1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static void ext4_journalled_zero_new_buffers(handle_t *handle, 53 struct inode *inode, 54 struct folio *folio, 55 unsigned from, unsigned to); 56 57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 58 struct ext4_inode_info *ei) 59 { 60 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 75 EXT4_GOOD_OLD_INODE_SIZE, 76 offset - EXT4_GOOD_OLD_INODE_SIZE); 77 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 78 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 79 csum_size); 80 offset += csum_size; 81 } 82 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 83 EXT4_INODE_SIZE(inode->i_sb) - offset); 84 } 85 86 return csum; 87 } 88 89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 90 struct ext4_inode_info *ei) 91 { 92 __u32 provided, calculated; 93 94 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 95 cpu_to_le32(EXT4_OS_LINUX) || 96 !ext4_has_metadata_csum(inode->i_sb)) 97 return 1; 98 99 provided = le16_to_cpu(raw->i_checksum_lo); 100 calculated = ext4_inode_csum(inode, raw, ei); 101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 102 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 103 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 104 else 105 calculated &= 0xFFFF; 106 107 return provided == calculated; 108 } 109 110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 111 struct ext4_inode_info *ei) 112 { 113 __u32 csum; 114 115 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 116 cpu_to_le32(EXT4_OS_LINUX) || 117 !ext4_has_metadata_csum(inode->i_sb)) 118 return; 119 120 csum = ext4_inode_csum(inode, raw, ei); 121 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 122 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 123 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 124 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 125 } 126 127 static inline int ext4_begin_ordered_truncate(struct inode *inode, 128 loff_t new_size) 129 { 130 trace_ext4_begin_ordered_truncate(inode, new_size); 131 /* 132 * If jinode is zero, then we never opened the file for 133 * writing, so there's no need to call 134 * jbd2_journal_begin_ordered_truncate() since there's no 135 * outstanding writes we need to flush. 136 */ 137 if (!EXT4_I(inode)->jinode) 138 return 0; 139 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 140 EXT4_I(inode)->jinode, 141 new_size); 142 } 143 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Called at the last iput() if i_nlink is zero. 168 */ 169 void ext4_evict_inode(struct inode *inode) 170 { 171 handle_t *handle; 172 int err; 173 /* 174 * Credits for final inode cleanup and freeing: 175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 176 * (xattr block freeing), bitmap, group descriptor (inode freeing) 177 */ 178 int extra_credits = 6; 179 struct ext4_xattr_inode_array *ea_inode_array = NULL; 180 bool freeze_protected = false; 181 182 trace_ext4_evict_inode(inode); 183 184 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 185 ext4_evict_ea_inode(inode); 186 if (inode->i_nlink) { 187 truncate_inode_pages_final(&inode->i_data); 188 189 goto no_delete; 190 } 191 192 if (is_bad_inode(inode)) 193 goto no_delete; 194 dquot_initialize(inode); 195 196 if (ext4_should_order_data(inode)) 197 ext4_begin_ordered_truncate(inode, 0); 198 truncate_inode_pages_final(&inode->i_data); 199 200 /* 201 * For inodes with journalled data, transaction commit could have 202 * dirtied the inode. And for inodes with dioread_nolock, unwritten 203 * extents converting worker could merge extents and also have dirtied 204 * the inode. Flush worker is ignoring it because of I_FREEING flag but 205 * we still need to remove the inode from the writeback lists. 206 */ 207 if (!list_empty_careful(&inode->i_io_list)) 208 inode_io_list_del(inode); 209 210 /* 211 * Protect us against freezing - iput() caller didn't have to have any 212 * protection against it. When we are in a running transaction though, 213 * we are already protected against freezing and we cannot grab further 214 * protection due to lock ordering constraints. 215 */ 216 if (!ext4_journal_current_handle()) { 217 sb_start_intwrite(inode->i_sb); 218 freeze_protected = true; 219 } 220 221 if (!IS_NOQUOTA(inode)) 222 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 223 224 /* 225 * Block bitmap, group descriptor, and inode are accounted in both 226 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 227 */ 228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 229 ext4_blocks_for_truncate(inode) + extra_credits - 3); 230 if (IS_ERR(handle)) { 231 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 232 /* 233 * If we're going to skip the normal cleanup, we still need to 234 * make sure that the in-core orphan linked list is properly 235 * cleaned up. 236 */ 237 ext4_orphan_del(NULL, inode); 238 if (freeze_protected) 239 sb_end_intwrite(inode->i_sb); 240 goto no_delete; 241 } 242 243 if (IS_SYNC(inode)) 244 ext4_handle_sync(handle); 245 246 /* 247 * Set inode->i_size to 0 before calling ext4_truncate(). We need 248 * special handling of symlinks here because i_size is used to 249 * determine whether ext4_inode_info->i_data contains symlink data or 250 * block mappings. Setting i_size to 0 will remove its fast symlink 251 * status. Erase i_data so that it becomes a valid empty block map. 252 */ 253 if (ext4_inode_is_fast_symlink(inode)) 254 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) { 263 err = ext4_truncate(inode); 264 if (err) { 265 ext4_error_err(inode->i_sb, -err, 266 "couldn't truncate inode %lu (err %d)", 267 inode->i_ino, err); 268 goto stop_handle; 269 } 270 } 271 272 /* Remove xattr references. */ 273 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 274 extra_credits); 275 if (err) { 276 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 if (freeze_protected) 281 sb_end_intwrite(inode->i_sb); 282 ext4_xattr_inode_array_free(ea_inode_array); 283 goto no_delete; 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 if (freeze_protected) 311 sb_end_intwrite(inode->i_sb); 312 ext4_xattr_inode_array_free(ea_inode_array); 313 return; 314 no_delete: 315 /* 316 * Check out some where else accidentally dirty the evicting inode, 317 * which may probably cause inode use-after-free issues later. 318 */ 319 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 320 321 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 322 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 324 } 325 326 #ifdef CONFIG_QUOTA 327 qsize_t *ext4_get_reserved_space(struct inode *inode) 328 { 329 return &EXT4_I(inode)->i_reserved_quota; 330 } 331 #endif 332 333 /* 334 * Called with i_data_sem down, which is important since we can call 335 * ext4_discard_preallocations() from here. 336 */ 337 void ext4_da_update_reserve_space(struct inode *inode, 338 int used, int quota_claim) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 341 struct ext4_inode_info *ei = EXT4_I(inode); 342 343 spin_lock(&ei->i_block_reservation_lock); 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 345 if (unlikely(used > ei->i_reserved_data_blocks)) { 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 347 "with only %d reserved data blocks", 348 __func__, inode->i_ino, used, 349 ei->i_reserved_data_blocks); 350 WARN_ON(1); 351 used = ei->i_reserved_data_blocks; 352 } 353 354 /* Update per-inode reservations */ 355 ei->i_reserved_data_blocks -= used; 356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 357 358 spin_unlock(&ei->i_block_reservation_lock); 359 360 /* Update quota subsystem for data blocks */ 361 if (quota_claim) 362 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 363 else { 364 /* 365 * We did fallocate with an offset that is already delayed 366 * allocated. So on delayed allocated writeback we should 367 * not re-claim the quota for fallocated blocks. 368 */ 369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 370 } 371 372 /* 373 * If we have done all the pending block allocations and if 374 * there aren't any writers on the inode, we can discard the 375 * inode's preallocations. 376 */ 377 if ((ei->i_reserved_data_blocks == 0) && 378 !inode_is_open_for_write(inode)) 379 ext4_discard_preallocations(inode); 380 } 381 382 static int __check_block_validity(struct inode *inode, const char *func, 383 unsigned int line, 384 struct ext4_map_blocks *map) 385 { 386 if (ext4_has_feature_journal(inode->i_sb) && 387 (inode->i_ino == 388 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 389 return 0; 390 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 391 ext4_error_inode(inode, func, line, map->m_pblk, 392 "lblock %lu mapped to illegal pblock %llu " 393 "(length %d)", (unsigned long) map->m_lblk, 394 map->m_pblk, map->m_len); 395 return -EFSCORRUPTED; 396 } 397 return 0; 398 } 399 400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 401 ext4_lblk_t len) 402 { 403 int ret; 404 405 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 406 return fscrypt_zeroout_range(inode, lblk, pblk, len); 407 408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 409 if (ret > 0) 410 ret = 0; 411 412 return ret; 413 } 414 415 #define check_block_validity(inode, map) \ 416 __check_block_validity((inode), __func__, __LINE__, (map)) 417 418 #ifdef ES_AGGRESSIVE_TEST 419 static void ext4_map_blocks_es_recheck(handle_t *handle, 420 struct inode *inode, 421 struct ext4_map_blocks *es_map, 422 struct ext4_map_blocks *map, 423 int flags) 424 { 425 int retval; 426 427 map->m_flags = 0; 428 /* 429 * There is a race window that the result is not the same. 430 * e.g. xfstests #223 when dioread_nolock enables. The reason 431 * is that we lookup a block mapping in extent status tree with 432 * out taking i_data_sem. So at the time the unwritten extent 433 * could be converted. 434 */ 435 down_read(&EXT4_I(inode)->i_data_sem); 436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 437 retval = ext4_ext_map_blocks(handle, inode, map, 0); 438 } else { 439 retval = ext4_ind_map_blocks(handle, inode, map, 0); 440 } 441 up_read((&EXT4_I(inode)->i_data_sem)); 442 443 /* 444 * We don't check m_len because extent will be collpased in status 445 * tree. So the m_len might not equal. 446 */ 447 if (es_map->m_lblk != map->m_lblk || 448 es_map->m_flags != map->m_flags || 449 es_map->m_pblk != map->m_pblk) { 450 printk("ES cache assertion failed for inode: %lu " 451 "es_cached ex [%d/%d/%llu/%x] != " 452 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 453 inode->i_ino, es_map->m_lblk, es_map->m_len, 454 es_map->m_pblk, es_map->m_flags, map->m_lblk, 455 map->m_len, map->m_pblk, map->m_flags, 456 retval, flags); 457 } 458 } 459 #endif /* ES_AGGRESSIVE_TEST */ 460 461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 462 struct ext4_map_blocks *map) 463 { 464 unsigned int status; 465 int retval; 466 467 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 468 retval = ext4_ext_map_blocks(handle, inode, map, 0); 469 else 470 retval = ext4_ind_map_blocks(handle, inode, map, 0); 471 472 if (retval <= 0) 473 return retval; 474 475 if (unlikely(retval != map->m_len)) { 476 ext4_warning(inode->i_sb, 477 "ES len assertion failed for inode " 478 "%lu: retval %d != map->m_len %d", 479 inode->i_ino, retval, map->m_len); 480 WARN_ON(1); 481 } 482 483 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 484 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 485 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 486 map->m_pblk, status, 0); 487 return retval; 488 } 489 490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 491 struct ext4_map_blocks *map, int flags) 492 { 493 struct extent_status es; 494 unsigned int status; 495 int err, retval = 0; 496 497 /* 498 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 499 * indicates that the blocks and quotas has already been 500 * checked when the data was copied into the page cache. 501 */ 502 if (map->m_flags & EXT4_MAP_DELAYED) 503 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 504 505 /* 506 * Here we clear m_flags because after allocating an new extent, 507 * it will be set again. 508 */ 509 map->m_flags &= ~EXT4_MAP_FLAGS; 510 511 /* 512 * We need to check for EXT4 here because migrate could have 513 * changed the inode type in between. 514 */ 515 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 516 retval = ext4_ext_map_blocks(handle, inode, map, flags); 517 } else { 518 retval = ext4_ind_map_blocks(handle, inode, map, flags); 519 520 /* 521 * We allocated new blocks which will result in i_data's 522 * format changing. Force the migrate to fail by clearing 523 * migrate flags. 524 */ 525 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 526 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 527 } 528 if (retval <= 0) 529 return retval; 530 531 if (unlikely(retval != map->m_len)) { 532 ext4_warning(inode->i_sb, 533 "ES len assertion failed for inode %lu: " 534 "retval %d != map->m_len %d", 535 inode->i_ino, retval, map->m_len); 536 WARN_ON(1); 537 } 538 539 /* 540 * We have to zeroout blocks before inserting them into extent 541 * status tree. Otherwise someone could look them up there and 542 * use them before they are really zeroed. We also have to 543 * unmap metadata before zeroing as otherwise writeback can 544 * overwrite zeros with stale data from block device. 545 */ 546 if (flags & EXT4_GET_BLOCKS_ZERO && 547 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 548 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 549 map->m_len); 550 if (err) 551 return err; 552 } 553 554 /* 555 * If the extent has been zeroed out, we don't need to update 556 * extent status tree. 557 */ 558 if (flags & EXT4_GET_BLOCKS_PRE_IO && 559 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 560 if (ext4_es_is_written(&es)) 561 return retval; 562 } 563 564 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 565 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 566 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 567 map->m_pblk, status, flags); 568 569 return retval; 570 } 571 572 /* 573 * The ext4_map_blocks() function tries to look up the requested blocks, 574 * and returns if the blocks are already mapped. 575 * 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 577 * and store the allocated blocks in the result buffer head and mark it 578 * mapped. 579 * 580 * If file type is extents based, it will call ext4_ext_map_blocks(), 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 582 * based files 583 * 584 * On success, it returns the number of blocks being mapped or allocated. 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 588 * 589 * It returns 0 if plain look up failed (blocks have not been allocated), in 590 * that case, @map is returned as unmapped but we still do fill map->m_len to 591 * indicate the length of a hole starting at map->m_lblk. 592 * 593 * It returns the error in case of allocation failure. 594 */ 595 int ext4_map_blocks(handle_t *handle, struct inode *inode, 596 struct ext4_map_blocks *map, int flags) 597 { 598 struct extent_status es; 599 int retval; 600 int ret = 0; 601 #ifdef ES_AGGRESSIVE_TEST 602 struct ext4_map_blocks orig_map; 603 604 memcpy(&orig_map, map, sizeof(*map)); 605 #endif 606 607 map->m_flags = 0; 608 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 609 flags, map->m_len, (unsigned long) map->m_lblk); 610 611 /* 612 * ext4_map_blocks returns an int, and m_len is an unsigned int 613 */ 614 if (unlikely(map->m_len > INT_MAX)) 615 map->m_len = INT_MAX; 616 617 /* We can handle the block number less than EXT_MAX_BLOCKS */ 618 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 619 return -EFSCORRUPTED; 620 621 /* Lookup extent status tree firstly */ 622 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 623 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 624 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 625 map->m_pblk = ext4_es_pblock(&es) + 626 map->m_lblk - es.es_lblk; 627 map->m_flags |= ext4_es_is_written(&es) ? 628 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 629 retval = es.es_len - (map->m_lblk - es.es_lblk); 630 if (retval > map->m_len) 631 retval = map->m_len; 632 map->m_len = retval; 633 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 634 map->m_pblk = 0; 635 map->m_flags |= ext4_es_is_delayed(&es) ? 636 EXT4_MAP_DELAYED : 0; 637 retval = es.es_len - (map->m_lblk - es.es_lblk); 638 if (retval > map->m_len) 639 retval = map->m_len; 640 map->m_len = retval; 641 retval = 0; 642 } else { 643 BUG(); 644 } 645 646 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 647 return retval; 648 #ifdef ES_AGGRESSIVE_TEST 649 ext4_map_blocks_es_recheck(handle, inode, map, 650 &orig_map, flags); 651 #endif 652 goto found; 653 } 654 /* 655 * In the query cache no-wait mode, nothing we can do more if we 656 * cannot find extent in the cache. 657 */ 658 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 659 return 0; 660 661 /* 662 * Try to see if we can get the block without requesting a new 663 * file system block. 664 */ 665 down_read(&EXT4_I(inode)->i_data_sem); 666 retval = ext4_map_query_blocks(handle, inode, map); 667 up_read((&EXT4_I(inode)->i_data_sem)); 668 669 found: 670 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 671 ret = check_block_validity(inode, map); 672 if (ret != 0) 673 return ret; 674 } 675 676 /* If it is only a block(s) look up */ 677 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 678 return retval; 679 680 /* 681 * Returns if the blocks have already allocated 682 * 683 * Note that if blocks have been preallocated 684 * ext4_ext_map_blocks() returns with buffer head unmapped 685 */ 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 687 /* 688 * If we need to convert extent to unwritten 689 * we continue and do the actual work in 690 * ext4_ext_map_blocks() 691 */ 692 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 693 return retval; 694 695 /* 696 * New blocks allocate and/or writing to unwritten extent 697 * will possibly result in updating i_data, so we take 698 * the write lock of i_data_sem, and call get_block() 699 * with create == 1 flag. 700 */ 701 down_write(&EXT4_I(inode)->i_data_sem); 702 retval = ext4_map_create_blocks(handle, inode, map, flags); 703 up_write((&EXT4_I(inode)->i_data_sem)); 704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 705 ret = check_block_validity(inode, map); 706 if (ret != 0) 707 return ret; 708 709 /* 710 * Inodes with freshly allocated blocks where contents will be 711 * visible after transaction commit must be on transaction's 712 * ordered data list. 713 */ 714 if (map->m_flags & EXT4_MAP_NEW && 715 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 716 !(flags & EXT4_GET_BLOCKS_ZERO) && 717 !ext4_is_quota_file(inode) && 718 ext4_should_order_data(inode)) { 719 loff_t start_byte = 720 (loff_t)map->m_lblk << inode->i_blkbits; 721 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 722 723 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 724 ret = ext4_jbd2_inode_add_wait(handle, inode, 725 start_byte, length); 726 else 727 ret = ext4_jbd2_inode_add_write(handle, inode, 728 start_byte, length); 729 if (ret) 730 return ret; 731 } 732 } 733 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 734 map->m_flags & EXT4_MAP_MAPPED)) 735 ext4_fc_track_range(handle, inode, map->m_lblk, 736 map->m_lblk + map->m_len - 1); 737 if (retval < 0) 738 ext_debug(inode, "failed with err %d\n", retval); 739 return retval; 740 } 741 742 /* 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 744 * we have to be careful as someone else may be manipulating b_state as well. 745 */ 746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 747 { 748 unsigned long old_state; 749 unsigned long new_state; 750 751 flags &= EXT4_MAP_FLAGS; 752 753 /* Dummy buffer_head? Set non-atomically. */ 754 if (!bh->b_page) { 755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 756 return; 757 } 758 /* 759 * Someone else may be modifying b_state. Be careful! This is ugly but 760 * once we get rid of using bh as a container for mapping information 761 * to pass to / from get_block functions, this can go away. 762 */ 763 old_state = READ_ONCE(bh->b_state); 764 do { 765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 766 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 767 } 768 769 static int _ext4_get_block(struct inode *inode, sector_t iblock, 770 struct buffer_head *bh, int flags) 771 { 772 struct ext4_map_blocks map; 773 int ret = 0; 774 775 if (ext4_has_inline_data(inode)) 776 return -ERANGE; 777 778 map.m_lblk = iblock; 779 map.m_len = bh->b_size >> inode->i_blkbits; 780 781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 782 flags); 783 if (ret > 0) { 784 map_bh(bh, inode->i_sb, map.m_pblk); 785 ext4_update_bh_state(bh, map.m_flags); 786 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 787 ret = 0; 788 } else if (ret == 0) { 789 /* hole case, need to fill in bh->b_size */ 790 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 791 } 792 return ret; 793 } 794 795 int ext4_get_block(struct inode *inode, sector_t iblock, 796 struct buffer_head *bh, int create) 797 { 798 return _ext4_get_block(inode, iblock, bh, 799 create ? EXT4_GET_BLOCKS_CREATE : 0); 800 } 801 802 /* 803 * Get block function used when preparing for buffered write if we require 804 * creating an unwritten extent if blocks haven't been allocated. The extent 805 * will be converted to written after the IO is complete. 806 */ 807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh_result, int create) 809 { 810 int ret = 0; 811 812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 813 inode->i_ino, create); 814 ret = _ext4_get_block(inode, iblock, bh_result, 815 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 816 817 /* 818 * If the buffer is marked unwritten, mark it as new to make sure it is 819 * zeroed out correctly in case of partial writes. Otherwise, there is 820 * a chance of stale data getting exposed. 821 */ 822 if (ret == 0 && buffer_unwritten(bh_result)) 823 set_buffer_new(bh_result); 824 825 return ret; 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 841 int err; 842 843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 844 || handle != NULL || create == 0); 845 ASSERT(create == 0 || !nowait); 846 847 map.m_lblk = block; 848 map.m_len = 1; 849 err = ext4_map_blocks(handle, inode, &map, map_flags); 850 851 if (err == 0) 852 return create ? ERR_PTR(-ENOSPC) : NULL; 853 if (err < 0) 854 return ERR_PTR(err); 855 856 if (nowait) 857 return sb_find_get_block(inode->i_sb, map.m_pblk); 858 859 bh = sb_getblk(inode->i_sb, map.m_pblk); 860 if (unlikely(!bh)) 861 return ERR_PTR(-ENOMEM); 862 if (map.m_flags & EXT4_MAP_NEW) { 863 ASSERT(create != 0); 864 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 865 || (handle != NULL)); 866 867 /* 868 * Now that we do not always journal data, we should 869 * keep in mind whether this should always journal the 870 * new buffer as metadata. For now, regular file 871 * writes use ext4_get_block instead, so it's not a 872 * problem. 873 */ 874 lock_buffer(bh); 875 BUFFER_TRACE(bh, "call get_create_access"); 876 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 877 EXT4_JTR_NONE); 878 if (unlikely(err)) { 879 unlock_buffer(bh); 880 goto errout; 881 } 882 if (!buffer_uptodate(bh)) { 883 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 884 set_buffer_uptodate(bh); 885 } 886 unlock_buffer(bh); 887 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 888 err = ext4_handle_dirty_metadata(handle, inode, bh); 889 if (unlikely(err)) 890 goto errout; 891 } else 892 BUFFER_TRACE(bh, "not a new buffer"); 893 return bh; 894 errout: 895 brelse(bh); 896 return ERR_PTR(err); 897 } 898 899 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 900 ext4_lblk_t block, int map_flags) 901 { 902 struct buffer_head *bh; 903 int ret; 904 905 bh = ext4_getblk(handle, inode, block, map_flags); 906 if (IS_ERR(bh)) 907 return bh; 908 if (!bh || ext4_buffer_uptodate(bh)) 909 return bh; 910 911 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 912 if (ret) { 913 put_bh(bh); 914 return ERR_PTR(ret); 915 } 916 return bh; 917 } 918 919 /* Read a contiguous batch of blocks. */ 920 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 921 bool wait, struct buffer_head **bhs) 922 { 923 int i, err; 924 925 for (i = 0; i < bh_count; i++) { 926 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 927 if (IS_ERR(bhs[i])) { 928 err = PTR_ERR(bhs[i]); 929 bh_count = i; 930 goto out_brelse; 931 } 932 } 933 934 for (i = 0; i < bh_count; i++) 935 /* Note that NULL bhs[i] is valid because of holes. */ 936 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 937 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 938 939 if (!wait) 940 return 0; 941 942 for (i = 0; i < bh_count; i++) 943 if (bhs[i]) 944 wait_on_buffer(bhs[i]); 945 946 for (i = 0; i < bh_count; i++) { 947 if (bhs[i] && !buffer_uptodate(bhs[i])) { 948 err = -EIO; 949 goto out_brelse; 950 } 951 } 952 return 0; 953 954 out_brelse: 955 for (i = 0; i < bh_count; i++) { 956 brelse(bhs[i]); 957 bhs[i] = NULL; 958 } 959 return err; 960 } 961 962 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 963 struct buffer_head *head, 964 unsigned from, 965 unsigned to, 966 int *partial, 967 int (*fn)(handle_t *handle, struct inode *inode, 968 struct buffer_head *bh)) 969 { 970 struct buffer_head *bh; 971 unsigned block_start, block_end; 972 unsigned blocksize = head->b_size; 973 int err, ret = 0; 974 struct buffer_head *next; 975 976 for (bh = head, block_start = 0; 977 ret == 0 && (bh != head || !block_start); 978 block_start = block_end, bh = next) { 979 next = bh->b_this_page; 980 block_end = block_start + blocksize; 981 if (block_end <= from || block_start >= to) { 982 if (partial && !buffer_uptodate(bh)) 983 *partial = 1; 984 continue; 985 } 986 err = (*fn)(handle, inode, bh); 987 if (!ret) 988 ret = err; 989 } 990 return ret; 991 } 992 993 /* 994 * Helper for handling dirtying of journalled data. We also mark the folio as 995 * dirty so that writeback code knows about this page (and inode) contains 996 * dirty data. ext4_writepages() then commits appropriate transaction to 997 * make data stable. 998 */ 999 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1000 { 1001 folio_mark_dirty(bh->b_folio); 1002 return ext4_handle_dirty_metadata(handle, NULL, bh); 1003 } 1004 1005 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1006 struct buffer_head *bh) 1007 { 1008 if (!buffer_mapped(bh) || buffer_freed(bh)) 1009 return 0; 1010 BUFFER_TRACE(bh, "get write access"); 1011 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1012 EXT4_JTR_NONE); 1013 } 1014 1015 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1016 loff_t pos, unsigned len, 1017 get_block_t *get_block) 1018 { 1019 unsigned from = pos & (PAGE_SIZE - 1); 1020 unsigned to = from + len; 1021 struct inode *inode = folio->mapping->host; 1022 unsigned block_start, block_end; 1023 sector_t block; 1024 int err = 0; 1025 unsigned blocksize = inode->i_sb->s_blocksize; 1026 unsigned bbits; 1027 struct buffer_head *bh, *head, *wait[2]; 1028 int nr_wait = 0; 1029 int i; 1030 bool should_journal_data = ext4_should_journal_data(inode); 1031 1032 BUG_ON(!folio_test_locked(folio)); 1033 BUG_ON(from > PAGE_SIZE); 1034 BUG_ON(to > PAGE_SIZE); 1035 BUG_ON(from > to); 1036 1037 head = folio_buffers(folio); 1038 if (!head) 1039 head = create_empty_buffers(folio, blocksize, 0); 1040 bbits = ilog2(blocksize); 1041 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1042 1043 for (bh = head, block_start = 0; bh != head || !block_start; 1044 block++, block_start = block_end, bh = bh->b_this_page) { 1045 block_end = block_start + blocksize; 1046 if (block_end <= from || block_start >= to) { 1047 if (folio_test_uptodate(folio)) { 1048 set_buffer_uptodate(bh); 1049 } 1050 continue; 1051 } 1052 if (buffer_new(bh)) 1053 clear_buffer_new(bh); 1054 if (!buffer_mapped(bh)) { 1055 WARN_ON(bh->b_size != blocksize); 1056 err = get_block(inode, block, bh, 1); 1057 if (err) 1058 break; 1059 if (buffer_new(bh)) { 1060 /* 1061 * We may be zeroing partial buffers or all new 1062 * buffers in case of failure. Prepare JBD2 for 1063 * that. 1064 */ 1065 if (should_journal_data) 1066 do_journal_get_write_access(handle, 1067 inode, bh); 1068 if (folio_test_uptodate(folio)) { 1069 /* 1070 * Unlike __block_write_begin() we leave 1071 * dirtying of new uptodate buffers to 1072 * ->write_end() time or 1073 * folio_zero_new_buffers(). 1074 */ 1075 set_buffer_uptodate(bh); 1076 continue; 1077 } 1078 if (block_end > to || block_start < from) 1079 folio_zero_segments(folio, to, 1080 block_end, 1081 block_start, from); 1082 continue; 1083 } 1084 } 1085 if (folio_test_uptodate(folio)) { 1086 set_buffer_uptodate(bh); 1087 continue; 1088 } 1089 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1090 !buffer_unwritten(bh) && 1091 (block_start < from || block_end > to)) { 1092 ext4_read_bh_lock(bh, 0, false); 1093 wait[nr_wait++] = bh; 1094 } 1095 } 1096 /* 1097 * If we issued read requests, let them complete. 1098 */ 1099 for (i = 0; i < nr_wait; i++) { 1100 wait_on_buffer(wait[i]); 1101 if (!buffer_uptodate(wait[i])) 1102 err = -EIO; 1103 } 1104 if (unlikely(err)) { 1105 if (should_journal_data) 1106 ext4_journalled_zero_new_buffers(handle, inode, folio, 1107 from, to); 1108 else 1109 folio_zero_new_buffers(folio, from, to); 1110 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1111 for (i = 0; i < nr_wait; i++) { 1112 int err2; 1113 1114 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1115 blocksize, bh_offset(wait[i])); 1116 if (err2) { 1117 clear_buffer_uptodate(wait[i]); 1118 err = err2; 1119 } 1120 } 1121 } 1122 1123 return err; 1124 } 1125 1126 /* 1127 * To preserve ordering, it is essential that the hole instantiation and 1128 * the data write be encapsulated in a single transaction. We cannot 1129 * close off a transaction and start a new one between the ext4_get_block() 1130 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1131 * ext4_write_begin() is the right place. 1132 */ 1133 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1134 loff_t pos, unsigned len, 1135 struct folio **foliop, void **fsdata) 1136 { 1137 struct inode *inode = mapping->host; 1138 int ret, needed_blocks; 1139 handle_t *handle; 1140 int retries = 0; 1141 struct folio *folio; 1142 pgoff_t index; 1143 unsigned from, to; 1144 1145 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1146 return -EIO; 1147 1148 trace_ext4_write_begin(inode, pos, len); 1149 /* 1150 * Reserve one block more for addition to orphan list in case 1151 * we allocate blocks but write fails for some reason 1152 */ 1153 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1154 index = pos >> PAGE_SHIFT; 1155 from = pos & (PAGE_SIZE - 1); 1156 to = from + len; 1157 1158 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1159 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1160 foliop); 1161 if (ret < 0) 1162 return ret; 1163 if (ret == 1) 1164 return 0; 1165 } 1166 1167 /* 1168 * __filemap_get_folio() can take a long time if the 1169 * system is thrashing due to memory pressure, or if the folio 1170 * is being written back. So grab it first before we start 1171 * the transaction handle. This also allows us to allocate 1172 * the folio (if needed) without using GFP_NOFS. 1173 */ 1174 retry_grab: 1175 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1176 mapping_gfp_mask(mapping)); 1177 if (IS_ERR(folio)) 1178 return PTR_ERR(folio); 1179 /* 1180 * The same as page allocation, we prealloc buffer heads before 1181 * starting the handle. 1182 */ 1183 if (!folio_buffers(folio)) 1184 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1185 1186 folio_unlock(folio); 1187 1188 retry_journal: 1189 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1190 if (IS_ERR(handle)) { 1191 folio_put(folio); 1192 return PTR_ERR(handle); 1193 } 1194 1195 folio_lock(folio); 1196 if (folio->mapping != mapping) { 1197 /* The folio got truncated from under us */ 1198 folio_unlock(folio); 1199 folio_put(folio); 1200 ext4_journal_stop(handle); 1201 goto retry_grab; 1202 } 1203 /* In case writeback began while the folio was unlocked */ 1204 folio_wait_stable(folio); 1205 1206 if (ext4_should_dioread_nolock(inode)) 1207 ret = ext4_block_write_begin(handle, folio, pos, len, 1208 ext4_get_block_unwritten); 1209 else 1210 ret = ext4_block_write_begin(handle, folio, pos, len, 1211 ext4_get_block); 1212 if (!ret && ext4_should_journal_data(inode)) { 1213 ret = ext4_walk_page_buffers(handle, inode, 1214 folio_buffers(folio), from, to, 1215 NULL, do_journal_get_write_access); 1216 } 1217 1218 if (ret) { 1219 bool extended = (pos + len > inode->i_size) && 1220 !ext4_verity_in_progress(inode); 1221 1222 folio_unlock(folio); 1223 /* 1224 * ext4_block_write_begin may have instantiated a few blocks 1225 * outside i_size. Trim these off again. Don't need 1226 * i_size_read because we hold i_rwsem. 1227 * 1228 * Add inode to orphan list in case we crash before 1229 * truncate finishes 1230 */ 1231 if (extended && ext4_can_truncate(inode)) 1232 ext4_orphan_add(handle, inode); 1233 1234 ext4_journal_stop(handle); 1235 if (extended) { 1236 ext4_truncate_failed_write(inode); 1237 /* 1238 * If truncate failed early the inode might 1239 * still be on the orphan list; we need to 1240 * make sure the inode is removed from the 1241 * orphan list in that case. 1242 */ 1243 if (inode->i_nlink) 1244 ext4_orphan_del(NULL, inode); 1245 } 1246 1247 if (ret == -ENOSPC && 1248 ext4_should_retry_alloc(inode->i_sb, &retries)) 1249 goto retry_journal; 1250 folio_put(folio); 1251 return ret; 1252 } 1253 *foliop = folio; 1254 return ret; 1255 } 1256 1257 /* For write_end() in data=journal mode */ 1258 static int write_end_fn(handle_t *handle, struct inode *inode, 1259 struct buffer_head *bh) 1260 { 1261 int ret; 1262 if (!buffer_mapped(bh) || buffer_freed(bh)) 1263 return 0; 1264 set_buffer_uptodate(bh); 1265 ret = ext4_dirty_journalled_data(handle, bh); 1266 clear_buffer_meta(bh); 1267 clear_buffer_prio(bh); 1268 return ret; 1269 } 1270 1271 /* 1272 * We need to pick up the new inode size which generic_commit_write gave us 1273 * `file' can be NULL - eg, when called from page_symlink(). 1274 * 1275 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1276 * buffers are managed internally. 1277 */ 1278 static int ext4_write_end(struct file *file, 1279 struct address_space *mapping, 1280 loff_t pos, unsigned len, unsigned copied, 1281 struct folio *folio, void *fsdata) 1282 { 1283 handle_t *handle = ext4_journal_current_handle(); 1284 struct inode *inode = mapping->host; 1285 loff_t old_size = inode->i_size; 1286 int ret = 0, ret2; 1287 int i_size_changed = 0; 1288 bool verity = ext4_verity_in_progress(inode); 1289 1290 trace_ext4_write_end(inode, pos, len, copied); 1291 1292 if (ext4_has_inline_data(inode) && 1293 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1294 return ext4_write_inline_data_end(inode, pos, len, copied, 1295 folio); 1296 1297 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 1298 /* 1299 * it's important to update i_size while still holding folio lock: 1300 * page writeout could otherwise come in and zero beyond i_size. 1301 * 1302 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1303 * blocks are being written past EOF, so skip the i_size update. 1304 */ 1305 if (!verity) 1306 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1307 folio_unlock(folio); 1308 folio_put(folio); 1309 1310 if (old_size < pos && !verity) 1311 pagecache_isize_extended(inode, old_size, pos); 1312 /* 1313 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1314 * makes the holding time of folio lock longer. Second, it forces lock 1315 * ordering of folio lock and transaction start for journaling 1316 * filesystems. 1317 */ 1318 if (i_size_changed) 1319 ret = ext4_mark_inode_dirty(handle, inode); 1320 1321 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1322 /* if we have allocated more blocks and copied 1323 * less. We will have blocks allocated outside 1324 * inode->i_size. So truncate them 1325 */ 1326 ext4_orphan_add(handle, inode); 1327 1328 ret2 = ext4_journal_stop(handle); 1329 if (!ret) 1330 ret = ret2; 1331 1332 if (pos + len > inode->i_size && !verity) { 1333 ext4_truncate_failed_write(inode); 1334 /* 1335 * If truncate failed early the inode might still be 1336 * on the orphan list; we need to make sure the inode 1337 * is removed from the orphan list in that case. 1338 */ 1339 if (inode->i_nlink) 1340 ext4_orphan_del(NULL, inode); 1341 } 1342 1343 return ret ? ret : copied; 1344 } 1345 1346 /* 1347 * This is a private version of folio_zero_new_buffers() which doesn't 1348 * set the buffer to be dirty, since in data=journalled mode we need 1349 * to call ext4_dirty_journalled_data() instead. 1350 */ 1351 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1352 struct inode *inode, 1353 struct folio *folio, 1354 unsigned from, unsigned to) 1355 { 1356 unsigned int block_start = 0, block_end; 1357 struct buffer_head *head, *bh; 1358 1359 bh = head = folio_buffers(folio); 1360 do { 1361 block_end = block_start + bh->b_size; 1362 if (buffer_new(bh)) { 1363 if (block_end > from && block_start < to) { 1364 if (!folio_test_uptodate(folio)) { 1365 unsigned start, size; 1366 1367 start = max(from, block_start); 1368 size = min(to, block_end) - start; 1369 1370 folio_zero_range(folio, start, size); 1371 } 1372 clear_buffer_new(bh); 1373 write_end_fn(handle, inode, bh); 1374 } 1375 } 1376 block_start = block_end; 1377 bh = bh->b_this_page; 1378 } while (bh != head); 1379 } 1380 1381 static int ext4_journalled_write_end(struct file *file, 1382 struct address_space *mapping, 1383 loff_t pos, unsigned len, unsigned copied, 1384 struct folio *folio, void *fsdata) 1385 { 1386 handle_t *handle = ext4_journal_current_handle(); 1387 struct inode *inode = mapping->host; 1388 loff_t old_size = inode->i_size; 1389 int ret = 0, ret2; 1390 int partial = 0; 1391 unsigned from, to; 1392 int size_changed = 0; 1393 bool verity = ext4_verity_in_progress(inode); 1394 1395 trace_ext4_journalled_write_end(inode, pos, len, copied); 1396 from = pos & (PAGE_SIZE - 1); 1397 to = from + len; 1398 1399 BUG_ON(!ext4_handle_valid(handle)); 1400 1401 if (ext4_has_inline_data(inode)) 1402 return ext4_write_inline_data_end(inode, pos, len, copied, 1403 folio); 1404 1405 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1406 copied = 0; 1407 ext4_journalled_zero_new_buffers(handle, inode, folio, 1408 from, to); 1409 } else { 1410 if (unlikely(copied < len)) 1411 ext4_journalled_zero_new_buffers(handle, inode, folio, 1412 from + copied, to); 1413 ret = ext4_walk_page_buffers(handle, inode, 1414 folio_buffers(folio), 1415 from, from + copied, &partial, 1416 write_end_fn); 1417 if (!partial) 1418 folio_mark_uptodate(folio); 1419 } 1420 if (!verity) 1421 size_changed = ext4_update_inode_size(inode, pos + copied); 1422 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1423 folio_unlock(folio); 1424 folio_put(folio); 1425 1426 if (old_size < pos && !verity) 1427 pagecache_isize_extended(inode, old_size, pos); 1428 1429 if (size_changed) { 1430 ret2 = ext4_mark_inode_dirty(handle, inode); 1431 if (!ret) 1432 ret = ret2; 1433 } 1434 1435 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1436 /* if we have allocated more blocks and copied 1437 * less. We will have blocks allocated outside 1438 * inode->i_size. So truncate them 1439 */ 1440 ext4_orphan_add(handle, inode); 1441 1442 ret2 = ext4_journal_stop(handle); 1443 if (!ret) 1444 ret = ret2; 1445 if (pos + len > inode->i_size && !verity) { 1446 ext4_truncate_failed_write(inode); 1447 /* 1448 * If truncate failed early the inode might still be 1449 * on the orphan list; we need to make sure the inode 1450 * is removed from the orphan list in that case. 1451 */ 1452 if (inode->i_nlink) 1453 ext4_orphan_del(NULL, inode); 1454 } 1455 1456 return ret ? ret : copied; 1457 } 1458 1459 /* 1460 * Reserve space for 'nr_resv' clusters 1461 */ 1462 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1463 { 1464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1465 struct ext4_inode_info *ei = EXT4_I(inode); 1466 int ret; 1467 1468 /* 1469 * We will charge metadata quota at writeout time; this saves 1470 * us from metadata over-estimation, though we may go over by 1471 * a small amount in the end. Here we just reserve for data. 1472 */ 1473 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1474 if (ret) 1475 return ret; 1476 1477 spin_lock(&ei->i_block_reservation_lock); 1478 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1479 spin_unlock(&ei->i_block_reservation_lock); 1480 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1481 return -ENOSPC; 1482 } 1483 ei->i_reserved_data_blocks += nr_resv; 1484 trace_ext4_da_reserve_space(inode, nr_resv); 1485 spin_unlock(&ei->i_block_reservation_lock); 1486 1487 return 0; /* success */ 1488 } 1489 1490 void ext4_da_release_space(struct inode *inode, int to_free) 1491 { 1492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1493 struct ext4_inode_info *ei = EXT4_I(inode); 1494 1495 if (!to_free) 1496 return; /* Nothing to release, exit */ 1497 1498 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1499 1500 trace_ext4_da_release_space(inode, to_free); 1501 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1502 /* 1503 * if there aren't enough reserved blocks, then the 1504 * counter is messed up somewhere. Since this 1505 * function is called from invalidate page, it's 1506 * harmless to return without any action. 1507 */ 1508 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1509 "ino %lu, to_free %d with only %d reserved " 1510 "data blocks", inode->i_ino, to_free, 1511 ei->i_reserved_data_blocks); 1512 WARN_ON(1); 1513 to_free = ei->i_reserved_data_blocks; 1514 } 1515 ei->i_reserved_data_blocks -= to_free; 1516 1517 /* update fs dirty data blocks counter */ 1518 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1519 1520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1521 1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1523 } 1524 1525 /* 1526 * Delayed allocation stuff 1527 */ 1528 1529 struct mpage_da_data { 1530 /* These are input fields for ext4_do_writepages() */ 1531 struct inode *inode; 1532 struct writeback_control *wbc; 1533 unsigned int can_map:1; /* Can writepages call map blocks? */ 1534 1535 /* These are internal state of ext4_do_writepages() */ 1536 pgoff_t first_page; /* The first page to write */ 1537 pgoff_t next_page; /* Current page to examine */ 1538 pgoff_t last_page; /* Last page to examine */ 1539 /* 1540 * Extent to map - this can be after first_page because that can be 1541 * fully mapped. We somewhat abuse m_flags to store whether the extent 1542 * is delalloc or unwritten. 1543 */ 1544 struct ext4_map_blocks map; 1545 struct ext4_io_submit io_submit; /* IO submission data */ 1546 unsigned int do_map:1; 1547 unsigned int scanned_until_end:1; 1548 unsigned int journalled_more_data:1; 1549 }; 1550 1551 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1552 bool invalidate) 1553 { 1554 unsigned nr, i; 1555 pgoff_t index, end; 1556 struct folio_batch fbatch; 1557 struct inode *inode = mpd->inode; 1558 struct address_space *mapping = inode->i_mapping; 1559 1560 /* This is necessary when next_page == 0. */ 1561 if (mpd->first_page >= mpd->next_page) 1562 return; 1563 1564 mpd->scanned_until_end = 0; 1565 index = mpd->first_page; 1566 end = mpd->next_page - 1; 1567 if (invalidate) { 1568 ext4_lblk_t start, last; 1569 start = index << (PAGE_SHIFT - inode->i_blkbits); 1570 last = end << (PAGE_SHIFT - inode->i_blkbits); 1571 1572 /* 1573 * avoid racing with extent status tree scans made by 1574 * ext4_insert_delayed_block() 1575 */ 1576 down_write(&EXT4_I(inode)->i_data_sem); 1577 ext4_es_remove_extent(inode, start, last - start + 1); 1578 up_write(&EXT4_I(inode)->i_data_sem); 1579 } 1580 1581 folio_batch_init(&fbatch); 1582 while (index <= end) { 1583 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1584 if (nr == 0) 1585 break; 1586 for (i = 0; i < nr; i++) { 1587 struct folio *folio = fbatch.folios[i]; 1588 1589 if (folio->index < mpd->first_page) 1590 continue; 1591 if (folio_next_index(folio) - 1 > end) 1592 continue; 1593 BUG_ON(!folio_test_locked(folio)); 1594 BUG_ON(folio_test_writeback(folio)); 1595 if (invalidate) { 1596 if (folio_mapped(folio)) 1597 folio_clear_dirty_for_io(folio); 1598 block_invalidate_folio(folio, 0, 1599 folio_size(folio)); 1600 folio_clear_uptodate(folio); 1601 } 1602 folio_unlock(folio); 1603 } 1604 folio_batch_release(&fbatch); 1605 } 1606 } 1607 1608 static void ext4_print_free_blocks(struct inode *inode) 1609 { 1610 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1611 struct super_block *sb = inode->i_sb; 1612 struct ext4_inode_info *ei = EXT4_I(inode); 1613 1614 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1615 EXT4_C2B(EXT4_SB(inode->i_sb), 1616 ext4_count_free_clusters(sb))); 1617 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1618 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1619 (long long) EXT4_C2B(EXT4_SB(sb), 1620 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1621 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1622 (long long) EXT4_C2B(EXT4_SB(sb), 1623 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1624 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1625 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1626 ei->i_reserved_data_blocks); 1627 return; 1628 } 1629 1630 /* 1631 * Check whether the cluster containing lblk has been allocated or has 1632 * delalloc reservation. 1633 * 1634 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1635 * reservation, 2 if it's already been allocated, negative error code on 1636 * failure. 1637 */ 1638 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1639 { 1640 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1641 int ret; 1642 1643 /* Has delalloc reservation? */ 1644 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1645 return 1; 1646 1647 /* Already been allocated? */ 1648 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1649 return 2; 1650 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1651 if (ret < 0) 1652 return ret; 1653 if (ret > 0) 1654 return 2; 1655 1656 return 0; 1657 } 1658 1659 /* 1660 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1661 * status tree, incrementing the reserved 1662 * cluster/block count or making pending 1663 * reservations where needed 1664 * 1665 * @inode - file containing the newly added block 1666 * @lblk - start logical block to be added 1667 * @len - length of blocks to be added 1668 * 1669 * Returns 0 on success, negative error code on failure. 1670 */ 1671 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1672 ext4_lblk_t len) 1673 { 1674 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1675 int ret; 1676 bool lclu_allocated = false; 1677 bool end_allocated = false; 1678 ext4_lblk_t resv_clu; 1679 ext4_lblk_t end = lblk + len - 1; 1680 1681 /* 1682 * If the cluster containing lblk or end is shared with a delayed, 1683 * written, or unwritten extent in a bigalloc file system, it's 1684 * already been accounted for and does not need to be reserved. 1685 * A pending reservation must be made for the cluster if it's 1686 * shared with a written or unwritten extent and doesn't already 1687 * have one. Written and unwritten extents can be purged from the 1688 * extents status tree if the system is under memory pressure, so 1689 * it's necessary to examine the extent tree if a search of the 1690 * extents status tree doesn't get a match. 1691 */ 1692 if (sbi->s_cluster_ratio == 1) { 1693 ret = ext4_da_reserve_space(inode, len); 1694 if (ret != 0) /* ENOSPC */ 1695 return ret; 1696 } else { /* bigalloc */ 1697 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1698 1699 ret = ext4_clu_alloc_state(inode, lblk); 1700 if (ret < 0) 1701 return ret; 1702 if (ret > 0) { 1703 resv_clu--; 1704 lclu_allocated = (ret == 2); 1705 } 1706 1707 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1708 ret = ext4_clu_alloc_state(inode, end); 1709 if (ret < 0) 1710 return ret; 1711 if (ret > 0) { 1712 resv_clu--; 1713 end_allocated = (ret == 2); 1714 } 1715 } 1716 1717 if (resv_clu) { 1718 ret = ext4_da_reserve_space(inode, resv_clu); 1719 if (ret != 0) /* ENOSPC */ 1720 return ret; 1721 } 1722 } 1723 1724 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1725 end_allocated); 1726 return 0; 1727 } 1728 1729 /* 1730 * Looks up the requested blocks and sets the delalloc extent map. 1731 * First try to look up for the extent entry that contains the requested 1732 * blocks in the extent status tree without i_data_sem, then try to look 1733 * up for the ondisk extent mapping with i_data_sem in read mode, 1734 * finally hold i_data_sem in write mode, looks up again and add a 1735 * delalloc extent entry if it still couldn't find any extent. Pass out 1736 * the mapped extent through @map and return 0 on success. 1737 */ 1738 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1739 { 1740 struct extent_status es; 1741 int retval; 1742 #ifdef ES_AGGRESSIVE_TEST 1743 struct ext4_map_blocks orig_map; 1744 1745 memcpy(&orig_map, map, sizeof(*map)); 1746 #endif 1747 1748 map->m_flags = 0; 1749 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1750 (unsigned long) map->m_lblk); 1751 1752 /* Lookup extent status tree firstly */ 1753 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1754 map->m_len = min_t(unsigned int, map->m_len, 1755 es.es_len - (map->m_lblk - es.es_lblk)); 1756 1757 if (ext4_es_is_hole(&es)) 1758 goto add_delayed; 1759 1760 found: 1761 /* 1762 * Delayed extent could be allocated by fallocate. 1763 * So we need to check it. 1764 */ 1765 if (ext4_es_is_delayed(&es)) { 1766 map->m_flags |= EXT4_MAP_DELAYED; 1767 return 0; 1768 } 1769 1770 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1771 if (ext4_es_is_written(&es)) 1772 map->m_flags |= EXT4_MAP_MAPPED; 1773 else if (ext4_es_is_unwritten(&es)) 1774 map->m_flags |= EXT4_MAP_UNWRITTEN; 1775 else 1776 BUG(); 1777 1778 #ifdef ES_AGGRESSIVE_TEST 1779 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1780 #endif 1781 return 0; 1782 } 1783 1784 /* 1785 * Try to see if we can get the block without requesting a new 1786 * file system block. 1787 */ 1788 down_read(&EXT4_I(inode)->i_data_sem); 1789 if (ext4_has_inline_data(inode)) 1790 retval = 0; 1791 else 1792 retval = ext4_map_query_blocks(NULL, inode, map); 1793 up_read(&EXT4_I(inode)->i_data_sem); 1794 if (retval) 1795 return retval < 0 ? retval : 0; 1796 1797 add_delayed: 1798 down_write(&EXT4_I(inode)->i_data_sem); 1799 /* 1800 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1801 * and fallocate path (no folio lock) can race. Make sure we 1802 * lookup the extent status tree here again while i_data_sem 1803 * is held in write mode, before inserting a new da entry in 1804 * the extent status tree. 1805 */ 1806 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1807 map->m_len = min_t(unsigned int, map->m_len, 1808 es.es_len - (map->m_lblk - es.es_lblk)); 1809 1810 if (!ext4_es_is_hole(&es)) { 1811 up_write(&EXT4_I(inode)->i_data_sem); 1812 goto found; 1813 } 1814 } else if (!ext4_has_inline_data(inode)) { 1815 retval = ext4_map_query_blocks(NULL, inode, map); 1816 if (retval) { 1817 up_write(&EXT4_I(inode)->i_data_sem); 1818 return retval < 0 ? retval : 0; 1819 } 1820 } 1821 1822 map->m_flags |= EXT4_MAP_DELAYED; 1823 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1824 up_write(&EXT4_I(inode)->i_data_sem); 1825 1826 return retval; 1827 } 1828 1829 /* 1830 * This is a special get_block_t callback which is used by 1831 * ext4_da_write_begin(). It will either return mapped block or 1832 * reserve space for a single block. 1833 * 1834 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1835 * We also have b_blocknr = -1 and b_bdev initialized properly 1836 * 1837 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1838 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1839 * initialized properly. 1840 */ 1841 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1842 struct buffer_head *bh, int create) 1843 { 1844 struct ext4_map_blocks map; 1845 sector_t invalid_block = ~((sector_t) 0xffff); 1846 int ret = 0; 1847 1848 BUG_ON(create == 0); 1849 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1850 1851 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1852 invalid_block = ~0; 1853 1854 map.m_lblk = iblock; 1855 map.m_len = 1; 1856 1857 /* 1858 * first, we need to know whether the block is allocated already 1859 * preallocated blocks are unmapped but should treated 1860 * the same as allocated blocks. 1861 */ 1862 ret = ext4_da_map_blocks(inode, &map); 1863 if (ret < 0) 1864 return ret; 1865 1866 if (map.m_flags & EXT4_MAP_DELAYED) { 1867 map_bh(bh, inode->i_sb, invalid_block); 1868 set_buffer_new(bh); 1869 set_buffer_delay(bh); 1870 return 0; 1871 } 1872 1873 map_bh(bh, inode->i_sb, map.m_pblk); 1874 ext4_update_bh_state(bh, map.m_flags); 1875 1876 if (buffer_unwritten(bh)) { 1877 /* A delayed write to unwritten bh should be marked 1878 * new and mapped. Mapped ensures that we don't do 1879 * get_block multiple times when we write to the same 1880 * offset and new ensures that we do proper zero out 1881 * for partial write. 1882 */ 1883 set_buffer_new(bh); 1884 set_buffer_mapped(bh); 1885 } 1886 return 0; 1887 } 1888 1889 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1890 { 1891 mpd->first_page += folio_nr_pages(folio); 1892 folio_unlock(folio); 1893 } 1894 1895 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1896 { 1897 size_t len; 1898 loff_t size; 1899 int err; 1900 1901 BUG_ON(folio->index != mpd->first_page); 1902 folio_clear_dirty_for_io(folio); 1903 /* 1904 * We have to be very careful here! Nothing protects writeback path 1905 * against i_size changes and the page can be writeably mapped into 1906 * page tables. So an application can be growing i_size and writing 1907 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1908 * write-protects our page in page tables and the page cannot get 1909 * written to again until we release folio lock. So only after 1910 * folio_clear_dirty_for_io() we are safe to sample i_size for 1911 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1912 * on the barrier provided by folio_test_clear_dirty() in 1913 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1914 * after page tables are updated. 1915 */ 1916 size = i_size_read(mpd->inode); 1917 len = folio_size(folio); 1918 if (folio_pos(folio) + len > size && 1919 !ext4_verity_in_progress(mpd->inode)) 1920 len = size & (len - 1); 1921 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1922 if (!err) 1923 mpd->wbc->nr_to_write--; 1924 1925 return err; 1926 } 1927 1928 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1929 1930 /* 1931 * mballoc gives us at most this number of blocks... 1932 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1933 * The rest of mballoc seems to handle chunks up to full group size. 1934 */ 1935 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1936 1937 /* 1938 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1939 * 1940 * @mpd - extent of blocks 1941 * @lblk - logical number of the block in the file 1942 * @bh - buffer head we want to add to the extent 1943 * 1944 * The function is used to collect contig. blocks in the same state. If the 1945 * buffer doesn't require mapping for writeback and we haven't started the 1946 * extent of buffers to map yet, the function returns 'true' immediately - the 1947 * caller can write the buffer right away. Otherwise the function returns true 1948 * if the block has been added to the extent, false if the block couldn't be 1949 * added. 1950 */ 1951 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1952 struct buffer_head *bh) 1953 { 1954 struct ext4_map_blocks *map = &mpd->map; 1955 1956 /* Buffer that doesn't need mapping for writeback? */ 1957 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1958 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1959 /* So far no extent to map => we write the buffer right away */ 1960 if (map->m_len == 0) 1961 return true; 1962 return false; 1963 } 1964 1965 /* First block in the extent? */ 1966 if (map->m_len == 0) { 1967 /* We cannot map unless handle is started... */ 1968 if (!mpd->do_map) 1969 return false; 1970 map->m_lblk = lblk; 1971 map->m_len = 1; 1972 map->m_flags = bh->b_state & BH_FLAGS; 1973 return true; 1974 } 1975 1976 /* Don't go larger than mballoc is willing to allocate */ 1977 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1978 return false; 1979 1980 /* Can we merge the block to our big extent? */ 1981 if (lblk == map->m_lblk + map->m_len && 1982 (bh->b_state & BH_FLAGS) == map->m_flags) { 1983 map->m_len++; 1984 return true; 1985 } 1986 return false; 1987 } 1988 1989 /* 1990 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1991 * 1992 * @mpd - extent of blocks for mapping 1993 * @head - the first buffer in the page 1994 * @bh - buffer we should start processing from 1995 * @lblk - logical number of the block in the file corresponding to @bh 1996 * 1997 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1998 * the page for IO if all buffers in this page were mapped and there's no 1999 * accumulated extent of buffers to map or add buffers in the page to the 2000 * extent of buffers to map. The function returns 1 if the caller can continue 2001 * by processing the next page, 0 if it should stop adding buffers to the 2002 * extent to map because we cannot extend it anymore. It can also return value 2003 * < 0 in case of error during IO submission. 2004 */ 2005 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2006 struct buffer_head *head, 2007 struct buffer_head *bh, 2008 ext4_lblk_t lblk) 2009 { 2010 struct inode *inode = mpd->inode; 2011 int err; 2012 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2013 >> inode->i_blkbits; 2014 2015 if (ext4_verity_in_progress(inode)) 2016 blocks = EXT_MAX_BLOCKS; 2017 2018 do { 2019 BUG_ON(buffer_locked(bh)); 2020 2021 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2022 /* Found extent to map? */ 2023 if (mpd->map.m_len) 2024 return 0; 2025 /* Buffer needs mapping and handle is not started? */ 2026 if (!mpd->do_map) 2027 return 0; 2028 /* Everything mapped so far and we hit EOF */ 2029 break; 2030 } 2031 } while (lblk++, (bh = bh->b_this_page) != head); 2032 /* So far everything mapped? Submit the page for IO. */ 2033 if (mpd->map.m_len == 0) { 2034 err = mpage_submit_folio(mpd, head->b_folio); 2035 if (err < 0) 2036 return err; 2037 mpage_folio_done(mpd, head->b_folio); 2038 } 2039 if (lblk >= blocks) { 2040 mpd->scanned_until_end = 1; 2041 return 0; 2042 } 2043 return 1; 2044 } 2045 2046 /* 2047 * mpage_process_folio - update folio buffers corresponding to changed extent 2048 * and may submit fully mapped page for IO 2049 * @mpd: description of extent to map, on return next extent to map 2050 * @folio: Contains these buffers. 2051 * @m_lblk: logical block mapping. 2052 * @m_pblk: corresponding physical mapping. 2053 * @map_bh: determines on return whether this page requires any further 2054 * mapping or not. 2055 * 2056 * Scan given folio buffers corresponding to changed extent and update buffer 2057 * state according to new extent state. 2058 * We map delalloc buffers to their physical location, clear unwritten bits. 2059 * If the given folio is not fully mapped, we update @mpd to the next extent in 2060 * the given folio that needs mapping & return @map_bh as true. 2061 */ 2062 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2063 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2064 bool *map_bh) 2065 { 2066 struct buffer_head *head, *bh; 2067 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2068 ext4_lblk_t lblk = *m_lblk; 2069 ext4_fsblk_t pblock = *m_pblk; 2070 int err = 0; 2071 int blkbits = mpd->inode->i_blkbits; 2072 ssize_t io_end_size = 0; 2073 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2074 2075 bh = head = folio_buffers(folio); 2076 do { 2077 if (lblk < mpd->map.m_lblk) 2078 continue; 2079 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2080 /* 2081 * Buffer after end of mapped extent. 2082 * Find next buffer in the folio to map. 2083 */ 2084 mpd->map.m_len = 0; 2085 mpd->map.m_flags = 0; 2086 io_end_vec->size += io_end_size; 2087 2088 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2089 if (err > 0) 2090 err = 0; 2091 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2092 io_end_vec = ext4_alloc_io_end_vec(io_end); 2093 if (IS_ERR(io_end_vec)) { 2094 err = PTR_ERR(io_end_vec); 2095 goto out; 2096 } 2097 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2098 } 2099 *map_bh = true; 2100 goto out; 2101 } 2102 if (buffer_delay(bh)) { 2103 clear_buffer_delay(bh); 2104 bh->b_blocknr = pblock++; 2105 } 2106 clear_buffer_unwritten(bh); 2107 io_end_size += (1 << blkbits); 2108 } while (lblk++, (bh = bh->b_this_page) != head); 2109 2110 io_end_vec->size += io_end_size; 2111 *map_bh = false; 2112 out: 2113 *m_lblk = lblk; 2114 *m_pblk = pblock; 2115 return err; 2116 } 2117 2118 /* 2119 * mpage_map_buffers - update buffers corresponding to changed extent and 2120 * submit fully mapped pages for IO 2121 * 2122 * @mpd - description of extent to map, on return next extent to map 2123 * 2124 * Scan buffers corresponding to changed extent (we expect corresponding pages 2125 * to be already locked) and update buffer state according to new extent state. 2126 * We map delalloc buffers to their physical location, clear unwritten bits, 2127 * and mark buffers as uninit when we perform writes to unwritten extents 2128 * and do extent conversion after IO is finished. If the last page is not fully 2129 * mapped, we update @map to the next extent in the last page that needs 2130 * mapping. Otherwise we submit the page for IO. 2131 */ 2132 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2133 { 2134 struct folio_batch fbatch; 2135 unsigned nr, i; 2136 struct inode *inode = mpd->inode; 2137 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2138 pgoff_t start, end; 2139 ext4_lblk_t lblk; 2140 ext4_fsblk_t pblock; 2141 int err; 2142 bool map_bh = false; 2143 2144 start = mpd->map.m_lblk >> bpp_bits; 2145 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2146 lblk = start << bpp_bits; 2147 pblock = mpd->map.m_pblk; 2148 2149 folio_batch_init(&fbatch); 2150 while (start <= end) { 2151 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2152 if (nr == 0) 2153 break; 2154 for (i = 0; i < nr; i++) { 2155 struct folio *folio = fbatch.folios[i]; 2156 2157 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2158 &map_bh); 2159 /* 2160 * If map_bh is true, means page may require further bh 2161 * mapping, or maybe the page was submitted for IO. 2162 * So we return to call further extent mapping. 2163 */ 2164 if (err < 0 || map_bh) 2165 goto out; 2166 /* Page fully mapped - let IO run! */ 2167 err = mpage_submit_folio(mpd, folio); 2168 if (err < 0) 2169 goto out; 2170 mpage_folio_done(mpd, folio); 2171 } 2172 folio_batch_release(&fbatch); 2173 } 2174 /* Extent fully mapped and matches with page boundary. We are done. */ 2175 mpd->map.m_len = 0; 2176 mpd->map.m_flags = 0; 2177 return 0; 2178 out: 2179 folio_batch_release(&fbatch); 2180 return err; 2181 } 2182 2183 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2184 { 2185 struct inode *inode = mpd->inode; 2186 struct ext4_map_blocks *map = &mpd->map; 2187 int get_blocks_flags; 2188 int err, dioread_nolock; 2189 2190 trace_ext4_da_write_pages_extent(inode, map); 2191 /* 2192 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2193 * to convert an unwritten extent to be initialized (in the case 2194 * where we have written into one or more preallocated blocks). It is 2195 * possible that we're going to need more metadata blocks than 2196 * previously reserved. However we must not fail because we're in 2197 * writeback and there is nothing we can do about it so it might result 2198 * in data loss. So use reserved blocks to allocate metadata if 2199 * possible. 2200 */ 2201 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2202 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2203 EXT4_GET_BLOCKS_IO_SUBMIT; 2204 dioread_nolock = ext4_should_dioread_nolock(inode); 2205 if (dioread_nolock) 2206 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2207 2208 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2209 if (err < 0) 2210 return err; 2211 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2212 if (!mpd->io_submit.io_end->handle && 2213 ext4_handle_valid(handle)) { 2214 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2215 handle->h_rsv_handle = NULL; 2216 } 2217 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2218 } 2219 2220 BUG_ON(map->m_len == 0); 2221 return 0; 2222 } 2223 2224 /* 2225 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2226 * mpd->len and submit pages underlying it for IO 2227 * 2228 * @handle - handle for journal operations 2229 * @mpd - extent to map 2230 * @give_up_on_write - we set this to true iff there is a fatal error and there 2231 * is no hope of writing the data. The caller should discard 2232 * dirty pages to avoid infinite loops. 2233 * 2234 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2235 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2236 * them to initialized or split the described range from larger unwritten 2237 * extent. Note that we need not map all the described range since allocation 2238 * can return less blocks or the range is covered by more unwritten extents. We 2239 * cannot map more because we are limited by reserved transaction credits. On 2240 * the other hand we always make sure that the last touched page is fully 2241 * mapped so that it can be written out (and thus forward progress is 2242 * guaranteed). After mapping we submit all mapped pages for IO. 2243 */ 2244 static int mpage_map_and_submit_extent(handle_t *handle, 2245 struct mpage_da_data *mpd, 2246 bool *give_up_on_write) 2247 { 2248 struct inode *inode = mpd->inode; 2249 struct ext4_map_blocks *map = &mpd->map; 2250 int err; 2251 loff_t disksize; 2252 int progress = 0; 2253 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2254 struct ext4_io_end_vec *io_end_vec; 2255 2256 io_end_vec = ext4_alloc_io_end_vec(io_end); 2257 if (IS_ERR(io_end_vec)) 2258 return PTR_ERR(io_end_vec); 2259 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2260 do { 2261 err = mpage_map_one_extent(handle, mpd); 2262 if (err < 0) { 2263 struct super_block *sb = inode->i_sb; 2264 2265 if (ext4_forced_shutdown(sb)) 2266 goto invalidate_dirty_pages; 2267 /* 2268 * Let the uper layers retry transient errors. 2269 * In the case of ENOSPC, if ext4_count_free_blocks() 2270 * is non-zero, a commit should free up blocks. 2271 */ 2272 if ((err == -ENOMEM) || 2273 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2274 if (progress) 2275 goto update_disksize; 2276 return err; 2277 } 2278 ext4_msg(sb, KERN_CRIT, 2279 "Delayed block allocation failed for " 2280 "inode %lu at logical offset %llu with" 2281 " max blocks %u with error %d", 2282 inode->i_ino, 2283 (unsigned long long)map->m_lblk, 2284 (unsigned)map->m_len, -err); 2285 ext4_msg(sb, KERN_CRIT, 2286 "This should not happen!! Data will " 2287 "be lost\n"); 2288 if (err == -ENOSPC) 2289 ext4_print_free_blocks(inode); 2290 invalidate_dirty_pages: 2291 *give_up_on_write = true; 2292 return err; 2293 } 2294 progress = 1; 2295 /* 2296 * Update buffer state, submit mapped pages, and get us new 2297 * extent to map 2298 */ 2299 err = mpage_map_and_submit_buffers(mpd); 2300 if (err < 0) 2301 goto update_disksize; 2302 } while (map->m_len); 2303 2304 update_disksize: 2305 /* 2306 * Update on-disk size after IO is submitted. Races with 2307 * truncate are avoided by checking i_size under i_data_sem. 2308 */ 2309 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2310 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2311 int err2; 2312 loff_t i_size; 2313 2314 down_write(&EXT4_I(inode)->i_data_sem); 2315 i_size = i_size_read(inode); 2316 if (disksize > i_size) 2317 disksize = i_size; 2318 if (disksize > EXT4_I(inode)->i_disksize) 2319 EXT4_I(inode)->i_disksize = disksize; 2320 up_write(&EXT4_I(inode)->i_data_sem); 2321 err2 = ext4_mark_inode_dirty(handle, inode); 2322 if (err2) { 2323 ext4_error_err(inode->i_sb, -err2, 2324 "Failed to mark inode %lu dirty", 2325 inode->i_ino); 2326 } 2327 if (!err) 2328 err = err2; 2329 } 2330 return err; 2331 } 2332 2333 /* 2334 * Calculate the total number of credits to reserve for one writepages 2335 * iteration. This is called from ext4_writepages(). We map an extent of 2336 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2337 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2338 * bpp - 1 blocks in bpp different extents. 2339 */ 2340 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2341 { 2342 int bpp = ext4_journal_blocks_per_page(inode); 2343 2344 return ext4_meta_trans_blocks(inode, 2345 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2346 } 2347 2348 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2349 size_t len) 2350 { 2351 struct buffer_head *page_bufs = folio_buffers(folio); 2352 struct inode *inode = folio->mapping->host; 2353 int ret, err; 2354 2355 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2356 NULL, do_journal_get_write_access); 2357 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2358 NULL, write_end_fn); 2359 if (ret == 0) 2360 ret = err; 2361 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2362 if (ret == 0) 2363 ret = err; 2364 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2365 2366 return ret; 2367 } 2368 2369 static int mpage_journal_page_buffers(handle_t *handle, 2370 struct mpage_da_data *mpd, 2371 struct folio *folio) 2372 { 2373 struct inode *inode = mpd->inode; 2374 loff_t size = i_size_read(inode); 2375 size_t len = folio_size(folio); 2376 2377 folio_clear_checked(folio); 2378 mpd->wbc->nr_to_write--; 2379 2380 if (folio_pos(folio) + len > size && 2381 !ext4_verity_in_progress(inode)) 2382 len = size & (len - 1); 2383 2384 return ext4_journal_folio_buffers(handle, folio, len); 2385 } 2386 2387 /* 2388 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2389 * needing mapping, submit mapped pages 2390 * 2391 * @mpd - where to look for pages 2392 * 2393 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2394 * IO immediately. If we cannot map blocks, we submit just already mapped 2395 * buffers in the page for IO and keep page dirty. When we can map blocks and 2396 * we find a page which isn't mapped we start accumulating extent of buffers 2397 * underlying these pages that needs mapping (formed by either delayed or 2398 * unwritten buffers). We also lock the pages containing these buffers. The 2399 * extent found is returned in @mpd structure (starting at mpd->lblk with 2400 * length mpd->len blocks). 2401 * 2402 * Note that this function can attach bios to one io_end structure which are 2403 * neither logically nor physically contiguous. Although it may seem as an 2404 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2405 * case as we need to track IO to all buffers underlying a page in one io_end. 2406 */ 2407 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2408 { 2409 struct address_space *mapping = mpd->inode->i_mapping; 2410 struct folio_batch fbatch; 2411 unsigned int nr_folios; 2412 pgoff_t index = mpd->first_page; 2413 pgoff_t end = mpd->last_page; 2414 xa_mark_t tag; 2415 int i, err = 0; 2416 int blkbits = mpd->inode->i_blkbits; 2417 ext4_lblk_t lblk; 2418 struct buffer_head *head; 2419 handle_t *handle = NULL; 2420 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2421 2422 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2423 tag = PAGECACHE_TAG_TOWRITE; 2424 else 2425 tag = PAGECACHE_TAG_DIRTY; 2426 2427 mpd->map.m_len = 0; 2428 mpd->next_page = index; 2429 if (ext4_should_journal_data(mpd->inode)) { 2430 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2431 bpp); 2432 if (IS_ERR(handle)) 2433 return PTR_ERR(handle); 2434 } 2435 folio_batch_init(&fbatch); 2436 while (index <= end) { 2437 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2438 tag, &fbatch); 2439 if (nr_folios == 0) 2440 break; 2441 2442 for (i = 0; i < nr_folios; i++) { 2443 struct folio *folio = fbatch.folios[i]; 2444 2445 /* 2446 * Accumulated enough dirty pages? This doesn't apply 2447 * to WB_SYNC_ALL mode. For integrity sync we have to 2448 * keep going because someone may be concurrently 2449 * dirtying pages, and we might have synced a lot of 2450 * newly appeared dirty pages, but have not synced all 2451 * of the old dirty pages. 2452 */ 2453 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2454 mpd->wbc->nr_to_write <= 2455 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2456 goto out; 2457 2458 /* If we can't merge this page, we are done. */ 2459 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2460 goto out; 2461 2462 if (handle) { 2463 err = ext4_journal_ensure_credits(handle, bpp, 2464 0); 2465 if (err < 0) 2466 goto out; 2467 } 2468 2469 folio_lock(folio); 2470 /* 2471 * If the page is no longer dirty, or its mapping no 2472 * longer corresponds to inode we are writing (which 2473 * means it has been truncated or invalidated), or the 2474 * page is already under writeback and we are not doing 2475 * a data integrity writeback, skip the page 2476 */ 2477 if (!folio_test_dirty(folio) || 2478 (folio_test_writeback(folio) && 2479 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2480 unlikely(folio->mapping != mapping)) { 2481 folio_unlock(folio); 2482 continue; 2483 } 2484 2485 folio_wait_writeback(folio); 2486 BUG_ON(folio_test_writeback(folio)); 2487 2488 /* 2489 * Should never happen but for buggy code in 2490 * other subsystems that call 2491 * set_page_dirty() without properly warning 2492 * the file system first. See [1] for more 2493 * information. 2494 * 2495 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2496 */ 2497 if (!folio_buffers(folio)) { 2498 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2499 folio_clear_dirty(folio); 2500 folio_unlock(folio); 2501 continue; 2502 } 2503 2504 if (mpd->map.m_len == 0) 2505 mpd->first_page = folio->index; 2506 mpd->next_page = folio_next_index(folio); 2507 /* 2508 * Writeout when we cannot modify metadata is simple. 2509 * Just submit the page. For data=journal mode we 2510 * first handle writeout of the page for checkpoint and 2511 * only after that handle delayed page dirtying. This 2512 * makes sure current data is checkpointed to the final 2513 * location before possibly journalling it again which 2514 * is desirable when the page is frequently dirtied 2515 * through a pin. 2516 */ 2517 if (!mpd->can_map) { 2518 err = mpage_submit_folio(mpd, folio); 2519 if (err < 0) 2520 goto out; 2521 /* Pending dirtying of journalled data? */ 2522 if (folio_test_checked(folio)) { 2523 err = mpage_journal_page_buffers(handle, 2524 mpd, folio); 2525 if (err < 0) 2526 goto out; 2527 mpd->journalled_more_data = 1; 2528 } 2529 mpage_folio_done(mpd, folio); 2530 } else { 2531 /* Add all dirty buffers to mpd */ 2532 lblk = ((ext4_lblk_t)folio->index) << 2533 (PAGE_SHIFT - blkbits); 2534 head = folio_buffers(folio); 2535 err = mpage_process_page_bufs(mpd, head, head, 2536 lblk); 2537 if (err <= 0) 2538 goto out; 2539 err = 0; 2540 } 2541 } 2542 folio_batch_release(&fbatch); 2543 cond_resched(); 2544 } 2545 mpd->scanned_until_end = 1; 2546 if (handle) 2547 ext4_journal_stop(handle); 2548 return 0; 2549 out: 2550 folio_batch_release(&fbatch); 2551 if (handle) 2552 ext4_journal_stop(handle); 2553 return err; 2554 } 2555 2556 static int ext4_do_writepages(struct mpage_da_data *mpd) 2557 { 2558 struct writeback_control *wbc = mpd->wbc; 2559 pgoff_t writeback_index = 0; 2560 long nr_to_write = wbc->nr_to_write; 2561 int range_whole = 0; 2562 int cycled = 1; 2563 handle_t *handle = NULL; 2564 struct inode *inode = mpd->inode; 2565 struct address_space *mapping = inode->i_mapping; 2566 int needed_blocks, rsv_blocks = 0, ret = 0; 2567 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2568 struct blk_plug plug; 2569 bool give_up_on_write = false; 2570 2571 trace_ext4_writepages(inode, wbc); 2572 2573 /* 2574 * No pages to write? This is mainly a kludge to avoid starting 2575 * a transaction for special inodes like journal inode on last iput() 2576 * because that could violate lock ordering on umount 2577 */ 2578 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2579 goto out_writepages; 2580 2581 /* 2582 * If the filesystem has aborted, it is read-only, so return 2583 * right away instead of dumping stack traces later on that 2584 * will obscure the real source of the problem. We test 2585 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2586 * the latter could be true if the filesystem is mounted 2587 * read-only, and in that case, ext4_writepages should 2588 * *never* be called, so if that ever happens, we would want 2589 * the stack trace. 2590 */ 2591 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2592 ret = -EROFS; 2593 goto out_writepages; 2594 } 2595 2596 /* 2597 * If we have inline data and arrive here, it means that 2598 * we will soon create the block for the 1st page, so 2599 * we'd better clear the inline data here. 2600 */ 2601 if (ext4_has_inline_data(inode)) { 2602 /* Just inode will be modified... */ 2603 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2604 if (IS_ERR(handle)) { 2605 ret = PTR_ERR(handle); 2606 goto out_writepages; 2607 } 2608 BUG_ON(ext4_test_inode_state(inode, 2609 EXT4_STATE_MAY_INLINE_DATA)); 2610 ext4_destroy_inline_data(handle, inode); 2611 ext4_journal_stop(handle); 2612 } 2613 2614 /* 2615 * data=journal mode does not do delalloc so we just need to writeout / 2616 * journal already mapped buffers. On the other hand we need to commit 2617 * transaction to make data stable. We expect all the data to be 2618 * already in the journal (the only exception are DMA pinned pages 2619 * dirtied behind our back) so we commit transaction here and run the 2620 * writeback loop to checkpoint them. The checkpointing is not actually 2621 * necessary to make data persistent *but* quite a few places (extent 2622 * shifting operations, fsverity, ...) depend on being able to drop 2623 * pagecache pages after calling filemap_write_and_wait() and for that 2624 * checkpointing needs to happen. 2625 */ 2626 if (ext4_should_journal_data(inode)) { 2627 mpd->can_map = 0; 2628 if (wbc->sync_mode == WB_SYNC_ALL) 2629 ext4_fc_commit(sbi->s_journal, 2630 EXT4_I(inode)->i_datasync_tid); 2631 } 2632 mpd->journalled_more_data = 0; 2633 2634 if (ext4_should_dioread_nolock(inode)) { 2635 /* 2636 * We may need to convert up to one extent per block in 2637 * the page and we may dirty the inode. 2638 */ 2639 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2640 PAGE_SIZE >> inode->i_blkbits); 2641 } 2642 2643 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2644 range_whole = 1; 2645 2646 if (wbc->range_cyclic) { 2647 writeback_index = mapping->writeback_index; 2648 if (writeback_index) 2649 cycled = 0; 2650 mpd->first_page = writeback_index; 2651 mpd->last_page = -1; 2652 } else { 2653 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2654 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2655 } 2656 2657 ext4_io_submit_init(&mpd->io_submit, wbc); 2658 retry: 2659 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2660 tag_pages_for_writeback(mapping, mpd->first_page, 2661 mpd->last_page); 2662 blk_start_plug(&plug); 2663 2664 /* 2665 * First writeback pages that don't need mapping - we can avoid 2666 * starting a transaction unnecessarily and also avoid being blocked 2667 * in the block layer on device congestion while having transaction 2668 * started. 2669 */ 2670 mpd->do_map = 0; 2671 mpd->scanned_until_end = 0; 2672 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2673 if (!mpd->io_submit.io_end) { 2674 ret = -ENOMEM; 2675 goto unplug; 2676 } 2677 ret = mpage_prepare_extent_to_map(mpd); 2678 /* Unlock pages we didn't use */ 2679 mpage_release_unused_pages(mpd, false); 2680 /* Submit prepared bio */ 2681 ext4_io_submit(&mpd->io_submit); 2682 ext4_put_io_end_defer(mpd->io_submit.io_end); 2683 mpd->io_submit.io_end = NULL; 2684 if (ret < 0) 2685 goto unplug; 2686 2687 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2688 /* For each extent of pages we use new io_end */ 2689 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2690 if (!mpd->io_submit.io_end) { 2691 ret = -ENOMEM; 2692 break; 2693 } 2694 2695 WARN_ON_ONCE(!mpd->can_map); 2696 /* 2697 * We have two constraints: We find one extent to map and we 2698 * must always write out whole page (makes a difference when 2699 * blocksize < pagesize) so that we don't block on IO when we 2700 * try to write out the rest of the page. Journalled mode is 2701 * not supported by delalloc. 2702 */ 2703 BUG_ON(ext4_should_journal_data(inode)); 2704 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2705 2706 /* start a new transaction */ 2707 handle = ext4_journal_start_with_reserve(inode, 2708 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2709 if (IS_ERR(handle)) { 2710 ret = PTR_ERR(handle); 2711 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2712 "%ld pages, ino %lu; err %d", __func__, 2713 wbc->nr_to_write, inode->i_ino, ret); 2714 /* Release allocated io_end */ 2715 ext4_put_io_end(mpd->io_submit.io_end); 2716 mpd->io_submit.io_end = NULL; 2717 break; 2718 } 2719 mpd->do_map = 1; 2720 2721 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2722 ret = mpage_prepare_extent_to_map(mpd); 2723 if (!ret && mpd->map.m_len) 2724 ret = mpage_map_and_submit_extent(handle, mpd, 2725 &give_up_on_write); 2726 /* 2727 * Caution: If the handle is synchronous, 2728 * ext4_journal_stop() can wait for transaction commit 2729 * to finish which may depend on writeback of pages to 2730 * complete or on page lock to be released. In that 2731 * case, we have to wait until after we have 2732 * submitted all the IO, released page locks we hold, 2733 * and dropped io_end reference (for extent conversion 2734 * to be able to complete) before stopping the handle. 2735 */ 2736 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2737 ext4_journal_stop(handle); 2738 handle = NULL; 2739 mpd->do_map = 0; 2740 } 2741 /* Unlock pages we didn't use */ 2742 mpage_release_unused_pages(mpd, give_up_on_write); 2743 /* Submit prepared bio */ 2744 ext4_io_submit(&mpd->io_submit); 2745 2746 /* 2747 * Drop our io_end reference we got from init. We have 2748 * to be careful and use deferred io_end finishing if 2749 * we are still holding the transaction as we can 2750 * release the last reference to io_end which may end 2751 * up doing unwritten extent conversion. 2752 */ 2753 if (handle) { 2754 ext4_put_io_end_defer(mpd->io_submit.io_end); 2755 ext4_journal_stop(handle); 2756 } else 2757 ext4_put_io_end(mpd->io_submit.io_end); 2758 mpd->io_submit.io_end = NULL; 2759 2760 if (ret == -ENOSPC && sbi->s_journal) { 2761 /* 2762 * Commit the transaction which would 2763 * free blocks released in the transaction 2764 * and try again 2765 */ 2766 jbd2_journal_force_commit_nested(sbi->s_journal); 2767 ret = 0; 2768 continue; 2769 } 2770 /* Fatal error - ENOMEM, EIO... */ 2771 if (ret) 2772 break; 2773 } 2774 unplug: 2775 blk_finish_plug(&plug); 2776 if (!ret && !cycled && wbc->nr_to_write > 0) { 2777 cycled = 1; 2778 mpd->last_page = writeback_index - 1; 2779 mpd->first_page = 0; 2780 goto retry; 2781 } 2782 2783 /* Update index */ 2784 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2785 /* 2786 * Set the writeback_index so that range_cyclic 2787 * mode will write it back later 2788 */ 2789 mapping->writeback_index = mpd->first_page; 2790 2791 out_writepages: 2792 trace_ext4_writepages_result(inode, wbc, ret, 2793 nr_to_write - wbc->nr_to_write); 2794 return ret; 2795 } 2796 2797 static int ext4_writepages(struct address_space *mapping, 2798 struct writeback_control *wbc) 2799 { 2800 struct super_block *sb = mapping->host->i_sb; 2801 struct mpage_da_data mpd = { 2802 .inode = mapping->host, 2803 .wbc = wbc, 2804 .can_map = 1, 2805 }; 2806 int ret; 2807 int alloc_ctx; 2808 2809 if (unlikely(ext4_forced_shutdown(sb))) 2810 return -EIO; 2811 2812 alloc_ctx = ext4_writepages_down_read(sb); 2813 ret = ext4_do_writepages(&mpd); 2814 /* 2815 * For data=journal writeback we could have come across pages marked 2816 * for delayed dirtying (PageChecked) which were just added to the 2817 * running transaction. Try once more to get them to stable storage. 2818 */ 2819 if (!ret && mpd.journalled_more_data) 2820 ret = ext4_do_writepages(&mpd); 2821 ext4_writepages_up_read(sb, alloc_ctx); 2822 2823 return ret; 2824 } 2825 2826 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2827 { 2828 struct writeback_control wbc = { 2829 .sync_mode = WB_SYNC_ALL, 2830 .nr_to_write = LONG_MAX, 2831 .range_start = jinode->i_dirty_start, 2832 .range_end = jinode->i_dirty_end, 2833 }; 2834 struct mpage_da_data mpd = { 2835 .inode = jinode->i_vfs_inode, 2836 .wbc = &wbc, 2837 .can_map = 0, 2838 }; 2839 return ext4_do_writepages(&mpd); 2840 } 2841 2842 static int ext4_dax_writepages(struct address_space *mapping, 2843 struct writeback_control *wbc) 2844 { 2845 int ret; 2846 long nr_to_write = wbc->nr_to_write; 2847 struct inode *inode = mapping->host; 2848 int alloc_ctx; 2849 2850 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2851 return -EIO; 2852 2853 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2854 trace_ext4_writepages(inode, wbc); 2855 2856 ret = dax_writeback_mapping_range(mapping, 2857 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2858 trace_ext4_writepages_result(inode, wbc, ret, 2859 nr_to_write - wbc->nr_to_write); 2860 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2861 return ret; 2862 } 2863 2864 static int ext4_nonda_switch(struct super_block *sb) 2865 { 2866 s64 free_clusters, dirty_clusters; 2867 struct ext4_sb_info *sbi = EXT4_SB(sb); 2868 2869 /* 2870 * switch to non delalloc mode if we are running low 2871 * on free block. The free block accounting via percpu 2872 * counters can get slightly wrong with percpu_counter_batch getting 2873 * accumulated on each CPU without updating global counters 2874 * Delalloc need an accurate free block accounting. So switch 2875 * to non delalloc when we are near to error range. 2876 */ 2877 free_clusters = 2878 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2879 dirty_clusters = 2880 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2881 /* 2882 * Start pushing delalloc when 1/2 of free blocks are dirty. 2883 */ 2884 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2885 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2886 2887 if (2 * free_clusters < 3 * dirty_clusters || 2888 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2889 /* 2890 * free block count is less than 150% of dirty blocks 2891 * or free blocks is less than watermark 2892 */ 2893 return 1; 2894 } 2895 return 0; 2896 } 2897 2898 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2899 loff_t pos, unsigned len, 2900 struct folio **foliop, void **fsdata) 2901 { 2902 int ret, retries = 0; 2903 struct folio *folio; 2904 pgoff_t index; 2905 struct inode *inode = mapping->host; 2906 2907 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2908 return -EIO; 2909 2910 index = pos >> PAGE_SHIFT; 2911 2912 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2913 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2914 return ext4_write_begin(file, mapping, pos, 2915 len, foliop, fsdata); 2916 } 2917 *fsdata = (void *)0; 2918 trace_ext4_da_write_begin(inode, pos, len); 2919 2920 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2921 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2922 foliop, fsdata); 2923 if (ret < 0) 2924 return ret; 2925 if (ret == 1) 2926 return 0; 2927 } 2928 2929 retry: 2930 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2931 mapping_gfp_mask(mapping)); 2932 if (IS_ERR(folio)) 2933 return PTR_ERR(folio); 2934 2935 ret = ext4_block_write_begin(NULL, folio, pos, len, 2936 ext4_da_get_block_prep); 2937 if (ret < 0) { 2938 folio_unlock(folio); 2939 folio_put(folio); 2940 /* 2941 * block_write_begin may have instantiated a few blocks 2942 * outside i_size. Trim these off again. Don't need 2943 * i_size_read because we hold inode lock. 2944 */ 2945 if (pos + len > inode->i_size) 2946 ext4_truncate_failed_write(inode); 2947 2948 if (ret == -ENOSPC && 2949 ext4_should_retry_alloc(inode->i_sb, &retries)) 2950 goto retry; 2951 return ret; 2952 } 2953 2954 *foliop = folio; 2955 return ret; 2956 } 2957 2958 /* 2959 * Check if we should update i_disksize 2960 * when write to the end of file but not require block allocation 2961 */ 2962 static int ext4_da_should_update_i_disksize(struct folio *folio, 2963 unsigned long offset) 2964 { 2965 struct buffer_head *bh; 2966 struct inode *inode = folio->mapping->host; 2967 unsigned int idx; 2968 int i; 2969 2970 bh = folio_buffers(folio); 2971 idx = offset >> inode->i_blkbits; 2972 2973 for (i = 0; i < idx; i++) 2974 bh = bh->b_this_page; 2975 2976 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2977 return 0; 2978 return 1; 2979 } 2980 2981 static int ext4_da_do_write_end(struct address_space *mapping, 2982 loff_t pos, unsigned len, unsigned copied, 2983 struct folio *folio) 2984 { 2985 struct inode *inode = mapping->host; 2986 loff_t old_size = inode->i_size; 2987 bool disksize_changed = false; 2988 loff_t new_i_size; 2989 2990 if (unlikely(!folio_buffers(folio))) { 2991 folio_unlock(folio); 2992 folio_put(folio); 2993 return -EIO; 2994 } 2995 /* 2996 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2997 * flag, which all that's needed to trigger page writeback. 2998 */ 2999 copied = block_write_end(NULL, mapping, pos, len, copied, 3000 folio, NULL); 3001 new_i_size = pos + copied; 3002 3003 /* 3004 * It's important to update i_size while still holding folio lock, 3005 * because folio writeout could otherwise come in and zero beyond 3006 * i_size. 3007 * 3008 * Since we are holding inode lock, we are sure i_disksize <= 3009 * i_size. We also know that if i_disksize < i_size, there are 3010 * delalloc writes pending in the range up to i_size. If the end of 3011 * the current write is <= i_size, there's no need to touch 3012 * i_disksize since writeback will push i_disksize up to i_size 3013 * eventually. If the end of the current write is > i_size and 3014 * inside an allocated block which ext4_da_should_update_i_disksize() 3015 * checked, we need to update i_disksize here as certain 3016 * ext4_writepages() paths not allocating blocks and update i_disksize. 3017 */ 3018 if (new_i_size > inode->i_size) { 3019 unsigned long end; 3020 3021 i_size_write(inode, new_i_size); 3022 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3023 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3024 ext4_update_i_disksize(inode, new_i_size); 3025 disksize_changed = true; 3026 } 3027 } 3028 3029 folio_unlock(folio); 3030 folio_put(folio); 3031 3032 if (old_size < pos) 3033 pagecache_isize_extended(inode, old_size, pos); 3034 3035 if (disksize_changed) { 3036 handle_t *handle; 3037 3038 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3039 if (IS_ERR(handle)) 3040 return PTR_ERR(handle); 3041 ext4_mark_inode_dirty(handle, inode); 3042 ext4_journal_stop(handle); 3043 } 3044 3045 return copied; 3046 } 3047 3048 static int ext4_da_write_end(struct file *file, 3049 struct address_space *mapping, 3050 loff_t pos, unsigned len, unsigned copied, 3051 struct folio *folio, void *fsdata) 3052 { 3053 struct inode *inode = mapping->host; 3054 int write_mode = (int)(unsigned long)fsdata; 3055 3056 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3057 return ext4_write_end(file, mapping, pos, 3058 len, copied, folio, fsdata); 3059 3060 trace_ext4_da_write_end(inode, pos, len, copied); 3061 3062 if (write_mode != CONVERT_INLINE_DATA && 3063 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3064 ext4_has_inline_data(inode)) 3065 return ext4_write_inline_data_end(inode, pos, len, copied, 3066 folio); 3067 3068 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3069 copied = 0; 3070 3071 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3072 } 3073 3074 /* 3075 * Force all delayed allocation blocks to be allocated for a given inode. 3076 */ 3077 int ext4_alloc_da_blocks(struct inode *inode) 3078 { 3079 trace_ext4_alloc_da_blocks(inode); 3080 3081 if (!EXT4_I(inode)->i_reserved_data_blocks) 3082 return 0; 3083 3084 /* 3085 * We do something simple for now. The filemap_flush() will 3086 * also start triggering a write of the data blocks, which is 3087 * not strictly speaking necessary (and for users of 3088 * laptop_mode, not even desirable). However, to do otherwise 3089 * would require replicating code paths in: 3090 * 3091 * ext4_writepages() -> 3092 * write_cache_pages() ---> (via passed in callback function) 3093 * __mpage_da_writepage() --> 3094 * mpage_add_bh_to_extent() 3095 * mpage_da_map_blocks() 3096 * 3097 * The problem is that write_cache_pages(), located in 3098 * mm/page-writeback.c, marks pages clean in preparation for 3099 * doing I/O, which is not desirable if we're not planning on 3100 * doing I/O at all. 3101 * 3102 * We could call write_cache_pages(), and then redirty all of 3103 * the pages by calling redirty_page_for_writepage() but that 3104 * would be ugly in the extreme. So instead we would need to 3105 * replicate parts of the code in the above functions, 3106 * simplifying them because we wouldn't actually intend to 3107 * write out the pages, but rather only collect contiguous 3108 * logical block extents, call the multi-block allocator, and 3109 * then update the buffer heads with the block allocations. 3110 * 3111 * For now, though, we'll cheat by calling filemap_flush(), 3112 * which will map the blocks, and start the I/O, but not 3113 * actually wait for the I/O to complete. 3114 */ 3115 return filemap_flush(inode->i_mapping); 3116 } 3117 3118 /* 3119 * bmap() is special. It gets used by applications such as lilo and by 3120 * the swapper to find the on-disk block of a specific piece of data. 3121 * 3122 * Naturally, this is dangerous if the block concerned is still in the 3123 * journal. If somebody makes a swapfile on an ext4 data-journaling 3124 * filesystem and enables swap, then they may get a nasty shock when the 3125 * data getting swapped to that swapfile suddenly gets overwritten by 3126 * the original zero's written out previously to the journal and 3127 * awaiting writeback in the kernel's buffer cache. 3128 * 3129 * So, if we see any bmap calls here on a modified, data-journaled file, 3130 * take extra steps to flush any blocks which might be in the cache. 3131 */ 3132 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3133 { 3134 struct inode *inode = mapping->host; 3135 sector_t ret = 0; 3136 3137 inode_lock_shared(inode); 3138 /* 3139 * We can get here for an inline file via the FIBMAP ioctl 3140 */ 3141 if (ext4_has_inline_data(inode)) 3142 goto out; 3143 3144 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3145 (test_opt(inode->i_sb, DELALLOC) || 3146 ext4_should_journal_data(inode))) { 3147 /* 3148 * With delalloc or journalled data we want to sync the file so 3149 * that we can make sure we allocate blocks for file and data 3150 * is in place for the user to see it 3151 */ 3152 filemap_write_and_wait(mapping); 3153 } 3154 3155 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3156 3157 out: 3158 inode_unlock_shared(inode); 3159 return ret; 3160 } 3161 3162 static int ext4_read_folio(struct file *file, struct folio *folio) 3163 { 3164 int ret = -EAGAIN; 3165 struct inode *inode = folio->mapping->host; 3166 3167 trace_ext4_read_folio(inode, folio); 3168 3169 if (ext4_has_inline_data(inode)) 3170 ret = ext4_readpage_inline(inode, folio); 3171 3172 if (ret == -EAGAIN) 3173 return ext4_mpage_readpages(inode, NULL, folio); 3174 3175 return ret; 3176 } 3177 3178 static void ext4_readahead(struct readahead_control *rac) 3179 { 3180 struct inode *inode = rac->mapping->host; 3181 3182 /* If the file has inline data, no need to do readahead. */ 3183 if (ext4_has_inline_data(inode)) 3184 return; 3185 3186 ext4_mpage_readpages(inode, rac, NULL); 3187 } 3188 3189 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3190 size_t length) 3191 { 3192 trace_ext4_invalidate_folio(folio, offset, length); 3193 3194 /* No journalling happens on data buffers when this function is used */ 3195 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3196 3197 block_invalidate_folio(folio, offset, length); 3198 } 3199 3200 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3201 size_t offset, size_t length) 3202 { 3203 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3204 3205 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3206 3207 /* 3208 * If it's a full truncate we just forget about the pending dirtying 3209 */ 3210 if (offset == 0 && length == folio_size(folio)) 3211 folio_clear_checked(folio); 3212 3213 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3214 } 3215 3216 /* Wrapper for aops... */ 3217 static void ext4_journalled_invalidate_folio(struct folio *folio, 3218 size_t offset, 3219 size_t length) 3220 { 3221 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3222 } 3223 3224 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3225 { 3226 struct inode *inode = folio->mapping->host; 3227 journal_t *journal = EXT4_JOURNAL(inode); 3228 3229 trace_ext4_release_folio(inode, folio); 3230 3231 /* Page has dirty journalled data -> cannot release */ 3232 if (folio_test_checked(folio)) 3233 return false; 3234 if (journal) 3235 return jbd2_journal_try_to_free_buffers(journal, folio); 3236 else 3237 return try_to_free_buffers(folio); 3238 } 3239 3240 static bool ext4_inode_datasync_dirty(struct inode *inode) 3241 { 3242 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3243 3244 if (journal) { 3245 if (jbd2_transaction_committed(journal, 3246 EXT4_I(inode)->i_datasync_tid)) 3247 return false; 3248 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3249 return !list_empty(&EXT4_I(inode)->i_fc_list); 3250 return true; 3251 } 3252 3253 /* Any metadata buffers to write? */ 3254 if (!list_empty(&inode->i_mapping->i_private_list)) 3255 return true; 3256 return inode->i_state & I_DIRTY_DATASYNC; 3257 } 3258 3259 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3260 struct ext4_map_blocks *map, loff_t offset, 3261 loff_t length, unsigned int flags) 3262 { 3263 u8 blkbits = inode->i_blkbits; 3264 3265 /* 3266 * Writes that span EOF might trigger an I/O size update on completion, 3267 * so consider them to be dirty for the purpose of O_DSYNC, even if 3268 * there is no other metadata changes being made or are pending. 3269 */ 3270 iomap->flags = 0; 3271 if (ext4_inode_datasync_dirty(inode) || 3272 offset + length > i_size_read(inode)) 3273 iomap->flags |= IOMAP_F_DIRTY; 3274 3275 if (map->m_flags & EXT4_MAP_NEW) 3276 iomap->flags |= IOMAP_F_NEW; 3277 3278 if (flags & IOMAP_DAX) 3279 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3280 else 3281 iomap->bdev = inode->i_sb->s_bdev; 3282 iomap->offset = (u64) map->m_lblk << blkbits; 3283 iomap->length = (u64) map->m_len << blkbits; 3284 3285 if ((map->m_flags & EXT4_MAP_MAPPED) && 3286 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3287 iomap->flags |= IOMAP_F_MERGED; 3288 3289 /* 3290 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3291 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3292 * set. In order for any allocated unwritten extents to be converted 3293 * into written extents correctly within the ->end_io() handler, we 3294 * need to ensure that the iomap->type is set appropriately. Hence, the 3295 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3296 * been set first. 3297 */ 3298 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3299 iomap->type = IOMAP_UNWRITTEN; 3300 iomap->addr = (u64) map->m_pblk << blkbits; 3301 if (flags & IOMAP_DAX) 3302 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3303 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3304 iomap->type = IOMAP_MAPPED; 3305 iomap->addr = (u64) map->m_pblk << blkbits; 3306 if (flags & IOMAP_DAX) 3307 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3308 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3309 iomap->type = IOMAP_DELALLOC; 3310 iomap->addr = IOMAP_NULL_ADDR; 3311 } else { 3312 iomap->type = IOMAP_HOLE; 3313 iomap->addr = IOMAP_NULL_ADDR; 3314 } 3315 } 3316 3317 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3318 unsigned int flags) 3319 { 3320 handle_t *handle; 3321 u8 blkbits = inode->i_blkbits; 3322 int ret, dio_credits, m_flags = 0, retries = 0; 3323 3324 /* 3325 * Trim the mapping request to the maximum value that we can map at 3326 * once for direct I/O. 3327 */ 3328 if (map->m_len > DIO_MAX_BLOCKS) 3329 map->m_len = DIO_MAX_BLOCKS; 3330 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3331 3332 retry: 3333 /* 3334 * Either we allocate blocks and then don't get an unwritten extent, so 3335 * in that case we have reserved enough credits. Or, the blocks are 3336 * already allocated and unwritten. In that case, the extent conversion 3337 * fits into the credits as well. 3338 */ 3339 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3340 if (IS_ERR(handle)) 3341 return PTR_ERR(handle); 3342 3343 /* 3344 * DAX and direct I/O are the only two operations that are currently 3345 * supported with IOMAP_WRITE. 3346 */ 3347 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3348 if (flags & IOMAP_DAX) 3349 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3350 /* 3351 * We use i_size instead of i_disksize here because delalloc writeback 3352 * can complete at any point during the I/O and subsequently push the 3353 * i_disksize out to i_size. This could be beyond where direct I/O is 3354 * happening and thus expose allocated blocks to direct I/O reads. 3355 */ 3356 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3357 m_flags = EXT4_GET_BLOCKS_CREATE; 3358 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3359 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3360 3361 ret = ext4_map_blocks(handle, inode, map, m_flags); 3362 3363 /* 3364 * We cannot fill holes in indirect tree based inodes as that could 3365 * expose stale data in the case of a crash. Use the magic error code 3366 * to fallback to buffered I/O. 3367 */ 3368 if (!m_flags && !ret) 3369 ret = -ENOTBLK; 3370 3371 ext4_journal_stop(handle); 3372 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3373 goto retry; 3374 3375 return ret; 3376 } 3377 3378 3379 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3380 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3381 { 3382 int ret; 3383 struct ext4_map_blocks map; 3384 u8 blkbits = inode->i_blkbits; 3385 3386 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3387 return -EINVAL; 3388 3389 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3390 return -ERANGE; 3391 3392 /* 3393 * Calculate the first and last logical blocks respectively. 3394 */ 3395 map.m_lblk = offset >> blkbits; 3396 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3397 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3398 3399 if (flags & IOMAP_WRITE) { 3400 /* 3401 * We check here if the blocks are already allocated, then we 3402 * don't need to start a journal txn and we can directly return 3403 * the mapping information. This could boost performance 3404 * especially in multi-threaded overwrite requests. 3405 */ 3406 if (offset + length <= i_size_read(inode)) { 3407 ret = ext4_map_blocks(NULL, inode, &map, 0); 3408 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3409 goto out; 3410 } 3411 ret = ext4_iomap_alloc(inode, &map, flags); 3412 } else { 3413 ret = ext4_map_blocks(NULL, inode, &map, 0); 3414 } 3415 3416 if (ret < 0) 3417 return ret; 3418 out: 3419 /* 3420 * When inline encryption is enabled, sometimes I/O to an encrypted file 3421 * has to be broken up to guarantee DUN contiguity. Handle this by 3422 * limiting the length of the mapping returned. 3423 */ 3424 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3425 3426 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3427 3428 return 0; 3429 } 3430 3431 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3432 loff_t length, unsigned flags, struct iomap *iomap, 3433 struct iomap *srcmap) 3434 { 3435 int ret; 3436 3437 /* 3438 * Even for writes we don't need to allocate blocks, so just pretend 3439 * we are reading to save overhead of starting a transaction. 3440 */ 3441 flags &= ~IOMAP_WRITE; 3442 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3443 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3444 return ret; 3445 } 3446 3447 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3448 ssize_t written, unsigned flags, struct iomap *iomap) 3449 { 3450 /* 3451 * Check to see whether an error occurred while writing out the data to 3452 * the allocated blocks. If so, return the magic error code so that we 3453 * fallback to buffered I/O and attempt to complete the remainder of 3454 * the I/O. Any blocks that may have been allocated in preparation for 3455 * the direct I/O will be reused during buffered I/O. 3456 */ 3457 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3458 return -ENOTBLK; 3459 3460 return 0; 3461 } 3462 3463 const struct iomap_ops ext4_iomap_ops = { 3464 .iomap_begin = ext4_iomap_begin, 3465 .iomap_end = ext4_iomap_end, 3466 }; 3467 3468 const struct iomap_ops ext4_iomap_overwrite_ops = { 3469 .iomap_begin = ext4_iomap_overwrite_begin, 3470 .iomap_end = ext4_iomap_end, 3471 }; 3472 3473 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3474 loff_t length, unsigned int flags, 3475 struct iomap *iomap, struct iomap *srcmap) 3476 { 3477 int ret; 3478 struct ext4_map_blocks map; 3479 u8 blkbits = inode->i_blkbits; 3480 3481 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3482 return -EINVAL; 3483 3484 if (ext4_has_inline_data(inode)) { 3485 ret = ext4_inline_data_iomap(inode, iomap); 3486 if (ret != -EAGAIN) { 3487 if (ret == 0 && offset >= iomap->length) 3488 ret = -ENOENT; 3489 return ret; 3490 } 3491 } 3492 3493 /* 3494 * Calculate the first and last logical block respectively. 3495 */ 3496 map.m_lblk = offset >> blkbits; 3497 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3498 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3499 3500 /* 3501 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3502 * So handle it here itself instead of querying ext4_map_blocks(). 3503 * Since ext4_map_blocks() will warn about it and will return 3504 * -EIO error. 3505 */ 3506 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3507 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3508 3509 if (offset >= sbi->s_bitmap_maxbytes) { 3510 map.m_flags = 0; 3511 goto set_iomap; 3512 } 3513 } 3514 3515 ret = ext4_map_blocks(NULL, inode, &map, 0); 3516 if (ret < 0) 3517 return ret; 3518 set_iomap: 3519 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3520 3521 return 0; 3522 } 3523 3524 const struct iomap_ops ext4_iomap_report_ops = { 3525 .iomap_begin = ext4_iomap_begin_report, 3526 }; 3527 3528 /* 3529 * For data=journal mode, folio should be marked dirty only when it was 3530 * writeably mapped. When that happens, it was already attached to the 3531 * transaction and marked as jbddirty (we take care of this in 3532 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3533 * so we should have nothing to do here, except for the case when someone 3534 * had the page pinned and dirtied the page through this pin (e.g. by doing 3535 * direct IO to it). In that case we'd need to attach buffers here to the 3536 * transaction but we cannot due to lock ordering. We cannot just dirty the 3537 * folio and leave attached buffers clean, because the buffers' dirty state is 3538 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3539 * the journalling code will explode. So what we do is to mark the folio 3540 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3541 * to the transaction appropriately. 3542 */ 3543 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3544 struct folio *folio) 3545 { 3546 WARN_ON_ONCE(!folio_buffers(folio)); 3547 if (folio_maybe_dma_pinned(folio)) 3548 folio_set_checked(folio); 3549 return filemap_dirty_folio(mapping, folio); 3550 } 3551 3552 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3553 { 3554 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3555 WARN_ON_ONCE(!folio_buffers(folio)); 3556 return block_dirty_folio(mapping, folio); 3557 } 3558 3559 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3560 struct file *file, sector_t *span) 3561 { 3562 return iomap_swapfile_activate(sis, file, span, 3563 &ext4_iomap_report_ops); 3564 } 3565 3566 static const struct address_space_operations ext4_aops = { 3567 .read_folio = ext4_read_folio, 3568 .readahead = ext4_readahead, 3569 .writepages = ext4_writepages, 3570 .write_begin = ext4_write_begin, 3571 .write_end = ext4_write_end, 3572 .dirty_folio = ext4_dirty_folio, 3573 .bmap = ext4_bmap, 3574 .invalidate_folio = ext4_invalidate_folio, 3575 .release_folio = ext4_release_folio, 3576 .migrate_folio = buffer_migrate_folio, 3577 .is_partially_uptodate = block_is_partially_uptodate, 3578 .error_remove_folio = generic_error_remove_folio, 3579 .swap_activate = ext4_iomap_swap_activate, 3580 }; 3581 3582 static const struct address_space_operations ext4_journalled_aops = { 3583 .read_folio = ext4_read_folio, 3584 .readahead = ext4_readahead, 3585 .writepages = ext4_writepages, 3586 .write_begin = ext4_write_begin, 3587 .write_end = ext4_journalled_write_end, 3588 .dirty_folio = ext4_journalled_dirty_folio, 3589 .bmap = ext4_bmap, 3590 .invalidate_folio = ext4_journalled_invalidate_folio, 3591 .release_folio = ext4_release_folio, 3592 .migrate_folio = buffer_migrate_folio_norefs, 3593 .is_partially_uptodate = block_is_partially_uptodate, 3594 .error_remove_folio = generic_error_remove_folio, 3595 .swap_activate = ext4_iomap_swap_activate, 3596 }; 3597 3598 static const struct address_space_operations ext4_da_aops = { 3599 .read_folio = ext4_read_folio, 3600 .readahead = ext4_readahead, 3601 .writepages = ext4_writepages, 3602 .write_begin = ext4_da_write_begin, 3603 .write_end = ext4_da_write_end, 3604 .dirty_folio = ext4_dirty_folio, 3605 .bmap = ext4_bmap, 3606 .invalidate_folio = ext4_invalidate_folio, 3607 .release_folio = ext4_release_folio, 3608 .migrate_folio = buffer_migrate_folio, 3609 .is_partially_uptodate = block_is_partially_uptodate, 3610 .error_remove_folio = generic_error_remove_folio, 3611 .swap_activate = ext4_iomap_swap_activate, 3612 }; 3613 3614 static const struct address_space_operations ext4_dax_aops = { 3615 .writepages = ext4_dax_writepages, 3616 .dirty_folio = noop_dirty_folio, 3617 .bmap = ext4_bmap, 3618 .swap_activate = ext4_iomap_swap_activate, 3619 }; 3620 3621 void ext4_set_aops(struct inode *inode) 3622 { 3623 switch (ext4_inode_journal_mode(inode)) { 3624 case EXT4_INODE_ORDERED_DATA_MODE: 3625 case EXT4_INODE_WRITEBACK_DATA_MODE: 3626 break; 3627 case EXT4_INODE_JOURNAL_DATA_MODE: 3628 inode->i_mapping->a_ops = &ext4_journalled_aops; 3629 return; 3630 default: 3631 BUG(); 3632 } 3633 if (IS_DAX(inode)) 3634 inode->i_mapping->a_ops = &ext4_dax_aops; 3635 else if (test_opt(inode->i_sb, DELALLOC)) 3636 inode->i_mapping->a_ops = &ext4_da_aops; 3637 else 3638 inode->i_mapping->a_ops = &ext4_aops; 3639 } 3640 3641 /* 3642 * Here we can't skip an unwritten buffer even though it usually reads zero 3643 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3644 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3645 * racing writeback can come later and flush the stale pagecache to disk. 3646 */ 3647 static int __ext4_block_zero_page_range(handle_t *handle, 3648 struct address_space *mapping, loff_t from, loff_t length) 3649 { 3650 ext4_fsblk_t index = from >> PAGE_SHIFT; 3651 unsigned offset = from & (PAGE_SIZE-1); 3652 unsigned blocksize, pos; 3653 ext4_lblk_t iblock; 3654 struct inode *inode = mapping->host; 3655 struct buffer_head *bh; 3656 struct folio *folio; 3657 int err = 0; 3658 3659 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3660 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3661 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3662 if (IS_ERR(folio)) 3663 return PTR_ERR(folio); 3664 3665 blocksize = inode->i_sb->s_blocksize; 3666 3667 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3668 3669 bh = folio_buffers(folio); 3670 if (!bh) 3671 bh = create_empty_buffers(folio, blocksize, 0); 3672 3673 /* Find the buffer that contains "offset" */ 3674 pos = blocksize; 3675 while (offset >= pos) { 3676 bh = bh->b_this_page; 3677 iblock++; 3678 pos += blocksize; 3679 } 3680 if (buffer_freed(bh)) { 3681 BUFFER_TRACE(bh, "freed: skip"); 3682 goto unlock; 3683 } 3684 if (!buffer_mapped(bh)) { 3685 BUFFER_TRACE(bh, "unmapped"); 3686 ext4_get_block(inode, iblock, bh, 0); 3687 /* unmapped? It's a hole - nothing to do */ 3688 if (!buffer_mapped(bh)) { 3689 BUFFER_TRACE(bh, "still unmapped"); 3690 goto unlock; 3691 } 3692 } 3693 3694 /* Ok, it's mapped. Make sure it's up-to-date */ 3695 if (folio_test_uptodate(folio)) 3696 set_buffer_uptodate(bh); 3697 3698 if (!buffer_uptodate(bh)) { 3699 err = ext4_read_bh_lock(bh, 0, true); 3700 if (err) 3701 goto unlock; 3702 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3703 /* We expect the key to be set. */ 3704 BUG_ON(!fscrypt_has_encryption_key(inode)); 3705 err = fscrypt_decrypt_pagecache_blocks(folio, 3706 blocksize, 3707 bh_offset(bh)); 3708 if (err) { 3709 clear_buffer_uptodate(bh); 3710 goto unlock; 3711 } 3712 } 3713 } 3714 if (ext4_should_journal_data(inode)) { 3715 BUFFER_TRACE(bh, "get write access"); 3716 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3717 EXT4_JTR_NONE); 3718 if (err) 3719 goto unlock; 3720 } 3721 folio_zero_range(folio, offset, length); 3722 BUFFER_TRACE(bh, "zeroed end of block"); 3723 3724 if (ext4_should_journal_data(inode)) { 3725 err = ext4_dirty_journalled_data(handle, bh); 3726 } else { 3727 err = 0; 3728 mark_buffer_dirty(bh); 3729 if (ext4_should_order_data(inode)) 3730 err = ext4_jbd2_inode_add_write(handle, inode, from, 3731 length); 3732 } 3733 3734 unlock: 3735 folio_unlock(folio); 3736 folio_put(folio); 3737 return err; 3738 } 3739 3740 /* 3741 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3742 * starting from file offset 'from'. The range to be zero'd must 3743 * be contained with in one block. If the specified range exceeds 3744 * the end of the block it will be shortened to end of the block 3745 * that corresponds to 'from' 3746 */ 3747 static int ext4_block_zero_page_range(handle_t *handle, 3748 struct address_space *mapping, loff_t from, loff_t length) 3749 { 3750 struct inode *inode = mapping->host; 3751 unsigned offset = from & (PAGE_SIZE-1); 3752 unsigned blocksize = inode->i_sb->s_blocksize; 3753 unsigned max = blocksize - (offset & (blocksize - 1)); 3754 3755 /* 3756 * correct length if it does not fall between 3757 * 'from' and the end of the block 3758 */ 3759 if (length > max || length < 0) 3760 length = max; 3761 3762 if (IS_DAX(inode)) { 3763 return dax_zero_range(inode, from, length, NULL, 3764 &ext4_iomap_ops); 3765 } 3766 return __ext4_block_zero_page_range(handle, mapping, from, length); 3767 } 3768 3769 /* 3770 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3771 * up to the end of the block which corresponds to `from'. 3772 * This required during truncate. We need to physically zero the tail end 3773 * of that block so it doesn't yield old data if the file is later grown. 3774 */ 3775 static int ext4_block_truncate_page(handle_t *handle, 3776 struct address_space *mapping, loff_t from) 3777 { 3778 unsigned offset = from & (PAGE_SIZE-1); 3779 unsigned length; 3780 unsigned blocksize; 3781 struct inode *inode = mapping->host; 3782 3783 /* If we are processing an encrypted inode during orphan list handling */ 3784 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3785 return 0; 3786 3787 blocksize = inode->i_sb->s_blocksize; 3788 length = blocksize - (offset & (blocksize - 1)); 3789 3790 return ext4_block_zero_page_range(handle, mapping, from, length); 3791 } 3792 3793 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3794 loff_t lstart, loff_t length) 3795 { 3796 struct super_block *sb = inode->i_sb; 3797 struct address_space *mapping = inode->i_mapping; 3798 unsigned partial_start, partial_end; 3799 ext4_fsblk_t start, end; 3800 loff_t byte_end = (lstart + length - 1); 3801 int err = 0; 3802 3803 partial_start = lstart & (sb->s_blocksize - 1); 3804 partial_end = byte_end & (sb->s_blocksize - 1); 3805 3806 start = lstart >> sb->s_blocksize_bits; 3807 end = byte_end >> sb->s_blocksize_bits; 3808 3809 /* Handle partial zero within the single block */ 3810 if (start == end && 3811 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3812 err = ext4_block_zero_page_range(handle, mapping, 3813 lstart, length); 3814 return err; 3815 } 3816 /* Handle partial zero out on the start of the range */ 3817 if (partial_start) { 3818 err = ext4_block_zero_page_range(handle, mapping, 3819 lstart, sb->s_blocksize); 3820 if (err) 3821 return err; 3822 } 3823 /* Handle partial zero out on the end of the range */ 3824 if (partial_end != sb->s_blocksize - 1) 3825 err = ext4_block_zero_page_range(handle, mapping, 3826 byte_end - partial_end, 3827 partial_end + 1); 3828 return err; 3829 } 3830 3831 int ext4_can_truncate(struct inode *inode) 3832 { 3833 if (S_ISREG(inode->i_mode)) 3834 return 1; 3835 if (S_ISDIR(inode->i_mode)) 3836 return 1; 3837 if (S_ISLNK(inode->i_mode)) 3838 return !ext4_inode_is_fast_symlink(inode); 3839 return 0; 3840 } 3841 3842 /* 3843 * We have to make sure i_disksize gets properly updated before we truncate 3844 * page cache due to hole punching or zero range. Otherwise i_disksize update 3845 * can get lost as it may have been postponed to submission of writeback but 3846 * that will never happen after we truncate page cache. 3847 */ 3848 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3849 loff_t len) 3850 { 3851 handle_t *handle; 3852 int ret; 3853 3854 loff_t size = i_size_read(inode); 3855 3856 WARN_ON(!inode_is_locked(inode)); 3857 if (offset > size || offset + len < size) 3858 return 0; 3859 3860 if (EXT4_I(inode)->i_disksize >= size) 3861 return 0; 3862 3863 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3864 if (IS_ERR(handle)) 3865 return PTR_ERR(handle); 3866 ext4_update_i_disksize(inode, size); 3867 ret = ext4_mark_inode_dirty(handle, inode); 3868 ext4_journal_stop(handle); 3869 3870 return ret; 3871 } 3872 3873 static void ext4_wait_dax_page(struct inode *inode) 3874 { 3875 filemap_invalidate_unlock(inode->i_mapping); 3876 schedule(); 3877 filemap_invalidate_lock(inode->i_mapping); 3878 } 3879 3880 int ext4_break_layouts(struct inode *inode) 3881 { 3882 struct page *page; 3883 int error; 3884 3885 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3886 return -EINVAL; 3887 3888 do { 3889 page = dax_layout_busy_page(inode->i_mapping); 3890 if (!page) 3891 return 0; 3892 3893 error = ___wait_var_event(&page->_refcount, 3894 atomic_read(&page->_refcount) == 1, 3895 TASK_INTERRUPTIBLE, 0, 0, 3896 ext4_wait_dax_page(inode)); 3897 } while (error == 0); 3898 3899 return error; 3900 } 3901 3902 /* 3903 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3904 * associated with the given offset and length 3905 * 3906 * @inode: File inode 3907 * @offset: The offset where the hole will begin 3908 * @len: The length of the hole 3909 * 3910 * Returns: 0 on success or negative on failure 3911 */ 3912 3913 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3914 { 3915 struct inode *inode = file_inode(file); 3916 struct super_block *sb = inode->i_sb; 3917 ext4_lblk_t first_block, stop_block; 3918 struct address_space *mapping = inode->i_mapping; 3919 loff_t first_block_offset, last_block_offset, max_length; 3920 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3921 handle_t *handle; 3922 unsigned int credits; 3923 int ret = 0, ret2 = 0; 3924 3925 trace_ext4_punch_hole(inode, offset, length, 0); 3926 3927 /* 3928 * Write out all dirty pages to avoid race conditions 3929 * Then release them. 3930 */ 3931 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3932 ret = filemap_write_and_wait_range(mapping, offset, 3933 offset + length - 1); 3934 if (ret) 3935 return ret; 3936 } 3937 3938 inode_lock(inode); 3939 3940 /* No need to punch hole beyond i_size */ 3941 if (offset >= inode->i_size) 3942 goto out_mutex; 3943 3944 /* 3945 * If the hole extends beyond i_size, set the hole 3946 * to end after the page that contains i_size 3947 */ 3948 if (offset + length > inode->i_size) { 3949 length = inode->i_size + 3950 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3951 offset; 3952 } 3953 3954 /* 3955 * For punch hole the length + offset needs to be within one block 3956 * before last range. Adjust the length if it goes beyond that limit. 3957 */ 3958 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3959 if (offset + length > max_length) 3960 length = max_length - offset; 3961 3962 if (offset & (sb->s_blocksize - 1) || 3963 (offset + length) & (sb->s_blocksize - 1)) { 3964 /* 3965 * Attach jinode to inode for jbd2 if we do any zeroing of 3966 * partial block 3967 */ 3968 ret = ext4_inode_attach_jinode(inode); 3969 if (ret < 0) 3970 goto out_mutex; 3971 3972 } 3973 3974 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3975 inode_dio_wait(inode); 3976 3977 ret = file_modified(file); 3978 if (ret) 3979 goto out_mutex; 3980 3981 /* 3982 * Prevent page faults from reinstantiating pages we have released from 3983 * page cache. 3984 */ 3985 filemap_invalidate_lock(mapping); 3986 3987 ret = ext4_break_layouts(inode); 3988 if (ret) 3989 goto out_dio; 3990 3991 first_block_offset = round_up(offset, sb->s_blocksize); 3992 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3993 3994 /* Now release the pages and zero block aligned part of pages*/ 3995 if (last_block_offset > first_block_offset) { 3996 ret = ext4_update_disksize_before_punch(inode, offset, length); 3997 if (ret) 3998 goto out_dio; 3999 truncate_pagecache_range(inode, first_block_offset, 4000 last_block_offset); 4001 } 4002 4003 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4004 credits = ext4_writepage_trans_blocks(inode); 4005 else 4006 credits = ext4_blocks_for_truncate(inode); 4007 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4008 if (IS_ERR(handle)) { 4009 ret = PTR_ERR(handle); 4010 ext4_std_error(sb, ret); 4011 goto out_dio; 4012 } 4013 4014 ret = ext4_zero_partial_blocks(handle, inode, offset, 4015 length); 4016 if (ret) 4017 goto out_stop; 4018 4019 first_block = (offset + sb->s_blocksize - 1) >> 4020 EXT4_BLOCK_SIZE_BITS(sb); 4021 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4022 4023 /* If there are blocks to remove, do it */ 4024 if (stop_block > first_block) { 4025 ext4_lblk_t hole_len = stop_block - first_block; 4026 4027 down_write(&EXT4_I(inode)->i_data_sem); 4028 ext4_discard_preallocations(inode); 4029 4030 ext4_es_remove_extent(inode, first_block, hole_len); 4031 4032 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4033 ret = ext4_ext_remove_space(inode, first_block, 4034 stop_block - 1); 4035 else 4036 ret = ext4_ind_remove_space(handle, inode, first_block, 4037 stop_block); 4038 4039 ext4_es_insert_extent(inode, first_block, hole_len, ~0, 4040 EXTENT_STATUS_HOLE, 0); 4041 up_write(&EXT4_I(inode)->i_data_sem); 4042 } 4043 ext4_fc_track_range(handle, inode, first_block, stop_block); 4044 if (IS_SYNC(inode)) 4045 ext4_handle_sync(handle); 4046 4047 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4048 ret2 = ext4_mark_inode_dirty(handle, inode); 4049 if (unlikely(ret2)) 4050 ret = ret2; 4051 if (ret >= 0) 4052 ext4_update_inode_fsync_trans(handle, inode, 1); 4053 out_stop: 4054 ext4_journal_stop(handle); 4055 out_dio: 4056 filemap_invalidate_unlock(mapping); 4057 out_mutex: 4058 inode_unlock(inode); 4059 return ret; 4060 } 4061 4062 int ext4_inode_attach_jinode(struct inode *inode) 4063 { 4064 struct ext4_inode_info *ei = EXT4_I(inode); 4065 struct jbd2_inode *jinode; 4066 4067 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4068 return 0; 4069 4070 jinode = jbd2_alloc_inode(GFP_KERNEL); 4071 spin_lock(&inode->i_lock); 4072 if (!ei->jinode) { 4073 if (!jinode) { 4074 spin_unlock(&inode->i_lock); 4075 return -ENOMEM; 4076 } 4077 ei->jinode = jinode; 4078 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4079 jinode = NULL; 4080 } 4081 spin_unlock(&inode->i_lock); 4082 if (unlikely(jinode != NULL)) 4083 jbd2_free_inode(jinode); 4084 return 0; 4085 } 4086 4087 /* 4088 * ext4_truncate() 4089 * 4090 * We block out ext4_get_block() block instantiations across the entire 4091 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4092 * simultaneously on behalf of the same inode. 4093 * 4094 * As we work through the truncate and commit bits of it to the journal there 4095 * is one core, guiding principle: the file's tree must always be consistent on 4096 * disk. We must be able to restart the truncate after a crash. 4097 * 4098 * The file's tree may be transiently inconsistent in memory (although it 4099 * probably isn't), but whenever we close off and commit a journal transaction, 4100 * the contents of (the filesystem + the journal) must be consistent and 4101 * restartable. It's pretty simple, really: bottom up, right to left (although 4102 * left-to-right works OK too). 4103 * 4104 * Note that at recovery time, journal replay occurs *before* the restart of 4105 * truncate against the orphan inode list. 4106 * 4107 * The committed inode has the new, desired i_size (which is the same as 4108 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4109 * that this inode's truncate did not complete and it will again call 4110 * ext4_truncate() to have another go. So there will be instantiated blocks 4111 * to the right of the truncation point in a crashed ext4 filesystem. But 4112 * that's fine - as long as they are linked from the inode, the post-crash 4113 * ext4_truncate() run will find them and release them. 4114 */ 4115 int ext4_truncate(struct inode *inode) 4116 { 4117 struct ext4_inode_info *ei = EXT4_I(inode); 4118 unsigned int credits; 4119 int err = 0, err2; 4120 handle_t *handle; 4121 struct address_space *mapping = inode->i_mapping; 4122 4123 /* 4124 * There is a possibility that we're either freeing the inode 4125 * or it's a completely new inode. In those cases we might not 4126 * have i_rwsem locked because it's not necessary. 4127 */ 4128 if (!(inode->i_state & (I_NEW|I_FREEING))) 4129 WARN_ON(!inode_is_locked(inode)); 4130 trace_ext4_truncate_enter(inode); 4131 4132 if (!ext4_can_truncate(inode)) 4133 goto out_trace; 4134 4135 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4136 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4137 4138 if (ext4_has_inline_data(inode)) { 4139 int has_inline = 1; 4140 4141 err = ext4_inline_data_truncate(inode, &has_inline); 4142 if (err || has_inline) 4143 goto out_trace; 4144 } 4145 4146 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4147 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4148 err = ext4_inode_attach_jinode(inode); 4149 if (err) 4150 goto out_trace; 4151 } 4152 4153 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4154 credits = ext4_writepage_trans_blocks(inode); 4155 else 4156 credits = ext4_blocks_for_truncate(inode); 4157 4158 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4159 if (IS_ERR(handle)) { 4160 err = PTR_ERR(handle); 4161 goto out_trace; 4162 } 4163 4164 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4165 ext4_block_truncate_page(handle, mapping, inode->i_size); 4166 4167 /* 4168 * We add the inode to the orphan list, so that if this 4169 * truncate spans multiple transactions, and we crash, we will 4170 * resume the truncate when the filesystem recovers. It also 4171 * marks the inode dirty, to catch the new size. 4172 * 4173 * Implication: the file must always be in a sane, consistent 4174 * truncatable state while each transaction commits. 4175 */ 4176 err = ext4_orphan_add(handle, inode); 4177 if (err) 4178 goto out_stop; 4179 4180 down_write(&EXT4_I(inode)->i_data_sem); 4181 4182 ext4_discard_preallocations(inode); 4183 4184 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4185 err = ext4_ext_truncate(handle, inode); 4186 else 4187 ext4_ind_truncate(handle, inode); 4188 4189 up_write(&ei->i_data_sem); 4190 if (err) 4191 goto out_stop; 4192 4193 if (IS_SYNC(inode)) 4194 ext4_handle_sync(handle); 4195 4196 out_stop: 4197 /* 4198 * If this was a simple ftruncate() and the file will remain alive, 4199 * then we need to clear up the orphan record which we created above. 4200 * However, if this was a real unlink then we were called by 4201 * ext4_evict_inode(), and we allow that function to clean up the 4202 * orphan info for us. 4203 */ 4204 if (inode->i_nlink) 4205 ext4_orphan_del(handle, inode); 4206 4207 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4208 err2 = ext4_mark_inode_dirty(handle, inode); 4209 if (unlikely(err2 && !err)) 4210 err = err2; 4211 ext4_journal_stop(handle); 4212 4213 out_trace: 4214 trace_ext4_truncate_exit(inode); 4215 return err; 4216 } 4217 4218 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4219 { 4220 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4221 return inode_peek_iversion_raw(inode); 4222 else 4223 return inode_peek_iversion(inode); 4224 } 4225 4226 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4227 struct ext4_inode_info *ei) 4228 { 4229 struct inode *inode = &(ei->vfs_inode); 4230 u64 i_blocks = READ_ONCE(inode->i_blocks); 4231 struct super_block *sb = inode->i_sb; 4232 4233 if (i_blocks <= ~0U) { 4234 /* 4235 * i_blocks can be represented in a 32 bit variable 4236 * as multiple of 512 bytes 4237 */ 4238 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4239 raw_inode->i_blocks_high = 0; 4240 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4241 return 0; 4242 } 4243 4244 /* 4245 * This should never happen since sb->s_maxbytes should not have 4246 * allowed this, sb->s_maxbytes was set according to the huge_file 4247 * feature in ext4_fill_super(). 4248 */ 4249 if (!ext4_has_feature_huge_file(sb)) 4250 return -EFSCORRUPTED; 4251 4252 if (i_blocks <= 0xffffffffffffULL) { 4253 /* 4254 * i_blocks can be represented in a 48 bit variable 4255 * as multiple of 512 bytes 4256 */ 4257 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4258 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4259 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4260 } else { 4261 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4262 /* i_block is stored in file system block size */ 4263 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4264 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4265 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4266 } 4267 return 0; 4268 } 4269 4270 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4271 { 4272 struct ext4_inode_info *ei = EXT4_I(inode); 4273 uid_t i_uid; 4274 gid_t i_gid; 4275 projid_t i_projid; 4276 int block; 4277 int err; 4278 4279 err = ext4_inode_blocks_set(raw_inode, ei); 4280 4281 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4282 i_uid = i_uid_read(inode); 4283 i_gid = i_gid_read(inode); 4284 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4285 if (!(test_opt(inode->i_sb, NO_UID32))) { 4286 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4287 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4288 /* 4289 * Fix up interoperability with old kernels. Otherwise, 4290 * old inodes get re-used with the upper 16 bits of the 4291 * uid/gid intact. 4292 */ 4293 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4294 raw_inode->i_uid_high = 0; 4295 raw_inode->i_gid_high = 0; 4296 } else { 4297 raw_inode->i_uid_high = 4298 cpu_to_le16(high_16_bits(i_uid)); 4299 raw_inode->i_gid_high = 4300 cpu_to_le16(high_16_bits(i_gid)); 4301 } 4302 } else { 4303 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4304 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4305 raw_inode->i_uid_high = 0; 4306 raw_inode->i_gid_high = 0; 4307 } 4308 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4309 4310 EXT4_INODE_SET_CTIME(inode, raw_inode); 4311 EXT4_INODE_SET_MTIME(inode, raw_inode); 4312 EXT4_INODE_SET_ATIME(inode, raw_inode); 4313 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4314 4315 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4316 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4317 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4318 raw_inode->i_file_acl_high = 4319 cpu_to_le16(ei->i_file_acl >> 32); 4320 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4321 ext4_isize_set(raw_inode, ei->i_disksize); 4322 4323 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4324 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4325 if (old_valid_dev(inode->i_rdev)) { 4326 raw_inode->i_block[0] = 4327 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4328 raw_inode->i_block[1] = 0; 4329 } else { 4330 raw_inode->i_block[0] = 0; 4331 raw_inode->i_block[1] = 4332 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4333 raw_inode->i_block[2] = 0; 4334 } 4335 } else if (!ext4_has_inline_data(inode)) { 4336 for (block = 0; block < EXT4_N_BLOCKS; block++) 4337 raw_inode->i_block[block] = ei->i_data[block]; 4338 } 4339 4340 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4341 u64 ivers = ext4_inode_peek_iversion(inode); 4342 4343 raw_inode->i_disk_version = cpu_to_le32(ivers); 4344 if (ei->i_extra_isize) { 4345 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4346 raw_inode->i_version_hi = 4347 cpu_to_le32(ivers >> 32); 4348 raw_inode->i_extra_isize = 4349 cpu_to_le16(ei->i_extra_isize); 4350 } 4351 } 4352 4353 if (i_projid != EXT4_DEF_PROJID && 4354 !ext4_has_feature_project(inode->i_sb)) 4355 err = err ?: -EFSCORRUPTED; 4356 4357 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4358 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4359 raw_inode->i_projid = cpu_to_le32(i_projid); 4360 4361 ext4_inode_csum_set(inode, raw_inode, ei); 4362 return err; 4363 } 4364 4365 /* 4366 * ext4_get_inode_loc returns with an extra refcount against the inode's 4367 * underlying buffer_head on success. If we pass 'inode' and it does not 4368 * have in-inode xattr, we have all inode data in memory that is needed 4369 * to recreate the on-disk version of this inode. 4370 */ 4371 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4372 struct inode *inode, struct ext4_iloc *iloc, 4373 ext4_fsblk_t *ret_block) 4374 { 4375 struct ext4_group_desc *gdp; 4376 struct buffer_head *bh; 4377 ext4_fsblk_t block; 4378 struct blk_plug plug; 4379 int inodes_per_block, inode_offset; 4380 4381 iloc->bh = NULL; 4382 if (ino < EXT4_ROOT_INO || 4383 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4384 return -EFSCORRUPTED; 4385 4386 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4387 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4388 if (!gdp) 4389 return -EIO; 4390 4391 /* 4392 * Figure out the offset within the block group inode table 4393 */ 4394 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4395 inode_offset = ((ino - 1) % 4396 EXT4_INODES_PER_GROUP(sb)); 4397 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4398 4399 block = ext4_inode_table(sb, gdp); 4400 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4401 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4402 ext4_error(sb, "Invalid inode table block %llu in " 4403 "block_group %u", block, iloc->block_group); 4404 return -EFSCORRUPTED; 4405 } 4406 block += (inode_offset / inodes_per_block); 4407 4408 bh = sb_getblk(sb, block); 4409 if (unlikely(!bh)) 4410 return -ENOMEM; 4411 if (ext4_buffer_uptodate(bh)) 4412 goto has_buffer; 4413 4414 lock_buffer(bh); 4415 if (ext4_buffer_uptodate(bh)) { 4416 /* Someone brought it uptodate while we waited */ 4417 unlock_buffer(bh); 4418 goto has_buffer; 4419 } 4420 4421 /* 4422 * If we have all information of the inode in memory and this 4423 * is the only valid inode in the block, we need not read the 4424 * block. 4425 */ 4426 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4427 struct buffer_head *bitmap_bh; 4428 int i, start; 4429 4430 start = inode_offset & ~(inodes_per_block - 1); 4431 4432 /* Is the inode bitmap in cache? */ 4433 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4434 if (unlikely(!bitmap_bh)) 4435 goto make_io; 4436 4437 /* 4438 * If the inode bitmap isn't in cache then the 4439 * optimisation may end up performing two reads instead 4440 * of one, so skip it. 4441 */ 4442 if (!buffer_uptodate(bitmap_bh)) { 4443 brelse(bitmap_bh); 4444 goto make_io; 4445 } 4446 for (i = start; i < start + inodes_per_block; i++) { 4447 if (i == inode_offset) 4448 continue; 4449 if (ext4_test_bit(i, bitmap_bh->b_data)) 4450 break; 4451 } 4452 brelse(bitmap_bh); 4453 if (i == start + inodes_per_block) { 4454 struct ext4_inode *raw_inode = 4455 (struct ext4_inode *) (bh->b_data + iloc->offset); 4456 4457 /* all other inodes are free, so skip I/O */ 4458 memset(bh->b_data, 0, bh->b_size); 4459 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4460 ext4_fill_raw_inode(inode, raw_inode); 4461 set_buffer_uptodate(bh); 4462 unlock_buffer(bh); 4463 goto has_buffer; 4464 } 4465 } 4466 4467 make_io: 4468 /* 4469 * If we need to do any I/O, try to pre-readahead extra 4470 * blocks from the inode table. 4471 */ 4472 blk_start_plug(&plug); 4473 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4474 ext4_fsblk_t b, end, table; 4475 unsigned num; 4476 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4477 4478 table = ext4_inode_table(sb, gdp); 4479 /* s_inode_readahead_blks is always a power of 2 */ 4480 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4481 if (table > b) 4482 b = table; 4483 end = b + ra_blks; 4484 num = EXT4_INODES_PER_GROUP(sb); 4485 if (ext4_has_group_desc_csum(sb)) 4486 num -= ext4_itable_unused_count(sb, gdp); 4487 table += num / inodes_per_block; 4488 if (end > table) 4489 end = table; 4490 while (b <= end) 4491 ext4_sb_breadahead_unmovable(sb, b++); 4492 } 4493 4494 /* 4495 * There are other valid inodes in the buffer, this inode 4496 * has in-inode xattrs, or we don't have this inode in memory. 4497 * Read the block from disk. 4498 */ 4499 trace_ext4_load_inode(sb, ino); 4500 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4501 blk_finish_plug(&plug); 4502 wait_on_buffer(bh); 4503 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4504 if (!buffer_uptodate(bh)) { 4505 if (ret_block) 4506 *ret_block = block; 4507 brelse(bh); 4508 return -EIO; 4509 } 4510 has_buffer: 4511 iloc->bh = bh; 4512 return 0; 4513 } 4514 4515 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4516 struct ext4_iloc *iloc) 4517 { 4518 ext4_fsblk_t err_blk = 0; 4519 int ret; 4520 4521 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4522 &err_blk); 4523 4524 if (ret == -EIO) 4525 ext4_error_inode_block(inode, err_blk, EIO, 4526 "unable to read itable block"); 4527 4528 return ret; 4529 } 4530 4531 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4532 { 4533 ext4_fsblk_t err_blk = 0; 4534 int ret; 4535 4536 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4537 &err_blk); 4538 4539 if (ret == -EIO) 4540 ext4_error_inode_block(inode, err_blk, EIO, 4541 "unable to read itable block"); 4542 4543 return ret; 4544 } 4545 4546 4547 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4548 struct ext4_iloc *iloc) 4549 { 4550 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4551 } 4552 4553 static bool ext4_should_enable_dax(struct inode *inode) 4554 { 4555 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4556 4557 if (test_opt2(inode->i_sb, DAX_NEVER)) 4558 return false; 4559 if (!S_ISREG(inode->i_mode)) 4560 return false; 4561 if (ext4_should_journal_data(inode)) 4562 return false; 4563 if (ext4_has_inline_data(inode)) 4564 return false; 4565 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4566 return false; 4567 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4568 return false; 4569 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4570 return false; 4571 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4572 return true; 4573 4574 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4575 } 4576 4577 void ext4_set_inode_flags(struct inode *inode, bool init) 4578 { 4579 unsigned int flags = EXT4_I(inode)->i_flags; 4580 unsigned int new_fl = 0; 4581 4582 WARN_ON_ONCE(IS_DAX(inode) && init); 4583 4584 if (flags & EXT4_SYNC_FL) 4585 new_fl |= S_SYNC; 4586 if (flags & EXT4_APPEND_FL) 4587 new_fl |= S_APPEND; 4588 if (flags & EXT4_IMMUTABLE_FL) 4589 new_fl |= S_IMMUTABLE; 4590 if (flags & EXT4_NOATIME_FL) 4591 new_fl |= S_NOATIME; 4592 if (flags & EXT4_DIRSYNC_FL) 4593 new_fl |= S_DIRSYNC; 4594 4595 /* Because of the way inode_set_flags() works we must preserve S_DAX 4596 * here if already set. */ 4597 new_fl |= (inode->i_flags & S_DAX); 4598 if (init && ext4_should_enable_dax(inode)) 4599 new_fl |= S_DAX; 4600 4601 if (flags & EXT4_ENCRYPT_FL) 4602 new_fl |= S_ENCRYPTED; 4603 if (flags & EXT4_CASEFOLD_FL) 4604 new_fl |= S_CASEFOLD; 4605 if (flags & EXT4_VERITY_FL) 4606 new_fl |= S_VERITY; 4607 inode_set_flags(inode, new_fl, 4608 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4609 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4610 } 4611 4612 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4613 struct ext4_inode_info *ei) 4614 { 4615 blkcnt_t i_blocks ; 4616 struct inode *inode = &(ei->vfs_inode); 4617 struct super_block *sb = inode->i_sb; 4618 4619 if (ext4_has_feature_huge_file(sb)) { 4620 /* we are using combined 48 bit field */ 4621 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4622 le32_to_cpu(raw_inode->i_blocks_lo); 4623 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4624 /* i_blocks represent file system block size */ 4625 return i_blocks << (inode->i_blkbits - 9); 4626 } else { 4627 return i_blocks; 4628 } 4629 } else { 4630 return le32_to_cpu(raw_inode->i_blocks_lo); 4631 } 4632 } 4633 4634 static inline int ext4_iget_extra_inode(struct inode *inode, 4635 struct ext4_inode *raw_inode, 4636 struct ext4_inode_info *ei) 4637 { 4638 __le32 *magic = (void *)raw_inode + 4639 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4640 4641 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4642 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4643 int err; 4644 4645 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4646 err = ext4_find_inline_data_nolock(inode); 4647 if (!err && ext4_has_inline_data(inode)) 4648 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4649 return err; 4650 } else 4651 EXT4_I(inode)->i_inline_off = 0; 4652 return 0; 4653 } 4654 4655 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4656 { 4657 if (!ext4_has_feature_project(inode->i_sb)) 4658 return -EOPNOTSUPP; 4659 *projid = EXT4_I(inode)->i_projid; 4660 return 0; 4661 } 4662 4663 /* 4664 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4665 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4666 * set. 4667 */ 4668 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4669 { 4670 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4671 inode_set_iversion_raw(inode, val); 4672 else 4673 inode_set_iversion_queried(inode, val); 4674 } 4675 4676 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4677 4678 { 4679 if (flags & EXT4_IGET_EA_INODE) { 4680 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4681 return "missing EA_INODE flag"; 4682 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4683 EXT4_I(inode)->i_file_acl) 4684 return "ea_inode with extended attributes"; 4685 } else { 4686 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4687 return "unexpected EA_INODE flag"; 4688 } 4689 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4690 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4691 return NULL; 4692 } 4693 4694 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4695 ext4_iget_flags flags, const char *function, 4696 unsigned int line) 4697 { 4698 struct ext4_iloc iloc; 4699 struct ext4_inode *raw_inode; 4700 struct ext4_inode_info *ei; 4701 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4702 struct inode *inode; 4703 const char *err_str; 4704 journal_t *journal = EXT4_SB(sb)->s_journal; 4705 long ret; 4706 loff_t size; 4707 int block; 4708 uid_t i_uid; 4709 gid_t i_gid; 4710 projid_t i_projid; 4711 4712 if ((!(flags & EXT4_IGET_SPECIAL) && 4713 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4714 ino == le32_to_cpu(es->s_usr_quota_inum) || 4715 ino == le32_to_cpu(es->s_grp_quota_inum) || 4716 ino == le32_to_cpu(es->s_prj_quota_inum) || 4717 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4718 (ino < EXT4_ROOT_INO) || 4719 (ino > le32_to_cpu(es->s_inodes_count))) { 4720 if (flags & EXT4_IGET_HANDLE) 4721 return ERR_PTR(-ESTALE); 4722 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4723 "inode #%lu: comm %s: iget: illegal inode #", 4724 ino, current->comm); 4725 return ERR_PTR(-EFSCORRUPTED); 4726 } 4727 4728 inode = iget_locked(sb, ino); 4729 if (!inode) 4730 return ERR_PTR(-ENOMEM); 4731 if (!(inode->i_state & I_NEW)) { 4732 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4733 ext4_error_inode(inode, function, line, 0, err_str); 4734 iput(inode); 4735 return ERR_PTR(-EFSCORRUPTED); 4736 } 4737 return inode; 4738 } 4739 4740 ei = EXT4_I(inode); 4741 iloc.bh = NULL; 4742 4743 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4744 if (ret < 0) 4745 goto bad_inode; 4746 raw_inode = ext4_raw_inode(&iloc); 4747 4748 if ((flags & EXT4_IGET_HANDLE) && 4749 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4750 ret = -ESTALE; 4751 goto bad_inode; 4752 } 4753 4754 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4755 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4756 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4757 EXT4_INODE_SIZE(inode->i_sb) || 4758 (ei->i_extra_isize & 3)) { 4759 ext4_error_inode(inode, function, line, 0, 4760 "iget: bad extra_isize %u " 4761 "(inode size %u)", 4762 ei->i_extra_isize, 4763 EXT4_INODE_SIZE(inode->i_sb)); 4764 ret = -EFSCORRUPTED; 4765 goto bad_inode; 4766 } 4767 } else 4768 ei->i_extra_isize = 0; 4769 4770 /* Precompute checksum seed for inode metadata */ 4771 if (ext4_has_metadata_csum(sb)) { 4772 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4773 __u32 csum; 4774 __le32 inum = cpu_to_le32(inode->i_ino); 4775 __le32 gen = raw_inode->i_generation; 4776 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4777 sizeof(inum)); 4778 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4779 sizeof(gen)); 4780 } 4781 4782 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4783 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4784 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4785 ext4_error_inode_err(inode, function, line, 0, 4786 EFSBADCRC, "iget: checksum invalid"); 4787 ret = -EFSBADCRC; 4788 goto bad_inode; 4789 } 4790 4791 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4792 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4793 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4794 if (ext4_has_feature_project(sb) && 4795 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4796 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4797 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4798 else 4799 i_projid = EXT4_DEF_PROJID; 4800 4801 if (!(test_opt(inode->i_sb, NO_UID32))) { 4802 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4803 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4804 } 4805 i_uid_write(inode, i_uid); 4806 i_gid_write(inode, i_gid); 4807 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4808 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4809 4810 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4811 ei->i_inline_off = 0; 4812 ei->i_dir_start_lookup = 0; 4813 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4814 /* We now have enough fields to check if the inode was active or not. 4815 * This is needed because nfsd might try to access dead inodes 4816 * the test is that same one that e2fsck uses 4817 * NeilBrown 1999oct15 4818 */ 4819 if (inode->i_nlink == 0) { 4820 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4821 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4822 ino != EXT4_BOOT_LOADER_INO) { 4823 /* this inode is deleted or unallocated */ 4824 if (flags & EXT4_IGET_SPECIAL) { 4825 ext4_error_inode(inode, function, line, 0, 4826 "iget: special inode unallocated"); 4827 ret = -EFSCORRUPTED; 4828 } else 4829 ret = -ESTALE; 4830 goto bad_inode; 4831 } 4832 /* The only unlinked inodes we let through here have 4833 * valid i_mode and are being read by the orphan 4834 * recovery code: that's fine, we're about to complete 4835 * the process of deleting those. 4836 * OR it is the EXT4_BOOT_LOADER_INO which is 4837 * not initialized on a new filesystem. */ 4838 } 4839 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4840 ext4_set_inode_flags(inode, true); 4841 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4842 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4843 if (ext4_has_feature_64bit(sb)) 4844 ei->i_file_acl |= 4845 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4846 inode->i_size = ext4_isize(sb, raw_inode); 4847 if ((size = i_size_read(inode)) < 0) { 4848 ext4_error_inode(inode, function, line, 0, 4849 "iget: bad i_size value: %lld", size); 4850 ret = -EFSCORRUPTED; 4851 goto bad_inode; 4852 } 4853 /* 4854 * If dir_index is not enabled but there's dir with INDEX flag set, 4855 * we'd normally treat htree data as empty space. But with metadata 4856 * checksumming that corrupts checksums so forbid that. 4857 */ 4858 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4859 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4860 ext4_error_inode(inode, function, line, 0, 4861 "iget: Dir with htree data on filesystem without dir_index feature."); 4862 ret = -EFSCORRUPTED; 4863 goto bad_inode; 4864 } 4865 ei->i_disksize = inode->i_size; 4866 #ifdef CONFIG_QUOTA 4867 ei->i_reserved_quota = 0; 4868 #endif 4869 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4870 ei->i_block_group = iloc.block_group; 4871 ei->i_last_alloc_group = ~0; 4872 /* 4873 * NOTE! The in-memory inode i_data array is in little-endian order 4874 * even on big-endian machines: we do NOT byteswap the block numbers! 4875 */ 4876 for (block = 0; block < EXT4_N_BLOCKS; block++) 4877 ei->i_data[block] = raw_inode->i_block[block]; 4878 INIT_LIST_HEAD(&ei->i_orphan); 4879 ext4_fc_init_inode(&ei->vfs_inode); 4880 4881 /* 4882 * Set transaction id's of transactions that have to be committed 4883 * to finish f[data]sync. We set them to currently running transaction 4884 * as we cannot be sure that the inode or some of its metadata isn't 4885 * part of the transaction - the inode could have been reclaimed and 4886 * now it is reread from disk. 4887 */ 4888 if (journal) { 4889 transaction_t *transaction; 4890 tid_t tid; 4891 4892 read_lock(&journal->j_state_lock); 4893 if (journal->j_running_transaction) 4894 transaction = journal->j_running_transaction; 4895 else 4896 transaction = journal->j_committing_transaction; 4897 if (transaction) 4898 tid = transaction->t_tid; 4899 else 4900 tid = journal->j_commit_sequence; 4901 read_unlock(&journal->j_state_lock); 4902 ei->i_sync_tid = tid; 4903 ei->i_datasync_tid = tid; 4904 } 4905 4906 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4907 if (ei->i_extra_isize == 0) { 4908 /* The extra space is currently unused. Use it. */ 4909 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4910 ei->i_extra_isize = sizeof(struct ext4_inode) - 4911 EXT4_GOOD_OLD_INODE_SIZE; 4912 } else { 4913 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4914 if (ret) 4915 goto bad_inode; 4916 } 4917 } 4918 4919 EXT4_INODE_GET_CTIME(inode, raw_inode); 4920 EXT4_INODE_GET_ATIME(inode, raw_inode); 4921 EXT4_INODE_GET_MTIME(inode, raw_inode); 4922 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4923 4924 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4925 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4926 4927 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4928 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4929 ivers |= 4930 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4931 } 4932 ext4_inode_set_iversion_queried(inode, ivers); 4933 } 4934 4935 ret = 0; 4936 if (ei->i_file_acl && 4937 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4938 ext4_error_inode(inode, function, line, 0, 4939 "iget: bad extended attribute block %llu", 4940 ei->i_file_acl); 4941 ret = -EFSCORRUPTED; 4942 goto bad_inode; 4943 } else if (!ext4_has_inline_data(inode)) { 4944 /* validate the block references in the inode */ 4945 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4946 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4947 (S_ISLNK(inode->i_mode) && 4948 !ext4_inode_is_fast_symlink(inode)))) { 4949 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4950 ret = ext4_ext_check_inode(inode); 4951 else 4952 ret = ext4_ind_check_inode(inode); 4953 } 4954 } 4955 if (ret) 4956 goto bad_inode; 4957 4958 if (S_ISREG(inode->i_mode)) { 4959 inode->i_op = &ext4_file_inode_operations; 4960 inode->i_fop = &ext4_file_operations; 4961 ext4_set_aops(inode); 4962 } else if (S_ISDIR(inode->i_mode)) { 4963 inode->i_op = &ext4_dir_inode_operations; 4964 inode->i_fop = &ext4_dir_operations; 4965 } else if (S_ISLNK(inode->i_mode)) { 4966 /* VFS does not allow setting these so must be corruption */ 4967 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4968 ext4_error_inode(inode, function, line, 0, 4969 "iget: immutable or append flags " 4970 "not allowed on symlinks"); 4971 ret = -EFSCORRUPTED; 4972 goto bad_inode; 4973 } 4974 if (IS_ENCRYPTED(inode)) { 4975 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4976 } else if (ext4_inode_is_fast_symlink(inode)) { 4977 inode->i_link = (char *)ei->i_data; 4978 inode->i_op = &ext4_fast_symlink_inode_operations; 4979 nd_terminate_link(ei->i_data, inode->i_size, 4980 sizeof(ei->i_data) - 1); 4981 } else { 4982 inode->i_op = &ext4_symlink_inode_operations; 4983 } 4984 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4985 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4986 inode->i_op = &ext4_special_inode_operations; 4987 if (raw_inode->i_block[0]) 4988 init_special_inode(inode, inode->i_mode, 4989 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4990 else 4991 init_special_inode(inode, inode->i_mode, 4992 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4993 } else if (ino == EXT4_BOOT_LOADER_INO) { 4994 make_bad_inode(inode); 4995 } else { 4996 ret = -EFSCORRUPTED; 4997 ext4_error_inode(inode, function, line, 0, 4998 "iget: bogus i_mode (%o)", inode->i_mode); 4999 goto bad_inode; 5000 } 5001 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5002 ext4_error_inode(inode, function, line, 0, 5003 "casefold flag without casefold feature"); 5004 ret = -EFSCORRUPTED; 5005 goto bad_inode; 5006 } 5007 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 5008 ext4_error_inode(inode, function, line, 0, err_str); 5009 ret = -EFSCORRUPTED; 5010 goto bad_inode; 5011 } 5012 5013 brelse(iloc.bh); 5014 unlock_new_inode(inode); 5015 return inode; 5016 5017 bad_inode: 5018 brelse(iloc.bh); 5019 iget_failed(inode); 5020 return ERR_PTR(ret); 5021 } 5022 5023 static void __ext4_update_other_inode_time(struct super_block *sb, 5024 unsigned long orig_ino, 5025 unsigned long ino, 5026 struct ext4_inode *raw_inode) 5027 { 5028 struct inode *inode; 5029 5030 inode = find_inode_by_ino_rcu(sb, ino); 5031 if (!inode) 5032 return; 5033 5034 if (!inode_is_dirtytime_only(inode)) 5035 return; 5036 5037 spin_lock(&inode->i_lock); 5038 if (inode_is_dirtytime_only(inode)) { 5039 struct ext4_inode_info *ei = EXT4_I(inode); 5040 5041 inode->i_state &= ~I_DIRTY_TIME; 5042 spin_unlock(&inode->i_lock); 5043 5044 spin_lock(&ei->i_raw_lock); 5045 EXT4_INODE_SET_CTIME(inode, raw_inode); 5046 EXT4_INODE_SET_MTIME(inode, raw_inode); 5047 EXT4_INODE_SET_ATIME(inode, raw_inode); 5048 ext4_inode_csum_set(inode, raw_inode, ei); 5049 spin_unlock(&ei->i_raw_lock); 5050 trace_ext4_other_inode_update_time(inode, orig_ino); 5051 return; 5052 } 5053 spin_unlock(&inode->i_lock); 5054 } 5055 5056 /* 5057 * Opportunistically update the other time fields for other inodes in 5058 * the same inode table block. 5059 */ 5060 static void ext4_update_other_inodes_time(struct super_block *sb, 5061 unsigned long orig_ino, char *buf) 5062 { 5063 unsigned long ino; 5064 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5065 int inode_size = EXT4_INODE_SIZE(sb); 5066 5067 /* 5068 * Calculate the first inode in the inode table block. Inode 5069 * numbers are one-based. That is, the first inode in a block 5070 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5071 */ 5072 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5073 rcu_read_lock(); 5074 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5075 if (ino == orig_ino) 5076 continue; 5077 __ext4_update_other_inode_time(sb, orig_ino, ino, 5078 (struct ext4_inode *)buf); 5079 } 5080 rcu_read_unlock(); 5081 } 5082 5083 /* 5084 * Post the struct inode info into an on-disk inode location in the 5085 * buffer-cache. This gobbles the caller's reference to the 5086 * buffer_head in the inode location struct. 5087 * 5088 * The caller must have write access to iloc->bh. 5089 */ 5090 static int ext4_do_update_inode(handle_t *handle, 5091 struct inode *inode, 5092 struct ext4_iloc *iloc) 5093 { 5094 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5095 struct ext4_inode_info *ei = EXT4_I(inode); 5096 struct buffer_head *bh = iloc->bh; 5097 struct super_block *sb = inode->i_sb; 5098 int err; 5099 int need_datasync = 0, set_large_file = 0; 5100 5101 spin_lock(&ei->i_raw_lock); 5102 5103 /* 5104 * For fields not tracked in the in-memory inode, initialise them 5105 * to zero for new inodes. 5106 */ 5107 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5108 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5109 5110 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5111 need_datasync = 1; 5112 if (ei->i_disksize > 0x7fffffffULL) { 5113 if (!ext4_has_feature_large_file(sb) || 5114 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5115 set_large_file = 1; 5116 } 5117 5118 err = ext4_fill_raw_inode(inode, raw_inode); 5119 spin_unlock(&ei->i_raw_lock); 5120 if (err) { 5121 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5122 goto out_brelse; 5123 } 5124 5125 if (inode->i_sb->s_flags & SB_LAZYTIME) 5126 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5127 bh->b_data); 5128 5129 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5130 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5131 if (err) 5132 goto out_error; 5133 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5134 if (set_large_file) { 5135 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5136 err = ext4_journal_get_write_access(handle, sb, 5137 EXT4_SB(sb)->s_sbh, 5138 EXT4_JTR_NONE); 5139 if (err) 5140 goto out_error; 5141 lock_buffer(EXT4_SB(sb)->s_sbh); 5142 ext4_set_feature_large_file(sb); 5143 ext4_superblock_csum_set(sb); 5144 unlock_buffer(EXT4_SB(sb)->s_sbh); 5145 ext4_handle_sync(handle); 5146 err = ext4_handle_dirty_metadata(handle, NULL, 5147 EXT4_SB(sb)->s_sbh); 5148 } 5149 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5150 out_error: 5151 ext4_std_error(inode->i_sb, err); 5152 out_brelse: 5153 brelse(bh); 5154 return err; 5155 } 5156 5157 /* 5158 * ext4_write_inode() 5159 * 5160 * We are called from a few places: 5161 * 5162 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5163 * Here, there will be no transaction running. We wait for any running 5164 * transaction to commit. 5165 * 5166 * - Within flush work (sys_sync(), kupdate and such). 5167 * We wait on commit, if told to. 5168 * 5169 * - Within iput_final() -> write_inode_now() 5170 * We wait on commit, if told to. 5171 * 5172 * In all cases it is actually safe for us to return without doing anything, 5173 * because the inode has been copied into a raw inode buffer in 5174 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5175 * writeback. 5176 * 5177 * Note that we are absolutely dependent upon all inode dirtiers doing the 5178 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5179 * which we are interested. 5180 * 5181 * It would be a bug for them to not do this. The code: 5182 * 5183 * mark_inode_dirty(inode) 5184 * stuff(); 5185 * inode->i_size = expr; 5186 * 5187 * is in error because write_inode() could occur while `stuff()' is running, 5188 * and the new i_size will be lost. Plus the inode will no longer be on the 5189 * superblock's dirty inode list. 5190 */ 5191 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5192 { 5193 int err; 5194 5195 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5196 return 0; 5197 5198 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5199 return -EIO; 5200 5201 if (EXT4_SB(inode->i_sb)->s_journal) { 5202 if (ext4_journal_current_handle()) { 5203 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5204 dump_stack(); 5205 return -EIO; 5206 } 5207 5208 /* 5209 * No need to force transaction in WB_SYNC_NONE mode. Also 5210 * ext4_sync_fs() will force the commit after everything is 5211 * written. 5212 */ 5213 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5214 return 0; 5215 5216 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5217 EXT4_I(inode)->i_sync_tid); 5218 } else { 5219 struct ext4_iloc iloc; 5220 5221 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5222 if (err) 5223 return err; 5224 /* 5225 * sync(2) will flush the whole buffer cache. No need to do 5226 * it here separately for each inode. 5227 */ 5228 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5229 sync_dirty_buffer(iloc.bh); 5230 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5231 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5232 "IO error syncing inode"); 5233 err = -EIO; 5234 } 5235 brelse(iloc.bh); 5236 } 5237 return err; 5238 } 5239 5240 /* 5241 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5242 * buffers that are attached to a folio straddling i_size and are undergoing 5243 * commit. In that case we have to wait for commit to finish and try again. 5244 */ 5245 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5246 { 5247 unsigned offset; 5248 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5249 tid_t commit_tid; 5250 int ret; 5251 bool has_transaction; 5252 5253 offset = inode->i_size & (PAGE_SIZE - 1); 5254 /* 5255 * If the folio is fully truncated, we don't need to wait for any commit 5256 * (and we even should not as __ext4_journalled_invalidate_folio() may 5257 * strip all buffers from the folio but keep the folio dirty which can then 5258 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5259 * buffers). Also we don't need to wait for any commit if all buffers in 5260 * the folio remain valid. This is most beneficial for the common case of 5261 * blocksize == PAGESIZE. 5262 */ 5263 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5264 return; 5265 while (1) { 5266 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5267 inode->i_size >> PAGE_SHIFT); 5268 if (IS_ERR(folio)) 5269 return; 5270 ret = __ext4_journalled_invalidate_folio(folio, offset, 5271 folio_size(folio) - offset); 5272 folio_unlock(folio); 5273 folio_put(folio); 5274 if (ret != -EBUSY) 5275 return; 5276 has_transaction = false; 5277 read_lock(&journal->j_state_lock); 5278 if (journal->j_committing_transaction) { 5279 commit_tid = journal->j_committing_transaction->t_tid; 5280 has_transaction = true; 5281 } 5282 read_unlock(&journal->j_state_lock); 5283 if (has_transaction) 5284 jbd2_log_wait_commit(journal, commit_tid); 5285 } 5286 } 5287 5288 /* 5289 * ext4_setattr() 5290 * 5291 * Called from notify_change. 5292 * 5293 * We want to trap VFS attempts to truncate the file as soon as 5294 * possible. In particular, we want to make sure that when the VFS 5295 * shrinks i_size, we put the inode on the orphan list and modify 5296 * i_disksize immediately, so that during the subsequent flushing of 5297 * dirty pages and freeing of disk blocks, we can guarantee that any 5298 * commit will leave the blocks being flushed in an unused state on 5299 * disk. (On recovery, the inode will get truncated and the blocks will 5300 * be freed, so we have a strong guarantee that no future commit will 5301 * leave these blocks visible to the user.) 5302 * 5303 * Another thing we have to assure is that if we are in ordered mode 5304 * and inode is still attached to the committing transaction, we must 5305 * we start writeout of all the dirty pages which are being truncated. 5306 * This way we are sure that all the data written in the previous 5307 * transaction are already on disk (truncate waits for pages under 5308 * writeback). 5309 * 5310 * Called with inode->i_rwsem down. 5311 */ 5312 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5313 struct iattr *attr) 5314 { 5315 struct inode *inode = d_inode(dentry); 5316 int error, rc = 0; 5317 int orphan = 0; 5318 const unsigned int ia_valid = attr->ia_valid; 5319 bool inc_ivers = true; 5320 5321 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5322 return -EIO; 5323 5324 if (unlikely(IS_IMMUTABLE(inode))) 5325 return -EPERM; 5326 5327 if (unlikely(IS_APPEND(inode) && 5328 (ia_valid & (ATTR_MODE | ATTR_UID | 5329 ATTR_GID | ATTR_TIMES_SET)))) 5330 return -EPERM; 5331 5332 error = setattr_prepare(idmap, dentry, attr); 5333 if (error) 5334 return error; 5335 5336 error = fscrypt_prepare_setattr(dentry, attr); 5337 if (error) 5338 return error; 5339 5340 error = fsverity_prepare_setattr(dentry, attr); 5341 if (error) 5342 return error; 5343 5344 if (is_quota_modification(idmap, inode, attr)) { 5345 error = dquot_initialize(inode); 5346 if (error) 5347 return error; 5348 } 5349 5350 if (i_uid_needs_update(idmap, attr, inode) || 5351 i_gid_needs_update(idmap, attr, inode)) { 5352 handle_t *handle; 5353 5354 /* (user+group)*(old+new) structure, inode write (sb, 5355 * inode block, ? - but truncate inode update has it) */ 5356 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5357 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5358 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5359 if (IS_ERR(handle)) { 5360 error = PTR_ERR(handle); 5361 goto err_out; 5362 } 5363 5364 /* dquot_transfer() calls back ext4_get_inode_usage() which 5365 * counts xattr inode references. 5366 */ 5367 down_read(&EXT4_I(inode)->xattr_sem); 5368 error = dquot_transfer(idmap, inode, attr); 5369 up_read(&EXT4_I(inode)->xattr_sem); 5370 5371 if (error) { 5372 ext4_journal_stop(handle); 5373 return error; 5374 } 5375 /* Update corresponding info in inode so that everything is in 5376 * one transaction */ 5377 i_uid_update(idmap, attr, inode); 5378 i_gid_update(idmap, attr, inode); 5379 error = ext4_mark_inode_dirty(handle, inode); 5380 ext4_journal_stop(handle); 5381 if (unlikely(error)) { 5382 return error; 5383 } 5384 } 5385 5386 if (attr->ia_valid & ATTR_SIZE) { 5387 handle_t *handle; 5388 loff_t oldsize = inode->i_size; 5389 loff_t old_disksize; 5390 int shrink = (attr->ia_size < inode->i_size); 5391 5392 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5393 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5394 5395 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5396 return -EFBIG; 5397 } 5398 } 5399 if (!S_ISREG(inode->i_mode)) { 5400 return -EINVAL; 5401 } 5402 5403 if (attr->ia_size == inode->i_size) 5404 inc_ivers = false; 5405 5406 if (shrink) { 5407 if (ext4_should_order_data(inode)) { 5408 error = ext4_begin_ordered_truncate(inode, 5409 attr->ia_size); 5410 if (error) 5411 goto err_out; 5412 } 5413 /* 5414 * Blocks are going to be removed from the inode. Wait 5415 * for dio in flight. 5416 */ 5417 inode_dio_wait(inode); 5418 } 5419 5420 filemap_invalidate_lock(inode->i_mapping); 5421 5422 rc = ext4_break_layouts(inode); 5423 if (rc) { 5424 filemap_invalidate_unlock(inode->i_mapping); 5425 goto err_out; 5426 } 5427 5428 if (attr->ia_size != inode->i_size) { 5429 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5430 if (IS_ERR(handle)) { 5431 error = PTR_ERR(handle); 5432 goto out_mmap_sem; 5433 } 5434 if (ext4_handle_valid(handle) && shrink) { 5435 error = ext4_orphan_add(handle, inode); 5436 orphan = 1; 5437 } 5438 /* 5439 * Update c/mtime on truncate up, ext4_truncate() will 5440 * update c/mtime in shrink case below 5441 */ 5442 if (!shrink) 5443 inode_set_mtime_to_ts(inode, 5444 inode_set_ctime_current(inode)); 5445 5446 if (shrink) 5447 ext4_fc_track_range(handle, inode, 5448 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5449 inode->i_sb->s_blocksize_bits, 5450 EXT_MAX_BLOCKS - 1); 5451 else 5452 ext4_fc_track_range( 5453 handle, inode, 5454 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5455 inode->i_sb->s_blocksize_bits, 5456 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5457 inode->i_sb->s_blocksize_bits); 5458 5459 down_write(&EXT4_I(inode)->i_data_sem); 5460 old_disksize = EXT4_I(inode)->i_disksize; 5461 EXT4_I(inode)->i_disksize = attr->ia_size; 5462 rc = ext4_mark_inode_dirty(handle, inode); 5463 if (!error) 5464 error = rc; 5465 /* 5466 * We have to update i_size under i_data_sem together 5467 * with i_disksize to avoid races with writeback code 5468 * running ext4_wb_update_i_disksize(). 5469 */ 5470 if (!error) 5471 i_size_write(inode, attr->ia_size); 5472 else 5473 EXT4_I(inode)->i_disksize = old_disksize; 5474 up_write(&EXT4_I(inode)->i_data_sem); 5475 ext4_journal_stop(handle); 5476 if (error) 5477 goto out_mmap_sem; 5478 if (!shrink) { 5479 pagecache_isize_extended(inode, oldsize, 5480 inode->i_size); 5481 } else if (ext4_should_journal_data(inode)) { 5482 ext4_wait_for_tail_page_commit(inode); 5483 } 5484 } 5485 5486 /* 5487 * Truncate pagecache after we've waited for commit 5488 * in data=journal mode to make pages freeable. 5489 */ 5490 truncate_pagecache(inode, inode->i_size); 5491 /* 5492 * Call ext4_truncate() even if i_size didn't change to 5493 * truncate possible preallocated blocks. 5494 */ 5495 if (attr->ia_size <= oldsize) { 5496 rc = ext4_truncate(inode); 5497 if (rc) 5498 error = rc; 5499 } 5500 out_mmap_sem: 5501 filemap_invalidate_unlock(inode->i_mapping); 5502 } 5503 5504 if (!error) { 5505 if (inc_ivers) 5506 inode_inc_iversion(inode); 5507 setattr_copy(idmap, inode, attr); 5508 mark_inode_dirty(inode); 5509 } 5510 5511 /* 5512 * If the call to ext4_truncate failed to get a transaction handle at 5513 * all, we need to clean up the in-core orphan list manually. 5514 */ 5515 if (orphan && inode->i_nlink) 5516 ext4_orphan_del(NULL, inode); 5517 5518 if (!error && (ia_valid & ATTR_MODE)) 5519 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5520 5521 err_out: 5522 if (error) 5523 ext4_std_error(inode->i_sb, error); 5524 if (!error) 5525 error = rc; 5526 return error; 5527 } 5528 5529 u32 ext4_dio_alignment(struct inode *inode) 5530 { 5531 if (fsverity_active(inode)) 5532 return 0; 5533 if (ext4_should_journal_data(inode)) 5534 return 0; 5535 if (ext4_has_inline_data(inode)) 5536 return 0; 5537 if (IS_ENCRYPTED(inode)) { 5538 if (!fscrypt_dio_supported(inode)) 5539 return 0; 5540 return i_blocksize(inode); 5541 } 5542 return 1; /* use the iomap defaults */ 5543 } 5544 5545 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5546 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5547 { 5548 struct inode *inode = d_inode(path->dentry); 5549 struct ext4_inode *raw_inode; 5550 struct ext4_inode_info *ei = EXT4_I(inode); 5551 unsigned int flags; 5552 5553 if ((request_mask & STATX_BTIME) && 5554 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5555 stat->result_mask |= STATX_BTIME; 5556 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5557 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5558 } 5559 5560 /* 5561 * Return the DIO alignment restrictions if requested. We only return 5562 * this information when requested, since on encrypted files it might 5563 * take a fair bit of work to get if the file wasn't opened recently. 5564 */ 5565 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5566 u32 dio_align = ext4_dio_alignment(inode); 5567 5568 stat->result_mask |= STATX_DIOALIGN; 5569 if (dio_align == 1) { 5570 struct block_device *bdev = inode->i_sb->s_bdev; 5571 5572 /* iomap defaults */ 5573 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5574 stat->dio_offset_align = bdev_logical_block_size(bdev); 5575 } else { 5576 stat->dio_mem_align = dio_align; 5577 stat->dio_offset_align = dio_align; 5578 } 5579 } 5580 5581 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5582 if (flags & EXT4_APPEND_FL) 5583 stat->attributes |= STATX_ATTR_APPEND; 5584 if (flags & EXT4_COMPR_FL) 5585 stat->attributes |= STATX_ATTR_COMPRESSED; 5586 if (flags & EXT4_ENCRYPT_FL) 5587 stat->attributes |= STATX_ATTR_ENCRYPTED; 5588 if (flags & EXT4_IMMUTABLE_FL) 5589 stat->attributes |= STATX_ATTR_IMMUTABLE; 5590 if (flags & EXT4_NODUMP_FL) 5591 stat->attributes |= STATX_ATTR_NODUMP; 5592 if (flags & EXT4_VERITY_FL) 5593 stat->attributes |= STATX_ATTR_VERITY; 5594 5595 stat->attributes_mask |= (STATX_ATTR_APPEND | 5596 STATX_ATTR_COMPRESSED | 5597 STATX_ATTR_ENCRYPTED | 5598 STATX_ATTR_IMMUTABLE | 5599 STATX_ATTR_NODUMP | 5600 STATX_ATTR_VERITY); 5601 5602 generic_fillattr(idmap, request_mask, inode, stat); 5603 return 0; 5604 } 5605 5606 int ext4_file_getattr(struct mnt_idmap *idmap, 5607 const struct path *path, struct kstat *stat, 5608 u32 request_mask, unsigned int query_flags) 5609 { 5610 struct inode *inode = d_inode(path->dentry); 5611 u64 delalloc_blocks; 5612 5613 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5614 5615 /* 5616 * If there is inline data in the inode, the inode will normally not 5617 * have data blocks allocated (it may have an external xattr block). 5618 * Report at least one sector for such files, so tools like tar, rsync, 5619 * others don't incorrectly think the file is completely sparse. 5620 */ 5621 if (unlikely(ext4_has_inline_data(inode))) 5622 stat->blocks += (stat->size + 511) >> 9; 5623 5624 /* 5625 * We can't update i_blocks if the block allocation is delayed 5626 * otherwise in the case of system crash before the real block 5627 * allocation is done, we will have i_blocks inconsistent with 5628 * on-disk file blocks. 5629 * We always keep i_blocks updated together with real 5630 * allocation. But to not confuse with user, stat 5631 * will return the blocks that include the delayed allocation 5632 * blocks for this file. 5633 */ 5634 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5635 EXT4_I(inode)->i_reserved_data_blocks); 5636 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5637 return 0; 5638 } 5639 5640 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5641 int pextents) 5642 { 5643 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5644 return ext4_ind_trans_blocks(inode, lblocks); 5645 return ext4_ext_index_trans_blocks(inode, pextents); 5646 } 5647 5648 /* 5649 * Account for index blocks, block groups bitmaps and block group 5650 * descriptor blocks if modify datablocks and index blocks 5651 * worse case, the indexs blocks spread over different block groups 5652 * 5653 * If datablocks are discontiguous, they are possible to spread over 5654 * different block groups too. If they are contiguous, with flexbg, 5655 * they could still across block group boundary. 5656 * 5657 * Also account for superblock, inode, quota and xattr blocks 5658 */ 5659 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5660 int pextents) 5661 { 5662 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5663 int gdpblocks; 5664 int idxblocks; 5665 int ret; 5666 5667 /* 5668 * How many index blocks need to touch to map @lblocks logical blocks 5669 * to @pextents physical extents? 5670 */ 5671 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5672 5673 ret = idxblocks; 5674 5675 /* 5676 * Now let's see how many group bitmaps and group descriptors need 5677 * to account 5678 */ 5679 groups = idxblocks + pextents; 5680 gdpblocks = groups; 5681 if (groups > ngroups) 5682 groups = ngroups; 5683 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5684 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5685 5686 /* bitmaps and block group descriptor blocks */ 5687 ret += groups + gdpblocks; 5688 5689 /* Blocks for super block, inode, quota and xattr blocks */ 5690 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5691 5692 return ret; 5693 } 5694 5695 /* 5696 * Calculate the total number of credits to reserve to fit 5697 * the modification of a single pages into a single transaction, 5698 * which may include multiple chunks of block allocations. 5699 * 5700 * This could be called via ext4_write_begin() 5701 * 5702 * We need to consider the worse case, when 5703 * one new block per extent. 5704 */ 5705 int ext4_writepage_trans_blocks(struct inode *inode) 5706 { 5707 int bpp = ext4_journal_blocks_per_page(inode); 5708 int ret; 5709 5710 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5711 5712 /* Account for data blocks for journalled mode */ 5713 if (ext4_should_journal_data(inode)) 5714 ret += bpp; 5715 return ret; 5716 } 5717 5718 /* 5719 * Calculate the journal credits for a chunk of data modification. 5720 * 5721 * This is called from DIO, fallocate or whoever calling 5722 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5723 * 5724 * journal buffers for data blocks are not included here, as DIO 5725 * and fallocate do no need to journal data buffers. 5726 */ 5727 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5728 { 5729 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5730 } 5731 5732 /* 5733 * The caller must have previously called ext4_reserve_inode_write(). 5734 * Give this, we know that the caller already has write access to iloc->bh. 5735 */ 5736 int ext4_mark_iloc_dirty(handle_t *handle, 5737 struct inode *inode, struct ext4_iloc *iloc) 5738 { 5739 int err = 0; 5740 5741 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5742 put_bh(iloc->bh); 5743 return -EIO; 5744 } 5745 ext4_fc_track_inode(handle, inode); 5746 5747 /* the do_update_inode consumes one bh->b_count */ 5748 get_bh(iloc->bh); 5749 5750 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5751 err = ext4_do_update_inode(handle, inode, iloc); 5752 put_bh(iloc->bh); 5753 return err; 5754 } 5755 5756 /* 5757 * On success, We end up with an outstanding reference count against 5758 * iloc->bh. This _must_ be cleaned up later. 5759 */ 5760 5761 int 5762 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5763 struct ext4_iloc *iloc) 5764 { 5765 int err; 5766 5767 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5768 return -EIO; 5769 5770 err = ext4_get_inode_loc(inode, iloc); 5771 if (!err) { 5772 BUFFER_TRACE(iloc->bh, "get_write_access"); 5773 err = ext4_journal_get_write_access(handle, inode->i_sb, 5774 iloc->bh, EXT4_JTR_NONE); 5775 if (err) { 5776 brelse(iloc->bh); 5777 iloc->bh = NULL; 5778 } 5779 } 5780 ext4_std_error(inode->i_sb, err); 5781 return err; 5782 } 5783 5784 static int __ext4_expand_extra_isize(struct inode *inode, 5785 unsigned int new_extra_isize, 5786 struct ext4_iloc *iloc, 5787 handle_t *handle, int *no_expand) 5788 { 5789 struct ext4_inode *raw_inode; 5790 struct ext4_xattr_ibody_header *header; 5791 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5792 struct ext4_inode_info *ei = EXT4_I(inode); 5793 int error; 5794 5795 /* this was checked at iget time, but double check for good measure */ 5796 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5797 (ei->i_extra_isize & 3)) { 5798 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5799 ei->i_extra_isize, 5800 EXT4_INODE_SIZE(inode->i_sb)); 5801 return -EFSCORRUPTED; 5802 } 5803 if ((new_extra_isize < ei->i_extra_isize) || 5804 (new_extra_isize < 4) || 5805 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5806 return -EINVAL; /* Should never happen */ 5807 5808 raw_inode = ext4_raw_inode(iloc); 5809 5810 header = IHDR(inode, raw_inode); 5811 5812 /* No extended attributes present */ 5813 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5814 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5815 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5816 EXT4_I(inode)->i_extra_isize, 0, 5817 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5818 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5819 return 0; 5820 } 5821 5822 /* 5823 * We may need to allocate external xattr block so we need quotas 5824 * initialized. Here we can be called with various locks held so we 5825 * cannot affort to initialize quotas ourselves. So just bail. 5826 */ 5827 if (dquot_initialize_needed(inode)) 5828 return -EAGAIN; 5829 5830 /* try to expand with EAs present */ 5831 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5832 raw_inode, handle); 5833 if (error) { 5834 /* 5835 * Inode size expansion failed; don't try again 5836 */ 5837 *no_expand = 1; 5838 } 5839 5840 return error; 5841 } 5842 5843 /* 5844 * Expand an inode by new_extra_isize bytes. 5845 * Returns 0 on success or negative error number on failure. 5846 */ 5847 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5848 unsigned int new_extra_isize, 5849 struct ext4_iloc iloc, 5850 handle_t *handle) 5851 { 5852 int no_expand; 5853 int error; 5854 5855 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5856 return -EOVERFLOW; 5857 5858 /* 5859 * In nojournal mode, we can immediately attempt to expand 5860 * the inode. When journaled, we first need to obtain extra 5861 * buffer credits since we may write into the EA block 5862 * with this same handle. If journal_extend fails, then it will 5863 * only result in a minor loss of functionality for that inode. 5864 * If this is felt to be critical, then e2fsck should be run to 5865 * force a large enough s_min_extra_isize. 5866 */ 5867 if (ext4_journal_extend(handle, 5868 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5869 return -ENOSPC; 5870 5871 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5872 return -EBUSY; 5873 5874 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5875 handle, &no_expand); 5876 ext4_write_unlock_xattr(inode, &no_expand); 5877 5878 return error; 5879 } 5880 5881 int ext4_expand_extra_isize(struct inode *inode, 5882 unsigned int new_extra_isize, 5883 struct ext4_iloc *iloc) 5884 { 5885 handle_t *handle; 5886 int no_expand; 5887 int error, rc; 5888 5889 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5890 brelse(iloc->bh); 5891 return -EOVERFLOW; 5892 } 5893 5894 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5895 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5896 if (IS_ERR(handle)) { 5897 error = PTR_ERR(handle); 5898 brelse(iloc->bh); 5899 return error; 5900 } 5901 5902 ext4_write_lock_xattr(inode, &no_expand); 5903 5904 BUFFER_TRACE(iloc->bh, "get_write_access"); 5905 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5906 EXT4_JTR_NONE); 5907 if (error) { 5908 brelse(iloc->bh); 5909 goto out_unlock; 5910 } 5911 5912 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5913 handle, &no_expand); 5914 5915 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5916 if (!error) 5917 error = rc; 5918 5919 out_unlock: 5920 ext4_write_unlock_xattr(inode, &no_expand); 5921 ext4_journal_stop(handle); 5922 return error; 5923 } 5924 5925 /* 5926 * What we do here is to mark the in-core inode as clean with respect to inode 5927 * dirtiness (it may still be data-dirty). 5928 * This means that the in-core inode may be reaped by prune_icache 5929 * without having to perform any I/O. This is a very good thing, 5930 * because *any* task may call prune_icache - even ones which 5931 * have a transaction open against a different journal. 5932 * 5933 * Is this cheating? Not really. Sure, we haven't written the 5934 * inode out, but prune_icache isn't a user-visible syncing function. 5935 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5936 * we start and wait on commits. 5937 */ 5938 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5939 const char *func, unsigned int line) 5940 { 5941 struct ext4_iloc iloc; 5942 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5943 int err; 5944 5945 might_sleep(); 5946 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5947 err = ext4_reserve_inode_write(handle, inode, &iloc); 5948 if (err) 5949 goto out; 5950 5951 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5952 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5953 iloc, handle); 5954 5955 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5956 out: 5957 if (unlikely(err)) 5958 ext4_error_inode_err(inode, func, line, 0, err, 5959 "mark_inode_dirty error"); 5960 return err; 5961 } 5962 5963 /* 5964 * ext4_dirty_inode() is called from __mark_inode_dirty() 5965 * 5966 * We're really interested in the case where a file is being extended. 5967 * i_size has been changed by generic_commit_write() and we thus need 5968 * to include the updated inode in the current transaction. 5969 * 5970 * Also, dquot_alloc_block() will always dirty the inode when blocks 5971 * are allocated to the file. 5972 * 5973 * If the inode is marked synchronous, we don't honour that here - doing 5974 * so would cause a commit on atime updates, which we don't bother doing. 5975 * We handle synchronous inodes at the highest possible level. 5976 */ 5977 void ext4_dirty_inode(struct inode *inode, int flags) 5978 { 5979 handle_t *handle; 5980 5981 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5982 if (IS_ERR(handle)) 5983 return; 5984 ext4_mark_inode_dirty(handle, inode); 5985 ext4_journal_stop(handle); 5986 } 5987 5988 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5989 { 5990 journal_t *journal; 5991 handle_t *handle; 5992 int err; 5993 int alloc_ctx; 5994 5995 /* 5996 * We have to be very careful here: changing a data block's 5997 * journaling status dynamically is dangerous. If we write a 5998 * data block to the journal, change the status and then delete 5999 * that block, we risk forgetting to revoke the old log record 6000 * from the journal and so a subsequent replay can corrupt data. 6001 * So, first we make sure that the journal is empty and that 6002 * nobody is changing anything. 6003 */ 6004 6005 journal = EXT4_JOURNAL(inode); 6006 if (!journal) 6007 return 0; 6008 if (is_journal_aborted(journal)) 6009 return -EROFS; 6010 6011 /* Wait for all existing dio workers */ 6012 inode_dio_wait(inode); 6013 6014 /* 6015 * Before flushing the journal and switching inode's aops, we have 6016 * to flush all dirty data the inode has. There can be outstanding 6017 * delayed allocations, there can be unwritten extents created by 6018 * fallocate or buffered writes in dioread_nolock mode covered by 6019 * dirty data which can be converted only after flushing the dirty 6020 * data (and journalled aops don't know how to handle these cases). 6021 */ 6022 if (val) { 6023 filemap_invalidate_lock(inode->i_mapping); 6024 err = filemap_write_and_wait(inode->i_mapping); 6025 if (err < 0) { 6026 filemap_invalidate_unlock(inode->i_mapping); 6027 return err; 6028 } 6029 } 6030 6031 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6032 jbd2_journal_lock_updates(journal); 6033 6034 /* 6035 * OK, there are no updates running now, and all cached data is 6036 * synced to disk. We are now in a completely consistent state 6037 * which doesn't have anything in the journal, and we know that 6038 * no filesystem updates are running, so it is safe to modify 6039 * the inode's in-core data-journaling state flag now. 6040 */ 6041 6042 if (val) 6043 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6044 else { 6045 err = jbd2_journal_flush(journal, 0); 6046 if (err < 0) { 6047 jbd2_journal_unlock_updates(journal); 6048 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6049 return err; 6050 } 6051 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6052 } 6053 ext4_set_aops(inode); 6054 6055 jbd2_journal_unlock_updates(journal); 6056 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6057 6058 if (val) 6059 filemap_invalidate_unlock(inode->i_mapping); 6060 6061 /* Finally we can mark the inode as dirty. */ 6062 6063 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6064 if (IS_ERR(handle)) 6065 return PTR_ERR(handle); 6066 6067 ext4_fc_mark_ineligible(inode->i_sb, 6068 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6069 err = ext4_mark_inode_dirty(handle, inode); 6070 ext4_handle_sync(handle); 6071 ext4_journal_stop(handle); 6072 ext4_std_error(inode->i_sb, err); 6073 6074 return err; 6075 } 6076 6077 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6078 struct buffer_head *bh) 6079 { 6080 return !buffer_mapped(bh); 6081 } 6082 6083 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6084 { 6085 struct vm_area_struct *vma = vmf->vma; 6086 struct folio *folio = page_folio(vmf->page); 6087 loff_t size; 6088 unsigned long len; 6089 int err; 6090 vm_fault_t ret; 6091 struct file *file = vma->vm_file; 6092 struct inode *inode = file_inode(file); 6093 struct address_space *mapping = inode->i_mapping; 6094 handle_t *handle; 6095 get_block_t *get_block; 6096 int retries = 0; 6097 6098 if (unlikely(IS_IMMUTABLE(inode))) 6099 return VM_FAULT_SIGBUS; 6100 6101 sb_start_pagefault(inode->i_sb); 6102 file_update_time(vma->vm_file); 6103 6104 filemap_invalidate_lock_shared(mapping); 6105 6106 err = ext4_convert_inline_data(inode); 6107 if (err) 6108 goto out_ret; 6109 6110 /* 6111 * On data journalling we skip straight to the transaction handle: 6112 * there's no delalloc; page truncated will be checked later; the 6113 * early return w/ all buffers mapped (calculates size/len) can't 6114 * be used; and there's no dioread_nolock, so only ext4_get_block. 6115 */ 6116 if (ext4_should_journal_data(inode)) 6117 goto retry_alloc; 6118 6119 /* Delalloc case is easy... */ 6120 if (test_opt(inode->i_sb, DELALLOC) && 6121 !ext4_nonda_switch(inode->i_sb)) { 6122 do { 6123 err = block_page_mkwrite(vma, vmf, 6124 ext4_da_get_block_prep); 6125 } while (err == -ENOSPC && 6126 ext4_should_retry_alloc(inode->i_sb, &retries)); 6127 goto out_ret; 6128 } 6129 6130 folio_lock(folio); 6131 size = i_size_read(inode); 6132 /* Page got truncated from under us? */ 6133 if (folio->mapping != mapping || folio_pos(folio) > size) { 6134 folio_unlock(folio); 6135 ret = VM_FAULT_NOPAGE; 6136 goto out; 6137 } 6138 6139 len = folio_size(folio); 6140 if (folio_pos(folio) + len > size) 6141 len = size - folio_pos(folio); 6142 /* 6143 * Return if we have all the buffers mapped. This avoids the need to do 6144 * journal_start/journal_stop which can block and take a long time 6145 * 6146 * This cannot be done for data journalling, as we have to add the 6147 * inode to the transaction's list to writeprotect pages on commit. 6148 */ 6149 if (folio_buffers(folio)) { 6150 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6151 0, len, NULL, 6152 ext4_bh_unmapped)) { 6153 /* Wait so that we don't change page under IO */ 6154 folio_wait_stable(folio); 6155 ret = VM_FAULT_LOCKED; 6156 goto out; 6157 } 6158 } 6159 folio_unlock(folio); 6160 /* OK, we need to fill the hole... */ 6161 if (ext4_should_dioread_nolock(inode)) 6162 get_block = ext4_get_block_unwritten; 6163 else 6164 get_block = ext4_get_block; 6165 retry_alloc: 6166 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6167 ext4_writepage_trans_blocks(inode)); 6168 if (IS_ERR(handle)) { 6169 ret = VM_FAULT_SIGBUS; 6170 goto out; 6171 } 6172 /* 6173 * Data journalling can't use block_page_mkwrite() because it 6174 * will set_buffer_dirty() before do_journal_get_write_access() 6175 * thus might hit warning messages for dirty metadata buffers. 6176 */ 6177 if (!ext4_should_journal_data(inode)) { 6178 err = block_page_mkwrite(vma, vmf, get_block); 6179 } else { 6180 folio_lock(folio); 6181 size = i_size_read(inode); 6182 /* Page got truncated from under us? */ 6183 if (folio->mapping != mapping || folio_pos(folio) > size) { 6184 ret = VM_FAULT_NOPAGE; 6185 goto out_error; 6186 } 6187 6188 len = folio_size(folio); 6189 if (folio_pos(folio) + len > size) 6190 len = size - folio_pos(folio); 6191 6192 err = ext4_block_write_begin(handle, folio, 0, len, 6193 ext4_get_block); 6194 if (!err) { 6195 ret = VM_FAULT_SIGBUS; 6196 if (ext4_journal_folio_buffers(handle, folio, len)) 6197 goto out_error; 6198 } else { 6199 folio_unlock(folio); 6200 } 6201 } 6202 ext4_journal_stop(handle); 6203 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6204 goto retry_alloc; 6205 out_ret: 6206 ret = vmf_fs_error(err); 6207 out: 6208 filemap_invalidate_unlock_shared(mapping); 6209 sb_end_pagefault(inode->i_sb); 6210 return ret; 6211 out_error: 6212 folio_unlock(folio); 6213 ext4_journal_stop(handle); 6214 goto out; 6215 } 6216