xref: /linux/fs/ext4/inode.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43 #include <linux/ratelimit.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "ext4_extents.h"
49 
50 #include <trace/events/ext4.h>
51 
52 #define MPAGE_DA_EXTENT_TAIL 0x01
53 
54 static inline int ext4_begin_ordered_truncate(struct inode *inode,
55 					      loff_t new_size)
56 {
57 	trace_ext4_begin_ordered_truncate(inode, new_size);
58 	/*
59 	 * If jinode is zero, then we never opened the file for
60 	 * writing, so there's no need to call
61 	 * jbd2_journal_begin_ordered_truncate() since there's no
62 	 * outstanding writes we need to flush.
63 	 */
64 	if (!EXT4_I(inode)->jinode)
65 		return 0;
66 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
67 						   EXT4_I(inode)->jinode,
68 						   new_size);
69 }
70 
71 static void ext4_invalidatepage(struct page *page, unsigned long offset);
72 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
73 				   struct buffer_head *bh_result, int create);
74 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
75 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
76 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
77 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
78 
79 /*
80  * Test whether an inode is a fast symlink.
81  */
82 static int ext4_inode_is_fast_symlink(struct inode *inode)
83 {
84 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
85 		(inode->i_sb->s_blocksize >> 9) : 0;
86 
87 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
88 }
89 
90 /*
91  * Work out how many blocks we need to proceed with the next chunk of a
92  * truncate transaction.
93  */
94 static unsigned long blocks_for_truncate(struct inode *inode)
95 {
96 	ext4_lblk_t needed;
97 
98 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
99 
100 	/* Give ourselves just enough room to cope with inodes in which
101 	 * i_blocks is corrupt: we've seen disk corruptions in the past
102 	 * which resulted in random data in an inode which looked enough
103 	 * like a regular file for ext4 to try to delete it.  Things
104 	 * will go a bit crazy if that happens, but at least we should
105 	 * try not to panic the whole kernel. */
106 	if (needed < 2)
107 		needed = 2;
108 
109 	/* But we need to bound the transaction so we don't overflow the
110 	 * journal. */
111 	if (needed > EXT4_MAX_TRANS_DATA)
112 		needed = EXT4_MAX_TRANS_DATA;
113 
114 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
115 }
116 
117 /*
118  * Truncate transactions can be complex and absolutely huge.  So we need to
119  * be able to restart the transaction at a conventient checkpoint to make
120  * sure we don't overflow the journal.
121  *
122  * start_transaction gets us a new handle for a truncate transaction,
123  * and extend_transaction tries to extend the existing one a bit.  If
124  * extend fails, we need to propagate the failure up and restart the
125  * transaction in the top-level truncate loop. --sct
126  */
127 static handle_t *start_transaction(struct inode *inode)
128 {
129 	handle_t *result;
130 
131 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
132 	if (!IS_ERR(result))
133 		return result;
134 
135 	ext4_std_error(inode->i_sb, PTR_ERR(result));
136 	return result;
137 }
138 
139 /*
140  * Try to extend this transaction for the purposes of truncation.
141  *
142  * Returns 0 if we managed to create more room.  If we can't create more
143  * room, and the transaction must be restarted we return 1.
144  */
145 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
146 {
147 	if (!ext4_handle_valid(handle))
148 		return 0;
149 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
150 		return 0;
151 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
152 		return 0;
153 	return 1;
154 }
155 
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 				 int nblocks)
163 {
164 	int ret;
165 
166 	/*
167 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 	 * moment, get_block can be called only for blocks inside i_size since
169 	 * page cache has been already dropped and writes are blocked by
170 	 * i_mutex. So we can safely drop the i_data_sem here.
171 	 */
172 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	up_write(&EXT4_I(inode)->i_data_sem);
175 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
176 	down_write(&EXT4_I(inode)->i_data_sem);
177 	ext4_discard_preallocations(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 	handle_t *handle;
188 	int err;
189 
190 	trace_ext4_evict_inode(inode);
191 	if (inode->i_nlink) {
192 		truncate_inode_pages(&inode->i_data, 0);
193 		goto no_delete;
194 	}
195 
196 	if (!is_bad_inode(inode))
197 		dquot_initialize(inode);
198 
199 	if (ext4_should_order_data(inode))
200 		ext4_begin_ordered_truncate(inode, 0);
201 	truncate_inode_pages(&inode->i_data, 0);
202 
203 	if (is_bad_inode(inode))
204 		goto no_delete;
205 
206 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207 	if (IS_ERR(handle)) {
208 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 		/*
210 		 * If we're going to skip the normal cleanup, we still need to
211 		 * make sure that the in-core orphan linked list is properly
212 		 * cleaned up.
213 		 */
214 		ext4_orphan_del(NULL, inode);
215 		goto no_delete;
216 	}
217 
218 	if (IS_SYNC(inode))
219 		ext4_handle_sync(handle);
220 	inode->i_size = 0;
221 	err = ext4_mark_inode_dirty(handle, inode);
222 	if (err) {
223 		ext4_warning(inode->i_sb,
224 			     "couldn't mark inode dirty (err %d)", err);
225 		goto stop_handle;
226 	}
227 	if (inode->i_blocks)
228 		ext4_truncate(inode);
229 
230 	/*
231 	 * ext4_ext_truncate() doesn't reserve any slop when it
232 	 * restarts journal transactions; therefore there may not be
233 	 * enough credits left in the handle to remove the inode from
234 	 * the orphan list and set the dtime field.
235 	 */
236 	if (!ext4_handle_has_enough_credits(handle, 3)) {
237 		err = ext4_journal_extend(handle, 3);
238 		if (err > 0)
239 			err = ext4_journal_restart(handle, 3);
240 		if (err != 0) {
241 			ext4_warning(inode->i_sb,
242 				     "couldn't extend journal (err %d)", err);
243 		stop_handle:
244 			ext4_journal_stop(handle);
245 			ext4_orphan_del(NULL, inode);
246 			goto no_delete;
247 		}
248 	}
249 
250 	/*
251 	 * Kill off the orphan record which ext4_truncate created.
252 	 * AKPM: I think this can be inside the above `if'.
253 	 * Note that ext4_orphan_del() has to be able to cope with the
254 	 * deletion of a non-existent orphan - this is because we don't
255 	 * know if ext4_truncate() actually created an orphan record.
256 	 * (Well, we could do this if we need to, but heck - it works)
257 	 */
258 	ext4_orphan_del(handle, inode);
259 	EXT4_I(inode)->i_dtime	= get_seconds();
260 
261 	/*
262 	 * One subtle ordering requirement: if anything has gone wrong
263 	 * (transaction abort, IO errors, whatever), then we can still
264 	 * do these next steps (the fs will already have been marked as
265 	 * having errors), but we can't free the inode if the mark_dirty
266 	 * fails.
267 	 */
268 	if (ext4_mark_inode_dirty(handle, inode))
269 		/* If that failed, just do the required in-core inode clear. */
270 		ext4_clear_inode(inode);
271 	else
272 		ext4_free_inode(handle, inode);
273 	ext4_journal_stop(handle);
274 	return;
275 no_delete:
276 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
277 }
278 
279 typedef struct {
280 	__le32	*p;
281 	__le32	key;
282 	struct buffer_head *bh;
283 } Indirect;
284 
285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
286 {
287 	p->key = *(p->p = v);
288 	p->bh = bh;
289 }
290 
291 /**
292  *	ext4_block_to_path - parse the block number into array of offsets
293  *	@inode: inode in question (we are only interested in its superblock)
294  *	@i_block: block number to be parsed
295  *	@offsets: array to store the offsets in
296  *	@boundary: set this non-zero if the referred-to block is likely to be
297  *	       followed (on disk) by an indirect block.
298  *
299  *	To store the locations of file's data ext4 uses a data structure common
300  *	for UNIX filesystems - tree of pointers anchored in the inode, with
301  *	data blocks at leaves and indirect blocks in intermediate nodes.
302  *	This function translates the block number into path in that tree -
303  *	return value is the path length and @offsets[n] is the offset of
304  *	pointer to (n+1)th node in the nth one. If @block is out of range
305  *	(negative or too large) warning is printed and zero returned.
306  *
307  *	Note: function doesn't find node addresses, so no IO is needed. All
308  *	we need to know is the capacity of indirect blocks (taken from the
309  *	inode->i_sb).
310  */
311 
312 /*
313  * Portability note: the last comparison (check that we fit into triple
314  * indirect block) is spelled differently, because otherwise on an
315  * architecture with 32-bit longs and 8Kb pages we might get into trouble
316  * if our filesystem had 8Kb blocks. We might use long long, but that would
317  * kill us on x86. Oh, well, at least the sign propagation does not matter -
318  * i_block would have to be negative in the very beginning, so we would not
319  * get there at all.
320  */
321 
322 static int ext4_block_to_path(struct inode *inode,
323 			      ext4_lblk_t i_block,
324 			      ext4_lblk_t offsets[4], int *boundary)
325 {
326 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
327 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
328 	const long direct_blocks = EXT4_NDIR_BLOCKS,
329 		indirect_blocks = ptrs,
330 		double_blocks = (1 << (ptrs_bits * 2));
331 	int n = 0;
332 	int final = 0;
333 
334 	if (i_block < direct_blocks) {
335 		offsets[n++] = i_block;
336 		final = direct_blocks;
337 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
338 		offsets[n++] = EXT4_IND_BLOCK;
339 		offsets[n++] = i_block;
340 		final = ptrs;
341 	} else if ((i_block -= indirect_blocks) < double_blocks) {
342 		offsets[n++] = EXT4_DIND_BLOCK;
343 		offsets[n++] = i_block >> ptrs_bits;
344 		offsets[n++] = i_block & (ptrs - 1);
345 		final = ptrs;
346 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 		offsets[n++] = EXT4_TIND_BLOCK;
348 		offsets[n++] = i_block >> (ptrs_bits * 2);
349 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 		offsets[n++] = i_block & (ptrs - 1);
351 		final = ptrs;
352 	} else {
353 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
354 			     i_block + direct_blocks +
355 			     indirect_blocks + double_blocks, inode->i_ino);
356 	}
357 	if (boundary)
358 		*boundary = final - 1 - (i_block & (ptrs - 1));
359 	return n;
360 }
361 
362 static int __ext4_check_blockref(const char *function, unsigned int line,
363 				 struct inode *inode,
364 				 __le32 *p, unsigned int max)
365 {
366 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
367 	__le32 *bref = p;
368 	unsigned int blk;
369 
370 	while (bref < p+max) {
371 		blk = le32_to_cpu(*bref++);
372 		if (blk &&
373 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
374 						    blk, 1))) {
375 			es->s_last_error_block = cpu_to_le64(blk);
376 			ext4_error_inode(inode, function, line, blk,
377 					 "invalid block");
378 			return -EIO;
379 		}
380 	}
381 	return 0;
382 }
383 
384 
385 #define ext4_check_indirect_blockref(inode, bh)                         \
386 	__ext4_check_blockref(__func__, __LINE__, inode,		\
387 			      (__le32 *)(bh)->b_data,			\
388 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
389 
390 #define ext4_check_inode_blockref(inode)                                \
391 	__ext4_check_blockref(__func__, __LINE__, inode,		\
392 			      EXT4_I(inode)->i_data,			\
393 			      EXT4_NDIR_BLOCKS)
394 
395 /**
396  *	ext4_get_branch - read the chain of indirect blocks leading to data
397  *	@inode: inode in question
398  *	@depth: depth of the chain (1 - direct pointer, etc.)
399  *	@offsets: offsets of pointers in inode/indirect blocks
400  *	@chain: place to store the result
401  *	@err: here we store the error value
402  *
403  *	Function fills the array of triples <key, p, bh> and returns %NULL
404  *	if everything went OK or the pointer to the last filled triple
405  *	(incomplete one) otherwise. Upon the return chain[i].key contains
406  *	the number of (i+1)-th block in the chain (as it is stored in memory,
407  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
408  *	number (it points into struct inode for i==0 and into the bh->b_data
409  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
410  *	block for i>0 and NULL for i==0. In other words, it holds the block
411  *	numbers of the chain, addresses they were taken from (and where we can
412  *	verify that chain did not change) and buffer_heads hosting these
413  *	numbers.
414  *
415  *	Function stops when it stumbles upon zero pointer (absent block)
416  *		(pointer to last triple returned, *@err == 0)
417  *	or when it gets an IO error reading an indirect block
418  *		(ditto, *@err == -EIO)
419  *	or when it reads all @depth-1 indirect blocks successfully and finds
420  *	the whole chain, all way to the data (returns %NULL, *err == 0).
421  *
422  *      Need to be called with
423  *      down_read(&EXT4_I(inode)->i_data_sem)
424  */
425 static Indirect *ext4_get_branch(struct inode *inode, int depth,
426 				 ext4_lblk_t  *offsets,
427 				 Indirect chain[4], int *err)
428 {
429 	struct super_block *sb = inode->i_sb;
430 	Indirect *p = chain;
431 	struct buffer_head *bh;
432 
433 	*err = 0;
434 	/* i_data is not going away, no lock needed */
435 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
436 	if (!p->key)
437 		goto no_block;
438 	while (--depth) {
439 		bh = sb_getblk(sb, le32_to_cpu(p->key));
440 		if (unlikely(!bh))
441 			goto failure;
442 
443 		if (!bh_uptodate_or_lock(bh)) {
444 			if (bh_submit_read(bh) < 0) {
445 				put_bh(bh);
446 				goto failure;
447 			}
448 			/* validate block references */
449 			if (ext4_check_indirect_blockref(inode, bh)) {
450 				put_bh(bh);
451 				goto failure;
452 			}
453 		}
454 
455 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
456 		/* Reader: end */
457 		if (!p->key)
458 			goto no_block;
459 	}
460 	return NULL;
461 
462 failure:
463 	*err = -EIO;
464 no_block:
465 	return p;
466 }
467 
468 /**
469  *	ext4_find_near - find a place for allocation with sufficient locality
470  *	@inode: owner
471  *	@ind: descriptor of indirect block.
472  *
473  *	This function returns the preferred place for block allocation.
474  *	It is used when heuristic for sequential allocation fails.
475  *	Rules are:
476  *	  + if there is a block to the left of our position - allocate near it.
477  *	  + if pointer will live in indirect block - allocate near that block.
478  *	  + if pointer will live in inode - allocate in the same
479  *	    cylinder group.
480  *
481  * In the latter case we colour the starting block by the callers PID to
482  * prevent it from clashing with concurrent allocations for a different inode
483  * in the same block group.   The PID is used here so that functionally related
484  * files will be close-by on-disk.
485  *
486  *	Caller must make sure that @ind is valid and will stay that way.
487  */
488 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
489 {
490 	struct ext4_inode_info *ei = EXT4_I(inode);
491 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
492 	__le32 *p;
493 	ext4_fsblk_t bg_start;
494 	ext4_fsblk_t last_block;
495 	ext4_grpblk_t colour;
496 	ext4_group_t block_group;
497 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
498 
499 	/* Try to find previous block */
500 	for (p = ind->p - 1; p >= start; p--) {
501 		if (*p)
502 			return le32_to_cpu(*p);
503 	}
504 
505 	/* No such thing, so let's try location of indirect block */
506 	if (ind->bh)
507 		return ind->bh->b_blocknr;
508 
509 	/*
510 	 * It is going to be referred to from the inode itself? OK, just put it
511 	 * into the same cylinder group then.
512 	 */
513 	block_group = ei->i_block_group;
514 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
515 		block_group &= ~(flex_size-1);
516 		if (S_ISREG(inode->i_mode))
517 			block_group++;
518 	}
519 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
520 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
521 
522 	/*
523 	 * If we are doing delayed allocation, we don't need take
524 	 * colour into account.
525 	 */
526 	if (test_opt(inode->i_sb, DELALLOC))
527 		return bg_start;
528 
529 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
530 		colour = (current->pid % 16) *
531 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
532 	else
533 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
534 	return bg_start + colour;
535 }
536 
537 /**
538  *	ext4_find_goal - find a preferred place for allocation.
539  *	@inode: owner
540  *	@block:  block we want
541  *	@partial: pointer to the last triple within a chain
542  *
543  *	Normally this function find the preferred place for block allocation,
544  *	returns it.
545  *	Because this is only used for non-extent files, we limit the block nr
546  *	to 32 bits.
547  */
548 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
549 				   Indirect *partial)
550 {
551 	ext4_fsblk_t goal;
552 
553 	/*
554 	 * XXX need to get goal block from mballoc's data structures
555 	 */
556 
557 	goal = ext4_find_near(inode, partial);
558 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
559 	return goal;
560 }
561 
562 /**
563  *	ext4_blks_to_allocate - Look up the block map and count the number
564  *	of direct blocks need to be allocated for the given branch.
565  *
566  *	@branch: chain of indirect blocks
567  *	@k: number of blocks need for indirect blocks
568  *	@blks: number of data blocks to be mapped.
569  *	@blocks_to_boundary:  the offset in the indirect block
570  *
571  *	return the total number of blocks to be allocate, including the
572  *	direct and indirect blocks.
573  */
574 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
575 				 int blocks_to_boundary)
576 {
577 	unsigned int count = 0;
578 
579 	/*
580 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
581 	 * then it's clear blocks on that path have not allocated
582 	 */
583 	if (k > 0) {
584 		/* right now we don't handle cross boundary allocation */
585 		if (blks < blocks_to_boundary + 1)
586 			count += blks;
587 		else
588 			count += blocks_to_boundary + 1;
589 		return count;
590 	}
591 
592 	count++;
593 	while (count < blks && count <= blocks_to_boundary &&
594 		le32_to_cpu(*(branch[0].p + count)) == 0) {
595 		count++;
596 	}
597 	return count;
598 }
599 
600 /**
601  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
602  *	@handle: handle for this transaction
603  *	@inode: inode which needs allocated blocks
604  *	@iblock: the logical block to start allocated at
605  *	@goal: preferred physical block of allocation
606  *	@indirect_blks: the number of blocks need to allocate for indirect
607  *			blocks
608  *	@blks: number of desired blocks
609  *	@new_blocks: on return it will store the new block numbers for
610  *	the indirect blocks(if needed) and the first direct block,
611  *	@err: on return it will store the error code
612  *
613  *	This function will return the number of blocks allocated as
614  *	requested by the passed-in parameters.
615  */
616 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
617 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
618 			     int indirect_blks, int blks,
619 			     ext4_fsblk_t new_blocks[4], int *err)
620 {
621 	struct ext4_allocation_request ar;
622 	int target, i;
623 	unsigned long count = 0, blk_allocated = 0;
624 	int index = 0;
625 	ext4_fsblk_t current_block = 0;
626 	int ret = 0;
627 
628 	/*
629 	 * Here we try to allocate the requested multiple blocks at once,
630 	 * on a best-effort basis.
631 	 * To build a branch, we should allocate blocks for
632 	 * the indirect blocks(if not allocated yet), and at least
633 	 * the first direct block of this branch.  That's the
634 	 * minimum number of blocks need to allocate(required)
635 	 */
636 	/* first we try to allocate the indirect blocks */
637 	target = indirect_blks;
638 	while (target > 0) {
639 		count = target;
640 		/* allocating blocks for indirect blocks and direct blocks */
641 		current_block = ext4_new_meta_blocks(handle, inode,
642 							goal, &count, err);
643 		if (*err)
644 			goto failed_out;
645 
646 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
647 			EXT4_ERROR_INODE(inode,
648 					 "current_block %llu + count %lu > %d!",
649 					 current_block, count,
650 					 EXT4_MAX_BLOCK_FILE_PHYS);
651 			*err = -EIO;
652 			goto failed_out;
653 		}
654 
655 		target -= count;
656 		/* allocate blocks for indirect blocks */
657 		while (index < indirect_blks && count) {
658 			new_blocks[index++] = current_block++;
659 			count--;
660 		}
661 		if (count > 0) {
662 			/*
663 			 * save the new block number
664 			 * for the first direct block
665 			 */
666 			new_blocks[index] = current_block;
667 			printk(KERN_INFO "%s returned more blocks than "
668 						"requested\n", __func__);
669 			WARN_ON(1);
670 			break;
671 		}
672 	}
673 
674 	target = blks - count ;
675 	blk_allocated = count;
676 	if (!target)
677 		goto allocated;
678 	/* Now allocate data blocks */
679 	memset(&ar, 0, sizeof(ar));
680 	ar.inode = inode;
681 	ar.goal = goal;
682 	ar.len = target;
683 	ar.logical = iblock;
684 	if (S_ISREG(inode->i_mode))
685 		/* enable in-core preallocation only for regular files */
686 		ar.flags = EXT4_MB_HINT_DATA;
687 
688 	current_block = ext4_mb_new_blocks(handle, &ar, err);
689 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
690 		EXT4_ERROR_INODE(inode,
691 				 "current_block %llu + ar.len %d > %d!",
692 				 current_block, ar.len,
693 				 EXT4_MAX_BLOCK_FILE_PHYS);
694 		*err = -EIO;
695 		goto failed_out;
696 	}
697 
698 	if (*err && (target == blks)) {
699 		/*
700 		 * if the allocation failed and we didn't allocate
701 		 * any blocks before
702 		 */
703 		goto failed_out;
704 	}
705 	if (!*err) {
706 		if (target == blks) {
707 			/*
708 			 * save the new block number
709 			 * for the first direct block
710 			 */
711 			new_blocks[index] = current_block;
712 		}
713 		blk_allocated += ar.len;
714 	}
715 allocated:
716 	/* total number of blocks allocated for direct blocks */
717 	ret = blk_allocated;
718 	*err = 0;
719 	return ret;
720 failed_out:
721 	for (i = 0; i < index; i++)
722 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
723 	return ret;
724 }
725 
726 /**
727  *	ext4_alloc_branch - allocate and set up a chain of blocks.
728  *	@handle: handle for this transaction
729  *	@inode: owner
730  *	@indirect_blks: number of allocated indirect blocks
731  *	@blks: number of allocated direct blocks
732  *	@goal: preferred place for allocation
733  *	@offsets: offsets (in the blocks) to store the pointers to next.
734  *	@branch: place to store the chain in.
735  *
736  *	This function allocates blocks, zeroes out all but the last one,
737  *	links them into chain and (if we are synchronous) writes them to disk.
738  *	In other words, it prepares a branch that can be spliced onto the
739  *	inode. It stores the information about that chain in the branch[], in
740  *	the same format as ext4_get_branch() would do. We are calling it after
741  *	we had read the existing part of chain and partial points to the last
742  *	triple of that (one with zero ->key). Upon the exit we have the same
743  *	picture as after the successful ext4_get_block(), except that in one
744  *	place chain is disconnected - *branch->p is still zero (we did not
745  *	set the last link), but branch->key contains the number that should
746  *	be placed into *branch->p to fill that gap.
747  *
748  *	If allocation fails we free all blocks we've allocated (and forget
749  *	their buffer_heads) and return the error value the from failed
750  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751  *	as described above and return 0.
752  */
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 			     ext4_lblk_t iblock, int indirect_blks,
755 			     int *blks, ext4_fsblk_t goal,
756 			     ext4_lblk_t *offsets, Indirect *branch)
757 {
758 	int blocksize = inode->i_sb->s_blocksize;
759 	int i, n = 0;
760 	int err = 0;
761 	struct buffer_head *bh;
762 	int num;
763 	ext4_fsblk_t new_blocks[4];
764 	ext4_fsblk_t current_block;
765 
766 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 				*blks, new_blocks, &err);
768 	if (err)
769 		return err;
770 
771 	branch[0].key = cpu_to_le32(new_blocks[0]);
772 	/*
773 	 * metadata blocks and data blocks are allocated.
774 	 */
775 	for (n = 1; n <= indirect_blks;  n++) {
776 		/*
777 		 * Get buffer_head for parent block, zero it out
778 		 * and set the pointer to new one, then send
779 		 * parent to disk.
780 		 */
781 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 		if (unlikely(!bh)) {
783 			err = -EIO;
784 			goto failed;
785 		}
786 
787 		branch[n].bh = bh;
788 		lock_buffer(bh);
789 		BUFFER_TRACE(bh, "call get_create_access");
790 		err = ext4_journal_get_create_access(handle, bh);
791 		if (err) {
792 			/* Don't brelse(bh) here; it's done in
793 			 * ext4_journal_forget() below */
794 			unlock_buffer(bh);
795 			goto failed;
796 		}
797 
798 		memset(bh->b_data, 0, blocksize);
799 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
800 		branch[n].key = cpu_to_le32(new_blocks[n]);
801 		*branch[n].p = branch[n].key;
802 		if (n == indirect_blks) {
803 			current_block = new_blocks[n];
804 			/*
805 			 * End of chain, update the last new metablock of
806 			 * the chain to point to the new allocated
807 			 * data blocks numbers
808 			 */
809 			for (i = 1; i < num; i++)
810 				*(branch[n].p + i) = cpu_to_le32(++current_block);
811 		}
812 		BUFFER_TRACE(bh, "marking uptodate");
813 		set_buffer_uptodate(bh);
814 		unlock_buffer(bh);
815 
816 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
817 		err = ext4_handle_dirty_metadata(handle, inode, bh);
818 		if (err)
819 			goto failed;
820 	}
821 	*blks = num;
822 	return err;
823 failed:
824 	/* Allocation failed, free what we already allocated */
825 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
826 	for (i = 1; i <= n ; i++) {
827 		/*
828 		 * branch[i].bh is newly allocated, so there is no
829 		 * need to revoke the block, which is why we don't
830 		 * need to set EXT4_FREE_BLOCKS_METADATA.
831 		 */
832 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
833 				 EXT4_FREE_BLOCKS_FORGET);
834 	}
835 	for (i = n+1; i < indirect_blks; i++)
836 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
837 
838 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
839 
840 	return err;
841 }
842 
843 /**
844  * ext4_splice_branch - splice the allocated branch onto inode.
845  * @handle: handle for this transaction
846  * @inode: owner
847  * @block: (logical) number of block we are adding
848  * @chain: chain of indirect blocks (with a missing link - see
849  *	ext4_alloc_branch)
850  * @where: location of missing link
851  * @num:   number of indirect blocks we are adding
852  * @blks:  number of direct blocks we are adding
853  *
854  * This function fills the missing link and does all housekeeping needed in
855  * inode (->i_blocks, etc.). In case of success we end up with the full
856  * chain to new block and return 0.
857  */
858 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
859 			      ext4_lblk_t block, Indirect *where, int num,
860 			      int blks)
861 {
862 	int i;
863 	int err = 0;
864 	ext4_fsblk_t current_block;
865 
866 	/*
867 	 * If we're splicing into a [td]indirect block (as opposed to the
868 	 * inode) then we need to get write access to the [td]indirect block
869 	 * before the splice.
870 	 */
871 	if (where->bh) {
872 		BUFFER_TRACE(where->bh, "get_write_access");
873 		err = ext4_journal_get_write_access(handle, where->bh);
874 		if (err)
875 			goto err_out;
876 	}
877 	/* That's it */
878 
879 	*where->p = where->key;
880 
881 	/*
882 	 * Update the host buffer_head or inode to point to more just allocated
883 	 * direct blocks blocks
884 	 */
885 	if (num == 0 && blks > 1) {
886 		current_block = le32_to_cpu(where->key) + 1;
887 		for (i = 1; i < blks; i++)
888 			*(where->p + i) = cpu_to_le32(current_block++);
889 	}
890 
891 	/* We are done with atomic stuff, now do the rest of housekeeping */
892 	/* had we spliced it onto indirect block? */
893 	if (where->bh) {
894 		/*
895 		 * If we spliced it onto an indirect block, we haven't
896 		 * altered the inode.  Note however that if it is being spliced
897 		 * onto an indirect block at the very end of the file (the
898 		 * file is growing) then we *will* alter the inode to reflect
899 		 * the new i_size.  But that is not done here - it is done in
900 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
901 		 */
902 		jbd_debug(5, "splicing indirect only\n");
903 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
904 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
905 		if (err)
906 			goto err_out;
907 	} else {
908 		/*
909 		 * OK, we spliced it into the inode itself on a direct block.
910 		 */
911 		ext4_mark_inode_dirty(handle, inode);
912 		jbd_debug(5, "splicing direct\n");
913 	}
914 	return err;
915 
916 err_out:
917 	for (i = 1; i <= num; i++) {
918 		/*
919 		 * branch[i].bh is newly allocated, so there is no
920 		 * need to revoke the block, which is why we don't
921 		 * need to set EXT4_FREE_BLOCKS_METADATA.
922 		 */
923 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
924 				 EXT4_FREE_BLOCKS_FORGET);
925 	}
926 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
927 			 blks, 0);
928 
929 	return err;
930 }
931 
932 /*
933  * The ext4_ind_map_blocks() function handles non-extents inodes
934  * (i.e., using the traditional indirect/double-indirect i_blocks
935  * scheme) for ext4_map_blocks().
936  *
937  * Allocation strategy is simple: if we have to allocate something, we will
938  * have to go the whole way to leaf. So let's do it before attaching anything
939  * to tree, set linkage between the newborn blocks, write them if sync is
940  * required, recheck the path, free and repeat if check fails, otherwise
941  * set the last missing link (that will protect us from any truncate-generated
942  * removals - all blocks on the path are immune now) and possibly force the
943  * write on the parent block.
944  * That has a nice additional property: no special recovery from the failed
945  * allocations is needed - we simply release blocks and do not touch anything
946  * reachable from inode.
947  *
948  * `handle' can be NULL if create == 0.
949  *
950  * return > 0, # of blocks mapped or allocated.
951  * return = 0, if plain lookup failed.
952  * return < 0, error case.
953  *
954  * The ext4_ind_get_blocks() function should be called with
955  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
956  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
957  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
958  * blocks.
959  */
960 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
961 			       struct ext4_map_blocks *map,
962 			       int flags)
963 {
964 	int err = -EIO;
965 	ext4_lblk_t offsets[4];
966 	Indirect chain[4];
967 	Indirect *partial;
968 	ext4_fsblk_t goal;
969 	int indirect_blks;
970 	int blocks_to_boundary = 0;
971 	int depth;
972 	int count = 0;
973 	ext4_fsblk_t first_block = 0;
974 
975 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
976 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
977 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
978 				   &blocks_to_boundary);
979 
980 	if (depth == 0)
981 		goto out;
982 
983 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
984 
985 	/* Simplest case - block found, no allocation needed */
986 	if (!partial) {
987 		first_block = le32_to_cpu(chain[depth - 1].key);
988 		count++;
989 		/*map more blocks*/
990 		while (count < map->m_len && count <= blocks_to_boundary) {
991 			ext4_fsblk_t blk;
992 
993 			blk = le32_to_cpu(*(chain[depth-1].p + count));
994 
995 			if (blk == first_block + count)
996 				count++;
997 			else
998 				break;
999 		}
1000 		goto got_it;
1001 	}
1002 
1003 	/* Next simple case - plain lookup or failed read of indirect block */
1004 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1005 		goto cleanup;
1006 
1007 	/*
1008 	 * Okay, we need to do block allocation.
1009 	*/
1010 	goal = ext4_find_goal(inode, map->m_lblk, partial);
1011 
1012 	/* the number of blocks need to allocate for [d,t]indirect blocks */
1013 	indirect_blks = (chain + depth) - partial - 1;
1014 
1015 	/*
1016 	 * Next look up the indirect map to count the totoal number of
1017 	 * direct blocks to allocate for this branch.
1018 	 */
1019 	count = ext4_blks_to_allocate(partial, indirect_blks,
1020 				      map->m_len, blocks_to_boundary);
1021 	/*
1022 	 * Block out ext4_truncate while we alter the tree
1023 	 */
1024 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1025 				&count, goal,
1026 				offsets + (partial - chain), partial);
1027 
1028 	/*
1029 	 * The ext4_splice_branch call will free and forget any buffers
1030 	 * on the new chain if there is a failure, but that risks using
1031 	 * up transaction credits, especially for bitmaps where the
1032 	 * credits cannot be returned.  Can we handle this somehow?  We
1033 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1034 	 */
1035 	if (!err)
1036 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1037 					 partial, indirect_blks, count);
1038 	if (err)
1039 		goto cleanup;
1040 
1041 	map->m_flags |= EXT4_MAP_NEW;
1042 
1043 	ext4_update_inode_fsync_trans(handle, inode, 1);
1044 got_it:
1045 	map->m_flags |= EXT4_MAP_MAPPED;
1046 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1047 	map->m_len = count;
1048 	if (count > blocks_to_boundary)
1049 		map->m_flags |= EXT4_MAP_BOUNDARY;
1050 	err = count;
1051 	/* Clean up and exit */
1052 	partial = chain + depth - 1;	/* the whole chain */
1053 cleanup:
1054 	while (partial > chain) {
1055 		BUFFER_TRACE(partial->bh, "call brelse");
1056 		brelse(partial->bh);
1057 		partial--;
1058 	}
1059 out:
1060 	return err;
1061 }
1062 
1063 #ifdef CONFIG_QUOTA
1064 qsize_t *ext4_get_reserved_space(struct inode *inode)
1065 {
1066 	return &EXT4_I(inode)->i_reserved_quota;
1067 }
1068 #endif
1069 
1070 /*
1071  * Calculate the number of metadata blocks need to reserve
1072  * to allocate a new block at @lblocks for non extent file based file
1073  */
1074 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1075 					      sector_t lblock)
1076 {
1077 	struct ext4_inode_info *ei = EXT4_I(inode);
1078 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1079 	int blk_bits;
1080 
1081 	if (lblock < EXT4_NDIR_BLOCKS)
1082 		return 0;
1083 
1084 	lblock -= EXT4_NDIR_BLOCKS;
1085 
1086 	if (ei->i_da_metadata_calc_len &&
1087 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1088 		ei->i_da_metadata_calc_len++;
1089 		return 0;
1090 	}
1091 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1092 	ei->i_da_metadata_calc_len = 1;
1093 	blk_bits = order_base_2(lblock);
1094 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1095 }
1096 
1097 /*
1098  * Calculate the number of metadata blocks need to reserve
1099  * to allocate a block located at @lblock
1100  */
1101 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1102 {
1103 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1104 		return ext4_ext_calc_metadata_amount(inode, lblock);
1105 
1106 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1107 }
1108 
1109 /*
1110  * Called with i_data_sem down, which is important since we can call
1111  * ext4_discard_preallocations() from here.
1112  */
1113 void ext4_da_update_reserve_space(struct inode *inode,
1114 					int used, int quota_claim)
1115 {
1116 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1117 	struct ext4_inode_info *ei = EXT4_I(inode);
1118 
1119 	spin_lock(&ei->i_block_reservation_lock);
1120 	trace_ext4_da_update_reserve_space(inode, used);
1121 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1122 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1123 			 "with only %d reserved data blocks\n",
1124 			 __func__, inode->i_ino, used,
1125 			 ei->i_reserved_data_blocks);
1126 		WARN_ON(1);
1127 		used = ei->i_reserved_data_blocks;
1128 	}
1129 
1130 	/* Update per-inode reservations */
1131 	ei->i_reserved_data_blocks -= used;
1132 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1133 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1134 			   used + ei->i_allocated_meta_blocks);
1135 	ei->i_allocated_meta_blocks = 0;
1136 
1137 	if (ei->i_reserved_data_blocks == 0) {
1138 		/*
1139 		 * We can release all of the reserved metadata blocks
1140 		 * only when we have written all of the delayed
1141 		 * allocation blocks.
1142 		 */
1143 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1144 				   ei->i_reserved_meta_blocks);
1145 		ei->i_reserved_meta_blocks = 0;
1146 		ei->i_da_metadata_calc_len = 0;
1147 	}
1148 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1149 
1150 	/* Update quota subsystem for data blocks */
1151 	if (quota_claim)
1152 		dquot_claim_block(inode, used);
1153 	else {
1154 		/*
1155 		 * We did fallocate with an offset that is already delayed
1156 		 * allocated. So on delayed allocated writeback we should
1157 		 * not re-claim the quota for fallocated blocks.
1158 		 */
1159 		dquot_release_reservation_block(inode, used);
1160 	}
1161 
1162 	/*
1163 	 * If we have done all the pending block allocations and if
1164 	 * there aren't any writers on the inode, we can discard the
1165 	 * inode's preallocations.
1166 	 */
1167 	if ((ei->i_reserved_data_blocks == 0) &&
1168 	    (atomic_read(&inode->i_writecount) == 0))
1169 		ext4_discard_preallocations(inode);
1170 }
1171 
1172 static int __check_block_validity(struct inode *inode, const char *func,
1173 				unsigned int line,
1174 				struct ext4_map_blocks *map)
1175 {
1176 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1177 				   map->m_len)) {
1178 		ext4_error_inode(inode, func, line, map->m_pblk,
1179 				 "lblock %lu mapped to illegal pblock "
1180 				 "(length %d)", (unsigned long) map->m_lblk,
1181 				 map->m_len);
1182 		return -EIO;
1183 	}
1184 	return 0;
1185 }
1186 
1187 #define check_block_validity(inode, map)	\
1188 	__check_block_validity((inode), __func__, __LINE__, (map))
1189 
1190 /*
1191  * Return the number of contiguous dirty pages in a given inode
1192  * starting at page frame idx.
1193  */
1194 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1195 				    unsigned int max_pages)
1196 {
1197 	struct address_space *mapping = inode->i_mapping;
1198 	pgoff_t	index;
1199 	struct pagevec pvec;
1200 	pgoff_t num = 0;
1201 	int i, nr_pages, done = 0;
1202 
1203 	if (max_pages == 0)
1204 		return 0;
1205 	pagevec_init(&pvec, 0);
1206 	while (!done) {
1207 		index = idx;
1208 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1209 					      PAGECACHE_TAG_DIRTY,
1210 					      (pgoff_t)PAGEVEC_SIZE);
1211 		if (nr_pages == 0)
1212 			break;
1213 		for (i = 0; i < nr_pages; i++) {
1214 			struct page *page = pvec.pages[i];
1215 			struct buffer_head *bh, *head;
1216 
1217 			lock_page(page);
1218 			if (unlikely(page->mapping != mapping) ||
1219 			    !PageDirty(page) ||
1220 			    PageWriteback(page) ||
1221 			    page->index != idx) {
1222 				done = 1;
1223 				unlock_page(page);
1224 				break;
1225 			}
1226 			if (page_has_buffers(page)) {
1227 				bh = head = page_buffers(page);
1228 				do {
1229 					if (!buffer_delay(bh) &&
1230 					    !buffer_unwritten(bh))
1231 						done = 1;
1232 					bh = bh->b_this_page;
1233 				} while (!done && (bh != head));
1234 			}
1235 			unlock_page(page);
1236 			if (done)
1237 				break;
1238 			idx++;
1239 			num++;
1240 			if (num >= max_pages) {
1241 				done = 1;
1242 				break;
1243 			}
1244 		}
1245 		pagevec_release(&pvec);
1246 	}
1247 	return num;
1248 }
1249 
1250 /*
1251  * The ext4_map_blocks() function tries to look up the requested blocks,
1252  * and returns if the blocks are already mapped.
1253  *
1254  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1255  * and store the allocated blocks in the result buffer head and mark it
1256  * mapped.
1257  *
1258  * If file type is extents based, it will call ext4_ext_map_blocks(),
1259  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1260  * based files
1261  *
1262  * On success, it returns the number of blocks being mapped or allocate.
1263  * if create==0 and the blocks are pre-allocated and uninitialized block,
1264  * the result buffer head is unmapped. If the create ==1, it will make sure
1265  * the buffer head is mapped.
1266  *
1267  * It returns 0 if plain look up failed (blocks have not been allocated), in
1268  * that casem, buffer head is unmapped
1269  *
1270  * It returns the error in case of allocation failure.
1271  */
1272 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1273 		    struct ext4_map_blocks *map, int flags)
1274 {
1275 	int retval;
1276 
1277 	map->m_flags = 0;
1278 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1279 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1280 		  (unsigned long) map->m_lblk);
1281 	/*
1282 	 * Try to see if we can get the block without requesting a new
1283 	 * file system block.
1284 	 */
1285 	down_read((&EXT4_I(inode)->i_data_sem));
1286 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1287 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1288 	} else {
1289 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1290 	}
1291 	up_read((&EXT4_I(inode)->i_data_sem));
1292 
1293 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1294 		int ret = check_block_validity(inode, map);
1295 		if (ret != 0)
1296 			return ret;
1297 	}
1298 
1299 	/* If it is only a block(s) look up */
1300 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1301 		return retval;
1302 
1303 	/*
1304 	 * Returns if the blocks have already allocated
1305 	 *
1306 	 * Note that if blocks have been preallocated
1307 	 * ext4_ext_get_block() returns th create = 0
1308 	 * with buffer head unmapped.
1309 	 */
1310 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1311 		return retval;
1312 
1313 	/*
1314 	 * When we call get_blocks without the create flag, the
1315 	 * BH_Unwritten flag could have gotten set if the blocks
1316 	 * requested were part of a uninitialized extent.  We need to
1317 	 * clear this flag now that we are committed to convert all or
1318 	 * part of the uninitialized extent to be an initialized
1319 	 * extent.  This is because we need to avoid the combination
1320 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1321 	 * set on the buffer_head.
1322 	 */
1323 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1324 
1325 	/*
1326 	 * New blocks allocate and/or writing to uninitialized extent
1327 	 * will possibly result in updating i_data, so we take
1328 	 * the write lock of i_data_sem, and call get_blocks()
1329 	 * with create == 1 flag.
1330 	 */
1331 	down_write((&EXT4_I(inode)->i_data_sem));
1332 
1333 	/*
1334 	 * if the caller is from delayed allocation writeout path
1335 	 * we have already reserved fs blocks for allocation
1336 	 * let the underlying get_block() function know to
1337 	 * avoid double accounting
1338 	 */
1339 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1340 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1341 	/*
1342 	 * We need to check for EXT4 here because migrate
1343 	 * could have changed the inode type in between
1344 	 */
1345 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1346 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1347 	} else {
1348 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1349 
1350 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1351 			/*
1352 			 * We allocated new blocks which will result in
1353 			 * i_data's format changing.  Force the migrate
1354 			 * to fail by clearing migrate flags
1355 			 */
1356 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1357 		}
1358 
1359 		/*
1360 		 * Update reserved blocks/metadata blocks after successful
1361 		 * block allocation which had been deferred till now. We don't
1362 		 * support fallocate for non extent files. So we can update
1363 		 * reserve space here.
1364 		 */
1365 		if ((retval > 0) &&
1366 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1367 			ext4_da_update_reserve_space(inode, retval, 1);
1368 	}
1369 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1370 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1371 
1372 	up_write((&EXT4_I(inode)->i_data_sem));
1373 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1374 		int ret = check_block_validity(inode, map);
1375 		if (ret != 0)
1376 			return ret;
1377 	}
1378 	return retval;
1379 }
1380 
1381 /* Maximum number of blocks we map for direct IO at once. */
1382 #define DIO_MAX_BLOCKS 4096
1383 
1384 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1385 			   struct buffer_head *bh, int flags)
1386 {
1387 	handle_t *handle = ext4_journal_current_handle();
1388 	struct ext4_map_blocks map;
1389 	int ret = 0, started = 0;
1390 	int dio_credits;
1391 
1392 	map.m_lblk = iblock;
1393 	map.m_len = bh->b_size >> inode->i_blkbits;
1394 
1395 	if (flags && !handle) {
1396 		/* Direct IO write... */
1397 		if (map.m_len > DIO_MAX_BLOCKS)
1398 			map.m_len = DIO_MAX_BLOCKS;
1399 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1400 		handle = ext4_journal_start(inode, dio_credits);
1401 		if (IS_ERR(handle)) {
1402 			ret = PTR_ERR(handle);
1403 			return ret;
1404 		}
1405 		started = 1;
1406 	}
1407 
1408 	ret = ext4_map_blocks(handle, inode, &map, flags);
1409 	if (ret > 0) {
1410 		map_bh(bh, inode->i_sb, map.m_pblk);
1411 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1412 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1413 		ret = 0;
1414 	}
1415 	if (started)
1416 		ext4_journal_stop(handle);
1417 	return ret;
1418 }
1419 
1420 int ext4_get_block(struct inode *inode, sector_t iblock,
1421 		   struct buffer_head *bh, int create)
1422 {
1423 	return _ext4_get_block(inode, iblock, bh,
1424 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1425 }
1426 
1427 /*
1428  * `handle' can be NULL if create is zero
1429  */
1430 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1431 				ext4_lblk_t block, int create, int *errp)
1432 {
1433 	struct ext4_map_blocks map;
1434 	struct buffer_head *bh;
1435 	int fatal = 0, err;
1436 
1437 	J_ASSERT(handle != NULL || create == 0);
1438 
1439 	map.m_lblk = block;
1440 	map.m_len = 1;
1441 	err = ext4_map_blocks(handle, inode, &map,
1442 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1443 
1444 	if (err < 0)
1445 		*errp = err;
1446 	if (err <= 0)
1447 		return NULL;
1448 	*errp = 0;
1449 
1450 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1451 	if (!bh) {
1452 		*errp = -EIO;
1453 		return NULL;
1454 	}
1455 	if (map.m_flags & EXT4_MAP_NEW) {
1456 		J_ASSERT(create != 0);
1457 		J_ASSERT(handle != NULL);
1458 
1459 		/*
1460 		 * Now that we do not always journal data, we should
1461 		 * keep in mind whether this should always journal the
1462 		 * new buffer as metadata.  For now, regular file
1463 		 * writes use ext4_get_block instead, so it's not a
1464 		 * problem.
1465 		 */
1466 		lock_buffer(bh);
1467 		BUFFER_TRACE(bh, "call get_create_access");
1468 		fatal = ext4_journal_get_create_access(handle, bh);
1469 		if (!fatal && !buffer_uptodate(bh)) {
1470 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1471 			set_buffer_uptodate(bh);
1472 		}
1473 		unlock_buffer(bh);
1474 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1475 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1476 		if (!fatal)
1477 			fatal = err;
1478 	} else {
1479 		BUFFER_TRACE(bh, "not a new buffer");
1480 	}
1481 	if (fatal) {
1482 		*errp = fatal;
1483 		brelse(bh);
1484 		bh = NULL;
1485 	}
1486 	return bh;
1487 }
1488 
1489 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1490 			       ext4_lblk_t block, int create, int *err)
1491 {
1492 	struct buffer_head *bh;
1493 
1494 	bh = ext4_getblk(handle, inode, block, create, err);
1495 	if (!bh)
1496 		return bh;
1497 	if (buffer_uptodate(bh))
1498 		return bh;
1499 	ll_rw_block(READ_META, 1, &bh);
1500 	wait_on_buffer(bh);
1501 	if (buffer_uptodate(bh))
1502 		return bh;
1503 	put_bh(bh);
1504 	*err = -EIO;
1505 	return NULL;
1506 }
1507 
1508 static int walk_page_buffers(handle_t *handle,
1509 			     struct buffer_head *head,
1510 			     unsigned from,
1511 			     unsigned to,
1512 			     int *partial,
1513 			     int (*fn)(handle_t *handle,
1514 				       struct buffer_head *bh))
1515 {
1516 	struct buffer_head *bh;
1517 	unsigned block_start, block_end;
1518 	unsigned blocksize = head->b_size;
1519 	int err, ret = 0;
1520 	struct buffer_head *next;
1521 
1522 	for (bh = head, block_start = 0;
1523 	     ret == 0 && (bh != head || !block_start);
1524 	     block_start = block_end, bh = next) {
1525 		next = bh->b_this_page;
1526 		block_end = block_start + blocksize;
1527 		if (block_end <= from || block_start >= to) {
1528 			if (partial && !buffer_uptodate(bh))
1529 				*partial = 1;
1530 			continue;
1531 		}
1532 		err = (*fn)(handle, bh);
1533 		if (!ret)
1534 			ret = err;
1535 	}
1536 	return ret;
1537 }
1538 
1539 /*
1540  * To preserve ordering, it is essential that the hole instantiation and
1541  * the data write be encapsulated in a single transaction.  We cannot
1542  * close off a transaction and start a new one between the ext4_get_block()
1543  * and the commit_write().  So doing the jbd2_journal_start at the start of
1544  * prepare_write() is the right place.
1545  *
1546  * Also, this function can nest inside ext4_writepage() ->
1547  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1548  * has generated enough buffer credits to do the whole page.  So we won't
1549  * block on the journal in that case, which is good, because the caller may
1550  * be PF_MEMALLOC.
1551  *
1552  * By accident, ext4 can be reentered when a transaction is open via
1553  * quota file writes.  If we were to commit the transaction while thus
1554  * reentered, there can be a deadlock - we would be holding a quota
1555  * lock, and the commit would never complete if another thread had a
1556  * transaction open and was blocking on the quota lock - a ranking
1557  * violation.
1558  *
1559  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1560  * will _not_ run commit under these circumstances because handle->h_ref
1561  * is elevated.  We'll still have enough credits for the tiny quotafile
1562  * write.
1563  */
1564 static int do_journal_get_write_access(handle_t *handle,
1565 				       struct buffer_head *bh)
1566 {
1567 	int dirty = buffer_dirty(bh);
1568 	int ret;
1569 
1570 	if (!buffer_mapped(bh) || buffer_freed(bh))
1571 		return 0;
1572 	/*
1573 	 * __block_write_begin() could have dirtied some buffers. Clean
1574 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1575 	 * otherwise about fs integrity issues. Setting of the dirty bit
1576 	 * by __block_write_begin() isn't a real problem here as we clear
1577 	 * the bit before releasing a page lock and thus writeback cannot
1578 	 * ever write the buffer.
1579 	 */
1580 	if (dirty)
1581 		clear_buffer_dirty(bh);
1582 	ret = ext4_journal_get_write_access(handle, bh);
1583 	if (!ret && dirty)
1584 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1585 	return ret;
1586 }
1587 
1588 /*
1589  * Truncate blocks that were not used by write. We have to truncate the
1590  * pagecache as well so that corresponding buffers get properly unmapped.
1591  */
1592 static void ext4_truncate_failed_write(struct inode *inode)
1593 {
1594 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1595 	ext4_truncate(inode);
1596 }
1597 
1598 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1599 		   struct buffer_head *bh_result, int create);
1600 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1601 			    loff_t pos, unsigned len, unsigned flags,
1602 			    struct page **pagep, void **fsdata)
1603 {
1604 	struct inode *inode = mapping->host;
1605 	int ret, needed_blocks;
1606 	handle_t *handle;
1607 	int retries = 0;
1608 	struct page *page;
1609 	pgoff_t index;
1610 	unsigned from, to;
1611 
1612 	trace_ext4_write_begin(inode, pos, len, flags);
1613 	/*
1614 	 * Reserve one block more for addition to orphan list in case
1615 	 * we allocate blocks but write fails for some reason
1616 	 */
1617 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1618 	index = pos >> PAGE_CACHE_SHIFT;
1619 	from = pos & (PAGE_CACHE_SIZE - 1);
1620 	to = from + len;
1621 
1622 retry:
1623 	handle = ext4_journal_start(inode, needed_blocks);
1624 	if (IS_ERR(handle)) {
1625 		ret = PTR_ERR(handle);
1626 		goto out;
1627 	}
1628 
1629 	/* We cannot recurse into the filesystem as the transaction is already
1630 	 * started */
1631 	flags |= AOP_FLAG_NOFS;
1632 
1633 	page = grab_cache_page_write_begin(mapping, index, flags);
1634 	if (!page) {
1635 		ext4_journal_stop(handle);
1636 		ret = -ENOMEM;
1637 		goto out;
1638 	}
1639 	*pagep = page;
1640 
1641 	if (ext4_should_dioread_nolock(inode))
1642 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1643 	else
1644 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1645 
1646 	if (!ret && ext4_should_journal_data(inode)) {
1647 		ret = walk_page_buffers(handle, page_buffers(page),
1648 				from, to, NULL, do_journal_get_write_access);
1649 	}
1650 
1651 	if (ret) {
1652 		unlock_page(page);
1653 		page_cache_release(page);
1654 		/*
1655 		 * __block_write_begin may have instantiated a few blocks
1656 		 * outside i_size.  Trim these off again. Don't need
1657 		 * i_size_read because we hold i_mutex.
1658 		 *
1659 		 * Add inode to orphan list in case we crash before
1660 		 * truncate finishes
1661 		 */
1662 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1663 			ext4_orphan_add(handle, inode);
1664 
1665 		ext4_journal_stop(handle);
1666 		if (pos + len > inode->i_size) {
1667 			ext4_truncate_failed_write(inode);
1668 			/*
1669 			 * If truncate failed early the inode might
1670 			 * still be on the orphan list; we need to
1671 			 * make sure the inode is removed from the
1672 			 * orphan list in that case.
1673 			 */
1674 			if (inode->i_nlink)
1675 				ext4_orphan_del(NULL, inode);
1676 		}
1677 	}
1678 
1679 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1680 		goto retry;
1681 out:
1682 	return ret;
1683 }
1684 
1685 /* For write_end() in data=journal mode */
1686 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1687 {
1688 	if (!buffer_mapped(bh) || buffer_freed(bh))
1689 		return 0;
1690 	set_buffer_uptodate(bh);
1691 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1692 }
1693 
1694 static int ext4_generic_write_end(struct file *file,
1695 				  struct address_space *mapping,
1696 				  loff_t pos, unsigned len, unsigned copied,
1697 				  struct page *page, void *fsdata)
1698 {
1699 	int i_size_changed = 0;
1700 	struct inode *inode = mapping->host;
1701 	handle_t *handle = ext4_journal_current_handle();
1702 
1703 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1704 
1705 	/*
1706 	 * No need to use i_size_read() here, the i_size
1707 	 * cannot change under us because we hold i_mutex.
1708 	 *
1709 	 * But it's important to update i_size while still holding page lock:
1710 	 * page writeout could otherwise come in and zero beyond i_size.
1711 	 */
1712 	if (pos + copied > inode->i_size) {
1713 		i_size_write(inode, pos + copied);
1714 		i_size_changed = 1;
1715 	}
1716 
1717 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1718 		/* We need to mark inode dirty even if
1719 		 * new_i_size is less that inode->i_size
1720 		 * bu greater than i_disksize.(hint delalloc)
1721 		 */
1722 		ext4_update_i_disksize(inode, (pos + copied));
1723 		i_size_changed = 1;
1724 	}
1725 	unlock_page(page);
1726 	page_cache_release(page);
1727 
1728 	/*
1729 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1730 	 * makes the holding time of page lock longer. Second, it forces lock
1731 	 * ordering of page lock and transaction start for journaling
1732 	 * filesystems.
1733 	 */
1734 	if (i_size_changed)
1735 		ext4_mark_inode_dirty(handle, inode);
1736 
1737 	return copied;
1738 }
1739 
1740 /*
1741  * We need to pick up the new inode size which generic_commit_write gave us
1742  * `file' can be NULL - eg, when called from page_symlink().
1743  *
1744  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1745  * buffers are managed internally.
1746  */
1747 static int ext4_ordered_write_end(struct file *file,
1748 				  struct address_space *mapping,
1749 				  loff_t pos, unsigned len, unsigned copied,
1750 				  struct page *page, void *fsdata)
1751 {
1752 	handle_t *handle = ext4_journal_current_handle();
1753 	struct inode *inode = mapping->host;
1754 	int ret = 0, ret2;
1755 
1756 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1757 	ret = ext4_jbd2_file_inode(handle, inode);
1758 
1759 	if (ret == 0) {
1760 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1761 							page, fsdata);
1762 		copied = ret2;
1763 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1764 			/* if we have allocated more blocks and copied
1765 			 * less. We will have blocks allocated outside
1766 			 * inode->i_size. So truncate them
1767 			 */
1768 			ext4_orphan_add(handle, inode);
1769 		if (ret2 < 0)
1770 			ret = ret2;
1771 	}
1772 	ret2 = ext4_journal_stop(handle);
1773 	if (!ret)
1774 		ret = ret2;
1775 
1776 	if (pos + len > inode->i_size) {
1777 		ext4_truncate_failed_write(inode);
1778 		/*
1779 		 * If truncate failed early the inode might still be
1780 		 * on the orphan list; we need to make sure the inode
1781 		 * is removed from the orphan list in that case.
1782 		 */
1783 		if (inode->i_nlink)
1784 			ext4_orphan_del(NULL, inode);
1785 	}
1786 
1787 
1788 	return ret ? ret : copied;
1789 }
1790 
1791 static int ext4_writeback_write_end(struct file *file,
1792 				    struct address_space *mapping,
1793 				    loff_t pos, unsigned len, unsigned copied,
1794 				    struct page *page, void *fsdata)
1795 {
1796 	handle_t *handle = ext4_journal_current_handle();
1797 	struct inode *inode = mapping->host;
1798 	int ret = 0, ret2;
1799 
1800 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1801 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1802 							page, fsdata);
1803 	copied = ret2;
1804 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1805 		/* if we have allocated more blocks and copied
1806 		 * less. We will have blocks allocated outside
1807 		 * inode->i_size. So truncate them
1808 		 */
1809 		ext4_orphan_add(handle, inode);
1810 
1811 	if (ret2 < 0)
1812 		ret = ret2;
1813 
1814 	ret2 = ext4_journal_stop(handle);
1815 	if (!ret)
1816 		ret = ret2;
1817 
1818 	if (pos + len > inode->i_size) {
1819 		ext4_truncate_failed_write(inode);
1820 		/*
1821 		 * If truncate failed early the inode might still be
1822 		 * on the orphan list; we need to make sure the inode
1823 		 * is removed from the orphan list in that case.
1824 		 */
1825 		if (inode->i_nlink)
1826 			ext4_orphan_del(NULL, inode);
1827 	}
1828 
1829 	return ret ? ret : copied;
1830 }
1831 
1832 static int ext4_journalled_write_end(struct file *file,
1833 				     struct address_space *mapping,
1834 				     loff_t pos, unsigned len, unsigned copied,
1835 				     struct page *page, void *fsdata)
1836 {
1837 	handle_t *handle = ext4_journal_current_handle();
1838 	struct inode *inode = mapping->host;
1839 	int ret = 0, ret2;
1840 	int partial = 0;
1841 	unsigned from, to;
1842 	loff_t new_i_size;
1843 
1844 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1845 	from = pos & (PAGE_CACHE_SIZE - 1);
1846 	to = from + len;
1847 
1848 	if (copied < len) {
1849 		if (!PageUptodate(page))
1850 			copied = 0;
1851 		page_zero_new_buffers(page, from+copied, to);
1852 	}
1853 
1854 	ret = walk_page_buffers(handle, page_buffers(page), from,
1855 				to, &partial, write_end_fn);
1856 	if (!partial)
1857 		SetPageUptodate(page);
1858 	new_i_size = pos + copied;
1859 	if (new_i_size > inode->i_size)
1860 		i_size_write(inode, pos+copied);
1861 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1862 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1863 		ext4_update_i_disksize(inode, new_i_size);
1864 		ret2 = ext4_mark_inode_dirty(handle, inode);
1865 		if (!ret)
1866 			ret = ret2;
1867 	}
1868 
1869 	unlock_page(page);
1870 	page_cache_release(page);
1871 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1872 		/* if we have allocated more blocks and copied
1873 		 * less. We will have blocks allocated outside
1874 		 * inode->i_size. So truncate them
1875 		 */
1876 		ext4_orphan_add(handle, inode);
1877 
1878 	ret2 = ext4_journal_stop(handle);
1879 	if (!ret)
1880 		ret = ret2;
1881 	if (pos + len > inode->i_size) {
1882 		ext4_truncate_failed_write(inode);
1883 		/*
1884 		 * If truncate failed early the inode might still be
1885 		 * on the orphan list; we need to make sure the inode
1886 		 * is removed from the orphan list in that case.
1887 		 */
1888 		if (inode->i_nlink)
1889 			ext4_orphan_del(NULL, inode);
1890 	}
1891 
1892 	return ret ? ret : copied;
1893 }
1894 
1895 /*
1896  * Reserve a single block located at lblock
1897  */
1898 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1899 {
1900 	int retries = 0;
1901 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1902 	struct ext4_inode_info *ei = EXT4_I(inode);
1903 	unsigned long md_needed;
1904 	int ret;
1905 
1906 	/*
1907 	 * recalculate the amount of metadata blocks to reserve
1908 	 * in order to allocate nrblocks
1909 	 * worse case is one extent per block
1910 	 */
1911 repeat:
1912 	spin_lock(&ei->i_block_reservation_lock);
1913 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1914 	trace_ext4_da_reserve_space(inode, md_needed);
1915 	spin_unlock(&ei->i_block_reservation_lock);
1916 
1917 	/*
1918 	 * We will charge metadata quota at writeout time; this saves
1919 	 * us from metadata over-estimation, though we may go over by
1920 	 * a small amount in the end.  Here we just reserve for data.
1921 	 */
1922 	ret = dquot_reserve_block(inode, 1);
1923 	if (ret)
1924 		return ret;
1925 	/*
1926 	 * We do still charge estimated metadata to the sb though;
1927 	 * we cannot afford to run out of free blocks.
1928 	 */
1929 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1930 		dquot_release_reservation_block(inode, 1);
1931 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1932 			yield();
1933 			goto repeat;
1934 		}
1935 		return -ENOSPC;
1936 	}
1937 	spin_lock(&ei->i_block_reservation_lock);
1938 	ei->i_reserved_data_blocks++;
1939 	ei->i_reserved_meta_blocks += md_needed;
1940 	spin_unlock(&ei->i_block_reservation_lock);
1941 
1942 	return 0;       /* success */
1943 }
1944 
1945 static void ext4_da_release_space(struct inode *inode, int to_free)
1946 {
1947 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1948 	struct ext4_inode_info *ei = EXT4_I(inode);
1949 
1950 	if (!to_free)
1951 		return;		/* Nothing to release, exit */
1952 
1953 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1954 
1955 	trace_ext4_da_release_space(inode, to_free);
1956 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1957 		/*
1958 		 * if there aren't enough reserved blocks, then the
1959 		 * counter is messed up somewhere.  Since this
1960 		 * function is called from invalidate page, it's
1961 		 * harmless to return without any action.
1962 		 */
1963 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1964 			 "ino %lu, to_free %d with only %d reserved "
1965 			 "data blocks\n", inode->i_ino, to_free,
1966 			 ei->i_reserved_data_blocks);
1967 		WARN_ON(1);
1968 		to_free = ei->i_reserved_data_blocks;
1969 	}
1970 	ei->i_reserved_data_blocks -= to_free;
1971 
1972 	if (ei->i_reserved_data_blocks == 0) {
1973 		/*
1974 		 * We can release all of the reserved metadata blocks
1975 		 * only when we have written all of the delayed
1976 		 * allocation blocks.
1977 		 */
1978 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1979 				   ei->i_reserved_meta_blocks);
1980 		ei->i_reserved_meta_blocks = 0;
1981 		ei->i_da_metadata_calc_len = 0;
1982 	}
1983 
1984 	/* update fs dirty data blocks counter */
1985 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1986 
1987 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1988 
1989 	dquot_release_reservation_block(inode, to_free);
1990 }
1991 
1992 static void ext4_da_page_release_reservation(struct page *page,
1993 					     unsigned long offset)
1994 {
1995 	int to_release = 0;
1996 	struct buffer_head *head, *bh;
1997 	unsigned int curr_off = 0;
1998 
1999 	head = page_buffers(page);
2000 	bh = head;
2001 	do {
2002 		unsigned int next_off = curr_off + bh->b_size;
2003 
2004 		if ((offset <= curr_off) && (buffer_delay(bh))) {
2005 			to_release++;
2006 			clear_buffer_delay(bh);
2007 		}
2008 		curr_off = next_off;
2009 	} while ((bh = bh->b_this_page) != head);
2010 	ext4_da_release_space(page->mapping->host, to_release);
2011 }
2012 
2013 /*
2014  * Delayed allocation stuff
2015  */
2016 
2017 /*
2018  * mpage_da_submit_io - walks through extent of pages and try to write
2019  * them with writepage() call back
2020  *
2021  * @mpd->inode: inode
2022  * @mpd->first_page: first page of the extent
2023  * @mpd->next_page: page after the last page of the extent
2024  *
2025  * By the time mpage_da_submit_io() is called we expect all blocks
2026  * to be allocated. this may be wrong if allocation failed.
2027  *
2028  * As pages are already locked by write_cache_pages(), we can't use it
2029  */
2030 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2031 			      struct ext4_map_blocks *map)
2032 {
2033 	struct pagevec pvec;
2034 	unsigned long index, end;
2035 	int ret = 0, err, nr_pages, i;
2036 	struct inode *inode = mpd->inode;
2037 	struct address_space *mapping = inode->i_mapping;
2038 	loff_t size = i_size_read(inode);
2039 	unsigned int len, block_start;
2040 	struct buffer_head *bh, *page_bufs = NULL;
2041 	int journal_data = ext4_should_journal_data(inode);
2042 	sector_t pblock = 0, cur_logical = 0;
2043 	struct ext4_io_submit io_submit;
2044 
2045 	BUG_ON(mpd->next_page <= mpd->first_page);
2046 	memset(&io_submit, 0, sizeof(io_submit));
2047 	/*
2048 	 * We need to start from the first_page to the next_page - 1
2049 	 * to make sure we also write the mapped dirty buffer_heads.
2050 	 * If we look at mpd->b_blocknr we would only be looking
2051 	 * at the currently mapped buffer_heads.
2052 	 */
2053 	index = mpd->first_page;
2054 	end = mpd->next_page - 1;
2055 
2056 	pagevec_init(&pvec, 0);
2057 	while (index <= end) {
2058 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2059 		if (nr_pages == 0)
2060 			break;
2061 		for (i = 0; i < nr_pages; i++) {
2062 			int commit_write = 0, redirty_page = 0;
2063 			struct page *page = pvec.pages[i];
2064 
2065 			index = page->index;
2066 			if (index > end)
2067 				break;
2068 
2069 			if (index == size >> PAGE_CACHE_SHIFT)
2070 				len = size & ~PAGE_CACHE_MASK;
2071 			else
2072 				len = PAGE_CACHE_SIZE;
2073 			if (map) {
2074 				cur_logical = index << (PAGE_CACHE_SHIFT -
2075 							inode->i_blkbits);
2076 				pblock = map->m_pblk + (cur_logical -
2077 							map->m_lblk);
2078 			}
2079 			index++;
2080 
2081 			BUG_ON(!PageLocked(page));
2082 			BUG_ON(PageWriteback(page));
2083 
2084 			/*
2085 			 * If the page does not have buffers (for
2086 			 * whatever reason), try to create them using
2087 			 * __block_write_begin.  If this fails,
2088 			 * redirty the page and move on.
2089 			 */
2090 			if (!page_has_buffers(page)) {
2091 				if (__block_write_begin(page, 0, len,
2092 						noalloc_get_block_write)) {
2093 				redirty_page:
2094 					redirty_page_for_writepage(mpd->wbc,
2095 								   page);
2096 					unlock_page(page);
2097 					continue;
2098 				}
2099 				commit_write = 1;
2100 			}
2101 
2102 			bh = page_bufs = page_buffers(page);
2103 			block_start = 0;
2104 			do {
2105 				if (!bh)
2106 					goto redirty_page;
2107 				if (map && (cur_logical >= map->m_lblk) &&
2108 				    (cur_logical <= (map->m_lblk +
2109 						     (map->m_len - 1)))) {
2110 					if (buffer_delay(bh)) {
2111 						clear_buffer_delay(bh);
2112 						bh->b_blocknr = pblock;
2113 					}
2114 					if (buffer_unwritten(bh) ||
2115 					    buffer_mapped(bh))
2116 						BUG_ON(bh->b_blocknr != pblock);
2117 					if (map->m_flags & EXT4_MAP_UNINIT)
2118 						set_buffer_uninit(bh);
2119 					clear_buffer_unwritten(bh);
2120 				}
2121 
2122 				/* redirty page if block allocation undone */
2123 				if (buffer_delay(bh) || buffer_unwritten(bh))
2124 					redirty_page = 1;
2125 				bh = bh->b_this_page;
2126 				block_start += bh->b_size;
2127 				cur_logical++;
2128 				pblock++;
2129 			} while (bh != page_bufs);
2130 
2131 			if (redirty_page)
2132 				goto redirty_page;
2133 
2134 			if (commit_write)
2135 				/* mark the buffer_heads as dirty & uptodate */
2136 				block_commit_write(page, 0, len);
2137 
2138 			/*
2139 			 * Delalloc doesn't support data journalling,
2140 			 * but eventually maybe we'll lift this
2141 			 * restriction.
2142 			 */
2143 			if (unlikely(journal_data && PageChecked(page)))
2144 				err = __ext4_journalled_writepage(page, len);
2145 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2146 				err = ext4_bio_write_page(&io_submit, page,
2147 							  len, mpd->wbc);
2148 			else
2149 				err = block_write_full_page(page,
2150 					noalloc_get_block_write, mpd->wbc);
2151 
2152 			if (!err)
2153 				mpd->pages_written++;
2154 			/*
2155 			 * In error case, we have to continue because
2156 			 * remaining pages are still locked
2157 			 */
2158 			if (ret == 0)
2159 				ret = err;
2160 		}
2161 		pagevec_release(&pvec);
2162 	}
2163 	ext4_io_submit(&io_submit);
2164 	return ret;
2165 }
2166 
2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2168 					sector_t logical, long blk_cnt)
2169 {
2170 	int nr_pages, i;
2171 	pgoff_t index, end;
2172 	struct pagevec pvec;
2173 	struct inode *inode = mpd->inode;
2174 	struct address_space *mapping = inode->i_mapping;
2175 
2176 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2177 	end   = (logical + blk_cnt - 1) >>
2178 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2179 	while (index <= end) {
2180 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2181 		if (nr_pages == 0)
2182 			break;
2183 		for (i = 0; i < nr_pages; i++) {
2184 			struct page *page = pvec.pages[i];
2185 			if (page->index > end)
2186 				break;
2187 			BUG_ON(!PageLocked(page));
2188 			BUG_ON(PageWriteback(page));
2189 			block_invalidatepage(page, 0);
2190 			ClearPageUptodate(page);
2191 			unlock_page(page);
2192 		}
2193 		index = pvec.pages[nr_pages - 1]->index + 1;
2194 		pagevec_release(&pvec);
2195 	}
2196 	return;
2197 }
2198 
2199 static void ext4_print_free_blocks(struct inode *inode)
2200 {
2201 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2202 	printk(KERN_CRIT "Total free blocks count %lld\n",
2203 	       ext4_count_free_blocks(inode->i_sb));
2204 	printk(KERN_CRIT "Free/Dirty block details\n");
2205 	printk(KERN_CRIT "free_blocks=%lld\n",
2206 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2207 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2208 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2209 	printk(KERN_CRIT "Block reservation details\n");
2210 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2211 	       EXT4_I(inode)->i_reserved_data_blocks);
2212 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2213 	       EXT4_I(inode)->i_reserved_meta_blocks);
2214 	return;
2215 }
2216 
2217 /*
2218  * mpage_da_map_and_submit - go through given space, map them
2219  *       if necessary, and then submit them for I/O
2220  *
2221  * @mpd - bh describing space
2222  *
2223  * The function skips space we know is already mapped to disk blocks.
2224  *
2225  */
2226 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2227 {
2228 	int err, blks, get_blocks_flags;
2229 	struct ext4_map_blocks map, *mapp = NULL;
2230 	sector_t next = mpd->b_blocknr;
2231 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2232 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2233 	handle_t *handle = NULL;
2234 
2235 	/*
2236 	 * If the blocks are mapped already, or we couldn't accumulate
2237 	 * any blocks, then proceed immediately to the submission stage.
2238 	 */
2239 	if ((mpd->b_size == 0) ||
2240 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
2241 	     !(mpd->b_state & (1 << BH_Delay)) &&
2242 	     !(mpd->b_state & (1 << BH_Unwritten))))
2243 		goto submit_io;
2244 
2245 	handle = ext4_journal_current_handle();
2246 	BUG_ON(!handle);
2247 
2248 	/*
2249 	 * Call ext4_map_blocks() to allocate any delayed allocation
2250 	 * blocks, or to convert an uninitialized extent to be
2251 	 * initialized (in the case where we have written into
2252 	 * one or more preallocated blocks).
2253 	 *
2254 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2255 	 * indicate that we are on the delayed allocation path.  This
2256 	 * affects functions in many different parts of the allocation
2257 	 * call path.  This flag exists primarily because we don't
2258 	 * want to change *many* call functions, so ext4_map_blocks()
2259 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2260 	 * inode's allocation semaphore is taken.
2261 	 *
2262 	 * If the blocks in questions were delalloc blocks, set
2263 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2264 	 * variables are updated after the blocks have been allocated.
2265 	 */
2266 	map.m_lblk = next;
2267 	map.m_len = max_blocks;
2268 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2269 	if (ext4_should_dioread_nolock(mpd->inode))
2270 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2271 	if (mpd->b_state & (1 << BH_Delay))
2272 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2273 
2274 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2275 	if (blks < 0) {
2276 		struct super_block *sb = mpd->inode->i_sb;
2277 
2278 		err = blks;
2279 		/*
2280 		 * If get block returns EAGAIN or ENOSPC and there
2281 		 * appears to be free blocks we will call
2282 		 * ext4_writepage() for all of the pages which will
2283 		 * just redirty the pages.
2284 		 */
2285 		if (err == -EAGAIN)
2286 			goto submit_io;
2287 
2288 		if (err == -ENOSPC &&
2289 		    ext4_count_free_blocks(sb)) {
2290 			mpd->retval = err;
2291 			goto submit_io;
2292 		}
2293 
2294 		/*
2295 		 * get block failure will cause us to loop in
2296 		 * writepages, because a_ops->writepage won't be able
2297 		 * to make progress. The page will be redirtied by
2298 		 * writepage and writepages will again try to write
2299 		 * the same.
2300 		 */
2301 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2302 			ext4_msg(sb, KERN_CRIT,
2303 				 "delayed block allocation failed for inode %lu "
2304 				 "at logical offset %llu with max blocks %zd "
2305 				 "with error %d", mpd->inode->i_ino,
2306 				 (unsigned long long) next,
2307 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2308 			ext4_msg(sb, KERN_CRIT,
2309 				"This should not happen!! Data will be lost\n");
2310 			if (err == -ENOSPC)
2311 				ext4_print_free_blocks(mpd->inode);
2312 		}
2313 		/* invalidate all the pages */
2314 		ext4_da_block_invalidatepages(mpd, next,
2315 				mpd->b_size >> mpd->inode->i_blkbits);
2316 		return;
2317 	}
2318 	BUG_ON(blks == 0);
2319 
2320 	mapp = &map;
2321 	if (map.m_flags & EXT4_MAP_NEW) {
2322 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2323 		int i;
2324 
2325 		for (i = 0; i < map.m_len; i++)
2326 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2327 	}
2328 
2329 	if (ext4_should_order_data(mpd->inode)) {
2330 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2331 		if (err)
2332 			/* This only happens if the journal is aborted */
2333 			return;
2334 	}
2335 
2336 	/*
2337 	 * Update on-disk size along with block allocation.
2338 	 */
2339 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2340 	if (disksize > i_size_read(mpd->inode))
2341 		disksize = i_size_read(mpd->inode);
2342 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2343 		ext4_update_i_disksize(mpd->inode, disksize);
2344 		err = ext4_mark_inode_dirty(handle, mpd->inode);
2345 		if (err)
2346 			ext4_error(mpd->inode->i_sb,
2347 				   "Failed to mark inode %lu dirty",
2348 				   mpd->inode->i_ino);
2349 	}
2350 
2351 submit_io:
2352 	mpage_da_submit_io(mpd, mapp);
2353 	mpd->io_done = 1;
2354 }
2355 
2356 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2357 		(1 << BH_Delay) | (1 << BH_Unwritten))
2358 
2359 /*
2360  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2361  *
2362  * @mpd->lbh - extent of blocks
2363  * @logical - logical number of the block in the file
2364  * @bh - bh of the block (used to access block's state)
2365  *
2366  * the function is used to collect contig. blocks in same state
2367  */
2368 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2369 				   sector_t logical, size_t b_size,
2370 				   unsigned long b_state)
2371 {
2372 	sector_t next;
2373 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2374 
2375 	/*
2376 	 * XXX Don't go larger than mballoc is willing to allocate
2377 	 * This is a stopgap solution.  We eventually need to fold
2378 	 * mpage_da_submit_io() into this function and then call
2379 	 * ext4_map_blocks() multiple times in a loop
2380 	 */
2381 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2382 		goto flush_it;
2383 
2384 	/* check if thereserved journal credits might overflow */
2385 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2386 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2387 			/*
2388 			 * With non-extent format we are limited by the journal
2389 			 * credit available.  Total credit needed to insert
2390 			 * nrblocks contiguous blocks is dependent on the
2391 			 * nrblocks.  So limit nrblocks.
2392 			 */
2393 			goto flush_it;
2394 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2395 				EXT4_MAX_TRANS_DATA) {
2396 			/*
2397 			 * Adding the new buffer_head would make it cross the
2398 			 * allowed limit for which we have journal credit
2399 			 * reserved. So limit the new bh->b_size
2400 			 */
2401 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2402 						mpd->inode->i_blkbits;
2403 			/* we will do mpage_da_submit_io in the next loop */
2404 		}
2405 	}
2406 	/*
2407 	 * First block in the extent
2408 	 */
2409 	if (mpd->b_size == 0) {
2410 		mpd->b_blocknr = logical;
2411 		mpd->b_size = b_size;
2412 		mpd->b_state = b_state & BH_FLAGS;
2413 		return;
2414 	}
2415 
2416 	next = mpd->b_blocknr + nrblocks;
2417 	/*
2418 	 * Can we merge the block to our big extent?
2419 	 */
2420 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2421 		mpd->b_size += b_size;
2422 		return;
2423 	}
2424 
2425 flush_it:
2426 	/*
2427 	 * We couldn't merge the block to our extent, so we
2428 	 * need to flush current  extent and start new one
2429 	 */
2430 	mpage_da_map_and_submit(mpd);
2431 	return;
2432 }
2433 
2434 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2435 {
2436 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2437 }
2438 
2439 /*
2440  * __mpage_da_writepage - finds extent of pages and blocks
2441  *
2442  * @page: page to consider
2443  * @wbc: not used, we just follow rules
2444  * @data: context
2445  *
2446  * The function finds extents of pages and scan them for all blocks.
2447  */
2448 static int __mpage_da_writepage(struct page *page,
2449 				struct writeback_control *wbc,
2450 				struct mpage_da_data *mpd)
2451 {
2452 	struct inode *inode = mpd->inode;
2453 	struct buffer_head *bh, *head;
2454 	sector_t logical;
2455 
2456 	/*
2457 	 * Can we merge this page to current extent?
2458 	 */
2459 	if (mpd->next_page != page->index) {
2460 		/*
2461 		 * Nope, we can't. So, we map non-allocated blocks
2462 		 * and start IO on them
2463 		 */
2464 		if (mpd->next_page != mpd->first_page) {
2465 			mpage_da_map_and_submit(mpd);
2466 			/*
2467 			 * skip rest of the page in the page_vec
2468 			 */
2469 			redirty_page_for_writepage(wbc, page);
2470 			unlock_page(page);
2471 			return MPAGE_DA_EXTENT_TAIL;
2472 		}
2473 
2474 		/*
2475 		 * Start next extent of pages ...
2476 		 */
2477 		mpd->first_page = page->index;
2478 
2479 		/*
2480 		 * ... and blocks
2481 		 */
2482 		mpd->b_size = 0;
2483 		mpd->b_state = 0;
2484 		mpd->b_blocknr = 0;
2485 	}
2486 
2487 	mpd->next_page = page->index + 1;
2488 	logical = (sector_t) page->index <<
2489 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2490 
2491 	if (!page_has_buffers(page)) {
2492 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2493 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2494 		if (mpd->io_done)
2495 			return MPAGE_DA_EXTENT_TAIL;
2496 	} else {
2497 		/*
2498 		 * Page with regular buffer heads, just add all dirty ones
2499 		 */
2500 		head = page_buffers(page);
2501 		bh = head;
2502 		do {
2503 			BUG_ON(buffer_locked(bh));
2504 			/*
2505 			 * We need to try to allocate
2506 			 * unmapped blocks in the same page.
2507 			 * Otherwise we won't make progress
2508 			 * with the page in ext4_writepage
2509 			 */
2510 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2511 				mpage_add_bh_to_extent(mpd, logical,
2512 						       bh->b_size,
2513 						       bh->b_state);
2514 				if (mpd->io_done)
2515 					return MPAGE_DA_EXTENT_TAIL;
2516 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2517 				/*
2518 				 * mapped dirty buffer. We need to update
2519 				 * the b_state because we look at
2520 				 * b_state in mpage_da_map_blocks. We don't
2521 				 * update b_size because if we find an
2522 				 * unmapped buffer_head later we need to
2523 				 * use the b_state flag of that buffer_head.
2524 				 */
2525 				if (mpd->b_size == 0)
2526 					mpd->b_state = bh->b_state & BH_FLAGS;
2527 			}
2528 			logical++;
2529 		} while ((bh = bh->b_this_page) != head);
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 /*
2536  * This is a special get_blocks_t callback which is used by
2537  * ext4_da_write_begin().  It will either return mapped block or
2538  * reserve space for a single block.
2539  *
2540  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2541  * We also have b_blocknr = -1 and b_bdev initialized properly
2542  *
2543  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2544  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2545  * initialized properly.
2546  */
2547 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2548 				  struct buffer_head *bh, int create)
2549 {
2550 	struct ext4_map_blocks map;
2551 	int ret = 0;
2552 	sector_t invalid_block = ~((sector_t) 0xffff);
2553 
2554 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2555 		invalid_block = ~0;
2556 
2557 	BUG_ON(create == 0);
2558 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2559 
2560 	map.m_lblk = iblock;
2561 	map.m_len = 1;
2562 
2563 	/*
2564 	 * first, we need to know whether the block is allocated already
2565 	 * preallocated blocks are unmapped but should treated
2566 	 * the same as allocated blocks.
2567 	 */
2568 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2569 	if (ret < 0)
2570 		return ret;
2571 	if (ret == 0) {
2572 		if (buffer_delay(bh))
2573 			return 0; /* Not sure this could or should happen */
2574 		/*
2575 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2576 		 */
2577 		ret = ext4_da_reserve_space(inode, iblock);
2578 		if (ret)
2579 			/* not enough space to reserve */
2580 			return ret;
2581 
2582 		map_bh(bh, inode->i_sb, invalid_block);
2583 		set_buffer_new(bh);
2584 		set_buffer_delay(bh);
2585 		return 0;
2586 	}
2587 
2588 	map_bh(bh, inode->i_sb, map.m_pblk);
2589 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2590 
2591 	if (buffer_unwritten(bh)) {
2592 		/* A delayed write to unwritten bh should be marked
2593 		 * new and mapped.  Mapped ensures that we don't do
2594 		 * get_block multiple times when we write to the same
2595 		 * offset and new ensures that we do proper zero out
2596 		 * for partial write.
2597 		 */
2598 		set_buffer_new(bh);
2599 		set_buffer_mapped(bh);
2600 	}
2601 	return 0;
2602 }
2603 
2604 /*
2605  * This function is used as a standard get_block_t calback function
2606  * when there is no desire to allocate any blocks.  It is used as a
2607  * callback function for block_write_begin() and block_write_full_page().
2608  * These functions should only try to map a single block at a time.
2609  *
2610  * Since this function doesn't do block allocations even if the caller
2611  * requests it by passing in create=1, it is critically important that
2612  * any caller checks to make sure that any buffer heads are returned
2613  * by this function are either all already mapped or marked for
2614  * delayed allocation before calling  block_write_full_page().  Otherwise,
2615  * b_blocknr could be left unitialized, and the page write functions will
2616  * be taken by surprise.
2617  */
2618 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2619 				   struct buffer_head *bh_result, int create)
2620 {
2621 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2622 	return _ext4_get_block(inode, iblock, bh_result, 0);
2623 }
2624 
2625 static int bget_one(handle_t *handle, struct buffer_head *bh)
2626 {
2627 	get_bh(bh);
2628 	return 0;
2629 }
2630 
2631 static int bput_one(handle_t *handle, struct buffer_head *bh)
2632 {
2633 	put_bh(bh);
2634 	return 0;
2635 }
2636 
2637 static int __ext4_journalled_writepage(struct page *page,
2638 				       unsigned int len)
2639 {
2640 	struct address_space *mapping = page->mapping;
2641 	struct inode *inode = mapping->host;
2642 	struct buffer_head *page_bufs;
2643 	handle_t *handle = NULL;
2644 	int ret = 0;
2645 	int err;
2646 
2647 	ClearPageChecked(page);
2648 	page_bufs = page_buffers(page);
2649 	BUG_ON(!page_bufs);
2650 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2651 	/* As soon as we unlock the page, it can go away, but we have
2652 	 * references to buffers so we are safe */
2653 	unlock_page(page);
2654 
2655 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2656 	if (IS_ERR(handle)) {
2657 		ret = PTR_ERR(handle);
2658 		goto out;
2659 	}
2660 
2661 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2662 				do_journal_get_write_access);
2663 
2664 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2665 				write_end_fn);
2666 	if (ret == 0)
2667 		ret = err;
2668 	err = ext4_journal_stop(handle);
2669 	if (!ret)
2670 		ret = err;
2671 
2672 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2673 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2674 out:
2675 	return ret;
2676 }
2677 
2678 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2679 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2680 
2681 /*
2682  * Note that we don't need to start a transaction unless we're journaling data
2683  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2684  * need to file the inode to the transaction's list in ordered mode because if
2685  * we are writing back data added by write(), the inode is already there and if
2686  * we are writing back data modified via mmap(), noone guarantees in which
2687  * transaction the data will hit the disk. In case we are journaling data, we
2688  * cannot start transaction directly because transaction start ranks above page
2689  * lock so we have to do some magic.
2690  *
2691  * This function can get called via...
2692  *   - ext4_da_writepages after taking page lock (have journal handle)
2693  *   - journal_submit_inode_data_buffers (no journal handle)
2694  *   - shrink_page_list via pdflush (no journal handle)
2695  *   - grab_page_cache when doing write_begin (have journal handle)
2696  *
2697  * We don't do any block allocation in this function. If we have page with
2698  * multiple blocks we need to write those buffer_heads that are mapped. This
2699  * is important for mmaped based write. So if we do with blocksize 1K
2700  * truncate(f, 1024);
2701  * a = mmap(f, 0, 4096);
2702  * a[0] = 'a';
2703  * truncate(f, 4096);
2704  * we have in the page first buffer_head mapped via page_mkwrite call back
2705  * but other bufer_heads would be unmapped but dirty(dirty done via the
2706  * do_wp_page). So writepage should write the first block. If we modify
2707  * the mmap area beyond 1024 we will again get a page_fault and the
2708  * page_mkwrite callback will do the block allocation and mark the
2709  * buffer_heads mapped.
2710  *
2711  * We redirty the page if we have any buffer_heads that is either delay or
2712  * unwritten in the page.
2713  *
2714  * We can get recursively called as show below.
2715  *
2716  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2717  *		ext4_writepage()
2718  *
2719  * But since we don't do any block allocation we should not deadlock.
2720  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2721  */
2722 static int ext4_writepage(struct page *page,
2723 			  struct writeback_control *wbc)
2724 {
2725 	int ret = 0, commit_write = 0;
2726 	loff_t size;
2727 	unsigned int len;
2728 	struct buffer_head *page_bufs = NULL;
2729 	struct inode *inode = page->mapping->host;
2730 
2731 	trace_ext4_writepage(inode, page);
2732 	size = i_size_read(inode);
2733 	if (page->index == size >> PAGE_CACHE_SHIFT)
2734 		len = size & ~PAGE_CACHE_MASK;
2735 	else
2736 		len = PAGE_CACHE_SIZE;
2737 
2738 	/*
2739 	 * If the page does not have buffers (for whatever reason),
2740 	 * try to create them using __block_write_begin.  If this
2741 	 * fails, redirty the page and move on.
2742 	 */
2743 	if (!page_has_buffers(page)) {
2744 		if (__block_write_begin(page, 0, len,
2745 					noalloc_get_block_write)) {
2746 		redirty_page:
2747 			redirty_page_for_writepage(wbc, page);
2748 			unlock_page(page);
2749 			return 0;
2750 		}
2751 		commit_write = 1;
2752 	}
2753 	page_bufs = page_buffers(page);
2754 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2755 			      ext4_bh_delay_or_unwritten)) {
2756 		/*
2757 		 * We don't want to do block allocation, so redirty
2758 		 * the page and return.  We may reach here when we do
2759 		 * a journal commit via journal_submit_inode_data_buffers.
2760 		 * We can also reach here via shrink_page_list
2761 		 */
2762 		goto redirty_page;
2763 	}
2764 	if (commit_write)
2765 		/* now mark the buffer_heads as dirty and uptodate */
2766 		block_commit_write(page, 0, len);
2767 
2768 	if (PageChecked(page) && ext4_should_journal_data(inode))
2769 		/*
2770 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2771 		 * doesn't seem much point in redirtying the page here.
2772 		 */
2773 		return __ext4_journalled_writepage(page, len);
2774 
2775 	if (buffer_uninit(page_bufs)) {
2776 		ext4_set_bh_endio(page_bufs, inode);
2777 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2778 					    wbc, ext4_end_io_buffer_write);
2779 	} else
2780 		ret = block_write_full_page(page, noalloc_get_block_write,
2781 					    wbc);
2782 
2783 	return ret;
2784 }
2785 
2786 /*
2787  * This is called via ext4_da_writepages() to
2788  * calulate the total number of credits to reserve to fit
2789  * a single extent allocation into a single transaction,
2790  * ext4_da_writpeages() will loop calling this before
2791  * the block allocation.
2792  */
2793 
2794 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2795 {
2796 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2797 
2798 	/*
2799 	 * With non-extent format the journal credit needed to
2800 	 * insert nrblocks contiguous block is dependent on
2801 	 * number of contiguous block. So we will limit
2802 	 * number of contiguous block to a sane value
2803 	 */
2804 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2805 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2806 		max_blocks = EXT4_MAX_TRANS_DATA;
2807 
2808 	return ext4_chunk_trans_blocks(inode, max_blocks);
2809 }
2810 
2811 /*
2812  * write_cache_pages_da - walk the list of dirty pages of the given
2813  * address space and call the callback function (which usually writes
2814  * the pages).
2815  *
2816  * This is a forked version of write_cache_pages().  Differences:
2817  *	Range cyclic is ignored.
2818  *	no_nrwrite_index_update is always presumed true
2819  */
2820 static int write_cache_pages_da(struct address_space *mapping,
2821 				struct writeback_control *wbc,
2822 				struct mpage_da_data *mpd,
2823 				pgoff_t *done_index)
2824 {
2825 	int ret = 0;
2826 	int done = 0;
2827 	struct pagevec pvec;
2828 	unsigned nr_pages;
2829 	pgoff_t index;
2830 	pgoff_t end;		/* Inclusive */
2831 	long nr_to_write = wbc->nr_to_write;
2832 	int tag;
2833 
2834 	pagevec_init(&pvec, 0);
2835 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2836 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2837 
2838 	if (wbc->sync_mode == WB_SYNC_ALL)
2839 		tag = PAGECACHE_TAG_TOWRITE;
2840 	else
2841 		tag = PAGECACHE_TAG_DIRTY;
2842 
2843 	*done_index = index;
2844 	while (!done && (index <= end)) {
2845 		int i;
2846 
2847 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2848 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2849 		if (nr_pages == 0)
2850 			break;
2851 
2852 		for (i = 0; i < nr_pages; i++) {
2853 			struct page *page = pvec.pages[i];
2854 
2855 			/*
2856 			 * At this point, the page may be truncated or
2857 			 * invalidated (changing page->mapping to NULL), or
2858 			 * even swizzled back from swapper_space to tmpfs file
2859 			 * mapping. However, page->index will not change
2860 			 * because we have a reference on the page.
2861 			 */
2862 			if (page->index > end) {
2863 				done = 1;
2864 				break;
2865 			}
2866 
2867 			*done_index = page->index + 1;
2868 
2869 			lock_page(page);
2870 
2871 			/*
2872 			 * Page truncated or invalidated. We can freely skip it
2873 			 * then, even for data integrity operations: the page
2874 			 * has disappeared concurrently, so there could be no
2875 			 * real expectation of this data interity operation
2876 			 * even if there is now a new, dirty page at the same
2877 			 * pagecache address.
2878 			 */
2879 			if (unlikely(page->mapping != mapping)) {
2880 continue_unlock:
2881 				unlock_page(page);
2882 				continue;
2883 			}
2884 
2885 			if (!PageDirty(page)) {
2886 				/* someone wrote it for us */
2887 				goto continue_unlock;
2888 			}
2889 
2890 			if (PageWriteback(page)) {
2891 				if (wbc->sync_mode != WB_SYNC_NONE)
2892 					wait_on_page_writeback(page);
2893 				else
2894 					goto continue_unlock;
2895 			}
2896 
2897 			BUG_ON(PageWriteback(page));
2898 			if (!clear_page_dirty_for_io(page))
2899 				goto continue_unlock;
2900 
2901 			ret = __mpage_da_writepage(page, wbc, mpd);
2902 			if (unlikely(ret)) {
2903 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2904 					unlock_page(page);
2905 					ret = 0;
2906 				} else {
2907 					done = 1;
2908 					break;
2909 				}
2910 			}
2911 
2912 			if (nr_to_write > 0) {
2913 				nr_to_write--;
2914 				if (nr_to_write == 0 &&
2915 				    wbc->sync_mode == WB_SYNC_NONE) {
2916 					/*
2917 					 * We stop writing back only if we are
2918 					 * not doing integrity sync. In case of
2919 					 * integrity sync we have to keep going
2920 					 * because someone may be concurrently
2921 					 * dirtying pages, and we might have
2922 					 * synced a lot of newly appeared dirty
2923 					 * pages, but have not synced all of the
2924 					 * old dirty pages.
2925 					 */
2926 					done = 1;
2927 					break;
2928 				}
2929 			}
2930 		}
2931 		pagevec_release(&pvec);
2932 		cond_resched();
2933 	}
2934 	return ret;
2935 }
2936 
2937 
2938 static int ext4_da_writepages(struct address_space *mapping,
2939 			      struct writeback_control *wbc)
2940 {
2941 	pgoff_t	index;
2942 	int range_whole = 0;
2943 	handle_t *handle = NULL;
2944 	struct mpage_da_data mpd;
2945 	struct inode *inode = mapping->host;
2946 	int pages_written = 0;
2947 	long pages_skipped;
2948 	unsigned int max_pages;
2949 	int range_cyclic, cycled = 1, io_done = 0;
2950 	int needed_blocks, ret = 0;
2951 	long desired_nr_to_write, nr_to_writebump = 0;
2952 	loff_t range_start = wbc->range_start;
2953 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2954 	pgoff_t done_index = 0;
2955 	pgoff_t end;
2956 
2957 	trace_ext4_da_writepages(inode, wbc);
2958 
2959 	/*
2960 	 * No pages to write? This is mainly a kludge to avoid starting
2961 	 * a transaction for special inodes like journal inode on last iput()
2962 	 * because that could violate lock ordering on umount
2963 	 */
2964 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2965 		return 0;
2966 
2967 	/*
2968 	 * If the filesystem has aborted, it is read-only, so return
2969 	 * right away instead of dumping stack traces later on that
2970 	 * will obscure the real source of the problem.  We test
2971 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2972 	 * the latter could be true if the filesystem is mounted
2973 	 * read-only, and in that case, ext4_da_writepages should
2974 	 * *never* be called, so if that ever happens, we would want
2975 	 * the stack trace.
2976 	 */
2977 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2978 		return -EROFS;
2979 
2980 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2981 		range_whole = 1;
2982 
2983 	range_cyclic = wbc->range_cyclic;
2984 	if (wbc->range_cyclic) {
2985 		index = mapping->writeback_index;
2986 		if (index)
2987 			cycled = 0;
2988 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2989 		wbc->range_end  = LLONG_MAX;
2990 		wbc->range_cyclic = 0;
2991 		end = -1;
2992 	} else {
2993 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2994 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2995 	}
2996 
2997 	/*
2998 	 * This works around two forms of stupidity.  The first is in
2999 	 * the writeback code, which caps the maximum number of pages
3000 	 * written to be 1024 pages.  This is wrong on multiple
3001 	 * levels; different architectues have a different page size,
3002 	 * which changes the maximum amount of data which gets
3003 	 * written.  Secondly, 4 megabytes is way too small.  XFS
3004 	 * forces this value to be 16 megabytes by multiplying
3005 	 * nr_to_write parameter by four, and then relies on its
3006 	 * allocator to allocate larger extents to make them
3007 	 * contiguous.  Unfortunately this brings us to the second
3008 	 * stupidity, which is that ext4's mballoc code only allocates
3009 	 * at most 2048 blocks.  So we force contiguous writes up to
3010 	 * the number of dirty blocks in the inode, or
3011 	 * sbi->max_writeback_mb_bump whichever is smaller.
3012 	 */
3013 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3014 	if (!range_cyclic && range_whole) {
3015 		if (wbc->nr_to_write == LONG_MAX)
3016 			desired_nr_to_write = wbc->nr_to_write;
3017 		else
3018 			desired_nr_to_write = wbc->nr_to_write * 8;
3019 	} else
3020 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3021 							   max_pages);
3022 	if (desired_nr_to_write > max_pages)
3023 		desired_nr_to_write = max_pages;
3024 
3025 	if (wbc->nr_to_write < desired_nr_to_write) {
3026 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3027 		wbc->nr_to_write = desired_nr_to_write;
3028 	}
3029 
3030 	mpd.wbc = wbc;
3031 	mpd.inode = mapping->host;
3032 
3033 	pages_skipped = wbc->pages_skipped;
3034 
3035 retry:
3036 	if (wbc->sync_mode == WB_SYNC_ALL)
3037 		tag_pages_for_writeback(mapping, index, end);
3038 
3039 	while (!ret && wbc->nr_to_write > 0) {
3040 
3041 		/*
3042 		 * we  insert one extent at a time. So we need
3043 		 * credit needed for single extent allocation.
3044 		 * journalled mode is currently not supported
3045 		 * by delalloc
3046 		 */
3047 		BUG_ON(ext4_should_journal_data(inode));
3048 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3049 
3050 		/* start a new transaction*/
3051 		handle = ext4_journal_start(inode, needed_blocks);
3052 		if (IS_ERR(handle)) {
3053 			ret = PTR_ERR(handle);
3054 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3055 			       "%ld pages, ino %lu; err %d", __func__,
3056 				wbc->nr_to_write, inode->i_ino, ret);
3057 			goto out_writepages;
3058 		}
3059 
3060 		/*
3061 		 * Now call __mpage_da_writepage to find the next
3062 		 * contiguous region of logical blocks that need
3063 		 * blocks to be allocated by ext4.  We don't actually
3064 		 * submit the blocks for I/O here, even though
3065 		 * write_cache_pages thinks it will, and will set the
3066 		 * pages as clean for write before calling
3067 		 * __mpage_da_writepage().
3068 		 */
3069 		mpd.b_size = 0;
3070 		mpd.b_state = 0;
3071 		mpd.b_blocknr = 0;
3072 		mpd.first_page = 0;
3073 		mpd.next_page = 0;
3074 		mpd.io_done = 0;
3075 		mpd.pages_written = 0;
3076 		mpd.retval = 0;
3077 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3078 		/*
3079 		 * If we have a contiguous extent of pages and we
3080 		 * haven't done the I/O yet, map the blocks and submit
3081 		 * them for I/O.
3082 		 */
3083 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3084 			mpage_da_map_and_submit(&mpd);
3085 			ret = MPAGE_DA_EXTENT_TAIL;
3086 		}
3087 		trace_ext4_da_write_pages(inode, &mpd);
3088 		wbc->nr_to_write -= mpd.pages_written;
3089 
3090 		ext4_journal_stop(handle);
3091 
3092 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3093 			/* commit the transaction which would
3094 			 * free blocks released in the transaction
3095 			 * and try again
3096 			 */
3097 			jbd2_journal_force_commit_nested(sbi->s_journal);
3098 			wbc->pages_skipped = pages_skipped;
3099 			ret = 0;
3100 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3101 			/*
3102 			 * got one extent now try with
3103 			 * rest of the pages
3104 			 */
3105 			pages_written += mpd.pages_written;
3106 			wbc->pages_skipped = pages_skipped;
3107 			ret = 0;
3108 			io_done = 1;
3109 		} else if (wbc->nr_to_write)
3110 			/*
3111 			 * There is no more writeout needed
3112 			 * or we requested for a noblocking writeout
3113 			 * and we found the device congested
3114 			 */
3115 			break;
3116 	}
3117 	if (!io_done && !cycled) {
3118 		cycled = 1;
3119 		index = 0;
3120 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3121 		wbc->range_end  = mapping->writeback_index - 1;
3122 		goto retry;
3123 	}
3124 	if (pages_skipped != wbc->pages_skipped)
3125 		ext4_msg(inode->i_sb, KERN_CRIT,
3126 			 "This should not happen leaving %s "
3127 			 "with nr_to_write = %ld ret = %d",
3128 			 __func__, wbc->nr_to_write, ret);
3129 
3130 	/* Update index */
3131 	wbc->range_cyclic = range_cyclic;
3132 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3133 		/*
3134 		 * set the writeback_index so that range_cyclic
3135 		 * mode will write it back later
3136 		 */
3137 		mapping->writeback_index = done_index;
3138 
3139 out_writepages:
3140 	wbc->nr_to_write -= nr_to_writebump;
3141 	wbc->range_start = range_start;
3142 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3143 	return ret;
3144 }
3145 
3146 #define FALL_BACK_TO_NONDELALLOC 1
3147 static int ext4_nonda_switch(struct super_block *sb)
3148 {
3149 	s64 free_blocks, dirty_blocks;
3150 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3151 
3152 	/*
3153 	 * switch to non delalloc mode if we are running low
3154 	 * on free block. The free block accounting via percpu
3155 	 * counters can get slightly wrong with percpu_counter_batch getting
3156 	 * accumulated on each CPU without updating global counters
3157 	 * Delalloc need an accurate free block accounting. So switch
3158 	 * to non delalloc when we are near to error range.
3159 	 */
3160 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3161 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3162 	if (2 * free_blocks < 3 * dirty_blocks ||
3163 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3164 		/*
3165 		 * free block count is less than 150% of dirty blocks
3166 		 * or free blocks is less than watermark
3167 		 */
3168 		return 1;
3169 	}
3170 	/*
3171 	 * Even if we don't switch but are nearing capacity,
3172 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3173 	 */
3174 	if (free_blocks < 2 * dirty_blocks)
3175 		writeback_inodes_sb_if_idle(sb);
3176 
3177 	return 0;
3178 }
3179 
3180 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3181 			       loff_t pos, unsigned len, unsigned flags,
3182 			       struct page **pagep, void **fsdata)
3183 {
3184 	int ret, retries = 0;
3185 	struct page *page;
3186 	pgoff_t index;
3187 	struct inode *inode = mapping->host;
3188 	handle_t *handle;
3189 
3190 	index = pos >> PAGE_CACHE_SHIFT;
3191 
3192 	if (ext4_nonda_switch(inode->i_sb)) {
3193 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3194 		return ext4_write_begin(file, mapping, pos,
3195 					len, flags, pagep, fsdata);
3196 	}
3197 	*fsdata = (void *)0;
3198 	trace_ext4_da_write_begin(inode, pos, len, flags);
3199 retry:
3200 	/*
3201 	 * With delayed allocation, we don't log the i_disksize update
3202 	 * if there is delayed block allocation. But we still need
3203 	 * to journalling the i_disksize update if writes to the end
3204 	 * of file which has an already mapped buffer.
3205 	 */
3206 	handle = ext4_journal_start(inode, 1);
3207 	if (IS_ERR(handle)) {
3208 		ret = PTR_ERR(handle);
3209 		goto out;
3210 	}
3211 	/* We cannot recurse into the filesystem as the transaction is already
3212 	 * started */
3213 	flags |= AOP_FLAG_NOFS;
3214 
3215 	page = grab_cache_page_write_begin(mapping, index, flags);
3216 	if (!page) {
3217 		ext4_journal_stop(handle);
3218 		ret = -ENOMEM;
3219 		goto out;
3220 	}
3221 	*pagep = page;
3222 
3223 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3224 	if (ret < 0) {
3225 		unlock_page(page);
3226 		ext4_journal_stop(handle);
3227 		page_cache_release(page);
3228 		/*
3229 		 * block_write_begin may have instantiated a few blocks
3230 		 * outside i_size.  Trim these off again. Don't need
3231 		 * i_size_read because we hold i_mutex.
3232 		 */
3233 		if (pos + len > inode->i_size)
3234 			ext4_truncate_failed_write(inode);
3235 	}
3236 
3237 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3238 		goto retry;
3239 out:
3240 	return ret;
3241 }
3242 
3243 /*
3244  * Check if we should update i_disksize
3245  * when write to the end of file but not require block allocation
3246  */
3247 static int ext4_da_should_update_i_disksize(struct page *page,
3248 					    unsigned long offset)
3249 {
3250 	struct buffer_head *bh;
3251 	struct inode *inode = page->mapping->host;
3252 	unsigned int idx;
3253 	int i;
3254 
3255 	bh = page_buffers(page);
3256 	idx = offset >> inode->i_blkbits;
3257 
3258 	for (i = 0; i < idx; i++)
3259 		bh = bh->b_this_page;
3260 
3261 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3262 		return 0;
3263 	return 1;
3264 }
3265 
3266 static int ext4_da_write_end(struct file *file,
3267 			     struct address_space *mapping,
3268 			     loff_t pos, unsigned len, unsigned copied,
3269 			     struct page *page, void *fsdata)
3270 {
3271 	struct inode *inode = mapping->host;
3272 	int ret = 0, ret2;
3273 	handle_t *handle = ext4_journal_current_handle();
3274 	loff_t new_i_size;
3275 	unsigned long start, end;
3276 	int write_mode = (int)(unsigned long)fsdata;
3277 
3278 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3279 		if (ext4_should_order_data(inode)) {
3280 			return ext4_ordered_write_end(file, mapping, pos,
3281 					len, copied, page, fsdata);
3282 		} else if (ext4_should_writeback_data(inode)) {
3283 			return ext4_writeback_write_end(file, mapping, pos,
3284 					len, copied, page, fsdata);
3285 		} else {
3286 			BUG();
3287 		}
3288 	}
3289 
3290 	trace_ext4_da_write_end(inode, pos, len, copied);
3291 	start = pos & (PAGE_CACHE_SIZE - 1);
3292 	end = start + copied - 1;
3293 
3294 	/*
3295 	 * generic_write_end() will run mark_inode_dirty() if i_size
3296 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3297 	 * into that.
3298 	 */
3299 
3300 	new_i_size = pos + copied;
3301 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3302 		if (ext4_da_should_update_i_disksize(page, end)) {
3303 			down_write(&EXT4_I(inode)->i_data_sem);
3304 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3305 				/*
3306 				 * Updating i_disksize when extending file
3307 				 * without needing block allocation
3308 				 */
3309 				if (ext4_should_order_data(inode))
3310 					ret = ext4_jbd2_file_inode(handle,
3311 								   inode);
3312 
3313 				EXT4_I(inode)->i_disksize = new_i_size;
3314 			}
3315 			up_write(&EXT4_I(inode)->i_data_sem);
3316 			/* We need to mark inode dirty even if
3317 			 * new_i_size is less that inode->i_size
3318 			 * bu greater than i_disksize.(hint delalloc)
3319 			 */
3320 			ext4_mark_inode_dirty(handle, inode);
3321 		}
3322 	}
3323 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3324 							page, fsdata);
3325 	copied = ret2;
3326 	if (ret2 < 0)
3327 		ret = ret2;
3328 	ret2 = ext4_journal_stop(handle);
3329 	if (!ret)
3330 		ret = ret2;
3331 
3332 	return ret ? ret : copied;
3333 }
3334 
3335 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3336 {
3337 	/*
3338 	 * Drop reserved blocks
3339 	 */
3340 	BUG_ON(!PageLocked(page));
3341 	if (!page_has_buffers(page))
3342 		goto out;
3343 
3344 	ext4_da_page_release_reservation(page, offset);
3345 
3346 out:
3347 	ext4_invalidatepage(page, offset);
3348 
3349 	return;
3350 }
3351 
3352 /*
3353  * Force all delayed allocation blocks to be allocated for a given inode.
3354  */
3355 int ext4_alloc_da_blocks(struct inode *inode)
3356 {
3357 	trace_ext4_alloc_da_blocks(inode);
3358 
3359 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3360 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3361 		return 0;
3362 
3363 	/*
3364 	 * We do something simple for now.  The filemap_flush() will
3365 	 * also start triggering a write of the data blocks, which is
3366 	 * not strictly speaking necessary (and for users of
3367 	 * laptop_mode, not even desirable).  However, to do otherwise
3368 	 * would require replicating code paths in:
3369 	 *
3370 	 * ext4_da_writepages() ->
3371 	 *    write_cache_pages() ---> (via passed in callback function)
3372 	 *        __mpage_da_writepage() -->
3373 	 *           mpage_add_bh_to_extent()
3374 	 *           mpage_da_map_blocks()
3375 	 *
3376 	 * The problem is that write_cache_pages(), located in
3377 	 * mm/page-writeback.c, marks pages clean in preparation for
3378 	 * doing I/O, which is not desirable if we're not planning on
3379 	 * doing I/O at all.
3380 	 *
3381 	 * We could call write_cache_pages(), and then redirty all of
3382 	 * the pages by calling redirty_page_for_writeback() but that
3383 	 * would be ugly in the extreme.  So instead we would need to
3384 	 * replicate parts of the code in the above functions,
3385 	 * simplifying them becuase we wouldn't actually intend to
3386 	 * write out the pages, but rather only collect contiguous
3387 	 * logical block extents, call the multi-block allocator, and
3388 	 * then update the buffer heads with the block allocations.
3389 	 *
3390 	 * For now, though, we'll cheat by calling filemap_flush(),
3391 	 * which will map the blocks, and start the I/O, but not
3392 	 * actually wait for the I/O to complete.
3393 	 */
3394 	return filemap_flush(inode->i_mapping);
3395 }
3396 
3397 /*
3398  * bmap() is special.  It gets used by applications such as lilo and by
3399  * the swapper to find the on-disk block of a specific piece of data.
3400  *
3401  * Naturally, this is dangerous if the block concerned is still in the
3402  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3403  * filesystem and enables swap, then they may get a nasty shock when the
3404  * data getting swapped to that swapfile suddenly gets overwritten by
3405  * the original zero's written out previously to the journal and
3406  * awaiting writeback in the kernel's buffer cache.
3407  *
3408  * So, if we see any bmap calls here on a modified, data-journaled file,
3409  * take extra steps to flush any blocks which might be in the cache.
3410  */
3411 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3412 {
3413 	struct inode *inode = mapping->host;
3414 	journal_t *journal;
3415 	int err;
3416 
3417 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3418 			test_opt(inode->i_sb, DELALLOC)) {
3419 		/*
3420 		 * With delalloc we want to sync the file
3421 		 * so that we can make sure we allocate
3422 		 * blocks for file
3423 		 */
3424 		filemap_write_and_wait(mapping);
3425 	}
3426 
3427 	if (EXT4_JOURNAL(inode) &&
3428 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3429 		/*
3430 		 * This is a REALLY heavyweight approach, but the use of
3431 		 * bmap on dirty files is expected to be extremely rare:
3432 		 * only if we run lilo or swapon on a freshly made file
3433 		 * do we expect this to happen.
3434 		 *
3435 		 * (bmap requires CAP_SYS_RAWIO so this does not
3436 		 * represent an unprivileged user DOS attack --- we'd be
3437 		 * in trouble if mortal users could trigger this path at
3438 		 * will.)
3439 		 *
3440 		 * NB. EXT4_STATE_JDATA is not set on files other than
3441 		 * regular files.  If somebody wants to bmap a directory
3442 		 * or symlink and gets confused because the buffer
3443 		 * hasn't yet been flushed to disk, they deserve
3444 		 * everything they get.
3445 		 */
3446 
3447 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3448 		journal = EXT4_JOURNAL(inode);
3449 		jbd2_journal_lock_updates(journal);
3450 		err = jbd2_journal_flush(journal);
3451 		jbd2_journal_unlock_updates(journal);
3452 
3453 		if (err)
3454 			return 0;
3455 	}
3456 
3457 	return generic_block_bmap(mapping, block, ext4_get_block);
3458 }
3459 
3460 static int ext4_readpage(struct file *file, struct page *page)
3461 {
3462 	return mpage_readpage(page, ext4_get_block);
3463 }
3464 
3465 static int
3466 ext4_readpages(struct file *file, struct address_space *mapping,
3467 		struct list_head *pages, unsigned nr_pages)
3468 {
3469 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3470 }
3471 
3472 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3473 {
3474 	struct buffer_head *head, *bh;
3475 	unsigned int curr_off = 0;
3476 
3477 	if (!page_has_buffers(page))
3478 		return;
3479 	head = bh = page_buffers(page);
3480 	do {
3481 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3482 					&& bh->b_private) {
3483 			ext4_free_io_end(bh->b_private);
3484 			bh->b_private = NULL;
3485 			bh->b_end_io = NULL;
3486 		}
3487 		curr_off = curr_off + bh->b_size;
3488 		bh = bh->b_this_page;
3489 	} while (bh != head);
3490 }
3491 
3492 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3493 {
3494 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3495 
3496 	/*
3497 	 * free any io_end structure allocated for buffers to be discarded
3498 	 */
3499 	if (ext4_should_dioread_nolock(page->mapping->host))
3500 		ext4_invalidatepage_free_endio(page, offset);
3501 	/*
3502 	 * If it's a full truncate we just forget about the pending dirtying
3503 	 */
3504 	if (offset == 0)
3505 		ClearPageChecked(page);
3506 
3507 	if (journal)
3508 		jbd2_journal_invalidatepage(journal, page, offset);
3509 	else
3510 		block_invalidatepage(page, offset);
3511 }
3512 
3513 static int ext4_releasepage(struct page *page, gfp_t wait)
3514 {
3515 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3516 
3517 	WARN_ON(PageChecked(page));
3518 	if (!page_has_buffers(page))
3519 		return 0;
3520 	if (journal)
3521 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3522 	else
3523 		return try_to_free_buffers(page);
3524 }
3525 
3526 /*
3527  * O_DIRECT for ext3 (or indirect map) based files
3528  *
3529  * If the O_DIRECT write will extend the file then add this inode to the
3530  * orphan list.  So recovery will truncate it back to the original size
3531  * if the machine crashes during the write.
3532  *
3533  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3534  * crashes then stale disk data _may_ be exposed inside the file. But current
3535  * VFS code falls back into buffered path in that case so we are safe.
3536  */
3537 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3538 			      const struct iovec *iov, loff_t offset,
3539 			      unsigned long nr_segs)
3540 {
3541 	struct file *file = iocb->ki_filp;
3542 	struct inode *inode = file->f_mapping->host;
3543 	struct ext4_inode_info *ei = EXT4_I(inode);
3544 	handle_t *handle;
3545 	ssize_t ret;
3546 	int orphan = 0;
3547 	size_t count = iov_length(iov, nr_segs);
3548 	int retries = 0;
3549 
3550 	if (rw == WRITE) {
3551 		loff_t final_size = offset + count;
3552 
3553 		if (final_size > inode->i_size) {
3554 			/* Credits for sb + inode write */
3555 			handle = ext4_journal_start(inode, 2);
3556 			if (IS_ERR(handle)) {
3557 				ret = PTR_ERR(handle);
3558 				goto out;
3559 			}
3560 			ret = ext4_orphan_add(handle, inode);
3561 			if (ret) {
3562 				ext4_journal_stop(handle);
3563 				goto out;
3564 			}
3565 			orphan = 1;
3566 			ei->i_disksize = inode->i_size;
3567 			ext4_journal_stop(handle);
3568 		}
3569 	}
3570 
3571 retry:
3572 	if (rw == READ && ext4_should_dioread_nolock(inode))
3573 		ret = __blockdev_direct_IO(rw, iocb, inode,
3574 				 inode->i_sb->s_bdev, iov,
3575 				 offset, nr_segs,
3576 				 ext4_get_block, NULL, NULL, 0);
3577 	else {
3578 		ret = blockdev_direct_IO(rw, iocb, inode,
3579 				 inode->i_sb->s_bdev, iov,
3580 				 offset, nr_segs,
3581 				 ext4_get_block, NULL);
3582 
3583 		if (unlikely((rw & WRITE) && ret < 0)) {
3584 			loff_t isize = i_size_read(inode);
3585 			loff_t end = offset + iov_length(iov, nr_segs);
3586 
3587 			if (end > isize)
3588 				vmtruncate(inode, isize);
3589 		}
3590 	}
3591 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3592 		goto retry;
3593 
3594 	if (orphan) {
3595 		int err;
3596 
3597 		/* Credits for sb + inode write */
3598 		handle = ext4_journal_start(inode, 2);
3599 		if (IS_ERR(handle)) {
3600 			/* This is really bad luck. We've written the data
3601 			 * but cannot extend i_size. Bail out and pretend
3602 			 * the write failed... */
3603 			ret = PTR_ERR(handle);
3604 			if (inode->i_nlink)
3605 				ext4_orphan_del(NULL, inode);
3606 
3607 			goto out;
3608 		}
3609 		if (inode->i_nlink)
3610 			ext4_orphan_del(handle, inode);
3611 		if (ret > 0) {
3612 			loff_t end = offset + ret;
3613 			if (end > inode->i_size) {
3614 				ei->i_disksize = end;
3615 				i_size_write(inode, end);
3616 				/*
3617 				 * We're going to return a positive `ret'
3618 				 * here due to non-zero-length I/O, so there's
3619 				 * no way of reporting error returns from
3620 				 * ext4_mark_inode_dirty() to userspace.  So
3621 				 * ignore it.
3622 				 */
3623 				ext4_mark_inode_dirty(handle, inode);
3624 			}
3625 		}
3626 		err = ext4_journal_stop(handle);
3627 		if (ret == 0)
3628 			ret = err;
3629 	}
3630 out:
3631 	return ret;
3632 }
3633 
3634 /*
3635  * ext4_get_block used when preparing for a DIO write or buffer write.
3636  * We allocate an uinitialized extent if blocks haven't been allocated.
3637  * The extent will be converted to initialized after the IO is complete.
3638  */
3639 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3640 		   struct buffer_head *bh_result, int create)
3641 {
3642 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3643 		   inode->i_ino, create);
3644 	return _ext4_get_block(inode, iblock, bh_result,
3645 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3646 }
3647 
3648 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3649 			    ssize_t size, void *private, int ret,
3650 			    bool is_async)
3651 {
3652         ext4_io_end_t *io_end = iocb->private;
3653 	struct workqueue_struct *wq;
3654 	unsigned long flags;
3655 	struct ext4_inode_info *ei;
3656 
3657 	/* if not async direct IO or dio with 0 bytes write, just return */
3658 	if (!io_end || !size)
3659 		goto out;
3660 
3661 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3662 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3663  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3664 		  size);
3665 
3666 	/* if not aio dio with unwritten extents, just free io and return */
3667 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3668 		ext4_free_io_end(io_end);
3669 		iocb->private = NULL;
3670 out:
3671 		if (is_async)
3672 			aio_complete(iocb, ret, 0);
3673 		return;
3674 	}
3675 
3676 	io_end->offset = offset;
3677 	io_end->size = size;
3678 	if (is_async) {
3679 		io_end->iocb = iocb;
3680 		io_end->result = ret;
3681 	}
3682 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3683 
3684 	/* Add the io_end to per-inode completed aio dio list*/
3685 	ei = EXT4_I(io_end->inode);
3686 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3687 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3688 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3689 
3690 	/* queue the work to convert unwritten extents to written */
3691 	queue_work(wq, &io_end->work);
3692 	iocb->private = NULL;
3693 }
3694 
3695 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3696 {
3697 	ext4_io_end_t *io_end = bh->b_private;
3698 	struct workqueue_struct *wq;
3699 	struct inode *inode;
3700 	unsigned long flags;
3701 
3702 	if (!test_clear_buffer_uninit(bh) || !io_end)
3703 		goto out;
3704 
3705 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3706 		printk("sb umounted, discard end_io request for inode %lu\n",
3707 			io_end->inode->i_ino);
3708 		ext4_free_io_end(io_end);
3709 		goto out;
3710 	}
3711 
3712 	io_end->flag = EXT4_IO_END_UNWRITTEN;
3713 	inode = io_end->inode;
3714 
3715 	/* Add the io_end to per-inode completed io list*/
3716 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3717 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3718 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3719 
3720 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3721 	/* queue the work to convert unwritten extents to written */
3722 	queue_work(wq, &io_end->work);
3723 out:
3724 	bh->b_private = NULL;
3725 	bh->b_end_io = NULL;
3726 	clear_buffer_uninit(bh);
3727 	end_buffer_async_write(bh, uptodate);
3728 }
3729 
3730 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3731 {
3732 	ext4_io_end_t *io_end;
3733 	struct page *page = bh->b_page;
3734 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3735 	size_t size = bh->b_size;
3736 
3737 retry:
3738 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3739 	if (!io_end) {
3740 		pr_warning_ratelimited("%s: allocation fail\n", __func__);
3741 		schedule();
3742 		goto retry;
3743 	}
3744 	io_end->offset = offset;
3745 	io_end->size = size;
3746 	/*
3747 	 * We need to hold a reference to the page to make sure it
3748 	 * doesn't get evicted before ext4_end_io_work() has a chance
3749 	 * to convert the extent from written to unwritten.
3750 	 */
3751 	io_end->page = page;
3752 	get_page(io_end->page);
3753 
3754 	bh->b_private = io_end;
3755 	bh->b_end_io = ext4_end_io_buffer_write;
3756 	return 0;
3757 }
3758 
3759 /*
3760  * For ext4 extent files, ext4 will do direct-io write to holes,
3761  * preallocated extents, and those write extend the file, no need to
3762  * fall back to buffered IO.
3763  *
3764  * For holes, we fallocate those blocks, mark them as unintialized
3765  * If those blocks were preallocated, we mark sure they are splited, but
3766  * still keep the range to write as unintialized.
3767  *
3768  * The unwrritten extents will be converted to written when DIO is completed.
3769  * For async direct IO, since the IO may still pending when return, we
3770  * set up an end_io call back function, which will do the convertion
3771  * when async direct IO completed.
3772  *
3773  * If the O_DIRECT write will extend the file then add this inode to the
3774  * orphan list.  So recovery will truncate it back to the original size
3775  * if the machine crashes during the write.
3776  *
3777  */
3778 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3779 			      const struct iovec *iov, loff_t offset,
3780 			      unsigned long nr_segs)
3781 {
3782 	struct file *file = iocb->ki_filp;
3783 	struct inode *inode = file->f_mapping->host;
3784 	ssize_t ret;
3785 	size_t count = iov_length(iov, nr_segs);
3786 
3787 	loff_t final_size = offset + count;
3788 	if (rw == WRITE && final_size <= inode->i_size) {
3789 		/*
3790  		 * We could direct write to holes and fallocate.
3791 		 *
3792  		 * Allocated blocks to fill the hole are marked as uninitialized
3793  		 * to prevent paralel buffered read to expose the stale data
3794  		 * before DIO complete the data IO.
3795 		 *
3796  		 * As to previously fallocated extents, ext4 get_block
3797  		 * will just simply mark the buffer mapped but still
3798  		 * keep the extents uninitialized.
3799  		 *
3800 		 * for non AIO case, we will convert those unwritten extents
3801 		 * to written after return back from blockdev_direct_IO.
3802 		 *
3803 		 * for async DIO, the conversion needs to be defered when
3804 		 * the IO is completed. The ext4 end_io callback function
3805 		 * will be called to take care of the conversion work.
3806 		 * Here for async case, we allocate an io_end structure to
3807 		 * hook to the iocb.
3808  		 */
3809 		iocb->private = NULL;
3810 		EXT4_I(inode)->cur_aio_dio = NULL;
3811 		if (!is_sync_kiocb(iocb)) {
3812 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3813 			if (!iocb->private)
3814 				return -ENOMEM;
3815 			/*
3816 			 * we save the io structure for current async
3817 			 * direct IO, so that later ext4_map_blocks()
3818 			 * could flag the io structure whether there
3819 			 * is a unwritten extents needs to be converted
3820 			 * when IO is completed.
3821 			 */
3822 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3823 		}
3824 
3825 		ret = blockdev_direct_IO(rw, iocb, inode,
3826 					 inode->i_sb->s_bdev, iov,
3827 					 offset, nr_segs,
3828 					 ext4_get_block_write,
3829 					 ext4_end_io_dio);
3830 		if (iocb->private)
3831 			EXT4_I(inode)->cur_aio_dio = NULL;
3832 		/*
3833 		 * The io_end structure takes a reference to the inode,
3834 		 * that structure needs to be destroyed and the
3835 		 * reference to the inode need to be dropped, when IO is
3836 		 * complete, even with 0 byte write, or failed.
3837 		 *
3838 		 * In the successful AIO DIO case, the io_end structure will be
3839 		 * desctroyed and the reference to the inode will be dropped
3840 		 * after the end_io call back function is called.
3841 		 *
3842 		 * In the case there is 0 byte write, or error case, since
3843 		 * VFS direct IO won't invoke the end_io call back function,
3844 		 * we need to free the end_io structure here.
3845 		 */
3846 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3847 			ext4_free_io_end(iocb->private);
3848 			iocb->private = NULL;
3849 		} else if (ret > 0 && ext4_test_inode_state(inode,
3850 						EXT4_STATE_DIO_UNWRITTEN)) {
3851 			int err;
3852 			/*
3853 			 * for non AIO case, since the IO is already
3854 			 * completed, we could do the convertion right here
3855 			 */
3856 			err = ext4_convert_unwritten_extents(inode,
3857 							     offset, ret);
3858 			if (err < 0)
3859 				ret = err;
3860 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3861 		}
3862 		return ret;
3863 	}
3864 
3865 	/* for write the the end of file case, we fall back to old way */
3866 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3867 }
3868 
3869 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3870 			      const struct iovec *iov, loff_t offset,
3871 			      unsigned long nr_segs)
3872 {
3873 	struct file *file = iocb->ki_filp;
3874 	struct inode *inode = file->f_mapping->host;
3875 
3876 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3877 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3878 
3879 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3880 }
3881 
3882 /*
3883  * Pages can be marked dirty completely asynchronously from ext4's journalling
3884  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3885  * much here because ->set_page_dirty is called under VFS locks.  The page is
3886  * not necessarily locked.
3887  *
3888  * We cannot just dirty the page and leave attached buffers clean, because the
3889  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3890  * or jbddirty because all the journalling code will explode.
3891  *
3892  * So what we do is to mark the page "pending dirty" and next time writepage
3893  * is called, propagate that into the buffers appropriately.
3894  */
3895 static int ext4_journalled_set_page_dirty(struct page *page)
3896 {
3897 	SetPageChecked(page);
3898 	return __set_page_dirty_nobuffers(page);
3899 }
3900 
3901 static const struct address_space_operations ext4_ordered_aops = {
3902 	.readpage		= ext4_readpage,
3903 	.readpages		= ext4_readpages,
3904 	.writepage		= ext4_writepage,
3905 	.sync_page		= block_sync_page,
3906 	.write_begin		= ext4_write_begin,
3907 	.write_end		= ext4_ordered_write_end,
3908 	.bmap			= ext4_bmap,
3909 	.invalidatepage		= ext4_invalidatepage,
3910 	.releasepage		= ext4_releasepage,
3911 	.direct_IO		= ext4_direct_IO,
3912 	.migratepage		= buffer_migrate_page,
3913 	.is_partially_uptodate  = block_is_partially_uptodate,
3914 	.error_remove_page	= generic_error_remove_page,
3915 };
3916 
3917 static const struct address_space_operations ext4_writeback_aops = {
3918 	.readpage		= ext4_readpage,
3919 	.readpages		= ext4_readpages,
3920 	.writepage		= ext4_writepage,
3921 	.sync_page		= block_sync_page,
3922 	.write_begin		= ext4_write_begin,
3923 	.write_end		= ext4_writeback_write_end,
3924 	.bmap			= ext4_bmap,
3925 	.invalidatepage		= ext4_invalidatepage,
3926 	.releasepage		= ext4_releasepage,
3927 	.direct_IO		= ext4_direct_IO,
3928 	.migratepage		= buffer_migrate_page,
3929 	.is_partially_uptodate  = block_is_partially_uptodate,
3930 	.error_remove_page	= generic_error_remove_page,
3931 };
3932 
3933 static const struct address_space_operations ext4_journalled_aops = {
3934 	.readpage		= ext4_readpage,
3935 	.readpages		= ext4_readpages,
3936 	.writepage		= ext4_writepage,
3937 	.sync_page		= block_sync_page,
3938 	.write_begin		= ext4_write_begin,
3939 	.write_end		= ext4_journalled_write_end,
3940 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3941 	.bmap			= ext4_bmap,
3942 	.invalidatepage		= ext4_invalidatepage,
3943 	.releasepage		= ext4_releasepage,
3944 	.is_partially_uptodate  = block_is_partially_uptodate,
3945 	.error_remove_page	= generic_error_remove_page,
3946 };
3947 
3948 static const struct address_space_operations ext4_da_aops = {
3949 	.readpage		= ext4_readpage,
3950 	.readpages		= ext4_readpages,
3951 	.writepage		= ext4_writepage,
3952 	.writepages		= ext4_da_writepages,
3953 	.sync_page		= block_sync_page,
3954 	.write_begin		= ext4_da_write_begin,
3955 	.write_end		= ext4_da_write_end,
3956 	.bmap			= ext4_bmap,
3957 	.invalidatepage		= ext4_da_invalidatepage,
3958 	.releasepage		= ext4_releasepage,
3959 	.direct_IO		= ext4_direct_IO,
3960 	.migratepage		= buffer_migrate_page,
3961 	.is_partially_uptodate  = block_is_partially_uptodate,
3962 	.error_remove_page	= generic_error_remove_page,
3963 };
3964 
3965 void ext4_set_aops(struct inode *inode)
3966 {
3967 	if (ext4_should_order_data(inode) &&
3968 		test_opt(inode->i_sb, DELALLOC))
3969 		inode->i_mapping->a_ops = &ext4_da_aops;
3970 	else if (ext4_should_order_data(inode))
3971 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3972 	else if (ext4_should_writeback_data(inode) &&
3973 		 test_opt(inode->i_sb, DELALLOC))
3974 		inode->i_mapping->a_ops = &ext4_da_aops;
3975 	else if (ext4_should_writeback_data(inode))
3976 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3977 	else
3978 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3979 }
3980 
3981 /*
3982  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3983  * up to the end of the block which corresponds to `from'.
3984  * This required during truncate. We need to physically zero the tail end
3985  * of that block so it doesn't yield old data if the file is later grown.
3986  */
3987 int ext4_block_truncate_page(handle_t *handle,
3988 		struct address_space *mapping, loff_t from)
3989 {
3990 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3991 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3992 	unsigned blocksize, length, pos;
3993 	ext4_lblk_t iblock;
3994 	struct inode *inode = mapping->host;
3995 	struct buffer_head *bh;
3996 	struct page *page;
3997 	int err = 0;
3998 
3999 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4000 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4001 	if (!page)
4002 		return -EINVAL;
4003 
4004 	blocksize = inode->i_sb->s_blocksize;
4005 	length = blocksize - (offset & (blocksize - 1));
4006 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4007 
4008 	if (!page_has_buffers(page))
4009 		create_empty_buffers(page, blocksize, 0);
4010 
4011 	/* Find the buffer that contains "offset" */
4012 	bh = page_buffers(page);
4013 	pos = blocksize;
4014 	while (offset >= pos) {
4015 		bh = bh->b_this_page;
4016 		iblock++;
4017 		pos += blocksize;
4018 	}
4019 
4020 	err = 0;
4021 	if (buffer_freed(bh)) {
4022 		BUFFER_TRACE(bh, "freed: skip");
4023 		goto unlock;
4024 	}
4025 
4026 	if (!buffer_mapped(bh)) {
4027 		BUFFER_TRACE(bh, "unmapped");
4028 		ext4_get_block(inode, iblock, bh, 0);
4029 		/* unmapped? It's a hole - nothing to do */
4030 		if (!buffer_mapped(bh)) {
4031 			BUFFER_TRACE(bh, "still unmapped");
4032 			goto unlock;
4033 		}
4034 	}
4035 
4036 	/* Ok, it's mapped. Make sure it's up-to-date */
4037 	if (PageUptodate(page))
4038 		set_buffer_uptodate(bh);
4039 
4040 	if (!buffer_uptodate(bh)) {
4041 		err = -EIO;
4042 		ll_rw_block(READ, 1, &bh);
4043 		wait_on_buffer(bh);
4044 		/* Uhhuh. Read error. Complain and punt. */
4045 		if (!buffer_uptodate(bh))
4046 			goto unlock;
4047 	}
4048 
4049 	if (ext4_should_journal_data(inode)) {
4050 		BUFFER_TRACE(bh, "get write access");
4051 		err = ext4_journal_get_write_access(handle, bh);
4052 		if (err)
4053 			goto unlock;
4054 	}
4055 
4056 	zero_user(page, offset, length);
4057 
4058 	BUFFER_TRACE(bh, "zeroed end of block");
4059 
4060 	err = 0;
4061 	if (ext4_should_journal_data(inode)) {
4062 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4063 	} else {
4064 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4065 			err = ext4_jbd2_file_inode(handle, inode);
4066 		mark_buffer_dirty(bh);
4067 	}
4068 
4069 unlock:
4070 	unlock_page(page);
4071 	page_cache_release(page);
4072 	return err;
4073 }
4074 
4075 /*
4076  * Probably it should be a library function... search for first non-zero word
4077  * or memcmp with zero_page, whatever is better for particular architecture.
4078  * Linus?
4079  */
4080 static inline int all_zeroes(__le32 *p, __le32 *q)
4081 {
4082 	while (p < q)
4083 		if (*p++)
4084 			return 0;
4085 	return 1;
4086 }
4087 
4088 /**
4089  *	ext4_find_shared - find the indirect blocks for partial truncation.
4090  *	@inode:	  inode in question
4091  *	@depth:	  depth of the affected branch
4092  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4093  *	@chain:	  place to store the pointers to partial indirect blocks
4094  *	@top:	  place to the (detached) top of branch
4095  *
4096  *	This is a helper function used by ext4_truncate().
4097  *
4098  *	When we do truncate() we may have to clean the ends of several
4099  *	indirect blocks but leave the blocks themselves alive. Block is
4100  *	partially truncated if some data below the new i_size is refered
4101  *	from it (and it is on the path to the first completely truncated
4102  *	data block, indeed).  We have to free the top of that path along
4103  *	with everything to the right of the path. Since no allocation
4104  *	past the truncation point is possible until ext4_truncate()
4105  *	finishes, we may safely do the latter, but top of branch may
4106  *	require special attention - pageout below the truncation point
4107  *	might try to populate it.
4108  *
4109  *	We atomically detach the top of branch from the tree, store the
4110  *	block number of its root in *@top, pointers to buffer_heads of
4111  *	partially truncated blocks - in @chain[].bh and pointers to
4112  *	their last elements that should not be removed - in
4113  *	@chain[].p. Return value is the pointer to last filled element
4114  *	of @chain.
4115  *
4116  *	The work left to caller to do the actual freeing of subtrees:
4117  *		a) free the subtree starting from *@top
4118  *		b) free the subtrees whose roots are stored in
4119  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4120  *		c) free the subtrees growing from the inode past the @chain[0].
4121  *			(no partially truncated stuff there).  */
4122 
4123 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4124 				  ext4_lblk_t offsets[4], Indirect chain[4],
4125 				  __le32 *top)
4126 {
4127 	Indirect *partial, *p;
4128 	int k, err;
4129 
4130 	*top = 0;
4131 	/* Make k index the deepest non-null offset + 1 */
4132 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4133 		;
4134 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4135 	/* Writer: pointers */
4136 	if (!partial)
4137 		partial = chain + k-1;
4138 	/*
4139 	 * If the branch acquired continuation since we've looked at it -
4140 	 * fine, it should all survive and (new) top doesn't belong to us.
4141 	 */
4142 	if (!partial->key && *partial->p)
4143 		/* Writer: end */
4144 		goto no_top;
4145 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4146 		;
4147 	/*
4148 	 * OK, we've found the last block that must survive. The rest of our
4149 	 * branch should be detached before unlocking. However, if that rest
4150 	 * of branch is all ours and does not grow immediately from the inode
4151 	 * it's easier to cheat and just decrement partial->p.
4152 	 */
4153 	if (p == chain + k - 1 && p > chain) {
4154 		p->p--;
4155 	} else {
4156 		*top = *p->p;
4157 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4158 #if 0
4159 		*p->p = 0;
4160 #endif
4161 	}
4162 	/* Writer: end */
4163 
4164 	while (partial > p) {
4165 		brelse(partial->bh);
4166 		partial--;
4167 	}
4168 no_top:
4169 	return partial;
4170 }
4171 
4172 /*
4173  * Zero a number of block pointers in either an inode or an indirect block.
4174  * If we restart the transaction we must again get write access to the
4175  * indirect block for further modification.
4176  *
4177  * We release `count' blocks on disk, but (last - first) may be greater
4178  * than `count' because there can be holes in there.
4179  */
4180 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4181 			     struct buffer_head *bh,
4182 			     ext4_fsblk_t block_to_free,
4183 			     unsigned long count, __le32 *first,
4184 			     __le32 *last)
4185 {
4186 	__le32 *p;
4187 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4188 	int	err;
4189 
4190 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4191 		flags |= EXT4_FREE_BLOCKS_METADATA;
4192 
4193 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4194 				   count)) {
4195 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4196 				 "blocks %llu len %lu",
4197 				 (unsigned long long) block_to_free, count);
4198 		return 1;
4199 	}
4200 
4201 	if (try_to_extend_transaction(handle, inode)) {
4202 		if (bh) {
4203 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4204 			err = ext4_handle_dirty_metadata(handle, inode, bh);
4205 			if (unlikely(err)) {
4206 				ext4_std_error(inode->i_sb, err);
4207 				return 1;
4208 			}
4209 		}
4210 		err = ext4_mark_inode_dirty(handle, inode);
4211 		if (unlikely(err)) {
4212 			ext4_std_error(inode->i_sb, err);
4213 			return 1;
4214 		}
4215 		err = ext4_truncate_restart_trans(handle, inode,
4216 						  blocks_for_truncate(inode));
4217 		if (unlikely(err)) {
4218 			ext4_std_error(inode->i_sb, err);
4219 			return 1;
4220 		}
4221 		if (bh) {
4222 			BUFFER_TRACE(bh, "retaking write access");
4223 			ext4_journal_get_write_access(handle, bh);
4224 		}
4225 	}
4226 
4227 	for (p = first; p < last; p++)
4228 		*p = 0;
4229 
4230 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4231 	return 0;
4232 }
4233 
4234 /**
4235  * ext4_free_data - free a list of data blocks
4236  * @handle:	handle for this transaction
4237  * @inode:	inode we are dealing with
4238  * @this_bh:	indirect buffer_head which contains *@first and *@last
4239  * @first:	array of block numbers
4240  * @last:	points immediately past the end of array
4241  *
4242  * We are freeing all blocks refered from that array (numbers are stored as
4243  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4244  *
4245  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4246  * blocks are contiguous then releasing them at one time will only affect one
4247  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4248  * actually use a lot of journal space.
4249  *
4250  * @this_bh will be %NULL if @first and @last point into the inode's direct
4251  * block pointers.
4252  */
4253 static void ext4_free_data(handle_t *handle, struct inode *inode,
4254 			   struct buffer_head *this_bh,
4255 			   __le32 *first, __le32 *last)
4256 {
4257 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4258 	unsigned long count = 0;	    /* Number of blocks in the run */
4259 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4260 					       corresponding to
4261 					       block_to_free */
4262 	ext4_fsblk_t nr;		    /* Current block # */
4263 	__le32 *p;			    /* Pointer into inode/ind
4264 					       for current block */
4265 	int err;
4266 
4267 	if (this_bh) {				/* For indirect block */
4268 		BUFFER_TRACE(this_bh, "get_write_access");
4269 		err = ext4_journal_get_write_access(handle, this_bh);
4270 		/* Important: if we can't update the indirect pointers
4271 		 * to the blocks, we can't free them. */
4272 		if (err)
4273 			return;
4274 	}
4275 
4276 	for (p = first; p < last; p++) {
4277 		nr = le32_to_cpu(*p);
4278 		if (nr) {
4279 			/* accumulate blocks to free if they're contiguous */
4280 			if (count == 0) {
4281 				block_to_free = nr;
4282 				block_to_free_p = p;
4283 				count = 1;
4284 			} else if (nr == block_to_free + count) {
4285 				count++;
4286 			} else {
4287 				if (ext4_clear_blocks(handle, inode, this_bh,
4288 						      block_to_free, count,
4289 						      block_to_free_p, p))
4290 					break;
4291 				block_to_free = nr;
4292 				block_to_free_p = p;
4293 				count = 1;
4294 			}
4295 		}
4296 	}
4297 
4298 	if (count > 0)
4299 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4300 				  count, block_to_free_p, p);
4301 
4302 	if (this_bh) {
4303 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4304 
4305 		/*
4306 		 * The buffer head should have an attached journal head at this
4307 		 * point. However, if the data is corrupted and an indirect
4308 		 * block pointed to itself, it would have been detached when
4309 		 * the block was cleared. Check for this instead of OOPSing.
4310 		 */
4311 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4312 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4313 		else
4314 			EXT4_ERROR_INODE(inode,
4315 					 "circular indirect block detected at "
4316 					 "block %llu",
4317 				(unsigned long long) this_bh->b_blocknr);
4318 	}
4319 }
4320 
4321 /**
4322  *	ext4_free_branches - free an array of branches
4323  *	@handle: JBD handle for this transaction
4324  *	@inode:	inode we are dealing with
4325  *	@parent_bh: the buffer_head which contains *@first and *@last
4326  *	@first:	array of block numbers
4327  *	@last:	pointer immediately past the end of array
4328  *	@depth:	depth of the branches to free
4329  *
4330  *	We are freeing all blocks refered from these branches (numbers are
4331  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4332  *	appropriately.
4333  */
4334 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4335 			       struct buffer_head *parent_bh,
4336 			       __le32 *first, __le32 *last, int depth)
4337 {
4338 	ext4_fsblk_t nr;
4339 	__le32 *p;
4340 
4341 	if (ext4_handle_is_aborted(handle))
4342 		return;
4343 
4344 	if (depth--) {
4345 		struct buffer_head *bh;
4346 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4347 		p = last;
4348 		while (--p >= first) {
4349 			nr = le32_to_cpu(*p);
4350 			if (!nr)
4351 				continue;		/* A hole */
4352 
4353 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4354 						   nr, 1)) {
4355 				EXT4_ERROR_INODE(inode,
4356 						 "invalid indirect mapped "
4357 						 "block %lu (level %d)",
4358 						 (unsigned long) nr, depth);
4359 				break;
4360 			}
4361 
4362 			/* Go read the buffer for the next level down */
4363 			bh = sb_bread(inode->i_sb, nr);
4364 
4365 			/*
4366 			 * A read failure? Report error and clear slot
4367 			 * (should be rare).
4368 			 */
4369 			if (!bh) {
4370 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4371 						       "Read failure");
4372 				continue;
4373 			}
4374 
4375 			/* This zaps the entire block.  Bottom up. */
4376 			BUFFER_TRACE(bh, "free child branches");
4377 			ext4_free_branches(handle, inode, bh,
4378 					(__le32 *) bh->b_data,
4379 					(__le32 *) bh->b_data + addr_per_block,
4380 					depth);
4381 			brelse(bh);
4382 
4383 			/*
4384 			 * Everything below this this pointer has been
4385 			 * released.  Now let this top-of-subtree go.
4386 			 *
4387 			 * We want the freeing of this indirect block to be
4388 			 * atomic in the journal with the updating of the
4389 			 * bitmap block which owns it.  So make some room in
4390 			 * the journal.
4391 			 *
4392 			 * We zero the parent pointer *after* freeing its
4393 			 * pointee in the bitmaps, so if extend_transaction()
4394 			 * for some reason fails to put the bitmap changes and
4395 			 * the release into the same transaction, recovery
4396 			 * will merely complain about releasing a free block,
4397 			 * rather than leaking blocks.
4398 			 */
4399 			if (ext4_handle_is_aborted(handle))
4400 				return;
4401 			if (try_to_extend_transaction(handle, inode)) {
4402 				ext4_mark_inode_dirty(handle, inode);
4403 				ext4_truncate_restart_trans(handle, inode,
4404 					    blocks_for_truncate(inode));
4405 			}
4406 
4407 			/*
4408 			 * The forget flag here is critical because if
4409 			 * we are journaling (and not doing data
4410 			 * journaling), we have to make sure a revoke
4411 			 * record is written to prevent the journal
4412 			 * replay from overwriting the (former)
4413 			 * indirect block if it gets reallocated as a
4414 			 * data block.  This must happen in the same
4415 			 * transaction where the data blocks are
4416 			 * actually freed.
4417 			 */
4418 			ext4_free_blocks(handle, inode, 0, nr, 1,
4419 					 EXT4_FREE_BLOCKS_METADATA|
4420 					 EXT4_FREE_BLOCKS_FORGET);
4421 
4422 			if (parent_bh) {
4423 				/*
4424 				 * The block which we have just freed is
4425 				 * pointed to by an indirect block: journal it
4426 				 */
4427 				BUFFER_TRACE(parent_bh, "get_write_access");
4428 				if (!ext4_journal_get_write_access(handle,
4429 								   parent_bh)){
4430 					*p = 0;
4431 					BUFFER_TRACE(parent_bh,
4432 					"call ext4_handle_dirty_metadata");
4433 					ext4_handle_dirty_metadata(handle,
4434 								   inode,
4435 								   parent_bh);
4436 				}
4437 			}
4438 		}
4439 	} else {
4440 		/* We have reached the bottom of the tree. */
4441 		BUFFER_TRACE(parent_bh, "free data blocks");
4442 		ext4_free_data(handle, inode, parent_bh, first, last);
4443 	}
4444 }
4445 
4446 int ext4_can_truncate(struct inode *inode)
4447 {
4448 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4449 		return 0;
4450 	if (S_ISREG(inode->i_mode))
4451 		return 1;
4452 	if (S_ISDIR(inode->i_mode))
4453 		return 1;
4454 	if (S_ISLNK(inode->i_mode))
4455 		return !ext4_inode_is_fast_symlink(inode);
4456 	return 0;
4457 }
4458 
4459 /*
4460  * ext4_truncate()
4461  *
4462  * We block out ext4_get_block() block instantiations across the entire
4463  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4464  * simultaneously on behalf of the same inode.
4465  *
4466  * As we work through the truncate and commmit bits of it to the journal there
4467  * is one core, guiding principle: the file's tree must always be consistent on
4468  * disk.  We must be able to restart the truncate after a crash.
4469  *
4470  * The file's tree may be transiently inconsistent in memory (although it
4471  * probably isn't), but whenever we close off and commit a journal transaction,
4472  * the contents of (the filesystem + the journal) must be consistent and
4473  * restartable.  It's pretty simple, really: bottom up, right to left (although
4474  * left-to-right works OK too).
4475  *
4476  * Note that at recovery time, journal replay occurs *before* the restart of
4477  * truncate against the orphan inode list.
4478  *
4479  * The committed inode has the new, desired i_size (which is the same as
4480  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4481  * that this inode's truncate did not complete and it will again call
4482  * ext4_truncate() to have another go.  So there will be instantiated blocks
4483  * to the right of the truncation point in a crashed ext4 filesystem.  But
4484  * that's fine - as long as they are linked from the inode, the post-crash
4485  * ext4_truncate() run will find them and release them.
4486  */
4487 void ext4_truncate(struct inode *inode)
4488 {
4489 	handle_t *handle;
4490 	struct ext4_inode_info *ei = EXT4_I(inode);
4491 	__le32 *i_data = ei->i_data;
4492 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4493 	struct address_space *mapping = inode->i_mapping;
4494 	ext4_lblk_t offsets[4];
4495 	Indirect chain[4];
4496 	Indirect *partial;
4497 	__le32 nr = 0;
4498 	int n;
4499 	ext4_lblk_t last_block;
4500 	unsigned blocksize = inode->i_sb->s_blocksize;
4501 
4502 	if (!ext4_can_truncate(inode))
4503 		return;
4504 
4505 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4506 
4507 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4508 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4509 
4510 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4511 		ext4_ext_truncate(inode);
4512 		return;
4513 	}
4514 
4515 	handle = start_transaction(inode);
4516 	if (IS_ERR(handle))
4517 		return;		/* AKPM: return what? */
4518 
4519 	last_block = (inode->i_size + blocksize-1)
4520 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4521 
4522 	if (inode->i_size & (blocksize - 1))
4523 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4524 			goto out_stop;
4525 
4526 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4527 	if (n == 0)
4528 		goto out_stop;	/* error */
4529 
4530 	/*
4531 	 * OK.  This truncate is going to happen.  We add the inode to the
4532 	 * orphan list, so that if this truncate spans multiple transactions,
4533 	 * and we crash, we will resume the truncate when the filesystem
4534 	 * recovers.  It also marks the inode dirty, to catch the new size.
4535 	 *
4536 	 * Implication: the file must always be in a sane, consistent
4537 	 * truncatable state while each transaction commits.
4538 	 */
4539 	if (ext4_orphan_add(handle, inode))
4540 		goto out_stop;
4541 
4542 	/*
4543 	 * From here we block out all ext4_get_block() callers who want to
4544 	 * modify the block allocation tree.
4545 	 */
4546 	down_write(&ei->i_data_sem);
4547 
4548 	ext4_discard_preallocations(inode);
4549 
4550 	/*
4551 	 * The orphan list entry will now protect us from any crash which
4552 	 * occurs before the truncate completes, so it is now safe to propagate
4553 	 * the new, shorter inode size (held for now in i_size) into the
4554 	 * on-disk inode. We do this via i_disksize, which is the value which
4555 	 * ext4 *really* writes onto the disk inode.
4556 	 */
4557 	ei->i_disksize = inode->i_size;
4558 
4559 	if (n == 1) {		/* direct blocks */
4560 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4561 			       i_data + EXT4_NDIR_BLOCKS);
4562 		goto do_indirects;
4563 	}
4564 
4565 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4566 	/* Kill the top of shared branch (not detached) */
4567 	if (nr) {
4568 		if (partial == chain) {
4569 			/* Shared branch grows from the inode */
4570 			ext4_free_branches(handle, inode, NULL,
4571 					   &nr, &nr+1, (chain+n-1) - partial);
4572 			*partial->p = 0;
4573 			/*
4574 			 * We mark the inode dirty prior to restart,
4575 			 * and prior to stop.  No need for it here.
4576 			 */
4577 		} else {
4578 			/* Shared branch grows from an indirect block */
4579 			BUFFER_TRACE(partial->bh, "get_write_access");
4580 			ext4_free_branches(handle, inode, partial->bh,
4581 					partial->p,
4582 					partial->p+1, (chain+n-1) - partial);
4583 		}
4584 	}
4585 	/* Clear the ends of indirect blocks on the shared branch */
4586 	while (partial > chain) {
4587 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4588 				   (__le32*)partial->bh->b_data+addr_per_block,
4589 				   (chain+n-1) - partial);
4590 		BUFFER_TRACE(partial->bh, "call brelse");
4591 		brelse(partial->bh);
4592 		partial--;
4593 	}
4594 do_indirects:
4595 	/* Kill the remaining (whole) subtrees */
4596 	switch (offsets[0]) {
4597 	default:
4598 		nr = i_data[EXT4_IND_BLOCK];
4599 		if (nr) {
4600 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4601 			i_data[EXT4_IND_BLOCK] = 0;
4602 		}
4603 	case EXT4_IND_BLOCK:
4604 		nr = i_data[EXT4_DIND_BLOCK];
4605 		if (nr) {
4606 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4607 			i_data[EXT4_DIND_BLOCK] = 0;
4608 		}
4609 	case EXT4_DIND_BLOCK:
4610 		nr = i_data[EXT4_TIND_BLOCK];
4611 		if (nr) {
4612 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4613 			i_data[EXT4_TIND_BLOCK] = 0;
4614 		}
4615 	case EXT4_TIND_BLOCK:
4616 		;
4617 	}
4618 
4619 	up_write(&ei->i_data_sem);
4620 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4621 	ext4_mark_inode_dirty(handle, inode);
4622 
4623 	/*
4624 	 * In a multi-transaction truncate, we only make the final transaction
4625 	 * synchronous
4626 	 */
4627 	if (IS_SYNC(inode))
4628 		ext4_handle_sync(handle);
4629 out_stop:
4630 	/*
4631 	 * If this was a simple ftruncate(), and the file will remain alive
4632 	 * then we need to clear up the orphan record which we created above.
4633 	 * However, if this was a real unlink then we were called by
4634 	 * ext4_delete_inode(), and we allow that function to clean up the
4635 	 * orphan info for us.
4636 	 */
4637 	if (inode->i_nlink)
4638 		ext4_orphan_del(handle, inode);
4639 
4640 	ext4_journal_stop(handle);
4641 }
4642 
4643 /*
4644  * ext4_get_inode_loc returns with an extra refcount against the inode's
4645  * underlying buffer_head on success. If 'in_mem' is true, we have all
4646  * data in memory that is needed to recreate the on-disk version of this
4647  * inode.
4648  */
4649 static int __ext4_get_inode_loc(struct inode *inode,
4650 				struct ext4_iloc *iloc, int in_mem)
4651 {
4652 	struct ext4_group_desc	*gdp;
4653 	struct buffer_head	*bh;
4654 	struct super_block	*sb = inode->i_sb;
4655 	ext4_fsblk_t		block;
4656 	int			inodes_per_block, inode_offset;
4657 
4658 	iloc->bh = NULL;
4659 	if (!ext4_valid_inum(sb, inode->i_ino))
4660 		return -EIO;
4661 
4662 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4663 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4664 	if (!gdp)
4665 		return -EIO;
4666 
4667 	/*
4668 	 * Figure out the offset within the block group inode table
4669 	 */
4670 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4671 	inode_offset = ((inode->i_ino - 1) %
4672 			EXT4_INODES_PER_GROUP(sb));
4673 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4674 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4675 
4676 	bh = sb_getblk(sb, block);
4677 	if (!bh) {
4678 		EXT4_ERROR_INODE_BLOCK(inode, block,
4679 				       "unable to read itable block");
4680 		return -EIO;
4681 	}
4682 	if (!buffer_uptodate(bh)) {
4683 		lock_buffer(bh);
4684 
4685 		/*
4686 		 * If the buffer has the write error flag, we have failed
4687 		 * to write out another inode in the same block.  In this
4688 		 * case, we don't have to read the block because we may
4689 		 * read the old inode data successfully.
4690 		 */
4691 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4692 			set_buffer_uptodate(bh);
4693 
4694 		if (buffer_uptodate(bh)) {
4695 			/* someone brought it uptodate while we waited */
4696 			unlock_buffer(bh);
4697 			goto has_buffer;
4698 		}
4699 
4700 		/*
4701 		 * If we have all information of the inode in memory and this
4702 		 * is the only valid inode in the block, we need not read the
4703 		 * block.
4704 		 */
4705 		if (in_mem) {
4706 			struct buffer_head *bitmap_bh;
4707 			int i, start;
4708 
4709 			start = inode_offset & ~(inodes_per_block - 1);
4710 
4711 			/* Is the inode bitmap in cache? */
4712 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4713 			if (!bitmap_bh)
4714 				goto make_io;
4715 
4716 			/*
4717 			 * If the inode bitmap isn't in cache then the
4718 			 * optimisation may end up performing two reads instead
4719 			 * of one, so skip it.
4720 			 */
4721 			if (!buffer_uptodate(bitmap_bh)) {
4722 				brelse(bitmap_bh);
4723 				goto make_io;
4724 			}
4725 			for (i = start; i < start + inodes_per_block; i++) {
4726 				if (i == inode_offset)
4727 					continue;
4728 				if (ext4_test_bit(i, bitmap_bh->b_data))
4729 					break;
4730 			}
4731 			brelse(bitmap_bh);
4732 			if (i == start + inodes_per_block) {
4733 				/* all other inodes are free, so skip I/O */
4734 				memset(bh->b_data, 0, bh->b_size);
4735 				set_buffer_uptodate(bh);
4736 				unlock_buffer(bh);
4737 				goto has_buffer;
4738 			}
4739 		}
4740 
4741 make_io:
4742 		/*
4743 		 * If we need to do any I/O, try to pre-readahead extra
4744 		 * blocks from the inode table.
4745 		 */
4746 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4747 			ext4_fsblk_t b, end, table;
4748 			unsigned num;
4749 
4750 			table = ext4_inode_table(sb, gdp);
4751 			/* s_inode_readahead_blks is always a power of 2 */
4752 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4753 			if (table > b)
4754 				b = table;
4755 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4756 			num = EXT4_INODES_PER_GROUP(sb);
4757 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4758 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4759 				num -= ext4_itable_unused_count(sb, gdp);
4760 			table += num / inodes_per_block;
4761 			if (end > table)
4762 				end = table;
4763 			while (b <= end)
4764 				sb_breadahead(sb, b++);
4765 		}
4766 
4767 		/*
4768 		 * There are other valid inodes in the buffer, this inode
4769 		 * has in-inode xattrs, or we don't have this inode in memory.
4770 		 * Read the block from disk.
4771 		 */
4772 		get_bh(bh);
4773 		bh->b_end_io = end_buffer_read_sync;
4774 		submit_bh(READ_META, bh);
4775 		wait_on_buffer(bh);
4776 		if (!buffer_uptodate(bh)) {
4777 			EXT4_ERROR_INODE_BLOCK(inode, block,
4778 					       "unable to read itable block");
4779 			brelse(bh);
4780 			return -EIO;
4781 		}
4782 	}
4783 has_buffer:
4784 	iloc->bh = bh;
4785 	return 0;
4786 }
4787 
4788 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4789 {
4790 	/* We have all inode data except xattrs in memory here. */
4791 	return __ext4_get_inode_loc(inode, iloc,
4792 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4793 }
4794 
4795 void ext4_set_inode_flags(struct inode *inode)
4796 {
4797 	unsigned int flags = EXT4_I(inode)->i_flags;
4798 
4799 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4800 	if (flags & EXT4_SYNC_FL)
4801 		inode->i_flags |= S_SYNC;
4802 	if (flags & EXT4_APPEND_FL)
4803 		inode->i_flags |= S_APPEND;
4804 	if (flags & EXT4_IMMUTABLE_FL)
4805 		inode->i_flags |= S_IMMUTABLE;
4806 	if (flags & EXT4_NOATIME_FL)
4807 		inode->i_flags |= S_NOATIME;
4808 	if (flags & EXT4_DIRSYNC_FL)
4809 		inode->i_flags |= S_DIRSYNC;
4810 }
4811 
4812 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4813 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4814 {
4815 	unsigned int vfs_fl;
4816 	unsigned long old_fl, new_fl;
4817 
4818 	do {
4819 		vfs_fl = ei->vfs_inode.i_flags;
4820 		old_fl = ei->i_flags;
4821 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4822 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4823 				EXT4_DIRSYNC_FL);
4824 		if (vfs_fl & S_SYNC)
4825 			new_fl |= EXT4_SYNC_FL;
4826 		if (vfs_fl & S_APPEND)
4827 			new_fl |= EXT4_APPEND_FL;
4828 		if (vfs_fl & S_IMMUTABLE)
4829 			new_fl |= EXT4_IMMUTABLE_FL;
4830 		if (vfs_fl & S_NOATIME)
4831 			new_fl |= EXT4_NOATIME_FL;
4832 		if (vfs_fl & S_DIRSYNC)
4833 			new_fl |= EXT4_DIRSYNC_FL;
4834 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4835 }
4836 
4837 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4838 				  struct ext4_inode_info *ei)
4839 {
4840 	blkcnt_t i_blocks ;
4841 	struct inode *inode = &(ei->vfs_inode);
4842 	struct super_block *sb = inode->i_sb;
4843 
4844 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4845 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4846 		/* we are using combined 48 bit field */
4847 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4848 					le32_to_cpu(raw_inode->i_blocks_lo);
4849 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4850 			/* i_blocks represent file system block size */
4851 			return i_blocks  << (inode->i_blkbits - 9);
4852 		} else {
4853 			return i_blocks;
4854 		}
4855 	} else {
4856 		return le32_to_cpu(raw_inode->i_blocks_lo);
4857 	}
4858 }
4859 
4860 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4861 {
4862 	struct ext4_iloc iloc;
4863 	struct ext4_inode *raw_inode;
4864 	struct ext4_inode_info *ei;
4865 	struct inode *inode;
4866 	journal_t *journal = EXT4_SB(sb)->s_journal;
4867 	long ret;
4868 	int block;
4869 
4870 	inode = iget_locked(sb, ino);
4871 	if (!inode)
4872 		return ERR_PTR(-ENOMEM);
4873 	if (!(inode->i_state & I_NEW))
4874 		return inode;
4875 
4876 	ei = EXT4_I(inode);
4877 	iloc.bh = 0;
4878 
4879 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4880 	if (ret < 0)
4881 		goto bad_inode;
4882 	raw_inode = ext4_raw_inode(&iloc);
4883 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4884 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4885 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4886 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4887 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4888 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4889 	}
4890 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4891 
4892 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4893 	ei->i_dir_start_lookup = 0;
4894 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4895 	/* We now have enough fields to check if the inode was active or not.
4896 	 * This is needed because nfsd might try to access dead inodes
4897 	 * the test is that same one that e2fsck uses
4898 	 * NeilBrown 1999oct15
4899 	 */
4900 	if (inode->i_nlink == 0) {
4901 		if (inode->i_mode == 0 ||
4902 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4903 			/* this inode is deleted */
4904 			ret = -ESTALE;
4905 			goto bad_inode;
4906 		}
4907 		/* The only unlinked inodes we let through here have
4908 		 * valid i_mode and are being read by the orphan
4909 		 * recovery code: that's fine, we're about to complete
4910 		 * the process of deleting those. */
4911 	}
4912 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4913 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4914 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4915 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4916 		ei->i_file_acl |=
4917 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4918 	inode->i_size = ext4_isize(raw_inode);
4919 	ei->i_disksize = inode->i_size;
4920 #ifdef CONFIG_QUOTA
4921 	ei->i_reserved_quota = 0;
4922 #endif
4923 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4924 	ei->i_block_group = iloc.block_group;
4925 	ei->i_last_alloc_group = ~0;
4926 	/*
4927 	 * NOTE! The in-memory inode i_data array is in little-endian order
4928 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4929 	 */
4930 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4931 		ei->i_data[block] = raw_inode->i_block[block];
4932 	INIT_LIST_HEAD(&ei->i_orphan);
4933 
4934 	/*
4935 	 * Set transaction id's of transactions that have to be committed
4936 	 * to finish f[data]sync. We set them to currently running transaction
4937 	 * as we cannot be sure that the inode or some of its metadata isn't
4938 	 * part of the transaction - the inode could have been reclaimed and
4939 	 * now it is reread from disk.
4940 	 */
4941 	if (journal) {
4942 		transaction_t *transaction;
4943 		tid_t tid;
4944 
4945 		read_lock(&journal->j_state_lock);
4946 		if (journal->j_running_transaction)
4947 			transaction = journal->j_running_transaction;
4948 		else
4949 			transaction = journal->j_committing_transaction;
4950 		if (transaction)
4951 			tid = transaction->t_tid;
4952 		else
4953 			tid = journal->j_commit_sequence;
4954 		read_unlock(&journal->j_state_lock);
4955 		ei->i_sync_tid = tid;
4956 		ei->i_datasync_tid = tid;
4957 	}
4958 
4959 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4961 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4962 		    EXT4_INODE_SIZE(inode->i_sb)) {
4963 			ret = -EIO;
4964 			goto bad_inode;
4965 		}
4966 		if (ei->i_extra_isize == 0) {
4967 			/* The extra space is currently unused. Use it. */
4968 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4969 					    EXT4_GOOD_OLD_INODE_SIZE;
4970 		} else {
4971 			__le32 *magic = (void *)raw_inode +
4972 					EXT4_GOOD_OLD_INODE_SIZE +
4973 					ei->i_extra_isize;
4974 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4975 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4976 		}
4977 	} else
4978 		ei->i_extra_isize = 0;
4979 
4980 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4981 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4982 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4983 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4984 
4985 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4986 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4987 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4988 			inode->i_version |=
4989 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4990 	}
4991 
4992 	ret = 0;
4993 	if (ei->i_file_acl &&
4994 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4995 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4996 				 ei->i_file_acl);
4997 		ret = -EIO;
4998 		goto bad_inode;
4999 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5000 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5001 		    (S_ISLNK(inode->i_mode) &&
5002 		     !ext4_inode_is_fast_symlink(inode)))
5003 			/* Validate extent which is part of inode */
5004 			ret = ext4_ext_check_inode(inode);
5005 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5006 		   (S_ISLNK(inode->i_mode) &&
5007 		    !ext4_inode_is_fast_symlink(inode))) {
5008 		/* Validate block references which are part of inode */
5009 		ret = ext4_check_inode_blockref(inode);
5010 	}
5011 	if (ret)
5012 		goto bad_inode;
5013 
5014 	if (S_ISREG(inode->i_mode)) {
5015 		inode->i_op = &ext4_file_inode_operations;
5016 		inode->i_fop = &ext4_file_operations;
5017 		ext4_set_aops(inode);
5018 	} else if (S_ISDIR(inode->i_mode)) {
5019 		inode->i_op = &ext4_dir_inode_operations;
5020 		inode->i_fop = &ext4_dir_operations;
5021 	} else if (S_ISLNK(inode->i_mode)) {
5022 		if (ext4_inode_is_fast_symlink(inode)) {
5023 			inode->i_op = &ext4_fast_symlink_inode_operations;
5024 			nd_terminate_link(ei->i_data, inode->i_size,
5025 				sizeof(ei->i_data) - 1);
5026 		} else {
5027 			inode->i_op = &ext4_symlink_inode_operations;
5028 			ext4_set_aops(inode);
5029 		}
5030 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5031 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5032 		inode->i_op = &ext4_special_inode_operations;
5033 		if (raw_inode->i_block[0])
5034 			init_special_inode(inode, inode->i_mode,
5035 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5036 		else
5037 			init_special_inode(inode, inode->i_mode,
5038 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5039 	} else {
5040 		ret = -EIO;
5041 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5042 		goto bad_inode;
5043 	}
5044 	brelse(iloc.bh);
5045 	ext4_set_inode_flags(inode);
5046 	unlock_new_inode(inode);
5047 	return inode;
5048 
5049 bad_inode:
5050 	brelse(iloc.bh);
5051 	iget_failed(inode);
5052 	return ERR_PTR(ret);
5053 }
5054 
5055 static int ext4_inode_blocks_set(handle_t *handle,
5056 				struct ext4_inode *raw_inode,
5057 				struct ext4_inode_info *ei)
5058 {
5059 	struct inode *inode = &(ei->vfs_inode);
5060 	u64 i_blocks = inode->i_blocks;
5061 	struct super_block *sb = inode->i_sb;
5062 
5063 	if (i_blocks <= ~0U) {
5064 		/*
5065 		 * i_blocks can be represnted in a 32 bit variable
5066 		 * as multiple of 512 bytes
5067 		 */
5068 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5069 		raw_inode->i_blocks_high = 0;
5070 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5071 		return 0;
5072 	}
5073 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5074 		return -EFBIG;
5075 
5076 	if (i_blocks <= 0xffffffffffffULL) {
5077 		/*
5078 		 * i_blocks can be represented in a 48 bit variable
5079 		 * as multiple of 512 bytes
5080 		 */
5081 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5082 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5083 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5084 	} else {
5085 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5086 		/* i_block is stored in file system block size */
5087 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5088 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5089 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5090 	}
5091 	return 0;
5092 }
5093 
5094 /*
5095  * Post the struct inode info into an on-disk inode location in the
5096  * buffer-cache.  This gobbles the caller's reference to the
5097  * buffer_head in the inode location struct.
5098  *
5099  * The caller must have write access to iloc->bh.
5100  */
5101 static int ext4_do_update_inode(handle_t *handle,
5102 				struct inode *inode,
5103 				struct ext4_iloc *iloc)
5104 {
5105 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5106 	struct ext4_inode_info *ei = EXT4_I(inode);
5107 	struct buffer_head *bh = iloc->bh;
5108 	int err = 0, rc, block;
5109 
5110 	/* For fields not not tracking in the in-memory inode,
5111 	 * initialise them to zero for new inodes. */
5112 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5113 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5114 
5115 	ext4_get_inode_flags(ei);
5116 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5117 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5118 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5119 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5120 /*
5121  * Fix up interoperability with old kernels. Otherwise, old inodes get
5122  * re-used with the upper 16 bits of the uid/gid intact
5123  */
5124 		if (!ei->i_dtime) {
5125 			raw_inode->i_uid_high =
5126 				cpu_to_le16(high_16_bits(inode->i_uid));
5127 			raw_inode->i_gid_high =
5128 				cpu_to_le16(high_16_bits(inode->i_gid));
5129 		} else {
5130 			raw_inode->i_uid_high = 0;
5131 			raw_inode->i_gid_high = 0;
5132 		}
5133 	} else {
5134 		raw_inode->i_uid_low =
5135 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5136 		raw_inode->i_gid_low =
5137 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5138 		raw_inode->i_uid_high = 0;
5139 		raw_inode->i_gid_high = 0;
5140 	}
5141 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5142 
5143 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5144 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5145 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5146 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5147 
5148 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5149 		goto out_brelse;
5150 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5151 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5152 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5153 	    cpu_to_le32(EXT4_OS_HURD))
5154 		raw_inode->i_file_acl_high =
5155 			cpu_to_le16(ei->i_file_acl >> 32);
5156 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5157 	ext4_isize_set(raw_inode, ei->i_disksize);
5158 	if (ei->i_disksize > 0x7fffffffULL) {
5159 		struct super_block *sb = inode->i_sb;
5160 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5161 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5162 				EXT4_SB(sb)->s_es->s_rev_level ==
5163 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5164 			/* If this is the first large file
5165 			 * created, add a flag to the superblock.
5166 			 */
5167 			err = ext4_journal_get_write_access(handle,
5168 					EXT4_SB(sb)->s_sbh);
5169 			if (err)
5170 				goto out_brelse;
5171 			ext4_update_dynamic_rev(sb);
5172 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5173 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5174 			sb->s_dirt = 1;
5175 			ext4_handle_sync(handle);
5176 			err = ext4_handle_dirty_metadata(handle, NULL,
5177 					EXT4_SB(sb)->s_sbh);
5178 		}
5179 	}
5180 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5181 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5182 		if (old_valid_dev(inode->i_rdev)) {
5183 			raw_inode->i_block[0] =
5184 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5185 			raw_inode->i_block[1] = 0;
5186 		} else {
5187 			raw_inode->i_block[0] = 0;
5188 			raw_inode->i_block[1] =
5189 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5190 			raw_inode->i_block[2] = 0;
5191 		}
5192 	} else
5193 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5194 			raw_inode->i_block[block] = ei->i_data[block];
5195 
5196 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5197 	if (ei->i_extra_isize) {
5198 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5199 			raw_inode->i_version_hi =
5200 			cpu_to_le32(inode->i_version >> 32);
5201 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5202 	}
5203 
5204 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5205 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5206 	if (!err)
5207 		err = rc;
5208 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5209 
5210 	ext4_update_inode_fsync_trans(handle, inode, 0);
5211 out_brelse:
5212 	brelse(bh);
5213 	ext4_std_error(inode->i_sb, err);
5214 	return err;
5215 }
5216 
5217 /*
5218  * ext4_write_inode()
5219  *
5220  * We are called from a few places:
5221  *
5222  * - Within generic_file_write() for O_SYNC files.
5223  *   Here, there will be no transaction running. We wait for any running
5224  *   trasnaction to commit.
5225  *
5226  * - Within sys_sync(), kupdate and such.
5227  *   We wait on commit, if tol to.
5228  *
5229  * - Within prune_icache() (PF_MEMALLOC == true)
5230  *   Here we simply return.  We can't afford to block kswapd on the
5231  *   journal commit.
5232  *
5233  * In all cases it is actually safe for us to return without doing anything,
5234  * because the inode has been copied into a raw inode buffer in
5235  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5236  * knfsd.
5237  *
5238  * Note that we are absolutely dependent upon all inode dirtiers doing the
5239  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5240  * which we are interested.
5241  *
5242  * It would be a bug for them to not do this.  The code:
5243  *
5244  *	mark_inode_dirty(inode)
5245  *	stuff();
5246  *	inode->i_size = expr;
5247  *
5248  * is in error because a kswapd-driven write_inode() could occur while
5249  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5250  * will no longer be on the superblock's dirty inode list.
5251  */
5252 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5253 {
5254 	int err;
5255 
5256 	if (current->flags & PF_MEMALLOC)
5257 		return 0;
5258 
5259 	if (EXT4_SB(inode->i_sb)->s_journal) {
5260 		if (ext4_journal_current_handle()) {
5261 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5262 			dump_stack();
5263 			return -EIO;
5264 		}
5265 
5266 		if (wbc->sync_mode != WB_SYNC_ALL)
5267 			return 0;
5268 
5269 		err = ext4_force_commit(inode->i_sb);
5270 	} else {
5271 		struct ext4_iloc iloc;
5272 
5273 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5274 		if (err)
5275 			return err;
5276 		if (wbc->sync_mode == WB_SYNC_ALL)
5277 			sync_dirty_buffer(iloc.bh);
5278 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5279 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5280 					 "IO error syncing inode");
5281 			err = -EIO;
5282 		}
5283 		brelse(iloc.bh);
5284 	}
5285 	return err;
5286 }
5287 
5288 /*
5289  * ext4_setattr()
5290  *
5291  * Called from notify_change.
5292  *
5293  * We want to trap VFS attempts to truncate the file as soon as
5294  * possible.  In particular, we want to make sure that when the VFS
5295  * shrinks i_size, we put the inode on the orphan list and modify
5296  * i_disksize immediately, so that during the subsequent flushing of
5297  * dirty pages and freeing of disk blocks, we can guarantee that any
5298  * commit will leave the blocks being flushed in an unused state on
5299  * disk.  (On recovery, the inode will get truncated and the blocks will
5300  * be freed, so we have a strong guarantee that no future commit will
5301  * leave these blocks visible to the user.)
5302  *
5303  * Another thing we have to assure is that if we are in ordered mode
5304  * and inode is still attached to the committing transaction, we must
5305  * we start writeout of all the dirty pages which are being truncated.
5306  * This way we are sure that all the data written in the previous
5307  * transaction are already on disk (truncate waits for pages under
5308  * writeback).
5309  *
5310  * Called with inode->i_mutex down.
5311  */
5312 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5313 {
5314 	struct inode *inode = dentry->d_inode;
5315 	int error, rc = 0;
5316 	int orphan = 0;
5317 	const unsigned int ia_valid = attr->ia_valid;
5318 
5319 	error = inode_change_ok(inode, attr);
5320 	if (error)
5321 		return error;
5322 
5323 	if (is_quota_modification(inode, attr))
5324 		dquot_initialize(inode);
5325 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5326 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5327 		handle_t *handle;
5328 
5329 		/* (user+group)*(old+new) structure, inode write (sb,
5330 		 * inode block, ? - but truncate inode update has it) */
5331 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5332 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5333 		if (IS_ERR(handle)) {
5334 			error = PTR_ERR(handle);
5335 			goto err_out;
5336 		}
5337 		error = dquot_transfer(inode, attr);
5338 		if (error) {
5339 			ext4_journal_stop(handle);
5340 			return error;
5341 		}
5342 		/* Update corresponding info in inode so that everything is in
5343 		 * one transaction */
5344 		if (attr->ia_valid & ATTR_UID)
5345 			inode->i_uid = attr->ia_uid;
5346 		if (attr->ia_valid & ATTR_GID)
5347 			inode->i_gid = attr->ia_gid;
5348 		error = ext4_mark_inode_dirty(handle, inode);
5349 		ext4_journal_stop(handle);
5350 	}
5351 
5352 	if (attr->ia_valid & ATTR_SIZE) {
5353 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5354 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5355 
5356 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5357 				return -EFBIG;
5358 		}
5359 	}
5360 
5361 	if (S_ISREG(inode->i_mode) &&
5362 	    attr->ia_valid & ATTR_SIZE &&
5363 	    (attr->ia_size < inode->i_size ||
5364 	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5365 		handle_t *handle;
5366 
5367 		handle = ext4_journal_start(inode, 3);
5368 		if (IS_ERR(handle)) {
5369 			error = PTR_ERR(handle);
5370 			goto err_out;
5371 		}
5372 		if (ext4_handle_valid(handle)) {
5373 			error = ext4_orphan_add(handle, inode);
5374 			orphan = 1;
5375 		}
5376 		EXT4_I(inode)->i_disksize = attr->ia_size;
5377 		rc = ext4_mark_inode_dirty(handle, inode);
5378 		if (!error)
5379 			error = rc;
5380 		ext4_journal_stop(handle);
5381 
5382 		if (ext4_should_order_data(inode)) {
5383 			error = ext4_begin_ordered_truncate(inode,
5384 							    attr->ia_size);
5385 			if (error) {
5386 				/* Do as much error cleanup as possible */
5387 				handle = ext4_journal_start(inode, 3);
5388 				if (IS_ERR(handle)) {
5389 					ext4_orphan_del(NULL, inode);
5390 					goto err_out;
5391 				}
5392 				ext4_orphan_del(handle, inode);
5393 				orphan = 0;
5394 				ext4_journal_stop(handle);
5395 				goto err_out;
5396 			}
5397 		}
5398 		/* ext4_truncate will clear the flag */
5399 		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5400 			ext4_truncate(inode);
5401 	}
5402 
5403 	if ((attr->ia_valid & ATTR_SIZE) &&
5404 	    attr->ia_size != i_size_read(inode))
5405 		rc = vmtruncate(inode, attr->ia_size);
5406 
5407 	if (!rc) {
5408 		setattr_copy(inode, attr);
5409 		mark_inode_dirty(inode);
5410 	}
5411 
5412 	/*
5413 	 * If the call to ext4_truncate failed to get a transaction handle at
5414 	 * all, we need to clean up the in-core orphan list manually.
5415 	 */
5416 	if (orphan && inode->i_nlink)
5417 		ext4_orphan_del(NULL, inode);
5418 
5419 	if (!rc && (ia_valid & ATTR_MODE))
5420 		rc = ext4_acl_chmod(inode);
5421 
5422 err_out:
5423 	ext4_std_error(inode->i_sb, error);
5424 	if (!error)
5425 		error = rc;
5426 	return error;
5427 }
5428 
5429 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5430 		 struct kstat *stat)
5431 {
5432 	struct inode *inode;
5433 	unsigned long delalloc_blocks;
5434 
5435 	inode = dentry->d_inode;
5436 	generic_fillattr(inode, stat);
5437 
5438 	/*
5439 	 * We can't update i_blocks if the block allocation is delayed
5440 	 * otherwise in the case of system crash before the real block
5441 	 * allocation is done, we will have i_blocks inconsistent with
5442 	 * on-disk file blocks.
5443 	 * We always keep i_blocks updated together with real
5444 	 * allocation. But to not confuse with user, stat
5445 	 * will return the blocks that include the delayed allocation
5446 	 * blocks for this file.
5447 	 */
5448 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5449 
5450 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5451 	return 0;
5452 }
5453 
5454 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5455 				      int chunk)
5456 {
5457 	int indirects;
5458 
5459 	/* if nrblocks are contiguous */
5460 	if (chunk) {
5461 		/*
5462 		 * With N contiguous data blocks, it need at most
5463 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5464 		 * 2 dindirect blocks
5465 		 * 1 tindirect block
5466 		 */
5467 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5468 		return indirects + 3;
5469 	}
5470 	/*
5471 	 * if nrblocks are not contiguous, worse case, each block touch
5472 	 * a indirect block, and each indirect block touch a double indirect
5473 	 * block, plus a triple indirect block
5474 	 */
5475 	indirects = nrblocks * 2 + 1;
5476 	return indirects;
5477 }
5478 
5479 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5480 {
5481 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5482 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5483 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5484 }
5485 
5486 /*
5487  * Account for index blocks, block groups bitmaps and block group
5488  * descriptor blocks if modify datablocks and index blocks
5489  * worse case, the indexs blocks spread over different block groups
5490  *
5491  * If datablocks are discontiguous, they are possible to spread over
5492  * different block groups too. If they are contiuguous, with flexbg,
5493  * they could still across block group boundary.
5494  *
5495  * Also account for superblock, inode, quota and xattr blocks
5496  */
5497 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5498 {
5499 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5500 	int gdpblocks;
5501 	int idxblocks;
5502 	int ret = 0;
5503 
5504 	/*
5505 	 * How many index blocks need to touch to modify nrblocks?
5506 	 * The "Chunk" flag indicating whether the nrblocks is
5507 	 * physically contiguous on disk
5508 	 *
5509 	 * For Direct IO and fallocate, they calls get_block to allocate
5510 	 * one single extent at a time, so they could set the "Chunk" flag
5511 	 */
5512 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5513 
5514 	ret = idxblocks;
5515 
5516 	/*
5517 	 * Now let's see how many group bitmaps and group descriptors need
5518 	 * to account
5519 	 */
5520 	groups = idxblocks;
5521 	if (chunk)
5522 		groups += 1;
5523 	else
5524 		groups += nrblocks;
5525 
5526 	gdpblocks = groups;
5527 	if (groups > ngroups)
5528 		groups = ngroups;
5529 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5530 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5531 
5532 	/* bitmaps and block group descriptor blocks */
5533 	ret += groups + gdpblocks;
5534 
5535 	/* Blocks for super block, inode, quota and xattr blocks */
5536 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5537 
5538 	return ret;
5539 }
5540 
5541 /*
5542  * Calulate the total number of credits to reserve to fit
5543  * the modification of a single pages into a single transaction,
5544  * which may include multiple chunks of block allocations.
5545  *
5546  * This could be called via ext4_write_begin()
5547  *
5548  * We need to consider the worse case, when
5549  * one new block per extent.
5550  */
5551 int ext4_writepage_trans_blocks(struct inode *inode)
5552 {
5553 	int bpp = ext4_journal_blocks_per_page(inode);
5554 	int ret;
5555 
5556 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5557 
5558 	/* Account for data blocks for journalled mode */
5559 	if (ext4_should_journal_data(inode))
5560 		ret += bpp;
5561 	return ret;
5562 }
5563 
5564 /*
5565  * Calculate the journal credits for a chunk of data modification.
5566  *
5567  * This is called from DIO, fallocate or whoever calling
5568  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5569  *
5570  * journal buffers for data blocks are not included here, as DIO
5571  * and fallocate do no need to journal data buffers.
5572  */
5573 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5574 {
5575 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5576 }
5577 
5578 /*
5579  * The caller must have previously called ext4_reserve_inode_write().
5580  * Give this, we know that the caller already has write access to iloc->bh.
5581  */
5582 int ext4_mark_iloc_dirty(handle_t *handle,
5583 			 struct inode *inode, struct ext4_iloc *iloc)
5584 {
5585 	int err = 0;
5586 
5587 	if (test_opt(inode->i_sb, I_VERSION))
5588 		inode_inc_iversion(inode);
5589 
5590 	/* the do_update_inode consumes one bh->b_count */
5591 	get_bh(iloc->bh);
5592 
5593 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5594 	err = ext4_do_update_inode(handle, inode, iloc);
5595 	put_bh(iloc->bh);
5596 	return err;
5597 }
5598 
5599 /*
5600  * On success, We end up with an outstanding reference count against
5601  * iloc->bh.  This _must_ be cleaned up later.
5602  */
5603 
5604 int
5605 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5606 			 struct ext4_iloc *iloc)
5607 {
5608 	int err;
5609 
5610 	err = ext4_get_inode_loc(inode, iloc);
5611 	if (!err) {
5612 		BUFFER_TRACE(iloc->bh, "get_write_access");
5613 		err = ext4_journal_get_write_access(handle, iloc->bh);
5614 		if (err) {
5615 			brelse(iloc->bh);
5616 			iloc->bh = NULL;
5617 		}
5618 	}
5619 	ext4_std_error(inode->i_sb, err);
5620 	return err;
5621 }
5622 
5623 /*
5624  * Expand an inode by new_extra_isize bytes.
5625  * Returns 0 on success or negative error number on failure.
5626  */
5627 static int ext4_expand_extra_isize(struct inode *inode,
5628 				   unsigned int new_extra_isize,
5629 				   struct ext4_iloc iloc,
5630 				   handle_t *handle)
5631 {
5632 	struct ext4_inode *raw_inode;
5633 	struct ext4_xattr_ibody_header *header;
5634 
5635 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5636 		return 0;
5637 
5638 	raw_inode = ext4_raw_inode(&iloc);
5639 
5640 	header = IHDR(inode, raw_inode);
5641 
5642 	/* No extended attributes present */
5643 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5644 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5645 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5646 			new_extra_isize);
5647 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5648 		return 0;
5649 	}
5650 
5651 	/* try to expand with EAs present */
5652 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5653 					  raw_inode, handle);
5654 }
5655 
5656 /*
5657  * What we do here is to mark the in-core inode as clean with respect to inode
5658  * dirtiness (it may still be data-dirty).
5659  * This means that the in-core inode may be reaped by prune_icache
5660  * without having to perform any I/O.  This is a very good thing,
5661  * because *any* task may call prune_icache - even ones which
5662  * have a transaction open against a different journal.
5663  *
5664  * Is this cheating?  Not really.  Sure, we haven't written the
5665  * inode out, but prune_icache isn't a user-visible syncing function.
5666  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5667  * we start and wait on commits.
5668  *
5669  * Is this efficient/effective?  Well, we're being nice to the system
5670  * by cleaning up our inodes proactively so they can be reaped
5671  * without I/O.  But we are potentially leaving up to five seconds'
5672  * worth of inodes floating about which prune_icache wants us to
5673  * write out.  One way to fix that would be to get prune_icache()
5674  * to do a write_super() to free up some memory.  It has the desired
5675  * effect.
5676  */
5677 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5678 {
5679 	struct ext4_iloc iloc;
5680 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5681 	static unsigned int mnt_count;
5682 	int err, ret;
5683 
5684 	might_sleep();
5685 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5686 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5687 	if (ext4_handle_valid(handle) &&
5688 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5689 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5690 		/*
5691 		 * We need extra buffer credits since we may write into EA block
5692 		 * with this same handle. If journal_extend fails, then it will
5693 		 * only result in a minor loss of functionality for that inode.
5694 		 * If this is felt to be critical, then e2fsck should be run to
5695 		 * force a large enough s_min_extra_isize.
5696 		 */
5697 		if ((jbd2_journal_extend(handle,
5698 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5699 			ret = ext4_expand_extra_isize(inode,
5700 						      sbi->s_want_extra_isize,
5701 						      iloc, handle);
5702 			if (ret) {
5703 				ext4_set_inode_state(inode,
5704 						     EXT4_STATE_NO_EXPAND);
5705 				if (mnt_count !=
5706 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5707 					ext4_warning(inode->i_sb,
5708 					"Unable to expand inode %lu. Delete"
5709 					" some EAs or run e2fsck.",
5710 					inode->i_ino);
5711 					mnt_count =
5712 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5713 				}
5714 			}
5715 		}
5716 	}
5717 	if (!err)
5718 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5719 	return err;
5720 }
5721 
5722 /*
5723  * ext4_dirty_inode() is called from __mark_inode_dirty()
5724  *
5725  * We're really interested in the case where a file is being extended.
5726  * i_size has been changed by generic_commit_write() and we thus need
5727  * to include the updated inode in the current transaction.
5728  *
5729  * Also, dquot_alloc_block() will always dirty the inode when blocks
5730  * are allocated to the file.
5731  *
5732  * If the inode is marked synchronous, we don't honour that here - doing
5733  * so would cause a commit on atime updates, which we don't bother doing.
5734  * We handle synchronous inodes at the highest possible level.
5735  */
5736 void ext4_dirty_inode(struct inode *inode)
5737 {
5738 	handle_t *handle;
5739 
5740 	handle = ext4_journal_start(inode, 2);
5741 	if (IS_ERR(handle))
5742 		goto out;
5743 
5744 	ext4_mark_inode_dirty(handle, inode);
5745 
5746 	ext4_journal_stop(handle);
5747 out:
5748 	return;
5749 }
5750 
5751 #if 0
5752 /*
5753  * Bind an inode's backing buffer_head into this transaction, to prevent
5754  * it from being flushed to disk early.  Unlike
5755  * ext4_reserve_inode_write, this leaves behind no bh reference and
5756  * returns no iloc structure, so the caller needs to repeat the iloc
5757  * lookup to mark the inode dirty later.
5758  */
5759 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5760 {
5761 	struct ext4_iloc iloc;
5762 
5763 	int err = 0;
5764 	if (handle) {
5765 		err = ext4_get_inode_loc(inode, &iloc);
5766 		if (!err) {
5767 			BUFFER_TRACE(iloc.bh, "get_write_access");
5768 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5769 			if (!err)
5770 				err = ext4_handle_dirty_metadata(handle,
5771 								 NULL,
5772 								 iloc.bh);
5773 			brelse(iloc.bh);
5774 		}
5775 	}
5776 	ext4_std_error(inode->i_sb, err);
5777 	return err;
5778 }
5779 #endif
5780 
5781 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5782 {
5783 	journal_t *journal;
5784 	handle_t *handle;
5785 	int err;
5786 
5787 	/*
5788 	 * We have to be very careful here: changing a data block's
5789 	 * journaling status dynamically is dangerous.  If we write a
5790 	 * data block to the journal, change the status and then delete
5791 	 * that block, we risk forgetting to revoke the old log record
5792 	 * from the journal and so a subsequent replay can corrupt data.
5793 	 * So, first we make sure that the journal is empty and that
5794 	 * nobody is changing anything.
5795 	 */
5796 
5797 	journal = EXT4_JOURNAL(inode);
5798 	if (!journal)
5799 		return 0;
5800 	if (is_journal_aborted(journal))
5801 		return -EROFS;
5802 
5803 	jbd2_journal_lock_updates(journal);
5804 	jbd2_journal_flush(journal);
5805 
5806 	/*
5807 	 * OK, there are no updates running now, and all cached data is
5808 	 * synced to disk.  We are now in a completely consistent state
5809 	 * which doesn't have anything in the journal, and we know that
5810 	 * no filesystem updates are running, so it is safe to modify
5811 	 * the inode's in-core data-journaling state flag now.
5812 	 */
5813 
5814 	if (val)
5815 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5816 	else
5817 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5818 	ext4_set_aops(inode);
5819 
5820 	jbd2_journal_unlock_updates(journal);
5821 
5822 	/* Finally we can mark the inode as dirty. */
5823 
5824 	handle = ext4_journal_start(inode, 1);
5825 	if (IS_ERR(handle))
5826 		return PTR_ERR(handle);
5827 
5828 	err = ext4_mark_inode_dirty(handle, inode);
5829 	ext4_handle_sync(handle);
5830 	ext4_journal_stop(handle);
5831 	ext4_std_error(inode->i_sb, err);
5832 
5833 	return err;
5834 }
5835 
5836 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5837 {
5838 	return !buffer_mapped(bh);
5839 }
5840 
5841 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5842 {
5843 	struct page *page = vmf->page;
5844 	loff_t size;
5845 	unsigned long len;
5846 	int ret = -EINVAL;
5847 	void *fsdata;
5848 	struct file *file = vma->vm_file;
5849 	struct inode *inode = file->f_path.dentry->d_inode;
5850 	struct address_space *mapping = inode->i_mapping;
5851 
5852 	/*
5853 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5854 	 * get i_mutex because we are already holding mmap_sem.
5855 	 */
5856 	down_read(&inode->i_alloc_sem);
5857 	size = i_size_read(inode);
5858 	if (page->mapping != mapping || size <= page_offset(page)
5859 	    || !PageUptodate(page)) {
5860 		/* page got truncated from under us? */
5861 		goto out_unlock;
5862 	}
5863 	ret = 0;
5864 	if (PageMappedToDisk(page))
5865 		goto out_unlock;
5866 
5867 	if (page->index == size >> PAGE_CACHE_SHIFT)
5868 		len = size & ~PAGE_CACHE_MASK;
5869 	else
5870 		len = PAGE_CACHE_SIZE;
5871 
5872 	lock_page(page);
5873 	/*
5874 	 * return if we have all the buffers mapped. This avoid
5875 	 * the need to call write_begin/write_end which does a
5876 	 * journal_start/journal_stop which can block and take
5877 	 * long time
5878 	 */
5879 	if (page_has_buffers(page)) {
5880 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5881 					ext4_bh_unmapped)) {
5882 			unlock_page(page);
5883 			goto out_unlock;
5884 		}
5885 	}
5886 	unlock_page(page);
5887 	/*
5888 	 * OK, we need to fill the hole... Do write_begin write_end
5889 	 * to do block allocation/reservation.We are not holding
5890 	 * inode.i__mutex here. That allow * parallel write_begin,
5891 	 * write_end call. lock_page prevent this from happening
5892 	 * on the same page though
5893 	 */
5894 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5895 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5896 	if (ret < 0)
5897 		goto out_unlock;
5898 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5899 			len, len, page, fsdata);
5900 	if (ret < 0)
5901 		goto out_unlock;
5902 	ret = 0;
5903 out_unlock:
5904 	if (ret)
5905 		ret = VM_FAULT_SIGBUS;
5906 	up_read(&inode->i_alloc_sem);
5907 	return ret;
5908 }
5909