xref: /linux/fs/ext4/inode.c (revision 7265706c8fd57722f622f336ec110cb35f83e739)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43 
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 					      loff_t new_size)
46 {
47 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 						   new_size);
49 }
50 
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52 
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 		(inode->i_sb->s_blocksize >> 9) : 0;
60 
61 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63 
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 			struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76 	int err;
77 
78 	might_sleep();
79 
80 	BUFFER_TRACE(bh, "enter");
81 
82 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 		  "data mode %lx\n",
84 		  bh, is_metadata, inode->i_mode,
85 		  test_opt(inode->i_sb, DATA_FLAGS));
86 
87 	/* Never use the revoke function if we are doing full data
88 	 * journaling: there is no need to, and a V1 superblock won't
89 	 * support it.  Otherwise, only skip the revoke on un-journaled
90 	 * data blocks. */
91 
92 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 	    (!is_metadata && !ext4_should_journal_data(inode))) {
94 		if (bh) {
95 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
96 			return ext4_journal_forget(handle, bh);
97 		}
98 		return 0;
99 	}
100 
101 	/*
102 	 * data!=journal && (is_metadata || should_journal_data(inode))
103 	 */
104 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 	err = ext4_journal_revoke(handle, blocknr, bh);
106 	if (err)
107 		ext4_abort(inode->i_sb, __func__,
108 			   "error %d when attempting revoke", err);
109 	BUFFER_TRACE(bh, "exit");
110 	return err;
111 }
112 
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119 	ext4_lblk_t needed;
120 
121 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122 
123 	/* Give ourselves just enough room to cope with inodes in which
124 	 * i_blocks is corrupt: we've seen disk corruptions in the past
125 	 * which resulted in random data in an inode which looked enough
126 	 * like a regular file for ext4 to try to delete it.  Things
127 	 * will go a bit crazy if that happens, but at least we should
128 	 * try not to panic the whole kernel. */
129 	if (needed < 2)
130 		needed = 2;
131 
132 	/* But we need to bound the transaction so we don't overflow the
133 	 * journal. */
134 	if (needed > EXT4_MAX_TRANS_DATA)
135 		needed = EXT4_MAX_TRANS_DATA;
136 
137 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139 
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152 	handle_t *result;
153 
154 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 	if (!IS_ERR(result))
156 		return result;
157 
158 	ext4_std_error(inode->i_sb, PTR_ERR(result));
159 	return result;
160 }
161 
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171 		return 0;
172 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 		return 0;
174 	return 1;
175 }
176 
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184 	jbd_debug(2, "restarting handle %p\n", handle);
185 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187 
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193 	handle_t *handle;
194 	int err;
195 
196 	if (ext4_should_order_data(inode))
197 		ext4_begin_ordered_truncate(inode, 0);
198 	truncate_inode_pages(&inode->i_data, 0);
199 
200 	if (is_bad_inode(inode))
201 		goto no_delete;
202 
203 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
204 	if (IS_ERR(handle)) {
205 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
206 		/*
207 		 * If we're going to skip the normal cleanup, we still need to
208 		 * make sure that the in-core orphan linked list is properly
209 		 * cleaned up.
210 		 */
211 		ext4_orphan_del(NULL, inode);
212 		goto no_delete;
213 	}
214 
215 	if (IS_SYNC(inode))
216 		handle->h_sync = 1;
217 	inode->i_size = 0;
218 	err = ext4_mark_inode_dirty(handle, inode);
219 	if (err) {
220 		ext4_warning(inode->i_sb, __func__,
221 			     "couldn't mark inode dirty (err %d)", err);
222 		goto stop_handle;
223 	}
224 	if (inode->i_blocks)
225 		ext4_truncate(inode);
226 
227 	/*
228 	 * ext4_ext_truncate() doesn't reserve any slop when it
229 	 * restarts journal transactions; therefore there may not be
230 	 * enough credits left in the handle to remove the inode from
231 	 * the orphan list and set the dtime field.
232 	 */
233 	if (handle->h_buffer_credits < 3) {
234 		err = ext4_journal_extend(handle, 3);
235 		if (err > 0)
236 			err = ext4_journal_restart(handle, 3);
237 		if (err != 0) {
238 			ext4_warning(inode->i_sb, __func__,
239 				     "couldn't extend journal (err %d)", err);
240 		stop_handle:
241 			ext4_journal_stop(handle);
242 			goto no_delete;
243 		}
244 	}
245 
246 	/*
247 	 * Kill off the orphan record which ext4_truncate created.
248 	 * AKPM: I think this can be inside the above `if'.
249 	 * Note that ext4_orphan_del() has to be able to cope with the
250 	 * deletion of a non-existent orphan - this is because we don't
251 	 * know if ext4_truncate() actually created an orphan record.
252 	 * (Well, we could do this if we need to, but heck - it works)
253 	 */
254 	ext4_orphan_del(handle, inode);
255 	EXT4_I(inode)->i_dtime	= get_seconds();
256 
257 	/*
258 	 * One subtle ordering requirement: if anything has gone wrong
259 	 * (transaction abort, IO errors, whatever), then we can still
260 	 * do these next steps (the fs will already have been marked as
261 	 * having errors), but we can't free the inode if the mark_dirty
262 	 * fails.
263 	 */
264 	if (ext4_mark_inode_dirty(handle, inode))
265 		/* If that failed, just do the required in-core inode clear. */
266 		clear_inode(inode);
267 	else
268 		ext4_free_inode(handle, inode);
269 	ext4_journal_stop(handle);
270 	return;
271 no_delete:
272 	clear_inode(inode);	/* We must guarantee clearing of inode... */
273 }
274 
275 typedef struct {
276 	__le32	*p;
277 	__le32	key;
278 	struct buffer_head *bh;
279 } Indirect;
280 
281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282 {
283 	p->key = *(p->p = v);
284 	p->bh = bh;
285 }
286 
287 /**
288  *	ext4_block_to_path - parse the block number into array of offsets
289  *	@inode: inode in question (we are only interested in its superblock)
290  *	@i_block: block number to be parsed
291  *	@offsets: array to store the offsets in
292  *	@boundary: set this non-zero if the referred-to block is likely to be
293  *	       followed (on disk) by an indirect block.
294  *
295  *	To store the locations of file's data ext4 uses a data structure common
296  *	for UNIX filesystems - tree of pointers anchored in the inode, with
297  *	data blocks at leaves and indirect blocks in intermediate nodes.
298  *	This function translates the block number into path in that tree -
299  *	return value is the path length and @offsets[n] is the offset of
300  *	pointer to (n+1)th node in the nth one. If @block is out of range
301  *	(negative or too large) warning is printed and zero returned.
302  *
303  *	Note: function doesn't find node addresses, so no IO is needed. All
304  *	we need to know is the capacity of indirect blocks (taken from the
305  *	inode->i_sb).
306  */
307 
308 /*
309  * Portability note: the last comparison (check that we fit into triple
310  * indirect block) is spelled differently, because otherwise on an
311  * architecture with 32-bit longs and 8Kb pages we might get into trouble
312  * if our filesystem had 8Kb blocks. We might use long long, but that would
313  * kill us on x86. Oh, well, at least the sign propagation does not matter -
314  * i_block would have to be negative in the very beginning, so we would not
315  * get there at all.
316  */
317 
318 static int ext4_block_to_path(struct inode *inode,
319 			ext4_lblk_t i_block,
320 			ext4_lblk_t offsets[4], int *boundary)
321 {
322 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 	const long direct_blocks = EXT4_NDIR_BLOCKS,
325 		indirect_blocks = ptrs,
326 		double_blocks = (1 << (ptrs_bits * 2));
327 	int n = 0;
328 	int final = 0;
329 
330 	if (i_block < 0) {
331 		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
332 	} else if (i_block < direct_blocks) {
333 		offsets[n++] = i_block;
334 		final = direct_blocks;
335 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
336 		offsets[n++] = EXT4_IND_BLOCK;
337 		offsets[n++] = i_block;
338 		final = ptrs;
339 	} else if ((i_block -= indirect_blocks) < double_blocks) {
340 		offsets[n++] = EXT4_DIND_BLOCK;
341 		offsets[n++] = i_block >> ptrs_bits;
342 		offsets[n++] = i_block & (ptrs - 1);
343 		final = ptrs;
344 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345 		offsets[n++] = EXT4_TIND_BLOCK;
346 		offsets[n++] = i_block >> (ptrs_bits * 2);
347 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 		offsets[n++] = i_block & (ptrs - 1);
349 		final = ptrs;
350 	} else {
351 		ext4_warning(inode->i_sb, "ext4_block_to_path",
352 				"block %lu > max",
353 				i_block + direct_blocks +
354 				indirect_blocks + double_blocks);
355 	}
356 	if (boundary)
357 		*boundary = final - 1 - (i_block & (ptrs - 1));
358 	return n;
359 }
360 
361 /**
362  *	ext4_get_branch - read the chain of indirect blocks leading to data
363  *	@inode: inode in question
364  *	@depth: depth of the chain (1 - direct pointer, etc.)
365  *	@offsets: offsets of pointers in inode/indirect blocks
366  *	@chain: place to store the result
367  *	@err: here we store the error value
368  *
369  *	Function fills the array of triples <key, p, bh> and returns %NULL
370  *	if everything went OK or the pointer to the last filled triple
371  *	(incomplete one) otherwise. Upon the return chain[i].key contains
372  *	the number of (i+1)-th block in the chain (as it is stored in memory,
373  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
374  *	number (it points into struct inode for i==0 and into the bh->b_data
375  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376  *	block for i>0 and NULL for i==0. In other words, it holds the block
377  *	numbers of the chain, addresses they were taken from (and where we can
378  *	verify that chain did not change) and buffer_heads hosting these
379  *	numbers.
380  *
381  *	Function stops when it stumbles upon zero pointer (absent block)
382  *		(pointer to last triple returned, *@err == 0)
383  *	or when it gets an IO error reading an indirect block
384  *		(ditto, *@err == -EIO)
385  *	or when it reads all @depth-1 indirect blocks successfully and finds
386  *	the whole chain, all way to the data (returns %NULL, *err == 0).
387  *
388  *      Need to be called with
389  *      down_read(&EXT4_I(inode)->i_data_sem)
390  */
391 static Indirect *ext4_get_branch(struct inode *inode, int depth,
392 				 ext4_lblk_t  *offsets,
393 				 Indirect chain[4], int *err)
394 {
395 	struct super_block *sb = inode->i_sb;
396 	Indirect *p = chain;
397 	struct buffer_head *bh;
398 
399 	*err = 0;
400 	/* i_data is not going away, no lock needed */
401 	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
402 	if (!p->key)
403 		goto no_block;
404 	while (--depth) {
405 		bh = sb_bread(sb, le32_to_cpu(p->key));
406 		if (!bh)
407 			goto failure;
408 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409 		/* Reader: end */
410 		if (!p->key)
411 			goto no_block;
412 	}
413 	return NULL;
414 
415 failure:
416 	*err = -EIO;
417 no_block:
418 	return p;
419 }
420 
421 /**
422  *	ext4_find_near - find a place for allocation with sufficient locality
423  *	@inode: owner
424  *	@ind: descriptor of indirect block.
425  *
426  *	This function returns the preferred place for block allocation.
427  *	It is used when heuristic for sequential allocation fails.
428  *	Rules are:
429  *	  + if there is a block to the left of our position - allocate near it.
430  *	  + if pointer will live in indirect block - allocate near that block.
431  *	  + if pointer will live in inode - allocate in the same
432  *	    cylinder group.
433  *
434  * In the latter case we colour the starting block by the callers PID to
435  * prevent it from clashing with concurrent allocations for a different inode
436  * in the same block group.   The PID is used here so that functionally related
437  * files will be close-by on-disk.
438  *
439  *	Caller must make sure that @ind is valid and will stay that way.
440  */
441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
442 {
443 	struct ext4_inode_info *ei = EXT4_I(inode);
444 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445 	__le32 *p;
446 	ext4_fsblk_t bg_start;
447 	ext4_fsblk_t last_block;
448 	ext4_grpblk_t colour;
449 
450 	/* Try to find previous block */
451 	for (p = ind->p - 1; p >= start; p--) {
452 		if (*p)
453 			return le32_to_cpu(*p);
454 	}
455 
456 	/* No such thing, so let's try location of indirect block */
457 	if (ind->bh)
458 		return ind->bh->b_blocknr;
459 
460 	/*
461 	 * It is going to be referred to from the inode itself? OK, just put it
462 	 * into the same cylinder group then.
463 	 */
464 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
465 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466 
467 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468 		colour = (current->pid % 16) *
469 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
470 	else
471 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
472 	return bg_start + colour;
473 }
474 
475 /**
476  *	ext4_find_goal - find a preferred place for allocation.
477  *	@inode: owner
478  *	@block:  block we want
479  *	@partial: pointer to the last triple within a chain
480  *
481  *	Normally this function find the preferred place for block allocation,
482  *	returns it.
483  */
484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
485 		Indirect *partial)
486 {
487 	struct ext4_block_alloc_info *block_i;
488 
489 	block_i =  EXT4_I(inode)->i_block_alloc_info;
490 
491 	/*
492 	 * try the heuristic for sequential allocation,
493 	 * failing that at least try to get decent locality.
494 	 */
495 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
496 		&& (block_i->last_alloc_physical_block != 0)) {
497 		return block_i->last_alloc_physical_block + 1;
498 	}
499 
500 	return ext4_find_near(inode, partial);
501 }
502 
503 /**
504  *	ext4_blks_to_allocate: Look up the block map and count the number
505  *	of direct blocks need to be allocated for the given branch.
506  *
507  *	@branch: chain of indirect blocks
508  *	@k: number of blocks need for indirect blocks
509  *	@blks: number of data blocks to be mapped.
510  *	@blocks_to_boundary:  the offset in the indirect block
511  *
512  *	return the total number of blocks to be allocate, including the
513  *	direct and indirect blocks.
514  */
515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516 		int blocks_to_boundary)
517 {
518 	unsigned long count = 0;
519 
520 	/*
521 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
522 	 * then it's clear blocks on that path have not allocated
523 	 */
524 	if (k > 0) {
525 		/* right now we don't handle cross boundary allocation */
526 		if (blks < blocks_to_boundary + 1)
527 			count += blks;
528 		else
529 			count += blocks_to_boundary + 1;
530 		return count;
531 	}
532 
533 	count++;
534 	while (count < blks && count <= blocks_to_boundary &&
535 		le32_to_cpu(*(branch[0].p + count)) == 0) {
536 		count++;
537 	}
538 	return count;
539 }
540 
541 /**
542  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
543  *	@indirect_blks: the number of blocks need to allocate for indirect
544  *			blocks
545  *
546  *	@new_blocks: on return it will store the new block numbers for
547  *	the indirect blocks(if needed) and the first direct block,
548  *	@blks:	on return it will store the total number of allocated
549  *		direct blocks
550  */
551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
552 				ext4_lblk_t iblock, ext4_fsblk_t goal,
553 				int indirect_blks, int blks,
554 				ext4_fsblk_t new_blocks[4], int *err)
555 {
556 	int target, i;
557 	unsigned long count = 0, blk_allocated = 0;
558 	int index = 0;
559 	ext4_fsblk_t current_block = 0;
560 	int ret = 0;
561 
562 	/*
563 	 * Here we try to allocate the requested multiple blocks at once,
564 	 * on a best-effort basis.
565 	 * To build a branch, we should allocate blocks for
566 	 * the indirect blocks(if not allocated yet), and at least
567 	 * the first direct block of this branch.  That's the
568 	 * minimum number of blocks need to allocate(required)
569 	 */
570 	/* first we try to allocate the indirect blocks */
571 	target = indirect_blks;
572 	while (target > 0) {
573 		count = target;
574 		/* allocating blocks for indirect blocks and direct blocks */
575 		current_block = ext4_new_meta_blocks(handle, inode,
576 							goal, &count, err);
577 		if (*err)
578 			goto failed_out;
579 
580 		target -= count;
581 		/* allocate blocks for indirect blocks */
582 		while (index < indirect_blks && count) {
583 			new_blocks[index++] = current_block++;
584 			count--;
585 		}
586 		if (count > 0) {
587 			/*
588 			 * save the new block number
589 			 * for the first direct block
590 			 */
591 			new_blocks[index] = current_block;
592 			printk(KERN_INFO "%s returned more blocks than "
593 						"requested\n", __func__);
594 			WARN_ON(1);
595 			break;
596 		}
597 	}
598 
599 	target = blks - count ;
600 	blk_allocated = count;
601 	if (!target)
602 		goto allocated;
603 	/* Now allocate data blocks */
604 	count = target;
605 	/* allocating blocks for data blocks */
606 	current_block = ext4_new_blocks(handle, inode, iblock,
607 						goal, &count, err);
608 	if (*err && (target == blks)) {
609 		/*
610 		 * if the allocation failed and we didn't allocate
611 		 * any blocks before
612 		 */
613 		goto failed_out;
614 	}
615 	if (!*err) {
616 		if (target == blks) {
617 		/*
618 		 * save the new block number
619 		 * for the first direct block
620 		 */
621 			new_blocks[index] = current_block;
622 		}
623 		blk_allocated += count;
624 	}
625 allocated:
626 	/* total number of blocks allocated for direct blocks */
627 	ret = blk_allocated;
628 	*err = 0;
629 	return ret;
630 failed_out:
631 	for (i = 0; i <index; i++)
632 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
633 	return ret;
634 }
635 
636 /**
637  *	ext4_alloc_branch - allocate and set up a chain of blocks.
638  *	@inode: owner
639  *	@indirect_blks: number of allocated indirect blocks
640  *	@blks: number of allocated direct blocks
641  *	@offsets: offsets (in the blocks) to store the pointers to next.
642  *	@branch: place to store the chain in.
643  *
644  *	This function allocates blocks, zeroes out all but the last one,
645  *	links them into chain and (if we are synchronous) writes them to disk.
646  *	In other words, it prepares a branch that can be spliced onto the
647  *	inode. It stores the information about that chain in the branch[], in
648  *	the same format as ext4_get_branch() would do. We are calling it after
649  *	we had read the existing part of chain and partial points to the last
650  *	triple of that (one with zero ->key). Upon the exit we have the same
651  *	picture as after the successful ext4_get_block(), except that in one
652  *	place chain is disconnected - *branch->p is still zero (we did not
653  *	set the last link), but branch->key contains the number that should
654  *	be placed into *branch->p to fill that gap.
655  *
656  *	If allocation fails we free all blocks we've allocated (and forget
657  *	their buffer_heads) and return the error value the from failed
658  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *	as described above and return 0.
660  */
661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
662 				ext4_lblk_t iblock, int indirect_blks,
663 				int *blks, ext4_fsblk_t goal,
664 				ext4_lblk_t *offsets, Indirect *branch)
665 {
666 	int blocksize = inode->i_sb->s_blocksize;
667 	int i, n = 0;
668 	int err = 0;
669 	struct buffer_head *bh;
670 	int num;
671 	ext4_fsblk_t new_blocks[4];
672 	ext4_fsblk_t current_block;
673 
674 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
675 				*blks, new_blocks, &err);
676 	if (err)
677 		return err;
678 
679 	branch[0].key = cpu_to_le32(new_blocks[0]);
680 	/*
681 	 * metadata blocks and data blocks are allocated.
682 	 */
683 	for (n = 1; n <= indirect_blks;  n++) {
684 		/*
685 		 * Get buffer_head for parent block, zero it out
686 		 * and set the pointer to new one, then send
687 		 * parent to disk.
688 		 */
689 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690 		branch[n].bh = bh;
691 		lock_buffer(bh);
692 		BUFFER_TRACE(bh, "call get_create_access");
693 		err = ext4_journal_get_create_access(handle, bh);
694 		if (err) {
695 			unlock_buffer(bh);
696 			brelse(bh);
697 			goto failed;
698 		}
699 
700 		memset(bh->b_data, 0, blocksize);
701 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
702 		branch[n].key = cpu_to_le32(new_blocks[n]);
703 		*branch[n].p = branch[n].key;
704 		if ( n == indirect_blks) {
705 			current_block = new_blocks[n];
706 			/*
707 			 * End of chain, update the last new metablock of
708 			 * the chain to point to the new allocated
709 			 * data blocks numbers
710 			 */
711 			for (i=1; i < num; i++)
712 				*(branch[n].p + i) = cpu_to_le32(++current_block);
713 		}
714 		BUFFER_TRACE(bh, "marking uptodate");
715 		set_buffer_uptodate(bh);
716 		unlock_buffer(bh);
717 
718 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719 		err = ext4_journal_dirty_metadata(handle, bh);
720 		if (err)
721 			goto failed;
722 	}
723 	*blks = num;
724 	return err;
725 failed:
726 	/* Allocation failed, free what we already allocated */
727 	for (i = 1; i <= n ; i++) {
728 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
729 		ext4_journal_forget(handle, branch[i].bh);
730 	}
731 	for (i = 0; i <indirect_blks; i++)
732 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
733 
734 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
735 
736 	return err;
737 }
738 
739 /**
740  * ext4_splice_branch - splice the allocated branch onto inode.
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @chain: chain of indirect blocks (with a missing link - see
744  *	ext4_alloc_branch)
745  * @where: location of missing link
746  * @num:   number of indirect blocks we are adding
747  * @blks:  number of direct blocks we are adding
748  *
749  * This function fills the missing link and does all housekeeping needed in
750  * inode (->i_blocks, etc.). In case of success we end up with the full
751  * chain to new block and return 0.
752  */
753 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
754 			ext4_lblk_t block, Indirect *where, int num, int blks)
755 {
756 	int i;
757 	int err = 0;
758 	struct ext4_block_alloc_info *block_i;
759 	ext4_fsblk_t current_block;
760 
761 	block_i = EXT4_I(inode)->i_block_alloc_info;
762 	/*
763 	 * If we're splicing into a [td]indirect block (as opposed to the
764 	 * inode) then we need to get write access to the [td]indirect block
765 	 * before the splice.
766 	 */
767 	if (where->bh) {
768 		BUFFER_TRACE(where->bh, "get_write_access");
769 		err = ext4_journal_get_write_access(handle, where->bh);
770 		if (err)
771 			goto err_out;
772 	}
773 	/* That's it */
774 
775 	*where->p = where->key;
776 
777 	/*
778 	 * Update the host buffer_head or inode to point to more just allocated
779 	 * direct blocks blocks
780 	 */
781 	if (num == 0 && blks > 1) {
782 		current_block = le32_to_cpu(where->key) + 1;
783 		for (i = 1; i < blks; i++)
784 			*(where->p + i ) = cpu_to_le32(current_block++);
785 	}
786 
787 	/*
788 	 * update the most recently allocated logical & physical block
789 	 * in i_block_alloc_info, to assist find the proper goal block for next
790 	 * allocation
791 	 */
792 	if (block_i) {
793 		block_i->last_alloc_logical_block = block + blks - 1;
794 		block_i->last_alloc_physical_block =
795 				le32_to_cpu(where[num].key) + blks - 1;
796 	}
797 
798 	/* We are done with atomic stuff, now do the rest of housekeeping */
799 
800 	inode->i_ctime = ext4_current_time(inode);
801 	ext4_mark_inode_dirty(handle, inode);
802 
803 	/* had we spliced it onto indirect block? */
804 	if (where->bh) {
805 		/*
806 		 * If we spliced it onto an indirect block, we haven't
807 		 * altered the inode.  Note however that if it is being spliced
808 		 * onto an indirect block at the very end of the file (the
809 		 * file is growing) then we *will* alter the inode to reflect
810 		 * the new i_size.  But that is not done here - it is done in
811 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
812 		 */
813 		jbd_debug(5, "splicing indirect only\n");
814 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815 		err = ext4_journal_dirty_metadata(handle, where->bh);
816 		if (err)
817 			goto err_out;
818 	} else {
819 		/*
820 		 * OK, we spliced it into the inode itself on a direct block.
821 		 * Inode was dirtied above.
822 		 */
823 		jbd_debug(5, "splicing direct\n");
824 	}
825 	return err;
826 
827 err_out:
828 	for (i = 1; i <= num; i++) {
829 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
830 		ext4_journal_forget(handle, where[i].bh);
831 		ext4_free_blocks(handle, inode,
832 					le32_to_cpu(where[i-1].key), 1, 0);
833 	}
834 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
835 
836 	return err;
837 }
838 
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  *
857  *
858  * Need to be called with
859  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
861  */
862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
863 		ext4_lblk_t iblock, unsigned long maxblocks,
864 		struct buffer_head *bh_result,
865 		int create, int extend_disksize)
866 {
867 	int err = -EIO;
868 	ext4_lblk_t offsets[4];
869 	Indirect chain[4];
870 	Indirect *partial;
871 	ext4_fsblk_t goal;
872 	int indirect_blks;
873 	int blocks_to_boundary = 0;
874 	int depth;
875 	struct ext4_inode_info *ei = EXT4_I(inode);
876 	int count = 0;
877 	ext4_fsblk_t first_block = 0;
878 	loff_t disksize;
879 
880 
881 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
882 	J_ASSERT(handle != NULL || create == 0);
883 	depth = ext4_block_to_path(inode, iblock, offsets,
884 					&blocks_to_boundary);
885 
886 	if (depth == 0)
887 		goto out;
888 
889 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
890 
891 	/* Simplest case - block found, no allocation needed */
892 	if (!partial) {
893 		first_block = le32_to_cpu(chain[depth - 1].key);
894 		clear_buffer_new(bh_result);
895 		count++;
896 		/*map more blocks*/
897 		while (count < maxblocks && count <= blocks_to_boundary) {
898 			ext4_fsblk_t blk;
899 
900 			blk = le32_to_cpu(*(chain[depth-1].p + count));
901 
902 			if (blk == first_block + count)
903 				count++;
904 			else
905 				break;
906 		}
907 		goto got_it;
908 	}
909 
910 	/* Next simple case - plain lookup or failed read of indirect block */
911 	if (!create || err == -EIO)
912 		goto cleanup;
913 
914 	/*
915 	 * Okay, we need to do block allocation.  Lazily initialize the block
916 	 * allocation info here if necessary
917 	*/
918 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919 		ext4_init_block_alloc_info(inode);
920 
921 	goal = ext4_find_goal(inode, iblock, partial);
922 
923 	/* the number of blocks need to allocate for [d,t]indirect blocks */
924 	indirect_blks = (chain + depth) - partial - 1;
925 
926 	/*
927 	 * Next look up the indirect map to count the totoal number of
928 	 * direct blocks to allocate for this branch.
929 	 */
930 	count = ext4_blks_to_allocate(partial, indirect_blks,
931 					maxblocks, blocks_to_boundary);
932 	/*
933 	 * Block out ext4_truncate while we alter the tree
934 	 */
935 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936 					&count, goal,
937 					offsets + (partial - chain), partial);
938 
939 	/*
940 	 * The ext4_splice_branch call will free and forget any buffers
941 	 * on the new chain if there is a failure, but that risks using
942 	 * up transaction credits, especially for bitmaps where the
943 	 * credits cannot be returned.  Can we handle this somehow?  We
944 	 * may need to return -EAGAIN upwards in the worst case.  --sct
945 	 */
946 	if (!err)
947 		err = ext4_splice_branch(handle, inode, iblock,
948 					partial, indirect_blks, count);
949 	/*
950 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
951 	 * protect it if you're about to implement concurrent
952 	 * ext4_get_block() -bzzz
953 	*/
954 	if (!err && extend_disksize) {
955 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956 		if (disksize > i_size_read(inode))
957 			disksize = i_size_read(inode);
958 		if (disksize > ei->i_disksize)
959 			ei->i_disksize = disksize;
960 	}
961 	if (err)
962 		goto cleanup;
963 
964 	set_buffer_new(bh_result);
965 got_it:
966 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967 	if (count > blocks_to_boundary)
968 		set_buffer_boundary(bh_result);
969 	err = count;
970 	/* Clean up and exit */
971 	partial = chain + depth - 1;	/* the whole chain */
972 cleanup:
973 	while (partial > chain) {
974 		BUFFER_TRACE(partial->bh, "call brelse");
975 		brelse(partial->bh);
976 		partial--;
977 	}
978 	BUFFER_TRACE(bh_result, "returned");
979 out:
980 	return err;
981 }
982 
983 /*
984  * Calculate the number of metadata blocks need to reserve
985  * to allocate @blocks for non extent file based file
986  */
987 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
988 {
989 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990 	int ind_blks, dind_blks, tind_blks;
991 
992 	/* number of new indirect blocks needed */
993 	ind_blks = (blocks + icap - 1) / icap;
994 
995 	dind_blks = (ind_blks + icap - 1) / icap;
996 
997 	tind_blks = 1;
998 
999 	return ind_blks + dind_blks + tind_blks;
1000 }
1001 
1002 /*
1003  * Calculate the number of metadata blocks need to reserve
1004  * to allocate given number of blocks
1005  */
1006 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1007 {
1008 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1009 		return ext4_ext_calc_metadata_amount(inode, blocks);
1010 
1011 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1012 }
1013 
1014 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1015 {
1016 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1017 	int total, mdb, mdb_free;
1018 
1019 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1020 	/* recalculate the number of metablocks still need to be reserved */
1021 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1022 	mdb = ext4_calc_metadata_amount(inode, total);
1023 
1024 	/* figure out how many metablocks to release */
1025 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1026 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1027 
1028 	/* Account for allocated meta_blocks */
1029 	mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1030 
1031 	/* update fs free blocks counter for truncate case */
1032 	percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1033 
1034 	/* update per-inode reservations */
1035 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1036 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1037 
1038 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1039 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1040 	EXT4_I(inode)->i_allocated_meta_blocks = 0;
1041 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042 }
1043 
1044 /* Maximum number of blocks we map for direct IO at once. */
1045 #define DIO_MAX_BLOCKS 4096
1046 /*
1047  * Number of credits we need for writing DIO_MAX_BLOCKS:
1048  * We need sb + group descriptor + bitmap + inode -> 4
1049  * For B blocks with A block pointers per block we need:
1050  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1051  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1052  */
1053 #define DIO_CREDITS 25
1054 
1055 
1056 /*
1057  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1058  * and returns if the blocks are already mapped.
1059  *
1060  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1061  * and store the allocated blocks in the result buffer head and mark it
1062  * mapped.
1063  *
1064  * If file type is extents based, it will call ext4_ext_get_blocks(),
1065  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1066  * based files
1067  *
1068  * On success, it returns the number of blocks being mapped or allocate.
1069  * if create==0 and the blocks are pre-allocated and uninitialized block,
1070  * the result buffer head is unmapped. If the create ==1, it will make sure
1071  * the buffer head is mapped.
1072  *
1073  * It returns 0 if plain look up failed (blocks have not been allocated), in
1074  * that casem, buffer head is unmapped
1075  *
1076  * It returns the error in case of allocation failure.
1077  */
1078 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1079 			unsigned long max_blocks, struct buffer_head *bh,
1080 			int create, int extend_disksize, int flag)
1081 {
1082 	int retval;
1083 
1084 	clear_buffer_mapped(bh);
1085 
1086 	/*
1087 	 * Try to see if we can get  the block without requesting
1088 	 * for new file system block.
1089 	 */
1090 	down_read((&EXT4_I(inode)->i_data_sem));
1091 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1092 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1093 				bh, 0, 0);
1094 	} else {
1095 		retval = ext4_get_blocks_handle(handle,
1096 				inode, block, max_blocks, bh, 0, 0);
1097 	}
1098 	up_read((&EXT4_I(inode)->i_data_sem));
1099 
1100 	/* If it is only a block(s) look up */
1101 	if (!create)
1102 		return retval;
1103 
1104 	/*
1105 	 * Returns if the blocks have already allocated
1106 	 *
1107 	 * Note that if blocks have been preallocated
1108 	 * ext4_ext_get_block() returns th create = 0
1109 	 * with buffer head unmapped.
1110 	 */
1111 	if (retval > 0 && buffer_mapped(bh))
1112 		return retval;
1113 
1114 	/*
1115 	 * New blocks allocate and/or writing to uninitialized extent
1116 	 * will possibly result in updating i_data, so we take
1117 	 * the write lock of i_data_sem, and call get_blocks()
1118 	 * with create == 1 flag.
1119 	 */
1120 	down_write((&EXT4_I(inode)->i_data_sem));
1121 
1122 	/*
1123 	 * if the caller is from delayed allocation writeout path
1124 	 * we have already reserved fs blocks for allocation
1125 	 * let the underlying get_block() function know to
1126 	 * avoid double accounting
1127 	 */
1128 	if (flag)
1129 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1130 	/*
1131 	 * We need to check for EXT4 here because migrate
1132 	 * could have changed the inode type in between
1133 	 */
1134 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1135 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1136 				bh, create, extend_disksize);
1137 	} else {
1138 		retval = ext4_get_blocks_handle(handle, inode, block,
1139 				max_blocks, bh, create, extend_disksize);
1140 
1141 		if (retval > 0 && buffer_new(bh)) {
1142 			/*
1143 			 * We allocated new blocks which will result in
1144 			 * i_data's format changing.  Force the migrate
1145 			 * to fail by clearing migrate flags
1146 			 */
1147 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1148 							~EXT4_EXT_MIGRATE;
1149 		}
1150 	}
1151 
1152 	if (flag) {
1153 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1154 		/*
1155 		 * Update reserved blocks/metadata blocks
1156 		 * after successful block allocation
1157 		 * which were deferred till now
1158 		 */
1159 		if ((retval > 0) && buffer_delay(bh))
1160 			ext4_da_update_reserve_space(inode, retval);
1161 	}
1162 
1163 	up_write((&EXT4_I(inode)->i_data_sem));
1164 	return retval;
1165 }
1166 
1167 static int ext4_get_block(struct inode *inode, sector_t iblock,
1168 			struct buffer_head *bh_result, int create)
1169 {
1170 	handle_t *handle = ext4_journal_current_handle();
1171 	int ret = 0, started = 0;
1172 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1173 
1174 	if (create && !handle) {
1175 		/* Direct IO write... */
1176 		if (max_blocks > DIO_MAX_BLOCKS)
1177 			max_blocks = DIO_MAX_BLOCKS;
1178 		handle = ext4_journal_start(inode, DIO_CREDITS +
1179 			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1180 		if (IS_ERR(handle)) {
1181 			ret = PTR_ERR(handle);
1182 			goto out;
1183 		}
1184 		started = 1;
1185 	}
1186 
1187 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1188 					max_blocks, bh_result, create, 0, 0);
1189 	if (ret > 0) {
1190 		bh_result->b_size = (ret << inode->i_blkbits);
1191 		ret = 0;
1192 	}
1193 	if (started)
1194 		ext4_journal_stop(handle);
1195 out:
1196 	return ret;
1197 }
1198 
1199 /*
1200  * `handle' can be NULL if create is zero
1201  */
1202 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1203 				ext4_lblk_t block, int create, int *errp)
1204 {
1205 	struct buffer_head dummy;
1206 	int fatal = 0, err;
1207 
1208 	J_ASSERT(handle != NULL || create == 0);
1209 
1210 	dummy.b_state = 0;
1211 	dummy.b_blocknr = -1000;
1212 	buffer_trace_init(&dummy.b_history);
1213 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1214 					&dummy, create, 1, 0);
1215 	/*
1216 	 * ext4_get_blocks_handle() returns number of blocks
1217 	 * mapped. 0 in case of a HOLE.
1218 	 */
1219 	if (err > 0) {
1220 		if (err > 1)
1221 			WARN_ON(1);
1222 		err = 0;
1223 	}
1224 	*errp = err;
1225 	if (!err && buffer_mapped(&dummy)) {
1226 		struct buffer_head *bh;
1227 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1228 		if (!bh) {
1229 			*errp = -EIO;
1230 			goto err;
1231 		}
1232 		if (buffer_new(&dummy)) {
1233 			J_ASSERT(create != 0);
1234 			J_ASSERT(handle != NULL);
1235 
1236 			/*
1237 			 * Now that we do not always journal data, we should
1238 			 * keep in mind whether this should always journal the
1239 			 * new buffer as metadata.  For now, regular file
1240 			 * writes use ext4_get_block instead, so it's not a
1241 			 * problem.
1242 			 */
1243 			lock_buffer(bh);
1244 			BUFFER_TRACE(bh, "call get_create_access");
1245 			fatal = ext4_journal_get_create_access(handle, bh);
1246 			if (!fatal && !buffer_uptodate(bh)) {
1247 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1248 				set_buffer_uptodate(bh);
1249 			}
1250 			unlock_buffer(bh);
1251 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1252 			err = ext4_journal_dirty_metadata(handle, bh);
1253 			if (!fatal)
1254 				fatal = err;
1255 		} else {
1256 			BUFFER_TRACE(bh, "not a new buffer");
1257 		}
1258 		if (fatal) {
1259 			*errp = fatal;
1260 			brelse(bh);
1261 			bh = NULL;
1262 		}
1263 		return bh;
1264 	}
1265 err:
1266 	return NULL;
1267 }
1268 
1269 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1270 			       ext4_lblk_t block, int create, int *err)
1271 {
1272 	struct buffer_head * bh;
1273 
1274 	bh = ext4_getblk(handle, inode, block, create, err);
1275 	if (!bh)
1276 		return bh;
1277 	if (buffer_uptodate(bh))
1278 		return bh;
1279 	ll_rw_block(READ_META, 1, &bh);
1280 	wait_on_buffer(bh);
1281 	if (buffer_uptodate(bh))
1282 		return bh;
1283 	put_bh(bh);
1284 	*err = -EIO;
1285 	return NULL;
1286 }
1287 
1288 static int walk_page_buffers(	handle_t *handle,
1289 				struct buffer_head *head,
1290 				unsigned from,
1291 				unsigned to,
1292 				int *partial,
1293 				int (*fn)(	handle_t *handle,
1294 						struct buffer_head *bh))
1295 {
1296 	struct buffer_head *bh;
1297 	unsigned block_start, block_end;
1298 	unsigned blocksize = head->b_size;
1299 	int err, ret = 0;
1300 	struct buffer_head *next;
1301 
1302 	for (	bh = head, block_start = 0;
1303 		ret == 0 && (bh != head || !block_start);
1304 		block_start = block_end, bh = next)
1305 	{
1306 		next = bh->b_this_page;
1307 		block_end = block_start + blocksize;
1308 		if (block_end <= from || block_start >= to) {
1309 			if (partial && !buffer_uptodate(bh))
1310 				*partial = 1;
1311 			continue;
1312 		}
1313 		err = (*fn)(handle, bh);
1314 		if (!ret)
1315 			ret = err;
1316 	}
1317 	return ret;
1318 }
1319 
1320 /*
1321  * To preserve ordering, it is essential that the hole instantiation and
1322  * the data write be encapsulated in a single transaction.  We cannot
1323  * close off a transaction and start a new one between the ext4_get_block()
1324  * and the commit_write().  So doing the jbd2_journal_start at the start of
1325  * prepare_write() is the right place.
1326  *
1327  * Also, this function can nest inside ext4_writepage() ->
1328  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1329  * has generated enough buffer credits to do the whole page.  So we won't
1330  * block on the journal in that case, which is good, because the caller may
1331  * be PF_MEMALLOC.
1332  *
1333  * By accident, ext4 can be reentered when a transaction is open via
1334  * quota file writes.  If we were to commit the transaction while thus
1335  * reentered, there can be a deadlock - we would be holding a quota
1336  * lock, and the commit would never complete if another thread had a
1337  * transaction open and was blocking on the quota lock - a ranking
1338  * violation.
1339  *
1340  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1341  * will _not_ run commit under these circumstances because handle->h_ref
1342  * is elevated.  We'll still have enough credits for the tiny quotafile
1343  * write.
1344  */
1345 static int do_journal_get_write_access(handle_t *handle,
1346 					struct buffer_head *bh)
1347 {
1348 	if (!buffer_mapped(bh) || buffer_freed(bh))
1349 		return 0;
1350 	return ext4_journal_get_write_access(handle, bh);
1351 }
1352 
1353 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1354 				loff_t pos, unsigned len, unsigned flags,
1355 				struct page **pagep, void **fsdata)
1356 {
1357  	struct inode *inode = mapping->host;
1358 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1359 	handle_t *handle;
1360 	int retries = 0;
1361  	struct page *page;
1362  	pgoff_t index;
1363  	unsigned from, to;
1364 
1365  	index = pos >> PAGE_CACHE_SHIFT;
1366  	from = pos & (PAGE_CACHE_SIZE - 1);
1367  	to = from + len;
1368 
1369 retry:
1370   	handle = ext4_journal_start(inode, needed_blocks);
1371   	if (IS_ERR(handle)) {
1372   		ret = PTR_ERR(handle);
1373   		goto out;
1374 	}
1375 
1376 	page = __grab_cache_page(mapping, index);
1377 	if (!page) {
1378 		ext4_journal_stop(handle);
1379 		ret = -ENOMEM;
1380 		goto out;
1381 	}
1382 	*pagep = page;
1383 
1384 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1385 							ext4_get_block);
1386 
1387 	if (!ret && ext4_should_journal_data(inode)) {
1388 		ret = walk_page_buffers(handle, page_buffers(page),
1389 				from, to, NULL, do_journal_get_write_access);
1390 	}
1391 
1392 	if (ret) {
1393  		unlock_page(page);
1394 		ext4_journal_stop(handle);
1395  		page_cache_release(page);
1396 	}
1397 
1398 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1399 		goto retry;
1400 out:
1401 	return ret;
1402 }
1403 
1404 /* For write_end() in data=journal mode */
1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1406 {
1407 	if (!buffer_mapped(bh) || buffer_freed(bh))
1408 		return 0;
1409 	set_buffer_uptodate(bh);
1410 	return ext4_journal_dirty_metadata(handle, bh);
1411 }
1412 
1413 /*
1414  * We need to pick up the new inode size which generic_commit_write gave us
1415  * `file' can be NULL - eg, when called from page_symlink().
1416  *
1417  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1418  * buffers are managed internally.
1419  */
1420 static int ext4_ordered_write_end(struct file *file,
1421 				struct address_space *mapping,
1422 				loff_t pos, unsigned len, unsigned copied,
1423 				struct page *page, void *fsdata)
1424 {
1425 	handle_t *handle = ext4_journal_current_handle();
1426 	struct inode *inode = mapping->host;
1427 	int ret = 0, ret2;
1428 
1429 	ret = ext4_jbd2_file_inode(handle, inode);
1430 
1431 	if (ret == 0) {
1432 		/*
1433 		 * generic_write_end() will run mark_inode_dirty() if i_size
1434 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1435 		 * into that.
1436 		 */
1437 		loff_t new_i_size;
1438 
1439 		new_i_size = pos + copied;
1440 		if (new_i_size > EXT4_I(inode)->i_disksize)
1441 			EXT4_I(inode)->i_disksize = new_i_size;
1442 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1443 							page, fsdata);
1444 		copied = ret2;
1445 		if (ret2 < 0)
1446 			ret = ret2;
1447 	}
1448 	ret2 = ext4_journal_stop(handle);
1449 	if (!ret)
1450 		ret = ret2;
1451 
1452 	return ret ? ret : copied;
1453 }
1454 
1455 static int ext4_writeback_write_end(struct file *file,
1456 				struct address_space *mapping,
1457 				loff_t pos, unsigned len, unsigned copied,
1458 				struct page *page, void *fsdata)
1459 {
1460 	handle_t *handle = ext4_journal_current_handle();
1461 	struct inode *inode = mapping->host;
1462 	int ret = 0, ret2;
1463 	loff_t new_i_size;
1464 
1465 	new_i_size = pos + copied;
1466 	if (new_i_size > EXT4_I(inode)->i_disksize)
1467 		EXT4_I(inode)->i_disksize = new_i_size;
1468 
1469 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1470 							page, fsdata);
1471 	copied = ret2;
1472 	if (ret2 < 0)
1473 		ret = ret2;
1474 
1475 	ret2 = ext4_journal_stop(handle);
1476 	if (!ret)
1477 		ret = ret2;
1478 
1479 	return ret ? ret : copied;
1480 }
1481 
1482 static int ext4_journalled_write_end(struct file *file,
1483 				struct address_space *mapping,
1484 				loff_t pos, unsigned len, unsigned copied,
1485 				struct page *page, void *fsdata)
1486 {
1487 	handle_t *handle = ext4_journal_current_handle();
1488 	struct inode *inode = mapping->host;
1489 	int ret = 0, ret2;
1490 	int partial = 0;
1491 	unsigned from, to;
1492 
1493 	from = pos & (PAGE_CACHE_SIZE - 1);
1494 	to = from + len;
1495 
1496 	if (copied < len) {
1497 		if (!PageUptodate(page))
1498 			copied = 0;
1499 		page_zero_new_buffers(page, from+copied, to);
1500 	}
1501 
1502 	ret = walk_page_buffers(handle, page_buffers(page), from,
1503 				to, &partial, write_end_fn);
1504 	if (!partial)
1505 		SetPageUptodate(page);
1506 	if (pos+copied > inode->i_size)
1507 		i_size_write(inode, pos+copied);
1508 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1509 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1510 		EXT4_I(inode)->i_disksize = inode->i_size;
1511 		ret2 = ext4_mark_inode_dirty(handle, inode);
1512 		if (!ret)
1513 			ret = ret2;
1514 	}
1515 
1516 	unlock_page(page);
1517 	ret2 = ext4_journal_stop(handle);
1518 	if (!ret)
1519 		ret = ret2;
1520 	page_cache_release(page);
1521 
1522 	return ret ? ret : copied;
1523 }
1524 
1525 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1526 {
1527        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1528        unsigned long md_needed, mdblocks, total = 0;
1529 
1530 	/*
1531 	 * recalculate the amount of metadata blocks to reserve
1532 	 * in order to allocate nrblocks
1533 	 * worse case is one extent per block
1534 	 */
1535 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 	mdblocks = ext4_calc_metadata_amount(inode, total);
1538 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539 
1540 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 	total = md_needed + nrblocks;
1542 
1543 	if (ext4_has_free_blocks(sbi, total) < total) {
1544 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 		return -ENOSPC;
1546 	}
1547 	/* reduce fs free blocks counter */
1548 	percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1549 
1550 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1551 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1552 
1553 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1554 	return 0;       /* success */
1555 }
1556 
1557 static void ext4_da_release_space(struct inode *inode, int to_free)
1558 {
1559 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 	int total, mdb, mdb_free, release;
1561 
1562 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1563 	/* recalculate the number of metablocks still need to be reserved */
1564 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1565 	mdb = ext4_calc_metadata_amount(inode, total);
1566 
1567 	/* figure out how many metablocks to release */
1568 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1569 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1570 
1571 	release = to_free + mdb_free;
1572 
1573 	/* update fs free blocks counter for truncate case */
1574 	percpu_counter_add(&sbi->s_freeblocks_counter, release);
1575 
1576 	/* update per-inode reservations */
1577 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1578 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1579 
1580 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1581 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1582 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1583 }
1584 
1585 static void ext4_da_page_release_reservation(struct page *page,
1586 						unsigned long offset)
1587 {
1588 	int to_release = 0;
1589 	struct buffer_head *head, *bh;
1590 	unsigned int curr_off = 0;
1591 
1592 	head = page_buffers(page);
1593 	bh = head;
1594 	do {
1595 		unsigned int next_off = curr_off + bh->b_size;
1596 
1597 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1598 			to_release++;
1599 			clear_buffer_delay(bh);
1600 		}
1601 		curr_off = next_off;
1602 	} while ((bh = bh->b_this_page) != head);
1603 	ext4_da_release_space(page->mapping->host, to_release);
1604 }
1605 
1606 /*
1607  * Delayed allocation stuff
1608  */
1609 
1610 struct mpage_da_data {
1611 	struct inode *inode;
1612 	struct buffer_head lbh;			/* extent of blocks */
1613 	unsigned long first_page, next_page;	/* extent of pages */
1614 	get_block_t *get_block;
1615 	struct writeback_control *wbc;
1616 };
1617 
1618 /*
1619  * mpage_da_submit_io - walks through extent of pages and try to write
1620  * them with __mpage_writepage()
1621  *
1622  * @mpd->inode: inode
1623  * @mpd->first_page: first page of the extent
1624  * @mpd->next_page: page after the last page of the extent
1625  * @mpd->get_block: the filesystem's block mapper function
1626  *
1627  * By the time mpage_da_submit_io() is called we expect all blocks
1628  * to be allocated. this may be wrong if allocation failed.
1629  *
1630  * As pages are already locked by write_cache_pages(), we can't use it
1631  */
1632 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1633 {
1634 	struct address_space *mapping = mpd->inode->i_mapping;
1635 	struct mpage_data mpd_pp = {
1636 		.bio = NULL,
1637 		.last_block_in_bio = 0,
1638 		.get_block = mpd->get_block,
1639 		.use_writepage = 1,
1640 	};
1641 	int ret = 0, err, nr_pages, i;
1642 	unsigned long index, end;
1643 	struct pagevec pvec;
1644 
1645 	BUG_ON(mpd->next_page <= mpd->first_page);
1646 
1647 	pagevec_init(&pvec, 0);
1648 	index = mpd->first_page;
1649 	end = mpd->next_page - 1;
1650 
1651 	while (index <= end) {
1652 		/* XXX: optimize tail */
1653 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1654 		if (nr_pages == 0)
1655 			break;
1656 		for (i = 0; i < nr_pages; i++) {
1657 			struct page *page = pvec.pages[i];
1658 
1659 			index = page->index;
1660 			if (index > end)
1661 				break;
1662 			index++;
1663 
1664 			err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1665 
1666 			/*
1667 			 * In error case, we have to continue because
1668 			 * remaining pages are still locked
1669 			 * XXX: unlock and re-dirty them?
1670 			 */
1671 			if (ret == 0)
1672 				ret = err;
1673 		}
1674 		pagevec_release(&pvec);
1675 	}
1676 	if (mpd_pp.bio)
1677 		mpage_bio_submit(WRITE, mpd_pp.bio);
1678 
1679 	return ret;
1680 }
1681 
1682 /*
1683  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1684  *
1685  * @mpd->inode - inode to walk through
1686  * @exbh->b_blocknr - first block on a disk
1687  * @exbh->b_size - amount of space in bytes
1688  * @logical - first logical block to start assignment with
1689  *
1690  * the function goes through all passed space and put actual disk
1691  * block numbers into buffer heads, dropping BH_Delay
1692  */
1693 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1694 				 struct buffer_head *exbh)
1695 {
1696 	struct inode *inode = mpd->inode;
1697 	struct address_space *mapping = inode->i_mapping;
1698 	int blocks = exbh->b_size >> inode->i_blkbits;
1699 	sector_t pblock = exbh->b_blocknr, cur_logical;
1700 	struct buffer_head *head, *bh;
1701 	unsigned long index, end;
1702 	struct pagevec pvec;
1703 	int nr_pages, i;
1704 
1705 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1706 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1707 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1708 
1709 	pagevec_init(&pvec, 0);
1710 
1711 	while (index <= end) {
1712 		/* XXX: optimize tail */
1713 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1714 		if (nr_pages == 0)
1715 			break;
1716 		for (i = 0; i < nr_pages; i++) {
1717 			struct page *page = pvec.pages[i];
1718 
1719 			index = page->index;
1720 			if (index > end)
1721 				break;
1722 			index++;
1723 
1724 			BUG_ON(!PageLocked(page));
1725 			BUG_ON(PageWriteback(page));
1726 			BUG_ON(!page_has_buffers(page));
1727 
1728 			bh = page_buffers(page);
1729 			head = bh;
1730 
1731 			/* skip blocks out of the range */
1732 			do {
1733 				if (cur_logical >= logical)
1734 					break;
1735 				cur_logical++;
1736 			} while ((bh = bh->b_this_page) != head);
1737 
1738 			do {
1739 				if (cur_logical >= logical + blocks)
1740 					break;
1741 				if (buffer_delay(bh)) {
1742 					bh->b_blocknr = pblock;
1743 					clear_buffer_delay(bh);
1744 				} else if (buffer_mapped(bh))
1745 					BUG_ON(bh->b_blocknr != pblock);
1746 
1747 				cur_logical++;
1748 				pblock++;
1749 			} while ((bh = bh->b_this_page) != head);
1750 		}
1751 		pagevec_release(&pvec);
1752 	}
1753 }
1754 
1755 
1756 /*
1757  * __unmap_underlying_blocks - just a helper function to unmap
1758  * set of blocks described by @bh
1759  */
1760 static inline void __unmap_underlying_blocks(struct inode *inode,
1761 					     struct buffer_head *bh)
1762 {
1763 	struct block_device *bdev = inode->i_sb->s_bdev;
1764 	int blocks, i;
1765 
1766 	blocks = bh->b_size >> inode->i_blkbits;
1767 	for (i = 0; i < blocks; i++)
1768 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1769 }
1770 
1771 /*
1772  * mpage_da_map_blocks - go through given space
1773  *
1774  * @mpd->lbh - bh describing space
1775  * @mpd->get_block - the filesystem's block mapper function
1776  *
1777  * The function skips space we know is already mapped to disk blocks.
1778  *
1779  * The function ignores errors ->get_block() returns, thus real
1780  * error handling is postponed to __mpage_writepage()
1781  */
1782 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1783 {
1784 	struct buffer_head *lbh = &mpd->lbh;
1785 	int err = 0, remain = lbh->b_size;
1786 	sector_t next = lbh->b_blocknr;
1787 	struct buffer_head new;
1788 
1789 	/*
1790 	 * We consider only non-mapped and non-allocated blocks
1791 	 */
1792 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1793 		return;
1794 
1795 	while (remain) {
1796 		new.b_state = lbh->b_state;
1797 		new.b_blocknr = 0;
1798 		new.b_size = remain;
1799 		err = mpd->get_block(mpd->inode, next, &new, 1);
1800 		if (err) {
1801 			/*
1802 			 * Rather than implement own error handling
1803 			 * here, we just leave remaining blocks
1804 			 * unallocated and try again with ->writepage()
1805 			 */
1806 			break;
1807 		}
1808 		BUG_ON(new.b_size == 0);
1809 
1810 		if (buffer_new(&new))
1811 			__unmap_underlying_blocks(mpd->inode, &new);
1812 
1813 		/*
1814 		 * If blocks are delayed marked, we need to
1815 		 * put actual blocknr and drop delayed bit
1816 		 */
1817 		if (buffer_delay(lbh))
1818 			mpage_put_bnr_to_bhs(mpd, next, &new);
1819 
1820 		/* go for the remaining blocks */
1821 		next += new.b_size >> mpd->inode->i_blkbits;
1822 		remain -= new.b_size;
1823 	}
1824 }
1825 
1826 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1827 
1828 /*
1829  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1830  *
1831  * @mpd->lbh - extent of blocks
1832  * @logical - logical number of the block in the file
1833  * @bh - bh of the block (used to access block's state)
1834  *
1835  * the function is used to collect contig. blocks in same state
1836  */
1837 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1838 				   sector_t logical, struct buffer_head *bh)
1839 {
1840 	struct buffer_head *lbh = &mpd->lbh;
1841 	sector_t next;
1842 
1843 	next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1844 
1845 	/*
1846 	 * First block in the extent
1847 	 */
1848 	if (lbh->b_size == 0) {
1849 		lbh->b_blocknr = logical;
1850 		lbh->b_size = bh->b_size;
1851 		lbh->b_state = bh->b_state & BH_FLAGS;
1852 		return;
1853 	}
1854 
1855 	/*
1856 	 * Can we merge the block to our big extent?
1857 	 */
1858 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1859 		lbh->b_size += bh->b_size;
1860 		return;
1861 	}
1862 
1863 	/*
1864 	 * We couldn't merge the block to our extent, so we
1865 	 * need to flush current  extent and start new one
1866 	 */
1867 	mpage_da_map_blocks(mpd);
1868 
1869 	/*
1870 	 * Now start a new extent
1871 	 */
1872 	lbh->b_size = bh->b_size;
1873 	lbh->b_state = bh->b_state & BH_FLAGS;
1874 	lbh->b_blocknr = logical;
1875 }
1876 
1877 /*
1878  * __mpage_da_writepage - finds extent of pages and blocks
1879  *
1880  * @page: page to consider
1881  * @wbc: not used, we just follow rules
1882  * @data: context
1883  *
1884  * The function finds extents of pages and scan them for all blocks.
1885  */
1886 static int __mpage_da_writepage(struct page *page,
1887 				struct writeback_control *wbc, void *data)
1888 {
1889 	struct mpage_da_data *mpd = data;
1890 	struct inode *inode = mpd->inode;
1891 	struct buffer_head *bh, *head, fake;
1892 	sector_t logical;
1893 
1894 	/*
1895 	 * Can we merge this page to current extent?
1896 	 */
1897 	if (mpd->next_page != page->index) {
1898 		/*
1899 		 * Nope, we can't. So, we map non-allocated blocks
1900 		 * and start IO on them using __mpage_writepage()
1901 		 */
1902 		if (mpd->next_page != mpd->first_page) {
1903 			mpage_da_map_blocks(mpd);
1904 			mpage_da_submit_io(mpd);
1905 		}
1906 
1907 		/*
1908 		 * Start next extent of pages ...
1909 		 */
1910 		mpd->first_page = page->index;
1911 
1912 		/*
1913 		 * ... and blocks
1914 		 */
1915 		mpd->lbh.b_size = 0;
1916 		mpd->lbh.b_state = 0;
1917 		mpd->lbh.b_blocknr = 0;
1918 	}
1919 
1920 	mpd->next_page = page->index + 1;
1921 	logical = (sector_t) page->index <<
1922 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
1923 
1924 	if (!page_has_buffers(page)) {
1925 		/*
1926 		 * There is no attached buffer heads yet (mmap?)
1927 		 * we treat the page asfull of dirty blocks
1928 		 */
1929 		bh = &fake;
1930 		bh->b_size = PAGE_CACHE_SIZE;
1931 		bh->b_state = 0;
1932 		set_buffer_dirty(bh);
1933 		set_buffer_uptodate(bh);
1934 		mpage_add_bh_to_extent(mpd, logical, bh);
1935 	} else {
1936 		/*
1937 		 * Page with regular buffer heads, just add all dirty ones
1938 		 */
1939 		head = page_buffers(page);
1940 		bh = head;
1941 		do {
1942 			BUG_ON(buffer_locked(bh));
1943 			if (buffer_dirty(bh))
1944 				mpage_add_bh_to_extent(mpd, logical, bh);
1945 			logical++;
1946 		} while ((bh = bh->b_this_page) != head);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 /*
1953  * mpage_da_writepages - walk the list of dirty pages of the given
1954  * address space, allocates non-allocated blocks, maps newly-allocated
1955  * blocks to existing bhs and issue IO them
1956  *
1957  * @mapping: address space structure to write
1958  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1959  * @get_block: the filesystem's block mapper function.
1960  *
1961  * This is a library function, which implements the writepages()
1962  * address_space_operation.
1963  *
1964  * In order to avoid duplication of logic that deals with partial pages,
1965  * multiple bio per page, etc, we find non-allocated blocks, allocate
1966  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1967  *
1968  * It's important that we call __mpage_writepage() only once for each
1969  * involved page, otherwise we'd have to implement more complicated logic
1970  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1971  *
1972  * See comments to mpage_writepages()
1973  */
1974 static int mpage_da_writepages(struct address_space *mapping,
1975 			       struct writeback_control *wbc,
1976 			       get_block_t get_block)
1977 {
1978 	struct mpage_da_data mpd;
1979 	int ret;
1980 
1981 	if (!get_block)
1982 		return generic_writepages(mapping, wbc);
1983 
1984 	mpd.wbc = wbc;
1985 	mpd.inode = mapping->host;
1986 	mpd.lbh.b_size = 0;
1987 	mpd.lbh.b_state = 0;
1988 	mpd.lbh.b_blocknr = 0;
1989 	mpd.first_page = 0;
1990 	mpd.next_page = 0;
1991 	mpd.get_block = get_block;
1992 
1993 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1994 
1995 	/*
1996 	 * Handle last extent of pages
1997 	 */
1998 	if (mpd.next_page != mpd.first_page) {
1999 		mpage_da_map_blocks(&mpd);
2000 		mpage_da_submit_io(&mpd);
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 /*
2007  * this is a special callback for ->write_begin() only
2008  * it's intention is to return mapped block or reserve space
2009  */
2010 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2011 				  struct buffer_head *bh_result, int create)
2012 {
2013 	int ret = 0;
2014 
2015 	BUG_ON(create == 0);
2016 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2017 
2018 	/*
2019 	 * first, we need to know whether the block is allocated already
2020 	 * preallocated blocks are unmapped but should treated
2021 	 * the same as allocated blocks.
2022 	 */
2023 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2024 	if ((ret == 0) && !buffer_delay(bh_result)) {
2025 		/* the block isn't (pre)allocated yet, let's reserve space */
2026 		/*
2027 		 * XXX: __block_prepare_write() unmaps passed block,
2028 		 * is it OK?
2029 		 */
2030 		ret = ext4_da_reserve_space(inode, 1);
2031 		if (ret)
2032 			/* not enough space to reserve */
2033 			return ret;
2034 
2035 		map_bh(bh_result, inode->i_sb, 0);
2036 		set_buffer_new(bh_result);
2037 		set_buffer_delay(bh_result);
2038 	} else if (ret > 0) {
2039 		bh_result->b_size = (ret << inode->i_blkbits);
2040 		ret = 0;
2041 	}
2042 
2043 	return ret;
2044 }
2045 #define		EXT4_DELALLOC_RSVED	1
2046 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2047 				   struct buffer_head *bh_result, int create)
2048 {
2049 	int ret;
2050 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2051 	loff_t disksize = EXT4_I(inode)->i_disksize;
2052 	handle_t *handle = NULL;
2053 
2054 	handle = ext4_journal_current_handle();
2055 	if (!handle) {
2056 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2057 				   bh_result, 0, 0, 0);
2058 		BUG_ON(!ret);
2059 	} else {
2060 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2061 				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
2062 	}
2063 
2064 	if (ret > 0) {
2065 		bh_result->b_size = (ret << inode->i_blkbits);
2066 
2067 		/*
2068 		 * Update on-disk size along with block allocation
2069 		 * we don't use 'extend_disksize' as size may change
2070 		 * within already allocated block -bzzz
2071 		 */
2072 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2073 		if (disksize > i_size_read(inode))
2074 			disksize = i_size_read(inode);
2075 		if (disksize > EXT4_I(inode)->i_disksize) {
2076 			/*
2077 			 * XXX: replace with spinlock if seen contended -bzzz
2078 			 */
2079 			down_write(&EXT4_I(inode)->i_data_sem);
2080 			if (disksize > EXT4_I(inode)->i_disksize)
2081 				EXT4_I(inode)->i_disksize = disksize;
2082 			up_write(&EXT4_I(inode)->i_data_sem);
2083 
2084 			if (EXT4_I(inode)->i_disksize == disksize) {
2085 				ret = ext4_mark_inode_dirty(handle, inode);
2086 				return ret;
2087 			}
2088 		}
2089 		ret = 0;
2090 	}
2091 	return ret;
2092 }
2093 
2094 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2095 {
2096 	/*
2097 	 * unmapped buffer is possible for holes.
2098 	 * delay buffer is possible with delayed allocation
2099 	 */
2100 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2101 }
2102 
2103 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2104 				   struct buffer_head *bh_result, int create)
2105 {
2106 	int ret = 0;
2107 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2108 
2109 	/*
2110 	 * we don't want to do block allocation in writepage
2111 	 * so call get_block_wrap with create = 0
2112 	 */
2113 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2114 				   bh_result, 0, 0, 0);
2115 	if (ret > 0) {
2116 		bh_result->b_size = (ret << inode->i_blkbits);
2117 		ret = 0;
2118 	}
2119 	return ret;
2120 }
2121 
2122 /*
2123  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2124  * get called via journal_submit_inode_data_buffers (no journal handle)
2125  * get called via shrink_page_list via pdflush (no journal handle)
2126  * or grab_page_cache when doing write_begin (have journal handle)
2127  */
2128 static int ext4_da_writepage(struct page *page,
2129 				struct writeback_control *wbc)
2130 {
2131 	int ret = 0;
2132 	loff_t size;
2133 	unsigned long len;
2134 	struct buffer_head *page_bufs;
2135 	struct inode *inode = page->mapping->host;
2136 
2137 	size = i_size_read(inode);
2138 	if (page->index == size >> PAGE_CACHE_SHIFT)
2139 		len = size & ~PAGE_CACHE_MASK;
2140 	else
2141 		len = PAGE_CACHE_SIZE;
2142 
2143 	if (page_has_buffers(page)) {
2144 		page_bufs = page_buffers(page);
2145 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2146 					ext4_bh_unmapped_or_delay)) {
2147 			/*
2148 			 * We don't want to do  block allocation
2149 			 * So redirty the page and return
2150 			 * We may reach here when we do a journal commit
2151 			 * via journal_submit_inode_data_buffers.
2152 			 * If we don't have mapping block we just ignore
2153 			 * them. We can also reach here via shrink_page_list
2154 			 */
2155 			redirty_page_for_writepage(wbc, page);
2156 			unlock_page(page);
2157 			return 0;
2158 		}
2159 	} else {
2160 		/*
2161 		 * The test for page_has_buffers() is subtle:
2162 		 * We know the page is dirty but it lost buffers. That means
2163 		 * that at some moment in time after write_begin()/write_end()
2164 		 * has been called all buffers have been clean and thus they
2165 		 * must have been written at least once. So they are all
2166 		 * mapped and we can happily proceed with mapping them
2167 		 * and writing the page.
2168 		 *
2169 		 * Try to initialize the buffer_heads and check whether
2170 		 * all are mapped and non delay. We don't want to
2171 		 * do block allocation here.
2172 		 */
2173 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2174 						ext4_normal_get_block_write);
2175 		if (!ret) {
2176 			page_bufs = page_buffers(page);
2177 			/* check whether all are mapped and non delay */
2178 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2179 						ext4_bh_unmapped_or_delay)) {
2180 				redirty_page_for_writepage(wbc, page);
2181 				unlock_page(page);
2182 				return 0;
2183 			}
2184 		} else {
2185 			/*
2186 			 * We can't do block allocation here
2187 			 * so just redity the page and unlock
2188 			 * and return
2189 			 */
2190 			redirty_page_for_writepage(wbc, page);
2191 			unlock_page(page);
2192 			return 0;
2193 		}
2194 	}
2195 
2196 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2197 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2198 	else
2199 		ret = block_write_full_page(page,
2200 						ext4_normal_get_block_write,
2201 						wbc);
2202 
2203 	return ret;
2204 }
2205 
2206 /*
2207  * For now just follow the DIO way to estimate the max credits
2208  * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2209  * todo: need to calculate the max credits need for
2210  * extent based files, currently the DIO credits is based on
2211  * indirect-blocks mapping way.
2212  *
2213  * Probably should have a generic way to calculate credits
2214  * for DIO, writepages, and truncate
2215  */
2216 #define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
2217 #define EXT4_MAX_WRITEBACK_CREDITS    DIO_CREDITS
2218 
2219 static int ext4_da_writepages(struct address_space *mapping,
2220 				struct writeback_control *wbc)
2221 {
2222 	struct inode *inode = mapping->host;
2223 	handle_t *handle = NULL;
2224 	int needed_blocks;
2225 	int ret = 0;
2226 	long to_write;
2227 	loff_t range_start = 0;
2228 
2229 	/*
2230 	 * No pages to write? This is mainly a kludge to avoid starting
2231 	 * a transaction for special inodes like journal inode on last iput()
2232 	 * because that could violate lock ordering on umount
2233 	 */
2234 	if (!mapping->nrpages)
2235 		return 0;
2236 
2237 	/*
2238 	 * Estimate the worse case needed credits to write out
2239 	 * EXT4_MAX_BUF_BLOCKS pages
2240 	 */
2241 	needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2242 
2243 	to_write = wbc->nr_to_write;
2244 	if (!wbc->range_cyclic) {
2245 		/*
2246 		 * If range_cyclic is not set force range_cont
2247 		 * and save the old writeback_index
2248 		 */
2249 		wbc->range_cont = 1;
2250 		range_start =  wbc->range_start;
2251 	}
2252 
2253 	while (!ret && to_write) {
2254 		/* start a new transaction*/
2255 		handle = ext4_journal_start(inode, needed_blocks);
2256 		if (IS_ERR(handle)) {
2257 			ret = PTR_ERR(handle);
2258 			goto out_writepages;
2259 		}
2260 		if (ext4_should_order_data(inode)) {
2261 			/*
2262 			 * With ordered mode we need to add
2263 			 * the inode to the journal handle
2264 			 * when we do block allocation.
2265 			 */
2266 			ret = ext4_jbd2_file_inode(handle, inode);
2267 			if (ret) {
2268 				ext4_journal_stop(handle);
2269 				goto out_writepages;
2270 			}
2271 
2272 		}
2273 		/*
2274 		 * set the max dirty pages could be write at a time
2275 		 * to fit into the reserved transaction credits
2276 		 */
2277 		if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2278 			wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2279 
2280 		to_write -= wbc->nr_to_write;
2281 		ret = mpage_da_writepages(mapping, wbc,
2282 						ext4_da_get_block_write);
2283 		ext4_journal_stop(handle);
2284 		if (wbc->nr_to_write) {
2285 			/*
2286 			 * There is no more writeout needed
2287 			 * or we requested for a noblocking writeout
2288 			 * and we found the device congested
2289 			 */
2290 			to_write += wbc->nr_to_write;
2291 			break;
2292 		}
2293 		wbc->nr_to_write = to_write;
2294 	}
2295 
2296 out_writepages:
2297 	wbc->nr_to_write = to_write;
2298 	if (range_start)
2299 		wbc->range_start = range_start;
2300 	return ret;
2301 }
2302 
2303 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2304 				loff_t pos, unsigned len, unsigned flags,
2305 				struct page **pagep, void **fsdata)
2306 {
2307 	int ret, retries = 0;
2308 	struct page *page;
2309 	pgoff_t index;
2310 	unsigned from, to;
2311 	struct inode *inode = mapping->host;
2312 	handle_t *handle;
2313 
2314 	index = pos >> PAGE_CACHE_SHIFT;
2315 	from = pos & (PAGE_CACHE_SIZE - 1);
2316 	to = from + len;
2317 
2318 retry:
2319 	/*
2320 	 * With delayed allocation, we don't log the i_disksize update
2321 	 * if there is delayed block allocation. But we still need
2322 	 * to journalling the i_disksize update if writes to the end
2323 	 * of file which has an already mapped buffer.
2324 	 */
2325 	handle = ext4_journal_start(inode, 1);
2326 	if (IS_ERR(handle)) {
2327 		ret = PTR_ERR(handle);
2328 		goto out;
2329 	}
2330 
2331 	page = __grab_cache_page(mapping, index);
2332 	if (!page) {
2333 		ext4_journal_stop(handle);
2334 		ret = -ENOMEM;
2335 		goto out;
2336 	}
2337 	*pagep = page;
2338 
2339 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2340 							ext4_da_get_block_prep);
2341 	if (ret < 0) {
2342 		unlock_page(page);
2343 		ext4_journal_stop(handle);
2344 		page_cache_release(page);
2345 	}
2346 
2347 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2348 		goto retry;
2349 out:
2350 	return ret;
2351 }
2352 
2353 /*
2354  * Check if we should update i_disksize
2355  * when write to the end of file but not require block allocation
2356  */
2357 static int ext4_da_should_update_i_disksize(struct page *page,
2358 					 unsigned long offset)
2359 {
2360 	struct buffer_head *bh;
2361 	struct inode *inode = page->mapping->host;
2362 	unsigned int idx;
2363 	int i;
2364 
2365 	bh = page_buffers(page);
2366 	idx = offset >> inode->i_blkbits;
2367 
2368 	for (i=0; i < idx; i++)
2369 		bh = bh->b_this_page;
2370 
2371 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2372 		return 0;
2373 	return 1;
2374 }
2375 
2376 static int ext4_da_write_end(struct file *file,
2377 				struct address_space *mapping,
2378 				loff_t pos, unsigned len, unsigned copied,
2379 				struct page *page, void *fsdata)
2380 {
2381 	struct inode *inode = mapping->host;
2382 	int ret = 0, ret2;
2383 	handle_t *handle = ext4_journal_current_handle();
2384 	loff_t new_i_size;
2385 	unsigned long start, end;
2386 
2387 	start = pos & (PAGE_CACHE_SIZE - 1);
2388 	end = start + copied -1;
2389 
2390 	/*
2391 	 * generic_write_end() will run mark_inode_dirty() if i_size
2392 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2393 	 * into that.
2394 	 */
2395 
2396 	new_i_size = pos + copied;
2397 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2398 		if (ext4_da_should_update_i_disksize(page, end)) {
2399 			down_write(&EXT4_I(inode)->i_data_sem);
2400 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2401 				/*
2402 				 * Updating i_disksize when extending file
2403 				 * without needing block allocation
2404 				 */
2405 				if (ext4_should_order_data(inode))
2406 					ret = ext4_jbd2_file_inode(handle,
2407 								   inode);
2408 
2409 				EXT4_I(inode)->i_disksize = new_i_size;
2410 			}
2411 			up_write(&EXT4_I(inode)->i_data_sem);
2412 		}
2413 	}
2414 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2415 							page, fsdata);
2416 	copied = ret2;
2417 	if (ret2 < 0)
2418 		ret = ret2;
2419 	ret2 = ext4_journal_stop(handle);
2420 	if (!ret)
2421 		ret = ret2;
2422 
2423 	return ret ? ret : copied;
2424 }
2425 
2426 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2427 {
2428 	/*
2429 	 * Drop reserved blocks
2430 	 */
2431 	BUG_ON(!PageLocked(page));
2432 	if (!page_has_buffers(page))
2433 		goto out;
2434 
2435 	ext4_da_page_release_reservation(page, offset);
2436 
2437 out:
2438 	ext4_invalidatepage(page, offset);
2439 
2440 	return;
2441 }
2442 
2443 
2444 /*
2445  * bmap() is special.  It gets used by applications such as lilo and by
2446  * the swapper to find the on-disk block of a specific piece of data.
2447  *
2448  * Naturally, this is dangerous if the block concerned is still in the
2449  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2450  * filesystem and enables swap, then they may get a nasty shock when the
2451  * data getting swapped to that swapfile suddenly gets overwritten by
2452  * the original zero's written out previously to the journal and
2453  * awaiting writeback in the kernel's buffer cache.
2454  *
2455  * So, if we see any bmap calls here on a modified, data-journaled file,
2456  * take extra steps to flush any blocks which might be in the cache.
2457  */
2458 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2459 {
2460 	struct inode *inode = mapping->host;
2461 	journal_t *journal;
2462 	int err;
2463 
2464 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2465 			test_opt(inode->i_sb, DELALLOC)) {
2466 		/*
2467 		 * With delalloc we want to sync the file
2468 		 * so that we can make sure we allocate
2469 		 * blocks for file
2470 		 */
2471 		filemap_write_and_wait(mapping);
2472 	}
2473 
2474 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2475 		/*
2476 		 * This is a REALLY heavyweight approach, but the use of
2477 		 * bmap on dirty files is expected to be extremely rare:
2478 		 * only if we run lilo or swapon on a freshly made file
2479 		 * do we expect this to happen.
2480 		 *
2481 		 * (bmap requires CAP_SYS_RAWIO so this does not
2482 		 * represent an unprivileged user DOS attack --- we'd be
2483 		 * in trouble if mortal users could trigger this path at
2484 		 * will.)
2485 		 *
2486 		 * NB. EXT4_STATE_JDATA is not set on files other than
2487 		 * regular files.  If somebody wants to bmap a directory
2488 		 * or symlink and gets confused because the buffer
2489 		 * hasn't yet been flushed to disk, they deserve
2490 		 * everything they get.
2491 		 */
2492 
2493 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2494 		journal = EXT4_JOURNAL(inode);
2495 		jbd2_journal_lock_updates(journal);
2496 		err = jbd2_journal_flush(journal);
2497 		jbd2_journal_unlock_updates(journal);
2498 
2499 		if (err)
2500 			return 0;
2501 	}
2502 
2503 	return generic_block_bmap(mapping,block,ext4_get_block);
2504 }
2505 
2506 static int bget_one(handle_t *handle, struct buffer_head *bh)
2507 {
2508 	get_bh(bh);
2509 	return 0;
2510 }
2511 
2512 static int bput_one(handle_t *handle, struct buffer_head *bh)
2513 {
2514 	put_bh(bh);
2515 	return 0;
2516 }
2517 
2518 /*
2519  * Note that we don't need to start a transaction unless we're journaling data
2520  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2521  * need to file the inode to the transaction's list in ordered mode because if
2522  * we are writing back data added by write(), the inode is already there and if
2523  * we are writing back data modified via mmap(), noone guarantees in which
2524  * transaction the data will hit the disk. In case we are journaling data, we
2525  * cannot start transaction directly because transaction start ranks above page
2526  * lock so we have to do some magic.
2527  *
2528  * In all journaling modes block_write_full_page() will start the I/O.
2529  *
2530  * Problem:
2531  *
2532  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2533  *		ext4_writepage()
2534  *
2535  * Similar for:
2536  *
2537  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2538  *
2539  * Same applies to ext4_get_block().  We will deadlock on various things like
2540  * lock_journal and i_data_sem
2541  *
2542  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2543  * allocations fail.
2544  *
2545  * 16May01: If we're reentered then journal_current_handle() will be
2546  *	    non-zero. We simply *return*.
2547  *
2548  * 1 July 2001: @@@ FIXME:
2549  *   In journalled data mode, a data buffer may be metadata against the
2550  *   current transaction.  But the same file is part of a shared mapping
2551  *   and someone does a writepage() on it.
2552  *
2553  *   We will move the buffer onto the async_data list, but *after* it has
2554  *   been dirtied. So there's a small window where we have dirty data on
2555  *   BJ_Metadata.
2556  *
2557  *   Note that this only applies to the last partial page in the file.  The
2558  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2559  *   broken code anyway: it's wrong for msync()).
2560  *
2561  *   It's a rare case: affects the final partial page, for journalled data
2562  *   where the file is subject to bith write() and writepage() in the same
2563  *   transction.  To fix it we'll need a custom block_write_full_page().
2564  *   We'll probably need that anyway for journalling writepage() output.
2565  *
2566  * We don't honour synchronous mounts for writepage().  That would be
2567  * disastrous.  Any write() or metadata operation will sync the fs for
2568  * us.
2569  *
2570  */
2571 static int __ext4_normal_writepage(struct page *page,
2572 				struct writeback_control *wbc)
2573 {
2574 	struct inode *inode = page->mapping->host;
2575 
2576 	if (test_opt(inode->i_sb, NOBH))
2577 		return nobh_writepage(page,
2578 					ext4_normal_get_block_write, wbc);
2579 	else
2580 		return block_write_full_page(page,
2581 						ext4_normal_get_block_write,
2582 						wbc);
2583 }
2584 
2585 static int ext4_normal_writepage(struct page *page,
2586 				struct writeback_control *wbc)
2587 {
2588 	struct inode *inode = page->mapping->host;
2589 	loff_t size = i_size_read(inode);
2590 	loff_t len;
2591 
2592 	J_ASSERT(PageLocked(page));
2593 	if (page->index == size >> PAGE_CACHE_SHIFT)
2594 		len = size & ~PAGE_CACHE_MASK;
2595 	else
2596 		len = PAGE_CACHE_SIZE;
2597 
2598 	if (page_has_buffers(page)) {
2599 		/* if page has buffers it should all be mapped
2600 		 * and allocated. If there are not buffers attached
2601 		 * to the page we know the page is dirty but it lost
2602 		 * buffers. That means that at some moment in time
2603 		 * after write_begin() / write_end() has been called
2604 		 * all buffers have been clean and thus they must have been
2605 		 * written at least once. So they are all mapped and we can
2606 		 * happily proceed with mapping them and writing the page.
2607 		 */
2608 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2609 					ext4_bh_unmapped_or_delay));
2610 	}
2611 
2612 	if (!ext4_journal_current_handle())
2613 		return __ext4_normal_writepage(page, wbc);
2614 
2615 	redirty_page_for_writepage(wbc, page);
2616 	unlock_page(page);
2617 	return 0;
2618 }
2619 
2620 static int __ext4_journalled_writepage(struct page *page,
2621 				struct writeback_control *wbc)
2622 {
2623 	struct address_space *mapping = page->mapping;
2624 	struct inode *inode = mapping->host;
2625 	struct buffer_head *page_bufs;
2626 	handle_t *handle = NULL;
2627 	int ret = 0;
2628 	int err;
2629 
2630 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2631 					ext4_normal_get_block_write);
2632 	if (ret != 0)
2633 		goto out_unlock;
2634 
2635 	page_bufs = page_buffers(page);
2636 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2637 								bget_one);
2638 	/* As soon as we unlock the page, it can go away, but we have
2639 	 * references to buffers so we are safe */
2640 	unlock_page(page);
2641 
2642 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2643 	if (IS_ERR(handle)) {
2644 		ret = PTR_ERR(handle);
2645 		goto out;
2646 	}
2647 
2648 	ret = walk_page_buffers(handle, page_bufs, 0,
2649 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2650 
2651 	err = walk_page_buffers(handle, page_bufs, 0,
2652 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2653 	if (ret == 0)
2654 		ret = err;
2655 	err = ext4_journal_stop(handle);
2656 	if (!ret)
2657 		ret = err;
2658 
2659 	walk_page_buffers(handle, page_bufs, 0,
2660 				PAGE_CACHE_SIZE, NULL, bput_one);
2661 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2662 	goto out;
2663 
2664 out_unlock:
2665 	unlock_page(page);
2666 out:
2667 	return ret;
2668 }
2669 
2670 static int ext4_journalled_writepage(struct page *page,
2671 				struct writeback_control *wbc)
2672 {
2673 	struct inode *inode = page->mapping->host;
2674 	loff_t size = i_size_read(inode);
2675 	loff_t len;
2676 
2677 	J_ASSERT(PageLocked(page));
2678 	if (page->index == size >> PAGE_CACHE_SHIFT)
2679 		len = size & ~PAGE_CACHE_MASK;
2680 	else
2681 		len = PAGE_CACHE_SIZE;
2682 
2683 	if (page_has_buffers(page)) {
2684 		/* if page has buffers it should all be mapped
2685 		 * and allocated. If there are not buffers attached
2686 		 * to the page we know the page is dirty but it lost
2687 		 * buffers. That means that at some moment in time
2688 		 * after write_begin() / write_end() has been called
2689 		 * all buffers have been clean and thus they must have been
2690 		 * written at least once. So they are all mapped and we can
2691 		 * happily proceed with mapping them and writing the page.
2692 		 */
2693 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2694 					ext4_bh_unmapped_or_delay));
2695 	}
2696 
2697 	if (ext4_journal_current_handle())
2698 		goto no_write;
2699 
2700 	if (PageChecked(page)) {
2701 		/*
2702 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2703 		 * doesn't seem much point in redirtying the page here.
2704 		 */
2705 		ClearPageChecked(page);
2706 		return __ext4_journalled_writepage(page, wbc);
2707 	} else {
2708 		/*
2709 		 * It may be a page full of checkpoint-mode buffers.  We don't
2710 		 * really know unless we go poke around in the buffer_heads.
2711 		 * But block_write_full_page will do the right thing.
2712 		 */
2713 		return block_write_full_page(page,
2714 						ext4_normal_get_block_write,
2715 						wbc);
2716 	}
2717 no_write:
2718 	redirty_page_for_writepage(wbc, page);
2719 	unlock_page(page);
2720 	return 0;
2721 }
2722 
2723 static int ext4_readpage(struct file *file, struct page *page)
2724 {
2725 	return mpage_readpage(page, ext4_get_block);
2726 }
2727 
2728 static int
2729 ext4_readpages(struct file *file, struct address_space *mapping,
2730 		struct list_head *pages, unsigned nr_pages)
2731 {
2732 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2733 }
2734 
2735 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2736 {
2737 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2738 
2739 	/*
2740 	 * If it's a full truncate we just forget about the pending dirtying
2741 	 */
2742 	if (offset == 0)
2743 		ClearPageChecked(page);
2744 
2745 	jbd2_journal_invalidatepage(journal, page, offset);
2746 }
2747 
2748 static int ext4_releasepage(struct page *page, gfp_t wait)
2749 {
2750 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2751 
2752 	WARN_ON(PageChecked(page));
2753 	if (!page_has_buffers(page))
2754 		return 0;
2755 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2756 }
2757 
2758 /*
2759  * If the O_DIRECT write will extend the file then add this inode to the
2760  * orphan list.  So recovery will truncate it back to the original size
2761  * if the machine crashes during the write.
2762  *
2763  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2764  * crashes then stale disk data _may_ be exposed inside the file. But current
2765  * VFS code falls back into buffered path in that case so we are safe.
2766  */
2767 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2768 			const struct iovec *iov, loff_t offset,
2769 			unsigned long nr_segs)
2770 {
2771 	struct file *file = iocb->ki_filp;
2772 	struct inode *inode = file->f_mapping->host;
2773 	struct ext4_inode_info *ei = EXT4_I(inode);
2774 	handle_t *handle;
2775 	ssize_t ret;
2776 	int orphan = 0;
2777 	size_t count = iov_length(iov, nr_segs);
2778 
2779 	if (rw == WRITE) {
2780 		loff_t final_size = offset + count;
2781 
2782 		if (final_size > inode->i_size) {
2783 			/* Credits for sb + inode write */
2784 			handle = ext4_journal_start(inode, 2);
2785 			if (IS_ERR(handle)) {
2786 				ret = PTR_ERR(handle);
2787 				goto out;
2788 			}
2789 			ret = ext4_orphan_add(handle, inode);
2790 			if (ret) {
2791 				ext4_journal_stop(handle);
2792 				goto out;
2793 			}
2794 			orphan = 1;
2795 			ei->i_disksize = inode->i_size;
2796 			ext4_journal_stop(handle);
2797 		}
2798 	}
2799 
2800 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2801 				 offset, nr_segs,
2802 				 ext4_get_block, NULL);
2803 
2804 	if (orphan) {
2805 		int err;
2806 
2807 		/* Credits for sb + inode write */
2808 		handle = ext4_journal_start(inode, 2);
2809 		if (IS_ERR(handle)) {
2810 			/* This is really bad luck. We've written the data
2811 			 * but cannot extend i_size. Bail out and pretend
2812 			 * the write failed... */
2813 			ret = PTR_ERR(handle);
2814 			goto out;
2815 		}
2816 		if (inode->i_nlink)
2817 			ext4_orphan_del(handle, inode);
2818 		if (ret > 0) {
2819 			loff_t end = offset + ret;
2820 			if (end > inode->i_size) {
2821 				ei->i_disksize = end;
2822 				i_size_write(inode, end);
2823 				/*
2824 				 * We're going to return a positive `ret'
2825 				 * here due to non-zero-length I/O, so there's
2826 				 * no way of reporting error returns from
2827 				 * ext4_mark_inode_dirty() to userspace.  So
2828 				 * ignore it.
2829 				 */
2830 				ext4_mark_inode_dirty(handle, inode);
2831 			}
2832 		}
2833 		err = ext4_journal_stop(handle);
2834 		if (ret == 0)
2835 			ret = err;
2836 	}
2837 out:
2838 	return ret;
2839 }
2840 
2841 /*
2842  * Pages can be marked dirty completely asynchronously from ext4's journalling
2843  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2844  * much here because ->set_page_dirty is called under VFS locks.  The page is
2845  * not necessarily locked.
2846  *
2847  * We cannot just dirty the page and leave attached buffers clean, because the
2848  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2849  * or jbddirty because all the journalling code will explode.
2850  *
2851  * So what we do is to mark the page "pending dirty" and next time writepage
2852  * is called, propagate that into the buffers appropriately.
2853  */
2854 static int ext4_journalled_set_page_dirty(struct page *page)
2855 {
2856 	SetPageChecked(page);
2857 	return __set_page_dirty_nobuffers(page);
2858 }
2859 
2860 static const struct address_space_operations ext4_ordered_aops = {
2861 	.readpage		= ext4_readpage,
2862 	.readpages		= ext4_readpages,
2863 	.writepage		= ext4_normal_writepage,
2864 	.sync_page		= block_sync_page,
2865 	.write_begin		= ext4_write_begin,
2866 	.write_end		= ext4_ordered_write_end,
2867 	.bmap			= ext4_bmap,
2868 	.invalidatepage		= ext4_invalidatepage,
2869 	.releasepage		= ext4_releasepage,
2870 	.direct_IO		= ext4_direct_IO,
2871 	.migratepage		= buffer_migrate_page,
2872 	.is_partially_uptodate  = block_is_partially_uptodate,
2873 };
2874 
2875 static const struct address_space_operations ext4_writeback_aops = {
2876 	.readpage		= ext4_readpage,
2877 	.readpages		= ext4_readpages,
2878 	.writepage		= ext4_normal_writepage,
2879 	.sync_page		= block_sync_page,
2880 	.write_begin		= ext4_write_begin,
2881 	.write_end		= ext4_writeback_write_end,
2882 	.bmap			= ext4_bmap,
2883 	.invalidatepage		= ext4_invalidatepage,
2884 	.releasepage		= ext4_releasepage,
2885 	.direct_IO		= ext4_direct_IO,
2886 	.migratepage		= buffer_migrate_page,
2887 	.is_partially_uptodate  = block_is_partially_uptodate,
2888 };
2889 
2890 static const struct address_space_operations ext4_journalled_aops = {
2891 	.readpage		= ext4_readpage,
2892 	.readpages		= ext4_readpages,
2893 	.writepage		= ext4_journalled_writepage,
2894 	.sync_page		= block_sync_page,
2895 	.write_begin		= ext4_write_begin,
2896 	.write_end		= ext4_journalled_write_end,
2897 	.set_page_dirty		= ext4_journalled_set_page_dirty,
2898 	.bmap			= ext4_bmap,
2899 	.invalidatepage		= ext4_invalidatepage,
2900 	.releasepage		= ext4_releasepage,
2901 	.is_partially_uptodate  = block_is_partially_uptodate,
2902 };
2903 
2904 static const struct address_space_operations ext4_da_aops = {
2905 	.readpage		= ext4_readpage,
2906 	.readpages		= ext4_readpages,
2907 	.writepage		= ext4_da_writepage,
2908 	.writepages		= ext4_da_writepages,
2909 	.sync_page		= block_sync_page,
2910 	.write_begin		= ext4_da_write_begin,
2911 	.write_end		= ext4_da_write_end,
2912 	.bmap			= ext4_bmap,
2913 	.invalidatepage		= ext4_da_invalidatepage,
2914 	.releasepage		= ext4_releasepage,
2915 	.direct_IO		= ext4_direct_IO,
2916 	.migratepage		= buffer_migrate_page,
2917 	.is_partially_uptodate  = block_is_partially_uptodate,
2918 };
2919 
2920 void ext4_set_aops(struct inode *inode)
2921 {
2922 	if (ext4_should_order_data(inode) &&
2923 		test_opt(inode->i_sb, DELALLOC))
2924 		inode->i_mapping->a_ops = &ext4_da_aops;
2925 	else if (ext4_should_order_data(inode))
2926 		inode->i_mapping->a_ops = &ext4_ordered_aops;
2927 	else if (ext4_should_writeback_data(inode) &&
2928 		 test_opt(inode->i_sb, DELALLOC))
2929 		inode->i_mapping->a_ops = &ext4_da_aops;
2930 	else if (ext4_should_writeback_data(inode))
2931 		inode->i_mapping->a_ops = &ext4_writeback_aops;
2932 	else
2933 		inode->i_mapping->a_ops = &ext4_journalled_aops;
2934 }
2935 
2936 /*
2937  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2938  * up to the end of the block which corresponds to `from'.
2939  * This required during truncate. We need to physically zero the tail end
2940  * of that block so it doesn't yield old data if the file is later grown.
2941  */
2942 int ext4_block_truncate_page(handle_t *handle,
2943 		struct address_space *mapping, loff_t from)
2944 {
2945 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2946 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2947 	unsigned blocksize, length, pos;
2948 	ext4_lblk_t iblock;
2949 	struct inode *inode = mapping->host;
2950 	struct buffer_head *bh;
2951 	struct page *page;
2952 	int err = 0;
2953 
2954 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2955 	if (!page)
2956 		return -EINVAL;
2957 
2958 	blocksize = inode->i_sb->s_blocksize;
2959 	length = blocksize - (offset & (blocksize - 1));
2960 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2961 
2962 	/*
2963 	 * For "nobh" option,  we can only work if we don't need to
2964 	 * read-in the page - otherwise we create buffers to do the IO.
2965 	 */
2966 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2967 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
2968 		zero_user(page, offset, length);
2969 		set_page_dirty(page);
2970 		goto unlock;
2971 	}
2972 
2973 	if (!page_has_buffers(page))
2974 		create_empty_buffers(page, blocksize, 0);
2975 
2976 	/* Find the buffer that contains "offset" */
2977 	bh = page_buffers(page);
2978 	pos = blocksize;
2979 	while (offset >= pos) {
2980 		bh = bh->b_this_page;
2981 		iblock++;
2982 		pos += blocksize;
2983 	}
2984 
2985 	err = 0;
2986 	if (buffer_freed(bh)) {
2987 		BUFFER_TRACE(bh, "freed: skip");
2988 		goto unlock;
2989 	}
2990 
2991 	if (!buffer_mapped(bh)) {
2992 		BUFFER_TRACE(bh, "unmapped");
2993 		ext4_get_block(inode, iblock, bh, 0);
2994 		/* unmapped? It's a hole - nothing to do */
2995 		if (!buffer_mapped(bh)) {
2996 			BUFFER_TRACE(bh, "still unmapped");
2997 			goto unlock;
2998 		}
2999 	}
3000 
3001 	/* Ok, it's mapped. Make sure it's up-to-date */
3002 	if (PageUptodate(page))
3003 		set_buffer_uptodate(bh);
3004 
3005 	if (!buffer_uptodate(bh)) {
3006 		err = -EIO;
3007 		ll_rw_block(READ, 1, &bh);
3008 		wait_on_buffer(bh);
3009 		/* Uhhuh. Read error. Complain and punt. */
3010 		if (!buffer_uptodate(bh))
3011 			goto unlock;
3012 	}
3013 
3014 	if (ext4_should_journal_data(inode)) {
3015 		BUFFER_TRACE(bh, "get write access");
3016 		err = ext4_journal_get_write_access(handle, bh);
3017 		if (err)
3018 			goto unlock;
3019 	}
3020 
3021 	zero_user(page, offset, length);
3022 
3023 	BUFFER_TRACE(bh, "zeroed end of block");
3024 
3025 	err = 0;
3026 	if (ext4_should_journal_data(inode)) {
3027 		err = ext4_journal_dirty_metadata(handle, bh);
3028 	} else {
3029 		if (ext4_should_order_data(inode))
3030 			err = ext4_jbd2_file_inode(handle, inode);
3031 		mark_buffer_dirty(bh);
3032 	}
3033 
3034 unlock:
3035 	unlock_page(page);
3036 	page_cache_release(page);
3037 	return err;
3038 }
3039 
3040 /*
3041  * Probably it should be a library function... search for first non-zero word
3042  * or memcmp with zero_page, whatever is better for particular architecture.
3043  * Linus?
3044  */
3045 static inline int all_zeroes(__le32 *p, __le32 *q)
3046 {
3047 	while (p < q)
3048 		if (*p++)
3049 			return 0;
3050 	return 1;
3051 }
3052 
3053 /**
3054  *	ext4_find_shared - find the indirect blocks for partial truncation.
3055  *	@inode:	  inode in question
3056  *	@depth:	  depth of the affected branch
3057  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3058  *	@chain:	  place to store the pointers to partial indirect blocks
3059  *	@top:	  place to the (detached) top of branch
3060  *
3061  *	This is a helper function used by ext4_truncate().
3062  *
3063  *	When we do truncate() we may have to clean the ends of several
3064  *	indirect blocks but leave the blocks themselves alive. Block is
3065  *	partially truncated if some data below the new i_size is refered
3066  *	from it (and it is on the path to the first completely truncated
3067  *	data block, indeed).  We have to free the top of that path along
3068  *	with everything to the right of the path. Since no allocation
3069  *	past the truncation point is possible until ext4_truncate()
3070  *	finishes, we may safely do the latter, but top of branch may
3071  *	require special attention - pageout below the truncation point
3072  *	might try to populate it.
3073  *
3074  *	We atomically detach the top of branch from the tree, store the
3075  *	block number of its root in *@top, pointers to buffer_heads of
3076  *	partially truncated blocks - in @chain[].bh and pointers to
3077  *	their last elements that should not be removed - in
3078  *	@chain[].p. Return value is the pointer to last filled element
3079  *	of @chain.
3080  *
3081  *	The work left to caller to do the actual freeing of subtrees:
3082  *		a) free the subtree starting from *@top
3083  *		b) free the subtrees whose roots are stored in
3084  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3085  *		c) free the subtrees growing from the inode past the @chain[0].
3086  *			(no partially truncated stuff there).  */
3087 
3088 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3089 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3090 {
3091 	Indirect *partial, *p;
3092 	int k, err;
3093 
3094 	*top = 0;
3095 	/* Make k index the deepest non-null offest + 1 */
3096 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3097 		;
3098 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3099 	/* Writer: pointers */
3100 	if (!partial)
3101 		partial = chain + k-1;
3102 	/*
3103 	 * If the branch acquired continuation since we've looked at it -
3104 	 * fine, it should all survive and (new) top doesn't belong to us.
3105 	 */
3106 	if (!partial->key && *partial->p)
3107 		/* Writer: end */
3108 		goto no_top;
3109 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3110 		;
3111 	/*
3112 	 * OK, we've found the last block that must survive. The rest of our
3113 	 * branch should be detached before unlocking. However, if that rest
3114 	 * of branch is all ours and does not grow immediately from the inode
3115 	 * it's easier to cheat and just decrement partial->p.
3116 	 */
3117 	if (p == chain + k - 1 && p > chain) {
3118 		p->p--;
3119 	} else {
3120 		*top = *p->p;
3121 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3122 #if 0
3123 		*p->p = 0;
3124 #endif
3125 	}
3126 	/* Writer: end */
3127 
3128 	while(partial > p) {
3129 		brelse(partial->bh);
3130 		partial--;
3131 	}
3132 no_top:
3133 	return partial;
3134 }
3135 
3136 /*
3137  * Zero a number of block pointers in either an inode or an indirect block.
3138  * If we restart the transaction we must again get write access to the
3139  * indirect block for further modification.
3140  *
3141  * We release `count' blocks on disk, but (last - first) may be greater
3142  * than `count' because there can be holes in there.
3143  */
3144 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3145 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3146 		unsigned long count, __le32 *first, __le32 *last)
3147 {
3148 	__le32 *p;
3149 	if (try_to_extend_transaction(handle, inode)) {
3150 		if (bh) {
3151 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3152 			ext4_journal_dirty_metadata(handle, bh);
3153 		}
3154 		ext4_mark_inode_dirty(handle, inode);
3155 		ext4_journal_test_restart(handle, inode);
3156 		if (bh) {
3157 			BUFFER_TRACE(bh, "retaking write access");
3158 			ext4_journal_get_write_access(handle, bh);
3159 		}
3160 	}
3161 
3162 	/*
3163 	 * Any buffers which are on the journal will be in memory. We find
3164 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3165 	 * on them.  We've already detached each block from the file, so
3166 	 * bforget() in jbd2_journal_forget() should be safe.
3167 	 *
3168 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3169 	 */
3170 	for (p = first; p < last; p++) {
3171 		u32 nr = le32_to_cpu(*p);
3172 		if (nr) {
3173 			struct buffer_head *tbh;
3174 
3175 			*p = 0;
3176 			tbh = sb_find_get_block(inode->i_sb, nr);
3177 			ext4_forget(handle, 0, inode, tbh, nr);
3178 		}
3179 	}
3180 
3181 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3182 }
3183 
3184 /**
3185  * ext4_free_data - free a list of data blocks
3186  * @handle:	handle for this transaction
3187  * @inode:	inode we are dealing with
3188  * @this_bh:	indirect buffer_head which contains *@first and *@last
3189  * @first:	array of block numbers
3190  * @last:	points immediately past the end of array
3191  *
3192  * We are freeing all blocks refered from that array (numbers are stored as
3193  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3194  *
3195  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3196  * blocks are contiguous then releasing them at one time will only affect one
3197  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3198  * actually use a lot of journal space.
3199  *
3200  * @this_bh will be %NULL if @first and @last point into the inode's direct
3201  * block pointers.
3202  */
3203 static void ext4_free_data(handle_t *handle, struct inode *inode,
3204 			   struct buffer_head *this_bh,
3205 			   __le32 *first, __le32 *last)
3206 {
3207 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3208 	unsigned long count = 0;	    /* Number of blocks in the run */
3209 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3210 					       corresponding to
3211 					       block_to_free */
3212 	ext4_fsblk_t nr;		    /* Current block # */
3213 	__le32 *p;			    /* Pointer into inode/ind
3214 					       for current block */
3215 	int err;
3216 
3217 	if (this_bh) {				/* For indirect block */
3218 		BUFFER_TRACE(this_bh, "get_write_access");
3219 		err = ext4_journal_get_write_access(handle, this_bh);
3220 		/* Important: if we can't update the indirect pointers
3221 		 * to the blocks, we can't free them. */
3222 		if (err)
3223 			return;
3224 	}
3225 
3226 	for (p = first; p < last; p++) {
3227 		nr = le32_to_cpu(*p);
3228 		if (nr) {
3229 			/* accumulate blocks to free if they're contiguous */
3230 			if (count == 0) {
3231 				block_to_free = nr;
3232 				block_to_free_p = p;
3233 				count = 1;
3234 			} else if (nr == block_to_free + count) {
3235 				count++;
3236 			} else {
3237 				ext4_clear_blocks(handle, inode, this_bh,
3238 						  block_to_free,
3239 						  count, block_to_free_p, p);
3240 				block_to_free = nr;
3241 				block_to_free_p = p;
3242 				count = 1;
3243 			}
3244 		}
3245 	}
3246 
3247 	if (count > 0)
3248 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3249 				  count, block_to_free_p, p);
3250 
3251 	if (this_bh) {
3252 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3253 
3254 		/*
3255 		 * The buffer head should have an attached journal head at this
3256 		 * point. However, if the data is corrupted and an indirect
3257 		 * block pointed to itself, it would have been detached when
3258 		 * the block was cleared. Check for this instead of OOPSing.
3259 		 */
3260 		if (bh2jh(this_bh))
3261 			ext4_journal_dirty_metadata(handle, this_bh);
3262 		else
3263 			ext4_error(inode->i_sb, __func__,
3264 				   "circular indirect block detected, "
3265 				   "inode=%lu, block=%llu",
3266 				   inode->i_ino,
3267 				   (unsigned long long) this_bh->b_blocknr);
3268 	}
3269 }
3270 
3271 /**
3272  *	ext4_free_branches - free an array of branches
3273  *	@handle: JBD handle for this transaction
3274  *	@inode:	inode we are dealing with
3275  *	@parent_bh: the buffer_head which contains *@first and *@last
3276  *	@first:	array of block numbers
3277  *	@last:	pointer immediately past the end of array
3278  *	@depth:	depth of the branches to free
3279  *
3280  *	We are freeing all blocks refered from these branches (numbers are
3281  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3282  *	appropriately.
3283  */
3284 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3285 			       struct buffer_head *parent_bh,
3286 			       __le32 *first, __le32 *last, int depth)
3287 {
3288 	ext4_fsblk_t nr;
3289 	__le32 *p;
3290 
3291 	if (is_handle_aborted(handle))
3292 		return;
3293 
3294 	if (depth--) {
3295 		struct buffer_head *bh;
3296 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3297 		p = last;
3298 		while (--p >= first) {
3299 			nr = le32_to_cpu(*p);
3300 			if (!nr)
3301 				continue;		/* A hole */
3302 
3303 			/* Go read the buffer for the next level down */
3304 			bh = sb_bread(inode->i_sb, nr);
3305 
3306 			/*
3307 			 * A read failure? Report error and clear slot
3308 			 * (should be rare).
3309 			 */
3310 			if (!bh) {
3311 				ext4_error(inode->i_sb, "ext4_free_branches",
3312 					   "Read failure, inode=%lu, block=%llu",
3313 					   inode->i_ino, nr);
3314 				continue;
3315 			}
3316 
3317 			/* This zaps the entire block.  Bottom up. */
3318 			BUFFER_TRACE(bh, "free child branches");
3319 			ext4_free_branches(handle, inode, bh,
3320 					   (__le32*)bh->b_data,
3321 					   (__le32*)bh->b_data + addr_per_block,
3322 					   depth);
3323 
3324 			/*
3325 			 * We've probably journalled the indirect block several
3326 			 * times during the truncate.  But it's no longer
3327 			 * needed and we now drop it from the transaction via
3328 			 * jbd2_journal_revoke().
3329 			 *
3330 			 * That's easy if it's exclusively part of this
3331 			 * transaction.  But if it's part of the committing
3332 			 * transaction then jbd2_journal_forget() will simply
3333 			 * brelse() it.  That means that if the underlying
3334 			 * block is reallocated in ext4_get_block(),
3335 			 * unmap_underlying_metadata() will find this block
3336 			 * and will try to get rid of it.  damn, damn.
3337 			 *
3338 			 * If this block has already been committed to the
3339 			 * journal, a revoke record will be written.  And
3340 			 * revoke records must be emitted *before* clearing
3341 			 * this block's bit in the bitmaps.
3342 			 */
3343 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3344 
3345 			/*
3346 			 * Everything below this this pointer has been
3347 			 * released.  Now let this top-of-subtree go.
3348 			 *
3349 			 * We want the freeing of this indirect block to be
3350 			 * atomic in the journal with the updating of the
3351 			 * bitmap block which owns it.  So make some room in
3352 			 * the journal.
3353 			 *
3354 			 * We zero the parent pointer *after* freeing its
3355 			 * pointee in the bitmaps, so if extend_transaction()
3356 			 * for some reason fails to put the bitmap changes and
3357 			 * the release into the same transaction, recovery
3358 			 * will merely complain about releasing a free block,
3359 			 * rather than leaking blocks.
3360 			 */
3361 			if (is_handle_aborted(handle))
3362 				return;
3363 			if (try_to_extend_transaction(handle, inode)) {
3364 				ext4_mark_inode_dirty(handle, inode);
3365 				ext4_journal_test_restart(handle, inode);
3366 			}
3367 
3368 			ext4_free_blocks(handle, inode, nr, 1, 1);
3369 
3370 			if (parent_bh) {
3371 				/*
3372 				 * The block which we have just freed is
3373 				 * pointed to by an indirect block: journal it
3374 				 */
3375 				BUFFER_TRACE(parent_bh, "get_write_access");
3376 				if (!ext4_journal_get_write_access(handle,
3377 								   parent_bh)){
3378 					*p = 0;
3379 					BUFFER_TRACE(parent_bh,
3380 					"call ext4_journal_dirty_metadata");
3381 					ext4_journal_dirty_metadata(handle,
3382 								    parent_bh);
3383 				}
3384 			}
3385 		}
3386 	} else {
3387 		/* We have reached the bottom of the tree. */
3388 		BUFFER_TRACE(parent_bh, "free data blocks");
3389 		ext4_free_data(handle, inode, parent_bh, first, last);
3390 	}
3391 }
3392 
3393 int ext4_can_truncate(struct inode *inode)
3394 {
3395 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3396 		return 0;
3397 	if (S_ISREG(inode->i_mode))
3398 		return 1;
3399 	if (S_ISDIR(inode->i_mode))
3400 		return 1;
3401 	if (S_ISLNK(inode->i_mode))
3402 		return !ext4_inode_is_fast_symlink(inode);
3403 	return 0;
3404 }
3405 
3406 /*
3407  * ext4_truncate()
3408  *
3409  * We block out ext4_get_block() block instantiations across the entire
3410  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3411  * simultaneously on behalf of the same inode.
3412  *
3413  * As we work through the truncate and commmit bits of it to the journal there
3414  * is one core, guiding principle: the file's tree must always be consistent on
3415  * disk.  We must be able to restart the truncate after a crash.
3416  *
3417  * The file's tree may be transiently inconsistent in memory (although it
3418  * probably isn't), but whenever we close off and commit a journal transaction,
3419  * the contents of (the filesystem + the journal) must be consistent and
3420  * restartable.  It's pretty simple, really: bottom up, right to left (although
3421  * left-to-right works OK too).
3422  *
3423  * Note that at recovery time, journal replay occurs *before* the restart of
3424  * truncate against the orphan inode list.
3425  *
3426  * The committed inode has the new, desired i_size (which is the same as
3427  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3428  * that this inode's truncate did not complete and it will again call
3429  * ext4_truncate() to have another go.  So there will be instantiated blocks
3430  * to the right of the truncation point in a crashed ext4 filesystem.  But
3431  * that's fine - as long as they are linked from the inode, the post-crash
3432  * ext4_truncate() run will find them and release them.
3433  */
3434 void ext4_truncate(struct inode *inode)
3435 {
3436 	handle_t *handle;
3437 	struct ext4_inode_info *ei = EXT4_I(inode);
3438 	__le32 *i_data = ei->i_data;
3439 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3440 	struct address_space *mapping = inode->i_mapping;
3441 	ext4_lblk_t offsets[4];
3442 	Indirect chain[4];
3443 	Indirect *partial;
3444 	__le32 nr = 0;
3445 	int n;
3446 	ext4_lblk_t last_block;
3447 	unsigned blocksize = inode->i_sb->s_blocksize;
3448 
3449 	if (!ext4_can_truncate(inode))
3450 		return;
3451 
3452 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3453 		ext4_ext_truncate(inode);
3454 		return;
3455 	}
3456 
3457 	handle = start_transaction(inode);
3458 	if (IS_ERR(handle))
3459 		return;		/* AKPM: return what? */
3460 
3461 	last_block = (inode->i_size + blocksize-1)
3462 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3463 
3464 	if (inode->i_size & (blocksize - 1))
3465 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3466 			goto out_stop;
3467 
3468 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3469 	if (n == 0)
3470 		goto out_stop;	/* error */
3471 
3472 	/*
3473 	 * OK.  This truncate is going to happen.  We add the inode to the
3474 	 * orphan list, so that if this truncate spans multiple transactions,
3475 	 * and we crash, we will resume the truncate when the filesystem
3476 	 * recovers.  It also marks the inode dirty, to catch the new size.
3477 	 *
3478 	 * Implication: the file must always be in a sane, consistent
3479 	 * truncatable state while each transaction commits.
3480 	 */
3481 	if (ext4_orphan_add(handle, inode))
3482 		goto out_stop;
3483 
3484 	/*
3485 	 * From here we block out all ext4_get_block() callers who want to
3486 	 * modify the block allocation tree.
3487 	 */
3488 	down_write(&ei->i_data_sem);
3489 	/*
3490 	 * The orphan list entry will now protect us from any crash which
3491 	 * occurs before the truncate completes, so it is now safe to propagate
3492 	 * the new, shorter inode size (held for now in i_size) into the
3493 	 * on-disk inode. We do this via i_disksize, which is the value which
3494 	 * ext4 *really* writes onto the disk inode.
3495 	 */
3496 	ei->i_disksize = inode->i_size;
3497 
3498 	if (n == 1) {		/* direct blocks */
3499 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3500 			       i_data + EXT4_NDIR_BLOCKS);
3501 		goto do_indirects;
3502 	}
3503 
3504 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3505 	/* Kill the top of shared branch (not detached) */
3506 	if (nr) {
3507 		if (partial == chain) {
3508 			/* Shared branch grows from the inode */
3509 			ext4_free_branches(handle, inode, NULL,
3510 					   &nr, &nr+1, (chain+n-1) - partial);
3511 			*partial->p = 0;
3512 			/*
3513 			 * We mark the inode dirty prior to restart,
3514 			 * and prior to stop.  No need for it here.
3515 			 */
3516 		} else {
3517 			/* Shared branch grows from an indirect block */
3518 			BUFFER_TRACE(partial->bh, "get_write_access");
3519 			ext4_free_branches(handle, inode, partial->bh,
3520 					partial->p,
3521 					partial->p+1, (chain+n-1) - partial);
3522 		}
3523 	}
3524 	/* Clear the ends of indirect blocks on the shared branch */
3525 	while (partial > chain) {
3526 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3527 				   (__le32*)partial->bh->b_data+addr_per_block,
3528 				   (chain+n-1) - partial);
3529 		BUFFER_TRACE(partial->bh, "call brelse");
3530 		brelse (partial->bh);
3531 		partial--;
3532 	}
3533 do_indirects:
3534 	/* Kill the remaining (whole) subtrees */
3535 	switch (offsets[0]) {
3536 	default:
3537 		nr = i_data[EXT4_IND_BLOCK];
3538 		if (nr) {
3539 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3540 			i_data[EXT4_IND_BLOCK] = 0;
3541 		}
3542 	case EXT4_IND_BLOCK:
3543 		nr = i_data[EXT4_DIND_BLOCK];
3544 		if (nr) {
3545 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3546 			i_data[EXT4_DIND_BLOCK] = 0;
3547 		}
3548 	case EXT4_DIND_BLOCK:
3549 		nr = i_data[EXT4_TIND_BLOCK];
3550 		if (nr) {
3551 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3552 			i_data[EXT4_TIND_BLOCK] = 0;
3553 		}
3554 	case EXT4_TIND_BLOCK:
3555 		;
3556 	}
3557 
3558 	ext4_discard_reservation(inode);
3559 
3560 	up_write(&ei->i_data_sem);
3561 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3562 	ext4_mark_inode_dirty(handle, inode);
3563 
3564 	/*
3565 	 * In a multi-transaction truncate, we only make the final transaction
3566 	 * synchronous
3567 	 */
3568 	if (IS_SYNC(inode))
3569 		handle->h_sync = 1;
3570 out_stop:
3571 	/*
3572 	 * If this was a simple ftruncate(), and the file will remain alive
3573 	 * then we need to clear up the orphan record which we created above.
3574 	 * However, if this was a real unlink then we were called by
3575 	 * ext4_delete_inode(), and we allow that function to clean up the
3576 	 * orphan info for us.
3577 	 */
3578 	if (inode->i_nlink)
3579 		ext4_orphan_del(handle, inode);
3580 
3581 	ext4_journal_stop(handle);
3582 }
3583 
3584 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3585 		unsigned long ino, struct ext4_iloc *iloc)
3586 {
3587 	ext4_group_t block_group;
3588 	unsigned long offset;
3589 	ext4_fsblk_t block;
3590 	struct ext4_group_desc *gdp;
3591 
3592 	if (!ext4_valid_inum(sb, ino)) {
3593 		/*
3594 		 * This error is already checked for in namei.c unless we are
3595 		 * looking at an NFS filehandle, in which case no error
3596 		 * report is needed
3597 		 */
3598 		return 0;
3599 	}
3600 
3601 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3602 	gdp = ext4_get_group_desc(sb, block_group, NULL);
3603 	if (!gdp)
3604 		return 0;
3605 
3606 	/*
3607 	 * Figure out the offset within the block group inode table
3608 	 */
3609 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3610 		EXT4_INODE_SIZE(sb);
3611 	block = ext4_inode_table(sb, gdp) +
3612 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3613 
3614 	iloc->block_group = block_group;
3615 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3616 	return block;
3617 }
3618 
3619 /*
3620  * ext4_get_inode_loc returns with an extra refcount against the inode's
3621  * underlying buffer_head on success. If 'in_mem' is true, we have all
3622  * data in memory that is needed to recreate the on-disk version of this
3623  * inode.
3624  */
3625 static int __ext4_get_inode_loc(struct inode *inode,
3626 				struct ext4_iloc *iloc, int in_mem)
3627 {
3628 	ext4_fsblk_t block;
3629 	struct buffer_head *bh;
3630 
3631 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3632 	if (!block)
3633 		return -EIO;
3634 
3635 	bh = sb_getblk(inode->i_sb, block);
3636 	if (!bh) {
3637 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3638 				"unable to read inode block - "
3639 				"inode=%lu, block=%llu",
3640 				 inode->i_ino, block);
3641 		return -EIO;
3642 	}
3643 	if (!buffer_uptodate(bh)) {
3644 		lock_buffer(bh);
3645 
3646 		/*
3647 		 * If the buffer has the write error flag, we have failed
3648 		 * to write out another inode in the same block.  In this
3649 		 * case, we don't have to read the block because we may
3650 		 * read the old inode data successfully.
3651 		 */
3652 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3653 			set_buffer_uptodate(bh);
3654 
3655 		if (buffer_uptodate(bh)) {
3656 			/* someone brought it uptodate while we waited */
3657 			unlock_buffer(bh);
3658 			goto has_buffer;
3659 		}
3660 
3661 		/*
3662 		 * If we have all information of the inode in memory and this
3663 		 * is the only valid inode in the block, we need not read the
3664 		 * block.
3665 		 */
3666 		if (in_mem) {
3667 			struct buffer_head *bitmap_bh;
3668 			struct ext4_group_desc *desc;
3669 			int inodes_per_buffer;
3670 			int inode_offset, i;
3671 			ext4_group_t block_group;
3672 			int start;
3673 
3674 			block_group = (inode->i_ino - 1) /
3675 					EXT4_INODES_PER_GROUP(inode->i_sb);
3676 			inodes_per_buffer = bh->b_size /
3677 				EXT4_INODE_SIZE(inode->i_sb);
3678 			inode_offset = ((inode->i_ino - 1) %
3679 					EXT4_INODES_PER_GROUP(inode->i_sb));
3680 			start = inode_offset & ~(inodes_per_buffer - 1);
3681 
3682 			/* Is the inode bitmap in cache? */
3683 			desc = ext4_get_group_desc(inode->i_sb,
3684 						block_group, NULL);
3685 			if (!desc)
3686 				goto make_io;
3687 
3688 			bitmap_bh = sb_getblk(inode->i_sb,
3689 				ext4_inode_bitmap(inode->i_sb, desc));
3690 			if (!bitmap_bh)
3691 				goto make_io;
3692 
3693 			/*
3694 			 * If the inode bitmap isn't in cache then the
3695 			 * optimisation may end up performing two reads instead
3696 			 * of one, so skip it.
3697 			 */
3698 			if (!buffer_uptodate(bitmap_bh)) {
3699 				brelse(bitmap_bh);
3700 				goto make_io;
3701 			}
3702 			for (i = start; i < start + inodes_per_buffer; i++) {
3703 				if (i == inode_offset)
3704 					continue;
3705 				if (ext4_test_bit(i, bitmap_bh->b_data))
3706 					break;
3707 			}
3708 			brelse(bitmap_bh);
3709 			if (i == start + inodes_per_buffer) {
3710 				/* all other inodes are free, so skip I/O */
3711 				memset(bh->b_data, 0, bh->b_size);
3712 				set_buffer_uptodate(bh);
3713 				unlock_buffer(bh);
3714 				goto has_buffer;
3715 			}
3716 		}
3717 
3718 make_io:
3719 		/*
3720 		 * There are other valid inodes in the buffer, this inode
3721 		 * has in-inode xattrs, or we don't have this inode in memory.
3722 		 * Read the block from disk.
3723 		 */
3724 		get_bh(bh);
3725 		bh->b_end_io = end_buffer_read_sync;
3726 		submit_bh(READ_META, bh);
3727 		wait_on_buffer(bh);
3728 		if (!buffer_uptodate(bh)) {
3729 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3730 					"unable to read inode block - "
3731 					"inode=%lu, block=%llu",
3732 					inode->i_ino, block);
3733 			brelse(bh);
3734 			return -EIO;
3735 		}
3736 	}
3737 has_buffer:
3738 	iloc->bh = bh;
3739 	return 0;
3740 }
3741 
3742 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3743 {
3744 	/* We have all inode data except xattrs in memory here. */
3745 	return __ext4_get_inode_loc(inode, iloc,
3746 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3747 }
3748 
3749 void ext4_set_inode_flags(struct inode *inode)
3750 {
3751 	unsigned int flags = EXT4_I(inode)->i_flags;
3752 
3753 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3754 	if (flags & EXT4_SYNC_FL)
3755 		inode->i_flags |= S_SYNC;
3756 	if (flags & EXT4_APPEND_FL)
3757 		inode->i_flags |= S_APPEND;
3758 	if (flags & EXT4_IMMUTABLE_FL)
3759 		inode->i_flags |= S_IMMUTABLE;
3760 	if (flags & EXT4_NOATIME_FL)
3761 		inode->i_flags |= S_NOATIME;
3762 	if (flags & EXT4_DIRSYNC_FL)
3763 		inode->i_flags |= S_DIRSYNC;
3764 }
3765 
3766 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3767 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3768 {
3769 	unsigned int flags = ei->vfs_inode.i_flags;
3770 
3771 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3772 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3773 	if (flags & S_SYNC)
3774 		ei->i_flags |= EXT4_SYNC_FL;
3775 	if (flags & S_APPEND)
3776 		ei->i_flags |= EXT4_APPEND_FL;
3777 	if (flags & S_IMMUTABLE)
3778 		ei->i_flags |= EXT4_IMMUTABLE_FL;
3779 	if (flags & S_NOATIME)
3780 		ei->i_flags |= EXT4_NOATIME_FL;
3781 	if (flags & S_DIRSYNC)
3782 		ei->i_flags |= EXT4_DIRSYNC_FL;
3783 }
3784 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3785 					struct ext4_inode_info *ei)
3786 {
3787 	blkcnt_t i_blocks ;
3788 	struct inode *inode = &(ei->vfs_inode);
3789 	struct super_block *sb = inode->i_sb;
3790 
3791 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3792 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3793 		/* we are using combined 48 bit field */
3794 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3795 					le32_to_cpu(raw_inode->i_blocks_lo);
3796 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3797 			/* i_blocks represent file system block size */
3798 			return i_blocks  << (inode->i_blkbits - 9);
3799 		} else {
3800 			return i_blocks;
3801 		}
3802 	} else {
3803 		return le32_to_cpu(raw_inode->i_blocks_lo);
3804 	}
3805 }
3806 
3807 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3808 {
3809 	struct ext4_iloc iloc;
3810 	struct ext4_inode *raw_inode;
3811 	struct ext4_inode_info *ei;
3812 	struct buffer_head *bh;
3813 	struct inode *inode;
3814 	long ret;
3815 	int block;
3816 
3817 	inode = iget_locked(sb, ino);
3818 	if (!inode)
3819 		return ERR_PTR(-ENOMEM);
3820 	if (!(inode->i_state & I_NEW))
3821 		return inode;
3822 
3823 	ei = EXT4_I(inode);
3824 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3825 	ei->i_acl = EXT4_ACL_NOT_CACHED;
3826 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3827 #endif
3828 	ei->i_block_alloc_info = NULL;
3829 
3830 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3831 	if (ret < 0)
3832 		goto bad_inode;
3833 	bh = iloc.bh;
3834 	raw_inode = ext4_raw_inode(&iloc);
3835 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3836 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3837 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3838 	if(!(test_opt (inode->i_sb, NO_UID32))) {
3839 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3840 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3841 	}
3842 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3843 
3844 	ei->i_state = 0;
3845 	ei->i_dir_start_lookup = 0;
3846 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3847 	/* We now have enough fields to check if the inode was active or not.
3848 	 * This is needed because nfsd might try to access dead inodes
3849 	 * the test is that same one that e2fsck uses
3850 	 * NeilBrown 1999oct15
3851 	 */
3852 	if (inode->i_nlink == 0) {
3853 		if (inode->i_mode == 0 ||
3854 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3855 			/* this inode is deleted */
3856 			brelse (bh);
3857 			ret = -ESTALE;
3858 			goto bad_inode;
3859 		}
3860 		/* The only unlinked inodes we let through here have
3861 		 * valid i_mode and are being read by the orphan
3862 		 * recovery code: that's fine, we're about to complete
3863 		 * the process of deleting those. */
3864 	}
3865 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3866 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3867 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3868 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3869 	    cpu_to_le32(EXT4_OS_HURD)) {
3870 		ei->i_file_acl |=
3871 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3872 	}
3873 	inode->i_size = ext4_isize(raw_inode);
3874 	ei->i_disksize = inode->i_size;
3875 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3876 	ei->i_block_group = iloc.block_group;
3877 	/*
3878 	 * NOTE! The in-memory inode i_data array is in little-endian order
3879 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3880 	 */
3881 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3882 		ei->i_data[block] = raw_inode->i_block[block];
3883 	INIT_LIST_HEAD(&ei->i_orphan);
3884 
3885 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3887 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3888 		    EXT4_INODE_SIZE(inode->i_sb)) {
3889 			brelse (bh);
3890 			ret = -EIO;
3891 			goto bad_inode;
3892 		}
3893 		if (ei->i_extra_isize == 0) {
3894 			/* The extra space is currently unused. Use it. */
3895 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3896 					    EXT4_GOOD_OLD_INODE_SIZE;
3897 		} else {
3898 			__le32 *magic = (void *)raw_inode +
3899 					EXT4_GOOD_OLD_INODE_SIZE +
3900 					ei->i_extra_isize;
3901 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3902 				 ei->i_state |= EXT4_STATE_XATTR;
3903 		}
3904 	} else
3905 		ei->i_extra_isize = 0;
3906 
3907 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3908 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3909 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3910 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3911 
3912 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3913 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3914 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3915 			inode->i_version |=
3916 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3917 	}
3918 
3919 	if (S_ISREG(inode->i_mode)) {
3920 		inode->i_op = &ext4_file_inode_operations;
3921 		inode->i_fop = &ext4_file_operations;
3922 		ext4_set_aops(inode);
3923 	} else if (S_ISDIR(inode->i_mode)) {
3924 		inode->i_op = &ext4_dir_inode_operations;
3925 		inode->i_fop = &ext4_dir_operations;
3926 	} else if (S_ISLNK(inode->i_mode)) {
3927 		if (ext4_inode_is_fast_symlink(inode))
3928 			inode->i_op = &ext4_fast_symlink_inode_operations;
3929 		else {
3930 			inode->i_op = &ext4_symlink_inode_operations;
3931 			ext4_set_aops(inode);
3932 		}
3933 	} else {
3934 		inode->i_op = &ext4_special_inode_operations;
3935 		if (raw_inode->i_block[0])
3936 			init_special_inode(inode, inode->i_mode,
3937 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3938 		else
3939 			init_special_inode(inode, inode->i_mode,
3940 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3941 	}
3942 	brelse (iloc.bh);
3943 	ext4_set_inode_flags(inode);
3944 	unlock_new_inode(inode);
3945 	return inode;
3946 
3947 bad_inode:
3948 	iget_failed(inode);
3949 	return ERR_PTR(ret);
3950 }
3951 
3952 static int ext4_inode_blocks_set(handle_t *handle,
3953 				struct ext4_inode *raw_inode,
3954 				struct ext4_inode_info *ei)
3955 {
3956 	struct inode *inode = &(ei->vfs_inode);
3957 	u64 i_blocks = inode->i_blocks;
3958 	struct super_block *sb = inode->i_sb;
3959 	int err = 0;
3960 
3961 	if (i_blocks <= ~0U) {
3962 		/*
3963 		 * i_blocks can be represnted in a 32 bit variable
3964 		 * as multiple of 512 bytes
3965 		 */
3966 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3967 		raw_inode->i_blocks_high = 0;
3968 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3969 	} else if (i_blocks <= 0xffffffffffffULL) {
3970 		/*
3971 		 * i_blocks can be represented in a 48 bit variable
3972 		 * as multiple of 512 bytes
3973 		 */
3974 		err = ext4_update_rocompat_feature(handle, sb,
3975 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3976 		if (err)
3977 			goto  err_out;
3978 		/* i_block is stored in the split  48 bit fields */
3979 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3980 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3981 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3982 	} else {
3983 		/*
3984 		 * i_blocks should be represented in a 48 bit variable
3985 		 * as multiple of  file system block size
3986 		 */
3987 		err = ext4_update_rocompat_feature(handle, sb,
3988 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3989 		if (err)
3990 			goto  err_out;
3991 		ei->i_flags |= EXT4_HUGE_FILE_FL;
3992 		/* i_block is stored in file system block size */
3993 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3994 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3995 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3996 	}
3997 err_out:
3998 	return err;
3999 }
4000 
4001 /*
4002  * Post the struct inode info into an on-disk inode location in the
4003  * buffer-cache.  This gobbles the caller's reference to the
4004  * buffer_head in the inode location struct.
4005  *
4006  * The caller must have write access to iloc->bh.
4007  */
4008 static int ext4_do_update_inode(handle_t *handle,
4009 				struct inode *inode,
4010 				struct ext4_iloc *iloc)
4011 {
4012 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4013 	struct ext4_inode_info *ei = EXT4_I(inode);
4014 	struct buffer_head *bh = iloc->bh;
4015 	int err = 0, rc, block;
4016 
4017 	/* For fields not not tracking in the in-memory inode,
4018 	 * initialise them to zero for new inodes. */
4019 	if (ei->i_state & EXT4_STATE_NEW)
4020 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4021 
4022 	ext4_get_inode_flags(ei);
4023 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4024 	if(!(test_opt(inode->i_sb, NO_UID32))) {
4025 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4026 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4027 /*
4028  * Fix up interoperability with old kernels. Otherwise, old inodes get
4029  * re-used with the upper 16 bits of the uid/gid intact
4030  */
4031 		if(!ei->i_dtime) {
4032 			raw_inode->i_uid_high =
4033 				cpu_to_le16(high_16_bits(inode->i_uid));
4034 			raw_inode->i_gid_high =
4035 				cpu_to_le16(high_16_bits(inode->i_gid));
4036 		} else {
4037 			raw_inode->i_uid_high = 0;
4038 			raw_inode->i_gid_high = 0;
4039 		}
4040 	} else {
4041 		raw_inode->i_uid_low =
4042 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4043 		raw_inode->i_gid_low =
4044 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4045 		raw_inode->i_uid_high = 0;
4046 		raw_inode->i_gid_high = 0;
4047 	}
4048 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4049 
4050 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4051 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4052 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4053 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4054 
4055 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4056 		goto out_brelse;
4057 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4058 	/* clear the migrate flag in the raw_inode */
4059 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4060 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4061 	    cpu_to_le32(EXT4_OS_HURD))
4062 		raw_inode->i_file_acl_high =
4063 			cpu_to_le16(ei->i_file_acl >> 32);
4064 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4065 	ext4_isize_set(raw_inode, ei->i_disksize);
4066 	if (ei->i_disksize > 0x7fffffffULL) {
4067 		struct super_block *sb = inode->i_sb;
4068 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4070 				EXT4_SB(sb)->s_es->s_rev_level ==
4071 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4072 			/* If this is the first large file
4073 			 * created, add a flag to the superblock.
4074 			 */
4075 			err = ext4_journal_get_write_access(handle,
4076 					EXT4_SB(sb)->s_sbh);
4077 			if (err)
4078 				goto out_brelse;
4079 			ext4_update_dynamic_rev(sb);
4080 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4081 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4082 			sb->s_dirt = 1;
4083 			handle->h_sync = 1;
4084 			err = ext4_journal_dirty_metadata(handle,
4085 					EXT4_SB(sb)->s_sbh);
4086 		}
4087 	}
4088 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4089 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4090 		if (old_valid_dev(inode->i_rdev)) {
4091 			raw_inode->i_block[0] =
4092 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4093 			raw_inode->i_block[1] = 0;
4094 		} else {
4095 			raw_inode->i_block[0] = 0;
4096 			raw_inode->i_block[1] =
4097 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4098 			raw_inode->i_block[2] = 0;
4099 		}
4100 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4101 		raw_inode->i_block[block] = ei->i_data[block];
4102 
4103 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4104 	if (ei->i_extra_isize) {
4105 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4106 			raw_inode->i_version_hi =
4107 			cpu_to_le32(inode->i_version >> 32);
4108 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4109 	}
4110 
4111 
4112 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4113 	rc = ext4_journal_dirty_metadata(handle, bh);
4114 	if (!err)
4115 		err = rc;
4116 	ei->i_state &= ~EXT4_STATE_NEW;
4117 
4118 out_brelse:
4119 	brelse (bh);
4120 	ext4_std_error(inode->i_sb, err);
4121 	return err;
4122 }
4123 
4124 /*
4125  * ext4_write_inode()
4126  *
4127  * We are called from a few places:
4128  *
4129  * - Within generic_file_write() for O_SYNC files.
4130  *   Here, there will be no transaction running. We wait for any running
4131  *   trasnaction to commit.
4132  *
4133  * - Within sys_sync(), kupdate and such.
4134  *   We wait on commit, if tol to.
4135  *
4136  * - Within prune_icache() (PF_MEMALLOC == true)
4137  *   Here we simply return.  We can't afford to block kswapd on the
4138  *   journal commit.
4139  *
4140  * In all cases it is actually safe for us to return without doing anything,
4141  * because the inode has been copied into a raw inode buffer in
4142  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4143  * knfsd.
4144  *
4145  * Note that we are absolutely dependent upon all inode dirtiers doing the
4146  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4147  * which we are interested.
4148  *
4149  * It would be a bug for them to not do this.  The code:
4150  *
4151  *	mark_inode_dirty(inode)
4152  *	stuff();
4153  *	inode->i_size = expr;
4154  *
4155  * is in error because a kswapd-driven write_inode() could occur while
4156  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4157  * will no longer be on the superblock's dirty inode list.
4158  */
4159 int ext4_write_inode(struct inode *inode, int wait)
4160 {
4161 	if (current->flags & PF_MEMALLOC)
4162 		return 0;
4163 
4164 	if (ext4_journal_current_handle()) {
4165 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4166 		dump_stack();
4167 		return -EIO;
4168 	}
4169 
4170 	if (!wait)
4171 		return 0;
4172 
4173 	return ext4_force_commit(inode->i_sb);
4174 }
4175 
4176 /*
4177  * ext4_setattr()
4178  *
4179  * Called from notify_change.
4180  *
4181  * We want to trap VFS attempts to truncate the file as soon as
4182  * possible.  In particular, we want to make sure that when the VFS
4183  * shrinks i_size, we put the inode on the orphan list and modify
4184  * i_disksize immediately, so that during the subsequent flushing of
4185  * dirty pages and freeing of disk blocks, we can guarantee that any
4186  * commit will leave the blocks being flushed in an unused state on
4187  * disk.  (On recovery, the inode will get truncated and the blocks will
4188  * be freed, so we have a strong guarantee that no future commit will
4189  * leave these blocks visible to the user.)
4190  *
4191  * Another thing we have to assure is that if we are in ordered mode
4192  * and inode is still attached to the committing transaction, we must
4193  * we start writeout of all the dirty pages which are being truncated.
4194  * This way we are sure that all the data written in the previous
4195  * transaction are already on disk (truncate waits for pages under
4196  * writeback).
4197  *
4198  * Called with inode->i_mutex down.
4199  */
4200 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4201 {
4202 	struct inode *inode = dentry->d_inode;
4203 	int error, rc = 0;
4204 	const unsigned int ia_valid = attr->ia_valid;
4205 
4206 	error = inode_change_ok(inode, attr);
4207 	if (error)
4208 		return error;
4209 
4210 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4211 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4212 		handle_t *handle;
4213 
4214 		/* (user+group)*(old+new) structure, inode write (sb,
4215 		 * inode block, ? - but truncate inode update has it) */
4216 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4217 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4218 		if (IS_ERR(handle)) {
4219 			error = PTR_ERR(handle);
4220 			goto err_out;
4221 		}
4222 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4223 		if (error) {
4224 			ext4_journal_stop(handle);
4225 			return error;
4226 		}
4227 		/* Update corresponding info in inode so that everything is in
4228 		 * one transaction */
4229 		if (attr->ia_valid & ATTR_UID)
4230 			inode->i_uid = attr->ia_uid;
4231 		if (attr->ia_valid & ATTR_GID)
4232 			inode->i_gid = attr->ia_gid;
4233 		error = ext4_mark_inode_dirty(handle, inode);
4234 		ext4_journal_stop(handle);
4235 	}
4236 
4237 	if (attr->ia_valid & ATTR_SIZE) {
4238 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4239 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4240 
4241 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4242 				error = -EFBIG;
4243 				goto err_out;
4244 			}
4245 		}
4246 	}
4247 
4248 	if (S_ISREG(inode->i_mode) &&
4249 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4250 		handle_t *handle;
4251 
4252 		handle = ext4_journal_start(inode, 3);
4253 		if (IS_ERR(handle)) {
4254 			error = PTR_ERR(handle);
4255 			goto err_out;
4256 		}
4257 
4258 		error = ext4_orphan_add(handle, inode);
4259 		EXT4_I(inode)->i_disksize = attr->ia_size;
4260 		rc = ext4_mark_inode_dirty(handle, inode);
4261 		if (!error)
4262 			error = rc;
4263 		ext4_journal_stop(handle);
4264 
4265 		if (ext4_should_order_data(inode)) {
4266 			error = ext4_begin_ordered_truncate(inode,
4267 							    attr->ia_size);
4268 			if (error) {
4269 				/* Do as much error cleanup as possible */
4270 				handle = ext4_journal_start(inode, 3);
4271 				if (IS_ERR(handle)) {
4272 					ext4_orphan_del(NULL, inode);
4273 					goto err_out;
4274 				}
4275 				ext4_orphan_del(handle, inode);
4276 				ext4_journal_stop(handle);
4277 				goto err_out;
4278 			}
4279 		}
4280 	}
4281 
4282 	rc = inode_setattr(inode, attr);
4283 
4284 	/* If inode_setattr's call to ext4_truncate failed to get a
4285 	 * transaction handle at all, we need to clean up the in-core
4286 	 * orphan list manually. */
4287 	if (inode->i_nlink)
4288 		ext4_orphan_del(NULL, inode);
4289 
4290 	if (!rc && (ia_valid & ATTR_MODE))
4291 		rc = ext4_acl_chmod(inode);
4292 
4293 err_out:
4294 	ext4_std_error(inode->i_sb, error);
4295 	if (!error)
4296 		error = rc;
4297 	return error;
4298 }
4299 
4300 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4301 		 struct kstat *stat)
4302 {
4303 	struct inode *inode;
4304 	unsigned long delalloc_blocks;
4305 
4306 	inode = dentry->d_inode;
4307 	generic_fillattr(inode, stat);
4308 
4309 	/*
4310 	 * We can't update i_blocks if the block allocation is delayed
4311 	 * otherwise in the case of system crash before the real block
4312 	 * allocation is done, we will have i_blocks inconsistent with
4313 	 * on-disk file blocks.
4314 	 * We always keep i_blocks updated together with real
4315 	 * allocation. But to not confuse with user, stat
4316 	 * will return the blocks that include the delayed allocation
4317 	 * blocks for this file.
4318 	 */
4319 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4320 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4321 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4322 
4323 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4324 	return 0;
4325 }
4326 
4327 /*
4328  * How many blocks doth make a writepage()?
4329  *
4330  * With N blocks per page, it may be:
4331  * N data blocks
4332  * 2 indirect block
4333  * 2 dindirect
4334  * 1 tindirect
4335  * N+5 bitmap blocks (from the above)
4336  * N+5 group descriptor summary blocks
4337  * 1 inode block
4338  * 1 superblock.
4339  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4340  *
4341  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4342  *
4343  * With ordered or writeback data it's the same, less the N data blocks.
4344  *
4345  * If the inode's direct blocks can hold an integral number of pages then a
4346  * page cannot straddle two indirect blocks, and we can only touch one indirect
4347  * and dindirect block, and the "5" above becomes "3".
4348  *
4349  * This still overestimates under most circumstances.  If we were to pass the
4350  * start and end offsets in here as well we could do block_to_path() on each
4351  * block and work out the exact number of indirects which are touched.  Pah.
4352  */
4353 
4354 int ext4_writepage_trans_blocks(struct inode *inode)
4355 {
4356 	int bpp = ext4_journal_blocks_per_page(inode);
4357 	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4358 	int ret;
4359 
4360 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4361 		return ext4_ext_writepage_trans_blocks(inode, bpp);
4362 
4363 	if (ext4_should_journal_data(inode))
4364 		ret = 3 * (bpp + indirects) + 2;
4365 	else
4366 		ret = 2 * (bpp + indirects) + 2;
4367 
4368 #ifdef CONFIG_QUOTA
4369 	/* We know that structure was already allocated during DQUOT_INIT so
4370 	 * we will be updating only the data blocks + inodes */
4371 	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4372 #endif
4373 
4374 	return ret;
4375 }
4376 
4377 /*
4378  * The caller must have previously called ext4_reserve_inode_write().
4379  * Give this, we know that the caller already has write access to iloc->bh.
4380  */
4381 int ext4_mark_iloc_dirty(handle_t *handle,
4382 		struct inode *inode, struct ext4_iloc *iloc)
4383 {
4384 	int err = 0;
4385 
4386 	if (test_opt(inode->i_sb, I_VERSION))
4387 		inode_inc_iversion(inode);
4388 
4389 	/* the do_update_inode consumes one bh->b_count */
4390 	get_bh(iloc->bh);
4391 
4392 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4393 	err = ext4_do_update_inode(handle, inode, iloc);
4394 	put_bh(iloc->bh);
4395 	return err;
4396 }
4397 
4398 /*
4399  * On success, We end up with an outstanding reference count against
4400  * iloc->bh.  This _must_ be cleaned up later.
4401  */
4402 
4403 int
4404 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4405 			 struct ext4_iloc *iloc)
4406 {
4407 	int err = 0;
4408 	if (handle) {
4409 		err = ext4_get_inode_loc(inode, iloc);
4410 		if (!err) {
4411 			BUFFER_TRACE(iloc->bh, "get_write_access");
4412 			err = ext4_journal_get_write_access(handle, iloc->bh);
4413 			if (err) {
4414 				brelse(iloc->bh);
4415 				iloc->bh = NULL;
4416 			}
4417 		}
4418 	}
4419 	ext4_std_error(inode->i_sb, err);
4420 	return err;
4421 }
4422 
4423 /*
4424  * Expand an inode by new_extra_isize bytes.
4425  * Returns 0 on success or negative error number on failure.
4426  */
4427 static int ext4_expand_extra_isize(struct inode *inode,
4428 				   unsigned int new_extra_isize,
4429 				   struct ext4_iloc iloc,
4430 				   handle_t *handle)
4431 {
4432 	struct ext4_inode *raw_inode;
4433 	struct ext4_xattr_ibody_header *header;
4434 	struct ext4_xattr_entry *entry;
4435 
4436 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4437 		return 0;
4438 
4439 	raw_inode = ext4_raw_inode(&iloc);
4440 
4441 	header = IHDR(inode, raw_inode);
4442 	entry = IFIRST(header);
4443 
4444 	/* No extended attributes present */
4445 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4446 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4447 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4448 			new_extra_isize);
4449 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4450 		return 0;
4451 	}
4452 
4453 	/* try to expand with EAs present */
4454 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4455 					  raw_inode, handle);
4456 }
4457 
4458 /*
4459  * What we do here is to mark the in-core inode as clean with respect to inode
4460  * dirtiness (it may still be data-dirty).
4461  * This means that the in-core inode may be reaped by prune_icache
4462  * without having to perform any I/O.  This is a very good thing,
4463  * because *any* task may call prune_icache - even ones which
4464  * have a transaction open against a different journal.
4465  *
4466  * Is this cheating?  Not really.  Sure, we haven't written the
4467  * inode out, but prune_icache isn't a user-visible syncing function.
4468  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4469  * we start and wait on commits.
4470  *
4471  * Is this efficient/effective?  Well, we're being nice to the system
4472  * by cleaning up our inodes proactively so they can be reaped
4473  * without I/O.  But we are potentially leaving up to five seconds'
4474  * worth of inodes floating about which prune_icache wants us to
4475  * write out.  One way to fix that would be to get prune_icache()
4476  * to do a write_super() to free up some memory.  It has the desired
4477  * effect.
4478  */
4479 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4480 {
4481 	struct ext4_iloc iloc;
4482 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4483 	static unsigned int mnt_count;
4484 	int err, ret;
4485 
4486 	might_sleep();
4487 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4488 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4489 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4490 		/*
4491 		 * We need extra buffer credits since we may write into EA block
4492 		 * with this same handle. If journal_extend fails, then it will
4493 		 * only result in a minor loss of functionality for that inode.
4494 		 * If this is felt to be critical, then e2fsck should be run to
4495 		 * force a large enough s_min_extra_isize.
4496 		 */
4497 		if ((jbd2_journal_extend(handle,
4498 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4499 			ret = ext4_expand_extra_isize(inode,
4500 						      sbi->s_want_extra_isize,
4501 						      iloc, handle);
4502 			if (ret) {
4503 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4504 				if (mnt_count !=
4505 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4506 					ext4_warning(inode->i_sb, __func__,
4507 					"Unable to expand inode %lu. Delete"
4508 					" some EAs or run e2fsck.",
4509 					inode->i_ino);
4510 					mnt_count =
4511 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4512 				}
4513 			}
4514 		}
4515 	}
4516 	if (!err)
4517 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4518 	return err;
4519 }
4520 
4521 /*
4522  * ext4_dirty_inode() is called from __mark_inode_dirty()
4523  *
4524  * We're really interested in the case where a file is being extended.
4525  * i_size has been changed by generic_commit_write() and we thus need
4526  * to include the updated inode in the current transaction.
4527  *
4528  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4529  * are allocated to the file.
4530  *
4531  * If the inode is marked synchronous, we don't honour that here - doing
4532  * so would cause a commit on atime updates, which we don't bother doing.
4533  * We handle synchronous inodes at the highest possible level.
4534  */
4535 void ext4_dirty_inode(struct inode *inode)
4536 {
4537 	handle_t *current_handle = ext4_journal_current_handle();
4538 	handle_t *handle;
4539 
4540 	handle = ext4_journal_start(inode, 2);
4541 	if (IS_ERR(handle))
4542 		goto out;
4543 	if (current_handle &&
4544 		current_handle->h_transaction != handle->h_transaction) {
4545 		/* This task has a transaction open against a different fs */
4546 		printk(KERN_EMERG "%s: transactions do not match!\n",
4547 		       __func__);
4548 	} else {
4549 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4550 				current_handle);
4551 		ext4_mark_inode_dirty(handle, inode);
4552 	}
4553 	ext4_journal_stop(handle);
4554 out:
4555 	return;
4556 }
4557 
4558 #if 0
4559 /*
4560  * Bind an inode's backing buffer_head into this transaction, to prevent
4561  * it from being flushed to disk early.  Unlike
4562  * ext4_reserve_inode_write, this leaves behind no bh reference and
4563  * returns no iloc structure, so the caller needs to repeat the iloc
4564  * lookup to mark the inode dirty later.
4565  */
4566 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4567 {
4568 	struct ext4_iloc iloc;
4569 
4570 	int err = 0;
4571 	if (handle) {
4572 		err = ext4_get_inode_loc(inode, &iloc);
4573 		if (!err) {
4574 			BUFFER_TRACE(iloc.bh, "get_write_access");
4575 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4576 			if (!err)
4577 				err = ext4_journal_dirty_metadata(handle,
4578 								  iloc.bh);
4579 			brelse(iloc.bh);
4580 		}
4581 	}
4582 	ext4_std_error(inode->i_sb, err);
4583 	return err;
4584 }
4585 #endif
4586 
4587 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4588 {
4589 	journal_t *journal;
4590 	handle_t *handle;
4591 	int err;
4592 
4593 	/*
4594 	 * We have to be very careful here: changing a data block's
4595 	 * journaling status dynamically is dangerous.  If we write a
4596 	 * data block to the journal, change the status and then delete
4597 	 * that block, we risk forgetting to revoke the old log record
4598 	 * from the journal and so a subsequent replay can corrupt data.
4599 	 * So, first we make sure that the journal is empty and that
4600 	 * nobody is changing anything.
4601 	 */
4602 
4603 	journal = EXT4_JOURNAL(inode);
4604 	if (is_journal_aborted(journal))
4605 		return -EROFS;
4606 
4607 	jbd2_journal_lock_updates(journal);
4608 	jbd2_journal_flush(journal);
4609 
4610 	/*
4611 	 * OK, there are no updates running now, and all cached data is
4612 	 * synced to disk.  We are now in a completely consistent state
4613 	 * which doesn't have anything in the journal, and we know that
4614 	 * no filesystem updates are running, so it is safe to modify
4615 	 * the inode's in-core data-journaling state flag now.
4616 	 */
4617 
4618 	if (val)
4619 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4620 	else
4621 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4622 	ext4_set_aops(inode);
4623 
4624 	jbd2_journal_unlock_updates(journal);
4625 
4626 	/* Finally we can mark the inode as dirty. */
4627 
4628 	handle = ext4_journal_start(inode, 1);
4629 	if (IS_ERR(handle))
4630 		return PTR_ERR(handle);
4631 
4632 	err = ext4_mark_inode_dirty(handle, inode);
4633 	handle->h_sync = 1;
4634 	ext4_journal_stop(handle);
4635 	ext4_std_error(inode->i_sb, err);
4636 
4637 	return err;
4638 }
4639 
4640 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4641 {
4642 	return !buffer_mapped(bh);
4643 }
4644 
4645 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4646 {
4647 	loff_t size;
4648 	unsigned long len;
4649 	int ret = -EINVAL;
4650 	struct file *file = vma->vm_file;
4651 	struct inode *inode = file->f_path.dentry->d_inode;
4652 	struct address_space *mapping = inode->i_mapping;
4653 
4654 	/*
4655 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4656 	 * get i_mutex because we are already holding mmap_sem.
4657 	 */
4658 	down_read(&inode->i_alloc_sem);
4659 	size = i_size_read(inode);
4660 	if (page->mapping != mapping || size <= page_offset(page)
4661 	    || !PageUptodate(page)) {
4662 		/* page got truncated from under us? */
4663 		goto out_unlock;
4664 	}
4665 	ret = 0;
4666 	if (PageMappedToDisk(page))
4667 		goto out_unlock;
4668 
4669 	if (page->index == size >> PAGE_CACHE_SHIFT)
4670 		len = size & ~PAGE_CACHE_MASK;
4671 	else
4672 		len = PAGE_CACHE_SIZE;
4673 
4674 	if (page_has_buffers(page)) {
4675 		/* return if we have all the buffers mapped */
4676 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4677 				       ext4_bh_unmapped))
4678 			goto out_unlock;
4679 	}
4680 	/*
4681 	 * OK, we need to fill the hole... Do write_begin write_end
4682 	 * to do block allocation/reservation.We are not holding
4683 	 * inode.i__mutex here. That allow * parallel write_begin,
4684 	 * write_end call. lock_page prevent this from happening
4685 	 * on the same page though
4686 	 */
4687 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4688 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4689 	if (ret < 0)
4690 		goto out_unlock;
4691 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4692 			len, len, page, NULL);
4693 	if (ret < 0)
4694 		goto out_unlock;
4695 	ret = 0;
4696 out_unlock:
4697 	up_read(&inode->i_alloc_sem);
4698 	return ret;
4699 }
4700