1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "ext4_extents.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static inline int ext4_begin_ordered_truncate(struct inode *inode, 53 loff_t new_size) 54 { 55 trace_ext4_begin_ordered_truncate(inode, new_size); 56 /* 57 * If jinode is zero, then we never opened the file for 58 * writing, so there's no need to call 59 * jbd2_journal_begin_ordered_truncate() since there's no 60 * outstanding writes we need to flush. 61 */ 62 if (!EXT4_I(inode)->jinode) 63 return 0; 64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 65 EXT4_I(inode)->jinode, 66 new_size); 67 } 68 69 static void ext4_invalidatepage(struct page *page, unsigned long offset); 70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 71 struct buffer_head *bh_result, int create); 72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 74 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 76 77 /* 78 * Test whether an inode is a fast symlink. 79 */ 80 static int ext4_inode_is_fast_symlink(struct inode *inode) 81 { 82 int ea_blocks = EXT4_I(inode)->i_file_acl ? 83 (inode->i_sb->s_blocksize >> 9) : 0; 84 85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 86 } 87 88 /* 89 * Restart the transaction associated with *handle. This does a commit, 90 * so before we call here everything must be consistently dirtied against 91 * this transaction. 92 */ 93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 94 int nblocks) 95 { 96 int ret; 97 98 /* 99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 100 * moment, get_block can be called only for blocks inside i_size since 101 * page cache has been already dropped and writes are blocked by 102 * i_mutex. So we can safely drop the i_data_sem here. 103 */ 104 BUG_ON(EXT4_JOURNAL(inode) == NULL); 105 jbd_debug(2, "restarting handle %p\n", handle); 106 up_write(&EXT4_I(inode)->i_data_sem); 107 ret = ext4_journal_restart(handle, nblocks); 108 down_write(&EXT4_I(inode)->i_data_sem); 109 ext4_discard_preallocations(inode); 110 111 return ret; 112 } 113 114 /* 115 * Called at the last iput() if i_nlink is zero. 116 */ 117 void ext4_evict_inode(struct inode *inode) 118 { 119 handle_t *handle; 120 int err; 121 122 trace_ext4_evict_inode(inode); 123 124 ext4_ioend_wait(inode); 125 126 if (inode->i_nlink) { 127 /* 128 * When journalling data dirty buffers are tracked only in the 129 * journal. So although mm thinks everything is clean and 130 * ready for reaping the inode might still have some pages to 131 * write in the running transaction or waiting to be 132 * checkpointed. Thus calling jbd2_journal_invalidatepage() 133 * (via truncate_inode_pages()) to discard these buffers can 134 * cause data loss. Also even if we did not discard these 135 * buffers, we would have no way to find them after the inode 136 * is reaped and thus user could see stale data if he tries to 137 * read them before the transaction is checkpointed. So be 138 * careful and force everything to disk here... We use 139 * ei->i_datasync_tid to store the newest transaction 140 * containing inode's data. 141 * 142 * Note that directories do not have this problem because they 143 * don't use page cache. 144 */ 145 if (ext4_should_journal_data(inode) && 146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 149 150 jbd2_log_start_commit(journal, commit_tid); 151 jbd2_log_wait_commit(journal, commit_tid); 152 filemap_write_and_wait(&inode->i_data); 153 } 154 truncate_inode_pages(&inode->i_data, 0); 155 goto no_delete; 156 } 157 158 if (!is_bad_inode(inode)) 159 dquot_initialize(inode); 160 161 if (ext4_should_order_data(inode)) 162 ext4_begin_ordered_truncate(inode, 0); 163 truncate_inode_pages(&inode->i_data, 0); 164 165 if (is_bad_inode(inode)) 166 goto no_delete; 167 168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 169 if (IS_ERR(handle)) { 170 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 171 /* 172 * If we're going to skip the normal cleanup, we still need to 173 * make sure that the in-core orphan linked list is properly 174 * cleaned up. 175 */ 176 ext4_orphan_del(NULL, inode); 177 goto no_delete; 178 } 179 180 if (IS_SYNC(inode)) 181 ext4_handle_sync(handle); 182 inode->i_size = 0; 183 err = ext4_mark_inode_dirty(handle, inode); 184 if (err) { 185 ext4_warning(inode->i_sb, 186 "couldn't mark inode dirty (err %d)", err); 187 goto stop_handle; 188 } 189 if (inode->i_blocks) 190 ext4_truncate(inode); 191 192 /* 193 * ext4_ext_truncate() doesn't reserve any slop when it 194 * restarts journal transactions; therefore there may not be 195 * enough credits left in the handle to remove the inode from 196 * the orphan list and set the dtime field. 197 */ 198 if (!ext4_handle_has_enough_credits(handle, 3)) { 199 err = ext4_journal_extend(handle, 3); 200 if (err > 0) 201 err = ext4_journal_restart(handle, 3); 202 if (err != 0) { 203 ext4_warning(inode->i_sb, 204 "couldn't extend journal (err %d)", err); 205 stop_handle: 206 ext4_journal_stop(handle); 207 ext4_orphan_del(NULL, inode); 208 goto no_delete; 209 } 210 } 211 212 /* 213 * Kill off the orphan record which ext4_truncate created. 214 * AKPM: I think this can be inside the above `if'. 215 * Note that ext4_orphan_del() has to be able to cope with the 216 * deletion of a non-existent orphan - this is because we don't 217 * know if ext4_truncate() actually created an orphan record. 218 * (Well, we could do this if we need to, but heck - it works) 219 */ 220 ext4_orphan_del(handle, inode); 221 EXT4_I(inode)->i_dtime = get_seconds(); 222 223 /* 224 * One subtle ordering requirement: if anything has gone wrong 225 * (transaction abort, IO errors, whatever), then we can still 226 * do these next steps (the fs will already have been marked as 227 * having errors), but we can't free the inode if the mark_dirty 228 * fails. 229 */ 230 if (ext4_mark_inode_dirty(handle, inode)) 231 /* If that failed, just do the required in-core inode clear. */ 232 ext4_clear_inode(inode); 233 else 234 ext4_free_inode(handle, inode); 235 ext4_journal_stop(handle); 236 return; 237 no_delete: 238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 239 } 240 241 #ifdef CONFIG_QUOTA 242 qsize_t *ext4_get_reserved_space(struct inode *inode) 243 { 244 return &EXT4_I(inode)->i_reserved_quota; 245 } 246 #endif 247 248 /* 249 * Calculate the number of metadata blocks need to reserve 250 * to allocate a block located at @lblock 251 */ 252 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 253 { 254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 255 return ext4_ext_calc_metadata_amount(inode, lblock); 256 257 return ext4_ind_calc_metadata_amount(inode, lblock); 258 } 259 260 /* 261 * Called with i_data_sem down, which is important since we can call 262 * ext4_discard_preallocations() from here. 263 */ 264 void ext4_da_update_reserve_space(struct inode *inode, 265 int used, int quota_claim) 266 { 267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 268 struct ext4_inode_info *ei = EXT4_I(inode); 269 270 spin_lock(&ei->i_block_reservation_lock); 271 trace_ext4_da_update_reserve_space(inode, used); 272 if (unlikely(used > ei->i_reserved_data_blocks)) { 273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 274 "with only %d reserved data blocks\n", 275 __func__, inode->i_ino, used, 276 ei->i_reserved_data_blocks); 277 WARN_ON(1); 278 used = ei->i_reserved_data_blocks; 279 } 280 281 /* Update per-inode reservations */ 282 ei->i_reserved_data_blocks -= used; 283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 284 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 285 used + ei->i_allocated_meta_blocks); 286 ei->i_allocated_meta_blocks = 0; 287 288 if (ei->i_reserved_data_blocks == 0) { 289 /* 290 * We can release all of the reserved metadata blocks 291 * only when we have written all of the delayed 292 * allocation blocks. 293 */ 294 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 295 ei->i_reserved_meta_blocks); 296 ei->i_reserved_meta_blocks = 0; 297 ei->i_da_metadata_calc_len = 0; 298 } 299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 300 301 /* Update quota subsystem for data blocks */ 302 if (quota_claim) 303 dquot_claim_block(inode, used); 304 else { 305 /* 306 * We did fallocate with an offset that is already delayed 307 * allocated. So on delayed allocated writeback we should 308 * not re-claim the quota for fallocated blocks. 309 */ 310 dquot_release_reservation_block(inode, used); 311 } 312 313 /* 314 * If we have done all the pending block allocations and if 315 * there aren't any writers on the inode, we can discard the 316 * inode's preallocations. 317 */ 318 if ((ei->i_reserved_data_blocks == 0) && 319 (atomic_read(&inode->i_writecount) == 0)) 320 ext4_discard_preallocations(inode); 321 } 322 323 static int __check_block_validity(struct inode *inode, const char *func, 324 unsigned int line, 325 struct ext4_map_blocks *map) 326 { 327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 328 map->m_len)) { 329 ext4_error_inode(inode, func, line, map->m_pblk, 330 "lblock %lu mapped to illegal pblock " 331 "(length %d)", (unsigned long) map->m_lblk, 332 map->m_len); 333 return -EIO; 334 } 335 return 0; 336 } 337 338 #define check_block_validity(inode, map) \ 339 __check_block_validity((inode), __func__, __LINE__, (map)) 340 341 /* 342 * Return the number of contiguous dirty pages in a given inode 343 * starting at page frame idx. 344 */ 345 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 346 unsigned int max_pages) 347 { 348 struct address_space *mapping = inode->i_mapping; 349 pgoff_t index; 350 struct pagevec pvec; 351 pgoff_t num = 0; 352 int i, nr_pages, done = 0; 353 354 if (max_pages == 0) 355 return 0; 356 pagevec_init(&pvec, 0); 357 while (!done) { 358 index = idx; 359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 360 PAGECACHE_TAG_DIRTY, 361 (pgoff_t)PAGEVEC_SIZE); 362 if (nr_pages == 0) 363 break; 364 for (i = 0; i < nr_pages; i++) { 365 struct page *page = pvec.pages[i]; 366 struct buffer_head *bh, *head; 367 368 lock_page(page); 369 if (unlikely(page->mapping != mapping) || 370 !PageDirty(page) || 371 PageWriteback(page) || 372 page->index != idx) { 373 done = 1; 374 unlock_page(page); 375 break; 376 } 377 if (page_has_buffers(page)) { 378 bh = head = page_buffers(page); 379 do { 380 if (!buffer_delay(bh) && 381 !buffer_unwritten(bh)) 382 done = 1; 383 bh = bh->b_this_page; 384 } while (!done && (bh != head)); 385 } 386 unlock_page(page); 387 if (done) 388 break; 389 idx++; 390 num++; 391 if (num >= max_pages) { 392 done = 1; 393 break; 394 } 395 } 396 pagevec_release(&pvec); 397 } 398 return num; 399 } 400 401 /* 402 * The ext4_map_blocks() function tries to look up the requested blocks, 403 * and returns if the blocks are already mapped. 404 * 405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 406 * and store the allocated blocks in the result buffer head and mark it 407 * mapped. 408 * 409 * If file type is extents based, it will call ext4_ext_map_blocks(), 410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 411 * based files 412 * 413 * On success, it returns the number of blocks being mapped or allocate. 414 * if create==0 and the blocks are pre-allocated and uninitialized block, 415 * the result buffer head is unmapped. If the create ==1, it will make sure 416 * the buffer head is mapped. 417 * 418 * It returns 0 if plain look up failed (blocks have not been allocated), in 419 * that casem, buffer head is unmapped 420 * 421 * It returns the error in case of allocation failure. 422 */ 423 int ext4_map_blocks(handle_t *handle, struct inode *inode, 424 struct ext4_map_blocks *map, int flags) 425 { 426 int retval; 427 428 map->m_flags = 0; 429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 430 "logical block %lu\n", inode->i_ino, flags, map->m_len, 431 (unsigned long) map->m_lblk); 432 /* 433 * Try to see if we can get the block without requesting a new 434 * file system block. 435 */ 436 down_read((&EXT4_I(inode)->i_data_sem)); 437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 438 retval = ext4_ext_map_blocks(handle, inode, map, 0); 439 } else { 440 retval = ext4_ind_map_blocks(handle, inode, map, 0); 441 } 442 up_read((&EXT4_I(inode)->i_data_sem)); 443 444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 445 int ret = check_block_validity(inode, map); 446 if (ret != 0) 447 return ret; 448 } 449 450 /* If it is only a block(s) look up */ 451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 452 return retval; 453 454 /* 455 * Returns if the blocks have already allocated 456 * 457 * Note that if blocks have been preallocated 458 * ext4_ext_get_block() returns th create = 0 459 * with buffer head unmapped. 460 */ 461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 462 return retval; 463 464 /* 465 * When we call get_blocks without the create flag, the 466 * BH_Unwritten flag could have gotten set if the blocks 467 * requested were part of a uninitialized extent. We need to 468 * clear this flag now that we are committed to convert all or 469 * part of the uninitialized extent to be an initialized 470 * extent. This is because we need to avoid the combination 471 * of BH_Unwritten and BH_Mapped flags being simultaneously 472 * set on the buffer_head. 473 */ 474 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 475 476 /* 477 * New blocks allocate and/or writing to uninitialized extent 478 * will possibly result in updating i_data, so we take 479 * the write lock of i_data_sem, and call get_blocks() 480 * with create == 1 flag. 481 */ 482 down_write((&EXT4_I(inode)->i_data_sem)); 483 484 /* 485 * if the caller is from delayed allocation writeout path 486 * we have already reserved fs blocks for allocation 487 * let the underlying get_block() function know to 488 * avoid double accounting 489 */ 490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 492 /* 493 * We need to check for EXT4 here because migrate 494 * could have changed the inode type in between 495 */ 496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 497 retval = ext4_ext_map_blocks(handle, inode, map, flags); 498 } else { 499 retval = ext4_ind_map_blocks(handle, inode, map, flags); 500 501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 502 /* 503 * We allocated new blocks which will result in 504 * i_data's format changing. Force the migrate 505 * to fail by clearing migrate flags 506 */ 507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 508 } 509 510 /* 511 * Update reserved blocks/metadata blocks after successful 512 * block allocation which had been deferred till now. We don't 513 * support fallocate for non extent files. So we can update 514 * reserve space here. 515 */ 516 if ((retval > 0) && 517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 518 ext4_da_update_reserve_space(inode, retval, 1); 519 } 520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 522 523 up_write((&EXT4_I(inode)->i_data_sem)); 524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 525 int ret = check_block_validity(inode, map); 526 if (ret != 0) 527 return ret; 528 } 529 return retval; 530 } 531 532 /* Maximum number of blocks we map for direct IO at once. */ 533 #define DIO_MAX_BLOCKS 4096 534 535 static int _ext4_get_block(struct inode *inode, sector_t iblock, 536 struct buffer_head *bh, int flags) 537 { 538 handle_t *handle = ext4_journal_current_handle(); 539 struct ext4_map_blocks map; 540 int ret = 0, started = 0; 541 int dio_credits; 542 543 map.m_lblk = iblock; 544 map.m_len = bh->b_size >> inode->i_blkbits; 545 546 if (flags && !handle) { 547 /* Direct IO write... */ 548 if (map.m_len > DIO_MAX_BLOCKS) 549 map.m_len = DIO_MAX_BLOCKS; 550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 551 handle = ext4_journal_start(inode, dio_credits); 552 if (IS_ERR(handle)) { 553 ret = PTR_ERR(handle); 554 return ret; 555 } 556 started = 1; 557 } 558 559 ret = ext4_map_blocks(handle, inode, &map, flags); 560 if (ret > 0) { 561 map_bh(bh, inode->i_sb, map.m_pblk); 562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 563 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 564 ret = 0; 565 } 566 if (started) 567 ext4_journal_stop(handle); 568 return ret; 569 } 570 571 int ext4_get_block(struct inode *inode, sector_t iblock, 572 struct buffer_head *bh, int create) 573 { 574 return _ext4_get_block(inode, iblock, bh, 575 create ? EXT4_GET_BLOCKS_CREATE : 0); 576 } 577 578 /* 579 * `handle' can be NULL if create is zero 580 */ 581 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 582 ext4_lblk_t block, int create, int *errp) 583 { 584 struct ext4_map_blocks map; 585 struct buffer_head *bh; 586 int fatal = 0, err; 587 588 J_ASSERT(handle != NULL || create == 0); 589 590 map.m_lblk = block; 591 map.m_len = 1; 592 err = ext4_map_blocks(handle, inode, &map, 593 create ? EXT4_GET_BLOCKS_CREATE : 0); 594 595 if (err < 0) 596 *errp = err; 597 if (err <= 0) 598 return NULL; 599 *errp = 0; 600 601 bh = sb_getblk(inode->i_sb, map.m_pblk); 602 if (!bh) { 603 *errp = -EIO; 604 return NULL; 605 } 606 if (map.m_flags & EXT4_MAP_NEW) { 607 J_ASSERT(create != 0); 608 J_ASSERT(handle != NULL); 609 610 /* 611 * Now that we do not always journal data, we should 612 * keep in mind whether this should always journal the 613 * new buffer as metadata. For now, regular file 614 * writes use ext4_get_block instead, so it's not a 615 * problem. 616 */ 617 lock_buffer(bh); 618 BUFFER_TRACE(bh, "call get_create_access"); 619 fatal = ext4_journal_get_create_access(handle, bh); 620 if (!fatal && !buffer_uptodate(bh)) { 621 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 622 set_buffer_uptodate(bh); 623 } 624 unlock_buffer(bh); 625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 626 err = ext4_handle_dirty_metadata(handle, inode, bh); 627 if (!fatal) 628 fatal = err; 629 } else { 630 BUFFER_TRACE(bh, "not a new buffer"); 631 } 632 if (fatal) { 633 *errp = fatal; 634 brelse(bh); 635 bh = NULL; 636 } 637 return bh; 638 } 639 640 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 641 ext4_lblk_t block, int create, int *err) 642 { 643 struct buffer_head *bh; 644 645 bh = ext4_getblk(handle, inode, block, create, err); 646 if (!bh) 647 return bh; 648 if (buffer_uptodate(bh)) 649 return bh; 650 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 651 wait_on_buffer(bh); 652 if (buffer_uptodate(bh)) 653 return bh; 654 put_bh(bh); 655 *err = -EIO; 656 return NULL; 657 } 658 659 static int walk_page_buffers(handle_t *handle, 660 struct buffer_head *head, 661 unsigned from, 662 unsigned to, 663 int *partial, 664 int (*fn)(handle_t *handle, 665 struct buffer_head *bh)) 666 { 667 struct buffer_head *bh; 668 unsigned block_start, block_end; 669 unsigned blocksize = head->b_size; 670 int err, ret = 0; 671 struct buffer_head *next; 672 673 for (bh = head, block_start = 0; 674 ret == 0 && (bh != head || !block_start); 675 block_start = block_end, bh = next) { 676 next = bh->b_this_page; 677 block_end = block_start + blocksize; 678 if (block_end <= from || block_start >= to) { 679 if (partial && !buffer_uptodate(bh)) 680 *partial = 1; 681 continue; 682 } 683 err = (*fn)(handle, bh); 684 if (!ret) 685 ret = err; 686 } 687 return ret; 688 } 689 690 /* 691 * To preserve ordering, it is essential that the hole instantiation and 692 * the data write be encapsulated in a single transaction. We cannot 693 * close off a transaction and start a new one between the ext4_get_block() 694 * and the commit_write(). So doing the jbd2_journal_start at the start of 695 * prepare_write() is the right place. 696 * 697 * Also, this function can nest inside ext4_writepage() -> 698 * block_write_full_page(). In that case, we *know* that ext4_writepage() 699 * has generated enough buffer credits to do the whole page. So we won't 700 * block on the journal in that case, which is good, because the caller may 701 * be PF_MEMALLOC. 702 * 703 * By accident, ext4 can be reentered when a transaction is open via 704 * quota file writes. If we were to commit the transaction while thus 705 * reentered, there can be a deadlock - we would be holding a quota 706 * lock, and the commit would never complete if another thread had a 707 * transaction open and was blocking on the quota lock - a ranking 708 * violation. 709 * 710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 711 * will _not_ run commit under these circumstances because handle->h_ref 712 * is elevated. We'll still have enough credits for the tiny quotafile 713 * write. 714 */ 715 static int do_journal_get_write_access(handle_t *handle, 716 struct buffer_head *bh) 717 { 718 int dirty = buffer_dirty(bh); 719 int ret; 720 721 if (!buffer_mapped(bh) || buffer_freed(bh)) 722 return 0; 723 /* 724 * __block_write_begin() could have dirtied some buffers. Clean 725 * the dirty bit as jbd2_journal_get_write_access() could complain 726 * otherwise about fs integrity issues. Setting of the dirty bit 727 * by __block_write_begin() isn't a real problem here as we clear 728 * the bit before releasing a page lock and thus writeback cannot 729 * ever write the buffer. 730 */ 731 if (dirty) 732 clear_buffer_dirty(bh); 733 ret = ext4_journal_get_write_access(handle, bh); 734 if (!ret && dirty) 735 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 736 return ret; 737 } 738 739 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 740 struct buffer_head *bh_result, int create); 741 static int ext4_write_begin(struct file *file, struct address_space *mapping, 742 loff_t pos, unsigned len, unsigned flags, 743 struct page **pagep, void **fsdata) 744 { 745 struct inode *inode = mapping->host; 746 int ret, needed_blocks; 747 handle_t *handle; 748 int retries = 0; 749 struct page *page; 750 pgoff_t index; 751 unsigned from, to; 752 753 trace_ext4_write_begin(inode, pos, len, flags); 754 /* 755 * Reserve one block more for addition to orphan list in case 756 * we allocate blocks but write fails for some reason 757 */ 758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 759 index = pos >> PAGE_CACHE_SHIFT; 760 from = pos & (PAGE_CACHE_SIZE - 1); 761 to = from + len; 762 763 retry: 764 handle = ext4_journal_start(inode, needed_blocks); 765 if (IS_ERR(handle)) { 766 ret = PTR_ERR(handle); 767 goto out; 768 } 769 770 /* We cannot recurse into the filesystem as the transaction is already 771 * started */ 772 flags |= AOP_FLAG_NOFS; 773 774 page = grab_cache_page_write_begin(mapping, index, flags); 775 if (!page) { 776 ext4_journal_stop(handle); 777 ret = -ENOMEM; 778 goto out; 779 } 780 *pagep = page; 781 782 if (ext4_should_dioread_nolock(inode)) 783 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 784 else 785 ret = __block_write_begin(page, pos, len, ext4_get_block); 786 787 if (!ret && ext4_should_journal_data(inode)) { 788 ret = walk_page_buffers(handle, page_buffers(page), 789 from, to, NULL, do_journal_get_write_access); 790 } 791 792 if (ret) { 793 unlock_page(page); 794 page_cache_release(page); 795 /* 796 * __block_write_begin may have instantiated a few blocks 797 * outside i_size. Trim these off again. Don't need 798 * i_size_read because we hold i_mutex. 799 * 800 * Add inode to orphan list in case we crash before 801 * truncate finishes 802 */ 803 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 804 ext4_orphan_add(handle, inode); 805 806 ext4_journal_stop(handle); 807 if (pos + len > inode->i_size) { 808 ext4_truncate_failed_write(inode); 809 /* 810 * If truncate failed early the inode might 811 * still be on the orphan list; we need to 812 * make sure the inode is removed from the 813 * orphan list in that case. 814 */ 815 if (inode->i_nlink) 816 ext4_orphan_del(NULL, inode); 817 } 818 } 819 820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 821 goto retry; 822 out: 823 return ret; 824 } 825 826 /* For write_end() in data=journal mode */ 827 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 828 { 829 if (!buffer_mapped(bh) || buffer_freed(bh)) 830 return 0; 831 set_buffer_uptodate(bh); 832 return ext4_handle_dirty_metadata(handle, NULL, bh); 833 } 834 835 static int ext4_generic_write_end(struct file *file, 836 struct address_space *mapping, 837 loff_t pos, unsigned len, unsigned copied, 838 struct page *page, void *fsdata) 839 { 840 int i_size_changed = 0; 841 struct inode *inode = mapping->host; 842 handle_t *handle = ext4_journal_current_handle(); 843 844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 845 846 /* 847 * No need to use i_size_read() here, the i_size 848 * cannot change under us because we hold i_mutex. 849 * 850 * But it's important to update i_size while still holding page lock: 851 * page writeout could otherwise come in and zero beyond i_size. 852 */ 853 if (pos + copied > inode->i_size) { 854 i_size_write(inode, pos + copied); 855 i_size_changed = 1; 856 } 857 858 if (pos + copied > EXT4_I(inode)->i_disksize) { 859 /* We need to mark inode dirty even if 860 * new_i_size is less that inode->i_size 861 * bu greater than i_disksize.(hint delalloc) 862 */ 863 ext4_update_i_disksize(inode, (pos + copied)); 864 i_size_changed = 1; 865 } 866 unlock_page(page); 867 page_cache_release(page); 868 869 /* 870 * Don't mark the inode dirty under page lock. First, it unnecessarily 871 * makes the holding time of page lock longer. Second, it forces lock 872 * ordering of page lock and transaction start for journaling 873 * filesystems. 874 */ 875 if (i_size_changed) 876 ext4_mark_inode_dirty(handle, inode); 877 878 return copied; 879 } 880 881 /* 882 * We need to pick up the new inode size which generic_commit_write gave us 883 * `file' can be NULL - eg, when called from page_symlink(). 884 * 885 * ext4 never places buffers on inode->i_mapping->private_list. metadata 886 * buffers are managed internally. 887 */ 888 static int ext4_ordered_write_end(struct file *file, 889 struct address_space *mapping, 890 loff_t pos, unsigned len, unsigned copied, 891 struct page *page, void *fsdata) 892 { 893 handle_t *handle = ext4_journal_current_handle(); 894 struct inode *inode = mapping->host; 895 int ret = 0, ret2; 896 897 trace_ext4_ordered_write_end(inode, pos, len, copied); 898 ret = ext4_jbd2_file_inode(handle, inode); 899 900 if (ret == 0) { 901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 902 page, fsdata); 903 copied = ret2; 904 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 905 /* if we have allocated more blocks and copied 906 * less. We will have blocks allocated outside 907 * inode->i_size. So truncate them 908 */ 909 ext4_orphan_add(handle, inode); 910 if (ret2 < 0) 911 ret = ret2; 912 } 913 ret2 = ext4_journal_stop(handle); 914 if (!ret) 915 ret = ret2; 916 917 if (pos + len > inode->i_size) { 918 ext4_truncate_failed_write(inode); 919 /* 920 * If truncate failed early the inode might still be 921 * on the orphan list; we need to make sure the inode 922 * is removed from the orphan list in that case. 923 */ 924 if (inode->i_nlink) 925 ext4_orphan_del(NULL, inode); 926 } 927 928 929 return ret ? ret : copied; 930 } 931 932 static int ext4_writeback_write_end(struct file *file, 933 struct address_space *mapping, 934 loff_t pos, unsigned len, unsigned copied, 935 struct page *page, void *fsdata) 936 { 937 handle_t *handle = ext4_journal_current_handle(); 938 struct inode *inode = mapping->host; 939 int ret = 0, ret2; 940 941 trace_ext4_writeback_write_end(inode, pos, len, copied); 942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 943 page, fsdata); 944 copied = ret2; 945 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 946 /* if we have allocated more blocks and copied 947 * less. We will have blocks allocated outside 948 * inode->i_size. So truncate them 949 */ 950 ext4_orphan_add(handle, inode); 951 952 if (ret2 < 0) 953 ret = ret2; 954 955 ret2 = ext4_journal_stop(handle); 956 if (!ret) 957 ret = ret2; 958 959 if (pos + len > inode->i_size) { 960 ext4_truncate_failed_write(inode); 961 /* 962 * If truncate failed early the inode might still be 963 * on the orphan list; we need to make sure the inode 964 * is removed from the orphan list in that case. 965 */ 966 if (inode->i_nlink) 967 ext4_orphan_del(NULL, inode); 968 } 969 970 return ret ? ret : copied; 971 } 972 973 static int ext4_journalled_write_end(struct file *file, 974 struct address_space *mapping, 975 loff_t pos, unsigned len, unsigned copied, 976 struct page *page, void *fsdata) 977 { 978 handle_t *handle = ext4_journal_current_handle(); 979 struct inode *inode = mapping->host; 980 int ret = 0, ret2; 981 int partial = 0; 982 unsigned from, to; 983 loff_t new_i_size; 984 985 trace_ext4_journalled_write_end(inode, pos, len, copied); 986 from = pos & (PAGE_CACHE_SIZE - 1); 987 to = from + len; 988 989 BUG_ON(!ext4_handle_valid(handle)); 990 991 if (copied < len) { 992 if (!PageUptodate(page)) 993 copied = 0; 994 page_zero_new_buffers(page, from+copied, to); 995 } 996 997 ret = walk_page_buffers(handle, page_buffers(page), from, 998 to, &partial, write_end_fn); 999 if (!partial) 1000 SetPageUptodate(page); 1001 new_i_size = pos + copied; 1002 if (new_i_size > inode->i_size) 1003 i_size_write(inode, pos+copied); 1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1006 if (new_i_size > EXT4_I(inode)->i_disksize) { 1007 ext4_update_i_disksize(inode, new_i_size); 1008 ret2 = ext4_mark_inode_dirty(handle, inode); 1009 if (!ret) 1010 ret = ret2; 1011 } 1012 1013 unlock_page(page); 1014 page_cache_release(page); 1015 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1016 /* if we have allocated more blocks and copied 1017 * less. We will have blocks allocated outside 1018 * inode->i_size. So truncate them 1019 */ 1020 ext4_orphan_add(handle, inode); 1021 1022 ret2 = ext4_journal_stop(handle); 1023 if (!ret) 1024 ret = ret2; 1025 if (pos + len > inode->i_size) { 1026 ext4_truncate_failed_write(inode); 1027 /* 1028 * If truncate failed early the inode might still be 1029 * on the orphan list; we need to make sure the inode 1030 * is removed from the orphan list in that case. 1031 */ 1032 if (inode->i_nlink) 1033 ext4_orphan_del(NULL, inode); 1034 } 1035 1036 return ret ? ret : copied; 1037 } 1038 1039 /* 1040 * Reserve a single block located at lblock 1041 */ 1042 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1043 { 1044 int retries = 0; 1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1046 struct ext4_inode_info *ei = EXT4_I(inode); 1047 unsigned long md_needed; 1048 int ret; 1049 1050 /* 1051 * recalculate the amount of metadata blocks to reserve 1052 * in order to allocate nrblocks 1053 * worse case is one extent per block 1054 */ 1055 repeat: 1056 spin_lock(&ei->i_block_reservation_lock); 1057 md_needed = ext4_calc_metadata_amount(inode, lblock); 1058 trace_ext4_da_reserve_space(inode, md_needed); 1059 spin_unlock(&ei->i_block_reservation_lock); 1060 1061 /* 1062 * We will charge metadata quota at writeout time; this saves 1063 * us from metadata over-estimation, though we may go over by 1064 * a small amount in the end. Here we just reserve for data. 1065 */ 1066 ret = dquot_reserve_block(inode, 1); 1067 if (ret) 1068 return ret; 1069 /* 1070 * We do still charge estimated metadata to the sb though; 1071 * we cannot afford to run out of free blocks. 1072 */ 1073 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) { 1074 dquot_release_reservation_block(inode, 1); 1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1076 yield(); 1077 goto repeat; 1078 } 1079 return -ENOSPC; 1080 } 1081 spin_lock(&ei->i_block_reservation_lock); 1082 ei->i_reserved_data_blocks++; 1083 ei->i_reserved_meta_blocks += md_needed; 1084 spin_unlock(&ei->i_block_reservation_lock); 1085 1086 return 0; /* success */ 1087 } 1088 1089 static void ext4_da_release_space(struct inode *inode, int to_free) 1090 { 1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1092 struct ext4_inode_info *ei = EXT4_I(inode); 1093 1094 if (!to_free) 1095 return; /* Nothing to release, exit */ 1096 1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1098 1099 trace_ext4_da_release_space(inode, to_free); 1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1101 /* 1102 * if there aren't enough reserved blocks, then the 1103 * counter is messed up somewhere. Since this 1104 * function is called from invalidate page, it's 1105 * harmless to return without any action. 1106 */ 1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1108 "ino %lu, to_free %d with only %d reserved " 1109 "data blocks\n", inode->i_ino, to_free, 1110 ei->i_reserved_data_blocks); 1111 WARN_ON(1); 1112 to_free = ei->i_reserved_data_blocks; 1113 } 1114 ei->i_reserved_data_blocks -= to_free; 1115 1116 if (ei->i_reserved_data_blocks == 0) { 1117 /* 1118 * We can release all of the reserved metadata blocks 1119 * only when we have written all of the delayed 1120 * allocation blocks. 1121 */ 1122 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1123 ei->i_reserved_meta_blocks); 1124 ei->i_reserved_meta_blocks = 0; 1125 ei->i_da_metadata_calc_len = 0; 1126 } 1127 1128 /* update fs dirty data blocks counter */ 1129 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1130 1131 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1132 1133 dquot_release_reservation_block(inode, to_free); 1134 } 1135 1136 static void ext4_da_page_release_reservation(struct page *page, 1137 unsigned long offset) 1138 { 1139 int to_release = 0; 1140 struct buffer_head *head, *bh; 1141 unsigned int curr_off = 0; 1142 1143 head = page_buffers(page); 1144 bh = head; 1145 do { 1146 unsigned int next_off = curr_off + bh->b_size; 1147 1148 if ((offset <= curr_off) && (buffer_delay(bh))) { 1149 to_release++; 1150 clear_buffer_delay(bh); 1151 } 1152 curr_off = next_off; 1153 } while ((bh = bh->b_this_page) != head); 1154 ext4_da_release_space(page->mapping->host, to_release); 1155 } 1156 1157 /* 1158 * Delayed allocation stuff 1159 */ 1160 1161 /* 1162 * mpage_da_submit_io - walks through extent of pages and try to write 1163 * them with writepage() call back 1164 * 1165 * @mpd->inode: inode 1166 * @mpd->first_page: first page of the extent 1167 * @mpd->next_page: page after the last page of the extent 1168 * 1169 * By the time mpage_da_submit_io() is called we expect all blocks 1170 * to be allocated. this may be wrong if allocation failed. 1171 * 1172 * As pages are already locked by write_cache_pages(), we can't use it 1173 */ 1174 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1175 struct ext4_map_blocks *map) 1176 { 1177 struct pagevec pvec; 1178 unsigned long index, end; 1179 int ret = 0, err, nr_pages, i; 1180 struct inode *inode = mpd->inode; 1181 struct address_space *mapping = inode->i_mapping; 1182 loff_t size = i_size_read(inode); 1183 unsigned int len, block_start; 1184 struct buffer_head *bh, *page_bufs = NULL; 1185 int journal_data = ext4_should_journal_data(inode); 1186 sector_t pblock = 0, cur_logical = 0; 1187 struct ext4_io_submit io_submit; 1188 1189 BUG_ON(mpd->next_page <= mpd->first_page); 1190 memset(&io_submit, 0, sizeof(io_submit)); 1191 /* 1192 * We need to start from the first_page to the next_page - 1 1193 * to make sure we also write the mapped dirty buffer_heads. 1194 * If we look at mpd->b_blocknr we would only be looking 1195 * at the currently mapped buffer_heads. 1196 */ 1197 index = mpd->first_page; 1198 end = mpd->next_page - 1; 1199 1200 pagevec_init(&pvec, 0); 1201 while (index <= end) { 1202 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1203 if (nr_pages == 0) 1204 break; 1205 for (i = 0; i < nr_pages; i++) { 1206 int commit_write = 0, skip_page = 0; 1207 struct page *page = pvec.pages[i]; 1208 1209 index = page->index; 1210 if (index > end) 1211 break; 1212 1213 if (index == size >> PAGE_CACHE_SHIFT) 1214 len = size & ~PAGE_CACHE_MASK; 1215 else 1216 len = PAGE_CACHE_SIZE; 1217 if (map) { 1218 cur_logical = index << (PAGE_CACHE_SHIFT - 1219 inode->i_blkbits); 1220 pblock = map->m_pblk + (cur_logical - 1221 map->m_lblk); 1222 } 1223 index++; 1224 1225 BUG_ON(!PageLocked(page)); 1226 BUG_ON(PageWriteback(page)); 1227 1228 /* 1229 * If the page does not have buffers (for 1230 * whatever reason), try to create them using 1231 * __block_write_begin. If this fails, 1232 * skip the page and move on. 1233 */ 1234 if (!page_has_buffers(page)) { 1235 if (__block_write_begin(page, 0, len, 1236 noalloc_get_block_write)) { 1237 skip_page: 1238 unlock_page(page); 1239 continue; 1240 } 1241 commit_write = 1; 1242 } 1243 1244 bh = page_bufs = page_buffers(page); 1245 block_start = 0; 1246 do { 1247 if (!bh) 1248 goto skip_page; 1249 if (map && (cur_logical >= map->m_lblk) && 1250 (cur_logical <= (map->m_lblk + 1251 (map->m_len - 1)))) { 1252 if (buffer_delay(bh)) { 1253 clear_buffer_delay(bh); 1254 bh->b_blocknr = pblock; 1255 } 1256 if (buffer_unwritten(bh) || 1257 buffer_mapped(bh)) 1258 BUG_ON(bh->b_blocknr != pblock); 1259 if (map->m_flags & EXT4_MAP_UNINIT) 1260 set_buffer_uninit(bh); 1261 clear_buffer_unwritten(bh); 1262 } 1263 1264 /* skip page if block allocation undone */ 1265 if (buffer_delay(bh) || buffer_unwritten(bh)) 1266 skip_page = 1; 1267 bh = bh->b_this_page; 1268 block_start += bh->b_size; 1269 cur_logical++; 1270 pblock++; 1271 } while (bh != page_bufs); 1272 1273 if (skip_page) 1274 goto skip_page; 1275 1276 if (commit_write) 1277 /* mark the buffer_heads as dirty & uptodate */ 1278 block_commit_write(page, 0, len); 1279 1280 clear_page_dirty_for_io(page); 1281 /* 1282 * Delalloc doesn't support data journalling, 1283 * but eventually maybe we'll lift this 1284 * restriction. 1285 */ 1286 if (unlikely(journal_data && PageChecked(page))) 1287 err = __ext4_journalled_writepage(page, len); 1288 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1289 err = ext4_bio_write_page(&io_submit, page, 1290 len, mpd->wbc); 1291 else if (buffer_uninit(page_bufs)) { 1292 ext4_set_bh_endio(page_bufs, inode); 1293 err = block_write_full_page_endio(page, 1294 noalloc_get_block_write, 1295 mpd->wbc, ext4_end_io_buffer_write); 1296 } else 1297 err = block_write_full_page(page, 1298 noalloc_get_block_write, mpd->wbc); 1299 1300 if (!err) 1301 mpd->pages_written++; 1302 /* 1303 * In error case, we have to continue because 1304 * remaining pages are still locked 1305 */ 1306 if (ret == 0) 1307 ret = err; 1308 } 1309 pagevec_release(&pvec); 1310 } 1311 ext4_io_submit(&io_submit); 1312 return ret; 1313 } 1314 1315 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1316 { 1317 int nr_pages, i; 1318 pgoff_t index, end; 1319 struct pagevec pvec; 1320 struct inode *inode = mpd->inode; 1321 struct address_space *mapping = inode->i_mapping; 1322 1323 index = mpd->first_page; 1324 end = mpd->next_page - 1; 1325 while (index <= end) { 1326 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1327 if (nr_pages == 0) 1328 break; 1329 for (i = 0; i < nr_pages; i++) { 1330 struct page *page = pvec.pages[i]; 1331 if (page->index > end) 1332 break; 1333 BUG_ON(!PageLocked(page)); 1334 BUG_ON(PageWriteback(page)); 1335 block_invalidatepage(page, 0); 1336 ClearPageUptodate(page); 1337 unlock_page(page); 1338 } 1339 index = pvec.pages[nr_pages - 1]->index + 1; 1340 pagevec_release(&pvec); 1341 } 1342 return; 1343 } 1344 1345 static void ext4_print_free_blocks(struct inode *inode) 1346 { 1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1348 printk(KERN_CRIT "Total free blocks count %lld\n", 1349 ext4_count_free_blocks(inode->i_sb)); 1350 printk(KERN_CRIT "Free/Dirty block details\n"); 1351 printk(KERN_CRIT "free_blocks=%lld\n", 1352 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 1353 printk(KERN_CRIT "dirty_blocks=%lld\n", 1354 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1355 printk(KERN_CRIT "Block reservation details\n"); 1356 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1357 EXT4_I(inode)->i_reserved_data_blocks); 1358 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1359 EXT4_I(inode)->i_reserved_meta_blocks); 1360 return; 1361 } 1362 1363 /* 1364 * mpage_da_map_and_submit - go through given space, map them 1365 * if necessary, and then submit them for I/O 1366 * 1367 * @mpd - bh describing space 1368 * 1369 * The function skips space we know is already mapped to disk blocks. 1370 * 1371 */ 1372 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1373 { 1374 int err, blks, get_blocks_flags; 1375 struct ext4_map_blocks map, *mapp = NULL; 1376 sector_t next = mpd->b_blocknr; 1377 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1378 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1379 handle_t *handle = NULL; 1380 1381 /* 1382 * If the blocks are mapped already, or we couldn't accumulate 1383 * any blocks, then proceed immediately to the submission stage. 1384 */ 1385 if ((mpd->b_size == 0) || 1386 ((mpd->b_state & (1 << BH_Mapped)) && 1387 !(mpd->b_state & (1 << BH_Delay)) && 1388 !(mpd->b_state & (1 << BH_Unwritten)))) 1389 goto submit_io; 1390 1391 handle = ext4_journal_current_handle(); 1392 BUG_ON(!handle); 1393 1394 /* 1395 * Call ext4_map_blocks() to allocate any delayed allocation 1396 * blocks, or to convert an uninitialized extent to be 1397 * initialized (in the case where we have written into 1398 * one or more preallocated blocks). 1399 * 1400 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1401 * indicate that we are on the delayed allocation path. This 1402 * affects functions in many different parts of the allocation 1403 * call path. This flag exists primarily because we don't 1404 * want to change *many* call functions, so ext4_map_blocks() 1405 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1406 * inode's allocation semaphore is taken. 1407 * 1408 * If the blocks in questions were delalloc blocks, set 1409 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1410 * variables are updated after the blocks have been allocated. 1411 */ 1412 map.m_lblk = next; 1413 map.m_len = max_blocks; 1414 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1415 if (ext4_should_dioread_nolock(mpd->inode)) 1416 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1417 if (mpd->b_state & (1 << BH_Delay)) 1418 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1419 1420 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1421 if (blks < 0) { 1422 struct super_block *sb = mpd->inode->i_sb; 1423 1424 err = blks; 1425 /* 1426 * If get block returns EAGAIN or ENOSPC and there 1427 * appears to be free blocks we will just let 1428 * mpage_da_submit_io() unlock all of the pages. 1429 */ 1430 if (err == -EAGAIN) 1431 goto submit_io; 1432 1433 if (err == -ENOSPC && 1434 ext4_count_free_blocks(sb)) { 1435 mpd->retval = err; 1436 goto submit_io; 1437 } 1438 1439 /* 1440 * get block failure will cause us to loop in 1441 * writepages, because a_ops->writepage won't be able 1442 * to make progress. The page will be redirtied by 1443 * writepage and writepages will again try to write 1444 * the same. 1445 */ 1446 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1447 ext4_msg(sb, KERN_CRIT, 1448 "delayed block allocation failed for inode %lu " 1449 "at logical offset %llu with max blocks %zd " 1450 "with error %d", mpd->inode->i_ino, 1451 (unsigned long long) next, 1452 mpd->b_size >> mpd->inode->i_blkbits, err); 1453 ext4_msg(sb, KERN_CRIT, 1454 "This should not happen!! Data will be lost\n"); 1455 if (err == -ENOSPC) 1456 ext4_print_free_blocks(mpd->inode); 1457 } 1458 /* invalidate all the pages */ 1459 ext4_da_block_invalidatepages(mpd); 1460 1461 /* Mark this page range as having been completed */ 1462 mpd->io_done = 1; 1463 return; 1464 } 1465 BUG_ON(blks == 0); 1466 1467 mapp = ↦ 1468 if (map.m_flags & EXT4_MAP_NEW) { 1469 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1470 int i; 1471 1472 for (i = 0; i < map.m_len; i++) 1473 unmap_underlying_metadata(bdev, map.m_pblk + i); 1474 } 1475 1476 if (ext4_should_order_data(mpd->inode)) { 1477 err = ext4_jbd2_file_inode(handle, mpd->inode); 1478 if (err) 1479 /* This only happens if the journal is aborted */ 1480 return; 1481 } 1482 1483 /* 1484 * Update on-disk size along with block allocation. 1485 */ 1486 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1487 if (disksize > i_size_read(mpd->inode)) 1488 disksize = i_size_read(mpd->inode); 1489 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1490 ext4_update_i_disksize(mpd->inode, disksize); 1491 err = ext4_mark_inode_dirty(handle, mpd->inode); 1492 if (err) 1493 ext4_error(mpd->inode->i_sb, 1494 "Failed to mark inode %lu dirty", 1495 mpd->inode->i_ino); 1496 } 1497 1498 submit_io: 1499 mpage_da_submit_io(mpd, mapp); 1500 mpd->io_done = 1; 1501 } 1502 1503 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1504 (1 << BH_Delay) | (1 << BH_Unwritten)) 1505 1506 /* 1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1508 * 1509 * @mpd->lbh - extent of blocks 1510 * @logical - logical number of the block in the file 1511 * @bh - bh of the block (used to access block's state) 1512 * 1513 * the function is used to collect contig. blocks in same state 1514 */ 1515 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1516 sector_t logical, size_t b_size, 1517 unsigned long b_state) 1518 { 1519 sector_t next; 1520 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1521 1522 /* 1523 * XXX Don't go larger than mballoc is willing to allocate 1524 * This is a stopgap solution. We eventually need to fold 1525 * mpage_da_submit_io() into this function and then call 1526 * ext4_map_blocks() multiple times in a loop 1527 */ 1528 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1529 goto flush_it; 1530 1531 /* check if thereserved journal credits might overflow */ 1532 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1533 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1534 /* 1535 * With non-extent format we are limited by the journal 1536 * credit available. Total credit needed to insert 1537 * nrblocks contiguous blocks is dependent on the 1538 * nrblocks. So limit nrblocks. 1539 */ 1540 goto flush_it; 1541 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1542 EXT4_MAX_TRANS_DATA) { 1543 /* 1544 * Adding the new buffer_head would make it cross the 1545 * allowed limit for which we have journal credit 1546 * reserved. So limit the new bh->b_size 1547 */ 1548 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1549 mpd->inode->i_blkbits; 1550 /* we will do mpage_da_submit_io in the next loop */ 1551 } 1552 } 1553 /* 1554 * First block in the extent 1555 */ 1556 if (mpd->b_size == 0) { 1557 mpd->b_blocknr = logical; 1558 mpd->b_size = b_size; 1559 mpd->b_state = b_state & BH_FLAGS; 1560 return; 1561 } 1562 1563 next = mpd->b_blocknr + nrblocks; 1564 /* 1565 * Can we merge the block to our big extent? 1566 */ 1567 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1568 mpd->b_size += b_size; 1569 return; 1570 } 1571 1572 flush_it: 1573 /* 1574 * We couldn't merge the block to our extent, so we 1575 * need to flush current extent and start new one 1576 */ 1577 mpage_da_map_and_submit(mpd); 1578 return; 1579 } 1580 1581 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1582 { 1583 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1584 } 1585 1586 /* 1587 * This is a special get_blocks_t callback which is used by 1588 * ext4_da_write_begin(). It will either return mapped block or 1589 * reserve space for a single block. 1590 * 1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1592 * We also have b_blocknr = -1 and b_bdev initialized properly 1593 * 1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1596 * initialized properly. 1597 */ 1598 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1599 struct buffer_head *bh, int create) 1600 { 1601 struct ext4_map_blocks map; 1602 int ret = 0; 1603 sector_t invalid_block = ~((sector_t) 0xffff); 1604 1605 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1606 invalid_block = ~0; 1607 1608 BUG_ON(create == 0); 1609 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1610 1611 map.m_lblk = iblock; 1612 map.m_len = 1; 1613 1614 /* 1615 * first, we need to know whether the block is allocated already 1616 * preallocated blocks are unmapped but should treated 1617 * the same as allocated blocks. 1618 */ 1619 ret = ext4_map_blocks(NULL, inode, &map, 0); 1620 if (ret < 0) 1621 return ret; 1622 if (ret == 0) { 1623 if (buffer_delay(bh)) 1624 return 0; /* Not sure this could or should happen */ 1625 /* 1626 * XXX: __block_write_begin() unmaps passed block, is it OK? 1627 */ 1628 ret = ext4_da_reserve_space(inode, iblock); 1629 if (ret) 1630 /* not enough space to reserve */ 1631 return ret; 1632 1633 map_bh(bh, inode->i_sb, invalid_block); 1634 set_buffer_new(bh); 1635 set_buffer_delay(bh); 1636 return 0; 1637 } 1638 1639 map_bh(bh, inode->i_sb, map.m_pblk); 1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1641 1642 if (buffer_unwritten(bh)) { 1643 /* A delayed write to unwritten bh should be marked 1644 * new and mapped. Mapped ensures that we don't do 1645 * get_block multiple times when we write to the same 1646 * offset and new ensures that we do proper zero out 1647 * for partial write. 1648 */ 1649 set_buffer_new(bh); 1650 set_buffer_mapped(bh); 1651 } 1652 return 0; 1653 } 1654 1655 /* 1656 * This function is used as a standard get_block_t calback function 1657 * when there is no desire to allocate any blocks. It is used as a 1658 * callback function for block_write_begin() and block_write_full_page(). 1659 * These functions should only try to map a single block at a time. 1660 * 1661 * Since this function doesn't do block allocations even if the caller 1662 * requests it by passing in create=1, it is critically important that 1663 * any caller checks to make sure that any buffer heads are returned 1664 * by this function are either all already mapped or marked for 1665 * delayed allocation before calling block_write_full_page(). Otherwise, 1666 * b_blocknr could be left unitialized, and the page write functions will 1667 * be taken by surprise. 1668 */ 1669 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1670 struct buffer_head *bh_result, int create) 1671 { 1672 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1673 return _ext4_get_block(inode, iblock, bh_result, 0); 1674 } 1675 1676 static int bget_one(handle_t *handle, struct buffer_head *bh) 1677 { 1678 get_bh(bh); 1679 return 0; 1680 } 1681 1682 static int bput_one(handle_t *handle, struct buffer_head *bh) 1683 { 1684 put_bh(bh); 1685 return 0; 1686 } 1687 1688 static int __ext4_journalled_writepage(struct page *page, 1689 unsigned int len) 1690 { 1691 struct address_space *mapping = page->mapping; 1692 struct inode *inode = mapping->host; 1693 struct buffer_head *page_bufs; 1694 handle_t *handle = NULL; 1695 int ret = 0; 1696 int err; 1697 1698 ClearPageChecked(page); 1699 page_bufs = page_buffers(page); 1700 BUG_ON(!page_bufs); 1701 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1702 /* As soon as we unlock the page, it can go away, but we have 1703 * references to buffers so we are safe */ 1704 unlock_page(page); 1705 1706 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1707 if (IS_ERR(handle)) { 1708 ret = PTR_ERR(handle); 1709 goto out; 1710 } 1711 1712 BUG_ON(!ext4_handle_valid(handle)); 1713 1714 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1715 do_journal_get_write_access); 1716 1717 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1718 write_end_fn); 1719 if (ret == 0) 1720 ret = err; 1721 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1722 err = ext4_journal_stop(handle); 1723 if (!ret) 1724 ret = err; 1725 1726 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1727 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1728 out: 1729 return ret; 1730 } 1731 1732 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1733 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1734 1735 /* 1736 * Note that we don't need to start a transaction unless we're journaling data 1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1738 * need to file the inode to the transaction's list in ordered mode because if 1739 * we are writing back data added by write(), the inode is already there and if 1740 * we are writing back data modified via mmap(), no one guarantees in which 1741 * transaction the data will hit the disk. In case we are journaling data, we 1742 * cannot start transaction directly because transaction start ranks above page 1743 * lock so we have to do some magic. 1744 * 1745 * This function can get called via... 1746 * - ext4_da_writepages after taking page lock (have journal handle) 1747 * - journal_submit_inode_data_buffers (no journal handle) 1748 * - shrink_page_list via pdflush (no journal handle) 1749 * - grab_page_cache when doing write_begin (have journal handle) 1750 * 1751 * We don't do any block allocation in this function. If we have page with 1752 * multiple blocks we need to write those buffer_heads that are mapped. This 1753 * is important for mmaped based write. So if we do with blocksize 1K 1754 * truncate(f, 1024); 1755 * a = mmap(f, 0, 4096); 1756 * a[0] = 'a'; 1757 * truncate(f, 4096); 1758 * we have in the page first buffer_head mapped via page_mkwrite call back 1759 * but other bufer_heads would be unmapped but dirty(dirty done via the 1760 * do_wp_page). So writepage should write the first block. If we modify 1761 * the mmap area beyond 1024 we will again get a page_fault and the 1762 * page_mkwrite callback will do the block allocation and mark the 1763 * buffer_heads mapped. 1764 * 1765 * We redirty the page if we have any buffer_heads that is either delay or 1766 * unwritten in the page. 1767 * 1768 * We can get recursively called as show below. 1769 * 1770 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1771 * ext4_writepage() 1772 * 1773 * But since we don't do any block allocation we should not deadlock. 1774 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1775 */ 1776 static int ext4_writepage(struct page *page, 1777 struct writeback_control *wbc) 1778 { 1779 int ret = 0, commit_write = 0; 1780 loff_t size; 1781 unsigned int len; 1782 struct buffer_head *page_bufs = NULL; 1783 struct inode *inode = page->mapping->host; 1784 1785 trace_ext4_writepage(page); 1786 size = i_size_read(inode); 1787 if (page->index == size >> PAGE_CACHE_SHIFT) 1788 len = size & ~PAGE_CACHE_MASK; 1789 else 1790 len = PAGE_CACHE_SIZE; 1791 1792 /* 1793 * If the page does not have buffers (for whatever reason), 1794 * try to create them using __block_write_begin. If this 1795 * fails, redirty the page and move on. 1796 */ 1797 if (!page_has_buffers(page)) { 1798 if (__block_write_begin(page, 0, len, 1799 noalloc_get_block_write)) { 1800 redirty_page: 1801 redirty_page_for_writepage(wbc, page); 1802 unlock_page(page); 1803 return 0; 1804 } 1805 commit_write = 1; 1806 } 1807 page_bufs = page_buffers(page); 1808 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1809 ext4_bh_delay_or_unwritten)) { 1810 /* 1811 * We don't want to do block allocation, so redirty 1812 * the page and return. We may reach here when we do 1813 * a journal commit via journal_submit_inode_data_buffers. 1814 * We can also reach here via shrink_page_list 1815 */ 1816 goto redirty_page; 1817 } 1818 if (commit_write) 1819 /* now mark the buffer_heads as dirty and uptodate */ 1820 block_commit_write(page, 0, len); 1821 1822 if (PageChecked(page) && ext4_should_journal_data(inode)) 1823 /* 1824 * It's mmapped pagecache. Add buffers and journal it. There 1825 * doesn't seem much point in redirtying the page here. 1826 */ 1827 return __ext4_journalled_writepage(page, len); 1828 1829 if (buffer_uninit(page_bufs)) { 1830 ext4_set_bh_endio(page_bufs, inode); 1831 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1832 wbc, ext4_end_io_buffer_write); 1833 } else 1834 ret = block_write_full_page(page, noalloc_get_block_write, 1835 wbc); 1836 1837 return ret; 1838 } 1839 1840 /* 1841 * This is called via ext4_da_writepages() to 1842 * calculate the total number of credits to reserve to fit 1843 * a single extent allocation into a single transaction, 1844 * ext4_da_writpeages() will loop calling this before 1845 * the block allocation. 1846 */ 1847 1848 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1849 { 1850 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1851 1852 /* 1853 * With non-extent format the journal credit needed to 1854 * insert nrblocks contiguous block is dependent on 1855 * number of contiguous block. So we will limit 1856 * number of contiguous block to a sane value 1857 */ 1858 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1859 (max_blocks > EXT4_MAX_TRANS_DATA)) 1860 max_blocks = EXT4_MAX_TRANS_DATA; 1861 1862 return ext4_chunk_trans_blocks(inode, max_blocks); 1863 } 1864 1865 /* 1866 * write_cache_pages_da - walk the list of dirty pages of the given 1867 * address space and accumulate pages that need writing, and call 1868 * mpage_da_map_and_submit to map a single contiguous memory region 1869 * and then write them. 1870 */ 1871 static int write_cache_pages_da(struct address_space *mapping, 1872 struct writeback_control *wbc, 1873 struct mpage_da_data *mpd, 1874 pgoff_t *done_index) 1875 { 1876 struct buffer_head *bh, *head; 1877 struct inode *inode = mapping->host; 1878 struct pagevec pvec; 1879 unsigned int nr_pages; 1880 sector_t logical; 1881 pgoff_t index, end; 1882 long nr_to_write = wbc->nr_to_write; 1883 int i, tag, ret = 0; 1884 1885 memset(mpd, 0, sizeof(struct mpage_da_data)); 1886 mpd->wbc = wbc; 1887 mpd->inode = inode; 1888 pagevec_init(&pvec, 0); 1889 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1890 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1891 1892 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1893 tag = PAGECACHE_TAG_TOWRITE; 1894 else 1895 tag = PAGECACHE_TAG_DIRTY; 1896 1897 *done_index = index; 1898 while (index <= end) { 1899 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1900 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1901 if (nr_pages == 0) 1902 return 0; 1903 1904 for (i = 0; i < nr_pages; i++) { 1905 struct page *page = pvec.pages[i]; 1906 1907 /* 1908 * At this point, the page may be truncated or 1909 * invalidated (changing page->mapping to NULL), or 1910 * even swizzled back from swapper_space to tmpfs file 1911 * mapping. However, page->index will not change 1912 * because we have a reference on the page. 1913 */ 1914 if (page->index > end) 1915 goto out; 1916 1917 *done_index = page->index + 1; 1918 1919 /* 1920 * If we can't merge this page, and we have 1921 * accumulated an contiguous region, write it 1922 */ 1923 if ((mpd->next_page != page->index) && 1924 (mpd->next_page != mpd->first_page)) { 1925 mpage_da_map_and_submit(mpd); 1926 goto ret_extent_tail; 1927 } 1928 1929 lock_page(page); 1930 1931 /* 1932 * If the page is no longer dirty, or its 1933 * mapping no longer corresponds to inode we 1934 * are writing (which means it has been 1935 * truncated or invalidated), or the page is 1936 * already under writeback and we are not 1937 * doing a data integrity writeback, skip the page 1938 */ 1939 if (!PageDirty(page) || 1940 (PageWriteback(page) && 1941 (wbc->sync_mode == WB_SYNC_NONE)) || 1942 unlikely(page->mapping != mapping)) { 1943 unlock_page(page); 1944 continue; 1945 } 1946 1947 wait_on_page_writeback(page); 1948 BUG_ON(PageWriteback(page)); 1949 1950 if (mpd->next_page != page->index) 1951 mpd->first_page = page->index; 1952 mpd->next_page = page->index + 1; 1953 logical = (sector_t) page->index << 1954 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1955 1956 if (!page_has_buffers(page)) { 1957 mpage_add_bh_to_extent(mpd, logical, 1958 PAGE_CACHE_SIZE, 1959 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1960 if (mpd->io_done) 1961 goto ret_extent_tail; 1962 } else { 1963 /* 1964 * Page with regular buffer heads, 1965 * just add all dirty ones 1966 */ 1967 head = page_buffers(page); 1968 bh = head; 1969 do { 1970 BUG_ON(buffer_locked(bh)); 1971 /* 1972 * We need to try to allocate 1973 * unmapped blocks in the same page. 1974 * Otherwise we won't make progress 1975 * with the page in ext4_writepage 1976 */ 1977 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 1978 mpage_add_bh_to_extent(mpd, logical, 1979 bh->b_size, 1980 bh->b_state); 1981 if (mpd->io_done) 1982 goto ret_extent_tail; 1983 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 1984 /* 1985 * mapped dirty buffer. We need 1986 * to update the b_state 1987 * because we look at b_state 1988 * in mpage_da_map_blocks. We 1989 * don't update b_size because 1990 * if we find an unmapped 1991 * buffer_head later we need to 1992 * use the b_state flag of that 1993 * buffer_head. 1994 */ 1995 if (mpd->b_size == 0) 1996 mpd->b_state = bh->b_state & BH_FLAGS; 1997 } 1998 logical++; 1999 } while ((bh = bh->b_this_page) != head); 2000 } 2001 2002 if (nr_to_write > 0) { 2003 nr_to_write--; 2004 if (nr_to_write == 0 && 2005 wbc->sync_mode == WB_SYNC_NONE) 2006 /* 2007 * We stop writing back only if we are 2008 * not doing integrity sync. In case of 2009 * integrity sync we have to keep going 2010 * because someone may be concurrently 2011 * dirtying pages, and we might have 2012 * synced a lot of newly appeared dirty 2013 * pages, but have not synced all of the 2014 * old dirty pages. 2015 */ 2016 goto out; 2017 } 2018 } 2019 pagevec_release(&pvec); 2020 cond_resched(); 2021 } 2022 return 0; 2023 ret_extent_tail: 2024 ret = MPAGE_DA_EXTENT_TAIL; 2025 out: 2026 pagevec_release(&pvec); 2027 cond_resched(); 2028 return ret; 2029 } 2030 2031 2032 static int ext4_da_writepages(struct address_space *mapping, 2033 struct writeback_control *wbc) 2034 { 2035 pgoff_t index; 2036 int range_whole = 0; 2037 handle_t *handle = NULL; 2038 struct mpage_da_data mpd; 2039 struct inode *inode = mapping->host; 2040 int pages_written = 0; 2041 unsigned int max_pages; 2042 int range_cyclic, cycled = 1, io_done = 0; 2043 int needed_blocks, ret = 0; 2044 long desired_nr_to_write, nr_to_writebump = 0; 2045 loff_t range_start = wbc->range_start; 2046 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2047 pgoff_t done_index = 0; 2048 pgoff_t end; 2049 2050 trace_ext4_da_writepages(inode, wbc); 2051 2052 /* 2053 * No pages to write? This is mainly a kludge to avoid starting 2054 * a transaction for special inodes like journal inode on last iput() 2055 * because that could violate lock ordering on umount 2056 */ 2057 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2058 return 0; 2059 2060 /* 2061 * If the filesystem has aborted, it is read-only, so return 2062 * right away instead of dumping stack traces later on that 2063 * will obscure the real source of the problem. We test 2064 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2065 * the latter could be true if the filesystem is mounted 2066 * read-only, and in that case, ext4_da_writepages should 2067 * *never* be called, so if that ever happens, we would want 2068 * the stack trace. 2069 */ 2070 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2071 return -EROFS; 2072 2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2074 range_whole = 1; 2075 2076 range_cyclic = wbc->range_cyclic; 2077 if (wbc->range_cyclic) { 2078 index = mapping->writeback_index; 2079 if (index) 2080 cycled = 0; 2081 wbc->range_start = index << PAGE_CACHE_SHIFT; 2082 wbc->range_end = LLONG_MAX; 2083 wbc->range_cyclic = 0; 2084 end = -1; 2085 } else { 2086 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2087 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2088 } 2089 2090 /* 2091 * This works around two forms of stupidity. The first is in 2092 * the writeback code, which caps the maximum number of pages 2093 * written to be 1024 pages. This is wrong on multiple 2094 * levels; different architectues have a different page size, 2095 * which changes the maximum amount of data which gets 2096 * written. Secondly, 4 megabytes is way too small. XFS 2097 * forces this value to be 16 megabytes by multiplying 2098 * nr_to_write parameter by four, and then relies on its 2099 * allocator to allocate larger extents to make them 2100 * contiguous. Unfortunately this brings us to the second 2101 * stupidity, which is that ext4's mballoc code only allocates 2102 * at most 2048 blocks. So we force contiguous writes up to 2103 * the number of dirty blocks in the inode, or 2104 * sbi->max_writeback_mb_bump whichever is smaller. 2105 */ 2106 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2107 if (!range_cyclic && range_whole) { 2108 if (wbc->nr_to_write == LONG_MAX) 2109 desired_nr_to_write = wbc->nr_to_write; 2110 else 2111 desired_nr_to_write = wbc->nr_to_write * 8; 2112 } else 2113 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2114 max_pages); 2115 if (desired_nr_to_write > max_pages) 2116 desired_nr_to_write = max_pages; 2117 2118 if (wbc->nr_to_write < desired_nr_to_write) { 2119 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2120 wbc->nr_to_write = desired_nr_to_write; 2121 } 2122 2123 retry: 2124 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2125 tag_pages_for_writeback(mapping, index, end); 2126 2127 while (!ret && wbc->nr_to_write > 0) { 2128 2129 /* 2130 * we insert one extent at a time. So we need 2131 * credit needed for single extent allocation. 2132 * journalled mode is currently not supported 2133 * by delalloc 2134 */ 2135 BUG_ON(ext4_should_journal_data(inode)); 2136 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2137 2138 /* start a new transaction*/ 2139 handle = ext4_journal_start(inode, needed_blocks); 2140 if (IS_ERR(handle)) { 2141 ret = PTR_ERR(handle); 2142 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2143 "%ld pages, ino %lu; err %d", __func__, 2144 wbc->nr_to_write, inode->i_ino, ret); 2145 goto out_writepages; 2146 } 2147 2148 /* 2149 * Now call write_cache_pages_da() to find the next 2150 * contiguous region of logical blocks that need 2151 * blocks to be allocated by ext4 and submit them. 2152 */ 2153 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2154 /* 2155 * If we have a contiguous extent of pages and we 2156 * haven't done the I/O yet, map the blocks and submit 2157 * them for I/O. 2158 */ 2159 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2160 mpage_da_map_and_submit(&mpd); 2161 ret = MPAGE_DA_EXTENT_TAIL; 2162 } 2163 trace_ext4_da_write_pages(inode, &mpd); 2164 wbc->nr_to_write -= mpd.pages_written; 2165 2166 ext4_journal_stop(handle); 2167 2168 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2169 /* commit the transaction which would 2170 * free blocks released in the transaction 2171 * and try again 2172 */ 2173 jbd2_journal_force_commit_nested(sbi->s_journal); 2174 ret = 0; 2175 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2176 /* 2177 * got one extent now try with 2178 * rest of the pages 2179 */ 2180 pages_written += mpd.pages_written; 2181 ret = 0; 2182 io_done = 1; 2183 } else if (wbc->nr_to_write) 2184 /* 2185 * There is no more writeout needed 2186 * or we requested for a noblocking writeout 2187 * and we found the device congested 2188 */ 2189 break; 2190 } 2191 if (!io_done && !cycled) { 2192 cycled = 1; 2193 index = 0; 2194 wbc->range_start = index << PAGE_CACHE_SHIFT; 2195 wbc->range_end = mapping->writeback_index - 1; 2196 goto retry; 2197 } 2198 2199 /* Update index */ 2200 wbc->range_cyclic = range_cyclic; 2201 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2202 /* 2203 * set the writeback_index so that range_cyclic 2204 * mode will write it back later 2205 */ 2206 mapping->writeback_index = done_index; 2207 2208 out_writepages: 2209 wbc->nr_to_write -= nr_to_writebump; 2210 wbc->range_start = range_start; 2211 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2212 return ret; 2213 } 2214 2215 #define FALL_BACK_TO_NONDELALLOC 1 2216 static int ext4_nonda_switch(struct super_block *sb) 2217 { 2218 s64 free_blocks, dirty_blocks; 2219 struct ext4_sb_info *sbi = EXT4_SB(sb); 2220 2221 /* 2222 * switch to non delalloc mode if we are running low 2223 * on free block. The free block accounting via percpu 2224 * counters can get slightly wrong with percpu_counter_batch getting 2225 * accumulated on each CPU without updating global counters 2226 * Delalloc need an accurate free block accounting. So switch 2227 * to non delalloc when we are near to error range. 2228 */ 2229 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2230 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2231 if (2 * free_blocks < 3 * dirty_blocks || 2232 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2233 /* 2234 * free block count is less than 150% of dirty blocks 2235 * or free blocks is less than watermark 2236 */ 2237 return 1; 2238 } 2239 /* 2240 * Even if we don't switch but are nearing capacity, 2241 * start pushing delalloc when 1/2 of free blocks are dirty. 2242 */ 2243 if (free_blocks < 2 * dirty_blocks) 2244 writeback_inodes_sb_if_idle(sb); 2245 2246 return 0; 2247 } 2248 2249 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2250 loff_t pos, unsigned len, unsigned flags, 2251 struct page **pagep, void **fsdata) 2252 { 2253 int ret, retries = 0; 2254 struct page *page; 2255 pgoff_t index; 2256 struct inode *inode = mapping->host; 2257 handle_t *handle; 2258 2259 index = pos >> PAGE_CACHE_SHIFT; 2260 2261 if (ext4_nonda_switch(inode->i_sb)) { 2262 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2263 return ext4_write_begin(file, mapping, pos, 2264 len, flags, pagep, fsdata); 2265 } 2266 *fsdata = (void *)0; 2267 trace_ext4_da_write_begin(inode, pos, len, flags); 2268 retry: 2269 /* 2270 * With delayed allocation, we don't log the i_disksize update 2271 * if there is delayed block allocation. But we still need 2272 * to journalling the i_disksize update if writes to the end 2273 * of file which has an already mapped buffer. 2274 */ 2275 handle = ext4_journal_start(inode, 1); 2276 if (IS_ERR(handle)) { 2277 ret = PTR_ERR(handle); 2278 goto out; 2279 } 2280 /* We cannot recurse into the filesystem as the transaction is already 2281 * started */ 2282 flags |= AOP_FLAG_NOFS; 2283 2284 page = grab_cache_page_write_begin(mapping, index, flags); 2285 if (!page) { 2286 ext4_journal_stop(handle); 2287 ret = -ENOMEM; 2288 goto out; 2289 } 2290 *pagep = page; 2291 2292 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2293 if (ret < 0) { 2294 unlock_page(page); 2295 ext4_journal_stop(handle); 2296 page_cache_release(page); 2297 /* 2298 * block_write_begin may have instantiated a few blocks 2299 * outside i_size. Trim these off again. Don't need 2300 * i_size_read because we hold i_mutex. 2301 */ 2302 if (pos + len > inode->i_size) 2303 ext4_truncate_failed_write(inode); 2304 } 2305 2306 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2307 goto retry; 2308 out: 2309 return ret; 2310 } 2311 2312 /* 2313 * Check if we should update i_disksize 2314 * when write to the end of file but not require block allocation 2315 */ 2316 static int ext4_da_should_update_i_disksize(struct page *page, 2317 unsigned long offset) 2318 { 2319 struct buffer_head *bh; 2320 struct inode *inode = page->mapping->host; 2321 unsigned int idx; 2322 int i; 2323 2324 bh = page_buffers(page); 2325 idx = offset >> inode->i_blkbits; 2326 2327 for (i = 0; i < idx; i++) 2328 bh = bh->b_this_page; 2329 2330 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2331 return 0; 2332 return 1; 2333 } 2334 2335 static int ext4_da_write_end(struct file *file, 2336 struct address_space *mapping, 2337 loff_t pos, unsigned len, unsigned copied, 2338 struct page *page, void *fsdata) 2339 { 2340 struct inode *inode = mapping->host; 2341 int ret = 0, ret2; 2342 handle_t *handle = ext4_journal_current_handle(); 2343 loff_t new_i_size; 2344 unsigned long start, end; 2345 int write_mode = (int)(unsigned long)fsdata; 2346 2347 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2348 if (ext4_should_order_data(inode)) { 2349 return ext4_ordered_write_end(file, mapping, pos, 2350 len, copied, page, fsdata); 2351 } else if (ext4_should_writeback_data(inode)) { 2352 return ext4_writeback_write_end(file, mapping, pos, 2353 len, copied, page, fsdata); 2354 } else { 2355 BUG(); 2356 } 2357 } 2358 2359 trace_ext4_da_write_end(inode, pos, len, copied); 2360 start = pos & (PAGE_CACHE_SIZE - 1); 2361 end = start + copied - 1; 2362 2363 /* 2364 * generic_write_end() will run mark_inode_dirty() if i_size 2365 * changes. So let's piggyback the i_disksize mark_inode_dirty 2366 * into that. 2367 */ 2368 2369 new_i_size = pos + copied; 2370 if (new_i_size > EXT4_I(inode)->i_disksize) { 2371 if (ext4_da_should_update_i_disksize(page, end)) { 2372 down_write(&EXT4_I(inode)->i_data_sem); 2373 if (new_i_size > EXT4_I(inode)->i_disksize) { 2374 /* 2375 * Updating i_disksize when extending file 2376 * without needing block allocation 2377 */ 2378 if (ext4_should_order_data(inode)) 2379 ret = ext4_jbd2_file_inode(handle, 2380 inode); 2381 2382 EXT4_I(inode)->i_disksize = new_i_size; 2383 } 2384 up_write(&EXT4_I(inode)->i_data_sem); 2385 /* We need to mark inode dirty even if 2386 * new_i_size is less that inode->i_size 2387 * bu greater than i_disksize.(hint delalloc) 2388 */ 2389 ext4_mark_inode_dirty(handle, inode); 2390 } 2391 } 2392 ret2 = generic_write_end(file, mapping, pos, len, copied, 2393 page, fsdata); 2394 copied = ret2; 2395 if (ret2 < 0) 2396 ret = ret2; 2397 ret2 = ext4_journal_stop(handle); 2398 if (!ret) 2399 ret = ret2; 2400 2401 return ret ? ret : copied; 2402 } 2403 2404 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2405 { 2406 /* 2407 * Drop reserved blocks 2408 */ 2409 BUG_ON(!PageLocked(page)); 2410 if (!page_has_buffers(page)) 2411 goto out; 2412 2413 ext4_da_page_release_reservation(page, offset); 2414 2415 out: 2416 ext4_invalidatepage(page, offset); 2417 2418 return; 2419 } 2420 2421 /* 2422 * Force all delayed allocation blocks to be allocated for a given inode. 2423 */ 2424 int ext4_alloc_da_blocks(struct inode *inode) 2425 { 2426 trace_ext4_alloc_da_blocks(inode); 2427 2428 if (!EXT4_I(inode)->i_reserved_data_blocks && 2429 !EXT4_I(inode)->i_reserved_meta_blocks) 2430 return 0; 2431 2432 /* 2433 * We do something simple for now. The filemap_flush() will 2434 * also start triggering a write of the data blocks, which is 2435 * not strictly speaking necessary (and for users of 2436 * laptop_mode, not even desirable). However, to do otherwise 2437 * would require replicating code paths in: 2438 * 2439 * ext4_da_writepages() -> 2440 * write_cache_pages() ---> (via passed in callback function) 2441 * __mpage_da_writepage() --> 2442 * mpage_add_bh_to_extent() 2443 * mpage_da_map_blocks() 2444 * 2445 * The problem is that write_cache_pages(), located in 2446 * mm/page-writeback.c, marks pages clean in preparation for 2447 * doing I/O, which is not desirable if we're not planning on 2448 * doing I/O at all. 2449 * 2450 * We could call write_cache_pages(), and then redirty all of 2451 * the pages by calling redirty_page_for_writepage() but that 2452 * would be ugly in the extreme. So instead we would need to 2453 * replicate parts of the code in the above functions, 2454 * simplifying them because we wouldn't actually intend to 2455 * write out the pages, but rather only collect contiguous 2456 * logical block extents, call the multi-block allocator, and 2457 * then update the buffer heads with the block allocations. 2458 * 2459 * For now, though, we'll cheat by calling filemap_flush(), 2460 * which will map the blocks, and start the I/O, but not 2461 * actually wait for the I/O to complete. 2462 */ 2463 return filemap_flush(inode->i_mapping); 2464 } 2465 2466 /* 2467 * bmap() is special. It gets used by applications such as lilo and by 2468 * the swapper to find the on-disk block of a specific piece of data. 2469 * 2470 * Naturally, this is dangerous if the block concerned is still in the 2471 * journal. If somebody makes a swapfile on an ext4 data-journaling 2472 * filesystem and enables swap, then they may get a nasty shock when the 2473 * data getting swapped to that swapfile suddenly gets overwritten by 2474 * the original zero's written out previously to the journal and 2475 * awaiting writeback in the kernel's buffer cache. 2476 * 2477 * So, if we see any bmap calls here on a modified, data-journaled file, 2478 * take extra steps to flush any blocks which might be in the cache. 2479 */ 2480 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2481 { 2482 struct inode *inode = mapping->host; 2483 journal_t *journal; 2484 int err; 2485 2486 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2487 test_opt(inode->i_sb, DELALLOC)) { 2488 /* 2489 * With delalloc we want to sync the file 2490 * so that we can make sure we allocate 2491 * blocks for file 2492 */ 2493 filemap_write_and_wait(mapping); 2494 } 2495 2496 if (EXT4_JOURNAL(inode) && 2497 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2498 /* 2499 * This is a REALLY heavyweight approach, but the use of 2500 * bmap on dirty files is expected to be extremely rare: 2501 * only if we run lilo or swapon on a freshly made file 2502 * do we expect this to happen. 2503 * 2504 * (bmap requires CAP_SYS_RAWIO so this does not 2505 * represent an unprivileged user DOS attack --- we'd be 2506 * in trouble if mortal users could trigger this path at 2507 * will.) 2508 * 2509 * NB. EXT4_STATE_JDATA is not set on files other than 2510 * regular files. If somebody wants to bmap a directory 2511 * or symlink and gets confused because the buffer 2512 * hasn't yet been flushed to disk, they deserve 2513 * everything they get. 2514 */ 2515 2516 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2517 journal = EXT4_JOURNAL(inode); 2518 jbd2_journal_lock_updates(journal); 2519 err = jbd2_journal_flush(journal); 2520 jbd2_journal_unlock_updates(journal); 2521 2522 if (err) 2523 return 0; 2524 } 2525 2526 return generic_block_bmap(mapping, block, ext4_get_block); 2527 } 2528 2529 static int ext4_readpage(struct file *file, struct page *page) 2530 { 2531 trace_ext4_readpage(page); 2532 return mpage_readpage(page, ext4_get_block); 2533 } 2534 2535 static int 2536 ext4_readpages(struct file *file, struct address_space *mapping, 2537 struct list_head *pages, unsigned nr_pages) 2538 { 2539 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2540 } 2541 2542 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2543 { 2544 struct buffer_head *head, *bh; 2545 unsigned int curr_off = 0; 2546 2547 if (!page_has_buffers(page)) 2548 return; 2549 head = bh = page_buffers(page); 2550 do { 2551 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2552 && bh->b_private) { 2553 ext4_free_io_end(bh->b_private); 2554 bh->b_private = NULL; 2555 bh->b_end_io = NULL; 2556 } 2557 curr_off = curr_off + bh->b_size; 2558 bh = bh->b_this_page; 2559 } while (bh != head); 2560 } 2561 2562 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2563 { 2564 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2565 2566 trace_ext4_invalidatepage(page, offset); 2567 2568 /* 2569 * free any io_end structure allocated for buffers to be discarded 2570 */ 2571 if (ext4_should_dioread_nolock(page->mapping->host)) 2572 ext4_invalidatepage_free_endio(page, offset); 2573 /* 2574 * If it's a full truncate we just forget about the pending dirtying 2575 */ 2576 if (offset == 0) 2577 ClearPageChecked(page); 2578 2579 if (journal) 2580 jbd2_journal_invalidatepage(journal, page, offset); 2581 else 2582 block_invalidatepage(page, offset); 2583 } 2584 2585 static int ext4_releasepage(struct page *page, gfp_t wait) 2586 { 2587 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2588 2589 trace_ext4_releasepage(page); 2590 2591 WARN_ON(PageChecked(page)); 2592 if (!page_has_buffers(page)) 2593 return 0; 2594 if (journal) 2595 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2596 else 2597 return try_to_free_buffers(page); 2598 } 2599 2600 /* 2601 * ext4_get_block used when preparing for a DIO write or buffer write. 2602 * We allocate an uinitialized extent if blocks haven't been allocated. 2603 * The extent will be converted to initialized after the IO is complete. 2604 */ 2605 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2606 struct buffer_head *bh_result, int create) 2607 { 2608 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2609 inode->i_ino, create); 2610 return _ext4_get_block(inode, iblock, bh_result, 2611 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2612 } 2613 2614 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2615 ssize_t size, void *private, int ret, 2616 bool is_async) 2617 { 2618 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2619 ext4_io_end_t *io_end = iocb->private; 2620 struct workqueue_struct *wq; 2621 unsigned long flags; 2622 struct ext4_inode_info *ei; 2623 2624 /* if not async direct IO or dio with 0 bytes write, just return */ 2625 if (!io_end || !size) 2626 goto out; 2627 2628 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2629 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2630 iocb->private, io_end->inode->i_ino, iocb, offset, 2631 size); 2632 2633 /* if not aio dio with unwritten extents, just free io and return */ 2634 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2635 ext4_free_io_end(io_end); 2636 iocb->private = NULL; 2637 out: 2638 if (is_async) 2639 aio_complete(iocb, ret, 0); 2640 inode_dio_done(inode); 2641 return; 2642 } 2643 2644 io_end->offset = offset; 2645 io_end->size = size; 2646 if (is_async) { 2647 io_end->iocb = iocb; 2648 io_end->result = ret; 2649 } 2650 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2651 2652 /* Add the io_end to per-inode completed aio dio list*/ 2653 ei = EXT4_I(io_end->inode); 2654 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2655 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2656 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2657 2658 /* queue the work to convert unwritten extents to written */ 2659 queue_work(wq, &io_end->work); 2660 iocb->private = NULL; 2661 2662 /* XXX: probably should move into the real I/O completion handler */ 2663 inode_dio_done(inode); 2664 } 2665 2666 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2667 { 2668 ext4_io_end_t *io_end = bh->b_private; 2669 struct workqueue_struct *wq; 2670 struct inode *inode; 2671 unsigned long flags; 2672 2673 if (!test_clear_buffer_uninit(bh) || !io_end) 2674 goto out; 2675 2676 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2677 printk("sb umounted, discard end_io request for inode %lu\n", 2678 io_end->inode->i_ino); 2679 ext4_free_io_end(io_end); 2680 goto out; 2681 } 2682 2683 /* 2684 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2685 * but being more careful is always safe for the future change. 2686 */ 2687 inode = io_end->inode; 2688 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2689 io_end->flag |= EXT4_IO_END_UNWRITTEN; 2690 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten); 2691 } 2692 2693 /* Add the io_end to per-inode completed io list*/ 2694 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2695 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2696 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2697 2698 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2699 /* queue the work to convert unwritten extents to written */ 2700 queue_work(wq, &io_end->work); 2701 out: 2702 bh->b_private = NULL; 2703 bh->b_end_io = NULL; 2704 clear_buffer_uninit(bh); 2705 end_buffer_async_write(bh, uptodate); 2706 } 2707 2708 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2709 { 2710 ext4_io_end_t *io_end; 2711 struct page *page = bh->b_page; 2712 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2713 size_t size = bh->b_size; 2714 2715 retry: 2716 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2717 if (!io_end) { 2718 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2719 schedule(); 2720 goto retry; 2721 } 2722 io_end->offset = offset; 2723 io_end->size = size; 2724 /* 2725 * We need to hold a reference to the page to make sure it 2726 * doesn't get evicted before ext4_end_io_work() has a chance 2727 * to convert the extent from written to unwritten. 2728 */ 2729 io_end->page = page; 2730 get_page(io_end->page); 2731 2732 bh->b_private = io_end; 2733 bh->b_end_io = ext4_end_io_buffer_write; 2734 return 0; 2735 } 2736 2737 /* 2738 * For ext4 extent files, ext4 will do direct-io write to holes, 2739 * preallocated extents, and those write extend the file, no need to 2740 * fall back to buffered IO. 2741 * 2742 * For holes, we fallocate those blocks, mark them as uninitialized 2743 * If those blocks were preallocated, we mark sure they are splited, but 2744 * still keep the range to write as uninitialized. 2745 * 2746 * The unwrritten extents will be converted to written when DIO is completed. 2747 * For async direct IO, since the IO may still pending when return, we 2748 * set up an end_io call back function, which will do the conversion 2749 * when async direct IO completed. 2750 * 2751 * If the O_DIRECT write will extend the file then add this inode to the 2752 * orphan list. So recovery will truncate it back to the original size 2753 * if the machine crashes during the write. 2754 * 2755 */ 2756 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2757 const struct iovec *iov, loff_t offset, 2758 unsigned long nr_segs) 2759 { 2760 struct file *file = iocb->ki_filp; 2761 struct inode *inode = file->f_mapping->host; 2762 ssize_t ret; 2763 size_t count = iov_length(iov, nr_segs); 2764 2765 loff_t final_size = offset + count; 2766 if (rw == WRITE && final_size <= inode->i_size) { 2767 /* 2768 * We could direct write to holes and fallocate. 2769 * 2770 * Allocated blocks to fill the hole are marked as uninitialized 2771 * to prevent parallel buffered read to expose the stale data 2772 * before DIO complete the data IO. 2773 * 2774 * As to previously fallocated extents, ext4 get_block 2775 * will just simply mark the buffer mapped but still 2776 * keep the extents uninitialized. 2777 * 2778 * for non AIO case, we will convert those unwritten extents 2779 * to written after return back from blockdev_direct_IO. 2780 * 2781 * for async DIO, the conversion needs to be defered when 2782 * the IO is completed. The ext4 end_io callback function 2783 * will be called to take care of the conversion work. 2784 * Here for async case, we allocate an io_end structure to 2785 * hook to the iocb. 2786 */ 2787 iocb->private = NULL; 2788 EXT4_I(inode)->cur_aio_dio = NULL; 2789 if (!is_sync_kiocb(iocb)) { 2790 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2791 if (!iocb->private) 2792 return -ENOMEM; 2793 /* 2794 * we save the io structure for current async 2795 * direct IO, so that later ext4_map_blocks() 2796 * could flag the io structure whether there 2797 * is a unwritten extents needs to be converted 2798 * when IO is completed. 2799 */ 2800 EXT4_I(inode)->cur_aio_dio = iocb->private; 2801 } 2802 2803 ret = __blockdev_direct_IO(rw, iocb, inode, 2804 inode->i_sb->s_bdev, iov, 2805 offset, nr_segs, 2806 ext4_get_block_write, 2807 ext4_end_io_dio, 2808 NULL, 2809 DIO_LOCKING | DIO_SKIP_HOLES); 2810 if (iocb->private) 2811 EXT4_I(inode)->cur_aio_dio = NULL; 2812 /* 2813 * The io_end structure takes a reference to the inode, 2814 * that structure needs to be destroyed and the 2815 * reference to the inode need to be dropped, when IO is 2816 * complete, even with 0 byte write, or failed. 2817 * 2818 * In the successful AIO DIO case, the io_end structure will be 2819 * desctroyed and the reference to the inode will be dropped 2820 * after the end_io call back function is called. 2821 * 2822 * In the case there is 0 byte write, or error case, since 2823 * VFS direct IO won't invoke the end_io call back function, 2824 * we need to free the end_io structure here. 2825 */ 2826 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2827 ext4_free_io_end(iocb->private); 2828 iocb->private = NULL; 2829 } else if (ret > 0 && ext4_test_inode_state(inode, 2830 EXT4_STATE_DIO_UNWRITTEN)) { 2831 int err; 2832 /* 2833 * for non AIO case, since the IO is already 2834 * completed, we could do the conversion right here 2835 */ 2836 err = ext4_convert_unwritten_extents(inode, 2837 offset, ret); 2838 if (err < 0) 2839 ret = err; 2840 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2841 } 2842 return ret; 2843 } 2844 2845 /* for write the the end of file case, we fall back to old way */ 2846 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2847 } 2848 2849 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2850 const struct iovec *iov, loff_t offset, 2851 unsigned long nr_segs) 2852 { 2853 struct file *file = iocb->ki_filp; 2854 struct inode *inode = file->f_mapping->host; 2855 ssize_t ret; 2856 2857 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 2858 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 2859 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 2860 else 2861 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2862 trace_ext4_direct_IO_exit(inode, offset, 2863 iov_length(iov, nr_segs), rw, ret); 2864 return ret; 2865 } 2866 2867 /* 2868 * Pages can be marked dirty completely asynchronously from ext4's journalling 2869 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 2870 * much here because ->set_page_dirty is called under VFS locks. The page is 2871 * not necessarily locked. 2872 * 2873 * We cannot just dirty the page and leave attached buffers clean, because the 2874 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 2875 * or jbddirty because all the journalling code will explode. 2876 * 2877 * So what we do is to mark the page "pending dirty" and next time writepage 2878 * is called, propagate that into the buffers appropriately. 2879 */ 2880 static int ext4_journalled_set_page_dirty(struct page *page) 2881 { 2882 SetPageChecked(page); 2883 return __set_page_dirty_nobuffers(page); 2884 } 2885 2886 static const struct address_space_operations ext4_ordered_aops = { 2887 .readpage = ext4_readpage, 2888 .readpages = ext4_readpages, 2889 .writepage = ext4_writepage, 2890 .write_begin = ext4_write_begin, 2891 .write_end = ext4_ordered_write_end, 2892 .bmap = ext4_bmap, 2893 .invalidatepage = ext4_invalidatepage, 2894 .releasepage = ext4_releasepage, 2895 .direct_IO = ext4_direct_IO, 2896 .migratepage = buffer_migrate_page, 2897 .is_partially_uptodate = block_is_partially_uptodate, 2898 .error_remove_page = generic_error_remove_page, 2899 }; 2900 2901 static const struct address_space_operations ext4_writeback_aops = { 2902 .readpage = ext4_readpage, 2903 .readpages = ext4_readpages, 2904 .writepage = ext4_writepage, 2905 .write_begin = ext4_write_begin, 2906 .write_end = ext4_writeback_write_end, 2907 .bmap = ext4_bmap, 2908 .invalidatepage = ext4_invalidatepage, 2909 .releasepage = ext4_releasepage, 2910 .direct_IO = ext4_direct_IO, 2911 .migratepage = buffer_migrate_page, 2912 .is_partially_uptodate = block_is_partially_uptodate, 2913 .error_remove_page = generic_error_remove_page, 2914 }; 2915 2916 static const struct address_space_operations ext4_journalled_aops = { 2917 .readpage = ext4_readpage, 2918 .readpages = ext4_readpages, 2919 .writepage = ext4_writepage, 2920 .write_begin = ext4_write_begin, 2921 .write_end = ext4_journalled_write_end, 2922 .set_page_dirty = ext4_journalled_set_page_dirty, 2923 .bmap = ext4_bmap, 2924 .invalidatepage = ext4_invalidatepage, 2925 .releasepage = ext4_releasepage, 2926 .is_partially_uptodate = block_is_partially_uptodate, 2927 .error_remove_page = generic_error_remove_page, 2928 }; 2929 2930 static const struct address_space_operations ext4_da_aops = { 2931 .readpage = ext4_readpage, 2932 .readpages = ext4_readpages, 2933 .writepage = ext4_writepage, 2934 .writepages = ext4_da_writepages, 2935 .write_begin = ext4_da_write_begin, 2936 .write_end = ext4_da_write_end, 2937 .bmap = ext4_bmap, 2938 .invalidatepage = ext4_da_invalidatepage, 2939 .releasepage = ext4_releasepage, 2940 .direct_IO = ext4_direct_IO, 2941 .migratepage = buffer_migrate_page, 2942 .is_partially_uptodate = block_is_partially_uptodate, 2943 .error_remove_page = generic_error_remove_page, 2944 }; 2945 2946 void ext4_set_aops(struct inode *inode) 2947 { 2948 if (ext4_should_order_data(inode) && 2949 test_opt(inode->i_sb, DELALLOC)) 2950 inode->i_mapping->a_ops = &ext4_da_aops; 2951 else if (ext4_should_order_data(inode)) 2952 inode->i_mapping->a_ops = &ext4_ordered_aops; 2953 else if (ext4_should_writeback_data(inode) && 2954 test_opt(inode->i_sb, DELALLOC)) 2955 inode->i_mapping->a_ops = &ext4_da_aops; 2956 else if (ext4_should_writeback_data(inode)) 2957 inode->i_mapping->a_ops = &ext4_writeback_aops; 2958 else 2959 inode->i_mapping->a_ops = &ext4_journalled_aops; 2960 } 2961 2962 /* 2963 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 2964 * up to the end of the block which corresponds to `from'. 2965 * This required during truncate. We need to physically zero the tail end 2966 * of that block so it doesn't yield old data if the file is later grown. 2967 */ 2968 int ext4_block_truncate_page(handle_t *handle, 2969 struct address_space *mapping, loff_t from) 2970 { 2971 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2972 unsigned length; 2973 unsigned blocksize; 2974 struct inode *inode = mapping->host; 2975 2976 blocksize = inode->i_sb->s_blocksize; 2977 length = blocksize - (offset & (blocksize - 1)); 2978 2979 return ext4_block_zero_page_range(handle, mapping, from, length); 2980 } 2981 2982 /* 2983 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 2984 * starting from file offset 'from'. The range to be zero'd must 2985 * be contained with in one block. If the specified range exceeds 2986 * the end of the block it will be shortened to end of the block 2987 * that cooresponds to 'from' 2988 */ 2989 int ext4_block_zero_page_range(handle_t *handle, 2990 struct address_space *mapping, loff_t from, loff_t length) 2991 { 2992 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2993 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2994 unsigned blocksize, max, pos; 2995 ext4_lblk_t iblock; 2996 struct inode *inode = mapping->host; 2997 struct buffer_head *bh; 2998 struct page *page; 2999 int err = 0; 3000 3001 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3002 mapping_gfp_mask(mapping) & ~__GFP_FS); 3003 if (!page) 3004 return -EINVAL; 3005 3006 blocksize = inode->i_sb->s_blocksize; 3007 max = blocksize - (offset & (blocksize - 1)); 3008 3009 /* 3010 * correct length if it does not fall between 3011 * 'from' and the end of the block 3012 */ 3013 if (length > max || length < 0) 3014 length = max; 3015 3016 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3017 3018 if (!page_has_buffers(page)) 3019 create_empty_buffers(page, blocksize, 0); 3020 3021 /* Find the buffer that contains "offset" */ 3022 bh = page_buffers(page); 3023 pos = blocksize; 3024 while (offset >= pos) { 3025 bh = bh->b_this_page; 3026 iblock++; 3027 pos += blocksize; 3028 } 3029 3030 err = 0; 3031 if (buffer_freed(bh)) { 3032 BUFFER_TRACE(bh, "freed: skip"); 3033 goto unlock; 3034 } 3035 3036 if (!buffer_mapped(bh)) { 3037 BUFFER_TRACE(bh, "unmapped"); 3038 ext4_get_block(inode, iblock, bh, 0); 3039 /* unmapped? It's a hole - nothing to do */ 3040 if (!buffer_mapped(bh)) { 3041 BUFFER_TRACE(bh, "still unmapped"); 3042 goto unlock; 3043 } 3044 } 3045 3046 /* Ok, it's mapped. Make sure it's up-to-date */ 3047 if (PageUptodate(page)) 3048 set_buffer_uptodate(bh); 3049 3050 if (!buffer_uptodate(bh)) { 3051 err = -EIO; 3052 ll_rw_block(READ, 1, &bh); 3053 wait_on_buffer(bh); 3054 /* Uhhuh. Read error. Complain and punt. */ 3055 if (!buffer_uptodate(bh)) 3056 goto unlock; 3057 } 3058 3059 if (ext4_should_journal_data(inode)) { 3060 BUFFER_TRACE(bh, "get write access"); 3061 err = ext4_journal_get_write_access(handle, bh); 3062 if (err) 3063 goto unlock; 3064 } 3065 3066 zero_user(page, offset, length); 3067 3068 BUFFER_TRACE(bh, "zeroed end of block"); 3069 3070 err = 0; 3071 if (ext4_should_journal_data(inode)) { 3072 err = ext4_handle_dirty_metadata(handle, inode, bh); 3073 } else { 3074 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 3075 err = ext4_jbd2_file_inode(handle, inode); 3076 mark_buffer_dirty(bh); 3077 } 3078 3079 unlock: 3080 unlock_page(page); 3081 page_cache_release(page); 3082 return err; 3083 } 3084 3085 int ext4_can_truncate(struct inode *inode) 3086 { 3087 if (S_ISREG(inode->i_mode)) 3088 return 1; 3089 if (S_ISDIR(inode->i_mode)) 3090 return 1; 3091 if (S_ISLNK(inode->i_mode)) 3092 return !ext4_inode_is_fast_symlink(inode); 3093 return 0; 3094 } 3095 3096 /* 3097 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3098 * associated with the given offset and length 3099 * 3100 * @inode: File inode 3101 * @offset: The offset where the hole will begin 3102 * @len: The length of the hole 3103 * 3104 * Returns: 0 on sucess or negative on failure 3105 */ 3106 3107 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3108 { 3109 struct inode *inode = file->f_path.dentry->d_inode; 3110 if (!S_ISREG(inode->i_mode)) 3111 return -ENOTSUPP; 3112 3113 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3114 /* TODO: Add support for non extent hole punching */ 3115 return -ENOTSUPP; 3116 } 3117 3118 return ext4_ext_punch_hole(file, offset, length); 3119 } 3120 3121 /* 3122 * ext4_truncate() 3123 * 3124 * We block out ext4_get_block() block instantiations across the entire 3125 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3126 * simultaneously on behalf of the same inode. 3127 * 3128 * As we work through the truncate and commmit bits of it to the journal there 3129 * is one core, guiding principle: the file's tree must always be consistent on 3130 * disk. We must be able to restart the truncate after a crash. 3131 * 3132 * The file's tree may be transiently inconsistent in memory (although it 3133 * probably isn't), but whenever we close off and commit a journal transaction, 3134 * the contents of (the filesystem + the journal) must be consistent and 3135 * restartable. It's pretty simple, really: bottom up, right to left (although 3136 * left-to-right works OK too). 3137 * 3138 * Note that at recovery time, journal replay occurs *before* the restart of 3139 * truncate against the orphan inode list. 3140 * 3141 * The committed inode has the new, desired i_size (which is the same as 3142 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3143 * that this inode's truncate did not complete and it will again call 3144 * ext4_truncate() to have another go. So there will be instantiated blocks 3145 * to the right of the truncation point in a crashed ext4 filesystem. But 3146 * that's fine - as long as they are linked from the inode, the post-crash 3147 * ext4_truncate() run will find them and release them. 3148 */ 3149 void ext4_truncate(struct inode *inode) 3150 { 3151 trace_ext4_truncate_enter(inode); 3152 3153 if (!ext4_can_truncate(inode)) 3154 return; 3155 3156 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3157 3158 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3159 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3160 3161 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3162 ext4_ext_truncate(inode); 3163 else 3164 ext4_ind_truncate(inode); 3165 3166 trace_ext4_truncate_exit(inode); 3167 } 3168 3169 /* 3170 * ext4_get_inode_loc returns with an extra refcount against the inode's 3171 * underlying buffer_head on success. If 'in_mem' is true, we have all 3172 * data in memory that is needed to recreate the on-disk version of this 3173 * inode. 3174 */ 3175 static int __ext4_get_inode_loc(struct inode *inode, 3176 struct ext4_iloc *iloc, int in_mem) 3177 { 3178 struct ext4_group_desc *gdp; 3179 struct buffer_head *bh; 3180 struct super_block *sb = inode->i_sb; 3181 ext4_fsblk_t block; 3182 int inodes_per_block, inode_offset; 3183 3184 iloc->bh = NULL; 3185 if (!ext4_valid_inum(sb, inode->i_ino)) 3186 return -EIO; 3187 3188 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3189 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3190 if (!gdp) 3191 return -EIO; 3192 3193 /* 3194 * Figure out the offset within the block group inode table 3195 */ 3196 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3197 inode_offset = ((inode->i_ino - 1) % 3198 EXT4_INODES_PER_GROUP(sb)); 3199 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3200 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3201 3202 bh = sb_getblk(sb, block); 3203 if (!bh) { 3204 EXT4_ERROR_INODE_BLOCK(inode, block, 3205 "unable to read itable block"); 3206 return -EIO; 3207 } 3208 if (!buffer_uptodate(bh)) { 3209 lock_buffer(bh); 3210 3211 /* 3212 * If the buffer has the write error flag, we have failed 3213 * to write out another inode in the same block. In this 3214 * case, we don't have to read the block because we may 3215 * read the old inode data successfully. 3216 */ 3217 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3218 set_buffer_uptodate(bh); 3219 3220 if (buffer_uptodate(bh)) { 3221 /* someone brought it uptodate while we waited */ 3222 unlock_buffer(bh); 3223 goto has_buffer; 3224 } 3225 3226 /* 3227 * If we have all information of the inode in memory and this 3228 * is the only valid inode in the block, we need not read the 3229 * block. 3230 */ 3231 if (in_mem) { 3232 struct buffer_head *bitmap_bh; 3233 int i, start; 3234 3235 start = inode_offset & ~(inodes_per_block - 1); 3236 3237 /* Is the inode bitmap in cache? */ 3238 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3239 if (!bitmap_bh) 3240 goto make_io; 3241 3242 /* 3243 * If the inode bitmap isn't in cache then the 3244 * optimisation may end up performing two reads instead 3245 * of one, so skip it. 3246 */ 3247 if (!buffer_uptodate(bitmap_bh)) { 3248 brelse(bitmap_bh); 3249 goto make_io; 3250 } 3251 for (i = start; i < start + inodes_per_block; i++) { 3252 if (i == inode_offset) 3253 continue; 3254 if (ext4_test_bit(i, bitmap_bh->b_data)) 3255 break; 3256 } 3257 brelse(bitmap_bh); 3258 if (i == start + inodes_per_block) { 3259 /* all other inodes are free, so skip I/O */ 3260 memset(bh->b_data, 0, bh->b_size); 3261 set_buffer_uptodate(bh); 3262 unlock_buffer(bh); 3263 goto has_buffer; 3264 } 3265 } 3266 3267 make_io: 3268 /* 3269 * If we need to do any I/O, try to pre-readahead extra 3270 * blocks from the inode table. 3271 */ 3272 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3273 ext4_fsblk_t b, end, table; 3274 unsigned num; 3275 3276 table = ext4_inode_table(sb, gdp); 3277 /* s_inode_readahead_blks is always a power of 2 */ 3278 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3279 if (table > b) 3280 b = table; 3281 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3282 num = EXT4_INODES_PER_GROUP(sb); 3283 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3284 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3285 num -= ext4_itable_unused_count(sb, gdp); 3286 table += num / inodes_per_block; 3287 if (end > table) 3288 end = table; 3289 while (b <= end) 3290 sb_breadahead(sb, b++); 3291 } 3292 3293 /* 3294 * There are other valid inodes in the buffer, this inode 3295 * has in-inode xattrs, or we don't have this inode in memory. 3296 * Read the block from disk. 3297 */ 3298 trace_ext4_load_inode(inode); 3299 get_bh(bh); 3300 bh->b_end_io = end_buffer_read_sync; 3301 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3302 wait_on_buffer(bh); 3303 if (!buffer_uptodate(bh)) { 3304 EXT4_ERROR_INODE_BLOCK(inode, block, 3305 "unable to read itable block"); 3306 brelse(bh); 3307 return -EIO; 3308 } 3309 } 3310 has_buffer: 3311 iloc->bh = bh; 3312 return 0; 3313 } 3314 3315 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3316 { 3317 /* We have all inode data except xattrs in memory here. */ 3318 return __ext4_get_inode_loc(inode, iloc, 3319 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3320 } 3321 3322 void ext4_set_inode_flags(struct inode *inode) 3323 { 3324 unsigned int flags = EXT4_I(inode)->i_flags; 3325 3326 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3327 if (flags & EXT4_SYNC_FL) 3328 inode->i_flags |= S_SYNC; 3329 if (flags & EXT4_APPEND_FL) 3330 inode->i_flags |= S_APPEND; 3331 if (flags & EXT4_IMMUTABLE_FL) 3332 inode->i_flags |= S_IMMUTABLE; 3333 if (flags & EXT4_NOATIME_FL) 3334 inode->i_flags |= S_NOATIME; 3335 if (flags & EXT4_DIRSYNC_FL) 3336 inode->i_flags |= S_DIRSYNC; 3337 } 3338 3339 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3340 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3341 { 3342 unsigned int vfs_fl; 3343 unsigned long old_fl, new_fl; 3344 3345 do { 3346 vfs_fl = ei->vfs_inode.i_flags; 3347 old_fl = ei->i_flags; 3348 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3349 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3350 EXT4_DIRSYNC_FL); 3351 if (vfs_fl & S_SYNC) 3352 new_fl |= EXT4_SYNC_FL; 3353 if (vfs_fl & S_APPEND) 3354 new_fl |= EXT4_APPEND_FL; 3355 if (vfs_fl & S_IMMUTABLE) 3356 new_fl |= EXT4_IMMUTABLE_FL; 3357 if (vfs_fl & S_NOATIME) 3358 new_fl |= EXT4_NOATIME_FL; 3359 if (vfs_fl & S_DIRSYNC) 3360 new_fl |= EXT4_DIRSYNC_FL; 3361 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3362 } 3363 3364 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3365 struct ext4_inode_info *ei) 3366 { 3367 blkcnt_t i_blocks ; 3368 struct inode *inode = &(ei->vfs_inode); 3369 struct super_block *sb = inode->i_sb; 3370 3371 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3372 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3373 /* we are using combined 48 bit field */ 3374 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3375 le32_to_cpu(raw_inode->i_blocks_lo); 3376 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3377 /* i_blocks represent file system block size */ 3378 return i_blocks << (inode->i_blkbits - 9); 3379 } else { 3380 return i_blocks; 3381 } 3382 } else { 3383 return le32_to_cpu(raw_inode->i_blocks_lo); 3384 } 3385 } 3386 3387 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3388 { 3389 struct ext4_iloc iloc; 3390 struct ext4_inode *raw_inode; 3391 struct ext4_inode_info *ei; 3392 struct inode *inode; 3393 journal_t *journal = EXT4_SB(sb)->s_journal; 3394 long ret; 3395 int block; 3396 3397 inode = iget_locked(sb, ino); 3398 if (!inode) 3399 return ERR_PTR(-ENOMEM); 3400 if (!(inode->i_state & I_NEW)) 3401 return inode; 3402 3403 ei = EXT4_I(inode); 3404 iloc.bh = NULL; 3405 3406 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3407 if (ret < 0) 3408 goto bad_inode; 3409 raw_inode = ext4_raw_inode(&iloc); 3410 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3411 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3412 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3413 if (!(test_opt(inode->i_sb, NO_UID32))) { 3414 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3415 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3416 } 3417 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3418 3419 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3420 ei->i_dir_start_lookup = 0; 3421 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3422 /* We now have enough fields to check if the inode was active or not. 3423 * This is needed because nfsd might try to access dead inodes 3424 * the test is that same one that e2fsck uses 3425 * NeilBrown 1999oct15 3426 */ 3427 if (inode->i_nlink == 0) { 3428 if (inode->i_mode == 0 || 3429 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3430 /* this inode is deleted */ 3431 ret = -ESTALE; 3432 goto bad_inode; 3433 } 3434 /* The only unlinked inodes we let through here have 3435 * valid i_mode and are being read by the orphan 3436 * recovery code: that's fine, we're about to complete 3437 * the process of deleting those. */ 3438 } 3439 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3440 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3441 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3442 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3443 ei->i_file_acl |= 3444 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3445 inode->i_size = ext4_isize(raw_inode); 3446 ei->i_disksize = inode->i_size; 3447 #ifdef CONFIG_QUOTA 3448 ei->i_reserved_quota = 0; 3449 #endif 3450 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3451 ei->i_block_group = iloc.block_group; 3452 ei->i_last_alloc_group = ~0; 3453 /* 3454 * NOTE! The in-memory inode i_data array is in little-endian order 3455 * even on big-endian machines: we do NOT byteswap the block numbers! 3456 */ 3457 for (block = 0; block < EXT4_N_BLOCKS; block++) 3458 ei->i_data[block] = raw_inode->i_block[block]; 3459 INIT_LIST_HEAD(&ei->i_orphan); 3460 3461 /* 3462 * Set transaction id's of transactions that have to be committed 3463 * to finish f[data]sync. We set them to currently running transaction 3464 * as we cannot be sure that the inode or some of its metadata isn't 3465 * part of the transaction - the inode could have been reclaimed and 3466 * now it is reread from disk. 3467 */ 3468 if (journal) { 3469 transaction_t *transaction; 3470 tid_t tid; 3471 3472 read_lock(&journal->j_state_lock); 3473 if (journal->j_running_transaction) 3474 transaction = journal->j_running_transaction; 3475 else 3476 transaction = journal->j_committing_transaction; 3477 if (transaction) 3478 tid = transaction->t_tid; 3479 else 3480 tid = journal->j_commit_sequence; 3481 read_unlock(&journal->j_state_lock); 3482 ei->i_sync_tid = tid; 3483 ei->i_datasync_tid = tid; 3484 } 3485 3486 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3487 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3488 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3489 EXT4_INODE_SIZE(inode->i_sb)) { 3490 ret = -EIO; 3491 goto bad_inode; 3492 } 3493 if (ei->i_extra_isize == 0) { 3494 /* The extra space is currently unused. Use it. */ 3495 ei->i_extra_isize = sizeof(struct ext4_inode) - 3496 EXT4_GOOD_OLD_INODE_SIZE; 3497 } else { 3498 __le32 *magic = (void *)raw_inode + 3499 EXT4_GOOD_OLD_INODE_SIZE + 3500 ei->i_extra_isize; 3501 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3502 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3503 } 3504 } else 3505 ei->i_extra_isize = 0; 3506 3507 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3508 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3509 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3510 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3511 3512 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3513 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3514 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3515 inode->i_version |= 3516 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3517 } 3518 3519 ret = 0; 3520 if (ei->i_file_acl && 3521 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3522 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3523 ei->i_file_acl); 3524 ret = -EIO; 3525 goto bad_inode; 3526 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3527 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3528 (S_ISLNK(inode->i_mode) && 3529 !ext4_inode_is_fast_symlink(inode))) 3530 /* Validate extent which is part of inode */ 3531 ret = ext4_ext_check_inode(inode); 3532 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3533 (S_ISLNK(inode->i_mode) && 3534 !ext4_inode_is_fast_symlink(inode))) { 3535 /* Validate block references which are part of inode */ 3536 ret = ext4_ind_check_inode(inode); 3537 } 3538 if (ret) 3539 goto bad_inode; 3540 3541 if (S_ISREG(inode->i_mode)) { 3542 inode->i_op = &ext4_file_inode_operations; 3543 inode->i_fop = &ext4_file_operations; 3544 ext4_set_aops(inode); 3545 } else if (S_ISDIR(inode->i_mode)) { 3546 inode->i_op = &ext4_dir_inode_operations; 3547 inode->i_fop = &ext4_dir_operations; 3548 } else if (S_ISLNK(inode->i_mode)) { 3549 if (ext4_inode_is_fast_symlink(inode)) { 3550 inode->i_op = &ext4_fast_symlink_inode_operations; 3551 nd_terminate_link(ei->i_data, inode->i_size, 3552 sizeof(ei->i_data) - 1); 3553 } else { 3554 inode->i_op = &ext4_symlink_inode_operations; 3555 ext4_set_aops(inode); 3556 } 3557 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3558 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3559 inode->i_op = &ext4_special_inode_operations; 3560 if (raw_inode->i_block[0]) 3561 init_special_inode(inode, inode->i_mode, 3562 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3563 else 3564 init_special_inode(inode, inode->i_mode, 3565 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3566 } else { 3567 ret = -EIO; 3568 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3569 goto bad_inode; 3570 } 3571 brelse(iloc.bh); 3572 ext4_set_inode_flags(inode); 3573 unlock_new_inode(inode); 3574 return inode; 3575 3576 bad_inode: 3577 brelse(iloc.bh); 3578 iget_failed(inode); 3579 return ERR_PTR(ret); 3580 } 3581 3582 static int ext4_inode_blocks_set(handle_t *handle, 3583 struct ext4_inode *raw_inode, 3584 struct ext4_inode_info *ei) 3585 { 3586 struct inode *inode = &(ei->vfs_inode); 3587 u64 i_blocks = inode->i_blocks; 3588 struct super_block *sb = inode->i_sb; 3589 3590 if (i_blocks <= ~0U) { 3591 /* 3592 * i_blocks can be represnted in a 32 bit variable 3593 * as multiple of 512 bytes 3594 */ 3595 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3596 raw_inode->i_blocks_high = 0; 3597 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3598 return 0; 3599 } 3600 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3601 return -EFBIG; 3602 3603 if (i_blocks <= 0xffffffffffffULL) { 3604 /* 3605 * i_blocks can be represented in a 48 bit variable 3606 * as multiple of 512 bytes 3607 */ 3608 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3609 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3610 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3611 } else { 3612 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3613 /* i_block is stored in file system block size */ 3614 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3615 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3616 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3617 } 3618 return 0; 3619 } 3620 3621 /* 3622 * Post the struct inode info into an on-disk inode location in the 3623 * buffer-cache. This gobbles the caller's reference to the 3624 * buffer_head in the inode location struct. 3625 * 3626 * The caller must have write access to iloc->bh. 3627 */ 3628 static int ext4_do_update_inode(handle_t *handle, 3629 struct inode *inode, 3630 struct ext4_iloc *iloc) 3631 { 3632 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3633 struct ext4_inode_info *ei = EXT4_I(inode); 3634 struct buffer_head *bh = iloc->bh; 3635 int err = 0, rc, block; 3636 3637 /* For fields not not tracking in the in-memory inode, 3638 * initialise them to zero for new inodes. */ 3639 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3640 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3641 3642 ext4_get_inode_flags(ei); 3643 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3644 if (!(test_opt(inode->i_sb, NO_UID32))) { 3645 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3646 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3647 /* 3648 * Fix up interoperability with old kernels. Otherwise, old inodes get 3649 * re-used with the upper 16 bits of the uid/gid intact 3650 */ 3651 if (!ei->i_dtime) { 3652 raw_inode->i_uid_high = 3653 cpu_to_le16(high_16_bits(inode->i_uid)); 3654 raw_inode->i_gid_high = 3655 cpu_to_le16(high_16_bits(inode->i_gid)); 3656 } else { 3657 raw_inode->i_uid_high = 0; 3658 raw_inode->i_gid_high = 0; 3659 } 3660 } else { 3661 raw_inode->i_uid_low = 3662 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3663 raw_inode->i_gid_low = 3664 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3665 raw_inode->i_uid_high = 0; 3666 raw_inode->i_gid_high = 0; 3667 } 3668 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3669 3670 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 3671 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 3672 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 3673 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 3674 3675 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 3676 goto out_brelse; 3677 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3678 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 3679 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3680 cpu_to_le32(EXT4_OS_HURD)) 3681 raw_inode->i_file_acl_high = 3682 cpu_to_le16(ei->i_file_acl >> 32); 3683 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 3684 ext4_isize_set(raw_inode, ei->i_disksize); 3685 if (ei->i_disksize > 0x7fffffffULL) { 3686 struct super_block *sb = inode->i_sb; 3687 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 3688 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 3689 EXT4_SB(sb)->s_es->s_rev_level == 3690 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 3691 /* If this is the first large file 3692 * created, add a flag to the superblock. 3693 */ 3694 err = ext4_journal_get_write_access(handle, 3695 EXT4_SB(sb)->s_sbh); 3696 if (err) 3697 goto out_brelse; 3698 ext4_update_dynamic_rev(sb); 3699 EXT4_SET_RO_COMPAT_FEATURE(sb, 3700 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3701 sb->s_dirt = 1; 3702 ext4_handle_sync(handle); 3703 err = ext4_handle_dirty_metadata(handle, NULL, 3704 EXT4_SB(sb)->s_sbh); 3705 } 3706 } 3707 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3708 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3709 if (old_valid_dev(inode->i_rdev)) { 3710 raw_inode->i_block[0] = 3711 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3712 raw_inode->i_block[1] = 0; 3713 } else { 3714 raw_inode->i_block[0] = 0; 3715 raw_inode->i_block[1] = 3716 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3717 raw_inode->i_block[2] = 0; 3718 } 3719 } else 3720 for (block = 0; block < EXT4_N_BLOCKS; block++) 3721 raw_inode->i_block[block] = ei->i_data[block]; 3722 3723 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3724 if (ei->i_extra_isize) { 3725 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3726 raw_inode->i_version_hi = 3727 cpu_to_le32(inode->i_version >> 32); 3728 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3729 } 3730 3731 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3732 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 3733 if (!err) 3734 err = rc; 3735 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 3736 3737 ext4_update_inode_fsync_trans(handle, inode, 0); 3738 out_brelse: 3739 brelse(bh); 3740 ext4_std_error(inode->i_sb, err); 3741 return err; 3742 } 3743 3744 /* 3745 * ext4_write_inode() 3746 * 3747 * We are called from a few places: 3748 * 3749 * - Within generic_file_write() for O_SYNC files. 3750 * Here, there will be no transaction running. We wait for any running 3751 * trasnaction to commit. 3752 * 3753 * - Within sys_sync(), kupdate and such. 3754 * We wait on commit, if tol to. 3755 * 3756 * - Within prune_icache() (PF_MEMALLOC == true) 3757 * Here we simply return. We can't afford to block kswapd on the 3758 * journal commit. 3759 * 3760 * In all cases it is actually safe for us to return without doing anything, 3761 * because the inode has been copied into a raw inode buffer in 3762 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3763 * knfsd. 3764 * 3765 * Note that we are absolutely dependent upon all inode dirtiers doing the 3766 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3767 * which we are interested. 3768 * 3769 * It would be a bug for them to not do this. The code: 3770 * 3771 * mark_inode_dirty(inode) 3772 * stuff(); 3773 * inode->i_size = expr; 3774 * 3775 * is in error because a kswapd-driven write_inode() could occur while 3776 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3777 * will no longer be on the superblock's dirty inode list. 3778 */ 3779 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 3780 { 3781 int err; 3782 3783 if (current->flags & PF_MEMALLOC) 3784 return 0; 3785 3786 if (EXT4_SB(inode->i_sb)->s_journal) { 3787 if (ext4_journal_current_handle()) { 3788 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3789 dump_stack(); 3790 return -EIO; 3791 } 3792 3793 if (wbc->sync_mode != WB_SYNC_ALL) 3794 return 0; 3795 3796 err = ext4_force_commit(inode->i_sb); 3797 } else { 3798 struct ext4_iloc iloc; 3799 3800 err = __ext4_get_inode_loc(inode, &iloc, 0); 3801 if (err) 3802 return err; 3803 if (wbc->sync_mode == WB_SYNC_ALL) 3804 sync_dirty_buffer(iloc.bh); 3805 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 3806 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 3807 "IO error syncing inode"); 3808 err = -EIO; 3809 } 3810 brelse(iloc.bh); 3811 } 3812 return err; 3813 } 3814 3815 /* 3816 * ext4_setattr() 3817 * 3818 * Called from notify_change. 3819 * 3820 * We want to trap VFS attempts to truncate the file as soon as 3821 * possible. In particular, we want to make sure that when the VFS 3822 * shrinks i_size, we put the inode on the orphan list and modify 3823 * i_disksize immediately, so that during the subsequent flushing of 3824 * dirty pages and freeing of disk blocks, we can guarantee that any 3825 * commit will leave the blocks being flushed in an unused state on 3826 * disk. (On recovery, the inode will get truncated and the blocks will 3827 * be freed, so we have a strong guarantee that no future commit will 3828 * leave these blocks visible to the user.) 3829 * 3830 * Another thing we have to assure is that if we are in ordered mode 3831 * and inode is still attached to the committing transaction, we must 3832 * we start writeout of all the dirty pages which are being truncated. 3833 * This way we are sure that all the data written in the previous 3834 * transaction are already on disk (truncate waits for pages under 3835 * writeback). 3836 * 3837 * Called with inode->i_mutex down. 3838 */ 3839 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3840 { 3841 struct inode *inode = dentry->d_inode; 3842 int error, rc = 0; 3843 int orphan = 0; 3844 const unsigned int ia_valid = attr->ia_valid; 3845 3846 error = inode_change_ok(inode, attr); 3847 if (error) 3848 return error; 3849 3850 if (is_quota_modification(inode, attr)) 3851 dquot_initialize(inode); 3852 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3853 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3854 handle_t *handle; 3855 3856 /* (user+group)*(old+new) structure, inode write (sb, 3857 * inode block, ? - but truncate inode update has it) */ 3858 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3859 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 3860 if (IS_ERR(handle)) { 3861 error = PTR_ERR(handle); 3862 goto err_out; 3863 } 3864 error = dquot_transfer(inode, attr); 3865 if (error) { 3866 ext4_journal_stop(handle); 3867 return error; 3868 } 3869 /* Update corresponding info in inode so that everything is in 3870 * one transaction */ 3871 if (attr->ia_valid & ATTR_UID) 3872 inode->i_uid = attr->ia_uid; 3873 if (attr->ia_valid & ATTR_GID) 3874 inode->i_gid = attr->ia_gid; 3875 error = ext4_mark_inode_dirty(handle, inode); 3876 ext4_journal_stop(handle); 3877 } 3878 3879 if (attr->ia_valid & ATTR_SIZE) { 3880 inode_dio_wait(inode); 3881 3882 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3883 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3884 3885 if (attr->ia_size > sbi->s_bitmap_maxbytes) 3886 return -EFBIG; 3887 } 3888 } 3889 3890 if (S_ISREG(inode->i_mode) && 3891 attr->ia_valid & ATTR_SIZE && 3892 (attr->ia_size < inode->i_size)) { 3893 handle_t *handle; 3894 3895 handle = ext4_journal_start(inode, 3); 3896 if (IS_ERR(handle)) { 3897 error = PTR_ERR(handle); 3898 goto err_out; 3899 } 3900 if (ext4_handle_valid(handle)) { 3901 error = ext4_orphan_add(handle, inode); 3902 orphan = 1; 3903 } 3904 EXT4_I(inode)->i_disksize = attr->ia_size; 3905 rc = ext4_mark_inode_dirty(handle, inode); 3906 if (!error) 3907 error = rc; 3908 ext4_journal_stop(handle); 3909 3910 if (ext4_should_order_data(inode)) { 3911 error = ext4_begin_ordered_truncate(inode, 3912 attr->ia_size); 3913 if (error) { 3914 /* Do as much error cleanup as possible */ 3915 handle = ext4_journal_start(inode, 3); 3916 if (IS_ERR(handle)) { 3917 ext4_orphan_del(NULL, inode); 3918 goto err_out; 3919 } 3920 ext4_orphan_del(handle, inode); 3921 orphan = 0; 3922 ext4_journal_stop(handle); 3923 goto err_out; 3924 } 3925 } 3926 } 3927 3928 if (attr->ia_valid & ATTR_SIZE) { 3929 if (attr->ia_size != i_size_read(inode)) { 3930 truncate_setsize(inode, attr->ia_size); 3931 ext4_truncate(inode); 3932 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3933 ext4_truncate(inode); 3934 } 3935 3936 if (!rc) { 3937 setattr_copy(inode, attr); 3938 mark_inode_dirty(inode); 3939 } 3940 3941 /* 3942 * If the call to ext4_truncate failed to get a transaction handle at 3943 * all, we need to clean up the in-core orphan list manually. 3944 */ 3945 if (orphan && inode->i_nlink) 3946 ext4_orphan_del(NULL, inode); 3947 3948 if (!rc && (ia_valid & ATTR_MODE)) 3949 rc = ext4_acl_chmod(inode); 3950 3951 err_out: 3952 ext4_std_error(inode->i_sb, error); 3953 if (!error) 3954 error = rc; 3955 return error; 3956 } 3957 3958 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 3959 struct kstat *stat) 3960 { 3961 struct inode *inode; 3962 unsigned long delalloc_blocks; 3963 3964 inode = dentry->d_inode; 3965 generic_fillattr(inode, stat); 3966 3967 /* 3968 * We can't update i_blocks if the block allocation is delayed 3969 * otherwise in the case of system crash before the real block 3970 * allocation is done, we will have i_blocks inconsistent with 3971 * on-disk file blocks. 3972 * We always keep i_blocks updated together with real 3973 * allocation. But to not confuse with user, stat 3974 * will return the blocks that include the delayed allocation 3975 * blocks for this file. 3976 */ 3977 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 3978 3979 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 3980 return 0; 3981 } 3982 3983 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 3984 { 3985 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 3986 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 3987 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 3988 } 3989 3990 /* 3991 * Account for index blocks, block groups bitmaps and block group 3992 * descriptor blocks if modify datablocks and index blocks 3993 * worse case, the indexs blocks spread over different block groups 3994 * 3995 * If datablocks are discontiguous, they are possible to spread over 3996 * different block groups too. If they are contiuguous, with flexbg, 3997 * they could still across block group boundary. 3998 * 3999 * Also account for superblock, inode, quota and xattr blocks 4000 */ 4001 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4002 { 4003 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4004 int gdpblocks; 4005 int idxblocks; 4006 int ret = 0; 4007 4008 /* 4009 * How many index blocks need to touch to modify nrblocks? 4010 * The "Chunk" flag indicating whether the nrblocks is 4011 * physically contiguous on disk 4012 * 4013 * For Direct IO and fallocate, they calls get_block to allocate 4014 * one single extent at a time, so they could set the "Chunk" flag 4015 */ 4016 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4017 4018 ret = idxblocks; 4019 4020 /* 4021 * Now let's see how many group bitmaps and group descriptors need 4022 * to account 4023 */ 4024 groups = idxblocks; 4025 if (chunk) 4026 groups += 1; 4027 else 4028 groups += nrblocks; 4029 4030 gdpblocks = groups; 4031 if (groups > ngroups) 4032 groups = ngroups; 4033 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4034 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4035 4036 /* bitmaps and block group descriptor blocks */ 4037 ret += groups + gdpblocks; 4038 4039 /* Blocks for super block, inode, quota and xattr blocks */ 4040 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4041 4042 return ret; 4043 } 4044 4045 /* 4046 * Calculate the total number of credits to reserve to fit 4047 * the modification of a single pages into a single transaction, 4048 * which may include multiple chunks of block allocations. 4049 * 4050 * This could be called via ext4_write_begin() 4051 * 4052 * We need to consider the worse case, when 4053 * one new block per extent. 4054 */ 4055 int ext4_writepage_trans_blocks(struct inode *inode) 4056 { 4057 int bpp = ext4_journal_blocks_per_page(inode); 4058 int ret; 4059 4060 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4061 4062 /* Account for data blocks for journalled mode */ 4063 if (ext4_should_journal_data(inode)) 4064 ret += bpp; 4065 return ret; 4066 } 4067 4068 /* 4069 * Calculate the journal credits for a chunk of data modification. 4070 * 4071 * This is called from DIO, fallocate or whoever calling 4072 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4073 * 4074 * journal buffers for data blocks are not included here, as DIO 4075 * and fallocate do no need to journal data buffers. 4076 */ 4077 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4078 { 4079 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4080 } 4081 4082 /* 4083 * The caller must have previously called ext4_reserve_inode_write(). 4084 * Give this, we know that the caller already has write access to iloc->bh. 4085 */ 4086 int ext4_mark_iloc_dirty(handle_t *handle, 4087 struct inode *inode, struct ext4_iloc *iloc) 4088 { 4089 int err = 0; 4090 4091 if (test_opt(inode->i_sb, I_VERSION)) 4092 inode_inc_iversion(inode); 4093 4094 /* the do_update_inode consumes one bh->b_count */ 4095 get_bh(iloc->bh); 4096 4097 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4098 err = ext4_do_update_inode(handle, inode, iloc); 4099 put_bh(iloc->bh); 4100 return err; 4101 } 4102 4103 /* 4104 * On success, We end up with an outstanding reference count against 4105 * iloc->bh. This _must_ be cleaned up later. 4106 */ 4107 4108 int 4109 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4110 struct ext4_iloc *iloc) 4111 { 4112 int err; 4113 4114 err = ext4_get_inode_loc(inode, iloc); 4115 if (!err) { 4116 BUFFER_TRACE(iloc->bh, "get_write_access"); 4117 err = ext4_journal_get_write_access(handle, iloc->bh); 4118 if (err) { 4119 brelse(iloc->bh); 4120 iloc->bh = NULL; 4121 } 4122 } 4123 ext4_std_error(inode->i_sb, err); 4124 return err; 4125 } 4126 4127 /* 4128 * Expand an inode by new_extra_isize bytes. 4129 * Returns 0 on success or negative error number on failure. 4130 */ 4131 static int ext4_expand_extra_isize(struct inode *inode, 4132 unsigned int new_extra_isize, 4133 struct ext4_iloc iloc, 4134 handle_t *handle) 4135 { 4136 struct ext4_inode *raw_inode; 4137 struct ext4_xattr_ibody_header *header; 4138 4139 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4140 return 0; 4141 4142 raw_inode = ext4_raw_inode(&iloc); 4143 4144 header = IHDR(inode, raw_inode); 4145 4146 /* No extended attributes present */ 4147 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4148 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4149 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4150 new_extra_isize); 4151 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4152 return 0; 4153 } 4154 4155 /* try to expand with EAs present */ 4156 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4157 raw_inode, handle); 4158 } 4159 4160 /* 4161 * What we do here is to mark the in-core inode as clean with respect to inode 4162 * dirtiness (it may still be data-dirty). 4163 * This means that the in-core inode may be reaped by prune_icache 4164 * without having to perform any I/O. This is a very good thing, 4165 * because *any* task may call prune_icache - even ones which 4166 * have a transaction open against a different journal. 4167 * 4168 * Is this cheating? Not really. Sure, we haven't written the 4169 * inode out, but prune_icache isn't a user-visible syncing function. 4170 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4171 * we start and wait on commits. 4172 * 4173 * Is this efficient/effective? Well, we're being nice to the system 4174 * by cleaning up our inodes proactively so they can be reaped 4175 * without I/O. But we are potentially leaving up to five seconds' 4176 * worth of inodes floating about which prune_icache wants us to 4177 * write out. One way to fix that would be to get prune_icache() 4178 * to do a write_super() to free up some memory. It has the desired 4179 * effect. 4180 */ 4181 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4182 { 4183 struct ext4_iloc iloc; 4184 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4185 static unsigned int mnt_count; 4186 int err, ret; 4187 4188 might_sleep(); 4189 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4190 err = ext4_reserve_inode_write(handle, inode, &iloc); 4191 if (ext4_handle_valid(handle) && 4192 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4193 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4194 /* 4195 * We need extra buffer credits since we may write into EA block 4196 * with this same handle. If journal_extend fails, then it will 4197 * only result in a minor loss of functionality for that inode. 4198 * If this is felt to be critical, then e2fsck should be run to 4199 * force a large enough s_min_extra_isize. 4200 */ 4201 if ((jbd2_journal_extend(handle, 4202 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4203 ret = ext4_expand_extra_isize(inode, 4204 sbi->s_want_extra_isize, 4205 iloc, handle); 4206 if (ret) { 4207 ext4_set_inode_state(inode, 4208 EXT4_STATE_NO_EXPAND); 4209 if (mnt_count != 4210 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4211 ext4_warning(inode->i_sb, 4212 "Unable to expand inode %lu. Delete" 4213 " some EAs or run e2fsck.", 4214 inode->i_ino); 4215 mnt_count = 4216 le16_to_cpu(sbi->s_es->s_mnt_count); 4217 } 4218 } 4219 } 4220 } 4221 if (!err) 4222 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4223 return err; 4224 } 4225 4226 /* 4227 * ext4_dirty_inode() is called from __mark_inode_dirty() 4228 * 4229 * We're really interested in the case where a file is being extended. 4230 * i_size has been changed by generic_commit_write() and we thus need 4231 * to include the updated inode in the current transaction. 4232 * 4233 * Also, dquot_alloc_block() will always dirty the inode when blocks 4234 * are allocated to the file. 4235 * 4236 * If the inode is marked synchronous, we don't honour that here - doing 4237 * so would cause a commit on atime updates, which we don't bother doing. 4238 * We handle synchronous inodes at the highest possible level. 4239 */ 4240 void ext4_dirty_inode(struct inode *inode, int flags) 4241 { 4242 handle_t *handle; 4243 4244 handle = ext4_journal_start(inode, 2); 4245 if (IS_ERR(handle)) 4246 goto out; 4247 4248 ext4_mark_inode_dirty(handle, inode); 4249 4250 ext4_journal_stop(handle); 4251 out: 4252 return; 4253 } 4254 4255 #if 0 4256 /* 4257 * Bind an inode's backing buffer_head into this transaction, to prevent 4258 * it from being flushed to disk early. Unlike 4259 * ext4_reserve_inode_write, this leaves behind no bh reference and 4260 * returns no iloc structure, so the caller needs to repeat the iloc 4261 * lookup to mark the inode dirty later. 4262 */ 4263 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4264 { 4265 struct ext4_iloc iloc; 4266 4267 int err = 0; 4268 if (handle) { 4269 err = ext4_get_inode_loc(inode, &iloc); 4270 if (!err) { 4271 BUFFER_TRACE(iloc.bh, "get_write_access"); 4272 err = jbd2_journal_get_write_access(handle, iloc.bh); 4273 if (!err) 4274 err = ext4_handle_dirty_metadata(handle, 4275 NULL, 4276 iloc.bh); 4277 brelse(iloc.bh); 4278 } 4279 } 4280 ext4_std_error(inode->i_sb, err); 4281 return err; 4282 } 4283 #endif 4284 4285 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4286 { 4287 journal_t *journal; 4288 handle_t *handle; 4289 int err; 4290 4291 /* 4292 * We have to be very careful here: changing a data block's 4293 * journaling status dynamically is dangerous. If we write a 4294 * data block to the journal, change the status and then delete 4295 * that block, we risk forgetting to revoke the old log record 4296 * from the journal and so a subsequent replay can corrupt data. 4297 * So, first we make sure that the journal is empty and that 4298 * nobody is changing anything. 4299 */ 4300 4301 journal = EXT4_JOURNAL(inode); 4302 if (!journal) 4303 return 0; 4304 if (is_journal_aborted(journal)) 4305 return -EROFS; 4306 4307 jbd2_journal_lock_updates(journal); 4308 jbd2_journal_flush(journal); 4309 4310 /* 4311 * OK, there are no updates running now, and all cached data is 4312 * synced to disk. We are now in a completely consistent state 4313 * which doesn't have anything in the journal, and we know that 4314 * no filesystem updates are running, so it is safe to modify 4315 * the inode's in-core data-journaling state flag now. 4316 */ 4317 4318 if (val) 4319 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4320 else 4321 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4322 ext4_set_aops(inode); 4323 4324 jbd2_journal_unlock_updates(journal); 4325 4326 /* Finally we can mark the inode as dirty. */ 4327 4328 handle = ext4_journal_start(inode, 1); 4329 if (IS_ERR(handle)) 4330 return PTR_ERR(handle); 4331 4332 err = ext4_mark_inode_dirty(handle, inode); 4333 ext4_handle_sync(handle); 4334 ext4_journal_stop(handle); 4335 ext4_std_error(inode->i_sb, err); 4336 4337 return err; 4338 } 4339 4340 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4341 { 4342 return !buffer_mapped(bh); 4343 } 4344 4345 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4346 { 4347 struct page *page = vmf->page; 4348 loff_t size; 4349 unsigned long len; 4350 int ret; 4351 struct file *file = vma->vm_file; 4352 struct inode *inode = file->f_path.dentry->d_inode; 4353 struct address_space *mapping = inode->i_mapping; 4354 handle_t *handle; 4355 get_block_t *get_block; 4356 int retries = 0; 4357 4358 /* 4359 * This check is racy but catches the common case. We rely on 4360 * __block_page_mkwrite() to do a reliable check. 4361 */ 4362 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4363 /* Delalloc case is easy... */ 4364 if (test_opt(inode->i_sb, DELALLOC) && 4365 !ext4_should_journal_data(inode) && 4366 !ext4_nonda_switch(inode->i_sb)) { 4367 do { 4368 ret = __block_page_mkwrite(vma, vmf, 4369 ext4_da_get_block_prep); 4370 } while (ret == -ENOSPC && 4371 ext4_should_retry_alloc(inode->i_sb, &retries)); 4372 goto out_ret; 4373 } 4374 4375 lock_page(page); 4376 size = i_size_read(inode); 4377 /* Page got truncated from under us? */ 4378 if (page->mapping != mapping || page_offset(page) > size) { 4379 unlock_page(page); 4380 ret = VM_FAULT_NOPAGE; 4381 goto out; 4382 } 4383 4384 if (page->index == size >> PAGE_CACHE_SHIFT) 4385 len = size & ~PAGE_CACHE_MASK; 4386 else 4387 len = PAGE_CACHE_SIZE; 4388 /* 4389 * Return if we have all the buffers mapped. This avoids the need to do 4390 * journal_start/journal_stop which can block and take a long time 4391 */ 4392 if (page_has_buffers(page)) { 4393 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4394 ext4_bh_unmapped)) { 4395 /* Wait so that we don't change page under IO */ 4396 wait_on_page_writeback(page); 4397 ret = VM_FAULT_LOCKED; 4398 goto out; 4399 } 4400 } 4401 unlock_page(page); 4402 /* OK, we need to fill the hole... */ 4403 if (ext4_should_dioread_nolock(inode)) 4404 get_block = ext4_get_block_write; 4405 else 4406 get_block = ext4_get_block; 4407 retry_alloc: 4408 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4409 if (IS_ERR(handle)) { 4410 ret = VM_FAULT_SIGBUS; 4411 goto out; 4412 } 4413 ret = __block_page_mkwrite(vma, vmf, get_block); 4414 if (!ret && ext4_should_journal_data(inode)) { 4415 if (walk_page_buffers(handle, page_buffers(page), 0, 4416 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4417 unlock_page(page); 4418 ret = VM_FAULT_SIGBUS; 4419 goto out; 4420 } 4421 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4422 } 4423 ext4_journal_stop(handle); 4424 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4425 goto retry_alloc; 4426 out_ret: 4427 ret = block_page_mkwrite_return(ret); 4428 out: 4429 return ret; 4430 } 4431