1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "ext4_extents.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 return jbd2_journal_begin_ordered_truncate( 55 EXT4_SB(inode->i_sb)->s_journal, 56 &EXT4_I(inode)->jinode, 57 new_size); 58 } 59 60 static void ext4_invalidatepage(struct page *page, unsigned long offset); 61 62 /* 63 * Test whether an inode is a fast symlink. 64 */ 65 static int ext4_inode_is_fast_symlink(struct inode *inode) 66 { 67 int ea_blocks = EXT4_I(inode)->i_file_acl ? 68 (inode->i_sb->s_blocksize >> 9) : 0; 69 70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 71 } 72 73 /* 74 * Work out how many blocks we need to proceed with the next chunk of a 75 * truncate transaction. 76 */ 77 static unsigned long blocks_for_truncate(struct inode *inode) 78 { 79 ext4_lblk_t needed; 80 81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 82 83 /* Give ourselves just enough room to cope with inodes in which 84 * i_blocks is corrupt: we've seen disk corruptions in the past 85 * which resulted in random data in an inode which looked enough 86 * like a regular file for ext4 to try to delete it. Things 87 * will go a bit crazy if that happens, but at least we should 88 * try not to panic the whole kernel. */ 89 if (needed < 2) 90 needed = 2; 91 92 /* But we need to bound the transaction so we don't overflow the 93 * journal. */ 94 if (needed > EXT4_MAX_TRANS_DATA) 95 needed = EXT4_MAX_TRANS_DATA; 96 97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 98 } 99 100 /* 101 * Truncate transactions can be complex and absolutely huge. So we need to 102 * be able to restart the transaction at a conventient checkpoint to make 103 * sure we don't overflow the journal. 104 * 105 * start_transaction gets us a new handle for a truncate transaction, 106 * and extend_transaction tries to extend the existing one a bit. If 107 * extend fails, we need to propagate the failure up and restart the 108 * transaction in the top-level truncate loop. --sct 109 */ 110 static handle_t *start_transaction(struct inode *inode) 111 { 112 handle_t *result; 113 114 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 115 if (!IS_ERR(result)) 116 return result; 117 118 ext4_std_error(inode->i_sb, PTR_ERR(result)); 119 return result; 120 } 121 122 /* 123 * Try to extend this transaction for the purposes of truncation. 124 * 125 * Returns 0 if we managed to create more room. If we can't create more 126 * room, and the transaction must be restarted we return 1. 127 */ 128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 129 { 130 if (!ext4_handle_valid(handle)) 131 return 0; 132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 133 return 0; 134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 135 return 0; 136 return 1; 137 } 138 139 /* 140 * Restart the transaction associated with *handle. This does a commit, 141 * so before we call here everything must be consistently dirtied against 142 * this transaction. 143 */ 144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 145 int nblocks) 146 { 147 int ret; 148 149 /* 150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this 151 * moment, get_block can be called only for blocks inside i_size since 152 * page cache has been already dropped and writes are blocked by 153 * i_mutex. So we can safely drop the i_data_sem here. 154 */ 155 BUG_ON(EXT4_JOURNAL(inode) == NULL); 156 jbd_debug(2, "restarting handle %p\n", handle); 157 up_write(&EXT4_I(inode)->i_data_sem); 158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 159 down_write(&EXT4_I(inode)->i_data_sem); 160 ext4_discard_preallocations(inode); 161 162 return ret; 163 } 164 165 /* 166 * Called at the last iput() if i_nlink is zero. 167 */ 168 void ext4_delete_inode(struct inode *inode) 169 { 170 handle_t *handle; 171 int err; 172 173 if (ext4_should_order_data(inode)) 174 ext4_begin_ordered_truncate(inode, 0); 175 truncate_inode_pages(&inode->i_data, 0); 176 177 if (is_bad_inode(inode)) 178 goto no_delete; 179 180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 181 if (IS_ERR(handle)) { 182 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 183 /* 184 * If we're going to skip the normal cleanup, we still need to 185 * make sure that the in-core orphan linked list is properly 186 * cleaned up. 187 */ 188 ext4_orphan_del(NULL, inode); 189 goto no_delete; 190 } 191 192 if (IS_SYNC(inode)) 193 ext4_handle_sync(handle); 194 inode->i_size = 0; 195 err = ext4_mark_inode_dirty(handle, inode); 196 if (err) { 197 ext4_warning(inode->i_sb, __func__, 198 "couldn't mark inode dirty (err %d)", err); 199 goto stop_handle; 200 } 201 if (inode->i_blocks) 202 ext4_truncate(inode); 203 204 /* 205 * ext4_ext_truncate() doesn't reserve any slop when it 206 * restarts journal transactions; therefore there may not be 207 * enough credits left in the handle to remove the inode from 208 * the orphan list and set the dtime field. 209 */ 210 if (!ext4_handle_has_enough_credits(handle, 3)) { 211 err = ext4_journal_extend(handle, 3); 212 if (err > 0) 213 err = ext4_journal_restart(handle, 3); 214 if (err != 0) { 215 ext4_warning(inode->i_sb, __func__, 216 "couldn't extend journal (err %d)", err); 217 stop_handle: 218 ext4_journal_stop(handle); 219 goto no_delete; 220 } 221 } 222 223 /* 224 * Kill off the orphan record which ext4_truncate created. 225 * AKPM: I think this can be inside the above `if'. 226 * Note that ext4_orphan_del() has to be able to cope with the 227 * deletion of a non-existent orphan - this is because we don't 228 * know if ext4_truncate() actually created an orphan record. 229 * (Well, we could do this if we need to, but heck - it works) 230 */ 231 ext4_orphan_del(handle, inode); 232 EXT4_I(inode)->i_dtime = get_seconds(); 233 234 /* 235 * One subtle ordering requirement: if anything has gone wrong 236 * (transaction abort, IO errors, whatever), then we can still 237 * do these next steps (the fs will already have been marked as 238 * having errors), but we can't free the inode if the mark_dirty 239 * fails. 240 */ 241 if (ext4_mark_inode_dirty(handle, inode)) 242 /* If that failed, just do the required in-core inode clear. */ 243 clear_inode(inode); 244 else 245 ext4_free_inode(handle, inode); 246 ext4_journal_stop(handle); 247 return; 248 no_delete: 249 clear_inode(inode); /* We must guarantee clearing of inode... */ 250 } 251 252 typedef struct { 253 __le32 *p; 254 __le32 key; 255 struct buffer_head *bh; 256 } Indirect; 257 258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 259 { 260 p->key = *(p->p = v); 261 p->bh = bh; 262 } 263 264 /** 265 * ext4_block_to_path - parse the block number into array of offsets 266 * @inode: inode in question (we are only interested in its superblock) 267 * @i_block: block number to be parsed 268 * @offsets: array to store the offsets in 269 * @boundary: set this non-zero if the referred-to block is likely to be 270 * followed (on disk) by an indirect block. 271 * 272 * To store the locations of file's data ext4 uses a data structure common 273 * for UNIX filesystems - tree of pointers anchored in the inode, with 274 * data blocks at leaves and indirect blocks in intermediate nodes. 275 * This function translates the block number into path in that tree - 276 * return value is the path length and @offsets[n] is the offset of 277 * pointer to (n+1)th node in the nth one. If @block is out of range 278 * (negative or too large) warning is printed and zero returned. 279 * 280 * Note: function doesn't find node addresses, so no IO is needed. All 281 * we need to know is the capacity of indirect blocks (taken from the 282 * inode->i_sb). 283 */ 284 285 /* 286 * Portability note: the last comparison (check that we fit into triple 287 * indirect block) is spelled differently, because otherwise on an 288 * architecture with 32-bit longs and 8Kb pages we might get into trouble 289 * if our filesystem had 8Kb blocks. We might use long long, but that would 290 * kill us on x86. Oh, well, at least the sign propagation does not matter - 291 * i_block would have to be negative in the very beginning, so we would not 292 * get there at all. 293 */ 294 295 static int ext4_block_to_path(struct inode *inode, 296 ext4_lblk_t i_block, 297 ext4_lblk_t offsets[4], int *boundary) 298 { 299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 301 const long direct_blocks = EXT4_NDIR_BLOCKS, 302 indirect_blocks = ptrs, 303 double_blocks = (1 << (ptrs_bits * 2)); 304 int n = 0; 305 int final = 0; 306 307 if (i_block < direct_blocks) { 308 offsets[n++] = i_block; 309 final = direct_blocks; 310 } else if ((i_block -= direct_blocks) < indirect_blocks) { 311 offsets[n++] = EXT4_IND_BLOCK; 312 offsets[n++] = i_block; 313 final = ptrs; 314 } else if ((i_block -= indirect_blocks) < double_blocks) { 315 offsets[n++] = EXT4_DIND_BLOCK; 316 offsets[n++] = i_block >> ptrs_bits; 317 offsets[n++] = i_block & (ptrs - 1); 318 final = ptrs; 319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 320 offsets[n++] = EXT4_TIND_BLOCK; 321 offsets[n++] = i_block >> (ptrs_bits * 2); 322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 323 offsets[n++] = i_block & (ptrs - 1); 324 final = ptrs; 325 } else { 326 ext4_warning(inode->i_sb, "ext4_block_to_path", 327 "block %lu > max in inode %lu", 328 i_block + direct_blocks + 329 indirect_blocks + double_blocks, inode->i_ino); 330 } 331 if (boundary) 332 *boundary = final - 1 - (i_block & (ptrs - 1)); 333 return n; 334 } 335 336 static int __ext4_check_blockref(const char *function, struct inode *inode, 337 __le32 *p, unsigned int max) 338 { 339 __le32 *bref = p; 340 unsigned int blk; 341 342 while (bref < p+max) { 343 blk = le32_to_cpu(*bref++); 344 if (blk && 345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 346 blk, 1))) { 347 ext4_error(inode->i_sb, function, 348 "invalid block reference %u " 349 "in inode #%lu", blk, inode->i_ino); 350 return -EIO; 351 } 352 } 353 return 0; 354 } 355 356 357 #define ext4_check_indirect_blockref(inode, bh) \ 358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 359 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 360 361 #define ext4_check_inode_blockref(inode) \ 362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 363 EXT4_NDIR_BLOCKS) 364 365 /** 366 * ext4_get_branch - read the chain of indirect blocks leading to data 367 * @inode: inode in question 368 * @depth: depth of the chain (1 - direct pointer, etc.) 369 * @offsets: offsets of pointers in inode/indirect blocks 370 * @chain: place to store the result 371 * @err: here we store the error value 372 * 373 * Function fills the array of triples <key, p, bh> and returns %NULL 374 * if everything went OK or the pointer to the last filled triple 375 * (incomplete one) otherwise. Upon the return chain[i].key contains 376 * the number of (i+1)-th block in the chain (as it is stored in memory, 377 * i.e. little-endian 32-bit), chain[i].p contains the address of that 378 * number (it points into struct inode for i==0 and into the bh->b_data 379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 380 * block for i>0 and NULL for i==0. In other words, it holds the block 381 * numbers of the chain, addresses they were taken from (and where we can 382 * verify that chain did not change) and buffer_heads hosting these 383 * numbers. 384 * 385 * Function stops when it stumbles upon zero pointer (absent block) 386 * (pointer to last triple returned, *@err == 0) 387 * or when it gets an IO error reading an indirect block 388 * (ditto, *@err == -EIO) 389 * or when it reads all @depth-1 indirect blocks successfully and finds 390 * the whole chain, all way to the data (returns %NULL, *err == 0). 391 * 392 * Need to be called with 393 * down_read(&EXT4_I(inode)->i_data_sem) 394 */ 395 static Indirect *ext4_get_branch(struct inode *inode, int depth, 396 ext4_lblk_t *offsets, 397 Indirect chain[4], int *err) 398 { 399 struct super_block *sb = inode->i_sb; 400 Indirect *p = chain; 401 struct buffer_head *bh; 402 403 *err = 0; 404 /* i_data is not going away, no lock needed */ 405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 406 if (!p->key) 407 goto no_block; 408 while (--depth) { 409 bh = sb_getblk(sb, le32_to_cpu(p->key)); 410 if (unlikely(!bh)) 411 goto failure; 412 413 if (!bh_uptodate_or_lock(bh)) { 414 if (bh_submit_read(bh) < 0) { 415 put_bh(bh); 416 goto failure; 417 } 418 /* validate block references */ 419 if (ext4_check_indirect_blockref(inode, bh)) { 420 put_bh(bh); 421 goto failure; 422 } 423 } 424 425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 426 /* Reader: end */ 427 if (!p->key) 428 goto no_block; 429 } 430 return NULL; 431 432 failure: 433 *err = -EIO; 434 no_block: 435 return p; 436 } 437 438 /** 439 * ext4_find_near - find a place for allocation with sufficient locality 440 * @inode: owner 441 * @ind: descriptor of indirect block. 442 * 443 * This function returns the preferred place for block allocation. 444 * It is used when heuristic for sequential allocation fails. 445 * Rules are: 446 * + if there is a block to the left of our position - allocate near it. 447 * + if pointer will live in indirect block - allocate near that block. 448 * + if pointer will live in inode - allocate in the same 449 * cylinder group. 450 * 451 * In the latter case we colour the starting block by the callers PID to 452 * prevent it from clashing with concurrent allocations for a different inode 453 * in the same block group. The PID is used here so that functionally related 454 * files will be close-by on-disk. 455 * 456 * Caller must make sure that @ind is valid and will stay that way. 457 */ 458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 459 { 460 struct ext4_inode_info *ei = EXT4_I(inode); 461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 462 __le32 *p; 463 ext4_fsblk_t bg_start; 464 ext4_fsblk_t last_block; 465 ext4_grpblk_t colour; 466 ext4_group_t block_group; 467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 468 469 /* Try to find previous block */ 470 for (p = ind->p - 1; p >= start; p--) { 471 if (*p) 472 return le32_to_cpu(*p); 473 } 474 475 /* No such thing, so let's try location of indirect block */ 476 if (ind->bh) 477 return ind->bh->b_blocknr; 478 479 /* 480 * It is going to be referred to from the inode itself? OK, just put it 481 * into the same cylinder group then. 482 */ 483 block_group = ei->i_block_group; 484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 485 block_group &= ~(flex_size-1); 486 if (S_ISREG(inode->i_mode)) 487 block_group++; 488 } 489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 491 492 /* 493 * If we are doing delayed allocation, we don't need take 494 * colour into account. 495 */ 496 if (test_opt(inode->i_sb, DELALLOC)) 497 return bg_start; 498 499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 500 colour = (current->pid % 16) * 501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 502 else 503 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 504 return bg_start + colour; 505 } 506 507 /** 508 * ext4_find_goal - find a preferred place for allocation. 509 * @inode: owner 510 * @block: block we want 511 * @partial: pointer to the last triple within a chain 512 * 513 * Normally this function find the preferred place for block allocation, 514 * returns it. 515 * Because this is only used for non-extent files, we limit the block nr 516 * to 32 bits. 517 */ 518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 519 Indirect *partial) 520 { 521 ext4_fsblk_t goal; 522 523 /* 524 * XXX need to get goal block from mballoc's data structures 525 */ 526 527 goal = ext4_find_near(inode, partial); 528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 529 return goal; 530 } 531 532 /** 533 * ext4_blks_to_allocate: Look up the block map and count the number 534 * of direct blocks need to be allocated for the given branch. 535 * 536 * @branch: chain of indirect blocks 537 * @k: number of blocks need for indirect blocks 538 * @blks: number of data blocks to be mapped. 539 * @blocks_to_boundary: the offset in the indirect block 540 * 541 * return the total number of blocks to be allocate, including the 542 * direct and indirect blocks. 543 */ 544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 545 int blocks_to_boundary) 546 { 547 unsigned int count = 0; 548 549 /* 550 * Simple case, [t,d]Indirect block(s) has not allocated yet 551 * then it's clear blocks on that path have not allocated 552 */ 553 if (k > 0) { 554 /* right now we don't handle cross boundary allocation */ 555 if (blks < blocks_to_boundary + 1) 556 count += blks; 557 else 558 count += blocks_to_boundary + 1; 559 return count; 560 } 561 562 count++; 563 while (count < blks && count <= blocks_to_boundary && 564 le32_to_cpu(*(branch[0].p + count)) == 0) { 565 count++; 566 } 567 return count; 568 } 569 570 /** 571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 572 * @indirect_blks: the number of blocks need to allocate for indirect 573 * blocks 574 * 575 * @new_blocks: on return it will store the new block numbers for 576 * the indirect blocks(if needed) and the first direct block, 577 * @blks: on return it will store the total number of allocated 578 * direct blocks 579 */ 580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 581 ext4_lblk_t iblock, ext4_fsblk_t goal, 582 int indirect_blks, int blks, 583 ext4_fsblk_t new_blocks[4], int *err) 584 { 585 struct ext4_allocation_request ar; 586 int target, i; 587 unsigned long count = 0, blk_allocated = 0; 588 int index = 0; 589 ext4_fsblk_t current_block = 0; 590 int ret = 0; 591 592 /* 593 * Here we try to allocate the requested multiple blocks at once, 594 * on a best-effort basis. 595 * To build a branch, we should allocate blocks for 596 * the indirect blocks(if not allocated yet), and at least 597 * the first direct block of this branch. That's the 598 * minimum number of blocks need to allocate(required) 599 */ 600 /* first we try to allocate the indirect blocks */ 601 target = indirect_blks; 602 while (target > 0) { 603 count = target; 604 /* allocating blocks for indirect blocks and direct blocks */ 605 current_block = ext4_new_meta_blocks(handle, inode, 606 goal, &count, err); 607 if (*err) 608 goto failed_out; 609 610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS); 611 612 target -= count; 613 /* allocate blocks for indirect blocks */ 614 while (index < indirect_blks && count) { 615 new_blocks[index++] = current_block++; 616 count--; 617 } 618 if (count > 0) { 619 /* 620 * save the new block number 621 * for the first direct block 622 */ 623 new_blocks[index] = current_block; 624 printk(KERN_INFO "%s returned more blocks than " 625 "requested\n", __func__); 626 WARN_ON(1); 627 break; 628 } 629 } 630 631 target = blks - count ; 632 blk_allocated = count; 633 if (!target) 634 goto allocated; 635 /* Now allocate data blocks */ 636 memset(&ar, 0, sizeof(ar)); 637 ar.inode = inode; 638 ar.goal = goal; 639 ar.len = target; 640 ar.logical = iblock; 641 if (S_ISREG(inode->i_mode)) 642 /* enable in-core preallocation only for regular files */ 643 ar.flags = EXT4_MB_HINT_DATA; 644 645 current_block = ext4_mb_new_blocks(handle, &ar, err); 646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS); 647 648 if (*err && (target == blks)) { 649 /* 650 * if the allocation failed and we didn't allocate 651 * any blocks before 652 */ 653 goto failed_out; 654 } 655 if (!*err) { 656 if (target == blks) { 657 /* 658 * save the new block number 659 * for the first direct block 660 */ 661 new_blocks[index] = current_block; 662 } 663 blk_allocated += ar.len; 664 } 665 allocated: 666 /* total number of blocks allocated for direct blocks */ 667 ret = blk_allocated; 668 *err = 0; 669 return ret; 670 failed_out: 671 for (i = 0; i < index; i++) 672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 673 return ret; 674 } 675 676 /** 677 * ext4_alloc_branch - allocate and set up a chain of blocks. 678 * @inode: owner 679 * @indirect_blks: number of allocated indirect blocks 680 * @blks: number of allocated direct blocks 681 * @offsets: offsets (in the blocks) to store the pointers to next. 682 * @branch: place to store the chain in. 683 * 684 * This function allocates blocks, zeroes out all but the last one, 685 * links them into chain and (if we are synchronous) writes them to disk. 686 * In other words, it prepares a branch that can be spliced onto the 687 * inode. It stores the information about that chain in the branch[], in 688 * the same format as ext4_get_branch() would do. We are calling it after 689 * we had read the existing part of chain and partial points to the last 690 * triple of that (one with zero ->key). Upon the exit we have the same 691 * picture as after the successful ext4_get_block(), except that in one 692 * place chain is disconnected - *branch->p is still zero (we did not 693 * set the last link), but branch->key contains the number that should 694 * be placed into *branch->p to fill that gap. 695 * 696 * If allocation fails we free all blocks we've allocated (and forget 697 * their buffer_heads) and return the error value the from failed 698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 699 * as described above and return 0. 700 */ 701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 702 ext4_lblk_t iblock, int indirect_blks, 703 int *blks, ext4_fsblk_t goal, 704 ext4_lblk_t *offsets, Indirect *branch) 705 { 706 int blocksize = inode->i_sb->s_blocksize; 707 int i, n = 0; 708 int err = 0; 709 struct buffer_head *bh; 710 int num; 711 ext4_fsblk_t new_blocks[4]; 712 ext4_fsblk_t current_block; 713 714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 715 *blks, new_blocks, &err); 716 if (err) 717 return err; 718 719 branch[0].key = cpu_to_le32(new_blocks[0]); 720 /* 721 * metadata blocks and data blocks are allocated. 722 */ 723 for (n = 1; n <= indirect_blks; n++) { 724 /* 725 * Get buffer_head for parent block, zero it out 726 * and set the pointer to new one, then send 727 * parent to disk. 728 */ 729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 730 branch[n].bh = bh; 731 lock_buffer(bh); 732 BUFFER_TRACE(bh, "call get_create_access"); 733 err = ext4_journal_get_create_access(handle, bh); 734 if (err) { 735 /* Don't brelse(bh) here; it's done in 736 * ext4_journal_forget() below */ 737 unlock_buffer(bh); 738 goto failed; 739 } 740 741 memset(bh->b_data, 0, blocksize); 742 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 743 branch[n].key = cpu_to_le32(new_blocks[n]); 744 *branch[n].p = branch[n].key; 745 if (n == indirect_blks) { 746 current_block = new_blocks[n]; 747 /* 748 * End of chain, update the last new metablock of 749 * the chain to point to the new allocated 750 * data blocks numbers 751 */ 752 for (i = 1; i < num; i++) 753 *(branch[n].p + i) = cpu_to_le32(++current_block); 754 } 755 BUFFER_TRACE(bh, "marking uptodate"); 756 set_buffer_uptodate(bh); 757 unlock_buffer(bh); 758 759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 760 err = ext4_handle_dirty_metadata(handle, inode, bh); 761 if (err) 762 goto failed; 763 } 764 *blks = num; 765 return err; 766 failed: 767 /* Allocation failed, free what we already allocated */ 768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 769 for (i = 1; i <= n ; i++) { 770 /* 771 * branch[i].bh is newly allocated, so there is no 772 * need to revoke the block, which is why we don't 773 * need to set EXT4_FREE_BLOCKS_METADATA. 774 */ 775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 776 EXT4_FREE_BLOCKS_FORGET); 777 } 778 for (i = n+1; i < indirect_blks; i++) 779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 780 781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 782 783 return err; 784 } 785 786 /** 787 * ext4_splice_branch - splice the allocated branch onto inode. 788 * @inode: owner 789 * @block: (logical) number of block we are adding 790 * @chain: chain of indirect blocks (with a missing link - see 791 * ext4_alloc_branch) 792 * @where: location of missing link 793 * @num: number of indirect blocks we are adding 794 * @blks: number of direct blocks we are adding 795 * 796 * This function fills the missing link and does all housekeeping needed in 797 * inode (->i_blocks, etc.). In case of success we end up with the full 798 * chain to new block and return 0. 799 */ 800 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 801 ext4_lblk_t block, Indirect *where, int num, 802 int blks) 803 { 804 int i; 805 int err = 0; 806 ext4_fsblk_t current_block; 807 808 /* 809 * If we're splicing into a [td]indirect block (as opposed to the 810 * inode) then we need to get write access to the [td]indirect block 811 * before the splice. 812 */ 813 if (where->bh) { 814 BUFFER_TRACE(where->bh, "get_write_access"); 815 err = ext4_journal_get_write_access(handle, where->bh); 816 if (err) 817 goto err_out; 818 } 819 /* That's it */ 820 821 *where->p = where->key; 822 823 /* 824 * Update the host buffer_head or inode to point to more just allocated 825 * direct blocks blocks 826 */ 827 if (num == 0 && blks > 1) { 828 current_block = le32_to_cpu(where->key) + 1; 829 for (i = 1; i < blks; i++) 830 *(where->p + i) = cpu_to_le32(current_block++); 831 } 832 833 /* We are done with atomic stuff, now do the rest of housekeeping */ 834 /* had we spliced it onto indirect block? */ 835 if (where->bh) { 836 /* 837 * If we spliced it onto an indirect block, we haven't 838 * altered the inode. Note however that if it is being spliced 839 * onto an indirect block at the very end of the file (the 840 * file is growing) then we *will* alter the inode to reflect 841 * the new i_size. But that is not done here - it is done in 842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 843 */ 844 jbd_debug(5, "splicing indirect only\n"); 845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 846 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 847 if (err) 848 goto err_out; 849 } else { 850 /* 851 * OK, we spliced it into the inode itself on a direct block. 852 */ 853 ext4_mark_inode_dirty(handle, inode); 854 jbd_debug(5, "splicing direct\n"); 855 } 856 return err; 857 858 err_out: 859 for (i = 1; i <= num; i++) { 860 /* 861 * branch[i].bh is newly allocated, so there is no 862 * need to revoke the block, which is why we don't 863 * need to set EXT4_FREE_BLOCKS_METADATA. 864 */ 865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 866 EXT4_FREE_BLOCKS_FORGET); 867 } 868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 869 blks, 0); 870 871 return err; 872 } 873 874 /* 875 * The ext4_ind_get_blocks() function handles non-extents inodes 876 * (i.e., using the traditional indirect/double-indirect i_blocks 877 * scheme) for ext4_get_blocks(). 878 * 879 * Allocation strategy is simple: if we have to allocate something, we will 880 * have to go the whole way to leaf. So let's do it before attaching anything 881 * to tree, set linkage between the newborn blocks, write them if sync is 882 * required, recheck the path, free and repeat if check fails, otherwise 883 * set the last missing link (that will protect us from any truncate-generated 884 * removals - all blocks on the path are immune now) and possibly force the 885 * write on the parent block. 886 * That has a nice additional property: no special recovery from the failed 887 * allocations is needed - we simply release blocks and do not touch anything 888 * reachable from inode. 889 * 890 * `handle' can be NULL if create == 0. 891 * 892 * return > 0, # of blocks mapped or allocated. 893 * return = 0, if plain lookup failed. 894 * return < 0, error case. 895 * 896 * The ext4_ind_get_blocks() function should be called with 897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 900 * blocks. 901 */ 902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode, 903 ext4_lblk_t iblock, unsigned int maxblocks, 904 struct buffer_head *bh_result, 905 int flags) 906 { 907 int err = -EIO; 908 ext4_lblk_t offsets[4]; 909 Indirect chain[4]; 910 Indirect *partial; 911 ext4_fsblk_t goal; 912 int indirect_blks; 913 int blocks_to_boundary = 0; 914 int depth; 915 int count = 0; 916 ext4_fsblk_t first_block = 0; 917 918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 920 depth = ext4_block_to_path(inode, iblock, offsets, 921 &blocks_to_boundary); 922 923 if (depth == 0) 924 goto out; 925 926 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 927 928 /* Simplest case - block found, no allocation needed */ 929 if (!partial) { 930 first_block = le32_to_cpu(chain[depth - 1].key); 931 clear_buffer_new(bh_result); 932 count++; 933 /*map more blocks*/ 934 while (count < maxblocks && count <= blocks_to_boundary) { 935 ext4_fsblk_t blk; 936 937 blk = le32_to_cpu(*(chain[depth-1].p + count)); 938 939 if (blk == first_block + count) 940 count++; 941 else 942 break; 943 } 944 goto got_it; 945 } 946 947 /* Next simple case - plain lookup or failed read of indirect block */ 948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 949 goto cleanup; 950 951 /* 952 * Okay, we need to do block allocation. 953 */ 954 goal = ext4_find_goal(inode, iblock, partial); 955 956 /* the number of blocks need to allocate for [d,t]indirect blocks */ 957 indirect_blks = (chain + depth) - partial - 1; 958 959 /* 960 * Next look up the indirect map to count the totoal number of 961 * direct blocks to allocate for this branch. 962 */ 963 count = ext4_blks_to_allocate(partial, indirect_blks, 964 maxblocks, blocks_to_boundary); 965 /* 966 * Block out ext4_truncate while we alter the tree 967 */ 968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 969 &count, goal, 970 offsets + (partial - chain), partial); 971 972 /* 973 * The ext4_splice_branch call will free and forget any buffers 974 * on the new chain if there is a failure, but that risks using 975 * up transaction credits, especially for bitmaps where the 976 * credits cannot be returned. Can we handle this somehow? We 977 * may need to return -EAGAIN upwards in the worst case. --sct 978 */ 979 if (!err) 980 err = ext4_splice_branch(handle, inode, iblock, 981 partial, indirect_blks, count); 982 if (err) 983 goto cleanup; 984 985 set_buffer_new(bh_result); 986 987 ext4_update_inode_fsync_trans(handle, inode, 1); 988 got_it: 989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 990 if (count > blocks_to_boundary) 991 set_buffer_boundary(bh_result); 992 err = count; 993 /* Clean up and exit */ 994 partial = chain + depth - 1; /* the whole chain */ 995 cleanup: 996 while (partial > chain) { 997 BUFFER_TRACE(partial->bh, "call brelse"); 998 brelse(partial->bh); 999 partial--; 1000 } 1001 BUFFER_TRACE(bh_result, "returned"); 1002 out: 1003 return err; 1004 } 1005 1006 #ifdef CONFIG_QUOTA 1007 qsize_t *ext4_get_reserved_space(struct inode *inode) 1008 { 1009 return &EXT4_I(inode)->i_reserved_quota; 1010 } 1011 #endif 1012 1013 /* 1014 * Calculate the number of metadata blocks need to reserve 1015 * to allocate a new block at @lblocks for non extent file based file 1016 */ 1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1018 sector_t lblock) 1019 { 1020 struct ext4_inode_info *ei = EXT4_I(inode); 1021 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1; 1022 int blk_bits; 1023 1024 if (lblock < EXT4_NDIR_BLOCKS) 1025 return 0; 1026 1027 lblock -= EXT4_NDIR_BLOCKS; 1028 1029 if (ei->i_da_metadata_calc_len && 1030 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1031 ei->i_da_metadata_calc_len++; 1032 return 0; 1033 } 1034 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1035 ei->i_da_metadata_calc_len = 1; 1036 blk_bits = roundup_pow_of_two(lblock + 1); 1037 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1038 } 1039 1040 /* 1041 * Calculate the number of metadata blocks need to reserve 1042 * to allocate a block located at @lblock 1043 */ 1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock) 1045 { 1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1047 return ext4_ext_calc_metadata_amount(inode, lblock); 1048 1049 return ext4_indirect_calc_metadata_amount(inode, lblock); 1050 } 1051 1052 /* 1053 * Called with i_data_sem down, which is important since we can call 1054 * ext4_discard_preallocations() from here. 1055 */ 1056 void ext4_da_update_reserve_space(struct inode *inode, 1057 int used, int quota_claim) 1058 { 1059 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1060 struct ext4_inode_info *ei = EXT4_I(inode); 1061 int mdb_free = 0, allocated_meta_blocks = 0; 1062 1063 spin_lock(&ei->i_block_reservation_lock); 1064 if (unlikely(used > ei->i_reserved_data_blocks)) { 1065 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1066 "with only %d reserved data blocks\n", 1067 __func__, inode->i_ino, used, 1068 ei->i_reserved_data_blocks); 1069 WARN_ON(1); 1070 used = ei->i_reserved_data_blocks; 1071 } 1072 1073 /* Update per-inode reservations */ 1074 ei->i_reserved_data_blocks -= used; 1075 used += ei->i_allocated_meta_blocks; 1076 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1077 allocated_meta_blocks = ei->i_allocated_meta_blocks; 1078 ei->i_allocated_meta_blocks = 0; 1079 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used); 1080 1081 if (ei->i_reserved_data_blocks == 0) { 1082 /* 1083 * We can release all of the reserved metadata blocks 1084 * only when we have written all of the delayed 1085 * allocation blocks. 1086 */ 1087 mdb_free = ei->i_reserved_meta_blocks; 1088 ei->i_reserved_meta_blocks = 0; 1089 ei->i_da_metadata_calc_len = 0; 1090 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1091 } 1092 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1093 1094 /* Update quota subsystem */ 1095 if (quota_claim) { 1096 vfs_dq_claim_block(inode, used); 1097 if (mdb_free) 1098 vfs_dq_release_reservation_block(inode, mdb_free); 1099 } else { 1100 /* 1101 * We did fallocate with an offset that is already delayed 1102 * allocated. So on delayed allocated writeback we should 1103 * not update the quota for allocated blocks. But then 1104 * converting an fallocate region to initialized region would 1105 * have caused a metadata allocation. So claim quota for 1106 * that 1107 */ 1108 if (allocated_meta_blocks) 1109 vfs_dq_claim_block(inode, allocated_meta_blocks); 1110 vfs_dq_release_reservation_block(inode, mdb_free + used); 1111 } 1112 1113 /* 1114 * If we have done all the pending block allocations and if 1115 * there aren't any writers on the inode, we can discard the 1116 * inode's preallocations. 1117 */ 1118 if ((ei->i_reserved_data_blocks == 0) && 1119 (atomic_read(&inode->i_writecount) == 0)) 1120 ext4_discard_preallocations(inode); 1121 } 1122 1123 static int check_block_validity(struct inode *inode, const char *msg, 1124 sector_t logical, sector_t phys, int len) 1125 { 1126 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1127 ext4_error(inode->i_sb, msg, 1128 "inode #%lu logical block %llu mapped to %llu " 1129 "(size %d)", inode->i_ino, 1130 (unsigned long long) logical, 1131 (unsigned long long) phys, len); 1132 return -EIO; 1133 } 1134 return 0; 1135 } 1136 1137 /* 1138 * Return the number of contiguous dirty pages in a given inode 1139 * starting at page frame idx. 1140 */ 1141 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1142 unsigned int max_pages) 1143 { 1144 struct address_space *mapping = inode->i_mapping; 1145 pgoff_t index; 1146 struct pagevec pvec; 1147 pgoff_t num = 0; 1148 int i, nr_pages, done = 0; 1149 1150 if (max_pages == 0) 1151 return 0; 1152 pagevec_init(&pvec, 0); 1153 while (!done) { 1154 index = idx; 1155 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1156 PAGECACHE_TAG_DIRTY, 1157 (pgoff_t)PAGEVEC_SIZE); 1158 if (nr_pages == 0) 1159 break; 1160 for (i = 0; i < nr_pages; i++) { 1161 struct page *page = pvec.pages[i]; 1162 struct buffer_head *bh, *head; 1163 1164 lock_page(page); 1165 if (unlikely(page->mapping != mapping) || 1166 !PageDirty(page) || 1167 PageWriteback(page) || 1168 page->index != idx) { 1169 done = 1; 1170 unlock_page(page); 1171 break; 1172 } 1173 if (page_has_buffers(page)) { 1174 bh = head = page_buffers(page); 1175 do { 1176 if (!buffer_delay(bh) && 1177 !buffer_unwritten(bh)) 1178 done = 1; 1179 bh = bh->b_this_page; 1180 } while (!done && (bh != head)); 1181 } 1182 unlock_page(page); 1183 if (done) 1184 break; 1185 idx++; 1186 num++; 1187 if (num >= max_pages) 1188 break; 1189 } 1190 pagevec_release(&pvec); 1191 } 1192 return num; 1193 } 1194 1195 /* 1196 * The ext4_get_blocks() function tries to look up the requested blocks, 1197 * and returns if the blocks are already mapped. 1198 * 1199 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1200 * and store the allocated blocks in the result buffer head and mark it 1201 * mapped. 1202 * 1203 * If file type is extents based, it will call ext4_ext_get_blocks(), 1204 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping 1205 * based files 1206 * 1207 * On success, it returns the number of blocks being mapped or allocate. 1208 * if create==0 and the blocks are pre-allocated and uninitialized block, 1209 * the result buffer head is unmapped. If the create ==1, it will make sure 1210 * the buffer head is mapped. 1211 * 1212 * It returns 0 if plain look up failed (blocks have not been allocated), in 1213 * that casem, buffer head is unmapped 1214 * 1215 * It returns the error in case of allocation failure. 1216 */ 1217 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, 1218 unsigned int max_blocks, struct buffer_head *bh, 1219 int flags) 1220 { 1221 int retval; 1222 1223 clear_buffer_mapped(bh); 1224 clear_buffer_unwritten(bh); 1225 1226 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u," 1227 "logical block %lu\n", inode->i_ino, flags, max_blocks, 1228 (unsigned long)block); 1229 /* 1230 * Try to see if we can get the block without requesting a new 1231 * file system block. 1232 */ 1233 down_read((&EXT4_I(inode)->i_data_sem)); 1234 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1235 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1236 bh, 0); 1237 } else { 1238 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks, 1239 bh, 0); 1240 } 1241 up_read((&EXT4_I(inode)->i_data_sem)); 1242 1243 if (retval > 0 && buffer_mapped(bh)) { 1244 int ret = check_block_validity(inode, "file system corruption", 1245 block, bh->b_blocknr, retval); 1246 if (ret != 0) 1247 return ret; 1248 } 1249 1250 /* If it is only a block(s) look up */ 1251 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1252 return retval; 1253 1254 /* 1255 * Returns if the blocks have already allocated 1256 * 1257 * Note that if blocks have been preallocated 1258 * ext4_ext_get_block() returns th create = 0 1259 * with buffer head unmapped. 1260 */ 1261 if (retval > 0 && buffer_mapped(bh)) 1262 return retval; 1263 1264 /* 1265 * When we call get_blocks without the create flag, the 1266 * BH_Unwritten flag could have gotten set if the blocks 1267 * requested were part of a uninitialized extent. We need to 1268 * clear this flag now that we are committed to convert all or 1269 * part of the uninitialized extent to be an initialized 1270 * extent. This is because we need to avoid the combination 1271 * of BH_Unwritten and BH_Mapped flags being simultaneously 1272 * set on the buffer_head. 1273 */ 1274 clear_buffer_unwritten(bh); 1275 1276 /* 1277 * New blocks allocate and/or writing to uninitialized extent 1278 * will possibly result in updating i_data, so we take 1279 * the write lock of i_data_sem, and call get_blocks() 1280 * with create == 1 flag. 1281 */ 1282 down_write((&EXT4_I(inode)->i_data_sem)); 1283 1284 /* 1285 * if the caller is from delayed allocation writeout path 1286 * we have already reserved fs blocks for allocation 1287 * let the underlying get_block() function know to 1288 * avoid double accounting 1289 */ 1290 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1291 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1292 /* 1293 * We need to check for EXT4 here because migrate 1294 * could have changed the inode type in between 1295 */ 1296 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1297 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1298 bh, flags); 1299 } else { 1300 retval = ext4_ind_get_blocks(handle, inode, block, 1301 max_blocks, bh, flags); 1302 1303 if (retval > 0 && buffer_new(bh)) { 1304 /* 1305 * We allocated new blocks which will result in 1306 * i_data's format changing. Force the migrate 1307 * to fail by clearing migrate flags 1308 */ 1309 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE; 1310 } 1311 1312 /* 1313 * Update reserved blocks/metadata blocks after successful 1314 * block allocation which had been deferred till now. We don't 1315 * support fallocate for non extent files. So we can update 1316 * reserve space here. 1317 */ 1318 if ((retval > 0) && 1319 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1320 ext4_da_update_reserve_space(inode, retval, 1); 1321 } 1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1324 1325 up_write((&EXT4_I(inode)->i_data_sem)); 1326 if (retval > 0 && buffer_mapped(bh)) { 1327 int ret = check_block_validity(inode, "file system " 1328 "corruption after allocation", 1329 block, bh->b_blocknr, retval); 1330 if (ret != 0) 1331 return ret; 1332 } 1333 return retval; 1334 } 1335 1336 /* Maximum number of blocks we map for direct IO at once. */ 1337 #define DIO_MAX_BLOCKS 4096 1338 1339 int ext4_get_block(struct inode *inode, sector_t iblock, 1340 struct buffer_head *bh_result, int create) 1341 { 1342 handle_t *handle = ext4_journal_current_handle(); 1343 int ret = 0, started = 0; 1344 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1345 int dio_credits; 1346 1347 if (create && !handle) { 1348 /* Direct IO write... */ 1349 if (max_blocks > DIO_MAX_BLOCKS) 1350 max_blocks = DIO_MAX_BLOCKS; 1351 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1352 handle = ext4_journal_start(inode, dio_credits); 1353 if (IS_ERR(handle)) { 1354 ret = PTR_ERR(handle); 1355 goto out; 1356 } 1357 started = 1; 1358 } 1359 1360 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 1361 create ? EXT4_GET_BLOCKS_CREATE : 0); 1362 if (ret > 0) { 1363 bh_result->b_size = (ret << inode->i_blkbits); 1364 ret = 0; 1365 } 1366 if (started) 1367 ext4_journal_stop(handle); 1368 out: 1369 return ret; 1370 } 1371 1372 /* 1373 * `handle' can be NULL if create is zero 1374 */ 1375 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1376 ext4_lblk_t block, int create, int *errp) 1377 { 1378 struct buffer_head dummy; 1379 int fatal = 0, err; 1380 int flags = 0; 1381 1382 J_ASSERT(handle != NULL || create == 0); 1383 1384 dummy.b_state = 0; 1385 dummy.b_blocknr = -1000; 1386 buffer_trace_init(&dummy.b_history); 1387 if (create) 1388 flags |= EXT4_GET_BLOCKS_CREATE; 1389 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags); 1390 /* 1391 * ext4_get_blocks() returns number of blocks mapped. 0 in 1392 * case of a HOLE. 1393 */ 1394 if (err > 0) { 1395 if (err > 1) 1396 WARN_ON(1); 1397 err = 0; 1398 } 1399 *errp = err; 1400 if (!err && buffer_mapped(&dummy)) { 1401 struct buffer_head *bh; 1402 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1403 if (!bh) { 1404 *errp = -EIO; 1405 goto err; 1406 } 1407 if (buffer_new(&dummy)) { 1408 J_ASSERT(create != 0); 1409 J_ASSERT(handle != NULL); 1410 1411 /* 1412 * Now that we do not always journal data, we should 1413 * keep in mind whether this should always journal the 1414 * new buffer as metadata. For now, regular file 1415 * writes use ext4_get_block instead, so it's not a 1416 * problem. 1417 */ 1418 lock_buffer(bh); 1419 BUFFER_TRACE(bh, "call get_create_access"); 1420 fatal = ext4_journal_get_create_access(handle, bh); 1421 if (!fatal && !buffer_uptodate(bh)) { 1422 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1423 set_buffer_uptodate(bh); 1424 } 1425 unlock_buffer(bh); 1426 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1427 err = ext4_handle_dirty_metadata(handle, inode, bh); 1428 if (!fatal) 1429 fatal = err; 1430 } else { 1431 BUFFER_TRACE(bh, "not a new buffer"); 1432 } 1433 if (fatal) { 1434 *errp = fatal; 1435 brelse(bh); 1436 bh = NULL; 1437 } 1438 return bh; 1439 } 1440 err: 1441 return NULL; 1442 } 1443 1444 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1445 ext4_lblk_t block, int create, int *err) 1446 { 1447 struct buffer_head *bh; 1448 1449 bh = ext4_getblk(handle, inode, block, create, err); 1450 if (!bh) 1451 return bh; 1452 if (buffer_uptodate(bh)) 1453 return bh; 1454 ll_rw_block(READ_META, 1, &bh); 1455 wait_on_buffer(bh); 1456 if (buffer_uptodate(bh)) 1457 return bh; 1458 put_bh(bh); 1459 *err = -EIO; 1460 return NULL; 1461 } 1462 1463 static int walk_page_buffers(handle_t *handle, 1464 struct buffer_head *head, 1465 unsigned from, 1466 unsigned to, 1467 int *partial, 1468 int (*fn)(handle_t *handle, 1469 struct buffer_head *bh)) 1470 { 1471 struct buffer_head *bh; 1472 unsigned block_start, block_end; 1473 unsigned blocksize = head->b_size; 1474 int err, ret = 0; 1475 struct buffer_head *next; 1476 1477 for (bh = head, block_start = 0; 1478 ret == 0 && (bh != head || !block_start); 1479 block_start = block_end, bh = next) { 1480 next = bh->b_this_page; 1481 block_end = block_start + blocksize; 1482 if (block_end <= from || block_start >= to) { 1483 if (partial && !buffer_uptodate(bh)) 1484 *partial = 1; 1485 continue; 1486 } 1487 err = (*fn)(handle, bh); 1488 if (!ret) 1489 ret = err; 1490 } 1491 return ret; 1492 } 1493 1494 /* 1495 * To preserve ordering, it is essential that the hole instantiation and 1496 * the data write be encapsulated in a single transaction. We cannot 1497 * close off a transaction and start a new one between the ext4_get_block() 1498 * and the commit_write(). So doing the jbd2_journal_start at the start of 1499 * prepare_write() is the right place. 1500 * 1501 * Also, this function can nest inside ext4_writepage() -> 1502 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1503 * has generated enough buffer credits to do the whole page. So we won't 1504 * block on the journal in that case, which is good, because the caller may 1505 * be PF_MEMALLOC. 1506 * 1507 * By accident, ext4 can be reentered when a transaction is open via 1508 * quota file writes. If we were to commit the transaction while thus 1509 * reentered, there can be a deadlock - we would be holding a quota 1510 * lock, and the commit would never complete if another thread had a 1511 * transaction open and was blocking on the quota lock - a ranking 1512 * violation. 1513 * 1514 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1515 * will _not_ run commit under these circumstances because handle->h_ref 1516 * is elevated. We'll still have enough credits for the tiny quotafile 1517 * write. 1518 */ 1519 static int do_journal_get_write_access(handle_t *handle, 1520 struct buffer_head *bh) 1521 { 1522 if (!buffer_mapped(bh) || buffer_freed(bh)) 1523 return 0; 1524 return ext4_journal_get_write_access(handle, bh); 1525 } 1526 1527 /* 1528 * Truncate blocks that were not used by write. We have to truncate the 1529 * pagecache as well so that corresponding buffers get properly unmapped. 1530 */ 1531 static void ext4_truncate_failed_write(struct inode *inode) 1532 { 1533 truncate_inode_pages(inode->i_mapping, inode->i_size); 1534 ext4_truncate(inode); 1535 } 1536 1537 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1538 loff_t pos, unsigned len, unsigned flags, 1539 struct page **pagep, void **fsdata) 1540 { 1541 struct inode *inode = mapping->host; 1542 int ret, needed_blocks; 1543 handle_t *handle; 1544 int retries = 0; 1545 struct page *page; 1546 pgoff_t index; 1547 unsigned from, to; 1548 1549 trace_ext4_write_begin(inode, pos, len, flags); 1550 /* 1551 * Reserve one block more for addition to orphan list in case 1552 * we allocate blocks but write fails for some reason 1553 */ 1554 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1555 index = pos >> PAGE_CACHE_SHIFT; 1556 from = pos & (PAGE_CACHE_SIZE - 1); 1557 to = from + len; 1558 1559 retry: 1560 handle = ext4_journal_start(inode, needed_blocks); 1561 if (IS_ERR(handle)) { 1562 ret = PTR_ERR(handle); 1563 goto out; 1564 } 1565 1566 /* We cannot recurse into the filesystem as the transaction is already 1567 * started */ 1568 flags |= AOP_FLAG_NOFS; 1569 1570 page = grab_cache_page_write_begin(mapping, index, flags); 1571 if (!page) { 1572 ext4_journal_stop(handle); 1573 ret = -ENOMEM; 1574 goto out; 1575 } 1576 *pagep = page; 1577 1578 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1579 ext4_get_block); 1580 1581 if (!ret && ext4_should_journal_data(inode)) { 1582 ret = walk_page_buffers(handle, page_buffers(page), 1583 from, to, NULL, do_journal_get_write_access); 1584 } 1585 1586 if (ret) { 1587 unlock_page(page); 1588 page_cache_release(page); 1589 /* 1590 * block_write_begin may have instantiated a few blocks 1591 * outside i_size. Trim these off again. Don't need 1592 * i_size_read because we hold i_mutex. 1593 * 1594 * Add inode to orphan list in case we crash before 1595 * truncate finishes 1596 */ 1597 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1598 ext4_orphan_add(handle, inode); 1599 1600 ext4_journal_stop(handle); 1601 if (pos + len > inode->i_size) { 1602 ext4_truncate_failed_write(inode); 1603 /* 1604 * If truncate failed early the inode might 1605 * still be on the orphan list; we need to 1606 * make sure the inode is removed from the 1607 * orphan list in that case. 1608 */ 1609 if (inode->i_nlink) 1610 ext4_orphan_del(NULL, inode); 1611 } 1612 } 1613 1614 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1615 goto retry; 1616 out: 1617 return ret; 1618 } 1619 1620 /* For write_end() in data=journal mode */ 1621 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1622 { 1623 if (!buffer_mapped(bh) || buffer_freed(bh)) 1624 return 0; 1625 set_buffer_uptodate(bh); 1626 return ext4_handle_dirty_metadata(handle, NULL, bh); 1627 } 1628 1629 static int ext4_generic_write_end(struct file *file, 1630 struct address_space *mapping, 1631 loff_t pos, unsigned len, unsigned copied, 1632 struct page *page, void *fsdata) 1633 { 1634 int i_size_changed = 0; 1635 struct inode *inode = mapping->host; 1636 handle_t *handle = ext4_journal_current_handle(); 1637 1638 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1639 1640 /* 1641 * No need to use i_size_read() here, the i_size 1642 * cannot change under us because we hold i_mutex. 1643 * 1644 * But it's important to update i_size while still holding page lock: 1645 * page writeout could otherwise come in and zero beyond i_size. 1646 */ 1647 if (pos + copied > inode->i_size) { 1648 i_size_write(inode, pos + copied); 1649 i_size_changed = 1; 1650 } 1651 1652 if (pos + copied > EXT4_I(inode)->i_disksize) { 1653 /* We need to mark inode dirty even if 1654 * new_i_size is less that inode->i_size 1655 * bu greater than i_disksize.(hint delalloc) 1656 */ 1657 ext4_update_i_disksize(inode, (pos + copied)); 1658 i_size_changed = 1; 1659 } 1660 unlock_page(page); 1661 page_cache_release(page); 1662 1663 /* 1664 * Don't mark the inode dirty under page lock. First, it unnecessarily 1665 * makes the holding time of page lock longer. Second, it forces lock 1666 * ordering of page lock and transaction start for journaling 1667 * filesystems. 1668 */ 1669 if (i_size_changed) 1670 ext4_mark_inode_dirty(handle, inode); 1671 1672 return copied; 1673 } 1674 1675 /* 1676 * We need to pick up the new inode size which generic_commit_write gave us 1677 * `file' can be NULL - eg, when called from page_symlink(). 1678 * 1679 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1680 * buffers are managed internally. 1681 */ 1682 static int ext4_ordered_write_end(struct file *file, 1683 struct address_space *mapping, 1684 loff_t pos, unsigned len, unsigned copied, 1685 struct page *page, void *fsdata) 1686 { 1687 handle_t *handle = ext4_journal_current_handle(); 1688 struct inode *inode = mapping->host; 1689 int ret = 0, ret2; 1690 1691 trace_ext4_ordered_write_end(inode, pos, len, copied); 1692 ret = ext4_jbd2_file_inode(handle, inode); 1693 1694 if (ret == 0) { 1695 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1696 page, fsdata); 1697 copied = ret2; 1698 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1699 /* if we have allocated more blocks and copied 1700 * less. We will have blocks allocated outside 1701 * inode->i_size. So truncate them 1702 */ 1703 ext4_orphan_add(handle, inode); 1704 if (ret2 < 0) 1705 ret = ret2; 1706 } 1707 ret2 = ext4_journal_stop(handle); 1708 if (!ret) 1709 ret = ret2; 1710 1711 if (pos + len > inode->i_size) { 1712 ext4_truncate_failed_write(inode); 1713 /* 1714 * If truncate failed early the inode might still be 1715 * on the orphan list; we need to make sure the inode 1716 * is removed from the orphan list in that case. 1717 */ 1718 if (inode->i_nlink) 1719 ext4_orphan_del(NULL, inode); 1720 } 1721 1722 1723 return ret ? ret : copied; 1724 } 1725 1726 static int ext4_writeback_write_end(struct file *file, 1727 struct address_space *mapping, 1728 loff_t pos, unsigned len, unsigned copied, 1729 struct page *page, void *fsdata) 1730 { 1731 handle_t *handle = ext4_journal_current_handle(); 1732 struct inode *inode = mapping->host; 1733 int ret = 0, ret2; 1734 1735 trace_ext4_writeback_write_end(inode, pos, len, copied); 1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1737 page, fsdata); 1738 copied = ret2; 1739 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1740 /* if we have allocated more blocks and copied 1741 * less. We will have blocks allocated outside 1742 * inode->i_size. So truncate them 1743 */ 1744 ext4_orphan_add(handle, inode); 1745 1746 if (ret2 < 0) 1747 ret = ret2; 1748 1749 ret2 = ext4_journal_stop(handle); 1750 if (!ret) 1751 ret = ret2; 1752 1753 if (pos + len > inode->i_size) { 1754 ext4_truncate_failed_write(inode); 1755 /* 1756 * If truncate failed early the inode might still be 1757 * on the orphan list; we need to make sure the inode 1758 * is removed from the orphan list in that case. 1759 */ 1760 if (inode->i_nlink) 1761 ext4_orphan_del(NULL, inode); 1762 } 1763 1764 return ret ? ret : copied; 1765 } 1766 1767 static int ext4_journalled_write_end(struct file *file, 1768 struct address_space *mapping, 1769 loff_t pos, unsigned len, unsigned copied, 1770 struct page *page, void *fsdata) 1771 { 1772 handle_t *handle = ext4_journal_current_handle(); 1773 struct inode *inode = mapping->host; 1774 int ret = 0, ret2; 1775 int partial = 0; 1776 unsigned from, to; 1777 loff_t new_i_size; 1778 1779 trace_ext4_journalled_write_end(inode, pos, len, copied); 1780 from = pos & (PAGE_CACHE_SIZE - 1); 1781 to = from + len; 1782 1783 if (copied < len) { 1784 if (!PageUptodate(page)) 1785 copied = 0; 1786 page_zero_new_buffers(page, from+copied, to); 1787 } 1788 1789 ret = walk_page_buffers(handle, page_buffers(page), from, 1790 to, &partial, write_end_fn); 1791 if (!partial) 1792 SetPageUptodate(page); 1793 new_i_size = pos + copied; 1794 if (new_i_size > inode->i_size) 1795 i_size_write(inode, pos+copied); 1796 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1797 if (new_i_size > EXT4_I(inode)->i_disksize) { 1798 ext4_update_i_disksize(inode, new_i_size); 1799 ret2 = ext4_mark_inode_dirty(handle, inode); 1800 if (!ret) 1801 ret = ret2; 1802 } 1803 1804 unlock_page(page); 1805 page_cache_release(page); 1806 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1807 /* if we have allocated more blocks and copied 1808 * less. We will have blocks allocated outside 1809 * inode->i_size. So truncate them 1810 */ 1811 ext4_orphan_add(handle, inode); 1812 1813 ret2 = ext4_journal_stop(handle); 1814 if (!ret) 1815 ret = ret2; 1816 if (pos + len > inode->i_size) { 1817 ext4_truncate_failed_write(inode); 1818 /* 1819 * If truncate failed early the inode might still be 1820 * on the orphan list; we need to make sure the inode 1821 * is removed from the orphan list in that case. 1822 */ 1823 if (inode->i_nlink) 1824 ext4_orphan_del(NULL, inode); 1825 } 1826 1827 return ret ? ret : copied; 1828 } 1829 1830 /* 1831 * Reserve a single block located at lblock 1832 */ 1833 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock) 1834 { 1835 int retries = 0; 1836 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1837 struct ext4_inode_info *ei = EXT4_I(inode); 1838 unsigned long md_needed, md_reserved; 1839 1840 /* 1841 * recalculate the amount of metadata blocks to reserve 1842 * in order to allocate nrblocks 1843 * worse case is one extent per block 1844 */ 1845 repeat: 1846 spin_lock(&ei->i_block_reservation_lock); 1847 md_reserved = ei->i_reserved_meta_blocks; 1848 md_needed = ext4_calc_metadata_amount(inode, lblock); 1849 spin_unlock(&ei->i_block_reservation_lock); 1850 1851 /* 1852 * Make quota reservation here to prevent quota overflow 1853 * later. Real quota accounting is done at pages writeout 1854 * time. 1855 */ 1856 if (vfs_dq_reserve_block(inode, md_needed + 1)) 1857 return -EDQUOT; 1858 1859 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1860 vfs_dq_release_reservation_block(inode, md_needed + 1); 1861 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1862 yield(); 1863 goto repeat; 1864 } 1865 return -ENOSPC; 1866 } 1867 spin_lock(&ei->i_block_reservation_lock); 1868 ei->i_reserved_data_blocks++; 1869 ei->i_reserved_meta_blocks += md_needed; 1870 spin_unlock(&ei->i_block_reservation_lock); 1871 1872 return 0; /* success */ 1873 } 1874 1875 static void ext4_da_release_space(struct inode *inode, int to_free) 1876 { 1877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1878 struct ext4_inode_info *ei = EXT4_I(inode); 1879 1880 if (!to_free) 1881 return; /* Nothing to release, exit */ 1882 1883 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1884 1885 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1886 /* 1887 * if there aren't enough reserved blocks, then the 1888 * counter is messed up somewhere. Since this 1889 * function is called from invalidate page, it's 1890 * harmless to return without any action. 1891 */ 1892 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1893 "ino %lu, to_free %d with only %d reserved " 1894 "data blocks\n", inode->i_ino, to_free, 1895 ei->i_reserved_data_blocks); 1896 WARN_ON(1); 1897 to_free = ei->i_reserved_data_blocks; 1898 } 1899 ei->i_reserved_data_blocks -= to_free; 1900 1901 if (ei->i_reserved_data_blocks == 0) { 1902 /* 1903 * We can release all of the reserved metadata blocks 1904 * only when we have written all of the delayed 1905 * allocation blocks. 1906 */ 1907 to_free += ei->i_reserved_meta_blocks; 1908 ei->i_reserved_meta_blocks = 0; 1909 ei->i_da_metadata_calc_len = 0; 1910 } 1911 1912 /* update fs dirty blocks counter */ 1913 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1914 1915 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1916 1917 vfs_dq_release_reservation_block(inode, to_free); 1918 } 1919 1920 static void ext4_da_page_release_reservation(struct page *page, 1921 unsigned long offset) 1922 { 1923 int to_release = 0; 1924 struct buffer_head *head, *bh; 1925 unsigned int curr_off = 0; 1926 1927 head = page_buffers(page); 1928 bh = head; 1929 do { 1930 unsigned int next_off = curr_off + bh->b_size; 1931 1932 if ((offset <= curr_off) && (buffer_delay(bh))) { 1933 to_release++; 1934 clear_buffer_delay(bh); 1935 } 1936 curr_off = next_off; 1937 } while ((bh = bh->b_this_page) != head); 1938 ext4_da_release_space(page->mapping->host, to_release); 1939 } 1940 1941 /* 1942 * Delayed allocation stuff 1943 */ 1944 1945 /* 1946 * mpage_da_submit_io - walks through extent of pages and try to write 1947 * them with writepage() call back 1948 * 1949 * @mpd->inode: inode 1950 * @mpd->first_page: first page of the extent 1951 * @mpd->next_page: page after the last page of the extent 1952 * 1953 * By the time mpage_da_submit_io() is called we expect all blocks 1954 * to be allocated. this may be wrong if allocation failed. 1955 * 1956 * As pages are already locked by write_cache_pages(), we can't use it 1957 */ 1958 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1959 { 1960 long pages_skipped; 1961 struct pagevec pvec; 1962 unsigned long index, end; 1963 int ret = 0, err, nr_pages, i; 1964 struct inode *inode = mpd->inode; 1965 struct address_space *mapping = inode->i_mapping; 1966 1967 BUG_ON(mpd->next_page <= mpd->first_page); 1968 /* 1969 * We need to start from the first_page to the next_page - 1 1970 * to make sure we also write the mapped dirty buffer_heads. 1971 * If we look at mpd->b_blocknr we would only be looking 1972 * at the currently mapped buffer_heads. 1973 */ 1974 index = mpd->first_page; 1975 end = mpd->next_page - 1; 1976 1977 pagevec_init(&pvec, 0); 1978 while (index <= end) { 1979 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1980 if (nr_pages == 0) 1981 break; 1982 for (i = 0; i < nr_pages; i++) { 1983 struct page *page = pvec.pages[i]; 1984 1985 index = page->index; 1986 if (index > end) 1987 break; 1988 index++; 1989 1990 BUG_ON(!PageLocked(page)); 1991 BUG_ON(PageWriteback(page)); 1992 1993 pages_skipped = mpd->wbc->pages_skipped; 1994 err = mapping->a_ops->writepage(page, mpd->wbc); 1995 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1996 /* 1997 * have successfully written the page 1998 * without skipping the same 1999 */ 2000 mpd->pages_written++; 2001 /* 2002 * In error case, we have to continue because 2003 * remaining pages are still locked 2004 * XXX: unlock and re-dirty them? 2005 */ 2006 if (ret == 0) 2007 ret = err; 2008 } 2009 pagevec_release(&pvec); 2010 } 2011 return ret; 2012 } 2013 2014 /* 2015 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2016 * 2017 * @mpd->inode - inode to walk through 2018 * @exbh->b_blocknr - first block on a disk 2019 * @exbh->b_size - amount of space in bytes 2020 * @logical - first logical block to start assignment with 2021 * 2022 * the function goes through all passed space and put actual disk 2023 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2024 */ 2025 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 2026 struct buffer_head *exbh) 2027 { 2028 struct inode *inode = mpd->inode; 2029 struct address_space *mapping = inode->i_mapping; 2030 int blocks = exbh->b_size >> inode->i_blkbits; 2031 sector_t pblock = exbh->b_blocknr, cur_logical; 2032 struct buffer_head *head, *bh; 2033 pgoff_t index, end; 2034 struct pagevec pvec; 2035 int nr_pages, i; 2036 2037 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2038 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2039 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2040 2041 pagevec_init(&pvec, 0); 2042 2043 while (index <= end) { 2044 /* XXX: optimize tail */ 2045 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2046 if (nr_pages == 0) 2047 break; 2048 for (i = 0; i < nr_pages; i++) { 2049 struct page *page = pvec.pages[i]; 2050 2051 index = page->index; 2052 if (index > end) 2053 break; 2054 index++; 2055 2056 BUG_ON(!PageLocked(page)); 2057 BUG_ON(PageWriteback(page)); 2058 BUG_ON(!page_has_buffers(page)); 2059 2060 bh = page_buffers(page); 2061 head = bh; 2062 2063 /* skip blocks out of the range */ 2064 do { 2065 if (cur_logical >= logical) 2066 break; 2067 cur_logical++; 2068 } while ((bh = bh->b_this_page) != head); 2069 2070 do { 2071 if (cur_logical >= logical + blocks) 2072 break; 2073 2074 if (buffer_delay(bh) || 2075 buffer_unwritten(bh)) { 2076 2077 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2078 2079 if (buffer_delay(bh)) { 2080 clear_buffer_delay(bh); 2081 bh->b_blocknr = pblock; 2082 } else { 2083 /* 2084 * unwritten already should have 2085 * blocknr assigned. Verify that 2086 */ 2087 clear_buffer_unwritten(bh); 2088 BUG_ON(bh->b_blocknr != pblock); 2089 } 2090 2091 } else if (buffer_mapped(bh)) 2092 BUG_ON(bh->b_blocknr != pblock); 2093 2094 cur_logical++; 2095 pblock++; 2096 } while ((bh = bh->b_this_page) != head); 2097 } 2098 pagevec_release(&pvec); 2099 } 2100 } 2101 2102 2103 /* 2104 * __unmap_underlying_blocks - just a helper function to unmap 2105 * set of blocks described by @bh 2106 */ 2107 static inline void __unmap_underlying_blocks(struct inode *inode, 2108 struct buffer_head *bh) 2109 { 2110 struct block_device *bdev = inode->i_sb->s_bdev; 2111 int blocks, i; 2112 2113 blocks = bh->b_size >> inode->i_blkbits; 2114 for (i = 0; i < blocks; i++) 2115 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 2116 } 2117 2118 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2119 sector_t logical, long blk_cnt) 2120 { 2121 int nr_pages, i; 2122 pgoff_t index, end; 2123 struct pagevec pvec; 2124 struct inode *inode = mpd->inode; 2125 struct address_space *mapping = inode->i_mapping; 2126 2127 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2128 end = (logical + blk_cnt - 1) >> 2129 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2130 while (index <= end) { 2131 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2132 if (nr_pages == 0) 2133 break; 2134 for (i = 0; i < nr_pages; i++) { 2135 struct page *page = pvec.pages[i]; 2136 index = page->index; 2137 if (index > end) 2138 break; 2139 index++; 2140 2141 BUG_ON(!PageLocked(page)); 2142 BUG_ON(PageWriteback(page)); 2143 block_invalidatepage(page, 0); 2144 ClearPageUptodate(page); 2145 unlock_page(page); 2146 } 2147 } 2148 return; 2149 } 2150 2151 static void ext4_print_free_blocks(struct inode *inode) 2152 { 2153 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2154 printk(KERN_CRIT "Total free blocks count %lld\n", 2155 ext4_count_free_blocks(inode->i_sb)); 2156 printk(KERN_CRIT "Free/Dirty block details\n"); 2157 printk(KERN_CRIT "free_blocks=%lld\n", 2158 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2159 printk(KERN_CRIT "dirty_blocks=%lld\n", 2160 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2161 printk(KERN_CRIT "Block reservation details\n"); 2162 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2163 EXT4_I(inode)->i_reserved_data_blocks); 2164 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2165 EXT4_I(inode)->i_reserved_meta_blocks); 2166 return; 2167 } 2168 2169 /* 2170 * mpage_da_map_blocks - go through given space 2171 * 2172 * @mpd - bh describing space 2173 * 2174 * The function skips space we know is already mapped to disk blocks. 2175 * 2176 */ 2177 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2178 { 2179 int err, blks, get_blocks_flags; 2180 struct buffer_head new; 2181 sector_t next = mpd->b_blocknr; 2182 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2183 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2184 handle_t *handle = NULL; 2185 2186 /* 2187 * We consider only non-mapped and non-allocated blocks 2188 */ 2189 if ((mpd->b_state & (1 << BH_Mapped)) && 2190 !(mpd->b_state & (1 << BH_Delay)) && 2191 !(mpd->b_state & (1 << BH_Unwritten))) 2192 return 0; 2193 2194 /* 2195 * If we didn't accumulate anything to write simply return 2196 */ 2197 if (!mpd->b_size) 2198 return 0; 2199 2200 handle = ext4_journal_current_handle(); 2201 BUG_ON(!handle); 2202 2203 /* 2204 * Call ext4_get_blocks() to allocate any delayed allocation 2205 * blocks, or to convert an uninitialized extent to be 2206 * initialized (in the case where we have written into 2207 * one or more preallocated blocks). 2208 * 2209 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2210 * indicate that we are on the delayed allocation path. This 2211 * affects functions in many different parts of the allocation 2212 * call path. This flag exists primarily because we don't 2213 * want to change *many* call functions, so ext4_get_blocks() 2214 * will set the magic i_delalloc_reserved_flag once the 2215 * inode's allocation semaphore is taken. 2216 * 2217 * If the blocks in questions were delalloc blocks, set 2218 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2219 * variables are updated after the blocks have been allocated. 2220 */ 2221 new.b_state = 0; 2222 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2223 if (mpd->b_state & (1 << BH_Delay)) 2224 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2225 2226 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks, 2227 &new, get_blocks_flags); 2228 if (blks < 0) { 2229 err = blks; 2230 /* 2231 * If get block returns with error we simply 2232 * return. Later writepage will redirty the page and 2233 * writepages will find the dirty page again 2234 */ 2235 if (err == -EAGAIN) 2236 return 0; 2237 2238 if (err == -ENOSPC && 2239 ext4_count_free_blocks(mpd->inode->i_sb)) { 2240 mpd->retval = err; 2241 return 0; 2242 } 2243 2244 /* 2245 * get block failure will cause us to loop in 2246 * writepages, because a_ops->writepage won't be able 2247 * to make progress. The page will be redirtied by 2248 * writepage and writepages will again try to write 2249 * the same. 2250 */ 2251 ext4_msg(mpd->inode->i_sb, KERN_CRIT, 2252 "delayed block allocation failed for inode %lu at " 2253 "logical offset %llu with max blocks %zd with " 2254 "error %d\n", mpd->inode->i_ino, 2255 (unsigned long long) next, 2256 mpd->b_size >> mpd->inode->i_blkbits, err); 2257 printk(KERN_CRIT "This should not happen!! " 2258 "Data will be lost\n"); 2259 if (err == -ENOSPC) { 2260 ext4_print_free_blocks(mpd->inode); 2261 } 2262 /* invalidate all the pages */ 2263 ext4_da_block_invalidatepages(mpd, next, 2264 mpd->b_size >> mpd->inode->i_blkbits); 2265 return err; 2266 } 2267 BUG_ON(blks == 0); 2268 2269 new.b_size = (blks << mpd->inode->i_blkbits); 2270 2271 if (buffer_new(&new)) 2272 __unmap_underlying_blocks(mpd->inode, &new); 2273 2274 /* 2275 * If blocks are delayed marked, we need to 2276 * put actual blocknr and drop delayed bit 2277 */ 2278 if ((mpd->b_state & (1 << BH_Delay)) || 2279 (mpd->b_state & (1 << BH_Unwritten))) 2280 mpage_put_bnr_to_bhs(mpd, next, &new); 2281 2282 if (ext4_should_order_data(mpd->inode)) { 2283 err = ext4_jbd2_file_inode(handle, mpd->inode); 2284 if (err) 2285 return err; 2286 } 2287 2288 /* 2289 * Update on-disk size along with block allocation. 2290 */ 2291 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2292 if (disksize > i_size_read(mpd->inode)) 2293 disksize = i_size_read(mpd->inode); 2294 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2295 ext4_update_i_disksize(mpd->inode, disksize); 2296 return ext4_mark_inode_dirty(handle, mpd->inode); 2297 } 2298 2299 return 0; 2300 } 2301 2302 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2303 (1 << BH_Delay) | (1 << BH_Unwritten)) 2304 2305 /* 2306 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2307 * 2308 * @mpd->lbh - extent of blocks 2309 * @logical - logical number of the block in the file 2310 * @bh - bh of the block (used to access block's state) 2311 * 2312 * the function is used to collect contig. blocks in same state 2313 */ 2314 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2315 sector_t logical, size_t b_size, 2316 unsigned long b_state) 2317 { 2318 sector_t next; 2319 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2320 2321 /* check if thereserved journal credits might overflow */ 2322 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2323 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2324 /* 2325 * With non-extent format we are limited by the journal 2326 * credit available. Total credit needed to insert 2327 * nrblocks contiguous blocks is dependent on the 2328 * nrblocks. So limit nrblocks. 2329 */ 2330 goto flush_it; 2331 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2332 EXT4_MAX_TRANS_DATA) { 2333 /* 2334 * Adding the new buffer_head would make it cross the 2335 * allowed limit for which we have journal credit 2336 * reserved. So limit the new bh->b_size 2337 */ 2338 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2339 mpd->inode->i_blkbits; 2340 /* we will do mpage_da_submit_io in the next loop */ 2341 } 2342 } 2343 /* 2344 * First block in the extent 2345 */ 2346 if (mpd->b_size == 0) { 2347 mpd->b_blocknr = logical; 2348 mpd->b_size = b_size; 2349 mpd->b_state = b_state & BH_FLAGS; 2350 return; 2351 } 2352 2353 next = mpd->b_blocknr + nrblocks; 2354 /* 2355 * Can we merge the block to our big extent? 2356 */ 2357 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2358 mpd->b_size += b_size; 2359 return; 2360 } 2361 2362 flush_it: 2363 /* 2364 * We couldn't merge the block to our extent, so we 2365 * need to flush current extent and start new one 2366 */ 2367 if (mpage_da_map_blocks(mpd) == 0) 2368 mpage_da_submit_io(mpd); 2369 mpd->io_done = 1; 2370 return; 2371 } 2372 2373 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2374 { 2375 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2376 } 2377 2378 /* 2379 * __mpage_da_writepage - finds extent of pages and blocks 2380 * 2381 * @page: page to consider 2382 * @wbc: not used, we just follow rules 2383 * @data: context 2384 * 2385 * The function finds extents of pages and scan them for all blocks. 2386 */ 2387 static int __mpage_da_writepage(struct page *page, 2388 struct writeback_control *wbc, void *data) 2389 { 2390 struct mpage_da_data *mpd = data; 2391 struct inode *inode = mpd->inode; 2392 struct buffer_head *bh, *head; 2393 sector_t logical; 2394 2395 if (mpd->io_done) { 2396 /* 2397 * Rest of the page in the page_vec 2398 * redirty then and skip then. We will 2399 * try to write them again after 2400 * starting a new transaction 2401 */ 2402 redirty_page_for_writepage(wbc, page); 2403 unlock_page(page); 2404 return MPAGE_DA_EXTENT_TAIL; 2405 } 2406 /* 2407 * Can we merge this page to current extent? 2408 */ 2409 if (mpd->next_page != page->index) { 2410 /* 2411 * Nope, we can't. So, we map non-allocated blocks 2412 * and start IO on them using writepage() 2413 */ 2414 if (mpd->next_page != mpd->first_page) { 2415 if (mpage_da_map_blocks(mpd) == 0) 2416 mpage_da_submit_io(mpd); 2417 /* 2418 * skip rest of the page in the page_vec 2419 */ 2420 mpd->io_done = 1; 2421 redirty_page_for_writepage(wbc, page); 2422 unlock_page(page); 2423 return MPAGE_DA_EXTENT_TAIL; 2424 } 2425 2426 /* 2427 * Start next extent of pages ... 2428 */ 2429 mpd->first_page = page->index; 2430 2431 /* 2432 * ... and blocks 2433 */ 2434 mpd->b_size = 0; 2435 mpd->b_state = 0; 2436 mpd->b_blocknr = 0; 2437 } 2438 2439 mpd->next_page = page->index + 1; 2440 logical = (sector_t) page->index << 2441 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2442 2443 if (!page_has_buffers(page)) { 2444 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2445 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2446 if (mpd->io_done) 2447 return MPAGE_DA_EXTENT_TAIL; 2448 } else { 2449 /* 2450 * Page with regular buffer heads, just add all dirty ones 2451 */ 2452 head = page_buffers(page); 2453 bh = head; 2454 do { 2455 BUG_ON(buffer_locked(bh)); 2456 /* 2457 * We need to try to allocate 2458 * unmapped blocks in the same page. 2459 * Otherwise we won't make progress 2460 * with the page in ext4_writepage 2461 */ 2462 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2463 mpage_add_bh_to_extent(mpd, logical, 2464 bh->b_size, 2465 bh->b_state); 2466 if (mpd->io_done) 2467 return MPAGE_DA_EXTENT_TAIL; 2468 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2469 /* 2470 * mapped dirty buffer. We need to update 2471 * the b_state because we look at 2472 * b_state in mpage_da_map_blocks. We don't 2473 * update b_size because if we find an 2474 * unmapped buffer_head later we need to 2475 * use the b_state flag of that buffer_head. 2476 */ 2477 if (mpd->b_size == 0) 2478 mpd->b_state = bh->b_state & BH_FLAGS; 2479 } 2480 logical++; 2481 } while ((bh = bh->b_this_page) != head); 2482 } 2483 2484 return 0; 2485 } 2486 2487 /* 2488 * This is a special get_blocks_t callback which is used by 2489 * ext4_da_write_begin(). It will either return mapped block or 2490 * reserve space for a single block. 2491 * 2492 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2493 * We also have b_blocknr = -1 and b_bdev initialized properly 2494 * 2495 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2496 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2497 * initialized properly. 2498 */ 2499 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2500 struct buffer_head *bh_result, int create) 2501 { 2502 int ret = 0; 2503 sector_t invalid_block = ~((sector_t) 0xffff); 2504 2505 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2506 invalid_block = ~0; 2507 2508 BUG_ON(create == 0); 2509 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2510 2511 /* 2512 * first, we need to know whether the block is allocated already 2513 * preallocated blocks are unmapped but should treated 2514 * the same as allocated blocks. 2515 */ 2516 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0); 2517 if ((ret == 0) && !buffer_delay(bh_result)) { 2518 /* the block isn't (pre)allocated yet, let's reserve space */ 2519 /* 2520 * XXX: __block_prepare_write() unmaps passed block, 2521 * is it OK? 2522 */ 2523 ret = ext4_da_reserve_space(inode, iblock); 2524 if (ret) 2525 /* not enough space to reserve */ 2526 return ret; 2527 2528 map_bh(bh_result, inode->i_sb, invalid_block); 2529 set_buffer_new(bh_result); 2530 set_buffer_delay(bh_result); 2531 } else if (ret > 0) { 2532 bh_result->b_size = (ret << inode->i_blkbits); 2533 if (buffer_unwritten(bh_result)) { 2534 /* A delayed write to unwritten bh should 2535 * be marked new and mapped. Mapped ensures 2536 * that we don't do get_block multiple times 2537 * when we write to the same offset and new 2538 * ensures that we do proper zero out for 2539 * partial write. 2540 */ 2541 set_buffer_new(bh_result); 2542 set_buffer_mapped(bh_result); 2543 } 2544 ret = 0; 2545 } 2546 2547 return ret; 2548 } 2549 2550 /* 2551 * This function is used as a standard get_block_t calback function 2552 * when there is no desire to allocate any blocks. It is used as a 2553 * callback function for block_prepare_write(), nobh_writepage(), and 2554 * block_write_full_page(). These functions should only try to map a 2555 * single block at a time. 2556 * 2557 * Since this function doesn't do block allocations even if the caller 2558 * requests it by passing in create=1, it is critically important that 2559 * any caller checks to make sure that any buffer heads are returned 2560 * by this function are either all already mapped or marked for 2561 * delayed allocation before calling nobh_writepage() or 2562 * block_write_full_page(). Otherwise, b_blocknr could be left 2563 * unitialized, and the page write functions will be taken by 2564 * surprise. 2565 */ 2566 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2567 struct buffer_head *bh_result, int create) 2568 { 2569 int ret = 0; 2570 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2571 2572 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2573 2574 /* 2575 * we don't want to do block allocation in writepage 2576 * so call get_block_wrap with create = 0 2577 */ 2578 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0); 2579 if (ret > 0) { 2580 bh_result->b_size = (ret << inode->i_blkbits); 2581 ret = 0; 2582 } 2583 return ret; 2584 } 2585 2586 static int bget_one(handle_t *handle, struct buffer_head *bh) 2587 { 2588 get_bh(bh); 2589 return 0; 2590 } 2591 2592 static int bput_one(handle_t *handle, struct buffer_head *bh) 2593 { 2594 put_bh(bh); 2595 return 0; 2596 } 2597 2598 static int __ext4_journalled_writepage(struct page *page, 2599 unsigned int len) 2600 { 2601 struct address_space *mapping = page->mapping; 2602 struct inode *inode = mapping->host; 2603 struct buffer_head *page_bufs; 2604 handle_t *handle = NULL; 2605 int ret = 0; 2606 int err; 2607 2608 page_bufs = page_buffers(page); 2609 BUG_ON(!page_bufs); 2610 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2611 /* As soon as we unlock the page, it can go away, but we have 2612 * references to buffers so we are safe */ 2613 unlock_page(page); 2614 2615 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2616 if (IS_ERR(handle)) { 2617 ret = PTR_ERR(handle); 2618 goto out; 2619 } 2620 2621 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2622 do_journal_get_write_access); 2623 2624 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2625 write_end_fn); 2626 if (ret == 0) 2627 ret = err; 2628 err = ext4_journal_stop(handle); 2629 if (!ret) 2630 ret = err; 2631 2632 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2633 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2634 out: 2635 return ret; 2636 } 2637 2638 /* 2639 * Note that we don't need to start a transaction unless we're journaling data 2640 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2641 * need to file the inode to the transaction's list in ordered mode because if 2642 * we are writing back data added by write(), the inode is already there and if 2643 * we are writing back data modified via mmap(), noone guarantees in which 2644 * transaction the data will hit the disk. In case we are journaling data, we 2645 * cannot start transaction directly because transaction start ranks above page 2646 * lock so we have to do some magic. 2647 * 2648 * This function can get called via... 2649 * - ext4_da_writepages after taking page lock (have journal handle) 2650 * - journal_submit_inode_data_buffers (no journal handle) 2651 * - shrink_page_list via pdflush (no journal handle) 2652 * - grab_page_cache when doing write_begin (have journal handle) 2653 * 2654 * We don't do any block allocation in this function. If we have page with 2655 * multiple blocks we need to write those buffer_heads that are mapped. This 2656 * is important for mmaped based write. So if we do with blocksize 1K 2657 * truncate(f, 1024); 2658 * a = mmap(f, 0, 4096); 2659 * a[0] = 'a'; 2660 * truncate(f, 4096); 2661 * we have in the page first buffer_head mapped via page_mkwrite call back 2662 * but other bufer_heads would be unmapped but dirty(dirty done via the 2663 * do_wp_page). So writepage should write the first block. If we modify 2664 * the mmap area beyond 1024 we will again get a page_fault and the 2665 * page_mkwrite callback will do the block allocation and mark the 2666 * buffer_heads mapped. 2667 * 2668 * We redirty the page if we have any buffer_heads that is either delay or 2669 * unwritten in the page. 2670 * 2671 * We can get recursively called as show below. 2672 * 2673 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2674 * ext4_writepage() 2675 * 2676 * But since we don't do any block allocation we should not deadlock. 2677 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2678 */ 2679 static int ext4_writepage(struct page *page, 2680 struct writeback_control *wbc) 2681 { 2682 int ret = 0; 2683 loff_t size; 2684 unsigned int len; 2685 struct buffer_head *page_bufs; 2686 struct inode *inode = page->mapping->host; 2687 2688 trace_ext4_writepage(inode, page); 2689 size = i_size_read(inode); 2690 if (page->index == size >> PAGE_CACHE_SHIFT) 2691 len = size & ~PAGE_CACHE_MASK; 2692 else 2693 len = PAGE_CACHE_SIZE; 2694 2695 if (page_has_buffers(page)) { 2696 page_bufs = page_buffers(page); 2697 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2698 ext4_bh_delay_or_unwritten)) { 2699 /* 2700 * We don't want to do block allocation 2701 * So redirty the page and return 2702 * We may reach here when we do a journal commit 2703 * via journal_submit_inode_data_buffers. 2704 * If we don't have mapping block we just ignore 2705 * them. We can also reach here via shrink_page_list 2706 */ 2707 redirty_page_for_writepage(wbc, page); 2708 unlock_page(page); 2709 return 0; 2710 } 2711 } else { 2712 /* 2713 * The test for page_has_buffers() is subtle: 2714 * We know the page is dirty but it lost buffers. That means 2715 * that at some moment in time after write_begin()/write_end() 2716 * has been called all buffers have been clean and thus they 2717 * must have been written at least once. So they are all 2718 * mapped and we can happily proceed with mapping them 2719 * and writing the page. 2720 * 2721 * Try to initialize the buffer_heads and check whether 2722 * all are mapped and non delay. We don't want to 2723 * do block allocation here. 2724 */ 2725 ret = block_prepare_write(page, 0, len, 2726 noalloc_get_block_write); 2727 if (!ret) { 2728 page_bufs = page_buffers(page); 2729 /* check whether all are mapped and non delay */ 2730 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2731 ext4_bh_delay_or_unwritten)) { 2732 redirty_page_for_writepage(wbc, page); 2733 unlock_page(page); 2734 return 0; 2735 } 2736 } else { 2737 /* 2738 * We can't do block allocation here 2739 * so just redity the page and unlock 2740 * and return 2741 */ 2742 redirty_page_for_writepage(wbc, page); 2743 unlock_page(page); 2744 return 0; 2745 } 2746 /* now mark the buffer_heads as dirty and uptodate */ 2747 block_commit_write(page, 0, len); 2748 } 2749 2750 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2751 /* 2752 * It's mmapped pagecache. Add buffers and journal it. There 2753 * doesn't seem much point in redirtying the page here. 2754 */ 2755 ClearPageChecked(page); 2756 return __ext4_journalled_writepage(page, len); 2757 } 2758 2759 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2760 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2761 else 2762 ret = block_write_full_page(page, noalloc_get_block_write, 2763 wbc); 2764 2765 return ret; 2766 } 2767 2768 /* 2769 * This is called via ext4_da_writepages() to 2770 * calulate the total number of credits to reserve to fit 2771 * a single extent allocation into a single transaction, 2772 * ext4_da_writpeages() will loop calling this before 2773 * the block allocation. 2774 */ 2775 2776 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2777 { 2778 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2779 2780 /* 2781 * With non-extent format the journal credit needed to 2782 * insert nrblocks contiguous block is dependent on 2783 * number of contiguous block. So we will limit 2784 * number of contiguous block to a sane value 2785 */ 2786 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) && 2787 (max_blocks > EXT4_MAX_TRANS_DATA)) 2788 max_blocks = EXT4_MAX_TRANS_DATA; 2789 2790 return ext4_chunk_trans_blocks(inode, max_blocks); 2791 } 2792 2793 static int ext4_da_writepages(struct address_space *mapping, 2794 struct writeback_control *wbc) 2795 { 2796 pgoff_t index; 2797 int range_whole = 0; 2798 handle_t *handle = NULL; 2799 struct mpage_da_data mpd; 2800 struct inode *inode = mapping->host; 2801 int no_nrwrite_index_update; 2802 int pages_written = 0; 2803 long pages_skipped; 2804 unsigned int max_pages; 2805 int range_cyclic, cycled = 1, io_done = 0; 2806 int needed_blocks, ret = 0; 2807 long desired_nr_to_write, nr_to_writebump = 0; 2808 loff_t range_start = wbc->range_start; 2809 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2810 2811 trace_ext4_da_writepages(inode, wbc); 2812 2813 /* 2814 * No pages to write? This is mainly a kludge to avoid starting 2815 * a transaction for special inodes like journal inode on last iput() 2816 * because that could violate lock ordering on umount 2817 */ 2818 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2819 return 0; 2820 2821 /* 2822 * If the filesystem has aborted, it is read-only, so return 2823 * right away instead of dumping stack traces later on that 2824 * will obscure the real source of the problem. We test 2825 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2826 * the latter could be true if the filesystem is mounted 2827 * read-only, and in that case, ext4_da_writepages should 2828 * *never* be called, so if that ever happens, we would want 2829 * the stack trace. 2830 */ 2831 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2832 return -EROFS; 2833 2834 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2835 range_whole = 1; 2836 2837 range_cyclic = wbc->range_cyclic; 2838 if (wbc->range_cyclic) { 2839 index = mapping->writeback_index; 2840 if (index) 2841 cycled = 0; 2842 wbc->range_start = index << PAGE_CACHE_SHIFT; 2843 wbc->range_end = LLONG_MAX; 2844 wbc->range_cyclic = 0; 2845 } else 2846 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2847 2848 /* 2849 * This works around two forms of stupidity. The first is in 2850 * the writeback code, which caps the maximum number of pages 2851 * written to be 1024 pages. This is wrong on multiple 2852 * levels; different architectues have a different page size, 2853 * which changes the maximum amount of data which gets 2854 * written. Secondly, 4 megabytes is way too small. XFS 2855 * forces this value to be 16 megabytes by multiplying 2856 * nr_to_write parameter by four, and then relies on its 2857 * allocator to allocate larger extents to make them 2858 * contiguous. Unfortunately this brings us to the second 2859 * stupidity, which is that ext4's mballoc code only allocates 2860 * at most 2048 blocks. So we force contiguous writes up to 2861 * the number of dirty blocks in the inode, or 2862 * sbi->max_writeback_mb_bump whichever is smaller. 2863 */ 2864 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2865 if (!range_cyclic && range_whole) 2866 desired_nr_to_write = wbc->nr_to_write * 8; 2867 else 2868 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2869 max_pages); 2870 if (desired_nr_to_write > max_pages) 2871 desired_nr_to_write = max_pages; 2872 2873 if (wbc->nr_to_write < desired_nr_to_write) { 2874 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2875 wbc->nr_to_write = desired_nr_to_write; 2876 } 2877 2878 mpd.wbc = wbc; 2879 mpd.inode = mapping->host; 2880 2881 /* 2882 * we don't want write_cache_pages to update 2883 * nr_to_write and writeback_index 2884 */ 2885 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2886 wbc->no_nrwrite_index_update = 1; 2887 pages_skipped = wbc->pages_skipped; 2888 2889 retry: 2890 while (!ret && wbc->nr_to_write > 0) { 2891 2892 /* 2893 * we insert one extent at a time. So we need 2894 * credit needed for single extent allocation. 2895 * journalled mode is currently not supported 2896 * by delalloc 2897 */ 2898 BUG_ON(ext4_should_journal_data(inode)); 2899 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2900 2901 /* start a new transaction*/ 2902 handle = ext4_journal_start(inode, needed_blocks); 2903 if (IS_ERR(handle)) { 2904 ret = PTR_ERR(handle); 2905 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2906 "%ld pages, ino %lu; err %d\n", __func__, 2907 wbc->nr_to_write, inode->i_ino, ret); 2908 goto out_writepages; 2909 } 2910 2911 /* 2912 * Now call __mpage_da_writepage to find the next 2913 * contiguous region of logical blocks that need 2914 * blocks to be allocated by ext4. We don't actually 2915 * submit the blocks for I/O here, even though 2916 * write_cache_pages thinks it will, and will set the 2917 * pages as clean for write before calling 2918 * __mpage_da_writepage(). 2919 */ 2920 mpd.b_size = 0; 2921 mpd.b_state = 0; 2922 mpd.b_blocknr = 0; 2923 mpd.first_page = 0; 2924 mpd.next_page = 0; 2925 mpd.io_done = 0; 2926 mpd.pages_written = 0; 2927 mpd.retval = 0; 2928 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2929 &mpd); 2930 /* 2931 * If we have a contiguous extent of pages and we 2932 * haven't done the I/O yet, map the blocks and submit 2933 * them for I/O. 2934 */ 2935 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2936 if (mpage_da_map_blocks(&mpd) == 0) 2937 mpage_da_submit_io(&mpd); 2938 mpd.io_done = 1; 2939 ret = MPAGE_DA_EXTENT_TAIL; 2940 } 2941 trace_ext4_da_write_pages(inode, &mpd); 2942 wbc->nr_to_write -= mpd.pages_written; 2943 2944 ext4_journal_stop(handle); 2945 2946 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2947 /* commit the transaction which would 2948 * free blocks released in the transaction 2949 * and try again 2950 */ 2951 jbd2_journal_force_commit_nested(sbi->s_journal); 2952 wbc->pages_skipped = pages_skipped; 2953 ret = 0; 2954 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2955 /* 2956 * got one extent now try with 2957 * rest of the pages 2958 */ 2959 pages_written += mpd.pages_written; 2960 wbc->pages_skipped = pages_skipped; 2961 ret = 0; 2962 io_done = 1; 2963 } else if (wbc->nr_to_write) 2964 /* 2965 * There is no more writeout needed 2966 * or we requested for a noblocking writeout 2967 * and we found the device congested 2968 */ 2969 break; 2970 } 2971 if (!io_done && !cycled) { 2972 cycled = 1; 2973 index = 0; 2974 wbc->range_start = index << PAGE_CACHE_SHIFT; 2975 wbc->range_end = mapping->writeback_index - 1; 2976 goto retry; 2977 } 2978 if (pages_skipped != wbc->pages_skipped) 2979 ext4_msg(inode->i_sb, KERN_CRIT, 2980 "This should not happen leaving %s " 2981 "with nr_to_write = %ld ret = %d\n", 2982 __func__, wbc->nr_to_write, ret); 2983 2984 /* Update index */ 2985 index += pages_written; 2986 wbc->range_cyclic = range_cyclic; 2987 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2988 /* 2989 * set the writeback_index so that range_cyclic 2990 * mode will write it back later 2991 */ 2992 mapping->writeback_index = index; 2993 2994 out_writepages: 2995 if (!no_nrwrite_index_update) 2996 wbc->no_nrwrite_index_update = 0; 2997 wbc->nr_to_write -= nr_to_writebump; 2998 wbc->range_start = range_start; 2999 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3000 return ret; 3001 } 3002 3003 #define FALL_BACK_TO_NONDELALLOC 1 3004 static int ext4_nonda_switch(struct super_block *sb) 3005 { 3006 s64 free_blocks, dirty_blocks; 3007 struct ext4_sb_info *sbi = EXT4_SB(sb); 3008 3009 /* 3010 * switch to non delalloc mode if we are running low 3011 * on free block. The free block accounting via percpu 3012 * counters can get slightly wrong with percpu_counter_batch getting 3013 * accumulated on each CPU without updating global counters 3014 * Delalloc need an accurate free block accounting. So switch 3015 * to non delalloc when we are near to error range. 3016 */ 3017 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3018 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3019 if (2 * free_blocks < 3 * dirty_blocks || 3020 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3021 /* 3022 * free block count is less than 150% of dirty blocks 3023 * or free blocks is less than watermark 3024 */ 3025 return 1; 3026 } 3027 /* 3028 * Even if we don't switch but are nearing capacity, 3029 * start pushing delalloc when 1/2 of free blocks are dirty. 3030 */ 3031 if (free_blocks < 2 * dirty_blocks) 3032 writeback_inodes_sb_if_idle(sb); 3033 3034 return 0; 3035 } 3036 3037 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3038 loff_t pos, unsigned len, unsigned flags, 3039 struct page **pagep, void **fsdata) 3040 { 3041 int ret, retries = 0, quota_retries = 0; 3042 struct page *page; 3043 pgoff_t index; 3044 unsigned from, to; 3045 struct inode *inode = mapping->host; 3046 handle_t *handle; 3047 3048 index = pos >> PAGE_CACHE_SHIFT; 3049 from = pos & (PAGE_CACHE_SIZE - 1); 3050 to = from + len; 3051 3052 if (ext4_nonda_switch(inode->i_sb)) { 3053 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3054 return ext4_write_begin(file, mapping, pos, 3055 len, flags, pagep, fsdata); 3056 } 3057 *fsdata = (void *)0; 3058 trace_ext4_da_write_begin(inode, pos, len, flags); 3059 retry: 3060 /* 3061 * With delayed allocation, we don't log the i_disksize update 3062 * if there is delayed block allocation. But we still need 3063 * to journalling the i_disksize update if writes to the end 3064 * of file which has an already mapped buffer. 3065 */ 3066 handle = ext4_journal_start(inode, 1); 3067 if (IS_ERR(handle)) { 3068 ret = PTR_ERR(handle); 3069 goto out; 3070 } 3071 /* We cannot recurse into the filesystem as the transaction is already 3072 * started */ 3073 flags |= AOP_FLAG_NOFS; 3074 3075 page = grab_cache_page_write_begin(mapping, index, flags); 3076 if (!page) { 3077 ext4_journal_stop(handle); 3078 ret = -ENOMEM; 3079 goto out; 3080 } 3081 *pagep = page; 3082 3083 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 3084 ext4_da_get_block_prep); 3085 if (ret < 0) { 3086 unlock_page(page); 3087 ext4_journal_stop(handle); 3088 page_cache_release(page); 3089 /* 3090 * block_write_begin may have instantiated a few blocks 3091 * outside i_size. Trim these off again. Don't need 3092 * i_size_read because we hold i_mutex. 3093 */ 3094 if (pos + len > inode->i_size) 3095 ext4_truncate_failed_write(inode); 3096 } 3097 3098 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3099 goto retry; 3100 3101 if ((ret == -EDQUOT) && 3102 EXT4_I(inode)->i_reserved_meta_blocks && 3103 (quota_retries++ < 3)) { 3104 /* 3105 * Since we often over-estimate the number of meta 3106 * data blocks required, we may sometimes get a 3107 * spurios out of quota error even though there would 3108 * be enough space once we write the data blocks and 3109 * find out how many meta data blocks were _really_ 3110 * required. So try forcing the inode write to see if 3111 * that helps. 3112 */ 3113 write_inode_now(inode, (quota_retries == 3)); 3114 goto retry; 3115 } 3116 out: 3117 return ret; 3118 } 3119 3120 /* 3121 * Check if we should update i_disksize 3122 * when write to the end of file but not require block allocation 3123 */ 3124 static int ext4_da_should_update_i_disksize(struct page *page, 3125 unsigned long offset) 3126 { 3127 struct buffer_head *bh; 3128 struct inode *inode = page->mapping->host; 3129 unsigned int idx; 3130 int i; 3131 3132 bh = page_buffers(page); 3133 idx = offset >> inode->i_blkbits; 3134 3135 for (i = 0; i < idx; i++) 3136 bh = bh->b_this_page; 3137 3138 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3139 return 0; 3140 return 1; 3141 } 3142 3143 static int ext4_da_write_end(struct file *file, 3144 struct address_space *mapping, 3145 loff_t pos, unsigned len, unsigned copied, 3146 struct page *page, void *fsdata) 3147 { 3148 struct inode *inode = mapping->host; 3149 int ret = 0, ret2; 3150 handle_t *handle = ext4_journal_current_handle(); 3151 loff_t new_i_size; 3152 unsigned long start, end; 3153 int write_mode = (int)(unsigned long)fsdata; 3154 3155 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3156 if (ext4_should_order_data(inode)) { 3157 return ext4_ordered_write_end(file, mapping, pos, 3158 len, copied, page, fsdata); 3159 } else if (ext4_should_writeback_data(inode)) { 3160 return ext4_writeback_write_end(file, mapping, pos, 3161 len, copied, page, fsdata); 3162 } else { 3163 BUG(); 3164 } 3165 } 3166 3167 trace_ext4_da_write_end(inode, pos, len, copied); 3168 start = pos & (PAGE_CACHE_SIZE - 1); 3169 end = start + copied - 1; 3170 3171 /* 3172 * generic_write_end() will run mark_inode_dirty() if i_size 3173 * changes. So let's piggyback the i_disksize mark_inode_dirty 3174 * into that. 3175 */ 3176 3177 new_i_size = pos + copied; 3178 if (new_i_size > EXT4_I(inode)->i_disksize) { 3179 if (ext4_da_should_update_i_disksize(page, end)) { 3180 down_write(&EXT4_I(inode)->i_data_sem); 3181 if (new_i_size > EXT4_I(inode)->i_disksize) { 3182 /* 3183 * Updating i_disksize when extending file 3184 * without needing block allocation 3185 */ 3186 if (ext4_should_order_data(inode)) 3187 ret = ext4_jbd2_file_inode(handle, 3188 inode); 3189 3190 EXT4_I(inode)->i_disksize = new_i_size; 3191 } 3192 up_write(&EXT4_I(inode)->i_data_sem); 3193 /* We need to mark inode dirty even if 3194 * new_i_size is less that inode->i_size 3195 * bu greater than i_disksize.(hint delalloc) 3196 */ 3197 ext4_mark_inode_dirty(handle, inode); 3198 } 3199 } 3200 ret2 = generic_write_end(file, mapping, pos, len, copied, 3201 page, fsdata); 3202 copied = ret2; 3203 if (ret2 < 0) 3204 ret = ret2; 3205 ret2 = ext4_journal_stop(handle); 3206 if (!ret) 3207 ret = ret2; 3208 3209 return ret ? ret : copied; 3210 } 3211 3212 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3213 { 3214 /* 3215 * Drop reserved blocks 3216 */ 3217 BUG_ON(!PageLocked(page)); 3218 if (!page_has_buffers(page)) 3219 goto out; 3220 3221 ext4_da_page_release_reservation(page, offset); 3222 3223 out: 3224 ext4_invalidatepage(page, offset); 3225 3226 return; 3227 } 3228 3229 /* 3230 * Force all delayed allocation blocks to be allocated for a given inode. 3231 */ 3232 int ext4_alloc_da_blocks(struct inode *inode) 3233 { 3234 trace_ext4_alloc_da_blocks(inode); 3235 3236 if (!EXT4_I(inode)->i_reserved_data_blocks && 3237 !EXT4_I(inode)->i_reserved_meta_blocks) 3238 return 0; 3239 3240 /* 3241 * We do something simple for now. The filemap_flush() will 3242 * also start triggering a write of the data blocks, which is 3243 * not strictly speaking necessary (and for users of 3244 * laptop_mode, not even desirable). However, to do otherwise 3245 * would require replicating code paths in: 3246 * 3247 * ext4_da_writepages() -> 3248 * write_cache_pages() ---> (via passed in callback function) 3249 * __mpage_da_writepage() --> 3250 * mpage_add_bh_to_extent() 3251 * mpage_da_map_blocks() 3252 * 3253 * The problem is that write_cache_pages(), located in 3254 * mm/page-writeback.c, marks pages clean in preparation for 3255 * doing I/O, which is not desirable if we're not planning on 3256 * doing I/O at all. 3257 * 3258 * We could call write_cache_pages(), and then redirty all of 3259 * the pages by calling redirty_page_for_writeback() but that 3260 * would be ugly in the extreme. So instead we would need to 3261 * replicate parts of the code in the above functions, 3262 * simplifying them becuase we wouldn't actually intend to 3263 * write out the pages, but rather only collect contiguous 3264 * logical block extents, call the multi-block allocator, and 3265 * then update the buffer heads with the block allocations. 3266 * 3267 * For now, though, we'll cheat by calling filemap_flush(), 3268 * which will map the blocks, and start the I/O, but not 3269 * actually wait for the I/O to complete. 3270 */ 3271 return filemap_flush(inode->i_mapping); 3272 } 3273 3274 /* 3275 * bmap() is special. It gets used by applications such as lilo and by 3276 * the swapper to find the on-disk block of a specific piece of data. 3277 * 3278 * Naturally, this is dangerous if the block concerned is still in the 3279 * journal. If somebody makes a swapfile on an ext4 data-journaling 3280 * filesystem and enables swap, then they may get a nasty shock when the 3281 * data getting swapped to that swapfile suddenly gets overwritten by 3282 * the original zero's written out previously to the journal and 3283 * awaiting writeback in the kernel's buffer cache. 3284 * 3285 * So, if we see any bmap calls here on a modified, data-journaled file, 3286 * take extra steps to flush any blocks which might be in the cache. 3287 */ 3288 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3289 { 3290 struct inode *inode = mapping->host; 3291 journal_t *journal; 3292 int err; 3293 3294 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3295 test_opt(inode->i_sb, DELALLOC)) { 3296 /* 3297 * With delalloc we want to sync the file 3298 * so that we can make sure we allocate 3299 * blocks for file 3300 */ 3301 filemap_write_and_wait(mapping); 3302 } 3303 3304 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 3305 /* 3306 * This is a REALLY heavyweight approach, but the use of 3307 * bmap on dirty files is expected to be extremely rare: 3308 * only if we run lilo or swapon on a freshly made file 3309 * do we expect this to happen. 3310 * 3311 * (bmap requires CAP_SYS_RAWIO so this does not 3312 * represent an unprivileged user DOS attack --- we'd be 3313 * in trouble if mortal users could trigger this path at 3314 * will.) 3315 * 3316 * NB. EXT4_STATE_JDATA is not set on files other than 3317 * regular files. If somebody wants to bmap a directory 3318 * or symlink and gets confused because the buffer 3319 * hasn't yet been flushed to disk, they deserve 3320 * everything they get. 3321 */ 3322 3323 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 3324 journal = EXT4_JOURNAL(inode); 3325 jbd2_journal_lock_updates(journal); 3326 err = jbd2_journal_flush(journal); 3327 jbd2_journal_unlock_updates(journal); 3328 3329 if (err) 3330 return 0; 3331 } 3332 3333 return generic_block_bmap(mapping, block, ext4_get_block); 3334 } 3335 3336 static int ext4_readpage(struct file *file, struct page *page) 3337 { 3338 return mpage_readpage(page, ext4_get_block); 3339 } 3340 3341 static int 3342 ext4_readpages(struct file *file, struct address_space *mapping, 3343 struct list_head *pages, unsigned nr_pages) 3344 { 3345 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3346 } 3347 3348 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3349 { 3350 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3351 3352 /* 3353 * If it's a full truncate we just forget about the pending dirtying 3354 */ 3355 if (offset == 0) 3356 ClearPageChecked(page); 3357 3358 if (journal) 3359 jbd2_journal_invalidatepage(journal, page, offset); 3360 else 3361 block_invalidatepage(page, offset); 3362 } 3363 3364 static int ext4_releasepage(struct page *page, gfp_t wait) 3365 { 3366 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3367 3368 WARN_ON(PageChecked(page)); 3369 if (!page_has_buffers(page)) 3370 return 0; 3371 if (journal) 3372 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3373 else 3374 return try_to_free_buffers(page); 3375 } 3376 3377 /* 3378 * O_DIRECT for ext3 (or indirect map) based files 3379 * 3380 * If the O_DIRECT write will extend the file then add this inode to the 3381 * orphan list. So recovery will truncate it back to the original size 3382 * if the machine crashes during the write. 3383 * 3384 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3385 * crashes then stale disk data _may_ be exposed inside the file. But current 3386 * VFS code falls back into buffered path in that case so we are safe. 3387 */ 3388 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3389 const struct iovec *iov, loff_t offset, 3390 unsigned long nr_segs) 3391 { 3392 struct file *file = iocb->ki_filp; 3393 struct inode *inode = file->f_mapping->host; 3394 struct ext4_inode_info *ei = EXT4_I(inode); 3395 handle_t *handle; 3396 ssize_t ret; 3397 int orphan = 0; 3398 size_t count = iov_length(iov, nr_segs); 3399 int retries = 0; 3400 3401 if (rw == WRITE) { 3402 loff_t final_size = offset + count; 3403 3404 if (final_size > inode->i_size) { 3405 /* Credits for sb + inode write */ 3406 handle = ext4_journal_start(inode, 2); 3407 if (IS_ERR(handle)) { 3408 ret = PTR_ERR(handle); 3409 goto out; 3410 } 3411 ret = ext4_orphan_add(handle, inode); 3412 if (ret) { 3413 ext4_journal_stop(handle); 3414 goto out; 3415 } 3416 orphan = 1; 3417 ei->i_disksize = inode->i_size; 3418 ext4_journal_stop(handle); 3419 } 3420 } 3421 3422 retry: 3423 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3424 offset, nr_segs, 3425 ext4_get_block, NULL); 3426 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3427 goto retry; 3428 3429 if (orphan) { 3430 int err; 3431 3432 /* Credits for sb + inode write */ 3433 handle = ext4_journal_start(inode, 2); 3434 if (IS_ERR(handle)) { 3435 /* This is really bad luck. We've written the data 3436 * but cannot extend i_size. Bail out and pretend 3437 * the write failed... */ 3438 ret = PTR_ERR(handle); 3439 goto out; 3440 } 3441 if (inode->i_nlink) 3442 ext4_orphan_del(handle, inode); 3443 if (ret > 0) { 3444 loff_t end = offset + ret; 3445 if (end > inode->i_size) { 3446 ei->i_disksize = end; 3447 i_size_write(inode, end); 3448 /* 3449 * We're going to return a positive `ret' 3450 * here due to non-zero-length I/O, so there's 3451 * no way of reporting error returns from 3452 * ext4_mark_inode_dirty() to userspace. So 3453 * ignore it. 3454 */ 3455 ext4_mark_inode_dirty(handle, inode); 3456 } 3457 } 3458 err = ext4_journal_stop(handle); 3459 if (ret == 0) 3460 ret = err; 3461 } 3462 out: 3463 return ret; 3464 } 3465 3466 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock, 3467 struct buffer_head *bh_result, int create) 3468 { 3469 handle_t *handle = NULL; 3470 int ret = 0; 3471 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 3472 int dio_credits; 3473 3474 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n", 3475 inode->i_ino, create); 3476 /* 3477 * DIO VFS code passes create = 0 flag for write to 3478 * the middle of file. It does this to avoid block 3479 * allocation for holes, to prevent expose stale data 3480 * out when there is parallel buffered read (which does 3481 * not hold the i_mutex lock) while direct IO write has 3482 * not completed. DIO request on holes finally falls back 3483 * to buffered IO for this reason. 3484 * 3485 * For ext4 extent based file, since we support fallocate, 3486 * new allocated extent as uninitialized, for holes, we 3487 * could fallocate blocks for holes, thus parallel 3488 * buffered IO read will zero out the page when read on 3489 * a hole while parallel DIO write to the hole has not completed. 3490 * 3491 * when we come here, we know it's a direct IO write to 3492 * to the middle of file (<i_size) 3493 * so it's safe to override the create flag from VFS. 3494 */ 3495 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT; 3496 3497 if (max_blocks > DIO_MAX_BLOCKS) 3498 max_blocks = DIO_MAX_BLOCKS; 3499 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 3500 handle = ext4_journal_start(inode, dio_credits); 3501 if (IS_ERR(handle)) { 3502 ret = PTR_ERR(handle); 3503 goto out; 3504 } 3505 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 3506 create); 3507 if (ret > 0) { 3508 bh_result->b_size = (ret << inode->i_blkbits); 3509 ret = 0; 3510 } 3511 ext4_journal_stop(handle); 3512 out: 3513 return ret; 3514 } 3515 3516 static void ext4_free_io_end(ext4_io_end_t *io) 3517 { 3518 BUG_ON(!io); 3519 iput(io->inode); 3520 kfree(io); 3521 } 3522 static void dump_aio_dio_list(struct inode * inode) 3523 { 3524 #ifdef EXT4_DEBUG 3525 struct list_head *cur, *before, *after; 3526 ext4_io_end_t *io, *io0, *io1; 3527 3528 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ 3529 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino); 3530 return; 3531 } 3532 3533 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino); 3534 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){ 3535 cur = &io->list; 3536 before = cur->prev; 3537 io0 = container_of(before, ext4_io_end_t, list); 3538 after = cur->next; 3539 io1 = container_of(after, ext4_io_end_t, list); 3540 3541 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3542 io, inode->i_ino, io0, io1); 3543 } 3544 #endif 3545 } 3546 3547 /* 3548 * check a range of space and convert unwritten extents to written. 3549 */ 3550 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io) 3551 { 3552 struct inode *inode = io->inode; 3553 loff_t offset = io->offset; 3554 size_t size = io->size; 3555 int ret = 0; 3556 3557 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p," 3558 "list->prev 0x%p\n", 3559 io, inode->i_ino, io->list.next, io->list.prev); 3560 3561 if (list_empty(&io->list)) 3562 return ret; 3563 3564 if (io->flag != DIO_AIO_UNWRITTEN) 3565 return ret; 3566 3567 if (offset + size <= i_size_read(inode)) 3568 ret = ext4_convert_unwritten_extents(inode, offset, size); 3569 3570 if (ret < 0) { 3571 printk(KERN_EMERG "%s: failed to convert unwritten" 3572 "extents to written extents, error is %d" 3573 " io is still on inode %lu aio dio list\n", 3574 __func__, ret, inode->i_ino); 3575 return ret; 3576 } 3577 3578 /* clear the DIO AIO unwritten flag */ 3579 io->flag = 0; 3580 return ret; 3581 } 3582 /* 3583 * work on completed aio dio IO, to convert unwritten extents to extents 3584 */ 3585 static void ext4_end_aio_dio_work(struct work_struct *work) 3586 { 3587 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3588 struct inode *inode = io->inode; 3589 int ret = 0; 3590 3591 mutex_lock(&inode->i_mutex); 3592 ret = ext4_end_aio_dio_nolock(io); 3593 if (ret >= 0) { 3594 if (!list_empty(&io->list)) 3595 list_del_init(&io->list); 3596 ext4_free_io_end(io); 3597 } 3598 mutex_unlock(&inode->i_mutex); 3599 } 3600 /* 3601 * This function is called from ext4_sync_file(). 3602 * 3603 * When AIO DIO IO is completed, the work to convert unwritten 3604 * extents to written is queued on workqueue but may not get immediately 3605 * scheduled. When fsync is called, we need to ensure the 3606 * conversion is complete before fsync returns. 3607 * The inode keeps track of a list of completed AIO from DIO path 3608 * that might needs to do the conversion. This function walks through 3609 * the list and convert the related unwritten extents to written. 3610 */ 3611 int flush_aio_dio_completed_IO(struct inode *inode) 3612 { 3613 ext4_io_end_t *io; 3614 int ret = 0; 3615 int ret2 = 0; 3616 3617 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)) 3618 return ret; 3619 3620 dump_aio_dio_list(inode); 3621 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ 3622 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next, 3623 ext4_io_end_t, list); 3624 /* 3625 * Calling ext4_end_aio_dio_nolock() to convert completed 3626 * IO to written. 3627 * 3628 * When ext4_sync_file() is called, run_queue() may already 3629 * about to flush the work corresponding to this io structure. 3630 * It will be upset if it founds the io structure related 3631 * to the work-to-be schedule is freed. 3632 * 3633 * Thus we need to keep the io structure still valid here after 3634 * convertion finished. The io structure has a flag to 3635 * avoid double converting from both fsync and background work 3636 * queue work. 3637 */ 3638 ret = ext4_end_aio_dio_nolock(io); 3639 if (ret < 0) 3640 ret2 = ret; 3641 else 3642 list_del_init(&io->list); 3643 } 3644 return (ret2 < 0) ? ret2 : 0; 3645 } 3646 3647 static ext4_io_end_t *ext4_init_io_end (struct inode *inode) 3648 { 3649 ext4_io_end_t *io = NULL; 3650 3651 io = kmalloc(sizeof(*io), GFP_NOFS); 3652 3653 if (io) { 3654 igrab(inode); 3655 io->inode = inode; 3656 io->flag = 0; 3657 io->offset = 0; 3658 io->size = 0; 3659 io->error = 0; 3660 INIT_WORK(&io->work, ext4_end_aio_dio_work); 3661 INIT_LIST_HEAD(&io->list); 3662 } 3663 3664 return io; 3665 } 3666 3667 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3668 ssize_t size, void *private) 3669 { 3670 ext4_io_end_t *io_end = iocb->private; 3671 struct workqueue_struct *wq; 3672 3673 /* if not async direct IO or dio with 0 bytes write, just return */ 3674 if (!io_end || !size) 3675 return; 3676 3677 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3678 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3679 iocb->private, io_end->inode->i_ino, iocb, offset, 3680 size); 3681 3682 /* if not aio dio with unwritten extents, just free io and return */ 3683 if (io_end->flag != DIO_AIO_UNWRITTEN){ 3684 ext4_free_io_end(io_end); 3685 iocb->private = NULL; 3686 return; 3687 } 3688 3689 io_end->offset = offset; 3690 io_end->size = size; 3691 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3692 3693 /* queue the work to convert unwritten extents to written */ 3694 queue_work(wq, &io_end->work); 3695 3696 /* Add the io_end to per-inode completed aio dio list*/ 3697 list_add_tail(&io_end->list, 3698 &EXT4_I(io_end->inode)->i_aio_dio_complete_list); 3699 iocb->private = NULL; 3700 } 3701 /* 3702 * For ext4 extent files, ext4 will do direct-io write to holes, 3703 * preallocated extents, and those write extend the file, no need to 3704 * fall back to buffered IO. 3705 * 3706 * For holes, we fallocate those blocks, mark them as unintialized 3707 * If those blocks were preallocated, we mark sure they are splited, but 3708 * still keep the range to write as unintialized. 3709 * 3710 * The unwrritten extents will be converted to written when DIO is completed. 3711 * For async direct IO, since the IO may still pending when return, we 3712 * set up an end_io call back function, which will do the convertion 3713 * when async direct IO completed. 3714 * 3715 * If the O_DIRECT write will extend the file then add this inode to the 3716 * orphan list. So recovery will truncate it back to the original size 3717 * if the machine crashes during the write. 3718 * 3719 */ 3720 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3721 const struct iovec *iov, loff_t offset, 3722 unsigned long nr_segs) 3723 { 3724 struct file *file = iocb->ki_filp; 3725 struct inode *inode = file->f_mapping->host; 3726 ssize_t ret; 3727 size_t count = iov_length(iov, nr_segs); 3728 3729 loff_t final_size = offset + count; 3730 if (rw == WRITE && final_size <= inode->i_size) { 3731 /* 3732 * We could direct write to holes and fallocate. 3733 * 3734 * Allocated blocks to fill the hole are marked as uninitialized 3735 * to prevent paralel buffered read to expose the stale data 3736 * before DIO complete the data IO. 3737 * 3738 * As to previously fallocated extents, ext4 get_block 3739 * will just simply mark the buffer mapped but still 3740 * keep the extents uninitialized. 3741 * 3742 * for non AIO case, we will convert those unwritten extents 3743 * to written after return back from blockdev_direct_IO. 3744 * 3745 * for async DIO, the conversion needs to be defered when 3746 * the IO is completed. The ext4 end_io callback function 3747 * will be called to take care of the conversion work. 3748 * Here for async case, we allocate an io_end structure to 3749 * hook to the iocb. 3750 */ 3751 iocb->private = NULL; 3752 EXT4_I(inode)->cur_aio_dio = NULL; 3753 if (!is_sync_kiocb(iocb)) { 3754 iocb->private = ext4_init_io_end(inode); 3755 if (!iocb->private) 3756 return -ENOMEM; 3757 /* 3758 * we save the io structure for current async 3759 * direct IO, so that later ext4_get_blocks() 3760 * could flag the io structure whether there 3761 * is a unwritten extents needs to be converted 3762 * when IO is completed. 3763 */ 3764 EXT4_I(inode)->cur_aio_dio = iocb->private; 3765 } 3766 3767 ret = blockdev_direct_IO(rw, iocb, inode, 3768 inode->i_sb->s_bdev, iov, 3769 offset, nr_segs, 3770 ext4_get_block_dio_write, 3771 ext4_end_io_dio); 3772 if (iocb->private) 3773 EXT4_I(inode)->cur_aio_dio = NULL; 3774 /* 3775 * The io_end structure takes a reference to the inode, 3776 * that structure needs to be destroyed and the 3777 * reference to the inode need to be dropped, when IO is 3778 * complete, even with 0 byte write, or failed. 3779 * 3780 * In the successful AIO DIO case, the io_end structure will be 3781 * desctroyed and the reference to the inode will be dropped 3782 * after the end_io call back function is called. 3783 * 3784 * In the case there is 0 byte write, or error case, since 3785 * VFS direct IO won't invoke the end_io call back function, 3786 * we need to free the end_io structure here. 3787 */ 3788 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3789 ext4_free_io_end(iocb->private); 3790 iocb->private = NULL; 3791 } else if (ret > 0 && (EXT4_I(inode)->i_state & 3792 EXT4_STATE_DIO_UNWRITTEN)) { 3793 int err; 3794 /* 3795 * for non AIO case, since the IO is already 3796 * completed, we could do the convertion right here 3797 */ 3798 err = ext4_convert_unwritten_extents(inode, 3799 offset, ret); 3800 if (err < 0) 3801 ret = err; 3802 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN; 3803 } 3804 return ret; 3805 } 3806 3807 /* for write the the end of file case, we fall back to old way */ 3808 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3809 } 3810 3811 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3812 const struct iovec *iov, loff_t offset, 3813 unsigned long nr_segs) 3814 { 3815 struct file *file = iocb->ki_filp; 3816 struct inode *inode = file->f_mapping->host; 3817 3818 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3819 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3820 3821 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3822 } 3823 3824 /* 3825 * Pages can be marked dirty completely asynchronously from ext4's journalling 3826 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3827 * much here because ->set_page_dirty is called under VFS locks. The page is 3828 * not necessarily locked. 3829 * 3830 * We cannot just dirty the page and leave attached buffers clean, because the 3831 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3832 * or jbddirty because all the journalling code will explode. 3833 * 3834 * So what we do is to mark the page "pending dirty" and next time writepage 3835 * is called, propagate that into the buffers appropriately. 3836 */ 3837 static int ext4_journalled_set_page_dirty(struct page *page) 3838 { 3839 SetPageChecked(page); 3840 return __set_page_dirty_nobuffers(page); 3841 } 3842 3843 static const struct address_space_operations ext4_ordered_aops = { 3844 .readpage = ext4_readpage, 3845 .readpages = ext4_readpages, 3846 .writepage = ext4_writepage, 3847 .sync_page = block_sync_page, 3848 .write_begin = ext4_write_begin, 3849 .write_end = ext4_ordered_write_end, 3850 .bmap = ext4_bmap, 3851 .invalidatepage = ext4_invalidatepage, 3852 .releasepage = ext4_releasepage, 3853 .direct_IO = ext4_direct_IO, 3854 .migratepage = buffer_migrate_page, 3855 .is_partially_uptodate = block_is_partially_uptodate, 3856 .error_remove_page = generic_error_remove_page, 3857 }; 3858 3859 static const struct address_space_operations ext4_writeback_aops = { 3860 .readpage = ext4_readpage, 3861 .readpages = ext4_readpages, 3862 .writepage = ext4_writepage, 3863 .sync_page = block_sync_page, 3864 .write_begin = ext4_write_begin, 3865 .write_end = ext4_writeback_write_end, 3866 .bmap = ext4_bmap, 3867 .invalidatepage = ext4_invalidatepage, 3868 .releasepage = ext4_releasepage, 3869 .direct_IO = ext4_direct_IO, 3870 .migratepage = buffer_migrate_page, 3871 .is_partially_uptodate = block_is_partially_uptodate, 3872 .error_remove_page = generic_error_remove_page, 3873 }; 3874 3875 static const struct address_space_operations ext4_journalled_aops = { 3876 .readpage = ext4_readpage, 3877 .readpages = ext4_readpages, 3878 .writepage = ext4_writepage, 3879 .sync_page = block_sync_page, 3880 .write_begin = ext4_write_begin, 3881 .write_end = ext4_journalled_write_end, 3882 .set_page_dirty = ext4_journalled_set_page_dirty, 3883 .bmap = ext4_bmap, 3884 .invalidatepage = ext4_invalidatepage, 3885 .releasepage = ext4_releasepage, 3886 .is_partially_uptodate = block_is_partially_uptodate, 3887 .error_remove_page = generic_error_remove_page, 3888 }; 3889 3890 static const struct address_space_operations ext4_da_aops = { 3891 .readpage = ext4_readpage, 3892 .readpages = ext4_readpages, 3893 .writepage = ext4_writepage, 3894 .writepages = ext4_da_writepages, 3895 .sync_page = block_sync_page, 3896 .write_begin = ext4_da_write_begin, 3897 .write_end = ext4_da_write_end, 3898 .bmap = ext4_bmap, 3899 .invalidatepage = ext4_da_invalidatepage, 3900 .releasepage = ext4_releasepage, 3901 .direct_IO = ext4_direct_IO, 3902 .migratepage = buffer_migrate_page, 3903 .is_partially_uptodate = block_is_partially_uptodate, 3904 .error_remove_page = generic_error_remove_page, 3905 }; 3906 3907 void ext4_set_aops(struct inode *inode) 3908 { 3909 if (ext4_should_order_data(inode) && 3910 test_opt(inode->i_sb, DELALLOC)) 3911 inode->i_mapping->a_ops = &ext4_da_aops; 3912 else if (ext4_should_order_data(inode)) 3913 inode->i_mapping->a_ops = &ext4_ordered_aops; 3914 else if (ext4_should_writeback_data(inode) && 3915 test_opt(inode->i_sb, DELALLOC)) 3916 inode->i_mapping->a_ops = &ext4_da_aops; 3917 else if (ext4_should_writeback_data(inode)) 3918 inode->i_mapping->a_ops = &ext4_writeback_aops; 3919 else 3920 inode->i_mapping->a_ops = &ext4_journalled_aops; 3921 } 3922 3923 /* 3924 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3925 * up to the end of the block which corresponds to `from'. 3926 * This required during truncate. We need to physically zero the tail end 3927 * of that block so it doesn't yield old data if the file is later grown. 3928 */ 3929 int ext4_block_truncate_page(handle_t *handle, 3930 struct address_space *mapping, loff_t from) 3931 { 3932 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3933 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3934 unsigned blocksize, length, pos; 3935 ext4_lblk_t iblock; 3936 struct inode *inode = mapping->host; 3937 struct buffer_head *bh; 3938 struct page *page; 3939 int err = 0; 3940 3941 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3942 mapping_gfp_mask(mapping) & ~__GFP_FS); 3943 if (!page) 3944 return -EINVAL; 3945 3946 blocksize = inode->i_sb->s_blocksize; 3947 length = blocksize - (offset & (blocksize - 1)); 3948 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3949 3950 /* 3951 * For "nobh" option, we can only work if we don't need to 3952 * read-in the page - otherwise we create buffers to do the IO. 3953 */ 3954 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3955 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3956 zero_user(page, offset, length); 3957 set_page_dirty(page); 3958 goto unlock; 3959 } 3960 3961 if (!page_has_buffers(page)) 3962 create_empty_buffers(page, blocksize, 0); 3963 3964 /* Find the buffer that contains "offset" */ 3965 bh = page_buffers(page); 3966 pos = blocksize; 3967 while (offset >= pos) { 3968 bh = bh->b_this_page; 3969 iblock++; 3970 pos += blocksize; 3971 } 3972 3973 err = 0; 3974 if (buffer_freed(bh)) { 3975 BUFFER_TRACE(bh, "freed: skip"); 3976 goto unlock; 3977 } 3978 3979 if (!buffer_mapped(bh)) { 3980 BUFFER_TRACE(bh, "unmapped"); 3981 ext4_get_block(inode, iblock, bh, 0); 3982 /* unmapped? It's a hole - nothing to do */ 3983 if (!buffer_mapped(bh)) { 3984 BUFFER_TRACE(bh, "still unmapped"); 3985 goto unlock; 3986 } 3987 } 3988 3989 /* Ok, it's mapped. Make sure it's up-to-date */ 3990 if (PageUptodate(page)) 3991 set_buffer_uptodate(bh); 3992 3993 if (!buffer_uptodate(bh)) { 3994 err = -EIO; 3995 ll_rw_block(READ, 1, &bh); 3996 wait_on_buffer(bh); 3997 /* Uhhuh. Read error. Complain and punt. */ 3998 if (!buffer_uptodate(bh)) 3999 goto unlock; 4000 } 4001 4002 if (ext4_should_journal_data(inode)) { 4003 BUFFER_TRACE(bh, "get write access"); 4004 err = ext4_journal_get_write_access(handle, bh); 4005 if (err) 4006 goto unlock; 4007 } 4008 4009 zero_user(page, offset, length); 4010 4011 BUFFER_TRACE(bh, "zeroed end of block"); 4012 4013 err = 0; 4014 if (ext4_should_journal_data(inode)) { 4015 err = ext4_handle_dirty_metadata(handle, inode, bh); 4016 } else { 4017 if (ext4_should_order_data(inode)) 4018 err = ext4_jbd2_file_inode(handle, inode); 4019 mark_buffer_dirty(bh); 4020 } 4021 4022 unlock: 4023 unlock_page(page); 4024 page_cache_release(page); 4025 return err; 4026 } 4027 4028 /* 4029 * Probably it should be a library function... search for first non-zero word 4030 * or memcmp with zero_page, whatever is better for particular architecture. 4031 * Linus? 4032 */ 4033 static inline int all_zeroes(__le32 *p, __le32 *q) 4034 { 4035 while (p < q) 4036 if (*p++) 4037 return 0; 4038 return 1; 4039 } 4040 4041 /** 4042 * ext4_find_shared - find the indirect blocks for partial truncation. 4043 * @inode: inode in question 4044 * @depth: depth of the affected branch 4045 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4046 * @chain: place to store the pointers to partial indirect blocks 4047 * @top: place to the (detached) top of branch 4048 * 4049 * This is a helper function used by ext4_truncate(). 4050 * 4051 * When we do truncate() we may have to clean the ends of several 4052 * indirect blocks but leave the blocks themselves alive. Block is 4053 * partially truncated if some data below the new i_size is refered 4054 * from it (and it is on the path to the first completely truncated 4055 * data block, indeed). We have to free the top of that path along 4056 * with everything to the right of the path. Since no allocation 4057 * past the truncation point is possible until ext4_truncate() 4058 * finishes, we may safely do the latter, but top of branch may 4059 * require special attention - pageout below the truncation point 4060 * might try to populate it. 4061 * 4062 * We atomically detach the top of branch from the tree, store the 4063 * block number of its root in *@top, pointers to buffer_heads of 4064 * partially truncated blocks - in @chain[].bh and pointers to 4065 * their last elements that should not be removed - in 4066 * @chain[].p. Return value is the pointer to last filled element 4067 * of @chain. 4068 * 4069 * The work left to caller to do the actual freeing of subtrees: 4070 * a) free the subtree starting from *@top 4071 * b) free the subtrees whose roots are stored in 4072 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4073 * c) free the subtrees growing from the inode past the @chain[0]. 4074 * (no partially truncated stuff there). */ 4075 4076 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4077 ext4_lblk_t offsets[4], Indirect chain[4], 4078 __le32 *top) 4079 { 4080 Indirect *partial, *p; 4081 int k, err; 4082 4083 *top = 0; 4084 /* Make k index the deepest non-null offset + 1 */ 4085 for (k = depth; k > 1 && !offsets[k-1]; k--) 4086 ; 4087 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4088 /* Writer: pointers */ 4089 if (!partial) 4090 partial = chain + k-1; 4091 /* 4092 * If the branch acquired continuation since we've looked at it - 4093 * fine, it should all survive and (new) top doesn't belong to us. 4094 */ 4095 if (!partial->key && *partial->p) 4096 /* Writer: end */ 4097 goto no_top; 4098 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4099 ; 4100 /* 4101 * OK, we've found the last block that must survive. The rest of our 4102 * branch should be detached before unlocking. However, if that rest 4103 * of branch is all ours and does not grow immediately from the inode 4104 * it's easier to cheat and just decrement partial->p. 4105 */ 4106 if (p == chain + k - 1 && p > chain) { 4107 p->p--; 4108 } else { 4109 *top = *p->p; 4110 /* Nope, don't do this in ext4. Must leave the tree intact */ 4111 #if 0 4112 *p->p = 0; 4113 #endif 4114 } 4115 /* Writer: end */ 4116 4117 while (partial > p) { 4118 brelse(partial->bh); 4119 partial--; 4120 } 4121 no_top: 4122 return partial; 4123 } 4124 4125 /* 4126 * Zero a number of block pointers in either an inode or an indirect block. 4127 * If we restart the transaction we must again get write access to the 4128 * indirect block for further modification. 4129 * 4130 * We release `count' blocks on disk, but (last - first) may be greater 4131 * than `count' because there can be holes in there. 4132 */ 4133 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 4134 struct buffer_head *bh, 4135 ext4_fsblk_t block_to_free, 4136 unsigned long count, __le32 *first, 4137 __le32 *last) 4138 { 4139 __le32 *p; 4140 int flags = EXT4_FREE_BLOCKS_FORGET; 4141 4142 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4143 flags |= EXT4_FREE_BLOCKS_METADATA; 4144 4145 if (try_to_extend_transaction(handle, inode)) { 4146 if (bh) { 4147 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4148 ext4_handle_dirty_metadata(handle, inode, bh); 4149 } 4150 ext4_mark_inode_dirty(handle, inode); 4151 ext4_truncate_restart_trans(handle, inode, 4152 blocks_for_truncate(inode)); 4153 if (bh) { 4154 BUFFER_TRACE(bh, "retaking write access"); 4155 ext4_journal_get_write_access(handle, bh); 4156 } 4157 } 4158 4159 for (p = first; p < last; p++) 4160 *p = 0; 4161 4162 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4163 } 4164 4165 /** 4166 * ext4_free_data - free a list of data blocks 4167 * @handle: handle for this transaction 4168 * @inode: inode we are dealing with 4169 * @this_bh: indirect buffer_head which contains *@first and *@last 4170 * @first: array of block numbers 4171 * @last: points immediately past the end of array 4172 * 4173 * We are freeing all blocks refered from that array (numbers are stored as 4174 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4175 * 4176 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4177 * blocks are contiguous then releasing them at one time will only affect one 4178 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4179 * actually use a lot of journal space. 4180 * 4181 * @this_bh will be %NULL if @first and @last point into the inode's direct 4182 * block pointers. 4183 */ 4184 static void ext4_free_data(handle_t *handle, struct inode *inode, 4185 struct buffer_head *this_bh, 4186 __le32 *first, __le32 *last) 4187 { 4188 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4189 unsigned long count = 0; /* Number of blocks in the run */ 4190 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4191 corresponding to 4192 block_to_free */ 4193 ext4_fsblk_t nr; /* Current block # */ 4194 __le32 *p; /* Pointer into inode/ind 4195 for current block */ 4196 int err; 4197 4198 if (this_bh) { /* For indirect block */ 4199 BUFFER_TRACE(this_bh, "get_write_access"); 4200 err = ext4_journal_get_write_access(handle, this_bh); 4201 /* Important: if we can't update the indirect pointers 4202 * to the blocks, we can't free them. */ 4203 if (err) 4204 return; 4205 } 4206 4207 for (p = first; p < last; p++) { 4208 nr = le32_to_cpu(*p); 4209 if (nr) { 4210 /* accumulate blocks to free if they're contiguous */ 4211 if (count == 0) { 4212 block_to_free = nr; 4213 block_to_free_p = p; 4214 count = 1; 4215 } else if (nr == block_to_free + count) { 4216 count++; 4217 } else { 4218 ext4_clear_blocks(handle, inode, this_bh, 4219 block_to_free, 4220 count, block_to_free_p, p); 4221 block_to_free = nr; 4222 block_to_free_p = p; 4223 count = 1; 4224 } 4225 } 4226 } 4227 4228 if (count > 0) 4229 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4230 count, block_to_free_p, p); 4231 4232 if (this_bh) { 4233 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4234 4235 /* 4236 * The buffer head should have an attached journal head at this 4237 * point. However, if the data is corrupted and an indirect 4238 * block pointed to itself, it would have been detached when 4239 * the block was cleared. Check for this instead of OOPSing. 4240 */ 4241 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4242 ext4_handle_dirty_metadata(handle, inode, this_bh); 4243 else 4244 ext4_error(inode->i_sb, __func__, 4245 "circular indirect block detected, " 4246 "inode=%lu, block=%llu", 4247 inode->i_ino, 4248 (unsigned long long) this_bh->b_blocknr); 4249 } 4250 } 4251 4252 /** 4253 * ext4_free_branches - free an array of branches 4254 * @handle: JBD handle for this transaction 4255 * @inode: inode we are dealing with 4256 * @parent_bh: the buffer_head which contains *@first and *@last 4257 * @first: array of block numbers 4258 * @last: pointer immediately past the end of array 4259 * @depth: depth of the branches to free 4260 * 4261 * We are freeing all blocks refered from these branches (numbers are 4262 * stored as little-endian 32-bit) and updating @inode->i_blocks 4263 * appropriately. 4264 */ 4265 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4266 struct buffer_head *parent_bh, 4267 __le32 *first, __le32 *last, int depth) 4268 { 4269 ext4_fsblk_t nr; 4270 __le32 *p; 4271 4272 if (ext4_handle_is_aborted(handle)) 4273 return; 4274 4275 if (depth--) { 4276 struct buffer_head *bh; 4277 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4278 p = last; 4279 while (--p >= first) { 4280 nr = le32_to_cpu(*p); 4281 if (!nr) 4282 continue; /* A hole */ 4283 4284 /* Go read the buffer for the next level down */ 4285 bh = sb_bread(inode->i_sb, nr); 4286 4287 /* 4288 * A read failure? Report error and clear slot 4289 * (should be rare). 4290 */ 4291 if (!bh) { 4292 ext4_error(inode->i_sb, "ext4_free_branches", 4293 "Read failure, inode=%lu, block=%llu", 4294 inode->i_ino, nr); 4295 continue; 4296 } 4297 4298 /* This zaps the entire block. Bottom up. */ 4299 BUFFER_TRACE(bh, "free child branches"); 4300 ext4_free_branches(handle, inode, bh, 4301 (__le32 *) bh->b_data, 4302 (__le32 *) bh->b_data + addr_per_block, 4303 depth); 4304 4305 /* 4306 * We've probably journalled the indirect block several 4307 * times during the truncate. But it's no longer 4308 * needed and we now drop it from the transaction via 4309 * jbd2_journal_revoke(). 4310 * 4311 * That's easy if it's exclusively part of this 4312 * transaction. But if it's part of the committing 4313 * transaction then jbd2_journal_forget() will simply 4314 * brelse() it. That means that if the underlying 4315 * block is reallocated in ext4_get_block(), 4316 * unmap_underlying_metadata() will find this block 4317 * and will try to get rid of it. damn, damn. 4318 * 4319 * If this block has already been committed to the 4320 * journal, a revoke record will be written. And 4321 * revoke records must be emitted *before* clearing 4322 * this block's bit in the bitmaps. 4323 */ 4324 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 4325 4326 /* 4327 * Everything below this this pointer has been 4328 * released. Now let this top-of-subtree go. 4329 * 4330 * We want the freeing of this indirect block to be 4331 * atomic in the journal with the updating of the 4332 * bitmap block which owns it. So make some room in 4333 * the journal. 4334 * 4335 * We zero the parent pointer *after* freeing its 4336 * pointee in the bitmaps, so if extend_transaction() 4337 * for some reason fails to put the bitmap changes and 4338 * the release into the same transaction, recovery 4339 * will merely complain about releasing a free block, 4340 * rather than leaking blocks. 4341 */ 4342 if (ext4_handle_is_aborted(handle)) 4343 return; 4344 if (try_to_extend_transaction(handle, inode)) { 4345 ext4_mark_inode_dirty(handle, inode); 4346 ext4_truncate_restart_trans(handle, inode, 4347 blocks_for_truncate(inode)); 4348 } 4349 4350 ext4_free_blocks(handle, inode, 0, nr, 1, 4351 EXT4_FREE_BLOCKS_METADATA); 4352 4353 if (parent_bh) { 4354 /* 4355 * The block which we have just freed is 4356 * pointed to by an indirect block: journal it 4357 */ 4358 BUFFER_TRACE(parent_bh, "get_write_access"); 4359 if (!ext4_journal_get_write_access(handle, 4360 parent_bh)){ 4361 *p = 0; 4362 BUFFER_TRACE(parent_bh, 4363 "call ext4_handle_dirty_metadata"); 4364 ext4_handle_dirty_metadata(handle, 4365 inode, 4366 parent_bh); 4367 } 4368 } 4369 } 4370 } else { 4371 /* We have reached the bottom of the tree. */ 4372 BUFFER_TRACE(parent_bh, "free data blocks"); 4373 ext4_free_data(handle, inode, parent_bh, first, last); 4374 } 4375 } 4376 4377 int ext4_can_truncate(struct inode *inode) 4378 { 4379 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4380 return 0; 4381 if (S_ISREG(inode->i_mode)) 4382 return 1; 4383 if (S_ISDIR(inode->i_mode)) 4384 return 1; 4385 if (S_ISLNK(inode->i_mode)) 4386 return !ext4_inode_is_fast_symlink(inode); 4387 return 0; 4388 } 4389 4390 /* 4391 * ext4_truncate() 4392 * 4393 * We block out ext4_get_block() block instantiations across the entire 4394 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4395 * simultaneously on behalf of the same inode. 4396 * 4397 * As we work through the truncate and commmit bits of it to the journal there 4398 * is one core, guiding principle: the file's tree must always be consistent on 4399 * disk. We must be able to restart the truncate after a crash. 4400 * 4401 * The file's tree may be transiently inconsistent in memory (although it 4402 * probably isn't), but whenever we close off and commit a journal transaction, 4403 * the contents of (the filesystem + the journal) must be consistent and 4404 * restartable. It's pretty simple, really: bottom up, right to left (although 4405 * left-to-right works OK too). 4406 * 4407 * Note that at recovery time, journal replay occurs *before* the restart of 4408 * truncate against the orphan inode list. 4409 * 4410 * The committed inode has the new, desired i_size (which is the same as 4411 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4412 * that this inode's truncate did not complete and it will again call 4413 * ext4_truncate() to have another go. So there will be instantiated blocks 4414 * to the right of the truncation point in a crashed ext4 filesystem. But 4415 * that's fine - as long as they are linked from the inode, the post-crash 4416 * ext4_truncate() run will find them and release them. 4417 */ 4418 void ext4_truncate(struct inode *inode) 4419 { 4420 handle_t *handle; 4421 struct ext4_inode_info *ei = EXT4_I(inode); 4422 __le32 *i_data = ei->i_data; 4423 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4424 struct address_space *mapping = inode->i_mapping; 4425 ext4_lblk_t offsets[4]; 4426 Indirect chain[4]; 4427 Indirect *partial; 4428 __le32 nr = 0; 4429 int n; 4430 ext4_lblk_t last_block; 4431 unsigned blocksize = inode->i_sb->s_blocksize; 4432 4433 if (!ext4_can_truncate(inode)) 4434 return; 4435 4436 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4437 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE; 4438 4439 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 4440 ext4_ext_truncate(inode); 4441 return; 4442 } 4443 4444 handle = start_transaction(inode); 4445 if (IS_ERR(handle)) 4446 return; /* AKPM: return what? */ 4447 4448 last_block = (inode->i_size + blocksize-1) 4449 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4450 4451 if (inode->i_size & (blocksize - 1)) 4452 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4453 goto out_stop; 4454 4455 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4456 if (n == 0) 4457 goto out_stop; /* error */ 4458 4459 /* 4460 * OK. This truncate is going to happen. We add the inode to the 4461 * orphan list, so that if this truncate spans multiple transactions, 4462 * and we crash, we will resume the truncate when the filesystem 4463 * recovers. It also marks the inode dirty, to catch the new size. 4464 * 4465 * Implication: the file must always be in a sane, consistent 4466 * truncatable state while each transaction commits. 4467 */ 4468 if (ext4_orphan_add(handle, inode)) 4469 goto out_stop; 4470 4471 /* 4472 * From here we block out all ext4_get_block() callers who want to 4473 * modify the block allocation tree. 4474 */ 4475 down_write(&ei->i_data_sem); 4476 4477 ext4_discard_preallocations(inode); 4478 4479 /* 4480 * The orphan list entry will now protect us from any crash which 4481 * occurs before the truncate completes, so it is now safe to propagate 4482 * the new, shorter inode size (held for now in i_size) into the 4483 * on-disk inode. We do this via i_disksize, which is the value which 4484 * ext4 *really* writes onto the disk inode. 4485 */ 4486 ei->i_disksize = inode->i_size; 4487 4488 if (n == 1) { /* direct blocks */ 4489 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4490 i_data + EXT4_NDIR_BLOCKS); 4491 goto do_indirects; 4492 } 4493 4494 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4495 /* Kill the top of shared branch (not detached) */ 4496 if (nr) { 4497 if (partial == chain) { 4498 /* Shared branch grows from the inode */ 4499 ext4_free_branches(handle, inode, NULL, 4500 &nr, &nr+1, (chain+n-1) - partial); 4501 *partial->p = 0; 4502 /* 4503 * We mark the inode dirty prior to restart, 4504 * and prior to stop. No need for it here. 4505 */ 4506 } else { 4507 /* Shared branch grows from an indirect block */ 4508 BUFFER_TRACE(partial->bh, "get_write_access"); 4509 ext4_free_branches(handle, inode, partial->bh, 4510 partial->p, 4511 partial->p+1, (chain+n-1) - partial); 4512 } 4513 } 4514 /* Clear the ends of indirect blocks on the shared branch */ 4515 while (partial > chain) { 4516 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4517 (__le32*)partial->bh->b_data+addr_per_block, 4518 (chain+n-1) - partial); 4519 BUFFER_TRACE(partial->bh, "call brelse"); 4520 brelse(partial->bh); 4521 partial--; 4522 } 4523 do_indirects: 4524 /* Kill the remaining (whole) subtrees */ 4525 switch (offsets[0]) { 4526 default: 4527 nr = i_data[EXT4_IND_BLOCK]; 4528 if (nr) { 4529 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4530 i_data[EXT4_IND_BLOCK] = 0; 4531 } 4532 case EXT4_IND_BLOCK: 4533 nr = i_data[EXT4_DIND_BLOCK]; 4534 if (nr) { 4535 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4536 i_data[EXT4_DIND_BLOCK] = 0; 4537 } 4538 case EXT4_DIND_BLOCK: 4539 nr = i_data[EXT4_TIND_BLOCK]; 4540 if (nr) { 4541 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4542 i_data[EXT4_TIND_BLOCK] = 0; 4543 } 4544 case EXT4_TIND_BLOCK: 4545 ; 4546 } 4547 4548 up_write(&ei->i_data_sem); 4549 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4550 ext4_mark_inode_dirty(handle, inode); 4551 4552 /* 4553 * In a multi-transaction truncate, we only make the final transaction 4554 * synchronous 4555 */ 4556 if (IS_SYNC(inode)) 4557 ext4_handle_sync(handle); 4558 out_stop: 4559 /* 4560 * If this was a simple ftruncate(), and the file will remain alive 4561 * then we need to clear up the orphan record which we created above. 4562 * However, if this was a real unlink then we were called by 4563 * ext4_delete_inode(), and we allow that function to clean up the 4564 * orphan info for us. 4565 */ 4566 if (inode->i_nlink) 4567 ext4_orphan_del(handle, inode); 4568 4569 ext4_journal_stop(handle); 4570 } 4571 4572 /* 4573 * ext4_get_inode_loc returns with an extra refcount against the inode's 4574 * underlying buffer_head on success. If 'in_mem' is true, we have all 4575 * data in memory that is needed to recreate the on-disk version of this 4576 * inode. 4577 */ 4578 static int __ext4_get_inode_loc(struct inode *inode, 4579 struct ext4_iloc *iloc, int in_mem) 4580 { 4581 struct ext4_group_desc *gdp; 4582 struct buffer_head *bh; 4583 struct super_block *sb = inode->i_sb; 4584 ext4_fsblk_t block; 4585 int inodes_per_block, inode_offset; 4586 4587 iloc->bh = NULL; 4588 if (!ext4_valid_inum(sb, inode->i_ino)) 4589 return -EIO; 4590 4591 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4592 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4593 if (!gdp) 4594 return -EIO; 4595 4596 /* 4597 * Figure out the offset within the block group inode table 4598 */ 4599 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4600 inode_offset = ((inode->i_ino - 1) % 4601 EXT4_INODES_PER_GROUP(sb)); 4602 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4603 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4604 4605 bh = sb_getblk(sb, block); 4606 if (!bh) { 4607 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 4608 "inode block - inode=%lu, block=%llu", 4609 inode->i_ino, block); 4610 return -EIO; 4611 } 4612 if (!buffer_uptodate(bh)) { 4613 lock_buffer(bh); 4614 4615 /* 4616 * If the buffer has the write error flag, we have failed 4617 * to write out another inode in the same block. In this 4618 * case, we don't have to read the block because we may 4619 * read the old inode data successfully. 4620 */ 4621 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4622 set_buffer_uptodate(bh); 4623 4624 if (buffer_uptodate(bh)) { 4625 /* someone brought it uptodate while we waited */ 4626 unlock_buffer(bh); 4627 goto has_buffer; 4628 } 4629 4630 /* 4631 * If we have all information of the inode in memory and this 4632 * is the only valid inode in the block, we need not read the 4633 * block. 4634 */ 4635 if (in_mem) { 4636 struct buffer_head *bitmap_bh; 4637 int i, start; 4638 4639 start = inode_offset & ~(inodes_per_block - 1); 4640 4641 /* Is the inode bitmap in cache? */ 4642 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4643 if (!bitmap_bh) 4644 goto make_io; 4645 4646 /* 4647 * If the inode bitmap isn't in cache then the 4648 * optimisation may end up performing two reads instead 4649 * of one, so skip it. 4650 */ 4651 if (!buffer_uptodate(bitmap_bh)) { 4652 brelse(bitmap_bh); 4653 goto make_io; 4654 } 4655 for (i = start; i < start + inodes_per_block; i++) { 4656 if (i == inode_offset) 4657 continue; 4658 if (ext4_test_bit(i, bitmap_bh->b_data)) 4659 break; 4660 } 4661 brelse(bitmap_bh); 4662 if (i == start + inodes_per_block) { 4663 /* all other inodes are free, so skip I/O */ 4664 memset(bh->b_data, 0, bh->b_size); 4665 set_buffer_uptodate(bh); 4666 unlock_buffer(bh); 4667 goto has_buffer; 4668 } 4669 } 4670 4671 make_io: 4672 /* 4673 * If we need to do any I/O, try to pre-readahead extra 4674 * blocks from the inode table. 4675 */ 4676 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4677 ext4_fsblk_t b, end, table; 4678 unsigned num; 4679 4680 table = ext4_inode_table(sb, gdp); 4681 /* s_inode_readahead_blks is always a power of 2 */ 4682 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4683 if (table > b) 4684 b = table; 4685 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4686 num = EXT4_INODES_PER_GROUP(sb); 4687 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4688 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4689 num -= ext4_itable_unused_count(sb, gdp); 4690 table += num / inodes_per_block; 4691 if (end > table) 4692 end = table; 4693 while (b <= end) 4694 sb_breadahead(sb, b++); 4695 } 4696 4697 /* 4698 * There are other valid inodes in the buffer, this inode 4699 * has in-inode xattrs, or we don't have this inode in memory. 4700 * Read the block from disk. 4701 */ 4702 get_bh(bh); 4703 bh->b_end_io = end_buffer_read_sync; 4704 submit_bh(READ_META, bh); 4705 wait_on_buffer(bh); 4706 if (!buffer_uptodate(bh)) { 4707 ext4_error(sb, __func__, 4708 "unable to read inode block - inode=%lu, " 4709 "block=%llu", inode->i_ino, block); 4710 brelse(bh); 4711 return -EIO; 4712 } 4713 } 4714 has_buffer: 4715 iloc->bh = bh; 4716 return 0; 4717 } 4718 4719 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4720 { 4721 /* We have all inode data except xattrs in memory here. */ 4722 return __ext4_get_inode_loc(inode, iloc, 4723 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 4724 } 4725 4726 void ext4_set_inode_flags(struct inode *inode) 4727 { 4728 unsigned int flags = EXT4_I(inode)->i_flags; 4729 4730 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4731 if (flags & EXT4_SYNC_FL) 4732 inode->i_flags |= S_SYNC; 4733 if (flags & EXT4_APPEND_FL) 4734 inode->i_flags |= S_APPEND; 4735 if (flags & EXT4_IMMUTABLE_FL) 4736 inode->i_flags |= S_IMMUTABLE; 4737 if (flags & EXT4_NOATIME_FL) 4738 inode->i_flags |= S_NOATIME; 4739 if (flags & EXT4_DIRSYNC_FL) 4740 inode->i_flags |= S_DIRSYNC; 4741 } 4742 4743 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4744 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4745 { 4746 unsigned int flags = ei->vfs_inode.i_flags; 4747 4748 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4749 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4750 if (flags & S_SYNC) 4751 ei->i_flags |= EXT4_SYNC_FL; 4752 if (flags & S_APPEND) 4753 ei->i_flags |= EXT4_APPEND_FL; 4754 if (flags & S_IMMUTABLE) 4755 ei->i_flags |= EXT4_IMMUTABLE_FL; 4756 if (flags & S_NOATIME) 4757 ei->i_flags |= EXT4_NOATIME_FL; 4758 if (flags & S_DIRSYNC) 4759 ei->i_flags |= EXT4_DIRSYNC_FL; 4760 } 4761 4762 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4763 struct ext4_inode_info *ei) 4764 { 4765 blkcnt_t i_blocks ; 4766 struct inode *inode = &(ei->vfs_inode); 4767 struct super_block *sb = inode->i_sb; 4768 4769 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4770 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4771 /* we are using combined 48 bit field */ 4772 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4773 le32_to_cpu(raw_inode->i_blocks_lo); 4774 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4775 /* i_blocks represent file system block size */ 4776 return i_blocks << (inode->i_blkbits - 9); 4777 } else { 4778 return i_blocks; 4779 } 4780 } else { 4781 return le32_to_cpu(raw_inode->i_blocks_lo); 4782 } 4783 } 4784 4785 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4786 { 4787 struct ext4_iloc iloc; 4788 struct ext4_inode *raw_inode; 4789 struct ext4_inode_info *ei; 4790 struct inode *inode; 4791 journal_t *journal = EXT4_SB(sb)->s_journal; 4792 long ret; 4793 int block; 4794 4795 inode = iget_locked(sb, ino); 4796 if (!inode) 4797 return ERR_PTR(-ENOMEM); 4798 if (!(inode->i_state & I_NEW)) 4799 return inode; 4800 4801 ei = EXT4_I(inode); 4802 iloc.bh = 0; 4803 4804 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4805 if (ret < 0) 4806 goto bad_inode; 4807 raw_inode = ext4_raw_inode(&iloc); 4808 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4809 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4810 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4811 if (!(test_opt(inode->i_sb, NO_UID32))) { 4812 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4813 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4814 } 4815 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4816 4817 ei->i_state = 0; 4818 ei->i_dir_start_lookup = 0; 4819 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4820 /* We now have enough fields to check if the inode was active or not. 4821 * This is needed because nfsd might try to access dead inodes 4822 * the test is that same one that e2fsck uses 4823 * NeilBrown 1999oct15 4824 */ 4825 if (inode->i_nlink == 0) { 4826 if (inode->i_mode == 0 || 4827 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4828 /* this inode is deleted */ 4829 ret = -ESTALE; 4830 goto bad_inode; 4831 } 4832 /* The only unlinked inodes we let through here have 4833 * valid i_mode and are being read by the orphan 4834 * recovery code: that's fine, we're about to complete 4835 * the process of deleting those. */ 4836 } 4837 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4838 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4839 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4840 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4841 ei->i_file_acl |= 4842 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4843 inode->i_size = ext4_isize(raw_inode); 4844 ei->i_disksize = inode->i_size; 4845 #ifdef CONFIG_QUOTA 4846 ei->i_reserved_quota = 0; 4847 #endif 4848 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4849 ei->i_block_group = iloc.block_group; 4850 ei->i_last_alloc_group = ~0; 4851 /* 4852 * NOTE! The in-memory inode i_data array is in little-endian order 4853 * even on big-endian machines: we do NOT byteswap the block numbers! 4854 */ 4855 for (block = 0; block < EXT4_N_BLOCKS; block++) 4856 ei->i_data[block] = raw_inode->i_block[block]; 4857 INIT_LIST_HEAD(&ei->i_orphan); 4858 4859 /* 4860 * Set transaction id's of transactions that have to be committed 4861 * to finish f[data]sync. We set them to currently running transaction 4862 * as we cannot be sure that the inode or some of its metadata isn't 4863 * part of the transaction - the inode could have been reclaimed and 4864 * now it is reread from disk. 4865 */ 4866 if (journal) { 4867 transaction_t *transaction; 4868 tid_t tid; 4869 4870 spin_lock(&journal->j_state_lock); 4871 if (journal->j_running_transaction) 4872 transaction = journal->j_running_transaction; 4873 else 4874 transaction = journal->j_committing_transaction; 4875 if (transaction) 4876 tid = transaction->t_tid; 4877 else 4878 tid = journal->j_commit_sequence; 4879 spin_unlock(&journal->j_state_lock); 4880 ei->i_sync_tid = tid; 4881 ei->i_datasync_tid = tid; 4882 } 4883 4884 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4885 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4886 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4887 EXT4_INODE_SIZE(inode->i_sb)) { 4888 ret = -EIO; 4889 goto bad_inode; 4890 } 4891 if (ei->i_extra_isize == 0) { 4892 /* The extra space is currently unused. Use it. */ 4893 ei->i_extra_isize = sizeof(struct ext4_inode) - 4894 EXT4_GOOD_OLD_INODE_SIZE; 4895 } else { 4896 __le32 *magic = (void *)raw_inode + 4897 EXT4_GOOD_OLD_INODE_SIZE + 4898 ei->i_extra_isize; 4899 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4900 ei->i_state |= EXT4_STATE_XATTR; 4901 } 4902 } else 4903 ei->i_extra_isize = 0; 4904 4905 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4906 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4907 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4908 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4909 4910 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4911 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4912 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4913 inode->i_version |= 4914 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4915 } 4916 4917 ret = 0; 4918 if (ei->i_file_acl && 4919 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4920 ext4_error(sb, __func__, 4921 "bad extended attribute block %llu in inode #%lu", 4922 ei->i_file_acl, inode->i_ino); 4923 ret = -EIO; 4924 goto bad_inode; 4925 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 4926 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4927 (S_ISLNK(inode->i_mode) && 4928 !ext4_inode_is_fast_symlink(inode))) 4929 /* Validate extent which is part of inode */ 4930 ret = ext4_ext_check_inode(inode); 4931 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4932 (S_ISLNK(inode->i_mode) && 4933 !ext4_inode_is_fast_symlink(inode))) { 4934 /* Validate block references which are part of inode */ 4935 ret = ext4_check_inode_blockref(inode); 4936 } 4937 if (ret) 4938 goto bad_inode; 4939 4940 if (S_ISREG(inode->i_mode)) { 4941 inode->i_op = &ext4_file_inode_operations; 4942 inode->i_fop = &ext4_file_operations; 4943 ext4_set_aops(inode); 4944 } else if (S_ISDIR(inode->i_mode)) { 4945 inode->i_op = &ext4_dir_inode_operations; 4946 inode->i_fop = &ext4_dir_operations; 4947 } else if (S_ISLNK(inode->i_mode)) { 4948 if (ext4_inode_is_fast_symlink(inode)) { 4949 inode->i_op = &ext4_fast_symlink_inode_operations; 4950 nd_terminate_link(ei->i_data, inode->i_size, 4951 sizeof(ei->i_data) - 1); 4952 } else { 4953 inode->i_op = &ext4_symlink_inode_operations; 4954 ext4_set_aops(inode); 4955 } 4956 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4957 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4958 inode->i_op = &ext4_special_inode_operations; 4959 if (raw_inode->i_block[0]) 4960 init_special_inode(inode, inode->i_mode, 4961 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4962 else 4963 init_special_inode(inode, inode->i_mode, 4964 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4965 } else { 4966 ret = -EIO; 4967 ext4_error(inode->i_sb, __func__, 4968 "bogus i_mode (%o) for inode=%lu", 4969 inode->i_mode, inode->i_ino); 4970 goto bad_inode; 4971 } 4972 brelse(iloc.bh); 4973 ext4_set_inode_flags(inode); 4974 unlock_new_inode(inode); 4975 return inode; 4976 4977 bad_inode: 4978 brelse(iloc.bh); 4979 iget_failed(inode); 4980 return ERR_PTR(ret); 4981 } 4982 4983 static int ext4_inode_blocks_set(handle_t *handle, 4984 struct ext4_inode *raw_inode, 4985 struct ext4_inode_info *ei) 4986 { 4987 struct inode *inode = &(ei->vfs_inode); 4988 u64 i_blocks = inode->i_blocks; 4989 struct super_block *sb = inode->i_sb; 4990 4991 if (i_blocks <= ~0U) { 4992 /* 4993 * i_blocks can be represnted in a 32 bit variable 4994 * as multiple of 512 bytes 4995 */ 4996 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4997 raw_inode->i_blocks_high = 0; 4998 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4999 return 0; 5000 } 5001 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5002 return -EFBIG; 5003 5004 if (i_blocks <= 0xffffffffffffULL) { 5005 /* 5006 * i_blocks can be represented in a 48 bit variable 5007 * as multiple of 512 bytes 5008 */ 5009 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5010 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5011 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5012 } else { 5013 ei->i_flags |= EXT4_HUGE_FILE_FL; 5014 /* i_block is stored in file system block size */ 5015 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5016 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5017 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5018 } 5019 return 0; 5020 } 5021 5022 /* 5023 * Post the struct inode info into an on-disk inode location in the 5024 * buffer-cache. This gobbles the caller's reference to the 5025 * buffer_head in the inode location struct. 5026 * 5027 * The caller must have write access to iloc->bh. 5028 */ 5029 static int ext4_do_update_inode(handle_t *handle, 5030 struct inode *inode, 5031 struct ext4_iloc *iloc) 5032 { 5033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5034 struct ext4_inode_info *ei = EXT4_I(inode); 5035 struct buffer_head *bh = iloc->bh; 5036 int err = 0, rc, block; 5037 5038 /* For fields not not tracking in the in-memory inode, 5039 * initialise them to zero for new inodes. */ 5040 if (ei->i_state & EXT4_STATE_NEW) 5041 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5042 5043 ext4_get_inode_flags(ei); 5044 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5045 if (!(test_opt(inode->i_sb, NO_UID32))) { 5046 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5047 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5048 /* 5049 * Fix up interoperability with old kernels. Otherwise, old inodes get 5050 * re-used with the upper 16 bits of the uid/gid intact 5051 */ 5052 if (!ei->i_dtime) { 5053 raw_inode->i_uid_high = 5054 cpu_to_le16(high_16_bits(inode->i_uid)); 5055 raw_inode->i_gid_high = 5056 cpu_to_le16(high_16_bits(inode->i_gid)); 5057 } else { 5058 raw_inode->i_uid_high = 0; 5059 raw_inode->i_gid_high = 0; 5060 } 5061 } else { 5062 raw_inode->i_uid_low = 5063 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5064 raw_inode->i_gid_low = 5065 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5066 raw_inode->i_uid_high = 0; 5067 raw_inode->i_gid_high = 0; 5068 } 5069 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5070 5071 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5072 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5073 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5074 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5075 5076 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5077 goto out_brelse; 5078 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5079 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5080 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5081 cpu_to_le32(EXT4_OS_HURD)) 5082 raw_inode->i_file_acl_high = 5083 cpu_to_le16(ei->i_file_acl >> 32); 5084 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5085 ext4_isize_set(raw_inode, ei->i_disksize); 5086 if (ei->i_disksize > 0x7fffffffULL) { 5087 struct super_block *sb = inode->i_sb; 5088 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5089 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5090 EXT4_SB(sb)->s_es->s_rev_level == 5091 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5092 /* If this is the first large file 5093 * created, add a flag to the superblock. 5094 */ 5095 err = ext4_journal_get_write_access(handle, 5096 EXT4_SB(sb)->s_sbh); 5097 if (err) 5098 goto out_brelse; 5099 ext4_update_dynamic_rev(sb); 5100 EXT4_SET_RO_COMPAT_FEATURE(sb, 5101 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5102 sb->s_dirt = 1; 5103 ext4_handle_sync(handle); 5104 err = ext4_handle_dirty_metadata(handle, inode, 5105 EXT4_SB(sb)->s_sbh); 5106 } 5107 } 5108 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5109 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5110 if (old_valid_dev(inode->i_rdev)) { 5111 raw_inode->i_block[0] = 5112 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5113 raw_inode->i_block[1] = 0; 5114 } else { 5115 raw_inode->i_block[0] = 0; 5116 raw_inode->i_block[1] = 5117 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5118 raw_inode->i_block[2] = 0; 5119 } 5120 } else 5121 for (block = 0; block < EXT4_N_BLOCKS; block++) 5122 raw_inode->i_block[block] = ei->i_data[block]; 5123 5124 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5125 if (ei->i_extra_isize) { 5126 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5127 raw_inode->i_version_hi = 5128 cpu_to_le32(inode->i_version >> 32); 5129 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5130 } 5131 5132 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5133 rc = ext4_handle_dirty_metadata(handle, inode, bh); 5134 if (!err) 5135 err = rc; 5136 ei->i_state &= ~EXT4_STATE_NEW; 5137 5138 ext4_update_inode_fsync_trans(handle, inode, 0); 5139 out_brelse: 5140 brelse(bh); 5141 ext4_std_error(inode->i_sb, err); 5142 return err; 5143 } 5144 5145 /* 5146 * ext4_write_inode() 5147 * 5148 * We are called from a few places: 5149 * 5150 * - Within generic_file_write() for O_SYNC files. 5151 * Here, there will be no transaction running. We wait for any running 5152 * trasnaction to commit. 5153 * 5154 * - Within sys_sync(), kupdate and such. 5155 * We wait on commit, if tol to. 5156 * 5157 * - Within prune_icache() (PF_MEMALLOC == true) 5158 * Here we simply return. We can't afford to block kswapd on the 5159 * journal commit. 5160 * 5161 * In all cases it is actually safe for us to return without doing anything, 5162 * because the inode has been copied into a raw inode buffer in 5163 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5164 * knfsd. 5165 * 5166 * Note that we are absolutely dependent upon all inode dirtiers doing the 5167 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5168 * which we are interested. 5169 * 5170 * It would be a bug for them to not do this. The code: 5171 * 5172 * mark_inode_dirty(inode) 5173 * stuff(); 5174 * inode->i_size = expr; 5175 * 5176 * is in error because a kswapd-driven write_inode() could occur while 5177 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5178 * will no longer be on the superblock's dirty inode list. 5179 */ 5180 int ext4_write_inode(struct inode *inode, int wait) 5181 { 5182 int err; 5183 5184 if (current->flags & PF_MEMALLOC) 5185 return 0; 5186 5187 if (EXT4_SB(inode->i_sb)->s_journal) { 5188 if (ext4_journal_current_handle()) { 5189 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5190 dump_stack(); 5191 return -EIO; 5192 } 5193 5194 if (!wait) 5195 return 0; 5196 5197 err = ext4_force_commit(inode->i_sb); 5198 } else { 5199 struct ext4_iloc iloc; 5200 5201 err = ext4_get_inode_loc(inode, &iloc); 5202 if (err) 5203 return err; 5204 if (wait) 5205 sync_dirty_buffer(iloc.bh); 5206 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5207 ext4_error(inode->i_sb, __func__, 5208 "IO error syncing inode, " 5209 "inode=%lu, block=%llu", 5210 inode->i_ino, 5211 (unsigned long long)iloc.bh->b_blocknr); 5212 err = -EIO; 5213 } 5214 } 5215 return err; 5216 } 5217 5218 /* 5219 * ext4_setattr() 5220 * 5221 * Called from notify_change. 5222 * 5223 * We want to trap VFS attempts to truncate the file as soon as 5224 * possible. In particular, we want to make sure that when the VFS 5225 * shrinks i_size, we put the inode on the orphan list and modify 5226 * i_disksize immediately, so that during the subsequent flushing of 5227 * dirty pages and freeing of disk blocks, we can guarantee that any 5228 * commit will leave the blocks being flushed in an unused state on 5229 * disk. (On recovery, the inode will get truncated and the blocks will 5230 * be freed, so we have a strong guarantee that no future commit will 5231 * leave these blocks visible to the user.) 5232 * 5233 * Another thing we have to assure is that if we are in ordered mode 5234 * and inode is still attached to the committing transaction, we must 5235 * we start writeout of all the dirty pages which are being truncated. 5236 * This way we are sure that all the data written in the previous 5237 * transaction are already on disk (truncate waits for pages under 5238 * writeback). 5239 * 5240 * Called with inode->i_mutex down. 5241 */ 5242 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5243 { 5244 struct inode *inode = dentry->d_inode; 5245 int error, rc = 0; 5246 const unsigned int ia_valid = attr->ia_valid; 5247 5248 error = inode_change_ok(inode, attr); 5249 if (error) 5250 return error; 5251 5252 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5253 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5254 handle_t *handle; 5255 5256 /* (user+group)*(old+new) structure, inode write (sb, 5257 * inode block, ? - but truncate inode update has it) */ 5258 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5259 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5260 if (IS_ERR(handle)) { 5261 error = PTR_ERR(handle); 5262 goto err_out; 5263 } 5264 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 5265 if (error) { 5266 ext4_journal_stop(handle); 5267 return error; 5268 } 5269 /* Update corresponding info in inode so that everything is in 5270 * one transaction */ 5271 if (attr->ia_valid & ATTR_UID) 5272 inode->i_uid = attr->ia_uid; 5273 if (attr->ia_valid & ATTR_GID) 5274 inode->i_gid = attr->ia_gid; 5275 error = ext4_mark_inode_dirty(handle, inode); 5276 ext4_journal_stop(handle); 5277 } 5278 5279 if (attr->ia_valid & ATTR_SIZE) { 5280 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 5281 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5282 5283 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5284 error = -EFBIG; 5285 goto err_out; 5286 } 5287 } 5288 } 5289 5290 if (S_ISREG(inode->i_mode) && 5291 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 5292 handle_t *handle; 5293 5294 handle = ext4_journal_start(inode, 3); 5295 if (IS_ERR(handle)) { 5296 error = PTR_ERR(handle); 5297 goto err_out; 5298 } 5299 5300 error = ext4_orphan_add(handle, inode); 5301 EXT4_I(inode)->i_disksize = attr->ia_size; 5302 rc = ext4_mark_inode_dirty(handle, inode); 5303 if (!error) 5304 error = rc; 5305 ext4_journal_stop(handle); 5306 5307 if (ext4_should_order_data(inode)) { 5308 error = ext4_begin_ordered_truncate(inode, 5309 attr->ia_size); 5310 if (error) { 5311 /* Do as much error cleanup as possible */ 5312 handle = ext4_journal_start(inode, 3); 5313 if (IS_ERR(handle)) { 5314 ext4_orphan_del(NULL, inode); 5315 goto err_out; 5316 } 5317 ext4_orphan_del(handle, inode); 5318 ext4_journal_stop(handle); 5319 goto err_out; 5320 } 5321 } 5322 } 5323 5324 rc = inode_setattr(inode, attr); 5325 5326 /* If inode_setattr's call to ext4_truncate failed to get a 5327 * transaction handle at all, we need to clean up the in-core 5328 * orphan list manually. */ 5329 if (inode->i_nlink) 5330 ext4_orphan_del(NULL, inode); 5331 5332 if (!rc && (ia_valid & ATTR_MODE)) 5333 rc = ext4_acl_chmod(inode); 5334 5335 err_out: 5336 ext4_std_error(inode->i_sb, error); 5337 if (!error) 5338 error = rc; 5339 return error; 5340 } 5341 5342 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5343 struct kstat *stat) 5344 { 5345 struct inode *inode; 5346 unsigned long delalloc_blocks; 5347 5348 inode = dentry->d_inode; 5349 generic_fillattr(inode, stat); 5350 5351 /* 5352 * We can't update i_blocks if the block allocation is delayed 5353 * otherwise in the case of system crash before the real block 5354 * allocation is done, we will have i_blocks inconsistent with 5355 * on-disk file blocks. 5356 * We always keep i_blocks updated together with real 5357 * allocation. But to not confuse with user, stat 5358 * will return the blocks that include the delayed allocation 5359 * blocks for this file. 5360 */ 5361 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5362 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5364 5365 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5366 return 0; 5367 } 5368 5369 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5370 int chunk) 5371 { 5372 int indirects; 5373 5374 /* if nrblocks are contiguous */ 5375 if (chunk) { 5376 /* 5377 * With N contiguous data blocks, it need at most 5378 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5379 * 2 dindirect blocks 5380 * 1 tindirect block 5381 */ 5382 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5383 return indirects + 3; 5384 } 5385 /* 5386 * if nrblocks are not contiguous, worse case, each block touch 5387 * a indirect block, and each indirect block touch a double indirect 5388 * block, plus a triple indirect block 5389 */ 5390 indirects = nrblocks * 2 + 1; 5391 return indirects; 5392 } 5393 5394 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5395 { 5396 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 5397 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5398 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5399 } 5400 5401 /* 5402 * Account for index blocks, block groups bitmaps and block group 5403 * descriptor blocks if modify datablocks and index blocks 5404 * worse case, the indexs blocks spread over different block groups 5405 * 5406 * If datablocks are discontiguous, they are possible to spread over 5407 * different block groups too. If they are contiuguous, with flexbg, 5408 * they could still across block group boundary. 5409 * 5410 * Also account for superblock, inode, quota and xattr blocks 5411 */ 5412 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5413 { 5414 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5415 int gdpblocks; 5416 int idxblocks; 5417 int ret = 0; 5418 5419 /* 5420 * How many index blocks need to touch to modify nrblocks? 5421 * The "Chunk" flag indicating whether the nrblocks is 5422 * physically contiguous on disk 5423 * 5424 * For Direct IO and fallocate, they calls get_block to allocate 5425 * one single extent at a time, so they could set the "Chunk" flag 5426 */ 5427 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5428 5429 ret = idxblocks; 5430 5431 /* 5432 * Now let's see how many group bitmaps and group descriptors need 5433 * to account 5434 */ 5435 groups = idxblocks; 5436 if (chunk) 5437 groups += 1; 5438 else 5439 groups += nrblocks; 5440 5441 gdpblocks = groups; 5442 if (groups > ngroups) 5443 groups = ngroups; 5444 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5445 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5446 5447 /* bitmaps and block group descriptor blocks */ 5448 ret += groups + gdpblocks; 5449 5450 /* Blocks for super block, inode, quota and xattr blocks */ 5451 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5452 5453 return ret; 5454 } 5455 5456 /* 5457 * Calulate the total number of credits to reserve to fit 5458 * the modification of a single pages into a single transaction, 5459 * which may include multiple chunks of block allocations. 5460 * 5461 * This could be called via ext4_write_begin() 5462 * 5463 * We need to consider the worse case, when 5464 * one new block per extent. 5465 */ 5466 int ext4_writepage_trans_blocks(struct inode *inode) 5467 { 5468 int bpp = ext4_journal_blocks_per_page(inode); 5469 int ret; 5470 5471 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5472 5473 /* Account for data blocks for journalled mode */ 5474 if (ext4_should_journal_data(inode)) 5475 ret += bpp; 5476 return ret; 5477 } 5478 5479 /* 5480 * Calculate the journal credits for a chunk of data modification. 5481 * 5482 * This is called from DIO, fallocate or whoever calling 5483 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks. 5484 * 5485 * journal buffers for data blocks are not included here, as DIO 5486 * and fallocate do no need to journal data buffers. 5487 */ 5488 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5489 { 5490 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5491 } 5492 5493 /* 5494 * The caller must have previously called ext4_reserve_inode_write(). 5495 * Give this, we know that the caller already has write access to iloc->bh. 5496 */ 5497 int ext4_mark_iloc_dirty(handle_t *handle, 5498 struct inode *inode, struct ext4_iloc *iloc) 5499 { 5500 int err = 0; 5501 5502 if (test_opt(inode->i_sb, I_VERSION)) 5503 inode_inc_iversion(inode); 5504 5505 /* the do_update_inode consumes one bh->b_count */ 5506 get_bh(iloc->bh); 5507 5508 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5509 err = ext4_do_update_inode(handle, inode, iloc); 5510 put_bh(iloc->bh); 5511 return err; 5512 } 5513 5514 /* 5515 * On success, We end up with an outstanding reference count against 5516 * iloc->bh. This _must_ be cleaned up later. 5517 */ 5518 5519 int 5520 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5521 struct ext4_iloc *iloc) 5522 { 5523 int err; 5524 5525 err = ext4_get_inode_loc(inode, iloc); 5526 if (!err) { 5527 BUFFER_TRACE(iloc->bh, "get_write_access"); 5528 err = ext4_journal_get_write_access(handle, iloc->bh); 5529 if (err) { 5530 brelse(iloc->bh); 5531 iloc->bh = NULL; 5532 } 5533 } 5534 ext4_std_error(inode->i_sb, err); 5535 return err; 5536 } 5537 5538 /* 5539 * Expand an inode by new_extra_isize bytes. 5540 * Returns 0 on success or negative error number on failure. 5541 */ 5542 static int ext4_expand_extra_isize(struct inode *inode, 5543 unsigned int new_extra_isize, 5544 struct ext4_iloc iloc, 5545 handle_t *handle) 5546 { 5547 struct ext4_inode *raw_inode; 5548 struct ext4_xattr_ibody_header *header; 5549 struct ext4_xattr_entry *entry; 5550 5551 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5552 return 0; 5553 5554 raw_inode = ext4_raw_inode(&iloc); 5555 5556 header = IHDR(inode, raw_inode); 5557 entry = IFIRST(header); 5558 5559 /* No extended attributes present */ 5560 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 5561 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5562 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5563 new_extra_isize); 5564 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5565 return 0; 5566 } 5567 5568 /* try to expand with EAs present */ 5569 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5570 raw_inode, handle); 5571 } 5572 5573 /* 5574 * What we do here is to mark the in-core inode as clean with respect to inode 5575 * dirtiness (it may still be data-dirty). 5576 * This means that the in-core inode may be reaped by prune_icache 5577 * without having to perform any I/O. This is a very good thing, 5578 * because *any* task may call prune_icache - even ones which 5579 * have a transaction open against a different journal. 5580 * 5581 * Is this cheating? Not really. Sure, we haven't written the 5582 * inode out, but prune_icache isn't a user-visible syncing function. 5583 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5584 * we start and wait on commits. 5585 * 5586 * Is this efficient/effective? Well, we're being nice to the system 5587 * by cleaning up our inodes proactively so they can be reaped 5588 * without I/O. But we are potentially leaving up to five seconds' 5589 * worth of inodes floating about which prune_icache wants us to 5590 * write out. One way to fix that would be to get prune_icache() 5591 * to do a write_super() to free up some memory. It has the desired 5592 * effect. 5593 */ 5594 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5595 { 5596 struct ext4_iloc iloc; 5597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5598 static unsigned int mnt_count; 5599 int err, ret; 5600 5601 might_sleep(); 5602 err = ext4_reserve_inode_write(handle, inode, &iloc); 5603 if (ext4_handle_valid(handle) && 5604 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5605 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 5606 /* 5607 * We need extra buffer credits since we may write into EA block 5608 * with this same handle. If journal_extend fails, then it will 5609 * only result in a minor loss of functionality for that inode. 5610 * If this is felt to be critical, then e2fsck should be run to 5611 * force a large enough s_min_extra_isize. 5612 */ 5613 if ((jbd2_journal_extend(handle, 5614 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5615 ret = ext4_expand_extra_isize(inode, 5616 sbi->s_want_extra_isize, 5617 iloc, handle); 5618 if (ret) { 5619 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 5620 if (mnt_count != 5621 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5622 ext4_warning(inode->i_sb, __func__, 5623 "Unable to expand inode %lu. Delete" 5624 " some EAs or run e2fsck.", 5625 inode->i_ino); 5626 mnt_count = 5627 le16_to_cpu(sbi->s_es->s_mnt_count); 5628 } 5629 } 5630 } 5631 } 5632 if (!err) 5633 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5634 return err; 5635 } 5636 5637 /* 5638 * ext4_dirty_inode() is called from __mark_inode_dirty() 5639 * 5640 * We're really interested in the case where a file is being extended. 5641 * i_size has been changed by generic_commit_write() and we thus need 5642 * to include the updated inode in the current transaction. 5643 * 5644 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks 5645 * are allocated to the file. 5646 * 5647 * If the inode is marked synchronous, we don't honour that here - doing 5648 * so would cause a commit on atime updates, which we don't bother doing. 5649 * We handle synchronous inodes at the highest possible level. 5650 */ 5651 void ext4_dirty_inode(struct inode *inode) 5652 { 5653 handle_t *handle; 5654 5655 handle = ext4_journal_start(inode, 2); 5656 if (IS_ERR(handle)) 5657 goto out; 5658 5659 ext4_mark_inode_dirty(handle, inode); 5660 5661 ext4_journal_stop(handle); 5662 out: 5663 return; 5664 } 5665 5666 #if 0 5667 /* 5668 * Bind an inode's backing buffer_head into this transaction, to prevent 5669 * it from being flushed to disk early. Unlike 5670 * ext4_reserve_inode_write, this leaves behind no bh reference and 5671 * returns no iloc structure, so the caller needs to repeat the iloc 5672 * lookup to mark the inode dirty later. 5673 */ 5674 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5675 { 5676 struct ext4_iloc iloc; 5677 5678 int err = 0; 5679 if (handle) { 5680 err = ext4_get_inode_loc(inode, &iloc); 5681 if (!err) { 5682 BUFFER_TRACE(iloc.bh, "get_write_access"); 5683 err = jbd2_journal_get_write_access(handle, iloc.bh); 5684 if (!err) 5685 err = ext4_handle_dirty_metadata(handle, 5686 inode, 5687 iloc.bh); 5688 brelse(iloc.bh); 5689 } 5690 } 5691 ext4_std_error(inode->i_sb, err); 5692 return err; 5693 } 5694 #endif 5695 5696 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5697 { 5698 journal_t *journal; 5699 handle_t *handle; 5700 int err; 5701 5702 /* 5703 * We have to be very careful here: changing a data block's 5704 * journaling status dynamically is dangerous. If we write a 5705 * data block to the journal, change the status and then delete 5706 * that block, we risk forgetting to revoke the old log record 5707 * from the journal and so a subsequent replay can corrupt data. 5708 * So, first we make sure that the journal is empty and that 5709 * nobody is changing anything. 5710 */ 5711 5712 journal = EXT4_JOURNAL(inode); 5713 if (!journal) 5714 return 0; 5715 if (is_journal_aborted(journal)) 5716 return -EROFS; 5717 5718 jbd2_journal_lock_updates(journal); 5719 jbd2_journal_flush(journal); 5720 5721 /* 5722 * OK, there are no updates running now, and all cached data is 5723 * synced to disk. We are now in a completely consistent state 5724 * which doesn't have anything in the journal, and we know that 5725 * no filesystem updates are running, so it is safe to modify 5726 * the inode's in-core data-journaling state flag now. 5727 */ 5728 5729 if (val) 5730 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5731 else 5732 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5733 ext4_set_aops(inode); 5734 5735 jbd2_journal_unlock_updates(journal); 5736 5737 /* Finally we can mark the inode as dirty. */ 5738 5739 handle = ext4_journal_start(inode, 1); 5740 if (IS_ERR(handle)) 5741 return PTR_ERR(handle); 5742 5743 err = ext4_mark_inode_dirty(handle, inode); 5744 ext4_handle_sync(handle); 5745 ext4_journal_stop(handle); 5746 ext4_std_error(inode->i_sb, err); 5747 5748 return err; 5749 } 5750 5751 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5752 { 5753 return !buffer_mapped(bh); 5754 } 5755 5756 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5757 { 5758 struct page *page = vmf->page; 5759 loff_t size; 5760 unsigned long len; 5761 int ret = -EINVAL; 5762 void *fsdata; 5763 struct file *file = vma->vm_file; 5764 struct inode *inode = file->f_path.dentry->d_inode; 5765 struct address_space *mapping = inode->i_mapping; 5766 5767 /* 5768 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5769 * get i_mutex because we are already holding mmap_sem. 5770 */ 5771 down_read(&inode->i_alloc_sem); 5772 size = i_size_read(inode); 5773 if (page->mapping != mapping || size <= page_offset(page) 5774 || !PageUptodate(page)) { 5775 /* page got truncated from under us? */ 5776 goto out_unlock; 5777 } 5778 ret = 0; 5779 if (PageMappedToDisk(page)) 5780 goto out_unlock; 5781 5782 if (page->index == size >> PAGE_CACHE_SHIFT) 5783 len = size & ~PAGE_CACHE_MASK; 5784 else 5785 len = PAGE_CACHE_SIZE; 5786 5787 lock_page(page); 5788 /* 5789 * return if we have all the buffers mapped. This avoid 5790 * the need to call write_begin/write_end which does a 5791 * journal_start/journal_stop which can block and take 5792 * long time 5793 */ 5794 if (page_has_buffers(page)) { 5795 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5796 ext4_bh_unmapped)) { 5797 unlock_page(page); 5798 goto out_unlock; 5799 } 5800 } 5801 unlock_page(page); 5802 /* 5803 * OK, we need to fill the hole... Do write_begin write_end 5804 * to do block allocation/reservation.We are not holding 5805 * inode.i__mutex here. That allow * parallel write_begin, 5806 * write_end call. lock_page prevent this from happening 5807 * on the same page though 5808 */ 5809 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5810 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5811 if (ret < 0) 5812 goto out_unlock; 5813 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5814 len, len, page, fsdata); 5815 if (ret < 0) 5816 goto out_unlock; 5817 ret = 0; 5818 out_unlock: 5819 if (ret) 5820 ret = VM_FAULT_SIGBUS; 5821 up_read(&inode->i_alloc_sem); 5822 return ret; 5823 } 5824