xref: /linux/fs/ext4/inode.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 					      loff_t new_size)
54 {
55 	trace_ext4_begin_ordered_truncate(inode, new_size);
56 	/*
57 	 * If jinode is zero, then we never opened the file for
58 	 * writing, so there's no need to call
59 	 * jbd2_journal_begin_ordered_truncate() since there's no
60 	 * outstanding writes we need to flush.
61 	 */
62 	if (!EXT4_I(inode)->jinode)
63 		return 0;
64 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 						   EXT4_I(inode)->jinode,
66 						   new_size);
67 }
68 
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 				   struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76 
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 		(inode->i_sb->s_blocksize >> 9) : 0;
84 
85 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87 
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 				 int nblocks)
95 {
96 	int ret;
97 
98 	/*
99 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 	 * moment, get_block can be called only for blocks inside i_size since
101 	 * page cache has been already dropped and writes are blocked by
102 	 * i_mutex. So we can safely drop the i_data_sem here.
103 	 */
104 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 	jbd_debug(2, "restarting handle %p\n", handle);
106 	up_write(&EXT4_I(inode)->i_data_sem);
107 	ret = ext4_journal_restart(handle, nblocks);
108 	down_write(&EXT4_I(inode)->i_data_sem);
109 	ext4_discard_preallocations(inode);
110 
111 	return ret;
112 }
113 
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 	handle_t *handle;
120 	int err;
121 
122 	trace_ext4_evict_inode(inode);
123 
124 	ext4_ioend_wait(inode);
125 
126 	if (inode->i_nlink) {
127 		/*
128 		 * When journalling data dirty buffers are tracked only in the
129 		 * journal. So although mm thinks everything is clean and
130 		 * ready for reaping the inode might still have some pages to
131 		 * write in the running transaction or waiting to be
132 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 		 * (via truncate_inode_pages()) to discard these buffers can
134 		 * cause data loss. Also even if we did not discard these
135 		 * buffers, we would have no way to find them after the inode
136 		 * is reaped and thus user could see stale data if he tries to
137 		 * read them before the transaction is checkpointed. So be
138 		 * careful and force everything to disk here... We use
139 		 * ei->i_datasync_tid to store the newest transaction
140 		 * containing inode's data.
141 		 *
142 		 * Note that directories do not have this problem because they
143 		 * don't use page cache.
144 		 */
145 		if (ext4_should_journal_data(inode) &&
146 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149 
150 			jbd2_log_start_commit(journal, commit_tid);
151 			jbd2_log_wait_commit(journal, commit_tid);
152 			filemap_write_and_wait(&inode->i_data);
153 		}
154 		truncate_inode_pages(&inode->i_data, 0);
155 		goto no_delete;
156 	}
157 
158 	if (!is_bad_inode(inode))
159 		dquot_initialize(inode);
160 
161 	if (ext4_should_order_data(inode))
162 		ext4_begin_ordered_truncate(inode, 0);
163 	truncate_inode_pages(&inode->i_data, 0);
164 
165 	if (is_bad_inode(inode))
166 		goto no_delete;
167 
168 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 	if (IS_ERR(handle)) {
170 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 		/*
172 		 * If we're going to skip the normal cleanup, we still need to
173 		 * make sure that the in-core orphan linked list is properly
174 		 * cleaned up.
175 		 */
176 		ext4_orphan_del(NULL, inode);
177 		goto no_delete;
178 	}
179 
180 	if (IS_SYNC(inode))
181 		ext4_handle_sync(handle);
182 	inode->i_size = 0;
183 	err = ext4_mark_inode_dirty(handle, inode);
184 	if (err) {
185 		ext4_warning(inode->i_sb,
186 			     "couldn't mark inode dirty (err %d)", err);
187 		goto stop_handle;
188 	}
189 	if (inode->i_blocks)
190 		ext4_truncate(inode);
191 
192 	/*
193 	 * ext4_ext_truncate() doesn't reserve any slop when it
194 	 * restarts journal transactions; therefore there may not be
195 	 * enough credits left in the handle to remove the inode from
196 	 * the orphan list and set the dtime field.
197 	 */
198 	if (!ext4_handle_has_enough_credits(handle, 3)) {
199 		err = ext4_journal_extend(handle, 3);
200 		if (err > 0)
201 			err = ext4_journal_restart(handle, 3);
202 		if (err != 0) {
203 			ext4_warning(inode->i_sb,
204 				     "couldn't extend journal (err %d)", err);
205 		stop_handle:
206 			ext4_journal_stop(handle);
207 			ext4_orphan_del(NULL, inode);
208 			goto no_delete;
209 		}
210 	}
211 
212 	/*
213 	 * Kill off the orphan record which ext4_truncate created.
214 	 * AKPM: I think this can be inside the above `if'.
215 	 * Note that ext4_orphan_del() has to be able to cope with the
216 	 * deletion of a non-existent orphan - this is because we don't
217 	 * know if ext4_truncate() actually created an orphan record.
218 	 * (Well, we could do this if we need to, but heck - it works)
219 	 */
220 	ext4_orphan_del(handle, inode);
221 	EXT4_I(inode)->i_dtime	= get_seconds();
222 
223 	/*
224 	 * One subtle ordering requirement: if anything has gone wrong
225 	 * (transaction abort, IO errors, whatever), then we can still
226 	 * do these next steps (the fs will already have been marked as
227 	 * having errors), but we can't free the inode if the mark_dirty
228 	 * fails.
229 	 */
230 	if (ext4_mark_inode_dirty(handle, inode))
231 		/* If that failed, just do the required in-core inode clear. */
232 		ext4_clear_inode(inode);
233 	else
234 		ext4_free_inode(handle, inode);
235 	ext4_journal_stop(handle);
236 	return;
237 no_delete:
238 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
239 }
240 
241 #ifdef CONFIG_QUOTA
242 qsize_t *ext4_get_reserved_space(struct inode *inode)
243 {
244 	return &EXT4_I(inode)->i_reserved_quota;
245 }
246 #endif
247 
248 /*
249  * Calculate the number of metadata blocks need to reserve
250  * to allocate a block located at @lblock
251  */
252 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 {
254 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 		return ext4_ext_calc_metadata_amount(inode, lblock);
256 
257 	return ext4_ind_calc_metadata_amount(inode, lblock);
258 }
259 
260 /*
261  * Called with i_data_sem down, which is important since we can call
262  * ext4_discard_preallocations() from here.
263  */
264 void ext4_da_update_reserve_space(struct inode *inode,
265 					int used, int quota_claim)
266 {
267 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 	struct ext4_inode_info *ei = EXT4_I(inode);
269 
270 	spin_lock(&ei->i_block_reservation_lock);
271 	trace_ext4_da_update_reserve_space(inode, used);
272 	if (unlikely(used > ei->i_reserved_data_blocks)) {
273 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 			 "with only %d reserved data blocks\n",
275 			 __func__, inode->i_ino, used,
276 			 ei->i_reserved_data_blocks);
277 		WARN_ON(1);
278 		used = ei->i_reserved_data_blocks;
279 	}
280 
281 	/* Update per-inode reservations */
282 	ei->i_reserved_data_blocks -= used;
283 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
285 			   used + ei->i_allocated_meta_blocks);
286 	ei->i_allocated_meta_blocks = 0;
287 
288 	if (ei->i_reserved_data_blocks == 0) {
289 		/*
290 		 * We can release all of the reserved metadata blocks
291 		 * only when we have written all of the delayed
292 		 * allocation blocks.
293 		 */
294 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
295 				   ei->i_reserved_meta_blocks);
296 		ei->i_reserved_meta_blocks = 0;
297 		ei->i_da_metadata_calc_len = 0;
298 	}
299 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300 
301 	/* Update quota subsystem for data blocks */
302 	if (quota_claim)
303 		dquot_claim_block(inode, used);
304 	else {
305 		/*
306 		 * We did fallocate with an offset that is already delayed
307 		 * allocated. So on delayed allocated writeback we should
308 		 * not re-claim the quota for fallocated blocks.
309 		 */
310 		dquot_release_reservation_block(inode, used);
311 	}
312 
313 	/*
314 	 * If we have done all the pending block allocations and if
315 	 * there aren't any writers on the inode, we can discard the
316 	 * inode's preallocations.
317 	 */
318 	if ((ei->i_reserved_data_blocks == 0) &&
319 	    (atomic_read(&inode->i_writecount) == 0))
320 		ext4_discard_preallocations(inode);
321 }
322 
323 static int __check_block_validity(struct inode *inode, const char *func,
324 				unsigned int line,
325 				struct ext4_map_blocks *map)
326 {
327 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 				   map->m_len)) {
329 		ext4_error_inode(inode, func, line, map->m_pblk,
330 				 "lblock %lu mapped to illegal pblock "
331 				 "(length %d)", (unsigned long) map->m_lblk,
332 				 map->m_len);
333 		return -EIO;
334 	}
335 	return 0;
336 }
337 
338 #define check_block_validity(inode, map)	\
339 	__check_block_validity((inode), __func__, __LINE__, (map))
340 
341 /*
342  * Return the number of contiguous dirty pages in a given inode
343  * starting at page frame idx.
344  */
345 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 				    unsigned int max_pages)
347 {
348 	struct address_space *mapping = inode->i_mapping;
349 	pgoff_t	index;
350 	struct pagevec pvec;
351 	pgoff_t num = 0;
352 	int i, nr_pages, done = 0;
353 
354 	if (max_pages == 0)
355 		return 0;
356 	pagevec_init(&pvec, 0);
357 	while (!done) {
358 		index = idx;
359 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 					      PAGECACHE_TAG_DIRTY,
361 					      (pgoff_t)PAGEVEC_SIZE);
362 		if (nr_pages == 0)
363 			break;
364 		for (i = 0; i < nr_pages; i++) {
365 			struct page *page = pvec.pages[i];
366 			struct buffer_head *bh, *head;
367 
368 			lock_page(page);
369 			if (unlikely(page->mapping != mapping) ||
370 			    !PageDirty(page) ||
371 			    PageWriteback(page) ||
372 			    page->index != idx) {
373 				done = 1;
374 				unlock_page(page);
375 				break;
376 			}
377 			if (page_has_buffers(page)) {
378 				bh = head = page_buffers(page);
379 				do {
380 					if (!buffer_delay(bh) &&
381 					    !buffer_unwritten(bh))
382 						done = 1;
383 					bh = bh->b_this_page;
384 				} while (!done && (bh != head));
385 			}
386 			unlock_page(page);
387 			if (done)
388 				break;
389 			idx++;
390 			num++;
391 			if (num >= max_pages) {
392 				done = 1;
393 				break;
394 			}
395 		}
396 		pagevec_release(&pvec);
397 	}
398 	return num;
399 }
400 
401 /*
402  * The ext4_map_blocks() function tries to look up the requested blocks,
403  * and returns if the blocks are already mapped.
404  *
405  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406  * and store the allocated blocks in the result buffer head and mark it
407  * mapped.
408  *
409  * If file type is extents based, it will call ext4_ext_map_blocks(),
410  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411  * based files
412  *
413  * On success, it returns the number of blocks being mapped or allocate.
414  * if create==0 and the blocks are pre-allocated and uninitialized block,
415  * the result buffer head is unmapped. If the create ==1, it will make sure
416  * the buffer head is mapped.
417  *
418  * It returns 0 if plain look up failed (blocks have not been allocated), in
419  * that casem, buffer head is unmapped
420  *
421  * It returns the error in case of allocation failure.
422  */
423 int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 		    struct ext4_map_blocks *map, int flags)
425 {
426 	int retval;
427 
428 	map->m_flags = 0;
429 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 		  (unsigned long) map->m_lblk);
432 	/*
433 	 * Try to see if we can get the block without requesting a new
434 	 * file system block.
435 	 */
436 	down_read((&EXT4_I(inode)->i_data_sem));
437 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 	} else {
440 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
441 	}
442 	up_read((&EXT4_I(inode)->i_data_sem));
443 
444 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445 		int ret = check_block_validity(inode, map);
446 		if (ret != 0)
447 			return ret;
448 	}
449 
450 	/* If it is only a block(s) look up */
451 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 		return retval;
453 
454 	/*
455 	 * Returns if the blocks have already allocated
456 	 *
457 	 * Note that if blocks have been preallocated
458 	 * ext4_ext_get_block() returns th create = 0
459 	 * with buffer head unmapped.
460 	 */
461 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 		return retval;
463 
464 	/*
465 	 * When we call get_blocks without the create flag, the
466 	 * BH_Unwritten flag could have gotten set if the blocks
467 	 * requested were part of a uninitialized extent.  We need to
468 	 * clear this flag now that we are committed to convert all or
469 	 * part of the uninitialized extent to be an initialized
470 	 * extent.  This is because we need to avoid the combination
471 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 	 * set on the buffer_head.
473 	 */
474 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475 
476 	/*
477 	 * New blocks allocate and/or writing to uninitialized extent
478 	 * will possibly result in updating i_data, so we take
479 	 * the write lock of i_data_sem, and call get_blocks()
480 	 * with create == 1 flag.
481 	 */
482 	down_write((&EXT4_I(inode)->i_data_sem));
483 
484 	/*
485 	 * if the caller is from delayed allocation writeout path
486 	 * we have already reserved fs blocks for allocation
487 	 * let the underlying get_block() function know to
488 	 * avoid double accounting
489 	 */
490 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 	/*
493 	 * We need to check for EXT4 here because migrate
494 	 * could have changed the inode type in between
495 	 */
496 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
498 	} else {
499 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
500 
501 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 			/*
503 			 * We allocated new blocks which will result in
504 			 * i_data's format changing.  Force the migrate
505 			 * to fail by clearing migrate flags
506 			 */
507 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508 		}
509 
510 		/*
511 		 * Update reserved blocks/metadata blocks after successful
512 		 * block allocation which had been deferred till now. We don't
513 		 * support fallocate for non extent files. So we can update
514 		 * reserve space here.
515 		 */
516 		if ((retval > 0) &&
517 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 			ext4_da_update_reserve_space(inode, retval, 1);
519 	}
520 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522 
523 	up_write((&EXT4_I(inode)->i_data_sem));
524 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525 		int ret = check_block_validity(inode, map);
526 		if (ret != 0)
527 			return ret;
528 	}
529 	return retval;
530 }
531 
532 /* Maximum number of blocks we map for direct IO at once. */
533 #define DIO_MAX_BLOCKS 4096
534 
535 static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 			   struct buffer_head *bh, int flags)
537 {
538 	handle_t *handle = ext4_journal_current_handle();
539 	struct ext4_map_blocks map;
540 	int ret = 0, started = 0;
541 	int dio_credits;
542 
543 	map.m_lblk = iblock;
544 	map.m_len = bh->b_size >> inode->i_blkbits;
545 
546 	if (flags && !handle) {
547 		/* Direct IO write... */
548 		if (map.m_len > DIO_MAX_BLOCKS)
549 			map.m_len = DIO_MAX_BLOCKS;
550 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551 		handle = ext4_journal_start(inode, dio_credits);
552 		if (IS_ERR(handle)) {
553 			ret = PTR_ERR(handle);
554 			return ret;
555 		}
556 		started = 1;
557 	}
558 
559 	ret = ext4_map_blocks(handle, inode, &map, flags);
560 	if (ret > 0) {
561 		map_bh(bh, inode->i_sb, map.m_pblk);
562 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 		ret = 0;
565 	}
566 	if (started)
567 		ext4_journal_stop(handle);
568 	return ret;
569 }
570 
571 int ext4_get_block(struct inode *inode, sector_t iblock,
572 		   struct buffer_head *bh, int create)
573 {
574 	return _ext4_get_block(inode, iblock, bh,
575 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
576 }
577 
578 /*
579  * `handle' can be NULL if create is zero
580  */
581 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
582 				ext4_lblk_t block, int create, int *errp)
583 {
584 	struct ext4_map_blocks map;
585 	struct buffer_head *bh;
586 	int fatal = 0, err;
587 
588 	J_ASSERT(handle != NULL || create == 0);
589 
590 	map.m_lblk = block;
591 	map.m_len = 1;
592 	err = ext4_map_blocks(handle, inode, &map,
593 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
594 
595 	if (err < 0)
596 		*errp = err;
597 	if (err <= 0)
598 		return NULL;
599 	*errp = 0;
600 
601 	bh = sb_getblk(inode->i_sb, map.m_pblk);
602 	if (!bh) {
603 		*errp = -EIO;
604 		return NULL;
605 	}
606 	if (map.m_flags & EXT4_MAP_NEW) {
607 		J_ASSERT(create != 0);
608 		J_ASSERT(handle != NULL);
609 
610 		/*
611 		 * Now that we do not always journal data, we should
612 		 * keep in mind whether this should always journal the
613 		 * new buffer as metadata.  For now, regular file
614 		 * writes use ext4_get_block instead, so it's not a
615 		 * problem.
616 		 */
617 		lock_buffer(bh);
618 		BUFFER_TRACE(bh, "call get_create_access");
619 		fatal = ext4_journal_get_create_access(handle, bh);
620 		if (!fatal && !buffer_uptodate(bh)) {
621 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 			set_buffer_uptodate(bh);
623 		}
624 		unlock_buffer(bh);
625 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 		err = ext4_handle_dirty_metadata(handle, inode, bh);
627 		if (!fatal)
628 			fatal = err;
629 	} else {
630 		BUFFER_TRACE(bh, "not a new buffer");
631 	}
632 	if (fatal) {
633 		*errp = fatal;
634 		brelse(bh);
635 		bh = NULL;
636 	}
637 	return bh;
638 }
639 
640 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
641 			       ext4_lblk_t block, int create, int *err)
642 {
643 	struct buffer_head *bh;
644 
645 	bh = ext4_getblk(handle, inode, block, create, err);
646 	if (!bh)
647 		return bh;
648 	if (buffer_uptodate(bh))
649 		return bh;
650 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
651 	wait_on_buffer(bh);
652 	if (buffer_uptodate(bh))
653 		return bh;
654 	put_bh(bh);
655 	*err = -EIO;
656 	return NULL;
657 }
658 
659 static int walk_page_buffers(handle_t *handle,
660 			     struct buffer_head *head,
661 			     unsigned from,
662 			     unsigned to,
663 			     int *partial,
664 			     int (*fn)(handle_t *handle,
665 				       struct buffer_head *bh))
666 {
667 	struct buffer_head *bh;
668 	unsigned block_start, block_end;
669 	unsigned blocksize = head->b_size;
670 	int err, ret = 0;
671 	struct buffer_head *next;
672 
673 	for (bh = head, block_start = 0;
674 	     ret == 0 && (bh != head || !block_start);
675 	     block_start = block_end, bh = next) {
676 		next = bh->b_this_page;
677 		block_end = block_start + blocksize;
678 		if (block_end <= from || block_start >= to) {
679 			if (partial && !buffer_uptodate(bh))
680 				*partial = 1;
681 			continue;
682 		}
683 		err = (*fn)(handle, bh);
684 		if (!ret)
685 			ret = err;
686 	}
687 	return ret;
688 }
689 
690 /*
691  * To preserve ordering, it is essential that the hole instantiation and
692  * the data write be encapsulated in a single transaction.  We cannot
693  * close off a transaction and start a new one between the ext4_get_block()
694  * and the commit_write().  So doing the jbd2_journal_start at the start of
695  * prepare_write() is the right place.
696  *
697  * Also, this function can nest inside ext4_writepage() ->
698  * block_write_full_page(). In that case, we *know* that ext4_writepage()
699  * has generated enough buffer credits to do the whole page.  So we won't
700  * block on the journal in that case, which is good, because the caller may
701  * be PF_MEMALLOC.
702  *
703  * By accident, ext4 can be reentered when a transaction is open via
704  * quota file writes.  If we were to commit the transaction while thus
705  * reentered, there can be a deadlock - we would be holding a quota
706  * lock, and the commit would never complete if another thread had a
707  * transaction open and was blocking on the quota lock - a ranking
708  * violation.
709  *
710  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711  * will _not_ run commit under these circumstances because handle->h_ref
712  * is elevated.  We'll still have enough credits for the tiny quotafile
713  * write.
714  */
715 static int do_journal_get_write_access(handle_t *handle,
716 				       struct buffer_head *bh)
717 {
718 	int dirty = buffer_dirty(bh);
719 	int ret;
720 
721 	if (!buffer_mapped(bh) || buffer_freed(bh))
722 		return 0;
723 	/*
724 	 * __block_write_begin() could have dirtied some buffers. Clean
725 	 * the dirty bit as jbd2_journal_get_write_access() could complain
726 	 * otherwise about fs integrity issues. Setting of the dirty bit
727 	 * by __block_write_begin() isn't a real problem here as we clear
728 	 * the bit before releasing a page lock and thus writeback cannot
729 	 * ever write the buffer.
730 	 */
731 	if (dirty)
732 		clear_buffer_dirty(bh);
733 	ret = ext4_journal_get_write_access(handle, bh);
734 	if (!ret && dirty)
735 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 	return ret;
737 }
738 
739 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 		   struct buffer_head *bh_result, int create);
741 static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 			    loff_t pos, unsigned len, unsigned flags,
743 			    struct page **pagep, void **fsdata)
744 {
745 	struct inode *inode = mapping->host;
746 	int ret, needed_blocks;
747 	handle_t *handle;
748 	int retries = 0;
749 	struct page *page;
750 	pgoff_t index;
751 	unsigned from, to;
752 
753 	trace_ext4_write_begin(inode, pos, len, flags);
754 	/*
755 	 * Reserve one block more for addition to orphan list in case
756 	 * we allocate blocks but write fails for some reason
757 	 */
758 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759 	index = pos >> PAGE_CACHE_SHIFT;
760 	from = pos & (PAGE_CACHE_SIZE - 1);
761 	to = from + len;
762 
763 retry:
764 	handle = ext4_journal_start(inode, needed_blocks);
765 	if (IS_ERR(handle)) {
766 		ret = PTR_ERR(handle);
767 		goto out;
768 	}
769 
770 	/* We cannot recurse into the filesystem as the transaction is already
771 	 * started */
772 	flags |= AOP_FLAG_NOFS;
773 
774 	page = grab_cache_page_write_begin(mapping, index, flags);
775 	if (!page) {
776 		ext4_journal_stop(handle);
777 		ret = -ENOMEM;
778 		goto out;
779 	}
780 	*pagep = page;
781 
782 	if (ext4_should_dioread_nolock(inode))
783 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784 	else
785 		ret = __block_write_begin(page, pos, len, ext4_get_block);
786 
787 	if (!ret && ext4_should_journal_data(inode)) {
788 		ret = walk_page_buffers(handle, page_buffers(page),
789 				from, to, NULL, do_journal_get_write_access);
790 	}
791 
792 	if (ret) {
793 		unlock_page(page);
794 		page_cache_release(page);
795 		/*
796 		 * __block_write_begin may have instantiated a few blocks
797 		 * outside i_size.  Trim these off again. Don't need
798 		 * i_size_read because we hold i_mutex.
799 		 *
800 		 * Add inode to orphan list in case we crash before
801 		 * truncate finishes
802 		 */
803 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 			ext4_orphan_add(handle, inode);
805 
806 		ext4_journal_stop(handle);
807 		if (pos + len > inode->i_size) {
808 			ext4_truncate_failed_write(inode);
809 			/*
810 			 * If truncate failed early the inode might
811 			 * still be on the orphan list; we need to
812 			 * make sure the inode is removed from the
813 			 * orphan list in that case.
814 			 */
815 			if (inode->i_nlink)
816 				ext4_orphan_del(NULL, inode);
817 		}
818 	}
819 
820 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821 		goto retry;
822 out:
823 	return ret;
824 }
825 
826 /* For write_end() in data=journal mode */
827 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828 {
829 	if (!buffer_mapped(bh) || buffer_freed(bh))
830 		return 0;
831 	set_buffer_uptodate(bh);
832 	return ext4_handle_dirty_metadata(handle, NULL, bh);
833 }
834 
835 static int ext4_generic_write_end(struct file *file,
836 				  struct address_space *mapping,
837 				  loff_t pos, unsigned len, unsigned copied,
838 				  struct page *page, void *fsdata)
839 {
840 	int i_size_changed = 0;
841 	struct inode *inode = mapping->host;
842 	handle_t *handle = ext4_journal_current_handle();
843 
844 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
845 
846 	/*
847 	 * No need to use i_size_read() here, the i_size
848 	 * cannot change under us because we hold i_mutex.
849 	 *
850 	 * But it's important to update i_size while still holding page lock:
851 	 * page writeout could otherwise come in and zero beyond i_size.
852 	 */
853 	if (pos + copied > inode->i_size) {
854 		i_size_write(inode, pos + copied);
855 		i_size_changed = 1;
856 	}
857 
858 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
859 		/* We need to mark inode dirty even if
860 		 * new_i_size is less that inode->i_size
861 		 * bu greater than i_disksize.(hint delalloc)
862 		 */
863 		ext4_update_i_disksize(inode, (pos + copied));
864 		i_size_changed = 1;
865 	}
866 	unlock_page(page);
867 	page_cache_release(page);
868 
869 	/*
870 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 	 * makes the holding time of page lock longer. Second, it forces lock
872 	 * ordering of page lock and transaction start for journaling
873 	 * filesystems.
874 	 */
875 	if (i_size_changed)
876 		ext4_mark_inode_dirty(handle, inode);
877 
878 	return copied;
879 }
880 
881 /*
882  * We need to pick up the new inode size which generic_commit_write gave us
883  * `file' can be NULL - eg, when called from page_symlink().
884  *
885  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
886  * buffers are managed internally.
887  */
888 static int ext4_ordered_write_end(struct file *file,
889 				  struct address_space *mapping,
890 				  loff_t pos, unsigned len, unsigned copied,
891 				  struct page *page, void *fsdata)
892 {
893 	handle_t *handle = ext4_journal_current_handle();
894 	struct inode *inode = mapping->host;
895 	int ret = 0, ret2;
896 
897 	trace_ext4_ordered_write_end(inode, pos, len, copied);
898 	ret = ext4_jbd2_file_inode(handle, inode);
899 
900 	if (ret == 0) {
901 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
902 							page, fsdata);
903 		copied = ret2;
904 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 			/* if we have allocated more blocks and copied
906 			 * less. We will have blocks allocated outside
907 			 * inode->i_size. So truncate them
908 			 */
909 			ext4_orphan_add(handle, inode);
910 		if (ret2 < 0)
911 			ret = ret2;
912 	}
913 	ret2 = ext4_journal_stop(handle);
914 	if (!ret)
915 		ret = ret2;
916 
917 	if (pos + len > inode->i_size) {
918 		ext4_truncate_failed_write(inode);
919 		/*
920 		 * If truncate failed early the inode might still be
921 		 * on the orphan list; we need to make sure the inode
922 		 * is removed from the orphan list in that case.
923 		 */
924 		if (inode->i_nlink)
925 			ext4_orphan_del(NULL, inode);
926 	}
927 
928 
929 	return ret ? ret : copied;
930 }
931 
932 static int ext4_writeback_write_end(struct file *file,
933 				    struct address_space *mapping,
934 				    loff_t pos, unsigned len, unsigned copied,
935 				    struct page *page, void *fsdata)
936 {
937 	handle_t *handle = ext4_journal_current_handle();
938 	struct inode *inode = mapping->host;
939 	int ret = 0, ret2;
940 
941 	trace_ext4_writeback_write_end(inode, pos, len, copied);
942 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
943 							page, fsdata);
944 	copied = ret2;
945 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 		/* if we have allocated more blocks and copied
947 		 * less. We will have blocks allocated outside
948 		 * inode->i_size. So truncate them
949 		 */
950 		ext4_orphan_add(handle, inode);
951 
952 	if (ret2 < 0)
953 		ret = ret2;
954 
955 	ret2 = ext4_journal_stop(handle);
956 	if (!ret)
957 		ret = ret2;
958 
959 	if (pos + len > inode->i_size) {
960 		ext4_truncate_failed_write(inode);
961 		/*
962 		 * If truncate failed early the inode might still be
963 		 * on the orphan list; we need to make sure the inode
964 		 * is removed from the orphan list in that case.
965 		 */
966 		if (inode->i_nlink)
967 			ext4_orphan_del(NULL, inode);
968 	}
969 
970 	return ret ? ret : copied;
971 }
972 
973 static int ext4_journalled_write_end(struct file *file,
974 				     struct address_space *mapping,
975 				     loff_t pos, unsigned len, unsigned copied,
976 				     struct page *page, void *fsdata)
977 {
978 	handle_t *handle = ext4_journal_current_handle();
979 	struct inode *inode = mapping->host;
980 	int ret = 0, ret2;
981 	int partial = 0;
982 	unsigned from, to;
983 	loff_t new_i_size;
984 
985 	trace_ext4_journalled_write_end(inode, pos, len, copied);
986 	from = pos & (PAGE_CACHE_SIZE - 1);
987 	to = from + len;
988 
989 	BUG_ON(!ext4_handle_valid(handle));
990 
991 	if (copied < len) {
992 		if (!PageUptodate(page))
993 			copied = 0;
994 		page_zero_new_buffers(page, from+copied, to);
995 	}
996 
997 	ret = walk_page_buffers(handle, page_buffers(page), from,
998 				to, &partial, write_end_fn);
999 	if (!partial)
1000 		SetPageUptodate(page);
1001 	new_i_size = pos + copied;
1002 	if (new_i_size > inode->i_size)
1003 		i_size_write(inode, pos+copied);
1004 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 		ext4_update_i_disksize(inode, new_i_size);
1008 		ret2 = ext4_mark_inode_dirty(handle, inode);
1009 		if (!ret)
1010 			ret = ret2;
1011 	}
1012 
1013 	unlock_page(page);
1014 	page_cache_release(page);
1015 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 		/* if we have allocated more blocks and copied
1017 		 * less. We will have blocks allocated outside
1018 		 * inode->i_size. So truncate them
1019 		 */
1020 		ext4_orphan_add(handle, inode);
1021 
1022 	ret2 = ext4_journal_stop(handle);
1023 	if (!ret)
1024 		ret = ret2;
1025 	if (pos + len > inode->i_size) {
1026 		ext4_truncate_failed_write(inode);
1027 		/*
1028 		 * If truncate failed early the inode might still be
1029 		 * on the orphan list; we need to make sure the inode
1030 		 * is removed from the orphan list in that case.
1031 		 */
1032 		if (inode->i_nlink)
1033 			ext4_orphan_del(NULL, inode);
1034 	}
1035 
1036 	return ret ? ret : copied;
1037 }
1038 
1039 /*
1040  * Reserve a single block located at lblock
1041  */
1042 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043 {
1044 	int retries = 0;
1045 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 	struct ext4_inode_info *ei = EXT4_I(inode);
1047 	unsigned long md_needed;
1048 	int ret;
1049 
1050 	/*
1051 	 * recalculate the amount of metadata blocks to reserve
1052 	 * in order to allocate nrblocks
1053 	 * worse case is one extent per block
1054 	 */
1055 repeat:
1056 	spin_lock(&ei->i_block_reservation_lock);
1057 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1058 	trace_ext4_da_reserve_space(inode, md_needed);
1059 	spin_unlock(&ei->i_block_reservation_lock);
1060 
1061 	/*
1062 	 * We will charge metadata quota at writeout time; this saves
1063 	 * us from metadata over-estimation, though we may go over by
1064 	 * a small amount in the end.  Here we just reserve for data.
1065 	 */
1066 	ret = dquot_reserve_block(inode, 1);
1067 	if (ret)
1068 		return ret;
1069 	/*
1070 	 * We do still charge estimated metadata to the sb though;
1071 	 * we cannot afford to run out of free blocks.
1072 	 */
1073 	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074 		dquot_release_reservation_block(inode, 1);
1075 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 			yield();
1077 			goto repeat;
1078 		}
1079 		return -ENOSPC;
1080 	}
1081 	spin_lock(&ei->i_block_reservation_lock);
1082 	ei->i_reserved_data_blocks++;
1083 	ei->i_reserved_meta_blocks += md_needed;
1084 	spin_unlock(&ei->i_block_reservation_lock);
1085 
1086 	return 0;       /* success */
1087 }
1088 
1089 static void ext4_da_release_space(struct inode *inode, int to_free)
1090 {
1091 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 	struct ext4_inode_info *ei = EXT4_I(inode);
1093 
1094 	if (!to_free)
1095 		return;		/* Nothing to release, exit */
1096 
1097 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098 
1099 	trace_ext4_da_release_space(inode, to_free);
1100 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101 		/*
1102 		 * if there aren't enough reserved blocks, then the
1103 		 * counter is messed up somewhere.  Since this
1104 		 * function is called from invalidate page, it's
1105 		 * harmless to return without any action.
1106 		 */
1107 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 			 "ino %lu, to_free %d with only %d reserved "
1109 			 "data blocks\n", inode->i_ino, to_free,
1110 			 ei->i_reserved_data_blocks);
1111 		WARN_ON(1);
1112 		to_free = ei->i_reserved_data_blocks;
1113 	}
1114 	ei->i_reserved_data_blocks -= to_free;
1115 
1116 	if (ei->i_reserved_data_blocks == 0) {
1117 		/*
1118 		 * We can release all of the reserved metadata blocks
1119 		 * only when we have written all of the delayed
1120 		 * allocation blocks.
1121 		 */
1122 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123 				   ei->i_reserved_meta_blocks);
1124 		ei->i_reserved_meta_blocks = 0;
1125 		ei->i_da_metadata_calc_len = 0;
1126 	}
1127 
1128 	/* update fs dirty data blocks counter */
1129 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130 
1131 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132 
1133 	dquot_release_reservation_block(inode, to_free);
1134 }
1135 
1136 static void ext4_da_page_release_reservation(struct page *page,
1137 					     unsigned long offset)
1138 {
1139 	int to_release = 0;
1140 	struct buffer_head *head, *bh;
1141 	unsigned int curr_off = 0;
1142 
1143 	head = page_buffers(page);
1144 	bh = head;
1145 	do {
1146 		unsigned int next_off = curr_off + bh->b_size;
1147 
1148 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1149 			to_release++;
1150 			clear_buffer_delay(bh);
1151 		}
1152 		curr_off = next_off;
1153 	} while ((bh = bh->b_this_page) != head);
1154 	ext4_da_release_space(page->mapping->host, to_release);
1155 }
1156 
1157 /*
1158  * Delayed allocation stuff
1159  */
1160 
1161 /*
1162  * mpage_da_submit_io - walks through extent of pages and try to write
1163  * them with writepage() call back
1164  *
1165  * @mpd->inode: inode
1166  * @mpd->first_page: first page of the extent
1167  * @mpd->next_page: page after the last page of the extent
1168  *
1169  * By the time mpage_da_submit_io() is called we expect all blocks
1170  * to be allocated. this may be wrong if allocation failed.
1171  *
1172  * As pages are already locked by write_cache_pages(), we can't use it
1173  */
1174 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175 			      struct ext4_map_blocks *map)
1176 {
1177 	struct pagevec pvec;
1178 	unsigned long index, end;
1179 	int ret = 0, err, nr_pages, i;
1180 	struct inode *inode = mpd->inode;
1181 	struct address_space *mapping = inode->i_mapping;
1182 	loff_t size = i_size_read(inode);
1183 	unsigned int len, block_start;
1184 	struct buffer_head *bh, *page_bufs = NULL;
1185 	int journal_data = ext4_should_journal_data(inode);
1186 	sector_t pblock = 0, cur_logical = 0;
1187 	struct ext4_io_submit io_submit;
1188 
1189 	BUG_ON(mpd->next_page <= mpd->first_page);
1190 	memset(&io_submit, 0, sizeof(io_submit));
1191 	/*
1192 	 * We need to start from the first_page to the next_page - 1
1193 	 * to make sure we also write the mapped dirty buffer_heads.
1194 	 * If we look at mpd->b_blocknr we would only be looking
1195 	 * at the currently mapped buffer_heads.
1196 	 */
1197 	index = mpd->first_page;
1198 	end = mpd->next_page - 1;
1199 
1200 	pagevec_init(&pvec, 0);
1201 	while (index <= end) {
1202 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203 		if (nr_pages == 0)
1204 			break;
1205 		for (i = 0; i < nr_pages; i++) {
1206 			int commit_write = 0, skip_page = 0;
1207 			struct page *page = pvec.pages[i];
1208 
1209 			index = page->index;
1210 			if (index > end)
1211 				break;
1212 
1213 			if (index == size >> PAGE_CACHE_SHIFT)
1214 				len = size & ~PAGE_CACHE_MASK;
1215 			else
1216 				len = PAGE_CACHE_SIZE;
1217 			if (map) {
1218 				cur_logical = index << (PAGE_CACHE_SHIFT -
1219 							inode->i_blkbits);
1220 				pblock = map->m_pblk + (cur_logical -
1221 							map->m_lblk);
1222 			}
1223 			index++;
1224 
1225 			BUG_ON(!PageLocked(page));
1226 			BUG_ON(PageWriteback(page));
1227 
1228 			/*
1229 			 * If the page does not have buffers (for
1230 			 * whatever reason), try to create them using
1231 			 * __block_write_begin.  If this fails,
1232 			 * skip the page and move on.
1233 			 */
1234 			if (!page_has_buffers(page)) {
1235 				if (__block_write_begin(page, 0, len,
1236 						noalloc_get_block_write)) {
1237 				skip_page:
1238 					unlock_page(page);
1239 					continue;
1240 				}
1241 				commit_write = 1;
1242 			}
1243 
1244 			bh = page_bufs = page_buffers(page);
1245 			block_start = 0;
1246 			do {
1247 				if (!bh)
1248 					goto skip_page;
1249 				if (map && (cur_logical >= map->m_lblk) &&
1250 				    (cur_logical <= (map->m_lblk +
1251 						     (map->m_len - 1)))) {
1252 					if (buffer_delay(bh)) {
1253 						clear_buffer_delay(bh);
1254 						bh->b_blocknr = pblock;
1255 					}
1256 					if (buffer_unwritten(bh) ||
1257 					    buffer_mapped(bh))
1258 						BUG_ON(bh->b_blocknr != pblock);
1259 					if (map->m_flags & EXT4_MAP_UNINIT)
1260 						set_buffer_uninit(bh);
1261 					clear_buffer_unwritten(bh);
1262 				}
1263 
1264 				/* skip page if block allocation undone */
1265 				if (buffer_delay(bh) || buffer_unwritten(bh))
1266 					skip_page = 1;
1267 				bh = bh->b_this_page;
1268 				block_start += bh->b_size;
1269 				cur_logical++;
1270 				pblock++;
1271 			} while (bh != page_bufs);
1272 
1273 			if (skip_page)
1274 				goto skip_page;
1275 
1276 			if (commit_write)
1277 				/* mark the buffer_heads as dirty & uptodate */
1278 				block_commit_write(page, 0, len);
1279 
1280 			clear_page_dirty_for_io(page);
1281 			/*
1282 			 * Delalloc doesn't support data journalling,
1283 			 * but eventually maybe we'll lift this
1284 			 * restriction.
1285 			 */
1286 			if (unlikely(journal_data && PageChecked(page)))
1287 				err = __ext4_journalled_writepage(page, len);
1288 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289 				err = ext4_bio_write_page(&io_submit, page,
1290 							  len, mpd->wbc);
1291 			else if (buffer_uninit(page_bufs)) {
1292 				ext4_set_bh_endio(page_bufs, inode);
1293 				err = block_write_full_page_endio(page,
1294 					noalloc_get_block_write,
1295 					mpd->wbc, ext4_end_io_buffer_write);
1296 			} else
1297 				err = block_write_full_page(page,
1298 					noalloc_get_block_write, mpd->wbc);
1299 
1300 			if (!err)
1301 				mpd->pages_written++;
1302 			/*
1303 			 * In error case, we have to continue because
1304 			 * remaining pages are still locked
1305 			 */
1306 			if (ret == 0)
1307 				ret = err;
1308 		}
1309 		pagevec_release(&pvec);
1310 	}
1311 	ext4_io_submit(&io_submit);
1312 	return ret;
1313 }
1314 
1315 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1316 {
1317 	int nr_pages, i;
1318 	pgoff_t index, end;
1319 	struct pagevec pvec;
1320 	struct inode *inode = mpd->inode;
1321 	struct address_space *mapping = inode->i_mapping;
1322 
1323 	index = mpd->first_page;
1324 	end   = mpd->next_page - 1;
1325 	while (index <= end) {
1326 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327 		if (nr_pages == 0)
1328 			break;
1329 		for (i = 0; i < nr_pages; i++) {
1330 			struct page *page = pvec.pages[i];
1331 			if (page->index > end)
1332 				break;
1333 			BUG_ON(!PageLocked(page));
1334 			BUG_ON(PageWriteback(page));
1335 			block_invalidatepage(page, 0);
1336 			ClearPageUptodate(page);
1337 			unlock_page(page);
1338 		}
1339 		index = pvec.pages[nr_pages - 1]->index + 1;
1340 		pagevec_release(&pvec);
1341 	}
1342 	return;
1343 }
1344 
1345 static void ext4_print_free_blocks(struct inode *inode)
1346 {
1347 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 	printk(KERN_CRIT "Total free blocks count %lld\n",
1349 	       ext4_count_free_blocks(inode->i_sb));
1350 	printk(KERN_CRIT "Free/Dirty block details\n");
1351 	printk(KERN_CRIT "free_blocks=%lld\n",
1352 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1354 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355 	printk(KERN_CRIT "Block reservation details\n");
1356 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357 	       EXT4_I(inode)->i_reserved_data_blocks);
1358 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359 	       EXT4_I(inode)->i_reserved_meta_blocks);
1360 	return;
1361 }
1362 
1363 /*
1364  * mpage_da_map_and_submit - go through given space, map them
1365  *       if necessary, and then submit them for I/O
1366  *
1367  * @mpd - bh describing space
1368  *
1369  * The function skips space we know is already mapped to disk blocks.
1370  *
1371  */
1372 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373 {
1374 	int err, blks, get_blocks_flags;
1375 	struct ext4_map_blocks map, *mapp = NULL;
1376 	sector_t next = mpd->b_blocknr;
1377 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379 	handle_t *handle = NULL;
1380 
1381 	/*
1382 	 * If the blocks are mapped already, or we couldn't accumulate
1383 	 * any blocks, then proceed immediately to the submission stage.
1384 	 */
1385 	if ((mpd->b_size == 0) ||
1386 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1387 	     !(mpd->b_state & (1 << BH_Delay)) &&
1388 	     !(mpd->b_state & (1 << BH_Unwritten))))
1389 		goto submit_io;
1390 
1391 	handle = ext4_journal_current_handle();
1392 	BUG_ON(!handle);
1393 
1394 	/*
1395 	 * Call ext4_map_blocks() to allocate any delayed allocation
1396 	 * blocks, or to convert an uninitialized extent to be
1397 	 * initialized (in the case where we have written into
1398 	 * one or more preallocated blocks).
1399 	 *
1400 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401 	 * indicate that we are on the delayed allocation path.  This
1402 	 * affects functions in many different parts of the allocation
1403 	 * call path.  This flag exists primarily because we don't
1404 	 * want to change *many* call functions, so ext4_map_blocks()
1405 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406 	 * inode's allocation semaphore is taken.
1407 	 *
1408 	 * If the blocks in questions were delalloc blocks, set
1409 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410 	 * variables are updated after the blocks have been allocated.
1411 	 */
1412 	map.m_lblk = next;
1413 	map.m_len = max_blocks;
1414 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415 	if (ext4_should_dioread_nolock(mpd->inode))
1416 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417 	if (mpd->b_state & (1 << BH_Delay))
1418 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419 
1420 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421 	if (blks < 0) {
1422 		struct super_block *sb = mpd->inode->i_sb;
1423 
1424 		err = blks;
1425 		/*
1426 		 * If get block returns EAGAIN or ENOSPC and there
1427 		 * appears to be free blocks we will just let
1428 		 * mpage_da_submit_io() unlock all of the pages.
1429 		 */
1430 		if (err == -EAGAIN)
1431 			goto submit_io;
1432 
1433 		if (err == -ENOSPC &&
1434 		    ext4_count_free_blocks(sb)) {
1435 			mpd->retval = err;
1436 			goto submit_io;
1437 		}
1438 
1439 		/*
1440 		 * get block failure will cause us to loop in
1441 		 * writepages, because a_ops->writepage won't be able
1442 		 * to make progress. The page will be redirtied by
1443 		 * writepage and writepages will again try to write
1444 		 * the same.
1445 		 */
1446 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447 			ext4_msg(sb, KERN_CRIT,
1448 				 "delayed block allocation failed for inode %lu "
1449 				 "at logical offset %llu with max blocks %zd "
1450 				 "with error %d", mpd->inode->i_ino,
1451 				 (unsigned long long) next,
1452 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1453 			ext4_msg(sb, KERN_CRIT,
1454 				"This should not happen!! Data will be lost\n");
1455 			if (err == -ENOSPC)
1456 				ext4_print_free_blocks(mpd->inode);
1457 		}
1458 		/* invalidate all the pages */
1459 		ext4_da_block_invalidatepages(mpd);
1460 
1461 		/* Mark this page range as having been completed */
1462 		mpd->io_done = 1;
1463 		return;
1464 	}
1465 	BUG_ON(blks == 0);
1466 
1467 	mapp = &map;
1468 	if (map.m_flags & EXT4_MAP_NEW) {
1469 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470 		int i;
1471 
1472 		for (i = 0; i < map.m_len; i++)
1473 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1474 	}
1475 
1476 	if (ext4_should_order_data(mpd->inode)) {
1477 		err = ext4_jbd2_file_inode(handle, mpd->inode);
1478 		if (err)
1479 			/* This only happens if the journal is aborted */
1480 			return;
1481 	}
1482 
1483 	/*
1484 	 * Update on-disk size along with block allocation.
1485 	 */
1486 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487 	if (disksize > i_size_read(mpd->inode))
1488 		disksize = i_size_read(mpd->inode);
1489 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490 		ext4_update_i_disksize(mpd->inode, disksize);
1491 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1492 		if (err)
1493 			ext4_error(mpd->inode->i_sb,
1494 				   "Failed to mark inode %lu dirty",
1495 				   mpd->inode->i_ino);
1496 	}
1497 
1498 submit_io:
1499 	mpage_da_submit_io(mpd, mapp);
1500 	mpd->io_done = 1;
1501 }
1502 
1503 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504 		(1 << BH_Delay) | (1 << BH_Unwritten))
1505 
1506 /*
1507  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508  *
1509  * @mpd->lbh - extent of blocks
1510  * @logical - logical number of the block in the file
1511  * @bh - bh of the block (used to access block's state)
1512  *
1513  * the function is used to collect contig. blocks in same state
1514  */
1515 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516 				   sector_t logical, size_t b_size,
1517 				   unsigned long b_state)
1518 {
1519 	sector_t next;
1520 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521 
1522 	/*
1523 	 * XXX Don't go larger than mballoc is willing to allocate
1524 	 * This is a stopgap solution.  We eventually need to fold
1525 	 * mpage_da_submit_io() into this function and then call
1526 	 * ext4_map_blocks() multiple times in a loop
1527 	 */
1528 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529 		goto flush_it;
1530 
1531 	/* check if thereserved journal credits might overflow */
1532 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534 			/*
1535 			 * With non-extent format we are limited by the journal
1536 			 * credit available.  Total credit needed to insert
1537 			 * nrblocks contiguous blocks is dependent on the
1538 			 * nrblocks.  So limit nrblocks.
1539 			 */
1540 			goto flush_it;
1541 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542 				EXT4_MAX_TRANS_DATA) {
1543 			/*
1544 			 * Adding the new buffer_head would make it cross the
1545 			 * allowed limit for which we have journal credit
1546 			 * reserved. So limit the new bh->b_size
1547 			 */
1548 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549 						mpd->inode->i_blkbits;
1550 			/* we will do mpage_da_submit_io in the next loop */
1551 		}
1552 	}
1553 	/*
1554 	 * First block in the extent
1555 	 */
1556 	if (mpd->b_size == 0) {
1557 		mpd->b_blocknr = logical;
1558 		mpd->b_size = b_size;
1559 		mpd->b_state = b_state & BH_FLAGS;
1560 		return;
1561 	}
1562 
1563 	next = mpd->b_blocknr + nrblocks;
1564 	/*
1565 	 * Can we merge the block to our big extent?
1566 	 */
1567 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568 		mpd->b_size += b_size;
1569 		return;
1570 	}
1571 
1572 flush_it:
1573 	/*
1574 	 * We couldn't merge the block to our extent, so we
1575 	 * need to flush current  extent and start new one
1576 	 */
1577 	mpage_da_map_and_submit(mpd);
1578 	return;
1579 }
1580 
1581 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582 {
1583 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584 }
1585 
1586 /*
1587  * This is a special get_blocks_t callback which is used by
1588  * ext4_da_write_begin().  It will either return mapped block or
1589  * reserve space for a single block.
1590  *
1591  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592  * We also have b_blocknr = -1 and b_bdev initialized properly
1593  *
1594  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596  * initialized properly.
1597  */
1598 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599 				  struct buffer_head *bh, int create)
1600 {
1601 	struct ext4_map_blocks map;
1602 	int ret = 0;
1603 	sector_t invalid_block = ~((sector_t) 0xffff);
1604 
1605 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606 		invalid_block = ~0;
1607 
1608 	BUG_ON(create == 0);
1609 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610 
1611 	map.m_lblk = iblock;
1612 	map.m_len = 1;
1613 
1614 	/*
1615 	 * first, we need to know whether the block is allocated already
1616 	 * preallocated blocks are unmapped but should treated
1617 	 * the same as allocated blocks.
1618 	 */
1619 	ret = ext4_map_blocks(NULL, inode, &map, 0);
1620 	if (ret < 0)
1621 		return ret;
1622 	if (ret == 0) {
1623 		if (buffer_delay(bh))
1624 			return 0; /* Not sure this could or should happen */
1625 		/*
1626 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627 		 */
1628 		ret = ext4_da_reserve_space(inode, iblock);
1629 		if (ret)
1630 			/* not enough space to reserve */
1631 			return ret;
1632 
1633 		map_bh(bh, inode->i_sb, invalid_block);
1634 		set_buffer_new(bh);
1635 		set_buffer_delay(bh);
1636 		return 0;
1637 	}
1638 
1639 	map_bh(bh, inode->i_sb, map.m_pblk);
1640 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641 
1642 	if (buffer_unwritten(bh)) {
1643 		/* A delayed write to unwritten bh should be marked
1644 		 * new and mapped.  Mapped ensures that we don't do
1645 		 * get_block multiple times when we write to the same
1646 		 * offset and new ensures that we do proper zero out
1647 		 * for partial write.
1648 		 */
1649 		set_buffer_new(bh);
1650 		set_buffer_mapped(bh);
1651 	}
1652 	return 0;
1653 }
1654 
1655 /*
1656  * This function is used as a standard get_block_t calback function
1657  * when there is no desire to allocate any blocks.  It is used as a
1658  * callback function for block_write_begin() and block_write_full_page().
1659  * These functions should only try to map a single block at a time.
1660  *
1661  * Since this function doesn't do block allocations even if the caller
1662  * requests it by passing in create=1, it is critically important that
1663  * any caller checks to make sure that any buffer heads are returned
1664  * by this function are either all already mapped or marked for
1665  * delayed allocation before calling  block_write_full_page().  Otherwise,
1666  * b_blocknr could be left unitialized, and the page write functions will
1667  * be taken by surprise.
1668  */
1669 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670 				   struct buffer_head *bh_result, int create)
1671 {
1672 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673 	return _ext4_get_block(inode, iblock, bh_result, 0);
1674 }
1675 
1676 static int bget_one(handle_t *handle, struct buffer_head *bh)
1677 {
1678 	get_bh(bh);
1679 	return 0;
1680 }
1681 
1682 static int bput_one(handle_t *handle, struct buffer_head *bh)
1683 {
1684 	put_bh(bh);
1685 	return 0;
1686 }
1687 
1688 static int __ext4_journalled_writepage(struct page *page,
1689 				       unsigned int len)
1690 {
1691 	struct address_space *mapping = page->mapping;
1692 	struct inode *inode = mapping->host;
1693 	struct buffer_head *page_bufs;
1694 	handle_t *handle = NULL;
1695 	int ret = 0;
1696 	int err;
1697 
1698 	ClearPageChecked(page);
1699 	page_bufs = page_buffers(page);
1700 	BUG_ON(!page_bufs);
1701 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702 	/* As soon as we unlock the page, it can go away, but we have
1703 	 * references to buffers so we are safe */
1704 	unlock_page(page);
1705 
1706 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1707 	if (IS_ERR(handle)) {
1708 		ret = PTR_ERR(handle);
1709 		goto out;
1710 	}
1711 
1712 	BUG_ON(!ext4_handle_valid(handle));
1713 
1714 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715 				do_journal_get_write_access);
1716 
1717 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718 				write_end_fn);
1719 	if (ret == 0)
1720 		ret = err;
1721 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722 	err = ext4_journal_stop(handle);
1723 	if (!ret)
1724 		ret = err;
1725 
1726 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728 out:
1729 	return ret;
1730 }
1731 
1732 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734 
1735 /*
1736  * Note that we don't need to start a transaction unless we're journaling data
1737  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738  * need to file the inode to the transaction's list in ordered mode because if
1739  * we are writing back data added by write(), the inode is already there and if
1740  * we are writing back data modified via mmap(), no one guarantees in which
1741  * transaction the data will hit the disk. In case we are journaling data, we
1742  * cannot start transaction directly because transaction start ranks above page
1743  * lock so we have to do some magic.
1744  *
1745  * This function can get called via...
1746  *   - ext4_da_writepages after taking page lock (have journal handle)
1747  *   - journal_submit_inode_data_buffers (no journal handle)
1748  *   - shrink_page_list via pdflush (no journal handle)
1749  *   - grab_page_cache when doing write_begin (have journal handle)
1750  *
1751  * We don't do any block allocation in this function. If we have page with
1752  * multiple blocks we need to write those buffer_heads that are mapped. This
1753  * is important for mmaped based write. So if we do with blocksize 1K
1754  * truncate(f, 1024);
1755  * a = mmap(f, 0, 4096);
1756  * a[0] = 'a';
1757  * truncate(f, 4096);
1758  * we have in the page first buffer_head mapped via page_mkwrite call back
1759  * but other bufer_heads would be unmapped but dirty(dirty done via the
1760  * do_wp_page). So writepage should write the first block. If we modify
1761  * the mmap area beyond 1024 we will again get a page_fault and the
1762  * page_mkwrite callback will do the block allocation and mark the
1763  * buffer_heads mapped.
1764  *
1765  * We redirty the page if we have any buffer_heads that is either delay or
1766  * unwritten in the page.
1767  *
1768  * We can get recursively called as show below.
1769  *
1770  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771  *		ext4_writepage()
1772  *
1773  * But since we don't do any block allocation we should not deadlock.
1774  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1775  */
1776 static int ext4_writepage(struct page *page,
1777 			  struct writeback_control *wbc)
1778 {
1779 	int ret = 0, commit_write = 0;
1780 	loff_t size;
1781 	unsigned int len;
1782 	struct buffer_head *page_bufs = NULL;
1783 	struct inode *inode = page->mapping->host;
1784 
1785 	trace_ext4_writepage(page);
1786 	size = i_size_read(inode);
1787 	if (page->index == size >> PAGE_CACHE_SHIFT)
1788 		len = size & ~PAGE_CACHE_MASK;
1789 	else
1790 		len = PAGE_CACHE_SIZE;
1791 
1792 	/*
1793 	 * If the page does not have buffers (for whatever reason),
1794 	 * try to create them using __block_write_begin.  If this
1795 	 * fails, redirty the page and move on.
1796 	 */
1797 	if (!page_has_buffers(page)) {
1798 		if (__block_write_begin(page, 0, len,
1799 					noalloc_get_block_write)) {
1800 		redirty_page:
1801 			redirty_page_for_writepage(wbc, page);
1802 			unlock_page(page);
1803 			return 0;
1804 		}
1805 		commit_write = 1;
1806 	}
1807 	page_bufs = page_buffers(page);
1808 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809 			      ext4_bh_delay_or_unwritten)) {
1810 		/*
1811 		 * We don't want to do block allocation, so redirty
1812 		 * the page and return.  We may reach here when we do
1813 		 * a journal commit via journal_submit_inode_data_buffers.
1814 		 * We can also reach here via shrink_page_list
1815 		 */
1816 		goto redirty_page;
1817 	}
1818 	if (commit_write)
1819 		/* now mark the buffer_heads as dirty and uptodate */
1820 		block_commit_write(page, 0, len);
1821 
1822 	if (PageChecked(page) && ext4_should_journal_data(inode))
1823 		/*
1824 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1825 		 * doesn't seem much point in redirtying the page here.
1826 		 */
1827 		return __ext4_journalled_writepage(page, len);
1828 
1829 	if (buffer_uninit(page_bufs)) {
1830 		ext4_set_bh_endio(page_bufs, inode);
1831 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832 					    wbc, ext4_end_io_buffer_write);
1833 	} else
1834 		ret = block_write_full_page(page, noalloc_get_block_write,
1835 					    wbc);
1836 
1837 	return ret;
1838 }
1839 
1840 /*
1841  * This is called via ext4_da_writepages() to
1842  * calculate the total number of credits to reserve to fit
1843  * a single extent allocation into a single transaction,
1844  * ext4_da_writpeages() will loop calling this before
1845  * the block allocation.
1846  */
1847 
1848 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849 {
1850 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851 
1852 	/*
1853 	 * With non-extent format the journal credit needed to
1854 	 * insert nrblocks contiguous block is dependent on
1855 	 * number of contiguous block. So we will limit
1856 	 * number of contiguous block to a sane value
1857 	 */
1858 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1860 		max_blocks = EXT4_MAX_TRANS_DATA;
1861 
1862 	return ext4_chunk_trans_blocks(inode, max_blocks);
1863 }
1864 
1865 /*
1866  * write_cache_pages_da - walk the list of dirty pages of the given
1867  * address space and accumulate pages that need writing, and call
1868  * mpage_da_map_and_submit to map a single contiguous memory region
1869  * and then write them.
1870  */
1871 static int write_cache_pages_da(struct address_space *mapping,
1872 				struct writeback_control *wbc,
1873 				struct mpage_da_data *mpd,
1874 				pgoff_t *done_index)
1875 {
1876 	struct buffer_head	*bh, *head;
1877 	struct inode		*inode = mapping->host;
1878 	struct pagevec		pvec;
1879 	unsigned int		nr_pages;
1880 	sector_t		logical;
1881 	pgoff_t			index, end;
1882 	long			nr_to_write = wbc->nr_to_write;
1883 	int			i, tag, ret = 0;
1884 
1885 	memset(mpd, 0, sizeof(struct mpage_da_data));
1886 	mpd->wbc = wbc;
1887 	mpd->inode = inode;
1888 	pagevec_init(&pvec, 0);
1889 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
1891 
1892 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893 		tag = PAGECACHE_TAG_TOWRITE;
1894 	else
1895 		tag = PAGECACHE_TAG_DIRTY;
1896 
1897 	*done_index = index;
1898 	while (index <= end) {
1899 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901 		if (nr_pages == 0)
1902 			return 0;
1903 
1904 		for (i = 0; i < nr_pages; i++) {
1905 			struct page *page = pvec.pages[i];
1906 
1907 			/*
1908 			 * At this point, the page may be truncated or
1909 			 * invalidated (changing page->mapping to NULL), or
1910 			 * even swizzled back from swapper_space to tmpfs file
1911 			 * mapping. However, page->index will not change
1912 			 * because we have a reference on the page.
1913 			 */
1914 			if (page->index > end)
1915 				goto out;
1916 
1917 			*done_index = page->index + 1;
1918 
1919 			/*
1920 			 * If we can't merge this page, and we have
1921 			 * accumulated an contiguous region, write it
1922 			 */
1923 			if ((mpd->next_page != page->index) &&
1924 			    (mpd->next_page != mpd->first_page)) {
1925 				mpage_da_map_and_submit(mpd);
1926 				goto ret_extent_tail;
1927 			}
1928 
1929 			lock_page(page);
1930 
1931 			/*
1932 			 * If the page is no longer dirty, or its
1933 			 * mapping no longer corresponds to inode we
1934 			 * are writing (which means it has been
1935 			 * truncated or invalidated), or the page is
1936 			 * already under writeback and we are not
1937 			 * doing a data integrity writeback, skip the page
1938 			 */
1939 			if (!PageDirty(page) ||
1940 			    (PageWriteback(page) &&
1941 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1942 			    unlikely(page->mapping != mapping)) {
1943 				unlock_page(page);
1944 				continue;
1945 			}
1946 
1947 			wait_on_page_writeback(page);
1948 			BUG_ON(PageWriteback(page));
1949 
1950 			if (mpd->next_page != page->index)
1951 				mpd->first_page = page->index;
1952 			mpd->next_page = page->index + 1;
1953 			logical = (sector_t) page->index <<
1954 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1955 
1956 			if (!page_has_buffers(page)) {
1957 				mpage_add_bh_to_extent(mpd, logical,
1958 						       PAGE_CACHE_SIZE,
1959 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1960 				if (mpd->io_done)
1961 					goto ret_extent_tail;
1962 			} else {
1963 				/*
1964 				 * Page with regular buffer heads,
1965 				 * just add all dirty ones
1966 				 */
1967 				head = page_buffers(page);
1968 				bh = head;
1969 				do {
1970 					BUG_ON(buffer_locked(bh));
1971 					/*
1972 					 * We need to try to allocate
1973 					 * unmapped blocks in the same page.
1974 					 * Otherwise we won't make progress
1975 					 * with the page in ext4_writepage
1976 					 */
1977 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978 						mpage_add_bh_to_extent(mpd, logical,
1979 								       bh->b_size,
1980 								       bh->b_state);
1981 						if (mpd->io_done)
1982 							goto ret_extent_tail;
1983 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984 						/*
1985 						 * mapped dirty buffer. We need
1986 						 * to update the b_state
1987 						 * because we look at b_state
1988 						 * in mpage_da_map_blocks.  We
1989 						 * don't update b_size because
1990 						 * if we find an unmapped
1991 						 * buffer_head later we need to
1992 						 * use the b_state flag of that
1993 						 * buffer_head.
1994 						 */
1995 						if (mpd->b_size == 0)
1996 							mpd->b_state = bh->b_state & BH_FLAGS;
1997 					}
1998 					logical++;
1999 				} while ((bh = bh->b_this_page) != head);
2000 			}
2001 
2002 			if (nr_to_write > 0) {
2003 				nr_to_write--;
2004 				if (nr_to_write == 0 &&
2005 				    wbc->sync_mode == WB_SYNC_NONE)
2006 					/*
2007 					 * We stop writing back only if we are
2008 					 * not doing integrity sync. In case of
2009 					 * integrity sync we have to keep going
2010 					 * because someone may be concurrently
2011 					 * dirtying pages, and we might have
2012 					 * synced a lot of newly appeared dirty
2013 					 * pages, but have not synced all of the
2014 					 * old dirty pages.
2015 					 */
2016 					goto out;
2017 			}
2018 		}
2019 		pagevec_release(&pvec);
2020 		cond_resched();
2021 	}
2022 	return 0;
2023 ret_extent_tail:
2024 	ret = MPAGE_DA_EXTENT_TAIL;
2025 out:
2026 	pagevec_release(&pvec);
2027 	cond_resched();
2028 	return ret;
2029 }
2030 
2031 
2032 static int ext4_da_writepages(struct address_space *mapping,
2033 			      struct writeback_control *wbc)
2034 {
2035 	pgoff_t	index;
2036 	int range_whole = 0;
2037 	handle_t *handle = NULL;
2038 	struct mpage_da_data mpd;
2039 	struct inode *inode = mapping->host;
2040 	int pages_written = 0;
2041 	unsigned int max_pages;
2042 	int range_cyclic, cycled = 1, io_done = 0;
2043 	int needed_blocks, ret = 0;
2044 	long desired_nr_to_write, nr_to_writebump = 0;
2045 	loff_t range_start = wbc->range_start;
2046 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047 	pgoff_t done_index = 0;
2048 	pgoff_t end;
2049 
2050 	trace_ext4_da_writepages(inode, wbc);
2051 
2052 	/*
2053 	 * No pages to write? This is mainly a kludge to avoid starting
2054 	 * a transaction for special inodes like journal inode on last iput()
2055 	 * because that could violate lock ordering on umount
2056 	 */
2057 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058 		return 0;
2059 
2060 	/*
2061 	 * If the filesystem has aborted, it is read-only, so return
2062 	 * right away instead of dumping stack traces later on that
2063 	 * will obscure the real source of the problem.  We test
2064 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065 	 * the latter could be true if the filesystem is mounted
2066 	 * read-only, and in that case, ext4_da_writepages should
2067 	 * *never* be called, so if that ever happens, we would want
2068 	 * the stack trace.
2069 	 */
2070 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071 		return -EROFS;
2072 
2073 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 		range_whole = 1;
2075 
2076 	range_cyclic = wbc->range_cyclic;
2077 	if (wbc->range_cyclic) {
2078 		index = mapping->writeback_index;
2079 		if (index)
2080 			cycled = 0;
2081 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2082 		wbc->range_end  = LLONG_MAX;
2083 		wbc->range_cyclic = 0;
2084 		end = -1;
2085 	} else {
2086 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088 	}
2089 
2090 	/*
2091 	 * This works around two forms of stupidity.  The first is in
2092 	 * the writeback code, which caps the maximum number of pages
2093 	 * written to be 1024 pages.  This is wrong on multiple
2094 	 * levels; different architectues have a different page size,
2095 	 * which changes the maximum amount of data which gets
2096 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2097 	 * forces this value to be 16 megabytes by multiplying
2098 	 * nr_to_write parameter by four, and then relies on its
2099 	 * allocator to allocate larger extents to make them
2100 	 * contiguous.  Unfortunately this brings us to the second
2101 	 * stupidity, which is that ext4's mballoc code only allocates
2102 	 * at most 2048 blocks.  So we force contiguous writes up to
2103 	 * the number of dirty blocks in the inode, or
2104 	 * sbi->max_writeback_mb_bump whichever is smaller.
2105 	 */
2106 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107 	if (!range_cyclic && range_whole) {
2108 		if (wbc->nr_to_write == LONG_MAX)
2109 			desired_nr_to_write = wbc->nr_to_write;
2110 		else
2111 			desired_nr_to_write = wbc->nr_to_write * 8;
2112 	} else
2113 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114 							   max_pages);
2115 	if (desired_nr_to_write > max_pages)
2116 		desired_nr_to_write = max_pages;
2117 
2118 	if (wbc->nr_to_write < desired_nr_to_write) {
2119 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120 		wbc->nr_to_write = desired_nr_to_write;
2121 	}
2122 
2123 retry:
2124 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125 		tag_pages_for_writeback(mapping, index, end);
2126 
2127 	while (!ret && wbc->nr_to_write > 0) {
2128 
2129 		/*
2130 		 * we  insert one extent at a time. So we need
2131 		 * credit needed for single extent allocation.
2132 		 * journalled mode is currently not supported
2133 		 * by delalloc
2134 		 */
2135 		BUG_ON(ext4_should_journal_data(inode));
2136 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137 
2138 		/* start a new transaction*/
2139 		handle = ext4_journal_start(inode, needed_blocks);
2140 		if (IS_ERR(handle)) {
2141 			ret = PTR_ERR(handle);
2142 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143 			       "%ld pages, ino %lu; err %d", __func__,
2144 				wbc->nr_to_write, inode->i_ino, ret);
2145 			goto out_writepages;
2146 		}
2147 
2148 		/*
2149 		 * Now call write_cache_pages_da() to find the next
2150 		 * contiguous region of logical blocks that need
2151 		 * blocks to be allocated by ext4 and submit them.
2152 		 */
2153 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154 		/*
2155 		 * If we have a contiguous extent of pages and we
2156 		 * haven't done the I/O yet, map the blocks and submit
2157 		 * them for I/O.
2158 		 */
2159 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160 			mpage_da_map_and_submit(&mpd);
2161 			ret = MPAGE_DA_EXTENT_TAIL;
2162 		}
2163 		trace_ext4_da_write_pages(inode, &mpd);
2164 		wbc->nr_to_write -= mpd.pages_written;
2165 
2166 		ext4_journal_stop(handle);
2167 
2168 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169 			/* commit the transaction which would
2170 			 * free blocks released in the transaction
2171 			 * and try again
2172 			 */
2173 			jbd2_journal_force_commit_nested(sbi->s_journal);
2174 			ret = 0;
2175 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176 			/*
2177 			 * got one extent now try with
2178 			 * rest of the pages
2179 			 */
2180 			pages_written += mpd.pages_written;
2181 			ret = 0;
2182 			io_done = 1;
2183 		} else if (wbc->nr_to_write)
2184 			/*
2185 			 * There is no more writeout needed
2186 			 * or we requested for a noblocking writeout
2187 			 * and we found the device congested
2188 			 */
2189 			break;
2190 	}
2191 	if (!io_done && !cycled) {
2192 		cycled = 1;
2193 		index = 0;
2194 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2195 		wbc->range_end  = mapping->writeback_index - 1;
2196 		goto retry;
2197 	}
2198 
2199 	/* Update index */
2200 	wbc->range_cyclic = range_cyclic;
2201 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202 		/*
2203 		 * set the writeback_index so that range_cyclic
2204 		 * mode will write it back later
2205 		 */
2206 		mapping->writeback_index = done_index;
2207 
2208 out_writepages:
2209 	wbc->nr_to_write -= nr_to_writebump;
2210 	wbc->range_start = range_start;
2211 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2212 	return ret;
2213 }
2214 
2215 #define FALL_BACK_TO_NONDELALLOC 1
2216 static int ext4_nonda_switch(struct super_block *sb)
2217 {
2218 	s64 free_blocks, dirty_blocks;
2219 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2220 
2221 	/*
2222 	 * switch to non delalloc mode if we are running low
2223 	 * on free block. The free block accounting via percpu
2224 	 * counters can get slightly wrong with percpu_counter_batch getting
2225 	 * accumulated on each CPU without updating global counters
2226 	 * Delalloc need an accurate free block accounting. So switch
2227 	 * to non delalloc when we are near to error range.
2228 	 */
2229 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231 	if (2 * free_blocks < 3 * dirty_blocks ||
2232 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2233 		/*
2234 		 * free block count is less than 150% of dirty blocks
2235 		 * or free blocks is less than watermark
2236 		 */
2237 		return 1;
2238 	}
2239 	/*
2240 	 * Even if we don't switch but are nearing capacity,
2241 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2242 	 */
2243 	if (free_blocks < 2 * dirty_blocks)
2244 		writeback_inodes_sb_if_idle(sb);
2245 
2246 	return 0;
2247 }
2248 
2249 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250 			       loff_t pos, unsigned len, unsigned flags,
2251 			       struct page **pagep, void **fsdata)
2252 {
2253 	int ret, retries = 0;
2254 	struct page *page;
2255 	pgoff_t index;
2256 	struct inode *inode = mapping->host;
2257 	handle_t *handle;
2258 
2259 	index = pos >> PAGE_CACHE_SHIFT;
2260 
2261 	if (ext4_nonda_switch(inode->i_sb)) {
2262 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263 		return ext4_write_begin(file, mapping, pos,
2264 					len, flags, pagep, fsdata);
2265 	}
2266 	*fsdata = (void *)0;
2267 	trace_ext4_da_write_begin(inode, pos, len, flags);
2268 retry:
2269 	/*
2270 	 * With delayed allocation, we don't log the i_disksize update
2271 	 * if there is delayed block allocation. But we still need
2272 	 * to journalling the i_disksize update if writes to the end
2273 	 * of file which has an already mapped buffer.
2274 	 */
2275 	handle = ext4_journal_start(inode, 1);
2276 	if (IS_ERR(handle)) {
2277 		ret = PTR_ERR(handle);
2278 		goto out;
2279 	}
2280 	/* We cannot recurse into the filesystem as the transaction is already
2281 	 * started */
2282 	flags |= AOP_FLAG_NOFS;
2283 
2284 	page = grab_cache_page_write_begin(mapping, index, flags);
2285 	if (!page) {
2286 		ext4_journal_stop(handle);
2287 		ret = -ENOMEM;
2288 		goto out;
2289 	}
2290 	*pagep = page;
2291 
2292 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2293 	if (ret < 0) {
2294 		unlock_page(page);
2295 		ext4_journal_stop(handle);
2296 		page_cache_release(page);
2297 		/*
2298 		 * block_write_begin may have instantiated a few blocks
2299 		 * outside i_size.  Trim these off again. Don't need
2300 		 * i_size_read because we hold i_mutex.
2301 		 */
2302 		if (pos + len > inode->i_size)
2303 			ext4_truncate_failed_write(inode);
2304 	}
2305 
2306 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307 		goto retry;
2308 out:
2309 	return ret;
2310 }
2311 
2312 /*
2313  * Check if we should update i_disksize
2314  * when write to the end of file but not require block allocation
2315  */
2316 static int ext4_da_should_update_i_disksize(struct page *page,
2317 					    unsigned long offset)
2318 {
2319 	struct buffer_head *bh;
2320 	struct inode *inode = page->mapping->host;
2321 	unsigned int idx;
2322 	int i;
2323 
2324 	bh = page_buffers(page);
2325 	idx = offset >> inode->i_blkbits;
2326 
2327 	for (i = 0; i < idx; i++)
2328 		bh = bh->b_this_page;
2329 
2330 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331 		return 0;
2332 	return 1;
2333 }
2334 
2335 static int ext4_da_write_end(struct file *file,
2336 			     struct address_space *mapping,
2337 			     loff_t pos, unsigned len, unsigned copied,
2338 			     struct page *page, void *fsdata)
2339 {
2340 	struct inode *inode = mapping->host;
2341 	int ret = 0, ret2;
2342 	handle_t *handle = ext4_journal_current_handle();
2343 	loff_t new_i_size;
2344 	unsigned long start, end;
2345 	int write_mode = (int)(unsigned long)fsdata;
2346 
2347 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348 		if (ext4_should_order_data(inode)) {
2349 			return ext4_ordered_write_end(file, mapping, pos,
2350 					len, copied, page, fsdata);
2351 		} else if (ext4_should_writeback_data(inode)) {
2352 			return ext4_writeback_write_end(file, mapping, pos,
2353 					len, copied, page, fsdata);
2354 		} else {
2355 			BUG();
2356 		}
2357 	}
2358 
2359 	trace_ext4_da_write_end(inode, pos, len, copied);
2360 	start = pos & (PAGE_CACHE_SIZE - 1);
2361 	end = start + copied - 1;
2362 
2363 	/*
2364 	 * generic_write_end() will run mark_inode_dirty() if i_size
2365 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2366 	 * into that.
2367 	 */
2368 
2369 	new_i_size = pos + copied;
2370 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2371 		if (ext4_da_should_update_i_disksize(page, end)) {
2372 			down_write(&EXT4_I(inode)->i_data_sem);
2373 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2374 				/*
2375 				 * Updating i_disksize when extending file
2376 				 * without needing block allocation
2377 				 */
2378 				if (ext4_should_order_data(inode))
2379 					ret = ext4_jbd2_file_inode(handle,
2380 								   inode);
2381 
2382 				EXT4_I(inode)->i_disksize = new_i_size;
2383 			}
2384 			up_write(&EXT4_I(inode)->i_data_sem);
2385 			/* We need to mark inode dirty even if
2386 			 * new_i_size is less that inode->i_size
2387 			 * bu greater than i_disksize.(hint delalloc)
2388 			 */
2389 			ext4_mark_inode_dirty(handle, inode);
2390 		}
2391 	}
2392 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2393 							page, fsdata);
2394 	copied = ret2;
2395 	if (ret2 < 0)
2396 		ret = ret2;
2397 	ret2 = ext4_journal_stop(handle);
2398 	if (!ret)
2399 		ret = ret2;
2400 
2401 	return ret ? ret : copied;
2402 }
2403 
2404 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2405 {
2406 	/*
2407 	 * Drop reserved blocks
2408 	 */
2409 	BUG_ON(!PageLocked(page));
2410 	if (!page_has_buffers(page))
2411 		goto out;
2412 
2413 	ext4_da_page_release_reservation(page, offset);
2414 
2415 out:
2416 	ext4_invalidatepage(page, offset);
2417 
2418 	return;
2419 }
2420 
2421 /*
2422  * Force all delayed allocation blocks to be allocated for a given inode.
2423  */
2424 int ext4_alloc_da_blocks(struct inode *inode)
2425 {
2426 	trace_ext4_alloc_da_blocks(inode);
2427 
2428 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2430 		return 0;
2431 
2432 	/*
2433 	 * We do something simple for now.  The filemap_flush() will
2434 	 * also start triggering a write of the data blocks, which is
2435 	 * not strictly speaking necessary (and for users of
2436 	 * laptop_mode, not even desirable).  However, to do otherwise
2437 	 * would require replicating code paths in:
2438 	 *
2439 	 * ext4_da_writepages() ->
2440 	 *    write_cache_pages() ---> (via passed in callback function)
2441 	 *        __mpage_da_writepage() -->
2442 	 *           mpage_add_bh_to_extent()
2443 	 *           mpage_da_map_blocks()
2444 	 *
2445 	 * The problem is that write_cache_pages(), located in
2446 	 * mm/page-writeback.c, marks pages clean in preparation for
2447 	 * doing I/O, which is not desirable if we're not planning on
2448 	 * doing I/O at all.
2449 	 *
2450 	 * We could call write_cache_pages(), and then redirty all of
2451 	 * the pages by calling redirty_page_for_writepage() but that
2452 	 * would be ugly in the extreme.  So instead we would need to
2453 	 * replicate parts of the code in the above functions,
2454 	 * simplifying them because we wouldn't actually intend to
2455 	 * write out the pages, but rather only collect contiguous
2456 	 * logical block extents, call the multi-block allocator, and
2457 	 * then update the buffer heads with the block allocations.
2458 	 *
2459 	 * For now, though, we'll cheat by calling filemap_flush(),
2460 	 * which will map the blocks, and start the I/O, but not
2461 	 * actually wait for the I/O to complete.
2462 	 */
2463 	return filemap_flush(inode->i_mapping);
2464 }
2465 
2466 /*
2467  * bmap() is special.  It gets used by applications such as lilo and by
2468  * the swapper to find the on-disk block of a specific piece of data.
2469  *
2470  * Naturally, this is dangerous if the block concerned is still in the
2471  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2472  * filesystem and enables swap, then they may get a nasty shock when the
2473  * data getting swapped to that swapfile suddenly gets overwritten by
2474  * the original zero's written out previously to the journal and
2475  * awaiting writeback in the kernel's buffer cache.
2476  *
2477  * So, if we see any bmap calls here on a modified, data-journaled file,
2478  * take extra steps to flush any blocks which might be in the cache.
2479  */
2480 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481 {
2482 	struct inode *inode = mapping->host;
2483 	journal_t *journal;
2484 	int err;
2485 
2486 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487 			test_opt(inode->i_sb, DELALLOC)) {
2488 		/*
2489 		 * With delalloc we want to sync the file
2490 		 * so that we can make sure we allocate
2491 		 * blocks for file
2492 		 */
2493 		filemap_write_and_wait(mapping);
2494 	}
2495 
2496 	if (EXT4_JOURNAL(inode) &&
2497 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498 		/*
2499 		 * This is a REALLY heavyweight approach, but the use of
2500 		 * bmap on dirty files is expected to be extremely rare:
2501 		 * only if we run lilo or swapon on a freshly made file
2502 		 * do we expect this to happen.
2503 		 *
2504 		 * (bmap requires CAP_SYS_RAWIO so this does not
2505 		 * represent an unprivileged user DOS attack --- we'd be
2506 		 * in trouble if mortal users could trigger this path at
2507 		 * will.)
2508 		 *
2509 		 * NB. EXT4_STATE_JDATA is not set on files other than
2510 		 * regular files.  If somebody wants to bmap a directory
2511 		 * or symlink and gets confused because the buffer
2512 		 * hasn't yet been flushed to disk, they deserve
2513 		 * everything they get.
2514 		 */
2515 
2516 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517 		journal = EXT4_JOURNAL(inode);
2518 		jbd2_journal_lock_updates(journal);
2519 		err = jbd2_journal_flush(journal);
2520 		jbd2_journal_unlock_updates(journal);
2521 
2522 		if (err)
2523 			return 0;
2524 	}
2525 
2526 	return generic_block_bmap(mapping, block, ext4_get_block);
2527 }
2528 
2529 static int ext4_readpage(struct file *file, struct page *page)
2530 {
2531 	trace_ext4_readpage(page);
2532 	return mpage_readpage(page, ext4_get_block);
2533 }
2534 
2535 static int
2536 ext4_readpages(struct file *file, struct address_space *mapping,
2537 		struct list_head *pages, unsigned nr_pages)
2538 {
2539 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2540 }
2541 
2542 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2543 {
2544 	struct buffer_head *head, *bh;
2545 	unsigned int curr_off = 0;
2546 
2547 	if (!page_has_buffers(page))
2548 		return;
2549 	head = bh = page_buffers(page);
2550 	do {
2551 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552 					&& bh->b_private) {
2553 			ext4_free_io_end(bh->b_private);
2554 			bh->b_private = NULL;
2555 			bh->b_end_io = NULL;
2556 		}
2557 		curr_off = curr_off + bh->b_size;
2558 		bh = bh->b_this_page;
2559 	} while (bh != head);
2560 }
2561 
2562 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2563 {
2564 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565 
2566 	trace_ext4_invalidatepage(page, offset);
2567 
2568 	/*
2569 	 * free any io_end structure allocated for buffers to be discarded
2570 	 */
2571 	if (ext4_should_dioread_nolock(page->mapping->host))
2572 		ext4_invalidatepage_free_endio(page, offset);
2573 	/*
2574 	 * If it's a full truncate we just forget about the pending dirtying
2575 	 */
2576 	if (offset == 0)
2577 		ClearPageChecked(page);
2578 
2579 	if (journal)
2580 		jbd2_journal_invalidatepage(journal, page, offset);
2581 	else
2582 		block_invalidatepage(page, offset);
2583 }
2584 
2585 static int ext4_releasepage(struct page *page, gfp_t wait)
2586 {
2587 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2588 
2589 	trace_ext4_releasepage(page);
2590 
2591 	WARN_ON(PageChecked(page));
2592 	if (!page_has_buffers(page))
2593 		return 0;
2594 	if (journal)
2595 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596 	else
2597 		return try_to_free_buffers(page);
2598 }
2599 
2600 /*
2601  * ext4_get_block used when preparing for a DIO write or buffer write.
2602  * We allocate an uinitialized extent if blocks haven't been allocated.
2603  * The extent will be converted to initialized after the IO is complete.
2604  */
2605 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606 		   struct buffer_head *bh_result, int create)
2607 {
2608 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609 		   inode->i_ino, create);
2610 	return _ext4_get_block(inode, iblock, bh_result,
2611 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2612 }
2613 
2614 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615 			    ssize_t size, void *private, int ret,
2616 			    bool is_async)
2617 {
2618 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619         ext4_io_end_t *io_end = iocb->private;
2620 	struct workqueue_struct *wq;
2621 	unsigned long flags;
2622 	struct ext4_inode_info *ei;
2623 
2624 	/* if not async direct IO or dio with 0 bytes write, just return */
2625 	if (!io_end || !size)
2626 		goto out;
2627 
2628 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2631 		  size);
2632 
2633 	/* if not aio dio with unwritten extents, just free io and return */
2634 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635 		ext4_free_io_end(io_end);
2636 		iocb->private = NULL;
2637 out:
2638 		if (is_async)
2639 			aio_complete(iocb, ret, 0);
2640 		inode_dio_done(inode);
2641 		return;
2642 	}
2643 
2644 	io_end->offset = offset;
2645 	io_end->size = size;
2646 	if (is_async) {
2647 		io_end->iocb = iocb;
2648 		io_end->result = ret;
2649 	}
2650 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2651 
2652 	/* Add the io_end to per-inode completed aio dio list*/
2653 	ei = EXT4_I(io_end->inode);
2654 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657 
2658 	/* queue the work to convert unwritten extents to written */
2659 	queue_work(wq, &io_end->work);
2660 	iocb->private = NULL;
2661 
2662 	/* XXX: probably should move into the real I/O completion handler */
2663 	inode_dio_done(inode);
2664 }
2665 
2666 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2667 {
2668 	ext4_io_end_t *io_end = bh->b_private;
2669 	struct workqueue_struct *wq;
2670 	struct inode *inode;
2671 	unsigned long flags;
2672 
2673 	if (!test_clear_buffer_uninit(bh) || !io_end)
2674 		goto out;
2675 
2676 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677 		printk("sb umounted, discard end_io request for inode %lu\n",
2678 			io_end->inode->i_ino);
2679 		ext4_free_io_end(io_end);
2680 		goto out;
2681 	}
2682 
2683 	/*
2684 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685 	 * but being more careful is always safe for the future change.
2686 	 */
2687 	inode = io_end->inode;
2688 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689 		io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690 		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691 	}
2692 
2693 	/* Add the io_end to per-inode completed io list*/
2694 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697 
2698 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699 	/* queue the work to convert unwritten extents to written */
2700 	queue_work(wq, &io_end->work);
2701 out:
2702 	bh->b_private = NULL;
2703 	bh->b_end_io = NULL;
2704 	clear_buffer_uninit(bh);
2705 	end_buffer_async_write(bh, uptodate);
2706 }
2707 
2708 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709 {
2710 	ext4_io_end_t *io_end;
2711 	struct page *page = bh->b_page;
2712 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713 	size_t size = bh->b_size;
2714 
2715 retry:
2716 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717 	if (!io_end) {
2718 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719 		schedule();
2720 		goto retry;
2721 	}
2722 	io_end->offset = offset;
2723 	io_end->size = size;
2724 	/*
2725 	 * We need to hold a reference to the page to make sure it
2726 	 * doesn't get evicted before ext4_end_io_work() has a chance
2727 	 * to convert the extent from written to unwritten.
2728 	 */
2729 	io_end->page = page;
2730 	get_page(io_end->page);
2731 
2732 	bh->b_private = io_end;
2733 	bh->b_end_io = ext4_end_io_buffer_write;
2734 	return 0;
2735 }
2736 
2737 /*
2738  * For ext4 extent files, ext4 will do direct-io write to holes,
2739  * preallocated extents, and those write extend the file, no need to
2740  * fall back to buffered IO.
2741  *
2742  * For holes, we fallocate those blocks, mark them as uninitialized
2743  * If those blocks were preallocated, we mark sure they are splited, but
2744  * still keep the range to write as uninitialized.
2745  *
2746  * The unwrritten extents will be converted to written when DIO is completed.
2747  * For async direct IO, since the IO may still pending when return, we
2748  * set up an end_io call back function, which will do the conversion
2749  * when async direct IO completed.
2750  *
2751  * If the O_DIRECT write will extend the file then add this inode to the
2752  * orphan list.  So recovery will truncate it back to the original size
2753  * if the machine crashes during the write.
2754  *
2755  */
2756 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757 			      const struct iovec *iov, loff_t offset,
2758 			      unsigned long nr_segs)
2759 {
2760 	struct file *file = iocb->ki_filp;
2761 	struct inode *inode = file->f_mapping->host;
2762 	ssize_t ret;
2763 	size_t count = iov_length(iov, nr_segs);
2764 
2765 	loff_t final_size = offset + count;
2766 	if (rw == WRITE && final_size <= inode->i_size) {
2767 		/*
2768  		 * We could direct write to holes and fallocate.
2769 		 *
2770  		 * Allocated blocks to fill the hole are marked as uninitialized
2771  		 * to prevent parallel buffered read to expose the stale data
2772  		 * before DIO complete the data IO.
2773 		 *
2774  		 * As to previously fallocated extents, ext4 get_block
2775  		 * will just simply mark the buffer mapped but still
2776  		 * keep the extents uninitialized.
2777  		 *
2778 		 * for non AIO case, we will convert those unwritten extents
2779 		 * to written after return back from blockdev_direct_IO.
2780 		 *
2781 		 * for async DIO, the conversion needs to be defered when
2782 		 * the IO is completed. The ext4 end_io callback function
2783 		 * will be called to take care of the conversion work.
2784 		 * Here for async case, we allocate an io_end structure to
2785 		 * hook to the iocb.
2786  		 */
2787 		iocb->private = NULL;
2788 		EXT4_I(inode)->cur_aio_dio = NULL;
2789 		if (!is_sync_kiocb(iocb)) {
2790 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791 			if (!iocb->private)
2792 				return -ENOMEM;
2793 			/*
2794 			 * we save the io structure for current async
2795 			 * direct IO, so that later ext4_map_blocks()
2796 			 * could flag the io structure whether there
2797 			 * is a unwritten extents needs to be converted
2798 			 * when IO is completed.
2799 			 */
2800 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2801 		}
2802 
2803 		ret = __blockdev_direct_IO(rw, iocb, inode,
2804 					 inode->i_sb->s_bdev, iov,
2805 					 offset, nr_segs,
2806 					 ext4_get_block_write,
2807 					 ext4_end_io_dio,
2808 					 NULL,
2809 					 DIO_LOCKING | DIO_SKIP_HOLES);
2810 		if (iocb->private)
2811 			EXT4_I(inode)->cur_aio_dio = NULL;
2812 		/*
2813 		 * The io_end structure takes a reference to the inode,
2814 		 * that structure needs to be destroyed and the
2815 		 * reference to the inode need to be dropped, when IO is
2816 		 * complete, even with 0 byte write, or failed.
2817 		 *
2818 		 * In the successful AIO DIO case, the io_end structure will be
2819 		 * desctroyed and the reference to the inode will be dropped
2820 		 * after the end_io call back function is called.
2821 		 *
2822 		 * In the case there is 0 byte write, or error case, since
2823 		 * VFS direct IO won't invoke the end_io call back function,
2824 		 * we need to free the end_io structure here.
2825 		 */
2826 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827 			ext4_free_io_end(iocb->private);
2828 			iocb->private = NULL;
2829 		} else if (ret > 0 && ext4_test_inode_state(inode,
2830 						EXT4_STATE_DIO_UNWRITTEN)) {
2831 			int err;
2832 			/*
2833 			 * for non AIO case, since the IO is already
2834 			 * completed, we could do the conversion right here
2835 			 */
2836 			err = ext4_convert_unwritten_extents(inode,
2837 							     offset, ret);
2838 			if (err < 0)
2839 				ret = err;
2840 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841 		}
2842 		return ret;
2843 	}
2844 
2845 	/* for write the the end of file case, we fall back to old way */
2846 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2847 }
2848 
2849 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850 			      const struct iovec *iov, loff_t offset,
2851 			      unsigned long nr_segs)
2852 {
2853 	struct file *file = iocb->ki_filp;
2854 	struct inode *inode = file->f_mapping->host;
2855 	ssize_t ret;
2856 
2857 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2858 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2859 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2860 	else
2861 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2862 	trace_ext4_direct_IO_exit(inode, offset,
2863 				iov_length(iov, nr_segs), rw, ret);
2864 	return ret;
2865 }
2866 
2867 /*
2868  * Pages can be marked dirty completely asynchronously from ext4's journalling
2869  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2870  * much here because ->set_page_dirty is called under VFS locks.  The page is
2871  * not necessarily locked.
2872  *
2873  * We cannot just dirty the page and leave attached buffers clean, because the
2874  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2875  * or jbddirty because all the journalling code will explode.
2876  *
2877  * So what we do is to mark the page "pending dirty" and next time writepage
2878  * is called, propagate that into the buffers appropriately.
2879  */
2880 static int ext4_journalled_set_page_dirty(struct page *page)
2881 {
2882 	SetPageChecked(page);
2883 	return __set_page_dirty_nobuffers(page);
2884 }
2885 
2886 static const struct address_space_operations ext4_ordered_aops = {
2887 	.readpage		= ext4_readpage,
2888 	.readpages		= ext4_readpages,
2889 	.writepage		= ext4_writepage,
2890 	.write_begin		= ext4_write_begin,
2891 	.write_end		= ext4_ordered_write_end,
2892 	.bmap			= ext4_bmap,
2893 	.invalidatepage		= ext4_invalidatepage,
2894 	.releasepage		= ext4_releasepage,
2895 	.direct_IO		= ext4_direct_IO,
2896 	.migratepage		= buffer_migrate_page,
2897 	.is_partially_uptodate  = block_is_partially_uptodate,
2898 	.error_remove_page	= generic_error_remove_page,
2899 };
2900 
2901 static const struct address_space_operations ext4_writeback_aops = {
2902 	.readpage		= ext4_readpage,
2903 	.readpages		= ext4_readpages,
2904 	.writepage		= ext4_writepage,
2905 	.write_begin		= ext4_write_begin,
2906 	.write_end		= ext4_writeback_write_end,
2907 	.bmap			= ext4_bmap,
2908 	.invalidatepage		= ext4_invalidatepage,
2909 	.releasepage		= ext4_releasepage,
2910 	.direct_IO		= ext4_direct_IO,
2911 	.migratepage		= buffer_migrate_page,
2912 	.is_partially_uptodate  = block_is_partially_uptodate,
2913 	.error_remove_page	= generic_error_remove_page,
2914 };
2915 
2916 static const struct address_space_operations ext4_journalled_aops = {
2917 	.readpage		= ext4_readpage,
2918 	.readpages		= ext4_readpages,
2919 	.writepage		= ext4_writepage,
2920 	.write_begin		= ext4_write_begin,
2921 	.write_end		= ext4_journalled_write_end,
2922 	.set_page_dirty		= ext4_journalled_set_page_dirty,
2923 	.bmap			= ext4_bmap,
2924 	.invalidatepage		= ext4_invalidatepage,
2925 	.releasepage		= ext4_releasepage,
2926 	.is_partially_uptodate  = block_is_partially_uptodate,
2927 	.error_remove_page	= generic_error_remove_page,
2928 };
2929 
2930 static const struct address_space_operations ext4_da_aops = {
2931 	.readpage		= ext4_readpage,
2932 	.readpages		= ext4_readpages,
2933 	.writepage		= ext4_writepage,
2934 	.writepages		= ext4_da_writepages,
2935 	.write_begin		= ext4_da_write_begin,
2936 	.write_end		= ext4_da_write_end,
2937 	.bmap			= ext4_bmap,
2938 	.invalidatepage		= ext4_da_invalidatepage,
2939 	.releasepage		= ext4_releasepage,
2940 	.direct_IO		= ext4_direct_IO,
2941 	.migratepage		= buffer_migrate_page,
2942 	.is_partially_uptodate  = block_is_partially_uptodate,
2943 	.error_remove_page	= generic_error_remove_page,
2944 };
2945 
2946 void ext4_set_aops(struct inode *inode)
2947 {
2948 	if (ext4_should_order_data(inode) &&
2949 		test_opt(inode->i_sb, DELALLOC))
2950 		inode->i_mapping->a_ops = &ext4_da_aops;
2951 	else if (ext4_should_order_data(inode))
2952 		inode->i_mapping->a_ops = &ext4_ordered_aops;
2953 	else if (ext4_should_writeback_data(inode) &&
2954 		 test_opt(inode->i_sb, DELALLOC))
2955 		inode->i_mapping->a_ops = &ext4_da_aops;
2956 	else if (ext4_should_writeback_data(inode))
2957 		inode->i_mapping->a_ops = &ext4_writeback_aops;
2958 	else
2959 		inode->i_mapping->a_ops = &ext4_journalled_aops;
2960 }
2961 
2962 /*
2963  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2964  * up to the end of the block which corresponds to `from'.
2965  * This required during truncate. We need to physically zero the tail end
2966  * of that block so it doesn't yield old data if the file is later grown.
2967  */
2968 int ext4_block_truncate_page(handle_t *handle,
2969 		struct address_space *mapping, loff_t from)
2970 {
2971 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2972 	unsigned length;
2973 	unsigned blocksize;
2974 	struct inode *inode = mapping->host;
2975 
2976 	blocksize = inode->i_sb->s_blocksize;
2977 	length = blocksize - (offset & (blocksize - 1));
2978 
2979 	return ext4_block_zero_page_range(handle, mapping, from, length);
2980 }
2981 
2982 /*
2983  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2984  * starting from file offset 'from'.  The range to be zero'd must
2985  * be contained with in one block.  If the specified range exceeds
2986  * the end of the block it will be shortened to end of the block
2987  * that cooresponds to 'from'
2988  */
2989 int ext4_block_zero_page_range(handle_t *handle,
2990 		struct address_space *mapping, loff_t from, loff_t length)
2991 {
2992 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2993 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2994 	unsigned blocksize, max, pos;
2995 	ext4_lblk_t iblock;
2996 	struct inode *inode = mapping->host;
2997 	struct buffer_head *bh;
2998 	struct page *page;
2999 	int err = 0;
3000 
3001 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3002 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3003 	if (!page)
3004 		return -EINVAL;
3005 
3006 	blocksize = inode->i_sb->s_blocksize;
3007 	max = blocksize - (offset & (blocksize - 1));
3008 
3009 	/*
3010 	 * correct length if it does not fall between
3011 	 * 'from' and the end of the block
3012 	 */
3013 	if (length > max || length < 0)
3014 		length = max;
3015 
3016 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3017 
3018 	if (!page_has_buffers(page))
3019 		create_empty_buffers(page, blocksize, 0);
3020 
3021 	/* Find the buffer that contains "offset" */
3022 	bh = page_buffers(page);
3023 	pos = blocksize;
3024 	while (offset >= pos) {
3025 		bh = bh->b_this_page;
3026 		iblock++;
3027 		pos += blocksize;
3028 	}
3029 
3030 	err = 0;
3031 	if (buffer_freed(bh)) {
3032 		BUFFER_TRACE(bh, "freed: skip");
3033 		goto unlock;
3034 	}
3035 
3036 	if (!buffer_mapped(bh)) {
3037 		BUFFER_TRACE(bh, "unmapped");
3038 		ext4_get_block(inode, iblock, bh, 0);
3039 		/* unmapped? It's a hole - nothing to do */
3040 		if (!buffer_mapped(bh)) {
3041 			BUFFER_TRACE(bh, "still unmapped");
3042 			goto unlock;
3043 		}
3044 	}
3045 
3046 	/* Ok, it's mapped. Make sure it's up-to-date */
3047 	if (PageUptodate(page))
3048 		set_buffer_uptodate(bh);
3049 
3050 	if (!buffer_uptodate(bh)) {
3051 		err = -EIO;
3052 		ll_rw_block(READ, 1, &bh);
3053 		wait_on_buffer(bh);
3054 		/* Uhhuh. Read error. Complain and punt. */
3055 		if (!buffer_uptodate(bh))
3056 			goto unlock;
3057 	}
3058 
3059 	if (ext4_should_journal_data(inode)) {
3060 		BUFFER_TRACE(bh, "get write access");
3061 		err = ext4_journal_get_write_access(handle, bh);
3062 		if (err)
3063 			goto unlock;
3064 	}
3065 
3066 	zero_user(page, offset, length);
3067 
3068 	BUFFER_TRACE(bh, "zeroed end of block");
3069 
3070 	err = 0;
3071 	if (ext4_should_journal_data(inode)) {
3072 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3073 	} else {
3074 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3075 			err = ext4_jbd2_file_inode(handle, inode);
3076 		mark_buffer_dirty(bh);
3077 	}
3078 
3079 unlock:
3080 	unlock_page(page);
3081 	page_cache_release(page);
3082 	return err;
3083 }
3084 
3085 int ext4_can_truncate(struct inode *inode)
3086 {
3087 	if (S_ISREG(inode->i_mode))
3088 		return 1;
3089 	if (S_ISDIR(inode->i_mode))
3090 		return 1;
3091 	if (S_ISLNK(inode->i_mode))
3092 		return !ext4_inode_is_fast_symlink(inode);
3093 	return 0;
3094 }
3095 
3096 /*
3097  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3098  * associated with the given offset and length
3099  *
3100  * @inode:  File inode
3101  * @offset: The offset where the hole will begin
3102  * @len:    The length of the hole
3103  *
3104  * Returns: 0 on sucess or negative on failure
3105  */
3106 
3107 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3108 {
3109 	struct inode *inode = file->f_path.dentry->d_inode;
3110 	if (!S_ISREG(inode->i_mode))
3111 		return -ENOTSUPP;
3112 
3113 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3114 		/* TODO: Add support for non extent hole punching */
3115 		return -ENOTSUPP;
3116 	}
3117 
3118 	return ext4_ext_punch_hole(file, offset, length);
3119 }
3120 
3121 /*
3122  * ext4_truncate()
3123  *
3124  * We block out ext4_get_block() block instantiations across the entire
3125  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3126  * simultaneously on behalf of the same inode.
3127  *
3128  * As we work through the truncate and commmit bits of it to the journal there
3129  * is one core, guiding principle: the file's tree must always be consistent on
3130  * disk.  We must be able to restart the truncate after a crash.
3131  *
3132  * The file's tree may be transiently inconsistent in memory (although it
3133  * probably isn't), but whenever we close off and commit a journal transaction,
3134  * the contents of (the filesystem + the journal) must be consistent and
3135  * restartable.  It's pretty simple, really: bottom up, right to left (although
3136  * left-to-right works OK too).
3137  *
3138  * Note that at recovery time, journal replay occurs *before* the restart of
3139  * truncate against the orphan inode list.
3140  *
3141  * The committed inode has the new, desired i_size (which is the same as
3142  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3143  * that this inode's truncate did not complete and it will again call
3144  * ext4_truncate() to have another go.  So there will be instantiated blocks
3145  * to the right of the truncation point in a crashed ext4 filesystem.  But
3146  * that's fine - as long as they are linked from the inode, the post-crash
3147  * ext4_truncate() run will find them and release them.
3148  */
3149 void ext4_truncate(struct inode *inode)
3150 {
3151 	trace_ext4_truncate_enter(inode);
3152 
3153 	if (!ext4_can_truncate(inode))
3154 		return;
3155 
3156 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3157 
3158 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3159 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3160 
3161 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3162 		ext4_ext_truncate(inode);
3163 	else
3164 		ext4_ind_truncate(inode);
3165 
3166 	trace_ext4_truncate_exit(inode);
3167 }
3168 
3169 /*
3170  * ext4_get_inode_loc returns with an extra refcount against the inode's
3171  * underlying buffer_head on success. If 'in_mem' is true, we have all
3172  * data in memory that is needed to recreate the on-disk version of this
3173  * inode.
3174  */
3175 static int __ext4_get_inode_loc(struct inode *inode,
3176 				struct ext4_iloc *iloc, int in_mem)
3177 {
3178 	struct ext4_group_desc	*gdp;
3179 	struct buffer_head	*bh;
3180 	struct super_block	*sb = inode->i_sb;
3181 	ext4_fsblk_t		block;
3182 	int			inodes_per_block, inode_offset;
3183 
3184 	iloc->bh = NULL;
3185 	if (!ext4_valid_inum(sb, inode->i_ino))
3186 		return -EIO;
3187 
3188 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3189 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3190 	if (!gdp)
3191 		return -EIO;
3192 
3193 	/*
3194 	 * Figure out the offset within the block group inode table
3195 	 */
3196 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3197 	inode_offset = ((inode->i_ino - 1) %
3198 			EXT4_INODES_PER_GROUP(sb));
3199 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3200 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3201 
3202 	bh = sb_getblk(sb, block);
3203 	if (!bh) {
3204 		EXT4_ERROR_INODE_BLOCK(inode, block,
3205 				       "unable to read itable block");
3206 		return -EIO;
3207 	}
3208 	if (!buffer_uptodate(bh)) {
3209 		lock_buffer(bh);
3210 
3211 		/*
3212 		 * If the buffer has the write error flag, we have failed
3213 		 * to write out another inode in the same block.  In this
3214 		 * case, we don't have to read the block because we may
3215 		 * read the old inode data successfully.
3216 		 */
3217 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3218 			set_buffer_uptodate(bh);
3219 
3220 		if (buffer_uptodate(bh)) {
3221 			/* someone brought it uptodate while we waited */
3222 			unlock_buffer(bh);
3223 			goto has_buffer;
3224 		}
3225 
3226 		/*
3227 		 * If we have all information of the inode in memory and this
3228 		 * is the only valid inode in the block, we need not read the
3229 		 * block.
3230 		 */
3231 		if (in_mem) {
3232 			struct buffer_head *bitmap_bh;
3233 			int i, start;
3234 
3235 			start = inode_offset & ~(inodes_per_block - 1);
3236 
3237 			/* Is the inode bitmap in cache? */
3238 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3239 			if (!bitmap_bh)
3240 				goto make_io;
3241 
3242 			/*
3243 			 * If the inode bitmap isn't in cache then the
3244 			 * optimisation may end up performing two reads instead
3245 			 * of one, so skip it.
3246 			 */
3247 			if (!buffer_uptodate(bitmap_bh)) {
3248 				brelse(bitmap_bh);
3249 				goto make_io;
3250 			}
3251 			for (i = start; i < start + inodes_per_block; i++) {
3252 				if (i == inode_offset)
3253 					continue;
3254 				if (ext4_test_bit(i, bitmap_bh->b_data))
3255 					break;
3256 			}
3257 			brelse(bitmap_bh);
3258 			if (i == start + inodes_per_block) {
3259 				/* all other inodes are free, so skip I/O */
3260 				memset(bh->b_data, 0, bh->b_size);
3261 				set_buffer_uptodate(bh);
3262 				unlock_buffer(bh);
3263 				goto has_buffer;
3264 			}
3265 		}
3266 
3267 make_io:
3268 		/*
3269 		 * If we need to do any I/O, try to pre-readahead extra
3270 		 * blocks from the inode table.
3271 		 */
3272 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3273 			ext4_fsblk_t b, end, table;
3274 			unsigned num;
3275 
3276 			table = ext4_inode_table(sb, gdp);
3277 			/* s_inode_readahead_blks is always a power of 2 */
3278 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3279 			if (table > b)
3280 				b = table;
3281 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3282 			num = EXT4_INODES_PER_GROUP(sb);
3283 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3284 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3285 				num -= ext4_itable_unused_count(sb, gdp);
3286 			table += num / inodes_per_block;
3287 			if (end > table)
3288 				end = table;
3289 			while (b <= end)
3290 				sb_breadahead(sb, b++);
3291 		}
3292 
3293 		/*
3294 		 * There are other valid inodes in the buffer, this inode
3295 		 * has in-inode xattrs, or we don't have this inode in memory.
3296 		 * Read the block from disk.
3297 		 */
3298 		trace_ext4_load_inode(inode);
3299 		get_bh(bh);
3300 		bh->b_end_io = end_buffer_read_sync;
3301 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3302 		wait_on_buffer(bh);
3303 		if (!buffer_uptodate(bh)) {
3304 			EXT4_ERROR_INODE_BLOCK(inode, block,
3305 					       "unable to read itable block");
3306 			brelse(bh);
3307 			return -EIO;
3308 		}
3309 	}
3310 has_buffer:
3311 	iloc->bh = bh;
3312 	return 0;
3313 }
3314 
3315 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3316 {
3317 	/* We have all inode data except xattrs in memory here. */
3318 	return __ext4_get_inode_loc(inode, iloc,
3319 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3320 }
3321 
3322 void ext4_set_inode_flags(struct inode *inode)
3323 {
3324 	unsigned int flags = EXT4_I(inode)->i_flags;
3325 
3326 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3327 	if (flags & EXT4_SYNC_FL)
3328 		inode->i_flags |= S_SYNC;
3329 	if (flags & EXT4_APPEND_FL)
3330 		inode->i_flags |= S_APPEND;
3331 	if (flags & EXT4_IMMUTABLE_FL)
3332 		inode->i_flags |= S_IMMUTABLE;
3333 	if (flags & EXT4_NOATIME_FL)
3334 		inode->i_flags |= S_NOATIME;
3335 	if (flags & EXT4_DIRSYNC_FL)
3336 		inode->i_flags |= S_DIRSYNC;
3337 }
3338 
3339 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3340 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3341 {
3342 	unsigned int vfs_fl;
3343 	unsigned long old_fl, new_fl;
3344 
3345 	do {
3346 		vfs_fl = ei->vfs_inode.i_flags;
3347 		old_fl = ei->i_flags;
3348 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3349 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3350 				EXT4_DIRSYNC_FL);
3351 		if (vfs_fl & S_SYNC)
3352 			new_fl |= EXT4_SYNC_FL;
3353 		if (vfs_fl & S_APPEND)
3354 			new_fl |= EXT4_APPEND_FL;
3355 		if (vfs_fl & S_IMMUTABLE)
3356 			new_fl |= EXT4_IMMUTABLE_FL;
3357 		if (vfs_fl & S_NOATIME)
3358 			new_fl |= EXT4_NOATIME_FL;
3359 		if (vfs_fl & S_DIRSYNC)
3360 			new_fl |= EXT4_DIRSYNC_FL;
3361 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3362 }
3363 
3364 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3365 				  struct ext4_inode_info *ei)
3366 {
3367 	blkcnt_t i_blocks ;
3368 	struct inode *inode = &(ei->vfs_inode);
3369 	struct super_block *sb = inode->i_sb;
3370 
3371 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3373 		/* we are using combined 48 bit field */
3374 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3375 					le32_to_cpu(raw_inode->i_blocks_lo);
3376 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3377 			/* i_blocks represent file system block size */
3378 			return i_blocks  << (inode->i_blkbits - 9);
3379 		} else {
3380 			return i_blocks;
3381 		}
3382 	} else {
3383 		return le32_to_cpu(raw_inode->i_blocks_lo);
3384 	}
3385 }
3386 
3387 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3388 {
3389 	struct ext4_iloc iloc;
3390 	struct ext4_inode *raw_inode;
3391 	struct ext4_inode_info *ei;
3392 	struct inode *inode;
3393 	journal_t *journal = EXT4_SB(sb)->s_journal;
3394 	long ret;
3395 	int block;
3396 
3397 	inode = iget_locked(sb, ino);
3398 	if (!inode)
3399 		return ERR_PTR(-ENOMEM);
3400 	if (!(inode->i_state & I_NEW))
3401 		return inode;
3402 
3403 	ei = EXT4_I(inode);
3404 	iloc.bh = NULL;
3405 
3406 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3407 	if (ret < 0)
3408 		goto bad_inode;
3409 	raw_inode = ext4_raw_inode(&iloc);
3410 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3411 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3412 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3413 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3414 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3415 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3416 	}
3417 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3418 
3419 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3420 	ei->i_dir_start_lookup = 0;
3421 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3422 	/* We now have enough fields to check if the inode was active or not.
3423 	 * This is needed because nfsd might try to access dead inodes
3424 	 * the test is that same one that e2fsck uses
3425 	 * NeilBrown 1999oct15
3426 	 */
3427 	if (inode->i_nlink == 0) {
3428 		if (inode->i_mode == 0 ||
3429 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3430 			/* this inode is deleted */
3431 			ret = -ESTALE;
3432 			goto bad_inode;
3433 		}
3434 		/* The only unlinked inodes we let through here have
3435 		 * valid i_mode and are being read by the orphan
3436 		 * recovery code: that's fine, we're about to complete
3437 		 * the process of deleting those. */
3438 	}
3439 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3440 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3441 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3442 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3443 		ei->i_file_acl |=
3444 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3445 	inode->i_size = ext4_isize(raw_inode);
3446 	ei->i_disksize = inode->i_size;
3447 #ifdef CONFIG_QUOTA
3448 	ei->i_reserved_quota = 0;
3449 #endif
3450 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3451 	ei->i_block_group = iloc.block_group;
3452 	ei->i_last_alloc_group = ~0;
3453 	/*
3454 	 * NOTE! The in-memory inode i_data array is in little-endian order
3455 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3456 	 */
3457 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3458 		ei->i_data[block] = raw_inode->i_block[block];
3459 	INIT_LIST_HEAD(&ei->i_orphan);
3460 
3461 	/*
3462 	 * Set transaction id's of transactions that have to be committed
3463 	 * to finish f[data]sync. We set them to currently running transaction
3464 	 * as we cannot be sure that the inode or some of its metadata isn't
3465 	 * part of the transaction - the inode could have been reclaimed and
3466 	 * now it is reread from disk.
3467 	 */
3468 	if (journal) {
3469 		transaction_t *transaction;
3470 		tid_t tid;
3471 
3472 		read_lock(&journal->j_state_lock);
3473 		if (journal->j_running_transaction)
3474 			transaction = journal->j_running_transaction;
3475 		else
3476 			transaction = journal->j_committing_transaction;
3477 		if (transaction)
3478 			tid = transaction->t_tid;
3479 		else
3480 			tid = journal->j_commit_sequence;
3481 		read_unlock(&journal->j_state_lock);
3482 		ei->i_sync_tid = tid;
3483 		ei->i_datasync_tid = tid;
3484 	}
3485 
3486 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3487 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3488 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3489 		    EXT4_INODE_SIZE(inode->i_sb)) {
3490 			ret = -EIO;
3491 			goto bad_inode;
3492 		}
3493 		if (ei->i_extra_isize == 0) {
3494 			/* The extra space is currently unused. Use it. */
3495 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3496 					    EXT4_GOOD_OLD_INODE_SIZE;
3497 		} else {
3498 			__le32 *magic = (void *)raw_inode +
3499 					EXT4_GOOD_OLD_INODE_SIZE +
3500 					ei->i_extra_isize;
3501 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3502 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3503 		}
3504 	} else
3505 		ei->i_extra_isize = 0;
3506 
3507 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3508 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3509 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3510 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3511 
3512 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3513 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3514 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3515 			inode->i_version |=
3516 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3517 	}
3518 
3519 	ret = 0;
3520 	if (ei->i_file_acl &&
3521 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3522 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3523 				 ei->i_file_acl);
3524 		ret = -EIO;
3525 		goto bad_inode;
3526 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3527 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3528 		    (S_ISLNK(inode->i_mode) &&
3529 		     !ext4_inode_is_fast_symlink(inode)))
3530 			/* Validate extent which is part of inode */
3531 			ret = ext4_ext_check_inode(inode);
3532 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3533 		   (S_ISLNK(inode->i_mode) &&
3534 		    !ext4_inode_is_fast_symlink(inode))) {
3535 		/* Validate block references which are part of inode */
3536 		ret = ext4_ind_check_inode(inode);
3537 	}
3538 	if (ret)
3539 		goto bad_inode;
3540 
3541 	if (S_ISREG(inode->i_mode)) {
3542 		inode->i_op = &ext4_file_inode_operations;
3543 		inode->i_fop = &ext4_file_operations;
3544 		ext4_set_aops(inode);
3545 	} else if (S_ISDIR(inode->i_mode)) {
3546 		inode->i_op = &ext4_dir_inode_operations;
3547 		inode->i_fop = &ext4_dir_operations;
3548 	} else if (S_ISLNK(inode->i_mode)) {
3549 		if (ext4_inode_is_fast_symlink(inode)) {
3550 			inode->i_op = &ext4_fast_symlink_inode_operations;
3551 			nd_terminate_link(ei->i_data, inode->i_size,
3552 				sizeof(ei->i_data) - 1);
3553 		} else {
3554 			inode->i_op = &ext4_symlink_inode_operations;
3555 			ext4_set_aops(inode);
3556 		}
3557 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3558 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3559 		inode->i_op = &ext4_special_inode_operations;
3560 		if (raw_inode->i_block[0])
3561 			init_special_inode(inode, inode->i_mode,
3562 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3563 		else
3564 			init_special_inode(inode, inode->i_mode,
3565 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3566 	} else {
3567 		ret = -EIO;
3568 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3569 		goto bad_inode;
3570 	}
3571 	brelse(iloc.bh);
3572 	ext4_set_inode_flags(inode);
3573 	unlock_new_inode(inode);
3574 	return inode;
3575 
3576 bad_inode:
3577 	brelse(iloc.bh);
3578 	iget_failed(inode);
3579 	return ERR_PTR(ret);
3580 }
3581 
3582 static int ext4_inode_blocks_set(handle_t *handle,
3583 				struct ext4_inode *raw_inode,
3584 				struct ext4_inode_info *ei)
3585 {
3586 	struct inode *inode = &(ei->vfs_inode);
3587 	u64 i_blocks = inode->i_blocks;
3588 	struct super_block *sb = inode->i_sb;
3589 
3590 	if (i_blocks <= ~0U) {
3591 		/*
3592 		 * i_blocks can be represnted in a 32 bit variable
3593 		 * as multiple of 512 bytes
3594 		 */
3595 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3596 		raw_inode->i_blocks_high = 0;
3597 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598 		return 0;
3599 	}
3600 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3601 		return -EFBIG;
3602 
3603 	if (i_blocks <= 0xffffffffffffULL) {
3604 		/*
3605 		 * i_blocks can be represented in a 48 bit variable
3606 		 * as multiple of 512 bytes
3607 		 */
3608 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3609 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3610 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3611 	} else {
3612 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3613 		/* i_block is stored in file system block size */
3614 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3615 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3616 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3617 	}
3618 	return 0;
3619 }
3620 
3621 /*
3622  * Post the struct inode info into an on-disk inode location in the
3623  * buffer-cache.  This gobbles the caller's reference to the
3624  * buffer_head in the inode location struct.
3625  *
3626  * The caller must have write access to iloc->bh.
3627  */
3628 static int ext4_do_update_inode(handle_t *handle,
3629 				struct inode *inode,
3630 				struct ext4_iloc *iloc)
3631 {
3632 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3633 	struct ext4_inode_info *ei = EXT4_I(inode);
3634 	struct buffer_head *bh = iloc->bh;
3635 	int err = 0, rc, block;
3636 
3637 	/* For fields not not tracking in the in-memory inode,
3638 	 * initialise them to zero for new inodes. */
3639 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3640 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3641 
3642 	ext4_get_inode_flags(ei);
3643 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3644 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3645 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3646 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3647 /*
3648  * Fix up interoperability with old kernels. Otherwise, old inodes get
3649  * re-used with the upper 16 bits of the uid/gid intact
3650  */
3651 		if (!ei->i_dtime) {
3652 			raw_inode->i_uid_high =
3653 				cpu_to_le16(high_16_bits(inode->i_uid));
3654 			raw_inode->i_gid_high =
3655 				cpu_to_le16(high_16_bits(inode->i_gid));
3656 		} else {
3657 			raw_inode->i_uid_high = 0;
3658 			raw_inode->i_gid_high = 0;
3659 		}
3660 	} else {
3661 		raw_inode->i_uid_low =
3662 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3663 		raw_inode->i_gid_low =
3664 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3665 		raw_inode->i_uid_high = 0;
3666 		raw_inode->i_gid_high = 0;
3667 	}
3668 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3669 
3670 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3671 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3672 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3673 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3674 
3675 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3676 		goto out_brelse;
3677 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3678 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3679 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3680 	    cpu_to_le32(EXT4_OS_HURD))
3681 		raw_inode->i_file_acl_high =
3682 			cpu_to_le16(ei->i_file_acl >> 32);
3683 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3684 	ext4_isize_set(raw_inode, ei->i_disksize);
3685 	if (ei->i_disksize > 0x7fffffffULL) {
3686 		struct super_block *sb = inode->i_sb;
3687 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3688 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3689 				EXT4_SB(sb)->s_es->s_rev_level ==
3690 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3691 			/* If this is the first large file
3692 			 * created, add a flag to the superblock.
3693 			 */
3694 			err = ext4_journal_get_write_access(handle,
3695 					EXT4_SB(sb)->s_sbh);
3696 			if (err)
3697 				goto out_brelse;
3698 			ext4_update_dynamic_rev(sb);
3699 			EXT4_SET_RO_COMPAT_FEATURE(sb,
3700 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3701 			sb->s_dirt = 1;
3702 			ext4_handle_sync(handle);
3703 			err = ext4_handle_dirty_metadata(handle, NULL,
3704 					EXT4_SB(sb)->s_sbh);
3705 		}
3706 	}
3707 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3708 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3709 		if (old_valid_dev(inode->i_rdev)) {
3710 			raw_inode->i_block[0] =
3711 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3712 			raw_inode->i_block[1] = 0;
3713 		} else {
3714 			raw_inode->i_block[0] = 0;
3715 			raw_inode->i_block[1] =
3716 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3717 			raw_inode->i_block[2] = 0;
3718 		}
3719 	} else
3720 		for (block = 0; block < EXT4_N_BLOCKS; block++)
3721 			raw_inode->i_block[block] = ei->i_data[block];
3722 
3723 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3724 	if (ei->i_extra_isize) {
3725 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3726 			raw_inode->i_version_hi =
3727 			cpu_to_le32(inode->i_version >> 32);
3728 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3729 	}
3730 
3731 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3732 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3733 	if (!err)
3734 		err = rc;
3735 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3736 
3737 	ext4_update_inode_fsync_trans(handle, inode, 0);
3738 out_brelse:
3739 	brelse(bh);
3740 	ext4_std_error(inode->i_sb, err);
3741 	return err;
3742 }
3743 
3744 /*
3745  * ext4_write_inode()
3746  *
3747  * We are called from a few places:
3748  *
3749  * - Within generic_file_write() for O_SYNC files.
3750  *   Here, there will be no transaction running. We wait for any running
3751  *   trasnaction to commit.
3752  *
3753  * - Within sys_sync(), kupdate and such.
3754  *   We wait on commit, if tol to.
3755  *
3756  * - Within prune_icache() (PF_MEMALLOC == true)
3757  *   Here we simply return.  We can't afford to block kswapd on the
3758  *   journal commit.
3759  *
3760  * In all cases it is actually safe for us to return without doing anything,
3761  * because the inode has been copied into a raw inode buffer in
3762  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3763  * knfsd.
3764  *
3765  * Note that we are absolutely dependent upon all inode dirtiers doing the
3766  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3767  * which we are interested.
3768  *
3769  * It would be a bug for them to not do this.  The code:
3770  *
3771  *	mark_inode_dirty(inode)
3772  *	stuff();
3773  *	inode->i_size = expr;
3774  *
3775  * is in error because a kswapd-driven write_inode() could occur while
3776  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3777  * will no longer be on the superblock's dirty inode list.
3778  */
3779 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3780 {
3781 	int err;
3782 
3783 	if (current->flags & PF_MEMALLOC)
3784 		return 0;
3785 
3786 	if (EXT4_SB(inode->i_sb)->s_journal) {
3787 		if (ext4_journal_current_handle()) {
3788 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3789 			dump_stack();
3790 			return -EIO;
3791 		}
3792 
3793 		if (wbc->sync_mode != WB_SYNC_ALL)
3794 			return 0;
3795 
3796 		err = ext4_force_commit(inode->i_sb);
3797 	} else {
3798 		struct ext4_iloc iloc;
3799 
3800 		err = __ext4_get_inode_loc(inode, &iloc, 0);
3801 		if (err)
3802 			return err;
3803 		if (wbc->sync_mode == WB_SYNC_ALL)
3804 			sync_dirty_buffer(iloc.bh);
3805 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3806 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3807 					 "IO error syncing inode");
3808 			err = -EIO;
3809 		}
3810 		brelse(iloc.bh);
3811 	}
3812 	return err;
3813 }
3814 
3815 /*
3816  * ext4_setattr()
3817  *
3818  * Called from notify_change.
3819  *
3820  * We want to trap VFS attempts to truncate the file as soon as
3821  * possible.  In particular, we want to make sure that when the VFS
3822  * shrinks i_size, we put the inode on the orphan list and modify
3823  * i_disksize immediately, so that during the subsequent flushing of
3824  * dirty pages and freeing of disk blocks, we can guarantee that any
3825  * commit will leave the blocks being flushed in an unused state on
3826  * disk.  (On recovery, the inode will get truncated and the blocks will
3827  * be freed, so we have a strong guarantee that no future commit will
3828  * leave these blocks visible to the user.)
3829  *
3830  * Another thing we have to assure is that if we are in ordered mode
3831  * and inode is still attached to the committing transaction, we must
3832  * we start writeout of all the dirty pages which are being truncated.
3833  * This way we are sure that all the data written in the previous
3834  * transaction are already on disk (truncate waits for pages under
3835  * writeback).
3836  *
3837  * Called with inode->i_mutex down.
3838  */
3839 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3840 {
3841 	struct inode *inode = dentry->d_inode;
3842 	int error, rc = 0;
3843 	int orphan = 0;
3844 	const unsigned int ia_valid = attr->ia_valid;
3845 
3846 	error = inode_change_ok(inode, attr);
3847 	if (error)
3848 		return error;
3849 
3850 	if (is_quota_modification(inode, attr))
3851 		dquot_initialize(inode);
3852 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3853 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3854 		handle_t *handle;
3855 
3856 		/* (user+group)*(old+new) structure, inode write (sb,
3857 		 * inode block, ? - but truncate inode update has it) */
3858 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3859 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3860 		if (IS_ERR(handle)) {
3861 			error = PTR_ERR(handle);
3862 			goto err_out;
3863 		}
3864 		error = dquot_transfer(inode, attr);
3865 		if (error) {
3866 			ext4_journal_stop(handle);
3867 			return error;
3868 		}
3869 		/* Update corresponding info in inode so that everything is in
3870 		 * one transaction */
3871 		if (attr->ia_valid & ATTR_UID)
3872 			inode->i_uid = attr->ia_uid;
3873 		if (attr->ia_valid & ATTR_GID)
3874 			inode->i_gid = attr->ia_gid;
3875 		error = ext4_mark_inode_dirty(handle, inode);
3876 		ext4_journal_stop(handle);
3877 	}
3878 
3879 	if (attr->ia_valid & ATTR_SIZE) {
3880 		inode_dio_wait(inode);
3881 
3882 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3883 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3884 
3885 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
3886 				return -EFBIG;
3887 		}
3888 	}
3889 
3890 	if (S_ISREG(inode->i_mode) &&
3891 	    attr->ia_valid & ATTR_SIZE &&
3892 	    (attr->ia_size < inode->i_size)) {
3893 		handle_t *handle;
3894 
3895 		handle = ext4_journal_start(inode, 3);
3896 		if (IS_ERR(handle)) {
3897 			error = PTR_ERR(handle);
3898 			goto err_out;
3899 		}
3900 		if (ext4_handle_valid(handle)) {
3901 			error = ext4_orphan_add(handle, inode);
3902 			orphan = 1;
3903 		}
3904 		EXT4_I(inode)->i_disksize = attr->ia_size;
3905 		rc = ext4_mark_inode_dirty(handle, inode);
3906 		if (!error)
3907 			error = rc;
3908 		ext4_journal_stop(handle);
3909 
3910 		if (ext4_should_order_data(inode)) {
3911 			error = ext4_begin_ordered_truncate(inode,
3912 							    attr->ia_size);
3913 			if (error) {
3914 				/* Do as much error cleanup as possible */
3915 				handle = ext4_journal_start(inode, 3);
3916 				if (IS_ERR(handle)) {
3917 					ext4_orphan_del(NULL, inode);
3918 					goto err_out;
3919 				}
3920 				ext4_orphan_del(handle, inode);
3921 				orphan = 0;
3922 				ext4_journal_stop(handle);
3923 				goto err_out;
3924 			}
3925 		}
3926 	}
3927 
3928 	if (attr->ia_valid & ATTR_SIZE) {
3929 		if (attr->ia_size != i_size_read(inode)) {
3930 			truncate_setsize(inode, attr->ia_size);
3931 			ext4_truncate(inode);
3932 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3933 			ext4_truncate(inode);
3934 	}
3935 
3936 	if (!rc) {
3937 		setattr_copy(inode, attr);
3938 		mark_inode_dirty(inode);
3939 	}
3940 
3941 	/*
3942 	 * If the call to ext4_truncate failed to get a transaction handle at
3943 	 * all, we need to clean up the in-core orphan list manually.
3944 	 */
3945 	if (orphan && inode->i_nlink)
3946 		ext4_orphan_del(NULL, inode);
3947 
3948 	if (!rc && (ia_valid & ATTR_MODE))
3949 		rc = ext4_acl_chmod(inode);
3950 
3951 err_out:
3952 	ext4_std_error(inode->i_sb, error);
3953 	if (!error)
3954 		error = rc;
3955 	return error;
3956 }
3957 
3958 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3959 		 struct kstat *stat)
3960 {
3961 	struct inode *inode;
3962 	unsigned long delalloc_blocks;
3963 
3964 	inode = dentry->d_inode;
3965 	generic_fillattr(inode, stat);
3966 
3967 	/*
3968 	 * We can't update i_blocks if the block allocation is delayed
3969 	 * otherwise in the case of system crash before the real block
3970 	 * allocation is done, we will have i_blocks inconsistent with
3971 	 * on-disk file blocks.
3972 	 * We always keep i_blocks updated together with real
3973 	 * allocation. But to not confuse with user, stat
3974 	 * will return the blocks that include the delayed allocation
3975 	 * blocks for this file.
3976 	 */
3977 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3978 
3979 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3980 	return 0;
3981 }
3982 
3983 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3984 {
3985 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3986 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3987 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3988 }
3989 
3990 /*
3991  * Account for index blocks, block groups bitmaps and block group
3992  * descriptor blocks if modify datablocks and index blocks
3993  * worse case, the indexs blocks spread over different block groups
3994  *
3995  * If datablocks are discontiguous, they are possible to spread over
3996  * different block groups too. If they are contiuguous, with flexbg,
3997  * they could still across block group boundary.
3998  *
3999  * Also account for superblock, inode, quota and xattr blocks
4000  */
4001 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4002 {
4003 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4004 	int gdpblocks;
4005 	int idxblocks;
4006 	int ret = 0;
4007 
4008 	/*
4009 	 * How many index blocks need to touch to modify nrblocks?
4010 	 * The "Chunk" flag indicating whether the nrblocks is
4011 	 * physically contiguous on disk
4012 	 *
4013 	 * For Direct IO and fallocate, they calls get_block to allocate
4014 	 * one single extent at a time, so they could set the "Chunk" flag
4015 	 */
4016 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4017 
4018 	ret = idxblocks;
4019 
4020 	/*
4021 	 * Now let's see how many group bitmaps and group descriptors need
4022 	 * to account
4023 	 */
4024 	groups = idxblocks;
4025 	if (chunk)
4026 		groups += 1;
4027 	else
4028 		groups += nrblocks;
4029 
4030 	gdpblocks = groups;
4031 	if (groups > ngroups)
4032 		groups = ngroups;
4033 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4034 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4035 
4036 	/* bitmaps and block group descriptor blocks */
4037 	ret += groups + gdpblocks;
4038 
4039 	/* Blocks for super block, inode, quota and xattr blocks */
4040 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4041 
4042 	return ret;
4043 }
4044 
4045 /*
4046  * Calculate the total number of credits to reserve to fit
4047  * the modification of a single pages into a single transaction,
4048  * which may include multiple chunks of block allocations.
4049  *
4050  * This could be called via ext4_write_begin()
4051  *
4052  * We need to consider the worse case, when
4053  * one new block per extent.
4054  */
4055 int ext4_writepage_trans_blocks(struct inode *inode)
4056 {
4057 	int bpp = ext4_journal_blocks_per_page(inode);
4058 	int ret;
4059 
4060 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4061 
4062 	/* Account for data blocks for journalled mode */
4063 	if (ext4_should_journal_data(inode))
4064 		ret += bpp;
4065 	return ret;
4066 }
4067 
4068 /*
4069  * Calculate the journal credits for a chunk of data modification.
4070  *
4071  * This is called from DIO, fallocate or whoever calling
4072  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4073  *
4074  * journal buffers for data blocks are not included here, as DIO
4075  * and fallocate do no need to journal data buffers.
4076  */
4077 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4078 {
4079 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4080 }
4081 
4082 /*
4083  * The caller must have previously called ext4_reserve_inode_write().
4084  * Give this, we know that the caller already has write access to iloc->bh.
4085  */
4086 int ext4_mark_iloc_dirty(handle_t *handle,
4087 			 struct inode *inode, struct ext4_iloc *iloc)
4088 {
4089 	int err = 0;
4090 
4091 	if (test_opt(inode->i_sb, I_VERSION))
4092 		inode_inc_iversion(inode);
4093 
4094 	/* the do_update_inode consumes one bh->b_count */
4095 	get_bh(iloc->bh);
4096 
4097 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4098 	err = ext4_do_update_inode(handle, inode, iloc);
4099 	put_bh(iloc->bh);
4100 	return err;
4101 }
4102 
4103 /*
4104  * On success, We end up with an outstanding reference count against
4105  * iloc->bh.  This _must_ be cleaned up later.
4106  */
4107 
4108 int
4109 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4110 			 struct ext4_iloc *iloc)
4111 {
4112 	int err;
4113 
4114 	err = ext4_get_inode_loc(inode, iloc);
4115 	if (!err) {
4116 		BUFFER_TRACE(iloc->bh, "get_write_access");
4117 		err = ext4_journal_get_write_access(handle, iloc->bh);
4118 		if (err) {
4119 			brelse(iloc->bh);
4120 			iloc->bh = NULL;
4121 		}
4122 	}
4123 	ext4_std_error(inode->i_sb, err);
4124 	return err;
4125 }
4126 
4127 /*
4128  * Expand an inode by new_extra_isize bytes.
4129  * Returns 0 on success or negative error number on failure.
4130  */
4131 static int ext4_expand_extra_isize(struct inode *inode,
4132 				   unsigned int new_extra_isize,
4133 				   struct ext4_iloc iloc,
4134 				   handle_t *handle)
4135 {
4136 	struct ext4_inode *raw_inode;
4137 	struct ext4_xattr_ibody_header *header;
4138 
4139 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4140 		return 0;
4141 
4142 	raw_inode = ext4_raw_inode(&iloc);
4143 
4144 	header = IHDR(inode, raw_inode);
4145 
4146 	/* No extended attributes present */
4147 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4148 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4150 			new_extra_isize);
4151 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4152 		return 0;
4153 	}
4154 
4155 	/* try to expand with EAs present */
4156 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4157 					  raw_inode, handle);
4158 }
4159 
4160 /*
4161  * What we do here is to mark the in-core inode as clean with respect to inode
4162  * dirtiness (it may still be data-dirty).
4163  * This means that the in-core inode may be reaped by prune_icache
4164  * without having to perform any I/O.  This is a very good thing,
4165  * because *any* task may call prune_icache - even ones which
4166  * have a transaction open against a different journal.
4167  *
4168  * Is this cheating?  Not really.  Sure, we haven't written the
4169  * inode out, but prune_icache isn't a user-visible syncing function.
4170  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4171  * we start and wait on commits.
4172  *
4173  * Is this efficient/effective?  Well, we're being nice to the system
4174  * by cleaning up our inodes proactively so they can be reaped
4175  * without I/O.  But we are potentially leaving up to five seconds'
4176  * worth of inodes floating about which prune_icache wants us to
4177  * write out.  One way to fix that would be to get prune_icache()
4178  * to do a write_super() to free up some memory.  It has the desired
4179  * effect.
4180  */
4181 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4182 {
4183 	struct ext4_iloc iloc;
4184 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185 	static unsigned int mnt_count;
4186 	int err, ret;
4187 
4188 	might_sleep();
4189 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4190 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4191 	if (ext4_handle_valid(handle) &&
4192 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4193 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4194 		/*
4195 		 * We need extra buffer credits since we may write into EA block
4196 		 * with this same handle. If journal_extend fails, then it will
4197 		 * only result in a minor loss of functionality for that inode.
4198 		 * If this is felt to be critical, then e2fsck should be run to
4199 		 * force a large enough s_min_extra_isize.
4200 		 */
4201 		if ((jbd2_journal_extend(handle,
4202 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4203 			ret = ext4_expand_extra_isize(inode,
4204 						      sbi->s_want_extra_isize,
4205 						      iloc, handle);
4206 			if (ret) {
4207 				ext4_set_inode_state(inode,
4208 						     EXT4_STATE_NO_EXPAND);
4209 				if (mnt_count !=
4210 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4211 					ext4_warning(inode->i_sb,
4212 					"Unable to expand inode %lu. Delete"
4213 					" some EAs or run e2fsck.",
4214 					inode->i_ino);
4215 					mnt_count =
4216 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4217 				}
4218 			}
4219 		}
4220 	}
4221 	if (!err)
4222 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4223 	return err;
4224 }
4225 
4226 /*
4227  * ext4_dirty_inode() is called from __mark_inode_dirty()
4228  *
4229  * We're really interested in the case where a file is being extended.
4230  * i_size has been changed by generic_commit_write() and we thus need
4231  * to include the updated inode in the current transaction.
4232  *
4233  * Also, dquot_alloc_block() will always dirty the inode when blocks
4234  * are allocated to the file.
4235  *
4236  * If the inode is marked synchronous, we don't honour that here - doing
4237  * so would cause a commit on atime updates, which we don't bother doing.
4238  * We handle synchronous inodes at the highest possible level.
4239  */
4240 void ext4_dirty_inode(struct inode *inode, int flags)
4241 {
4242 	handle_t *handle;
4243 
4244 	handle = ext4_journal_start(inode, 2);
4245 	if (IS_ERR(handle))
4246 		goto out;
4247 
4248 	ext4_mark_inode_dirty(handle, inode);
4249 
4250 	ext4_journal_stop(handle);
4251 out:
4252 	return;
4253 }
4254 
4255 #if 0
4256 /*
4257  * Bind an inode's backing buffer_head into this transaction, to prevent
4258  * it from being flushed to disk early.  Unlike
4259  * ext4_reserve_inode_write, this leaves behind no bh reference and
4260  * returns no iloc structure, so the caller needs to repeat the iloc
4261  * lookup to mark the inode dirty later.
4262  */
4263 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4264 {
4265 	struct ext4_iloc iloc;
4266 
4267 	int err = 0;
4268 	if (handle) {
4269 		err = ext4_get_inode_loc(inode, &iloc);
4270 		if (!err) {
4271 			BUFFER_TRACE(iloc.bh, "get_write_access");
4272 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4273 			if (!err)
4274 				err = ext4_handle_dirty_metadata(handle,
4275 								 NULL,
4276 								 iloc.bh);
4277 			brelse(iloc.bh);
4278 		}
4279 	}
4280 	ext4_std_error(inode->i_sb, err);
4281 	return err;
4282 }
4283 #endif
4284 
4285 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4286 {
4287 	journal_t *journal;
4288 	handle_t *handle;
4289 	int err;
4290 
4291 	/*
4292 	 * We have to be very careful here: changing a data block's
4293 	 * journaling status dynamically is dangerous.  If we write a
4294 	 * data block to the journal, change the status and then delete
4295 	 * that block, we risk forgetting to revoke the old log record
4296 	 * from the journal and so a subsequent replay can corrupt data.
4297 	 * So, first we make sure that the journal is empty and that
4298 	 * nobody is changing anything.
4299 	 */
4300 
4301 	journal = EXT4_JOURNAL(inode);
4302 	if (!journal)
4303 		return 0;
4304 	if (is_journal_aborted(journal))
4305 		return -EROFS;
4306 
4307 	jbd2_journal_lock_updates(journal);
4308 	jbd2_journal_flush(journal);
4309 
4310 	/*
4311 	 * OK, there are no updates running now, and all cached data is
4312 	 * synced to disk.  We are now in a completely consistent state
4313 	 * which doesn't have anything in the journal, and we know that
4314 	 * no filesystem updates are running, so it is safe to modify
4315 	 * the inode's in-core data-journaling state flag now.
4316 	 */
4317 
4318 	if (val)
4319 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4320 	else
4321 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4322 	ext4_set_aops(inode);
4323 
4324 	jbd2_journal_unlock_updates(journal);
4325 
4326 	/* Finally we can mark the inode as dirty. */
4327 
4328 	handle = ext4_journal_start(inode, 1);
4329 	if (IS_ERR(handle))
4330 		return PTR_ERR(handle);
4331 
4332 	err = ext4_mark_inode_dirty(handle, inode);
4333 	ext4_handle_sync(handle);
4334 	ext4_journal_stop(handle);
4335 	ext4_std_error(inode->i_sb, err);
4336 
4337 	return err;
4338 }
4339 
4340 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4341 {
4342 	return !buffer_mapped(bh);
4343 }
4344 
4345 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4346 {
4347 	struct page *page = vmf->page;
4348 	loff_t size;
4349 	unsigned long len;
4350 	int ret;
4351 	struct file *file = vma->vm_file;
4352 	struct inode *inode = file->f_path.dentry->d_inode;
4353 	struct address_space *mapping = inode->i_mapping;
4354 	handle_t *handle;
4355 	get_block_t *get_block;
4356 	int retries = 0;
4357 
4358 	/*
4359 	 * This check is racy but catches the common case. We rely on
4360 	 * __block_page_mkwrite() to do a reliable check.
4361 	 */
4362 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4363 	/* Delalloc case is easy... */
4364 	if (test_opt(inode->i_sb, DELALLOC) &&
4365 	    !ext4_should_journal_data(inode) &&
4366 	    !ext4_nonda_switch(inode->i_sb)) {
4367 		do {
4368 			ret = __block_page_mkwrite(vma, vmf,
4369 						   ext4_da_get_block_prep);
4370 		} while (ret == -ENOSPC &&
4371 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4372 		goto out_ret;
4373 	}
4374 
4375 	lock_page(page);
4376 	size = i_size_read(inode);
4377 	/* Page got truncated from under us? */
4378 	if (page->mapping != mapping || page_offset(page) > size) {
4379 		unlock_page(page);
4380 		ret = VM_FAULT_NOPAGE;
4381 		goto out;
4382 	}
4383 
4384 	if (page->index == size >> PAGE_CACHE_SHIFT)
4385 		len = size & ~PAGE_CACHE_MASK;
4386 	else
4387 		len = PAGE_CACHE_SIZE;
4388 	/*
4389 	 * Return if we have all the buffers mapped. This avoids the need to do
4390 	 * journal_start/journal_stop which can block and take a long time
4391 	 */
4392 	if (page_has_buffers(page)) {
4393 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4394 					ext4_bh_unmapped)) {
4395 			/* Wait so that we don't change page under IO */
4396 			wait_on_page_writeback(page);
4397 			ret = VM_FAULT_LOCKED;
4398 			goto out;
4399 		}
4400 	}
4401 	unlock_page(page);
4402 	/* OK, we need to fill the hole... */
4403 	if (ext4_should_dioread_nolock(inode))
4404 		get_block = ext4_get_block_write;
4405 	else
4406 		get_block = ext4_get_block;
4407 retry_alloc:
4408 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4409 	if (IS_ERR(handle)) {
4410 		ret = VM_FAULT_SIGBUS;
4411 		goto out;
4412 	}
4413 	ret = __block_page_mkwrite(vma, vmf, get_block);
4414 	if (!ret && ext4_should_journal_data(inode)) {
4415 		if (walk_page_buffers(handle, page_buffers(page), 0,
4416 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4417 			unlock_page(page);
4418 			ret = VM_FAULT_SIGBUS;
4419 			goto out;
4420 		}
4421 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4422 	}
4423 	ext4_journal_stop(handle);
4424 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4425 		goto retry_alloc;
4426 out_ret:
4427 	ret = block_page_mkwrite_return(ret);
4428 out:
4429 	return ret;
4430 }
4431