xref: /linux/fs/ext4/inode.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	return S_ISLNK(inode->i_mode) && inode->i_size &&
152 	       (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154 
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 				 int nblocks)
162 {
163 	int ret;
164 
165 	/*
166 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167 	 * moment, get_block can be called only for blocks inside i_size since
168 	 * page cache has been already dropped and writes are blocked by
169 	 * i_mutex. So we can safely drop the i_data_sem here.
170 	 */
171 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	up_write(&EXT4_I(inode)->i_data_sem);
174 	ret = ext4_journal_restart(handle, nblocks);
175 	down_write(&EXT4_I(inode)->i_data_sem);
176 	ext4_discard_preallocations(inode);
177 
178 	return ret;
179 }
180 
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 	handle_t *handle;
187 	int err;
188 	int extra_credits = 3;
189 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
190 
191 	trace_ext4_evict_inode(inode);
192 
193 	if (inode->i_nlink) {
194 		/*
195 		 * When journalling data dirty buffers are tracked only in the
196 		 * journal. So although mm thinks everything is clean and
197 		 * ready for reaping the inode might still have some pages to
198 		 * write in the running transaction or waiting to be
199 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 		 * (via truncate_inode_pages()) to discard these buffers can
201 		 * cause data loss. Also even if we did not discard these
202 		 * buffers, we would have no way to find them after the inode
203 		 * is reaped and thus user could see stale data if he tries to
204 		 * read them before the transaction is checkpointed. So be
205 		 * careful and force everything to disk here... We use
206 		 * ei->i_datasync_tid to store the newest transaction
207 		 * containing inode's data.
208 		 *
209 		 * Note that directories do not have this problem because they
210 		 * don't use page cache.
211 		 */
212 		if (inode->i_ino != EXT4_JOURNAL_INO &&
213 		    ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 		    inode->i_data.nrpages) {
216 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218 
219 			jbd2_complete_transaction(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages_final(&inode->i_data);
223 
224 		goto no_delete;
225 	}
226 
227 	if (is_bad_inode(inode))
228 		goto no_delete;
229 	dquot_initialize(inode);
230 
231 	if (ext4_should_order_data(inode))
232 		ext4_begin_ordered_truncate(inode, 0);
233 	truncate_inode_pages_final(&inode->i_data);
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 
241 	if (!IS_NOQUOTA(inode))
242 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243 
244 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 				 ext4_blocks_for_truncate(inode)+extra_credits);
246 	if (IS_ERR(handle)) {
247 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 		/*
249 		 * If we're going to skip the normal cleanup, we still need to
250 		 * make sure that the in-core orphan linked list is properly
251 		 * cleaned up.
252 		 */
253 		ext4_orphan_del(NULL, inode);
254 		sb_end_intwrite(inode->i_sb);
255 		goto no_delete;
256 	}
257 
258 	if (IS_SYNC(inode))
259 		ext4_handle_sync(handle);
260 
261 	/*
262 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 	 * special handling of symlinks here because i_size is used to
264 	 * determine whether ext4_inode_info->i_data contains symlink data or
265 	 * block mappings. Setting i_size to 0 will remove its fast symlink
266 	 * status. Erase i_data so that it becomes a valid empty block map.
267 	 */
268 	if (ext4_inode_is_fast_symlink(inode))
269 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270 	inode->i_size = 0;
271 	err = ext4_mark_inode_dirty(handle, inode);
272 	if (err) {
273 		ext4_warning(inode->i_sb,
274 			     "couldn't mark inode dirty (err %d)", err);
275 		goto stop_handle;
276 	}
277 	if (inode->i_blocks) {
278 		err = ext4_truncate(inode);
279 		if (err) {
280 			ext4_error(inode->i_sb,
281 				   "couldn't truncate inode %lu (err %d)",
282 				   inode->i_ino, err);
283 			goto stop_handle;
284 		}
285 	}
286 
287 	/* Remove xattr references. */
288 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 				      extra_credits);
290 	if (err) {
291 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293 		ext4_journal_stop(handle);
294 		ext4_orphan_del(NULL, inode);
295 		sb_end_intwrite(inode->i_sb);
296 		ext4_xattr_inode_array_free(ea_inode_array);
297 		goto no_delete;
298 	}
299 
300 	/*
301 	 * Kill off the orphan record which ext4_truncate created.
302 	 * AKPM: I think this can be inside the above `if'.
303 	 * Note that ext4_orphan_del() has to be able to cope with the
304 	 * deletion of a non-existent orphan - this is because we don't
305 	 * know if ext4_truncate() actually created an orphan record.
306 	 * (Well, we could do this if we need to, but heck - it works)
307 	 */
308 	ext4_orphan_del(handle, inode);
309 	EXT4_I(inode)->i_dtime	= get_seconds();
310 
311 	/*
312 	 * One subtle ordering requirement: if anything has gone wrong
313 	 * (transaction abort, IO errors, whatever), then we can still
314 	 * do these next steps (the fs will already have been marked as
315 	 * having errors), but we can't free the inode if the mark_dirty
316 	 * fails.
317 	 */
318 	if (ext4_mark_inode_dirty(handle, inode))
319 		/* If that failed, just do the required in-core inode clear. */
320 		ext4_clear_inode(inode);
321 	else
322 		ext4_free_inode(handle, inode);
323 	ext4_journal_stop(handle);
324 	sb_end_intwrite(inode->i_sb);
325 	ext4_xattr_inode_array_free(ea_inode_array);
326 	return;
327 no_delete:
328 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
329 }
330 
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334 	return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337 
338 /*
339  * Called with i_data_sem down, which is important since we can call
340  * ext4_discard_preallocations() from here.
341  */
342 void ext4_da_update_reserve_space(struct inode *inode,
343 					int used, int quota_claim)
344 {
345 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 	struct ext4_inode_info *ei = EXT4_I(inode);
347 
348 	spin_lock(&ei->i_block_reservation_lock);
349 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 	if (unlikely(used > ei->i_reserved_data_blocks)) {
351 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 			 "with only %d reserved data blocks",
353 			 __func__, inode->i_ino, used,
354 			 ei->i_reserved_data_blocks);
355 		WARN_ON(1);
356 		used = ei->i_reserved_data_blocks;
357 	}
358 
359 	/* Update per-inode reservations */
360 	ei->i_reserved_data_blocks -= used;
361 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362 
363 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364 
365 	/* Update quota subsystem for data blocks */
366 	if (quota_claim)
367 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
368 	else {
369 		/*
370 		 * We did fallocate with an offset that is already delayed
371 		 * allocated. So on delayed allocated writeback we should
372 		 * not re-claim the quota for fallocated blocks.
373 		 */
374 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375 	}
376 
377 	/*
378 	 * If we have done all the pending block allocations and if
379 	 * there aren't any writers on the inode, we can discard the
380 	 * inode's preallocations.
381 	 */
382 	if ((ei->i_reserved_data_blocks == 0) &&
383 	    (atomic_read(&inode->i_writecount) == 0))
384 		ext4_discard_preallocations(inode);
385 }
386 
387 static int __check_block_validity(struct inode *inode, const char *func,
388 				unsigned int line,
389 				struct ext4_map_blocks *map)
390 {
391 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 				   map->m_len)) {
393 		ext4_error_inode(inode, func, line, map->m_pblk,
394 				 "lblock %lu mapped to illegal pblock "
395 				 "(length %d)", (unsigned long) map->m_lblk,
396 				 map->m_len);
397 		return -EFSCORRUPTED;
398 	}
399 	return 0;
400 }
401 
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 		       ext4_lblk_t len)
404 {
405 	int ret;
406 
407 	if (ext4_encrypted_inode(inode))
408 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
409 
410 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 	if (ret > 0)
412 		ret = 0;
413 
414 	return ret;
415 }
416 
417 #define check_block_validity(inode, map)	\
418 	__check_block_validity((inode), __func__, __LINE__, (map))
419 
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 				       struct inode *inode,
423 				       struct ext4_map_blocks *es_map,
424 				       struct ext4_map_blocks *map,
425 				       int flags)
426 {
427 	int retval;
428 
429 	map->m_flags = 0;
430 	/*
431 	 * There is a race window that the result is not the same.
432 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
433 	 * is that we lookup a block mapping in extent status tree with
434 	 * out taking i_data_sem.  So at the time the unwritten extent
435 	 * could be converted.
436 	 */
437 	down_read(&EXT4_I(inode)->i_data_sem);
438 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 					     EXT4_GET_BLOCKS_KEEP_SIZE);
441 	} else {
442 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 					     EXT4_GET_BLOCKS_KEEP_SIZE);
444 	}
445 	up_read((&EXT4_I(inode)->i_data_sem));
446 
447 	/*
448 	 * We don't check m_len because extent will be collpased in status
449 	 * tree.  So the m_len might not equal.
450 	 */
451 	if (es_map->m_lblk != map->m_lblk ||
452 	    es_map->m_flags != map->m_flags ||
453 	    es_map->m_pblk != map->m_pblk) {
454 		printk("ES cache assertion failed for inode: %lu "
455 		       "es_cached ex [%d/%d/%llu/%x] != "
456 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
458 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 		       map->m_len, map->m_pblk, map->m_flags,
460 		       retval, flags);
461 	}
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464 
465 /*
466  * The ext4_map_blocks() function tries to look up the requested blocks,
467  * and returns if the blocks are already mapped.
468  *
469  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470  * and store the allocated blocks in the result buffer head and mark it
471  * mapped.
472  *
473  * If file type is extents based, it will call ext4_ext_map_blocks(),
474  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475  * based files
476  *
477  * On success, it returns the number of blocks being mapped or allocated.  if
478  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480  *
481  * It returns 0 if plain look up failed (blocks have not been allocated), in
482  * that case, @map is returned as unmapped but we still do fill map->m_len to
483  * indicate the length of a hole starting at map->m_lblk.
484  *
485  * It returns the error in case of allocation failure.
486  */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 		    struct ext4_map_blocks *map, int flags)
489 {
490 	struct extent_status es;
491 	int retval;
492 	int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494 	struct ext4_map_blocks orig_map;
495 
496 	memcpy(&orig_map, map, sizeof(*map));
497 #endif
498 
499 	map->m_flags = 0;
500 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 		  (unsigned long) map->m_lblk);
503 
504 	/*
505 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 	 */
507 	if (unlikely(map->m_len > INT_MAX))
508 		map->m_len = INT_MAX;
509 
510 	/* We can handle the block number less than EXT_MAX_BLOCKS */
511 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 		return -EFSCORRUPTED;
513 
514 	/* Lookup extent status tree firstly */
515 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 			map->m_pblk = ext4_es_pblock(&es) +
518 					map->m_lblk - es.es_lblk;
519 			map->m_flags |= ext4_es_is_written(&es) ?
520 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 			map->m_pblk = 0;
527 			retval = es.es_len - (map->m_lblk - es.es_lblk);
528 			if (retval > map->m_len)
529 				retval = map->m_len;
530 			map->m_len = retval;
531 			retval = 0;
532 		} else {
533 			BUG_ON(1);
534 		}
535 #ifdef ES_AGGRESSIVE_TEST
536 		ext4_map_blocks_es_recheck(handle, inode, map,
537 					   &orig_map, flags);
538 #endif
539 		goto found;
540 	}
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	down_read(&EXT4_I(inode)->i_data_sem);
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		unsigned int status;
556 
557 		if (unlikely(retval != map->m_len)) {
558 			ext4_warning(inode->i_sb,
559 				     "ES len assertion failed for inode "
560 				     "%lu: retval %d != map->m_len %d",
561 				     inode->i_ino, retval, map->m_len);
562 			WARN_ON(1);
563 		}
564 
565 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 		    !(status & EXTENT_STATUS_WRITTEN) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	up_read((&EXT4_I(inode)->i_data_sem));
578 
579 found:
580 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 		ret = check_block_validity(inode, map);
582 		if (ret != 0)
583 			return ret;
584 	}
585 
586 	/* If it is only a block(s) look up */
587 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 		return retval;
589 
590 	/*
591 	 * Returns if the blocks have already allocated
592 	 *
593 	 * Note that if blocks have been preallocated
594 	 * ext4_ext_get_block() returns the create = 0
595 	 * with buffer head unmapped.
596 	 */
597 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 		/*
599 		 * If we need to convert extent to unwritten
600 		 * we continue and do the actual work in
601 		 * ext4_ext_map_blocks()
602 		 */
603 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 			return retval;
605 
606 	/*
607 	 * Here we clear m_flags because after allocating an new extent,
608 	 * it will be set again.
609 	 */
610 	map->m_flags &= ~EXT4_MAP_FLAGS;
611 
612 	/*
613 	 * New blocks allocate and/or writing to unwritten extent
614 	 * will possibly result in updating i_data, so we take
615 	 * the write lock of i_data_sem, and call get_block()
616 	 * with create == 1 flag.
617 	 */
618 	down_write(&EXT4_I(inode)->i_data_sem);
619 
620 	/*
621 	 * We need to check for EXT4 here because migrate
622 	 * could have changed the inode type in between
623 	 */
624 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 	} else {
627 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
628 
629 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 			/*
631 			 * We allocated new blocks which will result in
632 			 * i_data's format changing.  Force the migrate
633 			 * to fail by clearing migrate flags
634 			 */
635 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 		}
637 
638 		/*
639 		 * Update reserved blocks/metadata blocks after successful
640 		 * block allocation which had been deferred till now. We don't
641 		 * support fallocate for non extent files. So we can update
642 		 * reserve space here.
643 		 */
644 		if ((retval > 0) &&
645 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 			ext4_da_update_reserve_space(inode, retval, 1);
647 	}
648 
649 	if (retval > 0) {
650 		unsigned int status;
651 
652 		if (unlikely(retval != map->m_len)) {
653 			ext4_warning(inode->i_sb,
654 				     "ES len assertion failed for inode "
655 				     "%lu: retval %d != map->m_len %d",
656 				     inode->i_ino, retval, map->m_len);
657 			WARN_ON(1);
658 		}
659 
660 		/*
661 		 * We have to zeroout blocks before inserting them into extent
662 		 * status tree. Otherwise someone could look them up there and
663 		 * use them before they are really zeroed. We also have to
664 		 * unmap metadata before zeroing as otherwise writeback can
665 		 * overwrite zeros with stale data from block device.
666 		 */
667 		if (flags & EXT4_GET_BLOCKS_ZERO &&
668 		    map->m_flags & EXT4_MAP_MAPPED &&
669 		    map->m_flags & EXT4_MAP_NEW) {
670 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 					   map->m_len);
672 			ret = ext4_issue_zeroout(inode, map->m_lblk,
673 						 map->m_pblk, map->m_len);
674 			if (ret) {
675 				retval = ret;
676 				goto out_sem;
677 			}
678 		}
679 
680 		/*
681 		 * If the extent has been zeroed out, we don't need to update
682 		 * extent status tree.
683 		 */
684 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 			if (ext4_es_is_written(&es))
687 				goto out_sem;
688 		}
689 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 		    !(status & EXTENT_STATUS_WRITTEN) &&
693 		    ext4_find_delalloc_range(inode, map->m_lblk,
694 					     map->m_lblk + map->m_len - 1))
695 			status |= EXTENT_STATUS_DELAYED;
696 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 					    map->m_pblk, status);
698 		if (ret < 0) {
699 			retval = ret;
700 			goto out_sem;
701 		}
702 	}
703 
704 out_sem:
705 	up_write((&EXT4_I(inode)->i_data_sem));
706 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 		ret = check_block_validity(inode, map);
708 		if (ret != 0)
709 			return ret;
710 
711 		/*
712 		 * Inodes with freshly allocated blocks where contents will be
713 		 * visible after transaction commit must be on transaction's
714 		 * ordered data list.
715 		 */
716 		if (map->m_flags & EXT4_MAP_NEW &&
717 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 		    !ext4_is_quota_file(inode) &&
720 		    ext4_should_order_data(inode)) {
721 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 				ret = ext4_jbd2_inode_add_wait(handle, inode);
723 			else
724 				ret = ext4_jbd2_inode_add_write(handle, inode);
725 			if (ret)
726 				return ret;
727 		}
728 	}
729 	return retval;
730 }
731 
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 	unsigned long old_state;
739 	unsigned long new_state;
740 
741 	flags &= EXT4_MAP_FLAGS;
742 
743 	/* Dummy buffer_head? Set non-atomically. */
744 	if (!bh->b_page) {
745 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 		return;
747 	}
748 	/*
749 	 * Someone else may be modifying b_state. Be careful! This is ugly but
750 	 * once we get rid of using bh as a container for mapping information
751 	 * to pass to / from get_block functions, this can go away.
752 	 */
753 	do {
754 		old_state = READ_ONCE(bh->b_state);
755 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 	} while (unlikely(
757 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	struct ext4_map_blocks map;
764 	int ret = 0;
765 
766 	if (ext4_has_inline_data(inode))
767 		return -ERANGE;
768 
769 	map.m_lblk = iblock;
770 	map.m_len = bh->b_size >> inode->i_blkbits;
771 
772 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 			      flags);
774 	if (ret > 0) {
775 		map_bh(bh, inode->i_sb, map.m_pblk);
776 		ext4_update_bh_state(bh, map.m_flags);
777 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 		ret = 0;
779 	} else if (ret == 0) {
780 		/* hole case, need to fill in bh->b_size */
781 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 	}
783 	return ret;
784 }
785 
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 		   struct buffer_head *bh, int create)
788 {
789 	return _ext4_get_block(inode, iblock, bh,
790 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792 
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 			     struct buffer_head *bh_result, int create)
800 {
801 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 		   inode->i_ino, create);
803 	return _ext4_get_block(inode, iblock, bh_result,
804 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806 
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809 
810 /*
811  * Get blocks function for the cases that need to start a transaction -
812  * generally difference cases of direct IO and DAX IO. It also handles retries
813  * in case of ENOSPC.
814  */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 				struct buffer_head *bh_result, int flags)
817 {
818 	int dio_credits;
819 	handle_t *handle;
820 	int retries = 0;
821 	int ret;
822 
823 	/* Trim mapping request to maximum we can map at once for DIO */
824 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 	dio_credits = ext4_chunk_trans_blocks(inode,
827 				      bh_result->b_size >> inode->i_blkbits);
828 retry:
829 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 	if (IS_ERR(handle))
831 		return PTR_ERR(handle);
832 
833 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 	ext4_journal_stop(handle);
835 
836 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 		goto retry;
838 	return ret;
839 }
840 
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 		       struct buffer_head *bh, int create)
844 {
845 	/* We don't expect handle for direct IO */
846 	WARN_ON_ONCE(ext4_journal_current_handle());
847 
848 	if (!create)
849 		return _ext4_get_block(inode, iblock, bh, 0);
850 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852 
853 /*
854  * Get block function for AIO DIO writes when we create unwritten extent if
855  * blocks are not allocated yet. The extent will be converted to written
856  * after IO is complete.
857  */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 		sector_t iblock, struct buffer_head *bh_result,	int create)
860 {
861 	int ret;
862 
863 	/* We don't expect handle for direct IO */
864 	WARN_ON_ONCE(ext4_journal_current_handle());
865 
866 	ret = ext4_get_block_trans(inode, iblock, bh_result,
867 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
868 
869 	/*
870 	 * When doing DIO using unwritten extents, we need io_end to convert
871 	 * unwritten extents to written on IO completion. We allocate io_end
872 	 * once we spot unwritten extent and store it in b_private. Generic
873 	 * DIO code keeps b_private set and furthermore passes the value to
874 	 * our completion callback in 'private' argument.
875 	 */
876 	if (!ret && buffer_unwritten(bh_result)) {
877 		if (!bh_result->b_private) {
878 			ext4_io_end_t *io_end;
879 
880 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 			if (!io_end)
882 				return -ENOMEM;
883 			bh_result->b_private = io_end;
884 			ext4_set_io_unwritten_flag(inode, io_end);
885 		}
886 		set_buffer_defer_completion(bh_result);
887 	}
888 
889 	return ret;
890 }
891 
892 /*
893  * Get block function for non-AIO DIO writes when we create unwritten extent if
894  * blocks are not allocated yet. The extent will be converted to written
895  * after IO is complete by ext4_direct_IO_write().
896  */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 		sector_t iblock, struct buffer_head *bh_result,	int create)
899 {
900 	int ret;
901 
902 	/* We don't expect handle for direct IO */
903 	WARN_ON_ONCE(ext4_journal_current_handle());
904 
905 	ret = ext4_get_block_trans(inode, iblock, bh_result,
906 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
907 
908 	/*
909 	 * Mark inode as having pending DIO writes to unwritten extents.
910 	 * ext4_direct_IO_write() checks this flag and converts extents to
911 	 * written.
912 	 */
913 	if (!ret && buffer_unwritten(bh_result))
914 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915 
916 	return ret;
917 }
918 
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 		   struct buffer_head *bh_result, int create)
921 {
922 	int ret;
923 
924 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 		   inode->i_ino, create);
926 	/* We don't expect handle for direct IO */
927 	WARN_ON_ONCE(ext4_journal_current_handle());
928 
929 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 	/*
931 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 	 * that.
933 	 */
934 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935 
936 	return ret;
937 }
938 
939 
940 /*
941  * `handle' can be NULL if create is zero
942  */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 				ext4_lblk_t block, int map_flags)
945 {
946 	struct ext4_map_blocks map;
947 	struct buffer_head *bh;
948 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949 	int err;
950 
951 	J_ASSERT(handle != NULL || create == 0);
952 
953 	map.m_lblk = block;
954 	map.m_len = 1;
955 	err = ext4_map_blocks(handle, inode, &map, map_flags);
956 
957 	if (err == 0)
958 		return create ? ERR_PTR(-ENOSPC) : NULL;
959 	if (err < 0)
960 		return ERR_PTR(err);
961 
962 	bh = sb_getblk(inode->i_sb, map.m_pblk);
963 	if (unlikely(!bh))
964 		return ERR_PTR(-ENOMEM);
965 	if (map.m_flags & EXT4_MAP_NEW) {
966 		J_ASSERT(create != 0);
967 		J_ASSERT(handle != NULL);
968 
969 		/*
970 		 * Now that we do not always journal data, we should
971 		 * keep in mind whether this should always journal the
972 		 * new buffer as metadata.  For now, regular file
973 		 * writes use ext4_get_block instead, so it's not a
974 		 * problem.
975 		 */
976 		lock_buffer(bh);
977 		BUFFER_TRACE(bh, "call get_create_access");
978 		err = ext4_journal_get_create_access(handle, bh);
979 		if (unlikely(err)) {
980 			unlock_buffer(bh);
981 			goto errout;
982 		}
983 		if (!buffer_uptodate(bh)) {
984 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 			set_buffer_uptodate(bh);
986 		}
987 		unlock_buffer(bh);
988 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 		err = ext4_handle_dirty_metadata(handle, inode, bh);
990 		if (unlikely(err))
991 			goto errout;
992 	} else
993 		BUFFER_TRACE(bh, "not a new buffer");
994 	return bh;
995 errout:
996 	brelse(bh);
997 	return ERR_PTR(err);
998 }
999 
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 			       ext4_lblk_t block, int map_flags)
1002 {
1003 	struct buffer_head *bh;
1004 
1005 	bh = ext4_getblk(handle, inode, block, map_flags);
1006 	if (IS_ERR(bh))
1007 		return bh;
1008 	if (!bh || buffer_uptodate(bh))
1009 		return bh;
1010 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011 	wait_on_buffer(bh);
1012 	if (buffer_uptodate(bh))
1013 		return bh;
1014 	put_bh(bh);
1015 	return ERR_PTR(-EIO);
1016 }
1017 
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 		     bool wait, struct buffer_head **bhs)
1021 {
1022 	int i, err;
1023 
1024 	for (i = 0; i < bh_count; i++) {
1025 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 		if (IS_ERR(bhs[i])) {
1027 			err = PTR_ERR(bhs[i]);
1028 			bh_count = i;
1029 			goto out_brelse;
1030 		}
1031 	}
1032 
1033 	for (i = 0; i < bh_count; i++)
1034 		/* Note that NULL bhs[i] is valid because of holes. */
1035 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037 				    &bhs[i]);
1038 
1039 	if (!wait)
1040 		return 0;
1041 
1042 	for (i = 0; i < bh_count; i++)
1043 		if (bhs[i])
1044 			wait_on_buffer(bhs[i]);
1045 
1046 	for (i = 0; i < bh_count; i++) {
1047 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048 			err = -EIO;
1049 			goto out_brelse;
1050 		}
1051 	}
1052 	return 0;
1053 
1054 out_brelse:
1055 	for (i = 0; i < bh_count; i++) {
1056 		brelse(bhs[i]);
1057 		bhs[i] = NULL;
1058 	}
1059 	return err;
1060 }
1061 
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 			   struct buffer_head *head,
1064 			   unsigned from,
1065 			   unsigned to,
1066 			   int *partial,
1067 			   int (*fn)(handle_t *handle,
1068 				     struct buffer_head *bh))
1069 {
1070 	struct buffer_head *bh;
1071 	unsigned block_start, block_end;
1072 	unsigned blocksize = head->b_size;
1073 	int err, ret = 0;
1074 	struct buffer_head *next;
1075 
1076 	for (bh = head, block_start = 0;
1077 	     ret == 0 && (bh != head || !block_start);
1078 	     block_start = block_end, bh = next) {
1079 		next = bh->b_this_page;
1080 		block_end = block_start + blocksize;
1081 		if (block_end <= from || block_start >= to) {
1082 			if (partial && !buffer_uptodate(bh))
1083 				*partial = 1;
1084 			continue;
1085 		}
1086 		err = (*fn)(handle, bh);
1087 		if (!ret)
1088 			ret = err;
1089 	}
1090 	return ret;
1091 }
1092 
1093 /*
1094  * To preserve ordering, it is essential that the hole instantiation and
1095  * the data write be encapsulated in a single transaction.  We cannot
1096  * close off a transaction and start a new one between the ext4_get_block()
1097  * and the commit_write().  So doing the jbd2_journal_start at the start of
1098  * prepare_write() is the right place.
1099  *
1100  * Also, this function can nest inside ext4_writepage().  In that case, we
1101  * *know* that ext4_writepage() has generated enough buffer credits to do the
1102  * whole page.  So we won't block on the journal in that case, which is good,
1103  * because the caller may be PF_MEMALLOC.
1104  *
1105  * By accident, ext4 can be reentered when a transaction is open via
1106  * quota file writes.  If we were to commit the transaction while thus
1107  * reentered, there can be a deadlock - we would be holding a quota
1108  * lock, and the commit would never complete if another thread had a
1109  * transaction open and was blocking on the quota lock - a ranking
1110  * violation.
1111  *
1112  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113  * will _not_ run commit under these circumstances because handle->h_ref
1114  * is elevated.  We'll still have enough credits for the tiny quotafile
1115  * write.
1116  */
1117 int do_journal_get_write_access(handle_t *handle,
1118 				struct buffer_head *bh)
1119 {
1120 	int dirty = buffer_dirty(bh);
1121 	int ret;
1122 
1123 	if (!buffer_mapped(bh) || buffer_freed(bh))
1124 		return 0;
1125 	/*
1126 	 * __block_write_begin() could have dirtied some buffers. Clean
1127 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 	 * otherwise about fs integrity issues. Setting of the dirty bit
1129 	 * by __block_write_begin() isn't a real problem here as we clear
1130 	 * the bit before releasing a page lock and thus writeback cannot
1131 	 * ever write the buffer.
1132 	 */
1133 	if (dirty)
1134 		clear_buffer_dirty(bh);
1135 	BUFFER_TRACE(bh, "get write access");
1136 	ret = ext4_journal_get_write_access(handle, bh);
1137 	if (!ret && dirty)
1138 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139 	return ret;
1140 }
1141 
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 				  get_block_t *get_block)
1145 {
1146 	unsigned from = pos & (PAGE_SIZE - 1);
1147 	unsigned to = from + len;
1148 	struct inode *inode = page->mapping->host;
1149 	unsigned block_start, block_end;
1150 	sector_t block;
1151 	int err = 0;
1152 	unsigned blocksize = inode->i_sb->s_blocksize;
1153 	unsigned bbits;
1154 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 	bool decrypt = false;
1156 
1157 	BUG_ON(!PageLocked(page));
1158 	BUG_ON(from > PAGE_SIZE);
1159 	BUG_ON(to > PAGE_SIZE);
1160 	BUG_ON(from > to);
1161 
1162 	if (!page_has_buffers(page))
1163 		create_empty_buffers(page, blocksize, 0);
1164 	head = page_buffers(page);
1165 	bbits = ilog2(blocksize);
1166 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1167 
1168 	for (bh = head, block_start = 0; bh != head || !block_start;
1169 	    block++, block_start = block_end, bh = bh->b_this_page) {
1170 		block_end = block_start + blocksize;
1171 		if (block_end <= from || block_start >= to) {
1172 			if (PageUptodate(page)) {
1173 				if (!buffer_uptodate(bh))
1174 					set_buffer_uptodate(bh);
1175 			}
1176 			continue;
1177 		}
1178 		if (buffer_new(bh))
1179 			clear_buffer_new(bh);
1180 		if (!buffer_mapped(bh)) {
1181 			WARN_ON(bh->b_size != blocksize);
1182 			err = get_block(inode, block, bh, 1);
1183 			if (err)
1184 				break;
1185 			if (buffer_new(bh)) {
1186 				clean_bdev_bh_alias(bh);
1187 				if (PageUptodate(page)) {
1188 					clear_buffer_new(bh);
1189 					set_buffer_uptodate(bh);
1190 					mark_buffer_dirty(bh);
1191 					continue;
1192 				}
1193 				if (block_end > to || block_start < from)
1194 					zero_user_segments(page, to, block_end,
1195 							   block_start, from);
1196 				continue;
1197 			}
1198 		}
1199 		if (PageUptodate(page)) {
1200 			if (!buffer_uptodate(bh))
1201 				set_buffer_uptodate(bh);
1202 			continue;
1203 		}
1204 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 		    !buffer_unwritten(bh) &&
1206 		    (block_start < from || block_end > to)) {
1207 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208 			*wait_bh++ = bh;
1209 			decrypt = ext4_encrypted_inode(inode) &&
1210 				S_ISREG(inode->i_mode);
1211 		}
1212 	}
1213 	/*
1214 	 * If we issued read requests, let them complete.
1215 	 */
1216 	while (wait_bh > wait) {
1217 		wait_on_buffer(*--wait_bh);
1218 		if (!buffer_uptodate(*wait_bh))
1219 			err = -EIO;
1220 	}
1221 	if (unlikely(err))
1222 		page_zero_new_buffers(page, from, to);
1223 	else if (decrypt)
1224 		err = fscrypt_decrypt_page(page->mapping->host, page,
1225 				PAGE_SIZE, 0, page->index);
1226 	return err;
1227 }
1228 #endif
1229 
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 			    loff_t pos, unsigned len, unsigned flags,
1232 			    struct page **pagep, void **fsdata)
1233 {
1234 	struct inode *inode = mapping->host;
1235 	int ret, needed_blocks;
1236 	handle_t *handle;
1237 	int retries = 0;
1238 	struct page *page;
1239 	pgoff_t index;
1240 	unsigned from, to;
1241 
1242 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243 		return -EIO;
1244 
1245 	trace_ext4_write_begin(inode, pos, len, flags);
1246 	/*
1247 	 * Reserve one block more for addition to orphan list in case
1248 	 * we allocate blocks but write fails for some reason
1249 	 */
1250 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 	index = pos >> PAGE_SHIFT;
1252 	from = pos & (PAGE_SIZE - 1);
1253 	to = from + len;
1254 
1255 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257 						    flags, pagep);
1258 		if (ret < 0)
1259 			return ret;
1260 		if (ret == 1)
1261 			return 0;
1262 	}
1263 
1264 	/*
1265 	 * grab_cache_page_write_begin() can take a long time if the
1266 	 * system is thrashing due to memory pressure, or if the page
1267 	 * is being written back.  So grab it first before we start
1268 	 * the transaction handle.  This also allows us to allocate
1269 	 * the page (if needed) without using GFP_NOFS.
1270 	 */
1271 retry_grab:
1272 	page = grab_cache_page_write_begin(mapping, index, flags);
1273 	if (!page)
1274 		return -ENOMEM;
1275 	unlock_page(page);
1276 
1277 retry_journal:
1278 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 	if (IS_ERR(handle)) {
1280 		put_page(page);
1281 		return PTR_ERR(handle);
1282 	}
1283 
1284 	lock_page(page);
1285 	if (page->mapping != mapping) {
1286 		/* The page got truncated from under us */
1287 		unlock_page(page);
1288 		put_page(page);
1289 		ext4_journal_stop(handle);
1290 		goto retry_grab;
1291 	}
1292 	/* In case writeback began while the page was unlocked */
1293 	wait_for_stable_page(page);
1294 
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 	if (ext4_should_dioread_nolock(inode))
1297 		ret = ext4_block_write_begin(page, pos, len,
1298 					     ext4_get_block_unwritten);
1299 	else
1300 		ret = ext4_block_write_begin(page, pos, len,
1301 					     ext4_get_block);
1302 #else
1303 	if (ext4_should_dioread_nolock(inode))
1304 		ret = __block_write_begin(page, pos, len,
1305 					  ext4_get_block_unwritten);
1306 	else
1307 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1308 #endif
1309 	if (!ret && ext4_should_journal_data(inode)) {
1310 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311 					     from, to, NULL,
1312 					     do_journal_get_write_access);
1313 	}
1314 
1315 	if (ret) {
1316 		unlock_page(page);
1317 		/*
1318 		 * __block_write_begin may have instantiated a few blocks
1319 		 * outside i_size.  Trim these off again. Don't need
1320 		 * i_size_read because we hold i_mutex.
1321 		 *
1322 		 * Add inode to orphan list in case we crash before
1323 		 * truncate finishes
1324 		 */
1325 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 			ext4_orphan_add(handle, inode);
1327 
1328 		ext4_journal_stop(handle);
1329 		if (pos + len > inode->i_size) {
1330 			ext4_truncate_failed_write(inode);
1331 			/*
1332 			 * If truncate failed early the inode might
1333 			 * still be on the orphan list; we need to
1334 			 * make sure the inode is removed from the
1335 			 * orphan list in that case.
1336 			 */
1337 			if (inode->i_nlink)
1338 				ext4_orphan_del(NULL, inode);
1339 		}
1340 
1341 		if (ret == -ENOSPC &&
1342 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1343 			goto retry_journal;
1344 		put_page(page);
1345 		return ret;
1346 	}
1347 	*pagep = page;
1348 	return ret;
1349 }
1350 
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1353 {
1354 	int ret;
1355 	if (!buffer_mapped(bh) || buffer_freed(bh))
1356 		return 0;
1357 	set_buffer_uptodate(bh);
1358 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 	clear_buffer_meta(bh);
1360 	clear_buffer_prio(bh);
1361 	return ret;
1362 }
1363 
1364 /*
1365  * We need to pick up the new inode size which generic_commit_write gave us
1366  * `file' can be NULL - eg, when called from page_symlink().
1367  *
1368  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1369  * buffers are managed internally.
1370  */
1371 static int ext4_write_end(struct file *file,
1372 			  struct address_space *mapping,
1373 			  loff_t pos, unsigned len, unsigned copied,
1374 			  struct page *page, void *fsdata)
1375 {
1376 	handle_t *handle = ext4_journal_current_handle();
1377 	struct inode *inode = mapping->host;
1378 	loff_t old_size = inode->i_size;
1379 	int ret = 0, ret2;
1380 	int i_size_changed = 0;
1381 
1382 	trace_ext4_write_end(inode, pos, len, copied);
1383 	if (ext4_has_inline_data(inode)) {
1384 		ret = ext4_write_inline_data_end(inode, pos, len,
1385 						 copied, page);
1386 		if (ret < 0) {
1387 			unlock_page(page);
1388 			put_page(page);
1389 			goto errout;
1390 		}
1391 		copied = ret;
1392 	} else
1393 		copied = block_write_end(file, mapping, pos,
1394 					 len, copied, page, fsdata);
1395 	/*
1396 	 * it's important to update i_size while still holding page lock:
1397 	 * page writeout could otherwise come in and zero beyond i_size.
1398 	 */
1399 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1400 	unlock_page(page);
1401 	put_page(page);
1402 
1403 	if (old_size < pos)
1404 		pagecache_isize_extended(inode, old_size, pos);
1405 	/*
1406 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 	 * makes the holding time of page lock longer. Second, it forces lock
1408 	 * ordering of page lock and transaction start for journaling
1409 	 * filesystems.
1410 	 */
1411 	if (i_size_changed)
1412 		ext4_mark_inode_dirty(handle, inode);
1413 
1414 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 		/* if we have allocated more blocks and copied
1416 		 * less. We will have blocks allocated outside
1417 		 * inode->i_size. So truncate them
1418 		 */
1419 		ext4_orphan_add(handle, inode);
1420 errout:
1421 	ret2 = ext4_journal_stop(handle);
1422 	if (!ret)
1423 		ret = ret2;
1424 
1425 	if (pos + len > inode->i_size) {
1426 		ext4_truncate_failed_write(inode);
1427 		/*
1428 		 * If truncate failed early the inode might still be
1429 		 * on the orphan list; we need to make sure the inode
1430 		 * is removed from the orphan list in that case.
1431 		 */
1432 		if (inode->i_nlink)
1433 			ext4_orphan_del(NULL, inode);
1434 	}
1435 
1436 	return ret ? ret : copied;
1437 }
1438 
1439 /*
1440  * This is a private version of page_zero_new_buffers() which doesn't
1441  * set the buffer to be dirty, since in data=journalled mode we need
1442  * to call ext4_handle_dirty_metadata() instead.
1443  */
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445 					    struct page *page,
1446 					    unsigned from, unsigned to)
1447 {
1448 	unsigned int block_start = 0, block_end;
1449 	struct buffer_head *head, *bh;
1450 
1451 	bh = head = page_buffers(page);
1452 	do {
1453 		block_end = block_start + bh->b_size;
1454 		if (buffer_new(bh)) {
1455 			if (block_end > from && block_start < to) {
1456 				if (!PageUptodate(page)) {
1457 					unsigned start, size;
1458 
1459 					start = max(from, block_start);
1460 					size = min(to, block_end) - start;
1461 
1462 					zero_user(page, start, size);
1463 					write_end_fn(handle, bh);
1464 				}
1465 				clear_buffer_new(bh);
1466 			}
1467 		}
1468 		block_start = block_end;
1469 		bh = bh->b_this_page;
1470 	} while (bh != head);
1471 }
1472 
1473 static int ext4_journalled_write_end(struct file *file,
1474 				     struct address_space *mapping,
1475 				     loff_t pos, unsigned len, unsigned copied,
1476 				     struct page *page, void *fsdata)
1477 {
1478 	handle_t *handle = ext4_journal_current_handle();
1479 	struct inode *inode = mapping->host;
1480 	loff_t old_size = inode->i_size;
1481 	int ret = 0, ret2;
1482 	int partial = 0;
1483 	unsigned from, to;
1484 	int size_changed = 0;
1485 
1486 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 	from = pos & (PAGE_SIZE - 1);
1488 	to = from + len;
1489 
1490 	BUG_ON(!ext4_handle_valid(handle));
1491 
1492 	if (ext4_has_inline_data(inode)) {
1493 		ret = ext4_write_inline_data_end(inode, pos, len,
1494 						 copied, page);
1495 		if (ret < 0) {
1496 			unlock_page(page);
1497 			put_page(page);
1498 			goto errout;
1499 		}
1500 		copied = ret;
1501 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1502 		copied = 0;
1503 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1504 	} else {
1505 		if (unlikely(copied < len))
1506 			ext4_journalled_zero_new_buffers(handle, page,
1507 							 from + copied, to);
1508 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 					     from + copied, &partial,
1510 					     write_end_fn);
1511 		if (!partial)
1512 			SetPageUptodate(page);
1513 	}
1514 	size_changed = ext4_update_inode_size(inode, pos + copied);
1515 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1517 	unlock_page(page);
1518 	put_page(page);
1519 
1520 	if (old_size < pos)
1521 		pagecache_isize_extended(inode, old_size, pos);
1522 
1523 	if (size_changed) {
1524 		ret2 = ext4_mark_inode_dirty(handle, inode);
1525 		if (!ret)
1526 			ret = ret2;
1527 	}
1528 
1529 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 		/* if we have allocated more blocks and copied
1531 		 * less. We will have blocks allocated outside
1532 		 * inode->i_size. So truncate them
1533 		 */
1534 		ext4_orphan_add(handle, inode);
1535 
1536 errout:
1537 	ret2 = ext4_journal_stop(handle);
1538 	if (!ret)
1539 		ret = ret2;
1540 	if (pos + len > inode->i_size) {
1541 		ext4_truncate_failed_write(inode);
1542 		/*
1543 		 * If truncate failed early the inode might still be
1544 		 * on the orphan list; we need to make sure the inode
1545 		 * is removed from the orphan list in that case.
1546 		 */
1547 		if (inode->i_nlink)
1548 			ext4_orphan_del(NULL, inode);
1549 	}
1550 
1551 	return ret ? ret : copied;
1552 }
1553 
1554 /*
1555  * Reserve space for a single cluster
1556  */
1557 static int ext4_da_reserve_space(struct inode *inode)
1558 {
1559 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 	struct ext4_inode_info *ei = EXT4_I(inode);
1561 	int ret;
1562 
1563 	/*
1564 	 * We will charge metadata quota at writeout time; this saves
1565 	 * us from metadata over-estimation, though we may go over by
1566 	 * a small amount in the end.  Here we just reserve for data.
1567 	 */
1568 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569 	if (ret)
1570 		return ret;
1571 
1572 	spin_lock(&ei->i_block_reservation_lock);
1573 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 		spin_unlock(&ei->i_block_reservation_lock);
1575 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1576 		return -ENOSPC;
1577 	}
1578 	ei->i_reserved_data_blocks++;
1579 	trace_ext4_da_reserve_space(inode);
1580 	spin_unlock(&ei->i_block_reservation_lock);
1581 
1582 	return 0;       /* success */
1583 }
1584 
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 	struct ext4_inode_info *ei = EXT4_I(inode);
1589 
1590 	if (!to_free)
1591 		return;		/* Nothing to release, exit */
1592 
1593 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594 
1595 	trace_ext4_da_release_space(inode, to_free);
1596 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1597 		/*
1598 		 * if there aren't enough reserved blocks, then the
1599 		 * counter is messed up somewhere.  Since this
1600 		 * function is called from invalidate page, it's
1601 		 * harmless to return without any action.
1602 		 */
1603 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 			 "ino %lu, to_free %d with only %d reserved "
1605 			 "data blocks", inode->i_ino, to_free,
1606 			 ei->i_reserved_data_blocks);
1607 		WARN_ON(1);
1608 		to_free = ei->i_reserved_data_blocks;
1609 	}
1610 	ei->i_reserved_data_blocks -= to_free;
1611 
1612 	/* update fs dirty data blocks counter */
1613 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1614 
1615 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1616 
1617 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1618 }
1619 
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 					     unsigned int offset,
1622 					     unsigned int length)
1623 {
1624 	int to_release = 0, contiguous_blks = 0;
1625 	struct buffer_head *head, *bh;
1626 	unsigned int curr_off = 0;
1627 	struct inode *inode = page->mapping->host;
1628 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 	unsigned int stop = offset + length;
1630 	int num_clusters;
1631 	ext4_fsblk_t lblk;
1632 
1633 	BUG_ON(stop > PAGE_SIZE || stop < length);
1634 
1635 	head = page_buffers(page);
1636 	bh = head;
1637 	do {
1638 		unsigned int next_off = curr_off + bh->b_size;
1639 
1640 		if (next_off > stop)
1641 			break;
1642 
1643 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1644 			to_release++;
1645 			contiguous_blks++;
1646 			clear_buffer_delay(bh);
1647 		} else if (contiguous_blks) {
1648 			lblk = page->index <<
1649 			       (PAGE_SHIFT - inode->i_blkbits);
1650 			lblk += (curr_off >> inode->i_blkbits) -
1651 				contiguous_blks;
1652 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 			contiguous_blks = 0;
1654 		}
1655 		curr_off = next_off;
1656 	} while ((bh = bh->b_this_page) != head);
1657 
1658 	if (contiguous_blks) {
1659 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1662 	}
1663 
1664 	/* If we have released all the blocks belonging to a cluster, then we
1665 	 * need to release the reserved space for that cluster. */
1666 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 	while (num_clusters > 0) {
1668 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 			((num_clusters - 1) << sbi->s_cluster_bits);
1670 		if (sbi->s_cluster_ratio == 1 ||
1671 		    !ext4_find_delalloc_cluster(inode, lblk))
1672 			ext4_da_release_space(inode, 1);
1673 
1674 		num_clusters--;
1675 	}
1676 }
1677 
1678 /*
1679  * Delayed allocation stuff
1680  */
1681 
1682 struct mpage_da_data {
1683 	struct inode *inode;
1684 	struct writeback_control *wbc;
1685 
1686 	pgoff_t first_page;	/* The first page to write */
1687 	pgoff_t next_page;	/* Current page to examine */
1688 	pgoff_t last_page;	/* Last page to examine */
1689 	/*
1690 	 * Extent to map - this can be after first_page because that can be
1691 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 	 * is delalloc or unwritten.
1693 	 */
1694 	struct ext4_map_blocks map;
1695 	struct ext4_io_submit io_submit;	/* IO submission data */
1696 	unsigned int do_map:1;
1697 };
1698 
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700 				       bool invalidate)
1701 {
1702 	int nr_pages, i;
1703 	pgoff_t index, end;
1704 	struct pagevec pvec;
1705 	struct inode *inode = mpd->inode;
1706 	struct address_space *mapping = inode->i_mapping;
1707 
1708 	/* This is necessary when next_page == 0. */
1709 	if (mpd->first_page >= mpd->next_page)
1710 		return;
1711 
1712 	index = mpd->first_page;
1713 	end   = mpd->next_page - 1;
1714 	if (invalidate) {
1715 		ext4_lblk_t start, last;
1716 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 		ext4_es_remove_extent(inode, start, last - start + 1);
1719 	}
1720 
1721 	pagevec_init(&pvec, 0);
1722 	while (index <= end) {
1723 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1724 		if (nr_pages == 0)
1725 			break;
1726 		for (i = 0; i < nr_pages; i++) {
1727 			struct page *page = pvec.pages[i];
1728 
1729 			BUG_ON(!PageLocked(page));
1730 			BUG_ON(PageWriteback(page));
1731 			if (invalidate) {
1732 				if (page_mapped(page))
1733 					clear_page_dirty_for_io(page);
1734 				block_invalidatepage(page, 0, PAGE_SIZE);
1735 				ClearPageUptodate(page);
1736 			}
1737 			unlock_page(page);
1738 		}
1739 		pagevec_release(&pvec);
1740 	}
1741 }
1742 
1743 static void ext4_print_free_blocks(struct inode *inode)
1744 {
1745 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1746 	struct super_block *sb = inode->i_sb;
1747 	struct ext4_inode_info *ei = EXT4_I(inode);
1748 
1749 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1750 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1751 			ext4_count_free_clusters(sb)));
1752 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1753 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1754 	       (long long) EXT4_C2B(EXT4_SB(sb),
1755 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1756 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1757 	       (long long) EXT4_C2B(EXT4_SB(sb),
1758 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1759 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1760 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1761 		 ei->i_reserved_data_blocks);
1762 	return;
1763 }
1764 
1765 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1766 {
1767 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1768 }
1769 
1770 /*
1771  * This function is grabs code from the very beginning of
1772  * ext4_map_blocks, but assumes that the caller is from delayed write
1773  * time. This function looks up the requested blocks and sets the
1774  * buffer delay bit under the protection of i_data_sem.
1775  */
1776 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1777 			      struct ext4_map_blocks *map,
1778 			      struct buffer_head *bh)
1779 {
1780 	struct extent_status es;
1781 	int retval;
1782 	sector_t invalid_block = ~((sector_t) 0xffff);
1783 #ifdef ES_AGGRESSIVE_TEST
1784 	struct ext4_map_blocks orig_map;
1785 
1786 	memcpy(&orig_map, map, sizeof(*map));
1787 #endif
1788 
1789 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1790 		invalid_block = ~0;
1791 
1792 	map->m_flags = 0;
1793 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1794 		  "logical block %lu\n", inode->i_ino, map->m_len,
1795 		  (unsigned long) map->m_lblk);
1796 
1797 	/* Lookup extent status tree firstly */
1798 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1799 		if (ext4_es_is_hole(&es)) {
1800 			retval = 0;
1801 			down_read(&EXT4_I(inode)->i_data_sem);
1802 			goto add_delayed;
1803 		}
1804 
1805 		/*
1806 		 * Delayed extent could be allocated by fallocate.
1807 		 * So we need to check it.
1808 		 */
1809 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1810 			map_bh(bh, inode->i_sb, invalid_block);
1811 			set_buffer_new(bh);
1812 			set_buffer_delay(bh);
1813 			return 0;
1814 		}
1815 
1816 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1817 		retval = es.es_len - (iblock - es.es_lblk);
1818 		if (retval > map->m_len)
1819 			retval = map->m_len;
1820 		map->m_len = retval;
1821 		if (ext4_es_is_written(&es))
1822 			map->m_flags |= EXT4_MAP_MAPPED;
1823 		else if (ext4_es_is_unwritten(&es))
1824 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1825 		else
1826 			BUG_ON(1);
1827 
1828 #ifdef ES_AGGRESSIVE_TEST
1829 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1830 #endif
1831 		return retval;
1832 	}
1833 
1834 	/*
1835 	 * Try to see if we can get the block without requesting a new
1836 	 * file system block.
1837 	 */
1838 	down_read(&EXT4_I(inode)->i_data_sem);
1839 	if (ext4_has_inline_data(inode))
1840 		retval = 0;
1841 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1842 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1843 	else
1844 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1845 
1846 add_delayed:
1847 	if (retval == 0) {
1848 		int ret;
1849 		/*
1850 		 * XXX: __block_prepare_write() unmaps passed block,
1851 		 * is it OK?
1852 		 */
1853 		/*
1854 		 * If the block was allocated from previously allocated cluster,
1855 		 * then we don't need to reserve it again. However we still need
1856 		 * to reserve metadata for every block we're going to write.
1857 		 */
1858 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1859 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1860 			ret = ext4_da_reserve_space(inode);
1861 			if (ret) {
1862 				/* not enough space to reserve */
1863 				retval = ret;
1864 				goto out_unlock;
1865 			}
1866 		}
1867 
1868 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1869 					    ~0, EXTENT_STATUS_DELAYED);
1870 		if (ret) {
1871 			retval = ret;
1872 			goto out_unlock;
1873 		}
1874 
1875 		map_bh(bh, inode->i_sb, invalid_block);
1876 		set_buffer_new(bh);
1877 		set_buffer_delay(bh);
1878 	} else if (retval > 0) {
1879 		int ret;
1880 		unsigned int status;
1881 
1882 		if (unlikely(retval != map->m_len)) {
1883 			ext4_warning(inode->i_sb,
1884 				     "ES len assertion failed for inode "
1885 				     "%lu: retval %d != map->m_len %d",
1886 				     inode->i_ino, retval, map->m_len);
1887 			WARN_ON(1);
1888 		}
1889 
1890 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1891 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1892 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1893 					    map->m_pblk, status);
1894 		if (ret != 0)
1895 			retval = ret;
1896 	}
1897 
1898 out_unlock:
1899 	up_read((&EXT4_I(inode)->i_data_sem));
1900 
1901 	return retval;
1902 }
1903 
1904 /*
1905  * This is a special get_block_t callback which is used by
1906  * ext4_da_write_begin().  It will either return mapped block or
1907  * reserve space for a single block.
1908  *
1909  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1910  * We also have b_blocknr = -1 and b_bdev initialized properly
1911  *
1912  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1913  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1914  * initialized properly.
1915  */
1916 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1917 			   struct buffer_head *bh, int create)
1918 {
1919 	struct ext4_map_blocks map;
1920 	int ret = 0;
1921 
1922 	BUG_ON(create == 0);
1923 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1924 
1925 	map.m_lblk = iblock;
1926 	map.m_len = 1;
1927 
1928 	/*
1929 	 * first, we need to know whether the block is allocated already
1930 	 * preallocated blocks are unmapped but should treated
1931 	 * the same as allocated blocks.
1932 	 */
1933 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1934 	if (ret <= 0)
1935 		return ret;
1936 
1937 	map_bh(bh, inode->i_sb, map.m_pblk);
1938 	ext4_update_bh_state(bh, map.m_flags);
1939 
1940 	if (buffer_unwritten(bh)) {
1941 		/* A delayed write to unwritten bh should be marked
1942 		 * new and mapped.  Mapped ensures that we don't do
1943 		 * get_block multiple times when we write to the same
1944 		 * offset and new ensures that we do proper zero out
1945 		 * for partial write.
1946 		 */
1947 		set_buffer_new(bh);
1948 		set_buffer_mapped(bh);
1949 	}
1950 	return 0;
1951 }
1952 
1953 static int bget_one(handle_t *handle, struct buffer_head *bh)
1954 {
1955 	get_bh(bh);
1956 	return 0;
1957 }
1958 
1959 static int bput_one(handle_t *handle, struct buffer_head *bh)
1960 {
1961 	put_bh(bh);
1962 	return 0;
1963 }
1964 
1965 static int __ext4_journalled_writepage(struct page *page,
1966 				       unsigned int len)
1967 {
1968 	struct address_space *mapping = page->mapping;
1969 	struct inode *inode = mapping->host;
1970 	struct buffer_head *page_bufs = NULL;
1971 	handle_t *handle = NULL;
1972 	int ret = 0, err = 0;
1973 	int inline_data = ext4_has_inline_data(inode);
1974 	struct buffer_head *inode_bh = NULL;
1975 
1976 	ClearPageChecked(page);
1977 
1978 	if (inline_data) {
1979 		BUG_ON(page->index != 0);
1980 		BUG_ON(len > ext4_get_max_inline_size(inode));
1981 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1982 		if (inode_bh == NULL)
1983 			goto out;
1984 	} else {
1985 		page_bufs = page_buffers(page);
1986 		if (!page_bufs) {
1987 			BUG();
1988 			goto out;
1989 		}
1990 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1991 				       NULL, bget_one);
1992 	}
1993 	/*
1994 	 * We need to release the page lock before we start the
1995 	 * journal, so grab a reference so the page won't disappear
1996 	 * out from under us.
1997 	 */
1998 	get_page(page);
1999 	unlock_page(page);
2000 
2001 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2002 				    ext4_writepage_trans_blocks(inode));
2003 	if (IS_ERR(handle)) {
2004 		ret = PTR_ERR(handle);
2005 		put_page(page);
2006 		goto out_no_pagelock;
2007 	}
2008 	BUG_ON(!ext4_handle_valid(handle));
2009 
2010 	lock_page(page);
2011 	put_page(page);
2012 	if (page->mapping != mapping) {
2013 		/* The page got truncated from under us */
2014 		ext4_journal_stop(handle);
2015 		ret = 0;
2016 		goto out;
2017 	}
2018 
2019 	if (inline_data) {
2020 		BUFFER_TRACE(inode_bh, "get write access");
2021 		ret = ext4_journal_get_write_access(handle, inode_bh);
2022 
2023 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2024 
2025 	} else {
2026 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2027 					     do_journal_get_write_access);
2028 
2029 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2030 					     write_end_fn);
2031 	}
2032 	if (ret == 0)
2033 		ret = err;
2034 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2035 	err = ext4_journal_stop(handle);
2036 	if (!ret)
2037 		ret = err;
2038 
2039 	if (!ext4_has_inline_data(inode))
2040 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2041 				       NULL, bput_one);
2042 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2043 out:
2044 	unlock_page(page);
2045 out_no_pagelock:
2046 	brelse(inode_bh);
2047 	return ret;
2048 }
2049 
2050 /*
2051  * Note that we don't need to start a transaction unless we're journaling data
2052  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2053  * need to file the inode to the transaction's list in ordered mode because if
2054  * we are writing back data added by write(), the inode is already there and if
2055  * we are writing back data modified via mmap(), no one guarantees in which
2056  * transaction the data will hit the disk. In case we are journaling data, we
2057  * cannot start transaction directly because transaction start ranks above page
2058  * lock so we have to do some magic.
2059  *
2060  * This function can get called via...
2061  *   - ext4_writepages after taking page lock (have journal handle)
2062  *   - journal_submit_inode_data_buffers (no journal handle)
2063  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2064  *   - grab_page_cache when doing write_begin (have journal handle)
2065  *
2066  * We don't do any block allocation in this function. If we have page with
2067  * multiple blocks we need to write those buffer_heads that are mapped. This
2068  * is important for mmaped based write. So if we do with blocksize 1K
2069  * truncate(f, 1024);
2070  * a = mmap(f, 0, 4096);
2071  * a[0] = 'a';
2072  * truncate(f, 4096);
2073  * we have in the page first buffer_head mapped via page_mkwrite call back
2074  * but other buffer_heads would be unmapped but dirty (dirty done via the
2075  * do_wp_page). So writepage should write the first block. If we modify
2076  * the mmap area beyond 1024 we will again get a page_fault and the
2077  * page_mkwrite callback will do the block allocation and mark the
2078  * buffer_heads mapped.
2079  *
2080  * We redirty the page if we have any buffer_heads that is either delay or
2081  * unwritten in the page.
2082  *
2083  * We can get recursively called as show below.
2084  *
2085  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2086  *		ext4_writepage()
2087  *
2088  * But since we don't do any block allocation we should not deadlock.
2089  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2090  */
2091 static int ext4_writepage(struct page *page,
2092 			  struct writeback_control *wbc)
2093 {
2094 	int ret = 0;
2095 	loff_t size;
2096 	unsigned int len;
2097 	struct buffer_head *page_bufs = NULL;
2098 	struct inode *inode = page->mapping->host;
2099 	struct ext4_io_submit io_submit;
2100 	bool keep_towrite = false;
2101 
2102 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2103 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2104 		unlock_page(page);
2105 		return -EIO;
2106 	}
2107 
2108 	trace_ext4_writepage(page);
2109 	size = i_size_read(inode);
2110 	if (page->index == size >> PAGE_SHIFT)
2111 		len = size & ~PAGE_MASK;
2112 	else
2113 		len = PAGE_SIZE;
2114 
2115 	page_bufs = page_buffers(page);
2116 	/*
2117 	 * We cannot do block allocation or other extent handling in this
2118 	 * function. If there are buffers needing that, we have to redirty
2119 	 * the page. But we may reach here when we do a journal commit via
2120 	 * journal_submit_inode_data_buffers() and in that case we must write
2121 	 * allocated buffers to achieve data=ordered mode guarantees.
2122 	 *
2123 	 * Also, if there is only one buffer per page (the fs block
2124 	 * size == the page size), if one buffer needs block
2125 	 * allocation or needs to modify the extent tree to clear the
2126 	 * unwritten flag, we know that the page can't be written at
2127 	 * all, so we might as well refuse the write immediately.
2128 	 * Unfortunately if the block size != page size, we can't as
2129 	 * easily detect this case using ext4_walk_page_buffers(), but
2130 	 * for the extremely common case, this is an optimization that
2131 	 * skips a useless round trip through ext4_bio_write_page().
2132 	 */
2133 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2134 				   ext4_bh_delay_or_unwritten)) {
2135 		redirty_page_for_writepage(wbc, page);
2136 		if ((current->flags & PF_MEMALLOC) ||
2137 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2138 			/*
2139 			 * For memory cleaning there's no point in writing only
2140 			 * some buffers. So just bail out. Warn if we came here
2141 			 * from direct reclaim.
2142 			 */
2143 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2144 							== PF_MEMALLOC);
2145 			unlock_page(page);
2146 			return 0;
2147 		}
2148 		keep_towrite = true;
2149 	}
2150 
2151 	if (PageChecked(page) && ext4_should_journal_data(inode))
2152 		/*
2153 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2154 		 * doesn't seem much point in redirtying the page here.
2155 		 */
2156 		return __ext4_journalled_writepage(page, len);
2157 
2158 	ext4_io_submit_init(&io_submit, wbc);
2159 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2160 	if (!io_submit.io_end) {
2161 		redirty_page_for_writepage(wbc, page);
2162 		unlock_page(page);
2163 		return -ENOMEM;
2164 	}
2165 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2166 	ext4_io_submit(&io_submit);
2167 	/* Drop io_end reference we got from init */
2168 	ext4_put_io_end_defer(io_submit.io_end);
2169 	return ret;
2170 }
2171 
2172 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2173 {
2174 	int len;
2175 	loff_t size;
2176 	int err;
2177 
2178 	BUG_ON(page->index != mpd->first_page);
2179 	clear_page_dirty_for_io(page);
2180 	/*
2181 	 * We have to be very careful here!  Nothing protects writeback path
2182 	 * against i_size changes and the page can be writeably mapped into
2183 	 * page tables. So an application can be growing i_size and writing
2184 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2185 	 * write-protects our page in page tables and the page cannot get
2186 	 * written to again until we release page lock. So only after
2187 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2188 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2189 	 * on the barrier provided by TestClearPageDirty in
2190 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2191 	 * after page tables are updated.
2192 	 */
2193 	size = i_size_read(mpd->inode);
2194 	if (page->index == size >> PAGE_SHIFT)
2195 		len = size & ~PAGE_MASK;
2196 	else
2197 		len = PAGE_SIZE;
2198 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2199 	if (!err)
2200 		mpd->wbc->nr_to_write--;
2201 	mpd->first_page++;
2202 
2203 	return err;
2204 }
2205 
2206 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2207 
2208 /*
2209  * mballoc gives us at most this number of blocks...
2210  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2211  * The rest of mballoc seems to handle chunks up to full group size.
2212  */
2213 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2214 
2215 /*
2216  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2217  *
2218  * @mpd - extent of blocks
2219  * @lblk - logical number of the block in the file
2220  * @bh - buffer head we want to add to the extent
2221  *
2222  * The function is used to collect contig. blocks in the same state. If the
2223  * buffer doesn't require mapping for writeback and we haven't started the
2224  * extent of buffers to map yet, the function returns 'true' immediately - the
2225  * caller can write the buffer right away. Otherwise the function returns true
2226  * if the block has been added to the extent, false if the block couldn't be
2227  * added.
2228  */
2229 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2230 				   struct buffer_head *bh)
2231 {
2232 	struct ext4_map_blocks *map = &mpd->map;
2233 
2234 	/* Buffer that doesn't need mapping for writeback? */
2235 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2236 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2237 		/* So far no extent to map => we write the buffer right away */
2238 		if (map->m_len == 0)
2239 			return true;
2240 		return false;
2241 	}
2242 
2243 	/* First block in the extent? */
2244 	if (map->m_len == 0) {
2245 		/* We cannot map unless handle is started... */
2246 		if (!mpd->do_map)
2247 			return false;
2248 		map->m_lblk = lblk;
2249 		map->m_len = 1;
2250 		map->m_flags = bh->b_state & BH_FLAGS;
2251 		return true;
2252 	}
2253 
2254 	/* Don't go larger than mballoc is willing to allocate */
2255 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2256 		return false;
2257 
2258 	/* Can we merge the block to our big extent? */
2259 	if (lblk == map->m_lblk + map->m_len &&
2260 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2261 		map->m_len++;
2262 		return true;
2263 	}
2264 	return false;
2265 }
2266 
2267 /*
2268  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2269  *
2270  * @mpd - extent of blocks for mapping
2271  * @head - the first buffer in the page
2272  * @bh - buffer we should start processing from
2273  * @lblk - logical number of the block in the file corresponding to @bh
2274  *
2275  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2276  * the page for IO if all buffers in this page were mapped and there's no
2277  * accumulated extent of buffers to map or add buffers in the page to the
2278  * extent of buffers to map. The function returns 1 if the caller can continue
2279  * by processing the next page, 0 if it should stop adding buffers to the
2280  * extent to map because we cannot extend it anymore. It can also return value
2281  * < 0 in case of error during IO submission.
2282  */
2283 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2284 				   struct buffer_head *head,
2285 				   struct buffer_head *bh,
2286 				   ext4_lblk_t lblk)
2287 {
2288 	struct inode *inode = mpd->inode;
2289 	int err;
2290 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2291 							>> inode->i_blkbits;
2292 
2293 	do {
2294 		BUG_ON(buffer_locked(bh));
2295 
2296 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2297 			/* Found extent to map? */
2298 			if (mpd->map.m_len)
2299 				return 0;
2300 			/* Buffer needs mapping and handle is not started? */
2301 			if (!mpd->do_map)
2302 				return 0;
2303 			/* Everything mapped so far and we hit EOF */
2304 			break;
2305 		}
2306 	} while (lblk++, (bh = bh->b_this_page) != head);
2307 	/* So far everything mapped? Submit the page for IO. */
2308 	if (mpd->map.m_len == 0) {
2309 		err = mpage_submit_page(mpd, head->b_page);
2310 		if (err < 0)
2311 			return err;
2312 	}
2313 	return lblk < blocks;
2314 }
2315 
2316 /*
2317  * mpage_map_buffers - update buffers corresponding to changed extent and
2318  *		       submit fully mapped pages for IO
2319  *
2320  * @mpd - description of extent to map, on return next extent to map
2321  *
2322  * Scan buffers corresponding to changed extent (we expect corresponding pages
2323  * to be already locked) and update buffer state according to new extent state.
2324  * We map delalloc buffers to their physical location, clear unwritten bits,
2325  * and mark buffers as uninit when we perform writes to unwritten extents
2326  * and do extent conversion after IO is finished. If the last page is not fully
2327  * mapped, we update @map to the next extent in the last page that needs
2328  * mapping. Otherwise we submit the page for IO.
2329  */
2330 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2331 {
2332 	struct pagevec pvec;
2333 	int nr_pages, i;
2334 	struct inode *inode = mpd->inode;
2335 	struct buffer_head *head, *bh;
2336 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2337 	pgoff_t start, end;
2338 	ext4_lblk_t lblk;
2339 	sector_t pblock;
2340 	int err;
2341 
2342 	start = mpd->map.m_lblk >> bpp_bits;
2343 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2344 	lblk = start << bpp_bits;
2345 	pblock = mpd->map.m_pblk;
2346 
2347 	pagevec_init(&pvec, 0);
2348 	while (start <= end) {
2349 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2350 						&start, end);
2351 		if (nr_pages == 0)
2352 			break;
2353 		for (i = 0; i < nr_pages; i++) {
2354 			struct page *page = pvec.pages[i];
2355 
2356 			bh = head = page_buffers(page);
2357 			do {
2358 				if (lblk < mpd->map.m_lblk)
2359 					continue;
2360 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2361 					/*
2362 					 * Buffer after end of mapped extent.
2363 					 * Find next buffer in the page to map.
2364 					 */
2365 					mpd->map.m_len = 0;
2366 					mpd->map.m_flags = 0;
2367 					/*
2368 					 * FIXME: If dioread_nolock supports
2369 					 * blocksize < pagesize, we need to make
2370 					 * sure we add size mapped so far to
2371 					 * io_end->size as the following call
2372 					 * can submit the page for IO.
2373 					 */
2374 					err = mpage_process_page_bufs(mpd, head,
2375 								      bh, lblk);
2376 					pagevec_release(&pvec);
2377 					if (err > 0)
2378 						err = 0;
2379 					return err;
2380 				}
2381 				if (buffer_delay(bh)) {
2382 					clear_buffer_delay(bh);
2383 					bh->b_blocknr = pblock++;
2384 				}
2385 				clear_buffer_unwritten(bh);
2386 			} while (lblk++, (bh = bh->b_this_page) != head);
2387 
2388 			/*
2389 			 * FIXME: This is going to break if dioread_nolock
2390 			 * supports blocksize < pagesize as we will try to
2391 			 * convert potentially unmapped parts of inode.
2392 			 */
2393 			mpd->io_submit.io_end->size += PAGE_SIZE;
2394 			/* Page fully mapped - let IO run! */
2395 			err = mpage_submit_page(mpd, page);
2396 			if (err < 0) {
2397 				pagevec_release(&pvec);
2398 				return err;
2399 			}
2400 		}
2401 		pagevec_release(&pvec);
2402 	}
2403 	/* Extent fully mapped and matches with page boundary. We are done. */
2404 	mpd->map.m_len = 0;
2405 	mpd->map.m_flags = 0;
2406 	return 0;
2407 }
2408 
2409 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2410 {
2411 	struct inode *inode = mpd->inode;
2412 	struct ext4_map_blocks *map = &mpd->map;
2413 	int get_blocks_flags;
2414 	int err, dioread_nolock;
2415 
2416 	trace_ext4_da_write_pages_extent(inode, map);
2417 	/*
2418 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2419 	 * to convert an unwritten extent to be initialized (in the case
2420 	 * where we have written into one or more preallocated blocks).  It is
2421 	 * possible that we're going to need more metadata blocks than
2422 	 * previously reserved. However we must not fail because we're in
2423 	 * writeback and there is nothing we can do about it so it might result
2424 	 * in data loss.  So use reserved blocks to allocate metadata if
2425 	 * possible.
2426 	 *
2427 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2428 	 * the blocks in question are delalloc blocks.  This indicates
2429 	 * that the blocks and quotas has already been checked when
2430 	 * the data was copied into the page cache.
2431 	 */
2432 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2433 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2434 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2435 	dioread_nolock = ext4_should_dioread_nolock(inode);
2436 	if (dioread_nolock)
2437 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2438 	if (map->m_flags & (1 << BH_Delay))
2439 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2440 
2441 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2442 	if (err < 0)
2443 		return err;
2444 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2445 		if (!mpd->io_submit.io_end->handle &&
2446 		    ext4_handle_valid(handle)) {
2447 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2448 			handle->h_rsv_handle = NULL;
2449 		}
2450 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2451 	}
2452 
2453 	BUG_ON(map->m_len == 0);
2454 	if (map->m_flags & EXT4_MAP_NEW) {
2455 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2456 				   map->m_len);
2457 	}
2458 	return 0;
2459 }
2460 
2461 /*
2462  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2463  *				 mpd->len and submit pages underlying it for IO
2464  *
2465  * @handle - handle for journal operations
2466  * @mpd - extent to map
2467  * @give_up_on_write - we set this to true iff there is a fatal error and there
2468  *                     is no hope of writing the data. The caller should discard
2469  *                     dirty pages to avoid infinite loops.
2470  *
2471  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2472  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2473  * them to initialized or split the described range from larger unwritten
2474  * extent. Note that we need not map all the described range since allocation
2475  * can return less blocks or the range is covered by more unwritten extents. We
2476  * cannot map more because we are limited by reserved transaction credits. On
2477  * the other hand we always make sure that the last touched page is fully
2478  * mapped so that it can be written out (and thus forward progress is
2479  * guaranteed). After mapping we submit all mapped pages for IO.
2480  */
2481 static int mpage_map_and_submit_extent(handle_t *handle,
2482 				       struct mpage_da_data *mpd,
2483 				       bool *give_up_on_write)
2484 {
2485 	struct inode *inode = mpd->inode;
2486 	struct ext4_map_blocks *map = &mpd->map;
2487 	int err;
2488 	loff_t disksize;
2489 	int progress = 0;
2490 
2491 	mpd->io_submit.io_end->offset =
2492 				((loff_t)map->m_lblk) << inode->i_blkbits;
2493 	do {
2494 		err = mpage_map_one_extent(handle, mpd);
2495 		if (err < 0) {
2496 			struct super_block *sb = inode->i_sb;
2497 
2498 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2499 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2500 				goto invalidate_dirty_pages;
2501 			/*
2502 			 * Let the uper layers retry transient errors.
2503 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2504 			 * is non-zero, a commit should free up blocks.
2505 			 */
2506 			if ((err == -ENOMEM) ||
2507 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2508 				if (progress)
2509 					goto update_disksize;
2510 				return err;
2511 			}
2512 			ext4_msg(sb, KERN_CRIT,
2513 				 "Delayed block allocation failed for "
2514 				 "inode %lu at logical offset %llu with"
2515 				 " max blocks %u with error %d",
2516 				 inode->i_ino,
2517 				 (unsigned long long)map->m_lblk,
2518 				 (unsigned)map->m_len, -err);
2519 			ext4_msg(sb, KERN_CRIT,
2520 				 "This should not happen!! Data will "
2521 				 "be lost\n");
2522 			if (err == -ENOSPC)
2523 				ext4_print_free_blocks(inode);
2524 		invalidate_dirty_pages:
2525 			*give_up_on_write = true;
2526 			return err;
2527 		}
2528 		progress = 1;
2529 		/*
2530 		 * Update buffer state, submit mapped pages, and get us new
2531 		 * extent to map
2532 		 */
2533 		err = mpage_map_and_submit_buffers(mpd);
2534 		if (err < 0)
2535 			goto update_disksize;
2536 	} while (map->m_len);
2537 
2538 update_disksize:
2539 	/*
2540 	 * Update on-disk size after IO is submitted.  Races with
2541 	 * truncate are avoided by checking i_size under i_data_sem.
2542 	 */
2543 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2544 	if (disksize > EXT4_I(inode)->i_disksize) {
2545 		int err2;
2546 		loff_t i_size;
2547 
2548 		down_write(&EXT4_I(inode)->i_data_sem);
2549 		i_size = i_size_read(inode);
2550 		if (disksize > i_size)
2551 			disksize = i_size;
2552 		if (disksize > EXT4_I(inode)->i_disksize)
2553 			EXT4_I(inode)->i_disksize = disksize;
2554 		up_write(&EXT4_I(inode)->i_data_sem);
2555 		err2 = ext4_mark_inode_dirty(handle, inode);
2556 		if (err2)
2557 			ext4_error(inode->i_sb,
2558 				   "Failed to mark inode %lu dirty",
2559 				   inode->i_ino);
2560 		if (!err)
2561 			err = err2;
2562 	}
2563 	return err;
2564 }
2565 
2566 /*
2567  * Calculate the total number of credits to reserve for one writepages
2568  * iteration. This is called from ext4_writepages(). We map an extent of
2569  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2570  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2571  * bpp - 1 blocks in bpp different extents.
2572  */
2573 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2574 {
2575 	int bpp = ext4_journal_blocks_per_page(inode);
2576 
2577 	return ext4_meta_trans_blocks(inode,
2578 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2579 }
2580 
2581 /*
2582  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2583  * 				 and underlying extent to map
2584  *
2585  * @mpd - where to look for pages
2586  *
2587  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2588  * IO immediately. When we find a page which isn't mapped we start accumulating
2589  * extent of buffers underlying these pages that needs mapping (formed by
2590  * either delayed or unwritten buffers). We also lock the pages containing
2591  * these buffers. The extent found is returned in @mpd structure (starting at
2592  * mpd->lblk with length mpd->len blocks).
2593  *
2594  * Note that this function can attach bios to one io_end structure which are
2595  * neither logically nor physically contiguous. Although it may seem as an
2596  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2597  * case as we need to track IO to all buffers underlying a page in one io_end.
2598  */
2599 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2600 {
2601 	struct address_space *mapping = mpd->inode->i_mapping;
2602 	struct pagevec pvec;
2603 	unsigned int nr_pages;
2604 	long left = mpd->wbc->nr_to_write;
2605 	pgoff_t index = mpd->first_page;
2606 	pgoff_t end = mpd->last_page;
2607 	int tag;
2608 	int i, err = 0;
2609 	int blkbits = mpd->inode->i_blkbits;
2610 	ext4_lblk_t lblk;
2611 	struct buffer_head *head;
2612 
2613 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2614 		tag = PAGECACHE_TAG_TOWRITE;
2615 	else
2616 		tag = PAGECACHE_TAG_DIRTY;
2617 
2618 	pagevec_init(&pvec, 0);
2619 	mpd->map.m_len = 0;
2620 	mpd->next_page = index;
2621 	while (index <= end) {
2622 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2623 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2624 		if (nr_pages == 0)
2625 			goto out;
2626 
2627 		for (i = 0; i < nr_pages; i++) {
2628 			struct page *page = pvec.pages[i];
2629 
2630 			/*
2631 			 * At this point, the page may be truncated or
2632 			 * invalidated (changing page->mapping to NULL), or
2633 			 * even swizzled back from swapper_space to tmpfs file
2634 			 * mapping. However, page->index will not change
2635 			 * because we have a reference on the page.
2636 			 */
2637 			if (page->index > end)
2638 				goto out;
2639 
2640 			/*
2641 			 * Accumulated enough dirty pages? This doesn't apply
2642 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 			 * keep going because someone may be concurrently
2644 			 * dirtying pages, and we might have synced a lot of
2645 			 * newly appeared dirty pages, but have not synced all
2646 			 * of the old dirty pages.
2647 			 */
2648 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649 				goto out;
2650 
2651 			/* If we can't merge this page, we are done. */
2652 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653 				goto out;
2654 
2655 			lock_page(page);
2656 			/*
2657 			 * If the page is no longer dirty, or its mapping no
2658 			 * longer corresponds to inode we are writing (which
2659 			 * means it has been truncated or invalidated), or the
2660 			 * page is already under writeback and we are not doing
2661 			 * a data integrity writeback, skip the page
2662 			 */
2663 			if (!PageDirty(page) ||
2664 			    (PageWriteback(page) &&
2665 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666 			    unlikely(page->mapping != mapping)) {
2667 				unlock_page(page);
2668 				continue;
2669 			}
2670 
2671 			wait_on_page_writeback(page);
2672 			BUG_ON(PageWriteback(page));
2673 
2674 			if (mpd->map.m_len == 0)
2675 				mpd->first_page = page->index;
2676 			mpd->next_page = page->index + 1;
2677 			/* Add all dirty buffers to mpd */
2678 			lblk = ((ext4_lblk_t)page->index) <<
2679 				(PAGE_SHIFT - blkbits);
2680 			head = page_buffers(page);
2681 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 			if (err <= 0)
2683 				goto out;
2684 			err = 0;
2685 			left--;
2686 		}
2687 		pagevec_release(&pvec);
2688 		cond_resched();
2689 	}
2690 	return 0;
2691 out:
2692 	pagevec_release(&pvec);
2693 	return err;
2694 }
2695 
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2697 		       void *data)
2698 {
2699 	struct address_space *mapping = data;
2700 	int ret = ext4_writepage(page, wbc);
2701 	mapping_set_error(mapping, ret);
2702 	return ret;
2703 }
2704 
2705 static int ext4_writepages(struct address_space *mapping,
2706 			   struct writeback_control *wbc)
2707 {
2708 	pgoff_t	writeback_index = 0;
2709 	long nr_to_write = wbc->nr_to_write;
2710 	int range_whole = 0;
2711 	int cycled = 1;
2712 	handle_t *handle = NULL;
2713 	struct mpage_da_data mpd;
2714 	struct inode *inode = mapping->host;
2715 	int needed_blocks, rsv_blocks = 0, ret = 0;
2716 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2717 	bool done;
2718 	struct blk_plug plug;
2719 	bool give_up_on_write = false;
2720 
2721 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722 		return -EIO;
2723 
2724 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2725 	trace_ext4_writepages(inode, wbc);
2726 
2727 	if (dax_mapping(mapping)) {
2728 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729 						  wbc);
2730 		goto out_writepages;
2731 	}
2732 
2733 	/*
2734 	 * No pages to write? This is mainly a kludge to avoid starting
2735 	 * a transaction for special inodes like journal inode on last iput()
2736 	 * because that could violate lock ordering on umount
2737 	 */
2738 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739 		goto out_writepages;
2740 
2741 	if (ext4_should_journal_data(inode)) {
2742 		struct blk_plug plug;
2743 
2744 		blk_start_plug(&plug);
2745 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 		blk_finish_plug(&plug);
2747 		goto out_writepages;
2748 	}
2749 
2750 	/*
2751 	 * If the filesystem has aborted, it is read-only, so return
2752 	 * right away instead of dumping stack traces later on that
2753 	 * will obscure the real source of the problem.  We test
2754 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2755 	 * the latter could be true if the filesystem is mounted
2756 	 * read-only, and in that case, ext4_writepages should
2757 	 * *never* be called, so if that ever happens, we would want
2758 	 * the stack trace.
2759 	 */
2760 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2762 		ret = -EROFS;
2763 		goto out_writepages;
2764 	}
2765 
2766 	if (ext4_should_dioread_nolock(inode)) {
2767 		/*
2768 		 * We may need to convert up to one extent per block in
2769 		 * the page and we may dirty the inode.
2770 		 */
2771 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2772 	}
2773 
2774 	/*
2775 	 * If we have inline data and arrive here, it means that
2776 	 * we will soon create the block for the 1st page, so
2777 	 * we'd better clear the inline data here.
2778 	 */
2779 	if (ext4_has_inline_data(inode)) {
2780 		/* Just inode will be modified... */
2781 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 		if (IS_ERR(handle)) {
2783 			ret = PTR_ERR(handle);
2784 			goto out_writepages;
2785 		}
2786 		BUG_ON(ext4_test_inode_state(inode,
2787 				EXT4_STATE_MAY_INLINE_DATA));
2788 		ext4_destroy_inline_data(handle, inode);
2789 		ext4_journal_stop(handle);
2790 	}
2791 
2792 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 		range_whole = 1;
2794 
2795 	if (wbc->range_cyclic) {
2796 		writeback_index = mapping->writeback_index;
2797 		if (writeback_index)
2798 			cycled = 0;
2799 		mpd.first_page = writeback_index;
2800 		mpd.last_page = -1;
2801 	} else {
2802 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804 	}
2805 
2806 	mpd.inode = inode;
2807 	mpd.wbc = wbc;
2808 	ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 	done = false;
2813 	blk_start_plug(&plug);
2814 
2815 	/*
2816 	 * First writeback pages that don't need mapping - we can avoid
2817 	 * starting a transaction unnecessarily and also avoid being blocked
2818 	 * in the block layer on device congestion while having transaction
2819 	 * started.
2820 	 */
2821 	mpd.do_map = 0;
2822 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 	if (!mpd.io_submit.io_end) {
2824 		ret = -ENOMEM;
2825 		goto unplug;
2826 	}
2827 	ret = mpage_prepare_extent_to_map(&mpd);
2828 	/* Submit prepared bio */
2829 	ext4_io_submit(&mpd.io_submit);
2830 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 	mpd.io_submit.io_end = NULL;
2832 	/* Unlock pages we didn't use */
2833 	mpage_release_unused_pages(&mpd, false);
2834 	if (ret < 0)
2835 		goto unplug;
2836 
2837 	while (!done && mpd.first_page <= mpd.last_page) {
2838 		/* For each extent of pages we use new io_end */
2839 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 		if (!mpd.io_submit.io_end) {
2841 			ret = -ENOMEM;
2842 			break;
2843 		}
2844 
2845 		/*
2846 		 * We have two constraints: We find one extent to map and we
2847 		 * must always write out whole page (makes a difference when
2848 		 * blocksize < pagesize) so that we don't block on IO when we
2849 		 * try to write out the rest of the page. Journalled mode is
2850 		 * not supported by delalloc.
2851 		 */
2852 		BUG_ON(ext4_should_journal_data(inode));
2853 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854 
2855 		/* start a new transaction */
2856 		handle = ext4_journal_start_with_reserve(inode,
2857 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858 		if (IS_ERR(handle)) {
2859 			ret = PTR_ERR(handle);
2860 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861 			       "%ld pages, ino %lu; err %d", __func__,
2862 				wbc->nr_to_write, inode->i_ino, ret);
2863 			/* Release allocated io_end */
2864 			ext4_put_io_end(mpd.io_submit.io_end);
2865 			mpd.io_submit.io_end = NULL;
2866 			break;
2867 		}
2868 		mpd.do_map = 1;
2869 
2870 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 		ret = mpage_prepare_extent_to_map(&mpd);
2872 		if (!ret) {
2873 			if (mpd.map.m_len)
2874 				ret = mpage_map_and_submit_extent(handle, &mpd,
2875 					&give_up_on_write);
2876 			else {
2877 				/*
2878 				 * We scanned the whole range (or exhausted
2879 				 * nr_to_write), submitted what was mapped and
2880 				 * didn't find anything needing mapping. We are
2881 				 * done.
2882 				 */
2883 				done = true;
2884 			}
2885 		}
2886 		/*
2887 		 * Caution: If the handle is synchronous,
2888 		 * ext4_journal_stop() can wait for transaction commit
2889 		 * to finish which may depend on writeback of pages to
2890 		 * complete or on page lock to be released.  In that
2891 		 * case, we have to wait until after after we have
2892 		 * submitted all the IO, released page locks we hold,
2893 		 * and dropped io_end reference (for extent conversion
2894 		 * to be able to complete) before stopping the handle.
2895 		 */
2896 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 			ext4_journal_stop(handle);
2898 			handle = NULL;
2899 			mpd.do_map = 0;
2900 		}
2901 		/* Submit prepared bio */
2902 		ext4_io_submit(&mpd.io_submit);
2903 		/* Unlock pages we didn't use */
2904 		mpage_release_unused_pages(&mpd, give_up_on_write);
2905 		/*
2906 		 * Drop our io_end reference we got from init. We have
2907 		 * to be careful and use deferred io_end finishing if
2908 		 * we are still holding the transaction as we can
2909 		 * release the last reference to io_end which may end
2910 		 * up doing unwritten extent conversion.
2911 		 */
2912 		if (handle) {
2913 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 			ext4_journal_stop(handle);
2915 		} else
2916 			ext4_put_io_end(mpd.io_submit.io_end);
2917 		mpd.io_submit.io_end = NULL;
2918 
2919 		if (ret == -ENOSPC && sbi->s_journal) {
2920 			/*
2921 			 * Commit the transaction which would
2922 			 * free blocks released in the transaction
2923 			 * and try again
2924 			 */
2925 			jbd2_journal_force_commit_nested(sbi->s_journal);
2926 			ret = 0;
2927 			continue;
2928 		}
2929 		/* Fatal error - ENOMEM, EIO... */
2930 		if (ret)
2931 			break;
2932 	}
2933 unplug:
2934 	blk_finish_plug(&plug);
2935 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2936 		cycled = 1;
2937 		mpd.last_page = writeback_index - 1;
2938 		mpd.first_page = 0;
2939 		goto retry;
2940 	}
2941 
2942 	/* Update index */
2943 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 		/*
2945 		 * Set the writeback_index so that range_cyclic
2946 		 * mode will write it back later
2947 		 */
2948 		mapping->writeback_index = mpd.first_page;
2949 
2950 out_writepages:
2951 	trace_ext4_writepages_result(inode, wbc, ret,
2952 				     nr_to_write - wbc->nr_to_write);
2953 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2954 	return ret;
2955 }
2956 
2957 static int ext4_nonda_switch(struct super_block *sb)
2958 {
2959 	s64 free_clusters, dirty_clusters;
2960 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2961 
2962 	/*
2963 	 * switch to non delalloc mode if we are running low
2964 	 * on free block. The free block accounting via percpu
2965 	 * counters can get slightly wrong with percpu_counter_batch getting
2966 	 * accumulated on each CPU without updating global counters
2967 	 * Delalloc need an accurate free block accounting. So switch
2968 	 * to non delalloc when we are near to error range.
2969 	 */
2970 	free_clusters =
2971 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972 	dirty_clusters =
2973 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2974 	/*
2975 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2976 	 */
2977 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2979 
2980 	if (2 * free_clusters < 3 * dirty_clusters ||
2981 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2982 		/*
2983 		 * free block count is less than 150% of dirty blocks
2984 		 * or free blocks is less than watermark
2985 		 */
2986 		return 1;
2987 	}
2988 	return 0;
2989 }
2990 
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993 {
2994 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2995 		return 1;
2996 
2997 	if (pos + len <= 0x7fffffffULL)
2998 		return 1;
2999 
3000 	/* We might need to update the superblock to set LARGE_FILE */
3001 	return 2;
3002 }
3003 
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 			       loff_t pos, unsigned len, unsigned flags,
3006 			       struct page **pagep, void **fsdata)
3007 {
3008 	int ret, retries = 0;
3009 	struct page *page;
3010 	pgoff_t index;
3011 	struct inode *inode = mapping->host;
3012 	handle_t *handle;
3013 
3014 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015 		return -EIO;
3016 
3017 	index = pos >> PAGE_SHIFT;
3018 
3019 	if (ext4_nonda_switch(inode->i_sb) ||
3020 	    S_ISLNK(inode->i_mode)) {
3021 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 		return ext4_write_begin(file, mapping, pos,
3023 					len, flags, pagep, fsdata);
3024 	}
3025 	*fsdata = (void *)0;
3026 	trace_ext4_da_write_begin(inode, pos, len, flags);
3027 
3028 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3030 						      pos, len, flags,
3031 						      pagep, fsdata);
3032 		if (ret < 0)
3033 			return ret;
3034 		if (ret == 1)
3035 			return 0;
3036 	}
3037 
3038 	/*
3039 	 * grab_cache_page_write_begin() can take a long time if the
3040 	 * system is thrashing due to memory pressure, or if the page
3041 	 * is being written back.  So grab it first before we start
3042 	 * the transaction handle.  This also allows us to allocate
3043 	 * the page (if needed) without using GFP_NOFS.
3044 	 */
3045 retry_grab:
3046 	page = grab_cache_page_write_begin(mapping, index, flags);
3047 	if (!page)
3048 		return -ENOMEM;
3049 	unlock_page(page);
3050 
3051 	/*
3052 	 * With delayed allocation, we don't log the i_disksize update
3053 	 * if there is delayed block allocation. But we still need
3054 	 * to journalling the i_disksize update if writes to the end
3055 	 * of file which has an already mapped buffer.
3056 	 */
3057 retry_journal:
3058 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 				ext4_da_write_credits(inode, pos, len));
3060 	if (IS_ERR(handle)) {
3061 		put_page(page);
3062 		return PTR_ERR(handle);
3063 	}
3064 
3065 	lock_page(page);
3066 	if (page->mapping != mapping) {
3067 		/* The page got truncated from under us */
3068 		unlock_page(page);
3069 		put_page(page);
3070 		ext4_journal_stop(handle);
3071 		goto retry_grab;
3072 	}
3073 	/* In case writeback began while the page was unlocked */
3074 	wait_for_stable_page(page);
3075 
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 	ret = ext4_block_write_begin(page, pos, len,
3078 				     ext4_da_get_block_prep);
3079 #else
3080 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3081 #endif
3082 	if (ret < 0) {
3083 		unlock_page(page);
3084 		ext4_journal_stop(handle);
3085 		/*
3086 		 * block_write_begin may have instantiated a few blocks
3087 		 * outside i_size.  Trim these off again. Don't need
3088 		 * i_size_read because we hold i_mutex.
3089 		 */
3090 		if (pos + len > inode->i_size)
3091 			ext4_truncate_failed_write(inode);
3092 
3093 		if (ret == -ENOSPC &&
3094 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3095 			goto retry_journal;
3096 
3097 		put_page(page);
3098 		return ret;
3099 	}
3100 
3101 	*pagep = page;
3102 	return ret;
3103 }
3104 
3105 /*
3106  * Check if we should update i_disksize
3107  * when write to the end of file but not require block allocation
3108  */
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110 					    unsigned long offset)
3111 {
3112 	struct buffer_head *bh;
3113 	struct inode *inode = page->mapping->host;
3114 	unsigned int idx;
3115 	int i;
3116 
3117 	bh = page_buffers(page);
3118 	idx = offset >> inode->i_blkbits;
3119 
3120 	for (i = 0; i < idx; i++)
3121 		bh = bh->b_this_page;
3122 
3123 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124 		return 0;
3125 	return 1;
3126 }
3127 
3128 static int ext4_da_write_end(struct file *file,
3129 			     struct address_space *mapping,
3130 			     loff_t pos, unsigned len, unsigned copied,
3131 			     struct page *page, void *fsdata)
3132 {
3133 	struct inode *inode = mapping->host;
3134 	int ret = 0, ret2;
3135 	handle_t *handle = ext4_journal_current_handle();
3136 	loff_t new_i_size;
3137 	unsigned long start, end;
3138 	int write_mode = (int)(unsigned long)fsdata;
3139 
3140 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 		return ext4_write_end(file, mapping, pos,
3142 				      len, copied, page, fsdata);
3143 
3144 	trace_ext4_da_write_end(inode, pos, len, copied);
3145 	start = pos & (PAGE_SIZE - 1);
3146 	end = start + copied - 1;
3147 
3148 	/*
3149 	 * generic_write_end() will run mark_inode_dirty() if i_size
3150 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3151 	 * into that.
3152 	 */
3153 	new_i_size = pos + copied;
3154 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155 		if (ext4_has_inline_data(inode) ||
3156 		    ext4_da_should_update_i_disksize(page, end)) {
3157 			ext4_update_i_disksize(inode, new_i_size);
3158 			/* We need to mark inode dirty even if
3159 			 * new_i_size is less that inode->i_size
3160 			 * bu greater than i_disksize.(hint delalloc)
3161 			 */
3162 			ext4_mark_inode_dirty(handle, inode);
3163 		}
3164 	}
3165 
3166 	if (write_mode != CONVERT_INLINE_DATA &&
3167 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 	    ext4_has_inline_data(inode))
3169 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170 						     page);
3171 	else
3172 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3173 							page, fsdata);
3174 
3175 	copied = ret2;
3176 	if (ret2 < 0)
3177 		ret = ret2;
3178 	ret2 = ext4_journal_stop(handle);
3179 	if (!ret)
3180 		ret = ret2;
3181 
3182 	return ret ? ret : copied;
3183 }
3184 
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 				   unsigned int length)
3187 {
3188 	/*
3189 	 * Drop reserved blocks
3190 	 */
3191 	BUG_ON(!PageLocked(page));
3192 	if (!page_has_buffers(page))
3193 		goto out;
3194 
3195 	ext4_da_page_release_reservation(page, offset, length);
3196 
3197 out:
3198 	ext4_invalidatepage(page, offset, length);
3199 
3200 	return;
3201 }
3202 
3203 /*
3204  * Force all delayed allocation blocks to be allocated for a given inode.
3205  */
3206 int ext4_alloc_da_blocks(struct inode *inode)
3207 {
3208 	trace_ext4_alloc_da_blocks(inode);
3209 
3210 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3211 		return 0;
3212 
3213 	/*
3214 	 * We do something simple for now.  The filemap_flush() will
3215 	 * also start triggering a write of the data blocks, which is
3216 	 * not strictly speaking necessary (and for users of
3217 	 * laptop_mode, not even desirable).  However, to do otherwise
3218 	 * would require replicating code paths in:
3219 	 *
3220 	 * ext4_writepages() ->
3221 	 *    write_cache_pages() ---> (via passed in callback function)
3222 	 *        __mpage_da_writepage() -->
3223 	 *           mpage_add_bh_to_extent()
3224 	 *           mpage_da_map_blocks()
3225 	 *
3226 	 * The problem is that write_cache_pages(), located in
3227 	 * mm/page-writeback.c, marks pages clean in preparation for
3228 	 * doing I/O, which is not desirable if we're not planning on
3229 	 * doing I/O at all.
3230 	 *
3231 	 * We could call write_cache_pages(), and then redirty all of
3232 	 * the pages by calling redirty_page_for_writepage() but that
3233 	 * would be ugly in the extreme.  So instead we would need to
3234 	 * replicate parts of the code in the above functions,
3235 	 * simplifying them because we wouldn't actually intend to
3236 	 * write out the pages, but rather only collect contiguous
3237 	 * logical block extents, call the multi-block allocator, and
3238 	 * then update the buffer heads with the block allocations.
3239 	 *
3240 	 * For now, though, we'll cheat by calling filemap_flush(),
3241 	 * which will map the blocks, and start the I/O, but not
3242 	 * actually wait for the I/O to complete.
3243 	 */
3244 	return filemap_flush(inode->i_mapping);
3245 }
3246 
3247 /*
3248  * bmap() is special.  It gets used by applications such as lilo and by
3249  * the swapper to find the on-disk block of a specific piece of data.
3250  *
3251  * Naturally, this is dangerous if the block concerned is still in the
3252  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3253  * filesystem and enables swap, then they may get a nasty shock when the
3254  * data getting swapped to that swapfile suddenly gets overwritten by
3255  * the original zero's written out previously to the journal and
3256  * awaiting writeback in the kernel's buffer cache.
3257  *
3258  * So, if we see any bmap calls here on a modified, data-journaled file,
3259  * take extra steps to flush any blocks which might be in the cache.
3260  */
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3262 {
3263 	struct inode *inode = mapping->host;
3264 	journal_t *journal;
3265 	int err;
3266 
3267 	/*
3268 	 * We can get here for an inline file via the FIBMAP ioctl
3269 	 */
3270 	if (ext4_has_inline_data(inode))
3271 		return 0;
3272 
3273 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 			test_opt(inode->i_sb, DELALLOC)) {
3275 		/*
3276 		 * With delalloc we want to sync the file
3277 		 * so that we can make sure we allocate
3278 		 * blocks for file
3279 		 */
3280 		filemap_write_and_wait(mapping);
3281 	}
3282 
3283 	if (EXT4_JOURNAL(inode) &&
3284 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3285 		/*
3286 		 * This is a REALLY heavyweight approach, but the use of
3287 		 * bmap on dirty files is expected to be extremely rare:
3288 		 * only if we run lilo or swapon on a freshly made file
3289 		 * do we expect this to happen.
3290 		 *
3291 		 * (bmap requires CAP_SYS_RAWIO so this does not
3292 		 * represent an unprivileged user DOS attack --- we'd be
3293 		 * in trouble if mortal users could trigger this path at
3294 		 * will.)
3295 		 *
3296 		 * NB. EXT4_STATE_JDATA is not set on files other than
3297 		 * regular files.  If somebody wants to bmap a directory
3298 		 * or symlink and gets confused because the buffer
3299 		 * hasn't yet been flushed to disk, they deserve
3300 		 * everything they get.
3301 		 */
3302 
3303 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304 		journal = EXT4_JOURNAL(inode);
3305 		jbd2_journal_lock_updates(journal);
3306 		err = jbd2_journal_flush(journal);
3307 		jbd2_journal_unlock_updates(journal);
3308 
3309 		if (err)
3310 			return 0;
3311 	}
3312 
3313 	return generic_block_bmap(mapping, block, ext4_get_block);
3314 }
3315 
3316 static int ext4_readpage(struct file *file, struct page *page)
3317 {
3318 	int ret = -EAGAIN;
3319 	struct inode *inode = page->mapping->host;
3320 
3321 	trace_ext4_readpage(page);
3322 
3323 	if (ext4_has_inline_data(inode))
3324 		ret = ext4_readpage_inline(inode, page);
3325 
3326 	if (ret == -EAGAIN)
3327 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3328 
3329 	return ret;
3330 }
3331 
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334 		struct list_head *pages, unsigned nr_pages)
3335 {
3336 	struct inode *inode = mapping->host;
3337 
3338 	/* If the file has inline data, no need to do readpages. */
3339 	if (ext4_has_inline_data(inode))
3340 		return 0;
3341 
3342 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3343 }
3344 
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 				unsigned int length)
3347 {
3348 	trace_ext4_invalidatepage(page, offset, length);
3349 
3350 	/* No journalling happens on data buffers when this function is used */
3351 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352 
3353 	block_invalidatepage(page, offset, length);
3354 }
3355 
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357 					    unsigned int offset,
3358 					    unsigned int length)
3359 {
3360 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361 
3362 	trace_ext4_journalled_invalidatepage(page, offset, length);
3363 
3364 	/*
3365 	 * If it's a full truncate we just forget about the pending dirtying
3366 	 */
3367 	if (offset == 0 && length == PAGE_SIZE)
3368 		ClearPageChecked(page);
3369 
3370 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372 
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375 					   unsigned int offset,
3376 					   unsigned int length)
3377 {
3378 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380 
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384 
3385 	trace_ext4_releasepage(page);
3386 
3387 	/* Page has dirty journalled data -> cannot release */
3388 	if (PageChecked(page))
3389 		return 0;
3390 	if (journal)
3391 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 	else
3393 		return try_to_free_buffers(page);
3394 }
3395 
3396 #ifdef CONFIG_FS_DAX
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398 			    unsigned flags, struct iomap *iomap)
3399 {
3400 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3401 	unsigned int blkbits = inode->i_blkbits;
3402 	unsigned long first_block = offset >> blkbits;
3403 	unsigned long last_block = (offset + length - 1) >> blkbits;
3404 	struct ext4_map_blocks map;
3405 	int ret;
3406 
3407 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408 		return -ERANGE;
3409 
3410 	map.m_lblk = first_block;
3411 	map.m_len = last_block - first_block + 1;
3412 
3413 	if (!(flags & IOMAP_WRITE)) {
3414 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3415 	} else {
3416 		int dio_credits;
3417 		handle_t *handle;
3418 		int retries = 0;
3419 
3420 		/* Trim mapping request to maximum we can map at once for DIO */
3421 		if (map.m_len > DIO_MAX_BLOCKS)
3422 			map.m_len = DIO_MAX_BLOCKS;
3423 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3424 retry:
3425 		/*
3426 		 * Either we allocate blocks and then we don't get unwritten
3427 		 * extent so we have reserved enough credits, or the blocks
3428 		 * are already allocated and unwritten and in that case
3429 		 * extent conversion fits in the credits as well.
3430 		 */
3431 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3432 					    dio_credits);
3433 		if (IS_ERR(handle))
3434 			return PTR_ERR(handle);
3435 
3436 		ret = ext4_map_blocks(handle, inode, &map,
3437 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3438 		if (ret < 0) {
3439 			ext4_journal_stop(handle);
3440 			if (ret == -ENOSPC &&
3441 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3442 				goto retry;
3443 			return ret;
3444 		}
3445 
3446 		/*
3447 		 * If we added blocks beyond i_size, we need to make sure they
3448 		 * will get truncated if we crash before updating i_size in
3449 		 * ext4_iomap_end(). For faults we don't need to do that (and
3450 		 * even cannot because for orphan list operations inode_lock is
3451 		 * required) - if we happen to instantiate block beyond i_size,
3452 		 * it is because we race with truncate which has already added
3453 		 * the inode to the orphan list.
3454 		 */
3455 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3456 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3457 			int err;
3458 
3459 			err = ext4_orphan_add(handle, inode);
3460 			if (err < 0) {
3461 				ext4_journal_stop(handle);
3462 				return err;
3463 			}
3464 		}
3465 		ext4_journal_stop(handle);
3466 	}
3467 
3468 	iomap->flags = 0;
3469 	iomap->bdev = inode->i_sb->s_bdev;
3470 	iomap->dax_dev = sbi->s_daxdev;
3471 	iomap->offset = first_block << blkbits;
3472 
3473 	if (ret == 0) {
3474 		iomap->type = IOMAP_HOLE;
3475 		iomap->blkno = IOMAP_NULL_BLOCK;
3476 		iomap->length = (u64)map.m_len << blkbits;
3477 	} else {
3478 		if (map.m_flags & EXT4_MAP_MAPPED) {
3479 			iomap->type = IOMAP_MAPPED;
3480 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3481 			iomap->type = IOMAP_UNWRITTEN;
3482 		} else {
3483 			WARN_ON_ONCE(1);
3484 			return -EIO;
3485 		}
3486 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3487 		iomap->length = (u64)map.m_len << blkbits;
3488 	}
3489 
3490 	if (map.m_flags & EXT4_MAP_NEW)
3491 		iomap->flags |= IOMAP_F_NEW;
3492 	return 0;
3493 }
3494 
3495 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3496 			  ssize_t written, unsigned flags, struct iomap *iomap)
3497 {
3498 	int ret = 0;
3499 	handle_t *handle;
3500 	int blkbits = inode->i_blkbits;
3501 	bool truncate = false;
3502 
3503 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3504 		return 0;
3505 
3506 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3507 	if (IS_ERR(handle)) {
3508 		ret = PTR_ERR(handle);
3509 		goto orphan_del;
3510 	}
3511 	if (ext4_update_inode_size(inode, offset + written))
3512 		ext4_mark_inode_dirty(handle, inode);
3513 	/*
3514 	 * We may need to truncate allocated but not written blocks beyond EOF.
3515 	 */
3516 	if (iomap->offset + iomap->length >
3517 	    ALIGN(inode->i_size, 1 << blkbits)) {
3518 		ext4_lblk_t written_blk, end_blk;
3519 
3520 		written_blk = (offset + written) >> blkbits;
3521 		end_blk = (offset + length) >> blkbits;
3522 		if (written_blk < end_blk && ext4_can_truncate(inode))
3523 			truncate = true;
3524 	}
3525 	/*
3526 	 * Remove inode from orphan list if we were extending a inode and
3527 	 * everything went fine.
3528 	 */
3529 	if (!truncate && inode->i_nlink &&
3530 	    !list_empty(&EXT4_I(inode)->i_orphan))
3531 		ext4_orphan_del(handle, inode);
3532 	ext4_journal_stop(handle);
3533 	if (truncate) {
3534 		ext4_truncate_failed_write(inode);
3535 orphan_del:
3536 		/*
3537 		 * If truncate failed early the inode might still be on the
3538 		 * orphan list; we need to make sure the inode is removed from
3539 		 * the orphan list in that case.
3540 		 */
3541 		if (inode->i_nlink)
3542 			ext4_orphan_del(NULL, inode);
3543 	}
3544 	return ret;
3545 }
3546 
3547 const struct iomap_ops ext4_iomap_ops = {
3548 	.iomap_begin		= ext4_iomap_begin,
3549 	.iomap_end		= ext4_iomap_end,
3550 };
3551 
3552 #endif
3553 
3554 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3555 			    ssize_t size, void *private)
3556 {
3557         ext4_io_end_t *io_end = private;
3558 
3559 	/* if not async direct IO just return */
3560 	if (!io_end)
3561 		return 0;
3562 
3563 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3564 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3565 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3566 
3567 	/*
3568 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3569 	 * data was not written. Just clear the unwritten flag and drop io_end.
3570 	 */
3571 	if (size <= 0) {
3572 		ext4_clear_io_unwritten_flag(io_end);
3573 		size = 0;
3574 	}
3575 	io_end->offset = offset;
3576 	io_end->size = size;
3577 	ext4_put_io_end(io_end);
3578 
3579 	return 0;
3580 }
3581 
3582 /*
3583  * Handling of direct IO writes.
3584  *
3585  * For ext4 extent files, ext4 will do direct-io write even to holes,
3586  * preallocated extents, and those write extend the file, no need to
3587  * fall back to buffered IO.
3588  *
3589  * For holes, we fallocate those blocks, mark them as unwritten
3590  * If those blocks were preallocated, we mark sure they are split, but
3591  * still keep the range to write as unwritten.
3592  *
3593  * The unwritten extents will be converted to written when DIO is completed.
3594  * For async direct IO, since the IO may still pending when return, we
3595  * set up an end_io call back function, which will do the conversion
3596  * when async direct IO completed.
3597  *
3598  * If the O_DIRECT write will extend the file then add this inode to the
3599  * orphan list.  So recovery will truncate it back to the original size
3600  * if the machine crashes during the write.
3601  *
3602  */
3603 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3604 {
3605 	struct file *file = iocb->ki_filp;
3606 	struct inode *inode = file->f_mapping->host;
3607 	struct ext4_inode_info *ei = EXT4_I(inode);
3608 	ssize_t ret;
3609 	loff_t offset = iocb->ki_pos;
3610 	size_t count = iov_iter_count(iter);
3611 	int overwrite = 0;
3612 	get_block_t *get_block_func = NULL;
3613 	int dio_flags = 0;
3614 	loff_t final_size = offset + count;
3615 	int orphan = 0;
3616 	handle_t *handle;
3617 
3618 	if (final_size > inode->i_size) {
3619 		/* Credits for sb + inode write */
3620 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3621 		if (IS_ERR(handle)) {
3622 			ret = PTR_ERR(handle);
3623 			goto out;
3624 		}
3625 		ret = ext4_orphan_add(handle, inode);
3626 		if (ret) {
3627 			ext4_journal_stop(handle);
3628 			goto out;
3629 		}
3630 		orphan = 1;
3631 		ei->i_disksize = inode->i_size;
3632 		ext4_journal_stop(handle);
3633 	}
3634 
3635 	BUG_ON(iocb->private == NULL);
3636 
3637 	/*
3638 	 * Make all waiters for direct IO properly wait also for extent
3639 	 * conversion. This also disallows race between truncate() and
3640 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3641 	 */
3642 	inode_dio_begin(inode);
3643 
3644 	/* If we do a overwrite dio, i_mutex locking can be released */
3645 	overwrite = *((int *)iocb->private);
3646 
3647 	if (overwrite)
3648 		inode_unlock(inode);
3649 
3650 	/*
3651 	 * For extent mapped files we could direct write to holes and fallocate.
3652 	 *
3653 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3654 	 * parallel buffered read to expose the stale data before DIO complete
3655 	 * the data IO.
3656 	 *
3657 	 * As to previously fallocated extents, ext4 get_block will just simply
3658 	 * mark the buffer mapped but still keep the extents unwritten.
3659 	 *
3660 	 * For non AIO case, we will convert those unwritten extents to written
3661 	 * after return back from blockdev_direct_IO. That way we save us from
3662 	 * allocating io_end structure and also the overhead of offloading
3663 	 * the extent convertion to a workqueue.
3664 	 *
3665 	 * For async DIO, the conversion needs to be deferred when the
3666 	 * IO is completed. The ext4 end_io callback function will be
3667 	 * called to take care of the conversion work.  Here for async
3668 	 * case, we allocate an io_end structure to hook to the iocb.
3669 	 */
3670 	iocb->private = NULL;
3671 	if (overwrite)
3672 		get_block_func = ext4_dio_get_block_overwrite;
3673 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3674 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3675 		get_block_func = ext4_dio_get_block;
3676 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3677 	} else if (is_sync_kiocb(iocb)) {
3678 		get_block_func = ext4_dio_get_block_unwritten_sync;
3679 		dio_flags = DIO_LOCKING;
3680 	} else {
3681 		get_block_func = ext4_dio_get_block_unwritten_async;
3682 		dio_flags = DIO_LOCKING;
3683 	}
3684 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3685 				   get_block_func, ext4_end_io_dio, NULL,
3686 				   dio_flags);
3687 
3688 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3689 						EXT4_STATE_DIO_UNWRITTEN)) {
3690 		int err;
3691 		/*
3692 		 * for non AIO case, since the IO is already
3693 		 * completed, we could do the conversion right here
3694 		 */
3695 		err = ext4_convert_unwritten_extents(NULL, inode,
3696 						     offset, ret);
3697 		if (err < 0)
3698 			ret = err;
3699 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3700 	}
3701 
3702 	inode_dio_end(inode);
3703 	/* take i_mutex locking again if we do a ovewrite dio */
3704 	if (overwrite)
3705 		inode_lock(inode);
3706 
3707 	if (ret < 0 && final_size > inode->i_size)
3708 		ext4_truncate_failed_write(inode);
3709 
3710 	/* Handle extending of i_size after direct IO write */
3711 	if (orphan) {
3712 		int err;
3713 
3714 		/* Credits for sb + inode write */
3715 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3716 		if (IS_ERR(handle)) {
3717 			/* This is really bad luck. We've written the data
3718 			 * but cannot extend i_size. Bail out and pretend
3719 			 * the write failed... */
3720 			ret = PTR_ERR(handle);
3721 			if (inode->i_nlink)
3722 				ext4_orphan_del(NULL, inode);
3723 
3724 			goto out;
3725 		}
3726 		if (inode->i_nlink)
3727 			ext4_orphan_del(handle, inode);
3728 		if (ret > 0) {
3729 			loff_t end = offset + ret;
3730 			if (end > inode->i_size) {
3731 				ei->i_disksize = end;
3732 				i_size_write(inode, end);
3733 				/*
3734 				 * We're going to return a positive `ret'
3735 				 * here due to non-zero-length I/O, so there's
3736 				 * no way of reporting error returns from
3737 				 * ext4_mark_inode_dirty() to userspace.  So
3738 				 * ignore it.
3739 				 */
3740 				ext4_mark_inode_dirty(handle, inode);
3741 			}
3742 		}
3743 		err = ext4_journal_stop(handle);
3744 		if (ret == 0)
3745 			ret = err;
3746 	}
3747 out:
3748 	return ret;
3749 }
3750 
3751 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3752 {
3753 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3754 	struct inode *inode = mapping->host;
3755 	size_t count = iov_iter_count(iter);
3756 	ssize_t ret;
3757 
3758 	/*
3759 	 * Shared inode_lock is enough for us - it protects against concurrent
3760 	 * writes & truncates and since we take care of writing back page cache,
3761 	 * we are protected against page writeback as well.
3762 	 */
3763 	inode_lock_shared(inode);
3764 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3765 					   iocb->ki_pos + count - 1);
3766 	if (ret)
3767 		goto out_unlock;
3768 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3769 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3770 out_unlock:
3771 	inode_unlock_shared(inode);
3772 	return ret;
3773 }
3774 
3775 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3776 {
3777 	struct file *file = iocb->ki_filp;
3778 	struct inode *inode = file->f_mapping->host;
3779 	size_t count = iov_iter_count(iter);
3780 	loff_t offset = iocb->ki_pos;
3781 	ssize_t ret;
3782 
3783 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3784 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3785 		return 0;
3786 #endif
3787 
3788 	/*
3789 	 * If we are doing data journalling we don't support O_DIRECT
3790 	 */
3791 	if (ext4_should_journal_data(inode))
3792 		return 0;
3793 
3794 	/* Let buffer I/O handle the inline data case. */
3795 	if (ext4_has_inline_data(inode))
3796 		return 0;
3797 
3798 	/* DAX uses iomap path now */
3799 	if (WARN_ON_ONCE(IS_DAX(inode)))
3800 		return 0;
3801 
3802 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3803 	if (iov_iter_rw(iter) == READ)
3804 		ret = ext4_direct_IO_read(iocb, iter);
3805 	else
3806 		ret = ext4_direct_IO_write(iocb, iter);
3807 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3808 	return ret;
3809 }
3810 
3811 /*
3812  * Pages can be marked dirty completely asynchronously from ext4's journalling
3813  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3814  * much here because ->set_page_dirty is called under VFS locks.  The page is
3815  * not necessarily locked.
3816  *
3817  * We cannot just dirty the page and leave attached buffers clean, because the
3818  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3819  * or jbddirty because all the journalling code will explode.
3820  *
3821  * So what we do is to mark the page "pending dirty" and next time writepage
3822  * is called, propagate that into the buffers appropriately.
3823  */
3824 static int ext4_journalled_set_page_dirty(struct page *page)
3825 {
3826 	SetPageChecked(page);
3827 	return __set_page_dirty_nobuffers(page);
3828 }
3829 
3830 static int ext4_set_page_dirty(struct page *page)
3831 {
3832 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3833 	WARN_ON_ONCE(!page_has_buffers(page));
3834 	return __set_page_dirty_buffers(page);
3835 }
3836 
3837 static const struct address_space_operations ext4_aops = {
3838 	.readpage		= ext4_readpage,
3839 	.readpages		= ext4_readpages,
3840 	.writepage		= ext4_writepage,
3841 	.writepages		= ext4_writepages,
3842 	.write_begin		= ext4_write_begin,
3843 	.write_end		= ext4_write_end,
3844 	.set_page_dirty		= ext4_set_page_dirty,
3845 	.bmap			= ext4_bmap,
3846 	.invalidatepage		= ext4_invalidatepage,
3847 	.releasepage		= ext4_releasepage,
3848 	.direct_IO		= ext4_direct_IO,
3849 	.migratepage		= buffer_migrate_page,
3850 	.is_partially_uptodate  = block_is_partially_uptodate,
3851 	.error_remove_page	= generic_error_remove_page,
3852 };
3853 
3854 static const struct address_space_operations ext4_journalled_aops = {
3855 	.readpage		= ext4_readpage,
3856 	.readpages		= ext4_readpages,
3857 	.writepage		= ext4_writepage,
3858 	.writepages		= ext4_writepages,
3859 	.write_begin		= ext4_write_begin,
3860 	.write_end		= ext4_journalled_write_end,
3861 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3862 	.bmap			= ext4_bmap,
3863 	.invalidatepage		= ext4_journalled_invalidatepage,
3864 	.releasepage		= ext4_releasepage,
3865 	.direct_IO		= ext4_direct_IO,
3866 	.is_partially_uptodate  = block_is_partially_uptodate,
3867 	.error_remove_page	= generic_error_remove_page,
3868 };
3869 
3870 static const struct address_space_operations ext4_da_aops = {
3871 	.readpage		= ext4_readpage,
3872 	.readpages		= ext4_readpages,
3873 	.writepage		= ext4_writepage,
3874 	.writepages		= ext4_writepages,
3875 	.write_begin		= ext4_da_write_begin,
3876 	.write_end		= ext4_da_write_end,
3877 	.set_page_dirty		= ext4_set_page_dirty,
3878 	.bmap			= ext4_bmap,
3879 	.invalidatepage		= ext4_da_invalidatepage,
3880 	.releasepage		= ext4_releasepage,
3881 	.direct_IO		= ext4_direct_IO,
3882 	.migratepage		= buffer_migrate_page,
3883 	.is_partially_uptodate  = block_is_partially_uptodate,
3884 	.error_remove_page	= generic_error_remove_page,
3885 };
3886 
3887 void ext4_set_aops(struct inode *inode)
3888 {
3889 	switch (ext4_inode_journal_mode(inode)) {
3890 	case EXT4_INODE_ORDERED_DATA_MODE:
3891 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3892 		break;
3893 	case EXT4_INODE_JOURNAL_DATA_MODE:
3894 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3895 		return;
3896 	default:
3897 		BUG();
3898 	}
3899 	if (test_opt(inode->i_sb, DELALLOC))
3900 		inode->i_mapping->a_ops = &ext4_da_aops;
3901 	else
3902 		inode->i_mapping->a_ops = &ext4_aops;
3903 }
3904 
3905 static int __ext4_block_zero_page_range(handle_t *handle,
3906 		struct address_space *mapping, loff_t from, loff_t length)
3907 {
3908 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3909 	unsigned offset = from & (PAGE_SIZE-1);
3910 	unsigned blocksize, pos;
3911 	ext4_lblk_t iblock;
3912 	struct inode *inode = mapping->host;
3913 	struct buffer_head *bh;
3914 	struct page *page;
3915 	int err = 0;
3916 
3917 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3918 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3919 	if (!page)
3920 		return -ENOMEM;
3921 
3922 	blocksize = inode->i_sb->s_blocksize;
3923 
3924 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3925 
3926 	if (!page_has_buffers(page))
3927 		create_empty_buffers(page, blocksize, 0);
3928 
3929 	/* Find the buffer that contains "offset" */
3930 	bh = page_buffers(page);
3931 	pos = blocksize;
3932 	while (offset >= pos) {
3933 		bh = bh->b_this_page;
3934 		iblock++;
3935 		pos += blocksize;
3936 	}
3937 	if (buffer_freed(bh)) {
3938 		BUFFER_TRACE(bh, "freed: skip");
3939 		goto unlock;
3940 	}
3941 	if (!buffer_mapped(bh)) {
3942 		BUFFER_TRACE(bh, "unmapped");
3943 		ext4_get_block(inode, iblock, bh, 0);
3944 		/* unmapped? It's a hole - nothing to do */
3945 		if (!buffer_mapped(bh)) {
3946 			BUFFER_TRACE(bh, "still unmapped");
3947 			goto unlock;
3948 		}
3949 	}
3950 
3951 	/* Ok, it's mapped. Make sure it's up-to-date */
3952 	if (PageUptodate(page))
3953 		set_buffer_uptodate(bh);
3954 
3955 	if (!buffer_uptodate(bh)) {
3956 		err = -EIO;
3957 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3958 		wait_on_buffer(bh);
3959 		/* Uhhuh. Read error. Complain and punt. */
3960 		if (!buffer_uptodate(bh))
3961 			goto unlock;
3962 		if (S_ISREG(inode->i_mode) &&
3963 		    ext4_encrypted_inode(inode)) {
3964 			/* We expect the key to be set. */
3965 			BUG_ON(!fscrypt_has_encryption_key(inode));
3966 			BUG_ON(blocksize != PAGE_SIZE);
3967 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3968 						page, PAGE_SIZE, 0, page->index));
3969 		}
3970 	}
3971 	if (ext4_should_journal_data(inode)) {
3972 		BUFFER_TRACE(bh, "get write access");
3973 		err = ext4_journal_get_write_access(handle, bh);
3974 		if (err)
3975 			goto unlock;
3976 	}
3977 	zero_user(page, offset, length);
3978 	BUFFER_TRACE(bh, "zeroed end of block");
3979 
3980 	if (ext4_should_journal_data(inode)) {
3981 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3982 	} else {
3983 		err = 0;
3984 		mark_buffer_dirty(bh);
3985 		if (ext4_should_order_data(inode))
3986 			err = ext4_jbd2_inode_add_write(handle, inode);
3987 	}
3988 
3989 unlock:
3990 	unlock_page(page);
3991 	put_page(page);
3992 	return err;
3993 }
3994 
3995 /*
3996  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3997  * starting from file offset 'from'.  The range to be zero'd must
3998  * be contained with in one block.  If the specified range exceeds
3999  * the end of the block it will be shortened to end of the block
4000  * that cooresponds to 'from'
4001  */
4002 static int ext4_block_zero_page_range(handle_t *handle,
4003 		struct address_space *mapping, loff_t from, loff_t length)
4004 {
4005 	struct inode *inode = mapping->host;
4006 	unsigned offset = from & (PAGE_SIZE-1);
4007 	unsigned blocksize = inode->i_sb->s_blocksize;
4008 	unsigned max = blocksize - (offset & (blocksize - 1));
4009 
4010 	/*
4011 	 * correct length if it does not fall between
4012 	 * 'from' and the end of the block
4013 	 */
4014 	if (length > max || length < 0)
4015 		length = max;
4016 
4017 	if (IS_DAX(inode)) {
4018 		return iomap_zero_range(inode, from, length, NULL,
4019 					&ext4_iomap_ops);
4020 	}
4021 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4022 }
4023 
4024 /*
4025  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4026  * up to the end of the block which corresponds to `from'.
4027  * This required during truncate. We need to physically zero the tail end
4028  * of that block so it doesn't yield old data if the file is later grown.
4029  */
4030 static int ext4_block_truncate_page(handle_t *handle,
4031 		struct address_space *mapping, loff_t from)
4032 {
4033 	unsigned offset = from & (PAGE_SIZE-1);
4034 	unsigned length;
4035 	unsigned blocksize;
4036 	struct inode *inode = mapping->host;
4037 
4038 	/* If we are processing an encrypted inode during orphan list handling */
4039 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4040 		return 0;
4041 
4042 	blocksize = inode->i_sb->s_blocksize;
4043 	length = blocksize - (offset & (blocksize - 1));
4044 
4045 	return ext4_block_zero_page_range(handle, mapping, from, length);
4046 }
4047 
4048 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4049 			     loff_t lstart, loff_t length)
4050 {
4051 	struct super_block *sb = inode->i_sb;
4052 	struct address_space *mapping = inode->i_mapping;
4053 	unsigned partial_start, partial_end;
4054 	ext4_fsblk_t start, end;
4055 	loff_t byte_end = (lstart + length - 1);
4056 	int err = 0;
4057 
4058 	partial_start = lstart & (sb->s_blocksize - 1);
4059 	partial_end = byte_end & (sb->s_blocksize - 1);
4060 
4061 	start = lstart >> sb->s_blocksize_bits;
4062 	end = byte_end >> sb->s_blocksize_bits;
4063 
4064 	/* Handle partial zero within the single block */
4065 	if (start == end &&
4066 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4067 		err = ext4_block_zero_page_range(handle, mapping,
4068 						 lstart, length);
4069 		return err;
4070 	}
4071 	/* Handle partial zero out on the start of the range */
4072 	if (partial_start) {
4073 		err = ext4_block_zero_page_range(handle, mapping,
4074 						 lstart, sb->s_blocksize);
4075 		if (err)
4076 			return err;
4077 	}
4078 	/* Handle partial zero out on the end of the range */
4079 	if (partial_end != sb->s_blocksize - 1)
4080 		err = ext4_block_zero_page_range(handle, mapping,
4081 						 byte_end - partial_end,
4082 						 partial_end + 1);
4083 	return err;
4084 }
4085 
4086 int ext4_can_truncate(struct inode *inode)
4087 {
4088 	if (S_ISREG(inode->i_mode))
4089 		return 1;
4090 	if (S_ISDIR(inode->i_mode))
4091 		return 1;
4092 	if (S_ISLNK(inode->i_mode))
4093 		return !ext4_inode_is_fast_symlink(inode);
4094 	return 0;
4095 }
4096 
4097 /*
4098  * We have to make sure i_disksize gets properly updated before we truncate
4099  * page cache due to hole punching or zero range. Otherwise i_disksize update
4100  * can get lost as it may have been postponed to submission of writeback but
4101  * that will never happen after we truncate page cache.
4102  */
4103 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4104 				      loff_t len)
4105 {
4106 	handle_t *handle;
4107 	loff_t size = i_size_read(inode);
4108 
4109 	WARN_ON(!inode_is_locked(inode));
4110 	if (offset > size || offset + len < size)
4111 		return 0;
4112 
4113 	if (EXT4_I(inode)->i_disksize >= size)
4114 		return 0;
4115 
4116 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4117 	if (IS_ERR(handle))
4118 		return PTR_ERR(handle);
4119 	ext4_update_i_disksize(inode, size);
4120 	ext4_mark_inode_dirty(handle, inode);
4121 	ext4_journal_stop(handle);
4122 
4123 	return 0;
4124 }
4125 
4126 /*
4127  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4128  * associated with the given offset and length
4129  *
4130  * @inode:  File inode
4131  * @offset: The offset where the hole will begin
4132  * @len:    The length of the hole
4133  *
4134  * Returns: 0 on success or negative on failure
4135  */
4136 
4137 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4138 {
4139 	struct super_block *sb = inode->i_sb;
4140 	ext4_lblk_t first_block, stop_block;
4141 	struct address_space *mapping = inode->i_mapping;
4142 	loff_t first_block_offset, last_block_offset;
4143 	handle_t *handle;
4144 	unsigned int credits;
4145 	int ret = 0;
4146 
4147 	if (!S_ISREG(inode->i_mode))
4148 		return -EOPNOTSUPP;
4149 
4150 	trace_ext4_punch_hole(inode, offset, length, 0);
4151 
4152 	/*
4153 	 * Write out all dirty pages to avoid race conditions
4154 	 * Then release them.
4155 	 */
4156 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4157 		ret = filemap_write_and_wait_range(mapping, offset,
4158 						   offset + length - 1);
4159 		if (ret)
4160 			return ret;
4161 	}
4162 
4163 	inode_lock(inode);
4164 
4165 	/* No need to punch hole beyond i_size */
4166 	if (offset >= inode->i_size)
4167 		goto out_mutex;
4168 
4169 	/*
4170 	 * If the hole extends beyond i_size, set the hole
4171 	 * to end after the page that contains i_size
4172 	 */
4173 	if (offset + length > inode->i_size) {
4174 		length = inode->i_size +
4175 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4176 		   offset;
4177 	}
4178 
4179 	if (offset & (sb->s_blocksize - 1) ||
4180 	    (offset + length) & (sb->s_blocksize - 1)) {
4181 		/*
4182 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4183 		 * partial block
4184 		 */
4185 		ret = ext4_inode_attach_jinode(inode);
4186 		if (ret < 0)
4187 			goto out_mutex;
4188 
4189 	}
4190 
4191 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4192 	ext4_inode_block_unlocked_dio(inode);
4193 	inode_dio_wait(inode);
4194 
4195 	/*
4196 	 * Prevent page faults from reinstantiating pages we have released from
4197 	 * page cache.
4198 	 */
4199 	down_write(&EXT4_I(inode)->i_mmap_sem);
4200 	first_block_offset = round_up(offset, sb->s_blocksize);
4201 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4202 
4203 	/* Now release the pages and zero block aligned part of pages*/
4204 	if (last_block_offset > first_block_offset) {
4205 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4206 		if (ret)
4207 			goto out_dio;
4208 		truncate_pagecache_range(inode, first_block_offset,
4209 					 last_block_offset);
4210 	}
4211 
4212 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4213 		credits = ext4_writepage_trans_blocks(inode);
4214 	else
4215 		credits = ext4_blocks_for_truncate(inode);
4216 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4217 	if (IS_ERR(handle)) {
4218 		ret = PTR_ERR(handle);
4219 		ext4_std_error(sb, ret);
4220 		goto out_dio;
4221 	}
4222 
4223 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4224 				       length);
4225 	if (ret)
4226 		goto out_stop;
4227 
4228 	first_block = (offset + sb->s_blocksize - 1) >>
4229 		EXT4_BLOCK_SIZE_BITS(sb);
4230 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4231 
4232 	/* If there are no blocks to remove, return now */
4233 	if (first_block >= stop_block)
4234 		goto out_stop;
4235 
4236 	down_write(&EXT4_I(inode)->i_data_sem);
4237 	ext4_discard_preallocations(inode);
4238 
4239 	ret = ext4_es_remove_extent(inode, first_block,
4240 				    stop_block - first_block);
4241 	if (ret) {
4242 		up_write(&EXT4_I(inode)->i_data_sem);
4243 		goto out_stop;
4244 	}
4245 
4246 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4247 		ret = ext4_ext_remove_space(inode, first_block,
4248 					    stop_block - 1);
4249 	else
4250 		ret = ext4_ind_remove_space(handle, inode, first_block,
4251 					    stop_block);
4252 
4253 	up_write(&EXT4_I(inode)->i_data_sem);
4254 	if (IS_SYNC(inode))
4255 		ext4_handle_sync(handle);
4256 
4257 	inode->i_mtime = inode->i_ctime = current_time(inode);
4258 	ext4_mark_inode_dirty(handle, inode);
4259 	if (ret >= 0)
4260 		ext4_update_inode_fsync_trans(handle, inode, 1);
4261 out_stop:
4262 	ext4_journal_stop(handle);
4263 out_dio:
4264 	up_write(&EXT4_I(inode)->i_mmap_sem);
4265 	ext4_inode_resume_unlocked_dio(inode);
4266 out_mutex:
4267 	inode_unlock(inode);
4268 	return ret;
4269 }
4270 
4271 int ext4_inode_attach_jinode(struct inode *inode)
4272 {
4273 	struct ext4_inode_info *ei = EXT4_I(inode);
4274 	struct jbd2_inode *jinode;
4275 
4276 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4277 		return 0;
4278 
4279 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4280 	spin_lock(&inode->i_lock);
4281 	if (!ei->jinode) {
4282 		if (!jinode) {
4283 			spin_unlock(&inode->i_lock);
4284 			return -ENOMEM;
4285 		}
4286 		ei->jinode = jinode;
4287 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4288 		jinode = NULL;
4289 	}
4290 	spin_unlock(&inode->i_lock);
4291 	if (unlikely(jinode != NULL))
4292 		jbd2_free_inode(jinode);
4293 	return 0;
4294 }
4295 
4296 /*
4297  * ext4_truncate()
4298  *
4299  * We block out ext4_get_block() block instantiations across the entire
4300  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4301  * simultaneously on behalf of the same inode.
4302  *
4303  * As we work through the truncate and commit bits of it to the journal there
4304  * is one core, guiding principle: the file's tree must always be consistent on
4305  * disk.  We must be able to restart the truncate after a crash.
4306  *
4307  * The file's tree may be transiently inconsistent in memory (although it
4308  * probably isn't), but whenever we close off and commit a journal transaction,
4309  * the contents of (the filesystem + the journal) must be consistent and
4310  * restartable.  It's pretty simple, really: bottom up, right to left (although
4311  * left-to-right works OK too).
4312  *
4313  * Note that at recovery time, journal replay occurs *before* the restart of
4314  * truncate against the orphan inode list.
4315  *
4316  * The committed inode has the new, desired i_size (which is the same as
4317  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4318  * that this inode's truncate did not complete and it will again call
4319  * ext4_truncate() to have another go.  So there will be instantiated blocks
4320  * to the right of the truncation point in a crashed ext4 filesystem.  But
4321  * that's fine - as long as they are linked from the inode, the post-crash
4322  * ext4_truncate() run will find them and release them.
4323  */
4324 int ext4_truncate(struct inode *inode)
4325 {
4326 	struct ext4_inode_info *ei = EXT4_I(inode);
4327 	unsigned int credits;
4328 	int err = 0;
4329 	handle_t *handle;
4330 	struct address_space *mapping = inode->i_mapping;
4331 
4332 	/*
4333 	 * There is a possibility that we're either freeing the inode
4334 	 * or it's a completely new inode. In those cases we might not
4335 	 * have i_mutex locked because it's not necessary.
4336 	 */
4337 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4338 		WARN_ON(!inode_is_locked(inode));
4339 	trace_ext4_truncate_enter(inode);
4340 
4341 	if (!ext4_can_truncate(inode))
4342 		return 0;
4343 
4344 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4345 
4346 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4347 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4348 
4349 	if (ext4_has_inline_data(inode)) {
4350 		int has_inline = 1;
4351 
4352 		err = ext4_inline_data_truncate(inode, &has_inline);
4353 		if (err)
4354 			return err;
4355 		if (has_inline)
4356 			return 0;
4357 	}
4358 
4359 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4360 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4361 		if (ext4_inode_attach_jinode(inode) < 0)
4362 			return 0;
4363 	}
4364 
4365 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4366 		credits = ext4_writepage_trans_blocks(inode);
4367 	else
4368 		credits = ext4_blocks_for_truncate(inode);
4369 
4370 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4371 	if (IS_ERR(handle))
4372 		return PTR_ERR(handle);
4373 
4374 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4375 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4376 
4377 	/*
4378 	 * We add the inode to the orphan list, so that if this
4379 	 * truncate spans multiple transactions, and we crash, we will
4380 	 * resume the truncate when the filesystem recovers.  It also
4381 	 * marks the inode dirty, to catch the new size.
4382 	 *
4383 	 * Implication: the file must always be in a sane, consistent
4384 	 * truncatable state while each transaction commits.
4385 	 */
4386 	err = ext4_orphan_add(handle, inode);
4387 	if (err)
4388 		goto out_stop;
4389 
4390 	down_write(&EXT4_I(inode)->i_data_sem);
4391 
4392 	ext4_discard_preallocations(inode);
4393 
4394 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4395 		err = ext4_ext_truncate(handle, inode);
4396 	else
4397 		ext4_ind_truncate(handle, inode);
4398 
4399 	up_write(&ei->i_data_sem);
4400 	if (err)
4401 		goto out_stop;
4402 
4403 	if (IS_SYNC(inode))
4404 		ext4_handle_sync(handle);
4405 
4406 out_stop:
4407 	/*
4408 	 * If this was a simple ftruncate() and the file will remain alive,
4409 	 * then we need to clear up the orphan record which we created above.
4410 	 * However, if this was a real unlink then we were called by
4411 	 * ext4_evict_inode(), and we allow that function to clean up the
4412 	 * orphan info for us.
4413 	 */
4414 	if (inode->i_nlink)
4415 		ext4_orphan_del(handle, inode);
4416 
4417 	inode->i_mtime = inode->i_ctime = current_time(inode);
4418 	ext4_mark_inode_dirty(handle, inode);
4419 	ext4_journal_stop(handle);
4420 
4421 	trace_ext4_truncate_exit(inode);
4422 	return err;
4423 }
4424 
4425 /*
4426  * ext4_get_inode_loc returns with an extra refcount against the inode's
4427  * underlying buffer_head on success. If 'in_mem' is true, we have all
4428  * data in memory that is needed to recreate the on-disk version of this
4429  * inode.
4430  */
4431 static int __ext4_get_inode_loc(struct inode *inode,
4432 				struct ext4_iloc *iloc, int in_mem)
4433 {
4434 	struct ext4_group_desc	*gdp;
4435 	struct buffer_head	*bh;
4436 	struct super_block	*sb = inode->i_sb;
4437 	ext4_fsblk_t		block;
4438 	int			inodes_per_block, inode_offset;
4439 
4440 	iloc->bh = NULL;
4441 	if (!ext4_valid_inum(sb, inode->i_ino))
4442 		return -EFSCORRUPTED;
4443 
4444 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4445 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4446 	if (!gdp)
4447 		return -EIO;
4448 
4449 	/*
4450 	 * Figure out the offset within the block group inode table
4451 	 */
4452 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4453 	inode_offset = ((inode->i_ino - 1) %
4454 			EXT4_INODES_PER_GROUP(sb));
4455 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4456 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4457 
4458 	bh = sb_getblk(sb, block);
4459 	if (unlikely(!bh))
4460 		return -ENOMEM;
4461 	if (!buffer_uptodate(bh)) {
4462 		lock_buffer(bh);
4463 
4464 		/*
4465 		 * If the buffer has the write error flag, we have failed
4466 		 * to write out another inode in the same block.  In this
4467 		 * case, we don't have to read the block because we may
4468 		 * read the old inode data successfully.
4469 		 */
4470 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4471 			set_buffer_uptodate(bh);
4472 
4473 		if (buffer_uptodate(bh)) {
4474 			/* someone brought it uptodate while we waited */
4475 			unlock_buffer(bh);
4476 			goto has_buffer;
4477 		}
4478 
4479 		/*
4480 		 * If we have all information of the inode in memory and this
4481 		 * is the only valid inode in the block, we need not read the
4482 		 * block.
4483 		 */
4484 		if (in_mem) {
4485 			struct buffer_head *bitmap_bh;
4486 			int i, start;
4487 
4488 			start = inode_offset & ~(inodes_per_block - 1);
4489 
4490 			/* Is the inode bitmap in cache? */
4491 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4492 			if (unlikely(!bitmap_bh))
4493 				goto make_io;
4494 
4495 			/*
4496 			 * If the inode bitmap isn't in cache then the
4497 			 * optimisation may end up performing two reads instead
4498 			 * of one, so skip it.
4499 			 */
4500 			if (!buffer_uptodate(bitmap_bh)) {
4501 				brelse(bitmap_bh);
4502 				goto make_io;
4503 			}
4504 			for (i = start; i < start + inodes_per_block; i++) {
4505 				if (i == inode_offset)
4506 					continue;
4507 				if (ext4_test_bit(i, bitmap_bh->b_data))
4508 					break;
4509 			}
4510 			brelse(bitmap_bh);
4511 			if (i == start + inodes_per_block) {
4512 				/* all other inodes are free, so skip I/O */
4513 				memset(bh->b_data, 0, bh->b_size);
4514 				set_buffer_uptodate(bh);
4515 				unlock_buffer(bh);
4516 				goto has_buffer;
4517 			}
4518 		}
4519 
4520 make_io:
4521 		/*
4522 		 * If we need to do any I/O, try to pre-readahead extra
4523 		 * blocks from the inode table.
4524 		 */
4525 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4526 			ext4_fsblk_t b, end, table;
4527 			unsigned num;
4528 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4529 
4530 			table = ext4_inode_table(sb, gdp);
4531 			/* s_inode_readahead_blks is always a power of 2 */
4532 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4533 			if (table > b)
4534 				b = table;
4535 			end = b + ra_blks;
4536 			num = EXT4_INODES_PER_GROUP(sb);
4537 			if (ext4_has_group_desc_csum(sb))
4538 				num -= ext4_itable_unused_count(sb, gdp);
4539 			table += num / inodes_per_block;
4540 			if (end > table)
4541 				end = table;
4542 			while (b <= end)
4543 				sb_breadahead(sb, b++);
4544 		}
4545 
4546 		/*
4547 		 * There are other valid inodes in the buffer, this inode
4548 		 * has in-inode xattrs, or we don't have this inode in memory.
4549 		 * Read the block from disk.
4550 		 */
4551 		trace_ext4_load_inode(inode);
4552 		get_bh(bh);
4553 		bh->b_end_io = end_buffer_read_sync;
4554 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4555 		wait_on_buffer(bh);
4556 		if (!buffer_uptodate(bh)) {
4557 			EXT4_ERROR_INODE_BLOCK(inode, block,
4558 					       "unable to read itable block");
4559 			brelse(bh);
4560 			return -EIO;
4561 		}
4562 	}
4563 has_buffer:
4564 	iloc->bh = bh;
4565 	return 0;
4566 }
4567 
4568 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4569 {
4570 	/* We have all inode data except xattrs in memory here. */
4571 	return __ext4_get_inode_loc(inode, iloc,
4572 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4573 }
4574 
4575 void ext4_set_inode_flags(struct inode *inode)
4576 {
4577 	unsigned int flags = EXT4_I(inode)->i_flags;
4578 	unsigned int new_fl = 0;
4579 
4580 	if (flags & EXT4_SYNC_FL)
4581 		new_fl |= S_SYNC;
4582 	if (flags & EXT4_APPEND_FL)
4583 		new_fl |= S_APPEND;
4584 	if (flags & EXT4_IMMUTABLE_FL)
4585 		new_fl |= S_IMMUTABLE;
4586 	if (flags & EXT4_NOATIME_FL)
4587 		new_fl |= S_NOATIME;
4588 	if (flags & EXT4_DIRSYNC_FL)
4589 		new_fl |= S_DIRSYNC;
4590 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4591 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4592 	    !ext4_encrypted_inode(inode))
4593 		new_fl |= S_DAX;
4594 	inode_set_flags(inode, new_fl,
4595 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4596 }
4597 
4598 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4599 				  struct ext4_inode_info *ei)
4600 {
4601 	blkcnt_t i_blocks ;
4602 	struct inode *inode = &(ei->vfs_inode);
4603 	struct super_block *sb = inode->i_sb;
4604 
4605 	if (ext4_has_feature_huge_file(sb)) {
4606 		/* we are using combined 48 bit field */
4607 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4608 					le32_to_cpu(raw_inode->i_blocks_lo);
4609 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4610 			/* i_blocks represent file system block size */
4611 			return i_blocks  << (inode->i_blkbits - 9);
4612 		} else {
4613 			return i_blocks;
4614 		}
4615 	} else {
4616 		return le32_to_cpu(raw_inode->i_blocks_lo);
4617 	}
4618 }
4619 
4620 static inline void ext4_iget_extra_inode(struct inode *inode,
4621 					 struct ext4_inode *raw_inode,
4622 					 struct ext4_inode_info *ei)
4623 {
4624 	__le32 *magic = (void *)raw_inode +
4625 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4626 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4627 	    EXT4_INODE_SIZE(inode->i_sb) &&
4628 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4629 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4630 		ext4_find_inline_data_nolock(inode);
4631 	} else
4632 		EXT4_I(inode)->i_inline_off = 0;
4633 }
4634 
4635 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4636 {
4637 	if (!ext4_has_feature_project(inode->i_sb))
4638 		return -EOPNOTSUPP;
4639 	*projid = EXT4_I(inode)->i_projid;
4640 	return 0;
4641 }
4642 
4643 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4644 {
4645 	struct ext4_iloc iloc;
4646 	struct ext4_inode *raw_inode;
4647 	struct ext4_inode_info *ei;
4648 	struct inode *inode;
4649 	journal_t *journal = EXT4_SB(sb)->s_journal;
4650 	long ret;
4651 	loff_t size;
4652 	int block;
4653 	uid_t i_uid;
4654 	gid_t i_gid;
4655 	projid_t i_projid;
4656 
4657 	inode = iget_locked(sb, ino);
4658 	if (!inode)
4659 		return ERR_PTR(-ENOMEM);
4660 	if (!(inode->i_state & I_NEW))
4661 		return inode;
4662 
4663 	ei = EXT4_I(inode);
4664 	iloc.bh = NULL;
4665 
4666 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4667 	if (ret < 0)
4668 		goto bad_inode;
4669 	raw_inode = ext4_raw_inode(&iloc);
4670 
4671 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4672 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4673 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4674 			EXT4_INODE_SIZE(inode->i_sb) ||
4675 		    (ei->i_extra_isize & 3)) {
4676 			EXT4_ERROR_INODE(inode,
4677 					 "bad extra_isize %u (inode size %u)",
4678 					 ei->i_extra_isize,
4679 					 EXT4_INODE_SIZE(inode->i_sb));
4680 			ret = -EFSCORRUPTED;
4681 			goto bad_inode;
4682 		}
4683 	} else
4684 		ei->i_extra_isize = 0;
4685 
4686 	/* Precompute checksum seed for inode metadata */
4687 	if (ext4_has_metadata_csum(sb)) {
4688 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689 		__u32 csum;
4690 		__le32 inum = cpu_to_le32(inode->i_ino);
4691 		__le32 gen = raw_inode->i_generation;
4692 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4693 				   sizeof(inum));
4694 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4695 					      sizeof(gen));
4696 	}
4697 
4698 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4699 		EXT4_ERROR_INODE(inode, "checksum invalid");
4700 		ret = -EFSBADCRC;
4701 		goto bad_inode;
4702 	}
4703 
4704 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4705 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4706 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4707 	if (ext4_has_feature_project(sb) &&
4708 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4709 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4710 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4711 	else
4712 		i_projid = EXT4_DEF_PROJID;
4713 
4714 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4715 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4716 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4717 	}
4718 	i_uid_write(inode, i_uid);
4719 	i_gid_write(inode, i_gid);
4720 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4721 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4722 
4723 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4724 	ei->i_inline_off = 0;
4725 	ei->i_dir_start_lookup = 0;
4726 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4727 	/* We now have enough fields to check if the inode was active or not.
4728 	 * This is needed because nfsd might try to access dead inodes
4729 	 * the test is that same one that e2fsck uses
4730 	 * NeilBrown 1999oct15
4731 	 */
4732 	if (inode->i_nlink == 0) {
4733 		if ((inode->i_mode == 0 ||
4734 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4735 		    ino != EXT4_BOOT_LOADER_INO) {
4736 			/* this inode is deleted */
4737 			ret = -ESTALE;
4738 			goto bad_inode;
4739 		}
4740 		/* The only unlinked inodes we let through here have
4741 		 * valid i_mode and are being read by the orphan
4742 		 * recovery code: that's fine, we're about to complete
4743 		 * the process of deleting those.
4744 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4745 		 * not initialized on a new filesystem. */
4746 	}
4747 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4748 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4749 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4750 	if (ext4_has_feature_64bit(sb))
4751 		ei->i_file_acl |=
4752 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4753 	inode->i_size = ext4_isize(sb, raw_inode);
4754 	if ((size = i_size_read(inode)) < 0) {
4755 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4756 		ret = -EFSCORRUPTED;
4757 		goto bad_inode;
4758 	}
4759 	ei->i_disksize = inode->i_size;
4760 #ifdef CONFIG_QUOTA
4761 	ei->i_reserved_quota = 0;
4762 #endif
4763 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4764 	ei->i_block_group = iloc.block_group;
4765 	ei->i_last_alloc_group = ~0;
4766 	/*
4767 	 * NOTE! The in-memory inode i_data array is in little-endian order
4768 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4769 	 */
4770 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4771 		ei->i_data[block] = raw_inode->i_block[block];
4772 	INIT_LIST_HEAD(&ei->i_orphan);
4773 
4774 	/*
4775 	 * Set transaction id's of transactions that have to be committed
4776 	 * to finish f[data]sync. We set them to currently running transaction
4777 	 * as we cannot be sure that the inode or some of its metadata isn't
4778 	 * part of the transaction - the inode could have been reclaimed and
4779 	 * now it is reread from disk.
4780 	 */
4781 	if (journal) {
4782 		transaction_t *transaction;
4783 		tid_t tid;
4784 
4785 		read_lock(&journal->j_state_lock);
4786 		if (journal->j_running_transaction)
4787 			transaction = journal->j_running_transaction;
4788 		else
4789 			transaction = journal->j_committing_transaction;
4790 		if (transaction)
4791 			tid = transaction->t_tid;
4792 		else
4793 			tid = journal->j_commit_sequence;
4794 		read_unlock(&journal->j_state_lock);
4795 		ei->i_sync_tid = tid;
4796 		ei->i_datasync_tid = tid;
4797 	}
4798 
4799 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4800 		if (ei->i_extra_isize == 0) {
4801 			/* The extra space is currently unused. Use it. */
4802 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4803 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4804 					    EXT4_GOOD_OLD_INODE_SIZE;
4805 		} else {
4806 			ext4_iget_extra_inode(inode, raw_inode, ei);
4807 		}
4808 	}
4809 
4810 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4811 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4812 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4813 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4814 
4815 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4816 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4817 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4819 				inode->i_version |=
4820 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4821 		}
4822 	}
4823 
4824 	ret = 0;
4825 	if (ei->i_file_acl &&
4826 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4827 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4828 				 ei->i_file_acl);
4829 		ret = -EFSCORRUPTED;
4830 		goto bad_inode;
4831 	} else if (!ext4_has_inline_data(inode)) {
4832 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4833 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4834 			    (S_ISLNK(inode->i_mode) &&
4835 			     !ext4_inode_is_fast_symlink(inode))))
4836 				/* Validate extent which is part of inode */
4837 				ret = ext4_ext_check_inode(inode);
4838 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4839 			   (S_ISLNK(inode->i_mode) &&
4840 			    !ext4_inode_is_fast_symlink(inode))) {
4841 			/* Validate block references which are part of inode */
4842 			ret = ext4_ind_check_inode(inode);
4843 		}
4844 	}
4845 	if (ret)
4846 		goto bad_inode;
4847 
4848 	if (S_ISREG(inode->i_mode)) {
4849 		inode->i_op = &ext4_file_inode_operations;
4850 		inode->i_fop = &ext4_file_operations;
4851 		ext4_set_aops(inode);
4852 	} else if (S_ISDIR(inode->i_mode)) {
4853 		inode->i_op = &ext4_dir_inode_operations;
4854 		inode->i_fop = &ext4_dir_operations;
4855 	} else if (S_ISLNK(inode->i_mode)) {
4856 		if (ext4_encrypted_inode(inode)) {
4857 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4858 			ext4_set_aops(inode);
4859 		} else if (ext4_inode_is_fast_symlink(inode)) {
4860 			inode->i_link = (char *)ei->i_data;
4861 			inode->i_op = &ext4_fast_symlink_inode_operations;
4862 			nd_terminate_link(ei->i_data, inode->i_size,
4863 				sizeof(ei->i_data) - 1);
4864 		} else {
4865 			inode->i_op = &ext4_symlink_inode_operations;
4866 			ext4_set_aops(inode);
4867 		}
4868 		inode_nohighmem(inode);
4869 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4870 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4871 		inode->i_op = &ext4_special_inode_operations;
4872 		if (raw_inode->i_block[0])
4873 			init_special_inode(inode, inode->i_mode,
4874 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4875 		else
4876 			init_special_inode(inode, inode->i_mode,
4877 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4878 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4879 		make_bad_inode(inode);
4880 	} else {
4881 		ret = -EFSCORRUPTED;
4882 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4883 		goto bad_inode;
4884 	}
4885 	brelse(iloc.bh);
4886 	ext4_set_inode_flags(inode);
4887 
4888 	unlock_new_inode(inode);
4889 	return inode;
4890 
4891 bad_inode:
4892 	brelse(iloc.bh);
4893 	iget_failed(inode);
4894 	return ERR_PTR(ret);
4895 }
4896 
4897 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4898 {
4899 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4900 		return ERR_PTR(-EFSCORRUPTED);
4901 	return ext4_iget(sb, ino);
4902 }
4903 
4904 static int ext4_inode_blocks_set(handle_t *handle,
4905 				struct ext4_inode *raw_inode,
4906 				struct ext4_inode_info *ei)
4907 {
4908 	struct inode *inode = &(ei->vfs_inode);
4909 	u64 i_blocks = inode->i_blocks;
4910 	struct super_block *sb = inode->i_sb;
4911 
4912 	if (i_blocks <= ~0U) {
4913 		/*
4914 		 * i_blocks can be represented in a 32 bit variable
4915 		 * as multiple of 512 bytes
4916 		 */
4917 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4918 		raw_inode->i_blocks_high = 0;
4919 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4920 		return 0;
4921 	}
4922 	if (!ext4_has_feature_huge_file(sb))
4923 		return -EFBIG;
4924 
4925 	if (i_blocks <= 0xffffffffffffULL) {
4926 		/*
4927 		 * i_blocks can be represented in a 48 bit variable
4928 		 * as multiple of 512 bytes
4929 		 */
4930 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4931 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4932 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4933 	} else {
4934 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4935 		/* i_block is stored in file system block size */
4936 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4937 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4938 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4939 	}
4940 	return 0;
4941 }
4942 
4943 struct other_inode {
4944 	unsigned long		orig_ino;
4945 	struct ext4_inode	*raw_inode;
4946 };
4947 
4948 static int other_inode_match(struct inode * inode, unsigned long ino,
4949 			     void *data)
4950 {
4951 	struct other_inode *oi = (struct other_inode *) data;
4952 
4953 	if ((inode->i_ino != ino) ||
4954 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4955 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4956 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4957 		return 0;
4958 	spin_lock(&inode->i_lock);
4959 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4960 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4961 	    (inode->i_state & I_DIRTY_TIME)) {
4962 		struct ext4_inode_info	*ei = EXT4_I(inode);
4963 
4964 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4965 		spin_unlock(&inode->i_lock);
4966 
4967 		spin_lock(&ei->i_raw_lock);
4968 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4969 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4970 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4971 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4972 		spin_unlock(&ei->i_raw_lock);
4973 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4974 		return -1;
4975 	}
4976 	spin_unlock(&inode->i_lock);
4977 	return -1;
4978 }
4979 
4980 /*
4981  * Opportunistically update the other time fields for other inodes in
4982  * the same inode table block.
4983  */
4984 static void ext4_update_other_inodes_time(struct super_block *sb,
4985 					  unsigned long orig_ino, char *buf)
4986 {
4987 	struct other_inode oi;
4988 	unsigned long ino;
4989 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4990 	int inode_size = EXT4_INODE_SIZE(sb);
4991 
4992 	oi.orig_ino = orig_ino;
4993 	/*
4994 	 * Calculate the first inode in the inode table block.  Inode
4995 	 * numbers are one-based.  That is, the first inode in a block
4996 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4997 	 */
4998 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4999 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5000 		if (ino == orig_ino)
5001 			continue;
5002 		oi.raw_inode = (struct ext4_inode *) buf;
5003 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5004 	}
5005 }
5006 
5007 /*
5008  * Post the struct inode info into an on-disk inode location in the
5009  * buffer-cache.  This gobbles the caller's reference to the
5010  * buffer_head in the inode location struct.
5011  *
5012  * The caller must have write access to iloc->bh.
5013  */
5014 static int ext4_do_update_inode(handle_t *handle,
5015 				struct inode *inode,
5016 				struct ext4_iloc *iloc)
5017 {
5018 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5019 	struct ext4_inode_info *ei = EXT4_I(inode);
5020 	struct buffer_head *bh = iloc->bh;
5021 	struct super_block *sb = inode->i_sb;
5022 	int err = 0, rc, block;
5023 	int need_datasync = 0, set_large_file = 0;
5024 	uid_t i_uid;
5025 	gid_t i_gid;
5026 	projid_t i_projid;
5027 
5028 	spin_lock(&ei->i_raw_lock);
5029 
5030 	/* For fields not tracked in the in-memory inode,
5031 	 * initialise them to zero for new inodes. */
5032 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5033 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5034 
5035 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5036 	i_uid = i_uid_read(inode);
5037 	i_gid = i_gid_read(inode);
5038 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5039 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5040 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5041 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5042 /*
5043  * Fix up interoperability with old kernels. Otherwise, old inodes get
5044  * re-used with the upper 16 bits of the uid/gid intact
5045  */
5046 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5047 			raw_inode->i_uid_high = 0;
5048 			raw_inode->i_gid_high = 0;
5049 		} else {
5050 			raw_inode->i_uid_high =
5051 				cpu_to_le16(high_16_bits(i_uid));
5052 			raw_inode->i_gid_high =
5053 				cpu_to_le16(high_16_bits(i_gid));
5054 		}
5055 	} else {
5056 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5057 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5058 		raw_inode->i_uid_high = 0;
5059 		raw_inode->i_gid_high = 0;
5060 	}
5061 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5062 
5063 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5064 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5065 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5066 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5067 
5068 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5069 	if (err) {
5070 		spin_unlock(&ei->i_raw_lock);
5071 		goto out_brelse;
5072 	}
5073 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5074 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5075 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5076 		raw_inode->i_file_acl_high =
5077 			cpu_to_le16(ei->i_file_acl >> 32);
5078 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5079 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5080 		ext4_isize_set(raw_inode, ei->i_disksize);
5081 		need_datasync = 1;
5082 	}
5083 	if (ei->i_disksize > 0x7fffffffULL) {
5084 		if (!ext4_has_feature_large_file(sb) ||
5085 				EXT4_SB(sb)->s_es->s_rev_level ==
5086 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5087 			set_large_file = 1;
5088 	}
5089 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5090 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5091 		if (old_valid_dev(inode->i_rdev)) {
5092 			raw_inode->i_block[0] =
5093 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5094 			raw_inode->i_block[1] = 0;
5095 		} else {
5096 			raw_inode->i_block[0] = 0;
5097 			raw_inode->i_block[1] =
5098 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5099 			raw_inode->i_block[2] = 0;
5100 		}
5101 	} else if (!ext4_has_inline_data(inode)) {
5102 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5103 			raw_inode->i_block[block] = ei->i_data[block];
5104 	}
5105 
5106 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5107 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5108 		if (ei->i_extra_isize) {
5109 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5110 				raw_inode->i_version_hi =
5111 					cpu_to_le32(inode->i_version >> 32);
5112 			raw_inode->i_extra_isize =
5113 				cpu_to_le16(ei->i_extra_isize);
5114 		}
5115 	}
5116 
5117 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5118 	       i_projid != EXT4_DEF_PROJID);
5119 
5120 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5121 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5122 		raw_inode->i_projid = cpu_to_le32(i_projid);
5123 
5124 	ext4_inode_csum_set(inode, raw_inode, ei);
5125 	spin_unlock(&ei->i_raw_lock);
5126 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5127 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5128 					      bh->b_data);
5129 
5130 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5131 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5132 	if (!err)
5133 		err = rc;
5134 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5135 	if (set_large_file) {
5136 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5137 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5138 		if (err)
5139 			goto out_brelse;
5140 		ext4_update_dynamic_rev(sb);
5141 		ext4_set_feature_large_file(sb);
5142 		ext4_handle_sync(handle);
5143 		err = ext4_handle_dirty_super(handle, sb);
5144 	}
5145 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5146 out_brelse:
5147 	brelse(bh);
5148 	ext4_std_error(inode->i_sb, err);
5149 	return err;
5150 }
5151 
5152 /*
5153  * ext4_write_inode()
5154  *
5155  * We are called from a few places:
5156  *
5157  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5158  *   Here, there will be no transaction running. We wait for any running
5159  *   transaction to commit.
5160  *
5161  * - Within flush work (sys_sync(), kupdate and such).
5162  *   We wait on commit, if told to.
5163  *
5164  * - Within iput_final() -> write_inode_now()
5165  *   We wait on commit, if told to.
5166  *
5167  * In all cases it is actually safe for us to return without doing anything,
5168  * because the inode has been copied into a raw inode buffer in
5169  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5170  * writeback.
5171  *
5172  * Note that we are absolutely dependent upon all inode dirtiers doing the
5173  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5174  * which we are interested.
5175  *
5176  * It would be a bug for them to not do this.  The code:
5177  *
5178  *	mark_inode_dirty(inode)
5179  *	stuff();
5180  *	inode->i_size = expr;
5181  *
5182  * is in error because write_inode() could occur while `stuff()' is running,
5183  * and the new i_size will be lost.  Plus the inode will no longer be on the
5184  * superblock's dirty inode list.
5185  */
5186 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5187 {
5188 	int err;
5189 
5190 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5191 		return 0;
5192 
5193 	if (EXT4_SB(inode->i_sb)->s_journal) {
5194 		if (ext4_journal_current_handle()) {
5195 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5196 			dump_stack();
5197 			return -EIO;
5198 		}
5199 
5200 		/*
5201 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5202 		 * ext4_sync_fs() will force the commit after everything is
5203 		 * written.
5204 		 */
5205 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5206 			return 0;
5207 
5208 		err = ext4_force_commit(inode->i_sb);
5209 	} else {
5210 		struct ext4_iloc iloc;
5211 
5212 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5213 		if (err)
5214 			return err;
5215 		/*
5216 		 * sync(2) will flush the whole buffer cache. No need to do
5217 		 * it here separately for each inode.
5218 		 */
5219 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5220 			sync_dirty_buffer(iloc.bh);
5221 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5222 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5223 					 "IO error syncing inode");
5224 			err = -EIO;
5225 		}
5226 		brelse(iloc.bh);
5227 	}
5228 	return err;
5229 }
5230 
5231 /*
5232  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5233  * buffers that are attached to a page stradding i_size and are undergoing
5234  * commit. In that case we have to wait for commit to finish and try again.
5235  */
5236 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5237 {
5238 	struct page *page;
5239 	unsigned offset;
5240 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5241 	tid_t commit_tid = 0;
5242 	int ret;
5243 
5244 	offset = inode->i_size & (PAGE_SIZE - 1);
5245 	/*
5246 	 * All buffers in the last page remain valid? Then there's nothing to
5247 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5248 	 * blocksize case
5249 	 */
5250 	if (offset > PAGE_SIZE - i_blocksize(inode))
5251 		return;
5252 	while (1) {
5253 		page = find_lock_page(inode->i_mapping,
5254 				      inode->i_size >> PAGE_SHIFT);
5255 		if (!page)
5256 			return;
5257 		ret = __ext4_journalled_invalidatepage(page, offset,
5258 						PAGE_SIZE - offset);
5259 		unlock_page(page);
5260 		put_page(page);
5261 		if (ret != -EBUSY)
5262 			return;
5263 		commit_tid = 0;
5264 		read_lock(&journal->j_state_lock);
5265 		if (journal->j_committing_transaction)
5266 			commit_tid = journal->j_committing_transaction->t_tid;
5267 		read_unlock(&journal->j_state_lock);
5268 		if (commit_tid)
5269 			jbd2_log_wait_commit(journal, commit_tid);
5270 	}
5271 }
5272 
5273 /*
5274  * ext4_setattr()
5275  *
5276  * Called from notify_change.
5277  *
5278  * We want to trap VFS attempts to truncate the file as soon as
5279  * possible.  In particular, we want to make sure that when the VFS
5280  * shrinks i_size, we put the inode on the orphan list and modify
5281  * i_disksize immediately, so that during the subsequent flushing of
5282  * dirty pages and freeing of disk blocks, we can guarantee that any
5283  * commit will leave the blocks being flushed in an unused state on
5284  * disk.  (On recovery, the inode will get truncated and the blocks will
5285  * be freed, so we have a strong guarantee that no future commit will
5286  * leave these blocks visible to the user.)
5287  *
5288  * Another thing we have to assure is that if we are in ordered mode
5289  * and inode is still attached to the committing transaction, we must
5290  * we start writeout of all the dirty pages which are being truncated.
5291  * This way we are sure that all the data written in the previous
5292  * transaction are already on disk (truncate waits for pages under
5293  * writeback).
5294  *
5295  * Called with inode->i_mutex down.
5296  */
5297 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5298 {
5299 	struct inode *inode = d_inode(dentry);
5300 	int error, rc = 0;
5301 	int orphan = 0;
5302 	const unsigned int ia_valid = attr->ia_valid;
5303 
5304 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5305 		return -EIO;
5306 
5307 	error = setattr_prepare(dentry, attr);
5308 	if (error)
5309 		return error;
5310 
5311 	if (is_quota_modification(inode, attr)) {
5312 		error = dquot_initialize(inode);
5313 		if (error)
5314 			return error;
5315 	}
5316 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5317 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5318 		handle_t *handle;
5319 
5320 		/* (user+group)*(old+new) structure, inode write (sb,
5321 		 * inode block, ? - but truncate inode update has it) */
5322 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5323 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5324 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5325 		if (IS_ERR(handle)) {
5326 			error = PTR_ERR(handle);
5327 			goto err_out;
5328 		}
5329 
5330 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5331 		 * counts xattr inode references.
5332 		 */
5333 		down_read(&EXT4_I(inode)->xattr_sem);
5334 		error = dquot_transfer(inode, attr);
5335 		up_read(&EXT4_I(inode)->xattr_sem);
5336 
5337 		if (error) {
5338 			ext4_journal_stop(handle);
5339 			return error;
5340 		}
5341 		/* Update corresponding info in inode so that everything is in
5342 		 * one transaction */
5343 		if (attr->ia_valid & ATTR_UID)
5344 			inode->i_uid = attr->ia_uid;
5345 		if (attr->ia_valid & ATTR_GID)
5346 			inode->i_gid = attr->ia_gid;
5347 		error = ext4_mark_inode_dirty(handle, inode);
5348 		ext4_journal_stop(handle);
5349 	}
5350 
5351 	if (attr->ia_valid & ATTR_SIZE) {
5352 		handle_t *handle;
5353 		loff_t oldsize = inode->i_size;
5354 		int shrink = (attr->ia_size <= inode->i_size);
5355 
5356 		if (ext4_encrypted_inode(inode)) {
5357 			error = fscrypt_get_encryption_info(inode);
5358 			if (error)
5359 				return error;
5360 			if (!fscrypt_has_encryption_key(inode))
5361 				return -ENOKEY;
5362 		}
5363 
5364 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5365 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5366 
5367 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5368 				return -EFBIG;
5369 		}
5370 		if (!S_ISREG(inode->i_mode))
5371 			return -EINVAL;
5372 
5373 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5374 			inode_inc_iversion(inode);
5375 
5376 		if (ext4_should_order_data(inode) &&
5377 		    (attr->ia_size < inode->i_size)) {
5378 			error = ext4_begin_ordered_truncate(inode,
5379 							    attr->ia_size);
5380 			if (error)
5381 				goto err_out;
5382 		}
5383 		if (attr->ia_size != inode->i_size) {
5384 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5385 			if (IS_ERR(handle)) {
5386 				error = PTR_ERR(handle);
5387 				goto err_out;
5388 			}
5389 			if (ext4_handle_valid(handle) && shrink) {
5390 				error = ext4_orphan_add(handle, inode);
5391 				orphan = 1;
5392 			}
5393 			/*
5394 			 * Update c/mtime on truncate up, ext4_truncate() will
5395 			 * update c/mtime in shrink case below
5396 			 */
5397 			if (!shrink) {
5398 				inode->i_mtime = current_time(inode);
5399 				inode->i_ctime = inode->i_mtime;
5400 			}
5401 			down_write(&EXT4_I(inode)->i_data_sem);
5402 			EXT4_I(inode)->i_disksize = attr->ia_size;
5403 			rc = ext4_mark_inode_dirty(handle, inode);
5404 			if (!error)
5405 				error = rc;
5406 			/*
5407 			 * We have to update i_size under i_data_sem together
5408 			 * with i_disksize to avoid races with writeback code
5409 			 * running ext4_wb_update_i_disksize().
5410 			 */
5411 			if (!error)
5412 				i_size_write(inode, attr->ia_size);
5413 			up_write(&EXT4_I(inode)->i_data_sem);
5414 			ext4_journal_stop(handle);
5415 			if (error) {
5416 				if (orphan)
5417 					ext4_orphan_del(NULL, inode);
5418 				goto err_out;
5419 			}
5420 		}
5421 		if (!shrink)
5422 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5423 
5424 		/*
5425 		 * Blocks are going to be removed from the inode. Wait
5426 		 * for dio in flight.  Temporarily disable
5427 		 * dioread_nolock to prevent livelock.
5428 		 */
5429 		if (orphan) {
5430 			if (!ext4_should_journal_data(inode)) {
5431 				ext4_inode_block_unlocked_dio(inode);
5432 				inode_dio_wait(inode);
5433 				ext4_inode_resume_unlocked_dio(inode);
5434 			} else
5435 				ext4_wait_for_tail_page_commit(inode);
5436 		}
5437 		down_write(&EXT4_I(inode)->i_mmap_sem);
5438 		/*
5439 		 * Truncate pagecache after we've waited for commit
5440 		 * in data=journal mode to make pages freeable.
5441 		 */
5442 		truncate_pagecache(inode, inode->i_size);
5443 		if (shrink) {
5444 			rc = ext4_truncate(inode);
5445 			if (rc)
5446 				error = rc;
5447 		}
5448 		up_write(&EXT4_I(inode)->i_mmap_sem);
5449 	}
5450 
5451 	if (!error) {
5452 		setattr_copy(inode, attr);
5453 		mark_inode_dirty(inode);
5454 	}
5455 
5456 	/*
5457 	 * If the call to ext4_truncate failed to get a transaction handle at
5458 	 * all, we need to clean up the in-core orphan list manually.
5459 	 */
5460 	if (orphan && inode->i_nlink)
5461 		ext4_orphan_del(NULL, inode);
5462 
5463 	if (!error && (ia_valid & ATTR_MODE))
5464 		rc = posix_acl_chmod(inode, inode->i_mode);
5465 
5466 err_out:
5467 	ext4_std_error(inode->i_sb, error);
5468 	if (!error)
5469 		error = rc;
5470 	return error;
5471 }
5472 
5473 int ext4_getattr(const struct path *path, struct kstat *stat,
5474 		 u32 request_mask, unsigned int query_flags)
5475 {
5476 	struct inode *inode = d_inode(path->dentry);
5477 	struct ext4_inode *raw_inode;
5478 	struct ext4_inode_info *ei = EXT4_I(inode);
5479 	unsigned int flags;
5480 
5481 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5482 		stat->result_mask |= STATX_BTIME;
5483 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5484 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5485 	}
5486 
5487 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5488 	if (flags & EXT4_APPEND_FL)
5489 		stat->attributes |= STATX_ATTR_APPEND;
5490 	if (flags & EXT4_COMPR_FL)
5491 		stat->attributes |= STATX_ATTR_COMPRESSED;
5492 	if (flags & EXT4_ENCRYPT_FL)
5493 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5494 	if (flags & EXT4_IMMUTABLE_FL)
5495 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5496 	if (flags & EXT4_NODUMP_FL)
5497 		stat->attributes |= STATX_ATTR_NODUMP;
5498 
5499 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5500 				  STATX_ATTR_COMPRESSED |
5501 				  STATX_ATTR_ENCRYPTED |
5502 				  STATX_ATTR_IMMUTABLE |
5503 				  STATX_ATTR_NODUMP);
5504 
5505 	generic_fillattr(inode, stat);
5506 	return 0;
5507 }
5508 
5509 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5510 		      u32 request_mask, unsigned int query_flags)
5511 {
5512 	struct inode *inode = d_inode(path->dentry);
5513 	u64 delalloc_blocks;
5514 
5515 	ext4_getattr(path, stat, request_mask, query_flags);
5516 
5517 	/*
5518 	 * If there is inline data in the inode, the inode will normally not
5519 	 * have data blocks allocated (it may have an external xattr block).
5520 	 * Report at least one sector for such files, so tools like tar, rsync,
5521 	 * others don't incorrectly think the file is completely sparse.
5522 	 */
5523 	if (unlikely(ext4_has_inline_data(inode)))
5524 		stat->blocks += (stat->size + 511) >> 9;
5525 
5526 	/*
5527 	 * We can't update i_blocks if the block allocation is delayed
5528 	 * otherwise in the case of system crash before the real block
5529 	 * allocation is done, we will have i_blocks inconsistent with
5530 	 * on-disk file blocks.
5531 	 * We always keep i_blocks updated together with real
5532 	 * allocation. But to not confuse with user, stat
5533 	 * will return the blocks that include the delayed allocation
5534 	 * blocks for this file.
5535 	 */
5536 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5537 				   EXT4_I(inode)->i_reserved_data_blocks);
5538 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5539 	return 0;
5540 }
5541 
5542 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5543 				   int pextents)
5544 {
5545 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5546 		return ext4_ind_trans_blocks(inode, lblocks);
5547 	return ext4_ext_index_trans_blocks(inode, pextents);
5548 }
5549 
5550 /*
5551  * Account for index blocks, block groups bitmaps and block group
5552  * descriptor blocks if modify datablocks and index blocks
5553  * worse case, the indexs blocks spread over different block groups
5554  *
5555  * If datablocks are discontiguous, they are possible to spread over
5556  * different block groups too. If they are contiguous, with flexbg,
5557  * they could still across block group boundary.
5558  *
5559  * Also account for superblock, inode, quota and xattr blocks
5560  */
5561 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5562 				  int pextents)
5563 {
5564 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5565 	int gdpblocks;
5566 	int idxblocks;
5567 	int ret = 0;
5568 
5569 	/*
5570 	 * How many index blocks need to touch to map @lblocks logical blocks
5571 	 * to @pextents physical extents?
5572 	 */
5573 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5574 
5575 	ret = idxblocks;
5576 
5577 	/*
5578 	 * Now let's see how many group bitmaps and group descriptors need
5579 	 * to account
5580 	 */
5581 	groups = idxblocks + pextents;
5582 	gdpblocks = groups;
5583 	if (groups > ngroups)
5584 		groups = ngroups;
5585 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5586 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5587 
5588 	/* bitmaps and block group descriptor blocks */
5589 	ret += groups + gdpblocks;
5590 
5591 	/* Blocks for super block, inode, quota and xattr blocks */
5592 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5593 
5594 	return ret;
5595 }
5596 
5597 /*
5598  * Calculate the total number of credits to reserve to fit
5599  * the modification of a single pages into a single transaction,
5600  * which may include multiple chunks of block allocations.
5601  *
5602  * This could be called via ext4_write_begin()
5603  *
5604  * We need to consider the worse case, when
5605  * one new block per extent.
5606  */
5607 int ext4_writepage_trans_blocks(struct inode *inode)
5608 {
5609 	int bpp = ext4_journal_blocks_per_page(inode);
5610 	int ret;
5611 
5612 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5613 
5614 	/* Account for data blocks for journalled mode */
5615 	if (ext4_should_journal_data(inode))
5616 		ret += bpp;
5617 	return ret;
5618 }
5619 
5620 /*
5621  * Calculate the journal credits for a chunk of data modification.
5622  *
5623  * This is called from DIO, fallocate or whoever calling
5624  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5625  *
5626  * journal buffers for data blocks are not included here, as DIO
5627  * and fallocate do no need to journal data buffers.
5628  */
5629 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5630 {
5631 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5632 }
5633 
5634 /*
5635  * The caller must have previously called ext4_reserve_inode_write().
5636  * Give this, we know that the caller already has write access to iloc->bh.
5637  */
5638 int ext4_mark_iloc_dirty(handle_t *handle,
5639 			 struct inode *inode, struct ext4_iloc *iloc)
5640 {
5641 	int err = 0;
5642 
5643 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5644 		return -EIO;
5645 
5646 	if (IS_I_VERSION(inode))
5647 		inode_inc_iversion(inode);
5648 
5649 	/* the do_update_inode consumes one bh->b_count */
5650 	get_bh(iloc->bh);
5651 
5652 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5653 	err = ext4_do_update_inode(handle, inode, iloc);
5654 	put_bh(iloc->bh);
5655 	return err;
5656 }
5657 
5658 /*
5659  * On success, We end up with an outstanding reference count against
5660  * iloc->bh.  This _must_ be cleaned up later.
5661  */
5662 
5663 int
5664 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5665 			 struct ext4_iloc *iloc)
5666 {
5667 	int err;
5668 
5669 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5670 		return -EIO;
5671 
5672 	err = ext4_get_inode_loc(inode, iloc);
5673 	if (!err) {
5674 		BUFFER_TRACE(iloc->bh, "get_write_access");
5675 		err = ext4_journal_get_write_access(handle, iloc->bh);
5676 		if (err) {
5677 			brelse(iloc->bh);
5678 			iloc->bh = NULL;
5679 		}
5680 	}
5681 	ext4_std_error(inode->i_sb, err);
5682 	return err;
5683 }
5684 
5685 static int __ext4_expand_extra_isize(struct inode *inode,
5686 				     unsigned int new_extra_isize,
5687 				     struct ext4_iloc *iloc,
5688 				     handle_t *handle, int *no_expand)
5689 {
5690 	struct ext4_inode *raw_inode;
5691 	struct ext4_xattr_ibody_header *header;
5692 	int error;
5693 
5694 	raw_inode = ext4_raw_inode(iloc);
5695 
5696 	header = IHDR(inode, raw_inode);
5697 
5698 	/* No extended attributes present */
5699 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5700 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5701 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5702 		       EXT4_I(inode)->i_extra_isize, 0,
5703 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5704 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5705 		return 0;
5706 	}
5707 
5708 	/* try to expand with EAs present */
5709 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5710 					   raw_inode, handle);
5711 	if (error) {
5712 		/*
5713 		 * Inode size expansion failed; don't try again
5714 		 */
5715 		*no_expand = 1;
5716 	}
5717 
5718 	return error;
5719 }
5720 
5721 /*
5722  * Expand an inode by new_extra_isize bytes.
5723  * Returns 0 on success or negative error number on failure.
5724  */
5725 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5726 					  unsigned int new_extra_isize,
5727 					  struct ext4_iloc iloc,
5728 					  handle_t *handle)
5729 {
5730 	int no_expand;
5731 	int error;
5732 
5733 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5734 		return -EOVERFLOW;
5735 
5736 	/*
5737 	 * In nojournal mode, we can immediately attempt to expand
5738 	 * the inode.  When journaled, we first need to obtain extra
5739 	 * buffer credits since we may write into the EA block
5740 	 * with this same handle. If journal_extend fails, then it will
5741 	 * only result in a minor loss of functionality for that inode.
5742 	 * If this is felt to be critical, then e2fsck should be run to
5743 	 * force a large enough s_min_extra_isize.
5744 	 */
5745 	if (ext4_handle_valid(handle) &&
5746 	    jbd2_journal_extend(handle,
5747 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5748 		return -ENOSPC;
5749 
5750 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5751 		return -EBUSY;
5752 
5753 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5754 					  handle, &no_expand);
5755 	ext4_write_unlock_xattr(inode, &no_expand);
5756 
5757 	return error;
5758 }
5759 
5760 int ext4_expand_extra_isize(struct inode *inode,
5761 			    unsigned int new_extra_isize,
5762 			    struct ext4_iloc *iloc)
5763 {
5764 	handle_t *handle;
5765 	int no_expand;
5766 	int error, rc;
5767 
5768 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5769 		brelse(iloc->bh);
5770 		return -EOVERFLOW;
5771 	}
5772 
5773 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5774 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5775 	if (IS_ERR(handle)) {
5776 		error = PTR_ERR(handle);
5777 		brelse(iloc->bh);
5778 		return error;
5779 	}
5780 
5781 	ext4_write_lock_xattr(inode, &no_expand);
5782 
5783 	BUFFER_TRACE(iloc.bh, "get_write_access");
5784 	error = ext4_journal_get_write_access(handle, iloc->bh);
5785 	if (error) {
5786 		brelse(iloc->bh);
5787 		goto out_stop;
5788 	}
5789 
5790 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5791 					  handle, &no_expand);
5792 
5793 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5794 	if (!error)
5795 		error = rc;
5796 
5797 	ext4_write_unlock_xattr(inode, &no_expand);
5798 out_stop:
5799 	ext4_journal_stop(handle);
5800 	return error;
5801 }
5802 
5803 /*
5804  * What we do here is to mark the in-core inode as clean with respect to inode
5805  * dirtiness (it may still be data-dirty).
5806  * This means that the in-core inode may be reaped by prune_icache
5807  * without having to perform any I/O.  This is a very good thing,
5808  * because *any* task may call prune_icache - even ones which
5809  * have a transaction open against a different journal.
5810  *
5811  * Is this cheating?  Not really.  Sure, we haven't written the
5812  * inode out, but prune_icache isn't a user-visible syncing function.
5813  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5814  * we start and wait on commits.
5815  */
5816 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5817 {
5818 	struct ext4_iloc iloc;
5819 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5820 	int err;
5821 
5822 	might_sleep();
5823 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5824 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5825 	if (err)
5826 		return err;
5827 
5828 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5829 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5830 					       iloc, handle);
5831 
5832 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5833 }
5834 
5835 /*
5836  * ext4_dirty_inode() is called from __mark_inode_dirty()
5837  *
5838  * We're really interested in the case where a file is being extended.
5839  * i_size has been changed by generic_commit_write() and we thus need
5840  * to include the updated inode in the current transaction.
5841  *
5842  * Also, dquot_alloc_block() will always dirty the inode when blocks
5843  * are allocated to the file.
5844  *
5845  * If the inode is marked synchronous, we don't honour that here - doing
5846  * so would cause a commit on atime updates, which we don't bother doing.
5847  * We handle synchronous inodes at the highest possible level.
5848  *
5849  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5850  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5851  * to copy into the on-disk inode structure are the timestamp files.
5852  */
5853 void ext4_dirty_inode(struct inode *inode, int flags)
5854 {
5855 	handle_t *handle;
5856 
5857 	if (flags == I_DIRTY_TIME)
5858 		return;
5859 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5860 	if (IS_ERR(handle))
5861 		goto out;
5862 
5863 	ext4_mark_inode_dirty(handle, inode);
5864 
5865 	ext4_journal_stop(handle);
5866 out:
5867 	return;
5868 }
5869 
5870 #if 0
5871 /*
5872  * Bind an inode's backing buffer_head into this transaction, to prevent
5873  * it from being flushed to disk early.  Unlike
5874  * ext4_reserve_inode_write, this leaves behind no bh reference and
5875  * returns no iloc structure, so the caller needs to repeat the iloc
5876  * lookup to mark the inode dirty later.
5877  */
5878 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5879 {
5880 	struct ext4_iloc iloc;
5881 
5882 	int err = 0;
5883 	if (handle) {
5884 		err = ext4_get_inode_loc(inode, &iloc);
5885 		if (!err) {
5886 			BUFFER_TRACE(iloc.bh, "get_write_access");
5887 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5888 			if (!err)
5889 				err = ext4_handle_dirty_metadata(handle,
5890 								 NULL,
5891 								 iloc.bh);
5892 			brelse(iloc.bh);
5893 		}
5894 	}
5895 	ext4_std_error(inode->i_sb, err);
5896 	return err;
5897 }
5898 #endif
5899 
5900 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5901 {
5902 	journal_t *journal;
5903 	handle_t *handle;
5904 	int err;
5905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5906 
5907 	/*
5908 	 * We have to be very careful here: changing a data block's
5909 	 * journaling status dynamically is dangerous.  If we write a
5910 	 * data block to the journal, change the status and then delete
5911 	 * that block, we risk forgetting to revoke the old log record
5912 	 * from the journal and so a subsequent replay can corrupt data.
5913 	 * So, first we make sure that the journal is empty and that
5914 	 * nobody is changing anything.
5915 	 */
5916 
5917 	journal = EXT4_JOURNAL(inode);
5918 	if (!journal)
5919 		return 0;
5920 	if (is_journal_aborted(journal))
5921 		return -EROFS;
5922 
5923 	/* Wait for all existing dio workers */
5924 	ext4_inode_block_unlocked_dio(inode);
5925 	inode_dio_wait(inode);
5926 
5927 	/*
5928 	 * Before flushing the journal and switching inode's aops, we have
5929 	 * to flush all dirty data the inode has. There can be outstanding
5930 	 * delayed allocations, there can be unwritten extents created by
5931 	 * fallocate or buffered writes in dioread_nolock mode covered by
5932 	 * dirty data which can be converted only after flushing the dirty
5933 	 * data (and journalled aops don't know how to handle these cases).
5934 	 */
5935 	if (val) {
5936 		down_write(&EXT4_I(inode)->i_mmap_sem);
5937 		err = filemap_write_and_wait(inode->i_mapping);
5938 		if (err < 0) {
5939 			up_write(&EXT4_I(inode)->i_mmap_sem);
5940 			ext4_inode_resume_unlocked_dio(inode);
5941 			return err;
5942 		}
5943 	}
5944 
5945 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5946 	jbd2_journal_lock_updates(journal);
5947 
5948 	/*
5949 	 * OK, there are no updates running now, and all cached data is
5950 	 * synced to disk.  We are now in a completely consistent state
5951 	 * which doesn't have anything in the journal, and we know that
5952 	 * no filesystem updates are running, so it is safe to modify
5953 	 * the inode's in-core data-journaling state flag now.
5954 	 */
5955 
5956 	if (val)
5957 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5958 	else {
5959 		err = jbd2_journal_flush(journal);
5960 		if (err < 0) {
5961 			jbd2_journal_unlock_updates(journal);
5962 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5963 			ext4_inode_resume_unlocked_dio(inode);
5964 			return err;
5965 		}
5966 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5967 	}
5968 	ext4_set_aops(inode);
5969 	/*
5970 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5971 	 * E.g. S_DAX may get cleared / set.
5972 	 */
5973 	ext4_set_inode_flags(inode);
5974 
5975 	jbd2_journal_unlock_updates(journal);
5976 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5977 
5978 	if (val)
5979 		up_write(&EXT4_I(inode)->i_mmap_sem);
5980 	ext4_inode_resume_unlocked_dio(inode);
5981 
5982 	/* Finally we can mark the inode as dirty. */
5983 
5984 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5985 	if (IS_ERR(handle))
5986 		return PTR_ERR(handle);
5987 
5988 	err = ext4_mark_inode_dirty(handle, inode);
5989 	ext4_handle_sync(handle);
5990 	ext4_journal_stop(handle);
5991 	ext4_std_error(inode->i_sb, err);
5992 
5993 	return err;
5994 }
5995 
5996 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5997 {
5998 	return !buffer_mapped(bh);
5999 }
6000 
6001 int ext4_page_mkwrite(struct vm_fault *vmf)
6002 {
6003 	struct vm_area_struct *vma = vmf->vma;
6004 	struct page *page = vmf->page;
6005 	loff_t size;
6006 	unsigned long len;
6007 	int ret;
6008 	struct file *file = vma->vm_file;
6009 	struct inode *inode = file_inode(file);
6010 	struct address_space *mapping = inode->i_mapping;
6011 	handle_t *handle;
6012 	get_block_t *get_block;
6013 	int retries = 0;
6014 
6015 	sb_start_pagefault(inode->i_sb);
6016 	file_update_time(vma->vm_file);
6017 
6018 	down_read(&EXT4_I(inode)->i_mmap_sem);
6019 
6020 	ret = ext4_convert_inline_data(inode);
6021 	if (ret)
6022 		goto out_ret;
6023 
6024 	/* Delalloc case is easy... */
6025 	if (test_opt(inode->i_sb, DELALLOC) &&
6026 	    !ext4_should_journal_data(inode) &&
6027 	    !ext4_nonda_switch(inode->i_sb)) {
6028 		do {
6029 			ret = block_page_mkwrite(vma, vmf,
6030 						   ext4_da_get_block_prep);
6031 		} while (ret == -ENOSPC &&
6032 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6033 		goto out_ret;
6034 	}
6035 
6036 	lock_page(page);
6037 	size = i_size_read(inode);
6038 	/* Page got truncated from under us? */
6039 	if (page->mapping != mapping || page_offset(page) > size) {
6040 		unlock_page(page);
6041 		ret = VM_FAULT_NOPAGE;
6042 		goto out;
6043 	}
6044 
6045 	if (page->index == size >> PAGE_SHIFT)
6046 		len = size & ~PAGE_MASK;
6047 	else
6048 		len = PAGE_SIZE;
6049 	/*
6050 	 * Return if we have all the buffers mapped. This avoids the need to do
6051 	 * journal_start/journal_stop which can block and take a long time
6052 	 */
6053 	if (page_has_buffers(page)) {
6054 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6055 					    0, len, NULL,
6056 					    ext4_bh_unmapped)) {
6057 			/* Wait so that we don't change page under IO */
6058 			wait_for_stable_page(page);
6059 			ret = VM_FAULT_LOCKED;
6060 			goto out;
6061 		}
6062 	}
6063 	unlock_page(page);
6064 	/* OK, we need to fill the hole... */
6065 	if (ext4_should_dioread_nolock(inode))
6066 		get_block = ext4_get_block_unwritten;
6067 	else
6068 		get_block = ext4_get_block;
6069 retry_alloc:
6070 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6071 				    ext4_writepage_trans_blocks(inode));
6072 	if (IS_ERR(handle)) {
6073 		ret = VM_FAULT_SIGBUS;
6074 		goto out;
6075 	}
6076 	ret = block_page_mkwrite(vma, vmf, get_block);
6077 	if (!ret && ext4_should_journal_data(inode)) {
6078 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6079 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6080 			unlock_page(page);
6081 			ret = VM_FAULT_SIGBUS;
6082 			ext4_journal_stop(handle);
6083 			goto out;
6084 		}
6085 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6086 	}
6087 	ext4_journal_stop(handle);
6088 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6089 		goto retry_alloc;
6090 out_ret:
6091 	ret = block_page_mkwrite_return(ret);
6092 out:
6093 	up_read(&EXT4_I(inode)->i_mmap_sem);
6094 	sb_end_pagefault(inode->i_sb);
6095 	return ret;
6096 }
6097 
6098 int ext4_filemap_fault(struct vm_fault *vmf)
6099 {
6100 	struct inode *inode = file_inode(vmf->vma->vm_file);
6101 	int err;
6102 
6103 	down_read(&EXT4_I(inode)->i_mmap_sem);
6104 	err = filemap_fault(vmf);
6105 	up_read(&EXT4_I(inode)->i_mmap_sem);
6106 
6107 	return err;
6108 }
6109 
6110 /*
6111  * Find the first extent at or after @lblk in an inode that is not a hole.
6112  * Search for @map_len blocks at most. The extent is returned in @result.
6113  *
6114  * The function returns 1 if we found an extent. The function returns 0 in
6115  * case there is no extent at or after @lblk and in that case also sets
6116  * @result->es_len to 0. In case of error, the error code is returned.
6117  */
6118 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6119 			 unsigned int map_len, struct extent_status *result)
6120 {
6121 	struct ext4_map_blocks map;
6122 	struct extent_status es = {};
6123 	int ret;
6124 
6125 	map.m_lblk = lblk;
6126 	map.m_len = map_len;
6127 
6128 	/*
6129 	 * For non-extent based files this loop may iterate several times since
6130 	 * we do not determine full hole size.
6131 	 */
6132 	while (map.m_len > 0) {
6133 		ret = ext4_map_blocks(NULL, inode, &map, 0);
6134 		if (ret < 0)
6135 			return ret;
6136 		/* There's extent covering m_lblk? Just return it. */
6137 		if (ret > 0) {
6138 			int status;
6139 
6140 			ext4_es_store_pblock(result, map.m_pblk);
6141 			result->es_lblk = map.m_lblk;
6142 			result->es_len = map.m_len;
6143 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
6144 				status = EXTENT_STATUS_UNWRITTEN;
6145 			else
6146 				status = EXTENT_STATUS_WRITTEN;
6147 			ext4_es_store_status(result, status);
6148 			return 1;
6149 		}
6150 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6151 						  map.m_lblk + map.m_len - 1,
6152 						  &es);
6153 		/* Is delalloc data before next block in extent tree? */
6154 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6155 			ext4_lblk_t offset = 0;
6156 
6157 			if (es.es_lblk < lblk)
6158 				offset = lblk - es.es_lblk;
6159 			result->es_lblk = es.es_lblk + offset;
6160 			ext4_es_store_pblock(result,
6161 					     ext4_es_pblock(&es) + offset);
6162 			result->es_len = es.es_len - offset;
6163 			ext4_es_store_status(result, ext4_es_status(&es));
6164 
6165 			return 1;
6166 		}
6167 		/* There's a hole at m_lblk, advance us after it */
6168 		map.m_lblk += map.m_len;
6169 		map_len -= map.m_len;
6170 		map.m_len = map_len;
6171 		cond_resched();
6172 	}
6173 	result->es_len = 0;
6174 	return 0;
6175 }
6176