1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static inline int ext4_begin_ordered_truncate(struct inode *inode, 51 loff_t new_size) 52 { 53 trace_ext4_begin_ordered_truncate(inode, new_size); 54 /* 55 * If jinode is zero, then we never opened the file for 56 * writing, so there's no need to call 57 * jbd2_journal_begin_ordered_truncate() since there's no 58 * outstanding writes we need to flush. 59 */ 60 if (!EXT4_I(inode)->jinode) 61 return 0; 62 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 63 EXT4_I(inode)->jinode, 64 new_size); 65 } 66 67 static void ext4_invalidatepage(struct page *page, unsigned long offset); 68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 69 struct buffer_head *bh_result, int create); 70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 72 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 75 struct inode *inode, struct page *page, loff_t from, 76 loff_t length, int flags); 77 78 /* 79 * Test whether an inode is a fast symlink. 80 */ 81 static int ext4_inode_is_fast_symlink(struct inode *inode) 82 { 83 int ea_blocks = EXT4_I(inode)->i_file_acl ? 84 (inode->i_sb->s_blocksize >> 9) : 0; 85 86 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 87 } 88 89 /* 90 * Restart the transaction associated with *handle. This does a commit, 91 * so before we call here everything must be consistently dirtied against 92 * this transaction. 93 */ 94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 95 int nblocks) 96 { 97 int ret; 98 99 /* 100 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 101 * moment, get_block can be called only for blocks inside i_size since 102 * page cache has been already dropped and writes are blocked by 103 * i_mutex. So we can safely drop the i_data_sem here. 104 */ 105 BUG_ON(EXT4_JOURNAL(inode) == NULL); 106 jbd_debug(2, "restarting handle %p\n", handle); 107 up_write(&EXT4_I(inode)->i_data_sem); 108 ret = ext4_journal_restart(handle, nblocks); 109 down_write(&EXT4_I(inode)->i_data_sem); 110 ext4_discard_preallocations(inode); 111 112 return ret; 113 } 114 115 /* 116 * Called at the last iput() if i_nlink is zero. 117 */ 118 void ext4_evict_inode(struct inode *inode) 119 { 120 handle_t *handle; 121 int err; 122 123 trace_ext4_evict_inode(inode); 124 125 ext4_ioend_wait(inode); 126 127 if (inode->i_nlink) { 128 /* 129 * When journalling data dirty buffers are tracked only in the 130 * journal. So although mm thinks everything is clean and 131 * ready for reaping the inode might still have some pages to 132 * write in the running transaction or waiting to be 133 * checkpointed. Thus calling jbd2_journal_invalidatepage() 134 * (via truncate_inode_pages()) to discard these buffers can 135 * cause data loss. Also even if we did not discard these 136 * buffers, we would have no way to find them after the inode 137 * is reaped and thus user could see stale data if he tries to 138 * read them before the transaction is checkpointed. So be 139 * careful and force everything to disk here... We use 140 * ei->i_datasync_tid to store the newest transaction 141 * containing inode's data. 142 * 143 * Note that directories do not have this problem because they 144 * don't use page cache. 145 */ 146 if (ext4_should_journal_data(inode) && 147 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 148 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 149 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 150 151 jbd2_log_start_commit(journal, commit_tid); 152 jbd2_log_wait_commit(journal, commit_tid); 153 filemap_write_and_wait(&inode->i_data); 154 } 155 truncate_inode_pages(&inode->i_data, 0); 156 goto no_delete; 157 } 158 159 if (!is_bad_inode(inode)) 160 dquot_initialize(inode); 161 162 if (ext4_should_order_data(inode)) 163 ext4_begin_ordered_truncate(inode, 0); 164 truncate_inode_pages(&inode->i_data, 0); 165 166 if (is_bad_inode(inode)) 167 goto no_delete; 168 169 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 170 if (IS_ERR(handle)) { 171 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 172 /* 173 * If we're going to skip the normal cleanup, we still need to 174 * make sure that the in-core orphan linked list is properly 175 * cleaned up. 176 */ 177 ext4_orphan_del(NULL, inode); 178 goto no_delete; 179 } 180 181 if (IS_SYNC(inode)) 182 ext4_handle_sync(handle); 183 inode->i_size = 0; 184 err = ext4_mark_inode_dirty(handle, inode); 185 if (err) { 186 ext4_warning(inode->i_sb, 187 "couldn't mark inode dirty (err %d)", err); 188 goto stop_handle; 189 } 190 if (inode->i_blocks) 191 ext4_truncate(inode); 192 193 /* 194 * ext4_ext_truncate() doesn't reserve any slop when it 195 * restarts journal transactions; therefore there may not be 196 * enough credits left in the handle to remove the inode from 197 * the orphan list and set the dtime field. 198 */ 199 if (!ext4_handle_has_enough_credits(handle, 3)) { 200 err = ext4_journal_extend(handle, 3); 201 if (err > 0) 202 err = ext4_journal_restart(handle, 3); 203 if (err != 0) { 204 ext4_warning(inode->i_sb, 205 "couldn't extend journal (err %d)", err); 206 stop_handle: 207 ext4_journal_stop(handle); 208 ext4_orphan_del(NULL, inode); 209 goto no_delete; 210 } 211 } 212 213 /* 214 * Kill off the orphan record which ext4_truncate created. 215 * AKPM: I think this can be inside the above `if'. 216 * Note that ext4_orphan_del() has to be able to cope with the 217 * deletion of a non-existent orphan - this is because we don't 218 * know if ext4_truncate() actually created an orphan record. 219 * (Well, we could do this if we need to, but heck - it works) 220 */ 221 ext4_orphan_del(handle, inode); 222 EXT4_I(inode)->i_dtime = get_seconds(); 223 224 /* 225 * One subtle ordering requirement: if anything has gone wrong 226 * (transaction abort, IO errors, whatever), then we can still 227 * do these next steps (the fs will already have been marked as 228 * having errors), but we can't free the inode if the mark_dirty 229 * fails. 230 */ 231 if (ext4_mark_inode_dirty(handle, inode)) 232 /* If that failed, just do the required in-core inode clear. */ 233 ext4_clear_inode(inode); 234 else 235 ext4_free_inode(handle, inode); 236 ext4_journal_stop(handle); 237 return; 238 no_delete: 239 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 240 } 241 242 #ifdef CONFIG_QUOTA 243 qsize_t *ext4_get_reserved_space(struct inode *inode) 244 { 245 return &EXT4_I(inode)->i_reserved_quota; 246 } 247 #endif 248 249 /* 250 * Calculate the number of metadata blocks need to reserve 251 * to allocate a block located at @lblock 252 */ 253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 254 { 255 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 256 return ext4_ext_calc_metadata_amount(inode, lblock); 257 258 return ext4_ind_calc_metadata_amount(inode, lblock); 259 } 260 261 /* 262 * Called with i_data_sem down, which is important since we can call 263 * ext4_discard_preallocations() from here. 264 */ 265 void ext4_da_update_reserve_space(struct inode *inode, 266 int used, int quota_claim) 267 { 268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 269 struct ext4_inode_info *ei = EXT4_I(inode); 270 271 spin_lock(&ei->i_block_reservation_lock); 272 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 273 if (unlikely(used > ei->i_reserved_data_blocks)) { 274 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 275 "with only %d reserved data blocks\n", 276 __func__, inode->i_ino, used, 277 ei->i_reserved_data_blocks); 278 WARN_ON(1); 279 used = ei->i_reserved_data_blocks; 280 } 281 282 /* Update per-inode reservations */ 283 ei->i_reserved_data_blocks -= used; 284 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 285 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 286 used + ei->i_allocated_meta_blocks); 287 ei->i_allocated_meta_blocks = 0; 288 289 if (ei->i_reserved_data_blocks == 0) { 290 /* 291 * We can release all of the reserved metadata blocks 292 * only when we have written all of the delayed 293 * allocation blocks. 294 */ 295 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 296 ei->i_reserved_meta_blocks); 297 ei->i_reserved_meta_blocks = 0; 298 ei->i_da_metadata_calc_len = 0; 299 } 300 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 301 302 /* Update quota subsystem for data blocks */ 303 if (quota_claim) 304 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 305 else { 306 /* 307 * We did fallocate with an offset that is already delayed 308 * allocated. So on delayed allocated writeback we should 309 * not re-claim the quota for fallocated blocks. 310 */ 311 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 312 } 313 314 /* 315 * If we have done all the pending block allocations and if 316 * there aren't any writers on the inode, we can discard the 317 * inode's preallocations. 318 */ 319 if ((ei->i_reserved_data_blocks == 0) && 320 (atomic_read(&inode->i_writecount) == 0)) 321 ext4_discard_preallocations(inode); 322 } 323 324 static int __check_block_validity(struct inode *inode, const char *func, 325 unsigned int line, 326 struct ext4_map_blocks *map) 327 { 328 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 329 map->m_len)) { 330 ext4_error_inode(inode, func, line, map->m_pblk, 331 "lblock %lu mapped to illegal pblock " 332 "(length %d)", (unsigned long) map->m_lblk, 333 map->m_len); 334 return -EIO; 335 } 336 return 0; 337 } 338 339 #define check_block_validity(inode, map) \ 340 __check_block_validity((inode), __func__, __LINE__, (map)) 341 342 /* 343 * Return the number of contiguous dirty pages in a given inode 344 * starting at page frame idx. 345 */ 346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 347 unsigned int max_pages) 348 { 349 struct address_space *mapping = inode->i_mapping; 350 pgoff_t index; 351 struct pagevec pvec; 352 pgoff_t num = 0; 353 int i, nr_pages, done = 0; 354 355 if (max_pages == 0) 356 return 0; 357 pagevec_init(&pvec, 0); 358 while (!done) { 359 index = idx; 360 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 361 PAGECACHE_TAG_DIRTY, 362 (pgoff_t)PAGEVEC_SIZE); 363 if (nr_pages == 0) 364 break; 365 for (i = 0; i < nr_pages; i++) { 366 struct page *page = pvec.pages[i]; 367 struct buffer_head *bh, *head; 368 369 lock_page(page); 370 if (unlikely(page->mapping != mapping) || 371 !PageDirty(page) || 372 PageWriteback(page) || 373 page->index != idx) { 374 done = 1; 375 unlock_page(page); 376 break; 377 } 378 if (page_has_buffers(page)) { 379 bh = head = page_buffers(page); 380 do { 381 if (!buffer_delay(bh) && 382 !buffer_unwritten(bh)) 383 done = 1; 384 bh = bh->b_this_page; 385 } while (!done && (bh != head)); 386 } 387 unlock_page(page); 388 if (done) 389 break; 390 idx++; 391 num++; 392 if (num >= max_pages) { 393 done = 1; 394 break; 395 } 396 } 397 pagevec_release(&pvec); 398 } 399 return num; 400 } 401 402 /* 403 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 404 */ 405 static void set_buffers_da_mapped(struct inode *inode, 406 struct ext4_map_blocks *map) 407 { 408 struct address_space *mapping = inode->i_mapping; 409 struct pagevec pvec; 410 int i, nr_pages; 411 pgoff_t index, end; 412 413 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 414 end = (map->m_lblk + map->m_len - 1) >> 415 (PAGE_CACHE_SHIFT - inode->i_blkbits); 416 417 pagevec_init(&pvec, 0); 418 while (index <= end) { 419 nr_pages = pagevec_lookup(&pvec, mapping, index, 420 min(end - index + 1, 421 (pgoff_t)PAGEVEC_SIZE)); 422 if (nr_pages == 0) 423 break; 424 for (i = 0; i < nr_pages; i++) { 425 struct page *page = pvec.pages[i]; 426 struct buffer_head *bh, *head; 427 428 if (unlikely(page->mapping != mapping) || 429 !PageDirty(page)) 430 break; 431 432 if (page_has_buffers(page)) { 433 bh = head = page_buffers(page); 434 do { 435 set_buffer_da_mapped(bh); 436 bh = bh->b_this_page; 437 } while (bh != head); 438 } 439 index++; 440 } 441 pagevec_release(&pvec); 442 } 443 } 444 445 /* 446 * The ext4_map_blocks() function tries to look up the requested blocks, 447 * and returns if the blocks are already mapped. 448 * 449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 450 * and store the allocated blocks in the result buffer head and mark it 451 * mapped. 452 * 453 * If file type is extents based, it will call ext4_ext_map_blocks(), 454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 455 * based files 456 * 457 * On success, it returns the number of blocks being mapped or allocate. 458 * if create==0 and the blocks are pre-allocated and uninitialized block, 459 * the result buffer head is unmapped. If the create ==1, it will make sure 460 * the buffer head is mapped. 461 * 462 * It returns 0 if plain look up failed (blocks have not been allocated), in 463 * that case, buffer head is unmapped 464 * 465 * It returns the error in case of allocation failure. 466 */ 467 int ext4_map_blocks(handle_t *handle, struct inode *inode, 468 struct ext4_map_blocks *map, int flags) 469 { 470 int retval; 471 472 map->m_flags = 0; 473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 474 "logical block %lu\n", inode->i_ino, flags, map->m_len, 475 (unsigned long) map->m_lblk); 476 /* 477 * Try to see if we can get the block without requesting a new 478 * file system block. 479 */ 480 down_read((&EXT4_I(inode)->i_data_sem)); 481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 482 retval = ext4_ext_map_blocks(handle, inode, map, flags & 483 EXT4_GET_BLOCKS_KEEP_SIZE); 484 } else { 485 retval = ext4_ind_map_blocks(handle, inode, map, flags & 486 EXT4_GET_BLOCKS_KEEP_SIZE); 487 } 488 up_read((&EXT4_I(inode)->i_data_sem)); 489 490 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 491 int ret = check_block_validity(inode, map); 492 if (ret != 0) 493 return ret; 494 } 495 496 /* If it is only a block(s) look up */ 497 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 498 return retval; 499 500 /* 501 * Returns if the blocks have already allocated 502 * 503 * Note that if blocks have been preallocated 504 * ext4_ext_get_block() returns the create = 0 505 * with buffer head unmapped. 506 */ 507 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 508 return retval; 509 510 /* 511 * When we call get_blocks without the create flag, the 512 * BH_Unwritten flag could have gotten set if the blocks 513 * requested were part of a uninitialized extent. We need to 514 * clear this flag now that we are committed to convert all or 515 * part of the uninitialized extent to be an initialized 516 * extent. This is because we need to avoid the combination 517 * of BH_Unwritten and BH_Mapped flags being simultaneously 518 * set on the buffer_head. 519 */ 520 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 521 522 /* 523 * New blocks allocate and/or writing to uninitialized extent 524 * will possibly result in updating i_data, so we take 525 * the write lock of i_data_sem, and call get_blocks() 526 * with create == 1 flag. 527 */ 528 down_write((&EXT4_I(inode)->i_data_sem)); 529 530 /* 531 * if the caller is from delayed allocation writeout path 532 * we have already reserved fs blocks for allocation 533 * let the underlying get_block() function know to 534 * avoid double accounting 535 */ 536 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 537 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 538 /* 539 * We need to check for EXT4 here because migrate 540 * could have changed the inode type in between 541 */ 542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 543 retval = ext4_ext_map_blocks(handle, inode, map, flags); 544 } else { 545 retval = ext4_ind_map_blocks(handle, inode, map, flags); 546 547 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 548 /* 549 * We allocated new blocks which will result in 550 * i_data's format changing. Force the migrate 551 * to fail by clearing migrate flags 552 */ 553 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 554 } 555 556 /* 557 * Update reserved blocks/metadata blocks after successful 558 * block allocation which had been deferred till now. We don't 559 * support fallocate for non extent files. So we can update 560 * reserve space here. 561 */ 562 if ((retval > 0) && 563 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 564 ext4_da_update_reserve_space(inode, retval, 1); 565 } 566 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 567 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 568 569 /* If we have successfully mapped the delayed allocated blocks, 570 * set the BH_Da_Mapped bit on them. Its important to do this 571 * under the protection of i_data_sem. 572 */ 573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 574 set_buffers_da_mapped(inode, map); 575 } 576 577 up_write((&EXT4_I(inode)->i_data_sem)); 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 int ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 return retval; 584 } 585 586 /* Maximum number of blocks we map for direct IO at once. */ 587 #define DIO_MAX_BLOCKS 4096 588 589 static int _ext4_get_block(struct inode *inode, sector_t iblock, 590 struct buffer_head *bh, int flags) 591 { 592 handle_t *handle = ext4_journal_current_handle(); 593 struct ext4_map_blocks map; 594 int ret = 0, started = 0; 595 int dio_credits; 596 597 map.m_lblk = iblock; 598 map.m_len = bh->b_size >> inode->i_blkbits; 599 600 if (flags && !handle) { 601 /* Direct IO write... */ 602 if (map.m_len > DIO_MAX_BLOCKS) 603 map.m_len = DIO_MAX_BLOCKS; 604 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 605 handle = ext4_journal_start(inode, dio_credits); 606 if (IS_ERR(handle)) { 607 ret = PTR_ERR(handle); 608 return ret; 609 } 610 started = 1; 611 } 612 613 ret = ext4_map_blocks(handle, inode, &map, flags); 614 if (ret > 0) { 615 map_bh(bh, inode->i_sb, map.m_pblk); 616 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 617 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 618 ret = 0; 619 } 620 if (started) 621 ext4_journal_stop(handle); 622 return ret; 623 } 624 625 int ext4_get_block(struct inode *inode, sector_t iblock, 626 struct buffer_head *bh, int create) 627 { 628 return _ext4_get_block(inode, iblock, bh, 629 create ? EXT4_GET_BLOCKS_CREATE : 0); 630 } 631 632 /* 633 * `handle' can be NULL if create is zero 634 */ 635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 636 ext4_lblk_t block, int create, int *errp) 637 { 638 struct ext4_map_blocks map; 639 struct buffer_head *bh; 640 int fatal = 0, err; 641 642 J_ASSERT(handle != NULL || create == 0); 643 644 map.m_lblk = block; 645 map.m_len = 1; 646 err = ext4_map_blocks(handle, inode, &map, 647 create ? EXT4_GET_BLOCKS_CREATE : 0); 648 649 if (err < 0) 650 *errp = err; 651 if (err <= 0) 652 return NULL; 653 *errp = 0; 654 655 bh = sb_getblk(inode->i_sb, map.m_pblk); 656 if (!bh) { 657 *errp = -EIO; 658 return NULL; 659 } 660 if (map.m_flags & EXT4_MAP_NEW) { 661 J_ASSERT(create != 0); 662 J_ASSERT(handle != NULL); 663 664 /* 665 * Now that we do not always journal data, we should 666 * keep in mind whether this should always journal the 667 * new buffer as metadata. For now, regular file 668 * writes use ext4_get_block instead, so it's not a 669 * problem. 670 */ 671 lock_buffer(bh); 672 BUFFER_TRACE(bh, "call get_create_access"); 673 fatal = ext4_journal_get_create_access(handle, bh); 674 if (!fatal && !buffer_uptodate(bh)) { 675 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 676 set_buffer_uptodate(bh); 677 } 678 unlock_buffer(bh); 679 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 680 err = ext4_handle_dirty_metadata(handle, inode, bh); 681 if (!fatal) 682 fatal = err; 683 } else { 684 BUFFER_TRACE(bh, "not a new buffer"); 685 } 686 if (fatal) { 687 *errp = fatal; 688 brelse(bh); 689 bh = NULL; 690 } 691 return bh; 692 } 693 694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 695 ext4_lblk_t block, int create, int *err) 696 { 697 struct buffer_head *bh; 698 699 bh = ext4_getblk(handle, inode, block, create, err); 700 if (!bh) 701 return bh; 702 if (buffer_uptodate(bh)) 703 return bh; 704 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 705 wait_on_buffer(bh); 706 if (buffer_uptodate(bh)) 707 return bh; 708 put_bh(bh); 709 *err = -EIO; 710 return NULL; 711 } 712 713 static int walk_page_buffers(handle_t *handle, 714 struct buffer_head *head, 715 unsigned from, 716 unsigned to, 717 int *partial, 718 int (*fn)(handle_t *handle, 719 struct buffer_head *bh)) 720 { 721 struct buffer_head *bh; 722 unsigned block_start, block_end; 723 unsigned blocksize = head->b_size; 724 int err, ret = 0; 725 struct buffer_head *next; 726 727 for (bh = head, block_start = 0; 728 ret == 0 && (bh != head || !block_start); 729 block_start = block_end, bh = next) { 730 next = bh->b_this_page; 731 block_end = block_start + blocksize; 732 if (block_end <= from || block_start >= to) { 733 if (partial && !buffer_uptodate(bh)) 734 *partial = 1; 735 continue; 736 } 737 err = (*fn)(handle, bh); 738 if (!ret) 739 ret = err; 740 } 741 return ret; 742 } 743 744 /* 745 * To preserve ordering, it is essential that the hole instantiation and 746 * the data write be encapsulated in a single transaction. We cannot 747 * close off a transaction and start a new one between the ext4_get_block() 748 * and the commit_write(). So doing the jbd2_journal_start at the start of 749 * prepare_write() is the right place. 750 * 751 * Also, this function can nest inside ext4_writepage() -> 752 * block_write_full_page(). In that case, we *know* that ext4_writepage() 753 * has generated enough buffer credits to do the whole page. So we won't 754 * block on the journal in that case, which is good, because the caller may 755 * be PF_MEMALLOC. 756 * 757 * By accident, ext4 can be reentered when a transaction is open via 758 * quota file writes. If we were to commit the transaction while thus 759 * reentered, there can be a deadlock - we would be holding a quota 760 * lock, and the commit would never complete if another thread had a 761 * transaction open and was blocking on the quota lock - a ranking 762 * violation. 763 * 764 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 765 * will _not_ run commit under these circumstances because handle->h_ref 766 * is elevated. We'll still have enough credits for the tiny quotafile 767 * write. 768 */ 769 static int do_journal_get_write_access(handle_t *handle, 770 struct buffer_head *bh) 771 { 772 int dirty = buffer_dirty(bh); 773 int ret; 774 775 if (!buffer_mapped(bh) || buffer_freed(bh)) 776 return 0; 777 /* 778 * __block_write_begin() could have dirtied some buffers. Clean 779 * the dirty bit as jbd2_journal_get_write_access() could complain 780 * otherwise about fs integrity issues. Setting of the dirty bit 781 * by __block_write_begin() isn't a real problem here as we clear 782 * the bit before releasing a page lock and thus writeback cannot 783 * ever write the buffer. 784 */ 785 if (dirty) 786 clear_buffer_dirty(bh); 787 ret = ext4_journal_get_write_access(handle, bh); 788 if (!ret && dirty) 789 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 790 return ret; 791 } 792 793 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 794 struct buffer_head *bh_result, int create); 795 static int ext4_write_begin(struct file *file, struct address_space *mapping, 796 loff_t pos, unsigned len, unsigned flags, 797 struct page **pagep, void **fsdata) 798 { 799 struct inode *inode = mapping->host; 800 int ret, needed_blocks; 801 handle_t *handle; 802 int retries = 0; 803 struct page *page; 804 pgoff_t index; 805 unsigned from, to; 806 807 trace_ext4_write_begin(inode, pos, len, flags); 808 /* 809 * Reserve one block more for addition to orphan list in case 810 * we allocate blocks but write fails for some reason 811 */ 812 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 813 index = pos >> PAGE_CACHE_SHIFT; 814 from = pos & (PAGE_CACHE_SIZE - 1); 815 to = from + len; 816 817 retry: 818 handle = ext4_journal_start(inode, needed_blocks); 819 if (IS_ERR(handle)) { 820 ret = PTR_ERR(handle); 821 goto out; 822 } 823 824 /* We cannot recurse into the filesystem as the transaction is already 825 * started */ 826 flags |= AOP_FLAG_NOFS; 827 828 page = grab_cache_page_write_begin(mapping, index, flags); 829 if (!page) { 830 ext4_journal_stop(handle); 831 ret = -ENOMEM; 832 goto out; 833 } 834 *pagep = page; 835 836 if (ext4_should_dioread_nolock(inode)) 837 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 838 else 839 ret = __block_write_begin(page, pos, len, ext4_get_block); 840 841 if (!ret && ext4_should_journal_data(inode)) { 842 ret = walk_page_buffers(handle, page_buffers(page), 843 from, to, NULL, do_journal_get_write_access); 844 } 845 846 if (ret) { 847 unlock_page(page); 848 page_cache_release(page); 849 /* 850 * __block_write_begin may have instantiated a few blocks 851 * outside i_size. Trim these off again. Don't need 852 * i_size_read because we hold i_mutex. 853 * 854 * Add inode to orphan list in case we crash before 855 * truncate finishes 856 */ 857 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 858 ext4_orphan_add(handle, inode); 859 860 ext4_journal_stop(handle); 861 if (pos + len > inode->i_size) { 862 ext4_truncate_failed_write(inode); 863 /* 864 * If truncate failed early the inode might 865 * still be on the orphan list; we need to 866 * make sure the inode is removed from the 867 * orphan list in that case. 868 */ 869 if (inode->i_nlink) 870 ext4_orphan_del(NULL, inode); 871 } 872 } 873 874 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 875 goto retry; 876 out: 877 return ret; 878 } 879 880 /* For write_end() in data=journal mode */ 881 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 882 { 883 if (!buffer_mapped(bh) || buffer_freed(bh)) 884 return 0; 885 set_buffer_uptodate(bh); 886 return ext4_handle_dirty_metadata(handle, NULL, bh); 887 } 888 889 static int ext4_generic_write_end(struct file *file, 890 struct address_space *mapping, 891 loff_t pos, unsigned len, unsigned copied, 892 struct page *page, void *fsdata) 893 { 894 int i_size_changed = 0; 895 struct inode *inode = mapping->host; 896 handle_t *handle = ext4_journal_current_handle(); 897 898 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 899 900 /* 901 * No need to use i_size_read() here, the i_size 902 * cannot change under us because we hold i_mutex. 903 * 904 * But it's important to update i_size while still holding page lock: 905 * page writeout could otherwise come in and zero beyond i_size. 906 */ 907 if (pos + copied > inode->i_size) { 908 i_size_write(inode, pos + copied); 909 i_size_changed = 1; 910 } 911 912 if (pos + copied > EXT4_I(inode)->i_disksize) { 913 /* We need to mark inode dirty even if 914 * new_i_size is less that inode->i_size 915 * bu greater than i_disksize.(hint delalloc) 916 */ 917 ext4_update_i_disksize(inode, (pos + copied)); 918 i_size_changed = 1; 919 } 920 unlock_page(page); 921 page_cache_release(page); 922 923 /* 924 * Don't mark the inode dirty under page lock. First, it unnecessarily 925 * makes the holding time of page lock longer. Second, it forces lock 926 * ordering of page lock and transaction start for journaling 927 * filesystems. 928 */ 929 if (i_size_changed) 930 ext4_mark_inode_dirty(handle, inode); 931 932 return copied; 933 } 934 935 /* 936 * We need to pick up the new inode size which generic_commit_write gave us 937 * `file' can be NULL - eg, when called from page_symlink(). 938 * 939 * ext4 never places buffers on inode->i_mapping->private_list. metadata 940 * buffers are managed internally. 941 */ 942 static int ext4_ordered_write_end(struct file *file, 943 struct address_space *mapping, 944 loff_t pos, unsigned len, unsigned copied, 945 struct page *page, void *fsdata) 946 { 947 handle_t *handle = ext4_journal_current_handle(); 948 struct inode *inode = mapping->host; 949 int ret = 0, ret2; 950 951 trace_ext4_ordered_write_end(inode, pos, len, copied); 952 ret = ext4_jbd2_file_inode(handle, inode); 953 954 if (ret == 0) { 955 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 956 page, fsdata); 957 copied = ret2; 958 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 959 /* if we have allocated more blocks and copied 960 * less. We will have blocks allocated outside 961 * inode->i_size. So truncate them 962 */ 963 ext4_orphan_add(handle, inode); 964 if (ret2 < 0) 965 ret = ret2; 966 } else { 967 unlock_page(page); 968 page_cache_release(page); 969 } 970 971 ret2 = ext4_journal_stop(handle); 972 if (!ret) 973 ret = ret2; 974 975 if (pos + len > inode->i_size) { 976 ext4_truncate_failed_write(inode); 977 /* 978 * If truncate failed early the inode might still be 979 * on the orphan list; we need to make sure the inode 980 * is removed from the orphan list in that case. 981 */ 982 if (inode->i_nlink) 983 ext4_orphan_del(NULL, inode); 984 } 985 986 987 return ret ? ret : copied; 988 } 989 990 static int ext4_writeback_write_end(struct file *file, 991 struct address_space *mapping, 992 loff_t pos, unsigned len, unsigned copied, 993 struct page *page, void *fsdata) 994 { 995 handle_t *handle = ext4_journal_current_handle(); 996 struct inode *inode = mapping->host; 997 int ret = 0, ret2; 998 999 trace_ext4_writeback_write_end(inode, pos, len, copied); 1000 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1001 page, fsdata); 1002 copied = ret2; 1003 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1004 /* if we have allocated more blocks and copied 1005 * less. We will have blocks allocated outside 1006 * inode->i_size. So truncate them 1007 */ 1008 ext4_orphan_add(handle, inode); 1009 1010 if (ret2 < 0) 1011 ret = ret2; 1012 1013 ret2 = ext4_journal_stop(handle); 1014 if (!ret) 1015 ret = ret2; 1016 1017 if (pos + len > inode->i_size) { 1018 ext4_truncate_failed_write(inode); 1019 /* 1020 * If truncate failed early the inode might still be 1021 * on the orphan list; we need to make sure the inode 1022 * is removed from the orphan list in that case. 1023 */ 1024 if (inode->i_nlink) 1025 ext4_orphan_del(NULL, inode); 1026 } 1027 1028 return ret ? ret : copied; 1029 } 1030 1031 static int ext4_journalled_write_end(struct file *file, 1032 struct address_space *mapping, 1033 loff_t pos, unsigned len, unsigned copied, 1034 struct page *page, void *fsdata) 1035 { 1036 handle_t *handle = ext4_journal_current_handle(); 1037 struct inode *inode = mapping->host; 1038 int ret = 0, ret2; 1039 int partial = 0; 1040 unsigned from, to; 1041 loff_t new_i_size; 1042 1043 trace_ext4_journalled_write_end(inode, pos, len, copied); 1044 from = pos & (PAGE_CACHE_SIZE - 1); 1045 to = from + len; 1046 1047 BUG_ON(!ext4_handle_valid(handle)); 1048 1049 if (copied < len) { 1050 if (!PageUptodate(page)) 1051 copied = 0; 1052 page_zero_new_buffers(page, from+copied, to); 1053 } 1054 1055 ret = walk_page_buffers(handle, page_buffers(page), from, 1056 to, &partial, write_end_fn); 1057 if (!partial) 1058 SetPageUptodate(page); 1059 new_i_size = pos + copied; 1060 if (new_i_size > inode->i_size) 1061 i_size_write(inode, pos+copied); 1062 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1063 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1064 if (new_i_size > EXT4_I(inode)->i_disksize) { 1065 ext4_update_i_disksize(inode, new_i_size); 1066 ret2 = ext4_mark_inode_dirty(handle, inode); 1067 if (!ret) 1068 ret = ret2; 1069 } 1070 1071 unlock_page(page); 1072 page_cache_release(page); 1073 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1074 /* if we have allocated more blocks and copied 1075 * less. We will have blocks allocated outside 1076 * inode->i_size. So truncate them 1077 */ 1078 ext4_orphan_add(handle, inode); 1079 1080 ret2 = ext4_journal_stop(handle); 1081 if (!ret) 1082 ret = ret2; 1083 if (pos + len > inode->i_size) { 1084 ext4_truncate_failed_write(inode); 1085 /* 1086 * If truncate failed early the inode might still be 1087 * on the orphan list; we need to make sure the inode 1088 * is removed from the orphan list in that case. 1089 */ 1090 if (inode->i_nlink) 1091 ext4_orphan_del(NULL, inode); 1092 } 1093 1094 return ret ? ret : copied; 1095 } 1096 1097 /* 1098 * Reserve a single cluster located at lblock 1099 */ 1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1101 { 1102 int retries = 0; 1103 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1104 struct ext4_inode_info *ei = EXT4_I(inode); 1105 unsigned int md_needed; 1106 int ret; 1107 1108 /* 1109 * recalculate the amount of metadata blocks to reserve 1110 * in order to allocate nrblocks 1111 * worse case is one extent per block 1112 */ 1113 repeat: 1114 spin_lock(&ei->i_block_reservation_lock); 1115 md_needed = EXT4_NUM_B2C(sbi, 1116 ext4_calc_metadata_amount(inode, lblock)); 1117 trace_ext4_da_reserve_space(inode, md_needed); 1118 spin_unlock(&ei->i_block_reservation_lock); 1119 1120 /* 1121 * We will charge metadata quota at writeout time; this saves 1122 * us from metadata over-estimation, though we may go over by 1123 * a small amount in the end. Here we just reserve for data. 1124 */ 1125 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1126 if (ret) 1127 return ret; 1128 /* 1129 * We do still charge estimated metadata to the sb though; 1130 * we cannot afford to run out of free blocks. 1131 */ 1132 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1133 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1134 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1135 yield(); 1136 goto repeat; 1137 } 1138 return -ENOSPC; 1139 } 1140 spin_lock(&ei->i_block_reservation_lock); 1141 ei->i_reserved_data_blocks++; 1142 ei->i_reserved_meta_blocks += md_needed; 1143 spin_unlock(&ei->i_block_reservation_lock); 1144 1145 return 0; /* success */ 1146 } 1147 1148 static void ext4_da_release_space(struct inode *inode, int to_free) 1149 { 1150 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1151 struct ext4_inode_info *ei = EXT4_I(inode); 1152 1153 if (!to_free) 1154 return; /* Nothing to release, exit */ 1155 1156 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1157 1158 trace_ext4_da_release_space(inode, to_free); 1159 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1160 /* 1161 * if there aren't enough reserved blocks, then the 1162 * counter is messed up somewhere. Since this 1163 * function is called from invalidate page, it's 1164 * harmless to return without any action. 1165 */ 1166 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1167 "ino %lu, to_free %d with only %d reserved " 1168 "data blocks\n", inode->i_ino, to_free, 1169 ei->i_reserved_data_blocks); 1170 WARN_ON(1); 1171 to_free = ei->i_reserved_data_blocks; 1172 } 1173 ei->i_reserved_data_blocks -= to_free; 1174 1175 if (ei->i_reserved_data_blocks == 0) { 1176 /* 1177 * We can release all of the reserved metadata blocks 1178 * only when we have written all of the delayed 1179 * allocation blocks. 1180 * Note that in case of bigalloc, i_reserved_meta_blocks, 1181 * i_reserved_data_blocks, etc. refer to number of clusters. 1182 */ 1183 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1184 ei->i_reserved_meta_blocks); 1185 ei->i_reserved_meta_blocks = 0; 1186 ei->i_da_metadata_calc_len = 0; 1187 } 1188 1189 /* update fs dirty data blocks counter */ 1190 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1191 1192 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1193 1194 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1195 } 1196 1197 static void ext4_da_page_release_reservation(struct page *page, 1198 unsigned long offset) 1199 { 1200 int to_release = 0; 1201 struct buffer_head *head, *bh; 1202 unsigned int curr_off = 0; 1203 struct inode *inode = page->mapping->host; 1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1205 int num_clusters; 1206 1207 head = page_buffers(page); 1208 bh = head; 1209 do { 1210 unsigned int next_off = curr_off + bh->b_size; 1211 1212 if ((offset <= curr_off) && (buffer_delay(bh))) { 1213 to_release++; 1214 clear_buffer_delay(bh); 1215 clear_buffer_da_mapped(bh); 1216 } 1217 curr_off = next_off; 1218 } while ((bh = bh->b_this_page) != head); 1219 1220 /* If we have released all the blocks belonging to a cluster, then we 1221 * need to release the reserved space for that cluster. */ 1222 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1223 while (num_clusters > 0) { 1224 ext4_fsblk_t lblk; 1225 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1226 ((num_clusters - 1) << sbi->s_cluster_bits); 1227 if (sbi->s_cluster_ratio == 1 || 1228 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1229 ext4_da_release_space(inode, 1); 1230 1231 num_clusters--; 1232 } 1233 } 1234 1235 /* 1236 * Delayed allocation stuff 1237 */ 1238 1239 /* 1240 * mpage_da_submit_io - walks through extent of pages and try to write 1241 * them with writepage() call back 1242 * 1243 * @mpd->inode: inode 1244 * @mpd->first_page: first page of the extent 1245 * @mpd->next_page: page after the last page of the extent 1246 * 1247 * By the time mpage_da_submit_io() is called we expect all blocks 1248 * to be allocated. this may be wrong if allocation failed. 1249 * 1250 * As pages are already locked by write_cache_pages(), we can't use it 1251 */ 1252 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1253 struct ext4_map_blocks *map) 1254 { 1255 struct pagevec pvec; 1256 unsigned long index, end; 1257 int ret = 0, err, nr_pages, i; 1258 struct inode *inode = mpd->inode; 1259 struct address_space *mapping = inode->i_mapping; 1260 loff_t size = i_size_read(inode); 1261 unsigned int len, block_start; 1262 struct buffer_head *bh, *page_bufs = NULL; 1263 int journal_data = ext4_should_journal_data(inode); 1264 sector_t pblock = 0, cur_logical = 0; 1265 struct ext4_io_submit io_submit; 1266 1267 BUG_ON(mpd->next_page <= mpd->first_page); 1268 memset(&io_submit, 0, sizeof(io_submit)); 1269 /* 1270 * We need to start from the first_page to the next_page - 1 1271 * to make sure we also write the mapped dirty buffer_heads. 1272 * If we look at mpd->b_blocknr we would only be looking 1273 * at the currently mapped buffer_heads. 1274 */ 1275 index = mpd->first_page; 1276 end = mpd->next_page - 1; 1277 1278 pagevec_init(&pvec, 0); 1279 while (index <= end) { 1280 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1281 if (nr_pages == 0) 1282 break; 1283 for (i = 0; i < nr_pages; i++) { 1284 int commit_write = 0, skip_page = 0; 1285 struct page *page = pvec.pages[i]; 1286 1287 index = page->index; 1288 if (index > end) 1289 break; 1290 1291 if (index == size >> PAGE_CACHE_SHIFT) 1292 len = size & ~PAGE_CACHE_MASK; 1293 else 1294 len = PAGE_CACHE_SIZE; 1295 if (map) { 1296 cur_logical = index << (PAGE_CACHE_SHIFT - 1297 inode->i_blkbits); 1298 pblock = map->m_pblk + (cur_logical - 1299 map->m_lblk); 1300 } 1301 index++; 1302 1303 BUG_ON(!PageLocked(page)); 1304 BUG_ON(PageWriteback(page)); 1305 1306 /* 1307 * If the page does not have buffers (for 1308 * whatever reason), try to create them using 1309 * __block_write_begin. If this fails, 1310 * skip the page and move on. 1311 */ 1312 if (!page_has_buffers(page)) { 1313 if (__block_write_begin(page, 0, len, 1314 noalloc_get_block_write)) { 1315 skip_page: 1316 unlock_page(page); 1317 continue; 1318 } 1319 commit_write = 1; 1320 } 1321 1322 bh = page_bufs = page_buffers(page); 1323 block_start = 0; 1324 do { 1325 if (!bh) 1326 goto skip_page; 1327 if (map && (cur_logical >= map->m_lblk) && 1328 (cur_logical <= (map->m_lblk + 1329 (map->m_len - 1)))) { 1330 if (buffer_delay(bh)) { 1331 clear_buffer_delay(bh); 1332 bh->b_blocknr = pblock; 1333 } 1334 if (buffer_da_mapped(bh)) 1335 clear_buffer_da_mapped(bh); 1336 if (buffer_unwritten(bh) || 1337 buffer_mapped(bh)) 1338 BUG_ON(bh->b_blocknr != pblock); 1339 if (map->m_flags & EXT4_MAP_UNINIT) 1340 set_buffer_uninit(bh); 1341 clear_buffer_unwritten(bh); 1342 } 1343 1344 /* 1345 * skip page if block allocation undone and 1346 * block is dirty 1347 */ 1348 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1349 skip_page = 1; 1350 bh = bh->b_this_page; 1351 block_start += bh->b_size; 1352 cur_logical++; 1353 pblock++; 1354 } while (bh != page_bufs); 1355 1356 if (skip_page) 1357 goto skip_page; 1358 1359 if (commit_write) 1360 /* mark the buffer_heads as dirty & uptodate */ 1361 block_commit_write(page, 0, len); 1362 1363 clear_page_dirty_for_io(page); 1364 /* 1365 * Delalloc doesn't support data journalling, 1366 * but eventually maybe we'll lift this 1367 * restriction. 1368 */ 1369 if (unlikely(journal_data && PageChecked(page))) 1370 err = __ext4_journalled_writepage(page, len); 1371 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1372 err = ext4_bio_write_page(&io_submit, page, 1373 len, mpd->wbc); 1374 else if (buffer_uninit(page_bufs)) { 1375 ext4_set_bh_endio(page_bufs, inode); 1376 err = block_write_full_page_endio(page, 1377 noalloc_get_block_write, 1378 mpd->wbc, ext4_end_io_buffer_write); 1379 } else 1380 err = block_write_full_page(page, 1381 noalloc_get_block_write, mpd->wbc); 1382 1383 if (!err) 1384 mpd->pages_written++; 1385 /* 1386 * In error case, we have to continue because 1387 * remaining pages are still locked 1388 */ 1389 if (ret == 0) 1390 ret = err; 1391 } 1392 pagevec_release(&pvec); 1393 } 1394 ext4_io_submit(&io_submit); 1395 return ret; 1396 } 1397 1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1399 { 1400 int nr_pages, i; 1401 pgoff_t index, end; 1402 struct pagevec pvec; 1403 struct inode *inode = mpd->inode; 1404 struct address_space *mapping = inode->i_mapping; 1405 1406 index = mpd->first_page; 1407 end = mpd->next_page - 1; 1408 while (index <= end) { 1409 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1410 if (nr_pages == 0) 1411 break; 1412 for (i = 0; i < nr_pages; i++) { 1413 struct page *page = pvec.pages[i]; 1414 if (page->index > end) 1415 break; 1416 BUG_ON(!PageLocked(page)); 1417 BUG_ON(PageWriteback(page)); 1418 block_invalidatepage(page, 0); 1419 ClearPageUptodate(page); 1420 unlock_page(page); 1421 } 1422 index = pvec.pages[nr_pages - 1]->index + 1; 1423 pagevec_release(&pvec); 1424 } 1425 return; 1426 } 1427 1428 static void ext4_print_free_blocks(struct inode *inode) 1429 { 1430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1431 printk(KERN_CRIT "Total free blocks count %lld\n", 1432 EXT4_C2B(EXT4_SB(inode->i_sb), 1433 ext4_count_free_clusters(inode->i_sb))); 1434 printk(KERN_CRIT "Free/Dirty block details\n"); 1435 printk(KERN_CRIT "free_blocks=%lld\n", 1436 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1437 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1438 printk(KERN_CRIT "dirty_blocks=%lld\n", 1439 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1440 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1441 printk(KERN_CRIT "Block reservation details\n"); 1442 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1443 EXT4_I(inode)->i_reserved_data_blocks); 1444 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1445 EXT4_I(inode)->i_reserved_meta_blocks); 1446 return; 1447 } 1448 1449 /* 1450 * mpage_da_map_and_submit - go through given space, map them 1451 * if necessary, and then submit them for I/O 1452 * 1453 * @mpd - bh describing space 1454 * 1455 * The function skips space we know is already mapped to disk blocks. 1456 * 1457 */ 1458 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1459 { 1460 int err, blks, get_blocks_flags; 1461 struct ext4_map_blocks map, *mapp = NULL; 1462 sector_t next = mpd->b_blocknr; 1463 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1464 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1465 handle_t *handle = NULL; 1466 1467 /* 1468 * If the blocks are mapped already, or we couldn't accumulate 1469 * any blocks, then proceed immediately to the submission stage. 1470 */ 1471 if ((mpd->b_size == 0) || 1472 ((mpd->b_state & (1 << BH_Mapped)) && 1473 !(mpd->b_state & (1 << BH_Delay)) && 1474 !(mpd->b_state & (1 << BH_Unwritten)))) 1475 goto submit_io; 1476 1477 handle = ext4_journal_current_handle(); 1478 BUG_ON(!handle); 1479 1480 /* 1481 * Call ext4_map_blocks() to allocate any delayed allocation 1482 * blocks, or to convert an uninitialized extent to be 1483 * initialized (in the case where we have written into 1484 * one or more preallocated blocks). 1485 * 1486 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1487 * indicate that we are on the delayed allocation path. This 1488 * affects functions in many different parts of the allocation 1489 * call path. This flag exists primarily because we don't 1490 * want to change *many* call functions, so ext4_map_blocks() 1491 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1492 * inode's allocation semaphore is taken. 1493 * 1494 * If the blocks in questions were delalloc blocks, set 1495 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1496 * variables are updated after the blocks have been allocated. 1497 */ 1498 map.m_lblk = next; 1499 map.m_len = max_blocks; 1500 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1501 if (ext4_should_dioread_nolock(mpd->inode)) 1502 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1503 if (mpd->b_state & (1 << BH_Delay)) 1504 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1505 1506 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1507 if (blks < 0) { 1508 struct super_block *sb = mpd->inode->i_sb; 1509 1510 err = blks; 1511 /* 1512 * If get block returns EAGAIN or ENOSPC and there 1513 * appears to be free blocks we will just let 1514 * mpage_da_submit_io() unlock all of the pages. 1515 */ 1516 if (err == -EAGAIN) 1517 goto submit_io; 1518 1519 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1520 mpd->retval = err; 1521 goto submit_io; 1522 } 1523 1524 /* 1525 * get block failure will cause us to loop in 1526 * writepages, because a_ops->writepage won't be able 1527 * to make progress. The page will be redirtied by 1528 * writepage and writepages will again try to write 1529 * the same. 1530 */ 1531 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1532 ext4_msg(sb, KERN_CRIT, 1533 "delayed block allocation failed for inode %lu " 1534 "at logical offset %llu with max blocks %zd " 1535 "with error %d", mpd->inode->i_ino, 1536 (unsigned long long) next, 1537 mpd->b_size >> mpd->inode->i_blkbits, err); 1538 ext4_msg(sb, KERN_CRIT, 1539 "This should not happen!! Data will be lost\n"); 1540 if (err == -ENOSPC) 1541 ext4_print_free_blocks(mpd->inode); 1542 } 1543 /* invalidate all the pages */ 1544 ext4_da_block_invalidatepages(mpd); 1545 1546 /* Mark this page range as having been completed */ 1547 mpd->io_done = 1; 1548 return; 1549 } 1550 BUG_ON(blks == 0); 1551 1552 mapp = ↦ 1553 if (map.m_flags & EXT4_MAP_NEW) { 1554 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1555 int i; 1556 1557 for (i = 0; i < map.m_len; i++) 1558 unmap_underlying_metadata(bdev, map.m_pblk + i); 1559 1560 if (ext4_should_order_data(mpd->inode)) { 1561 err = ext4_jbd2_file_inode(handle, mpd->inode); 1562 if (err) { 1563 /* Only if the journal is aborted */ 1564 mpd->retval = err; 1565 goto submit_io; 1566 } 1567 } 1568 } 1569 1570 /* 1571 * Update on-disk size along with block allocation. 1572 */ 1573 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1574 if (disksize > i_size_read(mpd->inode)) 1575 disksize = i_size_read(mpd->inode); 1576 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1577 ext4_update_i_disksize(mpd->inode, disksize); 1578 err = ext4_mark_inode_dirty(handle, mpd->inode); 1579 if (err) 1580 ext4_error(mpd->inode->i_sb, 1581 "Failed to mark inode %lu dirty", 1582 mpd->inode->i_ino); 1583 } 1584 1585 submit_io: 1586 mpage_da_submit_io(mpd, mapp); 1587 mpd->io_done = 1; 1588 } 1589 1590 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1591 (1 << BH_Delay) | (1 << BH_Unwritten)) 1592 1593 /* 1594 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1595 * 1596 * @mpd->lbh - extent of blocks 1597 * @logical - logical number of the block in the file 1598 * @bh - bh of the block (used to access block's state) 1599 * 1600 * the function is used to collect contig. blocks in same state 1601 */ 1602 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1603 sector_t logical, size_t b_size, 1604 unsigned long b_state) 1605 { 1606 sector_t next; 1607 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1608 1609 /* 1610 * XXX Don't go larger than mballoc is willing to allocate 1611 * This is a stopgap solution. We eventually need to fold 1612 * mpage_da_submit_io() into this function and then call 1613 * ext4_map_blocks() multiple times in a loop 1614 */ 1615 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1616 goto flush_it; 1617 1618 /* check if thereserved journal credits might overflow */ 1619 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1620 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1621 /* 1622 * With non-extent format we are limited by the journal 1623 * credit available. Total credit needed to insert 1624 * nrblocks contiguous blocks is dependent on the 1625 * nrblocks. So limit nrblocks. 1626 */ 1627 goto flush_it; 1628 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1629 EXT4_MAX_TRANS_DATA) { 1630 /* 1631 * Adding the new buffer_head would make it cross the 1632 * allowed limit for which we have journal credit 1633 * reserved. So limit the new bh->b_size 1634 */ 1635 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1636 mpd->inode->i_blkbits; 1637 /* we will do mpage_da_submit_io in the next loop */ 1638 } 1639 } 1640 /* 1641 * First block in the extent 1642 */ 1643 if (mpd->b_size == 0) { 1644 mpd->b_blocknr = logical; 1645 mpd->b_size = b_size; 1646 mpd->b_state = b_state & BH_FLAGS; 1647 return; 1648 } 1649 1650 next = mpd->b_blocknr + nrblocks; 1651 /* 1652 * Can we merge the block to our big extent? 1653 */ 1654 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1655 mpd->b_size += b_size; 1656 return; 1657 } 1658 1659 flush_it: 1660 /* 1661 * We couldn't merge the block to our extent, so we 1662 * need to flush current extent and start new one 1663 */ 1664 mpage_da_map_and_submit(mpd); 1665 return; 1666 } 1667 1668 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1669 { 1670 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1671 } 1672 1673 /* 1674 * This function is grabs code from the very beginning of 1675 * ext4_map_blocks, but assumes that the caller is from delayed write 1676 * time. This function looks up the requested blocks and sets the 1677 * buffer delay bit under the protection of i_data_sem. 1678 */ 1679 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1680 struct ext4_map_blocks *map, 1681 struct buffer_head *bh) 1682 { 1683 int retval; 1684 sector_t invalid_block = ~((sector_t) 0xffff); 1685 1686 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1687 invalid_block = ~0; 1688 1689 map->m_flags = 0; 1690 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1691 "logical block %lu\n", inode->i_ino, map->m_len, 1692 (unsigned long) map->m_lblk); 1693 /* 1694 * Try to see if we can get the block without requesting a new 1695 * file system block. 1696 */ 1697 down_read((&EXT4_I(inode)->i_data_sem)); 1698 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1699 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1700 else 1701 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1702 1703 if (retval == 0) { 1704 /* 1705 * XXX: __block_prepare_write() unmaps passed block, 1706 * is it OK? 1707 */ 1708 /* If the block was allocated from previously allocated cluster, 1709 * then we dont need to reserve it again. */ 1710 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1711 retval = ext4_da_reserve_space(inode, iblock); 1712 if (retval) 1713 /* not enough space to reserve */ 1714 goto out_unlock; 1715 } 1716 1717 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1718 * and it should not appear on the bh->b_state. 1719 */ 1720 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1721 1722 map_bh(bh, inode->i_sb, invalid_block); 1723 set_buffer_new(bh); 1724 set_buffer_delay(bh); 1725 } 1726 1727 out_unlock: 1728 up_read((&EXT4_I(inode)->i_data_sem)); 1729 1730 return retval; 1731 } 1732 1733 /* 1734 * This is a special get_blocks_t callback which is used by 1735 * ext4_da_write_begin(). It will either return mapped block or 1736 * reserve space for a single block. 1737 * 1738 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1739 * We also have b_blocknr = -1 and b_bdev initialized properly 1740 * 1741 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1742 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1743 * initialized properly. 1744 */ 1745 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1746 struct buffer_head *bh, int create) 1747 { 1748 struct ext4_map_blocks map; 1749 int ret = 0; 1750 1751 BUG_ON(create == 0); 1752 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1753 1754 map.m_lblk = iblock; 1755 map.m_len = 1; 1756 1757 /* 1758 * first, we need to know whether the block is allocated already 1759 * preallocated blocks are unmapped but should treated 1760 * the same as allocated blocks. 1761 */ 1762 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1763 if (ret <= 0) 1764 return ret; 1765 1766 map_bh(bh, inode->i_sb, map.m_pblk); 1767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1768 1769 if (buffer_unwritten(bh)) { 1770 /* A delayed write to unwritten bh should be marked 1771 * new and mapped. Mapped ensures that we don't do 1772 * get_block multiple times when we write to the same 1773 * offset and new ensures that we do proper zero out 1774 * for partial write. 1775 */ 1776 set_buffer_new(bh); 1777 set_buffer_mapped(bh); 1778 } 1779 return 0; 1780 } 1781 1782 /* 1783 * This function is used as a standard get_block_t calback function 1784 * when there is no desire to allocate any blocks. It is used as a 1785 * callback function for block_write_begin() and block_write_full_page(). 1786 * These functions should only try to map a single block at a time. 1787 * 1788 * Since this function doesn't do block allocations even if the caller 1789 * requests it by passing in create=1, it is critically important that 1790 * any caller checks to make sure that any buffer heads are returned 1791 * by this function are either all already mapped or marked for 1792 * delayed allocation before calling block_write_full_page(). Otherwise, 1793 * b_blocknr could be left unitialized, and the page write functions will 1794 * be taken by surprise. 1795 */ 1796 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1797 struct buffer_head *bh_result, int create) 1798 { 1799 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1800 return _ext4_get_block(inode, iblock, bh_result, 0); 1801 } 1802 1803 static int bget_one(handle_t *handle, struct buffer_head *bh) 1804 { 1805 get_bh(bh); 1806 return 0; 1807 } 1808 1809 static int bput_one(handle_t *handle, struct buffer_head *bh) 1810 { 1811 put_bh(bh); 1812 return 0; 1813 } 1814 1815 static int __ext4_journalled_writepage(struct page *page, 1816 unsigned int len) 1817 { 1818 struct address_space *mapping = page->mapping; 1819 struct inode *inode = mapping->host; 1820 struct buffer_head *page_bufs; 1821 handle_t *handle = NULL; 1822 int ret = 0; 1823 int err; 1824 1825 ClearPageChecked(page); 1826 page_bufs = page_buffers(page); 1827 BUG_ON(!page_bufs); 1828 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1829 /* As soon as we unlock the page, it can go away, but we have 1830 * references to buffers so we are safe */ 1831 unlock_page(page); 1832 1833 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1834 if (IS_ERR(handle)) { 1835 ret = PTR_ERR(handle); 1836 goto out; 1837 } 1838 1839 BUG_ON(!ext4_handle_valid(handle)); 1840 1841 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1842 do_journal_get_write_access); 1843 1844 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1845 write_end_fn); 1846 if (ret == 0) 1847 ret = err; 1848 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1849 err = ext4_journal_stop(handle); 1850 if (!ret) 1851 ret = err; 1852 1853 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1854 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1855 out: 1856 return ret; 1857 } 1858 1859 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1860 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1861 1862 /* 1863 * Note that we don't need to start a transaction unless we're journaling data 1864 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1865 * need to file the inode to the transaction's list in ordered mode because if 1866 * we are writing back data added by write(), the inode is already there and if 1867 * we are writing back data modified via mmap(), no one guarantees in which 1868 * transaction the data will hit the disk. In case we are journaling data, we 1869 * cannot start transaction directly because transaction start ranks above page 1870 * lock so we have to do some magic. 1871 * 1872 * This function can get called via... 1873 * - ext4_da_writepages after taking page lock (have journal handle) 1874 * - journal_submit_inode_data_buffers (no journal handle) 1875 * - shrink_page_list via pdflush (no journal handle) 1876 * - grab_page_cache when doing write_begin (have journal handle) 1877 * 1878 * We don't do any block allocation in this function. If we have page with 1879 * multiple blocks we need to write those buffer_heads that are mapped. This 1880 * is important for mmaped based write. So if we do with blocksize 1K 1881 * truncate(f, 1024); 1882 * a = mmap(f, 0, 4096); 1883 * a[0] = 'a'; 1884 * truncate(f, 4096); 1885 * we have in the page first buffer_head mapped via page_mkwrite call back 1886 * but other buffer_heads would be unmapped but dirty (dirty done via the 1887 * do_wp_page). So writepage should write the first block. If we modify 1888 * the mmap area beyond 1024 we will again get a page_fault and the 1889 * page_mkwrite callback will do the block allocation and mark the 1890 * buffer_heads mapped. 1891 * 1892 * We redirty the page if we have any buffer_heads that is either delay or 1893 * unwritten in the page. 1894 * 1895 * We can get recursively called as show below. 1896 * 1897 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1898 * ext4_writepage() 1899 * 1900 * But since we don't do any block allocation we should not deadlock. 1901 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1902 */ 1903 static int ext4_writepage(struct page *page, 1904 struct writeback_control *wbc) 1905 { 1906 int ret = 0, commit_write = 0; 1907 loff_t size; 1908 unsigned int len; 1909 struct buffer_head *page_bufs = NULL; 1910 struct inode *inode = page->mapping->host; 1911 1912 trace_ext4_writepage(page); 1913 size = i_size_read(inode); 1914 if (page->index == size >> PAGE_CACHE_SHIFT) 1915 len = size & ~PAGE_CACHE_MASK; 1916 else 1917 len = PAGE_CACHE_SIZE; 1918 1919 /* 1920 * If the page does not have buffers (for whatever reason), 1921 * try to create them using __block_write_begin. If this 1922 * fails, redirty the page and move on. 1923 */ 1924 if (!page_has_buffers(page)) { 1925 if (__block_write_begin(page, 0, len, 1926 noalloc_get_block_write)) { 1927 redirty_page: 1928 redirty_page_for_writepage(wbc, page); 1929 unlock_page(page); 1930 return 0; 1931 } 1932 commit_write = 1; 1933 } 1934 page_bufs = page_buffers(page); 1935 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1936 ext4_bh_delay_or_unwritten)) { 1937 /* 1938 * We don't want to do block allocation, so redirty 1939 * the page and return. We may reach here when we do 1940 * a journal commit via journal_submit_inode_data_buffers. 1941 * We can also reach here via shrink_page_list but it 1942 * should never be for direct reclaim so warn if that 1943 * happens 1944 */ 1945 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1946 PF_MEMALLOC); 1947 goto redirty_page; 1948 } 1949 if (commit_write) 1950 /* now mark the buffer_heads as dirty and uptodate */ 1951 block_commit_write(page, 0, len); 1952 1953 if (PageChecked(page) && ext4_should_journal_data(inode)) 1954 /* 1955 * It's mmapped pagecache. Add buffers and journal it. There 1956 * doesn't seem much point in redirtying the page here. 1957 */ 1958 return __ext4_journalled_writepage(page, len); 1959 1960 if (buffer_uninit(page_bufs)) { 1961 ext4_set_bh_endio(page_bufs, inode); 1962 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1963 wbc, ext4_end_io_buffer_write); 1964 } else 1965 ret = block_write_full_page(page, noalloc_get_block_write, 1966 wbc); 1967 1968 return ret; 1969 } 1970 1971 /* 1972 * This is called via ext4_da_writepages() to 1973 * calculate the total number of credits to reserve to fit 1974 * a single extent allocation into a single transaction, 1975 * ext4_da_writpeages() will loop calling this before 1976 * the block allocation. 1977 */ 1978 1979 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1980 { 1981 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1982 1983 /* 1984 * With non-extent format the journal credit needed to 1985 * insert nrblocks contiguous block is dependent on 1986 * number of contiguous block. So we will limit 1987 * number of contiguous block to a sane value 1988 */ 1989 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1990 (max_blocks > EXT4_MAX_TRANS_DATA)) 1991 max_blocks = EXT4_MAX_TRANS_DATA; 1992 1993 return ext4_chunk_trans_blocks(inode, max_blocks); 1994 } 1995 1996 /* 1997 * write_cache_pages_da - walk the list of dirty pages of the given 1998 * address space and accumulate pages that need writing, and call 1999 * mpage_da_map_and_submit to map a single contiguous memory region 2000 * and then write them. 2001 */ 2002 static int write_cache_pages_da(struct address_space *mapping, 2003 struct writeback_control *wbc, 2004 struct mpage_da_data *mpd, 2005 pgoff_t *done_index) 2006 { 2007 struct buffer_head *bh, *head; 2008 struct inode *inode = mapping->host; 2009 struct pagevec pvec; 2010 unsigned int nr_pages; 2011 sector_t logical; 2012 pgoff_t index, end; 2013 long nr_to_write = wbc->nr_to_write; 2014 int i, tag, ret = 0; 2015 2016 memset(mpd, 0, sizeof(struct mpage_da_data)); 2017 mpd->wbc = wbc; 2018 mpd->inode = inode; 2019 pagevec_init(&pvec, 0); 2020 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2021 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2022 2023 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2024 tag = PAGECACHE_TAG_TOWRITE; 2025 else 2026 tag = PAGECACHE_TAG_DIRTY; 2027 2028 *done_index = index; 2029 while (index <= end) { 2030 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2031 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2032 if (nr_pages == 0) 2033 return 0; 2034 2035 for (i = 0; i < nr_pages; i++) { 2036 struct page *page = pvec.pages[i]; 2037 2038 /* 2039 * At this point, the page may be truncated or 2040 * invalidated (changing page->mapping to NULL), or 2041 * even swizzled back from swapper_space to tmpfs file 2042 * mapping. However, page->index will not change 2043 * because we have a reference on the page. 2044 */ 2045 if (page->index > end) 2046 goto out; 2047 2048 *done_index = page->index + 1; 2049 2050 /* 2051 * If we can't merge this page, and we have 2052 * accumulated an contiguous region, write it 2053 */ 2054 if ((mpd->next_page != page->index) && 2055 (mpd->next_page != mpd->first_page)) { 2056 mpage_da_map_and_submit(mpd); 2057 goto ret_extent_tail; 2058 } 2059 2060 lock_page(page); 2061 2062 /* 2063 * If the page is no longer dirty, or its 2064 * mapping no longer corresponds to inode we 2065 * are writing (which means it has been 2066 * truncated or invalidated), or the page is 2067 * already under writeback and we are not 2068 * doing a data integrity writeback, skip the page 2069 */ 2070 if (!PageDirty(page) || 2071 (PageWriteback(page) && 2072 (wbc->sync_mode == WB_SYNC_NONE)) || 2073 unlikely(page->mapping != mapping)) { 2074 unlock_page(page); 2075 continue; 2076 } 2077 2078 wait_on_page_writeback(page); 2079 BUG_ON(PageWriteback(page)); 2080 2081 if (mpd->next_page != page->index) 2082 mpd->first_page = page->index; 2083 mpd->next_page = page->index + 1; 2084 logical = (sector_t) page->index << 2085 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2086 2087 if (!page_has_buffers(page)) { 2088 mpage_add_bh_to_extent(mpd, logical, 2089 PAGE_CACHE_SIZE, 2090 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2091 if (mpd->io_done) 2092 goto ret_extent_tail; 2093 } else { 2094 /* 2095 * Page with regular buffer heads, 2096 * just add all dirty ones 2097 */ 2098 head = page_buffers(page); 2099 bh = head; 2100 do { 2101 BUG_ON(buffer_locked(bh)); 2102 /* 2103 * We need to try to allocate 2104 * unmapped blocks in the same page. 2105 * Otherwise we won't make progress 2106 * with the page in ext4_writepage 2107 */ 2108 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2109 mpage_add_bh_to_extent(mpd, logical, 2110 bh->b_size, 2111 bh->b_state); 2112 if (mpd->io_done) 2113 goto ret_extent_tail; 2114 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2115 /* 2116 * mapped dirty buffer. We need 2117 * to update the b_state 2118 * because we look at b_state 2119 * in mpage_da_map_blocks. We 2120 * don't update b_size because 2121 * if we find an unmapped 2122 * buffer_head later we need to 2123 * use the b_state flag of that 2124 * buffer_head. 2125 */ 2126 if (mpd->b_size == 0) 2127 mpd->b_state = bh->b_state & BH_FLAGS; 2128 } 2129 logical++; 2130 } while ((bh = bh->b_this_page) != head); 2131 } 2132 2133 if (nr_to_write > 0) { 2134 nr_to_write--; 2135 if (nr_to_write == 0 && 2136 wbc->sync_mode == WB_SYNC_NONE) 2137 /* 2138 * We stop writing back only if we are 2139 * not doing integrity sync. In case of 2140 * integrity sync we have to keep going 2141 * because someone may be concurrently 2142 * dirtying pages, and we might have 2143 * synced a lot of newly appeared dirty 2144 * pages, but have not synced all of the 2145 * old dirty pages. 2146 */ 2147 goto out; 2148 } 2149 } 2150 pagevec_release(&pvec); 2151 cond_resched(); 2152 } 2153 return 0; 2154 ret_extent_tail: 2155 ret = MPAGE_DA_EXTENT_TAIL; 2156 out: 2157 pagevec_release(&pvec); 2158 cond_resched(); 2159 return ret; 2160 } 2161 2162 2163 static int ext4_da_writepages(struct address_space *mapping, 2164 struct writeback_control *wbc) 2165 { 2166 pgoff_t index; 2167 int range_whole = 0; 2168 handle_t *handle = NULL; 2169 struct mpage_da_data mpd; 2170 struct inode *inode = mapping->host; 2171 int pages_written = 0; 2172 unsigned int max_pages; 2173 int range_cyclic, cycled = 1, io_done = 0; 2174 int needed_blocks, ret = 0; 2175 long desired_nr_to_write, nr_to_writebump = 0; 2176 loff_t range_start = wbc->range_start; 2177 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2178 pgoff_t done_index = 0; 2179 pgoff_t end; 2180 struct blk_plug plug; 2181 2182 trace_ext4_da_writepages(inode, wbc); 2183 2184 /* 2185 * No pages to write? This is mainly a kludge to avoid starting 2186 * a transaction for special inodes like journal inode on last iput() 2187 * because that could violate lock ordering on umount 2188 */ 2189 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2190 return 0; 2191 2192 /* 2193 * If the filesystem has aborted, it is read-only, so return 2194 * right away instead of dumping stack traces later on that 2195 * will obscure the real source of the problem. We test 2196 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2197 * the latter could be true if the filesystem is mounted 2198 * read-only, and in that case, ext4_da_writepages should 2199 * *never* be called, so if that ever happens, we would want 2200 * the stack trace. 2201 */ 2202 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2203 return -EROFS; 2204 2205 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2206 range_whole = 1; 2207 2208 range_cyclic = wbc->range_cyclic; 2209 if (wbc->range_cyclic) { 2210 index = mapping->writeback_index; 2211 if (index) 2212 cycled = 0; 2213 wbc->range_start = index << PAGE_CACHE_SHIFT; 2214 wbc->range_end = LLONG_MAX; 2215 wbc->range_cyclic = 0; 2216 end = -1; 2217 } else { 2218 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2219 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2220 } 2221 2222 /* 2223 * This works around two forms of stupidity. The first is in 2224 * the writeback code, which caps the maximum number of pages 2225 * written to be 1024 pages. This is wrong on multiple 2226 * levels; different architectues have a different page size, 2227 * which changes the maximum amount of data which gets 2228 * written. Secondly, 4 megabytes is way too small. XFS 2229 * forces this value to be 16 megabytes by multiplying 2230 * nr_to_write parameter by four, and then relies on its 2231 * allocator to allocate larger extents to make them 2232 * contiguous. Unfortunately this brings us to the second 2233 * stupidity, which is that ext4's mballoc code only allocates 2234 * at most 2048 blocks. So we force contiguous writes up to 2235 * the number of dirty blocks in the inode, or 2236 * sbi->max_writeback_mb_bump whichever is smaller. 2237 */ 2238 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2239 if (!range_cyclic && range_whole) { 2240 if (wbc->nr_to_write == LONG_MAX) 2241 desired_nr_to_write = wbc->nr_to_write; 2242 else 2243 desired_nr_to_write = wbc->nr_to_write * 8; 2244 } else 2245 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2246 max_pages); 2247 if (desired_nr_to_write > max_pages) 2248 desired_nr_to_write = max_pages; 2249 2250 if (wbc->nr_to_write < desired_nr_to_write) { 2251 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2252 wbc->nr_to_write = desired_nr_to_write; 2253 } 2254 2255 retry: 2256 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2257 tag_pages_for_writeback(mapping, index, end); 2258 2259 blk_start_plug(&plug); 2260 while (!ret && wbc->nr_to_write > 0) { 2261 2262 /* 2263 * we insert one extent at a time. So we need 2264 * credit needed for single extent allocation. 2265 * journalled mode is currently not supported 2266 * by delalloc 2267 */ 2268 BUG_ON(ext4_should_journal_data(inode)); 2269 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2270 2271 /* start a new transaction*/ 2272 handle = ext4_journal_start(inode, needed_blocks); 2273 if (IS_ERR(handle)) { 2274 ret = PTR_ERR(handle); 2275 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2276 "%ld pages, ino %lu; err %d", __func__, 2277 wbc->nr_to_write, inode->i_ino, ret); 2278 blk_finish_plug(&plug); 2279 goto out_writepages; 2280 } 2281 2282 /* 2283 * Now call write_cache_pages_da() to find the next 2284 * contiguous region of logical blocks that need 2285 * blocks to be allocated by ext4 and submit them. 2286 */ 2287 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2288 /* 2289 * If we have a contiguous extent of pages and we 2290 * haven't done the I/O yet, map the blocks and submit 2291 * them for I/O. 2292 */ 2293 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2294 mpage_da_map_and_submit(&mpd); 2295 ret = MPAGE_DA_EXTENT_TAIL; 2296 } 2297 trace_ext4_da_write_pages(inode, &mpd); 2298 wbc->nr_to_write -= mpd.pages_written; 2299 2300 ext4_journal_stop(handle); 2301 2302 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2303 /* commit the transaction which would 2304 * free blocks released in the transaction 2305 * and try again 2306 */ 2307 jbd2_journal_force_commit_nested(sbi->s_journal); 2308 ret = 0; 2309 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2310 /* 2311 * Got one extent now try with rest of the pages. 2312 * If mpd.retval is set -EIO, journal is aborted. 2313 * So we don't need to write any more. 2314 */ 2315 pages_written += mpd.pages_written; 2316 ret = mpd.retval; 2317 io_done = 1; 2318 } else if (wbc->nr_to_write) 2319 /* 2320 * There is no more writeout needed 2321 * or we requested for a noblocking writeout 2322 * and we found the device congested 2323 */ 2324 break; 2325 } 2326 blk_finish_plug(&plug); 2327 if (!io_done && !cycled) { 2328 cycled = 1; 2329 index = 0; 2330 wbc->range_start = index << PAGE_CACHE_SHIFT; 2331 wbc->range_end = mapping->writeback_index - 1; 2332 goto retry; 2333 } 2334 2335 /* Update index */ 2336 wbc->range_cyclic = range_cyclic; 2337 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2338 /* 2339 * set the writeback_index so that range_cyclic 2340 * mode will write it back later 2341 */ 2342 mapping->writeback_index = done_index; 2343 2344 out_writepages: 2345 wbc->nr_to_write -= nr_to_writebump; 2346 wbc->range_start = range_start; 2347 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2348 return ret; 2349 } 2350 2351 #define FALL_BACK_TO_NONDELALLOC 1 2352 static int ext4_nonda_switch(struct super_block *sb) 2353 { 2354 s64 free_blocks, dirty_blocks; 2355 struct ext4_sb_info *sbi = EXT4_SB(sb); 2356 2357 /* 2358 * switch to non delalloc mode if we are running low 2359 * on free block. The free block accounting via percpu 2360 * counters can get slightly wrong with percpu_counter_batch getting 2361 * accumulated on each CPU without updating global counters 2362 * Delalloc need an accurate free block accounting. So switch 2363 * to non delalloc when we are near to error range. 2364 */ 2365 free_blocks = EXT4_C2B(sbi, 2366 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2367 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2368 if (2 * free_blocks < 3 * dirty_blocks || 2369 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2370 /* 2371 * free block count is less than 150% of dirty blocks 2372 * or free blocks is less than watermark 2373 */ 2374 return 1; 2375 } 2376 /* 2377 * Even if we don't switch but are nearing capacity, 2378 * start pushing delalloc when 1/2 of free blocks are dirty. 2379 */ 2380 if (free_blocks < 2 * dirty_blocks) 2381 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2382 2383 return 0; 2384 } 2385 2386 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2387 loff_t pos, unsigned len, unsigned flags, 2388 struct page **pagep, void **fsdata) 2389 { 2390 int ret, retries = 0; 2391 struct page *page; 2392 pgoff_t index; 2393 struct inode *inode = mapping->host; 2394 handle_t *handle; 2395 2396 index = pos >> PAGE_CACHE_SHIFT; 2397 2398 if (ext4_nonda_switch(inode->i_sb)) { 2399 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2400 return ext4_write_begin(file, mapping, pos, 2401 len, flags, pagep, fsdata); 2402 } 2403 *fsdata = (void *)0; 2404 trace_ext4_da_write_begin(inode, pos, len, flags); 2405 retry: 2406 /* 2407 * With delayed allocation, we don't log the i_disksize update 2408 * if there is delayed block allocation. But we still need 2409 * to journalling the i_disksize update if writes to the end 2410 * of file which has an already mapped buffer. 2411 */ 2412 handle = ext4_journal_start(inode, 1); 2413 if (IS_ERR(handle)) { 2414 ret = PTR_ERR(handle); 2415 goto out; 2416 } 2417 /* We cannot recurse into the filesystem as the transaction is already 2418 * started */ 2419 flags |= AOP_FLAG_NOFS; 2420 2421 page = grab_cache_page_write_begin(mapping, index, flags); 2422 if (!page) { 2423 ext4_journal_stop(handle); 2424 ret = -ENOMEM; 2425 goto out; 2426 } 2427 *pagep = page; 2428 2429 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2430 if (ret < 0) { 2431 unlock_page(page); 2432 ext4_journal_stop(handle); 2433 page_cache_release(page); 2434 /* 2435 * block_write_begin may have instantiated a few blocks 2436 * outside i_size. Trim these off again. Don't need 2437 * i_size_read because we hold i_mutex. 2438 */ 2439 if (pos + len > inode->i_size) 2440 ext4_truncate_failed_write(inode); 2441 } 2442 2443 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2444 goto retry; 2445 out: 2446 return ret; 2447 } 2448 2449 /* 2450 * Check if we should update i_disksize 2451 * when write to the end of file but not require block allocation 2452 */ 2453 static int ext4_da_should_update_i_disksize(struct page *page, 2454 unsigned long offset) 2455 { 2456 struct buffer_head *bh; 2457 struct inode *inode = page->mapping->host; 2458 unsigned int idx; 2459 int i; 2460 2461 bh = page_buffers(page); 2462 idx = offset >> inode->i_blkbits; 2463 2464 for (i = 0; i < idx; i++) 2465 bh = bh->b_this_page; 2466 2467 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2468 return 0; 2469 return 1; 2470 } 2471 2472 static int ext4_da_write_end(struct file *file, 2473 struct address_space *mapping, 2474 loff_t pos, unsigned len, unsigned copied, 2475 struct page *page, void *fsdata) 2476 { 2477 struct inode *inode = mapping->host; 2478 int ret = 0, ret2; 2479 handle_t *handle = ext4_journal_current_handle(); 2480 loff_t new_i_size; 2481 unsigned long start, end; 2482 int write_mode = (int)(unsigned long)fsdata; 2483 2484 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2485 if (ext4_should_order_data(inode)) { 2486 return ext4_ordered_write_end(file, mapping, pos, 2487 len, copied, page, fsdata); 2488 } else if (ext4_should_writeback_data(inode)) { 2489 return ext4_writeback_write_end(file, mapping, pos, 2490 len, copied, page, fsdata); 2491 } else { 2492 BUG(); 2493 } 2494 } 2495 2496 trace_ext4_da_write_end(inode, pos, len, copied); 2497 start = pos & (PAGE_CACHE_SIZE - 1); 2498 end = start + copied - 1; 2499 2500 /* 2501 * generic_write_end() will run mark_inode_dirty() if i_size 2502 * changes. So let's piggyback the i_disksize mark_inode_dirty 2503 * into that. 2504 */ 2505 2506 new_i_size = pos + copied; 2507 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2508 if (ext4_da_should_update_i_disksize(page, end)) { 2509 down_write(&EXT4_I(inode)->i_data_sem); 2510 if (new_i_size > EXT4_I(inode)->i_disksize) { 2511 /* 2512 * Updating i_disksize when extending file 2513 * without needing block allocation 2514 */ 2515 if (ext4_should_order_data(inode)) 2516 ret = ext4_jbd2_file_inode(handle, 2517 inode); 2518 2519 EXT4_I(inode)->i_disksize = new_i_size; 2520 } 2521 up_write(&EXT4_I(inode)->i_data_sem); 2522 /* We need to mark inode dirty even if 2523 * new_i_size is less that inode->i_size 2524 * bu greater than i_disksize.(hint delalloc) 2525 */ 2526 ext4_mark_inode_dirty(handle, inode); 2527 } 2528 } 2529 ret2 = generic_write_end(file, mapping, pos, len, copied, 2530 page, fsdata); 2531 copied = ret2; 2532 if (ret2 < 0) 2533 ret = ret2; 2534 ret2 = ext4_journal_stop(handle); 2535 if (!ret) 2536 ret = ret2; 2537 2538 return ret ? ret : copied; 2539 } 2540 2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2542 { 2543 /* 2544 * Drop reserved blocks 2545 */ 2546 BUG_ON(!PageLocked(page)); 2547 if (!page_has_buffers(page)) 2548 goto out; 2549 2550 ext4_da_page_release_reservation(page, offset); 2551 2552 out: 2553 ext4_invalidatepage(page, offset); 2554 2555 return; 2556 } 2557 2558 /* 2559 * Force all delayed allocation blocks to be allocated for a given inode. 2560 */ 2561 int ext4_alloc_da_blocks(struct inode *inode) 2562 { 2563 trace_ext4_alloc_da_blocks(inode); 2564 2565 if (!EXT4_I(inode)->i_reserved_data_blocks && 2566 !EXT4_I(inode)->i_reserved_meta_blocks) 2567 return 0; 2568 2569 /* 2570 * We do something simple for now. The filemap_flush() will 2571 * also start triggering a write of the data blocks, which is 2572 * not strictly speaking necessary (and for users of 2573 * laptop_mode, not even desirable). However, to do otherwise 2574 * would require replicating code paths in: 2575 * 2576 * ext4_da_writepages() -> 2577 * write_cache_pages() ---> (via passed in callback function) 2578 * __mpage_da_writepage() --> 2579 * mpage_add_bh_to_extent() 2580 * mpage_da_map_blocks() 2581 * 2582 * The problem is that write_cache_pages(), located in 2583 * mm/page-writeback.c, marks pages clean in preparation for 2584 * doing I/O, which is not desirable if we're not planning on 2585 * doing I/O at all. 2586 * 2587 * We could call write_cache_pages(), and then redirty all of 2588 * the pages by calling redirty_page_for_writepage() but that 2589 * would be ugly in the extreme. So instead we would need to 2590 * replicate parts of the code in the above functions, 2591 * simplifying them because we wouldn't actually intend to 2592 * write out the pages, but rather only collect contiguous 2593 * logical block extents, call the multi-block allocator, and 2594 * then update the buffer heads with the block allocations. 2595 * 2596 * For now, though, we'll cheat by calling filemap_flush(), 2597 * which will map the blocks, and start the I/O, but not 2598 * actually wait for the I/O to complete. 2599 */ 2600 return filemap_flush(inode->i_mapping); 2601 } 2602 2603 /* 2604 * bmap() is special. It gets used by applications such as lilo and by 2605 * the swapper to find the on-disk block of a specific piece of data. 2606 * 2607 * Naturally, this is dangerous if the block concerned is still in the 2608 * journal. If somebody makes a swapfile on an ext4 data-journaling 2609 * filesystem and enables swap, then they may get a nasty shock when the 2610 * data getting swapped to that swapfile suddenly gets overwritten by 2611 * the original zero's written out previously to the journal and 2612 * awaiting writeback in the kernel's buffer cache. 2613 * 2614 * So, if we see any bmap calls here on a modified, data-journaled file, 2615 * take extra steps to flush any blocks which might be in the cache. 2616 */ 2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2618 { 2619 struct inode *inode = mapping->host; 2620 journal_t *journal; 2621 int err; 2622 2623 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2624 test_opt(inode->i_sb, DELALLOC)) { 2625 /* 2626 * With delalloc we want to sync the file 2627 * so that we can make sure we allocate 2628 * blocks for file 2629 */ 2630 filemap_write_and_wait(mapping); 2631 } 2632 2633 if (EXT4_JOURNAL(inode) && 2634 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2635 /* 2636 * This is a REALLY heavyweight approach, but the use of 2637 * bmap on dirty files is expected to be extremely rare: 2638 * only if we run lilo or swapon on a freshly made file 2639 * do we expect this to happen. 2640 * 2641 * (bmap requires CAP_SYS_RAWIO so this does not 2642 * represent an unprivileged user DOS attack --- we'd be 2643 * in trouble if mortal users could trigger this path at 2644 * will.) 2645 * 2646 * NB. EXT4_STATE_JDATA is not set on files other than 2647 * regular files. If somebody wants to bmap a directory 2648 * or symlink and gets confused because the buffer 2649 * hasn't yet been flushed to disk, they deserve 2650 * everything they get. 2651 */ 2652 2653 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2654 journal = EXT4_JOURNAL(inode); 2655 jbd2_journal_lock_updates(journal); 2656 err = jbd2_journal_flush(journal); 2657 jbd2_journal_unlock_updates(journal); 2658 2659 if (err) 2660 return 0; 2661 } 2662 2663 return generic_block_bmap(mapping, block, ext4_get_block); 2664 } 2665 2666 static int ext4_readpage(struct file *file, struct page *page) 2667 { 2668 trace_ext4_readpage(page); 2669 return mpage_readpage(page, ext4_get_block); 2670 } 2671 2672 static int 2673 ext4_readpages(struct file *file, struct address_space *mapping, 2674 struct list_head *pages, unsigned nr_pages) 2675 { 2676 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2677 } 2678 2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2680 { 2681 struct buffer_head *head, *bh; 2682 unsigned int curr_off = 0; 2683 2684 if (!page_has_buffers(page)) 2685 return; 2686 head = bh = page_buffers(page); 2687 do { 2688 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2689 && bh->b_private) { 2690 ext4_free_io_end(bh->b_private); 2691 bh->b_private = NULL; 2692 bh->b_end_io = NULL; 2693 } 2694 curr_off = curr_off + bh->b_size; 2695 bh = bh->b_this_page; 2696 } while (bh != head); 2697 } 2698 2699 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2700 { 2701 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2702 2703 trace_ext4_invalidatepage(page, offset); 2704 2705 /* 2706 * free any io_end structure allocated for buffers to be discarded 2707 */ 2708 if (ext4_should_dioread_nolock(page->mapping->host)) 2709 ext4_invalidatepage_free_endio(page, offset); 2710 /* 2711 * If it's a full truncate we just forget about the pending dirtying 2712 */ 2713 if (offset == 0) 2714 ClearPageChecked(page); 2715 2716 if (journal) 2717 jbd2_journal_invalidatepage(journal, page, offset); 2718 else 2719 block_invalidatepage(page, offset); 2720 } 2721 2722 static int ext4_releasepage(struct page *page, gfp_t wait) 2723 { 2724 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2725 2726 trace_ext4_releasepage(page); 2727 2728 WARN_ON(PageChecked(page)); 2729 if (!page_has_buffers(page)) 2730 return 0; 2731 if (journal) 2732 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2733 else 2734 return try_to_free_buffers(page); 2735 } 2736 2737 /* 2738 * ext4_get_block used when preparing for a DIO write or buffer write. 2739 * We allocate an uinitialized extent if blocks haven't been allocated. 2740 * The extent will be converted to initialized after the IO is complete. 2741 */ 2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2743 struct buffer_head *bh_result, int create) 2744 { 2745 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2746 inode->i_ino, create); 2747 return _ext4_get_block(inode, iblock, bh_result, 2748 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2749 } 2750 2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2752 ssize_t size, void *private, int ret, 2753 bool is_async) 2754 { 2755 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2756 ext4_io_end_t *io_end = iocb->private; 2757 struct workqueue_struct *wq; 2758 unsigned long flags; 2759 struct ext4_inode_info *ei; 2760 2761 /* if not async direct IO or dio with 0 bytes write, just return */ 2762 if (!io_end || !size) 2763 goto out; 2764 2765 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2767 iocb->private, io_end->inode->i_ino, iocb, offset, 2768 size); 2769 2770 iocb->private = NULL; 2771 2772 /* if not aio dio with unwritten extents, just free io and return */ 2773 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2774 ext4_free_io_end(io_end); 2775 out: 2776 if (is_async) 2777 aio_complete(iocb, ret, 0); 2778 inode_dio_done(inode); 2779 return; 2780 } 2781 2782 io_end->offset = offset; 2783 io_end->size = size; 2784 if (is_async) { 2785 io_end->iocb = iocb; 2786 io_end->result = ret; 2787 } 2788 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2789 2790 /* Add the io_end to per-inode completed aio dio list*/ 2791 ei = EXT4_I(io_end->inode); 2792 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2793 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2794 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2795 2796 /* queue the work to convert unwritten extents to written */ 2797 queue_work(wq, &io_end->work); 2798 2799 /* XXX: probably should move into the real I/O completion handler */ 2800 inode_dio_done(inode); 2801 } 2802 2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2804 { 2805 ext4_io_end_t *io_end = bh->b_private; 2806 struct workqueue_struct *wq; 2807 struct inode *inode; 2808 unsigned long flags; 2809 2810 if (!test_clear_buffer_uninit(bh) || !io_end) 2811 goto out; 2812 2813 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2814 printk("sb umounted, discard end_io request for inode %lu\n", 2815 io_end->inode->i_ino); 2816 ext4_free_io_end(io_end); 2817 goto out; 2818 } 2819 2820 /* 2821 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2822 * but being more careful is always safe for the future change. 2823 */ 2824 inode = io_end->inode; 2825 ext4_set_io_unwritten_flag(inode, io_end); 2826 2827 /* Add the io_end to per-inode completed io list*/ 2828 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2829 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2830 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2831 2832 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2833 /* queue the work to convert unwritten extents to written */ 2834 queue_work(wq, &io_end->work); 2835 out: 2836 bh->b_private = NULL; 2837 bh->b_end_io = NULL; 2838 clear_buffer_uninit(bh); 2839 end_buffer_async_write(bh, uptodate); 2840 } 2841 2842 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2843 { 2844 ext4_io_end_t *io_end; 2845 struct page *page = bh->b_page; 2846 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2847 size_t size = bh->b_size; 2848 2849 retry: 2850 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2851 if (!io_end) { 2852 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2853 schedule(); 2854 goto retry; 2855 } 2856 io_end->offset = offset; 2857 io_end->size = size; 2858 /* 2859 * We need to hold a reference to the page to make sure it 2860 * doesn't get evicted before ext4_end_io_work() has a chance 2861 * to convert the extent from written to unwritten. 2862 */ 2863 io_end->page = page; 2864 get_page(io_end->page); 2865 2866 bh->b_private = io_end; 2867 bh->b_end_io = ext4_end_io_buffer_write; 2868 return 0; 2869 } 2870 2871 /* 2872 * For ext4 extent files, ext4 will do direct-io write to holes, 2873 * preallocated extents, and those write extend the file, no need to 2874 * fall back to buffered IO. 2875 * 2876 * For holes, we fallocate those blocks, mark them as uninitialized 2877 * If those blocks were preallocated, we mark sure they are splited, but 2878 * still keep the range to write as uninitialized. 2879 * 2880 * The unwrritten extents will be converted to written when DIO is completed. 2881 * For async direct IO, since the IO may still pending when return, we 2882 * set up an end_io call back function, which will do the conversion 2883 * when async direct IO completed. 2884 * 2885 * If the O_DIRECT write will extend the file then add this inode to the 2886 * orphan list. So recovery will truncate it back to the original size 2887 * if the machine crashes during the write. 2888 * 2889 */ 2890 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2891 const struct iovec *iov, loff_t offset, 2892 unsigned long nr_segs) 2893 { 2894 struct file *file = iocb->ki_filp; 2895 struct inode *inode = file->f_mapping->host; 2896 ssize_t ret; 2897 size_t count = iov_length(iov, nr_segs); 2898 2899 loff_t final_size = offset + count; 2900 if (rw == WRITE && final_size <= inode->i_size) { 2901 /* 2902 * We could direct write to holes and fallocate. 2903 * 2904 * Allocated blocks to fill the hole are marked as uninitialized 2905 * to prevent parallel buffered read to expose the stale data 2906 * before DIO complete the data IO. 2907 * 2908 * As to previously fallocated extents, ext4 get_block 2909 * will just simply mark the buffer mapped but still 2910 * keep the extents uninitialized. 2911 * 2912 * for non AIO case, we will convert those unwritten extents 2913 * to written after return back from blockdev_direct_IO. 2914 * 2915 * for async DIO, the conversion needs to be defered when 2916 * the IO is completed. The ext4 end_io callback function 2917 * will be called to take care of the conversion work. 2918 * Here for async case, we allocate an io_end structure to 2919 * hook to the iocb. 2920 */ 2921 iocb->private = NULL; 2922 EXT4_I(inode)->cur_aio_dio = NULL; 2923 if (!is_sync_kiocb(iocb)) { 2924 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2925 if (!iocb->private) 2926 return -ENOMEM; 2927 /* 2928 * we save the io structure for current async 2929 * direct IO, so that later ext4_map_blocks() 2930 * could flag the io structure whether there 2931 * is a unwritten extents needs to be converted 2932 * when IO is completed. 2933 */ 2934 EXT4_I(inode)->cur_aio_dio = iocb->private; 2935 } 2936 2937 ret = __blockdev_direct_IO(rw, iocb, inode, 2938 inode->i_sb->s_bdev, iov, 2939 offset, nr_segs, 2940 ext4_get_block_write, 2941 ext4_end_io_dio, 2942 NULL, 2943 DIO_LOCKING | DIO_SKIP_HOLES); 2944 if (iocb->private) 2945 EXT4_I(inode)->cur_aio_dio = NULL; 2946 /* 2947 * The io_end structure takes a reference to the inode, 2948 * that structure needs to be destroyed and the 2949 * reference to the inode need to be dropped, when IO is 2950 * complete, even with 0 byte write, or failed. 2951 * 2952 * In the successful AIO DIO case, the io_end structure will be 2953 * desctroyed and the reference to the inode will be dropped 2954 * after the end_io call back function is called. 2955 * 2956 * In the case there is 0 byte write, or error case, since 2957 * VFS direct IO won't invoke the end_io call back function, 2958 * we need to free the end_io structure here. 2959 */ 2960 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2961 ext4_free_io_end(iocb->private); 2962 iocb->private = NULL; 2963 } else if (ret > 0 && ext4_test_inode_state(inode, 2964 EXT4_STATE_DIO_UNWRITTEN)) { 2965 int err; 2966 /* 2967 * for non AIO case, since the IO is already 2968 * completed, we could do the conversion right here 2969 */ 2970 err = ext4_convert_unwritten_extents(inode, 2971 offset, ret); 2972 if (err < 0) 2973 ret = err; 2974 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2975 } 2976 return ret; 2977 } 2978 2979 /* for write the the end of file case, we fall back to old way */ 2980 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2981 } 2982 2983 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2984 const struct iovec *iov, loff_t offset, 2985 unsigned long nr_segs) 2986 { 2987 struct file *file = iocb->ki_filp; 2988 struct inode *inode = file->f_mapping->host; 2989 ssize_t ret; 2990 2991 /* 2992 * If we are doing data journalling we don't support O_DIRECT 2993 */ 2994 if (ext4_should_journal_data(inode)) 2995 return 0; 2996 2997 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 2998 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 2999 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3000 else 3001 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3002 trace_ext4_direct_IO_exit(inode, offset, 3003 iov_length(iov, nr_segs), rw, ret); 3004 return ret; 3005 } 3006 3007 /* 3008 * Pages can be marked dirty completely asynchronously from ext4's journalling 3009 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3010 * much here because ->set_page_dirty is called under VFS locks. The page is 3011 * not necessarily locked. 3012 * 3013 * We cannot just dirty the page and leave attached buffers clean, because the 3014 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3015 * or jbddirty because all the journalling code will explode. 3016 * 3017 * So what we do is to mark the page "pending dirty" and next time writepage 3018 * is called, propagate that into the buffers appropriately. 3019 */ 3020 static int ext4_journalled_set_page_dirty(struct page *page) 3021 { 3022 SetPageChecked(page); 3023 return __set_page_dirty_nobuffers(page); 3024 } 3025 3026 static const struct address_space_operations ext4_ordered_aops = { 3027 .readpage = ext4_readpage, 3028 .readpages = ext4_readpages, 3029 .writepage = ext4_writepage, 3030 .write_begin = ext4_write_begin, 3031 .write_end = ext4_ordered_write_end, 3032 .bmap = ext4_bmap, 3033 .invalidatepage = ext4_invalidatepage, 3034 .releasepage = ext4_releasepage, 3035 .direct_IO = ext4_direct_IO, 3036 .migratepage = buffer_migrate_page, 3037 .is_partially_uptodate = block_is_partially_uptodate, 3038 .error_remove_page = generic_error_remove_page, 3039 }; 3040 3041 static const struct address_space_operations ext4_writeback_aops = { 3042 .readpage = ext4_readpage, 3043 .readpages = ext4_readpages, 3044 .writepage = ext4_writepage, 3045 .write_begin = ext4_write_begin, 3046 .write_end = ext4_writeback_write_end, 3047 .bmap = ext4_bmap, 3048 .invalidatepage = ext4_invalidatepage, 3049 .releasepage = ext4_releasepage, 3050 .direct_IO = ext4_direct_IO, 3051 .migratepage = buffer_migrate_page, 3052 .is_partially_uptodate = block_is_partially_uptodate, 3053 .error_remove_page = generic_error_remove_page, 3054 }; 3055 3056 static const struct address_space_operations ext4_journalled_aops = { 3057 .readpage = ext4_readpage, 3058 .readpages = ext4_readpages, 3059 .writepage = ext4_writepage, 3060 .write_begin = ext4_write_begin, 3061 .write_end = ext4_journalled_write_end, 3062 .set_page_dirty = ext4_journalled_set_page_dirty, 3063 .bmap = ext4_bmap, 3064 .invalidatepage = ext4_invalidatepage, 3065 .releasepage = ext4_releasepage, 3066 .direct_IO = ext4_direct_IO, 3067 .is_partially_uptodate = block_is_partially_uptodate, 3068 .error_remove_page = generic_error_remove_page, 3069 }; 3070 3071 static const struct address_space_operations ext4_da_aops = { 3072 .readpage = ext4_readpage, 3073 .readpages = ext4_readpages, 3074 .writepage = ext4_writepage, 3075 .writepages = ext4_da_writepages, 3076 .write_begin = ext4_da_write_begin, 3077 .write_end = ext4_da_write_end, 3078 .bmap = ext4_bmap, 3079 .invalidatepage = ext4_da_invalidatepage, 3080 .releasepage = ext4_releasepage, 3081 .direct_IO = ext4_direct_IO, 3082 .migratepage = buffer_migrate_page, 3083 .is_partially_uptodate = block_is_partially_uptodate, 3084 .error_remove_page = generic_error_remove_page, 3085 }; 3086 3087 void ext4_set_aops(struct inode *inode) 3088 { 3089 if (ext4_should_order_data(inode) && 3090 test_opt(inode->i_sb, DELALLOC)) 3091 inode->i_mapping->a_ops = &ext4_da_aops; 3092 else if (ext4_should_order_data(inode)) 3093 inode->i_mapping->a_ops = &ext4_ordered_aops; 3094 else if (ext4_should_writeback_data(inode) && 3095 test_opt(inode->i_sb, DELALLOC)) 3096 inode->i_mapping->a_ops = &ext4_da_aops; 3097 else if (ext4_should_writeback_data(inode)) 3098 inode->i_mapping->a_ops = &ext4_writeback_aops; 3099 else 3100 inode->i_mapping->a_ops = &ext4_journalled_aops; 3101 } 3102 3103 3104 /* 3105 * ext4_discard_partial_page_buffers() 3106 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3107 * This function finds and locks the page containing the offset 3108 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3109 * Calling functions that already have the page locked should call 3110 * ext4_discard_partial_page_buffers_no_lock directly. 3111 */ 3112 int ext4_discard_partial_page_buffers(handle_t *handle, 3113 struct address_space *mapping, loff_t from, 3114 loff_t length, int flags) 3115 { 3116 struct inode *inode = mapping->host; 3117 struct page *page; 3118 int err = 0; 3119 3120 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3121 mapping_gfp_mask(mapping) & ~__GFP_FS); 3122 if (!page) 3123 return -ENOMEM; 3124 3125 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3126 from, length, flags); 3127 3128 unlock_page(page); 3129 page_cache_release(page); 3130 return err; 3131 } 3132 3133 /* 3134 * ext4_discard_partial_page_buffers_no_lock() 3135 * Zeros a page range of length 'length' starting from offset 'from'. 3136 * Buffer heads that correspond to the block aligned regions of the 3137 * zeroed range will be unmapped. Unblock aligned regions 3138 * will have the corresponding buffer head mapped if needed so that 3139 * that region of the page can be updated with the partial zero out. 3140 * 3141 * This function assumes that the page has already been locked. The 3142 * The range to be discarded must be contained with in the given page. 3143 * If the specified range exceeds the end of the page it will be shortened 3144 * to the end of the page that corresponds to 'from'. This function is 3145 * appropriate for updating a page and it buffer heads to be unmapped and 3146 * zeroed for blocks that have been either released, or are going to be 3147 * released. 3148 * 3149 * handle: The journal handle 3150 * inode: The files inode 3151 * page: A locked page that contains the offset "from" 3152 * from: The starting byte offset (from the begining of the file) 3153 * to begin discarding 3154 * len: The length of bytes to discard 3155 * flags: Optional flags that may be used: 3156 * 3157 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3158 * Only zero the regions of the page whose buffer heads 3159 * have already been unmapped. This flag is appropriate 3160 * for updateing the contents of a page whose blocks may 3161 * have already been released, and we only want to zero 3162 * out the regions that correspond to those released blocks. 3163 * 3164 * Returns zero on sucess or negative on failure. 3165 */ 3166 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3167 struct inode *inode, struct page *page, loff_t from, 3168 loff_t length, int flags) 3169 { 3170 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3171 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3172 unsigned int blocksize, max, pos; 3173 ext4_lblk_t iblock; 3174 struct buffer_head *bh; 3175 int err = 0; 3176 3177 blocksize = inode->i_sb->s_blocksize; 3178 max = PAGE_CACHE_SIZE - offset; 3179 3180 if (index != page->index) 3181 return -EINVAL; 3182 3183 /* 3184 * correct length if it does not fall between 3185 * 'from' and the end of the page 3186 */ 3187 if (length > max || length < 0) 3188 length = max; 3189 3190 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3191 3192 if (!page_has_buffers(page)) 3193 create_empty_buffers(page, blocksize, 0); 3194 3195 /* Find the buffer that contains "offset" */ 3196 bh = page_buffers(page); 3197 pos = blocksize; 3198 while (offset >= pos) { 3199 bh = bh->b_this_page; 3200 iblock++; 3201 pos += blocksize; 3202 } 3203 3204 pos = offset; 3205 while (pos < offset + length) { 3206 unsigned int end_of_block, range_to_discard; 3207 3208 err = 0; 3209 3210 /* The length of space left to zero and unmap */ 3211 range_to_discard = offset + length - pos; 3212 3213 /* The length of space until the end of the block */ 3214 end_of_block = blocksize - (pos & (blocksize-1)); 3215 3216 /* 3217 * Do not unmap or zero past end of block 3218 * for this buffer head 3219 */ 3220 if (range_to_discard > end_of_block) 3221 range_to_discard = end_of_block; 3222 3223 3224 /* 3225 * Skip this buffer head if we are only zeroing unampped 3226 * regions of the page 3227 */ 3228 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3229 buffer_mapped(bh)) 3230 goto next; 3231 3232 /* If the range is block aligned, unmap */ 3233 if (range_to_discard == blocksize) { 3234 clear_buffer_dirty(bh); 3235 bh->b_bdev = NULL; 3236 clear_buffer_mapped(bh); 3237 clear_buffer_req(bh); 3238 clear_buffer_new(bh); 3239 clear_buffer_delay(bh); 3240 clear_buffer_unwritten(bh); 3241 clear_buffer_uptodate(bh); 3242 zero_user(page, pos, range_to_discard); 3243 BUFFER_TRACE(bh, "Buffer discarded"); 3244 goto next; 3245 } 3246 3247 /* 3248 * If this block is not completely contained in the range 3249 * to be discarded, then it is not going to be released. Because 3250 * we need to keep this block, we need to make sure this part 3251 * of the page is uptodate before we modify it by writeing 3252 * partial zeros on it. 3253 */ 3254 if (!buffer_mapped(bh)) { 3255 /* 3256 * Buffer head must be mapped before we can read 3257 * from the block 3258 */ 3259 BUFFER_TRACE(bh, "unmapped"); 3260 ext4_get_block(inode, iblock, bh, 0); 3261 /* unmapped? It's a hole - nothing to do */ 3262 if (!buffer_mapped(bh)) { 3263 BUFFER_TRACE(bh, "still unmapped"); 3264 goto next; 3265 } 3266 } 3267 3268 /* Ok, it's mapped. Make sure it's up-to-date */ 3269 if (PageUptodate(page)) 3270 set_buffer_uptodate(bh); 3271 3272 if (!buffer_uptodate(bh)) { 3273 err = -EIO; 3274 ll_rw_block(READ, 1, &bh); 3275 wait_on_buffer(bh); 3276 /* Uhhuh. Read error. Complain and punt.*/ 3277 if (!buffer_uptodate(bh)) 3278 goto next; 3279 } 3280 3281 if (ext4_should_journal_data(inode)) { 3282 BUFFER_TRACE(bh, "get write access"); 3283 err = ext4_journal_get_write_access(handle, bh); 3284 if (err) 3285 goto next; 3286 } 3287 3288 zero_user(page, pos, range_to_discard); 3289 3290 err = 0; 3291 if (ext4_should_journal_data(inode)) { 3292 err = ext4_handle_dirty_metadata(handle, inode, bh); 3293 } else 3294 mark_buffer_dirty(bh); 3295 3296 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3297 next: 3298 bh = bh->b_this_page; 3299 iblock++; 3300 pos += range_to_discard; 3301 } 3302 3303 return err; 3304 } 3305 3306 int ext4_can_truncate(struct inode *inode) 3307 { 3308 if (S_ISREG(inode->i_mode)) 3309 return 1; 3310 if (S_ISDIR(inode->i_mode)) 3311 return 1; 3312 if (S_ISLNK(inode->i_mode)) 3313 return !ext4_inode_is_fast_symlink(inode); 3314 return 0; 3315 } 3316 3317 /* 3318 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3319 * associated with the given offset and length 3320 * 3321 * @inode: File inode 3322 * @offset: The offset where the hole will begin 3323 * @len: The length of the hole 3324 * 3325 * Returns: 0 on sucess or negative on failure 3326 */ 3327 3328 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3329 { 3330 struct inode *inode = file->f_path.dentry->d_inode; 3331 if (!S_ISREG(inode->i_mode)) 3332 return -ENOTSUPP; 3333 3334 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3335 /* TODO: Add support for non extent hole punching */ 3336 return -ENOTSUPP; 3337 } 3338 3339 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3340 /* TODO: Add support for bigalloc file systems */ 3341 return -ENOTSUPP; 3342 } 3343 3344 return ext4_ext_punch_hole(file, offset, length); 3345 } 3346 3347 /* 3348 * ext4_truncate() 3349 * 3350 * We block out ext4_get_block() block instantiations across the entire 3351 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3352 * simultaneously on behalf of the same inode. 3353 * 3354 * As we work through the truncate and commit bits of it to the journal there 3355 * is one core, guiding principle: the file's tree must always be consistent on 3356 * disk. We must be able to restart the truncate after a crash. 3357 * 3358 * The file's tree may be transiently inconsistent in memory (although it 3359 * probably isn't), but whenever we close off and commit a journal transaction, 3360 * the contents of (the filesystem + the journal) must be consistent and 3361 * restartable. It's pretty simple, really: bottom up, right to left (although 3362 * left-to-right works OK too). 3363 * 3364 * Note that at recovery time, journal replay occurs *before* the restart of 3365 * truncate against the orphan inode list. 3366 * 3367 * The committed inode has the new, desired i_size (which is the same as 3368 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3369 * that this inode's truncate did not complete and it will again call 3370 * ext4_truncate() to have another go. So there will be instantiated blocks 3371 * to the right of the truncation point in a crashed ext4 filesystem. But 3372 * that's fine - as long as they are linked from the inode, the post-crash 3373 * ext4_truncate() run will find them and release them. 3374 */ 3375 void ext4_truncate(struct inode *inode) 3376 { 3377 trace_ext4_truncate_enter(inode); 3378 3379 if (!ext4_can_truncate(inode)) 3380 return; 3381 3382 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3383 3384 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3385 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3386 3387 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3388 ext4_ext_truncate(inode); 3389 else 3390 ext4_ind_truncate(inode); 3391 3392 trace_ext4_truncate_exit(inode); 3393 } 3394 3395 /* 3396 * ext4_get_inode_loc returns with an extra refcount against the inode's 3397 * underlying buffer_head on success. If 'in_mem' is true, we have all 3398 * data in memory that is needed to recreate the on-disk version of this 3399 * inode. 3400 */ 3401 static int __ext4_get_inode_loc(struct inode *inode, 3402 struct ext4_iloc *iloc, int in_mem) 3403 { 3404 struct ext4_group_desc *gdp; 3405 struct buffer_head *bh; 3406 struct super_block *sb = inode->i_sb; 3407 ext4_fsblk_t block; 3408 int inodes_per_block, inode_offset; 3409 3410 iloc->bh = NULL; 3411 if (!ext4_valid_inum(sb, inode->i_ino)) 3412 return -EIO; 3413 3414 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3415 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3416 if (!gdp) 3417 return -EIO; 3418 3419 /* 3420 * Figure out the offset within the block group inode table 3421 */ 3422 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3423 inode_offset = ((inode->i_ino - 1) % 3424 EXT4_INODES_PER_GROUP(sb)); 3425 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3426 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3427 3428 bh = sb_getblk(sb, block); 3429 if (!bh) { 3430 EXT4_ERROR_INODE_BLOCK(inode, block, 3431 "unable to read itable block"); 3432 return -EIO; 3433 } 3434 if (!buffer_uptodate(bh)) { 3435 lock_buffer(bh); 3436 3437 /* 3438 * If the buffer has the write error flag, we have failed 3439 * to write out another inode in the same block. In this 3440 * case, we don't have to read the block because we may 3441 * read the old inode data successfully. 3442 */ 3443 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3444 set_buffer_uptodate(bh); 3445 3446 if (buffer_uptodate(bh)) { 3447 /* someone brought it uptodate while we waited */ 3448 unlock_buffer(bh); 3449 goto has_buffer; 3450 } 3451 3452 /* 3453 * If we have all information of the inode in memory and this 3454 * is the only valid inode in the block, we need not read the 3455 * block. 3456 */ 3457 if (in_mem) { 3458 struct buffer_head *bitmap_bh; 3459 int i, start; 3460 3461 start = inode_offset & ~(inodes_per_block - 1); 3462 3463 /* Is the inode bitmap in cache? */ 3464 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3465 if (!bitmap_bh) 3466 goto make_io; 3467 3468 /* 3469 * If the inode bitmap isn't in cache then the 3470 * optimisation may end up performing two reads instead 3471 * of one, so skip it. 3472 */ 3473 if (!buffer_uptodate(bitmap_bh)) { 3474 brelse(bitmap_bh); 3475 goto make_io; 3476 } 3477 for (i = start; i < start + inodes_per_block; i++) { 3478 if (i == inode_offset) 3479 continue; 3480 if (ext4_test_bit(i, bitmap_bh->b_data)) 3481 break; 3482 } 3483 brelse(bitmap_bh); 3484 if (i == start + inodes_per_block) { 3485 /* all other inodes are free, so skip I/O */ 3486 memset(bh->b_data, 0, bh->b_size); 3487 set_buffer_uptodate(bh); 3488 unlock_buffer(bh); 3489 goto has_buffer; 3490 } 3491 } 3492 3493 make_io: 3494 /* 3495 * If we need to do any I/O, try to pre-readahead extra 3496 * blocks from the inode table. 3497 */ 3498 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3499 ext4_fsblk_t b, end, table; 3500 unsigned num; 3501 3502 table = ext4_inode_table(sb, gdp); 3503 /* s_inode_readahead_blks is always a power of 2 */ 3504 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3505 if (table > b) 3506 b = table; 3507 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3508 num = EXT4_INODES_PER_GROUP(sb); 3509 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3510 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3511 num -= ext4_itable_unused_count(sb, gdp); 3512 table += num / inodes_per_block; 3513 if (end > table) 3514 end = table; 3515 while (b <= end) 3516 sb_breadahead(sb, b++); 3517 } 3518 3519 /* 3520 * There are other valid inodes in the buffer, this inode 3521 * has in-inode xattrs, or we don't have this inode in memory. 3522 * Read the block from disk. 3523 */ 3524 trace_ext4_load_inode(inode); 3525 get_bh(bh); 3526 bh->b_end_io = end_buffer_read_sync; 3527 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3528 wait_on_buffer(bh); 3529 if (!buffer_uptodate(bh)) { 3530 EXT4_ERROR_INODE_BLOCK(inode, block, 3531 "unable to read itable block"); 3532 brelse(bh); 3533 return -EIO; 3534 } 3535 } 3536 has_buffer: 3537 iloc->bh = bh; 3538 return 0; 3539 } 3540 3541 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3542 { 3543 /* We have all inode data except xattrs in memory here. */ 3544 return __ext4_get_inode_loc(inode, iloc, 3545 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3546 } 3547 3548 void ext4_set_inode_flags(struct inode *inode) 3549 { 3550 unsigned int flags = EXT4_I(inode)->i_flags; 3551 3552 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3553 if (flags & EXT4_SYNC_FL) 3554 inode->i_flags |= S_SYNC; 3555 if (flags & EXT4_APPEND_FL) 3556 inode->i_flags |= S_APPEND; 3557 if (flags & EXT4_IMMUTABLE_FL) 3558 inode->i_flags |= S_IMMUTABLE; 3559 if (flags & EXT4_NOATIME_FL) 3560 inode->i_flags |= S_NOATIME; 3561 if (flags & EXT4_DIRSYNC_FL) 3562 inode->i_flags |= S_DIRSYNC; 3563 } 3564 3565 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3566 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3567 { 3568 unsigned int vfs_fl; 3569 unsigned long old_fl, new_fl; 3570 3571 do { 3572 vfs_fl = ei->vfs_inode.i_flags; 3573 old_fl = ei->i_flags; 3574 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3575 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3576 EXT4_DIRSYNC_FL); 3577 if (vfs_fl & S_SYNC) 3578 new_fl |= EXT4_SYNC_FL; 3579 if (vfs_fl & S_APPEND) 3580 new_fl |= EXT4_APPEND_FL; 3581 if (vfs_fl & S_IMMUTABLE) 3582 new_fl |= EXT4_IMMUTABLE_FL; 3583 if (vfs_fl & S_NOATIME) 3584 new_fl |= EXT4_NOATIME_FL; 3585 if (vfs_fl & S_DIRSYNC) 3586 new_fl |= EXT4_DIRSYNC_FL; 3587 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3588 } 3589 3590 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3591 struct ext4_inode_info *ei) 3592 { 3593 blkcnt_t i_blocks ; 3594 struct inode *inode = &(ei->vfs_inode); 3595 struct super_block *sb = inode->i_sb; 3596 3597 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3598 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3599 /* we are using combined 48 bit field */ 3600 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3601 le32_to_cpu(raw_inode->i_blocks_lo); 3602 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3603 /* i_blocks represent file system block size */ 3604 return i_blocks << (inode->i_blkbits - 9); 3605 } else { 3606 return i_blocks; 3607 } 3608 } else { 3609 return le32_to_cpu(raw_inode->i_blocks_lo); 3610 } 3611 } 3612 3613 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3614 { 3615 struct ext4_iloc iloc; 3616 struct ext4_inode *raw_inode; 3617 struct ext4_inode_info *ei; 3618 struct inode *inode; 3619 journal_t *journal = EXT4_SB(sb)->s_journal; 3620 long ret; 3621 int block; 3622 3623 inode = iget_locked(sb, ino); 3624 if (!inode) 3625 return ERR_PTR(-ENOMEM); 3626 if (!(inode->i_state & I_NEW)) 3627 return inode; 3628 3629 ei = EXT4_I(inode); 3630 iloc.bh = NULL; 3631 3632 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3633 if (ret < 0) 3634 goto bad_inode; 3635 raw_inode = ext4_raw_inode(&iloc); 3636 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3637 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3638 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3639 if (!(test_opt(inode->i_sb, NO_UID32))) { 3640 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3641 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3642 } 3643 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3644 3645 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3646 ei->i_dir_start_lookup = 0; 3647 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3648 /* We now have enough fields to check if the inode was active or not. 3649 * This is needed because nfsd might try to access dead inodes 3650 * the test is that same one that e2fsck uses 3651 * NeilBrown 1999oct15 3652 */ 3653 if (inode->i_nlink == 0) { 3654 if (inode->i_mode == 0 || 3655 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3656 /* this inode is deleted */ 3657 ret = -ESTALE; 3658 goto bad_inode; 3659 } 3660 /* The only unlinked inodes we let through here have 3661 * valid i_mode and are being read by the orphan 3662 * recovery code: that's fine, we're about to complete 3663 * the process of deleting those. */ 3664 } 3665 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3666 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3667 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3668 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3669 ei->i_file_acl |= 3670 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3671 inode->i_size = ext4_isize(raw_inode); 3672 ei->i_disksize = inode->i_size; 3673 #ifdef CONFIG_QUOTA 3674 ei->i_reserved_quota = 0; 3675 #endif 3676 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3677 ei->i_block_group = iloc.block_group; 3678 ei->i_last_alloc_group = ~0; 3679 /* 3680 * NOTE! The in-memory inode i_data array is in little-endian order 3681 * even on big-endian machines: we do NOT byteswap the block numbers! 3682 */ 3683 for (block = 0; block < EXT4_N_BLOCKS; block++) 3684 ei->i_data[block] = raw_inode->i_block[block]; 3685 INIT_LIST_HEAD(&ei->i_orphan); 3686 3687 /* 3688 * Set transaction id's of transactions that have to be committed 3689 * to finish f[data]sync. We set them to currently running transaction 3690 * as we cannot be sure that the inode or some of its metadata isn't 3691 * part of the transaction - the inode could have been reclaimed and 3692 * now it is reread from disk. 3693 */ 3694 if (journal) { 3695 transaction_t *transaction; 3696 tid_t tid; 3697 3698 read_lock(&journal->j_state_lock); 3699 if (journal->j_running_transaction) 3700 transaction = journal->j_running_transaction; 3701 else 3702 transaction = journal->j_committing_transaction; 3703 if (transaction) 3704 tid = transaction->t_tid; 3705 else 3706 tid = journal->j_commit_sequence; 3707 read_unlock(&journal->j_state_lock); 3708 ei->i_sync_tid = tid; 3709 ei->i_datasync_tid = tid; 3710 } 3711 3712 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3713 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3714 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3715 EXT4_INODE_SIZE(inode->i_sb)) { 3716 ret = -EIO; 3717 goto bad_inode; 3718 } 3719 if (ei->i_extra_isize == 0) { 3720 /* The extra space is currently unused. Use it. */ 3721 ei->i_extra_isize = sizeof(struct ext4_inode) - 3722 EXT4_GOOD_OLD_INODE_SIZE; 3723 } else { 3724 __le32 *magic = (void *)raw_inode + 3725 EXT4_GOOD_OLD_INODE_SIZE + 3726 ei->i_extra_isize; 3727 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3728 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3729 } 3730 } else 3731 ei->i_extra_isize = 0; 3732 3733 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3734 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3735 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3736 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3737 3738 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3739 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3740 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3741 inode->i_version |= 3742 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3743 } 3744 3745 ret = 0; 3746 if (ei->i_file_acl && 3747 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3748 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3749 ei->i_file_acl); 3750 ret = -EIO; 3751 goto bad_inode; 3752 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3753 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3754 (S_ISLNK(inode->i_mode) && 3755 !ext4_inode_is_fast_symlink(inode))) 3756 /* Validate extent which is part of inode */ 3757 ret = ext4_ext_check_inode(inode); 3758 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3759 (S_ISLNK(inode->i_mode) && 3760 !ext4_inode_is_fast_symlink(inode))) { 3761 /* Validate block references which are part of inode */ 3762 ret = ext4_ind_check_inode(inode); 3763 } 3764 if (ret) 3765 goto bad_inode; 3766 3767 if (S_ISREG(inode->i_mode)) { 3768 inode->i_op = &ext4_file_inode_operations; 3769 inode->i_fop = &ext4_file_operations; 3770 ext4_set_aops(inode); 3771 } else if (S_ISDIR(inode->i_mode)) { 3772 inode->i_op = &ext4_dir_inode_operations; 3773 inode->i_fop = &ext4_dir_operations; 3774 } else if (S_ISLNK(inode->i_mode)) { 3775 if (ext4_inode_is_fast_symlink(inode)) { 3776 inode->i_op = &ext4_fast_symlink_inode_operations; 3777 nd_terminate_link(ei->i_data, inode->i_size, 3778 sizeof(ei->i_data) - 1); 3779 } else { 3780 inode->i_op = &ext4_symlink_inode_operations; 3781 ext4_set_aops(inode); 3782 } 3783 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3784 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3785 inode->i_op = &ext4_special_inode_operations; 3786 if (raw_inode->i_block[0]) 3787 init_special_inode(inode, inode->i_mode, 3788 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3789 else 3790 init_special_inode(inode, inode->i_mode, 3791 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3792 } else { 3793 ret = -EIO; 3794 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3795 goto bad_inode; 3796 } 3797 brelse(iloc.bh); 3798 ext4_set_inode_flags(inode); 3799 unlock_new_inode(inode); 3800 return inode; 3801 3802 bad_inode: 3803 brelse(iloc.bh); 3804 iget_failed(inode); 3805 return ERR_PTR(ret); 3806 } 3807 3808 static int ext4_inode_blocks_set(handle_t *handle, 3809 struct ext4_inode *raw_inode, 3810 struct ext4_inode_info *ei) 3811 { 3812 struct inode *inode = &(ei->vfs_inode); 3813 u64 i_blocks = inode->i_blocks; 3814 struct super_block *sb = inode->i_sb; 3815 3816 if (i_blocks <= ~0U) { 3817 /* 3818 * i_blocks can be represnted in a 32 bit variable 3819 * as multiple of 512 bytes 3820 */ 3821 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3822 raw_inode->i_blocks_high = 0; 3823 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3824 return 0; 3825 } 3826 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3827 return -EFBIG; 3828 3829 if (i_blocks <= 0xffffffffffffULL) { 3830 /* 3831 * i_blocks can be represented in a 48 bit variable 3832 * as multiple of 512 bytes 3833 */ 3834 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3835 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3836 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3837 } else { 3838 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3839 /* i_block is stored in file system block size */ 3840 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3841 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3842 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3843 } 3844 return 0; 3845 } 3846 3847 /* 3848 * Post the struct inode info into an on-disk inode location in the 3849 * buffer-cache. This gobbles the caller's reference to the 3850 * buffer_head in the inode location struct. 3851 * 3852 * The caller must have write access to iloc->bh. 3853 */ 3854 static int ext4_do_update_inode(handle_t *handle, 3855 struct inode *inode, 3856 struct ext4_iloc *iloc) 3857 { 3858 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3859 struct ext4_inode_info *ei = EXT4_I(inode); 3860 struct buffer_head *bh = iloc->bh; 3861 int err = 0, rc, block; 3862 3863 /* For fields not not tracking in the in-memory inode, 3864 * initialise them to zero for new inodes. */ 3865 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3866 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3867 3868 ext4_get_inode_flags(ei); 3869 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3870 if (!(test_opt(inode->i_sb, NO_UID32))) { 3871 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3872 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3873 /* 3874 * Fix up interoperability with old kernels. Otherwise, old inodes get 3875 * re-used with the upper 16 bits of the uid/gid intact 3876 */ 3877 if (!ei->i_dtime) { 3878 raw_inode->i_uid_high = 3879 cpu_to_le16(high_16_bits(inode->i_uid)); 3880 raw_inode->i_gid_high = 3881 cpu_to_le16(high_16_bits(inode->i_gid)); 3882 } else { 3883 raw_inode->i_uid_high = 0; 3884 raw_inode->i_gid_high = 0; 3885 } 3886 } else { 3887 raw_inode->i_uid_low = 3888 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3889 raw_inode->i_gid_low = 3890 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3891 raw_inode->i_uid_high = 0; 3892 raw_inode->i_gid_high = 0; 3893 } 3894 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3895 3896 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 3897 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 3898 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 3899 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 3900 3901 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 3902 goto out_brelse; 3903 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3904 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 3905 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3906 cpu_to_le32(EXT4_OS_HURD)) 3907 raw_inode->i_file_acl_high = 3908 cpu_to_le16(ei->i_file_acl >> 32); 3909 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 3910 ext4_isize_set(raw_inode, ei->i_disksize); 3911 if (ei->i_disksize > 0x7fffffffULL) { 3912 struct super_block *sb = inode->i_sb; 3913 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 3914 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 3915 EXT4_SB(sb)->s_es->s_rev_level == 3916 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 3917 /* If this is the first large file 3918 * created, add a flag to the superblock. 3919 */ 3920 err = ext4_journal_get_write_access(handle, 3921 EXT4_SB(sb)->s_sbh); 3922 if (err) 3923 goto out_brelse; 3924 ext4_update_dynamic_rev(sb); 3925 EXT4_SET_RO_COMPAT_FEATURE(sb, 3926 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3927 sb->s_dirt = 1; 3928 ext4_handle_sync(handle); 3929 err = ext4_handle_dirty_metadata(handle, NULL, 3930 EXT4_SB(sb)->s_sbh); 3931 } 3932 } 3933 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3934 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3935 if (old_valid_dev(inode->i_rdev)) { 3936 raw_inode->i_block[0] = 3937 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3938 raw_inode->i_block[1] = 0; 3939 } else { 3940 raw_inode->i_block[0] = 0; 3941 raw_inode->i_block[1] = 3942 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3943 raw_inode->i_block[2] = 0; 3944 } 3945 } else 3946 for (block = 0; block < EXT4_N_BLOCKS; block++) 3947 raw_inode->i_block[block] = ei->i_data[block]; 3948 3949 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3950 if (ei->i_extra_isize) { 3951 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3952 raw_inode->i_version_hi = 3953 cpu_to_le32(inode->i_version >> 32); 3954 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3955 } 3956 3957 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3958 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 3959 if (!err) 3960 err = rc; 3961 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 3962 3963 ext4_update_inode_fsync_trans(handle, inode, 0); 3964 out_brelse: 3965 brelse(bh); 3966 ext4_std_error(inode->i_sb, err); 3967 return err; 3968 } 3969 3970 /* 3971 * ext4_write_inode() 3972 * 3973 * We are called from a few places: 3974 * 3975 * - Within generic_file_write() for O_SYNC files. 3976 * Here, there will be no transaction running. We wait for any running 3977 * trasnaction to commit. 3978 * 3979 * - Within sys_sync(), kupdate and such. 3980 * We wait on commit, if tol to. 3981 * 3982 * - Within prune_icache() (PF_MEMALLOC == true) 3983 * Here we simply return. We can't afford to block kswapd on the 3984 * journal commit. 3985 * 3986 * In all cases it is actually safe for us to return without doing anything, 3987 * because the inode has been copied into a raw inode buffer in 3988 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3989 * knfsd. 3990 * 3991 * Note that we are absolutely dependent upon all inode dirtiers doing the 3992 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3993 * which we are interested. 3994 * 3995 * It would be a bug for them to not do this. The code: 3996 * 3997 * mark_inode_dirty(inode) 3998 * stuff(); 3999 * inode->i_size = expr; 4000 * 4001 * is in error because a kswapd-driven write_inode() could occur while 4002 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4003 * will no longer be on the superblock's dirty inode list. 4004 */ 4005 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4006 { 4007 int err; 4008 4009 if (current->flags & PF_MEMALLOC) 4010 return 0; 4011 4012 if (EXT4_SB(inode->i_sb)->s_journal) { 4013 if (ext4_journal_current_handle()) { 4014 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4015 dump_stack(); 4016 return -EIO; 4017 } 4018 4019 if (wbc->sync_mode != WB_SYNC_ALL) 4020 return 0; 4021 4022 err = ext4_force_commit(inode->i_sb); 4023 } else { 4024 struct ext4_iloc iloc; 4025 4026 err = __ext4_get_inode_loc(inode, &iloc, 0); 4027 if (err) 4028 return err; 4029 if (wbc->sync_mode == WB_SYNC_ALL) 4030 sync_dirty_buffer(iloc.bh); 4031 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4032 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4033 "IO error syncing inode"); 4034 err = -EIO; 4035 } 4036 brelse(iloc.bh); 4037 } 4038 return err; 4039 } 4040 4041 /* 4042 * ext4_setattr() 4043 * 4044 * Called from notify_change. 4045 * 4046 * We want to trap VFS attempts to truncate the file as soon as 4047 * possible. In particular, we want to make sure that when the VFS 4048 * shrinks i_size, we put the inode on the orphan list and modify 4049 * i_disksize immediately, so that during the subsequent flushing of 4050 * dirty pages and freeing of disk blocks, we can guarantee that any 4051 * commit will leave the blocks being flushed in an unused state on 4052 * disk. (On recovery, the inode will get truncated and the blocks will 4053 * be freed, so we have a strong guarantee that no future commit will 4054 * leave these blocks visible to the user.) 4055 * 4056 * Another thing we have to assure is that if we are in ordered mode 4057 * and inode is still attached to the committing transaction, we must 4058 * we start writeout of all the dirty pages which are being truncated. 4059 * This way we are sure that all the data written in the previous 4060 * transaction are already on disk (truncate waits for pages under 4061 * writeback). 4062 * 4063 * Called with inode->i_mutex down. 4064 */ 4065 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4066 { 4067 struct inode *inode = dentry->d_inode; 4068 int error, rc = 0; 4069 int orphan = 0; 4070 const unsigned int ia_valid = attr->ia_valid; 4071 4072 error = inode_change_ok(inode, attr); 4073 if (error) 4074 return error; 4075 4076 if (is_quota_modification(inode, attr)) 4077 dquot_initialize(inode); 4078 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4079 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4080 handle_t *handle; 4081 4082 /* (user+group)*(old+new) structure, inode write (sb, 4083 * inode block, ? - but truncate inode update has it) */ 4084 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4085 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4086 if (IS_ERR(handle)) { 4087 error = PTR_ERR(handle); 4088 goto err_out; 4089 } 4090 error = dquot_transfer(inode, attr); 4091 if (error) { 4092 ext4_journal_stop(handle); 4093 return error; 4094 } 4095 /* Update corresponding info in inode so that everything is in 4096 * one transaction */ 4097 if (attr->ia_valid & ATTR_UID) 4098 inode->i_uid = attr->ia_uid; 4099 if (attr->ia_valid & ATTR_GID) 4100 inode->i_gid = attr->ia_gid; 4101 error = ext4_mark_inode_dirty(handle, inode); 4102 ext4_journal_stop(handle); 4103 } 4104 4105 if (attr->ia_valid & ATTR_SIZE) { 4106 inode_dio_wait(inode); 4107 4108 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4109 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4110 4111 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4112 return -EFBIG; 4113 } 4114 } 4115 4116 if (S_ISREG(inode->i_mode) && 4117 attr->ia_valid & ATTR_SIZE && 4118 (attr->ia_size < inode->i_size)) { 4119 handle_t *handle; 4120 4121 handle = ext4_journal_start(inode, 3); 4122 if (IS_ERR(handle)) { 4123 error = PTR_ERR(handle); 4124 goto err_out; 4125 } 4126 if (ext4_handle_valid(handle)) { 4127 error = ext4_orphan_add(handle, inode); 4128 orphan = 1; 4129 } 4130 EXT4_I(inode)->i_disksize = attr->ia_size; 4131 rc = ext4_mark_inode_dirty(handle, inode); 4132 if (!error) 4133 error = rc; 4134 ext4_journal_stop(handle); 4135 4136 if (ext4_should_order_data(inode)) { 4137 error = ext4_begin_ordered_truncate(inode, 4138 attr->ia_size); 4139 if (error) { 4140 /* Do as much error cleanup as possible */ 4141 handle = ext4_journal_start(inode, 3); 4142 if (IS_ERR(handle)) { 4143 ext4_orphan_del(NULL, inode); 4144 goto err_out; 4145 } 4146 ext4_orphan_del(handle, inode); 4147 orphan = 0; 4148 ext4_journal_stop(handle); 4149 goto err_out; 4150 } 4151 } 4152 } 4153 4154 if (attr->ia_valid & ATTR_SIZE) { 4155 if (attr->ia_size != i_size_read(inode)) { 4156 truncate_setsize(inode, attr->ia_size); 4157 ext4_truncate(inode); 4158 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 4159 ext4_truncate(inode); 4160 } 4161 4162 if (!rc) { 4163 setattr_copy(inode, attr); 4164 mark_inode_dirty(inode); 4165 } 4166 4167 /* 4168 * If the call to ext4_truncate failed to get a transaction handle at 4169 * all, we need to clean up the in-core orphan list manually. 4170 */ 4171 if (orphan && inode->i_nlink) 4172 ext4_orphan_del(NULL, inode); 4173 4174 if (!rc && (ia_valid & ATTR_MODE)) 4175 rc = ext4_acl_chmod(inode); 4176 4177 err_out: 4178 ext4_std_error(inode->i_sb, error); 4179 if (!error) 4180 error = rc; 4181 return error; 4182 } 4183 4184 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4185 struct kstat *stat) 4186 { 4187 struct inode *inode; 4188 unsigned long delalloc_blocks; 4189 4190 inode = dentry->d_inode; 4191 generic_fillattr(inode, stat); 4192 4193 /* 4194 * We can't update i_blocks if the block allocation is delayed 4195 * otherwise in the case of system crash before the real block 4196 * allocation is done, we will have i_blocks inconsistent with 4197 * on-disk file blocks. 4198 * We always keep i_blocks updated together with real 4199 * allocation. But to not confuse with user, stat 4200 * will return the blocks that include the delayed allocation 4201 * blocks for this file. 4202 */ 4203 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4204 4205 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4206 return 0; 4207 } 4208 4209 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4210 { 4211 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4212 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4213 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4214 } 4215 4216 /* 4217 * Account for index blocks, block groups bitmaps and block group 4218 * descriptor blocks if modify datablocks and index blocks 4219 * worse case, the indexs blocks spread over different block groups 4220 * 4221 * If datablocks are discontiguous, they are possible to spread over 4222 * different block groups too. If they are contiuguous, with flexbg, 4223 * they could still across block group boundary. 4224 * 4225 * Also account for superblock, inode, quota and xattr blocks 4226 */ 4227 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4228 { 4229 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4230 int gdpblocks; 4231 int idxblocks; 4232 int ret = 0; 4233 4234 /* 4235 * How many index blocks need to touch to modify nrblocks? 4236 * The "Chunk" flag indicating whether the nrblocks is 4237 * physically contiguous on disk 4238 * 4239 * For Direct IO and fallocate, they calls get_block to allocate 4240 * one single extent at a time, so they could set the "Chunk" flag 4241 */ 4242 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4243 4244 ret = idxblocks; 4245 4246 /* 4247 * Now let's see how many group bitmaps and group descriptors need 4248 * to account 4249 */ 4250 groups = idxblocks; 4251 if (chunk) 4252 groups += 1; 4253 else 4254 groups += nrblocks; 4255 4256 gdpblocks = groups; 4257 if (groups > ngroups) 4258 groups = ngroups; 4259 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4260 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4261 4262 /* bitmaps and block group descriptor blocks */ 4263 ret += groups + gdpblocks; 4264 4265 /* Blocks for super block, inode, quota and xattr blocks */ 4266 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4267 4268 return ret; 4269 } 4270 4271 /* 4272 * Calculate the total number of credits to reserve to fit 4273 * the modification of a single pages into a single transaction, 4274 * which may include multiple chunks of block allocations. 4275 * 4276 * This could be called via ext4_write_begin() 4277 * 4278 * We need to consider the worse case, when 4279 * one new block per extent. 4280 */ 4281 int ext4_writepage_trans_blocks(struct inode *inode) 4282 { 4283 int bpp = ext4_journal_blocks_per_page(inode); 4284 int ret; 4285 4286 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4287 4288 /* Account for data blocks for journalled mode */ 4289 if (ext4_should_journal_data(inode)) 4290 ret += bpp; 4291 return ret; 4292 } 4293 4294 /* 4295 * Calculate the journal credits for a chunk of data modification. 4296 * 4297 * This is called from DIO, fallocate or whoever calling 4298 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4299 * 4300 * journal buffers for data blocks are not included here, as DIO 4301 * and fallocate do no need to journal data buffers. 4302 */ 4303 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4304 { 4305 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4306 } 4307 4308 /* 4309 * The caller must have previously called ext4_reserve_inode_write(). 4310 * Give this, we know that the caller already has write access to iloc->bh. 4311 */ 4312 int ext4_mark_iloc_dirty(handle_t *handle, 4313 struct inode *inode, struct ext4_iloc *iloc) 4314 { 4315 int err = 0; 4316 4317 if (test_opt(inode->i_sb, I_VERSION)) 4318 inode_inc_iversion(inode); 4319 4320 /* the do_update_inode consumes one bh->b_count */ 4321 get_bh(iloc->bh); 4322 4323 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4324 err = ext4_do_update_inode(handle, inode, iloc); 4325 put_bh(iloc->bh); 4326 return err; 4327 } 4328 4329 /* 4330 * On success, We end up with an outstanding reference count against 4331 * iloc->bh. This _must_ be cleaned up later. 4332 */ 4333 4334 int 4335 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4336 struct ext4_iloc *iloc) 4337 { 4338 int err; 4339 4340 err = ext4_get_inode_loc(inode, iloc); 4341 if (!err) { 4342 BUFFER_TRACE(iloc->bh, "get_write_access"); 4343 err = ext4_journal_get_write_access(handle, iloc->bh); 4344 if (err) { 4345 brelse(iloc->bh); 4346 iloc->bh = NULL; 4347 } 4348 } 4349 ext4_std_error(inode->i_sb, err); 4350 return err; 4351 } 4352 4353 /* 4354 * Expand an inode by new_extra_isize bytes. 4355 * Returns 0 on success or negative error number on failure. 4356 */ 4357 static int ext4_expand_extra_isize(struct inode *inode, 4358 unsigned int new_extra_isize, 4359 struct ext4_iloc iloc, 4360 handle_t *handle) 4361 { 4362 struct ext4_inode *raw_inode; 4363 struct ext4_xattr_ibody_header *header; 4364 4365 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4366 return 0; 4367 4368 raw_inode = ext4_raw_inode(&iloc); 4369 4370 header = IHDR(inode, raw_inode); 4371 4372 /* No extended attributes present */ 4373 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4374 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4375 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4376 new_extra_isize); 4377 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4378 return 0; 4379 } 4380 4381 /* try to expand with EAs present */ 4382 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4383 raw_inode, handle); 4384 } 4385 4386 /* 4387 * What we do here is to mark the in-core inode as clean with respect to inode 4388 * dirtiness (it may still be data-dirty). 4389 * This means that the in-core inode may be reaped by prune_icache 4390 * without having to perform any I/O. This is a very good thing, 4391 * because *any* task may call prune_icache - even ones which 4392 * have a transaction open against a different journal. 4393 * 4394 * Is this cheating? Not really. Sure, we haven't written the 4395 * inode out, but prune_icache isn't a user-visible syncing function. 4396 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4397 * we start and wait on commits. 4398 * 4399 * Is this efficient/effective? Well, we're being nice to the system 4400 * by cleaning up our inodes proactively so they can be reaped 4401 * without I/O. But we are potentially leaving up to five seconds' 4402 * worth of inodes floating about which prune_icache wants us to 4403 * write out. One way to fix that would be to get prune_icache() 4404 * to do a write_super() to free up some memory. It has the desired 4405 * effect. 4406 */ 4407 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4408 { 4409 struct ext4_iloc iloc; 4410 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4411 static unsigned int mnt_count; 4412 int err, ret; 4413 4414 might_sleep(); 4415 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4416 err = ext4_reserve_inode_write(handle, inode, &iloc); 4417 if (ext4_handle_valid(handle) && 4418 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4419 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4420 /* 4421 * We need extra buffer credits since we may write into EA block 4422 * with this same handle. If journal_extend fails, then it will 4423 * only result in a minor loss of functionality for that inode. 4424 * If this is felt to be critical, then e2fsck should be run to 4425 * force a large enough s_min_extra_isize. 4426 */ 4427 if ((jbd2_journal_extend(handle, 4428 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4429 ret = ext4_expand_extra_isize(inode, 4430 sbi->s_want_extra_isize, 4431 iloc, handle); 4432 if (ret) { 4433 ext4_set_inode_state(inode, 4434 EXT4_STATE_NO_EXPAND); 4435 if (mnt_count != 4436 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4437 ext4_warning(inode->i_sb, 4438 "Unable to expand inode %lu. Delete" 4439 " some EAs or run e2fsck.", 4440 inode->i_ino); 4441 mnt_count = 4442 le16_to_cpu(sbi->s_es->s_mnt_count); 4443 } 4444 } 4445 } 4446 } 4447 if (!err) 4448 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4449 return err; 4450 } 4451 4452 /* 4453 * ext4_dirty_inode() is called from __mark_inode_dirty() 4454 * 4455 * We're really interested in the case where a file is being extended. 4456 * i_size has been changed by generic_commit_write() and we thus need 4457 * to include the updated inode in the current transaction. 4458 * 4459 * Also, dquot_alloc_block() will always dirty the inode when blocks 4460 * are allocated to the file. 4461 * 4462 * If the inode is marked synchronous, we don't honour that here - doing 4463 * so would cause a commit on atime updates, which we don't bother doing. 4464 * We handle synchronous inodes at the highest possible level. 4465 */ 4466 void ext4_dirty_inode(struct inode *inode, int flags) 4467 { 4468 handle_t *handle; 4469 4470 handle = ext4_journal_start(inode, 2); 4471 if (IS_ERR(handle)) 4472 goto out; 4473 4474 ext4_mark_inode_dirty(handle, inode); 4475 4476 ext4_journal_stop(handle); 4477 out: 4478 return; 4479 } 4480 4481 #if 0 4482 /* 4483 * Bind an inode's backing buffer_head into this transaction, to prevent 4484 * it from being flushed to disk early. Unlike 4485 * ext4_reserve_inode_write, this leaves behind no bh reference and 4486 * returns no iloc structure, so the caller needs to repeat the iloc 4487 * lookup to mark the inode dirty later. 4488 */ 4489 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4490 { 4491 struct ext4_iloc iloc; 4492 4493 int err = 0; 4494 if (handle) { 4495 err = ext4_get_inode_loc(inode, &iloc); 4496 if (!err) { 4497 BUFFER_TRACE(iloc.bh, "get_write_access"); 4498 err = jbd2_journal_get_write_access(handle, iloc.bh); 4499 if (!err) 4500 err = ext4_handle_dirty_metadata(handle, 4501 NULL, 4502 iloc.bh); 4503 brelse(iloc.bh); 4504 } 4505 } 4506 ext4_std_error(inode->i_sb, err); 4507 return err; 4508 } 4509 #endif 4510 4511 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4512 { 4513 journal_t *journal; 4514 handle_t *handle; 4515 int err; 4516 4517 /* 4518 * We have to be very careful here: changing a data block's 4519 * journaling status dynamically is dangerous. If we write a 4520 * data block to the journal, change the status and then delete 4521 * that block, we risk forgetting to revoke the old log record 4522 * from the journal and so a subsequent replay can corrupt data. 4523 * So, first we make sure that the journal is empty and that 4524 * nobody is changing anything. 4525 */ 4526 4527 journal = EXT4_JOURNAL(inode); 4528 if (!journal) 4529 return 0; 4530 if (is_journal_aborted(journal)) 4531 return -EROFS; 4532 /* We have to allocate physical blocks for delalloc blocks 4533 * before flushing journal. otherwise delalloc blocks can not 4534 * be allocated any more. even more truncate on delalloc blocks 4535 * could trigger BUG by flushing delalloc blocks in journal. 4536 * There is no delalloc block in non-journal data mode. 4537 */ 4538 if (val && test_opt(inode->i_sb, DELALLOC)) { 4539 err = ext4_alloc_da_blocks(inode); 4540 if (err < 0) 4541 return err; 4542 } 4543 4544 jbd2_journal_lock_updates(journal); 4545 4546 /* 4547 * OK, there are no updates running now, and all cached data is 4548 * synced to disk. We are now in a completely consistent state 4549 * which doesn't have anything in the journal, and we know that 4550 * no filesystem updates are running, so it is safe to modify 4551 * the inode's in-core data-journaling state flag now. 4552 */ 4553 4554 if (val) 4555 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4556 else { 4557 jbd2_journal_flush(journal); 4558 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4559 } 4560 ext4_set_aops(inode); 4561 4562 jbd2_journal_unlock_updates(journal); 4563 4564 /* Finally we can mark the inode as dirty. */ 4565 4566 handle = ext4_journal_start(inode, 1); 4567 if (IS_ERR(handle)) 4568 return PTR_ERR(handle); 4569 4570 err = ext4_mark_inode_dirty(handle, inode); 4571 ext4_handle_sync(handle); 4572 ext4_journal_stop(handle); 4573 ext4_std_error(inode->i_sb, err); 4574 4575 return err; 4576 } 4577 4578 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4579 { 4580 return !buffer_mapped(bh); 4581 } 4582 4583 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4584 { 4585 struct page *page = vmf->page; 4586 loff_t size; 4587 unsigned long len; 4588 int ret; 4589 struct file *file = vma->vm_file; 4590 struct inode *inode = file->f_path.dentry->d_inode; 4591 struct address_space *mapping = inode->i_mapping; 4592 handle_t *handle; 4593 get_block_t *get_block; 4594 int retries = 0; 4595 4596 /* 4597 * This check is racy but catches the common case. We rely on 4598 * __block_page_mkwrite() to do a reliable check. 4599 */ 4600 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4601 /* Delalloc case is easy... */ 4602 if (test_opt(inode->i_sb, DELALLOC) && 4603 !ext4_should_journal_data(inode) && 4604 !ext4_nonda_switch(inode->i_sb)) { 4605 do { 4606 ret = __block_page_mkwrite(vma, vmf, 4607 ext4_da_get_block_prep); 4608 } while (ret == -ENOSPC && 4609 ext4_should_retry_alloc(inode->i_sb, &retries)); 4610 goto out_ret; 4611 } 4612 4613 lock_page(page); 4614 size = i_size_read(inode); 4615 /* Page got truncated from under us? */ 4616 if (page->mapping != mapping || page_offset(page) > size) { 4617 unlock_page(page); 4618 ret = VM_FAULT_NOPAGE; 4619 goto out; 4620 } 4621 4622 if (page->index == size >> PAGE_CACHE_SHIFT) 4623 len = size & ~PAGE_CACHE_MASK; 4624 else 4625 len = PAGE_CACHE_SIZE; 4626 /* 4627 * Return if we have all the buffers mapped. This avoids the need to do 4628 * journal_start/journal_stop which can block and take a long time 4629 */ 4630 if (page_has_buffers(page)) { 4631 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4632 ext4_bh_unmapped)) { 4633 /* Wait so that we don't change page under IO */ 4634 wait_on_page_writeback(page); 4635 ret = VM_FAULT_LOCKED; 4636 goto out; 4637 } 4638 } 4639 unlock_page(page); 4640 /* OK, we need to fill the hole... */ 4641 if (ext4_should_dioread_nolock(inode)) 4642 get_block = ext4_get_block_write; 4643 else 4644 get_block = ext4_get_block; 4645 retry_alloc: 4646 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4647 if (IS_ERR(handle)) { 4648 ret = VM_FAULT_SIGBUS; 4649 goto out; 4650 } 4651 ret = __block_page_mkwrite(vma, vmf, get_block); 4652 if (!ret && ext4_should_journal_data(inode)) { 4653 if (walk_page_buffers(handle, page_buffers(page), 0, 4654 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4655 unlock_page(page); 4656 ret = VM_FAULT_SIGBUS; 4657 ext4_journal_stop(handle); 4658 goto out; 4659 } 4660 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4661 } 4662 ext4_journal_stop(handle); 4663 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4664 goto retry_alloc; 4665 out_ret: 4666 ret = block_page_mkwrite_return(ret); 4667 out: 4668 return ret; 4669 } 4670