64) map->m_pblk << blkbits;
3325 		if (flags & IOMAP_DAX)
3326 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3327 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3328 		iomap->type = IOMAP_DELALLOC;
3329 		iomap->addr = IOMAP_NULL_ADDR;
3330 	} else {
3331 		iomap->type = IOMAP_HOLE;
3332 		iomap->addr = IOMAP_NULL_ADDR;
3333 	}
3334 }
3335 
3336 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3337 			    unsigned int flags)
3338 {
3339 	handle_t *handle;
3340 	u8 blkbits = inode->i_blkbits;
3341 	int ret, dio_credits, m_flags = 0, retries = 0;
3342 
3343 	/*
3344 	 * Trim the mapping request to the maximum value that we can map at
3345 	 * once for direct I/O.
3346 	 */
3347 	if (map->m_len > DIO_MAX_BLOCKS)
3348 		map->m_len = DIO_MAX_BLOCKS;
3349 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3350 
3351 retry:
3352 	/*
3353 	 * Either we allocate blocks and then don't get an unwritten extent, so
3354 	 * in that case we have reserved enough credits. Or, the blocks are
3355 	 * already allocated and unwritten. In that case, the extent conversion
3356 	 * fits into the credits as well.
3357 	 */
3358 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3359 	if (IS_ERR(handle))
3360 		return PTR_ERR(handle);
3361 
3362 	/*
3363 	 * DAX and direct I/O are the only two operations that are currently
3364 	 * supported with IOMAP_WRITE.
3365 	 */
3366 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3367 	if (flags & IOMAP_DAX)
3368 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3369 	/*
3370 	 * We use i_size instead of i_disksize here because delalloc writeback
3371 	 * can complete at any point during the I/O and subsequently push the
3372 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3373 	 * happening and thus expose allocated blocks to direct I/O reads.
3374 	 */
3375 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3376 		m_flags = EXT4_GET_BLOCKS_CREATE;
3377 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3378 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3379 
3380 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3381 
3382 	/*
3383 	 * We cannot fill holes in indirect tree based inodes as that could
3384 	 * expose stale data in the case of a crash. Use the magic error code
3385 	 * to fallback to buffered I/O.
3386 	 */
3387 	if (!m_flags && !ret)
3388 		ret = -ENOTBLK;
3389 
3390 	ext4_journal_stop(handle);
3391 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3392 		goto retry;
3393 
3394 	return ret;
3395 }
3396 
3397 
3398 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3399 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3400 {
3401 	int ret;
3402 	struct ext4_map_blocks map;
3403 	u8 blkbits = inode->i_blkbits;
3404 
3405 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3406 		return -EINVAL;
3407 
3408 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3409 		return -ERANGE;
3410 
3411 	/*
3412 	 * Calculate the first and last logical blocks respectively.
3413 	 */
3414 	map.m_lblk = offset >> blkbits;
3415 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3416 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3417 
3418 	if (flags & IOMAP_WRITE) {
3419 		/*
3420 		 * We check here if the blocks are already allocated, then we
3421 		 * don't need to start a journal txn and we can directly return
3422 		 * the mapping information. This could boost performance
3423 		 * especially in multi-threaded overwrite requests.
3424 		 */
3425 		if (offset + length <= i_size_read(inode)) {
3426 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3427 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3428 				goto out;
3429 		}
3430 		ret = ext4_iomap_alloc(inode, &map, flags);
3431 	} else {
3432 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3433 	}
3434 
3435 	if (ret < 0)
3436 		return ret;
3437 out:
3438 	/*
3439 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3440 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3441 	 * limiting the length of the mapping returned.
3442 	 */
3443 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3444 
3445 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3446 
3447 	return 0;
3448 }
3449 
3450 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3451 		loff_t length, unsigned flags, struct iomap *iomap,
3452 		struct iomap *srcmap)
3453 {
3454 	int ret;
3455 
3456 	/*
3457 	 * Even for writes we don't need to allocate blocks, so just pretend
3458 	 * we are reading to save overhead of starting a transaction.
3459 	 */
3460 	flags &= ~IOMAP_WRITE;
3461 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3462 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3463 	return ret;
3464 }
3465 
3466 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3467 {
3468 	/* must be a directio to fall back to buffered */
3469 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3470 		    (IOMAP_WRITE | IOMAP_DIRECT))
3471 		return false;
3472 
3473 	/* atomic writes are all-or-nothing */
3474 	if (flags & IOMAP_ATOMIC)
3475 		return false;
3476 
3477 	/* can only try again if we wrote nothing */
3478 	return written == 0;
3479 }
3480 
3481 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3482 			  ssize_t written, unsigned flags, struct iomap *iomap)
3483 {
3484 	/*
3485 	 * Check to see whether an error occurred while writing out the data to
3486 	 * the allocated blocks. If so, return the magic error code for
3487 	 * non-atomic write so that we fallback to buffered I/O and attempt to
3488 	 * complete the remainder of the I/O.
3489 	 * For non-atomic writes, any blocks that may have been
3490 	 * allocated in preparation for the direct I/O will be reused during
3491 	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3492 	 */
3493 	if (ext4_want_directio_fallback(flags, written))
3494 		return -ENOTBLK;
3495 
3496 	return 0;
3497 }
3498 
3499 const struct iomap_ops ext4_iomap_ops = {
3500 	.iomap_begin		= ext4_iomap_begin,
3501 	.iomap_end		= ext4_iomap_end,
3502 };
3503 
3504 const struct iomap_ops ext4_iomap_overwrite_ops = {
3505 	.iomap_begin		= ext4_iomap_overwrite_begin,
3506 	.iomap_end		= ext4_iomap_end,
3507 };
3508 
3509 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3510 				   loff_t length, unsigned int flags,
3511 				   struct iomap *iomap, struct iomap *srcmap)
3512 {
3513 	int ret;
3514 	struct ext4_map_blocks map;
3515 	u8 blkbits = inode->i_blkbits;
3516 
3517 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3518 		return -EINVAL;
3519 
3520 	if (ext4_has_inline_data(inode)) {
3521 		ret = ext4_inline_data_iomap(inode, iomap);
3522 		if (ret != -EAGAIN) {
3523 			if (ret == 0 && offset >= iomap->length)
3524 				ret = -ENOENT;
3525 			return ret;
3526 		}
3527 	}
3528 
3529 	/*
3530 	 * Calculate the first and last logical block respectively.
3531 	 */
3532 	map.m_lblk = offset >> blkbits;
3533 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3534 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3535 
3536 	/*
3537 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3538 	 * So handle it here itself instead of querying ext4_map_blocks().
3539 	 * Since ext4_map_blocks() will warn about it and will return
3540 	 * -EIO error.
3541 	 */
3542 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3543 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3544 
3545 		if (offset >= sbi->s_bitmap_maxbytes) {
3546 			map.m_flags = 0;
3547 			goto set_iomap;
3548 		}
3549 	}
3550 
3551 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3552 	if (ret < 0)
3553 		return ret;
3554 set_iomap:
3555 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3556 
3557 	return 0;
3558 }
3559 
3560 const struct iomap_ops ext4_iomap_report_ops = {
3561 	.iomap_begin = ext4_iomap_begin_report,
3562 };
3563 
3564 /*
3565  * For data=journal mode, folio should be marked dirty only when it was
3566  * writeably mapped. When that happens, it was already attached to the
3567  * transaction and marked as jbddirty (we take care of this in
3568  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3569  * so we should have nothing to do here, except for the case when someone
3570  * had the page pinned and dirtied the page through this pin (e.g. by doing
3571  * direct IO to it). In that case we'd need to attach buffers here to the
3572  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3573  * folio and leave attached buffers clean, because the buffers' dirty state is
3574  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3575  * the journalling code will explode.  So what we do is to mark the folio
3576  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3577  * to the transaction appropriately.
3578  */
3579 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3580 		struct folio *folio)
3581 {
3582 	WARN_ON_ONCE(!folio_buffers(folio));
3583 	if (folio_maybe_dma_pinned(folio))
3584 		folio_set_checked(folio);
3585 	return filemap_dirty_folio(mapping, folio);
3586 }
3587 
3588 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3589 {
3590 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3591 	WARN_ON_ONCE(!folio_buffers(folio));
3592 	return block_dirty_folio(mapping, folio);
3593 }
3594 
3595 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3596 				    struct file *file, sector_t *span)
3597 {
3598 	return iomap_swapfile_activate(sis, file, span,
3599 				       &ext4_iomap_report_ops);
3600 }
3601 
3602 static const struct address_space_operations ext4_aops = {
3603 	.read_folio		= ext4_read_folio,
3604 	.readahead		= ext4_readahead,
3605 	.writepages		= ext4_writepages,
3606 	.write_begin		= ext4_write_begin,
3607 	.write_end		= ext4_write_end,
3608 	.dirty_folio		= ext4_dirty_folio,
3609 	.bmap			= ext4_bmap,
3610 	.invalidate_folio	= ext4_invalidate_folio,
3611 	.release_folio		= ext4_release_folio,
3612 	.migrate_folio		= buffer_migrate_folio,
3613 	.is_partially_uptodate  = block_is_partially_uptodate,
3614 	.error_remove_folio	= generic_error_remove_folio,
3615 	.swap_activate		= ext4_iomap_swap_activate,
3616 };
3617 
3618 static const struct address_space_operations ext4_journalled_aops = {
3619 	.read_folio		= ext4_read_folio,
3620 	.readahead		= ext4_readahead,
3621 	.writepages		= ext4_writepages,
3622 	.write_begin		= ext4_write_begin,
3623 	.write_end		= ext4_journalled_write_end,
3624 	.dirty_folio		= ext4_journalled_dirty_folio,
3625 	.bmap			= ext4_bmap,
3626 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3627 	.release_folio		= ext4_release_folio,
3628 	.migrate_folio		= buffer_migrate_folio_norefs,
3629 	.is_partially_uptodate  = block_is_partially_uptodate,
3630 	.error_remove_folio	= generic_error_remove_folio,
3631 	.swap_activate		= ext4_iomap_swap_activate,
3632 };
3633 
3634 static const struct address_space_operations ext4_da_aops = {
3635 	.read_folio		= ext4_read_folio,
3636 	.readahead		= ext4_readahead,
3637 	.writepages		= ext4_writepages,
3638 	.write_begin		= ext4_da_write_begin,
3639 	.write_end		= ext4_da_write_end,
3640 	.dirty_folio		= ext4_dirty_folio,
3641 	.bmap			= ext4_bmap,
3642 	.invalidate_folio	= ext4_invalidate_folio,
3643 	.release_folio		= ext4_release_folio,
3644 	.migrate_folio		= buffer_migrate_folio,
3645 	.is_partially_uptodate  = block_is_partially_uptodate,
3646 	.error_remove_folio	= generic_error_remove_folio,
3647 	.swap_activate		= ext4_iomap_swap_activate,
3648 };
3649 
3650 static const struct address_space_operations ext4_dax_aops = {
3651 	.writepages		= ext4_dax_writepages,
3652 	.dirty_folio		= noop_dirty_folio,
3653 	.bmap			= ext4_bmap,
3654 	.swap_activate		= ext4_iomap_swap_activate,
3655 };
3656 
3657 void ext4_set_aops(struct inode *inode)
3658 {
3659 	switch (ext4_inode_journal_mode(inode)) {
3660 	case EXT4_INODE_ORDERED_DATA_MODE:
3661 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3662 		break;
3663 	case EXT4_INODE_JOURNAL_DATA_MODE:
3664 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3665 		return;
3666 	default:
3667 		BUG();
3668 	}
3669 	if (IS_DAX(inode))
3670 		inode->i_mapping->a_ops = &ext4_dax_aops;
3671 	else if (test_opt(inode->i_sb, DELALLOC))
3672 		inode->i_mapping->a_ops = &ext4_da_aops;
3673 	else
3674 		inode->i_mapping->a_ops = &ext4_aops;
3675 }
3676 
3677 /*
3678  * Here we can't skip an unwritten buffer even though it usually reads zero
3679  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3680  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3681  * racing writeback can come later and flush the stale pagecache to disk.
3682  */
3683 static int __ext4_block_zero_page_range(handle_t *handle,
3684 		struct address_space *mapping, loff_t from, loff_t length)
3685 {
3686 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3687 	unsigned offset = from & (PAGE_SIZE-1);
3688 	unsigned blocksize, pos;
3689 	ext4_lblk_t iblock;
3690 	struct inode *inode = mapping->host;
3691 	struct buffer_head *bh;
3692 	struct folio *folio;
3693 	int err = 0;
3694 
3695 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3696 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3697 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3698 	if (IS_ERR(folio))
3699 		return PTR_ERR(folio);
3700 
3701 	blocksize = inode->i_sb->s_blocksize;
3702 
3703 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704 
3705 	bh = folio_buffers(folio);
3706 	if (!bh)
3707 		bh = create_empty_buffers(folio, blocksize, 0);
3708 
3709 	/* Find the buffer that contains "offset" */
3710 	pos = blocksize;
3711 	while (offset >= pos) {
3712 		bh = bh->b_this_page;
3713 		iblock++;
3714 		pos += blocksize;
3715 	}
3716 	if (buffer_freed(bh)) {
3717 		BUFFER_TRACE(bh, "freed: skip");
3718 		goto unlock;
3719 	}
3720 	if (!buffer_mapped(bh)) {
3721 		BUFFER_TRACE(bh, "unmapped");
3722 		ext4_get_block(inode, iblock, bh, 0);
3723 		/* unmapped? It's a hole - nothing to do */
3724 		if (!buffer_mapped(bh)) {
3725 			BUFFER_TRACE(bh, "still unmapped");
3726 			goto unlock;
3727 		}
3728 	}
3729 
3730 	/* Ok, it's mapped. Make sure it's up-to-date */
3731 	if (folio_test_uptodate(folio))
3732 		set_buffer_uptodate(bh);
3733 
3734 	if (!buffer_uptodate(bh)) {
3735 		err = ext4_read_bh_lock(bh, 0, true);
3736 		if (err)
3737 			goto unlock;
3738 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3739 			/* We expect the key to be set. */
3740 			BUG_ON(!fscrypt_has_encryption_key(inode));
3741 			err = fscrypt_decrypt_pagecache_blocks(folio,
3742 							       blocksize,
3743 							       bh_offset(bh));
3744 			if (err) {
3745 				clear_buffer_uptodate(bh);
3746 				goto unlock;
3747 			}
3748 		}
3749 	}
3750 	if (ext4_should_journal_data(inode)) {
3751 		BUFFER_TRACE(bh, "get write access");
3752 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3753 						    EXT4_JTR_NONE);
3754 		if (err)
3755 			goto unlock;
3756 	}
3757 	folio_zero_range(folio, offset, length);
3758 	BUFFER_TRACE(bh, "zeroed end of block");
3759 
3760 	if (ext4_should_journal_data(inode)) {
3761 		err = ext4_dirty_journalled_data(handle, bh);
3762 	} else {
3763 		err = 0;
3764 		mark_buffer_dirty(bh);
3765 		if (ext4_should_order_data(inode))
3766 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3767 					length);
3768 	}
3769 
3770 unlock:
3771 	folio_unlock(folio);
3772 	folio_put(folio);
3773 	return err;
3774 }
3775 
3776 /*
3777  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3778  * starting from file offset 'from'.  The range to be zero'd must
3779  * be contained with in one block.  If the specified range exceeds
3780  * the end of the block it will be shortened to end of the block
3781  * that corresponds to 'from'
3782  */
3783 static int ext4_block_zero_page_range(handle_t *handle,
3784 		struct address_space *mapping, loff_t from, loff_t length)
3785 {
3786 	struct inode *inode = mapping->host;
3787 	unsigned offset = from & (PAGE_SIZE-1);
3788 	unsigned blocksize = inode->i_sb->s_blocksize;
3789 	unsigned max = blocksize - (offset & (blocksize - 1));
3790 
3791 	/*
3792 	 * correct length if it does not fall between
3793 	 * 'from' and the end of the block
3794 	 */
3795 	if (length > max || length < 0)
3796 		length = max;
3797 
3798 	if (IS_DAX(inode)) {
3799 		return dax_zero_range(inode, from, length, NULL,
3800 				      &ext4_iomap_ops);
3801 	}
3802 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3803 }
3804 
3805 /*
3806  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3807  * up to the end of the block which corresponds to `from'.
3808  * This required during truncate. We need to physically zero the tail end
3809  * of that block so it doesn't yield old data if the file is later grown.
3810  */
3811 static int ext4_block_truncate_page(handle_t *handle,
3812 		struct address_space *mapping, loff_t from)
3813 {
3814 	unsigned offset = from & (PAGE_SIZE-1);
3815 	unsigned length;
3816 	unsigned blocksize;
3817 	struct inode *inode = mapping->host;
3818 
3819 	/* If we are processing an encrypted inode during orphan list handling */
3820 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3821 		return 0;
3822 
3823 	blocksize = inode->i_sb->s_blocksize;
3824 	length = blocksize - (offset & (blocksize - 1));
3825 
3826 	return ext4_block_zero_page_range(handle, mapping, from, length);
3827 }
3828 
3829 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3830 			     loff_t lstart, loff_t length)
3831 {
3832 	struct super_block *sb = inode->i_sb;
3833 	struct address_space *mapping = inode->i_mapping;
3834 	unsigned partial_start, partial_end;
3835 	ext4_fsblk_t start, end;
3836 	loff_t byte_end = (lstart + length - 1);
3837 	int err = 0;
3838 
3839 	partial_start = lstart & (sb->s_blocksize - 1);
3840 	partial_end = byte_end & (sb->s_blocksize - 1);
3841 
3842 	start = lstart >> sb->s_blocksize_bits;
3843 	end = byte_end >> sb->s_blocksize_bits;
3844 
3845 	/* Handle partial zero within the single block */
3846 	if (start == end &&
3847 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3848 		err = ext4_block_zero_page_range(handle, mapping,
3849 						 lstart, length);
3850 		return err;
3851 	}
3852 	/* Handle partial zero out on the start of the range */
3853 	if (partial_start) {
3854 		err = ext4_block_zero_page_range(handle, mapping,
3855 						 lstart, sb->s_blocksize);
3856 		if (err)
3857 			return err;
3858 	}
3859 	/* Handle partial zero out on the end of the range */
3860 	if (partial_end != sb->s_blocksize - 1)
3861 		err = ext4_block_zero_page_range(handle, mapping,
3862 						 byte_end - partial_end,
3863 						 partial_end + 1);
3864 	return err;
3865 }
3866 
3867 int ext4_can_truncate(struct inode *inode)
3868 {
3869 	if (S_ISREG(inode->i_mode))
3870 		return 1;
3871 	if (S_ISDIR(inode->i_mode))
3872 		return 1;
3873 	if (S_ISLNK(inode->i_mode))
3874 		return !ext4_inode_is_fast_symlink(inode);
3875 	return 0;
3876 }
3877 
3878 /*
3879  * We have to make sure i_disksize gets properly updated before we truncate
3880  * page cache due to hole punching or zero range. Otherwise i_disksize update
3881  * can get lost as it may have been postponed to submission of writeback but
3882  * that will never happen after we truncate page cache.
3883  */
3884 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3885 				      loff_t len)
3886 {
3887 	handle_t *handle;
3888 	int ret;
3889 
3890 	loff_t size = i_size_read(inode);
3891 
3892 	WARN_ON(!inode_is_locked(inode));
3893 	if (offset > size || offset + len < size)
3894 		return 0;
3895 
3896 	if (EXT4_I(inode)->i_disksize >= size)
3897 		return 0;
3898 
3899 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3900 	if (IS_ERR(handle))
3901 		return PTR_ERR(handle);
3902 	ext4_update_i_disksize(inode, size);
3903 	ret = ext4_mark_inode_dirty(handle, inode);
3904 	ext4_journal_stop(handle);
3905 
3906 	return ret;
3907 }
3908 
3909 static void ext4_wait_dax_page(struct inode *inode)
3910 {
3911 	filemap_invalidate_unlock(inode->i_mapping);
3912 	schedule();
3913 	filemap_invalidate_lock(inode->i_mapping);
3914 }
3915 
3916 int ext4_break_layouts(struct inode *inode)
3917 {
3918 	struct page *page;
3919 	int error;
3920 
3921 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3922 		return -EINVAL;
3923 
3924 	do {
3925 		page = dax_layout_busy_page(inode->i_mapping);
3926 		if (!page)
3927 			return 0;
3928 
3929 		error = ___wait_var_event(&page->_refcount,
3930 				atomic_read(&page->_refcount) == 1,
3931 				TASK_INTERRUPTIBLE, 0, 0,
3932 				ext4_wait_dax_page(inode));
3933 	} while (error == 0);
3934 
3935 	return error;
3936 }
3937 
3938 /*
3939  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940  * associated with the given offset and length
3941  *
3942  * @inode:  File inode
3943  * @offset: The offset where the hole will begin
3944  * @len:    The length of the hole
3945  *
3946  * Returns: 0 on success or negative on failure
3947  */
3948 
3949 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3950 {
3951 	struct inode *inode = file_inode(file);
3952 	struct super_block *sb = inode->i_sb;
3953 	ext4_lblk_t first_block, stop_block;
3954 	struct address_space *mapping = inode->i_mapping;
3955 	loff_t first_block_offset, last_block_offset, max_length;
3956 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3957 	handle_t *handle;
3958 	unsigned int credits;
3959 	int ret = 0, ret2 = 0;
3960 
3961 	trace_ext4_punch_hole(inode, offset, length, 0);
3962 
3963 	/*
3964 	 * Write out all dirty pages to avoid race conditions
3965 	 * Then release them.
3966 	 */
3967 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3968 		ret = filemap_write_and_wait_range(mapping, offset,
3969 						   offset + length - 1);
3970 		if (ret)
3971 			return ret;
3972 	}
3973 
3974 	inode_lock(inode);
3975 
3976 	/* No need to punch hole beyond i_size */
3977 	if (offset >= inode->i_size)
3978 		goto out_mutex;
3979 
3980 	/*
3981 	 * If the hole extends beyond i_size, set the hole
3982 	 * to end after the page that contains i_size
3983 	 */
3984 	if (offset + length > inode->i_size) {
3985 		length = inode->i_size +
3986 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3987 		   offset;
3988 	}
3989 
3990 	/*
3991 	 * For punch hole the length + offset needs to be within one block
3992 	 * before last range. Adjust the length if it goes beyond that limit.
3993 	 */
3994 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3995 	if (offset + length > max_length)
3996 		length = max_length - offset;
3997 
3998 	if (offset & (sb->s_blocksize - 1) ||
3999 	    (offset + length) & (sb->s_blocksize - 1)) {
4000 		/*
4001 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4002 		 * partial block
4003 		 */
4004 		ret = ext4_inode_attach_jinode(inode);
4005 		if (ret < 0)
4006 			goto out_mutex;
4007 
4008 	}
4009 
4010 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4011 	inode_dio_wait(inode);
4012 
4013 	ret = file_modified(file);
4014 	if (ret)
4015 		goto out_mutex;
4016 
4017 	/*
4018 	 * Prevent page faults from reinstantiating pages we have released from
4019 	 * page cache.
4020 	 */
4021 	filemap_invalidate_lock(mapping);
4022 
4023 	ret = ext4_break_layouts(inode);
4024 	if (ret)
4025 		goto out_dio;
4026 
4027 	first_block_offset = round_up(offset, sb->s_blocksize);
4028 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4029 
4030 	/* Now release the pages and zero block aligned part of pages*/
4031 	if (last_block_offset > first_block_offset) {
4032 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4033 		if (ret)
4034 			goto out_dio;
4035 		truncate_pagecache_range(inode, first_block_offset,
4036 					 last_block_offset);
4037 	}
4038 
4039 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4040 		credits = ext4_writepage_trans_blocks(inode);
4041 	else
4042 		credits = ext4_blocks_for_truncate(inode);
4043 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4044 	if (IS_ERR(handle)) {
4045 		ret = PTR_ERR(handle);
4046 		ext4_std_error(sb, ret);
4047 		goto out_dio;
4048 	}
4049 
4050 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4051 				       length);
4052 	if (ret)
4053 		goto out_stop;
4054 
4055 	first_block = (offset + sb->s_blocksize - 1) >>
4056 		EXT4_BLOCK_SIZE_BITS(sb);
4057 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4058 
4059 	/* If there are blocks to remove, do it */
4060 	if (stop_block > first_block) {
4061 		ext4_lblk_t hole_len = stop_block - first_block;
4062 
4063 		down_write(&EXT4_I(inode)->i_data_sem);
4064 		ext4_discard_preallocations(inode);
4065 
4066 		ext4_es_remove_extent(inode, first_block, hole_len);
4067 
4068 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4069 			ret = ext4_ext_remove_space(inode, first_block,
4070 						    stop_block - 1);
4071 		else
4072 			ret = ext4_ind_remove_space(handle, inode, first_block,
4073 						    stop_block);
4074 
4075 		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4076 				      EXTENT_STATUS_HOLE, 0);
4077 		up_write(&EXT4_I(inode)->i_data_sem);
4078 	}
4079 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4080 	if (IS_SYNC(inode))
4081 		ext4_handle_sync(handle);
4082 
4083 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4084 	ret2 = ext4_mark_inode_dirty(handle, inode);
4085 	if (unlikely(ret2))
4086 		ret = ret2;
4087 	if (ret >= 0)
4088 		ext4_update_inode_fsync_trans(handle, inode, 1);
4089 out_stop:
4090 	ext4_journal_stop(handle);
4091 out_dio:
4092 	filemap_invalidate_unlock(mapping);
4093 out_mutex:
4094 	inode_unlock(inode);
4095 	return ret;
4096 }
4097 
4098 int ext4_inode_attach_jinode(struct inode *inode)
4099 {
4100 	struct ext4_inode_info *ei = EXT4_I(inode);
4101 	struct jbd2_inode *jinode;
4102 
4103 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4104 		return 0;
4105 
4106 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4107 	spin_lock(&inode->i_lock);
4108 	if (!ei->jinode) {
4109 		if (!jinode) {
4110 			spin_unlock(&inode->i_lock);
4111 			return -ENOMEM;
4112 		}
4113 		ei->jinode = jinode;
4114 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4115 		jinode = NULL;
4116 	}
4117 	spin_unlock(&inode->i_lock);
4118 	if (unlikely(jinode != NULL))
4119 		jbd2_free_inode(jinode);
4120 	return 0;
4121 }
4122 
4123 /*
4124  * ext4_truncate()
4125  *
4126  * We block out ext4_get_block() block instantiations across the entire
4127  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4128  * simultaneously on behalf of the same inode.
4129  *
4130  * As we work through the truncate and commit bits of it to the journal there
4131  * is one core, guiding principle: the file's tree must always be consistent on
4132  * disk.  We must be able to restart the truncate after a crash.
4133  *
4134  * The file's tree may be transiently inconsistent in memory (although it
4135  * probably isn't), but whenever we close off and commit a journal transaction,
4136  * the contents of (the filesystem + the journal) must be consistent and
4137  * restartable.  It's pretty simple, really: bottom up, right to left (although
4138  * left-to-right works OK too).
4139  *
4140  * Note that at recovery time, journal replay occurs *before* the restart of
4141  * truncate against the orphan inode list.
4142  *
4143  * The committed inode has the new, desired i_size (which is the same as
4144  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4145  * that this inode's truncate did not complete and it will again call
4146  * ext4_truncate() to have another go.  So there will be instantiated blocks
4147  * to the right of the truncation point in a crashed ext4 filesystem.  But
4148  * that's fine - as long as they are linked from the inode, the post-crash
4149  * ext4_truncate() run will find them and release them.
4150  */
4151 int ext4_truncate(struct inode *inode)
4152 {
4153 	struct ext4_inode_info *ei = EXT4_I(inode);
4154 	unsigned int credits;
4155 	int err = 0, err2;
4156 	handle_t *handle;
4157 	struct address_space *mapping = inode->i_mapping;
4158 
4159 	/*
4160 	 * There is a possibility that we're either freeing the inode
4161 	 * or it's a completely new inode. In those cases we might not
4162 	 * have i_rwsem locked because it's not necessary.
4163 	 */
4164 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4165 		WARN_ON(!inode_is_locked(inode));
4166 	trace_ext4_truncate_enter(inode);
4167 
4168 	if (!ext4_can_truncate(inode))
4169 		goto out_trace;
4170 
4171 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4172 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4173 
4174 	if (ext4_has_inline_data(inode)) {
4175 		int has_inline = 1;
4176 
4177 		err = ext4_inline_data_truncate(inode, &has_inline);
4178 		if (err || has_inline)
4179 			goto out_trace;
4180 	}
4181 
4182 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4183 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4184 		err = ext4_inode_attach_jinode(inode);
4185 		if (err)
4186 			goto out_trace;
4187 	}
4188 
4189 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4190 		credits = ext4_writepage_trans_blocks(inode);
4191 	else
4192 		credits = ext4_blocks_for_truncate(inode);
4193 
4194 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4195 	if (IS_ERR(handle)) {
4196 		err = PTR_ERR(handle);
4197 		goto out_trace;
4198 	}
4199 
4200 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4201 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4202 
4203 	/*
4204 	 * We add the inode to the orphan list, so that if this
4205 	 * truncate spans multiple transactions, and we crash, we will
4206 	 * resume the truncate when the filesystem recovers.  It also
4207 	 * marks the inode dirty, to catch the new size.
4208 	 *
4209 	 * Implication: the file must always be in a sane, consistent
4210 	 * truncatable state while each transaction commits.
4211 	 */
4212 	err = ext4_orphan_add(handle, inode);
4213 	if (err)
4214 		goto out_stop;
4215 
4216 	down_write(&EXT4_I(inode)->i_data_sem);
4217 
4218 	ext4_discard_preallocations(inode);
4219 
4220 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4221 		err = ext4_ext_truncate(handle, inode);
4222 	else
4223 		ext4_ind_truncate(handle, inode);
4224 
4225 	up_write(&ei->i_data_sem);
4226 	if (err)
4227 		goto out_stop;
4228 
4229 	if (IS_SYNC(inode))
4230 		ext4_handle_sync(handle);
4231 
4232 out_stop:
4233 	/*
4234 	 * If this was a simple ftruncate() and the file will remain alive,
4235 	 * then we need to clear up the orphan record which we created above.
4236 	 * However, if this was a real unlink then we were called by
4237 	 * ext4_evict_inode(), and we allow that function to clean up the
4238 	 * orphan info for us.
4239 	 */
4240 	if (inode->i_nlink)
4241 		ext4_orphan_del(handle, inode);
4242 
4243 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4244 	err2 = ext4_mark_inode_dirty(handle, inode);
4245 	if (unlikely(err2 && !err))
4246 		err = err2;
4247 	ext4_journal_stop(handle);
4248 
4249 out_trace:
4250 	trace_ext4_truncate_exit(inode);
4251 	return err;
4252 }
4253 
4254 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4255 {
4256 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4257 		return inode_peek_iversion_raw(inode);
4258 	else
4259 		return inode_peek_iversion(inode);
4260 }
4261 
4262 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4263 				 struct ext4_inode_info *ei)
4264 {
4265 	struct inode *inode = &(ei->vfs_inode);
4266 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4267 	struct super_block *sb = inode->i_sb;
4268 
4269 	if (i_blocks <= ~0U) {
4270 		/*
4271 		 * i_blocks can be represented in a 32 bit variable
4272 		 * as multiple of 512 bytes
4273 		 */
4274 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4275 		raw_inode->i_blocks_high = 0;
4276 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4277 		return 0;
4278 	}
4279 
4280 	/*
4281 	 * This should never happen since sb->s_maxbytes should not have
4282 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4283 	 * feature in ext4_fill_super().
4284 	 */
4285 	if (!ext4_has_feature_huge_file(sb))
4286 		return -EFSCORRUPTED;
4287 
4288 	if (i_blocks <= 0xffffffffffffULL) {
4289 		/*
4290 		 * i_blocks can be represented in a 48 bit variable
4291 		 * as multiple of 512 bytes
4292 		 */
4293 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4294 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4295 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296 	} else {
4297 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4298 		/* i_block is stored in file system block size */
4299 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4300 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4301 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4302 	}
4303 	return 0;
4304 }
4305 
4306 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4307 {
4308 	struct ext4_inode_info *ei = EXT4_I(inode);
4309 	uid_t i_uid;
4310 	gid_t i_gid;
4311 	projid_t i_projid;
4312 	int block;
4313 	int err;
4314 
4315 	err = ext4_inode_blocks_set(raw_inode, ei);
4316 
4317 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4318 	i_uid = i_uid_read(inode);
4319 	i_gid = i_gid_read(inode);
4320 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4321 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4322 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324 		/*
4325 		 * Fix up interoperability with old kernels. Otherwise,
4326 		 * old inodes get re-used with the upper 16 bits of the
4327 		 * uid/gid intact.
4328 		 */
4329 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4330 			raw_inode->i_uid_high = 0;
4331 			raw_inode->i_gid_high = 0;
4332 		} else {
4333 			raw_inode->i_uid_high =
4334 				cpu_to_le16(high_16_bits(i_uid));
4335 			raw_inode->i_gid_high =
4336 				cpu_to_le16(high_16_bits(i_gid));
4337 		}
4338 	} else {
4339 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4340 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4341 		raw_inode->i_uid_high = 0;
4342 		raw_inode->i_gid_high = 0;
4343 	}
4344 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4345 
4346 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4347 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4348 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4349 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4350 
4351 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4352 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4353 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4354 		raw_inode->i_file_acl_high =
4355 			cpu_to_le16(ei->i_file_acl >> 32);
4356 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4357 	ext4_isize_set(raw_inode, ei->i_disksize);
4358 
4359 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4360 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4361 		if (old_valid_dev(inode->i_rdev)) {
4362 			raw_inode->i_block[0] =
4363 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4364 			raw_inode->i_block[1] = 0;
4365 		} else {
4366 			raw_inode->i_block[0] = 0;
4367 			raw_inode->i_block[1] =
4368 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4369 			raw_inode->i_block[2] = 0;
4370 		}
4371 	} else if (!ext4_has_inline_data(inode)) {
4372 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4373 			raw_inode->i_block[block] = ei->i_data[block];
4374 	}
4375 
4376 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4377 		u64 ivers = ext4_inode_peek_iversion(inode);
4378 
4379 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4380 		if (ei->i_extra_isize) {
4381 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4382 				raw_inode->i_version_hi =
4383 					cpu_to_le32(ivers >> 32);
4384 			raw_inode->i_extra_isize =
4385 				cpu_to_le16(ei->i_extra_isize);
4386 		}
4387 	}
4388 
4389 	if (i_projid != EXT4_DEF_PROJID &&
4390 	    !ext4_has_feature_project(inode->i_sb))
4391 		err = err ?: -EFSCORRUPTED;
4392 
4393 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4394 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4395 		raw_inode->i_projid = cpu_to_le32(i_projid);
4396 
4397 	ext4_inode_csum_set(inode, raw_inode, ei);
4398 	return err;
4399 }
4400 
4401 /*
4402  * ext4_get_inode_loc returns with an extra refcount against the inode's
4403  * underlying buffer_head on success. If we pass 'inode' and it does not
4404  * have in-inode xattr, we have all inode data in memory that is needed
4405  * to recreate the on-disk version of this inode.
4406  */
4407 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4408 				struct inode *inode, struct ext4_iloc *iloc,
4409 				ext4_fsblk_t *ret_block)
4410 {
4411 	struct ext4_group_desc	*gdp;
4412 	struct buffer_head	*bh;
4413 	ext4_fsblk_t		block;
4414 	struct blk_plug		plug;
4415 	int			inodes_per_block, inode_offset;
4416 
4417 	iloc->bh = NULL;
4418 	if (ino < EXT4_ROOT_INO ||
4419 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4420 		return -EFSCORRUPTED;
4421 
4422 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4423 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4424 	if (!gdp)
4425 		return -EIO;
4426 
4427 	/*
4428 	 * Figure out the offset within the block group inode table
4429 	 */
4430 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4431 	inode_offset = ((ino - 1) %
4432 			EXT4_INODES_PER_GROUP(sb));
4433 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4434 
4435 	block = ext4_inode_table(sb, gdp);
4436 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4437 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4438 		ext4_error(sb, "Invalid inode table block %llu in "
4439 			   "block_group %u", block, iloc->block_group);
4440 		return -EFSCORRUPTED;
4441 	}
4442 	block += (inode_offset / inodes_per_block);
4443 
4444 	bh = sb_getblk(sb, block);
4445 	if (unlikely(!bh))
4446 		return -ENOMEM;
4447 	if (ext4_buffer_uptodate(bh))
4448 		goto has_buffer;
4449 
4450 	lock_buffer(bh);
4451 	if (ext4_buffer_uptodate(bh)) {
4452 		/* Someone brought it uptodate while we waited */
4453 		unlock_buffer(bh);
4454 		goto has_buffer;
4455 	}
4456 
4457 	/*
4458 	 * If we have all information of the inode in memory and this
4459 	 * is the only valid inode in the block, we need not read the
4460 	 * block.
4461 	 */
4462 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4463 		struct buffer_head *bitmap_bh;
4464 		int i, start;
4465 
4466 		start = inode_offset & ~(inodes_per_block - 1);
4467 
4468 		/* Is the inode bitmap in cache? */
4469 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4470 		if (unlikely(!bitmap_bh))
4471 			goto make_io;
4472 
4473 		/*
4474 		 * If the inode bitmap isn't in cache then the
4475 		 * optimisation may end up performing two reads instead
4476 		 * of one, so skip it.
4477 		 */
4478 		if (!buffer_uptodate(bitmap_bh)) {
4479 			brelse(bitmap_bh);
4480 			goto make_io;
4481 		}
4482 		for (i = start; i < start + inodes_per_block; i++) {
4483 			if (i == inode_offset)
4484 				continue;
4485 			if (ext4_test_bit(i, bitmap_bh->b_data))
4486 				break;
4487 		}
4488 		brelse(bitmap_bh);
4489 		if (i == start + inodes_per_block) {
4490 			struct ext4_inode *raw_inode =
4491 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4492 
4493 			/* all other inodes are free, so skip I/O */
4494 			memset(bh->b_data, 0, bh->b_size);
4495 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4496 				ext4_fill_raw_inode(inode, raw_inode);
4497 			set_buffer_uptodate(bh);
4498 			unlock_buffer(bh);
4499 			goto has_buffer;
4500 		}
4501 	}
4502 
4503 make_io:
4504 	/*
4505 	 * If we need to do any I/O, try to pre-readahead extra
4506 	 * blocks from the inode table.
4507 	 */
4508 	blk_start_plug(&plug);
4509 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4510 		ext4_fsblk_t b, end, table;
4511 		unsigned num;
4512 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4513 
4514 		table = ext4_inode_table(sb, gdp);
4515 		/* s_inode_readahead_blks is always a power of 2 */
4516 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4517 		if (table > b)
4518 			b = table;
4519 		end = b + ra_blks;
4520 		num = EXT4_INODES_PER_GROUP(sb);
4521 		if (ext4_has_group_desc_csum(sb))
4522 			num -= ext4_itable_unused_count(sb, gdp);
4523 		table += num / inodes_per_block;
4524 		if (end > table)
4525 			end = table;
4526 		while (b <= end)
4527 			ext4_sb_breadahead_unmovable(sb, b++);
4528 	}
4529 
4530 	/*
4531 	 * There are other valid inodes in the buffer, this inode
4532 	 * has in-inode xattrs, or we don't have this inode in memory.
4533 	 * Read the block from disk.
4534 	 */
4535 	trace_ext4_load_inode(sb, ino);
4536 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4537 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4538 	blk_finish_plug(&plug);
4539 	wait_on_buffer(bh);
4540 	if (!buffer_uptodate(bh)) {
4541 		if (ret_block)
4542 			*ret_block = block;
4543 		brelse(bh);
4544 		return -EIO;
4545 	}
4546 has_buffer:
4547 	iloc->bh = bh;
4548 	return 0;
4549 }
4550 
4551 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4552 					struct ext4_iloc *iloc)
4553 {
4554 	ext4_fsblk_t err_blk = 0;
4555 	int ret;
4556 
4557 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4558 					&err_blk);
4559 
4560 	if (ret == -EIO)
4561 		ext4_error_inode_block(inode, err_blk, EIO,
4562 					"unable to read itable block");
4563 
4564 	return ret;
4565 }
4566 
4567 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4568 {
4569 	ext4_fsblk_t err_blk = 0;
4570 	int ret;
4571 
4572 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4573 					&err_blk);
4574 
4575 	if (ret == -EIO)
4576 		ext4_error_inode_block(inode, err_blk, EIO,
4577 					"unable to read itable block");
4578 
4579 	return ret;
4580 }
4581 
4582 
4583 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4584 			  struct ext4_iloc *iloc)
4585 {
4586 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4587 }
4588 
4589 static bool ext4_should_enable_dax(struct inode *inode)
4590 {
4591 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4592 
4593 	if (test_opt2(inode->i_sb, DAX_NEVER))
4594 		return false;
4595 	if (!S_ISREG(inode->i_mode))
4596 		return false;
4597 	if (ext4_should_journal_data(inode))
4598 		return false;
4599 	if (ext4_has_inline_data(inode))
4600 		return false;
4601 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4602 		return false;
4603 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4604 		return false;
4605 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4606 		return false;
4607 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4608 		return true;
4609 
4610 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4611 }
4612 
4613 void ext4_set_inode_flags(struct inode *inode, bool init)
4614 {
4615 	unsigned int flags = EXT4_I(inode)->i_flags;
4616 	unsigned int new_fl = 0;
4617 
4618 	WARN_ON_ONCE(IS_DAX(inode) && init);
4619 
4620 	if (flags & EXT4_SYNC_FL)
4621 		new_fl |= S_SYNC;
4622 	if (flags & EXT4_APPEND_FL)
4623 		new_fl |= S_APPEND;
4624 	if (flags & EXT4_IMMUTABLE_FL)
4625 		new_fl |= S_IMMUTABLE;
4626 	if (flags & EXT4_NOATIME_FL)
4627 		new_fl |= S_NOATIME;
4628 	if (flags & EXT4_DIRSYNC_FL)
4629 		new_fl |= S_DIRSYNC;
4630 
4631 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4632 	 * here if already set. */
4633 	new_fl |= (inode->i_flags & S_DAX);
4634 	if (init && ext4_should_enable_dax(inode))
4635 		new_fl |= S_DAX;
4636 
4637 	if (flags & EXT4_ENCRYPT_FL)
4638 		new_fl |= S_ENCRYPTED;
4639 	if (flags & EXT4_CASEFOLD_FL)
4640 		new_fl |= S_CASEFOLD;
4641 	if (flags & EXT4_VERITY_FL)
4642 		new_fl |= S_VERITY;
4643 	inode_set_flags(inode, new_fl,
4644 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4645 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4646 }
4647 
4648 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4649 				  struct ext4_inode_info *ei)
4650 {
4651 	blkcnt_t i_blocks ;
4652 	struct inode *inode = &(ei->vfs_inode);
4653 	struct super_block *sb = inode->i_sb;
4654 
4655 	if (ext4_has_feature_huge_file(sb)) {
4656 		/* we are using combined 48 bit field */
4657 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4658 					le32_to_cpu(raw_inode->i_blocks_lo);
4659 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4660 			/* i_blocks represent file system block size */
4661 			return i_blocks  << (inode->i_blkbits - 9);
4662 		} else {
4663 			return i_blocks;
4664 		}
4665 	} else {
4666 		return le32_to_cpu(raw_inode->i_blocks_lo);
4667 	}
4668 }
4669 
4670 static inline int ext4_iget_extra_inode(struct inode *inode,
4671 					 struct ext4_inode *raw_inode,
4672 					 struct ext4_inode_info *ei)
4673 {
4674 	__le32 *magic = (void *)raw_inode +
4675 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4676 
4677 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4678 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4679 		int err;
4680 
4681 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4682 		err = ext4_find_inline_data_nolock(inode);
4683 		if (!err && ext4_has_inline_data(inode))
4684 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4685 		return err;
4686 	} else
4687 		EXT4_I(inode)->i_inline_off = 0;
4688 	return 0;
4689 }
4690 
4691 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4692 {
4693 	if (!ext4_has_feature_project(inode->i_sb))
4694 		return -EOPNOTSUPP;
4695 	*projid = EXT4_I(inode)->i_projid;
4696 	return 0;
4697 }
4698 
4699 /*
4700  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4701  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4702  * set.
4703  */
4704 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4705 {
4706 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4707 		inode_set_iversion_raw(inode, val);
4708 	else
4709 		inode_set_iversion_queried(inode, val);
4710 }
4711 
4712 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4713 
4714 {
4715 	if (flags & EXT4_IGET_EA_INODE) {
4716 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4717 			return "missing EA_INODE flag";
4718 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4719 		    EXT4_I(inode)->i_file_acl)
4720 			return "ea_inode with extended attributes";
4721 	} else {
4722 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4723 			return "unexpected EA_INODE flag";
4724 	}
4725 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4726 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4727 	return NULL;
4728 }
4729 
4730 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4731 			  ext4_iget_flags flags, const char *function,
4732 			  unsigned int line)
4733 {
4734 	struct ext4_iloc iloc;
4735 	struct ext4_inode *raw_inode;
4736 	struct ext4_inode_info *ei;
4737 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4738 	struct inode *inode;
4739 	const char *err_str;
4740 	journal_t *journal = EXT4_SB(sb)->s_journal;
4741 	long ret;
4742 	loff_t size;
4743 	int block;
4744 	uid_t i_uid;
4745 	gid_t i_gid;
4746 	projid_t i_projid;
4747 
4748 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4749 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4750 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4751 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4752 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4753 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4754 	    (ino < EXT4_ROOT_INO) ||
4755 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4756 		if (flags & EXT4_IGET_HANDLE)
4757 			return ERR_PTR(-ESTALE);
4758 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4759 			     "inode #%lu: comm %s: iget: illegal inode #",
4760 			     ino, current->comm);
4761 		return ERR_PTR(-EFSCORRUPTED);
4762 	}
4763 
4764 	inode = iget_locked(sb, ino);
4765 	if (!inode)
4766 		return ERR_PTR(-ENOMEM);
4767 	if (!(inode->i_state & I_NEW)) {
4768 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4769 			ext4_error_inode(inode, function, line, 0, err_str);
4770 			iput(inode);
4771 			return ERR_PTR(-EFSCORRUPTED);
4772 		}
4773 		return inode;
4774 	}
4775 
4776 	ei = EXT4_I(inode);
4777 	iloc.bh = NULL;
4778 
4779 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4780 	if (ret < 0)
4781 		goto bad_inode;
4782 	raw_inode = ext4_raw_inode(&iloc);
4783 
4784 	if ((flags & EXT4_IGET_HANDLE) &&
4785 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4786 		ret = -ESTALE;
4787 		goto bad_inode;
4788 	}
4789 
4790 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4791 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4792 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4793 			EXT4_INODE_SIZE(inode->i_sb) ||
4794 		    (ei->i_extra_isize & 3)) {
4795 			ext4_error_inode(inode, function, line, 0,
4796 					 "iget: bad extra_isize %u "
4797 					 "(inode size %u)",
4798 					 ei->i_extra_isize,
4799 					 EXT4_INODE_SIZE(inode->i_sb));
4800 			ret = -EFSCORRUPTED;
4801 			goto bad_inode;
4802 		}
4803 	} else
4804 		ei->i_extra_isize = 0;
4805 
4806 	/* Precompute checksum seed for inode metadata */
4807 	if (ext4_has_metadata_csum(sb)) {
4808 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4809 		__u32 csum;
4810 		__le32 inum = cpu_to_le32(inode->i_ino);
4811 		__le32 gen = raw_inode->i_generation;
4812 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4813 				   sizeof(inum));
4814 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4815 					      sizeof(gen));
4816 	}
4817 
4818 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4819 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4820 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4821 		ext4_error_inode_err(inode, function, line, 0,
4822 				EFSBADCRC, "iget: checksum invalid");
4823 		ret = -EFSBADCRC;
4824 		goto bad_inode;
4825 	}
4826 
4827 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4828 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4829 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4830 	if (ext4_has_feature_project(sb) &&
4831 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4832 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4833 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4834 	else
4835 		i_projid = EXT4_DEF_PROJID;
4836 
4837 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4838 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4839 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4840 	}
4841 	i_uid_write(inode, i_uid);
4842 	i_gid_write(inode, i_gid);
4843 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4844 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4845 
4846 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4847 	ei->i_inline_off = 0;
4848 	ei->i_dir_start_lookup = 0;
4849 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4850 	/* We now have enough fields to check if the inode was active or not.
4851 	 * This is needed because nfsd might try to access dead inodes
4852 	 * the test is that same one that e2fsck uses
4853 	 * NeilBrown 1999oct15
4854 	 */
4855 	if (inode->i_nlink == 0) {
4856 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4857 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4858 		    ino != EXT4_BOOT_LOADER_INO) {
4859 			/* this inode is deleted or unallocated */
4860 			if (flags & EXT4_IGET_SPECIAL) {
4861 				ext4_error_inode(inode, function, line, 0,
4862 						 "iget: special inode unallocated");
4863 				ret = -EFSCORRUPTED;
4864 			} else
4865 				ret = -ESTALE;
4866 			goto bad_inode;
4867 		}
4868 		/* The only unlinked inodes we let through here have
4869 		 * valid i_mode and are being read by the orphan
4870 		 * recovery code: that's fine, we're about to complete
4871 		 * the process of deleting those.
4872 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4873 		 * not initialized on a new filesystem. */
4874 	}
4875 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4876 	ext4_set_inode_flags(inode, true);
4877 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4878 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4879 	if (ext4_has_feature_64bit(sb))
4880 		ei->i_file_acl |=
4881 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4882 	inode->i_size = ext4_isize(sb, raw_inode);
4883 	if ((size = i_size_read(inode)) < 0) {
4884 		ext4_error_inode(inode, function, line, 0,
4885 				 "iget: bad i_size value: %lld", size);
4886 		ret = -EFSCORRUPTED;
4887 		goto bad_inode;
4888 	}
4889 	/*
4890 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4891 	 * we'd normally treat htree data as empty space. But with metadata
4892 	 * checksumming that corrupts checksums so forbid that.
4893 	 */
4894 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4895 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4896 		ext4_error_inode(inode, function, line, 0,
4897 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4898 		ret = -EFSCORRUPTED;
4899 		goto bad_inode;
4900 	}
4901 	ei->i_disksize = inode->i_size;
4902 #ifdef CONFIG_QUOTA
4903 	ei->i_reserved_quota = 0;
4904 #endif
4905 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4906 	ei->i_block_group = iloc.block_group;
4907 	ei->i_last_alloc_group = ~0;
4908 	/*
4909 	 * NOTE! The in-memory inode i_data array is in little-endian order
4910 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4911 	 */
4912 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4913 		ei->i_data[block] = raw_inode->i_block[block];
4914 	INIT_LIST_HEAD(&ei->i_orphan);
4915 	ext4_fc_init_inode(&ei->vfs_inode);
4916 
4917 	/*
4918 	 * Set transaction id's of transactions that have to be committed
4919 	 * to finish f[data]sync. We set them to currently running transaction
4920 	 * as we cannot be sure that the inode or some of its metadata isn't
4921 	 * part of the transaction - the inode could have been reclaimed and
4922 	 * now it is reread from disk.
4923 	 */
4924 	if (journal) {
4925 		transaction_t *transaction;
4926 		tid_t tid;
4927 
4928 		read_lock(&journal->j_state_lock);
4929 		if (journal->j_running_transaction)
4930 			transaction = journal->j_running_transaction;
4931 		else
4932 			transaction = journal->j_committing_transaction;
4933 		if (transaction)
4934 			tid = transaction->t_tid;
4935 		else
4936 			tid = journal->j_commit_sequence;
4937 		read_unlock(&journal->j_state_lock);
4938 		ei->i_sync_tid = tid;
4939 		ei->i_datasync_tid = tid;
4940 	}
4941 
4942 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4943 		if (ei->i_extra_isize == 0) {
4944 			/* The extra space is currently unused. Use it. */
4945 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4946 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4947 					    EXT4_GOOD_OLD_INODE_SIZE;
4948 		} else {
4949 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4950 			if (ret)
4951 				goto bad_inode;
4952 		}
4953 	}
4954 
4955 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4956 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4957 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4958 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4959 
4960 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4961 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4962 
4963 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4964 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4965 				ivers |=
4966 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4967 		}
4968 		ext4_inode_set_iversion_queried(inode, ivers);
4969 	}
4970 
4971 	ret = 0;
4972 	if (ei->i_file_acl &&
4973 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4974 		ext4_error_inode(inode, function, line, 0,
4975 				 "iget: bad extended attribute block %llu",
4976 				 ei->i_file_acl);
4977 		ret = -EFSCORRUPTED;
4978 		goto bad_inode;
4979 	} else if (!ext4_has_inline_data(inode)) {
4980 		/* validate the block references in the inode */
4981 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4982 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4983 			(S_ISLNK(inode->i_mode) &&
4984 			!ext4_inode_is_fast_symlink(inode)))) {
4985 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4986 				ret = ext4_ext_check_inode(inode);
4987 			else
4988 				ret = ext4_ind_check_inode(inode);
4989 		}
4990 	}
4991 	if (ret)
4992 		goto bad_inode;
4993 
4994 	if (S_ISREG(inode->i_mode)) {
4995 		inode->i_op = &ext4_file_inode_operations;
4996 		inode->i_fop = &ext4_file_operations;
4997 		ext4_set_aops(inode);
4998 	} else if (S_ISDIR(inode->i_mode)) {
4999 		inode->i_op = &ext4_dir_inode_operations;
5000 		inode->i_fop = &ext4_dir_operations;
5001 	} else if (S_ISLNK(inode->i_mode)) {
5002 		/* VFS does not allow setting these so must be corruption */
5003 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5004 			ext4_error_inode(inode, function, line, 0,
5005 					 "iget: immutable or append flags "
5006 					 "not allowed on symlinks");
5007 			ret = -EFSCORRUPTED;
5008 			goto bad_inode;
5009 		}
5010 		if (IS_ENCRYPTED(inode)) {
5011 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5012 		} else if (ext4_inode_is_fast_symlink(inode)) {
5013 			inode->i_op = &ext4_fast_symlink_inode_operations;
5014 			nd_terminate_link(ei->i_data, inode->i_size,
5015 				sizeof(ei->i_data) - 1);
5016 			inode_set_cached_link(inode, (char *)ei->i_data,
5017 					      inode->i_size);
5018 		} else {
5019 			inode->i_op = &ext4_symlink_inode_operations;
5020 		}
5021 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5022 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5023 		inode->i_op = &ext4_special_inode_operations;
5024 		if (raw_inode->i_block[0])
5025 			init_special_inode(inode, inode->i_mode,
5026 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5027 		else
5028 			init_special_inode(inode, inode->i_mode,
5029 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5030 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5031 		make_bad_inode(inode);
5032 	} else {
5033 		ret = -EFSCORRUPTED;
5034 		ext4_error_inode(inode, function, line, 0,
5035 				 "iget: bogus i_mode (%o)", inode->i_mode);
5036 		goto bad_inode;
5037 	}
5038 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5039 		ext4_error_inode(inode, function, line, 0,
5040 				 "casefold flag without casefold feature");
5041 		ret = -EFSCORRUPTED;
5042 		goto bad_inode;
5043 	}
5044 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5045 		ext4_error_inode(inode, function, line, 0, err_str);
5046 		ret = -EFSCORRUPTED;
5047 		goto bad_inode;
5048 	}
5049 
5050 	brelse(iloc.bh);
5051 	unlock_new_inode(inode);
5052 	return inode;
5053 
5054 bad_inode:
5055 	brelse(iloc.bh);
5056 	iget_failed(inode);
5057 	return ERR_PTR(ret);
5058 }
5059 
5060 static void __ext4_update_other_inode_time(struct super_block *sb,
5061 					   unsigned long orig_ino,
5062 					   unsigned long ino,
5063 					   struct ext4_inode *raw_inode)
5064 {
5065 	struct inode *inode;
5066 
5067 	inode = find_inode_by_ino_rcu(sb, ino);
5068 	if (!inode)
5069 		return;
5070 
5071 	if (!inode_is_dirtytime_only(inode))
5072 		return;
5073 
5074 	spin_lock(&inode->i_lock);
5075 	if (inode_is_dirtytime_only(inode)) {
5076 		struct ext4_inode_info	*ei = EXT4_I(inode);
5077 
5078 		inode->i_state &= ~I_DIRTY_TIME;
5079 		spin_unlock(&inode->i_lock);
5080 
5081 		spin_lock(&ei->i_raw_lock);
5082 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5083 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5084 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5085 		ext4_inode_csum_set(inode, raw_inode, ei);
5086 		spin_unlock(&ei->i_raw_lock);
5087 		trace_ext4_other_inode_update_time(inode, orig_ino);
5088 		return;
5089 	}
5090 	spin_unlock(&inode->i_lock);
5091 }
5092 
5093 /*
5094  * Opportunistically update the other time fields for other inodes in
5095  * the same inode table block.
5096  */
5097 static void ext4_update_other_inodes_time(struct super_block *sb,
5098 					  unsigned long orig_ino, char *buf)
5099 {
5100 	unsigned long ino;
5101 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5102 	int inode_size = EXT4_INODE_SIZE(sb);
5103 
5104 	/*
5105 	 * Calculate the first inode in the inode table block.  Inode
5106 	 * numbers are one-based.  That is, the first inode in a block
5107 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5108 	 */
5109 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5110 	rcu_read_lock();
5111 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5112 		if (ino == orig_ino)
5113 			continue;
5114 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5115 					       (struct ext4_inode *)buf);
5116 	}
5117 	rcu_read_unlock();
5118 }
5119 
5120 /*
5121  * Post the struct inode info into an on-disk inode location in the
5122  * buffer-cache.  This gobbles the caller's reference to the
5123  * buffer_head in the inode location struct.
5124  *
5125  * The caller must have write access to iloc->bh.
5126  */
5127 static int ext4_do_update_inode(handle_t *handle,
5128 				struct inode *inode,
5129 				struct ext4_iloc *iloc)
5130 {
5131 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5132 	struct ext4_inode_info *ei = EXT4_I(inode);
5133 	struct buffer_head *bh = iloc->bh;
5134 	struct super_block *sb = inode->i_sb;
5135 	int err;
5136 	int need_datasync = 0, set_large_file = 0;
5137 
5138 	spin_lock(&ei->i_raw_lock);
5139 
5140 	/*
5141 	 * For fields not tracked in the in-memory inode, initialise them
5142 	 * to zero for new inodes.
5143 	 */
5144 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5145 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5146 
5147 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5148 		need_datasync = 1;
5149 	if (ei->i_disksize > 0x7fffffffULL) {
5150 		if (!ext4_has_feature_large_file(sb) ||
5151 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5152 			set_large_file = 1;
5153 	}
5154 
5155 	err = ext4_fill_raw_inode(inode, raw_inode);
5156 	spin_unlock(&ei->i_raw_lock);
5157 	if (err) {
5158 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5159 		goto out_brelse;
5160 	}
5161 
5162 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5163 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5164 					      bh->b_data);
5165 
5166 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5167 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5168 	if (err)
5169 		goto out_error;
5170 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5171 	if (set_large_file) {
5172 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5173 		err = ext4_journal_get_write_access(handle, sb,
5174 						    EXT4_SB(sb)->s_sbh,
5175 						    EXT4_JTR_NONE);
5176 		if (err)
5177 			goto out_error;
5178 		lock_buffer(EXT4_SB(sb)->s_sbh);
5179 		ext4_set_feature_large_file(sb);
5180 		ext4_superblock_csum_set(sb);
5181 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5182 		ext4_handle_sync(handle);
5183 		err = ext4_handle_dirty_metadata(handle, NULL,
5184 						 EXT4_SB(sb)->s_sbh);
5185 	}
5186 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5187 out_error:
5188 	ext4_std_error(inode->i_sb, err);
5189 out_brelse:
5190 	brelse(bh);
5191 	return err;
5192 }
5193 
5194 /*
5195  * ext4_write_inode()
5196  *
5197  * We are called from a few places:
5198  *
5199  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5200  *   Here, there will be no transaction running. We wait for any running
5201  *   transaction to commit.
5202  *
5203  * - Within flush work (sys_sync(), kupdate and such).
5204  *   We wait on commit, if told to.
5205  *
5206  * - Within iput_final() -> write_inode_now()
5207  *   We wait on commit, if told to.
5208  *
5209  * In all cases it is actually safe for us to return without doing anything,
5210  * because the inode has been copied into a raw inode buffer in
5211  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5212  * writeback.
5213  *
5214  * Note that we are absolutely dependent upon all inode dirtiers doing the
5215  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5216  * which we are interested.
5217  *
5218  * It would be a bug for them to not do this.  The code:
5219  *
5220  *	mark_inode_dirty(inode)
5221  *	stuff();
5222  *	inode->i_size = expr;
5223  *
5224  * is in error because write_inode() could occur while `stuff()' is running,
5225  * and the new i_size will be lost.  Plus the inode will no longer be on the
5226  * superblock's dirty inode list.
5227  */
5228 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5229 {
5230 	int err;
5231 
5232 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5233 		return 0;
5234 
5235 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5236 		return -EIO;
5237 
5238 	if (EXT4_SB(inode->i_sb)->s_journal) {
5239 		if (ext4_journal_current_handle()) {
5240 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5241 			dump_stack();
5242 			return -EIO;
5243 		}
5244 
5245 		/*
5246 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5247 		 * ext4_sync_fs() will force the commit after everything is
5248 		 * written.
5249 		 */
5250 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5251 			return 0;
5252 
5253 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5254 						EXT4_I(inode)->i_sync_tid);
5255 	} else {
5256 		struct ext4_iloc iloc;
5257 
5258 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5259 		if (err)
5260 			return err;
5261 		/*
5262 		 * sync(2) will flush the whole buffer cache. No need to do
5263 		 * it here separately for each inode.
5264 		 */
5265 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5266 			sync_dirty_buffer(iloc.bh);
5267 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5268 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5269 					       "IO error syncing inode");
5270 			err = -EIO;
5271 		}
5272 		brelse(iloc.bh);
5273 	}
5274 	return err;
5275 }
5276 
5277 /*
5278  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5279  * buffers that are attached to a folio straddling i_size and are undergoing
5280  * commit. In that case we have to wait for commit to finish and try again.
5281  */
5282 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5283 {
5284 	unsigned offset;
5285 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5286 	tid_t commit_tid;
5287 	int ret;
5288 	bool has_transaction;
5289 
5290 	offset = inode->i_size & (PAGE_SIZE - 1);
5291 	/*
5292 	 * If the folio is fully truncated, we don't need to wait for any commit
5293 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5294 	 * strip all buffers from the folio but keep the folio dirty which can then
5295 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5296 	 * buffers). Also we don't need to wait for any commit if all buffers in
5297 	 * the folio remain valid. This is most beneficial for the common case of
5298 	 * blocksize == PAGESIZE.
5299 	 */
5300 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5301 		return;
5302 	while (1) {
5303 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5304 				      inode->i_size >> PAGE_SHIFT);
5305 		if (IS_ERR(folio))
5306 			return;
5307 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5308 						folio_size(folio) - offset);
5309 		folio_unlock(folio);
5310 		folio_put(folio);
5311 		if (ret != -EBUSY)
5312 			return;
5313 		has_transaction = false;
5314 		read_lock(&journal->j_state_lock);
5315 		if (journal->j_committing_transaction) {
5316 			commit_tid = journal->j_committing_transaction->t_tid;
5317 			has_transaction = true;
5318 		}
5319 		read_unlock(&journal->j_state_lock);
5320 		if (has_transaction)
5321 			jbd2_log_wait_commit(journal, commit_tid);
5322 	}
5323 }
5324 
5325 /*
5326  * ext4_setattr()
5327  *
5328  * Called from notify_change.
5329  *
5330  * We want to trap VFS attempts to truncate the file as soon as
5331  * possible.  In particular, we want to make sure that when the VFS
5332  * shrinks i_size, we put the inode on the orphan list and modify
5333  * i_disksize immediately, so that during the subsequent flushing of
5334  * dirty pages and freeing of disk blocks, we can guarantee that any
5335  * commit will leave the blocks being flushed in an unused state on
5336  * disk.  (On recovery, the inode will get truncated and the blocks will
5337  * be freed, so we have a strong guarantee that no future commit will
5338  * leave these blocks visible to the user.)
5339  *
5340  * Another thing we have to assure is that if we are in ordered mode
5341  * and inode is still attached to the committing transaction, we must
5342  * we start writeout of all the dirty pages which are being truncated.
5343  * This way we are sure that all the data written in the previous
5344  * transaction are already on disk (truncate waits for pages under
5345  * writeback).
5346  *
5347  * Called with inode->i_rwsem down.
5348  */
5349 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5350 		 struct iattr *attr)
5351 {
5352 	struct inode *inode = d_inode(dentry);
5353 	int error, rc = 0;
5354 	int orphan = 0;
5355 	const unsigned int ia_valid = attr->ia_valid;
5356 	bool inc_ivers = true;
5357 
5358 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5359 		return -EIO;
5360 
5361 	if (unlikely(IS_IMMUTABLE(inode)))
5362 		return -EPERM;
5363 
5364 	if (unlikely(IS_APPEND(inode) &&
5365 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5366 				  ATTR_GID | ATTR_TIMES_SET))))
5367 		return -EPERM;
5368 
5369 	error = setattr_prepare(idmap, dentry, attr);
5370 	if (error)
5371 		return error;
5372 
5373 	error = fscrypt_prepare_setattr(dentry, attr);
5374 	if (error)
5375 		return error;
5376 
5377 	error = fsverity_prepare_setattr(dentry, attr);
5378 	if (error)
5379 		return error;
5380 
5381 	if (is_quota_modification(idmap, inode, attr)) {
5382 		error = dquot_initialize(inode);
5383 		if (error)
5384 			return error;
5385 	}
5386 
5387 	if (i_uid_needs_update(idmap, attr, inode) ||
5388 	    i_gid_needs_update(idmap, attr, inode)) {
5389 		handle_t *handle;
5390 
5391 		/* (user+group)*(old+new) structure, inode write (sb,
5392 		 * inode block, ? - but truncate inode update has it) */
5393 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5394 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5395 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5396 		if (IS_ERR(handle)) {
5397 			error = PTR_ERR(handle);
5398 			goto err_out;
5399 		}
5400 
5401 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5402 		 * counts xattr inode references.
5403 		 */
5404 		down_read(&EXT4_I(inode)->xattr_sem);
5405 		error = dquot_transfer(idmap, inode, attr);
5406 		up_read(&EXT4_I(inode)->xattr_sem);
5407 
5408 		if (error) {
5409 			ext4_journal_stop(handle);
5410 			return error;
5411 		}
5412 		/* Update corresponding info in inode so that everything is in
5413 		 * one transaction */
5414 		i_uid_update(idmap, attr, inode);
5415 		i_gid_update(idmap, attr, inode);
5416 		error = ext4_mark_inode_dirty(handle, inode);
5417 		ext4_journal_stop(handle);
5418 		if (unlikely(error)) {
5419 			return error;
5420 		}
5421 	}
5422 
5423 	if (attr->ia_valid & ATTR_SIZE) {
5424 		handle_t *handle;
5425 		loff_t oldsize = inode->i_size;
5426 		loff_t old_disksize;
5427 		int shrink = (attr->ia_size < inode->i_size);
5428 
5429 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5430 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5431 
5432 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5433 				return -EFBIG;
5434 			}
5435 		}
5436 		if (!S_ISREG(inode->i_mode)) {
5437 			return -EINVAL;
5438 		}
5439 
5440 		if (attr->ia_size == inode->i_size)
5441 			inc_ivers = false;
5442 
5443 		if (shrink) {
5444 			if (ext4_should_order_data(inode)) {
5445 				error = ext4_begin_ordered_truncate(inode,
5446 							    attr->ia_size);
5447 				if (error)
5448 					goto err_out;
5449 			}
5450 			/*
5451 			 * Blocks are going to be removed from the inode. Wait
5452 			 * for dio in flight.
5453 			 */
5454 			inode_dio_wait(inode);
5455 		}
5456 
5457 		filemap_invalidate_lock(inode->i_mapping);
5458 
5459 		rc = ext4_break_layouts(inode);
5460 		if (rc) {
5461 			filemap_invalidate_unlock(inode->i_mapping);
5462 			goto err_out;
5463 		}
5464 
5465 		if (attr->ia_size != inode->i_size) {
5466 			/* attach jbd2 jinode for EOF folio tail zeroing */
5467 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5468 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5469 				error = ext4_inode_attach_jinode(inode);
5470 				if (error)
5471 					goto err_out;
5472 			}
5473 
5474 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475 			if (IS_ERR(handle)) {
5476 				error = PTR_ERR(handle);
5477 				goto out_mmap_sem;
5478 			}
5479 			if (ext4_handle_valid(handle) && shrink) {
5480 				error = ext4_orphan_add(handle, inode);
5481 				orphan = 1;
5482 			}
5483 			/*
5484 			 * Update c/mtime and tail zero the EOF folio on
5485 			 * truncate up. ext4_truncate() handles the shrink case
5486 			 * below.
5487 			 */
5488 			if (!shrink) {
5489 				inode_set_mtime_to_ts(inode,
5490 						      inode_set_ctime_current(inode));
5491 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5492 					ext4_block_truncate_page(handle,
5493 							inode->i_mapping, oldsize);
5494 			}
5495 
5496 			if (shrink)
5497 				ext4_fc_track_range(handle, inode,
5498 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5499 					inode->i_sb->s_blocksize_bits,
5500 					EXT_MAX_BLOCKS - 1);
5501 			else
5502 				ext4_fc_track_range(
5503 					handle, inode,
5504 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5505 					inode->i_sb->s_blocksize_bits,
5506 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5507 					inode->i_sb->s_blocksize_bits);
5508 
5509 			down_write(&EXT4_I(inode)->i_data_sem);
5510 			old_disksize = EXT4_I(inode)->i_disksize;
5511 			EXT4_I(inode)->i_disksize = attr->ia_size;
5512 			rc = ext4_mark_inode_dirty(handle, inode);
5513 			if (!error)
5514 				error = rc;
5515 			/*
5516 			 * We have to update i_size under i_data_sem together
5517 			 * with i_disksize to avoid races with writeback code
5518 			 * running ext4_wb_update_i_disksize().
5519 			 */
5520 			if (!error)
5521 				i_size_write(inode, attr->ia_size);
5522 			else
5523 				EXT4_I(inode)->i_disksize = old_disksize;
5524 			up_write(&EXT4_I(inode)->i_data_sem);
5525 			ext4_journal_stop(handle);
5526 			if (error)
5527 				goto out_mmap_sem;
5528 			if (!shrink) {
5529 				pagecache_isize_extended(inode, oldsize,
5530 							 inode->i_size);
5531 			} else if (ext4_should_journal_data(inode)) {
5532 				ext4_wait_for_tail_page_commit(inode);
5533 			}
5534 		}
5535 
5536 		/*
5537 		 * Truncate pagecache after we've waited for commit
5538 		 * in data=journal mode to make pages freeable.
5539 		 */
5540 		truncate_pagecache(inode, inode->i_size);
5541 		/*
5542 		 * Call ext4_truncate() even if i_size didn't change to
5543 		 * truncate possible preallocated blocks.
5544 		 */
5545 		if (attr->ia_size <= oldsize) {
5546 			rc = ext4_truncate(inode);
5547 			if (rc)
5548 				error = rc;
5549 		}
5550 out_mmap_sem:
5551 		filemap_invalidate_unlock(inode->i_mapping);
5552 	}
5553 
5554 	if (!error) {
5555 		if (inc_ivers)
5556 			inode_inc_iversion(inode);
5557 		setattr_copy(idmap, inode, attr);
5558 		mark_inode_dirty(inode);
5559 	}
5560 
5561 	/*
5562 	 * If the call to ext4_truncate failed to get a transaction handle at
5563 	 * all, we need to clean up the in-core orphan list manually.
5564 	 */
5565 	if (orphan && inode->i_nlink)
5566 		ext4_orphan_del(NULL, inode);
5567 
5568 	if (!error && (ia_valid & ATTR_MODE))
5569 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5570 
5571 err_out:
5572 	if  (error)
5573 		ext4_std_error(inode->i_sb, error);
5574 	if (!error)
5575 		error = rc;
5576 	return error;
5577 }
5578 
5579 u32 ext4_dio_alignment(struct inode *inode)
5580 {
5581 	if (fsverity_active(inode))
5582 		return 0;
5583 	if (ext4_should_journal_data(inode))
5584 		return 0;
5585 	if (ext4_has_inline_data(inode))
5586 		return 0;
5587 	if (IS_ENCRYPTED(inode)) {
5588 		if (!fscrypt_dio_supported(inode))
5589 			return 0;
5590 		return i_blocksize(inode);
5591 	}
5592 	return 1; /* use the iomap defaults */
5593 }
5594 
5595 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5596 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5597 {
5598 	struct inode *inode = d_inode(path->dentry);
5599 	struct ext4_inode *raw_inode;
5600 	struct ext4_inode_info *ei = EXT4_I(inode);
5601 	unsigned int flags;
5602 
5603 	if ((request_mask & STATX_BTIME) &&
5604 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5605 		stat->result_mask |= STATX_BTIME;
5606 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5607 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5608 	}
5609 
5610 	/*
5611 	 * Return the DIO alignment restrictions if requested.  We only return
5612 	 * this information when requested, since on encrypted files it might
5613 	 * take a fair bit of work to get if the file wasn't opened recently.
5614 	 */
5615 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5616 		u32 dio_align = ext4_dio_alignment(inode);
5617 
5618 		stat->result_mask |= STATX_DIOALIGN;
5619 		if (dio_align == 1) {
5620 			struct block_device *bdev = inode->i_sb->s_bdev;
5621 
5622 			/* iomap defaults */
5623 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5624 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5625 		} else {
5626 			stat->dio_mem_align = dio_align;
5627 			stat->dio_offset_align = dio_align;
5628 		}
5629 	}
5630 
5631 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5632 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5633 		unsigned int awu_min = 0, awu_max = 0;
5634 
5635 		if (ext4_inode_can_atomic_write(inode)) {
5636 			awu_min = sbi->s_awu_min;
5637 			awu_max = sbi->s_awu_max;
5638 		}
5639 
5640 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5641 	}
5642 
5643 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5644 	if (flags & EXT4_APPEND_FL)
5645 		stat->attributes |= STATX_ATTR_APPEND;
5646 	if (flags & EXT4_COMPR_FL)
5647 		stat->attributes |= STATX_ATTR_COMPRESSED;
5648 	if (flags & EXT4_ENCRYPT_FL)
5649 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5650 	if (flags & EXT4_IMMUTABLE_FL)
5651 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5652 	if (flags & EXT4_NODUMP_FL)
5653 		stat->attributes |= STATX_ATTR_NODUMP;
5654 	if (flags & EXT4_VERITY_FL)
5655 		stat->attributes |= STATX_ATTR_VERITY;
5656 
5657 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5658 				  STATX_ATTR_COMPRESSED |
5659 				  STATX_ATTR_ENCRYPTED |
5660 				  STATX_ATTR_IMMUTABLE |
5661 				  STATX_ATTR_NODUMP |
5662 				  STATX_ATTR_VERITY);
5663 
5664 	generic_fillattr(idmap, request_mask, inode, stat);
5665 	return 0;
5666 }
5667 
5668 int ext4_file_getattr(struct mnt_idmap *idmap,
5669 		      const struct path *path, struct kstat *stat,
5670 		      u32 request_mask, unsigned int query_flags)
5671 {
5672 	struct inode *inode = d_inode(path->dentry);
5673 	u64 delalloc_blocks;
5674 
5675 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5676 
5677 	/*
5678 	 * If there is inline data in the inode, the inode will normally not
5679 	 * have data blocks allocated (it may have an external xattr block).
5680 	 * Report at least one sector for such files, so tools like tar, rsync,
5681 	 * others don't incorrectly think the file is completely sparse.
5682 	 */
5683 	if (unlikely(ext4_has_inline_data(inode)))
5684 		stat->blocks += (stat->size + 511) >> 9;
5685 
5686 	/*
5687 	 * We can't update i_blocks if the block allocation is delayed
5688 	 * otherwise in the case of system crash before the real block
5689 	 * allocation is done, we will have i_blocks inconsistent with
5690 	 * on-disk file blocks.
5691 	 * We always keep i_blocks updated together with real
5692 	 * allocation. But to not confuse with user, stat
5693 	 * will return the blocks that include the delayed allocation
5694 	 * blocks for this file.
5695 	 */
5696 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5697 				   EXT4_I(inode)->i_reserved_data_blocks);
5698 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5699 	return 0;
5700 }
5701 
5702 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5703 				   int pextents)
5704 {
5705 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5706 		return ext4_ind_trans_blocks(inode, lblocks);
5707 	return ext4_ext_index_trans_blocks(inode, pextents);
5708 }
5709 
5710 /*
5711  * Account for index blocks, block groups bitmaps and block group
5712  * descriptor blocks if modify datablocks and index blocks
5713  * worse case, the indexs blocks spread over different block groups
5714  *
5715  * If datablocks are discontiguous, they are possible to spread over
5716  * different block groups too. If they are contiguous, with flexbg,
5717  * they could still across block group boundary.
5718  *
5719  * Also account for superblock, inode, quota and xattr blocks
5720  */
5721 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5722 				  int pextents)
5723 {
5724 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5725 	int gdpblocks;
5726 	int idxblocks;
5727 	int ret;
5728 
5729 	/*
5730 	 * How many index blocks need to touch to map @lblocks logical blocks
5731 	 * to @pextents physical extents?
5732 	 */
5733 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5734 
5735 	ret = idxblocks;
5736 
5737 	/*
5738 	 * Now let's see how many group bitmaps and group descriptors need
5739 	 * to account
5740 	 */
5741 	groups = idxblocks + pextents;
5742 	gdpblocks = groups;
5743 	if (groups > ngroups)
5744 		groups = ngroups;
5745 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5746 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5747 
5748 	/* bitmaps and block group descriptor blocks */
5749 	ret += groups + gdpblocks;
5750 
5751 	/* Blocks for super block, inode, quota and xattr blocks */
5752 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5753 
5754 	return ret;
5755 }
5756 
5757 /*
5758  * Calculate the total number of credits to reserve to fit
5759  * the modification of a single pages into a single transaction,
5760  * which may include multiple chunks of block allocations.
5761  *
5762  * This could be called via ext4_write_begin()
5763  *
5764  * We need to consider the worse case, when
5765  * one new block per extent.
5766  */
5767 int ext4_writepage_trans_blocks(struct inode *inode)
5768 {
5769 	int bpp = ext4_journal_blocks_per_page(inode);
5770 	int ret;
5771 
5772 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5773 
5774 	/* Account for data blocks for journalled mode */
5775 	if (ext4_should_journal_data(inode))
5776 		ret += bpp;
5777 	return ret;
5778 }
5779 
5780 /*
5781  * Calculate the journal credits for a chunk of data modification.
5782  *
5783  * This is called from DIO, fallocate or whoever calling
5784  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5785  *
5786  * journal buffers for data blocks are not included here, as DIO
5787  * and fallocate do no need to journal data buffers.
5788  */
5789 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5790 {
5791 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5792 }
5793 
5794 /*
5795  * The caller must have previously called ext4_reserve_inode_write().
5796  * Give this, we know that the caller already has write access to iloc->bh.
5797  */
5798 int ext4_mark_iloc_dirty(handle_t *handle,
5799 			 struct inode *inode, struct ext4_iloc *iloc)
5800 {
5801 	int err = 0;
5802 
5803 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5804 		put_bh(iloc->bh);
5805 		return -EIO;
5806 	}
5807 	ext4_fc_track_inode(handle, inode);
5808 
5809 	/* the do_update_inode consumes one bh->b_count */
5810 	get_bh(iloc->bh);
5811 
5812 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5813 	err = ext4_do_update_inode(handle, inode, iloc);
5814 	put_bh(iloc->bh);
5815 	return err;
5816 }
5817 
5818 /*
5819  * On success, We end up with an outstanding reference count against
5820  * iloc->bh.  This _must_ be cleaned up later.
5821  */
5822 
5823 int
5824 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5825 			 struct ext4_iloc *iloc)
5826 {
5827 	int err;
5828 
5829 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5830 		return -EIO;
5831 
5832 	err = ext4_get_inode_loc(inode, iloc);
5833 	if (!err) {
5834 		BUFFER_TRACE(iloc->bh, "get_write_access");
5835 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5836 						    iloc->bh, EXT4_JTR_NONE);
5837 		if (err) {
5838 			brelse(iloc->bh);
5839 			iloc->bh = NULL;
5840 		}
5841 	}
5842 	ext4_std_error(inode->i_sb, err);
5843 	return err;
5844 }
5845 
5846 static int __ext4_expand_extra_isize(struct inode *inode,
5847 				     unsigned int new_extra_isize,
5848 				     struct ext4_iloc *iloc,
5849 				     handle_t *handle, int *no_expand)
5850 {
5851 	struct ext4_inode *raw_inode;
5852 	struct ext4_xattr_ibody_header *header;
5853 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5854 	struct ext4_inode_info *ei = EXT4_I(inode);
5855 	int error;
5856 
5857 	/* this was checked at iget time, but double check for good measure */
5858 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5859 	    (ei->i_extra_isize & 3)) {
5860 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5861 				 ei->i_extra_isize,
5862 				 EXT4_INODE_SIZE(inode->i_sb));
5863 		return -EFSCORRUPTED;
5864 	}
5865 	if ((new_extra_isize < ei->i_extra_isize) ||
5866 	    (new_extra_isize < 4) ||
5867 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5868 		return -EINVAL;	/* Should never happen */
5869 
5870 	raw_inode = ext4_raw_inode(iloc);
5871 
5872 	header = IHDR(inode, raw_inode);
5873 
5874 	/* No extended attributes present */
5875 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5876 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5877 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5878 		       EXT4_I(inode)->i_extra_isize, 0,
5879 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5880 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5881 		return 0;
5882 	}
5883 
5884 	/*
5885 	 * We may need to allocate external xattr block so we need quotas
5886 	 * initialized. Here we can be called with various locks held so we
5887 	 * cannot affort to initialize quotas ourselves. So just bail.
5888 	 */
5889 	if (dquot_initialize_needed(inode))
5890 		return -EAGAIN;
5891 
5892 	/* try to expand with EAs present */
5893 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5894 					   raw_inode, handle);
5895 	if (error) {
5896 		/*
5897 		 * Inode size expansion failed; don't try again
5898 		 */
5899 		*no_expand = 1;
5900 	}
5901 
5902 	return error;
5903 }
5904 
5905 /*
5906  * Expand an inode by new_extra_isize bytes.
5907  * Returns 0 on success or negative error number on failure.
5908  */
5909 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5910 					  unsigned int new_extra_isize,
5911 					  struct ext4_iloc iloc,
5912 					  handle_t *handle)
5913 {
5914 	int no_expand;
5915 	int error;
5916 
5917 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5918 		return -EOVERFLOW;
5919 
5920 	/*
5921 	 * In nojournal mode, we can immediately attempt to expand
5922 	 * the inode.  When journaled, we first need to obtain extra
5923 	 * buffer credits since we may write into the EA block
5924 	 * with this same handle. If journal_extend fails, then it will
5925 	 * only result in a minor loss of functionality for that inode.
5926 	 * If this is felt to be critical, then e2fsck should be run to
5927 	 * force a large enough s_min_extra_isize.
5928 	 */
5929 	if (ext4_journal_extend(handle,
5930 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5931 		return -ENOSPC;
5932 
5933 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5934 		return -EBUSY;
5935 
5936 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5937 					  handle, &no_expand);
5938 	ext4_write_unlock_xattr(inode, &no_expand);
5939 
5940 	return error;
5941 }
5942 
5943 int ext4_expand_extra_isize(struct inode *inode,
5944 			    unsigned int new_extra_isize,
5945 			    struct ext4_iloc *iloc)
5946 {
5947 	handle_t *handle;
5948 	int no_expand;
5949 	int error, rc;
5950 
5951 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5952 		brelse(iloc->bh);
5953 		return -EOVERFLOW;
5954 	}
5955 
5956 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5957 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5958 	if (IS_ERR(handle)) {
5959 		error = PTR_ERR(handle);
5960 		brelse(iloc->bh);
5961 		return error;
5962 	}
5963 
5964 	ext4_write_lock_xattr(inode, &no_expand);
5965 
5966 	BUFFER_TRACE(iloc->bh, "get_write_access");
5967 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5968 					      EXT4_JTR_NONE);
5969 	if (error) {
5970 		brelse(iloc->bh);
5971 		goto out_unlock;
5972 	}
5973 
5974 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5975 					  handle, &no_expand);
5976 
5977 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5978 	if (!error)
5979 		error = rc;
5980 
5981 out_unlock:
5982 	ext4_write_unlock_xattr(inode, &no_expand);
5983 	ext4_journal_stop(handle);
5984 	return error;
5985 }
5986 
5987 /*
5988  * What we do here is to mark the in-core inode as clean with respect to inode
5989  * dirtiness (it may still be data-dirty).
5990  * This means that the in-core inode may be reaped by prune_icache
5991  * without having to perform any I/O.  This is a very good thing,
5992  * because *any* task may call prune_icache - even ones which
5993  * have a transaction open against a different journal.
5994  *
5995  * Is this cheating?  Not really.  Sure, we haven't written the
5996  * inode out, but prune_icache isn't a user-visible syncing function.
5997  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5998  * we start and wait on commits.
5999  */
6000 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6001 				const char *func, unsigned int line)
6002 {
6003 	struct ext4_iloc iloc;
6004 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6005 	int err;
6006 
6007 	might_sleep();
6008 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6009 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6010 	if (err)
6011 		goto out;
6012 
6013 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6014 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6015 					       iloc, handle);
6016 
6017 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6018 out:
6019 	if (unlikely(err))
6020 		ext4_error_inode_err(inode, func, line, 0, err,
6021 					"mark_inode_dirty error");
6022 	return err;
6023 }
6024 
6025 /*
6026  * ext4_dirty_inode() is called from __mark_inode_dirty()
6027  *
6028  * We're really interested in the case where a file is being extended.
6029  * i_size has been changed by generic_commit_write() and we thus need
6030  * to include the updated inode in the current transaction.
6031  *
6032  * Also, dquot_alloc_block() will always dirty the inode when blocks
6033  * are allocated to the file.
6034  *
6035  * If the inode is marked synchronous, we don't honour that here - doing
6036  * so would cause a commit on atime updates, which we don't bother doing.
6037  * We handle synchronous inodes at the highest possible level.
6038  */
6039 void ext4_dirty_inode(struct inode *inode, int flags)
6040 {
6041 	handle_t *handle;
6042 
6043 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6044 	if (IS_ERR(handle))
6045 		return;
6046 	ext4_mark_inode_dirty(handle, inode);
6047 	ext4_journal_stop(handle);
6048 }
6049 
6050 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6051 {
6052 	journal_t *journal;
6053 	handle_t *handle;
6054 	int err;
6055 	int alloc_ctx;
6056 
6057 	/*
6058 	 * We have to be very careful here: changing a data block's
6059 	 * journaling status dynamically is dangerous.  If we write a
6060 	 * data block to the journal, change the status and then delete
6061 	 * that block, we risk forgetting to revoke the old log record
6062 	 * from the journal and so a subsequent replay can corrupt data.
6063 	 * So, first we make sure that the journal is empty and that
6064 	 * nobody is changing anything.
6065 	 */
6066 
6067 	journal = EXT4_JOURNAL(inode);
6068 	if (!journal)
6069 		return 0;
6070 	if (is_journal_aborted(journal))
6071 		return -EROFS;
6072 
6073 	/* Wait for all existing dio workers */
6074 	inode_dio_wait(inode);
6075 
6076 	/*
6077 	 * Before flushing the journal and switching inode's aops, we have
6078 	 * to flush all dirty data the inode has. There can be outstanding
6079 	 * delayed allocations, there can be unwritten extents created by
6080 	 * fallocate or buffered writes in dioread_nolock mode covered by
6081 	 * dirty data which can be converted only after flushing the dirty
6082 	 * data (and journalled aops don't know how to handle these cases).
6083 	 */
6084 	if (val) {
6085 		filemap_invalidate_lock(inode->i_mapping);
6086 		err = filemap_write_and_wait(inode->i_mapping);
6087 		if (err < 0) {
6088 			filemap_invalidate_unlock(inode->i_mapping);
6089 			return err;
6090 		}
6091 	}
6092 
6093 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6094 	jbd2_journal_lock_updates(journal);
6095 
6096 	/*
6097 	 * OK, there are no updates running now, and all cached data is
6098 	 * synced to disk.  We are now in a completely consistent state
6099 	 * which doesn't have anything in the journal, and we know that
6100 	 * no filesystem updates are running, so it is safe to modify
6101 	 * the inode's in-core data-journaling state flag now.
6102 	 */
6103 
6104 	if (val)
6105 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6106 	else {
6107 		err = jbd2_journal_flush(journal, 0);
6108 		if (err < 0) {
6109 			jbd2_journal_unlock_updates(journal);
6110 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6111 			return err;
6112 		}
6113 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6114 	}
6115 	ext4_set_aops(inode);
6116 
6117 	jbd2_journal_unlock_updates(journal);
6118 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6119 
6120 	if (val)
6121 		filemap_invalidate_unlock(inode->i_mapping);
6122 
6123 	/* Finally we can mark the inode as dirty. */
6124 
6125 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6126 	if (IS_ERR(handle))
6127 		return PTR_ERR(handle);
6128 
6129 	ext4_fc_mark_ineligible(inode->i_sb,
6130 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6131 	err = ext4_mark_inode_dirty(handle, inode);
6132 	ext4_handle_sync(handle);
6133 	ext4_journal_stop(handle);
6134 	ext4_std_error(inode->i_sb, err);
6135 
6136 	return err;
6137 }
6138 
6139 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6140 			    struct buffer_head *bh)
6141 {
6142 	return !buffer_mapped(bh);
6143 }
6144 
6145 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6146 {
6147 	struct vm_area_struct *vma = vmf->vma;
6148 	struct folio *folio = page_folio(vmf->page);
6149 	loff_t size;
6150 	unsigned long len;
6151 	int err;
6152 	vm_fault_t ret;
6153 	struct file *file = vma->vm_file;
6154 	struct inode *inode = file_inode(file);
6155 	struct address_space *mapping = inode->i_mapping;
6156 	handle_t *handle;
6157 	get_block_t *get_block;
6158 	int retries = 0;
6159 
6160 	if (unlikely(IS_IMMUTABLE(inode)))
6161 		return VM_FAULT_SIGBUS;
6162 
6163 	sb_start_pagefault(inode->i_sb);
6164 	file_update_time(vma->vm_file);
6165 
6166 	filemap_invalidate_lock_shared(mapping);
6167 
6168 	err = ext4_convert_inline_data(inode);
6169 	if (err)
6170 		goto out_ret;
6171 
6172 	/*
6173 	 * On data journalling we skip straight to the transaction handle:
6174 	 * there's no delalloc; page truncated will be checked later; the
6175 	 * early return w/ all buffers mapped (calculates size/len) can't
6176 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6177 	 */
6178 	if (ext4_should_journal_data(inode))
6179 		goto retry_alloc;
6180 
6181 	/* Delalloc case is easy... */
6182 	if (test_opt(inode->i_sb, DELALLOC) &&
6183 	    !ext4_nonda_switch(inode->i_sb)) {
6184 		do {
6185 			err = block_page_mkwrite(vma, vmf,
6186 						   ext4_da_get_block_prep);
6187 		} while (err == -ENOSPC &&
6188 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6189 		goto out_ret;
6190 	}
6191 
6192 	folio_lock(folio);
6193 	size = i_size_read(inode);
6194 	/* Page got truncated from under us? */
6195 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6196 		folio_unlock(folio);
6197 		ret = VM_FAULT_NOPAGE;
6198 		goto out;
6199 	}
6200 
6201 	len = folio_size(folio);
6202 	if (folio_pos(folio) + len > size)
6203 		len = size - folio_pos(folio);
6204 	/*
6205 	 * Return if we have all the buffers mapped. This avoids the need to do
6206 	 * journal_start/journal_stop which can block and take a long time
6207 	 *
6208 	 * This cannot be done for data journalling, as we have to add the
6209 	 * inode to the transaction's list to writeprotect pages on commit.
6210 	 */
6211 	if (folio_buffers(folio)) {
6212 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6213 					    0, len, NULL,
6214 					    ext4_bh_unmapped)) {
6215 			/* Wait so that we don't change page under IO */
6216 			folio_wait_stable(folio);
6217 			ret = VM_FAULT_LOCKED;
6218 			goto out;
6219 		}
6220 	}
6221 	folio_unlock(folio);
6222 	/* OK, we need to fill the hole... */
6223 	if (ext4_should_dioread_nolock(inode))
6224 		get_block = ext4_get_block_unwritten;
6225 	else
6226 		get_block = ext4_get_block;
6227 retry_alloc:
6228 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6229 				    ext4_writepage_trans_blocks(inode));
6230 	if (IS_ERR(handle)) {
6231 		ret = VM_FAULT_SIGBUS;
6232 		goto out;
6233 	}
6234 	/*
6235 	 * Data journalling can't use block_page_mkwrite() because it
6236 	 * will set_buffer_dirty() before do_journal_get_write_access()
6237 	 * thus might hit warning messages for dirty metadata buffers.
6238 	 */
6239 	if (!ext4_should_journal_data(inode)) {
6240 		err = block_page_mkwrite(vma, vmf, get_block);
6241 	} else {
6242 		folio_lock(folio);
6243 		size = i_size_read(inode);
6244 		/* Page got truncated from under us? */
6245 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6246 			ret = VM_FAULT_NOPAGE;
6247 			goto out_error;
6248 		}
6249 
6250 		len = folio_size(folio);
6251 		if (folio_pos(folio) + len > size)
6252 			len = size - folio_pos(folio);
6253 
6254 		err = ext4_block_write_begin(handle, folio, 0, len,
6255 					     ext4_get_block);
6256 		if (!err) {
6257 			ret = VM_FAULT_SIGBUS;
6258 			if (ext4_journal_folio_buffers(handle, folio, len))
6259 				goto out_error;
6260 		} else {
6261 			folio_unlock(folio);
6262 		}
6263 	}
6264 	ext4_journal_stop(handle);
6265 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6266 		goto retry_alloc;
6267 out_ret:
6268 	ret = vmf_fs_error(err);
6269 out:
6270 	filemap_invalidate_unlock_shared(mapping);
6271 	sb_end_pagefault(inode->i_sb);
6272 	return ret;
6273 out_error:
6274 	folio_unlock(folio);
6275 	ext4_journal_stop(handle);
6276 	goto out;
6277 }
6278