xref: /linux/fs/ext4/inode.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	return jbd2_journal_begin_ordered_truncate(
55 					EXT4_SB(inode->i_sb)->s_journal,
56 					&EXT4_I(inode)->jinode,
57 					new_size);
58 }
59 
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61 
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 		(inode->i_sb->s_blocksize >> 9) : 0;
69 
70 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72 
73 /*
74  * The ext4 forget function must perform a revoke if we are freeing data
75  * which has been journaled.  Metadata (eg. indirect blocks) must be
76  * revoked in all cases.
77  *
78  * "bh" may be NULL: a metadata block may have been freed from memory
79  * but there may still be a record of it in the journal, and that record
80  * still needs to be revoked.
81  *
82  * If the handle isn't valid we're not journaling, but we still need to
83  * call into ext4_journal_revoke() to put the buffer head.
84  */
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 		struct buffer_head *bh, ext4_fsblk_t blocknr)
87 {
88 	int err;
89 
90 	might_sleep();
91 
92 	BUFFER_TRACE(bh, "enter");
93 
94 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 		  "data mode %x\n",
96 		  bh, is_metadata, inode->i_mode,
97 		  test_opt(inode->i_sb, DATA_FLAGS));
98 
99 	/* Never use the revoke function if we are doing full data
100 	 * journaling: there is no need to, and a V1 superblock won't
101 	 * support it.  Otherwise, only skip the revoke on un-journaled
102 	 * data blocks. */
103 
104 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 	    (!is_metadata && !ext4_should_journal_data(inode))) {
106 		if (bh) {
107 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 			return ext4_journal_forget(handle, bh);
109 		}
110 		return 0;
111 	}
112 
113 	/*
114 	 * data!=journal && (is_metadata || should_journal_data(inode))
115 	 */
116 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 	err = ext4_journal_revoke(handle, blocknr, bh);
118 	if (err)
119 		ext4_abort(inode->i_sb, __func__,
120 			   "error %d when attempting revoke", err);
121 	BUFFER_TRACE(bh, "exit");
122 	return err;
123 }
124 
125 /*
126  * Work out how many blocks we need to proceed with the next chunk of a
127  * truncate transaction.
128  */
129 static unsigned long blocks_for_truncate(struct inode *inode)
130 {
131 	ext4_lblk_t needed;
132 
133 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134 
135 	/* Give ourselves just enough room to cope with inodes in which
136 	 * i_blocks is corrupt: we've seen disk corruptions in the past
137 	 * which resulted in random data in an inode which looked enough
138 	 * like a regular file for ext4 to try to delete it.  Things
139 	 * will go a bit crazy if that happens, but at least we should
140 	 * try not to panic the whole kernel. */
141 	if (needed < 2)
142 		needed = 2;
143 
144 	/* But we need to bound the transaction so we don't overflow the
145 	 * journal. */
146 	if (needed > EXT4_MAX_TRANS_DATA)
147 		needed = EXT4_MAX_TRANS_DATA;
148 
149 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
150 }
151 
152 /*
153  * Truncate transactions can be complex and absolutely huge.  So we need to
154  * be able to restart the transaction at a conventient checkpoint to make
155  * sure we don't overflow the journal.
156  *
157  * start_transaction gets us a new handle for a truncate transaction,
158  * and extend_transaction tries to extend the existing one a bit.  If
159  * extend fails, we need to propagate the failure up and restart the
160  * transaction in the top-level truncate loop. --sct
161  */
162 static handle_t *start_transaction(struct inode *inode)
163 {
164 	handle_t *result;
165 
166 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 	if (!IS_ERR(result))
168 		return result;
169 
170 	ext4_std_error(inode->i_sb, PTR_ERR(result));
171 	return result;
172 }
173 
174 /*
175  * Try to extend this transaction for the purposes of truncation.
176  *
177  * Returns 0 if we managed to create more room.  If we can't create more
178  * room, and the transaction must be restarted we return 1.
179  */
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 {
182 	if (!ext4_handle_valid(handle))
183 		return 0;
184 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 		return 0;
186 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 		return 0;
188 	return 1;
189 }
190 
191 /*
192  * Restart the transaction associated with *handle.  This does a commit,
193  * so before we call here everything must be consistently dirtied against
194  * this transaction.
195  */
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 				 int nblocks)
198 {
199 	int ret;
200 
201 	/*
202 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 	 * moment, get_block can be called only for blocks inside i_size since
204 	 * page cache has been already dropped and writes are blocked by
205 	 * i_mutex. So we can safely drop the i_data_sem here.
206 	 */
207 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 	jbd_debug(2, "restarting handle %p\n", handle);
209 	up_write(&EXT4_I(inode)->i_data_sem);
210 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 	down_write(&EXT4_I(inode)->i_data_sem);
212 	ext4_discard_preallocations(inode);
213 
214 	return ret;
215 }
216 
217 /*
218  * Called at the last iput() if i_nlink is zero.
219  */
220 void ext4_delete_inode(struct inode *inode)
221 {
222 	handle_t *handle;
223 	int err;
224 
225 	if (ext4_should_order_data(inode))
226 		ext4_begin_ordered_truncate(inode, 0);
227 	truncate_inode_pages(&inode->i_data, 0);
228 
229 	if (is_bad_inode(inode))
230 		goto no_delete;
231 
232 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 	if (IS_ERR(handle)) {
234 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
235 		/*
236 		 * If we're going to skip the normal cleanup, we still need to
237 		 * make sure that the in-core orphan linked list is properly
238 		 * cleaned up.
239 		 */
240 		ext4_orphan_del(NULL, inode);
241 		goto no_delete;
242 	}
243 
244 	if (IS_SYNC(inode))
245 		ext4_handle_sync(handle);
246 	inode->i_size = 0;
247 	err = ext4_mark_inode_dirty(handle, inode);
248 	if (err) {
249 		ext4_warning(inode->i_sb, __func__,
250 			     "couldn't mark inode dirty (err %d)", err);
251 		goto stop_handle;
252 	}
253 	if (inode->i_blocks)
254 		ext4_truncate(inode);
255 
256 	/*
257 	 * ext4_ext_truncate() doesn't reserve any slop when it
258 	 * restarts journal transactions; therefore there may not be
259 	 * enough credits left in the handle to remove the inode from
260 	 * the orphan list and set the dtime field.
261 	 */
262 	if (!ext4_handle_has_enough_credits(handle, 3)) {
263 		err = ext4_journal_extend(handle, 3);
264 		if (err > 0)
265 			err = ext4_journal_restart(handle, 3);
266 		if (err != 0) {
267 			ext4_warning(inode->i_sb, __func__,
268 				     "couldn't extend journal (err %d)", err);
269 		stop_handle:
270 			ext4_journal_stop(handle);
271 			goto no_delete;
272 		}
273 	}
274 
275 	/*
276 	 * Kill off the orphan record which ext4_truncate created.
277 	 * AKPM: I think this can be inside the above `if'.
278 	 * Note that ext4_orphan_del() has to be able to cope with the
279 	 * deletion of a non-existent orphan - this is because we don't
280 	 * know if ext4_truncate() actually created an orphan record.
281 	 * (Well, we could do this if we need to, but heck - it works)
282 	 */
283 	ext4_orphan_del(handle, inode);
284 	EXT4_I(inode)->i_dtime	= get_seconds();
285 
286 	/*
287 	 * One subtle ordering requirement: if anything has gone wrong
288 	 * (transaction abort, IO errors, whatever), then we can still
289 	 * do these next steps (the fs will already have been marked as
290 	 * having errors), but we can't free the inode if the mark_dirty
291 	 * fails.
292 	 */
293 	if (ext4_mark_inode_dirty(handle, inode))
294 		/* If that failed, just do the required in-core inode clear. */
295 		clear_inode(inode);
296 	else
297 		ext4_free_inode(handle, inode);
298 	ext4_journal_stop(handle);
299 	return;
300 no_delete:
301 	clear_inode(inode);	/* We must guarantee clearing of inode... */
302 }
303 
304 typedef struct {
305 	__le32	*p;
306 	__le32	key;
307 	struct buffer_head *bh;
308 } Indirect;
309 
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
311 {
312 	p->key = *(p->p = v);
313 	p->bh = bh;
314 }
315 
316 /**
317  *	ext4_block_to_path - parse the block number into array of offsets
318  *	@inode: inode in question (we are only interested in its superblock)
319  *	@i_block: block number to be parsed
320  *	@offsets: array to store the offsets in
321  *	@boundary: set this non-zero if the referred-to block is likely to be
322  *	       followed (on disk) by an indirect block.
323  *
324  *	To store the locations of file's data ext4 uses a data structure common
325  *	for UNIX filesystems - tree of pointers anchored in the inode, with
326  *	data blocks at leaves and indirect blocks in intermediate nodes.
327  *	This function translates the block number into path in that tree -
328  *	return value is the path length and @offsets[n] is the offset of
329  *	pointer to (n+1)th node in the nth one. If @block is out of range
330  *	(negative or too large) warning is printed and zero returned.
331  *
332  *	Note: function doesn't find node addresses, so no IO is needed. All
333  *	we need to know is the capacity of indirect blocks (taken from the
334  *	inode->i_sb).
335  */
336 
337 /*
338  * Portability note: the last comparison (check that we fit into triple
339  * indirect block) is spelled differently, because otherwise on an
340  * architecture with 32-bit longs and 8Kb pages we might get into trouble
341  * if our filesystem had 8Kb blocks. We might use long long, but that would
342  * kill us on x86. Oh, well, at least the sign propagation does not matter -
343  * i_block would have to be negative in the very beginning, so we would not
344  * get there at all.
345  */
346 
347 static int ext4_block_to_path(struct inode *inode,
348 			      ext4_lblk_t i_block,
349 			      ext4_lblk_t offsets[4], int *boundary)
350 {
351 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 	const long direct_blocks = EXT4_NDIR_BLOCKS,
354 		indirect_blocks = ptrs,
355 		double_blocks = (1 << (ptrs_bits * 2));
356 	int n = 0;
357 	int final = 0;
358 
359 	if (i_block < direct_blocks) {
360 		offsets[n++] = i_block;
361 		final = direct_blocks;
362 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
363 		offsets[n++] = EXT4_IND_BLOCK;
364 		offsets[n++] = i_block;
365 		final = ptrs;
366 	} else if ((i_block -= indirect_blocks) < double_blocks) {
367 		offsets[n++] = EXT4_DIND_BLOCK;
368 		offsets[n++] = i_block >> ptrs_bits;
369 		offsets[n++] = i_block & (ptrs - 1);
370 		final = ptrs;
371 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 		offsets[n++] = EXT4_TIND_BLOCK;
373 		offsets[n++] = i_block >> (ptrs_bits * 2);
374 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 		offsets[n++] = i_block & (ptrs - 1);
376 		final = ptrs;
377 	} else {
378 		ext4_warning(inode->i_sb, "ext4_block_to_path",
379 			     "block %lu > max in inode %lu",
380 			     i_block + direct_blocks +
381 			     indirect_blocks + double_blocks, inode->i_ino);
382 	}
383 	if (boundary)
384 		*boundary = final - 1 - (i_block & (ptrs - 1));
385 	return n;
386 }
387 
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 				 __le32 *p, unsigned int max)
390 {
391 	__le32 *bref = p;
392 	unsigned int blk;
393 
394 	while (bref < p+max) {
395 		blk = le32_to_cpu(*bref++);
396 		if (blk &&
397 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 						    blk, 1))) {
399 			ext4_error(inode->i_sb, function,
400 				   "invalid block reference %u "
401 				   "in inode #%lu", blk, inode->i_ino);
402 			return -EIO;
403 		}
404 	}
405 	return 0;
406 }
407 
408 
409 #define ext4_check_indirect_blockref(inode, bh)                         \
410 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
411 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
412 
413 #define ext4_check_inode_blockref(inode)                                \
414 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
415 			      EXT4_NDIR_BLOCKS)
416 
417 /**
418  *	ext4_get_branch - read the chain of indirect blocks leading to data
419  *	@inode: inode in question
420  *	@depth: depth of the chain (1 - direct pointer, etc.)
421  *	@offsets: offsets of pointers in inode/indirect blocks
422  *	@chain: place to store the result
423  *	@err: here we store the error value
424  *
425  *	Function fills the array of triples <key, p, bh> and returns %NULL
426  *	if everything went OK or the pointer to the last filled triple
427  *	(incomplete one) otherwise. Upon the return chain[i].key contains
428  *	the number of (i+1)-th block in the chain (as it is stored in memory,
429  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
430  *	number (it points into struct inode for i==0 and into the bh->b_data
431  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432  *	block for i>0 and NULL for i==0. In other words, it holds the block
433  *	numbers of the chain, addresses they were taken from (and where we can
434  *	verify that chain did not change) and buffer_heads hosting these
435  *	numbers.
436  *
437  *	Function stops when it stumbles upon zero pointer (absent block)
438  *		(pointer to last triple returned, *@err == 0)
439  *	or when it gets an IO error reading an indirect block
440  *		(ditto, *@err == -EIO)
441  *	or when it reads all @depth-1 indirect blocks successfully and finds
442  *	the whole chain, all way to the data (returns %NULL, *err == 0).
443  *
444  *      Need to be called with
445  *      down_read(&EXT4_I(inode)->i_data_sem)
446  */
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 				 ext4_lblk_t  *offsets,
449 				 Indirect chain[4], int *err)
450 {
451 	struct super_block *sb = inode->i_sb;
452 	Indirect *p = chain;
453 	struct buffer_head *bh;
454 
455 	*err = 0;
456 	/* i_data is not going away, no lock needed */
457 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 	if (!p->key)
459 		goto no_block;
460 	while (--depth) {
461 		bh = sb_getblk(sb, le32_to_cpu(p->key));
462 		if (unlikely(!bh))
463 			goto failure;
464 
465 		if (!bh_uptodate_or_lock(bh)) {
466 			if (bh_submit_read(bh) < 0) {
467 				put_bh(bh);
468 				goto failure;
469 			}
470 			/* validate block references */
471 			if (ext4_check_indirect_blockref(inode, bh)) {
472 				put_bh(bh);
473 				goto failure;
474 			}
475 		}
476 
477 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 		/* Reader: end */
479 		if (!p->key)
480 			goto no_block;
481 	}
482 	return NULL;
483 
484 failure:
485 	*err = -EIO;
486 no_block:
487 	return p;
488 }
489 
490 /**
491  *	ext4_find_near - find a place for allocation with sufficient locality
492  *	@inode: owner
493  *	@ind: descriptor of indirect block.
494  *
495  *	This function returns the preferred place for block allocation.
496  *	It is used when heuristic for sequential allocation fails.
497  *	Rules are:
498  *	  + if there is a block to the left of our position - allocate near it.
499  *	  + if pointer will live in indirect block - allocate near that block.
500  *	  + if pointer will live in inode - allocate in the same
501  *	    cylinder group.
502  *
503  * In the latter case we colour the starting block by the callers PID to
504  * prevent it from clashing with concurrent allocations for a different inode
505  * in the same block group.   The PID is used here so that functionally related
506  * files will be close-by on-disk.
507  *
508  *	Caller must make sure that @ind is valid and will stay that way.
509  */
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
511 {
512 	struct ext4_inode_info *ei = EXT4_I(inode);
513 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 	__le32 *p;
515 	ext4_fsblk_t bg_start;
516 	ext4_fsblk_t last_block;
517 	ext4_grpblk_t colour;
518 	ext4_group_t block_group;
519 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
520 
521 	/* Try to find previous block */
522 	for (p = ind->p - 1; p >= start; p--) {
523 		if (*p)
524 			return le32_to_cpu(*p);
525 	}
526 
527 	/* No such thing, so let's try location of indirect block */
528 	if (ind->bh)
529 		return ind->bh->b_blocknr;
530 
531 	/*
532 	 * It is going to be referred to from the inode itself? OK, just put it
533 	 * into the same cylinder group then.
534 	 */
535 	block_group = ei->i_block_group;
536 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 		block_group &= ~(flex_size-1);
538 		if (S_ISREG(inode->i_mode))
539 			block_group++;
540 	}
541 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
543 
544 	/*
545 	 * If we are doing delayed allocation, we don't need take
546 	 * colour into account.
547 	 */
548 	if (test_opt(inode->i_sb, DELALLOC))
549 		return bg_start;
550 
551 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 		colour = (current->pid % 16) *
553 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 	else
555 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 	return bg_start + colour;
557 }
558 
559 /**
560  *	ext4_find_goal - find a preferred place for allocation.
561  *	@inode: owner
562  *	@block:  block we want
563  *	@partial: pointer to the last triple within a chain
564  *
565  *	Normally this function find the preferred place for block allocation,
566  *	returns it.
567  *	Because this is only used for non-extent files, we limit the block nr
568  *	to 32 bits.
569  */
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 				   Indirect *partial)
572 {
573 	ext4_fsblk_t goal;
574 
575 	/*
576 	 * XXX need to get goal block from mballoc's data structures
577 	 */
578 
579 	goal = ext4_find_near(inode, partial);
580 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 	return goal;
582 }
583 
584 /**
585  *	ext4_blks_to_allocate: Look up the block map and count the number
586  *	of direct blocks need to be allocated for the given branch.
587  *
588  *	@branch: chain of indirect blocks
589  *	@k: number of blocks need for indirect blocks
590  *	@blks: number of data blocks to be mapped.
591  *	@blocks_to_boundary:  the offset in the indirect block
592  *
593  *	return the total number of blocks to be allocate, including the
594  *	direct and indirect blocks.
595  */
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 				 int blocks_to_boundary)
598 {
599 	unsigned int count = 0;
600 
601 	/*
602 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 	 * then it's clear blocks on that path have not allocated
604 	 */
605 	if (k > 0) {
606 		/* right now we don't handle cross boundary allocation */
607 		if (blks < blocks_to_boundary + 1)
608 			count += blks;
609 		else
610 			count += blocks_to_boundary + 1;
611 		return count;
612 	}
613 
614 	count++;
615 	while (count < blks && count <= blocks_to_boundary &&
616 		le32_to_cpu(*(branch[0].p + count)) == 0) {
617 		count++;
618 	}
619 	return count;
620 }
621 
622 /**
623  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
624  *	@indirect_blks: the number of blocks need to allocate for indirect
625  *			blocks
626  *
627  *	@new_blocks: on return it will store the new block numbers for
628  *	the indirect blocks(if needed) and the first direct block,
629  *	@blks:	on return it will store the total number of allocated
630  *		direct blocks
631  */
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
634 			     int indirect_blks, int blks,
635 			     ext4_fsblk_t new_blocks[4], int *err)
636 {
637 	struct ext4_allocation_request ar;
638 	int target, i;
639 	unsigned long count = 0, blk_allocated = 0;
640 	int index = 0;
641 	ext4_fsblk_t current_block = 0;
642 	int ret = 0;
643 
644 	/*
645 	 * Here we try to allocate the requested multiple blocks at once,
646 	 * on a best-effort basis.
647 	 * To build a branch, we should allocate blocks for
648 	 * the indirect blocks(if not allocated yet), and at least
649 	 * the first direct block of this branch.  That's the
650 	 * minimum number of blocks need to allocate(required)
651 	 */
652 	/* first we try to allocate the indirect blocks */
653 	target = indirect_blks;
654 	while (target > 0) {
655 		count = target;
656 		/* allocating blocks for indirect blocks and direct blocks */
657 		current_block = ext4_new_meta_blocks(handle, inode,
658 							goal, &count, err);
659 		if (*err)
660 			goto failed_out;
661 
662 		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
663 
664 		target -= count;
665 		/* allocate blocks for indirect blocks */
666 		while (index < indirect_blks && count) {
667 			new_blocks[index++] = current_block++;
668 			count--;
669 		}
670 		if (count > 0) {
671 			/*
672 			 * save the new block number
673 			 * for the first direct block
674 			 */
675 			new_blocks[index] = current_block;
676 			printk(KERN_INFO "%s returned more blocks than "
677 						"requested\n", __func__);
678 			WARN_ON(1);
679 			break;
680 		}
681 	}
682 
683 	target = blks - count ;
684 	blk_allocated = count;
685 	if (!target)
686 		goto allocated;
687 	/* Now allocate data blocks */
688 	memset(&ar, 0, sizeof(ar));
689 	ar.inode = inode;
690 	ar.goal = goal;
691 	ar.len = target;
692 	ar.logical = iblock;
693 	if (S_ISREG(inode->i_mode))
694 		/* enable in-core preallocation only for regular files */
695 		ar.flags = EXT4_MB_HINT_DATA;
696 
697 	current_block = ext4_mb_new_blocks(handle, &ar, err);
698 	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
699 
700 	if (*err && (target == blks)) {
701 		/*
702 		 * if the allocation failed and we didn't allocate
703 		 * any blocks before
704 		 */
705 		goto failed_out;
706 	}
707 	if (!*err) {
708 		if (target == blks) {
709 			/*
710 			 * save the new block number
711 			 * for the first direct block
712 			 */
713 			new_blocks[index] = current_block;
714 		}
715 		blk_allocated += ar.len;
716 	}
717 allocated:
718 	/* total number of blocks allocated for direct blocks */
719 	ret = blk_allocated;
720 	*err = 0;
721 	return ret;
722 failed_out:
723 	for (i = 0; i < index; i++)
724 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 	return ret;
726 }
727 
728 /**
729  *	ext4_alloc_branch - allocate and set up a chain of blocks.
730  *	@inode: owner
731  *	@indirect_blks: number of allocated indirect blocks
732  *	@blks: number of allocated direct blocks
733  *	@offsets: offsets (in the blocks) to store the pointers to next.
734  *	@branch: place to store the chain in.
735  *
736  *	This function allocates blocks, zeroes out all but the last one,
737  *	links them into chain and (if we are synchronous) writes them to disk.
738  *	In other words, it prepares a branch that can be spliced onto the
739  *	inode. It stores the information about that chain in the branch[], in
740  *	the same format as ext4_get_branch() would do. We are calling it after
741  *	we had read the existing part of chain and partial points to the last
742  *	triple of that (one with zero ->key). Upon the exit we have the same
743  *	picture as after the successful ext4_get_block(), except that in one
744  *	place chain is disconnected - *branch->p is still zero (we did not
745  *	set the last link), but branch->key contains the number that should
746  *	be placed into *branch->p to fill that gap.
747  *
748  *	If allocation fails we free all blocks we've allocated (and forget
749  *	their buffer_heads) and return the error value the from failed
750  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751  *	as described above and return 0.
752  */
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 			     ext4_lblk_t iblock, int indirect_blks,
755 			     int *blks, ext4_fsblk_t goal,
756 			     ext4_lblk_t *offsets, Indirect *branch)
757 {
758 	int blocksize = inode->i_sb->s_blocksize;
759 	int i, n = 0;
760 	int err = 0;
761 	struct buffer_head *bh;
762 	int num;
763 	ext4_fsblk_t new_blocks[4];
764 	ext4_fsblk_t current_block;
765 
766 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 				*blks, new_blocks, &err);
768 	if (err)
769 		return err;
770 
771 	branch[0].key = cpu_to_le32(new_blocks[0]);
772 	/*
773 	 * metadata blocks and data blocks are allocated.
774 	 */
775 	for (n = 1; n <= indirect_blks;  n++) {
776 		/*
777 		 * Get buffer_head for parent block, zero it out
778 		 * and set the pointer to new one, then send
779 		 * parent to disk.
780 		 */
781 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 		branch[n].bh = bh;
783 		lock_buffer(bh);
784 		BUFFER_TRACE(bh, "call get_create_access");
785 		err = ext4_journal_get_create_access(handle, bh);
786 		if (err) {
787 			/* Don't brelse(bh) here; it's done in
788 			 * ext4_journal_forget() below */
789 			unlock_buffer(bh);
790 			goto failed;
791 		}
792 
793 		memset(bh->b_data, 0, blocksize);
794 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 		branch[n].key = cpu_to_le32(new_blocks[n]);
796 		*branch[n].p = branch[n].key;
797 		if (n == indirect_blks) {
798 			current_block = new_blocks[n];
799 			/*
800 			 * End of chain, update the last new metablock of
801 			 * the chain to point to the new allocated
802 			 * data blocks numbers
803 			 */
804 			for (i = 1; i < num; i++)
805 				*(branch[n].p + i) = cpu_to_le32(++current_block);
806 		}
807 		BUFFER_TRACE(bh, "marking uptodate");
808 		set_buffer_uptodate(bh);
809 		unlock_buffer(bh);
810 
811 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 		err = ext4_handle_dirty_metadata(handle, inode, bh);
813 		if (err)
814 			goto failed;
815 	}
816 	*blks = num;
817 	return err;
818 failed:
819 	/* Allocation failed, free what we already allocated */
820 	for (i = 1; i <= n ; i++) {
821 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 		ext4_journal_forget(handle, branch[i].bh);
823 	}
824 	for (i = 0; i < indirect_blks; i++)
825 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
826 
827 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
828 
829 	return err;
830 }
831 
832 /**
833  * ext4_splice_branch - splice the allocated branch onto inode.
834  * @inode: owner
835  * @block: (logical) number of block we are adding
836  * @chain: chain of indirect blocks (with a missing link - see
837  *	ext4_alloc_branch)
838  * @where: location of missing link
839  * @num:   number of indirect blocks we are adding
840  * @blks:  number of direct blocks we are adding
841  *
842  * This function fills the missing link and does all housekeeping needed in
843  * inode (->i_blocks, etc.). In case of success we end up with the full
844  * chain to new block and return 0.
845  */
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 			      ext4_lblk_t block, Indirect *where, int num,
848 			      int blks)
849 {
850 	int i;
851 	int err = 0;
852 	ext4_fsblk_t current_block;
853 
854 	/*
855 	 * If we're splicing into a [td]indirect block (as opposed to the
856 	 * inode) then we need to get write access to the [td]indirect block
857 	 * before the splice.
858 	 */
859 	if (where->bh) {
860 		BUFFER_TRACE(where->bh, "get_write_access");
861 		err = ext4_journal_get_write_access(handle, where->bh);
862 		if (err)
863 			goto err_out;
864 	}
865 	/* That's it */
866 
867 	*where->p = where->key;
868 
869 	/*
870 	 * Update the host buffer_head or inode to point to more just allocated
871 	 * direct blocks blocks
872 	 */
873 	if (num == 0 && blks > 1) {
874 		current_block = le32_to_cpu(where->key) + 1;
875 		for (i = 1; i < blks; i++)
876 			*(where->p + i) = cpu_to_le32(current_block++);
877 	}
878 
879 	/* We are done with atomic stuff, now do the rest of housekeeping */
880 	/* had we spliced it onto indirect block? */
881 	if (where->bh) {
882 		/*
883 		 * If we spliced it onto an indirect block, we haven't
884 		 * altered the inode.  Note however that if it is being spliced
885 		 * onto an indirect block at the very end of the file (the
886 		 * file is growing) then we *will* alter the inode to reflect
887 		 * the new i_size.  But that is not done here - it is done in
888 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
889 		 */
890 		jbd_debug(5, "splicing indirect only\n");
891 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 		if (err)
894 			goto err_out;
895 	} else {
896 		/*
897 		 * OK, we spliced it into the inode itself on a direct block.
898 		 */
899 		ext4_mark_inode_dirty(handle, inode);
900 		jbd_debug(5, "splicing direct\n");
901 	}
902 	return err;
903 
904 err_out:
905 	for (i = 1; i <= num; i++) {
906 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 		ext4_journal_forget(handle, where[i].bh);
908 		ext4_free_blocks(handle, inode,
909 					le32_to_cpu(where[i-1].key), 1, 0);
910 	}
911 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
912 
913 	return err;
914 }
915 
916 /*
917  * The ext4_ind_get_blocks() function handles non-extents inodes
918  * (i.e., using the traditional indirect/double-indirect i_blocks
919  * scheme) for ext4_get_blocks().
920  *
921  * Allocation strategy is simple: if we have to allocate something, we will
922  * have to go the whole way to leaf. So let's do it before attaching anything
923  * to tree, set linkage between the newborn blocks, write them if sync is
924  * required, recheck the path, free and repeat if check fails, otherwise
925  * set the last missing link (that will protect us from any truncate-generated
926  * removals - all blocks on the path are immune now) and possibly force the
927  * write on the parent block.
928  * That has a nice additional property: no special recovery from the failed
929  * allocations is needed - we simply release blocks and do not touch anything
930  * reachable from inode.
931  *
932  * `handle' can be NULL if create == 0.
933  *
934  * return > 0, # of blocks mapped or allocated.
935  * return = 0, if plain lookup failed.
936  * return < 0, error case.
937  *
938  * The ext4_ind_get_blocks() function should be called with
939  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942  * blocks.
943  */
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 			       ext4_lblk_t iblock, unsigned int maxblocks,
946 			       struct buffer_head *bh_result,
947 			       int flags)
948 {
949 	int err = -EIO;
950 	ext4_lblk_t offsets[4];
951 	Indirect chain[4];
952 	Indirect *partial;
953 	ext4_fsblk_t goal;
954 	int indirect_blks;
955 	int blocks_to_boundary = 0;
956 	int depth;
957 	int count = 0;
958 	ext4_fsblk_t first_block = 0;
959 
960 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 	depth = ext4_block_to_path(inode, iblock, offsets,
963 				   &blocks_to_boundary);
964 
965 	if (depth == 0)
966 		goto out;
967 
968 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
969 
970 	/* Simplest case - block found, no allocation needed */
971 	if (!partial) {
972 		first_block = le32_to_cpu(chain[depth - 1].key);
973 		clear_buffer_new(bh_result);
974 		count++;
975 		/*map more blocks*/
976 		while (count < maxblocks && count <= blocks_to_boundary) {
977 			ext4_fsblk_t blk;
978 
979 			blk = le32_to_cpu(*(chain[depth-1].p + count));
980 
981 			if (blk == first_block + count)
982 				count++;
983 			else
984 				break;
985 		}
986 		goto got_it;
987 	}
988 
989 	/* Next simple case - plain lookup or failed read of indirect block */
990 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 		goto cleanup;
992 
993 	/*
994 	 * Okay, we need to do block allocation.
995 	*/
996 	goal = ext4_find_goal(inode, iblock, partial);
997 
998 	/* the number of blocks need to allocate for [d,t]indirect blocks */
999 	indirect_blks = (chain + depth) - partial - 1;
1000 
1001 	/*
1002 	 * Next look up the indirect map to count the totoal number of
1003 	 * direct blocks to allocate for this branch.
1004 	 */
1005 	count = ext4_blks_to_allocate(partial, indirect_blks,
1006 					maxblocks, blocks_to_boundary);
1007 	/*
1008 	 * Block out ext4_truncate while we alter the tree
1009 	 */
1010 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 				&count, goal,
1012 				offsets + (partial - chain), partial);
1013 
1014 	/*
1015 	 * The ext4_splice_branch call will free and forget any buffers
1016 	 * on the new chain if there is a failure, but that risks using
1017 	 * up transaction credits, especially for bitmaps where the
1018 	 * credits cannot be returned.  Can we handle this somehow?  We
1019 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1020 	 */
1021 	if (!err)
1022 		err = ext4_splice_branch(handle, inode, iblock,
1023 					 partial, indirect_blks, count);
1024 	else
1025 		goto cleanup;
1026 
1027 	set_buffer_new(bh_result);
1028 got_it:
1029 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1030 	if (count > blocks_to_boundary)
1031 		set_buffer_boundary(bh_result);
1032 	err = count;
1033 	/* Clean up and exit */
1034 	partial = chain + depth - 1;	/* the whole chain */
1035 cleanup:
1036 	while (partial > chain) {
1037 		BUFFER_TRACE(partial->bh, "call brelse");
1038 		brelse(partial->bh);
1039 		partial--;
1040 	}
1041 	BUFFER_TRACE(bh_result, "returned");
1042 out:
1043 	return err;
1044 }
1045 
1046 qsize_t ext4_get_reserved_space(struct inode *inode)
1047 {
1048 	unsigned long long total;
1049 
1050 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1051 	total = EXT4_I(inode)->i_reserved_data_blocks +
1052 		EXT4_I(inode)->i_reserved_meta_blocks;
1053 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1054 
1055 	return total;
1056 }
1057 /*
1058  * Calculate the number of metadata blocks need to reserve
1059  * to allocate @blocks for non extent file based file
1060  */
1061 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1062 {
1063 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1064 	int ind_blks, dind_blks, tind_blks;
1065 
1066 	/* number of new indirect blocks needed */
1067 	ind_blks = (blocks + icap - 1) / icap;
1068 
1069 	dind_blks = (ind_blks + icap - 1) / icap;
1070 
1071 	tind_blks = 1;
1072 
1073 	return ind_blks + dind_blks + tind_blks;
1074 }
1075 
1076 /*
1077  * Calculate the number of metadata blocks need to reserve
1078  * to allocate given number of blocks
1079  */
1080 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1081 {
1082 	if (!blocks)
1083 		return 0;
1084 
1085 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1086 		return ext4_ext_calc_metadata_amount(inode, blocks);
1087 
1088 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1089 }
1090 
1091 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1092 {
1093 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094 	int total, mdb, mdb_free;
1095 
1096 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1097 	/* recalculate the number of metablocks still need to be reserved */
1098 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1099 	mdb = ext4_calc_metadata_amount(inode, total);
1100 
1101 	/* figure out how many metablocks to release */
1102 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1103 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1104 
1105 	if (mdb_free) {
1106 		/* Account for allocated meta_blocks */
1107 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1108 
1109 		/* update fs dirty blocks counter */
1110 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1112 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1113 	}
1114 
1115 	/* update per-inode reservations */
1116 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1117 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1118 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119 
1120 	/*
1121 	 * free those over-booking quota for metadata blocks
1122 	 */
1123 	if (mdb_free)
1124 		vfs_dq_release_reservation_block(inode, mdb_free);
1125 
1126 	/*
1127 	 * If we have done all the pending block allocations and if
1128 	 * there aren't any writers on the inode, we can discard the
1129 	 * inode's preallocations.
1130 	 */
1131 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1132 		ext4_discard_preallocations(inode);
1133 }
1134 
1135 static int check_block_validity(struct inode *inode, const char *msg,
1136 				sector_t logical, sector_t phys, int len)
1137 {
1138 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1139 		ext4_error(inode->i_sb, msg,
1140 			   "inode #%lu logical block %llu mapped to %llu "
1141 			   "(size %d)", inode->i_ino,
1142 			   (unsigned long long) logical,
1143 			   (unsigned long long) phys, len);
1144 		return -EIO;
1145 	}
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Return the number of contiguous dirty pages in a given inode
1151  * starting at page frame idx.
1152  */
1153 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1154 				    unsigned int max_pages)
1155 {
1156 	struct address_space *mapping = inode->i_mapping;
1157 	pgoff_t	index;
1158 	struct pagevec pvec;
1159 	pgoff_t num = 0;
1160 	int i, nr_pages, done = 0;
1161 
1162 	if (max_pages == 0)
1163 		return 0;
1164 	pagevec_init(&pvec, 0);
1165 	while (!done) {
1166 		index = idx;
1167 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1168 					      PAGECACHE_TAG_DIRTY,
1169 					      (pgoff_t)PAGEVEC_SIZE);
1170 		if (nr_pages == 0)
1171 			break;
1172 		for (i = 0; i < nr_pages; i++) {
1173 			struct page *page = pvec.pages[i];
1174 			struct buffer_head *bh, *head;
1175 
1176 			lock_page(page);
1177 			if (unlikely(page->mapping != mapping) ||
1178 			    !PageDirty(page) ||
1179 			    PageWriteback(page) ||
1180 			    page->index != idx) {
1181 				done = 1;
1182 				unlock_page(page);
1183 				break;
1184 			}
1185 			if (page_has_buffers(page)) {
1186 				bh = head = page_buffers(page);
1187 				do {
1188 					if (!buffer_delay(bh) &&
1189 					    !buffer_unwritten(bh))
1190 						done = 1;
1191 					bh = bh->b_this_page;
1192 				} while (!done && (bh != head));
1193 			}
1194 			unlock_page(page);
1195 			if (done)
1196 				break;
1197 			idx++;
1198 			num++;
1199 			if (num >= max_pages)
1200 				break;
1201 		}
1202 		pagevec_release(&pvec);
1203 	}
1204 	return num;
1205 }
1206 
1207 /*
1208  * The ext4_get_blocks() function tries to look up the requested blocks,
1209  * and returns if the blocks are already mapped.
1210  *
1211  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1212  * and store the allocated blocks in the result buffer head and mark it
1213  * mapped.
1214  *
1215  * If file type is extents based, it will call ext4_ext_get_blocks(),
1216  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1217  * based files
1218  *
1219  * On success, it returns the number of blocks being mapped or allocate.
1220  * if create==0 and the blocks are pre-allocated and uninitialized block,
1221  * the result buffer head is unmapped. If the create ==1, it will make sure
1222  * the buffer head is mapped.
1223  *
1224  * It returns 0 if plain look up failed (blocks have not been allocated), in
1225  * that casem, buffer head is unmapped
1226  *
1227  * It returns the error in case of allocation failure.
1228  */
1229 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1230 		    unsigned int max_blocks, struct buffer_head *bh,
1231 		    int flags)
1232 {
1233 	int retval;
1234 
1235 	clear_buffer_mapped(bh);
1236 	clear_buffer_unwritten(bh);
1237 
1238 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1239 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1240 		  (unsigned long)block);
1241 	/*
1242 	 * Try to see if we can get the block without requesting a new
1243 	 * file system block.
1244 	 */
1245 	down_read((&EXT4_I(inode)->i_data_sem));
1246 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1247 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1248 				bh, 0);
1249 	} else {
1250 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1251 					     bh, 0);
1252 	}
1253 	up_read((&EXT4_I(inode)->i_data_sem));
1254 
1255 	if (retval > 0 && buffer_mapped(bh)) {
1256 		int ret = check_block_validity(inode, "file system corruption",
1257 					       block, bh->b_blocknr, retval);
1258 		if (ret != 0)
1259 			return ret;
1260 	}
1261 
1262 	/* If it is only a block(s) look up */
1263 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264 		return retval;
1265 
1266 	/*
1267 	 * Returns if the blocks have already allocated
1268 	 *
1269 	 * Note that if blocks have been preallocated
1270 	 * ext4_ext_get_block() returns th create = 0
1271 	 * with buffer head unmapped.
1272 	 */
1273 	if (retval > 0 && buffer_mapped(bh))
1274 		return retval;
1275 
1276 	/*
1277 	 * When we call get_blocks without the create flag, the
1278 	 * BH_Unwritten flag could have gotten set if the blocks
1279 	 * requested were part of a uninitialized extent.  We need to
1280 	 * clear this flag now that we are committed to convert all or
1281 	 * part of the uninitialized extent to be an initialized
1282 	 * extent.  This is because we need to avoid the combination
1283 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1284 	 * set on the buffer_head.
1285 	 */
1286 	clear_buffer_unwritten(bh);
1287 
1288 	/*
1289 	 * New blocks allocate and/or writing to uninitialized extent
1290 	 * will possibly result in updating i_data, so we take
1291 	 * the write lock of i_data_sem, and call get_blocks()
1292 	 * with create == 1 flag.
1293 	 */
1294 	down_write((&EXT4_I(inode)->i_data_sem));
1295 
1296 	/*
1297 	 * if the caller is from delayed allocation writeout path
1298 	 * we have already reserved fs blocks for allocation
1299 	 * let the underlying get_block() function know to
1300 	 * avoid double accounting
1301 	 */
1302 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1304 	/*
1305 	 * We need to check for EXT4 here because migrate
1306 	 * could have changed the inode type in between
1307 	 */
1308 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1309 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1310 					      bh, flags);
1311 	} else {
1312 		retval = ext4_ind_get_blocks(handle, inode, block,
1313 					     max_blocks, bh, flags);
1314 
1315 		if (retval > 0 && buffer_new(bh)) {
1316 			/*
1317 			 * We allocated new blocks which will result in
1318 			 * i_data's format changing.  Force the migrate
1319 			 * to fail by clearing migrate flags
1320 			 */
1321 			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1322 		}
1323 	}
1324 
1325 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1326 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1327 
1328 	/*
1329 	 * Update reserved blocks/metadata blocks after successful
1330 	 * block allocation which had been deferred till now.
1331 	 */
1332 	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1333 		ext4_da_update_reserve_space(inode, retval);
1334 
1335 	up_write((&EXT4_I(inode)->i_data_sem));
1336 	if (retval > 0 && buffer_mapped(bh)) {
1337 		int ret = check_block_validity(inode, "file system "
1338 					       "corruption after allocation",
1339 					       block, bh->b_blocknr, retval);
1340 		if (ret != 0)
1341 			return ret;
1342 	}
1343 	return retval;
1344 }
1345 
1346 /* Maximum number of blocks we map for direct IO at once. */
1347 #define DIO_MAX_BLOCKS 4096
1348 
1349 int ext4_get_block(struct inode *inode, sector_t iblock,
1350 		   struct buffer_head *bh_result, int create)
1351 {
1352 	handle_t *handle = ext4_journal_current_handle();
1353 	int ret = 0, started = 0;
1354 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1355 	int dio_credits;
1356 
1357 	if (create && !handle) {
1358 		/* Direct IO write... */
1359 		if (max_blocks > DIO_MAX_BLOCKS)
1360 			max_blocks = DIO_MAX_BLOCKS;
1361 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362 		handle = ext4_journal_start(inode, dio_credits);
1363 		if (IS_ERR(handle)) {
1364 			ret = PTR_ERR(handle);
1365 			goto out;
1366 		}
1367 		started = 1;
1368 	}
1369 
1370 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1371 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1372 	if (ret > 0) {
1373 		bh_result->b_size = (ret << inode->i_blkbits);
1374 		ret = 0;
1375 	}
1376 	if (started)
1377 		ext4_journal_stop(handle);
1378 out:
1379 	return ret;
1380 }
1381 
1382 /*
1383  * `handle' can be NULL if create is zero
1384  */
1385 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1386 				ext4_lblk_t block, int create, int *errp)
1387 {
1388 	struct buffer_head dummy;
1389 	int fatal = 0, err;
1390 	int flags = 0;
1391 
1392 	J_ASSERT(handle != NULL || create == 0);
1393 
1394 	dummy.b_state = 0;
1395 	dummy.b_blocknr = -1000;
1396 	buffer_trace_init(&dummy.b_history);
1397 	if (create)
1398 		flags |= EXT4_GET_BLOCKS_CREATE;
1399 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1400 	/*
1401 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1402 	 * case of a HOLE.
1403 	 */
1404 	if (err > 0) {
1405 		if (err > 1)
1406 			WARN_ON(1);
1407 		err = 0;
1408 	}
1409 	*errp = err;
1410 	if (!err && buffer_mapped(&dummy)) {
1411 		struct buffer_head *bh;
1412 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413 		if (!bh) {
1414 			*errp = -EIO;
1415 			goto err;
1416 		}
1417 		if (buffer_new(&dummy)) {
1418 			J_ASSERT(create != 0);
1419 			J_ASSERT(handle != NULL);
1420 
1421 			/*
1422 			 * Now that we do not always journal data, we should
1423 			 * keep in mind whether this should always journal the
1424 			 * new buffer as metadata.  For now, regular file
1425 			 * writes use ext4_get_block instead, so it's not a
1426 			 * problem.
1427 			 */
1428 			lock_buffer(bh);
1429 			BUFFER_TRACE(bh, "call get_create_access");
1430 			fatal = ext4_journal_get_create_access(handle, bh);
1431 			if (!fatal && !buffer_uptodate(bh)) {
1432 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433 				set_buffer_uptodate(bh);
1434 			}
1435 			unlock_buffer(bh);
1436 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1438 			if (!fatal)
1439 				fatal = err;
1440 		} else {
1441 			BUFFER_TRACE(bh, "not a new buffer");
1442 		}
1443 		if (fatal) {
1444 			*errp = fatal;
1445 			brelse(bh);
1446 			bh = NULL;
1447 		}
1448 		return bh;
1449 	}
1450 err:
1451 	return NULL;
1452 }
1453 
1454 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1455 			       ext4_lblk_t block, int create, int *err)
1456 {
1457 	struct buffer_head *bh;
1458 
1459 	bh = ext4_getblk(handle, inode, block, create, err);
1460 	if (!bh)
1461 		return bh;
1462 	if (buffer_uptodate(bh))
1463 		return bh;
1464 	ll_rw_block(READ_META, 1, &bh);
1465 	wait_on_buffer(bh);
1466 	if (buffer_uptodate(bh))
1467 		return bh;
1468 	put_bh(bh);
1469 	*err = -EIO;
1470 	return NULL;
1471 }
1472 
1473 static int walk_page_buffers(handle_t *handle,
1474 			     struct buffer_head *head,
1475 			     unsigned from,
1476 			     unsigned to,
1477 			     int *partial,
1478 			     int (*fn)(handle_t *handle,
1479 				       struct buffer_head *bh))
1480 {
1481 	struct buffer_head *bh;
1482 	unsigned block_start, block_end;
1483 	unsigned blocksize = head->b_size;
1484 	int err, ret = 0;
1485 	struct buffer_head *next;
1486 
1487 	for (bh = head, block_start = 0;
1488 	     ret == 0 && (bh != head || !block_start);
1489 	     block_start = block_end, bh = next) {
1490 		next = bh->b_this_page;
1491 		block_end = block_start + blocksize;
1492 		if (block_end <= from || block_start >= to) {
1493 			if (partial && !buffer_uptodate(bh))
1494 				*partial = 1;
1495 			continue;
1496 		}
1497 		err = (*fn)(handle, bh);
1498 		if (!ret)
1499 			ret = err;
1500 	}
1501 	return ret;
1502 }
1503 
1504 /*
1505  * To preserve ordering, it is essential that the hole instantiation and
1506  * the data write be encapsulated in a single transaction.  We cannot
1507  * close off a transaction and start a new one between the ext4_get_block()
1508  * and the commit_write().  So doing the jbd2_journal_start at the start of
1509  * prepare_write() is the right place.
1510  *
1511  * Also, this function can nest inside ext4_writepage() ->
1512  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1513  * has generated enough buffer credits to do the whole page.  So we won't
1514  * block on the journal in that case, which is good, because the caller may
1515  * be PF_MEMALLOC.
1516  *
1517  * By accident, ext4 can be reentered when a transaction is open via
1518  * quota file writes.  If we were to commit the transaction while thus
1519  * reentered, there can be a deadlock - we would be holding a quota
1520  * lock, and the commit would never complete if another thread had a
1521  * transaction open and was blocking on the quota lock - a ranking
1522  * violation.
1523  *
1524  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1525  * will _not_ run commit under these circumstances because handle->h_ref
1526  * is elevated.  We'll still have enough credits for the tiny quotafile
1527  * write.
1528  */
1529 static int do_journal_get_write_access(handle_t *handle,
1530 				       struct buffer_head *bh)
1531 {
1532 	if (!buffer_mapped(bh) || buffer_freed(bh))
1533 		return 0;
1534 	return ext4_journal_get_write_access(handle, bh);
1535 }
1536 
1537 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1538 			    loff_t pos, unsigned len, unsigned flags,
1539 			    struct page **pagep, void **fsdata)
1540 {
1541 	struct inode *inode = mapping->host;
1542 	int ret, needed_blocks;
1543 	handle_t *handle;
1544 	int retries = 0;
1545 	struct page *page;
1546 	pgoff_t index;
1547 	unsigned from, to;
1548 
1549 	trace_ext4_write_begin(inode, pos, len, flags);
1550 	/*
1551 	 * Reserve one block more for addition to orphan list in case
1552 	 * we allocate blocks but write fails for some reason
1553 	 */
1554 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1555 	index = pos >> PAGE_CACHE_SHIFT;
1556 	from = pos & (PAGE_CACHE_SIZE - 1);
1557 	to = from + len;
1558 
1559 retry:
1560 	handle = ext4_journal_start(inode, needed_blocks);
1561 	if (IS_ERR(handle)) {
1562 		ret = PTR_ERR(handle);
1563 		goto out;
1564 	}
1565 
1566 	/* We cannot recurse into the filesystem as the transaction is already
1567 	 * started */
1568 	flags |= AOP_FLAG_NOFS;
1569 
1570 	page = grab_cache_page_write_begin(mapping, index, flags);
1571 	if (!page) {
1572 		ext4_journal_stop(handle);
1573 		ret = -ENOMEM;
1574 		goto out;
1575 	}
1576 	*pagep = page;
1577 
1578 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1579 				ext4_get_block);
1580 
1581 	if (!ret && ext4_should_journal_data(inode)) {
1582 		ret = walk_page_buffers(handle, page_buffers(page),
1583 				from, to, NULL, do_journal_get_write_access);
1584 	}
1585 
1586 	if (ret) {
1587 		unlock_page(page);
1588 		page_cache_release(page);
1589 		/*
1590 		 * block_write_begin may have instantiated a few blocks
1591 		 * outside i_size.  Trim these off again. Don't need
1592 		 * i_size_read because we hold i_mutex.
1593 		 *
1594 		 * Add inode to orphan list in case we crash before
1595 		 * truncate finishes
1596 		 */
1597 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1598 			ext4_orphan_add(handle, inode);
1599 
1600 		ext4_journal_stop(handle);
1601 		if (pos + len > inode->i_size) {
1602 			ext4_truncate(inode);
1603 			/*
1604 			 * If truncate failed early the inode might
1605 			 * still be on the orphan list; we need to
1606 			 * make sure the inode is removed from the
1607 			 * orphan list in that case.
1608 			 */
1609 			if (inode->i_nlink)
1610 				ext4_orphan_del(NULL, inode);
1611 		}
1612 	}
1613 
1614 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1615 		goto retry;
1616 out:
1617 	return ret;
1618 }
1619 
1620 /* For write_end() in data=journal mode */
1621 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1622 {
1623 	if (!buffer_mapped(bh) || buffer_freed(bh))
1624 		return 0;
1625 	set_buffer_uptodate(bh);
1626 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1627 }
1628 
1629 static int ext4_generic_write_end(struct file *file,
1630 				  struct address_space *mapping,
1631 				  loff_t pos, unsigned len, unsigned copied,
1632 				  struct page *page, void *fsdata)
1633 {
1634 	int i_size_changed = 0;
1635 	struct inode *inode = mapping->host;
1636 	handle_t *handle = ext4_journal_current_handle();
1637 
1638 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1639 
1640 	/*
1641 	 * No need to use i_size_read() here, the i_size
1642 	 * cannot change under us because we hold i_mutex.
1643 	 *
1644 	 * But it's important to update i_size while still holding page lock:
1645 	 * page writeout could otherwise come in and zero beyond i_size.
1646 	 */
1647 	if (pos + copied > inode->i_size) {
1648 		i_size_write(inode, pos + copied);
1649 		i_size_changed = 1;
1650 	}
1651 
1652 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1653 		/* We need to mark inode dirty even if
1654 		 * new_i_size is less that inode->i_size
1655 		 * bu greater than i_disksize.(hint delalloc)
1656 		 */
1657 		ext4_update_i_disksize(inode, (pos + copied));
1658 		i_size_changed = 1;
1659 	}
1660 	unlock_page(page);
1661 	page_cache_release(page);
1662 
1663 	/*
1664 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1665 	 * makes the holding time of page lock longer. Second, it forces lock
1666 	 * ordering of page lock and transaction start for journaling
1667 	 * filesystems.
1668 	 */
1669 	if (i_size_changed)
1670 		ext4_mark_inode_dirty(handle, inode);
1671 
1672 	return copied;
1673 }
1674 
1675 /*
1676  * We need to pick up the new inode size which generic_commit_write gave us
1677  * `file' can be NULL - eg, when called from page_symlink().
1678  *
1679  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1680  * buffers are managed internally.
1681  */
1682 static int ext4_ordered_write_end(struct file *file,
1683 				  struct address_space *mapping,
1684 				  loff_t pos, unsigned len, unsigned copied,
1685 				  struct page *page, void *fsdata)
1686 {
1687 	handle_t *handle = ext4_journal_current_handle();
1688 	struct inode *inode = mapping->host;
1689 	int ret = 0, ret2;
1690 
1691 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1692 	ret = ext4_jbd2_file_inode(handle, inode);
1693 
1694 	if (ret == 0) {
1695 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1696 							page, fsdata);
1697 		copied = ret2;
1698 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1699 			/* if we have allocated more blocks and copied
1700 			 * less. We will have blocks allocated outside
1701 			 * inode->i_size. So truncate them
1702 			 */
1703 			ext4_orphan_add(handle, inode);
1704 		if (ret2 < 0)
1705 			ret = ret2;
1706 	}
1707 	ret2 = ext4_journal_stop(handle);
1708 	if (!ret)
1709 		ret = ret2;
1710 
1711 	if (pos + len > inode->i_size) {
1712 		ext4_truncate(inode);
1713 		/*
1714 		 * If truncate failed early the inode might still be
1715 		 * on the orphan list; we need to make sure the inode
1716 		 * is removed from the orphan list in that case.
1717 		 */
1718 		if (inode->i_nlink)
1719 			ext4_orphan_del(NULL, inode);
1720 	}
1721 
1722 
1723 	return ret ? ret : copied;
1724 }
1725 
1726 static int ext4_writeback_write_end(struct file *file,
1727 				    struct address_space *mapping,
1728 				    loff_t pos, unsigned len, unsigned copied,
1729 				    struct page *page, void *fsdata)
1730 {
1731 	handle_t *handle = ext4_journal_current_handle();
1732 	struct inode *inode = mapping->host;
1733 	int ret = 0, ret2;
1734 
1735 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1736 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737 							page, fsdata);
1738 	copied = ret2;
1739 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740 		/* if we have allocated more blocks and copied
1741 		 * less. We will have blocks allocated outside
1742 		 * inode->i_size. So truncate them
1743 		 */
1744 		ext4_orphan_add(handle, inode);
1745 
1746 	if (ret2 < 0)
1747 		ret = ret2;
1748 
1749 	ret2 = ext4_journal_stop(handle);
1750 	if (!ret)
1751 		ret = ret2;
1752 
1753 	if (pos + len > inode->i_size) {
1754 		ext4_truncate(inode);
1755 		/*
1756 		 * If truncate failed early the inode might still be
1757 		 * on the orphan list; we need to make sure the inode
1758 		 * is removed from the orphan list in that case.
1759 		 */
1760 		if (inode->i_nlink)
1761 			ext4_orphan_del(NULL, inode);
1762 	}
1763 
1764 	return ret ? ret : copied;
1765 }
1766 
1767 static int ext4_journalled_write_end(struct file *file,
1768 				     struct address_space *mapping,
1769 				     loff_t pos, unsigned len, unsigned copied,
1770 				     struct page *page, void *fsdata)
1771 {
1772 	handle_t *handle = ext4_journal_current_handle();
1773 	struct inode *inode = mapping->host;
1774 	int ret = 0, ret2;
1775 	int partial = 0;
1776 	unsigned from, to;
1777 	loff_t new_i_size;
1778 
1779 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1780 	from = pos & (PAGE_CACHE_SIZE - 1);
1781 	to = from + len;
1782 
1783 	if (copied < len) {
1784 		if (!PageUptodate(page))
1785 			copied = 0;
1786 		page_zero_new_buffers(page, from+copied, to);
1787 	}
1788 
1789 	ret = walk_page_buffers(handle, page_buffers(page), from,
1790 				to, &partial, write_end_fn);
1791 	if (!partial)
1792 		SetPageUptodate(page);
1793 	new_i_size = pos + copied;
1794 	if (new_i_size > inode->i_size)
1795 		i_size_write(inode, pos+copied);
1796 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1797 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1798 		ext4_update_i_disksize(inode, new_i_size);
1799 		ret2 = ext4_mark_inode_dirty(handle, inode);
1800 		if (!ret)
1801 			ret = ret2;
1802 	}
1803 
1804 	unlock_page(page);
1805 	page_cache_release(page);
1806 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1807 		/* if we have allocated more blocks and copied
1808 		 * less. We will have blocks allocated outside
1809 		 * inode->i_size. So truncate them
1810 		 */
1811 		ext4_orphan_add(handle, inode);
1812 
1813 	ret2 = ext4_journal_stop(handle);
1814 	if (!ret)
1815 		ret = ret2;
1816 	if (pos + len > inode->i_size) {
1817 		ext4_truncate(inode);
1818 		/*
1819 		 * If truncate failed early the inode might still be
1820 		 * on the orphan list; we need to make sure the inode
1821 		 * is removed from the orphan list in that case.
1822 		 */
1823 		if (inode->i_nlink)
1824 			ext4_orphan_del(NULL, inode);
1825 	}
1826 
1827 	return ret ? ret : copied;
1828 }
1829 
1830 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1831 {
1832 	int retries = 0;
1833 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1834 	unsigned long md_needed, mdblocks, total = 0;
1835 
1836 	/*
1837 	 * recalculate the amount of metadata blocks to reserve
1838 	 * in order to allocate nrblocks
1839 	 * worse case is one extent per block
1840 	 */
1841 repeat:
1842 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1844 	mdblocks = ext4_calc_metadata_amount(inode, total);
1845 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1846 
1847 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1848 	total = md_needed + nrblocks;
1849 
1850 	/*
1851 	 * Make quota reservation here to prevent quota overflow
1852 	 * later. Real quota accounting is done at pages writeout
1853 	 * time.
1854 	 */
1855 	if (vfs_dq_reserve_block(inode, total)) {
1856 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1857 		return -EDQUOT;
1858 	}
1859 
1860 	if (ext4_claim_free_blocks(sbi, total)) {
1861 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1862 		vfs_dq_release_reservation_block(inode, total);
1863 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1864 			yield();
1865 			goto repeat;
1866 		}
1867 		return -ENOSPC;
1868 	}
1869 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1870 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1871 
1872 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1873 	return 0;       /* success */
1874 }
1875 
1876 static void ext4_da_release_space(struct inode *inode, int to_free)
1877 {
1878 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1879 	int total, mdb, mdb_free, release;
1880 
1881 	if (!to_free)
1882 		return;		/* Nothing to release, exit */
1883 
1884 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1885 
1886 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1887 		/*
1888 		 * if there is no reserved blocks, but we try to free some
1889 		 * then the counter is messed up somewhere.
1890 		 * but since this function is called from invalidate
1891 		 * page, it's harmless to return without any action
1892 		 */
1893 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1894 			    "blocks for inode %lu, but there is no reserved "
1895 			    "data blocks\n", to_free, inode->i_ino);
1896 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1897 		return;
1898 	}
1899 
1900 	/* recalculate the number of metablocks still need to be reserved */
1901 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1902 	mdb = ext4_calc_metadata_amount(inode, total);
1903 
1904 	/* figure out how many metablocks to release */
1905 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1906 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1907 
1908 	release = to_free + mdb_free;
1909 
1910 	/* update fs dirty blocks counter for truncate case */
1911 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1912 
1913 	/* update per-inode reservations */
1914 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1915 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1916 
1917 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1918 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1919 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1920 
1921 	vfs_dq_release_reservation_block(inode, release);
1922 }
1923 
1924 static void ext4_da_page_release_reservation(struct page *page,
1925 					     unsigned long offset)
1926 {
1927 	int to_release = 0;
1928 	struct buffer_head *head, *bh;
1929 	unsigned int curr_off = 0;
1930 
1931 	head = page_buffers(page);
1932 	bh = head;
1933 	do {
1934 		unsigned int next_off = curr_off + bh->b_size;
1935 
1936 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1937 			to_release++;
1938 			clear_buffer_delay(bh);
1939 		}
1940 		curr_off = next_off;
1941 	} while ((bh = bh->b_this_page) != head);
1942 	ext4_da_release_space(page->mapping->host, to_release);
1943 }
1944 
1945 /*
1946  * Delayed allocation stuff
1947  */
1948 
1949 /*
1950  * mpage_da_submit_io - walks through extent of pages and try to write
1951  * them with writepage() call back
1952  *
1953  * @mpd->inode: inode
1954  * @mpd->first_page: first page of the extent
1955  * @mpd->next_page: page after the last page of the extent
1956  *
1957  * By the time mpage_da_submit_io() is called we expect all blocks
1958  * to be allocated. this may be wrong if allocation failed.
1959  *
1960  * As pages are already locked by write_cache_pages(), we can't use it
1961  */
1962 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1963 {
1964 	long pages_skipped;
1965 	struct pagevec pvec;
1966 	unsigned long index, end;
1967 	int ret = 0, err, nr_pages, i;
1968 	struct inode *inode = mpd->inode;
1969 	struct address_space *mapping = inode->i_mapping;
1970 
1971 	BUG_ON(mpd->next_page <= mpd->first_page);
1972 	/*
1973 	 * We need to start from the first_page to the next_page - 1
1974 	 * to make sure we also write the mapped dirty buffer_heads.
1975 	 * If we look at mpd->b_blocknr we would only be looking
1976 	 * at the currently mapped buffer_heads.
1977 	 */
1978 	index = mpd->first_page;
1979 	end = mpd->next_page - 1;
1980 
1981 	pagevec_init(&pvec, 0);
1982 	while (index <= end) {
1983 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1984 		if (nr_pages == 0)
1985 			break;
1986 		for (i = 0; i < nr_pages; i++) {
1987 			struct page *page = pvec.pages[i];
1988 
1989 			index = page->index;
1990 			if (index > end)
1991 				break;
1992 			index++;
1993 
1994 			BUG_ON(!PageLocked(page));
1995 			BUG_ON(PageWriteback(page));
1996 
1997 			pages_skipped = mpd->wbc->pages_skipped;
1998 			err = mapping->a_ops->writepage(page, mpd->wbc);
1999 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2000 				/*
2001 				 * have successfully written the page
2002 				 * without skipping the same
2003 				 */
2004 				mpd->pages_written++;
2005 			/*
2006 			 * In error case, we have to continue because
2007 			 * remaining pages are still locked
2008 			 * XXX: unlock and re-dirty them?
2009 			 */
2010 			if (ret == 0)
2011 				ret = err;
2012 		}
2013 		pagevec_release(&pvec);
2014 	}
2015 	return ret;
2016 }
2017 
2018 /*
2019  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2020  *
2021  * @mpd->inode - inode to walk through
2022  * @exbh->b_blocknr - first block on a disk
2023  * @exbh->b_size - amount of space in bytes
2024  * @logical - first logical block to start assignment with
2025  *
2026  * the function goes through all passed space and put actual disk
2027  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2028  */
2029 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2030 				 struct buffer_head *exbh)
2031 {
2032 	struct inode *inode = mpd->inode;
2033 	struct address_space *mapping = inode->i_mapping;
2034 	int blocks = exbh->b_size >> inode->i_blkbits;
2035 	sector_t pblock = exbh->b_blocknr, cur_logical;
2036 	struct buffer_head *head, *bh;
2037 	pgoff_t index, end;
2038 	struct pagevec pvec;
2039 	int nr_pages, i;
2040 
2041 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2044 
2045 	pagevec_init(&pvec, 0);
2046 
2047 	while (index <= end) {
2048 		/* XXX: optimize tail */
2049 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2050 		if (nr_pages == 0)
2051 			break;
2052 		for (i = 0; i < nr_pages; i++) {
2053 			struct page *page = pvec.pages[i];
2054 
2055 			index = page->index;
2056 			if (index > end)
2057 				break;
2058 			index++;
2059 
2060 			BUG_ON(!PageLocked(page));
2061 			BUG_ON(PageWriteback(page));
2062 			BUG_ON(!page_has_buffers(page));
2063 
2064 			bh = page_buffers(page);
2065 			head = bh;
2066 
2067 			/* skip blocks out of the range */
2068 			do {
2069 				if (cur_logical >= logical)
2070 					break;
2071 				cur_logical++;
2072 			} while ((bh = bh->b_this_page) != head);
2073 
2074 			do {
2075 				if (cur_logical >= logical + blocks)
2076 					break;
2077 
2078 				if (buffer_delay(bh) ||
2079 						buffer_unwritten(bh)) {
2080 
2081 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2082 
2083 					if (buffer_delay(bh)) {
2084 						clear_buffer_delay(bh);
2085 						bh->b_blocknr = pblock;
2086 					} else {
2087 						/*
2088 						 * unwritten already should have
2089 						 * blocknr assigned. Verify that
2090 						 */
2091 						clear_buffer_unwritten(bh);
2092 						BUG_ON(bh->b_blocknr != pblock);
2093 					}
2094 
2095 				} else if (buffer_mapped(bh))
2096 					BUG_ON(bh->b_blocknr != pblock);
2097 
2098 				cur_logical++;
2099 				pblock++;
2100 			} while ((bh = bh->b_this_page) != head);
2101 		}
2102 		pagevec_release(&pvec);
2103 	}
2104 }
2105 
2106 
2107 /*
2108  * __unmap_underlying_blocks - just a helper function to unmap
2109  * set of blocks described by @bh
2110  */
2111 static inline void __unmap_underlying_blocks(struct inode *inode,
2112 					     struct buffer_head *bh)
2113 {
2114 	struct block_device *bdev = inode->i_sb->s_bdev;
2115 	int blocks, i;
2116 
2117 	blocks = bh->b_size >> inode->i_blkbits;
2118 	for (i = 0; i < blocks; i++)
2119 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2120 }
2121 
2122 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2123 					sector_t logical, long blk_cnt)
2124 {
2125 	int nr_pages, i;
2126 	pgoff_t index, end;
2127 	struct pagevec pvec;
2128 	struct inode *inode = mpd->inode;
2129 	struct address_space *mapping = inode->i_mapping;
2130 
2131 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132 	end   = (logical + blk_cnt - 1) >>
2133 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2134 	while (index <= end) {
2135 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2136 		if (nr_pages == 0)
2137 			break;
2138 		for (i = 0; i < nr_pages; i++) {
2139 			struct page *page = pvec.pages[i];
2140 			index = page->index;
2141 			if (index > end)
2142 				break;
2143 			index++;
2144 
2145 			BUG_ON(!PageLocked(page));
2146 			BUG_ON(PageWriteback(page));
2147 			block_invalidatepage(page, 0);
2148 			ClearPageUptodate(page);
2149 			unlock_page(page);
2150 		}
2151 	}
2152 	return;
2153 }
2154 
2155 static void ext4_print_free_blocks(struct inode *inode)
2156 {
2157 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2158 	printk(KERN_CRIT "Total free blocks count %lld\n",
2159 	       ext4_count_free_blocks(inode->i_sb));
2160 	printk(KERN_CRIT "Free/Dirty block details\n");
2161 	printk(KERN_CRIT "free_blocks=%lld\n",
2162 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2163 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2164 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2165 	printk(KERN_CRIT "Block reservation details\n");
2166 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2167 	       EXT4_I(inode)->i_reserved_data_blocks);
2168 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2169 	       EXT4_I(inode)->i_reserved_meta_blocks);
2170 	return;
2171 }
2172 
2173 /*
2174  * mpage_da_map_blocks - go through given space
2175  *
2176  * @mpd - bh describing space
2177  *
2178  * The function skips space we know is already mapped to disk blocks.
2179  *
2180  */
2181 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2182 {
2183 	int err, blks, get_blocks_flags;
2184 	struct buffer_head new;
2185 	sector_t next = mpd->b_blocknr;
2186 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2187 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2188 	handle_t *handle = NULL;
2189 
2190 	/*
2191 	 * We consider only non-mapped and non-allocated blocks
2192 	 */
2193 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2194 		!(mpd->b_state & (1 << BH_Delay)) &&
2195 		!(mpd->b_state & (1 << BH_Unwritten)))
2196 		return 0;
2197 
2198 	/*
2199 	 * If we didn't accumulate anything to write simply return
2200 	 */
2201 	if (!mpd->b_size)
2202 		return 0;
2203 
2204 	handle = ext4_journal_current_handle();
2205 	BUG_ON(!handle);
2206 
2207 	/*
2208 	 * Call ext4_get_blocks() to allocate any delayed allocation
2209 	 * blocks, or to convert an uninitialized extent to be
2210 	 * initialized (in the case where we have written into
2211 	 * one or more preallocated blocks).
2212 	 *
2213 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2214 	 * indicate that we are on the delayed allocation path.  This
2215 	 * affects functions in many different parts of the allocation
2216 	 * call path.  This flag exists primarily because we don't
2217 	 * want to change *many* call functions, so ext4_get_blocks()
2218 	 * will set the magic i_delalloc_reserved_flag once the
2219 	 * inode's allocation semaphore is taken.
2220 	 *
2221 	 * If the blocks in questions were delalloc blocks, set
2222 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2223 	 * variables are updated after the blocks have been allocated.
2224 	 */
2225 	new.b_state = 0;
2226 	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2227 			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2228 	if (mpd->b_state & (1 << BH_Delay))
2229 		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2230 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2231 			       &new, get_blocks_flags);
2232 	if (blks < 0) {
2233 		err = blks;
2234 		/*
2235 		 * If get block returns with error we simply
2236 		 * return. Later writepage will redirty the page and
2237 		 * writepages will find the dirty page again
2238 		 */
2239 		if (err == -EAGAIN)
2240 			return 0;
2241 
2242 		if (err == -ENOSPC &&
2243 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2244 			mpd->retval = err;
2245 			return 0;
2246 		}
2247 
2248 		/*
2249 		 * get block failure will cause us to loop in
2250 		 * writepages, because a_ops->writepage won't be able
2251 		 * to make progress. The page will be redirtied by
2252 		 * writepage and writepages will again try to write
2253 		 * the same.
2254 		 */
2255 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2256 			 "delayed block allocation failed for inode %lu at "
2257 			 "logical offset %llu with max blocks %zd with "
2258 			 "error %d\n", mpd->inode->i_ino,
2259 			 (unsigned long long) next,
2260 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2261 		printk(KERN_CRIT "This should not happen!!  "
2262 		       "Data will be lost\n");
2263 		if (err == -ENOSPC) {
2264 			ext4_print_free_blocks(mpd->inode);
2265 		}
2266 		/* invalidate all the pages */
2267 		ext4_da_block_invalidatepages(mpd, next,
2268 				mpd->b_size >> mpd->inode->i_blkbits);
2269 		return err;
2270 	}
2271 	BUG_ON(blks == 0);
2272 
2273 	new.b_size = (blks << mpd->inode->i_blkbits);
2274 
2275 	if (buffer_new(&new))
2276 		__unmap_underlying_blocks(mpd->inode, &new);
2277 
2278 	/*
2279 	 * If blocks are delayed marked, we need to
2280 	 * put actual blocknr and drop delayed bit
2281 	 */
2282 	if ((mpd->b_state & (1 << BH_Delay)) ||
2283 	    (mpd->b_state & (1 << BH_Unwritten)))
2284 		mpage_put_bnr_to_bhs(mpd, next, &new);
2285 
2286 	if (ext4_should_order_data(mpd->inode)) {
2287 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2288 		if (err)
2289 			return err;
2290 	}
2291 
2292 	/*
2293 	 * Update on-disk size along with block allocation.
2294 	 */
2295 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2296 	if (disksize > i_size_read(mpd->inode))
2297 		disksize = i_size_read(mpd->inode);
2298 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2299 		ext4_update_i_disksize(mpd->inode, disksize);
2300 		return ext4_mark_inode_dirty(handle, mpd->inode);
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2307 		(1 << BH_Delay) | (1 << BH_Unwritten))
2308 
2309 /*
2310  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2311  *
2312  * @mpd->lbh - extent of blocks
2313  * @logical - logical number of the block in the file
2314  * @bh - bh of the block (used to access block's state)
2315  *
2316  * the function is used to collect contig. blocks in same state
2317  */
2318 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2319 				   sector_t logical, size_t b_size,
2320 				   unsigned long b_state)
2321 {
2322 	sector_t next;
2323 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2324 
2325 	/* check if thereserved journal credits might overflow */
2326 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2327 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2328 			/*
2329 			 * With non-extent format we are limited by the journal
2330 			 * credit available.  Total credit needed to insert
2331 			 * nrblocks contiguous blocks is dependent on the
2332 			 * nrblocks.  So limit nrblocks.
2333 			 */
2334 			goto flush_it;
2335 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2336 				EXT4_MAX_TRANS_DATA) {
2337 			/*
2338 			 * Adding the new buffer_head would make it cross the
2339 			 * allowed limit for which we have journal credit
2340 			 * reserved. So limit the new bh->b_size
2341 			 */
2342 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2343 						mpd->inode->i_blkbits;
2344 			/* we will do mpage_da_submit_io in the next loop */
2345 		}
2346 	}
2347 	/*
2348 	 * First block in the extent
2349 	 */
2350 	if (mpd->b_size == 0) {
2351 		mpd->b_blocknr = logical;
2352 		mpd->b_size = b_size;
2353 		mpd->b_state = b_state & BH_FLAGS;
2354 		return;
2355 	}
2356 
2357 	next = mpd->b_blocknr + nrblocks;
2358 	/*
2359 	 * Can we merge the block to our big extent?
2360 	 */
2361 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2362 		mpd->b_size += b_size;
2363 		return;
2364 	}
2365 
2366 flush_it:
2367 	/*
2368 	 * We couldn't merge the block to our extent, so we
2369 	 * need to flush current  extent and start new one
2370 	 */
2371 	if (mpage_da_map_blocks(mpd) == 0)
2372 		mpage_da_submit_io(mpd);
2373 	mpd->io_done = 1;
2374 	return;
2375 }
2376 
2377 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2378 {
2379 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2380 }
2381 
2382 /*
2383  * __mpage_da_writepage - finds extent of pages and blocks
2384  *
2385  * @page: page to consider
2386  * @wbc: not used, we just follow rules
2387  * @data: context
2388  *
2389  * The function finds extents of pages and scan them for all blocks.
2390  */
2391 static int __mpage_da_writepage(struct page *page,
2392 				struct writeback_control *wbc, void *data)
2393 {
2394 	struct mpage_da_data *mpd = data;
2395 	struct inode *inode = mpd->inode;
2396 	struct buffer_head *bh, *head;
2397 	sector_t logical;
2398 
2399 	if (mpd->io_done) {
2400 		/*
2401 		 * Rest of the page in the page_vec
2402 		 * redirty then and skip then. We will
2403 		 * try to write them again after
2404 		 * starting a new transaction
2405 		 */
2406 		redirty_page_for_writepage(wbc, page);
2407 		unlock_page(page);
2408 		return MPAGE_DA_EXTENT_TAIL;
2409 	}
2410 	/*
2411 	 * Can we merge this page to current extent?
2412 	 */
2413 	if (mpd->next_page != page->index) {
2414 		/*
2415 		 * Nope, we can't. So, we map non-allocated blocks
2416 		 * and start IO on them using writepage()
2417 		 */
2418 		if (mpd->next_page != mpd->first_page) {
2419 			if (mpage_da_map_blocks(mpd) == 0)
2420 				mpage_da_submit_io(mpd);
2421 			/*
2422 			 * skip rest of the page in the page_vec
2423 			 */
2424 			mpd->io_done = 1;
2425 			redirty_page_for_writepage(wbc, page);
2426 			unlock_page(page);
2427 			return MPAGE_DA_EXTENT_TAIL;
2428 		}
2429 
2430 		/*
2431 		 * Start next extent of pages ...
2432 		 */
2433 		mpd->first_page = page->index;
2434 
2435 		/*
2436 		 * ... and blocks
2437 		 */
2438 		mpd->b_size = 0;
2439 		mpd->b_state = 0;
2440 		mpd->b_blocknr = 0;
2441 	}
2442 
2443 	mpd->next_page = page->index + 1;
2444 	logical = (sector_t) page->index <<
2445 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2446 
2447 	if (!page_has_buffers(page)) {
2448 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2449 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2450 		if (mpd->io_done)
2451 			return MPAGE_DA_EXTENT_TAIL;
2452 	} else {
2453 		/*
2454 		 * Page with regular buffer heads, just add all dirty ones
2455 		 */
2456 		head = page_buffers(page);
2457 		bh = head;
2458 		do {
2459 			BUG_ON(buffer_locked(bh));
2460 			/*
2461 			 * We need to try to allocate
2462 			 * unmapped blocks in the same page.
2463 			 * Otherwise we won't make progress
2464 			 * with the page in ext4_writepage
2465 			 */
2466 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2467 				mpage_add_bh_to_extent(mpd, logical,
2468 						       bh->b_size,
2469 						       bh->b_state);
2470 				if (mpd->io_done)
2471 					return MPAGE_DA_EXTENT_TAIL;
2472 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2473 				/*
2474 				 * mapped dirty buffer. We need to update
2475 				 * the b_state because we look at
2476 				 * b_state in mpage_da_map_blocks. We don't
2477 				 * update b_size because if we find an
2478 				 * unmapped buffer_head later we need to
2479 				 * use the b_state flag of that buffer_head.
2480 				 */
2481 				if (mpd->b_size == 0)
2482 					mpd->b_state = bh->b_state & BH_FLAGS;
2483 			}
2484 			logical++;
2485 		} while ((bh = bh->b_this_page) != head);
2486 	}
2487 
2488 	return 0;
2489 }
2490 
2491 /*
2492  * This is a special get_blocks_t callback which is used by
2493  * ext4_da_write_begin().  It will either return mapped block or
2494  * reserve space for a single block.
2495  *
2496  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2497  * We also have b_blocknr = -1 and b_bdev initialized properly
2498  *
2499  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2500  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2501  * initialized properly.
2502  */
2503 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2504 				  struct buffer_head *bh_result, int create)
2505 {
2506 	int ret = 0;
2507 	sector_t invalid_block = ~((sector_t) 0xffff);
2508 
2509 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2510 		invalid_block = ~0;
2511 
2512 	BUG_ON(create == 0);
2513 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2514 
2515 	/*
2516 	 * first, we need to know whether the block is allocated already
2517 	 * preallocated blocks are unmapped but should treated
2518 	 * the same as allocated blocks.
2519 	 */
2520 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2521 	if ((ret == 0) && !buffer_delay(bh_result)) {
2522 		/* the block isn't (pre)allocated yet, let's reserve space */
2523 		/*
2524 		 * XXX: __block_prepare_write() unmaps passed block,
2525 		 * is it OK?
2526 		 */
2527 		ret = ext4_da_reserve_space(inode, 1);
2528 		if (ret)
2529 			/* not enough space to reserve */
2530 			return ret;
2531 
2532 		map_bh(bh_result, inode->i_sb, invalid_block);
2533 		set_buffer_new(bh_result);
2534 		set_buffer_delay(bh_result);
2535 	} else if (ret > 0) {
2536 		bh_result->b_size = (ret << inode->i_blkbits);
2537 		if (buffer_unwritten(bh_result)) {
2538 			/* A delayed write to unwritten bh should
2539 			 * be marked new and mapped.  Mapped ensures
2540 			 * that we don't do get_block multiple times
2541 			 * when we write to the same offset and new
2542 			 * ensures that we do proper zero out for
2543 			 * partial write.
2544 			 */
2545 			set_buffer_new(bh_result);
2546 			set_buffer_mapped(bh_result);
2547 		}
2548 		ret = 0;
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 /*
2555  * This function is used as a standard get_block_t calback function
2556  * when there is no desire to allocate any blocks.  It is used as a
2557  * callback function for block_prepare_write(), nobh_writepage(), and
2558  * block_write_full_page().  These functions should only try to map a
2559  * single block at a time.
2560  *
2561  * Since this function doesn't do block allocations even if the caller
2562  * requests it by passing in create=1, it is critically important that
2563  * any caller checks to make sure that any buffer heads are returned
2564  * by this function are either all already mapped or marked for
2565  * delayed allocation before calling nobh_writepage() or
2566  * block_write_full_page().  Otherwise, b_blocknr could be left
2567  * unitialized, and the page write functions will be taken by
2568  * surprise.
2569  */
2570 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2571 				   struct buffer_head *bh_result, int create)
2572 {
2573 	int ret = 0;
2574 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2575 
2576 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2577 
2578 	/*
2579 	 * we don't want to do block allocation in writepage
2580 	 * so call get_block_wrap with create = 0
2581 	 */
2582 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2583 	if (ret > 0) {
2584 		bh_result->b_size = (ret << inode->i_blkbits);
2585 		ret = 0;
2586 	}
2587 	return ret;
2588 }
2589 
2590 static int bget_one(handle_t *handle, struct buffer_head *bh)
2591 {
2592 	get_bh(bh);
2593 	return 0;
2594 }
2595 
2596 static int bput_one(handle_t *handle, struct buffer_head *bh)
2597 {
2598 	put_bh(bh);
2599 	return 0;
2600 }
2601 
2602 static int __ext4_journalled_writepage(struct page *page,
2603 				       struct writeback_control *wbc,
2604 				       unsigned int len)
2605 {
2606 	struct address_space *mapping = page->mapping;
2607 	struct inode *inode = mapping->host;
2608 	struct buffer_head *page_bufs;
2609 	handle_t *handle = NULL;
2610 	int ret = 0;
2611 	int err;
2612 
2613 	page_bufs = page_buffers(page);
2614 	BUG_ON(!page_bufs);
2615 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2616 	/* As soon as we unlock the page, it can go away, but we have
2617 	 * references to buffers so we are safe */
2618 	unlock_page(page);
2619 
2620 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2621 	if (IS_ERR(handle)) {
2622 		ret = PTR_ERR(handle);
2623 		goto out;
2624 	}
2625 
2626 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2627 				do_journal_get_write_access);
2628 
2629 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2630 				write_end_fn);
2631 	if (ret == 0)
2632 		ret = err;
2633 	err = ext4_journal_stop(handle);
2634 	if (!ret)
2635 		ret = err;
2636 
2637 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2638 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2639 out:
2640 	return ret;
2641 }
2642 
2643 /*
2644  * Note that we don't need to start a transaction unless we're journaling data
2645  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2646  * need to file the inode to the transaction's list in ordered mode because if
2647  * we are writing back data added by write(), the inode is already there and if
2648  * we are writing back data modified via mmap(), noone guarantees in which
2649  * transaction the data will hit the disk. In case we are journaling data, we
2650  * cannot start transaction directly because transaction start ranks above page
2651  * lock so we have to do some magic.
2652  *
2653  * This function can get called via...
2654  *   - ext4_da_writepages after taking page lock (have journal handle)
2655  *   - journal_submit_inode_data_buffers (no journal handle)
2656  *   - shrink_page_list via pdflush (no journal handle)
2657  *   - grab_page_cache when doing write_begin (have journal handle)
2658  *
2659  * We don't do any block allocation in this function. If we have page with
2660  * multiple blocks we need to write those buffer_heads that are mapped. This
2661  * is important for mmaped based write. So if we do with blocksize 1K
2662  * truncate(f, 1024);
2663  * a = mmap(f, 0, 4096);
2664  * a[0] = 'a';
2665  * truncate(f, 4096);
2666  * we have in the page first buffer_head mapped via page_mkwrite call back
2667  * but other bufer_heads would be unmapped but dirty(dirty done via the
2668  * do_wp_page). So writepage should write the first block. If we modify
2669  * the mmap area beyond 1024 we will again get a page_fault and the
2670  * page_mkwrite callback will do the block allocation and mark the
2671  * buffer_heads mapped.
2672  *
2673  * We redirty the page if we have any buffer_heads that is either delay or
2674  * unwritten in the page.
2675  *
2676  * We can get recursively called as show below.
2677  *
2678  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2679  *		ext4_writepage()
2680  *
2681  * But since we don't do any block allocation we should not deadlock.
2682  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2683  */
2684 static int ext4_writepage(struct page *page,
2685 			  struct writeback_control *wbc)
2686 {
2687 	int ret = 0;
2688 	loff_t size;
2689 	unsigned int len;
2690 	struct buffer_head *page_bufs;
2691 	struct inode *inode = page->mapping->host;
2692 
2693 	trace_ext4_writepage(inode, page);
2694 	size = i_size_read(inode);
2695 	if (page->index == size >> PAGE_CACHE_SHIFT)
2696 		len = size & ~PAGE_CACHE_MASK;
2697 	else
2698 		len = PAGE_CACHE_SIZE;
2699 
2700 	if (page_has_buffers(page)) {
2701 		page_bufs = page_buffers(page);
2702 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2703 					ext4_bh_delay_or_unwritten)) {
2704 			/*
2705 			 * We don't want to do  block allocation
2706 			 * So redirty the page and return
2707 			 * We may reach here when we do a journal commit
2708 			 * via journal_submit_inode_data_buffers.
2709 			 * If we don't have mapping block we just ignore
2710 			 * them. We can also reach here via shrink_page_list
2711 			 */
2712 			redirty_page_for_writepage(wbc, page);
2713 			unlock_page(page);
2714 			return 0;
2715 		}
2716 	} else {
2717 		/*
2718 		 * The test for page_has_buffers() is subtle:
2719 		 * We know the page is dirty but it lost buffers. That means
2720 		 * that at some moment in time after write_begin()/write_end()
2721 		 * has been called all buffers have been clean and thus they
2722 		 * must have been written at least once. So they are all
2723 		 * mapped and we can happily proceed with mapping them
2724 		 * and writing the page.
2725 		 *
2726 		 * Try to initialize the buffer_heads and check whether
2727 		 * all are mapped and non delay. We don't want to
2728 		 * do block allocation here.
2729 		 */
2730 		ret = block_prepare_write(page, 0, len,
2731 					  noalloc_get_block_write);
2732 		if (!ret) {
2733 			page_bufs = page_buffers(page);
2734 			/* check whether all are mapped and non delay */
2735 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2736 						ext4_bh_delay_or_unwritten)) {
2737 				redirty_page_for_writepage(wbc, page);
2738 				unlock_page(page);
2739 				return 0;
2740 			}
2741 		} else {
2742 			/*
2743 			 * We can't do block allocation here
2744 			 * so just redity the page and unlock
2745 			 * and return
2746 			 */
2747 			redirty_page_for_writepage(wbc, page);
2748 			unlock_page(page);
2749 			return 0;
2750 		}
2751 		/* now mark the buffer_heads as dirty and uptodate */
2752 		block_commit_write(page, 0, len);
2753 	}
2754 
2755 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2756 		/*
2757 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2758 		 * doesn't seem much point in redirtying the page here.
2759 		 */
2760 		ClearPageChecked(page);
2761 		return __ext4_journalled_writepage(page, wbc, len);
2762 	}
2763 
2764 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2765 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2766 	else
2767 		ret = block_write_full_page(page, noalloc_get_block_write,
2768 					    wbc);
2769 
2770 	return ret;
2771 }
2772 
2773 /*
2774  * This is called via ext4_da_writepages() to
2775  * calulate the total number of credits to reserve to fit
2776  * a single extent allocation into a single transaction,
2777  * ext4_da_writpeages() will loop calling this before
2778  * the block allocation.
2779  */
2780 
2781 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2782 {
2783 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2784 
2785 	/*
2786 	 * With non-extent format the journal credit needed to
2787 	 * insert nrblocks contiguous block is dependent on
2788 	 * number of contiguous block. So we will limit
2789 	 * number of contiguous block to a sane value
2790 	 */
2791 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2792 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2793 		max_blocks = EXT4_MAX_TRANS_DATA;
2794 
2795 	return ext4_chunk_trans_blocks(inode, max_blocks);
2796 }
2797 
2798 static int ext4_da_writepages(struct address_space *mapping,
2799 			      struct writeback_control *wbc)
2800 {
2801 	pgoff_t	index;
2802 	int range_whole = 0;
2803 	handle_t *handle = NULL;
2804 	struct mpage_da_data mpd;
2805 	struct inode *inode = mapping->host;
2806 	int no_nrwrite_index_update;
2807 	int pages_written = 0;
2808 	long pages_skipped;
2809 	unsigned int max_pages;
2810 	int range_cyclic, cycled = 1, io_done = 0;
2811 	int needed_blocks, ret = 0;
2812 	long desired_nr_to_write, nr_to_writebump = 0;
2813 	loff_t range_start = wbc->range_start;
2814 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2815 
2816 	trace_ext4_da_writepages(inode, wbc);
2817 
2818 	/*
2819 	 * No pages to write? This is mainly a kludge to avoid starting
2820 	 * a transaction for special inodes like journal inode on last iput()
2821 	 * because that could violate lock ordering on umount
2822 	 */
2823 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2824 		return 0;
2825 
2826 	/*
2827 	 * If the filesystem has aborted, it is read-only, so return
2828 	 * right away instead of dumping stack traces later on that
2829 	 * will obscure the real source of the problem.  We test
2830 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2831 	 * the latter could be true if the filesystem is mounted
2832 	 * read-only, and in that case, ext4_da_writepages should
2833 	 * *never* be called, so if that ever happens, we would want
2834 	 * the stack trace.
2835 	 */
2836 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2837 		return -EROFS;
2838 
2839 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2840 		range_whole = 1;
2841 
2842 	range_cyclic = wbc->range_cyclic;
2843 	if (wbc->range_cyclic) {
2844 		index = mapping->writeback_index;
2845 		if (index)
2846 			cycled = 0;
2847 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2848 		wbc->range_end  = LLONG_MAX;
2849 		wbc->range_cyclic = 0;
2850 	} else
2851 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2852 
2853 	/*
2854 	 * This works around two forms of stupidity.  The first is in
2855 	 * the writeback code, which caps the maximum number of pages
2856 	 * written to be 1024 pages.  This is wrong on multiple
2857 	 * levels; different architectues have a different page size,
2858 	 * which changes the maximum amount of data which gets
2859 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2860 	 * forces this value to be 16 megabytes by multiplying
2861 	 * nr_to_write parameter by four, and then relies on its
2862 	 * allocator to allocate larger extents to make them
2863 	 * contiguous.  Unfortunately this brings us to the second
2864 	 * stupidity, which is that ext4's mballoc code only allocates
2865 	 * at most 2048 blocks.  So we force contiguous writes up to
2866 	 * the number of dirty blocks in the inode, or
2867 	 * sbi->max_writeback_mb_bump whichever is smaller.
2868 	 */
2869 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2870 	if (!range_cyclic && range_whole)
2871 		desired_nr_to_write = wbc->nr_to_write * 8;
2872 	else
2873 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2874 							   max_pages);
2875 	if (desired_nr_to_write > max_pages)
2876 		desired_nr_to_write = max_pages;
2877 
2878 	if (wbc->nr_to_write < desired_nr_to_write) {
2879 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2880 		wbc->nr_to_write = desired_nr_to_write;
2881 	}
2882 
2883 	mpd.wbc = wbc;
2884 	mpd.inode = mapping->host;
2885 
2886 	/*
2887 	 * we don't want write_cache_pages to update
2888 	 * nr_to_write and writeback_index
2889 	 */
2890 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2891 	wbc->no_nrwrite_index_update = 1;
2892 	pages_skipped = wbc->pages_skipped;
2893 
2894 retry:
2895 	while (!ret && wbc->nr_to_write > 0) {
2896 
2897 		/*
2898 		 * we  insert one extent at a time. So we need
2899 		 * credit needed for single extent allocation.
2900 		 * journalled mode is currently not supported
2901 		 * by delalloc
2902 		 */
2903 		BUG_ON(ext4_should_journal_data(inode));
2904 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2905 
2906 		/* start a new transaction*/
2907 		handle = ext4_journal_start(inode, needed_blocks);
2908 		if (IS_ERR(handle)) {
2909 			ret = PTR_ERR(handle);
2910 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2911 			       "%ld pages, ino %lu; err %d\n", __func__,
2912 				wbc->nr_to_write, inode->i_ino, ret);
2913 			goto out_writepages;
2914 		}
2915 
2916 		/*
2917 		 * Now call __mpage_da_writepage to find the next
2918 		 * contiguous region of logical blocks that need
2919 		 * blocks to be allocated by ext4.  We don't actually
2920 		 * submit the blocks for I/O here, even though
2921 		 * write_cache_pages thinks it will, and will set the
2922 		 * pages as clean for write before calling
2923 		 * __mpage_da_writepage().
2924 		 */
2925 		mpd.b_size = 0;
2926 		mpd.b_state = 0;
2927 		mpd.b_blocknr = 0;
2928 		mpd.first_page = 0;
2929 		mpd.next_page = 0;
2930 		mpd.io_done = 0;
2931 		mpd.pages_written = 0;
2932 		mpd.retval = 0;
2933 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2934 					&mpd);
2935 		/*
2936 		 * If we have a contigous extent of pages and we
2937 		 * haven't done the I/O yet, map the blocks and submit
2938 		 * them for I/O.
2939 		 */
2940 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2941 			if (mpage_da_map_blocks(&mpd) == 0)
2942 				mpage_da_submit_io(&mpd);
2943 			mpd.io_done = 1;
2944 			ret = MPAGE_DA_EXTENT_TAIL;
2945 		}
2946 		trace_ext4_da_write_pages(inode, &mpd);
2947 		wbc->nr_to_write -= mpd.pages_written;
2948 
2949 		ext4_journal_stop(handle);
2950 
2951 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2952 			/* commit the transaction which would
2953 			 * free blocks released in the transaction
2954 			 * and try again
2955 			 */
2956 			jbd2_journal_force_commit_nested(sbi->s_journal);
2957 			wbc->pages_skipped = pages_skipped;
2958 			ret = 0;
2959 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2960 			/*
2961 			 * got one extent now try with
2962 			 * rest of the pages
2963 			 */
2964 			pages_written += mpd.pages_written;
2965 			wbc->pages_skipped = pages_skipped;
2966 			ret = 0;
2967 			io_done = 1;
2968 		} else if (wbc->nr_to_write)
2969 			/*
2970 			 * There is no more writeout needed
2971 			 * or we requested for a noblocking writeout
2972 			 * and we found the device congested
2973 			 */
2974 			break;
2975 	}
2976 	if (!io_done && !cycled) {
2977 		cycled = 1;
2978 		index = 0;
2979 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2980 		wbc->range_end  = mapping->writeback_index - 1;
2981 		goto retry;
2982 	}
2983 	if (pages_skipped != wbc->pages_skipped)
2984 		ext4_msg(inode->i_sb, KERN_CRIT,
2985 			 "This should not happen leaving %s "
2986 			 "with nr_to_write = %ld ret = %d\n",
2987 			 __func__, wbc->nr_to_write, ret);
2988 
2989 	/* Update index */
2990 	index += pages_written;
2991 	wbc->range_cyclic = range_cyclic;
2992 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2993 		/*
2994 		 * set the writeback_index so that range_cyclic
2995 		 * mode will write it back later
2996 		 */
2997 		mapping->writeback_index = index;
2998 
2999 out_writepages:
3000 	if (!no_nrwrite_index_update)
3001 		wbc->no_nrwrite_index_update = 0;
3002 	if (wbc->nr_to_write > nr_to_writebump)
3003 		wbc->nr_to_write -= nr_to_writebump;
3004 	wbc->range_start = range_start;
3005 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3006 	return ret;
3007 }
3008 
3009 #define FALL_BACK_TO_NONDELALLOC 1
3010 static int ext4_nonda_switch(struct super_block *sb)
3011 {
3012 	s64 free_blocks, dirty_blocks;
3013 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3014 
3015 	/*
3016 	 * switch to non delalloc mode if we are running low
3017 	 * on free block. The free block accounting via percpu
3018 	 * counters can get slightly wrong with percpu_counter_batch getting
3019 	 * accumulated on each CPU without updating global counters
3020 	 * Delalloc need an accurate free block accounting. So switch
3021 	 * to non delalloc when we are near to error range.
3022 	 */
3023 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3024 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3025 	if (2 * free_blocks < 3 * dirty_blocks ||
3026 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3027 		/*
3028 		 * free block count is less that 150% of dirty blocks
3029 		 * or free blocks is less that watermark
3030 		 */
3031 		return 1;
3032 	}
3033 	return 0;
3034 }
3035 
3036 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3037 			       loff_t pos, unsigned len, unsigned flags,
3038 			       struct page **pagep, void **fsdata)
3039 {
3040 	int ret, retries = 0;
3041 	struct page *page;
3042 	pgoff_t index;
3043 	unsigned from, to;
3044 	struct inode *inode = mapping->host;
3045 	handle_t *handle;
3046 
3047 	index = pos >> PAGE_CACHE_SHIFT;
3048 	from = pos & (PAGE_CACHE_SIZE - 1);
3049 	to = from + len;
3050 
3051 	if (ext4_nonda_switch(inode->i_sb)) {
3052 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 		return ext4_write_begin(file, mapping, pos,
3054 					len, flags, pagep, fsdata);
3055 	}
3056 	*fsdata = (void *)0;
3057 	trace_ext4_da_write_begin(inode, pos, len, flags);
3058 retry:
3059 	/*
3060 	 * With delayed allocation, we don't log the i_disksize update
3061 	 * if there is delayed block allocation. But we still need
3062 	 * to journalling the i_disksize update if writes to the end
3063 	 * of file which has an already mapped buffer.
3064 	 */
3065 	handle = ext4_journal_start(inode, 1);
3066 	if (IS_ERR(handle)) {
3067 		ret = PTR_ERR(handle);
3068 		goto out;
3069 	}
3070 	/* We cannot recurse into the filesystem as the transaction is already
3071 	 * started */
3072 	flags |= AOP_FLAG_NOFS;
3073 
3074 	page = grab_cache_page_write_begin(mapping, index, flags);
3075 	if (!page) {
3076 		ext4_journal_stop(handle);
3077 		ret = -ENOMEM;
3078 		goto out;
3079 	}
3080 	*pagep = page;
3081 
3082 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3083 				ext4_da_get_block_prep);
3084 	if (ret < 0) {
3085 		unlock_page(page);
3086 		ext4_journal_stop(handle);
3087 		page_cache_release(page);
3088 		/*
3089 		 * block_write_begin may have instantiated a few blocks
3090 		 * outside i_size.  Trim these off again. Don't need
3091 		 * i_size_read because we hold i_mutex.
3092 		 */
3093 		if (pos + len > inode->i_size)
3094 			ext4_truncate(inode);
3095 	}
3096 
3097 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3098 		goto retry;
3099 out:
3100 	return ret;
3101 }
3102 
3103 /*
3104  * Check if we should update i_disksize
3105  * when write to the end of file but not require block allocation
3106  */
3107 static int ext4_da_should_update_i_disksize(struct page *page,
3108 					    unsigned long offset)
3109 {
3110 	struct buffer_head *bh;
3111 	struct inode *inode = page->mapping->host;
3112 	unsigned int idx;
3113 	int i;
3114 
3115 	bh = page_buffers(page);
3116 	idx = offset >> inode->i_blkbits;
3117 
3118 	for (i = 0; i < idx; i++)
3119 		bh = bh->b_this_page;
3120 
3121 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3122 		return 0;
3123 	return 1;
3124 }
3125 
3126 static int ext4_da_write_end(struct file *file,
3127 			     struct address_space *mapping,
3128 			     loff_t pos, unsigned len, unsigned copied,
3129 			     struct page *page, void *fsdata)
3130 {
3131 	struct inode *inode = mapping->host;
3132 	int ret = 0, ret2;
3133 	handle_t *handle = ext4_journal_current_handle();
3134 	loff_t new_i_size;
3135 	unsigned long start, end;
3136 	int write_mode = (int)(unsigned long)fsdata;
3137 
3138 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3139 		if (ext4_should_order_data(inode)) {
3140 			return ext4_ordered_write_end(file, mapping, pos,
3141 					len, copied, page, fsdata);
3142 		} else if (ext4_should_writeback_data(inode)) {
3143 			return ext4_writeback_write_end(file, mapping, pos,
3144 					len, copied, page, fsdata);
3145 		} else {
3146 			BUG();
3147 		}
3148 	}
3149 
3150 	trace_ext4_da_write_end(inode, pos, len, copied);
3151 	start = pos & (PAGE_CACHE_SIZE - 1);
3152 	end = start + copied - 1;
3153 
3154 	/*
3155 	 * generic_write_end() will run mark_inode_dirty() if i_size
3156 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3157 	 * into that.
3158 	 */
3159 
3160 	new_i_size = pos + copied;
3161 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3162 		if (ext4_da_should_update_i_disksize(page, end)) {
3163 			down_write(&EXT4_I(inode)->i_data_sem);
3164 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3165 				/*
3166 				 * Updating i_disksize when extending file
3167 				 * without needing block allocation
3168 				 */
3169 				if (ext4_should_order_data(inode))
3170 					ret = ext4_jbd2_file_inode(handle,
3171 								   inode);
3172 
3173 				EXT4_I(inode)->i_disksize = new_i_size;
3174 			}
3175 			up_write(&EXT4_I(inode)->i_data_sem);
3176 			/* We need to mark inode dirty even if
3177 			 * new_i_size is less that inode->i_size
3178 			 * bu greater than i_disksize.(hint delalloc)
3179 			 */
3180 			ext4_mark_inode_dirty(handle, inode);
3181 		}
3182 	}
3183 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3184 							page, fsdata);
3185 	copied = ret2;
3186 	if (ret2 < 0)
3187 		ret = ret2;
3188 	ret2 = ext4_journal_stop(handle);
3189 	if (!ret)
3190 		ret = ret2;
3191 
3192 	return ret ? ret : copied;
3193 }
3194 
3195 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3196 {
3197 	/*
3198 	 * Drop reserved blocks
3199 	 */
3200 	BUG_ON(!PageLocked(page));
3201 	if (!page_has_buffers(page))
3202 		goto out;
3203 
3204 	ext4_da_page_release_reservation(page, offset);
3205 
3206 out:
3207 	ext4_invalidatepage(page, offset);
3208 
3209 	return;
3210 }
3211 
3212 /*
3213  * Force all delayed allocation blocks to be allocated for a given inode.
3214  */
3215 int ext4_alloc_da_blocks(struct inode *inode)
3216 {
3217 	trace_ext4_alloc_da_blocks(inode);
3218 
3219 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3220 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3221 		return 0;
3222 
3223 	/*
3224 	 * We do something simple for now.  The filemap_flush() will
3225 	 * also start triggering a write of the data blocks, which is
3226 	 * not strictly speaking necessary (and for users of
3227 	 * laptop_mode, not even desirable).  However, to do otherwise
3228 	 * would require replicating code paths in:
3229 	 *
3230 	 * ext4_da_writepages() ->
3231 	 *    write_cache_pages() ---> (via passed in callback function)
3232 	 *        __mpage_da_writepage() -->
3233 	 *           mpage_add_bh_to_extent()
3234 	 *           mpage_da_map_blocks()
3235 	 *
3236 	 * The problem is that write_cache_pages(), located in
3237 	 * mm/page-writeback.c, marks pages clean in preparation for
3238 	 * doing I/O, which is not desirable if we're not planning on
3239 	 * doing I/O at all.
3240 	 *
3241 	 * We could call write_cache_pages(), and then redirty all of
3242 	 * the pages by calling redirty_page_for_writeback() but that
3243 	 * would be ugly in the extreme.  So instead we would need to
3244 	 * replicate parts of the code in the above functions,
3245 	 * simplifying them becuase we wouldn't actually intend to
3246 	 * write out the pages, but rather only collect contiguous
3247 	 * logical block extents, call the multi-block allocator, and
3248 	 * then update the buffer heads with the block allocations.
3249 	 *
3250 	 * For now, though, we'll cheat by calling filemap_flush(),
3251 	 * which will map the blocks, and start the I/O, but not
3252 	 * actually wait for the I/O to complete.
3253 	 */
3254 	return filemap_flush(inode->i_mapping);
3255 }
3256 
3257 /*
3258  * bmap() is special.  It gets used by applications such as lilo and by
3259  * the swapper to find the on-disk block of a specific piece of data.
3260  *
3261  * Naturally, this is dangerous if the block concerned is still in the
3262  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3263  * filesystem and enables swap, then they may get a nasty shock when the
3264  * data getting swapped to that swapfile suddenly gets overwritten by
3265  * the original zero's written out previously to the journal and
3266  * awaiting writeback in the kernel's buffer cache.
3267  *
3268  * So, if we see any bmap calls here on a modified, data-journaled file,
3269  * take extra steps to flush any blocks which might be in the cache.
3270  */
3271 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3272 {
3273 	struct inode *inode = mapping->host;
3274 	journal_t *journal;
3275 	int err;
3276 
3277 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3278 			test_opt(inode->i_sb, DELALLOC)) {
3279 		/*
3280 		 * With delalloc we want to sync the file
3281 		 * so that we can make sure we allocate
3282 		 * blocks for file
3283 		 */
3284 		filemap_write_and_wait(mapping);
3285 	}
3286 
3287 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3288 		/*
3289 		 * This is a REALLY heavyweight approach, but the use of
3290 		 * bmap on dirty files is expected to be extremely rare:
3291 		 * only if we run lilo or swapon on a freshly made file
3292 		 * do we expect this to happen.
3293 		 *
3294 		 * (bmap requires CAP_SYS_RAWIO so this does not
3295 		 * represent an unprivileged user DOS attack --- we'd be
3296 		 * in trouble if mortal users could trigger this path at
3297 		 * will.)
3298 		 *
3299 		 * NB. EXT4_STATE_JDATA is not set on files other than
3300 		 * regular files.  If somebody wants to bmap a directory
3301 		 * or symlink and gets confused because the buffer
3302 		 * hasn't yet been flushed to disk, they deserve
3303 		 * everything they get.
3304 		 */
3305 
3306 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3307 		journal = EXT4_JOURNAL(inode);
3308 		jbd2_journal_lock_updates(journal);
3309 		err = jbd2_journal_flush(journal);
3310 		jbd2_journal_unlock_updates(journal);
3311 
3312 		if (err)
3313 			return 0;
3314 	}
3315 
3316 	return generic_block_bmap(mapping, block, ext4_get_block);
3317 }
3318 
3319 static int ext4_readpage(struct file *file, struct page *page)
3320 {
3321 	return mpage_readpage(page, ext4_get_block);
3322 }
3323 
3324 static int
3325 ext4_readpages(struct file *file, struct address_space *mapping,
3326 		struct list_head *pages, unsigned nr_pages)
3327 {
3328 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3329 }
3330 
3331 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3332 {
3333 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3334 
3335 	/*
3336 	 * If it's a full truncate we just forget about the pending dirtying
3337 	 */
3338 	if (offset == 0)
3339 		ClearPageChecked(page);
3340 
3341 	if (journal)
3342 		jbd2_journal_invalidatepage(journal, page, offset);
3343 	else
3344 		block_invalidatepage(page, offset);
3345 }
3346 
3347 static int ext4_releasepage(struct page *page, gfp_t wait)
3348 {
3349 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3350 
3351 	WARN_ON(PageChecked(page));
3352 	if (!page_has_buffers(page))
3353 		return 0;
3354 	if (journal)
3355 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3356 	else
3357 		return try_to_free_buffers(page);
3358 }
3359 
3360 /*
3361  * O_DIRECT for ext3 (or indirect map) based files
3362  *
3363  * If the O_DIRECT write will extend the file then add this inode to the
3364  * orphan list.  So recovery will truncate it back to the original size
3365  * if the machine crashes during the write.
3366  *
3367  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3368  * crashes then stale disk data _may_ be exposed inside the file. But current
3369  * VFS code falls back into buffered path in that case so we are safe.
3370  */
3371 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3372 			      const struct iovec *iov, loff_t offset,
3373 			      unsigned long nr_segs)
3374 {
3375 	struct file *file = iocb->ki_filp;
3376 	struct inode *inode = file->f_mapping->host;
3377 	struct ext4_inode_info *ei = EXT4_I(inode);
3378 	handle_t *handle;
3379 	ssize_t ret;
3380 	int orphan = 0;
3381 	size_t count = iov_length(iov, nr_segs);
3382 	int retries = 0;
3383 
3384 	if (rw == WRITE) {
3385 		loff_t final_size = offset + count;
3386 
3387 		if (final_size > inode->i_size) {
3388 			/* Credits for sb + inode write */
3389 			handle = ext4_journal_start(inode, 2);
3390 			if (IS_ERR(handle)) {
3391 				ret = PTR_ERR(handle);
3392 				goto out;
3393 			}
3394 			ret = ext4_orphan_add(handle, inode);
3395 			if (ret) {
3396 				ext4_journal_stop(handle);
3397 				goto out;
3398 			}
3399 			orphan = 1;
3400 			ei->i_disksize = inode->i_size;
3401 			ext4_journal_stop(handle);
3402 		}
3403 	}
3404 
3405 retry:
3406 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3407 				 offset, nr_segs,
3408 				 ext4_get_block, NULL);
3409 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3410 		goto retry;
3411 
3412 	if (orphan) {
3413 		int err;
3414 
3415 		/* Credits for sb + inode write */
3416 		handle = ext4_journal_start(inode, 2);
3417 		if (IS_ERR(handle)) {
3418 			/* This is really bad luck. We've written the data
3419 			 * but cannot extend i_size. Bail out and pretend
3420 			 * the write failed... */
3421 			ret = PTR_ERR(handle);
3422 			goto out;
3423 		}
3424 		if (inode->i_nlink)
3425 			ext4_orphan_del(handle, inode);
3426 		if (ret > 0) {
3427 			loff_t end = offset + ret;
3428 			if (end > inode->i_size) {
3429 				ei->i_disksize = end;
3430 				i_size_write(inode, end);
3431 				/*
3432 				 * We're going to return a positive `ret'
3433 				 * here due to non-zero-length I/O, so there's
3434 				 * no way of reporting error returns from
3435 				 * ext4_mark_inode_dirty() to userspace.  So
3436 				 * ignore it.
3437 				 */
3438 				ext4_mark_inode_dirty(handle, inode);
3439 			}
3440 		}
3441 		err = ext4_journal_stop(handle);
3442 		if (ret == 0)
3443 			ret = err;
3444 	}
3445 out:
3446 	return ret;
3447 }
3448 
3449 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3450 		   struct buffer_head *bh_result, int create)
3451 {
3452 	handle_t *handle = NULL;
3453 	int ret = 0;
3454 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3455 	int dio_credits;
3456 
3457 	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3458 		   inode->i_ino, create);
3459 	/*
3460 	 * DIO VFS code passes create = 0 flag for write to
3461 	 * the middle of file. It does this to avoid block
3462 	 * allocation for holes, to prevent expose stale data
3463 	 * out when there is parallel buffered read (which does
3464 	 * not hold the i_mutex lock) while direct IO write has
3465 	 * not completed. DIO request on holes finally falls back
3466 	 * to buffered IO for this reason.
3467 	 *
3468 	 * For ext4 extent based file, since we support fallocate,
3469 	 * new allocated extent as uninitialized, for holes, we
3470 	 * could fallocate blocks for holes, thus parallel
3471 	 * buffered IO read will zero out the page when read on
3472 	 * a hole while parallel DIO write to the hole has not completed.
3473 	 *
3474 	 * when we come here, we know it's a direct IO write to
3475 	 * to the middle of file (<i_size)
3476 	 * so it's safe to override the create flag from VFS.
3477 	 */
3478 	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3479 
3480 	if (max_blocks > DIO_MAX_BLOCKS)
3481 		max_blocks = DIO_MAX_BLOCKS;
3482 	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3483 	handle = ext4_journal_start(inode, dio_credits);
3484 	if (IS_ERR(handle)) {
3485 		ret = PTR_ERR(handle);
3486 		goto out;
3487 	}
3488 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3489 			      create);
3490 	if (ret > 0) {
3491 		bh_result->b_size = (ret << inode->i_blkbits);
3492 		ret = 0;
3493 	}
3494 	ext4_journal_stop(handle);
3495 out:
3496 	return ret;
3497 }
3498 
3499 static void ext4_free_io_end(ext4_io_end_t *io)
3500 {
3501 	BUG_ON(!io);
3502 	iput(io->inode);
3503 	kfree(io);
3504 }
3505 static void dump_aio_dio_list(struct inode * inode)
3506 {
3507 #ifdef	EXT4_DEBUG
3508 	struct list_head *cur, *before, *after;
3509 	ext4_io_end_t *io, *io0, *io1;
3510 
3511 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3512 		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3513 		return;
3514 	}
3515 
3516 	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3517 	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3518 		cur = &io->list;
3519 		before = cur->prev;
3520 		io0 = container_of(before, ext4_io_end_t, list);
3521 		after = cur->next;
3522 		io1 = container_of(after, ext4_io_end_t, list);
3523 
3524 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3525 			    io, inode->i_ino, io0, io1);
3526 	}
3527 #endif
3528 }
3529 
3530 /*
3531  * check a range of space and convert unwritten extents to written.
3532  */
3533 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3534 {
3535 	struct inode *inode = io->inode;
3536 	loff_t offset = io->offset;
3537 	size_t size = io->size;
3538 	int ret = 0;
3539 
3540 	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3541 		   "list->prev 0x%p\n",
3542 	           io, inode->i_ino, io->list.next, io->list.prev);
3543 
3544 	if (list_empty(&io->list))
3545 		return ret;
3546 
3547 	if (io->flag != DIO_AIO_UNWRITTEN)
3548 		return ret;
3549 
3550 	if (offset + size <= i_size_read(inode))
3551 		ret = ext4_convert_unwritten_extents(inode, offset, size);
3552 
3553 	if (ret < 0) {
3554 		printk(KERN_EMERG "%s: failed to convert unwritten"
3555 			"extents to written extents, error is %d"
3556 			" io is still on inode %lu aio dio list\n",
3557                        __func__, ret, inode->i_ino);
3558 		return ret;
3559 	}
3560 
3561 	/* clear the DIO AIO unwritten flag */
3562 	io->flag = 0;
3563 	return ret;
3564 }
3565 /*
3566  * work on completed aio dio IO, to convert unwritten extents to extents
3567  */
3568 static void ext4_end_aio_dio_work(struct work_struct *work)
3569 {
3570 	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3571 	struct inode *inode = io->inode;
3572 	int ret = 0;
3573 
3574 	mutex_lock(&inode->i_mutex);
3575 	ret = ext4_end_aio_dio_nolock(io);
3576 	if (ret >= 0) {
3577 		if (!list_empty(&io->list))
3578 			list_del_init(&io->list);
3579 		ext4_free_io_end(io);
3580 	}
3581 	mutex_unlock(&inode->i_mutex);
3582 }
3583 /*
3584  * This function is called from ext4_sync_file().
3585  *
3586  * When AIO DIO IO is completed, the work to convert unwritten
3587  * extents to written is queued on workqueue but may not get immediately
3588  * scheduled. When fsync is called, we need to ensure the
3589  * conversion is complete before fsync returns.
3590  * The inode keeps track of a list of completed AIO from DIO path
3591  * that might needs to do the conversion. This function walks through
3592  * the list and convert the related unwritten extents to written.
3593  */
3594 int flush_aio_dio_completed_IO(struct inode *inode)
3595 {
3596 	ext4_io_end_t *io;
3597 	int ret = 0;
3598 	int ret2 = 0;
3599 
3600 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3601 		return ret;
3602 
3603 	dump_aio_dio_list(inode);
3604 	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3605 		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3606 				ext4_io_end_t, list);
3607 		/*
3608 		 * Calling ext4_end_aio_dio_nolock() to convert completed
3609 		 * IO to written.
3610 		 *
3611 		 * When ext4_sync_file() is called, run_queue() may already
3612 		 * about to flush the work corresponding to this io structure.
3613 		 * It will be upset if it founds the io structure related
3614 		 * to the work-to-be schedule is freed.
3615 		 *
3616 		 * Thus we need to keep the io structure still valid here after
3617 		 * convertion finished. The io structure has a flag to
3618 		 * avoid double converting from both fsync and background work
3619 		 * queue work.
3620 		 */
3621 		ret = ext4_end_aio_dio_nolock(io);
3622 		if (ret < 0)
3623 			ret2 = ret;
3624 		else
3625 			list_del_init(&io->list);
3626 	}
3627 	return (ret2 < 0) ? ret2 : 0;
3628 }
3629 
3630 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3631 {
3632 	ext4_io_end_t *io = NULL;
3633 
3634 	io = kmalloc(sizeof(*io), GFP_NOFS);
3635 
3636 	if (io) {
3637 		igrab(inode);
3638 		io->inode = inode;
3639 		io->flag = 0;
3640 		io->offset = 0;
3641 		io->size = 0;
3642 		io->error = 0;
3643 		INIT_WORK(&io->work, ext4_end_aio_dio_work);
3644 		INIT_LIST_HEAD(&io->list);
3645 	}
3646 
3647 	return io;
3648 }
3649 
3650 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3651 			    ssize_t size, void *private)
3652 {
3653         ext4_io_end_t *io_end = iocb->private;
3654 	struct workqueue_struct *wq;
3655 
3656 	/* if not async direct IO or dio with 0 bytes write, just return */
3657 	if (!io_end || !size)
3658 		return;
3659 
3660 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3661 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3662  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3663 		  size);
3664 
3665 	/* if not aio dio with unwritten extents, just free io and return */
3666 	if (io_end->flag != DIO_AIO_UNWRITTEN){
3667 		ext4_free_io_end(io_end);
3668 		iocb->private = NULL;
3669 		return;
3670 	}
3671 
3672 	io_end->offset = offset;
3673 	io_end->size = size;
3674 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3675 
3676 	/* queue the work to convert unwritten extents to written */
3677 	queue_work(wq, &io_end->work);
3678 
3679 	/* Add the io_end to per-inode completed aio dio list*/
3680 	list_add_tail(&io_end->list,
3681 		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3682 	iocb->private = NULL;
3683 }
3684 /*
3685  * For ext4 extent files, ext4 will do direct-io write to holes,
3686  * preallocated extents, and those write extend the file, no need to
3687  * fall back to buffered IO.
3688  *
3689  * For holes, we fallocate those blocks, mark them as unintialized
3690  * If those blocks were preallocated, we mark sure they are splited, but
3691  * still keep the range to write as unintialized.
3692  *
3693  * The unwrritten extents will be converted to written when DIO is completed.
3694  * For async direct IO, since the IO may still pending when return, we
3695  * set up an end_io call back function, which will do the convertion
3696  * when async direct IO completed.
3697  *
3698  * If the O_DIRECT write will extend the file then add this inode to the
3699  * orphan list.  So recovery will truncate it back to the original size
3700  * if the machine crashes during the write.
3701  *
3702  */
3703 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3704 			      const struct iovec *iov, loff_t offset,
3705 			      unsigned long nr_segs)
3706 {
3707 	struct file *file = iocb->ki_filp;
3708 	struct inode *inode = file->f_mapping->host;
3709 	ssize_t ret;
3710 	size_t count = iov_length(iov, nr_segs);
3711 
3712 	loff_t final_size = offset + count;
3713 	if (rw == WRITE && final_size <= inode->i_size) {
3714 		/*
3715  		 * We could direct write to holes and fallocate.
3716 		 *
3717  		 * Allocated blocks to fill the hole are marked as uninitialized
3718  		 * to prevent paralel buffered read to expose the stale data
3719  		 * before DIO complete the data IO.
3720 		 *
3721  		 * As to previously fallocated extents, ext4 get_block
3722  		 * will just simply mark the buffer mapped but still
3723  		 * keep the extents uninitialized.
3724  		 *
3725 		 * for non AIO case, we will convert those unwritten extents
3726 		 * to written after return back from blockdev_direct_IO.
3727 		 *
3728 		 * for async DIO, the conversion needs to be defered when
3729 		 * the IO is completed. The ext4 end_io callback function
3730 		 * will be called to take care of the conversion work.
3731 		 * Here for async case, we allocate an io_end structure to
3732 		 * hook to the iocb.
3733  		 */
3734 		iocb->private = NULL;
3735 		EXT4_I(inode)->cur_aio_dio = NULL;
3736 		if (!is_sync_kiocb(iocb)) {
3737 			iocb->private = ext4_init_io_end(inode);
3738 			if (!iocb->private)
3739 				return -ENOMEM;
3740 			/*
3741 			 * we save the io structure for current async
3742 			 * direct IO, so that later ext4_get_blocks()
3743 			 * could flag the io structure whether there
3744 			 * is a unwritten extents needs to be converted
3745 			 * when IO is completed.
3746 			 */
3747 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3748 		}
3749 
3750 		ret = blockdev_direct_IO(rw, iocb, inode,
3751 					 inode->i_sb->s_bdev, iov,
3752 					 offset, nr_segs,
3753 					 ext4_get_block_dio_write,
3754 					 ext4_end_io_dio);
3755 		if (iocb->private)
3756 			EXT4_I(inode)->cur_aio_dio = NULL;
3757 		/*
3758 		 * The io_end structure takes a reference to the inode,
3759 		 * that structure needs to be destroyed and the
3760 		 * reference to the inode need to be dropped, when IO is
3761 		 * complete, even with 0 byte write, or failed.
3762 		 *
3763 		 * In the successful AIO DIO case, the io_end structure will be
3764 		 * desctroyed and the reference to the inode will be dropped
3765 		 * after the end_io call back function is called.
3766 		 *
3767 		 * In the case there is 0 byte write, or error case, since
3768 		 * VFS direct IO won't invoke the end_io call back function,
3769 		 * we need to free the end_io structure here.
3770 		 */
3771 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3772 			ext4_free_io_end(iocb->private);
3773 			iocb->private = NULL;
3774 		} else if (ret > 0 && (EXT4_I(inode)->i_state &
3775 				       EXT4_STATE_DIO_UNWRITTEN)) {
3776 			int err;
3777 			/*
3778 			 * for non AIO case, since the IO is already
3779 			 * completed, we could do the convertion right here
3780 			 */
3781 			err = ext4_convert_unwritten_extents(inode,
3782 							     offset, ret);
3783 			if (err < 0)
3784 				ret = err;
3785 			EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3786 		}
3787 		return ret;
3788 	}
3789 
3790 	/* for write the the end of file case, we fall back to old way */
3791 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3792 }
3793 
3794 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3795 			      const struct iovec *iov, loff_t offset,
3796 			      unsigned long nr_segs)
3797 {
3798 	struct file *file = iocb->ki_filp;
3799 	struct inode *inode = file->f_mapping->host;
3800 
3801 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3802 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3803 
3804 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3805 }
3806 
3807 /*
3808  * Pages can be marked dirty completely asynchronously from ext4's journalling
3809  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3810  * much here because ->set_page_dirty is called under VFS locks.  The page is
3811  * not necessarily locked.
3812  *
3813  * We cannot just dirty the page and leave attached buffers clean, because the
3814  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3815  * or jbddirty because all the journalling code will explode.
3816  *
3817  * So what we do is to mark the page "pending dirty" and next time writepage
3818  * is called, propagate that into the buffers appropriately.
3819  */
3820 static int ext4_journalled_set_page_dirty(struct page *page)
3821 {
3822 	SetPageChecked(page);
3823 	return __set_page_dirty_nobuffers(page);
3824 }
3825 
3826 static const struct address_space_operations ext4_ordered_aops = {
3827 	.readpage		= ext4_readpage,
3828 	.readpages		= ext4_readpages,
3829 	.writepage		= ext4_writepage,
3830 	.sync_page		= block_sync_page,
3831 	.write_begin		= ext4_write_begin,
3832 	.write_end		= ext4_ordered_write_end,
3833 	.bmap			= ext4_bmap,
3834 	.invalidatepage		= ext4_invalidatepage,
3835 	.releasepage		= ext4_releasepage,
3836 	.direct_IO		= ext4_direct_IO,
3837 	.migratepage		= buffer_migrate_page,
3838 	.is_partially_uptodate  = block_is_partially_uptodate,
3839 	.error_remove_page	= generic_error_remove_page,
3840 };
3841 
3842 static const struct address_space_operations ext4_writeback_aops = {
3843 	.readpage		= ext4_readpage,
3844 	.readpages		= ext4_readpages,
3845 	.writepage		= ext4_writepage,
3846 	.sync_page		= block_sync_page,
3847 	.write_begin		= ext4_write_begin,
3848 	.write_end		= ext4_writeback_write_end,
3849 	.bmap			= ext4_bmap,
3850 	.invalidatepage		= ext4_invalidatepage,
3851 	.releasepage		= ext4_releasepage,
3852 	.direct_IO		= ext4_direct_IO,
3853 	.migratepage		= buffer_migrate_page,
3854 	.is_partially_uptodate  = block_is_partially_uptodate,
3855 	.error_remove_page	= generic_error_remove_page,
3856 };
3857 
3858 static const struct address_space_operations ext4_journalled_aops = {
3859 	.readpage		= ext4_readpage,
3860 	.readpages		= ext4_readpages,
3861 	.writepage		= ext4_writepage,
3862 	.sync_page		= block_sync_page,
3863 	.write_begin		= ext4_write_begin,
3864 	.write_end		= ext4_journalled_write_end,
3865 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3866 	.bmap			= ext4_bmap,
3867 	.invalidatepage		= ext4_invalidatepage,
3868 	.releasepage		= ext4_releasepage,
3869 	.is_partially_uptodate  = block_is_partially_uptodate,
3870 	.error_remove_page	= generic_error_remove_page,
3871 };
3872 
3873 static const struct address_space_operations ext4_da_aops = {
3874 	.readpage		= ext4_readpage,
3875 	.readpages		= ext4_readpages,
3876 	.writepage		= ext4_writepage,
3877 	.writepages		= ext4_da_writepages,
3878 	.sync_page		= block_sync_page,
3879 	.write_begin		= ext4_da_write_begin,
3880 	.write_end		= ext4_da_write_end,
3881 	.bmap			= ext4_bmap,
3882 	.invalidatepage		= ext4_da_invalidatepage,
3883 	.releasepage		= ext4_releasepage,
3884 	.direct_IO		= ext4_direct_IO,
3885 	.migratepage		= buffer_migrate_page,
3886 	.is_partially_uptodate  = block_is_partially_uptodate,
3887 	.error_remove_page	= generic_error_remove_page,
3888 };
3889 
3890 void ext4_set_aops(struct inode *inode)
3891 {
3892 	if (ext4_should_order_data(inode) &&
3893 		test_opt(inode->i_sb, DELALLOC))
3894 		inode->i_mapping->a_ops = &ext4_da_aops;
3895 	else if (ext4_should_order_data(inode))
3896 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3897 	else if (ext4_should_writeback_data(inode) &&
3898 		 test_opt(inode->i_sb, DELALLOC))
3899 		inode->i_mapping->a_ops = &ext4_da_aops;
3900 	else if (ext4_should_writeback_data(inode))
3901 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3902 	else
3903 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3904 }
3905 
3906 /*
3907  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3908  * up to the end of the block which corresponds to `from'.
3909  * This required during truncate. We need to physically zero the tail end
3910  * of that block so it doesn't yield old data if the file is later grown.
3911  */
3912 int ext4_block_truncate_page(handle_t *handle,
3913 		struct address_space *mapping, loff_t from)
3914 {
3915 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3916 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3917 	unsigned blocksize, length, pos;
3918 	ext4_lblk_t iblock;
3919 	struct inode *inode = mapping->host;
3920 	struct buffer_head *bh;
3921 	struct page *page;
3922 	int err = 0;
3923 
3924 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3925 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3926 	if (!page)
3927 		return -EINVAL;
3928 
3929 	blocksize = inode->i_sb->s_blocksize;
3930 	length = blocksize - (offset & (blocksize - 1));
3931 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3932 
3933 	/*
3934 	 * For "nobh" option,  we can only work if we don't need to
3935 	 * read-in the page - otherwise we create buffers to do the IO.
3936 	 */
3937 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3938 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3939 		zero_user(page, offset, length);
3940 		set_page_dirty(page);
3941 		goto unlock;
3942 	}
3943 
3944 	if (!page_has_buffers(page))
3945 		create_empty_buffers(page, blocksize, 0);
3946 
3947 	/* Find the buffer that contains "offset" */
3948 	bh = page_buffers(page);
3949 	pos = blocksize;
3950 	while (offset >= pos) {
3951 		bh = bh->b_this_page;
3952 		iblock++;
3953 		pos += blocksize;
3954 	}
3955 
3956 	err = 0;
3957 	if (buffer_freed(bh)) {
3958 		BUFFER_TRACE(bh, "freed: skip");
3959 		goto unlock;
3960 	}
3961 
3962 	if (!buffer_mapped(bh)) {
3963 		BUFFER_TRACE(bh, "unmapped");
3964 		ext4_get_block(inode, iblock, bh, 0);
3965 		/* unmapped? It's a hole - nothing to do */
3966 		if (!buffer_mapped(bh)) {
3967 			BUFFER_TRACE(bh, "still unmapped");
3968 			goto unlock;
3969 		}
3970 	}
3971 
3972 	/* Ok, it's mapped. Make sure it's up-to-date */
3973 	if (PageUptodate(page))
3974 		set_buffer_uptodate(bh);
3975 
3976 	if (!buffer_uptodate(bh)) {
3977 		err = -EIO;
3978 		ll_rw_block(READ, 1, &bh);
3979 		wait_on_buffer(bh);
3980 		/* Uhhuh. Read error. Complain and punt. */
3981 		if (!buffer_uptodate(bh))
3982 			goto unlock;
3983 	}
3984 
3985 	if (ext4_should_journal_data(inode)) {
3986 		BUFFER_TRACE(bh, "get write access");
3987 		err = ext4_journal_get_write_access(handle, bh);
3988 		if (err)
3989 			goto unlock;
3990 	}
3991 
3992 	zero_user(page, offset, length);
3993 
3994 	BUFFER_TRACE(bh, "zeroed end of block");
3995 
3996 	err = 0;
3997 	if (ext4_should_journal_data(inode)) {
3998 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3999 	} else {
4000 		if (ext4_should_order_data(inode))
4001 			err = ext4_jbd2_file_inode(handle, inode);
4002 		mark_buffer_dirty(bh);
4003 	}
4004 
4005 unlock:
4006 	unlock_page(page);
4007 	page_cache_release(page);
4008 	return err;
4009 }
4010 
4011 /*
4012  * Probably it should be a library function... search for first non-zero word
4013  * or memcmp with zero_page, whatever is better for particular architecture.
4014  * Linus?
4015  */
4016 static inline int all_zeroes(__le32 *p, __le32 *q)
4017 {
4018 	while (p < q)
4019 		if (*p++)
4020 			return 0;
4021 	return 1;
4022 }
4023 
4024 /**
4025  *	ext4_find_shared - find the indirect blocks for partial truncation.
4026  *	@inode:	  inode in question
4027  *	@depth:	  depth of the affected branch
4028  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4029  *	@chain:	  place to store the pointers to partial indirect blocks
4030  *	@top:	  place to the (detached) top of branch
4031  *
4032  *	This is a helper function used by ext4_truncate().
4033  *
4034  *	When we do truncate() we may have to clean the ends of several
4035  *	indirect blocks but leave the blocks themselves alive. Block is
4036  *	partially truncated if some data below the new i_size is refered
4037  *	from it (and it is on the path to the first completely truncated
4038  *	data block, indeed).  We have to free the top of that path along
4039  *	with everything to the right of the path. Since no allocation
4040  *	past the truncation point is possible until ext4_truncate()
4041  *	finishes, we may safely do the latter, but top of branch may
4042  *	require special attention - pageout below the truncation point
4043  *	might try to populate it.
4044  *
4045  *	We atomically detach the top of branch from the tree, store the
4046  *	block number of its root in *@top, pointers to buffer_heads of
4047  *	partially truncated blocks - in @chain[].bh and pointers to
4048  *	their last elements that should not be removed - in
4049  *	@chain[].p. Return value is the pointer to last filled element
4050  *	of @chain.
4051  *
4052  *	The work left to caller to do the actual freeing of subtrees:
4053  *		a) free the subtree starting from *@top
4054  *		b) free the subtrees whose roots are stored in
4055  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4056  *		c) free the subtrees growing from the inode past the @chain[0].
4057  *			(no partially truncated stuff there).  */
4058 
4059 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4060 				  ext4_lblk_t offsets[4], Indirect chain[4],
4061 				  __le32 *top)
4062 {
4063 	Indirect *partial, *p;
4064 	int k, err;
4065 
4066 	*top = 0;
4067 	/* Make k index the deepest non-null offest + 1 */
4068 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4069 		;
4070 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4071 	/* Writer: pointers */
4072 	if (!partial)
4073 		partial = chain + k-1;
4074 	/*
4075 	 * If the branch acquired continuation since we've looked at it -
4076 	 * fine, it should all survive and (new) top doesn't belong to us.
4077 	 */
4078 	if (!partial->key && *partial->p)
4079 		/* Writer: end */
4080 		goto no_top;
4081 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4082 		;
4083 	/*
4084 	 * OK, we've found the last block that must survive. The rest of our
4085 	 * branch should be detached before unlocking. However, if that rest
4086 	 * of branch is all ours and does not grow immediately from the inode
4087 	 * it's easier to cheat and just decrement partial->p.
4088 	 */
4089 	if (p == chain + k - 1 && p > chain) {
4090 		p->p--;
4091 	} else {
4092 		*top = *p->p;
4093 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4094 #if 0
4095 		*p->p = 0;
4096 #endif
4097 	}
4098 	/* Writer: end */
4099 
4100 	while (partial > p) {
4101 		brelse(partial->bh);
4102 		partial--;
4103 	}
4104 no_top:
4105 	return partial;
4106 }
4107 
4108 /*
4109  * Zero a number of block pointers in either an inode or an indirect block.
4110  * If we restart the transaction we must again get write access to the
4111  * indirect block for further modification.
4112  *
4113  * We release `count' blocks on disk, but (last - first) may be greater
4114  * than `count' because there can be holes in there.
4115  */
4116 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4117 			      struct buffer_head *bh,
4118 			      ext4_fsblk_t block_to_free,
4119 			      unsigned long count, __le32 *first,
4120 			      __le32 *last)
4121 {
4122 	__le32 *p;
4123 	if (try_to_extend_transaction(handle, inode)) {
4124 		if (bh) {
4125 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126 			ext4_handle_dirty_metadata(handle, inode, bh);
4127 		}
4128 		ext4_mark_inode_dirty(handle, inode);
4129 		ext4_truncate_restart_trans(handle, inode,
4130 					    blocks_for_truncate(inode));
4131 		if (bh) {
4132 			BUFFER_TRACE(bh, "retaking write access");
4133 			ext4_journal_get_write_access(handle, bh);
4134 		}
4135 	}
4136 
4137 	/*
4138 	 * Any buffers which are on the journal will be in memory. We
4139 	 * find them on the hash table so jbd2_journal_revoke() will
4140 	 * run jbd2_journal_forget() on them.  We've already detached
4141 	 * each block from the file, so bforget() in
4142 	 * jbd2_journal_forget() should be safe.
4143 	 *
4144 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4145 	 */
4146 	for (p = first; p < last; p++) {
4147 		u32 nr = le32_to_cpu(*p);
4148 		if (nr) {
4149 			struct buffer_head *tbh;
4150 
4151 			*p = 0;
4152 			tbh = sb_find_get_block(inode->i_sb, nr);
4153 			ext4_forget(handle, 0, inode, tbh, nr);
4154 		}
4155 	}
4156 
4157 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
4158 }
4159 
4160 /**
4161  * ext4_free_data - free a list of data blocks
4162  * @handle:	handle for this transaction
4163  * @inode:	inode we are dealing with
4164  * @this_bh:	indirect buffer_head which contains *@first and *@last
4165  * @first:	array of block numbers
4166  * @last:	points immediately past the end of array
4167  *
4168  * We are freeing all blocks refered from that array (numbers are stored as
4169  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4170  *
4171  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4172  * blocks are contiguous then releasing them at one time will only affect one
4173  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4174  * actually use a lot of journal space.
4175  *
4176  * @this_bh will be %NULL if @first and @last point into the inode's direct
4177  * block pointers.
4178  */
4179 static void ext4_free_data(handle_t *handle, struct inode *inode,
4180 			   struct buffer_head *this_bh,
4181 			   __le32 *first, __le32 *last)
4182 {
4183 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4184 	unsigned long count = 0;	    /* Number of blocks in the run */
4185 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4186 					       corresponding to
4187 					       block_to_free */
4188 	ext4_fsblk_t nr;		    /* Current block # */
4189 	__le32 *p;			    /* Pointer into inode/ind
4190 					       for current block */
4191 	int err;
4192 
4193 	if (this_bh) {				/* For indirect block */
4194 		BUFFER_TRACE(this_bh, "get_write_access");
4195 		err = ext4_journal_get_write_access(handle, this_bh);
4196 		/* Important: if we can't update the indirect pointers
4197 		 * to the blocks, we can't free them. */
4198 		if (err)
4199 			return;
4200 	}
4201 
4202 	for (p = first; p < last; p++) {
4203 		nr = le32_to_cpu(*p);
4204 		if (nr) {
4205 			/* accumulate blocks to free if they're contiguous */
4206 			if (count == 0) {
4207 				block_to_free = nr;
4208 				block_to_free_p = p;
4209 				count = 1;
4210 			} else if (nr == block_to_free + count) {
4211 				count++;
4212 			} else {
4213 				ext4_clear_blocks(handle, inode, this_bh,
4214 						  block_to_free,
4215 						  count, block_to_free_p, p);
4216 				block_to_free = nr;
4217 				block_to_free_p = p;
4218 				count = 1;
4219 			}
4220 		}
4221 	}
4222 
4223 	if (count > 0)
4224 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4225 				  count, block_to_free_p, p);
4226 
4227 	if (this_bh) {
4228 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4229 
4230 		/*
4231 		 * The buffer head should have an attached journal head at this
4232 		 * point. However, if the data is corrupted and an indirect
4233 		 * block pointed to itself, it would have been detached when
4234 		 * the block was cleared. Check for this instead of OOPSing.
4235 		 */
4236 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4237 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4238 		else
4239 			ext4_error(inode->i_sb, __func__,
4240 				   "circular indirect block detected, "
4241 				   "inode=%lu, block=%llu",
4242 				   inode->i_ino,
4243 				   (unsigned long long) this_bh->b_blocknr);
4244 	}
4245 }
4246 
4247 /**
4248  *	ext4_free_branches - free an array of branches
4249  *	@handle: JBD handle for this transaction
4250  *	@inode:	inode we are dealing with
4251  *	@parent_bh: the buffer_head which contains *@first and *@last
4252  *	@first:	array of block numbers
4253  *	@last:	pointer immediately past the end of array
4254  *	@depth:	depth of the branches to free
4255  *
4256  *	We are freeing all blocks refered from these branches (numbers are
4257  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4258  *	appropriately.
4259  */
4260 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4261 			       struct buffer_head *parent_bh,
4262 			       __le32 *first, __le32 *last, int depth)
4263 {
4264 	ext4_fsblk_t nr;
4265 	__le32 *p;
4266 
4267 	if (ext4_handle_is_aborted(handle))
4268 		return;
4269 
4270 	if (depth--) {
4271 		struct buffer_head *bh;
4272 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4273 		p = last;
4274 		while (--p >= first) {
4275 			nr = le32_to_cpu(*p);
4276 			if (!nr)
4277 				continue;		/* A hole */
4278 
4279 			/* Go read the buffer for the next level down */
4280 			bh = sb_bread(inode->i_sb, nr);
4281 
4282 			/*
4283 			 * A read failure? Report error and clear slot
4284 			 * (should be rare).
4285 			 */
4286 			if (!bh) {
4287 				ext4_error(inode->i_sb, "ext4_free_branches",
4288 					   "Read failure, inode=%lu, block=%llu",
4289 					   inode->i_ino, nr);
4290 				continue;
4291 			}
4292 
4293 			/* This zaps the entire block.  Bottom up. */
4294 			BUFFER_TRACE(bh, "free child branches");
4295 			ext4_free_branches(handle, inode, bh,
4296 					(__le32 *) bh->b_data,
4297 					(__le32 *) bh->b_data + addr_per_block,
4298 					depth);
4299 
4300 			/*
4301 			 * We've probably journalled the indirect block several
4302 			 * times during the truncate.  But it's no longer
4303 			 * needed and we now drop it from the transaction via
4304 			 * jbd2_journal_revoke().
4305 			 *
4306 			 * That's easy if it's exclusively part of this
4307 			 * transaction.  But if it's part of the committing
4308 			 * transaction then jbd2_journal_forget() will simply
4309 			 * brelse() it.  That means that if the underlying
4310 			 * block is reallocated in ext4_get_block(),
4311 			 * unmap_underlying_metadata() will find this block
4312 			 * and will try to get rid of it.  damn, damn.
4313 			 *
4314 			 * If this block has already been committed to the
4315 			 * journal, a revoke record will be written.  And
4316 			 * revoke records must be emitted *before* clearing
4317 			 * this block's bit in the bitmaps.
4318 			 */
4319 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4320 
4321 			/*
4322 			 * Everything below this this pointer has been
4323 			 * released.  Now let this top-of-subtree go.
4324 			 *
4325 			 * We want the freeing of this indirect block to be
4326 			 * atomic in the journal with the updating of the
4327 			 * bitmap block which owns it.  So make some room in
4328 			 * the journal.
4329 			 *
4330 			 * We zero the parent pointer *after* freeing its
4331 			 * pointee in the bitmaps, so if extend_transaction()
4332 			 * for some reason fails to put the bitmap changes and
4333 			 * the release into the same transaction, recovery
4334 			 * will merely complain about releasing a free block,
4335 			 * rather than leaking blocks.
4336 			 */
4337 			if (ext4_handle_is_aborted(handle))
4338 				return;
4339 			if (try_to_extend_transaction(handle, inode)) {
4340 				ext4_mark_inode_dirty(handle, inode);
4341 				ext4_truncate_restart_trans(handle, inode,
4342 					    blocks_for_truncate(inode));
4343 			}
4344 
4345 			ext4_free_blocks(handle, inode, nr, 1, 1);
4346 
4347 			if (parent_bh) {
4348 				/*
4349 				 * The block which we have just freed is
4350 				 * pointed to by an indirect block: journal it
4351 				 */
4352 				BUFFER_TRACE(parent_bh, "get_write_access");
4353 				if (!ext4_journal_get_write_access(handle,
4354 								   parent_bh)){
4355 					*p = 0;
4356 					BUFFER_TRACE(parent_bh,
4357 					"call ext4_handle_dirty_metadata");
4358 					ext4_handle_dirty_metadata(handle,
4359 								   inode,
4360 								   parent_bh);
4361 				}
4362 			}
4363 		}
4364 	} else {
4365 		/* We have reached the bottom of the tree. */
4366 		BUFFER_TRACE(parent_bh, "free data blocks");
4367 		ext4_free_data(handle, inode, parent_bh, first, last);
4368 	}
4369 }
4370 
4371 int ext4_can_truncate(struct inode *inode)
4372 {
4373 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4374 		return 0;
4375 	if (S_ISREG(inode->i_mode))
4376 		return 1;
4377 	if (S_ISDIR(inode->i_mode))
4378 		return 1;
4379 	if (S_ISLNK(inode->i_mode))
4380 		return !ext4_inode_is_fast_symlink(inode);
4381 	return 0;
4382 }
4383 
4384 /*
4385  * ext4_truncate()
4386  *
4387  * We block out ext4_get_block() block instantiations across the entire
4388  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4389  * simultaneously on behalf of the same inode.
4390  *
4391  * As we work through the truncate and commmit bits of it to the journal there
4392  * is one core, guiding principle: the file's tree must always be consistent on
4393  * disk.  We must be able to restart the truncate after a crash.
4394  *
4395  * The file's tree may be transiently inconsistent in memory (although it
4396  * probably isn't), but whenever we close off and commit a journal transaction,
4397  * the contents of (the filesystem + the journal) must be consistent and
4398  * restartable.  It's pretty simple, really: bottom up, right to left (although
4399  * left-to-right works OK too).
4400  *
4401  * Note that at recovery time, journal replay occurs *before* the restart of
4402  * truncate against the orphan inode list.
4403  *
4404  * The committed inode has the new, desired i_size (which is the same as
4405  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4406  * that this inode's truncate did not complete and it will again call
4407  * ext4_truncate() to have another go.  So there will be instantiated blocks
4408  * to the right of the truncation point in a crashed ext4 filesystem.  But
4409  * that's fine - as long as they are linked from the inode, the post-crash
4410  * ext4_truncate() run will find them and release them.
4411  */
4412 void ext4_truncate(struct inode *inode)
4413 {
4414 	handle_t *handle;
4415 	struct ext4_inode_info *ei = EXT4_I(inode);
4416 	__le32 *i_data = ei->i_data;
4417 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4418 	struct address_space *mapping = inode->i_mapping;
4419 	ext4_lblk_t offsets[4];
4420 	Indirect chain[4];
4421 	Indirect *partial;
4422 	__le32 nr = 0;
4423 	int n;
4424 	ext4_lblk_t last_block;
4425 	unsigned blocksize = inode->i_sb->s_blocksize;
4426 
4427 	if (!ext4_can_truncate(inode))
4428 		return;
4429 
4430 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4431 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4432 
4433 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4434 		ext4_ext_truncate(inode);
4435 		return;
4436 	}
4437 
4438 	handle = start_transaction(inode);
4439 	if (IS_ERR(handle))
4440 		return;		/* AKPM: return what? */
4441 
4442 	last_block = (inode->i_size + blocksize-1)
4443 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4444 
4445 	if (inode->i_size & (blocksize - 1))
4446 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4447 			goto out_stop;
4448 
4449 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4450 	if (n == 0)
4451 		goto out_stop;	/* error */
4452 
4453 	/*
4454 	 * OK.  This truncate is going to happen.  We add the inode to the
4455 	 * orphan list, so that if this truncate spans multiple transactions,
4456 	 * and we crash, we will resume the truncate when the filesystem
4457 	 * recovers.  It also marks the inode dirty, to catch the new size.
4458 	 *
4459 	 * Implication: the file must always be in a sane, consistent
4460 	 * truncatable state while each transaction commits.
4461 	 */
4462 	if (ext4_orphan_add(handle, inode))
4463 		goto out_stop;
4464 
4465 	/*
4466 	 * From here we block out all ext4_get_block() callers who want to
4467 	 * modify the block allocation tree.
4468 	 */
4469 	down_write(&ei->i_data_sem);
4470 
4471 	ext4_discard_preallocations(inode);
4472 
4473 	/*
4474 	 * The orphan list entry will now protect us from any crash which
4475 	 * occurs before the truncate completes, so it is now safe to propagate
4476 	 * the new, shorter inode size (held for now in i_size) into the
4477 	 * on-disk inode. We do this via i_disksize, which is the value which
4478 	 * ext4 *really* writes onto the disk inode.
4479 	 */
4480 	ei->i_disksize = inode->i_size;
4481 
4482 	if (n == 1) {		/* direct blocks */
4483 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4484 			       i_data + EXT4_NDIR_BLOCKS);
4485 		goto do_indirects;
4486 	}
4487 
4488 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4489 	/* Kill the top of shared branch (not detached) */
4490 	if (nr) {
4491 		if (partial == chain) {
4492 			/* Shared branch grows from the inode */
4493 			ext4_free_branches(handle, inode, NULL,
4494 					   &nr, &nr+1, (chain+n-1) - partial);
4495 			*partial->p = 0;
4496 			/*
4497 			 * We mark the inode dirty prior to restart,
4498 			 * and prior to stop.  No need for it here.
4499 			 */
4500 		} else {
4501 			/* Shared branch grows from an indirect block */
4502 			BUFFER_TRACE(partial->bh, "get_write_access");
4503 			ext4_free_branches(handle, inode, partial->bh,
4504 					partial->p,
4505 					partial->p+1, (chain+n-1) - partial);
4506 		}
4507 	}
4508 	/* Clear the ends of indirect blocks on the shared branch */
4509 	while (partial > chain) {
4510 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4511 				   (__le32*)partial->bh->b_data+addr_per_block,
4512 				   (chain+n-1) - partial);
4513 		BUFFER_TRACE(partial->bh, "call brelse");
4514 		brelse(partial->bh);
4515 		partial--;
4516 	}
4517 do_indirects:
4518 	/* Kill the remaining (whole) subtrees */
4519 	switch (offsets[0]) {
4520 	default:
4521 		nr = i_data[EXT4_IND_BLOCK];
4522 		if (nr) {
4523 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4524 			i_data[EXT4_IND_BLOCK] = 0;
4525 		}
4526 	case EXT4_IND_BLOCK:
4527 		nr = i_data[EXT4_DIND_BLOCK];
4528 		if (nr) {
4529 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4530 			i_data[EXT4_DIND_BLOCK] = 0;
4531 		}
4532 	case EXT4_DIND_BLOCK:
4533 		nr = i_data[EXT4_TIND_BLOCK];
4534 		if (nr) {
4535 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4536 			i_data[EXT4_TIND_BLOCK] = 0;
4537 		}
4538 	case EXT4_TIND_BLOCK:
4539 		;
4540 	}
4541 
4542 	up_write(&ei->i_data_sem);
4543 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4544 	ext4_mark_inode_dirty(handle, inode);
4545 
4546 	/*
4547 	 * In a multi-transaction truncate, we only make the final transaction
4548 	 * synchronous
4549 	 */
4550 	if (IS_SYNC(inode))
4551 		ext4_handle_sync(handle);
4552 out_stop:
4553 	/*
4554 	 * If this was a simple ftruncate(), and the file will remain alive
4555 	 * then we need to clear up the orphan record which we created above.
4556 	 * However, if this was a real unlink then we were called by
4557 	 * ext4_delete_inode(), and we allow that function to clean up the
4558 	 * orphan info for us.
4559 	 */
4560 	if (inode->i_nlink)
4561 		ext4_orphan_del(handle, inode);
4562 
4563 	ext4_journal_stop(handle);
4564 }
4565 
4566 /*
4567  * ext4_get_inode_loc returns with an extra refcount against the inode's
4568  * underlying buffer_head on success. If 'in_mem' is true, we have all
4569  * data in memory that is needed to recreate the on-disk version of this
4570  * inode.
4571  */
4572 static int __ext4_get_inode_loc(struct inode *inode,
4573 				struct ext4_iloc *iloc, int in_mem)
4574 {
4575 	struct ext4_group_desc	*gdp;
4576 	struct buffer_head	*bh;
4577 	struct super_block	*sb = inode->i_sb;
4578 	ext4_fsblk_t		block;
4579 	int			inodes_per_block, inode_offset;
4580 
4581 	iloc->bh = NULL;
4582 	if (!ext4_valid_inum(sb, inode->i_ino))
4583 		return -EIO;
4584 
4585 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4586 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4587 	if (!gdp)
4588 		return -EIO;
4589 
4590 	/*
4591 	 * Figure out the offset within the block group inode table
4592 	 */
4593 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4594 	inode_offset = ((inode->i_ino - 1) %
4595 			EXT4_INODES_PER_GROUP(sb));
4596 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4597 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4598 
4599 	bh = sb_getblk(sb, block);
4600 	if (!bh) {
4601 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4602 			   "inode block - inode=%lu, block=%llu",
4603 			   inode->i_ino, block);
4604 		return -EIO;
4605 	}
4606 	if (!buffer_uptodate(bh)) {
4607 		lock_buffer(bh);
4608 
4609 		/*
4610 		 * If the buffer has the write error flag, we have failed
4611 		 * to write out another inode in the same block.  In this
4612 		 * case, we don't have to read the block because we may
4613 		 * read the old inode data successfully.
4614 		 */
4615 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4616 			set_buffer_uptodate(bh);
4617 
4618 		if (buffer_uptodate(bh)) {
4619 			/* someone brought it uptodate while we waited */
4620 			unlock_buffer(bh);
4621 			goto has_buffer;
4622 		}
4623 
4624 		/*
4625 		 * If we have all information of the inode in memory and this
4626 		 * is the only valid inode in the block, we need not read the
4627 		 * block.
4628 		 */
4629 		if (in_mem) {
4630 			struct buffer_head *bitmap_bh;
4631 			int i, start;
4632 
4633 			start = inode_offset & ~(inodes_per_block - 1);
4634 
4635 			/* Is the inode bitmap in cache? */
4636 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4637 			if (!bitmap_bh)
4638 				goto make_io;
4639 
4640 			/*
4641 			 * If the inode bitmap isn't in cache then the
4642 			 * optimisation may end up performing two reads instead
4643 			 * of one, so skip it.
4644 			 */
4645 			if (!buffer_uptodate(bitmap_bh)) {
4646 				brelse(bitmap_bh);
4647 				goto make_io;
4648 			}
4649 			for (i = start; i < start + inodes_per_block; i++) {
4650 				if (i == inode_offset)
4651 					continue;
4652 				if (ext4_test_bit(i, bitmap_bh->b_data))
4653 					break;
4654 			}
4655 			brelse(bitmap_bh);
4656 			if (i == start + inodes_per_block) {
4657 				/* all other inodes are free, so skip I/O */
4658 				memset(bh->b_data, 0, bh->b_size);
4659 				set_buffer_uptodate(bh);
4660 				unlock_buffer(bh);
4661 				goto has_buffer;
4662 			}
4663 		}
4664 
4665 make_io:
4666 		/*
4667 		 * If we need to do any I/O, try to pre-readahead extra
4668 		 * blocks from the inode table.
4669 		 */
4670 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4671 			ext4_fsblk_t b, end, table;
4672 			unsigned num;
4673 
4674 			table = ext4_inode_table(sb, gdp);
4675 			/* s_inode_readahead_blks is always a power of 2 */
4676 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4677 			if (table > b)
4678 				b = table;
4679 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4680 			num = EXT4_INODES_PER_GROUP(sb);
4681 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4682 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4683 				num -= ext4_itable_unused_count(sb, gdp);
4684 			table += num / inodes_per_block;
4685 			if (end > table)
4686 				end = table;
4687 			while (b <= end)
4688 				sb_breadahead(sb, b++);
4689 		}
4690 
4691 		/*
4692 		 * There are other valid inodes in the buffer, this inode
4693 		 * has in-inode xattrs, or we don't have this inode in memory.
4694 		 * Read the block from disk.
4695 		 */
4696 		get_bh(bh);
4697 		bh->b_end_io = end_buffer_read_sync;
4698 		submit_bh(READ_META, bh);
4699 		wait_on_buffer(bh);
4700 		if (!buffer_uptodate(bh)) {
4701 			ext4_error(sb, __func__,
4702 				   "unable to read inode block - inode=%lu, "
4703 				   "block=%llu", inode->i_ino, block);
4704 			brelse(bh);
4705 			return -EIO;
4706 		}
4707 	}
4708 has_buffer:
4709 	iloc->bh = bh;
4710 	return 0;
4711 }
4712 
4713 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4714 {
4715 	/* We have all inode data except xattrs in memory here. */
4716 	return __ext4_get_inode_loc(inode, iloc,
4717 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4718 }
4719 
4720 void ext4_set_inode_flags(struct inode *inode)
4721 {
4722 	unsigned int flags = EXT4_I(inode)->i_flags;
4723 
4724 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4725 	if (flags & EXT4_SYNC_FL)
4726 		inode->i_flags |= S_SYNC;
4727 	if (flags & EXT4_APPEND_FL)
4728 		inode->i_flags |= S_APPEND;
4729 	if (flags & EXT4_IMMUTABLE_FL)
4730 		inode->i_flags |= S_IMMUTABLE;
4731 	if (flags & EXT4_NOATIME_FL)
4732 		inode->i_flags |= S_NOATIME;
4733 	if (flags & EXT4_DIRSYNC_FL)
4734 		inode->i_flags |= S_DIRSYNC;
4735 }
4736 
4737 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4738 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4739 {
4740 	unsigned int flags = ei->vfs_inode.i_flags;
4741 
4742 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4743 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4744 	if (flags & S_SYNC)
4745 		ei->i_flags |= EXT4_SYNC_FL;
4746 	if (flags & S_APPEND)
4747 		ei->i_flags |= EXT4_APPEND_FL;
4748 	if (flags & S_IMMUTABLE)
4749 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4750 	if (flags & S_NOATIME)
4751 		ei->i_flags |= EXT4_NOATIME_FL;
4752 	if (flags & S_DIRSYNC)
4753 		ei->i_flags |= EXT4_DIRSYNC_FL;
4754 }
4755 
4756 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4757 				  struct ext4_inode_info *ei)
4758 {
4759 	blkcnt_t i_blocks ;
4760 	struct inode *inode = &(ei->vfs_inode);
4761 	struct super_block *sb = inode->i_sb;
4762 
4763 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4764 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4765 		/* we are using combined 48 bit field */
4766 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4767 					le32_to_cpu(raw_inode->i_blocks_lo);
4768 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4769 			/* i_blocks represent file system block size */
4770 			return i_blocks  << (inode->i_blkbits - 9);
4771 		} else {
4772 			return i_blocks;
4773 		}
4774 	} else {
4775 		return le32_to_cpu(raw_inode->i_blocks_lo);
4776 	}
4777 }
4778 
4779 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4780 {
4781 	struct ext4_iloc iloc;
4782 	struct ext4_inode *raw_inode;
4783 	struct ext4_inode_info *ei;
4784 	struct buffer_head *bh;
4785 	struct inode *inode;
4786 	long ret;
4787 	int block;
4788 
4789 	inode = iget_locked(sb, ino);
4790 	if (!inode)
4791 		return ERR_PTR(-ENOMEM);
4792 	if (!(inode->i_state & I_NEW))
4793 		return inode;
4794 
4795 	ei = EXT4_I(inode);
4796 
4797 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4798 	if (ret < 0)
4799 		goto bad_inode;
4800 	bh = iloc.bh;
4801 	raw_inode = ext4_raw_inode(&iloc);
4802 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4803 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4804 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4805 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4806 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4807 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4808 	}
4809 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4810 
4811 	ei->i_state = 0;
4812 	ei->i_dir_start_lookup = 0;
4813 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814 	/* We now have enough fields to check if the inode was active or not.
4815 	 * This is needed because nfsd might try to access dead inodes
4816 	 * the test is that same one that e2fsck uses
4817 	 * NeilBrown 1999oct15
4818 	 */
4819 	if (inode->i_nlink == 0) {
4820 		if (inode->i_mode == 0 ||
4821 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4822 			/* this inode is deleted */
4823 			brelse(bh);
4824 			ret = -ESTALE;
4825 			goto bad_inode;
4826 		}
4827 		/* The only unlinked inodes we let through here have
4828 		 * valid i_mode and are being read by the orphan
4829 		 * recovery code: that's fine, we're about to complete
4830 		 * the process of deleting those. */
4831 	}
4832 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4833 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4834 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4835 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4836 		ei->i_file_acl |=
4837 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4838 	inode->i_size = ext4_isize(raw_inode);
4839 	ei->i_disksize = inode->i_size;
4840 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4841 	ei->i_block_group = iloc.block_group;
4842 	ei->i_last_alloc_group = ~0;
4843 	/*
4844 	 * NOTE! The in-memory inode i_data array is in little-endian order
4845 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4846 	 */
4847 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4848 		ei->i_data[block] = raw_inode->i_block[block];
4849 	INIT_LIST_HEAD(&ei->i_orphan);
4850 
4851 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4852 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4853 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4854 		    EXT4_INODE_SIZE(inode->i_sb)) {
4855 			brelse(bh);
4856 			ret = -EIO;
4857 			goto bad_inode;
4858 		}
4859 		if (ei->i_extra_isize == 0) {
4860 			/* The extra space is currently unused. Use it. */
4861 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4862 					    EXT4_GOOD_OLD_INODE_SIZE;
4863 		} else {
4864 			__le32 *magic = (void *)raw_inode +
4865 					EXT4_GOOD_OLD_INODE_SIZE +
4866 					ei->i_extra_isize;
4867 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4868 				ei->i_state |= EXT4_STATE_XATTR;
4869 		}
4870 	} else
4871 		ei->i_extra_isize = 0;
4872 
4873 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4874 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4875 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4876 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4877 
4878 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4879 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4880 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4881 			inode->i_version |=
4882 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4883 	}
4884 
4885 	ret = 0;
4886 	if (ei->i_file_acl &&
4887 	    ((ei->i_file_acl <
4888 	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4889 	       EXT4_SB(sb)->s_gdb_count)) ||
4890 	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4891 		ext4_error(sb, __func__,
4892 			   "bad extended attribute block %llu in inode #%lu",
4893 			   ei->i_file_acl, inode->i_ino);
4894 		ret = -EIO;
4895 		goto bad_inode;
4896 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4897 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4898 		    (S_ISLNK(inode->i_mode) &&
4899 		     !ext4_inode_is_fast_symlink(inode)))
4900 			/* Validate extent which is part of inode */
4901 			ret = ext4_ext_check_inode(inode);
4902 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4903 		   (S_ISLNK(inode->i_mode) &&
4904 		    !ext4_inode_is_fast_symlink(inode))) {
4905 		/* Validate block references which are part of inode */
4906 		ret = ext4_check_inode_blockref(inode);
4907 	}
4908 	if (ret) {
4909 		brelse(bh);
4910 		goto bad_inode;
4911 	}
4912 
4913 	if (S_ISREG(inode->i_mode)) {
4914 		inode->i_op = &ext4_file_inode_operations;
4915 		inode->i_fop = &ext4_file_operations;
4916 		ext4_set_aops(inode);
4917 	} else if (S_ISDIR(inode->i_mode)) {
4918 		inode->i_op = &ext4_dir_inode_operations;
4919 		inode->i_fop = &ext4_dir_operations;
4920 	} else if (S_ISLNK(inode->i_mode)) {
4921 		if (ext4_inode_is_fast_symlink(inode)) {
4922 			inode->i_op = &ext4_fast_symlink_inode_operations;
4923 			nd_terminate_link(ei->i_data, inode->i_size,
4924 				sizeof(ei->i_data) - 1);
4925 		} else {
4926 			inode->i_op = &ext4_symlink_inode_operations;
4927 			ext4_set_aops(inode);
4928 		}
4929 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4930 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4931 		inode->i_op = &ext4_special_inode_operations;
4932 		if (raw_inode->i_block[0])
4933 			init_special_inode(inode, inode->i_mode,
4934 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4935 		else
4936 			init_special_inode(inode, inode->i_mode,
4937 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4938 	} else {
4939 		brelse(bh);
4940 		ret = -EIO;
4941 		ext4_error(inode->i_sb, __func__,
4942 			   "bogus i_mode (%o) for inode=%lu",
4943 			   inode->i_mode, inode->i_ino);
4944 		goto bad_inode;
4945 	}
4946 	brelse(iloc.bh);
4947 	ext4_set_inode_flags(inode);
4948 	unlock_new_inode(inode);
4949 	return inode;
4950 
4951 bad_inode:
4952 	iget_failed(inode);
4953 	return ERR_PTR(ret);
4954 }
4955 
4956 static int ext4_inode_blocks_set(handle_t *handle,
4957 				struct ext4_inode *raw_inode,
4958 				struct ext4_inode_info *ei)
4959 {
4960 	struct inode *inode = &(ei->vfs_inode);
4961 	u64 i_blocks = inode->i_blocks;
4962 	struct super_block *sb = inode->i_sb;
4963 
4964 	if (i_blocks <= ~0U) {
4965 		/*
4966 		 * i_blocks can be represnted in a 32 bit variable
4967 		 * as multiple of 512 bytes
4968 		 */
4969 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4970 		raw_inode->i_blocks_high = 0;
4971 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4972 		return 0;
4973 	}
4974 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4975 		return -EFBIG;
4976 
4977 	if (i_blocks <= 0xffffffffffffULL) {
4978 		/*
4979 		 * i_blocks can be represented in a 48 bit variable
4980 		 * as multiple of 512 bytes
4981 		 */
4982 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4983 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4984 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4985 	} else {
4986 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4987 		/* i_block is stored in file system block size */
4988 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4989 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4990 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4991 	}
4992 	return 0;
4993 }
4994 
4995 /*
4996  * Post the struct inode info into an on-disk inode location in the
4997  * buffer-cache.  This gobbles the caller's reference to the
4998  * buffer_head in the inode location struct.
4999  *
5000  * The caller must have write access to iloc->bh.
5001  */
5002 static int ext4_do_update_inode(handle_t *handle,
5003 				struct inode *inode,
5004 				struct ext4_iloc *iloc)
5005 {
5006 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5007 	struct ext4_inode_info *ei = EXT4_I(inode);
5008 	struct buffer_head *bh = iloc->bh;
5009 	int err = 0, rc, block;
5010 
5011 	/* For fields not not tracking in the in-memory inode,
5012 	 * initialise them to zero for new inodes. */
5013 	if (ei->i_state & EXT4_STATE_NEW)
5014 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5015 
5016 	ext4_get_inode_flags(ei);
5017 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5018 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5019 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5020 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5021 /*
5022  * Fix up interoperability with old kernels. Otherwise, old inodes get
5023  * re-used with the upper 16 bits of the uid/gid intact
5024  */
5025 		if (!ei->i_dtime) {
5026 			raw_inode->i_uid_high =
5027 				cpu_to_le16(high_16_bits(inode->i_uid));
5028 			raw_inode->i_gid_high =
5029 				cpu_to_le16(high_16_bits(inode->i_gid));
5030 		} else {
5031 			raw_inode->i_uid_high = 0;
5032 			raw_inode->i_gid_high = 0;
5033 		}
5034 	} else {
5035 		raw_inode->i_uid_low =
5036 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5037 		raw_inode->i_gid_low =
5038 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5039 		raw_inode->i_uid_high = 0;
5040 		raw_inode->i_gid_high = 0;
5041 	}
5042 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5043 
5044 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5045 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5046 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5047 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5048 
5049 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5050 		goto out_brelse;
5051 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5052 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5053 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5054 	    cpu_to_le32(EXT4_OS_HURD))
5055 		raw_inode->i_file_acl_high =
5056 			cpu_to_le16(ei->i_file_acl >> 32);
5057 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5058 	ext4_isize_set(raw_inode, ei->i_disksize);
5059 	if (ei->i_disksize > 0x7fffffffULL) {
5060 		struct super_block *sb = inode->i_sb;
5061 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5062 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5063 				EXT4_SB(sb)->s_es->s_rev_level ==
5064 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5065 			/* If this is the first large file
5066 			 * created, add a flag to the superblock.
5067 			 */
5068 			err = ext4_journal_get_write_access(handle,
5069 					EXT4_SB(sb)->s_sbh);
5070 			if (err)
5071 				goto out_brelse;
5072 			ext4_update_dynamic_rev(sb);
5073 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5074 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5075 			sb->s_dirt = 1;
5076 			ext4_handle_sync(handle);
5077 			err = ext4_handle_dirty_metadata(handle, inode,
5078 					EXT4_SB(sb)->s_sbh);
5079 		}
5080 	}
5081 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5082 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5083 		if (old_valid_dev(inode->i_rdev)) {
5084 			raw_inode->i_block[0] =
5085 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5086 			raw_inode->i_block[1] = 0;
5087 		} else {
5088 			raw_inode->i_block[0] = 0;
5089 			raw_inode->i_block[1] =
5090 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5091 			raw_inode->i_block[2] = 0;
5092 		}
5093 	} else
5094 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5095 			raw_inode->i_block[block] = ei->i_data[block];
5096 
5097 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5098 	if (ei->i_extra_isize) {
5099 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5100 			raw_inode->i_version_hi =
5101 			cpu_to_le32(inode->i_version >> 32);
5102 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5103 	}
5104 
5105 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
5107 	if (!err)
5108 		err = rc;
5109 	ei->i_state &= ~EXT4_STATE_NEW;
5110 
5111 out_brelse:
5112 	brelse(bh);
5113 	ext4_std_error(inode->i_sb, err);
5114 	return err;
5115 }
5116 
5117 /*
5118  * ext4_write_inode()
5119  *
5120  * We are called from a few places:
5121  *
5122  * - Within generic_file_write() for O_SYNC files.
5123  *   Here, there will be no transaction running. We wait for any running
5124  *   trasnaction to commit.
5125  *
5126  * - Within sys_sync(), kupdate and such.
5127  *   We wait on commit, if tol to.
5128  *
5129  * - Within prune_icache() (PF_MEMALLOC == true)
5130  *   Here we simply return.  We can't afford to block kswapd on the
5131  *   journal commit.
5132  *
5133  * In all cases it is actually safe for us to return without doing anything,
5134  * because the inode has been copied into a raw inode buffer in
5135  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5136  * knfsd.
5137  *
5138  * Note that we are absolutely dependent upon all inode dirtiers doing the
5139  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5140  * which we are interested.
5141  *
5142  * It would be a bug for them to not do this.  The code:
5143  *
5144  *	mark_inode_dirty(inode)
5145  *	stuff();
5146  *	inode->i_size = expr;
5147  *
5148  * is in error because a kswapd-driven write_inode() could occur while
5149  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5150  * will no longer be on the superblock's dirty inode list.
5151  */
5152 int ext4_write_inode(struct inode *inode, int wait)
5153 {
5154 	int err;
5155 
5156 	if (current->flags & PF_MEMALLOC)
5157 		return 0;
5158 
5159 	if (EXT4_SB(inode->i_sb)->s_journal) {
5160 		if (ext4_journal_current_handle()) {
5161 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5162 			dump_stack();
5163 			return -EIO;
5164 		}
5165 
5166 		if (!wait)
5167 			return 0;
5168 
5169 		err = ext4_force_commit(inode->i_sb);
5170 	} else {
5171 		struct ext4_iloc iloc;
5172 
5173 		err = ext4_get_inode_loc(inode, &iloc);
5174 		if (err)
5175 			return err;
5176 		if (wait)
5177 			sync_dirty_buffer(iloc.bh);
5178 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5179 			ext4_error(inode->i_sb, __func__,
5180 				   "IO error syncing inode, "
5181 				   "inode=%lu, block=%llu",
5182 				   inode->i_ino,
5183 				   (unsigned long long)iloc.bh->b_blocknr);
5184 			err = -EIO;
5185 		}
5186 	}
5187 	return err;
5188 }
5189 
5190 /*
5191  * ext4_setattr()
5192  *
5193  * Called from notify_change.
5194  *
5195  * We want to trap VFS attempts to truncate the file as soon as
5196  * possible.  In particular, we want to make sure that when the VFS
5197  * shrinks i_size, we put the inode on the orphan list and modify
5198  * i_disksize immediately, so that during the subsequent flushing of
5199  * dirty pages and freeing of disk blocks, we can guarantee that any
5200  * commit will leave the blocks being flushed in an unused state on
5201  * disk.  (On recovery, the inode will get truncated and the blocks will
5202  * be freed, so we have a strong guarantee that no future commit will
5203  * leave these blocks visible to the user.)
5204  *
5205  * Another thing we have to assure is that if we are in ordered mode
5206  * and inode is still attached to the committing transaction, we must
5207  * we start writeout of all the dirty pages which are being truncated.
5208  * This way we are sure that all the data written in the previous
5209  * transaction are already on disk (truncate waits for pages under
5210  * writeback).
5211  *
5212  * Called with inode->i_mutex down.
5213  */
5214 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5215 {
5216 	struct inode *inode = dentry->d_inode;
5217 	int error, rc = 0;
5218 	const unsigned int ia_valid = attr->ia_valid;
5219 
5220 	error = inode_change_ok(inode, attr);
5221 	if (error)
5222 		return error;
5223 
5224 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5225 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5226 		handle_t *handle;
5227 
5228 		/* (user+group)*(old+new) structure, inode write (sb,
5229 		 * inode block, ? - but truncate inode update has it) */
5230 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5231 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5232 		if (IS_ERR(handle)) {
5233 			error = PTR_ERR(handle);
5234 			goto err_out;
5235 		}
5236 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5237 		if (error) {
5238 			ext4_journal_stop(handle);
5239 			return error;
5240 		}
5241 		/* Update corresponding info in inode so that everything is in
5242 		 * one transaction */
5243 		if (attr->ia_valid & ATTR_UID)
5244 			inode->i_uid = attr->ia_uid;
5245 		if (attr->ia_valid & ATTR_GID)
5246 			inode->i_gid = attr->ia_gid;
5247 		error = ext4_mark_inode_dirty(handle, inode);
5248 		ext4_journal_stop(handle);
5249 	}
5250 
5251 	if (attr->ia_valid & ATTR_SIZE) {
5252 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5253 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5254 
5255 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5256 				error = -EFBIG;
5257 				goto err_out;
5258 			}
5259 		}
5260 	}
5261 
5262 	if (S_ISREG(inode->i_mode) &&
5263 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5264 		handle_t *handle;
5265 
5266 		handle = ext4_journal_start(inode, 3);
5267 		if (IS_ERR(handle)) {
5268 			error = PTR_ERR(handle);
5269 			goto err_out;
5270 		}
5271 
5272 		error = ext4_orphan_add(handle, inode);
5273 		EXT4_I(inode)->i_disksize = attr->ia_size;
5274 		rc = ext4_mark_inode_dirty(handle, inode);
5275 		if (!error)
5276 			error = rc;
5277 		ext4_journal_stop(handle);
5278 
5279 		if (ext4_should_order_data(inode)) {
5280 			error = ext4_begin_ordered_truncate(inode,
5281 							    attr->ia_size);
5282 			if (error) {
5283 				/* Do as much error cleanup as possible */
5284 				handle = ext4_journal_start(inode, 3);
5285 				if (IS_ERR(handle)) {
5286 					ext4_orphan_del(NULL, inode);
5287 					goto err_out;
5288 				}
5289 				ext4_orphan_del(handle, inode);
5290 				ext4_journal_stop(handle);
5291 				goto err_out;
5292 			}
5293 		}
5294 	}
5295 
5296 	rc = inode_setattr(inode, attr);
5297 
5298 	/* If inode_setattr's call to ext4_truncate failed to get a
5299 	 * transaction handle at all, we need to clean up the in-core
5300 	 * orphan list manually. */
5301 	if (inode->i_nlink)
5302 		ext4_orphan_del(NULL, inode);
5303 
5304 	if (!rc && (ia_valid & ATTR_MODE))
5305 		rc = ext4_acl_chmod(inode);
5306 
5307 err_out:
5308 	ext4_std_error(inode->i_sb, error);
5309 	if (!error)
5310 		error = rc;
5311 	return error;
5312 }
5313 
5314 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5315 		 struct kstat *stat)
5316 {
5317 	struct inode *inode;
5318 	unsigned long delalloc_blocks;
5319 
5320 	inode = dentry->d_inode;
5321 	generic_fillattr(inode, stat);
5322 
5323 	/*
5324 	 * We can't update i_blocks if the block allocation is delayed
5325 	 * otherwise in the case of system crash before the real block
5326 	 * allocation is done, we will have i_blocks inconsistent with
5327 	 * on-disk file blocks.
5328 	 * We always keep i_blocks updated together with real
5329 	 * allocation. But to not confuse with user, stat
5330 	 * will return the blocks that include the delayed allocation
5331 	 * blocks for this file.
5332 	 */
5333 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5334 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5335 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5336 
5337 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5338 	return 0;
5339 }
5340 
5341 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5342 				      int chunk)
5343 {
5344 	int indirects;
5345 
5346 	/* if nrblocks are contiguous */
5347 	if (chunk) {
5348 		/*
5349 		 * With N contiguous data blocks, it need at most
5350 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5351 		 * 2 dindirect blocks
5352 		 * 1 tindirect block
5353 		 */
5354 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5355 		return indirects + 3;
5356 	}
5357 	/*
5358 	 * if nrblocks are not contiguous, worse case, each block touch
5359 	 * a indirect block, and each indirect block touch a double indirect
5360 	 * block, plus a triple indirect block
5361 	 */
5362 	indirects = nrblocks * 2 + 1;
5363 	return indirects;
5364 }
5365 
5366 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5367 {
5368 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5369 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5370 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5371 }
5372 
5373 /*
5374  * Account for index blocks, block groups bitmaps and block group
5375  * descriptor blocks if modify datablocks and index blocks
5376  * worse case, the indexs blocks spread over different block groups
5377  *
5378  * If datablocks are discontiguous, they are possible to spread over
5379  * different block groups too. If they are contiugous, with flexbg,
5380  * they could still across block group boundary.
5381  *
5382  * Also account for superblock, inode, quota and xattr blocks
5383  */
5384 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5385 {
5386 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5387 	int gdpblocks;
5388 	int idxblocks;
5389 	int ret = 0;
5390 
5391 	/*
5392 	 * How many index blocks need to touch to modify nrblocks?
5393 	 * The "Chunk" flag indicating whether the nrblocks is
5394 	 * physically contiguous on disk
5395 	 *
5396 	 * For Direct IO and fallocate, they calls get_block to allocate
5397 	 * one single extent at a time, so they could set the "Chunk" flag
5398 	 */
5399 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5400 
5401 	ret = idxblocks;
5402 
5403 	/*
5404 	 * Now let's see how many group bitmaps and group descriptors need
5405 	 * to account
5406 	 */
5407 	groups = idxblocks;
5408 	if (chunk)
5409 		groups += 1;
5410 	else
5411 		groups += nrblocks;
5412 
5413 	gdpblocks = groups;
5414 	if (groups > ngroups)
5415 		groups = ngroups;
5416 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5417 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5418 
5419 	/* bitmaps and block group descriptor blocks */
5420 	ret += groups + gdpblocks;
5421 
5422 	/* Blocks for super block, inode, quota and xattr blocks */
5423 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5424 
5425 	return ret;
5426 }
5427 
5428 /*
5429  * Calulate the total number of credits to reserve to fit
5430  * the modification of a single pages into a single transaction,
5431  * which may include multiple chunks of block allocations.
5432  *
5433  * This could be called via ext4_write_begin()
5434  *
5435  * We need to consider the worse case, when
5436  * one new block per extent.
5437  */
5438 int ext4_writepage_trans_blocks(struct inode *inode)
5439 {
5440 	int bpp = ext4_journal_blocks_per_page(inode);
5441 	int ret;
5442 
5443 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5444 
5445 	/* Account for data blocks for journalled mode */
5446 	if (ext4_should_journal_data(inode))
5447 		ret += bpp;
5448 	return ret;
5449 }
5450 
5451 /*
5452  * Calculate the journal credits for a chunk of data modification.
5453  *
5454  * This is called from DIO, fallocate or whoever calling
5455  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5456  *
5457  * journal buffers for data blocks are not included here, as DIO
5458  * and fallocate do no need to journal data buffers.
5459  */
5460 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5461 {
5462 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5463 }
5464 
5465 /*
5466  * The caller must have previously called ext4_reserve_inode_write().
5467  * Give this, we know that the caller already has write access to iloc->bh.
5468  */
5469 int ext4_mark_iloc_dirty(handle_t *handle,
5470 			 struct inode *inode, struct ext4_iloc *iloc)
5471 {
5472 	int err = 0;
5473 
5474 	if (test_opt(inode->i_sb, I_VERSION))
5475 		inode_inc_iversion(inode);
5476 
5477 	/* the do_update_inode consumes one bh->b_count */
5478 	get_bh(iloc->bh);
5479 
5480 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5481 	err = ext4_do_update_inode(handle, inode, iloc);
5482 	put_bh(iloc->bh);
5483 	return err;
5484 }
5485 
5486 /*
5487  * On success, We end up with an outstanding reference count against
5488  * iloc->bh.  This _must_ be cleaned up later.
5489  */
5490 
5491 int
5492 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5493 			 struct ext4_iloc *iloc)
5494 {
5495 	int err;
5496 
5497 	err = ext4_get_inode_loc(inode, iloc);
5498 	if (!err) {
5499 		BUFFER_TRACE(iloc->bh, "get_write_access");
5500 		err = ext4_journal_get_write_access(handle, iloc->bh);
5501 		if (err) {
5502 			brelse(iloc->bh);
5503 			iloc->bh = NULL;
5504 		}
5505 	}
5506 	ext4_std_error(inode->i_sb, err);
5507 	return err;
5508 }
5509 
5510 /*
5511  * Expand an inode by new_extra_isize bytes.
5512  * Returns 0 on success or negative error number on failure.
5513  */
5514 static int ext4_expand_extra_isize(struct inode *inode,
5515 				   unsigned int new_extra_isize,
5516 				   struct ext4_iloc iloc,
5517 				   handle_t *handle)
5518 {
5519 	struct ext4_inode *raw_inode;
5520 	struct ext4_xattr_ibody_header *header;
5521 	struct ext4_xattr_entry *entry;
5522 
5523 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5524 		return 0;
5525 
5526 	raw_inode = ext4_raw_inode(&iloc);
5527 
5528 	header = IHDR(inode, raw_inode);
5529 	entry = IFIRST(header);
5530 
5531 	/* No extended attributes present */
5532 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5533 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5534 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5535 			new_extra_isize);
5536 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5537 		return 0;
5538 	}
5539 
5540 	/* try to expand with EAs present */
5541 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5542 					  raw_inode, handle);
5543 }
5544 
5545 /*
5546  * What we do here is to mark the in-core inode as clean with respect to inode
5547  * dirtiness (it may still be data-dirty).
5548  * This means that the in-core inode may be reaped by prune_icache
5549  * without having to perform any I/O.  This is a very good thing,
5550  * because *any* task may call prune_icache - even ones which
5551  * have a transaction open against a different journal.
5552  *
5553  * Is this cheating?  Not really.  Sure, we haven't written the
5554  * inode out, but prune_icache isn't a user-visible syncing function.
5555  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5556  * we start and wait on commits.
5557  *
5558  * Is this efficient/effective?  Well, we're being nice to the system
5559  * by cleaning up our inodes proactively so they can be reaped
5560  * without I/O.  But we are potentially leaving up to five seconds'
5561  * worth of inodes floating about which prune_icache wants us to
5562  * write out.  One way to fix that would be to get prune_icache()
5563  * to do a write_super() to free up some memory.  It has the desired
5564  * effect.
5565  */
5566 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5567 {
5568 	struct ext4_iloc iloc;
5569 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5570 	static unsigned int mnt_count;
5571 	int err, ret;
5572 
5573 	might_sleep();
5574 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5575 	if (ext4_handle_valid(handle) &&
5576 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5577 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5578 		/*
5579 		 * We need extra buffer credits since we may write into EA block
5580 		 * with this same handle. If journal_extend fails, then it will
5581 		 * only result in a minor loss of functionality for that inode.
5582 		 * If this is felt to be critical, then e2fsck should be run to
5583 		 * force a large enough s_min_extra_isize.
5584 		 */
5585 		if ((jbd2_journal_extend(handle,
5586 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5587 			ret = ext4_expand_extra_isize(inode,
5588 						      sbi->s_want_extra_isize,
5589 						      iloc, handle);
5590 			if (ret) {
5591 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5592 				if (mnt_count !=
5593 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5594 					ext4_warning(inode->i_sb, __func__,
5595 					"Unable to expand inode %lu. Delete"
5596 					" some EAs or run e2fsck.",
5597 					inode->i_ino);
5598 					mnt_count =
5599 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5600 				}
5601 			}
5602 		}
5603 	}
5604 	if (!err)
5605 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5606 	return err;
5607 }
5608 
5609 /*
5610  * ext4_dirty_inode() is called from __mark_inode_dirty()
5611  *
5612  * We're really interested in the case where a file is being extended.
5613  * i_size has been changed by generic_commit_write() and we thus need
5614  * to include the updated inode in the current transaction.
5615  *
5616  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5617  * are allocated to the file.
5618  *
5619  * If the inode is marked synchronous, we don't honour that here - doing
5620  * so would cause a commit on atime updates, which we don't bother doing.
5621  * We handle synchronous inodes at the highest possible level.
5622  */
5623 void ext4_dirty_inode(struct inode *inode)
5624 {
5625 	handle_t *handle;
5626 
5627 	handle = ext4_journal_start(inode, 2);
5628 	if (IS_ERR(handle))
5629 		goto out;
5630 
5631 	ext4_mark_inode_dirty(handle, inode);
5632 
5633 	ext4_journal_stop(handle);
5634 out:
5635 	return;
5636 }
5637 
5638 #if 0
5639 /*
5640  * Bind an inode's backing buffer_head into this transaction, to prevent
5641  * it from being flushed to disk early.  Unlike
5642  * ext4_reserve_inode_write, this leaves behind no bh reference and
5643  * returns no iloc structure, so the caller needs to repeat the iloc
5644  * lookup to mark the inode dirty later.
5645  */
5646 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5647 {
5648 	struct ext4_iloc iloc;
5649 
5650 	int err = 0;
5651 	if (handle) {
5652 		err = ext4_get_inode_loc(inode, &iloc);
5653 		if (!err) {
5654 			BUFFER_TRACE(iloc.bh, "get_write_access");
5655 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5656 			if (!err)
5657 				err = ext4_handle_dirty_metadata(handle,
5658 								 inode,
5659 								 iloc.bh);
5660 			brelse(iloc.bh);
5661 		}
5662 	}
5663 	ext4_std_error(inode->i_sb, err);
5664 	return err;
5665 }
5666 #endif
5667 
5668 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5669 {
5670 	journal_t *journal;
5671 	handle_t *handle;
5672 	int err;
5673 
5674 	/*
5675 	 * We have to be very careful here: changing a data block's
5676 	 * journaling status dynamically is dangerous.  If we write a
5677 	 * data block to the journal, change the status and then delete
5678 	 * that block, we risk forgetting to revoke the old log record
5679 	 * from the journal and so a subsequent replay can corrupt data.
5680 	 * So, first we make sure that the journal is empty and that
5681 	 * nobody is changing anything.
5682 	 */
5683 
5684 	journal = EXT4_JOURNAL(inode);
5685 	if (!journal)
5686 		return 0;
5687 	if (is_journal_aborted(journal))
5688 		return -EROFS;
5689 
5690 	jbd2_journal_lock_updates(journal);
5691 	jbd2_journal_flush(journal);
5692 
5693 	/*
5694 	 * OK, there are no updates running now, and all cached data is
5695 	 * synced to disk.  We are now in a completely consistent state
5696 	 * which doesn't have anything in the journal, and we know that
5697 	 * no filesystem updates are running, so it is safe to modify
5698 	 * the inode's in-core data-journaling state flag now.
5699 	 */
5700 
5701 	if (val)
5702 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5703 	else
5704 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5705 	ext4_set_aops(inode);
5706 
5707 	jbd2_journal_unlock_updates(journal);
5708 
5709 	/* Finally we can mark the inode as dirty. */
5710 
5711 	handle = ext4_journal_start(inode, 1);
5712 	if (IS_ERR(handle))
5713 		return PTR_ERR(handle);
5714 
5715 	err = ext4_mark_inode_dirty(handle, inode);
5716 	ext4_handle_sync(handle);
5717 	ext4_journal_stop(handle);
5718 	ext4_std_error(inode->i_sb, err);
5719 
5720 	return err;
5721 }
5722 
5723 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5724 {
5725 	return !buffer_mapped(bh);
5726 }
5727 
5728 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5729 {
5730 	struct page *page = vmf->page;
5731 	loff_t size;
5732 	unsigned long len;
5733 	int ret = -EINVAL;
5734 	void *fsdata;
5735 	struct file *file = vma->vm_file;
5736 	struct inode *inode = file->f_path.dentry->d_inode;
5737 	struct address_space *mapping = inode->i_mapping;
5738 
5739 	/*
5740 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5741 	 * get i_mutex because we are already holding mmap_sem.
5742 	 */
5743 	down_read(&inode->i_alloc_sem);
5744 	size = i_size_read(inode);
5745 	if (page->mapping != mapping || size <= page_offset(page)
5746 	    || !PageUptodate(page)) {
5747 		/* page got truncated from under us? */
5748 		goto out_unlock;
5749 	}
5750 	ret = 0;
5751 	if (PageMappedToDisk(page))
5752 		goto out_unlock;
5753 
5754 	if (page->index == size >> PAGE_CACHE_SHIFT)
5755 		len = size & ~PAGE_CACHE_MASK;
5756 	else
5757 		len = PAGE_CACHE_SIZE;
5758 
5759 	lock_page(page);
5760 	/*
5761 	 * return if we have all the buffers mapped. This avoid
5762 	 * the need to call write_begin/write_end which does a
5763 	 * journal_start/journal_stop which can block and take
5764 	 * long time
5765 	 */
5766 	if (page_has_buffers(page)) {
5767 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5768 					ext4_bh_unmapped)) {
5769 			unlock_page(page);
5770 			goto out_unlock;
5771 		}
5772 	}
5773 	unlock_page(page);
5774 	/*
5775 	 * OK, we need to fill the hole... Do write_begin write_end
5776 	 * to do block allocation/reservation.We are not holding
5777 	 * inode.i__mutex here. That allow * parallel write_begin,
5778 	 * write_end call. lock_page prevent this from happening
5779 	 * on the same page though
5780 	 */
5781 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5782 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5783 	if (ret < 0)
5784 		goto out_unlock;
5785 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5786 			len, len, page, fsdata);
5787 	if (ret < 0)
5788 		goto out_unlock;
5789 	ret = 0;
5790 out_unlock:
5791 	if (ret)
5792 		ret = VM_FAULT_SIGBUS;
5793 	up_read(&inode->i_alloc_sem);
5794 	return ret;
5795 }
5796