xref: /linux/fs/ext4/inode.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 						   new_size);
52 }
53 
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
55 
56 /*
57  * Test whether an inode is a fast symlink.
58  */
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 {
61 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 		(inode->i_sb->s_blocksize >> 9) : 0;
63 
64 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 }
66 
67 /*
68  * The ext4 forget function must perform a revoke if we are freeing data
69  * which has been journaled.  Metadata (eg. indirect blocks) must be
70  * revoked in all cases.
71  *
72  * "bh" may be NULL: a metadata block may have been freed from memory
73  * but there may still be a record of it in the journal, and that record
74  * still needs to be revoked.
75  */
76 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77 			struct buffer_head *bh, ext4_fsblk_t blocknr)
78 {
79 	int err;
80 
81 	might_sleep();
82 
83 	BUFFER_TRACE(bh, "enter");
84 
85 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86 		  "data mode %lx\n",
87 		  bh, is_metadata, inode->i_mode,
88 		  test_opt(inode->i_sb, DATA_FLAGS));
89 
90 	/* Never use the revoke function if we are doing full data
91 	 * journaling: there is no need to, and a V1 superblock won't
92 	 * support it.  Otherwise, only skip the revoke on un-journaled
93 	 * data blocks. */
94 
95 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96 	    (!is_metadata && !ext4_should_journal_data(inode))) {
97 		if (bh) {
98 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
99 			return ext4_journal_forget(handle, bh);
100 		}
101 		return 0;
102 	}
103 
104 	/*
105 	 * data!=journal && (is_metadata || should_journal_data(inode))
106 	 */
107 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
108 	err = ext4_journal_revoke(handle, blocknr, bh);
109 	if (err)
110 		ext4_abort(inode->i_sb, __func__,
111 			   "error %d when attempting revoke", err);
112 	BUFFER_TRACE(bh, "exit");
113 	return err;
114 }
115 
116 /*
117  * Work out how many blocks we need to proceed with the next chunk of a
118  * truncate transaction.
119  */
120 static unsigned long blocks_for_truncate(struct inode *inode)
121 {
122 	ext4_lblk_t needed;
123 
124 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125 
126 	/* Give ourselves just enough room to cope with inodes in which
127 	 * i_blocks is corrupt: we've seen disk corruptions in the past
128 	 * which resulted in random data in an inode which looked enough
129 	 * like a regular file for ext4 to try to delete it.  Things
130 	 * will go a bit crazy if that happens, but at least we should
131 	 * try not to panic the whole kernel. */
132 	if (needed < 2)
133 		needed = 2;
134 
135 	/* But we need to bound the transaction so we don't overflow the
136 	 * journal. */
137 	if (needed > EXT4_MAX_TRANS_DATA)
138 		needed = EXT4_MAX_TRANS_DATA;
139 
140 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 }
142 
143 /*
144  * Truncate transactions can be complex and absolutely huge.  So we need to
145  * be able to restart the transaction at a conventient checkpoint to make
146  * sure we don't overflow the journal.
147  *
148  * start_transaction gets us a new handle for a truncate transaction,
149  * and extend_transaction tries to extend the existing one a bit.  If
150  * extend fails, we need to propagate the failure up and restart the
151  * transaction in the top-level truncate loop. --sct
152  */
153 static handle_t *start_transaction(struct inode *inode)
154 {
155 	handle_t *result;
156 
157 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
158 	if (!IS_ERR(result))
159 		return result;
160 
161 	ext4_std_error(inode->i_sb, PTR_ERR(result));
162 	return result;
163 }
164 
165 /*
166  * Try to extend this transaction for the purposes of truncation.
167  *
168  * Returns 0 if we managed to create more room.  If we can't create more
169  * room, and the transaction must be restarted we return 1.
170  */
171 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 {
173 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174 		return 0;
175 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176 		return 0;
177 	return 1;
178 }
179 
180 /*
181  * Restart the transaction associated with *handle.  This does a commit,
182  * so before we call here everything must be consistently dirtied against
183  * this transaction.
184  */
185 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 {
187 	jbd_debug(2, "restarting handle %p\n", handle);
188 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 }
190 
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_delete_inode(struct inode *inode)
195 {
196 	handle_t *handle;
197 	int err;
198 
199 	if (ext4_should_order_data(inode))
200 		ext4_begin_ordered_truncate(inode, 0);
201 	truncate_inode_pages(&inode->i_data, 0);
202 
203 	if (is_bad_inode(inode))
204 		goto no_delete;
205 
206 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207 	if (IS_ERR(handle)) {
208 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 		/*
210 		 * If we're going to skip the normal cleanup, we still need to
211 		 * make sure that the in-core orphan linked list is properly
212 		 * cleaned up.
213 		 */
214 		ext4_orphan_del(NULL, inode);
215 		goto no_delete;
216 	}
217 
218 	if (IS_SYNC(inode))
219 		handle->h_sync = 1;
220 	inode->i_size = 0;
221 	err = ext4_mark_inode_dirty(handle, inode);
222 	if (err) {
223 		ext4_warning(inode->i_sb, __func__,
224 			     "couldn't mark inode dirty (err %d)", err);
225 		goto stop_handle;
226 	}
227 	if (inode->i_blocks)
228 		ext4_truncate(inode);
229 
230 	/*
231 	 * ext4_ext_truncate() doesn't reserve any slop when it
232 	 * restarts journal transactions; therefore there may not be
233 	 * enough credits left in the handle to remove the inode from
234 	 * the orphan list and set the dtime field.
235 	 */
236 	if (handle->h_buffer_credits < 3) {
237 		err = ext4_journal_extend(handle, 3);
238 		if (err > 0)
239 			err = ext4_journal_restart(handle, 3);
240 		if (err != 0) {
241 			ext4_warning(inode->i_sb, __func__,
242 				     "couldn't extend journal (err %d)", err);
243 		stop_handle:
244 			ext4_journal_stop(handle);
245 			goto no_delete;
246 		}
247 	}
248 
249 	/*
250 	 * Kill off the orphan record which ext4_truncate created.
251 	 * AKPM: I think this can be inside the above `if'.
252 	 * Note that ext4_orphan_del() has to be able to cope with the
253 	 * deletion of a non-existent orphan - this is because we don't
254 	 * know if ext4_truncate() actually created an orphan record.
255 	 * (Well, we could do this if we need to, but heck - it works)
256 	 */
257 	ext4_orphan_del(handle, inode);
258 	EXT4_I(inode)->i_dtime	= get_seconds();
259 
260 	/*
261 	 * One subtle ordering requirement: if anything has gone wrong
262 	 * (transaction abort, IO errors, whatever), then we can still
263 	 * do these next steps (the fs will already have been marked as
264 	 * having errors), but we can't free the inode if the mark_dirty
265 	 * fails.
266 	 */
267 	if (ext4_mark_inode_dirty(handle, inode))
268 		/* If that failed, just do the required in-core inode clear. */
269 		clear_inode(inode);
270 	else
271 		ext4_free_inode(handle, inode);
272 	ext4_journal_stop(handle);
273 	return;
274 no_delete:
275 	clear_inode(inode);	/* We must guarantee clearing of inode... */
276 }
277 
278 typedef struct {
279 	__le32	*p;
280 	__le32	key;
281 	struct buffer_head *bh;
282 } Indirect;
283 
284 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 {
286 	p->key = *(p->p = v);
287 	p->bh = bh;
288 }
289 
290 /**
291  *	ext4_block_to_path - parse the block number into array of offsets
292  *	@inode: inode in question (we are only interested in its superblock)
293  *	@i_block: block number to be parsed
294  *	@offsets: array to store the offsets in
295  *	@boundary: set this non-zero if the referred-to block is likely to be
296  *	       followed (on disk) by an indirect block.
297  *
298  *	To store the locations of file's data ext4 uses a data structure common
299  *	for UNIX filesystems - tree of pointers anchored in the inode, with
300  *	data blocks at leaves and indirect blocks in intermediate nodes.
301  *	This function translates the block number into path in that tree -
302  *	return value is the path length and @offsets[n] is the offset of
303  *	pointer to (n+1)th node in the nth one. If @block is out of range
304  *	(negative or too large) warning is printed and zero returned.
305  *
306  *	Note: function doesn't find node addresses, so no IO is needed. All
307  *	we need to know is the capacity of indirect blocks (taken from the
308  *	inode->i_sb).
309  */
310 
311 /*
312  * Portability note: the last comparison (check that we fit into triple
313  * indirect block) is spelled differently, because otherwise on an
314  * architecture with 32-bit longs and 8Kb pages we might get into trouble
315  * if our filesystem had 8Kb blocks. We might use long long, but that would
316  * kill us on x86. Oh, well, at least the sign propagation does not matter -
317  * i_block would have to be negative in the very beginning, so we would not
318  * get there at all.
319  */
320 
321 static int ext4_block_to_path(struct inode *inode,
322 			ext4_lblk_t i_block,
323 			ext4_lblk_t offsets[4], int *boundary)
324 {
325 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327 	const long direct_blocks = EXT4_NDIR_BLOCKS,
328 		indirect_blocks = ptrs,
329 		double_blocks = (1 << (ptrs_bits * 2));
330 	int n = 0;
331 	int final = 0;
332 
333 	if (i_block < 0) {
334 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335 	} else if (i_block < direct_blocks) {
336 		offsets[n++] = i_block;
337 		final = direct_blocks;
338 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339 		offsets[n++] = EXT4_IND_BLOCK;
340 		offsets[n++] = i_block;
341 		final = ptrs;
342 	} else if ((i_block -= indirect_blocks) < double_blocks) {
343 		offsets[n++] = EXT4_DIND_BLOCK;
344 		offsets[n++] = i_block >> ptrs_bits;
345 		offsets[n++] = i_block & (ptrs - 1);
346 		final = ptrs;
347 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 		offsets[n++] = EXT4_TIND_BLOCK;
349 		offsets[n++] = i_block >> (ptrs_bits * 2);
350 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 		offsets[n++] = i_block & (ptrs - 1);
352 		final = ptrs;
353 	} else {
354 		ext4_warning(inode->i_sb, "ext4_block_to_path",
355 				"block %lu > max",
356 				i_block + direct_blocks +
357 				indirect_blocks + double_blocks);
358 	}
359 	if (boundary)
360 		*boundary = final - 1 - (i_block & (ptrs - 1));
361 	return n;
362 }
363 
364 /**
365  *	ext4_get_branch - read the chain of indirect blocks leading to data
366  *	@inode: inode in question
367  *	@depth: depth of the chain (1 - direct pointer, etc.)
368  *	@offsets: offsets of pointers in inode/indirect blocks
369  *	@chain: place to store the result
370  *	@err: here we store the error value
371  *
372  *	Function fills the array of triples <key, p, bh> and returns %NULL
373  *	if everything went OK or the pointer to the last filled triple
374  *	(incomplete one) otherwise. Upon the return chain[i].key contains
375  *	the number of (i+1)-th block in the chain (as it is stored in memory,
376  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
377  *	number (it points into struct inode for i==0 and into the bh->b_data
378  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379  *	block for i>0 and NULL for i==0. In other words, it holds the block
380  *	numbers of the chain, addresses they were taken from (and where we can
381  *	verify that chain did not change) and buffer_heads hosting these
382  *	numbers.
383  *
384  *	Function stops when it stumbles upon zero pointer (absent block)
385  *		(pointer to last triple returned, *@err == 0)
386  *	or when it gets an IO error reading an indirect block
387  *		(ditto, *@err == -EIO)
388  *	or when it reads all @depth-1 indirect blocks successfully and finds
389  *	the whole chain, all way to the data (returns %NULL, *err == 0).
390  *
391  *      Need to be called with
392  *      down_read(&EXT4_I(inode)->i_data_sem)
393  */
394 static Indirect *ext4_get_branch(struct inode *inode, int depth,
395 				 ext4_lblk_t  *offsets,
396 				 Indirect chain[4], int *err)
397 {
398 	struct super_block *sb = inode->i_sb;
399 	Indirect *p = chain;
400 	struct buffer_head *bh;
401 
402 	*err = 0;
403 	/* i_data is not going away, no lock needed */
404 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405 	if (!p->key)
406 		goto no_block;
407 	while (--depth) {
408 		bh = sb_bread(sb, le32_to_cpu(p->key));
409 		if (!bh)
410 			goto failure;
411 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412 		/* Reader: end */
413 		if (!p->key)
414 			goto no_block;
415 	}
416 	return NULL;
417 
418 failure:
419 	*err = -EIO;
420 no_block:
421 	return p;
422 }
423 
424 /**
425  *	ext4_find_near - find a place for allocation with sufficient locality
426  *	@inode: owner
427  *	@ind: descriptor of indirect block.
428  *
429  *	This function returns the preferred place for block allocation.
430  *	It is used when heuristic for sequential allocation fails.
431  *	Rules are:
432  *	  + if there is a block to the left of our position - allocate near it.
433  *	  + if pointer will live in indirect block - allocate near that block.
434  *	  + if pointer will live in inode - allocate in the same
435  *	    cylinder group.
436  *
437  * In the latter case we colour the starting block by the callers PID to
438  * prevent it from clashing with concurrent allocations for a different inode
439  * in the same block group.   The PID is used here so that functionally related
440  * files will be close-by on-disk.
441  *
442  *	Caller must make sure that @ind is valid and will stay that way.
443  */
444 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 {
446 	struct ext4_inode_info *ei = EXT4_I(inode);
447 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448 	__le32 *p;
449 	ext4_fsblk_t bg_start;
450 	ext4_fsblk_t last_block;
451 	ext4_grpblk_t colour;
452 
453 	/* Try to find previous block */
454 	for (p = ind->p - 1; p >= start; p--) {
455 		if (*p)
456 			return le32_to_cpu(*p);
457 	}
458 
459 	/* No such thing, so let's try location of indirect block */
460 	if (ind->bh)
461 		return ind->bh->b_blocknr;
462 
463 	/*
464 	 * It is going to be referred to from the inode itself? OK, just put it
465 	 * into the same cylinder group then.
466 	 */
467 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469 
470 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471 		colour = (current->pid % 16) *
472 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473 	else
474 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475 	return bg_start + colour;
476 }
477 
478 /**
479  *	ext4_find_goal - find a preferred place for allocation.
480  *	@inode: owner
481  *	@block:  block we want
482  *	@partial: pointer to the last triple within a chain
483  *
484  *	Normally this function find the preferred place for block allocation,
485  *	returns it.
486  */
487 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488 		Indirect *partial)
489 {
490 	/*
491 	 * XXX need to get goal block from mballoc's data structures
492 	 */
493 
494 	return ext4_find_near(inode, partial);
495 }
496 
497 /**
498  *	ext4_blks_to_allocate: Look up the block map and count the number
499  *	of direct blocks need to be allocated for the given branch.
500  *
501  *	@branch: chain of indirect blocks
502  *	@k: number of blocks need for indirect blocks
503  *	@blks: number of data blocks to be mapped.
504  *	@blocks_to_boundary:  the offset in the indirect block
505  *
506  *	return the total number of blocks to be allocate, including the
507  *	direct and indirect blocks.
508  */
509 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510 		int blocks_to_boundary)
511 {
512 	unsigned long count = 0;
513 
514 	/*
515 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
516 	 * then it's clear blocks on that path have not allocated
517 	 */
518 	if (k > 0) {
519 		/* right now we don't handle cross boundary allocation */
520 		if (blks < blocks_to_boundary + 1)
521 			count += blks;
522 		else
523 			count += blocks_to_boundary + 1;
524 		return count;
525 	}
526 
527 	count++;
528 	while (count < blks && count <= blocks_to_boundary &&
529 		le32_to_cpu(*(branch[0].p + count)) == 0) {
530 		count++;
531 	}
532 	return count;
533 }
534 
535 /**
536  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
537  *	@indirect_blks: the number of blocks need to allocate for indirect
538  *			blocks
539  *
540  *	@new_blocks: on return it will store the new block numbers for
541  *	the indirect blocks(if needed) and the first direct block,
542  *	@blks:	on return it will store the total number of allocated
543  *		direct blocks
544  */
545 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546 				ext4_lblk_t iblock, ext4_fsblk_t goal,
547 				int indirect_blks, int blks,
548 				ext4_fsblk_t new_blocks[4], int *err)
549 {
550 	int target, i;
551 	unsigned long count = 0, blk_allocated = 0;
552 	int index = 0;
553 	ext4_fsblk_t current_block = 0;
554 	int ret = 0;
555 
556 	/*
557 	 * Here we try to allocate the requested multiple blocks at once,
558 	 * on a best-effort basis.
559 	 * To build a branch, we should allocate blocks for
560 	 * the indirect blocks(if not allocated yet), and at least
561 	 * the first direct block of this branch.  That's the
562 	 * minimum number of blocks need to allocate(required)
563 	 */
564 	/* first we try to allocate the indirect blocks */
565 	target = indirect_blks;
566 	while (target > 0) {
567 		count = target;
568 		/* allocating blocks for indirect blocks and direct blocks */
569 		current_block = ext4_new_meta_blocks(handle, inode,
570 							goal, &count, err);
571 		if (*err)
572 			goto failed_out;
573 
574 		target -= count;
575 		/* allocate blocks for indirect blocks */
576 		while (index < indirect_blks && count) {
577 			new_blocks[index++] = current_block++;
578 			count--;
579 		}
580 		if (count > 0) {
581 			/*
582 			 * save the new block number
583 			 * for the first direct block
584 			 */
585 			new_blocks[index] = current_block;
586 			printk(KERN_INFO "%s returned more blocks than "
587 						"requested\n", __func__);
588 			WARN_ON(1);
589 			break;
590 		}
591 	}
592 
593 	target = blks - count ;
594 	blk_allocated = count;
595 	if (!target)
596 		goto allocated;
597 	/* Now allocate data blocks */
598 	count = target;
599 	/* allocating blocks for data blocks */
600 	current_block = ext4_new_blocks(handle, inode, iblock,
601 						goal, &count, err);
602 	if (*err && (target == blks)) {
603 		/*
604 		 * if the allocation failed and we didn't allocate
605 		 * any blocks before
606 		 */
607 		goto failed_out;
608 	}
609 	if (!*err) {
610 		if (target == blks) {
611 		/*
612 		 * save the new block number
613 		 * for the first direct block
614 		 */
615 			new_blocks[index] = current_block;
616 		}
617 		blk_allocated += count;
618 	}
619 allocated:
620 	/* total number of blocks allocated for direct blocks */
621 	ret = blk_allocated;
622 	*err = 0;
623 	return ret;
624 failed_out:
625 	for (i = 0; i < index; i++)
626 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
627 	return ret;
628 }
629 
630 /**
631  *	ext4_alloc_branch - allocate and set up a chain of blocks.
632  *	@inode: owner
633  *	@indirect_blks: number of allocated indirect blocks
634  *	@blks: number of allocated direct blocks
635  *	@offsets: offsets (in the blocks) to store the pointers to next.
636  *	@branch: place to store the chain in.
637  *
638  *	This function allocates blocks, zeroes out all but the last one,
639  *	links them into chain and (if we are synchronous) writes them to disk.
640  *	In other words, it prepares a branch that can be spliced onto the
641  *	inode. It stores the information about that chain in the branch[], in
642  *	the same format as ext4_get_branch() would do. We are calling it after
643  *	we had read the existing part of chain and partial points to the last
644  *	triple of that (one with zero ->key). Upon the exit we have the same
645  *	picture as after the successful ext4_get_block(), except that in one
646  *	place chain is disconnected - *branch->p is still zero (we did not
647  *	set the last link), but branch->key contains the number that should
648  *	be placed into *branch->p to fill that gap.
649  *
650  *	If allocation fails we free all blocks we've allocated (and forget
651  *	their buffer_heads) and return the error value the from failed
652  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
653  *	as described above and return 0.
654  */
655 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
656 				ext4_lblk_t iblock, int indirect_blks,
657 				int *blks, ext4_fsblk_t goal,
658 				ext4_lblk_t *offsets, Indirect *branch)
659 {
660 	int blocksize = inode->i_sb->s_blocksize;
661 	int i, n = 0;
662 	int err = 0;
663 	struct buffer_head *bh;
664 	int num;
665 	ext4_fsblk_t new_blocks[4];
666 	ext4_fsblk_t current_block;
667 
668 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
669 				*blks, new_blocks, &err);
670 	if (err)
671 		return err;
672 
673 	branch[0].key = cpu_to_le32(new_blocks[0]);
674 	/*
675 	 * metadata blocks and data blocks are allocated.
676 	 */
677 	for (n = 1; n <= indirect_blks;  n++) {
678 		/*
679 		 * Get buffer_head for parent block, zero it out
680 		 * and set the pointer to new one, then send
681 		 * parent to disk.
682 		 */
683 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
684 		branch[n].bh = bh;
685 		lock_buffer(bh);
686 		BUFFER_TRACE(bh, "call get_create_access");
687 		err = ext4_journal_get_create_access(handle, bh);
688 		if (err) {
689 			unlock_buffer(bh);
690 			brelse(bh);
691 			goto failed;
692 		}
693 
694 		memset(bh->b_data, 0, blocksize);
695 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
696 		branch[n].key = cpu_to_le32(new_blocks[n]);
697 		*branch[n].p = branch[n].key;
698 		if (n == indirect_blks) {
699 			current_block = new_blocks[n];
700 			/*
701 			 * End of chain, update the last new metablock of
702 			 * the chain to point to the new allocated
703 			 * data blocks numbers
704 			 */
705 			for (i=1; i < num; i++)
706 				*(branch[n].p + i) = cpu_to_le32(++current_block);
707 		}
708 		BUFFER_TRACE(bh, "marking uptodate");
709 		set_buffer_uptodate(bh);
710 		unlock_buffer(bh);
711 
712 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
713 		err = ext4_journal_dirty_metadata(handle, bh);
714 		if (err)
715 			goto failed;
716 	}
717 	*blks = num;
718 	return err;
719 failed:
720 	/* Allocation failed, free what we already allocated */
721 	for (i = 1; i <= n ; i++) {
722 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
723 		ext4_journal_forget(handle, branch[i].bh);
724 	}
725 	for (i = 0; i < indirect_blks; i++)
726 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
727 
728 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
729 
730 	return err;
731 }
732 
733 /**
734  * ext4_splice_branch - splice the allocated branch onto inode.
735  * @inode: owner
736  * @block: (logical) number of block we are adding
737  * @chain: chain of indirect blocks (with a missing link - see
738  *	ext4_alloc_branch)
739  * @where: location of missing link
740  * @num:   number of indirect blocks we are adding
741  * @blks:  number of direct blocks we are adding
742  *
743  * This function fills the missing link and does all housekeeping needed in
744  * inode (->i_blocks, etc.). In case of success we end up with the full
745  * chain to new block and return 0.
746  */
747 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
748 			ext4_lblk_t block, Indirect *where, int num, int blks)
749 {
750 	int i;
751 	int err = 0;
752 	ext4_fsblk_t current_block;
753 
754 	/*
755 	 * If we're splicing into a [td]indirect block (as opposed to the
756 	 * inode) then we need to get write access to the [td]indirect block
757 	 * before the splice.
758 	 */
759 	if (where->bh) {
760 		BUFFER_TRACE(where->bh, "get_write_access");
761 		err = ext4_journal_get_write_access(handle, where->bh);
762 		if (err)
763 			goto err_out;
764 	}
765 	/* That's it */
766 
767 	*where->p = where->key;
768 
769 	/*
770 	 * Update the host buffer_head or inode to point to more just allocated
771 	 * direct blocks blocks
772 	 */
773 	if (num == 0 && blks > 1) {
774 		current_block = le32_to_cpu(where->key) + 1;
775 		for (i = 1; i < blks; i++)
776 			*(where->p + i) = cpu_to_le32(current_block++);
777 	}
778 
779 	/* We are done with atomic stuff, now do the rest of housekeeping */
780 
781 	inode->i_ctime = ext4_current_time(inode);
782 	ext4_mark_inode_dirty(handle, inode);
783 
784 	/* had we spliced it onto indirect block? */
785 	if (where->bh) {
786 		/*
787 		 * If we spliced it onto an indirect block, we haven't
788 		 * altered the inode.  Note however that if it is being spliced
789 		 * onto an indirect block at the very end of the file (the
790 		 * file is growing) then we *will* alter the inode to reflect
791 		 * the new i_size.  But that is not done here - it is done in
792 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
793 		 */
794 		jbd_debug(5, "splicing indirect only\n");
795 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
796 		err = ext4_journal_dirty_metadata(handle, where->bh);
797 		if (err)
798 			goto err_out;
799 	} else {
800 		/*
801 		 * OK, we spliced it into the inode itself on a direct block.
802 		 * Inode was dirtied above.
803 		 */
804 		jbd_debug(5, "splicing direct\n");
805 	}
806 	return err;
807 
808 err_out:
809 	for (i = 1; i <= num; i++) {
810 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
811 		ext4_journal_forget(handle, where[i].bh);
812 		ext4_free_blocks(handle, inode,
813 					le32_to_cpu(where[i-1].key), 1, 0);
814 	}
815 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
816 
817 	return err;
818 }
819 
820 /*
821  * Allocation strategy is simple: if we have to allocate something, we will
822  * have to go the whole way to leaf. So let's do it before attaching anything
823  * to tree, set linkage between the newborn blocks, write them if sync is
824  * required, recheck the path, free and repeat if check fails, otherwise
825  * set the last missing link (that will protect us from any truncate-generated
826  * removals - all blocks on the path are immune now) and possibly force the
827  * write on the parent block.
828  * That has a nice additional property: no special recovery from the failed
829  * allocations is needed - we simply release blocks and do not touch anything
830  * reachable from inode.
831  *
832  * `handle' can be NULL if create == 0.
833  *
834  * return > 0, # of blocks mapped or allocated.
835  * return = 0, if plain lookup failed.
836  * return < 0, error case.
837  *
838  *
839  * Need to be called with
840  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
841  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
842  */
843 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
844 		ext4_lblk_t iblock, unsigned long maxblocks,
845 		struct buffer_head *bh_result,
846 		int create, int extend_disksize)
847 {
848 	int err = -EIO;
849 	ext4_lblk_t offsets[4];
850 	Indirect chain[4];
851 	Indirect *partial;
852 	ext4_fsblk_t goal;
853 	int indirect_blks;
854 	int blocks_to_boundary = 0;
855 	int depth;
856 	struct ext4_inode_info *ei = EXT4_I(inode);
857 	int count = 0;
858 	ext4_fsblk_t first_block = 0;
859 	loff_t disksize;
860 
861 
862 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
863 	J_ASSERT(handle != NULL || create == 0);
864 	depth = ext4_block_to_path(inode, iblock, offsets,
865 					&blocks_to_boundary);
866 
867 	if (depth == 0)
868 		goto out;
869 
870 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
871 
872 	/* Simplest case - block found, no allocation needed */
873 	if (!partial) {
874 		first_block = le32_to_cpu(chain[depth - 1].key);
875 		clear_buffer_new(bh_result);
876 		count++;
877 		/*map more blocks*/
878 		while (count < maxblocks && count <= blocks_to_boundary) {
879 			ext4_fsblk_t blk;
880 
881 			blk = le32_to_cpu(*(chain[depth-1].p + count));
882 
883 			if (blk == first_block + count)
884 				count++;
885 			else
886 				break;
887 		}
888 		goto got_it;
889 	}
890 
891 	/* Next simple case - plain lookup or failed read of indirect block */
892 	if (!create || err == -EIO)
893 		goto cleanup;
894 
895 	/*
896 	 * Okay, we need to do block allocation.
897 	*/
898 	goal = ext4_find_goal(inode, iblock, partial);
899 
900 	/* the number of blocks need to allocate for [d,t]indirect blocks */
901 	indirect_blks = (chain + depth) - partial - 1;
902 
903 	/*
904 	 * Next look up the indirect map to count the totoal number of
905 	 * direct blocks to allocate for this branch.
906 	 */
907 	count = ext4_blks_to_allocate(partial, indirect_blks,
908 					maxblocks, blocks_to_boundary);
909 	/*
910 	 * Block out ext4_truncate while we alter the tree
911 	 */
912 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
913 					&count, goal,
914 					offsets + (partial - chain), partial);
915 
916 	/*
917 	 * The ext4_splice_branch call will free and forget any buffers
918 	 * on the new chain if there is a failure, but that risks using
919 	 * up transaction credits, especially for bitmaps where the
920 	 * credits cannot be returned.  Can we handle this somehow?  We
921 	 * may need to return -EAGAIN upwards in the worst case.  --sct
922 	 */
923 	if (!err)
924 		err = ext4_splice_branch(handle, inode, iblock,
925 					partial, indirect_blks, count);
926 	/*
927 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
928 	 * protect it if you're about to implement concurrent
929 	 * ext4_get_block() -bzzz
930 	*/
931 	if (!err && extend_disksize) {
932 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
933 		if (disksize > i_size_read(inode))
934 			disksize = i_size_read(inode);
935 		if (disksize > ei->i_disksize)
936 			ei->i_disksize = disksize;
937 	}
938 	if (err)
939 		goto cleanup;
940 
941 	set_buffer_new(bh_result);
942 got_it:
943 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
944 	if (count > blocks_to_boundary)
945 		set_buffer_boundary(bh_result);
946 	err = count;
947 	/* Clean up and exit */
948 	partial = chain + depth - 1;	/* the whole chain */
949 cleanup:
950 	while (partial > chain) {
951 		BUFFER_TRACE(partial->bh, "call brelse");
952 		brelse(partial->bh);
953 		partial--;
954 	}
955 	BUFFER_TRACE(bh_result, "returned");
956 out:
957 	return err;
958 }
959 
960 /*
961  * Calculate the number of metadata blocks need to reserve
962  * to allocate @blocks for non extent file based file
963  */
964 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
965 {
966 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
967 	int ind_blks, dind_blks, tind_blks;
968 
969 	/* number of new indirect blocks needed */
970 	ind_blks = (blocks + icap - 1) / icap;
971 
972 	dind_blks = (ind_blks + icap - 1) / icap;
973 
974 	tind_blks = 1;
975 
976 	return ind_blks + dind_blks + tind_blks;
977 }
978 
979 /*
980  * Calculate the number of metadata blocks need to reserve
981  * to allocate given number of blocks
982  */
983 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
984 {
985 	if (!blocks)
986 		return 0;
987 
988 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
989 		return ext4_ext_calc_metadata_amount(inode, blocks);
990 
991 	return ext4_indirect_calc_metadata_amount(inode, blocks);
992 }
993 
994 static void ext4_da_update_reserve_space(struct inode *inode, int used)
995 {
996 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
997 	int total, mdb, mdb_free;
998 
999 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1000 	/* recalculate the number of metablocks still need to be reserved */
1001 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1002 	mdb = ext4_calc_metadata_amount(inode, total);
1003 
1004 	/* figure out how many metablocks to release */
1005 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1006 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1007 
1008 	if (mdb_free) {
1009 		/* Account for allocated meta_blocks */
1010 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1011 
1012 		/* update fs dirty blocks counter */
1013 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1014 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1015 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1016 	}
1017 
1018 	/* update per-inode reservations */
1019 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1020 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1021 
1022 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1023 }
1024 
1025 /*
1026  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1027  * and returns if the blocks are already mapped.
1028  *
1029  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1030  * and store the allocated blocks in the result buffer head and mark it
1031  * mapped.
1032  *
1033  * If file type is extents based, it will call ext4_ext_get_blocks(),
1034  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1035  * based files
1036  *
1037  * On success, it returns the number of blocks being mapped or allocate.
1038  * if create==0 and the blocks are pre-allocated and uninitialized block,
1039  * the result buffer head is unmapped. If the create ==1, it will make sure
1040  * the buffer head is mapped.
1041  *
1042  * It returns 0 if plain look up failed (blocks have not been allocated), in
1043  * that casem, buffer head is unmapped
1044  *
1045  * It returns the error in case of allocation failure.
1046  */
1047 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1048 			unsigned long max_blocks, struct buffer_head *bh,
1049 			int create, int extend_disksize, int flag)
1050 {
1051 	int retval;
1052 
1053 	clear_buffer_mapped(bh);
1054 
1055 	/*
1056 	 * Try to see if we can get  the block without requesting
1057 	 * for new file system block.
1058 	 */
1059 	down_read((&EXT4_I(inode)->i_data_sem));
1060 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1061 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1062 				bh, 0, 0);
1063 	} else {
1064 		retval = ext4_get_blocks_handle(handle,
1065 				inode, block, max_blocks, bh, 0, 0);
1066 	}
1067 	up_read((&EXT4_I(inode)->i_data_sem));
1068 
1069 	/* If it is only a block(s) look up */
1070 	if (!create)
1071 		return retval;
1072 
1073 	/*
1074 	 * Returns if the blocks have already allocated
1075 	 *
1076 	 * Note that if blocks have been preallocated
1077 	 * ext4_ext_get_block() returns th create = 0
1078 	 * with buffer head unmapped.
1079 	 */
1080 	if (retval > 0 && buffer_mapped(bh))
1081 		return retval;
1082 
1083 	/*
1084 	 * New blocks allocate and/or writing to uninitialized extent
1085 	 * will possibly result in updating i_data, so we take
1086 	 * the write lock of i_data_sem, and call get_blocks()
1087 	 * with create == 1 flag.
1088 	 */
1089 	down_write((&EXT4_I(inode)->i_data_sem));
1090 
1091 	/*
1092 	 * if the caller is from delayed allocation writeout path
1093 	 * we have already reserved fs blocks for allocation
1094 	 * let the underlying get_block() function know to
1095 	 * avoid double accounting
1096 	 */
1097 	if (flag)
1098 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1099 	/*
1100 	 * We need to check for EXT4 here because migrate
1101 	 * could have changed the inode type in between
1102 	 */
1103 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1104 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1105 				bh, create, extend_disksize);
1106 	} else {
1107 		retval = ext4_get_blocks_handle(handle, inode, block,
1108 				max_blocks, bh, create, extend_disksize);
1109 
1110 		if (retval > 0 && buffer_new(bh)) {
1111 			/*
1112 			 * We allocated new blocks which will result in
1113 			 * i_data's format changing.  Force the migrate
1114 			 * to fail by clearing migrate flags
1115 			 */
1116 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1117 							~EXT4_EXT_MIGRATE;
1118 		}
1119 	}
1120 
1121 	if (flag) {
1122 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1123 		/*
1124 		 * Update reserved blocks/metadata blocks
1125 		 * after successful block allocation
1126 		 * which were deferred till now
1127 		 */
1128 		if ((retval > 0) && buffer_delay(bh))
1129 			ext4_da_update_reserve_space(inode, retval);
1130 	}
1131 
1132 	up_write((&EXT4_I(inode)->i_data_sem));
1133 	return retval;
1134 }
1135 
1136 /* Maximum number of blocks we map for direct IO at once. */
1137 #define DIO_MAX_BLOCKS 4096
1138 
1139 int ext4_get_block(struct inode *inode, sector_t iblock,
1140 		   struct buffer_head *bh_result, int create)
1141 {
1142 	handle_t *handle = ext4_journal_current_handle();
1143 	int ret = 0, started = 0;
1144 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1145 	int dio_credits;
1146 
1147 	if (create && !handle) {
1148 		/* Direct IO write... */
1149 		if (max_blocks > DIO_MAX_BLOCKS)
1150 			max_blocks = DIO_MAX_BLOCKS;
1151 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1152 		handle = ext4_journal_start(inode, dio_credits);
1153 		if (IS_ERR(handle)) {
1154 			ret = PTR_ERR(handle);
1155 			goto out;
1156 		}
1157 		started = 1;
1158 	}
1159 
1160 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1161 					max_blocks, bh_result, create, 0, 0);
1162 	if (ret > 0) {
1163 		bh_result->b_size = (ret << inode->i_blkbits);
1164 		ret = 0;
1165 	}
1166 	if (started)
1167 		ext4_journal_stop(handle);
1168 out:
1169 	return ret;
1170 }
1171 
1172 /*
1173  * `handle' can be NULL if create is zero
1174  */
1175 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1176 				ext4_lblk_t block, int create, int *errp)
1177 {
1178 	struct buffer_head dummy;
1179 	int fatal = 0, err;
1180 
1181 	J_ASSERT(handle != NULL || create == 0);
1182 
1183 	dummy.b_state = 0;
1184 	dummy.b_blocknr = -1000;
1185 	buffer_trace_init(&dummy.b_history);
1186 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1187 					&dummy, create, 1, 0);
1188 	/*
1189 	 * ext4_get_blocks_handle() returns number of blocks
1190 	 * mapped. 0 in case of a HOLE.
1191 	 */
1192 	if (err > 0) {
1193 		if (err > 1)
1194 			WARN_ON(1);
1195 		err = 0;
1196 	}
1197 	*errp = err;
1198 	if (!err && buffer_mapped(&dummy)) {
1199 		struct buffer_head *bh;
1200 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1201 		if (!bh) {
1202 			*errp = -EIO;
1203 			goto err;
1204 		}
1205 		if (buffer_new(&dummy)) {
1206 			J_ASSERT(create != 0);
1207 			J_ASSERT(handle != NULL);
1208 
1209 			/*
1210 			 * Now that we do not always journal data, we should
1211 			 * keep in mind whether this should always journal the
1212 			 * new buffer as metadata.  For now, regular file
1213 			 * writes use ext4_get_block instead, so it's not a
1214 			 * problem.
1215 			 */
1216 			lock_buffer(bh);
1217 			BUFFER_TRACE(bh, "call get_create_access");
1218 			fatal = ext4_journal_get_create_access(handle, bh);
1219 			if (!fatal && !buffer_uptodate(bh)) {
1220 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1221 				set_buffer_uptodate(bh);
1222 			}
1223 			unlock_buffer(bh);
1224 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1225 			err = ext4_journal_dirty_metadata(handle, bh);
1226 			if (!fatal)
1227 				fatal = err;
1228 		} else {
1229 			BUFFER_TRACE(bh, "not a new buffer");
1230 		}
1231 		if (fatal) {
1232 			*errp = fatal;
1233 			brelse(bh);
1234 			bh = NULL;
1235 		}
1236 		return bh;
1237 	}
1238 err:
1239 	return NULL;
1240 }
1241 
1242 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1243 			       ext4_lblk_t block, int create, int *err)
1244 {
1245 	struct buffer_head *bh;
1246 
1247 	bh = ext4_getblk(handle, inode, block, create, err);
1248 	if (!bh)
1249 		return bh;
1250 	if (buffer_uptodate(bh))
1251 		return bh;
1252 	ll_rw_block(READ_META, 1, &bh);
1253 	wait_on_buffer(bh);
1254 	if (buffer_uptodate(bh))
1255 		return bh;
1256 	put_bh(bh);
1257 	*err = -EIO;
1258 	return NULL;
1259 }
1260 
1261 static int walk_page_buffers(handle_t *handle,
1262 			     struct buffer_head *head,
1263 			     unsigned from,
1264 			     unsigned to,
1265 			     int *partial,
1266 			     int (*fn)(handle_t *handle,
1267 				       struct buffer_head *bh))
1268 {
1269 	struct buffer_head *bh;
1270 	unsigned block_start, block_end;
1271 	unsigned blocksize = head->b_size;
1272 	int err, ret = 0;
1273 	struct buffer_head *next;
1274 
1275 	for (bh = head, block_start = 0;
1276 	     ret == 0 && (bh != head || !block_start);
1277 	     block_start = block_end, bh = next)
1278 	{
1279 		next = bh->b_this_page;
1280 		block_end = block_start + blocksize;
1281 		if (block_end <= from || block_start >= to) {
1282 			if (partial && !buffer_uptodate(bh))
1283 				*partial = 1;
1284 			continue;
1285 		}
1286 		err = (*fn)(handle, bh);
1287 		if (!ret)
1288 			ret = err;
1289 	}
1290 	return ret;
1291 }
1292 
1293 /*
1294  * To preserve ordering, it is essential that the hole instantiation and
1295  * the data write be encapsulated in a single transaction.  We cannot
1296  * close off a transaction and start a new one between the ext4_get_block()
1297  * and the commit_write().  So doing the jbd2_journal_start at the start of
1298  * prepare_write() is the right place.
1299  *
1300  * Also, this function can nest inside ext4_writepage() ->
1301  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1302  * has generated enough buffer credits to do the whole page.  So we won't
1303  * block on the journal in that case, which is good, because the caller may
1304  * be PF_MEMALLOC.
1305  *
1306  * By accident, ext4 can be reentered when a transaction is open via
1307  * quota file writes.  If we were to commit the transaction while thus
1308  * reentered, there can be a deadlock - we would be holding a quota
1309  * lock, and the commit would never complete if another thread had a
1310  * transaction open and was blocking on the quota lock - a ranking
1311  * violation.
1312  *
1313  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1314  * will _not_ run commit under these circumstances because handle->h_ref
1315  * is elevated.  We'll still have enough credits for the tiny quotafile
1316  * write.
1317  */
1318 static int do_journal_get_write_access(handle_t *handle,
1319 					struct buffer_head *bh)
1320 {
1321 	if (!buffer_mapped(bh) || buffer_freed(bh))
1322 		return 0;
1323 	return ext4_journal_get_write_access(handle, bh);
1324 }
1325 
1326 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1327 				loff_t pos, unsigned len, unsigned flags,
1328 				struct page **pagep, void **fsdata)
1329 {
1330 	struct inode *inode = mapping->host;
1331 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1332 	handle_t *handle;
1333 	int retries = 0;
1334 	struct page *page;
1335  	pgoff_t index;
1336 	unsigned from, to;
1337 
1338  	index = pos >> PAGE_CACHE_SHIFT;
1339 	from = pos & (PAGE_CACHE_SIZE - 1);
1340 	to = from + len;
1341 
1342 retry:
1343 	handle = ext4_journal_start(inode, needed_blocks);
1344 	if (IS_ERR(handle)) {
1345 		ret = PTR_ERR(handle);
1346 		goto out;
1347 	}
1348 
1349 	page = grab_cache_page_write_begin(mapping, index, flags);
1350 	if (!page) {
1351 		ext4_journal_stop(handle);
1352 		ret = -ENOMEM;
1353 		goto out;
1354 	}
1355 	*pagep = page;
1356 
1357 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1358 							ext4_get_block);
1359 
1360 	if (!ret && ext4_should_journal_data(inode)) {
1361 		ret = walk_page_buffers(handle, page_buffers(page),
1362 				from, to, NULL, do_journal_get_write_access);
1363 	}
1364 
1365 	if (ret) {
1366 		unlock_page(page);
1367 		ext4_journal_stop(handle);
1368 		page_cache_release(page);
1369 		/*
1370 		 * block_write_begin may have instantiated a few blocks
1371 		 * outside i_size.  Trim these off again. Don't need
1372 		 * i_size_read because we hold i_mutex.
1373 		 */
1374 		if (pos + len > inode->i_size)
1375 			vmtruncate(inode, inode->i_size);
1376 	}
1377 
1378 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1379 		goto retry;
1380 out:
1381 	return ret;
1382 }
1383 
1384 /* For write_end() in data=journal mode */
1385 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1386 {
1387 	if (!buffer_mapped(bh) || buffer_freed(bh))
1388 		return 0;
1389 	set_buffer_uptodate(bh);
1390 	return ext4_journal_dirty_metadata(handle, bh);
1391 }
1392 
1393 /*
1394  * We need to pick up the new inode size which generic_commit_write gave us
1395  * `file' can be NULL - eg, when called from page_symlink().
1396  *
1397  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1398  * buffers are managed internally.
1399  */
1400 static int ext4_ordered_write_end(struct file *file,
1401 				struct address_space *mapping,
1402 				loff_t pos, unsigned len, unsigned copied,
1403 				struct page *page, void *fsdata)
1404 {
1405 	handle_t *handle = ext4_journal_current_handle();
1406 	struct inode *inode = mapping->host;
1407 	int ret = 0, ret2;
1408 
1409 	ret = ext4_jbd2_file_inode(handle, inode);
1410 
1411 	if (ret == 0) {
1412 		loff_t new_i_size;
1413 
1414 		new_i_size = pos + copied;
1415 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1416 			ext4_update_i_disksize(inode, new_i_size);
1417 			/* We need to mark inode dirty even if
1418 			 * new_i_size is less that inode->i_size
1419 			 * bu greater than i_disksize.(hint delalloc)
1420 			 */
1421 			ext4_mark_inode_dirty(handle, inode);
1422 		}
1423 
1424 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1425 							page, fsdata);
1426 		copied = ret2;
1427 		if (ret2 < 0)
1428 			ret = ret2;
1429 	}
1430 	ret2 = ext4_journal_stop(handle);
1431 	if (!ret)
1432 		ret = ret2;
1433 
1434 	return ret ? ret : copied;
1435 }
1436 
1437 static int ext4_writeback_write_end(struct file *file,
1438 				struct address_space *mapping,
1439 				loff_t pos, unsigned len, unsigned copied,
1440 				struct page *page, void *fsdata)
1441 {
1442 	handle_t *handle = ext4_journal_current_handle();
1443 	struct inode *inode = mapping->host;
1444 	int ret = 0, ret2;
1445 	loff_t new_i_size;
1446 
1447 	new_i_size = pos + copied;
1448 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1449 		ext4_update_i_disksize(inode, new_i_size);
1450 		/* We need to mark inode dirty even if
1451 		 * new_i_size is less that inode->i_size
1452 		 * bu greater than i_disksize.(hint delalloc)
1453 		 */
1454 		ext4_mark_inode_dirty(handle, inode);
1455 	}
1456 
1457 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1458 							page, fsdata);
1459 	copied = ret2;
1460 	if (ret2 < 0)
1461 		ret = ret2;
1462 
1463 	ret2 = ext4_journal_stop(handle);
1464 	if (!ret)
1465 		ret = ret2;
1466 
1467 	return ret ? ret : copied;
1468 }
1469 
1470 static int ext4_journalled_write_end(struct file *file,
1471 				struct address_space *mapping,
1472 				loff_t pos, unsigned len, unsigned copied,
1473 				struct page *page, void *fsdata)
1474 {
1475 	handle_t *handle = ext4_journal_current_handle();
1476 	struct inode *inode = mapping->host;
1477 	int ret = 0, ret2;
1478 	int partial = 0;
1479 	unsigned from, to;
1480 	loff_t new_i_size;
1481 
1482 	from = pos & (PAGE_CACHE_SIZE - 1);
1483 	to = from + len;
1484 
1485 	if (copied < len) {
1486 		if (!PageUptodate(page))
1487 			copied = 0;
1488 		page_zero_new_buffers(page, from+copied, to);
1489 	}
1490 
1491 	ret = walk_page_buffers(handle, page_buffers(page), from,
1492 				to, &partial, write_end_fn);
1493 	if (!partial)
1494 		SetPageUptodate(page);
1495 	new_i_size = pos + copied;
1496 	if (new_i_size > inode->i_size)
1497 		i_size_write(inode, pos+copied);
1498 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1499 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1500 		ext4_update_i_disksize(inode, new_i_size);
1501 		ret2 = ext4_mark_inode_dirty(handle, inode);
1502 		if (!ret)
1503 			ret = ret2;
1504 	}
1505 
1506 	unlock_page(page);
1507 	ret2 = ext4_journal_stop(handle);
1508 	if (!ret)
1509 		ret = ret2;
1510 	page_cache_release(page);
1511 
1512 	return ret ? ret : copied;
1513 }
1514 
1515 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1516 {
1517 	int retries = 0;
1518        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519        unsigned long md_needed, mdblocks, total = 0;
1520 
1521 	/*
1522 	 * recalculate the amount of metadata blocks to reserve
1523 	 * in order to allocate nrblocks
1524 	 * worse case is one extent per block
1525 	 */
1526 repeat:
1527 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1529 	mdblocks = ext4_calc_metadata_amount(inode, total);
1530 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1531 
1532 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1533 	total = md_needed + nrblocks;
1534 
1535 	if (ext4_claim_free_blocks(sbi, total)) {
1536 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1537 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1538 			yield();
1539 			goto repeat;
1540 		}
1541 		return -ENOSPC;
1542 	}
1543 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1544 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1545 
1546 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547 	return 0;       /* success */
1548 }
1549 
1550 static void ext4_da_release_space(struct inode *inode, int to_free)
1551 {
1552 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1553 	int total, mdb, mdb_free, release;
1554 
1555 	if (!to_free)
1556 		return;		/* Nothing to release, exit */
1557 
1558 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1559 
1560 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1561 		/*
1562 		 * if there is no reserved blocks, but we try to free some
1563 		 * then the counter is messed up somewhere.
1564 		 * but since this function is called from invalidate
1565 		 * page, it's harmless to return without any action
1566 		 */
1567 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1568 			    "blocks for inode %lu, but there is no reserved "
1569 			    "data blocks\n", to_free, inode->i_ino);
1570 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1571 		return;
1572 	}
1573 
1574 	/* recalculate the number of metablocks still need to be reserved */
1575 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1576 	mdb = ext4_calc_metadata_amount(inode, total);
1577 
1578 	/* figure out how many metablocks to release */
1579 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1580 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1581 
1582 	release = to_free + mdb_free;
1583 
1584 	/* update fs dirty blocks counter for truncate case */
1585 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1586 
1587 	/* update per-inode reservations */
1588 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1589 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1590 
1591 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1592 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1593 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1594 }
1595 
1596 static void ext4_da_page_release_reservation(struct page *page,
1597 						unsigned long offset)
1598 {
1599 	int to_release = 0;
1600 	struct buffer_head *head, *bh;
1601 	unsigned int curr_off = 0;
1602 
1603 	head = page_buffers(page);
1604 	bh = head;
1605 	do {
1606 		unsigned int next_off = curr_off + bh->b_size;
1607 
1608 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1609 			to_release++;
1610 			clear_buffer_delay(bh);
1611 		}
1612 		curr_off = next_off;
1613 	} while ((bh = bh->b_this_page) != head);
1614 	ext4_da_release_space(page->mapping->host, to_release);
1615 }
1616 
1617 /*
1618  * Delayed allocation stuff
1619  */
1620 
1621 struct mpage_da_data {
1622 	struct inode *inode;
1623 	struct buffer_head lbh;			/* extent of blocks */
1624 	unsigned long first_page, next_page;	/* extent of pages */
1625 	get_block_t *get_block;
1626 	struct writeback_control *wbc;
1627 	int io_done;
1628 	long pages_written;
1629 	int retval;
1630 };
1631 
1632 /*
1633  * mpage_da_submit_io - walks through extent of pages and try to write
1634  * them with writepage() call back
1635  *
1636  * @mpd->inode: inode
1637  * @mpd->first_page: first page of the extent
1638  * @mpd->next_page: page after the last page of the extent
1639  * @mpd->get_block: the filesystem's block mapper function
1640  *
1641  * By the time mpage_da_submit_io() is called we expect all blocks
1642  * to be allocated. this may be wrong if allocation failed.
1643  *
1644  * As pages are already locked by write_cache_pages(), we can't use it
1645  */
1646 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1647 {
1648 	struct address_space *mapping = mpd->inode->i_mapping;
1649 	int ret = 0, err, nr_pages, i;
1650 	unsigned long index, end;
1651 	struct pagevec pvec;
1652 	long pages_skipped;
1653 
1654 	BUG_ON(mpd->next_page <= mpd->first_page);
1655 	pagevec_init(&pvec, 0);
1656 	index = mpd->first_page;
1657 	end = mpd->next_page - 1;
1658 
1659 	while (index <= end) {
1660 		/*
1661 		 * We can use PAGECACHE_TAG_DIRTY lookup here because
1662 		 * even though we have cleared the dirty flag on the page
1663 		 * We still keep the page in the radix tree with tag
1664 		 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1665 		 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1666 		 * which is called via the below writepage callback.
1667 		 */
1668 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1669 					PAGECACHE_TAG_DIRTY,
1670 					min(end - index,
1671 					(pgoff_t)PAGEVEC_SIZE-1) + 1);
1672 		if (nr_pages == 0)
1673 			break;
1674 		for (i = 0; i < nr_pages; i++) {
1675 			struct page *page = pvec.pages[i];
1676 
1677 			pages_skipped = mpd->wbc->pages_skipped;
1678 			err = mapping->a_ops->writepage(page, mpd->wbc);
1679 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1680 				/*
1681 				 * have successfully written the page
1682 				 * without skipping the same
1683 				 */
1684 				mpd->pages_written++;
1685 			/*
1686 			 * In error case, we have to continue because
1687 			 * remaining pages are still locked
1688 			 * XXX: unlock and re-dirty them?
1689 			 */
1690 			if (ret == 0)
1691 				ret = err;
1692 		}
1693 		pagevec_release(&pvec);
1694 	}
1695 	return ret;
1696 }
1697 
1698 /*
1699  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1700  *
1701  * @mpd->inode - inode to walk through
1702  * @exbh->b_blocknr - first block on a disk
1703  * @exbh->b_size - amount of space in bytes
1704  * @logical - first logical block to start assignment with
1705  *
1706  * the function goes through all passed space and put actual disk
1707  * block numbers into buffer heads, dropping BH_Delay
1708  */
1709 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1710 				 struct buffer_head *exbh)
1711 {
1712 	struct inode *inode = mpd->inode;
1713 	struct address_space *mapping = inode->i_mapping;
1714 	int blocks = exbh->b_size >> inode->i_blkbits;
1715 	sector_t pblock = exbh->b_blocknr, cur_logical;
1716 	struct buffer_head *head, *bh;
1717 	pgoff_t index, end;
1718 	struct pagevec pvec;
1719 	int nr_pages, i;
1720 
1721 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1723 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1724 
1725 	pagevec_init(&pvec, 0);
1726 
1727 	while (index <= end) {
1728 		/* XXX: optimize tail */
1729 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1730 		if (nr_pages == 0)
1731 			break;
1732 		for (i = 0; i < nr_pages; i++) {
1733 			struct page *page = pvec.pages[i];
1734 
1735 			index = page->index;
1736 			if (index > end)
1737 				break;
1738 			index++;
1739 
1740 			BUG_ON(!PageLocked(page));
1741 			BUG_ON(PageWriteback(page));
1742 			BUG_ON(!page_has_buffers(page));
1743 
1744 			bh = page_buffers(page);
1745 			head = bh;
1746 
1747 			/* skip blocks out of the range */
1748 			do {
1749 				if (cur_logical >= logical)
1750 					break;
1751 				cur_logical++;
1752 			} while ((bh = bh->b_this_page) != head);
1753 
1754 			do {
1755 				if (cur_logical >= logical + blocks)
1756 					break;
1757 				if (buffer_delay(bh)) {
1758 					bh->b_blocknr = pblock;
1759 					clear_buffer_delay(bh);
1760 					bh->b_bdev = inode->i_sb->s_bdev;
1761 				} else if (buffer_unwritten(bh)) {
1762 					bh->b_blocknr = pblock;
1763 					clear_buffer_unwritten(bh);
1764 					set_buffer_mapped(bh);
1765 					set_buffer_new(bh);
1766 					bh->b_bdev = inode->i_sb->s_bdev;
1767 				} else if (buffer_mapped(bh))
1768 					BUG_ON(bh->b_blocknr != pblock);
1769 
1770 				cur_logical++;
1771 				pblock++;
1772 			} while ((bh = bh->b_this_page) != head);
1773 		}
1774 		pagevec_release(&pvec);
1775 	}
1776 }
1777 
1778 
1779 /*
1780  * __unmap_underlying_blocks - just a helper function to unmap
1781  * set of blocks described by @bh
1782  */
1783 static inline void __unmap_underlying_blocks(struct inode *inode,
1784 					     struct buffer_head *bh)
1785 {
1786 	struct block_device *bdev = inode->i_sb->s_bdev;
1787 	int blocks, i;
1788 
1789 	blocks = bh->b_size >> inode->i_blkbits;
1790 	for (i = 0; i < blocks; i++)
1791 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1792 }
1793 
1794 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1795 					sector_t logical, long blk_cnt)
1796 {
1797 	int nr_pages, i;
1798 	pgoff_t index, end;
1799 	struct pagevec pvec;
1800 	struct inode *inode = mpd->inode;
1801 	struct address_space *mapping = inode->i_mapping;
1802 
1803 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1804 	end   = (logical + blk_cnt - 1) >>
1805 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1806 	while (index <= end) {
1807 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1808 		if (nr_pages == 0)
1809 			break;
1810 		for (i = 0; i < nr_pages; i++) {
1811 			struct page *page = pvec.pages[i];
1812 			index = page->index;
1813 			if (index > end)
1814 				break;
1815 			index++;
1816 
1817 			BUG_ON(!PageLocked(page));
1818 			BUG_ON(PageWriteback(page));
1819 			block_invalidatepage(page, 0);
1820 			ClearPageUptodate(page);
1821 			unlock_page(page);
1822 		}
1823 	}
1824 	return;
1825 }
1826 
1827 static void ext4_print_free_blocks(struct inode *inode)
1828 {
1829 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1830 	printk(KERN_EMERG "Total free blocks count %lld\n",
1831 			ext4_count_free_blocks(inode->i_sb));
1832 	printk(KERN_EMERG "Free/Dirty block details\n");
1833 	printk(KERN_EMERG "free_blocks=%lld\n",
1834 			percpu_counter_sum(&sbi->s_freeblocks_counter));
1835 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1836 			percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1837 	printk(KERN_EMERG "Block reservation details\n");
1838 	printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1839 			EXT4_I(inode)->i_reserved_data_blocks);
1840 	printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1841 			EXT4_I(inode)->i_reserved_meta_blocks);
1842 	return;
1843 }
1844 
1845 /*
1846  * mpage_da_map_blocks - go through given space
1847  *
1848  * @mpd->lbh - bh describing space
1849  * @mpd->get_block - the filesystem's block mapper function
1850  *
1851  * The function skips space we know is already mapped to disk blocks.
1852  *
1853  */
1854 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1855 {
1856 	int err = 0;
1857 	struct buffer_head new;
1858 	struct buffer_head *lbh = &mpd->lbh;
1859 	sector_t next;
1860 
1861 	/*
1862 	 * We consider only non-mapped and non-allocated blocks
1863 	 */
1864 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1865 		return 0;
1866 	new.b_state = lbh->b_state;
1867 	new.b_blocknr = 0;
1868 	new.b_size = lbh->b_size;
1869 	next = lbh->b_blocknr;
1870 	/*
1871 	 * If we didn't accumulate anything
1872 	 * to write simply return
1873 	 */
1874 	if (!new.b_size)
1875 		return 0;
1876 	err = mpd->get_block(mpd->inode, next, &new, 1);
1877 	if (err) {
1878 
1879 		/* If get block returns with error
1880 		 * we simply return. Later writepage
1881 		 * will redirty the page and writepages
1882 		 * will find the dirty page again
1883 		 */
1884 		if (err == -EAGAIN)
1885 			return 0;
1886 
1887 		if (err == -ENOSPC &&
1888 				ext4_count_free_blocks(mpd->inode->i_sb)) {
1889 			mpd->retval = err;
1890 			return 0;
1891 		}
1892 
1893 		/*
1894 		 * get block failure will cause us
1895 		 * to loop in writepages. Because
1896 		 * a_ops->writepage won't be able to
1897 		 * make progress. The page will be redirtied
1898 		 * by writepage and writepages will again
1899 		 * try to write the same.
1900 		 */
1901 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1902 				  "at logical offset %llu with max blocks "
1903 				  "%zd with error %d\n",
1904 				  __func__, mpd->inode->i_ino,
1905 				  (unsigned long long)next,
1906 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1907 		printk(KERN_EMERG "This should not happen.!! "
1908 					"Data will be lost\n");
1909 		if (err == -ENOSPC) {
1910 			ext4_print_free_blocks(mpd->inode);
1911 		}
1912 		/* invlaidate all the pages */
1913 		ext4_da_block_invalidatepages(mpd, next,
1914 				lbh->b_size >> mpd->inode->i_blkbits);
1915 		return err;
1916 	}
1917 	BUG_ON(new.b_size == 0);
1918 
1919 	if (buffer_new(&new))
1920 		__unmap_underlying_blocks(mpd->inode, &new);
1921 
1922 	/*
1923 	 * If blocks are delayed marked, we need to
1924 	 * put actual blocknr and drop delayed bit
1925 	 */
1926 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1927 		mpage_put_bnr_to_bhs(mpd, next, &new);
1928 
1929 	return 0;
1930 }
1931 
1932 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1933 		(1 << BH_Delay) | (1 << BH_Unwritten))
1934 
1935 /*
1936  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1937  *
1938  * @mpd->lbh - extent of blocks
1939  * @logical - logical number of the block in the file
1940  * @bh - bh of the block (used to access block's state)
1941  *
1942  * the function is used to collect contig. blocks in same state
1943  */
1944 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1945 				   sector_t logical, struct buffer_head *bh)
1946 {
1947 	sector_t next;
1948 	size_t b_size = bh->b_size;
1949 	struct buffer_head *lbh = &mpd->lbh;
1950 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1951 
1952 	/* check if thereserved journal credits might overflow */
1953 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1954 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1955 			/*
1956 			 * With non-extent format we are limited by the journal
1957 			 * credit available.  Total credit needed to insert
1958 			 * nrblocks contiguous blocks is dependent on the
1959 			 * nrblocks.  So limit nrblocks.
1960 			 */
1961 			goto flush_it;
1962 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1963 				EXT4_MAX_TRANS_DATA) {
1964 			/*
1965 			 * Adding the new buffer_head would make it cross the
1966 			 * allowed limit for which we have journal credit
1967 			 * reserved. So limit the new bh->b_size
1968 			 */
1969 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1970 						mpd->inode->i_blkbits;
1971 			/* we will do mpage_da_submit_io in the next loop */
1972 		}
1973 	}
1974 	/*
1975 	 * First block in the extent
1976 	 */
1977 	if (lbh->b_size == 0) {
1978 		lbh->b_blocknr = logical;
1979 		lbh->b_size = b_size;
1980 		lbh->b_state = bh->b_state & BH_FLAGS;
1981 		return;
1982 	}
1983 
1984 	next = lbh->b_blocknr + nrblocks;
1985 	/*
1986 	 * Can we merge the block to our big extent?
1987 	 */
1988 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1989 		lbh->b_size += b_size;
1990 		return;
1991 	}
1992 
1993 flush_it:
1994 	/*
1995 	 * We couldn't merge the block to our extent, so we
1996 	 * need to flush current  extent and start new one
1997 	 */
1998 	if (mpage_da_map_blocks(mpd) == 0)
1999 		mpage_da_submit_io(mpd);
2000 	mpd->io_done = 1;
2001 	return;
2002 }
2003 
2004 /*
2005  * __mpage_da_writepage - finds extent of pages and blocks
2006  *
2007  * @page: page to consider
2008  * @wbc: not used, we just follow rules
2009  * @data: context
2010  *
2011  * The function finds extents of pages and scan them for all blocks.
2012  */
2013 static int __mpage_da_writepage(struct page *page,
2014 				struct writeback_control *wbc, void *data)
2015 {
2016 	struct mpage_da_data *mpd = data;
2017 	struct inode *inode = mpd->inode;
2018 	struct buffer_head *bh, *head, fake;
2019 	sector_t logical;
2020 
2021 	if (mpd->io_done) {
2022 		/*
2023 		 * Rest of the page in the page_vec
2024 		 * redirty then and skip then. We will
2025 		 * try to to write them again after
2026 		 * starting a new transaction
2027 		 */
2028 		redirty_page_for_writepage(wbc, page);
2029 		unlock_page(page);
2030 		return MPAGE_DA_EXTENT_TAIL;
2031 	}
2032 	/*
2033 	 * Can we merge this page to current extent?
2034 	 */
2035 	if (mpd->next_page != page->index) {
2036 		/*
2037 		 * Nope, we can't. So, we map non-allocated blocks
2038 		 * and start IO on them using writepage()
2039 		 */
2040 		if (mpd->next_page != mpd->first_page) {
2041 			if (mpage_da_map_blocks(mpd) == 0)
2042 				mpage_da_submit_io(mpd);
2043 			/*
2044 			 * skip rest of the page in the page_vec
2045 			 */
2046 			mpd->io_done = 1;
2047 			redirty_page_for_writepage(wbc, page);
2048 			unlock_page(page);
2049 			return MPAGE_DA_EXTENT_TAIL;
2050 		}
2051 
2052 		/*
2053 		 * Start next extent of pages ...
2054 		 */
2055 		mpd->first_page = page->index;
2056 
2057 		/*
2058 		 * ... and blocks
2059 		 */
2060 		mpd->lbh.b_size = 0;
2061 		mpd->lbh.b_state = 0;
2062 		mpd->lbh.b_blocknr = 0;
2063 	}
2064 
2065 	mpd->next_page = page->index + 1;
2066 	logical = (sector_t) page->index <<
2067 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2068 
2069 	if (!page_has_buffers(page)) {
2070 		/*
2071 		 * There is no attached buffer heads yet (mmap?)
2072 		 * we treat the page asfull of dirty blocks
2073 		 */
2074 		bh = &fake;
2075 		bh->b_size = PAGE_CACHE_SIZE;
2076 		bh->b_state = 0;
2077 		set_buffer_dirty(bh);
2078 		set_buffer_uptodate(bh);
2079 		mpage_add_bh_to_extent(mpd, logical, bh);
2080 		if (mpd->io_done)
2081 			return MPAGE_DA_EXTENT_TAIL;
2082 	} else {
2083 		/*
2084 		 * Page with regular buffer heads, just add all dirty ones
2085 		 */
2086 		head = page_buffers(page);
2087 		bh = head;
2088 		do {
2089 			BUG_ON(buffer_locked(bh));
2090 			if (buffer_dirty(bh) &&
2091 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2092 				mpage_add_bh_to_extent(mpd, logical, bh);
2093 				if (mpd->io_done)
2094 					return MPAGE_DA_EXTENT_TAIL;
2095 			}
2096 			logical++;
2097 		} while ((bh = bh->b_this_page) != head);
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 /*
2104  * mpage_da_writepages - walk the list of dirty pages of the given
2105  * address space, allocates non-allocated blocks, maps newly-allocated
2106  * blocks to existing bhs and issue IO them
2107  *
2108  * @mapping: address space structure to write
2109  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2110  * @get_block: the filesystem's block mapper function.
2111  *
2112  * This is a library function, which implements the writepages()
2113  * address_space_operation.
2114  */
2115 static int mpage_da_writepages(struct address_space *mapping,
2116 			       struct writeback_control *wbc,
2117 			       struct mpage_da_data *mpd)
2118 {
2119 	int ret;
2120 
2121 	if (!mpd->get_block)
2122 		return generic_writepages(mapping, wbc);
2123 
2124 	mpd->lbh.b_size = 0;
2125 	mpd->lbh.b_state = 0;
2126 	mpd->lbh.b_blocknr = 0;
2127 	mpd->first_page = 0;
2128 	mpd->next_page = 0;
2129 	mpd->io_done = 0;
2130 	mpd->pages_written = 0;
2131 	mpd->retval = 0;
2132 
2133 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2134 	/*
2135 	 * Handle last extent of pages
2136 	 */
2137 	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2138 		if (mpage_da_map_blocks(mpd) == 0)
2139 			mpage_da_submit_io(mpd);
2140 
2141 		mpd->io_done = 1;
2142 		ret = MPAGE_DA_EXTENT_TAIL;
2143 	}
2144 	wbc->nr_to_write -= mpd->pages_written;
2145 	return ret;
2146 }
2147 
2148 /*
2149  * this is a special callback for ->write_begin() only
2150  * it's intention is to return mapped block or reserve space
2151  */
2152 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2153 				  struct buffer_head *bh_result, int create)
2154 {
2155 	int ret = 0;
2156 
2157 	BUG_ON(create == 0);
2158 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2159 
2160 	/*
2161 	 * first, we need to know whether the block is allocated already
2162 	 * preallocated blocks are unmapped but should treated
2163 	 * the same as allocated blocks.
2164 	 */
2165 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2166 	if ((ret == 0) && !buffer_delay(bh_result)) {
2167 		/* the block isn't (pre)allocated yet, let's reserve space */
2168 		/*
2169 		 * XXX: __block_prepare_write() unmaps passed block,
2170 		 * is it OK?
2171 		 */
2172 		ret = ext4_da_reserve_space(inode, 1);
2173 		if (ret)
2174 			/* not enough space to reserve */
2175 			return ret;
2176 
2177 		map_bh(bh_result, inode->i_sb, 0);
2178 		set_buffer_new(bh_result);
2179 		set_buffer_delay(bh_result);
2180 	} else if (ret > 0) {
2181 		bh_result->b_size = (ret << inode->i_blkbits);
2182 		ret = 0;
2183 	}
2184 
2185 	return ret;
2186 }
2187 #define		EXT4_DELALLOC_RSVED	1
2188 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2189 				   struct buffer_head *bh_result, int create)
2190 {
2191 	int ret;
2192 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2193 	loff_t disksize = EXT4_I(inode)->i_disksize;
2194 	handle_t *handle = NULL;
2195 
2196 	handle = ext4_journal_current_handle();
2197 	BUG_ON(!handle);
2198 	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2199 			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2200 	if (ret > 0) {
2201 
2202 		bh_result->b_size = (ret << inode->i_blkbits);
2203 
2204 		if (ext4_should_order_data(inode)) {
2205 			int retval;
2206 			retval = ext4_jbd2_file_inode(handle, inode);
2207 			if (retval)
2208 				/*
2209 				 * Failed to add inode for ordered
2210 				 * mode. Don't update file size
2211 				 */
2212 				return retval;
2213 		}
2214 
2215 		/*
2216 		 * Update on-disk size along with block allocation
2217 		 * we don't use 'extend_disksize' as size may change
2218 		 * within already allocated block -bzzz
2219 		 */
2220 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2221 		if (disksize > i_size_read(inode))
2222 			disksize = i_size_read(inode);
2223 		if (disksize > EXT4_I(inode)->i_disksize) {
2224 			ext4_update_i_disksize(inode, disksize);
2225 			ret = ext4_mark_inode_dirty(handle, inode);
2226 			return ret;
2227 		}
2228 		ret = 0;
2229 	}
2230 	return ret;
2231 }
2232 
2233 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2234 {
2235 	/*
2236 	 * unmapped buffer is possible for holes.
2237 	 * delay buffer is possible with delayed allocation
2238 	 */
2239 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2240 }
2241 
2242 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2243 				   struct buffer_head *bh_result, int create)
2244 {
2245 	int ret = 0;
2246 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2247 
2248 	/*
2249 	 * we don't want to do block allocation in writepage
2250 	 * so call get_block_wrap with create = 0
2251 	 */
2252 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2253 				   bh_result, 0, 0, 0);
2254 	if (ret > 0) {
2255 		bh_result->b_size = (ret << inode->i_blkbits);
2256 		ret = 0;
2257 	}
2258 	return ret;
2259 }
2260 
2261 /*
2262  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2263  * get called via journal_submit_inode_data_buffers (no journal handle)
2264  * get called via shrink_page_list via pdflush (no journal handle)
2265  * or grab_page_cache when doing write_begin (have journal handle)
2266  */
2267 static int ext4_da_writepage(struct page *page,
2268 				struct writeback_control *wbc)
2269 {
2270 	int ret = 0;
2271 	loff_t size;
2272 	unsigned long len;
2273 	struct buffer_head *page_bufs;
2274 	struct inode *inode = page->mapping->host;
2275 
2276 	size = i_size_read(inode);
2277 	if (page->index == size >> PAGE_CACHE_SHIFT)
2278 		len = size & ~PAGE_CACHE_MASK;
2279 	else
2280 		len = PAGE_CACHE_SIZE;
2281 
2282 	if (page_has_buffers(page)) {
2283 		page_bufs = page_buffers(page);
2284 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2285 					ext4_bh_unmapped_or_delay)) {
2286 			/*
2287 			 * We don't want to do  block allocation
2288 			 * So redirty the page and return
2289 			 * We may reach here when we do a journal commit
2290 			 * via journal_submit_inode_data_buffers.
2291 			 * If we don't have mapping block we just ignore
2292 			 * them. We can also reach here via shrink_page_list
2293 			 */
2294 			redirty_page_for_writepage(wbc, page);
2295 			unlock_page(page);
2296 			return 0;
2297 		}
2298 	} else {
2299 		/*
2300 		 * The test for page_has_buffers() is subtle:
2301 		 * We know the page is dirty but it lost buffers. That means
2302 		 * that at some moment in time after write_begin()/write_end()
2303 		 * has been called all buffers have been clean and thus they
2304 		 * must have been written at least once. So they are all
2305 		 * mapped and we can happily proceed with mapping them
2306 		 * and writing the page.
2307 		 *
2308 		 * Try to initialize the buffer_heads and check whether
2309 		 * all are mapped and non delay. We don't want to
2310 		 * do block allocation here.
2311 		 */
2312 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2313 						ext4_normal_get_block_write);
2314 		if (!ret) {
2315 			page_bufs = page_buffers(page);
2316 			/* check whether all are mapped and non delay */
2317 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2318 						ext4_bh_unmapped_or_delay)) {
2319 				redirty_page_for_writepage(wbc, page);
2320 				unlock_page(page);
2321 				return 0;
2322 			}
2323 		} else {
2324 			/*
2325 			 * We can't do block allocation here
2326 			 * so just redity the page and unlock
2327 			 * and return
2328 			 */
2329 			redirty_page_for_writepage(wbc, page);
2330 			unlock_page(page);
2331 			return 0;
2332 		}
2333 		/* now mark the buffer_heads as dirty and uptodate */
2334 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2335 	}
2336 
2337 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2338 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2339 	else
2340 		ret = block_write_full_page(page,
2341 						ext4_normal_get_block_write,
2342 						wbc);
2343 
2344 	return ret;
2345 }
2346 
2347 /*
2348  * This is called via ext4_da_writepages() to
2349  * calulate the total number of credits to reserve to fit
2350  * a single extent allocation into a single transaction,
2351  * ext4_da_writpeages() will loop calling this before
2352  * the block allocation.
2353  */
2354 
2355 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2356 {
2357 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2358 
2359 	/*
2360 	 * With non-extent format the journal credit needed to
2361 	 * insert nrblocks contiguous block is dependent on
2362 	 * number of contiguous block. So we will limit
2363 	 * number of contiguous block to a sane value
2364 	 */
2365 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2366 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2367 		max_blocks = EXT4_MAX_TRANS_DATA;
2368 
2369 	return ext4_chunk_trans_blocks(inode, max_blocks);
2370 }
2371 
2372 static int ext4_da_writepages(struct address_space *mapping,
2373 			      struct writeback_control *wbc)
2374 {
2375 	pgoff_t	index;
2376 	int range_whole = 0;
2377 	handle_t *handle = NULL;
2378 	struct mpage_da_data mpd;
2379 	struct inode *inode = mapping->host;
2380 	int no_nrwrite_index_update;
2381 	long pages_written = 0, pages_skipped;
2382 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2383 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2384 
2385 	/*
2386 	 * No pages to write? This is mainly a kludge to avoid starting
2387 	 * a transaction for special inodes like journal inode on last iput()
2388 	 * because that could violate lock ordering on umount
2389 	 */
2390 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2391 		return 0;
2392 	/*
2393 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2394 	 * This make sure small files blocks are allocated in
2395 	 * single attempt. This ensure that small files
2396 	 * get less fragmented.
2397 	 */
2398 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2399 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2400 		wbc->nr_to_write = sbi->s_mb_stream_request;
2401 	}
2402 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2403 		range_whole = 1;
2404 
2405 	if (wbc->range_cyclic)
2406 		index = mapping->writeback_index;
2407 	else
2408 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2409 
2410 	mpd.wbc = wbc;
2411 	mpd.inode = mapping->host;
2412 
2413 	/*
2414 	 * we don't want write_cache_pages to update
2415 	 * nr_to_write and writeback_index
2416 	 */
2417 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2418 	wbc->no_nrwrite_index_update = 1;
2419 	pages_skipped = wbc->pages_skipped;
2420 
2421 	while (!ret && wbc->nr_to_write > 0) {
2422 
2423 		/*
2424 		 * we  insert one extent at a time. So we need
2425 		 * credit needed for single extent allocation.
2426 		 * journalled mode is currently not supported
2427 		 * by delalloc
2428 		 */
2429 		BUG_ON(ext4_should_journal_data(inode));
2430 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2431 
2432 		/* start a new transaction*/
2433 		handle = ext4_journal_start(inode, needed_blocks);
2434 		if (IS_ERR(handle)) {
2435 			ret = PTR_ERR(handle);
2436 			printk(KERN_EMERG "%s: jbd2_start: "
2437 			       "%ld pages, ino %lu; err %d\n", __func__,
2438 				wbc->nr_to_write, inode->i_ino, ret);
2439 			dump_stack();
2440 			goto out_writepages;
2441 		}
2442 		mpd.get_block = ext4_da_get_block_write;
2443 		ret = mpage_da_writepages(mapping, wbc, &mpd);
2444 
2445 		ext4_journal_stop(handle);
2446 
2447 		if (mpd.retval == -ENOSPC) {
2448 			/* commit the transaction which would
2449 			 * free blocks released in the transaction
2450 			 * and try again
2451 			 */
2452 			jbd2_journal_force_commit_nested(sbi->s_journal);
2453 			wbc->pages_skipped = pages_skipped;
2454 			ret = 0;
2455 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2456 			/*
2457 			 * got one extent now try with
2458 			 * rest of the pages
2459 			 */
2460 			pages_written += mpd.pages_written;
2461 			wbc->pages_skipped = pages_skipped;
2462 			ret = 0;
2463 		} else if (wbc->nr_to_write)
2464 			/*
2465 			 * There is no more writeout needed
2466 			 * or we requested for a noblocking writeout
2467 			 * and we found the device congested
2468 			 */
2469 			break;
2470 	}
2471 	if (pages_skipped != wbc->pages_skipped)
2472 		printk(KERN_EMERG "This should not happen leaving %s "
2473 				"with nr_to_write = %ld ret = %d\n",
2474 				__func__, wbc->nr_to_write, ret);
2475 
2476 	/* Update index */
2477 	index += pages_written;
2478 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2479 		/*
2480 		 * set the writeback_index so that range_cyclic
2481 		 * mode will write it back later
2482 		 */
2483 		mapping->writeback_index = index;
2484 
2485 out_writepages:
2486 	if (!no_nrwrite_index_update)
2487 		wbc->no_nrwrite_index_update = 0;
2488 	wbc->nr_to_write -= nr_to_writebump;
2489 	return ret;
2490 }
2491 
2492 #define FALL_BACK_TO_NONDELALLOC 1
2493 static int ext4_nonda_switch(struct super_block *sb)
2494 {
2495 	s64 free_blocks, dirty_blocks;
2496 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2497 
2498 	/*
2499 	 * switch to non delalloc mode if we are running low
2500 	 * on free block. The free block accounting via percpu
2501 	 * counters can get slightly wrong with FBC_BATCH getting
2502 	 * accumulated on each CPU without updating global counters
2503 	 * Delalloc need an accurate free block accounting. So switch
2504 	 * to non delalloc when we are near to error range.
2505 	 */
2506 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2507 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2508 	if (2 * free_blocks < 3 * dirty_blocks ||
2509 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2510 		/*
2511 		 * free block count is less that 150% of dirty blocks
2512 		 * or free blocks is less that watermark
2513 		 */
2514 		return 1;
2515 	}
2516 	return 0;
2517 }
2518 
2519 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2520 				loff_t pos, unsigned len, unsigned flags,
2521 				struct page **pagep, void **fsdata)
2522 {
2523 	int ret, retries = 0;
2524 	struct page *page;
2525 	pgoff_t index;
2526 	unsigned from, to;
2527 	struct inode *inode = mapping->host;
2528 	handle_t *handle;
2529 
2530 	index = pos >> PAGE_CACHE_SHIFT;
2531 	from = pos & (PAGE_CACHE_SIZE - 1);
2532 	to = from + len;
2533 
2534 	if (ext4_nonda_switch(inode->i_sb)) {
2535 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2536 		return ext4_write_begin(file, mapping, pos,
2537 					len, flags, pagep, fsdata);
2538 	}
2539 	*fsdata = (void *)0;
2540 retry:
2541 	/*
2542 	 * With delayed allocation, we don't log the i_disksize update
2543 	 * if there is delayed block allocation. But we still need
2544 	 * to journalling the i_disksize update if writes to the end
2545 	 * of file which has an already mapped buffer.
2546 	 */
2547 	handle = ext4_journal_start(inode, 1);
2548 	if (IS_ERR(handle)) {
2549 		ret = PTR_ERR(handle);
2550 		goto out;
2551 	}
2552 
2553 	page = grab_cache_page_write_begin(mapping, index, flags);
2554 	if (!page) {
2555 		ext4_journal_stop(handle);
2556 		ret = -ENOMEM;
2557 		goto out;
2558 	}
2559 	*pagep = page;
2560 
2561 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2562 							ext4_da_get_block_prep);
2563 	if (ret < 0) {
2564 		unlock_page(page);
2565 		ext4_journal_stop(handle);
2566 		page_cache_release(page);
2567 		/*
2568 		 * block_write_begin may have instantiated a few blocks
2569 		 * outside i_size.  Trim these off again. Don't need
2570 		 * i_size_read because we hold i_mutex.
2571 		 */
2572 		if (pos + len > inode->i_size)
2573 			vmtruncate(inode, inode->i_size);
2574 	}
2575 
2576 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2577 		goto retry;
2578 out:
2579 	return ret;
2580 }
2581 
2582 /*
2583  * Check if we should update i_disksize
2584  * when write to the end of file but not require block allocation
2585  */
2586 static int ext4_da_should_update_i_disksize(struct page *page,
2587 					 unsigned long offset)
2588 {
2589 	struct buffer_head *bh;
2590 	struct inode *inode = page->mapping->host;
2591 	unsigned int idx;
2592 	int i;
2593 
2594 	bh = page_buffers(page);
2595 	idx = offset >> inode->i_blkbits;
2596 
2597 	for (i = 0; i < idx; i++)
2598 		bh = bh->b_this_page;
2599 
2600 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2601 		return 0;
2602 	return 1;
2603 }
2604 
2605 static int ext4_da_write_end(struct file *file,
2606 				struct address_space *mapping,
2607 				loff_t pos, unsigned len, unsigned copied,
2608 				struct page *page, void *fsdata)
2609 {
2610 	struct inode *inode = mapping->host;
2611 	int ret = 0, ret2;
2612 	handle_t *handle = ext4_journal_current_handle();
2613 	loff_t new_i_size;
2614 	unsigned long start, end;
2615 	int write_mode = (int)(unsigned long)fsdata;
2616 
2617 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2618 		if (ext4_should_order_data(inode)) {
2619 			return ext4_ordered_write_end(file, mapping, pos,
2620 					len, copied, page, fsdata);
2621 		} else if (ext4_should_writeback_data(inode)) {
2622 			return ext4_writeback_write_end(file, mapping, pos,
2623 					len, copied, page, fsdata);
2624 		} else {
2625 			BUG();
2626 		}
2627 	}
2628 
2629 	start = pos & (PAGE_CACHE_SIZE - 1);
2630 	end = start + copied - 1;
2631 
2632 	/*
2633 	 * generic_write_end() will run mark_inode_dirty() if i_size
2634 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2635 	 * into that.
2636 	 */
2637 
2638 	new_i_size = pos + copied;
2639 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2640 		if (ext4_da_should_update_i_disksize(page, end)) {
2641 			down_write(&EXT4_I(inode)->i_data_sem);
2642 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2643 				/*
2644 				 * Updating i_disksize when extending file
2645 				 * without needing block allocation
2646 				 */
2647 				if (ext4_should_order_data(inode))
2648 					ret = ext4_jbd2_file_inode(handle,
2649 								   inode);
2650 
2651 				EXT4_I(inode)->i_disksize = new_i_size;
2652 			}
2653 			up_write(&EXT4_I(inode)->i_data_sem);
2654 			/* We need to mark inode dirty even if
2655 			 * new_i_size is less that inode->i_size
2656 			 * bu greater than i_disksize.(hint delalloc)
2657 			 */
2658 			ext4_mark_inode_dirty(handle, inode);
2659 		}
2660 	}
2661 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2662 							page, fsdata);
2663 	copied = ret2;
2664 	if (ret2 < 0)
2665 		ret = ret2;
2666 	ret2 = ext4_journal_stop(handle);
2667 	if (!ret)
2668 		ret = ret2;
2669 
2670 	return ret ? ret : copied;
2671 }
2672 
2673 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2674 {
2675 	/*
2676 	 * Drop reserved blocks
2677 	 */
2678 	BUG_ON(!PageLocked(page));
2679 	if (!page_has_buffers(page))
2680 		goto out;
2681 
2682 	ext4_da_page_release_reservation(page, offset);
2683 
2684 out:
2685 	ext4_invalidatepage(page, offset);
2686 
2687 	return;
2688 }
2689 
2690 
2691 /*
2692  * bmap() is special.  It gets used by applications such as lilo and by
2693  * the swapper to find the on-disk block of a specific piece of data.
2694  *
2695  * Naturally, this is dangerous if the block concerned is still in the
2696  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2697  * filesystem and enables swap, then they may get a nasty shock when the
2698  * data getting swapped to that swapfile suddenly gets overwritten by
2699  * the original zero's written out previously to the journal and
2700  * awaiting writeback in the kernel's buffer cache.
2701  *
2702  * So, if we see any bmap calls here on a modified, data-journaled file,
2703  * take extra steps to flush any blocks which might be in the cache.
2704  */
2705 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2706 {
2707 	struct inode *inode = mapping->host;
2708 	journal_t *journal;
2709 	int err;
2710 
2711 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2712 			test_opt(inode->i_sb, DELALLOC)) {
2713 		/*
2714 		 * With delalloc we want to sync the file
2715 		 * so that we can make sure we allocate
2716 		 * blocks for file
2717 		 */
2718 		filemap_write_and_wait(mapping);
2719 	}
2720 
2721 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2722 		/*
2723 		 * This is a REALLY heavyweight approach, but the use of
2724 		 * bmap on dirty files is expected to be extremely rare:
2725 		 * only if we run lilo or swapon on a freshly made file
2726 		 * do we expect this to happen.
2727 		 *
2728 		 * (bmap requires CAP_SYS_RAWIO so this does not
2729 		 * represent an unprivileged user DOS attack --- we'd be
2730 		 * in trouble if mortal users could trigger this path at
2731 		 * will.)
2732 		 *
2733 		 * NB. EXT4_STATE_JDATA is not set on files other than
2734 		 * regular files.  If somebody wants to bmap a directory
2735 		 * or symlink and gets confused because the buffer
2736 		 * hasn't yet been flushed to disk, they deserve
2737 		 * everything they get.
2738 		 */
2739 
2740 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2741 		journal = EXT4_JOURNAL(inode);
2742 		jbd2_journal_lock_updates(journal);
2743 		err = jbd2_journal_flush(journal);
2744 		jbd2_journal_unlock_updates(journal);
2745 
2746 		if (err)
2747 			return 0;
2748 	}
2749 
2750 	return generic_block_bmap(mapping, block, ext4_get_block);
2751 }
2752 
2753 static int bget_one(handle_t *handle, struct buffer_head *bh)
2754 {
2755 	get_bh(bh);
2756 	return 0;
2757 }
2758 
2759 static int bput_one(handle_t *handle, struct buffer_head *bh)
2760 {
2761 	put_bh(bh);
2762 	return 0;
2763 }
2764 
2765 /*
2766  * Note that we don't need to start a transaction unless we're journaling data
2767  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2768  * need to file the inode to the transaction's list in ordered mode because if
2769  * we are writing back data added by write(), the inode is already there and if
2770  * we are writing back data modified via mmap(), noone guarantees in which
2771  * transaction the data will hit the disk. In case we are journaling data, we
2772  * cannot start transaction directly because transaction start ranks above page
2773  * lock so we have to do some magic.
2774  *
2775  * In all journaling modes block_write_full_page() will start the I/O.
2776  *
2777  * Problem:
2778  *
2779  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2780  *		ext4_writepage()
2781  *
2782  * Similar for:
2783  *
2784  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2785  *
2786  * Same applies to ext4_get_block().  We will deadlock on various things like
2787  * lock_journal and i_data_sem
2788  *
2789  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2790  * allocations fail.
2791  *
2792  * 16May01: If we're reentered then journal_current_handle() will be
2793  *	    non-zero. We simply *return*.
2794  *
2795  * 1 July 2001: @@@ FIXME:
2796  *   In journalled data mode, a data buffer may be metadata against the
2797  *   current transaction.  But the same file is part of a shared mapping
2798  *   and someone does a writepage() on it.
2799  *
2800  *   We will move the buffer onto the async_data list, but *after* it has
2801  *   been dirtied. So there's a small window where we have dirty data on
2802  *   BJ_Metadata.
2803  *
2804  *   Note that this only applies to the last partial page in the file.  The
2805  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2806  *   broken code anyway: it's wrong for msync()).
2807  *
2808  *   It's a rare case: affects the final partial page, for journalled data
2809  *   where the file is subject to bith write() and writepage() in the same
2810  *   transction.  To fix it we'll need a custom block_write_full_page().
2811  *   We'll probably need that anyway for journalling writepage() output.
2812  *
2813  * We don't honour synchronous mounts for writepage().  That would be
2814  * disastrous.  Any write() or metadata operation will sync the fs for
2815  * us.
2816  *
2817  */
2818 static int __ext4_normal_writepage(struct page *page,
2819 				struct writeback_control *wbc)
2820 {
2821 	struct inode *inode = page->mapping->host;
2822 
2823 	if (test_opt(inode->i_sb, NOBH))
2824 		return nobh_writepage(page,
2825 					ext4_normal_get_block_write, wbc);
2826 	else
2827 		return block_write_full_page(page,
2828 						ext4_normal_get_block_write,
2829 						wbc);
2830 }
2831 
2832 static int ext4_normal_writepage(struct page *page,
2833 				struct writeback_control *wbc)
2834 {
2835 	struct inode *inode = page->mapping->host;
2836 	loff_t size = i_size_read(inode);
2837 	loff_t len;
2838 
2839 	J_ASSERT(PageLocked(page));
2840 	if (page->index == size >> PAGE_CACHE_SHIFT)
2841 		len = size & ~PAGE_CACHE_MASK;
2842 	else
2843 		len = PAGE_CACHE_SIZE;
2844 
2845 	if (page_has_buffers(page)) {
2846 		/* if page has buffers it should all be mapped
2847 		 * and allocated. If there are not buffers attached
2848 		 * to the page we know the page is dirty but it lost
2849 		 * buffers. That means that at some moment in time
2850 		 * after write_begin() / write_end() has been called
2851 		 * all buffers have been clean and thus they must have been
2852 		 * written at least once. So they are all mapped and we can
2853 		 * happily proceed with mapping them and writing the page.
2854 		 */
2855 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2856 					ext4_bh_unmapped_or_delay));
2857 	}
2858 
2859 	if (!ext4_journal_current_handle())
2860 		return __ext4_normal_writepage(page, wbc);
2861 
2862 	redirty_page_for_writepage(wbc, page);
2863 	unlock_page(page);
2864 	return 0;
2865 }
2866 
2867 static int __ext4_journalled_writepage(struct page *page,
2868 				struct writeback_control *wbc)
2869 {
2870 	struct address_space *mapping = page->mapping;
2871 	struct inode *inode = mapping->host;
2872 	struct buffer_head *page_bufs;
2873 	handle_t *handle = NULL;
2874 	int ret = 0;
2875 	int err;
2876 
2877 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2878 					ext4_normal_get_block_write);
2879 	if (ret != 0)
2880 		goto out_unlock;
2881 
2882 	page_bufs = page_buffers(page);
2883 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2884 								bget_one);
2885 	/* As soon as we unlock the page, it can go away, but we have
2886 	 * references to buffers so we are safe */
2887 	unlock_page(page);
2888 
2889 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2890 	if (IS_ERR(handle)) {
2891 		ret = PTR_ERR(handle);
2892 		goto out;
2893 	}
2894 
2895 	ret = walk_page_buffers(handle, page_bufs, 0,
2896 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2897 
2898 	err = walk_page_buffers(handle, page_bufs, 0,
2899 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2900 	if (ret == 0)
2901 		ret = err;
2902 	err = ext4_journal_stop(handle);
2903 	if (!ret)
2904 		ret = err;
2905 
2906 	walk_page_buffers(handle, page_bufs, 0,
2907 				PAGE_CACHE_SIZE, NULL, bput_one);
2908 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2909 	goto out;
2910 
2911 out_unlock:
2912 	unlock_page(page);
2913 out:
2914 	return ret;
2915 }
2916 
2917 static int ext4_journalled_writepage(struct page *page,
2918 				struct writeback_control *wbc)
2919 {
2920 	struct inode *inode = page->mapping->host;
2921 	loff_t size = i_size_read(inode);
2922 	loff_t len;
2923 
2924 	J_ASSERT(PageLocked(page));
2925 	if (page->index == size >> PAGE_CACHE_SHIFT)
2926 		len = size & ~PAGE_CACHE_MASK;
2927 	else
2928 		len = PAGE_CACHE_SIZE;
2929 
2930 	if (page_has_buffers(page)) {
2931 		/* if page has buffers it should all be mapped
2932 		 * and allocated. If there are not buffers attached
2933 		 * to the page we know the page is dirty but it lost
2934 		 * buffers. That means that at some moment in time
2935 		 * after write_begin() / write_end() has been called
2936 		 * all buffers have been clean and thus they must have been
2937 		 * written at least once. So they are all mapped and we can
2938 		 * happily proceed with mapping them and writing the page.
2939 		 */
2940 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2941 					ext4_bh_unmapped_or_delay));
2942 	}
2943 
2944 	if (ext4_journal_current_handle())
2945 		goto no_write;
2946 
2947 	if (PageChecked(page)) {
2948 		/*
2949 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2950 		 * doesn't seem much point in redirtying the page here.
2951 		 */
2952 		ClearPageChecked(page);
2953 		return __ext4_journalled_writepage(page, wbc);
2954 	} else {
2955 		/*
2956 		 * It may be a page full of checkpoint-mode buffers.  We don't
2957 		 * really know unless we go poke around in the buffer_heads.
2958 		 * But block_write_full_page will do the right thing.
2959 		 */
2960 		return block_write_full_page(page,
2961 						ext4_normal_get_block_write,
2962 						wbc);
2963 	}
2964 no_write:
2965 	redirty_page_for_writepage(wbc, page);
2966 	unlock_page(page);
2967 	return 0;
2968 }
2969 
2970 static int ext4_readpage(struct file *file, struct page *page)
2971 {
2972 	return mpage_readpage(page, ext4_get_block);
2973 }
2974 
2975 static int
2976 ext4_readpages(struct file *file, struct address_space *mapping,
2977 		struct list_head *pages, unsigned nr_pages)
2978 {
2979 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 }
2981 
2982 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2983 {
2984 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2985 
2986 	/*
2987 	 * If it's a full truncate we just forget about the pending dirtying
2988 	 */
2989 	if (offset == 0)
2990 		ClearPageChecked(page);
2991 
2992 	jbd2_journal_invalidatepage(journal, page, offset);
2993 }
2994 
2995 static int ext4_releasepage(struct page *page, gfp_t wait)
2996 {
2997 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998 
2999 	WARN_ON(PageChecked(page));
3000 	if (!page_has_buffers(page))
3001 		return 0;
3002 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
3003 }
3004 
3005 /*
3006  * If the O_DIRECT write will extend the file then add this inode to the
3007  * orphan list.  So recovery will truncate it back to the original size
3008  * if the machine crashes during the write.
3009  *
3010  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3011  * crashes then stale disk data _may_ be exposed inside the file. But current
3012  * VFS code falls back into buffered path in that case so we are safe.
3013  */
3014 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3015 			const struct iovec *iov, loff_t offset,
3016 			unsigned long nr_segs)
3017 {
3018 	struct file *file = iocb->ki_filp;
3019 	struct inode *inode = file->f_mapping->host;
3020 	struct ext4_inode_info *ei = EXT4_I(inode);
3021 	handle_t *handle;
3022 	ssize_t ret;
3023 	int orphan = 0;
3024 	size_t count = iov_length(iov, nr_segs);
3025 
3026 	if (rw == WRITE) {
3027 		loff_t final_size = offset + count;
3028 
3029 		if (final_size > inode->i_size) {
3030 			/* Credits for sb + inode write */
3031 			handle = ext4_journal_start(inode, 2);
3032 			if (IS_ERR(handle)) {
3033 				ret = PTR_ERR(handle);
3034 				goto out;
3035 			}
3036 			ret = ext4_orphan_add(handle, inode);
3037 			if (ret) {
3038 				ext4_journal_stop(handle);
3039 				goto out;
3040 			}
3041 			orphan = 1;
3042 			ei->i_disksize = inode->i_size;
3043 			ext4_journal_stop(handle);
3044 		}
3045 	}
3046 
3047 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3048 				 offset, nr_segs,
3049 				 ext4_get_block, NULL);
3050 
3051 	if (orphan) {
3052 		int err;
3053 
3054 		/* Credits for sb + inode write */
3055 		handle = ext4_journal_start(inode, 2);
3056 		if (IS_ERR(handle)) {
3057 			/* This is really bad luck. We've written the data
3058 			 * but cannot extend i_size. Bail out and pretend
3059 			 * the write failed... */
3060 			ret = PTR_ERR(handle);
3061 			goto out;
3062 		}
3063 		if (inode->i_nlink)
3064 			ext4_orphan_del(handle, inode);
3065 		if (ret > 0) {
3066 			loff_t end = offset + ret;
3067 			if (end > inode->i_size) {
3068 				ei->i_disksize = end;
3069 				i_size_write(inode, end);
3070 				/*
3071 				 * We're going to return a positive `ret'
3072 				 * here due to non-zero-length I/O, so there's
3073 				 * no way of reporting error returns from
3074 				 * ext4_mark_inode_dirty() to userspace.  So
3075 				 * ignore it.
3076 				 */
3077 				ext4_mark_inode_dirty(handle, inode);
3078 			}
3079 		}
3080 		err = ext4_journal_stop(handle);
3081 		if (ret == 0)
3082 			ret = err;
3083 	}
3084 out:
3085 	return ret;
3086 }
3087 
3088 /*
3089  * Pages can be marked dirty completely asynchronously from ext4's journalling
3090  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3091  * much here because ->set_page_dirty is called under VFS locks.  The page is
3092  * not necessarily locked.
3093  *
3094  * We cannot just dirty the page and leave attached buffers clean, because the
3095  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3096  * or jbddirty because all the journalling code will explode.
3097  *
3098  * So what we do is to mark the page "pending dirty" and next time writepage
3099  * is called, propagate that into the buffers appropriately.
3100  */
3101 static int ext4_journalled_set_page_dirty(struct page *page)
3102 {
3103 	SetPageChecked(page);
3104 	return __set_page_dirty_nobuffers(page);
3105 }
3106 
3107 static const struct address_space_operations ext4_ordered_aops = {
3108 	.readpage		= ext4_readpage,
3109 	.readpages		= ext4_readpages,
3110 	.writepage		= ext4_normal_writepage,
3111 	.sync_page		= block_sync_page,
3112 	.write_begin		= ext4_write_begin,
3113 	.write_end		= ext4_ordered_write_end,
3114 	.bmap			= ext4_bmap,
3115 	.invalidatepage		= ext4_invalidatepage,
3116 	.releasepage		= ext4_releasepage,
3117 	.direct_IO		= ext4_direct_IO,
3118 	.migratepage		= buffer_migrate_page,
3119 	.is_partially_uptodate  = block_is_partially_uptodate,
3120 };
3121 
3122 static const struct address_space_operations ext4_writeback_aops = {
3123 	.readpage		= ext4_readpage,
3124 	.readpages		= ext4_readpages,
3125 	.writepage		= ext4_normal_writepage,
3126 	.sync_page		= block_sync_page,
3127 	.write_begin		= ext4_write_begin,
3128 	.write_end		= ext4_writeback_write_end,
3129 	.bmap			= ext4_bmap,
3130 	.invalidatepage		= ext4_invalidatepage,
3131 	.releasepage		= ext4_releasepage,
3132 	.direct_IO		= ext4_direct_IO,
3133 	.migratepage		= buffer_migrate_page,
3134 	.is_partially_uptodate  = block_is_partially_uptodate,
3135 };
3136 
3137 static const struct address_space_operations ext4_journalled_aops = {
3138 	.readpage		= ext4_readpage,
3139 	.readpages		= ext4_readpages,
3140 	.writepage		= ext4_journalled_writepage,
3141 	.sync_page		= block_sync_page,
3142 	.write_begin		= ext4_write_begin,
3143 	.write_end		= ext4_journalled_write_end,
3144 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3145 	.bmap			= ext4_bmap,
3146 	.invalidatepage		= ext4_invalidatepage,
3147 	.releasepage		= ext4_releasepage,
3148 	.is_partially_uptodate  = block_is_partially_uptodate,
3149 };
3150 
3151 static const struct address_space_operations ext4_da_aops = {
3152 	.readpage		= ext4_readpage,
3153 	.readpages		= ext4_readpages,
3154 	.writepage		= ext4_da_writepage,
3155 	.writepages		= ext4_da_writepages,
3156 	.sync_page		= block_sync_page,
3157 	.write_begin		= ext4_da_write_begin,
3158 	.write_end		= ext4_da_write_end,
3159 	.bmap			= ext4_bmap,
3160 	.invalidatepage		= ext4_da_invalidatepage,
3161 	.releasepage		= ext4_releasepage,
3162 	.direct_IO		= ext4_direct_IO,
3163 	.migratepage		= buffer_migrate_page,
3164 	.is_partially_uptodate  = block_is_partially_uptodate,
3165 };
3166 
3167 void ext4_set_aops(struct inode *inode)
3168 {
3169 	if (ext4_should_order_data(inode) &&
3170 		test_opt(inode->i_sb, DELALLOC))
3171 		inode->i_mapping->a_ops = &ext4_da_aops;
3172 	else if (ext4_should_order_data(inode))
3173 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3174 	else if (ext4_should_writeback_data(inode) &&
3175 		 test_opt(inode->i_sb, DELALLOC))
3176 		inode->i_mapping->a_ops = &ext4_da_aops;
3177 	else if (ext4_should_writeback_data(inode))
3178 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3179 	else
3180 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3181 }
3182 
3183 /*
3184  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3185  * up to the end of the block which corresponds to `from'.
3186  * This required during truncate. We need to physically zero the tail end
3187  * of that block so it doesn't yield old data if the file is later grown.
3188  */
3189 int ext4_block_truncate_page(handle_t *handle,
3190 		struct address_space *mapping, loff_t from)
3191 {
3192 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3193 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3194 	unsigned blocksize, length, pos;
3195 	ext4_lblk_t iblock;
3196 	struct inode *inode = mapping->host;
3197 	struct buffer_head *bh;
3198 	struct page *page;
3199 	int err = 0;
3200 
3201 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3202 	if (!page)
3203 		return -EINVAL;
3204 
3205 	blocksize = inode->i_sb->s_blocksize;
3206 	length = blocksize - (offset & (blocksize - 1));
3207 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3208 
3209 	/*
3210 	 * For "nobh" option,  we can only work if we don't need to
3211 	 * read-in the page - otherwise we create buffers to do the IO.
3212 	 */
3213 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3214 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3215 		zero_user(page, offset, length);
3216 		set_page_dirty(page);
3217 		goto unlock;
3218 	}
3219 
3220 	if (!page_has_buffers(page))
3221 		create_empty_buffers(page, blocksize, 0);
3222 
3223 	/* Find the buffer that contains "offset" */
3224 	bh = page_buffers(page);
3225 	pos = blocksize;
3226 	while (offset >= pos) {
3227 		bh = bh->b_this_page;
3228 		iblock++;
3229 		pos += blocksize;
3230 	}
3231 
3232 	err = 0;
3233 	if (buffer_freed(bh)) {
3234 		BUFFER_TRACE(bh, "freed: skip");
3235 		goto unlock;
3236 	}
3237 
3238 	if (!buffer_mapped(bh)) {
3239 		BUFFER_TRACE(bh, "unmapped");
3240 		ext4_get_block(inode, iblock, bh, 0);
3241 		/* unmapped? It's a hole - nothing to do */
3242 		if (!buffer_mapped(bh)) {
3243 			BUFFER_TRACE(bh, "still unmapped");
3244 			goto unlock;
3245 		}
3246 	}
3247 
3248 	/* Ok, it's mapped. Make sure it's up-to-date */
3249 	if (PageUptodate(page))
3250 		set_buffer_uptodate(bh);
3251 
3252 	if (!buffer_uptodate(bh)) {
3253 		err = -EIO;
3254 		ll_rw_block(READ, 1, &bh);
3255 		wait_on_buffer(bh);
3256 		/* Uhhuh. Read error. Complain and punt. */
3257 		if (!buffer_uptodate(bh))
3258 			goto unlock;
3259 	}
3260 
3261 	if (ext4_should_journal_data(inode)) {
3262 		BUFFER_TRACE(bh, "get write access");
3263 		err = ext4_journal_get_write_access(handle, bh);
3264 		if (err)
3265 			goto unlock;
3266 	}
3267 
3268 	zero_user(page, offset, length);
3269 
3270 	BUFFER_TRACE(bh, "zeroed end of block");
3271 
3272 	err = 0;
3273 	if (ext4_should_journal_data(inode)) {
3274 		err = ext4_journal_dirty_metadata(handle, bh);
3275 	} else {
3276 		if (ext4_should_order_data(inode))
3277 			err = ext4_jbd2_file_inode(handle, inode);
3278 		mark_buffer_dirty(bh);
3279 	}
3280 
3281 unlock:
3282 	unlock_page(page);
3283 	page_cache_release(page);
3284 	return err;
3285 }
3286 
3287 /*
3288  * Probably it should be a library function... search for first non-zero word
3289  * or memcmp with zero_page, whatever is better for particular architecture.
3290  * Linus?
3291  */
3292 static inline int all_zeroes(__le32 *p, __le32 *q)
3293 {
3294 	while (p < q)
3295 		if (*p++)
3296 			return 0;
3297 	return 1;
3298 }
3299 
3300 /**
3301  *	ext4_find_shared - find the indirect blocks for partial truncation.
3302  *	@inode:	  inode in question
3303  *	@depth:	  depth of the affected branch
3304  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3305  *	@chain:	  place to store the pointers to partial indirect blocks
3306  *	@top:	  place to the (detached) top of branch
3307  *
3308  *	This is a helper function used by ext4_truncate().
3309  *
3310  *	When we do truncate() we may have to clean the ends of several
3311  *	indirect blocks but leave the blocks themselves alive. Block is
3312  *	partially truncated if some data below the new i_size is refered
3313  *	from it (and it is on the path to the first completely truncated
3314  *	data block, indeed).  We have to free the top of that path along
3315  *	with everything to the right of the path. Since no allocation
3316  *	past the truncation point is possible until ext4_truncate()
3317  *	finishes, we may safely do the latter, but top of branch may
3318  *	require special attention - pageout below the truncation point
3319  *	might try to populate it.
3320  *
3321  *	We atomically detach the top of branch from the tree, store the
3322  *	block number of its root in *@top, pointers to buffer_heads of
3323  *	partially truncated blocks - in @chain[].bh and pointers to
3324  *	their last elements that should not be removed - in
3325  *	@chain[].p. Return value is the pointer to last filled element
3326  *	of @chain.
3327  *
3328  *	The work left to caller to do the actual freeing of subtrees:
3329  *		a) free the subtree starting from *@top
3330  *		b) free the subtrees whose roots are stored in
3331  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3332  *		c) free the subtrees growing from the inode past the @chain[0].
3333  *			(no partially truncated stuff there).  */
3334 
3335 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3336 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3337 {
3338 	Indirect *partial, *p;
3339 	int k, err;
3340 
3341 	*top = 0;
3342 	/* Make k index the deepest non-null offest + 1 */
3343 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3344 		;
3345 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3346 	/* Writer: pointers */
3347 	if (!partial)
3348 		partial = chain + k-1;
3349 	/*
3350 	 * If the branch acquired continuation since we've looked at it -
3351 	 * fine, it should all survive and (new) top doesn't belong to us.
3352 	 */
3353 	if (!partial->key && *partial->p)
3354 		/* Writer: end */
3355 		goto no_top;
3356 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3357 		;
3358 	/*
3359 	 * OK, we've found the last block that must survive. The rest of our
3360 	 * branch should be detached before unlocking. However, if that rest
3361 	 * of branch is all ours and does not grow immediately from the inode
3362 	 * it's easier to cheat and just decrement partial->p.
3363 	 */
3364 	if (p == chain + k - 1 && p > chain) {
3365 		p->p--;
3366 	} else {
3367 		*top = *p->p;
3368 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3369 #if 0
3370 		*p->p = 0;
3371 #endif
3372 	}
3373 	/* Writer: end */
3374 
3375 	while (partial > p) {
3376 		brelse(partial->bh);
3377 		partial--;
3378 	}
3379 no_top:
3380 	return partial;
3381 }
3382 
3383 /*
3384  * Zero a number of block pointers in either an inode or an indirect block.
3385  * If we restart the transaction we must again get write access to the
3386  * indirect block for further modification.
3387  *
3388  * We release `count' blocks on disk, but (last - first) may be greater
3389  * than `count' because there can be holes in there.
3390  */
3391 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3392 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3393 		unsigned long count, __le32 *first, __le32 *last)
3394 {
3395 	__le32 *p;
3396 	if (try_to_extend_transaction(handle, inode)) {
3397 		if (bh) {
3398 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3399 			ext4_journal_dirty_metadata(handle, bh);
3400 		}
3401 		ext4_mark_inode_dirty(handle, inode);
3402 		ext4_journal_test_restart(handle, inode);
3403 		if (bh) {
3404 			BUFFER_TRACE(bh, "retaking write access");
3405 			ext4_journal_get_write_access(handle, bh);
3406 		}
3407 	}
3408 
3409 	/*
3410 	 * Any buffers which are on the journal will be in memory. We find
3411 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3412 	 * on them.  We've already detached each block from the file, so
3413 	 * bforget() in jbd2_journal_forget() should be safe.
3414 	 *
3415 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3416 	 */
3417 	for (p = first; p < last; p++) {
3418 		u32 nr = le32_to_cpu(*p);
3419 		if (nr) {
3420 			struct buffer_head *tbh;
3421 
3422 			*p = 0;
3423 			tbh = sb_find_get_block(inode->i_sb, nr);
3424 			ext4_forget(handle, 0, inode, tbh, nr);
3425 		}
3426 	}
3427 
3428 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3429 }
3430 
3431 /**
3432  * ext4_free_data - free a list of data blocks
3433  * @handle:	handle for this transaction
3434  * @inode:	inode we are dealing with
3435  * @this_bh:	indirect buffer_head which contains *@first and *@last
3436  * @first:	array of block numbers
3437  * @last:	points immediately past the end of array
3438  *
3439  * We are freeing all blocks refered from that array (numbers are stored as
3440  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3441  *
3442  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3443  * blocks are contiguous then releasing them at one time will only affect one
3444  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3445  * actually use a lot of journal space.
3446  *
3447  * @this_bh will be %NULL if @first and @last point into the inode's direct
3448  * block pointers.
3449  */
3450 static void ext4_free_data(handle_t *handle, struct inode *inode,
3451 			   struct buffer_head *this_bh,
3452 			   __le32 *first, __le32 *last)
3453 {
3454 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3455 	unsigned long count = 0;	    /* Number of blocks in the run */
3456 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3457 					       corresponding to
3458 					       block_to_free */
3459 	ext4_fsblk_t nr;		    /* Current block # */
3460 	__le32 *p;			    /* Pointer into inode/ind
3461 					       for current block */
3462 	int err;
3463 
3464 	if (this_bh) {				/* For indirect block */
3465 		BUFFER_TRACE(this_bh, "get_write_access");
3466 		err = ext4_journal_get_write_access(handle, this_bh);
3467 		/* Important: if we can't update the indirect pointers
3468 		 * to the blocks, we can't free them. */
3469 		if (err)
3470 			return;
3471 	}
3472 
3473 	for (p = first; p < last; p++) {
3474 		nr = le32_to_cpu(*p);
3475 		if (nr) {
3476 			/* accumulate blocks to free if they're contiguous */
3477 			if (count == 0) {
3478 				block_to_free = nr;
3479 				block_to_free_p = p;
3480 				count = 1;
3481 			} else if (nr == block_to_free + count) {
3482 				count++;
3483 			} else {
3484 				ext4_clear_blocks(handle, inode, this_bh,
3485 						  block_to_free,
3486 						  count, block_to_free_p, p);
3487 				block_to_free = nr;
3488 				block_to_free_p = p;
3489 				count = 1;
3490 			}
3491 		}
3492 	}
3493 
3494 	if (count > 0)
3495 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3496 				  count, block_to_free_p, p);
3497 
3498 	if (this_bh) {
3499 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3500 
3501 		/*
3502 		 * The buffer head should have an attached journal head at this
3503 		 * point. However, if the data is corrupted and an indirect
3504 		 * block pointed to itself, it would have been detached when
3505 		 * the block was cleared. Check for this instead of OOPSing.
3506 		 */
3507 		if (bh2jh(this_bh))
3508 			ext4_journal_dirty_metadata(handle, this_bh);
3509 		else
3510 			ext4_error(inode->i_sb, __func__,
3511 				   "circular indirect block detected, "
3512 				   "inode=%lu, block=%llu",
3513 				   inode->i_ino,
3514 				   (unsigned long long) this_bh->b_blocknr);
3515 	}
3516 }
3517 
3518 /**
3519  *	ext4_free_branches - free an array of branches
3520  *	@handle: JBD handle for this transaction
3521  *	@inode:	inode we are dealing with
3522  *	@parent_bh: the buffer_head which contains *@first and *@last
3523  *	@first:	array of block numbers
3524  *	@last:	pointer immediately past the end of array
3525  *	@depth:	depth of the branches to free
3526  *
3527  *	We are freeing all blocks refered from these branches (numbers are
3528  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3529  *	appropriately.
3530  */
3531 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3532 			       struct buffer_head *parent_bh,
3533 			       __le32 *first, __le32 *last, int depth)
3534 {
3535 	ext4_fsblk_t nr;
3536 	__le32 *p;
3537 
3538 	if (is_handle_aborted(handle))
3539 		return;
3540 
3541 	if (depth--) {
3542 		struct buffer_head *bh;
3543 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3544 		p = last;
3545 		while (--p >= first) {
3546 			nr = le32_to_cpu(*p);
3547 			if (!nr)
3548 				continue;		/* A hole */
3549 
3550 			/* Go read the buffer for the next level down */
3551 			bh = sb_bread(inode->i_sb, nr);
3552 
3553 			/*
3554 			 * A read failure? Report error and clear slot
3555 			 * (should be rare).
3556 			 */
3557 			if (!bh) {
3558 				ext4_error(inode->i_sb, "ext4_free_branches",
3559 					   "Read failure, inode=%lu, block=%llu",
3560 					   inode->i_ino, nr);
3561 				continue;
3562 			}
3563 
3564 			/* This zaps the entire block.  Bottom up. */
3565 			BUFFER_TRACE(bh, "free child branches");
3566 			ext4_free_branches(handle, inode, bh,
3567 					(__le32 *) bh->b_data,
3568 					(__le32 *) bh->b_data + addr_per_block,
3569 					depth);
3570 
3571 			/*
3572 			 * We've probably journalled the indirect block several
3573 			 * times during the truncate.  But it's no longer
3574 			 * needed and we now drop it from the transaction via
3575 			 * jbd2_journal_revoke().
3576 			 *
3577 			 * That's easy if it's exclusively part of this
3578 			 * transaction.  But if it's part of the committing
3579 			 * transaction then jbd2_journal_forget() will simply
3580 			 * brelse() it.  That means that if the underlying
3581 			 * block is reallocated in ext4_get_block(),
3582 			 * unmap_underlying_metadata() will find this block
3583 			 * and will try to get rid of it.  damn, damn.
3584 			 *
3585 			 * If this block has already been committed to the
3586 			 * journal, a revoke record will be written.  And
3587 			 * revoke records must be emitted *before* clearing
3588 			 * this block's bit in the bitmaps.
3589 			 */
3590 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3591 
3592 			/*
3593 			 * Everything below this this pointer has been
3594 			 * released.  Now let this top-of-subtree go.
3595 			 *
3596 			 * We want the freeing of this indirect block to be
3597 			 * atomic in the journal with the updating of the
3598 			 * bitmap block which owns it.  So make some room in
3599 			 * the journal.
3600 			 *
3601 			 * We zero the parent pointer *after* freeing its
3602 			 * pointee in the bitmaps, so if extend_transaction()
3603 			 * for some reason fails to put the bitmap changes and
3604 			 * the release into the same transaction, recovery
3605 			 * will merely complain about releasing a free block,
3606 			 * rather than leaking blocks.
3607 			 */
3608 			if (is_handle_aborted(handle))
3609 				return;
3610 			if (try_to_extend_transaction(handle, inode)) {
3611 				ext4_mark_inode_dirty(handle, inode);
3612 				ext4_journal_test_restart(handle, inode);
3613 			}
3614 
3615 			ext4_free_blocks(handle, inode, nr, 1, 1);
3616 
3617 			if (parent_bh) {
3618 				/*
3619 				 * The block which we have just freed is
3620 				 * pointed to by an indirect block: journal it
3621 				 */
3622 				BUFFER_TRACE(parent_bh, "get_write_access");
3623 				if (!ext4_journal_get_write_access(handle,
3624 								   parent_bh)){
3625 					*p = 0;
3626 					BUFFER_TRACE(parent_bh,
3627 					"call ext4_journal_dirty_metadata");
3628 					ext4_journal_dirty_metadata(handle,
3629 								    parent_bh);
3630 				}
3631 			}
3632 		}
3633 	} else {
3634 		/* We have reached the bottom of the tree. */
3635 		BUFFER_TRACE(parent_bh, "free data blocks");
3636 		ext4_free_data(handle, inode, parent_bh, first, last);
3637 	}
3638 }
3639 
3640 int ext4_can_truncate(struct inode *inode)
3641 {
3642 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3643 		return 0;
3644 	if (S_ISREG(inode->i_mode))
3645 		return 1;
3646 	if (S_ISDIR(inode->i_mode))
3647 		return 1;
3648 	if (S_ISLNK(inode->i_mode))
3649 		return !ext4_inode_is_fast_symlink(inode);
3650 	return 0;
3651 }
3652 
3653 /*
3654  * ext4_truncate()
3655  *
3656  * We block out ext4_get_block() block instantiations across the entire
3657  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3658  * simultaneously on behalf of the same inode.
3659  *
3660  * As we work through the truncate and commmit bits of it to the journal there
3661  * is one core, guiding principle: the file's tree must always be consistent on
3662  * disk.  We must be able to restart the truncate after a crash.
3663  *
3664  * The file's tree may be transiently inconsistent in memory (although it
3665  * probably isn't), but whenever we close off and commit a journal transaction,
3666  * the contents of (the filesystem + the journal) must be consistent and
3667  * restartable.  It's pretty simple, really: bottom up, right to left (although
3668  * left-to-right works OK too).
3669  *
3670  * Note that at recovery time, journal replay occurs *before* the restart of
3671  * truncate against the orphan inode list.
3672  *
3673  * The committed inode has the new, desired i_size (which is the same as
3674  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3675  * that this inode's truncate did not complete and it will again call
3676  * ext4_truncate() to have another go.  So there will be instantiated blocks
3677  * to the right of the truncation point in a crashed ext4 filesystem.  But
3678  * that's fine - as long as they are linked from the inode, the post-crash
3679  * ext4_truncate() run will find them and release them.
3680  */
3681 void ext4_truncate(struct inode *inode)
3682 {
3683 	handle_t *handle;
3684 	struct ext4_inode_info *ei = EXT4_I(inode);
3685 	__le32 *i_data = ei->i_data;
3686 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3687 	struct address_space *mapping = inode->i_mapping;
3688 	ext4_lblk_t offsets[4];
3689 	Indirect chain[4];
3690 	Indirect *partial;
3691 	__le32 nr = 0;
3692 	int n;
3693 	ext4_lblk_t last_block;
3694 	unsigned blocksize = inode->i_sb->s_blocksize;
3695 
3696 	if (!ext4_can_truncate(inode))
3697 		return;
3698 
3699 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3700 		ext4_ext_truncate(inode);
3701 		return;
3702 	}
3703 
3704 	handle = start_transaction(inode);
3705 	if (IS_ERR(handle))
3706 		return;		/* AKPM: return what? */
3707 
3708 	last_block = (inode->i_size + blocksize-1)
3709 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3710 
3711 	if (inode->i_size & (blocksize - 1))
3712 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3713 			goto out_stop;
3714 
3715 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3716 	if (n == 0)
3717 		goto out_stop;	/* error */
3718 
3719 	/*
3720 	 * OK.  This truncate is going to happen.  We add the inode to the
3721 	 * orphan list, so that if this truncate spans multiple transactions,
3722 	 * and we crash, we will resume the truncate when the filesystem
3723 	 * recovers.  It also marks the inode dirty, to catch the new size.
3724 	 *
3725 	 * Implication: the file must always be in a sane, consistent
3726 	 * truncatable state while each transaction commits.
3727 	 */
3728 	if (ext4_orphan_add(handle, inode))
3729 		goto out_stop;
3730 
3731 	/*
3732 	 * From here we block out all ext4_get_block() callers who want to
3733 	 * modify the block allocation tree.
3734 	 */
3735 	down_write(&ei->i_data_sem);
3736 
3737 	ext4_discard_preallocations(inode);
3738 
3739 	/*
3740 	 * The orphan list entry will now protect us from any crash which
3741 	 * occurs before the truncate completes, so it is now safe to propagate
3742 	 * the new, shorter inode size (held for now in i_size) into the
3743 	 * on-disk inode. We do this via i_disksize, which is the value which
3744 	 * ext4 *really* writes onto the disk inode.
3745 	 */
3746 	ei->i_disksize = inode->i_size;
3747 
3748 	if (n == 1) {		/* direct blocks */
3749 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3750 			       i_data + EXT4_NDIR_BLOCKS);
3751 		goto do_indirects;
3752 	}
3753 
3754 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3755 	/* Kill the top of shared branch (not detached) */
3756 	if (nr) {
3757 		if (partial == chain) {
3758 			/* Shared branch grows from the inode */
3759 			ext4_free_branches(handle, inode, NULL,
3760 					   &nr, &nr+1, (chain+n-1) - partial);
3761 			*partial->p = 0;
3762 			/*
3763 			 * We mark the inode dirty prior to restart,
3764 			 * and prior to stop.  No need for it here.
3765 			 */
3766 		} else {
3767 			/* Shared branch grows from an indirect block */
3768 			BUFFER_TRACE(partial->bh, "get_write_access");
3769 			ext4_free_branches(handle, inode, partial->bh,
3770 					partial->p,
3771 					partial->p+1, (chain+n-1) - partial);
3772 		}
3773 	}
3774 	/* Clear the ends of indirect blocks on the shared branch */
3775 	while (partial > chain) {
3776 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3777 				   (__le32*)partial->bh->b_data+addr_per_block,
3778 				   (chain+n-1) - partial);
3779 		BUFFER_TRACE(partial->bh, "call brelse");
3780 		brelse (partial->bh);
3781 		partial--;
3782 	}
3783 do_indirects:
3784 	/* Kill the remaining (whole) subtrees */
3785 	switch (offsets[0]) {
3786 	default:
3787 		nr = i_data[EXT4_IND_BLOCK];
3788 		if (nr) {
3789 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3790 			i_data[EXT4_IND_BLOCK] = 0;
3791 		}
3792 	case EXT4_IND_BLOCK:
3793 		nr = i_data[EXT4_DIND_BLOCK];
3794 		if (nr) {
3795 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3796 			i_data[EXT4_DIND_BLOCK] = 0;
3797 		}
3798 	case EXT4_DIND_BLOCK:
3799 		nr = i_data[EXT4_TIND_BLOCK];
3800 		if (nr) {
3801 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3802 			i_data[EXT4_TIND_BLOCK] = 0;
3803 		}
3804 	case EXT4_TIND_BLOCK:
3805 		;
3806 	}
3807 
3808 	up_write(&ei->i_data_sem);
3809 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3810 	ext4_mark_inode_dirty(handle, inode);
3811 
3812 	/*
3813 	 * In a multi-transaction truncate, we only make the final transaction
3814 	 * synchronous
3815 	 */
3816 	if (IS_SYNC(inode))
3817 		handle->h_sync = 1;
3818 out_stop:
3819 	/*
3820 	 * If this was a simple ftruncate(), and the file will remain alive
3821 	 * then we need to clear up the orphan record which we created above.
3822 	 * However, if this was a real unlink then we were called by
3823 	 * ext4_delete_inode(), and we allow that function to clean up the
3824 	 * orphan info for us.
3825 	 */
3826 	if (inode->i_nlink)
3827 		ext4_orphan_del(handle, inode);
3828 
3829 	ext4_journal_stop(handle);
3830 }
3831 
3832 /*
3833  * ext4_get_inode_loc returns with an extra refcount against the inode's
3834  * underlying buffer_head on success. If 'in_mem' is true, we have all
3835  * data in memory that is needed to recreate the on-disk version of this
3836  * inode.
3837  */
3838 static int __ext4_get_inode_loc(struct inode *inode,
3839 				struct ext4_iloc *iloc, int in_mem)
3840 {
3841 	struct ext4_group_desc	*gdp;
3842 	struct buffer_head	*bh;
3843 	struct super_block	*sb = inode->i_sb;
3844 	ext4_fsblk_t		block;
3845 	int			inodes_per_block, inode_offset;
3846 
3847 	iloc->bh = 0;
3848 	if (!ext4_valid_inum(sb, inode->i_ino))
3849 		return -EIO;
3850 
3851 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3852 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3853 	if (!gdp)
3854 		return -EIO;
3855 
3856 	/*
3857 	 * Figure out the offset within the block group inode table
3858 	 */
3859 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3860 	inode_offset = ((inode->i_ino - 1) %
3861 			EXT4_INODES_PER_GROUP(sb));
3862 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3863 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3864 
3865 	bh = sb_getblk(sb, block);
3866 	if (!bh) {
3867 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3868 			   "inode block - inode=%lu, block=%llu",
3869 			   inode->i_ino, block);
3870 		return -EIO;
3871 	}
3872 	if (!buffer_uptodate(bh)) {
3873 		lock_buffer(bh);
3874 
3875 		/*
3876 		 * If the buffer has the write error flag, we have failed
3877 		 * to write out another inode in the same block.  In this
3878 		 * case, we don't have to read the block because we may
3879 		 * read the old inode data successfully.
3880 		 */
3881 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3882 			set_buffer_uptodate(bh);
3883 
3884 		if (buffer_uptodate(bh)) {
3885 			/* someone brought it uptodate while we waited */
3886 			unlock_buffer(bh);
3887 			goto has_buffer;
3888 		}
3889 
3890 		/*
3891 		 * If we have all information of the inode in memory and this
3892 		 * is the only valid inode in the block, we need not read the
3893 		 * block.
3894 		 */
3895 		if (in_mem) {
3896 			struct buffer_head *bitmap_bh;
3897 			int i, start;
3898 
3899 			start = inode_offset & ~(inodes_per_block - 1);
3900 
3901 			/* Is the inode bitmap in cache? */
3902 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3903 			if (!bitmap_bh)
3904 				goto make_io;
3905 
3906 			/*
3907 			 * If the inode bitmap isn't in cache then the
3908 			 * optimisation may end up performing two reads instead
3909 			 * of one, so skip it.
3910 			 */
3911 			if (!buffer_uptodate(bitmap_bh)) {
3912 				brelse(bitmap_bh);
3913 				goto make_io;
3914 			}
3915 			for (i = start; i < start + inodes_per_block; i++) {
3916 				if (i == inode_offset)
3917 					continue;
3918 				if (ext4_test_bit(i, bitmap_bh->b_data))
3919 					break;
3920 			}
3921 			brelse(bitmap_bh);
3922 			if (i == start + inodes_per_block) {
3923 				/* all other inodes are free, so skip I/O */
3924 				memset(bh->b_data, 0, bh->b_size);
3925 				set_buffer_uptodate(bh);
3926 				unlock_buffer(bh);
3927 				goto has_buffer;
3928 			}
3929 		}
3930 
3931 make_io:
3932 		/*
3933 		 * If we need to do any I/O, try to pre-readahead extra
3934 		 * blocks from the inode table.
3935 		 */
3936 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3937 			ext4_fsblk_t b, end, table;
3938 			unsigned num;
3939 
3940 			table = ext4_inode_table(sb, gdp);
3941 			/* Make sure s_inode_readahead_blks is a power of 2 */
3942 			while (EXT4_SB(sb)->s_inode_readahead_blks &
3943 			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
3944 				EXT4_SB(sb)->s_inode_readahead_blks =
3945 				   (EXT4_SB(sb)->s_inode_readahead_blks &
3946 				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
3947 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3948 			if (table > b)
3949 				b = table;
3950 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3951 			num = EXT4_INODES_PER_GROUP(sb);
3952 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3953 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3954 				num -= le16_to_cpu(gdp->bg_itable_unused);
3955 			table += num / inodes_per_block;
3956 			if (end > table)
3957 				end = table;
3958 			while (b <= end)
3959 				sb_breadahead(sb, b++);
3960 		}
3961 
3962 		/*
3963 		 * There are other valid inodes in the buffer, this inode
3964 		 * has in-inode xattrs, or we don't have this inode in memory.
3965 		 * Read the block from disk.
3966 		 */
3967 		get_bh(bh);
3968 		bh->b_end_io = end_buffer_read_sync;
3969 		submit_bh(READ_META, bh);
3970 		wait_on_buffer(bh);
3971 		if (!buffer_uptodate(bh)) {
3972 			ext4_error(sb, __func__,
3973 				   "unable to read inode block - inode=%lu, "
3974 				   "block=%llu", inode->i_ino, block);
3975 			brelse(bh);
3976 			return -EIO;
3977 		}
3978 	}
3979 has_buffer:
3980 	iloc->bh = bh;
3981 	return 0;
3982 }
3983 
3984 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3985 {
3986 	/* We have all inode data except xattrs in memory here. */
3987 	return __ext4_get_inode_loc(inode, iloc,
3988 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3989 }
3990 
3991 void ext4_set_inode_flags(struct inode *inode)
3992 {
3993 	unsigned int flags = EXT4_I(inode)->i_flags;
3994 
3995 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3996 	if (flags & EXT4_SYNC_FL)
3997 		inode->i_flags |= S_SYNC;
3998 	if (flags & EXT4_APPEND_FL)
3999 		inode->i_flags |= S_APPEND;
4000 	if (flags & EXT4_IMMUTABLE_FL)
4001 		inode->i_flags |= S_IMMUTABLE;
4002 	if (flags & EXT4_NOATIME_FL)
4003 		inode->i_flags |= S_NOATIME;
4004 	if (flags & EXT4_DIRSYNC_FL)
4005 		inode->i_flags |= S_DIRSYNC;
4006 }
4007 
4008 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4009 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4010 {
4011 	unsigned int flags = ei->vfs_inode.i_flags;
4012 
4013 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4014 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4015 	if (flags & S_SYNC)
4016 		ei->i_flags |= EXT4_SYNC_FL;
4017 	if (flags & S_APPEND)
4018 		ei->i_flags |= EXT4_APPEND_FL;
4019 	if (flags & S_IMMUTABLE)
4020 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4021 	if (flags & S_NOATIME)
4022 		ei->i_flags |= EXT4_NOATIME_FL;
4023 	if (flags & S_DIRSYNC)
4024 		ei->i_flags |= EXT4_DIRSYNC_FL;
4025 }
4026 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4027 					struct ext4_inode_info *ei)
4028 {
4029 	blkcnt_t i_blocks ;
4030 	struct inode *inode = &(ei->vfs_inode);
4031 	struct super_block *sb = inode->i_sb;
4032 
4033 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4034 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4035 		/* we are using combined 48 bit field */
4036 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4037 					le32_to_cpu(raw_inode->i_blocks_lo);
4038 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4039 			/* i_blocks represent file system block size */
4040 			return i_blocks  << (inode->i_blkbits - 9);
4041 		} else {
4042 			return i_blocks;
4043 		}
4044 	} else {
4045 		return le32_to_cpu(raw_inode->i_blocks_lo);
4046 	}
4047 }
4048 
4049 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4050 {
4051 	struct ext4_iloc iloc;
4052 	struct ext4_inode *raw_inode;
4053 	struct ext4_inode_info *ei;
4054 	struct buffer_head *bh;
4055 	struct inode *inode;
4056 	long ret;
4057 	int block;
4058 
4059 	inode = iget_locked(sb, ino);
4060 	if (!inode)
4061 		return ERR_PTR(-ENOMEM);
4062 	if (!(inode->i_state & I_NEW))
4063 		return inode;
4064 
4065 	ei = EXT4_I(inode);
4066 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4067 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4068 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4069 #endif
4070 
4071 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4072 	if (ret < 0)
4073 		goto bad_inode;
4074 	bh = iloc.bh;
4075 	raw_inode = ext4_raw_inode(&iloc);
4076 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4077 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4078 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4079 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4080 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4081 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4082 	}
4083 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4084 
4085 	ei->i_state = 0;
4086 	ei->i_dir_start_lookup = 0;
4087 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4088 	/* We now have enough fields to check if the inode was active or not.
4089 	 * This is needed because nfsd might try to access dead inodes
4090 	 * the test is that same one that e2fsck uses
4091 	 * NeilBrown 1999oct15
4092 	 */
4093 	if (inode->i_nlink == 0) {
4094 		if (inode->i_mode == 0 ||
4095 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4096 			/* this inode is deleted */
4097 			brelse(bh);
4098 			ret = -ESTALE;
4099 			goto bad_inode;
4100 		}
4101 		/* The only unlinked inodes we let through here have
4102 		 * valid i_mode and are being read by the orphan
4103 		 * recovery code: that's fine, we're about to complete
4104 		 * the process of deleting those. */
4105 	}
4106 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4107 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4108 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4110 	    cpu_to_le32(EXT4_OS_HURD)) {
4111 		ei->i_file_acl |=
4112 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4113 	}
4114 	inode->i_size = ext4_isize(raw_inode);
4115 	ei->i_disksize = inode->i_size;
4116 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4117 	ei->i_block_group = iloc.block_group;
4118 	/*
4119 	 * NOTE! The in-memory inode i_data array is in little-endian order
4120 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4121 	 */
4122 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4123 		ei->i_data[block] = raw_inode->i_block[block];
4124 	INIT_LIST_HEAD(&ei->i_orphan);
4125 
4126 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4127 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4128 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4129 		    EXT4_INODE_SIZE(inode->i_sb)) {
4130 			brelse(bh);
4131 			ret = -EIO;
4132 			goto bad_inode;
4133 		}
4134 		if (ei->i_extra_isize == 0) {
4135 			/* The extra space is currently unused. Use it. */
4136 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4137 					    EXT4_GOOD_OLD_INODE_SIZE;
4138 		} else {
4139 			__le32 *magic = (void *)raw_inode +
4140 					EXT4_GOOD_OLD_INODE_SIZE +
4141 					ei->i_extra_isize;
4142 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4143 				 ei->i_state |= EXT4_STATE_XATTR;
4144 		}
4145 	} else
4146 		ei->i_extra_isize = 0;
4147 
4148 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4149 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4150 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4151 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4152 
4153 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4154 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4155 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4156 			inode->i_version |=
4157 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4158 	}
4159 
4160 	if (S_ISREG(inode->i_mode)) {
4161 		inode->i_op = &ext4_file_inode_operations;
4162 		inode->i_fop = &ext4_file_operations;
4163 		ext4_set_aops(inode);
4164 	} else if (S_ISDIR(inode->i_mode)) {
4165 		inode->i_op = &ext4_dir_inode_operations;
4166 		inode->i_fop = &ext4_dir_operations;
4167 	} else if (S_ISLNK(inode->i_mode)) {
4168 		if (ext4_inode_is_fast_symlink(inode)) {
4169 			inode->i_op = &ext4_fast_symlink_inode_operations;
4170 			nd_terminate_link(ei->i_data, inode->i_size,
4171 				sizeof(ei->i_data) - 1);
4172 		} else {
4173 			inode->i_op = &ext4_symlink_inode_operations;
4174 			ext4_set_aops(inode);
4175 		}
4176 	} else {
4177 		inode->i_op = &ext4_special_inode_operations;
4178 		if (raw_inode->i_block[0])
4179 			init_special_inode(inode, inode->i_mode,
4180 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4181 		else
4182 			init_special_inode(inode, inode->i_mode,
4183 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4184 	}
4185 	brelse(iloc.bh);
4186 	ext4_set_inode_flags(inode);
4187 	unlock_new_inode(inode);
4188 	return inode;
4189 
4190 bad_inode:
4191 	iget_failed(inode);
4192 	return ERR_PTR(ret);
4193 }
4194 
4195 static int ext4_inode_blocks_set(handle_t *handle,
4196 				struct ext4_inode *raw_inode,
4197 				struct ext4_inode_info *ei)
4198 {
4199 	struct inode *inode = &(ei->vfs_inode);
4200 	u64 i_blocks = inode->i_blocks;
4201 	struct super_block *sb = inode->i_sb;
4202 
4203 	if (i_blocks <= ~0U) {
4204 		/*
4205 		 * i_blocks can be represnted in a 32 bit variable
4206 		 * as multiple of 512 bytes
4207 		 */
4208 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209 		raw_inode->i_blocks_high = 0;
4210 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4211 		return 0;
4212 	}
4213 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4214 		return -EFBIG;
4215 
4216 	if (i_blocks <= 0xffffffffffffULL) {
4217 		/*
4218 		 * i_blocks can be represented in a 48 bit variable
4219 		 * as multiple of 512 bytes
4220 		 */
4221 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4222 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4223 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4224 	} else {
4225 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4226 		/* i_block is stored in file system block size */
4227 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4228 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4229 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4230 	}
4231 	return 0;
4232 }
4233 
4234 /*
4235  * Post the struct inode info into an on-disk inode location in the
4236  * buffer-cache.  This gobbles the caller's reference to the
4237  * buffer_head in the inode location struct.
4238  *
4239  * The caller must have write access to iloc->bh.
4240  */
4241 static int ext4_do_update_inode(handle_t *handle,
4242 				struct inode *inode,
4243 				struct ext4_iloc *iloc)
4244 {
4245 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4246 	struct ext4_inode_info *ei = EXT4_I(inode);
4247 	struct buffer_head *bh = iloc->bh;
4248 	int err = 0, rc, block;
4249 
4250 	/* For fields not not tracking in the in-memory inode,
4251 	 * initialise them to zero for new inodes. */
4252 	if (ei->i_state & EXT4_STATE_NEW)
4253 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4254 
4255 	ext4_get_inode_flags(ei);
4256 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4257 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4258 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4259 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4260 /*
4261  * Fix up interoperability with old kernels. Otherwise, old inodes get
4262  * re-used with the upper 16 bits of the uid/gid intact
4263  */
4264 		if (!ei->i_dtime) {
4265 			raw_inode->i_uid_high =
4266 				cpu_to_le16(high_16_bits(inode->i_uid));
4267 			raw_inode->i_gid_high =
4268 				cpu_to_le16(high_16_bits(inode->i_gid));
4269 		} else {
4270 			raw_inode->i_uid_high = 0;
4271 			raw_inode->i_gid_high = 0;
4272 		}
4273 	} else {
4274 		raw_inode->i_uid_low =
4275 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4276 		raw_inode->i_gid_low =
4277 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4278 		raw_inode->i_uid_high = 0;
4279 		raw_inode->i_gid_high = 0;
4280 	}
4281 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4282 
4283 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4284 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4285 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4286 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4287 
4288 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4289 		goto out_brelse;
4290 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4291 	/* clear the migrate flag in the raw_inode */
4292 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4293 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4294 	    cpu_to_le32(EXT4_OS_HURD))
4295 		raw_inode->i_file_acl_high =
4296 			cpu_to_le16(ei->i_file_acl >> 32);
4297 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4298 	ext4_isize_set(raw_inode, ei->i_disksize);
4299 	if (ei->i_disksize > 0x7fffffffULL) {
4300 		struct super_block *sb = inode->i_sb;
4301 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4302 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4303 				EXT4_SB(sb)->s_es->s_rev_level ==
4304 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4305 			/* If this is the first large file
4306 			 * created, add a flag to the superblock.
4307 			 */
4308 			err = ext4_journal_get_write_access(handle,
4309 					EXT4_SB(sb)->s_sbh);
4310 			if (err)
4311 				goto out_brelse;
4312 			ext4_update_dynamic_rev(sb);
4313 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4314 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4315 			sb->s_dirt = 1;
4316 			handle->h_sync = 1;
4317 			err = ext4_journal_dirty_metadata(handle,
4318 					EXT4_SB(sb)->s_sbh);
4319 		}
4320 	}
4321 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4322 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4323 		if (old_valid_dev(inode->i_rdev)) {
4324 			raw_inode->i_block[0] =
4325 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4326 			raw_inode->i_block[1] = 0;
4327 		} else {
4328 			raw_inode->i_block[0] = 0;
4329 			raw_inode->i_block[1] =
4330 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4331 			raw_inode->i_block[2] = 0;
4332 		}
4333 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4334 		raw_inode->i_block[block] = ei->i_data[block];
4335 
4336 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4337 	if (ei->i_extra_isize) {
4338 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4339 			raw_inode->i_version_hi =
4340 			cpu_to_le32(inode->i_version >> 32);
4341 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4342 	}
4343 
4344 
4345 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4346 	rc = ext4_journal_dirty_metadata(handle, bh);
4347 	if (!err)
4348 		err = rc;
4349 	ei->i_state &= ~EXT4_STATE_NEW;
4350 
4351 out_brelse:
4352 	brelse(bh);
4353 	ext4_std_error(inode->i_sb, err);
4354 	return err;
4355 }
4356 
4357 /*
4358  * ext4_write_inode()
4359  *
4360  * We are called from a few places:
4361  *
4362  * - Within generic_file_write() for O_SYNC files.
4363  *   Here, there will be no transaction running. We wait for any running
4364  *   trasnaction to commit.
4365  *
4366  * - Within sys_sync(), kupdate and such.
4367  *   We wait on commit, if tol to.
4368  *
4369  * - Within prune_icache() (PF_MEMALLOC == true)
4370  *   Here we simply return.  We can't afford to block kswapd on the
4371  *   journal commit.
4372  *
4373  * In all cases it is actually safe for us to return without doing anything,
4374  * because the inode has been copied into a raw inode buffer in
4375  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4376  * knfsd.
4377  *
4378  * Note that we are absolutely dependent upon all inode dirtiers doing the
4379  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4380  * which we are interested.
4381  *
4382  * It would be a bug for them to not do this.  The code:
4383  *
4384  *	mark_inode_dirty(inode)
4385  *	stuff();
4386  *	inode->i_size = expr;
4387  *
4388  * is in error because a kswapd-driven write_inode() could occur while
4389  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4390  * will no longer be on the superblock's dirty inode list.
4391  */
4392 int ext4_write_inode(struct inode *inode, int wait)
4393 {
4394 	if (current->flags & PF_MEMALLOC)
4395 		return 0;
4396 
4397 	if (ext4_journal_current_handle()) {
4398 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4399 		dump_stack();
4400 		return -EIO;
4401 	}
4402 
4403 	if (!wait)
4404 		return 0;
4405 
4406 	return ext4_force_commit(inode->i_sb);
4407 }
4408 
4409 /*
4410  * ext4_setattr()
4411  *
4412  * Called from notify_change.
4413  *
4414  * We want to trap VFS attempts to truncate the file as soon as
4415  * possible.  In particular, we want to make sure that when the VFS
4416  * shrinks i_size, we put the inode on the orphan list and modify
4417  * i_disksize immediately, so that during the subsequent flushing of
4418  * dirty pages and freeing of disk blocks, we can guarantee that any
4419  * commit will leave the blocks being flushed in an unused state on
4420  * disk.  (On recovery, the inode will get truncated and the blocks will
4421  * be freed, so we have a strong guarantee that no future commit will
4422  * leave these blocks visible to the user.)
4423  *
4424  * Another thing we have to assure is that if we are in ordered mode
4425  * and inode is still attached to the committing transaction, we must
4426  * we start writeout of all the dirty pages which are being truncated.
4427  * This way we are sure that all the data written in the previous
4428  * transaction are already on disk (truncate waits for pages under
4429  * writeback).
4430  *
4431  * Called with inode->i_mutex down.
4432  */
4433 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4434 {
4435 	struct inode *inode = dentry->d_inode;
4436 	int error, rc = 0;
4437 	const unsigned int ia_valid = attr->ia_valid;
4438 
4439 	error = inode_change_ok(inode, attr);
4440 	if (error)
4441 		return error;
4442 
4443 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4444 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4445 		handle_t *handle;
4446 
4447 		/* (user+group)*(old+new) structure, inode write (sb,
4448 		 * inode block, ? - but truncate inode update has it) */
4449 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4450 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4451 		if (IS_ERR(handle)) {
4452 			error = PTR_ERR(handle);
4453 			goto err_out;
4454 		}
4455 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4456 		if (error) {
4457 			ext4_journal_stop(handle);
4458 			return error;
4459 		}
4460 		/* Update corresponding info in inode so that everything is in
4461 		 * one transaction */
4462 		if (attr->ia_valid & ATTR_UID)
4463 			inode->i_uid = attr->ia_uid;
4464 		if (attr->ia_valid & ATTR_GID)
4465 			inode->i_gid = attr->ia_gid;
4466 		error = ext4_mark_inode_dirty(handle, inode);
4467 		ext4_journal_stop(handle);
4468 	}
4469 
4470 	if (attr->ia_valid & ATTR_SIZE) {
4471 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4472 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4473 
4474 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4475 				error = -EFBIG;
4476 				goto err_out;
4477 			}
4478 		}
4479 	}
4480 
4481 	if (S_ISREG(inode->i_mode) &&
4482 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4483 		handle_t *handle;
4484 
4485 		handle = ext4_journal_start(inode, 3);
4486 		if (IS_ERR(handle)) {
4487 			error = PTR_ERR(handle);
4488 			goto err_out;
4489 		}
4490 
4491 		error = ext4_orphan_add(handle, inode);
4492 		EXT4_I(inode)->i_disksize = attr->ia_size;
4493 		rc = ext4_mark_inode_dirty(handle, inode);
4494 		if (!error)
4495 			error = rc;
4496 		ext4_journal_stop(handle);
4497 
4498 		if (ext4_should_order_data(inode)) {
4499 			error = ext4_begin_ordered_truncate(inode,
4500 							    attr->ia_size);
4501 			if (error) {
4502 				/* Do as much error cleanup as possible */
4503 				handle = ext4_journal_start(inode, 3);
4504 				if (IS_ERR(handle)) {
4505 					ext4_orphan_del(NULL, inode);
4506 					goto err_out;
4507 				}
4508 				ext4_orphan_del(handle, inode);
4509 				ext4_journal_stop(handle);
4510 				goto err_out;
4511 			}
4512 		}
4513 	}
4514 
4515 	rc = inode_setattr(inode, attr);
4516 
4517 	/* If inode_setattr's call to ext4_truncate failed to get a
4518 	 * transaction handle at all, we need to clean up the in-core
4519 	 * orphan list manually. */
4520 	if (inode->i_nlink)
4521 		ext4_orphan_del(NULL, inode);
4522 
4523 	if (!rc && (ia_valid & ATTR_MODE))
4524 		rc = ext4_acl_chmod(inode);
4525 
4526 err_out:
4527 	ext4_std_error(inode->i_sb, error);
4528 	if (!error)
4529 		error = rc;
4530 	return error;
4531 }
4532 
4533 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4534 		 struct kstat *stat)
4535 {
4536 	struct inode *inode;
4537 	unsigned long delalloc_blocks;
4538 
4539 	inode = dentry->d_inode;
4540 	generic_fillattr(inode, stat);
4541 
4542 	/*
4543 	 * We can't update i_blocks if the block allocation is delayed
4544 	 * otherwise in the case of system crash before the real block
4545 	 * allocation is done, we will have i_blocks inconsistent with
4546 	 * on-disk file blocks.
4547 	 * We always keep i_blocks updated together with real
4548 	 * allocation. But to not confuse with user, stat
4549 	 * will return the blocks that include the delayed allocation
4550 	 * blocks for this file.
4551 	 */
4552 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4553 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4554 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4555 
4556 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4557 	return 0;
4558 }
4559 
4560 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4561 				      int chunk)
4562 {
4563 	int indirects;
4564 
4565 	/* if nrblocks are contiguous */
4566 	if (chunk) {
4567 		/*
4568 		 * With N contiguous data blocks, it need at most
4569 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4570 		 * 2 dindirect blocks
4571 		 * 1 tindirect block
4572 		 */
4573 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4574 		return indirects + 3;
4575 	}
4576 	/*
4577 	 * if nrblocks are not contiguous, worse case, each block touch
4578 	 * a indirect block, and each indirect block touch a double indirect
4579 	 * block, plus a triple indirect block
4580 	 */
4581 	indirects = nrblocks * 2 + 1;
4582 	return indirects;
4583 }
4584 
4585 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4586 {
4587 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4588 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4589 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4590 }
4591 
4592 /*
4593  * Account for index blocks, block groups bitmaps and block group
4594  * descriptor blocks if modify datablocks and index blocks
4595  * worse case, the indexs blocks spread over different block groups
4596  *
4597  * If datablocks are discontiguous, they are possible to spread over
4598  * different block groups too. If they are contiugous, with flexbg,
4599  * they could still across block group boundary.
4600  *
4601  * Also account for superblock, inode, quota and xattr blocks
4602  */
4603 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4604 {
4605 	int groups, gdpblocks;
4606 	int idxblocks;
4607 	int ret = 0;
4608 
4609 	/*
4610 	 * How many index blocks need to touch to modify nrblocks?
4611 	 * The "Chunk" flag indicating whether the nrblocks is
4612 	 * physically contiguous on disk
4613 	 *
4614 	 * For Direct IO and fallocate, they calls get_block to allocate
4615 	 * one single extent at a time, so they could set the "Chunk" flag
4616 	 */
4617 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4618 
4619 	ret = idxblocks;
4620 
4621 	/*
4622 	 * Now let's see how many group bitmaps and group descriptors need
4623 	 * to account
4624 	 */
4625 	groups = idxblocks;
4626 	if (chunk)
4627 		groups += 1;
4628 	else
4629 		groups += nrblocks;
4630 
4631 	gdpblocks = groups;
4632 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4633 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4634 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4635 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4636 
4637 	/* bitmaps and block group descriptor blocks */
4638 	ret += groups + gdpblocks;
4639 
4640 	/* Blocks for super block, inode, quota and xattr blocks */
4641 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4642 
4643 	return ret;
4644 }
4645 
4646 /*
4647  * Calulate the total number of credits to reserve to fit
4648  * the modification of a single pages into a single transaction,
4649  * which may include multiple chunks of block allocations.
4650  *
4651  * This could be called via ext4_write_begin()
4652  *
4653  * We need to consider the worse case, when
4654  * one new block per extent.
4655  */
4656 int ext4_writepage_trans_blocks(struct inode *inode)
4657 {
4658 	int bpp = ext4_journal_blocks_per_page(inode);
4659 	int ret;
4660 
4661 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4662 
4663 	/* Account for data blocks for journalled mode */
4664 	if (ext4_should_journal_data(inode))
4665 		ret += bpp;
4666 	return ret;
4667 }
4668 
4669 /*
4670  * Calculate the journal credits for a chunk of data modification.
4671  *
4672  * This is called from DIO, fallocate or whoever calling
4673  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4674  *
4675  * journal buffers for data blocks are not included here, as DIO
4676  * and fallocate do no need to journal data buffers.
4677  */
4678 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4679 {
4680 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4681 }
4682 
4683 /*
4684  * The caller must have previously called ext4_reserve_inode_write().
4685  * Give this, we know that the caller already has write access to iloc->bh.
4686  */
4687 int ext4_mark_iloc_dirty(handle_t *handle,
4688 		struct inode *inode, struct ext4_iloc *iloc)
4689 {
4690 	int err = 0;
4691 
4692 	if (test_opt(inode->i_sb, I_VERSION))
4693 		inode_inc_iversion(inode);
4694 
4695 	/* the do_update_inode consumes one bh->b_count */
4696 	get_bh(iloc->bh);
4697 
4698 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4699 	err = ext4_do_update_inode(handle, inode, iloc);
4700 	put_bh(iloc->bh);
4701 	return err;
4702 }
4703 
4704 /*
4705  * On success, We end up with an outstanding reference count against
4706  * iloc->bh.  This _must_ be cleaned up later.
4707  */
4708 
4709 int
4710 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4711 			 struct ext4_iloc *iloc)
4712 {
4713 	int err = 0;
4714 	if (handle) {
4715 		err = ext4_get_inode_loc(inode, iloc);
4716 		if (!err) {
4717 			BUFFER_TRACE(iloc->bh, "get_write_access");
4718 			err = ext4_journal_get_write_access(handle, iloc->bh);
4719 			if (err) {
4720 				brelse(iloc->bh);
4721 				iloc->bh = NULL;
4722 			}
4723 		}
4724 	}
4725 	ext4_std_error(inode->i_sb, err);
4726 	return err;
4727 }
4728 
4729 /*
4730  * Expand an inode by new_extra_isize bytes.
4731  * Returns 0 on success or negative error number on failure.
4732  */
4733 static int ext4_expand_extra_isize(struct inode *inode,
4734 				   unsigned int new_extra_isize,
4735 				   struct ext4_iloc iloc,
4736 				   handle_t *handle)
4737 {
4738 	struct ext4_inode *raw_inode;
4739 	struct ext4_xattr_ibody_header *header;
4740 	struct ext4_xattr_entry *entry;
4741 
4742 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4743 		return 0;
4744 
4745 	raw_inode = ext4_raw_inode(&iloc);
4746 
4747 	header = IHDR(inode, raw_inode);
4748 	entry = IFIRST(header);
4749 
4750 	/* No extended attributes present */
4751 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4752 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4753 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4754 			new_extra_isize);
4755 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4756 		return 0;
4757 	}
4758 
4759 	/* try to expand with EAs present */
4760 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4761 					  raw_inode, handle);
4762 }
4763 
4764 /*
4765  * What we do here is to mark the in-core inode as clean with respect to inode
4766  * dirtiness (it may still be data-dirty).
4767  * This means that the in-core inode may be reaped by prune_icache
4768  * without having to perform any I/O.  This is a very good thing,
4769  * because *any* task may call prune_icache - even ones which
4770  * have a transaction open against a different journal.
4771  *
4772  * Is this cheating?  Not really.  Sure, we haven't written the
4773  * inode out, but prune_icache isn't a user-visible syncing function.
4774  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4775  * we start and wait on commits.
4776  *
4777  * Is this efficient/effective?  Well, we're being nice to the system
4778  * by cleaning up our inodes proactively so they can be reaped
4779  * without I/O.  But we are potentially leaving up to five seconds'
4780  * worth of inodes floating about which prune_icache wants us to
4781  * write out.  One way to fix that would be to get prune_icache()
4782  * to do a write_super() to free up some memory.  It has the desired
4783  * effect.
4784  */
4785 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786 {
4787 	struct ext4_iloc iloc;
4788 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789 	static unsigned int mnt_count;
4790 	int err, ret;
4791 
4792 	might_sleep();
4793 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4794 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4795 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4796 		/*
4797 		 * We need extra buffer credits since we may write into EA block
4798 		 * with this same handle. If journal_extend fails, then it will
4799 		 * only result in a minor loss of functionality for that inode.
4800 		 * If this is felt to be critical, then e2fsck should be run to
4801 		 * force a large enough s_min_extra_isize.
4802 		 */
4803 		if ((jbd2_journal_extend(handle,
4804 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4805 			ret = ext4_expand_extra_isize(inode,
4806 						      sbi->s_want_extra_isize,
4807 						      iloc, handle);
4808 			if (ret) {
4809 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4810 				if (mnt_count !=
4811 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4812 					ext4_warning(inode->i_sb, __func__,
4813 					"Unable to expand inode %lu. Delete"
4814 					" some EAs or run e2fsck.",
4815 					inode->i_ino);
4816 					mnt_count =
4817 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4818 				}
4819 			}
4820 		}
4821 	}
4822 	if (!err)
4823 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4824 	return err;
4825 }
4826 
4827 /*
4828  * ext4_dirty_inode() is called from __mark_inode_dirty()
4829  *
4830  * We're really interested in the case where a file is being extended.
4831  * i_size has been changed by generic_commit_write() and we thus need
4832  * to include the updated inode in the current transaction.
4833  *
4834  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4835  * are allocated to the file.
4836  *
4837  * If the inode is marked synchronous, we don't honour that here - doing
4838  * so would cause a commit on atime updates, which we don't bother doing.
4839  * We handle synchronous inodes at the highest possible level.
4840  */
4841 void ext4_dirty_inode(struct inode *inode)
4842 {
4843 	handle_t *current_handle = ext4_journal_current_handle();
4844 	handle_t *handle;
4845 
4846 	handle = ext4_journal_start(inode, 2);
4847 	if (IS_ERR(handle))
4848 		goto out;
4849 	if (current_handle &&
4850 		current_handle->h_transaction != handle->h_transaction) {
4851 		/* This task has a transaction open against a different fs */
4852 		printk(KERN_EMERG "%s: transactions do not match!\n",
4853 		       __func__);
4854 	} else {
4855 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4856 				current_handle);
4857 		ext4_mark_inode_dirty(handle, inode);
4858 	}
4859 	ext4_journal_stop(handle);
4860 out:
4861 	return;
4862 }
4863 
4864 #if 0
4865 /*
4866  * Bind an inode's backing buffer_head into this transaction, to prevent
4867  * it from being flushed to disk early.  Unlike
4868  * ext4_reserve_inode_write, this leaves behind no bh reference and
4869  * returns no iloc structure, so the caller needs to repeat the iloc
4870  * lookup to mark the inode dirty later.
4871  */
4872 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4873 {
4874 	struct ext4_iloc iloc;
4875 
4876 	int err = 0;
4877 	if (handle) {
4878 		err = ext4_get_inode_loc(inode, &iloc);
4879 		if (!err) {
4880 			BUFFER_TRACE(iloc.bh, "get_write_access");
4881 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4882 			if (!err)
4883 				err = ext4_journal_dirty_metadata(handle,
4884 								  iloc.bh);
4885 			brelse(iloc.bh);
4886 		}
4887 	}
4888 	ext4_std_error(inode->i_sb, err);
4889 	return err;
4890 }
4891 #endif
4892 
4893 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4894 {
4895 	journal_t *journal;
4896 	handle_t *handle;
4897 	int err;
4898 
4899 	/*
4900 	 * We have to be very careful here: changing a data block's
4901 	 * journaling status dynamically is dangerous.  If we write a
4902 	 * data block to the journal, change the status and then delete
4903 	 * that block, we risk forgetting to revoke the old log record
4904 	 * from the journal and so a subsequent replay can corrupt data.
4905 	 * So, first we make sure that the journal is empty and that
4906 	 * nobody is changing anything.
4907 	 */
4908 
4909 	journal = EXT4_JOURNAL(inode);
4910 	if (is_journal_aborted(journal))
4911 		return -EROFS;
4912 
4913 	jbd2_journal_lock_updates(journal);
4914 	jbd2_journal_flush(journal);
4915 
4916 	/*
4917 	 * OK, there are no updates running now, and all cached data is
4918 	 * synced to disk.  We are now in a completely consistent state
4919 	 * which doesn't have anything in the journal, and we know that
4920 	 * no filesystem updates are running, so it is safe to modify
4921 	 * the inode's in-core data-journaling state flag now.
4922 	 */
4923 
4924 	if (val)
4925 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4926 	else
4927 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4928 	ext4_set_aops(inode);
4929 
4930 	jbd2_journal_unlock_updates(journal);
4931 
4932 	/* Finally we can mark the inode as dirty. */
4933 
4934 	handle = ext4_journal_start(inode, 1);
4935 	if (IS_ERR(handle))
4936 		return PTR_ERR(handle);
4937 
4938 	err = ext4_mark_inode_dirty(handle, inode);
4939 	handle->h_sync = 1;
4940 	ext4_journal_stop(handle);
4941 	ext4_std_error(inode->i_sb, err);
4942 
4943 	return err;
4944 }
4945 
4946 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4947 {
4948 	return !buffer_mapped(bh);
4949 }
4950 
4951 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4952 {
4953 	loff_t size;
4954 	unsigned long len;
4955 	int ret = -EINVAL;
4956 	void *fsdata;
4957 	struct file *file = vma->vm_file;
4958 	struct inode *inode = file->f_path.dentry->d_inode;
4959 	struct address_space *mapping = inode->i_mapping;
4960 
4961 	/*
4962 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4963 	 * get i_mutex because we are already holding mmap_sem.
4964 	 */
4965 	down_read(&inode->i_alloc_sem);
4966 	size = i_size_read(inode);
4967 	if (page->mapping != mapping || size <= page_offset(page)
4968 	    || !PageUptodate(page)) {
4969 		/* page got truncated from under us? */
4970 		goto out_unlock;
4971 	}
4972 	ret = 0;
4973 	if (PageMappedToDisk(page))
4974 		goto out_unlock;
4975 
4976 	if (page->index == size >> PAGE_CACHE_SHIFT)
4977 		len = size & ~PAGE_CACHE_MASK;
4978 	else
4979 		len = PAGE_CACHE_SIZE;
4980 
4981 	if (page_has_buffers(page)) {
4982 		/* return if we have all the buffers mapped */
4983 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4984 				       ext4_bh_unmapped))
4985 			goto out_unlock;
4986 	}
4987 	/*
4988 	 * OK, we need to fill the hole... Do write_begin write_end
4989 	 * to do block allocation/reservation.We are not holding
4990 	 * inode.i__mutex here. That allow * parallel write_begin,
4991 	 * write_end call. lock_page prevent this from happening
4992 	 * on the same page though
4993 	 */
4994 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4995 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4996 	if (ret < 0)
4997 		goto out_unlock;
4998 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4999 			len, len, page, fsdata);
5000 	if (ret < 0)
5001 		goto out_unlock;
5002 	ret = 0;
5003 out_unlock:
5004 	up_read(&inode->i_alloc_sem);
5005 	return ret;
5006 }
5007