1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static void ext4_journalled_zero_new_buffers(handle_t *handle, 53 struct inode *inode, 54 struct folio *folio, 55 unsigned from, unsigned to); 56 57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 58 struct ext4_inode_info *ei) 59 { 60 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 75 EXT4_GOOD_OLD_INODE_SIZE, 76 offset - EXT4_GOOD_OLD_INODE_SIZE); 77 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 78 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 79 csum_size); 80 offset += csum_size; 81 } 82 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 83 EXT4_INODE_SIZE(inode->i_sb) - offset); 84 } 85 86 return csum; 87 } 88 89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 90 struct ext4_inode_info *ei) 91 { 92 __u32 provided, calculated; 93 94 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 95 cpu_to_le32(EXT4_OS_LINUX) || 96 !ext4_has_metadata_csum(inode->i_sb)) 97 return 1; 98 99 provided = le16_to_cpu(raw->i_checksum_lo); 100 calculated = ext4_inode_csum(inode, raw, ei); 101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 102 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 103 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 104 else 105 calculated &= 0xFFFF; 106 107 return provided == calculated; 108 } 109 110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 111 struct ext4_inode_info *ei) 112 { 113 __u32 csum; 114 115 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 116 cpu_to_le32(EXT4_OS_LINUX) || 117 !ext4_has_metadata_csum(inode->i_sb)) 118 return; 119 120 csum = ext4_inode_csum(inode, raw, ei); 121 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 122 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 123 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 124 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 125 } 126 127 static inline int ext4_begin_ordered_truncate(struct inode *inode, 128 loff_t new_size) 129 { 130 trace_ext4_begin_ordered_truncate(inode, new_size); 131 /* 132 * If jinode is zero, then we never opened the file for 133 * writing, so there's no need to call 134 * jbd2_journal_begin_ordered_truncate() since there's no 135 * outstanding writes we need to flush. 136 */ 137 if (!EXT4_I(inode)->jinode) 138 return 0; 139 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 140 EXT4_I(inode)->jinode, 141 new_size); 142 } 143 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Called at the last iput() if i_nlink is zero. 168 */ 169 void ext4_evict_inode(struct inode *inode) 170 { 171 handle_t *handle; 172 int err; 173 /* 174 * Credits for final inode cleanup and freeing: 175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 176 * (xattr block freeing), bitmap, group descriptor (inode freeing) 177 */ 178 int extra_credits = 6; 179 struct ext4_xattr_inode_array *ea_inode_array = NULL; 180 bool freeze_protected = false; 181 182 trace_ext4_evict_inode(inode); 183 184 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 185 ext4_evict_ea_inode(inode); 186 if (inode->i_nlink) { 187 truncate_inode_pages_final(&inode->i_data); 188 189 goto no_delete; 190 } 191 192 if (is_bad_inode(inode)) 193 goto no_delete; 194 dquot_initialize(inode); 195 196 if (ext4_should_order_data(inode)) 197 ext4_begin_ordered_truncate(inode, 0); 198 truncate_inode_pages_final(&inode->i_data); 199 200 /* 201 * For inodes with journalled data, transaction commit could have 202 * dirtied the inode. And for inodes with dioread_nolock, unwritten 203 * extents converting worker could merge extents and also have dirtied 204 * the inode. Flush worker is ignoring it because of I_FREEING flag but 205 * we still need to remove the inode from the writeback lists. 206 */ 207 if (!list_empty_careful(&inode->i_io_list)) 208 inode_io_list_del(inode); 209 210 /* 211 * Protect us against freezing - iput() caller didn't have to have any 212 * protection against it. When we are in a running transaction though, 213 * we are already protected against freezing and we cannot grab further 214 * protection due to lock ordering constraints. 215 */ 216 if (!ext4_journal_current_handle()) { 217 sb_start_intwrite(inode->i_sb); 218 freeze_protected = true; 219 } 220 221 if (!IS_NOQUOTA(inode)) 222 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 223 224 /* 225 * Block bitmap, group descriptor, and inode are accounted in both 226 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 227 */ 228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 229 ext4_blocks_for_truncate(inode) + extra_credits - 3); 230 if (IS_ERR(handle)) { 231 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 232 /* 233 * If we're going to skip the normal cleanup, we still need to 234 * make sure that the in-core orphan linked list is properly 235 * cleaned up. 236 */ 237 ext4_orphan_del(NULL, inode); 238 if (freeze_protected) 239 sb_end_intwrite(inode->i_sb); 240 goto no_delete; 241 } 242 243 if (IS_SYNC(inode)) 244 ext4_handle_sync(handle); 245 246 /* 247 * Set inode->i_size to 0 before calling ext4_truncate(). We need 248 * special handling of symlinks here because i_size is used to 249 * determine whether ext4_inode_info->i_data contains symlink data or 250 * block mappings. Setting i_size to 0 will remove its fast symlink 251 * status. Erase i_data so that it becomes a valid empty block map. 252 */ 253 if (ext4_inode_is_fast_symlink(inode)) 254 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) { 263 err = ext4_truncate(inode); 264 if (err) { 265 ext4_error_err(inode->i_sb, -err, 266 "couldn't truncate inode %lu (err %d)", 267 inode->i_ino, err); 268 goto stop_handle; 269 } 270 } 271 272 /* Remove xattr references. */ 273 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 274 extra_credits); 275 if (err) { 276 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 if (freeze_protected) 281 sb_end_intwrite(inode->i_sb); 282 ext4_xattr_inode_array_free(ea_inode_array); 283 goto no_delete; 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 if (freeze_protected) 311 sb_end_intwrite(inode->i_sb); 312 ext4_xattr_inode_array_free(ea_inode_array); 313 return; 314 no_delete: 315 /* 316 * Check out some where else accidentally dirty the evicting inode, 317 * which may probably cause inode use-after-free issues later. 318 */ 319 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 320 321 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 322 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 324 } 325 326 #ifdef CONFIG_QUOTA 327 qsize_t *ext4_get_reserved_space(struct inode *inode) 328 { 329 return &EXT4_I(inode)->i_reserved_quota; 330 } 331 #endif 332 333 /* 334 * Called with i_data_sem down, which is important since we can call 335 * ext4_discard_preallocations() from here. 336 */ 337 void ext4_da_update_reserve_space(struct inode *inode, 338 int used, int quota_claim) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 341 struct ext4_inode_info *ei = EXT4_I(inode); 342 343 spin_lock(&ei->i_block_reservation_lock); 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 345 if (unlikely(used > ei->i_reserved_data_blocks)) { 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 347 "with only %d reserved data blocks", 348 __func__, inode->i_ino, used, 349 ei->i_reserved_data_blocks); 350 WARN_ON(1); 351 used = ei->i_reserved_data_blocks; 352 } 353 354 /* Update per-inode reservations */ 355 ei->i_reserved_data_blocks -= used; 356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 357 358 spin_unlock(&ei->i_block_reservation_lock); 359 360 /* Update quota subsystem for data blocks */ 361 if (quota_claim) 362 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 363 else { 364 /* 365 * We did fallocate with an offset that is already delayed 366 * allocated. So on delayed allocated writeback we should 367 * not re-claim the quota for fallocated blocks. 368 */ 369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 370 } 371 372 /* 373 * If we have done all the pending block allocations and if 374 * there aren't any writers on the inode, we can discard the 375 * inode's preallocations. 376 */ 377 if ((ei->i_reserved_data_blocks == 0) && 378 !inode_is_open_for_write(inode)) 379 ext4_discard_preallocations(inode); 380 } 381 382 static int __check_block_validity(struct inode *inode, const char *func, 383 unsigned int line, 384 struct ext4_map_blocks *map) 385 { 386 if (ext4_has_feature_journal(inode->i_sb) && 387 (inode->i_ino == 388 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 389 return 0; 390 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 391 ext4_error_inode(inode, func, line, map->m_pblk, 392 "lblock %lu mapped to illegal pblock %llu " 393 "(length %d)", (unsigned long) map->m_lblk, 394 map->m_pblk, map->m_len); 395 return -EFSCORRUPTED; 396 } 397 return 0; 398 } 399 400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 401 ext4_lblk_t len) 402 { 403 int ret; 404 405 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 406 return fscrypt_zeroout_range(inode, lblk, pblk, len); 407 408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 409 if (ret > 0) 410 ret = 0; 411 412 return ret; 413 } 414 415 #define check_block_validity(inode, map) \ 416 __check_block_validity((inode), __func__, __LINE__, (map)) 417 418 #ifdef ES_AGGRESSIVE_TEST 419 static void ext4_map_blocks_es_recheck(handle_t *handle, 420 struct inode *inode, 421 struct ext4_map_blocks *es_map, 422 struct ext4_map_blocks *map, 423 int flags) 424 { 425 int retval; 426 427 map->m_flags = 0; 428 /* 429 * There is a race window that the result is not the same. 430 * e.g. xfstests #223 when dioread_nolock enables. The reason 431 * is that we lookup a block mapping in extent status tree with 432 * out taking i_data_sem. So at the time the unwritten extent 433 * could be converted. 434 */ 435 down_read(&EXT4_I(inode)->i_data_sem); 436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 437 retval = ext4_ext_map_blocks(handle, inode, map, 0); 438 } else { 439 retval = ext4_ind_map_blocks(handle, inode, map, 0); 440 } 441 up_read((&EXT4_I(inode)->i_data_sem)); 442 443 /* 444 * We don't check m_len because extent will be collpased in status 445 * tree. So the m_len might not equal. 446 */ 447 if (es_map->m_lblk != map->m_lblk || 448 es_map->m_flags != map->m_flags || 449 es_map->m_pblk != map->m_pblk) { 450 printk("ES cache assertion failed for inode: %lu " 451 "es_cached ex [%d/%d/%llu/%x] != " 452 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 453 inode->i_ino, es_map->m_lblk, es_map->m_len, 454 es_map->m_pblk, es_map->m_flags, map->m_lblk, 455 map->m_len, map->m_pblk, map->m_flags, 456 retval, flags); 457 } 458 } 459 #endif /* ES_AGGRESSIVE_TEST */ 460 461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 462 struct ext4_map_blocks *map) 463 { 464 unsigned int status; 465 int retval; 466 467 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 468 retval = ext4_ext_map_blocks(handle, inode, map, 0); 469 else 470 retval = ext4_ind_map_blocks(handle, inode, map, 0); 471 472 if (retval <= 0) 473 return retval; 474 475 if (unlikely(retval != map->m_len)) { 476 ext4_warning(inode->i_sb, 477 "ES len assertion failed for inode " 478 "%lu: retval %d != map->m_len %d", 479 inode->i_ino, retval, map->m_len); 480 WARN_ON(1); 481 } 482 483 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 484 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 485 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 486 map->m_pblk, status, false); 487 return retval; 488 } 489 490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 491 struct ext4_map_blocks *map, int flags) 492 { 493 struct extent_status es; 494 unsigned int status; 495 int err, retval = 0; 496 497 /* 498 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 499 * indicates that the blocks and quotas has already been 500 * checked when the data was copied into the page cache. 501 */ 502 if (map->m_flags & EXT4_MAP_DELAYED) 503 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 504 505 /* 506 * Here we clear m_flags because after allocating an new extent, 507 * it will be set again. 508 */ 509 map->m_flags &= ~EXT4_MAP_FLAGS; 510 511 /* 512 * We need to check for EXT4 here because migrate could have 513 * changed the inode type in between. 514 */ 515 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 516 retval = ext4_ext_map_blocks(handle, inode, map, flags); 517 } else { 518 retval = ext4_ind_map_blocks(handle, inode, map, flags); 519 520 /* 521 * We allocated new blocks which will result in i_data's 522 * format changing. Force the migrate to fail by clearing 523 * migrate flags. 524 */ 525 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 526 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 527 } 528 if (retval <= 0) 529 return retval; 530 531 if (unlikely(retval != map->m_len)) { 532 ext4_warning(inode->i_sb, 533 "ES len assertion failed for inode %lu: " 534 "retval %d != map->m_len %d", 535 inode->i_ino, retval, map->m_len); 536 WARN_ON(1); 537 } 538 539 /* 540 * We have to zeroout blocks before inserting them into extent 541 * status tree. Otherwise someone could look them up there and 542 * use them before they are really zeroed. We also have to 543 * unmap metadata before zeroing as otherwise writeback can 544 * overwrite zeros with stale data from block device. 545 */ 546 if (flags & EXT4_GET_BLOCKS_ZERO && 547 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 548 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 549 map->m_len); 550 if (err) 551 return err; 552 } 553 554 /* 555 * If the extent has been zeroed out, we don't need to update 556 * extent status tree. 557 */ 558 if (flags & EXT4_GET_BLOCKS_PRE_IO && 559 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 560 if (ext4_es_is_written(&es)) 561 return retval; 562 } 563 564 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 565 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 566 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 567 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 568 569 return retval; 570 } 571 572 /* 573 * The ext4_map_blocks() function tries to look up the requested blocks, 574 * and returns if the blocks are already mapped. 575 * 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 577 * and store the allocated blocks in the result buffer head and mark it 578 * mapped. 579 * 580 * If file type is extents based, it will call ext4_ext_map_blocks(), 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 582 * based files 583 * 584 * On success, it returns the number of blocks being mapped or allocated. 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 588 * 589 * It returns 0 if plain look up failed (blocks have not been allocated), in 590 * that case, @map is returned as unmapped but we still do fill map->m_len to 591 * indicate the length of a hole starting at map->m_lblk. 592 * 593 * It returns the error in case of allocation failure. 594 */ 595 int ext4_map_blocks(handle_t *handle, struct inode *inode, 596 struct ext4_map_blocks *map, int flags) 597 { 598 struct extent_status es; 599 int retval; 600 int ret = 0; 601 #ifdef ES_AGGRESSIVE_TEST 602 struct ext4_map_blocks orig_map; 603 604 memcpy(&orig_map, map, sizeof(*map)); 605 #endif 606 607 map->m_flags = 0; 608 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 609 flags, map->m_len, (unsigned long) map->m_lblk); 610 611 /* 612 * ext4_map_blocks returns an int, and m_len is an unsigned int 613 */ 614 if (unlikely(map->m_len > INT_MAX)) 615 map->m_len = INT_MAX; 616 617 /* We can handle the block number less than EXT_MAX_BLOCKS */ 618 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 619 return -EFSCORRUPTED; 620 621 /* Lookup extent status tree firstly */ 622 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 623 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 624 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 625 map->m_pblk = ext4_es_pblock(&es) + 626 map->m_lblk - es.es_lblk; 627 map->m_flags |= ext4_es_is_written(&es) ? 628 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 629 retval = es.es_len - (map->m_lblk - es.es_lblk); 630 if (retval > map->m_len) 631 retval = map->m_len; 632 map->m_len = retval; 633 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 634 map->m_pblk = 0; 635 map->m_flags |= ext4_es_is_delayed(&es) ? 636 EXT4_MAP_DELAYED : 0; 637 retval = es.es_len - (map->m_lblk - es.es_lblk); 638 if (retval > map->m_len) 639 retval = map->m_len; 640 map->m_len = retval; 641 retval = 0; 642 } else { 643 BUG(); 644 } 645 646 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 647 return retval; 648 #ifdef ES_AGGRESSIVE_TEST 649 ext4_map_blocks_es_recheck(handle, inode, map, 650 &orig_map, flags); 651 #endif 652 goto found; 653 } 654 /* 655 * In the query cache no-wait mode, nothing we can do more if we 656 * cannot find extent in the cache. 657 */ 658 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 659 return 0; 660 661 /* 662 * Try to see if we can get the block without requesting a new 663 * file system block. 664 */ 665 down_read(&EXT4_I(inode)->i_data_sem); 666 retval = ext4_map_query_blocks(handle, inode, map); 667 up_read((&EXT4_I(inode)->i_data_sem)); 668 669 found: 670 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 671 ret = check_block_validity(inode, map); 672 if (ret != 0) 673 return ret; 674 } 675 676 /* If it is only a block(s) look up */ 677 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 678 return retval; 679 680 /* 681 * Returns if the blocks have already allocated 682 * 683 * Note that if blocks have been preallocated 684 * ext4_ext_map_blocks() returns with buffer head unmapped 685 */ 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 687 /* 688 * If we need to convert extent to unwritten 689 * we continue and do the actual work in 690 * ext4_ext_map_blocks() 691 */ 692 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 693 return retval; 694 695 /* 696 * New blocks allocate and/or writing to unwritten extent 697 * will possibly result in updating i_data, so we take 698 * the write lock of i_data_sem, and call get_block() 699 * with create == 1 flag. 700 */ 701 down_write(&EXT4_I(inode)->i_data_sem); 702 retval = ext4_map_create_blocks(handle, inode, map, flags); 703 up_write((&EXT4_I(inode)->i_data_sem)); 704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 705 ret = check_block_validity(inode, map); 706 if (ret != 0) 707 return ret; 708 709 /* 710 * Inodes with freshly allocated blocks where contents will be 711 * visible after transaction commit must be on transaction's 712 * ordered data list. 713 */ 714 if (map->m_flags & EXT4_MAP_NEW && 715 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 716 !(flags & EXT4_GET_BLOCKS_ZERO) && 717 !ext4_is_quota_file(inode) && 718 ext4_should_order_data(inode)) { 719 loff_t start_byte = 720 (loff_t)map->m_lblk << inode->i_blkbits; 721 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 722 723 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 724 ret = ext4_jbd2_inode_add_wait(handle, inode, 725 start_byte, length); 726 else 727 ret = ext4_jbd2_inode_add_write(handle, inode, 728 start_byte, length); 729 if (ret) 730 return ret; 731 } 732 } 733 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 734 map->m_flags & EXT4_MAP_MAPPED)) 735 ext4_fc_track_range(handle, inode, map->m_lblk, 736 map->m_lblk + map->m_len - 1); 737 if (retval < 0) 738 ext_debug(inode, "failed with err %d\n", retval); 739 return retval; 740 } 741 742 /* 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 744 * we have to be careful as someone else may be manipulating b_state as well. 745 */ 746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 747 { 748 unsigned long old_state; 749 unsigned long new_state; 750 751 flags &= EXT4_MAP_FLAGS; 752 753 /* Dummy buffer_head? Set non-atomically. */ 754 if (!bh->b_page) { 755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 756 return; 757 } 758 /* 759 * Someone else may be modifying b_state. Be careful! This is ugly but 760 * once we get rid of using bh as a container for mapping information 761 * to pass to / from get_block functions, this can go away. 762 */ 763 old_state = READ_ONCE(bh->b_state); 764 do { 765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 766 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 767 } 768 769 static int _ext4_get_block(struct inode *inode, sector_t iblock, 770 struct buffer_head *bh, int flags) 771 { 772 struct ext4_map_blocks map; 773 int ret = 0; 774 775 if (ext4_has_inline_data(inode)) 776 return -ERANGE; 777 778 map.m_lblk = iblock; 779 map.m_len = bh->b_size >> inode->i_blkbits; 780 781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 782 flags); 783 if (ret > 0) { 784 map_bh(bh, inode->i_sb, map.m_pblk); 785 ext4_update_bh_state(bh, map.m_flags); 786 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 787 ret = 0; 788 } else if (ret == 0) { 789 /* hole case, need to fill in bh->b_size */ 790 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 791 } 792 return ret; 793 } 794 795 int ext4_get_block(struct inode *inode, sector_t iblock, 796 struct buffer_head *bh, int create) 797 { 798 return _ext4_get_block(inode, iblock, bh, 799 create ? EXT4_GET_BLOCKS_CREATE : 0); 800 } 801 802 /* 803 * Get block function used when preparing for buffered write if we require 804 * creating an unwritten extent if blocks haven't been allocated. The extent 805 * will be converted to written after the IO is complete. 806 */ 807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh_result, int create) 809 { 810 int ret = 0; 811 812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 813 inode->i_ino, create); 814 ret = _ext4_get_block(inode, iblock, bh_result, 815 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 816 817 /* 818 * If the buffer is marked unwritten, mark it as new to make sure it is 819 * zeroed out correctly in case of partial writes. Otherwise, there is 820 * a chance of stale data getting exposed. 821 */ 822 if (ret == 0 && buffer_unwritten(bh_result)) 823 set_buffer_new(bh_result); 824 825 return ret; 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 841 int err; 842 843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 844 || handle != NULL || create == 0); 845 ASSERT(create == 0 || !nowait); 846 847 map.m_lblk = block; 848 map.m_len = 1; 849 err = ext4_map_blocks(handle, inode, &map, map_flags); 850 851 if (err == 0) 852 return create ? ERR_PTR(-ENOSPC) : NULL; 853 if (err < 0) 854 return ERR_PTR(err); 855 856 if (nowait) 857 return sb_find_get_block(inode->i_sb, map.m_pblk); 858 859 /* 860 * Since bh could introduce extra ref count such as referred by 861 * journal_head etc. Try to avoid using __GFP_MOVABLE here 862 * as it may fail the migration when journal_head remains. 863 */ 864 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 865 inode->i_sb->s_blocksize); 866 867 if (unlikely(!bh)) 868 return ERR_PTR(-ENOMEM); 869 if (map.m_flags & EXT4_MAP_NEW) { 870 ASSERT(create != 0); 871 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 872 || (handle != NULL)); 873 874 /* 875 * Now that we do not always journal data, we should 876 * keep in mind whether this should always journal the 877 * new buffer as metadata. For now, regular file 878 * writes use ext4_get_block instead, so it's not a 879 * problem. 880 */ 881 lock_buffer(bh); 882 BUFFER_TRACE(bh, "call get_create_access"); 883 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 884 EXT4_JTR_NONE); 885 if (unlikely(err)) { 886 unlock_buffer(bh); 887 goto errout; 888 } 889 if (!buffer_uptodate(bh)) { 890 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 891 set_buffer_uptodate(bh); 892 } 893 unlock_buffer(bh); 894 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 895 err = ext4_handle_dirty_metadata(handle, inode, bh); 896 if (unlikely(err)) 897 goto errout; 898 } else 899 BUFFER_TRACE(bh, "not a new buffer"); 900 return bh; 901 errout: 902 brelse(bh); 903 return ERR_PTR(err); 904 } 905 906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 907 ext4_lblk_t block, int map_flags) 908 { 909 struct buffer_head *bh; 910 int ret; 911 912 bh = ext4_getblk(handle, inode, block, map_flags); 913 if (IS_ERR(bh)) 914 return bh; 915 if (!bh || ext4_buffer_uptodate(bh)) 916 return bh; 917 918 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 919 if (ret) { 920 put_bh(bh); 921 return ERR_PTR(ret); 922 } 923 return bh; 924 } 925 926 /* Read a contiguous batch of blocks. */ 927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 928 bool wait, struct buffer_head **bhs) 929 { 930 int i, err; 931 932 for (i = 0; i < bh_count; i++) { 933 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 934 if (IS_ERR(bhs[i])) { 935 err = PTR_ERR(bhs[i]); 936 bh_count = i; 937 goto out_brelse; 938 } 939 } 940 941 for (i = 0; i < bh_count; i++) 942 /* Note that NULL bhs[i] is valid because of holes. */ 943 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 944 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 945 946 if (!wait) 947 return 0; 948 949 for (i = 0; i < bh_count; i++) 950 if (bhs[i]) 951 wait_on_buffer(bhs[i]); 952 953 for (i = 0; i < bh_count; i++) { 954 if (bhs[i] && !buffer_uptodate(bhs[i])) { 955 err = -EIO; 956 goto out_brelse; 957 } 958 } 959 return 0; 960 961 out_brelse: 962 for (i = 0; i < bh_count; i++) { 963 brelse(bhs[i]); 964 bhs[i] = NULL; 965 } 966 return err; 967 } 968 969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 970 struct buffer_head *head, 971 unsigned from, 972 unsigned to, 973 int *partial, 974 int (*fn)(handle_t *handle, struct inode *inode, 975 struct buffer_head *bh)) 976 { 977 struct buffer_head *bh; 978 unsigned block_start, block_end; 979 unsigned blocksize = head->b_size; 980 int err, ret = 0; 981 struct buffer_head *next; 982 983 for (bh = head, block_start = 0; 984 ret == 0 && (bh != head || !block_start); 985 block_start = block_end, bh = next) { 986 next = bh->b_this_page; 987 block_end = block_start + blocksize; 988 if (block_end <= from || block_start >= to) { 989 if (partial && !buffer_uptodate(bh)) 990 *partial = 1; 991 continue; 992 } 993 err = (*fn)(handle, inode, bh); 994 if (!ret) 995 ret = err; 996 } 997 return ret; 998 } 999 1000 /* 1001 * Helper for handling dirtying of journalled data. We also mark the folio as 1002 * dirty so that writeback code knows about this page (and inode) contains 1003 * dirty data. ext4_writepages() then commits appropriate transaction to 1004 * make data stable. 1005 */ 1006 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1007 { 1008 folio_mark_dirty(bh->b_folio); 1009 return ext4_handle_dirty_metadata(handle, NULL, bh); 1010 } 1011 1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1013 struct buffer_head *bh) 1014 { 1015 if (!buffer_mapped(bh) || buffer_freed(bh)) 1016 return 0; 1017 BUFFER_TRACE(bh, "get write access"); 1018 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1019 EXT4_JTR_NONE); 1020 } 1021 1022 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1023 loff_t pos, unsigned len, 1024 get_block_t *get_block) 1025 { 1026 unsigned from = pos & (PAGE_SIZE - 1); 1027 unsigned to = from + len; 1028 struct inode *inode = folio->mapping->host; 1029 unsigned block_start, block_end; 1030 sector_t block; 1031 int err = 0; 1032 unsigned blocksize = inode->i_sb->s_blocksize; 1033 unsigned bbits; 1034 struct buffer_head *bh, *head, *wait[2]; 1035 int nr_wait = 0; 1036 int i; 1037 bool should_journal_data = ext4_should_journal_data(inode); 1038 1039 BUG_ON(!folio_test_locked(folio)); 1040 BUG_ON(from > PAGE_SIZE); 1041 BUG_ON(to > PAGE_SIZE); 1042 BUG_ON(from > to); 1043 1044 head = folio_buffers(folio); 1045 if (!head) 1046 head = create_empty_buffers(folio, blocksize, 0); 1047 bbits = ilog2(blocksize); 1048 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1049 1050 for (bh = head, block_start = 0; bh != head || !block_start; 1051 block++, block_start = block_end, bh = bh->b_this_page) { 1052 block_end = block_start + blocksize; 1053 if (block_end <= from || block_start >= to) { 1054 if (folio_test_uptodate(folio)) { 1055 set_buffer_uptodate(bh); 1056 } 1057 continue; 1058 } 1059 if (buffer_new(bh)) 1060 clear_buffer_new(bh); 1061 if (!buffer_mapped(bh)) { 1062 WARN_ON(bh->b_size != blocksize); 1063 err = get_block(inode, block, bh, 1); 1064 if (err) 1065 break; 1066 if (buffer_new(bh)) { 1067 /* 1068 * We may be zeroing partial buffers or all new 1069 * buffers in case of failure. Prepare JBD2 for 1070 * that. 1071 */ 1072 if (should_journal_data) 1073 do_journal_get_write_access(handle, 1074 inode, bh); 1075 if (folio_test_uptodate(folio)) { 1076 /* 1077 * Unlike __block_write_begin() we leave 1078 * dirtying of new uptodate buffers to 1079 * ->write_end() time or 1080 * folio_zero_new_buffers(). 1081 */ 1082 set_buffer_uptodate(bh); 1083 continue; 1084 } 1085 if (block_end > to || block_start < from) 1086 folio_zero_segments(folio, to, 1087 block_end, 1088 block_start, from); 1089 continue; 1090 } 1091 } 1092 if (folio_test_uptodate(folio)) { 1093 set_buffer_uptodate(bh); 1094 continue; 1095 } 1096 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1097 !buffer_unwritten(bh) && 1098 (block_start < from || block_end > to)) { 1099 ext4_read_bh_lock(bh, 0, false); 1100 wait[nr_wait++] = bh; 1101 } 1102 } 1103 /* 1104 * If we issued read requests, let them complete. 1105 */ 1106 for (i = 0; i < nr_wait; i++) { 1107 wait_on_buffer(wait[i]); 1108 if (!buffer_uptodate(wait[i])) 1109 err = -EIO; 1110 } 1111 if (unlikely(err)) { 1112 if (should_journal_data) 1113 ext4_journalled_zero_new_buffers(handle, inode, folio, 1114 from, to); 1115 else 1116 folio_zero_new_buffers(folio, from, to); 1117 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1118 for (i = 0; i < nr_wait; i++) { 1119 int err2; 1120 1121 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1122 blocksize, bh_offset(wait[i])); 1123 if (err2) { 1124 clear_buffer_uptodate(wait[i]); 1125 err = err2; 1126 } 1127 } 1128 } 1129 1130 return err; 1131 } 1132 1133 /* 1134 * To preserve ordering, it is essential that the hole instantiation and 1135 * the data write be encapsulated in a single transaction. We cannot 1136 * close off a transaction and start a new one between the ext4_get_block() 1137 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1138 * ext4_write_begin() is the right place. 1139 */ 1140 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1141 loff_t pos, unsigned len, 1142 struct folio **foliop, void **fsdata) 1143 { 1144 struct inode *inode = mapping->host; 1145 int ret, needed_blocks; 1146 handle_t *handle; 1147 int retries = 0; 1148 struct folio *folio; 1149 pgoff_t index; 1150 unsigned from, to; 1151 1152 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1153 return -EIO; 1154 1155 trace_ext4_write_begin(inode, pos, len); 1156 /* 1157 * Reserve one block more for addition to orphan list in case 1158 * we allocate blocks but write fails for some reason 1159 */ 1160 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1161 index = pos >> PAGE_SHIFT; 1162 from = pos & (PAGE_SIZE - 1); 1163 to = from + len; 1164 1165 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1166 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1167 foliop); 1168 if (ret < 0) 1169 return ret; 1170 if (ret == 1) 1171 return 0; 1172 } 1173 1174 /* 1175 * __filemap_get_folio() can take a long time if the 1176 * system is thrashing due to memory pressure, or if the folio 1177 * is being written back. So grab it first before we start 1178 * the transaction handle. This also allows us to allocate 1179 * the folio (if needed) without using GFP_NOFS. 1180 */ 1181 retry_grab: 1182 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1183 mapping_gfp_mask(mapping)); 1184 if (IS_ERR(folio)) 1185 return PTR_ERR(folio); 1186 /* 1187 * The same as page allocation, we prealloc buffer heads before 1188 * starting the handle. 1189 */ 1190 if (!folio_buffers(folio)) 1191 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1192 1193 folio_unlock(folio); 1194 1195 retry_journal: 1196 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1197 if (IS_ERR(handle)) { 1198 folio_put(folio); 1199 return PTR_ERR(handle); 1200 } 1201 1202 folio_lock(folio); 1203 if (folio->mapping != mapping) { 1204 /* The folio got truncated from under us */ 1205 folio_unlock(folio); 1206 folio_put(folio); 1207 ext4_journal_stop(handle); 1208 goto retry_grab; 1209 } 1210 /* In case writeback began while the folio was unlocked */ 1211 folio_wait_stable(folio); 1212 1213 if (ext4_should_dioread_nolock(inode)) 1214 ret = ext4_block_write_begin(handle, folio, pos, len, 1215 ext4_get_block_unwritten); 1216 else 1217 ret = ext4_block_write_begin(handle, folio, pos, len, 1218 ext4_get_block); 1219 if (!ret && ext4_should_journal_data(inode)) { 1220 ret = ext4_walk_page_buffers(handle, inode, 1221 folio_buffers(folio), from, to, 1222 NULL, do_journal_get_write_access); 1223 } 1224 1225 if (ret) { 1226 bool extended = (pos + len > inode->i_size) && 1227 !ext4_verity_in_progress(inode); 1228 1229 folio_unlock(folio); 1230 /* 1231 * ext4_block_write_begin may have instantiated a few blocks 1232 * outside i_size. Trim these off again. Don't need 1233 * i_size_read because we hold i_rwsem. 1234 * 1235 * Add inode to orphan list in case we crash before 1236 * truncate finishes 1237 */ 1238 if (extended && ext4_can_truncate(inode)) 1239 ext4_orphan_add(handle, inode); 1240 1241 ext4_journal_stop(handle); 1242 if (extended) { 1243 ext4_truncate_failed_write(inode); 1244 /* 1245 * If truncate failed early the inode might 1246 * still be on the orphan list; we need to 1247 * make sure the inode is removed from the 1248 * orphan list in that case. 1249 */ 1250 if (inode->i_nlink) 1251 ext4_orphan_del(NULL, inode); 1252 } 1253 1254 if (ret == -ENOSPC && 1255 ext4_should_retry_alloc(inode->i_sb, &retries)) 1256 goto retry_journal; 1257 folio_put(folio); 1258 return ret; 1259 } 1260 *foliop = folio; 1261 return ret; 1262 } 1263 1264 /* For write_end() in data=journal mode */ 1265 static int write_end_fn(handle_t *handle, struct inode *inode, 1266 struct buffer_head *bh) 1267 { 1268 int ret; 1269 if (!buffer_mapped(bh) || buffer_freed(bh)) 1270 return 0; 1271 set_buffer_uptodate(bh); 1272 ret = ext4_dirty_journalled_data(handle, bh); 1273 clear_buffer_meta(bh); 1274 clear_buffer_prio(bh); 1275 return ret; 1276 } 1277 1278 /* 1279 * We need to pick up the new inode size which generic_commit_write gave us 1280 * `file' can be NULL - eg, when called from page_symlink(). 1281 * 1282 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1283 * buffers are managed internally. 1284 */ 1285 static int ext4_write_end(struct file *file, 1286 struct address_space *mapping, 1287 loff_t pos, unsigned len, unsigned copied, 1288 struct folio *folio, void *fsdata) 1289 { 1290 handle_t *handle = ext4_journal_current_handle(); 1291 struct inode *inode = mapping->host; 1292 loff_t old_size = inode->i_size; 1293 int ret = 0, ret2; 1294 int i_size_changed = 0; 1295 bool verity = ext4_verity_in_progress(inode); 1296 1297 trace_ext4_write_end(inode, pos, len, copied); 1298 1299 if (ext4_has_inline_data(inode) && 1300 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1301 return ext4_write_inline_data_end(inode, pos, len, copied, 1302 folio); 1303 1304 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 1305 /* 1306 * it's important to update i_size while still holding folio lock: 1307 * page writeout could otherwise come in and zero beyond i_size. 1308 * 1309 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1310 * blocks are being written past EOF, so skip the i_size update. 1311 */ 1312 if (!verity) 1313 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1314 folio_unlock(folio); 1315 folio_put(folio); 1316 1317 if (old_size < pos && !verity) { 1318 pagecache_isize_extended(inode, old_size, pos); 1319 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1320 } 1321 /* 1322 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1323 * makes the holding time of folio lock longer. Second, it forces lock 1324 * ordering of folio lock and transaction start for journaling 1325 * filesystems. 1326 */ 1327 if (i_size_changed) 1328 ret = ext4_mark_inode_dirty(handle, inode); 1329 1330 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1331 /* if we have allocated more blocks and copied 1332 * less. We will have blocks allocated outside 1333 * inode->i_size. So truncate them 1334 */ 1335 ext4_orphan_add(handle, inode); 1336 1337 ret2 = ext4_journal_stop(handle); 1338 if (!ret) 1339 ret = ret2; 1340 1341 if (pos + len > inode->i_size && !verity) { 1342 ext4_truncate_failed_write(inode); 1343 /* 1344 * If truncate failed early the inode might still be 1345 * on the orphan list; we need to make sure the inode 1346 * is removed from the orphan list in that case. 1347 */ 1348 if (inode->i_nlink) 1349 ext4_orphan_del(NULL, inode); 1350 } 1351 1352 return ret ? ret : copied; 1353 } 1354 1355 /* 1356 * This is a private version of folio_zero_new_buffers() which doesn't 1357 * set the buffer to be dirty, since in data=journalled mode we need 1358 * to call ext4_dirty_journalled_data() instead. 1359 */ 1360 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1361 struct inode *inode, 1362 struct folio *folio, 1363 unsigned from, unsigned to) 1364 { 1365 unsigned int block_start = 0, block_end; 1366 struct buffer_head *head, *bh; 1367 1368 bh = head = folio_buffers(folio); 1369 do { 1370 block_end = block_start + bh->b_size; 1371 if (buffer_new(bh)) { 1372 if (block_end > from && block_start < to) { 1373 if (!folio_test_uptodate(folio)) { 1374 unsigned start, size; 1375 1376 start = max(from, block_start); 1377 size = min(to, block_end) - start; 1378 1379 folio_zero_range(folio, start, size); 1380 } 1381 clear_buffer_new(bh); 1382 write_end_fn(handle, inode, bh); 1383 } 1384 } 1385 block_start = block_end; 1386 bh = bh->b_this_page; 1387 } while (bh != head); 1388 } 1389 1390 static int ext4_journalled_write_end(struct file *file, 1391 struct address_space *mapping, 1392 loff_t pos, unsigned len, unsigned copied, 1393 struct folio *folio, void *fsdata) 1394 { 1395 handle_t *handle = ext4_journal_current_handle(); 1396 struct inode *inode = mapping->host; 1397 loff_t old_size = inode->i_size; 1398 int ret = 0, ret2; 1399 int partial = 0; 1400 unsigned from, to; 1401 int size_changed = 0; 1402 bool verity = ext4_verity_in_progress(inode); 1403 1404 trace_ext4_journalled_write_end(inode, pos, len, copied); 1405 from = pos & (PAGE_SIZE - 1); 1406 to = from + len; 1407 1408 BUG_ON(!ext4_handle_valid(handle)); 1409 1410 if (ext4_has_inline_data(inode)) 1411 return ext4_write_inline_data_end(inode, pos, len, copied, 1412 folio); 1413 1414 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1415 copied = 0; 1416 ext4_journalled_zero_new_buffers(handle, inode, folio, 1417 from, to); 1418 } else { 1419 if (unlikely(copied < len)) 1420 ext4_journalled_zero_new_buffers(handle, inode, folio, 1421 from + copied, to); 1422 ret = ext4_walk_page_buffers(handle, inode, 1423 folio_buffers(folio), 1424 from, from + copied, &partial, 1425 write_end_fn); 1426 if (!partial) 1427 folio_mark_uptodate(folio); 1428 } 1429 if (!verity) 1430 size_changed = ext4_update_inode_size(inode, pos + copied); 1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1432 folio_unlock(folio); 1433 folio_put(folio); 1434 1435 if (old_size < pos && !verity) { 1436 pagecache_isize_extended(inode, old_size, pos); 1437 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1438 } 1439 1440 if (size_changed) { 1441 ret2 = ext4_mark_inode_dirty(handle, inode); 1442 if (!ret) 1443 ret = ret2; 1444 } 1445 1446 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1447 /* if we have allocated more blocks and copied 1448 * less. We will have blocks allocated outside 1449 * inode->i_size. So truncate them 1450 */ 1451 ext4_orphan_add(handle, inode); 1452 1453 ret2 = ext4_journal_stop(handle); 1454 if (!ret) 1455 ret = ret2; 1456 if (pos + len > inode->i_size && !verity) { 1457 ext4_truncate_failed_write(inode); 1458 /* 1459 * If truncate failed early the inode might still be 1460 * on the orphan list; we need to make sure the inode 1461 * is removed from the orphan list in that case. 1462 */ 1463 if (inode->i_nlink) 1464 ext4_orphan_del(NULL, inode); 1465 } 1466 1467 return ret ? ret : copied; 1468 } 1469 1470 /* 1471 * Reserve space for 'nr_resv' clusters 1472 */ 1473 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1474 { 1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1476 struct ext4_inode_info *ei = EXT4_I(inode); 1477 int ret; 1478 1479 /* 1480 * We will charge metadata quota at writeout time; this saves 1481 * us from metadata over-estimation, though we may go over by 1482 * a small amount in the end. Here we just reserve for data. 1483 */ 1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1485 if (ret) 1486 return ret; 1487 1488 spin_lock(&ei->i_block_reservation_lock); 1489 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1490 spin_unlock(&ei->i_block_reservation_lock); 1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1492 return -ENOSPC; 1493 } 1494 ei->i_reserved_data_blocks += nr_resv; 1495 trace_ext4_da_reserve_space(inode, nr_resv); 1496 spin_unlock(&ei->i_block_reservation_lock); 1497 1498 return 0; /* success */ 1499 } 1500 1501 void ext4_da_release_space(struct inode *inode, int to_free) 1502 { 1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1504 struct ext4_inode_info *ei = EXT4_I(inode); 1505 1506 if (!to_free) 1507 return; /* Nothing to release, exit */ 1508 1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1510 1511 trace_ext4_da_release_space(inode, to_free); 1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1513 /* 1514 * if there aren't enough reserved blocks, then the 1515 * counter is messed up somewhere. Since this 1516 * function is called from invalidate page, it's 1517 * harmless to return without any action. 1518 */ 1519 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1520 "ino %lu, to_free %d with only %d reserved " 1521 "data blocks", inode->i_ino, to_free, 1522 ei->i_reserved_data_blocks); 1523 WARN_ON(1); 1524 to_free = ei->i_reserved_data_blocks; 1525 } 1526 ei->i_reserved_data_blocks -= to_free; 1527 1528 /* update fs dirty data blocks counter */ 1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1530 1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1532 1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1534 } 1535 1536 /* 1537 * Delayed allocation stuff 1538 */ 1539 1540 struct mpage_da_data { 1541 /* These are input fields for ext4_do_writepages() */ 1542 struct inode *inode; 1543 struct writeback_control *wbc; 1544 unsigned int can_map:1; /* Can writepages call map blocks? */ 1545 1546 /* These are internal state of ext4_do_writepages() */ 1547 pgoff_t first_page; /* The first page to write */ 1548 pgoff_t next_page; /* Current page to examine */ 1549 pgoff_t last_page; /* Last page to examine */ 1550 /* 1551 * Extent to map - this can be after first_page because that can be 1552 * fully mapped. We somewhat abuse m_flags to store whether the extent 1553 * is delalloc or unwritten. 1554 */ 1555 struct ext4_map_blocks map; 1556 struct ext4_io_submit io_submit; /* IO submission data */ 1557 unsigned int do_map:1; 1558 unsigned int scanned_until_end:1; 1559 unsigned int journalled_more_data:1; 1560 }; 1561 1562 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1563 bool invalidate) 1564 { 1565 unsigned nr, i; 1566 pgoff_t index, end; 1567 struct folio_batch fbatch; 1568 struct inode *inode = mpd->inode; 1569 struct address_space *mapping = inode->i_mapping; 1570 1571 /* This is necessary when next_page == 0. */ 1572 if (mpd->first_page >= mpd->next_page) 1573 return; 1574 1575 mpd->scanned_until_end = 0; 1576 index = mpd->first_page; 1577 end = mpd->next_page - 1; 1578 if (invalidate) { 1579 ext4_lblk_t start, last; 1580 start = index << (PAGE_SHIFT - inode->i_blkbits); 1581 last = end << (PAGE_SHIFT - inode->i_blkbits); 1582 1583 /* 1584 * avoid racing with extent status tree scans made by 1585 * ext4_insert_delayed_block() 1586 */ 1587 down_write(&EXT4_I(inode)->i_data_sem); 1588 ext4_es_remove_extent(inode, start, last - start + 1); 1589 up_write(&EXT4_I(inode)->i_data_sem); 1590 } 1591 1592 folio_batch_init(&fbatch); 1593 while (index <= end) { 1594 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1595 if (nr == 0) 1596 break; 1597 for (i = 0; i < nr; i++) { 1598 struct folio *folio = fbatch.folios[i]; 1599 1600 if (folio->index < mpd->first_page) 1601 continue; 1602 if (folio_next_index(folio) - 1 > end) 1603 continue; 1604 BUG_ON(!folio_test_locked(folio)); 1605 BUG_ON(folio_test_writeback(folio)); 1606 if (invalidate) { 1607 if (folio_mapped(folio)) 1608 folio_clear_dirty_for_io(folio); 1609 block_invalidate_folio(folio, 0, 1610 folio_size(folio)); 1611 folio_clear_uptodate(folio); 1612 } 1613 folio_unlock(folio); 1614 } 1615 folio_batch_release(&fbatch); 1616 } 1617 } 1618 1619 static void ext4_print_free_blocks(struct inode *inode) 1620 { 1621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1622 struct super_block *sb = inode->i_sb; 1623 struct ext4_inode_info *ei = EXT4_I(inode); 1624 1625 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1626 EXT4_C2B(EXT4_SB(inode->i_sb), 1627 ext4_count_free_clusters(sb))); 1628 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1629 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1630 (long long) EXT4_C2B(EXT4_SB(sb), 1631 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1632 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1633 (long long) EXT4_C2B(EXT4_SB(sb), 1634 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1635 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1636 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1637 ei->i_reserved_data_blocks); 1638 return; 1639 } 1640 1641 /* 1642 * Check whether the cluster containing lblk has been allocated or has 1643 * delalloc reservation. 1644 * 1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1646 * reservation, 2 if it's already been allocated, negative error code on 1647 * failure. 1648 */ 1649 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1650 { 1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1652 int ret; 1653 1654 /* Has delalloc reservation? */ 1655 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1656 return 1; 1657 1658 /* Already been allocated? */ 1659 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1660 return 2; 1661 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1662 if (ret < 0) 1663 return ret; 1664 if (ret > 0) 1665 return 2; 1666 1667 return 0; 1668 } 1669 1670 /* 1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1672 * status tree, incrementing the reserved 1673 * cluster/block count or making pending 1674 * reservations where needed 1675 * 1676 * @inode - file containing the newly added block 1677 * @lblk - start logical block to be added 1678 * @len - length of blocks to be added 1679 * 1680 * Returns 0 on success, negative error code on failure. 1681 */ 1682 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1683 ext4_lblk_t len) 1684 { 1685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1686 int ret; 1687 bool lclu_allocated = false; 1688 bool end_allocated = false; 1689 ext4_lblk_t resv_clu; 1690 ext4_lblk_t end = lblk + len - 1; 1691 1692 /* 1693 * If the cluster containing lblk or end is shared with a delayed, 1694 * written, or unwritten extent in a bigalloc file system, it's 1695 * already been accounted for and does not need to be reserved. 1696 * A pending reservation must be made for the cluster if it's 1697 * shared with a written or unwritten extent and doesn't already 1698 * have one. Written and unwritten extents can be purged from the 1699 * extents status tree if the system is under memory pressure, so 1700 * it's necessary to examine the extent tree if a search of the 1701 * extents status tree doesn't get a match. 1702 */ 1703 if (sbi->s_cluster_ratio == 1) { 1704 ret = ext4_da_reserve_space(inode, len); 1705 if (ret != 0) /* ENOSPC */ 1706 return ret; 1707 } else { /* bigalloc */ 1708 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1709 1710 ret = ext4_clu_alloc_state(inode, lblk); 1711 if (ret < 0) 1712 return ret; 1713 if (ret > 0) { 1714 resv_clu--; 1715 lclu_allocated = (ret == 2); 1716 } 1717 1718 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1719 ret = ext4_clu_alloc_state(inode, end); 1720 if (ret < 0) 1721 return ret; 1722 if (ret > 0) { 1723 resv_clu--; 1724 end_allocated = (ret == 2); 1725 } 1726 } 1727 1728 if (resv_clu) { 1729 ret = ext4_da_reserve_space(inode, resv_clu); 1730 if (ret != 0) /* ENOSPC */ 1731 return ret; 1732 } 1733 } 1734 1735 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1736 end_allocated); 1737 return 0; 1738 } 1739 1740 /* 1741 * Looks up the requested blocks and sets the delalloc extent map. 1742 * First try to look up for the extent entry that contains the requested 1743 * blocks in the extent status tree without i_data_sem, then try to look 1744 * up for the ondisk extent mapping with i_data_sem in read mode, 1745 * finally hold i_data_sem in write mode, looks up again and add a 1746 * delalloc extent entry if it still couldn't find any extent. Pass out 1747 * the mapped extent through @map and return 0 on success. 1748 */ 1749 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1750 { 1751 struct extent_status es; 1752 int retval; 1753 #ifdef ES_AGGRESSIVE_TEST 1754 struct ext4_map_blocks orig_map; 1755 1756 memcpy(&orig_map, map, sizeof(*map)); 1757 #endif 1758 1759 map->m_flags = 0; 1760 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1761 (unsigned long) map->m_lblk); 1762 1763 /* Lookup extent status tree firstly */ 1764 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1765 map->m_len = min_t(unsigned int, map->m_len, 1766 es.es_len - (map->m_lblk - es.es_lblk)); 1767 1768 if (ext4_es_is_hole(&es)) 1769 goto add_delayed; 1770 1771 found: 1772 /* 1773 * Delayed extent could be allocated by fallocate. 1774 * So we need to check it. 1775 */ 1776 if (ext4_es_is_delayed(&es)) { 1777 map->m_flags |= EXT4_MAP_DELAYED; 1778 return 0; 1779 } 1780 1781 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1782 if (ext4_es_is_written(&es)) 1783 map->m_flags |= EXT4_MAP_MAPPED; 1784 else if (ext4_es_is_unwritten(&es)) 1785 map->m_flags |= EXT4_MAP_UNWRITTEN; 1786 else 1787 BUG(); 1788 1789 #ifdef ES_AGGRESSIVE_TEST 1790 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1791 #endif 1792 return 0; 1793 } 1794 1795 /* 1796 * Try to see if we can get the block without requesting a new 1797 * file system block. 1798 */ 1799 down_read(&EXT4_I(inode)->i_data_sem); 1800 if (ext4_has_inline_data(inode)) 1801 retval = 0; 1802 else 1803 retval = ext4_map_query_blocks(NULL, inode, map); 1804 up_read(&EXT4_I(inode)->i_data_sem); 1805 if (retval) 1806 return retval < 0 ? retval : 0; 1807 1808 add_delayed: 1809 down_write(&EXT4_I(inode)->i_data_sem); 1810 /* 1811 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1812 * and fallocate path (no folio lock) can race. Make sure we 1813 * lookup the extent status tree here again while i_data_sem 1814 * is held in write mode, before inserting a new da entry in 1815 * the extent status tree. 1816 */ 1817 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1818 map->m_len = min_t(unsigned int, map->m_len, 1819 es.es_len - (map->m_lblk - es.es_lblk)); 1820 1821 if (!ext4_es_is_hole(&es)) { 1822 up_write(&EXT4_I(inode)->i_data_sem); 1823 goto found; 1824 } 1825 } else if (!ext4_has_inline_data(inode)) { 1826 retval = ext4_map_query_blocks(NULL, inode, map); 1827 if (retval) { 1828 up_write(&EXT4_I(inode)->i_data_sem); 1829 return retval < 0 ? retval : 0; 1830 } 1831 } 1832 1833 map->m_flags |= EXT4_MAP_DELAYED; 1834 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1835 up_write(&EXT4_I(inode)->i_data_sem); 1836 1837 return retval; 1838 } 1839 1840 /* 1841 * This is a special get_block_t callback which is used by 1842 * ext4_da_write_begin(). It will either return mapped block or 1843 * reserve space for a single block. 1844 * 1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1846 * We also have b_blocknr = -1 and b_bdev initialized properly 1847 * 1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1850 * initialized properly. 1851 */ 1852 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1853 struct buffer_head *bh, int create) 1854 { 1855 struct ext4_map_blocks map; 1856 sector_t invalid_block = ~((sector_t) 0xffff); 1857 int ret = 0; 1858 1859 BUG_ON(create == 0); 1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1861 1862 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1863 invalid_block = ~0; 1864 1865 map.m_lblk = iblock; 1866 map.m_len = 1; 1867 1868 /* 1869 * first, we need to know whether the block is allocated already 1870 * preallocated blocks are unmapped but should treated 1871 * the same as allocated blocks. 1872 */ 1873 ret = ext4_da_map_blocks(inode, &map); 1874 if (ret < 0) 1875 return ret; 1876 1877 if (map.m_flags & EXT4_MAP_DELAYED) { 1878 map_bh(bh, inode->i_sb, invalid_block); 1879 set_buffer_new(bh); 1880 set_buffer_delay(bh); 1881 return 0; 1882 } 1883 1884 map_bh(bh, inode->i_sb, map.m_pblk); 1885 ext4_update_bh_state(bh, map.m_flags); 1886 1887 if (buffer_unwritten(bh)) { 1888 /* A delayed write to unwritten bh should be marked 1889 * new and mapped. Mapped ensures that we don't do 1890 * get_block multiple times when we write to the same 1891 * offset and new ensures that we do proper zero out 1892 * for partial write. 1893 */ 1894 set_buffer_new(bh); 1895 set_buffer_mapped(bh); 1896 } 1897 return 0; 1898 } 1899 1900 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1901 { 1902 mpd->first_page += folio_nr_pages(folio); 1903 folio_unlock(folio); 1904 } 1905 1906 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1907 { 1908 size_t len; 1909 loff_t size; 1910 int err; 1911 1912 BUG_ON(folio->index != mpd->first_page); 1913 folio_clear_dirty_for_io(folio); 1914 /* 1915 * We have to be very careful here! Nothing protects writeback path 1916 * against i_size changes and the page can be writeably mapped into 1917 * page tables. So an application can be growing i_size and writing 1918 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1919 * write-protects our page in page tables and the page cannot get 1920 * written to again until we release folio lock. So only after 1921 * folio_clear_dirty_for_io() we are safe to sample i_size for 1922 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1923 * on the barrier provided by folio_test_clear_dirty() in 1924 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1925 * after page tables are updated. 1926 */ 1927 size = i_size_read(mpd->inode); 1928 len = folio_size(folio); 1929 if (folio_pos(folio) + len > size && 1930 !ext4_verity_in_progress(mpd->inode)) 1931 len = size & (len - 1); 1932 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1933 if (!err) 1934 mpd->wbc->nr_to_write--; 1935 1936 return err; 1937 } 1938 1939 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1940 1941 /* 1942 * mballoc gives us at most this number of blocks... 1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1944 * The rest of mballoc seems to handle chunks up to full group size. 1945 */ 1946 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1947 1948 /* 1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1950 * 1951 * @mpd - extent of blocks 1952 * @lblk - logical number of the block in the file 1953 * @bh - buffer head we want to add to the extent 1954 * 1955 * The function is used to collect contig. blocks in the same state. If the 1956 * buffer doesn't require mapping for writeback and we haven't started the 1957 * extent of buffers to map yet, the function returns 'true' immediately - the 1958 * caller can write the buffer right away. Otherwise the function returns true 1959 * if the block has been added to the extent, false if the block couldn't be 1960 * added. 1961 */ 1962 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1963 struct buffer_head *bh) 1964 { 1965 struct ext4_map_blocks *map = &mpd->map; 1966 1967 /* Buffer that doesn't need mapping for writeback? */ 1968 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1969 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1970 /* So far no extent to map => we write the buffer right away */ 1971 if (map->m_len == 0) 1972 return true; 1973 return false; 1974 } 1975 1976 /* First block in the extent? */ 1977 if (map->m_len == 0) { 1978 /* We cannot map unless handle is started... */ 1979 if (!mpd->do_map) 1980 return false; 1981 map->m_lblk = lblk; 1982 map->m_len = 1; 1983 map->m_flags = bh->b_state & BH_FLAGS; 1984 return true; 1985 } 1986 1987 /* Don't go larger than mballoc is willing to allocate */ 1988 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1989 return false; 1990 1991 /* Can we merge the block to our big extent? */ 1992 if (lblk == map->m_lblk + map->m_len && 1993 (bh->b_state & BH_FLAGS) == map->m_flags) { 1994 map->m_len++; 1995 return true; 1996 } 1997 return false; 1998 } 1999 2000 /* 2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2002 * 2003 * @mpd - extent of blocks for mapping 2004 * @head - the first buffer in the page 2005 * @bh - buffer we should start processing from 2006 * @lblk - logical number of the block in the file corresponding to @bh 2007 * 2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2009 * the page for IO if all buffers in this page were mapped and there's no 2010 * accumulated extent of buffers to map or add buffers in the page to the 2011 * extent of buffers to map. The function returns 1 if the caller can continue 2012 * by processing the next page, 0 if it should stop adding buffers to the 2013 * extent to map because we cannot extend it anymore. It can also return value 2014 * < 0 in case of error during IO submission. 2015 */ 2016 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2017 struct buffer_head *head, 2018 struct buffer_head *bh, 2019 ext4_lblk_t lblk) 2020 { 2021 struct inode *inode = mpd->inode; 2022 int err; 2023 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2024 >> inode->i_blkbits; 2025 2026 if (ext4_verity_in_progress(inode)) 2027 blocks = EXT_MAX_BLOCKS; 2028 2029 do { 2030 BUG_ON(buffer_locked(bh)); 2031 2032 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2033 /* Found extent to map? */ 2034 if (mpd->map.m_len) 2035 return 0; 2036 /* Buffer needs mapping and handle is not started? */ 2037 if (!mpd->do_map) 2038 return 0; 2039 /* Everything mapped so far and we hit EOF */ 2040 break; 2041 } 2042 } while (lblk++, (bh = bh->b_this_page) != head); 2043 /* So far everything mapped? Submit the page for IO. */ 2044 if (mpd->map.m_len == 0) { 2045 err = mpage_submit_folio(mpd, head->b_folio); 2046 if (err < 0) 2047 return err; 2048 mpage_folio_done(mpd, head->b_folio); 2049 } 2050 if (lblk >= blocks) { 2051 mpd->scanned_until_end = 1; 2052 return 0; 2053 } 2054 return 1; 2055 } 2056 2057 /* 2058 * mpage_process_folio - update folio buffers corresponding to changed extent 2059 * and may submit fully mapped page for IO 2060 * @mpd: description of extent to map, on return next extent to map 2061 * @folio: Contains these buffers. 2062 * @m_lblk: logical block mapping. 2063 * @m_pblk: corresponding physical mapping. 2064 * @map_bh: determines on return whether this page requires any further 2065 * mapping or not. 2066 * 2067 * Scan given folio buffers corresponding to changed extent and update buffer 2068 * state according to new extent state. 2069 * We map delalloc buffers to their physical location, clear unwritten bits. 2070 * If the given folio is not fully mapped, we update @mpd to the next extent in 2071 * the given folio that needs mapping & return @map_bh as true. 2072 */ 2073 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2074 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2075 bool *map_bh) 2076 { 2077 struct buffer_head *head, *bh; 2078 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2079 ext4_lblk_t lblk = *m_lblk; 2080 ext4_fsblk_t pblock = *m_pblk; 2081 int err = 0; 2082 int blkbits = mpd->inode->i_blkbits; 2083 ssize_t io_end_size = 0; 2084 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2085 2086 bh = head = folio_buffers(folio); 2087 do { 2088 if (lblk < mpd->map.m_lblk) 2089 continue; 2090 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2091 /* 2092 * Buffer after end of mapped extent. 2093 * Find next buffer in the folio to map. 2094 */ 2095 mpd->map.m_len = 0; 2096 mpd->map.m_flags = 0; 2097 io_end_vec->size += io_end_size; 2098 2099 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2100 if (err > 0) 2101 err = 0; 2102 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2103 io_end_vec = ext4_alloc_io_end_vec(io_end); 2104 if (IS_ERR(io_end_vec)) { 2105 err = PTR_ERR(io_end_vec); 2106 goto out; 2107 } 2108 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2109 } 2110 *map_bh = true; 2111 goto out; 2112 } 2113 if (buffer_delay(bh)) { 2114 clear_buffer_delay(bh); 2115 bh->b_blocknr = pblock++; 2116 } 2117 clear_buffer_unwritten(bh); 2118 io_end_size += (1 << blkbits); 2119 } while (lblk++, (bh = bh->b_this_page) != head); 2120 2121 io_end_vec->size += io_end_size; 2122 *map_bh = false; 2123 out: 2124 *m_lblk = lblk; 2125 *m_pblk = pblock; 2126 return err; 2127 } 2128 2129 /* 2130 * mpage_map_buffers - update buffers corresponding to changed extent and 2131 * submit fully mapped pages for IO 2132 * 2133 * @mpd - description of extent to map, on return next extent to map 2134 * 2135 * Scan buffers corresponding to changed extent (we expect corresponding pages 2136 * to be already locked) and update buffer state according to new extent state. 2137 * We map delalloc buffers to their physical location, clear unwritten bits, 2138 * and mark buffers as uninit when we perform writes to unwritten extents 2139 * and do extent conversion after IO is finished. If the last page is not fully 2140 * mapped, we update @map to the next extent in the last page that needs 2141 * mapping. Otherwise we submit the page for IO. 2142 */ 2143 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2144 { 2145 struct folio_batch fbatch; 2146 unsigned nr, i; 2147 struct inode *inode = mpd->inode; 2148 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2149 pgoff_t start, end; 2150 ext4_lblk_t lblk; 2151 ext4_fsblk_t pblock; 2152 int err; 2153 bool map_bh = false; 2154 2155 start = mpd->map.m_lblk >> bpp_bits; 2156 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2157 lblk = start << bpp_bits; 2158 pblock = mpd->map.m_pblk; 2159 2160 folio_batch_init(&fbatch); 2161 while (start <= end) { 2162 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2163 if (nr == 0) 2164 break; 2165 for (i = 0; i < nr; i++) { 2166 struct folio *folio = fbatch.folios[i]; 2167 2168 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2169 &map_bh); 2170 /* 2171 * If map_bh is true, means page may require further bh 2172 * mapping, or maybe the page was submitted for IO. 2173 * So we return to call further extent mapping. 2174 */ 2175 if (err < 0 || map_bh) 2176 goto out; 2177 /* Page fully mapped - let IO run! */ 2178 err = mpage_submit_folio(mpd, folio); 2179 if (err < 0) 2180 goto out; 2181 mpage_folio_done(mpd, folio); 2182 } 2183 folio_batch_release(&fbatch); 2184 } 2185 /* Extent fully mapped and matches with page boundary. We are done. */ 2186 mpd->map.m_len = 0; 2187 mpd->map.m_flags = 0; 2188 return 0; 2189 out: 2190 folio_batch_release(&fbatch); 2191 return err; 2192 } 2193 2194 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2195 { 2196 struct inode *inode = mpd->inode; 2197 struct ext4_map_blocks *map = &mpd->map; 2198 int get_blocks_flags; 2199 int err, dioread_nolock; 2200 2201 trace_ext4_da_write_pages_extent(inode, map); 2202 /* 2203 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2204 * to convert an unwritten extent to be initialized (in the case 2205 * where we have written into one or more preallocated blocks). It is 2206 * possible that we're going to need more metadata blocks than 2207 * previously reserved. However we must not fail because we're in 2208 * writeback and there is nothing we can do about it so it might result 2209 * in data loss. So use reserved blocks to allocate metadata if 2210 * possible. 2211 */ 2212 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2213 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2214 EXT4_GET_BLOCKS_IO_SUBMIT; 2215 dioread_nolock = ext4_should_dioread_nolock(inode); 2216 if (dioread_nolock) 2217 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2218 2219 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2220 if (err < 0) 2221 return err; 2222 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2223 if (!mpd->io_submit.io_end->handle && 2224 ext4_handle_valid(handle)) { 2225 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2226 handle->h_rsv_handle = NULL; 2227 } 2228 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2229 } 2230 2231 BUG_ON(map->m_len == 0); 2232 return 0; 2233 } 2234 2235 /* 2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2237 * mpd->len and submit pages underlying it for IO 2238 * 2239 * @handle - handle for journal operations 2240 * @mpd - extent to map 2241 * @give_up_on_write - we set this to true iff there is a fatal error and there 2242 * is no hope of writing the data. The caller should discard 2243 * dirty pages to avoid infinite loops. 2244 * 2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2247 * them to initialized or split the described range from larger unwritten 2248 * extent. Note that we need not map all the described range since allocation 2249 * can return less blocks or the range is covered by more unwritten extents. We 2250 * cannot map more because we are limited by reserved transaction credits. On 2251 * the other hand we always make sure that the last touched page is fully 2252 * mapped so that it can be written out (and thus forward progress is 2253 * guaranteed). After mapping we submit all mapped pages for IO. 2254 */ 2255 static int mpage_map_and_submit_extent(handle_t *handle, 2256 struct mpage_da_data *mpd, 2257 bool *give_up_on_write) 2258 { 2259 struct inode *inode = mpd->inode; 2260 struct ext4_map_blocks *map = &mpd->map; 2261 int err; 2262 loff_t disksize; 2263 int progress = 0; 2264 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2265 struct ext4_io_end_vec *io_end_vec; 2266 2267 io_end_vec = ext4_alloc_io_end_vec(io_end); 2268 if (IS_ERR(io_end_vec)) 2269 return PTR_ERR(io_end_vec); 2270 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2271 do { 2272 err = mpage_map_one_extent(handle, mpd); 2273 if (err < 0) { 2274 struct super_block *sb = inode->i_sb; 2275 2276 if (ext4_forced_shutdown(sb)) 2277 goto invalidate_dirty_pages; 2278 /* 2279 * Let the uper layers retry transient errors. 2280 * In the case of ENOSPC, if ext4_count_free_blocks() 2281 * is non-zero, a commit should free up blocks. 2282 */ 2283 if ((err == -ENOMEM) || 2284 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2285 if (progress) 2286 goto update_disksize; 2287 return err; 2288 } 2289 ext4_msg(sb, KERN_CRIT, 2290 "Delayed block allocation failed for " 2291 "inode %lu at logical offset %llu with" 2292 " max blocks %u with error %d", 2293 inode->i_ino, 2294 (unsigned long long)map->m_lblk, 2295 (unsigned)map->m_len, -err); 2296 ext4_msg(sb, KERN_CRIT, 2297 "This should not happen!! Data will " 2298 "be lost\n"); 2299 if (err == -ENOSPC) 2300 ext4_print_free_blocks(inode); 2301 invalidate_dirty_pages: 2302 *give_up_on_write = true; 2303 return err; 2304 } 2305 progress = 1; 2306 /* 2307 * Update buffer state, submit mapped pages, and get us new 2308 * extent to map 2309 */ 2310 err = mpage_map_and_submit_buffers(mpd); 2311 if (err < 0) 2312 goto update_disksize; 2313 } while (map->m_len); 2314 2315 update_disksize: 2316 /* 2317 * Update on-disk size after IO is submitted. Races with 2318 * truncate are avoided by checking i_size under i_data_sem. 2319 */ 2320 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2321 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2322 int err2; 2323 loff_t i_size; 2324 2325 down_write(&EXT4_I(inode)->i_data_sem); 2326 i_size = i_size_read(inode); 2327 if (disksize > i_size) 2328 disksize = i_size; 2329 if (disksize > EXT4_I(inode)->i_disksize) 2330 EXT4_I(inode)->i_disksize = disksize; 2331 up_write(&EXT4_I(inode)->i_data_sem); 2332 err2 = ext4_mark_inode_dirty(handle, inode); 2333 if (err2) { 2334 ext4_error_err(inode->i_sb, -err2, 2335 "Failed to mark inode %lu dirty", 2336 inode->i_ino); 2337 } 2338 if (!err) 2339 err = err2; 2340 } 2341 return err; 2342 } 2343 2344 /* 2345 * Calculate the total number of credits to reserve for one writepages 2346 * iteration. This is called from ext4_writepages(). We map an extent of 2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2349 * bpp - 1 blocks in bpp different extents. 2350 */ 2351 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2352 { 2353 int bpp = ext4_journal_blocks_per_page(inode); 2354 2355 return ext4_meta_trans_blocks(inode, 2356 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2357 } 2358 2359 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2360 size_t len) 2361 { 2362 struct buffer_head *page_bufs = folio_buffers(folio); 2363 struct inode *inode = folio->mapping->host; 2364 int ret, err; 2365 2366 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2367 NULL, do_journal_get_write_access); 2368 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2369 NULL, write_end_fn); 2370 if (ret == 0) 2371 ret = err; 2372 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2373 if (ret == 0) 2374 ret = err; 2375 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2376 2377 return ret; 2378 } 2379 2380 static int mpage_journal_page_buffers(handle_t *handle, 2381 struct mpage_da_data *mpd, 2382 struct folio *folio) 2383 { 2384 struct inode *inode = mpd->inode; 2385 loff_t size = i_size_read(inode); 2386 size_t len = folio_size(folio); 2387 2388 folio_clear_checked(folio); 2389 mpd->wbc->nr_to_write--; 2390 2391 if (folio_pos(folio) + len > size && 2392 !ext4_verity_in_progress(inode)) 2393 len = size & (len - 1); 2394 2395 return ext4_journal_folio_buffers(handle, folio, len); 2396 } 2397 2398 /* 2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2400 * needing mapping, submit mapped pages 2401 * 2402 * @mpd - where to look for pages 2403 * 2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2405 * IO immediately. If we cannot map blocks, we submit just already mapped 2406 * buffers in the page for IO and keep page dirty. When we can map blocks and 2407 * we find a page which isn't mapped we start accumulating extent of buffers 2408 * underlying these pages that needs mapping (formed by either delayed or 2409 * unwritten buffers). We also lock the pages containing these buffers. The 2410 * extent found is returned in @mpd structure (starting at mpd->lblk with 2411 * length mpd->len blocks). 2412 * 2413 * Note that this function can attach bios to one io_end structure which are 2414 * neither logically nor physically contiguous. Although it may seem as an 2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2416 * case as we need to track IO to all buffers underlying a page in one io_end. 2417 */ 2418 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2419 { 2420 struct address_space *mapping = mpd->inode->i_mapping; 2421 struct folio_batch fbatch; 2422 unsigned int nr_folios; 2423 pgoff_t index = mpd->first_page; 2424 pgoff_t end = mpd->last_page; 2425 xa_mark_t tag; 2426 int i, err = 0; 2427 int blkbits = mpd->inode->i_blkbits; 2428 ext4_lblk_t lblk; 2429 struct buffer_head *head; 2430 handle_t *handle = NULL; 2431 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2432 2433 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2434 tag = PAGECACHE_TAG_TOWRITE; 2435 else 2436 tag = PAGECACHE_TAG_DIRTY; 2437 2438 mpd->map.m_len = 0; 2439 mpd->next_page = index; 2440 if (ext4_should_journal_data(mpd->inode)) { 2441 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2442 bpp); 2443 if (IS_ERR(handle)) 2444 return PTR_ERR(handle); 2445 } 2446 folio_batch_init(&fbatch); 2447 while (index <= end) { 2448 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2449 tag, &fbatch); 2450 if (nr_folios == 0) 2451 break; 2452 2453 for (i = 0; i < nr_folios; i++) { 2454 struct folio *folio = fbatch.folios[i]; 2455 2456 /* 2457 * Accumulated enough dirty pages? This doesn't apply 2458 * to WB_SYNC_ALL mode. For integrity sync we have to 2459 * keep going because someone may be concurrently 2460 * dirtying pages, and we might have synced a lot of 2461 * newly appeared dirty pages, but have not synced all 2462 * of the old dirty pages. 2463 */ 2464 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2465 mpd->wbc->nr_to_write <= 2466 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2467 goto out; 2468 2469 /* If we can't merge this page, we are done. */ 2470 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2471 goto out; 2472 2473 if (handle) { 2474 err = ext4_journal_ensure_credits(handle, bpp, 2475 0); 2476 if (err < 0) 2477 goto out; 2478 } 2479 2480 folio_lock(folio); 2481 /* 2482 * If the page is no longer dirty, or its mapping no 2483 * longer corresponds to inode we are writing (which 2484 * means it has been truncated or invalidated), or the 2485 * page is already under writeback and we are not doing 2486 * a data integrity writeback, skip the page 2487 */ 2488 if (!folio_test_dirty(folio) || 2489 (folio_test_writeback(folio) && 2490 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2491 unlikely(folio->mapping != mapping)) { 2492 folio_unlock(folio); 2493 continue; 2494 } 2495 2496 folio_wait_writeback(folio); 2497 BUG_ON(folio_test_writeback(folio)); 2498 2499 /* 2500 * Should never happen but for buggy code in 2501 * other subsystems that call 2502 * set_page_dirty() without properly warning 2503 * the file system first. See [1] for more 2504 * information. 2505 * 2506 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2507 */ 2508 if (!folio_buffers(folio)) { 2509 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2510 folio_clear_dirty(folio); 2511 folio_unlock(folio); 2512 continue; 2513 } 2514 2515 if (mpd->map.m_len == 0) 2516 mpd->first_page = folio->index; 2517 mpd->next_page = folio_next_index(folio); 2518 /* 2519 * Writeout when we cannot modify metadata is simple. 2520 * Just submit the page. For data=journal mode we 2521 * first handle writeout of the page for checkpoint and 2522 * only after that handle delayed page dirtying. This 2523 * makes sure current data is checkpointed to the final 2524 * location before possibly journalling it again which 2525 * is desirable when the page is frequently dirtied 2526 * through a pin. 2527 */ 2528 if (!mpd->can_map) { 2529 err = mpage_submit_folio(mpd, folio); 2530 if (err < 0) 2531 goto out; 2532 /* Pending dirtying of journalled data? */ 2533 if (folio_test_checked(folio)) { 2534 err = mpage_journal_page_buffers(handle, 2535 mpd, folio); 2536 if (err < 0) 2537 goto out; 2538 mpd->journalled_more_data = 1; 2539 } 2540 mpage_folio_done(mpd, folio); 2541 } else { 2542 /* Add all dirty buffers to mpd */ 2543 lblk = ((ext4_lblk_t)folio->index) << 2544 (PAGE_SHIFT - blkbits); 2545 head = folio_buffers(folio); 2546 err = mpage_process_page_bufs(mpd, head, head, 2547 lblk); 2548 if (err <= 0) 2549 goto out; 2550 err = 0; 2551 } 2552 } 2553 folio_batch_release(&fbatch); 2554 cond_resched(); 2555 } 2556 mpd->scanned_until_end = 1; 2557 if (handle) 2558 ext4_journal_stop(handle); 2559 return 0; 2560 out: 2561 folio_batch_release(&fbatch); 2562 if (handle) 2563 ext4_journal_stop(handle); 2564 return err; 2565 } 2566 2567 static int ext4_do_writepages(struct mpage_da_data *mpd) 2568 { 2569 struct writeback_control *wbc = mpd->wbc; 2570 pgoff_t writeback_index = 0; 2571 long nr_to_write = wbc->nr_to_write; 2572 int range_whole = 0; 2573 int cycled = 1; 2574 handle_t *handle = NULL; 2575 struct inode *inode = mpd->inode; 2576 struct address_space *mapping = inode->i_mapping; 2577 int needed_blocks, rsv_blocks = 0, ret = 0; 2578 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2579 struct blk_plug plug; 2580 bool give_up_on_write = false; 2581 2582 trace_ext4_writepages(inode, wbc); 2583 2584 /* 2585 * No pages to write? This is mainly a kludge to avoid starting 2586 * a transaction for special inodes like journal inode on last iput() 2587 * because that could violate lock ordering on umount 2588 */ 2589 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2590 goto out_writepages; 2591 2592 /* 2593 * If the filesystem has aborted, it is read-only, so return 2594 * right away instead of dumping stack traces later on that 2595 * will obscure the real source of the problem. We test 2596 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2597 * the latter could be true if the filesystem is mounted 2598 * read-only, and in that case, ext4_writepages should 2599 * *never* be called, so if that ever happens, we would want 2600 * the stack trace. 2601 */ 2602 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2603 ret = -EROFS; 2604 goto out_writepages; 2605 } 2606 2607 /* 2608 * If we have inline data and arrive here, it means that 2609 * we will soon create the block for the 1st page, so 2610 * we'd better clear the inline data here. 2611 */ 2612 if (ext4_has_inline_data(inode)) { 2613 /* Just inode will be modified... */ 2614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2615 if (IS_ERR(handle)) { 2616 ret = PTR_ERR(handle); 2617 goto out_writepages; 2618 } 2619 BUG_ON(ext4_test_inode_state(inode, 2620 EXT4_STATE_MAY_INLINE_DATA)); 2621 ext4_destroy_inline_data(handle, inode); 2622 ext4_journal_stop(handle); 2623 } 2624 2625 /* 2626 * data=journal mode does not do delalloc so we just need to writeout / 2627 * journal already mapped buffers. On the other hand we need to commit 2628 * transaction to make data stable. We expect all the data to be 2629 * already in the journal (the only exception are DMA pinned pages 2630 * dirtied behind our back) so we commit transaction here and run the 2631 * writeback loop to checkpoint them. The checkpointing is not actually 2632 * necessary to make data persistent *but* quite a few places (extent 2633 * shifting operations, fsverity, ...) depend on being able to drop 2634 * pagecache pages after calling filemap_write_and_wait() and for that 2635 * checkpointing needs to happen. 2636 */ 2637 if (ext4_should_journal_data(inode)) { 2638 mpd->can_map = 0; 2639 if (wbc->sync_mode == WB_SYNC_ALL) 2640 ext4_fc_commit(sbi->s_journal, 2641 EXT4_I(inode)->i_datasync_tid); 2642 } 2643 mpd->journalled_more_data = 0; 2644 2645 if (ext4_should_dioread_nolock(inode)) { 2646 /* 2647 * We may need to convert up to one extent per block in 2648 * the page and we may dirty the inode. 2649 */ 2650 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2651 PAGE_SIZE >> inode->i_blkbits); 2652 } 2653 2654 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2655 range_whole = 1; 2656 2657 if (wbc->range_cyclic) { 2658 writeback_index = mapping->writeback_index; 2659 if (writeback_index) 2660 cycled = 0; 2661 mpd->first_page = writeback_index; 2662 mpd->last_page = -1; 2663 } else { 2664 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2665 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2666 } 2667 2668 ext4_io_submit_init(&mpd->io_submit, wbc); 2669 retry: 2670 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2671 tag_pages_for_writeback(mapping, mpd->first_page, 2672 mpd->last_page); 2673 blk_start_plug(&plug); 2674 2675 /* 2676 * First writeback pages that don't need mapping - we can avoid 2677 * starting a transaction unnecessarily and also avoid being blocked 2678 * in the block layer on device congestion while having transaction 2679 * started. 2680 */ 2681 mpd->do_map = 0; 2682 mpd->scanned_until_end = 0; 2683 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2684 if (!mpd->io_submit.io_end) { 2685 ret = -ENOMEM; 2686 goto unplug; 2687 } 2688 ret = mpage_prepare_extent_to_map(mpd); 2689 /* Unlock pages we didn't use */ 2690 mpage_release_unused_pages(mpd, false); 2691 /* Submit prepared bio */ 2692 ext4_io_submit(&mpd->io_submit); 2693 ext4_put_io_end_defer(mpd->io_submit.io_end); 2694 mpd->io_submit.io_end = NULL; 2695 if (ret < 0) 2696 goto unplug; 2697 2698 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2699 /* For each extent of pages we use new io_end */ 2700 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2701 if (!mpd->io_submit.io_end) { 2702 ret = -ENOMEM; 2703 break; 2704 } 2705 2706 WARN_ON_ONCE(!mpd->can_map); 2707 /* 2708 * We have two constraints: We find one extent to map and we 2709 * must always write out whole page (makes a difference when 2710 * blocksize < pagesize) so that we don't block on IO when we 2711 * try to write out the rest of the page. Journalled mode is 2712 * not supported by delalloc. 2713 */ 2714 BUG_ON(ext4_should_journal_data(inode)); 2715 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2716 2717 /* start a new transaction */ 2718 handle = ext4_journal_start_with_reserve(inode, 2719 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2720 if (IS_ERR(handle)) { 2721 ret = PTR_ERR(handle); 2722 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2723 "%ld pages, ino %lu; err %d", __func__, 2724 wbc->nr_to_write, inode->i_ino, ret); 2725 /* Release allocated io_end */ 2726 ext4_put_io_end(mpd->io_submit.io_end); 2727 mpd->io_submit.io_end = NULL; 2728 break; 2729 } 2730 mpd->do_map = 1; 2731 2732 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2733 ret = mpage_prepare_extent_to_map(mpd); 2734 if (!ret && mpd->map.m_len) 2735 ret = mpage_map_and_submit_extent(handle, mpd, 2736 &give_up_on_write); 2737 /* 2738 * Caution: If the handle is synchronous, 2739 * ext4_journal_stop() can wait for transaction commit 2740 * to finish which may depend on writeback of pages to 2741 * complete or on page lock to be released. In that 2742 * case, we have to wait until after we have 2743 * submitted all the IO, released page locks we hold, 2744 * and dropped io_end reference (for extent conversion 2745 * to be able to complete) before stopping the handle. 2746 */ 2747 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2748 ext4_journal_stop(handle); 2749 handle = NULL; 2750 mpd->do_map = 0; 2751 } 2752 /* Unlock pages we didn't use */ 2753 mpage_release_unused_pages(mpd, give_up_on_write); 2754 /* Submit prepared bio */ 2755 ext4_io_submit(&mpd->io_submit); 2756 2757 /* 2758 * Drop our io_end reference we got from init. We have 2759 * to be careful and use deferred io_end finishing if 2760 * we are still holding the transaction as we can 2761 * release the last reference to io_end which may end 2762 * up doing unwritten extent conversion. 2763 */ 2764 if (handle) { 2765 ext4_put_io_end_defer(mpd->io_submit.io_end); 2766 ext4_journal_stop(handle); 2767 } else 2768 ext4_put_io_end(mpd->io_submit.io_end); 2769 mpd->io_submit.io_end = NULL; 2770 2771 if (ret == -ENOSPC && sbi->s_journal) { 2772 /* 2773 * Commit the transaction which would 2774 * free blocks released in the transaction 2775 * and try again 2776 */ 2777 jbd2_journal_force_commit_nested(sbi->s_journal); 2778 ret = 0; 2779 continue; 2780 } 2781 /* Fatal error - ENOMEM, EIO... */ 2782 if (ret) 2783 break; 2784 } 2785 unplug: 2786 blk_finish_plug(&plug); 2787 if (!ret && !cycled && wbc->nr_to_write > 0) { 2788 cycled = 1; 2789 mpd->last_page = writeback_index - 1; 2790 mpd->first_page = 0; 2791 goto retry; 2792 } 2793 2794 /* Update index */ 2795 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2796 /* 2797 * Set the writeback_index so that range_cyclic 2798 * mode will write it back later 2799 */ 2800 mapping->writeback_index = mpd->first_page; 2801 2802 out_writepages: 2803 trace_ext4_writepages_result(inode, wbc, ret, 2804 nr_to_write - wbc->nr_to_write); 2805 return ret; 2806 } 2807 2808 static int ext4_writepages(struct address_space *mapping, 2809 struct writeback_control *wbc) 2810 { 2811 struct super_block *sb = mapping->host->i_sb; 2812 struct mpage_da_data mpd = { 2813 .inode = mapping->host, 2814 .wbc = wbc, 2815 .can_map = 1, 2816 }; 2817 int ret; 2818 int alloc_ctx; 2819 2820 if (unlikely(ext4_forced_shutdown(sb))) 2821 return -EIO; 2822 2823 alloc_ctx = ext4_writepages_down_read(sb); 2824 ret = ext4_do_writepages(&mpd); 2825 /* 2826 * For data=journal writeback we could have come across pages marked 2827 * for delayed dirtying (PageChecked) which were just added to the 2828 * running transaction. Try once more to get them to stable storage. 2829 */ 2830 if (!ret && mpd.journalled_more_data) 2831 ret = ext4_do_writepages(&mpd); 2832 ext4_writepages_up_read(sb, alloc_ctx); 2833 2834 return ret; 2835 } 2836 2837 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2838 { 2839 struct writeback_control wbc = { 2840 .sync_mode = WB_SYNC_ALL, 2841 .nr_to_write = LONG_MAX, 2842 .range_start = jinode->i_dirty_start, 2843 .range_end = jinode->i_dirty_end, 2844 }; 2845 struct mpage_da_data mpd = { 2846 .inode = jinode->i_vfs_inode, 2847 .wbc = &wbc, 2848 .can_map = 0, 2849 }; 2850 return ext4_do_writepages(&mpd); 2851 } 2852 2853 static int ext4_dax_writepages(struct address_space *mapping, 2854 struct writeback_control *wbc) 2855 { 2856 int ret; 2857 long nr_to_write = wbc->nr_to_write; 2858 struct inode *inode = mapping->host; 2859 int alloc_ctx; 2860 2861 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2862 return -EIO; 2863 2864 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2865 trace_ext4_writepages(inode, wbc); 2866 2867 ret = dax_writeback_mapping_range(mapping, 2868 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2869 trace_ext4_writepages_result(inode, wbc, ret, 2870 nr_to_write - wbc->nr_to_write); 2871 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2872 return ret; 2873 } 2874 2875 static int ext4_nonda_switch(struct super_block *sb) 2876 { 2877 s64 free_clusters, dirty_clusters; 2878 struct ext4_sb_info *sbi = EXT4_SB(sb); 2879 2880 /* 2881 * switch to non delalloc mode if we are running low 2882 * on free block. The free block accounting via percpu 2883 * counters can get slightly wrong with percpu_counter_batch getting 2884 * accumulated on each CPU without updating global counters 2885 * Delalloc need an accurate free block accounting. So switch 2886 * to non delalloc when we are near to error range. 2887 */ 2888 free_clusters = 2889 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2890 dirty_clusters = 2891 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2892 /* 2893 * Start pushing delalloc when 1/2 of free blocks are dirty. 2894 */ 2895 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2896 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2897 2898 if (2 * free_clusters < 3 * dirty_clusters || 2899 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2900 /* 2901 * free block count is less than 150% of dirty blocks 2902 * or free blocks is less than watermark 2903 */ 2904 return 1; 2905 } 2906 return 0; 2907 } 2908 2909 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2910 loff_t pos, unsigned len, 2911 struct folio **foliop, void **fsdata) 2912 { 2913 int ret, retries = 0; 2914 struct folio *folio; 2915 pgoff_t index; 2916 struct inode *inode = mapping->host; 2917 2918 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2919 return -EIO; 2920 2921 index = pos >> PAGE_SHIFT; 2922 2923 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2924 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2925 return ext4_write_begin(file, mapping, pos, 2926 len, foliop, fsdata); 2927 } 2928 *fsdata = (void *)0; 2929 trace_ext4_da_write_begin(inode, pos, len); 2930 2931 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2932 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2933 foliop, fsdata); 2934 if (ret < 0) 2935 return ret; 2936 if (ret == 1) 2937 return 0; 2938 } 2939 2940 retry: 2941 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2942 mapping_gfp_mask(mapping)); 2943 if (IS_ERR(folio)) 2944 return PTR_ERR(folio); 2945 2946 ret = ext4_block_write_begin(NULL, folio, pos, len, 2947 ext4_da_get_block_prep); 2948 if (ret < 0) { 2949 folio_unlock(folio); 2950 folio_put(folio); 2951 /* 2952 * block_write_begin may have instantiated a few blocks 2953 * outside i_size. Trim these off again. Don't need 2954 * i_size_read because we hold inode lock. 2955 */ 2956 if (pos + len > inode->i_size) 2957 ext4_truncate_failed_write(inode); 2958 2959 if (ret == -ENOSPC && 2960 ext4_should_retry_alloc(inode->i_sb, &retries)) 2961 goto retry; 2962 return ret; 2963 } 2964 2965 *foliop = folio; 2966 return ret; 2967 } 2968 2969 /* 2970 * Check if we should update i_disksize 2971 * when write to the end of file but not require block allocation 2972 */ 2973 static int ext4_da_should_update_i_disksize(struct folio *folio, 2974 unsigned long offset) 2975 { 2976 struct buffer_head *bh; 2977 struct inode *inode = folio->mapping->host; 2978 unsigned int idx; 2979 int i; 2980 2981 bh = folio_buffers(folio); 2982 idx = offset >> inode->i_blkbits; 2983 2984 for (i = 0; i < idx; i++) 2985 bh = bh->b_this_page; 2986 2987 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2988 return 0; 2989 return 1; 2990 } 2991 2992 static int ext4_da_do_write_end(struct address_space *mapping, 2993 loff_t pos, unsigned len, unsigned copied, 2994 struct folio *folio) 2995 { 2996 struct inode *inode = mapping->host; 2997 loff_t old_size = inode->i_size; 2998 bool disksize_changed = false; 2999 loff_t new_i_size, zero_len = 0; 3000 handle_t *handle; 3001 3002 if (unlikely(!folio_buffers(folio))) { 3003 folio_unlock(folio); 3004 folio_put(folio); 3005 return -EIO; 3006 } 3007 /* 3008 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3009 * flag, which all that's needed to trigger page writeback. 3010 */ 3011 copied = block_write_end(NULL, mapping, pos, len, copied, 3012 folio, NULL); 3013 new_i_size = pos + copied; 3014 3015 /* 3016 * It's important to update i_size while still holding folio lock, 3017 * because folio writeout could otherwise come in and zero beyond 3018 * i_size. 3019 * 3020 * Since we are holding inode lock, we are sure i_disksize <= 3021 * i_size. We also know that if i_disksize < i_size, there are 3022 * delalloc writes pending in the range up to i_size. If the end of 3023 * the current write is <= i_size, there's no need to touch 3024 * i_disksize since writeback will push i_disksize up to i_size 3025 * eventually. If the end of the current write is > i_size and 3026 * inside an allocated block which ext4_da_should_update_i_disksize() 3027 * checked, we need to update i_disksize here as certain 3028 * ext4_writepages() paths not allocating blocks and update i_disksize. 3029 */ 3030 if (new_i_size > inode->i_size) { 3031 unsigned long end; 3032 3033 i_size_write(inode, new_i_size); 3034 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3035 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3036 ext4_update_i_disksize(inode, new_i_size); 3037 disksize_changed = true; 3038 } 3039 } 3040 3041 folio_unlock(folio); 3042 folio_put(folio); 3043 3044 if (pos > old_size) { 3045 pagecache_isize_extended(inode, old_size, pos); 3046 zero_len = pos - old_size; 3047 } 3048 3049 if (!disksize_changed && !zero_len) 3050 return copied; 3051 3052 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3053 if (IS_ERR(handle)) 3054 return PTR_ERR(handle); 3055 if (zero_len) 3056 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3057 ext4_mark_inode_dirty(handle, inode); 3058 ext4_journal_stop(handle); 3059 3060 return copied; 3061 } 3062 3063 static int ext4_da_write_end(struct file *file, 3064 struct address_space *mapping, 3065 loff_t pos, unsigned len, unsigned copied, 3066 struct folio *folio, void *fsdata) 3067 { 3068 struct inode *inode = mapping->host; 3069 int write_mode = (int)(unsigned long)fsdata; 3070 3071 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3072 return ext4_write_end(file, mapping, pos, 3073 len, copied, folio, fsdata); 3074 3075 trace_ext4_da_write_end(inode, pos, len, copied); 3076 3077 if (write_mode != CONVERT_INLINE_DATA && 3078 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3079 ext4_has_inline_data(inode)) 3080 return ext4_write_inline_data_end(inode, pos, len, copied, 3081 folio); 3082 3083 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3084 copied = 0; 3085 3086 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3087 } 3088 3089 /* 3090 * Force all delayed allocation blocks to be allocated for a given inode. 3091 */ 3092 int ext4_alloc_da_blocks(struct inode *inode) 3093 { 3094 trace_ext4_alloc_da_blocks(inode); 3095 3096 if (!EXT4_I(inode)->i_reserved_data_blocks) 3097 return 0; 3098 3099 /* 3100 * We do something simple for now. The filemap_flush() will 3101 * also start triggering a write of the data blocks, which is 3102 * not strictly speaking necessary (and for users of 3103 * laptop_mode, not even desirable). However, to do otherwise 3104 * would require replicating code paths in: 3105 * 3106 * ext4_writepages() -> 3107 * write_cache_pages() ---> (via passed in callback function) 3108 * __mpage_da_writepage() --> 3109 * mpage_add_bh_to_extent() 3110 * mpage_da_map_blocks() 3111 * 3112 * The problem is that write_cache_pages(), located in 3113 * mm/page-writeback.c, marks pages clean in preparation for 3114 * doing I/O, which is not desirable if we're not planning on 3115 * doing I/O at all. 3116 * 3117 * We could call write_cache_pages(), and then redirty all of 3118 * the pages by calling redirty_page_for_writepage() but that 3119 * would be ugly in the extreme. So instead we would need to 3120 * replicate parts of the code in the above functions, 3121 * simplifying them because we wouldn't actually intend to 3122 * write out the pages, but rather only collect contiguous 3123 * logical block extents, call the multi-block allocator, and 3124 * then update the buffer heads with the block allocations. 3125 * 3126 * For now, though, we'll cheat by calling filemap_flush(), 3127 * which will map the blocks, and start the I/O, but not 3128 * actually wait for the I/O to complete. 3129 */ 3130 return filemap_flush(inode->i_mapping); 3131 } 3132 3133 /* 3134 * bmap() is special. It gets used by applications such as lilo and by 3135 * the swapper to find the on-disk block of a specific piece of data. 3136 * 3137 * Naturally, this is dangerous if the block concerned is still in the 3138 * journal. If somebody makes a swapfile on an ext4 data-journaling 3139 * filesystem and enables swap, then they may get a nasty shock when the 3140 * data getting swapped to that swapfile suddenly gets overwritten by 3141 * the original zero's written out previously to the journal and 3142 * awaiting writeback in the kernel's buffer cache. 3143 * 3144 * So, if we see any bmap calls here on a modified, data-journaled file, 3145 * take extra steps to flush any blocks which might be in the cache. 3146 */ 3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3148 { 3149 struct inode *inode = mapping->host; 3150 sector_t ret = 0; 3151 3152 inode_lock_shared(inode); 3153 /* 3154 * We can get here for an inline file via the FIBMAP ioctl 3155 */ 3156 if (ext4_has_inline_data(inode)) 3157 goto out; 3158 3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3160 (test_opt(inode->i_sb, DELALLOC) || 3161 ext4_should_journal_data(inode))) { 3162 /* 3163 * With delalloc or journalled data we want to sync the file so 3164 * that we can make sure we allocate blocks for file and data 3165 * is in place for the user to see it 3166 */ 3167 filemap_write_and_wait(mapping); 3168 } 3169 3170 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3171 3172 out: 3173 inode_unlock_shared(inode); 3174 return ret; 3175 } 3176 3177 static int ext4_read_folio(struct file *file, struct folio *folio) 3178 { 3179 int ret = -EAGAIN; 3180 struct inode *inode = folio->mapping->host; 3181 3182 trace_ext4_read_folio(inode, folio); 3183 3184 if (ext4_has_inline_data(inode)) 3185 ret = ext4_readpage_inline(inode, folio); 3186 3187 if (ret == -EAGAIN) 3188 return ext4_mpage_readpages(inode, NULL, folio); 3189 3190 return ret; 3191 } 3192 3193 static void ext4_readahead(struct readahead_control *rac) 3194 { 3195 struct inode *inode = rac->mapping->host; 3196 3197 /* If the file has inline data, no need to do readahead. */ 3198 if (ext4_has_inline_data(inode)) 3199 return; 3200 3201 ext4_mpage_readpages(inode, rac, NULL); 3202 } 3203 3204 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3205 size_t length) 3206 { 3207 trace_ext4_invalidate_folio(folio, offset, length); 3208 3209 /* No journalling happens on data buffers when this function is used */ 3210 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3211 3212 block_invalidate_folio(folio, offset, length); 3213 } 3214 3215 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3216 size_t offset, size_t length) 3217 { 3218 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3219 3220 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3221 3222 /* 3223 * If it's a full truncate we just forget about the pending dirtying 3224 */ 3225 if (offset == 0 && length == folio_size(folio)) 3226 folio_clear_checked(folio); 3227 3228 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3229 } 3230 3231 /* Wrapper for aops... */ 3232 static void ext4_journalled_invalidate_folio(struct folio *folio, 3233 size_t offset, 3234 size_t length) 3235 { 3236 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3237 } 3238 3239 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3240 { 3241 struct inode *inode = folio->mapping->host; 3242 journal_t *journal = EXT4_JOURNAL(inode); 3243 3244 trace_ext4_release_folio(inode, folio); 3245 3246 /* Page has dirty journalled data -> cannot release */ 3247 if (folio_test_checked(folio)) 3248 return false; 3249 if (journal) 3250 return jbd2_journal_try_to_free_buffers(journal, folio); 3251 else 3252 return try_to_free_buffers(folio); 3253 } 3254 3255 static bool ext4_inode_datasync_dirty(struct inode *inode) 3256 { 3257 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3258 3259 if (journal) { 3260 if (jbd2_transaction_committed(journal, 3261 EXT4_I(inode)->i_datasync_tid)) 3262 return false; 3263 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3264 return !list_empty(&EXT4_I(inode)->i_fc_list); 3265 return true; 3266 } 3267 3268 /* Any metadata buffers to write? */ 3269 if (!list_empty(&inode->i_mapping->i_private_list)) 3270 return true; 3271 return inode->i_state & I_DIRTY_DATASYNC; 3272 } 3273 3274 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3275 struct ext4_map_blocks *map, loff_t offset, 3276 loff_t length, unsigned int flags) 3277 { 3278 u8 blkbits = inode->i_blkbits; 3279 3280 /* 3281 * Writes that span EOF might trigger an I/O size update on completion, 3282 * so consider them to be dirty for the purpose of O_DSYNC, even if 3283 * there is no other metadata changes being made or are pending. 3284 */ 3285 iomap->flags = 0; 3286 if (ext4_inode_datasync_dirty(inode) || 3287 offset + length > i_size_read(inode)) 3288 iomap->flags |= IOMAP_F_DIRTY; 3289 3290 if (map->m_flags & EXT4_MAP_NEW) 3291 iomap->flags |= IOMAP_F_NEW; 3292 3293 if (flags & IOMAP_DAX) 3294 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3295 else 3296 iomap->bdev = inode->i_sb->s_bdev; 3297 iomap->offset = (u64) map->m_lblk << blkbits; 3298 iomap->length = (u64) map->m_len << blkbits; 3299 3300 if ((map->m_flags & EXT4_MAP_MAPPED) && 3301 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3302 iomap->flags |= IOMAP_F_MERGED; 3303 3304 /* 3305 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3306 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3307 * set. In order for any allocated unwritten extents to be converted 3308 * into written extents correctly within the ->end_io() handler, we 3309 * need to ensure that the iomap->type is set appropriately. Hence, the 3310 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3311 * been set first. 3312 */ 3313 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3314 iomap->type = IOMAP_UNWRITTEN; 3315 iomap->addr = (u64) map->m_pblk << blkbits; 3316 if (flags & IOMAP_DAX) 3317 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3318 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3319 iomap->type = IOMAP_MAPPED; 3320 iomap->addr = (u64) map->m_pblk << blkbits; 3321 if (flags & IOMAP_DAX) 3322 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3323 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3324 iomap->type = IOMAP_DELALLOC; 3325 iomap->addr = IOMAP_NULL_ADDR; 3326 } else { 3327 iomap->type = IOMAP_HOLE; 3328 iomap->addr = IOMAP_NULL_ADDR; 3329 } 3330 } 3331 3332 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3333 unsigned int flags) 3334 { 3335 handle_t *handle; 3336 u8 blkbits = inode->i_blkbits; 3337 int ret, dio_credits, m_flags = 0, retries = 0; 3338 3339 /* 3340 * Trim the mapping request to the maximum value that we can map at 3341 * once for direct I/O. 3342 */ 3343 if (map->m_len > DIO_MAX_BLOCKS) 3344 map->m_len = DIO_MAX_BLOCKS; 3345 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3346 3347 retry: 3348 /* 3349 * Either we allocate blocks and then don't get an unwritten extent, so 3350 * in that case we have reserved enough credits. Or, the blocks are 3351 * already allocated and unwritten. In that case, the extent conversion 3352 * fits into the credits as well. 3353 */ 3354 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3355 if (IS_ERR(handle)) 3356 return PTR_ERR(handle); 3357 3358 /* 3359 * DAX and direct I/O are the only two operations that are currently 3360 * supported with IOMAP_WRITE. 3361 */ 3362 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3363 if (flags & IOMAP_DAX) 3364 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3365 /* 3366 * We use i_size instead of i_disksize here because delalloc writeback 3367 * can complete at any point during the I/O and subsequently push the 3368 * i_disksize out to i_size. This could be beyond where direct I/O is 3369 * happening and thus expose allocated blocks to direct I/O reads. 3370 */ 3371 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3372 m_flags = EXT4_GET_BLOCKS_CREATE; 3373 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3374 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3375 3376 ret = ext4_map_blocks(handle, inode, map, m_flags); 3377 3378 /* 3379 * We cannot fill holes in indirect tree based inodes as that could 3380 * expose stale data in the case of a crash. Use the magic error code 3381 * to fallback to buffered I/O. 3382 */ 3383 if (!m_flags && !ret) 3384 ret = -ENOTBLK; 3385 3386 ext4_journal_stop(handle); 3387 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3388 goto retry; 3389 3390 return ret; 3391 } 3392 3393 3394 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3395 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3396 { 3397 int ret; 3398 struct ext4_map_blocks map; 3399 u8 blkbits = inode->i_blkbits; 3400 3401 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3402 return -EINVAL; 3403 3404 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3405 return -ERANGE; 3406 3407 /* 3408 * Calculate the first and last logical blocks respectively. 3409 */ 3410 map.m_lblk = offset >> blkbits; 3411 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3412 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3413 3414 if (flags & IOMAP_WRITE) { 3415 /* 3416 * We check here if the blocks are already allocated, then we 3417 * don't need to start a journal txn and we can directly return 3418 * the mapping information. This could boost performance 3419 * especially in multi-threaded overwrite requests. 3420 */ 3421 if (offset + length <= i_size_read(inode)) { 3422 ret = ext4_map_blocks(NULL, inode, &map, 0); 3423 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3424 goto out; 3425 } 3426 ret = ext4_iomap_alloc(inode, &map, flags); 3427 } else { 3428 ret = ext4_map_blocks(NULL, inode, &map, 0); 3429 } 3430 3431 if (ret < 0) 3432 return ret; 3433 out: 3434 /* 3435 * When inline encryption is enabled, sometimes I/O to an encrypted file 3436 * has to be broken up to guarantee DUN contiguity. Handle this by 3437 * limiting the length of the mapping returned. 3438 */ 3439 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3440 3441 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3442 3443 return 0; 3444 } 3445 3446 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3447 loff_t length, unsigned flags, struct iomap *iomap, 3448 struct iomap *srcmap) 3449 { 3450 int ret; 3451 3452 /* 3453 * Even for writes we don't need to allocate blocks, so just pretend 3454 * we are reading to save overhead of starting a transaction. 3455 */ 3456 flags &= ~IOMAP_WRITE; 3457 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3458 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3459 return ret; 3460 } 3461 3462 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) 3463 { 3464 /* must be a directio to fall back to buffered */ 3465 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != 3466 (IOMAP_WRITE | IOMAP_DIRECT)) 3467 return false; 3468 3469 /* atomic writes are all-or-nothing */ 3470 if (flags & IOMAP_ATOMIC) 3471 return false; 3472 3473 /* can only try again if we wrote nothing */ 3474 return written == 0; 3475 } 3476 3477 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3478 ssize_t written, unsigned flags, struct iomap *iomap) 3479 { 3480 /* 3481 * Check to see whether an error occurred while writing out the data to 3482 * the allocated blocks. If so, return the magic error code for 3483 * non-atomic write so that we fallback to buffered I/O and attempt to 3484 * complete the remainder of the I/O. 3485 * For non-atomic writes, any blocks that may have been 3486 * allocated in preparation for the direct I/O will be reused during 3487 * buffered I/O. For atomic write, we never fallback to buffered-io. 3488 */ 3489 if (ext4_want_directio_fallback(flags, written)) 3490 return -ENOTBLK; 3491 3492 return 0; 3493 } 3494 3495 const struct iomap_ops ext4_iomap_ops = { 3496 .iomap_begin = ext4_iomap_begin, 3497 .iomap_end = ext4_iomap_end, 3498 }; 3499 3500 const struct iomap_ops ext4_iomap_overwrite_ops = { 3501 .iomap_begin = ext4_iomap_overwrite_begin, 3502 .iomap_end = ext4_iomap_end, 3503 }; 3504 3505 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3506 loff_t length, unsigned int flags, 3507 struct iomap *iomap, struct iomap *srcmap) 3508 { 3509 int ret; 3510 struct ext4_map_blocks map; 3511 u8 blkbits = inode->i_blkbits; 3512 3513 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3514 return -EINVAL; 3515 3516 if (ext4_has_inline_data(inode)) { 3517 ret = ext4_inline_data_iomap(inode, iomap); 3518 if (ret != -EAGAIN) { 3519 if (ret == 0 && offset >= iomap->length) 3520 ret = -ENOENT; 3521 return ret; 3522 } 3523 } 3524 3525 /* 3526 * Calculate the first and last logical block respectively. 3527 */ 3528 map.m_lblk = offset >> blkbits; 3529 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3530 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3531 3532 /* 3533 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3534 * So handle it here itself instead of querying ext4_map_blocks(). 3535 * Since ext4_map_blocks() will warn about it and will return 3536 * -EIO error. 3537 */ 3538 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3539 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3540 3541 if (offset >= sbi->s_bitmap_maxbytes) { 3542 map.m_flags = 0; 3543 goto set_iomap; 3544 } 3545 } 3546 3547 ret = ext4_map_blocks(NULL, inode, &map, 0); 3548 if (ret < 0) 3549 return ret; 3550 set_iomap: 3551 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3552 3553 return 0; 3554 } 3555 3556 const struct iomap_ops ext4_iomap_report_ops = { 3557 .iomap_begin = ext4_iomap_begin_report, 3558 }; 3559 3560 /* 3561 * For data=journal mode, folio should be marked dirty only when it was 3562 * writeably mapped. When that happens, it was already attached to the 3563 * transaction and marked as jbddirty (we take care of this in 3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3565 * so we should have nothing to do here, except for the case when someone 3566 * had the page pinned and dirtied the page through this pin (e.g. by doing 3567 * direct IO to it). In that case we'd need to attach buffers here to the 3568 * transaction but we cannot due to lock ordering. We cannot just dirty the 3569 * folio and leave attached buffers clean, because the buffers' dirty state is 3570 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3571 * the journalling code will explode. So what we do is to mark the folio 3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3573 * to the transaction appropriately. 3574 */ 3575 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3576 struct folio *folio) 3577 { 3578 WARN_ON_ONCE(!folio_buffers(folio)); 3579 if (folio_maybe_dma_pinned(folio)) 3580 folio_set_checked(folio); 3581 return filemap_dirty_folio(mapping, folio); 3582 } 3583 3584 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3585 { 3586 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3587 WARN_ON_ONCE(!folio_buffers(folio)); 3588 return block_dirty_folio(mapping, folio); 3589 } 3590 3591 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3592 struct file *file, sector_t *span) 3593 { 3594 return iomap_swapfile_activate(sis, file, span, 3595 &ext4_iomap_report_ops); 3596 } 3597 3598 static const struct address_space_operations ext4_aops = { 3599 .read_folio = ext4_read_folio, 3600 .readahead = ext4_readahead, 3601 .writepages = ext4_writepages, 3602 .write_begin = ext4_write_begin, 3603 .write_end = ext4_write_end, 3604 .dirty_folio = ext4_dirty_folio, 3605 .bmap = ext4_bmap, 3606 .invalidate_folio = ext4_invalidate_folio, 3607 .release_folio = ext4_release_folio, 3608 .migrate_folio = buffer_migrate_folio, 3609 .is_partially_uptodate = block_is_partially_uptodate, 3610 .error_remove_folio = generic_error_remove_folio, 3611 .swap_activate = ext4_iomap_swap_activate, 3612 }; 3613 3614 static const struct address_space_operations ext4_journalled_aops = { 3615 .read_folio = ext4_read_folio, 3616 .readahead = ext4_readahead, 3617 .writepages = ext4_writepages, 3618 .write_begin = ext4_write_begin, 3619 .write_end = ext4_journalled_write_end, 3620 .dirty_folio = ext4_journalled_dirty_folio, 3621 .bmap = ext4_bmap, 3622 .invalidate_folio = ext4_journalled_invalidate_folio, 3623 .release_folio = ext4_release_folio, 3624 .migrate_folio = buffer_migrate_folio_norefs, 3625 .is_partially_uptodate = block_is_partially_uptodate, 3626 .error_remove_folio = generic_error_remove_folio, 3627 .swap_activate = ext4_iomap_swap_activate, 3628 }; 3629 3630 static const struct address_space_operations ext4_da_aops = { 3631 .read_folio = ext4_read_folio, 3632 .readahead = ext4_readahead, 3633 .writepages = ext4_writepages, 3634 .write_begin = ext4_da_write_begin, 3635 .write_end = ext4_da_write_end, 3636 .dirty_folio = ext4_dirty_folio, 3637 .bmap = ext4_bmap, 3638 .invalidate_folio = ext4_invalidate_folio, 3639 .release_folio = ext4_release_folio, 3640 .migrate_folio = buffer_migrate_folio, 3641 .is_partially_uptodate = block_is_partially_uptodate, 3642 .error_remove_folio = generic_error_remove_folio, 3643 .swap_activate = ext4_iomap_swap_activate, 3644 }; 3645 3646 static const struct address_space_operations ext4_dax_aops = { 3647 .writepages = ext4_dax_writepages, 3648 .dirty_folio = noop_dirty_folio, 3649 .bmap = ext4_bmap, 3650 .swap_activate = ext4_iomap_swap_activate, 3651 }; 3652 3653 void ext4_set_aops(struct inode *inode) 3654 { 3655 switch (ext4_inode_journal_mode(inode)) { 3656 case EXT4_INODE_ORDERED_DATA_MODE: 3657 case EXT4_INODE_WRITEBACK_DATA_MODE: 3658 break; 3659 case EXT4_INODE_JOURNAL_DATA_MODE: 3660 inode->i_mapping->a_ops = &ext4_journalled_aops; 3661 return; 3662 default: 3663 BUG(); 3664 } 3665 if (IS_DAX(inode)) 3666 inode->i_mapping->a_ops = &ext4_dax_aops; 3667 else if (test_opt(inode->i_sb, DELALLOC)) 3668 inode->i_mapping->a_ops = &ext4_da_aops; 3669 else 3670 inode->i_mapping->a_ops = &ext4_aops; 3671 } 3672 3673 /* 3674 * Here we can't skip an unwritten buffer even though it usually reads zero 3675 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3677 * racing writeback can come later and flush the stale pagecache to disk. 3678 */ 3679 static int __ext4_block_zero_page_range(handle_t *handle, 3680 struct address_space *mapping, loff_t from, loff_t length) 3681 { 3682 ext4_fsblk_t index = from >> PAGE_SHIFT; 3683 unsigned offset = from & (PAGE_SIZE-1); 3684 unsigned blocksize, pos; 3685 ext4_lblk_t iblock; 3686 struct inode *inode = mapping->host; 3687 struct buffer_head *bh; 3688 struct folio *folio; 3689 int err = 0; 3690 3691 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3692 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3693 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3694 if (IS_ERR(folio)) 3695 return PTR_ERR(folio); 3696 3697 blocksize = inode->i_sb->s_blocksize; 3698 3699 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3700 3701 bh = folio_buffers(folio); 3702 if (!bh) 3703 bh = create_empty_buffers(folio, blocksize, 0); 3704 3705 /* Find the buffer that contains "offset" */ 3706 pos = blocksize; 3707 while (offset >= pos) { 3708 bh = bh->b_this_page; 3709 iblock++; 3710 pos += blocksize; 3711 } 3712 if (buffer_freed(bh)) { 3713 BUFFER_TRACE(bh, "freed: skip"); 3714 goto unlock; 3715 } 3716 if (!buffer_mapped(bh)) { 3717 BUFFER_TRACE(bh, "unmapped"); 3718 ext4_get_block(inode, iblock, bh, 0); 3719 /* unmapped? It's a hole - nothing to do */ 3720 if (!buffer_mapped(bh)) { 3721 BUFFER_TRACE(bh, "still unmapped"); 3722 goto unlock; 3723 } 3724 } 3725 3726 /* Ok, it's mapped. Make sure it's up-to-date */ 3727 if (folio_test_uptodate(folio)) 3728 set_buffer_uptodate(bh); 3729 3730 if (!buffer_uptodate(bh)) { 3731 err = ext4_read_bh_lock(bh, 0, true); 3732 if (err) 3733 goto unlock; 3734 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3735 /* We expect the key to be set. */ 3736 BUG_ON(!fscrypt_has_encryption_key(inode)); 3737 err = fscrypt_decrypt_pagecache_blocks(folio, 3738 blocksize, 3739 bh_offset(bh)); 3740 if (err) { 3741 clear_buffer_uptodate(bh); 3742 goto unlock; 3743 } 3744 } 3745 } 3746 if (ext4_should_journal_data(inode)) { 3747 BUFFER_TRACE(bh, "get write access"); 3748 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3749 EXT4_JTR_NONE); 3750 if (err) 3751 goto unlock; 3752 } 3753 folio_zero_range(folio, offset, length); 3754 BUFFER_TRACE(bh, "zeroed end of block"); 3755 3756 if (ext4_should_journal_data(inode)) { 3757 err = ext4_dirty_journalled_data(handle, bh); 3758 } else { 3759 err = 0; 3760 mark_buffer_dirty(bh); 3761 if (ext4_should_order_data(inode)) 3762 err = ext4_jbd2_inode_add_write(handle, inode, from, 3763 length); 3764 } 3765 3766 unlock: 3767 folio_unlock(folio); 3768 folio_put(folio); 3769 return err; 3770 } 3771 3772 /* 3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3774 * starting from file offset 'from'. The range to be zero'd must 3775 * be contained with in one block. If the specified range exceeds 3776 * the end of the block it will be shortened to end of the block 3777 * that corresponds to 'from' 3778 */ 3779 static int ext4_block_zero_page_range(handle_t *handle, 3780 struct address_space *mapping, loff_t from, loff_t length) 3781 { 3782 struct inode *inode = mapping->host; 3783 unsigned offset = from & (PAGE_SIZE-1); 3784 unsigned blocksize = inode->i_sb->s_blocksize; 3785 unsigned max = blocksize - (offset & (blocksize - 1)); 3786 3787 /* 3788 * correct length if it does not fall between 3789 * 'from' and the end of the block 3790 */ 3791 if (length > max || length < 0) 3792 length = max; 3793 3794 if (IS_DAX(inode)) { 3795 return dax_zero_range(inode, from, length, NULL, 3796 &ext4_iomap_ops); 3797 } 3798 return __ext4_block_zero_page_range(handle, mapping, from, length); 3799 } 3800 3801 /* 3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3803 * up to the end of the block which corresponds to `from'. 3804 * This required during truncate. We need to physically zero the tail end 3805 * of that block so it doesn't yield old data if the file is later grown. 3806 */ 3807 static int ext4_block_truncate_page(handle_t *handle, 3808 struct address_space *mapping, loff_t from) 3809 { 3810 unsigned offset = from & (PAGE_SIZE-1); 3811 unsigned length; 3812 unsigned blocksize; 3813 struct inode *inode = mapping->host; 3814 3815 /* If we are processing an encrypted inode during orphan list handling */ 3816 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3817 return 0; 3818 3819 blocksize = inode->i_sb->s_blocksize; 3820 length = blocksize - (offset & (blocksize - 1)); 3821 3822 return ext4_block_zero_page_range(handle, mapping, from, length); 3823 } 3824 3825 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3826 loff_t lstart, loff_t length) 3827 { 3828 struct super_block *sb = inode->i_sb; 3829 struct address_space *mapping = inode->i_mapping; 3830 unsigned partial_start, partial_end; 3831 ext4_fsblk_t start, end; 3832 loff_t byte_end = (lstart + length - 1); 3833 int err = 0; 3834 3835 partial_start = lstart & (sb->s_blocksize - 1); 3836 partial_end = byte_end & (sb->s_blocksize - 1); 3837 3838 start = lstart >> sb->s_blocksize_bits; 3839 end = byte_end >> sb->s_blocksize_bits; 3840 3841 /* Handle partial zero within the single block */ 3842 if (start == end && 3843 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3844 err = ext4_block_zero_page_range(handle, mapping, 3845 lstart, length); 3846 return err; 3847 } 3848 /* Handle partial zero out on the start of the range */ 3849 if (partial_start) { 3850 err = ext4_block_zero_page_range(handle, mapping, 3851 lstart, sb->s_blocksize); 3852 if (err) 3853 return err; 3854 } 3855 /* Handle partial zero out on the end of the range */ 3856 if (partial_end != sb->s_blocksize - 1) 3857 err = ext4_block_zero_page_range(handle, mapping, 3858 byte_end - partial_end, 3859 partial_end + 1); 3860 return err; 3861 } 3862 3863 int ext4_can_truncate(struct inode *inode) 3864 { 3865 if (S_ISREG(inode->i_mode)) 3866 return 1; 3867 if (S_ISDIR(inode->i_mode)) 3868 return 1; 3869 if (S_ISLNK(inode->i_mode)) 3870 return !ext4_inode_is_fast_symlink(inode); 3871 return 0; 3872 } 3873 3874 /* 3875 * We have to make sure i_disksize gets properly updated before we truncate 3876 * page cache due to hole punching or zero range. Otherwise i_disksize update 3877 * can get lost as it may have been postponed to submission of writeback but 3878 * that will never happen after we truncate page cache. 3879 */ 3880 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3881 loff_t len) 3882 { 3883 handle_t *handle; 3884 int ret; 3885 3886 loff_t size = i_size_read(inode); 3887 3888 WARN_ON(!inode_is_locked(inode)); 3889 if (offset > size || offset + len < size) 3890 return 0; 3891 3892 if (EXT4_I(inode)->i_disksize >= size) 3893 return 0; 3894 3895 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3896 if (IS_ERR(handle)) 3897 return PTR_ERR(handle); 3898 ext4_update_i_disksize(inode, size); 3899 ret = ext4_mark_inode_dirty(handle, inode); 3900 ext4_journal_stop(handle); 3901 3902 return ret; 3903 } 3904 3905 static void ext4_wait_dax_page(struct inode *inode) 3906 { 3907 filemap_invalidate_unlock(inode->i_mapping); 3908 schedule(); 3909 filemap_invalidate_lock(inode->i_mapping); 3910 } 3911 3912 int ext4_break_layouts(struct inode *inode) 3913 { 3914 struct page *page; 3915 int error; 3916 3917 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3918 return -EINVAL; 3919 3920 do { 3921 page = dax_layout_busy_page(inode->i_mapping); 3922 if (!page) 3923 return 0; 3924 3925 error = ___wait_var_event(&page->_refcount, 3926 atomic_read(&page->_refcount) == 1, 3927 TASK_INTERRUPTIBLE, 0, 0, 3928 ext4_wait_dax_page(inode)); 3929 } while (error == 0); 3930 3931 return error; 3932 } 3933 3934 /* 3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3936 * associated with the given offset and length 3937 * 3938 * @inode: File inode 3939 * @offset: The offset where the hole will begin 3940 * @len: The length of the hole 3941 * 3942 * Returns: 0 on success or negative on failure 3943 */ 3944 3945 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3946 { 3947 struct inode *inode = file_inode(file); 3948 struct super_block *sb = inode->i_sb; 3949 ext4_lblk_t first_block, stop_block; 3950 struct address_space *mapping = inode->i_mapping; 3951 loff_t first_block_offset, last_block_offset, max_length; 3952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3953 handle_t *handle; 3954 unsigned int credits; 3955 int ret = 0, ret2 = 0; 3956 3957 trace_ext4_punch_hole(inode, offset, length, 0); 3958 3959 /* 3960 * Write out all dirty pages to avoid race conditions 3961 * Then release them. 3962 */ 3963 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3964 ret = filemap_write_and_wait_range(mapping, offset, 3965 offset + length - 1); 3966 if (ret) 3967 return ret; 3968 } 3969 3970 inode_lock(inode); 3971 3972 /* No need to punch hole beyond i_size */ 3973 if (offset >= inode->i_size) 3974 goto out_mutex; 3975 3976 /* 3977 * If the hole extends beyond i_size, set the hole 3978 * to end after the page that contains i_size 3979 */ 3980 if (offset + length > inode->i_size) { 3981 length = inode->i_size + 3982 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3983 offset; 3984 } 3985 3986 /* 3987 * For punch hole the length + offset needs to be within one block 3988 * before last range. Adjust the length if it goes beyond that limit. 3989 */ 3990 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3991 if (offset + length > max_length) 3992 length = max_length - offset; 3993 3994 if (offset & (sb->s_blocksize - 1) || 3995 (offset + length) & (sb->s_blocksize - 1)) { 3996 /* 3997 * Attach jinode to inode for jbd2 if we do any zeroing of 3998 * partial block 3999 */ 4000 ret = ext4_inode_attach_jinode(inode); 4001 if (ret < 0) 4002 goto out_mutex; 4003 4004 } 4005 4006 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4007 inode_dio_wait(inode); 4008 4009 ret = file_modified(file); 4010 if (ret) 4011 goto out_mutex; 4012 4013 /* 4014 * Prevent page faults from reinstantiating pages we have released from 4015 * page cache. 4016 */ 4017 filemap_invalidate_lock(mapping); 4018 4019 ret = ext4_break_layouts(inode); 4020 if (ret) 4021 goto out_dio; 4022 4023 first_block_offset = round_up(offset, sb->s_blocksize); 4024 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4025 4026 /* Now release the pages and zero block aligned part of pages*/ 4027 if (last_block_offset > first_block_offset) { 4028 ret = ext4_update_disksize_before_punch(inode, offset, length); 4029 if (ret) 4030 goto out_dio; 4031 truncate_pagecache_range(inode, first_block_offset, 4032 last_block_offset); 4033 } 4034 4035 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4036 credits = ext4_writepage_trans_blocks(inode); 4037 else 4038 credits = ext4_blocks_for_truncate(inode); 4039 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4040 if (IS_ERR(handle)) { 4041 ret = PTR_ERR(handle); 4042 ext4_std_error(sb, ret); 4043 goto out_dio; 4044 } 4045 4046 ret = ext4_zero_partial_blocks(handle, inode, offset, 4047 length); 4048 if (ret) 4049 goto out_stop; 4050 4051 first_block = (offset + sb->s_blocksize - 1) >> 4052 EXT4_BLOCK_SIZE_BITS(sb); 4053 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4054 4055 /* If there are blocks to remove, do it */ 4056 if (stop_block > first_block) { 4057 ext4_lblk_t hole_len = stop_block - first_block; 4058 4059 down_write(&EXT4_I(inode)->i_data_sem); 4060 ext4_discard_preallocations(inode); 4061 4062 ext4_es_remove_extent(inode, first_block, hole_len); 4063 4064 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4065 ret = ext4_ext_remove_space(inode, first_block, 4066 stop_block - 1); 4067 else 4068 ret = ext4_ind_remove_space(handle, inode, first_block, 4069 stop_block); 4070 4071 ext4_es_insert_extent(inode, first_block, hole_len, ~0, 4072 EXTENT_STATUS_HOLE, 0); 4073 up_write(&EXT4_I(inode)->i_data_sem); 4074 } 4075 ext4_fc_track_range(handle, inode, first_block, stop_block); 4076 if (IS_SYNC(inode)) 4077 ext4_handle_sync(handle); 4078 4079 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4080 ret2 = ext4_mark_inode_dirty(handle, inode); 4081 if (unlikely(ret2)) 4082 ret = ret2; 4083 if (ret >= 0) 4084 ext4_update_inode_fsync_trans(handle, inode, 1); 4085 out_stop: 4086 ext4_journal_stop(handle); 4087 out_dio: 4088 filemap_invalidate_unlock(mapping); 4089 out_mutex: 4090 inode_unlock(inode); 4091 return ret; 4092 } 4093 4094 int ext4_inode_attach_jinode(struct inode *inode) 4095 { 4096 struct ext4_inode_info *ei = EXT4_I(inode); 4097 struct jbd2_inode *jinode; 4098 4099 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4100 return 0; 4101 4102 jinode = jbd2_alloc_inode(GFP_KERNEL); 4103 spin_lock(&inode->i_lock); 4104 if (!ei->jinode) { 4105 if (!jinode) { 4106 spin_unlock(&inode->i_lock); 4107 return -ENOMEM; 4108 } 4109 ei->jinode = jinode; 4110 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4111 jinode = NULL; 4112 } 4113 spin_unlock(&inode->i_lock); 4114 if (unlikely(jinode != NULL)) 4115 jbd2_free_inode(jinode); 4116 return 0; 4117 } 4118 4119 /* 4120 * ext4_truncate() 4121 * 4122 * We block out ext4_get_block() block instantiations across the entire 4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4124 * simultaneously on behalf of the same inode. 4125 * 4126 * As we work through the truncate and commit bits of it to the journal there 4127 * is one core, guiding principle: the file's tree must always be consistent on 4128 * disk. We must be able to restart the truncate after a crash. 4129 * 4130 * The file's tree may be transiently inconsistent in memory (although it 4131 * probably isn't), but whenever we close off and commit a journal transaction, 4132 * the contents of (the filesystem + the journal) must be consistent and 4133 * restartable. It's pretty simple, really: bottom up, right to left (although 4134 * left-to-right works OK too). 4135 * 4136 * Note that at recovery time, journal replay occurs *before* the restart of 4137 * truncate against the orphan inode list. 4138 * 4139 * The committed inode has the new, desired i_size (which is the same as 4140 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4141 * that this inode's truncate did not complete and it will again call 4142 * ext4_truncate() to have another go. So there will be instantiated blocks 4143 * to the right of the truncation point in a crashed ext4 filesystem. But 4144 * that's fine - as long as they are linked from the inode, the post-crash 4145 * ext4_truncate() run will find them and release them. 4146 */ 4147 int ext4_truncate(struct inode *inode) 4148 { 4149 struct ext4_inode_info *ei = EXT4_I(inode); 4150 unsigned int credits; 4151 int err = 0, err2; 4152 handle_t *handle; 4153 struct address_space *mapping = inode->i_mapping; 4154 4155 /* 4156 * There is a possibility that we're either freeing the inode 4157 * or it's a completely new inode. In those cases we might not 4158 * have i_rwsem locked because it's not necessary. 4159 */ 4160 if (!(inode->i_state & (I_NEW|I_FREEING))) 4161 WARN_ON(!inode_is_locked(inode)); 4162 trace_ext4_truncate_enter(inode); 4163 4164 if (!ext4_can_truncate(inode)) 4165 goto out_trace; 4166 4167 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4168 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4169 4170 if (ext4_has_inline_data(inode)) { 4171 int has_inline = 1; 4172 4173 err = ext4_inline_data_truncate(inode, &has_inline); 4174 if (err || has_inline) 4175 goto out_trace; 4176 } 4177 4178 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4179 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4180 err = ext4_inode_attach_jinode(inode); 4181 if (err) 4182 goto out_trace; 4183 } 4184 4185 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4186 credits = ext4_writepage_trans_blocks(inode); 4187 else 4188 credits = ext4_blocks_for_truncate(inode); 4189 4190 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4191 if (IS_ERR(handle)) { 4192 err = PTR_ERR(handle); 4193 goto out_trace; 4194 } 4195 4196 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4197 ext4_block_truncate_page(handle, mapping, inode->i_size); 4198 4199 /* 4200 * We add the inode to the orphan list, so that if this 4201 * truncate spans multiple transactions, and we crash, we will 4202 * resume the truncate when the filesystem recovers. It also 4203 * marks the inode dirty, to catch the new size. 4204 * 4205 * Implication: the file must always be in a sane, consistent 4206 * truncatable state while each transaction commits. 4207 */ 4208 err = ext4_orphan_add(handle, inode); 4209 if (err) 4210 goto out_stop; 4211 4212 down_write(&EXT4_I(inode)->i_data_sem); 4213 4214 ext4_discard_preallocations(inode); 4215 4216 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4217 err = ext4_ext_truncate(handle, inode); 4218 else 4219 ext4_ind_truncate(handle, inode); 4220 4221 up_write(&ei->i_data_sem); 4222 if (err) 4223 goto out_stop; 4224 4225 if (IS_SYNC(inode)) 4226 ext4_handle_sync(handle); 4227 4228 out_stop: 4229 /* 4230 * If this was a simple ftruncate() and the file will remain alive, 4231 * then we need to clear up the orphan record which we created above. 4232 * However, if this was a real unlink then we were called by 4233 * ext4_evict_inode(), and we allow that function to clean up the 4234 * orphan info for us. 4235 */ 4236 if (inode->i_nlink) 4237 ext4_orphan_del(handle, inode); 4238 4239 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4240 err2 = ext4_mark_inode_dirty(handle, inode); 4241 if (unlikely(err2 && !err)) 4242 err = err2; 4243 ext4_journal_stop(handle); 4244 4245 out_trace: 4246 trace_ext4_truncate_exit(inode); 4247 return err; 4248 } 4249 4250 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4251 { 4252 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4253 return inode_peek_iversion_raw(inode); 4254 else 4255 return inode_peek_iversion(inode); 4256 } 4257 4258 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4259 struct ext4_inode_info *ei) 4260 { 4261 struct inode *inode = &(ei->vfs_inode); 4262 u64 i_blocks = READ_ONCE(inode->i_blocks); 4263 struct super_block *sb = inode->i_sb; 4264 4265 if (i_blocks <= ~0U) { 4266 /* 4267 * i_blocks can be represented in a 32 bit variable 4268 * as multiple of 512 bytes 4269 */ 4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4271 raw_inode->i_blocks_high = 0; 4272 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4273 return 0; 4274 } 4275 4276 /* 4277 * This should never happen since sb->s_maxbytes should not have 4278 * allowed this, sb->s_maxbytes was set according to the huge_file 4279 * feature in ext4_fill_super(). 4280 */ 4281 if (!ext4_has_feature_huge_file(sb)) 4282 return -EFSCORRUPTED; 4283 4284 if (i_blocks <= 0xffffffffffffULL) { 4285 /* 4286 * i_blocks can be represented in a 48 bit variable 4287 * as multiple of 512 bytes 4288 */ 4289 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4290 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4291 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4292 } else { 4293 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4294 /* i_block is stored in file system block size */ 4295 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4296 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4297 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4298 } 4299 return 0; 4300 } 4301 4302 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4303 { 4304 struct ext4_inode_info *ei = EXT4_I(inode); 4305 uid_t i_uid; 4306 gid_t i_gid; 4307 projid_t i_projid; 4308 int block; 4309 int err; 4310 4311 err = ext4_inode_blocks_set(raw_inode, ei); 4312 4313 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4314 i_uid = i_uid_read(inode); 4315 i_gid = i_gid_read(inode); 4316 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4317 if (!(test_opt(inode->i_sb, NO_UID32))) { 4318 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4319 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4320 /* 4321 * Fix up interoperability with old kernels. Otherwise, 4322 * old inodes get re-used with the upper 16 bits of the 4323 * uid/gid intact. 4324 */ 4325 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4326 raw_inode->i_uid_high = 0; 4327 raw_inode->i_gid_high = 0; 4328 } else { 4329 raw_inode->i_uid_high = 4330 cpu_to_le16(high_16_bits(i_uid)); 4331 raw_inode->i_gid_high = 4332 cpu_to_le16(high_16_bits(i_gid)); 4333 } 4334 } else { 4335 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4336 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4337 raw_inode->i_uid_high = 0; 4338 raw_inode->i_gid_high = 0; 4339 } 4340 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4341 4342 EXT4_INODE_SET_CTIME(inode, raw_inode); 4343 EXT4_INODE_SET_MTIME(inode, raw_inode); 4344 EXT4_INODE_SET_ATIME(inode, raw_inode); 4345 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4346 4347 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4348 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4349 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4350 raw_inode->i_file_acl_high = 4351 cpu_to_le16(ei->i_file_acl >> 32); 4352 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4353 ext4_isize_set(raw_inode, ei->i_disksize); 4354 4355 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4356 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4357 if (old_valid_dev(inode->i_rdev)) { 4358 raw_inode->i_block[0] = 4359 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4360 raw_inode->i_block[1] = 0; 4361 } else { 4362 raw_inode->i_block[0] = 0; 4363 raw_inode->i_block[1] = 4364 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4365 raw_inode->i_block[2] = 0; 4366 } 4367 } else if (!ext4_has_inline_data(inode)) { 4368 for (block = 0; block < EXT4_N_BLOCKS; block++) 4369 raw_inode->i_block[block] = ei->i_data[block]; 4370 } 4371 4372 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4373 u64 ivers = ext4_inode_peek_iversion(inode); 4374 4375 raw_inode->i_disk_version = cpu_to_le32(ivers); 4376 if (ei->i_extra_isize) { 4377 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4378 raw_inode->i_version_hi = 4379 cpu_to_le32(ivers >> 32); 4380 raw_inode->i_extra_isize = 4381 cpu_to_le16(ei->i_extra_isize); 4382 } 4383 } 4384 4385 if (i_projid != EXT4_DEF_PROJID && 4386 !ext4_has_feature_project(inode->i_sb)) 4387 err = err ?: -EFSCORRUPTED; 4388 4389 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4390 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4391 raw_inode->i_projid = cpu_to_le32(i_projid); 4392 4393 ext4_inode_csum_set(inode, raw_inode, ei); 4394 return err; 4395 } 4396 4397 /* 4398 * ext4_get_inode_loc returns with an extra refcount against the inode's 4399 * underlying buffer_head on success. If we pass 'inode' and it does not 4400 * have in-inode xattr, we have all inode data in memory that is needed 4401 * to recreate the on-disk version of this inode. 4402 */ 4403 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4404 struct inode *inode, struct ext4_iloc *iloc, 4405 ext4_fsblk_t *ret_block) 4406 { 4407 struct ext4_group_desc *gdp; 4408 struct buffer_head *bh; 4409 ext4_fsblk_t block; 4410 struct blk_plug plug; 4411 int inodes_per_block, inode_offset; 4412 4413 iloc->bh = NULL; 4414 if (ino < EXT4_ROOT_INO || 4415 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4416 return -EFSCORRUPTED; 4417 4418 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4419 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4420 if (!gdp) 4421 return -EIO; 4422 4423 /* 4424 * Figure out the offset within the block group inode table 4425 */ 4426 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4427 inode_offset = ((ino - 1) % 4428 EXT4_INODES_PER_GROUP(sb)); 4429 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4430 4431 block = ext4_inode_table(sb, gdp); 4432 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4433 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4434 ext4_error(sb, "Invalid inode table block %llu in " 4435 "block_group %u", block, iloc->block_group); 4436 return -EFSCORRUPTED; 4437 } 4438 block += (inode_offset / inodes_per_block); 4439 4440 bh = sb_getblk(sb, block); 4441 if (unlikely(!bh)) 4442 return -ENOMEM; 4443 if (ext4_buffer_uptodate(bh)) 4444 goto has_buffer; 4445 4446 lock_buffer(bh); 4447 if (ext4_buffer_uptodate(bh)) { 4448 /* Someone brought it uptodate while we waited */ 4449 unlock_buffer(bh); 4450 goto has_buffer; 4451 } 4452 4453 /* 4454 * If we have all information of the inode in memory and this 4455 * is the only valid inode in the block, we need not read the 4456 * block. 4457 */ 4458 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4459 struct buffer_head *bitmap_bh; 4460 int i, start; 4461 4462 start = inode_offset & ~(inodes_per_block - 1); 4463 4464 /* Is the inode bitmap in cache? */ 4465 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4466 if (unlikely(!bitmap_bh)) 4467 goto make_io; 4468 4469 /* 4470 * If the inode bitmap isn't in cache then the 4471 * optimisation may end up performing two reads instead 4472 * of one, so skip it. 4473 */ 4474 if (!buffer_uptodate(bitmap_bh)) { 4475 brelse(bitmap_bh); 4476 goto make_io; 4477 } 4478 for (i = start; i < start + inodes_per_block; i++) { 4479 if (i == inode_offset) 4480 continue; 4481 if (ext4_test_bit(i, bitmap_bh->b_data)) 4482 break; 4483 } 4484 brelse(bitmap_bh); 4485 if (i == start + inodes_per_block) { 4486 struct ext4_inode *raw_inode = 4487 (struct ext4_inode *) (bh->b_data + iloc->offset); 4488 4489 /* all other inodes are free, so skip I/O */ 4490 memset(bh->b_data, 0, bh->b_size); 4491 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4492 ext4_fill_raw_inode(inode, raw_inode); 4493 set_buffer_uptodate(bh); 4494 unlock_buffer(bh); 4495 goto has_buffer; 4496 } 4497 } 4498 4499 make_io: 4500 /* 4501 * If we need to do any I/O, try to pre-readahead extra 4502 * blocks from the inode table. 4503 */ 4504 blk_start_plug(&plug); 4505 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4506 ext4_fsblk_t b, end, table; 4507 unsigned num; 4508 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4509 4510 table = ext4_inode_table(sb, gdp); 4511 /* s_inode_readahead_blks is always a power of 2 */ 4512 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4513 if (table > b) 4514 b = table; 4515 end = b + ra_blks; 4516 num = EXT4_INODES_PER_GROUP(sb); 4517 if (ext4_has_group_desc_csum(sb)) 4518 num -= ext4_itable_unused_count(sb, gdp); 4519 table += num / inodes_per_block; 4520 if (end > table) 4521 end = table; 4522 while (b <= end) 4523 ext4_sb_breadahead_unmovable(sb, b++); 4524 } 4525 4526 /* 4527 * There are other valid inodes in the buffer, this inode 4528 * has in-inode xattrs, or we don't have this inode in memory. 4529 * Read the block from disk. 4530 */ 4531 trace_ext4_load_inode(sb, ino); 4532 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4533 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4534 blk_finish_plug(&plug); 4535 wait_on_buffer(bh); 4536 if (!buffer_uptodate(bh)) { 4537 if (ret_block) 4538 *ret_block = block; 4539 brelse(bh); 4540 return -EIO; 4541 } 4542 has_buffer: 4543 iloc->bh = bh; 4544 return 0; 4545 } 4546 4547 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4548 struct ext4_iloc *iloc) 4549 { 4550 ext4_fsblk_t err_blk = 0; 4551 int ret; 4552 4553 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4554 &err_blk); 4555 4556 if (ret == -EIO) 4557 ext4_error_inode_block(inode, err_blk, EIO, 4558 "unable to read itable block"); 4559 4560 return ret; 4561 } 4562 4563 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4564 { 4565 ext4_fsblk_t err_blk = 0; 4566 int ret; 4567 4568 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4569 &err_blk); 4570 4571 if (ret == -EIO) 4572 ext4_error_inode_block(inode, err_blk, EIO, 4573 "unable to read itable block"); 4574 4575 return ret; 4576 } 4577 4578 4579 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4580 struct ext4_iloc *iloc) 4581 { 4582 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4583 } 4584 4585 static bool ext4_should_enable_dax(struct inode *inode) 4586 { 4587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4588 4589 if (test_opt2(inode->i_sb, DAX_NEVER)) 4590 return false; 4591 if (!S_ISREG(inode->i_mode)) 4592 return false; 4593 if (ext4_should_journal_data(inode)) 4594 return false; 4595 if (ext4_has_inline_data(inode)) 4596 return false; 4597 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4598 return false; 4599 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4600 return false; 4601 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4602 return false; 4603 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4604 return true; 4605 4606 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4607 } 4608 4609 void ext4_set_inode_flags(struct inode *inode, bool init) 4610 { 4611 unsigned int flags = EXT4_I(inode)->i_flags; 4612 unsigned int new_fl = 0; 4613 4614 WARN_ON_ONCE(IS_DAX(inode) && init); 4615 4616 if (flags & EXT4_SYNC_FL) 4617 new_fl |= S_SYNC; 4618 if (flags & EXT4_APPEND_FL) 4619 new_fl |= S_APPEND; 4620 if (flags & EXT4_IMMUTABLE_FL) 4621 new_fl |= S_IMMUTABLE; 4622 if (flags & EXT4_NOATIME_FL) 4623 new_fl |= S_NOATIME; 4624 if (flags & EXT4_DIRSYNC_FL) 4625 new_fl |= S_DIRSYNC; 4626 4627 /* Because of the way inode_set_flags() works we must preserve S_DAX 4628 * here if already set. */ 4629 new_fl |= (inode->i_flags & S_DAX); 4630 if (init && ext4_should_enable_dax(inode)) 4631 new_fl |= S_DAX; 4632 4633 if (flags & EXT4_ENCRYPT_FL) 4634 new_fl |= S_ENCRYPTED; 4635 if (flags & EXT4_CASEFOLD_FL) 4636 new_fl |= S_CASEFOLD; 4637 if (flags & EXT4_VERITY_FL) 4638 new_fl |= S_VERITY; 4639 inode_set_flags(inode, new_fl, 4640 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4641 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4642 } 4643 4644 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4645 struct ext4_inode_info *ei) 4646 { 4647 blkcnt_t i_blocks ; 4648 struct inode *inode = &(ei->vfs_inode); 4649 struct super_block *sb = inode->i_sb; 4650 4651 if (ext4_has_feature_huge_file(sb)) { 4652 /* we are using combined 48 bit field */ 4653 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4654 le32_to_cpu(raw_inode->i_blocks_lo); 4655 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4656 /* i_blocks represent file system block size */ 4657 return i_blocks << (inode->i_blkbits - 9); 4658 } else { 4659 return i_blocks; 4660 } 4661 } else { 4662 return le32_to_cpu(raw_inode->i_blocks_lo); 4663 } 4664 } 4665 4666 static inline int ext4_iget_extra_inode(struct inode *inode, 4667 struct ext4_inode *raw_inode, 4668 struct ext4_inode_info *ei) 4669 { 4670 __le32 *magic = (void *)raw_inode + 4671 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4672 4673 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4674 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4675 int err; 4676 4677 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4678 err = ext4_find_inline_data_nolock(inode); 4679 if (!err && ext4_has_inline_data(inode)) 4680 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4681 return err; 4682 } else 4683 EXT4_I(inode)->i_inline_off = 0; 4684 return 0; 4685 } 4686 4687 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4688 { 4689 if (!ext4_has_feature_project(inode->i_sb)) 4690 return -EOPNOTSUPP; 4691 *projid = EXT4_I(inode)->i_projid; 4692 return 0; 4693 } 4694 4695 /* 4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4698 * set. 4699 */ 4700 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4701 { 4702 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4703 inode_set_iversion_raw(inode, val); 4704 else 4705 inode_set_iversion_queried(inode, val); 4706 } 4707 4708 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4709 4710 { 4711 if (flags & EXT4_IGET_EA_INODE) { 4712 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4713 return "missing EA_INODE flag"; 4714 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4715 EXT4_I(inode)->i_file_acl) 4716 return "ea_inode with extended attributes"; 4717 } else { 4718 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4719 return "unexpected EA_INODE flag"; 4720 } 4721 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4722 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4723 return NULL; 4724 } 4725 4726 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4727 ext4_iget_flags flags, const char *function, 4728 unsigned int line) 4729 { 4730 struct ext4_iloc iloc; 4731 struct ext4_inode *raw_inode; 4732 struct ext4_inode_info *ei; 4733 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4734 struct inode *inode; 4735 const char *err_str; 4736 journal_t *journal = EXT4_SB(sb)->s_journal; 4737 long ret; 4738 loff_t size; 4739 int block; 4740 uid_t i_uid; 4741 gid_t i_gid; 4742 projid_t i_projid; 4743 4744 if ((!(flags & EXT4_IGET_SPECIAL) && 4745 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4746 ino == le32_to_cpu(es->s_usr_quota_inum) || 4747 ino == le32_to_cpu(es->s_grp_quota_inum) || 4748 ino == le32_to_cpu(es->s_prj_quota_inum) || 4749 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4750 (ino < EXT4_ROOT_INO) || 4751 (ino > le32_to_cpu(es->s_inodes_count))) { 4752 if (flags & EXT4_IGET_HANDLE) 4753 return ERR_PTR(-ESTALE); 4754 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4755 "inode #%lu: comm %s: iget: illegal inode #", 4756 ino, current->comm); 4757 return ERR_PTR(-EFSCORRUPTED); 4758 } 4759 4760 inode = iget_locked(sb, ino); 4761 if (!inode) 4762 return ERR_PTR(-ENOMEM); 4763 if (!(inode->i_state & I_NEW)) { 4764 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4765 ext4_error_inode(inode, function, line, 0, err_str); 4766 iput(inode); 4767 return ERR_PTR(-EFSCORRUPTED); 4768 } 4769 return inode; 4770 } 4771 4772 ei = EXT4_I(inode); 4773 iloc.bh = NULL; 4774 4775 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4776 if (ret < 0) 4777 goto bad_inode; 4778 raw_inode = ext4_raw_inode(&iloc); 4779 4780 if ((flags & EXT4_IGET_HANDLE) && 4781 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4782 ret = -ESTALE; 4783 goto bad_inode; 4784 } 4785 4786 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4787 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4788 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4789 EXT4_INODE_SIZE(inode->i_sb) || 4790 (ei->i_extra_isize & 3)) { 4791 ext4_error_inode(inode, function, line, 0, 4792 "iget: bad extra_isize %u " 4793 "(inode size %u)", 4794 ei->i_extra_isize, 4795 EXT4_INODE_SIZE(inode->i_sb)); 4796 ret = -EFSCORRUPTED; 4797 goto bad_inode; 4798 } 4799 } else 4800 ei->i_extra_isize = 0; 4801 4802 /* Precompute checksum seed for inode metadata */ 4803 if (ext4_has_metadata_csum(sb)) { 4804 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4805 __u32 csum; 4806 __le32 inum = cpu_to_le32(inode->i_ino); 4807 __le32 gen = raw_inode->i_generation; 4808 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4809 sizeof(inum)); 4810 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4811 sizeof(gen)); 4812 } 4813 4814 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4815 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4816 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4817 ext4_error_inode_err(inode, function, line, 0, 4818 EFSBADCRC, "iget: checksum invalid"); 4819 ret = -EFSBADCRC; 4820 goto bad_inode; 4821 } 4822 4823 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4824 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4825 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4826 if (ext4_has_feature_project(sb) && 4827 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4828 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4829 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4830 else 4831 i_projid = EXT4_DEF_PROJID; 4832 4833 if (!(test_opt(inode->i_sb, NO_UID32))) { 4834 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4835 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4836 } 4837 i_uid_write(inode, i_uid); 4838 i_gid_write(inode, i_gid); 4839 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4840 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4841 4842 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4843 ei->i_inline_off = 0; 4844 ei->i_dir_start_lookup = 0; 4845 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4846 /* We now have enough fields to check if the inode was active or not. 4847 * This is needed because nfsd might try to access dead inodes 4848 * the test is that same one that e2fsck uses 4849 * NeilBrown 1999oct15 4850 */ 4851 if (inode->i_nlink == 0) { 4852 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4853 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4854 ino != EXT4_BOOT_LOADER_INO) { 4855 /* this inode is deleted or unallocated */ 4856 if (flags & EXT4_IGET_SPECIAL) { 4857 ext4_error_inode(inode, function, line, 0, 4858 "iget: special inode unallocated"); 4859 ret = -EFSCORRUPTED; 4860 } else 4861 ret = -ESTALE; 4862 goto bad_inode; 4863 } 4864 /* The only unlinked inodes we let through here have 4865 * valid i_mode and are being read by the orphan 4866 * recovery code: that's fine, we're about to complete 4867 * the process of deleting those. 4868 * OR it is the EXT4_BOOT_LOADER_INO which is 4869 * not initialized on a new filesystem. */ 4870 } 4871 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4872 ext4_set_inode_flags(inode, true); 4873 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4874 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4875 if (ext4_has_feature_64bit(sb)) 4876 ei->i_file_acl |= 4877 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4878 inode->i_size = ext4_isize(sb, raw_inode); 4879 if ((size = i_size_read(inode)) < 0) { 4880 ext4_error_inode(inode, function, line, 0, 4881 "iget: bad i_size value: %lld", size); 4882 ret = -EFSCORRUPTED; 4883 goto bad_inode; 4884 } 4885 /* 4886 * If dir_index is not enabled but there's dir with INDEX flag set, 4887 * we'd normally treat htree data as empty space. But with metadata 4888 * checksumming that corrupts checksums so forbid that. 4889 */ 4890 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4891 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4892 ext4_error_inode(inode, function, line, 0, 4893 "iget: Dir with htree data on filesystem without dir_index feature."); 4894 ret = -EFSCORRUPTED; 4895 goto bad_inode; 4896 } 4897 ei->i_disksize = inode->i_size; 4898 #ifdef CONFIG_QUOTA 4899 ei->i_reserved_quota = 0; 4900 #endif 4901 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4902 ei->i_block_group = iloc.block_group; 4903 ei->i_last_alloc_group = ~0; 4904 /* 4905 * NOTE! The in-memory inode i_data array is in little-endian order 4906 * even on big-endian machines: we do NOT byteswap the block numbers! 4907 */ 4908 for (block = 0; block < EXT4_N_BLOCKS; block++) 4909 ei->i_data[block] = raw_inode->i_block[block]; 4910 INIT_LIST_HEAD(&ei->i_orphan); 4911 ext4_fc_init_inode(&ei->vfs_inode); 4912 4913 /* 4914 * Set transaction id's of transactions that have to be committed 4915 * to finish f[data]sync. We set them to currently running transaction 4916 * as we cannot be sure that the inode or some of its metadata isn't 4917 * part of the transaction - the inode could have been reclaimed and 4918 * now it is reread from disk. 4919 */ 4920 if (journal) { 4921 transaction_t *transaction; 4922 tid_t tid; 4923 4924 read_lock(&journal->j_state_lock); 4925 if (journal->j_running_transaction) 4926 transaction = journal->j_running_transaction; 4927 else 4928 transaction = journal->j_committing_transaction; 4929 if (transaction) 4930 tid = transaction->t_tid; 4931 else 4932 tid = journal->j_commit_sequence; 4933 read_unlock(&journal->j_state_lock); 4934 ei->i_sync_tid = tid; 4935 ei->i_datasync_tid = tid; 4936 } 4937 4938 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4939 if (ei->i_extra_isize == 0) { 4940 /* The extra space is currently unused. Use it. */ 4941 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4942 ei->i_extra_isize = sizeof(struct ext4_inode) - 4943 EXT4_GOOD_OLD_INODE_SIZE; 4944 } else { 4945 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4946 if (ret) 4947 goto bad_inode; 4948 } 4949 } 4950 4951 EXT4_INODE_GET_CTIME(inode, raw_inode); 4952 EXT4_INODE_GET_ATIME(inode, raw_inode); 4953 EXT4_INODE_GET_MTIME(inode, raw_inode); 4954 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4955 4956 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4957 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4958 4959 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4960 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4961 ivers |= 4962 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4963 } 4964 ext4_inode_set_iversion_queried(inode, ivers); 4965 } 4966 4967 ret = 0; 4968 if (ei->i_file_acl && 4969 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4970 ext4_error_inode(inode, function, line, 0, 4971 "iget: bad extended attribute block %llu", 4972 ei->i_file_acl); 4973 ret = -EFSCORRUPTED; 4974 goto bad_inode; 4975 } else if (!ext4_has_inline_data(inode)) { 4976 /* validate the block references in the inode */ 4977 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4978 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4979 (S_ISLNK(inode->i_mode) && 4980 !ext4_inode_is_fast_symlink(inode)))) { 4981 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4982 ret = ext4_ext_check_inode(inode); 4983 else 4984 ret = ext4_ind_check_inode(inode); 4985 } 4986 } 4987 if (ret) 4988 goto bad_inode; 4989 4990 if (S_ISREG(inode->i_mode)) { 4991 inode->i_op = &ext4_file_inode_operations; 4992 inode->i_fop = &ext4_file_operations; 4993 ext4_set_aops(inode); 4994 } else if (S_ISDIR(inode->i_mode)) { 4995 inode->i_op = &ext4_dir_inode_operations; 4996 inode->i_fop = &ext4_dir_operations; 4997 } else if (S_ISLNK(inode->i_mode)) { 4998 /* VFS does not allow setting these so must be corruption */ 4999 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5000 ext4_error_inode(inode, function, line, 0, 5001 "iget: immutable or append flags " 5002 "not allowed on symlinks"); 5003 ret = -EFSCORRUPTED; 5004 goto bad_inode; 5005 } 5006 if (IS_ENCRYPTED(inode)) { 5007 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5008 } else if (ext4_inode_is_fast_symlink(inode)) { 5009 inode->i_link = (char *)ei->i_data; 5010 inode->i_op = &ext4_fast_symlink_inode_operations; 5011 nd_terminate_link(ei->i_data, inode->i_size, 5012 sizeof(ei->i_data) - 1); 5013 } else { 5014 inode->i_op = &ext4_symlink_inode_operations; 5015 } 5016 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5017 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5018 inode->i_op = &ext4_special_inode_operations; 5019 if (raw_inode->i_block[0]) 5020 init_special_inode(inode, inode->i_mode, 5021 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5022 else 5023 init_special_inode(inode, inode->i_mode, 5024 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5025 } else if (ino == EXT4_BOOT_LOADER_INO) { 5026 make_bad_inode(inode); 5027 } else { 5028 ret = -EFSCORRUPTED; 5029 ext4_error_inode(inode, function, line, 0, 5030 "iget: bogus i_mode (%o)", inode->i_mode); 5031 goto bad_inode; 5032 } 5033 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5034 ext4_error_inode(inode, function, line, 0, 5035 "casefold flag without casefold feature"); 5036 ret = -EFSCORRUPTED; 5037 goto bad_inode; 5038 } 5039 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 5040 ext4_error_inode(inode, function, line, 0, err_str); 5041 ret = -EFSCORRUPTED; 5042 goto bad_inode; 5043 } 5044 5045 brelse(iloc.bh); 5046 unlock_new_inode(inode); 5047 return inode; 5048 5049 bad_inode: 5050 brelse(iloc.bh); 5051 iget_failed(inode); 5052 return ERR_PTR(ret); 5053 } 5054 5055 static void __ext4_update_other_inode_time(struct super_block *sb, 5056 unsigned long orig_ino, 5057 unsigned long ino, 5058 struct ext4_inode *raw_inode) 5059 { 5060 struct inode *inode; 5061 5062 inode = find_inode_by_ino_rcu(sb, ino); 5063 if (!inode) 5064 return; 5065 5066 if (!inode_is_dirtytime_only(inode)) 5067 return; 5068 5069 spin_lock(&inode->i_lock); 5070 if (inode_is_dirtytime_only(inode)) { 5071 struct ext4_inode_info *ei = EXT4_I(inode); 5072 5073 inode->i_state &= ~I_DIRTY_TIME; 5074 spin_unlock(&inode->i_lock); 5075 5076 spin_lock(&ei->i_raw_lock); 5077 EXT4_INODE_SET_CTIME(inode, raw_inode); 5078 EXT4_INODE_SET_MTIME(inode, raw_inode); 5079 EXT4_INODE_SET_ATIME(inode, raw_inode); 5080 ext4_inode_csum_set(inode, raw_inode, ei); 5081 spin_unlock(&ei->i_raw_lock); 5082 trace_ext4_other_inode_update_time(inode, orig_ino); 5083 return; 5084 } 5085 spin_unlock(&inode->i_lock); 5086 } 5087 5088 /* 5089 * Opportunistically update the other time fields for other inodes in 5090 * the same inode table block. 5091 */ 5092 static void ext4_update_other_inodes_time(struct super_block *sb, 5093 unsigned long orig_ino, char *buf) 5094 { 5095 unsigned long ino; 5096 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5097 int inode_size = EXT4_INODE_SIZE(sb); 5098 5099 /* 5100 * Calculate the first inode in the inode table block. Inode 5101 * numbers are one-based. That is, the first inode in a block 5102 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5103 */ 5104 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5105 rcu_read_lock(); 5106 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5107 if (ino == orig_ino) 5108 continue; 5109 __ext4_update_other_inode_time(sb, orig_ino, ino, 5110 (struct ext4_inode *)buf); 5111 } 5112 rcu_read_unlock(); 5113 } 5114 5115 /* 5116 * Post the struct inode info into an on-disk inode location in the 5117 * buffer-cache. This gobbles the caller's reference to the 5118 * buffer_head in the inode location struct. 5119 * 5120 * The caller must have write access to iloc->bh. 5121 */ 5122 static int ext4_do_update_inode(handle_t *handle, 5123 struct inode *inode, 5124 struct ext4_iloc *iloc) 5125 { 5126 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5127 struct ext4_inode_info *ei = EXT4_I(inode); 5128 struct buffer_head *bh = iloc->bh; 5129 struct super_block *sb = inode->i_sb; 5130 int err; 5131 int need_datasync = 0, set_large_file = 0; 5132 5133 spin_lock(&ei->i_raw_lock); 5134 5135 /* 5136 * For fields not tracked in the in-memory inode, initialise them 5137 * to zero for new inodes. 5138 */ 5139 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5140 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5141 5142 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5143 need_datasync = 1; 5144 if (ei->i_disksize > 0x7fffffffULL) { 5145 if (!ext4_has_feature_large_file(sb) || 5146 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5147 set_large_file = 1; 5148 } 5149 5150 err = ext4_fill_raw_inode(inode, raw_inode); 5151 spin_unlock(&ei->i_raw_lock); 5152 if (err) { 5153 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5154 goto out_brelse; 5155 } 5156 5157 if (inode->i_sb->s_flags & SB_LAZYTIME) 5158 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5159 bh->b_data); 5160 5161 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5162 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5163 if (err) 5164 goto out_error; 5165 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5166 if (set_large_file) { 5167 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5168 err = ext4_journal_get_write_access(handle, sb, 5169 EXT4_SB(sb)->s_sbh, 5170 EXT4_JTR_NONE); 5171 if (err) 5172 goto out_error; 5173 lock_buffer(EXT4_SB(sb)->s_sbh); 5174 ext4_set_feature_large_file(sb); 5175 ext4_superblock_csum_set(sb); 5176 unlock_buffer(EXT4_SB(sb)->s_sbh); 5177 ext4_handle_sync(handle); 5178 err = ext4_handle_dirty_metadata(handle, NULL, 5179 EXT4_SB(sb)->s_sbh); 5180 } 5181 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5182 out_error: 5183 ext4_std_error(inode->i_sb, err); 5184 out_brelse: 5185 brelse(bh); 5186 return err; 5187 } 5188 5189 /* 5190 * ext4_write_inode() 5191 * 5192 * We are called from a few places: 5193 * 5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5195 * Here, there will be no transaction running. We wait for any running 5196 * transaction to commit. 5197 * 5198 * - Within flush work (sys_sync(), kupdate and such). 5199 * We wait on commit, if told to. 5200 * 5201 * - Within iput_final() -> write_inode_now() 5202 * We wait on commit, if told to. 5203 * 5204 * In all cases it is actually safe for us to return without doing anything, 5205 * because the inode has been copied into a raw inode buffer in 5206 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5207 * writeback. 5208 * 5209 * Note that we are absolutely dependent upon all inode dirtiers doing the 5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5211 * which we are interested. 5212 * 5213 * It would be a bug for them to not do this. The code: 5214 * 5215 * mark_inode_dirty(inode) 5216 * stuff(); 5217 * inode->i_size = expr; 5218 * 5219 * is in error because write_inode() could occur while `stuff()' is running, 5220 * and the new i_size will be lost. Plus the inode will no longer be on the 5221 * superblock's dirty inode list. 5222 */ 5223 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5224 { 5225 int err; 5226 5227 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5228 return 0; 5229 5230 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5231 return -EIO; 5232 5233 if (EXT4_SB(inode->i_sb)->s_journal) { 5234 if (ext4_journal_current_handle()) { 5235 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5236 dump_stack(); 5237 return -EIO; 5238 } 5239 5240 /* 5241 * No need to force transaction in WB_SYNC_NONE mode. Also 5242 * ext4_sync_fs() will force the commit after everything is 5243 * written. 5244 */ 5245 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5246 return 0; 5247 5248 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5249 EXT4_I(inode)->i_sync_tid); 5250 } else { 5251 struct ext4_iloc iloc; 5252 5253 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5254 if (err) 5255 return err; 5256 /* 5257 * sync(2) will flush the whole buffer cache. No need to do 5258 * it here separately for each inode. 5259 */ 5260 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5261 sync_dirty_buffer(iloc.bh); 5262 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5263 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5264 "IO error syncing inode"); 5265 err = -EIO; 5266 } 5267 brelse(iloc.bh); 5268 } 5269 return err; 5270 } 5271 5272 /* 5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5274 * buffers that are attached to a folio straddling i_size and are undergoing 5275 * commit. In that case we have to wait for commit to finish and try again. 5276 */ 5277 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5278 { 5279 unsigned offset; 5280 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5281 tid_t commit_tid; 5282 int ret; 5283 bool has_transaction; 5284 5285 offset = inode->i_size & (PAGE_SIZE - 1); 5286 /* 5287 * If the folio is fully truncated, we don't need to wait for any commit 5288 * (and we even should not as __ext4_journalled_invalidate_folio() may 5289 * strip all buffers from the folio but keep the folio dirty which can then 5290 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5291 * buffers). Also we don't need to wait for any commit if all buffers in 5292 * the folio remain valid. This is most beneficial for the common case of 5293 * blocksize == PAGESIZE. 5294 */ 5295 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5296 return; 5297 while (1) { 5298 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5299 inode->i_size >> PAGE_SHIFT); 5300 if (IS_ERR(folio)) 5301 return; 5302 ret = __ext4_journalled_invalidate_folio(folio, offset, 5303 folio_size(folio) - offset); 5304 folio_unlock(folio); 5305 folio_put(folio); 5306 if (ret != -EBUSY) 5307 return; 5308 has_transaction = false; 5309 read_lock(&journal->j_state_lock); 5310 if (journal->j_committing_transaction) { 5311 commit_tid = journal->j_committing_transaction->t_tid; 5312 has_transaction = true; 5313 } 5314 read_unlock(&journal->j_state_lock); 5315 if (has_transaction) 5316 jbd2_log_wait_commit(journal, commit_tid); 5317 } 5318 } 5319 5320 /* 5321 * ext4_setattr() 5322 * 5323 * Called from notify_change. 5324 * 5325 * We want to trap VFS attempts to truncate the file as soon as 5326 * possible. In particular, we want to make sure that when the VFS 5327 * shrinks i_size, we put the inode on the orphan list and modify 5328 * i_disksize immediately, so that during the subsequent flushing of 5329 * dirty pages and freeing of disk blocks, we can guarantee that any 5330 * commit will leave the blocks being flushed in an unused state on 5331 * disk. (On recovery, the inode will get truncated and the blocks will 5332 * be freed, so we have a strong guarantee that no future commit will 5333 * leave these blocks visible to the user.) 5334 * 5335 * Another thing we have to assure is that if we are in ordered mode 5336 * and inode is still attached to the committing transaction, we must 5337 * we start writeout of all the dirty pages which are being truncated. 5338 * This way we are sure that all the data written in the previous 5339 * transaction are already on disk (truncate waits for pages under 5340 * writeback). 5341 * 5342 * Called with inode->i_rwsem down. 5343 */ 5344 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5345 struct iattr *attr) 5346 { 5347 struct inode *inode = d_inode(dentry); 5348 int error, rc = 0; 5349 int orphan = 0; 5350 const unsigned int ia_valid = attr->ia_valid; 5351 bool inc_ivers = true; 5352 5353 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5354 return -EIO; 5355 5356 if (unlikely(IS_IMMUTABLE(inode))) 5357 return -EPERM; 5358 5359 if (unlikely(IS_APPEND(inode) && 5360 (ia_valid & (ATTR_MODE | ATTR_UID | 5361 ATTR_GID | ATTR_TIMES_SET)))) 5362 return -EPERM; 5363 5364 error = setattr_prepare(idmap, dentry, attr); 5365 if (error) 5366 return error; 5367 5368 error = fscrypt_prepare_setattr(dentry, attr); 5369 if (error) 5370 return error; 5371 5372 error = fsverity_prepare_setattr(dentry, attr); 5373 if (error) 5374 return error; 5375 5376 if (is_quota_modification(idmap, inode, attr)) { 5377 error = dquot_initialize(inode); 5378 if (error) 5379 return error; 5380 } 5381 5382 if (i_uid_needs_update(idmap, attr, inode) || 5383 i_gid_needs_update(idmap, attr, inode)) { 5384 handle_t *handle; 5385 5386 /* (user+group)*(old+new) structure, inode write (sb, 5387 * inode block, ? - but truncate inode update has it) */ 5388 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5389 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5390 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5391 if (IS_ERR(handle)) { 5392 error = PTR_ERR(handle); 5393 goto err_out; 5394 } 5395 5396 /* dquot_transfer() calls back ext4_get_inode_usage() which 5397 * counts xattr inode references. 5398 */ 5399 down_read(&EXT4_I(inode)->xattr_sem); 5400 error = dquot_transfer(idmap, inode, attr); 5401 up_read(&EXT4_I(inode)->xattr_sem); 5402 5403 if (error) { 5404 ext4_journal_stop(handle); 5405 return error; 5406 } 5407 /* Update corresponding info in inode so that everything is in 5408 * one transaction */ 5409 i_uid_update(idmap, attr, inode); 5410 i_gid_update(idmap, attr, inode); 5411 error = ext4_mark_inode_dirty(handle, inode); 5412 ext4_journal_stop(handle); 5413 if (unlikely(error)) { 5414 return error; 5415 } 5416 } 5417 5418 if (attr->ia_valid & ATTR_SIZE) { 5419 handle_t *handle; 5420 loff_t oldsize = inode->i_size; 5421 loff_t old_disksize; 5422 int shrink = (attr->ia_size < inode->i_size); 5423 5424 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5426 5427 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5428 return -EFBIG; 5429 } 5430 } 5431 if (!S_ISREG(inode->i_mode)) { 5432 return -EINVAL; 5433 } 5434 5435 if (attr->ia_size == inode->i_size) 5436 inc_ivers = false; 5437 5438 if (shrink) { 5439 if (ext4_should_order_data(inode)) { 5440 error = ext4_begin_ordered_truncate(inode, 5441 attr->ia_size); 5442 if (error) 5443 goto err_out; 5444 } 5445 /* 5446 * Blocks are going to be removed from the inode. Wait 5447 * for dio in flight. 5448 */ 5449 inode_dio_wait(inode); 5450 } 5451 5452 filemap_invalidate_lock(inode->i_mapping); 5453 5454 rc = ext4_break_layouts(inode); 5455 if (rc) { 5456 filemap_invalidate_unlock(inode->i_mapping); 5457 goto err_out; 5458 } 5459 5460 if (attr->ia_size != inode->i_size) { 5461 /* attach jbd2 jinode for EOF folio tail zeroing */ 5462 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5463 oldsize & (inode->i_sb->s_blocksize - 1)) { 5464 error = ext4_inode_attach_jinode(inode); 5465 if (error) 5466 goto err_out; 5467 } 5468 5469 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5470 if (IS_ERR(handle)) { 5471 error = PTR_ERR(handle); 5472 goto out_mmap_sem; 5473 } 5474 if (ext4_handle_valid(handle) && shrink) { 5475 error = ext4_orphan_add(handle, inode); 5476 orphan = 1; 5477 } 5478 /* 5479 * Update c/mtime and tail zero the EOF folio on 5480 * truncate up. ext4_truncate() handles the shrink case 5481 * below. 5482 */ 5483 if (!shrink) { 5484 inode_set_mtime_to_ts(inode, 5485 inode_set_ctime_current(inode)); 5486 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5487 ext4_block_truncate_page(handle, 5488 inode->i_mapping, oldsize); 5489 } 5490 5491 if (shrink) 5492 ext4_fc_track_range(handle, inode, 5493 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5494 inode->i_sb->s_blocksize_bits, 5495 EXT_MAX_BLOCKS - 1); 5496 else 5497 ext4_fc_track_range( 5498 handle, inode, 5499 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5500 inode->i_sb->s_blocksize_bits, 5501 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5502 inode->i_sb->s_blocksize_bits); 5503 5504 down_write(&EXT4_I(inode)->i_data_sem); 5505 old_disksize = EXT4_I(inode)->i_disksize; 5506 EXT4_I(inode)->i_disksize = attr->ia_size; 5507 rc = ext4_mark_inode_dirty(handle, inode); 5508 if (!error) 5509 error = rc; 5510 /* 5511 * We have to update i_size under i_data_sem together 5512 * with i_disksize to avoid races with writeback code 5513 * running ext4_wb_update_i_disksize(). 5514 */ 5515 if (!error) 5516 i_size_write(inode, attr->ia_size); 5517 else 5518 EXT4_I(inode)->i_disksize = old_disksize; 5519 up_write(&EXT4_I(inode)->i_data_sem); 5520 ext4_journal_stop(handle); 5521 if (error) 5522 goto out_mmap_sem; 5523 if (!shrink) { 5524 pagecache_isize_extended(inode, oldsize, 5525 inode->i_size); 5526 } else if (ext4_should_journal_data(inode)) { 5527 ext4_wait_for_tail_page_commit(inode); 5528 } 5529 } 5530 5531 /* 5532 * Truncate pagecache after we've waited for commit 5533 * in data=journal mode to make pages freeable. 5534 */ 5535 truncate_pagecache(inode, inode->i_size); 5536 /* 5537 * Call ext4_truncate() even if i_size didn't change to 5538 * truncate possible preallocated blocks. 5539 */ 5540 if (attr->ia_size <= oldsize) { 5541 rc = ext4_truncate(inode); 5542 if (rc) 5543 error = rc; 5544 } 5545 out_mmap_sem: 5546 filemap_invalidate_unlock(inode->i_mapping); 5547 } 5548 5549 if (!error) { 5550 if (inc_ivers) 5551 inode_inc_iversion(inode); 5552 setattr_copy(idmap, inode, attr); 5553 mark_inode_dirty(inode); 5554 } 5555 5556 /* 5557 * If the call to ext4_truncate failed to get a transaction handle at 5558 * all, we need to clean up the in-core orphan list manually. 5559 */ 5560 if (orphan && inode->i_nlink) 5561 ext4_orphan_del(NULL, inode); 5562 5563 if (!error && (ia_valid & ATTR_MODE)) 5564 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5565 5566 err_out: 5567 if (error) 5568 ext4_std_error(inode->i_sb, error); 5569 if (!error) 5570 error = rc; 5571 return error; 5572 } 5573 5574 u32 ext4_dio_alignment(struct inode *inode) 5575 { 5576 if (fsverity_active(inode)) 5577 return 0; 5578 if (ext4_should_journal_data(inode)) 5579 return 0; 5580 if (ext4_has_inline_data(inode)) 5581 return 0; 5582 if (IS_ENCRYPTED(inode)) { 5583 if (!fscrypt_dio_supported(inode)) 5584 return 0; 5585 return i_blocksize(inode); 5586 } 5587 return 1; /* use the iomap defaults */ 5588 } 5589 5590 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5591 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5592 { 5593 struct inode *inode = d_inode(path->dentry); 5594 struct ext4_inode *raw_inode; 5595 struct ext4_inode_info *ei = EXT4_I(inode); 5596 unsigned int flags; 5597 5598 if ((request_mask & STATX_BTIME) && 5599 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5600 stat->result_mask |= STATX_BTIME; 5601 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5602 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5603 } 5604 5605 /* 5606 * Return the DIO alignment restrictions if requested. We only return 5607 * this information when requested, since on encrypted files it might 5608 * take a fair bit of work to get if the file wasn't opened recently. 5609 */ 5610 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5611 u32 dio_align = ext4_dio_alignment(inode); 5612 5613 stat->result_mask |= STATX_DIOALIGN; 5614 if (dio_align == 1) { 5615 struct block_device *bdev = inode->i_sb->s_bdev; 5616 5617 /* iomap defaults */ 5618 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5619 stat->dio_offset_align = bdev_logical_block_size(bdev); 5620 } else { 5621 stat->dio_mem_align = dio_align; 5622 stat->dio_offset_align = dio_align; 5623 } 5624 } 5625 5626 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 5627 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5628 unsigned int awu_min = 0, awu_max = 0; 5629 5630 if (ext4_inode_can_atomic_write(inode)) { 5631 awu_min = sbi->s_awu_min; 5632 awu_max = sbi->s_awu_max; 5633 } 5634 5635 generic_fill_statx_atomic_writes(stat, awu_min, awu_max); 5636 } 5637 5638 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5639 if (flags & EXT4_APPEND_FL) 5640 stat->attributes |= STATX_ATTR_APPEND; 5641 if (flags & EXT4_COMPR_FL) 5642 stat->attributes |= STATX_ATTR_COMPRESSED; 5643 if (flags & EXT4_ENCRYPT_FL) 5644 stat->attributes |= STATX_ATTR_ENCRYPTED; 5645 if (flags & EXT4_IMMUTABLE_FL) 5646 stat->attributes |= STATX_ATTR_IMMUTABLE; 5647 if (flags & EXT4_NODUMP_FL) 5648 stat->attributes |= STATX_ATTR_NODUMP; 5649 if (flags & EXT4_VERITY_FL) 5650 stat->attributes |= STATX_ATTR_VERITY; 5651 5652 stat->attributes_mask |= (STATX_ATTR_APPEND | 5653 STATX_ATTR_COMPRESSED | 5654 STATX_ATTR_ENCRYPTED | 5655 STATX_ATTR_IMMUTABLE | 5656 STATX_ATTR_NODUMP | 5657 STATX_ATTR_VERITY); 5658 5659 generic_fillattr(idmap, request_mask, inode, stat); 5660 return 0; 5661 } 5662 5663 int ext4_file_getattr(struct mnt_idmap *idmap, 5664 const struct path *path, struct kstat *stat, 5665 u32 request_mask, unsigned int query_flags) 5666 { 5667 struct inode *inode = d_inode(path->dentry); 5668 u64 delalloc_blocks; 5669 5670 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5671 5672 /* 5673 * If there is inline data in the inode, the inode will normally not 5674 * have data blocks allocated (it may have an external xattr block). 5675 * Report at least one sector for such files, so tools like tar, rsync, 5676 * others don't incorrectly think the file is completely sparse. 5677 */ 5678 if (unlikely(ext4_has_inline_data(inode))) 5679 stat->blocks += (stat->size + 511) >> 9; 5680 5681 /* 5682 * We can't update i_blocks if the block allocation is delayed 5683 * otherwise in the case of system crash before the real block 5684 * allocation is done, we will have i_blocks inconsistent with 5685 * on-disk file blocks. 5686 * We always keep i_blocks updated together with real 5687 * allocation. But to not confuse with user, stat 5688 * will return the blocks that include the delayed allocation 5689 * blocks for this file. 5690 */ 5691 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5692 EXT4_I(inode)->i_reserved_data_blocks); 5693 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5694 return 0; 5695 } 5696 5697 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5698 int pextents) 5699 { 5700 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5701 return ext4_ind_trans_blocks(inode, lblocks); 5702 return ext4_ext_index_trans_blocks(inode, pextents); 5703 } 5704 5705 /* 5706 * Account for index blocks, block groups bitmaps and block group 5707 * descriptor blocks if modify datablocks and index blocks 5708 * worse case, the indexs blocks spread over different block groups 5709 * 5710 * If datablocks are discontiguous, they are possible to spread over 5711 * different block groups too. If they are contiguous, with flexbg, 5712 * they could still across block group boundary. 5713 * 5714 * Also account for superblock, inode, quota and xattr blocks 5715 */ 5716 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5717 int pextents) 5718 { 5719 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5720 int gdpblocks; 5721 int idxblocks; 5722 int ret; 5723 5724 /* 5725 * How many index blocks need to touch to map @lblocks logical blocks 5726 * to @pextents physical extents? 5727 */ 5728 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5729 5730 ret = idxblocks; 5731 5732 /* 5733 * Now let's see how many group bitmaps and group descriptors need 5734 * to account 5735 */ 5736 groups = idxblocks + pextents; 5737 gdpblocks = groups; 5738 if (groups > ngroups) 5739 groups = ngroups; 5740 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5741 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5742 5743 /* bitmaps and block group descriptor blocks */ 5744 ret += groups + gdpblocks; 5745 5746 /* Blocks for super block, inode, quota and xattr blocks */ 5747 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5748 5749 return ret; 5750 } 5751 5752 /* 5753 * Calculate the total number of credits to reserve to fit 5754 * the modification of a single pages into a single transaction, 5755 * which may include multiple chunks of block allocations. 5756 * 5757 * This could be called via ext4_write_begin() 5758 * 5759 * We need to consider the worse case, when 5760 * one new block per extent. 5761 */ 5762 int ext4_writepage_trans_blocks(struct inode *inode) 5763 { 5764 int bpp = ext4_journal_blocks_per_page(inode); 5765 int ret; 5766 5767 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5768 5769 /* Account for data blocks for journalled mode */ 5770 if (ext4_should_journal_data(inode)) 5771 ret += bpp; 5772 return ret; 5773 } 5774 5775 /* 5776 * Calculate the journal credits for a chunk of data modification. 5777 * 5778 * This is called from DIO, fallocate or whoever calling 5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5780 * 5781 * journal buffers for data blocks are not included here, as DIO 5782 * and fallocate do no need to journal data buffers. 5783 */ 5784 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5785 { 5786 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5787 } 5788 5789 /* 5790 * The caller must have previously called ext4_reserve_inode_write(). 5791 * Give this, we know that the caller already has write access to iloc->bh. 5792 */ 5793 int ext4_mark_iloc_dirty(handle_t *handle, 5794 struct inode *inode, struct ext4_iloc *iloc) 5795 { 5796 int err = 0; 5797 5798 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5799 put_bh(iloc->bh); 5800 return -EIO; 5801 } 5802 ext4_fc_track_inode(handle, inode); 5803 5804 /* the do_update_inode consumes one bh->b_count */ 5805 get_bh(iloc->bh); 5806 5807 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5808 err = ext4_do_update_inode(handle, inode, iloc); 5809 put_bh(iloc->bh); 5810 return err; 5811 } 5812 5813 /* 5814 * On success, We end up with an outstanding reference count against 5815 * iloc->bh. This _must_ be cleaned up later. 5816 */ 5817 5818 int 5819 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5820 struct ext4_iloc *iloc) 5821 { 5822 int err; 5823 5824 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5825 return -EIO; 5826 5827 err = ext4_get_inode_loc(inode, iloc); 5828 if (!err) { 5829 BUFFER_TRACE(iloc->bh, "get_write_access"); 5830 err = ext4_journal_get_write_access(handle, inode->i_sb, 5831 iloc->bh, EXT4_JTR_NONE); 5832 if (err) { 5833 brelse(iloc->bh); 5834 iloc->bh = NULL; 5835 } 5836 } 5837 ext4_std_error(inode->i_sb, err); 5838 return err; 5839 } 5840 5841 static int __ext4_expand_extra_isize(struct inode *inode, 5842 unsigned int new_extra_isize, 5843 struct ext4_iloc *iloc, 5844 handle_t *handle, int *no_expand) 5845 { 5846 struct ext4_inode *raw_inode; 5847 struct ext4_xattr_ibody_header *header; 5848 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5849 struct ext4_inode_info *ei = EXT4_I(inode); 5850 int error; 5851 5852 /* this was checked at iget time, but double check for good measure */ 5853 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5854 (ei->i_extra_isize & 3)) { 5855 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5856 ei->i_extra_isize, 5857 EXT4_INODE_SIZE(inode->i_sb)); 5858 return -EFSCORRUPTED; 5859 } 5860 if ((new_extra_isize < ei->i_extra_isize) || 5861 (new_extra_isize < 4) || 5862 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5863 return -EINVAL; /* Should never happen */ 5864 5865 raw_inode = ext4_raw_inode(iloc); 5866 5867 header = IHDR(inode, raw_inode); 5868 5869 /* No extended attributes present */ 5870 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5871 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5872 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5873 EXT4_I(inode)->i_extra_isize, 0, 5874 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5875 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5876 return 0; 5877 } 5878 5879 /* 5880 * We may need to allocate external xattr block so we need quotas 5881 * initialized. Here we can be called with various locks held so we 5882 * cannot affort to initialize quotas ourselves. So just bail. 5883 */ 5884 if (dquot_initialize_needed(inode)) 5885 return -EAGAIN; 5886 5887 /* try to expand with EAs present */ 5888 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5889 raw_inode, handle); 5890 if (error) { 5891 /* 5892 * Inode size expansion failed; don't try again 5893 */ 5894 *no_expand = 1; 5895 } 5896 5897 return error; 5898 } 5899 5900 /* 5901 * Expand an inode by new_extra_isize bytes. 5902 * Returns 0 on success or negative error number on failure. 5903 */ 5904 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5905 unsigned int new_extra_isize, 5906 struct ext4_iloc iloc, 5907 handle_t *handle) 5908 { 5909 int no_expand; 5910 int error; 5911 5912 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5913 return -EOVERFLOW; 5914 5915 /* 5916 * In nojournal mode, we can immediately attempt to expand 5917 * the inode. When journaled, we first need to obtain extra 5918 * buffer credits since we may write into the EA block 5919 * with this same handle. If journal_extend fails, then it will 5920 * only result in a minor loss of functionality for that inode. 5921 * If this is felt to be critical, then e2fsck should be run to 5922 * force a large enough s_min_extra_isize. 5923 */ 5924 if (ext4_journal_extend(handle, 5925 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5926 return -ENOSPC; 5927 5928 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5929 return -EBUSY; 5930 5931 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5932 handle, &no_expand); 5933 ext4_write_unlock_xattr(inode, &no_expand); 5934 5935 return error; 5936 } 5937 5938 int ext4_expand_extra_isize(struct inode *inode, 5939 unsigned int new_extra_isize, 5940 struct ext4_iloc *iloc) 5941 { 5942 handle_t *handle; 5943 int no_expand; 5944 int error, rc; 5945 5946 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5947 brelse(iloc->bh); 5948 return -EOVERFLOW; 5949 } 5950 5951 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5952 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5953 if (IS_ERR(handle)) { 5954 error = PTR_ERR(handle); 5955 brelse(iloc->bh); 5956 return error; 5957 } 5958 5959 ext4_write_lock_xattr(inode, &no_expand); 5960 5961 BUFFER_TRACE(iloc->bh, "get_write_access"); 5962 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5963 EXT4_JTR_NONE); 5964 if (error) { 5965 brelse(iloc->bh); 5966 goto out_unlock; 5967 } 5968 5969 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5970 handle, &no_expand); 5971 5972 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5973 if (!error) 5974 error = rc; 5975 5976 out_unlock: 5977 ext4_write_unlock_xattr(inode, &no_expand); 5978 ext4_journal_stop(handle); 5979 return error; 5980 } 5981 5982 /* 5983 * What we do here is to mark the in-core inode as clean with respect to inode 5984 * dirtiness (it may still be data-dirty). 5985 * This means that the in-core inode may be reaped by prune_icache 5986 * without having to perform any I/O. This is a very good thing, 5987 * because *any* task may call prune_icache - even ones which 5988 * have a transaction open against a different journal. 5989 * 5990 * Is this cheating? Not really. Sure, we haven't written the 5991 * inode out, but prune_icache isn't a user-visible syncing function. 5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5993 * we start and wait on commits. 5994 */ 5995 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5996 const char *func, unsigned int line) 5997 { 5998 struct ext4_iloc iloc; 5999 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6000 int err; 6001 6002 might_sleep(); 6003 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6004 err = ext4_reserve_inode_write(handle, inode, &iloc); 6005 if (err) 6006 goto out; 6007 6008 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6009 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6010 iloc, handle); 6011 6012 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6013 out: 6014 if (unlikely(err)) 6015 ext4_error_inode_err(inode, func, line, 0, err, 6016 "mark_inode_dirty error"); 6017 return err; 6018 } 6019 6020 /* 6021 * ext4_dirty_inode() is called from __mark_inode_dirty() 6022 * 6023 * We're really interested in the case where a file is being extended. 6024 * i_size has been changed by generic_commit_write() and we thus need 6025 * to include the updated inode in the current transaction. 6026 * 6027 * Also, dquot_alloc_block() will always dirty the inode when blocks 6028 * are allocated to the file. 6029 * 6030 * If the inode is marked synchronous, we don't honour that here - doing 6031 * so would cause a commit on atime updates, which we don't bother doing. 6032 * We handle synchronous inodes at the highest possible level. 6033 */ 6034 void ext4_dirty_inode(struct inode *inode, int flags) 6035 { 6036 handle_t *handle; 6037 6038 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6039 if (IS_ERR(handle)) 6040 return; 6041 ext4_mark_inode_dirty(handle, inode); 6042 ext4_journal_stop(handle); 6043 } 6044 6045 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6046 { 6047 journal_t *journal; 6048 handle_t *handle; 6049 int err; 6050 int alloc_ctx; 6051 6052 /* 6053 * We have to be very careful here: changing a data block's 6054 * journaling status dynamically is dangerous. If we write a 6055 * data block to the journal, change the status and then delete 6056 * that block, we risk forgetting to revoke the old log record 6057 * from the journal and so a subsequent replay can corrupt data. 6058 * So, first we make sure that the journal is empty and that 6059 * nobody is changing anything. 6060 */ 6061 6062 journal = EXT4_JOURNAL(inode); 6063 if (!journal) 6064 return 0; 6065 if (is_journal_aborted(journal)) 6066 return -EROFS; 6067 6068 /* Wait for all existing dio workers */ 6069 inode_dio_wait(inode); 6070 6071 /* 6072 * Before flushing the journal and switching inode's aops, we have 6073 * to flush all dirty data the inode has. There can be outstanding 6074 * delayed allocations, there can be unwritten extents created by 6075 * fallocate or buffered writes in dioread_nolock mode covered by 6076 * dirty data which can be converted only after flushing the dirty 6077 * data (and journalled aops don't know how to handle these cases). 6078 */ 6079 if (val) { 6080 filemap_invalidate_lock(inode->i_mapping); 6081 err = filemap_write_and_wait(inode->i_mapping); 6082 if (err < 0) { 6083 filemap_invalidate_unlock(inode->i_mapping); 6084 return err; 6085 } 6086 } 6087 6088 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6089 jbd2_journal_lock_updates(journal); 6090 6091 /* 6092 * OK, there are no updates running now, and all cached data is 6093 * synced to disk. We are now in a completely consistent state 6094 * which doesn't have anything in the journal, and we know that 6095 * no filesystem updates are running, so it is safe to modify 6096 * the inode's in-core data-journaling state flag now. 6097 */ 6098 6099 if (val) 6100 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6101 else { 6102 err = jbd2_journal_flush(journal, 0); 6103 if (err < 0) { 6104 jbd2_journal_unlock_updates(journal); 6105 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6106 return err; 6107 } 6108 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6109 } 6110 ext4_set_aops(inode); 6111 6112 jbd2_journal_unlock_updates(journal); 6113 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6114 6115 if (val) 6116 filemap_invalidate_unlock(inode->i_mapping); 6117 6118 /* Finally we can mark the inode as dirty. */ 6119 6120 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6121 if (IS_ERR(handle)) 6122 return PTR_ERR(handle); 6123 6124 ext4_fc_mark_ineligible(inode->i_sb, 6125 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6126 err = ext4_mark_inode_dirty(handle, inode); 6127 ext4_handle_sync(handle); 6128 ext4_journal_stop(handle); 6129 ext4_std_error(inode->i_sb, err); 6130 6131 return err; 6132 } 6133 6134 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6135 struct buffer_head *bh) 6136 { 6137 return !buffer_mapped(bh); 6138 } 6139 6140 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6141 { 6142 struct vm_area_struct *vma = vmf->vma; 6143 struct folio *folio = page_folio(vmf->page); 6144 loff_t size; 6145 unsigned long len; 6146 int err; 6147 vm_fault_t ret; 6148 struct file *file = vma->vm_file; 6149 struct inode *inode = file_inode(file); 6150 struct address_space *mapping = inode->i_mapping; 6151 handle_t *handle; 6152 get_block_t *get_block; 6153 int retries = 0; 6154 6155 if (unlikely(IS_IMMUTABLE(inode))) 6156 return VM_FAULT_SIGBUS; 6157 6158 sb_start_pagefault(inode->i_sb); 6159 file_update_time(vma->vm_file); 6160 6161 filemap_invalidate_lock_shared(mapping); 6162 6163 err = ext4_convert_inline_data(inode); 6164 if (err) 6165 goto out_ret; 6166 6167 /* 6168 * On data journalling we skip straight to the transaction handle: 6169 * there's no delalloc; page truncated will be checked later; the 6170 * early return w/ all buffers mapped (calculates size/len) can't 6171 * be used; and there's no dioread_nolock, so only ext4_get_block. 6172 */ 6173 if (ext4_should_journal_data(inode)) 6174 goto retry_alloc; 6175 6176 /* Delalloc case is easy... */ 6177 if (test_opt(inode->i_sb, DELALLOC) && 6178 !ext4_nonda_switch(inode->i_sb)) { 6179 do { 6180 err = block_page_mkwrite(vma, vmf, 6181 ext4_da_get_block_prep); 6182 } while (err == -ENOSPC && 6183 ext4_should_retry_alloc(inode->i_sb, &retries)); 6184 goto out_ret; 6185 } 6186 6187 folio_lock(folio); 6188 size = i_size_read(inode); 6189 /* Page got truncated from under us? */ 6190 if (folio->mapping != mapping || folio_pos(folio) > size) { 6191 folio_unlock(folio); 6192 ret = VM_FAULT_NOPAGE; 6193 goto out; 6194 } 6195 6196 len = folio_size(folio); 6197 if (folio_pos(folio) + len > size) 6198 len = size - folio_pos(folio); 6199 /* 6200 * Return if we have all the buffers mapped. This avoids the need to do 6201 * journal_start/journal_stop which can block and take a long time 6202 * 6203 * This cannot be done for data journalling, as we have to add the 6204 * inode to the transaction's list to writeprotect pages on commit. 6205 */ 6206 if (folio_buffers(folio)) { 6207 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6208 0, len, NULL, 6209 ext4_bh_unmapped)) { 6210 /* Wait so that we don't change page under IO */ 6211 folio_wait_stable(folio); 6212 ret = VM_FAULT_LOCKED; 6213 goto out; 6214 } 6215 } 6216 folio_unlock(folio); 6217 /* OK, we need to fill the hole... */ 6218 if (ext4_should_dioread_nolock(inode)) 6219 get_block = ext4_get_block_unwritten; 6220 else 6221 get_block = ext4_get_block; 6222 retry_alloc: 6223 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6224 ext4_writepage_trans_blocks(inode)); 6225 if (IS_ERR(handle)) { 6226 ret = VM_FAULT_SIGBUS; 6227 goto out; 6228 } 6229 /* 6230 * Data journalling can't use block_page_mkwrite() because it 6231 * will set_buffer_dirty() before do_journal_get_write_access() 6232 * thus might hit warning messages for dirty metadata buffers. 6233 */ 6234 if (!ext4_should_journal_data(inode)) { 6235 err = block_page_mkwrite(vma, vmf, get_block); 6236 } else { 6237 folio_lock(folio); 6238 size = i_size_read(inode); 6239 /* Page got truncated from under us? */ 6240 if (folio->mapping != mapping || folio_pos(folio) > size) { 6241 ret = VM_FAULT_NOPAGE; 6242 goto out_error; 6243 } 6244 6245 len = folio_size(folio); 6246 if (folio_pos(folio) + len > size) 6247 len = size - folio_pos(folio); 6248 6249 err = ext4_block_write_begin(handle, folio, 0, len, 6250 ext4_get_block); 6251 if (!err) { 6252 ret = VM_FAULT_SIGBUS; 6253 if (ext4_journal_folio_buffers(handle, folio, len)) 6254 goto out_error; 6255 } else { 6256 folio_unlock(folio); 6257 } 6258 } 6259 ext4_journal_stop(handle); 6260 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6261 goto retry_alloc; 6262 out_ret: 6263 ret = vmf_fs_error(err); 6264 out: 6265 filemap_invalidate_unlock_shared(mapping); 6266 sb_end_pagefault(inode->i_sb); 6267 return ret; 6268 out_error: 6269 folio_unlock(folio); 6270 ext4_journal_stop(handle); 6271 goto out; 6272 } 6273