1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/slab.h> 43 #include <linux/ratelimit.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "ext4_extents.h" 49 50 #include <trace/events/ext4.h> 51 52 #define MPAGE_DA_EXTENT_TAIL 0x01 53 54 static inline int ext4_begin_ordered_truncate(struct inode *inode, 55 loff_t new_size) 56 { 57 trace_ext4_begin_ordered_truncate(inode, new_size); 58 /* 59 * If jinode is zero, then we never opened the file for 60 * writing, so there's no need to call 61 * jbd2_journal_begin_ordered_truncate() since there's no 62 * outstanding writes we need to flush. 63 */ 64 if (!EXT4_I(inode)->jinode) 65 return 0; 66 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 67 EXT4_I(inode)->jinode, 68 new_size); 69 } 70 71 static void ext4_invalidatepage(struct page *page, unsigned long offset); 72 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 73 struct buffer_head *bh_result, int create); 74 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 75 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 76 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 77 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 78 79 /* 80 * Test whether an inode is a fast symlink. 81 */ 82 static int ext4_inode_is_fast_symlink(struct inode *inode) 83 { 84 int ea_blocks = EXT4_I(inode)->i_file_acl ? 85 (inode->i_sb->s_blocksize >> 9) : 0; 86 87 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 88 } 89 90 /* 91 * Work out how many blocks we need to proceed with the next chunk of a 92 * truncate transaction. 93 */ 94 static unsigned long blocks_for_truncate(struct inode *inode) 95 { 96 ext4_lblk_t needed; 97 98 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 99 100 /* Give ourselves just enough room to cope with inodes in which 101 * i_blocks is corrupt: we've seen disk corruptions in the past 102 * which resulted in random data in an inode which looked enough 103 * like a regular file for ext4 to try to delete it. Things 104 * will go a bit crazy if that happens, but at least we should 105 * try not to panic the whole kernel. */ 106 if (needed < 2) 107 needed = 2; 108 109 /* But we need to bound the transaction so we don't overflow the 110 * journal. */ 111 if (needed > EXT4_MAX_TRANS_DATA) 112 needed = EXT4_MAX_TRANS_DATA; 113 114 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 115 } 116 117 /* 118 * Truncate transactions can be complex and absolutely huge. So we need to 119 * be able to restart the transaction at a conventient checkpoint to make 120 * sure we don't overflow the journal. 121 * 122 * start_transaction gets us a new handle for a truncate transaction, 123 * and extend_transaction tries to extend the existing one a bit. If 124 * extend fails, we need to propagate the failure up and restart the 125 * transaction in the top-level truncate loop. --sct 126 */ 127 static handle_t *start_transaction(struct inode *inode) 128 { 129 handle_t *result; 130 131 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 132 if (!IS_ERR(result)) 133 return result; 134 135 ext4_std_error(inode->i_sb, PTR_ERR(result)); 136 return result; 137 } 138 139 /* 140 * Try to extend this transaction for the purposes of truncation. 141 * 142 * Returns 0 if we managed to create more room. If we can't create more 143 * room, and the transaction must be restarted we return 1. 144 */ 145 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 146 { 147 if (!ext4_handle_valid(handle)) 148 return 0; 149 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 150 return 0; 151 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 152 return 0; 153 return 1; 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 190 trace_ext4_evict_inode(inode); 191 if (inode->i_nlink) { 192 truncate_inode_pages(&inode->i_data, 0); 193 goto no_delete; 194 } 195 196 if (!is_bad_inode(inode)) 197 dquot_initialize(inode); 198 199 if (ext4_should_order_data(inode)) 200 ext4_begin_ordered_truncate(inode, 0); 201 truncate_inode_pages(&inode->i_data, 0); 202 203 if (is_bad_inode(inode)) 204 goto no_delete; 205 206 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 207 if (IS_ERR(handle)) { 208 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 209 /* 210 * If we're going to skip the normal cleanup, we still need to 211 * make sure that the in-core orphan linked list is properly 212 * cleaned up. 213 */ 214 ext4_orphan_del(NULL, inode); 215 goto no_delete; 216 } 217 218 if (IS_SYNC(inode)) 219 ext4_handle_sync(handle); 220 inode->i_size = 0; 221 err = ext4_mark_inode_dirty(handle, inode); 222 if (err) { 223 ext4_warning(inode->i_sb, 224 "couldn't mark inode dirty (err %d)", err); 225 goto stop_handle; 226 } 227 if (inode->i_blocks) 228 ext4_truncate(inode); 229 230 /* 231 * ext4_ext_truncate() doesn't reserve any slop when it 232 * restarts journal transactions; therefore there may not be 233 * enough credits left in the handle to remove the inode from 234 * the orphan list and set the dtime field. 235 */ 236 if (!ext4_handle_has_enough_credits(handle, 3)) { 237 err = ext4_journal_extend(handle, 3); 238 if (err > 0) 239 err = ext4_journal_restart(handle, 3); 240 if (err != 0) { 241 ext4_warning(inode->i_sb, 242 "couldn't extend journal (err %d)", err); 243 stop_handle: 244 ext4_journal_stop(handle); 245 ext4_orphan_del(NULL, inode); 246 goto no_delete; 247 } 248 } 249 250 /* 251 * Kill off the orphan record which ext4_truncate created. 252 * AKPM: I think this can be inside the above `if'. 253 * Note that ext4_orphan_del() has to be able to cope with the 254 * deletion of a non-existent orphan - this is because we don't 255 * know if ext4_truncate() actually created an orphan record. 256 * (Well, we could do this if we need to, but heck - it works) 257 */ 258 ext4_orphan_del(handle, inode); 259 EXT4_I(inode)->i_dtime = get_seconds(); 260 261 /* 262 * One subtle ordering requirement: if anything has gone wrong 263 * (transaction abort, IO errors, whatever), then we can still 264 * do these next steps (the fs will already have been marked as 265 * having errors), but we can't free the inode if the mark_dirty 266 * fails. 267 */ 268 if (ext4_mark_inode_dirty(handle, inode)) 269 /* If that failed, just do the required in-core inode clear. */ 270 ext4_clear_inode(inode); 271 else 272 ext4_free_inode(handle, inode); 273 ext4_journal_stop(handle); 274 return; 275 no_delete: 276 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 277 } 278 279 typedef struct { 280 __le32 *p; 281 __le32 key; 282 struct buffer_head *bh; 283 } Indirect; 284 285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 286 { 287 p->key = *(p->p = v); 288 p->bh = bh; 289 } 290 291 /** 292 * ext4_block_to_path - parse the block number into array of offsets 293 * @inode: inode in question (we are only interested in its superblock) 294 * @i_block: block number to be parsed 295 * @offsets: array to store the offsets in 296 * @boundary: set this non-zero if the referred-to block is likely to be 297 * followed (on disk) by an indirect block. 298 * 299 * To store the locations of file's data ext4 uses a data structure common 300 * for UNIX filesystems - tree of pointers anchored in the inode, with 301 * data blocks at leaves and indirect blocks in intermediate nodes. 302 * This function translates the block number into path in that tree - 303 * return value is the path length and @offsets[n] is the offset of 304 * pointer to (n+1)th node in the nth one. If @block is out of range 305 * (negative or too large) warning is printed and zero returned. 306 * 307 * Note: function doesn't find node addresses, so no IO is needed. All 308 * we need to know is the capacity of indirect blocks (taken from the 309 * inode->i_sb). 310 */ 311 312 /* 313 * Portability note: the last comparison (check that we fit into triple 314 * indirect block) is spelled differently, because otherwise on an 315 * architecture with 32-bit longs and 8Kb pages we might get into trouble 316 * if our filesystem had 8Kb blocks. We might use long long, but that would 317 * kill us on x86. Oh, well, at least the sign propagation does not matter - 318 * i_block would have to be negative in the very beginning, so we would not 319 * get there at all. 320 */ 321 322 static int ext4_block_to_path(struct inode *inode, 323 ext4_lblk_t i_block, 324 ext4_lblk_t offsets[4], int *boundary) 325 { 326 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 327 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 328 const long direct_blocks = EXT4_NDIR_BLOCKS, 329 indirect_blocks = ptrs, 330 double_blocks = (1 << (ptrs_bits * 2)); 331 int n = 0; 332 int final = 0; 333 334 if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 354 i_block + direct_blocks + 355 indirect_blocks + double_blocks, inode->i_ino); 356 } 357 if (boundary) 358 *boundary = final - 1 - (i_block & (ptrs - 1)); 359 return n; 360 } 361 362 static int __ext4_check_blockref(const char *function, unsigned int line, 363 struct inode *inode, 364 __le32 *p, unsigned int max) 365 { 366 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 367 __le32 *bref = p; 368 unsigned int blk; 369 370 while (bref < p+max) { 371 blk = le32_to_cpu(*bref++); 372 if (blk && 373 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 374 blk, 1))) { 375 es->s_last_error_block = cpu_to_le64(blk); 376 ext4_error_inode(inode, function, line, blk, 377 "invalid block"); 378 return -EIO; 379 } 380 } 381 return 0; 382 } 383 384 385 #define ext4_check_indirect_blockref(inode, bh) \ 386 __ext4_check_blockref(__func__, __LINE__, inode, \ 387 (__le32 *)(bh)->b_data, \ 388 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 389 390 #define ext4_check_inode_blockref(inode) \ 391 __ext4_check_blockref(__func__, __LINE__, inode, \ 392 EXT4_I(inode)->i_data, \ 393 EXT4_NDIR_BLOCKS) 394 395 /** 396 * ext4_get_branch - read the chain of indirect blocks leading to data 397 * @inode: inode in question 398 * @depth: depth of the chain (1 - direct pointer, etc.) 399 * @offsets: offsets of pointers in inode/indirect blocks 400 * @chain: place to store the result 401 * @err: here we store the error value 402 * 403 * Function fills the array of triples <key, p, bh> and returns %NULL 404 * if everything went OK or the pointer to the last filled triple 405 * (incomplete one) otherwise. Upon the return chain[i].key contains 406 * the number of (i+1)-th block in the chain (as it is stored in memory, 407 * i.e. little-endian 32-bit), chain[i].p contains the address of that 408 * number (it points into struct inode for i==0 and into the bh->b_data 409 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 410 * block for i>0 and NULL for i==0. In other words, it holds the block 411 * numbers of the chain, addresses they were taken from (and where we can 412 * verify that chain did not change) and buffer_heads hosting these 413 * numbers. 414 * 415 * Function stops when it stumbles upon zero pointer (absent block) 416 * (pointer to last triple returned, *@err == 0) 417 * or when it gets an IO error reading an indirect block 418 * (ditto, *@err == -EIO) 419 * or when it reads all @depth-1 indirect blocks successfully and finds 420 * the whole chain, all way to the data (returns %NULL, *err == 0). 421 * 422 * Need to be called with 423 * down_read(&EXT4_I(inode)->i_data_sem) 424 */ 425 static Indirect *ext4_get_branch(struct inode *inode, int depth, 426 ext4_lblk_t *offsets, 427 Indirect chain[4], int *err) 428 { 429 struct super_block *sb = inode->i_sb; 430 Indirect *p = chain; 431 struct buffer_head *bh; 432 433 *err = 0; 434 /* i_data is not going away, no lock needed */ 435 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 436 if (!p->key) 437 goto no_block; 438 while (--depth) { 439 bh = sb_getblk(sb, le32_to_cpu(p->key)); 440 if (unlikely(!bh)) 441 goto failure; 442 443 if (!bh_uptodate_or_lock(bh)) { 444 if (bh_submit_read(bh) < 0) { 445 put_bh(bh); 446 goto failure; 447 } 448 /* validate block references */ 449 if (ext4_check_indirect_blockref(inode, bh)) { 450 put_bh(bh); 451 goto failure; 452 } 453 } 454 455 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 456 /* Reader: end */ 457 if (!p->key) 458 goto no_block; 459 } 460 return NULL; 461 462 failure: 463 *err = -EIO; 464 no_block: 465 return p; 466 } 467 468 /** 469 * ext4_find_near - find a place for allocation with sufficient locality 470 * @inode: owner 471 * @ind: descriptor of indirect block. 472 * 473 * This function returns the preferred place for block allocation. 474 * It is used when heuristic for sequential allocation fails. 475 * Rules are: 476 * + if there is a block to the left of our position - allocate near it. 477 * + if pointer will live in indirect block - allocate near that block. 478 * + if pointer will live in inode - allocate in the same 479 * cylinder group. 480 * 481 * In the latter case we colour the starting block by the callers PID to 482 * prevent it from clashing with concurrent allocations for a different inode 483 * in the same block group. The PID is used here so that functionally related 484 * files will be close-by on-disk. 485 * 486 * Caller must make sure that @ind is valid and will stay that way. 487 */ 488 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 489 { 490 struct ext4_inode_info *ei = EXT4_I(inode); 491 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 492 __le32 *p; 493 ext4_fsblk_t bg_start; 494 ext4_fsblk_t last_block; 495 ext4_grpblk_t colour; 496 ext4_group_t block_group; 497 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 498 499 /* Try to find previous block */ 500 for (p = ind->p - 1; p >= start; p--) { 501 if (*p) 502 return le32_to_cpu(*p); 503 } 504 505 /* No such thing, so let's try location of indirect block */ 506 if (ind->bh) 507 return ind->bh->b_blocknr; 508 509 /* 510 * It is going to be referred to from the inode itself? OK, just put it 511 * into the same cylinder group then. 512 */ 513 block_group = ei->i_block_group; 514 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 515 block_group &= ~(flex_size-1); 516 if (S_ISREG(inode->i_mode)) 517 block_group++; 518 } 519 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 520 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 521 522 /* 523 * If we are doing delayed allocation, we don't need take 524 * colour into account. 525 */ 526 if (test_opt(inode->i_sb, DELALLOC)) 527 return bg_start; 528 529 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 530 colour = (current->pid % 16) * 531 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 532 else 533 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 534 return bg_start + colour; 535 } 536 537 /** 538 * ext4_find_goal - find a preferred place for allocation. 539 * @inode: owner 540 * @block: block we want 541 * @partial: pointer to the last triple within a chain 542 * 543 * Normally this function find the preferred place for block allocation, 544 * returns it. 545 * Because this is only used for non-extent files, we limit the block nr 546 * to 32 bits. 547 */ 548 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 549 Indirect *partial) 550 { 551 ext4_fsblk_t goal; 552 553 /* 554 * XXX need to get goal block from mballoc's data structures 555 */ 556 557 goal = ext4_find_near(inode, partial); 558 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 559 return goal; 560 } 561 562 /** 563 * ext4_blks_to_allocate - Look up the block map and count the number 564 * of direct blocks need to be allocated for the given branch. 565 * 566 * @branch: chain of indirect blocks 567 * @k: number of blocks need for indirect blocks 568 * @blks: number of data blocks to be mapped. 569 * @blocks_to_boundary: the offset in the indirect block 570 * 571 * return the total number of blocks to be allocate, including the 572 * direct and indirect blocks. 573 */ 574 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 575 int blocks_to_boundary) 576 { 577 unsigned int count = 0; 578 579 /* 580 * Simple case, [t,d]Indirect block(s) has not allocated yet 581 * then it's clear blocks on that path have not allocated 582 */ 583 if (k > 0) { 584 /* right now we don't handle cross boundary allocation */ 585 if (blks < blocks_to_boundary + 1) 586 count += blks; 587 else 588 count += blocks_to_boundary + 1; 589 return count; 590 } 591 592 count++; 593 while (count < blks && count <= blocks_to_boundary && 594 le32_to_cpu(*(branch[0].p + count)) == 0) { 595 count++; 596 } 597 return count; 598 } 599 600 /** 601 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 602 * @handle: handle for this transaction 603 * @inode: inode which needs allocated blocks 604 * @iblock: the logical block to start allocated at 605 * @goal: preferred physical block of allocation 606 * @indirect_blks: the number of blocks need to allocate for indirect 607 * blocks 608 * @blks: number of desired blocks 609 * @new_blocks: on return it will store the new block numbers for 610 * the indirect blocks(if needed) and the first direct block, 611 * @err: on return it will store the error code 612 * 613 * This function will return the number of blocks allocated as 614 * requested by the passed-in parameters. 615 */ 616 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 617 ext4_lblk_t iblock, ext4_fsblk_t goal, 618 int indirect_blks, int blks, 619 ext4_fsblk_t new_blocks[4], int *err) 620 { 621 struct ext4_allocation_request ar; 622 int target, i; 623 unsigned long count = 0, blk_allocated = 0; 624 int index = 0; 625 ext4_fsblk_t current_block = 0; 626 int ret = 0; 627 628 /* 629 * Here we try to allocate the requested multiple blocks at once, 630 * on a best-effort basis. 631 * To build a branch, we should allocate blocks for 632 * the indirect blocks(if not allocated yet), and at least 633 * the first direct block of this branch. That's the 634 * minimum number of blocks need to allocate(required) 635 */ 636 /* first we try to allocate the indirect blocks */ 637 target = indirect_blks; 638 while (target > 0) { 639 count = target; 640 /* allocating blocks for indirect blocks and direct blocks */ 641 current_block = ext4_new_meta_blocks(handle, inode, 642 goal, &count, err); 643 if (*err) 644 goto failed_out; 645 646 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 647 EXT4_ERROR_INODE(inode, 648 "current_block %llu + count %lu > %d!", 649 current_block, count, 650 EXT4_MAX_BLOCK_FILE_PHYS); 651 *err = -EIO; 652 goto failed_out; 653 } 654 655 target -= count; 656 /* allocate blocks for indirect blocks */ 657 while (index < indirect_blks && count) { 658 new_blocks[index++] = current_block++; 659 count--; 660 } 661 if (count > 0) { 662 /* 663 * save the new block number 664 * for the first direct block 665 */ 666 new_blocks[index] = current_block; 667 printk(KERN_INFO "%s returned more blocks than " 668 "requested\n", __func__); 669 WARN_ON(1); 670 break; 671 } 672 } 673 674 target = blks - count ; 675 blk_allocated = count; 676 if (!target) 677 goto allocated; 678 /* Now allocate data blocks */ 679 memset(&ar, 0, sizeof(ar)); 680 ar.inode = inode; 681 ar.goal = goal; 682 ar.len = target; 683 ar.logical = iblock; 684 if (S_ISREG(inode->i_mode)) 685 /* enable in-core preallocation only for regular files */ 686 ar.flags = EXT4_MB_HINT_DATA; 687 688 current_block = ext4_mb_new_blocks(handle, &ar, err); 689 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 690 EXT4_ERROR_INODE(inode, 691 "current_block %llu + ar.len %d > %d!", 692 current_block, ar.len, 693 EXT4_MAX_BLOCK_FILE_PHYS); 694 *err = -EIO; 695 goto failed_out; 696 } 697 698 if (*err && (target == blks)) { 699 /* 700 * if the allocation failed and we didn't allocate 701 * any blocks before 702 */ 703 goto failed_out; 704 } 705 if (!*err) { 706 if (target == blks) { 707 /* 708 * save the new block number 709 * for the first direct block 710 */ 711 new_blocks[index] = current_block; 712 } 713 blk_allocated += ar.len; 714 } 715 allocated: 716 /* total number of blocks allocated for direct blocks */ 717 ret = blk_allocated; 718 *err = 0; 719 return ret; 720 failed_out: 721 for (i = 0; i < index; i++) 722 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 723 return ret; 724 } 725 726 /** 727 * ext4_alloc_branch - allocate and set up a chain of blocks. 728 * @handle: handle for this transaction 729 * @inode: owner 730 * @indirect_blks: number of allocated indirect blocks 731 * @blks: number of allocated direct blocks 732 * @goal: preferred place for allocation 733 * @offsets: offsets (in the blocks) to store the pointers to next. 734 * @branch: place to store the chain in. 735 * 736 * This function allocates blocks, zeroes out all but the last one, 737 * links them into chain and (if we are synchronous) writes them to disk. 738 * In other words, it prepares a branch that can be spliced onto the 739 * inode. It stores the information about that chain in the branch[], in 740 * the same format as ext4_get_branch() would do. We are calling it after 741 * we had read the existing part of chain and partial points to the last 742 * triple of that (one with zero ->key). Upon the exit we have the same 743 * picture as after the successful ext4_get_block(), except that in one 744 * place chain is disconnected - *branch->p is still zero (we did not 745 * set the last link), but branch->key contains the number that should 746 * be placed into *branch->p to fill that gap. 747 * 748 * If allocation fails we free all blocks we've allocated (and forget 749 * their buffer_heads) and return the error value the from failed 750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 751 * as described above and return 0. 752 */ 753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 754 ext4_lblk_t iblock, int indirect_blks, 755 int *blks, ext4_fsblk_t goal, 756 ext4_lblk_t *offsets, Indirect *branch) 757 { 758 int blocksize = inode->i_sb->s_blocksize; 759 int i, n = 0; 760 int err = 0; 761 struct buffer_head *bh; 762 int num; 763 ext4_fsblk_t new_blocks[4]; 764 ext4_fsblk_t current_block; 765 766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 767 *blks, new_blocks, &err); 768 if (err) 769 return err; 770 771 branch[0].key = cpu_to_le32(new_blocks[0]); 772 /* 773 * metadata blocks and data blocks are allocated. 774 */ 775 for (n = 1; n <= indirect_blks; n++) { 776 /* 777 * Get buffer_head for parent block, zero it out 778 * and set the pointer to new one, then send 779 * parent to disk. 780 */ 781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 782 if (unlikely(!bh)) { 783 err = -EIO; 784 goto failed; 785 } 786 787 branch[n].bh = bh; 788 lock_buffer(bh); 789 BUFFER_TRACE(bh, "call get_create_access"); 790 err = ext4_journal_get_create_access(handle, bh); 791 if (err) { 792 /* Don't brelse(bh) here; it's done in 793 * ext4_journal_forget() below */ 794 unlock_buffer(bh); 795 goto failed; 796 } 797 798 memset(bh->b_data, 0, blocksize); 799 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 800 branch[n].key = cpu_to_le32(new_blocks[n]); 801 *branch[n].p = branch[n].key; 802 if (n == indirect_blks) { 803 current_block = new_blocks[n]; 804 /* 805 * End of chain, update the last new metablock of 806 * the chain to point to the new allocated 807 * data blocks numbers 808 */ 809 for (i = 1; i < num; i++) 810 *(branch[n].p + i) = cpu_to_le32(++current_block); 811 } 812 BUFFER_TRACE(bh, "marking uptodate"); 813 set_buffer_uptodate(bh); 814 unlock_buffer(bh); 815 816 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 817 err = ext4_handle_dirty_metadata(handle, inode, bh); 818 if (err) 819 goto failed; 820 } 821 *blks = num; 822 return err; 823 failed: 824 /* Allocation failed, free what we already allocated */ 825 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 826 for (i = 1; i <= n ; i++) { 827 /* 828 * branch[i].bh is newly allocated, so there is no 829 * need to revoke the block, which is why we don't 830 * need to set EXT4_FREE_BLOCKS_METADATA. 831 */ 832 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 833 EXT4_FREE_BLOCKS_FORGET); 834 } 835 for (i = n+1; i < indirect_blks; i++) 836 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 837 838 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 839 840 return err; 841 } 842 843 /** 844 * ext4_splice_branch - splice the allocated branch onto inode. 845 * @handle: handle for this transaction 846 * @inode: owner 847 * @block: (logical) number of block we are adding 848 * @chain: chain of indirect blocks (with a missing link - see 849 * ext4_alloc_branch) 850 * @where: location of missing link 851 * @num: number of indirect blocks we are adding 852 * @blks: number of direct blocks we are adding 853 * 854 * This function fills the missing link and does all housekeeping needed in 855 * inode (->i_blocks, etc.). In case of success we end up with the full 856 * chain to new block and return 0. 857 */ 858 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 859 ext4_lblk_t block, Indirect *where, int num, 860 int blks) 861 { 862 int i; 863 int err = 0; 864 ext4_fsblk_t current_block; 865 866 /* 867 * If we're splicing into a [td]indirect block (as opposed to the 868 * inode) then we need to get write access to the [td]indirect block 869 * before the splice. 870 */ 871 if (where->bh) { 872 BUFFER_TRACE(where->bh, "get_write_access"); 873 err = ext4_journal_get_write_access(handle, where->bh); 874 if (err) 875 goto err_out; 876 } 877 /* That's it */ 878 879 *where->p = where->key; 880 881 /* 882 * Update the host buffer_head or inode to point to more just allocated 883 * direct blocks blocks 884 */ 885 if (num == 0 && blks > 1) { 886 current_block = le32_to_cpu(where->key) + 1; 887 for (i = 1; i < blks; i++) 888 *(where->p + i) = cpu_to_le32(current_block++); 889 } 890 891 /* We are done with atomic stuff, now do the rest of housekeeping */ 892 /* had we spliced it onto indirect block? */ 893 if (where->bh) { 894 /* 895 * If we spliced it onto an indirect block, we haven't 896 * altered the inode. Note however that if it is being spliced 897 * onto an indirect block at the very end of the file (the 898 * file is growing) then we *will* alter the inode to reflect 899 * the new i_size. But that is not done here - it is done in 900 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 901 */ 902 jbd_debug(5, "splicing indirect only\n"); 903 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 904 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 905 if (err) 906 goto err_out; 907 } else { 908 /* 909 * OK, we spliced it into the inode itself on a direct block. 910 */ 911 ext4_mark_inode_dirty(handle, inode); 912 jbd_debug(5, "splicing direct\n"); 913 } 914 return err; 915 916 err_out: 917 for (i = 1; i <= num; i++) { 918 /* 919 * branch[i].bh is newly allocated, so there is no 920 * need to revoke the block, which is why we don't 921 * need to set EXT4_FREE_BLOCKS_METADATA. 922 */ 923 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 924 EXT4_FREE_BLOCKS_FORGET); 925 } 926 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 927 blks, 0); 928 929 return err; 930 } 931 932 /* 933 * The ext4_ind_map_blocks() function handles non-extents inodes 934 * (i.e., using the traditional indirect/double-indirect i_blocks 935 * scheme) for ext4_map_blocks(). 936 * 937 * Allocation strategy is simple: if we have to allocate something, we will 938 * have to go the whole way to leaf. So let's do it before attaching anything 939 * to tree, set linkage between the newborn blocks, write them if sync is 940 * required, recheck the path, free and repeat if check fails, otherwise 941 * set the last missing link (that will protect us from any truncate-generated 942 * removals - all blocks on the path are immune now) and possibly force the 943 * write on the parent block. 944 * That has a nice additional property: no special recovery from the failed 945 * allocations is needed - we simply release blocks and do not touch anything 946 * reachable from inode. 947 * 948 * `handle' can be NULL if create == 0. 949 * 950 * return > 0, # of blocks mapped or allocated. 951 * return = 0, if plain lookup failed. 952 * return < 0, error case. 953 * 954 * The ext4_ind_get_blocks() function should be called with 955 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 956 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 957 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 958 * blocks. 959 */ 960 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 961 struct ext4_map_blocks *map, 962 int flags) 963 { 964 int err = -EIO; 965 ext4_lblk_t offsets[4]; 966 Indirect chain[4]; 967 Indirect *partial; 968 ext4_fsblk_t goal; 969 int indirect_blks; 970 int blocks_to_boundary = 0; 971 int depth; 972 int count = 0; 973 ext4_fsblk_t first_block = 0; 974 975 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 976 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 977 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 978 &blocks_to_boundary); 979 980 if (depth == 0) 981 goto out; 982 983 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 984 985 /* Simplest case - block found, no allocation needed */ 986 if (!partial) { 987 first_block = le32_to_cpu(chain[depth - 1].key); 988 count++; 989 /*map more blocks*/ 990 while (count < map->m_len && count <= blocks_to_boundary) { 991 ext4_fsblk_t blk; 992 993 blk = le32_to_cpu(*(chain[depth-1].p + count)); 994 995 if (blk == first_block + count) 996 count++; 997 else 998 break; 999 } 1000 goto got_it; 1001 } 1002 1003 /* Next simple case - plain lookup or failed read of indirect block */ 1004 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 1005 goto cleanup; 1006 1007 /* 1008 * Okay, we need to do block allocation. 1009 */ 1010 goal = ext4_find_goal(inode, map->m_lblk, partial); 1011 1012 /* the number of blocks need to allocate for [d,t]indirect blocks */ 1013 indirect_blks = (chain + depth) - partial - 1; 1014 1015 /* 1016 * Next look up the indirect map to count the totoal number of 1017 * direct blocks to allocate for this branch. 1018 */ 1019 count = ext4_blks_to_allocate(partial, indirect_blks, 1020 map->m_len, blocks_to_boundary); 1021 /* 1022 * Block out ext4_truncate while we alter the tree 1023 */ 1024 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 1025 &count, goal, 1026 offsets + (partial - chain), partial); 1027 1028 /* 1029 * The ext4_splice_branch call will free and forget any buffers 1030 * on the new chain if there is a failure, but that risks using 1031 * up transaction credits, especially for bitmaps where the 1032 * credits cannot be returned. Can we handle this somehow? We 1033 * may need to return -EAGAIN upwards in the worst case. --sct 1034 */ 1035 if (!err) 1036 err = ext4_splice_branch(handle, inode, map->m_lblk, 1037 partial, indirect_blks, count); 1038 if (err) 1039 goto cleanup; 1040 1041 map->m_flags |= EXT4_MAP_NEW; 1042 1043 ext4_update_inode_fsync_trans(handle, inode, 1); 1044 got_it: 1045 map->m_flags |= EXT4_MAP_MAPPED; 1046 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1047 map->m_len = count; 1048 if (count > blocks_to_boundary) 1049 map->m_flags |= EXT4_MAP_BOUNDARY; 1050 err = count; 1051 /* Clean up and exit */ 1052 partial = chain + depth - 1; /* the whole chain */ 1053 cleanup: 1054 while (partial > chain) { 1055 BUFFER_TRACE(partial->bh, "call brelse"); 1056 brelse(partial->bh); 1057 partial--; 1058 } 1059 out: 1060 return err; 1061 } 1062 1063 #ifdef CONFIG_QUOTA 1064 qsize_t *ext4_get_reserved_space(struct inode *inode) 1065 { 1066 return &EXT4_I(inode)->i_reserved_quota; 1067 } 1068 #endif 1069 1070 /* 1071 * Calculate the number of metadata blocks need to reserve 1072 * to allocate a new block at @lblocks for non extent file based file 1073 */ 1074 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1075 sector_t lblock) 1076 { 1077 struct ext4_inode_info *ei = EXT4_I(inode); 1078 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1079 int blk_bits; 1080 1081 if (lblock < EXT4_NDIR_BLOCKS) 1082 return 0; 1083 1084 lblock -= EXT4_NDIR_BLOCKS; 1085 1086 if (ei->i_da_metadata_calc_len && 1087 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1088 ei->i_da_metadata_calc_len++; 1089 return 0; 1090 } 1091 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1092 ei->i_da_metadata_calc_len = 1; 1093 blk_bits = order_base_2(lblock); 1094 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1095 } 1096 1097 /* 1098 * Calculate the number of metadata blocks need to reserve 1099 * to allocate a block located at @lblock 1100 */ 1101 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 1102 { 1103 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1104 return ext4_ext_calc_metadata_amount(inode, lblock); 1105 1106 return ext4_indirect_calc_metadata_amount(inode, lblock); 1107 } 1108 1109 /* 1110 * Called with i_data_sem down, which is important since we can call 1111 * ext4_discard_preallocations() from here. 1112 */ 1113 void ext4_da_update_reserve_space(struct inode *inode, 1114 int used, int quota_claim) 1115 { 1116 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1117 struct ext4_inode_info *ei = EXT4_I(inode); 1118 1119 spin_lock(&ei->i_block_reservation_lock); 1120 trace_ext4_da_update_reserve_space(inode, used); 1121 if (unlikely(used > ei->i_reserved_data_blocks)) { 1122 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1123 "with only %d reserved data blocks\n", 1124 __func__, inode->i_ino, used, 1125 ei->i_reserved_data_blocks); 1126 WARN_ON(1); 1127 used = ei->i_reserved_data_blocks; 1128 } 1129 1130 /* Update per-inode reservations */ 1131 ei->i_reserved_data_blocks -= used; 1132 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1133 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1134 used + ei->i_allocated_meta_blocks); 1135 ei->i_allocated_meta_blocks = 0; 1136 1137 if (ei->i_reserved_data_blocks == 0) { 1138 /* 1139 * We can release all of the reserved metadata blocks 1140 * only when we have written all of the delayed 1141 * allocation blocks. 1142 */ 1143 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1144 ei->i_reserved_meta_blocks); 1145 ei->i_reserved_meta_blocks = 0; 1146 ei->i_da_metadata_calc_len = 0; 1147 } 1148 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1149 1150 /* Update quota subsystem for data blocks */ 1151 if (quota_claim) 1152 dquot_claim_block(inode, used); 1153 else { 1154 /* 1155 * We did fallocate with an offset that is already delayed 1156 * allocated. So on delayed allocated writeback we should 1157 * not re-claim the quota for fallocated blocks. 1158 */ 1159 dquot_release_reservation_block(inode, used); 1160 } 1161 1162 /* 1163 * If we have done all the pending block allocations and if 1164 * there aren't any writers on the inode, we can discard the 1165 * inode's preallocations. 1166 */ 1167 if ((ei->i_reserved_data_blocks == 0) && 1168 (atomic_read(&inode->i_writecount) == 0)) 1169 ext4_discard_preallocations(inode); 1170 } 1171 1172 static int __check_block_validity(struct inode *inode, const char *func, 1173 unsigned int line, 1174 struct ext4_map_blocks *map) 1175 { 1176 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 1177 map->m_len)) { 1178 ext4_error_inode(inode, func, line, map->m_pblk, 1179 "lblock %lu mapped to illegal pblock " 1180 "(length %d)", (unsigned long) map->m_lblk, 1181 map->m_len); 1182 return -EIO; 1183 } 1184 return 0; 1185 } 1186 1187 #define check_block_validity(inode, map) \ 1188 __check_block_validity((inode), __func__, __LINE__, (map)) 1189 1190 /* 1191 * Return the number of contiguous dirty pages in a given inode 1192 * starting at page frame idx. 1193 */ 1194 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1195 unsigned int max_pages) 1196 { 1197 struct address_space *mapping = inode->i_mapping; 1198 pgoff_t index; 1199 struct pagevec pvec; 1200 pgoff_t num = 0; 1201 int i, nr_pages, done = 0; 1202 1203 if (max_pages == 0) 1204 return 0; 1205 pagevec_init(&pvec, 0); 1206 while (!done) { 1207 index = idx; 1208 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1209 PAGECACHE_TAG_DIRTY, 1210 (pgoff_t)PAGEVEC_SIZE); 1211 if (nr_pages == 0) 1212 break; 1213 for (i = 0; i < nr_pages; i++) { 1214 struct page *page = pvec.pages[i]; 1215 struct buffer_head *bh, *head; 1216 1217 lock_page(page); 1218 if (unlikely(page->mapping != mapping) || 1219 !PageDirty(page) || 1220 PageWriteback(page) || 1221 page->index != idx) { 1222 done = 1; 1223 unlock_page(page); 1224 break; 1225 } 1226 if (page_has_buffers(page)) { 1227 bh = head = page_buffers(page); 1228 do { 1229 if (!buffer_delay(bh) && 1230 !buffer_unwritten(bh)) 1231 done = 1; 1232 bh = bh->b_this_page; 1233 } while (!done && (bh != head)); 1234 } 1235 unlock_page(page); 1236 if (done) 1237 break; 1238 idx++; 1239 num++; 1240 if (num >= max_pages) { 1241 done = 1; 1242 break; 1243 } 1244 } 1245 pagevec_release(&pvec); 1246 } 1247 return num; 1248 } 1249 1250 /* 1251 * The ext4_map_blocks() function tries to look up the requested blocks, 1252 * and returns if the blocks are already mapped. 1253 * 1254 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1255 * and store the allocated blocks in the result buffer head and mark it 1256 * mapped. 1257 * 1258 * If file type is extents based, it will call ext4_ext_map_blocks(), 1259 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1260 * based files 1261 * 1262 * On success, it returns the number of blocks being mapped or allocate. 1263 * if create==0 and the blocks are pre-allocated and uninitialized block, 1264 * the result buffer head is unmapped. If the create ==1, it will make sure 1265 * the buffer head is mapped. 1266 * 1267 * It returns 0 if plain look up failed (blocks have not been allocated), in 1268 * that casem, buffer head is unmapped 1269 * 1270 * It returns the error in case of allocation failure. 1271 */ 1272 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1273 struct ext4_map_blocks *map, int flags) 1274 { 1275 int retval; 1276 1277 map->m_flags = 0; 1278 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1279 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1280 (unsigned long) map->m_lblk); 1281 /* 1282 * Try to see if we can get the block without requesting a new 1283 * file system block. 1284 */ 1285 down_read((&EXT4_I(inode)->i_data_sem)); 1286 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1287 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1288 } else { 1289 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1290 } 1291 up_read((&EXT4_I(inode)->i_data_sem)); 1292 1293 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1294 int ret = check_block_validity(inode, map); 1295 if (ret != 0) 1296 return ret; 1297 } 1298 1299 /* If it is only a block(s) look up */ 1300 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1301 return retval; 1302 1303 /* 1304 * Returns if the blocks have already allocated 1305 * 1306 * Note that if blocks have been preallocated 1307 * ext4_ext_get_block() returns th create = 0 1308 * with buffer head unmapped. 1309 */ 1310 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1311 return retval; 1312 1313 /* 1314 * When we call get_blocks without the create flag, the 1315 * BH_Unwritten flag could have gotten set if the blocks 1316 * requested were part of a uninitialized extent. We need to 1317 * clear this flag now that we are committed to convert all or 1318 * part of the uninitialized extent to be an initialized 1319 * extent. This is because we need to avoid the combination 1320 * of BH_Unwritten and BH_Mapped flags being simultaneously 1321 * set on the buffer_head. 1322 */ 1323 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1324 1325 /* 1326 * New blocks allocate and/or writing to uninitialized extent 1327 * will possibly result in updating i_data, so we take 1328 * the write lock of i_data_sem, and call get_blocks() 1329 * with create == 1 flag. 1330 */ 1331 down_write((&EXT4_I(inode)->i_data_sem)); 1332 1333 /* 1334 * if the caller is from delayed allocation writeout path 1335 * we have already reserved fs blocks for allocation 1336 * let the underlying get_block() function know to 1337 * avoid double accounting 1338 */ 1339 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1340 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1341 /* 1342 * We need to check for EXT4 here because migrate 1343 * could have changed the inode type in between 1344 */ 1345 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1346 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1347 } else { 1348 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1349 1350 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1351 /* 1352 * We allocated new blocks which will result in 1353 * i_data's format changing. Force the migrate 1354 * to fail by clearing migrate flags 1355 */ 1356 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1357 } 1358 1359 /* 1360 * Update reserved blocks/metadata blocks after successful 1361 * block allocation which had been deferred till now. We don't 1362 * support fallocate for non extent files. So we can update 1363 * reserve space here. 1364 */ 1365 if ((retval > 0) && 1366 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1367 ext4_da_update_reserve_space(inode, retval, 1); 1368 } 1369 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1370 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1371 1372 up_write((&EXT4_I(inode)->i_data_sem)); 1373 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1374 int ret = check_block_validity(inode, map); 1375 if (ret != 0) 1376 return ret; 1377 } 1378 return retval; 1379 } 1380 1381 /* Maximum number of blocks we map for direct IO at once. */ 1382 #define DIO_MAX_BLOCKS 4096 1383 1384 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1385 struct buffer_head *bh, int flags) 1386 { 1387 handle_t *handle = ext4_journal_current_handle(); 1388 struct ext4_map_blocks map; 1389 int ret = 0, started = 0; 1390 int dio_credits; 1391 1392 map.m_lblk = iblock; 1393 map.m_len = bh->b_size >> inode->i_blkbits; 1394 1395 if (flags && !handle) { 1396 /* Direct IO write... */ 1397 if (map.m_len > DIO_MAX_BLOCKS) 1398 map.m_len = DIO_MAX_BLOCKS; 1399 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1400 handle = ext4_journal_start(inode, dio_credits); 1401 if (IS_ERR(handle)) { 1402 ret = PTR_ERR(handle); 1403 return ret; 1404 } 1405 started = 1; 1406 } 1407 1408 ret = ext4_map_blocks(handle, inode, &map, flags); 1409 if (ret > 0) { 1410 map_bh(bh, inode->i_sb, map.m_pblk); 1411 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1412 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1413 ret = 0; 1414 } 1415 if (started) 1416 ext4_journal_stop(handle); 1417 return ret; 1418 } 1419 1420 int ext4_get_block(struct inode *inode, sector_t iblock, 1421 struct buffer_head *bh, int create) 1422 { 1423 return _ext4_get_block(inode, iblock, bh, 1424 create ? EXT4_GET_BLOCKS_CREATE : 0); 1425 } 1426 1427 /* 1428 * `handle' can be NULL if create is zero 1429 */ 1430 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1431 ext4_lblk_t block, int create, int *errp) 1432 { 1433 struct ext4_map_blocks map; 1434 struct buffer_head *bh; 1435 int fatal = 0, err; 1436 1437 J_ASSERT(handle != NULL || create == 0); 1438 1439 map.m_lblk = block; 1440 map.m_len = 1; 1441 err = ext4_map_blocks(handle, inode, &map, 1442 create ? EXT4_GET_BLOCKS_CREATE : 0); 1443 1444 if (err < 0) 1445 *errp = err; 1446 if (err <= 0) 1447 return NULL; 1448 *errp = 0; 1449 1450 bh = sb_getblk(inode->i_sb, map.m_pblk); 1451 if (!bh) { 1452 *errp = -EIO; 1453 return NULL; 1454 } 1455 if (map.m_flags & EXT4_MAP_NEW) { 1456 J_ASSERT(create != 0); 1457 J_ASSERT(handle != NULL); 1458 1459 /* 1460 * Now that we do not always journal data, we should 1461 * keep in mind whether this should always journal the 1462 * new buffer as metadata. For now, regular file 1463 * writes use ext4_get_block instead, so it's not a 1464 * problem. 1465 */ 1466 lock_buffer(bh); 1467 BUFFER_TRACE(bh, "call get_create_access"); 1468 fatal = ext4_journal_get_create_access(handle, bh); 1469 if (!fatal && !buffer_uptodate(bh)) { 1470 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1471 set_buffer_uptodate(bh); 1472 } 1473 unlock_buffer(bh); 1474 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1475 err = ext4_handle_dirty_metadata(handle, inode, bh); 1476 if (!fatal) 1477 fatal = err; 1478 } else { 1479 BUFFER_TRACE(bh, "not a new buffer"); 1480 } 1481 if (fatal) { 1482 *errp = fatal; 1483 brelse(bh); 1484 bh = NULL; 1485 } 1486 return bh; 1487 } 1488 1489 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1490 ext4_lblk_t block, int create, int *err) 1491 { 1492 struct buffer_head *bh; 1493 1494 bh = ext4_getblk(handle, inode, block, create, err); 1495 if (!bh) 1496 return bh; 1497 if (buffer_uptodate(bh)) 1498 return bh; 1499 ll_rw_block(READ_META, 1, &bh); 1500 wait_on_buffer(bh); 1501 if (buffer_uptodate(bh)) 1502 return bh; 1503 put_bh(bh); 1504 *err = -EIO; 1505 return NULL; 1506 } 1507 1508 static int walk_page_buffers(handle_t *handle, 1509 struct buffer_head *head, 1510 unsigned from, 1511 unsigned to, 1512 int *partial, 1513 int (*fn)(handle_t *handle, 1514 struct buffer_head *bh)) 1515 { 1516 struct buffer_head *bh; 1517 unsigned block_start, block_end; 1518 unsigned blocksize = head->b_size; 1519 int err, ret = 0; 1520 struct buffer_head *next; 1521 1522 for (bh = head, block_start = 0; 1523 ret == 0 && (bh != head || !block_start); 1524 block_start = block_end, bh = next) { 1525 next = bh->b_this_page; 1526 block_end = block_start + blocksize; 1527 if (block_end <= from || block_start >= to) { 1528 if (partial && !buffer_uptodate(bh)) 1529 *partial = 1; 1530 continue; 1531 } 1532 err = (*fn)(handle, bh); 1533 if (!ret) 1534 ret = err; 1535 } 1536 return ret; 1537 } 1538 1539 /* 1540 * To preserve ordering, it is essential that the hole instantiation and 1541 * the data write be encapsulated in a single transaction. We cannot 1542 * close off a transaction and start a new one between the ext4_get_block() 1543 * and the commit_write(). So doing the jbd2_journal_start at the start of 1544 * prepare_write() is the right place. 1545 * 1546 * Also, this function can nest inside ext4_writepage() -> 1547 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1548 * has generated enough buffer credits to do the whole page. So we won't 1549 * block on the journal in that case, which is good, because the caller may 1550 * be PF_MEMALLOC. 1551 * 1552 * By accident, ext4 can be reentered when a transaction is open via 1553 * quota file writes. If we were to commit the transaction while thus 1554 * reentered, there can be a deadlock - we would be holding a quota 1555 * lock, and the commit would never complete if another thread had a 1556 * transaction open and was blocking on the quota lock - a ranking 1557 * violation. 1558 * 1559 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1560 * will _not_ run commit under these circumstances because handle->h_ref 1561 * is elevated. We'll still have enough credits for the tiny quotafile 1562 * write. 1563 */ 1564 static int do_journal_get_write_access(handle_t *handle, 1565 struct buffer_head *bh) 1566 { 1567 int dirty = buffer_dirty(bh); 1568 int ret; 1569 1570 if (!buffer_mapped(bh) || buffer_freed(bh)) 1571 return 0; 1572 /* 1573 * __block_write_begin() could have dirtied some buffers. Clean 1574 * the dirty bit as jbd2_journal_get_write_access() could complain 1575 * otherwise about fs integrity issues. Setting of the dirty bit 1576 * by __block_write_begin() isn't a real problem here as we clear 1577 * the bit before releasing a page lock and thus writeback cannot 1578 * ever write the buffer. 1579 */ 1580 if (dirty) 1581 clear_buffer_dirty(bh); 1582 ret = ext4_journal_get_write_access(handle, bh); 1583 if (!ret && dirty) 1584 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1585 return ret; 1586 } 1587 1588 /* 1589 * Truncate blocks that were not used by write. We have to truncate the 1590 * pagecache as well so that corresponding buffers get properly unmapped. 1591 */ 1592 static void ext4_truncate_failed_write(struct inode *inode) 1593 { 1594 truncate_inode_pages(inode->i_mapping, inode->i_size); 1595 ext4_truncate(inode); 1596 } 1597 1598 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1599 struct buffer_head *bh_result, int create); 1600 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1601 loff_t pos, unsigned len, unsigned flags, 1602 struct page **pagep, void **fsdata) 1603 { 1604 struct inode *inode = mapping->host; 1605 int ret, needed_blocks; 1606 handle_t *handle; 1607 int retries = 0; 1608 struct page *page; 1609 pgoff_t index; 1610 unsigned from, to; 1611 1612 trace_ext4_write_begin(inode, pos, len, flags); 1613 /* 1614 * Reserve one block more for addition to orphan list in case 1615 * we allocate blocks but write fails for some reason 1616 */ 1617 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1618 index = pos >> PAGE_CACHE_SHIFT; 1619 from = pos & (PAGE_CACHE_SIZE - 1); 1620 to = from + len; 1621 1622 retry: 1623 handle = ext4_journal_start(inode, needed_blocks); 1624 if (IS_ERR(handle)) { 1625 ret = PTR_ERR(handle); 1626 goto out; 1627 } 1628 1629 /* We cannot recurse into the filesystem as the transaction is already 1630 * started */ 1631 flags |= AOP_FLAG_NOFS; 1632 1633 page = grab_cache_page_write_begin(mapping, index, flags); 1634 if (!page) { 1635 ext4_journal_stop(handle); 1636 ret = -ENOMEM; 1637 goto out; 1638 } 1639 *pagep = page; 1640 1641 if (ext4_should_dioread_nolock(inode)) 1642 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1643 else 1644 ret = __block_write_begin(page, pos, len, ext4_get_block); 1645 1646 if (!ret && ext4_should_journal_data(inode)) { 1647 ret = walk_page_buffers(handle, page_buffers(page), 1648 from, to, NULL, do_journal_get_write_access); 1649 } 1650 1651 if (ret) { 1652 unlock_page(page); 1653 page_cache_release(page); 1654 /* 1655 * __block_write_begin may have instantiated a few blocks 1656 * outside i_size. Trim these off again. Don't need 1657 * i_size_read because we hold i_mutex. 1658 * 1659 * Add inode to orphan list in case we crash before 1660 * truncate finishes 1661 */ 1662 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1663 ext4_orphan_add(handle, inode); 1664 1665 ext4_journal_stop(handle); 1666 if (pos + len > inode->i_size) { 1667 ext4_truncate_failed_write(inode); 1668 /* 1669 * If truncate failed early the inode might 1670 * still be on the orphan list; we need to 1671 * make sure the inode is removed from the 1672 * orphan list in that case. 1673 */ 1674 if (inode->i_nlink) 1675 ext4_orphan_del(NULL, inode); 1676 } 1677 } 1678 1679 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1680 goto retry; 1681 out: 1682 return ret; 1683 } 1684 1685 /* For write_end() in data=journal mode */ 1686 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1687 { 1688 if (!buffer_mapped(bh) || buffer_freed(bh)) 1689 return 0; 1690 set_buffer_uptodate(bh); 1691 return ext4_handle_dirty_metadata(handle, NULL, bh); 1692 } 1693 1694 static int ext4_generic_write_end(struct file *file, 1695 struct address_space *mapping, 1696 loff_t pos, unsigned len, unsigned copied, 1697 struct page *page, void *fsdata) 1698 { 1699 int i_size_changed = 0; 1700 struct inode *inode = mapping->host; 1701 handle_t *handle = ext4_journal_current_handle(); 1702 1703 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1704 1705 /* 1706 * No need to use i_size_read() here, the i_size 1707 * cannot change under us because we hold i_mutex. 1708 * 1709 * But it's important to update i_size while still holding page lock: 1710 * page writeout could otherwise come in and zero beyond i_size. 1711 */ 1712 if (pos + copied > inode->i_size) { 1713 i_size_write(inode, pos + copied); 1714 i_size_changed = 1; 1715 } 1716 1717 if (pos + copied > EXT4_I(inode)->i_disksize) { 1718 /* We need to mark inode dirty even if 1719 * new_i_size is less that inode->i_size 1720 * bu greater than i_disksize.(hint delalloc) 1721 */ 1722 ext4_update_i_disksize(inode, (pos + copied)); 1723 i_size_changed = 1; 1724 } 1725 unlock_page(page); 1726 page_cache_release(page); 1727 1728 /* 1729 * Don't mark the inode dirty under page lock. First, it unnecessarily 1730 * makes the holding time of page lock longer. Second, it forces lock 1731 * ordering of page lock and transaction start for journaling 1732 * filesystems. 1733 */ 1734 if (i_size_changed) 1735 ext4_mark_inode_dirty(handle, inode); 1736 1737 return copied; 1738 } 1739 1740 /* 1741 * We need to pick up the new inode size which generic_commit_write gave us 1742 * `file' can be NULL - eg, when called from page_symlink(). 1743 * 1744 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1745 * buffers are managed internally. 1746 */ 1747 static int ext4_ordered_write_end(struct file *file, 1748 struct address_space *mapping, 1749 loff_t pos, unsigned len, unsigned copied, 1750 struct page *page, void *fsdata) 1751 { 1752 handle_t *handle = ext4_journal_current_handle(); 1753 struct inode *inode = mapping->host; 1754 int ret = 0, ret2; 1755 1756 trace_ext4_ordered_write_end(inode, pos, len, copied); 1757 ret = ext4_jbd2_file_inode(handle, inode); 1758 1759 if (ret == 0) { 1760 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1761 page, fsdata); 1762 copied = ret2; 1763 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1764 /* if we have allocated more blocks and copied 1765 * less. We will have blocks allocated outside 1766 * inode->i_size. So truncate them 1767 */ 1768 ext4_orphan_add(handle, inode); 1769 if (ret2 < 0) 1770 ret = ret2; 1771 } 1772 ret2 = ext4_journal_stop(handle); 1773 if (!ret) 1774 ret = ret2; 1775 1776 if (pos + len > inode->i_size) { 1777 ext4_truncate_failed_write(inode); 1778 /* 1779 * If truncate failed early the inode might still be 1780 * on the orphan list; we need to make sure the inode 1781 * is removed from the orphan list in that case. 1782 */ 1783 if (inode->i_nlink) 1784 ext4_orphan_del(NULL, inode); 1785 } 1786 1787 1788 return ret ? ret : copied; 1789 } 1790 1791 static int ext4_writeback_write_end(struct file *file, 1792 struct address_space *mapping, 1793 loff_t pos, unsigned len, unsigned copied, 1794 struct page *page, void *fsdata) 1795 { 1796 handle_t *handle = ext4_journal_current_handle(); 1797 struct inode *inode = mapping->host; 1798 int ret = 0, ret2; 1799 1800 trace_ext4_writeback_write_end(inode, pos, len, copied); 1801 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1802 page, fsdata); 1803 copied = ret2; 1804 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1805 /* if we have allocated more blocks and copied 1806 * less. We will have blocks allocated outside 1807 * inode->i_size. So truncate them 1808 */ 1809 ext4_orphan_add(handle, inode); 1810 1811 if (ret2 < 0) 1812 ret = ret2; 1813 1814 ret2 = ext4_journal_stop(handle); 1815 if (!ret) 1816 ret = ret2; 1817 1818 if (pos + len > inode->i_size) { 1819 ext4_truncate_failed_write(inode); 1820 /* 1821 * If truncate failed early the inode might still be 1822 * on the orphan list; we need to make sure the inode 1823 * is removed from the orphan list in that case. 1824 */ 1825 if (inode->i_nlink) 1826 ext4_orphan_del(NULL, inode); 1827 } 1828 1829 return ret ? ret : copied; 1830 } 1831 1832 static int ext4_journalled_write_end(struct file *file, 1833 struct address_space *mapping, 1834 loff_t pos, unsigned len, unsigned copied, 1835 struct page *page, void *fsdata) 1836 { 1837 handle_t *handle = ext4_journal_current_handle(); 1838 struct inode *inode = mapping->host; 1839 int ret = 0, ret2; 1840 int partial = 0; 1841 unsigned from, to; 1842 loff_t new_i_size; 1843 1844 trace_ext4_journalled_write_end(inode, pos, len, copied); 1845 from = pos & (PAGE_CACHE_SIZE - 1); 1846 to = from + len; 1847 1848 if (copied < len) { 1849 if (!PageUptodate(page)) 1850 copied = 0; 1851 page_zero_new_buffers(page, from+copied, to); 1852 } 1853 1854 ret = walk_page_buffers(handle, page_buffers(page), from, 1855 to, &partial, write_end_fn); 1856 if (!partial) 1857 SetPageUptodate(page); 1858 new_i_size = pos + copied; 1859 if (new_i_size > inode->i_size) 1860 i_size_write(inode, pos+copied); 1861 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1862 if (new_i_size > EXT4_I(inode)->i_disksize) { 1863 ext4_update_i_disksize(inode, new_i_size); 1864 ret2 = ext4_mark_inode_dirty(handle, inode); 1865 if (!ret) 1866 ret = ret2; 1867 } 1868 1869 unlock_page(page); 1870 page_cache_release(page); 1871 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1872 /* if we have allocated more blocks and copied 1873 * less. We will have blocks allocated outside 1874 * inode->i_size. So truncate them 1875 */ 1876 ext4_orphan_add(handle, inode); 1877 1878 ret2 = ext4_journal_stop(handle); 1879 if (!ret) 1880 ret = ret2; 1881 if (pos + len > inode->i_size) { 1882 ext4_truncate_failed_write(inode); 1883 /* 1884 * If truncate failed early the inode might still be 1885 * on the orphan list; we need to make sure the inode 1886 * is removed from the orphan list in that case. 1887 */ 1888 if (inode->i_nlink) 1889 ext4_orphan_del(NULL, inode); 1890 } 1891 1892 return ret ? ret : copied; 1893 } 1894 1895 /* 1896 * Reserve a single block located at lblock 1897 */ 1898 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1899 { 1900 int retries = 0; 1901 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1902 struct ext4_inode_info *ei = EXT4_I(inode); 1903 unsigned long md_needed; 1904 int ret; 1905 1906 /* 1907 * recalculate the amount of metadata blocks to reserve 1908 * in order to allocate nrblocks 1909 * worse case is one extent per block 1910 */ 1911 repeat: 1912 spin_lock(&ei->i_block_reservation_lock); 1913 md_needed = ext4_calc_metadata_amount(inode, lblock); 1914 trace_ext4_da_reserve_space(inode, md_needed); 1915 spin_unlock(&ei->i_block_reservation_lock); 1916 1917 /* 1918 * We will charge metadata quota at writeout time; this saves 1919 * us from metadata over-estimation, though we may go over by 1920 * a small amount in the end. Here we just reserve for data. 1921 */ 1922 ret = dquot_reserve_block(inode, 1); 1923 if (ret) 1924 return ret; 1925 /* 1926 * We do still charge estimated metadata to the sb though; 1927 * we cannot afford to run out of free blocks. 1928 */ 1929 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1930 dquot_release_reservation_block(inode, 1); 1931 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1932 yield(); 1933 goto repeat; 1934 } 1935 return -ENOSPC; 1936 } 1937 spin_lock(&ei->i_block_reservation_lock); 1938 ei->i_reserved_data_blocks++; 1939 ei->i_reserved_meta_blocks += md_needed; 1940 spin_unlock(&ei->i_block_reservation_lock); 1941 1942 return 0; /* success */ 1943 } 1944 1945 static void ext4_da_release_space(struct inode *inode, int to_free) 1946 { 1947 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1948 struct ext4_inode_info *ei = EXT4_I(inode); 1949 1950 if (!to_free) 1951 return; /* Nothing to release, exit */ 1952 1953 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1954 1955 trace_ext4_da_release_space(inode, to_free); 1956 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1957 /* 1958 * if there aren't enough reserved blocks, then the 1959 * counter is messed up somewhere. Since this 1960 * function is called from invalidate page, it's 1961 * harmless to return without any action. 1962 */ 1963 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1964 "ino %lu, to_free %d with only %d reserved " 1965 "data blocks\n", inode->i_ino, to_free, 1966 ei->i_reserved_data_blocks); 1967 WARN_ON(1); 1968 to_free = ei->i_reserved_data_blocks; 1969 } 1970 ei->i_reserved_data_blocks -= to_free; 1971 1972 if (ei->i_reserved_data_blocks == 0) { 1973 /* 1974 * We can release all of the reserved metadata blocks 1975 * only when we have written all of the delayed 1976 * allocation blocks. 1977 */ 1978 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1979 ei->i_reserved_meta_blocks); 1980 ei->i_reserved_meta_blocks = 0; 1981 ei->i_da_metadata_calc_len = 0; 1982 } 1983 1984 /* update fs dirty data blocks counter */ 1985 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1986 1987 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1988 1989 dquot_release_reservation_block(inode, to_free); 1990 } 1991 1992 static void ext4_da_page_release_reservation(struct page *page, 1993 unsigned long offset) 1994 { 1995 int to_release = 0; 1996 struct buffer_head *head, *bh; 1997 unsigned int curr_off = 0; 1998 1999 head = page_buffers(page); 2000 bh = head; 2001 do { 2002 unsigned int next_off = curr_off + bh->b_size; 2003 2004 if ((offset <= curr_off) && (buffer_delay(bh))) { 2005 to_release++; 2006 clear_buffer_delay(bh); 2007 } 2008 curr_off = next_off; 2009 } while ((bh = bh->b_this_page) != head); 2010 ext4_da_release_space(page->mapping->host, to_release); 2011 } 2012 2013 /* 2014 * Delayed allocation stuff 2015 */ 2016 2017 /* 2018 * mpage_da_submit_io - walks through extent of pages and try to write 2019 * them with writepage() call back 2020 * 2021 * @mpd->inode: inode 2022 * @mpd->first_page: first page of the extent 2023 * @mpd->next_page: page after the last page of the extent 2024 * 2025 * By the time mpage_da_submit_io() is called we expect all blocks 2026 * to be allocated. this may be wrong if allocation failed. 2027 * 2028 * As pages are already locked by write_cache_pages(), we can't use it 2029 */ 2030 static int mpage_da_submit_io(struct mpage_da_data *mpd, 2031 struct ext4_map_blocks *map) 2032 { 2033 struct pagevec pvec; 2034 unsigned long index, end; 2035 int ret = 0, err, nr_pages, i; 2036 struct inode *inode = mpd->inode; 2037 struct address_space *mapping = inode->i_mapping; 2038 loff_t size = i_size_read(inode); 2039 unsigned int len, block_start; 2040 struct buffer_head *bh, *page_bufs = NULL; 2041 int journal_data = ext4_should_journal_data(inode); 2042 sector_t pblock = 0, cur_logical = 0; 2043 struct ext4_io_submit io_submit; 2044 2045 BUG_ON(mpd->next_page <= mpd->first_page); 2046 memset(&io_submit, 0, sizeof(io_submit)); 2047 /* 2048 * We need to start from the first_page to the next_page - 1 2049 * to make sure we also write the mapped dirty buffer_heads. 2050 * If we look at mpd->b_blocknr we would only be looking 2051 * at the currently mapped buffer_heads. 2052 */ 2053 index = mpd->first_page; 2054 end = mpd->next_page - 1; 2055 2056 pagevec_init(&pvec, 0); 2057 while (index <= end) { 2058 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2059 if (nr_pages == 0) 2060 break; 2061 for (i = 0; i < nr_pages; i++) { 2062 int commit_write = 0, redirty_page = 0; 2063 struct page *page = pvec.pages[i]; 2064 2065 index = page->index; 2066 if (index > end) 2067 break; 2068 2069 if (index == size >> PAGE_CACHE_SHIFT) 2070 len = size & ~PAGE_CACHE_MASK; 2071 else 2072 len = PAGE_CACHE_SIZE; 2073 if (map) { 2074 cur_logical = index << (PAGE_CACHE_SHIFT - 2075 inode->i_blkbits); 2076 pblock = map->m_pblk + (cur_logical - 2077 map->m_lblk); 2078 } 2079 index++; 2080 2081 BUG_ON(!PageLocked(page)); 2082 BUG_ON(PageWriteback(page)); 2083 2084 /* 2085 * If the page does not have buffers (for 2086 * whatever reason), try to create them using 2087 * __block_write_begin. If this fails, 2088 * redirty the page and move on. 2089 */ 2090 if (!page_has_buffers(page)) { 2091 if (__block_write_begin(page, 0, len, 2092 noalloc_get_block_write)) { 2093 redirty_page: 2094 redirty_page_for_writepage(mpd->wbc, 2095 page); 2096 unlock_page(page); 2097 continue; 2098 } 2099 commit_write = 1; 2100 } 2101 2102 bh = page_bufs = page_buffers(page); 2103 block_start = 0; 2104 do { 2105 if (!bh) 2106 goto redirty_page; 2107 if (map && (cur_logical >= map->m_lblk) && 2108 (cur_logical <= (map->m_lblk + 2109 (map->m_len - 1)))) { 2110 if (buffer_delay(bh)) { 2111 clear_buffer_delay(bh); 2112 bh->b_blocknr = pblock; 2113 } 2114 if (buffer_unwritten(bh) || 2115 buffer_mapped(bh)) 2116 BUG_ON(bh->b_blocknr != pblock); 2117 if (map->m_flags & EXT4_MAP_UNINIT) 2118 set_buffer_uninit(bh); 2119 clear_buffer_unwritten(bh); 2120 } 2121 2122 /* redirty page if block allocation undone */ 2123 if (buffer_delay(bh) || buffer_unwritten(bh)) 2124 redirty_page = 1; 2125 bh = bh->b_this_page; 2126 block_start += bh->b_size; 2127 cur_logical++; 2128 pblock++; 2129 } while (bh != page_bufs); 2130 2131 if (redirty_page) 2132 goto redirty_page; 2133 2134 if (commit_write) 2135 /* mark the buffer_heads as dirty & uptodate */ 2136 block_commit_write(page, 0, len); 2137 2138 /* 2139 * Delalloc doesn't support data journalling, 2140 * but eventually maybe we'll lift this 2141 * restriction. 2142 */ 2143 if (unlikely(journal_data && PageChecked(page))) 2144 err = __ext4_journalled_writepage(page, len); 2145 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 2146 err = ext4_bio_write_page(&io_submit, page, 2147 len, mpd->wbc); 2148 else 2149 err = block_write_full_page(page, 2150 noalloc_get_block_write, mpd->wbc); 2151 2152 if (!err) 2153 mpd->pages_written++; 2154 /* 2155 * In error case, we have to continue because 2156 * remaining pages are still locked 2157 */ 2158 if (ret == 0) 2159 ret = err; 2160 } 2161 pagevec_release(&pvec); 2162 } 2163 ext4_io_submit(&io_submit); 2164 return ret; 2165 } 2166 2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2168 sector_t logical, long blk_cnt) 2169 { 2170 int nr_pages, i; 2171 pgoff_t index, end; 2172 struct pagevec pvec; 2173 struct inode *inode = mpd->inode; 2174 struct address_space *mapping = inode->i_mapping; 2175 2176 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2177 end = (logical + blk_cnt - 1) >> 2178 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2179 while (index <= end) { 2180 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2181 if (nr_pages == 0) 2182 break; 2183 for (i = 0; i < nr_pages; i++) { 2184 struct page *page = pvec.pages[i]; 2185 if (page->index > end) 2186 break; 2187 BUG_ON(!PageLocked(page)); 2188 BUG_ON(PageWriteback(page)); 2189 block_invalidatepage(page, 0); 2190 ClearPageUptodate(page); 2191 unlock_page(page); 2192 } 2193 index = pvec.pages[nr_pages - 1]->index + 1; 2194 pagevec_release(&pvec); 2195 } 2196 return; 2197 } 2198 2199 static void ext4_print_free_blocks(struct inode *inode) 2200 { 2201 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2202 printk(KERN_CRIT "Total free blocks count %lld\n", 2203 ext4_count_free_blocks(inode->i_sb)); 2204 printk(KERN_CRIT "Free/Dirty block details\n"); 2205 printk(KERN_CRIT "free_blocks=%lld\n", 2206 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2207 printk(KERN_CRIT "dirty_blocks=%lld\n", 2208 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2209 printk(KERN_CRIT "Block reservation details\n"); 2210 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2211 EXT4_I(inode)->i_reserved_data_blocks); 2212 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2213 EXT4_I(inode)->i_reserved_meta_blocks); 2214 return; 2215 } 2216 2217 /* 2218 * mpage_da_map_and_submit - go through given space, map them 2219 * if necessary, and then submit them for I/O 2220 * 2221 * @mpd - bh describing space 2222 * 2223 * The function skips space we know is already mapped to disk blocks. 2224 * 2225 */ 2226 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 2227 { 2228 int err, blks, get_blocks_flags; 2229 struct ext4_map_blocks map, *mapp = NULL; 2230 sector_t next = mpd->b_blocknr; 2231 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2232 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2233 handle_t *handle = NULL; 2234 2235 /* 2236 * If the blocks are mapped already, or we couldn't accumulate 2237 * any blocks, then proceed immediately to the submission stage. 2238 */ 2239 if ((mpd->b_size == 0) || 2240 ((mpd->b_state & (1 << BH_Mapped)) && 2241 !(mpd->b_state & (1 << BH_Delay)) && 2242 !(mpd->b_state & (1 << BH_Unwritten)))) 2243 goto submit_io; 2244 2245 handle = ext4_journal_current_handle(); 2246 BUG_ON(!handle); 2247 2248 /* 2249 * Call ext4_map_blocks() to allocate any delayed allocation 2250 * blocks, or to convert an uninitialized extent to be 2251 * initialized (in the case where we have written into 2252 * one or more preallocated blocks). 2253 * 2254 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2255 * indicate that we are on the delayed allocation path. This 2256 * affects functions in many different parts of the allocation 2257 * call path. This flag exists primarily because we don't 2258 * want to change *many* call functions, so ext4_map_blocks() 2259 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 2260 * inode's allocation semaphore is taken. 2261 * 2262 * If the blocks in questions were delalloc blocks, set 2263 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2264 * variables are updated after the blocks have been allocated. 2265 */ 2266 map.m_lblk = next; 2267 map.m_len = max_blocks; 2268 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2269 if (ext4_should_dioread_nolock(mpd->inode)) 2270 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2271 if (mpd->b_state & (1 << BH_Delay)) 2272 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2273 2274 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2275 if (blks < 0) { 2276 struct super_block *sb = mpd->inode->i_sb; 2277 2278 err = blks; 2279 /* 2280 * If get block returns EAGAIN or ENOSPC and there 2281 * appears to be free blocks we will call 2282 * ext4_writepage() for all of the pages which will 2283 * just redirty the pages. 2284 */ 2285 if (err == -EAGAIN) 2286 goto submit_io; 2287 2288 if (err == -ENOSPC && 2289 ext4_count_free_blocks(sb)) { 2290 mpd->retval = err; 2291 goto submit_io; 2292 } 2293 2294 /* 2295 * get block failure will cause us to loop in 2296 * writepages, because a_ops->writepage won't be able 2297 * to make progress. The page will be redirtied by 2298 * writepage and writepages will again try to write 2299 * the same. 2300 */ 2301 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2302 ext4_msg(sb, KERN_CRIT, 2303 "delayed block allocation failed for inode %lu " 2304 "at logical offset %llu with max blocks %zd " 2305 "with error %d", mpd->inode->i_ino, 2306 (unsigned long long) next, 2307 mpd->b_size >> mpd->inode->i_blkbits, err); 2308 ext4_msg(sb, KERN_CRIT, 2309 "This should not happen!! Data will be lost\n"); 2310 if (err == -ENOSPC) 2311 ext4_print_free_blocks(mpd->inode); 2312 } 2313 /* invalidate all the pages */ 2314 ext4_da_block_invalidatepages(mpd, next, 2315 mpd->b_size >> mpd->inode->i_blkbits); 2316 return; 2317 } 2318 BUG_ON(blks == 0); 2319 2320 mapp = ↦ 2321 if (map.m_flags & EXT4_MAP_NEW) { 2322 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2323 int i; 2324 2325 for (i = 0; i < map.m_len; i++) 2326 unmap_underlying_metadata(bdev, map.m_pblk + i); 2327 } 2328 2329 if (ext4_should_order_data(mpd->inode)) { 2330 err = ext4_jbd2_file_inode(handle, mpd->inode); 2331 if (err) 2332 /* This only happens if the journal is aborted */ 2333 return; 2334 } 2335 2336 /* 2337 * Update on-disk size along with block allocation. 2338 */ 2339 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2340 if (disksize > i_size_read(mpd->inode)) 2341 disksize = i_size_read(mpd->inode); 2342 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2343 ext4_update_i_disksize(mpd->inode, disksize); 2344 err = ext4_mark_inode_dirty(handle, mpd->inode); 2345 if (err) 2346 ext4_error(mpd->inode->i_sb, 2347 "Failed to mark inode %lu dirty", 2348 mpd->inode->i_ino); 2349 } 2350 2351 submit_io: 2352 mpage_da_submit_io(mpd, mapp); 2353 mpd->io_done = 1; 2354 } 2355 2356 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2357 (1 << BH_Delay) | (1 << BH_Unwritten)) 2358 2359 /* 2360 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2361 * 2362 * @mpd->lbh - extent of blocks 2363 * @logical - logical number of the block in the file 2364 * @bh - bh of the block (used to access block's state) 2365 * 2366 * the function is used to collect contig. blocks in same state 2367 */ 2368 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2369 sector_t logical, size_t b_size, 2370 unsigned long b_state) 2371 { 2372 sector_t next; 2373 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2374 2375 /* 2376 * XXX Don't go larger than mballoc is willing to allocate 2377 * This is a stopgap solution. We eventually need to fold 2378 * mpage_da_submit_io() into this function and then call 2379 * ext4_map_blocks() multiple times in a loop 2380 */ 2381 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2382 goto flush_it; 2383 2384 /* check if thereserved journal credits might overflow */ 2385 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 2386 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2387 /* 2388 * With non-extent format we are limited by the journal 2389 * credit available. Total credit needed to insert 2390 * nrblocks contiguous blocks is dependent on the 2391 * nrblocks. So limit nrblocks. 2392 */ 2393 goto flush_it; 2394 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2395 EXT4_MAX_TRANS_DATA) { 2396 /* 2397 * Adding the new buffer_head would make it cross the 2398 * allowed limit for which we have journal credit 2399 * reserved. So limit the new bh->b_size 2400 */ 2401 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2402 mpd->inode->i_blkbits; 2403 /* we will do mpage_da_submit_io in the next loop */ 2404 } 2405 } 2406 /* 2407 * First block in the extent 2408 */ 2409 if (mpd->b_size == 0) { 2410 mpd->b_blocknr = logical; 2411 mpd->b_size = b_size; 2412 mpd->b_state = b_state & BH_FLAGS; 2413 return; 2414 } 2415 2416 next = mpd->b_blocknr + nrblocks; 2417 /* 2418 * Can we merge the block to our big extent? 2419 */ 2420 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2421 mpd->b_size += b_size; 2422 return; 2423 } 2424 2425 flush_it: 2426 /* 2427 * We couldn't merge the block to our extent, so we 2428 * need to flush current extent and start new one 2429 */ 2430 mpage_da_map_and_submit(mpd); 2431 return; 2432 } 2433 2434 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2435 { 2436 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2437 } 2438 2439 /* 2440 * __mpage_da_writepage - finds extent of pages and blocks 2441 * 2442 * @page: page to consider 2443 * @wbc: not used, we just follow rules 2444 * @data: context 2445 * 2446 * The function finds extents of pages and scan them for all blocks. 2447 */ 2448 static int __mpage_da_writepage(struct page *page, 2449 struct writeback_control *wbc, 2450 struct mpage_da_data *mpd) 2451 { 2452 struct inode *inode = mpd->inode; 2453 struct buffer_head *bh, *head; 2454 sector_t logical; 2455 2456 /* 2457 * Can we merge this page to current extent? 2458 */ 2459 if (mpd->next_page != page->index) { 2460 /* 2461 * Nope, we can't. So, we map non-allocated blocks 2462 * and start IO on them 2463 */ 2464 if (mpd->next_page != mpd->first_page) { 2465 mpage_da_map_and_submit(mpd); 2466 /* 2467 * skip rest of the page in the page_vec 2468 */ 2469 redirty_page_for_writepage(wbc, page); 2470 unlock_page(page); 2471 return MPAGE_DA_EXTENT_TAIL; 2472 } 2473 2474 /* 2475 * Start next extent of pages ... 2476 */ 2477 mpd->first_page = page->index; 2478 2479 /* 2480 * ... and blocks 2481 */ 2482 mpd->b_size = 0; 2483 mpd->b_state = 0; 2484 mpd->b_blocknr = 0; 2485 } 2486 2487 mpd->next_page = page->index + 1; 2488 logical = (sector_t) page->index << 2489 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2490 2491 if (!page_has_buffers(page)) { 2492 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2493 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2494 if (mpd->io_done) 2495 return MPAGE_DA_EXTENT_TAIL; 2496 } else { 2497 /* 2498 * Page with regular buffer heads, just add all dirty ones 2499 */ 2500 head = page_buffers(page); 2501 bh = head; 2502 do { 2503 BUG_ON(buffer_locked(bh)); 2504 /* 2505 * We need to try to allocate 2506 * unmapped blocks in the same page. 2507 * Otherwise we won't make progress 2508 * with the page in ext4_writepage 2509 */ 2510 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2511 mpage_add_bh_to_extent(mpd, logical, 2512 bh->b_size, 2513 bh->b_state); 2514 if (mpd->io_done) 2515 return MPAGE_DA_EXTENT_TAIL; 2516 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2517 /* 2518 * mapped dirty buffer. We need to update 2519 * the b_state because we look at 2520 * b_state in mpage_da_map_blocks. We don't 2521 * update b_size because if we find an 2522 * unmapped buffer_head later we need to 2523 * use the b_state flag of that buffer_head. 2524 */ 2525 if (mpd->b_size == 0) 2526 mpd->b_state = bh->b_state & BH_FLAGS; 2527 } 2528 logical++; 2529 } while ((bh = bh->b_this_page) != head); 2530 } 2531 2532 return 0; 2533 } 2534 2535 /* 2536 * This is a special get_blocks_t callback which is used by 2537 * ext4_da_write_begin(). It will either return mapped block or 2538 * reserve space for a single block. 2539 * 2540 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2541 * We also have b_blocknr = -1 and b_bdev initialized properly 2542 * 2543 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2544 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2545 * initialized properly. 2546 */ 2547 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2548 struct buffer_head *bh, int create) 2549 { 2550 struct ext4_map_blocks map; 2551 int ret = 0; 2552 sector_t invalid_block = ~((sector_t) 0xffff); 2553 2554 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2555 invalid_block = ~0; 2556 2557 BUG_ON(create == 0); 2558 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2559 2560 map.m_lblk = iblock; 2561 map.m_len = 1; 2562 2563 /* 2564 * first, we need to know whether the block is allocated already 2565 * preallocated blocks are unmapped but should treated 2566 * the same as allocated blocks. 2567 */ 2568 ret = ext4_map_blocks(NULL, inode, &map, 0); 2569 if (ret < 0) 2570 return ret; 2571 if (ret == 0) { 2572 if (buffer_delay(bh)) 2573 return 0; /* Not sure this could or should happen */ 2574 /* 2575 * XXX: __block_write_begin() unmaps passed block, is it OK? 2576 */ 2577 ret = ext4_da_reserve_space(inode, iblock); 2578 if (ret) 2579 /* not enough space to reserve */ 2580 return ret; 2581 2582 map_bh(bh, inode->i_sb, invalid_block); 2583 set_buffer_new(bh); 2584 set_buffer_delay(bh); 2585 return 0; 2586 } 2587 2588 map_bh(bh, inode->i_sb, map.m_pblk); 2589 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2590 2591 if (buffer_unwritten(bh)) { 2592 /* A delayed write to unwritten bh should be marked 2593 * new and mapped. Mapped ensures that we don't do 2594 * get_block multiple times when we write to the same 2595 * offset and new ensures that we do proper zero out 2596 * for partial write. 2597 */ 2598 set_buffer_new(bh); 2599 set_buffer_mapped(bh); 2600 } 2601 return 0; 2602 } 2603 2604 /* 2605 * This function is used as a standard get_block_t calback function 2606 * when there is no desire to allocate any blocks. It is used as a 2607 * callback function for block_write_begin() and block_write_full_page(). 2608 * These functions should only try to map a single block at a time. 2609 * 2610 * Since this function doesn't do block allocations even if the caller 2611 * requests it by passing in create=1, it is critically important that 2612 * any caller checks to make sure that any buffer heads are returned 2613 * by this function are either all already mapped or marked for 2614 * delayed allocation before calling block_write_full_page(). Otherwise, 2615 * b_blocknr could be left unitialized, and the page write functions will 2616 * be taken by surprise. 2617 */ 2618 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2619 struct buffer_head *bh_result, int create) 2620 { 2621 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2622 return _ext4_get_block(inode, iblock, bh_result, 0); 2623 } 2624 2625 static int bget_one(handle_t *handle, struct buffer_head *bh) 2626 { 2627 get_bh(bh); 2628 return 0; 2629 } 2630 2631 static int bput_one(handle_t *handle, struct buffer_head *bh) 2632 { 2633 put_bh(bh); 2634 return 0; 2635 } 2636 2637 static int __ext4_journalled_writepage(struct page *page, 2638 unsigned int len) 2639 { 2640 struct address_space *mapping = page->mapping; 2641 struct inode *inode = mapping->host; 2642 struct buffer_head *page_bufs; 2643 handle_t *handle = NULL; 2644 int ret = 0; 2645 int err; 2646 2647 ClearPageChecked(page); 2648 page_bufs = page_buffers(page); 2649 BUG_ON(!page_bufs); 2650 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2651 /* As soon as we unlock the page, it can go away, but we have 2652 * references to buffers so we are safe */ 2653 unlock_page(page); 2654 2655 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2656 if (IS_ERR(handle)) { 2657 ret = PTR_ERR(handle); 2658 goto out; 2659 } 2660 2661 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2662 do_journal_get_write_access); 2663 2664 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2665 write_end_fn); 2666 if (ret == 0) 2667 ret = err; 2668 err = ext4_journal_stop(handle); 2669 if (!ret) 2670 ret = err; 2671 2672 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2673 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2674 out: 2675 return ret; 2676 } 2677 2678 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2679 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2680 2681 /* 2682 * Note that we don't need to start a transaction unless we're journaling data 2683 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2684 * need to file the inode to the transaction's list in ordered mode because if 2685 * we are writing back data added by write(), the inode is already there and if 2686 * we are writing back data modified via mmap(), noone guarantees in which 2687 * transaction the data will hit the disk. In case we are journaling data, we 2688 * cannot start transaction directly because transaction start ranks above page 2689 * lock so we have to do some magic. 2690 * 2691 * This function can get called via... 2692 * - ext4_da_writepages after taking page lock (have journal handle) 2693 * - journal_submit_inode_data_buffers (no journal handle) 2694 * - shrink_page_list via pdflush (no journal handle) 2695 * - grab_page_cache when doing write_begin (have journal handle) 2696 * 2697 * We don't do any block allocation in this function. If we have page with 2698 * multiple blocks we need to write those buffer_heads that are mapped. This 2699 * is important for mmaped based write. So if we do with blocksize 1K 2700 * truncate(f, 1024); 2701 * a = mmap(f, 0, 4096); 2702 * a[0] = 'a'; 2703 * truncate(f, 4096); 2704 * we have in the page first buffer_head mapped via page_mkwrite call back 2705 * but other bufer_heads would be unmapped but dirty(dirty done via the 2706 * do_wp_page). So writepage should write the first block. If we modify 2707 * the mmap area beyond 1024 we will again get a page_fault and the 2708 * page_mkwrite callback will do the block allocation and mark the 2709 * buffer_heads mapped. 2710 * 2711 * We redirty the page if we have any buffer_heads that is either delay or 2712 * unwritten in the page. 2713 * 2714 * We can get recursively called as show below. 2715 * 2716 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2717 * ext4_writepage() 2718 * 2719 * But since we don't do any block allocation we should not deadlock. 2720 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2721 */ 2722 static int ext4_writepage(struct page *page, 2723 struct writeback_control *wbc) 2724 { 2725 int ret = 0, commit_write = 0; 2726 loff_t size; 2727 unsigned int len; 2728 struct buffer_head *page_bufs = NULL; 2729 struct inode *inode = page->mapping->host; 2730 2731 trace_ext4_writepage(inode, page); 2732 size = i_size_read(inode); 2733 if (page->index == size >> PAGE_CACHE_SHIFT) 2734 len = size & ~PAGE_CACHE_MASK; 2735 else 2736 len = PAGE_CACHE_SIZE; 2737 2738 /* 2739 * If the page does not have buffers (for whatever reason), 2740 * try to create them using __block_write_begin. If this 2741 * fails, redirty the page and move on. 2742 */ 2743 if (!page_has_buffers(page)) { 2744 if (__block_write_begin(page, 0, len, 2745 noalloc_get_block_write)) { 2746 redirty_page: 2747 redirty_page_for_writepage(wbc, page); 2748 unlock_page(page); 2749 return 0; 2750 } 2751 commit_write = 1; 2752 } 2753 page_bufs = page_buffers(page); 2754 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2755 ext4_bh_delay_or_unwritten)) { 2756 /* 2757 * We don't want to do block allocation, so redirty 2758 * the page and return. We may reach here when we do 2759 * a journal commit via journal_submit_inode_data_buffers. 2760 * We can also reach here via shrink_page_list 2761 */ 2762 goto redirty_page; 2763 } 2764 if (commit_write) 2765 /* now mark the buffer_heads as dirty and uptodate */ 2766 block_commit_write(page, 0, len); 2767 2768 if (PageChecked(page) && ext4_should_journal_data(inode)) 2769 /* 2770 * It's mmapped pagecache. Add buffers and journal it. There 2771 * doesn't seem much point in redirtying the page here. 2772 */ 2773 return __ext4_journalled_writepage(page, len); 2774 2775 if (buffer_uninit(page_bufs)) { 2776 ext4_set_bh_endio(page_bufs, inode); 2777 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2778 wbc, ext4_end_io_buffer_write); 2779 } else 2780 ret = block_write_full_page(page, noalloc_get_block_write, 2781 wbc); 2782 2783 return ret; 2784 } 2785 2786 /* 2787 * This is called via ext4_da_writepages() to 2788 * calulate the total number of credits to reserve to fit 2789 * a single extent allocation into a single transaction, 2790 * ext4_da_writpeages() will loop calling this before 2791 * the block allocation. 2792 */ 2793 2794 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2795 { 2796 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2797 2798 /* 2799 * With non-extent format the journal credit needed to 2800 * insert nrblocks contiguous block is dependent on 2801 * number of contiguous block. So we will limit 2802 * number of contiguous block to a sane value 2803 */ 2804 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2805 (max_blocks > EXT4_MAX_TRANS_DATA)) 2806 max_blocks = EXT4_MAX_TRANS_DATA; 2807 2808 return ext4_chunk_trans_blocks(inode, max_blocks); 2809 } 2810 2811 /* 2812 * write_cache_pages_da - walk the list of dirty pages of the given 2813 * address space and call the callback function (which usually writes 2814 * the pages). 2815 * 2816 * This is a forked version of write_cache_pages(). Differences: 2817 * Range cyclic is ignored. 2818 * no_nrwrite_index_update is always presumed true 2819 */ 2820 static int write_cache_pages_da(struct address_space *mapping, 2821 struct writeback_control *wbc, 2822 struct mpage_da_data *mpd, 2823 pgoff_t *done_index) 2824 { 2825 int ret = 0; 2826 int done = 0; 2827 struct pagevec pvec; 2828 unsigned nr_pages; 2829 pgoff_t index; 2830 pgoff_t end; /* Inclusive */ 2831 long nr_to_write = wbc->nr_to_write; 2832 int tag; 2833 2834 pagevec_init(&pvec, 0); 2835 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2836 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2837 2838 if (wbc->sync_mode == WB_SYNC_ALL) 2839 tag = PAGECACHE_TAG_TOWRITE; 2840 else 2841 tag = PAGECACHE_TAG_DIRTY; 2842 2843 *done_index = index; 2844 while (!done && (index <= end)) { 2845 int i; 2846 2847 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2848 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2849 if (nr_pages == 0) 2850 break; 2851 2852 for (i = 0; i < nr_pages; i++) { 2853 struct page *page = pvec.pages[i]; 2854 2855 /* 2856 * At this point, the page may be truncated or 2857 * invalidated (changing page->mapping to NULL), or 2858 * even swizzled back from swapper_space to tmpfs file 2859 * mapping. However, page->index will not change 2860 * because we have a reference on the page. 2861 */ 2862 if (page->index > end) { 2863 done = 1; 2864 break; 2865 } 2866 2867 *done_index = page->index + 1; 2868 2869 lock_page(page); 2870 2871 /* 2872 * Page truncated or invalidated. We can freely skip it 2873 * then, even for data integrity operations: the page 2874 * has disappeared concurrently, so there could be no 2875 * real expectation of this data interity operation 2876 * even if there is now a new, dirty page at the same 2877 * pagecache address. 2878 */ 2879 if (unlikely(page->mapping != mapping)) { 2880 continue_unlock: 2881 unlock_page(page); 2882 continue; 2883 } 2884 2885 if (!PageDirty(page)) { 2886 /* someone wrote it for us */ 2887 goto continue_unlock; 2888 } 2889 2890 if (PageWriteback(page)) { 2891 if (wbc->sync_mode != WB_SYNC_NONE) 2892 wait_on_page_writeback(page); 2893 else 2894 goto continue_unlock; 2895 } 2896 2897 BUG_ON(PageWriteback(page)); 2898 if (!clear_page_dirty_for_io(page)) 2899 goto continue_unlock; 2900 2901 ret = __mpage_da_writepage(page, wbc, mpd); 2902 if (unlikely(ret)) { 2903 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2904 unlock_page(page); 2905 ret = 0; 2906 } else { 2907 done = 1; 2908 break; 2909 } 2910 } 2911 2912 if (nr_to_write > 0) { 2913 nr_to_write--; 2914 if (nr_to_write == 0 && 2915 wbc->sync_mode == WB_SYNC_NONE) { 2916 /* 2917 * We stop writing back only if we are 2918 * not doing integrity sync. In case of 2919 * integrity sync we have to keep going 2920 * because someone may be concurrently 2921 * dirtying pages, and we might have 2922 * synced a lot of newly appeared dirty 2923 * pages, but have not synced all of the 2924 * old dirty pages. 2925 */ 2926 done = 1; 2927 break; 2928 } 2929 } 2930 } 2931 pagevec_release(&pvec); 2932 cond_resched(); 2933 } 2934 return ret; 2935 } 2936 2937 2938 static int ext4_da_writepages(struct address_space *mapping, 2939 struct writeback_control *wbc) 2940 { 2941 pgoff_t index; 2942 int range_whole = 0; 2943 handle_t *handle = NULL; 2944 struct mpage_da_data mpd; 2945 struct inode *inode = mapping->host; 2946 int pages_written = 0; 2947 long pages_skipped; 2948 unsigned int max_pages; 2949 int range_cyclic, cycled = 1, io_done = 0; 2950 int needed_blocks, ret = 0; 2951 long desired_nr_to_write, nr_to_writebump = 0; 2952 loff_t range_start = wbc->range_start; 2953 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2954 pgoff_t done_index = 0; 2955 pgoff_t end; 2956 2957 trace_ext4_da_writepages(inode, wbc); 2958 2959 /* 2960 * No pages to write? This is mainly a kludge to avoid starting 2961 * a transaction for special inodes like journal inode on last iput() 2962 * because that could violate lock ordering on umount 2963 */ 2964 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2965 return 0; 2966 2967 /* 2968 * If the filesystem has aborted, it is read-only, so return 2969 * right away instead of dumping stack traces later on that 2970 * will obscure the real source of the problem. We test 2971 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2972 * the latter could be true if the filesystem is mounted 2973 * read-only, and in that case, ext4_da_writepages should 2974 * *never* be called, so if that ever happens, we would want 2975 * the stack trace. 2976 */ 2977 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2978 return -EROFS; 2979 2980 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2981 range_whole = 1; 2982 2983 range_cyclic = wbc->range_cyclic; 2984 if (wbc->range_cyclic) { 2985 index = mapping->writeback_index; 2986 if (index) 2987 cycled = 0; 2988 wbc->range_start = index << PAGE_CACHE_SHIFT; 2989 wbc->range_end = LLONG_MAX; 2990 wbc->range_cyclic = 0; 2991 end = -1; 2992 } else { 2993 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2994 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2995 } 2996 2997 /* 2998 * This works around two forms of stupidity. The first is in 2999 * the writeback code, which caps the maximum number of pages 3000 * written to be 1024 pages. This is wrong on multiple 3001 * levels; different architectues have a different page size, 3002 * which changes the maximum amount of data which gets 3003 * written. Secondly, 4 megabytes is way too small. XFS 3004 * forces this value to be 16 megabytes by multiplying 3005 * nr_to_write parameter by four, and then relies on its 3006 * allocator to allocate larger extents to make them 3007 * contiguous. Unfortunately this brings us to the second 3008 * stupidity, which is that ext4's mballoc code only allocates 3009 * at most 2048 blocks. So we force contiguous writes up to 3010 * the number of dirty blocks in the inode, or 3011 * sbi->max_writeback_mb_bump whichever is smaller. 3012 */ 3013 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 3014 if (!range_cyclic && range_whole) { 3015 if (wbc->nr_to_write == LONG_MAX) 3016 desired_nr_to_write = wbc->nr_to_write; 3017 else 3018 desired_nr_to_write = wbc->nr_to_write * 8; 3019 } else 3020 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 3021 max_pages); 3022 if (desired_nr_to_write > max_pages) 3023 desired_nr_to_write = max_pages; 3024 3025 if (wbc->nr_to_write < desired_nr_to_write) { 3026 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 3027 wbc->nr_to_write = desired_nr_to_write; 3028 } 3029 3030 mpd.wbc = wbc; 3031 mpd.inode = mapping->host; 3032 3033 pages_skipped = wbc->pages_skipped; 3034 3035 retry: 3036 if (wbc->sync_mode == WB_SYNC_ALL) 3037 tag_pages_for_writeback(mapping, index, end); 3038 3039 while (!ret && wbc->nr_to_write > 0) { 3040 3041 /* 3042 * we insert one extent at a time. So we need 3043 * credit needed for single extent allocation. 3044 * journalled mode is currently not supported 3045 * by delalloc 3046 */ 3047 BUG_ON(ext4_should_journal_data(inode)); 3048 needed_blocks = ext4_da_writepages_trans_blocks(inode); 3049 3050 /* start a new transaction*/ 3051 handle = ext4_journal_start(inode, needed_blocks); 3052 if (IS_ERR(handle)) { 3053 ret = PTR_ERR(handle); 3054 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 3055 "%ld pages, ino %lu; err %d", __func__, 3056 wbc->nr_to_write, inode->i_ino, ret); 3057 goto out_writepages; 3058 } 3059 3060 /* 3061 * Now call __mpage_da_writepage to find the next 3062 * contiguous region of logical blocks that need 3063 * blocks to be allocated by ext4. We don't actually 3064 * submit the blocks for I/O here, even though 3065 * write_cache_pages thinks it will, and will set the 3066 * pages as clean for write before calling 3067 * __mpage_da_writepage(). 3068 */ 3069 mpd.b_size = 0; 3070 mpd.b_state = 0; 3071 mpd.b_blocknr = 0; 3072 mpd.first_page = 0; 3073 mpd.next_page = 0; 3074 mpd.io_done = 0; 3075 mpd.pages_written = 0; 3076 mpd.retval = 0; 3077 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 3078 /* 3079 * If we have a contiguous extent of pages and we 3080 * haven't done the I/O yet, map the blocks and submit 3081 * them for I/O. 3082 */ 3083 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3084 mpage_da_map_and_submit(&mpd); 3085 ret = MPAGE_DA_EXTENT_TAIL; 3086 } 3087 trace_ext4_da_write_pages(inode, &mpd); 3088 wbc->nr_to_write -= mpd.pages_written; 3089 3090 ext4_journal_stop(handle); 3091 3092 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3093 /* commit the transaction which would 3094 * free blocks released in the transaction 3095 * and try again 3096 */ 3097 jbd2_journal_force_commit_nested(sbi->s_journal); 3098 wbc->pages_skipped = pages_skipped; 3099 ret = 0; 3100 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3101 /* 3102 * got one extent now try with 3103 * rest of the pages 3104 */ 3105 pages_written += mpd.pages_written; 3106 wbc->pages_skipped = pages_skipped; 3107 ret = 0; 3108 io_done = 1; 3109 } else if (wbc->nr_to_write) 3110 /* 3111 * There is no more writeout needed 3112 * or we requested for a noblocking writeout 3113 * and we found the device congested 3114 */ 3115 break; 3116 } 3117 if (!io_done && !cycled) { 3118 cycled = 1; 3119 index = 0; 3120 wbc->range_start = index << PAGE_CACHE_SHIFT; 3121 wbc->range_end = mapping->writeback_index - 1; 3122 goto retry; 3123 } 3124 if (pages_skipped != wbc->pages_skipped) 3125 ext4_msg(inode->i_sb, KERN_CRIT, 3126 "This should not happen leaving %s " 3127 "with nr_to_write = %ld ret = %d", 3128 __func__, wbc->nr_to_write, ret); 3129 3130 /* Update index */ 3131 wbc->range_cyclic = range_cyclic; 3132 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3133 /* 3134 * set the writeback_index so that range_cyclic 3135 * mode will write it back later 3136 */ 3137 mapping->writeback_index = done_index; 3138 3139 out_writepages: 3140 wbc->nr_to_write -= nr_to_writebump; 3141 wbc->range_start = range_start; 3142 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3143 return ret; 3144 } 3145 3146 #define FALL_BACK_TO_NONDELALLOC 1 3147 static int ext4_nonda_switch(struct super_block *sb) 3148 { 3149 s64 free_blocks, dirty_blocks; 3150 struct ext4_sb_info *sbi = EXT4_SB(sb); 3151 3152 /* 3153 * switch to non delalloc mode if we are running low 3154 * on free block. The free block accounting via percpu 3155 * counters can get slightly wrong with percpu_counter_batch getting 3156 * accumulated on each CPU without updating global counters 3157 * Delalloc need an accurate free block accounting. So switch 3158 * to non delalloc when we are near to error range. 3159 */ 3160 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3161 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3162 if (2 * free_blocks < 3 * dirty_blocks || 3163 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3164 /* 3165 * free block count is less than 150% of dirty blocks 3166 * or free blocks is less than watermark 3167 */ 3168 return 1; 3169 } 3170 /* 3171 * Even if we don't switch but are nearing capacity, 3172 * start pushing delalloc when 1/2 of free blocks are dirty. 3173 */ 3174 if (free_blocks < 2 * dirty_blocks) 3175 writeback_inodes_sb_if_idle(sb); 3176 3177 return 0; 3178 } 3179 3180 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3181 loff_t pos, unsigned len, unsigned flags, 3182 struct page **pagep, void **fsdata) 3183 { 3184 int ret, retries = 0; 3185 struct page *page; 3186 pgoff_t index; 3187 struct inode *inode = mapping->host; 3188 handle_t *handle; 3189 3190 index = pos >> PAGE_CACHE_SHIFT; 3191 3192 if (ext4_nonda_switch(inode->i_sb)) { 3193 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3194 return ext4_write_begin(file, mapping, pos, 3195 len, flags, pagep, fsdata); 3196 } 3197 *fsdata = (void *)0; 3198 trace_ext4_da_write_begin(inode, pos, len, flags); 3199 retry: 3200 /* 3201 * With delayed allocation, we don't log the i_disksize update 3202 * if there is delayed block allocation. But we still need 3203 * to journalling the i_disksize update if writes to the end 3204 * of file which has an already mapped buffer. 3205 */ 3206 handle = ext4_journal_start(inode, 1); 3207 if (IS_ERR(handle)) { 3208 ret = PTR_ERR(handle); 3209 goto out; 3210 } 3211 /* We cannot recurse into the filesystem as the transaction is already 3212 * started */ 3213 flags |= AOP_FLAG_NOFS; 3214 3215 page = grab_cache_page_write_begin(mapping, index, flags); 3216 if (!page) { 3217 ext4_journal_stop(handle); 3218 ret = -ENOMEM; 3219 goto out; 3220 } 3221 *pagep = page; 3222 3223 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3224 if (ret < 0) { 3225 unlock_page(page); 3226 ext4_journal_stop(handle); 3227 page_cache_release(page); 3228 /* 3229 * block_write_begin may have instantiated a few blocks 3230 * outside i_size. Trim these off again. Don't need 3231 * i_size_read because we hold i_mutex. 3232 */ 3233 if (pos + len > inode->i_size) 3234 ext4_truncate_failed_write(inode); 3235 } 3236 3237 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3238 goto retry; 3239 out: 3240 return ret; 3241 } 3242 3243 /* 3244 * Check if we should update i_disksize 3245 * when write to the end of file but not require block allocation 3246 */ 3247 static int ext4_da_should_update_i_disksize(struct page *page, 3248 unsigned long offset) 3249 { 3250 struct buffer_head *bh; 3251 struct inode *inode = page->mapping->host; 3252 unsigned int idx; 3253 int i; 3254 3255 bh = page_buffers(page); 3256 idx = offset >> inode->i_blkbits; 3257 3258 for (i = 0; i < idx; i++) 3259 bh = bh->b_this_page; 3260 3261 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3262 return 0; 3263 return 1; 3264 } 3265 3266 static int ext4_da_write_end(struct file *file, 3267 struct address_space *mapping, 3268 loff_t pos, unsigned len, unsigned copied, 3269 struct page *page, void *fsdata) 3270 { 3271 struct inode *inode = mapping->host; 3272 int ret = 0, ret2; 3273 handle_t *handle = ext4_journal_current_handle(); 3274 loff_t new_i_size; 3275 unsigned long start, end; 3276 int write_mode = (int)(unsigned long)fsdata; 3277 3278 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3279 if (ext4_should_order_data(inode)) { 3280 return ext4_ordered_write_end(file, mapping, pos, 3281 len, copied, page, fsdata); 3282 } else if (ext4_should_writeback_data(inode)) { 3283 return ext4_writeback_write_end(file, mapping, pos, 3284 len, copied, page, fsdata); 3285 } else { 3286 BUG(); 3287 } 3288 } 3289 3290 trace_ext4_da_write_end(inode, pos, len, copied); 3291 start = pos & (PAGE_CACHE_SIZE - 1); 3292 end = start + copied - 1; 3293 3294 /* 3295 * generic_write_end() will run mark_inode_dirty() if i_size 3296 * changes. So let's piggyback the i_disksize mark_inode_dirty 3297 * into that. 3298 */ 3299 3300 new_i_size = pos + copied; 3301 if (new_i_size > EXT4_I(inode)->i_disksize) { 3302 if (ext4_da_should_update_i_disksize(page, end)) { 3303 down_write(&EXT4_I(inode)->i_data_sem); 3304 if (new_i_size > EXT4_I(inode)->i_disksize) { 3305 /* 3306 * Updating i_disksize when extending file 3307 * without needing block allocation 3308 */ 3309 if (ext4_should_order_data(inode)) 3310 ret = ext4_jbd2_file_inode(handle, 3311 inode); 3312 3313 EXT4_I(inode)->i_disksize = new_i_size; 3314 } 3315 up_write(&EXT4_I(inode)->i_data_sem); 3316 /* We need to mark inode dirty even if 3317 * new_i_size is less that inode->i_size 3318 * bu greater than i_disksize.(hint delalloc) 3319 */ 3320 ext4_mark_inode_dirty(handle, inode); 3321 } 3322 } 3323 ret2 = generic_write_end(file, mapping, pos, len, copied, 3324 page, fsdata); 3325 copied = ret2; 3326 if (ret2 < 0) 3327 ret = ret2; 3328 ret2 = ext4_journal_stop(handle); 3329 if (!ret) 3330 ret = ret2; 3331 3332 return ret ? ret : copied; 3333 } 3334 3335 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3336 { 3337 /* 3338 * Drop reserved blocks 3339 */ 3340 BUG_ON(!PageLocked(page)); 3341 if (!page_has_buffers(page)) 3342 goto out; 3343 3344 ext4_da_page_release_reservation(page, offset); 3345 3346 out: 3347 ext4_invalidatepage(page, offset); 3348 3349 return; 3350 } 3351 3352 /* 3353 * Force all delayed allocation blocks to be allocated for a given inode. 3354 */ 3355 int ext4_alloc_da_blocks(struct inode *inode) 3356 { 3357 trace_ext4_alloc_da_blocks(inode); 3358 3359 if (!EXT4_I(inode)->i_reserved_data_blocks && 3360 !EXT4_I(inode)->i_reserved_meta_blocks) 3361 return 0; 3362 3363 /* 3364 * We do something simple for now. The filemap_flush() will 3365 * also start triggering a write of the data blocks, which is 3366 * not strictly speaking necessary (and for users of 3367 * laptop_mode, not even desirable). However, to do otherwise 3368 * would require replicating code paths in: 3369 * 3370 * ext4_da_writepages() -> 3371 * write_cache_pages() ---> (via passed in callback function) 3372 * __mpage_da_writepage() --> 3373 * mpage_add_bh_to_extent() 3374 * mpage_da_map_blocks() 3375 * 3376 * The problem is that write_cache_pages(), located in 3377 * mm/page-writeback.c, marks pages clean in preparation for 3378 * doing I/O, which is not desirable if we're not planning on 3379 * doing I/O at all. 3380 * 3381 * We could call write_cache_pages(), and then redirty all of 3382 * the pages by calling redirty_page_for_writeback() but that 3383 * would be ugly in the extreme. So instead we would need to 3384 * replicate parts of the code in the above functions, 3385 * simplifying them becuase we wouldn't actually intend to 3386 * write out the pages, but rather only collect contiguous 3387 * logical block extents, call the multi-block allocator, and 3388 * then update the buffer heads with the block allocations. 3389 * 3390 * For now, though, we'll cheat by calling filemap_flush(), 3391 * which will map the blocks, and start the I/O, but not 3392 * actually wait for the I/O to complete. 3393 */ 3394 return filemap_flush(inode->i_mapping); 3395 } 3396 3397 /* 3398 * bmap() is special. It gets used by applications such as lilo and by 3399 * the swapper to find the on-disk block of a specific piece of data. 3400 * 3401 * Naturally, this is dangerous if the block concerned is still in the 3402 * journal. If somebody makes a swapfile on an ext4 data-journaling 3403 * filesystem and enables swap, then they may get a nasty shock when the 3404 * data getting swapped to that swapfile suddenly gets overwritten by 3405 * the original zero's written out previously to the journal and 3406 * awaiting writeback in the kernel's buffer cache. 3407 * 3408 * So, if we see any bmap calls here on a modified, data-journaled file, 3409 * take extra steps to flush any blocks which might be in the cache. 3410 */ 3411 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3412 { 3413 struct inode *inode = mapping->host; 3414 journal_t *journal; 3415 int err; 3416 3417 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3418 test_opt(inode->i_sb, DELALLOC)) { 3419 /* 3420 * With delalloc we want to sync the file 3421 * so that we can make sure we allocate 3422 * blocks for file 3423 */ 3424 filemap_write_and_wait(mapping); 3425 } 3426 3427 if (EXT4_JOURNAL(inode) && 3428 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3429 /* 3430 * This is a REALLY heavyweight approach, but the use of 3431 * bmap on dirty files is expected to be extremely rare: 3432 * only if we run lilo or swapon on a freshly made file 3433 * do we expect this to happen. 3434 * 3435 * (bmap requires CAP_SYS_RAWIO so this does not 3436 * represent an unprivileged user DOS attack --- we'd be 3437 * in trouble if mortal users could trigger this path at 3438 * will.) 3439 * 3440 * NB. EXT4_STATE_JDATA is not set on files other than 3441 * regular files. If somebody wants to bmap a directory 3442 * or symlink and gets confused because the buffer 3443 * hasn't yet been flushed to disk, they deserve 3444 * everything they get. 3445 */ 3446 3447 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3448 journal = EXT4_JOURNAL(inode); 3449 jbd2_journal_lock_updates(journal); 3450 err = jbd2_journal_flush(journal); 3451 jbd2_journal_unlock_updates(journal); 3452 3453 if (err) 3454 return 0; 3455 } 3456 3457 return generic_block_bmap(mapping, block, ext4_get_block); 3458 } 3459 3460 static int ext4_readpage(struct file *file, struct page *page) 3461 { 3462 return mpage_readpage(page, ext4_get_block); 3463 } 3464 3465 static int 3466 ext4_readpages(struct file *file, struct address_space *mapping, 3467 struct list_head *pages, unsigned nr_pages) 3468 { 3469 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3470 } 3471 3472 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3473 { 3474 struct buffer_head *head, *bh; 3475 unsigned int curr_off = 0; 3476 3477 if (!page_has_buffers(page)) 3478 return; 3479 head = bh = page_buffers(page); 3480 do { 3481 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3482 && bh->b_private) { 3483 ext4_free_io_end(bh->b_private); 3484 bh->b_private = NULL; 3485 bh->b_end_io = NULL; 3486 } 3487 curr_off = curr_off + bh->b_size; 3488 bh = bh->b_this_page; 3489 } while (bh != head); 3490 } 3491 3492 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3493 { 3494 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3495 3496 /* 3497 * free any io_end structure allocated for buffers to be discarded 3498 */ 3499 if (ext4_should_dioread_nolock(page->mapping->host)) 3500 ext4_invalidatepage_free_endio(page, offset); 3501 /* 3502 * If it's a full truncate we just forget about the pending dirtying 3503 */ 3504 if (offset == 0) 3505 ClearPageChecked(page); 3506 3507 if (journal) 3508 jbd2_journal_invalidatepage(journal, page, offset); 3509 else 3510 block_invalidatepage(page, offset); 3511 } 3512 3513 static int ext4_releasepage(struct page *page, gfp_t wait) 3514 { 3515 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3516 3517 WARN_ON(PageChecked(page)); 3518 if (!page_has_buffers(page)) 3519 return 0; 3520 if (journal) 3521 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3522 else 3523 return try_to_free_buffers(page); 3524 } 3525 3526 /* 3527 * O_DIRECT for ext3 (or indirect map) based files 3528 * 3529 * If the O_DIRECT write will extend the file then add this inode to the 3530 * orphan list. So recovery will truncate it back to the original size 3531 * if the machine crashes during the write. 3532 * 3533 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3534 * crashes then stale disk data _may_ be exposed inside the file. But current 3535 * VFS code falls back into buffered path in that case so we are safe. 3536 */ 3537 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3538 const struct iovec *iov, loff_t offset, 3539 unsigned long nr_segs) 3540 { 3541 struct file *file = iocb->ki_filp; 3542 struct inode *inode = file->f_mapping->host; 3543 struct ext4_inode_info *ei = EXT4_I(inode); 3544 handle_t *handle; 3545 ssize_t ret; 3546 int orphan = 0; 3547 size_t count = iov_length(iov, nr_segs); 3548 int retries = 0; 3549 3550 if (rw == WRITE) { 3551 loff_t final_size = offset + count; 3552 3553 if (final_size > inode->i_size) { 3554 /* Credits for sb + inode write */ 3555 handle = ext4_journal_start(inode, 2); 3556 if (IS_ERR(handle)) { 3557 ret = PTR_ERR(handle); 3558 goto out; 3559 } 3560 ret = ext4_orphan_add(handle, inode); 3561 if (ret) { 3562 ext4_journal_stop(handle); 3563 goto out; 3564 } 3565 orphan = 1; 3566 ei->i_disksize = inode->i_size; 3567 ext4_journal_stop(handle); 3568 } 3569 } 3570 3571 retry: 3572 if (rw == READ && ext4_should_dioread_nolock(inode)) 3573 ret = __blockdev_direct_IO(rw, iocb, inode, 3574 inode->i_sb->s_bdev, iov, 3575 offset, nr_segs, 3576 ext4_get_block, NULL, NULL, 0); 3577 else { 3578 ret = blockdev_direct_IO(rw, iocb, inode, 3579 inode->i_sb->s_bdev, iov, 3580 offset, nr_segs, 3581 ext4_get_block, NULL); 3582 3583 if (unlikely((rw & WRITE) && ret < 0)) { 3584 loff_t isize = i_size_read(inode); 3585 loff_t end = offset + iov_length(iov, nr_segs); 3586 3587 if (end > isize) 3588 vmtruncate(inode, isize); 3589 } 3590 } 3591 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3592 goto retry; 3593 3594 if (orphan) { 3595 int err; 3596 3597 /* Credits for sb + inode write */ 3598 handle = ext4_journal_start(inode, 2); 3599 if (IS_ERR(handle)) { 3600 /* This is really bad luck. We've written the data 3601 * but cannot extend i_size. Bail out and pretend 3602 * the write failed... */ 3603 ret = PTR_ERR(handle); 3604 if (inode->i_nlink) 3605 ext4_orphan_del(NULL, inode); 3606 3607 goto out; 3608 } 3609 if (inode->i_nlink) 3610 ext4_orphan_del(handle, inode); 3611 if (ret > 0) { 3612 loff_t end = offset + ret; 3613 if (end > inode->i_size) { 3614 ei->i_disksize = end; 3615 i_size_write(inode, end); 3616 /* 3617 * We're going to return a positive `ret' 3618 * here due to non-zero-length I/O, so there's 3619 * no way of reporting error returns from 3620 * ext4_mark_inode_dirty() to userspace. So 3621 * ignore it. 3622 */ 3623 ext4_mark_inode_dirty(handle, inode); 3624 } 3625 } 3626 err = ext4_journal_stop(handle); 3627 if (ret == 0) 3628 ret = err; 3629 } 3630 out: 3631 return ret; 3632 } 3633 3634 /* 3635 * ext4_get_block used when preparing for a DIO write or buffer write. 3636 * We allocate an uinitialized extent if blocks haven't been allocated. 3637 * The extent will be converted to initialized after the IO is complete. 3638 */ 3639 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3640 struct buffer_head *bh_result, int create) 3641 { 3642 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3643 inode->i_ino, create); 3644 return _ext4_get_block(inode, iblock, bh_result, 3645 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3646 } 3647 3648 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3649 ssize_t size, void *private, int ret, 3650 bool is_async) 3651 { 3652 ext4_io_end_t *io_end = iocb->private; 3653 struct workqueue_struct *wq; 3654 unsigned long flags; 3655 struct ext4_inode_info *ei; 3656 3657 /* if not async direct IO or dio with 0 bytes write, just return */ 3658 if (!io_end || !size) 3659 goto out; 3660 3661 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3662 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3663 iocb->private, io_end->inode->i_ino, iocb, offset, 3664 size); 3665 3666 /* if not aio dio with unwritten extents, just free io and return */ 3667 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3668 ext4_free_io_end(io_end); 3669 iocb->private = NULL; 3670 out: 3671 if (is_async) 3672 aio_complete(iocb, ret, 0); 3673 return; 3674 } 3675 3676 io_end->offset = offset; 3677 io_end->size = size; 3678 if (is_async) { 3679 io_end->iocb = iocb; 3680 io_end->result = ret; 3681 } 3682 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3683 3684 /* Add the io_end to per-inode completed aio dio list*/ 3685 ei = EXT4_I(io_end->inode); 3686 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3687 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3688 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3689 3690 /* queue the work to convert unwritten extents to written */ 3691 queue_work(wq, &io_end->work); 3692 iocb->private = NULL; 3693 } 3694 3695 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3696 { 3697 ext4_io_end_t *io_end = bh->b_private; 3698 struct workqueue_struct *wq; 3699 struct inode *inode; 3700 unsigned long flags; 3701 3702 if (!test_clear_buffer_uninit(bh) || !io_end) 3703 goto out; 3704 3705 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3706 printk("sb umounted, discard end_io request for inode %lu\n", 3707 io_end->inode->i_ino); 3708 ext4_free_io_end(io_end); 3709 goto out; 3710 } 3711 3712 io_end->flag = EXT4_IO_END_UNWRITTEN; 3713 inode = io_end->inode; 3714 3715 /* Add the io_end to per-inode completed io list*/ 3716 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3717 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3718 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3719 3720 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3721 /* queue the work to convert unwritten extents to written */ 3722 queue_work(wq, &io_end->work); 3723 out: 3724 bh->b_private = NULL; 3725 bh->b_end_io = NULL; 3726 clear_buffer_uninit(bh); 3727 end_buffer_async_write(bh, uptodate); 3728 } 3729 3730 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3731 { 3732 ext4_io_end_t *io_end; 3733 struct page *page = bh->b_page; 3734 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3735 size_t size = bh->b_size; 3736 3737 retry: 3738 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3739 if (!io_end) { 3740 pr_warning_ratelimited("%s: allocation fail\n", __func__); 3741 schedule(); 3742 goto retry; 3743 } 3744 io_end->offset = offset; 3745 io_end->size = size; 3746 /* 3747 * We need to hold a reference to the page to make sure it 3748 * doesn't get evicted before ext4_end_io_work() has a chance 3749 * to convert the extent from written to unwritten. 3750 */ 3751 io_end->page = page; 3752 get_page(io_end->page); 3753 3754 bh->b_private = io_end; 3755 bh->b_end_io = ext4_end_io_buffer_write; 3756 return 0; 3757 } 3758 3759 /* 3760 * For ext4 extent files, ext4 will do direct-io write to holes, 3761 * preallocated extents, and those write extend the file, no need to 3762 * fall back to buffered IO. 3763 * 3764 * For holes, we fallocate those blocks, mark them as unintialized 3765 * If those blocks were preallocated, we mark sure they are splited, but 3766 * still keep the range to write as unintialized. 3767 * 3768 * The unwrritten extents will be converted to written when DIO is completed. 3769 * For async direct IO, since the IO may still pending when return, we 3770 * set up an end_io call back function, which will do the convertion 3771 * when async direct IO completed. 3772 * 3773 * If the O_DIRECT write will extend the file then add this inode to the 3774 * orphan list. So recovery will truncate it back to the original size 3775 * if the machine crashes during the write. 3776 * 3777 */ 3778 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3779 const struct iovec *iov, loff_t offset, 3780 unsigned long nr_segs) 3781 { 3782 struct file *file = iocb->ki_filp; 3783 struct inode *inode = file->f_mapping->host; 3784 ssize_t ret; 3785 size_t count = iov_length(iov, nr_segs); 3786 3787 loff_t final_size = offset + count; 3788 if (rw == WRITE && final_size <= inode->i_size) { 3789 /* 3790 * We could direct write to holes and fallocate. 3791 * 3792 * Allocated blocks to fill the hole are marked as uninitialized 3793 * to prevent paralel buffered read to expose the stale data 3794 * before DIO complete the data IO. 3795 * 3796 * As to previously fallocated extents, ext4 get_block 3797 * will just simply mark the buffer mapped but still 3798 * keep the extents uninitialized. 3799 * 3800 * for non AIO case, we will convert those unwritten extents 3801 * to written after return back from blockdev_direct_IO. 3802 * 3803 * for async DIO, the conversion needs to be defered when 3804 * the IO is completed. The ext4 end_io callback function 3805 * will be called to take care of the conversion work. 3806 * Here for async case, we allocate an io_end structure to 3807 * hook to the iocb. 3808 */ 3809 iocb->private = NULL; 3810 EXT4_I(inode)->cur_aio_dio = NULL; 3811 if (!is_sync_kiocb(iocb)) { 3812 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3813 if (!iocb->private) 3814 return -ENOMEM; 3815 /* 3816 * we save the io structure for current async 3817 * direct IO, so that later ext4_map_blocks() 3818 * could flag the io structure whether there 3819 * is a unwritten extents needs to be converted 3820 * when IO is completed. 3821 */ 3822 EXT4_I(inode)->cur_aio_dio = iocb->private; 3823 } 3824 3825 ret = blockdev_direct_IO(rw, iocb, inode, 3826 inode->i_sb->s_bdev, iov, 3827 offset, nr_segs, 3828 ext4_get_block_write, 3829 ext4_end_io_dio); 3830 if (iocb->private) 3831 EXT4_I(inode)->cur_aio_dio = NULL; 3832 /* 3833 * The io_end structure takes a reference to the inode, 3834 * that structure needs to be destroyed and the 3835 * reference to the inode need to be dropped, when IO is 3836 * complete, even with 0 byte write, or failed. 3837 * 3838 * In the successful AIO DIO case, the io_end structure will be 3839 * desctroyed and the reference to the inode will be dropped 3840 * after the end_io call back function is called. 3841 * 3842 * In the case there is 0 byte write, or error case, since 3843 * VFS direct IO won't invoke the end_io call back function, 3844 * we need to free the end_io structure here. 3845 */ 3846 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3847 ext4_free_io_end(iocb->private); 3848 iocb->private = NULL; 3849 } else if (ret > 0 && ext4_test_inode_state(inode, 3850 EXT4_STATE_DIO_UNWRITTEN)) { 3851 int err; 3852 /* 3853 * for non AIO case, since the IO is already 3854 * completed, we could do the convertion right here 3855 */ 3856 err = ext4_convert_unwritten_extents(inode, 3857 offset, ret); 3858 if (err < 0) 3859 ret = err; 3860 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3861 } 3862 return ret; 3863 } 3864 3865 /* for write the the end of file case, we fall back to old way */ 3866 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3867 } 3868 3869 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3870 const struct iovec *iov, loff_t offset, 3871 unsigned long nr_segs) 3872 { 3873 struct file *file = iocb->ki_filp; 3874 struct inode *inode = file->f_mapping->host; 3875 3876 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3877 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3878 3879 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3880 } 3881 3882 /* 3883 * Pages can be marked dirty completely asynchronously from ext4's journalling 3884 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3885 * much here because ->set_page_dirty is called under VFS locks. The page is 3886 * not necessarily locked. 3887 * 3888 * We cannot just dirty the page and leave attached buffers clean, because the 3889 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3890 * or jbddirty because all the journalling code will explode. 3891 * 3892 * So what we do is to mark the page "pending dirty" and next time writepage 3893 * is called, propagate that into the buffers appropriately. 3894 */ 3895 static int ext4_journalled_set_page_dirty(struct page *page) 3896 { 3897 SetPageChecked(page); 3898 return __set_page_dirty_nobuffers(page); 3899 } 3900 3901 static const struct address_space_operations ext4_ordered_aops = { 3902 .readpage = ext4_readpage, 3903 .readpages = ext4_readpages, 3904 .writepage = ext4_writepage, 3905 .sync_page = block_sync_page, 3906 .write_begin = ext4_write_begin, 3907 .write_end = ext4_ordered_write_end, 3908 .bmap = ext4_bmap, 3909 .invalidatepage = ext4_invalidatepage, 3910 .releasepage = ext4_releasepage, 3911 .direct_IO = ext4_direct_IO, 3912 .migratepage = buffer_migrate_page, 3913 .is_partially_uptodate = block_is_partially_uptodate, 3914 .error_remove_page = generic_error_remove_page, 3915 }; 3916 3917 static const struct address_space_operations ext4_writeback_aops = { 3918 .readpage = ext4_readpage, 3919 .readpages = ext4_readpages, 3920 .writepage = ext4_writepage, 3921 .sync_page = block_sync_page, 3922 .write_begin = ext4_write_begin, 3923 .write_end = ext4_writeback_write_end, 3924 .bmap = ext4_bmap, 3925 .invalidatepage = ext4_invalidatepage, 3926 .releasepage = ext4_releasepage, 3927 .direct_IO = ext4_direct_IO, 3928 .migratepage = buffer_migrate_page, 3929 .is_partially_uptodate = block_is_partially_uptodate, 3930 .error_remove_page = generic_error_remove_page, 3931 }; 3932 3933 static const struct address_space_operations ext4_journalled_aops = { 3934 .readpage = ext4_readpage, 3935 .readpages = ext4_readpages, 3936 .writepage = ext4_writepage, 3937 .sync_page = block_sync_page, 3938 .write_begin = ext4_write_begin, 3939 .write_end = ext4_journalled_write_end, 3940 .set_page_dirty = ext4_journalled_set_page_dirty, 3941 .bmap = ext4_bmap, 3942 .invalidatepage = ext4_invalidatepage, 3943 .releasepage = ext4_releasepage, 3944 .is_partially_uptodate = block_is_partially_uptodate, 3945 .error_remove_page = generic_error_remove_page, 3946 }; 3947 3948 static const struct address_space_operations ext4_da_aops = { 3949 .readpage = ext4_readpage, 3950 .readpages = ext4_readpages, 3951 .writepage = ext4_writepage, 3952 .writepages = ext4_da_writepages, 3953 .sync_page = block_sync_page, 3954 .write_begin = ext4_da_write_begin, 3955 .write_end = ext4_da_write_end, 3956 .bmap = ext4_bmap, 3957 .invalidatepage = ext4_da_invalidatepage, 3958 .releasepage = ext4_releasepage, 3959 .direct_IO = ext4_direct_IO, 3960 .migratepage = buffer_migrate_page, 3961 .is_partially_uptodate = block_is_partially_uptodate, 3962 .error_remove_page = generic_error_remove_page, 3963 }; 3964 3965 void ext4_set_aops(struct inode *inode) 3966 { 3967 if (ext4_should_order_data(inode) && 3968 test_opt(inode->i_sb, DELALLOC)) 3969 inode->i_mapping->a_ops = &ext4_da_aops; 3970 else if (ext4_should_order_data(inode)) 3971 inode->i_mapping->a_ops = &ext4_ordered_aops; 3972 else if (ext4_should_writeback_data(inode) && 3973 test_opt(inode->i_sb, DELALLOC)) 3974 inode->i_mapping->a_ops = &ext4_da_aops; 3975 else if (ext4_should_writeback_data(inode)) 3976 inode->i_mapping->a_ops = &ext4_writeback_aops; 3977 else 3978 inode->i_mapping->a_ops = &ext4_journalled_aops; 3979 } 3980 3981 /* 3982 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3983 * up to the end of the block which corresponds to `from'. 3984 * This required during truncate. We need to physically zero the tail end 3985 * of that block so it doesn't yield old data if the file is later grown. 3986 */ 3987 int ext4_block_truncate_page(handle_t *handle, 3988 struct address_space *mapping, loff_t from) 3989 { 3990 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3991 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3992 unsigned blocksize, length, pos; 3993 ext4_lblk_t iblock; 3994 struct inode *inode = mapping->host; 3995 struct buffer_head *bh; 3996 struct page *page; 3997 int err = 0; 3998 3999 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4000 mapping_gfp_mask(mapping) & ~__GFP_FS); 4001 if (!page) 4002 return -EINVAL; 4003 4004 blocksize = inode->i_sb->s_blocksize; 4005 length = blocksize - (offset & (blocksize - 1)); 4006 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4007 4008 if (!page_has_buffers(page)) 4009 create_empty_buffers(page, blocksize, 0); 4010 4011 /* Find the buffer that contains "offset" */ 4012 bh = page_buffers(page); 4013 pos = blocksize; 4014 while (offset >= pos) { 4015 bh = bh->b_this_page; 4016 iblock++; 4017 pos += blocksize; 4018 } 4019 4020 err = 0; 4021 if (buffer_freed(bh)) { 4022 BUFFER_TRACE(bh, "freed: skip"); 4023 goto unlock; 4024 } 4025 4026 if (!buffer_mapped(bh)) { 4027 BUFFER_TRACE(bh, "unmapped"); 4028 ext4_get_block(inode, iblock, bh, 0); 4029 /* unmapped? It's a hole - nothing to do */ 4030 if (!buffer_mapped(bh)) { 4031 BUFFER_TRACE(bh, "still unmapped"); 4032 goto unlock; 4033 } 4034 } 4035 4036 /* Ok, it's mapped. Make sure it's up-to-date */ 4037 if (PageUptodate(page)) 4038 set_buffer_uptodate(bh); 4039 4040 if (!buffer_uptodate(bh)) { 4041 err = -EIO; 4042 ll_rw_block(READ, 1, &bh); 4043 wait_on_buffer(bh); 4044 /* Uhhuh. Read error. Complain and punt. */ 4045 if (!buffer_uptodate(bh)) 4046 goto unlock; 4047 } 4048 4049 if (ext4_should_journal_data(inode)) { 4050 BUFFER_TRACE(bh, "get write access"); 4051 err = ext4_journal_get_write_access(handle, bh); 4052 if (err) 4053 goto unlock; 4054 } 4055 4056 zero_user(page, offset, length); 4057 4058 BUFFER_TRACE(bh, "zeroed end of block"); 4059 4060 err = 0; 4061 if (ext4_should_journal_data(inode)) { 4062 err = ext4_handle_dirty_metadata(handle, inode, bh); 4063 } else { 4064 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 4065 err = ext4_jbd2_file_inode(handle, inode); 4066 mark_buffer_dirty(bh); 4067 } 4068 4069 unlock: 4070 unlock_page(page); 4071 page_cache_release(page); 4072 return err; 4073 } 4074 4075 /* 4076 * Probably it should be a library function... search for first non-zero word 4077 * or memcmp with zero_page, whatever is better for particular architecture. 4078 * Linus? 4079 */ 4080 static inline int all_zeroes(__le32 *p, __le32 *q) 4081 { 4082 while (p < q) 4083 if (*p++) 4084 return 0; 4085 return 1; 4086 } 4087 4088 /** 4089 * ext4_find_shared - find the indirect blocks for partial truncation. 4090 * @inode: inode in question 4091 * @depth: depth of the affected branch 4092 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4093 * @chain: place to store the pointers to partial indirect blocks 4094 * @top: place to the (detached) top of branch 4095 * 4096 * This is a helper function used by ext4_truncate(). 4097 * 4098 * When we do truncate() we may have to clean the ends of several 4099 * indirect blocks but leave the blocks themselves alive. Block is 4100 * partially truncated if some data below the new i_size is refered 4101 * from it (and it is on the path to the first completely truncated 4102 * data block, indeed). We have to free the top of that path along 4103 * with everything to the right of the path. Since no allocation 4104 * past the truncation point is possible until ext4_truncate() 4105 * finishes, we may safely do the latter, but top of branch may 4106 * require special attention - pageout below the truncation point 4107 * might try to populate it. 4108 * 4109 * We atomically detach the top of branch from the tree, store the 4110 * block number of its root in *@top, pointers to buffer_heads of 4111 * partially truncated blocks - in @chain[].bh and pointers to 4112 * their last elements that should not be removed - in 4113 * @chain[].p. Return value is the pointer to last filled element 4114 * of @chain. 4115 * 4116 * The work left to caller to do the actual freeing of subtrees: 4117 * a) free the subtree starting from *@top 4118 * b) free the subtrees whose roots are stored in 4119 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4120 * c) free the subtrees growing from the inode past the @chain[0]. 4121 * (no partially truncated stuff there). */ 4122 4123 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4124 ext4_lblk_t offsets[4], Indirect chain[4], 4125 __le32 *top) 4126 { 4127 Indirect *partial, *p; 4128 int k, err; 4129 4130 *top = 0; 4131 /* Make k index the deepest non-null offset + 1 */ 4132 for (k = depth; k > 1 && !offsets[k-1]; k--) 4133 ; 4134 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4135 /* Writer: pointers */ 4136 if (!partial) 4137 partial = chain + k-1; 4138 /* 4139 * If the branch acquired continuation since we've looked at it - 4140 * fine, it should all survive and (new) top doesn't belong to us. 4141 */ 4142 if (!partial->key && *partial->p) 4143 /* Writer: end */ 4144 goto no_top; 4145 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4146 ; 4147 /* 4148 * OK, we've found the last block that must survive. The rest of our 4149 * branch should be detached before unlocking. However, if that rest 4150 * of branch is all ours and does not grow immediately from the inode 4151 * it's easier to cheat and just decrement partial->p. 4152 */ 4153 if (p == chain + k - 1 && p > chain) { 4154 p->p--; 4155 } else { 4156 *top = *p->p; 4157 /* Nope, don't do this in ext4. Must leave the tree intact */ 4158 #if 0 4159 *p->p = 0; 4160 #endif 4161 } 4162 /* Writer: end */ 4163 4164 while (partial > p) { 4165 brelse(partial->bh); 4166 partial--; 4167 } 4168 no_top: 4169 return partial; 4170 } 4171 4172 /* 4173 * Zero a number of block pointers in either an inode or an indirect block. 4174 * If we restart the transaction we must again get write access to the 4175 * indirect block for further modification. 4176 * 4177 * We release `count' blocks on disk, but (last - first) may be greater 4178 * than `count' because there can be holes in there. 4179 */ 4180 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4181 struct buffer_head *bh, 4182 ext4_fsblk_t block_to_free, 4183 unsigned long count, __le32 *first, 4184 __le32 *last) 4185 { 4186 __le32 *p; 4187 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4188 int err; 4189 4190 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4191 flags |= EXT4_FREE_BLOCKS_METADATA; 4192 4193 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4194 count)) { 4195 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4196 "blocks %llu len %lu", 4197 (unsigned long long) block_to_free, count); 4198 return 1; 4199 } 4200 4201 if (try_to_extend_transaction(handle, inode)) { 4202 if (bh) { 4203 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4204 err = ext4_handle_dirty_metadata(handle, inode, bh); 4205 if (unlikely(err)) { 4206 ext4_std_error(inode->i_sb, err); 4207 return 1; 4208 } 4209 } 4210 err = ext4_mark_inode_dirty(handle, inode); 4211 if (unlikely(err)) { 4212 ext4_std_error(inode->i_sb, err); 4213 return 1; 4214 } 4215 err = ext4_truncate_restart_trans(handle, inode, 4216 blocks_for_truncate(inode)); 4217 if (unlikely(err)) { 4218 ext4_std_error(inode->i_sb, err); 4219 return 1; 4220 } 4221 if (bh) { 4222 BUFFER_TRACE(bh, "retaking write access"); 4223 ext4_journal_get_write_access(handle, bh); 4224 } 4225 } 4226 4227 for (p = first; p < last; p++) 4228 *p = 0; 4229 4230 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4231 return 0; 4232 } 4233 4234 /** 4235 * ext4_free_data - free a list of data blocks 4236 * @handle: handle for this transaction 4237 * @inode: inode we are dealing with 4238 * @this_bh: indirect buffer_head which contains *@first and *@last 4239 * @first: array of block numbers 4240 * @last: points immediately past the end of array 4241 * 4242 * We are freeing all blocks refered from that array (numbers are stored as 4243 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4244 * 4245 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4246 * blocks are contiguous then releasing them at one time will only affect one 4247 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4248 * actually use a lot of journal space. 4249 * 4250 * @this_bh will be %NULL if @first and @last point into the inode's direct 4251 * block pointers. 4252 */ 4253 static void ext4_free_data(handle_t *handle, struct inode *inode, 4254 struct buffer_head *this_bh, 4255 __le32 *first, __le32 *last) 4256 { 4257 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4258 unsigned long count = 0; /* Number of blocks in the run */ 4259 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4260 corresponding to 4261 block_to_free */ 4262 ext4_fsblk_t nr; /* Current block # */ 4263 __le32 *p; /* Pointer into inode/ind 4264 for current block */ 4265 int err; 4266 4267 if (this_bh) { /* For indirect block */ 4268 BUFFER_TRACE(this_bh, "get_write_access"); 4269 err = ext4_journal_get_write_access(handle, this_bh); 4270 /* Important: if we can't update the indirect pointers 4271 * to the blocks, we can't free them. */ 4272 if (err) 4273 return; 4274 } 4275 4276 for (p = first; p < last; p++) { 4277 nr = le32_to_cpu(*p); 4278 if (nr) { 4279 /* accumulate blocks to free if they're contiguous */ 4280 if (count == 0) { 4281 block_to_free = nr; 4282 block_to_free_p = p; 4283 count = 1; 4284 } else if (nr == block_to_free + count) { 4285 count++; 4286 } else { 4287 if (ext4_clear_blocks(handle, inode, this_bh, 4288 block_to_free, count, 4289 block_to_free_p, p)) 4290 break; 4291 block_to_free = nr; 4292 block_to_free_p = p; 4293 count = 1; 4294 } 4295 } 4296 } 4297 4298 if (count > 0) 4299 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4300 count, block_to_free_p, p); 4301 4302 if (this_bh) { 4303 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4304 4305 /* 4306 * The buffer head should have an attached journal head at this 4307 * point. However, if the data is corrupted and an indirect 4308 * block pointed to itself, it would have been detached when 4309 * the block was cleared. Check for this instead of OOPSing. 4310 */ 4311 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4312 ext4_handle_dirty_metadata(handle, inode, this_bh); 4313 else 4314 EXT4_ERROR_INODE(inode, 4315 "circular indirect block detected at " 4316 "block %llu", 4317 (unsigned long long) this_bh->b_blocknr); 4318 } 4319 } 4320 4321 /** 4322 * ext4_free_branches - free an array of branches 4323 * @handle: JBD handle for this transaction 4324 * @inode: inode we are dealing with 4325 * @parent_bh: the buffer_head which contains *@first and *@last 4326 * @first: array of block numbers 4327 * @last: pointer immediately past the end of array 4328 * @depth: depth of the branches to free 4329 * 4330 * We are freeing all blocks refered from these branches (numbers are 4331 * stored as little-endian 32-bit) and updating @inode->i_blocks 4332 * appropriately. 4333 */ 4334 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4335 struct buffer_head *parent_bh, 4336 __le32 *first, __le32 *last, int depth) 4337 { 4338 ext4_fsblk_t nr; 4339 __le32 *p; 4340 4341 if (ext4_handle_is_aborted(handle)) 4342 return; 4343 4344 if (depth--) { 4345 struct buffer_head *bh; 4346 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4347 p = last; 4348 while (--p >= first) { 4349 nr = le32_to_cpu(*p); 4350 if (!nr) 4351 continue; /* A hole */ 4352 4353 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4354 nr, 1)) { 4355 EXT4_ERROR_INODE(inode, 4356 "invalid indirect mapped " 4357 "block %lu (level %d)", 4358 (unsigned long) nr, depth); 4359 break; 4360 } 4361 4362 /* Go read the buffer for the next level down */ 4363 bh = sb_bread(inode->i_sb, nr); 4364 4365 /* 4366 * A read failure? Report error and clear slot 4367 * (should be rare). 4368 */ 4369 if (!bh) { 4370 EXT4_ERROR_INODE_BLOCK(inode, nr, 4371 "Read failure"); 4372 continue; 4373 } 4374 4375 /* This zaps the entire block. Bottom up. */ 4376 BUFFER_TRACE(bh, "free child branches"); 4377 ext4_free_branches(handle, inode, bh, 4378 (__le32 *) bh->b_data, 4379 (__le32 *) bh->b_data + addr_per_block, 4380 depth); 4381 brelse(bh); 4382 4383 /* 4384 * Everything below this this pointer has been 4385 * released. Now let this top-of-subtree go. 4386 * 4387 * We want the freeing of this indirect block to be 4388 * atomic in the journal with the updating of the 4389 * bitmap block which owns it. So make some room in 4390 * the journal. 4391 * 4392 * We zero the parent pointer *after* freeing its 4393 * pointee in the bitmaps, so if extend_transaction() 4394 * for some reason fails to put the bitmap changes and 4395 * the release into the same transaction, recovery 4396 * will merely complain about releasing a free block, 4397 * rather than leaking blocks. 4398 */ 4399 if (ext4_handle_is_aborted(handle)) 4400 return; 4401 if (try_to_extend_transaction(handle, inode)) { 4402 ext4_mark_inode_dirty(handle, inode); 4403 ext4_truncate_restart_trans(handle, inode, 4404 blocks_for_truncate(inode)); 4405 } 4406 4407 /* 4408 * The forget flag here is critical because if 4409 * we are journaling (and not doing data 4410 * journaling), we have to make sure a revoke 4411 * record is written to prevent the journal 4412 * replay from overwriting the (former) 4413 * indirect block if it gets reallocated as a 4414 * data block. This must happen in the same 4415 * transaction where the data blocks are 4416 * actually freed. 4417 */ 4418 ext4_free_blocks(handle, inode, 0, nr, 1, 4419 EXT4_FREE_BLOCKS_METADATA| 4420 EXT4_FREE_BLOCKS_FORGET); 4421 4422 if (parent_bh) { 4423 /* 4424 * The block which we have just freed is 4425 * pointed to by an indirect block: journal it 4426 */ 4427 BUFFER_TRACE(parent_bh, "get_write_access"); 4428 if (!ext4_journal_get_write_access(handle, 4429 parent_bh)){ 4430 *p = 0; 4431 BUFFER_TRACE(parent_bh, 4432 "call ext4_handle_dirty_metadata"); 4433 ext4_handle_dirty_metadata(handle, 4434 inode, 4435 parent_bh); 4436 } 4437 } 4438 } 4439 } else { 4440 /* We have reached the bottom of the tree. */ 4441 BUFFER_TRACE(parent_bh, "free data blocks"); 4442 ext4_free_data(handle, inode, parent_bh, first, last); 4443 } 4444 } 4445 4446 int ext4_can_truncate(struct inode *inode) 4447 { 4448 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4449 return 0; 4450 if (S_ISREG(inode->i_mode)) 4451 return 1; 4452 if (S_ISDIR(inode->i_mode)) 4453 return 1; 4454 if (S_ISLNK(inode->i_mode)) 4455 return !ext4_inode_is_fast_symlink(inode); 4456 return 0; 4457 } 4458 4459 /* 4460 * ext4_truncate() 4461 * 4462 * We block out ext4_get_block() block instantiations across the entire 4463 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4464 * simultaneously on behalf of the same inode. 4465 * 4466 * As we work through the truncate and commmit bits of it to the journal there 4467 * is one core, guiding principle: the file's tree must always be consistent on 4468 * disk. We must be able to restart the truncate after a crash. 4469 * 4470 * The file's tree may be transiently inconsistent in memory (although it 4471 * probably isn't), but whenever we close off and commit a journal transaction, 4472 * the contents of (the filesystem + the journal) must be consistent and 4473 * restartable. It's pretty simple, really: bottom up, right to left (although 4474 * left-to-right works OK too). 4475 * 4476 * Note that at recovery time, journal replay occurs *before* the restart of 4477 * truncate against the orphan inode list. 4478 * 4479 * The committed inode has the new, desired i_size (which is the same as 4480 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4481 * that this inode's truncate did not complete and it will again call 4482 * ext4_truncate() to have another go. So there will be instantiated blocks 4483 * to the right of the truncation point in a crashed ext4 filesystem. But 4484 * that's fine - as long as they are linked from the inode, the post-crash 4485 * ext4_truncate() run will find them and release them. 4486 */ 4487 void ext4_truncate(struct inode *inode) 4488 { 4489 handle_t *handle; 4490 struct ext4_inode_info *ei = EXT4_I(inode); 4491 __le32 *i_data = ei->i_data; 4492 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4493 struct address_space *mapping = inode->i_mapping; 4494 ext4_lblk_t offsets[4]; 4495 Indirect chain[4]; 4496 Indirect *partial; 4497 __le32 nr = 0; 4498 int n; 4499 ext4_lblk_t last_block; 4500 unsigned blocksize = inode->i_sb->s_blocksize; 4501 4502 if (!ext4_can_truncate(inode)) 4503 return; 4504 4505 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4506 4507 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4508 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4509 4510 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4511 ext4_ext_truncate(inode); 4512 return; 4513 } 4514 4515 handle = start_transaction(inode); 4516 if (IS_ERR(handle)) 4517 return; /* AKPM: return what? */ 4518 4519 last_block = (inode->i_size + blocksize-1) 4520 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4521 4522 if (inode->i_size & (blocksize - 1)) 4523 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4524 goto out_stop; 4525 4526 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4527 if (n == 0) 4528 goto out_stop; /* error */ 4529 4530 /* 4531 * OK. This truncate is going to happen. We add the inode to the 4532 * orphan list, so that if this truncate spans multiple transactions, 4533 * and we crash, we will resume the truncate when the filesystem 4534 * recovers. It also marks the inode dirty, to catch the new size. 4535 * 4536 * Implication: the file must always be in a sane, consistent 4537 * truncatable state while each transaction commits. 4538 */ 4539 if (ext4_orphan_add(handle, inode)) 4540 goto out_stop; 4541 4542 /* 4543 * From here we block out all ext4_get_block() callers who want to 4544 * modify the block allocation tree. 4545 */ 4546 down_write(&ei->i_data_sem); 4547 4548 ext4_discard_preallocations(inode); 4549 4550 /* 4551 * The orphan list entry will now protect us from any crash which 4552 * occurs before the truncate completes, so it is now safe to propagate 4553 * the new, shorter inode size (held for now in i_size) into the 4554 * on-disk inode. We do this via i_disksize, which is the value which 4555 * ext4 *really* writes onto the disk inode. 4556 */ 4557 ei->i_disksize = inode->i_size; 4558 4559 if (n == 1) { /* direct blocks */ 4560 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4561 i_data + EXT4_NDIR_BLOCKS); 4562 goto do_indirects; 4563 } 4564 4565 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4566 /* Kill the top of shared branch (not detached) */ 4567 if (nr) { 4568 if (partial == chain) { 4569 /* Shared branch grows from the inode */ 4570 ext4_free_branches(handle, inode, NULL, 4571 &nr, &nr+1, (chain+n-1) - partial); 4572 *partial->p = 0; 4573 /* 4574 * We mark the inode dirty prior to restart, 4575 * and prior to stop. No need for it here. 4576 */ 4577 } else { 4578 /* Shared branch grows from an indirect block */ 4579 BUFFER_TRACE(partial->bh, "get_write_access"); 4580 ext4_free_branches(handle, inode, partial->bh, 4581 partial->p, 4582 partial->p+1, (chain+n-1) - partial); 4583 } 4584 } 4585 /* Clear the ends of indirect blocks on the shared branch */ 4586 while (partial > chain) { 4587 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4588 (__le32*)partial->bh->b_data+addr_per_block, 4589 (chain+n-1) - partial); 4590 BUFFER_TRACE(partial->bh, "call brelse"); 4591 brelse(partial->bh); 4592 partial--; 4593 } 4594 do_indirects: 4595 /* Kill the remaining (whole) subtrees */ 4596 switch (offsets[0]) { 4597 default: 4598 nr = i_data[EXT4_IND_BLOCK]; 4599 if (nr) { 4600 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4601 i_data[EXT4_IND_BLOCK] = 0; 4602 } 4603 case EXT4_IND_BLOCK: 4604 nr = i_data[EXT4_DIND_BLOCK]; 4605 if (nr) { 4606 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4607 i_data[EXT4_DIND_BLOCK] = 0; 4608 } 4609 case EXT4_DIND_BLOCK: 4610 nr = i_data[EXT4_TIND_BLOCK]; 4611 if (nr) { 4612 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4613 i_data[EXT4_TIND_BLOCK] = 0; 4614 } 4615 case EXT4_TIND_BLOCK: 4616 ; 4617 } 4618 4619 up_write(&ei->i_data_sem); 4620 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4621 ext4_mark_inode_dirty(handle, inode); 4622 4623 /* 4624 * In a multi-transaction truncate, we only make the final transaction 4625 * synchronous 4626 */ 4627 if (IS_SYNC(inode)) 4628 ext4_handle_sync(handle); 4629 out_stop: 4630 /* 4631 * If this was a simple ftruncate(), and the file will remain alive 4632 * then we need to clear up the orphan record which we created above. 4633 * However, if this was a real unlink then we were called by 4634 * ext4_delete_inode(), and we allow that function to clean up the 4635 * orphan info for us. 4636 */ 4637 if (inode->i_nlink) 4638 ext4_orphan_del(handle, inode); 4639 4640 ext4_journal_stop(handle); 4641 } 4642 4643 /* 4644 * ext4_get_inode_loc returns with an extra refcount against the inode's 4645 * underlying buffer_head on success. If 'in_mem' is true, we have all 4646 * data in memory that is needed to recreate the on-disk version of this 4647 * inode. 4648 */ 4649 static int __ext4_get_inode_loc(struct inode *inode, 4650 struct ext4_iloc *iloc, int in_mem) 4651 { 4652 struct ext4_group_desc *gdp; 4653 struct buffer_head *bh; 4654 struct super_block *sb = inode->i_sb; 4655 ext4_fsblk_t block; 4656 int inodes_per_block, inode_offset; 4657 4658 iloc->bh = NULL; 4659 if (!ext4_valid_inum(sb, inode->i_ino)) 4660 return -EIO; 4661 4662 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4663 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4664 if (!gdp) 4665 return -EIO; 4666 4667 /* 4668 * Figure out the offset within the block group inode table 4669 */ 4670 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4671 inode_offset = ((inode->i_ino - 1) % 4672 EXT4_INODES_PER_GROUP(sb)); 4673 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4674 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4675 4676 bh = sb_getblk(sb, block); 4677 if (!bh) { 4678 EXT4_ERROR_INODE_BLOCK(inode, block, 4679 "unable to read itable block"); 4680 return -EIO; 4681 } 4682 if (!buffer_uptodate(bh)) { 4683 lock_buffer(bh); 4684 4685 /* 4686 * If the buffer has the write error flag, we have failed 4687 * to write out another inode in the same block. In this 4688 * case, we don't have to read the block because we may 4689 * read the old inode data successfully. 4690 */ 4691 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4692 set_buffer_uptodate(bh); 4693 4694 if (buffer_uptodate(bh)) { 4695 /* someone brought it uptodate while we waited */ 4696 unlock_buffer(bh); 4697 goto has_buffer; 4698 } 4699 4700 /* 4701 * If we have all information of the inode in memory and this 4702 * is the only valid inode in the block, we need not read the 4703 * block. 4704 */ 4705 if (in_mem) { 4706 struct buffer_head *bitmap_bh; 4707 int i, start; 4708 4709 start = inode_offset & ~(inodes_per_block - 1); 4710 4711 /* Is the inode bitmap in cache? */ 4712 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4713 if (!bitmap_bh) 4714 goto make_io; 4715 4716 /* 4717 * If the inode bitmap isn't in cache then the 4718 * optimisation may end up performing two reads instead 4719 * of one, so skip it. 4720 */ 4721 if (!buffer_uptodate(bitmap_bh)) { 4722 brelse(bitmap_bh); 4723 goto make_io; 4724 } 4725 for (i = start; i < start + inodes_per_block; i++) { 4726 if (i == inode_offset) 4727 continue; 4728 if (ext4_test_bit(i, bitmap_bh->b_data)) 4729 break; 4730 } 4731 brelse(bitmap_bh); 4732 if (i == start + inodes_per_block) { 4733 /* all other inodes are free, so skip I/O */ 4734 memset(bh->b_data, 0, bh->b_size); 4735 set_buffer_uptodate(bh); 4736 unlock_buffer(bh); 4737 goto has_buffer; 4738 } 4739 } 4740 4741 make_io: 4742 /* 4743 * If we need to do any I/O, try to pre-readahead extra 4744 * blocks from the inode table. 4745 */ 4746 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4747 ext4_fsblk_t b, end, table; 4748 unsigned num; 4749 4750 table = ext4_inode_table(sb, gdp); 4751 /* s_inode_readahead_blks is always a power of 2 */ 4752 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4753 if (table > b) 4754 b = table; 4755 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4756 num = EXT4_INODES_PER_GROUP(sb); 4757 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4758 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4759 num -= ext4_itable_unused_count(sb, gdp); 4760 table += num / inodes_per_block; 4761 if (end > table) 4762 end = table; 4763 while (b <= end) 4764 sb_breadahead(sb, b++); 4765 } 4766 4767 /* 4768 * There are other valid inodes in the buffer, this inode 4769 * has in-inode xattrs, or we don't have this inode in memory. 4770 * Read the block from disk. 4771 */ 4772 get_bh(bh); 4773 bh->b_end_io = end_buffer_read_sync; 4774 submit_bh(READ_META, bh); 4775 wait_on_buffer(bh); 4776 if (!buffer_uptodate(bh)) { 4777 EXT4_ERROR_INODE_BLOCK(inode, block, 4778 "unable to read itable block"); 4779 brelse(bh); 4780 return -EIO; 4781 } 4782 } 4783 has_buffer: 4784 iloc->bh = bh; 4785 return 0; 4786 } 4787 4788 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4789 { 4790 /* We have all inode data except xattrs in memory here. */ 4791 return __ext4_get_inode_loc(inode, iloc, 4792 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4793 } 4794 4795 void ext4_set_inode_flags(struct inode *inode) 4796 { 4797 unsigned int flags = EXT4_I(inode)->i_flags; 4798 4799 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4800 if (flags & EXT4_SYNC_FL) 4801 inode->i_flags |= S_SYNC; 4802 if (flags & EXT4_APPEND_FL) 4803 inode->i_flags |= S_APPEND; 4804 if (flags & EXT4_IMMUTABLE_FL) 4805 inode->i_flags |= S_IMMUTABLE; 4806 if (flags & EXT4_NOATIME_FL) 4807 inode->i_flags |= S_NOATIME; 4808 if (flags & EXT4_DIRSYNC_FL) 4809 inode->i_flags |= S_DIRSYNC; 4810 } 4811 4812 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4813 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4814 { 4815 unsigned int vfs_fl; 4816 unsigned long old_fl, new_fl; 4817 4818 do { 4819 vfs_fl = ei->vfs_inode.i_flags; 4820 old_fl = ei->i_flags; 4821 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4822 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4823 EXT4_DIRSYNC_FL); 4824 if (vfs_fl & S_SYNC) 4825 new_fl |= EXT4_SYNC_FL; 4826 if (vfs_fl & S_APPEND) 4827 new_fl |= EXT4_APPEND_FL; 4828 if (vfs_fl & S_IMMUTABLE) 4829 new_fl |= EXT4_IMMUTABLE_FL; 4830 if (vfs_fl & S_NOATIME) 4831 new_fl |= EXT4_NOATIME_FL; 4832 if (vfs_fl & S_DIRSYNC) 4833 new_fl |= EXT4_DIRSYNC_FL; 4834 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4835 } 4836 4837 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4838 struct ext4_inode_info *ei) 4839 { 4840 blkcnt_t i_blocks ; 4841 struct inode *inode = &(ei->vfs_inode); 4842 struct super_block *sb = inode->i_sb; 4843 4844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4845 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4846 /* we are using combined 48 bit field */ 4847 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4848 le32_to_cpu(raw_inode->i_blocks_lo); 4849 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4850 /* i_blocks represent file system block size */ 4851 return i_blocks << (inode->i_blkbits - 9); 4852 } else { 4853 return i_blocks; 4854 } 4855 } else { 4856 return le32_to_cpu(raw_inode->i_blocks_lo); 4857 } 4858 } 4859 4860 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4861 { 4862 struct ext4_iloc iloc; 4863 struct ext4_inode *raw_inode; 4864 struct ext4_inode_info *ei; 4865 struct inode *inode; 4866 journal_t *journal = EXT4_SB(sb)->s_journal; 4867 long ret; 4868 int block; 4869 4870 inode = iget_locked(sb, ino); 4871 if (!inode) 4872 return ERR_PTR(-ENOMEM); 4873 if (!(inode->i_state & I_NEW)) 4874 return inode; 4875 4876 ei = EXT4_I(inode); 4877 iloc.bh = 0; 4878 4879 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4880 if (ret < 0) 4881 goto bad_inode; 4882 raw_inode = ext4_raw_inode(&iloc); 4883 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4884 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4885 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4886 if (!(test_opt(inode->i_sb, NO_UID32))) { 4887 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4888 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4889 } 4890 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4891 4892 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4893 ei->i_dir_start_lookup = 0; 4894 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4895 /* We now have enough fields to check if the inode was active or not. 4896 * This is needed because nfsd might try to access dead inodes 4897 * the test is that same one that e2fsck uses 4898 * NeilBrown 1999oct15 4899 */ 4900 if (inode->i_nlink == 0) { 4901 if (inode->i_mode == 0 || 4902 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4903 /* this inode is deleted */ 4904 ret = -ESTALE; 4905 goto bad_inode; 4906 } 4907 /* The only unlinked inodes we let through here have 4908 * valid i_mode and are being read by the orphan 4909 * recovery code: that's fine, we're about to complete 4910 * the process of deleting those. */ 4911 } 4912 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4913 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4914 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4915 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4916 ei->i_file_acl |= 4917 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4918 inode->i_size = ext4_isize(raw_inode); 4919 ei->i_disksize = inode->i_size; 4920 #ifdef CONFIG_QUOTA 4921 ei->i_reserved_quota = 0; 4922 #endif 4923 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4924 ei->i_block_group = iloc.block_group; 4925 ei->i_last_alloc_group = ~0; 4926 /* 4927 * NOTE! The in-memory inode i_data array is in little-endian order 4928 * even on big-endian machines: we do NOT byteswap the block numbers! 4929 */ 4930 for (block = 0; block < EXT4_N_BLOCKS; block++) 4931 ei->i_data[block] = raw_inode->i_block[block]; 4932 INIT_LIST_HEAD(&ei->i_orphan); 4933 4934 /* 4935 * Set transaction id's of transactions that have to be committed 4936 * to finish f[data]sync. We set them to currently running transaction 4937 * as we cannot be sure that the inode or some of its metadata isn't 4938 * part of the transaction - the inode could have been reclaimed and 4939 * now it is reread from disk. 4940 */ 4941 if (journal) { 4942 transaction_t *transaction; 4943 tid_t tid; 4944 4945 read_lock(&journal->j_state_lock); 4946 if (journal->j_running_transaction) 4947 transaction = journal->j_running_transaction; 4948 else 4949 transaction = journal->j_committing_transaction; 4950 if (transaction) 4951 tid = transaction->t_tid; 4952 else 4953 tid = journal->j_commit_sequence; 4954 read_unlock(&journal->j_state_lock); 4955 ei->i_sync_tid = tid; 4956 ei->i_datasync_tid = tid; 4957 } 4958 4959 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4960 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4961 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4962 EXT4_INODE_SIZE(inode->i_sb)) { 4963 ret = -EIO; 4964 goto bad_inode; 4965 } 4966 if (ei->i_extra_isize == 0) { 4967 /* The extra space is currently unused. Use it. */ 4968 ei->i_extra_isize = sizeof(struct ext4_inode) - 4969 EXT4_GOOD_OLD_INODE_SIZE; 4970 } else { 4971 __le32 *magic = (void *)raw_inode + 4972 EXT4_GOOD_OLD_INODE_SIZE + 4973 ei->i_extra_isize; 4974 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4975 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4976 } 4977 } else 4978 ei->i_extra_isize = 0; 4979 4980 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4981 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4982 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4983 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4984 4985 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4986 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4987 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4988 inode->i_version |= 4989 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4990 } 4991 4992 ret = 0; 4993 if (ei->i_file_acl && 4994 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4995 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4996 ei->i_file_acl); 4997 ret = -EIO; 4998 goto bad_inode; 4999 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5000 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5001 (S_ISLNK(inode->i_mode) && 5002 !ext4_inode_is_fast_symlink(inode))) 5003 /* Validate extent which is part of inode */ 5004 ret = ext4_ext_check_inode(inode); 5005 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5006 (S_ISLNK(inode->i_mode) && 5007 !ext4_inode_is_fast_symlink(inode))) { 5008 /* Validate block references which are part of inode */ 5009 ret = ext4_check_inode_blockref(inode); 5010 } 5011 if (ret) 5012 goto bad_inode; 5013 5014 if (S_ISREG(inode->i_mode)) { 5015 inode->i_op = &ext4_file_inode_operations; 5016 inode->i_fop = &ext4_file_operations; 5017 ext4_set_aops(inode); 5018 } else if (S_ISDIR(inode->i_mode)) { 5019 inode->i_op = &ext4_dir_inode_operations; 5020 inode->i_fop = &ext4_dir_operations; 5021 } else if (S_ISLNK(inode->i_mode)) { 5022 if (ext4_inode_is_fast_symlink(inode)) { 5023 inode->i_op = &ext4_fast_symlink_inode_operations; 5024 nd_terminate_link(ei->i_data, inode->i_size, 5025 sizeof(ei->i_data) - 1); 5026 } else { 5027 inode->i_op = &ext4_symlink_inode_operations; 5028 ext4_set_aops(inode); 5029 } 5030 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5031 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5032 inode->i_op = &ext4_special_inode_operations; 5033 if (raw_inode->i_block[0]) 5034 init_special_inode(inode, inode->i_mode, 5035 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5036 else 5037 init_special_inode(inode, inode->i_mode, 5038 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5039 } else { 5040 ret = -EIO; 5041 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 5042 goto bad_inode; 5043 } 5044 brelse(iloc.bh); 5045 ext4_set_inode_flags(inode); 5046 unlock_new_inode(inode); 5047 return inode; 5048 5049 bad_inode: 5050 brelse(iloc.bh); 5051 iget_failed(inode); 5052 return ERR_PTR(ret); 5053 } 5054 5055 static int ext4_inode_blocks_set(handle_t *handle, 5056 struct ext4_inode *raw_inode, 5057 struct ext4_inode_info *ei) 5058 { 5059 struct inode *inode = &(ei->vfs_inode); 5060 u64 i_blocks = inode->i_blocks; 5061 struct super_block *sb = inode->i_sb; 5062 5063 if (i_blocks <= ~0U) { 5064 /* 5065 * i_blocks can be represnted in a 32 bit variable 5066 * as multiple of 512 bytes 5067 */ 5068 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5069 raw_inode->i_blocks_high = 0; 5070 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5071 return 0; 5072 } 5073 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5074 return -EFBIG; 5075 5076 if (i_blocks <= 0xffffffffffffULL) { 5077 /* 5078 * i_blocks can be represented in a 48 bit variable 5079 * as multiple of 512 bytes 5080 */ 5081 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5082 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5083 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5084 } else { 5085 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5086 /* i_block is stored in file system block size */ 5087 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5088 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5089 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5090 } 5091 return 0; 5092 } 5093 5094 /* 5095 * Post the struct inode info into an on-disk inode location in the 5096 * buffer-cache. This gobbles the caller's reference to the 5097 * buffer_head in the inode location struct. 5098 * 5099 * The caller must have write access to iloc->bh. 5100 */ 5101 static int ext4_do_update_inode(handle_t *handle, 5102 struct inode *inode, 5103 struct ext4_iloc *iloc) 5104 { 5105 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5106 struct ext4_inode_info *ei = EXT4_I(inode); 5107 struct buffer_head *bh = iloc->bh; 5108 int err = 0, rc, block; 5109 5110 /* For fields not not tracking in the in-memory inode, 5111 * initialise them to zero for new inodes. */ 5112 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5113 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5114 5115 ext4_get_inode_flags(ei); 5116 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5117 if (!(test_opt(inode->i_sb, NO_UID32))) { 5118 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5119 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5120 /* 5121 * Fix up interoperability with old kernels. Otherwise, old inodes get 5122 * re-used with the upper 16 bits of the uid/gid intact 5123 */ 5124 if (!ei->i_dtime) { 5125 raw_inode->i_uid_high = 5126 cpu_to_le16(high_16_bits(inode->i_uid)); 5127 raw_inode->i_gid_high = 5128 cpu_to_le16(high_16_bits(inode->i_gid)); 5129 } else { 5130 raw_inode->i_uid_high = 0; 5131 raw_inode->i_gid_high = 0; 5132 } 5133 } else { 5134 raw_inode->i_uid_low = 5135 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5136 raw_inode->i_gid_low = 5137 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5138 raw_inode->i_uid_high = 0; 5139 raw_inode->i_gid_high = 0; 5140 } 5141 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5142 5143 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5144 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5145 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5146 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5147 5148 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5149 goto out_brelse; 5150 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5151 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5152 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5153 cpu_to_le32(EXT4_OS_HURD)) 5154 raw_inode->i_file_acl_high = 5155 cpu_to_le16(ei->i_file_acl >> 32); 5156 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5157 ext4_isize_set(raw_inode, ei->i_disksize); 5158 if (ei->i_disksize > 0x7fffffffULL) { 5159 struct super_block *sb = inode->i_sb; 5160 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5161 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5162 EXT4_SB(sb)->s_es->s_rev_level == 5163 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5164 /* If this is the first large file 5165 * created, add a flag to the superblock. 5166 */ 5167 err = ext4_journal_get_write_access(handle, 5168 EXT4_SB(sb)->s_sbh); 5169 if (err) 5170 goto out_brelse; 5171 ext4_update_dynamic_rev(sb); 5172 EXT4_SET_RO_COMPAT_FEATURE(sb, 5173 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5174 sb->s_dirt = 1; 5175 ext4_handle_sync(handle); 5176 err = ext4_handle_dirty_metadata(handle, NULL, 5177 EXT4_SB(sb)->s_sbh); 5178 } 5179 } 5180 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5181 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5182 if (old_valid_dev(inode->i_rdev)) { 5183 raw_inode->i_block[0] = 5184 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5185 raw_inode->i_block[1] = 0; 5186 } else { 5187 raw_inode->i_block[0] = 0; 5188 raw_inode->i_block[1] = 5189 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5190 raw_inode->i_block[2] = 0; 5191 } 5192 } else 5193 for (block = 0; block < EXT4_N_BLOCKS; block++) 5194 raw_inode->i_block[block] = ei->i_data[block]; 5195 5196 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5197 if (ei->i_extra_isize) { 5198 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5199 raw_inode->i_version_hi = 5200 cpu_to_le32(inode->i_version >> 32); 5201 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5202 } 5203 5204 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5205 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5206 if (!err) 5207 err = rc; 5208 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5209 5210 ext4_update_inode_fsync_trans(handle, inode, 0); 5211 out_brelse: 5212 brelse(bh); 5213 ext4_std_error(inode->i_sb, err); 5214 return err; 5215 } 5216 5217 /* 5218 * ext4_write_inode() 5219 * 5220 * We are called from a few places: 5221 * 5222 * - Within generic_file_write() for O_SYNC files. 5223 * Here, there will be no transaction running. We wait for any running 5224 * trasnaction to commit. 5225 * 5226 * - Within sys_sync(), kupdate and such. 5227 * We wait on commit, if tol to. 5228 * 5229 * - Within prune_icache() (PF_MEMALLOC == true) 5230 * Here we simply return. We can't afford to block kswapd on the 5231 * journal commit. 5232 * 5233 * In all cases it is actually safe for us to return without doing anything, 5234 * because the inode has been copied into a raw inode buffer in 5235 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5236 * knfsd. 5237 * 5238 * Note that we are absolutely dependent upon all inode dirtiers doing the 5239 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5240 * which we are interested. 5241 * 5242 * It would be a bug for them to not do this. The code: 5243 * 5244 * mark_inode_dirty(inode) 5245 * stuff(); 5246 * inode->i_size = expr; 5247 * 5248 * is in error because a kswapd-driven write_inode() could occur while 5249 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5250 * will no longer be on the superblock's dirty inode list. 5251 */ 5252 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5253 { 5254 int err; 5255 5256 if (current->flags & PF_MEMALLOC) 5257 return 0; 5258 5259 if (EXT4_SB(inode->i_sb)->s_journal) { 5260 if (ext4_journal_current_handle()) { 5261 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5262 dump_stack(); 5263 return -EIO; 5264 } 5265 5266 if (wbc->sync_mode != WB_SYNC_ALL) 5267 return 0; 5268 5269 err = ext4_force_commit(inode->i_sb); 5270 } else { 5271 struct ext4_iloc iloc; 5272 5273 err = __ext4_get_inode_loc(inode, &iloc, 0); 5274 if (err) 5275 return err; 5276 if (wbc->sync_mode == WB_SYNC_ALL) 5277 sync_dirty_buffer(iloc.bh); 5278 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5279 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5280 "IO error syncing inode"); 5281 err = -EIO; 5282 } 5283 brelse(iloc.bh); 5284 } 5285 return err; 5286 } 5287 5288 /* 5289 * ext4_setattr() 5290 * 5291 * Called from notify_change. 5292 * 5293 * We want to trap VFS attempts to truncate the file as soon as 5294 * possible. In particular, we want to make sure that when the VFS 5295 * shrinks i_size, we put the inode on the orphan list and modify 5296 * i_disksize immediately, so that during the subsequent flushing of 5297 * dirty pages and freeing of disk blocks, we can guarantee that any 5298 * commit will leave the blocks being flushed in an unused state on 5299 * disk. (On recovery, the inode will get truncated and the blocks will 5300 * be freed, so we have a strong guarantee that no future commit will 5301 * leave these blocks visible to the user.) 5302 * 5303 * Another thing we have to assure is that if we are in ordered mode 5304 * and inode is still attached to the committing transaction, we must 5305 * we start writeout of all the dirty pages which are being truncated. 5306 * This way we are sure that all the data written in the previous 5307 * transaction are already on disk (truncate waits for pages under 5308 * writeback). 5309 * 5310 * Called with inode->i_mutex down. 5311 */ 5312 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5313 { 5314 struct inode *inode = dentry->d_inode; 5315 int error, rc = 0; 5316 int orphan = 0; 5317 const unsigned int ia_valid = attr->ia_valid; 5318 5319 error = inode_change_ok(inode, attr); 5320 if (error) 5321 return error; 5322 5323 if (is_quota_modification(inode, attr)) 5324 dquot_initialize(inode); 5325 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5326 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5327 handle_t *handle; 5328 5329 /* (user+group)*(old+new) structure, inode write (sb, 5330 * inode block, ? - but truncate inode update has it) */ 5331 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5332 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5333 if (IS_ERR(handle)) { 5334 error = PTR_ERR(handle); 5335 goto err_out; 5336 } 5337 error = dquot_transfer(inode, attr); 5338 if (error) { 5339 ext4_journal_stop(handle); 5340 return error; 5341 } 5342 /* Update corresponding info in inode so that everything is in 5343 * one transaction */ 5344 if (attr->ia_valid & ATTR_UID) 5345 inode->i_uid = attr->ia_uid; 5346 if (attr->ia_valid & ATTR_GID) 5347 inode->i_gid = attr->ia_gid; 5348 error = ext4_mark_inode_dirty(handle, inode); 5349 ext4_journal_stop(handle); 5350 } 5351 5352 if (attr->ia_valid & ATTR_SIZE) { 5353 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5354 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5355 5356 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5357 return -EFBIG; 5358 } 5359 } 5360 5361 if (S_ISREG(inode->i_mode) && 5362 attr->ia_valid & ATTR_SIZE && 5363 (attr->ia_size < inode->i_size || 5364 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) { 5365 handle_t *handle; 5366 5367 handle = ext4_journal_start(inode, 3); 5368 if (IS_ERR(handle)) { 5369 error = PTR_ERR(handle); 5370 goto err_out; 5371 } 5372 if (ext4_handle_valid(handle)) { 5373 error = ext4_orphan_add(handle, inode); 5374 orphan = 1; 5375 } 5376 EXT4_I(inode)->i_disksize = attr->ia_size; 5377 rc = ext4_mark_inode_dirty(handle, inode); 5378 if (!error) 5379 error = rc; 5380 ext4_journal_stop(handle); 5381 5382 if (ext4_should_order_data(inode)) { 5383 error = ext4_begin_ordered_truncate(inode, 5384 attr->ia_size); 5385 if (error) { 5386 /* Do as much error cleanup as possible */ 5387 handle = ext4_journal_start(inode, 3); 5388 if (IS_ERR(handle)) { 5389 ext4_orphan_del(NULL, inode); 5390 goto err_out; 5391 } 5392 ext4_orphan_del(handle, inode); 5393 orphan = 0; 5394 ext4_journal_stop(handle); 5395 goto err_out; 5396 } 5397 } 5398 /* ext4_truncate will clear the flag */ 5399 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) 5400 ext4_truncate(inode); 5401 } 5402 5403 if ((attr->ia_valid & ATTR_SIZE) && 5404 attr->ia_size != i_size_read(inode)) 5405 rc = vmtruncate(inode, attr->ia_size); 5406 5407 if (!rc) { 5408 setattr_copy(inode, attr); 5409 mark_inode_dirty(inode); 5410 } 5411 5412 /* 5413 * If the call to ext4_truncate failed to get a transaction handle at 5414 * all, we need to clean up the in-core orphan list manually. 5415 */ 5416 if (orphan && inode->i_nlink) 5417 ext4_orphan_del(NULL, inode); 5418 5419 if (!rc && (ia_valid & ATTR_MODE)) 5420 rc = ext4_acl_chmod(inode); 5421 5422 err_out: 5423 ext4_std_error(inode->i_sb, error); 5424 if (!error) 5425 error = rc; 5426 return error; 5427 } 5428 5429 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5430 struct kstat *stat) 5431 { 5432 struct inode *inode; 5433 unsigned long delalloc_blocks; 5434 5435 inode = dentry->d_inode; 5436 generic_fillattr(inode, stat); 5437 5438 /* 5439 * We can't update i_blocks if the block allocation is delayed 5440 * otherwise in the case of system crash before the real block 5441 * allocation is done, we will have i_blocks inconsistent with 5442 * on-disk file blocks. 5443 * We always keep i_blocks updated together with real 5444 * allocation. But to not confuse with user, stat 5445 * will return the blocks that include the delayed allocation 5446 * blocks for this file. 5447 */ 5448 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5449 5450 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5451 return 0; 5452 } 5453 5454 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5455 int chunk) 5456 { 5457 int indirects; 5458 5459 /* if nrblocks are contiguous */ 5460 if (chunk) { 5461 /* 5462 * With N contiguous data blocks, it need at most 5463 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5464 * 2 dindirect blocks 5465 * 1 tindirect block 5466 */ 5467 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5468 return indirects + 3; 5469 } 5470 /* 5471 * if nrblocks are not contiguous, worse case, each block touch 5472 * a indirect block, and each indirect block touch a double indirect 5473 * block, plus a triple indirect block 5474 */ 5475 indirects = nrblocks * 2 + 1; 5476 return indirects; 5477 } 5478 5479 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5480 { 5481 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5482 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5483 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5484 } 5485 5486 /* 5487 * Account for index blocks, block groups bitmaps and block group 5488 * descriptor blocks if modify datablocks and index blocks 5489 * worse case, the indexs blocks spread over different block groups 5490 * 5491 * If datablocks are discontiguous, they are possible to spread over 5492 * different block groups too. If they are contiuguous, with flexbg, 5493 * they could still across block group boundary. 5494 * 5495 * Also account for superblock, inode, quota and xattr blocks 5496 */ 5497 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5498 { 5499 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5500 int gdpblocks; 5501 int idxblocks; 5502 int ret = 0; 5503 5504 /* 5505 * How many index blocks need to touch to modify nrblocks? 5506 * The "Chunk" flag indicating whether the nrblocks is 5507 * physically contiguous on disk 5508 * 5509 * For Direct IO and fallocate, they calls get_block to allocate 5510 * one single extent at a time, so they could set the "Chunk" flag 5511 */ 5512 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5513 5514 ret = idxblocks; 5515 5516 /* 5517 * Now let's see how many group bitmaps and group descriptors need 5518 * to account 5519 */ 5520 groups = idxblocks; 5521 if (chunk) 5522 groups += 1; 5523 else 5524 groups += nrblocks; 5525 5526 gdpblocks = groups; 5527 if (groups > ngroups) 5528 groups = ngroups; 5529 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5530 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5531 5532 /* bitmaps and block group descriptor blocks */ 5533 ret += groups + gdpblocks; 5534 5535 /* Blocks for super block, inode, quota and xattr blocks */ 5536 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5537 5538 return ret; 5539 } 5540 5541 /* 5542 * Calulate the total number of credits to reserve to fit 5543 * the modification of a single pages into a single transaction, 5544 * which may include multiple chunks of block allocations. 5545 * 5546 * This could be called via ext4_write_begin() 5547 * 5548 * We need to consider the worse case, when 5549 * one new block per extent. 5550 */ 5551 int ext4_writepage_trans_blocks(struct inode *inode) 5552 { 5553 int bpp = ext4_journal_blocks_per_page(inode); 5554 int ret; 5555 5556 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5557 5558 /* Account for data blocks for journalled mode */ 5559 if (ext4_should_journal_data(inode)) 5560 ret += bpp; 5561 return ret; 5562 } 5563 5564 /* 5565 * Calculate the journal credits for a chunk of data modification. 5566 * 5567 * This is called from DIO, fallocate or whoever calling 5568 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5569 * 5570 * journal buffers for data blocks are not included here, as DIO 5571 * and fallocate do no need to journal data buffers. 5572 */ 5573 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5574 { 5575 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5576 } 5577 5578 /* 5579 * The caller must have previously called ext4_reserve_inode_write(). 5580 * Give this, we know that the caller already has write access to iloc->bh. 5581 */ 5582 int ext4_mark_iloc_dirty(handle_t *handle, 5583 struct inode *inode, struct ext4_iloc *iloc) 5584 { 5585 int err = 0; 5586 5587 if (test_opt(inode->i_sb, I_VERSION)) 5588 inode_inc_iversion(inode); 5589 5590 /* the do_update_inode consumes one bh->b_count */ 5591 get_bh(iloc->bh); 5592 5593 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5594 err = ext4_do_update_inode(handle, inode, iloc); 5595 put_bh(iloc->bh); 5596 return err; 5597 } 5598 5599 /* 5600 * On success, We end up with an outstanding reference count against 5601 * iloc->bh. This _must_ be cleaned up later. 5602 */ 5603 5604 int 5605 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5606 struct ext4_iloc *iloc) 5607 { 5608 int err; 5609 5610 err = ext4_get_inode_loc(inode, iloc); 5611 if (!err) { 5612 BUFFER_TRACE(iloc->bh, "get_write_access"); 5613 err = ext4_journal_get_write_access(handle, iloc->bh); 5614 if (err) { 5615 brelse(iloc->bh); 5616 iloc->bh = NULL; 5617 } 5618 } 5619 ext4_std_error(inode->i_sb, err); 5620 return err; 5621 } 5622 5623 /* 5624 * Expand an inode by new_extra_isize bytes. 5625 * Returns 0 on success or negative error number on failure. 5626 */ 5627 static int ext4_expand_extra_isize(struct inode *inode, 5628 unsigned int new_extra_isize, 5629 struct ext4_iloc iloc, 5630 handle_t *handle) 5631 { 5632 struct ext4_inode *raw_inode; 5633 struct ext4_xattr_ibody_header *header; 5634 5635 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5636 return 0; 5637 5638 raw_inode = ext4_raw_inode(&iloc); 5639 5640 header = IHDR(inode, raw_inode); 5641 5642 /* No extended attributes present */ 5643 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5644 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5645 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5646 new_extra_isize); 5647 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5648 return 0; 5649 } 5650 5651 /* try to expand with EAs present */ 5652 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5653 raw_inode, handle); 5654 } 5655 5656 /* 5657 * What we do here is to mark the in-core inode as clean with respect to inode 5658 * dirtiness (it may still be data-dirty). 5659 * This means that the in-core inode may be reaped by prune_icache 5660 * without having to perform any I/O. This is a very good thing, 5661 * because *any* task may call prune_icache - even ones which 5662 * have a transaction open against a different journal. 5663 * 5664 * Is this cheating? Not really. Sure, we haven't written the 5665 * inode out, but prune_icache isn't a user-visible syncing function. 5666 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5667 * we start and wait on commits. 5668 * 5669 * Is this efficient/effective? Well, we're being nice to the system 5670 * by cleaning up our inodes proactively so they can be reaped 5671 * without I/O. But we are potentially leaving up to five seconds' 5672 * worth of inodes floating about which prune_icache wants us to 5673 * write out. One way to fix that would be to get prune_icache() 5674 * to do a write_super() to free up some memory. It has the desired 5675 * effect. 5676 */ 5677 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5678 { 5679 struct ext4_iloc iloc; 5680 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5681 static unsigned int mnt_count; 5682 int err, ret; 5683 5684 might_sleep(); 5685 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5686 err = ext4_reserve_inode_write(handle, inode, &iloc); 5687 if (ext4_handle_valid(handle) && 5688 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5689 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5690 /* 5691 * We need extra buffer credits since we may write into EA block 5692 * with this same handle. If journal_extend fails, then it will 5693 * only result in a minor loss of functionality for that inode. 5694 * If this is felt to be critical, then e2fsck should be run to 5695 * force a large enough s_min_extra_isize. 5696 */ 5697 if ((jbd2_journal_extend(handle, 5698 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5699 ret = ext4_expand_extra_isize(inode, 5700 sbi->s_want_extra_isize, 5701 iloc, handle); 5702 if (ret) { 5703 ext4_set_inode_state(inode, 5704 EXT4_STATE_NO_EXPAND); 5705 if (mnt_count != 5706 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5707 ext4_warning(inode->i_sb, 5708 "Unable to expand inode %lu. Delete" 5709 " some EAs or run e2fsck.", 5710 inode->i_ino); 5711 mnt_count = 5712 le16_to_cpu(sbi->s_es->s_mnt_count); 5713 } 5714 } 5715 } 5716 } 5717 if (!err) 5718 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5719 return err; 5720 } 5721 5722 /* 5723 * ext4_dirty_inode() is called from __mark_inode_dirty() 5724 * 5725 * We're really interested in the case where a file is being extended. 5726 * i_size has been changed by generic_commit_write() and we thus need 5727 * to include the updated inode in the current transaction. 5728 * 5729 * Also, dquot_alloc_block() will always dirty the inode when blocks 5730 * are allocated to the file. 5731 * 5732 * If the inode is marked synchronous, we don't honour that here - doing 5733 * so would cause a commit on atime updates, which we don't bother doing. 5734 * We handle synchronous inodes at the highest possible level. 5735 */ 5736 void ext4_dirty_inode(struct inode *inode) 5737 { 5738 handle_t *handle; 5739 5740 handle = ext4_journal_start(inode, 2); 5741 if (IS_ERR(handle)) 5742 goto out; 5743 5744 ext4_mark_inode_dirty(handle, inode); 5745 5746 ext4_journal_stop(handle); 5747 out: 5748 return; 5749 } 5750 5751 #if 0 5752 /* 5753 * Bind an inode's backing buffer_head into this transaction, to prevent 5754 * it from being flushed to disk early. Unlike 5755 * ext4_reserve_inode_write, this leaves behind no bh reference and 5756 * returns no iloc structure, so the caller needs to repeat the iloc 5757 * lookup to mark the inode dirty later. 5758 */ 5759 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5760 { 5761 struct ext4_iloc iloc; 5762 5763 int err = 0; 5764 if (handle) { 5765 err = ext4_get_inode_loc(inode, &iloc); 5766 if (!err) { 5767 BUFFER_TRACE(iloc.bh, "get_write_access"); 5768 err = jbd2_journal_get_write_access(handle, iloc.bh); 5769 if (!err) 5770 err = ext4_handle_dirty_metadata(handle, 5771 NULL, 5772 iloc.bh); 5773 brelse(iloc.bh); 5774 } 5775 } 5776 ext4_std_error(inode->i_sb, err); 5777 return err; 5778 } 5779 #endif 5780 5781 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5782 { 5783 journal_t *journal; 5784 handle_t *handle; 5785 int err; 5786 5787 /* 5788 * We have to be very careful here: changing a data block's 5789 * journaling status dynamically is dangerous. If we write a 5790 * data block to the journal, change the status and then delete 5791 * that block, we risk forgetting to revoke the old log record 5792 * from the journal and so a subsequent replay can corrupt data. 5793 * So, first we make sure that the journal is empty and that 5794 * nobody is changing anything. 5795 */ 5796 5797 journal = EXT4_JOURNAL(inode); 5798 if (!journal) 5799 return 0; 5800 if (is_journal_aborted(journal)) 5801 return -EROFS; 5802 5803 jbd2_journal_lock_updates(journal); 5804 jbd2_journal_flush(journal); 5805 5806 /* 5807 * OK, there are no updates running now, and all cached data is 5808 * synced to disk. We are now in a completely consistent state 5809 * which doesn't have anything in the journal, and we know that 5810 * no filesystem updates are running, so it is safe to modify 5811 * the inode's in-core data-journaling state flag now. 5812 */ 5813 5814 if (val) 5815 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5816 else 5817 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5818 ext4_set_aops(inode); 5819 5820 jbd2_journal_unlock_updates(journal); 5821 5822 /* Finally we can mark the inode as dirty. */ 5823 5824 handle = ext4_journal_start(inode, 1); 5825 if (IS_ERR(handle)) 5826 return PTR_ERR(handle); 5827 5828 err = ext4_mark_inode_dirty(handle, inode); 5829 ext4_handle_sync(handle); 5830 ext4_journal_stop(handle); 5831 ext4_std_error(inode->i_sb, err); 5832 5833 return err; 5834 } 5835 5836 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5837 { 5838 return !buffer_mapped(bh); 5839 } 5840 5841 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5842 { 5843 struct page *page = vmf->page; 5844 loff_t size; 5845 unsigned long len; 5846 int ret = -EINVAL; 5847 void *fsdata; 5848 struct file *file = vma->vm_file; 5849 struct inode *inode = file->f_path.dentry->d_inode; 5850 struct address_space *mapping = inode->i_mapping; 5851 5852 /* 5853 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5854 * get i_mutex because we are already holding mmap_sem. 5855 */ 5856 down_read(&inode->i_alloc_sem); 5857 size = i_size_read(inode); 5858 if (page->mapping != mapping || size <= page_offset(page) 5859 || !PageUptodate(page)) { 5860 /* page got truncated from under us? */ 5861 goto out_unlock; 5862 } 5863 ret = 0; 5864 if (PageMappedToDisk(page)) 5865 goto out_unlock; 5866 5867 if (page->index == size >> PAGE_CACHE_SHIFT) 5868 len = size & ~PAGE_CACHE_MASK; 5869 else 5870 len = PAGE_CACHE_SIZE; 5871 5872 lock_page(page); 5873 /* 5874 * return if we have all the buffers mapped. This avoid 5875 * the need to call write_begin/write_end which does a 5876 * journal_start/journal_stop which can block and take 5877 * long time 5878 */ 5879 if (page_has_buffers(page)) { 5880 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5881 ext4_bh_unmapped)) { 5882 unlock_page(page); 5883 goto out_unlock; 5884 } 5885 } 5886 unlock_page(page); 5887 /* 5888 * OK, we need to fill the hole... Do write_begin write_end 5889 * to do block allocation/reservation.We are not holding 5890 * inode.i__mutex here. That allow * parallel write_begin, 5891 * write_end call. lock_page prevent this from happening 5892 * on the same page though 5893 */ 5894 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5895 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5896 if (ret < 0) 5897 goto out_unlock; 5898 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5899 len, len, page, fsdata); 5900 if (ret < 0) 5901 goto out_unlock; 5902 ret = 0; 5903 out_unlock: 5904 if (ret) 5905 ret = VM_FAULT_SIGBUS; 5906 up_read(&inode->i_alloc_sem); 5907 return ret; 5908 } 5909