1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 return S_ISLNK(inode->i_mode) && inode->i_size && 153 (inode->i_size < EXT4_N_BLOCKS * 4); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 int extra_credits = 3; 190 struct ext4_xattr_inode_array *ea_inode_array = NULL; 191 192 trace_ext4_evict_inode(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (inode->i_ino != EXT4_JOURNAL_INO && 214 ext4_should_journal_data(inode) && 215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 216 inode->i_data.nrpages) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 242 if (!IS_NOQUOTA(inode)) 243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 244 245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 246 ext4_blocks_for_truncate(inode)+extra_credits); 247 if (IS_ERR(handle)) { 248 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 249 /* 250 * If we're going to skip the normal cleanup, we still need to 251 * make sure that the in-core orphan linked list is properly 252 * cleaned up. 253 */ 254 ext4_orphan_del(NULL, inode); 255 sb_end_intwrite(inode->i_sb); 256 goto no_delete; 257 } 258 259 if (IS_SYNC(inode)) 260 ext4_handle_sync(handle); 261 262 /* 263 * Set inode->i_size to 0 before calling ext4_truncate(). We need 264 * special handling of symlinks here because i_size is used to 265 * determine whether ext4_inode_info->i_data contains symlink data or 266 * block mappings. Setting i_size to 0 will remove its fast symlink 267 * status. Erase i_data so that it becomes a valid empty block map. 268 */ 269 if (ext4_inode_is_fast_symlink(inode)) 270 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 271 inode->i_size = 0; 272 err = ext4_mark_inode_dirty(handle, inode); 273 if (err) { 274 ext4_warning(inode->i_sb, 275 "couldn't mark inode dirty (err %d)", err); 276 goto stop_handle; 277 } 278 if (inode->i_blocks) { 279 err = ext4_truncate(inode); 280 if (err) { 281 ext4_error(inode->i_sb, 282 "couldn't truncate inode %lu (err %d)", 283 inode->i_ino, err); 284 goto stop_handle; 285 } 286 } 287 288 /* Remove xattr references. */ 289 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 290 extra_credits); 291 if (err) { 292 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 293 stop_handle: 294 ext4_journal_stop(handle); 295 ext4_orphan_del(NULL, inode); 296 sb_end_intwrite(inode->i_sb); 297 ext4_xattr_inode_array_free(ea_inode_array); 298 goto no_delete; 299 } 300 301 /* 302 * Kill off the orphan record which ext4_truncate created. 303 * AKPM: I think this can be inside the above `if'. 304 * Note that ext4_orphan_del() has to be able to cope with the 305 * deletion of a non-existent orphan - this is because we don't 306 * know if ext4_truncate() actually created an orphan record. 307 * (Well, we could do this if we need to, but heck - it works) 308 */ 309 ext4_orphan_del(handle, inode); 310 EXT4_I(inode)->i_dtime = get_seconds(); 311 312 /* 313 * One subtle ordering requirement: if anything has gone wrong 314 * (transaction abort, IO errors, whatever), then we can still 315 * do these next steps (the fs will already have been marked as 316 * having errors), but we can't free the inode if the mark_dirty 317 * fails. 318 */ 319 if (ext4_mark_inode_dirty(handle, inode)) 320 /* If that failed, just do the required in-core inode clear. */ 321 ext4_clear_inode(inode); 322 else 323 ext4_free_inode(handle, inode); 324 ext4_journal_stop(handle); 325 sb_end_intwrite(inode->i_sb); 326 ext4_xattr_inode_array_free(ea_inode_array); 327 return; 328 no_delete: 329 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 330 } 331 332 #ifdef CONFIG_QUOTA 333 qsize_t *ext4_get_reserved_space(struct inode *inode) 334 { 335 return &EXT4_I(inode)->i_reserved_quota; 336 } 337 #endif 338 339 /* 340 * Called with i_data_sem down, which is important since we can call 341 * ext4_discard_preallocations() from here. 342 */ 343 void ext4_da_update_reserve_space(struct inode *inode, 344 int used, int quota_claim) 345 { 346 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 347 struct ext4_inode_info *ei = EXT4_I(inode); 348 349 spin_lock(&ei->i_block_reservation_lock); 350 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 351 if (unlikely(used > ei->i_reserved_data_blocks)) { 352 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 353 "with only %d reserved data blocks", 354 __func__, inode->i_ino, used, 355 ei->i_reserved_data_blocks); 356 WARN_ON(1); 357 used = ei->i_reserved_data_blocks; 358 } 359 360 /* Update per-inode reservations */ 361 ei->i_reserved_data_blocks -= used; 362 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 363 364 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 365 366 /* Update quota subsystem for data blocks */ 367 if (quota_claim) 368 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 369 else { 370 /* 371 * We did fallocate with an offset that is already delayed 372 * allocated. So on delayed allocated writeback we should 373 * not re-claim the quota for fallocated blocks. 374 */ 375 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 376 } 377 378 /* 379 * If we have done all the pending block allocations and if 380 * there aren't any writers on the inode, we can discard the 381 * inode's preallocations. 382 */ 383 if ((ei->i_reserved_data_blocks == 0) && 384 (atomic_read(&inode->i_writecount) == 0)) 385 ext4_discard_preallocations(inode); 386 } 387 388 static int __check_block_validity(struct inode *inode, const char *func, 389 unsigned int line, 390 struct ext4_map_blocks *map) 391 { 392 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 393 map->m_len)) { 394 ext4_error_inode(inode, func, line, map->m_pblk, 395 "lblock %lu mapped to illegal pblock " 396 "(length %d)", (unsigned long) map->m_lblk, 397 map->m_len); 398 return -EFSCORRUPTED; 399 } 400 return 0; 401 } 402 403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 404 ext4_lblk_t len) 405 { 406 int ret; 407 408 if (ext4_encrypted_inode(inode)) 409 return fscrypt_zeroout_range(inode, lblk, pblk, len); 410 411 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 412 if (ret > 0) 413 ret = 0; 414 415 return ret; 416 } 417 418 #define check_block_validity(inode, map) \ 419 __check_block_validity((inode), __func__, __LINE__, (map)) 420 421 #ifdef ES_AGGRESSIVE_TEST 422 static void ext4_map_blocks_es_recheck(handle_t *handle, 423 struct inode *inode, 424 struct ext4_map_blocks *es_map, 425 struct ext4_map_blocks *map, 426 int flags) 427 { 428 int retval; 429 430 map->m_flags = 0; 431 /* 432 * There is a race window that the result is not the same. 433 * e.g. xfstests #223 when dioread_nolock enables. The reason 434 * is that we lookup a block mapping in extent status tree with 435 * out taking i_data_sem. So at the time the unwritten extent 436 * could be converted. 437 */ 438 down_read(&EXT4_I(inode)->i_data_sem); 439 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 440 retval = ext4_ext_map_blocks(handle, inode, map, flags & 441 EXT4_GET_BLOCKS_KEEP_SIZE); 442 } else { 443 retval = ext4_ind_map_blocks(handle, inode, map, flags & 444 EXT4_GET_BLOCKS_KEEP_SIZE); 445 } 446 up_read((&EXT4_I(inode)->i_data_sem)); 447 448 /* 449 * We don't check m_len because extent will be collpased in status 450 * tree. So the m_len might not equal. 451 */ 452 if (es_map->m_lblk != map->m_lblk || 453 es_map->m_flags != map->m_flags || 454 es_map->m_pblk != map->m_pblk) { 455 printk("ES cache assertion failed for inode: %lu " 456 "es_cached ex [%d/%d/%llu/%x] != " 457 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 458 inode->i_ino, es_map->m_lblk, es_map->m_len, 459 es_map->m_pblk, es_map->m_flags, map->m_lblk, 460 map->m_len, map->m_pblk, map->m_flags, 461 retval, flags); 462 } 463 } 464 #endif /* ES_AGGRESSIVE_TEST */ 465 466 /* 467 * The ext4_map_blocks() function tries to look up the requested blocks, 468 * and returns if the blocks are already mapped. 469 * 470 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 471 * and store the allocated blocks in the result buffer head and mark it 472 * mapped. 473 * 474 * If file type is extents based, it will call ext4_ext_map_blocks(), 475 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 476 * based files 477 * 478 * On success, it returns the number of blocks being mapped or allocated. if 479 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 480 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 481 * 482 * It returns 0 if plain look up failed (blocks have not been allocated), in 483 * that case, @map is returned as unmapped but we still do fill map->m_len to 484 * indicate the length of a hole starting at map->m_lblk. 485 * 486 * It returns the error in case of allocation failure. 487 */ 488 int ext4_map_blocks(handle_t *handle, struct inode *inode, 489 struct ext4_map_blocks *map, int flags) 490 { 491 struct extent_status es; 492 int retval; 493 int ret = 0; 494 #ifdef ES_AGGRESSIVE_TEST 495 struct ext4_map_blocks orig_map; 496 497 memcpy(&orig_map, map, sizeof(*map)); 498 #endif 499 500 map->m_flags = 0; 501 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 502 "logical block %lu\n", inode->i_ino, flags, map->m_len, 503 (unsigned long) map->m_lblk); 504 505 /* 506 * ext4_map_blocks returns an int, and m_len is an unsigned int 507 */ 508 if (unlikely(map->m_len > INT_MAX)) 509 map->m_len = INT_MAX; 510 511 /* We can handle the block number less than EXT_MAX_BLOCKS */ 512 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 513 return -EFSCORRUPTED; 514 515 /* Lookup extent status tree firstly */ 516 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 517 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 518 map->m_pblk = ext4_es_pblock(&es) + 519 map->m_lblk - es.es_lblk; 520 map->m_flags |= ext4_es_is_written(&es) ? 521 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 522 retval = es.es_len - (map->m_lblk - es.es_lblk); 523 if (retval > map->m_len) 524 retval = map->m_len; 525 map->m_len = retval; 526 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 527 map->m_pblk = 0; 528 retval = es.es_len - (map->m_lblk - es.es_lblk); 529 if (retval > map->m_len) 530 retval = map->m_len; 531 map->m_len = retval; 532 retval = 0; 533 } else { 534 BUG_ON(1); 535 } 536 #ifdef ES_AGGRESSIVE_TEST 537 ext4_map_blocks_es_recheck(handle, inode, map, 538 &orig_map, flags); 539 #endif 540 goto found; 541 } 542 543 /* 544 * Try to see if we can get the block without requesting a new 545 * file system block. 546 */ 547 down_read(&EXT4_I(inode)->i_data_sem); 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 549 retval = ext4_ext_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, flags & 553 EXT4_GET_BLOCKS_KEEP_SIZE); 554 } 555 if (retval > 0) { 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 !(status & EXTENT_STATUS_WRITTEN) && 570 ext4_find_delalloc_range(inode, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ret = ext4_es_insert_extent(inode, map->m_lblk, 574 map->m_len, map->m_pblk, status); 575 if (ret < 0) 576 retval = ret; 577 } 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 /* 600 * If we need to convert extent to unwritten 601 * we continue and do the actual work in 602 * ext4_ext_map_blocks() 603 */ 604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 605 return retval; 606 607 /* 608 * Here we clear m_flags because after allocating an new extent, 609 * it will be set again. 610 */ 611 map->m_flags &= ~EXT4_MAP_FLAGS; 612 613 /* 614 * New blocks allocate and/or writing to unwritten extent 615 * will possibly result in updating i_data, so we take 616 * the write lock of i_data_sem, and call get_block() 617 * with create == 1 flag. 618 */ 619 down_write(&EXT4_I(inode)->i_data_sem); 620 621 /* 622 * We need to check for EXT4 here because migrate 623 * could have changed the inode type in between 624 */ 625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 626 retval = ext4_ext_map_blocks(handle, inode, map, flags); 627 } else { 628 retval = ext4_ind_map_blocks(handle, inode, map, flags); 629 630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 631 /* 632 * We allocated new blocks which will result in 633 * i_data's format changing. Force the migrate 634 * to fail by clearing migrate flags 635 */ 636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 637 } 638 639 /* 640 * Update reserved blocks/metadata blocks after successful 641 * block allocation which had been deferred till now. We don't 642 * support fallocate for non extent files. So we can update 643 * reserve space here. 644 */ 645 if ((retval > 0) && 646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 647 ext4_da_update_reserve_space(inode, retval, 1); 648 } 649 650 if (retval > 0) { 651 unsigned int status; 652 653 if (unlikely(retval != map->m_len)) { 654 ext4_warning(inode->i_sb, 655 "ES len assertion failed for inode " 656 "%lu: retval %d != map->m_len %d", 657 inode->i_ino, retval, map->m_len); 658 WARN_ON(1); 659 } 660 661 /* 662 * We have to zeroout blocks before inserting them into extent 663 * status tree. Otherwise someone could look them up there and 664 * use them before they are really zeroed. We also have to 665 * unmap metadata before zeroing as otherwise writeback can 666 * overwrite zeros with stale data from block device. 667 */ 668 if (flags & EXT4_GET_BLOCKS_ZERO && 669 map->m_flags & EXT4_MAP_MAPPED && 670 map->m_flags & EXT4_MAP_NEW) { 671 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 672 map->m_len); 673 ret = ext4_issue_zeroout(inode, map->m_lblk, 674 map->m_pblk, map->m_len); 675 if (ret) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 /* 682 * If the extent has been zeroed out, we don't need to update 683 * extent status tree. 684 */ 685 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 686 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 687 if (ext4_es_is_written(&es)) 688 goto out_sem; 689 } 690 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 691 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 692 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 693 !(status & EXTENT_STATUS_WRITTEN) && 694 ext4_find_delalloc_range(inode, map->m_lblk, 695 map->m_lblk + map->m_len - 1)) 696 status |= EXTENT_STATUS_DELAYED; 697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 698 map->m_pblk, status); 699 if (ret < 0) { 700 retval = ret; 701 goto out_sem; 702 } 703 } 704 705 out_sem: 706 up_write((&EXT4_I(inode)->i_data_sem)); 707 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 708 ret = check_block_validity(inode, map); 709 if (ret != 0) 710 return ret; 711 712 /* 713 * Inodes with freshly allocated blocks where contents will be 714 * visible after transaction commit must be on transaction's 715 * ordered data list. 716 */ 717 if (map->m_flags & EXT4_MAP_NEW && 718 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 719 !(flags & EXT4_GET_BLOCKS_ZERO) && 720 !ext4_is_quota_file(inode) && 721 ext4_should_order_data(inode)) { 722 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 723 ret = ext4_jbd2_inode_add_wait(handle, inode); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode); 726 if (ret) 727 return ret; 728 } 729 } 730 return retval; 731 } 732 733 /* 734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 735 * we have to be careful as someone else may be manipulating b_state as well. 736 */ 737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 738 { 739 unsigned long old_state; 740 unsigned long new_state; 741 742 flags &= EXT4_MAP_FLAGS; 743 744 /* Dummy buffer_head? Set non-atomically. */ 745 if (!bh->b_page) { 746 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 747 return; 748 } 749 /* 750 * Someone else may be modifying b_state. Be careful! This is ugly but 751 * once we get rid of using bh as a container for mapping information 752 * to pass to / from get_block functions, this can go away. 753 */ 754 do { 755 old_state = READ_ONCE(bh->b_state); 756 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 757 } while (unlikely( 758 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 759 } 760 761 static int _ext4_get_block(struct inode *inode, sector_t iblock, 762 struct buffer_head *bh, int flags) 763 { 764 struct ext4_map_blocks map; 765 int ret = 0; 766 767 if (ext4_has_inline_data(inode)) 768 return -ERANGE; 769 770 map.m_lblk = iblock; 771 map.m_len = bh->b_size >> inode->i_blkbits; 772 773 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 774 flags); 775 if (ret > 0) { 776 map_bh(bh, inode->i_sb, map.m_pblk); 777 ext4_update_bh_state(bh, map.m_flags); 778 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 779 ret = 0; 780 } else if (ret == 0) { 781 /* hole case, need to fill in bh->b_size */ 782 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 783 } 784 return ret; 785 } 786 787 int ext4_get_block(struct inode *inode, sector_t iblock, 788 struct buffer_head *bh, int create) 789 { 790 return _ext4_get_block(inode, iblock, bh, 791 create ? EXT4_GET_BLOCKS_CREATE : 0); 792 } 793 794 /* 795 * Get block function used when preparing for buffered write if we require 796 * creating an unwritten extent if blocks haven't been allocated. The extent 797 * will be converted to written after the IO is complete. 798 */ 799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh_result, int create) 801 { 802 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 803 inode->i_ino, create); 804 return _ext4_get_block(inode, iblock, bh_result, 805 EXT4_GET_BLOCKS_IO_CREATE_EXT); 806 } 807 808 /* Maximum number of blocks we map for direct IO at once. */ 809 #define DIO_MAX_BLOCKS 4096 810 811 /* 812 * Get blocks function for the cases that need to start a transaction - 813 * generally difference cases of direct IO and DAX IO. It also handles retries 814 * in case of ENOSPC. 815 */ 816 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 817 struct buffer_head *bh_result, int flags) 818 { 819 int dio_credits; 820 handle_t *handle; 821 int retries = 0; 822 int ret; 823 824 /* Trim mapping request to maximum we can map at once for DIO */ 825 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 826 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 827 dio_credits = ext4_chunk_trans_blocks(inode, 828 bh_result->b_size >> inode->i_blkbits); 829 retry: 830 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 831 if (IS_ERR(handle)) 832 return PTR_ERR(handle); 833 834 ret = _ext4_get_block(inode, iblock, bh_result, flags); 835 ext4_journal_stop(handle); 836 837 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 838 goto retry; 839 return ret; 840 } 841 842 /* Get block function for DIO reads and writes to inodes without extents */ 843 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 844 struct buffer_head *bh, int create) 845 { 846 /* We don't expect handle for direct IO */ 847 WARN_ON_ONCE(ext4_journal_current_handle()); 848 849 if (!create) 850 return _ext4_get_block(inode, iblock, bh, 0); 851 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 852 } 853 854 /* 855 * Get block function for AIO DIO writes when we create unwritten extent if 856 * blocks are not allocated yet. The extent will be converted to written 857 * after IO is complete. 858 */ 859 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 860 sector_t iblock, struct buffer_head *bh_result, int create) 861 { 862 int ret; 863 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 ret = ext4_get_block_trans(inode, iblock, bh_result, 868 EXT4_GET_BLOCKS_IO_CREATE_EXT); 869 870 /* 871 * When doing DIO using unwritten extents, we need io_end to convert 872 * unwritten extents to written on IO completion. We allocate io_end 873 * once we spot unwritten extent and store it in b_private. Generic 874 * DIO code keeps b_private set and furthermore passes the value to 875 * our completion callback in 'private' argument. 876 */ 877 if (!ret && buffer_unwritten(bh_result)) { 878 if (!bh_result->b_private) { 879 ext4_io_end_t *io_end; 880 881 io_end = ext4_init_io_end(inode, GFP_KERNEL); 882 if (!io_end) 883 return -ENOMEM; 884 bh_result->b_private = io_end; 885 ext4_set_io_unwritten_flag(inode, io_end); 886 } 887 set_buffer_defer_completion(bh_result); 888 } 889 890 return ret; 891 } 892 893 /* 894 * Get block function for non-AIO DIO writes when we create unwritten extent if 895 * blocks are not allocated yet. The extent will be converted to written 896 * after IO is complete by ext4_direct_IO_write(). 897 */ 898 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 899 sector_t iblock, struct buffer_head *bh_result, int create) 900 { 901 int ret; 902 903 /* We don't expect handle for direct IO */ 904 WARN_ON_ONCE(ext4_journal_current_handle()); 905 906 ret = ext4_get_block_trans(inode, iblock, bh_result, 907 EXT4_GET_BLOCKS_IO_CREATE_EXT); 908 909 /* 910 * Mark inode as having pending DIO writes to unwritten extents. 911 * ext4_direct_IO_write() checks this flag and converts extents to 912 * written. 913 */ 914 if (!ret && buffer_unwritten(bh_result)) 915 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 916 917 return ret; 918 } 919 920 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 921 struct buffer_head *bh_result, int create) 922 { 923 int ret; 924 925 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 926 inode->i_ino, create); 927 /* We don't expect handle for direct IO */ 928 WARN_ON_ONCE(ext4_journal_current_handle()); 929 930 ret = _ext4_get_block(inode, iblock, bh_result, 0); 931 /* 932 * Blocks should have been preallocated! ext4_file_write_iter() checks 933 * that. 934 */ 935 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 936 937 return ret; 938 } 939 940 941 /* 942 * `handle' can be NULL if create is zero 943 */ 944 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 945 ext4_lblk_t block, int map_flags) 946 { 947 struct ext4_map_blocks map; 948 struct buffer_head *bh; 949 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 950 int err; 951 952 J_ASSERT(handle != NULL || create == 0); 953 954 map.m_lblk = block; 955 map.m_len = 1; 956 err = ext4_map_blocks(handle, inode, &map, map_flags); 957 958 if (err == 0) 959 return create ? ERR_PTR(-ENOSPC) : NULL; 960 if (err < 0) 961 return ERR_PTR(err); 962 963 bh = sb_getblk(inode->i_sb, map.m_pblk); 964 if (unlikely(!bh)) 965 return ERR_PTR(-ENOMEM); 966 if (map.m_flags & EXT4_MAP_NEW) { 967 J_ASSERT(create != 0); 968 J_ASSERT(handle != NULL); 969 970 /* 971 * Now that we do not always journal data, we should 972 * keep in mind whether this should always journal the 973 * new buffer as metadata. For now, regular file 974 * writes use ext4_get_block instead, so it's not a 975 * problem. 976 */ 977 lock_buffer(bh); 978 BUFFER_TRACE(bh, "call get_create_access"); 979 err = ext4_journal_get_create_access(handle, bh); 980 if (unlikely(err)) { 981 unlock_buffer(bh); 982 goto errout; 983 } 984 if (!buffer_uptodate(bh)) { 985 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 986 set_buffer_uptodate(bh); 987 } 988 unlock_buffer(bh); 989 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 990 err = ext4_handle_dirty_metadata(handle, inode, bh); 991 if (unlikely(err)) 992 goto errout; 993 } else 994 BUFFER_TRACE(bh, "not a new buffer"); 995 return bh; 996 errout: 997 brelse(bh); 998 return ERR_PTR(err); 999 } 1000 1001 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1002 ext4_lblk_t block, int map_flags) 1003 { 1004 struct buffer_head *bh; 1005 1006 bh = ext4_getblk(handle, inode, block, map_flags); 1007 if (IS_ERR(bh)) 1008 return bh; 1009 if (!bh || buffer_uptodate(bh)) 1010 return bh; 1011 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1012 wait_on_buffer(bh); 1013 if (buffer_uptodate(bh)) 1014 return bh; 1015 put_bh(bh); 1016 return ERR_PTR(-EIO); 1017 } 1018 1019 /* Read a contiguous batch of blocks. */ 1020 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1021 bool wait, struct buffer_head **bhs) 1022 { 1023 int i, err; 1024 1025 for (i = 0; i < bh_count; i++) { 1026 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1027 if (IS_ERR(bhs[i])) { 1028 err = PTR_ERR(bhs[i]); 1029 bh_count = i; 1030 goto out_brelse; 1031 } 1032 } 1033 1034 for (i = 0; i < bh_count; i++) 1035 /* Note that NULL bhs[i] is valid because of holes. */ 1036 if (bhs[i] && !buffer_uptodate(bhs[i])) 1037 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1038 &bhs[i]); 1039 1040 if (!wait) 1041 return 0; 1042 1043 for (i = 0; i < bh_count; i++) 1044 if (bhs[i]) 1045 wait_on_buffer(bhs[i]); 1046 1047 for (i = 0; i < bh_count; i++) { 1048 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1049 err = -EIO; 1050 goto out_brelse; 1051 } 1052 } 1053 return 0; 1054 1055 out_brelse: 1056 for (i = 0; i < bh_count; i++) { 1057 brelse(bhs[i]); 1058 bhs[i] = NULL; 1059 } 1060 return err; 1061 } 1062 1063 int ext4_walk_page_buffers(handle_t *handle, 1064 struct buffer_head *head, 1065 unsigned from, 1066 unsigned to, 1067 int *partial, 1068 int (*fn)(handle_t *handle, 1069 struct buffer_head *bh)) 1070 { 1071 struct buffer_head *bh; 1072 unsigned block_start, block_end; 1073 unsigned blocksize = head->b_size; 1074 int err, ret = 0; 1075 struct buffer_head *next; 1076 1077 for (bh = head, block_start = 0; 1078 ret == 0 && (bh != head || !block_start); 1079 block_start = block_end, bh = next) { 1080 next = bh->b_this_page; 1081 block_end = block_start + blocksize; 1082 if (block_end <= from || block_start >= to) { 1083 if (partial && !buffer_uptodate(bh)) 1084 *partial = 1; 1085 continue; 1086 } 1087 err = (*fn)(handle, bh); 1088 if (!ret) 1089 ret = err; 1090 } 1091 return ret; 1092 } 1093 1094 /* 1095 * To preserve ordering, it is essential that the hole instantiation and 1096 * the data write be encapsulated in a single transaction. We cannot 1097 * close off a transaction and start a new one between the ext4_get_block() 1098 * and the commit_write(). So doing the jbd2_journal_start at the start of 1099 * prepare_write() is the right place. 1100 * 1101 * Also, this function can nest inside ext4_writepage(). In that case, we 1102 * *know* that ext4_writepage() has generated enough buffer credits to do the 1103 * whole page. So we won't block on the journal in that case, which is good, 1104 * because the caller may be PF_MEMALLOC. 1105 * 1106 * By accident, ext4 can be reentered when a transaction is open via 1107 * quota file writes. If we were to commit the transaction while thus 1108 * reentered, there can be a deadlock - we would be holding a quota 1109 * lock, and the commit would never complete if another thread had a 1110 * transaction open and was blocking on the quota lock - a ranking 1111 * violation. 1112 * 1113 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1114 * will _not_ run commit under these circumstances because handle->h_ref 1115 * is elevated. We'll still have enough credits for the tiny quotafile 1116 * write. 1117 */ 1118 int do_journal_get_write_access(handle_t *handle, 1119 struct buffer_head *bh) 1120 { 1121 int dirty = buffer_dirty(bh); 1122 int ret; 1123 1124 if (!buffer_mapped(bh) || buffer_freed(bh)) 1125 return 0; 1126 /* 1127 * __block_write_begin() could have dirtied some buffers. Clean 1128 * the dirty bit as jbd2_journal_get_write_access() could complain 1129 * otherwise about fs integrity issues. Setting of the dirty bit 1130 * by __block_write_begin() isn't a real problem here as we clear 1131 * the bit before releasing a page lock and thus writeback cannot 1132 * ever write the buffer. 1133 */ 1134 if (dirty) 1135 clear_buffer_dirty(bh); 1136 BUFFER_TRACE(bh, "get write access"); 1137 ret = ext4_journal_get_write_access(handle, bh); 1138 if (!ret && dirty) 1139 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1140 return ret; 1141 } 1142 1143 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1144 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1145 get_block_t *get_block) 1146 { 1147 unsigned from = pos & (PAGE_SIZE - 1); 1148 unsigned to = from + len; 1149 struct inode *inode = page->mapping->host; 1150 unsigned block_start, block_end; 1151 sector_t block; 1152 int err = 0; 1153 unsigned blocksize = inode->i_sb->s_blocksize; 1154 unsigned bbits; 1155 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1156 bool decrypt = false; 1157 1158 BUG_ON(!PageLocked(page)); 1159 BUG_ON(from > PAGE_SIZE); 1160 BUG_ON(to > PAGE_SIZE); 1161 BUG_ON(from > to); 1162 1163 if (!page_has_buffers(page)) 1164 create_empty_buffers(page, blocksize, 0); 1165 head = page_buffers(page); 1166 bbits = ilog2(blocksize); 1167 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1168 1169 for (bh = head, block_start = 0; bh != head || !block_start; 1170 block++, block_start = block_end, bh = bh->b_this_page) { 1171 block_end = block_start + blocksize; 1172 if (block_end <= from || block_start >= to) { 1173 if (PageUptodate(page)) { 1174 if (!buffer_uptodate(bh)) 1175 set_buffer_uptodate(bh); 1176 } 1177 continue; 1178 } 1179 if (buffer_new(bh)) 1180 clear_buffer_new(bh); 1181 if (!buffer_mapped(bh)) { 1182 WARN_ON(bh->b_size != blocksize); 1183 err = get_block(inode, block, bh, 1); 1184 if (err) 1185 break; 1186 if (buffer_new(bh)) { 1187 clean_bdev_bh_alias(bh); 1188 if (PageUptodate(page)) { 1189 clear_buffer_new(bh); 1190 set_buffer_uptodate(bh); 1191 mark_buffer_dirty(bh); 1192 continue; 1193 } 1194 if (block_end > to || block_start < from) 1195 zero_user_segments(page, to, block_end, 1196 block_start, from); 1197 continue; 1198 } 1199 } 1200 if (PageUptodate(page)) { 1201 if (!buffer_uptodate(bh)) 1202 set_buffer_uptodate(bh); 1203 continue; 1204 } 1205 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1206 !buffer_unwritten(bh) && 1207 (block_start < from || block_end > to)) { 1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1209 *wait_bh++ = bh; 1210 decrypt = ext4_encrypted_inode(inode) && 1211 S_ISREG(inode->i_mode); 1212 } 1213 } 1214 /* 1215 * If we issued read requests, let them complete. 1216 */ 1217 while (wait_bh > wait) { 1218 wait_on_buffer(*--wait_bh); 1219 if (!buffer_uptodate(*wait_bh)) 1220 err = -EIO; 1221 } 1222 if (unlikely(err)) 1223 page_zero_new_buffers(page, from, to); 1224 else if (decrypt) 1225 err = fscrypt_decrypt_page(page->mapping->host, page, 1226 PAGE_SIZE, 0, page->index); 1227 return err; 1228 } 1229 #endif 1230 1231 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1232 loff_t pos, unsigned len, unsigned flags, 1233 struct page **pagep, void **fsdata) 1234 { 1235 struct inode *inode = mapping->host; 1236 int ret, needed_blocks; 1237 handle_t *handle; 1238 int retries = 0; 1239 struct page *page; 1240 pgoff_t index; 1241 unsigned from, to; 1242 1243 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1244 return -EIO; 1245 1246 trace_ext4_write_begin(inode, pos, len, flags); 1247 /* 1248 * Reserve one block more for addition to orphan list in case 1249 * we allocate blocks but write fails for some reason 1250 */ 1251 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1252 index = pos >> PAGE_SHIFT; 1253 from = pos & (PAGE_SIZE - 1); 1254 to = from + len; 1255 1256 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1257 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1258 flags, pagep); 1259 if (ret < 0) 1260 return ret; 1261 if (ret == 1) 1262 return 0; 1263 } 1264 1265 /* 1266 * grab_cache_page_write_begin() can take a long time if the 1267 * system is thrashing due to memory pressure, or if the page 1268 * is being written back. So grab it first before we start 1269 * the transaction handle. This also allows us to allocate 1270 * the page (if needed) without using GFP_NOFS. 1271 */ 1272 retry_grab: 1273 page = grab_cache_page_write_begin(mapping, index, flags); 1274 if (!page) 1275 return -ENOMEM; 1276 unlock_page(page); 1277 1278 retry_journal: 1279 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1280 if (IS_ERR(handle)) { 1281 put_page(page); 1282 return PTR_ERR(handle); 1283 } 1284 1285 lock_page(page); 1286 if (page->mapping != mapping) { 1287 /* The page got truncated from under us */ 1288 unlock_page(page); 1289 put_page(page); 1290 ext4_journal_stop(handle); 1291 goto retry_grab; 1292 } 1293 /* In case writeback began while the page was unlocked */ 1294 wait_for_stable_page(page); 1295 1296 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1297 if (ext4_should_dioread_nolock(inode)) 1298 ret = ext4_block_write_begin(page, pos, len, 1299 ext4_get_block_unwritten); 1300 else 1301 ret = ext4_block_write_begin(page, pos, len, 1302 ext4_get_block); 1303 #else 1304 if (ext4_should_dioread_nolock(inode)) 1305 ret = __block_write_begin(page, pos, len, 1306 ext4_get_block_unwritten); 1307 else 1308 ret = __block_write_begin(page, pos, len, ext4_get_block); 1309 #endif 1310 if (!ret && ext4_should_journal_data(inode)) { 1311 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1312 from, to, NULL, 1313 do_journal_get_write_access); 1314 } 1315 1316 if (ret) { 1317 unlock_page(page); 1318 /* 1319 * __block_write_begin may have instantiated a few blocks 1320 * outside i_size. Trim these off again. Don't need 1321 * i_size_read because we hold i_mutex. 1322 * 1323 * Add inode to orphan list in case we crash before 1324 * truncate finishes 1325 */ 1326 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1327 ext4_orphan_add(handle, inode); 1328 1329 ext4_journal_stop(handle); 1330 if (pos + len > inode->i_size) { 1331 ext4_truncate_failed_write(inode); 1332 /* 1333 * If truncate failed early the inode might 1334 * still be on the orphan list; we need to 1335 * make sure the inode is removed from the 1336 * orphan list in that case. 1337 */ 1338 if (inode->i_nlink) 1339 ext4_orphan_del(NULL, inode); 1340 } 1341 1342 if (ret == -ENOSPC && 1343 ext4_should_retry_alloc(inode->i_sb, &retries)) 1344 goto retry_journal; 1345 put_page(page); 1346 return ret; 1347 } 1348 *pagep = page; 1349 return ret; 1350 } 1351 1352 /* For write_end() in data=journal mode */ 1353 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1354 { 1355 int ret; 1356 if (!buffer_mapped(bh) || buffer_freed(bh)) 1357 return 0; 1358 set_buffer_uptodate(bh); 1359 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1360 clear_buffer_meta(bh); 1361 clear_buffer_prio(bh); 1362 return ret; 1363 } 1364 1365 /* 1366 * We need to pick up the new inode size which generic_commit_write gave us 1367 * `file' can be NULL - eg, when called from page_symlink(). 1368 * 1369 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1370 * buffers are managed internally. 1371 */ 1372 static int ext4_write_end(struct file *file, 1373 struct address_space *mapping, 1374 loff_t pos, unsigned len, unsigned copied, 1375 struct page *page, void *fsdata) 1376 { 1377 handle_t *handle = ext4_journal_current_handle(); 1378 struct inode *inode = mapping->host; 1379 loff_t old_size = inode->i_size; 1380 int ret = 0, ret2; 1381 int i_size_changed = 0; 1382 1383 trace_ext4_write_end(inode, pos, len, copied); 1384 if (ext4_has_inline_data(inode)) { 1385 ret = ext4_write_inline_data_end(inode, pos, len, 1386 copied, page); 1387 if (ret < 0) { 1388 unlock_page(page); 1389 put_page(page); 1390 goto errout; 1391 } 1392 copied = ret; 1393 } else 1394 copied = block_write_end(file, mapping, pos, 1395 len, copied, page, fsdata); 1396 /* 1397 * it's important to update i_size while still holding page lock: 1398 * page writeout could otherwise come in and zero beyond i_size. 1399 */ 1400 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1401 unlock_page(page); 1402 put_page(page); 1403 1404 if (old_size < pos) 1405 pagecache_isize_extended(inode, old_size, pos); 1406 /* 1407 * Don't mark the inode dirty under page lock. First, it unnecessarily 1408 * makes the holding time of page lock longer. Second, it forces lock 1409 * ordering of page lock and transaction start for journaling 1410 * filesystems. 1411 */ 1412 if (i_size_changed) 1413 ext4_mark_inode_dirty(handle, inode); 1414 1415 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1416 /* if we have allocated more blocks and copied 1417 * less. We will have blocks allocated outside 1418 * inode->i_size. So truncate them 1419 */ 1420 ext4_orphan_add(handle, inode); 1421 errout: 1422 ret2 = ext4_journal_stop(handle); 1423 if (!ret) 1424 ret = ret2; 1425 1426 if (pos + len > inode->i_size) { 1427 ext4_truncate_failed_write(inode); 1428 /* 1429 * If truncate failed early the inode might still be 1430 * on the orphan list; we need to make sure the inode 1431 * is removed from the orphan list in that case. 1432 */ 1433 if (inode->i_nlink) 1434 ext4_orphan_del(NULL, inode); 1435 } 1436 1437 return ret ? ret : copied; 1438 } 1439 1440 /* 1441 * This is a private version of page_zero_new_buffers() which doesn't 1442 * set the buffer to be dirty, since in data=journalled mode we need 1443 * to call ext4_handle_dirty_metadata() instead. 1444 */ 1445 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1446 struct page *page, 1447 unsigned from, unsigned to) 1448 { 1449 unsigned int block_start = 0, block_end; 1450 struct buffer_head *head, *bh; 1451 1452 bh = head = page_buffers(page); 1453 do { 1454 block_end = block_start + bh->b_size; 1455 if (buffer_new(bh)) { 1456 if (block_end > from && block_start < to) { 1457 if (!PageUptodate(page)) { 1458 unsigned start, size; 1459 1460 start = max(from, block_start); 1461 size = min(to, block_end) - start; 1462 1463 zero_user(page, start, size); 1464 write_end_fn(handle, bh); 1465 } 1466 clear_buffer_new(bh); 1467 } 1468 } 1469 block_start = block_end; 1470 bh = bh->b_this_page; 1471 } while (bh != head); 1472 } 1473 1474 static int ext4_journalled_write_end(struct file *file, 1475 struct address_space *mapping, 1476 loff_t pos, unsigned len, unsigned copied, 1477 struct page *page, void *fsdata) 1478 { 1479 handle_t *handle = ext4_journal_current_handle(); 1480 struct inode *inode = mapping->host; 1481 loff_t old_size = inode->i_size; 1482 int ret = 0, ret2; 1483 int partial = 0; 1484 unsigned from, to; 1485 int size_changed = 0; 1486 1487 trace_ext4_journalled_write_end(inode, pos, len, copied); 1488 from = pos & (PAGE_SIZE - 1); 1489 to = from + len; 1490 1491 BUG_ON(!ext4_handle_valid(handle)); 1492 1493 if (ext4_has_inline_data(inode)) { 1494 ret = ext4_write_inline_data_end(inode, pos, len, 1495 copied, page); 1496 if (ret < 0) { 1497 unlock_page(page); 1498 put_page(page); 1499 goto errout; 1500 } 1501 copied = ret; 1502 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1503 copied = 0; 1504 ext4_journalled_zero_new_buffers(handle, page, from, to); 1505 } else { 1506 if (unlikely(copied < len)) 1507 ext4_journalled_zero_new_buffers(handle, page, 1508 from + copied, to); 1509 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1510 from + copied, &partial, 1511 write_end_fn); 1512 if (!partial) 1513 SetPageUptodate(page); 1514 } 1515 size_changed = ext4_update_inode_size(inode, pos + copied); 1516 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1517 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1518 unlock_page(page); 1519 put_page(page); 1520 1521 if (old_size < pos) 1522 pagecache_isize_extended(inode, old_size, pos); 1523 1524 if (size_changed) { 1525 ret2 = ext4_mark_inode_dirty(handle, inode); 1526 if (!ret) 1527 ret = ret2; 1528 } 1529 1530 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1531 /* if we have allocated more blocks and copied 1532 * less. We will have blocks allocated outside 1533 * inode->i_size. So truncate them 1534 */ 1535 ext4_orphan_add(handle, inode); 1536 1537 errout: 1538 ret2 = ext4_journal_stop(handle); 1539 if (!ret) 1540 ret = ret2; 1541 if (pos + len > inode->i_size) { 1542 ext4_truncate_failed_write(inode); 1543 /* 1544 * If truncate failed early the inode might still be 1545 * on the orphan list; we need to make sure the inode 1546 * is removed from the orphan list in that case. 1547 */ 1548 if (inode->i_nlink) 1549 ext4_orphan_del(NULL, inode); 1550 } 1551 1552 return ret ? ret : copied; 1553 } 1554 1555 /* 1556 * Reserve space for a single cluster 1557 */ 1558 static int ext4_da_reserve_space(struct inode *inode) 1559 { 1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1561 struct ext4_inode_info *ei = EXT4_I(inode); 1562 int ret; 1563 1564 /* 1565 * We will charge metadata quota at writeout time; this saves 1566 * us from metadata over-estimation, though we may go over by 1567 * a small amount in the end. Here we just reserve for data. 1568 */ 1569 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1570 if (ret) 1571 return ret; 1572 1573 spin_lock(&ei->i_block_reservation_lock); 1574 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1575 spin_unlock(&ei->i_block_reservation_lock); 1576 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1577 return -ENOSPC; 1578 } 1579 ei->i_reserved_data_blocks++; 1580 trace_ext4_da_reserve_space(inode); 1581 spin_unlock(&ei->i_block_reservation_lock); 1582 1583 return 0; /* success */ 1584 } 1585 1586 static void ext4_da_release_space(struct inode *inode, int to_free) 1587 { 1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1589 struct ext4_inode_info *ei = EXT4_I(inode); 1590 1591 if (!to_free) 1592 return; /* Nothing to release, exit */ 1593 1594 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1595 1596 trace_ext4_da_release_space(inode, to_free); 1597 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1598 /* 1599 * if there aren't enough reserved blocks, then the 1600 * counter is messed up somewhere. Since this 1601 * function is called from invalidate page, it's 1602 * harmless to return without any action. 1603 */ 1604 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1605 "ino %lu, to_free %d with only %d reserved " 1606 "data blocks", inode->i_ino, to_free, 1607 ei->i_reserved_data_blocks); 1608 WARN_ON(1); 1609 to_free = ei->i_reserved_data_blocks; 1610 } 1611 ei->i_reserved_data_blocks -= to_free; 1612 1613 /* update fs dirty data blocks counter */ 1614 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1615 1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1617 1618 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1619 } 1620 1621 static void ext4_da_page_release_reservation(struct page *page, 1622 unsigned int offset, 1623 unsigned int length) 1624 { 1625 int to_release = 0, contiguous_blks = 0; 1626 struct buffer_head *head, *bh; 1627 unsigned int curr_off = 0; 1628 struct inode *inode = page->mapping->host; 1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1630 unsigned int stop = offset + length; 1631 int num_clusters; 1632 ext4_fsblk_t lblk; 1633 1634 BUG_ON(stop > PAGE_SIZE || stop < length); 1635 1636 head = page_buffers(page); 1637 bh = head; 1638 do { 1639 unsigned int next_off = curr_off + bh->b_size; 1640 1641 if (next_off > stop) 1642 break; 1643 1644 if ((offset <= curr_off) && (buffer_delay(bh))) { 1645 to_release++; 1646 contiguous_blks++; 1647 clear_buffer_delay(bh); 1648 } else if (contiguous_blks) { 1649 lblk = page->index << 1650 (PAGE_SHIFT - inode->i_blkbits); 1651 lblk += (curr_off >> inode->i_blkbits) - 1652 contiguous_blks; 1653 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1654 contiguous_blks = 0; 1655 } 1656 curr_off = next_off; 1657 } while ((bh = bh->b_this_page) != head); 1658 1659 if (contiguous_blks) { 1660 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1661 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1662 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1663 } 1664 1665 /* If we have released all the blocks belonging to a cluster, then we 1666 * need to release the reserved space for that cluster. */ 1667 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1668 while (num_clusters > 0) { 1669 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1670 ((num_clusters - 1) << sbi->s_cluster_bits); 1671 if (sbi->s_cluster_ratio == 1 || 1672 !ext4_find_delalloc_cluster(inode, lblk)) 1673 ext4_da_release_space(inode, 1); 1674 1675 num_clusters--; 1676 } 1677 } 1678 1679 /* 1680 * Delayed allocation stuff 1681 */ 1682 1683 struct mpage_da_data { 1684 struct inode *inode; 1685 struct writeback_control *wbc; 1686 1687 pgoff_t first_page; /* The first page to write */ 1688 pgoff_t next_page; /* Current page to examine */ 1689 pgoff_t last_page; /* Last page to examine */ 1690 /* 1691 * Extent to map - this can be after first_page because that can be 1692 * fully mapped. We somewhat abuse m_flags to store whether the extent 1693 * is delalloc or unwritten. 1694 */ 1695 struct ext4_map_blocks map; 1696 struct ext4_io_submit io_submit; /* IO submission data */ 1697 unsigned int do_map:1; 1698 }; 1699 1700 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1701 bool invalidate) 1702 { 1703 int nr_pages, i; 1704 pgoff_t index, end; 1705 struct pagevec pvec; 1706 struct inode *inode = mpd->inode; 1707 struct address_space *mapping = inode->i_mapping; 1708 1709 /* This is necessary when next_page == 0. */ 1710 if (mpd->first_page >= mpd->next_page) 1711 return; 1712 1713 index = mpd->first_page; 1714 end = mpd->next_page - 1; 1715 if (invalidate) { 1716 ext4_lblk_t start, last; 1717 start = index << (PAGE_SHIFT - inode->i_blkbits); 1718 last = end << (PAGE_SHIFT - inode->i_blkbits); 1719 ext4_es_remove_extent(inode, start, last - start + 1); 1720 } 1721 1722 pagevec_init(&pvec); 1723 while (index <= end) { 1724 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1725 if (nr_pages == 0) 1726 break; 1727 for (i = 0; i < nr_pages; i++) { 1728 struct page *page = pvec.pages[i]; 1729 1730 BUG_ON(!PageLocked(page)); 1731 BUG_ON(PageWriteback(page)); 1732 if (invalidate) { 1733 if (page_mapped(page)) 1734 clear_page_dirty_for_io(page); 1735 block_invalidatepage(page, 0, PAGE_SIZE); 1736 ClearPageUptodate(page); 1737 } 1738 unlock_page(page); 1739 } 1740 pagevec_release(&pvec); 1741 } 1742 } 1743 1744 static void ext4_print_free_blocks(struct inode *inode) 1745 { 1746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1747 struct super_block *sb = inode->i_sb; 1748 struct ext4_inode_info *ei = EXT4_I(inode); 1749 1750 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1751 EXT4_C2B(EXT4_SB(inode->i_sb), 1752 ext4_count_free_clusters(sb))); 1753 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1754 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1755 (long long) EXT4_C2B(EXT4_SB(sb), 1756 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1757 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1758 (long long) EXT4_C2B(EXT4_SB(sb), 1759 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1760 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1761 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1762 ei->i_reserved_data_blocks); 1763 return; 1764 } 1765 1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1767 { 1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1769 } 1770 1771 /* 1772 * This function is grabs code from the very beginning of 1773 * ext4_map_blocks, but assumes that the caller is from delayed write 1774 * time. This function looks up the requested blocks and sets the 1775 * buffer delay bit under the protection of i_data_sem. 1776 */ 1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1778 struct ext4_map_blocks *map, 1779 struct buffer_head *bh) 1780 { 1781 struct extent_status es; 1782 int retval; 1783 sector_t invalid_block = ~((sector_t) 0xffff); 1784 #ifdef ES_AGGRESSIVE_TEST 1785 struct ext4_map_blocks orig_map; 1786 1787 memcpy(&orig_map, map, sizeof(*map)); 1788 #endif 1789 1790 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1791 invalid_block = ~0; 1792 1793 map->m_flags = 0; 1794 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1795 "logical block %lu\n", inode->i_ino, map->m_len, 1796 (unsigned long) map->m_lblk); 1797 1798 /* Lookup extent status tree firstly */ 1799 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1800 if (ext4_es_is_hole(&es)) { 1801 retval = 0; 1802 down_read(&EXT4_I(inode)->i_data_sem); 1803 goto add_delayed; 1804 } 1805 1806 /* 1807 * Delayed extent could be allocated by fallocate. 1808 * So we need to check it. 1809 */ 1810 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1811 map_bh(bh, inode->i_sb, invalid_block); 1812 set_buffer_new(bh); 1813 set_buffer_delay(bh); 1814 return 0; 1815 } 1816 1817 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1818 retval = es.es_len - (iblock - es.es_lblk); 1819 if (retval > map->m_len) 1820 retval = map->m_len; 1821 map->m_len = retval; 1822 if (ext4_es_is_written(&es)) 1823 map->m_flags |= EXT4_MAP_MAPPED; 1824 else if (ext4_es_is_unwritten(&es)) 1825 map->m_flags |= EXT4_MAP_UNWRITTEN; 1826 else 1827 BUG_ON(1); 1828 1829 #ifdef ES_AGGRESSIVE_TEST 1830 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1831 #endif 1832 return retval; 1833 } 1834 1835 /* 1836 * Try to see if we can get the block without requesting a new 1837 * file system block. 1838 */ 1839 down_read(&EXT4_I(inode)->i_data_sem); 1840 if (ext4_has_inline_data(inode)) 1841 retval = 0; 1842 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1843 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1844 else 1845 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1846 1847 add_delayed: 1848 if (retval == 0) { 1849 int ret; 1850 /* 1851 * XXX: __block_prepare_write() unmaps passed block, 1852 * is it OK? 1853 */ 1854 /* 1855 * If the block was allocated from previously allocated cluster, 1856 * then we don't need to reserve it again. However we still need 1857 * to reserve metadata for every block we're going to write. 1858 */ 1859 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1860 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1861 ret = ext4_da_reserve_space(inode); 1862 if (ret) { 1863 /* not enough space to reserve */ 1864 retval = ret; 1865 goto out_unlock; 1866 } 1867 } 1868 1869 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1870 ~0, EXTENT_STATUS_DELAYED); 1871 if (ret) { 1872 retval = ret; 1873 goto out_unlock; 1874 } 1875 1876 map_bh(bh, inode->i_sb, invalid_block); 1877 set_buffer_new(bh); 1878 set_buffer_delay(bh); 1879 } else if (retval > 0) { 1880 int ret; 1881 unsigned int status; 1882 1883 if (unlikely(retval != map->m_len)) { 1884 ext4_warning(inode->i_sb, 1885 "ES len assertion failed for inode " 1886 "%lu: retval %d != map->m_len %d", 1887 inode->i_ino, retval, map->m_len); 1888 WARN_ON(1); 1889 } 1890 1891 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1892 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1893 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1894 map->m_pblk, status); 1895 if (ret != 0) 1896 retval = ret; 1897 } 1898 1899 out_unlock: 1900 up_read((&EXT4_I(inode)->i_data_sem)); 1901 1902 return retval; 1903 } 1904 1905 /* 1906 * This is a special get_block_t callback which is used by 1907 * ext4_da_write_begin(). It will either return mapped block or 1908 * reserve space for a single block. 1909 * 1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1911 * We also have b_blocknr = -1 and b_bdev initialized properly 1912 * 1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1915 * initialized properly. 1916 */ 1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1918 struct buffer_head *bh, int create) 1919 { 1920 struct ext4_map_blocks map; 1921 int ret = 0; 1922 1923 BUG_ON(create == 0); 1924 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1925 1926 map.m_lblk = iblock; 1927 map.m_len = 1; 1928 1929 /* 1930 * first, we need to know whether the block is allocated already 1931 * preallocated blocks are unmapped but should treated 1932 * the same as allocated blocks. 1933 */ 1934 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1935 if (ret <= 0) 1936 return ret; 1937 1938 map_bh(bh, inode->i_sb, map.m_pblk); 1939 ext4_update_bh_state(bh, map.m_flags); 1940 1941 if (buffer_unwritten(bh)) { 1942 /* A delayed write to unwritten bh should be marked 1943 * new and mapped. Mapped ensures that we don't do 1944 * get_block multiple times when we write to the same 1945 * offset and new ensures that we do proper zero out 1946 * for partial write. 1947 */ 1948 set_buffer_new(bh); 1949 set_buffer_mapped(bh); 1950 } 1951 return 0; 1952 } 1953 1954 static int bget_one(handle_t *handle, struct buffer_head *bh) 1955 { 1956 get_bh(bh); 1957 return 0; 1958 } 1959 1960 static int bput_one(handle_t *handle, struct buffer_head *bh) 1961 { 1962 put_bh(bh); 1963 return 0; 1964 } 1965 1966 static int __ext4_journalled_writepage(struct page *page, 1967 unsigned int len) 1968 { 1969 struct address_space *mapping = page->mapping; 1970 struct inode *inode = mapping->host; 1971 struct buffer_head *page_bufs = NULL; 1972 handle_t *handle = NULL; 1973 int ret = 0, err = 0; 1974 int inline_data = ext4_has_inline_data(inode); 1975 struct buffer_head *inode_bh = NULL; 1976 1977 ClearPageChecked(page); 1978 1979 if (inline_data) { 1980 BUG_ON(page->index != 0); 1981 BUG_ON(len > ext4_get_max_inline_size(inode)); 1982 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1983 if (inode_bh == NULL) 1984 goto out; 1985 } else { 1986 page_bufs = page_buffers(page); 1987 if (!page_bufs) { 1988 BUG(); 1989 goto out; 1990 } 1991 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1992 NULL, bget_one); 1993 } 1994 /* 1995 * We need to release the page lock before we start the 1996 * journal, so grab a reference so the page won't disappear 1997 * out from under us. 1998 */ 1999 get_page(page); 2000 unlock_page(page); 2001 2002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2003 ext4_writepage_trans_blocks(inode)); 2004 if (IS_ERR(handle)) { 2005 ret = PTR_ERR(handle); 2006 put_page(page); 2007 goto out_no_pagelock; 2008 } 2009 BUG_ON(!ext4_handle_valid(handle)); 2010 2011 lock_page(page); 2012 put_page(page); 2013 if (page->mapping != mapping) { 2014 /* The page got truncated from under us */ 2015 ext4_journal_stop(handle); 2016 ret = 0; 2017 goto out; 2018 } 2019 2020 if (inline_data) { 2021 BUFFER_TRACE(inode_bh, "get write access"); 2022 ret = ext4_journal_get_write_access(handle, inode_bh); 2023 2024 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2025 2026 } else { 2027 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2028 do_journal_get_write_access); 2029 2030 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2031 write_end_fn); 2032 } 2033 if (ret == 0) 2034 ret = err; 2035 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2036 err = ext4_journal_stop(handle); 2037 if (!ret) 2038 ret = err; 2039 2040 if (!ext4_has_inline_data(inode)) 2041 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2042 NULL, bput_one); 2043 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2044 out: 2045 unlock_page(page); 2046 out_no_pagelock: 2047 brelse(inode_bh); 2048 return ret; 2049 } 2050 2051 /* 2052 * Note that we don't need to start a transaction unless we're journaling data 2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2054 * need to file the inode to the transaction's list in ordered mode because if 2055 * we are writing back data added by write(), the inode is already there and if 2056 * we are writing back data modified via mmap(), no one guarantees in which 2057 * transaction the data will hit the disk. In case we are journaling data, we 2058 * cannot start transaction directly because transaction start ranks above page 2059 * lock so we have to do some magic. 2060 * 2061 * This function can get called via... 2062 * - ext4_writepages after taking page lock (have journal handle) 2063 * - journal_submit_inode_data_buffers (no journal handle) 2064 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2065 * - grab_page_cache when doing write_begin (have journal handle) 2066 * 2067 * We don't do any block allocation in this function. If we have page with 2068 * multiple blocks we need to write those buffer_heads that are mapped. This 2069 * is important for mmaped based write. So if we do with blocksize 1K 2070 * truncate(f, 1024); 2071 * a = mmap(f, 0, 4096); 2072 * a[0] = 'a'; 2073 * truncate(f, 4096); 2074 * we have in the page first buffer_head mapped via page_mkwrite call back 2075 * but other buffer_heads would be unmapped but dirty (dirty done via the 2076 * do_wp_page). So writepage should write the first block. If we modify 2077 * the mmap area beyond 1024 we will again get a page_fault and the 2078 * page_mkwrite callback will do the block allocation and mark the 2079 * buffer_heads mapped. 2080 * 2081 * We redirty the page if we have any buffer_heads that is either delay or 2082 * unwritten in the page. 2083 * 2084 * We can get recursively called as show below. 2085 * 2086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2087 * ext4_writepage() 2088 * 2089 * But since we don't do any block allocation we should not deadlock. 2090 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2091 */ 2092 static int ext4_writepage(struct page *page, 2093 struct writeback_control *wbc) 2094 { 2095 int ret = 0; 2096 loff_t size; 2097 unsigned int len; 2098 struct buffer_head *page_bufs = NULL; 2099 struct inode *inode = page->mapping->host; 2100 struct ext4_io_submit io_submit; 2101 bool keep_towrite = false; 2102 2103 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2104 ext4_invalidatepage(page, 0, PAGE_SIZE); 2105 unlock_page(page); 2106 return -EIO; 2107 } 2108 2109 trace_ext4_writepage(page); 2110 size = i_size_read(inode); 2111 if (page->index == size >> PAGE_SHIFT) 2112 len = size & ~PAGE_MASK; 2113 else 2114 len = PAGE_SIZE; 2115 2116 page_bufs = page_buffers(page); 2117 /* 2118 * We cannot do block allocation or other extent handling in this 2119 * function. If there are buffers needing that, we have to redirty 2120 * the page. But we may reach here when we do a journal commit via 2121 * journal_submit_inode_data_buffers() and in that case we must write 2122 * allocated buffers to achieve data=ordered mode guarantees. 2123 * 2124 * Also, if there is only one buffer per page (the fs block 2125 * size == the page size), if one buffer needs block 2126 * allocation or needs to modify the extent tree to clear the 2127 * unwritten flag, we know that the page can't be written at 2128 * all, so we might as well refuse the write immediately. 2129 * Unfortunately if the block size != page size, we can't as 2130 * easily detect this case using ext4_walk_page_buffers(), but 2131 * for the extremely common case, this is an optimization that 2132 * skips a useless round trip through ext4_bio_write_page(). 2133 */ 2134 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2135 ext4_bh_delay_or_unwritten)) { 2136 redirty_page_for_writepage(wbc, page); 2137 if ((current->flags & PF_MEMALLOC) || 2138 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2139 /* 2140 * For memory cleaning there's no point in writing only 2141 * some buffers. So just bail out. Warn if we came here 2142 * from direct reclaim. 2143 */ 2144 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2145 == PF_MEMALLOC); 2146 unlock_page(page); 2147 return 0; 2148 } 2149 keep_towrite = true; 2150 } 2151 2152 if (PageChecked(page) && ext4_should_journal_data(inode)) 2153 /* 2154 * It's mmapped pagecache. Add buffers and journal it. There 2155 * doesn't seem much point in redirtying the page here. 2156 */ 2157 return __ext4_journalled_writepage(page, len); 2158 2159 ext4_io_submit_init(&io_submit, wbc); 2160 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2161 if (!io_submit.io_end) { 2162 redirty_page_for_writepage(wbc, page); 2163 unlock_page(page); 2164 return -ENOMEM; 2165 } 2166 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2167 ext4_io_submit(&io_submit); 2168 /* Drop io_end reference we got from init */ 2169 ext4_put_io_end_defer(io_submit.io_end); 2170 return ret; 2171 } 2172 2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2174 { 2175 int len; 2176 loff_t size; 2177 int err; 2178 2179 BUG_ON(page->index != mpd->first_page); 2180 clear_page_dirty_for_io(page); 2181 /* 2182 * We have to be very careful here! Nothing protects writeback path 2183 * against i_size changes and the page can be writeably mapped into 2184 * page tables. So an application can be growing i_size and writing 2185 * data through mmap while writeback runs. clear_page_dirty_for_io() 2186 * write-protects our page in page tables and the page cannot get 2187 * written to again until we release page lock. So only after 2188 * clear_page_dirty_for_io() we are safe to sample i_size for 2189 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2190 * on the barrier provided by TestClearPageDirty in 2191 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2192 * after page tables are updated. 2193 */ 2194 size = i_size_read(mpd->inode); 2195 if (page->index == size >> PAGE_SHIFT) 2196 len = size & ~PAGE_MASK; 2197 else 2198 len = PAGE_SIZE; 2199 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2200 if (!err) 2201 mpd->wbc->nr_to_write--; 2202 mpd->first_page++; 2203 2204 return err; 2205 } 2206 2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2208 2209 /* 2210 * mballoc gives us at most this number of blocks... 2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2212 * The rest of mballoc seems to handle chunks up to full group size. 2213 */ 2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2215 2216 /* 2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2218 * 2219 * @mpd - extent of blocks 2220 * @lblk - logical number of the block in the file 2221 * @bh - buffer head we want to add to the extent 2222 * 2223 * The function is used to collect contig. blocks in the same state. If the 2224 * buffer doesn't require mapping for writeback and we haven't started the 2225 * extent of buffers to map yet, the function returns 'true' immediately - the 2226 * caller can write the buffer right away. Otherwise the function returns true 2227 * if the block has been added to the extent, false if the block couldn't be 2228 * added. 2229 */ 2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2231 struct buffer_head *bh) 2232 { 2233 struct ext4_map_blocks *map = &mpd->map; 2234 2235 /* Buffer that doesn't need mapping for writeback? */ 2236 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2237 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2238 /* So far no extent to map => we write the buffer right away */ 2239 if (map->m_len == 0) 2240 return true; 2241 return false; 2242 } 2243 2244 /* First block in the extent? */ 2245 if (map->m_len == 0) { 2246 /* We cannot map unless handle is started... */ 2247 if (!mpd->do_map) 2248 return false; 2249 map->m_lblk = lblk; 2250 map->m_len = 1; 2251 map->m_flags = bh->b_state & BH_FLAGS; 2252 return true; 2253 } 2254 2255 /* Don't go larger than mballoc is willing to allocate */ 2256 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2257 return false; 2258 2259 /* Can we merge the block to our big extent? */ 2260 if (lblk == map->m_lblk + map->m_len && 2261 (bh->b_state & BH_FLAGS) == map->m_flags) { 2262 map->m_len++; 2263 return true; 2264 } 2265 return false; 2266 } 2267 2268 /* 2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2270 * 2271 * @mpd - extent of blocks for mapping 2272 * @head - the first buffer in the page 2273 * @bh - buffer we should start processing from 2274 * @lblk - logical number of the block in the file corresponding to @bh 2275 * 2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2277 * the page for IO if all buffers in this page were mapped and there's no 2278 * accumulated extent of buffers to map or add buffers in the page to the 2279 * extent of buffers to map. The function returns 1 if the caller can continue 2280 * by processing the next page, 0 if it should stop adding buffers to the 2281 * extent to map because we cannot extend it anymore. It can also return value 2282 * < 0 in case of error during IO submission. 2283 */ 2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2285 struct buffer_head *head, 2286 struct buffer_head *bh, 2287 ext4_lblk_t lblk) 2288 { 2289 struct inode *inode = mpd->inode; 2290 int err; 2291 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2292 >> inode->i_blkbits; 2293 2294 do { 2295 BUG_ON(buffer_locked(bh)); 2296 2297 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2298 /* Found extent to map? */ 2299 if (mpd->map.m_len) 2300 return 0; 2301 /* Buffer needs mapping and handle is not started? */ 2302 if (!mpd->do_map) 2303 return 0; 2304 /* Everything mapped so far and we hit EOF */ 2305 break; 2306 } 2307 } while (lblk++, (bh = bh->b_this_page) != head); 2308 /* So far everything mapped? Submit the page for IO. */ 2309 if (mpd->map.m_len == 0) { 2310 err = mpage_submit_page(mpd, head->b_page); 2311 if (err < 0) 2312 return err; 2313 } 2314 return lblk < blocks; 2315 } 2316 2317 /* 2318 * mpage_map_buffers - update buffers corresponding to changed extent and 2319 * submit fully mapped pages for IO 2320 * 2321 * @mpd - description of extent to map, on return next extent to map 2322 * 2323 * Scan buffers corresponding to changed extent (we expect corresponding pages 2324 * to be already locked) and update buffer state according to new extent state. 2325 * We map delalloc buffers to their physical location, clear unwritten bits, 2326 * and mark buffers as uninit when we perform writes to unwritten extents 2327 * and do extent conversion after IO is finished. If the last page is not fully 2328 * mapped, we update @map to the next extent in the last page that needs 2329 * mapping. Otherwise we submit the page for IO. 2330 */ 2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2332 { 2333 struct pagevec pvec; 2334 int nr_pages, i; 2335 struct inode *inode = mpd->inode; 2336 struct buffer_head *head, *bh; 2337 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2338 pgoff_t start, end; 2339 ext4_lblk_t lblk; 2340 sector_t pblock; 2341 int err; 2342 2343 start = mpd->map.m_lblk >> bpp_bits; 2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2345 lblk = start << bpp_bits; 2346 pblock = mpd->map.m_pblk; 2347 2348 pagevec_init(&pvec); 2349 while (start <= end) { 2350 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2351 &start, end); 2352 if (nr_pages == 0) 2353 break; 2354 for (i = 0; i < nr_pages; i++) { 2355 struct page *page = pvec.pages[i]; 2356 2357 bh = head = page_buffers(page); 2358 do { 2359 if (lblk < mpd->map.m_lblk) 2360 continue; 2361 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2362 /* 2363 * Buffer after end of mapped extent. 2364 * Find next buffer in the page to map. 2365 */ 2366 mpd->map.m_len = 0; 2367 mpd->map.m_flags = 0; 2368 /* 2369 * FIXME: If dioread_nolock supports 2370 * blocksize < pagesize, we need to make 2371 * sure we add size mapped so far to 2372 * io_end->size as the following call 2373 * can submit the page for IO. 2374 */ 2375 err = mpage_process_page_bufs(mpd, head, 2376 bh, lblk); 2377 pagevec_release(&pvec); 2378 if (err > 0) 2379 err = 0; 2380 return err; 2381 } 2382 if (buffer_delay(bh)) { 2383 clear_buffer_delay(bh); 2384 bh->b_blocknr = pblock++; 2385 } 2386 clear_buffer_unwritten(bh); 2387 } while (lblk++, (bh = bh->b_this_page) != head); 2388 2389 /* 2390 * FIXME: This is going to break if dioread_nolock 2391 * supports blocksize < pagesize as we will try to 2392 * convert potentially unmapped parts of inode. 2393 */ 2394 mpd->io_submit.io_end->size += PAGE_SIZE; 2395 /* Page fully mapped - let IO run! */ 2396 err = mpage_submit_page(mpd, page); 2397 if (err < 0) { 2398 pagevec_release(&pvec); 2399 return err; 2400 } 2401 } 2402 pagevec_release(&pvec); 2403 } 2404 /* Extent fully mapped and matches with page boundary. We are done. */ 2405 mpd->map.m_len = 0; 2406 mpd->map.m_flags = 0; 2407 return 0; 2408 } 2409 2410 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2411 { 2412 struct inode *inode = mpd->inode; 2413 struct ext4_map_blocks *map = &mpd->map; 2414 int get_blocks_flags; 2415 int err, dioread_nolock; 2416 2417 trace_ext4_da_write_pages_extent(inode, map); 2418 /* 2419 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2420 * to convert an unwritten extent to be initialized (in the case 2421 * where we have written into one or more preallocated blocks). It is 2422 * possible that we're going to need more metadata blocks than 2423 * previously reserved. However we must not fail because we're in 2424 * writeback and there is nothing we can do about it so it might result 2425 * in data loss. So use reserved blocks to allocate metadata if 2426 * possible. 2427 * 2428 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2429 * the blocks in question are delalloc blocks. This indicates 2430 * that the blocks and quotas has already been checked when 2431 * the data was copied into the page cache. 2432 */ 2433 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2434 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2435 EXT4_GET_BLOCKS_IO_SUBMIT; 2436 dioread_nolock = ext4_should_dioread_nolock(inode); 2437 if (dioread_nolock) 2438 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2439 if (map->m_flags & (1 << BH_Delay)) 2440 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2441 2442 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2443 if (err < 0) 2444 return err; 2445 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2446 if (!mpd->io_submit.io_end->handle && 2447 ext4_handle_valid(handle)) { 2448 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2449 handle->h_rsv_handle = NULL; 2450 } 2451 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2452 } 2453 2454 BUG_ON(map->m_len == 0); 2455 if (map->m_flags & EXT4_MAP_NEW) { 2456 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2457 map->m_len); 2458 } 2459 return 0; 2460 } 2461 2462 /* 2463 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2464 * mpd->len and submit pages underlying it for IO 2465 * 2466 * @handle - handle for journal operations 2467 * @mpd - extent to map 2468 * @give_up_on_write - we set this to true iff there is a fatal error and there 2469 * is no hope of writing the data. The caller should discard 2470 * dirty pages to avoid infinite loops. 2471 * 2472 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2473 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2474 * them to initialized or split the described range from larger unwritten 2475 * extent. Note that we need not map all the described range since allocation 2476 * can return less blocks or the range is covered by more unwritten extents. We 2477 * cannot map more because we are limited by reserved transaction credits. On 2478 * the other hand we always make sure that the last touched page is fully 2479 * mapped so that it can be written out (and thus forward progress is 2480 * guaranteed). After mapping we submit all mapped pages for IO. 2481 */ 2482 static int mpage_map_and_submit_extent(handle_t *handle, 2483 struct mpage_da_data *mpd, 2484 bool *give_up_on_write) 2485 { 2486 struct inode *inode = mpd->inode; 2487 struct ext4_map_blocks *map = &mpd->map; 2488 int err; 2489 loff_t disksize; 2490 int progress = 0; 2491 2492 mpd->io_submit.io_end->offset = 2493 ((loff_t)map->m_lblk) << inode->i_blkbits; 2494 do { 2495 err = mpage_map_one_extent(handle, mpd); 2496 if (err < 0) { 2497 struct super_block *sb = inode->i_sb; 2498 2499 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2500 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2501 goto invalidate_dirty_pages; 2502 /* 2503 * Let the uper layers retry transient errors. 2504 * In the case of ENOSPC, if ext4_count_free_blocks() 2505 * is non-zero, a commit should free up blocks. 2506 */ 2507 if ((err == -ENOMEM) || 2508 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2509 if (progress) 2510 goto update_disksize; 2511 return err; 2512 } 2513 ext4_msg(sb, KERN_CRIT, 2514 "Delayed block allocation failed for " 2515 "inode %lu at logical offset %llu with" 2516 " max blocks %u with error %d", 2517 inode->i_ino, 2518 (unsigned long long)map->m_lblk, 2519 (unsigned)map->m_len, -err); 2520 ext4_msg(sb, KERN_CRIT, 2521 "This should not happen!! Data will " 2522 "be lost\n"); 2523 if (err == -ENOSPC) 2524 ext4_print_free_blocks(inode); 2525 invalidate_dirty_pages: 2526 *give_up_on_write = true; 2527 return err; 2528 } 2529 progress = 1; 2530 /* 2531 * Update buffer state, submit mapped pages, and get us new 2532 * extent to map 2533 */ 2534 err = mpage_map_and_submit_buffers(mpd); 2535 if (err < 0) 2536 goto update_disksize; 2537 } while (map->m_len); 2538 2539 update_disksize: 2540 /* 2541 * Update on-disk size after IO is submitted. Races with 2542 * truncate are avoided by checking i_size under i_data_sem. 2543 */ 2544 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2545 if (disksize > EXT4_I(inode)->i_disksize) { 2546 int err2; 2547 loff_t i_size; 2548 2549 down_write(&EXT4_I(inode)->i_data_sem); 2550 i_size = i_size_read(inode); 2551 if (disksize > i_size) 2552 disksize = i_size; 2553 if (disksize > EXT4_I(inode)->i_disksize) 2554 EXT4_I(inode)->i_disksize = disksize; 2555 up_write(&EXT4_I(inode)->i_data_sem); 2556 err2 = ext4_mark_inode_dirty(handle, inode); 2557 if (err2) 2558 ext4_error(inode->i_sb, 2559 "Failed to mark inode %lu dirty", 2560 inode->i_ino); 2561 if (!err) 2562 err = err2; 2563 } 2564 return err; 2565 } 2566 2567 /* 2568 * Calculate the total number of credits to reserve for one writepages 2569 * iteration. This is called from ext4_writepages(). We map an extent of 2570 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2571 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2572 * bpp - 1 blocks in bpp different extents. 2573 */ 2574 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2575 { 2576 int bpp = ext4_journal_blocks_per_page(inode); 2577 2578 return ext4_meta_trans_blocks(inode, 2579 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2580 } 2581 2582 /* 2583 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2584 * and underlying extent to map 2585 * 2586 * @mpd - where to look for pages 2587 * 2588 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2589 * IO immediately. When we find a page which isn't mapped we start accumulating 2590 * extent of buffers underlying these pages that needs mapping (formed by 2591 * either delayed or unwritten buffers). We also lock the pages containing 2592 * these buffers. The extent found is returned in @mpd structure (starting at 2593 * mpd->lblk with length mpd->len blocks). 2594 * 2595 * Note that this function can attach bios to one io_end structure which are 2596 * neither logically nor physically contiguous. Although it may seem as an 2597 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2598 * case as we need to track IO to all buffers underlying a page in one io_end. 2599 */ 2600 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2601 { 2602 struct address_space *mapping = mpd->inode->i_mapping; 2603 struct pagevec pvec; 2604 unsigned int nr_pages; 2605 long left = mpd->wbc->nr_to_write; 2606 pgoff_t index = mpd->first_page; 2607 pgoff_t end = mpd->last_page; 2608 int tag; 2609 int i, err = 0; 2610 int blkbits = mpd->inode->i_blkbits; 2611 ext4_lblk_t lblk; 2612 struct buffer_head *head; 2613 2614 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2615 tag = PAGECACHE_TAG_TOWRITE; 2616 else 2617 tag = PAGECACHE_TAG_DIRTY; 2618 2619 pagevec_init(&pvec); 2620 mpd->map.m_len = 0; 2621 mpd->next_page = index; 2622 while (index <= end) { 2623 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2624 tag); 2625 if (nr_pages == 0) 2626 goto out; 2627 2628 for (i = 0; i < nr_pages; i++) { 2629 struct page *page = pvec.pages[i]; 2630 2631 /* 2632 * Accumulated enough dirty pages? This doesn't apply 2633 * to WB_SYNC_ALL mode. For integrity sync we have to 2634 * keep going because someone may be concurrently 2635 * dirtying pages, and we might have synced a lot of 2636 * newly appeared dirty pages, but have not synced all 2637 * of the old dirty pages. 2638 */ 2639 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2640 goto out; 2641 2642 /* If we can't merge this page, we are done. */ 2643 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2644 goto out; 2645 2646 lock_page(page); 2647 /* 2648 * If the page is no longer dirty, or its mapping no 2649 * longer corresponds to inode we are writing (which 2650 * means it has been truncated or invalidated), or the 2651 * page is already under writeback and we are not doing 2652 * a data integrity writeback, skip the page 2653 */ 2654 if (!PageDirty(page) || 2655 (PageWriteback(page) && 2656 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2657 unlikely(page->mapping != mapping)) { 2658 unlock_page(page); 2659 continue; 2660 } 2661 2662 wait_on_page_writeback(page); 2663 BUG_ON(PageWriteback(page)); 2664 2665 if (mpd->map.m_len == 0) 2666 mpd->first_page = page->index; 2667 mpd->next_page = page->index + 1; 2668 /* Add all dirty buffers to mpd */ 2669 lblk = ((ext4_lblk_t)page->index) << 2670 (PAGE_SHIFT - blkbits); 2671 head = page_buffers(page); 2672 err = mpage_process_page_bufs(mpd, head, head, lblk); 2673 if (err <= 0) 2674 goto out; 2675 err = 0; 2676 left--; 2677 } 2678 pagevec_release(&pvec); 2679 cond_resched(); 2680 } 2681 return 0; 2682 out: 2683 pagevec_release(&pvec); 2684 return err; 2685 } 2686 2687 static int __writepage(struct page *page, struct writeback_control *wbc, 2688 void *data) 2689 { 2690 struct address_space *mapping = data; 2691 int ret = ext4_writepage(page, wbc); 2692 mapping_set_error(mapping, ret); 2693 return ret; 2694 } 2695 2696 static int ext4_writepages(struct address_space *mapping, 2697 struct writeback_control *wbc) 2698 { 2699 pgoff_t writeback_index = 0; 2700 long nr_to_write = wbc->nr_to_write; 2701 int range_whole = 0; 2702 int cycled = 1; 2703 handle_t *handle = NULL; 2704 struct mpage_da_data mpd; 2705 struct inode *inode = mapping->host; 2706 int needed_blocks, rsv_blocks = 0, ret = 0; 2707 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2708 bool done; 2709 struct blk_plug plug; 2710 bool give_up_on_write = false; 2711 2712 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2713 return -EIO; 2714 2715 percpu_down_read(&sbi->s_journal_flag_rwsem); 2716 trace_ext4_writepages(inode, wbc); 2717 2718 if (dax_mapping(mapping)) { 2719 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2720 wbc); 2721 goto out_writepages; 2722 } 2723 2724 /* 2725 * No pages to write? This is mainly a kludge to avoid starting 2726 * a transaction for special inodes like journal inode on last iput() 2727 * because that could violate lock ordering on umount 2728 */ 2729 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2730 goto out_writepages; 2731 2732 if (ext4_should_journal_data(inode)) { 2733 struct blk_plug plug; 2734 2735 blk_start_plug(&plug); 2736 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2737 blk_finish_plug(&plug); 2738 goto out_writepages; 2739 } 2740 2741 /* 2742 * If the filesystem has aborted, it is read-only, so return 2743 * right away instead of dumping stack traces later on that 2744 * will obscure the real source of the problem. We test 2745 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2746 * the latter could be true if the filesystem is mounted 2747 * read-only, and in that case, ext4_writepages should 2748 * *never* be called, so if that ever happens, we would want 2749 * the stack trace. 2750 */ 2751 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2752 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2753 ret = -EROFS; 2754 goto out_writepages; 2755 } 2756 2757 if (ext4_should_dioread_nolock(inode)) { 2758 /* 2759 * We may need to convert up to one extent per block in 2760 * the page and we may dirty the inode. 2761 */ 2762 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2763 } 2764 2765 /* 2766 * If we have inline data and arrive here, it means that 2767 * we will soon create the block for the 1st page, so 2768 * we'd better clear the inline data here. 2769 */ 2770 if (ext4_has_inline_data(inode)) { 2771 /* Just inode will be modified... */ 2772 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2773 if (IS_ERR(handle)) { 2774 ret = PTR_ERR(handle); 2775 goto out_writepages; 2776 } 2777 BUG_ON(ext4_test_inode_state(inode, 2778 EXT4_STATE_MAY_INLINE_DATA)); 2779 ext4_destroy_inline_data(handle, inode); 2780 ext4_journal_stop(handle); 2781 } 2782 2783 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2784 range_whole = 1; 2785 2786 if (wbc->range_cyclic) { 2787 writeback_index = mapping->writeback_index; 2788 if (writeback_index) 2789 cycled = 0; 2790 mpd.first_page = writeback_index; 2791 mpd.last_page = -1; 2792 } else { 2793 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2794 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2795 } 2796 2797 mpd.inode = inode; 2798 mpd.wbc = wbc; 2799 ext4_io_submit_init(&mpd.io_submit, wbc); 2800 retry: 2801 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2802 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2803 done = false; 2804 blk_start_plug(&plug); 2805 2806 /* 2807 * First writeback pages that don't need mapping - we can avoid 2808 * starting a transaction unnecessarily and also avoid being blocked 2809 * in the block layer on device congestion while having transaction 2810 * started. 2811 */ 2812 mpd.do_map = 0; 2813 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2814 if (!mpd.io_submit.io_end) { 2815 ret = -ENOMEM; 2816 goto unplug; 2817 } 2818 ret = mpage_prepare_extent_to_map(&mpd); 2819 /* Submit prepared bio */ 2820 ext4_io_submit(&mpd.io_submit); 2821 ext4_put_io_end_defer(mpd.io_submit.io_end); 2822 mpd.io_submit.io_end = NULL; 2823 /* Unlock pages we didn't use */ 2824 mpage_release_unused_pages(&mpd, false); 2825 if (ret < 0) 2826 goto unplug; 2827 2828 while (!done && mpd.first_page <= mpd.last_page) { 2829 /* For each extent of pages we use new io_end */ 2830 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2831 if (!mpd.io_submit.io_end) { 2832 ret = -ENOMEM; 2833 break; 2834 } 2835 2836 /* 2837 * We have two constraints: We find one extent to map and we 2838 * must always write out whole page (makes a difference when 2839 * blocksize < pagesize) so that we don't block on IO when we 2840 * try to write out the rest of the page. Journalled mode is 2841 * not supported by delalloc. 2842 */ 2843 BUG_ON(ext4_should_journal_data(inode)); 2844 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2845 2846 /* start a new transaction */ 2847 handle = ext4_journal_start_with_reserve(inode, 2848 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2849 if (IS_ERR(handle)) { 2850 ret = PTR_ERR(handle); 2851 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2852 "%ld pages, ino %lu; err %d", __func__, 2853 wbc->nr_to_write, inode->i_ino, ret); 2854 /* Release allocated io_end */ 2855 ext4_put_io_end(mpd.io_submit.io_end); 2856 mpd.io_submit.io_end = NULL; 2857 break; 2858 } 2859 mpd.do_map = 1; 2860 2861 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2862 ret = mpage_prepare_extent_to_map(&mpd); 2863 if (!ret) { 2864 if (mpd.map.m_len) 2865 ret = mpage_map_and_submit_extent(handle, &mpd, 2866 &give_up_on_write); 2867 else { 2868 /* 2869 * We scanned the whole range (or exhausted 2870 * nr_to_write), submitted what was mapped and 2871 * didn't find anything needing mapping. We are 2872 * done. 2873 */ 2874 done = true; 2875 } 2876 } 2877 /* 2878 * Caution: If the handle is synchronous, 2879 * ext4_journal_stop() can wait for transaction commit 2880 * to finish which may depend on writeback of pages to 2881 * complete or on page lock to be released. In that 2882 * case, we have to wait until after after we have 2883 * submitted all the IO, released page locks we hold, 2884 * and dropped io_end reference (for extent conversion 2885 * to be able to complete) before stopping the handle. 2886 */ 2887 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2888 ext4_journal_stop(handle); 2889 handle = NULL; 2890 mpd.do_map = 0; 2891 } 2892 /* Submit prepared bio */ 2893 ext4_io_submit(&mpd.io_submit); 2894 /* Unlock pages we didn't use */ 2895 mpage_release_unused_pages(&mpd, give_up_on_write); 2896 /* 2897 * Drop our io_end reference we got from init. We have 2898 * to be careful and use deferred io_end finishing if 2899 * we are still holding the transaction as we can 2900 * release the last reference to io_end which may end 2901 * up doing unwritten extent conversion. 2902 */ 2903 if (handle) { 2904 ext4_put_io_end_defer(mpd.io_submit.io_end); 2905 ext4_journal_stop(handle); 2906 } else 2907 ext4_put_io_end(mpd.io_submit.io_end); 2908 mpd.io_submit.io_end = NULL; 2909 2910 if (ret == -ENOSPC && sbi->s_journal) { 2911 /* 2912 * Commit the transaction which would 2913 * free blocks released in the transaction 2914 * and try again 2915 */ 2916 jbd2_journal_force_commit_nested(sbi->s_journal); 2917 ret = 0; 2918 continue; 2919 } 2920 /* Fatal error - ENOMEM, EIO... */ 2921 if (ret) 2922 break; 2923 } 2924 unplug: 2925 blk_finish_plug(&plug); 2926 if (!ret && !cycled && wbc->nr_to_write > 0) { 2927 cycled = 1; 2928 mpd.last_page = writeback_index - 1; 2929 mpd.first_page = 0; 2930 goto retry; 2931 } 2932 2933 /* Update index */ 2934 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2935 /* 2936 * Set the writeback_index so that range_cyclic 2937 * mode will write it back later 2938 */ 2939 mapping->writeback_index = mpd.first_page; 2940 2941 out_writepages: 2942 trace_ext4_writepages_result(inode, wbc, ret, 2943 nr_to_write - wbc->nr_to_write); 2944 percpu_up_read(&sbi->s_journal_flag_rwsem); 2945 return ret; 2946 } 2947 2948 static int ext4_nonda_switch(struct super_block *sb) 2949 { 2950 s64 free_clusters, dirty_clusters; 2951 struct ext4_sb_info *sbi = EXT4_SB(sb); 2952 2953 /* 2954 * switch to non delalloc mode if we are running low 2955 * on free block. The free block accounting via percpu 2956 * counters can get slightly wrong with percpu_counter_batch getting 2957 * accumulated on each CPU without updating global counters 2958 * Delalloc need an accurate free block accounting. So switch 2959 * to non delalloc when we are near to error range. 2960 */ 2961 free_clusters = 2962 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2963 dirty_clusters = 2964 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2965 /* 2966 * Start pushing delalloc when 1/2 of free blocks are dirty. 2967 */ 2968 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2969 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2970 2971 if (2 * free_clusters < 3 * dirty_clusters || 2972 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2973 /* 2974 * free block count is less than 150% of dirty blocks 2975 * or free blocks is less than watermark 2976 */ 2977 return 1; 2978 } 2979 return 0; 2980 } 2981 2982 /* We always reserve for an inode update; the superblock could be there too */ 2983 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2984 { 2985 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2986 return 1; 2987 2988 if (pos + len <= 0x7fffffffULL) 2989 return 1; 2990 2991 /* We might need to update the superblock to set LARGE_FILE */ 2992 return 2; 2993 } 2994 2995 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2996 loff_t pos, unsigned len, unsigned flags, 2997 struct page **pagep, void **fsdata) 2998 { 2999 int ret, retries = 0; 3000 struct page *page; 3001 pgoff_t index; 3002 struct inode *inode = mapping->host; 3003 handle_t *handle; 3004 3005 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3006 return -EIO; 3007 3008 index = pos >> PAGE_SHIFT; 3009 3010 if (ext4_nonda_switch(inode->i_sb) || 3011 S_ISLNK(inode->i_mode)) { 3012 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3013 return ext4_write_begin(file, mapping, pos, 3014 len, flags, pagep, fsdata); 3015 } 3016 *fsdata = (void *)0; 3017 trace_ext4_da_write_begin(inode, pos, len, flags); 3018 3019 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3020 ret = ext4_da_write_inline_data_begin(mapping, inode, 3021 pos, len, flags, 3022 pagep, fsdata); 3023 if (ret < 0) 3024 return ret; 3025 if (ret == 1) 3026 return 0; 3027 } 3028 3029 /* 3030 * grab_cache_page_write_begin() can take a long time if the 3031 * system is thrashing due to memory pressure, or if the page 3032 * is being written back. So grab it first before we start 3033 * the transaction handle. This also allows us to allocate 3034 * the page (if needed) without using GFP_NOFS. 3035 */ 3036 retry_grab: 3037 page = grab_cache_page_write_begin(mapping, index, flags); 3038 if (!page) 3039 return -ENOMEM; 3040 unlock_page(page); 3041 3042 /* 3043 * With delayed allocation, we don't log the i_disksize update 3044 * if there is delayed block allocation. But we still need 3045 * to journalling the i_disksize update if writes to the end 3046 * of file which has an already mapped buffer. 3047 */ 3048 retry_journal: 3049 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3050 ext4_da_write_credits(inode, pos, len)); 3051 if (IS_ERR(handle)) { 3052 put_page(page); 3053 return PTR_ERR(handle); 3054 } 3055 3056 lock_page(page); 3057 if (page->mapping != mapping) { 3058 /* The page got truncated from under us */ 3059 unlock_page(page); 3060 put_page(page); 3061 ext4_journal_stop(handle); 3062 goto retry_grab; 3063 } 3064 /* In case writeback began while the page was unlocked */ 3065 wait_for_stable_page(page); 3066 3067 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3068 ret = ext4_block_write_begin(page, pos, len, 3069 ext4_da_get_block_prep); 3070 #else 3071 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3072 #endif 3073 if (ret < 0) { 3074 unlock_page(page); 3075 ext4_journal_stop(handle); 3076 /* 3077 * block_write_begin may have instantiated a few blocks 3078 * outside i_size. Trim these off again. Don't need 3079 * i_size_read because we hold i_mutex. 3080 */ 3081 if (pos + len > inode->i_size) 3082 ext4_truncate_failed_write(inode); 3083 3084 if (ret == -ENOSPC && 3085 ext4_should_retry_alloc(inode->i_sb, &retries)) 3086 goto retry_journal; 3087 3088 put_page(page); 3089 return ret; 3090 } 3091 3092 *pagep = page; 3093 return ret; 3094 } 3095 3096 /* 3097 * Check if we should update i_disksize 3098 * when write to the end of file but not require block allocation 3099 */ 3100 static int ext4_da_should_update_i_disksize(struct page *page, 3101 unsigned long offset) 3102 { 3103 struct buffer_head *bh; 3104 struct inode *inode = page->mapping->host; 3105 unsigned int idx; 3106 int i; 3107 3108 bh = page_buffers(page); 3109 idx = offset >> inode->i_blkbits; 3110 3111 for (i = 0; i < idx; i++) 3112 bh = bh->b_this_page; 3113 3114 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3115 return 0; 3116 return 1; 3117 } 3118 3119 static int ext4_da_write_end(struct file *file, 3120 struct address_space *mapping, 3121 loff_t pos, unsigned len, unsigned copied, 3122 struct page *page, void *fsdata) 3123 { 3124 struct inode *inode = mapping->host; 3125 int ret = 0, ret2; 3126 handle_t *handle = ext4_journal_current_handle(); 3127 loff_t new_i_size; 3128 unsigned long start, end; 3129 int write_mode = (int)(unsigned long)fsdata; 3130 3131 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3132 return ext4_write_end(file, mapping, pos, 3133 len, copied, page, fsdata); 3134 3135 trace_ext4_da_write_end(inode, pos, len, copied); 3136 start = pos & (PAGE_SIZE - 1); 3137 end = start + copied - 1; 3138 3139 /* 3140 * generic_write_end() will run mark_inode_dirty() if i_size 3141 * changes. So let's piggyback the i_disksize mark_inode_dirty 3142 * into that. 3143 */ 3144 new_i_size = pos + copied; 3145 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3146 if (ext4_has_inline_data(inode) || 3147 ext4_da_should_update_i_disksize(page, end)) { 3148 ext4_update_i_disksize(inode, new_i_size); 3149 /* We need to mark inode dirty even if 3150 * new_i_size is less that inode->i_size 3151 * bu greater than i_disksize.(hint delalloc) 3152 */ 3153 ext4_mark_inode_dirty(handle, inode); 3154 } 3155 } 3156 3157 if (write_mode != CONVERT_INLINE_DATA && 3158 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3159 ext4_has_inline_data(inode)) 3160 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3161 page); 3162 else 3163 ret2 = generic_write_end(file, mapping, pos, len, copied, 3164 page, fsdata); 3165 3166 copied = ret2; 3167 if (ret2 < 0) 3168 ret = ret2; 3169 ret2 = ext4_journal_stop(handle); 3170 if (!ret) 3171 ret = ret2; 3172 3173 return ret ? ret : copied; 3174 } 3175 3176 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3177 unsigned int length) 3178 { 3179 /* 3180 * Drop reserved blocks 3181 */ 3182 BUG_ON(!PageLocked(page)); 3183 if (!page_has_buffers(page)) 3184 goto out; 3185 3186 ext4_da_page_release_reservation(page, offset, length); 3187 3188 out: 3189 ext4_invalidatepage(page, offset, length); 3190 3191 return; 3192 } 3193 3194 /* 3195 * Force all delayed allocation blocks to be allocated for a given inode. 3196 */ 3197 int ext4_alloc_da_blocks(struct inode *inode) 3198 { 3199 trace_ext4_alloc_da_blocks(inode); 3200 3201 if (!EXT4_I(inode)->i_reserved_data_blocks) 3202 return 0; 3203 3204 /* 3205 * We do something simple for now. The filemap_flush() will 3206 * also start triggering a write of the data blocks, which is 3207 * not strictly speaking necessary (and for users of 3208 * laptop_mode, not even desirable). However, to do otherwise 3209 * would require replicating code paths in: 3210 * 3211 * ext4_writepages() -> 3212 * write_cache_pages() ---> (via passed in callback function) 3213 * __mpage_da_writepage() --> 3214 * mpage_add_bh_to_extent() 3215 * mpage_da_map_blocks() 3216 * 3217 * The problem is that write_cache_pages(), located in 3218 * mm/page-writeback.c, marks pages clean in preparation for 3219 * doing I/O, which is not desirable if we're not planning on 3220 * doing I/O at all. 3221 * 3222 * We could call write_cache_pages(), and then redirty all of 3223 * the pages by calling redirty_page_for_writepage() but that 3224 * would be ugly in the extreme. So instead we would need to 3225 * replicate parts of the code in the above functions, 3226 * simplifying them because we wouldn't actually intend to 3227 * write out the pages, but rather only collect contiguous 3228 * logical block extents, call the multi-block allocator, and 3229 * then update the buffer heads with the block allocations. 3230 * 3231 * For now, though, we'll cheat by calling filemap_flush(), 3232 * which will map the blocks, and start the I/O, but not 3233 * actually wait for the I/O to complete. 3234 */ 3235 return filemap_flush(inode->i_mapping); 3236 } 3237 3238 /* 3239 * bmap() is special. It gets used by applications such as lilo and by 3240 * the swapper to find the on-disk block of a specific piece of data. 3241 * 3242 * Naturally, this is dangerous if the block concerned is still in the 3243 * journal. If somebody makes a swapfile on an ext4 data-journaling 3244 * filesystem and enables swap, then they may get a nasty shock when the 3245 * data getting swapped to that swapfile suddenly gets overwritten by 3246 * the original zero's written out previously to the journal and 3247 * awaiting writeback in the kernel's buffer cache. 3248 * 3249 * So, if we see any bmap calls here on a modified, data-journaled file, 3250 * take extra steps to flush any blocks which might be in the cache. 3251 */ 3252 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3253 { 3254 struct inode *inode = mapping->host; 3255 journal_t *journal; 3256 int err; 3257 3258 /* 3259 * We can get here for an inline file via the FIBMAP ioctl 3260 */ 3261 if (ext4_has_inline_data(inode)) 3262 return 0; 3263 3264 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3265 test_opt(inode->i_sb, DELALLOC)) { 3266 /* 3267 * With delalloc we want to sync the file 3268 * so that we can make sure we allocate 3269 * blocks for file 3270 */ 3271 filemap_write_and_wait(mapping); 3272 } 3273 3274 if (EXT4_JOURNAL(inode) && 3275 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3276 /* 3277 * This is a REALLY heavyweight approach, but the use of 3278 * bmap on dirty files is expected to be extremely rare: 3279 * only if we run lilo or swapon on a freshly made file 3280 * do we expect this to happen. 3281 * 3282 * (bmap requires CAP_SYS_RAWIO so this does not 3283 * represent an unprivileged user DOS attack --- we'd be 3284 * in trouble if mortal users could trigger this path at 3285 * will.) 3286 * 3287 * NB. EXT4_STATE_JDATA is not set on files other than 3288 * regular files. If somebody wants to bmap a directory 3289 * or symlink and gets confused because the buffer 3290 * hasn't yet been flushed to disk, they deserve 3291 * everything they get. 3292 */ 3293 3294 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3295 journal = EXT4_JOURNAL(inode); 3296 jbd2_journal_lock_updates(journal); 3297 err = jbd2_journal_flush(journal); 3298 jbd2_journal_unlock_updates(journal); 3299 3300 if (err) 3301 return 0; 3302 } 3303 3304 return generic_block_bmap(mapping, block, ext4_get_block); 3305 } 3306 3307 static int ext4_readpage(struct file *file, struct page *page) 3308 { 3309 int ret = -EAGAIN; 3310 struct inode *inode = page->mapping->host; 3311 3312 trace_ext4_readpage(page); 3313 3314 if (ext4_has_inline_data(inode)) 3315 ret = ext4_readpage_inline(inode, page); 3316 3317 if (ret == -EAGAIN) 3318 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3319 3320 return ret; 3321 } 3322 3323 static int 3324 ext4_readpages(struct file *file, struct address_space *mapping, 3325 struct list_head *pages, unsigned nr_pages) 3326 { 3327 struct inode *inode = mapping->host; 3328 3329 /* If the file has inline data, no need to do readpages. */ 3330 if (ext4_has_inline_data(inode)) 3331 return 0; 3332 3333 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3334 } 3335 3336 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3337 unsigned int length) 3338 { 3339 trace_ext4_invalidatepage(page, offset, length); 3340 3341 /* No journalling happens on data buffers when this function is used */ 3342 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3343 3344 block_invalidatepage(page, offset, length); 3345 } 3346 3347 static int __ext4_journalled_invalidatepage(struct page *page, 3348 unsigned int offset, 3349 unsigned int length) 3350 { 3351 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3352 3353 trace_ext4_journalled_invalidatepage(page, offset, length); 3354 3355 /* 3356 * If it's a full truncate we just forget about the pending dirtying 3357 */ 3358 if (offset == 0 && length == PAGE_SIZE) 3359 ClearPageChecked(page); 3360 3361 return jbd2_journal_invalidatepage(journal, page, offset, length); 3362 } 3363 3364 /* Wrapper for aops... */ 3365 static void ext4_journalled_invalidatepage(struct page *page, 3366 unsigned int offset, 3367 unsigned int length) 3368 { 3369 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3370 } 3371 3372 static int ext4_releasepage(struct page *page, gfp_t wait) 3373 { 3374 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3375 3376 trace_ext4_releasepage(page); 3377 3378 /* Page has dirty journalled data -> cannot release */ 3379 if (PageChecked(page)) 3380 return 0; 3381 if (journal) 3382 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3383 else 3384 return try_to_free_buffers(page); 3385 } 3386 3387 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3388 unsigned flags, struct iomap *iomap) 3389 { 3390 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3391 unsigned int blkbits = inode->i_blkbits; 3392 unsigned long first_block = offset >> blkbits; 3393 unsigned long last_block = (offset + length - 1) >> blkbits; 3394 struct ext4_map_blocks map; 3395 bool delalloc = false; 3396 int ret; 3397 3398 3399 if (flags & IOMAP_REPORT) { 3400 if (ext4_has_inline_data(inode)) { 3401 ret = ext4_inline_data_iomap(inode, iomap); 3402 if (ret != -EAGAIN) { 3403 if (ret == 0 && offset >= iomap->length) 3404 ret = -ENOENT; 3405 return ret; 3406 } 3407 } 3408 } else { 3409 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3410 return -ERANGE; 3411 } 3412 3413 map.m_lblk = first_block; 3414 map.m_len = last_block - first_block + 1; 3415 3416 if (flags & IOMAP_REPORT) { 3417 ret = ext4_map_blocks(NULL, inode, &map, 0); 3418 if (ret < 0) 3419 return ret; 3420 3421 if (ret == 0) { 3422 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3423 struct extent_status es; 3424 3425 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es); 3426 3427 if (!es.es_len || es.es_lblk > end) { 3428 /* entire range is a hole */ 3429 } else if (es.es_lblk > map.m_lblk) { 3430 /* range starts with a hole */ 3431 map.m_len = es.es_lblk - map.m_lblk; 3432 } else { 3433 ext4_lblk_t offs = 0; 3434 3435 if (es.es_lblk < map.m_lblk) 3436 offs = map.m_lblk - es.es_lblk; 3437 map.m_lblk = es.es_lblk + offs; 3438 map.m_len = es.es_len - offs; 3439 delalloc = true; 3440 } 3441 } 3442 } else if (flags & IOMAP_WRITE) { 3443 int dio_credits; 3444 handle_t *handle; 3445 int retries = 0; 3446 3447 /* Trim mapping request to maximum we can map at once for DIO */ 3448 if (map.m_len > DIO_MAX_BLOCKS) 3449 map.m_len = DIO_MAX_BLOCKS; 3450 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3451 retry: 3452 /* 3453 * Either we allocate blocks and then we don't get unwritten 3454 * extent so we have reserved enough credits, or the blocks 3455 * are already allocated and unwritten and in that case 3456 * extent conversion fits in the credits as well. 3457 */ 3458 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3459 dio_credits); 3460 if (IS_ERR(handle)) 3461 return PTR_ERR(handle); 3462 3463 ret = ext4_map_blocks(handle, inode, &map, 3464 EXT4_GET_BLOCKS_CREATE_ZERO); 3465 if (ret < 0) { 3466 ext4_journal_stop(handle); 3467 if (ret == -ENOSPC && 3468 ext4_should_retry_alloc(inode->i_sb, &retries)) 3469 goto retry; 3470 return ret; 3471 } 3472 3473 /* 3474 * If we added blocks beyond i_size, we need to make sure they 3475 * will get truncated if we crash before updating i_size in 3476 * ext4_iomap_end(). For faults we don't need to do that (and 3477 * even cannot because for orphan list operations inode_lock is 3478 * required) - if we happen to instantiate block beyond i_size, 3479 * it is because we race with truncate which has already added 3480 * the inode to the orphan list. 3481 */ 3482 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3483 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3484 int err; 3485 3486 err = ext4_orphan_add(handle, inode); 3487 if (err < 0) { 3488 ext4_journal_stop(handle); 3489 return err; 3490 } 3491 } 3492 ext4_journal_stop(handle); 3493 } else { 3494 ret = ext4_map_blocks(NULL, inode, &map, 0); 3495 if (ret < 0) 3496 return ret; 3497 } 3498 3499 iomap->flags = 0; 3500 iomap->bdev = inode->i_sb->s_bdev; 3501 iomap->dax_dev = sbi->s_daxdev; 3502 iomap->offset = first_block << blkbits; 3503 iomap->length = (u64)map.m_len << blkbits; 3504 3505 if (ret == 0) { 3506 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3507 iomap->addr = IOMAP_NULL_ADDR; 3508 } else { 3509 if (map.m_flags & EXT4_MAP_MAPPED) { 3510 iomap->type = IOMAP_MAPPED; 3511 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3512 iomap->type = IOMAP_UNWRITTEN; 3513 } else { 3514 WARN_ON_ONCE(1); 3515 return -EIO; 3516 } 3517 iomap->addr = (u64)map.m_pblk << blkbits; 3518 } 3519 3520 if (map.m_flags & EXT4_MAP_NEW) 3521 iomap->flags |= IOMAP_F_NEW; 3522 3523 return 0; 3524 } 3525 3526 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3527 ssize_t written, unsigned flags, struct iomap *iomap) 3528 { 3529 int ret = 0; 3530 handle_t *handle; 3531 int blkbits = inode->i_blkbits; 3532 bool truncate = false; 3533 3534 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3535 return 0; 3536 3537 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3538 if (IS_ERR(handle)) { 3539 ret = PTR_ERR(handle); 3540 goto orphan_del; 3541 } 3542 if (ext4_update_inode_size(inode, offset + written)) 3543 ext4_mark_inode_dirty(handle, inode); 3544 /* 3545 * We may need to truncate allocated but not written blocks beyond EOF. 3546 */ 3547 if (iomap->offset + iomap->length > 3548 ALIGN(inode->i_size, 1 << blkbits)) { 3549 ext4_lblk_t written_blk, end_blk; 3550 3551 written_blk = (offset + written) >> blkbits; 3552 end_blk = (offset + length) >> blkbits; 3553 if (written_blk < end_blk && ext4_can_truncate(inode)) 3554 truncate = true; 3555 } 3556 /* 3557 * Remove inode from orphan list if we were extending a inode and 3558 * everything went fine. 3559 */ 3560 if (!truncate && inode->i_nlink && 3561 !list_empty(&EXT4_I(inode)->i_orphan)) 3562 ext4_orphan_del(handle, inode); 3563 ext4_journal_stop(handle); 3564 if (truncate) { 3565 ext4_truncate_failed_write(inode); 3566 orphan_del: 3567 /* 3568 * If truncate failed early the inode might still be on the 3569 * orphan list; we need to make sure the inode is removed from 3570 * the orphan list in that case. 3571 */ 3572 if (inode->i_nlink) 3573 ext4_orphan_del(NULL, inode); 3574 } 3575 return ret; 3576 } 3577 3578 const struct iomap_ops ext4_iomap_ops = { 3579 .iomap_begin = ext4_iomap_begin, 3580 .iomap_end = ext4_iomap_end, 3581 }; 3582 3583 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3584 ssize_t size, void *private) 3585 { 3586 ext4_io_end_t *io_end = private; 3587 3588 /* if not async direct IO just return */ 3589 if (!io_end) 3590 return 0; 3591 3592 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3593 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3594 io_end, io_end->inode->i_ino, iocb, offset, size); 3595 3596 /* 3597 * Error during AIO DIO. We cannot convert unwritten extents as the 3598 * data was not written. Just clear the unwritten flag and drop io_end. 3599 */ 3600 if (size <= 0) { 3601 ext4_clear_io_unwritten_flag(io_end); 3602 size = 0; 3603 } 3604 io_end->offset = offset; 3605 io_end->size = size; 3606 ext4_put_io_end(io_end); 3607 3608 return 0; 3609 } 3610 3611 /* 3612 * Handling of direct IO writes. 3613 * 3614 * For ext4 extent files, ext4 will do direct-io write even to holes, 3615 * preallocated extents, and those write extend the file, no need to 3616 * fall back to buffered IO. 3617 * 3618 * For holes, we fallocate those blocks, mark them as unwritten 3619 * If those blocks were preallocated, we mark sure they are split, but 3620 * still keep the range to write as unwritten. 3621 * 3622 * The unwritten extents will be converted to written when DIO is completed. 3623 * For async direct IO, since the IO may still pending when return, we 3624 * set up an end_io call back function, which will do the conversion 3625 * when async direct IO completed. 3626 * 3627 * If the O_DIRECT write will extend the file then add this inode to the 3628 * orphan list. So recovery will truncate it back to the original size 3629 * if the machine crashes during the write. 3630 * 3631 */ 3632 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3633 { 3634 struct file *file = iocb->ki_filp; 3635 struct inode *inode = file->f_mapping->host; 3636 struct ext4_inode_info *ei = EXT4_I(inode); 3637 ssize_t ret; 3638 loff_t offset = iocb->ki_pos; 3639 size_t count = iov_iter_count(iter); 3640 int overwrite = 0; 3641 get_block_t *get_block_func = NULL; 3642 int dio_flags = 0; 3643 loff_t final_size = offset + count; 3644 int orphan = 0; 3645 handle_t *handle; 3646 3647 if (final_size > inode->i_size) { 3648 /* Credits for sb + inode write */ 3649 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3650 if (IS_ERR(handle)) { 3651 ret = PTR_ERR(handle); 3652 goto out; 3653 } 3654 ret = ext4_orphan_add(handle, inode); 3655 if (ret) { 3656 ext4_journal_stop(handle); 3657 goto out; 3658 } 3659 orphan = 1; 3660 ei->i_disksize = inode->i_size; 3661 ext4_journal_stop(handle); 3662 } 3663 3664 BUG_ON(iocb->private == NULL); 3665 3666 /* 3667 * Make all waiters for direct IO properly wait also for extent 3668 * conversion. This also disallows race between truncate() and 3669 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3670 */ 3671 inode_dio_begin(inode); 3672 3673 /* If we do a overwrite dio, i_mutex locking can be released */ 3674 overwrite = *((int *)iocb->private); 3675 3676 if (overwrite) 3677 inode_unlock(inode); 3678 3679 /* 3680 * For extent mapped files we could direct write to holes and fallocate. 3681 * 3682 * Allocated blocks to fill the hole are marked as unwritten to prevent 3683 * parallel buffered read to expose the stale data before DIO complete 3684 * the data IO. 3685 * 3686 * As to previously fallocated extents, ext4 get_block will just simply 3687 * mark the buffer mapped but still keep the extents unwritten. 3688 * 3689 * For non AIO case, we will convert those unwritten extents to written 3690 * after return back from blockdev_direct_IO. That way we save us from 3691 * allocating io_end structure and also the overhead of offloading 3692 * the extent convertion to a workqueue. 3693 * 3694 * For async DIO, the conversion needs to be deferred when the 3695 * IO is completed. The ext4 end_io callback function will be 3696 * called to take care of the conversion work. Here for async 3697 * case, we allocate an io_end structure to hook to the iocb. 3698 */ 3699 iocb->private = NULL; 3700 if (overwrite) 3701 get_block_func = ext4_dio_get_block_overwrite; 3702 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3703 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3704 get_block_func = ext4_dio_get_block; 3705 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3706 } else if (is_sync_kiocb(iocb)) { 3707 get_block_func = ext4_dio_get_block_unwritten_sync; 3708 dio_flags = DIO_LOCKING; 3709 } else { 3710 get_block_func = ext4_dio_get_block_unwritten_async; 3711 dio_flags = DIO_LOCKING; 3712 } 3713 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3714 get_block_func, ext4_end_io_dio, NULL, 3715 dio_flags); 3716 3717 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3718 EXT4_STATE_DIO_UNWRITTEN)) { 3719 int err; 3720 /* 3721 * for non AIO case, since the IO is already 3722 * completed, we could do the conversion right here 3723 */ 3724 err = ext4_convert_unwritten_extents(NULL, inode, 3725 offset, ret); 3726 if (err < 0) 3727 ret = err; 3728 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3729 } 3730 3731 inode_dio_end(inode); 3732 /* take i_mutex locking again if we do a ovewrite dio */ 3733 if (overwrite) 3734 inode_lock(inode); 3735 3736 if (ret < 0 && final_size > inode->i_size) 3737 ext4_truncate_failed_write(inode); 3738 3739 /* Handle extending of i_size after direct IO write */ 3740 if (orphan) { 3741 int err; 3742 3743 /* Credits for sb + inode write */ 3744 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3745 if (IS_ERR(handle)) { 3746 /* This is really bad luck. We've written the data 3747 * but cannot extend i_size. Bail out and pretend 3748 * the write failed... */ 3749 ret = PTR_ERR(handle); 3750 if (inode->i_nlink) 3751 ext4_orphan_del(NULL, inode); 3752 3753 goto out; 3754 } 3755 if (inode->i_nlink) 3756 ext4_orphan_del(handle, inode); 3757 if (ret > 0) { 3758 loff_t end = offset + ret; 3759 if (end > inode->i_size) { 3760 ei->i_disksize = end; 3761 i_size_write(inode, end); 3762 /* 3763 * We're going to return a positive `ret' 3764 * here due to non-zero-length I/O, so there's 3765 * no way of reporting error returns from 3766 * ext4_mark_inode_dirty() to userspace. So 3767 * ignore it. 3768 */ 3769 ext4_mark_inode_dirty(handle, inode); 3770 } 3771 } 3772 err = ext4_journal_stop(handle); 3773 if (ret == 0) 3774 ret = err; 3775 } 3776 out: 3777 return ret; 3778 } 3779 3780 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3781 { 3782 struct address_space *mapping = iocb->ki_filp->f_mapping; 3783 struct inode *inode = mapping->host; 3784 size_t count = iov_iter_count(iter); 3785 ssize_t ret; 3786 3787 /* 3788 * Shared inode_lock is enough for us - it protects against concurrent 3789 * writes & truncates and since we take care of writing back page cache, 3790 * we are protected against page writeback as well. 3791 */ 3792 inode_lock_shared(inode); 3793 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3794 iocb->ki_pos + count - 1); 3795 if (ret) 3796 goto out_unlock; 3797 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3798 iter, ext4_dio_get_block, NULL, NULL, 0); 3799 out_unlock: 3800 inode_unlock_shared(inode); 3801 return ret; 3802 } 3803 3804 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3805 { 3806 struct file *file = iocb->ki_filp; 3807 struct inode *inode = file->f_mapping->host; 3808 size_t count = iov_iter_count(iter); 3809 loff_t offset = iocb->ki_pos; 3810 ssize_t ret; 3811 3812 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3813 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3814 return 0; 3815 #endif 3816 3817 /* 3818 * If we are doing data journalling we don't support O_DIRECT 3819 */ 3820 if (ext4_should_journal_data(inode)) 3821 return 0; 3822 3823 /* Let buffer I/O handle the inline data case. */ 3824 if (ext4_has_inline_data(inode)) 3825 return 0; 3826 3827 /* DAX uses iomap path now */ 3828 if (WARN_ON_ONCE(IS_DAX(inode))) 3829 return 0; 3830 3831 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3832 if (iov_iter_rw(iter) == READ) 3833 ret = ext4_direct_IO_read(iocb, iter); 3834 else 3835 ret = ext4_direct_IO_write(iocb, iter); 3836 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3837 return ret; 3838 } 3839 3840 /* 3841 * Pages can be marked dirty completely asynchronously from ext4's journalling 3842 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3843 * much here because ->set_page_dirty is called under VFS locks. The page is 3844 * not necessarily locked. 3845 * 3846 * We cannot just dirty the page and leave attached buffers clean, because the 3847 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3848 * or jbddirty because all the journalling code will explode. 3849 * 3850 * So what we do is to mark the page "pending dirty" and next time writepage 3851 * is called, propagate that into the buffers appropriately. 3852 */ 3853 static int ext4_journalled_set_page_dirty(struct page *page) 3854 { 3855 SetPageChecked(page); 3856 return __set_page_dirty_nobuffers(page); 3857 } 3858 3859 static int ext4_set_page_dirty(struct page *page) 3860 { 3861 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3862 WARN_ON_ONCE(!page_has_buffers(page)); 3863 return __set_page_dirty_buffers(page); 3864 } 3865 3866 static const struct address_space_operations ext4_aops = { 3867 .readpage = ext4_readpage, 3868 .readpages = ext4_readpages, 3869 .writepage = ext4_writepage, 3870 .writepages = ext4_writepages, 3871 .write_begin = ext4_write_begin, 3872 .write_end = ext4_write_end, 3873 .set_page_dirty = ext4_set_page_dirty, 3874 .bmap = ext4_bmap, 3875 .invalidatepage = ext4_invalidatepage, 3876 .releasepage = ext4_releasepage, 3877 .direct_IO = ext4_direct_IO, 3878 .migratepage = buffer_migrate_page, 3879 .is_partially_uptodate = block_is_partially_uptodate, 3880 .error_remove_page = generic_error_remove_page, 3881 }; 3882 3883 static const struct address_space_operations ext4_journalled_aops = { 3884 .readpage = ext4_readpage, 3885 .readpages = ext4_readpages, 3886 .writepage = ext4_writepage, 3887 .writepages = ext4_writepages, 3888 .write_begin = ext4_write_begin, 3889 .write_end = ext4_journalled_write_end, 3890 .set_page_dirty = ext4_journalled_set_page_dirty, 3891 .bmap = ext4_bmap, 3892 .invalidatepage = ext4_journalled_invalidatepage, 3893 .releasepage = ext4_releasepage, 3894 .direct_IO = ext4_direct_IO, 3895 .is_partially_uptodate = block_is_partially_uptodate, 3896 .error_remove_page = generic_error_remove_page, 3897 }; 3898 3899 static const struct address_space_operations ext4_da_aops = { 3900 .readpage = ext4_readpage, 3901 .readpages = ext4_readpages, 3902 .writepage = ext4_writepage, 3903 .writepages = ext4_writepages, 3904 .write_begin = ext4_da_write_begin, 3905 .write_end = ext4_da_write_end, 3906 .set_page_dirty = ext4_set_page_dirty, 3907 .bmap = ext4_bmap, 3908 .invalidatepage = ext4_da_invalidatepage, 3909 .releasepage = ext4_releasepage, 3910 .direct_IO = ext4_direct_IO, 3911 .migratepage = buffer_migrate_page, 3912 .is_partially_uptodate = block_is_partially_uptodate, 3913 .error_remove_page = generic_error_remove_page, 3914 }; 3915 3916 void ext4_set_aops(struct inode *inode) 3917 { 3918 switch (ext4_inode_journal_mode(inode)) { 3919 case EXT4_INODE_ORDERED_DATA_MODE: 3920 case EXT4_INODE_WRITEBACK_DATA_MODE: 3921 break; 3922 case EXT4_INODE_JOURNAL_DATA_MODE: 3923 inode->i_mapping->a_ops = &ext4_journalled_aops; 3924 return; 3925 default: 3926 BUG(); 3927 } 3928 if (test_opt(inode->i_sb, DELALLOC)) 3929 inode->i_mapping->a_ops = &ext4_da_aops; 3930 else 3931 inode->i_mapping->a_ops = &ext4_aops; 3932 } 3933 3934 static int __ext4_block_zero_page_range(handle_t *handle, 3935 struct address_space *mapping, loff_t from, loff_t length) 3936 { 3937 ext4_fsblk_t index = from >> PAGE_SHIFT; 3938 unsigned offset = from & (PAGE_SIZE-1); 3939 unsigned blocksize, pos; 3940 ext4_lblk_t iblock; 3941 struct inode *inode = mapping->host; 3942 struct buffer_head *bh; 3943 struct page *page; 3944 int err = 0; 3945 3946 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3947 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3948 if (!page) 3949 return -ENOMEM; 3950 3951 blocksize = inode->i_sb->s_blocksize; 3952 3953 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3954 3955 if (!page_has_buffers(page)) 3956 create_empty_buffers(page, blocksize, 0); 3957 3958 /* Find the buffer that contains "offset" */ 3959 bh = page_buffers(page); 3960 pos = blocksize; 3961 while (offset >= pos) { 3962 bh = bh->b_this_page; 3963 iblock++; 3964 pos += blocksize; 3965 } 3966 if (buffer_freed(bh)) { 3967 BUFFER_TRACE(bh, "freed: skip"); 3968 goto unlock; 3969 } 3970 if (!buffer_mapped(bh)) { 3971 BUFFER_TRACE(bh, "unmapped"); 3972 ext4_get_block(inode, iblock, bh, 0); 3973 /* unmapped? It's a hole - nothing to do */ 3974 if (!buffer_mapped(bh)) { 3975 BUFFER_TRACE(bh, "still unmapped"); 3976 goto unlock; 3977 } 3978 } 3979 3980 /* Ok, it's mapped. Make sure it's up-to-date */ 3981 if (PageUptodate(page)) 3982 set_buffer_uptodate(bh); 3983 3984 if (!buffer_uptodate(bh)) { 3985 err = -EIO; 3986 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3987 wait_on_buffer(bh); 3988 /* Uhhuh. Read error. Complain and punt. */ 3989 if (!buffer_uptodate(bh)) 3990 goto unlock; 3991 if (S_ISREG(inode->i_mode) && 3992 ext4_encrypted_inode(inode)) { 3993 /* We expect the key to be set. */ 3994 BUG_ON(!fscrypt_has_encryption_key(inode)); 3995 BUG_ON(blocksize != PAGE_SIZE); 3996 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3997 page, PAGE_SIZE, 0, page->index)); 3998 } 3999 } 4000 if (ext4_should_journal_data(inode)) { 4001 BUFFER_TRACE(bh, "get write access"); 4002 err = ext4_journal_get_write_access(handle, bh); 4003 if (err) 4004 goto unlock; 4005 } 4006 zero_user(page, offset, length); 4007 BUFFER_TRACE(bh, "zeroed end of block"); 4008 4009 if (ext4_should_journal_data(inode)) { 4010 err = ext4_handle_dirty_metadata(handle, inode, bh); 4011 } else { 4012 err = 0; 4013 mark_buffer_dirty(bh); 4014 if (ext4_should_order_data(inode)) 4015 err = ext4_jbd2_inode_add_write(handle, inode); 4016 } 4017 4018 unlock: 4019 unlock_page(page); 4020 put_page(page); 4021 return err; 4022 } 4023 4024 /* 4025 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4026 * starting from file offset 'from'. The range to be zero'd must 4027 * be contained with in one block. If the specified range exceeds 4028 * the end of the block it will be shortened to end of the block 4029 * that cooresponds to 'from' 4030 */ 4031 static int ext4_block_zero_page_range(handle_t *handle, 4032 struct address_space *mapping, loff_t from, loff_t length) 4033 { 4034 struct inode *inode = mapping->host; 4035 unsigned offset = from & (PAGE_SIZE-1); 4036 unsigned blocksize = inode->i_sb->s_blocksize; 4037 unsigned max = blocksize - (offset & (blocksize - 1)); 4038 4039 /* 4040 * correct length if it does not fall between 4041 * 'from' and the end of the block 4042 */ 4043 if (length > max || length < 0) 4044 length = max; 4045 4046 if (IS_DAX(inode)) { 4047 return iomap_zero_range(inode, from, length, NULL, 4048 &ext4_iomap_ops); 4049 } 4050 return __ext4_block_zero_page_range(handle, mapping, from, length); 4051 } 4052 4053 /* 4054 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4055 * up to the end of the block which corresponds to `from'. 4056 * This required during truncate. We need to physically zero the tail end 4057 * of that block so it doesn't yield old data if the file is later grown. 4058 */ 4059 static int ext4_block_truncate_page(handle_t *handle, 4060 struct address_space *mapping, loff_t from) 4061 { 4062 unsigned offset = from & (PAGE_SIZE-1); 4063 unsigned length; 4064 unsigned blocksize; 4065 struct inode *inode = mapping->host; 4066 4067 /* If we are processing an encrypted inode during orphan list handling */ 4068 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4069 return 0; 4070 4071 blocksize = inode->i_sb->s_blocksize; 4072 length = blocksize - (offset & (blocksize - 1)); 4073 4074 return ext4_block_zero_page_range(handle, mapping, from, length); 4075 } 4076 4077 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4078 loff_t lstart, loff_t length) 4079 { 4080 struct super_block *sb = inode->i_sb; 4081 struct address_space *mapping = inode->i_mapping; 4082 unsigned partial_start, partial_end; 4083 ext4_fsblk_t start, end; 4084 loff_t byte_end = (lstart + length - 1); 4085 int err = 0; 4086 4087 partial_start = lstart & (sb->s_blocksize - 1); 4088 partial_end = byte_end & (sb->s_blocksize - 1); 4089 4090 start = lstart >> sb->s_blocksize_bits; 4091 end = byte_end >> sb->s_blocksize_bits; 4092 4093 /* Handle partial zero within the single block */ 4094 if (start == end && 4095 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4096 err = ext4_block_zero_page_range(handle, mapping, 4097 lstart, length); 4098 return err; 4099 } 4100 /* Handle partial zero out on the start of the range */ 4101 if (partial_start) { 4102 err = ext4_block_zero_page_range(handle, mapping, 4103 lstart, sb->s_blocksize); 4104 if (err) 4105 return err; 4106 } 4107 /* Handle partial zero out on the end of the range */ 4108 if (partial_end != sb->s_blocksize - 1) 4109 err = ext4_block_zero_page_range(handle, mapping, 4110 byte_end - partial_end, 4111 partial_end + 1); 4112 return err; 4113 } 4114 4115 int ext4_can_truncate(struct inode *inode) 4116 { 4117 if (S_ISREG(inode->i_mode)) 4118 return 1; 4119 if (S_ISDIR(inode->i_mode)) 4120 return 1; 4121 if (S_ISLNK(inode->i_mode)) 4122 return !ext4_inode_is_fast_symlink(inode); 4123 return 0; 4124 } 4125 4126 /* 4127 * We have to make sure i_disksize gets properly updated before we truncate 4128 * page cache due to hole punching or zero range. Otherwise i_disksize update 4129 * can get lost as it may have been postponed to submission of writeback but 4130 * that will never happen after we truncate page cache. 4131 */ 4132 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4133 loff_t len) 4134 { 4135 handle_t *handle; 4136 loff_t size = i_size_read(inode); 4137 4138 WARN_ON(!inode_is_locked(inode)); 4139 if (offset > size || offset + len < size) 4140 return 0; 4141 4142 if (EXT4_I(inode)->i_disksize >= size) 4143 return 0; 4144 4145 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4146 if (IS_ERR(handle)) 4147 return PTR_ERR(handle); 4148 ext4_update_i_disksize(inode, size); 4149 ext4_mark_inode_dirty(handle, inode); 4150 ext4_journal_stop(handle); 4151 4152 return 0; 4153 } 4154 4155 /* 4156 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4157 * associated with the given offset and length 4158 * 4159 * @inode: File inode 4160 * @offset: The offset where the hole will begin 4161 * @len: The length of the hole 4162 * 4163 * Returns: 0 on success or negative on failure 4164 */ 4165 4166 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4167 { 4168 struct super_block *sb = inode->i_sb; 4169 ext4_lblk_t first_block, stop_block; 4170 struct address_space *mapping = inode->i_mapping; 4171 loff_t first_block_offset, last_block_offset; 4172 handle_t *handle; 4173 unsigned int credits; 4174 int ret = 0; 4175 4176 if (!S_ISREG(inode->i_mode)) 4177 return -EOPNOTSUPP; 4178 4179 trace_ext4_punch_hole(inode, offset, length, 0); 4180 4181 /* 4182 * Write out all dirty pages to avoid race conditions 4183 * Then release them. 4184 */ 4185 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4186 ret = filemap_write_and_wait_range(mapping, offset, 4187 offset + length - 1); 4188 if (ret) 4189 return ret; 4190 } 4191 4192 inode_lock(inode); 4193 4194 /* No need to punch hole beyond i_size */ 4195 if (offset >= inode->i_size) 4196 goto out_mutex; 4197 4198 /* 4199 * If the hole extends beyond i_size, set the hole 4200 * to end after the page that contains i_size 4201 */ 4202 if (offset + length > inode->i_size) { 4203 length = inode->i_size + 4204 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4205 offset; 4206 } 4207 4208 if (offset & (sb->s_blocksize - 1) || 4209 (offset + length) & (sb->s_blocksize - 1)) { 4210 /* 4211 * Attach jinode to inode for jbd2 if we do any zeroing of 4212 * partial block 4213 */ 4214 ret = ext4_inode_attach_jinode(inode); 4215 if (ret < 0) 4216 goto out_mutex; 4217 4218 } 4219 4220 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4221 ext4_inode_block_unlocked_dio(inode); 4222 inode_dio_wait(inode); 4223 4224 /* 4225 * Prevent page faults from reinstantiating pages we have released from 4226 * page cache. 4227 */ 4228 down_write(&EXT4_I(inode)->i_mmap_sem); 4229 first_block_offset = round_up(offset, sb->s_blocksize); 4230 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4231 4232 /* Now release the pages and zero block aligned part of pages*/ 4233 if (last_block_offset > first_block_offset) { 4234 ret = ext4_update_disksize_before_punch(inode, offset, length); 4235 if (ret) 4236 goto out_dio; 4237 truncate_pagecache_range(inode, first_block_offset, 4238 last_block_offset); 4239 } 4240 4241 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4242 credits = ext4_writepage_trans_blocks(inode); 4243 else 4244 credits = ext4_blocks_for_truncate(inode); 4245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4246 if (IS_ERR(handle)) { 4247 ret = PTR_ERR(handle); 4248 ext4_std_error(sb, ret); 4249 goto out_dio; 4250 } 4251 4252 ret = ext4_zero_partial_blocks(handle, inode, offset, 4253 length); 4254 if (ret) 4255 goto out_stop; 4256 4257 first_block = (offset + sb->s_blocksize - 1) >> 4258 EXT4_BLOCK_SIZE_BITS(sb); 4259 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4260 4261 /* If there are no blocks to remove, return now */ 4262 if (first_block >= stop_block) 4263 goto out_stop; 4264 4265 down_write(&EXT4_I(inode)->i_data_sem); 4266 ext4_discard_preallocations(inode); 4267 4268 ret = ext4_es_remove_extent(inode, first_block, 4269 stop_block - first_block); 4270 if (ret) { 4271 up_write(&EXT4_I(inode)->i_data_sem); 4272 goto out_stop; 4273 } 4274 4275 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4276 ret = ext4_ext_remove_space(inode, first_block, 4277 stop_block - 1); 4278 else 4279 ret = ext4_ind_remove_space(handle, inode, first_block, 4280 stop_block); 4281 4282 up_write(&EXT4_I(inode)->i_data_sem); 4283 if (IS_SYNC(inode)) 4284 ext4_handle_sync(handle); 4285 4286 inode->i_mtime = inode->i_ctime = current_time(inode); 4287 ext4_mark_inode_dirty(handle, inode); 4288 if (ret >= 0) 4289 ext4_update_inode_fsync_trans(handle, inode, 1); 4290 out_stop: 4291 ext4_journal_stop(handle); 4292 out_dio: 4293 up_write(&EXT4_I(inode)->i_mmap_sem); 4294 ext4_inode_resume_unlocked_dio(inode); 4295 out_mutex: 4296 inode_unlock(inode); 4297 return ret; 4298 } 4299 4300 int ext4_inode_attach_jinode(struct inode *inode) 4301 { 4302 struct ext4_inode_info *ei = EXT4_I(inode); 4303 struct jbd2_inode *jinode; 4304 4305 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4306 return 0; 4307 4308 jinode = jbd2_alloc_inode(GFP_KERNEL); 4309 spin_lock(&inode->i_lock); 4310 if (!ei->jinode) { 4311 if (!jinode) { 4312 spin_unlock(&inode->i_lock); 4313 return -ENOMEM; 4314 } 4315 ei->jinode = jinode; 4316 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4317 jinode = NULL; 4318 } 4319 spin_unlock(&inode->i_lock); 4320 if (unlikely(jinode != NULL)) 4321 jbd2_free_inode(jinode); 4322 return 0; 4323 } 4324 4325 /* 4326 * ext4_truncate() 4327 * 4328 * We block out ext4_get_block() block instantiations across the entire 4329 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4330 * simultaneously on behalf of the same inode. 4331 * 4332 * As we work through the truncate and commit bits of it to the journal there 4333 * is one core, guiding principle: the file's tree must always be consistent on 4334 * disk. We must be able to restart the truncate after a crash. 4335 * 4336 * The file's tree may be transiently inconsistent in memory (although it 4337 * probably isn't), but whenever we close off and commit a journal transaction, 4338 * the contents of (the filesystem + the journal) must be consistent and 4339 * restartable. It's pretty simple, really: bottom up, right to left (although 4340 * left-to-right works OK too). 4341 * 4342 * Note that at recovery time, journal replay occurs *before* the restart of 4343 * truncate against the orphan inode list. 4344 * 4345 * The committed inode has the new, desired i_size (which is the same as 4346 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4347 * that this inode's truncate did not complete and it will again call 4348 * ext4_truncate() to have another go. So there will be instantiated blocks 4349 * to the right of the truncation point in a crashed ext4 filesystem. But 4350 * that's fine - as long as they are linked from the inode, the post-crash 4351 * ext4_truncate() run will find them and release them. 4352 */ 4353 int ext4_truncate(struct inode *inode) 4354 { 4355 struct ext4_inode_info *ei = EXT4_I(inode); 4356 unsigned int credits; 4357 int err = 0; 4358 handle_t *handle; 4359 struct address_space *mapping = inode->i_mapping; 4360 4361 /* 4362 * There is a possibility that we're either freeing the inode 4363 * or it's a completely new inode. In those cases we might not 4364 * have i_mutex locked because it's not necessary. 4365 */ 4366 if (!(inode->i_state & (I_NEW|I_FREEING))) 4367 WARN_ON(!inode_is_locked(inode)); 4368 trace_ext4_truncate_enter(inode); 4369 4370 if (!ext4_can_truncate(inode)) 4371 return 0; 4372 4373 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4374 4375 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4376 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4377 4378 if (ext4_has_inline_data(inode)) { 4379 int has_inline = 1; 4380 4381 err = ext4_inline_data_truncate(inode, &has_inline); 4382 if (err) 4383 return err; 4384 if (has_inline) 4385 return 0; 4386 } 4387 4388 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4389 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4390 if (ext4_inode_attach_jinode(inode) < 0) 4391 return 0; 4392 } 4393 4394 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4395 credits = ext4_writepage_trans_blocks(inode); 4396 else 4397 credits = ext4_blocks_for_truncate(inode); 4398 4399 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4400 if (IS_ERR(handle)) 4401 return PTR_ERR(handle); 4402 4403 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4404 ext4_block_truncate_page(handle, mapping, inode->i_size); 4405 4406 /* 4407 * We add the inode to the orphan list, so that if this 4408 * truncate spans multiple transactions, and we crash, we will 4409 * resume the truncate when the filesystem recovers. It also 4410 * marks the inode dirty, to catch the new size. 4411 * 4412 * Implication: the file must always be in a sane, consistent 4413 * truncatable state while each transaction commits. 4414 */ 4415 err = ext4_orphan_add(handle, inode); 4416 if (err) 4417 goto out_stop; 4418 4419 down_write(&EXT4_I(inode)->i_data_sem); 4420 4421 ext4_discard_preallocations(inode); 4422 4423 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4424 err = ext4_ext_truncate(handle, inode); 4425 else 4426 ext4_ind_truncate(handle, inode); 4427 4428 up_write(&ei->i_data_sem); 4429 if (err) 4430 goto out_stop; 4431 4432 if (IS_SYNC(inode)) 4433 ext4_handle_sync(handle); 4434 4435 out_stop: 4436 /* 4437 * If this was a simple ftruncate() and the file will remain alive, 4438 * then we need to clear up the orphan record which we created above. 4439 * However, if this was a real unlink then we were called by 4440 * ext4_evict_inode(), and we allow that function to clean up the 4441 * orphan info for us. 4442 */ 4443 if (inode->i_nlink) 4444 ext4_orphan_del(handle, inode); 4445 4446 inode->i_mtime = inode->i_ctime = current_time(inode); 4447 ext4_mark_inode_dirty(handle, inode); 4448 ext4_journal_stop(handle); 4449 4450 trace_ext4_truncate_exit(inode); 4451 return err; 4452 } 4453 4454 /* 4455 * ext4_get_inode_loc returns with an extra refcount against the inode's 4456 * underlying buffer_head on success. If 'in_mem' is true, we have all 4457 * data in memory that is needed to recreate the on-disk version of this 4458 * inode. 4459 */ 4460 static int __ext4_get_inode_loc(struct inode *inode, 4461 struct ext4_iloc *iloc, int in_mem) 4462 { 4463 struct ext4_group_desc *gdp; 4464 struct buffer_head *bh; 4465 struct super_block *sb = inode->i_sb; 4466 ext4_fsblk_t block; 4467 int inodes_per_block, inode_offset; 4468 4469 iloc->bh = NULL; 4470 if (!ext4_valid_inum(sb, inode->i_ino)) 4471 return -EFSCORRUPTED; 4472 4473 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4474 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4475 if (!gdp) 4476 return -EIO; 4477 4478 /* 4479 * Figure out the offset within the block group inode table 4480 */ 4481 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4482 inode_offset = ((inode->i_ino - 1) % 4483 EXT4_INODES_PER_GROUP(sb)); 4484 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4485 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4486 4487 bh = sb_getblk(sb, block); 4488 if (unlikely(!bh)) 4489 return -ENOMEM; 4490 if (!buffer_uptodate(bh)) { 4491 lock_buffer(bh); 4492 4493 /* 4494 * If the buffer has the write error flag, we have failed 4495 * to write out another inode in the same block. In this 4496 * case, we don't have to read the block because we may 4497 * read the old inode data successfully. 4498 */ 4499 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4500 set_buffer_uptodate(bh); 4501 4502 if (buffer_uptodate(bh)) { 4503 /* someone brought it uptodate while we waited */ 4504 unlock_buffer(bh); 4505 goto has_buffer; 4506 } 4507 4508 /* 4509 * If we have all information of the inode in memory and this 4510 * is the only valid inode in the block, we need not read the 4511 * block. 4512 */ 4513 if (in_mem) { 4514 struct buffer_head *bitmap_bh; 4515 int i, start; 4516 4517 start = inode_offset & ~(inodes_per_block - 1); 4518 4519 /* Is the inode bitmap in cache? */ 4520 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4521 if (unlikely(!bitmap_bh)) 4522 goto make_io; 4523 4524 /* 4525 * If the inode bitmap isn't in cache then the 4526 * optimisation may end up performing two reads instead 4527 * of one, so skip it. 4528 */ 4529 if (!buffer_uptodate(bitmap_bh)) { 4530 brelse(bitmap_bh); 4531 goto make_io; 4532 } 4533 for (i = start; i < start + inodes_per_block; i++) { 4534 if (i == inode_offset) 4535 continue; 4536 if (ext4_test_bit(i, bitmap_bh->b_data)) 4537 break; 4538 } 4539 brelse(bitmap_bh); 4540 if (i == start + inodes_per_block) { 4541 /* all other inodes are free, so skip I/O */ 4542 memset(bh->b_data, 0, bh->b_size); 4543 set_buffer_uptodate(bh); 4544 unlock_buffer(bh); 4545 goto has_buffer; 4546 } 4547 } 4548 4549 make_io: 4550 /* 4551 * If we need to do any I/O, try to pre-readahead extra 4552 * blocks from the inode table. 4553 */ 4554 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4555 ext4_fsblk_t b, end, table; 4556 unsigned num; 4557 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4558 4559 table = ext4_inode_table(sb, gdp); 4560 /* s_inode_readahead_blks is always a power of 2 */ 4561 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4562 if (table > b) 4563 b = table; 4564 end = b + ra_blks; 4565 num = EXT4_INODES_PER_GROUP(sb); 4566 if (ext4_has_group_desc_csum(sb)) 4567 num -= ext4_itable_unused_count(sb, gdp); 4568 table += num / inodes_per_block; 4569 if (end > table) 4570 end = table; 4571 while (b <= end) 4572 sb_breadahead(sb, b++); 4573 } 4574 4575 /* 4576 * There are other valid inodes in the buffer, this inode 4577 * has in-inode xattrs, or we don't have this inode in memory. 4578 * Read the block from disk. 4579 */ 4580 trace_ext4_load_inode(inode); 4581 get_bh(bh); 4582 bh->b_end_io = end_buffer_read_sync; 4583 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4584 wait_on_buffer(bh); 4585 if (!buffer_uptodate(bh)) { 4586 EXT4_ERROR_INODE_BLOCK(inode, block, 4587 "unable to read itable block"); 4588 brelse(bh); 4589 return -EIO; 4590 } 4591 } 4592 has_buffer: 4593 iloc->bh = bh; 4594 return 0; 4595 } 4596 4597 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4598 { 4599 /* We have all inode data except xattrs in memory here. */ 4600 return __ext4_get_inode_loc(inode, iloc, 4601 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4602 } 4603 4604 static bool ext4_should_use_dax(struct inode *inode) 4605 { 4606 if (!test_opt(inode->i_sb, DAX)) 4607 return false; 4608 if (!S_ISREG(inode->i_mode)) 4609 return false; 4610 if (ext4_should_journal_data(inode)) 4611 return false; 4612 if (ext4_has_inline_data(inode)) 4613 return false; 4614 if (ext4_encrypted_inode(inode)) 4615 return false; 4616 return true; 4617 } 4618 4619 void ext4_set_inode_flags(struct inode *inode) 4620 { 4621 unsigned int flags = EXT4_I(inode)->i_flags; 4622 unsigned int new_fl = 0; 4623 4624 if (flags & EXT4_SYNC_FL) 4625 new_fl |= S_SYNC; 4626 if (flags & EXT4_APPEND_FL) 4627 new_fl |= S_APPEND; 4628 if (flags & EXT4_IMMUTABLE_FL) 4629 new_fl |= S_IMMUTABLE; 4630 if (flags & EXT4_NOATIME_FL) 4631 new_fl |= S_NOATIME; 4632 if (flags & EXT4_DIRSYNC_FL) 4633 new_fl |= S_DIRSYNC; 4634 if (ext4_should_use_dax(inode)) 4635 new_fl |= S_DAX; 4636 if (flags & EXT4_ENCRYPT_FL) 4637 new_fl |= S_ENCRYPTED; 4638 inode_set_flags(inode, new_fl, 4639 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4640 S_ENCRYPTED); 4641 } 4642 4643 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4644 struct ext4_inode_info *ei) 4645 { 4646 blkcnt_t i_blocks ; 4647 struct inode *inode = &(ei->vfs_inode); 4648 struct super_block *sb = inode->i_sb; 4649 4650 if (ext4_has_feature_huge_file(sb)) { 4651 /* we are using combined 48 bit field */ 4652 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4653 le32_to_cpu(raw_inode->i_blocks_lo); 4654 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4655 /* i_blocks represent file system block size */ 4656 return i_blocks << (inode->i_blkbits - 9); 4657 } else { 4658 return i_blocks; 4659 } 4660 } else { 4661 return le32_to_cpu(raw_inode->i_blocks_lo); 4662 } 4663 } 4664 4665 static inline void ext4_iget_extra_inode(struct inode *inode, 4666 struct ext4_inode *raw_inode, 4667 struct ext4_inode_info *ei) 4668 { 4669 __le32 *magic = (void *)raw_inode + 4670 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4671 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4672 EXT4_INODE_SIZE(inode->i_sb) && 4673 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4674 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4675 ext4_find_inline_data_nolock(inode); 4676 } else 4677 EXT4_I(inode)->i_inline_off = 0; 4678 } 4679 4680 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4681 { 4682 if (!ext4_has_feature_project(inode->i_sb)) 4683 return -EOPNOTSUPP; 4684 *projid = EXT4_I(inode)->i_projid; 4685 return 0; 4686 } 4687 4688 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4689 { 4690 struct ext4_iloc iloc; 4691 struct ext4_inode *raw_inode; 4692 struct ext4_inode_info *ei; 4693 struct inode *inode; 4694 journal_t *journal = EXT4_SB(sb)->s_journal; 4695 long ret; 4696 loff_t size; 4697 int block; 4698 uid_t i_uid; 4699 gid_t i_gid; 4700 projid_t i_projid; 4701 4702 inode = iget_locked(sb, ino); 4703 if (!inode) 4704 return ERR_PTR(-ENOMEM); 4705 if (!(inode->i_state & I_NEW)) 4706 return inode; 4707 4708 ei = EXT4_I(inode); 4709 iloc.bh = NULL; 4710 4711 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4712 if (ret < 0) 4713 goto bad_inode; 4714 raw_inode = ext4_raw_inode(&iloc); 4715 4716 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4717 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4718 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4719 EXT4_INODE_SIZE(inode->i_sb) || 4720 (ei->i_extra_isize & 3)) { 4721 EXT4_ERROR_INODE(inode, 4722 "bad extra_isize %u (inode size %u)", 4723 ei->i_extra_isize, 4724 EXT4_INODE_SIZE(inode->i_sb)); 4725 ret = -EFSCORRUPTED; 4726 goto bad_inode; 4727 } 4728 } else 4729 ei->i_extra_isize = 0; 4730 4731 /* Precompute checksum seed for inode metadata */ 4732 if (ext4_has_metadata_csum(sb)) { 4733 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4734 __u32 csum; 4735 __le32 inum = cpu_to_le32(inode->i_ino); 4736 __le32 gen = raw_inode->i_generation; 4737 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4738 sizeof(inum)); 4739 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4740 sizeof(gen)); 4741 } 4742 4743 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4744 EXT4_ERROR_INODE(inode, "checksum invalid"); 4745 ret = -EFSBADCRC; 4746 goto bad_inode; 4747 } 4748 4749 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4750 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4751 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4752 if (ext4_has_feature_project(sb) && 4753 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4754 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4755 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4756 else 4757 i_projid = EXT4_DEF_PROJID; 4758 4759 if (!(test_opt(inode->i_sb, NO_UID32))) { 4760 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4761 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4762 } 4763 i_uid_write(inode, i_uid); 4764 i_gid_write(inode, i_gid); 4765 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4766 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4767 4768 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4769 ei->i_inline_off = 0; 4770 ei->i_dir_start_lookup = 0; 4771 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4772 /* We now have enough fields to check if the inode was active or not. 4773 * This is needed because nfsd might try to access dead inodes 4774 * the test is that same one that e2fsck uses 4775 * NeilBrown 1999oct15 4776 */ 4777 if (inode->i_nlink == 0) { 4778 if ((inode->i_mode == 0 || 4779 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4780 ino != EXT4_BOOT_LOADER_INO) { 4781 /* this inode is deleted */ 4782 ret = -ESTALE; 4783 goto bad_inode; 4784 } 4785 /* The only unlinked inodes we let through here have 4786 * valid i_mode and are being read by the orphan 4787 * recovery code: that's fine, we're about to complete 4788 * the process of deleting those. 4789 * OR it is the EXT4_BOOT_LOADER_INO which is 4790 * not initialized on a new filesystem. */ 4791 } 4792 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4793 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4794 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4795 if (ext4_has_feature_64bit(sb)) 4796 ei->i_file_acl |= 4797 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4798 inode->i_size = ext4_isize(sb, raw_inode); 4799 if ((size = i_size_read(inode)) < 0) { 4800 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4801 ret = -EFSCORRUPTED; 4802 goto bad_inode; 4803 } 4804 ei->i_disksize = inode->i_size; 4805 #ifdef CONFIG_QUOTA 4806 ei->i_reserved_quota = 0; 4807 #endif 4808 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4809 ei->i_block_group = iloc.block_group; 4810 ei->i_last_alloc_group = ~0; 4811 /* 4812 * NOTE! The in-memory inode i_data array is in little-endian order 4813 * even on big-endian machines: we do NOT byteswap the block numbers! 4814 */ 4815 for (block = 0; block < EXT4_N_BLOCKS; block++) 4816 ei->i_data[block] = raw_inode->i_block[block]; 4817 INIT_LIST_HEAD(&ei->i_orphan); 4818 4819 /* 4820 * Set transaction id's of transactions that have to be committed 4821 * to finish f[data]sync. We set them to currently running transaction 4822 * as we cannot be sure that the inode or some of its metadata isn't 4823 * part of the transaction - the inode could have been reclaimed and 4824 * now it is reread from disk. 4825 */ 4826 if (journal) { 4827 transaction_t *transaction; 4828 tid_t tid; 4829 4830 read_lock(&journal->j_state_lock); 4831 if (journal->j_running_transaction) 4832 transaction = journal->j_running_transaction; 4833 else 4834 transaction = journal->j_committing_transaction; 4835 if (transaction) 4836 tid = transaction->t_tid; 4837 else 4838 tid = journal->j_commit_sequence; 4839 read_unlock(&journal->j_state_lock); 4840 ei->i_sync_tid = tid; 4841 ei->i_datasync_tid = tid; 4842 } 4843 4844 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4845 if (ei->i_extra_isize == 0) { 4846 /* The extra space is currently unused. Use it. */ 4847 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4848 ei->i_extra_isize = sizeof(struct ext4_inode) - 4849 EXT4_GOOD_OLD_INODE_SIZE; 4850 } else { 4851 ext4_iget_extra_inode(inode, raw_inode, ei); 4852 } 4853 } 4854 4855 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4856 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4857 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4858 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4859 4860 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4861 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4863 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4864 inode->i_version |= 4865 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4866 } 4867 } 4868 4869 ret = 0; 4870 if (ei->i_file_acl && 4871 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4872 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4873 ei->i_file_acl); 4874 ret = -EFSCORRUPTED; 4875 goto bad_inode; 4876 } else if (!ext4_has_inline_data(inode)) { 4877 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4878 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4879 (S_ISLNK(inode->i_mode) && 4880 !ext4_inode_is_fast_symlink(inode)))) 4881 /* Validate extent which is part of inode */ 4882 ret = ext4_ext_check_inode(inode); 4883 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4884 (S_ISLNK(inode->i_mode) && 4885 !ext4_inode_is_fast_symlink(inode))) { 4886 /* Validate block references which are part of inode */ 4887 ret = ext4_ind_check_inode(inode); 4888 } 4889 } 4890 if (ret) 4891 goto bad_inode; 4892 4893 if (S_ISREG(inode->i_mode)) { 4894 inode->i_op = &ext4_file_inode_operations; 4895 inode->i_fop = &ext4_file_operations; 4896 ext4_set_aops(inode); 4897 } else if (S_ISDIR(inode->i_mode)) { 4898 inode->i_op = &ext4_dir_inode_operations; 4899 inode->i_fop = &ext4_dir_operations; 4900 } else if (S_ISLNK(inode->i_mode)) { 4901 if (ext4_encrypted_inode(inode)) { 4902 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4903 ext4_set_aops(inode); 4904 } else if (ext4_inode_is_fast_symlink(inode)) { 4905 inode->i_link = (char *)ei->i_data; 4906 inode->i_op = &ext4_fast_symlink_inode_operations; 4907 nd_terminate_link(ei->i_data, inode->i_size, 4908 sizeof(ei->i_data) - 1); 4909 } else { 4910 inode->i_op = &ext4_symlink_inode_operations; 4911 ext4_set_aops(inode); 4912 } 4913 inode_nohighmem(inode); 4914 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4915 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4916 inode->i_op = &ext4_special_inode_operations; 4917 if (raw_inode->i_block[0]) 4918 init_special_inode(inode, inode->i_mode, 4919 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4920 else 4921 init_special_inode(inode, inode->i_mode, 4922 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4923 } else if (ino == EXT4_BOOT_LOADER_INO) { 4924 make_bad_inode(inode); 4925 } else { 4926 ret = -EFSCORRUPTED; 4927 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4928 goto bad_inode; 4929 } 4930 brelse(iloc.bh); 4931 ext4_set_inode_flags(inode); 4932 4933 unlock_new_inode(inode); 4934 return inode; 4935 4936 bad_inode: 4937 brelse(iloc.bh); 4938 iget_failed(inode); 4939 return ERR_PTR(ret); 4940 } 4941 4942 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4943 { 4944 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4945 return ERR_PTR(-EFSCORRUPTED); 4946 return ext4_iget(sb, ino); 4947 } 4948 4949 static int ext4_inode_blocks_set(handle_t *handle, 4950 struct ext4_inode *raw_inode, 4951 struct ext4_inode_info *ei) 4952 { 4953 struct inode *inode = &(ei->vfs_inode); 4954 u64 i_blocks = inode->i_blocks; 4955 struct super_block *sb = inode->i_sb; 4956 4957 if (i_blocks <= ~0U) { 4958 /* 4959 * i_blocks can be represented in a 32 bit variable 4960 * as multiple of 512 bytes 4961 */ 4962 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4963 raw_inode->i_blocks_high = 0; 4964 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4965 return 0; 4966 } 4967 if (!ext4_has_feature_huge_file(sb)) 4968 return -EFBIG; 4969 4970 if (i_blocks <= 0xffffffffffffULL) { 4971 /* 4972 * i_blocks can be represented in a 48 bit variable 4973 * as multiple of 512 bytes 4974 */ 4975 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4976 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4977 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4978 } else { 4979 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4980 /* i_block is stored in file system block size */ 4981 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4982 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4983 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4984 } 4985 return 0; 4986 } 4987 4988 struct other_inode { 4989 unsigned long orig_ino; 4990 struct ext4_inode *raw_inode; 4991 }; 4992 4993 static int other_inode_match(struct inode * inode, unsigned long ino, 4994 void *data) 4995 { 4996 struct other_inode *oi = (struct other_inode *) data; 4997 4998 if ((inode->i_ino != ino) || 4999 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5000 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 5001 ((inode->i_state & I_DIRTY_TIME) == 0)) 5002 return 0; 5003 spin_lock(&inode->i_lock); 5004 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5005 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 5006 (inode->i_state & I_DIRTY_TIME)) { 5007 struct ext4_inode_info *ei = EXT4_I(inode); 5008 5009 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5010 spin_unlock(&inode->i_lock); 5011 5012 spin_lock(&ei->i_raw_lock); 5013 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5014 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5015 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5016 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5017 spin_unlock(&ei->i_raw_lock); 5018 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5019 return -1; 5020 } 5021 spin_unlock(&inode->i_lock); 5022 return -1; 5023 } 5024 5025 /* 5026 * Opportunistically update the other time fields for other inodes in 5027 * the same inode table block. 5028 */ 5029 static void ext4_update_other_inodes_time(struct super_block *sb, 5030 unsigned long orig_ino, char *buf) 5031 { 5032 struct other_inode oi; 5033 unsigned long ino; 5034 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5035 int inode_size = EXT4_INODE_SIZE(sb); 5036 5037 oi.orig_ino = orig_ino; 5038 /* 5039 * Calculate the first inode in the inode table block. Inode 5040 * numbers are one-based. That is, the first inode in a block 5041 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5042 */ 5043 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5044 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5045 if (ino == orig_ino) 5046 continue; 5047 oi.raw_inode = (struct ext4_inode *) buf; 5048 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5049 } 5050 } 5051 5052 /* 5053 * Post the struct inode info into an on-disk inode location in the 5054 * buffer-cache. This gobbles the caller's reference to the 5055 * buffer_head in the inode location struct. 5056 * 5057 * The caller must have write access to iloc->bh. 5058 */ 5059 static int ext4_do_update_inode(handle_t *handle, 5060 struct inode *inode, 5061 struct ext4_iloc *iloc) 5062 { 5063 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5064 struct ext4_inode_info *ei = EXT4_I(inode); 5065 struct buffer_head *bh = iloc->bh; 5066 struct super_block *sb = inode->i_sb; 5067 int err = 0, rc, block; 5068 int need_datasync = 0, set_large_file = 0; 5069 uid_t i_uid; 5070 gid_t i_gid; 5071 projid_t i_projid; 5072 5073 spin_lock(&ei->i_raw_lock); 5074 5075 /* For fields not tracked in the in-memory inode, 5076 * initialise them to zero for new inodes. */ 5077 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5078 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5079 5080 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5081 i_uid = i_uid_read(inode); 5082 i_gid = i_gid_read(inode); 5083 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5084 if (!(test_opt(inode->i_sb, NO_UID32))) { 5085 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5086 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5087 /* 5088 * Fix up interoperability with old kernels. Otherwise, old inodes get 5089 * re-used with the upper 16 bits of the uid/gid intact 5090 */ 5091 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5092 raw_inode->i_uid_high = 0; 5093 raw_inode->i_gid_high = 0; 5094 } else { 5095 raw_inode->i_uid_high = 5096 cpu_to_le16(high_16_bits(i_uid)); 5097 raw_inode->i_gid_high = 5098 cpu_to_le16(high_16_bits(i_gid)); 5099 } 5100 } else { 5101 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5102 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5103 raw_inode->i_uid_high = 0; 5104 raw_inode->i_gid_high = 0; 5105 } 5106 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5107 5108 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5109 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5110 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5111 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5112 5113 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5114 if (err) { 5115 spin_unlock(&ei->i_raw_lock); 5116 goto out_brelse; 5117 } 5118 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5119 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5120 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5121 raw_inode->i_file_acl_high = 5122 cpu_to_le16(ei->i_file_acl >> 32); 5123 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5124 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5125 ext4_isize_set(raw_inode, ei->i_disksize); 5126 need_datasync = 1; 5127 } 5128 if (ei->i_disksize > 0x7fffffffULL) { 5129 if (!ext4_has_feature_large_file(sb) || 5130 EXT4_SB(sb)->s_es->s_rev_level == 5131 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5132 set_large_file = 1; 5133 } 5134 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5135 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5136 if (old_valid_dev(inode->i_rdev)) { 5137 raw_inode->i_block[0] = 5138 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5139 raw_inode->i_block[1] = 0; 5140 } else { 5141 raw_inode->i_block[0] = 0; 5142 raw_inode->i_block[1] = 5143 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5144 raw_inode->i_block[2] = 0; 5145 } 5146 } else if (!ext4_has_inline_data(inode)) { 5147 for (block = 0; block < EXT4_N_BLOCKS; block++) 5148 raw_inode->i_block[block] = ei->i_data[block]; 5149 } 5150 5151 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5152 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5153 if (ei->i_extra_isize) { 5154 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5155 raw_inode->i_version_hi = 5156 cpu_to_le32(inode->i_version >> 32); 5157 raw_inode->i_extra_isize = 5158 cpu_to_le16(ei->i_extra_isize); 5159 } 5160 } 5161 5162 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5163 i_projid != EXT4_DEF_PROJID); 5164 5165 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5166 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5167 raw_inode->i_projid = cpu_to_le32(i_projid); 5168 5169 ext4_inode_csum_set(inode, raw_inode, ei); 5170 spin_unlock(&ei->i_raw_lock); 5171 if (inode->i_sb->s_flags & MS_LAZYTIME) 5172 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5173 bh->b_data); 5174 5175 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5176 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5177 if (!err) 5178 err = rc; 5179 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5180 if (set_large_file) { 5181 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5182 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5183 if (err) 5184 goto out_brelse; 5185 ext4_update_dynamic_rev(sb); 5186 ext4_set_feature_large_file(sb); 5187 ext4_handle_sync(handle); 5188 err = ext4_handle_dirty_super(handle, sb); 5189 } 5190 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5191 out_brelse: 5192 brelse(bh); 5193 ext4_std_error(inode->i_sb, err); 5194 return err; 5195 } 5196 5197 /* 5198 * ext4_write_inode() 5199 * 5200 * We are called from a few places: 5201 * 5202 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5203 * Here, there will be no transaction running. We wait for any running 5204 * transaction to commit. 5205 * 5206 * - Within flush work (sys_sync(), kupdate and such). 5207 * We wait on commit, if told to. 5208 * 5209 * - Within iput_final() -> write_inode_now() 5210 * We wait on commit, if told to. 5211 * 5212 * In all cases it is actually safe for us to return without doing anything, 5213 * because the inode has been copied into a raw inode buffer in 5214 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5215 * writeback. 5216 * 5217 * Note that we are absolutely dependent upon all inode dirtiers doing the 5218 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5219 * which we are interested. 5220 * 5221 * It would be a bug for them to not do this. The code: 5222 * 5223 * mark_inode_dirty(inode) 5224 * stuff(); 5225 * inode->i_size = expr; 5226 * 5227 * is in error because write_inode() could occur while `stuff()' is running, 5228 * and the new i_size will be lost. Plus the inode will no longer be on the 5229 * superblock's dirty inode list. 5230 */ 5231 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5232 { 5233 int err; 5234 5235 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5236 return 0; 5237 5238 if (EXT4_SB(inode->i_sb)->s_journal) { 5239 if (ext4_journal_current_handle()) { 5240 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5241 dump_stack(); 5242 return -EIO; 5243 } 5244 5245 /* 5246 * No need to force transaction in WB_SYNC_NONE mode. Also 5247 * ext4_sync_fs() will force the commit after everything is 5248 * written. 5249 */ 5250 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5251 return 0; 5252 5253 err = ext4_force_commit(inode->i_sb); 5254 } else { 5255 struct ext4_iloc iloc; 5256 5257 err = __ext4_get_inode_loc(inode, &iloc, 0); 5258 if (err) 5259 return err; 5260 /* 5261 * sync(2) will flush the whole buffer cache. No need to do 5262 * it here separately for each inode. 5263 */ 5264 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5265 sync_dirty_buffer(iloc.bh); 5266 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5267 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5268 "IO error syncing inode"); 5269 err = -EIO; 5270 } 5271 brelse(iloc.bh); 5272 } 5273 return err; 5274 } 5275 5276 /* 5277 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5278 * buffers that are attached to a page stradding i_size and are undergoing 5279 * commit. In that case we have to wait for commit to finish and try again. 5280 */ 5281 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5282 { 5283 struct page *page; 5284 unsigned offset; 5285 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5286 tid_t commit_tid = 0; 5287 int ret; 5288 5289 offset = inode->i_size & (PAGE_SIZE - 1); 5290 /* 5291 * All buffers in the last page remain valid? Then there's nothing to 5292 * do. We do the check mainly to optimize the common PAGE_SIZE == 5293 * blocksize case 5294 */ 5295 if (offset > PAGE_SIZE - i_blocksize(inode)) 5296 return; 5297 while (1) { 5298 page = find_lock_page(inode->i_mapping, 5299 inode->i_size >> PAGE_SHIFT); 5300 if (!page) 5301 return; 5302 ret = __ext4_journalled_invalidatepage(page, offset, 5303 PAGE_SIZE - offset); 5304 unlock_page(page); 5305 put_page(page); 5306 if (ret != -EBUSY) 5307 return; 5308 commit_tid = 0; 5309 read_lock(&journal->j_state_lock); 5310 if (journal->j_committing_transaction) 5311 commit_tid = journal->j_committing_transaction->t_tid; 5312 read_unlock(&journal->j_state_lock); 5313 if (commit_tid) 5314 jbd2_log_wait_commit(journal, commit_tid); 5315 } 5316 } 5317 5318 /* 5319 * ext4_setattr() 5320 * 5321 * Called from notify_change. 5322 * 5323 * We want to trap VFS attempts to truncate the file as soon as 5324 * possible. In particular, we want to make sure that when the VFS 5325 * shrinks i_size, we put the inode on the orphan list and modify 5326 * i_disksize immediately, so that during the subsequent flushing of 5327 * dirty pages and freeing of disk blocks, we can guarantee that any 5328 * commit will leave the blocks being flushed in an unused state on 5329 * disk. (On recovery, the inode will get truncated and the blocks will 5330 * be freed, so we have a strong guarantee that no future commit will 5331 * leave these blocks visible to the user.) 5332 * 5333 * Another thing we have to assure is that if we are in ordered mode 5334 * and inode is still attached to the committing transaction, we must 5335 * we start writeout of all the dirty pages which are being truncated. 5336 * This way we are sure that all the data written in the previous 5337 * transaction are already on disk (truncate waits for pages under 5338 * writeback). 5339 * 5340 * Called with inode->i_mutex down. 5341 */ 5342 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5343 { 5344 struct inode *inode = d_inode(dentry); 5345 int error, rc = 0; 5346 int orphan = 0; 5347 const unsigned int ia_valid = attr->ia_valid; 5348 5349 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5350 return -EIO; 5351 5352 error = setattr_prepare(dentry, attr); 5353 if (error) 5354 return error; 5355 5356 error = fscrypt_prepare_setattr(dentry, attr); 5357 if (error) 5358 return error; 5359 5360 if (is_quota_modification(inode, attr)) { 5361 error = dquot_initialize(inode); 5362 if (error) 5363 return error; 5364 } 5365 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5366 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5367 handle_t *handle; 5368 5369 /* (user+group)*(old+new) structure, inode write (sb, 5370 * inode block, ? - but truncate inode update has it) */ 5371 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5372 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5373 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5374 if (IS_ERR(handle)) { 5375 error = PTR_ERR(handle); 5376 goto err_out; 5377 } 5378 5379 /* dquot_transfer() calls back ext4_get_inode_usage() which 5380 * counts xattr inode references. 5381 */ 5382 down_read(&EXT4_I(inode)->xattr_sem); 5383 error = dquot_transfer(inode, attr); 5384 up_read(&EXT4_I(inode)->xattr_sem); 5385 5386 if (error) { 5387 ext4_journal_stop(handle); 5388 return error; 5389 } 5390 /* Update corresponding info in inode so that everything is in 5391 * one transaction */ 5392 if (attr->ia_valid & ATTR_UID) 5393 inode->i_uid = attr->ia_uid; 5394 if (attr->ia_valid & ATTR_GID) 5395 inode->i_gid = attr->ia_gid; 5396 error = ext4_mark_inode_dirty(handle, inode); 5397 ext4_journal_stop(handle); 5398 } 5399 5400 if (attr->ia_valid & ATTR_SIZE) { 5401 handle_t *handle; 5402 loff_t oldsize = inode->i_size; 5403 int shrink = (attr->ia_size <= inode->i_size); 5404 5405 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5406 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5407 5408 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5409 return -EFBIG; 5410 } 5411 if (!S_ISREG(inode->i_mode)) 5412 return -EINVAL; 5413 5414 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5415 inode_inc_iversion(inode); 5416 5417 if (ext4_should_order_data(inode) && 5418 (attr->ia_size < inode->i_size)) { 5419 error = ext4_begin_ordered_truncate(inode, 5420 attr->ia_size); 5421 if (error) 5422 goto err_out; 5423 } 5424 if (attr->ia_size != inode->i_size) { 5425 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5426 if (IS_ERR(handle)) { 5427 error = PTR_ERR(handle); 5428 goto err_out; 5429 } 5430 if (ext4_handle_valid(handle) && shrink) { 5431 error = ext4_orphan_add(handle, inode); 5432 orphan = 1; 5433 } 5434 /* 5435 * Update c/mtime on truncate up, ext4_truncate() will 5436 * update c/mtime in shrink case below 5437 */ 5438 if (!shrink) { 5439 inode->i_mtime = current_time(inode); 5440 inode->i_ctime = inode->i_mtime; 5441 } 5442 down_write(&EXT4_I(inode)->i_data_sem); 5443 EXT4_I(inode)->i_disksize = attr->ia_size; 5444 rc = ext4_mark_inode_dirty(handle, inode); 5445 if (!error) 5446 error = rc; 5447 /* 5448 * We have to update i_size under i_data_sem together 5449 * with i_disksize to avoid races with writeback code 5450 * running ext4_wb_update_i_disksize(). 5451 */ 5452 if (!error) 5453 i_size_write(inode, attr->ia_size); 5454 up_write(&EXT4_I(inode)->i_data_sem); 5455 ext4_journal_stop(handle); 5456 if (error) { 5457 if (orphan) 5458 ext4_orphan_del(NULL, inode); 5459 goto err_out; 5460 } 5461 } 5462 if (!shrink) 5463 pagecache_isize_extended(inode, oldsize, inode->i_size); 5464 5465 /* 5466 * Blocks are going to be removed from the inode. Wait 5467 * for dio in flight. Temporarily disable 5468 * dioread_nolock to prevent livelock. 5469 */ 5470 if (orphan) { 5471 if (!ext4_should_journal_data(inode)) { 5472 ext4_inode_block_unlocked_dio(inode); 5473 inode_dio_wait(inode); 5474 ext4_inode_resume_unlocked_dio(inode); 5475 } else 5476 ext4_wait_for_tail_page_commit(inode); 5477 } 5478 down_write(&EXT4_I(inode)->i_mmap_sem); 5479 /* 5480 * Truncate pagecache after we've waited for commit 5481 * in data=journal mode to make pages freeable. 5482 */ 5483 truncate_pagecache(inode, inode->i_size); 5484 if (shrink) { 5485 rc = ext4_truncate(inode); 5486 if (rc) 5487 error = rc; 5488 } 5489 up_write(&EXT4_I(inode)->i_mmap_sem); 5490 } 5491 5492 if (!error) { 5493 setattr_copy(inode, attr); 5494 mark_inode_dirty(inode); 5495 } 5496 5497 /* 5498 * If the call to ext4_truncate failed to get a transaction handle at 5499 * all, we need to clean up the in-core orphan list manually. 5500 */ 5501 if (orphan && inode->i_nlink) 5502 ext4_orphan_del(NULL, inode); 5503 5504 if (!error && (ia_valid & ATTR_MODE)) 5505 rc = posix_acl_chmod(inode, inode->i_mode); 5506 5507 err_out: 5508 ext4_std_error(inode->i_sb, error); 5509 if (!error) 5510 error = rc; 5511 return error; 5512 } 5513 5514 int ext4_getattr(const struct path *path, struct kstat *stat, 5515 u32 request_mask, unsigned int query_flags) 5516 { 5517 struct inode *inode = d_inode(path->dentry); 5518 struct ext4_inode *raw_inode; 5519 struct ext4_inode_info *ei = EXT4_I(inode); 5520 unsigned int flags; 5521 5522 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5523 stat->result_mask |= STATX_BTIME; 5524 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5525 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5526 } 5527 5528 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5529 if (flags & EXT4_APPEND_FL) 5530 stat->attributes |= STATX_ATTR_APPEND; 5531 if (flags & EXT4_COMPR_FL) 5532 stat->attributes |= STATX_ATTR_COMPRESSED; 5533 if (flags & EXT4_ENCRYPT_FL) 5534 stat->attributes |= STATX_ATTR_ENCRYPTED; 5535 if (flags & EXT4_IMMUTABLE_FL) 5536 stat->attributes |= STATX_ATTR_IMMUTABLE; 5537 if (flags & EXT4_NODUMP_FL) 5538 stat->attributes |= STATX_ATTR_NODUMP; 5539 5540 stat->attributes_mask |= (STATX_ATTR_APPEND | 5541 STATX_ATTR_COMPRESSED | 5542 STATX_ATTR_ENCRYPTED | 5543 STATX_ATTR_IMMUTABLE | 5544 STATX_ATTR_NODUMP); 5545 5546 generic_fillattr(inode, stat); 5547 return 0; 5548 } 5549 5550 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5551 u32 request_mask, unsigned int query_flags) 5552 { 5553 struct inode *inode = d_inode(path->dentry); 5554 u64 delalloc_blocks; 5555 5556 ext4_getattr(path, stat, request_mask, query_flags); 5557 5558 /* 5559 * If there is inline data in the inode, the inode will normally not 5560 * have data blocks allocated (it may have an external xattr block). 5561 * Report at least one sector for such files, so tools like tar, rsync, 5562 * others don't incorrectly think the file is completely sparse. 5563 */ 5564 if (unlikely(ext4_has_inline_data(inode))) 5565 stat->blocks += (stat->size + 511) >> 9; 5566 5567 /* 5568 * We can't update i_blocks if the block allocation is delayed 5569 * otherwise in the case of system crash before the real block 5570 * allocation is done, we will have i_blocks inconsistent with 5571 * on-disk file blocks. 5572 * We always keep i_blocks updated together with real 5573 * allocation. But to not confuse with user, stat 5574 * will return the blocks that include the delayed allocation 5575 * blocks for this file. 5576 */ 5577 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5578 EXT4_I(inode)->i_reserved_data_blocks); 5579 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5580 return 0; 5581 } 5582 5583 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5584 int pextents) 5585 { 5586 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5587 return ext4_ind_trans_blocks(inode, lblocks); 5588 return ext4_ext_index_trans_blocks(inode, pextents); 5589 } 5590 5591 /* 5592 * Account for index blocks, block groups bitmaps and block group 5593 * descriptor blocks if modify datablocks and index blocks 5594 * worse case, the indexs blocks spread over different block groups 5595 * 5596 * If datablocks are discontiguous, they are possible to spread over 5597 * different block groups too. If they are contiguous, with flexbg, 5598 * they could still across block group boundary. 5599 * 5600 * Also account for superblock, inode, quota and xattr blocks 5601 */ 5602 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5603 int pextents) 5604 { 5605 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5606 int gdpblocks; 5607 int idxblocks; 5608 int ret = 0; 5609 5610 /* 5611 * How many index blocks need to touch to map @lblocks logical blocks 5612 * to @pextents physical extents? 5613 */ 5614 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5615 5616 ret = idxblocks; 5617 5618 /* 5619 * Now let's see how many group bitmaps and group descriptors need 5620 * to account 5621 */ 5622 groups = idxblocks + pextents; 5623 gdpblocks = groups; 5624 if (groups > ngroups) 5625 groups = ngroups; 5626 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5627 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5628 5629 /* bitmaps and block group descriptor blocks */ 5630 ret += groups + gdpblocks; 5631 5632 /* Blocks for super block, inode, quota and xattr blocks */ 5633 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5634 5635 return ret; 5636 } 5637 5638 /* 5639 * Calculate the total number of credits to reserve to fit 5640 * the modification of a single pages into a single transaction, 5641 * which may include multiple chunks of block allocations. 5642 * 5643 * This could be called via ext4_write_begin() 5644 * 5645 * We need to consider the worse case, when 5646 * one new block per extent. 5647 */ 5648 int ext4_writepage_trans_blocks(struct inode *inode) 5649 { 5650 int bpp = ext4_journal_blocks_per_page(inode); 5651 int ret; 5652 5653 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5654 5655 /* Account for data blocks for journalled mode */ 5656 if (ext4_should_journal_data(inode)) 5657 ret += bpp; 5658 return ret; 5659 } 5660 5661 /* 5662 * Calculate the journal credits for a chunk of data modification. 5663 * 5664 * This is called from DIO, fallocate or whoever calling 5665 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5666 * 5667 * journal buffers for data blocks are not included here, as DIO 5668 * and fallocate do no need to journal data buffers. 5669 */ 5670 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5671 { 5672 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5673 } 5674 5675 /* 5676 * The caller must have previously called ext4_reserve_inode_write(). 5677 * Give this, we know that the caller already has write access to iloc->bh. 5678 */ 5679 int ext4_mark_iloc_dirty(handle_t *handle, 5680 struct inode *inode, struct ext4_iloc *iloc) 5681 { 5682 int err = 0; 5683 5684 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5685 return -EIO; 5686 5687 if (IS_I_VERSION(inode)) 5688 inode_inc_iversion(inode); 5689 5690 /* the do_update_inode consumes one bh->b_count */ 5691 get_bh(iloc->bh); 5692 5693 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5694 err = ext4_do_update_inode(handle, inode, iloc); 5695 put_bh(iloc->bh); 5696 return err; 5697 } 5698 5699 /* 5700 * On success, We end up with an outstanding reference count against 5701 * iloc->bh. This _must_ be cleaned up later. 5702 */ 5703 5704 int 5705 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5706 struct ext4_iloc *iloc) 5707 { 5708 int err; 5709 5710 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5711 return -EIO; 5712 5713 err = ext4_get_inode_loc(inode, iloc); 5714 if (!err) { 5715 BUFFER_TRACE(iloc->bh, "get_write_access"); 5716 err = ext4_journal_get_write_access(handle, iloc->bh); 5717 if (err) { 5718 brelse(iloc->bh); 5719 iloc->bh = NULL; 5720 } 5721 } 5722 ext4_std_error(inode->i_sb, err); 5723 return err; 5724 } 5725 5726 static int __ext4_expand_extra_isize(struct inode *inode, 5727 unsigned int new_extra_isize, 5728 struct ext4_iloc *iloc, 5729 handle_t *handle, int *no_expand) 5730 { 5731 struct ext4_inode *raw_inode; 5732 struct ext4_xattr_ibody_header *header; 5733 int error; 5734 5735 raw_inode = ext4_raw_inode(iloc); 5736 5737 header = IHDR(inode, raw_inode); 5738 5739 /* No extended attributes present */ 5740 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5741 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5742 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5743 EXT4_I(inode)->i_extra_isize, 0, 5744 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5745 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5746 return 0; 5747 } 5748 5749 /* try to expand with EAs present */ 5750 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5751 raw_inode, handle); 5752 if (error) { 5753 /* 5754 * Inode size expansion failed; don't try again 5755 */ 5756 *no_expand = 1; 5757 } 5758 5759 return error; 5760 } 5761 5762 /* 5763 * Expand an inode by new_extra_isize bytes. 5764 * Returns 0 on success or negative error number on failure. 5765 */ 5766 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5767 unsigned int new_extra_isize, 5768 struct ext4_iloc iloc, 5769 handle_t *handle) 5770 { 5771 int no_expand; 5772 int error; 5773 5774 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5775 return -EOVERFLOW; 5776 5777 /* 5778 * In nojournal mode, we can immediately attempt to expand 5779 * the inode. When journaled, we first need to obtain extra 5780 * buffer credits since we may write into the EA block 5781 * with this same handle. If journal_extend fails, then it will 5782 * only result in a minor loss of functionality for that inode. 5783 * If this is felt to be critical, then e2fsck should be run to 5784 * force a large enough s_min_extra_isize. 5785 */ 5786 if (ext4_handle_valid(handle) && 5787 jbd2_journal_extend(handle, 5788 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5789 return -ENOSPC; 5790 5791 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5792 return -EBUSY; 5793 5794 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5795 handle, &no_expand); 5796 ext4_write_unlock_xattr(inode, &no_expand); 5797 5798 return error; 5799 } 5800 5801 int ext4_expand_extra_isize(struct inode *inode, 5802 unsigned int new_extra_isize, 5803 struct ext4_iloc *iloc) 5804 { 5805 handle_t *handle; 5806 int no_expand; 5807 int error, rc; 5808 5809 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5810 brelse(iloc->bh); 5811 return -EOVERFLOW; 5812 } 5813 5814 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5815 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5816 if (IS_ERR(handle)) { 5817 error = PTR_ERR(handle); 5818 brelse(iloc->bh); 5819 return error; 5820 } 5821 5822 ext4_write_lock_xattr(inode, &no_expand); 5823 5824 BUFFER_TRACE(iloc.bh, "get_write_access"); 5825 error = ext4_journal_get_write_access(handle, iloc->bh); 5826 if (error) { 5827 brelse(iloc->bh); 5828 goto out_stop; 5829 } 5830 5831 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5832 handle, &no_expand); 5833 5834 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5835 if (!error) 5836 error = rc; 5837 5838 ext4_write_unlock_xattr(inode, &no_expand); 5839 out_stop: 5840 ext4_journal_stop(handle); 5841 return error; 5842 } 5843 5844 /* 5845 * What we do here is to mark the in-core inode as clean with respect to inode 5846 * dirtiness (it may still be data-dirty). 5847 * This means that the in-core inode may be reaped by prune_icache 5848 * without having to perform any I/O. This is a very good thing, 5849 * because *any* task may call prune_icache - even ones which 5850 * have a transaction open against a different journal. 5851 * 5852 * Is this cheating? Not really. Sure, we haven't written the 5853 * inode out, but prune_icache isn't a user-visible syncing function. 5854 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5855 * we start and wait on commits. 5856 */ 5857 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5858 { 5859 struct ext4_iloc iloc; 5860 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5861 int err; 5862 5863 might_sleep(); 5864 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5865 err = ext4_reserve_inode_write(handle, inode, &iloc); 5866 if (err) 5867 return err; 5868 5869 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5870 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5871 iloc, handle); 5872 5873 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5874 } 5875 5876 /* 5877 * ext4_dirty_inode() is called from __mark_inode_dirty() 5878 * 5879 * We're really interested in the case where a file is being extended. 5880 * i_size has been changed by generic_commit_write() and we thus need 5881 * to include the updated inode in the current transaction. 5882 * 5883 * Also, dquot_alloc_block() will always dirty the inode when blocks 5884 * are allocated to the file. 5885 * 5886 * If the inode is marked synchronous, we don't honour that here - doing 5887 * so would cause a commit on atime updates, which we don't bother doing. 5888 * We handle synchronous inodes at the highest possible level. 5889 * 5890 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5891 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5892 * to copy into the on-disk inode structure are the timestamp files. 5893 */ 5894 void ext4_dirty_inode(struct inode *inode, int flags) 5895 { 5896 handle_t *handle; 5897 5898 if (flags == I_DIRTY_TIME) 5899 return; 5900 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5901 if (IS_ERR(handle)) 5902 goto out; 5903 5904 ext4_mark_inode_dirty(handle, inode); 5905 5906 ext4_journal_stop(handle); 5907 out: 5908 return; 5909 } 5910 5911 #if 0 5912 /* 5913 * Bind an inode's backing buffer_head into this transaction, to prevent 5914 * it from being flushed to disk early. Unlike 5915 * ext4_reserve_inode_write, this leaves behind no bh reference and 5916 * returns no iloc structure, so the caller needs to repeat the iloc 5917 * lookup to mark the inode dirty later. 5918 */ 5919 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5920 { 5921 struct ext4_iloc iloc; 5922 5923 int err = 0; 5924 if (handle) { 5925 err = ext4_get_inode_loc(inode, &iloc); 5926 if (!err) { 5927 BUFFER_TRACE(iloc.bh, "get_write_access"); 5928 err = jbd2_journal_get_write_access(handle, iloc.bh); 5929 if (!err) 5930 err = ext4_handle_dirty_metadata(handle, 5931 NULL, 5932 iloc.bh); 5933 brelse(iloc.bh); 5934 } 5935 } 5936 ext4_std_error(inode->i_sb, err); 5937 return err; 5938 } 5939 #endif 5940 5941 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5942 { 5943 journal_t *journal; 5944 handle_t *handle; 5945 int err; 5946 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5947 5948 /* 5949 * We have to be very careful here: changing a data block's 5950 * journaling status dynamically is dangerous. If we write a 5951 * data block to the journal, change the status and then delete 5952 * that block, we risk forgetting to revoke the old log record 5953 * from the journal and so a subsequent replay can corrupt data. 5954 * So, first we make sure that the journal is empty and that 5955 * nobody is changing anything. 5956 */ 5957 5958 journal = EXT4_JOURNAL(inode); 5959 if (!journal) 5960 return 0; 5961 if (is_journal_aborted(journal)) 5962 return -EROFS; 5963 5964 /* Wait for all existing dio workers */ 5965 ext4_inode_block_unlocked_dio(inode); 5966 inode_dio_wait(inode); 5967 5968 /* 5969 * Before flushing the journal and switching inode's aops, we have 5970 * to flush all dirty data the inode has. There can be outstanding 5971 * delayed allocations, there can be unwritten extents created by 5972 * fallocate or buffered writes in dioread_nolock mode covered by 5973 * dirty data which can be converted only after flushing the dirty 5974 * data (and journalled aops don't know how to handle these cases). 5975 */ 5976 if (val) { 5977 down_write(&EXT4_I(inode)->i_mmap_sem); 5978 err = filemap_write_and_wait(inode->i_mapping); 5979 if (err < 0) { 5980 up_write(&EXT4_I(inode)->i_mmap_sem); 5981 ext4_inode_resume_unlocked_dio(inode); 5982 return err; 5983 } 5984 } 5985 5986 percpu_down_write(&sbi->s_journal_flag_rwsem); 5987 jbd2_journal_lock_updates(journal); 5988 5989 /* 5990 * OK, there are no updates running now, and all cached data is 5991 * synced to disk. We are now in a completely consistent state 5992 * which doesn't have anything in the journal, and we know that 5993 * no filesystem updates are running, so it is safe to modify 5994 * the inode's in-core data-journaling state flag now. 5995 */ 5996 5997 if (val) 5998 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5999 else { 6000 err = jbd2_journal_flush(journal); 6001 if (err < 0) { 6002 jbd2_journal_unlock_updates(journal); 6003 percpu_up_write(&sbi->s_journal_flag_rwsem); 6004 ext4_inode_resume_unlocked_dio(inode); 6005 return err; 6006 } 6007 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6008 } 6009 ext4_set_aops(inode); 6010 6011 jbd2_journal_unlock_updates(journal); 6012 percpu_up_write(&sbi->s_journal_flag_rwsem); 6013 6014 if (val) 6015 up_write(&EXT4_I(inode)->i_mmap_sem); 6016 ext4_inode_resume_unlocked_dio(inode); 6017 6018 /* Finally we can mark the inode as dirty. */ 6019 6020 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6021 if (IS_ERR(handle)) 6022 return PTR_ERR(handle); 6023 6024 err = ext4_mark_inode_dirty(handle, inode); 6025 ext4_handle_sync(handle); 6026 ext4_journal_stop(handle); 6027 ext4_std_error(inode->i_sb, err); 6028 6029 return err; 6030 } 6031 6032 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6033 { 6034 return !buffer_mapped(bh); 6035 } 6036 6037 int ext4_page_mkwrite(struct vm_fault *vmf) 6038 { 6039 struct vm_area_struct *vma = vmf->vma; 6040 struct page *page = vmf->page; 6041 loff_t size; 6042 unsigned long len; 6043 int ret; 6044 struct file *file = vma->vm_file; 6045 struct inode *inode = file_inode(file); 6046 struct address_space *mapping = inode->i_mapping; 6047 handle_t *handle; 6048 get_block_t *get_block; 6049 int retries = 0; 6050 6051 sb_start_pagefault(inode->i_sb); 6052 file_update_time(vma->vm_file); 6053 6054 down_read(&EXT4_I(inode)->i_mmap_sem); 6055 6056 ret = ext4_convert_inline_data(inode); 6057 if (ret) 6058 goto out_ret; 6059 6060 /* Delalloc case is easy... */ 6061 if (test_opt(inode->i_sb, DELALLOC) && 6062 !ext4_should_journal_data(inode) && 6063 !ext4_nonda_switch(inode->i_sb)) { 6064 do { 6065 ret = block_page_mkwrite(vma, vmf, 6066 ext4_da_get_block_prep); 6067 } while (ret == -ENOSPC && 6068 ext4_should_retry_alloc(inode->i_sb, &retries)); 6069 goto out_ret; 6070 } 6071 6072 lock_page(page); 6073 size = i_size_read(inode); 6074 /* Page got truncated from under us? */ 6075 if (page->mapping != mapping || page_offset(page) > size) { 6076 unlock_page(page); 6077 ret = VM_FAULT_NOPAGE; 6078 goto out; 6079 } 6080 6081 if (page->index == size >> PAGE_SHIFT) 6082 len = size & ~PAGE_MASK; 6083 else 6084 len = PAGE_SIZE; 6085 /* 6086 * Return if we have all the buffers mapped. This avoids the need to do 6087 * journal_start/journal_stop which can block and take a long time 6088 */ 6089 if (page_has_buffers(page)) { 6090 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6091 0, len, NULL, 6092 ext4_bh_unmapped)) { 6093 /* Wait so that we don't change page under IO */ 6094 wait_for_stable_page(page); 6095 ret = VM_FAULT_LOCKED; 6096 goto out; 6097 } 6098 } 6099 unlock_page(page); 6100 /* OK, we need to fill the hole... */ 6101 if (ext4_should_dioread_nolock(inode)) 6102 get_block = ext4_get_block_unwritten; 6103 else 6104 get_block = ext4_get_block; 6105 retry_alloc: 6106 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6107 ext4_writepage_trans_blocks(inode)); 6108 if (IS_ERR(handle)) { 6109 ret = VM_FAULT_SIGBUS; 6110 goto out; 6111 } 6112 ret = block_page_mkwrite(vma, vmf, get_block); 6113 if (!ret && ext4_should_journal_data(inode)) { 6114 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6115 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6116 unlock_page(page); 6117 ret = VM_FAULT_SIGBUS; 6118 ext4_journal_stop(handle); 6119 goto out; 6120 } 6121 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6122 } 6123 ext4_journal_stop(handle); 6124 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6125 goto retry_alloc; 6126 out_ret: 6127 ret = block_page_mkwrite_return(ret); 6128 out: 6129 up_read(&EXT4_I(inode)->i_mmap_sem); 6130 sb_end_pagefault(inode->i_sb); 6131 return ret; 6132 } 6133 6134 int ext4_filemap_fault(struct vm_fault *vmf) 6135 { 6136 struct inode *inode = file_inode(vmf->vma->vm_file); 6137 int err; 6138 6139 down_read(&EXT4_I(inode)->i_mmap_sem); 6140 err = filemap_fault(vmf); 6141 up_read(&EXT4_I(inode)->i_mmap_sem); 6142 6143 return err; 6144 } 6145