1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE, 75 offset - EXT4_GOOD_OLD_INODE_SIZE); 76 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 77 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, 78 csum_size); 79 offset += csum_size; 80 } 81 csum = ext4_chksum(csum, (__u8 *)raw + offset, 82 EXT4_INODE_SIZE(inode->i_sb) - offset); 83 } 84 85 return csum; 86 } 87 88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 89 struct ext4_inode_info *ei) 90 { 91 __u32 provided, calculated; 92 93 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 94 cpu_to_le32(EXT4_OS_LINUX) || 95 !ext4_has_feature_metadata_csum(inode->i_sb)) 96 return 1; 97 98 provided = le16_to_cpu(raw->i_checksum_lo); 99 calculated = ext4_inode_csum(inode, raw, ei); 100 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 101 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 102 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 103 else 104 calculated &= 0xFFFF; 105 106 return provided == calculated; 107 } 108 109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 110 struct ext4_inode_info *ei) 111 { 112 __u32 csum; 113 114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 115 cpu_to_le32(EXT4_OS_LINUX) || 116 !ext4_has_feature_metadata_csum(inode->i_sb)) 117 return; 118 119 csum = ext4_inode_csum(inode, raw, ei); 120 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 122 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 123 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 124 } 125 126 static inline int ext4_begin_ordered_truncate(struct inode *inode, 127 loff_t new_size) 128 { 129 trace_ext4_begin_ordered_truncate(inode, new_size); 130 /* 131 * If jinode is zero, then we never opened the file for 132 * writing, so there's no need to call 133 * jbd2_journal_begin_ordered_truncate() since there's no 134 * outstanding writes we need to flush. 135 */ 136 if (!EXT4_I(inode)->jinode) 137 return 0; 138 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 139 EXT4_I(inode)->jinode, 140 new_size); 141 } 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!ext4_has_feature_ea_inode(inode->i_sb)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 dax_break_layout_final(inode); 181 182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 183 ext4_evict_ea_inode(inode); 184 if (inode->i_nlink) { 185 truncate_inode_pages_final(&inode->i_data); 186 187 goto no_delete; 188 } 189 190 if (is_bad_inode(inode)) 191 goto no_delete; 192 dquot_initialize(inode); 193 194 if (ext4_should_order_data(inode)) 195 ext4_begin_ordered_truncate(inode, 0); 196 truncate_inode_pages_final(&inode->i_data); 197 198 /* 199 * For inodes with journalled data, transaction commit could have 200 * dirtied the inode. And for inodes with dioread_nolock, unwritten 201 * extents converting worker could merge extents and also have dirtied 202 * the inode. Flush worker is ignoring it because of I_FREEING flag but 203 * we still need to remove the inode from the writeback lists. 204 */ 205 inode_io_list_del(inode); 206 207 /* 208 * Protect us against freezing - iput() caller didn't have to have any 209 * protection against it. When we are in a running transaction though, 210 * we are already protected against freezing and we cannot grab further 211 * protection due to lock ordering constraints. 212 */ 213 if (!ext4_journal_current_handle()) { 214 sb_start_intwrite(inode->i_sb); 215 freeze_protected = true; 216 } 217 218 if (!IS_NOQUOTA(inode)) 219 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 220 221 /* 222 * Block bitmap, group descriptor, and inode are accounted in both 223 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 224 */ 225 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 226 ext4_blocks_for_truncate(inode) + extra_credits - 3); 227 if (IS_ERR(handle)) { 228 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 229 /* 230 * If we're going to skip the normal cleanup, we still need to 231 * make sure that the in-core orphan linked list is properly 232 * cleaned up. 233 */ 234 ext4_orphan_del(NULL, inode); 235 if (freeze_protected) 236 sb_end_intwrite(inode->i_sb); 237 goto no_delete; 238 } 239 240 if (IS_SYNC(inode)) 241 ext4_handle_sync(handle); 242 243 /* 244 * Set inode->i_size to 0 before calling ext4_truncate(). We need 245 * special handling of symlinks here because i_size is used to 246 * determine whether ext4_inode_info->i_data contains symlink data or 247 * block mappings. Setting i_size to 0 will remove its fast symlink 248 * status. Erase i_data so that it becomes a valid empty block map. 249 */ 250 if (ext4_inode_is_fast_symlink(inode)) 251 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 252 inode->i_size = 0; 253 err = ext4_mark_inode_dirty(handle, inode); 254 if (err) { 255 ext4_warning(inode->i_sb, 256 "couldn't mark inode dirty (err %d)", err); 257 goto stop_handle; 258 } 259 if (inode->i_blocks) { 260 err = ext4_truncate(inode); 261 if (err) { 262 ext4_error_err(inode->i_sb, -err, 263 "couldn't truncate inode %lu (err %d)", 264 inode->i_ino, err); 265 goto stop_handle; 266 } 267 } 268 269 /* Remove xattr references. */ 270 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 271 extra_credits); 272 if (err) { 273 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 274 stop_handle: 275 ext4_journal_stop(handle); 276 ext4_orphan_del(NULL, inode); 277 if (freeze_protected) 278 sb_end_intwrite(inode->i_sb); 279 ext4_xattr_inode_array_free(ea_inode_array); 280 goto no_delete; 281 } 282 283 /* 284 * Kill off the orphan record which ext4_truncate created. 285 * AKPM: I think this can be inside the above `if'. 286 * Note that ext4_orphan_del() has to be able to cope with the 287 * deletion of a non-existent orphan - this is because we don't 288 * know if ext4_truncate() actually created an orphan record. 289 * (Well, we could do this if we need to, but heck - it works) 290 */ 291 ext4_orphan_del(handle, inode); 292 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 293 294 /* 295 * One subtle ordering requirement: if anything has gone wrong 296 * (transaction abort, IO errors, whatever), then we can still 297 * do these next steps (the fs will already have been marked as 298 * having errors), but we can't free the inode if the mark_dirty 299 * fails. 300 */ 301 if (ext4_mark_inode_dirty(handle, inode)) 302 /* If that failed, just do the required in-core inode clear. */ 303 ext4_clear_inode(inode); 304 else 305 ext4_free_inode(handle, inode); 306 ext4_journal_stop(handle); 307 if (freeze_protected) 308 sb_end_intwrite(inode->i_sb); 309 ext4_xattr_inode_array_free(ea_inode_array); 310 return; 311 no_delete: 312 /* 313 * Check out some where else accidentally dirty the evicting inode, 314 * which may probably cause inode use-after-free issues later. 315 */ 316 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 317 318 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 319 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 320 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 321 } 322 323 #ifdef CONFIG_QUOTA 324 qsize_t *ext4_get_reserved_space(struct inode *inode) 325 { 326 return &EXT4_I(inode)->i_reserved_quota; 327 } 328 #endif 329 330 /* 331 * Called with i_data_sem down, which is important since we can call 332 * ext4_discard_preallocations() from here. 333 */ 334 void ext4_da_update_reserve_space(struct inode *inode, 335 int used, int quota_claim) 336 { 337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 338 struct ext4_inode_info *ei = EXT4_I(inode); 339 340 spin_lock(&ei->i_block_reservation_lock); 341 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 342 if (unlikely(used > ei->i_reserved_data_blocks)) { 343 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 344 "with only %d reserved data blocks", 345 __func__, inode->i_ino, used, 346 ei->i_reserved_data_blocks); 347 WARN_ON(1); 348 used = ei->i_reserved_data_blocks; 349 } 350 351 /* Update per-inode reservations */ 352 ei->i_reserved_data_blocks -= used; 353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 354 355 spin_unlock(&ei->i_block_reservation_lock); 356 357 /* Update quota subsystem for data blocks */ 358 if (quota_claim) 359 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 360 else { 361 /* 362 * We did fallocate with an offset that is already delayed 363 * allocated. So on delayed allocated writeback we should 364 * not re-claim the quota for fallocated blocks. 365 */ 366 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 367 } 368 369 /* 370 * If we have done all the pending block allocations and if 371 * there aren't any writers on the inode, we can discard the 372 * inode's preallocations. 373 */ 374 if ((ei->i_reserved_data_blocks == 0) && 375 !inode_is_open_for_write(inode)) 376 ext4_discard_preallocations(inode); 377 } 378 379 static int __check_block_validity(struct inode *inode, const char *func, 380 unsigned int line, 381 struct ext4_map_blocks *map) 382 { 383 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 384 385 if (journal && inode == journal->j_inode) 386 return 0; 387 388 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 389 ext4_error_inode(inode, func, line, map->m_pblk, 390 "lblock %lu mapped to illegal pblock %llu " 391 "(length %d)", (unsigned long) map->m_lblk, 392 map->m_pblk, map->m_len); 393 return -EFSCORRUPTED; 394 } 395 return 0; 396 } 397 398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 399 ext4_lblk_t len) 400 { 401 int ret; 402 403 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 404 return fscrypt_zeroout_range(inode, lblk, pblk, len); 405 406 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 407 if (ret > 0) 408 ret = 0; 409 410 return ret; 411 } 412 413 /* 414 * For generic regular files, when updating the extent tree, Ext4 should 415 * hold the i_rwsem and invalidate_lock exclusively. This ensures 416 * exclusion against concurrent page faults, as well as reads and writes. 417 */ 418 #ifdef CONFIG_EXT4_DEBUG 419 void ext4_check_map_extents_env(struct inode *inode) 420 { 421 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 422 return; 423 424 if (!S_ISREG(inode->i_mode) || 425 IS_NOQUOTA(inode) || IS_VERITY(inode) || 426 is_special_ino(inode->i_sb, inode->i_ino) || 427 (inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) || 428 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) || 429 ext4_verity_in_progress(inode)) 430 return; 431 432 WARN_ON_ONCE(!inode_is_locked(inode) && 433 !rwsem_is_locked(&inode->i_mapping->invalidate_lock)); 434 } 435 #else 436 void ext4_check_map_extents_env(struct inode *inode) {} 437 #endif 438 439 #define check_block_validity(inode, map) \ 440 __check_block_validity((inode), __func__, __LINE__, (map)) 441 442 #ifdef ES_AGGRESSIVE_TEST 443 static void ext4_map_blocks_es_recheck(handle_t *handle, 444 struct inode *inode, 445 struct ext4_map_blocks *es_map, 446 struct ext4_map_blocks *map, 447 int flags) 448 { 449 int retval; 450 451 map->m_flags = 0; 452 /* 453 * There is a race window that the result is not the same. 454 * e.g. xfstests #223 when dioread_nolock enables. The reason 455 * is that we lookup a block mapping in extent status tree with 456 * out taking i_data_sem. So at the time the unwritten extent 457 * could be converted. 458 */ 459 down_read(&EXT4_I(inode)->i_data_sem); 460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 461 retval = ext4_ext_map_blocks(handle, inode, map, 0); 462 } else { 463 retval = ext4_ind_map_blocks(handle, inode, map, 0); 464 } 465 up_read((&EXT4_I(inode)->i_data_sem)); 466 467 /* 468 * We don't check m_len because extent will be collpased in status 469 * tree. So the m_len might not equal. 470 */ 471 if (es_map->m_lblk != map->m_lblk || 472 es_map->m_flags != map->m_flags || 473 es_map->m_pblk != map->m_pblk) { 474 printk("ES cache assertion failed for inode: %lu " 475 "es_cached ex [%d/%d/%llu/%x] != " 476 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 477 inode->i_ino, es_map->m_lblk, es_map->m_len, 478 es_map->m_pblk, es_map->m_flags, map->m_lblk, 479 map->m_len, map->m_pblk, map->m_flags, 480 retval, flags); 481 } 482 } 483 #endif /* ES_AGGRESSIVE_TEST */ 484 485 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle, 486 struct inode *inode, struct ext4_map_blocks *map, 487 unsigned int orig_mlen) 488 { 489 struct ext4_map_blocks map2; 490 unsigned int status, status2; 491 int retval; 492 493 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 494 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 495 496 WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF)); 497 WARN_ON_ONCE(orig_mlen <= map->m_len); 498 499 /* Prepare map2 for lookup in next leaf block */ 500 map2.m_lblk = map->m_lblk + map->m_len; 501 map2.m_len = orig_mlen - map->m_len; 502 map2.m_flags = 0; 503 retval = ext4_ext_map_blocks(handle, inode, &map2, 0); 504 505 if (retval <= 0) { 506 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 507 map->m_pblk, status, false); 508 return map->m_len; 509 } 510 511 if (unlikely(retval != map2.m_len)) { 512 ext4_warning(inode->i_sb, 513 "ES len assertion failed for inode " 514 "%lu: retval %d != map->m_len %d", 515 inode->i_ino, retval, map2.m_len); 516 WARN_ON(1); 517 } 518 519 status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ? 520 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 521 522 /* 523 * If map2 is contiguous with map, then let's insert it as a single 524 * extent in es cache and return the combined length of both the maps. 525 */ 526 if (map->m_pblk + map->m_len == map2.m_pblk && 527 status == status2) { 528 ext4_es_insert_extent(inode, map->m_lblk, 529 map->m_len + map2.m_len, map->m_pblk, 530 status, false); 531 map->m_len += map2.m_len; 532 } else { 533 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 534 map->m_pblk, status, false); 535 } 536 537 return map->m_len; 538 } 539 540 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 541 struct ext4_map_blocks *map, int flags) 542 { 543 unsigned int status; 544 int retval; 545 unsigned int orig_mlen = map->m_len; 546 547 flags &= EXT4_EX_QUERY_FILTER; 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 549 retval = ext4_ext_map_blocks(handle, inode, map, flags); 550 else 551 retval = ext4_ind_map_blocks(handle, inode, map, flags); 552 553 if (retval <= 0) 554 return retval; 555 556 if (unlikely(retval != map->m_len)) { 557 ext4_warning(inode->i_sb, 558 "ES len assertion failed for inode " 559 "%lu: retval %d != map->m_len %d", 560 inode->i_ino, retval, map->m_len); 561 WARN_ON(1); 562 } 563 564 /* 565 * No need to query next in leaf: 566 * - if returned extent is not last in leaf or 567 * - if the last in leaf is the full requested range 568 */ 569 if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) || 570 map->m_len == orig_mlen) { 571 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 572 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 573 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 574 map->m_pblk, status, false); 575 return retval; 576 } 577 578 return ext4_map_query_blocks_next_in_leaf(handle, inode, map, 579 orig_mlen); 580 } 581 582 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 583 struct ext4_map_blocks *map, int flags) 584 { 585 struct extent_status es; 586 unsigned int status; 587 int err, retval = 0; 588 589 /* 590 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 591 * indicates that the blocks and quotas has already been 592 * checked when the data was copied into the page cache. 593 */ 594 if (map->m_flags & EXT4_MAP_DELAYED) 595 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 596 597 /* 598 * Here we clear m_flags because after allocating an new extent, 599 * it will be set again. 600 */ 601 map->m_flags &= ~EXT4_MAP_FLAGS; 602 603 /* 604 * We need to check for EXT4 here because migrate could have 605 * changed the inode type in between. 606 */ 607 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 608 retval = ext4_ext_map_blocks(handle, inode, map, flags); 609 } else { 610 retval = ext4_ind_map_blocks(handle, inode, map, flags); 611 612 /* 613 * We allocated new blocks which will result in i_data's 614 * format changing. Force the migrate to fail by clearing 615 * migrate flags. 616 */ 617 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 618 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 619 } 620 if (retval <= 0) 621 return retval; 622 623 if (unlikely(retval != map->m_len)) { 624 ext4_warning(inode->i_sb, 625 "ES len assertion failed for inode %lu: " 626 "retval %d != map->m_len %d", 627 inode->i_ino, retval, map->m_len); 628 WARN_ON(1); 629 } 630 631 /* 632 * We have to zeroout blocks before inserting them into extent 633 * status tree. Otherwise someone could look them up there and 634 * use them before they are really zeroed. We also have to 635 * unmap metadata before zeroing as otherwise writeback can 636 * overwrite zeros with stale data from block device. 637 */ 638 if (flags & EXT4_GET_BLOCKS_ZERO && 639 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 640 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 641 map->m_len); 642 if (err) 643 return err; 644 } 645 646 /* 647 * If the extent has been zeroed out, we don't need to update 648 * extent status tree. 649 */ 650 if (flags & EXT4_GET_BLOCKS_PRE_IO && 651 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 652 if (ext4_es_is_written(&es)) 653 return retval; 654 } 655 656 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 657 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 658 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 659 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 660 661 return retval; 662 } 663 664 /* 665 * The ext4_map_blocks() function tries to look up the requested blocks, 666 * and returns if the blocks are already mapped. 667 * 668 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 669 * and store the allocated blocks in the result buffer head and mark it 670 * mapped. 671 * 672 * If file type is extents based, it will call ext4_ext_map_blocks(), 673 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 674 * based files 675 * 676 * On success, it returns the number of blocks being mapped or allocated. 677 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 678 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 679 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 680 * 681 * It returns 0 if plain look up failed (blocks have not been allocated), in 682 * that case, @map is returned as unmapped but we still do fill map->m_len to 683 * indicate the length of a hole starting at map->m_lblk. 684 * 685 * It returns the error in case of allocation failure. 686 */ 687 int ext4_map_blocks(handle_t *handle, struct inode *inode, 688 struct ext4_map_blocks *map, int flags) 689 { 690 struct extent_status es; 691 int retval; 692 int ret = 0; 693 unsigned int orig_mlen = map->m_len; 694 #ifdef ES_AGGRESSIVE_TEST 695 struct ext4_map_blocks orig_map; 696 697 memcpy(&orig_map, map, sizeof(*map)); 698 #endif 699 700 map->m_flags = 0; 701 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 702 flags, map->m_len, (unsigned long) map->m_lblk); 703 704 /* 705 * ext4_map_blocks returns an int, and m_len is an unsigned int 706 */ 707 if (unlikely(map->m_len > INT_MAX)) 708 map->m_len = INT_MAX; 709 710 /* We can handle the block number less than EXT_MAX_BLOCKS */ 711 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 712 return -EFSCORRUPTED; 713 714 /* 715 * Callers from the context of data submission are the only exceptions 716 * for regular files that do not hold the i_rwsem or invalidate_lock. 717 * However, caching unrelated ranges is not permitted. 718 */ 719 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 720 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE)); 721 else 722 ext4_check_map_extents_env(inode); 723 724 /* Lookup extent status tree firstly */ 725 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 726 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 727 map->m_pblk = ext4_es_pblock(&es) + 728 map->m_lblk - es.es_lblk; 729 map->m_flags |= ext4_es_is_written(&es) ? 730 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 731 retval = es.es_len - (map->m_lblk - es.es_lblk); 732 if (retval > map->m_len) 733 retval = map->m_len; 734 map->m_len = retval; 735 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 736 map->m_pblk = 0; 737 map->m_flags |= ext4_es_is_delayed(&es) ? 738 EXT4_MAP_DELAYED : 0; 739 retval = es.es_len - (map->m_lblk - es.es_lblk); 740 if (retval > map->m_len) 741 retval = map->m_len; 742 map->m_len = retval; 743 retval = 0; 744 } else { 745 BUG(); 746 } 747 748 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 749 return retval; 750 #ifdef ES_AGGRESSIVE_TEST 751 ext4_map_blocks_es_recheck(handle, inode, map, 752 &orig_map, flags); 753 #endif 754 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) || 755 orig_mlen == map->m_len) 756 goto found; 757 758 map->m_len = orig_mlen; 759 } 760 /* 761 * In the query cache no-wait mode, nothing we can do more if we 762 * cannot find extent in the cache. 763 */ 764 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 765 return 0; 766 767 /* 768 * Try to see if we can get the block without requesting a new 769 * file system block. 770 */ 771 down_read(&EXT4_I(inode)->i_data_sem); 772 retval = ext4_map_query_blocks(handle, inode, map, flags); 773 up_read((&EXT4_I(inode)->i_data_sem)); 774 775 found: 776 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 777 ret = check_block_validity(inode, map); 778 if (ret != 0) 779 return ret; 780 } 781 782 /* If it is only a block(s) look up */ 783 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 784 return retval; 785 786 /* 787 * Returns if the blocks have already allocated 788 * 789 * Note that if blocks have been preallocated 790 * ext4_ext_map_blocks() returns with buffer head unmapped 791 */ 792 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 793 /* 794 * If we need to convert extent to unwritten 795 * we continue and do the actual work in 796 * ext4_ext_map_blocks() 797 */ 798 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 799 return retval; 800 801 802 ext4_fc_track_inode(handle, inode); 803 /* 804 * New blocks allocate and/or writing to unwritten extent 805 * will possibly result in updating i_data, so we take 806 * the write lock of i_data_sem, and call get_block() 807 * with create == 1 flag. 808 */ 809 down_write(&EXT4_I(inode)->i_data_sem); 810 retval = ext4_map_create_blocks(handle, inode, map, flags); 811 up_write((&EXT4_I(inode)->i_data_sem)); 812 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 813 ret = check_block_validity(inode, map); 814 if (ret != 0) 815 return ret; 816 817 /* 818 * Inodes with freshly allocated blocks where contents will be 819 * visible after transaction commit must be on transaction's 820 * ordered data list. 821 */ 822 if (map->m_flags & EXT4_MAP_NEW && 823 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 824 !(flags & EXT4_GET_BLOCKS_ZERO) && 825 !ext4_is_quota_file(inode) && 826 ext4_should_order_data(inode)) { 827 loff_t start_byte = 828 (loff_t)map->m_lblk << inode->i_blkbits; 829 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 830 831 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 832 ret = ext4_jbd2_inode_add_wait(handle, inode, 833 start_byte, length); 834 else 835 ret = ext4_jbd2_inode_add_write(handle, inode, 836 start_byte, length); 837 if (ret) 838 return ret; 839 } 840 } 841 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 842 map->m_flags & EXT4_MAP_MAPPED)) 843 ext4_fc_track_range(handle, inode, map->m_lblk, 844 map->m_lblk + map->m_len - 1); 845 if (retval < 0) 846 ext_debug(inode, "failed with err %d\n", retval); 847 return retval; 848 } 849 850 /* 851 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 852 * we have to be careful as someone else may be manipulating b_state as well. 853 */ 854 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 855 { 856 unsigned long old_state; 857 unsigned long new_state; 858 859 flags &= EXT4_MAP_FLAGS; 860 861 /* Dummy buffer_head? Set non-atomically. */ 862 if (!bh->b_folio) { 863 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 864 return; 865 } 866 /* 867 * Someone else may be modifying b_state. Be careful! This is ugly but 868 * once we get rid of using bh as a container for mapping information 869 * to pass to / from get_block functions, this can go away. 870 */ 871 old_state = READ_ONCE(bh->b_state); 872 do { 873 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 874 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 875 } 876 877 /* 878 * Make sure that the current journal transaction has enough credits to map 879 * one extent. Return -EAGAIN if it cannot extend the current running 880 * transaction. 881 */ 882 static inline int ext4_journal_ensure_extent_credits(handle_t *handle, 883 struct inode *inode) 884 { 885 int credits; 886 int ret; 887 888 /* Called from ext4_da_write_begin() which has no handle started? */ 889 if (!handle) 890 return 0; 891 892 credits = ext4_chunk_trans_blocks(inode, 1); 893 ret = __ext4_journal_ensure_credits(handle, credits, credits, 0); 894 return ret <= 0 ? ret : -EAGAIN; 895 } 896 897 static int _ext4_get_block(struct inode *inode, sector_t iblock, 898 struct buffer_head *bh, int flags) 899 { 900 struct ext4_map_blocks map; 901 int ret = 0; 902 903 if (ext4_has_inline_data(inode)) 904 return -ERANGE; 905 906 map.m_lblk = iblock; 907 map.m_len = bh->b_size >> inode->i_blkbits; 908 909 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 910 flags); 911 if (ret > 0) { 912 map_bh(bh, inode->i_sb, map.m_pblk); 913 ext4_update_bh_state(bh, map.m_flags); 914 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 915 ret = 0; 916 } else if (ret == 0) { 917 /* hole case, need to fill in bh->b_size */ 918 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 919 } 920 return ret; 921 } 922 923 int ext4_get_block(struct inode *inode, sector_t iblock, 924 struct buffer_head *bh, int create) 925 { 926 return _ext4_get_block(inode, iblock, bh, 927 create ? EXT4_GET_BLOCKS_CREATE : 0); 928 } 929 930 /* 931 * Get block function used when preparing for buffered write if we require 932 * creating an unwritten extent if blocks haven't been allocated. The extent 933 * will be converted to written after the IO is complete. 934 */ 935 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 936 struct buffer_head *bh_result, int create) 937 { 938 int ret = 0; 939 940 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 941 inode->i_ino, create); 942 ret = _ext4_get_block(inode, iblock, bh_result, 943 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 944 945 /* 946 * If the buffer is marked unwritten, mark it as new to make sure it is 947 * zeroed out correctly in case of partial writes. Otherwise, there is 948 * a chance of stale data getting exposed. 949 */ 950 if (ret == 0 && buffer_unwritten(bh_result)) 951 set_buffer_new(bh_result); 952 953 return ret; 954 } 955 956 /* Maximum number of blocks we map for direct IO at once. */ 957 #define DIO_MAX_BLOCKS 4096 958 959 /* 960 * `handle' can be NULL if create is zero 961 */ 962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 963 ext4_lblk_t block, int map_flags) 964 { 965 struct ext4_map_blocks map; 966 struct buffer_head *bh; 967 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 968 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 969 int err; 970 971 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 972 || handle != NULL || create == 0); 973 ASSERT(create == 0 || !nowait); 974 975 map.m_lblk = block; 976 map.m_len = 1; 977 err = ext4_map_blocks(handle, inode, &map, map_flags); 978 979 if (err == 0) 980 return create ? ERR_PTR(-ENOSPC) : NULL; 981 if (err < 0) 982 return ERR_PTR(err); 983 984 if (nowait) 985 return sb_find_get_block(inode->i_sb, map.m_pblk); 986 987 /* 988 * Since bh could introduce extra ref count such as referred by 989 * journal_head etc. Try to avoid using __GFP_MOVABLE here 990 * as it may fail the migration when journal_head remains. 991 */ 992 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 993 inode->i_sb->s_blocksize); 994 995 if (unlikely(!bh)) 996 return ERR_PTR(-ENOMEM); 997 if (map.m_flags & EXT4_MAP_NEW) { 998 ASSERT(create != 0); 999 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1000 || (handle != NULL)); 1001 1002 /* 1003 * Now that we do not always journal data, we should 1004 * keep in mind whether this should always journal the 1005 * new buffer as metadata. For now, regular file 1006 * writes use ext4_get_block instead, so it's not a 1007 * problem. 1008 */ 1009 lock_buffer(bh); 1010 BUFFER_TRACE(bh, "call get_create_access"); 1011 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 1012 EXT4_JTR_NONE); 1013 if (unlikely(err)) { 1014 unlock_buffer(bh); 1015 goto errout; 1016 } 1017 if (!buffer_uptodate(bh)) { 1018 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1019 set_buffer_uptodate(bh); 1020 } 1021 unlock_buffer(bh); 1022 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1023 err = ext4_handle_dirty_metadata(handle, inode, bh); 1024 if (unlikely(err)) 1025 goto errout; 1026 } else 1027 BUFFER_TRACE(bh, "not a new buffer"); 1028 return bh; 1029 errout: 1030 brelse(bh); 1031 return ERR_PTR(err); 1032 } 1033 1034 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1035 ext4_lblk_t block, int map_flags) 1036 { 1037 struct buffer_head *bh; 1038 int ret; 1039 1040 bh = ext4_getblk(handle, inode, block, map_flags); 1041 if (IS_ERR(bh)) 1042 return bh; 1043 if (!bh || ext4_buffer_uptodate(bh)) 1044 return bh; 1045 1046 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 1047 if (ret) { 1048 put_bh(bh); 1049 return ERR_PTR(ret); 1050 } 1051 return bh; 1052 } 1053 1054 /* Read a contiguous batch of blocks. */ 1055 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1056 bool wait, struct buffer_head **bhs) 1057 { 1058 int i, err; 1059 1060 for (i = 0; i < bh_count; i++) { 1061 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1062 if (IS_ERR(bhs[i])) { 1063 err = PTR_ERR(bhs[i]); 1064 bh_count = i; 1065 goto out_brelse; 1066 } 1067 } 1068 1069 for (i = 0; i < bh_count; i++) 1070 /* Note that NULL bhs[i] is valid because of holes. */ 1071 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1072 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 1073 1074 if (!wait) 1075 return 0; 1076 1077 for (i = 0; i < bh_count; i++) 1078 if (bhs[i]) 1079 wait_on_buffer(bhs[i]); 1080 1081 for (i = 0; i < bh_count; i++) { 1082 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1083 err = -EIO; 1084 goto out_brelse; 1085 } 1086 } 1087 return 0; 1088 1089 out_brelse: 1090 for (i = 0; i < bh_count; i++) { 1091 brelse(bhs[i]); 1092 bhs[i] = NULL; 1093 } 1094 return err; 1095 } 1096 1097 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 1098 struct buffer_head *head, 1099 unsigned from, 1100 unsigned to, 1101 int *partial, 1102 int (*fn)(handle_t *handle, struct inode *inode, 1103 struct buffer_head *bh)) 1104 { 1105 struct buffer_head *bh; 1106 unsigned block_start, block_end; 1107 unsigned blocksize = head->b_size; 1108 int err, ret = 0; 1109 struct buffer_head *next; 1110 1111 for (bh = head, block_start = 0; 1112 ret == 0 && (bh != head || !block_start); 1113 block_start = block_end, bh = next) { 1114 next = bh->b_this_page; 1115 block_end = block_start + blocksize; 1116 if (block_end <= from || block_start >= to) { 1117 if (partial && !buffer_uptodate(bh)) 1118 *partial = 1; 1119 continue; 1120 } 1121 err = (*fn)(handle, inode, bh); 1122 if (!ret) 1123 ret = err; 1124 } 1125 return ret; 1126 } 1127 1128 /* 1129 * Helper for handling dirtying of journalled data. We also mark the folio as 1130 * dirty so that writeback code knows about this page (and inode) contains 1131 * dirty data. ext4_writepages() then commits appropriate transaction to 1132 * make data stable. 1133 */ 1134 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1135 { 1136 struct folio *folio = bh->b_folio; 1137 struct inode *inode = folio->mapping->host; 1138 1139 /* only regular files have a_ops */ 1140 if (S_ISREG(inode->i_mode)) 1141 folio_mark_dirty(folio); 1142 return ext4_handle_dirty_metadata(handle, NULL, bh); 1143 } 1144 1145 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1146 struct buffer_head *bh) 1147 { 1148 if (!buffer_mapped(bh) || buffer_freed(bh)) 1149 return 0; 1150 BUFFER_TRACE(bh, "get write access"); 1151 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1152 EXT4_JTR_NONE); 1153 } 1154 1155 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1156 loff_t pos, unsigned len, 1157 get_block_t *get_block) 1158 { 1159 unsigned int from = offset_in_folio(folio, pos); 1160 unsigned to = from + len; 1161 struct inode *inode = folio->mapping->host; 1162 unsigned block_start, block_end; 1163 sector_t block; 1164 int err = 0; 1165 unsigned blocksize = inode->i_sb->s_blocksize; 1166 unsigned bbits; 1167 struct buffer_head *bh, *head, *wait[2]; 1168 int nr_wait = 0; 1169 int i; 1170 bool should_journal_data = ext4_should_journal_data(inode); 1171 1172 BUG_ON(!folio_test_locked(folio)); 1173 BUG_ON(to > folio_size(folio)); 1174 BUG_ON(from > to); 1175 1176 head = folio_buffers(folio); 1177 if (!head) 1178 head = create_empty_buffers(folio, blocksize, 0); 1179 bbits = ilog2(blocksize); 1180 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1181 1182 for (bh = head, block_start = 0; bh != head || !block_start; 1183 block++, block_start = block_end, bh = bh->b_this_page) { 1184 block_end = block_start + blocksize; 1185 if (block_end <= from || block_start >= to) { 1186 if (folio_test_uptodate(folio)) { 1187 set_buffer_uptodate(bh); 1188 } 1189 continue; 1190 } 1191 if (WARN_ON_ONCE(buffer_new(bh))) 1192 clear_buffer_new(bh); 1193 if (!buffer_mapped(bh)) { 1194 WARN_ON(bh->b_size != blocksize); 1195 err = ext4_journal_ensure_extent_credits(handle, inode); 1196 if (!err) 1197 err = get_block(inode, block, bh, 1); 1198 if (err) 1199 break; 1200 if (buffer_new(bh)) { 1201 /* 1202 * We may be zeroing partial buffers or all new 1203 * buffers in case of failure. Prepare JBD2 for 1204 * that. 1205 */ 1206 if (should_journal_data) 1207 do_journal_get_write_access(handle, 1208 inode, bh); 1209 if (folio_test_uptodate(folio)) { 1210 /* 1211 * Unlike __block_write_begin() we leave 1212 * dirtying of new uptodate buffers to 1213 * ->write_end() time or 1214 * folio_zero_new_buffers(). 1215 */ 1216 set_buffer_uptodate(bh); 1217 continue; 1218 } 1219 if (block_end > to || block_start < from) 1220 folio_zero_segments(folio, to, 1221 block_end, 1222 block_start, from); 1223 continue; 1224 } 1225 } 1226 if (folio_test_uptodate(folio)) { 1227 set_buffer_uptodate(bh); 1228 continue; 1229 } 1230 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1231 !buffer_unwritten(bh) && 1232 (block_start < from || block_end > to)) { 1233 ext4_read_bh_lock(bh, 0, false); 1234 wait[nr_wait++] = bh; 1235 } 1236 } 1237 /* 1238 * If we issued read requests, let them complete. 1239 */ 1240 for (i = 0; i < nr_wait; i++) { 1241 wait_on_buffer(wait[i]); 1242 if (!buffer_uptodate(wait[i])) 1243 err = -EIO; 1244 } 1245 if (unlikely(err)) { 1246 if (should_journal_data) 1247 ext4_journalled_zero_new_buffers(handle, inode, folio, 1248 from, to); 1249 else 1250 folio_zero_new_buffers(folio, from, to); 1251 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1252 for (i = 0; i < nr_wait; i++) { 1253 int err2; 1254 1255 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1256 blocksize, bh_offset(wait[i])); 1257 if (err2) { 1258 clear_buffer_uptodate(wait[i]); 1259 err = err2; 1260 } 1261 } 1262 } 1263 1264 return err; 1265 } 1266 1267 /* 1268 * To preserve ordering, it is essential that the hole instantiation and 1269 * the data write be encapsulated in a single transaction. We cannot 1270 * close off a transaction and start a new one between the ext4_get_block() 1271 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1272 * ext4_write_begin() is the right place. 1273 */ 1274 static int ext4_write_begin(const struct kiocb *iocb, 1275 struct address_space *mapping, 1276 loff_t pos, unsigned len, 1277 struct folio **foliop, void **fsdata) 1278 { 1279 struct inode *inode = mapping->host; 1280 int ret, needed_blocks; 1281 handle_t *handle; 1282 int retries = 0; 1283 struct folio *folio; 1284 pgoff_t index; 1285 unsigned from, to; 1286 1287 ret = ext4_emergency_state(inode->i_sb); 1288 if (unlikely(ret)) 1289 return ret; 1290 1291 trace_ext4_write_begin(inode, pos, len); 1292 /* 1293 * Reserve one block more for addition to orphan list in case 1294 * we allocate blocks but write fails for some reason 1295 */ 1296 needed_blocks = ext4_chunk_trans_extent(inode, 1297 ext4_journal_blocks_per_folio(inode)) + 1; 1298 index = pos >> PAGE_SHIFT; 1299 1300 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1301 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1302 foliop); 1303 if (ret < 0) 1304 return ret; 1305 if (ret == 1) 1306 return 0; 1307 } 1308 1309 /* 1310 * write_begin_get_folio() can take a long time if the 1311 * system is thrashing due to memory pressure, or if the folio 1312 * is being written back. So grab it first before we start 1313 * the transaction handle. This also allows us to allocate 1314 * the folio (if needed) without using GFP_NOFS. 1315 */ 1316 retry_grab: 1317 folio = write_begin_get_folio(iocb, mapping, index, len); 1318 if (IS_ERR(folio)) 1319 return PTR_ERR(folio); 1320 1321 if (len > folio_next_pos(folio) - pos) 1322 len = folio_next_pos(folio) - pos; 1323 1324 from = offset_in_folio(folio, pos); 1325 to = from + len; 1326 1327 /* 1328 * The same as page allocation, we prealloc buffer heads before 1329 * starting the handle. 1330 */ 1331 if (!folio_buffers(folio)) 1332 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1333 1334 folio_unlock(folio); 1335 1336 retry_journal: 1337 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1338 if (IS_ERR(handle)) { 1339 folio_put(folio); 1340 return PTR_ERR(handle); 1341 } 1342 1343 folio_lock(folio); 1344 if (folio->mapping != mapping) { 1345 /* The folio got truncated from under us */ 1346 folio_unlock(folio); 1347 folio_put(folio); 1348 ext4_journal_stop(handle); 1349 goto retry_grab; 1350 } 1351 /* In case writeback began while the folio was unlocked */ 1352 folio_wait_stable(folio); 1353 1354 if (ext4_should_dioread_nolock(inode)) 1355 ret = ext4_block_write_begin(handle, folio, pos, len, 1356 ext4_get_block_unwritten); 1357 else 1358 ret = ext4_block_write_begin(handle, folio, pos, len, 1359 ext4_get_block); 1360 if (!ret && ext4_should_journal_data(inode)) { 1361 ret = ext4_walk_page_buffers(handle, inode, 1362 folio_buffers(folio), from, to, 1363 NULL, do_journal_get_write_access); 1364 } 1365 1366 if (ret) { 1367 bool extended = (pos + len > inode->i_size) && 1368 !ext4_verity_in_progress(inode); 1369 1370 folio_unlock(folio); 1371 /* 1372 * ext4_block_write_begin may have instantiated a few blocks 1373 * outside i_size. Trim these off again. Don't need 1374 * i_size_read because we hold i_rwsem. 1375 * 1376 * Add inode to orphan list in case we crash before 1377 * truncate finishes 1378 */ 1379 if (extended && ext4_can_truncate(inode)) 1380 ext4_orphan_add(handle, inode); 1381 1382 ext4_journal_stop(handle); 1383 if (extended) { 1384 ext4_truncate_failed_write(inode); 1385 /* 1386 * If truncate failed early the inode might 1387 * still be on the orphan list; we need to 1388 * make sure the inode is removed from the 1389 * orphan list in that case. 1390 */ 1391 if (inode->i_nlink) 1392 ext4_orphan_del(NULL, inode); 1393 } 1394 1395 if (ret == -EAGAIN || 1396 (ret == -ENOSPC && 1397 ext4_should_retry_alloc(inode->i_sb, &retries))) 1398 goto retry_journal; 1399 folio_put(folio); 1400 return ret; 1401 } 1402 *foliop = folio; 1403 return ret; 1404 } 1405 1406 /* For write_end() in data=journal mode */ 1407 static int write_end_fn(handle_t *handle, struct inode *inode, 1408 struct buffer_head *bh) 1409 { 1410 int ret; 1411 if (!buffer_mapped(bh) || buffer_freed(bh)) 1412 return 0; 1413 set_buffer_uptodate(bh); 1414 ret = ext4_dirty_journalled_data(handle, bh); 1415 clear_buffer_meta(bh); 1416 clear_buffer_prio(bh); 1417 clear_buffer_new(bh); 1418 return ret; 1419 } 1420 1421 /* 1422 * We need to pick up the new inode size which generic_commit_write gave us 1423 * `iocb` can be NULL - eg, when called from page_symlink(). 1424 * 1425 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1426 * buffers are managed internally. 1427 */ 1428 static int ext4_write_end(const struct kiocb *iocb, 1429 struct address_space *mapping, 1430 loff_t pos, unsigned len, unsigned copied, 1431 struct folio *folio, void *fsdata) 1432 { 1433 handle_t *handle = ext4_journal_current_handle(); 1434 struct inode *inode = mapping->host; 1435 loff_t old_size = inode->i_size; 1436 int ret = 0, ret2; 1437 int i_size_changed = 0; 1438 bool verity = ext4_verity_in_progress(inode); 1439 1440 trace_ext4_write_end(inode, pos, len, copied); 1441 1442 if (ext4_has_inline_data(inode) && 1443 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1444 return ext4_write_inline_data_end(inode, pos, len, copied, 1445 folio); 1446 1447 copied = block_write_end(pos, len, copied, folio); 1448 /* 1449 * it's important to update i_size while still holding folio lock: 1450 * page writeout could otherwise come in and zero beyond i_size. 1451 * 1452 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1453 * blocks are being written past EOF, so skip the i_size update. 1454 */ 1455 if (!verity) 1456 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1457 folio_unlock(folio); 1458 folio_put(folio); 1459 1460 if (old_size < pos && !verity) { 1461 pagecache_isize_extended(inode, old_size, pos); 1462 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1463 } 1464 /* 1465 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1466 * makes the holding time of folio lock longer. Second, it forces lock 1467 * ordering of folio lock and transaction start for journaling 1468 * filesystems. 1469 */ 1470 if (i_size_changed) 1471 ret = ext4_mark_inode_dirty(handle, inode); 1472 1473 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1474 /* if we have allocated more blocks and copied 1475 * less. We will have blocks allocated outside 1476 * inode->i_size. So truncate them 1477 */ 1478 ext4_orphan_add(handle, inode); 1479 1480 ret2 = ext4_journal_stop(handle); 1481 if (!ret) 1482 ret = ret2; 1483 1484 if (pos + len > inode->i_size && !verity) { 1485 ext4_truncate_failed_write(inode); 1486 /* 1487 * If truncate failed early the inode might still be 1488 * on the orphan list; we need to make sure the inode 1489 * is removed from the orphan list in that case. 1490 */ 1491 if (inode->i_nlink) 1492 ext4_orphan_del(NULL, inode); 1493 } 1494 1495 return ret ? ret : copied; 1496 } 1497 1498 /* 1499 * This is a private version of folio_zero_new_buffers() which doesn't 1500 * set the buffer to be dirty, since in data=journalled mode we need 1501 * to call ext4_dirty_journalled_data() instead. 1502 */ 1503 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1504 struct inode *inode, 1505 struct folio *folio, 1506 unsigned from, unsigned to) 1507 { 1508 unsigned int block_start = 0, block_end; 1509 struct buffer_head *head, *bh; 1510 1511 bh = head = folio_buffers(folio); 1512 do { 1513 block_end = block_start + bh->b_size; 1514 if (buffer_new(bh)) { 1515 if (block_end > from && block_start < to) { 1516 if (!folio_test_uptodate(folio)) { 1517 unsigned start, size; 1518 1519 start = max(from, block_start); 1520 size = min(to, block_end) - start; 1521 1522 folio_zero_range(folio, start, size); 1523 } 1524 clear_buffer_new(bh); 1525 write_end_fn(handle, inode, bh); 1526 } 1527 } 1528 block_start = block_end; 1529 bh = bh->b_this_page; 1530 } while (bh != head); 1531 } 1532 1533 static int ext4_journalled_write_end(const struct kiocb *iocb, 1534 struct address_space *mapping, 1535 loff_t pos, unsigned len, unsigned copied, 1536 struct folio *folio, void *fsdata) 1537 { 1538 handle_t *handle = ext4_journal_current_handle(); 1539 struct inode *inode = mapping->host; 1540 loff_t old_size = inode->i_size; 1541 int ret = 0, ret2; 1542 int partial = 0; 1543 unsigned from, to; 1544 int size_changed = 0; 1545 bool verity = ext4_verity_in_progress(inode); 1546 1547 trace_ext4_journalled_write_end(inode, pos, len, copied); 1548 from = pos & (PAGE_SIZE - 1); 1549 to = from + len; 1550 1551 BUG_ON(!ext4_handle_valid(handle)); 1552 1553 if (ext4_has_inline_data(inode)) 1554 return ext4_write_inline_data_end(inode, pos, len, copied, 1555 folio); 1556 1557 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1558 copied = 0; 1559 ext4_journalled_zero_new_buffers(handle, inode, folio, 1560 from, to); 1561 } else { 1562 if (unlikely(copied < len)) 1563 ext4_journalled_zero_new_buffers(handle, inode, folio, 1564 from + copied, to); 1565 ret = ext4_walk_page_buffers(handle, inode, 1566 folio_buffers(folio), 1567 from, from + copied, &partial, 1568 write_end_fn); 1569 if (!partial) 1570 folio_mark_uptodate(folio); 1571 } 1572 if (!verity) 1573 size_changed = ext4_update_inode_size(inode, pos + copied); 1574 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1575 folio_unlock(folio); 1576 folio_put(folio); 1577 1578 if (old_size < pos && !verity) { 1579 pagecache_isize_extended(inode, old_size, pos); 1580 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1581 } 1582 1583 if (size_changed) { 1584 ret2 = ext4_mark_inode_dirty(handle, inode); 1585 if (!ret) 1586 ret = ret2; 1587 } 1588 1589 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1590 /* if we have allocated more blocks and copied 1591 * less. We will have blocks allocated outside 1592 * inode->i_size. So truncate them 1593 */ 1594 ext4_orphan_add(handle, inode); 1595 1596 ret2 = ext4_journal_stop(handle); 1597 if (!ret) 1598 ret = ret2; 1599 if (pos + len > inode->i_size && !verity) { 1600 ext4_truncate_failed_write(inode); 1601 /* 1602 * If truncate failed early the inode might still be 1603 * on the orphan list; we need to make sure the inode 1604 * is removed from the orphan list in that case. 1605 */ 1606 if (inode->i_nlink) 1607 ext4_orphan_del(NULL, inode); 1608 } 1609 1610 return ret ? ret : copied; 1611 } 1612 1613 /* 1614 * Reserve space for 'nr_resv' clusters 1615 */ 1616 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1617 { 1618 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1619 struct ext4_inode_info *ei = EXT4_I(inode); 1620 int ret; 1621 1622 /* 1623 * We will charge metadata quota at writeout time; this saves 1624 * us from metadata over-estimation, though we may go over by 1625 * a small amount in the end. Here we just reserve for data. 1626 */ 1627 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1628 if (ret) 1629 return ret; 1630 1631 spin_lock(&ei->i_block_reservation_lock); 1632 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1633 spin_unlock(&ei->i_block_reservation_lock); 1634 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1635 return -ENOSPC; 1636 } 1637 ei->i_reserved_data_blocks += nr_resv; 1638 trace_ext4_da_reserve_space(inode, nr_resv); 1639 spin_unlock(&ei->i_block_reservation_lock); 1640 1641 return 0; /* success */ 1642 } 1643 1644 void ext4_da_release_space(struct inode *inode, int to_free) 1645 { 1646 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1647 struct ext4_inode_info *ei = EXT4_I(inode); 1648 1649 if (!to_free) 1650 return; /* Nothing to release, exit */ 1651 1652 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1653 1654 trace_ext4_da_release_space(inode, to_free); 1655 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1656 /* 1657 * if there aren't enough reserved blocks, then the 1658 * counter is messed up somewhere. Since this 1659 * function is called from invalidate page, it's 1660 * harmless to return without any action. 1661 */ 1662 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1663 "ino %lu, to_free %d with only %d reserved " 1664 "data blocks", inode->i_ino, to_free, 1665 ei->i_reserved_data_blocks); 1666 WARN_ON(1); 1667 to_free = ei->i_reserved_data_blocks; 1668 } 1669 ei->i_reserved_data_blocks -= to_free; 1670 1671 /* update fs dirty data blocks counter */ 1672 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1673 1674 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1675 1676 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1677 } 1678 1679 /* 1680 * Delayed allocation stuff 1681 */ 1682 1683 struct mpage_da_data { 1684 /* These are input fields for ext4_do_writepages() */ 1685 struct inode *inode; 1686 struct writeback_control *wbc; 1687 unsigned int can_map:1; /* Can writepages call map blocks? */ 1688 1689 /* These are internal state of ext4_do_writepages() */ 1690 loff_t start_pos; /* The start pos to write */ 1691 loff_t next_pos; /* Current pos to examine */ 1692 loff_t end_pos; /* Last pos to examine */ 1693 1694 /* 1695 * Extent to map - this can be after start_pos because that can be 1696 * fully mapped. We somewhat abuse m_flags to store whether the extent 1697 * is delalloc or unwritten. 1698 */ 1699 struct ext4_map_blocks map; 1700 struct ext4_io_submit io_submit; /* IO submission data */ 1701 unsigned int do_map:1; 1702 unsigned int scanned_until_end:1; 1703 unsigned int journalled_more_data:1; 1704 }; 1705 1706 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1707 bool invalidate) 1708 { 1709 unsigned nr, i; 1710 pgoff_t index, end; 1711 struct folio_batch fbatch; 1712 struct inode *inode = mpd->inode; 1713 struct address_space *mapping = inode->i_mapping; 1714 1715 /* This is necessary when next_pos == 0. */ 1716 if (mpd->start_pos >= mpd->next_pos) 1717 return; 1718 1719 mpd->scanned_until_end = 0; 1720 if (invalidate) { 1721 ext4_lblk_t start, last; 1722 start = EXT4_B_TO_LBLK(inode, mpd->start_pos); 1723 last = mpd->next_pos >> inode->i_blkbits; 1724 1725 /* 1726 * avoid racing with extent status tree scans made by 1727 * ext4_insert_delayed_block() 1728 */ 1729 down_write(&EXT4_I(inode)->i_data_sem); 1730 ext4_es_remove_extent(inode, start, last - start); 1731 up_write(&EXT4_I(inode)->i_data_sem); 1732 } 1733 1734 folio_batch_init(&fbatch); 1735 index = mpd->start_pos >> PAGE_SHIFT; 1736 end = mpd->next_pos >> PAGE_SHIFT; 1737 while (index < end) { 1738 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1739 if (nr == 0) 1740 break; 1741 for (i = 0; i < nr; i++) { 1742 struct folio *folio = fbatch.folios[i]; 1743 1744 if (folio_pos(folio) < mpd->start_pos) 1745 continue; 1746 if (folio_next_index(folio) > end) 1747 continue; 1748 BUG_ON(!folio_test_locked(folio)); 1749 BUG_ON(folio_test_writeback(folio)); 1750 if (invalidate) { 1751 if (folio_mapped(folio)) 1752 folio_clear_dirty_for_io(folio); 1753 block_invalidate_folio(folio, 0, 1754 folio_size(folio)); 1755 folio_clear_uptodate(folio); 1756 } 1757 folio_unlock(folio); 1758 } 1759 folio_batch_release(&fbatch); 1760 } 1761 } 1762 1763 static void ext4_print_free_blocks(struct inode *inode) 1764 { 1765 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1766 struct super_block *sb = inode->i_sb; 1767 struct ext4_inode_info *ei = EXT4_I(inode); 1768 1769 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1770 EXT4_C2B(EXT4_SB(inode->i_sb), 1771 ext4_count_free_clusters(sb))); 1772 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1773 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1774 (long long) EXT4_C2B(EXT4_SB(sb), 1775 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1776 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1777 (long long) EXT4_C2B(EXT4_SB(sb), 1778 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1779 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1780 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1781 ei->i_reserved_data_blocks); 1782 return; 1783 } 1784 1785 /* 1786 * Check whether the cluster containing lblk has been allocated or has 1787 * delalloc reservation. 1788 * 1789 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1790 * reservation, 2 if it's already been allocated, negative error code on 1791 * failure. 1792 */ 1793 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1794 { 1795 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1796 int ret; 1797 1798 /* Has delalloc reservation? */ 1799 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1800 return 1; 1801 1802 /* Already been allocated? */ 1803 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1804 return 2; 1805 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1806 if (ret < 0) 1807 return ret; 1808 if (ret > 0) 1809 return 2; 1810 1811 return 0; 1812 } 1813 1814 /* 1815 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1816 * status tree, incrementing the reserved 1817 * cluster/block count or making pending 1818 * reservations where needed 1819 * 1820 * @inode - file containing the newly added block 1821 * @lblk - start logical block to be added 1822 * @len - length of blocks to be added 1823 * 1824 * Returns 0 on success, negative error code on failure. 1825 */ 1826 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1827 ext4_lblk_t len) 1828 { 1829 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1830 int ret; 1831 bool lclu_allocated = false; 1832 bool end_allocated = false; 1833 ext4_lblk_t resv_clu; 1834 ext4_lblk_t end = lblk + len - 1; 1835 1836 /* 1837 * If the cluster containing lblk or end is shared with a delayed, 1838 * written, or unwritten extent in a bigalloc file system, it's 1839 * already been accounted for and does not need to be reserved. 1840 * A pending reservation must be made for the cluster if it's 1841 * shared with a written or unwritten extent and doesn't already 1842 * have one. Written and unwritten extents can be purged from the 1843 * extents status tree if the system is under memory pressure, so 1844 * it's necessary to examine the extent tree if a search of the 1845 * extents status tree doesn't get a match. 1846 */ 1847 if (sbi->s_cluster_ratio == 1) { 1848 ret = ext4_da_reserve_space(inode, len); 1849 if (ret != 0) /* ENOSPC */ 1850 return ret; 1851 } else { /* bigalloc */ 1852 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1853 1854 ret = ext4_clu_alloc_state(inode, lblk); 1855 if (ret < 0) 1856 return ret; 1857 if (ret > 0) { 1858 resv_clu--; 1859 lclu_allocated = (ret == 2); 1860 } 1861 1862 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1863 ret = ext4_clu_alloc_state(inode, end); 1864 if (ret < 0) 1865 return ret; 1866 if (ret > 0) { 1867 resv_clu--; 1868 end_allocated = (ret == 2); 1869 } 1870 } 1871 1872 if (resv_clu) { 1873 ret = ext4_da_reserve_space(inode, resv_clu); 1874 if (ret != 0) /* ENOSPC */ 1875 return ret; 1876 } 1877 } 1878 1879 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1880 end_allocated); 1881 return 0; 1882 } 1883 1884 /* 1885 * Looks up the requested blocks and sets the delalloc extent map. 1886 * First try to look up for the extent entry that contains the requested 1887 * blocks in the extent status tree without i_data_sem, then try to look 1888 * up for the ondisk extent mapping with i_data_sem in read mode, 1889 * finally hold i_data_sem in write mode, looks up again and add a 1890 * delalloc extent entry if it still couldn't find any extent. Pass out 1891 * the mapped extent through @map and return 0 on success. 1892 */ 1893 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1894 { 1895 struct extent_status es; 1896 int retval; 1897 #ifdef ES_AGGRESSIVE_TEST 1898 struct ext4_map_blocks orig_map; 1899 1900 memcpy(&orig_map, map, sizeof(*map)); 1901 #endif 1902 1903 map->m_flags = 0; 1904 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1905 (unsigned long) map->m_lblk); 1906 1907 ext4_check_map_extents_env(inode); 1908 1909 /* Lookup extent status tree firstly */ 1910 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1911 map->m_len = min_t(unsigned int, map->m_len, 1912 es.es_len - (map->m_lblk - es.es_lblk)); 1913 1914 if (ext4_es_is_hole(&es)) 1915 goto add_delayed; 1916 1917 found: 1918 /* 1919 * Delayed extent could be allocated by fallocate. 1920 * So we need to check it. 1921 */ 1922 if (ext4_es_is_delayed(&es)) { 1923 map->m_flags |= EXT4_MAP_DELAYED; 1924 return 0; 1925 } 1926 1927 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1928 if (ext4_es_is_written(&es)) 1929 map->m_flags |= EXT4_MAP_MAPPED; 1930 else if (ext4_es_is_unwritten(&es)) 1931 map->m_flags |= EXT4_MAP_UNWRITTEN; 1932 else 1933 BUG(); 1934 1935 #ifdef ES_AGGRESSIVE_TEST 1936 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1937 #endif 1938 return 0; 1939 } 1940 1941 /* 1942 * Try to see if we can get the block without requesting a new 1943 * file system block. 1944 */ 1945 down_read(&EXT4_I(inode)->i_data_sem); 1946 if (ext4_has_inline_data(inode)) 1947 retval = 0; 1948 else 1949 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1950 up_read(&EXT4_I(inode)->i_data_sem); 1951 if (retval) 1952 return retval < 0 ? retval : 0; 1953 1954 add_delayed: 1955 down_write(&EXT4_I(inode)->i_data_sem); 1956 /* 1957 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1958 * and fallocate path (no folio lock) can race. Make sure we 1959 * lookup the extent status tree here again while i_data_sem 1960 * is held in write mode, before inserting a new da entry in 1961 * the extent status tree. 1962 */ 1963 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1964 map->m_len = min_t(unsigned int, map->m_len, 1965 es.es_len - (map->m_lblk - es.es_lblk)); 1966 1967 if (!ext4_es_is_hole(&es)) { 1968 up_write(&EXT4_I(inode)->i_data_sem); 1969 goto found; 1970 } 1971 } else if (!ext4_has_inline_data(inode)) { 1972 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1973 if (retval) { 1974 up_write(&EXT4_I(inode)->i_data_sem); 1975 return retval < 0 ? retval : 0; 1976 } 1977 } 1978 1979 map->m_flags |= EXT4_MAP_DELAYED; 1980 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1981 up_write(&EXT4_I(inode)->i_data_sem); 1982 1983 return retval; 1984 } 1985 1986 /* 1987 * This is a special get_block_t callback which is used by 1988 * ext4_da_write_begin(). It will either return mapped block or 1989 * reserve space for a single block. 1990 * 1991 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1992 * We also have b_blocknr = -1 and b_bdev initialized properly 1993 * 1994 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1995 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1996 * initialized properly. 1997 */ 1998 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1999 struct buffer_head *bh, int create) 2000 { 2001 struct ext4_map_blocks map; 2002 sector_t invalid_block = ~((sector_t) 0xffff); 2003 int ret = 0; 2004 2005 BUG_ON(create == 0); 2006 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2007 2008 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2009 invalid_block = ~0; 2010 2011 map.m_lblk = iblock; 2012 map.m_len = 1; 2013 2014 /* 2015 * first, we need to know whether the block is allocated already 2016 * preallocated blocks are unmapped but should treated 2017 * the same as allocated blocks. 2018 */ 2019 ret = ext4_da_map_blocks(inode, &map); 2020 if (ret < 0) 2021 return ret; 2022 2023 if (map.m_flags & EXT4_MAP_DELAYED) { 2024 map_bh(bh, inode->i_sb, invalid_block); 2025 set_buffer_new(bh); 2026 set_buffer_delay(bh); 2027 return 0; 2028 } 2029 2030 map_bh(bh, inode->i_sb, map.m_pblk); 2031 ext4_update_bh_state(bh, map.m_flags); 2032 2033 if (buffer_unwritten(bh)) { 2034 /* A delayed write to unwritten bh should be marked 2035 * new and mapped. Mapped ensures that we don't do 2036 * get_block multiple times when we write to the same 2037 * offset and new ensures that we do proper zero out 2038 * for partial write. 2039 */ 2040 set_buffer_new(bh); 2041 set_buffer_mapped(bh); 2042 } 2043 return 0; 2044 } 2045 2046 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 2047 { 2048 mpd->start_pos += folio_size(folio); 2049 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2050 folio_unlock(folio); 2051 } 2052 2053 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 2054 { 2055 size_t len; 2056 loff_t size; 2057 int err; 2058 2059 WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos); 2060 folio_clear_dirty_for_io(folio); 2061 /* 2062 * We have to be very careful here! Nothing protects writeback path 2063 * against i_size changes and the page can be writeably mapped into 2064 * page tables. So an application can be growing i_size and writing 2065 * data through mmap while writeback runs. folio_clear_dirty_for_io() 2066 * write-protects our page in page tables and the page cannot get 2067 * written to again until we release folio lock. So only after 2068 * folio_clear_dirty_for_io() we are safe to sample i_size for 2069 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 2070 * on the barrier provided by folio_test_clear_dirty() in 2071 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 2072 * after page tables are updated. 2073 */ 2074 size = i_size_read(mpd->inode); 2075 len = folio_size(folio); 2076 if (folio_pos(folio) + len > size && 2077 !ext4_verity_in_progress(mpd->inode)) 2078 len = size & (len - 1); 2079 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 2080 2081 return err; 2082 } 2083 2084 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2085 2086 /* 2087 * mballoc gives us at most this number of blocks... 2088 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2089 * The rest of mballoc seems to handle chunks up to full group size. 2090 */ 2091 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2092 2093 /* 2094 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2095 * 2096 * @mpd - extent of blocks 2097 * @lblk - logical number of the block in the file 2098 * @bh - buffer head we want to add to the extent 2099 * 2100 * The function is used to collect contig. blocks in the same state. If the 2101 * buffer doesn't require mapping for writeback and we haven't started the 2102 * extent of buffers to map yet, the function returns 'true' immediately - the 2103 * caller can write the buffer right away. Otherwise the function returns true 2104 * if the block has been added to the extent, false if the block couldn't be 2105 * added. 2106 */ 2107 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2108 struct buffer_head *bh) 2109 { 2110 struct ext4_map_blocks *map = &mpd->map; 2111 2112 /* Buffer that doesn't need mapping for writeback? */ 2113 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2114 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2115 /* So far no extent to map => we write the buffer right away */ 2116 if (map->m_len == 0) 2117 return true; 2118 return false; 2119 } 2120 2121 /* First block in the extent? */ 2122 if (map->m_len == 0) { 2123 /* We cannot map unless handle is started... */ 2124 if (!mpd->do_map) 2125 return false; 2126 map->m_lblk = lblk; 2127 map->m_len = 1; 2128 map->m_flags = bh->b_state & BH_FLAGS; 2129 return true; 2130 } 2131 2132 /* Don't go larger than mballoc is willing to allocate */ 2133 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2134 return false; 2135 2136 /* Can we merge the block to our big extent? */ 2137 if (lblk == map->m_lblk + map->m_len && 2138 (bh->b_state & BH_FLAGS) == map->m_flags) { 2139 map->m_len++; 2140 return true; 2141 } 2142 return false; 2143 } 2144 2145 /* 2146 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2147 * 2148 * @mpd - extent of blocks for mapping 2149 * @head - the first buffer in the page 2150 * @bh - buffer we should start processing from 2151 * @lblk - logical number of the block in the file corresponding to @bh 2152 * 2153 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2154 * the page for IO if all buffers in this page were mapped and there's no 2155 * accumulated extent of buffers to map or add buffers in the page to the 2156 * extent of buffers to map. The function returns 1 if the caller can continue 2157 * by processing the next page, 0 if it should stop adding buffers to the 2158 * extent to map because we cannot extend it anymore. It can also return value 2159 * < 0 in case of error during IO submission. 2160 */ 2161 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2162 struct buffer_head *head, 2163 struct buffer_head *bh, 2164 ext4_lblk_t lblk) 2165 { 2166 struct inode *inode = mpd->inode; 2167 int err; 2168 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2169 >> inode->i_blkbits; 2170 2171 if (ext4_verity_in_progress(inode)) 2172 blocks = EXT_MAX_BLOCKS; 2173 2174 do { 2175 BUG_ON(buffer_locked(bh)); 2176 2177 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2178 /* Found extent to map? */ 2179 if (mpd->map.m_len) 2180 return 0; 2181 /* Buffer needs mapping and handle is not started? */ 2182 if (!mpd->do_map) 2183 return 0; 2184 /* Everything mapped so far and we hit EOF */ 2185 break; 2186 } 2187 } while (lblk++, (bh = bh->b_this_page) != head); 2188 /* So far everything mapped? Submit the page for IO. */ 2189 if (mpd->map.m_len == 0) { 2190 err = mpage_submit_folio(mpd, head->b_folio); 2191 if (err < 0) 2192 return err; 2193 mpage_folio_done(mpd, head->b_folio); 2194 } 2195 if (lblk >= blocks) { 2196 mpd->scanned_until_end = 1; 2197 return 0; 2198 } 2199 return 1; 2200 } 2201 2202 /* 2203 * mpage_process_folio - update folio buffers corresponding to changed extent 2204 * and may submit fully mapped page for IO 2205 * @mpd: description of extent to map, on return next extent to map 2206 * @folio: Contains these buffers. 2207 * @m_lblk: logical block mapping. 2208 * @m_pblk: corresponding physical mapping. 2209 * @map_bh: determines on return whether this page requires any further 2210 * mapping or not. 2211 * 2212 * Scan given folio buffers corresponding to changed extent and update buffer 2213 * state according to new extent state. 2214 * We map delalloc buffers to their physical location, clear unwritten bits. 2215 * If the given folio is not fully mapped, we update @mpd to the next extent in 2216 * the given folio that needs mapping & return @map_bh as true. 2217 */ 2218 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2219 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2220 bool *map_bh) 2221 { 2222 struct buffer_head *head, *bh; 2223 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2224 ext4_lblk_t lblk = *m_lblk; 2225 ext4_fsblk_t pblock = *m_pblk; 2226 int err = 0; 2227 int blkbits = mpd->inode->i_blkbits; 2228 ssize_t io_end_size = 0; 2229 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2230 2231 bh = head = folio_buffers(folio); 2232 do { 2233 if (lblk < mpd->map.m_lblk) 2234 continue; 2235 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2236 /* 2237 * Buffer after end of mapped extent. 2238 * Find next buffer in the folio to map. 2239 */ 2240 mpd->map.m_len = 0; 2241 mpd->map.m_flags = 0; 2242 io_end_vec->size += io_end_size; 2243 2244 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2245 if (err > 0) 2246 err = 0; 2247 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2248 io_end_vec = ext4_alloc_io_end_vec(io_end); 2249 if (IS_ERR(io_end_vec)) { 2250 err = PTR_ERR(io_end_vec); 2251 goto out; 2252 } 2253 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2254 } 2255 *map_bh = true; 2256 goto out; 2257 } 2258 if (buffer_delay(bh)) { 2259 clear_buffer_delay(bh); 2260 bh->b_blocknr = pblock++; 2261 } 2262 clear_buffer_unwritten(bh); 2263 io_end_size += (1 << blkbits); 2264 } while (lblk++, (bh = bh->b_this_page) != head); 2265 2266 io_end_vec->size += io_end_size; 2267 *map_bh = false; 2268 out: 2269 *m_lblk = lblk; 2270 *m_pblk = pblock; 2271 return err; 2272 } 2273 2274 /* 2275 * mpage_map_buffers - update buffers corresponding to changed extent and 2276 * submit fully mapped pages for IO 2277 * 2278 * @mpd - description of extent to map, on return next extent to map 2279 * 2280 * Scan buffers corresponding to changed extent (we expect corresponding pages 2281 * to be already locked) and update buffer state according to new extent state. 2282 * We map delalloc buffers to their physical location, clear unwritten bits, 2283 * and mark buffers as uninit when we perform writes to unwritten extents 2284 * and do extent conversion after IO is finished. If the last page is not fully 2285 * mapped, we update @map to the next extent in the last page that needs 2286 * mapping. Otherwise we submit the page for IO. 2287 */ 2288 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2289 { 2290 struct folio_batch fbatch; 2291 unsigned nr, i; 2292 struct inode *inode = mpd->inode; 2293 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2294 pgoff_t start, end; 2295 ext4_lblk_t lblk; 2296 ext4_fsblk_t pblock; 2297 int err; 2298 bool map_bh = false; 2299 2300 start = mpd->map.m_lblk >> bpp_bits; 2301 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2302 pblock = mpd->map.m_pblk; 2303 2304 folio_batch_init(&fbatch); 2305 while (start <= end) { 2306 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2307 if (nr == 0) 2308 break; 2309 for (i = 0; i < nr; i++) { 2310 struct folio *folio = fbatch.folios[i]; 2311 2312 lblk = folio->index << bpp_bits; 2313 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2314 &map_bh); 2315 /* 2316 * If map_bh is true, means page may require further bh 2317 * mapping, or maybe the page was submitted for IO. 2318 * So we return to call further extent mapping. 2319 */ 2320 if (err < 0 || map_bh) 2321 goto out; 2322 /* Page fully mapped - let IO run! */ 2323 err = mpage_submit_folio(mpd, folio); 2324 if (err < 0) 2325 goto out; 2326 mpage_folio_done(mpd, folio); 2327 } 2328 folio_batch_release(&fbatch); 2329 } 2330 /* Extent fully mapped and matches with page boundary. We are done. */ 2331 mpd->map.m_len = 0; 2332 mpd->map.m_flags = 0; 2333 return 0; 2334 out: 2335 folio_batch_release(&fbatch); 2336 return err; 2337 } 2338 2339 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2340 { 2341 struct inode *inode = mpd->inode; 2342 struct ext4_map_blocks *map = &mpd->map; 2343 int get_blocks_flags; 2344 int err, dioread_nolock; 2345 2346 /* Make sure transaction has enough credits for this extent */ 2347 err = ext4_journal_ensure_extent_credits(handle, inode); 2348 if (err < 0) 2349 return err; 2350 2351 trace_ext4_da_write_pages_extent(inode, map); 2352 /* 2353 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2354 * to convert an unwritten extent to be initialized (in the case 2355 * where we have written into one or more preallocated blocks). It is 2356 * possible that we're going to need more metadata blocks than 2357 * previously reserved. However we must not fail because we're in 2358 * writeback and there is nothing we can do about it so it might result 2359 * in data loss. So use reserved blocks to allocate metadata if 2360 * possible. In addition, do not cache any unrelated extents, as it 2361 * only holds the folio lock but does not hold the i_rwsem or 2362 * invalidate_lock, which could corrupt the extent status tree. 2363 */ 2364 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2365 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2366 EXT4_GET_BLOCKS_IO_SUBMIT | 2367 EXT4_EX_NOCACHE; 2368 2369 dioread_nolock = ext4_should_dioread_nolock(inode); 2370 if (dioread_nolock) 2371 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2372 2373 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2374 if (err < 0) 2375 return err; 2376 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2377 if (!mpd->io_submit.io_end->handle && 2378 ext4_handle_valid(handle)) { 2379 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2380 handle->h_rsv_handle = NULL; 2381 } 2382 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2383 } 2384 2385 BUG_ON(map->m_len == 0); 2386 return 0; 2387 } 2388 2389 /* 2390 * This is used to submit mapped buffers in a single folio that is not fully 2391 * mapped for various reasons, such as insufficient space or journal credits. 2392 */ 2393 static int mpage_submit_partial_folio(struct mpage_da_data *mpd) 2394 { 2395 struct inode *inode = mpd->inode; 2396 struct folio *folio; 2397 loff_t pos; 2398 int ret; 2399 2400 folio = filemap_get_folio(inode->i_mapping, 2401 mpd->start_pos >> PAGE_SHIFT); 2402 if (IS_ERR(folio)) 2403 return PTR_ERR(folio); 2404 /* 2405 * The mapped position should be within the current processing folio 2406 * but must not be the folio start position. 2407 */ 2408 pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits; 2409 if (WARN_ON_ONCE((folio_pos(folio) == pos) || 2410 !folio_contains(folio, pos >> PAGE_SHIFT))) 2411 return -EINVAL; 2412 2413 ret = mpage_submit_folio(mpd, folio); 2414 if (ret) 2415 goto out; 2416 /* 2417 * Update start_pos to prevent this folio from being released in 2418 * mpage_release_unused_pages(), it will be reset to the aligned folio 2419 * pos when this folio is written again in the next round. Additionally, 2420 * do not update wbc->nr_to_write here, as it will be updated once the 2421 * entire folio has finished processing. 2422 */ 2423 mpd->start_pos = pos; 2424 out: 2425 folio_unlock(folio); 2426 folio_put(folio); 2427 return ret; 2428 } 2429 2430 /* 2431 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2432 * mpd->len and submit pages underlying it for IO 2433 * 2434 * @handle - handle for journal operations 2435 * @mpd - extent to map 2436 * @give_up_on_write - we set this to true iff there is a fatal error and there 2437 * is no hope of writing the data. The caller should discard 2438 * dirty pages to avoid infinite loops. 2439 * 2440 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2441 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2442 * them to initialized or split the described range from larger unwritten 2443 * extent. Note that we need not map all the described range since allocation 2444 * can return less blocks or the range is covered by more unwritten extents. We 2445 * cannot map more because we are limited by reserved transaction credits. On 2446 * the other hand we always make sure that the last touched page is fully 2447 * mapped so that it can be written out (and thus forward progress is 2448 * guaranteed). After mapping we submit all mapped pages for IO. 2449 */ 2450 static int mpage_map_and_submit_extent(handle_t *handle, 2451 struct mpage_da_data *mpd, 2452 bool *give_up_on_write) 2453 { 2454 struct inode *inode = mpd->inode; 2455 struct ext4_map_blocks *map = &mpd->map; 2456 int err; 2457 loff_t disksize; 2458 int progress = 0; 2459 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2460 struct ext4_io_end_vec *io_end_vec; 2461 2462 io_end_vec = ext4_alloc_io_end_vec(io_end); 2463 if (IS_ERR(io_end_vec)) 2464 return PTR_ERR(io_end_vec); 2465 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2466 do { 2467 err = mpage_map_one_extent(handle, mpd); 2468 if (err < 0) { 2469 struct super_block *sb = inode->i_sb; 2470 2471 if (ext4_emergency_state(sb)) 2472 goto invalidate_dirty_pages; 2473 /* 2474 * Let the uper layers retry transient errors. 2475 * In the case of ENOSPC, if ext4_count_free_blocks() 2476 * is non-zero, a commit should free up blocks. 2477 */ 2478 if ((err == -ENOMEM) || (err == -EAGAIN) || 2479 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2480 /* 2481 * We may have already allocated extents for 2482 * some bhs inside the folio, issue the 2483 * corresponding data to prevent stale data. 2484 */ 2485 if (progress) { 2486 if (mpage_submit_partial_folio(mpd)) 2487 goto invalidate_dirty_pages; 2488 goto update_disksize; 2489 } 2490 return err; 2491 } 2492 ext4_msg(sb, KERN_CRIT, 2493 "Delayed block allocation failed for " 2494 "inode %lu at logical offset %llu with" 2495 " max blocks %u with error %d", 2496 inode->i_ino, 2497 (unsigned long long)map->m_lblk, 2498 (unsigned)map->m_len, -err); 2499 ext4_msg(sb, KERN_CRIT, 2500 "This should not happen!! Data will " 2501 "be lost\n"); 2502 if (err == -ENOSPC) 2503 ext4_print_free_blocks(inode); 2504 invalidate_dirty_pages: 2505 *give_up_on_write = true; 2506 return err; 2507 } 2508 progress = 1; 2509 /* 2510 * Update buffer state, submit mapped pages, and get us new 2511 * extent to map 2512 */ 2513 err = mpage_map_and_submit_buffers(mpd); 2514 if (err < 0) 2515 goto update_disksize; 2516 } while (map->m_len); 2517 2518 update_disksize: 2519 /* 2520 * Update on-disk size after IO is submitted. Races with 2521 * truncate are avoided by checking i_size under i_data_sem. 2522 */ 2523 disksize = mpd->start_pos; 2524 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2525 int err2; 2526 loff_t i_size; 2527 2528 down_write(&EXT4_I(inode)->i_data_sem); 2529 i_size = i_size_read(inode); 2530 if (disksize > i_size) 2531 disksize = i_size; 2532 if (disksize > EXT4_I(inode)->i_disksize) 2533 EXT4_I(inode)->i_disksize = disksize; 2534 up_write(&EXT4_I(inode)->i_data_sem); 2535 err2 = ext4_mark_inode_dirty(handle, inode); 2536 if (err2) { 2537 ext4_error_err(inode->i_sb, -err2, 2538 "Failed to mark inode %lu dirty", 2539 inode->i_ino); 2540 } 2541 if (!err) 2542 err = err2; 2543 } 2544 return err; 2545 } 2546 2547 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2548 size_t len) 2549 { 2550 struct buffer_head *page_bufs = folio_buffers(folio); 2551 struct inode *inode = folio->mapping->host; 2552 int ret, err; 2553 2554 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2555 NULL, do_journal_get_write_access); 2556 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2557 NULL, write_end_fn); 2558 if (ret == 0) 2559 ret = err; 2560 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2561 if (ret == 0) 2562 ret = err; 2563 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2564 2565 return ret; 2566 } 2567 2568 static int mpage_journal_page_buffers(handle_t *handle, 2569 struct mpage_da_data *mpd, 2570 struct folio *folio) 2571 { 2572 struct inode *inode = mpd->inode; 2573 loff_t size = i_size_read(inode); 2574 size_t len = folio_size(folio); 2575 2576 folio_clear_checked(folio); 2577 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2578 2579 if (folio_pos(folio) + len > size && 2580 !ext4_verity_in_progress(inode)) 2581 len = size & (len - 1); 2582 2583 return ext4_journal_folio_buffers(handle, folio, len); 2584 } 2585 2586 /* 2587 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2588 * needing mapping, submit mapped pages 2589 * 2590 * @mpd - where to look for pages 2591 * 2592 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2593 * IO immediately. If we cannot map blocks, we submit just already mapped 2594 * buffers in the page for IO and keep page dirty. When we can map blocks and 2595 * we find a page which isn't mapped we start accumulating extent of buffers 2596 * underlying these pages that needs mapping (formed by either delayed or 2597 * unwritten buffers). We also lock the pages containing these buffers. The 2598 * extent found is returned in @mpd structure (starting at mpd->lblk with 2599 * length mpd->len blocks). 2600 * 2601 * Note that this function can attach bios to one io_end structure which are 2602 * neither logically nor physically contiguous. Although it may seem as an 2603 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2604 * case as we need to track IO to all buffers underlying a page in one io_end. 2605 */ 2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2607 { 2608 struct address_space *mapping = mpd->inode->i_mapping; 2609 struct folio_batch fbatch; 2610 unsigned int nr_folios; 2611 pgoff_t index = mpd->start_pos >> PAGE_SHIFT; 2612 pgoff_t end = mpd->end_pos >> PAGE_SHIFT; 2613 xa_mark_t tag; 2614 int i, err = 0; 2615 int blkbits = mpd->inode->i_blkbits; 2616 ext4_lblk_t lblk; 2617 struct buffer_head *head; 2618 handle_t *handle = NULL; 2619 int bpp = ext4_journal_blocks_per_folio(mpd->inode); 2620 2621 tag = wbc_to_tag(mpd->wbc); 2622 2623 mpd->map.m_len = 0; 2624 mpd->next_pos = mpd->start_pos; 2625 if (ext4_should_journal_data(mpd->inode)) { 2626 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2627 bpp); 2628 if (IS_ERR(handle)) 2629 return PTR_ERR(handle); 2630 } 2631 folio_batch_init(&fbatch); 2632 while (index <= end) { 2633 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2634 tag, &fbatch); 2635 if (nr_folios == 0) 2636 break; 2637 2638 for (i = 0; i < nr_folios; i++) { 2639 struct folio *folio = fbatch.folios[i]; 2640 2641 /* 2642 * Accumulated enough dirty pages? This doesn't apply 2643 * to WB_SYNC_ALL mode. For integrity sync we have to 2644 * keep going because someone may be concurrently 2645 * dirtying pages, and we might have synced a lot of 2646 * newly appeared dirty pages, but have not synced all 2647 * of the old dirty pages. 2648 */ 2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2650 mpd->wbc->nr_to_write <= 2651 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2652 goto out; 2653 2654 /* If we can't merge this page, we are done. */ 2655 if (mpd->map.m_len > 0 && 2656 mpd->next_pos != folio_pos(folio)) 2657 goto out; 2658 2659 if (handle) { 2660 err = ext4_journal_ensure_credits(handle, bpp, 2661 0); 2662 if (err < 0) 2663 goto out; 2664 } 2665 2666 folio_lock(folio); 2667 /* 2668 * If the page is no longer dirty, or its mapping no 2669 * longer corresponds to inode we are writing (which 2670 * means it has been truncated or invalidated), or the 2671 * page is already under writeback and we are not doing 2672 * a data integrity writeback, skip the page 2673 */ 2674 if (!folio_test_dirty(folio) || 2675 (folio_test_writeback(folio) && 2676 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2677 unlikely(folio->mapping != mapping)) { 2678 folio_unlock(folio); 2679 continue; 2680 } 2681 2682 folio_wait_writeback(folio); 2683 BUG_ON(folio_test_writeback(folio)); 2684 2685 /* 2686 * Should never happen but for buggy code in 2687 * other subsystems that call 2688 * set_page_dirty() without properly warning 2689 * the file system first. See [1] for more 2690 * information. 2691 * 2692 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2693 */ 2694 if (!folio_buffers(folio)) { 2695 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2696 folio_clear_dirty(folio); 2697 folio_unlock(folio); 2698 continue; 2699 } 2700 2701 if (mpd->map.m_len == 0) 2702 mpd->start_pos = folio_pos(folio); 2703 mpd->next_pos = folio_next_pos(folio); 2704 /* 2705 * Writeout when we cannot modify metadata is simple. 2706 * Just submit the page. For data=journal mode we 2707 * first handle writeout of the page for checkpoint and 2708 * only after that handle delayed page dirtying. This 2709 * makes sure current data is checkpointed to the final 2710 * location before possibly journalling it again which 2711 * is desirable when the page is frequently dirtied 2712 * through a pin. 2713 */ 2714 if (!mpd->can_map) { 2715 err = mpage_submit_folio(mpd, folio); 2716 if (err < 0) 2717 goto out; 2718 /* Pending dirtying of journalled data? */ 2719 if (folio_test_checked(folio)) { 2720 err = mpage_journal_page_buffers(handle, 2721 mpd, folio); 2722 if (err < 0) 2723 goto out; 2724 mpd->journalled_more_data = 1; 2725 } 2726 mpage_folio_done(mpd, folio); 2727 } else { 2728 /* Add all dirty buffers to mpd */ 2729 lblk = ((ext4_lblk_t)folio->index) << 2730 (PAGE_SHIFT - blkbits); 2731 head = folio_buffers(folio); 2732 err = mpage_process_page_bufs(mpd, head, head, 2733 lblk); 2734 if (err <= 0) 2735 goto out; 2736 err = 0; 2737 } 2738 } 2739 folio_batch_release(&fbatch); 2740 cond_resched(); 2741 } 2742 mpd->scanned_until_end = 1; 2743 if (handle) 2744 ext4_journal_stop(handle); 2745 return 0; 2746 out: 2747 folio_batch_release(&fbatch); 2748 if (handle) 2749 ext4_journal_stop(handle); 2750 return err; 2751 } 2752 2753 static int ext4_do_writepages(struct mpage_da_data *mpd) 2754 { 2755 struct writeback_control *wbc = mpd->wbc; 2756 pgoff_t writeback_index = 0; 2757 long nr_to_write = wbc->nr_to_write; 2758 int range_whole = 0; 2759 int cycled = 1; 2760 handle_t *handle = NULL; 2761 struct inode *inode = mpd->inode; 2762 struct address_space *mapping = inode->i_mapping; 2763 int needed_blocks, rsv_blocks = 0, ret = 0; 2764 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2765 struct blk_plug plug; 2766 bool give_up_on_write = false; 2767 2768 trace_ext4_writepages(inode, wbc); 2769 2770 /* 2771 * No pages to write? This is mainly a kludge to avoid starting 2772 * a transaction for special inodes like journal inode on last iput() 2773 * because that could violate lock ordering on umount 2774 */ 2775 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2776 goto out_writepages; 2777 2778 /* 2779 * If the filesystem has aborted, it is read-only, so return 2780 * right away instead of dumping stack traces later on that 2781 * will obscure the real source of the problem. We test 2782 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2783 * the latter could be true if the filesystem is mounted 2784 * read-only, and in that case, ext4_writepages should 2785 * *never* be called, so if that ever happens, we would want 2786 * the stack trace. 2787 */ 2788 ret = ext4_emergency_state(mapping->host->i_sb); 2789 if (unlikely(ret)) 2790 goto out_writepages; 2791 2792 /* 2793 * If we have inline data and arrive here, it means that 2794 * we will soon create the block for the 1st page, so 2795 * we'd better clear the inline data here. 2796 */ 2797 if (ext4_has_inline_data(inode)) { 2798 /* Just inode will be modified... */ 2799 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2800 if (IS_ERR(handle)) { 2801 ret = PTR_ERR(handle); 2802 goto out_writepages; 2803 } 2804 BUG_ON(ext4_test_inode_state(inode, 2805 EXT4_STATE_MAY_INLINE_DATA)); 2806 ext4_destroy_inline_data(handle, inode); 2807 ext4_journal_stop(handle); 2808 } 2809 2810 /* 2811 * data=journal mode does not do delalloc so we just need to writeout / 2812 * journal already mapped buffers. On the other hand we need to commit 2813 * transaction to make data stable. We expect all the data to be 2814 * already in the journal (the only exception are DMA pinned pages 2815 * dirtied behind our back) so we commit transaction here and run the 2816 * writeback loop to checkpoint them. The checkpointing is not actually 2817 * necessary to make data persistent *but* quite a few places (extent 2818 * shifting operations, fsverity, ...) depend on being able to drop 2819 * pagecache pages after calling filemap_write_and_wait() and for that 2820 * checkpointing needs to happen. 2821 */ 2822 if (ext4_should_journal_data(inode)) { 2823 mpd->can_map = 0; 2824 if (wbc->sync_mode == WB_SYNC_ALL) 2825 ext4_fc_commit(sbi->s_journal, 2826 EXT4_I(inode)->i_datasync_tid); 2827 } 2828 mpd->journalled_more_data = 0; 2829 2830 if (ext4_should_dioread_nolock(inode)) { 2831 int bpf = ext4_journal_blocks_per_folio(inode); 2832 /* 2833 * We may need to convert up to one extent per block in 2834 * the folio and we may dirty the inode. 2835 */ 2836 rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf); 2837 } 2838 2839 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2840 range_whole = 1; 2841 2842 if (wbc->range_cyclic) { 2843 writeback_index = mapping->writeback_index; 2844 if (writeback_index) 2845 cycled = 0; 2846 mpd->start_pos = writeback_index << PAGE_SHIFT; 2847 mpd->end_pos = LLONG_MAX; 2848 } else { 2849 mpd->start_pos = wbc->range_start; 2850 mpd->end_pos = wbc->range_end; 2851 } 2852 2853 ext4_io_submit_init(&mpd->io_submit, wbc); 2854 retry: 2855 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2856 tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT, 2857 mpd->end_pos >> PAGE_SHIFT); 2858 blk_start_plug(&plug); 2859 2860 /* 2861 * First writeback pages that don't need mapping - we can avoid 2862 * starting a transaction unnecessarily and also avoid being blocked 2863 * in the block layer on device congestion while having transaction 2864 * started. 2865 */ 2866 mpd->do_map = 0; 2867 mpd->scanned_until_end = 0; 2868 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2869 if (!mpd->io_submit.io_end) { 2870 ret = -ENOMEM; 2871 goto unplug; 2872 } 2873 ret = mpage_prepare_extent_to_map(mpd); 2874 /* Unlock pages we didn't use */ 2875 mpage_release_unused_pages(mpd, false); 2876 /* Submit prepared bio */ 2877 ext4_io_submit(&mpd->io_submit); 2878 ext4_put_io_end_defer(mpd->io_submit.io_end); 2879 mpd->io_submit.io_end = NULL; 2880 if (ret < 0) 2881 goto unplug; 2882 2883 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2884 /* For each extent of pages we use new io_end */ 2885 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2886 if (!mpd->io_submit.io_end) { 2887 ret = -ENOMEM; 2888 break; 2889 } 2890 2891 WARN_ON_ONCE(!mpd->can_map); 2892 /* 2893 * We have two constraints: We find one extent to map and we 2894 * must always write out whole page (makes a difference when 2895 * blocksize < pagesize) so that we don't block on IO when we 2896 * try to write out the rest of the page. Journalled mode is 2897 * not supported by delalloc. 2898 */ 2899 BUG_ON(ext4_should_journal_data(inode)); 2900 /* 2901 * Calculate the number of credits needed to reserve for one 2902 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will 2903 * attempt to extend the transaction or start a new iteration 2904 * if the reserved credits are insufficient. 2905 */ 2906 needed_blocks = ext4_chunk_trans_blocks(inode, 2907 MAX_WRITEPAGES_EXTENT_LEN); 2908 /* start a new transaction */ 2909 handle = ext4_journal_start_with_reserve(inode, 2910 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2911 if (IS_ERR(handle)) { 2912 ret = PTR_ERR(handle); 2913 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2914 "%ld pages, ino %lu; err %d", __func__, 2915 wbc->nr_to_write, inode->i_ino, ret); 2916 /* Release allocated io_end */ 2917 ext4_put_io_end(mpd->io_submit.io_end); 2918 mpd->io_submit.io_end = NULL; 2919 break; 2920 } 2921 mpd->do_map = 1; 2922 2923 trace_ext4_da_write_folios_start(inode, mpd->start_pos, 2924 mpd->next_pos, wbc); 2925 ret = mpage_prepare_extent_to_map(mpd); 2926 if (!ret && mpd->map.m_len) 2927 ret = mpage_map_and_submit_extent(handle, mpd, 2928 &give_up_on_write); 2929 /* 2930 * Caution: If the handle is synchronous, 2931 * ext4_journal_stop() can wait for transaction commit 2932 * to finish which may depend on writeback of pages to 2933 * complete or on page lock to be released. In that 2934 * case, we have to wait until after we have 2935 * submitted all the IO, released page locks we hold, 2936 * and dropped io_end reference (for extent conversion 2937 * to be able to complete) before stopping the handle. 2938 */ 2939 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2940 ext4_journal_stop(handle); 2941 handle = NULL; 2942 mpd->do_map = 0; 2943 } 2944 /* Unlock pages we didn't use */ 2945 mpage_release_unused_pages(mpd, give_up_on_write); 2946 /* Submit prepared bio */ 2947 ext4_io_submit(&mpd->io_submit); 2948 2949 /* 2950 * Drop our io_end reference we got from init. We have 2951 * to be careful and use deferred io_end finishing if 2952 * we are still holding the transaction as we can 2953 * release the last reference to io_end which may end 2954 * up doing unwritten extent conversion. 2955 */ 2956 if (handle) { 2957 ext4_put_io_end_defer(mpd->io_submit.io_end); 2958 ext4_journal_stop(handle); 2959 } else 2960 ext4_put_io_end(mpd->io_submit.io_end); 2961 mpd->io_submit.io_end = NULL; 2962 trace_ext4_da_write_folios_end(inode, mpd->start_pos, 2963 mpd->next_pos, wbc, ret); 2964 2965 if (ret == -ENOSPC && sbi->s_journal) { 2966 /* 2967 * Commit the transaction which would 2968 * free blocks released in the transaction 2969 * and try again 2970 */ 2971 jbd2_journal_force_commit_nested(sbi->s_journal); 2972 ret = 0; 2973 continue; 2974 } 2975 if (ret == -EAGAIN) 2976 ret = 0; 2977 /* Fatal error - ENOMEM, EIO... */ 2978 if (ret) 2979 break; 2980 } 2981 unplug: 2982 blk_finish_plug(&plug); 2983 if (!ret && !cycled && wbc->nr_to_write > 0) { 2984 cycled = 1; 2985 mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1; 2986 mpd->start_pos = 0; 2987 goto retry; 2988 } 2989 2990 /* Update index */ 2991 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2992 /* 2993 * Set the writeback_index so that range_cyclic 2994 * mode will write it back later 2995 */ 2996 mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT; 2997 2998 out_writepages: 2999 trace_ext4_writepages_result(inode, wbc, ret, 3000 nr_to_write - wbc->nr_to_write); 3001 return ret; 3002 } 3003 3004 static int ext4_writepages(struct address_space *mapping, 3005 struct writeback_control *wbc) 3006 { 3007 struct super_block *sb = mapping->host->i_sb; 3008 struct mpage_da_data mpd = { 3009 .inode = mapping->host, 3010 .wbc = wbc, 3011 .can_map = 1, 3012 }; 3013 int ret; 3014 int alloc_ctx; 3015 3016 ret = ext4_emergency_state(sb); 3017 if (unlikely(ret)) 3018 return ret; 3019 3020 alloc_ctx = ext4_writepages_down_read(sb); 3021 ret = ext4_do_writepages(&mpd); 3022 /* 3023 * For data=journal writeback we could have come across pages marked 3024 * for delayed dirtying (PageChecked) which were just added to the 3025 * running transaction. Try once more to get them to stable storage. 3026 */ 3027 if (!ret && mpd.journalled_more_data) 3028 ret = ext4_do_writepages(&mpd); 3029 ext4_writepages_up_read(sb, alloc_ctx); 3030 3031 return ret; 3032 } 3033 3034 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 3035 { 3036 struct writeback_control wbc = { 3037 .sync_mode = WB_SYNC_ALL, 3038 .nr_to_write = LONG_MAX, 3039 .range_start = jinode->i_dirty_start, 3040 .range_end = jinode->i_dirty_end, 3041 }; 3042 struct mpage_da_data mpd = { 3043 .inode = jinode->i_vfs_inode, 3044 .wbc = &wbc, 3045 .can_map = 0, 3046 }; 3047 return ext4_do_writepages(&mpd); 3048 } 3049 3050 static int ext4_dax_writepages(struct address_space *mapping, 3051 struct writeback_control *wbc) 3052 { 3053 int ret; 3054 long nr_to_write = wbc->nr_to_write; 3055 struct inode *inode = mapping->host; 3056 int alloc_ctx; 3057 3058 ret = ext4_emergency_state(inode->i_sb); 3059 if (unlikely(ret)) 3060 return ret; 3061 3062 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 3063 trace_ext4_writepages(inode, wbc); 3064 3065 ret = dax_writeback_mapping_range(mapping, 3066 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 3067 trace_ext4_writepages_result(inode, wbc, ret, 3068 nr_to_write - wbc->nr_to_write); 3069 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 3070 return ret; 3071 } 3072 3073 static int ext4_nonda_switch(struct super_block *sb) 3074 { 3075 s64 free_clusters, dirty_clusters; 3076 struct ext4_sb_info *sbi = EXT4_SB(sb); 3077 3078 /* 3079 * switch to non delalloc mode if we are running low 3080 * on free block. The free block accounting via percpu 3081 * counters can get slightly wrong with percpu_counter_batch getting 3082 * accumulated on each CPU without updating global counters 3083 * Delalloc need an accurate free block accounting. So switch 3084 * to non delalloc when we are near to error range. 3085 */ 3086 free_clusters = 3087 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3088 dirty_clusters = 3089 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3090 /* 3091 * Start pushing delalloc when 1/2 of free blocks are dirty. 3092 */ 3093 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3094 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3095 3096 if (2 * free_clusters < 3 * dirty_clusters || 3097 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3098 /* 3099 * free block count is less than 150% of dirty blocks 3100 * or free blocks is less than watermark 3101 */ 3102 return 1; 3103 } 3104 return 0; 3105 } 3106 3107 static int ext4_da_write_begin(const struct kiocb *iocb, 3108 struct address_space *mapping, 3109 loff_t pos, unsigned len, 3110 struct folio **foliop, void **fsdata) 3111 { 3112 int ret, retries = 0; 3113 struct folio *folio; 3114 pgoff_t index; 3115 struct inode *inode = mapping->host; 3116 3117 ret = ext4_emergency_state(inode->i_sb); 3118 if (unlikely(ret)) 3119 return ret; 3120 3121 index = pos >> PAGE_SHIFT; 3122 3123 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3124 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3125 return ext4_write_begin(iocb, mapping, pos, 3126 len, foliop, fsdata); 3127 } 3128 *fsdata = (void *)0; 3129 trace_ext4_da_write_begin(inode, pos, len); 3130 3131 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3132 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 3133 foliop, fsdata, true); 3134 if (ret < 0) 3135 return ret; 3136 if (ret == 1) 3137 return 0; 3138 } 3139 3140 retry: 3141 folio = write_begin_get_folio(iocb, mapping, index, len); 3142 if (IS_ERR(folio)) 3143 return PTR_ERR(folio); 3144 3145 if (len > folio_next_pos(folio) - pos) 3146 len = folio_next_pos(folio) - pos; 3147 3148 ret = ext4_block_write_begin(NULL, folio, pos, len, 3149 ext4_da_get_block_prep); 3150 if (ret < 0) { 3151 folio_unlock(folio); 3152 folio_put(folio); 3153 /* 3154 * ext4_block_write_begin may have instantiated a few blocks 3155 * outside i_size. Trim these off again. Don't need 3156 * i_size_read because we hold inode lock. 3157 */ 3158 if (pos + len > inode->i_size) 3159 ext4_truncate_failed_write(inode); 3160 3161 if (ret == -ENOSPC && 3162 ext4_should_retry_alloc(inode->i_sb, &retries)) 3163 goto retry; 3164 return ret; 3165 } 3166 3167 *foliop = folio; 3168 return ret; 3169 } 3170 3171 /* 3172 * Check if we should update i_disksize 3173 * when write to the end of file but not require block allocation 3174 */ 3175 static int ext4_da_should_update_i_disksize(struct folio *folio, 3176 unsigned long offset) 3177 { 3178 struct buffer_head *bh; 3179 struct inode *inode = folio->mapping->host; 3180 unsigned int idx; 3181 int i; 3182 3183 bh = folio_buffers(folio); 3184 idx = offset >> inode->i_blkbits; 3185 3186 for (i = 0; i < idx; i++) 3187 bh = bh->b_this_page; 3188 3189 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3190 return 0; 3191 return 1; 3192 } 3193 3194 static int ext4_da_do_write_end(struct address_space *mapping, 3195 loff_t pos, unsigned len, unsigned copied, 3196 struct folio *folio) 3197 { 3198 struct inode *inode = mapping->host; 3199 loff_t old_size = inode->i_size; 3200 bool disksize_changed = false; 3201 loff_t new_i_size, zero_len = 0; 3202 handle_t *handle; 3203 3204 if (unlikely(!folio_buffers(folio))) { 3205 folio_unlock(folio); 3206 folio_put(folio); 3207 return -EIO; 3208 } 3209 /* 3210 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3211 * flag, which all that's needed to trigger page writeback. 3212 */ 3213 copied = block_write_end(pos, len, copied, folio); 3214 new_i_size = pos + copied; 3215 3216 /* 3217 * It's important to update i_size while still holding folio lock, 3218 * because folio writeout could otherwise come in and zero beyond 3219 * i_size. 3220 * 3221 * Since we are holding inode lock, we are sure i_disksize <= 3222 * i_size. We also know that if i_disksize < i_size, there are 3223 * delalloc writes pending in the range up to i_size. If the end of 3224 * the current write is <= i_size, there's no need to touch 3225 * i_disksize since writeback will push i_disksize up to i_size 3226 * eventually. If the end of the current write is > i_size and 3227 * inside an allocated block which ext4_da_should_update_i_disksize() 3228 * checked, we need to update i_disksize here as certain 3229 * ext4_writepages() paths not allocating blocks and update i_disksize. 3230 */ 3231 if (new_i_size > inode->i_size) { 3232 unsigned long end; 3233 3234 i_size_write(inode, new_i_size); 3235 end = offset_in_folio(folio, new_i_size - 1); 3236 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3237 ext4_update_i_disksize(inode, new_i_size); 3238 disksize_changed = true; 3239 } 3240 } 3241 3242 folio_unlock(folio); 3243 folio_put(folio); 3244 3245 if (pos > old_size) { 3246 pagecache_isize_extended(inode, old_size, pos); 3247 zero_len = pos - old_size; 3248 } 3249 3250 if (!disksize_changed && !zero_len) 3251 return copied; 3252 3253 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3254 if (IS_ERR(handle)) 3255 return PTR_ERR(handle); 3256 if (zero_len) 3257 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3258 ext4_mark_inode_dirty(handle, inode); 3259 ext4_journal_stop(handle); 3260 3261 return copied; 3262 } 3263 3264 static int ext4_da_write_end(const struct kiocb *iocb, 3265 struct address_space *mapping, 3266 loff_t pos, unsigned len, unsigned copied, 3267 struct folio *folio, void *fsdata) 3268 { 3269 struct inode *inode = mapping->host; 3270 int write_mode = (int)(unsigned long)fsdata; 3271 3272 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3273 return ext4_write_end(iocb, mapping, pos, 3274 len, copied, folio, fsdata); 3275 3276 trace_ext4_da_write_end(inode, pos, len, copied); 3277 3278 if (write_mode != CONVERT_INLINE_DATA && 3279 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3280 ext4_has_inline_data(inode)) 3281 return ext4_write_inline_data_end(inode, pos, len, copied, 3282 folio); 3283 3284 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3285 copied = 0; 3286 3287 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3288 } 3289 3290 /* 3291 * Force all delayed allocation blocks to be allocated for a given inode. 3292 */ 3293 int ext4_alloc_da_blocks(struct inode *inode) 3294 { 3295 trace_ext4_alloc_da_blocks(inode); 3296 3297 if (!EXT4_I(inode)->i_reserved_data_blocks) 3298 return 0; 3299 3300 /* 3301 * We do something simple for now. The filemap_flush() will 3302 * also start triggering a write of the data blocks, which is 3303 * not strictly speaking necessary (and for users of 3304 * laptop_mode, not even desirable). However, to do otherwise 3305 * would require replicating code paths in: 3306 * 3307 * ext4_writepages() -> 3308 * write_cache_pages() ---> (via passed in callback function) 3309 * __mpage_da_writepage() --> 3310 * mpage_add_bh_to_extent() 3311 * mpage_da_map_blocks() 3312 * 3313 * The problem is that write_cache_pages(), located in 3314 * mm/page-writeback.c, marks pages clean in preparation for 3315 * doing I/O, which is not desirable if we're not planning on 3316 * doing I/O at all. 3317 * 3318 * We could call write_cache_pages(), and then redirty all of 3319 * the pages by calling redirty_page_for_writepage() but that 3320 * would be ugly in the extreme. So instead we would need to 3321 * replicate parts of the code in the above functions, 3322 * simplifying them because we wouldn't actually intend to 3323 * write out the pages, but rather only collect contiguous 3324 * logical block extents, call the multi-block allocator, and 3325 * then update the buffer heads with the block allocations. 3326 * 3327 * For now, though, we'll cheat by calling filemap_flush(), 3328 * which will map the blocks, and start the I/O, but not 3329 * actually wait for the I/O to complete. 3330 */ 3331 return filemap_flush(inode->i_mapping); 3332 } 3333 3334 /* 3335 * bmap() is special. It gets used by applications such as lilo and by 3336 * the swapper to find the on-disk block of a specific piece of data. 3337 * 3338 * Naturally, this is dangerous if the block concerned is still in the 3339 * journal. If somebody makes a swapfile on an ext4 data-journaling 3340 * filesystem and enables swap, then they may get a nasty shock when the 3341 * data getting swapped to that swapfile suddenly gets overwritten by 3342 * the original zero's written out previously to the journal and 3343 * awaiting writeback in the kernel's buffer cache. 3344 * 3345 * So, if we see any bmap calls here on a modified, data-journaled file, 3346 * take extra steps to flush any blocks which might be in the cache. 3347 */ 3348 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3349 { 3350 struct inode *inode = mapping->host; 3351 sector_t ret = 0; 3352 3353 inode_lock_shared(inode); 3354 /* 3355 * We can get here for an inline file via the FIBMAP ioctl 3356 */ 3357 if (ext4_has_inline_data(inode)) 3358 goto out; 3359 3360 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3361 (test_opt(inode->i_sb, DELALLOC) || 3362 ext4_should_journal_data(inode))) { 3363 /* 3364 * With delalloc or journalled data we want to sync the file so 3365 * that we can make sure we allocate blocks for file and data 3366 * is in place for the user to see it 3367 */ 3368 filemap_write_and_wait(mapping); 3369 } 3370 3371 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3372 3373 out: 3374 inode_unlock_shared(inode); 3375 return ret; 3376 } 3377 3378 static int ext4_read_folio(struct file *file, struct folio *folio) 3379 { 3380 int ret = -EAGAIN; 3381 struct inode *inode = folio->mapping->host; 3382 3383 trace_ext4_read_folio(inode, folio); 3384 3385 if (ext4_has_inline_data(inode)) 3386 ret = ext4_readpage_inline(inode, folio); 3387 3388 if (ret == -EAGAIN) 3389 return ext4_mpage_readpages(inode, NULL, folio); 3390 3391 return ret; 3392 } 3393 3394 static void ext4_readahead(struct readahead_control *rac) 3395 { 3396 struct inode *inode = rac->mapping->host; 3397 3398 /* If the file has inline data, no need to do readahead. */ 3399 if (ext4_has_inline_data(inode)) 3400 return; 3401 3402 ext4_mpage_readpages(inode, rac, NULL); 3403 } 3404 3405 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3406 size_t length) 3407 { 3408 trace_ext4_invalidate_folio(folio, offset, length); 3409 3410 /* No journalling happens on data buffers when this function is used */ 3411 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3412 3413 block_invalidate_folio(folio, offset, length); 3414 } 3415 3416 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3417 size_t offset, size_t length) 3418 { 3419 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3420 3421 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3422 3423 /* 3424 * If it's a full truncate we just forget about the pending dirtying 3425 */ 3426 if (offset == 0 && length == folio_size(folio)) 3427 folio_clear_checked(folio); 3428 3429 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3430 } 3431 3432 /* Wrapper for aops... */ 3433 static void ext4_journalled_invalidate_folio(struct folio *folio, 3434 size_t offset, 3435 size_t length) 3436 { 3437 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3438 } 3439 3440 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3441 { 3442 struct inode *inode = folio->mapping->host; 3443 journal_t *journal = EXT4_JOURNAL(inode); 3444 3445 trace_ext4_release_folio(inode, folio); 3446 3447 /* Page has dirty journalled data -> cannot release */ 3448 if (folio_test_checked(folio)) 3449 return false; 3450 if (journal) 3451 return jbd2_journal_try_to_free_buffers(journal, folio); 3452 else 3453 return try_to_free_buffers(folio); 3454 } 3455 3456 static bool ext4_inode_datasync_dirty(struct inode *inode) 3457 { 3458 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3459 3460 if (journal) { 3461 if (jbd2_transaction_committed(journal, 3462 EXT4_I(inode)->i_datasync_tid)) 3463 return false; 3464 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3465 return !list_empty(&EXT4_I(inode)->i_fc_list); 3466 return true; 3467 } 3468 3469 /* Any metadata buffers to write? */ 3470 if (!list_empty(&inode->i_mapping->i_private_list)) 3471 return true; 3472 return inode_state_read_once(inode) & I_DIRTY_DATASYNC; 3473 } 3474 3475 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3476 struct ext4_map_blocks *map, loff_t offset, 3477 loff_t length, unsigned int flags) 3478 { 3479 u8 blkbits = inode->i_blkbits; 3480 3481 /* 3482 * Writes that span EOF might trigger an I/O size update on completion, 3483 * so consider them to be dirty for the purpose of O_DSYNC, even if 3484 * there is no other metadata changes being made or are pending. 3485 */ 3486 iomap->flags = 0; 3487 if (ext4_inode_datasync_dirty(inode) || 3488 offset + length > i_size_read(inode)) 3489 iomap->flags |= IOMAP_F_DIRTY; 3490 3491 if (map->m_flags & EXT4_MAP_NEW) 3492 iomap->flags |= IOMAP_F_NEW; 3493 3494 /* HW-offload atomics are always used */ 3495 if (flags & IOMAP_ATOMIC) 3496 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3497 3498 if (flags & IOMAP_DAX) 3499 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3500 else 3501 iomap->bdev = inode->i_sb->s_bdev; 3502 iomap->offset = (u64) map->m_lblk << blkbits; 3503 iomap->length = (u64) map->m_len << blkbits; 3504 3505 if ((map->m_flags & EXT4_MAP_MAPPED) && 3506 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3507 iomap->flags |= IOMAP_F_MERGED; 3508 3509 /* 3510 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3511 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3512 * set. In order for any allocated unwritten extents to be converted 3513 * into written extents correctly within the ->end_io() handler, we 3514 * need to ensure that the iomap->type is set appropriately. Hence, the 3515 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3516 * been set first. 3517 */ 3518 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3519 iomap->type = IOMAP_UNWRITTEN; 3520 iomap->addr = (u64) map->m_pblk << blkbits; 3521 if (flags & IOMAP_DAX) 3522 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3523 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3524 iomap->type = IOMAP_MAPPED; 3525 iomap->addr = (u64) map->m_pblk << blkbits; 3526 if (flags & IOMAP_DAX) 3527 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3528 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3529 iomap->type = IOMAP_DELALLOC; 3530 iomap->addr = IOMAP_NULL_ADDR; 3531 } else { 3532 iomap->type = IOMAP_HOLE; 3533 iomap->addr = IOMAP_NULL_ADDR; 3534 } 3535 } 3536 3537 static int ext4_map_blocks_atomic_write_slow(handle_t *handle, 3538 struct inode *inode, struct ext4_map_blocks *map) 3539 { 3540 ext4_lblk_t m_lblk = map->m_lblk; 3541 unsigned int m_len = map->m_len; 3542 unsigned int mapped_len = 0, m_flags = 0; 3543 ext4_fsblk_t next_pblk; 3544 bool check_next_pblk = false; 3545 int ret = 0; 3546 3547 WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb)); 3548 3549 /* 3550 * This is a slow path in case of mixed mapping. We use 3551 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single 3552 * contiguous mapped mapping. This will ensure any unwritten or hole 3553 * regions within the requested range is zeroed out and we return 3554 * a single contiguous mapped extent. 3555 */ 3556 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3557 3558 do { 3559 ret = ext4_map_blocks(handle, inode, map, m_flags); 3560 if (ret < 0 && ret != -ENOSPC) 3561 goto out_err; 3562 /* 3563 * This should never happen, but let's return an error code to 3564 * avoid an infinite loop in here. 3565 */ 3566 if (ret == 0) { 3567 ret = -EFSCORRUPTED; 3568 ext4_warning_inode(inode, 3569 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d", 3570 m_flags, ret); 3571 goto out_err; 3572 } 3573 /* 3574 * With bigalloc we should never get ENOSPC nor discontiguous 3575 * physical extents. 3576 */ 3577 if ((check_next_pblk && next_pblk != map->m_pblk) || 3578 ret == -ENOSPC) { 3579 ext4_warning_inode(inode, 3580 "Non-contiguous allocation detected: expected %llu, got %llu, " 3581 "or ext4_map_blocks() returned out of space ret: %d", 3582 next_pblk, map->m_pblk, ret); 3583 ret = -EFSCORRUPTED; 3584 goto out_err; 3585 } 3586 next_pblk = map->m_pblk + map->m_len; 3587 check_next_pblk = true; 3588 3589 mapped_len += map->m_len; 3590 map->m_lblk += map->m_len; 3591 map->m_len = m_len - mapped_len; 3592 } while (mapped_len < m_len); 3593 3594 /* 3595 * We might have done some work in above loop, so we need to query the 3596 * start of the physical extent, based on the origin m_lblk and m_len. 3597 * Let's also ensure we were able to allocate the required range for 3598 * mixed mapping case. 3599 */ 3600 map->m_lblk = m_lblk; 3601 map->m_len = m_len; 3602 map->m_flags = 0; 3603 3604 ret = ext4_map_blocks(handle, inode, map, 3605 EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF); 3606 if (ret != m_len) { 3607 ext4_warning_inode(inode, 3608 "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n", 3609 m_lblk, m_len, ret); 3610 ret = -EINVAL; 3611 } 3612 return ret; 3613 3614 out_err: 3615 /* reset map before returning an error */ 3616 map->m_lblk = m_lblk; 3617 map->m_len = m_len; 3618 map->m_flags = 0; 3619 return ret; 3620 } 3621 3622 /* 3623 * ext4_map_blocks_atomic: Helper routine to ensure the entire requested 3624 * range in @map [lblk, lblk + len) is one single contiguous extent with no 3625 * mixed mappings. 3626 * 3627 * We first use m_flags passed to us by our caller (ext4_iomap_alloc()). 3628 * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying 3629 * physical extent for the requested range does not have a single contiguous 3630 * mapping type i.e. (Hole, Mapped, or Unwritten) throughout. 3631 * In that case we will loop over the requested range to allocate and zero out 3632 * the unwritten / holes in between, to get a single mapped extent from 3633 * [m_lblk, m_lblk + m_len). Note that this is only possible because we know 3634 * this can be called only with bigalloc enabled filesystem where the underlying 3635 * cluster is already allocated. This avoids allocating discontiguous extents 3636 * in the slow path due to multiple calls to ext4_map_blocks(). 3637 * The slow path is mostly non-performance critical path, so it should be ok to 3638 * loop using ext4_map_blocks() with appropriate flags to allocate & zero the 3639 * underlying short holes/unwritten extents within the requested range. 3640 */ 3641 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode, 3642 struct ext4_map_blocks *map, int m_flags, 3643 bool *force_commit) 3644 { 3645 ext4_lblk_t m_lblk = map->m_lblk; 3646 unsigned int m_len = map->m_len; 3647 int ret = 0; 3648 3649 WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb)); 3650 3651 ret = ext4_map_blocks(handle, inode, map, m_flags); 3652 if (ret < 0 || ret == m_len) 3653 goto out; 3654 /* 3655 * This is a mixed mapping case where we were not able to allocate 3656 * a single contiguous extent. In that case let's reset requested 3657 * mapping and call the slow path. 3658 */ 3659 map->m_lblk = m_lblk; 3660 map->m_len = m_len; 3661 map->m_flags = 0; 3662 3663 /* 3664 * slow path means we have mixed mapping, that means we will need 3665 * to force txn commit. 3666 */ 3667 *force_commit = true; 3668 return ext4_map_blocks_atomic_write_slow(handle, inode, map); 3669 out: 3670 return ret; 3671 } 3672 3673 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3674 unsigned int flags) 3675 { 3676 handle_t *handle; 3677 u8 blkbits = inode->i_blkbits; 3678 int ret, dio_credits, m_flags = 0, retries = 0; 3679 bool force_commit = false; 3680 3681 /* 3682 * Trim the mapping request to the maximum value that we can map at 3683 * once for direct I/O. 3684 */ 3685 if (map->m_len > DIO_MAX_BLOCKS) 3686 map->m_len = DIO_MAX_BLOCKS; 3687 3688 /* 3689 * journal credits estimation for atomic writes. We call 3690 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes, 3691 * then let's assume the no. of pextents required can be m_len i.e. 3692 * every alternate block can be unwritten and hole. 3693 */ 3694 if (flags & IOMAP_ATOMIC) { 3695 unsigned int orig_mlen = map->m_len; 3696 3697 ret = ext4_map_blocks(NULL, inode, map, 0); 3698 if (ret < 0) 3699 return ret; 3700 if (map->m_len < orig_mlen) { 3701 map->m_len = orig_mlen; 3702 dio_credits = ext4_meta_trans_blocks(inode, orig_mlen, 3703 map->m_len); 3704 } else { 3705 dio_credits = ext4_chunk_trans_blocks(inode, 3706 map->m_len); 3707 } 3708 } else { 3709 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3710 } 3711 3712 retry: 3713 /* 3714 * Either we allocate blocks and then don't get an unwritten extent, so 3715 * in that case we have reserved enough credits. Or, the blocks are 3716 * already allocated and unwritten. In that case, the extent conversion 3717 * fits into the credits as well. 3718 */ 3719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3720 if (IS_ERR(handle)) 3721 return PTR_ERR(handle); 3722 3723 /* 3724 * DAX and direct I/O are the only two operations that are currently 3725 * supported with IOMAP_WRITE. 3726 */ 3727 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3728 if (flags & IOMAP_DAX) 3729 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3730 /* 3731 * We use i_size instead of i_disksize here because delalloc writeback 3732 * can complete at any point during the I/O and subsequently push the 3733 * i_disksize out to i_size. This could be beyond where direct I/O is 3734 * happening and thus expose allocated blocks to direct I/O reads. 3735 */ 3736 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3737 m_flags = EXT4_GET_BLOCKS_CREATE; 3738 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3739 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3740 3741 if (flags & IOMAP_ATOMIC) 3742 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags, 3743 &force_commit); 3744 else 3745 ret = ext4_map_blocks(handle, inode, map, m_flags); 3746 3747 /* 3748 * We cannot fill holes in indirect tree based inodes as that could 3749 * expose stale data in the case of a crash. Use the magic error code 3750 * to fallback to buffered I/O. 3751 */ 3752 if (!m_flags && !ret) 3753 ret = -ENOTBLK; 3754 3755 ext4_journal_stop(handle); 3756 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3757 goto retry; 3758 3759 /* 3760 * Force commit the current transaction if the allocation spans a mixed 3761 * mapping range. This ensures any pending metadata updates (like 3762 * unwritten to written extents conversion) in this range are in 3763 * consistent state with the file data blocks, before performing the 3764 * actual write I/O. If the commit fails, the whole I/O must be aborted 3765 * to prevent any possible torn writes. 3766 */ 3767 if (ret > 0 && force_commit) { 3768 int ret2; 3769 3770 ret2 = ext4_force_commit(inode->i_sb); 3771 if (ret2) 3772 return ret2; 3773 } 3774 3775 return ret; 3776 } 3777 3778 3779 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3780 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3781 { 3782 int ret; 3783 struct ext4_map_blocks map; 3784 u8 blkbits = inode->i_blkbits; 3785 unsigned int orig_mlen; 3786 3787 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3788 return -EINVAL; 3789 3790 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3791 return -ERANGE; 3792 3793 /* 3794 * Calculate the first and last logical blocks respectively. 3795 */ 3796 map.m_lblk = offset >> blkbits; 3797 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3798 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3799 orig_mlen = map.m_len; 3800 3801 if (flags & IOMAP_WRITE) { 3802 /* 3803 * We check here if the blocks are already allocated, then we 3804 * don't need to start a journal txn and we can directly return 3805 * the mapping information. This could boost performance 3806 * especially in multi-threaded overwrite requests. 3807 */ 3808 if (offset + length <= i_size_read(inode)) { 3809 ret = ext4_map_blocks(NULL, inode, &map, 0); 3810 /* 3811 * For atomic writes the entire requested length should 3812 * be mapped. 3813 */ 3814 if (map.m_flags & EXT4_MAP_MAPPED) { 3815 if ((!(flags & IOMAP_ATOMIC) && ret > 0) || 3816 (flags & IOMAP_ATOMIC && ret >= orig_mlen)) 3817 goto out; 3818 } 3819 map.m_len = orig_mlen; 3820 } 3821 ret = ext4_iomap_alloc(inode, &map, flags); 3822 } else { 3823 /* 3824 * This can be called for overwrites path from 3825 * ext4_iomap_overwrite_begin(). 3826 */ 3827 ret = ext4_map_blocks(NULL, inode, &map, 0); 3828 } 3829 3830 if (ret < 0) 3831 return ret; 3832 out: 3833 /* 3834 * When inline encryption is enabled, sometimes I/O to an encrypted file 3835 * has to be broken up to guarantee DUN contiguity. Handle this by 3836 * limiting the length of the mapping returned. 3837 */ 3838 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3839 3840 /* 3841 * Before returning to iomap, let's ensure the allocated mapping 3842 * covers the entire requested length for atomic writes. 3843 */ 3844 if (flags & IOMAP_ATOMIC) { 3845 if (map.m_len < (length >> blkbits)) { 3846 WARN_ON_ONCE(1); 3847 return -EINVAL; 3848 } 3849 } 3850 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3851 3852 return 0; 3853 } 3854 3855 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3856 loff_t length, unsigned flags, struct iomap *iomap, 3857 struct iomap *srcmap) 3858 { 3859 int ret; 3860 3861 /* 3862 * Even for writes we don't need to allocate blocks, so just pretend 3863 * we are reading to save overhead of starting a transaction. 3864 */ 3865 flags &= ~IOMAP_WRITE; 3866 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3867 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3868 return ret; 3869 } 3870 3871 const struct iomap_ops ext4_iomap_ops = { 3872 .iomap_begin = ext4_iomap_begin, 3873 }; 3874 3875 const struct iomap_ops ext4_iomap_overwrite_ops = { 3876 .iomap_begin = ext4_iomap_overwrite_begin, 3877 }; 3878 3879 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3880 loff_t length, unsigned int flags, 3881 struct iomap *iomap, struct iomap *srcmap) 3882 { 3883 int ret; 3884 struct ext4_map_blocks map; 3885 u8 blkbits = inode->i_blkbits; 3886 3887 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3888 return -EINVAL; 3889 3890 if (ext4_has_inline_data(inode)) { 3891 ret = ext4_inline_data_iomap(inode, iomap); 3892 if (ret != -EAGAIN) { 3893 if (ret == 0 && offset >= iomap->length) 3894 ret = -ENOENT; 3895 return ret; 3896 } 3897 } 3898 3899 /* 3900 * Calculate the first and last logical block respectively. 3901 */ 3902 map.m_lblk = offset >> blkbits; 3903 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3904 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3905 3906 /* 3907 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3908 * So handle it here itself instead of querying ext4_map_blocks(). 3909 * Since ext4_map_blocks() will warn about it and will return 3910 * -EIO error. 3911 */ 3912 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3913 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3914 3915 if (offset >= sbi->s_bitmap_maxbytes) { 3916 map.m_flags = 0; 3917 goto set_iomap; 3918 } 3919 } 3920 3921 ret = ext4_map_blocks(NULL, inode, &map, 0); 3922 if (ret < 0) 3923 return ret; 3924 set_iomap: 3925 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3926 3927 return 0; 3928 } 3929 3930 const struct iomap_ops ext4_iomap_report_ops = { 3931 .iomap_begin = ext4_iomap_begin_report, 3932 }; 3933 3934 /* 3935 * For data=journal mode, folio should be marked dirty only when it was 3936 * writeably mapped. When that happens, it was already attached to the 3937 * transaction and marked as jbddirty (we take care of this in 3938 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3939 * so we should have nothing to do here, except for the case when someone 3940 * had the page pinned and dirtied the page through this pin (e.g. by doing 3941 * direct IO to it). In that case we'd need to attach buffers here to the 3942 * transaction but we cannot due to lock ordering. We cannot just dirty the 3943 * folio and leave attached buffers clean, because the buffers' dirty state is 3944 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3945 * the journalling code will explode. So what we do is to mark the folio 3946 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3947 * to the transaction appropriately. 3948 */ 3949 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3950 struct folio *folio) 3951 { 3952 WARN_ON_ONCE(!folio_buffers(folio)); 3953 if (folio_maybe_dma_pinned(folio)) 3954 folio_set_checked(folio); 3955 return filemap_dirty_folio(mapping, folio); 3956 } 3957 3958 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3959 { 3960 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3961 WARN_ON_ONCE(!folio_buffers(folio)); 3962 return block_dirty_folio(mapping, folio); 3963 } 3964 3965 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3966 struct file *file, sector_t *span) 3967 { 3968 return iomap_swapfile_activate(sis, file, span, 3969 &ext4_iomap_report_ops); 3970 } 3971 3972 static const struct address_space_operations ext4_aops = { 3973 .read_folio = ext4_read_folio, 3974 .readahead = ext4_readahead, 3975 .writepages = ext4_writepages, 3976 .write_begin = ext4_write_begin, 3977 .write_end = ext4_write_end, 3978 .dirty_folio = ext4_dirty_folio, 3979 .bmap = ext4_bmap, 3980 .invalidate_folio = ext4_invalidate_folio, 3981 .release_folio = ext4_release_folio, 3982 .migrate_folio = buffer_migrate_folio, 3983 .is_partially_uptodate = block_is_partially_uptodate, 3984 .error_remove_folio = generic_error_remove_folio, 3985 .swap_activate = ext4_iomap_swap_activate, 3986 }; 3987 3988 static const struct address_space_operations ext4_journalled_aops = { 3989 .read_folio = ext4_read_folio, 3990 .readahead = ext4_readahead, 3991 .writepages = ext4_writepages, 3992 .write_begin = ext4_write_begin, 3993 .write_end = ext4_journalled_write_end, 3994 .dirty_folio = ext4_journalled_dirty_folio, 3995 .bmap = ext4_bmap, 3996 .invalidate_folio = ext4_journalled_invalidate_folio, 3997 .release_folio = ext4_release_folio, 3998 .migrate_folio = buffer_migrate_folio_norefs, 3999 .is_partially_uptodate = block_is_partially_uptodate, 4000 .error_remove_folio = generic_error_remove_folio, 4001 .swap_activate = ext4_iomap_swap_activate, 4002 }; 4003 4004 static const struct address_space_operations ext4_da_aops = { 4005 .read_folio = ext4_read_folio, 4006 .readahead = ext4_readahead, 4007 .writepages = ext4_writepages, 4008 .write_begin = ext4_da_write_begin, 4009 .write_end = ext4_da_write_end, 4010 .dirty_folio = ext4_dirty_folio, 4011 .bmap = ext4_bmap, 4012 .invalidate_folio = ext4_invalidate_folio, 4013 .release_folio = ext4_release_folio, 4014 .migrate_folio = buffer_migrate_folio, 4015 .is_partially_uptodate = block_is_partially_uptodate, 4016 .error_remove_folio = generic_error_remove_folio, 4017 .swap_activate = ext4_iomap_swap_activate, 4018 }; 4019 4020 static const struct address_space_operations ext4_dax_aops = { 4021 .writepages = ext4_dax_writepages, 4022 .dirty_folio = noop_dirty_folio, 4023 .bmap = ext4_bmap, 4024 .swap_activate = ext4_iomap_swap_activate, 4025 }; 4026 4027 void ext4_set_aops(struct inode *inode) 4028 { 4029 switch (ext4_inode_journal_mode(inode)) { 4030 case EXT4_INODE_ORDERED_DATA_MODE: 4031 case EXT4_INODE_WRITEBACK_DATA_MODE: 4032 break; 4033 case EXT4_INODE_JOURNAL_DATA_MODE: 4034 inode->i_mapping->a_ops = &ext4_journalled_aops; 4035 return; 4036 default: 4037 BUG(); 4038 } 4039 if (IS_DAX(inode)) 4040 inode->i_mapping->a_ops = &ext4_dax_aops; 4041 else if (test_opt(inode->i_sb, DELALLOC)) 4042 inode->i_mapping->a_ops = &ext4_da_aops; 4043 else 4044 inode->i_mapping->a_ops = &ext4_aops; 4045 } 4046 4047 /* 4048 * Here we can't skip an unwritten buffer even though it usually reads zero 4049 * because it might have data in pagecache (eg, if called from ext4_zero_range, 4050 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 4051 * racing writeback can come later and flush the stale pagecache to disk. 4052 */ 4053 static int __ext4_block_zero_page_range(handle_t *handle, 4054 struct address_space *mapping, loff_t from, loff_t length) 4055 { 4056 unsigned int offset, blocksize, pos; 4057 ext4_lblk_t iblock; 4058 struct inode *inode = mapping->host; 4059 struct buffer_head *bh; 4060 struct folio *folio; 4061 int err = 0; 4062 4063 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 4064 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 4065 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4066 if (IS_ERR(folio)) 4067 return PTR_ERR(folio); 4068 4069 blocksize = inode->i_sb->s_blocksize; 4070 4071 iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4072 4073 bh = folio_buffers(folio); 4074 if (!bh) 4075 bh = create_empty_buffers(folio, blocksize, 0); 4076 4077 /* Find the buffer that contains "offset" */ 4078 offset = offset_in_folio(folio, from); 4079 pos = blocksize; 4080 while (offset >= pos) { 4081 bh = bh->b_this_page; 4082 iblock++; 4083 pos += blocksize; 4084 } 4085 if (buffer_freed(bh)) { 4086 BUFFER_TRACE(bh, "freed: skip"); 4087 goto unlock; 4088 } 4089 if (!buffer_mapped(bh)) { 4090 BUFFER_TRACE(bh, "unmapped"); 4091 ext4_get_block(inode, iblock, bh, 0); 4092 /* unmapped? It's a hole - nothing to do */ 4093 if (!buffer_mapped(bh)) { 4094 BUFFER_TRACE(bh, "still unmapped"); 4095 goto unlock; 4096 } 4097 } 4098 4099 /* Ok, it's mapped. Make sure it's up-to-date */ 4100 if (folio_test_uptodate(folio)) 4101 set_buffer_uptodate(bh); 4102 4103 if (!buffer_uptodate(bh)) { 4104 err = ext4_read_bh_lock(bh, 0, true); 4105 if (err) 4106 goto unlock; 4107 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 4108 /* We expect the key to be set. */ 4109 BUG_ON(!fscrypt_has_encryption_key(inode)); 4110 err = fscrypt_decrypt_pagecache_blocks(folio, 4111 blocksize, 4112 bh_offset(bh)); 4113 if (err) { 4114 clear_buffer_uptodate(bh); 4115 goto unlock; 4116 } 4117 } 4118 } 4119 if (ext4_should_journal_data(inode)) { 4120 BUFFER_TRACE(bh, "get write access"); 4121 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 4122 EXT4_JTR_NONE); 4123 if (err) 4124 goto unlock; 4125 } 4126 folio_zero_range(folio, offset, length); 4127 BUFFER_TRACE(bh, "zeroed end of block"); 4128 4129 if (ext4_should_journal_data(inode)) { 4130 err = ext4_dirty_journalled_data(handle, bh); 4131 } else { 4132 err = 0; 4133 mark_buffer_dirty(bh); 4134 if (ext4_should_order_data(inode)) 4135 err = ext4_jbd2_inode_add_write(handle, inode, from, 4136 length); 4137 } 4138 4139 unlock: 4140 folio_unlock(folio); 4141 folio_put(folio); 4142 return err; 4143 } 4144 4145 /* 4146 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4147 * starting from file offset 'from'. The range to be zero'd must 4148 * be contained with in one block. If the specified range exceeds 4149 * the end of the block it will be shortened to end of the block 4150 * that corresponds to 'from' 4151 */ 4152 static int ext4_block_zero_page_range(handle_t *handle, 4153 struct address_space *mapping, loff_t from, loff_t length) 4154 { 4155 struct inode *inode = mapping->host; 4156 unsigned offset = from & (PAGE_SIZE-1); 4157 unsigned blocksize = inode->i_sb->s_blocksize; 4158 unsigned max = blocksize - (offset & (blocksize - 1)); 4159 4160 /* 4161 * correct length if it does not fall between 4162 * 'from' and the end of the block 4163 */ 4164 if (length > max || length < 0) 4165 length = max; 4166 4167 if (IS_DAX(inode)) { 4168 return dax_zero_range(inode, from, length, NULL, 4169 &ext4_iomap_ops); 4170 } 4171 return __ext4_block_zero_page_range(handle, mapping, from, length); 4172 } 4173 4174 /* 4175 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4176 * up to the end of the block which corresponds to `from'. 4177 * This required during truncate. We need to physically zero the tail end 4178 * of that block so it doesn't yield old data if the file is later grown. 4179 */ 4180 static int ext4_block_truncate_page(handle_t *handle, 4181 struct address_space *mapping, loff_t from) 4182 { 4183 unsigned offset = from & (PAGE_SIZE-1); 4184 unsigned length; 4185 unsigned blocksize; 4186 struct inode *inode = mapping->host; 4187 4188 /* If we are processing an encrypted inode during orphan list handling */ 4189 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4190 return 0; 4191 4192 blocksize = inode->i_sb->s_blocksize; 4193 length = blocksize - (offset & (blocksize - 1)); 4194 4195 return ext4_block_zero_page_range(handle, mapping, from, length); 4196 } 4197 4198 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4199 loff_t lstart, loff_t length) 4200 { 4201 struct super_block *sb = inode->i_sb; 4202 struct address_space *mapping = inode->i_mapping; 4203 unsigned partial_start, partial_end; 4204 ext4_fsblk_t start, end; 4205 loff_t byte_end = (lstart + length - 1); 4206 int err = 0; 4207 4208 partial_start = lstart & (sb->s_blocksize - 1); 4209 partial_end = byte_end & (sb->s_blocksize - 1); 4210 4211 start = lstart >> sb->s_blocksize_bits; 4212 end = byte_end >> sb->s_blocksize_bits; 4213 4214 /* Handle partial zero within the single block */ 4215 if (start == end && 4216 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4217 err = ext4_block_zero_page_range(handle, mapping, 4218 lstart, length); 4219 return err; 4220 } 4221 /* Handle partial zero out on the start of the range */ 4222 if (partial_start) { 4223 err = ext4_block_zero_page_range(handle, mapping, 4224 lstart, sb->s_blocksize); 4225 if (err) 4226 return err; 4227 } 4228 /* Handle partial zero out on the end of the range */ 4229 if (partial_end != sb->s_blocksize - 1) 4230 err = ext4_block_zero_page_range(handle, mapping, 4231 byte_end - partial_end, 4232 partial_end + 1); 4233 return err; 4234 } 4235 4236 int ext4_can_truncate(struct inode *inode) 4237 { 4238 if (S_ISREG(inode->i_mode)) 4239 return 1; 4240 if (S_ISDIR(inode->i_mode)) 4241 return 1; 4242 if (S_ISLNK(inode->i_mode)) 4243 return !ext4_inode_is_fast_symlink(inode); 4244 return 0; 4245 } 4246 4247 /* 4248 * We have to make sure i_disksize gets properly updated before we truncate 4249 * page cache due to hole punching or zero range. Otherwise i_disksize update 4250 * can get lost as it may have been postponed to submission of writeback but 4251 * that will never happen if we remove the folio containing i_size from the 4252 * page cache. Also if we punch hole within i_size but above i_disksize, 4253 * following ext4_page_mkwrite() may mistakenly allocate written blocks over 4254 * the hole and thus introduce allocated blocks beyond i_disksize which is 4255 * not allowed (e2fsck would complain in case of crash). 4256 */ 4257 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4258 loff_t len) 4259 { 4260 handle_t *handle; 4261 int ret; 4262 4263 loff_t size = i_size_read(inode); 4264 4265 WARN_ON(!inode_is_locked(inode)); 4266 if (offset > size) 4267 return 0; 4268 4269 if (offset + len < size) 4270 size = offset + len; 4271 if (EXT4_I(inode)->i_disksize >= size) 4272 return 0; 4273 4274 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4275 if (IS_ERR(handle)) 4276 return PTR_ERR(handle); 4277 ext4_update_i_disksize(inode, size); 4278 ret = ext4_mark_inode_dirty(handle, inode); 4279 ext4_journal_stop(handle); 4280 4281 return ret; 4282 } 4283 4284 static inline void ext4_truncate_folio(struct inode *inode, 4285 loff_t start, loff_t end) 4286 { 4287 unsigned long blocksize = i_blocksize(inode); 4288 struct folio *folio; 4289 4290 /* Nothing to be done if no complete block needs to be truncated. */ 4291 if (round_up(start, blocksize) >= round_down(end, blocksize)) 4292 return; 4293 4294 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 4295 if (IS_ERR(folio)) 4296 return; 4297 4298 if (folio_mkclean(folio)) 4299 folio_mark_dirty(folio); 4300 folio_unlock(folio); 4301 folio_put(folio); 4302 } 4303 4304 int ext4_truncate_page_cache_block_range(struct inode *inode, 4305 loff_t start, loff_t end) 4306 { 4307 unsigned long blocksize = i_blocksize(inode); 4308 int ret; 4309 4310 /* 4311 * For journalled data we need to write (and checkpoint) pages 4312 * before discarding page cache to avoid inconsitent data on disk 4313 * in case of crash before freeing or unwritten converting trans 4314 * is committed. 4315 */ 4316 if (ext4_should_journal_data(inode)) { 4317 ret = filemap_write_and_wait_range(inode->i_mapping, start, 4318 end - 1); 4319 if (ret) 4320 return ret; 4321 goto truncate_pagecache; 4322 } 4323 4324 /* 4325 * If the block size is less than the page size, the file's mapped 4326 * blocks within one page could be freed or converted to unwritten. 4327 * So it's necessary to remove writable userspace mappings, and then 4328 * ext4_page_mkwrite() can be called during subsequent write access 4329 * to these partial folios. 4330 */ 4331 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 4332 blocksize < PAGE_SIZE && start < inode->i_size) { 4333 loff_t page_boundary = round_up(start, PAGE_SIZE); 4334 4335 ext4_truncate_folio(inode, start, min(page_boundary, end)); 4336 if (end > page_boundary) 4337 ext4_truncate_folio(inode, 4338 round_down(end, PAGE_SIZE), end); 4339 } 4340 4341 truncate_pagecache: 4342 truncate_pagecache_range(inode, start, end - 1); 4343 return 0; 4344 } 4345 4346 static void ext4_wait_dax_page(struct inode *inode) 4347 { 4348 filemap_invalidate_unlock(inode->i_mapping); 4349 schedule(); 4350 filemap_invalidate_lock(inode->i_mapping); 4351 } 4352 4353 int ext4_break_layouts(struct inode *inode) 4354 { 4355 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4356 return -EINVAL; 4357 4358 return dax_break_layout_inode(inode, ext4_wait_dax_page); 4359 } 4360 4361 /* 4362 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4363 * associated with the given offset and length 4364 * 4365 * @inode: File inode 4366 * @offset: The offset where the hole will begin 4367 * @len: The length of the hole 4368 * 4369 * Returns: 0 on success or negative on failure 4370 */ 4371 4372 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4373 { 4374 struct inode *inode = file_inode(file); 4375 struct super_block *sb = inode->i_sb; 4376 ext4_lblk_t start_lblk, end_lblk; 4377 loff_t max_end = sb->s_maxbytes; 4378 loff_t end = offset + length; 4379 handle_t *handle; 4380 unsigned int credits; 4381 int ret; 4382 4383 trace_ext4_punch_hole(inode, offset, length, 0); 4384 WARN_ON_ONCE(!inode_is_locked(inode)); 4385 4386 /* 4387 * For indirect-block based inodes, make sure that the hole within 4388 * one block before last range. 4389 */ 4390 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4391 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4392 4393 /* No need to punch hole beyond i_size */ 4394 if (offset >= inode->i_size || offset >= max_end) 4395 return 0; 4396 4397 /* 4398 * If the hole extends beyond i_size, set the hole to end after 4399 * the page that contains i_size. 4400 */ 4401 if (end > inode->i_size) 4402 end = round_up(inode->i_size, PAGE_SIZE); 4403 if (end > max_end) 4404 end = max_end; 4405 length = end - offset; 4406 4407 /* 4408 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4409 * block. 4410 */ 4411 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4412 ret = ext4_inode_attach_jinode(inode); 4413 if (ret < 0) 4414 return ret; 4415 } 4416 4417 4418 ret = ext4_update_disksize_before_punch(inode, offset, length); 4419 if (ret) 4420 return ret; 4421 4422 /* Now release the pages and zero block aligned part of pages*/ 4423 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4424 if (ret) 4425 return ret; 4426 4427 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4428 credits = ext4_chunk_trans_extent(inode, 2); 4429 else 4430 credits = ext4_blocks_for_truncate(inode); 4431 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4432 if (IS_ERR(handle)) { 4433 ret = PTR_ERR(handle); 4434 ext4_std_error(sb, ret); 4435 return ret; 4436 } 4437 4438 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4439 if (ret) 4440 goto out_handle; 4441 4442 /* If there are blocks to remove, do it */ 4443 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4444 end_lblk = end >> inode->i_blkbits; 4445 4446 if (end_lblk > start_lblk) { 4447 ext4_lblk_t hole_len = end_lblk - start_lblk; 4448 4449 ext4_fc_track_inode(handle, inode); 4450 ext4_check_map_extents_env(inode); 4451 down_write(&EXT4_I(inode)->i_data_sem); 4452 ext4_discard_preallocations(inode); 4453 4454 ext4_es_remove_extent(inode, start_lblk, hole_len); 4455 4456 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4457 ret = ext4_ext_remove_space(inode, start_lblk, 4458 end_lblk - 1); 4459 else 4460 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4461 end_lblk); 4462 if (ret) { 4463 up_write(&EXT4_I(inode)->i_data_sem); 4464 goto out_handle; 4465 } 4466 4467 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4468 EXTENT_STATUS_HOLE, 0); 4469 up_write(&EXT4_I(inode)->i_data_sem); 4470 } 4471 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4472 4473 ret = ext4_mark_inode_dirty(handle, inode); 4474 if (unlikely(ret)) 4475 goto out_handle; 4476 4477 ext4_update_inode_fsync_trans(handle, inode, 1); 4478 if (IS_SYNC(inode)) 4479 ext4_handle_sync(handle); 4480 out_handle: 4481 ext4_journal_stop(handle); 4482 return ret; 4483 } 4484 4485 int ext4_inode_attach_jinode(struct inode *inode) 4486 { 4487 struct ext4_inode_info *ei = EXT4_I(inode); 4488 struct jbd2_inode *jinode; 4489 4490 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4491 return 0; 4492 4493 jinode = jbd2_alloc_inode(GFP_KERNEL); 4494 spin_lock(&inode->i_lock); 4495 if (!ei->jinode) { 4496 if (!jinode) { 4497 spin_unlock(&inode->i_lock); 4498 return -ENOMEM; 4499 } 4500 ei->jinode = jinode; 4501 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4502 jinode = NULL; 4503 } 4504 spin_unlock(&inode->i_lock); 4505 if (unlikely(jinode != NULL)) 4506 jbd2_free_inode(jinode); 4507 return 0; 4508 } 4509 4510 /* 4511 * ext4_truncate() 4512 * 4513 * We block out ext4_get_block() block instantiations across the entire 4514 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4515 * simultaneously on behalf of the same inode. 4516 * 4517 * As we work through the truncate and commit bits of it to the journal there 4518 * is one core, guiding principle: the file's tree must always be consistent on 4519 * disk. We must be able to restart the truncate after a crash. 4520 * 4521 * The file's tree may be transiently inconsistent in memory (although it 4522 * probably isn't), but whenever we close off and commit a journal transaction, 4523 * the contents of (the filesystem + the journal) must be consistent and 4524 * restartable. It's pretty simple, really: bottom up, right to left (although 4525 * left-to-right works OK too). 4526 * 4527 * Note that at recovery time, journal replay occurs *before* the restart of 4528 * truncate against the orphan inode list. 4529 * 4530 * The committed inode has the new, desired i_size (which is the same as 4531 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4532 * that this inode's truncate did not complete and it will again call 4533 * ext4_truncate() to have another go. So there will be instantiated blocks 4534 * to the right of the truncation point in a crashed ext4 filesystem. But 4535 * that's fine - as long as they are linked from the inode, the post-crash 4536 * ext4_truncate() run will find them and release them. 4537 */ 4538 int ext4_truncate(struct inode *inode) 4539 { 4540 struct ext4_inode_info *ei = EXT4_I(inode); 4541 unsigned int credits; 4542 int err = 0, err2; 4543 handle_t *handle; 4544 struct address_space *mapping = inode->i_mapping; 4545 4546 /* 4547 * There is a possibility that we're either freeing the inode 4548 * or it's a completely new inode. In those cases we might not 4549 * have i_rwsem locked because it's not necessary. 4550 */ 4551 if (!(inode_state_read_once(inode) & (I_NEW | I_FREEING))) 4552 WARN_ON(!inode_is_locked(inode)); 4553 trace_ext4_truncate_enter(inode); 4554 4555 if (!ext4_can_truncate(inode)) 4556 goto out_trace; 4557 4558 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4559 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4560 4561 if (ext4_has_inline_data(inode)) { 4562 int has_inline = 1; 4563 4564 err = ext4_inline_data_truncate(inode, &has_inline); 4565 if (err || has_inline) 4566 goto out_trace; 4567 } 4568 4569 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4570 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4571 err = ext4_inode_attach_jinode(inode); 4572 if (err) 4573 goto out_trace; 4574 } 4575 4576 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4577 credits = ext4_chunk_trans_extent(inode, 1); 4578 else 4579 credits = ext4_blocks_for_truncate(inode); 4580 4581 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4582 if (IS_ERR(handle)) { 4583 err = PTR_ERR(handle); 4584 goto out_trace; 4585 } 4586 4587 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4588 ext4_block_truncate_page(handle, mapping, inode->i_size); 4589 4590 /* 4591 * We add the inode to the orphan list, so that if this 4592 * truncate spans multiple transactions, and we crash, we will 4593 * resume the truncate when the filesystem recovers. It also 4594 * marks the inode dirty, to catch the new size. 4595 * 4596 * Implication: the file must always be in a sane, consistent 4597 * truncatable state while each transaction commits. 4598 */ 4599 err = ext4_orphan_add(handle, inode); 4600 if (err) 4601 goto out_stop; 4602 4603 ext4_fc_track_inode(handle, inode); 4604 ext4_check_map_extents_env(inode); 4605 4606 down_write(&EXT4_I(inode)->i_data_sem); 4607 ext4_discard_preallocations(inode); 4608 4609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4610 err = ext4_ext_truncate(handle, inode); 4611 else 4612 ext4_ind_truncate(handle, inode); 4613 4614 up_write(&ei->i_data_sem); 4615 if (err) 4616 goto out_stop; 4617 4618 if (IS_SYNC(inode)) 4619 ext4_handle_sync(handle); 4620 4621 out_stop: 4622 /* 4623 * If this was a simple ftruncate() and the file will remain alive, 4624 * then we need to clear up the orphan record which we created above. 4625 * However, if this was a real unlink then we were called by 4626 * ext4_evict_inode(), and we allow that function to clean up the 4627 * orphan info for us. 4628 */ 4629 if (inode->i_nlink) 4630 ext4_orphan_del(handle, inode); 4631 4632 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4633 err2 = ext4_mark_inode_dirty(handle, inode); 4634 if (unlikely(err2 && !err)) 4635 err = err2; 4636 ext4_journal_stop(handle); 4637 4638 out_trace: 4639 trace_ext4_truncate_exit(inode); 4640 return err; 4641 } 4642 4643 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4644 { 4645 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4646 return inode_peek_iversion_raw(inode); 4647 else 4648 return inode_peek_iversion(inode); 4649 } 4650 4651 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4652 struct ext4_inode_info *ei) 4653 { 4654 struct inode *inode = &(ei->vfs_inode); 4655 u64 i_blocks = READ_ONCE(inode->i_blocks); 4656 struct super_block *sb = inode->i_sb; 4657 4658 if (i_blocks <= ~0U) { 4659 /* 4660 * i_blocks can be represented in a 32 bit variable 4661 * as multiple of 512 bytes 4662 */ 4663 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4664 raw_inode->i_blocks_high = 0; 4665 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4666 return 0; 4667 } 4668 4669 /* 4670 * This should never happen since sb->s_maxbytes should not have 4671 * allowed this, sb->s_maxbytes was set according to the huge_file 4672 * feature in ext4_fill_super(). 4673 */ 4674 if (!ext4_has_feature_huge_file(sb)) 4675 return -EFSCORRUPTED; 4676 4677 if (i_blocks <= 0xffffffffffffULL) { 4678 /* 4679 * i_blocks can be represented in a 48 bit variable 4680 * as multiple of 512 bytes 4681 */ 4682 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4683 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4684 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4685 } else { 4686 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4687 /* i_block is stored in file system block size */ 4688 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4689 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4690 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4691 } 4692 return 0; 4693 } 4694 4695 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4696 { 4697 struct ext4_inode_info *ei = EXT4_I(inode); 4698 uid_t i_uid; 4699 gid_t i_gid; 4700 projid_t i_projid; 4701 int block; 4702 int err; 4703 4704 err = ext4_inode_blocks_set(raw_inode, ei); 4705 4706 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4707 i_uid = i_uid_read(inode); 4708 i_gid = i_gid_read(inode); 4709 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4710 if (!(test_opt(inode->i_sb, NO_UID32))) { 4711 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4712 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4713 /* 4714 * Fix up interoperability with old kernels. Otherwise, 4715 * old inodes get re-used with the upper 16 bits of the 4716 * uid/gid intact. 4717 */ 4718 if (ei->i_dtime && !ext4_inode_orphan_tracked(inode)) { 4719 raw_inode->i_uid_high = 0; 4720 raw_inode->i_gid_high = 0; 4721 } else { 4722 raw_inode->i_uid_high = 4723 cpu_to_le16(high_16_bits(i_uid)); 4724 raw_inode->i_gid_high = 4725 cpu_to_le16(high_16_bits(i_gid)); 4726 } 4727 } else { 4728 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4729 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4730 raw_inode->i_uid_high = 0; 4731 raw_inode->i_gid_high = 0; 4732 } 4733 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4734 4735 EXT4_INODE_SET_CTIME(inode, raw_inode); 4736 EXT4_INODE_SET_MTIME(inode, raw_inode); 4737 EXT4_INODE_SET_ATIME(inode, raw_inode); 4738 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4739 4740 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4741 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4742 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4743 raw_inode->i_file_acl_high = 4744 cpu_to_le16(ei->i_file_acl >> 32); 4745 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4746 ext4_isize_set(raw_inode, ei->i_disksize); 4747 4748 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4749 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4750 if (old_valid_dev(inode->i_rdev)) { 4751 raw_inode->i_block[0] = 4752 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4753 raw_inode->i_block[1] = 0; 4754 } else { 4755 raw_inode->i_block[0] = 0; 4756 raw_inode->i_block[1] = 4757 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4758 raw_inode->i_block[2] = 0; 4759 } 4760 } else if (!ext4_has_inline_data(inode)) { 4761 for (block = 0; block < EXT4_N_BLOCKS; block++) 4762 raw_inode->i_block[block] = ei->i_data[block]; 4763 } 4764 4765 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4766 u64 ivers = ext4_inode_peek_iversion(inode); 4767 4768 raw_inode->i_disk_version = cpu_to_le32(ivers); 4769 if (ei->i_extra_isize) { 4770 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4771 raw_inode->i_version_hi = 4772 cpu_to_le32(ivers >> 32); 4773 raw_inode->i_extra_isize = 4774 cpu_to_le16(ei->i_extra_isize); 4775 } 4776 } 4777 4778 if (i_projid != EXT4_DEF_PROJID && 4779 !ext4_has_feature_project(inode->i_sb)) 4780 err = err ?: -EFSCORRUPTED; 4781 4782 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4783 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4784 raw_inode->i_projid = cpu_to_le32(i_projid); 4785 4786 ext4_inode_csum_set(inode, raw_inode, ei); 4787 return err; 4788 } 4789 4790 /* 4791 * ext4_get_inode_loc returns with an extra refcount against the inode's 4792 * underlying buffer_head on success. If we pass 'inode' and it does not 4793 * have in-inode xattr, we have all inode data in memory that is needed 4794 * to recreate the on-disk version of this inode. 4795 */ 4796 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4797 struct inode *inode, struct ext4_iloc *iloc, 4798 ext4_fsblk_t *ret_block) 4799 { 4800 struct ext4_group_desc *gdp; 4801 struct buffer_head *bh; 4802 ext4_fsblk_t block; 4803 struct blk_plug plug; 4804 int inodes_per_block, inode_offset; 4805 4806 iloc->bh = NULL; 4807 if (ino < EXT4_ROOT_INO || 4808 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4809 return -EFSCORRUPTED; 4810 4811 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4812 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4813 if (!gdp) 4814 return -EIO; 4815 4816 /* 4817 * Figure out the offset within the block group inode table 4818 */ 4819 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4820 inode_offset = ((ino - 1) % 4821 EXT4_INODES_PER_GROUP(sb)); 4822 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4823 4824 block = ext4_inode_table(sb, gdp); 4825 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4826 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4827 ext4_error(sb, "Invalid inode table block %llu in " 4828 "block_group %u", block, iloc->block_group); 4829 return -EFSCORRUPTED; 4830 } 4831 block += (inode_offset / inodes_per_block); 4832 4833 bh = sb_getblk(sb, block); 4834 if (unlikely(!bh)) 4835 return -ENOMEM; 4836 if (ext4_buffer_uptodate(bh)) 4837 goto has_buffer; 4838 4839 lock_buffer(bh); 4840 if (ext4_buffer_uptodate(bh)) { 4841 /* Someone brought it uptodate while we waited */ 4842 unlock_buffer(bh); 4843 goto has_buffer; 4844 } 4845 4846 /* 4847 * If we have all information of the inode in memory and this 4848 * is the only valid inode in the block, we need not read the 4849 * block. 4850 */ 4851 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4852 struct buffer_head *bitmap_bh; 4853 int i, start; 4854 4855 start = inode_offset & ~(inodes_per_block - 1); 4856 4857 /* Is the inode bitmap in cache? */ 4858 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4859 if (unlikely(!bitmap_bh)) 4860 goto make_io; 4861 4862 /* 4863 * If the inode bitmap isn't in cache then the 4864 * optimisation may end up performing two reads instead 4865 * of one, so skip it. 4866 */ 4867 if (!buffer_uptodate(bitmap_bh)) { 4868 brelse(bitmap_bh); 4869 goto make_io; 4870 } 4871 for (i = start; i < start + inodes_per_block; i++) { 4872 if (i == inode_offset) 4873 continue; 4874 if (ext4_test_bit(i, bitmap_bh->b_data)) 4875 break; 4876 } 4877 brelse(bitmap_bh); 4878 if (i == start + inodes_per_block) { 4879 struct ext4_inode *raw_inode = 4880 (struct ext4_inode *) (bh->b_data + iloc->offset); 4881 4882 /* all other inodes are free, so skip I/O */ 4883 memset(bh->b_data, 0, bh->b_size); 4884 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4885 ext4_fill_raw_inode(inode, raw_inode); 4886 set_buffer_uptodate(bh); 4887 unlock_buffer(bh); 4888 goto has_buffer; 4889 } 4890 } 4891 4892 make_io: 4893 /* 4894 * If we need to do any I/O, try to pre-readahead extra 4895 * blocks from the inode table. 4896 */ 4897 blk_start_plug(&plug); 4898 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4899 ext4_fsblk_t b, end, table; 4900 unsigned num; 4901 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4902 4903 table = ext4_inode_table(sb, gdp); 4904 /* s_inode_readahead_blks is always a power of 2 */ 4905 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4906 if (table > b) 4907 b = table; 4908 end = b + ra_blks; 4909 num = EXT4_INODES_PER_GROUP(sb); 4910 if (ext4_has_group_desc_csum(sb)) 4911 num -= ext4_itable_unused_count(sb, gdp); 4912 table += num / inodes_per_block; 4913 if (end > table) 4914 end = table; 4915 while (b <= end) 4916 ext4_sb_breadahead_unmovable(sb, b++); 4917 } 4918 4919 /* 4920 * There are other valid inodes in the buffer, this inode 4921 * has in-inode xattrs, or we don't have this inode in memory. 4922 * Read the block from disk. 4923 */ 4924 trace_ext4_load_inode(sb, ino); 4925 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4926 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4927 blk_finish_plug(&plug); 4928 wait_on_buffer(bh); 4929 if (!buffer_uptodate(bh)) { 4930 if (ret_block) 4931 *ret_block = block; 4932 brelse(bh); 4933 return -EIO; 4934 } 4935 has_buffer: 4936 iloc->bh = bh; 4937 return 0; 4938 } 4939 4940 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4941 struct ext4_iloc *iloc) 4942 { 4943 ext4_fsblk_t err_blk = 0; 4944 int ret; 4945 4946 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4947 &err_blk); 4948 4949 if (ret == -EIO) 4950 ext4_error_inode_block(inode, err_blk, EIO, 4951 "unable to read itable block"); 4952 4953 return ret; 4954 } 4955 4956 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4957 { 4958 ext4_fsblk_t err_blk = 0; 4959 int ret; 4960 4961 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4962 &err_blk); 4963 4964 if (ret == -EIO) 4965 ext4_error_inode_block(inode, err_blk, EIO, 4966 "unable to read itable block"); 4967 4968 return ret; 4969 } 4970 4971 4972 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4973 struct ext4_iloc *iloc) 4974 { 4975 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4976 } 4977 4978 static bool ext4_should_enable_dax(struct inode *inode) 4979 { 4980 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4981 4982 if (test_opt2(inode->i_sb, DAX_NEVER)) 4983 return false; 4984 if (!S_ISREG(inode->i_mode)) 4985 return false; 4986 if (ext4_should_journal_data(inode)) 4987 return false; 4988 if (ext4_has_inline_data(inode)) 4989 return false; 4990 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4991 return false; 4992 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4993 return false; 4994 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4995 return false; 4996 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4997 return true; 4998 4999 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 5000 } 5001 5002 void ext4_set_inode_flags(struct inode *inode, bool init) 5003 { 5004 unsigned int flags = EXT4_I(inode)->i_flags; 5005 unsigned int new_fl = 0; 5006 5007 WARN_ON_ONCE(IS_DAX(inode) && init); 5008 5009 if (flags & EXT4_SYNC_FL) 5010 new_fl |= S_SYNC; 5011 if (flags & EXT4_APPEND_FL) 5012 new_fl |= S_APPEND; 5013 if (flags & EXT4_IMMUTABLE_FL) 5014 new_fl |= S_IMMUTABLE; 5015 if (flags & EXT4_NOATIME_FL) 5016 new_fl |= S_NOATIME; 5017 if (flags & EXT4_DIRSYNC_FL) 5018 new_fl |= S_DIRSYNC; 5019 5020 /* Because of the way inode_set_flags() works we must preserve S_DAX 5021 * here if already set. */ 5022 new_fl |= (inode->i_flags & S_DAX); 5023 if (init && ext4_should_enable_dax(inode)) 5024 new_fl |= S_DAX; 5025 5026 if (flags & EXT4_ENCRYPT_FL) 5027 new_fl |= S_ENCRYPTED; 5028 if (flags & EXT4_CASEFOLD_FL) 5029 new_fl |= S_CASEFOLD; 5030 if (flags & EXT4_VERITY_FL) 5031 new_fl |= S_VERITY; 5032 inode_set_flags(inode, new_fl, 5033 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 5034 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 5035 } 5036 5037 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 5038 struct ext4_inode_info *ei) 5039 { 5040 blkcnt_t i_blocks ; 5041 struct inode *inode = &(ei->vfs_inode); 5042 struct super_block *sb = inode->i_sb; 5043 5044 if (ext4_has_feature_huge_file(sb)) { 5045 /* we are using combined 48 bit field */ 5046 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 5047 le32_to_cpu(raw_inode->i_blocks_lo); 5048 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5049 /* i_blocks represent file system block size */ 5050 return i_blocks << (inode->i_blkbits - 9); 5051 } else { 5052 return i_blocks; 5053 } 5054 } else { 5055 return le32_to_cpu(raw_inode->i_blocks_lo); 5056 } 5057 } 5058 5059 static inline int ext4_iget_extra_inode(struct inode *inode, 5060 struct ext4_inode *raw_inode, 5061 struct ext4_inode_info *ei) 5062 { 5063 __le32 *magic = (void *)raw_inode + 5064 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 5065 5066 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 5067 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 5068 int err; 5069 5070 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 5071 ITAIL(inode, raw_inode)); 5072 if (err) 5073 return err; 5074 5075 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5076 err = ext4_find_inline_data_nolock(inode); 5077 if (!err && ext4_has_inline_data(inode)) 5078 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 5079 return err; 5080 } else 5081 EXT4_I(inode)->i_inline_off = 0; 5082 return 0; 5083 } 5084 5085 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 5086 { 5087 if (!ext4_has_feature_project(inode->i_sb)) 5088 return -EOPNOTSUPP; 5089 *projid = EXT4_I(inode)->i_projid; 5090 return 0; 5091 } 5092 5093 /* 5094 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 5095 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 5096 * set. 5097 */ 5098 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 5099 { 5100 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 5101 inode_set_iversion_raw(inode, val); 5102 else 5103 inode_set_iversion_queried(inode, val); 5104 } 5105 5106 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, 5107 const char *function, unsigned int line) 5108 { 5109 const char *err_str; 5110 5111 if (flags & EXT4_IGET_EA_INODE) { 5112 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5113 err_str = "missing EA_INODE flag"; 5114 goto error; 5115 } 5116 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5117 EXT4_I(inode)->i_file_acl) { 5118 err_str = "ea_inode with extended attributes"; 5119 goto error; 5120 } 5121 } else { 5122 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5123 /* 5124 * open_by_handle_at() could provide an old inode number 5125 * that has since been reused for an ea_inode; this does 5126 * not indicate filesystem corruption 5127 */ 5128 if (flags & EXT4_IGET_HANDLE) 5129 return -ESTALE; 5130 err_str = "unexpected EA_INODE flag"; 5131 goto error; 5132 } 5133 } 5134 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5135 err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; 5136 goto error; 5137 } 5138 return 0; 5139 5140 error: 5141 ext4_error_inode(inode, function, line, 0, "%s", err_str); 5142 return -EFSCORRUPTED; 5143 } 5144 5145 static bool ext4_should_enable_large_folio(struct inode *inode) 5146 { 5147 struct super_block *sb = inode->i_sb; 5148 5149 if (!S_ISREG(inode->i_mode)) 5150 return false; 5151 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 5152 ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA)) 5153 return false; 5154 if (ext4_has_feature_verity(sb)) 5155 return false; 5156 if (ext4_has_feature_encrypt(sb)) 5157 return false; 5158 5159 return true; 5160 } 5161 5162 /* 5163 * Limit the maximum folio order to 2048 blocks to prevent overestimation 5164 * of reserve handle credits during the folio writeback in environments 5165 * where the PAGE_SIZE exceeds 4KB. 5166 */ 5167 #define EXT4_MAX_PAGECACHE_ORDER(i) \ 5168 umin(MAX_PAGECACHE_ORDER, (11 + (i)->i_blkbits - PAGE_SHIFT)) 5169 void ext4_set_inode_mapping_order(struct inode *inode) 5170 { 5171 if (!ext4_should_enable_large_folio(inode)) 5172 return; 5173 5174 mapping_set_folio_order_range(inode->i_mapping, 0, 5175 EXT4_MAX_PAGECACHE_ORDER(inode)); 5176 } 5177 5178 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 5179 ext4_iget_flags flags, const char *function, 5180 unsigned int line) 5181 { 5182 struct ext4_iloc iloc; 5183 struct ext4_inode *raw_inode; 5184 struct ext4_inode_info *ei; 5185 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5186 struct inode *inode; 5187 journal_t *journal = EXT4_SB(sb)->s_journal; 5188 long ret; 5189 loff_t size; 5190 int block; 5191 uid_t i_uid; 5192 gid_t i_gid; 5193 projid_t i_projid; 5194 5195 if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) || 5196 (ino < EXT4_ROOT_INO) || 5197 (ino > le32_to_cpu(es->s_inodes_count))) { 5198 if (flags & EXT4_IGET_HANDLE) 5199 return ERR_PTR(-ESTALE); 5200 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 5201 "inode #%lu: comm %s: iget: illegal inode #", 5202 ino, current->comm); 5203 return ERR_PTR(-EFSCORRUPTED); 5204 } 5205 5206 inode = iget_locked(sb, ino); 5207 if (!inode) 5208 return ERR_PTR(-ENOMEM); 5209 if (!(inode_state_read_once(inode) & I_NEW)) { 5210 ret = check_igot_inode(inode, flags, function, line); 5211 if (ret) { 5212 iput(inode); 5213 return ERR_PTR(ret); 5214 } 5215 return inode; 5216 } 5217 5218 ei = EXT4_I(inode); 5219 iloc.bh = NULL; 5220 5221 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 5222 if (ret < 0) 5223 goto bad_inode; 5224 raw_inode = ext4_raw_inode(&iloc); 5225 5226 if ((flags & EXT4_IGET_HANDLE) && 5227 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 5228 ret = -ESTALE; 5229 goto bad_inode; 5230 } 5231 5232 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5233 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5234 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5235 EXT4_INODE_SIZE(inode->i_sb) || 5236 (ei->i_extra_isize & 3)) { 5237 ext4_error_inode(inode, function, line, 0, 5238 "iget: bad extra_isize %u " 5239 "(inode size %u)", 5240 ei->i_extra_isize, 5241 EXT4_INODE_SIZE(inode->i_sb)); 5242 ret = -EFSCORRUPTED; 5243 goto bad_inode; 5244 } 5245 } else 5246 ei->i_extra_isize = 0; 5247 5248 /* Precompute checksum seed for inode metadata */ 5249 if (ext4_has_feature_metadata_csum(sb)) { 5250 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5251 __u32 csum; 5252 __le32 inum = cpu_to_le32(inode->i_ino); 5253 __le32 gen = raw_inode->i_generation; 5254 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum, 5255 sizeof(inum)); 5256 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen)); 5257 } 5258 5259 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 5260 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 5261 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 5262 ext4_error_inode_err(inode, function, line, 0, 5263 EFSBADCRC, "iget: checksum invalid"); 5264 ret = -EFSBADCRC; 5265 goto bad_inode; 5266 } 5267 5268 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5269 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5270 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5271 if (ext4_has_feature_project(sb) && 5272 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 5273 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5274 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 5275 else 5276 i_projid = EXT4_DEF_PROJID; 5277 5278 if (!(test_opt(inode->i_sb, NO_UID32))) { 5279 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5280 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5281 } 5282 i_uid_write(inode, i_uid); 5283 i_gid_write(inode, i_gid); 5284 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 5285 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 5286 5287 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 5288 ei->i_inline_off = 0; 5289 ei->i_dir_start_lookup = 0; 5290 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5291 /* We now have enough fields to check if the inode was active or not. 5292 * This is needed because nfsd might try to access dead inodes 5293 * the test is that same one that e2fsck uses 5294 * NeilBrown 1999oct15 5295 */ 5296 if (inode->i_nlink == 0) { 5297 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 5298 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 5299 ino != EXT4_BOOT_LOADER_INO) { 5300 /* this inode is deleted or unallocated */ 5301 if (flags & EXT4_IGET_SPECIAL) { 5302 ext4_error_inode(inode, function, line, 0, 5303 "iget: special inode unallocated"); 5304 ret = -EFSCORRUPTED; 5305 } else 5306 ret = -ESTALE; 5307 goto bad_inode; 5308 } 5309 /* The only unlinked inodes we let through here have 5310 * valid i_mode and are being read by the orphan 5311 * recovery code: that's fine, we're about to complete 5312 * the process of deleting those. 5313 * OR it is the EXT4_BOOT_LOADER_INO which is 5314 * not initialized on a new filesystem. */ 5315 } 5316 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5317 ext4_set_inode_flags(inode, true); 5318 /* Detect invalid flag combination - can't have both inline data and extents */ 5319 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) && 5320 ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5321 ext4_error_inode(inode, function, line, 0, 5322 "inode has both inline data and extents flags"); 5323 ret = -EFSCORRUPTED; 5324 goto bad_inode; 5325 } 5326 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5327 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5328 if (ext4_has_feature_64bit(sb)) 5329 ei->i_file_acl |= 5330 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5331 inode->i_size = ext4_isize(sb, raw_inode); 5332 size = i_size_read(inode); 5333 if (size < 0 || size > ext4_get_maxbytes(inode)) { 5334 ext4_error_inode(inode, function, line, 0, 5335 "iget: bad i_size value: %lld", size); 5336 ret = -EFSCORRUPTED; 5337 goto bad_inode; 5338 } 5339 /* 5340 * If dir_index is not enabled but there's dir with INDEX flag set, 5341 * we'd normally treat htree data as empty space. But with metadata 5342 * checksumming that corrupts checksums so forbid that. 5343 */ 5344 if (!ext4_has_feature_dir_index(sb) && 5345 ext4_has_feature_metadata_csum(sb) && 5346 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 5347 ext4_error_inode(inode, function, line, 0, 5348 "iget: Dir with htree data on filesystem without dir_index feature."); 5349 ret = -EFSCORRUPTED; 5350 goto bad_inode; 5351 } 5352 ei->i_disksize = inode->i_size; 5353 #ifdef CONFIG_QUOTA 5354 ei->i_reserved_quota = 0; 5355 #endif 5356 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5357 ei->i_block_group = iloc.block_group; 5358 ei->i_last_alloc_group = ~0; 5359 /* 5360 * NOTE! The in-memory inode i_data array is in little-endian order 5361 * even on big-endian machines: we do NOT byteswap the block numbers! 5362 */ 5363 for (block = 0; block < EXT4_N_BLOCKS; block++) 5364 ei->i_data[block] = raw_inode->i_block[block]; 5365 INIT_LIST_HEAD(&ei->i_orphan); 5366 ext4_fc_init_inode(&ei->vfs_inode); 5367 5368 /* 5369 * Set transaction id's of transactions that have to be committed 5370 * to finish f[data]sync. We set them to currently running transaction 5371 * as we cannot be sure that the inode or some of its metadata isn't 5372 * part of the transaction - the inode could have been reclaimed and 5373 * now it is reread from disk. 5374 */ 5375 if (journal) { 5376 transaction_t *transaction; 5377 tid_t tid; 5378 5379 read_lock(&journal->j_state_lock); 5380 if (journal->j_running_transaction) 5381 transaction = journal->j_running_transaction; 5382 else 5383 transaction = journal->j_committing_transaction; 5384 if (transaction) 5385 tid = transaction->t_tid; 5386 else 5387 tid = journal->j_commit_sequence; 5388 read_unlock(&journal->j_state_lock); 5389 ei->i_sync_tid = tid; 5390 ei->i_datasync_tid = tid; 5391 } 5392 5393 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5394 if (ei->i_extra_isize == 0) { 5395 /* The extra space is currently unused. Use it. */ 5396 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5397 ei->i_extra_isize = sizeof(struct ext4_inode) - 5398 EXT4_GOOD_OLD_INODE_SIZE; 5399 } else { 5400 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5401 if (ret) 5402 goto bad_inode; 5403 } 5404 } 5405 5406 EXT4_INODE_GET_CTIME(inode, raw_inode); 5407 EXT4_INODE_GET_ATIME(inode, raw_inode); 5408 EXT4_INODE_GET_MTIME(inode, raw_inode); 5409 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5410 5411 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5412 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5413 5414 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5415 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5416 ivers |= 5417 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5418 } 5419 ext4_inode_set_iversion_queried(inode, ivers); 5420 } 5421 5422 ret = 0; 5423 if (ei->i_file_acl && 5424 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5425 ext4_error_inode(inode, function, line, 0, 5426 "iget: bad extended attribute block %llu", 5427 ei->i_file_acl); 5428 ret = -EFSCORRUPTED; 5429 goto bad_inode; 5430 } else if (!ext4_has_inline_data(inode)) { 5431 /* validate the block references in the inode */ 5432 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5433 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5434 (S_ISLNK(inode->i_mode) && 5435 !ext4_inode_is_fast_symlink(inode)))) { 5436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5437 ret = ext4_ext_check_inode(inode); 5438 else 5439 ret = ext4_ind_check_inode(inode); 5440 } 5441 } 5442 if (ret) 5443 goto bad_inode; 5444 5445 if (S_ISREG(inode->i_mode)) { 5446 inode->i_op = &ext4_file_inode_operations; 5447 inode->i_fop = &ext4_file_operations; 5448 ext4_set_aops(inode); 5449 } else if (S_ISDIR(inode->i_mode)) { 5450 inode->i_op = &ext4_dir_inode_operations; 5451 inode->i_fop = &ext4_dir_operations; 5452 } else if (S_ISLNK(inode->i_mode)) { 5453 /* VFS does not allow setting these so must be corruption */ 5454 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5455 ext4_error_inode(inode, function, line, 0, 5456 "iget: immutable or append flags " 5457 "not allowed on symlinks"); 5458 ret = -EFSCORRUPTED; 5459 goto bad_inode; 5460 } 5461 if (IS_ENCRYPTED(inode)) { 5462 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5463 } else if (ext4_inode_is_fast_symlink(inode)) { 5464 inode->i_op = &ext4_fast_symlink_inode_operations; 5465 if (inode->i_size == 0 || 5466 inode->i_size >= sizeof(ei->i_data) || 5467 strnlen((char *)ei->i_data, inode->i_size + 1) != 5468 inode->i_size) { 5469 ext4_error_inode(inode, function, line, 0, 5470 "invalid fast symlink length %llu", 5471 (unsigned long long)inode->i_size); 5472 ret = -EFSCORRUPTED; 5473 goto bad_inode; 5474 } 5475 inode_set_cached_link(inode, (char *)ei->i_data, 5476 inode->i_size); 5477 } else { 5478 inode->i_op = &ext4_symlink_inode_operations; 5479 } 5480 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5481 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5482 inode->i_op = &ext4_special_inode_operations; 5483 if (raw_inode->i_block[0]) 5484 init_special_inode(inode, inode->i_mode, 5485 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5486 else 5487 init_special_inode(inode, inode->i_mode, 5488 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5489 } else if (ino == EXT4_BOOT_LOADER_INO) { 5490 make_bad_inode(inode); 5491 } else { 5492 ret = -EFSCORRUPTED; 5493 ext4_error_inode(inode, function, line, 0, 5494 "iget: bogus i_mode (%o)", inode->i_mode); 5495 goto bad_inode; 5496 } 5497 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5498 ext4_error_inode(inode, function, line, 0, 5499 "casefold flag without casefold feature"); 5500 ret = -EFSCORRUPTED; 5501 goto bad_inode; 5502 } 5503 5504 ext4_set_inode_mapping_order(inode); 5505 5506 ret = check_igot_inode(inode, flags, function, line); 5507 /* 5508 * -ESTALE here means there is nothing inherently wrong with the inode, 5509 * it's just not an inode we can return for an fhandle lookup. 5510 */ 5511 if (ret == -ESTALE) { 5512 brelse(iloc.bh); 5513 unlock_new_inode(inode); 5514 iput(inode); 5515 return ERR_PTR(-ESTALE); 5516 } 5517 if (ret) 5518 goto bad_inode; 5519 brelse(iloc.bh); 5520 5521 unlock_new_inode(inode); 5522 return inode; 5523 5524 bad_inode: 5525 brelse(iloc.bh); 5526 iget_failed(inode); 5527 return ERR_PTR(ret); 5528 } 5529 5530 static void __ext4_update_other_inode_time(struct super_block *sb, 5531 unsigned long orig_ino, 5532 unsigned long ino, 5533 struct ext4_inode *raw_inode) 5534 { 5535 struct inode *inode; 5536 5537 inode = find_inode_by_ino_rcu(sb, ino); 5538 if (!inode) 5539 return; 5540 5541 if (!inode_is_dirtytime_only(inode)) 5542 return; 5543 5544 spin_lock(&inode->i_lock); 5545 if (inode_is_dirtytime_only(inode)) { 5546 struct ext4_inode_info *ei = EXT4_I(inode); 5547 5548 inode_state_clear(inode, I_DIRTY_TIME); 5549 spin_unlock(&inode->i_lock); 5550 5551 spin_lock(&ei->i_raw_lock); 5552 EXT4_INODE_SET_CTIME(inode, raw_inode); 5553 EXT4_INODE_SET_MTIME(inode, raw_inode); 5554 EXT4_INODE_SET_ATIME(inode, raw_inode); 5555 ext4_inode_csum_set(inode, raw_inode, ei); 5556 spin_unlock(&ei->i_raw_lock); 5557 trace_ext4_other_inode_update_time(inode, orig_ino); 5558 return; 5559 } 5560 spin_unlock(&inode->i_lock); 5561 } 5562 5563 /* 5564 * Opportunistically update the other time fields for other inodes in 5565 * the same inode table block. 5566 */ 5567 static void ext4_update_other_inodes_time(struct super_block *sb, 5568 unsigned long orig_ino, char *buf) 5569 { 5570 unsigned long ino; 5571 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5572 int inode_size = EXT4_INODE_SIZE(sb); 5573 5574 /* 5575 * Calculate the first inode in the inode table block. Inode 5576 * numbers are one-based. That is, the first inode in a block 5577 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5578 */ 5579 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5580 rcu_read_lock(); 5581 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5582 if (ino == orig_ino) 5583 continue; 5584 __ext4_update_other_inode_time(sb, orig_ino, ino, 5585 (struct ext4_inode *)buf); 5586 } 5587 rcu_read_unlock(); 5588 } 5589 5590 /* 5591 * Post the struct inode info into an on-disk inode location in the 5592 * buffer-cache. This gobbles the caller's reference to the 5593 * buffer_head in the inode location struct. 5594 * 5595 * The caller must have write access to iloc->bh. 5596 */ 5597 static int ext4_do_update_inode(handle_t *handle, 5598 struct inode *inode, 5599 struct ext4_iloc *iloc) 5600 { 5601 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5602 struct ext4_inode_info *ei = EXT4_I(inode); 5603 struct buffer_head *bh = iloc->bh; 5604 struct super_block *sb = inode->i_sb; 5605 int err; 5606 int need_datasync = 0, set_large_file = 0; 5607 5608 spin_lock(&ei->i_raw_lock); 5609 5610 /* 5611 * For fields not tracked in the in-memory inode, initialise them 5612 * to zero for new inodes. 5613 */ 5614 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5615 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5616 5617 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5618 need_datasync = 1; 5619 if (ei->i_disksize > 0x7fffffffULL) { 5620 if (!ext4_has_feature_large_file(sb) || 5621 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5622 set_large_file = 1; 5623 } 5624 5625 err = ext4_fill_raw_inode(inode, raw_inode); 5626 spin_unlock(&ei->i_raw_lock); 5627 if (err) { 5628 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5629 goto out_brelse; 5630 } 5631 5632 if (inode->i_sb->s_flags & SB_LAZYTIME) 5633 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5634 bh->b_data); 5635 5636 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5637 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5638 if (err) 5639 goto out_error; 5640 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5641 if (set_large_file) { 5642 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5643 err = ext4_journal_get_write_access(handle, sb, 5644 EXT4_SB(sb)->s_sbh, 5645 EXT4_JTR_NONE); 5646 if (err) 5647 goto out_error; 5648 lock_buffer(EXT4_SB(sb)->s_sbh); 5649 ext4_set_feature_large_file(sb); 5650 ext4_superblock_csum_set(sb); 5651 unlock_buffer(EXT4_SB(sb)->s_sbh); 5652 ext4_handle_sync(handle); 5653 err = ext4_handle_dirty_metadata(handle, NULL, 5654 EXT4_SB(sb)->s_sbh); 5655 } 5656 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5657 out_error: 5658 ext4_std_error(inode->i_sb, err); 5659 out_brelse: 5660 brelse(bh); 5661 return err; 5662 } 5663 5664 /* 5665 * ext4_write_inode() 5666 * 5667 * We are called from a few places: 5668 * 5669 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5670 * Here, there will be no transaction running. We wait for any running 5671 * transaction to commit. 5672 * 5673 * - Within flush work (sys_sync(), kupdate and such). 5674 * We wait on commit, if told to. 5675 * 5676 * - Within iput_final() -> write_inode_now() 5677 * We wait on commit, if told to. 5678 * 5679 * In all cases it is actually safe for us to return without doing anything, 5680 * because the inode has been copied into a raw inode buffer in 5681 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5682 * writeback. 5683 * 5684 * Note that we are absolutely dependent upon all inode dirtiers doing the 5685 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5686 * which we are interested. 5687 * 5688 * It would be a bug for them to not do this. The code: 5689 * 5690 * mark_inode_dirty(inode) 5691 * stuff(); 5692 * inode->i_size = expr; 5693 * 5694 * is in error because write_inode() could occur while `stuff()' is running, 5695 * and the new i_size will be lost. Plus the inode will no longer be on the 5696 * superblock's dirty inode list. 5697 */ 5698 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5699 { 5700 int err; 5701 5702 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5703 return 0; 5704 5705 err = ext4_emergency_state(inode->i_sb); 5706 if (unlikely(err)) 5707 return err; 5708 5709 if (EXT4_SB(inode->i_sb)->s_journal) { 5710 if (ext4_journal_current_handle()) { 5711 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5712 dump_stack(); 5713 return -EIO; 5714 } 5715 5716 /* 5717 * No need to force transaction in WB_SYNC_NONE mode. Also 5718 * ext4_sync_fs() will force the commit after everything is 5719 * written. 5720 */ 5721 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5722 return 0; 5723 5724 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5725 EXT4_I(inode)->i_sync_tid); 5726 } else { 5727 struct ext4_iloc iloc; 5728 5729 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5730 if (err) 5731 return err; 5732 /* 5733 * sync(2) will flush the whole buffer cache. No need to do 5734 * it here separately for each inode. 5735 */ 5736 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5737 sync_dirty_buffer(iloc.bh); 5738 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5739 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5740 "IO error syncing inode"); 5741 err = -EIO; 5742 } 5743 brelse(iloc.bh); 5744 } 5745 return err; 5746 } 5747 5748 /* 5749 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5750 * buffers that are attached to a folio straddling i_size and are undergoing 5751 * commit. In that case we have to wait for commit to finish and try again. 5752 */ 5753 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5754 { 5755 unsigned offset; 5756 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5757 tid_t commit_tid; 5758 int ret; 5759 bool has_transaction; 5760 5761 offset = inode->i_size & (PAGE_SIZE - 1); 5762 /* 5763 * If the folio is fully truncated, we don't need to wait for any commit 5764 * (and we even should not as __ext4_journalled_invalidate_folio() may 5765 * strip all buffers from the folio but keep the folio dirty which can then 5766 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5767 * buffers). Also we don't need to wait for any commit if all buffers in 5768 * the folio remain valid. This is most beneficial for the common case of 5769 * blocksize == PAGESIZE. 5770 */ 5771 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5772 return; 5773 while (1) { 5774 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5775 inode->i_size >> PAGE_SHIFT); 5776 if (IS_ERR(folio)) 5777 return; 5778 ret = __ext4_journalled_invalidate_folio(folio, offset, 5779 folio_size(folio) - offset); 5780 folio_unlock(folio); 5781 folio_put(folio); 5782 if (ret != -EBUSY) 5783 return; 5784 has_transaction = false; 5785 read_lock(&journal->j_state_lock); 5786 if (journal->j_committing_transaction) { 5787 commit_tid = journal->j_committing_transaction->t_tid; 5788 has_transaction = true; 5789 } 5790 read_unlock(&journal->j_state_lock); 5791 if (has_transaction) 5792 jbd2_log_wait_commit(journal, commit_tid); 5793 } 5794 } 5795 5796 /* 5797 * ext4_setattr() 5798 * 5799 * Called from notify_change. 5800 * 5801 * We want to trap VFS attempts to truncate the file as soon as 5802 * possible. In particular, we want to make sure that when the VFS 5803 * shrinks i_size, we put the inode on the orphan list and modify 5804 * i_disksize immediately, so that during the subsequent flushing of 5805 * dirty pages and freeing of disk blocks, we can guarantee that any 5806 * commit will leave the blocks being flushed in an unused state on 5807 * disk. (On recovery, the inode will get truncated and the blocks will 5808 * be freed, so we have a strong guarantee that no future commit will 5809 * leave these blocks visible to the user.) 5810 * 5811 * Another thing we have to assure is that if we are in ordered mode 5812 * and inode is still attached to the committing transaction, we must 5813 * we start writeout of all the dirty pages which are being truncated. 5814 * This way we are sure that all the data written in the previous 5815 * transaction are already on disk (truncate waits for pages under 5816 * writeback). 5817 * 5818 * Called with inode->i_rwsem down. 5819 */ 5820 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5821 struct iattr *attr) 5822 { 5823 struct inode *inode = d_inode(dentry); 5824 int error, rc = 0; 5825 int orphan = 0; 5826 const unsigned int ia_valid = attr->ia_valid; 5827 bool inc_ivers = true; 5828 5829 error = ext4_emergency_state(inode->i_sb); 5830 if (unlikely(error)) 5831 return error; 5832 5833 if (unlikely(IS_IMMUTABLE(inode))) 5834 return -EPERM; 5835 5836 if (unlikely(IS_APPEND(inode) && 5837 (ia_valid & (ATTR_MODE | ATTR_UID | 5838 ATTR_GID | ATTR_TIMES_SET)))) 5839 return -EPERM; 5840 5841 error = setattr_prepare(idmap, dentry, attr); 5842 if (error) 5843 return error; 5844 5845 error = fscrypt_prepare_setattr(dentry, attr); 5846 if (error) 5847 return error; 5848 5849 error = fsverity_prepare_setattr(dentry, attr); 5850 if (error) 5851 return error; 5852 5853 if (is_quota_modification(idmap, inode, attr)) { 5854 error = dquot_initialize(inode); 5855 if (error) 5856 return error; 5857 } 5858 5859 if (i_uid_needs_update(idmap, attr, inode) || 5860 i_gid_needs_update(idmap, attr, inode)) { 5861 handle_t *handle; 5862 5863 /* (user+group)*(old+new) structure, inode write (sb, 5864 * inode block, ? - but truncate inode update has it) */ 5865 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5866 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5867 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5868 if (IS_ERR(handle)) { 5869 error = PTR_ERR(handle); 5870 goto err_out; 5871 } 5872 5873 /* dquot_transfer() calls back ext4_get_inode_usage() which 5874 * counts xattr inode references. 5875 */ 5876 down_read(&EXT4_I(inode)->xattr_sem); 5877 error = dquot_transfer(idmap, inode, attr); 5878 up_read(&EXT4_I(inode)->xattr_sem); 5879 5880 if (error) { 5881 ext4_journal_stop(handle); 5882 return error; 5883 } 5884 /* Update corresponding info in inode so that everything is in 5885 * one transaction */ 5886 i_uid_update(idmap, attr, inode); 5887 i_gid_update(idmap, attr, inode); 5888 error = ext4_mark_inode_dirty(handle, inode); 5889 ext4_journal_stop(handle); 5890 if (unlikely(error)) { 5891 return error; 5892 } 5893 } 5894 5895 if (attr->ia_valid & ATTR_SIZE) { 5896 handle_t *handle; 5897 loff_t oldsize = inode->i_size; 5898 loff_t old_disksize; 5899 int shrink = (attr->ia_size < inode->i_size); 5900 5901 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5903 5904 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5905 return -EFBIG; 5906 } 5907 } 5908 if (!S_ISREG(inode->i_mode)) { 5909 return -EINVAL; 5910 } 5911 5912 if (attr->ia_size == inode->i_size) 5913 inc_ivers = false; 5914 5915 if (shrink) { 5916 if (ext4_should_order_data(inode)) { 5917 error = ext4_begin_ordered_truncate(inode, 5918 attr->ia_size); 5919 if (error) 5920 goto err_out; 5921 } 5922 /* 5923 * Blocks are going to be removed from the inode. Wait 5924 * for dio in flight. 5925 */ 5926 inode_dio_wait(inode); 5927 } 5928 5929 filemap_invalidate_lock(inode->i_mapping); 5930 5931 rc = ext4_break_layouts(inode); 5932 if (rc) { 5933 filemap_invalidate_unlock(inode->i_mapping); 5934 goto err_out; 5935 } 5936 5937 if (attr->ia_size != inode->i_size) { 5938 /* attach jbd2 jinode for EOF folio tail zeroing */ 5939 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5940 oldsize & (inode->i_sb->s_blocksize - 1)) { 5941 error = ext4_inode_attach_jinode(inode); 5942 if (error) 5943 goto out_mmap_sem; 5944 } 5945 5946 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5947 if (IS_ERR(handle)) { 5948 error = PTR_ERR(handle); 5949 goto out_mmap_sem; 5950 } 5951 if (ext4_handle_valid(handle) && shrink) { 5952 error = ext4_orphan_add(handle, inode); 5953 orphan = 1; 5954 } 5955 /* 5956 * Update c/mtime and tail zero the EOF folio on 5957 * truncate up. ext4_truncate() handles the shrink case 5958 * below. 5959 */ 5960 if (!shrink) { 5961 inode_set_mtime_to_ts(inode, 5962 inode_set_ctime_current(inode)); 5963 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5964 ext4_block_truncate_page(handle, 5965 inode->i_mapping, oldsize); 5966 } 5967 5968 if (shrink) 5969 ext4_fc_track_range(handle, inode, 5970 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5971 inode->i_sb->s_blocksize_bits, 5972 EXT_MAX_BLOCKS - 1); 5973 else 5974 ext4_fc_track_range( 5975 handle, inode, 5976 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5977 inode->i_sb->s_blocksize_bits, 5978 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5979 inode->i_sb->s_blocksize_bits); 5980 5981 down_write(&EXT4_I(inode)->i_data_sem); 5982 old_disksize = EXT4_I(inode)->i_disksize; 5983 EXT4_I(inode)->i_disksize = attr->ia_size; 5984 5985 /* 5986 * We have to update i_size under i_data_sem together 5987 * with i_disksize to avoid races with writeback code 5988 * running ext4_wb_update_i_disksize(). 5989 */ 5990 if (!error) 5991 i_size_write(inode, attr->ia_size); 5992 else 5993 EXT4_I(inode)->i_disksize = old_disksize; 5994 up_write(&EXT4_I(inode)->i_data_sem); 5995 rc = ext4_mark_inode_dirty(handle, inode); 5996 if (!error) 5997 error = rc; 5998 ext4_journal_stop(handle); 5999 if (error) 6000 goto out_mmap_sem; 6001 if (!shrink) { 6002 pagecache_isize_extended(inode, oldsize, 6003 inode->i_size); 6004 } else if (ext4_should_journal_data(inode)) { 6005 ext4_wait_for_tail_page_commit(inode); 6006 } 6007 } 6008 6009 /* 6010 * Truncate pagecache after we've waited for commit 6011 * in data=journal mode to make pages freeable. 6012 */ 6013 truncate_pagecache(inode, inode->i_size); 6014 /* 6015 * Call ext4_truncate() even if i_size didn't change to 6016 * truncate possible preallocated blocks. 6017 */ 6018 if (attr->ia_size <= oldsize) { 6019 rc = ext4_truncate(inode); 6020 if (rc) 6021 error = rc; 6022 } 6023 out_mmap_sem: 6024 filemap_invalidate_unlock(inode->i_mapping); 6025 } 6026 6027 if (!error) { 6028 if (inc_ivers) 6029 inode_inc_iversion(inode); 6030 setattr_copy(idmap, inode, attr); 6031 mark_inode_dirty(inode); 6032 } 6033 6034 /* 6035 * If the call to ext4_truncate failed to get a transaction handle at 6036 * all, we need to clean up the in-core orphan list manually. 6037 */ 6038 if (orphan && inode->i_nlink) 6039 ext4_orphan_del(NULL, inode); 6040 6041 if (!error && (ia_valid & ATTR_MODE)) 6042 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 6043 6044 err_out: 6045 if (error) 6046 ext4_std_error(inode->i_sb, error); 6047 if (!error) 6048 error = rc; 6049 return error; 6050 } 6051 6052 u32 ext4_dio_alignment(struct inode *inode) 6053 { 6054 if (fsverity_active(inode)) 6055 return 0; 6056 if (ext4_should_journal_data(inode)) 6057 return 0; 6058 if (ext4_has_inline_data(inode)) 6059 return 0; 6060 if (IS_ENCRYPTED(inode)) { 6061 if (!fscrypt_dio_supported(inode)) 6062 return 0; 6063 return i_blocksize(inode); 6064 } 6065 return 1; /* use the iomap defaults */ 6066 } 6067 6068 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 6069 struct kstat *stat, u32 request_mask, unsigned int query_flags) 6070 { 6071 struct inode *inode = d_inode(path->dentry); 6072 struct ext4_inode *raw_inode; 6073 struct ext4_inode_info *ei = EXT4_I(inode); 6074 unsigned int flags; 6075 6076 if ((request_mask & STATX_BTIME) && 6077 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 6078 stat->result_mask |= STATX_BTIME; 6079 stat->btime.tv_sec = ei->i_crtime.tv_sec; 6080 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 6081 } 6082 6083 /* 6084 * Return the DIO alignment restrictions if requested. We only return 6085 * this information when requested, since on encrypted files it might 6086 * take a fair bit of work to get if the file wasn't opened recently. 6087 */ 6088 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 6089 u32 dio_align = ext4_dio_alignment(inode); 6090 6091 stat->result_mask |= STATX_DIOALIGN; 6092 if (dio_align == 1) { 6093 struct block_device *bdev = inode->i_sb->s_bdev; 6094 6095 /* iomap defaults */ 6096 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 6097 stat->dio_offset_align = bdev_logical_block_size(bdev); 6098 } else { 6099 stat->dio_mem_align = dio_align; 6100 stat->dio_offset_align = dio_align; 6101 } 6102 } 6103 6104 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 6105 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6106 unsigned int awu_min = 0, awu_max = 0; 6107 6108 if (ext4_inode_can_atomic_write(inode)) { 6109 awu_min = sbi->s_awu_min; 6110 awu_max = sbi->s_awu_max; 6111 } 6112 6113 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0); 6114 } 6115 6116 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 6117 if (flags & EXT4_APPEND_FL) 6118 stat->attributes |= STATX_ATTR_APPEND; 6119 if (flags & EXT4_COMPR_FL) 6120 stat->attributes |= STATX_ATTR_COMPRESSED; 6121 if (flags & EXT4_ENCRYPT_FL) 6122 stat->attributes |= STATX_ATTR_ENCRYPTED; 6123 if (flags & EXT4_IMMUTABLE_FL) 6124 stat->attributes |= STATX_ATTR_IMMUTABLE; 6125 if (flags & EXT4_NODUMP_FL) 6126 stat->attributes |= STATX_ATTR_NODUMP; 6127 if (flags & EXT4_VERITY_FL) 6128 stat->attributes |= STATX_ATTR_VERITY; 6129 6130 stat->attributes_mask |= (STATX_ATTR_APPEND | 6131 STATX_ATTR_COMPRESSED | 6132 STATX_ATTR_ENCRYPTED | 6133 STATX_ATTR_IMMUTABLE | 6134 STATX_ATTR_NODUMP | 6135 STATX_ATTR_VERITY); 6136 6137 generic_fillattr(idmap, request_mask, inode, stat); 6138 return 0; 6139 } 6140 6141 int ext4_file_getattr(struct mnt_idmap *idmap, 6142 const struct path *path, struct kstat *stat, 6143 u32 request_mask, unsigned int query_flags) 6144 { 6145 struct inode *inode = d_inode(path->dentry); 6146 u64 delalloc_blocks; 6147 6148 ext4_getattr(idmap, path, stat, request_mask, query_flags); 6149 6150 /* 6151 * If there is inline data in the inode, the inode will normally not 6152 * have data blocks allocated (it may have an external xattr block). 6153 * Report at least one sector for such files, so tools like tar, rsync, 6154 * others don't incorrectly think the file is completely sparse. 6155 */ 6156 if (unlikely(ext4_has_inline_data(inode))) 6157 stat->blocks += (stat->size + 511) >> 9; 6158 6159 /* 6160 * We can't update i_blocks if the block allocation is delayed 6161 * otherwise in the case of system crash before the real block 6162 * allocation is done, we will have i_blocks inconsistent with 6163 * on-disk file blocks. 6164 * We always keep i_blocks updated together with real 6165 * allocation. But to not confuse with user, stat 6166 * will return the blocks that include the delayed allocation 6167 * blocks for this file. 6168 */ 6169 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 6170 EXT4_I(inode)->i_reserved_data_blocks); 6171 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 6172 return 0; 6173 } 6174 6175 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 6176 int pextents) 6177 { 6178 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 6179 return ext4_ind_trans_blocks(inode, lblocks); 6180 return ext4_ext_index_trans_blocks(inode, pextents); 6181 } 6182 6183 /* 6184 * Account for index blocks, block groups bitmaps and block group 6185 * descriptor blocks if modify datablocks and index blocks 6186 * worse case, the indexs blocks spread over different block groups 6187 * 6188 * If datablocks are discontiguous, they are possible to spread over 6189 * different block groups too. If they are contiguous, with flexbg, 6190 * they could still across block group boundary. 6191 * 6192 * Also account for superblock, inode, quota and xattr blocks 6193 */ 6194 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents) 6195 { 6196 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 6197 int gdpblocks; 6198 int idxblocks; 6199 int ret; 6200 6201 /* 6202 * How many index and leaf blocks need to touch to map @lblocks 6203 * logical blocks to @pextents physical extents? 6204 */ 6205 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 6206 6207 /* 6208 * Now let's see how many group bitmaps and group descriptors need 6209 * to account 6210 */ 6211 groups = idxblocks + pextents; 6212 gdpblocks = groups; 6213 if (groups > ngroups) 6214 groups = ngroups; 6215 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 6216 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 6217 6218 /* bitmaps and block group descriptor blocks */ 6219 ret = idxblocks + groups + gdpblocks; 6220 6221 /* Blocks for super block, inode, quota and xattr blocks */ 6222 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 6223 6224 return ret; 6225 } 6226 6227 /* 6228 * Calculate the journal credits for modifying the number of blocks 6229 * in a single extent within one transaction. 'nrblocks' is used only 6230 * for non-extent inodes. For extent type inodes, 'nrblocks' can be 6231 * zero if the exact number of blocks is unknown. 6232 */ 6233 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks) 6234 { 6235 int ret; 6236 6237 ret = ext4_meta_trans_blocks(inode, nrblocks, 1); 6238 /* Account for data blocks for journalled mode */ 6239 if (ext4_should_journal_data(inode)) 6240 ret += nrblocks; 6241 return ret; 6242 } 6243 6244 /* 6245 * Calculate the journal credits for a chunk of data modification. 6246 * 6247 * This is called from DIO, fallocate or whoever calling 6248 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 6249 * 6250 * journal buffers for data blocks are not included here, as DIO 6251 * and fallocate do no need to journal data buffers. 6252 */ 6253 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 6254 { 6255 return ext4_meta_trans_blocks(inode, nrblocks, 1); 6256 } 6257 6258 /* 6259 * The caller must have previously called ext4_reserve_inode_write(). 6260 * Give this, we know that the caller already has write access to iloc->bh. 6261 */ 6262 int ext4_mark_iloc_dirty(handle_t *handle, 6263 struct inode *inode, struct ext4_iloc *iloc) 6264 { 6265 int err = 0; 6266 6267 err = ext4_emergency_state(inode->i_sb); 6268 if (unlikely(err)) { 6269 put_bh(iloc->bh); 6270 return err; 6271 } 6272 ext4_fc_track_inode(handle, inode); 6273 6274 /* the do_update_inode consumes one bh->b_count */ 6275 get_bh(iloc->bh); 6276 6277 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 6278 err = ext4_do_update_inode(handle, inode, iloc); 6279 put_bh(iloc->bh); 6280 return err; 6281 } 6282 6283 /* 6284 * On success, We end up with an outstanding reference count against 6285 * iloc->bh. This _must_ be cleaned up later. 6286 */ 6287 6288 int 6289 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 6290 struct ext4_iloc *iloc) 6291 { 6292 int err; 6293 6294 err = ext4_emergency_state(inode->i_sb); 6295 if (unlikely(err)) 6296 return err; 6297 6298 err = ext4_get_inode_loc(inode, iloc); 6299 if (!err) { 6300 BUFFER_TRACE(iloc->bh, "get_write_access"); 6301 err = ext4_journal_get_write_access(handle, inode->i_sb, 6302 iloc->bh, EXT4_JTR_NONE); 6303 if (err) { 6304 brelse(iloc->bh); 6305 iloc->bh = NULL; 6306 } 6307 ext4_fc_track_inode(handle, inode); 6308 } 6309 ext4_std_error(inode->i_sb, err); 6310 return err; 6311 } 6312 6313 static int __ext4_expand_extra_isize(struct inode *inode, 6314 unsigned int new_extra_isize, 6315 struct ext4_iloc *iloc, 6316 handle_t *handle, int *no_expand) 6317 { 6318 struct ext4_inode *raw_inode; 6319 struct ext4_xattr_ibody_header *header; 6320 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 6321 struct ext4_inode_info *ei = EXT4_I(inode); 6322 int error; 6323 6324 /* this was checked at iget time, but double check for good measure */ 6325 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 6326 (ei->i_extra_isize & 3)) { 6327 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 6328 ei->i_extra_isize, 6329 EXT4_INODE_SIZE(inode->i_sb)); 6330 return -EFSCORRUPTED; 6331 } 6332 if ((new_extra_isize < ei->i_extra_isize) || 6333 (new_extra_isize < 4) || 6334 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 6335 return -EINVAL; /* Should never happen */ 6336 6337 raw_inode = ext4_raw_inode(iloc); 6338 6339 header = IHDR(inode, raw_inode); 6340 6341 /* No extended attributes present */ 6342 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 6343 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 6344 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 6345 EXT4_I(inode)->i_extra_isize, 0, 6346 new_extra_isize - EXT4_I(inode)->i_extra_isize); 6347 EXT4_I(inode)->i_extra_isize = new_extra_isize; 6348 return 0; 6349 } 6350 6351 /* 6352 * We may need to allocate external xattr block so we need quotas 6353 * initialized. Here we can be called with various locks held so we 6354 * cannot affort to initialize quotas ourselves. So just bail. 6355 */ 6356 if (dquot_initialize_needed(inode)) 6357 return -EAGAIN; 6358 6359 /* try to expand with EAs present */ 6360 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 6361 raw_inode, handle); 6362 if (error) { 6363 /* 6364 * Inode size expansion failed; don't try again 6365 */ 6366 *no_expand = 1; 6367 } 6368 6369 return error; 6370 } 6371 6372 /* 6373 * Expand an inode by new_extra_isize bytes. 6374 * Returns 0 on success or negative error number on failure. 6375 */ 6376 static int ext4_try_to_expand_extra_isize(struct inode *inode, 6377 unsigned int new_extra_isize, 6378 struct ext4_iloc iloc, 6379 handle_t *handle) 6380 { 6381 int no_expand; 6382 int error; 6383 6384 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6385 return -EOVERFLOW; 6386 6387 /* 6388 * In nojournal mode, we can immediately attempt to expand 6389 * the inode. When journaled, we first need to obtain extra 6390 * buffer credits since we may write into the EA block 6391 * with this same handle. If journal_extend fails, then it will 6392 * only result in a minor loss of functionality for that inode. 6393 * If this is felt to be critical, then e2fsck should be run to 6394 * force a large enough s_min_extra_isize. 6395 */ 6396 if (ext4_journal_extend(handle, 6397 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 6398 return -ENOSPC; 6399 6400 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6401 return -EBUSY; 6402 6403 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6404 handle, &no_expand); 6405 ext4_write_unlock_xattr(inode, &no_expand); 6406 6407 return error; 6408 } 6409 6410 int ext4_expand_extra_isize(struct inode *inode, 6411 unsigned int new_extra_isize, 6412 struct ext4_iloc *iloc) 6413 { 6414 handle_t *handle; 6415 int no_expand; 6416 int error, rc; 6417 6418 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6419 brelse(iloc->bh); 6420 return -EOVERFLOW; 6421 } 6422 6423 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6424 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6425 if (IS_ERR(handle)) { 6426 error = PTR_ERR(handle); 6427 brelse(iloc->bh); 6428 return error; 6429 } 6430 6431 ext4_write_lock_xattr(inode, &no_expand); 6432 6433 BUFFER_TRACE(iloc->bh, "get_write_access"); 6434 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6435 EXT4_JTR_NONE); 6436 if (error) { 6437 brelse(iloc->bh); 6438 goto out_unlock; 6439 } 6440 6441 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6442 handle, &no_expand); 6443 6444 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6445 if (!error) 6446 error = rc; 6447 6448 out_unlock: 6449 ext4_write_unlock_xattr(inode, &no_expand); 6450 ext4_journal_stop(handle); 6451 return error; 6452 } 6453 6454 /* 6455 * What we do here is to mark the in-core inode as clean with respect to inode 6456 * dirtiness (it may still be data-dirty). 6457 * This means that the in-core inode may be reaped by prune_icache 6458 * without having to perform any I/O. This is a very good thing, 6459 * because *any* task may call prune_icache - even ones which 6460 * have a transaction open against a different journal. 6461 * 6462 * Is this cheating? Not really. Sure, we haven't written the 6463 * inode out, but prune_icache isn't a user-visible syncing function. 6464 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6465 * we start and wait on commits. 6466 */ 6467 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6468 const char *func, unsigned int line) 6469 { 6470 struct ext4_iloc iloc; 6471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6472 int err; 6473 6474 might_sleep(); 6475 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6476 err = ext4_reserve_inode_write(handle, inode, &iloc); 6477 if (err) 6478 goto out; 6479 6480 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6481 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6482 iloc, handle); 6483 6484 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6485 out: 6486 if (unlikely(err)) 6487 ext4_error_inode_err(inode, func, line, 0, err, 6488 "mark_inode_dirty error"); 6489 return err; 6490 } 6491 6492 /* 6493 * ext4_dirty_inode() is called from __mark_inode_dirty() 6494 * 6495 * We're really interested in the case where a file is being extended. 6496 * i_size has been changed by generic_commit_write() and we thus need 6497 * to include the updated inode in the current transaction. 6498 * 6499 * Also, dquot_alloc_block() will always dirty the inode when blocks 6500 * are allocated to the file. 6501 * 6502 * If the inode is marked synchronous, we don't honour that here - doing 6503 * so would cause a commit on atime updates, which we don't bother doing. 6504 * We handle synchronous inodes at the highest possible level. 6505 */ 6506 void ext4_dirty_inode(struct inode *inode, int flags) 6507 { 6508 handle_t *handle; 6509 6510 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6511 if (IS_ERR(handle)) 6512 return; 6513 ext4_mark_inode_dirty(handle, inode); 6514 ext4_journal_stop(handle); 6515 } 6516 6517 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6518 { 6519 journal_t *journal; 6520 handle_t *handle; 6521 int err; 6522 int alloc_ctx; 6523 6524 /* 6525 * We have to be very careful here: changing a data block's 6526 * journaling status dynamically is dangerous. If we write a 6527 * data block to the journal, change the status and then delete 6528 * that block, we risk forgetting to revoke the old log record 6529 * from the journal and so a subsequent replay can corrupt data. 6530 * So, first we make sure that the journal is empty and that 6531 * nobody is changing anything. 6532 */ 6533 6534 journal = EXT4_JOURNAL(inode); 6535 if (!journal) 6536 return 0; 6537 if (is_journal_aborted(journal)) 6538 return -EROFS; 6539 6540 /* Wait for all existing dio workers */ 6541 inode_dio_wait(inode); 6542 6543 /* 6544 * Before flushing the journal and switching inode's aops, we have 6545 * to flush all dirty data the inode has. There can be outstanding 6546 * delayed allocations, there can be unwritten extents created by 6547 * fallocate or buffered writes in dioread_nolock mode covered by 6548 * dirty data which can be converted only after flushing the dirty 6549 * data (and journalled aops don't know how to handle these cases). 6550 */ 6551 if (val) { 6552 filemap_invalidate_lock(inode->i_mapping); 6553 err = filemap_write_and_wait(inode->i_mapping); 6554 if (err < 0) { 6555 filemap_invalidate_unlock(inode->i_mapping); 6556 return err; 6557 } 6558 } 6559 6560 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6561 jbd2_journal_lock_updates(journal); 6562 6563 /* 6564 * OK, there are no updates running now, and all cached data is 6565 * synced to disk. We are now in a completely consistent state 6566 * which doesn't have anything in the journal, and we know that 6567 * no filesystem updates are running, so it is safe to modify 6568 * the inode's in-core data-journaling state flag now. 6569 */ 6570 6571 if (val) 6572 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6573 else { 6574 err = jbd2_journal_flush(journal, 0); 6575 if (err < 0) { 6576 jbd2_journal_unlock_updates(journal); 6577 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6578 return err; 6579 } 6580 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6581 } 6582 ext4_set_aops(inode); 6583 6584 jbd2_journal_unlock_updates(journal); 6585 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6586 6587 if (val) 6588 filemap_invalidate_unlock(inode->i_mapping); 6589 6590 /* Finally we can mark the inode as dirty. */ 6591 6592 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6593 if (IS_ERR(handle)) 6594 return PTR_ERR(handle); 6595 6596 ext4_fc_mark_ineligible(inode->i_sb, 6597 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6598 err = ext4_mark_inode_dirty(handle, inode); 6599 ext4_handle_sync(handle); 6600 ext4_journal_stop(handle); 6601 ext4_std_error(inode->i_sb, err); 6602 6603 return err; 6604 } 6605 6606 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6607 struct buffer_head *bh) 6608 { 6609 return !buffer_mapped(bh); 6610 } 6611 6612 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio, 6613 get_block_t get_block) 6614 { 6615 handle_t *handle; 6616 loff_t size; 6617 unsigned long len; 6618 int credits; 6619 int ret; 6620 6621 credits = ext4_chunk_trans_extent(inode, 6622 ext4_journal_blocks_per_folio(inode)); 6623 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits); 6624 if (IS_ERR(handle)) 6625 return PTR_ERR(handle); 6626 6627 folio_lock(folio); 6628 size = i_size_read(inode); 6629 /* Page got truncated from under us? */ 6630 if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) { 6631 ret = -EFAULT; 6632 goto out_error; 6633 } 6634 6635 len = folio_size(folio); 6636 if (folio_pos(folio) + len > size) 6637 len = size - folio_pos(folio); 6638 6639 ret = ext4_block_write_begin(handle, folio, 0, len, get_block); 6640 if (ret) 6641 goto out_error; 6642 6643 if (!ext4_should_journal_data(inode)) { 6644 block_commit_write(folio, 0, len); 6645 folio_mark_dirty(folio); 6646 } else { 6647 ret = ext4_journal_folio_buffers(handle, folio, len); 6648 if (ret) 6649 goto out_error; 6650 } 6651 ext4_journal_stop(handle); 6652 folio_wait_stable(folio); 6653 return ret; 6654 6655 out_error: 6656 folio_unlock(folio); 6657 ext4_journal_stop(handle); 6658 return ret; 6659 } 6660 6661 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6662 { 6663 struct vm_area_struct *vma = vmf->vma; 6664 struct folio *folio = page_folio(vmf->page); 6665 loff_t size; 6666 unsigned long len; 6667 int err; 6668 vm_fault_t ret; 6669 struct file *file = vma->vm_file; 6670 struct inode *inode = file_inode(file); 6671 struct address_space *mapping = inode->i_mapping; 6672 get_block_t *get_block = ext4_get_block; 6673 int retries = 0; 6674 6675 if (unlikely(IS_IMMUTABLE(inode))) 6676 return VM_FAULT_SIGBUS; 6677 6678 sb_start_pagefault(inode->i_sb); 6679 file_update_time(vma->vm_file); 6680 6681 filemap_invalidate_lock_shared(mapping); 6682 6683 err = ext4_convert_inline_data(inode); 6684 if (err) 6685 goto out_ret; 6686 6687 /* 6688 * On data journalling we skip straight to the transaction handle: 6689 * there's no delalloc; page truncated will be checked later; the 6690 * early return w/ all buffers mapped (calculates size/len) can't 6691 * be used; and there's no dioread_nolock, so only ext4_get_block. 6692 */ 6693 if (ext4_should_journal_data(inode)) 6694 goto retry_alloc; 6695 6696 /* Delalloc case is easy... */ 6697 if (test_opt(inode->i_sb, DELALLOC) && 6698 !ext4_nonda_switch(inode->i_sb)) { 6699 do { 6700 err = block_page_mkwrite(vma, vmf, 6701 ext4_da_get_block_prep); 6702 } while (err == -ENOSPC && 6703 ext4_should_retry_alloc(inode->i_sb, &retries)); 6704 goto out_ret; 6705 } 6706 6707 folio_lock(folio); 6708 size = i_size_read(inode); 6709 /* Page got truncated from under us? */ 6710 if (folio->mapping != mapping || folio_pos(folio) > size) { 6711 folio_unlock(folio); 6712 ret = VM_FAULT_NOPAGE; 6713 goto out; 6714 } 6715 6716 len = folio_size(folio); 6717 if (folio_pos(folio) + len > size) 6718 len = size - folio_pos(folio); 6719 /* 6720 * Return if we have all the buffers mapped. This avoids the need to do 6721 * journal_start/journal_stop which can block and take a long time 6722 * 6723 * This cannot be done for data journalling, as we have to add the 6724 * inode to the transaction's list to writeprotect pages on commit. 6725 */ 6726 if (folio_buffers(folio)) { 6727 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6728 0, len, NULL, 6729 ext4_bh_unmapped)) { 6730 /* Wait so that we don't change page under IO */ 6731 folio_wait_stable(folio); 6732 ret = VM_FAULT_LOCKED; 6733 goto out; 6734 } 6735 } 6736 folio_unlock(folio); 6737 /* OK, we need to fill the hole... */ 6738 if (ext4_should_dioread_nolock(inode)) 6739 get_block = ext4_get_block_unwritten; 6740 retry_alloc: 6741 /* Start journal and allocate blocks */ 6742 err = ext4_block_page_mkwrite(inode, folio, get_block); 6743 if (err == -EAGAIN || 6744 (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))) 6745 goto retry_alloc; 6746 out_ret: 6747 ret = vmf_fs_error(err); 6748 out: 6749 filemap_invalidate_unlock_shared(mapping); 6750 sb_end_pagefault(inode->i_sb); 6751 return ret; 6752 } 6753