xref: /linux/fs/ext4/inode.c (revision 4b024225c4a8245e6ecc66ce1df1eaf2ebeb4acb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    !inode_is_open_for_write(inode))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (ext4_has_feature_journal(inode->i_sb) &&
403 	    (inode->i_ino ==
404 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 		return 0;
406 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 				   map->m_len)) {
408 		ext4_error_inode(inode, func, line, map->m_pblk,
409 				 "lblock %lu mapped to illegal pblock %llu "
410 				 "(length %d)", (unsigned long) map->m_lblk,
411 				 map->m_pblk, map->m_len);
412 		return -EFSCORRUPTED;
413 	}
414 	return 0;
415 }
416 
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 		       ext4_lblk_t len)
419 {
420 	int ret;
421 
422 	if (IS_ENCRYPTED(inode))
423 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
424 
425 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 	if (ret > 0)
427 		ret = 0;
428 
429 	return ret;
430 }
431 
432 #define check_block_validity(inode, map)	\
433 	__check_block_validity((inode), __func__, __LINE__, (map))
434 
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 				       struct inode *inode,
438 				       struct ext4_map_blocks *es_map,
439 				       struct ext4_map_blocks *map,
440 				       int flags)
441 {
442 	int retval;
443 
444 	map->m_flags = 0;
445 	/*
446 	 * There is a race window that the result is not the same.
447 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
448 	 * is that we lookup a block mapping in extent status tree with
449 	 * out taking i_data_sem.  So at the time the unwritten extent
450 	 * could be converted.
451 	 */
452 	down_read(&EXT4_I(inode)->i_data_sem);
453 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 					     EXT4_GET_BLOCKS_KEEP_SIZE);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 					     EXT4_GET_BLOCKS_KEEP_SIZE);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 		  (unsigned long) map->m_lblk);
518 
519 	/*
520 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 	 */
522 	if (unlikely(map->m_len > INT_MAX))
523 		map->m_len = INT_MAX;
524 
525 	/* We can handle the block number less than EXT_MAX_BLOCKS */
526 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 		return -EFSCORRUPTED;
528 
529 	/* Lookup extent status tree firstly */
530 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	} else {
566 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 					     EXT4_GET_BLOCKS_KEEP_SIZE);
568 	}
569 	if (retval > 0) {
570 		unsigned int status;
571 
572 		if (unlikely(retval != map->m_len)) {
573 			ext4_warning(inode->i_sb,
574 				     "ES len assertion failed for inode "
575 				     "%lu: retval %d != map->m_len %d",
576 				     inode->i_ino, retval, map->m_len);
577 			WARN_ON(1);
578 		}
579 
580 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 		    !(status & EXTENT_STATUS_WRITTEN) &&
584 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 				       map->m_lblk + map->m_len - 1))
586 			status |= EXTENT_STATUS_DELAYED;
587 		ret = ext4_es_insert_extent(inode, map->m_lblk,
588 					    map->m_len, map->m_pblk, status);
589 		if (ret < 0)
590 			retval = ret;
591 	}
592 	up_read((&EXT4_I(inode)->i_data_sem));
593 
594 found:
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 		ret = check_block_validity(inode, map);
597 		if (ret != 0)
598 			return ret;
599 	}
600 
601 	/* If it is only a block(s) look up */
602 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 		return retval;
604 
605 	/*
606 	 * Returns if the blocks have already allocated
607 	 *
608 	 * Note that if blocks have been preallocated
609 	 * ext4_ext_get_block() returns the create = 0
610 	 * with buffer head unmapped.
611 	 */
612 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 		/*
614 		 * If we need to convert extent to unwritten
615 		 * we continue and do the actual work in
616 		 * ext4_ext_map_blocks()
617 		 */
618 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 			return retval;
620 
621 	/*
622 	 * Here we clear m_flags because after allocating an new extent,
623 	 * it will be set again.
624 	 */
625 	map->m_flags &= ~EXT4_MAP_FLAGS;
626 
627 	/*
628 	 * New blocks allocate and/or writing to unwritten extent
629 	 * will possibly result in updating i_data, so we take
630 	 * the write lock of i_data_sem, and call get_block()
631 	 * with create == 1 flag.
632 	 */
633 	down_write(&EXT4_I(inode)->i_data_sem);
634 
635 	/*
636 	 * We need to check for EXT4 here because migrate
637 	 * could have changed the inode type in between
638 	 */
639 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 	} else {
642 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
643 
644 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 			/*
646 			 * We allocated new blocks which will result in
647 			 * i_data's format changing.  Force the migrate
648 			 * to fail by clearing migrate flags
649 			 */
650 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 		}
652 
653 		/*
654 		 * Update reserved blocks/metadata blocks after successful
655 		 * block allocation which had been deferred till now. We don't
656 		 * support fallocate for non extent files. So we can update
657 		 * reserve space here.
658 		 */
659 		if ((retval > 0) &&
660 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 			ext4_da_update_reserve_space(inode, retval, 1);
662 	}
663 
664 	if (retval > 0) {
665 		unsigned int status;
666 
667 		if (unlikely(retval != map->m_len)) {
668 			ext4_warning(inode->i_sb,
669 				     "ES len assertion failed for inode "
670 				     "%lu: retval %d != map->m_len %d",
671 				     inode->i_ino, retval, map->m_len);
672 			WARN_ON(1);
673 		}
674 
675 		/*
676 		 * We have to zeroout blocks before inserting them into extent
677 		 * status tree. Otherwise someone could look them up there and
678 		 * use them before they are really zeroed. We also have to
679 		 * unmap metadata before zeroing as otherwise writeback can
680 		 * overwrite zeros with stale data from block device.
681 		 */
682 		if (flags & EXT4_GET_BLOCKS_ZERO &&
683 		    map->m_flags & EXT4_MAP_MAPPED &&
684 		    map->m_flags & EXT4_MAP_NEW) {
685 			ret = ext4_issue_zeroout(inode, map->m_lblk,
686 						 map->m_pblk, map->m_len);
687 			if (ret) {
688 				retval = ret;
689 				goto out_sem;
690 			}
691 		}
692 
693 		/*
694 		 * If the extent has been zeroed out, we don't need to update
695 		 * extent status tree.
696 		 */
697 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699 			if (ext4_es_is_written(&es))
700 				goto out_sem;
701 		}
702 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 		    !(status & EXTENT_STATUS_WRITTEN) &&
706 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 				       map->m_lblk + map->m_len - 1))
708 			status |= EXTENT_STATUS_DELAYED;
709 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 					    map->m_pblk, status);
711 		if (ret < 0) {
712 			retval = ret;
713 			goto out_sem;
714 		}
715 	}
716 
717 out_sem:
718 	up_write((&EXT4_I(inode)->i_data_sem));
719 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 		ret = check_block_validity(inode, map);
721 		if (ret != 0)
722 			return ret;
723 
724 		/*
725 		 * Inodes with freshly allocated blocks where contents will be
726 		 * visible after transaction commit must be on transaction's
727 		 * ordered data list.
728 		 */
729 		if (map->m_flags & EXT4_MAP_NEW &&
730 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 		    !ext4_is_quota_file(inode) &&
733 		    ext4_should_order_data(inode)) {
734 			loff_t start_byte =
735 				(loff_t)map->m_lblk << inode->i_blkbits;
736 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737 
738 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739 				ret = ext4_jbd2_inode_add_wait(handle, inode,
740 						start_byte, length);
741 			else
742 				ret = ext4_jbd2_inode_add_write(handle, inode,
743 						start_byte, length);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	return retval;
749 }
750 
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757 	unsigned long old_state;
758 	unsigned long new_state;
759 
760 	flags &= EXT4_MAP_FLAGS;
761 
762 	/* Dummy buffer_head? Set non-atomically. */
763 	if (!bh->b_page) {
764 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 		return;
766 	}
767 	/*
768 	 * Someone else may be modifying b_state. Be careful! This is ugly but
769 	 * once we get rid of using bh as a container for mapping information
770 	 * to pass to / from get_block functions, this can go away.
771 	 */
772 	do {
773 		old_state = READ_ONCE(bh->b_state);
774 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 	} while (unlikely(
776 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778 
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 			   struct buffer_head *bh, int flags)
781 {
782 	struct ext4_map_blocks map;
783 	int ret = 0;
784 
785 	if (ext4_has_inline_data(inode))
786 		return -ERANGE;
787 
788 	map.m_lblk = iblock;
789 	map.m_len = bh->b_size >> inode->i_blkbits;
790 
791 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 			      flags);
793 	if (ret > 0) {
794 		map_bh(bh, inode->i_sb, map.m_pblk);
795 		ext4_update_bh_state(bh, map.m_flags);
796 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 		ret = 0;
798 	} else if (ret == 0) {
799 		/* hole case, need to fill in bh->b_size */
800 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 	}
802 	return ret;
803 }
804 
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806 		   struct buffer_head *bh, int create)
807 {
808 	return _ext4_get_block(inode, iblock, bh,
809 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811 
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 			     struct buffer_head *bh_result, int create)
819 {
820 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 		   inode->i_ino, create);
822 	return _ext4_get_block(inode, iblock, bh_result,
823 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825 
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828 
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 				struct buffer_head *bh_result, int flags)
836 {
837 	int dio_credits;
838 	handle_t *handle;
839 	int retries = 0;
840 	int ret;
841 
842 	/* Trim mapping request to maximum we can map at once for DIO */
843 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 	dio_credits = ext4_chunk_trans_blocks(inode,
846 				      bh_result->b_size >> inode->i_blkbits);
847 retry:
848 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 	if (IS_ERR(handle))
850 		return PTR_ERR(handle);
851 
852 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 	ext4_journal_stop(handle);
854 
855 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 		goto retry;
857 	return ret;
858 }
859 
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 		       struct buffer_head *bh, int create)
863 {
864 	/* We don't expect handle for direct IO */
865 	WARN_ON_ONCE(ext4_journal_current_handle());
866 
867 	if (!create)
868 		return _ext4_get_block(inode, iblock, bh, 0);
869 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871 
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 		sector_t iblock, struct buffer_head *bh_result,	int create)
879 {
880 	int ret;
881 
882 	/* We don't expect handle for direct IO */
883 	WARN_ON_ONCE(ext4_journal_current_handle());
884 
885 	ret = ext4_get_block_trans(inode, iblock, bh_result,
886 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
887 
888 	/*
889 	 * When doing DIO using unwritten extents, we need io_end to convert
890 	 * unwritten extents to written on IO completion. We allocate io_end
891 	 * once we spot unwritten extent and store it in b_private. Generic
892 	 * DIO code keeps b_private set and furthermore passes the value to
893 	 * our completion callback in 'private' argument.
894 	 */
895 	if (!ret && buffer_unwritten(bh_result)) {
896 		if (!bh_result->b_private) {
897 			ext4_io_end_t *io_end;
898 
899 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 			if (!io_end)
901 				return -ENOMEM;
902 			bh_result->b_private = io_end;
903 			ext4_set_io_unwritten_flag(inode, io_end);
904 		}
905 		set_buffer_defer_completion(bh_result);
906 	}
907 
908 	return ret;
909 }
910 
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 		sector_t iblock, struct buffer_head *bh_result,	int create)
918 {
919 	int ret;
920 
921 	/* We don't expect handle for direct IO */
922 	WARN_ON_ONCE(ext4_journal_current_handle());
923 
924 	ret = ext4_get_block_trans(inode, iblock, bh_result,
925 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
926 
927 	/*
928 	 * Mark inode as having pending DIO writes to unwritten extents.
929 	 * ext4_direct_IO_write() checks this flag and converts extents to
930 	 * written.
931 	 */
932 	if (!ret && buffer_unwritten(bh_result))
933 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934 
935 	return ret;
936 }
937 
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 		   struct buffer_head *bh_result, int create)
940 {
941 	int ret;
942 
943 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 		   inode->i_ino, create);
945 	/* We don't expect handle for direct IO */
946 	WARN_ON_ONCE(ext4_journal_current_handle());
947 
948 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 	/*
950 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 	 * that.
952 	 */
953 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954 
955 	return ret;
956 }
957 
958 
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 				ext4_lblk_t block, int map_flags)
964 {
965 	struct ext4_map_blocks map;
966 	struct buffer_head *bh;
967 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 	int err;
969 
970 	J_ASSERT(handle != NULL || create == 0);
971 
972 	map.m_lblk = block;
973 	map.m_len = 1;
974 	err = ext4_map_blocks(handle, inode, &map, map_flags);
975 
976 	if (err == 0)
977 		return create ? ERR_PTR(-ENOSPC) : NULL;
978 	if (err < 0)
979 		return ERR_PTR(err);
980 
981 	bh = sb_getblk(inode->i_sb, map.m_pblk);
982 	if (unlikely(!bh))
983 		return ERR_PTR(-ENOMEM);
984 	if (map.m_flags & EXT4_MAP_NEW) {
985 		J_ASSERT(create != 0);
986 		J_ASSERT(handle != NULL);
987 
988 		/*
989 		 * Now that we do not always journal data, we should
990 		 * keep in mind whether this should always journal the
991 		 * new buffer as metadata.  For now, regular file
992 		 * writes use ext4_get_block instead, so it's not a
993 		 * problem.
994 		 */
995 		lock_buffer(bh);
996 		BUFFER_TRACE(bh, "call get_create_access");
997 		err = ext4_journal_get_create_access(handle, bh);
998 		if (unlikely(err)) {
999 			unlock_buffer(bh);
1000 			goto errout;
1001 		}
1002 		if (!buffer_uptodate(bh)) {
1003 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 			set_buffer_uptodate(bh);
1005 		}
1006 		unlock_buffer(bh);
1007 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1009 		if (unlikely(err))
1010 			goto errout;
1011 	} else
1012 		BUFFER_TRACE(bh, "not a new buffer");
1013 	return bh;
1014 errout:
1015 	brelse(bh);
1016 	return ERR_PTR(err);
1017 }
1018 
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020 			       ext4_lblk_t block, int map_flags)
1021 {
1022 	struct buffer_head *bh;
1023 
1024 	bh = ext4_getblk(handle, inode, block, map_flags);
1025 	if (IS_ERR(bh))
1026 		return bh;
1027 	if (!bh || ext4_buffer_uptodate(bh))
1028 		return bh;
1029 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030 	wait_on_buffer(bh);
1031 	if (buffer_uptodate(bh))
1032 		return bh;
1033 	put_bh(bh);
1034 	return ERR_PTR(-EIO);
1035 }
1036 
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 		     bool wait, struct buffer_head **bhs)
1040 {
1041 	int i, err;
1042 
1043 	for (i = 0; i < bh_count; i++) {
1044 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 		if (IS_ERR(bhs[i])) {
1046 			err = PTR_ERR(bhs[i]);
1047 			bh_count = i;
1048 			goto out_brelse;
1049 		}
1050 	}
1051 
1052 	for (i = 0; i < bh_count; i++)
1053 		/* Note that NULL bhs[i] is valid because of holes. */
1054 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 				    &bhs[i]);
1057 
1058 	if (!wait)
1059 		return 0;
1060 
1061 	for (i = 0; i < bh_count; i++)
1062 		if (bhs[i])
1063 			wait_on_buffer(bhs[i]);
1064 
1065 	for (i = 0; i < bh_count; i++) {
1066 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 			err = -EIO;
1068 			goto out_brelse;
1069 		}
1070 	}
1071 	return 0;
1072 
1073 out_brelse:
1074 	for (i = 0; i < bh_count; i++) {
1075 		brelse(bhs[i]);
1076 		bhs[i] = NULL;
1077 	}
1078 	return err;
1079 }
1080 
1081 int ext4_walk_page_buffers(handle_t *handle,
1082 			   struct buffer_head *head,
1083 			   unsigned from,
1084 			   unsigned to,
1085 			   int *partial,
1086 			   int (*fn)(handle_t *handle,
1087 				     struct buffer_head *bh))
1088 {
1089 	struct buffer_head *bh;
1090 	unsigned block_start, block_end;
1091 	unsigned blocksize = head->b_size;
1092 	int err, ret = 0;
1093 	struct buffer_head *next;
1094 
1095 	for (bh = head, block_start = 0;
1096 	     ret == 0 && (bh != head || !block_start);
1097 	     block_start = block_end, bh = next) {
1098 		next = bh->b_this_page;
1099 		block_end = block_start + blocksize;
1100 		if (block_end <= from || block_start >= to) {
1101 			if (partial && !buffer_uptodate(bh))
1102 				*partial = 1;
1103 			continue;
1104 		}
1105 		err = (*fn)(handle, bh);
1106 		if (!ret)
1107 			ret = err;
1108 	}
1109 	return ret;
1110 }
1111 
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137 				struct buffer_head *bh)
1138 {
1139 	int dirty = buffer_dirty(bh);
1140 	int ret;
1141 
1142 	if (!buffer_mapped(bh) || buffer_freed(bh))
1143 		return 0;
1144 	/*
1145 	 * __block_write_begin() could have dirtied some buffers. Clean
1146 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 	 * otherwise about fs integrity issues. Setting of the dirty bit
1148 	 * by __block_write_begin() isn't a real problem here as we clear
1149 	 * the bit before releasing a page lock and thus writeback cannot
1150 	 * ever write the buffer.
1151 	 */
1152 	if (dirty)
1153 		clear_buffer_dirty(bh);
1154 	BUFFER_TRACE(bh, "get write access");
1155 	ret = ext4_journal_get_write_access(handle, bh);
1156 	if (!ret && dirty)
1157 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 	return ret;
1159 }
1160 
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 				  get_block_t *get_block)
1164 {
1165 	unsigned from = pos & (PAGE_SIZE - 1);
1166 	unsigned to = from + len;
1167 	struct inode *inode = page->mapping->host;
1168 	unsigned block_start, block_end;
1169 	sector_t block;
1170 	int err = 0;
1171 	unsigned blocksize = inode->i_sb->s_blocksize;
1172 	unsigned bbits;
1173 	struct buffer_head *bh, *head, *wait[2];
1174 	int nr_wait = 0;
1175 	int i;
1176 
1177 	BUG_ON(!PageLocked(page));
1178 	BUG_ON(from > PAGE_SIZE);
1179 	BUG_ON(to > PAGE_SIZE);
1180 	BUG_ON(from > to);
1181 
1182 	if (!page_has_buffers(page))
1183 		create_empty_buffers(page, blocksize, 0);
1184 	head = page_buffers(page);
1185 	bbits = ilog2(blocksize);
1186 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187 
1188 	for (bh = head, block_start = 0; bh != head || !block_start;
1189 	    block++, block_start = block_end, bh = bh->b_this_page) {
1190 		block_end = block_start + blocksize;
1191 		if (block_end <= from || block_start >= to) {
1192 			if (PageUptodate(page)) {
1193 				if (!buffer_uptodate(bh))
1194 					set_buffer_uptodate(bh);
1195 			}
1196 			continue;
1197 		}
1198 		if (buffer_new(bh))
1199 			clear_buffer_new(bh);
1200 		if (!buffer_mapped(bh)) {
1201 			WARN_ON(bh->b_size != blocksize);
1202 			err = get_block(inode, block, bh, 1);
1203 			if (err)
1204 				break;
1205 			if (buffer_new(bh)) {
1206 				if (PageUptodate(page)) {
1207 					clear_buffer_new(bh);
1208 					set_buffer_uptodate(bh);
1209 					mark_buffer_dirty(bh);
1210 					continue;
1211 				}
1212 				if (block_end > to || block_start < from)
1213 					zero_user_segments(page, to, block_end,
1214 							   block_start, from);
1215 				continue;
1216 			}
1217 		}
1218 		if (PageUptodate(page)) {
1219 			if (!buffer_uptodate(bh))
1220 				set_buffer_uptodate(bh);
1221 			continue;
1222 		}
1223 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 		    !buffer_unwritten(bh) &&
1225 		    (block_start < from || block_end > to)) {
1226 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227 			wait[nr_wait++] = bh;
1228 		}
1229 	}
1230 	/*
1231 	 * If we issued read requests, let them complete.
1232 	 */
1233 	for (i = 0; i < nr_wait; i++) {
1234 		wait_on_buffer(wait[i]);
1235 		if (!buffer_uptodate(wait[i]))
1236 			err = -EIO;
1237 	}
1238 	if (unlikely(err)) {
1239 		page_zero_new_buffers(page, from, to);
1240 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 		for (i = 0; i < nr_wait; i++) {
1242 			int err2;
1243 
1244 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 								bh_offset(wait[i]));
1246 			if (err2) {
1247 				clear_buffer_uptodate(wait[i]);
1248 				err = err2;
1249 			}
1250 		}
1251 	}
1252 
1253 	return err;
1254 }
1255 #endif
1256 
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258 			    loff_t pos, unsigned len, unsigned flags,
1259 			    struct page **pagep, void **fsdata)
1260 {
1261 	struct inode *inode = mapping->host;
1262 	int ret, needed_blocks;
1263 	handle_t *handle;
1264 	int retries = 0;
1265 	struct page *page;
1266 	pgoff_t index;
1267 	unsigned from, to;
1268 
1269 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 		return -EIO;
1271 
1272 	trace_ext4_write_begin(inode, pos, len, flags);
1273 	/*
1274 	 * Reserve one block more for addition to orphan list in case
1275 	 * we allocate blocks but write fails for some reason
1276 	 */
1277 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 	index = pos >> PAGE_SHIFT;
1279 	from = pos & (PAGE_SIZE - 1);
1280 	to = from + len;
1281 
1282 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 						    flags, pagep);
1285 		if (ret < 0)
1286 			return ret;
1287 		if (ret == 1)
1288 			return 0;
1289 	}
1290 
1291 	/*
1292 	 * grab_cache_page_write_begin() can take a long time if the
1293 	 * system is thrashing due to memory pressure, or if the page
1294 	 * is being written back.  So grab it first before we start
1295 	 * the transaction handle.  This also allows us to allocate
1296 	 * the page (if needed) without using GFP_NOFS.
1297 	 */
1298 retry_grab:
1299 	page = grab_cache_page_write_begin(mapping, index, flags);
1300 	if (!page)
1301 		return -ENOMEM;
1302 	unlock_page(page);
1303 
1304 retry_journal:
1305 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306 	if (IS_ERR(handle)) {
1307 		put_page(page);
1308 		return PTR_ERR(handle);
1309 	}
1310 
1311 	lock_page(page);
1312 	if (page->mapping != mapping) {
1313 		/* The page got truncated from under us */
1314 		unlock_page(page);
1315 		put_page(page);
1316 		ext4_journal_stop(handle);
1317 		goto retry_grab;
1318 	}
1319 	/* In case writeback began while the page was unlocked */
1320 	wait_for_stable_page(page);
1321 
1322 #ifdef CONFIG_FS_ENCRYPTION
1323 	if (ext4_should_dioread_nolock(inode))
1324 		ret = ext4_block_write_begin(page, pos, len,
1325 					     ext4_get_block_unwritten);
1326 	else
1327 		ret = ext4_block_write_begin(page, pos, len,
1328 					     ext4_get_block);
1329 #else
1330 	if (ext4_should_dioread_nolock(inode))
1331 		ret = __block_write_begin(page, pos, len,
1332 					  ext4_get_block_unwritten);
1333 	else
1334 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336 	if (!ret && ext4_should_journal_data(inode)) {
1337 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 					     from, to, NULL,
1339 					     do_journal_get_write_access);
1340 	}
1341 
1342 	if (ret) {
1343 		bool extended = (pos + len > inode->i_size) &&
1344 				!ext4_verity_in_progress(inode);
1345 
1346 		unlock_page(page);
1347 		/*
1348 		 * __block_write_begin may have instantiated a few blocks
1349 		 * outside i_size.  Trim these off again. Don't need
1350 		 * i_size_read because we hold i_mutex.
1351 		 *
1352 		 * Add inode to orphan list in case we crash before
1353 		 * truncate finishes
1354 		 */
1355 		if (extended && ext4_can_truncate(inode))
1356 			ext4_orphan_add(handle, inode);
1357 
1358 		ext4_journal_stop(handle);
1359 		if (extended) {
1360 			ext4_truncate_failed_write(inode);
1361 			/*
1362 			 * If truncate failed early the inode might
1363 			 * still be on the orphan list; we need to
1364 			 * make sure the inode is removed from the
1365 			 * orphan list in that case.
1366 			 */
1367 			if (inode->i_nlink)
1368 				ext4_orphan_del(NULL, inode);
1369 		}
1370 
1371 		if (ret == -ENOSPC &&
1372 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1373 			goto retry_journal;
1374 		put_page(page);
1375 		return ret;
1376 	}
1377 	*pagep = page;
1378 	return ret;
1379 }
1380 
1381 /* For write_end() in data=journal mode */
1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383 {
1384 	int ret;
1385 	if (!buffer_mapped(bh) || buffer_freed(bh))
1386 		return 0;
1387 	set_buffer_uptodate(bh);
1388 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 	clear_buffer_meta(bh);
1390 	clear_buffer_prio(bh);
1391 	return ret;
1392 }
1393 
1394 /*
1395  * We need to pick up the new inode size which generic_commit_write gave us
1396  * `file' can be NULL - eg, when called from page_symlink().
1397  *
1398  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399  * buffers are managed internally.
1400  */
1401 static int ext4_write_end(struct file *file,
1402 			  struct address_space *mapping,
1403 			  loff_t pos, unsigned len, unsigned copied,
1404 			  struct page *page, void *fsdata)
1405 {
1406 	handle_t *handle = ext4_journal_current_handle();
1407 	struct inode *inode = mapping->host;
1408 	loff_t old_size = inode->i_size;
1409 	int ret = 0, ret2;
1410 	int i_size_changed = 0;
1411 	int inline_data = ext4_has_inline_data(inode);
1412 	bool verity = ext4_verity_in_progress(inode);
1413 
1414 	trace_ext4_write_end(inode, pos, len, copied);
1415 	if (inline_data) {
1416 		ret = ext4_write_inline_data_end(inode, pos, len,
1417 						 copied, page);
1418 		if (ret < 0) {
1419 			unlock_page(page);
1420 			put_page(page);
1421 			goto errout;
1422 		}
1423 		copied = ret;
1424 	} else
1425 		copied = block_write_end(file, mapping, pos,
1426 					 len, copied, page, fsdata);
1427 	/*
1428 	 * it's important to update i_size while still holding page lock:
1429 	 * page writeout could otherwise come in and zero beyond i_size.
1430 	 *
1431 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432 	 * blocks are being written past EOF, so skip the i_size update.
1433 	 */
1434 	if (!verity)
1435 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436 	unlock_page(page);
1437 	put_page(page);
1438 
1439 	if (old_size < pos && !verity)
1440 		pagecache_isize_extended(inode, old_size, pos);
1441 	/*
1442 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443 	 * makes the holding time of page lock longer. Second, it forces lock
1444 	 * ordering of page lock and transaction start for journaling
1445 	 * filesystems.
1446 	 */
1447 	if (i_size_changed || inline_data)
1448 		ext4_mark_inode_dirty(handle, inode);
1449 
1450 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 		/* if we have allocated more blocks and copied
1452 		 * less. We will have blocks allocated outside
1453 		 * inode->i_size. So truncate them
1454 		 */
1455 		ext4_orphan_add(handle, inode);
1456 errout:
1457 	ret2 = ext4_journal_stop(handle);
1458 	if (!ret)
1459 		ret = ret2;
1460 
1461 	if (pos + len > inode->i_size && !verity) {
1462 		ext4_truncate_failed_write(inode);
1463 		/*
1464 		 * If truncate failed early the inode might still be
1465 		 * on the orphan list; we need to make sure the inode
1466 		 * is removed from the orphan list in that case.
1467 		 */
1468 		if (inode->i_nlink)
1469 			ext4_orphan_del(NULL, inode);
1470 	}
1471 
1472 	return ret ? ret : copied;
1473 }
1474 
1475 /*
1476  * This is a private version of page_zero_new_buffers() which doesn't
1477  * set the buffer to be dirty, since in data=journalled mode we need
1478  * to call ext4_handle_dirty_metadata() instead.
1479  */
1480 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481 					    struct page *page,
1482 					    unsigned from, unsigned to)
1483 {
1484 	unsigned int block_start = 0, block_end;
1485 	struct buffer_head *head, *bh;
1486 
1487 	bh = head = page_buffers(page);
1488 	do {
1489 		block_end = block_start + bh->b_size;
1490 		if (buffer_new(bh)) {
1491 			if (block_end > from && block_start < to) {
1492 				if (!PageUptodate(page)) {
1493 					unsigned start, size;
1494 
1495 					start = max(from, block_start);
1496 					size = min(to, block_end) - start;
1497 
1498 					zero_user(page, start, size);
1499 					write_end_fn(handle, bh);
1500 				}
1501 				clear_buffer_new(bh);
1502 			}
1503 		}
1504 		block_start = block_end;
1505 		bh = bh->b_this_page;
1506 	} while (bh != head);
1507 }
1508 
1509 static int ext4_journalled_write_end(struct file *file,
1510 				     struct address_space *mapping,
1511 				     loff_t pos, unsigned len, unsigned copied,
1512 				     struct page *page, void *fsdata)
1513 {
1514 	handle_t *handle = ext4_journal_current_handle();
1515 	struct inode *inode = mapping->host;
1516 	loff_t old_size = inode->i_size;
1517 	int ret = 0, ret2;
1518 	int partial = 0;
1519 	unsigned from, to;
1520 	int size_changed = 0;
1521 	int inline_data = ext4_has_inline_data(inode);
1522 	bool verity = ext4_verity_in_progress(inode);
1523 
1524 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1525 	from = pos & (PAGE_SIZE - 1);
1526 	to = from + len;
1527 
1528 	BUG_ON(!ext4_handle_valid(handle));
1529 
1530 	if (inline_data) {
1531 		ret = ext4_write_inline_data_end(inode, pos, len,
1532 						 copied, page);
1533 		if (ret < 0) {
1534 			unlock_page(page);
1535 			put_page(page);
1536 			goto errout;
1537 		}
1538 		copied = ret;
1539 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1540 		copied = 0;
1541 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1542 	} else {
1543 		if (unlikely(copied < len))
1544 			ext4_journalled_zero_new_buffers(handle, page,
1545 							 from + copied, to);
1546 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547 					     from + copied, &partial,
1548 					     write_end_fn);
1549 		if (!partial)
1550 			SetPageUptodate(page);
1551 	}
1552 	if (!verity)
1553 		size_changed = ext4_update_inode_size(inode, pos + copied);
1554 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556 	unlock_page(page);
1557 	put_page(page);
1558 
1559 	if (old_size < pos && !verity)
1560 		pagecache_isize_extended(inode, old_size, pos);
1561 
1562 	if (size_changed || inline_data) {
1563 		ret2 = ext4_mark_inode_dirty(handle, inode);
1564 		if (!ret)
1565 			ret = ret2;
1566 	}
1567 
1568 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569 		/* if we have allocated more blocks and copied
1570 		 * less. We will have blocks allocated outside
1571 		 * inode->i_size. So truncate them
1572 		 */
1573 		ext4_orphan_add(handle, inode);
1574 
1575 errout:
1576 	ret2 = ext4_journal_stop(handle);
1577 	if (!ret)
1578 		ret = ret2;
1579 	if (pos + len > inode->i_size && !verity) {
1580 		ext4_truncate_failed_write(inode);
1581 		/*
1582 		 * If truncate failed early the inode might still be
1583 		 * on the orphan list; we need to make sure the inode
1584 		 * is removed from the orphan list in that case.
1585 		 */
1586 		if (inode->i_nlink)
1587 			ext4_orphan_del(NULL, inode);
1588 	}
1589 
1590 	return ret ? ret : copied;
1591 }
1592 
1593 /*
1594  * Reserve space for a single cluster
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode)
1597 {
1598 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 	struct ext4_inode_info *ei = EXT4_I(inode);
1600 	int ret;
1601 
1602 	/*
1603 	 * We will charge metadata quota at writeout time; this saves
1604 	 * us from metadata over-estimation, though we may go over by
1605 	 * a small amount in the end.  Here we just reserve for data.
1606 	 */
1607 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608 	if (ret)
1609 		return ret;
1610 
1611 	spin_lock(&ei->i_block_reservation_lock);
1612 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613 		spin_unlock(&ei->i_block_reservation_lock);
1614 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615 		return -ENOSPC;
1616 	}
1617 	ei->i_reserved_data_blocks++;
1618 	trace_ext4_da_reserve_space(inode);
1619 	spin_unlock(&ei->i_block_reservation_lock);
1620 
1621 	return 0;       /* success */
1622 }
1623 
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	struct ext4_inode_info *ei = EXT4_I(inode);
1628 
1629 	if (!to_free)
1630 		return;		/* Nothing to release, exit */
1631 
1632 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633 
1634 	trace_ext4_da_release_space(inode, to_free);
1635 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636 		/*
1637 		 * if there aren't enough reserved blocks, then the
1638 		 * counter is messed up somewhere.  Since this
1639 		 * function is called from invalidate page, it's
1640 		 * harmless to return without any action.
1641 		 */
1642 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643 			 "ino %lu, to_free %d with only %d reserved "
1644 			 "data blocks", inode->i_ino, to_free,
1645 			 ei->i_reserved_data_blocks);
1646 		WARN_ON(1);
1647 		to_free = ei->i_reserved_data_blocks;
1648 	}
1649 	ei->i_reserved_data_blocks -= to_free;
1650 
1651 	/* update fs dirty data blocks counter */
1652 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653 
1654 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655 
1656 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658 
1659 /*
1660  * Delayed allocation stuff
1661  */
1662 
1663 struct mpage_da_data {
1664 	struct inode *inode;
1665 	struct writeback_control *wbc;
1666 
1667 	pgoff_t first_page;	/* The first page to write */
1668 	pgoff_t next_page;	/* Current page to examine */
1669 	pgoff_t last_page;	/* Last page to examine */
1670 	/*
1671 	 * Extent to map - this can be after first_page because that can be
1672 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673 	 * is delalloc or unwritten.
1674 	 */
1675 	struct ext4_map_blocks map;
1676 	struct ext4_io_submit io_submit;	/* IO submission data */
1677 	unsigned int do_map:1;
1678 };
1679 
1680 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681 				       bool invalidate)
1682 {
1683 	int nr_pages, i;
1684 	pgoff_t index, end;
1685 	struct pagevec pvec;
1686 	struct inode *inode = mpd->inode;
1687 	struct address_space *mapping = inode->i_mapping;
1688 
1689 	/* This is necessary when next_page == 0. */
1690 	if (mpd->first_page >= mpd->next_page)
1691 		return;
1692 
1693 	index = mpd->first_page;
1694 	end   = mpd->next_page - 1;
1695 	if (invalidate) {
1696 		ext4_lblk_t start, last;
1697 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1698 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1699 		ext4_es_remove_extent(inode, start, last - start + 1);
1700 	}
1701 
1702 	pagevec_init(&pvec);
1703 	while (index <= end) {
1704 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1705 		if (nr_pages == 0)
1706 			break;
1707 		for (i = 0; i < nr_pages; i++) {
1708 			struct page *page = pvec.pages[i];
1709 
1710 			BUG_ON(!PageLocked(page));
1711 			BUG_ON(PageWriteback(page));
1712 			if (invalidate) {
1713 				if (page_mapped(page))
1714 					clear_page_dirty_for_io(page);
1715 				block_invalidatepage(page, 0, PAGE_SIZE);
1716 				ClearPageUptodate(page);
1717 			}
1718 			unlock_page(page);
1719 		}
1720 		pagevec_release(&pvec);
1721 	}
1722 }
1723 
1724 static void ext4_print_free_blocks(struct inode *inode)
1725 {
1726 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727 	struct super_block *sb = inode->i_sb;
1728 	struct ext4_inode_info *ei = EXT4_I(inode);
1729 
1730 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1731 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1732 			ext4_count_free_clusters(sb)));
1733 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1735 	       (long long) EXT4_C2B(EXT4_SB(sb),
1736 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1737 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1738 	       (long long) EXT4_C2B(EXT4_SB(sb),
1739 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1740 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1742 		 ei->i_reserved_data_blocks);
1743 	return;
1744 }
1745 
1746 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1747 {
1748 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1749 }
1750 
1751 /*
1752  * ext4_insert_delayed_block - adds a delayed block to the extents status
1753  *                             tree, incrementing the reserved cluster/block
1754  *                             count or making a pending reservation
1755  *                             where needed
1756  *
1757  * @inode - file containing the newly added block
1758  * @lblk - logical block to be added
1759  *
1760  * Returns 0 on success, negative error code on failure.
1761  */
1762 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763 {
1764 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765 	int ret;
1766 	bool allocated = false;
1767 
1768 	/*
1769 	 * If the cluster containing lblk is shared with a delayed,
1770 	 * written, or unwritten extent in a bigalloc file system, it's
1771 	 * already been accounted for and does not need to be reserved.
1772 	 * A pending reservation must be made for the cluster if it's
1773 	 * shared with a written or unwritten extent and doesn't already
1774 	 * have one.  Written and unwritten extents can be purged from the
1775 	 * extents status tree if the system is under memory pressure, so
1776 	 * it's necessary to examine the extent tree if a search of the
1777 	 * extents status tree doesn't get a match.
1778 	 */
1779 	if (sbi->s_cluster_ratio == 1) {
1780 		ret = ext4_da_reserve_space(inode);
1781 		if (ret != 0)   /* ENOSPC */
1782 			goto errout;
1783 	} else {   /* bigalloc */
1784 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785 			if (!ext4_es_scan_clu(inode,
1786 					      &ext4_es_is_mapped, lblk)) {
1787 				ret = ext4_clu_mapped(inode,
1788 						      EXT4_B2C(sbi, lblk));
1789 				if (ret < 0)
1790 					goto errout;
1791 				if (ret == 0) {
1792 					ret = ext4_da_reserve_space(inode);
1793 					if (ret != 0)   /* ENOSPC */
1794 						goto errout;
1795 				} else {
1796 					allocated = true;
1797 				}
1798 			} else {
1799 				allocated = true;
1800 			}
1801 		}
1802 	}
1803 
1804 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805 
1806 errout:
1807 	return ret;
1808 }
1809 
1810 /*
1811  * This function is grabs code from the very beginning of
1812  * ext4_map_blocks, but assumes that the caller is from delayed write
1813  * time. This function looks up the requested blocks and sets the
1814  * buffer delay bit under the protection of i_data_sem.
1815  */
1816 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817 			      struct ext4_map_blocks *map,
1818 			      struct buffer_head *bh)
1819 {
1820 	struct extent_status es;
1821 	int retval;
1822 	sector_t invalid_block = ~((sector_t) 0xffff);
1823 #ifdef ES_AGGRESSIVE_TEST
1824 	struct ext4_map_blocks orig_map;
1825 
1826 	memcpy(&orig_map, map, sizeof(*map));
1827 #endif
1828 
1829 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830 		invalid_block = ~0;
1831 
1832 	map->m_flags = 0;
1833 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834 		  "logical block %lu\n", inode->i_ino, map->m_len,
1835 		  (unsigned long) map->m_lblk);
1836 
1837 	/* Lookup extent status tree firstly */
1838 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1839 		if (ext4_es_is_hole(&es)) {
1840 			retval = 0;
1841 			down_read(&EXT4_I(inode)->i_data_sem);
1842 			goto add_delayed;
1843 		}
1844 
1845 		/*
1846 		 * Delayed extent could be allocated by fallocate.
1847 		 * So we need to check it.
1848 		 */
1849 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850 			map_bh(bh, inode->i_sb, invalid_block);
1851 			set_buffer_new(bh);
1852 			set_buffer_delay(bh);
1853 			return 0;
1854 		}
1855 
1856 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857 		retval = es.es_len - (iblock - es.es_lblk);
1858 		if (retval > map->m_len)
1859 			retval = map->m_len;
1860 		map->m_len = retval;
1861 		if (ext4_es_is_written(&es))
1862 			map->m_flags |= EXT4_MAP_MAPPED;
1863 		else if (ext4_es_is_unwritten(&es))
1864 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1865 		else
1866 			BUG();
1867 
1868 #ifdef ES_AGGRESSIVE_TEST
1869 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870 #endif
1871 		return retval;
1872 	}
1873 
1874 	/*
1875 	 * Try to see if we can get the block without requesting a new
1876 	 * file system block.
1877 	 */
1878 	down_read(&EXT4_I(inode)->i_data_sem);
1879 	if (ext4_has_inline_data(inode))
1880 		retval = 0;
1881 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883 	else
1884 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885 
1886 add_delayed:
1887 	if (retval == 0) {
1888 		int ret;
1889 
1890 		/*
1891 		 * XXX: __block_prepare_write() unmaps passed block,
1892 		 * is it OK?
1893 		 */
1894 
1895 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896 		if (ret != 0) {
1897 			retval = ret;
1898 			goto out_unlock;
1899 		}
1900 
1901 		map_bh(bh, inode->i_sb, invalid_block);
1902 		set_buffer_new(bh);
1903 		set_buffer_delay(bh);
1904 	} else if (retval > 0) {
1905 		int ret;
1906 		unsigned int status;
1907 
1908 		if (unlikely(retval != map->m_len)) {
1909 			ext4_warning(inode->i_sb,
1910 				     "ES len assertion failed for inode "
1911 				     "%lu: retval %d != map->m_len %d",
1912 				     inode->i_ino, retval, map->m_len);
1913 			WARN_ON(1);
1914 		}
1915 
1916 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919 					    map->m_pblk, status);
1920 		if (ret != 0)
1921 			retval = ret;
1922 	}
1923 
1924 out_unlock:
1925 	up_read((&EXT4_I(inode)->i_data_sem));
1926 
1927 	return retval;
1928 }
1929 
1930 /*
1931  * This is a special get_block_t callback which is used by
1932  * ext4_da_write_begin().  It will either return mapped block or
1933  * reserve space for a single block.
1934  *
1935  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936  * We also have b_blocknr = -1 and b_bdev initialized properly
1937  *
1938  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940  * initialized properly.
1941  */
1942 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943 			   struct buffer_head *bh, int create)
1944 {
1945 	struct ext4_map_blocks map;
1946 	int ret = 0;
1947 
1948 	BUG_ON(create == 0);
1949 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950 
1951 	map.m_lblk = iblock;
1952 	map.m_len = 1;
1953 
1954 	/*
1955 	 * first, we need to know whether the block is allocated already
1956 	 * preallocated blocks are unmapped but should treated
1957 	 * the same as allocated blocks.
1958 	 */
1959 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960 	if (ret <= 0)
1961 		return ret;
1962 
1963 	map_bh(bh, inode->i_sb, map.m_pblk);
1964 	ext4_update_bh_state(bh, map.m_flags);
1965 
1966 	if (buffer_unwritten(bh)) {
1967 		/* A delayed write to unwritten bh should be marked
1968 		 * new and mapped.  Mapped ensures that we don't do
1969 		 * get_block multiple times when we write to the same
1970 		 * offset and new ensures that we do proper zero out
1971 		 * for partial write.
1972 		 */
1973 		set_buffer_new(bh);
1974 		set_buffer_mapped(bh);
1975 	}
1976 	return 0;
1977 }
1978 
1979 static int bget_one(handle_t *handle, struct buffer_head *bh)
1980 {
1981 	get_bh(bh);
1982 	return 0;
1983 }
1984 
1985 static int bput_one(handle_t *handle, struct buffer_head *bh)
1986 {
1987 	put_bh(bh);
1988 	return 0;
1989 }
1990 
1991 static int __ext4_journalled_writepage(struct page *page,
1992 				       unsigned int len)
1993 {
1994 	struct address_space *mapping = page->mapping;
1995 	struct inode *inode = mapping->host;
1996 	struct buffer_head *page_bufs = NULL;
1997 	handle_t *handle = NULL;
1998 	int ret = 0, err = 0;
1999 	int inline_data = ext4_has_inline_data(inode);
2000 	struct buffer_head *inode_bh = NULL;
2001 
2002 	ClearPageChecked(page);
2003 
2004 	if (inline_data) {
2005 		BUG_ON(page->index != 0);
2006 		BUG_ON(len > ext4_get_max_inline_size(inode));
2007 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008 		if (inode_bh == NULL)
2009 			goto out;
2010 	} else {
2011 		page_bufs = page_buffers(page);
2012 		if (!page_bufs) {
2013 			BUG();
2014 			goto out;
2015 		}
2016 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017 				       NULL, bget_one);
2018 	}
2019 	/*
2020 	 * We need to release the page lock before we start the
2021 	 * journal, so grab a reference so the page won't disappear
2022 	 * out from under us.
2023 	 */
2024 	get_page(page);
2025 	unlock_page(page);
2026 
2027 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028 				    ext4_writepage_trans_blocks(inode));
2029 	if (IS_ERR(handle)) {
2030 		ret = PTR_ERR(handle);
2031 		put_page(page);
2032 		goto out_no_pagelock;
2033 	}
2034 	BUG_ON(!ext4_handle_valid(handle));
2035 
2036 	lock_page(page);
2037 	put_page(page);
2038 	if (page->mapping != mapping) {
2039 		/* The page got truncated from under us */
2040 		ext4_journal_stop(handle);
2041 		ret = 0;
2042 		goto out;
2043 	}
2044 
2045 	if (inline_data) {
2046 		ret = ext4_mark_inode_dirty(handle, inode);
2047 	} else {
2048 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049 					     do_journal_get_write_access);
2050 
2051 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052 					     write_end_fn);
2053 	}
2054 	if (ret == 0)
2055 		ret = err;
2056 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2057 	err = ext4_journal_stop(handle);
2058 	if (!ret)
2059 		ret = err;
2060 
2061 	if (!ext4_has_inline_data(inode))
2062 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2063 				       NULL, bput_one);
2064 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2065 out:
2066 	unlock_page(page);
2067 out_no_pagelock:
2068 	brelse(inode_bh);
2069 	return ret;
2070 }
2071 
2072 /*
2073  * Note that we don't need to start a transaction unless we're journaling data
2074  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075  * need to file the inode to the transaction's list in ordered mode because if
2076  * we are writing back data added by write(), the inode is already there and if
2077  * we are writing back data modified via mmap(), no one guarantees in which
2078  * transaction the data will hit the disk. In case we are journaling data, we
2079  * cannot start transaction directly because transaction start ranks above page
2080  * lock so we have to do some magic.
2081  *
2082  * This function can get called via...
2083  *   - ext4_writepages after taking page lock (have journal handle)
2084  *   - journal_submit_inode_data_buffers (no journal handle)
2085  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2086  *   - grab_page_cache when doing write_begin (have journal handle)
2087  *
2088  * We don't do any block allocation in this function. If we have page with
2089  * multiple blocks we need to write those buffer_heads that are mapped. This
2090  * is important for mmaped based write. So if we do with blocksize 1K
2091  * truncate(f, 1024);
2092  * a = mmap(f, 0, 4096);
2093  * a[0] = 'a';
2094  * truncate(f, 4096);
2095  * we have in the page first buffer_head mapped via page_mkwrite call back
2096  * but other buffer_heads would be unmapped but dirty (dirty done via the
2097  * do_wp_page). So writepage should write the first block. If we modify
2098  * the mmap area beyond 1024 we will again get a page_fault and the
2099  * page_mkwrite callback will do the block allocation and mark the
2100  * buffer_heads mapped.
2101  *
2102  * We redirty the page if we have any buffer_heads that is either delay or
2103  * unwritten in the page.
2104  *
2105  * We can get recursively called as show below.
2106  *
2107  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108  *		ext4_writepage()
2109  *
2110  * But since we don't do any block allocation we should not deadlock.
2111  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2112  */
2113 static int ext4_writepage(struct page *page,
2114 			  struct writeback_control *wbc)
2115 {
2116 	int ret = 0;
2117 	loff_t size;
2118 	unsigned int len;
2119 	struct buffer_head *page_bufs = NULL;
2120 	struct inode *inode = page->mapping->host;
2121 	struct ext4_io_submit io_submit;
2122 	bool keep_towrite = false;
2123 
2124 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2126 		unlock_page(page);
2127 		return -EIO;
2128 	}
2129 
2130 	trace_ext4_writepage(page);
2131 	size = i_size_read(inode);
2132 	if (page->index == size >> PAGE_SHIFT &&
2133 	    !ext4_verity_in_progress(inode))
2134 		len = size & ~PAGE_MASK;
2135 	else
2136 		len = PAGE_SIZE;
2137 
2138 	page_bufs = page_buffers(page);
2139 	/*
2140 	 * We cannot do block allocation or other extent handling in this
2141 	 * function. If there are buffers needing that, we have to redirty
2142 	 * the page. But we may reach here when we do a journal commit via
2143 	 * journal_submit_inode_data_buffers() and in that case we must write
2144 	 * allocated buffers to achieve data=ordered mode guarantees.
2145 	 *
2146 	 * Also, if there is only one buffer per page (the fs block
2147 	 * size == the page size), if one buffer needs block
2148 	 * allocation or needs to modify the extent tree to clear the
2149 	 * unwritten flag, we know that the page can't be written at
2150 	 * all, so we might as well refuse the write immediately.
2151 	 * Unfortunately if the block size != page size, we can't as
2152 	 * easily detect this case using ext4_walk_page_buffers(), but
2153 	 * for the extremely common case, this is an optimization that
2154 	 * skips a useless round trip through ext4_bio_write_page().
2155 	 */
2156 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157 				   ext4_bh_delay_or_unwritten)) {
2158 		redirty_page_for_writepage(wbc, page);
2159 		if ((current->flags & PF_MEMALLOC) ||
2160 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2161 			/*
2162 			 * For memory cleaning there's no point in writing only
2163 			 * some buffers. So just bail out. Warn if we came here
2164 			 * from direct reclaim.
2165 			 */
2166 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167 							== PF_MEMALLOC);
2168 			unlock_page(page);
2169 			return 0;
2170 		}
2171 		keep_towrite = true;
2172 	}
2173 
2174 	if (PageChecked(page) && ext4_should_journal_data(inode))
2175 		/*
2176 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2177 		 * doesn't seem much point in redirtying the page here.
2178 		 */
2179 		return __ext4_journalled_writepage(page, len);
2180 
2181 	ext4_io_submit_init(&io_submit, wbc);
2182 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183 	if (!io_submit.io_end) {
2184 		redirty_page_for_writepage(wbc, page);
2185 		unlock_page(page);
2186 		return -ENOMEM;
2187 	}
2188 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2189 	ext4_io_submit(&io_submit);
2190 	/* Drop io_end reference we got from init */
2191 	ext4_put_io_end_defer(io_submit.io_end);
2192 	return ret;
2193 }
2194 
2195 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196 {
2197 	int len;
2198 	loff_t size;
2199 	int err;
2200 
2201 	BUG_ON(page->index != mpd->first_page);
2202 	clear_page_dirty_for_io(page);
2203 	/*
2204 	 * We have to be very careful here!  Nothing protects writeback path
2205 	 * against i_size changes and the page can be writeably mapped into
2206 	 * page tables. So an application can be growing i_size and writing
2207 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2208 	 * write-protects our page in page tables and the page cannot get
2209 	 * written to again until we release page lock. So only after
2210 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2211 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212 	 * on the barrier provided by TestClearPageDirty in
2213 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214 	 * after page tables are updated.
2215 	 */
2216 	size = i_size_read(mpd->inode);
2217 	if (page->index == size >> PAGE_SHIFT &&
2218 	    !ext4_verity_in_progress(mpd->inode))
2219 		len = size & ~PAGE_MASK;
2220 	else
2221 		len = PAGE_SIZE;
2222 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2223 	if (!err)
2224 		mpd->wbc->nr_to_write--;
2225 	mpd->first_page++;
2226 
2227 	return err;
2228 }
2229 
2230 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231 
2232 /*
2233  * mballoc gives us at most this number of blocks...
2234  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2235  * The rest of mballoc seems to handle chunks up to full group size.
2236  */
2237 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2238 
2239 /*
2240  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241  *
2242  * @mpd - extent of blocks
2243  * @lblk - logical number of the block in the file
2244  * @bh - buffer head we want to add to the extent
2245  *
2246  * The function is used to collect contig. blocks in the same state. If the
2247  * buffer doesn't require mapping for writeback and we haven't started the
2248  * extent of buffers to map yet, the function returns 'true' immediately - the
2249  * caller can write the buffer right away. Otherwise the function returns true
2250  * if the block has been added to the extent, false if the block couldn't be
2251  * added.
2252  */
2253 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254 				   struct buffer_head *bh)
2255 {
2256 	struct ext4_map_blocks *map = &mpd->map;
2257 
2258 	/* Buffer that doesn't need mapping for writeback? */
2259 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261 		/* So far no extent to map => we write the buffer right away */
2262 		if (map->m_len == 0)
2263 			return true;
2264 		return false;
2265 	}
2266 
2267 	/* First block in the extent? */
2268 	if (map->m_len == 0) {
2269 		/* We cannot map unless handle is started... */
2270 		if (!mpd->do_map)
2271 			return false;
2272 		map->m_lblk = lblk;
2273 		map->m_len = 1;
2274 		map->m_flags = bh->b_state & BH_FLAGS;
2275 		return true;
2276 	}
2277 
2278 	/* Don't go larger than mballoc is willing to allocate */
2279 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280 		return false;
2281 
2282 	/* Can we merge the block to our big extent? */
2283 	if (lblk == map->m_lblk + map->m_len &&
2284 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2285 		map->m_len++;
2286 		return true;
2287 	}
2288 	return false;
2289 }
2290 
2291 /*
2292  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293  *
2294  * @mpd - extent of blocks for mapping
2295  * @head - the first buffer in the page
2296  * @bh - buffer we should start processing from
2297  * @lblk - logical number of the block in the file corresponding to @bh
2298  *
2299  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300  * the page for IO if all buffers in this page were mapped and there's no
2301  * accumulated extent of buffers to map or add buffers in the page to the
2302  * extent of buffers to map. The function returns 1 if the caller can continue
2303  * by processing the next page, 0 if it should stop adding buffers to the
2304  * extent to map because we cannot extend it anymore. It can also return value
2305  * < 0 in case of error during IO submission.
2306  */
2307 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308 				   struct buffer_head *head,
2309 				   struct buffer_head *bh,
2310 				   ext4_lblk_t lblk)
2311 {
2312 	struct inode *inode = mpd->inode;
2313 	int err;
2314 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2315 							>> inode->i_blkbits;
2316 
2317 	if (ext4_verity_in_progress(inode))
2318 		blocks = EXT_MAX_BLOCKS;
2319 
2320 	do {
2321 		BUG_ON(buffer_locked(bh));
2322 
2323 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324 			/* Found extent to map? */
2325 			if (mpd->map.m_len)
2326 				return 0;
2327 			/* Buffer needs mapping and handle is not started? */
2328 			if (!mpd->do_map)
2329 				return 0;
2330 			/* Everything mapped so far and we hit EOF */
2331 			break;
2332 		}
2333 	} while (lblk++, (bh = bh->b_this_page) != head);
2334 	/* So far everything mapped? Submit the page for IO. */
2335 	if (mpd->map.m_len == 0) {
2336 		err = mpage_submit_page(mpd, head->b_page);
2337 		if (err < 0)
2338 			return err;
2339 	}
2340 	return lblk < blocks;
2341 }
2342 
2343 /*
2344  * mpage_map_buffers - update buffers corresponding to changed extent and
2345  *		       submit fully mapped pages for IO
2346  *
2347  * @mpd - description of extent to map, on return next extent to map
2348  *
2349  * Scan buffers corresponding to changed extent (we expect corresponding pages
2350  * to be already locked) and update buffer state according to new extent state.
2351  * We map delalloc buffers to their physical location, clear unwritten bits,
2352  * and mark buffers as uninit when we perform writes to unwritten extents
2353  * and do extent conversion after IO is finished. If the last page is not fully
2354  * mapped, we update @map to the next extent in the last page that needs
2355  * mapping. Otherwise we submit the page for IO.
2356  */
2357 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358 {
2359 	struct pagevec pvec;
2360 	int nr_pages, i;
2361 	struct inode *inode = mpd->inode;
2362 	struct buffer_head *head, *bh;
2363 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2364 	pgoff_t start, end;
2365 	ext4_lblk_t lblk;
2366 	sector_t pblock;
2367 	int err;
2368 
2369 	start = mpd->map.m_lblk >> bpp_bits;
2370 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371 	lblk = start << bpp_bits;
2372 	pblock = mpd->map.m_pblk;
2373 
2374 	pagevec_init(&pvec);
2375 	while (start <= end) {
2376 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2377 						&start, end);
2378 		if (nr_pages == 0)
2379 			break;
2380 		for (i = 0; i < nr_pages; i++) {
2381 			struct page *page = pvec.pages[i];
2382 
2383 			bh = head = page_buffers(page);
2384 			do {
2385 				if (lblk < mpd->map.m_lblk)
2386 					continue;
2387 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388 					/*
2389 					 * Buffer after end of mapped extent.
2390 					 * Find next buffer in the page to map.
2391 					 */
2392 					mpd->map.m_len = 0;
2393 					mpd->map.m_flags = 0;
2394 					/*
2395 					 * FIXME: If dioread_nolock supports
2396 					 * blocksize < pagesize, we need to make
2397 					 * sure we add size mapped so far to
2398 					 * io_end->size as the following call
2399 					 * can submit the page for IO.
2400 					 */
2401 					err = mpage_process_page_bufs(mpd, head,
2402 								      bh, lblk);
2403 					pagevec_release(&pvec);
2404 					if (err > 0)
2405 						err = 0;
2406 					return err;
2407 				}
2408 				if (buffer_delay(bh)) {
2409 					clear_buffer_delay(bh);
2410 					bh->b_blocknr = pblock++;
2411 				}
2412 				clear_buffer_unwritten(bh);
2413 			} while (lblk++, (bh = bh->b_this_page) != head);
2414 
2415 			/*
2416 			 * FIXME: This is going to break if dioread_nolock
2417 			 * supports blocksize < pagesize as we will try to
2418 			 * convert potentially unmapped parts of inode.
2419 			 */
2420 			mpd->io_submit.io_end->size += PAGE_SIZE;
2421 			/* Page fully mapped - let IO run! */
2422 			err = mpage_submit_page(mpd, page);
2423 			if (err < 0) {
2424 				pagevec_release(&pvec);
2425 				return err;
2426 			}
2427 		}
2428 		pagevec_release(&pvec);
2429 	}
2430 	/* Extent fully mapped and matches with page boundary. We are done. */
2431 	mpd->map.m_len = 0;
2432 	mpd->map.m_flags = 0;
2433 	return 0;
2434 }
2435 
2436 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437 {
2438 	struct inode *inode = mpd->inode;
2439 	struct ext4_map_blocks *map = &mpd->map;
2440 	int get_blocks_flags;
2441 	int err, dioread_nolock;
2442 
2443 	trace_ext4_da_write_pages_extent(inode, map);
2444 	/*
2445 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2446 	 * to convert an unwritten extent to be initialized (in the case
2447 	 * where we have written into one or more preallocated blocks).  It is
2448 	 * possible that we're going to need more metadata blocks than
2449 	 * previously reserved. However we must not fail because we're in
2450 	 * writeback and there is nothing we can do about it so it might result
2451 	 * in data loss.  So use reserved blocks to allocate metadata if
2452 	 * possible.
2453 	 *
2454 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455 	 * the blocks in question are delalloc blocks.  This indicates
2456 	 * that the blocks and quotas has already been checked when
2457 	 * the data was copied into the page cache.
2458 	 */
2459 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2460 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2462 	dioread_nolock = ext4_should_dioread_nolock(inode);
2463 	if (dioread_nolock)
2464 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465 	if (map->m_flags & (1 << BH_Delay))
2466 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467 
2468 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469 	if (err < 0)
2470 		return err;
2471 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2472 		if (!mpd->io_submit.io_end->handle &&
2473 		    ext4_handle_valid(handle)) {
2474 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475 			handle->h_rsv_handle = NULL;
2476 		}
2477 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2478 	}
2479 
2480 	BUG_ON(map->m_len == 0);
2481 	return 0;
2482 }
2483 
2484 /*
2485  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2486  *				 mpd->len and submit pages underlying it for IO
2487  *
2488  * @handle - handle for journal operations
2489  * @mpd - extent to map
2490  * @give_up_on_write - we set this to true iff there is a fatal error and there
2491  *                     is no hope of writing the data. The caller should discard
2492  *                     dirty pages to avoid infinite loops.
2493  *
2494  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2495  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2496  * them to initialized or split the described range from larger unwritten
2497  * extent. Note that we need not map all the described range since allocation
2498  * can return less blocks or the range is covered by more unwritten extents. We
2499  * cannot map more because we are limited by reserved transaction credits. On
2500  * the other hand we always make sure that the last touched page is fully
2501  * mapped so that it can be written out (and thus forward progress is
2502  * guaranteed). After mapping we submit all mapped pages for IO.
2503  */
2504 static int mpage_map_and_submit_extent(handle_t *handle,
2505 				       struct mpage_da_data *mpd,
2506 				       bool *give_up_on_write)
2507 {
2508 	struct inode *inode = mpd->inode;
2509 	struct ext4_map_blocks *map = &mpd->map;
2510 	int err;
2511 	loff_t disksize;
2512 	int progress = 0;
2513 
2514 	mpd->io_submit.io_end->offset =
2515 				((loff_t)map->m_lblk) << inode->i_blkbits;
2516 	do {
2517 		err = mpage_map_one_extent(handle, mpd);
2518 		if (err < 0) {
2519 			struct super_block *sb = inode->i_sb;
2520 
2521 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2522 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2523 				goto invalidate_dirty_pages;
2524 			/*
2525 			 * Let the uper layers retry transient errors.
2526 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2527 			 * is non-zero, a commit should free up blocks.
2528 			 */
2529 			if ((err == -ENOMEM) ||
2530 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2531 				if (progress)
2532 					goto update_disksize;
2533 				return err;
2534 			}
2535 			ext4_msg(sb, KERN_CRIT,
2536 				 "Delayed block allocation failed for "
2537 				 "inode %lu at logical offset %llu with"
2538 				 " max blocks %u with error %d",
2539 				 inode->i_ino,
2540 				 (unsigned long long)map->m_lblk,
2541 				 (unsigned)map->m_len, -err);
2542 			ext4_msg(sb, KERN_CRIT,
2543 				 "This should not happen!! Data will "
2544 				 "be lost\n");
2545 			if (err == -ENOSPC)
2546 				ext4_print_free_blocks(inode);
2547 		invalidate_dirty_pages:
2548 			*give_up_on_write = true;
2549 			return err;
2550 		}
2551 		progress = 1;
2552 		/*
2553 		 * Update buffer state, submit mapped pages, and get us new
2554 		 * extent to map
2555 		 */
2556 		err = mpage_map_and_submit_buffers(mpd);
2557 		if (err < 0)
2558 			goto update_disksize;
2559 	} while (map->m_len);
2560 
2561 update_disksize:
2562 	/*
2563 	 * Update on-disk size after IO is submitted.  Races with
2564 	 * truncate are avoided by checking i_size under i_data_sem.
2565 	 */
2566 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2567 	if (disksize > EXT4_I(inode)->i_disksize) {
2568 		int err2;
2569 		loff_t i_size;
2570 
2571 		down_write(&EXT4_I(inode)->i_data_sem);
2572 		i_size = i_size_read(inode);
2573 		if (disksize > i_size)
2574 			disksize = i_size;
2575 		if (disksize > EXT4_I(inode)->i_disksize)
2576 			EXT4_I(inode)->i_disksize = disksize;
2577 		up_write(&EXT4_I(inode)->i_data_sem);
2578 		err2 = ext4_mark_inode_dirty(handle, inode);
2579 		if (err2)
2580 			ext4_error(inode->i_sb,
2581 				   "Failed to mark inode %lu dirty",
2582 				   inode->i_ino);
2583 		if (!err)
2584 			err = err2;
2585 	}
2586 	return err;
2587 }
2588 
2589 /*
2590  * Calculate the total number of credits to reserve for one writepages
2591  * iteration. This is called from ext4_writepages(). We map an extent of
2592  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2593  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2594  * bpp - 1 blocks in bpp different extents.
2595  */
2596 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2597 {
2598 	int bpp = ext4_journal_blocks_per_page(inode);
2599 
2600 	return ext4_meta_trans_blocks(inode,
2601 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2602 }
2603 
2604 /*
2605  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2606  * 				 and underlying extent to map
2607  *
2608  * @mpd - where to look for pages
2609  *
2610  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2611  * IO immediately. When we find a page which isn't mapped we start accumulating
2612  * extent of buffers underlying these pages that needs mapping (formed by
2613  * either delayed or unwritten buffers). We also lock the pages containing
2614  * these buffers. The extent found is returned in @mpd structure (starting at
2615  * mpd->lblk with length mpd->len blocks).
2616  *
2617  * Note that this function can attach bios to one io_end structure which are
2618  * neither logically nor physically contiguous. Although it may seem as an
2619  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2620  * case as we need to track IO to all buffers underlying a page in one io_end.
2621  */
2622 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2623 {
2624 	struct address_space *mapping = mpd->inode->i_mapping;
2625 	struct pagevec pvec;
2626 	unsigned int nr_pages;
2627 	long left = mpd->wbc->nr_to_write;
2628 	pgoff_t index = mpd->first_page;
2629 	pgoff_t end = mpd->last_page;
2630 	xa_mark_t tag;
2631 	int i, err = 0;
2632 	int blkbits = mpd->inode->i_blkbits;
2633 	ext4_lblk_t lblk;
2634 	struct buffer_head *head;
2635 
2636 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2637 		tag = PAGECACHE_TAG_TOWRITE;
2638 	else
2639 		tag = PAGECACHE_TAG_DIRTY;
2640 
2641 	pagevec_init(&pvec);
2642 	mpd->map.m_len = 0;
2643 	mpd->next_page = index;
2644 	while (index <= end) {
2645 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2646 				tag);
2647 		if (nr_pages == 0)
2648 			goto out;
2649 
2650 		for (i = 0; i < nr_pages; i++) {
2651 			struct page *page = pvec.pages[i];
2652 
2653 			/*
2654 			 * Accumulated enough dirty pages? This doesn't apply
2655 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2656 			 * keep going because someone may be concurrently
2657 			 * dirtying pages, and we might have synced a lot of
2658 			 * newly appeared dirty pages, but have not synced all
2659 			 * of the old dirty pages.
2660 			 */
2661 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2662 				goto out;
2663 
2664 			/* If we can't merge this page, we are done. */
2665 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2666 				goto out;
2667 
2668 			lock_page(page);
2669 			/*
2670 			 * If the page is no longer dirty, or its mapping no
2671 			 * longer corresponds to inode we are writing (which
2672 			 * means it has been truncated or invalidated), or the
2673 			 * page is already under writeback and we are not doing
2674 			 * a data integrity writeback, skip the page
2675 			 */
2676 			if (!PageDirty(page) ||
2677 			    (PageWriteback(page) &&
2678 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2679 			    unlikely(page->mapping != mapping)) {
2680 				unlock_page(page);
2681 				continue;
2682 			}
2683 
2684 			wait_on_page_writeback(page);
2685 			BUG_ON(PageWriteback(page));
2686 
2687 			if (mpd->map.m_len == 0)
2688 				mpd->first_page = page->index;
2689 			mpd->next_page = page->index + 1;
2690 			/* Add all dirty buffers to mpd */
2691 			lblk = ((ext4_lblk_t)page->index) <<
2692 				(PAGE_SHIFT - blkbits);
2693 			head = page_buffers(page);
2694 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2695 			if (err <= 0)
2696 				goto out;
2697 			err = 0;
2698 			left--;
2699 		}
2700 		pagevec_release(&pvec);
2701 		cond_resched();
2702 	}
2703 	return 0;
2704 out:
2705 	pagevec_release(&pvec);
2706 	return err;
2707 }
2708 
2709 static int ext4_writepages(struct address_space *mapping,
2710 			   struct writeback_control *wbc)
2711 {
2712 	pgoff_t	writeback_index = 0;
2713 	long nr_to_write = wbc->nr_to_write;
2714 	int range_whole = 0;
2715 	int cycled = 1;
2716 	handle_t *handle = NULL;
2717 	struct mpage_da_data mpd;
2718 	struct inode *inode = mapping->host;
2719 	int needed_blocks, rsv_blocks = 0, ret = 0;
2720 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2721 	bool done;
2722 	struct blk_plug plug;
2723 	bool give_up_on_write = false;
2724 
2725 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2726 		return -EIO;
2727 
2728 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2729 	trace_ext4_writepages(inode, wbc);
2730 
2731 	/*
2732 	 * No pages to write? This is mainly a kludge to avoid starting
2733 	 * a transaction for special inodes like journal inode on last iput()
2734 	 * because that could violate lock ordering on umount
2735 	 */
2736 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2737 		goto out_writepages;
2738 
2739 	if (ext4_should_journal_data(inode)) {
2740 		ret = generic_writepages(mapping, wbc);
2741 		goto out_writepages;
2742 	}
2743 
2744 	/*
2745 	 * If the filesystem has aborted, it is read-only, so return
2746 	 * right away instead of dumping stack traces later on that
2747 	 * will obscure the real source of the problem.  We test
2748 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2749 	 * the latter could be true if the filesystem is mounted
2750 	 * read-only, and in that case, ext4_writepages should
2751 	 * *never* be called, so if that ever happens, we would want
2752 	 * the stack trace.
2753 	 */
2754 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2755 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2756 		ret = -EROFS;
2757 		goto out_writepages;
2758 	}
2759 
2760 	/*
2761 	 * If we have inline data and arrive here, it means that
2762 	 * we will soon create the block for the 1st page, so
2763 	 * we'd better clear the inline data here.
2764 	 */
2765 	if (ext4_has_inline_data(inode)) {
2766 		/* Just inode will be modified... */
2767 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768 		if (IS_ERR(handle)) {
2769 			ret = PTR_ERR(handle);
2770 			goto out_writepages;
2771 		}
2772 		BUG_ON(ext4_test_inode_state(inode,
2773 				EXT4_STATE_MAY_INLINE_DATA));
2774 		ext4_destroy_inline_data(handle, inode);
2775 		ext4_journal_stop(handle);
2776 	}
2777 
2778 	if (ext4_should_dioread_nolock(inode)) {
2779 		/*
2780 		 * We may need to convert up to one extent per block in
2781 		 * the page and we may dirty the inode.
2782 		 */
2783 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2784 						PAGE_SIZE >> inode->i_blkbits);
2785 	}
2786 
2787 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 		range_whole = 1;
2789 
2790 	if (wbc->range_cyclic) {
2791 		writeback_index = mapping->writeback_index;
2792 		if (writeback_index)
2793 			cycled = 0;
2794 		mpd.first_page = writeback_index;
2795 		mpd.last_page = -1;
2796 	} else {
2797 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2798 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2799 	}
2800 
2801 	mpd.inode = inode;
2802 	mpd.wbc = wbc;
2803 	ext4_io_submit_init(&mpd.io_submit, wbc);
2804 retry:
2805 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2806 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2807 	done = false;
2808 	blk_start_plug(&plug);
2809 
2810 	/*
2811 	 * First writeback pages that don't need mapping - we can avoid
2812 	 * starting a transaction unnecessarily and also avoid being blocked
2813 	 * in the block layer on device congestion while having transaction
2814 	 * started.
2815 	 */
2816 	mpd.do_map = 0;
2817 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2818 	if (!mpd.io_submit.io_end) {
2819 		ret = -ENOMEM;
2820 		goto unplug;
2821 	}
2822 	ret = mpage_prepare_extent_to_map(&mpd);
2823 	/* Unlock pages we didn't use */
2824 	mpage_release_unused_pages(&mpd, false);
2825 	/* Submit prepared bio */
2826 	ext4_io_submit(&mpd.io_submit);
2827 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2828 	mpd.io_submit.io_end = NULL;
2829 	if (ret < 0)
2830 		goto unplug;
2831 
2832 	while (!done && mpd.first_page <= mpd.last_page) {
2833 		/* For each extent of pages we use new io_end */
2834 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2835 		if (!mpd.io_submit.io_end) {
2836 			ret = -ENOMEM;
2837 			break;
2838 		}
2839 
2840 		/*
2841 		 * We have two constraints: We find one extent to map and we
2842 		 * must always write out whole page (makes a difference when
2843 		 * blocksize < pagesize) so that we don't block on IO when we
2844 		 * try to write out the rest of the page. Journalled mode is
2845 		 * not supported by delalloc.
2846 		 */
2847 		BUG_ON(ext4_should_journal_data(inode));
2848 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2849 
2850 		/* start a new transaction */
2851 		handle = ext4_journal_start_with_reserve(inode,
2852 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2853 		if (IS_ERR(handle)) {
2854 			ret = PTR_ERR(handle);
2855 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2856 			       "%ld pages, ino %lu; err %d", __func__,
2857 				wbc->nr_to_write, inode->i_ino, ret);
2858 			/* Release allocated io_end */
2859 			ext4_put_io_end(mpd.io_submit.io_end);
2860 			mpd.io_submit.io_end = NULL;
2861 			break;
2862 		}
2863 		mpd.do_map = 1;
2864 
2865 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2866 		ret = mpage_prepare_extent_to_map(&mpd);
2867 		if (!ret) {
2868 			if (mpd.map.m_len)
2869 				ret = mpage_map_and_submit_extent(handle, &mpd,
2870 					&give_up_on_write);
2871 			else {
2872 				/*
2873 				 * We scanned the whole range (or exhausted
2874 				 * nr_to_write), submitted what was mapped and
2875 				 * didn't find anything needing mapping. We are
2876 				 * done.
2877 				 */
2878 				done = true;
2879 			}
2880 		}
2881 		/*
2882 		 * Caution: If the handle is synchronous,
2883 		 * ext4_journal_stop() can wait for transaction commit
2884 		 * to finish which may depend on writeback of pages to
2885 		 * complete or on page lock to be released.  In that
2886 		 * case, we have to wait until after after we have
2887 		 * submitted all the IO, released page locks we hold,
2888 		 * and dropped io_end reference (for extent conversion
2889 		 * to be able to complete) before stopping the handle.
2890 		 */
2891 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2892 			ext4_journal_stop(handle);
2893 			handle = NULL;
2894 			mpd.do_map = 0;
2895 		}
2896 		/* Unlock pages we didn't use */
2897 		mpage_release_unused_pages(&mpd, give_up_on_write);
2898 		/* Submit prepared bio */
2899 		ext4_io_submit(&mpd.io_submit);
2900 
2901 		/*
2902 		 * Drop our io_end reference we got from init. We have
2903 		 * to be careful and use deferred io_end finishing if
2904 		 * we are still holding the transaction as we can
2905 		 * release the last reference to io_end which may end
2906 		 * up doing unwritten extent conversion.
2907 		 */
2908 		if (handle) {
2909 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2910 			ext4_journal_stop(handle);
2911 		} else
2912 			ext4_put_io_end(mpd.io_submit.io_end);
2913 		mpd.io_submit.io_end = NULL;
2914 
2915 		if (ret == -ENOSPC && sbi->s_journal) {
2916 			/*
2917 			 * Commit the transaction which would
2918 			 * free blocks released in the transaction
2919 			 * and try again
2920 			 */
2921 			jbd2_journal_force_commit_nested(sbi->s_journal);
2922 			ret = 0;
2923 			continue;
2924 		}
2925 		/* Fatal error - ENOMEM, EIO... */
2926 		if (ret)
2927 			break;
2928 	}
2929 unplug:
2930 	blk_finish_plug(&plug);
2931 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2932 		cycled = 1;
2933 		mpd.last_page = writeback_index - 1;
2934 		mpd.first_page = 0;
2935 		goto retry;
2936 	}
2937 
2938 	/* Update index */
2939 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2940 		/*
2941 		 * Set the writeback_index so that range_cyclic
2942 		 * mode will write it back later
2943 		 */
2944 		mapping->writeback_index = mpd.first_page;
2945 
2946 out_writepages:
2947 	trace_ext4_writepages_result(inode, wbc, ret,
2948 				     nr_to_write - wbc->nr_to_write);
2949 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2950 	return ret;
2951 }
2952 
2953 static int ext4_dax_writepages(struct address_space *mapping,
2954 			       struct writeback_control *wbc)
2955 {
2956 	int ret;
2957 	long nr_to_write = wbc->nr_to_write;
2958 	struct inode *inode = mapping->host;
2959 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2960 
2961 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962 		return -EIO;
2963 
2964 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2965 	trace_ext4_writepages(inode, wbc);
2966 
2967 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2968 	trace_ext4_writepages_result(inode, wbc, ret,
2969 				     nr_to_write - wbc->nr_to_write);
2970 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2971 	return ret;
2972 }
2973 
2974 static int ext4_nonda_switch(struct super_block *sb)
2975 {
2976 	s64 free_clusters, dirty_clusters;
2977 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2978 
2979 	/*
2980 	 * switch to non delalloc mode if we are running low
2981 	 * on free block. The free block accounting via percpu
2982 	 * counters can get slightly wrong with percpu_counter_batch getting
2983 	 * accumulated on each CPU without updating global counters
2984 	 * Delalloc need an accurate free block accounting. So switch
2985 	 * to non delalloc when we are near to error range.
2986 	 */
2987 	free_clusters =
2988 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2989 	dirty_clusters =
2990 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2991 	/*
2992 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2993 	 */
2994 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2995 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2996 
2997 	if (2 * free_clusters < 3 * dirty_clusters ||
2998 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2999 		/*
3000 		 * free block count is less than 150% of dirty blocks
3001 		 * or free blocks is less than watermark
3002 		 */
3003 		return 1;
3004 	}
3005 	return 0;
3006 }
3007 
3008 /* We always reserve for an inode update; the superblock could be there too */
3009 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3010 {
3011 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3012 		return 1;
3013 
3014 	if (pos + len <= 0x7fffffffULL)
3015 		return 1;
3016 
3017 	/* We might need to update the superblock to set LARGE_FILE */
3018 	return 2;
3019 }
3020 
3021 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3022 			       loff_t pos, unsigned len, unsigned flags,
3023 			       struct page **pagep, void **fsdata)
3024 {
3025 	int ret, retries = 0;
3026 	struct page *page;
3027 	pgoff_t index;
3028 	struct inode *inode = mapping->host;
3029 	handle_t *handle;
3030 
3031 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3032 		return -EIO;
3033 
3034 	index = pos >> PAGE_SHIFT;
3035 
3036 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3037 	    ext4_verity_in_progress(inode)) {
3038 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3039 		return ext4_write_begin(file, mapping, pos,
3040 					len, flags, pagep, fsdata);
3041 	}
3042 	*fsdata = (void *)0;
3043 	trace_ext4_da_write_begin(inode, pos, len, flags);
3044 
3045 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3046 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3047 						      pos, len, flags,
3048 						      pagep, fsdata);
3049 		if (ret < 0)
3050 			return ret;
3051 		if (ret == 1)
3052 			return 0;
3053 	}
3054 
3055 	/*
3056 	 * grab_cache_page_write_begin() can take a long time if the
3057 	 * system is thrashing due to memory pressure, or if the page
3058 	 * is being written back.  So grab it first before we start
3059 	 * the transaction handle.  This also allows us to allocate
3060 	 * the page (if needed) without using GFP_NOFS.
3061 	 */
3062 retry_grab:
3063 	page = grab_cache_page_write_begin(mapping, index, flags);
3064 	if (!page)
3065 		return -ENOMEM;
3066 	unlock_page(page);
3067 
3068 	/*
3069 	 * With delayed allocation, we don't log the i_disksize update
3070 	 * if there is delayed block allocation. But we still need
3071 	 * to journalling the i_disksize update if writes to the end
3072 	 * of file which has an already mapped buffer.
3073 	 */
3074 retry_journal:
3075 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3076 				ext4_da_write_credits(inode, pos, len));
3077 	if (IS_ERR(handle)) {
3078 		put_page(page);
3079 		return PTR_ERR(handle);
3080 	}
3081 
3082 	lock_page(page);
3083 	if (page->mapping != mapping) {
3084 		/* The page got truncated from under us */
3085 		unlock_page(page);
3086 		put_page(page);
3087 		ext4_journal_stop(handle);
3088 		goto retry_grab;
3089 	}
3090 	/* In case writeback began while the page was unlocked */
3091 	wait_for_stable_page(page);
3092 
3093 #ifdef CONFIG_FS_ENCRYPTION
3094 	ret = ext4_block_write_begin(page, pos, len,
3095 				     ext4_da_get_block_prep);
3096 #else
3097 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3098 #endif
3099 	if (ret < 0) {
3100 		unlock_page(page);
3101 		ext4_journal_stop(handle);
3102 		/*
3103 		 * block_write_begin may have instantiated a few blocks
3104 		 * outside i_size.  Trim these off again. Don't need
3105 		 * i_size_read because we hold i_mutex.
3106 		 */
3107 		if (pos + len > inode->i_size)
3108 			ext4_truncate_failed_write(inode);
3109 
3110 		if (ret == -ENOSPC &&
3111 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3112 			goto retry_journal;
3113 
3114 		put_page(page);
3115 		return ret;
3116 	}
3117 
3118 	*pagep = page;
3119 	return ret;
3120 }
3121 
3122 /*
3123  * Check if we should update i_disksize
3124  * when write to the end of file but not require block allocation
3125  */
3126 static int ext4_da_should_update_i_disksize(struct page *page,
3127 					    unsigned long offset)
3128 {
3129 	struct buffer_head *bh;
3130 	struct inode *inode = page->mapping->host;
3131 	unsigned int idx;
3132 	int i;
3133 
3134 	bh = page_buffers(page);
3135 	idx = offset >> inode->i_blkbits;
3136 
3137 	for (i = 0; i < idx; i++)
3138 		bh = bh->b_this_page;
3139 
3140 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141 		return 0;
3142 	return 1;
3143 }
3144 
3145 static int ext4_da_write_end(struct file *file,
3146 			     struct address_space *mapping,
3147 			     loff_t pos, unsigned len, unsigned copied,
3148 			     struct page *page, void *fsdata)
3149 {
3150 	struct inode *inode = mapping->host;
3151 	int ret = 0, ret2;
3152 	handle_t *handle = ext4_journal_current_handle();
3153 	loff_t new_i_size;
3154 	unsigned long start, end;
3155 	int write_mode = (int)(unsigned long)fsdata;
3156 
3157 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3158 		return ext4_write_end(file, mapping, pos,
3159 				      len, copied, page, fsdata);
3160 
3161 	trace_ext4_da_write_end(inode, pos, len, copied);
3162 	start = pos & (PAGE_SIZE - 1);
3163 	end = start + copied - 1;
3164 
3165 	/*
3166 	 * generic_write_end() will run mark_inode_dirty() if i_size
3167 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3168 	 * into that.
3169 	 */
3170 	new_i_size = pos + copied;
3171 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3172 		if (ext4_has_inline_data(inode) ||
3173 		    ext4_da_should_update_i_disksize(page, end)) {
3174 			ext4_update_i_disksize(inode, new_i_size);
3175 			/* We need to mark inode dirty even if
3176 			 * new_i_size is less that inode->i_size
3177 			 * bu greater than i_disksize.(hint delalloc)
3178 			 */
3179 			ext4_mark_inode_dirty(handle, inode);
3180 		}
3181 	}
3182 
3183 	if (write_mode != CONVERT_INLINE_DATA &&
3184 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3185 	    ext4_has_inline_data(inode))
3186 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3187 						     page);
3188 	else
3189 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3190 							page, fsdata);
3191 
3192 	copied = ret2;
3193 	if (ret2 < 0)
3194 		ret = ret2;
3195 	ret2 = ext4_journal_stop(handle);
3196 	if (!ret)
3197 		ret = ret2;
3198 
3199 	return ret ? ret : copied;
3200 }
3201 
3202 /*
3203  * Force all delayed allocation blocks to be allocated for a given inode.
3204  */
3205 int ext4_alloc_da_blocks(struct inode *inode)
3206 {
3207 	trace_ext4_alloc_da_blocks(inode);
3208 
3209 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3210 		return 0;
3211 
3212 	/*
3213 	 * We do something simple for now.  The filemap_flush() will
3214 	 * also start triggering a write of the data blocks, which is
3215 	 * not strictly speaking necessary (and for users of
3216 	 * laptop_mode, not even desirable).  However, to do otherwise
3217 	 * would require replicating code paths in:
3218 	 *
3219 	 * ext4_writepages() ->
3220 	 *    write_cache_pages() ---> (via passed in callback function)
3221 	 *        __mpage_da_writepage() -->
3222 	 *           mpage_add_bh_to_extent()
3223 	 *           mpage_da_map_blocks()
3224 	 *
3225 	 * The problem is that write_cache_pages(), located in
3226 	 * mm/page-writeback.c, marks pages clean in preparation for
3227 	 * doing I/O, which is not desirable if we're not planning on
3228 	 * doing I/O at all.
3229 	 *
3230 	 * We could call write_cache_pages(), and then redirty all of
3231 	 * the pages by calling redirty_page_for_writepage() but that
3232 	 * would be ugly in the extreme.  So instead we would need to
3233 	 * replicate parts of the code in the above functions,
3234 	 * simplifying them because we wouldn't actually intend to
3235 	 * write out the pages, but rather only collect contiguous
3236 	 * logical block extents, call the multi-block allocator, and
3237 	 * then update the buffer heads with the block allocations.
3238 	 *
3239 	 * For now, though, we'll cheat by calling filemap_flush(),
3240 	 * which will map the blocks, and start the I/O, but not
3241 	 * actually wait for the I/O to complete.
3242 	 */
3243 	return filemap_flush(inode->i_mapping);
3244 }
3245 
3246 /*
3247  * bmap() is special.  It gets used by applications such as lilo and by
3248  * the swapper to find the on-disk block of a specific piece of data.
3249  *
3250  * Naturally, this is dangerous if the block concerned is still in the
3251  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3252  * filesystem and enables swap, then they may get a nasty shock when the
3253  * data getting swapped to that swapfile suddenly gets overwritten by
3254  * the original zero's written out previously to the journal and
3255  * awaiting writeback in the kernel's buffer cache.
3256  *
3257  * So, if we see any bmap calls here on a modified, data-journaled file,
3258  * take extra steps to flush any blocks which might be in the cache.
3259  */
3260 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3261 {
3262 	struct inode *inode = mapping->host;
3263 	journal_t *journal;
3264 	int err;
3265 
3266 	/*
3267 	 * We can get here for an inline file via the FIBMAP ioctl
3268 	 */
3269 	if (ext4_has_inline_data(inode))
3270 		return 0;
3271 
3272 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 			test_opt(inode->i_sb, DELALLOC)) {
3274 		/*
3275 		 * With delalloc we want to sync the file
3276 		 * so that we can make sure we allocate
3277 		 * blocks for file
3278 		 */
3279 		filemap_write_and_wait(mapping);
3280 	}
3281 
3282 	if (EXT4_JOURNAL(inode) &&
3283 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3284 		/*
3285 		 * This is a REALLY heavyweight approach, but the use of
3286 		 * bmap on dirty files is expected to be extremely rare:
3287 		 * only if we run lilo or swapon on a freshly made file
3288 		 * do we expect this to happen.
3289 		 *
3290 		 * (bmap requires CAP_SYS_RAWIO so this does not
3291 		 * represent an unprivileged user DOS attack --- we'd be
3292 		 * in trouble if mortal users could trigger this path at
3293 		 * will.)
3294 		 *
3295 		 * NB. EXT4_STATE_JDATA is not set on files other than
3296 		 * regular files.  If somebody wants to bmap a directory
3297 		 * or symlink and gets confused because the buffer
3298 		 * hasn't yet been flushed to disk, they deserve
3299 		 * everything they get.
3300 		 */
3301 
3302 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3303 		journal = EXT4_JOURNAL(inode);
3304 		jbd2_journal_lock_updates(journal);
3305 		err = jbd2_journal_flush(journal);
3306 		jbd2_journal_unlock_updates(journal);
3307 
3308 		if (err)
3309 			return 0;
3310 	}
3311 
3312 	return generic_block_bmap(mapping, block, ext4_get_block);
3313 }
3314 
3315 static int ext4_readpage(struct file *file, struct page *page)
3316 {
3317 	int ret = -EAGAIN;
3318 	struct inode *inode = page->mapping->host;
3319 
3320 	trace_ext4_readpage(page);
3321 
3322 	if (ext4_has_inline_data(inode))
3323 		ret = ext4_readpage_inline(inode, page);
3324 
3325 	if (ret == -EAGAIN)
3326 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3327 						false);
3328 
3329 	return ret;
3330 }
3331 
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334 		struct list_head *pages, unsigned nr_pages)
3335 {
3336 	struct inode *inode = mapping->host;
3337 
3338 	/* If the file has inline data, no need to do readpages. */
3339 	if (ext4_has_inline_data(inode))
3340 		return 0;
3341 
3342 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3343 }
3344 
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 				unsigned int length)
3347 {
3348 	trace_ext4_invalidatepage(page, offset, length);
3349 
3350 	/* No journalling happens on data buffers when this function is used */
3351 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352 
3353 	block_invalidatepage(page, offset, length);
3354 }
3355 
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357 					    unsigned int offset,
3358 					    unsigned int length)
3359 {
3360 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361 
3362 	trace_ext4_journalled_invalidatepage(page, offset, length);
3363 
3364 	/*
3365 	 * If it's a full truncate we just forget about the pending dirtying
3366 	 */
3367 	if (offset == 0 && length == PAGE_SIZE)
3368 		ClearPageChecked(page);
3369 
3370 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372 
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375 					   unsigned int offset,
3376 					   unsigned int length)
3377 {
3378 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380 
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384 
3385 	trace_ext4_releasepage(page);
3386 
3387 	/* Page has dirty journalled data -> cannot release */
3388 	if (PageChecked(page))
3389 		return 0;
3390 	if (journal)
3391 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 	else
3393 		return try_to_free_buffers(page);
3394 }
3395 
3396 static bool ext4_inode_datasync_dirty(struct inode *inode)
3397 {
3398 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399 
3400 	if (journal)
3401 		return !jbd2_transaction_committed(journal,
3402 					EXT4_I(inode)->i_datasync_tid);
3403 	/* Any metadata buffers to write? */
3404 	if (!list_empty(&inode->i_mapping->private_list))
3405 		return true;
3406 	return inode->i_state & I_DIRTY_DATASYNC;
3407 }
3408 
3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 			    unsigned flags, struct iomap *iomap)
3411 {
3412 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413 	unsigned int blkbits = inode->i_blkbits;
3414 	unsigned long first_block, last_block;
3415 	struct ext4_map_blocks map;
3416 	bool delalloc = false;
3417 	int ret;
3418 
3419 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420 		return -EINVAL;
3421 	first_block = offset >> blkbits;
3422 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3423 			   EXT4_MAX_LOGICAL_BLOCK);
3424 
3425 	if (flags & IOMAP_REPORT) {
3426 		if (ext4_has_inline_data(inode)) {
3427 			ret = ext4_inline_data_iomap(inode, iomap);
3428 			if (ret != -EAGAIN) {
3429 				if (ret == 0 && offset >= iomap->length)
3430 					ret = -ENOENT;
3431 				return ret;
3432 			}
3433 		}
3434 	} else {
3435 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436 			return -ERANGE;
3437 	}
3438 
3439 	map.m_lblk = first_block;
3440 	map.m_len = last_block - first_block + 1;
3441 
3442 	if (flags & IOMAP_REPORT) {
3443 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3444 		if (ret < 0)
3445 			return ret;
3446 
3447 		if (ret == 0) {
3448 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3449 			struct extent_status es;
3450 
3451 			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3452 						  map.m_lblk, end, &es);
3453 
3454 			if (!es.es_len || es.es_lblk > end) {
3455 				/* entire range is a hole */
3456 			} else if (es.es_lblk > map.m_lblk) {
3457 				/* range starts with a hole */
3458 				map.m_len = es.es_lblk - map.m_lblk;
3459 			} else {
3460 				ext4_lblk_t offs = 0;
3461 
3462 				if (es.es_lblk < map.m_lblk)
3463 					offs = map.m_lblk - es.es_lblk;
3464 				map.m_lblk = es.es_lblk + offs;
3465 				map.m_len = es.es_len - offs;
3466 				delalloc = true;
3467 			}
3468 		}
3469 	} else if (flags & IOMAP_WRITE) {
3470 		int dio_credits;
3471 		handle_t *handle;
3472 		int retries = 0;
3473 
3474 		/* Trim mapping request to maximum we can map at once for DIO */
3475 		if (map.m_len > DIO_MAX_BLOCKS)
3476 			map.m_len = DIO_MAX_BLOCKS;
3477 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3478 retry:
3479 		/*
3480 		 * Either we allocate blocks and then we don't get unwritten
3481 		 * extent so we have reserved enough credits, or the blocks
3482 		 * are already allocated and unwritten and in that case
3483 		 * extent conversion fits in the credits as well.
3484 		 */
3485 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3486 					    dio_credits);
3487 		if (IS_ERR(handle))
3488 			return PTR_ERR(handle);
3489 
3490 		ret = ext4_map_blocks(handle, inode, &map,
3491 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3492 		if (ret < 0) {
3493 			ext4_journal_stop(handle);
3494 			if (ret == -ENOSPC &&
3495 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3496 				goto retry;
3497 			return ret;
3498 		}
3499 
3500 		/*
3501 		 * If we added blocks beyond i_size, we need to make sure they
3502 		 * will get truncated if we crash before updating i_size in
3503 		 * ext4_iomap_end(). For faults we don't need to do that (and
3504 		 * even cannot because for orphan list operations inode_lock is
3505 		 * required) - if we happen to instantiate block beyond i_size,
3506 		 * it is because we race with truncate which has already added
3507 		 * the inode to the orphan list.
3508 		 */
3509 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3510 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3511 			int err;
3512 
3513 			err = ext4_orphan_add(handle, inode);
3514 			if (err < 0) {
3515 				ext4_journal_stop(handle);
3516 				return err;
3517 			}
3518 		}
3519 		ext4_journal_stop(handle);
3520 	} else {
3521 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3522 		if (ret < 0)
3523 			return ret;
3524 	}
3525 
3526 	iomap->flags = 0;
3527 	if (ext4_inode_datasync_dirty(inode))
3528 		iomap->flags |= IOMAP_F_DIRTY;
3529 	iomap->bdev = inode->i_sb->s_bdev;
3530 	iomap->dax_dev = sbi->s_daxdev;
3531 	iomap->offset = (u64)first_block << blkbits;
3532 	iomap->length = (u64)map.m_len << blkbits;
3533 
3534 	if (ret == 0) {
3535 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3536 		iomap->addr = IOMAP_NULL_ADDR;
3537 	} else {
3538 		if (map.m_flags & EXT4_MAP_MAPPED) {
3539 			iomap->type = IOMAP_MAPPED;
3540 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3541 			iomap->type = IOMAP_UNWRITTEN;
3542 		} else {
3543 			WARN_ON_ONCE(1);
3544 			return -EIO;
3545 		}
3546 		iomap->addr = (u64)map.m_pblk << blkbits;
3547 	}
3548 
3549 	if (map.m_flags & EXT4_MAP_NEW)
3550 		iomap->flags |= IOMAP_F_NEW;
3551 
3552 	return 0;
3553 }
3554 
3555 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3556 			  ssize_t written, unsigned flags, struct iomap *iomap)
3557 {
3558 	int ret = 0;
3559 	handle_t *handle;
3560 	int blkbits = inode->i_blkbits;
3561 	bool truncate = false;
3562 
3563 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3564 		return 0;
3565 
3566 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567 	if (IS_ERR(handle)) {
3568 		ret = PTR_ERR(handle);
3569 		goto orphan_del;
3570 	}
3571 	if (ext4_update_inode_size(inode, offset + written))
3572 		ext4_mark_inode_dirty(handle, inode);
3573 	/*
3574 	 * We may need to truncate allocated but not written blocks beyond EOF.
3575 	 */
3576 	if (iomap->offset + iomap->length >
3577 	    ALIGN(inode->i_size, 1 << blkbits)) {
3578 		ext4_lblk_t written_blk, end_blk;
3579 
3580 		written_blk = (offset + written) >> blkbits;
3581 		end_blk = (offset + length) >> blkbits;
3582 		if (written_blk < end_blk && ext4_can_truncate(inode))
3583 			truncate = true;
3584 	}
3585 	/*
3586 	 * Remove inode from orphan list if we were extending a inode and
3587 	 * everything went fine.
3588 	 */
3589 	if (!truncate && inode->i_nlink &&
3590 	    !list_empty(&EXT4_I(inode)->i_orphan))
3591 		ext4_orphan_del(handle, inode);
3592 	ext4_journal_stop(handle);
3593 	if (truncate) {
3594 		ext4_truncate_failed_write(inode);
3595 orphan_del:
3596 		/*
3597 		 * If truncate failed early the inode might still be on the
3598 		 * orphan list; we need to make sure the inode is removed from
3599 		 * the orphan list in that case.
3600 		 */
3601 		if (inode->i_nlink)
3602 			ext4_orphan_del(NULL, inode);
3603 	}
3604 	return ret;
3605 }
3606 
3607 const struct iomap_ops ext4_iomap_ops = {
3608 	.iomap_begin		= ext4_iomap_begin,
3609 	.iomap_end		= ext4_iomap_end,
3610 };
3611 
3612 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3613 			    ssize_t size, void *private)
3614 {
3615         ext4_io_end_t *io_end = private;
3616 
3617 	/* if not async direct IO just return */
3618 	if (!io_end)
3619 		return 0;
3620 
3621 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3622 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3623 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3624 
3625 	/*
3626 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3627 	 * data was not written. Just clear the unwritten flag and drop io_end.
3628 	 */
3629 	if (size <= 0) {
3630 		ext4_clear_io_unwritten_flag(io_end);
3631 		size = 0;
3632 	}
3633 	io_end->offset = offset;
3634 	io_end->size = size;
3635 	ext4_put_io_end(io_end);
3636 
3637 	return 0;
3638 }
3639 
3640 /*
3641  * Handling of direct IO writes.
3642  *
3643  * For ext4 extent files, ext4 will do direct-io write even to holes,
3644  * preallocated extents, and those write extend the file, no need to
3645  * fall back to buffered IO.
3646  *
3647  * For holes, we fallocate those blocks, mark them as unwritten
3648  * If those blocks were preallocated, we mark sure they are split, but
3649  * still keep the range to write as unwritten.
3650  *
3651  * The unwritten extents will be converted to written when DIO is completed.
3652  * For async direct IO, since the IO may still pending when return, we
3653  * set up an end_io call back function, which will do the conversion
3654  * when async direct IO completed.
3655  *
3656  * If the O_DIRECT write will extend the file then add this inode to the
3657  * orphan list.  So recovery will truncate it back to the original size
3658  * if the machine crashes during the write.
3659  *
3660  */
3661 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3662 {
3663 	struct file *file = iocb->ki_filp;
3664 	struct inode *inode = file->f_mapping->host;
3665 	struct ext4_inode_info *ei = EXT4_I(inode);
3666 	ssize_t ret;
3667 	loff_t offset = iocb->ki_pos;
3668 	size_t count = iov_iter_count(iter);
3669 	int overwrite = 0;
3670 	get_block_t *get_block_func = NULL;
3671 	int dio_flags = 0;
3672 	loff_t final_size = offset + count;
3673 	int orphan = 0;
3674 	handle_t *handle;
3675 
3676 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3677 		/* Credits for sb + inode write */
3678 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3679 		if (IS_ERR(handle)) {
3680 			ret = PTR_ERR(handle);
3681 			goto out;
3682 		}
3683 		ret = ext4_orphan_add(handle, inode);
3684 		if (ret) {
3685 			ext4_journal_stop(handle);
3686 			goto out;
3687 		}
3688 		orphan = 1;
3689 		ext4_update_i_disksize(inode, inode->i_size);
3690 		ext4_journal_stop(handle);
3691 	}
3692 
3693 	BUG_ON(iocb->private == NULL);
3694 
3695 	/*
3696 	 * Make all waiters for direct IO properly wait also for extent
3697 	 * conversion. This also disallows race between truncate() and
3698 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3699 	 */
3700 	inode_dio_begin(inode);
3701 
3702 	/* If we do a overwrite dio, i_mutex locking can be released */
3703 	overwrite = *((int *)iocb->private);
3704 
3705 	if (overwrite)
3706 		inode_unlock(inode);
3707 
3708 	/*
3709 	 * For extent mapped files we could direct write to holes and fallocate.
3710 	 *
3711 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3712 	 * parallel buffered read to expose the stale data before DIO complete
3713 	 * the data IO.
3714 	 *
3715 	 * As to previously fallocated extents, ext4 get_block will just simply
3716 	 * mark the buffer mapped but still keep the extents unwritten.
3717 	 *
3718 	 * For non AIO case, we will convert those unwritten extents to written
3719 	 * after return back from blockdev_direct_IO. That way we save us from
3720 	 * allocating io_end structure and also the overhead of offloading
3721 	 * the extent convertion to a workqueue.
3722 	 *
3723 	 * For async DIO, the conversion needs to be deferred when the
3724 	 * IO is completed. The ext4 end_io callback function will be
3725 	 * called to take care of the conversion work.  Here for async
3726 	 * case, we allocate an io_end structure to hook to the iocb.
3727 	 */
3728 	iocb->private = NULL;
3729 	if (overwrite)
3730 		get_block_func = ext4_dio_get_block_overwrite;
3731 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3732 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3733 		get_block_func = ext4_dio_get_block;
3734 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3735 	} else if (is_sync_kiocb(iocb)) {
3736 		get_block_func = ext4_dio_get_block_unwritten_sync;
3737 		dio_flags = DIO_LOCKING;
3738 	} else {
3739 		get_block_func = ext4_dio_get_block_unwritten_async;
3740 		dio_flags = DIO_LOCKING;
3741 	}
3742 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3743 				   get_block_func, ext4_end_io_dio, NULL,
3744 				   dio_flags);
3745 
3746 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3747 						EXT4_STATE_DIO_UNWRITTEN)) {
3748 		int err;
3749 		/*
3750 		 * for non AIO case, since the IO is already
3751 		 * completed, we could do the conversion right here
3752 		 */
3753 		err = ext4_convert_unwritten_extents(NULL, inode,
3754 						     offset, ret);
3755 		if (err < 0)
3756 			ret = err;
3757 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3758 	}
3759 
3760 	inode_dio_end(inode);
3761 	/* take i_mutex locking again if we do a ovewrite dio */
3762 	if (overwrite)
3763 		inode_lock(inode);
3764 
3765 	if (ret < 0 && final_size > inode->i_size)
3766 		ext4_truncate_failed_write(inode);
3767 
3768 	/* Handle extending of i_size after direct IO write */
3769 	if (orphan) {
3770 		int err;
3771 
3772 		/* Credits for sb + inode write */
3773 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3774 		if (IS_ERR(handle)) {
3775 			/*
3776 			 * We wrote the data but cannot extend
3777 			 * i_size. Bail out. In async io case, we do
3778 			 * not return error here because we have
3779 			 * already submmitted the corresponding
3780 			 * bio. Returning error here makes the caller
3781 			 * think that this IO is done and failed
3782 			 * resulting in race with bio's completion
3783 			 * handler.
3784 			 */
3785 			if (!ret)
3786 				ret = PTR_ERR(handle);
3787 			if (inode->i_nlink)
3788 				ext4_orphan_del(NULL, inode);
3789 
3790 			goto out;
3791 		}
3792 		if (inode->i_nlink)
3793 			ext4_orphan_del(handle, inode);
3794 		if (ret > 0) {
3795 			loff_t end = offset + ret;
3796 			if (end > inode->i_size || end > ei->i_disksize) {
3797 				ext4_update_i_disksize(inode, end);
3798 				if (end > inode->i_size)
3799 					i_size_write(inode, end);
3800 				/*
3801 				 * We're going to return a positive `ret'
3802 				 * here due to non-zero-length I/O, so there's
3803 				 * no way of reporting error returns from
3804 				 * ext4_mark_inode_dirty() to userspace.  So
3805 				 * ignore it.
3806 				 */
3807 				ext4_mark_inode_dirty(handle, inode);
3808 			}
3809 		}
3810 		err = ext4_journal_stop(handle);
3811 		if (ret == 0)
3812 			ret = err;
3813 	}
3814 out:
3815 	return ret;
3816 }
3817 
3818 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3819 {
3820 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3821 	struct inode *inode = mapping->host;
3822 	size_t count = iov_iter_count(iter);
3823 	ssize_t ret;
3824 
3825 	/*
3826 	 * Shared inode_lock is enough for us - it protects against concurrent
3827 	 * writes & truncates and since we take care of writing back page cache,
3828 	 * we are protected against page writeback as well.
3829 	 */
3830 	inode_lock_shared(inode);
3831 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3832 					   iocb->ki_pos + count - 1);
3833 	if (ret)
3834 		goto out_unlock;
3835 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3836 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3837 out_unlock:
3838 	inode_unlock_shared(inode);
3839 	return ret;
3840 }
3841 
3842 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3843 {
3844 	struct file *file = iocb->ki_filp;
3845 	struct inode *inode = file->f_mapping->host;
3846 	size_t count = iov_iter_count(iter);
3847 	loff_t offset = iocb->ki_pos;
3848 	ssize_t ret;
3849 
3850 #ifdef CONFIG_FS_ENCRYPTION
3851 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3852 		return 0;
3853 #endif
3854 	if (fsverity_active(inode))
3855 		return 0;
3856 
3857 	/*
3858 	 * If we are doing data journalling we don't support O_DIRECT
3859 	 */
3860 	if (ext4_should_journal_data(inode))
3861 		return 0;
3862 
3863 	/* Let buffer I/O handle the inline data case. */
3864 	if (ext4_has_inline_data(inode))
3865 		return 0;
3866 
3867 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3868 	if (iov_iter_rw(iter) == READ)
3869 		ret = ext4_direct_IO_read(iocb, iter);
3870 	else
3871 		ret = ext4_direct_IO_write(iocb, iter);
3872 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3873 	return ret;
3874 }
3875 
3876 /*
3877  * Pages can be marked dirty completely asynchronously from ext4's journalling
3878  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3879  * much here because ->set_page_dirty is called under VFS locks.  The page is
3880  * not necessarily locked.
3881  *
3882  * We cannot just dirty the page and leave attached buffers clean, because the
3883  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3884  * or jbddirty because all the journalling code will explode.
3885  *
3886  * So what we do is to mark the page "pending dirty" and next time writepage
3887  * is called, propagate that into the buffers appropriately.
3888  */
3889 static int ext4_journalled_set_page_dirty(struct page *page)
3890 {
3891 	SetPageChecked(page);
3892 	return __set_page_dirty_nobuffers(page);
3893 }
3894 
3895 static int ext4_set_page_dirty(struct page *page)
3896 {
3897 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3898 	WARN_ON_ONCE(!page_has_buffers(page));
3899 	return __set_page_dirty_buffers(page);
3900 }
3901 
3902 static const struct address_space_operations ext4_aops = {
3903 	.readpage		= ext4_readpage,
3904 	.readpages		= ext4_readpages,
3905 	.writepage		= ext4_writepage,
3906 	.writepages		= ext4_writepages,
3907 	.write_begin		= ext4_write_begin,
3908 	.write_end		= ext4_write_end,
3909 	.set_page_dirty		= ext4_set_page_dirty,
3910 	.bmap			= ext4_bmap,
3911 	.invalidatepage		= ext4_invalidatepage,
3912 	.releasepage		= ext4_releasepage,
3913 	.direct_IO		= ext4_direct_IO,
3914 	.migratepage		= buffer_migrate_page,
3915 	.is_partially_uptodate  = block_is_partially_uptodate,
3916 	.error_remove_page	= generic_error_remove_page,
3917 };
3918 
3919 static const struct address_space_operations ext4_journalled_aops = {
3920 	.readpage		= ext4_readpage,
3921 	.readpages		= ext4_readpages,
3922 	.writepage		= ext4_writepage,
3923 	.writepages		= ext4_writepages,
3924 	.write_begin		= ext4_write_begin,
3925 	.write_end		= ext4_journalled_write_end,
3926 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3927 	.bmap			= ext4_bmap,
3928 	.invalidatepage		= ext4_journalled_invalidatepage,
3929 	.releasepage		= ext4_releasepage,
3930 	.direct_IO		= ext4_direct_IO,
3931 	.is_partially_uptodate  = block_is_partially_uptodate,
3932 	.error_remove_page	= generic_error_remove_page,
3933 };
3934 
3935 static const struct address_space_operations ext4_da_aops = {
3936 	.readpage		= ext4_readpage,
3937 	.readpages		= ext4_readpages,
3938 	.writepage		= ext4_writepage,
3939 	.writepages		= ext4_writepages,
3940 	.write_begin		= ext4_da_write_begin,
3941 	.write_end		= ext4_da_write_end,
3942 	.set_page_dirty		= ext4_set_page_dirty,
3943 	.bmap			= ext4_bmap,
3944 	.invalidatepage		= ext4_invalidatepage,
3945 	.releasepage		= ext4_releasepage,
3946 	.direct_IO		= ext4_direct_IO,
3947 	.migratepage		= buffer_migrate_page,
3948 	.is_partially_uptodate  = block_is_partially_uptodate,
3949 	.error_remove_page	= generic_error_remove_page,
3950 };
3951 
3952 static const struct address_space_operations ext4_dax_aops = {
3953 	.writepages		= ext4_dax_writepages,
3954 	.direct_IO		= noop_direct_IO,
3955 	.set_page_dirty		= noop_set_page_dirty,
3956 	.bmap			= ext4_bmap,
3957 	.invalidatepage		= noop_invalidatepage,
3958 };
3959 
3960 void ext4_set_aops(struct inode *inode)
3961 {
3962 	switch (ext4_inode_journal_mode(inode)) {
3963 	case EXT4_INODE_ORDERED_DATA_MODE:
3964 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3965 		break;
3966 	case EXT4_INODE_JOURNAL_DATA_MODE:
3967 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3968 		return;
3969 	default:
3970 		BUG();
3971 	}
3972 	if (IS_DAX(inode))
3973 		inode->i_mapping->a_ops = &ext4_dax_aops;
3974 	else if (test_opt(inode->i_sb, DELALLOC))
3975 		inode->i_mapping->a_ops = &ext4_da_aops;
3976 	else
3977 		inode->i_mapping->a_ops = &ext4_aops;
3978 }
3979 
3980 static int __ext4_block_zero_page_range(handle_t *handle,
3981 		struct address_space *mapping, loff_t from, loff_t length)
3982 {
3983 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3984 	unsigned offset = from & (PAGE_SIZE-1);
3985 	unsigned blocksize, pos;
3986 	ext4_lblk_t iblock;
3987 	struct inode *inode = mapping->host;
3988 	struct buffer_head *bh;
3989 	struct page *page;
3990 	int err = 0;
3991 
3992 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3993 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3994 	if (!page)
3995 		return -ENOMEM;
3996 
3997 	blocksize = inode->i_sb->s_blocksize;
3998 
3999 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4000 
4001 	if (!page_has_buffers(page))
4002 		create_empty_buffers(page, blocksize, 0);
4003 
4004 	/* Find the buffer that contains "offset" */
4005 	bh = page_buffers(page);
4006 	pos = blocksize;
4007 	while (offset >= pos) {
4008 		bh = bh->b_this_page;
4009 		iblock++;
4010 		pos += blocksize;
4011 	}
4012 	if (buffer_freed(bh)) {
4013 		BUFFER_TRACE(bh, "freed: skip");
4014 		goto unlock;
4015 	}
4016 	if (!buffer_mapped(bh)) {
4017 		BUFFER_TRACE(bh, "unmapped");
4018 		ext4_get_block(inode, iblock, bh, 0);
4019 		/* unmapped? It's a hole - nothing to do */
4020 		if (!buffer_mapped(bh)) {
4021 			BUFFER_TRACE(bh, "still unmapped");
4022 			goto unlock;
4023 		}
4024 	}
4025 
4026 	/* Ok, it's mapped. Make sure it's up-to-date */
4027 	if (PageUptodate(page))
4028 		set_buffer_uptodate(bh);
4029 
4030 	if (!buffer_uptodate(bh)) {
4031 		err = -EIO;
4032 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4033 		wait_on_buffer(bh);
4034 		/* Uhhuh. Read error. Complain and punt. */
4035 		if (!buffer_uptodate(bh))
4036 			goto unlock;
4037 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4038 			/* We expect the key to be set. */
4039 			BUG_ON(!fscrypt_has_encryption_key(inode));
4040 			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4041 					page, blocksize, bh_offset(bh)));
4042 		}
4043 	}
4044 	if (ext4_should_journal_data(inode)) {
4045 		BUFFER_TRACE(bh, "get write access");
4046 		err = ext4_journal_get_write_access(handle, bh);
4047 		if (err)
4048 			goto unlock;
4049 	}
4050 	zero_user(page, offset, length);
4051 	BUFFER_TRACE(bh, "zeroed end of block");
4052 
4053 	if (ext4_should_journal_data(inode)) {
4054 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4055 	} else {
4056 		err = 0;
4057 		mark_buffer_dirty(bh);
4058 		if (ext4_should_order_data(inode))
4059 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4060 					length);
4061 	}
4062 
4063 unlock:
4064 	unlock_page(page);
4065 	put_page(page);
4066 	return err;
4067 }
4068 
4069 /*
4070  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4071  * starting from file offset 'from'.  The range to be zero'd must
4072  * be contained with in one block.  If the specified range exceeds
4073  * the end of the block it will be shortened to end of the block
4074  * that cooresponds to 'from'
4075  */
4076 static int ext4_block_zero_page_range(handle_t *handle,
4077 		struct address_space *mapping, loff_t from, loff_t length)
4078 {
4079 	struct inode *inode = mapping->host;
4080 	unsigned offset = from & (PAGE_SIZE-1);
4081 	unsigned blocksize = inode->i_sb->s_blocksize;
4082 	unsigned max = blocksize - (offset & (blocksize - 1));
4083 
4084 	/*
4085 	 * correct length if it does not fall between
4086 	 * 'from' and the end of the block
4087 	 */
4088 	if (length > max || length < 0)
4089 		length = max;
4090 
4091 	if (IS_DAX(inode)) {
4092 		return iomap_zero_range(inode, from, length, NULL,
4093 					&ext4_iomap_ops);
4094 	}
4095 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4096 }
4097 
4098 /*
4099  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100  * up to the end of the block which corresponds to `from'.
4101  * This required during truncate. We need to physically zero the tail end
4102  * of that block so it doesn't yield old data if the file is later grown.
4103  */
4104 static int ext4_block_truncate_page(handle_t *handle,
4105 		struct address_space *mapping, loff_t from)
4106 {
4107 	unsigned offset = from & (PAGE_SIZE-1);
4108 	unsigned length;
4109 	unsigned blocksize;
4110 	struct inode *inode = mapping->host;
4111 
4112 	/* If we are processing an encrypted inode during orphan list handling */
4113 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4114 		return 0;
4115 
4116 	blocksize = inode->i_sb->s_blocksize;
4117 	length = blocksize - (offset & (blocksize - 1));
4118 
4119 	return ext4_block_zero_page_range(handle, mapping, from, length);
4120 }
4121 
4122 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4123 			     loff_t lstart, loff_t length)
4124 {
4125 	struct super_block *sb = inode->i_sb;
4126 	struct address_space *mapping = inode->i_mapping;
4127 	unsigned partial_start, partial_end;
4128 	ext4_fsblk_t start, end;
4129 	loff_t byte_end = (lstart + length - 1);
4130 	int err = 0;
4131 
4132 	partial_start = lstart & (sb->s_blocksize - 1);
4133 	partial_end = byte_end & (sb->s_blocksize - 1);
4134 
4135 	start = lstart >> sb->s_blocksize_bits;
4136 	end = byte_end >> sb->s_blocksize_bits;
4137 
4138 	/* Handle partial zero within the single block */
4139 	if (start == end &&
4140 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4141 		err = ext4_block_zero_page_range(handle, mapping,
4142 						 lstart, length);
4143 		return err;
4144 	}
4145 	/* Handle partial zero out on the start of the range */
4146 	if (partial_start) {
4147 		err = ext4_block_zero_page_range(handle, mapping,
4148 						 lstart, sb->s_blocksize);
4149 		if (err)
4150 			return err;
4151 	}
4152 	/* Handle partial zero out on the end of the range */
4153 	if (partial_end != sb->s_blocksize - 1)
4154 		err = ext4_block_zero_page_range(handle, mapping,
4155 						 byte_end - partial_end,
4156 						 partial_end + 1);
4157 	return err;
4158 }
4159 
4160 int ext4_can_truncate(struct inode *inode)
4161 {
4162 	if (S_ISREG(inode->i_mode))
4163 		return 1;
4164 	if (S_ISDIR(inode->i_mode))
4165 		return 1;
4166 	if (S_ISLNK(inode->i_mode))
4167 		return !ext4_inode_is_fast_symlink(inode);
4168 	return 0;
4169 }
4170 
4171 /*
4172  * We have to make sure i_disksize gets properly updated before we truncate
4173  * page cache due to hole punching or zero range. Otherwise i_disksize update
4174  * can get lost as it may have been postponed to submission of writeback but
4175  * that will never happen after we truncate page cache.
4176  */
4177 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4178 				      loff_t len)
4179 {
4180 	handle_t *handle;
4181 	loff_t size = i_size_read(inode);
4182 
4183 	WARN_ON(!inode_is_locked(inode));
4184 	if (offset > size || offset + len < size)
4185 		return 0;
4186 
4187 	if (EXT4_I(inode)->i_disksize >= size)
4188 		return 0;
4189 
4190 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4191 	if (IS_ERR(handle))
4192 		return PTR_ERR(handle);
4193 	ext4_update_i_disksize(inode, size);
4194 	ext4_mark_inode_dirty(handle, inode);
4195 	ext4_journal_stop(handle);
4196 
4197 	return 0;
4198 }
4199 
4200 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4201 {
4202 	up_write(&ei->i_mmap_sem);
4203 	schedule();
4204 	down_write(&ei->i_mmap_sem);
4205 }
4206 
4207 int ext4_break_layouts(struct inode *inode)
4208 {
4209 	struct ext4_inode_info *ei = EXT4_I(inode);
4210 	struct page *page;
4211 	int error;
4212 
4213 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4214 		return -EINVAL;
4215 
4216 	do {
4217 		page = dax_layout_busy_page(inode->i_mapping);
4218 		if (!page)
4219 			return 0;
4220 
4221 		error = ___wait_var_event(&page->_refcount,
4222 				atomic_read(&page->_refcount) == 1,
4223 				TASK_INTERRUPTIBLE, 0, 0,
4224 				ext4_wait_dax_page(ei));
4225 	} while (error == 0);
4226 
4227 	return error;
4228 }
4229 
4230 /*
4231  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4232  * associated with the given offset and length
4233  *
4234  * @inode:  File inode
4235  * @offset: The offset where the hole will begin
4236  * @len:    The length of the hole
4237  *
4238  * Returns: 0 on success or negative on failure
4239  */
4240 
4241 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4242 {
4243 	struct super_block *sb = inode->i_sb;
4244 	ext4_lblk_t first_block, stop_block;
4245 	struct address_space *mapping = inode->i_mapping;
4246 	loff_t first_block_offset, last_block_offset;
4247 	handle_t *handle;
4248 	unsigned int credits;
4249 	int ret = 0;
4250 
4251 	if (!S_ISREG(inode->i_mode))
4252 		return -EOPNOTSUPP;
4253 
4254 	trace_ext4_punch_hole(inode, offset, length, 0);
4255 
4256 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4257 	if (ext4_has_inline_data(inode)) {
4258 		down_write(&EXT4_I(inode)->i_mmap_sem);
4259 		ret = ext4_convert_inline_data(inode);
4260 		up_write(&EXT4_I(inode)->i_mmap_sem);
4261 		if (ret)
4262 			return ret;
4263 	}
4264 
4265 	/*
4266 	 * Write out all dirty pages to avoid race conditions
4267 	 * Then release them.
4268 	 */
4269 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4270 		ret = filemap_write_and_wait_range(mapping, offset,
4271 						   offset + length - 1);
4272 		if (ret)
4273 			return ret;
4274 	}
4275 
4276 	inode_lock(inode);
4277 
4278 	/* No need to punch hole beyond i_size */
4279 	if (offset >= inode->i_size)
4280 		goto out_mutex;
4281 
4282 	/*
4283 	 * If the hole extends beyond i_size, set the hole
4284 	 * to end after the page that contains i_size
4285 	 */
4286 	if (offset + length > inode->i_size) {
4287 		length = inode->i_size +
4288 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4289 		   offset;
4290 	}
4291 
4292 	if (offset & (sb->s_blocksize - 1) ||
4293 	    (offset + length) & (sb->s_blocksize - 1)) {
4294 		/*
4295 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4296 		 * partial block
4297 		 */
4298 		ret = ext4_inode_attach_jinode(inode);
4299 		if (ret < 0)
4300 			goto out_mutex;
4301 
4302 	}
4303 
4304 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4305 	inode_dio_wait(inode);
4306 
4307 	/*
4308 	 * Prevent page faults from reinstantiating pages we have released from
4309 	 * page cache.
4310 	 */
4311 	down_write(&EXT4_I(inode)->i_mmap_sem);
4312 
4313 	ret = ext4_break_layouts(inode);
4314 	if (ret)
4315 		goto out_dio;
4316 
4317 	first_block_offset = round_up(offset, sb->s_blocksize);
4318 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4319 
4320 	/* Now release the pages and zero block aligned part of pages*/
4321 	if (last_block_offset > first_block_offset) {
4322 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4323 		if (ret)
4324 			goto out_dio;
4325 		truncate_pagecache_range(inode, first_block_offset,
4326 					 last_block_offset);
4327 	}
4328 
4329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330 		credits = ext4_writepage_trans_blocks(inode);
4331 	else
4332 		credits = ext4_blocks_for_truncate(inode);
4333 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334 	if (IS_ERR(handle)) {
4335 		ret = PTR_ERR(handle);
4336 		ext4_std_error(sb, ret);
4337 		goto out_dio;
4338 	}
4339 
4340 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4341 				       length);
4342 	if (ret)
4343 		goto out_stop;
4344 
4345 	first_block = (offset + sb->s_blocksize - 1) >>
4346 		EXT4_BLOCK_SIZE_BITS(sb);
4347 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348 
4349 	/* If there are blocks to remove, do it */
4350 	if (stop_block > first_block) {
4351 
4352 		down_write(&EXT4_I(inode)->i_data_sem);
4353 		ext4_discard_preallocations(inode);
4354 
4355 		ret = ext4_es_remove_extent(inode, first_block,
4356 					    stop_block - first_block);
4357 		if (ret) {
4358 			up_write(&EXT4_I(inode)->i_data_sem);
4359 			goto out_stop;
4360 		}
4361 
4362 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363 			ret = ext4_ext_remove_space(inode, first_block,
4364 						    stop_block - 1);
4365 		else
4366 			ret = ext4_ind_remove_space(handle, inode, first_block,
4367 						    stop_block);
4368 
4369 		up_write(&EXT4_I(inode)->i_data_sem);
4370 	}
4371 	if (IS_SYNC(inode))
4372 		ext4_handle_sync(handle);
4373 
4374 	inode->i_mtime = inode->i_ctime = current_time(inode);
4375 	ext4_mark_inode_dirty(handle, inode);
4376 	if (ret >= 0)
4377 		ext4_update_inode_fsync_trans(handle, inode, 1);
4378 out_stop:
4379 	ext4_journal_stop(handle);
4380 out_dio:
4381 	up_write(&EXT4_I(inode)->i_mmap_sem);
4382 out_mutex:
4383 	inode_unlock(inode);
4384 	return ret;
4385 }
4386 
4387 int ext4_inode_attach_jinode(struct inode *inode)
4388 {
4389 	struct ext4_inode_info *ei = EXT4_I(inode);
4390 	struct jbd2_inode *jinode;
4391 
4392 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4393 		return 0;
4394 
4395 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4396 	spin_lock(&inode->i_lock);
4397 	if (!ei->jinode) {
4398 		if (!jinode) {
4399 			spin_unlock(&inode->i_lock);
4400 			return -ENOMEM;
4401 		}
4402 		ei->jinode = jinode;
4403 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4404 		jinode = NULL;
4405 	}
4406 	spin_unlock(&inode->i_lock);
4407 	if (unlikely(jinode != NULL))
4408 		jbd2_free_inode(jinode);
4409 	return 0;
4410 }
4411 
4412 /*
4413  * ext4_truncate()
4414  *
4415  * We block out ext4_get_block() block instantiations across the entire
4416  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4417  * simultaneously on behalf of the same inode.
4418  *
4419  * As we work through the truncate and commit bits of it to the journal there
4420  * is one core, guiding principle: the file's tree must always be consistent on
4421  * disk.  We must be able to restart the truncate after a crash.
4422  *
4423  * The file's tree may be transiently inconsistent in memory (although it
4424  * probably isn't), but whenever we close off and commit a journal transaction,
4425  * the contents of (the filesystem + the journal) must be consistent and
4426  * restartable.  It's pretty simple, really: bottom up, right to left (although
4427  * left-to-right works OK too).
4428  *
4429  * Note that at recovery time, journal replay occurs *before* the restart of
4430  * truncate against the orphan inode list.
4431  *
4432  * The committed inode has the new, desired i_size (which is the same as
4433  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4434  * that this inode's truncate did not complete and it will again call
4435  * ext4_truncate() to have another go.  So there will be instantiated blocks
4436  * to the right of the truncation point in a crashed ext4 filesystem.  But
4437  * that's fine - as long as they are linked from the inode, the post-crash
4438  * ext4_truncate() run will find them and release them.
4439  */
4440 int ext4_truncate(struct inode *inode)
4441 {
4442 	struct ext4_inode_info *ei = EXT4_I(inode);
4443 	unsigned int credits;
4444 	int err = 0;
4445 	handle_t *handle;
4446 	struct address_space *mapping = inode->i_mapping;
4447 
4448 	/*
4449 	 * There is a possibility that we're either freeing the inode
4450 	 * or it's a completely new inode. In those cases we might not
4451 	 * have i_mutex locked because it's not necessary.
4452 	 */
4453 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4454 		WARN_ON(!inode_is_locked(inode));
4455 	trace_ext4_truncate_enter(inode);
4456 
4457 	if (!ext4_can_truncate(inode))
4458 		return 0;
4459 
4460 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4461 
4462 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4463 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4464 
4465 	if (ext4_has_inline_data(inode)) {
4466 		int has_inline = 1;
4467 
4468 		err = ext4_inline_data_truncate(inode, &has_inline);
4469 		if (err)
4470 			return err;
4471 		if (has_inline)
4472 			return 0;
4473 	}
4474 
4475 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4476 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4477 		if (ext4_inode_attach_jinode(inode) < 0)
4478 			return 0;
4479 	}
4480 
4481 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4482 		credits = ext4_writepage_trans_blocks(inode);
4483 	else
4484 		credits = ext4_blocks_for_truncate(inode);
4485 
4486 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4487 	if (IS_ERR(handle))
4488 		return PTR_ERR(handle);
4489 
4490 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4491 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4492 
4493 	/*
4494 	 * We add the inode to the orphan list, so that if this
4495 	 * truncate spans multiple transactions, and we crash, we will
4496 	 * resume the truncate when the filesystem recovers.  It also
4497 	 * marks the inode dirty, to catch the new size.
4498 	 *
4499 	 * Implication: the file must always be in a sane, consistent
4500 	 * truncatable state while each transaction commits.
4501 	 */
4502 	err = ext4_orphan_add(handle, inode);
4503 	if (err)
4504 		goto out_stop;
4505 
4506 	down_write(&EXT4_I(inode)->i_data_sem);
4507 
4508 	ext4_discard_preallocations(inode);
4509 
4510 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4511 		err = ext4_ext_truncate(handle, inode);
4512 	else
4513 		ext4_ind_truncate(handle, inode);
4514 
4515 	up_write(&ei->i_data_sem);
4516 	if (err)
4517 		goto out_stop;
4518 
4519 	if (IS_SYNC(inode))
4520 		ext4_handle_sync(handle);
4521 
4522 out_stop:
4523 	/*
4524 	 * If this was a simple ftruncate() and the file will remain alive,
4525 	 * then we need to clear up the orphan record which we created above.
4526 	 * However, if this was a real unlink then we were called by
4527 	 * ext4_evict_inode(), and we allow that function to clean up the
4528 	 * orphan info for us.
4529 	 */
4530 	if (inode->i_nlink)
4531 		ext4_orphan_del(handle, inode);
4532 
4533 	inode->i_mtime = inode->i_ctime = current_time(inode);
4534 	ext4_mark_inode_dirty(handle, inode);
4535 	ext4_journal_stop(handle);
4536 
4537 	trace_ext4_truncate_exit(inode);
4538 	return err;
4539 }
4540 
4541 /*
4542  * ext4_get_inode_loc returns with an extra refcount against the inode's
4543  * underlying buffer_head on success. If 'in_mem' is true, we have all
4544  * data in memory that is needed to recreate the on-disk version of this
4545  * inode.
4546  */
4547 static int __ext4_get_inode_loc(struct inode *inode,
4548 				struct ext4_iloc *iloc, int in_mem)
4549 {
4550 	struct ext4_group_desc	*gdp;
4551 	struct buffer_head	*bh;
4552 	struct super_block	*sb = inode->i_sb;
4553 	ext4_fsblk_t		block;
4554 	struct blk_plug		plug;
4555 	int			inodes_per_block, inode_offset;
4556 
4557 	iloc->bh = NULL;
4558 	if (inode->i_ino < EXT4_ROOT_INO ||
4559 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4560 		return -EFSCORRUPTED;
4561 
4562 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564 	if (!gdp)
4565 		return -EIO;
4566 
4567 	/*
4568 	 * Figure out the offset within the block group inode table
4569 	 */
4570 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4571 	inode_offset = ((inode->i_ino - 1) %
4572 			EXT4_INODES_PER_GROUP(sb));
4573 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4574 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4575 
4576 	bh = sb_getblk(sb, block);
4577 	if (unlikely(!bh))
4578 		return -ENOMEM;
4579 	if (!buffer_uptodate(bh)) {
4580 		lock_buffer(bh);
4581 
4582 		/*
4583 		 * If the buffer has the write error flag, we have failed
4584 		 * to write out another inode in the same block.  In this
4585 		 * case, we don't have to read the block because we may
4586 		 * read the old inode data successfully.
4587 		 */
4588 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4589 			set_buffer_uptodate(bh);
4590 
4591 		if (buffer_uptodate(bh)) {
4592 			/* someone brought it uptodate while we waited */
4593 			unlock_buffer(bh);
4594 			goto has_buffer;
4595 		}
4596 
4597 		/*
4598 		 * If we have all information of the inode in memory and this
4599 		 * is the only valid inode in the block, we need not read the
4600 		 * block.
4601 		 */
4602 		if (in_mem) {
4603 			struct buffer_head *bitmap_bh;
4604 			int i, start;
4605 
4606 			start = inode_offset & ~(inodes_per_block - 1);
4607 
4608 			/* Is the inode bitmap in cache? */
4609 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4610 			if (unlikely(!bitmap_bh))
4611 				goto make_io;
4612 
4613 			/*
4614 			 * If the inode bitmap isn't in cache then the
4615 			 * optimisation may end up performing two reads instead
4616 			 * of one, so skip it.
4617 			 */
4618 			if (!buffer_uptodate(bitmap_bh)) {
4619 				brelse(bitmap_bh);
4620 				goto make_io;
4621 			}
4622 			for (i = start; i < start + inodes_per_block; i++) {
4623 				if (i == inode_offset)
4624 					continue;
4625 				if (ext4_test_bit(i, bitmap_bh->b_data))
4626 					break;
4627 			}
4628 			brelse(bitmap_bh);
4629 			if (i == start + inodes_per_block) {
4630 				/* all other inodes are free, so skip I/O */
4631 				memset(bh->b_data, 0, bh->b_size);
4632 				set_buffer_uptodate(bh);
4633 				unlock_buffer(bh);
4634 				goto has_buffer;
4635 			}
4636 		}
4637 
4638 make_io:
4639 		/*
4640 		 * If we need to do any I/O, try to pre-readahead extra
4641 		 * blocks from the inode table.
4642 		 */
4643 		blk_start_plug(&plug);
4644 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4645 			ext4_fsblk_t b, end, table;
4646 			unsigned num;
4647 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4648 
4649 			table = ext4_inode_table(sb, gdp);
4650 			/* s_inode_readahead_blks is always a power of 2 */
4651 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4652 			if (table > b)
4653 				b = table;
4654 			end = b + ra_blks;
4655 			num = EXT4_INODES_PER_GROUP(sb);
4656 			if (ext4_has_group_desc_csum(sb))
4657 				num -= ext4_itable_unused_count(sb, gdp);
4658 			table += num / inodes_per_block;
4659 			if (end > table)
4660 				end = table;
4661 			while (b <= end)
4662 				sb_breadahead(sb, b++);
4663 		}
4664 
4665 		/*
4666 		 * There are other valid inodes in the buffer, this inode
4667 		 * has in-inode xattrs, or we don't have this inode in memory.
4668 		 * Read the block from disk.
4669 		 */
4670 		trace_ext4_load_inode(inode);
4671 		get_bh(bh);
4672 		bh->b_end_io = end_buffer_read_sync;
4673 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4674 		blk_finish_plug(&plug);
4675 		wait_on_buffer(bh);
4676 		if (!buffer_uptodate(bh)) {
4677 			EXT4_ERROR_INODE_BLOCK(inode, block,
4678 					       "unable to read itable block");
4679 			brelse(bh);
4680 			return -EIO;
4681 		}
4682 	}
4683 has_buffer:
4684 	iloc->bh = bh;
4685 	return 0;
4686 }
4687 
4688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689 {
4690 	/* We have all inode data except xattrs in memory here. */
4691 	return __ext4_get_inode_loc(inode, iloc,
4692 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4693 }
4694 
4695 static bool ext4_should_use_dax(struct inode *inode)
4696 {
4697 	if (!test_opt(inode->i_sb, DAX))
4698 		return false;
4699 	if (!S_ISREG(inode->i_mode))
4700 		return false;
4701 	if (ext4_should_journal_data(inode))
4702 		return false;
4703 	if (ext4_has_inline_data(inode))
4704 		return false;
4705 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4706 		return false;
4707 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4708 		return false;
4709 	return true;
4710 }
4711 
4712 void ext4_set_inode_flags(struct inode *inode)
4713 {
4714 	unsigned int flags = EXT4_I(inode)->i_flags;
4715 	unsigned int new_fl = 0;
4716 
4717 	if (flags & EXT4_SYNC_FL)
4718 		new_fl |= S_SYNC;
4719 	if (flags & EXT4_APPEND_FL)
4720 		new_fl |= S_APPEND;
4721 	if (flags & EXT4_IMMUTABLE_FL)
4722 		new_fl |= S_IMMUTABLE;
4723 	if (flags & EXT4_NOATIME_FL)
4724 		new_fl |= S_NOATIME;
4725 	if (flags & EXT4_DIRSYNC_FL)
4726 		new_fl |= S_DIRSYNC;
4727 	if (ext4_should_use_dax(inode))
4728 		new_fl |= S_DAX;
4729 	if (flags & EXT4_ENCRYPT_FL)
4730 		new_fl |= S_ENCRYPTED;
4731 	if (flags & EXT4_CASEFOLD_FL)
4732 		new_fl |= S_CASEFOLD;
4733 	if (flags & EXT4_VERITY_FL)
4734 		new_fl |= S_VERITY;
4735 	inode_set_flags(inode, new_fl,
4736 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4737 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4738 }
4739 
4740 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741 				  struct ext4_inode_info *ei)
4742 {
4743 	blkcnt_t i_blocks ;
4744 	struct inode *inode = &(ei->vfs_inode);
4745 	struct super_block *sb = inode->i_sb;
4746 
4747 	if (ext4_has_feature_huge_file(sb)) {
4748 		/* we are using combined 48 bit field */
4749 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4750 					le32_to_cpu(raw_inode->i_blocks_lo);
4751 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4752 			/* i_blocks represent file system block size */
4753 			return i_blocks  << (inode->i_blkbits - 9);
4754 		} else {
4755 			return i_blocks;
4756 		}
4757 	} else {
4758 		return le32_to_cpu(raw_inode->i_blocks_lo);
4759 	}
4760 }
4761 
4762 static inline int ext4_iget_extra_inode(struct inode *inode,
4763 					 struct ext4_inode *raw_inode,
4764 					 struct ext4_inode_info *ei)
4765 {
4766 	__le32 *magic = (void *)raw_inode +
4767 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4768 
4769 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4770 	    EXT4_INODE_SIZE(inode->i_sb) &&
4771 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4772 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4773 		return ext4_find_inline_data_nolock(inode);
4774 	} else
4775 		EXT4_I(inode)->i_inline_off = 0;
4776 	return 0;
4777 }
4778 
4779 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4780 {
4781 	if (!ext4_has_feature_project(inode->i_sb))
4782 		return -EOPNOTSUPP;
4783 	*projid = EXT4_I(inode)->i_projid;
4784 	return 0;
4785 }
4786 
4787 /*
4788  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4789  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4790  * set.
4791  */
4792 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4793 {
4794 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4795 		inode_set_iversion_raw(inode, val);
4796 	else
4797 		inode_set_iversion_queried(inode, val);
4798 }
4799 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4800 {
4801 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4802 		return inode_peek_iversion_raw(inode);
4803 	else
4804 		return inode_peek_iversion(inode);
4805 }
4806 
4807 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4808 			  ext4_iget_flags flags, const char *function,
4809 			  unsigned int line)
4810 {
4811 	struct ext4_iloc iloc;
4812 	struct ext4_inode *raw_inode;
4813 	struct ext4_inode_info *ei;
4814 	struct inode *inode;
4815 	journal_t *journal = EXT4_SB(sb)->s_journal;
4816 	long ret;
4817 	loff_t size;
4818 	int block;
4819 	uid_t i_uid;
4820 	gid_t i_gid;
4821 	projid_t i_projid;
4822 
4823 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4824 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4825 	    (ino < EXT4_ROOT_INO) ||
4826 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4827 		if (flags & EXT4_IGET_HANDLE)
4828 			return ERR_PTR(-ESTALE);
4829 		__ext4_error(sb, function, line,
4830 			     "inode #%lu: comm %s: iget: illegal inode #",
4831 			     ino, current->comm);
4832 		return ERR_PTR(-EFSCORRUPTED);
4833 	}
4834 
4835 	inode = iget_locked(sb, ino);
4836 	if (!inode)
4837 		return ERR_PTR(-ENOMEM);
4838 	if (!(inode->i_state & I_NEW))
4839 		return inode;
4840 
4841 	ei = EXT4_I(inode);
4842 	iloc.bh = NULL;
4843 
4844 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4845 	if (ret < 0)
4846 		goto bad_inode;
4847 	raw_inode = ext4_raw_inode(&iloc);
4848 
4849 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4850 		ext4_error_inode(inode, function, line, 0,
4851 				 "iget: root inode unallocated");
4852 		ret = -EFSCORRUPTED;
4853 		goto bad_inode;
4854 	}
4855 
4856 	if ((flags & EXT4_IGET_HANDLE) &&
4857 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4858 		ret = -ESTALE;
4859 		goto bad_inode;
4860 	}
4861 
4862 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865 			EXT4_INODE_SIZE(inode->i_sb) ||
4866 		    (ei->i_extra_isize & 3)) {
4867 			ext4_error_inode(inode, function, line, 0,
4868 					 "iget: bad extra_isize %u "
4869 					 "(inode size %u)",
4870 					 ei->i_extra_isize,
4871 					 EXT4_INODE_SIZE(inode->i_sb));
4872 			ret = -EFSCORRUPTED;
4873 			goto bad_inode;
4874 		}
4875 	} else
4876 		ei->i_extra_isize = 0;
4877 
4878 	/* Precompute checksum seed for inode metadata */
4879 	if (ext4_has_metadata_csum(sb)) {
4880 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4881 		__u32 csum;
4882 		__le32 inum = cpu_to_le32(inode->i_ino);
4883 		__le32 gen = raw_inode->i_generation;
4884 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4885 				   sizeof(inum));
4886 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4887 					      sizeof(gen));
4888 	}
4889 
4890 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4891 		ext4_error_inode(inode, function, line, 0,
4892 				 "iget: checksum invalid");
4893 		ret = -EFSBADCRC;
4894 		goto bad_inode;
4895 	}
4896 
4897 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4898 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4899 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4900 	if (ext4_has_feature_project(sb) &&
4901 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4902 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4903 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4904 	else
4905 		i_projid = EXT4_DEF_PROJID;
4906 
4907 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4908 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4909 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4910 	}
4911 	i_uid_write(inode, i_uid);
4912 	i_gid_write(inode, i_gid);
4913 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4914 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4915 
4916 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4917 	ei->i_inline_off = 0;
4918 	ei->i_dir_start_lookup = 0;
4919 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4920 	/* We now have enough fields to check if the inode was active or not.
4921 	 * This is needed because nfsd might try to access dead inodes
4922 	 * the test is that same one that e2fsck uses
4923 	 * NeilBrown 1999oct15
4924 	 */
4925 	if (inode->i_nlink == 0) {
4926 		if ((inode->i_mode == 0 ||
4927 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4928 		    ino != EXT4_BOOT_LOADER_INO) {
4929 			/* this inode is deleted */
4930 			ret = -ESTALE;
4931 			goto bad_inode;
4932 		}
4933 		/* The only unlinked inodes we let through here have
4934 		 * valid i_mode and are being read by the orphan
4935 		 * recovery code: that's fine, we're about to complete
4936 		 * the process of deleting those.
4937 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4938 		 * not initialized on a new filesystem. */
4939 	}
4940 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4941 	ext4_set_inode_flags(inode);
4942 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4943 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4944 	if (ext4_has_feature_64bit(sb))
4945 		ei->i_file_acl |=
4946 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4947 	inode->i_size = ext4_isize(sb, raw_inode);
4948 	if ((size = i_size_read(inode)) < 0) {
4949 		ext4_error_inode(inode, function, line, 0,
4950 				 "iget: bad i_size value: %lld", size);
4951 		ret = -EFSCORRUPTED;
4952 		goto bad_inode;
4953 	}
4954 	ei->i_disksize = inode->i_size;
4955 #ifdef CONFIG_QUOTA
4956 	ei->i_reserved_quota = 0;
4957 #endif
4958 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959 	ei->i_block_group = iloc.block_group;
4960 	ei->i_last_alloc_group = ~0;
4961 	/*
4962 	 * NOTE! The in-memory inode i_data array is in little-endian order
4963 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4964 	 */
4965 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4966 		ei->i_data[block] = raw_inode->i_block[block];
4967 	INIT_LIST_HEAD(&ei->i_orphan);
4968 
4969 	/*
4970 	 * Set transaction id's of transactions that have to be committed
4971 	 * to finish f[data]sync. We set them to currently running transaction
4972 	 * as we cannot be sure that the inode or some of its metadata isn't
4973 	 * part of the transaction - the inode could have been reclaimed and
4974 	 * now it is reread from disk.
4975 	 */
4976 	if (journal) {
4977 		transaction_t *transaction;
4978 		tid_t tid;
4979 
4980 		read_lock(&journal->j_state_lock);
4981 		if (journal->j_running_transaction)
4982 			transaction = journal->j_running_transaction;
4983 		else
4984 			transaction = journal->j_committing_transaction;
4985 		if (transaction)
4986 			tid = transaction->t_tid;
4987 		else
4988 			tid = journal->j_commit_sequence;
4989 		read_unlock(&journal->j_state_lock);
4990 		ei->i_sync_tid = tid;
4991 		ei->i_datasync_tid = tid;
4992 	}
4993 
4994 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4995 		if (ei->i_extra_isize == 0) {
4996 			/* The extra space is currently unused. Use it. */
4997 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4998 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4999 					    EXT4_GOOD_OLD_INODE_SIZE;
5000 		} else {
5001 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5002 			if (ret)
5003 				goto bad_inode;
5004 		}
5005 	}
5006 
5007 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5008 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5009 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5010 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5011 
5012 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5013 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5014 
5015 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5016 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5017 				ivers |=
5018 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5019 		}
5020 		ext4_inode_set_iversion_queried(inode, ivers);
5021 	}
5022 
5023 	ret = 0;
5024 	if (ei->i_file_acl &&
5025 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5026 		ext4_error_inode(inode, function, line, 0,
5027 				 "iget: bad extended attribute block %llu",
5028 				 ei->i_file_acl);
5029 		ret = -EFSCORRUPTED;
5030 		goto bad_inode;
5031 	} else if (!ext4_has_inline_data(inode)) {
5032 		/* validate the block references in the inode */
5033 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5034 		   (S_ISLNK(inode->i_mode) &&
5035 		    !ext4_inode_is_fast_symlink(inode))) {
5036 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5037 				ret = ext4_ext_check_inode(inode);
5038 			else
5039 				ret = ext4_ind_check_inode(inode);
5040 		}
5041 	}
5042 	if (ret)
5043 		goto bad_inode;
5044 
5045 	if (S_ISREG(inode->i_mode)) {
5046 		inode->i_op = &ext4_file_inode_operations;
5047 		inode->i_fop = &ext4_file_operations;
5048 		ext4_set_aops(inode);
5049 	} else if (S_ISDIR(inode->i_mode)) {
5050 		inode->i_op = &ext4_dir_inode_operations;
5051 		inode->i_fop = &ext4_dir_operations;
5052 	} else if (S_ISLNK(inode->i_mode)) {
5053 		/* VFS does not allow setting these so must be corruption */
5054 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5055 			ext4_error_inode(inode, function, line, 0,
5056 					 "iget: immutable or append flags "
5057 					 "not allowed on symlinks");
5058 			ret = -EFSCORRUPTED;
5059 			goto bad_inode;
5060 		}
5061 		if (IS_ENCRYPTED(inode)) {
5062 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5063 			ext4_set_aops(inode);
5064 		} else if (ext4_inode_is_fast_symlink(inode)) {
5065 			inode->i_link = (char *)ei->i_data;
5066 			inode->i_op = &ext4_fast_symlink_inode_operations;
5067 			nd_terminate_link(ei->i_data, inode->i_size,
5068 				sizeof(ei->i_data) - 1);
5069 		} else {
5070 			inode->i_op = &ext4_symlink_inode_operations;
5071 			ext4_set_aops(inode);
5072 		}
5073 		inode_nohighmem(inode);
5074 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5075 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5076 		inode->i_op = &ext4_special_inode_operations;
5077 		if (raw_inode->i_block[0])
5078 			init_special_inode(inode, inode->i_mode,
5079 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5080 		else
5081 			init_special_inode(inode, inode->i_mode,
5082 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5083 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5084 		make_bad_inode(inode);
5085 	} else {
5086 		ret = -EFSCORRUPTED;
5087 		ext4_error_inode(inode, function, line, 0,
5088 				 "iget: bogus i_mode (%o)", inode->i_mode);
5089 		goto bad_inode;
5090 	}
5091 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5092 		ext4_error_inode(inode, function, line, 0,
5093 				 "casefold flag without casefold feature");
5094 	brelse(iloc.bh);
5095 
5096 	unlock_new_inode(inode);
5097 	return inode;
5098 
5099 bad_inode:
5100 	brelse(iloc.bh);
5101 	iget_failed(inode);
5102 	return ERR_PTR(ret);
5103 }
5104 
5105 static int ext4_inode_blocks_set(handle_t *handle,
5106 				struct ext4_inode *raw_inode,
5107 				struct ext4_inode_info *ei)
5108 {
5109 	struct inode *inode = &(ei->vfs_inode);
5110 	u64 i_blocks = inode->i_blocks;
5111 	struct super_block *sb = inode->i_sb;
5112 
5113 	if (i_blocks <= ~0U) {
5114 		/*
5115 		 * i_blocks can be represented in a 32 bit variable
5116 		 * as multiple of 512 bytes
5117 		 */
5118 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5119 		raw_inode->i_blocks_high = 0;
5120 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5121 		return 0;
5122 	}
5123 	if (!ext4_has_feature_huge_file(sb))
5124 		return -EFBIG;
5125 
5126 	if (i_blocks <= 0xffffffffffffULL) {
5127 		/*
5128 		 * i_blocks can be represented in a 48 bit variable
5129 		 * as multiple of 512 bytes
5130 		 */
5131 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5132 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5133 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5134 	} else {
5135 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5136 		/* i_block is stored in file system block size */
5137 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5138 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5139 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5140 	}
5141 	return 0;
5142 }
5143 
5144 struct other_inode {
5145 	unsigned long		orig_ino;
5146 	struct ext4_inode	*raw_inode;
5147 };
5148 
5149 static int other_inode_match(struct inode * inode, unsigned long ino,
5150 			     void *data)
5151 {
5152 	struct other_inode *oi = (struct other_inode *) data;
5153 
5154 	if ((inode->i_ino != ino) ||
5155 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5156 			       I_DIRTY_INODE)) ||
5157 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5158 		return 0;
5159 	spin_lock(&inode->i_lock);
5160 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5161 				I_DIRTY_INODE)) == 0) &&
5162 	    (inode->i_state & I_DIRTY_TIME)) {
5163 		struct ext4_inode_info	*ei = EXT4_I(inode);
5164 
5165 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5166 		spin_unlock(&inode->i_lock);
5167 
5168 		spin_lock(&ei->i_raw_lock);
5169 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5170 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5171 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5172 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5173 		spin_unlock(&ei->i_raw_lock);
5174 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5175 		return -1;
5176 	}
5177 	spin_unlock(&inode->i_lock);
5178 	return -1;
5179 }
5180 
5181 /*
5182  * Opportunistically update the other time fields for other inodes in
5183  * the same inode table block.
5184  */
5185 static void ext4_update_other_inodes_time(struct super_block *sb,
5186 					  unsigned long orig_ino, char *buf)
5187 {
5188 	struct other_inode oi;
5189 	unsigned long ino;
5190 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5191 	int inode_size = EXT4_INODE_SIZE(sb);
5192 
5193 	oi.orig_ino = orig_ino;
5194 	/*
5195 	 * Calculate the first inode in the inode table block.  Inode
5196 	 * numbers are one-based.  That is, the first inode in a block
5197 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198 	 */
5199 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5201 		if (ino == orig_ino)
5202 			continue;
5203 		oi.raw_inode = (struct ext4_inode *) buf;
5204 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5205 	}
5206 }
5207 
5208 /*
5209  * Post the struct inode info into an on-disk inode location in the
5210  * buffer-cache.  This gobbles the caller's reference to the
5211  * buffer_head in the inode location struct.
5212  *
5213  * The caller must have write access to iloc->bh.
5214  */
5215 static int ext4_do_update_inode(handle_t *handle,
5216 				struct inode *inode,
5217 				struct ext4_iloc *iloc)
5218 {
5219 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220 	struct ext4_inode_info *ei = EXT4_I(inode);
5221 	struct buffer_head *bh = iloc->bh;
5222 	struct super_block *sb = inode->i_sb;
5223 	int err = 0, rc, block;
5224 	int need_datasync = 0, set_large_file = 0;
5225 	uid_t i_uid;
5226 	gid_t i_gid;
5227 	projid_t i_projid;
5228 
5229 	spin_lock(&ei->i_raw_lock);
5230 
5231 	/* For fields not tracked in the in-memory inode,
5232 	 * initialise them to zero for new inodes. */
5233 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5234 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5235 
5236 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5237 	i_uid = i_uid_read(inode);
5238 	i_gid = i_gid_read(inode);
5239 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5240 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5241 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5242 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5243 /*
5244  * Fix up interoperability with old kernels. Otherwise, old inodes get
5245  * re-used with the upper 16 bits of the uid/gid intact
5246  */
5247 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5248 			raw_inode->i_uid_high = 0;
5249 			raw_inode->i_gid_high = 0;
5250 		} else {
5251 			raw_inode->i_uid_high =
5252 				cpu_to_le16(high_16_bits(i_uid));
5253 			raw_inode->i_gid_high =
5254 				cpu_to_le16(high_16_bits(i_gid));
5255 		}
5256 	} else {
5257 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5258 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5259 		raw_inode->i_uid_high = 0;
5260 		raw_inode->i_gid_high = 0;
5261 	}
5262 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5263 
5264 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5265 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5266 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5267 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5268 
5269 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5270 	if (err) {
5271 		spin_unlock(&ei->i_raw_lock);
5272 		goto out_brelse;
5273 	}
5274 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5276 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5277 		raw_inode->i_file_acl_high =
5278 			cpu_to_le16(ei->i_file_acl >> 32);
5279 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5280 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5281 		ext4_isize_set(raw_inode, ei->i_disksize);
5282 		need_datasync = 1;
5283 	}
5284 	if (ei->i_disksize > 0x7fffffffULL) {
5285 		if (!ext4_has_feature_large_file(sb) ||
5286 				EXT4_SB(sb)->s_es->s_rev_level ==
5287 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5288 			set_large_file = 1;
5289 	}
5290 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5291 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5292 		if (old_valid_dev(inode->i_rdev)) {
5293 			raw_inode->i_block[0] =
5294 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5295 			raw_inode->i_block[1] = 0;
5296 		} else {
5297 			raw_inode->i_block[0] = 0;
5298 			raw_inode->i_block[1] =
5299 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5300 			raw_inode->i_block[2] = 0;
5301 		}
5302 	} else if (!ext4_has_inline_data(inode)) {
5303 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5304 			raw_inode->i_block[block] = ei->i_data[block];
5305 	}
5306 
5307 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5308 		u64 ivers = ext4_inode_peek_iversion(inode);
5309 
5310 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5311 		if (ei->i_extra_isize) {
5312 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5313 				raw_inode->i_version_hi =
5314 					cpu_to_le32(ivers >> 32);
5315 			raw_inode->i_extra_isize =
5316 				cpu_to_le16(ei->i_extra_isize);
5317 		}
5318 	}
5319 
5320 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5321 	       i_projid != EXT4_DEF_PROJID);
5322 
5323 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5324 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5325 		raw_inode->i_projid = cpu_to_le32(i_projid);
5326 
5327 	ext4_inode_csum_set(inode, raw_inode, ei);
5328 	spin_unlock(&ei->i_raw_lock);
5329 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5330 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5331 					      bh->b_data);
5332 
5333 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5334 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5335 	if (!err)
5336 		err = rc;
5337 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5338 	if (set_large_file) {
5339 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5340 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5341 		if (err)
5342 			goto out_brelse;
5343 		ext4_set_feature_large_file(sb);
5344 		ext4_handle_sync(handle);
5345 		err = ext4_handle_dirty_super(handle, sb);
5346 	}
5347 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5348 out_brelse:
5349 	brelse(bh);
5350 	ext4_std_error(inode->i_sb, err);
5351 	return err;
5352 }
5353 
5354 /*
5355  * ext4_write_inode()
5356  *
5357  * We are called from a few places:
5358  *
5359  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5360  *   Here, there will be no transaction running. We wait for any running
5361  *   transaction to commit.
5362  *
5363  * - Within flush work (sys_sync(), kupdate and such).
5364  *   We wait on commit, if told to.
5365  *
5366  * - Within iput_final() -> write_inode_now()
5367  *   We wait on commit, if told to.
5368  *
5369  * In all cases it is actually safe for us to return without doing anything,
5370  * because the inode has been copied into a raw inode buffer in
5371  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5372  * writeback.
5373  *
5374  * Note that we are absolutely dependent upon all inode dirtiers doing the
5375  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5376  * which we are interested.
5377  *
5378  * It would be a bug for them to not do this.  The code:
5379  *
5380  *	mark_inode_dirty(inode)
5381  *	stuff();
5382  *	inode->i_size = expr;
5383  *
5384  * is in error because write_inode() could occur while `stuff()' is running,
5385  * and the new i_size will be lost.  Plus the inode will no longer be on the
5386  * superblock's dirty inode list.
5387  */
5388 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5389 {
5390 	int err;
5391 
5392 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5393 	    sb_rdonly(inode->i_sb))
5394 		return 0;
5395 
5396 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5397 		return -EIO;
5398 
5399 	if (EXT4_SB(inode->i_sb)->s_journal) {
5400 		if (ext4_journal_current_handle()) {
5401 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402 			dump_stack();
5403 			return -EIO;
5404 		}
5405 
5406 		/*
5407 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5408 		 * ext4_sync_fs() will force the commit after everything is
5409 		 * written.
5410 		 */
5411 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5412 			return 0;
5413 
5414 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5415 						EXT4_I(inode)->i_sync_tid);
5416 	} else {
5417 		struct ext4_iloc iloc;
5418 
5419 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5420 		if (err)
5421 			return err;
5422 		/*
5423 		 * sync(2) will flush the whole buffer cache. No need to do
5424 		 * it here separately for each inode.
5425 		 */
5426 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5427 			sync_dirty_buffer(iloc.bh);
5428 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5429 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5430 					 "IO error syncing inode");
5431 			err = -EIO;
5432 		}
5433 		brelse(iloc.bh);
5434 	}
5435 	return err;
5436 }
5437 
5438 /*
5439  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5440  * buffers that are attached to a page stradding i_size and are undergoing
5441  * commit. In that case we have to wait for commit to finish and try again.
5442  */
5443 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5444 {
5445 	struct page *page;
5446 	unsigned offset;
5447 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5448 	tid_t commit_tid = 0;
5449 	int ret;
5450 
5451 	offset = inode->i_size & (PAGE_SIZE - 1);
5452 	/*
5453 	 * All buffers in the last page remain valid? Then there's nothing to
5454 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5455 	 * blocksize case
5456 	 */
5457 	if (offset > PAGE_SIZE - i_blocksize(inode))
5458 		return;
5459 	while (1) {
5460 		page = find_lock_page(inode->i_mapping,
5461 				      inode->i_size >> PAGE_SHIFT);
5462 		if (!page)
5463 			return;
5464 		ret = __ext4_journalled_invalidatepage(page, offset,
5465 						PAGE_SIZE - offset);
5466 		unlock_page(page);
5467 		put_page(page);
5468 		if (ret != -EBUSY)
5469 			return;
5470 		commit_tid = 0;
5471 		read_lock(&journal->j_state_lock);
5472 		if (journal->j_committing_transaction)
5473 			commit_tid = journal->j_committing_transaction->t_tid;
5474 		read_unlock(&journal->j_state_lock);
5475 		if (commit_tid)
5476 			jbd2_log_wait_commit(journal, commit_tid);
5477 	}
5478 }
5479 
5480 /*
5481  * ext4_setattr()
5482  *
5483  * Called from notify_change.
5484  *
5485  * We want to trap VFS attempts to truncate the file as soon as
5486  * possible.  In particular, we want to make sure that when the VFS
5487  * shrinks i_size, we put the inode on the orphan list and modify
5488  * i_disksize immediately, so that during the subsequent flushing of
5489  * dirty pages and freeing of disk blocks, we can guarantee that any
5490  * commit will leave the blocks being flushed in an unused state on
5491  * disk.  (On recovery, the inode will get truncated and the blocks will
5492  * be freed, so we have a strong guarantee that no future commit will
5493  * leave these blocks visible to the user.)
5494  *
5495  * Another thing we have to assure is that if we are in ordered mode
5496  * and inode is still attached to the committing transaction, we must
5497  * we start writeout of all the dirty pages which are being truncated.
5498  * This way we are sure that all the data written in the previous
5499  * transaction are already on disk (truncate waits for pages under
5500  * writeback).
5501  *
5502  * Called with inode->i_mutex down.
5503  */
5504 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5505 {
5506 	struct inode *inode = d_inode(dentry);
5507 	int error, rc = 0;
5508 	int orphan = 0;
5509 	const unsigned int ia_valid = attr->ia_valid;
5510 
5511 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5512 		return -EIO;
5513 
5514 	if (unlikely(IS_IMMUTABLE(inode)))
5515 		return -EPERM;
5516 
5517 	if (unlikely(IS_APPEND(inode) &&
5518 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5519 				  ATTR_GID | ATTR_TIMES_SET))))
5520 		return -EPERM;
5521 
5522 	error = setattr_prepare(dentry, attr);
5523 	if (error)
5524 		return error;
5525 
5526 	error = fscrypt_prepare_setattr(dentry, attr);
5527 	if (error)
5528 		return error;
5529 
5530 	error = fsverity_prepare_setattr(dentry, attr);
5531 	if (error)
5532 		return error;
5533 
5534 	if (is_quota_modification(inode, attr)) {
5535 		error = dquot_initialize(inode);
5536 		if (error)
5537 			return error;
5538 	}
5539 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5541 		handle_t *handle;
5542 
5543 		/* (user+group)*(old+new) structure, inode write (sb,
5544 		 * inode block, ? - but truncate inode update has it) */
5545 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5548 		if (IS_ERR(handle)) {
5549 			error = PTR_ERR(handle);
5550 			goto err_out;
5551 		}
5552 
5553 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5554 		 * counts xattr inode references.
5555 		 */
5556 		down_read(&EXT4_I(inode)->xattr_sem);
5557 		error = dquot_transfer(inode, attr);
5558 		up_read(&EXT4_I(inode)->xattr_sem);
5559 
5560 		if (error) {
5561 			ext4_journal_stop(handle);
5562 			return error;
5563 		}
5564 		/* Update corresponding info in inode so that everything is in
5565 		 * one transaction */
5566 		if (attr->ia_valid & ATTR_UID)
5567 			inode->i_uid = attr->ia_uid;
5568 		if (attr->ia_valid & ATTR_GID)
5569 			inode->i_gid = attr->ia_gid;
5570 		error = ext4_mark_inode_dirty(handle, inode);
5571 		ext4_journal_stop(handle);
5572 	}
5573 
5574 	if (attr->ia_valid & ATTR_SIZE) {
5575 		handle_t *handle;
5576 		loff_t oldsize = inode->i_size;
5577 		int shrink = (attr->ia_size < inode->i_size);
5578 
5579 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5580 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581 
5582 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583 				return -EFBIG;
5584 		}
5585 		if (!S_ISREG(inode->i_mode))
5586 			return -EINVAL;
5587 
5588 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589 			inode_inc_iversion(inode);
5590 
5591 		if (shrink) {
5592 			if (ext4_should_order_data(inode)) {
5593 				error = ext4_begin_ordered_truncate(inode,
5594 							    attr->ia_size);
5595 				if (error)
5596 					goto err_out;
5597 			}
5598 			/*
5599 			 * Blocks are going to be removed from the inode. Wait
5600 			 * for dio in flight.
5601 			 */
5602 			inode_dio_wait(inode);
5603 		}
5604 
5605 		down_write(&EXT4_I(inode)->i_mmap_sem);
5606 
5607 		rc = ext4_break_layouts(inode);
5608 		if (rc) {
5609 			up_write(&EXT4_I(inode)->i_mmap_sem);
5610 			return rc;
5611 		}
5612 
5613 		if (attr->ia_size != inode->i_size) {
5614 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5615 			if (IS_ERR(handle)) {
5616 				error = PTR_ERR(handle);
5617 				goto out_mmap_sem;
5618 			}
5619 			if (ext4_handle_valid(handle) && shrink) {
5620 				error = ext4_orphan_add(handle, inode);
5621 				orphan = 1;
5622 			}
5623 			/*
5624 			 * Update c/mtime on truncate up, ext4_truncate() will
5625 			 * update c/mtime in shrink case below
5626 			 */
5627 			if (!shrink) {
5628 				inode->i_mtime = current_time(inode);
5629 				inode->i_ctime = inode->i_mtime;
5630 			}
5631 			down_write(&EXT4_I(inode)->i_data_sem);
5632 			EXT4_I(inode)->i_disksize = attr->ia_size;
5633 			rc = ext4_mark_inode_dirty(handle, inode);
5634 			if (!error)
5635 				error = rc;
5636 			/*
5637 			 * We have to update i_size under i_data_sem together
5638 			 * with i_disksize to avoid races with writeback code
5639 			 * running ext4_wb_update_i_disksize().
5640 			 */
5641 			if (!error)
5642 				i_size_write(inode, attr->ia_size);
5643 			up_write(&EXT4_I(inode)->i_data_sem);
5644 			ext4_journal_stop(handle);
5645 			if (error)
5646 				goto out_mmap_sem;
5647 			if (!shrink) {
5648 				pagecache_isize_extended(inode, oldsize,
5649 							 inode->i_size);
5650 			} else if (ext4_should_journal_data(inode)) {
5651 				ext4_wait_for_tail_page_commit(inode);
5652 			}
5653 		}
5654 
5655 		/*
5656 		 * Truncate pagecache after we've waited for commit
5657 		 * in data=journal mode to make pages freeable.
5658 		 */
5659 		truncate_pagecache(inode, inode->i_size);
5660 		/*
5661 		 * Call ext4_truncate() even if i_size didn't change to
5662 		 * truncate possible preallocated blocks.
5663 		 */
5664 		if (attr->ia_size <= oldsize) {
5665 			rc = ext4_truncate(inode);
5666 			if (rc)
5667 				error = rc;
5668 		}
5669 out_mmap_sem:
5670 		up_write(&EXT4_I(inode)->i_mmap_sem);
5671 	}
5672 
5673 	if (!error) {
5674 		setattr_copy(inode, attr);
5675 		mark_inode_dirty(inode);
5676 	}
5677 
5678 	/*
5679 	 * If the call to ext4_truncate failed to get a transaction handle at
5680 	 * all, we need to clean up the in-core orphan list manually.
5681 	 */
5682 	if (orphan && inode->i_nlink)
5683 		ext4_orphan_del(NULL, inode);
5684 
5685 	if (!error && (ia_valid & ATTR_MODE))
5686 		rc = posix_acl_chmod(inode, inode->i_mode);
5687 
5688 err_out:
5689 	ext4_std_error(inode->i_sb, error);
5690 	if (!error)
5691 		error = rc;
5692 	return error;
5693 }
5694 
5695 int ext4_getattr(const struct path *path, struct kstat *stat,
5696 		 u32 request_mask, unsigned int query_flags)
5697 {
5698 	struct inode *inode = d_inode(path->dentry);
5699 	struct ext4_inode *raw_inode;
5700 	struct ext4_inode_info *ei = EXT4_I(inode);
5701 	unsigned int flags;
5702 
5703 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5704 		stat->result_mask |= STATX_BTIME;
5705 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5706 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5707 	}
5708 
5709 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710 	if (flags & EXT4_APPEND_FL)
5711 		stat->attributes |= STATX_ATTR_APPEND;
5712 	if (flags & EXT4_COMPR_FL)
5713 		stat->attributes |= STATX_ATTR_COMPRESSED;
5714 	if (flags & EXT4_ENCRYPT_FL)
5715 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5716 	if (flags & EXT4_IMMUTABLE_FL)
5717 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5718 	if (flags & EXT4_NODUMP_FL)
5719 		stat->attributes |= STATX_ATTR_NODUMP;
5720 
5721 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5722 				  STATX_ATTR_COMPRESSED |
5723 				  STATX_ATTR_ENCRYPTED |
5724 				  STATX_ATTR_IMMUTABLE |
5725 				  STATX_ATTR_NODUMP);
5726 
5727 	generic_fillattr(inode, stat);
5728 	return 0;
5729 }
5730 
5731 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5732 		      u32 request_mask, unsigned int query_flags)
5733 {
5734 	struct inode *inode = d_inode(path->dentry);
5735 	u64 delalloc_blocks;
5736 
5737 	ext4_getattr(path, stat, request_mask, query_flags);
5738 
5739 	/*
5740 	 * If there is inline data in the inode, the inode will normally not
5741 	 * have data blocks allocated (it may have an external xattr block).
5742 	 * Report at least one sector for such files, so tools like tar, rsync,
5743 	 * others don't incorrectly think the file is completely sparse.
5744 	 */
5745 	if (unlikely(ext4_has_inline_data(inode)))
5746 		stat->blocks += (stat->size + 511) >> 9;
5747 
5748 	/*
5749 	 * We can't update i_blocks if the block allocation is delayed
5750 	 * otherwise in the case of system crash before the real block
5751 	 * allocation is done, we will have i_blocks inconsistent with
5752 	 * on-disk file blocks.
5753 	 * We always keep i_blocks updated together with real
5754 	 * allocation. But to not confuse with user, stat
5755 	 * will return the blocks that include the delayed allocation
5756 	 * blocks for this file.
5757 	 */
5758 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5759 				   EXT4_I(inode)->i_reserved_data_blocks);
5760 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5761 	return 0;
5762 }
5763 
5764 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5765 				   int pextents)
5766 {
5767 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5768 		return ext4_ind_trans_blocks(inode, lblocks);
5769 	return ext4_ext_index_trans_blocks(inode, pextents);
5770 }
5771 
5772 /*
5773  * Account for index blocks, block groups bitmaps and block group
5774  * descriptor blocks if modify datablocks and index blocks
5775  * worse case, the indexs blocks spread over different block groups
5776  *
5777  * If datablocks are discontiguous, they are possible to spread over
5778  * different block groups too. If they are contiguous, with flexbg,
5779  * they could still across block group boundary.
5780  *
5781  * Also account for superblock, inode, quota and xattr blocks
5782  */
5783 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5784 				  int pextents)
5785 {
5786 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5787 	int gdpblocks;
5788 	int idxblocks;
5789 	int ret = 0;
5790 
5791 	/*
5792 	 * How many index blocks need to touch to map @lblocks logical blocks
5793 	 * to @pextents physical extents?
5794 	 */
5795 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5796 
5797 	ret = idxblocks;
5798 
5799 	/*
5800 	 * Now let's see how many group bitmaps and group descriptors need
5801 	 * to account
5802 	 */
5803 	groups = idxblocks + pextents;
5804 	gdpblocks = groups;
5805 	if (groups > ngroups)
5806 		groups = ngroups;
5807 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5808 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5809 
5810 	/* bitmaps and block group descriptor blocks */
5811 	ret += groups + gdpblocks;
5812 
5813 	/* Blocks for super block, inode, quota and xattr blocks */
5814 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5815 
5816 	return ret;
5817 }
5818 
5819 /*
5820  * Calculate the total number of credits to reserve to fit
5821  * the modification of a single pages into a single transaction,
5822  * which may include multiple chunks of block allocations.
5823  *
5824  * This could be called via ext4_write_begin()
5825  *
5826  * We need to consider the worse case, when
5827  * one new block per extent.
5828  */
5829 int ext4_writepage_trans_blocks(struct inode *inode)
5830 {
5831 	int bpp = ext4_journal_blocks_per_page(inode);
5832 	int ret;
5833 
5834 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5835 
5836 	/* Account for data blocks for journalled mode */
5837 	if (ext4_should_journal_data(inode))
5838 		ret += bpp;
5839 	return ret;
5840 }
5841 
5842 /*
5843  * Calculate the journal credits for a chunk of data modification.
5844  *
5845  * This is called from DIO, fallocate or whoever calling
5846  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5847  *
5848  * journal buffers for data blocks are not included here, as DIO
5849  * and fallocate do no need to journal data buffers.
5850  */
5851 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5852 {
5853 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5854 }
5855 
5856 /*
5857  * The caller must have previously called ext4_reserve_inode_write().
5858  * Give this, we know that the caller already has write access to iloc->bh.
5859  */
5860 int ext4_mark_iloc_dirty(handle_t *handle,
5861 			 struct inode *inode, struct ext4_iloc *iloc)
5862 {
5863 	int err = 0;
5864 
5865 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5866 		put_bh(iloc->bh);
5867 		return -EIO;
5868 	}
5869 	if (IS_I_VERSION(inode))
5870 		inode_inc_iversion(inode);
5871 
5872 	/* the do_update_inode consumes one bh->b_count */
5873 	get_bh(iloc->bh);
5874 
5875 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5876 	err = ext4_do_update_inode(handle, inode, iloc);
5877 	put_bh(iloc->bh);
5878 	return err;
5879 }
5880 
5881 /*
5882  * On success, We end up with an outstanding reference count against
5883  * iloc->bh.  This _must_ be cleaned up later.
5884  */
5885 
5886 int
5887 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5888 			 struct ext4_iloc *iloc)
5889 {
5890 	int err;
5891 
5892 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5893 		return -EIO;
5894 
5895 	err = ext4_get_inode_loc(inode, iloc);
5896 	if (!err) {
5897 		BUFFER_TRACE(iloc->bh, "get_write_access");
5898 		err = ext4_journal_get_write_access(handle, iloc->bh);
5899 		if (err) {
5900 			brelse(iloc->bh);
5901 			iloc->bh = NULL;
5902 		}
5903 	}
5904 	ext4_std_error(inode->i_sb, err);
5905 	return err;
5906 }
5907 
5908 static int __ext4_expand_extra_isize(struct inode *inode,
5909 				     unsigned int new_extra_isize,
5910 				     struct ext4_iloc *iloc,
5911 				     handle_t *handle, int *no_expand)
5912 {
5913 	struct ext4_inode *raw_inode;
5914 	struct ext4_xattr_ibody_header *header;
5915 	int error;
5916 
5917 	raw_inode = ext4_raw_inode(iloc);
5918 
5919 	header = IHDR(inode, raw_inode);
5920 
5921 	/* No extended attributes present */
5922 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5923 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5924 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5925 		       EXT4_I(inode)->i_extra_isize, 0,
5926 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5927 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5928 		return 0;
5929 	}
5930 
5931 	/* try to expand with EAs present */
5932 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5933 					   raw_inode, handle);
5934 	if (error) {
5935 		/*
5936 		 * Inode size expansion failed; don't try again
5937 		 */
5938 		*no_expand = 1;
5939 	}
5940 
5941 	return error;
5942 }
5943 
5944 /*
5945  * Expand an inode by new_extra_isize bytes.
5946  * Returns 0 on success or negative error number on failure.
5947  */
5948 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5949 					  unsigned int new_extra_isize,
5950 					  struct ext4_iloc iloc,
5951 					  handle_t *handle)
5952 {
5953 	int no_expand;
5954 	int error;
5955 
5956 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5957 		return -EOVERFLOW;
5958 
5959 	/*
5960 	 * In nojournal mode, we can immediately attempt to expand
5961 	 * the inode.  When journaled, we first need to obtain extra
5962 	 * buffer credits since we may write into the EA block
5963 	 * with this same handle. If journal_extend fails, then it will
5964 	 * only result in a minor loss of functionality for that inode.
5965 	 * If this is felt to be critical, then e2fsck should be run to
5966 	 * force a large enough s_min_extra_isize.
5967 	 */
5968 	if (ext4_handle_valid(handle) &&
5969 	    jbd2_journal_extend(handle,
5970 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5971 		return -ENOSPC;
5972 
5973 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5974 		return -EBUSY;
5975 
5976 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5977 					  handle, &no_expand);
5978 	ext4_write_unlock_xattr(inode, &no_expand);
5979 
5980 	return error;
5981 }
5982 
5983 int ext4_expand_extra_isize(struct inode *inode,
5984 			    unsigned int new_extra_isize,
5985 			    struct ext4_iloc *iloc)
5986 {
5987 	handle_t *handle;
5988 	int no_expand;
5989 	int error, rc;
5990 
5991 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5992 		brelse(iloc->bh);
5993 		return -EOVERFLOW;
5994 	}
5995 
5996 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5997 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5998 	if (IS_ERR(handle)) {
5999 		error = PTR_ERR(handle);
6000 		brelse(iloc->bh);
6001 		return error;
6002 	}
6003 
6004 	ext4_write_lock_xattr(inode, &no_expand);
6005 
6006 	BUFFER_TRACE(iloc->bh, "get_write_access");
6007 	error = ext4_journal_get_write_access(handle, iloc->bh);
6008 	if (error) {
6009 		brelse(iloc->bh);
6010 		goto out_stop;
6011 	}
6012 
6013 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6014 					  handle, &no_expand);
6015 
6016 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6017 	if (!error)
6018 		error = rc;
6019 
6020 	ext4_write_unlock_xattr(inode, &no_expand);
6021 out_stop:
6022 	ext4_journal_stop(handle);
6023 	return error;
6024 }
6025 
6026 /*
6027  * What we do here is to mark the in-core inode as clean with respect to inode
6028  * dirtiness (it may still be data-dirty).
6029  * This means that the in-core inode may be reaped by prune_icache
6030  * without having to perform any I/O.  This is a very good thing,
6031  * because *any* task may call prune_icache - even ones which
6032  * have a transaction open against a different journal.
6033  *
6034  * Is this cheating?  Not really.  Sure, we haven't written the
6035  * inode out, but prune_icache isn't a user-visible syncing function.
6036  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6037  * we start and wait on commits.
6038  */
6039 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6040 {
6041 	struct ext4_iloc iloc;
6042 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6043 	int err;
6044 
6045 	might_sleep();
6046 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6047 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6048 	if (err)
6049 		return err;
6050 
6051 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6052 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6053 					       iloc, handle);
6054 
6055 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6056 }
6057 
6058 /*
6059  * ext4_dirty_inode() is called from __mark_inode_dirty()
6060  *
6061  * We're really interested in the case where a file is being extended.
6062  * i_size has been changed by generic_commit_write() and we thus need
6063  * to include the updated inode in the current transaction.
6064  *
6065  * Also, dquot_alloc_block() will always dirty the inode when blocks
6066  * are allocated to the file.
6067  *
6068  * If the inode is marked synchronous, we don't honour that here - doing
6069  * so would cause a commit on atime updates, which we don't bother doing.
6070  * We handle synchronous inodes at the highest possible level.
6071  *
6072  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6073  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6074  * to copy into the on-disk inode structure are the timestamp files.
6075  */
6076 void ext4_dirty_inode(struct inode *inode, int flags)
6077 {
6078 	handle_t *handle;
6079 
6080 	if (flags == I_DIRTY_TIME)
6081 		return;
6082 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6083 	if (IS_ERR(handle))
6084 		goto out;
6085 
6086 	ext4_mark_inode_dirty(handle, inode);
6087 
6088 	ext4_journal_stop(handle);
6089 out:
6090 	return;
6091 }
6092 
6093 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6094 {
6095 	journal_t *journal;
6096 	handle_t *handle;
6097 	int err;
6098 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6099 
6100 	/*
6101 	 * We have to be very careful here: changing a data block's
6102 	 * journaling status dynamically is dangerous.  If we write a
6103 	 * data block to the journal, change the status and then delete
6104 	 * that block, we risk forgetting to revoke the old log record
6105 	 * from the journal and so a subsequent replay can corrupt data.
6106 	 * So, first we make sure that the journal is empty and that
6107 	 * nobody is changing anything.
6108 	 */
6109 
6110 	journal = EXT4_JOURNAL(inode);
6111 	if (!journal)
6112 		return 0;
6113 	if (is_journal_aborted(journal))
6114 		return -EROFS;
6115 
6116 	/* Wait for all existing dio workers */
6117 	inode_dio_wait(inode);
6118 
6119 	/*
6120 	 * Before flushing the journal and switching inode's aops, we have
6121 	 * to flush all dirty data the inode has. There can be outstanding
6122 	 * delayed allocations, there can be unwritten extents created by
6123 	 * fallocate or buffered writes in dioread_nolock mode covered by
6124 	 * dirty data which can be converted only after flushing the dirty
6125 	 * data (and journalled aops don't know how to handle these cases).
6126 	 */
6127 	if (val) {
6128 		down_write(&EXT4_I(inode)->i_mmap_sem);
6129 		err = filemap_write_and_wait(inode->i_mapping);
6130 		if (err < 0) {
6131 			up_write(&EXT4_I(inode)->i_mmap_sem);
6132 			return err;
6133 		}
6134 	}
6135 
6136 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6137 	jbd2_journal_lock_updates(journal);
6138 
6139 	/*
6140 	 * OK, there are no updates running now, and all cached data is
6141 	 * synced to disk.  We are now in a completely consistent state
6142 	 * which doesn't have anything in the journal, and we know that
6143 	 * no filesystem updates are running, so it is safe to modify
6144 	 * the inode's in-core data-journaling state flag now.
6145 	 */
6146 
6147 	if (val)
6148 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6149 	else {
6150 		err = jbd2_journal_flush(journal);
6151 		if (err < 0) {
6152 			jbd2_journal_unlock_updates(journal);
6153 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6154 			return err;
6155 		}
6156 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6157 	}
6158 	ext4_set_aops(inode);
6159 
6160 	jbd2_journal_unlock_updates(journal);
6161 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6162 
6163 	if (val)
6164 		up_write(&EXT4_I(inode)->i_mmap_sem);
6165 
6166 	/* Finally we can mark the inode as dirty. */
6167 
6168 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6169 	if (IS_ERR(handle))
6170 		return PTR_ERR(handle);
6171 
6172 	err = ext4_mark_inode_dirty(handle, inode);
6173 	ext4_handle_sync(handle);
6174 	ext4_journal_stop(handle);
6175 	ext4_std_error(inode->i_sb, err);
6176 
6177 	return err;
6178 }
6179 
6180 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6181 {
6182 	return !buffer_mapped(bh);
6183 }
6184 
6185 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6186 {
6187 	struct vm_area_struct *vma = vmf->vma;
6188 	struct page *page = vmf->page;
6189 	loff_t size;
6190 	unsigned long len;
6191 	int err;
6192 	vm_fault_t ret;
6193 	struct file *file = vma->vm_file;
6194 	struct inode *inode = file_inode(file);
6195 	struct address_space *mapping = inode->i_mapping;
6196 	handle_t *handle;
6197 	get_block_t *get_block;
6198 	int retries = 0;
6199 
6200 	if (unlikely(IS_IMMUTABLE(inode)))
6201 		return VM_FAULT_SIGBUS;
6202 
6203 	sb_start_pagefault(inode->i_sb);
6204 	file_update_time(vma->vm_file);
6205 
6206 	down_read(&EXT4_I(inode)->i_mmap_sem);
6207 
6208 	err = ext4_convert_inline_data(inode);
6209 	if (err)
6210 		goto out_ret;
6211 
6212 	/* Delalloc case is easy... */
6213 	if (test_opt(inode->i_sb, DELALLOC) &&
6214 	    !ext4_should_journal_data(inode) &&
6215 	    !ext4_nonda_switch(inode->i_sb)) {
6216 		do {
6217 			err = block_page_mkwrite(vma, vmf,
6218 						   ext4_da_get_block_prep);
6219 		} while (err == -ENOSPC &&
6220 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6221 		goto out_ret;
6222 	}
6223 
6224 	lock_page(page);
6225 	size = i_size_read(inode);
6226 	/* Page got truncated from under us? */
6227 	if (page->mapping != mapping || page_offset(page) > size) {
6228 		unlock_page(page);
6229 		ret = VM_FAULT_NOPAGE;
6230 		goto out;
6231 	}
6232 
6233 	if (page->index == size >> PAGE_SHIFT)
6234 		len = size & ~PAGE_MASK;
6235 	else
6236 		len = PAGE_SIZE;
6237 	/*
6238 	 * Return if we have all the buffers mapped. This avoids the need to do
6239 	 * journal_start/journal_stop which can block and take a long time
6240 	 */
6241 	if (page_has_buffers(page)) {
6242 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6243 					    0, len, NULL,
6244 					    ext4_bh_unmapped)) {
6245 			/* Wait so that we don't change page under IO */
6246 			wait_for_stable_page(page);
6247 			ret = VM_FAULT_LOCKED;
6248 			goto out;
6249 		}
6250 	}
6251 	unlock_page(page);
6252 	/* OK, we need to fill the hole... */
6253 	if (ext4_should_dioread_nolock(inode))
6254 		get_block = ext4_get_block_unwritten;
6255 	else
6256 		get_block = ext4_get_block;
6257 retry_alloc:
6258 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6259 				    ext4_writepage_trans_blocks(inode));
6260 	if (IS_ERR(handle)) {
6261 		ret = VM_FAULT_SIGBUS;
6262 		goto out;
6263 	}
6264 	err = block_page_mkwrite(vma, vmf, get_block);
6265 	if (!err && ext4_should_journal_data(inode)) {
6266 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6267 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6268 			unlock_page(page);
6269 			ret = VM_FAULT_SIGBUS;
6270 			ext4_journal_stop(handle);
6271 			goto out;
6272 		}
6273 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6274 	}
6275 	ext4_journal_stop(handle);
6276 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6277 		goto retry_alloc;
6278 out_ret:
6279 	ret = block_page_mkwrite_return(err);
6280 out:
6281 	up_read(&EXT4_I(inode)->i_mmap_sem);
6282 	sb_end_pagefault(inode->i_sb);
6283 	return ret;
6284 }
6285 
6286 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287 {
6288 	struct inode *inode = file_inode(vmf->vma->vm_file);
6289 	vm_fault_t ret;
6290 
6291 	down_read(&EXT4_I(inode)->i_mmap_sem);
6292 	ret = filemap_fault(vmf);
6293 	up_read(&EXT4_I(inode)->i_mmap_sem);
6294 
6295 	return ret;
6296 }
6297