xref: /linux/fs/ext4/inode.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	return jbd2_journal_begin_ordered_truncate(
55 					EXT4_SB(inode->i_sb)->s_journal,
56 					&EXT4_I(inode)->jinode,
57 					new_size);
58 }
59 
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61 
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 		(inode->i_sb->s_blocksize >> 9) : 0;
69 
70 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72 
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79 	ext4_lblk_t needed;
80 
81 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82 
83 	/* Give ourselves just enough room to cope with inodes in which
84 	 * i_blocks is corrupt: we've seen disk corruptions in the past
85 	 * which resulted in random data in an inode which looked enough
86 	 * like a regular file for ext4 to try to delete it.  Things
87 	 * will go a bit crazy if that happens, but at least we should
88 	 * try not to panic the whole kernel. */
89 	if (needed < 2)
90 		needed = 2;
91 
92 	/* But we need to bound the transaction so we don't overflow the
93 	 * journal. */
94 	if (needed > EXT4_MAX_TRANS_DATA)
95 		needed = EXT4_MAX_TRANS_DATA;
96 
97 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99 
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112 	handle_t *result;
113 
114 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 	if (!IS_ERR(result))
116 		return result;
117 
118 	ext4_std_error(inode->i_sb, PTR_ERR(result));
119 	return result;
120 }
121 
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130 	if (!ext4_handle_valid(handle))
131 		return 0;
132 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 		return 0;
134 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 		return 0;
136 	return 1;
137 }
138 
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 				 int nblocks)
146 {
147 	int ret;
148 
149 	/*
150 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 	 * moment, get_block can be called only for blocks inside i_size since
152 	 * page cache has been already dropped and writes are blocked by
153 	 * i_mutex. So we can safely drop the i_data_sem here.
154 	 */
155 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 	jbd_debug(2, "restarting handle %p\n", handle);
157 	up_write(&EXT4_I(inode)->i_data_sem);
158 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 	down_write(&EXT4_I(inode)->i_data_sem);
160 	ext4_discard_preallocations(inode);
161 
162 	return ret;
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 
173 	if (ext4_should_order_data(inode))
174 		ext4_begin_ordered_truncate(inode, 0);
175 	truncate_inode_pages(&inode->i_data, 0);
176 
177 	if (is_bad_inode(inode))
178 		goto no_delete;
179 
180 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 	if (IS_ERR(handle)) {
182 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
183 		/*
184 		 * If we're going to skip the normal cleanup, we still need to
185 		 * make sure that the in-core orphan linked list is properly
186 		 * cleaned up.
187 		 */
188 		ext4_orphan_del(NULL, inode);
189 		goto no_delete;
190 	}
191 
192 	if (IS_SYNC(inode))
193 		ext4_handle_sync(handle);
194 	inode->i_size = 0;
195 	err = ext4_mark_inode_dirty(handle, inode);
196 	if (err) {
197 		ext4_warning(inode->i_sb, __func__,
198 			     "couldn't mark inode dirty (err %d)", err);
199 		goto stop_handle;
200 	}
201 	if (inode->i_blocks)
202 		ext4_truncate(inode);
203 
204 	/*
205 	 * ext4_ext_truncate() doesn't reserve any slop when it
206 	 * restarts journal transactions; therefore there may not be
207 	 * enough credits left in the handle to remove the inode from
208 	 * the orphan list and set the dtime field.
209 	 */
210 	if (!ext4_handle_has_enough_credits(handle, 3)) {
211 		err = ext4_journal_extend(handle, 3);
212 		if (err > 0)
213 			err = ext4_journal_restart(handle, 3);
214 		if (err != 0) {
215 			ext4_warning(inode->i_sb, __func__,
216 				     "couldn't extend journal (err %d)", err);
217 		stop_handle:
218 			ext4_journal_stop(handle);
219 			goto no_delete;
220 		}
221 	}
222 
223 	/*
224 	 * Kill off the orphan record which ext4_truncate created.
225 	 * AKPM: I think this can be inside the above `if'.
226 	 * Note that ext4_orphan_del() has to be able to cope with the
227 	 * deletion of a non-existent orphan - this is because we don't
228 	 * know if ext4_truncate() actually created an orphan record.
229 	 * (Well, we could do this if we need to, but heck - it works)
230 	 */
231 	ext4_orphan_del(handle, inode);
232 	EXT4_I(inode)->i_dtime	= get_seconds();
233 
234 	/*
235 	 * One subtle ordering requirement: if anything has gone wrong
236 	 * (transaction abort, IO errors, whatever), then we can still
237 	 * do these next steps (the fs will already have been marked as
238 	 * having errors), but we can't free the inode if the mark_dirty
239 	 * fails.
240 	 */
241 	if (ext4_mark_inode_dirty(handle, inode))
242 		/* If that failed, just do the required in-core inode clear. */
243 		clear_inode(inode);
244 	else
245 		ext4_free_inode(handle, inode);
246 	ext4_journal_stop(handle);
247 	return;
248 no_delete:
249 	clear_inode(inode);	/* We must guarantee clearing of inode... */
250 }
251 
252 typedef struct {
253 	__le32	*p;
254 	__le32	key;
255 	struct buffer_head *bh;
256 } Indirect;
257 
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260 	p->key = *(p->p = v);
261 	p->bh = bh;
262 }
263 
264 /**
265  *	ext4_block_to_path - parse the block number into array of offsets
266  *	@inode: inode in question (we are only interested in its superblock)
267  *	@i_block: block number to be parsed
268  *	@offsets: array to store the offsets in
269  *	@boundary: set this non-zero if the referred-to block is likely to be
270  *	       followed (on disk) by an indirect block.
271  *
272  *	To store the locations of file's data ext4 uses a data structure common
273  *	for UNIX filesystems - tree of pointers anchored in the inode, with
274  *	data blocks at leaves and indirect blocks in intermediate nodes.
275  *	This function translates the block number into path in that tree -
276  *	return value is the path length and @offsets[n] is the offset of
277  *	pointer to (n+1)th node in the nth one. If @block is out of range
278  *	(negative or too large) warning is printed and zero returned.
279  *
280  *	Note: function doesn't find node addresses, so no IO is needed. All
281  *	we need to know is the capacity of indirect blocks (taken from the
282  *	inode->i_sb).
283  */
284 
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294 
295 static int ext4_block_to_path(struct inode *inode,
296 			      ext4_lblk_t i_block,
297 			      ext4_lblk_t offsets[4], int *boundary)
298 {
299 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 	const long direct_blocks = EXT4_NDIR_BLOCKS,
302 		indirect_blocks = ptrs,
303 		double_blocks = (1 << (ptrs_bits * 2));
304 	int n = 0;
305 	int final = 0;
306 
307 	if (i_block < direct_blocks) {
308 		offsets[n++] = i_block;
309 		final = direct_blocks;
310 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
311 		offsets[n++] = EXT4_IND_BLOCK;
312 		offsets[n++] = i_block;
313 		final = ptrs;
314 	} else if ((i_block -= indirect_blocks) < double_blocks) {
315 		offsets[n++] = EXT4_DIND_BLOCK;
316 		offsets[n++] = i_block >> ptrs_bits;
317 		offsets[n++] = i_block & (ptrs - 1);
318 		final = ptrs;
319 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 		offsets[n++] = EXT4_TIND_BLOCK;
321 		offsets[n++] = i_block >> (ptrs_bits * 2);
322 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 		offsets[n++] = i_block & (ptrs - 1);
324 		final = ptrs;
325 	} else {
326 		ext4_warning(inode->i_sb, "ext4_block_to_path",
327 			     "block %lu > max in inode %lu",
328 			     i_block + direct_blocks +
329 			     indirect_blocks + double_blocks, inode->i_ino);
330 	}
331 	if (boundary)
332 		*boundary = final - 1 - (i_block & (ptrs - 1));
333 	return n;
334 }
335 
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 				 __le32 *p, unsigned int max)
338 {
339 	__le32 *bref = p;
340 	unsigned int blk;
341 
342 	while (bref < p+max) {
343 		blk = le32_to_cpu(*bref++);
344 		if (blk &&
345 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 						    blk, 1))) {
347 			ext4_error(inode->i_sb, function,
348 				   "invalid block reference %u "
349 				   "in inode #%lu", blk, inode->i_ino);
350 			return -EIO;
351 		}
352 	}
353 	return 0;
354 }
355 
356 
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360 
361 #define ext4_check_inode_blockref(inode)                                \
362 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363 			      EXT4_NDIR_BLOCKS)
364 
365 /**
366  *	ext4_get_branch - read the chain of indirect blocks leading to data
367  *	@inode: inode in question
368  *	@depth: depth of the chain (1 - direct pointer, etc.)
369  *	@offsets: offsets of pointers in inode/indirect blocks
370  *	@chain: place to store the result
371  *	@err: here we store the error value
372  *
373  *	Function fills the array of triples <key, p, bh> and returns %NULL
374  *	if everything went OK or the pointer to the last filled triple
375  *	(incomplete one) otherwise. Upon the return chain[i].key contains
376  *	the number of (i+1)-th block in the chain (as it is stored in memory,
377  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *	number (it points into struct inode for i==0 and into the bh->b_data
379  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *	block for i>0 and NULL for i==0. In other words, it holds the block
381  *	numbers of the chain, addresses they were taken from (and where we can
382  *	verify that chain did not change) and buffer_heads hosting these
383  *	numbers.
384  *
385  *	Function stops when it stumbles upon zero pointer (absent block)
386  *		(pointer to last triple returned, *@err == 0)
387  *	or when it gets an IO error reading an indirect block
388  *		(ditto, *@err == -EIO)
389  *	or when it reads all @depth-1 indirect blocks successfully and finds
390  *	the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 				 ext4_lblk_t  *offsets,
397 				 Indirect chain[4], int *err)
398 {
399 	struct super_block *sb = inode->i_sb;
400 	Indirect *p = chain;
401 	struct buffer_head *bh;
402 
403 	*err = 0;
404 	/* i_data is not going away, no lock needed */
405 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 	if (!p->key)
407 		goto no_block;
408 	while (--depth) {
409 		bh = sb_getblk(sb, le32_to_cpu(p->key));
410 		if (unlikely(!bh))
411 			goto failure;
412 
413 		if (!bh_uptodate_or_lock(bh)) {
414 			if (bh_submit_read(bh) < 0) {
415 				put_bh(bh);
416 				goto failure;
417 			}
418 			/* validate block references */
419 			if (ext4_check_indirect_blockref(inode, bh)) {
420 				put_bh(bh);
421 				goto failure;
422 			}
423 		}
424 
425 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 		/* Reader: end */
427 		if (!p->key)
428 			goto no_block;
429 	}
430 	return NULL;
431 
432 failure:
433 	*err = -EIO;
434 no_block:
435 	return p;
436 }
437 
438 /**
439  *	ext4_find_near - find a place for allocation with sufficient locality
440  *	@inode: owner
441  *	@ind: descriptor of indirect block.
442  *
443  *	This function returns the preferred place for block allocation.
444  *	It is used when heuristic for sequential allocation fails.
445  *	Rules are:
446  *	  + if there is a block to the left of our position - allocate near it.
447  *	  + if pointer will live in indirect block - allocate near that block.
448  *	  + if pointer will live in inode - allocate in the same
449  *	    cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *	Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460 	struct ext4_inode_info *ei = EXT4_I(inode);
461 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 	__le32 *p;
463 	ext4_fsblk_t bg_start;
464 	ext4_fsblk_t last_block;
465 	ext4_grpblk_t colour;
466 	ext4_group_t block_group;
467 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468 
469 	/* Try to find previous block */
470 	for (p = ind->p - 1; p >= start; p--) {
471 		if (*p)
472 			return le32_to_cpu(*p);
473 	}
474 
475 	/* No such thing, so let's try location of indirect block */
476 	if (ind->bh)
477 		return ind->bh->b_blocknr;
478 
479 	/*
480 	 * It is going to be referred to from the inode itself? OK, just put it
481 	 * into the same cylinder group then.
482 	 */
483 	block_group = ei->i_block_group;
484 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 		block_group &= ~(flex_size-1);
486 		if (S_ISREG(inode->i_mode))
487 			block_group++;
488 	}
489 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491 
492 	/*
493 	 * If we are doing delayed allocation, we don't need take
494 	 * colour into account.
495 	 */
496 	if (test_opt(inode->i_sb, DELALLOC))
497 		return bg_start;
498 
499 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 		colour = (current->pid % 16) *
501 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 	else
503 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 	return bg_start + colour;
505 }
506 
507 /**
508  *	ext4_find_goal - find a preferred place for allocation.
509  *	@inode: owner
510  *	@block:  block we want
511  *	@partial: pointer to the last triple within a chain
512  *
513  *	Normally this function find the preferred place for block allocation,
514  *	returns it.
515  *	Because this is only used for non-extent files, we limit the block nr
516  *	to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 				   Indirect *partial)
520 {
521 	ext4_fsblk_t goal;
522 
523 	/*
524 	 * XXX need to get goal block from mballoc's data structures
525 	 */
526 
527 	goal = ext4_find_near(inode, partial);
528 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 	return goal;
530 }
531 
532 /**
533  *	ext4_blks_to_allocate: Look up the block map and count the number
534  *	of direct blocks need to be allocated for the given branch.
535  *
536  *	@branch: chain of indirect blocks
537  *	@k: number of blocks need for indirect blocks
538  *	@blks: number of data blocks to be mapped.
539  *	@blocks_to_boundary:  the offset in the indirect block
540  *
541  *	return the total number of blocks to be allocate, including the
542  *	direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 				 int blocks_to_boundary)
546 {
547 	unsigned int count = 0;
548 
549 	/*
550 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 	 * then it's clear blocks on that path have not allocated
552 	 */
553 	if (k > 0) {
554 		/* right now we don't handle cross boundary allocation */
555 		if (blks < blocks_to_boundary + 1)
556 			count += blks;
557 		else
558 			count += blocks_to_boundary + 1;
559 		return count;
560 	}
561 
562 	count++;
563 	while (count < blks && count <= blocks_to_boundary &&
564 		le32_to_cpu(*(branch[0].p + count)) == 0) {
565 		count++;
566 	}
567 	return count;
568 }
569 
570 /**
571  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *	@indirect_blks: the number of blocks need to allocate for indirect
573  *			blocks
574  *
575  *	@new_blocks: on return it will store the new block numbers for
576  *	the indirect blocks(if needed) and the first direct block,
577  *	@blks:	on return it will store the total number of allocated
578  *		direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
582 			     int indirect_blks, int blks,
583 			     ext4_fsblk_t new_blocks[4], int *err)
584 {
585 	struct ext4_allocation_request ar;
586 	int target, i;
587 	unsigned long count = 0, blk_allocated = 0;
588 	int index = 0;
589 	ext4_fsblk_t current_block = 0;
590 	int ret = 0;
591 
592 	/*
593 	 * Here we try to allocate the requested multiple blocks at once,
594 	 * on a best-effort basis.
595 	 * To build a branch, we should allocate blocks for
596 	 * the indirect blocks(if not allocated yet), and at least
597 	 * the first direct block of this branch.  That's the
598 	 * minimum number of blocks need to allocate(required)
599 	 */
600 	/* first we try to allocate the indirect blocks */
601 	target = indirect_blks;
602 	while (target > 0) {
603 		count = target;
604 		/* allocating blocks for indirect blocks and direct blocks */
605 		current_block = ext4_new_meta_blocks(handle, inode,
606 							goal, &count, err);
607 		if (*err)
608 			goto failed_out;
609 
610 		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611 
612 		target -= count;
613 		/* allocate blocks for indirect blocks */
614 		while (index < indirect_blks && count) {
615 			new_blocks[index++] = current_block++;
616 			count--;
617 		}
618 		if (count > 0) {
619 			/*
620 			 * save the new block number
621 			 * for the first direct block
622 			 */
623 			new_blocks[index] = current_block;
624 			printk(KERN_INFO "%s returned more blocks than "
625 						"requested\n", __func__);
626 			WARN_ON(1);
627 			break;
628 		}
629 	}
630 
631 	target = blks - count ;
632 	blk_allocated = count;
633 	if (!target)
634 		goto allocated;
635 	/* Now allocate data blocks */
636 	memset(&ar, 0, sizeof(ar));
637 	ar.inode = inode;
638 	ar.goal = goal;
639 	ar.len = target;
640 	ar.logical = iblock;
641 	if (S_ISREG(inode->i_mode))
642 		/* enable in-core preallocation only for regular files */
643 		ar.flags = EXT4_MB_HINT_DATA;
644 
645 	current_block = ext4_mb_new_blocks(handle, &ar, err);
646 	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647 
648 	if (*err && (target == blks)) {
649 		/*
650 		 * if the allocation failed and we didn't allocate
651 		 * any blocks before
652 		 */
653 		goto failed_out;
654 	}
655 	if (!*err) {
656 		if (target == blks) {
657 			/*
658 			 * save the new block number
659 			 * for the first direct block
660 			 */
661 			new_blocks[index] = current_block;
662 		}
663 		blk_allocated += ar.len;
664 	}
665 allocated:
666 	/* total number of blocks allocated for direct blocks */
667 	ret = blk_allocated;
668 	*err = 0;
669 	return ret;
670 failed_out:
671 	for (i = 0; i < index; i++)
672 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 	return ret;
674 }
675 
676 /**
677  *	ext4_alloc_branch - allocate and set up a chain of blocks.
678  *	@inode: owner
679  *	@indirect_blks: number of allocated indirect blocks
680  *	@blks: number of allocated direct blocks
681  *	@offsets: offsets (in the blocks) to store the pointers to next.
682  *	@branch: place to store the chain in.
683  *
684  *	This function allocates blocks, zeroes out all but the last one,
685  *	links them into chain and (if we are synchronous) writes them to disk.
686  *	In other words, it prepares a branch that can be spliced onto the
687  *	inode. It stores the information about that chain in the branch[], in
688  *	the same format as ext4_get_branch() would do. We are calling it after
689  *	we had read the existing part of chain and partial points to the last
690  *	triple of that (one with zero ->key). Upon the exit we have the same
691  *	picture as after the successful ext4_get_block(), except that in one
692  *	place chain is disconnected - *branch->p is still zero (we did not
693  *	set the last link), but branch->key contains the number that should
694  *	be placed into *branch->p to fill that gap.
695  *
696  *	If allocation fails we free all blocks we've allocated (and forget
697  *	their buffer_heads) and return the error value the from failed
698  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *	as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 			     ext4_lblk_t iblock, int indirect_blks,
703 			     int *blks, ext4_fsblk_t goal,
704 			     ext4_lblk_t *offsets, Indirect *branch)
705 {
706 	int blocksize = inode->i_sb->s_blocksize;
707 	int i, n = 0;
708 	int err = 0;
709 	struct buffer_head *bh;
710 	int num;
711 	ext4_fsblk_t new_blocks[4];
712 	ext4_fsblk_t current_block;
713 
714 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 				*blks, new_blocks, &err);
716 	if (err)
717 		return err;
718 
719 	branch[0].key = cpu_to_le32(new_blocks[0]);
720 	/*
721 	 * metadata blocks and data blocks are allocated.
722 	 */
723 	for (n = 1; n <= indirect_blks;  n++) {
724 		/*
725 		 * Get buffer_head for parent block, zero it out
726 		 * and set the pointer to new one, then send
727 		 * parent to disk.
728 		 */
729 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 		branch[n].bh = bh;
731 		lock_buffer(bh);
732 		BUFFER_TRACE(bh, "call get_create_access");
733 		err = ext4_journal_get_create_access(handle, bh);
734 		if (err) {
735 			/* Don't brelse(bh) here; it's done in
736 			 * ext4_journal_forget() below */
737 			unlock_buffer(bh);
738 			goto failed;
739 		}
740 
741 		memset(bh->b_data, 0, blocksize);
742 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 		branch[n].key = cpu_to_le32(new_blocks[n]);
744 		*branch[n].p = branch[n].key;
745 		if (n == indirect_blks) {
746 			current_block = new_blocks[n];
747 			/*
748 			 * End of chain, update the last new metablock of
749 			 * the chain to point to the new allocated
750 			 * data blocks numbers
751 			 */
752 			for (i = 1; i < num; i++)
753 				*(branch[n].p + i) = cpu_to_le32(++current_block);
754 		}
755 		BUFFER_TRACE(bh, "marking uptodate");
756 		set_buffer_uptodate(bh);
757 		unlock_buffer(bh);
758 
759 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 		err = ext4_handle_dirty_metadata(handle, inode, bh);
761 		if (err)
762 			goto failed;
763 	}
764 	*blks = num;
765 	return err;
766 failed:
767 	/* Allocation failed, free what we already allocated */
768 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 	for (i = 1; i <= n ; i++) {
770 		/*
771 		 * branch[i].bh is newly allocated, so there is no
772 		 * need to revoke the block, which is why we don't
773 		 * need to set EXT4_FREE_BLOCKS_METADATA.
774 		 */
775 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 				 EXT4_FREE_BLOCKS_FORGET);
777 	}
778 	for (i = n+1; i < indirect_blks; i++)
779 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780 
781 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782 
783 	return err;
784 }
785 
786 /**
787  * ext4_splice_branch - splice the allocated branch onto inode.
788  * @inode: owner
789  * @block: (logical) number of block we are adding
790  * @chain: chain of indirect blocks (with a missing link - see
791  *	ext4_alloc_branch)
792  * @where: location of missing link
793  * @num:   number of indirect blocks we are adding
794  * @blks:  number of direct blocks we are adding
795  *
796  * This function fills the missing link and does all housekeeping needed in
797  * inode (->i_blocks, etc.). In case of success we end up with the full
798  * chain to new block and return 0.
799  */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 			      ext4_lblk_t block, Indirect *where, int num,
802 			      int blks)
803 {
804 	int i;
805 	int err = 0;
806 	ext4_fsblk_t current_block;
807 
808 	/*
809 	 * If we're splicing into a [td]indirect block (as opposed to the
810 	 * inode) then we need to get write access to the [td]indirect block
811 	 * before the splice.
812 	 */
813 	if (where->bh) {
814 		BUFFER_TRACE(where->bh, "get_write_access");
815 		err = ext4_journal_get_write_access(handle, where->bh);
816 		if (err)
817 			goto err_out;
818 	}
819 	/* That's it */
820 
821 	*where->p = where->key;
822 
823 	/*
824 	 * Update the host buffer_head or inode to point to more just allocated
825 	 * direct blocks blocks
826 	 */
827 	if (num == 0 && blks > 1) {
828 		current_block = le32_to_cpu(where->key) + 1;
829 		for (i = 1; i < blks; i++)
830 			*(where->p + i) = cpu_to_le32(current_block++);
831 	}
832 
833 	/* We are done with atomic stuff, now do the rest of housekeeping */
834 	/* had we spliced it onto indirect block? */
835 	if (where->bh) {
836 		/*
837 		 * If we spliced it onto an indirect block, we haven't
838 		 * altered the inode.  Note however that if it is being spliced
839 		 * onto an indirect block at the very end of the file (the
840 		 * file is growing) then we *will* alter the inode to reflect
841 		 * the new i_size.  But that is not done here - it is done in
842 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 		 */
844 		jbd_debug(5, "splicing indirect only\n");
845 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 		if (err)
848 			goto err_out;
849 	} else {
850 		/*
851 		 * OK, we spliced it into the inode itself on a direct block.
852 		 */
853 		ext4_mark_inode_dirty(handle, inode);
854 		jbd_debug(5, "splicing direct\n");
855 	}
856 	return err;
857 
858 err_out:
859 	for (i = 1; i <= num; i++) {
860 		/*
861 		 * branch[i].bh is newly allocated, so there is no
862 		 * need to revoke the block, which is why we don't
863 		 * need to set EXT4_FREE_BLOCKS_METADATA.
864 		 */
865 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 				 EXT4_FREE_BLOCKS_FORGET);
867 	}
868 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 			 blks, 0);
870 
871 	return err;
872 }
873 
874 /*
875  * The ext4_ind_get_blocks() function handles non-extents inodes
876  * (i.e., using the traditional indirect/double-indirect i_blocks
877  * scheme) for ext4_get_blocks().
878  *
879  * Allocation strategy is simple: if we have to allocate something, we will
880  * have to go the whole way to leaf. So let's do it before attaching anything
881  * to tree, set linkage between the newborn blocks, write them if sync is
882  * required, recheck the path, free and repeat if check fails, otherwise
883  * set the last missing link (that will protect us from any truncate-generated
884  * removals - all blocks on the path are immune now) and possibly force the
885  * write on the parent block.
886  * That has a nice additional property: no special recovery from the failed
887  * allocations is needed - we simply release blocks and do not touch anything
888  * reachable from inode.
889  *
890  * `handle' can be NULL if create == 0.
891  *
892  * return > 0, # of blocks mapped or allocated.
893  * return = 0, if plain lookup failed.
894  * return < 0, error case.
895  *
896  * The ext4_ind_get_blocks() function should be called with
897  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900  * blocks.
901  */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 			       ext4_lblk_t iblock, unsigned int maxblocks,
904 			       struct buffer_head *bh_result,
905 			       int flags)
906 {
907 	int err = -EIO;
908 	ext4_lblk_t offsets[4];
909 	Indirect chain[4];
910 	Indirect *partial;
911 	ext4_fsblk_t goal;
912 	int indirect_blks;
913 	int blocks_to_boundary = 0;
914 	int depth;
915 	int count = 0;
916 	ext4_fsblk_t first_block = 0;
917 
918 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 	depth = ext4_block_to_path(inode, iblock, offsets,
921 				   &blocks_to_boundary);
922 
923 	if (depth == 0)
924 		goto out;
925 
926 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927 
928 	/* Simplest case - block found, no allocation needed */
929 	if (!partial) {
930 		first_block = le32_to_cpu(chain[depth - 1].key);
931 		clear_buffer_new(bh_result);
932 		count++;
933 		/*map more blocks*/
934 		while (count < maxblocks && count <= blocks_to_boundary) {
935 			ext4_fsblk_t blk;
936 
937 			blk = le32_to_cpu(*(chain[depth-1].p + count));
938 
939 			if (blk == first_block + count)
940 				count++;
941 			else
942 				break;
943 		}
944 		goto got_it;
945 	}
946 
947 	/* Next simple case - plain lookup or failed read of indirect block */
948 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 		goto cleanup;
950 
951 	/*
952 	 * Okay, we need to do block allocation.
953 	*/
954 	goal = ext4_find_goal(inode, iblock, partial);
955 
956 	/* the number of blocks need to allocate for [d,t]indirect blocks */
957 	indirect_blks = (chain + depth) - partial - 1;
958 
959 	/*
960 	 * Next look up the indirect map to count the totoal number of
961 	 * direct blocks to allocate for this branch.
962 	 */
963 	count = ext4_blks_to_allocate(partial, indirect_blks,
964 					maxblocks, blocks_to_boundary);
965 	/*
966 	 * Block out ext4_truncate while we alter the tree
967 	 */
968 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 				&count, goal,
970 				offsets + (partial - chain), partial);
971 
972 	/*
973 	 * The ext4_splice_branch call will free and forget any buffers
974 	 * on the new chain if there is a failure, but that risks using
975 	 * up transaction credits, especially for bitmaps where the
976 	 * credits cannot be returned.  Can we handle this somehow?  We
977 	 * may need to return -EAGAIN upwards in the worst case.  --sct
978 	 */
979 	if (!err)
980 		err = ext4_splice_branch(handle, inode, iblock,
981 					 partial, indirect_blks, count);
982 	if (err)
983 		goto cleanup;
984 
985 	set_buffer_new(bh_result);
986 
987 	ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 	if (count > blocks_to_boundary)
991 		set_buffer_boundary(bh_result);
992 	err = count;
993 	/* Clean up and exit */
994 	partial = chain + depth - 1;	/* the whole chain */
995 cleanup:
996 	while (partial > chain) {
997 		BUFFER_TRACE(partial->bh, "call brelse");
998 		brelse(partial->bh);
999 		partial--;
1000 	}
1001 	BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 	return err;
1004 }
1005 
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1008 {
1009 	return &EXT4_I(inode)->i_reserved_quota;
1010 }
1011 #endif
1012 
1013 /*
1014  * Calculate the number of metadata blocks need to reserve
1015  * to allocate a new block at @lblocks for non extent file based file
1016  */
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 					      sector_t lblock)
1019 {
1020 	struct ext4_inode_info *ei = EXT4_I(inode);
1021 	int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 	int blk_bits;
1023 
1024 	if (lblock < EXT4_NDIR_BLOCKS)
1025 		return 0;
1026 
1027 	lblock -= EXT4_NDIR_BLOCKS;
1028 
1029 	if (ei->i_da_metadata_calc_len &&
1030 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 		ei->i_da_metadata_calc_len++;
1032 		return 0;
1033 	}
1034 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 	ei->i_da_metadata_calc_len = 1;
1036 	blk_bits = roundup_pow_of_two(lblock + 1);
1037 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1038 }
1039 
1040 /*
1041  * Calculate the number of metadata blocks need to reserve
1042  * to allocate a block located at @lblock
1043  */
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1045 {
1046 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047 		return ext4_ext_calc_metadata_amount(inode, lblock);
1048 
1049 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1050 }
1051 
1052 /*
1053  * Called with i_data_sem down, which is important since we can call
1054  * ext4_discard_preallocations() from here.
1055  */
1056 void ext4_da_update_reserve_space(struct inode *inode,
1057 					int used, int quota_claim)
1058 {
1059 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1060 	struct ext4_inode_info *ei = EXT4_I(inode);
1061 	int mdb_free = 0, allocated_meta_blocks = 0;
1062 
1063 	spin_lock(&ei->i_block_reservation_lock);
1064 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1065 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1066 			 "with only %d reserved data blocks\n",
1067 			 __func__, inode->i_ino, used,
1068 			 ei->i_reserved_data_blocks);
1069 		WARN_ON(1);
1070 		used = ei->i_reserved_data_blocks;
1071 	}
1072 
1073 	/* Update per-inode reservations */
1074 	ei->i_reserved_data_blocks -= used;
1075 	used += ei->i_allocated_meta_blocks;
1076 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1077 	allocated_meta_blocks = ei->i_allocated_meta_blocks;
1078 	ei->i_allocated_meta_blocks = 0;
1079 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1080 
1081 	if (ei->i_reserved_data_blocks == 0) {
1082 		/*
1083 		 * We can release all of the reserved metadata blocks
1084 		 * only when we have written all of the delayed
1085 		 * allocation blocks.
1086 		 */
1087 		mdb_free = ei->i_reserved_meta_blocks;
1088 		ei->i_reserved_meta_blocks = 0;
1089 		ei->i_da_metadata_calc_len = 0;
1090 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1091 	}
1092 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1093 
1094 	/* Update quota subsystem */
1095 	if (quota_claim) {
1096 		vfs_dq_claim_block(inode, used);
1097 		if (mdb_free)
1098 			vfs_dq_release_reservation_block(inode, mdb_free);
1099 	} else {
1100 		/*
1101 		 * We did fallocate with an offset that is already delayed
1102 		 * allocated. So on delayed allocated writeback we should
1103 		 * not update the quota for allocated blocks. But then
1104 		 * converting an fallocate region to initialized region would
1105 		 * have caused a metadata allocation. So claim quota for
1106 		 * that
1107 		 */
1108 		if (allocated_meta_blocks)
1109 			vfs_dq_claim_block(inode, allocated_meta_blocks);
1110 		vfs_dq_release_reservation_block(inode, mdb_free + used);
1111 	}
1112 
1113 	/*
1114 	 * If we have done all the pending block allocations and if
1115 	 * there aren't any writers on the inode, we can discard the
1116 	 * inode's preallocations.
1117 	 */
1118 	if ((ei->i_reserved_data_blocks == 0) &&
1119 	    (atomic_read(&inode->i_writecount) == 0))
1120 		ext4_discard_preallocations(inode);
1121 }
1122 
1123 static int check_block_validity(struct inode *inode, const char *msg,
1124 				sector_t logical, sector_t phys, int len)
1125 {
1126 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1127 		ext4_error(inode->i_sb, msg,
1128 			   "inode #%lu logical block %llu mapped to %llu "
1129 			   "(size %d)", inode->i_ino,
1130 			   (unsigned long long) logical,
1131 			   (unsigned long long) phys, len);
1132 		return -EIO;
1133 	}
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Return the number of contiguous dirty pages in a given inode
1139  * starting at page frame idx.
1140  */
1141 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1142 				    unsigned int max_pages)
1143 {
1144 	struct address_space *mapping = inode->i_mapping;
1145 	pgoff_t	index;
1146 	struct pagevec pvec;
1147 	pgoff_t num = 0;
1148 	int i, nr_pages, done = 0;
1149 
1150 	if (max_pages == 0)
1151 		return 0;
1152 	pagevec_init(&pvec, 0);
1153 	while (!done) {
1154 		index = idx;
1155 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1156 					      PAGECACHE_TAG_DIRTY,
1157 					      (pgoff_t)PAGEVEC_SIZE);
1158 		if (nr_pages == 0)
1159 			break;
1160 		for (i = 0; i < nr_pages; i++) {
1161 			struct page *page = pvec.pages[i];
1162 			struct buffer_head *bh, *head;
1163 
1164 			lock_page(page);
1165 			if (unlikely(page->mapping != mapping) ||
1166 			    !PageDirty(page) ||
1167 			    PageWriteback(page) ||
1168 			    page->index != idx) {
1169 				done = 1;
1170 				unlock_page(page);
1171 				break;
1172 			}
1173 			if (page_has_buffers(page)) {
1174 				bh = head = page_buffers(page);
1175 				do {
1176 					if (!buffer_delay(bh) &&
1177 					    !buffer_unwritten(bh))
1178 						done = 1;
1179 					bh = bh->b_this_page;
1180 				} while (!done && (bh != head));
1181 			}
1182 			unlock_page(page);
1183 			if (done)
1184 				break;
1185 			idx++;
1186 			num++;
1187 			if (num >= max_pages)
1188 				break;
1189 		}
1190 		pagevec_release(&pvec);
1191 	}
1192 	return num;
1193 }
1194 
1195 /*
1196  * The ext4_get_blocks() function tries to look up the requested blocks,
1197  * and returns if the blocks are already mapped.
1198  *
1199  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1200  * and store the allocated blocks in the result buffer head and mark it
1201  * mapped.
1202  *
1203  * If file type is extents based, it will call ext4_ext_get_blocks(),
1204  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1205  * based files
1206  *
1207  * On success, it returns the number of blocks being mapped or allocate.
1208  * if create==0 and the blocks are pre-allocated and uninitialized block,
1209  * the result buffer head is unmapped. If the create ==1, it will make sure
1210  * the buffer head is mapped.
1211  *
1212  * It returns 0 if plain look up failed (blocks have not been allocated), in
1213  * that casem, buffer head is unmapped
1214  *
1215  * It returns the error in case of allocation failure.
1216  */
1217 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1218 		    unsigned int max_blocks, struct buffer_head *bh,
1219 		    int flags)
1220 {
1221 	int retval;
1222 
1223 	clear_buffer_mapped(bh);
1224 	clear_buffer_unwritten(bh);
1225 
1226 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1227 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1228 		  (unsigned long)block);
1229 	/*
1230 	 * Try to see if we can get the block without requesting a new
1231 	 * file system block.
1232 	 */
1233 	down_read((&EXT4_I(inode)->i_data_sem));
1234 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1235 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1236 				bh, 0);
1237 	} else {
1238 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1239 					     bh, 0);
1240 	}
1241 	up_read((&EXT4_I(inode)->i_data_sem));
1242 
1243 	if (retval > 0 && buffer_mapped(bh)) {
1244 		int ret = check_block_validity(inode, "file system corruption",
1245 					       block, bh->b_blocknr, retval);
1246 		if (ret != 0)
1247 			return ret;
1248 	}
1249 
1250 	/* If it is only a block(s) look up */
1251 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1252 		return retval;
1253 
1254 	/*
1255 	 * Returns if the blocks have already allocated
1256 	 *
1257 	 * Note that if blocks have been preallocated
1258 	 * ext4_ext_get_block() returns th create = 0
1259 	 * with buffer head unmapped.
1260 	 */
1261 	if (retval > 0 && buffer_mapped(bh))
1262 		return retval;
1263 
1264 	/*
1265 	 * When we call get_blocks without the create flag, the
1266 	 * BH_Unwritten flag could have gotten set if the blocks
1267 	 * requested were part of a uninitialized extent.  We need to
1268 	 * clear this flag now that we are committed to convert all or
1269 	 * part of the uninitialized extent to be an initialized
1270 	 * extent.  This is because we need to avoid the combination
1271 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1272 	 * set on the buffer_head.
1273 	 */
1274 	clear_buffer_unwritten(bh);
1275 
1276 	/*
1277 	 * New blocks allocate and/or writing to uninitialized extent
1278 	 * will possibly result in updating i_data, so we take
1279 	 * the write lock of i_data_sem, and call get_blocks()
1280 	 * with create == 1 flag.
1281 	 */
1282 	down_write((&EXT4_I(inode)->i_data_sem));
1283 
1284 	/*
1285 	 * if the caller is from delayed allocation writeout path
1286 	 * we have already reserved fs blocks for allocation
1287 	 * let the underlying get_block() function know to
1288 	 * avoid double accounting
1289 	 */
1290 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1291 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1292 	/*
1293 	 * We need to check for EXT4 here because migrate
1294 	 * could have changed the inode type in between
1295 	 */
1296 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1297 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1298 					      bh, flags);
1299 	} else {
1300 		retval = ext4_ind_get_blocks(handle, inode, block,
1301 					     max_blocks, bh, flags);
1302 
1303 		if (retval > 0 && buffer_new(bh)) {
1304 			/*
1305 			 * We allocated new blocks which will result in
1306 			 * i_data's format changing.  Force the migrate
1307 			 * to fail by clearing migrate flags
1308 			 */
1309 			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1310 		}
1311 
1312 		/*
1313 		 * Update reserved blocks/metadata blocks after successful
1314 		 * block allocation which had been deferred till now. We don't
1315 		 * support fallocate for non extent files. So we can update
1316 		 * reserve space here.
1317 		 */
1318 		if ((retval > 0) &&
1319 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1320 			ext4_da_update_reserve_space(inode, retval, 1);
1321 	}
1322 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1324 
1325 	up_write((&EXT4_I(inode)->i_data_sem));
1326 	if (retval > 0 && buffer_mapped(bh)) {
1327 		int ret = check_block_validity(inode, "file system "
1328 					       "corruption after allocation",
1329 					       block, bh->b_blocknr, retval);
1330 		if (ret != 0)
1331 			return ret;
1332 	}
1333 	return retval;
1334 }
1335 
1336 /* Maximum number of blocks we map for direct IO at once. */
1337 #define DIO_MAX_BLOCKS 4096
1338 
1339 int ext4_get_block(struct inode *inode, sector_t iblock,
1340 		   struct buffer_head *bh_result, int create)
1341 {
1342 	handle_t *handle = ext4_journal_current_handle();
1343 	int ret = 0, started = 0;
1344 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1345 	int dio_credits;
1346 
1347 	if (create && !handle) {
1348 		/* Direct IO write... */
1349 		if (max_blocks > DIO_MAX_BLOCKS)
1350 			max_blocks = DIO_MAX_BLOCKS;
1351 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1352 		handle = ext4_journal_start(inode, dio_credits);
1353 		if (IS_ERR(handle)) {
1354 			ret = PTR_ERR(handle);
1355 			goto out;
1356 		}
1357 		started = 1;
1358 	}
1359 
1360 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1361 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1362 	if (ret > 0) {
1363 		bh_result->b_size = (ret << inode->i_blkbits);
1364 		ret = 0;
1365 	}
1366 	if (started)
1367 		ext4_journal_stop(handle);
1368 out:
1369 	return ret;
1370 }
1371 
1372 /*
1373  * `handle' can be NULL if create is zero
1374  */
1375 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1376 				ext4_lblk_t block, int create, int *errp)
1377 {
1378 	struct buffer_head dummy;
1379 	int fatal = 0, err;
1380 	int flags = 0;
1381 
1382 	J_ASSERT(handle != NULL || create == 0);
1383 
1384 	dummy.b_state = 0;
1385 	dummy.b_blocknr = -1000;
1386 	buffer_trace_init(&dummy.b_history);
1387 	if (create)
1388 		flags |= EXT4_GET_BLOCKS_CREATE;
1389 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1390 	/*
1391 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1392 	 * case of a HOLE.
1393 	 */
1394 	if (err > 0) {
1395 		if (err > 1)
1396 			WARN_ON(1);
1397 		err = 0;
1398 	}
1399 	*errp = err;
1400 	if (!err && buffer_mapped(&dummy)) {
1401 		struct buffer_head *bh;
1402 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1403 		if (!bh) {
1404 			*errp = -EIO;
1405 			goto err;
1406 		}
1407 		if (buffer_new(&dummy)) {
1408 			J_ASSERT(create != 0);
1409 			J_ASSERT(handle != NULL);
1410 
1411 			/*
1412 			 * Now that we do not always journal data, we should
1413 			 * keep in mind whether this should always journal the
1414 			 * new buffer as metadata.  For now, regular file
1415 			 * writes use ext4_get_block instead, so it's not a
1416 			 * problem.
1417 			 */
1418 			lock_buffer(bh);
1419 			BUFFER_TRACE(bh, "call get_create_access");
1420 			fatal = ext4_journal_get_create_access(handle, bh);
1421 			if (!fatal && !buffer_uptodate(bh)) {
1422 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1423 				set_buffer_uptodate(bh);
1424 			}
1425 			unlock_buffer(bh);
1426 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1427 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1428 			if (!fatal)
1429 				fatal = err;
1430 		} else {
1431 			BUFFER_TRACE(bh, "not a new buffer");
1432 		}
1433 		if (fatal) {
1434 			*errp = fatal;
1435 			brelse(bh);
1436 			bh = NULL;
1437 		}
1438 		return bh;
1439 	}
1440 err:
1441 	return NULL;
1442 }
1443 
1444 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1445 			       ext4_lblk_t block, int create, int *err)
1446 {
1447 	struct buffer_head *bh;
1448 
1449 	bh = ext4_getblk(handle, inode, block, create, err);
1450 	if (!bh)
1451 		return bh;
1452 	if (buffer_uptodate(bh))
1453 		return bh;
1454 	ll_rw_block(READ_META, 1, &bh);
1455 	wait_on_buffer(bh);
1456 	if (buffer_uptodate(bh))
1457 		return bh;
1458 	put_bh(bh);
1459 	*err = -EIO;
1460 	return NULL;
1461 }
1462 
1463 static int walk_page_buffers(handle_t *handle,
1464 			     struct buffer_head *head,
1465 			     unsigned from,
1466 			     unsigned to,
1467 			     int *partial,
1468 			     int (*fn)(handle_t *handle,
1469 				       struct buffer_head *bh))
1470 {
1471 	struct buffer_head *bh;
1472 	unsigned block_start, block_end;
1473 	unsigned blocksize = head->b_size;
1474 	int err, ret = 0;
1475 	struct buffer_head *next;
1476 
1477 	for (bh = head, block_start = 0;
1478 	     ret == 0 && (bh != head || !block_start);
1479 	     block_start = block_end, bh = next) {
1480 		next = bh->b_this_page;
1481 		block_end = block_start + blocksize;
1482 		if (block_end <= from || block_start >= to) {
1483 			if (partial && !buffer_uptodate(bh))
1484 				*partial = 1;
1485 			continue;
1486 		}
1487 		err = (*fn)(handle, bh);
1488 		if (!ret)
1489 			ret = err;
1490 	}
1491 	return ret;
1492 }
1493 
1494 /*
1495  * To preserve ordering, it is essential that the hole instantiation and
1496  * the data write be encapsulated in a single transaction.  We cannot
1497  * close off a transaction and start a new one between the ext4_get_block()
1498  * and the commit_write().  So doing the jbd2_journal_start at the start of
1499  * prepare_write() is the right place.
1500  *
1501  * Also, this function can nest inside ext4_writepage() ->
1502  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1503  * has generated enough buffer credits to do the whole page.  So we won't
1504  * block on the journal in that case, which is good, because the caller may
1505  * be PF_MEMALLOC.
1506  *
1507  * By accident, ext4 can be reentered when a transaction is open via
1508  * quota file writes.  If we were to commit the transaction while thus
1509  * reentered, there can be a deadlock - we would be holding a quota
1510  * lock, and the commit would never complete if another thread had a
1511  * transaction open and was blocking on the quota lock - a ranking
1512  * violation.
1513  *
1514  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1515  * will _not_ run commit under these circumstances because handle->h_ref
1516  * is elevated.  We'll still have enough credits for the tiny quotafile
1517  * write.
1518  */
1519 static int do_journal_get_write_access(handle_t *handle,
1520 				       struct buffer_head *bh)
1521 {
1522 	if (!buffer_mapped(bh) || buffer_freed(bh))
1523 		return 0;
1524 	return ext4_journal_get_write_access(handle, bh);
1525 }
1526 
1527 /*
1528  * Truncate blocks that were not used by write. We have to truncate the
1529  * pagecache as well so that corresponding buffers get properly unmapped.
1530  */
1531 static void ext4_truncate_failed_write(struct inode *inode)
1532 {
1533 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1534 	ext4_truncate(inode);
1535 }
1536 
1537 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1538 			    loff_t pos, unsigned len, unsigned flags,
1539 			    struct page **pagep, void **fsdata)
1540 {
1541 	struct inode *inode = mapping->host;
1542 	int ret, needed_blocks;
1543 	handle_t *handle;
1544 	int retries = 0;
1545 	struct page *page;
1546 	pgoff_t index;
1547 	unsigned from, to;
1548 
1549 	trace_ext4_write_begin(inode, pos, len, flags);
1550 	/*
1551 	 * Reserve one block more for addition to orphan list in case
1552 	 * we allocate blocks but write fails for some reason
1553 	 */
1554 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1555 	index = pos >> PAGE_CACHE_SHIFT;
1556 	from = pos & (PAGE_CACHE_SIZE - 1);
1557 	to = from + len;
1558 
1559 retry:
1560 	handle = ext4_journal_start(inode, needed_blocks);
1561 	if (IS_ERR(handle)) {
1562 		ret = PTR_ERR(handle);
1563 		goto out;
1564 	}
1565 
1566 	/* We cannot recurse into the filesystem as the transaction is already
1567 	 * started */
1568 	flags |= AOP_FLAG_NOFS;
1569 
1570 	page = grab_cache_page_write_begin(mapping, index, flags);
1571 	if (!page) {
1572 		ext4_journal_stop(handle);
1573 		ret = -ENOMEM;
1574 		goto out;
1575 	}
1576 	*pagep = page;
1577 
1578 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1579 				ext4_get_block);
1580 
1581 	if (!ret && ext4_should_journal_data(inode)) {
1582 		ret = walk_page_buffers(handle, page_buffers(page),
1583 				from, to, NULL, do_journal_get_write_access);
1584 	}
1585 
1586 	if (ret) {
1587 		unlock_page(page);
1588 		page_cache_release(page);
1589 		/*
1590 		 * block_write_begin may have instantiated a few blocks
1591 		 * outside i_size.  Trim these off again. Don't need
1592 		 * i_size_read because we hold i_mutex.
1593 		 *
1594 		 * Add inode to orphan list in case we crash before
1595 		 * truncate finishes
1596 		 */
1597 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1598 			ext4_orphan_add(handle, inode);
1599 
1600 		ext4_journal_stop(handle);
1601 		if (pos + len > inode->i_size) {
1602 			ext4_truncate_failed_write(inode);
1603 			/*
1604 			 * If truncate failed early the inode might
1605 			 * still be on the orphan list; we need to
1606 			 * make sure the inode is removed from the
1607 			 * orphan list in that case.
1608 			 */
1609 			if (inode->i_nlink)
1610 				ext4_orphan_del(NULL, inode);
1611 		}
1612 	}
1613 
1614 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1615 		goto retry;
1616 out:
1617 	return ret;
1618 }
1619 
1620 /* For write_end() in data=journal mode */
1621 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1622 {
1623 	if (!buffer_mapped(bh) || buffer_freed(bh))
1624 		return 0;
1625 	set_buffer_uptodate(bh);
1626 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1627 }
1628 
1629 static int ext4_generic_write_end(struct file *file,
1630 				  struct address_space *mapping,
1631 				  loff_t pos, unsigned len, unsigned copied,
1632 				  struct page *page, void *fsdata)
1633 {
1634 	int i_size_changed = 0;
1635 	struct inode *inode = mapping->host;
1636 	handle_t *handle = ext4_journal_current_handle();
1637 
1638 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1639 
1640 	/*
1641 	 * No need to use i_size_read() here, the i_size
1642 	 * cannot change under us because we hold i_mutex.
1643 	 *
1644 	 * But it's important to update i_size while still holding page lock:
1645 	 * page writeout could otherwise come in and zero beyond i_size.
1646 	 */
1647 	if (pos + copied > inode->i_size) {
1648 		i_size_write(inode, pos + copied);
1649 		i_size_changed = 1;
1650 	}
1651 
1652 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1653 		/* We need to mark inode dirty even if
1654 		 * new_i_size is less that inode->i_size
1655 		 * bu greater than i_disksize.(hint delalloc)
1656 		 */
1657 		ext4_update_i_disksize(inode, (pos + copied));
1658 		i_size_changed = 1;
1659 	}
1660 	unlock_page(page);
1661 	page_cache_release(page);
1662 
1663 	/*
1664 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1665 	 * makes the holding time of page lock longer. Second, it forces lock
1666 	 * ordering of page lock and transaction start for journaling
1667 	 * filesystems.
1668 	 */
1669 	if (i_size_changed)
1670 		ext4_mark_inode_dirty(handle, inode);
1671 
1672 	return copied;
1673 }
1674 
1675 /*
1676  * We need to pick up the new inode size which generic_commit_write gave us
1677  * `file' can be NULL - eg, when called from page_symlink().
1678  *
1679  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1680  * buffers are managed internally.
1681  */
1682 static int ext4_ordered_write_end(struct file *file,
1683 				  struct address_space *mapping,
1684 				  loff_t pos, unsigned len, unsigned copied,
1685 				  struct page *page, void *fsdata)
1686 {
1687 	handle_t *handle = ext4_journal_current_handle();
1688 	struct inode *inode = mapping->host;
1689 	int ret = 0, ret2;
1690 
1691 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1692 	ret = ext4_jbd2_file_inode(handle, inode);
1693 
1694 	if (ret == 0) {
1695 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1696 							page, fsdata);
1697 		copied = ret2;
1698 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1699 			/* if we have allocated more blocks and copied
1700 			 * less. We will have blocks allocated outside
1701 			 * inode->i_size. So truncate them
1702 			 */
1703 			ext4_orphan_add(handle, inode);
1704 		if (ret2 < 0)
1705 			ret = ret2;
1706 	}
1707 	ret2 = ext4_journal_stop(handle);
1708 	if (!ret)
1709 		ret = ret2;
1710 
1711 	if (pos + len > inode->i_size) {
1712 		ext4_truncate_failed_write(inode);
1713 		/*
1714 		 * If truncate failed early the inode might still be
1715 		 * on the orphan list; we need to make sure the inode
1716 		 * is removed from the orphan list in that case.
1717 		 */
1718 		if (inode->i_nlink)
1719 			ext4_orphan_del(NULL, inode);
1720 	}
1721 
1722 
1723 	return ret ? ret : copied;
1724 }
1725 
1726 static int ext4_writeback_write_end(struct file *file,
1727 				    struct address_space *mapping,
1728 				    loff_t pos, unsigned len, unsigned copied,
1729 				    struct page *page, void *fsdata)
1730 {
1731 	handle_t *handle = ext4_journal_current_handle();
1732 	struct inode *inode = mapping->host;
1733 	int ret = 0, ret2;
1734 
1735 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1736 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737 							page, fsdata);
1738 	copied = ret2;
1739 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740 		/* if we have allocated more blocks and copied
1741 		 * less. We will have blocks allocated outside
1742 		 * inode->i_size. So truncate them
1743 		 */
1744 		ext4_orphan_add(handle, inode);
1745 
1746 	if (ret2 < 0)
1747 		ret = ret2;
1748 
1749 	ret2 = ext4_journal_stop(handle);
1750 	if (!ret)
1751 		ret = ret2;
1752 
1753 	if (pos + len > inode->i_size) {
1754 		ext4_truncate_failed_write(inode);
1755 		/*
1756 		 * If truncate failed early the inode might still be
1757 		 * on the orphan list; we need to make sure the inode
1758 		 * is removed from the orphan list in that case.
1759 		 */
1760 		if (inode->i_nlink)
1761 			ext4_orphan_del(NULL, inode);
1762 	}
1763 
1764 	return ret ? ret : copied;
1765 }
1766 
1767 static int ext4_journalled_write_end(struct file *file,
1768 				     struct address_space *mapping,
1769 				     loff_t pos, unsigned len, unsigned copied,
1770 				     struct page *page, void *fsdata)
1771 {
1772 	handle_t *handle = ext4_journal_current_handle();
1773 	struct inode *inode = mapping->host;
1774 	int ret = 0, ret2;
1775 	int partial = 0;
1776 	unsigned from, to;
1777 	loff_t new_i_size;
1778 
1779 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1780 	from = pos & (PAGE_CACHE_SIZE - 1);
1781 	to = from + len;
1782 
1783 	if (copied < len) {
1784 		if (!PageUptodate(page))
1785 			copied = 0;
1786 		page_zero_new_buffers(page, from+copied, to);
1787 	}
1788 
1789 	ret = walk_page_buffers(handle, page_buffers(page), from,
1790 				to, &partial, write_end_fn);
1791 	if (!partial)
1792 		SetPageUptodate(page);
1793 	new_i_size = pos + copied;
1794 	if (new_i_size > inode->i_size)
1795 		i_size_write(inode, pos+copied);
1796 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1797 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1798 		ext4_update_i_disksize(inode, new_i_size);
1799 		ret2 = ext4_mark_inode_dirty(handle, inode);
1800 		if (!ret)
1801 			ret = ret2;
1802 	}
1803 
1804 	unlock_page(page);
1805 	page_cache_release(page);
1806 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1807 		/* if we have allocated more blocks and copied
1808 		 * less. We will have blocks allocated outside
1809 		 * inode->i_size. So truncate them
1810 		 */
1811 		ext4_orphan_add(handle, inode);
1812 
1813 	ret2 = ext4_journal_stop(handle);
1814 	if (!ret)
1815 		ret = ret2;
1816 	if (pos + len > inode->i_size) {
1817 		ext4_truncate_failed_write(inode);
1818 		/*
1819 		 * If truncate failed early the inode might still be
1820 		 * on the orphan list; we need to make sure the inode
1821 		 * is removed from the orphan list in that case.
1822 		 */
1823 		if (inode->i_nlink)
1824 			ext4_orphan_del(NULL, inode);
1825 	}
1826 
1827 	return ret ? ret : copied;
1828 }
1829 
1830 /*
1831  * Reserve a single block located at lblock
1832  */
1833 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1834 {
1835 	int retries = 0;
1836 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1837 	struct ext4_inode_info *ei = EXT4_I(inode);
1838 	unsigned long md_needed, md_reserved;
1839 
1840 	/*
1841 	 * recalculate the amount of metadata blocks to reserve
1842 	 * in order to allocate nrblocks
1843 	 * worse case is one extent per block
1844 	 */
1845 repeat:
1846 	spin_lock(&ei->i_block_reservation_lock);
1847 	md_reserved = ei->i_reserved_meta_blocks;
1848 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1849 	spin_unlock(&ei->i_block_reservation_lock);
1850 
1851 	/*
1852 	 * Make quota reservation here to prevent quota overflow
1853 	 * later. Real quota accounting is done at pages writeout
1854 	 * time.
1855 	 */
1856 	if (vfs_dq_reserve_block(inode, md_needed + 1))
1857 		return -EDQUOT;
1858 
1859 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1860 		vfs_dq_release_reservation_block(inode, md_needed + 1);
1861 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1862 			yield();
1863 			goto repeat;
1864 		}
1865 		return -ENOSPC;
1866 	}
1867 	spin_lock(&ei->i_block_reservation_lock);
1868 	ei->i_reserved_data_blocks++;
1869 	ei->i_reserved_meta_blocks += md_needed;
1870 	spin_unlock(&ei->i_block_reservation_lock);
1871 
1872 	return 0;       /* success */
1873 }
1874 
1875 static void ext4_da_release_space(struct inode *inode, int to_free)
1876 {
1877 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878 	struct ext4_inode_info *ei = EXT4_I(inode);
1879 
1880 	if (!to_free)
1881 		return;		/* Nothing to release, exit */
1882 
1883 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1884 
1885 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1886 		/*
1887 		 * if there aren't enough reserved blocks, then the
1888 		 * counter is messed up somewhere.  Since this
1889 		 * function is called from invalidate page, it's
1890 		 * harmless to return without any action.
1891 		 */
1892 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1893 			 "ino %lu, to_free %d with only %d reserved "
1894 			 "data blocks\n", inode->i_ino, to_free,
1895 			 ei->i_reserved_data_blocks);
1896 		WARN_ON(1);
1897 		to_free = ei->i_reserved_data_blocks;
1898 	}
1899 	ei->i_reserved_data_blocks -= to_free;
1900 
1901 	if (ei->i_reserved_data_blocks == 0) {
1902 		/*
1903 		 * We can release all of the reserved metadata blocks
1904 		 * only when we have written all of the delayed
1905 		 * allocation blocks.
1906 		 */
1907 		to_free += ei->i_reserved_meta_blocks;
1908 		ei->i_reserved_meta_blocks = 0;
1909 		ei->i_da_metadata_calc_len = 0;
1910 	}
1911 
1912 	/* update fs dirty blocks counter */
1913 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1914 
1915 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1916 
1917 	vfs_dq_release_reservation_block(inode, to_free);
1918 }
1919 
1920 static void ext4_da_page_release_reservation(struct page *page,
1921 					     unsigned long offset)
1922 {
1923 	int to_release = 0;
1924 	struct buffer_head *head, *bh;
1925 	unsigned int curr_off = 0;
1926 
1927 	head = page_buffers(page);
1928 	bh = head;
1929 	do {
1930 		unsigned int next_off = curr_off + bh->b_size;
1931 
1932 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1933 			to_release++;
1934 			clear_buffer_delay(bh);
1935 		}
1936 		curr_off = next_off;
1937 	} while ((bh = bh->b_this_page) != head);
1938 	ext4_da_release_space(page->mapping->host, to_release);
1939 }
1940 
1941 /*
1942  * Delayed allocation stuff
1943  */
1944 
1945 /*
1946  * mpage_da_submit_io - walks through extent of pages and try to write
1947  * them with writepage() call back
1948  *
1949  * @mpd->inode: inode
1950  * @mpd->first_page: first page of the extent
1951  * @mpd->next_page: page after the last page of the extent
1952  *
1953  * By the time mpage_da_submit_io() is called we expect all blocks
1954  * to be allocated. this may be wrong if allocation failed.
1955  *
1956  * As pages are already locked by write_cache_pages(), we can't use it
1957  */
1958 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1959 {
1960 	long pages_skipped;
1961 	struct pagevec pvec;
1962 	unsigned long index, end;
1963 	int ret = 0, err, nr_pages, i;
1964 	struct inode *inode = mpd->inode;
1965 	struct address_space *mapping = inode->i_mapping;
1966 
1967 	BUG_ON(mpd->next_page <= mpd->first_page);
1968 	/*
1969 	 * We need to start from the first_page to the next_page - 1
1970 	 * to make sure we also write the mapped dirty buffer_heads.
1971 	 * If we look at mpd->b_blocknr we would only be looking
1972 	 * at the currently mapped buffer_heads.
1973 	 */
1974 	index = mpd->first_page;
1975 	end = mpd->next_page - 1;
1976 
1977 	pagevec_init(&pvec, 0);
1978 	while (index <= end) {
1979 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1980 		if (nr_pages == 0)
1981 			break;
1982 		for (i = 0; i < nr_pages; i++) {
1983 			struct page *page = pvec.pages[i];
1984 
1985 			index = page->index;
1986 			if (index > end)
1987 				break;
1988 			index++;
1989 
1990 			BUG_ON(!PageLocked(page));
1991 			BUG_ON(PageWriteback(page));
1992 
1993 			pages_skipped = mpd->wbc->pages_skipped;
1994 			err = mapping->a_ops->writepage(page, mpd->wbc);
1995 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1996 				/*
1997 				 * have successfully written the page
1998 				 * without skipping the same
1999 				 */
2000 				mpd->pages_written++;
2001 			/*
2002 			 * In error case, we have to continue because
2003 			 * remaining pages are still locked
2004 			 * XXX: unlock and re-dirty them?
2005 			 */
2006 			if (ret == 0)
2007 				ret = err;
2008 		}
2009 		pagevec_release(&pvec);
2010 	}
2011 	return ret;
2012 }
2013 
2014 /*
2015  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2016  *
2017  * @mpd->inode - inode to walk through
2018  * @exbh->b_blocknr - first block on a disk
2019  * @exbh->b_size - amount of space in bytes
2020  * @logical - first logical block to start assignment with
2021  *
2022  * the function goes through all passed space and put actual disk
2023  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2024  */
2025 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2026 				 struct buffer_head *exbh)
2027 {
2028 	struct inode *inode = mpd->inode;
2029 	struct address_space *mapping = inode->i_mapping;
2030 	int blocks = exbh->b_size >> inode->i_blkbits;
2031 	sector_t pblock = exbh->b_blocknr, cur_logical;
2032 	struct buffer_head *head, *bh;
2033 	pgoff_t index, end;
2034 	struct pagevec pvec;
2035 	int nr_pages, i;
2036 
2037 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2038 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040 
2041 	pagevec_init(&pvec, 0);
2042 
2043 	while (index <= end) {
2044 		/* XXX: optimize tail */
2045 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2046 		if (nr_pages == 0)
2047 			break;
2048 		for (i = 0; i < nr_pages; i++) {
2049 			struct page *page = pvec.pages[i];
2050 
2051 			index = page->index;
2052 			if (index > end)
2053 				break;
2054 			index++;
2055 
2056 			BUG_ON(!PageLocked(page));
2057 			BUG_ON(PageWriteback(page));
2058 			BUG_ON(!page_has_buffers(page));
2059 
2060 			bh = page_buffers(page);
2061 			head = bh;
2062 
2063 			/* skip blocks out of the range */
2064 			do {
2065 				if (cur_logical >= logical)
2066 					break;
2067 				cur_logical++;
2068 			} while ((bh = bh->b_this_page) != head);
2069 
2070 			do {
2071 				if (cur_logical >= logical + blocks)
2072 					break;
2073 
2074 				if (buffer_delay(bh) ||
2075 						buffer_unwritten(bh)) {
2076 
2077 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2078 
2079 					if (buffer_delay(bh)) {
2080 						clear_buffer_delay(bh);
2081 						bh->b_blocknr = pblock;
2082 					} else {
2083 						/*
2084 						 * unwritten already should have
2085 						 * blocknr assigned. Verify that
2086 						 */
2087 						clear_buffer_unwritten(bh);
2088 						BUG_ON(bh->b_blocknr != pblock);
2089 					}
2090 
2091 				} else if (buffer_mapped(bh))
2092 					BUG_ON(bh->b_blocknr != pblock);
2093 
2094 				cur_logical++;
2095 				pblock++;
2096 			} while ((bh = bh->b_this_page) != head);
2097 		}
2098 		pagevec_release(&pvec);
2099 	}
2100 }
2101 
2102 
2103 /*
2104  * __unmap_underlying_blocks - just a helper function to unmap
2105  * set of blocks described by @bh
2106  */
2107 static inline void __unmap_underlying_blocks(struct inode *inode,
2108 					     struct buffer_head *bh)
2109 {
2110 	struct block_device *bdev = inode->i_sb->s_bdev;
2111 	int blocks, i;
2112 
2113 	blocks = bh->b_size >> inode->i_blkbits;
2114 	for (i = 0; i < blocks; i++)
2115 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2116 }
2117 
2118 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2119 					sector_t logical, long blk_cnt)
2120 {
2121 	int nr_pages, i;
2122 	pgoff_t index, end;
2123 	struct pagevec pvec;
2124 	struct inode *inode = mpd->inode;
2125 	struct address_space *mapping = inode->i_mapping;
2126 
2127 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2128 	end   = (logical + blk_cnt - 1) >>
2129 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2130 	while (index <= end) {
2131 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2132 		if (nr_pages == 0)
2133 			break;
2134 		for (i = 0; i < nr_pages; i++) {
2135 			struct page *page = pvec.pages[i];
2136 			index = page->index;
2137 			if (index > end)
2138 				break;
2139 			index++;
2140 
2141 			BUG_ON(!PageLocked(page));
2142 			BUG_ON(PageWriteback(page));
2143 			block_invalidatepage(page, 0);
2144 			ClearPageUptodate(page);
2145 			unlock_page(page);
2146 		}
2147 	}
2148 	return;
2149 }
2150 
2151 static void ext4_print_free_blocks(struct inode *inode)
2152 {
2153 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2154 	printk(KERN_CRIT "Total free blocks count %lld\n",
2155 	       ext4_count_free_blocks(inode->i_sb));
2156 	printk(KERN_CRIT "Free/Dirty block details\n");
2157 	printk(KERN_CRIT "free_blocks=%lld\n",
2158 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2159 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2160 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2161 	printk(KERN_CRIT "Block reservation details\n");
2162 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2163 	       EXT4_I(inode)->i_reserved_data_blocks);
2164 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2165 	       EXT4_I(inode)->i_reserved_meta_blocks);
2166 	return;
2167 }
2168 
2169 /*
2170  * mpage_da_map_blocks - go through given space
2171  *
2172  * @mpd - bh describing space
2173  *
2174  * The function skips space we know is already mapped to disk blocks.
2175  *
2176  */
2177 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2178 {
2179 	int err, blks, get_blocks_flags;
2180 	struct buffer_head new;
2181 	sector_t next = mpd->b_blocknr;
2182 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2183 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2184 	handle_t *handle = NULL;
2185 
2186 	/*
2187 	 * We consider only non-mapped and non-allocated blocks
2188 	 */
2189 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2190 		!(mpd->b_state & (1 << BH_Delay)) &&
2191 		!(mpd->b_state & (1 << BH_Unwritten)))
2192 		return 0;
2193 
2194 	/*
2195 	 * If we didn't accumulate anything to write simply return
2196 	 */
2197 	if (!mpd->b_size)
2198 		return 0;
2199 
2200 	handle = ext4_journal_current_handle();
2201 	BUG_ON(!handle);
2202 
2203 	/*
2204 	 * Call ext4_get_blocks() to allocate any delayed allocation
2205 	 * blocks, or to convert an uninitialized extent to be
2206 	 * initialized (in the case where we have written into
2207 	 * one or more preallocated blocks).
2208 	 *
2209 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2210 	 * indicate that we are on the delayed allocation path.  This
2211 	 * affects functions in many different parts of the allocation
2212 	 * call path.  This flag exists primarily because we don't
2213 	 * want to change *many* call functions, so ext4_get_blocks()
2214 	 * will set the magic i_delalloc_reserved_flag once the
2215 	 * inode's allocation semaphore is taken.
2216 	 *
2217 	 * If the blocks in questions were delalloc blocks, set
2218 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2219 	 * variables are updated after the blocks have been allocated.
2220 	 */
2221 	new.b_state = 0;
2222 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2223 	if (mpd->b_state & (1 << BH_Delay))
2224 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2225 
2226 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2227 			       &new, get_blocks_flags);
2228 	if (blks < 0) {
2229 		err = blks;
2230 		/*
2231 		 * If get block returns with error we simply
2232 		 * return. Later writepage will redirty the page and
2233 		 * writepages will find the dirty page again
2234 		 */
2235 		if (err == -EAGAIN)
2236 			return 0;
2237 
2238 		if (err == -ENOSPC &&
2239 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2240 			mpd->retval = err;
2241 			return 0;
2242 		}
2243 
2244 		/*
2245 		 * get block failure will cause us to loop in
2246 		 * writepages, because a_ops->writepage won't be able
2247 		 * to make progress. The page will be redirtied by
2248 		 * writepage and writepages will again try to write
2249 		 * the same.
2250 		 */
2251 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2252 			 "delayed block allocation failed for inode %lu at "
2253 			 "logical offset %llu with max blocks %zd with "
2254 			 "error %d\n", mpd->inode->i_ino,
2255 			 (unsigned long long) next,
2256 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2257 		printk(KERN_CRIT "This should not happen!!  "
2258 		       "Data will be lost\n");
2259 		if (err == -ENOSPC) {
2260 			ext4_print_free_blocks(mpd->inode);
2261 		}
2262 		/* invalidate all the pages */
2263 		ext4_da_block_invalidatepages(mpd, next,
2264 				mpd->b_size >> mpd->inode->i_blkbits);
2265 		return err;
2266 	}
2267 	BUG_ON(blks == 0);
2268 
2269 	new.b_size = (blks << mpd->inode->i_blkbits);
2270 
2271 	if (buffer_new(&new))
2272 		__unmap_underlying_blocks(mpd->inode, &new);
2273 
2274 	/*
2275 	 * If blocks are delayed marked, we need to
2276 	 * put actual blocknr and drop delayed bit
2277 	 */
2278 	if ((mpd->b_state & (1 << BH_Delay)) ||
2279 	    (mpd->b_state & (1 << BH_Unwritten)))
2280 		mpage_put_bnr_to_bhs(mpd, next, &new);
2281 
2282 	if (ext4_should_order_data(mpd->inode)) {
2283 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2284 		if (err)
2285 			return err;
2286 	}
2287 
2288 	/*
2289 	 * Update on-disk size along with block allocation.
2290 	 */
2291 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2292 	if (disksize > i_size_read(mpd->inode))
2293 		disksize = i_size_read(mpd->inode);
2294 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2295 		ext4_update_i_disksize(mpd->inode, disksize);
2296 		return ext4_mark_inode_dirty(handle, mpd->inode);
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2303 		(1 << BH_Delay) | (1 << BH_Unwritten))
2304 
2305 /*
2306  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2307  *
2308  * @mpd->lbh - extent of blocks
2309  * @logical - logical number of the block in the file
2310  * @bh - bh of the block (used to access block's state)
2311  *
2312  * the function is used to collect contig. blocks in same state
2313  */
2314 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2315 				   sector_t logical, size_t b_size,
2316 				   unsigned long b_state)
2317 {
2318 	sector_t next;
2319 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2320 
2321 	/* check if thereserved journal credits might overflow */
2322 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2323 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2324 			/*
2325 			 * With non-extent format we are limited by the journal
2326 			 * credit available.  Total credit needed to insert
2327 			 * nrblocks contiguous blocks is dependent on the
2328 			 * nrblocks.  So limit nrblocks.
2329 			 */
2330 			goto flush_it;
2331 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2332 				EXT4_MAX_TRANS_DATA) {
2333 			/*
2334 			 * Adding the new buffer_head would make it cross the
2335 			 * allowed limit for which we have journal credit
2336 			 * reserved. So limit the new bh->b_size
2337 			 */
2338 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2339 						mpd->inode->i_blkbits;
2340 			/* we will do mpage_da_submit_io in the next loop */
2341 		}
2342 	}
2343 	/*
2344 	 * First block in the extent
2345 	 */
2346 	if (mpd->b_size == 0) {
2347 		mpd->b_blocknr = logical;
2348 		mpd->b_size = b_size;
2349 		mpd->b_state = b_state & BH_FLAGS;
2350 		return;
2351 	}
2352 
2353 	next = mpd->b_blocknr + nrblocks;
2354 	/*
2355 	 * Can we merge the block to our big extent?
2356 	 */
2357 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2358 		mpd->b_size += b_size;
2359 		return;
2360 	}
2361 
2362 flush_it:
2363 	/*
2364 	 * We couldn't merge the block to our extent, so we
2365 	 * need to flush current  extent and start new one
2366 	 */
2367 	if (mpage_da_map_blocks(mpd) == 0)
2368 		mpage_da_submit_io(mpd);
2369 	mpd->io_done = 1;
2370 	return;
2371 }
2372 
2373 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2374 {
2375 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2376 }
2377 
2378 /*
2379  * __mpage_da_writepage - finds extent of pages and blocks
2380  *
2381  * @page: page to consider
2382  * @wbc: not used, we just follow rules
2383  * @data: context
2384  *
2385  * The function finds extents of pages and scan them for all blocks.
2386  */
2387 static int __mpage_da_writepage(struct page *page,
2388 				struct writeback_control *wbc, void *data)
2389 {
2390 	struct mpage_da_data *mpd = data;
2391 	struct inode *inode = mpd->inode;
2392 	struct buffer_head *bh, *head;
2393 	sector_t logical;
2394 
2395 	if (mpd->io_done) {
2396 		/*
2397 		 * Rest of the page in the page_vec
2398 		 * redirty then and skip then. We will
2399 		 * try to write them again after
2400 		 * starting a new transaction
2401 		 */
2402 		redirty_page_for_writepage(wbc, page);
2403 		unlock_page(page);
2404 		return MPAGE_DA_EXTENT_TAIL;
2405 	}
2406 	/*
2407 	 * Can we merge this page to current extent?
2408 	 */
2409 	if (mpd->next_page != page->index) {
2410 		/*
2411 		 * Nope, we can't. So, we map non-allocated blocks
2412 		 * and start IO on them using writepage()
2413 		 */
2414 		if (mpd->next_page != mpd->first_page) {
2415 			if (mpage_da_map_blocks(mpd) == 0)
2416 				mpage_da_submit_io(mpd);
2417 			/*
2418 			 * skip rest of the page in the page_vec
2419 			 */
2420 			mpd->io_done = 1;
2421 			redirty_page_for_writepage(wbc, page);
2422 			unlock_page(page);
2423 			return MPAGE_DA_EXTENT_TAIL;
2424 		}
2425 
2426 		/*
2427 		 * Start next extent of pages ...
2428 		 */
2429 		mpd->first_page = page->index;
2430 
2431 		/*
2432 		 * ... and blocks
2433 		 */
2434 		mpd->b_size = 0;
2435 		mpd->b_state = 0;
2436 		mpd->b_blocknr = 0;
2437 	}
2438 
2439 	mpd->next_page = page->index + 1;
2440 	logical = (sector_t) page->index <<
2441 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2442 
2443 	if (!page_has_buffers(page)) {
2444 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2445 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2446 		if (mpd->io_done)
2447 			return MPAGE_DA_EXTENT_TAIL;
2448 	} else {
2449 		/*
2450 		 * Page with regular buffer heads, just add all dirty ones
2451 		 */
2452 		head = page_buffers(page);
2453 		bh = head;
2454 		do {
2455 			BUG_ON(buffer_locked(bh));
2456 			/*
2457 			 * We need to try to allocate
2458 			 * unmapped blocks in the same page.
2459 			 * Otherwise we won't make progress
2460 			 * with the page in ext4_writepage
2461 			 */
2462 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2463 				mpage_add_bh_to_extent(mpd, logical,
2464 						       bh->b_size,
2465 						       bh->b_state);
2466 				if (mpd->io_done)
2467 					return MPAGE_DA_EXTENT_TAIL;
2468 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2469 				/*
2470 				 * mapped dirty buffer. We need to update
2471 				 * the b_state because we look at
2472 				 * b_state in mpage_da_map_blocks. We don't
2473 				 * update b_size because if we find an
2474 				 * unmapped buffer_head later we need to
2475 				 * use the b_state flag of that buffer_head.
2476 				 */
2477 				if (mpd->b_size == 0)
2478 					mpd->b_state = bh->b_state & BH_FLAGS;
2479 			}
2480 			logical++;
2481 		} while ((bh = bh->b_this_page) != head);
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 /*
2488  * This is a special get_blocks_t callback which is used by
2489  * ext4_da_write_begin().  It will either return mapped block or
2490  * reserve space for a single block.
2491  *
2492  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2493  * We also have b_blocknr = -1 and b_bdev initialized properly
2494  *
2495  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2496  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2497  * initialized properly.
2498  */
2499 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2500 				  struct buffer_head *bh_result, int create)
2501 {
2502 	int ret = 0;
2503 	sector_t invalid_block = ~((sector_t) 0xffff);
2504 
2505 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2506 		invalid_block = ~0;
2507 
2508 	BUG_ON(create == 0);
2509 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2510 
2511 	/*
2512 	 * first, we need to know whether the block is allocated already
2513 	 * preallocated blocks are unmapped but should treated
2514 	 * the same as allocated blocks.
2515 	 */
2516 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2517 	if ((ret == 0) && !buffer_delay(bh_result)) {
2518 		/* the block isn't (pre)allocated yet, let's reserve space */
2519 		/*
2520 		 * XXX: __block_prepare_write() unmaps passed block,
2521 		 * is it OK?
2522 		 */
2523 		ret = ext4_da_reserve_space(inode, iblock);
2524 		if (ret)
2525 			/* not enough space to reserve */
2526 			return ret;
2527 
2528 		map_bh(bh_result, inode->i_sb, invalid_block);
2529 		set_buffer_new(bh_result);
2530 		set_buffer_delay(bh_result);
2531 	} else if (ret > 0) {
2532 		bh_result->b_size = (ret << inode->i_blkbits);
2533 		if (buffer_unwritten(bh_result)) {
2534 			/* A delayed write to unwritten bh should
2535 			 * be marked new and mapped.  Mapped ensures
2536 			 * that we don't do get_block multiple times
2537 			 * when we write to the same offset and new
2538 			 * ensures that we do proper zero out for
2539 			 * partial write.
2540 			 */
2541 			set_buffer_new(bh_result);
2542 			set_buffer_mapped(bh_result);
2543 		}
2544 		ret = 0;
2545 	}
2546 
2547 	return ret;
2548 }
2549 
2550 /*
2551  * This function is used as a standard get_block_t calback function
2552  * when there is no desire to allocate any blocks.  It is used as a
2553  * callback function for block_prepare_write(), nobh_writepage(), and
2554  * block_write_full_page().  These functions should only try to map a
2555  * single block at a time.
2556  *
2557  * Since this function doesn't do block allocations even if the caller
2558  * requests it by passing in create=1, it is critically important that
2559  * any caller checks to make sure that any buffer heads are returned
2560  * by this function are either all already mapped or marked for
2561  * delayed allocation before calling nobh_writepage() or
2562  * block_write_full_page().  Otherwise, b_blocknr could be left
2563  * unitialized, and the page write functions will be taken by
2564  * surprise.
2565  */
2566 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2567 				   struct buffer_head *bh_result, int create)
2568 {
2569 	int ret = 0;
2570 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2571 
2572 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2573 
2574 	/*
2575 	 * we don't want to do block allocation in writepage
2576 	 * so call get_block_wrap with create = 0
2577 	 */
2578 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2579 	if (ret > 0) {
2580 		bh_result->b_size = (ret << inode->i_blkbits);
2581 		ret = 0;
2582 	}
2583 	return ret;
2584 }
2585 
2586 static int bget_one(handle_t *handle, struct buffer_head *bh)
2587 {
2588 	get_bh(bh);
2589 	return 0;
2590 }
2591 
2592 static int bput_one(handle_t *handle, struct buffer_head *bh)
2593 {
2594 	put_bh(bh);
2595 	return 0;
2596 }
2597 
2598 static int __ext4_journalled_writepage(struct page *page,
2599 				       unsigned int len)
2600 {
2601 	struct address_space *mapping = page->mapping;
2602 	struct inode *inode = mapping->host;
2603 	struct buffer_head *page_bufs;
2604 	handle_t *handle = NULL;
2605 	int ret = 0;
2606 	int err;
2607 
2608 	page_bufs = page_buffers(page);
2609 	BUG_ON(!page_bufs);
2610 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2611 	/* As soon as we unlock the page, it can go away, but we have
2612 	 * references to buffers so we are safe */
2613 	unlock_page(page);
2614 
2615 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2616 	if (IS_ERR(handle)) {
2617 		ret = PTR_ERR(handle);
2618 		goto out;
2619 	}
2620 
2621 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2622 				do_journal_get_write_access);
2623 
2624 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2625 				write_end_fn);
2626 	if (ret == 0)
2627 		ret = err;
2628 	err = ext4_journal_stop(handle);
2629 	if (!ret)
2630 		ret = err;
2631 
2632 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2633 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2634 out:
2635 	return ret;
2636 }
2637 
2638 /*
2639  * Note that we don't need to start a transaction unless we're journaling data
2640  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2641  * need to file the inode to the transaction's list in ordered mode because if
2642  * we are writing back data added by write(), the inode is already there and if
2643  * we are writing back data modified via mmap(), noone guarantees in which
2644  * transaction the data will hit the disk. In case we are journaling data, we
2645  * cannot start transaction directly because transaction start ranks above page
2646  * lock so we have to do some magic.
2647  *
2648  * This function can get called via...
2649  *   - ext4_da_writepages after taking page lock (have journal handle)
2650  *   - journal_submit_inode_data_buffers (no journal handle)
2651  *   - shrink_page_list via pdflush (no journal handle)
2652  *   - grab_page_cache when doing write_begin (have journal handle)
2653  *
2654  * We don't do any block allocation in this function. If we have page with
2655  * multiple blocks we need to write those buffer_heads that are mapped. This
2656  * is important for mmaped based write. So if we do with blocksize 1K
2657  * truncate(f, 1024);
2658  * a = mmap(f, 0, 4096);
2659  * a[0] = 'a';
2660  * truncate(f, 4096);
2661  * we have in the page first buffer_head mapped via page_mkwrite call back
2662  * but other bufer_heads would be unmapped but dirty(dirty done via the
2663  * do_wp_page). So writepage should write the first block. If we modify
2664  * the mmap area beyond 1024 we will again get a page_fault and the
2665  * page_mkwrite callback will do the block allocation and mark the
2666  * buffer_heads mapped.
2667  *
2668  * We redirty the page if we have any buffer_heads that is either delay or
2669  * unwritten in the page.
2670  *
2671  * We can get recursively called as show below.
2672  *
2673  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2674  *		ext4_writepage()
2675  *
2676  * But since we don't do any block allocation we should not deadlock.
2677  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2678  */
2679 static int ext4_writepage(struct page *page,
2680 			  struct writeback_control *wbc)
2681 {
2682 	int ret = 0;
2683 	loff_t size;
2684 	unsigned int len;
2685 	struct buffer_head *page_bufs;
2686 	struct inode *inode = page->mapping->host;
2687 
2688 	trace_ext4_writepage(inode, page);
2689 	size = i_size_read(inode);
2690 	if (page->index == size >> PAGE_CACHE_SHIFT)
2691 		len = size & ~PAGE_CACHE_MASK;
2692 	else
2693 		len = PAGE_CACHE_SIZE;
2694 
2695 	if (page_has_buffers(page)) {
2696 		page_bufs = page_buffers(page);
2697 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2698 					ext4_bh_delay_or_unwritten)) {
2699 			/*
2700 			 * We don't want to do  block allocation
2701 			 * So redirty the page and return
2702 			 * We may reach here when we do a journal commit
2703 			 * via journal_submit_inode_data_buffers.
2704 			 * If we don't have mapping block we just ignore
2705 			 * them. We can also reach here via shrink_page_list
2706 			 */
2707 			redirty_page_for_writepage(wbc, page);
2708 			unlock_page(page);
2709 			return 0;
2710 		}
2711 	} else {
2712 		/*
2713 		 * The test for page_has_buffers() is subtle:
2714 		 * We know the page is dirty but it lost buffers. That means
2715 		 * that at some moment in time after write_begin()/write_end()
2716 		 * has been called all buffers have been clean and thus they
2717 		 * must have been written at least once. So they are all
2718 		 * mapped and we can happily proceed with mapping them
2719 		 * and writing the page.
2720 		 *
2721 		 * Try to initialize the buffer_heads and check whether
2722 		 * all are mapped and non delay. We don't want to
2723 		 * do block allocation here.
2724 		 */
2725 		ret = block_prepare_write(page, 0, len,
2726 					  noalloc_get_block_write);
2727 		if (!ret) {
2728 			page_bufs = page_buffers(page);
2729 			/* check whether all are mapped and non delay */
2730 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2731 						ext4_bh_delay_or_unwritten)) {
2732 				redirty_page_for_writepage(wbc, page);
2733 				unlock_page(page);
2734 				return 0;
2735 			}
2736 		} else {
2737 			/*
2738 			 * We can't do block allocation here
2739 			 * so just redity the page and unlock
2740 			 * and return
2741 			 */
2742 			redirty_page_for_writepage(wbc, page);
2743 			unlock_page(page);
2744 			return 0;
2745 		}
2746 		/* now mark the buffer_heads as dirty and uptodate */
2747 		block_commit_write(page, 0, len);
2748 	}
2749 
2750 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2751 		/*
2752 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2753 		 * doesn't seem much point in redirtying the page here.
2754 		 */
2755 		ClearPageChecked(page);
2756 		return __ext4_journalled_writepage(page, len);
2757 	}
2758 
2759 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2760 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2761 	else
2762 		ret = block_write_full_page(page, noalloc_get_block_write,
2763 					    wbc);
2764 
2765 	return ret;
2766 }
2767 
2768 /*
2769  * This is called via ext4_da_writepages() to
2770  * calulate the total number of credits to reserve to fit
2771  * a single extent allocation into a single transaction,
2772  * ext4_da_writpeages() will loop calling this before
2773  * the block allocation.
2774  */
2775 
2776 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2777 {
2778 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2779 
2780 	/*
2781 	 * With non-extent format the journal credit needed to
2782 	 * insert nrblocks contiguous block is dependent on
2783 	 * number of contiguous block. So we will limit
2784 	 * number of contiguous block to a sane value
2785 	 */
2786 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2787 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2788 		max_blocks = EXT4_MAX_TRANS_DATA;
2789 
2790 	return ext4_chunk_trans_blocks(inode, max_blocks);
2791 }
2792 
2793 static int ext4_da_writepages(struct address_space *mapping,
2794 			      struct writeback_control *wbc)
2795 {
2796 	pgoff_t	index;
2797 	int range_whole = 0;
2798 	handle_t *handle = NULL;
2799 	struct mpage_da_data mpd;
2800 	struct inode *inode = mapping->host;
2801 	int no_nrwrite_index_update;
2802 	int pages_written = 0;
2803 	long pages_skipped;
2804 	unsigned int max_pages;
2805 	int range_cyclic, cycled = 1, io_done = 0;
2806 	int needed_blocks, ret = 0;
2807 	long desired_nr_to_write, nr_to_writebump = 0;
2808 	loff_t range_start = wbc->range_start;
2809 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2810 
2811 	trace_ext4_da_writepages(inode, wbc);
2812 
2813 	/*
2814 	 * No pages to write? This is mainly a kludge to avoid starting
2815 	 * a transaction for special inodes like journal inode on last iput()
2816 	 * because that could violate lock ordering on umount
2817 	 */
2818 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2819 		return 0;
2820 
2821 	/*
2822 	 * If the filesystem has aborted, it is read-only, so return
2823 	 * right away instead of dumping stack traces later on that
2824 	 * will obscure the real source of the problem.  We test
2825 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2826 	 * the latter could be true if the filesystem is mounted
2827 	 * read-only, and in that case, ext4_da_writepages should
2828 	 * *never* be called, so if that ever happens, we would want
2829 	 * the stack trace.
2830 	 */
2831 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2832 		return -EROFS;
2833 
2834 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2835 		range_whole = 1;
2836 
2837 	range_cyclic = wbc->range_cyclic;
2838 	if (wbc->range_cyclic) {
2839 		index = mapping->writeback_index;
2840 		if (index)
2841 			cycled = 0;
2842 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2843 		wbc->range_end  = LLONG_MAX;
2844 		wbc->range_cyclic = 0;
2845 	} else
2846 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2847 
2848 	/*
2849 	 * This works around two forms of stupidity.  The first is in
2850 	 * the writeback code, which caps the maximum number of pages
2851 	 * written to be 1024 pages.  This is wrong on multiple
2852 	 * levels; different architectues have a different page size,
2853 	 * which changes the maximum amount of data which gets
2854 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2855 	 * forces this value to be 16 megabytes by multiplying
2856 	 * nr_to_write parameter by four, and then relies on its
2857 	 * allocator to allocate larger extents to make them
2858 	 * contiguous.  Unfortunately this brings us to the second
2859 	 * stupidity, which is that ext4's mballoc code only allocates
2860 	 * at most 2048 blocks.  So we force contiguous writes up to
2861 	 * the number of dirty blocks in the inode, or
2862 	 * sbi->max_writeback_mb_bump whichever is smaller.
2863 	 */
2864 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2865 	if (!range_cyclic && range_whole)
2866 		desired_nr_to_write = wbc->nr_to_write * 8;
2867 	else
2868 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2869 							   max_pages);
2870 	if (desired_nr_to_write > max_pages)
2871 		desired_nr_to_write = max_pages;
2872 
2873 	if (wbc->nr_to_write < desired_nr_to_write) {
2874 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2875 		wbc->nr_to_write = desired_nr_to_write;
2876 	}
2877 
2878 	mpd.wbc = wbc;
2879 	mpd.inode = mapping->host;
2880 
2881 	/*
2882 	 * we don't want write_cache_pages to update
2883 	 * nr_to_write and writeback_index
2884 	 */
2885 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2886 	wbc->no_nrwrite_index_update = 1;
2887 	pages_skipped = wbc->pages_skipped;
2888 
2889 retry:
2890 	while (!ret && wbc->nr_to_write > 0) {
2891 
2892 		/*
2893 		 * we  insert one extent at a time. So we need
2894 		 * credit needed for single extent allocation.
2895 		 * journalled mode is currently not supported
2896 		 * by delalloc
2897 		 */
2898 		BUG_ON(ext4_should_journal_data(inode));
2899 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2900 
2901 		/* start a new transaction*/
2902 		handle = ext4_journal_start(inode, needed_blocks);
2903 		if (IS_ERR(handle)) {
2904 			ret = PTR_ERR(handle);
2905 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2906 			       "%ld pages, ino %lu; err %d\n", __func__,
2907 				wbc->nr_to_write, inode->i_ino, ret);
2908 			goto out_writepages;
2909 		}
2910 
2911 		/*
2912 		 * Now call __mpage_da_writepage to find the next
2913 		 * contiguous region of logical blocks that need
2914 		 * blocks to be allocated by ext4.  We don't actually
2915 		 * submit the blocks for I/O here, even though
2916 		 * write_cache_pages thinks it will, and will set the
2917 		 * pages as clean for write before calling
2918 		 * __mpage_da_writepage().
2919 		 */
2920 		mpd.b_size = 0;
2921 		mpd.b_state = 0;
2922 		mpd.b_blocknr = 0;
2923 		mpd.first_page = 0;
2924 		mpd.next_page = 0;
2925 		mpd.io_done = 0;
2926 		mpd.pages_written = 0;
2927 		mpd.retval = 0;
2928 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2929 					&mpd);
2930 		/*
2931 		 * If we have a contiguous extent of pages and we
2932 		 * haven't done the I/O yet, map the blocks and submit
2933 		 * them for I/O.
2934 		 */
2935 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2936 			if (mpage_da_map_blocks(&mpd) == 0)
2937 				mpage_da_submit_io(&mpd);
2938 			mpd.io_done = 1;
2939 			ret = MPAGE_DA_EXTENT_TAIL;
2940 		}
2941 		trace_ext4_da_write_pages(inode, &mpd);
2942 		wbc->nr_to_write -= mpd.pages_written;
2943 
2944 		ext4_journal_stop(handle);
2945 
2946 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2947 			/* commit the transaction which would
2948 			 * free blocks released in the transaction
2949 			 * and try again
2950 			 */
2951 			jbd2_journal_force_commit_nested(sbi->s_journal);
2952 			wbc->pages_skipped = pages_skipped;
2953 			ret = 0;
2954 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2955 			/*
2956 			 * got one extent now try with
2957 			 * rest of the pages
2958 			 */
2959 			pages_written += mpd.pages_written;
2960 			wbc->pages_skipped = pages_skipped;
2961 			ret = 0;
2962 			io_done = 1;
2963 		} else if (wbc->nr_to_write)
2964 			/*
2965 			 * There is no more writeout needed
2966 			 * or we requested for a noblocking writeout
2967 			 * and we found the device congested
2968 			 */
2969 			break;
2970 	}
2971 	if (!io_done && !cycled) {
2972 		cycled = 1;
2973 		index = 0;
2974 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2975 		wbc->range_end  = mapping->writeback_index - 1;
2976 		goto retry;
2977 	}
2978 	if (pages_skipped != wbc->pages_skipped)
2979 		ext4_msg(inode->i_sb, KERN_CRIT,
2980 			 "This should not happen leaving %s "
2981 			 "with nr_to_write = %ld ret = %d\n",
2982 			 __func__, wbc->nr_to_write, ret);
2983 
2984 	/* Update index */
2985 	index += pages_written;
2986 	wbc->range_cyclic = range_cyclic;
2987 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2988 		/*
2989 		 * set the writeback_index so that range_cyclic
2990 		 * mode will write it back later
2991 		 */
2992 		mapping->writeback_index = index;
2993 
2994 out_writepages:
2995 	if (!no_nrwrite_index_update)
2996 		wbc->no_nrwrite_index_update = 0;
2997 	wbc->nr_to_write -= nr_to_writebump;
2998 	wbc->range_start = range_start;
2999 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3000 	return ret;
3001 }
3002 
3003 #define FALL_BACK_TO_NONDELALLOC 1
3004 static int ext4_nonda_switch(struct super_block *sb)
3005 {
3006 	s64 free_blocks, dirty_blocks;
3007 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3008 
3009 	/*
3010 	 * switch to non delalloc mode if we are running low
3011 	 * on free block. The free block accounting via percpu
3012 	 * counters can get slightly wrong with percpu_counter_batch getting
3013 	 * accumulated on each CPU without updating global counters
3014 	 * Delalloc need an accurate free block accounting. So switch
3015 	 * to non delalloc when we are near to error range.
3016 	 */
3017 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3018 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3019 	if (2 * free_blocks < 3 * dirty_blocks ||
3020 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3021 		/*
3022 		 * free block count is less than 150% of dirty blocks
3023 		 * or free blocks is less than watermark
3024 		 */
3025 		return 1;
3026 	}
3027 	/*
3028 	 * Even if we don't switch but are nearing capacity,
3029 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3030 	 */
3031 	if (free_blocks < 2 * dirty_blocks)
3032 		writeback_inodes_sb_if_idle(sb);
3033 
3034 	return 0;
3035 }
3036 
3037 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3038 			       loff_t pos, unsigned len, unsigned flags,
3039 			       struct page **pagep, void **fsdata)
3040 {
3041 	int ret, retries = 0, quota_retries = 0;
3042 	struct page *page;
3043 	pgoff_t index;
3044 	unsigned from, to;
3045 	struct inode *inode = mapping->host;
3046 	handle_t *handle;
3047 
3048 	index = pos >> PAGE_CACHE_SHIFT;
3049 	from = pos & (PAGE_CACHE_SIZE - 1);
3050 	to = from + len;
3051 
3052 	if (ext4_nonda_switch(inode->i_sb)) {
3053 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3054 		return ext4_write_begin(file, mapping, pos,
3055 					len, flags, pagep, fsdata);
3056 	}
3057 	*fsdata = (void *)0;
3058 	trace_ext4_da_write_begin(inode, pos, len, flags);
3059 retry:
3060 	/*
3061 	 * With delayed allocation, we don't log the i_disksize update
3062 	 * if there is delayed block allocation. But we still need
3063 	 * to journalling the i_disksize update if writes to the end
3064 	 * of file which has an already mapped buffer.
3065 	 */
3066 	handle = ext4_journal_start(inode, 1);
3067 	if (IS_ERR(handle)) {
3068 		ret = PTR_ERR(handle);
3069 		goto out;
3070 	}
3071 	/* We cannot recurse into the filesystem as the transaction is already
3072 	 * started */
3073 	flags |= AOP_FLAG_NOFS;
3074 
3075 	page = grab_cache_page_write_begin(mapping, index, flags);
3076 	if (!page) {
3077 		ext4_journal_stop(handle);
3078 		ret = -ENOMEM;
3079 		goto out;
3080 	}
3081 	*pagep = page;
3082 
3083 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3084 				ext4_da_get_block_prep);
3085 	if (ret < 0) {
3086 		unlock_page(page);
3087 		ext4_journal_stop(handle);
3088 		page_cache_release(page);
3089 		/*
3090 		 * block_write_begin may have instantiated a few blocks
3091 		 * outside i_size.  Trim these off again. Don't need
3092 		 * i_size_read because we hold i_mutex.
3093 		 */
3094 		if (pos + len > inode->i_size)
3095 			ext4_truncate_failed_write(inode);
3096 	}
3097 
3098 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3099 		goto retry;
3100 
3101 	if ((ret == -EDQUOT) &&
3102 	    EXT4_I(inode)->i_reserved_meta_blocks &&
3103 	    (quota_retries++ < 3)) {
3104 		/*
3105 		 * Since we often over-estimate the number of meta
3106 		 * data blocks required, we may sometimes get a
3107 		 * spurios out of quota error even though there would
3108 		 * be enough space once we write the data blocks and
3109 		 * find out how many meta data blocks were _really_
3110 		 * required.  So try forcing the inode write to see if
3111 		 * that helps.
3112 		 */
3113 		write_inode_now(inode, (quota_retries == 3));
3114 		goto retry;
3115 	}
3116 out:
3117 	return ret;
3118 }
3119 
3120 /*
3121  * Check if we should update i_disksize
3122  * when write to the end of file but not require block allocation
3123  */
3124 static int ext4_da_should_update_i_disksize(struct page *page,
3125 					    unsigned long offset)
3126 {
3127 	struct buffer_head *bh;
3128 	struct inode *inode = page->mapping->host;
3129 	unsigned int idx;
3130 	int i;
3131 
3132 	bh = page_buffers(page);
3133 	idx = offset >> inode->i_blkbits;
3134 
3135 	for (i = 0; i < idx; i++)
3136 		bh = bh->b_this_page;
3137 
3138 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3139 		return 0;
3140 	return 1;
3141 }
3142 
3143 static int ext4_da_write_end(struct file *file,
3144 			     struct address_space *mapping,
3145 			     loff_t pos, unsigned len, unsigned copied,
3146 			     struct page *page, void *fsdata)
3147 {
3148 	struct inode *inode = mapping->host;
3149 	int ret = 0, ret2;
3150 	handle_t *handle = ext4_journal_current_handle();
3151 	loff_t new_i_size;
3152 	unsigned long start, end;
3153 	int write_mode = (int)(unsigned long)fsdata;
3154 
3155 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3156 		if (ext4_should_order_data(inode)) {
3157 			return ext4_ordered_write_end(file, mapping, pos,
3158 					len, copied, page, fsdata);
3159 		} else if (ext4_should_writeback_data(inode)) {
3160 			return ext4_writeback_write_end(file, mapping, pos,
3161 					len, copied, page, fsdata);
3162 		} else {
3163 			BUG();
3164 		}
3165 	}
3166 
3167 	trace_ext4_da_write_end(inode, pos, len, copied);
3168 	start = pos & (PAGE_CACHE_SIZE - 1);
3169 	end = start + copied - 1;
3170 
3171 	/*
3172 	 * generic_write_end() will run mark_inode_dirty() if i_size
3173 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3174 	 * into that.
3175 	 */
3176 
3177 	new_i_size = pos + copied;
3178 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3179 		if (ext4_da_should_update_i_disksize(page, end)) {
3180 			down_write(&EXT4_I(inode)->i_data_sem);
3181 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3182 				/*
3183 				 * Updating i_disksize when extending file
3184 				 * without needing block allocation
3185 				 */
3186 				if (ext4_should_order_data(inode))
3187 					ret = ext4_jbd2_file_inode(handle,
3188 								   inode);
3189 
3190 				EXT4_I(inode)->i_disksize = new_i_size;
3191 			}
3192 			up_write(&EXT4_I(inode)->i_data_sem);
3193 			/* We need to mark inode dirty even if
3194 			 * new_i_size is less that inode->i_size
3195 			 * bu greater than i_disksize.(hint delalloc)
3196 			 */
3197 			ext4_mark_inode_dirty(handle, inode);
3198 		}
3199 	}
3200 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3201 							page, fsdata);
3202 	copied = ret2;
3203 	if (ret2 < 0)
3204 		ret = ret2;
3205 	ret2 = ext4_journal_stop(handle);
3206 	if (!ret)
3207 		ret = ret2;
3208 
3209 	return ret ? ret : copied;
3210 }
3211 
3212 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3213 {
3214 	/*
3215 	 * Drop reserved blocks
3216 	 */
3217 	BUG_ON(!PageLocked(page));
3218 	if (!page_has_buffers(page))
3219 		goto out;
3220 
3221 	ext4_da_page_release_reservation(page, offset);
3222 
3223 out:
3224 	ext4_invalidatepage(page, offset);
3225 
3226 	return;
3227 }
3228 
3229 /*
3230  * Force all delayed allocation blocks to be allocated for a given inode.
3231  */
3232 int ext4_alloc_da_blocks(struct inode *inode)
3233 {
3234 	trace_ext4_alloc_da_blocks(inode);
3235 
3236 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3237 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3238 		return 0;
3239 
3240 	/*
3241 	 * We do something simple for now.  The filemap_flush() will
3242 	 * also start triggering a write of the data blocks, which is
3243 	 * not strictly speaking necessary (and for users of
3244 	 * laptop_mode, not even desirable).  However, to do otherwise
3245 	 * would require replicating code paths in:
3246 	 *
3247 	 * ext4_da_writepages() ->
3248 	 *    write_cache_pages() ---> (via passed in callback function)
3249 	 *        __mpage_da_writepage() -->
3250 	 *           mpage_add_bh_to_extent()
3251 	 *           mpage_da_map_blocks()
3252 	 *
3253 	 * The problem is that write_cache_pages(), located in
3254 	 * mm/page-writeback.c, marks pages clean in preparation for
3255 	 * doing I/O, which is not desirable if we're not planning on
3256 	 * doing I/O at all.
3257 	 *
3258 	 * We could call write_cache_pages(), and then redirty all of
3259 	 * the pages by calling redirty_page_for_writeback() but that
3260 	 * would be ugly in the extreme.  So instead we would need to
3261 	 * replicate parts of the code in the above functions,
3262 	 * simplifying them becuase we wouldn't actually intend to
3263 	 * write out the pages, but rather only collect contiguous
3264 	 * logical block extents, call the multi-block allocator, and
3265 	 * then update the buffer heads with the block allocations.
3266 	 *
3267 	 * For now, though, we'll cheat by calling filemap_flush(),
3268 	 * which will map the blocks, and start the I/O, but not
3269 	 * actually wait for the I/O to complete.
3270 	 */
3271 	return filemap_flush(inode->i_mapping);
3272 }
3273 
3274 /*
3275  * bmap() is special.  It gets used by applications such as lilo and by
3276  * the swapper to find the on-disk block of a specific piece of data.
3277  *
3278  * Naturally, this is dangerous if the block concerned is still in the
3279  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3280  * filesystem and enables swap, then they may get a nasty shock when the
3281  * data getting swapped to that swapfile suddenly gets overwritten by
3282  * the original zero's written out previously to the journal and
3283  * awaiting writeback in the kernel's buffer cache.
3284  *
3285  * So, if we see any bmap calls here on a modified, data-journaled file,
3286  * take extra steps to flush any blocks which might be in the cache.
3287  */
3288 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3289 {
3290 	struct inode *inode = mapping->host;
3291 	journal_t *journal;
3292 	int err;
3293 
3294 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3295 			test_opt(inode->i_sb, DELALLOC)) {
3296 		/*
3297 		 * With delalloc we want to sync the file
3298 		 * so that we can make sure we allocate
3299 		 * blocks for file
3300 		 */
3301 		filemap_write_and_wait(mapping);
3302 	}
3303 
3304 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3305 		/*
3306 		 * This is a REALLY heavyweight approach, but the use of
3307 		 * bmap on dirty files is expected to be extremely rare:
3308 		 * only if we run lilo or swapon on a freshly made file
3309 		 * do we expect this to happen.
3310 		 *
3311 		 * (bmap requires CAP_SYS_RAWIO so this does not
3312 		 * represent an unprivileged user DOS attack --- we'd be
3313 		 * in trouble if mortal users could trigger this path at
3314 		 * will.)
3315 		 *
3316 		 * NB. EXT4_STATE_JDATA is not set on files other than
3317 		 * regular files.  If somebody wants to bmap a directory
3318 		 * or symlink and gets confused because the buffer
3319 		 * hasn't yet been flushed to disk, they deserve
3320 		 * everything they get.
3321 		 */
3322 
3323 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3324 		journal = EXT4_JOURNAL(inode);
3325 		jbd2_journal_lock_updates(journal);
3326 		err = jbd2_journal_flush(journal);
3327 		jbd2_journal_unlock_updates(journal);
3328 
3329 		if (err)
3330 			return 0;
3331 	}
3332 
3333 	return generic_block_bmap(mapping, block, ext4_get_block);
3334 }
3335 
3336 static int ext4_readpage(struct file *file, struct page *page)
3337 {
3338 	return mpage_readpage(page, ext4_get_block);
3339 }
3340 
3341 static int
3342 ext4_readpages(struct file *file, struct address_space *mapping,
3343 		struct list_head *pages, unsigned nr_pages)
3344 {
3345 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3346 }
3347 
3348 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3349 {
3350 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3351 
3352 	/*
3353 	 * If it's a full truncate we just forget about the pending dirtying
3354 	 */
3355 	if (offset == 0)
3356 		ClearPageChecked(page);
3357 
3358 	if (journal)
3359 		jbd2_journal_invalidatepage(journal, page, offset);
3360 	else
3361 		block_invalidatepage(page, offset);
3362 }
3363 
3364 static int ext4_releasepage(struct page *page, gfp_t wait)
3365 {
3366 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3367 
3368 	WARN_ON(PageChecked(page));
3369 	if (!page_has_buffers(page))
3370 		return 0;
3371 	if (journal)
3372 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3373 	else
3374 		return try_to_free_buffers(page);
3375 }
3376 
3377 /*
3378  * O_DIRECT for ext3 (or indirect map) based files
3379  *
3380  * If the O_DIRECT write will extend the file then add this inode to the
3381  * orphan list.  So recovery will truncate it back to the original size
3382  * if the machine crashes during the write.
3383  *
3384  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3385  * crashes then stale disk data _may_ be exposed inside the file. But current
3386  * VFS code falls back into buffered path in that case so we are safe.
3387  */
3388 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3389 			      const struct iovec *iov, loff_t offset,
3390 			      unsigned long nr_segs)
3391 {
3392 	struct file *file = iocb->ki_filp;
3393 	struct inode *inode = file->f_mapping->host;
3394 	struct ext4_inode_info *ei = EXT4_I(inode);
3395 	handle_t *handle;
3396 	ssize_t ret;
3397 	int orphan = 0;
3398 	size_t count = iov_length(iov, nr_segs);
3399 	int retries = 0;
3400 
3401 	if (rw == WRITE) {
3402 		loff_t final_size = offset + count;
3403 
3404 		if (final_size > inode->i_size) {
3405 			/* Credits for sb + inode write */
3406 			handle = ext4_journal_start(inode, 2);
3407 			if (IS_ERR(handle)) {
3408 				ret = PTR_ERR(handle);
3409 				goto out;
3410 			}
3411 			ret = ext4_orphan_add(handle, inode);
3412 			if (ret) {
3413 				ext4_journal_stop(handle);
3414 				goto out;
3415 			}
3416 			orphan = 1;
3417 			ei->i_disksize = inode->i_size;
3418 			ext4_journal_stop(handle);
3419 		}
3420 	}
3421 
3422 retry:
3423 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3424 				 offset, nr_segs,
3425 				 ext4_get_block, NULL);
3426 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3427 		goto retry;
3428 
3429 	if (orphan) {
3430 		int err;
3431 
3432 		/* Credits for sb + inode write */
3433 		handle = ext4_journal_start(inode, 2);
3434 		if (IS_ERR(handle)) {
3435 			/* This is really bad luck. We've written the data
3436 			 * but cannot extend i_size. Bail out and pretend
3437 			 * the write failed... */
3438 			ret = PTR_ERR(handle);
3439 			goto out;
3440 		}
3441 		if (inode->i_nlink)
3442 			ext4_orphan_del(handle, inode);
3443 		if (ret > 0) {
3444 			loff_t end = offset + ret;
3445 			if (end > inode->i_size) {
3446 				ei->i_disksize = end;
3447 				i_size_write(inode, end);
3448 				/*
3449 				 * We're going to return a positive `ret'
3450 				 * here due to non-zero-length I/O, so there's
3451 				 * no way of reporting error returns from
3452 				 * ext4_mark_inode_dirty() to userspace.  So
3453 				 * ignore it.
3454 				 */
3455 				ext4_mark_inode_dirty(handle, inode);
3456 			}
3457 		}
3458 		err = ext4_journal_stop(handle);
3459 		if (ret == 0)
3460 			ret = err;
3461 	}
3462 out:
3463 	return ret;
3464 }
3465 
3466 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3467 		   struct buffer_head *bh_result, int create)
3468 {
3469 	handle_t *handle = NULL;
3470 	int ret = 0;
3471 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3472 	int dio_credits;
3473 
3474 	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3475 		   inode->i_ino, create);
3476 	/*
3477 	 * DIO VFS code passes create = 0 flag for write to
3478 	 * the middle of file. It does this to avoid block
3479 	 * allocation for holes, to prevent expose stale data
3480 	 * out when there is parallel buffered read (which does
3481 	 * not hold the i_mutex lock) while direct IO write has
3482 	 * not completed. DIO request on holes finally falls back
3483 	 * to buffered IO for this reason.
3484 	 *
3485 	 * For ext4 extent based file, since we support fallocate,
3486 	 * new allocated extent as uninitialized, for holes, we
3487 	 * could fallocate blocks for holes, thus parallel
3488 	 * buffered IO read will zero out the page when read on
3489 	 * a hole while parallel DIO write to the hole has not completed.
3490 	 *
3491 	 * when we come here, we know it's a direct IO write to
3492 	 * to the middle of file (<i_size)
3493 	 * so it's safe to override the create flag from VFS.
3494 	 */
3495 	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3496 
3497 	if (max_blocks > DIO_MAX_BLOCKS)
3498 		max_blocks = DIO_MAX_BLOCKS;
3499 	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3500 	handle = ext4_journal_start(inode, dio_credits);
3501 	if (IS_ERR(handle)) {
3502 		ret = PTR_ERR(handle);
3503 		goto out;
3504 	}
3505 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3506 			      create);
3507 	if (ret > 0) {
3508 		bh_result->b_size = (ret << inode->i_blkbits);
3509 		ret = 0;
3510 	}
3511 	ext4_journal_stop(handle);
3512 out:
3513 	return ret;
3514 }
3515 
3516 static void ext4_free_io_end(ext4_io_end_t *io)
3517 {
3518 	BUG_ON(!io);
3519 	iput(io->inode);
3520 	kfree(io);
3521 }
3522 static void dump_aio_dio_list(struct inode * inode)
3523 {
3524 #ifdef	EXT4_DEBUG
3525 	struct list_head *cur, *before, *after;
3526 	ext4_io_end_t *io, *io0, *io1;
3527 
3528 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3529 		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3530 		return;
3531 	}
3532 
3533 	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3534 	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3535 		cur = &io->list;
3536 		before = cur->prev;
3537 		io0 = container_of(before, ext4_io_end_t, list);
3538 		after = cur->next;
3539 		io1 = container_of(after, ext4_io_end_t, list);
3540 
3541 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3542 			    io, inode->i_ino, io0, io1);
3543 	}
3544 #endif
3545 }
3546 
3547 /*
3548  * check a range of space and convert unwritten extents to written.
3549  */
3550 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3551 {
3552 	struct inode *inode = io->inode;
3553 	loff_t offset = io->offset;
3554 	size_t size = io->size;
3555 	int ret = 0;
3556 
3557 	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3558 		   "list->prev 0x%p\n",
3559 	           io, inode->i_ino, io->list.next, io->list.prev);
3560 
3561 	if (list_empty(&io->list))
3562 		return ret;
3563 
3564 	if (io->flag != DIO_AIO_UNWRITTEN)
3565 		return ret;
3566 
3567 	if (offset + size <= i_size_read(inode))
3568 		ret = ext4_convert_unwritten_extents(inode, offset, size);
3569 
3570 	if (ret < 0) {
3571 		printk(KERN_EMERG "%s: failed to convert unwritten"
3572 			"extents to written extents, error is %d"
3573 			" io is still on inode %lu aio dio list\n",
3574                        __func__, ret, inode->i_ino);
3575 		return ret;
3576 	}
3577 
3578 	/* clear the DIO AIO unwritten flag */
3579 	io->flag = 0;
3580 	return ret;
3581 }
3582 /*
3583  * work on completed aio dio IO, to convert unwritten extents to extents
3584  */
3585 static void ext4_end_aio_dio_work(struct work_struct *work)
3586 {
3587 	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3588 	struct inode *inode = io->inode;
3589 	int ret = 0;
3590 
3591 	mutex_lock(&inode->i_mutex);
3592 	ret = ext4_end_aio_dio_nolock(io);
3593 	if (ret >= 0) {
3594 		if (!list_empty(&io->list))
3595 			list_del_init(&io->list);
3596 		ext4_free_io_end(io);
3597 	}
3598 	mutex_unlock(&inode->i_mutex);
3599 }
3600 /*
3601  * This function is called from ext4_sync_file().
3602  *
3603  * When AIO DIO IO is completed, the work to convert unwritten
3604  * extents to written is queued on workqueue but may not get immediately
3605  * scheduled. When fsync is called, we need to ensure the
3606  * conversion is complete before fsync returns.
3607  * The inode keeps track of a list of completed AIO from DIO path
3608  * that might needs to do the conversion. This function walks through
3609  * the list and convert the related unwritten extents to written.
3610  */
3611 int flush_aio_dio_completed_IO(struct inode *inode)
3612 {
3613 	ext4_io_end_t *io;
3614 	int ret = 0;
3615 	int ret2 = 0;
3616 
3617 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3618 		return ret;
3619 
3620 	dump_aio_dio_list(inode);
3621 	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3622 		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3623 				ext4_io_end_t, list);
3624 		/*
3625 		 * Calling ext4_end_aio_dio_nolock() to convert completed
3626 		 * IO to written.
3627 		 *
3628 		 * When ext4_sync_file() is called, run_queue() may already
3629 		 * about to flush the work corresponding to this io structure.
3630 		 * It will be upset if it founds the io structure related
3631 		 * to the work-to-be schedule is freed.
3632 		 *
3633 		 * Thus we need to keep the io structure still valid here after
3634 		 * convertion finished. The io structure has a flag to
3635 		 * avoid double converting from both fsync and background work
3636 		 * queue work.
3637 		 */
3638 		ret = ext4_end_aio_dio_nolock(io);
3639 		if (ret < 0)
3640 			ret2 = ret;
3641 		else
3642 			list_del_init(&io->list);
3643 	}
3644 	return (ret2 < 0) ? ret2 : 0;
3645 }
3646 
3647 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3648 {
3649 	ext4_io_end_t *io = NULL;
3650 
3651 	io = kmalloc(sizeof(*io), GFP_NOFS);
3652 
3653 	if (io) {
3654 		igrab(inode);
3655 		io->inode = inode;
3656 		io->flag = 0;
3657 		io->offset = 0;
3658 		io->size = 0;
3659 		io->error = 0;
3660 		INIT_WORK(&io->work, ext4_end_aio_dio_work);
3661 		INIT_LIST_HEAD(&io->list);
3662 	}
3663 
3664 	return io;
3665 }
3666 
3667 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3668 			    ssize_t size, void *private)
3669 {
3670         ext4_io_end_t *io_end = iocb->private;
3671 	struct workqueue_struct *wq;
3672 
3673 	/* if not async direct IO or dio with 0 bytes write, just return */
3674 	if (!io_end || !size)
3675 		return;
3676 
3677 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3678 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3679  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3680 		  size);
3681 
3682 	/* if not aio dio with unwritten extents, just free io and return */
3683 	if (io_end->flag != DIO_AIO_UNWRITTEN){
3684 		ext4_free_io_end(io_end);
3685 		iocb->private = NULL;
3686 		return;
3687 	}
3688 
3689 	io_end->offset = offset;
3690 	io_end->size = size;
3691 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3692 
3693 	/* queue the work to convert unwritten extents to written */
3694 	queue_work(wq, &io_end->work);
3695 
3696 	/* Add the io_end to per-inode completed aio dio list*/
3697 	list_add_tail(&io_end->list,
3698 		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3699 	iocb->private = NULL;
3700 }
3701 /*
3702  * For ext4 extent files, ext4 will do direct-io write to holes,
3703  * preallocated extents, and those write extend the file, no need to
3704  * fall back to buffered IO.
3705  *
3706  * For holes, we fallocate those blocks, mark them as unintialized
3707  * If those blocks were preallocated, we mark sure they are splited, but
3708  * still keep the range to write as unintialized.
3709  *
3710  * The unwrritten extents will be converted to written when DIO is completed.
3711  * For async direct IO, since the IO may still pending when return, we
3712  * set up an end_io call back function, which will do the convertion
3713  * when async direct IO completed.
3714  *
3715  * If the O_DIRECT write will extend the file then add this inode to the
3716  * orphan list.  So recovery will truncate it back to the original size
3717  * if the machine crashes during the write.
3718  *
3719  */
3720 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3721 			      const struct iovec *iov, loff_t offset,
3722 			      unsigned long nr_segs)
3723 {
3724 	struct file *file = iocb->ki_filp;
3725 	struct inode *inode = file->f_mapping->host;
3726 	ssize_t ret;
3727 	size_t count = iov_length(iov, nr_segs);
3728 
3729 	loff_t final_size = offset + count;
3730 	if (rw == WRITE && final_size <= inode->i_size) {
3731 		/*
3732  		 * We could direct write to holes and fallocate.
3733 		 *
3734  		 * Allocated blocks to fill the hole are marked as uninitialized
3735  		 * to prevent paralel buffered read to expose the stale data
3736  		 * before DIO complete the data IO.
3737 		 *
3738  		 * As to previously fallocated extents, ext4 get_block
3739  		 * will just simply mark the buffer mapped but still
3740  		 * keep the extents uninitialized.
3741  		 *
3742 		 * for non AIO case, we will convert those unwritten extents
3743 		 * to written after return back from blockdev_direct_IO.
3744 		 *
3745 		 * for async DIO, the conversion needs to be defered when
3746 		 * the IO is completed. The ext4 end_io callback function
3747 		 * will be called to take care of the conversion work.
3748 		 * Here for async case, we allocate an io_end structure to
3749 		 * hook to the iocb.
3750  		 */
3751 		iocb->private = NULL;
3752 		EXT4_I(inode)->cur_aio_dio = NULL;
3753 		if (!is_sync_kiocb(iocb)) {
3754 			iocb->private = ext4_init_io_end(inode);
3755 			if (!iocb->private)
3756 				return -ENOMEM;
3757 			/*
3758 			 * we save the io structure for current async
3759 			 * direct IO, so that later ext4_get_blocks()
3760 			 * could flag the io structure whether there
3761 			 * is a unwritten extents needs to be converted
3762 			 * when IO is completed.
3763 			 */
3764 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3765 		}
3766 
3767 		ret = blockdev_direct_IO(rw, iocb, inode,
3768 					 inode->i_sb->s_bdev, iov,
3769 					 offset, nr_segs,
3770 					 ext4_get_block_dio_write,
3771 					 ext4_end_io_dio);
3772 		if (iocb->private)
3773 			EXT4_I(inode)->cur_aio_dio = NULL;
3774 		/*
3775 		 * The io_end structure takes a reference to the inode,
3776 		 * that structure needs to be destroyed and the
3777 		 * reference to the inode need to be dropped, when IO is
3778 		 * complete, even with 0 byte write, or failed.
3779 		 *
3780 		 * In the successful AIO DIO case, the io_end structure will be
3781 		 * desctroyed and the reference to the inode will be dropped
3782 		 * after the end_io call back function is called.
3783 		 *
3784 		 * In the case there is 0 byte write, or error case, since
3785 		 * VFS direct IO won't invoke the end_io call back function,
3786 		 * we need to free the end_io structure here.
3787 		 */
3788 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3789 			ext4_free_io_end(iocb->private);
3790 			iocb->private = NULL;
3791 		} else if (ret > 0 && (EXT4_I(inode)->i_state &
3792 				       EXT4_STATE_DIO_UNWRITTEN)) {
3793 			int err;
3794 			/*
3795 			 * for non AIO case, since the IO is already
3796 			 * completed, we could do the convertion right here
3797 			 */
3798 			err = ext4_convert_unwritten_extents(inode,
3799 							     offset, ret);
3800 			if (err < 0)
3801 				ret = err;
3802 			EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3803 		}
3804 		return ret;
3805 	}
3806 
3807 	/* for write the the end of file case, we fall back to old way */
3808 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3809 }
3810 
3811 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3812 			      const struct iovec *iov, loff_t offset,
3813 			      unsigned long nr_segs)
3814 {
3815 	struct file *file = iocb->ki_filp;
3816 	struct inode *inode = file->f_mapping->host;
3817 
3818 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3819 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3820 
3821 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3822 }
3823 
3824 /*
3825  * Pages can be marked dirty completely asynchronously from ext4's journalling
3826  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3827  * much here because ->set_page_dirty is called under VFS locks.  The page is
3828  * not necessarily locked.
3829  *
3830  * We cannot just dirty the page and leave attached buffers clean, because the
3831  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3832  * or jbddirty because all the journalling code will explode.
3833  *
3834  * So what we do is to mark the page "pending dirty" and next time writepage
3835  * is called, propagate that into the buffers appropriately.
3836  */
3837 static int ext4_journalled_set_page_dirty(struct page *page)
3838 {
3839 	SetPageChecked(page);
3840 	return __set_page_dirty_nobuffers(page);
3841 }
3842 
3843 static const struct address_space_operations ext4_ordered_aops = {
3844 	.readpage		= ext4_readpage,
3845 	.readpages		= ext4_readpages,
3846 	.writepage		= ext4_writepage,
3847 	.sync_page		= block_sync_page,
3848 	.write_begin		= ext4_write_begin,
3849 	.write_end		= ext4_ordered_write_end,
3850 	.bmap			= ext4_bmap,
3851 	.invalidatepage		= ext4_invalidatepage,
3852 	.releasepage		= ext4_releasepage,
3853 	.direct_IO		= ext4_direct_IO,
3854 	.migratepage		= buffer_migrate_page,
3855 	.is_partially_uptodate  = block_is_partially_uptodate,
3856 	.error_remove_page	= generic_error_remove_page,
3857 };
3858 
3859 static const struct address_space_operations ext4_writeback_aops = {
3860 	.readpage		= ext4_readpage,
3861 	.readpages		= ext4_readpages,
3862 	.writepage		= ext4_writepage,
3863 	.sync_page		= block_sync_page,
3864 	.write_begin		= ext4_write_begin,
3865 	.write_end		= ext4_writeback_write_end,
3866 	.bmap			= ext4_bmap,
3867 	.invalidatepage		= ext4_invalidatepage,
3868 	.releasepage		= ext4_releasepage,
3869 	.direct_IO		= ext4_direct_IO,
3870 	.migratepage		= buffer_migrate_page,
3871 	.is_partially_uptodate  = block_is_partially_uptodate,
3872 	.error_remove_page	= generic_error_remove_page,
3873 };
3874 
3875 static const struct address_space_operations ext4_journalled_aops = {
3876 	.readpage		= ext4_readpage,
3877 	.readpages		= ext4_readpages,
3878 	.writepage		= ext4_writepage,
3879 	.sync_page		= block_sync_page,
3880 	.write_begin		= ext4_write_begin,
3881 	.write_end		= ext4_journalled_write_end,
3882 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3883 	.bmap			= ext4_bmap,
3884 	.invalidatepage		= ext4_invalidatepage,
3885 	.releasepage		= ext4_releasepage,
3886 	.is_partially_uptodate  = block_is_partially_uptodate,
3887 	.error_remove_page	= generic_error_remove_page,
3888 };
3889 
3890 static const struct address_space_operations ext4_da_aops = {
3891 	.readpage		= ext4_readpage,
3892 	.readpages		= ext4_readpages,
3893 	.writepage		= ext4_writepage,
3894 	.writepages		= ext4_da_writepages,
3895 	.sync_page		= block_sync_page,
3896 	.write_begin		= ext4_da_write_begin,
3897 	.write_end		= ext4_da_write_end,
3898 	.bmap			= ext4_bmap,
3899 	.invalidatepage		= ext4_da_invalidatepage,
3900 	.releasepage		= ext4_releasepage,
3901 	.direct_IO		= ext4_direct_IO,
3902 	.migratepage		= buffer_migrate_page,
3903 	.is_partially_uptodate  = block_is_partially_uptodate,
3904 	.error_remove_page	= generic_error_remove_page,
3905 };
3906 
3907 void ext4_set_aops(struct inode *inode)
3908 {
3909 	if (ext4_should_order_data(inode) &&
3910 		test_opt(inode->i_sb, DELALLOC))
3911 		inode->i_mapping->a_ops = &ext4_da_aops;
3912 	else if (ext4_should_order_data(inode))
3913 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3914 	else if (ext4_should_writeback_data(inode) &&
3915 		 test_opt(inode->i_sb, DELALLOC))
3916 		inode->i_mapping->a_ops = &ext4_da_aops;
3917 	else if (ext4_should_writeback_data(inode))
3918 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3919 	else
3920 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3921 }
3922 
3923 /*
3924  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3925  * up to the end of the block which corresponds to `from'.
3926  * This required during truncate. We need to physically zero the tail end
3927  * of that block so it doesn't yield old data if the file is later grown.
3928  */
3929 int ext4_block_truncate_page(handle_t *handle,
3930 		struct address_space *mapping, loff_t from)
3931 {
3932 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3933 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3934 	unsigned blocksize, length, pos;
3935 	ext4_lblk_t iblock;
3936 	struct inode *inode = mapping->host;
3937 	struct buffer_head *bh;
3938 	struct page *page;
3939 	int err = 0;
3940 
3941 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3942 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3943 	if (!page)
3944 		return -EINVAL;
3945 
3946 	blocksize = inode->i_sb->s_blocksize;
3947 	length = blocksize - (offset & (blocksize - 1));
3948 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3949 
3950 	/*
3951 	 * For "nobh" option,  we can only work if we don't need to
3952 	 * read-in the page - otherwise we create buffers to do the IO.
3953 	 */
3954 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3955 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3956 		zero_user(page, offset, length);
3957 		set_page_dirty(page);
3958 		goto unlock;
3959 	}
3960 
3961 	if (!page_has_buffers(page))
3962 		create_empty_buffers(page, blocksize, 0);
3963 
3964 	/* Find the buffer that contains "offset" */
3965 	bh = page_buffers(page);
3966 	pos = blocksize;
3967 	while (offset >= pos) {
3968 		bh = bh->b_this_page;
3969 		iblock++;
3970 		pos += blocksize;
3971 	}
3972 
3973 	err = 0;
3974 	if (buffer_freed(bh)) {
3975 		BUFFER_TRACE(bh, "freed: skip");
3976 		goto unlock;
3977 	}
3978 
3979 	if (!buffer_mapped(bh)) {
3980 		BUFFER_TRACE(bh, "unmapped");
3981 		ext4_get_block(inode, iblock, bh, 0);
3982 		/* unmapped? It's a hole - nothing to do */
3983 		if (!buffer_mapped(bh)) {
3984 			BUFFER_TRACE(bh, "still unmapped");
3985 			goto unlock;
3986 		}
3987 	}
3988 
3989 	/* Ok, it's mapped. Make sure it's up-to-date */
3990 	if (PageUptodate(page))
3991 		set_buffer_uptodate(bh);
3992 
3993 	if (!buffer_uptodate(bh)) {
3994 		err = -EIO;
3995 		ll_rw_block(READ, 1, &bh);
3996 		wait_on_buffer(bh);
3997 		/* Uhhuh. Read error. Complain and punt. */
3998 		if (!buffer_uptodate(bh))
3999 			goto unlock;
4000 	}
4001 
4002 	if (ext4_should_journal_data(inode)) {
4003 		BUFFER_TRACE(bh, "get write access");
4004 		err = ext4_journal_get_write_access(handle, bh);
4005 		if (err)
4006 			goto unlock;
4007 	}
4008 
4009 	zero_user(page, offset, length);
4010 
4011 	BUFFER_TRACE(bh, "zeroed end of block");
4012 
4013 	err = 0;
4014 	if (ext4_should_journal_data(inode)) {
4015 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4016 	} else {
4017 		if (ext4_should_order_data(inode))
4018 			err = ext4_jbd2_file_inode(handle, inode);
4019 		mark_buffer_dirty(bh);
4020 	}
4021 
4022 unlock:
4023 	unlock_page(page);
4024 	page_cache_release(page);
4025 	return err;
4026 }
4027 
4028 /*
4029  * Probably it should be a library function... search for first non-zero word
4030  * or memcmp with zero_page, whatever is better for particular architecture.
4031  * Linus?
4032  */
4033 static inline int all_zeroes(__le32 *p, __le32 *q)
4034 {
4035 	while (p < q)
4036 		if (*p++)
4037 			return 0;
4038 	return 1;
4039 }
4040 
4041 /**
4042  *	ext4_find_shared - find the indirect blocks for partial truncation.
4043  *	@inode:	  inode in question
4044  *	@depth:	  depth of the affected branch
4045  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4046  *	@chain:	  place to store the pointers to partial indirect blocks
4047  *	@top:	  place to the (detached) top of branch
4048  *
4049  *	This is a helper function used by ext4_truncate().
4050  *
4051  *	When we do truncate() we may have to clean the ends of several
4052  *	indirect blocks but leave the blocks themselves alive. Block is
4053  *	partially truncated if some data below the new i_size is refered
4054  *	from it (and it is on the path to the first completely truncated
4055  *	data block, indeed).  We have to free the top of that path along
4056  *	with everything to the right of the path. Since no allocation
4057  *	past the truncation point is possible until ext4_truncate()
4058  *	finishes, we may safely do the latter, but top of branch may
4059  *	require special attention - pageout below the truncation point
4060  *	might try to populate it.
4061  *
4062  *	We atomically detach the top of branch from the tree, store the
4063  *	block number of its root in *@top, pointers to buffer_heads of
4064  *	partially truncated blocks - in @chain[].bh and pointers to
4065  *	their last elements that should not be removed - in
4066  *	@chain[].p. Return value is the pointer to last filled element
4067  *	of @chain.
4068  *
4069  *	The work left to caller to do the actual freeing of subtrees:
4070  *		a) free the subtree starting from *@top
4071  *		b) free the subtrees whose roots are stored in
4072  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4073  *		c) free the subtrees growing from the inode past the @chain[0].
4074  *			(no partially truncated stuff there).  */
4075 
4076 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4077 				  ext4_lblk_t offsets[4], Indirect chain[4],
4078 				  __le32 *top)
4079 {
4080 	Indirect *partial, *p;
4081 	int k, err;
4082 
4083 	*top = 0;
4084 	/* Make k index the deepest non-null offset + 1 */
4085 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4086 		;
4087 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4088 	/* Writer: pointers */
4089 	if (!partial)
4090 		partial = chain + k-1;
4091 	/*
4092 	 * If the branch acquired continuation since we've looked at it -
4093 	 * fine, it should all survive and (new) top doesn't belong to us.
4094 	 */
4095 	if (!partial->key && *partial->p)
4096 		/* Writer: end */
4097 		goto no_top;
4098 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4099 		;
4100 	/*
4101 	 * OK, we've found the last block that must survive. The rest of our
4102 	 * branch should be detached before unlocking. However, if that rest
4103 	 * of branch is all ours and does not grow immediately from the inode
4104 	 * it's easier to cheat and just decrement partial->p.
4105 	 */
4106 	if (p == chain + k - 1 && p > chain) {
4107 		p->p--;
4108 	} else {
4109 		*top = *p->p;
4110 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4111 #if 0
4112 		*p->p = 0;
4113 #endif
4114 	}
4115 	/* Writer: end */
4116 
4117 	while (partial > p) {
4118 		brelse(partial->bh);
4119 		partial--;
4120 	}
4121 no_top:
4122 	return partial;
4123 }
4124 
4125 /*
4126  * Zero a number of block pointers in either an inode or an indirect block.
4127  * If we restart the transaction we must again get write access to the
4128  * indirect block for further modification.
4129  *
4130  * We release `count' blocks on disk, but (last - first) may be greater
4131  * than `count' because there can be holes in there.
4132  */
4133 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4134 			      struct buffer_head *bh,
4135 			      ext4_fsblk_t block_to_free,
4136 			      unsigned long count, __le32 *first,
4137 			      __le32 *last)
4138 {
4139 	__le32 *p;
4140 	int	flags = EXT4_FREE_BLOCKS_FORGET;
4141 
4142 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4143 		flags |= EXT4_FREE_BLOCKS_METADATA;
4144 
4145 	if (try_to_extend_transaction(handle, inode)) {
4146 		if (bh) {
4147 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4148 			ext4_handle_dirty_metadata(handle, inode, bh);
4149 		}
4150 		ext4_mark_inode_dirty(handle, inode);
4151 		ext4_truncate_restart_trans(handle, inode,
4152 					    blocks_for_truncate(inode));
4153 		if (bh) {
4154 			BUFFER_TRACE(bh, "retaking write access");
4155 			ext4_journal_get_write_access(handle, bh);
4156 		}
4157 	}
4158 
4159 	for (p = first; p < last; p++)
4160 		*p = 0;
4161 
4162 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4163 }
4164 
4165 /**
4166  * ext4_free_data - free a list of data blocks
4167  * @handle:	handle for this transaction
4168  * @inode:	inode we are dealing with
4169  * @this_bh:	indirect buffer_head which contains *@first and *@last
4170  * @first:	array of block numbers
4171  * @last:	points immediately past the end of array
4172  *
4173  * We are freeing all blocks refered from that array (numbers are stored as
4174  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4175  *
4176  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4177  * blocks are contiguous then releasing them at one time will only affect one
4178  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4179  * actually use a lot of journal space.
4180  *
4181  * @this_bh will be %NULL if @first and @last point into the inode's direct
4182  * block pointers.
4183  */
4184 static void ext4_free_data(handle_t *handle, struct inode *inode,
4185 			   struct buffer_head *this_bh,
4186 			   __le32 *first, __le32 *last)
4187 {
4188 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4189 	unsigned long count = 0;	    /* Number of blocks in the run */
4190 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4191 					       corresponding to
4192 					       block_to_free */
4193 	ext4_fsblk_t nr;		    /* Current block # */
4194 	__le32 *p;			    /* Pointer into inode/ind
4195 					       for current block */
4196 	int err;
4197 
4198 	if (this_bh) {				/* For indirect block */
4199 		BUFFER_TRACE(this_bh, "get_write_access");
4200 		err = ext4_journal_get_write_access(handle, this_bh);
4201 		/* Important: if we can't update the indirect pointers
4202 		 * to the blocks, we can't free them. */
4203 		if (err)
4204 			return;
4205 	}
4206 
4207 	for (p = first; p < last; p++) {
4208 		nr = le32_to_cpu(*p);
4209 		if (nr) {
4210 			/* accumulate blocks to free if they're contiguous */
4211 			if (count == 0) {
4212 				block_to_free = nr;
4213 				block_to_free_p = p;
4214 				count = 1;
4215 			} else if (nr == block_to_free + count) {
4216 				count++;
4217 			} else {
4218 				ext4_clear_blocks(handle, inode, this_bh,
4219 						  block_to_free,
4220 						  count, block_to_free_p, p);
4221 				block_to_free = nr;
4222 				block_to_free_p = p;
4223 				count = 1;
4224 			}
4225 		}
4226 	}
4227 
4228 	if (count > 0)
4229 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4230 				  count, block_to_free_p, p);
4231 
4232 	if (this_bh) {
4233 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4234 
4235 		/*
4236 		 * The buffer head should have an attached journal head at this
4237 		 * point. However, if the data is corrupted and an indirect
4238 		 * block pointed to itself, it would have been detached when
4239 		 * the block was cleared. Check for this instead of OOPSing.
4240 		 */
4241 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4242 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4243 		else
4244 			ext4_error(inode->i_sb, __func__,
4245 				   "circular indirect block detected, "
4246 				   "inode=%lu, block=%llu",
4247 				   inode->i_ino,
4248 				   (unsigned long long) this_bh->b_blocknr);
4249 	}
4250 }
4251 
4252 /**
4253  *	ext4_free_branches - free an array of branches
4254  *	@handle: JBD handle for this transaction
4255  *	@inode:	inode we are dealing with
4256  *	@parent_bh: the buffer_head which contains *@first and *@last
4257  *	@first:	array of block numbers
4258  *	@last:	pointer immediately past the end of array
4259  *	@depth:	depth of the branches to free
4260  *
4261  *	We are freeing all blocks refered from these branches (numbers are
4262  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4263  *	appropriately.
4264  */
4265 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4266 			       struct buffer_head *parent_bh,
4267 			       __le32 *first, __le32 *last, int depth)
4268 {
4269 	ext4_fsblk_t nr;
4270 	__le32 *p;
4271 
4272 	if (ext4_handle_is_aborted(handle))
4273 		return;
4274 
4275 	if (depth--) {
4276 		struct buffer_head *bh;
4277 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4278 		p = last;
4279 		while (--p >= first) {
4280 			nr = le32_to_cpu(*p);
4281 			if (!nr)
4282 				continue;		/* A hole */
4283 
4284 			/* Go read the buffer for the next level down */
4285 			bh = sb_bread(inode->i_sb, nr);
4286 
4287 			/*
4288 			 * A read failure? Report error and clear slot
4289 			 * (should be rare).
4290 			 */
4291 			if (!bh) {
4292 				ext4_error(inode->i_sb, "ext4_free_branches",
4293 					   "Read failure, inode=%lu, block=%llu",
4294 					   inode->i_ino, nr);
4295 				continue;
4296 			}
4297 
4298 			/* This zaps the entire block.  Bottom up. */
4299 			BUFFER_TRACE(bh, "free child branches");
4300 			ext4_free_branches(handle, inode, bh,
4301 					(__le32 *) bh->b_data,
4302 					(__le32 *) bh->b_data + addr_per_block,
4303 					depth);
4304 
4305 			/*
4306 			 * We've probably journalled the indirect block several
4307 			 * times during the truncate.  But it's no longer
4308 			 * needed and we now drop it from the transaction via
4309 			 * jbd2_journal_revoke().
4310 			 *
4311 			 * That's easy if it's exclusively part of this
4312 			 * transaction.  But if it's part of the committing
4313 			 * transaction then jbd2_journal_forget() will simply
4314 			 * brelse() it.  That means that if the underlying
4315 			 * block is reallocated in ext4_get_block(),
4316 			 * unmap_underlying_metadata() will find this block
4317 			 * and will try to get rid of it.  damn, damn.
4318 			 *
4319 			 * If this block has already been committed to the
4320 			 * journal, a revoke record will be written.  And
4321 			 * revoke records must be emitted *before* clearing
4322 			 * this block's bit in the bitmaps.
4323 			 */
4324 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4325 
4326 			/*
4327 			 * Everything below this this pointer has been
4328 			 * released.  Now let this top-of-subtree go.
4329 			 *
4330 			 * We want the freeing of this indirect block to be
4331 			 * atomic in the journal with the updating of the
4332 			 * bitmap block which owns it.  So make some room in
4333 			 * the journal.
4334 			 *
4335 			 * We zero the parent pointer *after* freeing its
4336 			 * pointee in the bitmaps, so if extend_transaction()
4337 			 * for some reason fails to put the bitmap changes and
4338 			 * the release into the same transaction, recovery
4339 			 * will merely complain about releasing a free block,
4340 			 * rather than leaking blocks.
4341 			 */
4342 			if (ext4_handle_is_aborted(handle))
4343 				return;
4344 			if (try_to_extend_transaction(handle, inode)) {
4345 				ext4_mark_inode_dirty(handle, inode);
4346 				ext4_truncate_restart_trans(handle, inode,
4347 					    blocks_for_truncate(inode));
4348 			}
4349 
4350 			ext4_free_blocks(handle, inode, 0, nr, 1,
4351 					 EXT4_FREE_BLOCKS_METADATA);
4352 
4353 			if (parent_bh) {
4354 				/*
4355 				 * The block which we have just freed is
4356 				 * pointed to by an indirect block: journal it
4357 				 */
4358 				BUFFER_TRACE(parent_bh, "get_write_access");
4359 				if (!ext4_journal_get_write_access(handle,
4360 								   parent_bh)){
4361 					*p = 0;
4362 					BUFFER_TRACE(parent_bh,
4363 					"call ext4_handle_dirty_metadata");
4364 					ext4_handle_dirty_metadata(handle,
4365 								   inode,
4366 								   parent_bh);
4367 				}
4368 			}
4369 		}
4370 	} else {
4371 		/* We have reached the bottom of the tree. */
4372 		BUFFER_TRACE(parent_bh, "free data blocks");
4373 		ext4_free_data(handle, inode, parent_bh, first, last);
4374 	}
4375 }
4376 
4377 int ext4_can_truncate(struct inode *inode)
4378 {
4379 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4380 		return 0;
4381 	if (S_ISREG(inode->i_mode))
4382 		return 1;
4383 	if (S_ISDIR(inode->i_mode))
4384 		return 1;
4385 	if (S_ISLNK(inode->i_mode))
4386 		return !ext4_inode_is_fast_symlink(inode);
4387 	return 0;
4388 }
4389 
4390 /*
4391  * ext4_truncate()
4392  *
4393  * We block out ext4_get_block() block instantiations across the entire
4394  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4395  * simultaneously on behalf of the same inode.
4396  *
4397  * As we work through the truncate and commmit bits of it to the journal there
4398  * is one core, guiding principle: the file's tree must always be consistent on
4399  * disk.  We must be able to restart the truncate after a crash.
4400  *
4401  * The file's tree may be transiently inconsistent in memory (although it
4402  * probably isn't), but whenever we close off and commit a journal transaction,
4403  * the contents of (the filesystem + the journal) must be consistent and
4404  * restartable.  It's pretty simple, really: bottom up, right to left (although
4405  * left-to-right works OK too).
4406  *
4407  * Note that at recovery time, journal replay occurs *before* the restart of
4408  * truncate against the orphan inode list.
4409  *
4410  * The committed inode has the new, desired i_size (which is the same as
4411  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4412  * that this inode's truncate did not complete and it will again call
4413  * ext4_truncate() to have another go.  So there will be instantiated blocks
4414  * to the right of the truncation point in a crashed ext4 filesystem.  But
4415  * that's fine - as long as they are linked from the inode, the post-crash
4416  * ext4_truncate() run will find them and release them.
4417  */
4418 void ext4_truncate(struct inode *inode)
4419 {
4420 	handle_t *handle;
4421 	struct ext4_inode_info *ei = EXT4_I(inode);
4422 	__le32 *i_data = ei->i_data;
4423 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4424 	struct address_space *mapping = inode->i_mapping;
4425 	ext4_lblk_t offsets[4];
4426 	Indirect chain[4];
4427 	Indirect *partial;
4428 	__le32 nr = 0;
4429 	int n;
4430 	ext4_lblk_t last_block;
4431 	unsigned blocksize = inode->i_sb->s_blocksize;
4432 
4433 	if (!ext4_can_truncate(inode))
4434 		return;
4435 
4436 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4437 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4438 
4439 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4440 		ext4_ext_truncate(inode);
4441 		return;
4442 	}
4443 
4444 	handle = start_transaction(inode);
4445 	if (IS_ERR(handle))
4446 		return;		/* AKPM: return what? */
4447 
4448 	last_block = (inode->i_size + blocksize-1)
4449 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4450 
4451 	if (inode->i_size & (blocksize - 1))
4452 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4453 			goto out_stop;
4454 
4455 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4456 	if (n == 0)
4457 		goto out_stop;	/* error */
4458 
4459 	/*
4460 	 * OK.  This truncate is going to happen.  We add the inode to the
4461 	 * orphan list, so that if this truncate spans multiple transactions,
4462 	 * and we crash, we will resume the truncate when the filesystem
4463 	 * recovers.  It also marks the inode dirty, to catch the new size.
4464 	 *
4465 	 * Implication: the file must always be in a sane, consistent
4466 	 * truncatable state while each transaction commits.
4467 	 */
4468 	if (ext4_orphan_add(handle, inode))
4469 		goto out_stop;
4470 
4471 	/*
4472 	 * From here we block out all ext4_get_block() callers who want to
4473 	 * modify the block allocation tree.
4474 	 */
4475 	down_write(&ei->i_data_sem);
4476 
4477 	ext4_discard_preallocations(inode);
4478 
4479 	/*
4480 	 * The orphan list entry will now protect us from any crash which
4481 	 * occurs before the truncate completes, so it is now safe to propagate
4482 	 * the new, shorter inode size (held for now in i_size) into the
4483 	 * on-disk inode. We do this via i_disksize, which is the value which
4484 	 * ext4 *really* writes onto the disk inode.
4485 	 */
4486 	ei->i_disksize = inode->i_size;
4487 
4488 	if (n == 1) {		/* direct blocks */
4489 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4490 			       i_data + EXT4_NDIR_BLOCKS);
4491 		goto do_indirects;
4492 	}
4493 
4494 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4495 	/* Kill the top of shared branch (not detached) */
4496 	if (nr) {
4497 		if (partial == chain) {
4498 			/* Shared branch grows from the inode */
4499 			ext4_free_branches(handle, inode, NULL,
4500 					   &nr, &nr+1, (chain+n-1) - partial);
4501 			*partial->p = 0;
4502 			/*
4503 			 * We mark the inode dirty prior to restart,
4504 			 * and prior to stop.  No need for it here.
4505 			 */
4506 		} else {
4507 			/* Shared branch grows from an indirect block */
4508 			BUFFER_TRACE(partial->bh, "get_write_access");
4509 			ext4_free_branches(handle, inode, partial->bh,
4510 					partial->p,
4511 					partial->p+1, (chain+n-1) - partial);
4512 		}
4513 	}
4514 	/* Clear the ends of indirect blocks on the shared branch */
4515 	while (partial > chain) {
4516 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4517 				   (__le32*)partial->bh->b_data+addr_per_block,
4518 				   (chain+n-1) - partial);
4519 		BUFFER_TRACE(partial->bh, "call brelse");
4520 		brelse(partial->bh);
4521 		partial--;
4522 	}
4523 do_indirects:
4524 	/* Kill the remaining (whole) subtrees */
4525 	switch (offsets[0]) {
4526 	default:
4527 		nr = i_data[EXT4_IND_BLOCK];
4528 		if (nr) {
4529 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4530 			i_data[EXT4_IND_BLOCK] = 0;
4531 		}
4532 	case EXT4_IND_BLOCK:
4533 		nr = i_data[EXT4_DIND_BLOCK];
4534 		if (nr) {
4535 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4536 			i_data[EXT4_DIND_BLOCK] = 0;
4537 		}
4538 	case EXT4_DIND_BLOCK:
4539 		nr = i_data[EXT4_TIND_BLOCK];
4540 		if (nr) {
4541 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4542 			i_data[EXT4_TIND_BLOCK] = 0;
4543 		}
4544 	case EXT4_TIND_BLOCK:
4545 		;
4546 	}
4547 
4548 	up_write(&ei->i_data_sem);
4549 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4550 	ext4_mark_inode_dirty(handle, inode);
4551 
4552 	/*
4553 	 * In a multi-transaction truncate, we only make the final transaction
4554 	 * synchronous
4555 	 */
4556 	if (IS_SYNC(inode))
4557 		ext4_handle_sync(handle);
4558 out_stop:
4559 	/*
4560 	 * If this was a simple ftruncate(), and the file will remain alive
4561 	 * then we need to clear up the orphan record which we created above.
4562 	 * However, if this was a real unlink then we were called by
4563 	 * ext4_delete_inode(), and we allow that function to clean up the
4564 	 * orphan info for us.
4565 	 */
4566 	if (inode->i_nlink)
4567 		ext4_orphan_del(handle, inode);
4568 
4569 	ext4_journal_stop(handle);
4570 }
4571 
4572 /*
4573  * ext4_get_inode_loc returns with an extra refcount against the inode's
4574  * underlying buffer_head on success. If 'in_mem' is true, we have all
4575  * data in memory that is needed to recreate the on-disk version of this
4576  * inode.
4577  */
4578 static int __ext4_get_inode_loc(struct inode *inode,
4579 				struct ext4_iloc *iloc, int in_mem)
4580 {
4581 	struct ext4_group_desc	*gdp;
4582 	struct buffer_head	*bh;
4583 	struct super_block	*sb = inode->i_sb;
4584 	ext4_fsblk_t		block;
4585 	int			inodes_per_block, inode_offset;
4586 
4587 	iloc->bh = NULL;
4588 	if (!ext4_valid_inum(sb, inode->i_ino))
4589 		return -EIO;
4590 
4591 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4592 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4593 	if (!gdp)
4594 		return -EIO;
4595 
4596 	/*
4597 	 * Figure out the offset within the block group inode table
4598 	 */
4599 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4600 	inode_offset = ((inode->i_ino - 1) %
4601 			EXT4_INODES_PER_GROUP(sb));
4602 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4603 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4604 
4605 	bh = sb_getblk(sb, block);
4606 	if (!bh) {
4607 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4608 			   "inode block - inode=%lu, block=%llu",
4609 			   inode->i_ino, block);
4610 		return -EIO;
4611 	}
4612 	if (!buffer_uptodate(bh)) {
4613 		lock_buffer(bh);
4614 
4615 		/*
4616 		 * If the buffer has the write error flag, we have failed
4617 		 * to write out another inode in the same block.  In this
4618 		 * case, we don't have to read the block because we may
4619 		 * read the old inode data successfully.
4620 		 */
4621 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4622 			set_buffer_uptodate(bh);
4623 
4624 		if (buffer_uptodate(bh)) {
4625 			/* someone brought it uptodate while we waited */
4626 			unlock_buffer(bh);
4627 			goto has_buffer;
4628 		}
4629 
4630 		/*
4631 		 * If we have all information of the inode in memory and this
4632 		 * is the only valid inode in the block, we need not read the
4633 		 * block.
4634 		 */
4635 		if (in_mem) {
4636 			struct buffer_head *bitmap_bh;
4637 			int i, start;
4638 
4639 			start = inode_offset & ~(inodes_per_block - 1);
4640 
4641 			/* Is the inode bitmap in cache? */
4642 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4643 			if (!bitmap_bh)
4644 				goto make_io;
4645 
4646 			/*
4647 			 * If the inode bitmap isn't in cache then the
4648 			 * optimisation may end up performing two reads instead
4649 			 * of one, so skip it.
4650 			 */
4651 			if (!buffer_uptodate(bitmap_bh)) {
4652 				brelse(bitmap_bh);
4653 				goto make_io;
4654 			}
4655 			for (i = start; i < start + inodes_per_block; i++) {
4656 				if (i == inode_offset)
4657 					continue;
4658 				if (ext4_test_bit(i, bitmap_bh->b_data))
4659 					break;
4660 			}
4661 			brelse(bitmap_bh);
4662 			if (i == start + inodes_per_block) {
4663 				/* all other inodes are free, so skip I/O */
4664 				memset(bh->b_data, 0, bh->b_size);
4665 				set_buffer_uptodate(bh);
4666 				unlock_buffer(bh);
4667 				goto has_buffer;
4668 			}
4669 		}
4670 
4671 make_io:
4672 		/*
4673 		 * If we need to do any I/O, try to pre-readahead extra
4674 		 * blocks from the inode table.
4675 		 */
4676 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4677 			ext4_fsblk_t b, end, table;
4678 			unsigned num;
4679 
4680 			table = ext4_inode_table(sb, gdp);
4681 			/* s_inode_readahead_blks is always a power of 2 */
4682 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4683 			if (table > b)
4684 				b = table;
4685 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4686 			num = EXT4_INODES_PER_GROUP(sb);
4687 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4688 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4689 				num -= ext4_itable_unused_count(sb, gdp);
4690 			table += num / inodes_per_block;
4691 			if (end > table)
4692 				end = table;
4693 			while (b <= end)
4694 				sb_breadahead(sb, b++);
4695 		}
4696 
4697 		/*
4698 		 * There are other valid inodes in the buffer, this inode
4699 		 * has in-inode xattrs, or we don't have this inode in memory.
4700 		 * Read the block from disk.
4701 		 */
4702 		get_bh(bh);
4703 		bh->b_end_io = end_buffer_read_sync;
4704 		submit_bh(READ_META, bh);
4705 		wait_on_buffer(bh);
4706 		if (!buffer_uptodate(bh)) {
4707 			ext4_error(sb, __func__,
4708 				   "unable to read inode block - inode=%lu, "
4709 				   "block=%llu", inode->i_ino, block);
4710 			brelse(bh);
4711 			return -EIO;
4712 		}
4713 	}
4714 has_buffer:
4715 	iloc->bh = bh;
4716 	return 0;
4717 }
4718 
4719 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4720 {
4721 	/* We have all inode data except xattrs in memory here. */
4722 	return __ext4_get_inode_loc(inode, iloc,
4723 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4724 }
4725 
4726 void ext4_set_inode_flags(struct inode *inode)
4727 {
4728 	unsigned int flags = EXT4_I(inode)->i_flags;
4729 
4730 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4731 	if (flags & EXT4_SYNC_FL)
4732 		inode->i_flags |= S_SYNC;
4733 	if (flags & EXT4_APPEND_FL)
4734 		inode->i_flags |= S_APPEND;
4735 	if (flags & EXT4_IMMUTABLE_FL)
4736 		inode->i_flags |= S_IMMUTABLE;
4737 	if (flags & EXT4_NOATIME_FL)
4738 		inode->i_flags |= S_NOATIME;
4739 	if (flags & EXT4_DIRSYNC_FL)
4740 		inode->i_flags |= S_DIRSYNC;
4741 }
4742 
4743 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4744 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4745 {
4746 	unsigned int flags = ei->vfs_inode.i_flags;
4747 
4748 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4749 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4750 	if (flags & S_SYNC)
4751 		ei->i_flags |= EXT4_SYNC_FL;
4752 	if (flags & S_APPEND)
4753 		ei->i_flags |= EXT4_APPEND_FL;
4754 	if (flags & S_IMMUTABLE)
4755 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4756 	if (flags & S_NOATIME)
4757 		ei->i_flags |= EXT4_NOATIME_FL;
4758 	if (flags & S_DIRSYNC)
4759 		ei->i_flags |= EXT4_DIRSYNC_FL;
4760 }
4761 
4762 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4763 				  struct ext4_inode_info *ei)
4764 {
4765 	blkcnt_t i_blocks ;
4766 	struct inode *inode = &(ei->vfs_inode);
4767 	struct super_block *sb = inode->i_sb;
4768 
4769 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4770 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4771 		/* we are using combined 48 bit field */
4772 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4773 					le32_to_cpu(raw_inode->i_blocks_lo);
4774 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4775 			/* i_blocks represent file system block size */
4776 			return i_blocks  << (inode->i_blkbits - 9);
4777 		} else {
4778 			return i_blocks;
4779 		}
4780 	} else {
4781 		return le32_to_cpu(raw_inode->i_blocks_lo);
4782 	}
4783 }
4784 
4785 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4786 {
4787 	struct ext4_iloc iloc;
4788 	struct ext4_inode *raw_inode;
4789 	struct ext4_inode_info *ei;
4790 	struct inode *inode;
4791 	journal_t *journal = EXT4_SB(sb)->s_journal;
4792 	long ret;
4793 	int block;
4794 
4795 	inode = iget_locked(sb, ino);
4796 	if (!inode)
4797 		return ERR_PTR(-ENOMEM);
4798 	if (!(inode->i_state & I_NEW))
4799 		return inode;
4800 
4801 	ei = EXT4_I(inode);
4802 	iloc.bh = 0;
4803 
4804 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4805 	if (ret < 0)
4806 		goto bad_inode;
4807 	raw_inode = ext4_raw_inode(&iloc);
4808 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4809 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4810 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4811 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4812 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4813 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4814 	}
4815 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4816 
4817 	ei->i_state = 0;
4818 	ei->i_dir_start_lookup = 0;
4819 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4820 	/* We now have enough fields to check if the inode was active or not.
4821 	 * This is needed because nfsd might try to access dead inodes
4822 	 * the test is that same one that e2fsck uses
4823 	 * NeilBrown 1999oct15
4824 	 */
4825 	if (inode->i_nlink == 0) {
4826 		if (inode->i_mode == 0 ||
4827 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4828 			/* this inode is deleted */
4829 			ret = -ESTALE;
4830 			goto bad_inode;
4831 		}
4832 		/* The only unlinked inodes we let through here have
4833 		 * valid i_mode and are being read by the orphan
4834 		 * recovery code: that's fine, we're about to complete
4835 		 * the process of deleting those. */
4836 	}
4837 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4838 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4841 		ei->i_file_acl |=
4842 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843 	inode->i_size = ext4_isize(raw_inode);
4844 	ei->i_disksize = inode->i_size;
4845 #ifdef CONFIG_QUOTA
4846 	ei->i_reserved_quota = 0;
4847 #endif
4848 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4849 	ei->i_block_group = iloc.block_group;
4850 	ei->i_last_alloc_group = ~0;
4851 	/*
4852 	 * NOTE! The in-memory inode i_data array is in little-endian order
4853 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4854 	 */
4855 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4856 		ei->i_data[block] = raw_inode->i_block[block];
4857 	INIT_LIST_HEAD(&ei->i_orphan);
4858 
4859 	/*
4860 	 * Set transaction id's of transactions that have to be committed
4861 	 * to finish f[data]sync. We set them to currently running transaction
4862 	 * as we cannot be sure that the inode or some of its metadata isn't
4863 	 * part of the transaction - the inode could have been reclaimed and
4864 	 * now it is reread from disk.
4865 	 */
4866 	if (journal) {
4867 		transaction_t *transaction;
4868 		tid_t tid;
4869 
4870 		spin_lock(&journal->j_state_lock);
4871 		if (journal->j_running_transaction)
4872 			transaction = journal->j_running_transaction;
4873 		else
4874 			transaction = journal->j_committing_transaction;
4875 		if (transaction)
4876 			tid = transaction->t_tid;
4877 		else
4878 			tid = journal->j_commit_sequence;
4879 		spin_unlock(&journal->j_state_lock);
4880 		ei->i_sync_tid = tid;
4881 		ei->i_datasync_tid = tid;
4882 	}
4883 
4884 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4885 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4886 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4887 		    EXT4_INODE_SIZE(inode->i_sb)) {
4888 			ret = -EIO;
4889 			goto bad_inode;
4890 		}
4891 		if (ei->i_extra_isize == 0) {
4892 			/* The extra space is currently unused. Use it. */
4893 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4894 					    EXT4_GOOD_OLD_INODE_SIZE;
4895 		} else {
4896 			__le32 *magic = (void *)raw_inode +
4897 					EXT4_GOOD_OLD_INODE_SIZE +
4898 					ei->i_extra_isize;
4899 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4900 				ei->i_state |= EXT4_STATE_XATTR;
4901 		}
4902 	} else
4903 		ei->i_extra_isize = 0;
4904 
4905 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4906 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4907 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4908 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4909 
4910 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4911 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4912 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4913 			inode->i_version |=
4914 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4915 	}
4916 
4917 	ret = 0;
4918 	if (ei->i_file_acl &&
4919 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4920 		ext4_error(sb, __func__,
4921 			   "bad extended attribute block %llu in inode #%lu",
4922 			   ei->i_file_acl, inode->i_ino);
4923 		ret = -EIO;
4924 		goto bad_inode;
4925 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4926 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4927 		    (S_ISLNK(inode->i_mode) &&
4928 		     !ext4_inode_is_fast_symlink(inode)))
4929 			/* Validate extent which is part of inode */
4930 			ret = ext4_ext_check_inode(inode);
4931 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4932 		   (S_ISLNK(inode->i_mode) &&
4933 		    !ext4_inode_is_fast_symlink(inode))) {
4934 		/* Validate block references which are part of inode */
4935 		ret = ext4_check_inode_blockref(inode);
4936 	}
4937 	if (ret)
4938 		goto bad_inode;
4939 
4940 	if (S_ISREG(inode->i_mode)) {
4941 		inode->i_op = &ext4_file_inode_operations;
4942 		inode->i_fop = &ext4_file_operations;
4943 		ext4_set_aops(inode);
4944 	} else if (S_ISDIR(inode->i_mode)) {
4945 		inode->i_op = &ext4_dir_inode_operations;
4946 		inode->i_fop = &ext4_dir_operations;
4947 	} else if (S_ISLNK(inode->i_mode)) {
4948 		if (ext4_inode_is_fast_symlink(inode)) {
4949 			inode->i_op = &ext4_fast_symlink_inode_operations;
4950 			nd_terminate_link(ei->i_data, inode->i_size,
4951 				sizeof(ei->i_data) - 1);
4952 		} else {
4953 			inode->i_op = &ext4_symlink_inode_operations;
4954 			ext4_set_aops(inode);
4955 		}
4956 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4957 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4958 		inode->i_op = &ext4_special_inode_operations;
4959 		if (raw_inode->i_block[0])
4960 			init_special_inode(inode, inode->i_mode,
4961 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4962 		else
4963 			init_special_inode(inode, inode->i_mode,
4964 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4965 	} else {
4966 		ret = -EIO;
4967 		ext4_error(inode->i_sb, __func__,
4968 			   "bogus i_mode (%o) for inode=%lu",
4969 			   inode->i_mode, inode->i_ino);
4970 		goto bad_inode;
4971 	}
4972 	brelse(iloc.bh);
4973 	ext4_set_inode_flags(inode);
4974 	unlock_new_inode(inode);
4975 	return inode;
4976 
4977 bad_inode:
4978 	brelse(iloc.bh);
4979 	iget_failed(inode);
4980 	return ERR_PTR(ret);
4981 }
4982 
4983 static int ext4_inode_blocks_set(handle_t *handle,
4984 				struct ext4_inode *raw_inode,
4985 				struct ext4_inode_info *ei)
4986 {
4987 	struct inode *inode = &(ei->vfs_inode);
4988 	u64 i_blocks = inode->i_blocks;
4989 	struct super_block *sb = inode->i_sb;
4990 
4991 	if (i_blocks <= ~0U) {
4992 		/*
4993 		 * i_blocks can be represnted in a 32 bit variable
4994 		 * as multiple of 512 bytes
4995 		 */
4996 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4997 		raw_inode->i_blocks_high = 0;
4998 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4999 		return 0;
5000 	}
5001 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5002 		return -EFBIG;
5003 
5004 	if (i_blocks <= 0xffffffffffffULL) {
5005 		/*
5006 		 * i_blocks can be represented in a 48 bit variable
5007 		 * as multiple of 512 bytes
5008 		 */
5009 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5011 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5012 	} else {
5013 		ei->i_flags |= EXT4_HUGE_FILE_FL;
5014 		/* i_block is stored in file system block size */
5015 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5016 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5017 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5018 	}
5019 	return 0;
5020 }
5021 
5022 /*
5023  * Post the struct inode info into an on-disk inode location in the
5024  * buffer-cache.  This gobbles the caller's reference to the
5025  * buffer_head in the inode location struct.
5026  *
5027  * The caller must have write access to iloc->bh.
5028  */
5029 static int ext4_do_update_inode(handle_t *handle,
5030 				struct inode *inode,
5031 				struct ext4_iloc *iloc)
5032 {
5033 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034 	struct ext4_inode_info *ei = EXT4_I(inode);
5035 	struct buffer_head *bh = iloc->bh;
5036 	int err = 0, rc, block;
5037 
5038 	/* For fields not not tracking in the in-memory inode,
5039 	 * initialise them to zero for new inodes. */
5040 	if (ei->i_state & EXT4_STATE_NEW)
5041 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5042 
5043 	ext4_get_inode_flags(ei);
5044 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5045 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5046 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5047 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5048 /*
5049  * Fix up interoperability with old kernels. Otherwise, old inodes get
5050  * re-used with the upper 16 bits of the uid/gid intact
5051  */
5052 		if (!ei->i_dtime) {
5053 			raw_inode->i_uid_high =
5054 				cpu_to_le16(high_16_bits(inode->i_uid));
5055 			raw_inode->i_gid_high =
5056 				cpu_to_le16(high_16_bits(inode->i_gid));
5057 		} else {
5058 			raw_inode->i_uid_high = 0;
5059 			raw_inode->i_gid_high = 0;
5060 		}
5061 	} else {
5062 		raw_inode->i_uid_low =
5063 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5064 		raw_inode->i_gid_low =
5065 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5066 		raw_inode->i_uid_high = 0;
5067 		raw_inode->i_gid_high = 0;
5068 	}
5069 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5070 
5071 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5072 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5073 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5074 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5075 
5076 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5077 		goto out_brelse;
5078 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5079 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5080 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5081 	    cpu_to_le32(EXT4_OS_HURD))
5082 		raw_inode->i_file_acl_high =
5083 			cpu_to_le16(ei->i_file_acl >> 32);
5084 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5085 	ext4_isize_set(raw_inode, ei->i_disksize);
5086 	if (ei->i_disksize > 0x7fffffffULL) {
5087 		struct super_block *sb = inode->i_sb;
5088 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5089 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5090 				EXT4_SB(sb)->s_es->s_rev_level ==
5091 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5092 			/* If this is the first large file
5093 			 * created, add a flag to the superblock.
5094 			 */
5095 			err = ext4_journal_get_write_access(handle,
5096 					EXT4_SB(sb)->s_sbh);
5097 			if (err)
5098 				goto out_brelse;
5099 			ext4_update_dynamic_rev(sb);
5100 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5101 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5102 			sb->s_dirt = 1;
5103 			ext4_handle_sync(handle);
5104 			err = ext4_handle_dirty_metadata(handle, inode,
5105 					EXT4_SB(sb)->s_sbh);
5106 		}
5107 	}
5108 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5109 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5110 		if (old_valid_dev(inode->i_rdev)) {
5111 			raw_inode->i_block[0] =
5112 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5113 			raw_inode->i_block[1] = 0;
5114 		} else {
5115 			raw_inode->i_block[0] = 0;
5116 			raw_inode->i_block[1] =
5117 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5118 			raw_inode->i_block[2] = 0;
5119 		}
5120 	} else
5121 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5122 			raw_inode->i_block[block] = ei->i_data[block];
5123 
5124 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5125 	if (ei->i_extra_isize) {
5126 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5127 			raw_inode->i_version_hi =
5128 			cpu_to_le32(inode->i_version >> 32);
5129 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5130 	}
5131 
5132 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5133 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
5134 	if (!err)
5135 		err = rc;
5136 	ei->i_state &= ~EXT4_STATE_NEW;
5137 
5138 	ext4_update_inode_fsync_trans(handle, inode, 0);
5139 out_brelse:
5140 	brelse(bh);
5141 	ext4_std_error(inode->i_sb, err);
5142 	return err;
5143 }
5144 
5145 /*
5146  * ext4_write_inode()
5147  *
5148  * We are called from a few places:
5149  *
5150  * - Within generic_file_write() for O_SYNC files.
5151  *   Here, there will be no transaction running. We wait for any running
5152  *   trasnaction to commit.
5153  *
5154  * - Within sys_sync(), kupdate and such.
5155  *   We wait on commit, if tol to.
5156  *
5157  * - Within prune_icache() (PF_MEMALLOC == true)
5158  *   Here we simply return.  We can't afford to block kswapd on the
5159  *   journal commit.
5160  *
5161  * In all cases it is actually safe for us to return without doing anything,
5162  * because the inode has been copied into a raw inode buffer in
5163  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5164  * knfsd.
5165  *
5166  * Note that we are absolutely dependent upon all inode dirtiers doing the
5167  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5168  * which we are interested.
5169  *
5170  * It would be a bug for them to not do this.  The code:
5171  *
5172  *	mark_inode_dirty(inode)
5173  *	stuff();
5174  *	inode->i_size = expr;
5175  *
5176  * is in error because a kswapd-driven write_inode() could occur while
5177  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5178  * will no longer be on the superblock's dirty inode list.
5179  */
5180 int ext4_write_inode(struct inode *inode, int wait)
5181 {
5182 	int err;
5183 
5184 	if (current->flags & PF_MEMALLOC)
5185 		return 0;
5186 
5187 	if (EXT4_SB(inode->i_sb)->s_journal) {
5188 		if (ext4_journal_current_handle()) {
5189 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5190 			dump_stack();
5191 			return -EIO;
5192 		}
5193 
5194 		if (!wait)
5195 			return 0;
5196 
5197 		err = ext4_force_commit(inode->i_sb);
5198 	} else {
5199 		struct ext4_iloc iloc;
5200 
5201 		err = ext4_get_inode_loc(inode, &iloc);
5202 		if (err)
5203 			return err;
5204 		if (wait)
5205 			sync_dirty_buffer(iloc.bh);
5206 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5207 			ext4_error(inode->i_sb, __func__,
5208 				   "IO error syncing inode, "
5209 				   "inode=%lu, block=%llu",
5210 				   inode->i_ino,
5211 				   (unsigned long long)iloc.bh->b_blocknr);
5212 			err = -EIO;
5213 		}
5214 	}
5215 	return err;
5216 }
5217 
5218 /*
5219  * ext4_setattr()
5220  *
5221  * Called from notify_change.
5222  *
5223  * We want to trap VFS attempts to truncate the file as soon as
5224  * possible.  In particular, we want to make sure that when the VFS
5225  * shrinks i_size, we put the inode on the orphan list and modify
5226  * i_disksize immediately, so that during the subsequent flushing of
5227  * dirty pages and freeing of disk blocks, we can guarantee that any
5228  * commit will leave the blocks being flushed in an unused state on
5229  * disk.  (On recovery, the inode will get truncated and the blocks will
5230  * be freed, so we have a strong guarantee that no future commit will
5231  * leave these blocks visible to the user.)
5232  *
5233  * Another thing we have to assure is that if we are in ordered mode
5234  * and inode is still attached to the committing transaction, we must
5235  * we start writeout of all the dirty pages which are being truncated.
5236  * This way we are sure that all the data written in the previous
5237  * transaction are already on disk (truncate waits for pages under
5238  * writeback).
5239  *
5240  * Called with inode->i_mutex down.
5241  */
5242 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5243 {
5244 	struct inode *inode = dentry->d_inode;
5245 	int error, rc = 0;
5246 	const unsigned int ia_valid = attr->ia_valid;
5247 
5248 	error = inode_change_ok(inode, attr);
5249 	if (error)
5250 		return error;
5251 
5252 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5253 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5254 		handle_t *handle;
5255 
5256 		/* (user+group)*(old+new) structure, inode write (sb,
5257 		 * inode block, ? - but truncate inode update has it) */
5258 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5259 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5260 		if (IS_ERR(handle)) {
5261 			error = PTR_ERR(handle);
5262 			goto err_out;
5263 		}
5264 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5265 		if (error) {
5266 			ext4_journal_stop(handle);
5267 			return error;
5268 		}
5269 		/* Update corresponding info in inode so that everything is in
5270 		 * one transaction */
5271 		if (attr->ia_valid & ATTR_UID)
5272 			inode->i_uid = attr->ia_uid;
5273 		if (attr->ia_valid & ATTR_GID)
5274 			inode->i_gid = attr->ia_gid;
5275 		error = ext4_mark_inode_dirty(handle, inode);
5276 		ext4_journal_stop(handle);
5277 	}
5278 
5279 	if (attr->ia_valid & ATTR_SIZE) {
5280 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5281 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5282 
5283 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5284 				error = -EFBIG;
5285 				goto err_out;
5286 			}
5287 		}
5288 	}
5289 
5290 	if (S_ISREG(inode->i_mode) &&
5291 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5292 		handle_t *handle;
5293 
5294 		handle = ext4_journal_start(inode, 3);
5295 		if (IS_ERR(handle)) {
5296 			error = PTR_ERR(handle);
5297 			goto err_out;
5298 		}
5299 
5300 		error = ext4_orphan_add(handle, inode);
5301 		EXT4_I(inode)->i_disksize = attr->ia_size;
5302 		rc = ext4_mark_inode_dirty(handle, inode);
5303 		if (!error)
5304 			error = rc;
5305 		ext4_journal_stop(handle);
5306 
5307 		if (ext4_should_order_data(inode)) {
5308 			error = ext4_begin_ordered_truncate(inode,
5309 							    attr->ia_size);
5310 			if (error) {
5311 				/* Do as much error cleanup as possible */
5312 				handle = ext4_journal_start(inode, 3);
5313 				if (IS_ERR(handle)) {
5314 					ext4_orphan_del(NULL, inode);
5315 					goto err_out;
5316 				}
5317 				ext4_orphan_del(handle, inode);
5318 				ext4_journal_stop(handle);
5319 				goto err_out;
5320 			}
5321 		}
5322 	}
5323 
5324 	rc = inode_setattr(inode, attr);
5325 
5326 	/* If inode_setattr's call to ext4_truncate failed to get a
5327 	 * transaction handle at all, we need to clean up the in-core
5328 	 * orphan list manually. */
5329 	if (inode->i_nlink)
5330 		ext4_orphan_del(NULL, inode);
5331 
5332 	if (!rc && (ia_valid & ATTR_MODE))
5333 		rc = ext4_acl_chmod(inode);
5334 
5335 err_out:
5336 	ext4_std_error(inode->i_sb, error);
5337 	if (!error)
5338 		error = rc;
5339 	return error;
5340 }
5341 
5342 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5343 		 struct kstat *stat)
5344 {
5345 	struct inode *inode;
5346 	unsigned long delalloc_blocks;
5347 
5348 	inode = dentry->d_inode;
5349 	generic_fillattr(inode, stat);
5350 
5351 	/*
5352 	 * We can't update i_blocks if the block allocation is delayed
5353 	 * otherwise in the case of system crash before the real block
5354 	 * allocation is done, we will have i_blocks inconsistent with
5355 	 * on-disk file blocks.
5356 	 * We always keep i_blocks updated together with real
5357 	 * allocation. But to not confuse with user, stat
5358 	 * will return the blocks that include the delayed allocation
5359 	 * blocks for this file.
5360 	 */
5361 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5362 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5363 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5364 
5365 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5366 	return 0;
5367 }
5368 
5369 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5370 				      int chunk)
5371 {
5372 	int indirects;
5373 
5374 	/* if nrblocks are contiguous */
5375 	if (chunk) {
5376 		/*
5377 		 * With N contiguous data blocks, it need at most
5378 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5379 		 * 2 dindirect blocks
5380 		 * 1 tindirect block
5381 		 */
5382 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5383 		return indirects + 3;
5384 	}
5385 	/*
5386 	 * if nrblocks are not contiguous, worse case, each block touch
5387 	 * a indirect block, and each indirect block touch a double indirect
5388 	 * block, plus a triple indirect block
5389 	 */
5390 	indirects = nrblocks * 2 + 1;
5391 	return indirects;
5392 }
5393 
5394 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5395 {
5396 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5397 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5398 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5399 }
5400 
5401 /*
5402  * Account for index blocks, block groups bitmaps and block group
5403  * descriptor blocks if modify datablocks and index blocks
5404  * worse case, the indexs blocks spread over different block groups
5405  *
5406  * If datablocks are discontiguous, they are possible to spread over
5407  * different block groups too. If they are contiuguous, with flexbg,
5408  * they could still across block group boundary.
5409  *
5410  * Also account for superblock, inode, quota and xattr blocks
5411  */
5412 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5413 {
5414 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5415 	int gdpblocks;
5416 	int idxblocks;
5417 	int ret = 0;
5418 
5419 	/*
5420 	 * How many index blocks need to touch to modify nrblocks?
5421 	 * The "Chunk" flag indicating whether the nrblocks is
5422 	 * physically contiguous on disk
5423 	 *
5424 	 * For Direct IO and fallocate, they calls get_block to allocate
5425 	 * one single extent at a time, so they could set the "Chunk" flag
5426 	 */
5427 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5428 
5429 	ret = idxblocks;
5430 
5431 	/*
5432 	 * Now let's see how many group bitmaps and group descriptors need
5433 	 * to account
5434 	 */
5435 	groups = idxblocks;
5436 	if (chunk)
5437 		groups += 1;
5438 	else
5439 		groups += nrblocks;
5440 
5441 	gdpblocks = groups;
5442 	if (groups > ngroups)
5443 		groups = ngroups;
5444 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5445 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5446 
5447 	/* bitmaps and block group descriptor blocks */
5448 	ret += groups + gdpblocks;
5449 
5450 	/* Blocks for super block, inode, quota and xattr blocks */
5451 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5452 
5453 	return ret;
5454 }
5455 
5456 /*
5457  * Calulate the total number of credits to reserve to fit
5458  * the modification of a single pages into a single transaction,
5459  * which may include multiple chunks of block allocations.
5460  *
5461  * This could be called via ext4_write_begin()
5462  *
5463  * We need to consider the worse case, when
5464  * one new block per extent.
5465  */
5466 int ext4_writepage_trans_blocks(struct inode *inode)
5467 {
5468 	int bpp = ext4_journal_blocks_per_page(inode);
5469 	int ret;
5470 
5471 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5472 
5473 	/* Account for data blocks for journalled mode */
5474 	if (ext4_should_journal_data(inode))
5475 		ret += bpp;
5476 	return ret;
5477 }
5478 
5479 /*
5480  * Calculate the journal credits for a chunk of data modification.
5481  *
5482  * This is called from DIO, fallocate or whoever calling
5483  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5484  *
5485  * journal buffers for data blocks are not included here, as DIO
5486  * and fallocate do no need to journal data buffers.
5487  */
5488 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5489 {
5490 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5491 }
5492 
5493 /*
5494  * The caller must have previously called ext4_reserve_inode_write().
5495  * Give this, we know that the caller already has write access to iloc->bh.
5496  */
5497 int ext4_mark_iloc_dirty(handle_t *handle,
5498 			 struct inode *inode, struct ext4_iloc *iloc)
5499 {
5500 	int err = 0;
5501 
5502 	if (test_opt(inode->i_sb, I_VERSION))
5503 		inode_inc_iversion(inode);
5504 
5505 	/* the do_update_inode consumes one bh->b_count */
5506 	get_bh(iloc->bh);
5507 
5508 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5509 	err = ext4_do_update_inode(handle, inode, iloc);
5510 	put_bh(iloc->bh);
5511 	return err;
5512 }
5513 
5514 /*
5515  * On success, We end up with an outstanding reference count against
5516  * iloc->bh.  This _must_ be cleaned up later.
5517  */
5518 
5519 int
5520 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5521 			 struct ext4_iloc *iloc)
5522 {
5523 	int err;
5524 
5525 	err = ext4_get_inode_loc(inode, iloc);
5526 	if (!err) {
5527 		BUFFER_TRACE(iloc->bh, "get_write_access");
5528 		err = ext4_journal_get_write_access(handle, iloc->bh);
5529 		if (err) {
5530 			brelse(iloc->bh);
5531 			iloc->bh = NULL;
5532 		}
5533 	}
5534 	ext4_std_error(inode->i_sb, err);
5535 	return err;
5536 }
5537 
5538 /*
5539  * Expand an inode by new_extra_isize bytes.
5540  * Returns 0 on success or negative error number on failure.
5541  */
5542 static int ext4_expand_extra_isize(struct inode *inode,
5543 				   unsigned int new_extra_isize,
5544 				   struct ext4_iloc iloc,
5545 				   handle_t *handle)
5546 {
5547 	struct ext4_inode *raw_inode;
5548 	struct ext4_xattr_ibody_header *header;
5549 	struct ext4_xattr_entry *entry;
5550 
5551 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5552 		return 0;
5553 
5554 	raw_inode = ext4_raw_inode(&iloc);
5555 
5556 	header = IHDR(inode, raw_inode);
5557 	entry = IFIRST(header);
5558 
5559 	/* No extended attributes present */
5560 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5561 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5562 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5563 			new_extra_isize);
5564 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5565 		return 0;
5566 	}
5567 
5568 	/* try to expand with EAs present */
5569 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5570 					  raw_inode, handle);
5571 }
5572 
5573 /*
5574  * What we do here is to mark the in-core inode as clean with respect to inode
5575  * dirtiness (it may still be data-dirty).
5576  * This means that the in-core inode may be reaped by prune_icache
5577  * without having to perform any I/O.  This is a very good thing,
5578  * because *any* task may call prune_icache - even ones which
5579  * have a transaction open against a different journal.
5580  *
5581  * Is this cheating?  Not really.  Sure, we haven't written the
5582  * inode out, but prune_icache isn't a user-visible syncing function.
5583  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5584  * we start and wait on commits.
5585  *
5586  * Is this efficient/effective?  Well, we're being nice to the system
5587  * by cleaning up our inodes proactively so they can be reaped
5588  * without I/O.  But we are potentially leaving up to five seconds'
5589  * worth of inodes floating about which prune_icache wants us to
5590  * write out.  One way to fix that would be to get prune_icache()
5591  * to do a write_super() to free up some memory.  It has the desired
5592  * effect.
5593  */
5594 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5595 {
5596 	struct ext4_iloc iloc;
5597 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5598 	static unsigned int mnt_count;
5599 	int err, ret;
5600 
5601 	might_sleep();
5602 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5603 	if (ext4_handle_valid(handle) &&
5604 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5605 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5606 		/*
5607 		 * We need extra buffer credits since we may write into EA block
5608 		 * with this same handle. If journal_extend fails, then it will
5609 		 * only result in a minor loss of functionality for that inode.
5610 		 * If this is felt to be critical, then e2fsck should be run to
5611 		 * force a large enough s_min_extra_isize.
5612 		 */
5613 		if ((jbd2_journal_extend(handle,
5614 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5615 			ret = ext4_expand_extra_isize(inode,
5616 						      sbi->s_want_extra_isize,
5617 						      iloc, handle);
5618 			if (ret) {
5619 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5620 				if (mnt_count !=
5621 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5622 					ext4_warning(inode->i_sb, __func__,
5623 					"Unable to expand inode %lu. Delete"
5624 					" some EAs or run e2fsck.",
5625 					inode->i_ino);
5626 					mnt_count =
5627 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5628 				}
5629 			}
5630 		}
5631 	}
5632 	if (!err)
5633 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5634 	return err;
5635 }
5636 
5637 /*
5638  * ext4_dirty_inode() is called from __mark_inode_dirty()
5639  *
5640  * We're really interested in the case where a file is being extended.
5641  * i_size has been changed by generic_commit_write() and we thus need
5642  * to include the updated inode in the current transaction.
5643  *
5644  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5645  * are allocated to the file.
5646  *
5647  * If the inode is marked synchronous, we don't honour that here - doing
5648  * so would cause a commit on atime updates, which we don't bother doing.
5649  * We handle synchronous inodes at the highest possible level.
5650  */
5651 void ext4_dirty_inode(struct inode *inode)
5652 {
5653 	handle_t *handle;
5654 
5655 	handle = ext4_journal_start(inode, 2);
5656 	if (IS_ERR(handle))
5657 		goto out;
5658 
5659 	ext4_mark_inode_dirty(handle, inode);
5660 
5661 	ext4_journal_stop(handle);
5662 out:
5663 	return;
5664 }
5665 
5666 #if 0
5667 /*
5668  * Bind an inode's backing buffer_head into this transaction, to prevent
5669  * it from being flushed to disk early.  Unlike
5670  * ext4_reserve_inode_write, this leaves behind no bh reference and
5671  * returns no iloc structure, so the caller needs to repeat the iloc
5672  * lookup to mark the inode dirty later.
5673  */
5674 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5675 {
5676 	struct ext4_iloc iloc;
5677 
5678 	int err = 0;
5679 	if (handle) {
5680 		err = ext4_get_inode_loc(inode, &iloc);
5681 		if (!err) {
5682 			BUFFER_TRACE(iloc.bh, "get_write_access");
5683 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5684 			if (!err)
5685 				err = ext4_handle_dirty_metadata(handle,
5686 								 inode,
5687 								 iloc.bh);
5688 			brelse(iloc.bh);
5689 		}
5690 	}
5691 	ext4_std_error(inode->i_sb, err);
5692 	return err;
5693 }
5694 #endif
5695 
5696 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5697 {
5698 	journal_t *journal;
5699 	handle_t *handle;
5700 	int err;
5701 
5702 	/*
5703 	 * We have to be very careful here: changing a data block's
5704 	 * journaling status dynamically is dangerous.  If we write a
5705 	 * data block to the journal, change the status and then delete
5706 	 * that block, we risk forgetting to revoke the old log record
5707 	 * from the journal and so a subsequent replay can corrupt data.
5708 	 * So, first we make sure that the journal is empty and that
5709 	 * nobody is changing anything.
5710 	 */
5711 
5712 	journal = EXT4_JOURNAL(inode);
5713 	if (!journal)
5714 		return 0;
5715 	if (is_journal_aborted(journal))
5716 		return -EROFS;
5717 
5718 	jbd2_journal_lock_updates(journal);
5719 	jbd2_journal_flush(journal);
5720 
5721 	/*
5722 	 * OK, there are no updates running now, and all cached data is
5723 	 * synced to disk.  We are now in a completely consistent state
5724 	 * which doesn't have anything in the journal, and we know that
5725 	 * no filesystem updates are running, so it is safe to modify
5726 	 * the inode's in-core data-journaling state flag now.
5727 	 */
5728 
5729 	if (val)
5730 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5731 	else
5732 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5733 	ext4_set_aops(inode);
5734 
5735 	jbd2_journal_unlock_updates(journal);
5736 
5737 	/* Finally we can mark the inode as dirty. */
5738 
5739 	handle = ext4_journal_start(inode, 1);
5740 	if (IS_ERR(handle))
5741 		return PTR_ERR(handle);
5742 
5743 	err = ext4_mark_inode_dirty(handle, inode);
5744 	ext4_handle_sync(handle);
5745 	ext4_journal_stop(handle);
5746 	ext4_std_error(inode->i_sb, err);
5747 
5748 	return err;
5749 }
5750 
5751 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5752 {
5753 	return !buffer_mapped(bh);
5754 }
5755 
5756 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5757 {
5758 	struct page *page = vmf->page;
5759 	loff_t size;
5760 	unsigned long len;
5761 	int ret = -EINVAL;
5762 	void *fsdata;
5763 	struct file *file = vma->vm_file;
5764 	struct inode *inode = file->f_path.dentry->d_inode;
5765 	struct address_space *mapping = inode->i_mapping;
5766 
5767 	/*
5768 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5769 	 * get i_mutex because we are already holding mmap_sem.
5770 	 */
5771 	down_read(&inode->i_alloc_sem);
5772 	size = i_size_read(inode);
5773 	if (page->mapping != mapping || size <= page_offset(page)
5774 	    || !PageUptodate(page)) {
5775 		/* page got truncated from under us? */
5776 		goto out_unlock;
5777 	}
5778 	ret = 0;
5779 	if (PageMappedToDisk(page))
5780 		goto out_unlock;
5781 
5782 	if (page->index == size >> PAGE_CACHE_SHIFT)
5783 		len = size & ~PAGE_CACHE_MASK;
5784 	else
5785 		len = PAGE_CACHE_SIZE;
5786 
5787 	lock_page(page);
5788 	/*
5789 	 * return if we have all the buffers mapped. This avoid
5790 	 * the need to call write_begin/write_end which does a
5791 	 * journal_start/journal_stop which can block and take
5792 	 * long time
5793 	 */
5794 	if (page_has_buffers(page)) {
5795 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5796 					ext4_bh_unmapped)) {
5797 			unlock_page(page);
5798 			goto out_unlock;
5799 		}
5800 	}
5801 	unlock_page(page);
5802 	/*
5803 	 * OK, we need to fill the hole... Do write_begin write_end
5804 	 * to do block allocation/reservation.We are not holding
5805 	 * inode.i__mutex here. That allow * parallel write_begin,
5806 	 * write_end call. lock_page prevent this from happening
5807 	 * on the same page though
5808 	 */
5809 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5810 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5811 	if (ret < 0)
5812 		goto out_unlock;
5813 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5814 			len, len, page, fsdata);
5815 	if (ret < 0)
5816 		goto out_unlock;
5817 	ret = 0;
5818 out_unlock:
5819 	if (ret)
5820 		ret = VM_FAULT_SIGBUS;
5821 	up_read(&inode->i_alloc_sem);
5822 	return ret;
5823 }
5824