xref: /linux/fs/ext4/inode.c (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static void ext4_journalled_zero_new_buffers(handle_t *handle,
53 					    struct inode *inode,
54 					    struct folio *folio,
55 					    unsigned from, unsigned to);
56 
57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58 			      struct ext4_inode_info *ei)
59 {
60 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61 	__u32 csum;
62 	__u16 dummy_csum = 0;
63 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 	unsigned int csum_size = sizeof(dummy_csum);
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68 	offset += csum_size;
69 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
71 
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 		offset = offsetof(struct ext4_inode, i_checksum_hi);
74 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75 				   EXT4_GOOD_OLD_INODE_SIZE,
76 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
77 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79 					   csum_size);
80 			offset += csum_size;
81 		}
82 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
84 	}
85 
86 	return csum;
87 }
88 
89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90 				  struct ext4_inode_info *ei)
91 {
92 	__u32 provided, calculated;
93 
94 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95 	    cpu_to_le32(EXT4_OS_LINUX) ||
96 	    !ext4_has_metadata_csum(inode->i_sb))
97 		return 1;
98 
99 	provided = le16_to_cpu(raw->i_checksum_lo);
100 	calculated = ext4_inode_csum(inode, raw, ei);
101 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104 	else
105 		calculated &= 0xFFFF;
106 
107 	return provided == calculated;
108 }
109 
110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111 			 struct ext4_inode_info *ei)
112 {
113 	__u32 csum;
114 
115 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116 	    cpu_to_le32(EXT4_OS_LINUX) ||
117 	    !ext4_has_metadata_csum(inode->i_sb))
118 		return;
119 
120 	csum = ext4_inode_csum(inode, raw, ei);
121 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125 }
126 
127 static inline int ext4_begin_ordered_truncate(struct inode *inode,
128 					      loff_t new_size)
129 {
130 	trace_ext4_begin_ordered_truncate(inode, new_size);
131 	/*
132 	 * If jinode is zero, then we never opened the file for
133 	 * writing, so there's no need to call
134 	 * jbd2_journal_begin_ordered_truncate() since there's no
135 	 * outstanding writes we need to flush.
136 	 */
137 	if (!EXT4_I(inode)->jinode)
138 		return 0;
139 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140 						   EXT4_I(inode)->jinode,
141 						   new_size);
142 }
143 
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171 	handle_t *handle;
172 	int err;
173 	/*
174 	 * Credits for final inode cleanup and freeing:
175 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177 	 */
178 	int extra_credits = 6;
179 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
180 	bool freeze_protected = false;
181 
182 	trace_ext4_evict_inode(inode);
183 
184 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185 		ext4_evict_ea_inode(inode);
186 	if (inode->i_nlink) {
187 		truncate_inode_pages_final(&inode->i_data);
188 
189 		goto no_delete;
190 	}
191 
192 	if (is_bad_inode(inode))
193 		goto no_delete;
194 	dquot_initialize(inode);
195 
196 	if (ext4_should_order_data(inode))
197 		ext4_begin_ordered_truncate(inode, 0);
198 	truncate_inode_pages_final(&inode->i_data);
199 
200 	/*
201 	 * For inodes with journalled data, transaction commit could have
202 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203 	 * extents converting worker could merge extents and also have dirtied
204 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205 	 * we still need to remove the inode from the writeback lists.
206 	 */
207 	if (!list_empty_careful(&inode->i_io_list))
208 		inode_io_list_del(inode);
209 
210 	/*
211 	 * Protect us against freezing - iput() caller didn't have to have any
212 	 * protection against it. When we are in a running transaction though,
213 	 * we are already protected against freezing and we cannot grab further
214 	 * protection due to lock ordering constraints.
215 	 */
216 	if (!ext4_journal_current_handle()) {
217 		sb_start_intwrite(inode->i_sb);
218 		freeze_protected = true;
219 	}
220 
221 	if (!IS_NOQUOTA(inode))
222 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223 
224 	/*
225 	 * Block bitmap, group descriptor, and inode are accounted in both
226 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227 	 */
228 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
230 	if (IS_ERR(handle)) {
231 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
232 		/*
233 		 * If we're going to skip the normal cleanup, we still need to
234 		 * make sure that the in-core orphan linked list is properly
235 		 * cleaned up.
236 		 */
237 		ext4_orphan_del(NULL, inode);
238 		if (freeze_protected)
239 			sb_end_intwrite(inode->i_sb);
240 		goto no_delete;
241 	}
242 
243 	if (IS_SYNC(inode))
244 		ext4_handle_sync(handle);
245 
246 	/*
247 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
248 	 * special handling of symlinks here because i_size is used to
249 	 * determine whether ext4_inode_info->i_data contains symlink data or
250 	 * block mappings. Setting i_size to 0 will remove its fast symlink
251 	 * status. Erase i_data so that it becomes a valid empty block map.
252 	 */
253 	if (ext4_inode_is_fast_symlink(inode))
254 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks) {
263 		err = ext4_truncate(inode);
264 		if (err) {
265 			ext4_error_err(inode->i_sb, -err,
266 				       "couldn't truncate inode %lu (err %d)",
267 				       inode->i_ino, err);
268 			goto stop_handle;
269 		}
270 	}
271 
272 	/* Remove xattr references. */
273 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274 				      extra_credits);
275 	if (err) {
276 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277 stop_handle:
278 		ext4_journal_stop(handle);
279 		ext4_orphan_del(NULL, inode);
280 		if (freeze_protected)
281 			sb_end_intwrite(inode->i_sb);
282 		ext4_xattr_inode_array_free(ea_inode_array);
283 		goto no_delete;
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	if (freeze_protected)
311 		sb_end_intwrite(inode->i_sb);
312 	ext4_xattr_inode_array_free(ea_inode_array);
313 	return;
314 no_delete:
315 	/*
316 	 * Check out some where else accidentally dirty the evicting inode,
317 	 * which may probably cause inode use-after-free issues later.
318 	 */
319 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320 
321 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
322 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
324 }
325 
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 {
329 	return &EXT4_I(inode)->i_reserved_quota;
330 }
331 #endif
332 
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 					int used, int quota_claim)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 	struct ext4_inode_info *ei = EXT4_I(inode);
342 
343 	spin_lock(&ei->i_block_reservation_lock);
344 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 	if (unlikely(used > ei->i_reserved_data_blocks)) {
346 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 			 "with only %d reserved data blocks",
348 			 __func__, inode->i_ino, used,
349 			 ei->i_reserved_data_blocks);
350 		WARN_ON(1);
351 		used = ei->i_reserved_data_blocks;
352 	}
353 
354 	/* Update per-inode reservations */
355 	ei->i_reserved_data_blocks -= used;
356 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357 
358 	spin_unlock(&ei->i_block_reservation_lock);
359 
360 	/* Update quota subsystem for data blocks */
361 	if (quota_claim)
362 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 	else {
364 		/*
365 		 * We did fallocate with an offset that is already delayed
366 		 * allocated. So on delayed allocated writeback we should
367 		 * not re-claim the quota for fallocated blocks.
368 		 */
369 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370 	}
371 
372 	/*
373 	 * If we have done all the pending block allocations and if
374 	 * there aren't any writers on the inode, we can discard the
375 	 * inode's preallocations.
376 	 */
377 	if ((ei->i_reserved_data_blocks == 0) &&
378 	    !inode_is_open_for_write(inode))
379 		ext4_discard_preallocations(inode);
380 }
381 
382 static int __check_block_validity(struct inode *inode, const char *func,
383 				unsigned int line,
384 				struct ext4_map_blocks *map)
385 {
386 	if (ext4_has_feature_journal(inode->i_sb) &&
387 	    (inode->i_ino ==
388 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 		return 0;
390 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391 		ext4_error_inode(inode, func, line, map->m_pblk,
392 				 "lblock %lu mapped to illegal pblock %llu "
393 				 "(length %d)", (unsigned long) map->m_lblk,
394 				 map->m_pblk, map->m_len);
395 		return -EFSCORRUPTED;
396 	}
397 	return 0;
398 }
399 
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 		       ext4_lblk_t len)
402 {
403 	int ret;
404 
405 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
407 
408 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409 	if (ret > 0)
410 		ret = 0;
411 
412 	return ret;
413 }
414 
415 #define check_block_validity(inode, map)	\
416 	__check_block_validity((inode), __func__, __LINE__, (map))
417 
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420 				       struct inode *inode,
421 				       struct ext4_map_blocks *es_map,
422 				       struct ext4_map_blocks *map,
423 				       int flags)
424 {
425 	int retval;
426 
427 	map->m_flags = 0;
428 	/*
429 	 * There is a race window that the result is not the same.
430 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
431 	 * is that we lookup a block mapping in extent status tree with
432 	 * out taking i_data_sem.  So at the time the unwritten extent
433 	 * could be converted.
434 	 */
435 	down_read(&EXT4_I(inode)->i_data_sem);
436 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
438 	} else {
439 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
440 	}
441 	up_read((&EXT4_I(inode)->i_data_sem));
442 
443 	/*
444 	 * We don't check m_len because extent will be collpased in status
445 	 * tree.  So the m_len might not equal.
446 	 */
447 	if (es_map->m_lblk != map->m_lblk ||
448 	    es_map->m_flags != map->m_flags ||
449 	    es_map->m_pblk != map->m_pblk) {
450 		printk("ES cache assertion failed for inode: %lu "
451 		       "es_cached ex [%d/%d/%llu/%x] != "
452 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
454 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 		       map->m_len, map->m_pblk, map->m_flags,
456 		       retval, flags);
457 	}
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460 
461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462 				 struct ext4_map_blocks *map)
463 {
464 	unsigned int status;
465 	int retval;
466 
467 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
469 	else
470 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
471 
472 	if (retval <= 0)
473 		return retval;
474 
475 	if (unlikely(retval != map->m_len)) {
476 		ext4_warning(inode->i_sb,
477 			     "ES len assertion failed for inode "
478 			     "%lu: retval %d != map->m_len %d",
479 			     inode->i_ino, retval, map->m_len);
480 		WARN_ON(1);
481 	}
482 
483 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486 			      map->m_pblk, status, 0);
487 	return retval;
488 }
489 
490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491 				  struct ext4_map_blocks *map, int flags)
492 {
493 	struct extent_status es;
494 	unsigned int status;
495 	int err, retval = 0;
496 
497 	/*
498 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499 	 * indicates that the blocks and quotas has already been
500 	 * checked when the data was copied into the page cache.
501 	 */
502 	if (map->m_flags & EXT4_MAP_DELAYED)
503 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504 
505 	/*
506 	 * Here we clear m_flags because after allocating an new extent,
507 	 * it will be set again.
508 	 */
509 	map->m_flags &= ~EXT4_MAP_FLAGS;
510 
511 	/*
512 	 * We need to check for EXT4 here because migrate could have
513 	 * changed the inode type in between.
514 	 */
515 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
517 	} else {
518 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
519 
520 		/*
521 		 * We allocated new blocks which will result in i_data's
522 		 * format changing. Force the migrate to fail by clearing
523 		 * migrate flags.
524 		 */
525 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527 	}
528 	if (retval <= 0)
529 		return retval;
530 
531 	if (unlikely(retval != map->m_len)) {
532 		ext4_warning(inode->i_sb,
533 			     "ES len assertion failed for inode %lu: "
534 			     "retval %d != map->m_len %d",
535 			     inode->i_ino, retval, map->m_len);
536 		WARN_ON(1);
537 	}
538 
539 	/*
540 	 * We have to zeroout blocks before inserting them into extent
541 	 * status tree. Otherwise someone could look them up there and
542 	 * use them before they are really zeroed. We also have to
543 	 * unmap metadata before zeroing as otherwise writeback can
544 	 * overwrite zeros with stale data from block device.
545 	 */
546 	if (flags & EXT4_GET_BLOCKS_ZERO &&
547 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549 					 map->m_len);
550 		if (err)
551 			return err;
552 	}
553 
554 	/*
555 	 * If the extent has been zeroed out, we don't need to update
556 	 * extent status tree.
557 	 */
558 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560 		if (ext4_es_is_written(&es))
561 			return retval;
562 	}
563 
564 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
567 			      map->m_pblk, status, flags);
568 
569 	return retval;
570 }
571 
572 /*
573  * The ext4_map_blocks() function tries to look up the requested blocks,
574  * and returns if the blocks are already mapped.
575  *
576  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577  * and store the allocated blocks in the result buffer head and mark it
578  * mapped.
579  *
580  * If file type is extents based, it will call ext4_ext_map_blocks(),
581  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582  * based files
583  *
584  * On success, it returns the number of blocks being mapped or allocated.
585  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588  *
589  * It returns 0 if plain look up failed (blocks have not been allocated), in
590  * that case, @map is returned as unmapped but we still do fill map->m_len to
591  * indicate the length of a hole starting at map->m_lblk.
592  *
593  * It returns the error in case of allocation failure.
594  */
595 int ext4_map_blocks(handle_t *handle, struct inode *inode,
596 		    struct ext4_map_blocks *map, int flags)
597 {
598 	struct extent_status es;
599 	int retval;
600 	int ret = 0;
601 #ifdef ES_AGGRESSIVE_TEST
602 	struct ext4_map_blocks orig_map;
603 
604 	memcpy(&orig_map, map, sizeof(*map));
605 #endif
606 
607 	map->m_flags = 0;
608 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609 		  flags, map->m_len, (unsigned long) map->m_lblk);
610 
611 	/*
612 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
613 	 */
614 	if (unlikely(map->m_len > INT_MAX))
615 		map->m_len = INT_MAX;
616 
617 	/* We can handle the block number less than EXT_MAX_BLOCKS */
618 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619 		return -EFSCORRUPTED;
620 
621 	/* Lookup extent status tree firstly */
622 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625 			map->m_pblk = ext4_es_pblock(&es) +
626 					map->m_lblk - es.es_lblk;
627 			map->m_flags |= ext4_es_is_written(&es) ?
628 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629 			retval = es.es_len - (map->m_lblk - es.es_lblk);
630 			if (retval > map->m_len)
631 				retval = map->m_len;
632 			map->m_len = retval;
633 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634 			map->m_pblk = 0;
635 			map->m_flags |= ext4_es_is_delayed(&es) ?
636 					EXT4_MAP_DELAYED : 0;
637 			retval = es.es_len - (map->m_lblk - es.es_lblk);
638 			if (retval > map->m_len)
639 				retval = map->m_len;
640 			map->m_len = retval;
641 			retval = 0;
642 		} else {
643 			BUG();
644 		}
645 
646 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647 			return retval;
648 #ifdef ES_AGGRESSIVE_TEST
649 		ext4_map_blocks_es_recheck(handle, inode, map,
650 					   &orig_map, flags);
651 #endif
652 		goto found;
653 	}
654 	/*
655 	 * In the query cache no-wait mode, nothing we can do more if we
656 	 * cannot find extent in the cache.
657 	 */
658 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659 		return 0;
660 
661 	/*
662 	 * Try to see if we can get the block without requesting a new
663 	 * file system block.
664 	 */
665 	down_read(&EXT4_I(inode)->i_data_sem);
666 	retval = ext4_map_query_blocks(handle, inode, map);
667 	up_read((&EXT4_I(inode)->i_data_sem));
668 
669 found:
670 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671 		ret = check_block_validity(inode, map);
672 		if (ret != 0)
673 			return ret;
674 	}
675 
676 	/* If it is only a block(s) look up */
677 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678 		return retval;
679 
680 	/*
681 	 * Returns if the blocks have already allocated
682 	 *
683 	 * Note that if blocks have been preallocated
684 	 * ext4_ext_map_blocks() returns with buffer head unmapped
685 	 */
686 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687 		/*
688 		 * If we need to convert extent to unwritten
689 		 * we continue and do the actual work in
690 		 * ext4_ext_map_blocks()
691 		 */
692 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693 			return retval;
694 
695 	/*
696 	 * New blocks allocate and/or writing to unwritten extent
697 	 * will possibly result in updating i_data, so we take
698 	 * the write lock of i_data_sem, and call get_block()
699 	 * with create == 1 flag.
700 	 */
701 	down_write(&EXT4_I(inode)->i_data_sem);
702 	retval = ext4_map_create_blocks(handle, inode, map, flags);
703 	up_write((&EXT4_I(inode)->i_data_sem));
704 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 		ret = check_block_validity(inode, map);
706 		if (ret != 0)
707 			return ret;
708 
709 		/*
710 		 * Inodes with freshly allocated blocks where contents will be
711 		 * visible after transaction commit must be on transaction's
712 		 * ordered data list.
713 		 */
714 		if (map->m_flags & EXT4_MAP_NEW &&
715 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 		    !ext4_is_quota_file(inode) &&
718 		    ext4_should_order_data(inode)) {
719 			loff_t start_byte =
720 				(loff_t)map->m_lblk << inode->i_blkbits;
721 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722 
723 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 				ret = ext4_jbd2_inode_add_wait(handle, inode,
725 						start_byte, length);
726 			else
727 				ret = ext4_jbd2_inode_add_write(handle, inode,
728 						start_byte, length);
729 			if (ret)
730 				return ret;
731 		}
732 	}
733 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734 				map->m_flags & EXT4_MAP_MAPPED))
735 		ext4_fc_track_range(handle, inode, map->m_lblk,
736 					map->m_lblk + map->m_len - 1);
737 	if (retval < 0)
738 		ext_debug(inode, "failed with err %d\n", retval);
739 	return retval;
740 }
741 
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748 	unsigned long old_state;
749 	unsigned long new_state;
750 
751 	flags &= EXT4_MAP_FLAGS;
752 
753 	/* Dummy buffer_head? Set non-atomically. */
754 	if (!bh->b_page) {
755 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 		return;
757 	}
758 	/*
759 	 * Someone else may be modifying b_state. Be careful! This is ugly but
760 	 * once we get rid of using bh as a container for mapping information
761 	 * to pass to / from get_block functions, this can go away.
762 	 */
763 	old_state = READ_ONCE(bh->b_state);
764 	do {
765 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767 }
768 
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 			   struct buffer_head *bh, int flags)
771 {
772 	struct ext4_map_blocks map;
773 	int ret = 0;
774 
775 	if (ext4_has_inline_data(inode))
776 		return -ERANGE;
777 
778 	map.m_lblk = iblock;
779 	map.m_len = bh->b_size >> inode->i_blkbits;
780 
781 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782 			      flags);
783 	if (ret > 0) {
784 		map_bh(bh, inode->i_sb, map.m_pblk);
785 		ext4_update_bh_state(bh, map.m_flags);
786 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787 		ret = 0;
788 	} else if (ret == 0) {
789 		/* hole case, need to fill in bh->b_size */
790 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 	}
792 	return ret;
793 }
794 
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796 		   struct buffer_head *bh, int create)
797 {
798 	return _ext4_get_block(inode, iblock, bh,
799 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801 
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 			     struct buffer_head *bh_result, int create)
809 {
810 	int ret = 0;
811 
812 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 		   inode->i_ino, create);
814 	ret = _ext4_get_block(inode, iblock, bh_result,
815 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816 
817 	/*
818 	 * If the buffer is marked unwritten, mark it as new to make sure it is
819 	 * zeroed out correctly in case of partial writes. Otherwise, there is
820 	 * a chance of stale data getting exposed.
821 	 */
822 	if (ret == 0 && buffer_unwritten(bh_result))
823 		set_buffer_new(bh_result);
824 
825 	return ret;
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841 	int err;
842 
843 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		    || handle != NULL || create == 0);
845 	ASSERT(create == 0 || !nowait);
846 
847 	map.m_lblk = block;
848 	map.m_len = 1;
849 	err = ext4_map_blocks(handle, inode, &map, map_flags);
850 
851 	if (err == 0)
852 		return create ? ERR_PTR(-ENOSPC) : NULL;
853 	if (err < 0)
854 		return ERR_PTR(err);
855 
856 	if (nowait)
857 		return sb_find_get_block(inode->i_sb, map.m_pblk);
858 
859 	bh = sb_getblk(inode->i_sb, map.m_pblk);
860 	if (unlikely(!bh))
861 		return ERR_PTR(-ENOMEM);
862 	if (map.m_flags & EXT4_MAP_NEW) {
863 		ASSERT(create != 0);
864 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
865 			    || (handle != NULL));
866 
867 		/*
868 		 * Now that we do not always journal data, we should
869 		 * keep in mind whether this should always journal the
870 		 * new buffer as metadata.  For now, regular file
871 		 * writes use ext4_get_block instead, so it's not a
872 		 * problem.
873 		 */
874 		lock_buffer(bh);
875 		BUFFER_TRACE(bh, "call get_create_access");
876 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877 						     EXT4_JTR_NONE);
878 		if (unlikely(err)) {
879 			unlock_buffer(bh);
880 			goto errout;
881 		}
882 		if (!buffer_uptodate(bh)) {
883 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
884 			set_buffer_uptodate(bh);
885 		}
886 		unlock_buffer(bh);
887 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
888 		err = ext4_handle_dirty_metadata(handle, inode, bh);
889 		if (unlikely(err))
890 			goto errout;
891 	} else
892 		BUFFER_TRACE(bh, "not a new buffer");
893 	return bh;
894 errout:
895 	brelse(bh);
896 	return ERR_PTR(err);
897 }
898 
899 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
900 			       ext4_lblk_t block, int map_flags)
901 {
902 	struct buffer_head *bh;
903 	int ret;
904 
905 	bh = ext4_getblk(handle, inode, block, map_flags);
906 	if (IS_ERR(bh))
907 		return bh;
908 	if (!bh || ext4_buffer_uptodate(bh))
909 		return bh;
910 
911 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
912 	if (ret) {
913 		put_bh(bh);
914 		return ERR_PTR(ret);
915 	}
916 	return bh;
917 }
918 
919 /* Read a contiguous batch of blocks. */
920 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
921 		     bool wait, struct buffer_head **bhs)
922 {
923 	int i, err;
924 
925 	for (i = 0; i < bh_count; i++) {
926 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
927 		if (IS_ERR(bhs[i])) {
928 			err = PTR_ERR(bhs[i]);
929 			bh_count = i;
930 			goto out_brelse;
931 		}
932 	}
933 
934 	for (i = 0; i < bh_count; i++)
935 		/* Note that NULL bhs[i] is valid because of holes. */
936 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
937 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
938 
939 	if (!wait)
940 		return 0;
941 
942 	for (i = 0; i < bh_count; i++)
943 		if (bhs[i])
944 			wait_on_buffer(bhs[i]);
945 
946 	for (i = 0; i < bh_count; i++) {
947 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
948 			err = -EIO;
949 			goto out_brelse;
950 		}
951 	}
952 	return 0;
953 
954 out_brelse:
955 	for (i = 0; i < bh_count; i++) {
956 		brelse(bhs[i]);
957 		bhs[i] = NULL;
958 	}
959 	return err;
960 }
961 
962 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
963 			   struct buffer_head *head,
964 			   unsigned from,
965 			   unsigned to,
966 			   int *partial,
967 			   int (*fn)(handle_t *handle, struct inode *inode,
968 				     struct buffer_head *bh))
969 {
970 	struct buffer_head *bh;
971 	unsigned block_start, block_end;
972 	unsigned blocksize = head->b_size;
973 	int err, ret = 0;
974 	struct buffer_head *next;
975 
976 	for (bh = head, block_start = 0;
977 	     ret == 0 && (bh != head || !block_start);
978 	     block_start = block_end, bh = next) {
979 		next = bh->b_this_page;
980 		block_end = block_start + blocksize;
981 		if (block_end <= from || block_start >= to) {
982 			if (partial && !buffer_uptodate(bh))
983 				*partial = 1;
984 			continue;
985 		}
986 		err = (*fn)(handle, inode, bh);
987 		if (!ret)
988 			ret = err;
989 	}
990 	return ret;
991 }
992 
993 /*
994  * Helper for handling dirtying of journalled data. We also mark the folio as
995  * dirty so that writeback code knows about this page (and inode) contains
996  * dirty data. ext4_writepages() then commits appropriate transaction to
997  * make data stable.
998  */
999 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1000 {
1001 	folio_mark_dirty(bh->b_folio);
1002 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1003 }
1004 
1005 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1006 				struct buffer_head *bh)
1007 {
1008 	if (!buffer_mapped(bh) || buffer_freed(bh))
1009 		return 0;
1010 	BUFFER_TRACE(bh, "get write access");
1011 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1012 					    EXT4_JTR_NONE);
1013 }
1014 
1015 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1016 			   loff_t pos, unsigned len,
1017 			   get_block_t *get_block)
1018 {
1019 	unsigned from = pos & (PAGE_SIZE - 1);
1020 	unsigned to = from + len;
1021 	struct inode *inode = folio->mapping->host;
1022 	unsigned block_start, block_end;
1023 	sector_t block;
1024 	int err = 0;
1025 	unsigned blocksize = inode->i_sb->s_blocksize;
1026 	unsigned bbits;
1027 	struct buffer_head *bh, *head, *wait[2];
1028 	int nr_wait = 0;
1029 	int i;
1030 	bool should_journal_data = ext4_should_journal_data(inode);
1031 
1032 	BUG_ON(!folio_test_locked(folio));
1033 	BUG_ON(from > PAGE_SIZE);
1034 	BUG_ON(to > PAGE_SIZE);
1035 	BUG_ON(from > to);
1036 
1037 	head = folio_buffers(folio);
1038 	if (!head)
1039 		head = create_empty_buffers(folio, blocksize, 0);
1040 	bbits = ilog2(blocksize);
1041 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1042 
1043 	for (bh = head, block_start = 0; bh != head || !block_start;
1044 	    block++, block_start = block_end, bh = bh->b_this_page) {
1045 		block_end = block_start + blocksize;
1046 		if (block_end <= from || block_start >= to) {
1047 			if (folio_test_uptodate(folio)) {
1048 				set_buffer_uptodate(bh);
1049 			}
1050 			continue;
1051 		}
1052 		if (buffer_new(bh))
1053 			clear_buffer_new(bh);
1054 		if (!buffer_mapped(bh)) {
1055 			WARN_ON(bh->b_size != blocksize);
1056 			err = get_block(inode, block, bh, 1);
1057 			if (err)
1058 				break;
1059 			if (buffer_new(bh)) {
1060 				/*
1061 				 * We may be zeroing partial buffers or all new
1062 				 * buffers in case of failure. Prepare JBD2 for
1063 				 * that.
1064 				 */
1065 				if (should_journal_data)
1066 					do_journal_get_write_access(handle,
1067 								    inode, bh);
1068 				if (folio_test_uptodate(folio)) {
1069 					/*
1070 					 * Unlike __block_write_begin() we leave
1071 					 * dirtying of new uptodate buffers to
1072 					 * ->write_end() time or
1073 					 * folio_zero_new_buffers().
1074 					 */
1075 					set_buffer_uptodate(bh);
1076 					continue;
1077 				}
1078 				if (block_end > to || block_start < from)
1079 					folio_zero_segments(folio, to,
1080 							    block_end,
1081 							    block_start, from);
1082 				continue;
1083 			}
1084 		}
1085 		if (folio_test_uptodate(folio)) {
1086 			set_buffer_uptodate(bh);
1087 			continue;
1088 		}
1089 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1090 		    !buffer_unwritten(bh) &&
1091 		    (block_start < from || block_end > to)) {
1092 			ext4_read_bh_lock(bh, 0, false);
1093 			wait[nr_wait++] = bh;
1094 		}
1095 	}
1096 	/*
1097 	 * If we issued read requests, let them complete.
1098 	 */
1099 	for (i = 0; i < nr_wait; i++) {
1100 		wait_on_buffer(wait[i]);
1101 		if (!buffer_uptodate(wait[i]))
1102 			err = -EIO;
1103 	}
1104 	if (unlikely(err)) {
1105 		if (should_journal_data)
1106 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1107 							 from, to);
1108 		else
1109 			folio_zero_new_buffers(folio, from, to);
1110 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1111 		for (i = 0; i < nr_wait; i++) {
1112 			int err2;
1113 
1114 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1115 						blocksize, bh_offset(wait[i]));
1116 			if (err2) {
1117 				clear_buffer_uptodate(wait[i]);
1118 				err = err2;
1119 			}
1120 		}
1121 	}
1122 
1123 	return err;
1124 }
1125 
1126 /*
1127  * To preserve ordering, it is essential that the hole instantiation and
1128  * the data write be encapsulated in a single transaction.  We cannot
1129  * close off a transaction and start a new one between the ext4_get_block()
1130  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1131  * ext4_write_begin() is the right place.
1132  */
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134 			    loff_t pos, unsigned len,
1135 			    struct folio **foliop, void **fsdata)
1136 {
1137 	struct inode *inode = mapping->host;
1138 	int ret, needed_blocks;
1139 	handle_t *handle;
1140 	int retries = 0;
1141 	struct folio *folio;
1142 	pgoff_t index;
1143 	unsigned from, to;
1144 
1145 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1146 		return -EIO;
1147 
1148 	trace_ext4_write_begin(inode, pos, len);
1149 	/*
1150 	 * Reserve one block more for addition to orphan list in case
1151 	 * we allocate blocks but write fails for some reason
1152 	 */
1153 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154 	index = pos >> PAGE_SHIFT;
1155 	from = pos & (PAGE_SIZE - 1);
1156 	to = from + len;
1157 
1158 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160 						    foliop);
1161 		if (ret < 0)
1162 			return ret;
1163 		if (ret == 1)
1164 			return 0;
1165 	}
1166 
1167 	/*
1168 	 * __filemap_get_folio() can take a long time if the
1169 	 * system is thrashing due to memory pressure, or if the folio
1170 	 * is being written back.  So grab it first before we start
1171 	 * the transaction handle.  This also allows us to allocate
1172 	 * the folio (if needed) without using GFP_NOFS.
1173 	 */
1174 retry_grab:
1175 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1176 					mapping_gfp_mask(mapping));
1177 	if (IS_ERR(folio))
1178 		return PTR_ERR(folio);
1179 	/*
1180 	 * The same as page allocation, we prealloc buffer heads before
1181 	 * starting the handle.
1182 	 */
1183 	if (!folio_buffers(folio))
1184 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1185 
1186 	folio_unlock(folio);
1187 
1188 retry_journal:
1189 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190 	if (IS_ERR(handle)) {
1191 		folio_put(folio);
1192 		return PTR_ERR(handle);
1193 	}
1194 
1195 	folio_lock(folio);
1196 	if (folio->mapping != mapping) {
1197 		/* The folio got truncated from under us */
1198 		folio_unlock(folio);
1199 		folio_put(folio);
1200 		ext4_journal_stop(handle);
1201 		goto retry_grab;
1202 	}
1203 	/* In case writeback began while the folio was unlocked */
1204 	folio_wait_stable(folio);
1205 
1206 	if (ext4_should_dioread_nolock(inode))
1207 		ret = ext4_block_write_begin(handle, folio, pos, len,
1208 					     ext4_get_block_unwritten);
1209 	else
1210 		ret = ext4_block_write_begin(handle, folio, pos, len,
1211 					     ext4_get_block);
1212 	if (!ret && ext4_should_journal_data(inode)) {
1213 		ret = ext4_walk_page_buffers(handle, inode,
1214 					     folio_buffers(folio), from, to,
1215 					     NULL, do_journal_get_write_access);
1216 	}
1217 
1218 	if (ret) {
1219 		bool extended = (pos + len > inode->i_size) &&
1220 				!ext4_verity_in_progress(inode);
1221 
1222 		folio_unlock(folio);
1223 		/*
1224 		 * ext4_block_write_begin may have instantiated a few blocks
1225 		 * outside i_size.  Trim these off again. Don't need
1226 		 * i_size_read because we hold i_rwsem.
1227 		 *
1228 		 * Add inode to orphan list in case we crash before
1229 		 * truncate finishes
1230 		 */
1231 		if (extended && ext4_can_truncate(inode))
1232 			ext4_orphan_add(handle, inode);
1233 
1234 		ext4_journal_stop(handle);
1235 		if (extended) {
1236 			ext4_truncate_failed_write(inode);
1237 			/*
1238 			 * If truncate failed early the inode might
1239 			 * still be on the orphan list; we need to
1240 			 * make sure the inode is removed from the
1241 			 * orphan list in that case.
1242 			 */
1243 			if (inode->i_nlink)
1244 				ext4_orphan_del(NULL, inode);
1245 		}
1246 
1247 		if (ret == -ENOSPC &&
1248 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1249 			goto retry_journal;
1250 		folio_put(folio);
1251 		return ret;
1252 	}
1253 	*foliop = folio;
1254 	return ret;
1255 }
1256 
1257 /* For write_end() in data=journal mode */
1258 static int write_end_fn(handle_t *handle, struct inode *inode,
1259 			struct buffer_head *bh)
1260 {
1261 	int ret;
1262 	if (!buffer_mapped(bh) || buffer_freed(bh))
1263 		return 0;
1264 	set_buffer_uptodate(bh);
1265 	ret = ext4_dirty_journalled_data(handle, bh);
1266 	clear_buffer_meta(bh);
1267 	clear_buffer_prio(bh);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * We need to pick up the new inode size which generic_commit_write gave us
1273  * `file' can be NULL - eg, when called from page_symlink().
1274  *
1275  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1276  * buffers are managed internally.
1277  */
1278 static int ext4_write_end(struct file *file,
1279 			  struct address_space *mapping,
1280 			  loff_t pos, unsigned len, unsigned copied,
1281 			  struct folio *folio, void *fsdata)
1282 {
1283 	handle_t *handle = ext4_journal_current_handle();
1284 	struct inode *inode = mapping->host;
1285 	loff_t old_size = inode->i_size;
1286 	int ret = 0, ret2;
1287 	int i_size_changed = 0;
1288 	bool verity = ext4_verity_in_progress(inode);
1289 
1290 	trace_ext4_write_end(inode, pos, len, copied);
1291 
1292 	if (ext4_has_inline_data(inode) &&
1293 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1294 		return ext4_write_inline_data_end(inode, pos, len, copied,
1295 						  folio);
1296 
1297 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1298 	/*
1299 	 * it's important to update i_size while still holding folio lock:
1300 	 * page writeout could otherwise come in and zero beyond i_size.
1301 	 *
1302 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1303 	 * blocks are being written past EOF, so skip the i_size update.
1304 	 */
1305 	if (!verity)
1306 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1307 	folio_unlock(folio);
1308 	folio_put(folio);
1309 
1310 	if (old_size < pos && !verity)
1311 		pagecache_isize_extended(inode, old_size, pos);
1312 	/*
1313 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1314 	 * makes the holding time of folio lock longer. Second, it forces lock
1315 	 * ordering of folio lock and transaction start for journaling
1316 	 * filesystems.
1317 	 */
1318 	if (i_size_changed)
1319 		ret = ext4_mark_inode_dirty(handle, inode);
1320 
1321 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1322 		/* if we have allocated more blocks and copied
1323 		 * less. We will have blocks allocated outside
1324 		 * inode->i_size. So truncate them
1325 		 */
1326 		ext4_orphan_add(handle, inode);
1327 
1328 	ret2 = ext4_journal_stop(handle);
1329 	if (!ret)
1330 		ret = ret2;
1331 
1332 	if (pos + len > inode->i_size && !verity) {
1333 		ext4_truncate_failed_write(inode);
1334 		/*
1335 		 * If truncate failed early the inode might still be
1336 		 * on the orphan list; we need to make sure the inode
1337 		 * is removed from the orphan list in that case.
1338 		 */
1339 		if (inode->i_nlink)
1340 			ext4_orphan_del(NULL, inode);
1341 	}
1342 
1343 	return ret ? ret : copied;
1344 }
1345 
1346 /*
1347  * This is a private version of folio_zero_new_buffers() which doesn't
1348  * set the buffer to be dirty, since in data=journalled mode we need
1349  * to call ext4_dirty_journalled_data() instead.
1350  */
1351 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1352 					    struct inode *inode,
1353 					    struct folio *folio,
1354 					    unsigned from, unsigned to)
1355 {
1356 	unsigned int block_start = 0, block_end;
1357 	struct buffer_head *head, *bh;
1358 
1359 	bh = head = folio_buffers(folio);
1360 	do {
1361 		block_end = block_start + bh->b_size;
1362 		if (buffer_new(bh)) {
1363 			if (block_end > from && block_start < to) {
1364 				if (!folio_test_uptodate(folio)) {
1365 					unsigned start, size;
1366 
1367 					start = max(from, block_start);
1368 					size = min(to, block_end) - start;
1369 
1370 					folio_zero_range(folio, start, size);
1371 				}
1372 				clear_buffer_new(bh);
1373 				write_end_fn(handle, inode, bh);
1374 			}
1375 		}
1376 		block_start = block_end;
1377 		bh = bh->b_this_page;
1378 	} while (bh != head);
1379 }
1380 
1381 static int ext4_journalled_write_end(struct file *file,
1382 				     struct address_space *mapping,
1383 				     loff_t pos, unsigned len, unsigned copied,
1384 				     struct folio *folio, void *fsdata)
1385 {
1386 	handle_t *handle = ext4_journal_current_handle();
1387 	struct inode *inode = mapping->host;
1388 	loff_t old_size = inode->i_size;
1389 	int ret = 0, ret2;
1390 	int partial = 0;
1391 	unsigned from, to;
1392 	int size_changed = 0;
1393 	bool verity = ext4_verity_in_progress(inode);
1394 
1395 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1396 	from = pos & (PAGE_SIZE - 1);
1397 	to = from + len;
1398 
1399 	BUG_ON(!ext4_handle_valid(handle));
1400 
1401 	if (ext4_has_inline_data(inode))
1402 		return ext4_write_inline_data_end(inode, pos, len, copied,
1403 						  folio);
1404 
1405 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1406 		copied = 0;
1407 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1408 						 from, to);
1409 	} else {
1410 		if (unlikely(copied < len))
1411 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1412 							 from + copied, to);
1413 		ret = ext4_walk_page_buffers(handle, inode,
1414 					     folio_buffers(folio),
1415 					     from, from + copied, &partial,
1416 					     write_end_fn);
1417 		if (!partial)
1418 			folio_mark_uptodate(folio);
1419 	}
1420 	if (!verity)
1421 		size_changed = ext4_update_inode_size(inode, pos + copied);
1422 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423 	folio_unlock(folio);
1424 	folio_put(folio);
1425 
1426 	if (old_size < pos && !verity)
1427 		pagecache_isize_extended(inode, old_size, pos);
1428 
1429 	if (size_changed) {
1430 		ret2 = ext4_mark_inode_dirty(handle, inode);
1431 		if (!ret)
1432 			ret = ret2;
1433 	}
1434 
1435 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1436 		/* if we have allocated more blocks and copied
1437 		 * less. We will have blocks allocated outside
1438 		 * inode->i_size. So truncate them
1439 		 */
1440 		ext4_orphan_add(handle, inode);
1441 
1442 	ret2 = ext4_journal_stop(handle);
1443 	if (!ret)
1444 		ret = ret2;
1445 	if (pos + len > inode->i_size && !verity) {
1446 		ext4_truncate_failed_write(inode);
1447 		/*
1448 		 * If truncate failed early the inode might still be
1449 		 * on the orphan list; we need to make sure the inode
1450 		 * is removed from the orphan list in that case.
1451 		 */
1452 		if (inode->i_nlink)
1453 			ext4_orphan_del(NULL, inode);
1454 	}
1455 
1456 	return ret ? ret : copied;
1457 }
1458 
1459 /*
1460  * Reserve space for 'nr_resv' clusters
1461  */
1462 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1463 {
1464 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465 	struct ext4_inode_info *ei = EXT4_I(inode);
1466 	int ret;
1467 
1468 	/*
1469 	 * We will charge metadata quota at writeout time; this saves
1470 	 * us from metadata over-estimation, though we may go over by
1471 	 * a small amount in the end.  Here we just reserve for data.
1472 	 */
1473 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1474 	if (ret)
1475 		return ret;
1476 
1477 	spin_lock(&ei->i_block_reservation_lock);
1478 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1479 		spin_unlock(&ei->i_block_reservation_lock);
1480 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1481 		return -ENOSPC;
1482 	}
1483 	ei->i_reserved_data_blocks += nr_resv;
1484 	trace_ext4_da_reserve_space(inode, nr_resv);
1485 	spin_unlock(&ei->i_block_reservation_lock);
1486 
1487 	return 0;       /* success */
1488 }
1489 
1490 void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 	struct ext4_inode_info *ei = EXT4_I(inode);
1494 
1495 	if (!to_free)
1496 		return;		/* Nothing to release, exit */
1497 
1498 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499 
1500 	trace_ext4_da_release_space(inode, to_free);
1501 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502 		/*
1503 		 * if there aren't enough reserved blocks, then the
1504 		 * counter is messed up somewhere.  Since this
1505 		 * function is called from invalidate page, it's
1506 		 * harmless to return without any action.
1507 		 */
1508 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509 			 "ino %lu, to_free %d with only %d reserved "
1510 			 "data blocks", inode->i_ino, to_free,
1511 			 ei->i_reserved_data_blocks);
1512 		WARN_ON(1);
1513 		to_free = ei->i_reserved_data_blocks;
1514 	}
1515 	ei->i_reserved_data_blocks -= to_free;
1516 
1517 	/* update fs dirty data blocks counter */
1518 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519 
1520 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521 
1522 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524 
1525 /*
1526  * Delayed allocation stuff
1527  */
1528 
1529 struct mpage_da_data {
1530 	/* These are input fields for ext4_do_writepages() */
1531 	struct inode *inode;
1532 	struct writeback_control *wbc;
1533 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1534 
1535 	/* These are internal state of ext4_do_writepages() */
1536 	pgoff_t first_page;	/* The first page to write */
1537 	pgoff_t next_page;	/* Current page to examine */
1538 	pgoff_t last_page;	/* Last page to examine */
1539 	/*
1540 	 * Extent to map - this can be after first_page because that can be
1541 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1542 	 * is delalloc or unwritten.
1543 	 */
1544 	struct ext4_map_blocks map;
1545 	struct ext4_io_submit io_submit;	/* IO submission data */
1546 	unsigned int do_map:1;
1547 	unsigned int scanned_until_end:1;
1548 	unsigned int journalled_more_data:1;
1549 };
1550 
1551 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1552 				       bool invalidate)
1553 {
1554 	unsigned nr, i;
1555 	pgoff_t index, end;
1556 	struct folio_batch fbatch;
1557 	struct inode *inode = mpd->inode;
1558 	struct address_space *mapping = inode->i_mapping;
1559 
1560 	/* This is necessary when next_page == 0. */
1561 	if (mpd->first_page >= mpd->next_page)
1562 		return;
1563 
1564 	mpd->scanned_until_end = 0;
1565 	index = mpd->first_page;
1566 	end   = mpd->next_page - 1;
1567 	if (invalidate) {
1568 		ext4_lblk_t start, last;
1569 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1570 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1571 
1572 		/*
1573 		 * avoid racing with extent status tree scans made by
1574 		 * ext4_insert_delayed_block()
1575 		 */
1576 		down_write(&EXT4_I(inode)->i_data_sem);
1577 		ext4_es_remove_extent(inode, start, last - start + 1);
1578 		up_write(&EXT4_I(inode)->i_data_sem);
1579 	}
1580 
1581 	folio_batch_init(&fbatch);
1582 	while (index <= end) {
1583 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1584 		if (nr == 0)
1585 			break;
1586 		for (i = 0; i < nr; i++) {
1587 			struct folio *folio = fbatch.folios[i];
1588 
1589 			if (folio->index < mpd->first_page)
1590 				continue;
1591 			if (folio_next_index(folio) - 1 > end)
1592 				continue;
1593 			BUG_ON(!folio_test_locked(folio));
1594 			BUG_ON(folio_test_writeback(folio));
1595 			if (invalidate) {
1596 				if (folio_mapped(folio))
1597 					folio_clear_dirty_for_io(folio);
1598 				block_invalidate_folio(folio, 0,
1599 						folio_size(folio));
1600 				folio_clear_uptodate(folio);
1601 			}
1602 			folio_unlock(folio);
1603 		}
1604 		folio_batch_release(&fbatch);
1605 	}
1606 }
1607 
1608 static void ext4_print_free_blocks(struct inode *inode)
1609 {
1610 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1611 	struct super_block *sb = inode->i_sb;
1612 	struct ext4_inode_info *ei = EXT4_I(inode);
1613 
1614 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1615 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1616 			ext4_count_free_clusters(sb)));
1617 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1618 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1619 	       (long long) EXT4_C2B(EXT4_SB(sb),
1620 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1621 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1622 	       (long long) EXT4_C2B(EXT4_SB(sb),
1623 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1624 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1625 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1626 		 ei->i_reserved_data_blocks);
1627 	return;
1628 }
1629 
1630 /*
1631  * Check whether the cluster containing lblk has been allocated or has
1632  * delalloc reservation.
1633  *
1634  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1635  * reservation, 2 if it's already been allocated, negative error code on
1636  * failure.
1637  */
1638 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1639 {
1640 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1641 	int ret;
1642 
1643 	/* Has delalloc reservation? */
1644 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1645 		return 1;
1646 
1647 	/* Already been allocated? */
1648 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1649 		return 2;
1650 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1651 	if (ret < 0)
1652 		return ret;
1653 	if (ret > 0)
1654 		return 2;
1655 
1656 	return 0;
1657 }
1658 
1659 /*
1660  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1661  *                              status tree, incrementing the reserved
1662  *                              cluster/block count or making pending
1663  *                              reservations where needed
1664  *
1665  * @inode - file containing the newly added block
1666  * @lblk - start logical block to be added
1667  * @len - length of blocks to be added
1668  *
1669  * Returns 0 on success, negative error code on failure.
1670  */
1671 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1672 				      ext4_lblk_t len)
1673 {
1674 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675 	int ret;
1676 	bool lclu_allocated = false;
1677 	bool end_allocated = false;
1678 	ext4_lblk_t resv_clu;
1679 	ext4_lblk_t end = lblk + len - 1;
1680 
1681 	/*
1682 	 * If the cluster containing lblk or end is shared with a delayed,
1683 	 * written, or unwritten extent in a bigalloc file system, it's
1684 	 * already been accounted for and does not need to be reserved.
1685 	 * A pending reservation must be made for the cluster if it's
1686 	 * shared with a written or unwritten extent and doesn't already
1687 	 * have one.  Written and unwritten extents can be purged from the
1688 	 * extents status tree if the system is under memory pressure, so
1689 	 * it's necessary to examine the extent tree if a search of the
1690 	 * extents status tree doesn't get a match.
1691 	 */
1692 	if (sbi->s_cluster_ratio == 1) {
1693 		ret = ext4_da_reserve_space(inode, len);
1694 		if (ret != 0)   /* ENOSPC */
1695 			return ret;
1696 	} else {   /* bigalloc */
1697 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1698 
1699 		ret = ext4_clu_alloc_state(inode, lblk);
1700 		if (ret < 0)
1701 			return ret;
1702 		if (ret > 0) {
1703 			resv_clu--;
1704 			lclu_allocated = (ret == 2);
1705 		}
1706 
1707 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1708 			ret = ext4_clu_alloc_state(inode, end);
1709 			if (ret < 0)
1710 				return ret;
1711 			if (ret > 0) {
1712 				resv_clu--;
1713 				end_allocated = (ret == 2);
1714 			}
1715 		}
1716 
1717 		if (resv_clu) {
1718 			ret = ext4_da_reserve_space(inode, resv_clu);
1719 			if (ret != 0)   /* ENOSPC */
1720 				return ret;
1721 		}
1722 	}
1723 
1724 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1725 				      end_allocated);
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Looks up the requested blocks and sets the delalloc extent map.
1731  * First try to look up for the extent entry that contains the requested
1732  * blocks in the extent status tree without i_data_sem, then try to look
1733  * up for the ondisk extent mapping with i_data_sem in read mode,
1734  * finally hold i_data_sem in write mode, looks up again and add a
1735  * delalloc extent entry if it still couldn't find any extent. Pass out
1736  * the mapped extent through @map and return 0 on success.
1737  */
1738 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1739 {
1740 	struct extent_status es;
1741 	int retval;
1742 #ifdef ES_AGGRESSIVE_TEST
1743 	struct ext4_map_blocks orig_map;
1744 
1745 	memcpy(&orig_map, map, sizeof(*map));
1746 #endif
1747 
1748 	map->m_flags = 0;
1749 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1750 		  (unsigned long) map->m_lblk);
1751 
1752 	/* Lookup extent status tree firstly */
1753 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1754 		map->m_len = min_t(unsigned int, map->m_len,
1755 				   es.es_len - (map->m_lblk - es.es_lblk));
1756 
1757 		if (ext4_es_is_hole(&es))
1758 			goto add_delayed;
1759 
1760 found:
1761 		/*
1762 		 * Delayed extent could be allocated by fallocate.
1763 		 * So we need to check it.
1764 		 */
1765 		if (ext4_es_is_delayed(&es)) {
1766 			map->m_flags |= EXT4_MAP_DELAYED;
1767 			return 0;
1768 		}
1769 
1770 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1771 		if (ext4_es_is_written(&es))
1772 			map->m_flags |= EXT4_MAP_MAPPED;
1773 		else if (ext4_es_is_unwritten(&es))
1774 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1775 		else
1776 			BUG();
1777 
1778 #ifdef ES_AGGRESSIVE_TEST
1779 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1780 #endif
1781 		return 0;
1782 	}
1783 
1784 	/*
1785 	 * Try to see if we can get the block without requesting a new
1786 	 * file system block.
1787 	 */
1788 	down_read(&EXT4_I(inode)->i_data_sem);
1789 	if (ext4_has_inline_data(inode))
1790 		retval = 0;
1791 	else
1792 		retval = ext4_map_query_blocks(NULL, inode, map);
1793 	up_read(&EXT4_I(inode)->i_data_sem);
1794 	if (retval)
1795 		return retval < 0 ? retval : 0;
1796 
1797 add_delayed:
1798 	down_write(&EXT4_I(inode)->i_data_sem);
1799 	/*
1800 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1801 	 * and fallocate path (no folio lock) can race. Make sure we
1802 	 * lookup the extent status tree here again while i_data_sem
1803 	 * is held in write mode, before inserting a new da entry in
1804 	 * the extent status tree.
1805 	 */
1806 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1807 		map->m_len = min_t(unsigned int, map->m_len,
1808 				   es.es_len - (map->m_lblk - es.es_lblk));
1809 
1810 		if (!ext4_es_is_hole(&es)) {
1811 			up_write(&EXT4_I(inode)->i_data_sem);
1812 			goto found;
1813 		}
1814 	} else if (!ext4_has_inline_data(inode)) {
1815 		retval = ext4_map_query_blocks(NULL, inode, map);
1816 		if (retval) {
1817 			up_write(&EXT4_I(inode)->i_data_sem);
1818 			return retval < 0 ? retval : 0;
1819 		}
1820 	}
1821 
1822 	map->m_flags |= EXT4_MAP_DELAYED;
1823 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1824 	up_write(&EXT4_I(inode)->i_data_sem);
1825 
1826 	return retval;
1827 }
1828 
1829 /*
1830  * This is a special get_block_t callback which is used by
1831  * ext4_da_write_begin().  It will either return mapped block or
1832  * reserve space for a single block.
1833  *
1834  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1835  * We also have b_blocknr = -1 and b_bdev initialized properly
1836  *
1837  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1838  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1839  * initialized properly.
1840  */
1841 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1842 			   struct buffer_head *bh, int create)
1843 {
1844 	struct ext4_map_blocks map;
1845 	sector_t invalid_block = ~((sector_t) 0xffff);
1846 	int ret = 0;
1847 
1848 	BUG_ON(create == 0);
1849 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1850 
1851 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1852 		invalid_block = ~0;
1853 
1854 	map.m_lblk = iblock;
1855 	map.m_len = 1;
1856 
1857 	/*
1858 	 * first, we need to know whether the block is allocated already
1859 	 * preallocated blocks are unmapped but should treated
1860 	 * the same as allocated blocks.
1861 	 */
1862 	ret = ext4_da_map_blocks(inode, &map);
1863 	if (ret < 0)
1864 		return ret;
1865 
1866 	if (map.m_flags & EXT4_MAP_DELAYED) {
1867 		map_bh(bh, inode->i_sb, invalid_block);
1868 		set_buffer_new(bh);
1869 		set_buffer_delay(bh);
1870 		return 0;
1871 	}
1872 
1873 	map_bh(bh, inode->i_sb, map.m_pblk);
1874 	ext4_update_bh_state(bh, map.m_flags);
1875 
1876 	if (buffer_unwritten(bh)) {
1877 		/* A delayed write to unwritten bh should be marked
1878 		 * new and mapped.  Mapped ensures that we don't do
1879 		 * get_block multiple times when we write to the same
1880 		 * offset and new ensures that we do proper zero out
1881 		 * for partial write.
1882 		 */
1883 		set_buffer_new(bh);
1884 		set_buffer_mapped(bh);
1885 	}
1886 	return 0;
1887 }
1888 
1889 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1890 {
1891 	mpd->first_page += folio_nr_pages(folio);
1892 	folio_unlock(folio);
1893 }
1894 
1895 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1896 {
1897 	size_t len;
1898 	loff_t size;
1899 	int err;
1900 
1901 	BUG_ON(folio->index != mpd->first_page);
1902 	folio_clear_dirty_for_io(folio);
1903 	/*
1904 	 * We have to be very careful here!  Nothing protects writeback path
1905 	 * against i_size changes and the page can be writeably mapped into
1906 	 * page tables. So an application can be growing i_size and writing
1907 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1908 	 * write-protects our page in page tables and the page cannot get
1909 	 * written to again until we release folio lock. So only after
1910 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1911 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1912 	 * on the barrier provided by folio_test_clear_dirty() in
1913 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1914 	 * after page tables are updated.
1915 	 */
1916 	size = i_size_read(mpd->inode);
1917 	len = folio_size(folio);
1918 	if (folio_pos(folio) + len > size &&
1919 	    !ext4_verity_in_progress(mpd->inode))
1920 		len = size & (len - 1);
1921 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1922 	if (!err)
1923 		mpd->wbc->nr_to_write--;
1924 
1925 	return err;
1926 }
1927 
1928 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1929 
1930 /*
1931  * mballoc gives us at most this number of blocks...
1932  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1933  * The rest of mballoc seems to handle chunks up to full group size.
1934  */
1935 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1936 
1937 /*
1938  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1939  *
1940  * @mpd - extent of blocks
1941  * @lblk - logical number of the block in the file
1942  * @bh - buffer head we want to add to the extent
1943  *
1944  * The function is used to collect contig. blocks in the same state. If the
1945  * buffer doesn't require mapping for writeback and we haven't started the
1946  * extent of buffers to map yet, the function returns 'true' immediately - the
1947  * caller can write the buffer right away. Otherwise the function returns true
1948  * if the block has been added to the extent, false if the block couldn't be
1949  * added.
1950  */
1951 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1952 				   struct buffer_head *bh)
1953 {
1954 	struct ext4_map_blocks *map = &mpd->map;
1955 
1956 	/* Buffer that doesn't need mapping for writeback? */
1957 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1958 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1959 		/* So far no extent to map => we write the buffer right away */
1960 		if (map->m_len == 0)
1961 			return true;
1962 		return false;
1963 	}
1964 
1965 	/* First block in the extent? */
1966 	if (map->m_len == 0) {
1967 		/* We cannot map unless handle is started... */
1968 		if (!mpd->do_map)
1969 			return false;
1970 		map->m_lblk = lblk;
1971 		map->m_len = 1;
1972 		map->m_flags = bh->b_state & BH_FLAGS;
1973 		return true;
1974 	}
1975 
1976 	/* Don't go larger than mballoc is willing to allocate */
1977 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1978 		return false;
1979 
1980 	/* Can we merge the block to our big extent? */
1981 	if (lblk == map->m_lblk + map->m_len &&
1982 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1983 		map->m_len++;
1984 		return true;
1985 	}
1986 	return false;
1987 }
1988 
1989 /*
1990  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1991  *
1992  * @mpd - extent of blocks for mapping
1993  * @head - the first buffer in the page
1994  * @bh - buffer we should start processing from
1995  * @lblk - logical number of the block in the file corresponding to @bh
1996  *
1997  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1998  * the page for IO if all buffers in this page were mapped and there's no
1999  * accumulated extent of buffers to map or add buffers in the page to the
2000  * extent of buffers to map. The function returns 1 if the caller can continue
2001  * by processing the next page, 0 if it should stop adding buffers to the
2002  * extent to map because we cannot extend it anymore. It can also return value
2003  * < 0 in case of error during IO submission.
2004  */
2005 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2006 				   struct buffer_head *head,
2007 				   struct buffer_head *bh,
2008 				   ext4_lblk_t lblk)
2009 {
2010 	struct inode *inode = mpd->inode;
2011 	int err;
2012 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2013 							>> inode->i_blkbits;
2014 
2015 	if (ext4_verity_in_progress(inode))
2016 		blocks = EXT_MAX_BLOCKS;
2017 
2018 	do {
2019 		BUG_ON(buffer_locked(bh));
2020 
2021 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2022 			/* Found extent to map? */
2023 			if (mpd->map.m_len)
2024 				return 0;
2025 			/* Buffer needs mapping and handle is not started? */
2026 			if (!mpd->do_map)
2027 				return 0;
2028 			/* Everything mapped so far and we hit EOF */
2029 			break;
2030 		}
2031 	} while (lblk++, (bh = bh->b_this_page) != head);
2032 	/* So far everything mapped? Submit the page for IO. */
2033 	if (mpd->map.m_len == 0) {
2034 		err = mpage_submit_folio(mpd, head->b_folio);
2035 		if (err < 0)
2036 			return err;
2037 		mpage_folio_done(mpd, head->b_folio);
2038 	}
2039 	if (lblk >= blocks) {
2040 		mpd->scanned_until_end = 1;
2041 		return 0;
2042 	}
2043 	return 1;
2044 }
2045 
2046 /*
2047  * mpage_process_folio - update folio buffers corresponding to changed extent
2048  *			 and may submit fully mapped page for IO
2049  * @mpd: description of extent to map, on return next extent to map
2050  * @folio: Contains these buffers.
2051  * @m_lblk: logical block mapping.
2052  * @m_pblk: corresponding physical mapping.
2053  * @map_bh: determines on return whether this page requires any further
2054  *		  mapping or not.
2055  *
2056  * Scan given folio buffers corresponding to changed extent and update buffer
2057  * state according to new extent state.
2058  * We map delalloc buffers to their physical location, clear unwritten bits.
2059  * If the given folio is not fully mapped, we update @mpd to the next extent in
2060  * the given folio that needs mapping & return @map_bh as true.
2061  */
2062 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2063 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2064 			      bool *map_bh)
2065 {
2066 	struct buffer_head *head, *bh;
2067 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2068 	ext4_lblk_t lblk = *m_lblk;
2069 	ext4_fsblk_t pblock = *m_pblk;
2070 	int err = 0;
2071 	int blkbits = mpd->inode->i_blkbits;
2072 	ssize_t io_end_size = 0;
2073 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2074 
2075 	bh = head = folio_buffers(folio);
2076 	do {
2077 		if (lblk < mpd->map.m_lblk)
2078 			continue;
2079 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2080 			/*
2081 			 * Buffer after end of mapped extent.
2082 			 * Find next buffer in the folio to map.
2083 			 */
2084 			mpd->map.m_len = 0;
2085 			mpd->map.m_flags = 0;
2086 			io_end_vec->size += io_end_size;
2087 
2088 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2089 			if (err > 0)
2090 				err = 0;
2091 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2092 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2093 				if (IS_ERR(io_end_vec)) {
2094 					err = PTR_ERR(io_end_vec);
2095 					goto out;
2096 				}
2097 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2098 			}
2099 			*map_bh = true;
2100 			goto out;
2101 		}
2102 		if (buffer_delay(bh)) {
2103 			clear_buffer_delay(bh);
2104 			bh->b_blocknr = pblock++;
2105 		}
2106 		clear_buffer_unwritten(bh);
2107 		io_end_size += (1 << blkbits);
2108 	} while (lblk++, (bh = bh->b_this_page) != head);
2109 
2110 	io_end_vec->size += io_end_size;
2111 	*map_bh = false;
2112 out:
2113 	*m_lblk = lblk;
2114 	*m_pblk = pblock;
2115 	return err;
2116 }
2117 
2118 /*
2119  * mpage_map_buffers - update buffers corresponding to changed extent and
2120  *		       submit fully mapped pages for IO
2121  *
2122  * @mpd - description of extent to map, on return next extent to map
2123  *
2124  * Scan buffers corresponding to changed extent (we expect corresponding pages
2125  * to be already locked) and update buffer state according to new extent state.
2126  * We map delalloc buffers to their physical location, clear unwritten bits,
2127  * and mark buffers as uninit when we perform writes to unwritten extents
2128  * and do extent conversion after IO is finished. If the last page is not fully
2129  * mapped, we update @map to the next extent in the last page that needs
2130  * mapping. Otherwise we submit the page for IO.
2131  */
2132 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2133 {
2134 	struct folio_batch fbatch;
2135 	unsigned nr, i;
2136 	struct inode *inode = mpd->inode;
2137 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2138 	pgoff_t start, end;
2139 	ext4_lblk_t lblk;
2140 	ext4_fsblk_t pblock;
2141 	int err;
2142 	bool map_bh = false;
2143 
2144 	start = mpd->map.m_lblk >> bpp_bits;
2145 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2146 	lblk = start << bpp_bits;
2147 	pblock = mpd->map.m_pblk;
2148 
2149 	folio_batch_init(&fbatch);
2150 	while (start <= end) {
2151 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2152 		if (nr == 0)
2153 			break;
2154 		for (i = 0; i < nr; i++) {
2155 			struct folio *folio = fbatch.folios[i];
2156 
2157 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2158 						 &map_bh);
2159 			/*
2160 			 * If map_bh is true, means page may require further bh
2161 			 * mapping, or maybe the page was submitted for IO.
2162 			 * So we return to call further extent mapping.
2163 			 */
2164 			if (err < 0 || map_bh)
2165 				goto out;
2166 			/* Page fully mapped - let IO run! */
2167 			err = mpage_submit_folio(mpd, folio);
2168 			if (err < 0)
2169 				goto out;
2170 			mpage_folio_done(mpd, folio);
2171 		}
2172 		folio_batch_release(&fbatch);
2173 	}
2174 	/* Extent fully mapped and matches with page boundary. We are done. */
2175 	mpd->map.m_len = 0;
2176 	mpd->map.m_flags = 0;
2177 	return 0;
2178 out:
2179 	folio_batch_release(&fbatch);
2180 	return err;
2181 }
2182 
2183 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2184 {
2185 	struct inode *inode = mpd->inode;
2186 	struct ext4_map_blocks *map = &mpd->map;
2187 	int get_blocks_flags;
2188 	int err, dioread_nolock;
2189 
2190 	trace_ext4_da_write_pages_extent(inode, map);
2191 	/*
2192 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2193 	 * to convert an unwritten extent to be initialized (in the case
2194 	 * where we have written into one or more preallocated blocks).  It is
2195 	 * possible that we're going to need more metadata blocks than
2196 	 * previously reserved. However we must not fail because we're in
2197 	 * writeback and there is nothing we can do about it so it might result
2198 	 * in data loss.  So use reserved blocks to allocate metadata if
2199 	 * possible.
2200 	 */
2201 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2202 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2203 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2204 	dioread_nolock = ext4_should_dioread_nolock(inode);
2205 	if (dioread_nolock)
2206 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2207 
2208 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2209 	if (err < 0)
2210 		return err;
2211 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2212 		if (!mpd->io_submit.io_end->handle &&
2213 		    ext4_handle_valid(handle)) {
2214 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2215 			handle->h_rsv_handle = NULL;
2216 		}
2217 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2218 	}
2219 
2220 	BUG_ON(map->m_len == 0);
2221 	return 0;
2222 }
2223 
2224 /*
2225  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2226  *				 mpd->len and submit pages underlying it for IO
2227  *
2228  * @handle - handle for journal operations
2229  * @mpd - extent to map
2230  * @give_up_on_write - we set this to true iff there is a fatal error and there
2231  *                     is no hope of writing the data. The caller should discard
2232  *                     dirty pages to avoid infinite loops.
2233  *
2234  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2235  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2236  * them to initialized or split the described range from larger unwritten
2237  * extent. Note that we need not map all the described range since allocation
2238  * can return less blocks or the range is covered by more unwritten extents. We
2239  * cannot map more because we are limited by reserved transaction credits. On
2240  * the other hand we always make sure that the last touched page is fully
2241  * mapped so that it can be written out (and thus forward progress is
2242  * guaranteed). After mapping we submit all mapped pages for IO.
2243  */
2244 static int mpage_map_and_submit_extent(handle_t *handle,
2245 				       struct mpage_da_data *mpd,
2246 				       bool *give_up_on_write)
2247 {
2248 	struct inode *inode = mpd->inode;
2249 	struct ext4_map_blocks *map = &mpd->map;
2250 	int err;
2251 	loff_t disksize;
2252 	int progress = 0;
2253 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2254 	struct ext4_io_end_vec *io_end_vec;
2255 
2256 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2257 	if (IS_ERR(io_end_vec))
2258 		return PTR_ERR(io_end_vec);
2259 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2260 	do {
2261 		err = mpage_map_one_extent(handle, mpd);
2262 		if (err < 0) {
2263 			struct super_block *sb = inode->i_sb;
2264 
2265 			if (ext4_forced_shutdown(sb))
2266 				goto invalidate_dirty_pages;
2267 			/*
2268 			 * Let the uper layers retry transient errors.
2269 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2270 			 * is non-zero, a commit should free up blocks.
2271 			 */
2272 			if ((err == -ENOMEM) ||
2273 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2274 				if (progress)
2275 					goto update_disksize;
2276 				return err;
2277 			}
2278 			ext4_msg(sb, KERN_CRIT,
2279 				 "Delayed block allocation failed for "
2280 				 "inode %lu at logical offset %llu with"
2281 				 " max blocks %u with error %d",
2282 				 inode->i_ino,
2283 				 (unsigned long long)map->m_lblk,
2284 				 (unsigned)map->m_len, -err);
2285 			ext4_msg(sb, KERN_CRIT,
2286 				 "This should not happen!! Data will "
2287 				 "be lost\n");
2288 			if (err == -ENOSPC)
2289 				ext4_print_free_blocks(inode);
2290 		invalidate_dirty_pages:
2291 			*give_up_on_write = true;
2292 			return err;
2293 		}
2294 		progress = 1;
2295 		/*
2296 		 * Update buffer state, submit mapped pages, and get us new
2297 		 * extent to map
2298 		 */
2299 		err = mpage_map_and_submit_buffers(mpd);
2300 		if (err < 0)
2301 			goto update_disksize;
2302 	} while (map->m_len);
2303 
2304 update_disksize:
2305 	/*
2306 	 * Update on-disk size after IO is submitted.  Races with
2307 	 * truncate are avoided by checking i_size under i_data_sem.
2308 	 */
2309 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2310 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2311 		int err2;
2312 		loff_t i_size;
2313 
2314 		down_write(&EXT4_I(inode)->i_data_sem);
2315 		i_size = i_size_read(inode);
2316 		if (disksize > i_size)
2317 			disksize = i_size;
2318 		if (disksize > EXT4_I(inode)->i_disksize)
2319 			EXT4_I(inode)->i_disksize = disksize;
2320 		up_write(&EXT4_I(inode)->i_data_sem);
2321 		err2 = ext4_mark_inode_dirty(handle, inode);
2322 		if (err2) {
2323 			ext4_error_err(inode->i_sb, -err2,
2324 				       "Failed to mark inode %lu dirty",
2325 				       inode->i_ino);
2326 		}
2327 		if (!err)
2328 			err = err2;
2329 	}
2330 	return err;
2331 }
2332 
2333 /*
2334  * Calculate the total number of credits to reserve for one writepages
2335  * iteration. This is called from ext4_writepages(). We map an extent of
2336  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2337  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2338  * bpp - 1 blocks in bpp different extents.
2339  */
2340 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2341 {
2342 	int bpp = ext4_journal_blocks_per_page(inode);
2343 
2344 	return ext4_meta_trans_blocks(inode,
2345 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2346 }
2347 
2348 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2349 				     size_t len)
2350 {
2351 	struct buffer_head *page_bufs = folio_buffers(folio);
2352 	struct inode *inode = folio->mapping->host;
2353 	int ret, err;
2354 
2355 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2356 				     NULL, do_journal_get_write_access);
2357 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2358 				     NULL, write_end_fn);
2359 	if (ret == 0)
2360 		ret = err;
2361 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2362 	if (ret == 0)
2363 		ret = err;
2364 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2365 
2366 	return ret;
2367 }
2368 
2369 static int mpage_journal_page_buffers(handle_t *handle,
2370 				      struct mpage_da_data *mpd,
2371 				      struct folio *folio)
2372 {
2373 	struct inode *inode = mpd->inode;
2374 	loff_t size = i_size_read(inode);
2375 	size_t len = folio_size(folio);
2376 
2377 	folio_clear_checked(folio);
2378 	mpd->wbc->nr_to_write--;
2379 
2380 	if (folio_pos(folio) + len > size &&
2381 	    !ext4_verity_in_progress(inode))
2382 		len = size & (len - 1);
2383 
2384 	return ext4_journal_folio_buffers(handle, folio, len);
2385 }
2386 
2387 /*
2388  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2389  * 				 needing mapping, submit mapped pages
2390  *
2391  * @mpd - where to look for pages
2392  *
2393  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2394  * IO immediately. If we cannot map blocks, we submit just already mapped
2395  * buffers in the page for IO and keep page dirty. When we can map blocks and
2396  * we find a page which isn't mapped we start accumulating extent of buffers
2397  * underlying these pages that needs mapping (formed by either delayed or
2398  * unwritten buffers). We also lock the pages containing these buffers. The
2399  * extent found is returned in @mpd structure (starting at mpd->lblk with
2400  * length mpd->len blocks).
2401  *
2402  * Note that this function can attach bios to one io_end structure which are
2403  * neither logically nor physically contiguous. Although it may seem as an
2404  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2405  * case as we need to track IO to all buffers underlying a page in one io_end.
2406  */
2407 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2408 {
2409 	struct address_space *mapping = mpd->inode->i_mapping;
2410 	struct folio_batch fbatch;
2411 	unsigned int nr_folios;
2412 	pgoff_t index = mpd->first_page;
2413 	pgoff_t end = mpd->last_page;
2414 	xa_mark_t tag;
2415 	int i, err = 0;
2416 	int blkbits = mpd->inode->i_blkbits;
2417 	ext4_lblk_t lblk;
2418 	struct buffer_head *head;
2419 	handle_t *handle = NULL;
2420 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2421 
2422 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2423 		tag = PAGECACHE_TAG_TOWRITE;
2424 	else
2425 		tag = PAGECACHE_TAG_DIRTY;
2426 
2427 	mpd->map.m_len = 0;
2428 	mpd->next_page = index;
2429 	if (ext4_should_journal_data(mpd->inode)) {
2430 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2431 					    bpp);
2432 		if (IS_ERR(handle))
2433 			return PTR_ERR(handle);
2434 	}
2435 	folio_batch_init(&fbatch);
2436 	while (index <= end) {
2437 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2438 				tag, &fbatch);
2439 		if (nr_folios == 0)
2440 			break;
2441 
2442 		for (i = 0; i < nr_folios; i++) {
2443 			struct folio *folio = fbatch.folios[i];
2444 
2445 			/*
2446 			 * Accumulated enough dirty pages? This doesn't apply
2447 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2448 			 * keep going because someone may be concurrently
2449 			 * dirtying pages, and we might have synced a lot of
2450 			 * newly appeared dirty pages, but have not synced all
2451 			 * of the old dirty pages.
2452 			 */
2453 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2454 			    mpd->wbc->nr_to_write <=
2455 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2456 				goto out;
2457 
2458 			/* If we can't merge this page, we are done. */
2459 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2460 				goto out;
2461 
2462 			if (handle) {
2463 				err = ext4_journal_ensure_credits(handle, bpp,
2464 								  0);
2465 				if (err < 0)
2466 					goto out;
2467 			}
2468 
2469 			folio_lock(folio);
2470 			/*
2471 			 * If the page is no longer dirty, or its mapping no
2472 			 * longer corresponds to inode we are writing (which
2473 			 * means it has been truncated or invalidated), or the
2474 			 * page is already under writeback and we are not doing
2475 			 * a data integrity writeback, skip the page
2476 			 */
2477 			if (!folio_test_dirty(folio) ||
2478 			    (folio_test_writeback(folio) &&
2479 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2480 			    unlikely(folio->mapping != mapping)) {
2481 				folio_unlock(folio);
2482 				continue;
2483 			}
2484 
2485 			folio_wait_writeback(folio);
2486 			BUG_ON(folio_test_writeback(folio));
2487 
2488 			/*
2489 			 * Should never happen but for buggy code in
2490 			 * other subsystems that call
2491 			 * set_page_dirty() without properly warning
2492 			 * the file system first.  See [1] for more
2493 			 * information.
2494 			 *
2495 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2496 			 */
2497 			if (!folio_buffers(folio)) {
2498 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2499 				folio_clear_dirty(folio);
2500 				folio_unlock(folio);
2501 				continue;
2502 			}
2503 
2504 			if (mpd->map.m_len == 0)
2505 				mpd->first_page = folio->index;
2506 			mpd->next_page = folio_next_index(folio);
2507 			/*
2508 			 * Writeout when we cannot modify metadata is simple.
2509 			 * Just submit the page. For data=journal mode we
2510 			 * first handle writeout of the page for checkpoint and
2511 			 * only after that handle delayed page dirtying. This
2512 			 * makes sure current data is checkpointed to the final
2513 			 * location before possibly journalling it again which
2514 			 * is desirable when the page is frequently dirtied
2515 			 * through a pin.
2516 			 */
2517 			if (!mpd->can_map) {
2518 				err = mpage_submit_folio(mpd, folio);
2519 				if (err < 0)
2520 					goto out;
2521 				/* Pending dirtying of journalled data? */
2522 				if (folio_test_checked(folio)) {
2523 					err = mpage_journal_page_buffers(handle,
2524 						mpd, folio);
2525 					if (err < 0)
2526 						goto out;
2527 					mpd->journalled_more_data = 1;
2528 				}
2529 				mpage_folio_done(mpd, folio);
2530 			} else {
2531 				/* Add all dirty buffers to mpd */
2532 				lblk = ((ext4_lblk_t)folio->index) <<
2533 					(PAGE_SHIFT - blkbits);
2534 				head = folio_buffers(folio);
2535 				err = mpage_process_page_bufs(mpd, head, head,
2536 						lblk);
2537 				if (err <= 0)
2538 					goto out;
2539 				err = 0;
2540 			}
2541 		}
2542 		folio_batch_release(&fbatch);
2543 		cond_resched();
2544 	}
2545 	mpd->scanned_until_end = 1;
2546 	if (handle)
2547 		ext4_journal_stop(handle);
2548 	return 0;
2549 out:
2550 	folio_batch_release(&fbatch);
2551 	if (handle)
2552 		ext4_journal_stop(handle);
2553 	return err;
2554 }
2555 
2556 static int ext4_do_writepages(struct mpage_da_data *mpd)
2557 {
2558 	struct writeback_control *wbc = mpd->wbc;
2559 	pgoff_t	writeback_index = 0;
2560 	long nr_to_write = wbc->nr_to_write;
2561 	int range_whole = 0;
2562 	int cycled = 1;
2563 	handle_t *handle = NULL;
2564 	struct inode *inode = mpd->inode;
2565 	struct address_space *mapping = inode->i_mapping;
2566 	int needed_blocks, rsv_blocks = 0, ret = 0;
2567 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2568 	struct blk_plug plug;
2569 	bool give_up_on_write = false;
2570 
2571 	trace_ext4_writepages(inode, wbc);
2572 
2573 	/*
2574 	 * No pages to write? This is mainly a kludge to avoid starting
2575 	 * a transaction for special inodes like journal inode on last iput()
2576 	 * because that could violate lock ordering on umount
2577 	 */
2578 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2579 		goto out_writepages;
2580 
2581 	/*
2582 	 * If the filesystem has aborted, it is read-only, so return
2583 	 * right away instead of dumping stack traces later on that
2584 	 * will obscure the real source of the problem.  We test
2585 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2586 	 * the latter could be true if the filesystem is mounted
2587 	 * read-only, and in that case, ext4_writepages should
2588 	 * *never* be called, so if that ever happens, we would want
2589 	 * the stack trace.
2590 	 */
2591 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2592 		ret = -EROFS;
2593 		goto out_writepages;
2594 	}
2595 
2596 	/*
2597 	 * If we have inline data and arrive here, it means that
2598 	 * we will soon create the block for the 1st page, so
2599 	 * we'd better clear the inline data here.
2600 	 */
2601 	if (ext4_has_inline_data(inode)) {
2602 		/* Just inode will be modified... */
2603 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2604 		if (IS_ERR(handle)) {
2605 			ret = PTR_ERR(handle);
2606 			goto out_writepages;
2607 		}
2608 		BUG_ON(ext4_test_inode_state(inode,
2609 				EXT4_STATE_MAY_INLINE_DATA));
2610 		ext4_destroy_inline_data(handle, inode);
2611 		ext4_journal_stop(handle);
2612 	}
2613 
2614 	/*
2615 	 * data=journal mode does not do delalloc so we just need to writeout /
2616 	 * journal already mapped buffers. On the other hand we need to commit
2617 	 * transaction to make data stable. We expect all the data to be
2618 	 * already in the journal (the only exception are DMA pinned pages
2619 	 * dirtied behind our back) so we commit transaction here and run the
2620 	 * writeback loop to checkpoint them. The checkpointing is not actually
2621 	 * necessary to make data persistent *but* quite a few places (extent
2622 	 * shifting operations, fsverity, ...) depend on being able to drop
2623 	 * pagecache pages after calling filemap_write_and_wait() and for that
2624 	 * checkpointing needs to happen.
2625 	 */
2626 	if (ext4_should_journal_data(inode)) {
2627 		mpd->can_map = 0;
2628 		if (wbc->sync_mode == WB_SYNC_ALL)
2629 			ext4_fc_commit(sbi->s_journal,
2630 				       EXT4_I(inode)->i_datasync_tid);
2631 	}
2632 	mpd->journalled_more_data = 0;
2633 
2634 	if (ext4_should_dioread_nolock(inode)) {
2635 		/*
2636 		 * We may need to convert up to one extent per block in
2637 		 * the page and we may dirty the inode.
2638 		 */
2639 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2640 						PAGE_SIZE >> inode->i_blkbits);
2641 	}
2642 
2643 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2644 		range_whole = 1;
2645 
2646 	if (wbc->range_cyclic) {
2647 		writeback_index = mapping->writeback_index;
2648 		if (writeback_index)
2649 			cycled = 0;
2650 		mpd->first_page = writeback_index;
2651 		mpd->last_page = -1;
2652 	} else {
2653 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2654 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2655 	}
2656 
2657 	ext4_io_submit_init(&mpd->io_submit, wbc);
2658 retry:
2659 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2660 		tag_pages_for_writeback(mapping, mpd->first_page,
2661 					mpd->last_page);
2662 	blk_start_plug(&plug);
2663 
2664 	/*
2665 	 * First writeback pages that don't need mapping - we can avoid
2666 	 * starting a transaction unnecessarily and also avoid being blocked
2667 	 * in the block layer on device congestion while having transaction
2668 	 * started.
2669 	 */
2670 	mpd->do_map = 0;
2671 	mpd->scanned_until_end = 0;
2672 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2673 	if (!mpd->io_submit.io_end) {
2674 		ret = -ENOMEM;
2675 		goto unplug;
2676 	}
2677 	ret = mpage_prepare_extent_to_map(mpd);
2678 	/* Unlock pages we didn't use */
2679 	mpage_release_unused_pages(mpd, false);
2680 	/* Submit prepared bio */
2681 	ext4_io_submit(&mpd->io_submit);
2682 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2683 	mpd->io_submit.io_end = NULL;
2684 	if (ret < 0)
2685 		goto unplug;
2686 
2687 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2688 		/* For each extent of pages we use new io_end */
2689 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2690 		if (!mpd->io_submit.io_end) {
2691 			ret = -ENOMEM;
2692 			break;
2693 		}
2694 
2695 		WARN_ON_ONCE(!mpd->can_map);
2696 		/*
2697 		 * We have two constraints: We find one extent to map and we
2698 		 * must always write out whole page (makes a difference when
2699 		 * blocksize < pagesize) so that we don't block on IO when we
2700 		 * try to write out the rest of the page. Journalled mode is
2701 		 * not supported by delalloc.
2702 		 */
2703 		BUG_ON(ext4_should_journal_data(inode));
2704 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2705 
2706 		/* start a new transaction */
2707 		handle = ext4_journal_start_with_reserve(inode,
2708 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2709 		if (IS_ERR(handle)) {
2710 			ret = PTR_ERR(handle);
2711 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2712 			       "%ld pages, ino %lu; err %d", __func__,
2713 				wbc->nr_to_write, inode->i_ino, ret);
2714 			/* Release allocated io_end */
2715 			ext4_put_io_end(mpd->io_submit.io_end);
2716 			mpd->io_submit.io_end = NULL;
2717 			break;
2718 		}
2719 		mpd->do_map = 1;
2720 
2721 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2722 		ret = mpage_prepare_extent_to_map(mpd);
2723 		if (!ret && mpd->map.m_len)
2724 			ret = mpage_map_and_submit_extent(handle, mpd,
2725 					&give_up_on_write);
2726 		/*
2727 		 * Caution: If the handle is synchronous,
2728 		 * ext4_journal_stop() can wait for transaction commit
2729 		 * to finish which may depend on writeback of pages to
2730 		 * complete or on page lock to be released.  In that
2731 		 * case, we have to wait until after we have
2732 		 * submitted all the IO, released page locks we hold,
2733 		 * and dropped io_end reference (for extent conversion
2734 		 * to be able to complete) before stopping the handle.
2735 		 */
2736 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2737 			ext4_journal_stop(handle);
2738 			handle = NULL;
2739 			mpd->do_map = 0;
2740 		}
2741 		/* Unlock pages we didn't use */
2742 		mpage_release_unused_pages(mpd, give_up_on_write);
2743 		/* Submit prepared bio */
2744 		ext4_io_submit(&mpd->io_submit);
2745 
2746 		/*
2747 		 * Drop our io_end reference we got from init. We have
2748 		 * to be careful and use deferred io_end finishing if
2749 		 * we are still holding the transaction as we can
2750 		 * release the last reference to io_end which may end
2751 		 * up doing unwritten extent conversion.
2752 		 */
2753 		if (handle) {
2754 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2755 			ext4_journal_stop(handle);
2756 		} else
2757 			ext4_put_io_end(mpd->io_submit.io_end);
2758 		mpd->io_submit.io_end = NULL;
2759 
2760 		if (ret == -ENOSPC && sbi->s_journal) {
2761 			/*
2762 			 * Commit the transaction which would
2763 			 * free blocks released in the transaction
2764 			 * and try again
2765 			 */
2766 			jbd2_journal_force_commit_nested(sbi->s_journal);
2767 			ret = 0;
2768 			continue;
2769 		}
2770 		/* Fatal error - ENOMEM, EIO... */
2771 		if (ret)
2772 			break;
2773 	}
2774 unplug:
2775 	blk_finish_plug(&plug);
2776 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2777 		cycled = 1;
2778 		mpd->last_page = writeback_index - 1;
2779 		mpd->first_page = 0;
2780 		goto retry;
2781 	}
2782 
2783 	/* Update index */
2784 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2785 		/*
2786 		 * Set the writeback_index so that range_cyclic
2787 		 * mode will write it back later
2788 		 */
2789 		mapping->writeback_index = mpd->first_page;
2790 
2791 out_writepages:
2792 	trace_ext4_writepages_result(inode, wbc, ret,
2793 				     nr_to_write - wbc->nr_to_write);
2794 	return ret;
2795 }
2796 
2797 static int ext4_writepages(struct address_space *mapping,
2798 			   struct writeback_control *wbc)
2799 {
2800 	struct super_block *sb = mapping->host->i_sb;
2801 	struct mpage_da_data mpd = {
2802 		.inode = mapping->host,
2803 		.wbc = wbc,
2804 		.can_map = 1,
2805 	};
2806 	int ret;
2807 	int alloc_ctx;
2808 
2809 	if (unlikely(ext4_forced_shutdown(sb)))
2810 		return -EIO;
2811 
2812 	alloc_ctx = ext4_writepages_down_read(sb);
2813 	ret = ext4_do_writepages(&mpd);
2814 	/*
2815 	 * For data=journal writeback we could have come across pages marked
2816 	 * for delayed dirtying (PageChecked) which were just added to the
2817 	 * running transaction. Try once more to get them to stable storage.
2818 	 */
2819 	if (!ret && mpd.journalled_more_data)
2820 		ret = ext4_do_writepages(&mpd);
2821 	ext4_writepages_up_read(sb, alloc_ctx);
2822 
2823 	return ret;
2824 }
2825 
2826 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2827 {
2828 	struct writeback_control wbc = {
2829 		.sync_mode = WB_SYNC_ALL,
2830 		.nr_to_write = LONG_MAX,
2831 		.range_start = jinode->i_dirty_start,
2832 		.range_end = jinode->i_dirty_end,
2833 	};
2834 	struct mpage_da_data mpd = {
2835 		.inode = jinode->i_vfs_inode,
2836 		.wbc = &wbc,
2837 		.can_map = 0,
2838 	};
2839 	return ext4_do_writepages(&mpd);
2840 }
2841 
2842 static int ext4_dax_writepages(struct address_space *mapping,
2843 			       struct writeback_control *wbc)
2844 {
2845 	int ret;
2846 	long nr_to_write = wbc->nr_to_write;
2847 	struct inode *inode = mapping->host;
2848 	int alloc_ctx;
2849 
2850 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2851 		return -EIO;
2852 
2853 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2854 	trace_ext4_writepages(inode, wbc);
2855 
2856 	ret = dax_writeback_mapping_range(mapping,
2857 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2858 	trace_ext4_writepages_result(inode, wbc, ret,
2859 				     nr_to_write - wbc->nr_to_write);
2860 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2861 	return ret;
2862 }
2863 
2864 static int ext4_nonda_switch(struct super_block *sb)
2865 {
2866 	s64 free_clusters, dirty_clusters;
2867 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2868 
2869 	/*
2870 	 * switch to non delalloc mode if we are running low
2871 	 * on free block. The free block accounting via percpu
2872 	 * counters can get slightly wrong with percpu_counter_batch getting
2873 	 * accumulated on each CPU without updating global counters
2874 	 * Delalloc need an accurate free block accounting. So switch
2875 	 * to non delalloc when we are near to error range.
2876 	 */
2877 	free_clusters =
2878 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2879 	dirty_clusters =
2880 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2881 	/*
2882 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2883 	 */
2884 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2885 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2886 
2887 	if (2 * free_clusters < 3 * dirty_clusters ||
2888 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2889 		/*
2890 		 * free block count is less than 150% of dirty blocks
2891 		 * or free blocks is less than watermark
2892 		 */
2893 		return 1;
2894 	}
2895 	return 0;
2896 }
2897 
2898 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899 			       loff_t pos, unsigned len,
2900 			       struct folio **foliop, void **fsdata)
2901 {
2902 	int ret, retries = 0;
2903 	struct folio *folio;
2904 	pgoff_t index;
2905 	struct inode *inode = mapping->host;
2906 
2907 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2908 		return -EIO;
2909 
2910 	index = pos >> PAGE_SHIFT;
2911 
2912 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2913 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2914 		return ext4_write_begin(file, mapping, pos,
2915 					len, foliop, fsdata);
2916 	}
2917 	*fsdata = (void *)0;
2918 	trace_ext4_da_write_begin(inode, pos, len);
2919 
2920 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2921 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2922 						      foliop, fsdata);
2923 		if (ret < 0)
2924 			return ret;
2925 		if (ret == 1)
2926 			return 0;
2927 	}
2928 
2929 retry:
2930 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2931 			mapping_gfp_mask(mapping));
2932 	if (IS_ERR(folio))
2933 		return PTR_ERR(folio);
2934 
2935 	ret = ext4_block_write_begin(NULL, folio, pos, len,
2936 				     ext4_da_get_block_prep);
2937 	if (ret < 0) {
2938 		folio_unlock(folio);
2939 		folio_put(folio);
2940 		/*
2941 		 * block_write_begin may have instantiated a few blocks
2942 		 * outside i_size.  Trim these off again. Don't need
2943 		 * i_size_read because we hold inode lock.
2944 		 */
2945 		if (pos + len > inode->i_size)
2946 			ext4_truncate_failed_write(inode);
2947 
2948 		if (ret == -ENOSPC &&
2949 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2950 			goto retry;
2951 		return ret;
2952 	}
2953 
2954 	*foliop = folio;
2955 	return ret;
2956 }
2957 
2958 /*
2959  * Check if we should update i_disksize
2960  * when write to the end of file but not require block allocation
2961  */
2962 static int ext4_da_should_update_i_disksize(struct folio *folio,
2963 					    unsigned long offset)
2964 {
2965 	struct buffer_head *bh;
2966 	struct inode *inode = folio->mapping->host;
2967 	unsigned int idx;
2968 	int i;
2969 
2970 	bh = folio_buffers(folio);
2971 	idx = offset >> inode->i_blkbits;
2972 
2973 	for (i = 0; i < idx; i++)
2974 		bh = bh->b_this_page;
2975 
2976 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2977 		return 0;
2978 	return 1;
2979 }
2980 
2981 static int ext4_da_do_write_end(struct address_space *mapping,
2982 			loff_t pos, unsigned len, unsigned copied,
2983 			struct folio *folio)
2984 {
2985 	struct inode *inode = mapping->host;
2986 	loff_t old_size = inode->i_size;
2987 	bool disksize_changed = false;
2988 	loff_t new_i_size;
2989 
2990 	if (unlikely(!folio_buffers(folio))) {
2991 		folio_unlock(folio);
2992 		folio_put(folio);
2993 		return -EIO;
2994 	}
2995 	/*
2996 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2997 	 * flag, which all that's needed to trigger page writeback.
2998 	 */
2999 	copied = block_write_end(NULL, mapping, pos, len, copied,
3000 			folio, NULL);
3001 	new_i_size = pos + copied;
3002 
3003 	/*
3004 	 * It's important to update i_size while still holding folio lock,
3005 	 * because folio writeout could otherwise come in and zero beyond
3006 	 * i_size.
3007 	 *
3008 	 * Since we are holding inode lock, we are sure i_disksize <=
3009 	 * i_size. We also know that if i_disksize < i_size, there are
3010 	 * delalloc writes pending in the range up to i_size. If the end of
3011 	 * the current write is <= i_size, there's no need to touch
3012 	 * i_disksize since writeback will push i_disksize up to i_size
3013 	 * eventually. If the end of the current write is > i_size and
3014 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3015 	 * checked, we need to update i_disksize here as certain
3016 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3017 	 */
3018 	if (new_i_size > inode->i_size) {
3019 		unsigned long end;
3020 
3021 		i_size_write(inode, new_i_size);
3022 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3023 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3024 			ext4_update_i_disksize(inode, new_i_size);
3025 			disksize_changed = true;
3026 		}
3027 	}
3028 
3029 	folio_unlock(folio);
3030 	folio_put(folio);
3031 
3032 	if (old_size < pos)
3033 		pagecache_isize_extended(inode, old_size, pos);
3034 
3035 	if (disksize_changed) {
3036 		handle_t *handle;
3037 
3038 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3039 		if (IS_ERR(handle))
3040 			return PTR_ERR(handle);
3041 		ext4_mark_inode_dirty(handle, inode);
3042 		ext4_journal_stop(handle);
3043 	}
3044 
3045 	return copied;
3046 }
3047 
3048 static int ext4_da_write_end(struct file *file,
3049 			     struct address_space *mapping,
3050 			     loff_t pos, unsigned len, unsigned copied,
3051 			     struct folio *folio, void *fsdata)
3052 {
3053 	struct inode *inode = mapping->host;
3054 	int write_mode = (int)(unsigned long)fsdata;
3055 
3056 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3057 		return ext4_write_end(file, mapping, pos,
3058 				      len, copied, folio, fsdata);
3059 
3060 	trace_ext4_da_write_end(inode, pos, len, copied);
3061 
3062 	if (write_mode != CONVERT_INLINE_DATA &&
3063 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3064 	    ext4_has_inline_data(inode))
3065 		return ext4_write_inline_data_end(inode, pos, len, copied,
3066 						  folio);
3067 
3068 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3069 		copied = 0;
3070 
3071 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3072 }
3073 
3074 /*
3075  * Force all delayed allocation blocks to be allocated for a given inode.
3076  */
3077 int ext4_alloc_da_blocks(struct inode *inode)
3078 {
3079 	trace_ext4_alloc_da_blocks(inode);
3080 
3081 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3082 		return 0;
3083 
3084 	/*
3085 	 * We do something simple for now.  The filemap_flush() will
3086 	 * also start triggering a write of the data blocks, which is
3087 	 * not strictly speaking necessary (and for users of
3088 	 * laptop_mode, not even desirable).  However, to do otherwise
3089 	 * would require replicating code paths in:
3090 	 *
3091 	 * ext4_writepages() ->
3092 	 *    write_cache_pages() ---> (via passed in callback function)
3093 	 *        __mpage_da_writepage() -->
3094 	 *           mpage_add_bh_to_extent()
3095 	 *           mpage_da_map_blocks()
3096 	 *
3097 	 * The problem is that write_cache_pages(), located in
3098 	 * mm/page-writeback.c, marks pages clean in preparation for
3099 	 * doing I/O, which is not desirable if we're not planning on
3100 	 * doing I/O at all.
3101 	 *
3102 	 * We could call write_cache_pages(), and then redirty all of
3103 	 * the pages by calling redirty_page_for_writepage() but that
3104 	 * would be ugly in the extreme.  So instead we would need to
3105 	 * replicate parts of the code in the above functions,
3106 	 * simplifying them because we wouldn't actually intend to
3107 	 * write out the pages, but rather only collect contiguous
3108 	 * logical block extents, call the multi-block allocator, and
3109 	 * then update the buffer heads with the block allocations.
3110 	 *
3111 	 * For now, though, we'll cheat by calling filemap_flush(),
3112 	 * which will map the blocks, and start the I/O, but not
3113 	 * actually wait for the I/O to complete.
3114 	 */
3115 	return filemap_flush(inode->i_mapping);
3116 }
3117 
3118 /*
3119  * bmap() is special.  It gets used by applications such as lilo and by
3120  * the swapper to find the on-disk block of a specific piece of data.
3121  *
3122  * Naturally, this is dangerous if the block concerned is still in the
3123  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3124  * filesystem and enables swap, then they may get a nasty shock when the
3125  * data getting swapped to that swapfile suddenly gets overwritten by
3126  * the original zero's written out previously to the journal and
3127  * awaiting writeback in the kernel's buffer cache.
3128  *
3129  * So, if we see any bmap calls here on a modified, data-journaled file,
3130  * take extra steps to flush any blocks which might be in the cache.
3131  */
3132 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3133 {
3134 	struct inode *inode = mapping->host;
3135 	sector_t ret = 0;
3136 
3137 	inode_lock_shared(inode);
3138 	/*
3139 	 * We can get here for an inline file via the FIBMAP ioctl
3140 	 */
3141 	if (ext4_has_inline_data(inode))
3142 		goto out;
3143 
3144 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3145 	    (test_opt(inode->i_sb, DELALLOC) ||
3146 	     ext4_should_journal_data(inode))) {
3147 		/*
3148 		 * With delalloc or journalled data we want to sync the file so
3149 		 * that we can make sure we allocate blocks for file and data
3150 		 * is in place for the user to see it
3151 		 */
3152 		filemap_write_and_wait(mapping);
3153 	}
3154 
3155 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3156 
3157 out:
3158 	inode_unlock_shared(inode);
3159 	return ret;
3160 }
3161 
3162 static int ext4_read_folio(struct file *file, struct folio *folio)
3163 {
3164 	int ret = -EAGAIN;
3165 	struct inode *inode = folio->mapping->host;
3166 
3167 	trace_ext4_read_folio(inode, folio);
3168 
3169 	if (ext4_has_inline_data(inode))
3170 		ret = ext4_readpage_inline(inode, folio);
3171 
3172 	if (ret == -EAGAIN)
3173 		return ext4_mpage_readpages(inode, NULL, folio);
3174 
3175 	return ret;
3176 }
3177 
3178 static void ext4_readahead(struct readahead_control *rac)
3179 {
3180 	struct inode *inode = rac->mapping->host;
3181 
3182 	/* If the file has inline data, no need to do readahead. */
3183 	if (ext4_has_inline_data(inode))
3184 		return;
3185 
3186 	ext4_mpage_readpages(inode, rac, NULL);
3187 }
3188 
3189 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3190 				size_t length)
3191 {
3192 	trace_ext4_invalidate_folio(folio, offset, length);
3193 
3194 	/* No journalling happens on data buffers when this function is used */
3195 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3196 
3197 	block_invalidate_folio(folio, offset, length);
3198 }
3199 
3200 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3201 					    size_t offset, size_t length)
3202 {
3203 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3204 
3205 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3206 
3207 	/*
3208 	 * If it's a full truncate we just forget about the pending dirtying
3209 	 */
3210 	if (offset == 0 && length == folio_size(folio))
3211 		folio_clear_checked(folio);
3212 
3213 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3214 }
3215 
3216 /* Wrapper for aops... */
3217 static void ext4_journalled_invalidate_folio(struct folio *folio,
3218 					   size_t offset,
3219 					   size_t length)
3220 {
3221 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3222 }
3223 
3224 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3225 {
3226 	struct inode *inode = folio->mapping->host;
3227 	journal_t *journal = EXT4_JOURNAL(inode);
3228 
3229 	trace_ext4_release_folio(inode, folio);
3230 
3231 	/* Page has dirty journalled data -> cannot release */
3232 	if (folio_test_checked(folio))
3233 		return false;
3234 	if (journal)
3235 		return jbd2_journal_try_to_free_buffers(journal, folio);
3236 	else
3237 		return try_to_free_buffers(folio);
3238 }
3239 
3240 static bool ext4_inode_datasync_dirty(struct inode *inode)
3241 {
3242 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3243 
3244 	if (journal) {
3245 		if (jbd2_transaction_committed(journal,
3246 			EXT4_I(inode)->i_datasync_tid))
3247 			return false;
3248 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3249 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3250 		return true;
3251 	}
3252 
3253 	/* Any metadata buffers to write? */
3254 	if (!list_empty(&inode->i_mapping->i_private_list))
3255 		return true;
3256 	return inode->i_state & I_DIRTY_DATASYNC;
3257 }
3258 
3259 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3260 			   struct ext4_map_blocks *map, loff_t offset,
3261 			   loff_t length, unsigned int flags)
3262 {
3263 	u8 blkbits = inode->i_blkbits;
3264 
3265 	/*
3266 	 * Writes that span EOF might trigger an I/O size update on completion,
3267 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3268 	 * there is no other metadata changes being made or are pending.
3269 	 */
3270 	iomap->flags = 0;
3271 	if (ext4_inode_datasync_dirty(inode) ||
3272 	    offset + length > i_size_read(inode))
3273 		iomap->flags |= IOMAP_F_DIRTY;
3274 
3275 	if (map->m_flags & EXT4_MAP_NEW)
3276 		iomap->flags |= IOMAP_F_NEW;
3277 
3278 	if (flags & IOMAP_DAX)
3279 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3280 	else
3281 		iomap->bdev = inode->i_sb->s_bdev;
3282 	iomap->offset = (u64) map->m_lblk << blkbits;
3283 	iomap->length = (u64) map->m_len << blkbits;
3284 
3285 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3286 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3287 		iomap->flags |= IOMAP_F_MERGED;
3288 
3289 	/*
3290 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3291 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3292 	 * set. In order for any allocated unwritten extents to be converted
3293 	 * into written extents correctly within the ->end_io() handler, we
3294 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3295 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3296 	 * been set first.
3297 	 */
3298 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3299 		iomap->type = IOMAP_UNWRITTEN;
3300 		iomap->addr = (u64) map->m_pblk << blkbits;
3301 		if (flags & IOMAP_DAX)
3302 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3303 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3304 		iomap->type = IOMAP_MAPPED;
3305 		iomap->addr = (u64) map->m_pblk << blkbits;
3306 		if (flags & IOMAP_DAX)
3307 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3308 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3309 		iomap->type = IOMAP_DELALLOC;
3310 		iomap->addr = IOMAP_NULL_ADDR;
3311 	} else {
3312 		iomap->type = IOMAP_HOLE;
3313 		iomap->addr = IOMAP_NULL_ADDR;
3314 	}
3315 }
3316 
3317 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3318 			    unsigned int flags)
3319 {
3320 	handle_t *handle;
3321 	u8 blkbits = inode->i_blkbits;
3322 	int ret, dio_credits, m_flags = 0, retries = 0;
3323 
3324 	/*
3325 	 * Trim the mapping request to the maximum value that we can map at
3326 	 * once for direct I/O.
3327 	 */
3328 	if (map->m_len > DIO_MAX_BLOCKS)
3329 		map->m_len = DIO_MAX_BLOCKS;
3330 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3331 
3332 retry:
3333 	/*
3334 	 * Either we allocate blocks and then don't get an unwritten extent, so
3335 	 * in that case we have reserved enough credits. Or, the blocks are
3336 	 * already allocated and unwritten. In that case, the extent conversion
3337 	 * fits into the credits as well.
3338 	 */
3339 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3340 	if (IS_ERR(handle))
3341 		return PTR_ERR(handle);
3342 
3343 	/*
3344 	 * DAX and direct I/O are the only two operations that are currently
3345 	 * supported with IOMAP_WRITE.
3346 	 */
3347 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3348 	if (flags & IOMAP_DAX)
3349 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3350 	/*
3351 	 * We use i_size instead of i_disksize here because delalloc writeback
3352 	 * can complete at any point during the I/O and subsequently push the
3353 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3354 	 * happening and thus expose allocated blocks to direct I/O reads.
3355 	 */
3356 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3357 		m_flags = EXT4_GET_BLOCKS_CREATE;
3358 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3359 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3360 
3361 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3362 
3363 	/*
3364 	 * We cannot fill holes in indirect tree based inodes as that could
3365 	 * expose stale data in the case of a crash. Use the magic error code
3366 	 * to fallback to buffered I/O.
3367 	 */
3368 	if (!m_flags && !ret)
3369 		ret = -ENOTBLK;
3370 
3371 	ext4_journal_stop(handle);
3372 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3373 		goto retry;
3374 
3375 	return ret;
3376 }
3377 
3378 
3379 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3380 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3381 {
3382 	int ret;
3383 	struct ext4_map_blocks map;
3384 	u8 blkbits = inode->i_blkbits;
3385 
3386 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3387 		return -EINVAL;
3388 
3389 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3390 		return -ERANGE;
3391 
3392 	/*
3393 	 * Calculate the first and last logical blocks respectively.
3394 	 */
3395 	map.m_lblk = offset >> blkbits;
3396 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3397 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3398 
3399 	if (flags & IOMAP_WRITE) {
3400 		/*
3401 		 * We check here if the blocks are already allocated, then we
3402 		 * don't need to start a journal txn and we can directly return
3403 		 * the mapping information. This could boost performance
3404 		 * especially in multi-threaded overwrite requests.
3405 		 */
3406 		if (offset + length <= i_size_read(inode)) {
3407 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3408 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3409 				goto out;
3410 		}
3411 		ret = ext4_iomap_alloc(inode, &map, flags);
3412 	} else {
3413 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3414 	}
3415 
3416 	if (ret < 0)
3417 		return ret;
3418 out:
3419 	/*
3420 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3421 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3422 	 * limiting the length of the mapping returned.
3423 	 */
3424 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3425 
3426 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3427 
3428 	return 0;
3429 }
3430 
3431 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3432 		loff_t length, unsigned flags, struct iomap *iomap,
3433 		struct iomap *srcmap)
3434 {
3435 	int ret;
3436 
3437 	/*
3438 	 * Even for writes we don't need to allocate blocks, so just pretend
3439 	 * we are reading to save overhead of starting a transaction.
3440 	 */
3441 	flags &= ~IOMAP_WRITE;
3442 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3443 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3444 	return ret;
3445 }
3446 
3447 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3448 			  ssize_t written, unsigned flags, struct iomap *iomap)
3449 {
3450 	/*
3451 	 * Check to see whether an error occurred while writing out the data to
3452 	 * the allocated blocks. If so, return the magic error code so that we
3453 	 * fallback to buffered I/O and attempt to complete the remainder of
3454 	 * the I/O. Any blocks that may have been allocated in preparation for
3455 	 * the direct I/O will be reused during buffered I/O.
3456 	 */
3457 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3458 		return -ENOTBLK;
3459 
3460 	return 0;
3461 }
3462 
3463 const struct iomap_ops ext4_iomap_ops = {
3464 	.iomap_begin		= ext4_iomap_begin,
3465 	.iomap_end		= ext4_iomap_end,
3466 };
3467 
3468 const struct iomap_ops ext4_iomap_overwrite_ops = {
3469 	.iomap_begin		= ext4_iomap_overwrite_begin,
3470 	.iomap_end		= ext4_iomap_end,
3471 };
3472 
3473 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3474 				   loff_t length, unsigned int flags,
3475 				   struct iomap *iomap, struct iomap *srcmap)
3476 {
3477 	int ret;
3478 	struct ext4_map_blocks map;
3479 	u8 blkbits = inode->i_blkbits;
3480 
3481 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3482 		return -EINVAL;
3483 
3484 	if (ext4_has_inline_data(inode)) {
3485 		ret = ext4_inline_data_iomap(inode, iomap);
3486 		if (ret != -EAGAIN) {
3487 			if (ret == 0 && offset >= iomap->length)
3488 				ret = -ENOENT;
3489 			return ret;
3490 		}
3491 	}
3492 
3493 	/*
3494 	 * Calculate the first and last logical block respectively.
3495 	 */
3496 	map.m_lblk = offset >> blkbits;
3497 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3498 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3499 
3500 	/*
3501 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3502 	 * So handle it here itself instead of querying ext4_map_blocks().
3503 	 * Since ext4_map_blocks() will warn about it and will return
3504 	 * -EIO error.
3505 	 */
3506 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3507 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3508 
3509 		if (offset >= sbi->s_bitmap_maxbytes) {
3510 			map.m_flags = 0;
3511 			goto set_iomap;
3512 		}
3513 	}
3514 
3515 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3516 	if (ret < 0)
3517 		return ret;
3518 set_iomap:
3519 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3520 
3521 	return 0;
3522 }
3523 
3524 const struct iomap_ops ext4_iomap_report_ops = {
3525 	.iomap_begin = ext4_iomap_begin_report,
3526 };
3527 
3528 /*
3529  * For data=journal mode, folio should be marked dirty only when it was
3530  * writeably mapped. When that happens, it was already attached to the
3531  * transaction and marked as jbddirty (we take care of this in
3532  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3533  * so we should have nothing to do here, except for the case when someone
3534  * had the page pinned and dirtied the page through this pin (e.g. by doing
3535  * direct IO to it). In that case we'd need to attach buffers here to the
3536  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3537  * folio and leave attached buffers clean, because the buffers' dirty state is
3538  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3539  * the journalling code will explode.  So what we do is to mark the folio
3540  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3541  * to the transaction appropriately.
3542  */
3543 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3544 		struct folio *folio)
3545 {
3546 	WARN_ON_ONCE(!folio_buffers(folio));
3547 	if (folio_maybe_dma_pinned(folio))
3548 		folio_set_checked(folio);
3549 	return filemap_dirty_folio(mapping, folio);
3550 }
3551 
3552 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3553 {
3554 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3555 	WARN_ON_ONCE(!folio_buffers(folio));
3556 	return block_dirty_folio(mapping, folio);
3557 }
3558 
3559 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3560 				    struct file *file, sector_t *span)
3561 {
3562 	return iomap_swapfile_activate(sis, file, span,
3563 				       &ext4_iomap_report_ops);
3564 }
3565 
3566 static const struct address_space_operations ext4_aops = {
3567 	.read_folio		= ext4_read_folio,
3568 	.readahead		= ext4_readahead,
3569 	.writepages		= ext4_writepages,
3570 	.write_begin		= ext4_write_begin,
3571 	.write_end		= ext4_write_end,
3572 	.dirty_folio		= ext4_dirty_folio,
3573 	.bmap			= ext4_bmap,
3574 	.invalidate_folio	= ext4_invalidate_folio,
3575 	.release_folio		= ext4_release_folio,
3576 	.migrate_folio		= buffer_migrate_folio,
3577 	.is_partially_uptodate  = block_is_partially_uptodate,
3578 	.error_remove_folio	= generic_error_remove_folio,
3579 	.swap_activate		= ext4_iomap_swap_activate,
3580 };
3581 
3582 static const struct address_space_operations ext4_journalled_aops = {
3583 	.read_folio		= ext4_read_folio,
3584 	.readahead		= ext4_readahead,
3585 	.writepages		= ext4_writepages,
3586 	.write_begin		= ext4_write_begin,
3587 	.write_end		= ext4_journalled_write_end,
3588 	.dirty_folio		= ext4_journalled_dirty_folio,
3589 	.bmap			= ext4_bmap,
3590 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3591 	.release_folio		= ext4_release_folio,
3592 	.migrate_folio		= buffer_migrate_folio_norefs,
3593 	.is_partially_uptodate  = block_is_partially_uptodate,
3594 	.error_remove_folio	= generic_error_remove_folio,
3595 	.swap_activate		= ext4_iomap_swap_activate,
3596 };
3597 
3598 static const struct address_space_operations ext4_da_aops = {
3599 	.read_folio		= ext4_read_folio,
3600 	.readahead		= ext4_readahead,
3601 	.writepages		= ext4_writepages,
3602 	.write_begin		= ext4_da_write_begin,
3603 	.write_end		= ext4_da_write_end,
3604 	.dirty_folio		= ext4_dirty_folio,
3605 	.bmap			= ext4_bmap,
3606 	.invalidate_folio	= ext4_invalidate_folio,
3607 	.release_folio		= ext4_release_folio,
3608 	.migrate_folio		= buffer_migrate_folio,
3609 	.is_partially_uptodate  = block_is_partially_uptodate,
3610 	.error_remove_folio	= generic_error_remove_folio,
3611 	.swap_activate		= ext4_iomap_swap_activate,
3612 };
3613 
3614 static const struct address_space_operations ext4_dax_aops = {
3615 	.writepages		= ext4_dax_writepages,
3616 	.dirty_folio		= noop_dirty_folio,
3617 	.bmap			= ext4_bmap,
3618 	.swap_activate		= ext4_iomap_swap_activate,
3619 };
3620 
3621 void ext4_set_aops(struct inode *inode)
3622 {
3623 	switch (ext4_inode_journal_mode(inode)) {
3624 	case EXT4_INODE_ORDERED_DATA_MODE:
3625 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3626 		break;
3627 	case EXT4_INODE_JOURNAL_DATA_MODE:
3628 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3629 		return;
3630 	default:
3631 		BUG();
3632 	}
3633 	if (IS_DAX(inode))
3634 		inode->i_mapping->a_ops = &ext4_dax_aops;
3635 	else if (test_opt(inode->i_sb, DELALLOC))
3636 		inode->i_mapping->a_ops = &ext4_da_aops;
3637 	else
3638 		inode->i_mapping->a_ops = &ext4_aops;
3639 }
3640 
3641 /*
3642  * Here we can't skip an unwritten buffer even though it usually reads zero
3643  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3644  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3645  * racing writeback can come later and flush the stale pagecache to disk.
3646  */
3647 static int __ext4_block_zero_page_range(handle_t *handle,
3648 		struct address_space *mapping, loff_t from, loff_t length)
3649 {
3650 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3651 	unsigned offset = from & (PAGE_SIZE-1);
3652 	unsigned blocksize, pos;
3653 	ext4_lblk_t iblock;
3654 	struct inode *inode = mapping->host;
3655 	struct buffer_head *bh;
3656 	struct folio *folio;
3657 	int err = 0;
3658 
3659 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3660 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3661 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3662 	if (IS_ERR(folio))
3663 		return PTR_ERR(folio);
3664 
3665 	blocksize = inode->i_sb->s_blocksize;
3666 
3667 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3668 
3669 	bh = folio_buffers(folio);
3670 	if (!bh)
3671 		bh = create_empty_buffers(folio, blocksize, 0);
3672 
3673 	/* Find the buffer that contains "offset" */
3674 	pos = blocksize;
3675 	while (offset >= pos) {
3676 		bh = bh->b_this_page;
3677 		iblock++;
3678 		pos += blocksize;
3679 	}
3680 	if (buffer_freed(bh)) {
3681 		BUFFER_TRACE(bh, "freed: skip");
3682 		goto unlock;
3683 	}
3684 	if (!buffer_mapped(bh)) {
3685 		BUFFER_TRACE(bh, "unmapped");
3686 		ext4_get_block(inode, iblock, bh, 0);
3687 		/* unmapped? It's a hole - nothing to do */
3688 		if (!buffer_mapped(bh)) {
3689 			BUFFER_TRACE(bh, "still unmapped");
3690 			goto unlock;
3691 		}
3692 	}
3693 
3694 	/* Ok, it's mapped. Make sure it's up-to-date */
3695 	if (folio_test_uptodate(folio))
3696 		set_buffer_uptodate(bh);
3697 
3698 	if (!buffer_uptodate(bh)) {
3699 		err = ext4_read_bh_lock(bh, 0, true);
3700 		if (err)
3701 			goto unlock;
3702 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3703 			/* We expect the key to be set. */
3704 			BUG_ON(!fscrypt_has_encryption_key(inode));
3705 			err = fscrypt_decrypt_pagecache_blocks(folio,
3706 							       blocksize,
3707 							       bh_offset(bh));
3708 			if (err) {
3709 				clear_buffer_uptodate(bh);
3710 				goto unlock;
3711 			}
3712 		}
3713 	}
3714 	if (ext4_should_journal_data(inode)) {
3715 		BUFFER_TRACE(bh, "get write access");
3716 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3717 						    EXT4_JTR_NONE);
3718 		if (err)
3719 			goto unlock;
3720 	}
3721 	folio_zero_range(folio, offset, length);
3722 	BUFFER_TRACE(bh, "zeroed end of block");
3723 
3724 	if (ext4_should_journal_data(inode)) {
3725 		err = ext4_dirty_journalled_data(handle, bh);
3726 	} else {
3727 		err = 0;
3728 		mark_buffer_dirty(bh);
3729 		if (ext4_should_order_data(inode))
3730 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3731 					length);
3732 	}
3733 
3734 unlock:
3735 	folio_unlock(folio);
3736 	folio_put(folio);
3737 	return err;
3738 }
3739 
3740 /*
3741  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3742  * starting from file offset 'from'.  The range to be zero'd must
3743  * be contained with in one block.  If the specified range exceeds
3744  * the end of the block it will be shortened to end of the block
3745  * that corresponds to 'from'
3746  */
3747 static int ext4_block_zero_page_range(handle_t *handle,
3748 		struct address_space *mapping, loff_t from, loff_t length)
3749 {
3750 	struct inode *inode = mapping->host;
3751 	unsigned offset = from & (PAGE_SIZE-1);
3752 	unsigned blocksize = inode->i_sb->s_blocksize;
3753 	unsigned max = blocksize - (offset & (blocksize - 1));
3754 
3755 	/*
3756 	 * correct length if it does not fall between
3757 	 * 'from' and the end of the block
3758 	 */
3759 	if (length > max || length < 0)
3760 		length = max;
3761 
3762 	if (IS_DAX(inode)) {
3763 		return dax_zero_range(inode, from, length, NULL,
3764 				      &ext4_iomap_ops);
3765 	}
3766 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3767 }
3768 
3769 /*
3770  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3771  * up to the end of the block which corresponds to `from'.
3772  * This required during truncate. We need to physically zero the tail end
3773  * of that block so it doesn't yield old data if the file is later grown.
3774  */
3775 static int ext4_block_truncate_page(handle_t *handle,
3776 		struct address_space *mapping, loff_t from)
3777 {
3778 	unsigned offset = from & (PAGE_SIZE-1);
3779 	unsigned length;
3780 	unsigned blocksize;
3781 	struct inode *inode = mapping->host;
3782 
3783 	/* If we are processing an encrypted inode during orphan list handling */
3784 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3785 		return 0;
3786 
3787 	blocksize = inode->i_sb->s_blocksize;
3788 	length = blocksize - (offset & (blocksize - 1));
3789 
3790 	return ext4_block_zero_page_range(handle, mapping, from, length);
3791 }
3792 
3793 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3794 			     loff_t lstart, loff_t length)
3795 {
3796 	struct super_block *sb = inode->i_sb;
3797 	struct address_space *mapping = inode->i_mapping;
3798 	unsigned partial_start, partial_end;
3799 	ext4_fsblk_t start, end;
3800 	loff_t byte_end = (lstart + length - 1);
3801 	int err = 0;
3802 
3803 	partial_start = lstart & (sb->s_blocksize - 1);
3804 	partial_end = byte_end & (sb->s_blocksize - 1);
3805 
3806 	start = lstart >> sb->s_blocksize_bits;
3807 	end = byte_end >> sb->s_blocksize_bits;
3808 
3809 	/* Handle partial zero within the single block */
3810 	if (start == end &&
3811 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3812 		err = ext4_block_zero_page_range(handle, mapping,
3813 						 lstart, length);
3814 		return err;
3815 	}
3816 	/* Handle partial zero out on the start of the range */
3817 	if (partial_start) {
3818 		err = ext4_block_zero_page_range(handle, mapping,
3819 						 lstart, sb->s_blocksize);
3820 		if (err)
3821 			return err;
3822 	}
3823 	/* Handle partial zero out on the end of the range */
3824 	if (partial_end != sb->s_blocksize - 1)
3825 		err = ext4_block_zero_page_range(handle, mapping,
3826 						 byte_end - partial_end,
3827 						 partial_end + 1);
3828 	return err;
3829 }
3830 
3831 int ext4_can_truncate(struct inode *inode)
3832 {
3833 	if (S_ISREG(inode->i_mode))
3834 		return 1;
3835 	if (S_ISDIR(inode->i_mode))
3836 		return 1;
3837 	if (S_ISLNK(inode->i_mode))
3838 		return !ext4_inode_is_fast_symlink(inode);
3839 	return 0;
3840 }
3841 
3842 /*
3843  * We have to make sure i_disksize gets properly updated before we truncate
3844  * page cache due to hole punching or zero range. Otherwise i_disksize update
3845  * can get lost as it may have been postponed to submission of writeback but
3846  * that will never happen after we truncate page cache.
3847  */
3848 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3849 				      loff_t len)
3850 {
3851 	handle_t *handle;
3852 	int ret;
3853 
3854 	loff_t size = i_size_read(inode);
3855 
3856 	WARN_ON(!inode_is_locked(inode));
3857 	if (offset > size || offset + len < size)
3858 		return 0;
3859 
3860 	if (EXT4_I(inode)->i_disksize >= size)
3861 		return 0;
3862 
3863 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3864 	if (IS_ERR(handle))
3865 		return PTR_ERR(handle);
3866 	ext4_update_i_disksize(inode, size);
3867 	ret = ext4_mark_inode_dirty(handle, inode);
3868 	ext4_journal_stop(handle);
3869 
3870 	return ret;
3871 }
3872 
3873 static void ext4_wait_dax_page(struct inode *inode)
3874 {
3875 	filemap_invalidate_unlock(inode->i_mapping);
3876 	schedule();
3877 	filemap_invalidate_lock(inode->i_mapping);
3878 }
3879 
3880 int ext4_break_layouts(struct inode *inode)
3881 {
3882 	struct page *page;
3883 	int error;
3884 
3885 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3886 		return -EINVAL;
3887 
3888 	do {
3889 		page = dax_layout_busy_page(inode->i_mapping);
3890 		if (!page)
3891 			return 0;
3892 
3893 		error = ___wait_var_event(&page->_refcount,
3894 				atomic_read(&page->_refcount) == 1,
3895 				TASK_INTERRUPTIBLE, 0, 0,
3896 				ext4_wait_dax_page(inode));
3897 	} while (error == 0);
3898 
3899 	return error;
3900 }
3901 
3902 /*
3903  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3904  * associated with the given offset and length
3905  *
3906  * @inode:  File inode
3907  * @offset: The offset where the hole will begin
3908  * @len:    The length of the hole
3909  *
3910  * Returns: 0 on success or negative on failure
3911  */
3912 
3913 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3914 {
3915 	struct inode *inode = file_inode(file);
3916 	struct super_block *sb = inode->i_sb;
3917 	ext4_lblk_t first_block, stop_block;
3918 	struct address_space *mapping = inode->i_mapping;
3919 	loff_t first_block_offset, last_block_offset, max_length;
3920 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3921 	handle_t *handle;
3922 	unsigned int credits;
3923 	int ret = 0, ret2 = 0;
3924 
3925 	trace_ext4_punch_hole(inode, offset, length, 0);
3926 
3927 	/*
3928 	 * Write out all dirty pages to avoid race conditions
3929 	 * Then release them.
3930 	 */
3931 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3932 		ret = filemap_write_and_wait_range(mapping, offset,
3933 						   offset + length - 1);
3934 		if (ret)
3935 			return ret;
3936 	}
3937 
3938 	inode_lock(inode);
3939 
3940 	/* No need to punch hole beyond i_size */
3941 	if (offset >= inode->i_size)
3942 		goto out_mutex;
3943 
3944 	/*
3945 	 * If the hole extends beyond i_size, set the hole
3946 	 * to end after the page that contains i_size
3947 	 */
3948 	if (offset + length > inode->i_size) {
3949 		length = inode->i_size +
3950 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3951 		   offset;
3952 	}
3953 
3954 	/*
3955 	 * For punch hole the length + offset needs to be within one block
3956 	 * before last range. Adjust the length if it goes beyond that limit.
3957 	 */
3958 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3959 	if (offset + length > max_length)
3960 		length = max_length - offset;
3961 
3962 	if (offset & (sb->s_blocksize - 1) ||
3963 	    (offset + length) & (sb->s_blocksize - 1)) {
3964 		/*
3965 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3966 		 * partial block
3967 		 */
3968 		ret = ext4_inode_attach_jinode(inode);
3969 		if (ret < 0)
3970 			goto out_mutex;
3971 
3972 	}
3973 
3974 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3975 	inode_dio_wait(inode);
3976 
3977 	ret = file_modified(file);
3978 	if (ret)
3979 		goto out_mutex;
3980 
3981 	/*
3982 	 * Prevent page faults from reinstantiating pages we have released from
3983 	 * page cache.
3984 	 */
3985 	filemap_invalidate_lock(mapping);
3986 
3987 	ret = ext4_break_layouts(inode);
3988 	if (ret)
3989 		goto out_dio;
3990 
3991 	first_block_offset = round_up(offset, sb->s_blocksize);
3992 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3993 
3994 	/* Now release the pages and zero block aligned part of pages*/
3995 	if (last_block_offset > first_block_offset) {
3996 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3997 		if (ret)
3998 			goto out_dio;
3999 		truncate_pagecache_range(inode, first_block_offset,
4000 					 last_block_offset);
4001 	}
4002 
4003 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4004 		credits = ext4_writepage_trans_blocks(inode);
4005 	else
4006 		credits = ext4_blocks_for_truncate(inode);
4007 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008 	if (IS_ERR(handle)) {
4009 		ret = PTR_ERR(handle);
4010 		ext4_std_error(sb, ret);
4011 		goto out_dio;
4012 	}
4013 
4014 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4015 				       length);
4016 	if (ret)
4017 		goto out_stop;
4018 
4019 	first_block = (offset + sb->s_blocksize - 1) >>
4020 		EXT4_BLOCK_SIZE_BITS(sb);
4021 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4022 
4023 	/* If there are blocks to remove, do it */
4024 	if (stop_block > first_block) {
4025 		ext4_lblk_t hole_len = stop_block - first_block;
4026 
4027 		down_write(&EXT4_I(inode)->i_data_sem);
4028 		ext4_discard_preallocations(inode);
4029 
4030 		ext4_es_remove_extent(inode, first_block, hole_len);
4031 
4032 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033 			ret = ext4_ext_remove_space(inode, first_block,
4034 						    stop_block - 1);
4035 		else
4036 			ret = ext4_ind_remove_space(handle, inode, first_block,
4037 						    stop_block);
4038 
4039 		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4040 				      EXTENT_STATUS_HOLE, 0);
4041 		up_write(&EXT4_I(inode)->i_data_sem);
4042 	}
4043 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4044 	if (IS_SYNC(inode))
4045 		ext4_handle_sync(handle);
4046 
4047 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4048 	ret2 = ext4_mark_inode_dirty(handle, inode);
4049 	if (unlikely(ret2))
4050 		ret = ret2;
4051 	if (ret >= 0)
4052 		ext4_update_inode_fsync_trans(handle, inode, 1);
4053 out_stop:
4054 	ext4_journal_stop(handle);
4055 out_dio:
4056 	filemap_invalidate_unlock(mapping);
4057 out_mutex:
4058 	inode_unlock(inode);
4059 	return ret;
4060 }
4061 
4062 int ext4_inode_attach_jinode(struct inode *inode)
4063 {
4064 	struct ext4_inode_info *ei = EXT4_I(inode);
4065 	struct jbd2_inode *jinode;
4066 
4067 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4068 		return 0;
4069 
4070 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4071 	spin_lock(&inode->i_lock);
4072 	if (!ei->jinode) {
4073 		if (!jinode) {
4074 			spin_unlock(&inode->i_lock);
4075 			return -ENOMEM;
4076 		}
4077 		ei->jinode = jinode;
4078 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4079 		jinode = NULL;
4080 	}
4081 	spin_unlock(&inode->i_lock);
4082 	if (unlikely(jinode != NULL))
4083 		jbd2_free_inode(jinode);
4084 	return 0;
4085 }
4086 
4087 /*
4088  * ext4_truncate()
4089  *
4090  * We block out ext4_get_block() block instantiations across the entire
4091  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4092  * simultaneously on behalf of the same inode.
4093  *
4094  * As we work through the truncate and commit bits of it to the journal there
4095  * is one core, guiding principle: the file's tree must always be consistent on
4096  * disk.  We must be able to restart the truncate after a crash.
4097  *
4098  * The file's tree may be transiently inconsistent in memory (although it
4099  * probably isn't), but whenever we close off and commit a journal transaction,
4100  * the contents of (the filesystem + the journal) must be consistent and
4101  * restartable.  It's pretty simple, really: bottom up, right to left (although
4102  * left-to-right works OK too).
4103  *
4104  * Note that at recovery time, journal replay occurs *before* the restart of
4105  * truncate against the orphan inode list.
4106  *
4107  * The committed inode has the new, desired i_size (which is the same as
4108  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4109  * that this inode's truncate did not complete and it will again call
4110  * ext4_truncate() to have another go.  So there will be instantiated blocks
4111  * to the right of the truncation point in a crashed ext4 filesystem.  But
4112  * that's fine - as long as they are linked from the inode, the post-crash
4113  * ext4_truncate() run will find them and release them.
4114  */
4115 int ext4_truncate(struct inode *inode)
4116 {
4117 	struct ext4_inode_info *ei = EXT4_I(inode);
4118 	unsigned int credits;
4119 	int err = 0, err2;
4120 	handle_t *handle;
4121 	struct address_space *mapping = inode->i_mapping;
4122 
4123 	/*
4124 	 * There is a possibility that we're either freeing the inode
4125 	 * or it's a completely new inode. In those cases we might not
4126 	 * have i_rwsem locked because it's not necessary.
4127 	 */
4128 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4129 		WARN_ON(!inode_is_locked(inode));
4130 	trace_ext4_truncate_enter(inode);
4131 
4132 	if (!ext4_can_truncate(inode))
4133 		goto out_trace;
4134 
4135 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4136 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4137 
4138 	if (ext4_has_inline_data(inode)) {
4139 		int has_inline = 1;
4140 
4141 		err = ext4_inline_data_truncate(inode, &has_inline);
4142 		if (err || has_inline)
4143 			goto out_trace;
4144 	}
4145 
4146 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4147 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4148 		err = ext4_inode_attach_jinode(inode);
4149 		if (err)
4150 			goto out_trace;
4151 	}
4152 
4153 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4154 		credits = ext4_writepage_trans_blocks(inode);
4155 	else
4156 		credits = ext4_blocks_for_truncate(inode);
4157 
4158 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4159 	if (IS_ERR(handle)) {
4160 		err = PTR_ERR(handle);
4161 		goto out_trace;
4162 	}
4163 
4164 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4165 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4166 
4167 	/*
4168 	 * We add the inode to the orphan list, so that if this
4169 	 * truncate spans multiple transactions, and we crash, we will
4170 	 * resume the truncate when the filesystem recovers.  It also
4171 	 * marks the inode dirty, to catch the new size.
4172 	 *
4173 	 * Implication: the file must always be in a sane, consistent
4174 	 * truncatable state while each transaction commits.
4175 	 */
4176 	err = ext4_orphan_add(handle, inode);
4177 	if (err)
4178 		goto out_stop;
4179 
4180 	down_write(&EXT4_I(inode)->i_data_sem);
4181 
4182 	ext4_discard_preallocations(inode);
4183 
4184 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185 		err = ext4_ext_truncate(handle, inode);
4186 	else
4187 		ext4_ind_truncate(handle, inode);
4188 
4189 	up_write(&ei->i_data_sem);
4190 	if (err)
4191 		goto out_stop;
4192 
4193 	if (IS_SYNC(inode))
4194 		ext4_handle_sync(handle);
4195 
4196 out_stop:
4197 	/*
4198 	 * If this was a simple ftruncate() and the file will remain alive,
4199 	 * then we need to clear up the orphan record which we created above.
4200 	 * However, if this was a real unlink then we were called by
4201 	 * ext4_evict_inode(), and we allow that function to clean up the
4202 	 * orphan info for us.
4203 	 */
4204 	if (inode->i_nlink)
4205 		ext4_orphan_del(handle, inode);
4206 
4207 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4208 	err2 = ext4_mark_inode_dirty(handle, inode);
4209 	if (unlikely(err2 && !err))
4210 		err = err2;
4211 	ext4_journal_stop(handle);
4212 
4213 out_trace:
4214 	trace_ext4_truncate_exit(inode);
4215 	return err;
4216 }
4217 
4218 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4219 {
4220 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4221 		return inode_peek_iversion_raw(inode);
4222 	else
4223 		return inode_peek_iversion(inode);
4224 }
4225 
4226 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4227 				 struct ext4_inode_info *ei)
4228 {
4229 	struct inode *inode = &(ei->vfs_inode);
4230 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4231 	struct super_block *sb = inode->i_sb;
4232 
4233 	if (i_blocks <= ~0U) {
4234 		/*
4235 		 * i_blocks can be represented in a 32 bit variable
4236 		 * as multiple of 512 bytes
4237 		 */
4238 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4239 		raw_inode->i_blocks_high = 0;
4240 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4241 		return 0;
4242 	}
4243 
4244 	/*
4245 	 * This should never happen since sb->s_maxbytes should not have
4246 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4247 	 * feature in ext4_fill_super().
4248 	 */
4249 	if (!ext4_has_feature_huge_file(sb))
4250 		return -EFSCORRUPTED;
4251 
4252 	if (i_blocks <= 0xffffffffffffULL) {
4253 		/*
4254 		 * i_blocks can be represented in a 48 bit variable
4255 		 * as multiple of 512 bytes
4256 		 */
4257 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4258 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4259 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4260 	} else {
4261 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4262 		/* i_block is stored in file system block size */
4263 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4264 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4265 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4266 	}
4267 	return 0;
4268 }
4269 
4270 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4271 {
4272 	struct ext4_inode_info *ei = EXT4_I(inode);
4273 	uid_t i_uid;
4274 	gid_t i_gid;
4275 	projid_t i_projid;
4276 	int block;
4277 	int err;
4278 
4279 	err = ext4_inode_blocks_set(raw_inode, ei);
4280 
4281 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4282 	i_uid = i_uid_read(inode);
4283 	i_gid = i_gid_read(inode);
4284 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4285 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4286 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4287 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4288 		/*
4289 		 * Fix up interoperability with old kernels. Otherwise,
4290 		 * old inodes get re-used with the upper 16 bits of the
4291 		 * uid/gid intact.
4292 		 */
4293 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4294 			raw_inode->i_uid_high = 0;
4295 			raw_inode->i_gid_high = 0;
4296 		} else {
4297 			raw_inode->i_uid_high =
4298 				cpu_to_le16(high_16_bits(i_uid));
4299 			raw_inode->i_gid_high =
4300 				cpu_to_le16(high_16_bits(i_gid));
4301 		}
4302 	} else {
4303 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4304 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4305 		raw_inode->i_uid_high = 0;
4306 		raw_inode->i_gid_high = 0;
4307 	}
4308 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4309 
4310 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4311 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4312 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4313 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4314 
4315 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4316 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4317 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4318 		raw_inode->i_file_acl_high =
4319 			cpu_to_le16(ei->i_file_acl >> 32);
4320 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4321 	ext4_isize_set(raw_inode, ei->i_disksize);
4322 
4323 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4324 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4325 		if (old_valid_dev(inode->i_rdev)) {
4326 			raw_inode->i_block[0] =
4327 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4328 			raw_inode->i_block[1] = 0;
4329 		} else {
4330 			raw_inode->i_block[0] = 0;
4331 			raw_inode->i_block[1] =
4332 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4333 			raw_inode->i_block[2] = 0;
4334 		}
4335 	} else if (!ext4_has_inline_data(inode)) {
4336 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4337 			raw_inode->i_block[block] = ei->i_data[block];
4338 	}
4339 
4340 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4341 		u64 ivers = ext4_inode_peek_iversion(inode);
4342 
4343 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4344 		if (ei->i_extra_isize) {
4345 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346 				raw_inode->i_version_hi =
4347 					cpu_to_le32(ivers >> 32);
4348 			raw_inode->i_extra_isize =
4349 				cpu_to_le16(ei->i_extra_isize);
4350 		}
4351 	}
4352 
4353 	if (i_projid != EXT4_DEF_PROJID &&
4354 	    !ext4_has_feature_project(inode->i_sb))
4355 		err = err ?: -EFSCORRUPTED;
4356 
4357 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4358 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4359 		raw_inode->i_projid = cpu_to_le32(i_projid);
4360 
4361 	ext4_inode_csum_set(inode, raw_inode, ei);
4362 	return err;
4363 }
4364 
4365 /*
4366  * ext4_get_inode_loc returns with an extra refcount against the inode's
4367  * underlying buffer_head on success. If we pass 'inode' and it does not
4368  * have in-inode xattr, we have all inode data in memory that is needed
4369  * to recreate the on-disk version of this inode.
4370  */
4371 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4372 				struct inode *inode, struct ext4_iloc *iloc,
4373 				ext4_fsblk_t *ret_block)
4374 {
4375 	struct ext4_group_desc	*gdp;
4376 	struct buffer_head	*bh;
4377 	ext4_fsblk_t		block;
4378 	struct blk_plug		plug;
4379 	int			inodes_per_block, inode_offset;
4380 
4381 	iloc->bh = NULL;
4382 	if (ino < EXT4_ROOT_INO ||
4383 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4384 		return -EFSCORRUPTED;
4385 
4386 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4387 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4388 	if (!gdp)
4389 		return -EIO;
4390 
4391 	/*
4392 	 * Figure out the offset within the block group inode table
4393 	 */
4394 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4395 	inode_offset = ((ino - 1) %
4396 			EXT4_INODES_PER_GROUP(sb));
4397 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4398 
4399 	block = ext4_inode_table(sb, gdp);
4400 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4401 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4402 		ext4_error(sb, "Invalid inode table block %llu in "
4403 			   "block_group %u", block, iloc->block_group);
4404 		return -EFSCORRUPTED;
4405 	}
4406 	block += (inode_offset / inodes_per_block);
4407 
4408 	bh = sb_getblk(sb, block);
4409 	if (unlikely(!bh))
4410 		return -ENOMEM;
4411 	if (ext4_buffer_uptodate(bh))
4412 		goto has_buffer;
4413 
4414 	lock_buffer(bh);
4415 	if (ext4_buffer_uptodate(bh)) {
4416 		/* Someone brought it uptodate while we waited */
4417 		unlock_buffer(bh);
4418 		goto has_buffer;
4419 	}
4420 
4421 	/*
4422 	 * If we have all information of the inode in memory and this
4423 	 * is the only valid inode in the block, we need not read the
4424 	 * block.
4425 	 */
4426 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4427 		struct buffer_head *bitmap_bh;
4428 		int i, start;
4429 
4430 		start = inode_offset & ~(inodes_per_block - 1);
4431 
4432 		/* Is the inode bitmap in cache? */
4433 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4434 		if (unlikely(!bitmap_bh))
4435 			goto make_io;
4436 
4437 		/*
4438 		 * If the inode bitmap isn't in cache then the
4439 		 * optimisation may end up performing two reads instead
4440 		 * of one, so skip it.
4441 		 */
4442 		if (!buffer_uptodate(bitmap_bh)) {
4443 			brelse(bitmap_bh);
4444 			goto make_io;
4445 		}
4446 		for (i = start; i < start + inodes_per_block; i++) {
4447 			if (i == inode_offset)
4448 				continue;
4449 			if (ext4_test_bit(i, bitmap_bh->b_data))
4450 				break;
4451 		}
4452 		brelse(bitmap_bh);
4453 		if (i == start + inodes_per_block) {
4454 			struct ext4_inode *raw_inode =
4455 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4456 
4457 			/* all other inodes are free, so skip I/O */
4458 			memset(bh->b_data, 0, bh->b_size);
4459 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4460 				ext4_fill_raw_inode(inode, raw_inode);
4461 			set_buffer_uptodate(bh);
4462 			unlock_buffer(bh);
4463 			goto has_buffer;
4464 		}
4465 	}
4466 
4467 make_io:
4468 	/*
4469 	 * If we need to do any I/O, try to pre-readahead extra
4470 	 * blocks from the inode table.
4471 	 */
4472 	blk_start_plug(&plug);
4473 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4474 		ext4_fsblk_t b, end, table;
4475 		unsigned num;
4476 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4477 
4478 		table = ext4_inode_table(sb, gdp);
4479 		/* s_inode_readahead_blks is always a power of 2 */
4480 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4481 		if (table > b)
4482 			b = table;
4483 		end = b + ra_blks;
4484 		num = EXT4_INODES_PER_GROUP(sb);
4485 		if (ext4_has_group_desc_csum(sb))
4486 			num -= ext4_itable_unused_count(sb, gdp);
4487 		table += num / inodes_per_block;
4488 		if (end > table)
4489 			end = table;
4490 		while (b <= end)
4491 			ext4_sb_breadahead_unmovable(sb, b++);
4492 	}
4493 
4494 	/*
4495 	 * There are other valid inodes in the buffer, this inode
4496 	 * has in-inode xattrs, or we don't have this inode in memory.
4497 	 * Read the block from disk.
4498 	 */
4499 	trace_ext4_load_inode(sb, ino);
4500 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4501 	blk_finish_plug(&plug);
4502 	wait_on_buffer(bh);
4503 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4504 	if (!buffer_uptodate(bh)) {
4505 		if (ret_block)
4506 			*ret_block = block;
4507 		brelse(bh);
4508 		return -EIO;
4509 	}
4510 has_buffer:
4511 	iloc->bh = bh;
4512 	return 0;
4513 }
4514 
4515 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4516 					struct ext4_iloc *iloc)
4517 {
4518 	ext4_fsblk_t err_blk = 0;
4519 	int ret;
4520 
4521 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4522 					&err_blk);
4523 
4524 	if (ret == -EIO)
4525 		ext4_error_inode_block(inode, err_blk, EIO,
4526 					"unable to read itable block");
4527 
4528 	return ret;
4529 }
4530 
4531 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4532 {
4533 	ext4_fsblk_t err_blk = 0;
4534 	int ret;
4535 
4536 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4537 					&err_blk);
4538 
4539 	if (ret == -EIO)
4540 		ext4_error_inode_block(inode, err_blk, EIO,
4541 					"unable to read itable block");
4542 
4543 	return ret;
4544 }
4545 
4546 
4547 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4548 			  struct ext4_iloc *iloc)
4549 {
4550 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4551 }
4552 
4553 static bool ext4_should_enable_dax(struct inode *inode)
4554 {
4555 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4556 
4557 	if (test_opt2(inode->i_sb, DAX_NEVER))
4558 		return false;
4559 	if (!S_ISREG(inode->i_mode))
4560 		return false;
4561 	if (ext4_should_journal_data(inode))
4562 		return false;
4563 	if (ext4_has_inline_data(inode))
4564 		return false;
4565 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4566 		return false;
4567 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4568 		return false;
4569 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4570 		return false;
4571 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4572 		return true;
4573 
4574 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4575 }
4576 
4577 void ext4_set_inode_flags(struct inode *inode, bool init)
4578 {
4579 	unsigned int flags = EXT4_I(inode)->i_flags;
4580 	unsigned int new_fl = 0;
4581 
4582 	WARN_ON_ONCE(IS_DAX(inode) && init);
4583 
4584 	if (flags & EXT4_SYNC_FL)
4585 		new_fl |= S_SYNC;
4586 	if (flags & EXT4_APPEND_FL)
4587 		new_fl |= S_APPEND;
4588 	if (flags & EXT4_IMMUTABLE_FL)
4589 		new_fl |= S_IMMUTABLE;
4590 	if (flags & EXT4_NOATIME_FL)
4591 		new_fl |= S_NOATIME;
4592 	if (flags & EXT4_DIRSYNC_FL)
4593 		new_fl |= S_DIRSYNC;
4594 
4595 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4596 	 * here if already set. */
4597 	new_fl |= (inode->i_flags & S_DAX);
4598 	if (init && ext4_should_enable_dax(inode))
4599 		new_fl |= S_DAX;
4600 
4601 	if (flags & EXT4_ENCRYPT_FL)
4602 		new_fl |= S_ENCRYPTED;
4603 	if (flags & EXT4_CASEFOLD_FL)
4604 		new_fl |= S_CASEFOLD;
4605 	if (flags & EXT4_VERITY_FL)
4606 		new_fl |= S_VERITY;
4607 	inode_set_flags(inode, new_fl,
4608 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4609 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4610 }
4611 
4612 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4613 				  struct ext4_inode_info *ei)
4614 {
4615 	blkcnt_t i_blocks ;
4616 	struct inode *inode = &(ei->vfs_inode);
4617 	struct super_block *sb = inode->i_sb;
4618 
4619 	if (ext4_has_feature_huge_file(sb)) {
4620 		/* we are using combined 48 bit field */
4621 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4622 					le32_to_cpu(raw_inode->i_blocks_lo);
4623 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4624 			/* i_blocks represent file system block size */
4625 			return i_blocks  << (inode->i_blkbits - 9);
4626 		} else {
4627 			return i_blocks;
4628 		}
4629 	} else {
4630 		return le32_to_cpu(raw_inode->i_blocks_lo);
4631 	}
4632 }
4633 
4634 static inline int ext4_iget_extra_inode(struct inode *inode,
4635 					 struct ext4_inode *raw_inode,
4636 					 struct ext4_inode_info *ei)
4637 {
4638 	__le32 *magic = (void *)raw_inode +
4639 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4640 
4641 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4642 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4643 		int err;
4644 
4645 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4646 		err = ext4_find_inline_data_nolock(inode);
4647 		if (!err && ext4_has_inline_data(inode))
4648 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4649 		return err;
4650 	} else
4651 		EXT4_I(inode)->i_inline_off = 0;
4652 	return 0;
4653 }
4654 
4655 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4656 {
4657 	if (!ext4_has_feature_project(inode->i_sb))
4658 		return -EOPNOTSUPP;
4659 	*projid = EXT4_I(inode)->i_projid;
4660 	return 0;
4661 }
4662 
4663 /*
4664  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4665  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4666  * set.
4667  */
4668 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4669 {
4670 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4671 		inode_set_iversion_raw(inode, val);
4672 	else
4673 		inode_set_iversion_queried(inode, val);
4674 }
4675 
4676 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4677 
4678 {
4679 	if (flags & EXT4_IGET_EA_INODE) {
4680 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4681 			return "missing EA_INODE flag";
4682 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4683 		    EXT4_I(inode)->i_file_acl)
4684 			return "ea_inode with extended attributes";
4685 	} else {
4686 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4687 			return "unexpected EA_INODE flag";
4688 	}
4689 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4690 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4691 	return NULL;
4692 }
4693 
4694 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4695 			  ext4_iget_flags flags, const char *function,
4696 			  unsigned int line)
4697 {
4698 	struct ext4_iloc iloc;
4699 	struct ext4_inode *raw_inode;
4700 	struct ext4_inode_info *ei;
4701 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4702 	struct inode *inode;
4703 	const char *err_str;
4704 	journal_t *journal = EXT4_SB(sb)->s_journal;
4705 	long ret;
4706 	loff_t size;
4707 	int block;
4708 	uid_t i_uid;
4709 	gid_t i_gid;
4710 	projid_t i_projid;
4711 
4712 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4713 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4714 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4715 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4716 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4717 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4718 	    (ino < EXT4_ROOT_INO) ||
4719 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4720 		if (flags & EXT4_IGET_HANDLE)
4721 			return ERR_PTR(-ESTALE);
4722 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4723 			     "inode #%lu: comm %s: iget: illegal inode #",
4724 			     ino, current->comm);
4725 		return ERR_PTR(-EFSCORRUPTED);
4726 	}
4727 
4728 	inode = iget_locked(sb, ino);
4729 	if (!inode)
4730 		return ERR_PTR(-ENOMEM);
4731 	if (!(inode->i_state & I_NEW)) {
4732 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4733 			ext4_error_inode(inode, function, line, 0, err_str);
4734 			iput(inode);
4735 			return ERR_PTR(-EFSCORRUPTED);
4736 		}
4737 		return inode;
4738 	}
4739 
4740 	ei = EXT4_I(inode);
4741 	iloc.bh = NULL;
4742 
4743 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4744 	if (ret < 0)
4745 		goto bad_inode;
4746 	raw_inode = ext4_raw_inode(&iloc);
4747 
4748 	if ((flags & EXT4_IGET_HANDLE) &&
4749 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4750 		ret = -ESTALE;
4751 		goto bad_inode;
4752 	}
4753 
4754 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4755 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4756 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4757 			EXT4_INODE_SIZE(inode->i_sb) ||
4758 		    (ei->i_extra_isize & 3)) {
4759 			ext4_error_inode(inode, function, line, 0,
4760 					 "iget: bad extra_isize %u "
4761 					 "(inode size %u)",
4762 					 ei->i_extra_isize,
4763 					 EXT4_INODE_SIZE(inode->i_sb));
4764 			ret = -EFSCORRUPTED;
4765 			goto bad_inode;
4766 		}
4767 	} else
4768 		ei->i_extra_isize = 0;
4769 
4770 	/* Precompute checksum seed for inode metadata */
4771 	if (ext4_has_metadata_csum(sb)) {
4772 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4773 		__u32 csum;
4774 		__le32 inum = cpu_to_le32(inode->i_ino);
4775 		__le32 gen = raw_inode->i_generation;
4776 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4777 				   sizeof(inum));
4778 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4779 					      sizeof(gen));
4780 	}
4781 
4782 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4783 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4784 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4785 		ext4_error_inode_err(inode, function, line, 0,
4786 				EFSBADCRC, "iget: checksum invalid");
4787 		ret = -EFSBADCRC;
4788 		goto bad_inode;
4789 	}
4790 
4791 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4792 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4793 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4794 	if (ext4_has_feature_project(sb) &&
4795 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4796 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4797 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4798 	else
4799 		i_projid = EXT4_DEF_PROJID;
4800 
4801 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4802 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4803 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4804 	}
4805 	i_uid_write(inode, i_uid);
4806 	i_gid_write(inode, i_gid);
4807 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4808 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4809 
4810 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4811 	ei->i_inline_off = 0;
4812 	ei->i_dir_start_lookup = 0;
4813 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814 	/* We now have enough fields to check if the inode was active or not.
4815 	 * This is needed because nfsd might try to access dead inodes
4816 	 * the test is that same one that e2fsck uses
4817 	 * NeilBrown 1999oct15
4818 	 */
4819 	if (inode->i_nlink == 0) {
4820 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4821 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4822 		    ino != EXT4_BOOT_LOADER_INO) {
4823 			/* this inode is deleted or unallocated */
4824 			if (flags & EXT4_IGET_SPECIAL) {
4825 				ext4_error_inode(inode, function, line, 0,
4826 						 "iget: special inode unallocated");
4827 				ret = -EFSCORRUPTED;
4828 			} else
4829 				ret = -ESTALE;
4830 			goto bad_inode;
4831 		}
4832 		/* The only unlinked inodes we let through here have
4833 		 * valid i_mode and are being read by the orphan
4834 		 * recovery code: that's fine, we're about to complete
4835 		 * the process of deleting those.
4836 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4837 		 * not initialized on a new filesystem. */
4838 	}
4839 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4840 	ext4_set_inode_flags(inode, true);
4841 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4842 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4843 	if (ext4_has_feature_64bit(sb))
4844 		ei->i_file_acl |=
4845 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4846 	inode->i_size = ext4_isize(sb, raw_inode);
4847 	if ((size = i_size_read(inode)) < 0) {
4848 		ext4_error_inode(inode, function, line, 0,
4849 				 "iget: bad i_size value: %lld", size);
4850 		ret = -EFSCORRUPTED;
4851 		goto bad_inode;
4852 	}
4853 	/*
4854 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4855 	 * we'd normally treat htree data as empty space. But with metadata
4856 	 * checksumming that corrupts checksums so forbid that.
4857 	 */
4858 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4859 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4860 		ext4_error_inode(inode, function, line, 0,
4861 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4862 		ret = -EFSCORRUPTED;
4863 		goto bad_inode;
4864 	}
4865 	ei->i_disksize = inode->i_size;
4866 #ifdef CONFIG_QUOTA
4867 	ei->i_reserved_quota = 0;
4868 #endif
4869 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4870 	ei->i_block_group = iloc.block_group;
4871 	ei->i_last_alloc_group = ~0;
4872 	/*
4873 	 * NOTE! The in-memory inode i_data array is in little-endian order
4874 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4875 	 */
4876 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4877 		ei->i_data[block] = raw_inode->i_block[block];
4878 	INIT_LIST_HEAD(&ei->i_orphan);
4879 	ext4_fc_init_inode(&ei->vfs_inode);
4880 
4881 	/*
4882 	 * Set transaction id's of transactions that have to be committed
4883 	 * to finish f[data]sync. We set them to currently running transaction
4884 	 * as we cannot be sure that the inode or some of its metadata isn't
4885 	 * part of the transaction - the inode could have been reclaimed and
4886 	 * now it is reread from disk.
4887 	 */
4888 	if (journal) {
4889 		transaction_t *transaction;
4890 		tid_t tid;
4891 
4892 		read_lock(&journal->j_state_lock);
4893 		if (journal->j_running_transaction)
4894 			transaction = journal->j_running_transaction;
4895 		else
4896 			transaction = journal->j_committing_transaction;
4897 		if (transaction)
4898 			tid = transaction->t_tid;
4899 		else
4900 			tid = journal->j_commit_sequence;
4901 		read_unlock(&journal->j_state_lock);
4902 		ei->i_sync_tid = tid;
4903 		ei->i_datasync_tid = tid;
4904 	}
4905 
4906 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4907 		if (ei->i_extra_isize == 0) {
4908 			/* The extra space is currently unused. Use it. */
4909 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4910 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4911 					    EXT4_GOOD_OLD_INODE_SIZE;
4912 		} else {
4913 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4914 			if (ret)
4915 				goto bad_inode;
4916 		}
4917 	}
4918 
4919 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4920 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4921 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4922 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4923 
4924 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4925 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4926 
4927 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4928 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4929 				ivers |=
4930 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4931 		}
4932 		ext4_inode_set_iversion_queried(inode, ivers);
4933 	}
4934 
4935 	ret = 0;
4936 	if (ei->i_file_acl &&
4937 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4938 		ext4_error_inode(inode, function, line, 0,
4939 				 "iget: bad extended attribute block %llu",
4940 				 ei->i_file_acl);
4941 		ret = -EFSCORRUPTED;
4942 		goto bad_inode;
4943 	} else if (!ext4_has_inline_data(inode)) {
4944 		/* validate the block references in the inode */
4945 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4946 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4947 			(S_ISLNK(inode->i_mode) &&
4948 			!ext4_inode_is_fast_symlink(inode)))) {
4949 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4950 				ret = ext4_ext_check_inode(inode);
4951 			else
4952 				ret = ext4_ind_check_inode(inode);
4953 		}
4954 	}
4955 	if (ret)
4956 		goto bad_inode;
4957 
4958 	if (S_ISREG(inode->i_mode)) {
4959 		inode->i_op = &ext4_file_inode_operations;
4960 		inode->i_fop = &ext4_file_operations;
4961 		ext4_set_aops(inode);
4962 	} else if (S_ISDIR(inode->i_mode)) {
4963 		inode->i_op = &ext4_dir_inode_operations;
4964 		inode->i_fop = &ext4_dir_operations;
4965 	} else if (S_ISLNK(inode->i_mode)) {
4966 		/* VFS does not allow setting these so must be corruption */
4967 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4968 			ext4_error_inode(inode, function, line, 0,
4969 					 "iget: immutable or append flags "
4970 					 "not allowed on symlinks");
4971 			ret = -EFSCORRUPTED;
4972 			goto bad_inode;
4973 		}
4974 		if (IS_ENCRYPTED(inode)) {
4975 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4976 		} else if (ext4_inode_is_fast_symlink(inode)) {
4977 			inode->i_link = (char *)ei->i_data;
4978 			inode->i_op = &ext4_fast_symlink_inode_operations;
4979 			nd_terminate_link(ei->i_data, inode->i_size,
4980 				sizeof(ei->i_data) - 1);
4981 		} else {
4982 			inode->i_op = &ext4_symlink_inode_operations;
4983 		}
4984 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4985 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4986 		inode->i_op = &ext4_special_inode_operations;
4987 		if (raw_inode->i_block[0])
4988 			init_special_inode(inode, inode->i_mode,
4989 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4990 		else
4991 			init_special_inode(inode, inode->i_mode,
4992 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4993 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4994 		make_bad_inode(inode);
4995 	} else {
4996 		ret = -EFSCORRUPTED;
4997 		ext4_error_inode(inode, function, line, 0,
4998 				 "iget: bogus i_mode (%o)", inode->i_mode);
4999 		goto bad_inode;
5000 	}
5001 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5002 		ext4_error_inode(inode, function, line, 0,
5003 				 "casefold flag without casefold feature");
5004 		ret = -EFSCORRUPTED;
5005 		goto bad_inode;
5006 	}
5007 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5008 		ext4_error_inode(inode, function, line, 0, err_str);
5009 		ret = -EFSCORRUPTED;
5010 		goto bad_inode;
5011 	}
5012 
5013 	brelse(iloc.bh);
5014 	unlock_new_inode(inode);
5015 	return inode;
5016 
5017 bad_inode:
5018 	brelse(iloc.bh);
5019 	iget_failed(inode);
5020 	return ERR_PTR(ret);
5021 }
5022 
5023 static void __ext4_update_other_inode_time(struct super_block *sb,
5024 					   unsigned long orig_ino,
5025 					   unsigned long ino,
5026 					   struct ext4_inode *raw_inode)
5027 {
5028 	struct inode *inode;
5029 
5030 	inode = find_inode_by_ino_rcu(sb, ino);
5031 	if (!inode)
5032 		return;
5033 
5034 	if (!inode_is_dirtytime_only(inode))
5035 		return;
5036 
5037 	spin_lock(&inode->i_lock);
5038 	if (inode_is_dirtytime_only(inode)) {
5039 		struct ext4_inode_info	*ei = EXT4_I(inode);
5040 
5041 		inode->i_state &= ~I_DIRTY_TIME;
5042 		spin_unlock(&inode->i_lock);
5043 
5044 		spin_lock(&ei->i_raw_lock);
5045 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5046 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5047 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5048 		ext4_inode_csum_set(inode, raw_inode, ei);
5049 		spin_unlock(&ei->i_raw_lock);
5050 		trace_ext4_other_inode_update_time(inode, orig_ino);
5051 		return;
5052 	}
5053 	spin_unlock(&inode->i_lock);
5054 }
5055 
5056 /*
5057  * Opportunistically update the other time fields for other inodes in
5058  * the same inode table block.
5059  */
5060 static void ext4_update_other_inodes_time(struct super_block *sb,
5061 					  unsigned long orig_ino, char *buf)
5062 {
5063 	unsigned long ino;
5064 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5065 	int inode_size = EXT4_INODE_SIZE(sb);
5066 
5067 	/*
5068 	 * Calculate the first inode in the inode table block.  Inode
5069 	 * numbers are one-based.  That is, the first inode in a block
5070 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5071 	 */
5072 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5073 	rcu_read_lock();
5074 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5075 		if (ino == orig_ino)
5076 			continue;
5077 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5078 					       (struct ext4_inode *)buf);
5079 	}
5080 	rcu_read_unlock();
5081 }
5082 
5083 /*
5084  * Post the struct inode info into an on-disk inode location in the
5085  * buffer-cache.  This gobbles the caller's reference to the
5086  * buffer_head in the inode location struct.
5087  *
5088  * The caller must have write access to iloc->bh.
5089  */
5090 static int ext4_do_update_inode(handle_t *handle,
5091 				struct inode *inode,
5092 				struct ext4_iloc *iloc)
5093 {
5094 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5095 	struct ext4_inode_info *ei = EXT4_I(inode);
5096 	struct buffer_head *bh = iloc->bh;
5097 	struct super_block *sb = inode->i_sb;
5098 	int err;
5099 	int need_datasync = 0, set_large_file = 0;
5100 
5101 	spin_lock(&ei->i_raw_lock);
5102 
5103 	/*
5104 	 * For fields not tracked in the in-memory inode, initialise them
5105 	 * to zero for new inodes.
5106 	 */
5107 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5108 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5109 
5110 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5111 		need_datasync = 1;
5112 	if (ei->i_disksize > 0x7fffffffULL) {
5113 		if (!ext4_has_feature_large_file(sb) ||
5114 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5115 			set_large_file = 1;
5116 	}
5117 
5118 	err = ext4_fill_raw_inode(inode, raw_inode);
5119 	spin_unlock(&ei->i_raw_lock);
5120 	if (err) {
5121 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5122 		goto out_brelse;
5123 	}
5124 
5125 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5126 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5127 					      bh->b_data);
5128 
5129 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5130 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5131 	if (err)
5132 		goto out_error;
5133 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5134 	if (set_large_file) {
5135 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5136 		err = ext4_journal_get_write_access(handle, sb,
5137 						    EXT4_SB(sb)->s_sbh,
5138 						    EXT4_JTR_NONE);
5139 		if (err)
5140 			goto out_error;
5141 		lock_buffer(EXT4_SB(sb)->s_sbh);
5142 		ext4_set_feature_large_file(sb);
5143 		ext4_superblock_csum_set(sb);
5144 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5145 		ext4_handle_sync(handle);
5146 		err = ext4_handle_dirty_metadata(handle, NULL,
5147 						 EXT4_SB(sb)->s_sbh);
5148 	}
5149 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5150 out_error:
5151 	ext4_std_error(inode->i_sb, err);
5152 out_brelse:
5153 	brelse(bh);
5154 	return err;
5155 }
5156 
5157 /*
5158  * ext4_write_inode()
5159  *
5160  * We are called from a few places:
5161  *
5162  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5163  *   Here, there will be no transaction running. We wait for any running
5164  *   transaction to commit.
5165  *
5166  * - Within flush work (sys_sync(), kupdate and such).
5167  *   We wait on commit, if told to.
5168  *
5169  * - Within iput_final() -> write_inode_now()
5170  *   We wait on commit, if told to.
5171  *
5172  * In all cases it is actually safe for us to return without doing anything,
5173  * because the inode has been copied into a raw inode buffer in
5174  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5175  * writeback.
5176  *
5177  * Note that we are absolutely dependent upon all inode dirtiers doing the
5178  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5179  * which we are interested.
5180  *
5181  * It would be a bug for them to not do this.  The code:
5182  *
5183  *	mark_inode_dirty(inode)
5184  *	stuff();
5185  *	inode->i_size = expr;
5186  *
5187  * is in error because write_inode() could occur while `stuff()' is running,
5188  * and the new i_size will be lost.  Plus the inode will no longer be on the
5189  * superblock's dirty inode list.
5190  */
5191 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5192 {
5193 	int err;
5194 
5195 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5196 		return 0;
5197 
5198 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5199 		return -EIO;
5200 
5201 	if (EXT4_SB(inode->i_sb)->s_journal) {
5202 		if (ext4_journal_current_handle()) {
5203 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5204 			dump_stack();
5205 			return -EIO;
5206 		}
5207 
5208 		/*
5209 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5210 		 * ext4_sync_fs() will force the commit after everything is
5211 		 * written.
5212 		 */
5213 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5214 			return 0;
5215 
5216 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5217 						EXT4_I(inode)->i_sync_tid);
5218 	} else {
5219 		struct ext4_iloc iloc;
5220 
5221 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5222 		if (err)
5223 			return err;
5224 		/*
5225 		 * sync(2) will flush the whole buffer cache. No need to do
5226 		 * it here separately for each inode.
5227 		 */
5228 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5229 			sync_dirty_buffer(iloc.bh);
5230 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5231 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5232 					       "IO error syncing inode");
5233 			err = -EIO;
5234 		}
5235 		brelse(iloc.bh);
5236 	}
5237 	return err;
5238 }
5239 
5240 /*
5241  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5242  * buffers that are attached to a folio straddling i_size and are undergoing
5243  * commit. In that case we have to wait for commit to finish and try again.
5244  */
5245 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5246 {
5247 	unsigned offset;
5248 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5249 	tid_t commit_tid;
5250 	int ret;
5251 	bool has_transaction;
5252 
5253 	offset = inode->i_size & (PAGE_SIZE - 1);
5254 	/*
5255 	 * If the folio is fully truncated, we don't need to wait for any commit
5256 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5257 	 * strip all buffers from the folio but keep the folio dirty which can then
5258 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5259 	 * buffers). Also we don't need to wait for any commit if all buffers in
5260 	 * the folio remain valid. This is most beneficial for the common case of
5261 	 * blocksize == PAGESIZE.
5262 	 */
5263 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5264 		return;
5265 	while (1) {
5266 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5267 				      inode->i_size >> PAGE_SHIFT);
5268 		if (IS_ERR(folio))
5269 			return;
5270 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5271 						folio_size(folio) - offset);
5272 		folio_unlock(folio);
5273 		folio_put(folio);
5274 		if (ret != -EBUSY)
5275 			return;
5276 		has_transaction = false;
5277 		read_lock(&journal->j_state_lock);
5278 		if (journal->j_committing_transaction) {
5279 			commit_tid = journal->j_committing_transaction->t_tid;
5280 			has_transaction = true;
5281 		}
5282 		read_unlock(&journal->j_state_lock);
5283 		if (has_transaction)
5284 			jbd2_log_wait_commit(journal, commit_tid);
5285 	}
5286 }
5287 
5288 /*
5289  * ext4_setattr()
5290  *
5291  * Called from notify_change.
5292  *
5293  * We want to trap VFS attempts to truncate the file as soon as
5294  * possible.  In particular, we want to make sure that when the VFS
5295  * shrinks i_size, we put the inode on the orphan list and modify
5296  * i_disksize immediately, so that during the subsequent flushing of
5297  * dirty pages and freeing of disk blocks, we can guarantee that any
5298  * commit will leave the blocks being flushed in an unused state on
5299  * disk.  (On recovery, the inode will get truncated and the blocks will
5300  * be freed, so we have a strong guarantee that no future commit will
5301  * leave these blocks visible to the user.)
5302  *
5303  * Another thing we have to assure is that if we are in ordered mode
5304  * and inode is still attached to the committing transaction, we must
5305  * we start writeout of all the dirty pages which are being truncated.
5306  * This way we are sure that all the data written in the previous
5307  * transaction are already on disk (truncate waits for pages under
5308  * writeback).
5309  *
5310  * Called with inode->i_rwsem down.
5311  */
5312 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5313 		 struct iattr *attr)
5314 {
5315 	struct inode *inode = d_inode(dentry);
5316 	int error, rc = 0;
5317 	int orphan = 0;
5318 	const unsigned int ia_valid = attr->ia_valid;
5319 	bool inc_ivers = true;
5320 
5321 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5322 		return -EIO;
5323 
5324 	if (unlikely(IS_IMMUTABLE(inode)))
5325 		return -EPERM;
5326 
5327 	if (unlikely(IS_APPEND(inode) &&
5328 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5329 				  ATTR_GID | ATTR_TIMES_SET))))
5330 		return -EPERM;
5331 
5332 	error = setattr_prepare(idmap, dentry, attr);
5333 	if (error)
5334 		return error;
5335 
5336 	error = fscrypt_prepare_setattr(dentry, attr);
5337 	if (error)
5338 		return error;
5339 
5340 	error = fsverity_prepare_setattr(dentry, attr);
5341 	if (error)
5342 		return error;
5343 
5344 	if (is_quota_modification(idmap, inode, attr)) {
5345 		error = dquot_initialize(inode);
5346 		if (error)
5347 			return error;
5348 	}
5349 
5350 	if (i_uid_needs_update(idmap, attr, inode) ||
5351 	    i_gid_needs_update(idmap, attr, inode)) {
5352 		handle_t *handle;
5353 
5354 		/* (user+group)*(old+new) structure, inode write (sb,
5355 		 * inode block, ? - but truncate inode update has it) */
5356 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5357 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5358 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5359 		if (IS_ERR(handle)) {
5360 			error = PTR_ERR(handle);
5361 			goto err_out;
5362 		}
5363 
5364 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5365 		 * counts xattr inode references.
5366 		 */
5367 		down_read(&EXT4_I(inode)->xattr_sem);
5368 		error = dquot_transfer(idmap, inode, attr);
5369 		up_read(&EXT4_I(inode)->xattr_sem);
5370 
5371 		if (error) {
5372 			ext4_journal_stop(handle);
5373 			return error;
5374 		}
5375 		/* Update corresponding info in inode so that everything is in
5376 		 * one transaction */
5377 		i_uid_update(idmap, attr, inode);
5378 		i_gid_update(idmap, attr, inode);
5379 		error = ext4_mark_inode_dirty(handle, inode);
5380 		ext4_journal_stop(handle);
5381 		if (unlikely(error)) {
5382 			return error;
5383 		}
5384 	}
5385 
5386 	if (attr->ia_valid & ATTR_SIZE) {
5387 		handle_t *handle;
5388 		loff_t oldsize = inode->i_size;
5389 		loff_t old_disksize;
5390 		int shrink = (attr->ia_size < inode->i_size);
5391 
5392 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5393 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5394 
5395 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5396 				return -EFBIG;
5397 			}
5398 		}
5399 		if (!S_ISREG(inode->i_mode)) {
5400 			return -EINVAL;
5401 		}
5402 
5403 		if (attr->ia_size == inode->i_size)
5404 			inc_ivers = false;
5405 
5406 		if (shrink) {
5407 			if (ext4_should_order_data(inode)) {
5408 				error = ext4_begin_ordered_truncate(inode,
5409 							    attr->ia_size);
5410 				if (error)
5411 					goto err_out;
5412 			}
5413 			/*
5414 			 * Blocks are going to be removed from the inode. Wait
5415 			 * for dio in flight.
5416 			 */
5417 			inode_dio_wait(inode);
5418 		}
5419 
5420 		filemap_invalidate_lock(inode->i_mapping);
5421 
5422 		rc = ext4_break_layouts(inode);
5423 		if (rc) {
5424 			filemap_invalidate_unlock(inode->i_mapping);
5425 			goto err_out;
5426 		}
5427 
5428 		if (attr->ia_size != inode->i_size) {
5429 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5430 			if (IS_ERR(handle)) {
5431 				error = PTR_ERR(handle);
5432 				goto out_mmap_sem;
5433 			}
5434 			if (ext4_handle_valid(handle) && shrink) {
5435 				error = ext4_orphan_add(handle, inode);
5436 				orphan = 1;
5437 			}
5438 			/*
5439 			 * Update c/mtime on truncate up, ext4_truncate() will
5440 			 * update c/mtime in shrink case below
5441 			 */
5442 			if (!shrink)
5443 				inode_set_mtime_to_ts(inode,
5444 						      inode_set_ctime_current(inode));
5445 
5446 			if (shrink)
5447 				ext4_fc_track_range(handle, inode,
5448 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5449 					inode->i_sb->s_blocksize_bits,
5450 					EXT_MAX_BLOCKS - 1);
5451 			else
5452 				ext4_fc_track_range(
5453 					handle, inode,
5454 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5455 					inode->i_sb->s_blocksize_bits,
5456 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5457 					inode->i_sb->s_blocksize_bits);
5458 
5459 			down_write(&EXT4_I(inode)->i_data_sem);
5460 			old_disksize = EXT4_I(inode)->i_disksize;
5461 			EXT4_I(inode)->i_disksize = attr->ia_size;
5462 			rc = ext4_mark_inode_dirty(handle, inode);
5463 			if (!error)
5464 				error = rc;
5465 			/*
5466 			 * We have to update i_size under i_data_sem together
5467 			 * with i_disksize to avoid races with writeback code
5468 			 * running ext4_wb_update_i_disksize().
5469 			 */
5470 			if (!error)
5471 				i_size_write(inode, attr->ia_size);
5472 			else
5473 				EXT4_I(inode)->i_disksize = old_disksize;
5474 			up_write(&EXT4_I(inode)->i_data_sem);
5475 			ext4_journal_stop(handle);
5476 			if (error)
5477 				goto out_mmap_sem;
5478 			if (!shrink) {
5479 				pagecache_isize_extended(inode, oldsize,
5480 							 inode->i_size);
5481 			} else if (ext4_should_journal_data(inode)) {
5482 				ext4_wait_for_tail_page_commit(inode);
5483 			}
5484 		}
5485 
5486 		/*
5487 		 * Truncate pagecache after we've waited for commit
5488 		 * in data=journal mode to make pages freeable.
5489 		 */
5490 		truncate_pagecache(inode, inode->i_size);
5491 		/*
5492 		 * Call ext4_truncate() even if i_size didn't change to
5493 		 * truncate possible preallocated blocks.
5494 		 */
5495 		if (attr->ia_size <= oldsize) {
5496 			rc = ext4_truncate(inode);
5497 			if (rc)
5498 				error = rc;
5499 		}
5500 out_mmap_sem:
5501 		filemap_invalidate_unlock(inode->i_mapping);
5502 	}
5503 
5504 	if (!error) {
5505 		if (inc_ivers)
5506 			inode_inc_iversion(inode);
5507 		setattr_copy(idmap, inode, attr);
5508 		mark_inode_dirty(inode);
5509 	}
5510 
5511 	/*
5512 	 * If the call to ext4_truncate failed to get a transaction handle at
5513 	 * all, we need to clean up the in-core orphan list manually.
5514 	 */
5515 	if (orphan && inode->i_nlink)
5516 		ext4_orphan_del(NULL, inode);
5517 
5518 	if (!error && (ia_valid & ATTR_MODE))
5519 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5520 
5521 err_out:
5522 	if  (error)
5523 		ext4_std_error(inode->i_sb, error);
5524 	if (!error)
5525 		error = rc;
5526 	return error;
5527 }
5528 
5529 u32 ext4_dio_alignment(struct inode *inode)
5530 {
5531 	if (fsverity_active(inode))
5532 		return 0;
5533 	if (ext4_should_journal_data(inode))
5534 		return 0;
5535 	if (ext4_has_inline_data(inode))
5536 		return 0;
5537 	if (IS_ENCRYPTED(inode)) {
5538 		if (!fscrypt_dio_supported(inode))
5539 			return 0;
5540 		return i_blocksize(inode);
5541 	}
5542 	return 1; /* use the iomap defaults */
5543 }
5544 
5545 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5546 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5547 {
5548 	struct inode *inode = d_inode(path->dentry);
5549 	struct ext4_inode *raw_inode;
5550 	struct ext4_inode_info *ei = EXT4_I(inode);
5551 	unsigned int flags;
5552 
5553 	if ((request_mask & STATX_BTIME) &&
5554 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5555 		stat->result_mask |= STATX_BTIME;
5556 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5557 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5558 	}
5559 
5560 	/*
5561 	 * Return the DIO alignment restrictions if requested.  We only return
5562 	 * this information when requested, since on encrypted files it might
5563 	 * take a fair bit of work to get if the file wasn't opened recently.
5564 	 */
5565 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5566 		u32 dio_align = ext4_dio_alignment(inode);
5567 
5568 		stat->result_mask |= STATX_DIOALIGN;
5569 		if (dio_align == 1) {
5570 			struct block_device *bdev = inode->i_sb->s_bdev;
5571 
5572 			/* iomap defaults */
5573 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5574 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5575 		} else {
5576 			stat->dio_mem_align = dio_align;
5577 			stat->dio_offset_align = dio_align;
5578 		}
5579 	}
5580 
5581 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5582 	if (flags & EXT4_APPEND_FL)
5583 		stat->attributes |= STATX_ATTR_APPEND;
5584 	if (flags & EXT4_COMPR_FL)
5585 		stat->attributes |= STATX_ATTR_COMPRESSED;
5586 	if (flags & EXT4_ENCRYPT_FL)
5587 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5588 	if (flags & EXT4_IMMUTABLE_FL)
5589 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5590 	if (flags & EXT4_NODUMP_FL)
5591 		stat->attributes |= STATX_ATTR_NODUMP;
5592 	if (flags & EXT4_VERITY_FL)
5593 		stat->attributes |= STATX_ATTR_VERITY;
5594 
5595 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5596 				  STATX_ATTR_COMPRESSED |
5597 				  STATX_ATTR_ENCRYPTED |
5598 				  STATX_ATTR_IMMUTABLE |
5599 				  STATX_ATTR_NODUMP |
5600 				  STATX_ATTR_VERITY);
5601 
5602 	generic_fillattr(idmap, request_mask, inode, stat);
5603 	return 0;
5604 }
5605 
5606 int ext4_file_getattr(struct mnt_idmap *idmap,
5607 		      const struct path *path, struct kstat *stat,
5608 		      u32 request_mask, unsigned int query_flags)
5609 {
5610 	struct inode *inode = d_inode(path->dentry);
5611 	u64 delalloc_blocks;
5612 
5613 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5614 
5615 	/*
5616 	 * If there is inline data in the inode, the inode will normally not
5617 	 * have data blocks allocated (it may have an external xattr block).
5618 	 * Report at least one sector for such files, so tools like tar, rsync,
5619 	 * others don't incorrectly think the file is completely sparse.
5620 	 */
5621 	if (unlikely(ext4_has_inline_data(inode)))
5622 		stat->blocks += (stat->size + 511) >> 9;
5623 
5624 	/*
5625 	 * We can't update i_blocks if the block allocation is delayed
5626 	 * otherwise in the case of system crash before the real block
5627 	 * allocation is done, we will have i_blocks inconsistent with
5628 	 * on-disk file blocks.
5629 	 * We always keep i_blocks updated together with real
5630 	 * allocation. But to not confuse with user, stat
5631 	 * will return the blocks that include the delayed allocation
5632 	 * blocks for this file.
5633 	 */
5634 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5635 				   EXT4_I(inode)->i_reserved_data_blocks);
5636 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5637 	return 0;
5638 }
5639 
5640 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5641 				   int pextents)
5642 {
5643 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5644 		return ext4_ind_trans_blocks(inode, lblocks);
5645 	return ext4_ext_index_trans_blocks(inode, pextents);
5646 }
5647 
5648 /*
5649  * Account for index blocks, block groups bitmaps and block group
5650  * descriptor blocks if modify datablocks and index blocks
5651  * worse case, the indexs blocks spread over different block groups
5652  *
5653  * If datablocks are discontiguous, they are possible to spread over
5654  * different block groups too. If they are contiguous, with flexbg,
5655  * they could still across block group boundary.
5656  *
5657  * Also account for superblock, inode, quota and xattr blocks
5658  */
5659 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5660 				  int pextents)
5661 {
5662 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5663 	int gdpblocks;
5664 	int idxblocks;
5665 	int ret;
5666 
5667 	/*
5668 	 * How many index blocks need to touch to map @lblocks logical blocks
5669 	 * to @pextents physical extents?
5670 	 */
5671 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5672 
5673 	ret = idxblocks;
5674 
5675 	/*
5676 	 * Now let's see how many group bitmaps and group descriptors need
5677 	 * to account
5678 	 */
5679 	groups = idxblocks + pextents;
5680 	gdpblocks = groups;
5681 	if (groups > ngroups)
5682 		groups = ngroups;
5683 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5684 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5685 
5686 	/* bitmaps and block group descriptor blocks */
5687 	ret += groups + gdpblocks;
5688 
5689 	/* Blocks for super block, inode, quota and xattr blocks */
5690 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5691 
5692 	return ret;
5693 }
5694 
5695 /*
5696  * Calculate the total number of credits to reserve to fit
5697  * the modification of a single pages into a single transaction,
5698  * which may include multiple chunks of block allocations.
5699  *
5700  * This could be called via ext4_write_begin()
5701  *
5702  * We need to consider the worse case, when
5703  * one new block per extent.
5704  */
5705 int ext4_writepage_trans_blocks(struct inode *inode)
5706 {
5707 	int bpp = ext4_journal_blocks_per_page(inode);
5708 	int ret;
5709 
5710 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5711 
5712 	/* Account for data blocks for journalled mode */
5713 	if (ext4_should_journal_data(inode))
5714 		ret += bpp;
5715 	return ret;
5716 }
5717 
5718 /*
5719  * Calculate the journal credits for a chunk of data modification.
5720  *
5721  * This is called from DIO, fallocate or whoever calling
5722  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5723  *
5724  * journal buffers for data blocks are not included here, as DIO
5725  * and fallocate do no need to journal data buffers.
5726  */
5727 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5728 {
5729 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5730 }
5731 
5732 /*
5733  * The caller must have previously called ext4_reserve_inode_write().
5734  * Give this, we know that the caller already has write access to iloc->bh.
5735  */
5736 int ext4_mark_iloc_dirty(handle_t *handle,
5737 			 struct inode *inode, struct ext4_iloc *iloc)
5738 {
5739 	int err = 0;
5740 
5741 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5742 		put_bh(iloc->bh);
5743 		return -EIO;
5744 	}
5745 	ext4_fc_track_inode(handle, inode);
5746 
5747 	/* the do_update_inode consumes one bh->b_count */
5748 	get_bh(iloc->bh);
5749 
5750 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5751 	err = ext4_do_update_inode(handle, inode, iloc);
5752 	put_bh(iloc->bh);
5753 	return err;
5754 }
5755 
5756 /*
5757  * On success, We end up with an outstanding reference count against
5758  * iloc->bh.  This _must_ be cleaned up later.
5759  */
5760 
5761 int
5762 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5763 			 struct ext4_iloc *iloc)
5764 {
5765 	int err;
5766 
5767 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5768 		return -EIO;
5769 
5770 	err = ext4_get_inode_loc(inode, iloc);
5771 	if (!err) {
5772 		BUFFER_TRACE(iloc->bh, "get_write_access");
5773 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5774 						    iloc->bh, EXT4_JTR_NONE);
5775 		if (err) {
5776 			brelse(iloc->bh);
5777 			iloc->bh = NULL;
5778 		}
5779 	}
5780 	ext4_std_error(inode->i_sb, err);
5781 	return err;
5782 }
5783 
5784 static int __ext4_expand_extra_isize(struct inode *inode,
5785 				     unsigned int new_extra_isize,
5786 				     struct ext4_iloc *iloc,
5787 				     handle_t *handle, int *no_expand)
5788 {
5789 	struct ext4_inode *raw_inode;
5790 	struct ext4_xattr_ibody_header *header;
5791 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5792 	struct ext4_inode_info *ei = EXT4_I(inode);
5793 	int error;
5794 
5795 	/* this was checked at iget time, but double check for good measure */
5796 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5797 	    (ei->i_extra_isize & 3)) {
5798 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5799 				 ei->i_extra_isize,
5800 				 EXT4_INODE_SIZE(inode->i_sb));
5801 		return -EFSCORRUPTED;
5802 	}
5803 	if ((new_extra_isize < ei->i_extra_isize) ||
5804 	    (new_extra_isize < 4) ||
5805 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5806 		return -EINVAL;	/* Should never happen */
5807 
5808 	raw_inode = ext4_raw_inode(iloc);
5809 
5810 	header = IHDR(inode, raw_inode);
5811 
5812 	/* No extended attributes present */
5813 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5814 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5815 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5816 		       EXT4_I(inode)->i_extra_isize, 0,
5817 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5818 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5819 		return 0;
5820 	}
5821 
5822 	/*
5823 	 * We may need to allocate external xattr block so we need quotas
5824 	 * initialized. Here we can be called with various locks held so we
5825 	 * cannot affort to initialize quotas ourselves. So just bail.
5826 	 */
5827 	if (dquot_initialize_needed(inode))
5828 		return -EAGAIN;
5829 
5830 	/* try to expand with EAs present */
5831 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5832 					   raw_inode, handle);
5833 	if (error) {
5834 		/*
5835 		 * Inode size expansion failed; don't try again
5836 		 */
5837 		*no_expand = 1;
5838 	}
5839 
5840 	return error;
5841 }
5842 
5843 /*
5844  * Expand an inode by new_extra_isize bytes.
5845  * Returns 0 on success or negative error number on failure.
5846  */
5847 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5848 					  unsigned int new_extra_isize,
5849 					  struct ext4_iloc iloc,
5850 					  handle_t *handle)
5851 {
5852 	int no_expand;
5853 	int error;
5854 
5855 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5856 		return -EOVERFLOW;
5857 
5858 	/*
5859 	 * In nojournal mode, we can immediately attempt to expand
5860 	 * the inode.  When journaled, we first need to obtain extra
5861 	 * buffer credits since we may write into the EA block
5862 	 * with this same handle. If journal_extend fails, then it will
5863 	 * only result in a minor loss of functionality for that inode.
5864 	 * If this is felt to be critical, then e2fsck should be run to
5865 	 * force a large enough s_min_extra_isize.
5866 	 */
5867 	if (ext4_journal_extend(handle,
5868 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5869 		return -ENOSPC;
5870 
5871 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5872 		return -EBUSY;
5873 
5874 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5875 					  handle, &no_expand);
5876 	ext4_write_unlock_xattr(inode, &no_expand);
5877 
5878 	return error;
5879 }
5880 
5881 int ext4_expand_extra_isize(struct inode *inode,
5882 			    unsigned int new_extra_isize,
5883 			    struct ext4_iloc *iloc)
5884 {
5885 	handle_t *handle;
5886 	int no_expand;
5887 	int error, rc;
5888 
5889 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5890 		brelse(iloc->bh);
5891 		return -EOVERFLOW;
5892 	}
5893 
5894 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5895 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5896 	if (IS_ERR(handle)) {
5897 		error = PTR_ERR(handle);
5898 		brelse(iloc->bh);
5899 		return error;
5900 	}
5901 
5902 	ext4_write_lock_xattr(inode, &no_expand);
5903 
5904 	BUFFER_TRACE(iloc->bh, "get_write_access");
5905 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5906 					      EXT4_JTR_NONE);
5907 	if (error) {
5908 		brelse(iloc->bh);
5909 		goto out_unlock;
5910 	}
5911 
5912 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5913 					  handle, &no_expand);
5914 
5915 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5916 	if (!error)
5917 		error = rc;
5918 
5919 out_unlock:
5920 	ext4_write_unlock_xattr(inode, &no_expand);
5921 	ext4_journal_stop(handle);
5922 	return error;
5923 }
5924 
5925 /*
5926  * What we do here is to mark the in-core inode as clean with respect to inode
5927  * dirtiness (it may still be data-dirty).
5928  * This means that the in-core inode may be reaped by prune_icache
5929  * without having to perform any I/O.  This is a very good thing,
5930  * because *any* task may call prune_icache - even ones which
5931  * have a transaction open against a different journal.
5932  *
5933  * Is this cheating?  Not really.  Sure, we haven't written the
5934  * inode out, but prune_icache isn't a user-visible syncing function.
5935  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5936  * we start and wait on commits.
5937  */
5938 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5939 				const char *func, unsigned int line)
5940 {
5941 	struct ext4_iloc iloc;
5942 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5943 	int err;
5944 
5945 	might_sleep();
5946 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5947 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5948 	if (err)
5949 		goto out;
5950 
5951 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5952 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5953 					       iloc, handle);
5954 
5955 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5956 out:
5957 	if (unlikely(err))
5958 		ext4_error_inode_err(inode, func, line, 0, err,
5959 					"mark_inode_dirty error");
5960 	return err;
5961 }
5962 
5963 /*
5964  * ext4_dirty_inode() is called from __mark_inode_dirty()
5965  *
5966  * We're really interested in the case where a file is being extended.
5967  * i_size has been changed by generic_commit_write() and we thus need
5968  * to include the updated inode in the current transaction.
5969  *
5970  * Also, dquot_alloc_block() will always dirty the inode when blocks
5971  * are allocated to the file.
5972  *
5973  * If the inode is marked synchronous, we don't honour that here - doing
5974  * so would cause a commit on atime updates, which we don't bother doing.
5975  * We handle synchronous inodes at the highest possible level.
5976  */
5977 void ext4_dirty_inode(struct inode *inode, int flags)
5978 {
5979 	handle_t *handle;
5980 
5981 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5982 	if (IS_ERR(handle))
5983 		return;
5984 	ext4_mark_inode_dirty(handle, inode);
5985 	ext4_journal_stop(handle);
5986 }
5987 
5988 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989 {
5990 	journal_t *journal;
5991 	handle_t *handle;
5992 	int err;
5993 	int alloc_ctx;
5994 
5995 	/*
5996 	 * We have to be very careful here: changing a data block's
5997 	 * journaling status dynamically is dangerous.  If we write a
5998 	 * data block to the journal, change the status and then delete
5999 	 * that block, we risk forgetting to revoke the old log record
6000 	 * from the journal and so a subsequent replay can corrupt data.
6001 	 * So, first we make sure that the journal is empty and that
6002 	 * nobody is changing anything.
6003 	 */
6004 
6005 	journal = EXT4_JOURNAL(inode);
6006 	if (!journal)
6007 		return 0;
6008 	if (is_journal_aborted(journal))
6009 		return -EROFS;
6010 
6011 	/* Wait for all existing dio workers */
6012 	inode_dio_wait(inode);
6013 
6014 	/*
6015 	 * Before flushing the journal and switching inode's aops, we have
6016 	 * to flush all dirty data the inode has. There can be outstanding
6017 	 * delayed allocations, there can be unwritten extents created by
6018 	 * fallocate or buffered writes in dioread_nolock mode covered by
6019 	 * dirty data which can be converted only after flushing the dirty
6020 	 * data (and journalled aops don't know how to handle these cases).
6021 	 */
6022 	if (val) {
6023 		filemap_invalidate_lock(inode->i_mapping);
6024 		err = filemap_write_and_wait(inode->i_mapping);
6025 		if (err < 0) {
6026 			filemap_invalidate_unlock(inode->i_mapping);
6027 			return err;
6028 		}
6029 	}
6030 
6031 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6032 	jbd2_journal_lock_updates(journal);
6033 
6034 	/*
6035 	 * OK, there are no updates running now, and all cached data is
6036 	 * synced to disk.  We are now in a completely consistent state
6037 	 * which doesn't have anything in the journal, and we know that
6038 	 * no filesystem updates are running, so it is safe to modify
6039 	 * the inode's in-core data-journaling state flag now.
6040 	 */
6041 
6042 	if (val)
6043 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044 	else {
6045 		err = jbd2_journal_flush(journal, 0);
6046 		if (err < 0) {
6047 			jbd2_journal_unlock_updates(journal);
6048 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6049 			return err;
6050 		}
6051 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052 	}
6053 	ext4_set_aops(inode);
6054 
6055 	jbd2_journal_unlock_updates(journal);
6056 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6057 
6058 	if (val)
6059 		filemap_invalidate_unlock(inode->i_mapping);
6060 
6061 	/* Finally we can mark the inode as dirty. */
6062 
6063 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064 	if (IS_ERR(handle))
6065 		return PTR_ERR(handle);
6066 
6067 	ext4_fc_mark_ineligible(inode->i_sb,
6068 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6069 	err = ext4_mark_inode_dirty(handle, inode);
6070 	ext4_handle_sync(handle);
6071 	ext4_journal_stop(handle);
6072 	ext4_std_error(inode->i_sb, err);
6073 
6074 	return err;
6075 }
6076 
6077 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6078 			    struct buffer_head *bh)
6079 {
6080 	return !buffer_mapped(bh);
6081 }
6082 
6083 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6084 {
6085 	struct vm_area_struct *vma = vmf->vma;
6086 	struct folio *folio = page_folio(vmf->page);
6087 	loff_t size;
6088 	unsigned long len;
6089 	int err;
6090 	vm_fault_t ret;
6091 	struct file *file = vma->vm_file;
6092 	struct inode *inode = file_inode(file);
6093 	struct address_space *mapping = inode->i_mapping;
6094 	handle_t *handle;
6095 	get_block_t *get_block;
6096 	int retries = 0;
6097 
6098 	if (unlikely(IS_IMMUTABLE(inode)))
6099 		return VM_FAULT_SIGBUS;
6100 
6101 	sb_start_pagefault(inode->i_sb);
6102 	file_update_time(vma->vm_file);
6103 
6104 	filemap_invalidate_lock_shared(mapping);
6105 
6106 	err = ext4_convert_inline_data(inode);
6107 	if (err)
6108 		goto out_ret;
6109 
6110 	/*
6111 	 * On data journalling we skip straight to the transaction handle:
6112 	 * there's no delalloc; page truncated will be checked later; the
6113 	 * early return w/ all buffers mapped (calculates size/len) can't
6114 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6115 	 */
6116 	if (ext4_should_journal_data(inode))
6117 		goto retry_alloc;
6118 
6119 	/* Delalloc case is easy... */
6120 	if (test_opt(inode->i_sb, DELALLOC) &&
6121 	    !ext4_nonda_switch(inode->i_sb)) {
6122 		do {
6123 			err = block_page_mkwrite(vma, vmf,
6124 						   ext4_da_get_block_prep);
6125 		} while (err == -ENOSPC &&
6126 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6127 		goto out_ret;
6128 	}
6129 
6130 	folio_lock(folio);
6131 	size = i_size_read(inode);
6132 	/* Page got truncated from under us? */
6133 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6134 		folio_unlock(folio);
6135 		ret = VM_FAULT_NOPAGE;
6136 		goto out;
6137 	}
6138 
6139 	len = folio_size(folio);
6140 	if (folio_pos(folio) + len > size)
6141 		len = size - folio_pos(folio);
6142 	/*
6143 	 * Return if we have all the buffers mapped. This avoids the need to do
6144 	 * journal_start/journal_stop which can block and take a long time
6145 	 *
6146 	 * This cannot be done for data journalling, as we have to add the
6147 	 * inode to the transaction's list to writeprotect pages on commit.
6148 	 */
6149 	if (folio_buffers(folio)) {
6150 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6151 					    0, len, NULL,
6152 					    ext4_bh_unmapped)) {
6153 			/* Wait so that we don't change page under IO */
6154 			folio_wait_stable(folio);
6155 			ret = VM_FAULT_LOCKED;
6156 			goto out;
6157 		}
6158 	}
6159 	folio_unlock(folio);
6160 	/* OK, we need to fill the hole... */
6161 	if (ext4_should_dioread_nolock(inode))
6162 		get_block = ext4_get_block_unwritten;
6163 	else
6164 		get_block = ext4_get_block;
6165 retry_alloc:
6166 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6167 				    ext4_writepage_trans_blocks(inode));
6168 	if (IS_ERR(handle)) {
6169 		ret = VM_FAULT_SIGBUS;
6170 		goto out;
6171 	}
6172 	/*
6173 	 * Data journalling can't use block_page_mkwrite() because it
6174 	 * will set_buffer_dirty() before do_journal_get_write_access()
6175 	 * thus might hit warning messages for dirty metadata buffers.
6176 	 */
6177 	if (!ext4_should_journal_data(inode)) {
6178 		err = block_page_mkwrite(vma, vmf, get_block);
6179 	} else {
6180 		folio_lock(folio);
6181 		size = i_size_read(inode);
6182 		/* Page got truncated from under us? */
6183 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6184 			ret = VM_FAULT_NOPAGE;
6185 			goto out_error;
6186 		}
6187 
6188 		len = folio_size(folio);
6189 		if (folio_pos(folio) + len > size)
6190 			len = size - folio_pos(folio);
6191 
6192 		err = ext4_block_write_begin(handle, folio, 0, len,
6193 					     ext4_get_block);
6194 		if (!err) {
6195 			ret = VM_FAULT_SIGBUS;
6196 			if (ext4_journal_folio_buffers(handle, folio, len))
6197 				goto out_error;
6198 		} else {
6199 			folio_unlock(folio);
6200 		}
6201 	}
6202 	ext4_journal_stop(handle);
6203 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6204 		goto retry_alloc;
6205 out_ret:
6206 	ret = vmf_fs_error(err);
6207 out:
6208 	filemap_invalidate_unlock_shared(mapping);
6209 	sb_end_pagefault(inode->i_sb);
6210 	return ret;
6211 out_error:
6212 	folio_unlock(folio);
6213 	ext4_journal_stop(handle);
6214 	goto out;
6215 }
6216