1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 static inline int ext4_begin_ordered_truncate(struct inode *inode, 45 loff_t new_size) 46 { 47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 48 new_size); 49 } 50 51 static void ext4_invalidatepage(struct page *page, unsigned long offset); 52 53 /* 54 * Test whether an inode is a fast symlink. 55 */ 56 static int ext4_inode_is_fast_symlink(struct inode *inode) 57 { 58 int ea_blocks = EXT4_I(inode)->i_file_acl ? 59 (inode->i_sb->s_blocksize >> 9) : 0; 60 61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 62 } 63 64 /* 65 * The ext4 forget function must perform a revoke if we are freeing data 66 * which has been journaled. Metadata (eg. indirect blocks) must be 67 * revoked in all cases. 68 * 69 * "bh" may be NULL: a metadata block may have been freed from memory 70 * but there may still be a record of it in the journal, and that record 71 * still needs to be revoked. 72 */ 73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 74 struct buffer_head *bh, ext4_fsblk_t blocknr) 75 { 76 int err; 77 78 might_sleep(); 79 80 BUFFER_TRACE(bh, "enter"); 81 82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 83 "data mode %lx\n", 84 bh, is_metadata, inode->i_mode, 85 test_opt(inode->i_sb, DATA_FLAGS)); 86 87 /* Never use the revoke function if we are doing full data 88 * journaling: there is no need to, and a V1 superblock won't 89 * support it. Otherwise, only skip the revoke on un-journaled 90 * data blocks. */ 91 92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 93 (!is_metadata && !ext4_should_journal_data(inode))) { 94 if (bh) { 95 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 96 return ext4_journal_forget(handle, bh); 97 } 98 return 0; 99 } 100 101 /* 102 * data!=journal && (is_metadata || should_journal_data(inode)) 103 */ 104 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 105 err = ext4_journal_revoke(handle, blocknr, bh); 106 if (err) 107 ext4_abort(inode->i_sb, __func__, 108 "error %d when attempting revoke", err); 109 BUFFER_TRACE(bh, "exit"); 110 return err; 111 } 112 113 /* 114 * Work out how many blocks we need to proceed with the next chunk of a 115 * truncate transaction. 116 */ 117 static unsigned long blocks_for_truncate(struct inode *inode) 118 { 119 ext4_lblk_t needed; 120 121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 122 123 /* Give ourselves just enough room to cope with inodes in which 124 * i_blocks is corrupt: we've seen disk corruptions in the past 125 * which resulted in random data in an inode which looked enough 126 * like a regular file for ext4 to try to delete it. Things 127 * will go a bit crazy if that happens, but at least we should 128 * try not to panic the whole kernel. */ 129 if (needed < 2) 130 needed = 2; 131 132 /* But we need to bound the transaction so we don't overflow the 133 * journal. */ 134 if (needed > EXT4_MAX_TRANS_DATA) 135 needed = EXT4_MAX_TRANS_DATA; 136 137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 138 } 139 140 /* 141 * Truncate transactions can be complex and absolutely huge. So we need to 142 * be able to restart the transaction at a conventient checkpoint to make 143 * sure we don't overflow the journal. 144 * 145 * start_transaction gets us a new handle for a truncate transaction, 146 * and extend_transaction tries to extend the existing one a bit. If 147 * extend fails, we need to propagate the failure up and restart the 148 * transaction in the top-level truncate loop. --sct 149 */ 150 static handle_t *start_transaction(struct inode *inode) 151 { 152 handle_t *result; 153 154 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 155 if (!IS_ERR(result)) 156 return result; 157 158 ext4_std_error(inode->i_sb, PTR_ERR(result)); 159 return result; 160 } 161 162 /* 163 * Try to extend this transaction for the purposes of truncation. 164 * 165 * Returns 0 if we managed to create more room. If we can't create more 166 * room, and the transaction must be restarted we return 1. 167 */ 168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 169 { 170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 171 return 0; 172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 173 return 0; 174 return 1; 175 } 176 177 /* 178 * Restart the transaction associated with *handle. This does a commit, 179 * so before we call here everything must be consistently dirtied against 180 * this transaction. 181 */ 182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 183 { 184 jbd_debug(2, "restarting handle %p\n", handle); 185 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 186 } 187 188 /* 189 * Called at the last iput() if i_nlink is zero. 190 */ 191 void ext4_delete_inode (struct inode * inode) 192 { 193 handle_t *handle; 194 int err; 195 196 if (ext4_should_order_data(inode)) 197 ext4_begin_ordered_truncate(inode, 0); 198 truncate_inode_pages(&inode->i_data, 0); 199 200 if (is_bad_inode(inode)) 201 goto no_delete; 202 203 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 204 if (IS_ERR(handle)) { 205 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 206 /* 207 * If we're going to skip the normal cleanup, we still need to 208 * make sure that the in-core orphan linked list is properly 209 * cleaned up. 210 */ 211 ext4_orphan_del(NULL, inode); 212 goto no_delete; 213 } 214 215 if (IS_SYNC(inode)) 216 handle->h_sync = 1; 217 inode->i_size = 0; 218 err = ext4_mark_inode_dirty(handle, inode); 219 if (err) { 220 ext4_warning(inode->i_sb, __func__, 221 "couldn't mark inode dirty (err %d)", err); 222 goto stop_handle; 223 } 224 if (inode->i_blocks) 225 ext4_truncate(inode); 226 227 /* 228 * ext4_ext_truncate() doesn't reserve any slop when it 229 * restarts journal transactions; therefore there may not be 230 * enough credits left in the handle to remove the inode from 231 * the orphan list and set the dtime field. 232 */ 233 if (handle->h_buffer_credits < 3) { 234 err = ext4_journal_extend(handle, 3); 235 if (err > 0) 236 err = ext4_journal_restart(handle, 3); 237 if (err != 0) { 238 ext4_warning(inode->i_sb, __func__, 239 "couldn't extend journal (err %d)", err); 240 stop_handle: 241 ext4_journal_stop(handle); 242 goto no_delete; 243 } 244 } 245 246 /* 247 * Kill off the orphan record which ext4_truncate created. 248 * AKPM: I think this can be inside the above `if'. 249 * Note that ext4_orphan_del() has to be able to cope with the 250 * deletion of a non-existent orphan - this is because we don't 251 * know if ext4_truncate() actually created an orphan record. 252 * (Well, we could do this if we need to, but heck - it works) 253 */ 254 ext4_orphan_del(handle, inode); 255 EXT4_I(inode)->i_dtime = get_seconds(); 256 257 /* 258 * One subtle ordering requirement: if anything has gone wrong 259 * (transaction abort, IO errors, whatever), then we can still 260 * do these next steps (the fs will already have been marked as 261 * having errors), but we can't free the inode if the mark_dirty 262 * fails. 263 */ 264 if (ext4_mark_inode_dirty(handle, inode)) 265 /* If that failed, just do the required in-core inode clear. */ 266 clear_inode(inode); 267 else 268 ext4_free_inode(handle, inode); 269 ext4_journal_stop(handle); 270 return; 271 no_delete: 272 clear_inode(inode); /* We must guarantee clearing of inode... */ 273 } 274 275 typedef struct { 276 __le32 *p; 277 __le32 key; 278 struct buffer_head *bh; 279 } Indirect; 280 281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 282 { 283 p->key = *(p->p = v); 284 p->bh = bh; 285 } 286 287 /** 288 * ext4_block_to_path - parse the block number into array of offsets 289 * @inode: inode in question (we are only interested in its superblock) 290 * @i_block: block number to be parsed 291 * @offsets: array to store the offsets in 292 * @boundary: set this non-zero if the referred-to block is likely to be 293 * followed (on disk) by an indirect block. 294 * 295 * To store the locations of file's data ext4 uses a data structure common 296 * for UNIX filesystems - tree of pointers anchored in the inode, with 297 * data blocks at leaves and indirect blocks in intermediate nodes. 298 * This function translates the block number into path in that tree - 299 * return value is the path length and @offsets[n] is the offset of 300 * pointer to (n+1)th node in the nth one. If @block is out of range 301 * (negative or too large) warning is printed and zero returned. 302 * 303 * Note: function doesn't find node addresses, so no IO is needed. All 304 * we need to know is the capacity of indirect blocks (taken from the 305 * inode->i_sb). 306 */ 307 308 /* 309 * Portability note: the last comparison (check that we fit into triple 310 * indirect block) is spelled differently, because otherwise on an 311 * architecture with 32-bit longs and 8Kb pages we might get into trouble 312 * if our filesystem had 8Kb blocks. We might use long long, but that would 313 * kill us on x86. Oh, well, at least the sign propagation does not matter - 314 * i_block would have to be negative in the very beginning, so we would not 315 * get there at all. 316 */ 317 318 static int ext4_block_to_path(struct inode *inode, 319 ext4_lblk_t i_block, 320 ext4_lblk_t offsets[4], int *boundary) 321 { 322 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 323 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 324 const long direct_blocks = EXT4_NDIR_BLOCKS, 325 indirect_blocks = ptrs, 326 double_blocks = (1 << (ptrs_bits * 2)); 327 int n = 0; 328 int final = 0; 329 330 if (i_block < 0) { 331 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 332 } else if (i_block < direct_blocks) { 333 offsets[n++] = i_block; 334 final = direct_blocks; 335 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 336 offsets[n++] = EXT4_IND_BLOCK; 337 offsets[n++] = i_block; 338 final = ptrs; 339 } else if ((i_block -= indirect_blocks) < double_blocks) { 340 offsets[n++] = EXT4_DIND_BLOCK; 341 offsets[n++] = i_block >> ptrs_bits; 342 offsets[n++] = i_block & (ptrs - 1); 343 final = ptrs; 344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 345 offsets[n++] = EXT4_TIND_BLOCK; 346 offsets[n++] = i_block >> (ptrs_bits * 2); 347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 348 offsets[n++] = i_block & (ptrs - 1); 349 final = ptrs; 350 } else { 351 ext4_warning(inode->i_sb, "ext4_block_to_path", 352 "block %lu > max", 353 i_block + direct_blocks + 354 indirect_blocks + double_blocks); 355 } 356 if (boundary) 357 *boundary = final - 1 - (i_block & (ptrs - 1)); 358 return n; 359 } 360 361 /** 362 * ext4_get_branch - read the chain of indirect blocks leading to data 363 * @inode: inode in question 364 * @depth: depth of the chain (1 - direct pointer, etc.) 365 * @offsets: offsets of pointers in inode/indirect blocks 366 * @chain: place to store the result 367 * @err: here we store the error value 368 * 369 * Function fills the array of triples <key, p, bh> and returns %NULL 370 * if everything went OK or the pointer to the last filled triple 371 * (incomplete one) otherwise. Upon the return chain[i].key contains 372 * the number of (i+1)-th block in the chain (as it is stored in memory, 373 * i.e. little-endian 32-bit), chain[i].p contains the address of that 374 * number (it points into struct inode for i==0 and into the bh->b_data 375 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 376 * block for i>0 and NULL for i==0. In other words, it holds the block 377 * numbers of the chain, addresses they were taken from (and where we can 378 * verify that chain did not change) and buffer_heads hosting these 379 * numbers. 380 * 381 * Function stops when it stumbles upon zero pointer (absent block) 382 * (pointer to last triple returned, *@err == 0) 383 * or when it gets an IO error reading an indirect block 384 * (ditto, *@err == -EIO) 385 * or when it reads all @depth-1 indirect blocks successfully and finds 386 * the whole chain, all way to the data (returns %NULL, *err == 0). 387 * 388 * Need to be called with 389 * down_read(&EXT4_I(inode)->i_data_sem) 390 */ 391 static Indirect *ext4_get_branch(struct inode *inode, int depth, 392 ext4_lblk_t *offsets, 393 Indirect chain[4], int *err) 394 { 395 struct super_block *sb = inode->i_sb; 396 Indirect *p = chain; 397 struct buffer_head *bh; 398 399 *err = 0; 400 /* i_data is not going away, no lock needed */ 401 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 402 if (!p->key) 403 goto no_block; 404 while (--depth) { 405 bh = sb_bread(sb, le32_to_cpu(p->key)); 406 if (!bh) 407 goto failure; 408 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 409 /* Reader: end */ 410 if (!p->key) 411 goto no_block; 412 } 413 return NULL; 414 415 failure: 416 *err = -EIO; 417 no_block: 418 return p; 419 } 420 421 /** 422 * ext4_find_near - find a place for allocation with sufficient locality 423 * @inode: owner 424 * @ind: descriptor of indirect block. 425 * 426 * This function returns the preferred place for block allocation. 427 * It is used when heuristic for sequential allocation fails. 428 * Rules are: 429 * + if there is a block to the left of our position - allocate near it. 430 * + if pointer will live in indirect block - allocate near that block. 431 * + if pointer will live in inode - allocate in the same 432 * cylinder group. 433 * 434 * In the latter case we colour the starting block by the callers PID to 435 * prevent it from clashing with concurrent allocations for a different inode 436 * in the same block group. The PID is used here so that functionally related 437 * files will be close-by on-disk. 438 * 439 * Caller must make sure that @ind is valid and will stay that way. 440 */ 441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 442 { 443 struct ext4_inode_info *ei = EXT4_I(inode); 444 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 445 __le32 *p; 446 ext4_fsblk_t bg_start; 447 ext4_fsblk_t last_block; 448 ext4_grpblk_t colour; 449 450 /* Try to find previous block */ 451 for (p = ind->p - 1; p >= start; p--) { 452 if (*p) 453 return le32_to_cpu(*p); 454 } 455 456 /* No such thing, so let's try location of indirect block */ 457 if (ind->bh) 458 return ind->bh->b_blocknr; 459 460 /* 461 * It is going to be referred to from the inode itself? OK, just put it 462 * into the same cylinder group then. 463 */ 464 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 465 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 466 467 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 468 colour = (current->pid % 16) * 469 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 470 else 471 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 472 return bg_start + colour; 473 } 474 475 /** 476 * ext4_find_goal - find a preferred place for allocation. 477 * @inode: owner 478 * @block: block we want 479 * @partial: pointer to the last triple within a chain 480 * 481 * Normally this function find the preferred place for block allocation, 482 * returns it. 483 */ 484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 485 Indirect *partial) 486 { 487 struct ext4_block_alloc_info *block_i; 488 489 block_i = EXT4_I(inode)->i_block_alloc_info; 490 491 /* 492 * try the heuristic for sequential allocation, 493 * failing that at least try to get decent locality. 494 */ 495 if (block_i && (block == block_i->last_alloc_logical_block + 1) 496 && (block_i->last_alloc_physical_block != 0)) { 497 return block_i->last_alloc_physical_block + 1; 498 } 499 500 return ext4_find_near(inode, partial); 501 } 502 503 /** 504 * ext4_blks_to_allocate: Look up the block map and count the number 505 * of direct blocks need to be allocated for the given branch. 506 * 507 * @branch: chain of indirect blocks 508 * @k: number of blocks need for indirect blocks 509 * @blks: number of data blocks to be mapped. 510 * @blocks_to_boundary: the offset in the indirect block 511 * 512 * return the total number of blocks to be allocate, including the 513 * direct and indirect blocks. 514 */ 515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 516 int blocks_to_boundary) 517 { 518 unsigned long count = 0; 519 520 /* 521 * Simple case, [t,d]Indirect block(s) has not allocated yet 522 * then it's clear blocks on that path have not allocated 523 */ 524 if (k > 0) { 525 /* right now we don't handle cross boundary allocation */ 526 if (blks < blocks_to_boundary + 1) 527 count += blks; 528 else 529 count += blocks_to_boundary + 1; 530 return count; 531 } 532 533 count++; 534 while (count < blks && count <= blocks_to_boundary && 535 le32_to_cpu(*(branch[0].p + count)) == 0) { 536 count++; 537 } 538 return count; 539 } 540 541 /** 542 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 543 * @indirect_blks: the number of blocks need to allocate for indirect 544 * blocks 545 * 546 * @new_blocks: on return it will store the new block numbers for 547 * the indirect blocks(if needed) and the first direct block, 548 * @blks: on return it will store the total number of allocated 549 * direct blocks 550 */ 551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 552 ext4_lblk_t iblock, ext4_fsblk_t goal, 553 int indirect_blks, int blks, 554 ext4_fsblk_t new_blocks[4], int *err) 555 { 556 int target, i; 557 unsigned long count = 0, blk_allocated = 0; 558 int index = 0; 559 ext4_fsblk_t current_block = 0; 560 int ret = 0; 561 562 /* 563 * Here we try to allocate the requested multiple blocks at once, 564 * on a best-effort basis. 565 * To build a branch, we should allocate blocks for 566 * the indirect blocks(if not allocated yet), and at least 567 * the first direct block of this branch. That's the 568 * minimum number of blocks need to allocate(required) 569 */ 570 /* first we try to allocate the indirect blocks */ 571 target = indirect_blks; 572 while (target > 0) { 573 count = target; 574 /* allocating blocks for indirect blocks and direct blocks */ 575 current_block = ext4_new_meta_blocks(handle, inode, 576 goal, &count, err); 577 if (*err) 578 goto failed_out; 579 580 target -= count; 581 /* allocate blocks for indirect blocks */ 582 while (index < indirect_blks && count) { 583 new_blocks[index++] = current_block++; 584 count--; 585 } 586 if (count > 0) { 587 /* 588 * save the new block number 589 * for the first direct block 590 */ 591 new_blocks[index] = current_block; 592 printk(KERN_INFO "%s returned more blocks than " 593 "requested\n", __func__); 594 WARN_ON(1); 595 break; 596 } 597 } 598 599 target = blks - count ; 600 blk_allocated = count; 601 if (!target) 602 goto allocated; 603 /* Now allocate data blocks */ 604 count = target; 605 /* allocating blocks for data blocks */ 606 current_block = ext4_new_blocks(handle, inode, iblock, 607 goal, &count, err); 608 if (*err && (target == blks)) { 609 /* 610 * if the allocation failed and we didn't allocate 611 * any blocks before 612 */ 613 goto failed_out; 614 } 615 if (!*err) { 616 if (target == blks) { 617 /* 618 * save the new block number 619 * for the first direct block 620 */ 621 new_blocks[index] = current_block; 622 } 623 blk_allocated += count; 624 } 625 allocated: 626 /* total number of blocks allocated for direct blocks */ 627 ret = blk_allocated; 628 *err = 0; 629 return ret; 630 failed_out: 631 for (i = 0; i <index; i++) 632 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 633 return ret; 634 } 635 636 /** 637 * ext4_alloc_branch - allocate and set up a chain of blocks. 638 * @inode: owner 639 * @indirect_blks: number of allocated indirect blocks 640 * @blks: number of allocated direct blocks 641 * @offsets: offsets (in the blocks) to store the pointers to next. 642 * @branch: place to store the chain in. 643 * 644 * This function allocates blocks, zeroes out all but the last one, 645 * links them into chain and (if we are synchronous) writes them to disk. 646 * In other words, it prepares a branch that can be spliced onto the 647 * inode. It stores the information about that chain in the branch[], in 648 * the same format as ext4_get_branch() would do. We are calling it after 649 * we had read the existing part of chain and partial points to the last 650 * triple of that (one with zero ->key). Upon the exit we have the same 651 * picture as after the successful ext4_get_block(), except that in one 652 * place chain is disconnected - *branch->p is still zero (we did not 653 * set the last link), but branch->key contains the number that should 654 * be placed into *branch->p to fill that gap. 655 * 656 * If allocation fails we free all blocks we've allocated (and forget 657 * their buffer_heads) and return the error value the from failed 658 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 659 * as described above and return 0. 660 */ 661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 662 ext4_lblk_t iblock, int indirect_blks, 663 int *blks, ext4_fsblk_t goal, 664 ext4_lblk_t *offsets, Indirect *branch) 665 { 666 int blocksize = inode->i_sb->s_blocksize; 667 int i, n = 0; 668 int err = 0; 669 struct buffer_head *bh; 670 int num; 671 ext4_fsblk_t new_blocks[4]; 672 ext4_fsblk_t current_block; 673 674 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 675 *blks, new_blocks, &err); 676 if (err) 677 return err; 678 679 branch[0].key = cpu_to_le32(new_blocks[0]); 680 /* 681 * metadata blocks and data blocks are allocated. 682 */ 683 for (n = 1; n <= indirect_blks; n++) { 684 /* 685 * Get buffer_head for parent block, zero it out 686 * and set the pointer to new one, then send 687 * parent to disk. 688 */ 689 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 690 branch[n].bh = bh; 691 lock_buffer(bh); 692 BUFFER_TRACE(bh, "call get_create_access"); 693 err = ext4_journal_get_create_access(handle, bh); 694 if (err) { 695 unlock_buffer(bh); 696 brelse(bh); 697 goto failed; 698 } 699 700 memset(bh->b_data, 0, blocksize); 701 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 702 branch[n].key = cpu_to_le32(new_blocks[n]); 703 *branch[n].p = branch[n].key; 704 if ( n == indirect_blks) { 705 current_block = new_blocks[n]; 706 /* 707 * End of chain, update the last new metablock of 708 * the chain to point to the new allocated 709 * data blocks numbers 710 */ 711 for (i=1; i < num; i++) 712 *(branch[n].p + i) = cpu_to_le32(++current_block); 713 } 714 BUFFER_TRACE(bh, "marking uptodate"); 715 set_buffer_uptodate(bh); 716 unlock_buffer(bh); 717 718 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 719 err = ext4_journal_dirty_metadata(handle, bh); 720 if (err) 721 goto failed; 722 } 723 *blks = num; 724 return err; 725 failed: 726 /* Allocation failed, free what we already allocated */ 727 for (i = 1; i <= n ; i++) { 728 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 729 ext4_journal_forget(handle, branch[i].bh); 730 } 731 for (i = 0; i <indirect_blks; i++) 732 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 733 734 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 735 736 return err; 737 } 738 739 /** 740 * ext4_splice_branch - splice the allocated branch onto inode. 741 * @inode: owner 742 * @block: (logical) number of block we are adding 743 * @chain: chain of indirect blocks (with a missing link - see 744 * ext4_alloc_branch) 745 * @where: location of missing link 746 * @num: number of indirect blocks we are adding 747 * @blks: number of direct blocks we are adding 748 * 749 * This function fills the missing link and does all housekeeping needed in 750 * inode (->i_blocks, etc.). In case of success we end up with the full 751 * chain to new block and return 0. 752 */ 753 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 754 ext4_lblk_t block, Indirect *where, int num, int blks) 755 { 756 int i; 757 int err = 0; 758 struct ext4_block_alloc_info *block_i; 759 ext4_fsblk_t current_block; 760 761 block_i = EXT4_I(inode)->i_block_alloc_info; 762 /* 763 * If we're splicing into a [td]indirect block (as opposed to the 764 * inode) then we need to get write access to the [td]indirect block 765 * before the splice. 766 */ 767 if (where->bh) { 768 BUFFER_TRACE(where->bh, "get_write_access"); 769 err = ext4_journal_get_write_access(handle, where->bh); 770 if (err) 771 goto err_out; 772 } 773 /* That's it */ 774 775 *where->p = where->key; 776 777 /* 778 * Update the host buffer_head or inode to point to more just allocated 779 * direct blocks blocks 780 */ 781 if (num == 0 && blks > 1) { 782 current_block = le32_to_cpu(where->key) + 1; 783 for (i = 1; i < blks; i++) 784 *(where->p + i ) = cpu_to_le32(current_block++); 785 } 786 787 /* 788 * update the most recently allocated logical & physical block 789 * in i_block_alloc_info, to assist find the proper goal block for next 790 * allocation 791 */ 792 if (block_i) { 793 block_i->last_alloc_logical_block = block + blks - 1; 794 block_i->last_alloc_physical_block = 795 le32_to_cpu(where[num].key) + blks - 1; 796 } 797 798 /* We are done with atomic stuff, now do the rest of housekeeping */ 799 800 inode->i_ctime = ext4_current_time(inode); 801 ext4_mark_inode_dirty(handle, inode); 802 803 /* had we spliced it onto indirect block? */ 804 if (where->bh) { 805 /* 806 * If we spliced it onto an indirect block, we haven't 807 * altered the inode. Note however that if it is being spliced 808 * onto an indirect block at the very end of the file (the 809 * file is growing) then we *will* alter the inode to reflect 810 * the new i_size. But that is not done here - it is done in 811 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 812 */ 813 jbd_debug(5, "splicing indirect only\n"); 814 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 815 err = ext4_journal_dirty_metadata(handle, where->bh); 816 if (err) 817 goto err_out; 818 } else { 819 /* 820 * OK, we spliced it into the inode itself on a direct block. 821 * Inode was dirtied above. 822 */ 823 jbd_debug(5, "splicing direct\n"); 824 } 825 return err; 826 827 err_out: 828 for (i = 1; i <= num; i++) { 829 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 830 ext4_journal_forget(handle, where[i].bh); 831 ext4_free_blocks(handle, inode, 832 le32_to_cpu(where[i-1].key), 1, 0); 833 } 834 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 835 836 return err; 837 } 838 839 /* 840 * Allocation strategy is simple: if we have to allocate something, we will 841 * have to go the whole way to leaf. So let's do it before attaching anything 842 * to tree, set linkage between the newborn blocks, write them if sync is 843 * required, recheck the path, free and repeat if check fails, otherwise 844 * set the last missing link (that will protect us from any truncate-generated 845 * removals - all blocks on the path are immune now) and possibly force the 846 * write on the parent block. 847 * That has a nice additional property: no special recovery from the failed 848 * allocations is needed - we simply release blocks and do not touch anything 849 * reachable from inode. 850 * 851 * `handle' can be NULL if create == 0. 852 * 853 * return > 0, # of blocks mapped or allocated. 854 * return = 0, if plain lookup failed. 855 * return < 0, error case. 856 * 857 * 858 * Need to be called with 859 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 860 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 861 */ 862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 863 ext4_lblk_t iblock, unsigned long maxblocks, 864 struct buffer_head *bh_result, 865 int create, int extend_disksize) 866 { 867 int err = -EIO; 868 ext4_lblk_t offsets[4]; 869 Indirect chain[4]; 870 Indirect *partial; 871 ext4_fsblk_t goal; 872 int indirect_blks; 873 int blocks_to_boundary = 0; 874 int depth; 875 struct ext4_inode_info *ei = EXT4_I(inode); 876 int count = 0; 877 ext4_fsblk_t first_block = 0; 878 loff_t disksize; 879 880 881 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 882 J_ASSERT(handle != NULL || create == 0); 883 depth = ext4_block_to_path(inode, iblock, offsets, 884 &blocks_to_boundary); 885 886 if (depth == 0) 887 goto out; 888 889 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 890 891 /* Simplest case - block found, no allocation needed */ 892 if (!partial) { 893 first_block = le32_to_cpu(chain[depth - 1].key); 894 clear_buffer_new(bh_result); 895 count++; 896 /*map more blocks*/ 897 while (count < maxblocks && count <= blocks_to_boundary) { 898 ext4_fsblk_t blk; 899 900 blk = le32_to_cpu(*(chain[depth-1].p + count)); 901 902 if (blk == first_block + count) 903 count++; 904 else 905 break; 906 } 907 goto got_it; 908 } 909 910 /* Next simple case - plain lookup or failed read of indirect block */ 911 if (!create || err == -EIO) 912 goto cleanup; 913 914 /* 915 * Okay, we need to do block allocation. Lazily initialize the block 916 * allocation info here if necessary 917 */ 918 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 919 ext4_init_block_alloc_info(inode); 920 921 goal = ext4_find_goal(inode, iblock, partial); 922 923 /* the number of blocks need to allocate for [d,t]indirect blocks */ 924 indirect_blks = (chain + depth) - partial - 1; 925 926 /* 927 * Next look up the indirect map to count the totoal number of 928 * direct blocks to allocate for this branch. 929 */ 930 count = ext4_blks_to_allocate(partial, indirect_blks, 931 maxblocks, blocks_to_boundary); 932 /* 933 * Block out ext4_truncate while we alter the tree 934 */ 935 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 936 &count, goal, 937 offsets + (partial - chain), partial); 938 939 /* 940 * The ext4_splice_branch call will free and forget any buffers 941 * on the new chain if there is a failure, but that risks using 942 * up transaction credits, especially for bitmaps where the 943 * credits cannot be returned. Can we handle this somehow? We 944 * may need to return -EAGAIN upwards in the worst case. --sct 945 */ 946 if (!err) 947 err = ext4_splice_branch(handle, inode, iblock, 948 partial, indirect_blks, count); 949 /* 950 * i_disksize growing is protected by i_data_sem. Don't forget to 951 * protect it if you're about to implement concurrent 952 * ext4_get_block() -bzzz 953 */ 954 if (!err && extend_disksize) { 955 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 956 if (disksize > i_size_read(inode)) 957 disksize = i_size_read(inode); 958 if (disksize > ei->i_disksize) 959 ei->i_disksize = disksize; 960 } 961 if (err) 962 goto cleanup; 963 964 set_buffer_new(bh_result); 965 got_it: 966 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 967 if (count > blocks_to_boundary) 968 set_buffer_boundary(bh_result); 969 err = count; 970 /* Clean up and exit */ 971 partial = chain + depth - 1; /* the whole chain */ 972 cleanup: 973 while (partial > chain) { 974 BUFFER_TRACE(partial->bh, "call brelse"); 975 brelse(partial->bh); 976 partial--; 977 } 978 BUFFER_TRACE(bh_result, "returned"); 979 out: 980 return err; 981 } 982 983 /* 984 * Calculate the number of metadata blocks need to reserve 985 * to allocate @blocks for non extent file based file 986 */ 987 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 988 { 989 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 990 int ind_blks, dind_blks, tind_blks; 991 992 /* number of new indirect blocks needed */ 993 ind_blks = (blocks + icap - 1) / icap; 994 995 dind_blks = (ind_blks + icap - 1) / icap; 996 997 tind_blks = 1; 998 999 return ind_blks + dind_blks + tind_blks; 1000 } 1001 1002 /* 1003 * Calculate the number of metadata blocks need to reserve 1004 * to allocate given number of blocks 1005 */ 1006 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1007 { 1008 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1009 return ext4_ext_calc_metadata_amount(inode, blocks); 1010 1011 return ext4_indirect_calc_metadata_amount(inode, blocks); 1012 } 1013 1014 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1015 { 1016 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1017 int total, mdb, mdb_free; 1018 1019 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1020 /* recalculate the number of metablocks still need to be reserved */ 1021 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1022 mdb = ext4_calc_metadata_amount(inode, total); 1023 1024 /* figure out how many metablocks to release */ 1025 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1026 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1027 1028 /* Account for allocated meta_blocks */ 1029 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1030 1031 /* update fs free blocks counter for truncate case */ 1032 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free); 1033 1034 /* update per-inode reservations */ 1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1036 EXT4_I(inode)->i_reserved_data_blocks -= used; 1037 1038 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1039 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1040 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1042 } 1043 1044 /* Maximum number of blocks we map for direct IO at once. */ 1045 #define DIO_MAX_BLOCKS 4096 1046 /* 1047 * Number of credits we need for writing DIO_MAX_BLOCKS: 1048 * We need sb + group descriptor + bitmap + inode -> 4 1049 * For B blocks with A block pointers per block we need: 1050 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 1051 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 1052 */ 1053 #define DIO_CREDITS 25 1054 1055 1056 /* 1057 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1058 * and returns if the blocks are already mapped. 1059 * 1060 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1061 * and store the allocated blocks in the result buffer head and mark it 1062 * mapped. 1063 * 1064 * If file type is extents based, it will call ext4_ext_get_blocks(), 1065 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1066 * based files 1067 * 1068 * On success, it returns the number of blocks being mapped or allocate. 1069 * if create==0 and the blocks are pre-allocated and uninitialized block, 1070 * the result buffer head is unmapped. If the create ==1, it will make sure 1071 * the buffer head is mapped. 1072 * 1073 * It returns 0 if plain look up failed (blocks have not been allocated), in 1074 * that casem, buffer head is unmapped 1075 * 1076 * It returns the error in case of allocation failure. 1077 */ 1078 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1079 unsigned long max_blocks, struct buffer_head *bh, 1080 int create, int extend_disksize, int flag) 1081 { 1082 int retval; 1083 1084 clear_buffer_mapped(bh); 1085 1086 /* 1087 * Try to see if we can get the block without requesting 1088 * for new file system block. 1089 */ 1090 down_read((&EXT4_I(inode)->i_data_sem)); 1091 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1092 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1093 bh, 0, 0); 1094 } else { 1095 retval = ext4_get_blocks_handle(handle, 1096 inode, block, max_blocks, bh, 0, 0); 1097 } 1098 up_read((&EXT4_I(inode)->i_data_sem)); 1099 1100 /* If it is only a block(s) look up */ 1101 if (!create) 1102 return retval; 1103 1104 /* 1105 * Returns if the blocks have already allocated 1106 * 1107 * Note that if blocks have been preallocated 1108 * ext4_ext_get_block() returns th create = 0 1109 * with buffer head unmapped. 1110 */ 1111 if (retval > 0 && buffer_mapped(bh)) 1112 return retval; 1113 1114 /* 1115 * New blocks allocate and/or writing to uninitialized extent 1116 * will possibly result in updating i_data, so we take 1117 * the write lock of i_data_sem, and call get_blocks() 1118 * with create == 1 flag. 1119 */ 1120 down_write((&EXT4_I(inode)->i_data_sem)); 1121 1122 /* 1123 * if the caller is from delayed allocation writeout path 1124 * we have already reserved fs blocks for allocation 1125 * let the underlying get_block() function know to 1126 * avoid double accounting 1127 */ 1128 if (flag) 1129 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1130 /* 1131 * We need to check for EXT4 here because migrate 1132 * could have changed the inode type in between 1133 */ 1134 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1135 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1136 bh, create, extend_disksize); 1137 } else { 1138 retval = ext4_get_blocks_handle(handle, inode, block, 1139 max_blocks, bh, create, extend_disksize); 1140 1141 if (retval > 0 && buffer_new(bh)) { 1142 /* 1143 * We allocated new blocks which will result in 1144 * i_data's format changing. Force the migrate 1145 * to fail by clearing migrate flags 1146 */ 1147 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1148 ~EXT4_EXT_MIGRATE; 1149 } 1150 } 1151 1152 if (flag) { 1153 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1154 /* 1155 * Update reserved blocks/metadata blocks 1156 * after successful block allocation 1157 * which were deferred till now 1158 */ 1159 if ((retval > 0) && buffer_delay(bh)) 1160 ext4_da_update_reserve_space(inode, retval); 1161 } 1162 1163 up_write((&EXT4_I(inode)->i_data_sem)); 1164 return retval; 1165 } 1166 1167 static int ext4_get_block(struct inode *inode, sector_t iblock, 1168 struct buffer_head *bh_result, int create) 1169 { 1170 handle_t *handle = ext4_journal_current_handle(); 1171 int ret = 0, started = 0; 1172 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1173 1174 if (create && !handle) { 1175 /* Direct IO write... */ 1176 if (max_blocks > DIO_MAX_BLOCKS) 1177 max_blocks = DIO_MAX_BLOCKS; 1178 handle = ext4_journal_start(inode, DIO_CREDITS + 1179 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb)); 1180 if (IS_ERR(handle)) { 1181 ret = PTR_ERR(handle); 1182 goto out; 1183 } 1184 started = 1; 1185 } 1186 1187 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1188 max_blocks, bh_result, create, 0, 0); 1189 if (ret > 0) { 1190 bh_result->b_size = (ret << inode->i_blkbits); 1191 ret = 0; 1192 } 1193 if (started) 1194 ext4_journal_stop(handle); 1195 out: 1196 return ret; 1197 } 1198 1199 /* 1200 * `handle' can be NULL if create is zero 1201 */ 1202 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1203 ext4_lblk_t block, int create, int *errp) 1204 { 1205 struct buffer_head dummy; 1206 int fatal = 0, err; 1207 1208 J_ASSERT(handle != NULL || create == 0); 1209 1210 dummy.b_state = 0; 1211 dummy.b_blocknr = -1000; 1212 buffer_trace_init(&dummy.b_history); 1213 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1214 &dummy, create, 1, 0); 1215 /* 1216 * ext4_get_blocks_handle() returns number of blocks 1217 * mapped. 0 in case of a HOLE. 1218 */ 1219 if (err > 0) { 1220 if (err > 1) 1221 WARN_ON(1); 1222 err = 0; 1223 } 1224 *errp = err; 1225 if (!err && buffer_mapped(&dummy)) { 1226 struct buffer_head *bh; 1227 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1228 if (!bh) { 1229 *errp = -EIO; 1230 goto err; 1231 } 1232 if (buffer_new(&dummy)) { 1233 J_ASSERT(create != 0); 1234 J_ASSERT(handle != NULL); 1235 1236 /* 1237 * Now that we do not always journal data, we should 1238 * keep in mind whether this should always journal the 1239 * new buffer as metadata. For now, regular file 1240 * writes use ext4_get_block instead, so it's not a 1241 * problem. 1242 */ 1243 lock_buffer(bh); 1244 BUFFER_TRACE(bh, "call get_create_access"); 1245 fatal = ext4_journal_get_create_access(handle, bh); 1246 if (!fatal && !buffer_uptodate(bh)) { 1247 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1248 set_buffer_uptodate(bh); 1249 } 1250 unlock_buffer(bh); 1251 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1252 err = ext4_journal_dirty_metadata(handle, bh); 1253 if (!fatal) 1254 fatal = err; 1255 } else { 1256 BUFFER_TRACE(bh, "not a new buffer"); 1257 } 1258 if (fatal) { 1259 *errp = fatal; 1260 brelse(bh); 1261 bh = NULL; 1262 } 1263 return bh; 1264 } 1265 err: 1266 return NULL; 1267 } 1268 1269 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1270 ext4_lblk_t block, int create, int *err) 1271 { 1272 struct buffer_head * bh; 1273 1274 bh = ext4_getblk(handle, inode, block, create, err); 1275 if (!bh) 1276 return bh; 1277 if (buffer_uptodate(bh)) 1278 return bh; 1279 ll_rw_block(READ_META, 1, &bh); 1280 wait_on_buffer(bh); 1281 if (buffer_uptodate(bh)) 1282 return bh; 1283 put_bh(bh); 1284 *err = -EIO; 1285 return NULL; 1286 } 1287 1288 static int walk_page_buffers( handle_t *handle, 1289 struct buffer_head *head, 1290 unsigned from, 1291 unsigned to, 1292 int *partial, 1293 int (*fn)( handle_t *handle, 1294 struct buffer_head *bh)) 1295 { 1296 struct buffer_head *bh; 1297 unsigned block_start, block_end; 1298 unsigned blocksize = head->b_size; 1299 int err, ret = 0; 1300 struct buffer_head *next; 1301 1302 for ( bh = head, block_start = 0; 1303 ret == 0 && (bh != head || !block_start); 1304 block_start = block_end, bh = next) 1305 { 1306 next = bh->b_this_page; 1307 block_end = block_start + blocksize; 1308 if (block_end <= from || block_start >= to) { 1309 if (partial && !buffer_uptodate(bh)) 1310 *partial = 1; 1311 continue; 1312 } 1313 err = (*fn)(handle, bh); 1314 if (!ret) 1315 ret = err; 1316 } 1317 return ret; 1318 } 1319 1320 /* 1321 * To preserve ordering, it is essential that the hole instantiation and 1322 * the data write be encapsulated in a single transaction. We cannot 1323 * close off a transaction and start a new one between the ext4_get_block() 1324 * and the commit_write(). So doing the jbd2_journal_start at the start of 1325 * prepare_write() is the right place. 1326 * 1327 * Also, this function can nest inside ext4_writepage() -> 1328 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1329 * has generated enough buffer credits to do the whole page. So we won't 1330 * block on the journal in that case, which is good, because the caller may 1331 * be PF_MEMALLOC. 1332 * 1333 * By accident, ext4 can be reentered when a transaction is open via 1334 * quota file writes. If we were to commit the transaction while thus 1335 * reentered, there can be a deadlock - we would be holding a quota 1336 * lock, and the commit would never complete if another thread had a 1337 * transaction open and was blocking on the quota lock - a ranking 1338 * violation. 1339 * 1340 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1341 * will _not_ run commit under these circumstances because handle->h_ref 1342 * is elevated. We'll still have enough credits for the tiny quotafile 1343 * write. 1344 */ 1345 static int do_journal_get_write_access(handle_t *handle, 1346 struct buffer_head *bh) 1347 { 1348 if (!buffer_mapped(bh) || buffer_freed(bh)) 1349 return 0; 1350 return ext4_journal_get_write_access(handle, bh); 1351 } 1352 1353 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1354 loff_t pos, unsigned len, unsigned flags, 1355 struct page **pagep, void **fsdata) 1356 { 1357 struct inode *inode = mapping->host; 1358 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1359 handle_t *handle; 1360 int retries = 0; 1361 struct page *page; 1362 pgoff_t index; 1363 unsigned from, to; 1364 1365 index = pos >> PAGE_CACHE_SHIFT; 1366 from = pos & (PAGE_CACHE_SIZE - 1); 1367 to = from + len; 1368 1369 retry: 1370 handle = ext4_journal_start(inode, needed_blocks); 1371 if (IS_ERR(handle)) { 1372 ret = PTR_ERR(handle); 1373 goto out; 1374 } 1375 1376 page = __grab_cache_page(mapping, index); 1377 if (!page) { 1378 ext4_journal_stop(handle); 1379 ret = -ENOMEM; 1380 goto out; 1381 } 1382 *pagep = page; 1383 1384 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1385 ext4_get_block); 1386 1387 if (!ret && ext4_should_journal_data(inode)) { 1388 ret = walk_page_buffers(handle, page_buffers(page), 1389 from, to, NULL, do_journal_get_write_access); 1390 } 1391 1392 if (ret) { 1393 unlock_page(page); 1394 ext4_journal_stop(handle); 1395 page_cache_release(page); 1396 } 1397 1398 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1399 goto retry; 1400 out: 1401 return ret; 1402 } 1403 1404 /* For write_end() in data=journal mode */ 1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1406 { 1407 if (!buffer_mapped(bh) || buffer_freed(bh)) 1408 return 0; 1409 set_buffer_uptodate(bh); 1410 return ext4_journal_dirty_metadata(handle, bh); 1411 } 1412 1413 /* 1414 * We need to pick up the new inode size which generic_commit_write gave us 1415 * `file' can be NULL - eg, when called from page_symlink(). 1416 * 1417 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1418 * buffers are managed internally. 1419 */ 1420 static int ext4_ordered_write_end(struct file *file, 1421 struct address_space *mapping, 1422 loff_t pos, unsigned len, unsigned copied, 1423 struct page *page, void *fsdata) 1424 { 1425 handle_t *handle = ext4_journal_current_handle(); 1426 struct inode *inode = mapping->host; 1427 int ret = 0, ret2; 1428 1429 ret = ext4_jbd2_file_inode(handle, inode); 1430 1431 if (ret == 0) { 1432 /* 1433 * generic_write_end() will run mark_inode_dirty() if i_size 1434 * changes. So let's piggyback the i_disksize mark_inode_dirty 1435 * into that. 1436 */ 1437 loff_t new_i_size; 1438 1439 new_i_size = pos + copied; 1440 if (new_i_size > EXT4_I(inode)->i_disksize) 1441 EXT4_I(inode)->i_disksize = new_i_size; 1442 ret2 = generic_write_end(file, mapping, pos, len, copied, 1443 page, fsdata); 1444 copied = ret2; 1445 if (ret2 < 0) 1446 ret = ret2; 1447 } 1448 ret2 = ext4_journal_stop(handle); 1449 if (!ret) 1450 ret = ret2; 1451 1452 return ret ? ret : copied; 1453 } 1454 1455 static int ext4_writeback_write_end(struct file *file, 1456 struct address_space *mapping, 1457 loff_t pos, unsigned len, unsigned copied, 1458 struct page *page, void *fsdata) 1459 { 1460 handle_t *handle = ext4_journal_current_handle(); 1461 struct inode *inode = mapping->host; 1462 int ret = 0, ret2; 1463 loff_t new_i_size; 1464 1465 new_i_size = pos + copied; 1466 if (new_i_size > EXT4_I(inode)->i_disksize) 1467 EXT4_I(inode)->i_disksize = new_i_size; 1468 1469 ret2 = generic_write_end(file, mapping, pos, len, copied, 1470 page, fsdata); 1471 copied = ret2; 1472 if (ret2 < 0) 1473 ret = ret2; 1474 1475 ret2 = ext4_journal_stop(handle); 1476 if (!ret) 1477 ret = ret2; 1478 1479 return ret ? ret : copied; 1480 } 1481 1482 static int ext4_journalled_write_end(struct file *file, 1483 struct address_space *mapping, 1484 loff_t pos, unsigned len, unsigned copied, 1485 struct page *page, void *fsdata) 1486 { 1487 handle_t *handle = ext4_journal_current_handle(); 1488 struct inode *inode = mapping->host; 1489 int ret = 0, ret2; 1490 int partial = 0; 1491 unsigned from, to; 1492 1493 from = pos & (PAGE_CACHE_SIZE - 1); 1494 to = from + len; 1495 1496 if (copied < len) { 1497 if (!PageUptodate(page)) 1498 copied = 0; 1499 page_zero_new_buffers(page, from+copied, to); 1500 } 1501 1502 ret = walk_page_buffers(handle, page_buffers(page), from, 1503 to, &partial, write_end_fn); 1504 if (!partial) 1505 SetPageUptodate(page); 1506 if (pos+copied > inode->i_size) 1507 i_size_write(inode, pos+copied); 1508 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1509 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1510 EXT4_I(inode)->i_disksize = inode->i_size; 1511 ret2 = ext4_mark_inode_dirty(handle, inode); 1512 if (!ret) 1513 ret = ret2; 1514 } 1515 1516 unlock_page(page); 1517 ret2 = ext4_journal_stop(handle); 1518 if (!ret) 1519 ret = ret2; 1520 page_cache_release(page); 1521 1522 return ret ? ret : copied; 1523 } 1524 1525 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1526 { 1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1528 unsigned long md_needed, mdblocks, total = 0; 1529 1530 /* 1531 * recalculate the amount of metadata blocks to reserve 1532 * in order to allocate nrblocks 1533 * worse case is one extent per block 1534 */ 1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1537 mdblocks = ext4_calc_metadata_amount(inode, total); 1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1539 1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1541 total = md_needed + nrblocks; 1542 1543 if (ext4_has_free_blocks(sbi, total) < total) { 1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1545 return -ENOSPC; 1546 } 1547 /* reduce fs free blocks counter */ 1548 percpu_counter_sub(&sbi->s_freeblocks_counter, total); 1549 1550 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1551 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1552 1553 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1554 return 0; /* success */ 1555 } 1556 1557 static void ext4_da_release_space(struct inode *inode, int to_free) 1558 { 1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1560 int total, mdb, mdb_free, release; 1561 1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1563 /* recalculate the number of metablocks still need to be reserved */ 1564 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1565 mdb = ext4_calc_metadata_amount(inode, total); 1566 1567 /* figure out how many metablocks to release */ 1568 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1569 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1570 1571 release = to_free + mdb_free; 1572 1573 /* update fs free blocks counter for truncate case */ 1574 percpu_counter_add(&sbi->s_freeblocks_counter, release); 1575 1576 /* update per-inode reservations */ 1577 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1578 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1579 1580 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1581 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1582 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1583 } 1584 1585 static void ext4_da_page_release_reservation(struct page *page, 1586 unsigned long offset) 1587 { 1588 int to_release = 0; 1589 struct buffer_head *head, *bh; 1590 unsigned int curr_off = 0; 1591 1592 head = page_buffers(page); 1593 bh = head; 1594 do { 1595 unsigned int next_off = curr_off + bh->b_size; 1596 1597 if ((offset <= curr_off) && (buffer_delay(bh))) { 1598 to_release++; 1599 clear_buffer_delay(bh); 1600 } 1601 curr_off = next_off; 1602 } while ((bh = bh->b_this_page) != head); 1603 ext4_da_release_space(page->mapping->host, to_release); 1604 } 1605 1606 /* 1607 * Delayed allocation stuff 1608 */ 1609 1610 struct mpage_da_data { 1611 struct inode *inode; 1612 struct buffer_head lbh; /* extent of blocks */ 1613 unsigned long first_page, next_page; /* extent of pages */ 1614 get_block_t *get_block; 1615 struct writeback_control *wbc; 1616 }; 1617 1618 /* 1619 * mpage_da_submit_io - walks through extent of pages and try to write 1620 * them with __mpage_writepage() 1621 * 1622 * @mpd->inode: inode 1623 * @mpd->first_page: first page of the extent 1624 * @mpd->next_page: page after the last page of the extent 1625 * @mpd->get_block: the filesystem's block mapper function 1626 * 1627 * By the time mpage_da_submit_io() is called we expect all blocks 1628 * to be allocated. this may be wrong if allocation failed. 1629 * 1630 * As pages are already locked by write_cache_pages(), we can't use it 1631 */ 1632 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1633 { 1634 struct address_space *mapping = mpd->inode->i_mapping; 1635 struct mpage_data mpd_pp = { 1636 .bio = NULL, 1637 .last_block_in_bio = 0, 1638 .get_block = mpd->get_block, 1639 .use_writepage = 1, 1640 }; 1641 int ret = 0, err, nr_pages, i; 1642 unsigned long index, end; 1643 struct pagevec pvec; 1644 1645 BUG_ON(mpd->next_page <= mpd->first_page); 1646 1647 pagevec_init(&pvec, 0); 1648 index = mpd->first_page; 1649 end = mpd->next_page - 1; 1650 1651 while (index <= end) { 1652 /* XXX: optimize tail */ 1653 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1654 if (nr_pages == 0) 1655 break; 1656 for (i = 0; i < nr_pages; i++) { 1657 struct page *page = pvec.pages[i]; 1658 1659 index = page->index; 1660 if (index > end) 1661 break; 1662 index++; 1663 1664 err = __mpage_writepage(page, mpd->wbc, &mpd_pp); 1665 1666 /* 1667 * In error case, we have to continue because 1668 * remaining pages are still locked 1669 * XXX: unlock and re-dirty them? 1670 */ 1671 if (ret == 0) 1672 ret = err; 1673 } 1674 pagevec_release(&pvec); 1675 } 1676 if (mpd_pp.bio) 1677 mpage_bio_submit(WRITE, mpd_pp.bio); 1678 1679 return ret; 1680 } 1681 1682 /* 1683 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1684 * 1685 * @mpd->inode - inode to walk through 1686 * @exbh->b_blocknr - first block on a disk 1687 * @exbh->b_size - amount of space in bytes 1688 * @logical - first logical block to start assignment with 1689 * 1690 * the function goes through all passed space and put actual disk 1691 * block numbers into buffer heads, dropping BH_Delay 1692 */ 1693 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1694 struct buffer_head *exbh) 1695 { 1696 struct inode *inode = mpd->inode; 1697 struct address_space *mapping = inode->i_mapping; 1698 int blocks = exbh->b_size >> inode->i_blkbits; 1699 sector_t pblock = exbh->b_blocknr, cur_logical; 1700 struct buffer_head *head, *bh; 1701 unsigned long index, end; 1702 struct pagevec pvec; 1703 int nr_pages, i; 1704 1705 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1706 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1707 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1708 1709 pagevec_init(&pvec, 0); 1710 1711 while (index <= end) { 1712 /* XXX: optimize tail */ 1713 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1714 if (nr_pages == 0) 1715 break; 1716 for (i = 0; i < nr_pages; i++) { 1717 struct page *page = pvec.pages[i]; 1718 1719 index = page->index; 1720 if (index > end) 1721 break; 1722 index++; 1723 1724 BUG_ON(!PageLocked(page)); 1725 BUG_ON(PageWriteback(page)); 1726 BUG_ON(!page_has_buffers(page)); 1727 1728 bh = page_buffers(page); 1729 head = bh; 1730 1731 /* skip blocks out of the range */ 1732 do { 1733 if (cur_logical >= logical) 1734 break; 1735 cur_logical++; 1736 } while ((bh = bh->b_this_page) != head); 1737 1738 do { 1739 if (cur_logical >= logical + blocks) 1740 break; 1741 if (buffer_delay(bh)) { 1742 bh->b_blocknr = pblock; 1743 clear_buffer_delay(bh); 1744 } else if (buffer_mapped(bh)) 1745 BUG_ON(bh->b_blocknr != pblock); 1746 1747 cur_logical++; 1748 pblock++; 1749 } while ((bh = bh->b_this_page) != head); 1750 } 1751 pagevec_release(&pvec); 1752 } 1753 } 1754 1755 1756 /* 1757 * __unmap_underlying_blocks - just a helper function to unmap 1758 * set of blocks described by @bh 1759 */ 1760 static inline void __unmap_underlying_blocks(struct inode *inode, 1761 struct buffer_head *bh) 1762 { 1763 struct block_device *bdev = inode->i_sb->s_bdev; 1764 int blocks, i; 1765 1766 blocks = bh->b_size >> inode->i_blkbits; 1767 for (i = 0; i < blocks; i++) 1768 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1769 } 1770 1771 /* 1772 * mpage_da_map_blocks - go through given space 1773 * 1774 * @mpd->lbh - bh describing space 1775 * @mpd->get_block - the filesystem's block mapper function 1776 * 1777 * The function skips space we know is already mapped to disk blocks. 1778 * 1779 * The function ignores errors ->get_block() returns, thus real 1780 * error handling is postponed to __mpage_writepage() 1781 */ 1782 static void mpage_da_map_blocks(struct mpage_da_data *mpd) 1783 { 1784 struct buffer_head *lbh = &mpd->lbh; 1785 int err = 0, remain = lbh->b_size; 1786 sector_t next = lbh->b_blocknr; 1787 struct buffer_head new; 1788 1789 /* 1790 * We consider only non-mapped and non-allocated blocks 1791 */ 1792 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1793 return; 1794 1795 while (remain) { 1796 new.b_state = lbh->b_state; 1797 new.b_blocknr = 0; 1798 new.b_size = remain; 1799 err = mpd->get_block(mpd->inode, next, &new, 1); 1800 if (err) { 1801 /* 1802 * Rather than implement own error handling 1803 * here, we just leave remaining blocks 1804 * unallocated and try again with ->writepage() 1805 */ 1806 break; 1807 } 1808 BUG_ON(new.b_size == 0); 1809 1810 if (buffer_new(&new)) 1811 __unmap_underlying_blocks(mpd->inode, &new); 1812 1813 /* 1814 * If blocks are delayed marked, we need to 1815 * put actual blocknr and drop delayed bit 1816 */ 1817 if (buffer_delay(lbh)) 1818 mpage_put_bnr_to_bhs(mpd, next, &new); 1819 1820 /* go for the remaining blocks */ 1821 next += new.b_size >> mpd->inode->i_blkbits; 1822 remain -= new.b_size; 1823 } 1824 } 1825 1826 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay)) 1827 1828 /* 1829 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1830 * 1831 * @mpd->lbh - extent of blocks 1832 * @logical - logical number of the block in the file 1833 * @bh - bh of the block (used to access block's state) 1834 * 1835 * the function is used to collect contig. blocks in same state 1836 */ 1837 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1838 sector_t logical, struct buffer_head *bh) 1839 { 1840 struct buffer_head *lbh = &mpd->lbh; 1841 sector_t next; 1842 1843 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits); 1844 1845 /* 1846 * First block in the extent 1847 */ 1848 if (lbh->b_size == 0) { 1849 lbh->b_blocknr = logical; 1850 lbh->b_size = bh->b_size; 1851 lbh->b_state = bh->b_state & BH_FLAGS; 1852 return; 1853 } 1854 1855 /* 1856 * Can we merge the block to our big extent? 1857 */ 1858 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1859 lbh->b_size += bh->b_size; 1860 return; 1861 } 1862 1863 /* 1864 * We couldn't merge the block to our extent, so we 1865 * need to flush current extent and start new one 1866 */ 1867 mpage_da_map_blocks(mpd); 1868 1869 /* 1870 * Now start a new extent 1871 */ 1872 lbh->b_size = bh->b_size; 1873 lbh->b_state = bh->b_state & BH_FLAGS; 1874 lbh->b_blocknr = logical; 1875 } 1876 1877 /* 1878 * __mpage_da_writepage - finds extent of pages and blocks 1879 * 1880 * @page: page to consider 1881 * @wbc: not used, we just follow rules 1882 * @data: context 1883 * 1884 * The function finds extents of pages and scan them for all blocks. 1885 */ 1886 static int __mpage_da_writepage(struct page *page, 1887 struct writeback_control *wbc, void *data) 1888 { 1889 struct mpage_da_data *mpd = data; 1890 struct inode *inode = mpd->inode; 1891 struct buffer_head *bh, *head, fake; 1892 sector_t logical; 1893 1894 /* 1895 * Can we merge this page to current extent? 1896 */ 1897 if (mpd->next_page != page->index) { 1898 /* 1899 * Nope, we can't. So, we map non-allocated blocks 1900 * and start IO on them using __mpage_writepage() 1901 */ 1902 if (mpd->next_page != mpd->first_page) { 1903 mpage_da_map_blocks(mpd); 1904 mpage_da_submit_io(mpd); 1905 } 1906 1907 /* 1908 * Start next extent of pages ... 1909 */ 1910 mpd->first_page = page->index; 1911 1912 /* 1913 * ... and blocks 1914 */ 1915 mpd->lbh.b_size = 0; 1916 mpd->lbh.b_state = 0; 1917 mpd->lbh.b_blocknr = 0; 1918 } 1919 1920 mpd->next_page = page->index + 1; 1921 logical = (sector_t) page->index << 1922 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1923 1924 if (!page_has_buffers(page)) { 1925 /* 1926 * There is no attached buffer heads yet (mmap?) 1927 * we treat the page asfull of dirty blocks 1928 */ 1929 bh = &fake; 1930 bh->b_size = PAGE_CACHE_SIZE; 1931 bh->b_state = 0; 1932 set_buffer_dirty(bh); 1933 set_buffer_uptodate(bh); 1934 mpage_add_bh_to_extent(mpd, logical, bh); 1935 } else { 1936 /* 1937 * Page with regular buffer heads, just add all dirty ones 1938 */ 1939 head = page_buffers(page); 1940 bh = head; 1941 do { 1942 BUG_ON(buffer_locked(bh)); 1943 if (buffer_dirty(bh)) 1944 mpage_add_bh_to_extent(mpd, logical, bh); 1945 logical++; 1946 } while ((bh = bh->b_this_page) != head); 1947 } 1948 1949 return 0; 1950 } 1951 1952 /* 1953 * mpage_da_writepages - walk the list of dirty pages of the given 1954 * address space, allocates non-allocated blocks, maps newly-allocated 1955 * blocks to existing bhs and issue IO them 1956 * 1957 * @mapping: address space structure to write 1958 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1959 * @get_block: the filesystem's block mapper function. 1960 * 1961 * This is a library function, which implements the writepages() 1962 * address_space_operation. 1963 * 1964 * In order to avoid duplication of logic that deals with partial pages, 1965 * multiple bio per page, etc, we find non-allocated blocks, allocate 1966 * them with minimal calls to ->get_block() and re-use __mpage_writepage() 1967 * 1968 * It's important that we call __mpage_writepage() only once for each 1969 * involved page, otherwise we'd have to implement more complicated logic 1970 * to deal with pages w/o PG_lock or w/ PG_writeback and so on. 1971 * 1972 * See comments to mpage_writepages() 1973 */ 1974 static int mpage_da_writepages(struct address_space *mapping, 1975 struct writeback_control *wbc, 1976 get_block_t get_block) 1977 { 1978 struct mpage_da_data mpd; 1979 int ret; 1980 1981 if (!get_block) 1982 return generic_writepages(mapping, wbc); 1983 1984 mpd.wbc = wbc; 1985 mpd.inode = mapping->host; 1986 mpd.lbh.b_size = 0; 1987 mpd.lbh.b_state = 0; 1988 mpd.lbh.b_blocknr = 0; 1989 mpd.first_page = 0; 1990 mpd.next_page = 0; 1991 mpd.get_block = get_block; 1992 1993 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd); 1994 1995 /* 1996 * Handle last extent of pages 1997 */ 1998 if (mpd.next_page != mpd.first_page) { 1999 mpage_da_map_blocks(&mpd); 2000 mpage_da_submit_io(&mpd); 2001 } 2002 2003 return ret; 2004 } 2005 2006 /* 2007 * this is a special callback for ->write_begin() only 2008 * it's intention is to return mapped block or reserve space 2009 */ 2010 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2011 struct buffer_head *bh_result, int create) 2012 { 2013 int ret = 0; 2014 2015 BUG_ON(create == 0); 2016 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2017 2018 /* 2019 * first, we need to know whether the block is allocated already 2020 * preallocated blocks are unmapped but should treated 2021 * the same as allocated blocks. 2022 */ 2023 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2024 if ((ret == 0) && !buffer_delay(bh_result)) { 2025 /* the block isn't (pre)allocated yet, let's reserve space */ 2026 /* 2027 * XXX: __block_prepare_write() unmaps passed block, 2028 * is it OK? 2029 */ 2030 ret = ext4_da_reserve_space(inode, 1); 2031 if (ret) 2032 /* not enough space to reserve */ 2033 return ret; 2034 2035 map_bh(bh_result, inode->i_sb, 0); 2036 set_buffer_new(bh_result); 2037 set_buffer_delay(bh_result); 2038 } else if (ret > 0) { 2039 bh_result->b_size = (ret << inode->i_blkbits); 2040 ret = 0; 2041 } 2042 2043 return ret; 2044 } 2045 #define EXT4_DELALLOC_RSVED 1 2046 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2047 struct buffer_head *bh_result, int create) 2048 { 2049 int ret; 2050 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2051 loff_t disksize = EXT4_I(inode)->i_disksize; 2052 handle_t *handle = NULL; 2053 2054 handle = ext4_journal_current_handle(); 2055 if (!handle) { 2056 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2057 bh_result, 0, 0, 0); 2058 BUG_ON(!ret); 2059 } else { 2060 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2061 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2062 } 2063 2064 if (ret > 0) { 2065 bh_result->b_size = (ret << inode->i_blkbits); 2066 2067 /* 2068 * Update on-disk size along with block allocation 2069 * we don't use 'extend_disksize' as size may change 2070 * within already allocated block -bzzz 2071 */ 2072 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2073 if (disksize > i_size_read(inode)) 2074 disksize = i_size_read(inode); 2075 if (disksize > EXT4_I(inode)->i_disksize) { 2076 /* 2077 * XXX: replace with spinlock if seen contended -bzzz 2078 */ 2079 down_write(&EXT4_I(inode)->i_data_sem); 2080 if (disksize > EXT4_I(inode)->i_disksize) 2081 EXT4_I(inode)->i_disksize = disksize; 2082 up_write(&EXT4_I(inode)->i_data_sem); 2083 2084 if (EXT4_I(inode)->i_disksize == disksize) { 2085 ret = ext4_mark_inode_dirty(handle, inode); 2086 return ret; 2087 } 2088 } 2089 ret = 0; 2090 } 2091 return ret; 2092 } 2093 2094 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2095 { 2096 /* 2097 * unmapped buffer is possible for holes. 2098 * delay buffer is possible with delayed allocation 2099 */ 2100 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2101 } 2102 2103 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2104 struct buffer_head *bh_result, int create) 2105 { 2106 int ret = 0; 2107 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2108 2109 /* 2110 * we don't want to do block allocation in writepage 2111 * so call get_block_wrap with create = 0 2112 */ 2113 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2114 bh_result, 0, 0, 0); 2115 if (ret > 0) { 2116 bh_result->b_size = (ret << inode->i_blkbits); 2117 ret = 0; 2118 } 2119 return ret; 2120 } 2121 2122 /* 2123 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2124 * get called via journal_submit_inode_data_buffers (no journal handle) 2125 * get called via shrink_page_list via pdflush (no journal handle) 2126 * or grab_page_cache when doing write_begin (have journal handle) 2127 */ 2128 static int ext4_da_writepage(struct page *page, 2129 struct writeback_control *wbc) 2130 { 2131 int ret = 0; 2132 loff_t size; 2133 unsigned long len; 2134 struct buffer_head *page_bufs; 2135 struct inode *inode = page->mapping->host; 2136 2137 size = i_size_read(inode); 2138 if (page->index == size >> PAGE_CACHE_SHIFT) 2139 len = size & ~PAGE_CACHE_MASK; 2140 else 2141 len = PAGE_CACHE_SIZE; 2142 2143 if (page_has_buffers(page)) { 2144 page_bufs = page_buffers(page); 2145 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2146 ext4_bh_unmapped_or_delay)) { 2147 /* 2148 * We don't want to do block allocation 2149 * So redirty the page and return 2150 * We may reach here when we do a journal commit 2151 * via journal_submit_inode_data_buffers. 2152 * If we don't have mapping block we just ignore 2153 * them. We can also reach here via shrink_page_list 2154 */ 2155 redirty_page_for_writepage(wbc, page); 2156 unlock_page(page); 2157 return 0; 2158 } 2159 } else { 2160 /* 2161 * The test for page_has_buffers() is subtle: 2162 * We know the page is dirty but it lost buffers. That means 2163 * that at some moment in time after write_begin()/write_end() 2164 * has been called all buffers have been clean and thus they 2165 * must have been written at least once. So they are all 2166 * mapped and we can happily proceed with mapping them 2167 * and writing the page. 2168 * 2169 * Try to initialize the buffer_heads and check whether 2170 * all are mapped and non delay. We don't want to 2171 * do block allocation here. 2172 */ 2173 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2174 ext4_normal_get_block_write); 2175 if (!ret) { 2176 page_bufs = page_buffers(page); 2177 /* check whether all are mapped and non delay */ 2178 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2179 ext4_bh_unmapped_or_delay)) { 2180 redirty_page_for_writepage(wbc, page); 2181 unlock_page(page); 2182 return 0; 2183 } 2184 } else { 2185 /* 2186 * We can't do block allocation here 2187 * so just redity the page and unlock 2188 * and return 2189 */ 2190 redirty_page_for_writepage(wbc, page); 2191 unlock_page(page); 2192 return 0; 2193 } 2194 } 2195 2196 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2197 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2198 else 2199 ret = block_write_full_page(page, 2200 ext4_normal_get_block_write, 2201 wbc); 2202 2203 return ret; 2204 } 2205 2206 /* 2207 * For now just follow the DIO way to estimate the max credits 2208 * needed to write out EXT4_MAX_WRITEBACK_PAGES. 2209 * todo: need to calculate the max credits need for 2210 * extent based files, currently the DIO credits is based on 2211 * indirect-blocks mapping way. 2212 * 2213 * Probably should have a generic way to calculate credits 2214 * for DIO, writepages, and truncate 2215 */ 2216 #define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS 2217 #define EXT4_MAX_WRITEBACK_CREDITS DIO_CREDITS 2218 2219 static int ext4_da_writepages(struct address_space *mapping, 2220 struct writeback_control *wbc) 2221 { 2222 struct inode *inode = mapping->host; 2223 handle_t *handle = NULL; 2224 int needed_blocks; 2225 int ret = 0; 2226 long to_write; 2227 loff_t range_start = 0; 2228 2229 /* 2230 * No pages to write? This is mainly a kludge to avoid starting 2231 * a transaction for special inodes like journal inode on last iput() 2232 * because that could violate lock ordering on umount 2233 */ 2234 if (!mapping->nrpages) 2235 return 0; 2236 2237 /* 2238 * Estimate the worse case needed credits to write out 2239 * EXT4_MAX_BUF_BLOCKS pages 2240 */ 2241 needed_blocks = EXT4_MAX_WRITEBACK_CREDITS; 2242 2243 to_write = wbc->nr_to_write; 2244 if (!wbc->range_cyclic) { 2245 /* 2246 * If range_cyclic is not set force range_cont 2247 * and save the old writeback_index 2248 */ 2249 wbc->range_cont = 1; 2250 range_start = wbc->range_start; 2251 } 2252 2253 while (!ret && to_write) { 2254 /* start a new transaction*/ 2255 handle = ext4_journal_start(inode, needed_blocks); 2256 if (IS_ERR(handle)) { 2257 ret = PTR_ERR(handle); 2258 goto out_writepages; 2259 } 2260 if (ext4_should_order_data(inode)) { 2261 /* 2262 * With ordered mode we need to add 2263 * the inode to the journal handle 2264 * when we do block allocation. 2265 */ 2266 ret = ext4_jbd2_file_inode(handle, inode); 2267 if (ret) { 2268 ext4_journal_stop(handle); 2269 goto out_writepages; 2270 } 2271 2272 } 2273 /* 2274 * set the max dirty pages could be write at a time 2275 * to fit into the reserved transaction credits 2276 */ 2277 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES) 2278 wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES; 2279 2280 to_write -= wbc->nr_to_write; 2281 ret = mpage_da_writepages(mapping, wbc, 2282 ext4_da_get_block_write); 2283 ext4_journal_stop(handle); 2284 if (wbc->nr_to_write) { 2285 /* 2286 * There is no more writeout needed 2287 * or we requested for a noblocking writeout 2288 * and we found the device congested 2289 */ 2290 to_write += wbc->nr_to_write; 2291 break; 2292 } 2293 wbc->nr_to_write = to_write; 2294 } 2295 2296 out_writepages: 2297 wbc->nr_to_write = to_write; 2298 if (range_start) 2299 wbc->range_start = range_start; 2300 return ret; 2301 } 2302 2303 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2304 loff_t pos, unsigned len, unsigned flags, 2305 struct page **pagep, void **fsdata) 2306 { 2307 int ret, retries = 0; 2308 struct page *page; 2309 pgoff_t index; 2310 unsigned from, to; 2311 struct inode *inode = mapping->host; 2312 handle_t *handle; 2313 2314 index = pos >> PAGE_CACHE_SHIFT; 2315 from = pos & (PAGE_CACHE_SIZE - 1); 2316 to = from + len; 2317 2318 retry: 2319 /* 2320 * With delayed allocation, we don't log the i_disksize update 2321 * if there is delayed block allocation. But we still need 2322 * to journalling the i_disksize update if writes to the end 2323 * of file which has an already mapped buffer. 2324 */ 2325 handle = ext4_journal_start(inode, 1); 2326 if (IS_ERR(handle)) { 2327 ret = PTR_ERR(handle); 2328 goto out; 2329 } 2330 2331 page = __grab_cache_page(mapping, index); 2332 if (!page) { 2333 ext4_journal_stop(handle); 2334 ret = -ENOMEM; 2335 goto out; 2336 } 2337 *pagep = page; 2338 2339 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2340 ext4_da_get_block_prep); 2341 if (ret < 0) { 2342 unlock_page(page); 2343 ext4_journal_stop(handle); 2344 page_cache_release(page); 2345 } 2346 2347 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2348 goto retry; 2349 out: 2350 return ret; 2351 } 2352 2353 /* 2354 * Check if we should update i_disksize 2355 * when write to the end of file but not require block allocation 2356 */ 2357 static int ext4_da_should_update_i_disksize(struct page *page, 2358 unsigned long offset) 2359 { 2360 struct buffer_head *bh; 2361 struct inode *inode = page->mapping->host; 2362 unsigned int idx; 2363 int i; 2364 2365 bh = page_buffers(page); 2366 idx = offset >> inode->i_blkbits; 2367 2368 for (i=0; i < idx; i++) 2369 bh = bh->b_this_page; 2370 2371 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2372 return 0; 2373 return 1; 2374 } 2375 2376 static int ext4_da_write_end(struct file *file, 2377 struct address_space *mapping, 2378 loff_t pos, unsigned len, unsigned copied, 2379 struct page *page, void *fsdata) 2380 { 2381 struct inode *inode = mapping->host; 2382 int ret = 0, ret2; 2383 handle_t *handle = ext4_journal_current_handle(); 2384 loff_t new_i_size; 2385 unsigned long start, end; 2386 2387 start = pos & (PAGE_CACHE_SIZE - 1); 2388 end = start + copied -1; 2389 2390 /* 2391 * generic_write_end() will run mark_inode_dirty() if i_size 2392 * changes. So let's piggyback the i_disksize mark_inode_dirty 2393 * into that. 2394 */ 2395 2396 new_i_size = pos + copied; 2397 if (new_i_size > EXT4_I(inode)->i_disksize) { 2398 if (ext4_da_should_update_i_disksize(page, end)) { 2399 down_write(&EXT4_I(inode)->i_data_sem); 2400 if (new_i_size > EXT4_I(inode)->i_disksize) { 2401 /* 2402 * Updating i_disksize when extending file 2403 * without needing block allocation 2404 */ 2405 if (ext4_should_order_data(inode)) 2406 ret = ext4_jbd2_file_inode(handle, 2407 inode); 2408 2409 EXT4_I(inode)->i_disksize = new_i_size; 2410 } 2411 up_write(&EXT4_I(inode)->i_data_sem); 2412 } 2413 } 2414 ret2 = generic_write_end(file, mapping, pos, len, copied, 2415 page, fsdata); 2416 copied = ret2; 2417 if (ret2 < 0) 2418 ret = ret2; 2419 ret2 = ext4_journal_stop(handle); 2420 if (!ret) 2421 ret = ret2; 2422 2423 return ret ? ret : copied; 2424 } 2425 2426 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2427 { 2428 /* 2429 * Drop reserved blocks 2430 */ 2431 BUG_ON(!PageLocked(page)); 2432 if (!page_has_buffers(page)) 2433 goto out; 2434 2435 ext4_da_page_release_reservation(page, offset); 2436 2437 out: 2438 ext4_invalidatepage(page, offset); 2439 2440 return; 2441 } 2442 2443 2444 /* 2445 * bmap() is special. It gets used by applications such as lilo and by 2446 * the swapper to find the on-disk block of a specific piece of data. 2447 * 2448 * Naturally, this is dangerous if the block concerned is still in the 2449 * journal. If somebody makes a swapfile on an ext4 data-journaling 2450 * filesystem and enables swap, then they may get a nasty shock when the 2451 * data getting swapped to that swapfile suddenly gets overwritten by 2452 * the original zero's written out previously to the journal and 2453 * awaiting writeback in the kernel's buffer cache. 2454 * 2455 * So, if we see any bmap calls here on a modified, data-journaled file, 2456 * take extra steps to flush any blocks which might be in the cache. 2457 */ 2458 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2459 { 2460 struct inode *inode = mapping->host; 2461 journal_t *journal; 2462 int err; 2463 2464 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2465 test_opt(inode->i_sb, DELALLOC)) { 2466 /* 2467 * With delalloc we want to sync the file 2468 * so that we can make sure we allocate 2469 * blocks for file 2470 */ 2471 filemap_write_and_wait(mapping); 2472 } 2473 2474 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2475 /* 2476 * This is a REALLY heavyweight approach, but the use of 2477 * bmap on dirty files is expected to be extremely rare: 2478 * only if we run lilo or swapon on a freshly made file 2479 * do we expect this to happen. 2480 * 2481 * (bmap requires CAP_SYS_RAWIO so this does not 2482 * represent an unprivileged user DOS attack --- we'd be 2483 * in trouble if mortal users could trigger this path at 2484 * will.) 2485 * 2486 * NB. EXT4_STATE_JDATA is not set on files other than 2487 * regular files. If somebody wants to bmap a directory 2488 * or symlink and gets confused because the buffer 2489 * hasn't yet been flushed to disk, they deserve 2490 * everything they get. 2491 */ 2492 2493 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2494 journal = EXT4_JOURNAL(inode); 2495 jbd2_journal_lock_updates(journal); 2496 err = jbd2_journal_flush(journal); 2497 jbd2_journal_unlock_updates(journal); 2498 2499 if (err) 2500 return 0; 2501 } 2502 2503 return generic_block_bmap(mapping,block,ext4_get_block); 2504 } 2505 2506 static int bget_one(handle_t *handle, struct buffer_head *bh) 2507 { 2508 get_bh(bh); 2509 return 0; 2510 } 2511 2512 static int bput_one(handle_t *handle, struct buffer_head *bh) 2513 { 2514 put_bh(bh); 2515 return 0; 2516 } 2517 2518 /* 2519 * Note that we don't need to start a transaction unless we're journaling data 2520 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2521 * need to file the inode to the transaction's list in ordered mode because if 2522 * we are writing back data added by write(), the inode is already there and if 2523 * we are writing back data modified via mmap(), noone guarantees in which 2524 * transaction the data will hit the disk. In case we are journaling data, we 2525 * cannot start transaction directly because transaction start ranks above page 2526 * lock so we have to do some magic. 2527 * 2528 * In all journaling modes block_write_full_page() will start the I/O. 2529 * 2530 * Problem: 2531 * 2532 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2533 * ext4_writepage() 2534 * 2535 * Similar for: 2536 * 2537 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2538 * 2539 * Same applies to ext4_get_block(). We will deadlock on various things like 2540 * lock_journal and i_data_sem 2541 * 2542 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2543 * allocations fail. 2544 * 2545 * 16May01: If we're reentered then journal_current_handle() will be 2546 * non-zero. We simply *return*. 2547 * 2548 * 1 July 2001: @@@ FIXME: 2549 * In journalled data mode, a data buffer may be metadata against the 2550 * current transaction. But the same file is part of a shared mapping 2551 * and someone does a writepage() on it. 2552 * 2553 * We will move the buffer onto the async_data list, but *after* it has 2554 * been dirtied. So there's a small window where we have dirty data on 2555 * BJ_Metadata. 2556 * 2557 * Note that this only applies to the last partial page in the file. The 2558 * bit which block_write_full_page() uses prepare/commit for. (That's 2559 * broken code anyway: it's wrong for msync()). 2560 * 2561 * It's a rare case: affects the final partial page, for journalled data 2562 * where the file is subject to bith write() and writepage() in the same 2563 * transction. To fix it we'll need a custom block_write_full_page(). 2564 * We'll probably need that anyway for journalling writepage() output. 2565 * 2566 * We don't honour synchronous mounts for writepage(). That would be 2567 * disastrous. Any write() or metadata operation will sync the fs for 2568 * us. 2569 * 2570 */ 2571 static int __ext4_normal_writepage(struct page *page, 2572 struct writeback_control *wbc) 2573 { 2574 struct inode *inode = page->mapping->host; 2575 2576 if (test_opt(inode->i_sb, NOBH)) 2577 return nobh_writepage(page, 2578 ext4_normal_get_block_write, wbc); 2579 else 2580 return block_write_full_page(page, 2581 ext4_normal_get_block_write, 2582 wbc); 2583 } 2584 2585 static int ext4_normal_writepage(struct page *page, 2586 struct writeback_control *wbc) 2587 { 2588 struct inode *inode = page->mapping->host; 2589 loff_t size = i_size_read(inode); 2590 loff_t len; 2591 2592 J_ASSERT(PageLocked(page)); 2593 if (page->index == size >> PAGE_CACHE_SHIFT) 2594 len = size & ~PAGE_CACHE_MASK; 2595 else 2596 len = PAGE_CACHE_SIZE; 2597 2598 if (page_has_buffers(page)) { 2599 /* if page has buffers it should all be mapped 2600 * and allocated. If there are not buffers attached 2601 * to the page we know the page is dirty but it lost 2602 * buffers. That means that at some moment in time 2603 * after write_begin() / write_end() has been called 2604 * all buffers have been clean and thus they must have been 2605 * written at least once. So they are all mapped and we can 2606 * happily proceed with mapping them and writing the page. 2607 */ 2608 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2609 ext4_bh_unmapped_or_delay)); 2610 } 2611 2612 if (!ext4_journal_current_handle()) 2613 return __ext4_normal_writepage(page, wbc); 2614 2615 redirty_page_for_writepage(wbc, page); 2616 unlock_page(page); 2617 return 0; 2618 } 2619 2620 static int __ext4_journalled_writepage(struct page *page, 2621 struct writeback_control *wbc) 2622 { 2623 struct address_space *mapping = page->mapping; 2624 struct inode *inode = mapping->host; 2625 struct buffer_head *page_bufs; 2626 handle_t *handle = NULL; 2627 int ret = 0; 2628 int err; 2629 2630 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2631 ext4_normal_get_block_write); 2632 if (ret != 0) 2633 goto out_unlock; 2634 2635 page_bufs = page_buffers(page); 2636 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2637 bget_one); 2638 /* As soon as we unlock the page, it can go away, but we have 2639 * references to buffers so we are safe */ 2640 unlock_page(page); 2641 2642 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2643 if (IS_ERR(handle)) { 2644 ret = PTR_ERR(handle); 2645 goto out; 2646 } 2647 2648 ret = walk_page_buffers(handle, page_bufs, 0, 2649 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2650 2651 err = walk_page_buffers(handle, page_bufs, 0, 2652 PAGE_CACHE_SIZE, NULL, write_end_fn); 2653 if (ret == 0) 2654 ret = err; 2655 err = ext4_journal_stop(handle); 2656 if (!ret) 2657 ret = err; 2658 2659 walk_page_buffers(handle, page_bufs, 0, 2660 PAGE_CACHE_SIZE, NULL, bput_one); 2661 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2662 goto out; 2663 2664 out_unlock: 2665 unlock_page(page); 2666 out: 2667 return ret; 2668 } 2669 2670 static int ext4_journalled_writepage(struct page *page, 2671 struct writeback_control *wbc) 2672 { 2673 struct inode *inode = page->mapping->host; 2674 loff_t size = i_size_read(inode); 2675 loff_t len; 2676 2677 J_ASSERT(PageLocked(page)); 2678 if (page->index == size >> PAGE_CACHE_SHIFT) 2679 len = size & ~PAGE_CACHE_MASK; 2680 else 2681 len = PAGE_CACHE_SIZE; 2682 2683 if (page_has_buffers(page)) { 2684 /* if page has buffers it should all be mapped 2685 * and allocated. If there are not buffers attached 2686 * to the page we know the page is dirty but it lost 2687 * buffers. That means that at some moment in time 2688 * after write_begin() / write_end() has been called 2689 * all buffers have been clean and thus they must have been 2690 * written at least once. So they are all mapped and we can 2691 * happily proceed with mapping them and writing the page. 2692 */ 2693 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2694 ext4_bh_unmapped_or_delay)); 2695 } 2696 2697 if (ext4_journal_current_handle()) 2698 goto no_write; 2699 2700 if (PageChecked(page)) { 2701 /* 2702 * It's mmapped pagecache. Add buffers and journal it. There 2703 * doesn't seem much point in redirtying the page here. 2704 */ 2705 ClearPageChecked(page); 2706 return __ext4_journalled_writepage(page, wbc); 2707 } else { 2708 /* 2709 * It may be a page full of checkpoint-mode buffers. We don't 2710 * really know unless we go poke around in the buffer_heads. 2711 * But block_write_full_page will do the right thing. 2712 */ 2713 return block_write_full_page(page, 2714 ext4_normal_get_block_write, 2715 wbc); 2716 } 2717 no_write: 2718 redirty_page_for_writepage(wbc, page); 2719 unlock_page(page); 2720 return 0; 2721 } 2722 2723 static int ext4_readpage(struct file *file, struct page *page) 2724 { 2725 return mpage_readpage(page, ext4_get_block); 2726 } 2727 2728 static int 2729 ext4_readpages(struct file *file, struct address_space *mapping, 2730 struct list_head *pages, unsigned nr_pages) 2731 { 2732 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2733 } 2734 2735 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2736 { 2737 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2738 2739 /* 2740 * If it's a full truncate we just forget about the pending dirtying 2741 */ 2742 if (offset == 0) 2743 ClearPageChecked(page); 2744 2745 jbd2_journal_invalidatepage(journal, page, offset); 2746 } 2747 2748 static int ext4_releasepage(struct page *page, gfp_t wait) 2749 { 2750 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2751 2752 WARN_ON(PageChecked(page)); 2753 if (!page_has_buffers(page)) 2754 return 0; 2755 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2756 } 2757 2758 /* 2759 * If the O_DIRECT write will extend the file then add this inode to the 2760 * orphan list. So recovery will truncate it back to the original size 2761 * if the machine crashes during the write. 2762 * 2763 * If the O_DIRECT write is intantiating holes inside i_size and the machine 2764 * crashes then stale disk data _may_ be exposed inside the file. But current 2765 * VFS code falls back into buffered path in that case so we are safe. 2766 */ 2767 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2768 const struct iovec *iov, loff_t offset, 2769 unsigned long nr_segs) 2770 { 2771 struct file *file = iocb->ki_filp; 2772 struct inode *inode = file->f_mapping->host; 2773 struct ext4_inode_info *ei = EXT4_I(inode); 2774 handle_t *handle; 2775 ssize_t ret; 2776 int orphan = 0; 2777 size_t count = iov_length(iov, nr_segs); 2778 2779 if (rw == WRITE) { 2780 loff_t final_size = offset + count; 2781 2782 if (final_size > inode->i_size) { 2783 /* Credits for sb + inode write */ 2784 handle = ext4_journal_start(inode, 2); 2785 if (IS_ERR(handle)) { 2786 ret = PTR_ERR(handle); 2787 goto out; 2788 } 2789 ret = ext4_orphan_add(handle, inode); 2790 if (ret) { 2791 ext4_journal_stop(handle); 2792 goto out; 2793 } 2794 orphan = 1; 2795 ei->i_disksize = inode->i_size; 2796 ext4_journal_stop(handle); 2797 } 2798 } 2799 2800 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2801 offset, nr_segs, 2802 ext4_get_block, NULL); 2803 2804 if (orphan) { 2805 int err; 2806 2807 /* Credits for sb + inode write */ 2808 handle = ext4_journal_start(inode, 2); 2809 if (IS_ERR(handle)) { 2810 /* This is really bad luck. We've written the data 2811 * but cannot extend i_size. Bail out and pretend 2812 * the write failed... */ 2813 ret = PTR_ERR(handle); 2814 goto out; 2815 } 2816 if (inode->i_nlink) 2817 ext4_orphan_del(handle, inode); 2818 if (ret > 0) { 2819 loff_t end = offset + ret; 2820 if (end > inode->i_size) { 2821 ei->i_disksize = end; 2822 i_size_write(inode, end); 2823 /* 2824 * We're going to return a positive `ret' 2825 * here due to non-zero-length I/O, so there's 2826 * no way of reporting error returns from 2827 * ext4_mark_inode_dirty() to userspace. So 2828 * ignore it. 2829 */ 2830 ext4_mark_inode_dirty(handle, inode); 2831 } 2832 } 2833 err = ext4_journal_stop(handle); 2834 if (ret == 0) 2835 ret = err; 2836 } 2837 out: 2838 return ret; 2839 } 2840 2841 /* 2842 * Pages can be marked dirty completely asynchronously from ext4's journalling 2843 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 2844 * much here because ->set_page_dirty is called under VFS locks. The page is 2845 * not necessarily locked. 2846 * 2847 * We cannot just dirty the page and leave attached buffers clean, because the 2848 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 2849 * or jbddirty because all the journalling code will explode. 2850 * 2851 * So what we do is to mark the page "pending dirty" and next time writepage 2852 * is called, propagate that into the buffers appropriately. 2853 */ 2854 static int ext4_journalled_set_page_dirty(struct page *page) 2855 { 2856 SetPageChecked(page); 2857 return __set_page_dirty_nobuffers(page); 2858 } 2859 2860 static const struct address_space_operations ext4_ordered_aops = { 2861 .readpage = ext4_readpage, 2862 .readpages = ext4_readpages, 2863 .writepage = ext4_normal_writepage, 2864 .sync_page = block_sync_page, 2865 .write_begin = ext4_write_begin, 2866 .write_end = ext4_ordered_write_end, 2867 .bmap = ext4_bmap, 2868 .invalidatepage = ext4_invalidatepage, 2869 .releasepage = ext4_releasepage, 2870 .direct_IO = ext4_direct_IO, 2871 .migratepage = buffer_migrate_page, 2872 .is_partially_uptodate = block_is_partially_uptodate, 2873 }; 2874 2875 static const struct address_space_operations ext4_writeback_aops = { 2876 .readpage = ext4_readpage, 2877 .readpages = ext4_readpages, 2878 .writepage = ext4_normal_writepage, 2879 .sync_page = block_sync_page, 2880 .write_begin = ext4_write_begin, 2881 .write_end = ext4_writeback_write_end, 2882 .bmap = ext4_bmap, 2883 .invalidatepage = ext4_invalidatepage, 2884 .releasepage = ext4_releasepage, 2885 .direct_IO = ext4_direct_IO, 2886 .migratepage = buffer_migrate_page, 2887 .is_partially_uptodate = block_is_partially_uptodate, 2888 }; 2889 2890 static const struct address_space_operations ext4_journalled_aops = { 2891 .readpage = ext4_readpage, 2892 .readpages = ext4_readpages, 2893 .writepage = ext4_journalled_writepage, 2894 .sync_page = block_sync_page, 2895 .write_begin = ext4_write_begin, 2896 .write_end = ext4_journalled_write_end, 2897 .set_page_dirty = ext4_journalled_set_page_dirty, 2898 .bmap = ext4_bmap, 2899 .invalidatepage = ext4_invalidatepage, 2900 .releasepage = ext4_releasepage, 2901 .is_partially_uptodate = block_is_partially_uptodate, 2902 }; 2903 2904 static const struct address_space_operations ext4_da_aops = { 2905 .readpage = ext4_readpage, 2906 .readpages = ext4_readpages, 2907 .writepage = ext4_da_writepage, 2908 .writepages = ext4_da_writepages, 2909 .sync_page = block_sync_page, 2910 .write_begin = ext4_da_write_begin, 2911 .write_end = ext4_da_write_end, 2912 .bmap = ext4_bmap, 2913 .invalidatepage = ext4_da_invalidatepage, 2914 .releasepage = ext4_releasepage, 2915 .direct_IO = ext4_direct_IO, 2916 .migratepage = buffer_migrate_page, 2917 .is_partially_uptodate = block_is_partially_uptodate, 2918 }; 2919 2920 void ext4_set_aops(struct inode *inode) 2921 { 2922 if (ext4_should_order_data(inode) && 2923 test_opt(inode->i_sb, DELALLOC)) 2924 inode->i_mapping->a_ops = &ext4_da_aops; 2925 else if (ext4_should_order_data(inode)) 2926 inode->i_mapping->a_ops = &ext4_ordered_aops; 2927 else if (ext4_should_writeback_data(inode) && 2928 test_opt(inode->i_sb, DELALLOC)) 2929 inode->i_mapping->a_ops = &ext4_da_aops; 2930 else if (ext4_should_writeback_data(inode)) 2931 inode->i_mapping->a_ops = &ext4_writeback_aops; 2932 else 2933 inode->i_mapping->a_ops = &ext4_journalled_aops; 2934 } 2935 2936 /* 2937 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 2938 * up to the end of the block which corresponds to `from'. 2939 * This required during truncate. We need to physically zero the tail end 2940 * of that block so it doesn't yield old data if the file is later grown. 2941 */ 2942 int ext4_block_truncate_page(handle_t *handle, 2943 struct address_space *mapping, loff_t from) 2944 { 2945 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2946 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2947 unsigned blocksize, length, pos; 2948 ext4_lblk_t iblock; 2949 struct inode *inode = mapping->host; 2950 struct buffer_head *bh; 2951 struct page *page; 2952 int err = 0; 2953 2954 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 2955 if (!page) 2956 return -EINVAL; 2957 2958 blocksize = inode->i_sb->s_blocksize; 2959 length = blocksize - (offset & (blocksize - 1)); 2960 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2961 2962 /* 2963 * For "nobh" option, we can only work if we don't need to 2964 * read-in the page - otherwise we create buffers to do the IO. 2965 */ 2966 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 2967 ext4_should_writeback_data(inode) && PageUptodate(page)) { 2968 zero_user(page, offset, length); 2969 set_page_dirty(page); 2970 goto unlock; 2971 } 2972 2973 if (!page_has_buffers(page)) 2974 create_empty_buffers(page, blocksize, 0); 2975 2976 /* Find the buffer that contains "offset" */ 2977 bh = page_buffers(page); 2978 pos = blocksize; 2979 while (offset >= pos) { 2980 bh = bh->b_this_page; 2981 iblock++; 2982 pos += blocksize; 2983 } 2984 2985 err = 0; 2986 if (buffer_freed(bh)) { 2987 BUFFER_TRACE(bh, "freed: skip"); 2988 goto unlock; 2989 } 2990 2991 if (!buffer_mapped(bh)) { 2992 BUFFER_TRACE(bh, "unmapped"); 2993 ext4_get_block(inode, iblock, bh, 0); 2994 /* unmapped? It's a hole - nothing to do */ 2995 if (!buffer_mapped(bh)) { 2996 BUFFER_TRACE(bh, "still unmapped"); 2997 goto unlock; 2998 } 2999 } 3000 3001 /* Ok, it's mapped. Make sure it's up-to-date */ 3002 if (PageUptodate(page)) 3003 set_buffer_uptodate(bh); 3004 3005 if (!buffer_uptodate(bh)) { 3006 err = -EIO; 3007 ll_rw_block(READ, 1, &bh); 3008 wait_on_buffer(bh); 3009 /* Uhhuh. Read error. Complain and punt. */ 3010 if (!buffer_uptodate(bh)) 3011 goto unlock; 3012 } 3013 3014 if (ext4_should_journal_data(inode)) { 3015 BUFFER_TRACE(bh, "get write access"); 3016 err = ext4_journal_get_write_access(handle, bh); 3017 if (err) 3018 goto unlock; 3019 } 3020 3021 zero_user(page, offset, length); 3022 3023 BUFFER_TRACE(bh, "zeroed end of block"); 3024 3025 err = 0; 3026 if (ext4_should_journal_data(inode)) { 3027 err = ext4_journal_dirty_metadata(handle, bh); 3028 } else { 3029 if (ext4_should_order_data(inode)) 3030 err = ext4_jbd2_file_inode(handle, inode); 3031 mark_buffer_dirty(bh); 3032 } 3033 3034 unlock: 3035 unlock_page(page); 3036 page_cache_release(page); 3037 return err; 3038 } 3039 3040 /* 3041 * Probably it should be a library function... search for first non-zero word 3042 * or memcmp with zero_page, whatever is better for particular architecture. 3043 * Linus? 3044 */ 3045 static inline int all_zeroes(__le32 *p, __le32 *q) 3046 { 3047 while (p < q) 3048 if (*p++) 3049 return 0; 3050 return 1; 3051 } 3052 3053 /** 3054 * ext4_find_shared - find the indirect blocks for partial truncation. 3055 * @inode: inode in question 3056 * @depth: depth of the affected branch 3057 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3058 * @chain: place to store the pointers to partial indirect blocks 3059 * @top: place to the (detached) top of branch 3060 * 3061 * This is a helper function used by ext4_truncate(). 3062 * 3063 * When we do truncate() we may have to clean the ends of several 3064 * indirect blocks but leave the blocks themselves alive. Block is 3065 * partially truncated if some data below the new i_size is refered 3066 * from it (and it is on the path to the first completely truncated 3067 * data block, indeed). We have to free the top of that path along 3068 * with everything to the right of the path. Since no allocation 3069 * past the truncation point is possible until ext4_truncate() 3070 * finishes, we may safely do the latter, but top of branch may 3071 * require special attention - pageout below the truncation point 3072 * might try to populate it. 3073 * 3074 * We atomically detach the top of branch from the tree, store the 3075 * block number of its root in *@top, pointers to buffer_heads of 3076 * partially truncated blocks - in @chain[].bh and pointers to 3077 * their last elements that should not be removed - in 3078 * @chain[].p. Return value is the pointer to last filled element 3079 * of @chain. 3080 * 3081 * The work left to caller to do the actual freeing of subtrees: 3082 * a) free the subtree starting from *@top 3083 * b) free the subtrees whose roots are stored in 3084 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3085 * c) free the subtrees growing from the inode past the @chain[0]. 3086 * (no partially truncated stuff there). */ 3087 3088 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3089 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3090 { 3091 Indirect *partial, *p; 3092 int k, err; 3093 3094 *top = 0; 3095 /* Make k index the deepest non-null offest + 1 */ 3096 for (k = depth; k > 1 && !offsets[k-1]; k--) 3097 ; 3098 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3099 /* Writer: pointers */ 3100 if (!partial) 3101 partial = chain + k-1; 3102 /* 3103 * If the branch acquired continuation since we've looked at it - 3104 * fine, it should all survive and (new) top doesn't belong to us. 3105 */ 3106 if (!partial->key && *partial->p) 3107 /* Writer: end */ 3108 goto no_top; 3109 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 3110 ; 3111 /* 3112 * OK, we've found the last block that must survive. The rest of our 3113 * branch should be detached before unlocking. However, if that rest 3114 * of branch is all ours and does not grow immediately from the inode 3115 * it's easier to cheat and just decrement partial->p. 3116 */ 3117 if (p == chain + k - 1 && p > chain) { 3118 p->p--; 3119 } else { 3120 *top = *p->p; 3121 /* Nope, don't do this in ext4. Must leave the tree intact */ 3122 #if 0 3123 *p->p = 0; 3124 #endif 3125 } 3126 /* Writer: end */ 3127 3128 while(partial > p) { 3129 brelse(partial->bh); 3130 partial--; 3131 } 3132 no_top: 3133 return partial; 3134 } 3135 3136 /* 3137 * Zero a number of block pointers in either an inode or an indirect block. 3138 * If we restart the transaction we must again get write access to the 3139 * indirect block for further modification. 3140 * 3141 * We release `count' blocks on disk, but (last - first) may be greater 3142 * than `count' because there can be holes in there. 3143 */ 3144 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3145 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3146 unsigned long count, __le32 *first, __le32 *last) 3147 { 3148 __le32 *p; 3149 if (try_to_extend_transaction(handle, inode)) { 3150 if (bh) { 3151 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3152 ext4_journal_dirty_metadata(handle, bh); 3153 } 3154 ext4_mark_inode_dirty(handle, inode); 3155 ext4_journal_test_restart(handle, inode); 3156 if (bh) { 3157 BUFFER_TRACE(bh, "retaking write access"); 3158 ext4_journal_get_write_access(handle, bh); 3159 } 3160 } 3161 3162 /* 3163 * Any buffers which are on the journal will be in memory. We find 3164 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3165 * on them. We've already detached each block from the file, so 3166 * bforget() in jbd2_journal_forget() should be safe. 3167 * 3168 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3169 */ 3170 for (p = first; p < last; p++) { 3171 u32 nr = le32_to_cpu(*p); 3172 if (nr) { 3173 struct buffer_head *tbh; 3174 3175 *p = 0; 3176 tbh = sb_find_get_block(inode->i_sb, nr); 3177 ext4_forget(handle, 0, inode, tbh, nr); 3178 } 3179 } 3180 3181 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3182 } 3183 3184 /** 3185 * ext4_free_data - free a list of data blocks 3186 * @handle: handle for this transaction 3187 * @inode: inode we are dealing with 3188 * @this_bh: indirect buffer_head which contains *@first and *@last 3189 * @first: array of block numbers 3190 * @last: points immediately past the end of array 3191 * 3192 * We are freeing all blocks refered from that array (numbers are stored as 3193 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3194 * 3195 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3196 * blocks are contiguous then releasing them at one time will only affect one 3197 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3198 * actually use a lot of journal space. 3199 * 3200 * @this_bh will be %NULL if @first and @last point into the inode's direct 3201 * block pointers. 3202 */ 3203 static void ext4_free_data(handle_t *handle, struct inode *inode, 3204 struct buffer_head *this_bh, 3205 __le32 *first, __le32 *last) 3206 { 3207 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3208 unsigned long count = 0; /* Number of blocks in the run */ 3209 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3210 corresponding to 3211 block_to_free */ 3212 ext4_fsblk_t nr; /* Current block # */ 3213 __le32 *p; /* Pointer into inode/ind 3214 for current block */ 3215 int err; 3216 3217 if (this_bh) { /* For indirect block */ 3218 BUFFER_TRACE(this_bh, "get_write_access"); 3219 err = ext4_journal_get_write_access(handle, this_bh); 3220 /* Important: if we can't update the indirect pointers 3221 * to the blocks, we can't free them. */ 3222 if (err) 3223 return; 3224 } 3225 3226 for (p = first; p < last; p++) { 3227 nr = le32_to_cpu(*p); 3228 if (nr) { 3229 /* accumulate blocks to free if they're contiguous */ 3230 if (count == 0) { 3231 block_to_free = nr; 3232 block_to_free_p = p; 3233 count = 1; 3234 } else if (nr == block_to_free + count) { 3235 count++; 3236 } else { 3237 ext4_clear_blocks(handle, inode, this_bh, 3238 block_to_free, 3239 count, block_to_free_p, p); 3240 block_to_free = nr; 3241 block_to_free_p = p; 3242 count = 1; 3243 } 3244 } 3245 } 3246 3247 if (count > 0) 3248 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3249 count, block_to_free_p, p); 3250 3251 if (this_bh) { 3252 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3253 3254 /* 3255 * The buffer head should have an attached journal head at this 3256 * point. However, if the data is corrupted and an indirect 3257 * block pointed to itself, it would have been detached when 3258 * the block was cleared. Check for this instead of OOPSing. 3259 */ 3260 if (bh2jh(this_bh)) 3261 ext4_journal_dirty_metadata(handle, this_bh); 3262 else 3263 ext4_error(inode->i_sb, __func__, 3264 "circular indirect block detected, " 3265 "inode=%lu, block=%llu", 3266 inode->i_ino, 3267 (unsigned long long) this_bh->b_blocknr); 3268 } 3269 } 3270 3271 /** 3272 * ext4_free_branches - free an array of branches 3273 * @handle: JBD handle for this transaction 3274 * @inode: inode we are dealing with 3275 * @parent_bh: the buffer_head which contains *@first and *@last 3276 * @first: array of block numbers 3277 * @last: pointer immediately past the end of array 3278 * @depth: depth of the branches to free 3279 * 3280 * We are freeing all blocks refered from these branches (numbers are 3281 * stored as little-endian 32-bit) and updating @inode->i_blocks 3282 * appropriately. 3283 */ 3284 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3285 struct buffer_head *parent_bh, 3286 __le32 *first, __le32 *last, int depth) 3287 { 3288 ext4_fsblk_t nr; 3289 __le32 *p; 3290 3291 if (is_handle_aborted(handle)) 3292 return; 3293 3294 if (depth--) { 3295 struct buffer_head *bh; 3296 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3297 p = last; 3298 while (--p >= first) { 3299 nr = le32_to_cpu(*p); 3300 if (!nr) 3301 continue; /* A hole */ 3302 3303 /* Go read the buffer for the next level down */ 3304 bh = sb_bread(inode->i_sb, nr); 3305 3306 /* 3307 * A read failure? Report error and clear slot 3308 * (should be rare). 3309 */ 3310 if (!bh) { 3311 ext4_error(inode->i_sb, "ext4_free_branches", 3312 "Read failure, inode=%lu, block=%llu", 3313 inode->i_ino, nr); 3314 continue; 3315 } 3316 3317 /* This zaps the entire block. Bottom up. */ 3318 BUFFER_TRACE(bh, "free child branches"); 3319 ext4_free_branches(handle, inode, bh, 3320 (__le32*)bh->b_data, 3321 (__le32*)bh->b_data + addr_per_block, 3322 depth); 3323 3324 /* 3325 * We've probably journalled the indirect block several 3326 * times during the truncate. But it's no longer 3327 * needed and we now drop it from the transaction via 3328 * jbd2_journal_revoke(). 3329 * 3330 * That's easy if it's exclusively part of this 3331 * transaction. But if it's part of the committing 3332 * transaction then jbd2_journal_forget() will simply 3333 * brelse() it. That means that if the underlying 3334 * block is reallocated in ext4_get_block(), 3335 * unmap_underlying_metadata() will find this block 3336 * and will try to get rid of it. damn, damn. 3337 * 3338 * If this block has already been committed to the 3339 * journal, a revoke record will be written. And 3340 * revoke records must be emitted *before* clearing 3341 * this block's bit in the bitmaps. 3342 */ 3343 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3344 3345 /* 3346 * Everything below this this pointer has been 3347 * released. Now let this top-of-subtree go. 3348 * 3349 * We want the freeing of this indirect block to be 3350 * atomic in the journal with the updating of the 3351 * bitmap block which owns it. So make some room in 3352 * the journal. 3353 * 3354 * We zero the parent pointer *after* freeing its 3355 * pointee in the bitmaps, so if extend_transaction() 3356 * for some reason fails to put the bitmap changes and 3357 * the release into the same transaction, recovery 3358 * will merely complain about releasing a free block, 3359 * rather than leaking blocks. 3360 */ 3361 if (is_handle_aborted(handle)) 3362 return; 3363 if (try_to_extend_transaction(handle, inode)) { 3364 ext4_mark_inode_dirty(handle, inode); 3365 ext4_journal_test_restart(handle, inode); 3366 } 3367 3368 ext4_free_blocks(handle, inode, nr, 1, 1); 3369 3370 if (parent_bh) { 3371 /* 3372 * The block which we have just freed is 3373 * pointed to by an indirect block: journal it 3374 */ 3375 BUFFER_TRACE(parent_bh, "get_write_access"); 3376 if (!ext4_journal_get_write_access(handle, 3377 parent_bh)){ 3378 *p = 0; 3379 BUFFER_TRACE(parent_bh, 3380 "call ext4_journal_dirty_metadata"); 3381 ext4_journal_dirty_metadata(handle, 3382 parent_bh); 3383 } 3384 } 3385 } 3386 } else { 3387 /* We have reached the bottom of the tree. */ 3388 BUFFER_TRACE(parent_bh, "free data blocks"); 3389 ext4_free_data(handle, inode, parent_bh, first, last); 3390 } 3391 } 3392 3393 int ext4_can_truncate(struct inode *inode) 3394 { 3395 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3396 return 0; 3397 if (S_ISREG(inode->i_mode)) 3398 return 1; 3399 if (S_ISDIR(inode->i_mode)) 3400 return 1; 3401 if (S_ISLNK(inode->i_mode)) 3402 return !ext4_inode_is_fast_symlink(inode); 3403 return 0; 3404 } 3405 3406 /* 3407 * ext4_truncate() 3408 * 3409 * We block out ext4_get_block() block instantiations across the entire 3410 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3411 * simultaneously on behalf of the same inode. 3412 * 3413 * As we work through the truncate and commmit bits of it to the journal there 3414 * is one core, guiding principle: the file's tree must always be consistent on 3415 * disk. We must be able to restart the truncate after a crash. 3416 * 3417 * The file's tree may be transiently inconsistent in memory (although it 3418 * probably isn't), but whenever we close off and commit a journal transaction, 3419 * the contents of (the filesystem + the journal) must be consistent and 3420 * restartable. It's pretty simple, really: bottom up, right to left (although 3421 * left-to-right works OK too). 3422 * 3423 * Note that at recovery time, journal replay occurs *before* the restart of 3424 * truncate against the orphan inode list. 3425 * 3426 * The committed inode has the new, desired i_size (which is the same as 3427 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3428 * that this inode's truncate did not complete and it will again call 3429 * ext4_truncate() to have another go. So there will be instantiated blocks 3430 * to the right of the truncation point in a crashed ext4 filesystem. But 3431 * that's fine - as long as they are linked from the inode, the post-crash 3432 * ext4_truncate() run will find them and release them. 3433 */ 3434 void ext4_truncate(struct inode *inode) 3435 { 3436 handle_t *handle; 3437 struct ext4_inode_info *ei = EXT4_I(inode); 3438 __le32 *i_data = ei->i_data; 3439 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3440 struct address_space *mapping = inode->i_mapping; 3441 ext4_lblk_t offsets[4]; 3442 Indirect chain[4]; 3443 Indirect *partial; 3444 __le32 nr = 0; 3445 int n; 3446 ext4_lblk_t last_block; 3447 unsigned blocksize = inode->i_sb->s_blocksize; 3448 3449 if (!ext4_can_truncate(inode)) 3450 return; 3451 3452 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3453 ext4_ext_truncate(inode); 3454 return; 3455 } 3456 3457 handle = start_transaction(inode); 3458 if (IS_ERR(handle)) 3459 return; /* AKPM: return what? */ 3460 3461 last_block = (inode->i_size + blocksize-1) 3462 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3463 3464 if (inode->i_size & (blocksize - 1)) 3465 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3466 goto out_stop; 3467 3468 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3469 if (n == 0) 3470 goto out_stop; /* error */ 3471 3472 /* 3473 * OK. This truncate is going to happen. We add the inode to the 3474 * orphan list, so that if this truncate spans multiple transactions, 3475 * and we crash, we will resume the truncate when the filesystem 3476 * recovers. It also marks the inode dirty, to catch the new size. 3477 * 3478 * Implication: the file must always be in a sane, consistent 3479 * truncatable state while each transaction commits. 3480 */ 3481 if (ext4_orphan_add(handle, inode)) 3482 goto out_stop; 3483 3484 /* 3485 * From here we block out all ext4_get_block() callers who want to 3486 * modify the block allocation tree. 3487 */ 3488 down_write(&ei->i_data_sem); 3489 /* 3490 * The orphan list entry will now protect us from any crash which 3491 * occurs before the truncate completes, so it is now safe to propagate 3492 * the new, shorter inode size (held for now in i_size) into the 3493 * on-disk inode. We do this via i_disksize, which is the value which 3494 * ext4 *really* writes onto the disk inode. 3495 */ 3496 ei->i_disksize = inode->i_size; 3497 3498 if (n == 1) { /* direct blocks */ 3499 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3500 i_data + EXT4_NDIR_BLOCKS); 3501 goto do_indirects; 3502 } 3503 3504 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3505 /* Kill the top of shared branch (not detached) */ 3506 if (nr) { 3507 if (partial == chain) { 3508 /* Shared branch grows from the inode */ 3509 ext4_free_branches(handle, inode, NULL, 3510 &nr, &nr+1, (chain+n-1) - partial); 3511 *partial->p = 0; 3512 /* 3513 * We mark the inode dirty prior to restart, 3514 * and prior to stop. No need for it here. 3515 */ 3516 } else { 3517 /* Shared branch grows from an indirect block */ 3518 BUFFER_TRACE(partial->bh, "get_write_access"); 3519 ext4_free_branches(handle, inode, partial->bh, 3520 partial->p, 3521 partial->p+1, (chain+n-1) - partial); 3522 } 3523 } 3524 /* Clear the ends of indirect blocks on the shared branch */ 3525 while (partial > chain) { 3526 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3527 (__le32*)partial->bh->b_data+addr_per_block, 3528 (chain+n-1) - partial); 3529 BUFFER_TRACE(partial->bh, "call brelse"); 3530 brelse (partial->bh); 3531 partial--; 3532 } 3533 do_indirects: 3534 /* Kill the remaining (whole) subtrees */ 3535 switch (offsets[0]) { 3536 default: 3537 nr = i_data[EXT4_IND_BLOCK]; 3538 if (nr) { 3539 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3540 i_data[EXT4_IND_BLOCK] = 0; 3541 } 3542 case EXT4_IND_BLOCK: 3543 nr = i_data[EXT4_DIND_BLOCK]; 3544 if (nr) { 3545 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3546 i_data[EXT4_DIND_BLOCK] = 0; 3547 } 3548 case EXT4_DIND_BLOCK: 3549 nr = i_data[EXT4_TIND_BLOCK]; 3550 if (nr) { 3551 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3552 i_data[EXT4_TIND_BLOCK] = 0; 3553 } 3554 case EXT4_TIND_BLOCK: 3555 ; 3556 } 3557 3558 ext4_discard_reservation(inode); 3559 3560 up_write(&ei->i_data_sem); 3561 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3562 ext4_mark_inode_dirty(handle, inode); 3563 3564 /* 3565 * In a multi-transaction truncate, we only make the final transaction 3566 * synchronous 3567 */ 3568 if (IS_SYNC(inode)) 3569 handle->h_sync = 1; 3570 out_stop: 3571 /* 3572 * If this was a simple ftruncate(), and the file will remain alive 3573 * then we need to clear up the orphan record which we created above. 3574 * However, if this was a real unlink then we were called by 3575 * ext4_delete_inode(), and we allow that function to clean up the 3576 * orphan info for us. 3577 */ 3578 if (inode->i_nlink) 3579 ext4_orphan_del(handle, inode); 3580 3581 ext4_journal_stop(handle); 3582 } 3583 3584 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 3585 unsigned long ino, struct ext4_iloc *iloc) 3586 { 3587 ext4_group_t block_group; 3588 unsigned long offset; 3589 ext4_fsblk_t block; 3590 struct ext4_group_desc *gdp; 3591 3592 if (!ext4_valid_inum(sb, ino)) { 3593 /* 3594 * This error is already checked for in namei.c unless we are 3595 * looking at an NFS filehandle, in which case no error 3596 * report is needed 3597 */ 3598 return 0; 3599 } 3600 3601 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 3602 gdp = ext4_get_group_desc(sb, block_group, NULL); 3603 if (!gdp) 3604 return 0; 3605 3606 /* 3607 * Figure out the offset within the block group inode table 3608 */ 3609 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 3610 EXT4_INODE_SIZE(sb); 3611 block = ext4_inode_table(sb, gdp) + 3612 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 3613 3614 iloc->block_group = block_group; 3615 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 3616 return block; 3617 } 3618 3619 /* 3620 * ext4_get_inode_loc returns with an extra refcount against the inode's 3621 * underlying buffer_head on success. If 'in_mem' is true, we have all 3622 * data in memory that is needed to recreate the on-disk version of this 3623 * inode. 3624 */ 3625 static int __ext4_get_inode_loc(struct inode *inode, 3626 struct ext4_iloc *iloc, int in_mem) 3627 { 3628 ext4_fsblk_t block; 3629 struct buffer_head *bh; 3630 3631 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 3632 if (!block) 3633 return -EIO; 3634 3635 bh = sb_getblk(inode->i_sb, block); 3636 if (!bh) { 3637 ext4_error (inode->i_sb, "ext4_get_inode_loc", 3638 "unable to read inode block - " 3639 "inode=%lu, block=%llu", 3640 inode->i_ino, block); 3641 return -EIO; 3642 } 3643 if (!buffer_uptodate(bh)) { 3644 lock_buffer(bh); 3645 3646 /* 3647 * If the buffer has the write error flag, we have failed 3648 * to write out another inode in the same block. In this 3649 * case, we don't have to read the block because we may 3650 * read the old inode data successfully. 3651 */ 3652 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3653 set_buffer_uptodate(bh); 3654 3655 if (buffer_uptodate(bh)) { 3656 /* someone brought it uptodate while we waited */ 3657 unlock_buffer(bh); 3658 goto has_buffer; 3659 } 3660 3661 /* 3662 * If we have all information of the inode in memory and this 3663 * is the only valid inode in the block, we need not read the 3664 * block. 3665 */ 3666 if (in_mem) { 3667 struct buffer_head *bitmap_bh; 3668 struct ext4_group_desc *desc; 3669 int inodes_per_buffer; 3670 int inode_offset, i; 3671 ext4_group_t block_group; 3672 int start; 3673 3674 block_group = (inode->i_ino - 1) / 3675 EXT4_INODES_PER_GROUP(inode->i_sb); 3676 inodes_per_buffer = bh->b_size / 3677 EXT4_INODE_SIZE(inode->i_sb); 3678 inode_offset = ((inode->i_ino - 1) % 3679 EXT4_INODES_PER_GROUP(inode->i_sb)); 3680 start = inode_offset & ~(inodes_per_buffer - 1); 3681 3682 /* Is the inode bitmap in cache? */ 3683 desc = ext4_get_group_desc(inode->i_sb, 3684 block_group, NULL); 3685 if (!desc) 3686 goto make_io; 3687 3688 bitmap_bh = sb_getblk(inode->i_sb, 3689 ext4_inode_bitmap(inode->i_sb, desc)); 3690 if (!bitmap_bh) 3691 goto make_io; 3692 3693 /* 3694 * If the inode bitmap isn't in cache then the 3695 * optimisation may end up performing two reads instead 3696 * of one, so skip it. 3697 */ 3698 if (!buffer_uptodate(bitmap_bh)) { 3699 brelse(bitmap_bh); 3700 goto make_io; 3701 } 3702 for (i = start; i < start + inodes_per_buffer; i++) { 3703 if (i == inode_offset) 3704 continue; 3705 if (ext4_test_bit(i, bitmap_bh->b_data)) 3706 break; 3707 } 3708 brelse(bitmap_bh); 3709 if (i == start + inodes_per_buffer) { 3710 /* all other inodes are free, so skip I/O */ 3711 memset(bh->b_data, 0, bh->b_size); 3712 set_buffer_uptodate(bh); 3713 unlock_buffer(bh); 3714 goto has_buffer; 3715 } 3716 } 3717 3718 make_io: 3719 /* 3720 * There are other valid inodes in the buffer, this inode 3721 * has in-inode xattrs, or we don't have this inode in memory. 3722 * Read the block from disk. 3723 */ 3724 get_bh(bh); 3725 bh->b_end_io = end_buffer_read_sync; 3726 submit_bh(READ_META, bh); 3727 wait_on_buffer(bh); 3728 if (!buffer_uptodate(bh)) { 3729 ext4_error(inode->i_sb, "ext4_get_inode_loc", 3730 "unable to read inode block - " 3731 "inode=%lu, block=%llu", 3732 inode->i_ino, block); 3733 brelse(bh); 3734 return -EIO; 3735 } 3736 } 3737 has_buffer: 3738 iloc->bh = bh; 3739 return 0; 3740 } 3741 3742 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3743 { 3744 /* We have all inode data except xattrs in memory here. */ 3745 return __ext4_get_inode_loc(inode, iloc, 3746 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3747 } 3748 3749 void ext4_set_inode_flags(struct inode *inode) 3750 { 3751 unsigned int flags = EXT4_I(inode)->i_flags; 3752 3753 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3754 if (flags & EXT4_SYNC_FL) 3755 inode->i_flags |= S_SYNC; 3756 if (flags & EXT4_APPEND_FL) 3757 inode->i_flags |= S_APPEND; 3758 if (flags & EXT4_IMMUTABLE_FL) 3759 inode->i_flags |= S_IMMUTABLE; 3760 if (flags & EXT4_NOATIME_FL) 3761 inode->i_flags |= S_NOATIME; 3762 if (flags & EXT4_DIRSYNC_FL) 3763 inode->i_flags |= S_DIRSYNC; 3764 } 3765 3766 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3767 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3768 { 3769 unsigned int flags = ei->vfs_inode.i_flags; 3770 3771 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3772 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 3773 if (flags & S_SYNC) 3774 ei->i_flags |= EXT4_SYNC_FL; 3775 if (flags & S_APPEND) 3776 ei->i_flags |= EXT4_APPEND_FL; 3777 if (flags & S_IMMUTABLE) 3778 ei->i_flags |= EXT4_IMMUTABLE_FL; 3779 if (flags & S_NOATIME) 3780 ei->i_flags |= EXT4_NOATIME_FL; 3781 if (flags & S_DIRSYNC) 3782 ei->i_flags |= EXT4_DIRSYNC_FL; 3783 } 3784 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3785 struct ext4_inode_info *ei) 3786 { 3787 blkcnt_t i_blocks ; 3788 struct inode *inode = &(ei->vfs_inode); 3789 struct super_block *sb = inode->i_sb; 3790 3791 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3792 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3793 /* we are using combined 48 bit field */ 3794 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3795 le32_to_cpu(raw_inode->i_blocks_lo); 3796 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 3797 /* i_blocks represent file system block size */ 3798 return i_blocks << (inode->i_blkbits - 9); 3799 } else { 3800 return i_blocks; 3801 } 3802 } else { 3803 return le32_to_cpu(raw_inode->i_blocks_lo); 3804 } 3805 } 3806 3807 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3808 { 3809 struct ext4_iloc iloc; 3810 struct ext4_inode *raw_inode; 3811 struct ext4_inode_info *ei; 3812 struct buffer_head *bh; 3813 struct inode *inode; 3814 long ret; 3815 int block; 3816 3817 inode = iget_locked(sb, ino); 3818 if (!inode) 3819 return ERR_PTR(-ENOMEM); 3820 if (!(inode->i_state & I_NEW)) 3821 return inode; 3822 3823 ei = EXT4_I(inode); 3824 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 3825 ei->i_acl = EXT4_ACL_NOT_CACHED; 3826 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 3827 #endif 3828 ei->i_block_alloc_info = NULL; 3829 3830 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3831 if (ret < 0) 3832 goto bad_inode; 3833 bh = iloc.bh; 3834 raw_inode = ext4_raw_inode(&iloc); 3835 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3836 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3837 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3838 if(!(test_opt (inode->i_sb, NO_UID32))) { 3839 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3840 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3841 } 3842 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3843 3844 ei->i_state = 0; 3845 ei->i_dir_start_lookup = 0; 3846 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3847 /* We now have enough fields to check if the inode was active or not. 3848 * This is needed because nfsd might try to access dead inodes 3849 * the test is that same one that e2fsck uses 3850 * NeilBrown 1999oct15 3851 */ 3852 if (inode->i_nlink == 0) { 3853 if (inode->i_mode == 0 || 3854 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3855 /* this inode is deleted */ 3856 brelse (bh); 3857 ret = -ESTALE; 3858 goto bad_inode; 3859 } 3860 /* The only unlinked inodes we let through here have 3861 * valid i_mode and are being read by the orphan 3862 * recovery code: that's fine, we're about to complete 3863 * the process of deleting those. */ 3864 } 3865 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3866 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3867 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3868 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3869 cpu_to_le32(EXT4_OS_HURD)) { 3870 ei->i_file_acl |= 3871 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3872 } 3873 inode->i_size = ext4_isize(raw_inode); 3874 ei->i_disksize = inode->i_size; 3875 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3876 ei->i_block_group = iloc.block_group; 3877 /* 3878 * NOTE! The in-memory inode i_data array is in little-endian order 3879 * even on big-endian machines: we do NOT byteswap the block numbers! 3880 */ 3881 for (block = 0; block < EXT4_N_BLOCKS; block++) 3882 ei->i_data[block] = raw_inode->i_block[block]; 3883 INIT_LIST_HEAD(&ei->i_orphan); 3884 3885 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3886 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3887 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3888 EXT4_INODE_SIZE(inode->i_sb)) { 3889 brelse (bh); 3890 ret = -EIO; 3891 goto bad_inode; 3892 } 3893 if (ei->i_extra_isize == 0) { 3894 /* The extra space is currently unused. Use it. */ 3895 ei->i_extra_isize = sizeof(struct ext4_inode) - 3896 EXT4_GOOD_OLD_INODE_SIZE; 3897 } else { 3898 __le32 *magic = (void *)raw_inode + 3899 EXT4_GOOD_OLD_INODE_SIZE + 3900 ei->i_extra_isize; 3901 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3902 ei->i_state |= EXT4_STATE_XATTR; 3903 } 3904 } else 3905 ei->i_extra_isize = 0; 3906 3907 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3908 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3909 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3910 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3911 3912 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3913 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3914 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3915 inode->i_version |= 3916 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3917 } 3918 3919 if (S_ISREG(inode->i_mode)) { 3920 inode->i_op = &ext4_file_inode_operations; 3921 inode->i_fop = &ext4_file_operations; 3922 ext4_set_aops(inode); 3923 } else if (S_ISDIR(inode->i_mode)) { 3924 inode->i_op = &ext4_dir_inode_operations; 3925 inode->i_fop = &ext4_dir_operations; 3926 } else if (S_ISLNK(inode->i_mode)) { 3927 if (ext4_inode_is_fast_symlink(inode)) 3928 inode->i_op = &ext4_fast_symlink_inode_operations; 3929 else { 3930 inode->i_op = &ext4_symlink_inode_operations; 3931 ext4_set_aops(inode); 3932 } 3933 } else { 3934 inode->i_op = &ext4_special_inode_operations; 3935 if (raw_inode->i_block[0]) 3936 init_special_inode(inode, inode->i_mode, 3937 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3938 else 3939 init_special_inode(inode, inode->i_mode, 3940 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3941 } 3942 brelse (iloc.bh); 3943 ext4_set_inode_flags(inode); 3944 unlock_new_inode(inode); 3945 return inode; 3946 3947 bad_inode: 3948 iget_failed(inode); 3949 return ERR_PTR(ret); 3950 } 3951 3952 static int ext4_inode_blocks_set(handle_t *handle, 3953 struct ext4_inode *raw_inode, 3954 struct ext4_inode_info *ei) 3955 { 3956 struct inode *inode = &(ei->vfs_inode); 3957 u64 i_blocks = inode->i_blocks; 3958 struct super_block *sb = inode->i_sb; 3959 int err = 0; 3960 3961 if (i_blocks <= ~0U) { 3962 /* 3963 * i_blocks can be represnted in a 32 bit variable 3964 * as multiple of 512 bytes 3965 */ 3966 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3967 raw_inode->i_blocks_high = 0; 3968 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 3969 } else if (i_blocks <= 0xffffffffffffULL) { 3970 /* 3971 * i_blocks can be represented in a 48 bit variable 3972 * as multiple of 512 bytes 3973 */ 3974 err = ext4_update_rocompat_feature(handle, sb, 3975 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3976 if (err) 3977 goto err_out; 3978 /* i_block is stored in the split 48 bit fields */ 3979 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3980 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3981 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 3982 } else { 3983 /* 3984 * i_blocks should be represented in a 48 bit variable 3985 * as multiple of file system block size 3986 */ 3987 err = ext4_update_rocompat_feature(handle, sb, 3988 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3989 if (err) 3990 goto err_out; 3991 ei->i_flags |= EXT4_HUGE_FILE_FL; 3992 /* i_block is stored in file system block size */ 3993 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3994 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3995 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3996 } 3997 err_out: 3998 return err; 3999 } 4000 4001 /* 4002 * Post the struct inode info into an on-disk inode location in the 4003 * buffer-cache. This gobbles the caller's reference to the 4004 * buffer_head in the inode location struct. 4005 * 4006 * The caller must have write access to iloc->bh. 4007 */ 4008 static int ext4_do_update_inode(handle_t *handle, 4009 struct inode *inode, 4010 struct ext4_iloc *iloc) 4011 { 4012 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4013 struct ext4_inode_info *ei = EXT4_I(inode); 4014 struct buffer_head *bh = iloc->bh; 4015 int err = 0, rc, block; 4016 4017 /* For fields not not tracking in the in-memory inode, 4018 * initialise them to zero for new inodes. */ 4019 if (ei->i_state & EXT4_STATE_NEW) 4020 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4021 4022 ext4_get_inode_flags(ei); 4023 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4024 if(!(test_opt(inode->i_sb, NO_UID32))) { 4025 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4026 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4027 /* 4028 * Fix up interoperability with old kernels. Otherwise, old inodes get 4029 * re-used with the upper 16 bits of the uid/gid intact 4030 */ 4031 if(!ei->i_dtime) { 4032 raw_inode->i_uid_high = 4033 cpu_to_le16(high_16_bits(inode->i_uid)); 4034 raw_inode->i_gid_high = 4035 cpu_to_le16(high_16_bits(inode->i_gid)); 4036 } else { 4037 raw_inode->i_uid_high = 0; 4038 raw_inode->i_gid_high = 0; 4039 } 4040 } else { 4041 raw_inode->i_uid_low = 4042 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4043 raw_inode->i_gid_low = 4044 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4045 raw_inode->i_uid_high = 0; 4046 raw_inode->i_gid_high = 0; 4047 } 4048 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4049 4050 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4051 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4052 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4053 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4054 4055 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4056 goto out_brelse; 4057 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4058 /* clear the migrate flag in the raw_inode */ 4059 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4060 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4061 cpu_to_le32(EXT4_OS_HURD)) 4062 raw_inode->i_file_acl_high = 4063 cpu_to_le16(ei->i_file_acl >> 32); 4064 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4065 ext4_isize_set(raw_inode, ei->i_disksize); 4066 if (ei->i_disksize > 0x7fffffffULL) { 4067 struct super_block *sb = inode->i_sb; 4068 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4069 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4070 EXT4_SB(sb)->s_es->s_rev_level == 4071 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4072 /* If this is the first large file 4073 * created, add a flag to the superblock. 4074 */ 4075 err = ext4_journal_get_write_access(handle, 4076 EXT4_SB(sb)->s_sbh); 4077 if (err) 4078 goto out_brelse; 4079 ext4_update_dynamic_rev(sb); 4080 EXT4_SET_RO_COMPAT_FEATURE(sb, 4081 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4082 sb->s_dirt = 1; 4083 handle->h_sync = 1; 4084 err = ext4_journal_dirty_metadata(handle, 4085 EXT4_SB(sb)->s_sbh); 4086 } 4087 } 4088 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4089 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4090 if (old_valid_dev(inode->i_rdev)) { 4091 raw_inode->i_block[0] = 4092 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4093 raw_inode->i_block[1] = 0; 4094 } else { 4095 raw_inode->i_block[0] = 0; 4096 raw_inode->i_block[1] = 4097 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4098 raw_inode->i_block[2] = 0; 4099 } 4100 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4101 raw_inode->i_block[block] = ei->i_data[block]; 4102 4103 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4104 if (ei->i_extra_isize) { 4105 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4106 raw_inode->i_version_hi = 4107 cpu_to_le32(inode->i_version >> 32); 4108 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4109 } 4110 4111 4112 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4113 rc = ext4_journal_dirty_metadata(handle, bh); 4114 if (!err) 4115 err = rc; 4116 ei->i_state &= ~EXT4_STATE_NEW; 4117 4118 out_brelse: 4119 brelse (bh); 4120 ext4_std_error(inode->i_sb, err); 4121 return err; 4122 } 4123 4124 /* 4125 * ext4_write_inode() 4126 * 4127 * We are called from a few places: 4128 * 4129 * - Within generic_file_write() for O_SYNC files. 4130 * Here, there will be no transaction running. We wait for any running 4131 * trasnaction to commit. 4132 * 4133 * - Within sys_sync(), kupdate and such. 4134 * We wait on commit, if tol to. 4135 * 4136 * - Within prune_icache() (PF_MEMALLOC == true) 4137 * Here we simply return. We can't afford to block kswapd on the 4138 * journal commit. 4139 * 4140 * In all cases it is actually safe for us to return without doing anything, 4141 * because the inode has been copied into a raw inode buffer in 4142 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4143 * knfsd. 4144 * 4145 * Note that we are absolutely dependent upon all inode dirtiers doing the 4146 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4147 * which we are interested. 4148 * 4149 * It would be a bug for them to not do this. The code: 4150 * 4151 * mark_inode_dirty(inode) 4152 * stuff(); 4153 * inode->i_size = expr; 4154 * 4155 * is in error because a kswapd-driven write_inode() could occur while 4156 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4157 * will no longer be on the superblock's dirty inode list. 4158 */ 4159 int ext4_write_inode(struct inode *inode, int wait) 4160 { 4161 if (current->flags & PF_MEMALLOC) 4162 return 0; 4163 4164 if (ext4_journal_current_handle()) { 4165 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4166 dump_stack(); 4167 return -EIO; 4168 } 4169 4170 if (!wait) 4171 return 0; 4172 4173 return ext4_force_commit(inode->i_sb); 4174 } 4175 4176 /* 4177 * ext4_setattr() 4178 * 4179 * Called from notify_change. 4180 * 4181 * We want to trap VFS attempts to truncate the file as soon as 4182 * possible. In particular, we want to make sure that when the VFS 4183 * shrinks i_size, we put the inode on the orphan list and modify 4184 * i_disksize immediately, so that during the subsequent flushing of 4185 * dirty pages and freeing of disk blocks, we can guarantee that any 4186 * commit will leave the blocks being flushed in an unused state on 4187 * disk. (On recovery, the inode will get truncated and the blocks will 4188 * be freed, so we have a strong guarantee that no future commit will 4189 * leave these blocks visible to the user.) 4190 * 4191 * Another thing we have to assure is that if we are in ordered mode 4192 * and inode is still attached to the committing transaction, we must 4193 * we start writeout of all the dirty pages which are being truncated. 4194 * This way we are sure that all the data written in the previous 4195 * transaction are already on disk (truncate waits for pages under 4196 * writeback). 4197 * 4198 * Called with inode->i_mutex down. 4199 */ 4200 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4201 { 4202 struct inode *inode = dentry->d_inode; 4203 int error, rc = 0; 4204 const unsigned int ia_valid = attr->ia_valid; 4205 4206 error = inode_change_ok(inode, attr); 4207 if (error) 4208 return error; 4209 4210 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4211 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4212 handle_t *handle; 4213 4214 /* (user+group)*(old+new) structure, inode write (sb, 4215 * inode block, ? - but truncate inode update has it) */ 4216 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4217 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4218 if (IS_ERR(handle)) { 4219 error = PTR_ERR(handle); 4220 goto err_out; 4221 } 4222 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4223 if (error) { 4224 ext4_journal_stop(handle); 4225 return error; 4226 } 4227 /* Update corresponding info in inode so that everything is in 4228 * one transaction */ 4229 if (attr->ia_valid & ATTR_UID) 4230 inode->i_uid = attr->ia_uid; 4231 if (attr->ia_valid & ATTR_GID) 4232 inode->i_gid = attr->ia_gid; 4233 error = ext4_mark_inode_dirty(handle, inode); 4234 ext4_journal_stop(handle); 4235 } 4236 4237 if (attr->ia_valid & ATTR_SIZE) { 4238 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4239 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4240 4241 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4242 error = -EFBIG; 4243 goto err_out; 4244 } 4245 } 4246 } 4247 4248 if (S_ISREG(inode->i_mode) && 4249 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4250 handle_t *handle; 4251 4252 handle = ext4_journal_start(inode, 3); 4253 if (IS_ERR(handle)) { 4254 error = PTR_ERR(handle); 4255 goto err_out; 4256 } 4257 4258 error = ext4_orphan_add(handle, inode); 4259 EXT4_I(inode)->i_disksize = attr->ia_size; 4260 rc = ext4_mark_inode_dirty(handle, inode); 4261 if (!error) 4262 error = rc; 4263 ext4_journal_stop(handle); 4264 4265 if (ext4_should_order_data(inode)) { 4266 error = ext4_begin_ordered_truncate(inode, 4267 attr->ia_size); 4268 if (error) { 4269 /* Do as much error cleanup as possible */ 4270 handle = ext4_journal_start(inode, 3); 4271 if (IS_ERR(handle)) { 4272 ext4_orphan_del(NULL, inode); 4273 goto err_out; 4274 } 4275 ext4_orphan_del(handle, inode); 4276 ext4_journal_stop(handle); 4277 goto err_out; 4278 } 4279 } 4280 } 4281 4282 rc = inode_setattr(inode, attr); 4283 4284 /* If inode_setattr's call to ext4_truncate failed to get a 4285 * transaction handle at all, we need to clean up the in-core 4286 * orphan list manually. */ 4287 if (inode->i_nlink) 4288 ext4_orphan_del(NULL, inode); 4289 4290 if (!rc && (ia_valid & ATTR_MODE)) 4291 rc = ext4_acl_chmod(inode); 4292 4293 err_out: 4294 ext4_std_error(inode->i_sb, error); 4295 if (!error) 4296 error = rc; 4297 return error; 4298 } 4299 4300 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4301 struct kstat *stat) 4302 { 4303 struct inode *inode; 4304 unsigned long delalloc_blocks; 4305 4306 inode = dentry->d_inode; 4307 generic_fillattr(inode, stat); 4308 4309 /* 4310 * We can't update i_blocks if the block allocation is delayed 4311 * otherwise in the case of system crash before the real block 4312 * allocation is done, we will have i_blocks inconsistent with 4313 * on-disk file blocks. 4314 * We always keep i_blocks updated together with real 4315 * allocation. But to not confuse with user, stat 4316 * will return the blocks that include the delayed allocation 4317 * blocks for this file. 4318 */ 4319 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4320 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4321 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4322 4323 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4324 return 0; 4325 } 4326 4327 /* 4328 * How many blocks doth make a writepage()? 4329 * 4330 * With N blocks per page, it may be: 4331 * N data blocks 4332 * 2 indirect block 4333 * 2 dindirect 4334 * 1 tindirect 4335 * N+5 bitmap blocks (from the above) 4336 * N+5 group descriptor summary blocks 4337 * 1 inode block 4338 * 1 superblock. 4339 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 4340 * 4341 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 4342 * 4343 * With ordered or writeback data it's the same, less the N data blocks. 4344 * 4345 * If the inode's direct blocks can hold an integral number of pages then a 4346 * page cannot straddle two indirect blocks, and we can only touch one indirect 4347 * and dindirect block, and the "5" above becomes "3". 4348 * 4349 * This still overestimates under most circumstances. If we were to pass the 4350 * start and end offsets in here as well we could do block_to_path() on each 4351 * block and work out the exact number of indirects which are touched. Pah. 4352 */ 4353 4354 int ext4_writepage_trans_blocks(struct inode *inode) 4355 { 4356 int bpp = ext4_journal_blocks_per_page(inode); 4357 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 4358 int ret; 4359 4360 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 4361 return ext4_ext_writepage_trans_blocks(inode, bpp); 4362 4363 if (ext4_should_journal_data(inode)) 4364 ret = 3 * (bpp + indirects) + 2; 4365 else 4366 ret = 2 * (bpp + indirects) + 2; 4367 4368 #ifdef CONFIG_QUOTA 4369 /* We know that structure was already allocated during DQUOT_INIT so 4370 * we will be updating only the data blocks + inodes */ 4371 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 4372 #endif 4373 4374 return ret; 4375 } 4376 4377 /* 4378 * The caller must have previously called ext4_reserve_inode_write(). 4379 * Give this, we know that the caller already has write access to iloc->bh. 4380 */ 4381 int ext4_mark_iloc_dirty(handle_t *handle, 4382 struct inode *inode, struct ext4_iloc *iloc) 4383 { 4384 int err = 0; 4385 4386 if (test_opt(inode->i_sb, I_VERSION)) 4387 inode_inc_iversion(inode); 4388 4389 /* the do_update_inode consumes one bh->b_count */ 4390 get_bh(iloc->bh); 4391 4392 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4393 err = ext4_do_update_inode(handle, inode, iloc); 4394 put_bh(iloc->bh); 4395 return err; 4396 } 4397 4398 /* 4399 * On success, We end up with an outstanding reference count against 4400 * iloc->bh. This _must_ be cleaned up later. 4401 */ 4402 4403 int 4404 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4405 struct ext4_iloc *iloc) 4406 { 4407 int err = 0; 4408 if (handle) { 4409 err = ext4_get_inode_loc(inode, iloc); 4410 if (!err) { 4411 BUFFER_TRACE(iloc->bh, "get_write_access"); 4412 err = ext4_journal_get_write_access(handle, iloc->bh); 4413 if (err) { 4414 brelse(iloc->bh); 4415 iloc->bh = NULL; 4416 } 4417 } 4418 } 4419 ext4_std_error(inode->i_sb, err); 4420 return err; 4421 } 4422 4423 /* 4424 * Expand an inode by new_extra_isize bytes. 4425 * Returns 0 on success or negative error number on failure. 4426 */ 4427 static int ext4_expand_extra_isize(struct inode *inode, 4428 unsigned int new_extra_isize, 4429 struct ext4_iloc iloc, 4430 handle_t *handle) 4431 { 4432 struct ext4_inode *raw_inode; 4433 struct ext4_xattr_ibody_header *header; 4434 struct ext4_xattr_entry *entry; 4435 4436 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4437 return 0; 4438 4439 raw_inode = ext4_raw_inode(&iloc); 4440 4441 header = IHDR(inode, raw_inode); 4442 entry = IFIRST(header); 4443 4444 /* No extended attributes present */ 4445 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4446 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4447 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4448 new_extra_isize); 4449 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4450 return 0; 4451 } 4452 4453 /* try to expand with EAs present */ 4454 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4455 raw_inode, handle); 4456 } 4457 4458 /* 4459 * What we do here is to mark the in-core inode as clean with respect to inode 4460 * dirtiness (it may still be data-dirty). 4461 * This means that the in-core inode may be reaped by prune_icache 4462 * without having to perform any I/O. This is a very good thing, 4463 * because *any* task may call prune_icache - even ones which 4464 * have a transaction open against a different journal. 4465 * 4466 * Is this cheating? Not really. Sure, we haven't written the 4467 * inode out, but prune_icache isn't a user-visible syncing function. 4468 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4469 * we start and wait on commits. 4470 * 4471 * Is this efficient/effective? Well, we're being nice to the system 4472 * by cleaning up our inodes proactively so they can be reaped 4473 * without I/O. But we are potentially leaving up to five seconds' 4474 * worth of inodes floating about which prune_icache wants us to 4475 * write out. One way to fix that would be to get prune_icache() 4476 * to do a write_super() to free up some memory. It has the desired 4477 * effect. 4478 */ 4479 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4480 { 4481 struct ext4_iloc iloc; 4482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4483 static unsigned int mnt_count; 4484 int err, ret; 4485 4486 might_sleep(); 4487 err = ext4_reserve_inode_write(handle, inode, &iloc); 4488 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4489 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4490 /* 4491 * We need extra buffer credits since we may write into EA block 4492 * with this same handle. If journal_extend fails, then it will 4493 * only result in a minor loss of functionality for that inode. 4494 * If this is felt to be critical, then e2fsck should be run to 4495 * force a large enough s_min_extra_isize. 4496 */ 4497 if ((jbd2_journal_extend(handle, 4498 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4499 ret = ext4_expand_extra_isize(inode, 4500 sbi->s_want_extra_isize, 4501 iloc, handle); 4502 if (ret) { 4503 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4504 if (mnt_count != 4505 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4506 ext4_warning(inode->i_sb, __func__, 4507 "Unable to expand inode %lu. Delete" 4508 " some EAs or run e2fsck.", 4509 inode->i_ino); 4510 mnt_count = 4511 le16_to_cpu(sbi->s_es->s_mnt_count); 4512 } 4513 } 4514 } 4515 } 4516 if (!err) 4517 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4518 return err; 4519 } 4520 4521 /* 4522 * ext4_dirty_inode() is called from __mark_inode_dirty() 4523 * 4524 * We're really interested in the case where a file is being extended. 4525 * i_size has been changed by generic_commit_write() and we thus need 4526 * to include the updated inode in the current transaction. 4527 * 4528 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4529 * are allocated to the file. 4530 * 4531 * If the inode is marked synchronous, we don't honour that here - doing 4532 * so would cause a commit on atime updates, which we don't bother doing. 4533 * We handle synchronous inodes at the highest possible level. 4534 */ 4535 void ext4_dirty_inode(struct inode *inode) 4536 { 4537 handle_t *current_handle = ext4_journal_current_handle(); 4538 handle_t *handle; 4539 4540 handle = ext4_journal_start(inode, 2); 4541 if (IS_ERR(handle)) 4542 goto out; 4543 if (current_handle && 4544 current_handle->h_transaction != handle->h_transaction) { 4545 /* This task has a transaction open against a different fs */ 4546 printk(KERN_EMERG "%s: transactions do not match!\n", 4547 __func__); 4548 } else { 4549 jbd_debug(5, "marking dirty. outer handle=%p\n", 4550 current_handle); 4551 ext4_mark_inode_dirty(handle, inode); 4552 } 4553 ext4_journal_stop(handle); 4554 out: 4555 return; 4556 } 4557 4558 #if 0 4559 /* 4560 * Bind an inode's backing buffer_head into this transaction, to prevent 4561 * it from being flushed to disk early. Unlike 4562 * ext4_reserve_inode_write, this leaves behind no bh reference and 4563 * returns no iloc structure, so the caller needs to repeat the iloc 4564 * lookup to mark the inode dirty later. 4565 */ 4566 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4567 { 4568 struct ext4_iloc iloc; 4569 4570 int err = 0; 4571 if (handle) { 4572 err = ext4_get_inode_loc(inode, &iloc); 4573 if (!err) { 4574 BUFFER_TRACE(iloc.bh, "get_write_access"); 4575 err = jbd2_journal_get_write_access(handle, iloc.bh); 4576 if (!err) 4577 err = ext4_journal_dirty_metadata(handle, 4578 iloc.bh); 4579 brelse(iloc.bh); 4580 } 4581 } 4582 ext4_std_error(inode->i_sb, err); 4583 return err; 4584 } 4585 #endif 4586 4587 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4588 { 4589 journal_t *journal; 4590 handle_t *handle; 4591 int err; 4592 4593 /* 4594 * We have to be very careful here: changing a data block's 4595 * journaling status dynamically is dangerous. If we write a 4596 * data block to the journal, change the status and then delete 4597 * that block, we risk forgetting to revoke the old log record 4598 * from the journal and so a subsequent replay can corrupt data. 4599 * So, first we make sure that the journal is empty and that 4600 * nobody is changing anything. 4601 */ 4602 4603 journal = EXT4_JOURNAL(inode); 4604 if (is_journal_aborted(journal)) 4605 return -EROFS; 4606 4607 jbd2_journal_lock_updates(journal); 4608 jbd2_journal_flush(journal); 4609 4610 /* 4611 * OK, there are no updates running now, and all cached data is 4612 * synced to disk. We are now in a completely consistent state 4613 * which doesn't have anything in the journal, and we know that 4614 * no filesystem updates are running, so it is safe to modify 4615 * the inode's in-core data-journaling state flag now. 4616 */ 4617 4618 if (val) 4619 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4620 else 4621 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4622 ext4_set_aops(inode); 4623 4624 jbd2_journal_unlock_updates(journal); 4625 4626 /* Finally we can mark the inode as dirty. */ 4627 4628 handle = ext4_journal_start(inode, 1); 4629 if (IS_ERR(handle)) 4630 return PTR_ERR(handle); 4631 4632 err = ext4_mark_inode_dirty(handle, inode); 4633 handle->h_sync = 1; 4634 ext4_journal_stop(handle); 4635 ext4_std_error(inode->i_sb, err); 4636 4637 return err; 4638 } 4639 4640 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4641 { 4642 return !buffer_mapped(bh); 4643 } 4644 4645 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4646 { 4647 loff_t size; 4648 unsigned long len; 4649 int ret = -EINVAL; 4650 struct file *file = vma->vm_file; 4651 struct inode *inode = file->f_path.dentry->d_inode; 4652 struct address_space *mapping = inode->i_mapping; 4653 4654 /* 4655 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4656 * get i_mutex because we are already holding mmap_sem. 4657 */ 4658 down_read(&inode->i_alloc_sem); 4659 size = i_size_read(inode); 4660 if (page->mapping != mapping || size <= page_offset(page) 4661 || !PageUptodate(page)) { 4662 /* page got truncated from under us? */ 4663 goto out_unlock; 4664 } 4665 ret = 0; 4666 if (PageMappedToDisk(page)) 4667 goto out_unlock; 4668 4669 if (page->index == size >> PAGE_CACHE_SHIFT) 4670 len = size & ~PAGE_CACHE_MASK; 4671 else 4672 len = PAGE_CACHE_SIZE; 4673 4674 if (page_has_buffers(page)) { 4675 /* return if we have all the buffers mapped */ 4676 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4677 ext4_bh_unmapped)) 4678 goto out_unlock; 4679 } 4680 /* 4681 * OK, we need to fill the hole... Do write_begin write_end 4682 * to do block allocation/reservation.We are not holding 4683 * inode.i__mutex here. That allow * parallel write_begin, 4684 * write_end call. lock_page prevent this from happening 4685 * on the same page though 4686 */ 4687 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4688 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL); 4689 if (ret < 0) 4690 goto out_unlock; 4691 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4692 len, len, page, NULL); 4693 if (ret < 0) 4694 goto out_unlock; 4695 ret = 0; 4696 out_unlock: 4697 up_read(&inode->i_alloc_sem); 4698 return ret; 4699 } 4700