xref: /linux/fs/ext4/inode.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !ext4_has_metadata_csum(inode->i_sb))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !ext4_has_metadata_csum(inode->i_sb))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 				unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 				  int pextents);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148 
149 	if (ext4_has_inline_data(inode))
150 		return 0;
151 
152 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154 
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 				 int nblocks)
162 {
163 	int ret;
164 
165 	/*
166 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167 	 * moment, get_block can be called only for blocks inside i_size since
168 	 * page cache has been already dropped and writes are blocked by
169 	 * i_mutex. So we can safely drop the i_data_sem here.
170 	 */
171 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	up_write(&EXT4_I(inode)->i_data_sem);
174 	ret = ext4_journal_restart(handle, nblocks);
175 	down_write(&EXT4_I(inode)->i_data_sem);
176 	ext4_discard_preallocations(inode);
177 
178 	return ret;
179 }
180 
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 	handle_t *handle;
187 	int err;
188 
189 	trace_ext4_evict_inode(inode);
190 
191 	if (inode->i_nlink) {
192 		/*
193 		 * When journalling data dirty buffers are tracked only in the
194 		 * journal. So although mm thinks everything is clean and
195 		 * ready for reaping the inode might still have some pages to
196 		 * write in the running transaction or waiting to be
197 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 		 * (via truncate_inode_pages()) to discard these buffers can
199 		 * cause data loss. Also even if we did not discard these
200 		 * buffers, we would have no way to find them after the inode
201 		 * is reaped and thus user could see stale data if he tries to
202 		 * read them before the transaction is checkpointed. So be
203 		 * careful and force everything to disk here... We use
204 		 * ei->i_datasync_tid to store the newest transaction
205 		 * containing inode's data.
206 		 *
207 		 * Note that directories do not have this problem because they
208 		 * don't use page cache.
209 		 */
210 		if (ext4_should_journal_data(inode) &&
211 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 		    inode->i_ino != EXT4_JOURNAL_INO) {
213 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215 
216 			jbd2_complete_transaction(journal, commit_tid);
217 			filemap_write_and_wait(&inode->i_data);
218 		}
219 		truncate_inode_pages_final(&inode->i_data);
220 
221 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 		goto no_delete;
223 	}
224 
225 	if (is_bad_inode(inode))
226 		goto no_delete;
227 	dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages_final(&inode->i_data);
232 
233 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 				    ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 					int used, int quota_claim)
330 {
331 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 	struct ext4_inode_info *ei = EXT4_I(inode);
333 
334 	spin_lock(&ei->i_block_reservation_lock);
335 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 	if (unlikely(used > ei->i_reserved_data_blocks)) {
337 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 			 "with only %d reserved data blocks",
339 			 __func__, inode->i_ino, used,
340 			 ei->i_reserved_data_blocks);
341 		WARN_ON(1);
342 		used = ei->i_reserved_data_blocks;
343 	}
344 
345 	/* Update per-inode reservations */
346 	ei->i_reserved_data_blocks -= used;
347 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348 
349 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350 
351 	/* Update quota subsystem for data blocks */
352 	if (quota_claim)
353 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 	else {
355 		/*
356 		 * We did fallocate with an offset that is already delayed
357 		 * allocated. So on delayed allocated writeback we should
358 		 * not re-claim the quota for fallocated blocks.
359 		 */
360 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 	}
362 
363 	/*
364 	 * If we have done all the pending block allocations and if
365 	 * there aren't any writers on the inode, we can discard the
366 	 * inode's preallocations.
367 	 */
368 	if ((ei->i_reserved_data_blocks == 0) &&
369 	    (atomic_read(&inode->i_writecount) == 0))
370 		ext4_discard_preallocations(inode);
371 }
372 
373 static int __check_block_validity(struct inode *inode, const char *func,
374 				unsigned int line,
375 				struct ext4_map_blocks *map)
376 {
377 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 				   map->m_len)) {
379 		ext4_error_inode(inode, func, line, map->m_pblk,
380 				 "lblock %lu mapped to illegal pblock "
381 				 "(length %d)", (unsigned long) map->m_lblk,
382 				 map->m_len);
383 		return -EIO;
384 	}
385 	return 0;
386 }
387 
388 #define check_block_validity(inode, map)	\
389 	__check_block_validity((inode), __func__, __LINE__, (map))
390 
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 				       struct inode *inode,
394 				       struct ext4_map_blocks *es_map,
395 				       struct ext4_map_blocks *map,
396 				       int flags)
397 {
398 	int retval;
399 
400 	map->m_flags = 0;
401 	/*
402 	 * There is a race window that the result is not the same.
403 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
404 	 * is that we lookup a block mapping in extent status tree with
405 	 * out taking i_data_sem.  So at the time the unwritten extent
406 	 * could be converted.
407 	 */
408 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 		down_read(&EXT4_I(inode)->i_data_sem);
410 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	} else {
414 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 					     EXT4_GET_BLOCKS_KEEP_SIZE);
416 	}
417 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 		up_read((&EXT4_I(inode)->i_data_sem));
419 
420 	/*
421 	 * We don't check m_len because extent will be collpased in status
422 	 * tree.  So the m_len might not equal.
423 	 */
424 	if (es_map->m_lblk != map->m_lblk ||
425 	    es_map->m_flags != map->m_flags ||
426 	    es_map->m_pblk != map->m_pblk) {
427 		printk("ES cache assertion failed for inode: %lu "
428 		       "es_cached ex [%d/%d/%llu/%x] != "
429 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
431 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
432 		       map->m_len, map->m_pblk, map->m_flags,
433 		       retval, flags);
434 	}
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437 
438 /*
439  * The ext4_map_blocks() function tries to look up the requested blocks,
440  * and returns if the blocks are already mapped.
441  *
442  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443  * and store the allocated blocks in the result buffer head and mark it
444  * mapped.
445  *
446  * If file type is extents based, it will call ext4_ext_map_blocks(),
447  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448  * based files
449  *
450  * On success, it returns the number of blocks being mapped or allocated.
451  * if create==0 and the blocks are pre-allocated and unwritten block,
452  * the result buffer head is unmapped. If the create ==1, it will make sure
453  * the buffer head is mapped.
454  *
455  * It returns 0 if plain look up failed (blocks have not been allocated), in
456  * that case, buffer head is unmapped
457  *
458  * It returns the error in case of allocation failure.
459  */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461 		    struct ext4_map_blocks *map, int flags)
462 {
463 	struct extent_status es;
464 	int retval;
465 	int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467 	struct ext4_map_blocks orig_map;
468 
469 	memcpy(&orig_map, map, sizeof(*map));
470 #endif
471 
472 	map->m_flags = 0;
473 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 		  (unsigned long) map->m_lblk);
476 
477 	/*
478 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 	 */
480 	if (unlikely(map->m_len > INT_MAX))
481 		map->m_len = INT_MAX;
482 
483 	/* We can handle the block number less than EXT_MAX_BLOCKS */
484 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 		return -EIO;
486 
487 	/* Lookup extent status tree firstly */
488 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490 			map->m_pblk = ext4_es_pblock(&es) +
491 					map->m_lblk - es.es_lblk;
492 			map->m_flags |= ext4_es_is_written(&es) ?
493 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494 			retval = es.es_len - (map->m_lblk - es.es_lblk);
495 			if (retval > map->m_len)
496 				retval = map->m_len;
497 			map->m_len = retval;
498 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499 			retval = 0;
500 		} else {
501 			BUG_ON(1);
502 		}
503 #ifdef ES_AGGRESSIVE_TEST
504 		ext4_map_blocks_es_recheck(handle, inode, map,
505 					   &orig_map, flags);
506 #endif
507 		goto found;
508 	}
509 
510 	/*
511 	 * Try to see if we can get the block without requesting a new
512 	 * file system block.
513 	 */
514 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 		down_read(&EXT4_I(inode)->i_data_sem);
516 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
518 					     EXT4_GET_BLOCKS_KEEP_SIZE);
519 	} else {
520 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
521 					     EXT4_GET_BLOCKS_KEEP_SIZE);
522 	}
523 	if (retval > 0) {
524 		unsigned int status;
525 
526 		if (unlikely(retval != map->m_len)) {
527 			ext4_warning(inode->i_sb,
528 				     "ES len assertion failed for inode "
529 				     "%lu: retval %d != map->m_len %d",
530 				     inode->i_ino, retval, map->m_len);
531 			WARN_ON(1);
532 		}
533 
534 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537 		    ext4_find_delalloc_range(inode, map->m_lblk,
538 					     map->m_lblk + map->m_len - 1))
539 			status |= EXTENT_STATUS_DELAYED;
540 		ret = ext4_es_insert_extent(inode, map->m_lblk,
541 					    map->m_len, map->m_pblk, status);
542 		if (ret < 0)
543 			retval = ret;
544 	}
545 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 		up_read((&EXT4_I(inode)->i_data_sem));
547 
548 found:
549 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550 		ret = check_block_validity(inode, map);
551 		if (ret != 0)
552 			return ret;
553 	}
554 
555 	/* If it is only a block(s) look up */
556 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557 		return retval;
558 
559 	/*
560 	 * Returns if the blocks have already allocated
561 	 *
562 	 * Note that if blocks have been preallocated
563 	 * ext4_ext_get_block() returns the create = 0
564 	 * with buffer head unmapped.
565 	 */
566 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 		/*
568 		 * If we need to convert extent to unwritten
569 		 * we continue and do the actual work in
570 		 * ext4_ext_map_blocks()
571 		 */
572 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573 			return retval;
574 
575 	/*
576 	 * Here we clear m_flags because after allocating an new extent,
577 	 * it will be set again.
578 	 */
579 	map->m_flags &= ~EXT4_MAP_FLAGS;
580 
581 	/*
582 	 * New blocks allocate and/or writing to unwritten extent
583 	 * will possibly result in updating i_data, so we take
584 	 * the write lock of i_data_sem, and call get_block()
585 	 * with create == 1 flag.
586 	 */
587 	down_write(&EXT4_I(inode)->i_data_sem);
588 
589 	/*
590 	 * We need to check for EXT4 here because migrate
591 	 * could have changed the inode type in between
592 	 */
593 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
595 	} else {
596 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
597 
598 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 			/*
600 			 * We allocated new blocks which will result in
601 			 * i_data's format changing.  Force the migrate
602 			 * to fail by clearing migrate flags
603 			 */
604 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605 		}
606 
607 		/*
608 		 * Update reserved blocks/metadata blocks after successful
609 		 * block allocation which had been deferred till now. We don't
610 		 * support fallocate for non extent files. So we can update
611 		 * reserve space here.
612 		 */
613 		if ((retval > 0) &&
614 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 			ext4_da_update_reserve_space(inode, retval, 1);
616 	}
617 
618 	if (retval > 0) {
619 		unsigned int status;
620 
621 		if (unlikely(retval != map->m_len)) {
622 			ext4_warning(inode->i_sb,
623 				     "ES len assertion failed for inode "
624 				     "%lu: retval %d != map->m_len %d",
625 				     inode->i_ino, retval, map->m_len);
626 			WARN_ON(1);
627 		}
628 
629 		/*
630 		 * If the extent has been zeroed out, we don't need to update
631 		 * extent status tree.
632 		 */
633 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635 			if (ext4_es_is_written(&es))
636 				goto has_zeroout;
637 		}
638 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641 		    ext4_find_delalloc_range(inode, map->m_lblk,
642 					     map->m_lblk + map->m_len - 1))
643 			status |= EXTENT_STATUS_DELAYED;
644 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 					    map->m_pblk, status);
646 		if (ret < 0)
647 			retval = ret;
648 	}
649 
650 has_zeroout:
651 	up_write((&EXT4_I(inode)->i_data_sem));
652 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 		ret = check_block_validity(inode, map);
654 		if (ret != 0)
655 			return ret;
656 	}
657 	return retval;
658 }
659 
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
662 
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 			   struct buffer_head *bh, int flags)
665 {
666 	handle_t *handle = ext4_journal_current_handle();
667 	struct ext4_map_blocks map;
668 	int ret = 0, started = 0;
669 	int dio_credits;
670 
671 	if (ext4_has_inline_data(inode))
672 		return -ERANGE;
673 
674 	map.m_lblk = iblock;
675 	map.m_len = bh->b_size >> inode->i_blkbits;
676 
677 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678 		/* Direct IO write... */
679 		if (map.m_len > DIO_MAX_BLOCKS)
680 			map.m_len = DIO_MAX_BLOCKS;
681 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 					    dio_credits);
684 		if (IS_ERR(handle)) {
685 			ret = PTR_ERR(handle);
686 			return ret;
687 		}
688 		started = 1;
689 	}
690 
691 	ret = ext4_map_blocks(handle, inode, &map, flags);
692 	if (ret > 0) {
693 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
694 
695 		map_bh(bh, inode->i_sb, map.m_pblk);
696 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
698 			set_buffer_defer_completion(bh);
699 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
700 		ret = 0;
701 	}
702 	if (started)
703 		ext4_journal_stop(handle);
704 	return ret;
705 }
706 
707 int ext4_get_block(struct inode *inode, sector_t iblock,
708 		   struct buffer_head *bh, int create)
709 {
710 	return _ext4_get_block(inode, iblock, bh,
711 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
712 }
713 
714 /*
715  * `handle' can be NULL if create is zero
716  */
717 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
718 				ext4_lblk_t block, int create)
719 {
720 	struct ext4_map_blocks map;
721 	struct buffer_head *bh;
722 	int err;
723 
724 	J_ASSERT(handle != NULL || create == 0);
725 
726 	map.m_lblk = block;
727 	map.m_len = 1;
728 	err = ext4_map_blocks(handle, inode, &map,
729 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
730 
731 	if (err == 0)
732 		return create ? ERR_PTR(-ENOSPC) : NULL;
733 	if (err < 0)
734 		return ERR_PTR(err);
735 
736 	bh = sb_getblk(inode->i_sb, map.m_pblk);
737 	if (unlikely(!bh))
738 		return ERR_PTR(-ENOMEM);
739 	if (map.m_flags & EXT4_MAP_NEW) {
740 		J_ASSERT(create != 0);
741 		J_ASSERT(handle != NULL);
742 
743 		/*
744 		 * Now that we do not always journal data, we should
745 		 * keep in mind whether this should always journal the
746 		 * new buffer as metadata.  For now, regular file
747 		 * writes use ext4_get_block instead, so it's not a
748 		 * problem.
749 		 */
750 		lock_buffer(bh);
751 		BUFFER_TRACE(bh, "call get_create_access");
752 		err = ext4_journal_get_create_access(handle, bh);
753 		if (unlikely(err)) {
754 			unlock_buffer(bh);
755 			goto errout;
756 		}
757 		if (!buffer_uptodate(bh)) {
758 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
759 			set_buffer_uptodate(bh);
760 		}
761 		unlock_buffer(bh);
762 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
763 		err = ext4_handle_dirty_metadata(handle, inode, bh);
764 		if (unlikely(err))
765 			goto errout;
766 	} else
767 		BUFFER_TRACE(bh, "not a new buffer");
768 	return bh;
769 errout:
770 	brelse(bh);
771 	return ERR_PTR(err);
772 }
773 
774 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
775 			       ext4_lblk_t block, int create)
776 {
777 	struct buffer_head *bh;
778 
779 	bh = ext4_getblk(handle, inode, block, create);
780 	if (IS_ERR(bh))
781 		return bh;
782 	if (!bh || buffer_uptodate(bh))
783 		return bh;
784 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
785 	wait_on_buffer(bh);
786 	if (buffer_uptodate(bh))
787 		return bh;
788 	put_bh(bh);
789 	return ERR_PTR(-EIO);
790 }
791 
792 int ext4_walk_page_buffers(handle_t *handle,
793 			   struct buffer_head *head,
794 			   unsigned from,
795 			   unsigned to,
796 			   int *partial,
797 			   int (*fn)(handle_t *handle,
798 				     struct buffer_head *bh))
799 {
800 	struct buffer_head *bh;
801 	unsigned block_start, block_end;
802 	unsigned blocksize = head->b_size;
803 	int err, ret = 0;
804 	struct buffer_head *next;
805 
806 	for (bh = head, block_start = 0;
807 	     ret == 0 && (bh != head || !block_start);
808 	     block_start = block_end, bh = next) {
809 		next = bh->b_this_page;
810 		block_end = block_start + blocksize;
811 		if (block_end <= from || block_start >= to) {
812 			if (partial && !buffer_uptodate(bh))
813 				*partial = 1;
814 			continue;
815 		}
816 		err = (*fn)(handle, bh);
817 		if (!ret)
818 			ret = err;
819 	}
820 	return ret;
821 }
822 
823 /*
824  * To preserve ordering, it is essential that the hole instantiation and
825  * the data write be encapsulated in a single transaction.  We cannot
826  * close off a transaction and start a new one between the ext4_get_block()
827  * and the commit_write().  So doing the jbd2_journal_start at the start of
828  * prepare_write() is the right place.
829  *
830  * Also, this function can nest inside ext4_writepage().  In that case, we
831  * *know* that ext4_writepage() has generated enough buffer credits to do the
832  * whole page.  So we won't block on the journal in that case, which is good,
833  * because the caller may be PF_MEMALLOC.
834  *
835  * By accident, ext4 can be reentered when a transaction is open via
836  * quota file writes.  If we were to commit the transaction while thus
837  * reentered, there can be a deadlock - we would be holding a quota
838  * lock, and the commit would never complete if another thread had a
839  * transaction open and was blocking on the quota lock - a ranking
840  * violation.
841  *
842  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
843  * will _not_ run commit under these circumstances because handle->h_ref
844  * is elevated.  We'll still have enough credits for the tiny quotafile
845  * write.
846  */
847 int do_journal_get_write_access(handle_t *handle,
848 				struct buffer_head *bh)
849 {
850 	int dirty = buffer_dirty(bh);
851 	int ret;
852 
853 	if (!buffer_mapped(bh) || buffer_freed(bh))
854 		return 0;
855 	/*
856 	 * __block_write_begin() could have dirtied some buffers. Clean
857 	 * the dirty bit as jbd2_journal_get_write_access() could complain
858 	 * otherwise about fs integrity issues. Setting of the dirty bit
859 	 * by __block_write_begin() isn't a real problem here as we clear
860 	 * the bit before releasing a page lock and thus writeback cannot
861 	 * ever write the buffer.
862 	 */
863 	if (dirty)
864 		clear_buffer_dirty(bh);
865 	BUFFER_TRACE(bh, "get write access");
866 	ret = ext4_journal_get_write_access(handle, bh);
867 	if (!ret && dirty)
868 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
869 	return ret;
870 }
871 
872 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
873 		   struct buffer_head *bh_result, int create);
874 static int ext4_write_begin(struct file *file, struct address_space *mapping,
875 			    loff_t pos, unsigned len, unsigned flags,
876 			    struct page **pagep, void **fsdata)
877 {
878 	struct inode *inode = mapping->host;
879 	int ret, needed_blocks;
880 	handle_t *handle;
881 	int retries = 0;
882 	struct page *page;
883 	pgoff_t index;
884 	unsigned from, to;
885 
886 	trace_ext4_write_begin(inode, pos, len, flags);
887 	/*
888 	 * Reserve one block more for addition to orphan list in case
889 	 * we allocate blocks but write fails for some reason
890 	 */
891 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
892 	index = pos >> PAGE_CACHE_SHIFT;
893 	from = pos & (PAGE_CACHE_SIZE - 1);
894 	to = from + len;
895 
896 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
897 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
898 						    flags, pagep);
899 		if (ret < 0)
900 			return ret;
901 		if (ret == 1)
902 			return 0;
903 	}
904 
905 	/*
906 	 * grab_cache_page_write_begin() can take a long time if the
907 	 * system is thrashing due to memory pressure, or if the page
908 	 * is being written back.  So grab it first before we start
909 	 * the transaction handle.  This also allows us to allocate
910 	 * the page (if needed) without using GFP_NOFS.
911 	 */
912 retry_grab:
913 	page = grab_cache_page_write_begin(mapping, index, flags);
914 	if (!page)
915 		return -ENOMEM;
916 	unlock_page(page);
917 
918 retry_journal:
919 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
920 	if (IS_ERR(handle)) {
921 		page_cache_release(page);
922 		return PTR_ERR(handle);
923 	}
924 
925 	lock_page(page);
926 	if (page->mapping != mapping) {
927 		/* The page got truncated from under us */
928 		unlock_page(page);
929 		page_cache_release(page);
930 		ext4_journal_stop(handle);
931 		goto retry_grab;
932 	}
933 	/* In case writeback began while the page was unlocked */
934 	wait_for_stable_page(page);
935 
936 	if (ext4_should_dioread_nolock(inode))
937 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
938 	else
939 		ret = __block_write_begin(page, pos, len, ext4_get_block);
940 
941 	if (!ret && ext4_should_journal_data(inode)) {
942 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
943 					     from, to, NULL,
944 					     do_journal_get_write_access);
945 	}
946 
947 	if (ret) {
948 		unlock_page(page);
949 		/*
950 		 * __block_write_begin may have instantiated a few blocks
951 		 * outside i_size.  Trim these off again. Don't need
952 		 * i_size_read because we hold i_mutex.
953 		 *
954 		 * Add inode to orphan list in case we crash before
955 		 * truncate finishes
956 		 */
957 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
958 			ext4_orphan_add(handle, inode);
959 
960 		ext4_journal_stop(handle);
961 		if (pos + len > inode->i_size) {
962 			ext4_truncate_failed_write(inode);
963 			/*
964 			 * If truncate failed early the inode might
965 			 * still be on the orphan list; we need to
966 			 * make sure the inode is removed from the
967 			 * orphan list in that case.
968 			 */
969 			if (inode->i_nlink)
970 				ext4_orphan_del(NULL, inode);
971 		}
972 
973 		if (ret == -ENOSPC &&
974 		    ext4_should_retry_alloc(inode->i_sb, &retries))
975 			goto retry_journal;
976 		page_cache_release(page);
977 		return ret;
978 	}
979 	*pagep = page;
980 	return ret;
981 }
982 
983 /* For write_end() in data=journal mode */
984 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
985 {
986 	int ret;
987 	if (!buffer_mapped(bh) || buffer_freed(bh))
988 		return 0;
989 	set_buffer_uptodate(bh);
990 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
991 	clear_buffer_meta(bh);
992 	clear_buffer_prio(bh);
993 	return ret;
994 }
995 
996 /*
997  * We need to pick up the new inode size which generic_commit_write gave us
998  * `file' can be NULL - eg, when called from page_symlink().
999  *
1000  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1001  * buffers are managed internally.
1002  */
1003 static int ext4_write_end(struct file *file,
1004 			  struct address_space *mapping,
1005 			  loff_t pos, unsigned len, unsigned copied,
1006 			  struct page *page, void *fsdata)
1007 {
1008 	handle_t *handle = ext4_journal_current_handle();
1009 	struct inode *inode = mapping->host;
1010 	int ret = 0, ret2;
1011 	int i_size_changed = 0;
1012 
1013 	trace_ext4_write_end(inode, pos, len, copied);
1014 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1015 		ret = ext4_jbd2_file_inode(handle, inode);
1016 		if (ret) {
1017 			unlock_page(page);
1018 			page_cache_release(page);
1019 			goto errout;
1020 		}
1021 	}
1022 
1023 	if (ext4_has_inline_data(inode)) {
1024 		ret = ext4_write_inline_data_end(inode, pos, len,
1025 						 copied, page);
1026 		if (ret < 0)
1027 			goto errout;
1028 		copied = ret;
1029 	} else
1030 		copied = block_write_end(file, mapping, pos,
1031 					 len, copied, page, fsdata);
1032 	/*
1033 	 * it's important to update i_size while still holding page lock:
1034 	 * page writeout could otherwise come in and zero beyond i_size.
1035 	 */
1036 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1037 	unlock_page(page);
1038 	page_cache_release(page);
1039 
1040 	/*
1041 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1042 	 * makes the holding time of page lock longer. Second, it forces lock
1043 	 * ordering of page lock and transaction start for journaling
1044 	 * filesystems.
1045 	 */
1046 	if (i_size_changed)
1047 		ext4_mark_inode_dirty(handle, inode);
1048 
1049 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1050 		/* if we have allocated more blocks and copied
1051 		 * less. We will have blocks allocated outside
1052 		 * inode->i_size. So truncate them
1053 		 */
1054 		ext4_orphan_add(handle, inode);
1055 errout:
1056 	ret2 = ext4_journal_stop(handle);
1057 	if (!ret)
1058 		ret = ret2;
1059 
1060 	if (pos + len > inode->i_size) {
1061 		ext4_truncate_failed_write(inode);
1062 		/*
1063 		 * If truncate failed early the inode might still be
1064 		 * on the orphan list; we need to make sure the inode
1065 		 * is removed from the orphan list in that case.
1066 		 */
1067 		if (inode->i_nlink)
1068 			ext4_orphan_del(NULL, inode);
1069 	}
1070 
1071 	return ret ? ret : copied;
1072 }
1073 
1074 static int ext4_journalled_write_end(struct file *file,
1075 				     struct address_space *mapping,
1076 				     loff_t pos, unsigned len, unsigned copied,
1077 				     struct page *page, void *fsdata)
1078 {
1079 	handle_t *handle = ext4_journal_current_handle();
1080 	struct inode *inode = mapping->host;
1081 	int ret = 0, ret2;
1082 	int partial = 0;
1083 	unsigned from, to;
1084 	int size_changed = 0;
1085 
1086 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1087 	from = pos & (PAGE_CACHE_SIZE - 1);
1088 	to = from + len;
1089 
1090 	BUG_ON(!ext4_handle_valid(handle));
1091 
1092 	if (ext4_has_inline_data(inode))
1093 		copied = ext4_write_inline_data_end(inode, pos, len,
1094 						    copied, page);
1095 	else {
1096 		if (copied < len) {
1097 			if (!PageUptodate(page))
1098 				copied = 0;
1099 			page_zero_new_buffers(page, from+copied, to);
1100 		}
1101 
1102 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1103 					     to, &partial, write_end_fn);
1104 		if (!partial)
1105 			SetPageUptodate(page);
1106 	}
1107 	size_changed = ext4_update_inode_size(inode, pos + copied);
1108 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1109 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1110 	unlock_page(page);
1111 	page_cache_release(page);
1112 
1113 	if (size_changed) {
1114 		ret2 = ext4_mark_inode_dirty(handle, inode);
1115 		if (!ret)
1116 			ret = ret2;
1117 	}
1118 
1119 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120 		/* if we have allocated more blocks and copied
1121 		 * less. We will have blocks allocated outside
1122 		 * inode->i_size. So truncate them
1123 		 */
1124 		ext4_orphan_add(handle, inode);
1125 
1126 	ret2 = ext4_journal_stop(handle);
1127 	if (!ret)
1128 		ret = ret2;
1129 	if (pos + len > inode->i_size) {
1130 		ext4_truncate_failed_write(inode);
1131 		/*
1132 		 * If truncate failed early the inode might still be
1133 		 * on the orphan list; we need to make sure the inode
1134 		 * is removed from the orphan list in that case.
1135 		 */
1136 		if (inode->i_nlink)
1137 			ext4_orphan_del(NULL, inode);
1138 	}
1139 
1140 	return ret ? ret : copied;
1141 }
1142 
1143 /*
1144  * Reserve a single cluster located at lblock
1145  */
1146 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1147 {
1148 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149 	struct ext4_inode_info *ei = EXT4_I(inode);
1150 	unsigned int md_needed;
1151 	int ret;
1152 
1153 	/*
1154 	 * We will charge metadata quota at writeout time; this saves
1155 	 * us from metadata over-estimation, though we may go over by
1156 	 * a small amount in the end.  Here we just reserve for data.
1157 	 */
1158 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1159 	if (ret)
1160 		return ret;
1161 
1162 	/*
1163 	 * recalculate the amount of metadata blocks to reserve
1164 	 * in order to allocate nrblocks
1165 	 * worse case is one extent per block
1166 	 */
1167 	spin_lock(&ei->i_block_reservation_lock);
1168 	/*
1169 	 * ext4_calc_metadata_amount() has side effects, which we have
1170 	 * to be prepared undo if we fail to claim space.
1171 	 */
1172 	md_needed = 0;
1173 	trace_ext4_da_reserve_space(inode, 0);
1174 
1175 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1176 		spin_unlock(&ei->i_block_reservation_lock);
1177 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1178 		return -ENOSPC;
1179 	}
1180 	ei->i_reserved_data_blocks++;
1181 	spin_unlock(&ei->i_block_reservation_lock);
1182 
1183 	return 0;       /* success */
1184 }
1185 
1186 static void ext4_da_release_space(struct inode *inode, int to_free)
1187 {
1188 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1189 	struct ext4_inode_info *ei = EXT4_I(inode);
1190 
1191 	if (!to_free)
1192 		return;		/* Nothing to release, exit */
1193 
1194 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1195 
1196 	trace_ext4_da_release_space(inode, to_free);
1197 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1198 		/*
1199 		 * if there aren't enough reserved blocks, then the
1200 		 * counter is messed up somewhere.  Since this
1201 		 * function is called from invalidate page, it's
1202 		 * harmless to return without any action.
1203 		 */
1204 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1205 			 "ino %lu, to_free %d with only %d reserved "
1206 			 "data blocks", inode->i_ino, to_free,
1207 			 ei->i_reserved_data_blocks);
1208 		WARN_ON(1);
1209 		to_free = ei->i_reserved_data_blocks;
1210 	}
1211 	ei->i_reserved_data_blocks -= to_free;
1212 
1213 	/* update fs dirty data blocks counter */
1214 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1215 
1216 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1217 
1218 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1219 }
1220 
1221 static void ext4_da_page_release_reservation(struct page *page,
1222 					     unsigned int offset,
1223 					     unsigned int length)
1224 {
1225 	int to_release = 0;
1226 	struct buffer_head *head, *bh;
1227 	unsigned int curr_off = 0;
1228 	struct inode *inode = page->mapping->host;
1229 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1230 	unsigned int stop = offset + length;
1231 	int num_clusters;
1232 	ext4_fsblk_t lblk;
1233 
1234 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1235 
1236 	head = page_buffers(page);
1237 	bh = head;
1238 	do {
1239 		unsigned int next_off = curr_off + bh->b_size;
1240 
1241 		if (next_off > stop)
1242 			break;
1243 
1244 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1245 			to_release++;
1246 			clear_buffer_delay(bh);
1247 		}
1248 		curr_off = next_off;
1249 	} while ((bh = bh->b_this_page) != head);
1250 
1251 	if (to_release) {
1252 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1253 		ext4_es_remove_extent(inode, lblk, to_release);
1254 	}
1255 
1256 	/* If we have released all the blocks belonging to a cluster, then we
1257 	 * need to release the reserved space for that cluster. */
1258 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1259 	while (num_clusters > 0) {
1260 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1261 			((num_clusters - 1) << sbi->s_cluster_bits);
1262 		if (sbi->s_cluster_ratio == 1 ||
1263 		    !ext4_find_delalloc_cluster(inode, lblk))
1264 			ext4_da_release_space(inode, 1);
1265 
1266 		num_clusters--;
1267 	}
1268 }
1269 
1270 /*
1271  * Delayed allocation stuff
1272  */
1273 
1274 struct mpage_da_data {
1275 	struct inode *inode;
1276 	struct writeback_control *wbc;
1277 
1278 	pgoff_t first_page;	/* The first page to write */
1279 	pgoff_t next_page;	/* Current page to examine */
1280 	pgoff_t last_page;	/* Last page to examine */
1281 	/*
1282 	 * Extent to map - this can be after first_page because that can be
1283 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1284 	 * is delalloc or unwritten.
1285 	 */
1286 	struct ext4_map_blocks map;
1287 	struct ext4_io_submit io_submit;	/* IO submission data */
1288 };
1289 
1290 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1291 				       bool invalidate)
1292 {
1293 	int nr_pages, i;
1294 	pgoff_t index, end;
1295 	struct pagevec pvec;
1296 	struct inode *inode = mpd->inode;
1297 	struct address_space *mapping = inode->i_mapping;
1298 
1299 	/* This is necessary when next_page == 0. */
1300 	if (mpd->first_page >= mpd->next_page)
1301 		return;
1302 
1303 	index = mpd->first_page;
1304 	end   = mpd->next_page - 1;
1305 	if (invalidate) {
1306 		ext4_lblk_t start, last;
1307 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1308 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1309 		ext4_es_remove_extent(inode, start, last - start + 1);
1310 	}
1311 
1312 	pagevec_init(&pvec, 0);
1313 	while (index <= end) {
1314 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1315 		if (nr_pages == 0)
1316 			break;
1317 		for (i = 0; i < nr_pages; i++) {
1318 			struct page *page = pvec.pages[i];
1319 			if (page->index > end)
1320 				break;
1321 			BUG_ON(!PageLocked(page));
1322 			BUG_ON(PageWriteback(page));
1323 			if (invalidate) {
1324 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1325 				ClearPageUptodate(page);
1326 			}
1327 			unlock_page(page);
1328 		}
1329 		index = pvec.pages[nr_pages - 1]->index + 1;
1330 		pagevec_release(&pvec);
1331 	}
1332 }
1333 
1334 static void ext4_print_free_blocks(struct inode *inode)
1335 {
1336 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1337 	struct super_block *sb = inode->i_sb;
1338 	struct ext4_inode_info *ei = EXT4_I(inode);
1339 
1340 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1341 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1342 			ext4_count_free_clusters(sb)));
1343 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1344 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1345 	       (long long) EXT4_C2B(EXT4_SB(sb),
1346 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1347 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1348 	       (long long) EXT4_C2B(EXT4_SB(sb),
1349 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1350 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1351 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1352 		 ei->i_reserved_data_blocks);
1353 	return;
1354 }
1355 
1356 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1357 {
1358 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1359 }
1360 
1361 /*
1362  * This function is grabs code from the very beginning of
1363  * ext4_map_blocks, but assumes that the caller is from delayed write
1364  * time. This function looks up the requested blocks and sets the
1365  * buffer delay bit under the protection of i_data_sem.
1366  */
1367 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1368 			      struct ext4_map_blocks *map,
1369 			      struct buffer_head *bh)
1370 {
1371 	struct extent_status es;
1372 	int retval;
1373 	sector_t invalid_block = ~((sector_t) 0xffff);
1374 #ifdef ES_AGGRESSIVE_TEST
1375 	struct ext4_map_blocks orig_map;
1376 
1377 	memcpy(&orig_map, map, sizeof(*map));
1378 #endif
1379 
1380 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1381 		invalid_block = ~0;
1382 
1383 	map->m_flags = 0;
1384 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1385 		  "logical block %lu\n", inode->i_ino, map->m_len,
1386 		  (unsigned long) map->m_lblk);
1387 
1388 	/* Lookup extent status tree firstly */
1389 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1390 		if (ext4_es_is_hole(&es)) {
1391 			retval = 0;
1392 			down_read(&EXT4_I(inode)->i_data_sem);
1393 			goto add_delayed;
1394 		}
1395 
1396 		/*
1397 		 * Delayed extent could be allocated by fallocate.
1398 		 * So we need to check it.
1399 		 */
1400 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1401 			map_bh(bh, inode->i_sb, invalid_block);
1402 			set_buffer_new(bh);
1403 			set_buffer_delay(bh);
1404 			return 0;
1405 		}
1406 
1407 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1408 		retval = es.es_len - (iblock - es.es_lblk);
1409 		if (retval > map->m_len)
1410 			retval = map->m_len;
1411 		map->m_len = retval;
1412 		if (ext4_es_is_written(&es))
1413 			map->m_flags |= EXT4_MAP_MAPPED;
1414 		else if (ext4_es_is_unwritten(&es))
1415 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1416 		else
1417 			BUG_ON(1);
1418 
1419 #ifdef ES_AGGRESSIVE_TEST
1420 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1421 #endif
1422 		return retval;
1423 	}
1424 
1425 	/*
1426 	 * Try to see if we can get the block without requesting a new
1427 	 * file system block.
1428 	 */
1429 	down_read(&EXT4_I(inode)->i_data_sem);
1430 	if (ext4_has_inline_data(inode))
1431 		retval = 0;
1432 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1433 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1434 	else
1435 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1436 
1437 add_delayed:
1438 	if (retval == 0) {
1439 		int ret;
1440 		/*
1441 		 * XXX: __block_prepare_write() unmaps passed block,
1442 		 * is it OK?
1443 		 */
1444 		/*
1445 		 * If the block was allocated from previously allocated cluster,
1446 		 * then we don't need to reserve it again. However we still need
1447 		 * to reserve metadata for every block we're going to write.
1448 		 */
1449 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1450 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1451 			ret = ext4_da_reserve_space(inode, iblock);
1452 			if (ret) {
1453 				/* not enough space to reserve */
1454 				retval = ret;
1455 				goto out_unlock;
1456 			}
1457 		}
1458 
1459 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1460 					    ~0, EXTENT_STATUS_DELAYED);
1461 		if (ret) {
1462 			retval = ret;
1463 			goto out_unlock;
1464 		}
1465 
1466 		map_bh(bh, inode->i_sb, invalid_block);
1467 		set_buffer_new(bh);
1468 		set_buffer_delay(bh);
1469 	} else if (retval > 0) {
1470 		int ret;
1471 		unsigned int status;
1472 
1473 		if (unlikely(retval != map->m_len)) {
1474 			ext4_warning(inode->i_sb,
1475 				     "ES len assertion failed for inode "
1476 				     "%lu: retval %d != map->m_len %d",
1477 				     inode->i_ino, retval, map->m_len);
1478 			WARN_ON(1);
1479 		}
1480 
1481 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1482 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1483 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484 					    map->m_pblk, status);
1485 		if (ret != 0)
1486 			retval = ret;
1487 	}
1488 
1489 out_unlock:
1490 	up_read((&EXT4_I(inode)->i_data_sem));
1491 
1492 	return retval;
1493 }
1494 
1495 /*
1496  * This is a special get_block_t callback which is used by
1497  * ext4_da_write_begin().  It will either return mapped block or
1498  * reserve space for a single block.
1499  *
1500  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1501  * We also have b_blocknr = -1 and b_bdev initialized properly
1502  *
1503  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1504  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1505  * initialized properly.
1506  */
1507 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1508 			   struct buffer_head *bh, int create)
1509 {
1510 	struct ext4_map_blocks map;
1511 	int ret = 0;
1512 
1513 	BUG_ON(create == 0);
1514 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1515 
1516 	map.m_lblk = iblock;
1517 	map.m_len = 1;
1518 
1519 	/*
1520 	 * first, we need to know whether the block is allocated already
1521 	 * preallocated blocks are unmapped but should treated
1522 	 * the same as allocated blocks.
1523 	 */
1524 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1525 	if (ret <= 0)
1526 		return ret;
1527 
1528 	map_bh(bh, inode->i_sb, map.m_pblk);
1529 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1530 
1531 	if (buffer_unwritten(bh)) {
1532 		/* A delayed write to unwritten bh should be marked
1533 		 * new and mapped.  Mapped ensures that we don't do
1534 		 * get_block multiple times when we write to the same
1535 		 * offset and new ensures that we do proper zero out
1536 		 * for partial write.
1537 		 */
1538 		set_buffer_new(bh);
1539 		set_buffer_mapped(bh);
1540 	}
1541 	return 0;
1542 }
1543 
1544 static int bget_one(handle_t *handle, struct buffer_head *bh)
1545 {
1546 	get_bh(bh);
1547 	return 0;
1548 }
1549 
1550 static int bput_one(handle_t *handle, struct buffer_head *bh)
1551 {
1552 	put_bh(bh);
1553 	return 0;
1554 }
1555 
1556 static int __ext4_journalled_writepage(struct page *page,
1557 				       unsigned int len)
1558 {
1559 	struct address_space *mapping = page->mapping;
1560 	struct inode *inode = mapping->host;
1561 	struct buffer_head *page_bufs = NULL;
1562 	handle_t *handle = NULL;
1563 	int ret = 0, err = 0;
1564 	int inline_data = ext4_has_inline_data(inode);
1565 	struct buffer_head *inode_bh = NULL;
1566 
1567 	ClearPageChecked(page);
1568 
1569 	if (inline_data) {
1570 		BUG_ON(page->index != 0);
1571 		BUG_ON(len > ext4_get_max_inline_size(inode));
1572 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1573 		if (inode_bh == NULL)
1574 			goto out;
1575 	} else {
1576 		page_bufs = page_buffers(page);
1577 		if (!page_bufs) {
1578 			BUG();
1579 			goto out;
1580 		}
1581 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1582 				       NULL, bget_one);
1583 	}
1584 	/* As soon as we unlock the page, it can go away, but we have
1585 	 * references to buffers so we are safe */
1586 	unlock_page(page);
1587 
1588 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1589 				    ext4_writepage_trans_blocks(inode));
1590 	if (IS_ERR(handle)) {
1591 		ret = PTR_ERR(handle);
1592 		goto out;
1593 	}
1594 
1595 	BUG_ON(!ext4_handle_valid(handle));
1596 
1597 	if (inline_data) {
1598 		BUFFER_TRACE(inode_bh, "get write access");
1599 		ret = ext4_journal_get_write_access(handle, inode_bh);
1600 
1601 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1602 
1603 	} else {
1604 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1605 					     do_journal_get_write_access);
1606 
1607 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1608 					     write_end_fn);
1609 	}
1610 	if (ret == 0)
1611 		ret = err;
1612 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1613 	err = ext4_journal_stop(handle);
1614 	if (!ret)
1615 		ret = err;
1616 
1617 	if (!ext4_has_inline_data(inode))
1618 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1619 				       NULL, bput_one);
1620 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1621 out:
1622 	brelse(inode_bh);
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Note that we don't need to start a transaction unless we're journaling data
1628  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1629  * need to file the inode to the transaction's list in ordered mode because if
1630  * we are writing back data added by write(), the inode is already there and if
1631  * we are writing back data modified via mmap(), no one guarantees in which
1632  * transaction the data will hit the disk. In case we are journaling data, we
1633  * cannot start transaction directly because transaction start ranks above page
1634  * lock so we have to do some magic.
1635  *
1636  * This function can get called via...
1637  *   - ext4_writepages after taking page lock (have journal handle)
1638  *   - journal_submit_inode_data_buffers (no journal handle)
1639  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1640  *   - grab_page_cache when doing write_begin (have journal handle)
1641  *
1642  * We don't do any block allocation in this function. If we have page with
1643  * multiple blocks we need to write those buffer_heads that are mapped. This
1644  * is important for mmaped based write. So if we do with blocksize 1K
1645  * truncate(f, 1024);
1646  * a = mmap(f, 0, 4096);
1647  * a[0] = 'a';
1648  * truncate(f, 4096);
1649  * we have in the page first buffer_head mapped via page_mkwrite call back
1650  * but other buffer_heads would be unmapped but dirty (dirty done via the
1651  * do_wp_page). So writepage should write the first block. If we modify
1652  * the mmap area beyond 1024 we will again get a page_fault and the
1653  * page_mkwrite callback will do the block allocation and mark the
1654  * buffer_heads mapped.
1655  *
1656  * We redirty the page if we have any buffer_heads that is either delay or
1657  * unwritten in the page.
1658  *
1659  * We can get recursively called as show below.
1660  *
1661  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1662  *		ext4_writepage()
1663  *
1664  * But since we don't do any block allocation we should not deadlock.
1665  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1666  */
1667 static int ext4_writepage(struct page *page,
1668 			  struct writeback_control *wbc)
1669 {
1670 	int ret = 0;
1671 	loff_t size;
1672 	unsigned int len;
1673 	struct buffer_head *page_bufs = NULL;
1674 	struct inode *inode = page->mapping->host;
1675 	struct ext4_io_submit io_submit;
1676 	bool keep_towrite = false;
1677 
1678 	trace_ext4_writepage(page);
1679 	size = i_size_read(inode);
1680 	if (page->index == size >> PAGE_CACHE_SHIFT)
1681 		len = size & ~PAGE_CACHE_MASK;
1682 	else
1683 		len = PAGE_CACHE_SIZE;
1684 
1685 	page_bufs = page_buffers(page);
1686 	/*
1687 	 * We cannot do block allocation or other extent handling in this
1688 	 * function. If there are buffers needing that, we have to redirty
1689 	 * the page. But we may reach here when we do a journal commit via
1690 	 * journal_submit_inode_data_buffers() and in that case we must write
1691 	 * allocated buffers to achieve data=ordered mode guarantees.
1692 	 */
1693 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1694 				   ext4_bh_delay_or_unwritten)) {
1695 		redirty_page_for_writepage(wbc, page);
1696 		if (current->flags & PF_MEMALLOC) {
1697 			/*
1698 			 * For memory cleaning there's no point in writing only
1699 			 * some buffers. So just bail out. Warn if we came here
1700 			 * from direct reclaim.
1701 			 */
1702 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1703 							== PF_MEMALLOC);
1704 			unlock_page(page);
1705 			return 0;
1706 		}
1707 		keep_towrite = true;
1708 	}
1709 
1710 	if (PageChecked(page) && ext4_should_journal_data(inode))
1711 		/*
1712 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1713 		 * doesn't seem much point in redirtying the page here.
1714 		 */
1715 		return __ext4_journalled_writepage(page, len);
1716 
1717 	ext4_io_submit_init(&io_submit, wbc);
1718 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1719 	if (!io_submit.io_end) {
1720 		redirty_page_for_writepage(wbc, page);
1721 		unlock_page(page);
1722 		return -ENOMEM;
1723 	}
1724 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1725 	ext4_io_submit(&io_submit);
1726 	/* Drop io_end reference we got from init */
1727 	ext4_put_io_end_defer(io_submit.io_end);
1728 	return ret;
1729 }
1730 
1731 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1732 {
1733 	int len;
1734 	loff_t size = i_size_read(mpd->inode);
1735 	int err;
1736 
1737 	BUG_ON(page->index != mpd->first_page);
1738 	if (page->index == size >> PAGE_CACHE_SHIFT)
1739 		len = size & ~PAGE_CACHE_MASK;
1740 	else
1741 		len = PAGE_CACHE_SIZE;
1742 	clear_page_dirty_for_io(page);
1743 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1744 	if (!err)
1745 		mpd->wbc->nr_to_write--;
1746 	mpd->first_page++;
1747 
1748 	return err;
1749 }
1750 
1751 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1752 
1753 /*
1754  * mballoc gives us at most this number of blocks...
1755  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1756  * The rest of mballoc seems to handle chunks up to full group size.
1757  */
1758 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1759 
1760 /*
1761  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1762  *
1763  * @mpd - extent of blocks
1764  * @lblk - logical number of the block in the file
1765  * @bh - buffer head we want to add to the extent
1766  *
1767  * The function is used to collect contig. blocks in the same state. If the
1768  * buffer doesn't require mapping for writeback and we haven't started the
1769  * extent of buffers to map yet, the function returns 'true' immediately - the
1770  * caller can write the buffer right away. Otherwise the function returns true
1771  * if the block has been added to the extent, false if the block couldn't be
1772  * added.
1773  */
1774 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1775 				   struct buffer_head *bh)
1776 {
1777 	struct ext4_map_blocks *map = &mpd->map;
1778 
1779 	/* Buffer that doesn't need mapping for writeback? */
1780 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1781 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1782 		/* So far no extent to map => we write the buffer right away */
1783 		if (map->m_len == 0)
1784 			return true;
1785 		return false;
1786 	}
1787 
1788 	/* First block in the extent? */
1789 	if (map->m_len == 0) {
1790 		map->m_lblk = lblk;
1791 		map->m_len = 1;
1792 		map->m_flags = bh->b_state & BH_FLAGS;
1793 		return true;
1794 	}
1795 
1796 	/* Don't go larger than mballoc is willing to allocate */
1797 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1798 		return false;
1799 
1800 	/* Can we merge the block to our big extent? */
1801 	if (lblk == map->m_lblk + map->m_len &&
1802 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1803 		map->m_len++;
1804 		return true;
1805 	}
1806 	return false;
1807 }
1808 
1809 /*
1810  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1811  *
1812  * @mpd - extent of blocks for mapping
1813  * @head - the first buffer in the page
1814  * @bh - buffer we should start processing from
1815  * @lblk - logical number of the block in the file corresponding to @bh
1816  *
1817  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1818  * the page for IO if all buffers in this page were mapped and there's no
1819  * accumulated extent of buffers to map or add buffers in the page to the
1820  * extent of buffers to map. The function returns 1 if the caller can continue
1821  * by processing the next page, 0 if it should stop adding buffers to the
1822  * extent to map because we cannot extend it anymore. It can also return value
1823  * < 0 in case of error during IO submission.
1824  */
1825 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1826 				   struct buffer_head *head,
1827 				   struct buffer_head *bh,
1828 				   ext4_lblk_t lblk)
1829 {
1830 	struct inode *inode = mpd->inode;
1831 	int err;
1832 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1833 							>> inode->i_blkbits;
1834 
1835 	do {
1836 		BUG_ON(buffer_locked(bh));
1837 
1838 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1839 			/* Found extent to map? */
1840 			if (mpd->map.m_len)
1841 				return 0;
1842 			/* Everything mapped so far and we hit EOF */
1843 			break;
1844 		}
1845 	} while (lblk++, (bh = bh->b_this_page) != head);
1846 	/* So far everything mapped? Submit the page for IO. */
1847 	if (mpd->map.m_len == 0) {
1848 		err = mpage_submit_page(mpd, head->b_page);
1849 		if (err < 0)
1850 			return err;
1851 	}
1852 	return lblk < blocks;
1853 }
1854 
1855 /*
1856  * mpage_map_buffers - update buffers corresponding to changed extent and
1857  *		       submit fully mapped pages for IO
1858  *
1859  * @mpd - description of extent to map, on return next extent to map
1860  *
1861  * Scan buffers corresponding to changed extent (we expect corresponding pages
1862  * to be already locked) and update buffer state according to new extent state.
1863  * We map delalloc buffers to their physical location, clear unwritten bits,
1864  * and mark buffers as uninit when we perform writes to unwritten extents
1865  * and do extent conversion after IO is finished. If the last page is not fully
1866  * mapped, we update @map to the next extent in the last page that needs
1867  * mapping. Otherwise we submit the page for IO.
1868  */
1869 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1870 {
1871 	struct pagevec pvec;
1872 	int nr_pages, i;
1873 	struct inode *inode = mpd->inode;
1874 	struct buffer_head *head, *bh;
1875 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1876 	pgoff_t start, end;
1877 	ext4_lblk_t lblk;
1878 	sector_t pblock;
1879 	int err;
1880 
1881 	start = mpd->map.m_lblk >> bpp_bits;
1882 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1883 	lblk = start << bpp_bits;
1884 	pblock = mpd->map.m_pblk;
1885 
1886 	pagevec_init(&pvec, 0);
1887 	while (start <= end) {
1888 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1889 					  PAGEVEC_SIZE);
1890 		if (nr_pages == 0)
1891 			break;
1892 		for (i = 0; i < nr_pages; i++) {
1893 			struct page *page = pvec.pages[i];
1894 
1895 			if (page->index > end)
1896 				break;
1897 			/* Up to 'end' pages must be contiguous */
1898 			BUG_ON(page->index != start);
1899 			bh = head = page_buffers(page);
1900 			do {
1901 				if (lblk < mpd->map.m_lblk)
1902 					continue;
1903 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1904 					/*
1905 					 * Buffer after end of mapped extent.
1906 					 * Find next buffer in the page to map.
1907 					 */
1908 					mpd->map.m_len = 0;
1909 					mpd->map.m_flags = 0;
1910 					/*
1911 					 * FIXME: If dioread_nolock supports
1912 					 * blocksize < pagesize, we need to make
1913 					 * sure we add size mapped so far to
1914 					 * io_end->size as the following call
1915 					 * can submit the page for IO.
1916 					 */
1917 					err = mpage_process_page_bufs(mpd, head,
1918 								      bh, lblk);
1919 					pagevec_release(&pvec);
1920 					if (err > 0)
1921 						err = 0;
1922 					return err;
1923 				}
1924 				if (buffer_delay(bh)) {
1925 					clear_buffer_delay(bh);
1926 					bh->b_blocknr = pblock++;
1927 				}
1928 				clear_buffer_unwritten(bh);
1929 			} while (lblk++, (bh = bh->b_this_page) != head);
1930 
1931 			/*
1932 			 * FIXME: This is going to break if dioread_nolock
1933 			 * supports blocksize < pagesize as we will try to
1934 			 * convert potentially unmapped parts of inode.
1935 			 */
1936 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1937 			/* Page fully mapped - let IO run! */
1938 			err = mpage_submit_page(mpd, page);
1939 			if (err < 0) {
1940 				pagevec_release(&pvec);
1941 				return err;
1942 			}
1943 			start++;
1944 		}
1945 		pagevec_release(&pvec);
1946 	}
1947 	/* Extent fully mapped and matches with page boundary. We are done. */
1948 	mpd->map.m_len = 0;
1949 	mpd->map.m_flags = 0;
1950 	return 0;
1951 }
1952 
1953 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1954 {
1955 	struct inode *inode = mpd->inode;
1956 	struct ext4_map_blocks *map = &mpd->map;
1957 	int get_blocks_flags;
1958 	int err, dioread_nolock;
1959 
1960 	trace_ext4_da_write_pages_extent(inode, map);
1961 	/*
1962 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1963 	 * to convert an unwritten extent to be initialized (in the case
1964 	 * where we have written into one or more preallocated blocks).  It is
1965 	 * possible that we're going to need more metadata blocks than
1966 	 * previously reserved. However we must not fail because we're in
1967 	 * writeback and there is nothing we can do about it so it might result
1968 	 * in data loss.  So use reserved blocks to allocate metadata if
1969 	 * possible.
1970 	 *
1971 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1972 	 * the blocks in question are delalloc blocks.  This indicates
1973 	 * that the blocks and quotas has already been checked when
1974 	 * the data was copied into the page cache.
1975 	 */
1976 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1977 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1978 	dioread_nolock = ext4_should_dioread_nolock(inode);
1979 	if (dioread_nolock)
1980 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1981 	if (map->m_flags & (1 << BH_Delay))
1982 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1983 
1984 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
1985 	if (err < 0)
1986 		return err;
1987 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
1988 		if (!mpd->io_submit.io_end->handle &&
1989 		    ext4_handle_valid(handle)) {
1990 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
1991 			handle->h_rsv_handle = NULL;
1992 		}
1993 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
1994 	}
1995 
1996 	BUG_ON(map->m_len == 0);
1997 	if (map->m_flags & EXT4_MAP_NEW) {
1998 		struct block_device *bdev = inode->i_sb->s_bdev;
1999 		int i;
2000 
2001 		for (i = 0; i < map->m_len; i++)
2002 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2003 	}
2004 	return 0;
2005 }
2006 
2007 /*
2008  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2009  *				 mpd->len and submit pages underlying it for IO
2010  *
2011  * @handle - handle for journal operations
2012  * @mpd - extent to map
2013  * @give_up_on_write - we set this to true iff there is a fatal error and there
2014  *                     is no hope of writing the data. The caller should discard
2015  *                     dirty pages to avoid infinite loops.
2016  *
2017  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2018  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2019  * them to initialized or split the described range from larger unwritten
2020  * extent. Note that we need not map all the described range since allocation
2021  * can return less blocks or the range is covered by more unwritten extents. We
2022  * cannot map more because we are limited by reserved transaction credits. On
2023  * the other hand we always make sure that the last touched page is fully
2024  * mapped so that it can be written out (and thus forward progress is
2025  * guaranteed). After mapping we submit all mapped pages for IO.
2026  */
2027 static int mpage_map_and_submit_extent(handle_t *handle,
2028 				       struct mpage_da_data *mpd,
2029 				       bool *give_up_on_write)
2030 {
2031 	struct inode *inode = mpd->inode;
2032 	struct ext4_map_blocks *map = &mpd->map;
2033 	int err;
2034 	loff_t disksize;
2035 	int progress = 0;
2036 
2037 	mpd->io_submit.io_end->offset =
2038 				((loff_t)map->m_lblk) << inode->i_blkbits;
2039 	do {
2040 		err = mpage_map_one_extent(handle, mpd);
2041 		if (err < 0) {
2042 			struct super_block *sb = inode->i_sb;
2043 
2044 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2045 				goto invalidate_dirty_pages;
2046 			/*
2047 			 * Let the uper layers retry transient errors.
2048 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2049 			 * is non-zero, a commit should free up blocks.
2050 			 */
2051 			if ((err == -ENOMEM) ||
2052 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2053 				if (progress)
2054 					goto update_disksize;
2055 				return err;
2056 			}
2057 			ext4_msg(sb, KERN_CRIT,
2058 				 "Delayed block allocation failed for "
2059 				 "inode %lu at logical offset %llu with"
2060 				 " max blocks %u with error %d",
2061 				 inode->i_ino,
2062 				 (unsigned long long)map->m_lblk,
2063 				 (unsigned)map->m_len, -err);
2064 			ext4_msg(sb, KERN_CRIT,
2065 				 "This should not happen!! Data will "
2066 				 "be lost\n");
2067 			if (err == -ENOSPC)
2068 				ext4_print_free_blocks(inode);
2069 		invalidate_dirty_pages:
2070 			*give_up_on_write = true;
2071 			return err;
2072 		}
2073 		progress = 1;
2074 		/*
2075 		 * Update buffer state, submit mapped pages, and get us new
2076 		 * extent to map
2077 		 */
2078 		err = mpage_map_and_submit_buffers(mpd);
2079 		if (err < 0)
2080 			goto update_disksize;
2081 	} while (map->m_len);
2082 
2083 update_disksize:
2084 	/*
2085 	 * Update on-disk size after IO is submitted.  Races with
2086 	 * truncate are avoided by checking i_size under i_data_sem.
2087 	 */
2088 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2089 	if (disksize > EXT4_I(inode)->i_disksize) {
2090 		int err2;
2091 		loff_t i_size;
2092 
2093 		down_write(&EXT4_I(inode)->i_data_sem);
2094 		i_size = i_size_read(inode);
2095 		if (disksize > i_size)
2096 			disksize = i_size;
2097 		if (disksize > EXT4_I(inode)->i_disksize)
2098 			EXT4_I(inode)->i_disksize = disksize;
2099 		err2 = ext4_mark_inode_dirty(handle, inode);
2100 		up_write(&EXT4_I(inode)->i_data_sem);
2101 		if (err2)
2102 			ext4_error(inode->i_sb,
2103 				   "Failed to mark inode %lu dirty",
2104 				   inode->i_ino);
2105 		if (!err)
2106 			err = err2;
2107 	}
2108 	return err;
2109 }
2110 
2111 /*
2112  * Calculate the total number of credits to reserve for one writepages
2113  * iteration. This is called from ext4_writepages(). We map an extent of
2114  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2115  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2116  * bpp - 1 blocks in bpp different extents.
2117  */
2118 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2119 {
2120 	int bpp = ext4_journal_blocks_per_page(inode);
2121 
2122 	return ext4_meta_trans_blocks(inode,
2123 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2124 }
2125 
2126 /*
2127  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2128  * 				 and underlying extent to map
2129  *
2130  * @mpd - where to look for pages
2131  *
2132  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2133  * IO immediately. When we find a page which isn't mapped we start accumulating
2134  * extent of buffers underlying these pages that needs mapping (formed by
2135  * either delayed or unwritten buffers). We also lock the pages containing
2136  * these buffers. The extent found is returned in @mpd structure (starting at
2137  * mpd->lblk with length mpd->len blocks).
2138  *
2139  * Note that this function can attach bios to one io_end structure which are
2140  * neither logically nor physically contiguous. Although it may seem as an
2141  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2142  * case as we need to track IO to all buffers underlying a page in one io_end.
2143  */
2144 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2145 {
2146 	struct address_space *mapping = mpd->inode->i_mapping;
2147 	struct pagevec pvec;
2148 	unsigned int nr_pages;
2149 	long left = mpd->wbc->nr_to_write;
2150 	pgoff_t index = mpd->first_page;
2151 	pgoff_t end = mpd->last_page;
2152 	int tag;
2153 	int i, err = 0;
2154 	int blkbits = mpd->inode->i_blkbits;
2155 	ext4_lblk_t lblk;
2156 	struct buffer_head *head;
2157 
2158 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2159 		tag = PAGECACHE_TAG_TOWRITE;
2160 	else
2161 		tag = PAGECACHE_TAG_DIRTY;
2162 
2163 	pagevec_init(&pvec, 0);
2164 	mpd->map.m_len = 0;
2165 	mpd->next_page = index;
2166 	while (index <= end) {
2167 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2168 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2169 		if (nr_pages == 0)
2170 			goto out;
2171 
2172 		for (i = 0; i < nr_pages; i++) {
2173 			struct page *page = pvec.pages[i];
2174 
2175 			/*
2176 			 * At this point, the page may be truncated or
2177 			 * invalidated (changing page->mapping to NULL), or
2178 			 * even swizzled back from swapper_space to tmpfs file
2179 			 * mapping. However, page->index will not change
2180 			 * because we have a reference on the page.
2181 			 */
2182 			if (page->index > end)
2183 				goto out;
2184 
2185 			/*
2186 			 * Accumulated enough dirty pages? This doesn't apply
2187 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2188 			 * keep going because someone may be concurrently
2189 			 * dirtying pages, and we might have synced a lot of
2190 			 * newly appeared dirty pages, but have not synced all
2191 			 * of the old dirty pages.
2192 			 */
2193 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2194 				goto out;
2195 
2196 			/* If we can't merge this page, we are done. */
2197 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2198 				goto out;
2199 
2200 			lock_page(page);
2201 			/*
2202 			 * If the page is no longer dirty, or its mapping no
2203 			 * longer corresponds to inode we are writing (which
2204 			 * means it has been truncated or invalidated), or the
2205 			 * page is already under writeback and we are not doing
2206 			 * a data integrity writeback, skip the page
2207 			 */
2208 			if (!PageDirty(page) ||
2209 			    (PageWriteback(page) &&
2210 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2211 			    unlikely(page->mapping != mapping)) {
2212 				unlock_page(page);
2213 				continue;
2214 			}
2215 
2216 			wait_on_page_writeback(page);
2217 			BUG_ON(PageWriteback(page));
2218 
2219 			if (mpd->map.m_len == 0)
2220 				mpd->first_page = page->index;
2221 			mpd->next_page = page->index + 1;
2222 			/* Add all dirty buffers to mpd */
2223 			lblk = ((ext4_lblk_t)page->index) <<
2224 				(PAGE_CACHE_SHIFT - blkbits);
2225 			head = page_buffers(page);
2226 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2227 			if (err <= 0)
2228 				goto out;
2229 			err = 0;
2230 			left--;
2231 		}
2232 		pagevec_release(&pvec);
2233 		cond_resched();
2234 	}
2235 	return 0;
2236 out:
2237 	pagevec_release(&pvec);
2238 	return err;
2239 }
2240 
2241 static int __writepage(struct page *page, struct writeback_control *wbc,
2242 		       void *data)
2243 {
2244 	struct address_space *mapping = data;
2245 	int ret = ext4_writepage(page, wbc);
2246 	mapping_set_error(mapping, ret);
2247 	return ret;
2248 }
2249 
2250 static int ext4_writepages(struct address_space *mapping,
2251 			   struct writeback_control *wbc)
2252 {
2253 	pgoff_t	writeback_index = 0;
2254 	long nr_to_write = wbc->nr_to_write;
2255 	int range_whole = 0;
2256 	int cycled = 1;
2257 	handle_t *handle = NULL;
2258 	struct mpage_da_data mpd;
2259 	struct inode *inode = mapping->host;
2260 	int needed_blocks, rsv_blocks = 0, ret = 0;
2261 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2262 	bool done;
2263 	struct blk_plug plug;
2264 	bool give_up_on_write = false;
2265 
2266 	trace_ext4_writepages(inode, wbc);
2267 
2268 	/*
2269 	 * No pages to write? This is mainly a kludge to avoid starting
2270 	 * a transaction for special inodes like journal inode on last iput()
2271 	 * because that could violate lock ordering on umount
2272 	 */
2273 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2274 		goto out_writepages;
2275 
2276 	if (ext4_should_journal_data(inode)) {
2277 		struct blk_plug plug;
2278 
2279 		blk_start_plug(&plug);
2280 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2281 		blk_finish_plug(&plug);
2282 		goto out_writepages;
2283 	}
2284 
2285 	/*
2286 	 * If the filesystem has aborted, it is read-only, so return
2287 	 * right away instead of dumping stack traces later on that
2288 	 * will obscure the real source of the problem.  We test
2289 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2290 	 * the latter could be true if the filesystem is mounted
2291 	 * read-only, and in that case, ext4_writepages should
2292 	 * *never* be called, so if that ever happens, we would want
2293 	 * the stack trace.
2294 	 */
2295 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2296 		ret = -EROFS;
2297 		goto out_writepages;
2298 	}
2299 
2300 	if (ext4_should_dioread_nolock(inode)) {
2301 		/*
2302 		 * We may need to convert up to one extent per block in
2303 		 * the page and we may dirty the inode.
2304 		 */
2305 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2306 	}
2307 
2308 	/*
2309 	 * If we have inline data and arrive here, it means that
2310 	 * we will soon create the block for the 1st page, so
2311 	 * we'd better clear the inline data here.
2312 	 */
2313 	if (ext4_has_inline_data(inode)) {
2314 		/* Just inode will be modified... */
2315 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2316 		if (IS_ERR(handle)) {
2317 			ret = PTR_ERR(handle);
2318 			goto out_writepages;
2319 		}
2320 		BUG_ON(ext4_test_inode_state(inode,
2321 				EXT4_STATE_MAY_INLINE_DATA));
2322 		ext4_destroy_inline_data(handle, inode);
2323 		ext4_journal_stop(handle);
2324 	}
2325 
2326 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2327 		range_whole = 1;
2328 
2329 	if (wbc->range_cyclic) {
2330 		writeback_index = mapping->writeback_index;
2331 		if (writeback_index)
2332 			cycled = 0;
2333 		mpd.first_page = writeback_index;
2334 		mpd.last_page = -1;
2335 	} else {
2336 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2337 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2338 	}
2339 
2340 	mpd.inode = inode;
2341 	mpd.wbc = wbc;
2342 	ext4_io_submit_init(&mpd.io_submit, wbc);
2343 retry:
2344 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2346 	done = false;
2347 	blk_start_plug(&plug);
2348 	while (!done && mpd.first_page <= mpd.last_page) {
2349 		/* For each extent of pages we use new io_end */
2350 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2351 		if (!mpd.io_submit.io_end) {
2352 			ret = -ENOMEM;
2353 			break;
2354 		}
2355 
2356 		/*
2357 		 * We have two constraints: We find one extent to map and we
2358 		 * must always write out whole page (makes a difference when
2359 		 * blocksize < pagesize) so that we don't block on IO when we
2360 		 * try to write out the rest of the page. Journalled mode is
2361 		 * not supported by delalloc.
2362 		 */
2363 		BUG_ON(ext4_should_journal_data(inode));
2364 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2365 
2366 		/* start a new transaction */
2367 		handle = ext4_journal_start_with_reserve(inode,
2368 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2369 		if (IS_ERR(handle)) {
2370 			ret = PTR_ERR(handle);
2371 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2372 			       "%ld pages, ino %lu; err %d", __func__,
2373 				wbc->nr_to_write, inode->i_ino, ret);
2374 			/* Release allocated io_end */
2375 			ext4_put_io_end(mpd.io_submit.io_end);
2376 			break;
2377 		}
2378 
2379 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2380 		ret = mpage_prepare_extent_to_map(&mpd);
2381 		if (!ret) {
2382 			if (mpd.map.m_len)
2383 				ret = mpage_map_and_submit_extent(handle, &mpd,
2384 					&give_up_on_write);
2385 			else {
2386 				/*
2387 				 * We scanned the whole range (or exhausted
2388 				 * nr_to_write), submitted what was mapped and
2389 				 * didn't find anything needing mapping. We are
2390 				 * done.
2391 				 */
2392 				done = true;
2393 			}
2394 		}
2395 		ext4_journal_stop(handle);
2396 		/* Submit prepared bio */
2397 		ext4_io_submit(&mpd.io_submit);
2398 		/* Unlock pages we didn't use */
2399 		mpage_release_unused_pages(&mpd, give_up_on_write);
2400 		/* Drop our io_end reference we got from init */
2401 		ext4_put_io_end(mpd.io_submit.io_end);
2402 
2403 		if (ret == -ENOSPC && sbi->s_journal) {
2404 			/*
2405 			 * Commit the transaction which would
2406 			 * free blocks released in the transaction
2407 			 * and try again
2408 			 */
2409 			jbd2_journal_force_commit_nested(sbi->s_journal);
2410 			ret = 0;
2411 			continue;
2412 		}
2413 		/* Fatal error - ENOMEM, EIO... */
2414 		if (ret)
2415 			break;
2416 	}
2417 	blk_finish_plug(&plug);
2418 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2419 		cycled = 1;
2420 		mpd.last_page = writeback_index - 1;
2421 		mpd.first_page = 0;
2422 		goto retry;
2423 	}
2424 
2425 	/* Update index */
2426 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2427 		/*
2428 		 * Set the writeback_index so that range_cyclic
2429 		 * mode will write it back later
2430 		 */
2431 		mapping->writeback_index = mpd.first_page;
2432 
2433 out_writepages:
2434 	trace_ext4_writepages_result(inode, wbc, ret,
2435 				     nr_to_write - wbc->nr_to_write);
2436 	return ret;
2437 }
2438 
2439 static int ext4_nonda_switch(struct super_block *sb)
2440 {
2441 	s64 free_clusters, dirty_clusters;
2442 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2443 
2444 	/*
2445 	 * switch to non delalloc mode if we are running low
2446 	 * on free block. The free block accounting via percpu
2447 	 * counters can get slightly wrong with percpu_counter_batch getting
2448 	 * accumulated on each CPU without updating global counters
2449 	 * Delalloc need an accurate free block accounting. So switch
2450 	 * to non delalloc when we are near to error range.
2451 	 */
2452 	free_clusters =
2453 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2454 	dirty_clusters =
2455 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456 	/*
2457 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2458 	 */
2459 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2460 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2461 
2462 	if (2 * free_clusters < 3 * dirty_clusters ||
2463 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2464 		/*
2465 		 * free block count is less than 150% of dirty blocks
2466 		 * or free blocks is less than watermark
2467 		 */
2468 		return 1;
2469 	}
2470 	return 0;
2471 }
2472 
2473 /* We always reserve for an inode update; the superblock could be there too */
2474 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2475 {
2476 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2477 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2478 		return 1;
2479 
2480 	if (pos + len <= 0x7fffffffULL)
2481 		return 1;
2482 
2483 	/* We might need to update the superblock to set LARGE_FILE */
2484 	return 2;
2485 }
2486 
2487 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2488 			       loff_t pos, unsigned len, unsigned flags,
2489 			       struct page **pagep, void **fsdata)
2490 {
2491 	int ret, retries = 0;
2492 	struct page *page;
2493 	pgoff_t index;
2494 	struct inode *inode = mapping->host;
2495 	handle_t *handle;
2496 
2497 	index = pos >> PAGE_CACHE_SHIFT;
2498 
2499 	if (ext4_nonda_switch(inode->i_sb)) {
2500 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2501 		return ext4_write_begin(file, mapping, pos,
2502 					len, flags, pagep, fsdata);
2503 	}
2504 	*fsdata = (void *)0;
2505 	trace_ext4_da_write_begin(inode, pos, len, flags);
2506 
2507 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2508 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2509 						      pos, len, flags,
2510 						      pagep, fsdata);
2511 		if (ret < 0)
2512 			return ret;
2513 		if (ret == 1)
2514 			return 0;
2515 	}
2516 
2517 	/*
2518 	 * grab_cache_page_write_begin() can take a long time if the
2519 	 * system is thrashing due to memory pressure, or if the page
2520 	 * is being written back.  So grab it first before we start
2521 	 * the transaction handle.  This also allows us to allocate
2522 	 * the page (if needed) without using GFP_NOFS.
2523 	 */
2524 retry_grab:
2525 	page = grab_cache_page_write_begin(mapping, index, flags);
2526 	if (!page)
2527 		return -ENOMEM;
2528 	unlock_page(page);
2529 
2530 	/*
2531 	 * With delayed allocation, we don't log the i_disksize update
2532 	 * if there is delayed block allocation. But we still need
2533 	 * to journalling the i_disksize update if writes to the end
2534 	 * of file which has an already mapped buffer.
2535 	 */
2536 retry_journal:
2537 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2538 				ext4_da_write_credits(inode, pos, len));
2539 	if (IS_ERR(handle)) {
2540 		page_cache_release(page);
2541 		return PTR_ERR(handle);
2542 	}
2543 
2544 	lock_page(page);
2545 	if (page->mapping != mapping) {
2546 		/* The page got truncated from under us */
2547 		unlock_page(page);
2548 		page_cache_release(page);
2549 		ext4_journal_stop(handle);
2550 		goto retry_grab;
2551 	}
2552 	/* In case writeback began while the page was unlocked */
2553 	wait_for_stable_page(page);
2554 
2555 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2556 	if (ret < 0) {
2557 		unlock_page(page);
2558 		ext4_journal_stop(handle);
2559 		/*
2560 		 * block_write_begin may have instantiated a few blocks
2561 		 * outside i_size.  Trim these off again. Don't need
2562 		 * i_size_read because we hold i_mutex.
2563 		 */
2564 		if (pos + len > inode->i_size)
2565 			ext4_truncate_failed_write(inode);
2566 
2567 		if (ret == -ENOSPC &&
2568 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2569 			goto retry_journal;
2570 
2571 		page_cache_release(page);
2572 		return ret;
2573 	}
2574 
2575 	*pagep = page;
2576 	return ret;
2577 }
2578 
2579 /*
2580  * Check if we should update i_disksize
2581  * when write to the end of file but not require block allocation
2582  */
2583 static int ext4_da_should_update_i_disksize(struct page *page,
2584 					    unsigned long offset)
2585 {
2586 	struct buffer_head *bh;
2587 	struct inode *inode = page->mapping->host;
2588 	unsigned int idx;
2589 	int i;
2590 
2591 	bh = page_buffers(page);
2592 	idx = offset >> inode->i_blkbits;
2593 
2594 	for (i = 0; i < idx; i++)
2595 		bh = bh->b_this_page;
2596 
2597 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2598 		return 0;
2599 	return 1;
2600 }
2601 
2602 static int ext4_da_write_end(struct file *file,
2603 			     struct address_space *mapping,
2604 			     loff_t pos, unsigned len, unsigned copied,
2605 			     struct page *page, void *fsdata)
2606 {
2607 	struct inode *inode = mapping->host;
2608 	int ret = 0, ret2;
2609 	handle_t *handle = ext4_journal_current_handle();
2610 	loff_t new_i_size;
2611 	unsigned long start, end;
2612 	int write_mode = (int)(unsigned long)fsdata;
2613 
2614 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2615 		return ext4_write_end(file, mapping, pos,
2616 				      len, copied, page, fsdata);
2617 
2618 	trace_ext4_da_write_end(inode, pos, len, copied);
2619 	start = pos & (PAGE_CACHE_SIZE - 1);
2620 	end = start + copied - 1;
2621 
2622 	/*
2623 	 * generic_write_end() will run mark_inode_dirty() if i_size
2624 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2625 	 * into that.
2626 	 */
2627 	new_i_size = pos + copied;
2628 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2629 		if (ext4_has_inline_data(inode) ||
2630 		    ext4_da_should_update_i_disksize(page, end)) {
2631 			ext4_update_i_disksize(inode, new_i_size);
2632 			/* We need to mark inode dirty even if
2633 			 * new_i_size is less that inode->i_size
2634 			 * bu greater than i_disksize.(hint delalloc)
2635 			 */
2636 			ext4_mark_inode_dirty(handle, inode);
2637 		}
2638 	}
2639 
2640 	if (write_mode != CONVERT_INLINE_DATA &&
2641 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2642 	    ext4_has_inline_data(inode))
2643 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2644 						     page);
2645 	else
2646 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2647 							page, fsdata);
2648 
2649 	copied = ret2;
2650 	if (ret2 < 0)
2651 		ret = ret2;
2652 	ret2 = ext4_journal_stop(handle);
2653 	if (!ret)
2654 		ret = ret2;
2655 
2656 	return ret ? ret : copied;
2657 }
2658 
2659 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2660 				   unsigned int length)
2661 {
2662 	/*
2663 	 * Drop reserved blocks
2664 	 */
2665 	BUG_ON(!PageLocked(page));
2666 	if (!page_has_buffers(page))
2667 		goto out;
2668 
2669 	ext4_da_page_release_reservation(page, offset, length);
2670 
2671 out:
2672 	ext4_invalidatepage(page, offset, length);
2673 
2674 	return;
2675 }
2676 
2677 /*
2678  * Force all delayed allocation blocks to be allocated for a given inode.
2679  */
2680 int ext4_alloc_da_blocks(struct inode *inode)
2681 {
2682 	trace_ext4_alloc_da_blocks(inode);
2683 
2684 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2685 		return 0;
2686 
2687 	/*
2688 	 * We do something simple for now.  The filemap_flush() will
2689 	 * also start triggering a write of the data blocks, which is
2690 	 * not strictly speaking necessary (and for users of
2691 	 * laptop_mode, not even desirable).  However, to do otherwise
2692 	 * would require replicating code paths in:
2693 	 *
2694 	 * ext4_writepages() ->
2695 	 *    write_cache_pages() ---> (via passed in callback function)
2696 	 *        __mpage_da_writepage() -->
2697 	 *           mpage_add_bh_to_extent()
2698 	 *           mpage_da_map_blocks()
2699 	 *
2700 	 * The problem is that write_cache_pages(), located in
2701 	 * mm/page-writeback.c, marks pages clean in preparation for
2702 	 * doing I/O, which is not desirable if we're not planning on
2703 	 * doing I/O at all.
2704 	 *
2705 	 * We could call write_cache_pages(), and then redirty all of
2706 	 * the pages by calling redirty_page_for_writepage() but that
2707 	 * would be ugly in the extreme.  So instead we would need to
2708 	 * replicate parts of the code in the above functions,
2709 	 * simplifying them because we wouldn't actually intend to
2710 	 * write out the pages, but rather only collect contiguous
2711 	 * logical block extents, call the multi-block allocator, and
2712 	 * then update the buffer heads with the block allocations.
2713 	 *
2714 	 * For now, though, we'll cheat by calling filemap_flush(),
2715 	 * which will map the blocks, and start the I/O, but not
2716 	 * actually wait for the I/O to complete.
2717 	 */
2718 	return filemap_flush(inode->i_mapping);
2719 }
2720 
2721 /*
2722  * bmap() is special.  It gets used by applications such as lilo and by
2723  * the swapper to find the on-disk block of a specific piece of data.
2724  *
2725  * Naturally, this is dangerous if the block concerned is still in the
2726  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2727  * filesystem and enables swap, then they may get a nasty shock when the
2728  * data getting swapped to that swapfile suddenly gets overwritten by
2729  * the original zero's written out previously to the journal and
2730  * awaiting writeback in the kernel's buffer cache.
2731  *
2732  * So, if we see any bmap calls here on a modified, data-journaled file,
2733  * take extra steps to flush any blocks which might be in the cache.
2734  */
2735 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2736 {
2737 	struct inode *inode = mapping->host;
2738 	journal_t *journal;
2739 	int err;
2740 
2741 	/*
2742 	 * We can get here for an inline file via the FIBMAP ioctl
2743 	 */
2744 	if (ext4_has_inline_data(inode))
2745 		return 0;
2746 
2747 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2748 			test_opt(inode->i_sb, DELALLOC)) {
2749 		/*
2750 		 * With delalloc we want to sync the file
2751 		 * so that we can make sure we allocate
2752 		 * blocks for file
2753 		 */
2754 		filemap_write_and_wait(mapping);
2755 	}
2756 
2757 	if (EXT4_JOURNAL(inode) &&
2758 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2759 		/*
2760 		 * This is a REALLY heavyweight approach, but the use of
2761 		 * bmap on dirty files is expected to be extremely rare:
2762 		 * only if we run lilo or swapon on a freshly made file
2763 		 * do we expect this to happen.
2764 		 *
2765 		 * (bmap requires CAP_SYS_RAWIO so this does not
2766 		 * represent an unprivileged user DOS attack --- we'd be
2767 		 * in trouble if mortal users could trigger this path at
2768 		 * will.)
2769 		 *
2770 		 * NB. EXT4_STATE_JDATA is not set on files other than
2771 		 * regular files.  If somebody wants to bmap a directory
2772 		 * or symlink and gets confused because the buffer
2773 		 * hasn't yet been flushed to disk, they deserve
2774 		 * everything they get.
2775 		 */
2776 
2777 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2778 		journal = EXT4_JOURNAL(inode);
2779 		jbd2_journal_lock_updates(journal);
2780 		err = jbd2_journal_flush(journal);
2781 		jbd2_journal_unlock_updates(journal);
2782 
2783 		if (err)
2784 			return 0;
2785 	}
2786 
2787 	return generic_block_bmap(mapping, block, ext4_get_block);
2788 }
2789 
2790 static int ext4_readpage(struct file *file, struct page *page)
2791 {
2792 	int ret = -EAGAIN;
2793 	struct inode *inode = page->mapping->host;
2794 
2795 	trace_ext4_readpage(page);
2796 
2797 	if (ext4_has_inline_data(inode))
2798 		ret = ext4_readpage_inline(inode, page);
2799 
2800 	if (ret == -EAGAIN)
2801 		return mpage_readpage(page, ext4_get_block);
2802 
2803 	return ret;
2804 }
2805 
2806 static int
2807 ext4_readpages(struct file *file, struct address_space *mapping,
2808 		struct list_head *pages, unsigned nr_pages)
2809 {
2810 	struct inode *inode = mapping->host;
2811 
2812 	/* If the file has inline data, no need to do readpages. */
2813 	if (ext4_has_inline_data(inode))
2814 		return 0;
2815 
2816 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2817 }
2818 
2819 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2820 				unsigned int length)
2821 {
2822 	trace_ext4_invalidatepage(page, offset, length);
2823 
2824 	/* No journalling happens on data buffers when this function is used */
2825 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2826 
2827 	block_invalidatepage(page, offset, length);
2828 }
2829 
2830 static int __ext4_journalled_invalidatepage(struct page *page,
2831 					    unsigned int offset,
2832 					    unsigned int length)
2833 {
2834 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2835 
2836 	trace_ext4_journalled_invalidatepage(page, offset, length);
2837 
2838 	/*
2839 	 * If it's a full truncate we just forget about the pending dirtying
2840 	 */
2841 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2842 		ClearPageChecked(page);
2843 
2844 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2845 }
2846 
2847 /* Wrapper for aops... */
2848 static void ext4_journalled_invalidatepage(struct page *page,
2849 					   unsigned int offset,
2850 					   unsigned int length)
2851 {
2852 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2853 }
2854 
2855 static int ext4_releasepage(struct page *page, gfp_t wait)
2856 {
2857 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858 
2859 	trace_ext4_releasepage(page);
2860 
2861 	/* Page has dirty journalled data -> cannot release */
2862 	if (PageChecked(page))
2863 		return 0;
2864 	if (journal)
2865 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2866 	else
2867 		return try_to_free_buffers(page);
2868 }
2869 
2870 /*
2871  * ext4_get_block used when preparing for a DIO write or buffer write.
2872  * We allocate an uinitialized extent if blocks haven't been allocated.
2873  * The extent will be converted to initialized after the IO is complete.
2874  */
2875 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2876 		   struct buffer_head *bh_result, int create)
2877 {
2878 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2879 		   inode->i_ino, create);
2880 	return _ext4_get_block(inode, iblock, bh_result,
2881 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2882 }
2883 
2884 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2885 		   struct buffer_head *bh_result, int create)
2886 {
2887 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2888 		   inode->i_ino, create);
2889 	return _ext4_get_block(inode, iblock, bh_result,
2890 			       EXT4_GET_BLOCKS_NO_LOCK);
2891 }
2892 
2893 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2894 			    ssize_t size, void *private)
2895 {
2896         ext4_io_end_t *io_end = iocb->private;
2897 
2898 	/* if not async direct IO just return */
2899 	if (!io_end)
2900 		return;
2901 
2902 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2903 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2904  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2905 		  size);
2906 
2907 	iocb->private = NULL;
2908 	io_end->offset = offset;
2909 	io_end->size = size;
2910 	ext4_put_io_end(io_end);
2911 }
2912 
2913 /*
2914  * For ext4 extent files, ext4 will do direct-io write to holes,
2915  * preallocated extents, and those write extend the file, no need to
2916  * fall back to buffered IO.
2917  *
2918  * For holes, we fallocate those blocks, mark them as unwritten
2919  * If those blocks were preallocated, we mark sure they are split, but
2920  * still keep the range to write as unwritten.
2921  *
2922  * The unwritten extents will be converted to written when DIO is completed.
2923  * For async direct IO, since the IO may still pending when return, we
2924  * set up an end_io call back function, which will do the conversion
2925  * when async direct IO completed.
2926  *
2927  * If the O_DIRECT write will extend the file then add this inode to the
2928  * orphan list.  So recovery will truncate it back to the original size
2929  * if the machine crashes during the write.
2930  *
2931  */
2932 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2933 			      struct iov_iter *iter, loff_t offset)
2934 {
2935 	struct file *file = iocb->ki_filp;
2936 	struct inode *inode = file->f_mapping->host;
2937 	ssize_t ret;
2938 	size_t count = iov_iter_count(iter);
2939 	int overwrite = 0;
2940 	get_block_t *get_block_func = NULL;
2941 	int dio_flags = 0;
2942 	loff_t final_size = offset + count;
2943 	ext4_io_end_t *io_end = NULL;
2944 
2945 	/* Use the old path for reads and writes beyond i_size. */
2946 	if (rw != WRITE || final_size > inode->i_size)
2947 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
2948 
2949 	BUG_ON(iocb->private == NULL);
2950 
2951 	/*
2952 	 * Make all waiters for direct IO properly wait also for extent
2953 	 * conversion. This also disallows race between truncate() and
2954 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2955 	 */
2956 	if (rw == WRITE)
2957 		atomic_inc(&inode->i_dio_count);
2958 
2959 	/* If we do a overwrite dio, i_mutex locking can be released */
2960 	overwrite = *((int *)iocb->private);
2961 
2962 	if (overwrite) {
2963 		down_read(&EXT4_I(inode)->i_data_sem);
2964 		mutex_unlock(&inode->i_mutex);
2965 	}
2966 
2967 	/*
2968 	 * We could direct write to holes and fallocate.
2969 	 *
2970 	 * Allocated blocks to fill the hole are marked as
2971 	 * unwritten to prevent parallel buffered read to expose
2972 	 * the stale data before DIO complete the data IO.
2973 	 *
2974 	 * As to previously fallocated extents, ext4 get_block will
2975 	 * just simply mark the buffer mapped but still keep the
2976 	 * extents unwritten.
2977 	 *
2978 	 * For non AIO case, we will convert those unwritten extents
2979 	 * to written after return back from blockdev_direct_IO.
2980 	 *
2981 	 * For async DIO, the conversion needs to be deferred when the
2982 	 * IO is completed. The ext4 end_io callback function will be
2983 	 * called to take care of the conversion work.  Here for async
2984 	 * case, we allocate an io_end structure to hook to the iocb.
2985 	 */
2986 	iocb->private = NULL;
2987 	ext4_inode_aio_set(inode, NULL);
2988 	if (!is_sync_kiocb(iocb)) {
2989 		io_end = ext4_init_io_end(inode, GFP_NOFS);
2990 		if (!io_end) {
2991 			ret = -ENOMEM;
2992 			goto retake_lock;
2993 		}
2994 		/*
2995 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
2996 		 */
2997 		iocb->private = ext4_get_io_end(io_end);
2998 		/*
2999 		 * we save the io structure for current async direct
3000 		 * IO, so that later ext4_map_blocks() could flag the
3001 		 * io structure whether there is a unwritten extents
3002 		 * needs to be converted when IO is completed.
3003 		 */
3004 		ext4_inode_aio_set(inode, io_end);
3005 	}
3006 
3007 	if (overwrite) {
3008 		get_block_func = ext4_get_block_write_nolock;
3009 	} else {
3010 		get_block_func = ext4_get_block_write;
3011 		dio_flags = DIO_LOCKING;
3012 	}
3013 	ret = __blockdev_direct_IO(rw, iocb, inode,
3014 				   inode->i_sb->s_bdev, iter,
3015 				   offset,
3016 				   get_block_func,
3017 				   ext4_end_io_dio,
3018 				   NULL,
3019 				   dio_flags);
3020 
3021 	/*
3022 	 * Put our reference to io_end. This can free the io_end structure e.g.
3023 	 * in sync IO case or in case of error. It can even perform extent
3024 	 * conversion if all bios we submitted finished before we got here.
3025 	 * Note that in that case iocb->private can be already set to NULL
3026 	 * here.
3027 	 */
3028 	if (io_end) {
3029 		ext4_inode_aio_set(inode, NULL);
3030 		ext4_put_io_end(io_end);
3031 		/*
3032 		 * When no IO was submitted ext4_end_io_dio() was not
3033 		 * called so we have to put iocb's reference.
3034 		 */
3035 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3036 			WARN_ON(iocb->private != io_end);
3037 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3038 			ext4_put_io_end(io_end);
3039 			iocb->private = NULL;
3040 		}
3041 	}
3042 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3043 						EXT4_STATE_DIO_UNWRITTEN)) {
3044 		int err;
3045 		/*
3046 		 * for non AIO case, since the IO is already
3047 		 * completed, we could do the conversion right here
3048 		 */
3049 		err = ext4_convert_unwritten_extents(NULL, inode,
3050 						     offset, ret);
3051 		if (err < 0)
3052 			ret = err;
3053 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3054 	}
3055 
3056 retake_lock:
3057 	if (rw == WRITE)
3058 		inode_dio_done(inode);
3059 	/* take i_mutex locking again if we do a ovewrite dio */
3060 	if (overwrite) {
3061 		up_read(&EXT4_I(inode)->i_data_sem);
3062 		mutex_lock(&inode->i_mutex);
3063 	}
3064 
3065 	return ret;
3066 }
3067 
3068 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3069 			      struct iov_iter *iter, loff_t offset)
3070 {
3071 	struct file *file = iocb->ki_filp;
3072 	struct inode *inode = file->f_mapping->host;
3073 	size_t count = iov_iter_count(iter);
3074 	ssize_t ret;
3075 
3076 	/*
3077 	 * If we are doing data journalling we don't support O_DIRECT
3078 	 */
3079 	if (ext4_should_journal_data(inode))
3080 		return 0;
3081 
3082 	/* Let buffer I/O handle the inline data case. */
3083 	if (ext4_has_inline_data(inode))
3084 		return 0;
3085 
3086 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3087 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3088 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3089 	else
3090 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3091 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3092 	return ret;
3093 }
3094 
3095 /*
3096  * Pages can be marked dirty completely asynchronously from ext4's journalling
3097  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3098  * much here because ->set_page_dirty is called under VFS locks.  The page is
3099  * not necessarily locked.
3100  *
3101  * We cannot just dirty the page and leave attached buffers clean, because the
3102  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3103  * or jbddirty because all the journalling code will explode.
3104  *
3105  * So what we do is to mark the page "pending dirty" and next time writepage
3106  * is called, propagate that into the buffers appropriately.
3107  */
3108 static int ext4_journalled_set_page_dirty(struct page *page)
3109 {
3110 	SetPageChecked(page);
3111 	return __set_page_dirty_nobuffers(page);
3112 }
3113 
3114 static const struct address_space_operations ext4_aops = {
3115 	.readpage		= ext4_readpage,
3116 	.readpages		= ext4_readpages,
3117 	.writepage		= ext4_writepage,
3118 	.writepages		= ext4_writepages,
3119 	.write_begin		= ext4_write_begin,
3120 	.write_end		= ext4_write_end,
3121 	.bmap			= ext4_bmap,
3122 	.invalidatepage		= ext4_invalidatepage,
3123 	.releasepage		= ext4_releasepage,
3124 	.direct_IO		= ext4_direct_IO,
3125 	.migratepage		= buffer_migrate_page,
3126 	.is_partially_uptodate  = block_is_partially_uptodate,
3127 	.error_remove_page	= generic_error_remove_page,
3128 };
3129 
3130 static const struct address_space_operations ext4_journalled_aops = {
3131 	.readpage		= ext4_readpage,
3132 	.readpages		= ext4_readpages,
3133 	.writepage		= ext4_writepage,
3134 	.writepages		= ext4_writepages,
3135 	.write_begin		= ext4_write_begin,
3136 	.write_end		= ext4_journalled_write_end,
3137 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3138 	.bmap			= ext4_bmap,
3139 	.invalidatepage		= ext4_journalled_invalidatepage,
3140 	.releasepage		= ext4_releasepage,
3141 	.direct_IO		= ext4_direct_IO,
3142 	.is_partially_uptodate  = block_is_partially_uptodate,
3143 	.error_remove_page	= generic_error_remove_page,
3144 };
3145 
3146 static const struct address_space_operations ext4_da_aops = {
3147 	.readpage		= ext4_readpage,
3148 	.readpages		= ext4_readpages,
3149 	.writepage		= ext4_writepage,
3150 	.writepages		= ext4_writepages,
3151 	.write_begin		= ext4_da_write_begin,
3152 	.write_end		= ext4_da_write_end,
3153 	.bmap			= ext4_bmap,
3154 	.invalidatepage		= ext4_da_invalidatepage,
3155 	.releasepage		= ext4_releasepage,
3156 	.direct_IO		= ext4_direct_IO,
3157 	.migratepage		= buffer_migrate_page,
3158 	.is_partially_uptodate  = block_is_partially_uptodate,
3159 	.error_remove_page	= generic_error_remove_page,
3160 };
3161 
3162 void ext4_set_aops(struct inode *inode)
3163 {
3164 	switch (ext4_inode_journal_mode(inode)) {
3165 	case EXT4_INODE_ORDERED_DATA_MODE:
3166 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3167 		break;
3168 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3169 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3170 		break;
3171 	case EXT4_INODE_JOURNAL_DATA_MODE:
3172 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3173 		return;
3174 	default:
3175 		BUG();
3176 	}
3177 	if (test_opt(inode->i_sb, DELALLOC))
3178 		inode->i_mapping->a_ops = &ext4_da_aops;
3179 	else
3180 		inode->i_mapping->a_ops = &ext4_aops;
3181 }
3182 
3183 /*
3184  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3185  * starting from file offset 'from'.  The range to be zero'd must
3186  * be contained with in one block.  If the specified range exceeds
3187  * the end of the block it will be shortened to end of the block
3188  * that cooresponds to 'from'
3189  */
3190 static int ext4_block_zero_page_range(handle_t *handle,
3191 		struct address_space *mapping, loff_t from, loff_t length)
3192 {
3193 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3194 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3195 	unsigned blocksize, max, pos;
3196 	ext4_lblk_t iblock;
3197 	struct inode *inode = mapping->host;
3198 	struct buffer_head *bh;
3199 	struct page *page;
3200 	int err = 0;
3201 
3202 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3203 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3204 	if (!page)
3205 		return -ENOMEM;
3206 
3207 	blocksize = inode->i_sb->s_blocksize;
3208 	max = blocksize - (offset & (blocksize - 1));
3209 
3210 	/*
3211 	 * correct length if it does not fall between
3212 	 * 'from' and the end of the block
3213 	 */
3214 	if (length > max || length < 0)
3215 		length = max;
3216 
3217 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3218 
3219 	if (!page_has_buffers(page))
3220 		create_empty_buffers(page, blocksize, 0);
3221 
3222 	/* Find the buffer that contains "offset" */
3223 	bh = page_buffers(page);
3224 	pos = blocksize;
3225 	while (offset >= pos) {
3226 		bh = bh->b_this_page;
3227 		iblock++;
3228 		pos += blocksize;
3229 	}
3230 	if (buffer_freed(bh)) {
3231 		BUFFER_TRACE(bh, "freed: skip");
3232 		goto unlock;
3233 	}
3234 	if (!buffer_mapped(bh)) {
3235 		BUFFER_TRACE(bh, "unmapped");
3236 		ext4_get_block(inode, iblock, bh, 0);
3237 		/* unmapped? It's a hole - nothing to do */
3238 		if (!buffer_mapped(bh)) {
3239 			BUFFER_TRACE(bh, "still unmapped");
3240 			goto unlock;
3241 		}
3242 	}
3243 
3244 	/* Ok, it's mapped. Make sure it's up-to-date */
3245 	if (PageUptodate(page))
3246 		set_buffer_uptodate(bh);
3247 
3248 	if (!buffer_uptodate(bh)) {
3249 		err = -EIO;
3250 		ll_rw_block(READ, 1, &bh);
3251 		wait_on_buffer(bh);
3252 		/* Uhhuh. Read error. Complain and punt. */
3253 		if (!buffer_uptodate(bh))
3254 			goto unlock;
3255 	}
3256 	if (ext4_should_journal_data(inode)) {
3257 		BUFFER_TRACE(bh, "get write access");
3258 		err = ext4_journal_get_write_access(handle, bh);
3259 		if (err)
3260 			goto unlock;
3261 	}
3262 	zero_user(page, offset, length);
3263 	BUFFER_TRACE(bh, "zeroed end of block");
3264 
3265 	if (ext4_should_journal_data(inode)) {
3266 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3267 	} else {
3268 		err = 0;
3269 		mark_buffer_dirty(bh);
3270 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3271 			err = ext4_jbd2_file_inode(handle, inode);
3272 	}
3273 
3274 unlock:
3275 	unlock_page(page);
3276 	page_cache_release(page);
3277 	return err;
3278 }
3279 
3280 /*
3281  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3282  * up to the end of the block which corresponds to `from'.
3283  * This required during truncate. We need to physically zero the tail end
3284  * of that block so it doesn't yield old data if the file is later grown.
3285  */
3286 static int ext4_block_truncate_page(handle_t *handle,
3287 		struct address_space *mapping, loff_t from)
3288 {
3289 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3290 	unsigned length;
3291 	unsigned blocksize;
3292 	struct inode *inode = mapping->host;
3293 
3294 	blocksize = inode->i_sb->s_blocksize;
3295 	length = blocksize - (offset & (blocksize - 1));
3296 
3297 	return ext4_block_zero_page_range(handle, mapping, from, length);
3298 }
3299 
3300 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3301 			     loff_t lstart, loff_t length)
3302 {
3303 	struct super_block *sb = inode->i_sb;
3304 	struct address_space *mapping = inode->i_mapping;
3305 	unsigned partial_start, partial_end;
3306 	ext4_fsblk_t start, end;
3307 	loff_t byte_end = (lstart + length - 1);
3308 	int err = 0;
3309 
3310 	partial_start = lstart & (sb->s_blocksize - 1);
3311 	partial_end = byte_end & (sb->s_blocksize - 1);
3312 
3313 	start = lstart >> sb->s_blocksize_bits;
3314 	end = byte_end >> sb->s_blocksize_bits;
3315 
3316 	/* Handle partial zero within the single block */
3317 	if (start == end &&
3318 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3319 		err = ext4_block_zero_page_range(handle, mapping,
3320 						 lstart, length);
3321 		return err;
3322 	}
3323 	/* Handle partial zero out on the start of the range */
3324 	if (partial_start) {
3325 		err = ext4_block_zero_page_range(handle, mapping,
3326 						 lstart, sb->s_blocksize);
3327 		if (err)
3328 			return err;
3329 	}
3330 	/* Handle partial zero out on the end of the range */
3331 	if (partial_end != sb->s_blocksize - 1)
3332 		err = ext4_block_zero_page_range(handle, mapping,
3333 						 byte_end - partial_end,
3334 						 partial_end + 1);
3335 	return err;
3336 }
3337 
3338 int ext4_can_truncate(struct inode *inode)
3339 {
3340 	if (S_ISREG(inode->i_mode))
3341 		return 1;
3342 	if (S_ISDIR(inode->i_mode))
3343 		return 1;
3344 	if (S_ISLNK(inode->i_mode))
3345 		return !ext4_inode_is_fast_symlink(inode);
3346 	return 0;
3347 }
3348 
3349 /*
3350  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3351  * associated with the given offset and length
3352  *
3353  * @inode:  File inode
3354  * @offset: The offset where the hole will begin
3355  * @len:    The length of the hole
3356  *
3357  * Returns: 0 on success or negative on failure
3358  */
3359 
3360 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3361 {
3362 	struct super_block *sb = inode->i_sb;
3363 	ext4_lblk_t first_block, stop_block;
3364 	struct address_space *mapping = inode->i_mapping;
3365 	loff_t first_block_offset, last_block_offset;
3366 	handle_t *handle;
3367 	unsigned int credits;
3368 	int ret = 0;
3369 
3370 	if (!S_ISREG(inode->i_mode))
3371 		return -EOPNOTSUPP;
3372 
3373 	trace_ext4_punch_hole(inode, offset, length, 0);
3374 
3375 	/*
3376 	 * Write out all dirty pages to avoid race conditions
3377 	 * Then release them.
3378 	 */
3379 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3380 		ret = filemap_write_and_wait_range(mapping, offset,
3381 						   offset + length - 1);
3382 		if (ret)
3383 			return ret;
3384 	}
3385 
3386 	mutex_lock(&inode->i_mutex);
3387 
3388 	/* No need to punch hole beyond i_size */
3389 	if (offset >= inode->i_size)
3390 		goto out_mutex;
3391 
3392 	/*
3393 	 * If the hole extends beyond i_size, set the hole
3394 	 * to end after the page that contains i_size
3395 	 */
3396 	if (offset + length > inode->i_size) {
3397 		length = inode->i_size +
3398 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3399 		   offset;
3400 	}
3401 
3402 	if (offset & (sb->s_blocksize - 1) ||
3403 	    (offset + length) & (sb->s_blocksize - 1)) {
3404 		/*
3405 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3406 		 * partial block
3407 		 */
3408 		ret = ext4_inode_attach_jinode(inode);
3409 		if (ret < 0)
3410 			goto out_mutex;
3411 
3412 	}
3413 
3414 	first_block_offset = round_up(offset, sb->s_blocksize);
3415 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3416 
3417 	/* Now release the pages and zero block aligned part of pages*/
3418 	if (last_block_offset > first_block_offset)
3419 		truncate_pagecache_range(inode, first_block_offset,
3420 					 last_block_offset);
3421 
3422 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3423 	ext4_inode_block_unlocked_dio(inode);
3424 	inode_dio_wait(inode);
3425 
3426 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3427 		credits = ext4_writepage_trans_blocks(inode);
3428 	else
3429 		credits = ext4_blocks_for_truncate(inode);
3430 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3431 	if (IS_ERR(handle)) {
3432 		ret = PTR_ERR(handle);
3433 		ext4_std_error(sb, ret);
3434 		goto out_dio;
3435 	}
3436 
3437 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3438 				       length);
3439 	if (ret)
3440 		goto out_stop;
3441 
3442 	first_block = (offset + sb->s_blocksize - 1) >>
3443 		EXT4_BLOCK_SIZE_BITS(sb);
3444 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3445 
3446 	/* If there are no blocks to remove, return now */
3447 	if (first_block >= stop_block)
3448 		goto out_stop;
3449 
3450 	down_write(&EXT4_I(inode)->i_data_sem);
3451 	ext4_discard_preallocations(inode);
3452 
3453 	ret = ext4_es_remove_extent(inode, first_block,
3454 				    stop_block - first_block);
3455 	if (ret) {
3456 		up_write(&EXT4_I(inode)->i_data_sem);
3457 		goto out_stop;
3458 	}
3459 
3460 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461 		ret = ext4_ext_remove_space(inode, first_block,
3462 					    stop_block - 1);
3463 	else
3464 		ret = ext4_ind_remove_space(handle, inode, first_block,
3465 					    stop_block);
3466 
3467 	up_write(&EXT4_I(inode)->i_data_sem);
3468 	if (IS_SYNC(inode))
3469 		ext4_handle_sync(handle);
3470 
3471 	/* Now release the pages again to reduce race window */
3472 	if (last_block_offset > first_block_offset)
3473 		truncate_pagecache_range(inode, first_block_offset,
3474 					 last_block_offset);
3475 
3476 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3477 	ext4_mark_inode_dirty(handle, inode);
3478 out_stop:
3479 	ext4_journal_stop(handle);
3480 out_dio:
3481 	ext4_inode_resume_unlocked_dio(inode);
3482 out_mutex:
3483 	mutex_unlock(&inode->i_mutex);
3484 	return ret;
3485 }
3486 
3487 int ext4_inode_attach_jinode(struct inode *inode)
3488 {
3489 	struct ext4_inode_info *ei = EXT4_I(inode);
3490 	struct jbd2_inode *jinode;
3491 
3492 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3493 		return 0;
3494 
3495 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3496 	spin_lock(&inode->i_lock);
3497 	if (!ei->jinode) {
3498 		if (!jinode) {
3499 			spin_unlock(&inode->i_lock);
3500 			return -ENOMEM;
3501 		}
3502 		ei->jinode = jinode;
3503 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3504 		jinode = NULL;
3505 	}
3506 	spin_unlock(&inode->i_lock);
3507 	if (unlikely(jinode != NULL))
3508 		jbd2_free_inode(jinode);
3509 	return 0;
3510 }
3511 
3512 /*
3513  * ext4_truncate()
3514  *
3515  * We block out ext4_get_block() block instantiations across the entire
3516  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3517  * simultaneously on behalf of the same inode.
3518  *
3519  * As we work through the truncate and commit bits of it to the journal there
3520  * is one core, guiding principle: the file's tree must always be consistent on
3521  * disk.  We must be able to restart the truncate after a crash.
3522  *
3523  * The file's tree may be transiently inconsistent in memory (although it
3524  * probably isn't), but whenever we close off and commit a journal transaction,
3525  * the contents of (the filesystem + the journal) must be consistent and
3526  * restartable.  It's pretty simple, really: bottom up, right to left (although
3527  * left-to-right works OK too).
3528  *
3529  * Note that at recovery time, journal replay occurs *before* the restart of
3530  * truncate against the orphan inode list.
3531  *
3532  * The committed inode has the new, desired i_size (which is the same as
3533  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3534  * that this inode's truncate did not complete and it will again call
3535  * ext4_truncate() to have another go.  So there will be instantiated blocks
3536  * to the right of the truncation point in a crashed ext4 filesystem.  But
3537  * that's fine - as long as they are linked from the inode, the post-crash
3538  * ext4_truncate() run will find them and release them.
3539  */
3540 void ext4_truncate(struct inode *inode)
3541 {
3542 	struct ext4_inode_info *ei = EXT4_I(inode);
3543 	unsigned int credits;
3544 	handle_t *handle;
3545 	struct address_space *mapping = inode->i_mapping;
3546 
3547 	/*
3548 	 * There is a possibility that we're either freeing the inode
3549 	 * or it's a completely new inode. In those cases we might not
3550 	 * have i_mutex locked because it's not necessary.
3551 	 */
3552 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3553 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3554 	trace_ext4_truncate_enter(inode);
3555 
3556 	if (!ext4_can_truncate(inode))
3557 		return;
3558 
3559 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3560 
3561 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3562 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3563 
3564 	if (ext4_has_inline_data(inode)) {
3565 		int has_inline = 1;
3566 
3567 		ext4_inline_data_truncate(inode, &has_inline);
3568 		if (has_inline)
3569 			return;
3570 	}
3571 
3572 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3573 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3574 		if (ext4_inode_attach_jinode(inode) < 0)
3575 			return;
3576 	}
3577 
3578 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579 		credits = ext4_writepage_trans_blocks(inode);
3580 	else
3581 		credits = ext4_blocks_for_truncate(inode);
3582 
3583 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584 	if (IS_ERR(handle)) {
3585 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3586 		return;
3587 	}
3588 
3589 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3590 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3591 
3592 	/*
3593 	 * We add the inode to the orphan list, so that if this
3594 	 * truncate spans multiple transactions, and we crash, we will
3595 	 * resume the truncate when the filesystem recovers.  It also
3596 	 * marks the inode dirty, to catch the new size.
3597 	 *
3598 	 * Implication: the file must always be in a sane, consistent
3599 	 * truncatable state while each transaction commits.
3600 	 */
3601 	if (ext4_orphan_add(handle, inode))
3602 		goto out_stop;
3603 
3604 	down_write(&EXT4_I(inode)->i_data_sem);
3605 
3606 	ext4_discard_preallocations(inode);
3607 
3608 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3609 		ext4_ext_truncate(handle, inode);
3610 	else
3611 		ext4_ind_truncate(handle, inode);
3612 
3613 	up_write(&ei->i_data_sem);
3614 
3615 	if (IS_SYNC(inode))
3616 		ext4_handle_sync(handle);
3617 
3618 out_stop:
3619 	/*
3620 	 * If this was a simple ftruncate() and the file will remain alive,
3621 	 * then we need to clear up the orphan record which we created above.
3622 	 * However, if this was a real unlink then we were called by
3623 	 * ext4_evict_inode(), and we allow that function to clean up the
3624 	 * orphan info for us.
3625 	 */
3626 	if (inode->i_nlink)
3627 		ext4_orphan_del(handle, inode);
3628 
3629 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630 	ext4_mark_inode_dirty(handle, inode);
3631 	ext4_journal_stop(handle);
3632 
3633 	trace_ext4_truncate_exit(inode);
3634 }
3635 
3636 /*
3637  * ext4_get_inode_loc returns with an extra refcount against the inode's
3638  * underlying buffer_head on success. If 'in_mem' is true, we have all
3639  * data in memory that is needed to recreate the on-disk version of this
3640  * inode.
3641  */
3642 static int __ext4_get_inode_loc(struct inode *inode,
3643 				struct ext4_iloc *iloc, int in_mem)
3644 {
3645 	struct ext4_group_desc	*gdp;
3646 	struct buffer_head	*bh;
3647 	struct super_block	*sb = inode->i_sb;
3648 	ext4_fsblk_t		block;
3649 	int			inodes_per_block, inode_offset;
3650 
3651 	iloc->bh = NULL;
3652 	if (!ext4_valid_inum(sb, inode->i_ino))
3653 		return -EIO;
3654 
3655 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3656 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3657 	if (!gdp)
3658 		return -EIO;
3659 
3660 	/*
3661 	 * Figure out the offset within the block group inode table
3662 	 */
3663 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3664 	inode_offset = ((inode->i_ino - 1) %
3665 			EXT4_INODES_PER_GROUP(sb));
3666 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3667 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3668 
3669 	bh = sb_getblk(sb, block);
3670 	if (unlikely(!bh))
3671 		return -ENOMEM;
3672 	if (!buffer_uptodate(bh)) {
3673 		lock_buffer(bh);
3674 
3675 		/*
3676 		 * If the buffer has the write error flag, we have failed
3677 		 * to write out another inode in the same block.  In this
3678 		 * case, we don't have to read the block because we may
3679 		 * read the old inode data successfully.
3680 		 */
3681 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3682 			set_buffer_uptodate(bh);
3683 
3684 		if (buffer_uptodate(bh)) {
3685 			/* someone brought it uptodate while we waited */
3686 			unlock_buffer(bh);
3687 			goto has_buffer;
3688 		}
3689 
3690 		/*
3691 		 * If we have all information of the inode in memory and this
3692 		 * is the only valid inode in the block, we need not read the
3693 		 * block.
3694 		 */
3695 		if (in_mem) {
3696 			struct buffer_head *bitmap_bh;
3697 			int i, start;
3698 
3699 			start = inode_offset & ~(inodes_per_block - 1);
3700 
3701 			/* Is the inode bitmap in cache? */
3702 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3703 			if (unlikely(!bitmap_bh))
3704 				goto make_io;
3705 
3706 			/*
3707 			 * If the inode bitmap isn't in cache then the
3708 			 * optimisation may end up performing two reads instead
3709 			 * of one, so skip it.
3710 			 */
3711 			if (!buffer_uptodate(bitmap_bh)) {
3712 				brelse(bitmap_bh);
3713 				goto make_io;
3714 			}
3715 			for (i = start; i < start + inodes_per_block; i++) {
3716 				if (i == inode_offset)
3717 					continue;
3718 				if (ext4_test_bit(i, bitmap_bh->b_data))
3719 					break;
3720 			}
3721 			brelse(bitmap_bh);
3722 			if (i == start + inodes_per_block) {
3723 				/* all other inodes are free, so skip I/O */
3724 				memset(bh->b_data, 0, bh->b_size);
3725 				set_buffer_uptodate(bh);
3726 				unlock_buffer(bh);
3727 				goto has_buffer;
3728 			}
3729 		}
3730 
3731 make_io:
3732 		/*
3733 		 * If we need to do any I/O, try to pre-readahead extra
3734 		 * blocks from the inode table.
3735 		 */
3736 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3737 			ext4_fsblk_t b, end, table;
3738 			unsigned num;
3739 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3740 
3741 			table = ext4_inode_table(sb, gdp);
3742 			/* s_inode_readahead_blks is always a power of 2 */
3743 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3744 			if (table > b)
3745 				b = table;
3746 			end = b + ra_blks;
3747 			num = EXT4_INODES_PER_GROUP(sb);
3748 			if (ext4_has_group_desc_csum(sb))
3749 				num -= ext4_itable_unused_count(sb, gdp);
3750 			table += num / inodes_per_block;
3751 			if (end > table)
3752 				end = table;
3753 			while (b <= end)
3754 				sb_breadahead(sb, b++);
3755 		}
3756 
3757 		/*
3758 		 * There are other valid inodes in the buffer, this inode
3759 		 * has in-inode xattrs, or we don't have this inode in memory.
3760 		 * Read the block from disk.
3761 		 */
3762 		trace_ext4_load_inode(inode);
3763 		get_bh(bh);
3764 		bh->b_end_io = end_buffer_read_sync;
3765 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3766 		wait_on_buffer(bh);
3767 		if (!buffer_uptodate(bh)) {
3768 			EXT4_ERROR_INODE_BLOCK(inode, block,
3769 					       "unable to read itable block");
3770 			brelse(bh);
3771 			return -EIO;
3772 		}
3773 	}
3774 has_buffer:
3775 	iloc->bh = bh;
3776 	return 0;
3777 }
3778 
3779 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3780 {
3781 	/* We have all inode data except xattrs in memory here. */
3782 	return __ext4_get_inode_loc(inode, iloc,
3783 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3784 }
3785 
3786 void ext4_set_inode_flags(struct inode *inode)
3787 {
3788 	unsigned int flags = EXT4_I(inode)->i_flags;
3789 	unsigned int new_fl = 0;
3790 
3791 	if (flags & EXT4_SYNC_FL)
3792 		new_fl |= S_SYNC;
3793 	if (flags & EXT4_APPEND_FL)
3794 		new_fl |= S_APPEND;
3795 	if (flags & EXT4_IMMUTABLE_FL)
3796 		new_fl |= S_IMMUTABLE;
3797 	if (flags & EXT4_NOATIME_FL)
3798 		new_fl |= S_NOATIME;
3799 	if (flags & EXT4_DIRSYNC_FL)
3800 		new_fl |= S_DIRSYNC;
3801 	inode_set_flags(inode, new_fl,
3802 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3803 }
3804 
3805 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3806 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3807 {
3808 	unsigned int vfs_fl;
3809 	unsigned long old_fl, new_fl;
3810 
3811 	do {
3812 		vfs_fl = ei->vfs_inode.i_flags;
3813 		old_fl = ei->i_flags;
3814 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3815 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3816 				EXT4_DIRSYNC_FL);
3817 		if (vfs_fl & S_SYNC)
3818 			new_fl |= EXT4_SYNC_FL;
3819 		if (vfs_fl & S_APPEND)
3820 			new_fl |= EXT4_APPEND_FL;
3821 		if (vfs_fl & S_IMMUTABLE)
3822 			new_fl |= EXT4_IMMUTABLE_FL;
3823 		if (vfs_fl & S_NOATIME)
3824 			new_fl |= EXT4_NOATIME_FL;
3825 		if (vfs_fl & S_DIRSYNC)
3826 			new_fl |= EXT4_DIRSYNC_FL;
3827 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3828 }
3829 
3830 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3831 				  struct ext4_inode_info *ei)
3832 {
3833 	blkcnt_t i_blocks ;
3834 	struct inode *inode = &(ei->vfs_inode);
3835 	struct super_block *sb = inode->i_sb;
3836 
3837 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3838 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3839 		/* we are using combined 48 bit field */
3840 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3841 					le32_to_cpu(raw_inode->i_blocks_lo);
3842 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3843 			/* i_blocks represent file system block size */
3844 			return i_blocks  << (inode->i_blkbits - 9);
3845 		} else {
3846 			return i_blocks;
3847 		}
3848 	} else {
3849 		return le32_to_cpu(raw_inode->i_blocks_lo);
3850 	}
3851 }
3852 
3853 static inline void ext4_iget_extra_inode(struct inode *inode,
3854 					 struct ext4_inode *raw_inode,
3855 					 struct ext4_inode_info *ei)
3856 {
3857 	__le32 *magic = (void *)raw_inode +
3858 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3859 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3860 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3861 		ext4_find_inline_data_nolock(inode);
3862 	} else
3863 		EXT4_I(inode)->i_inline_off = 0;
3864 }
3865 
3866 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3867 {
3868 	struct ext4_iloc iloc;
3869 	struct ext4_inode *raw_inode;
3870 	struct ext4_inode_info *ei;
3871 	struct inode *inode;
3872 	journal_t *journal = EXT4_SB(sb)->s_journal;
3873 	long ret;
3874 	int block;
3875 	uid_t i_uid;
3876 	gid_t i_gid;
3877 
3878 	inode = iget_locked(sb, ino);
3879 	if (!inode)
3880 		return ERR_PTR(-ENOMEM);
3881 	if (!(inode->i_state & I_NEW))
3882 		return inode;
3883 
3884 	ei = EXT4_I(inode);
3885 	iloc.bh = NULL;
3886 
3887 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3888 	if (ret < 0)
3889 		goto bad_inode;
3890 	raw_inode = ext4_raw_inode(&iloc);
3891 
3892 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3894 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3895 		    EXT4_INODE_SIZE(inode->i_sb)) {
3896 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3897 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3898 				EXT4_INODE_SIZE(inode->i_sb));
3899 			ret = -EIO;
3900 			goto bad_inode;
3901 		}
3902 	} else
3903 		ei->i_extra_isize = 0;
3904 
3905 	/* Precompute checksum seed for inode metadata */
3906 	if (ext4_has_metadata_csum(sb)) {
3907 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3908 		__u32 csum;
3909 		__le32 inum = cpu_to_le32(inode->i_ino);
3910 		__le32 gen = raw_inode->i_generation;
3911 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3912 				   sizeof(inum));
3913 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3914 					      sizeof(gen));
3915 	}
3916 
3917 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3918 		EXT4_ERROR_INODE(inode, "checksum invalid");
3919 		ret = -EIO;
3920 		goto bad_inode;
3921 	}
3922 
3923 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3924 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3925 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3926 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3927 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3928 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3929 	}
3930 	i_uid_write(inode, i_uid);
3931 	i_gid_write(inode, i_gid);
3932 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3933 
3934 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3935 	ei->i_inline_off = 0;
3936 	ei->i_dir_start_lookup = 0;
3937 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3938 	/* We now have enough fields to check if the inode was active or not.
3939 	 * This is needed because nfsd might try to access dead inodes
3940 	 * the test is that same one that e2fsck uses
3941 	 * NeilBrown 1999oct15
3942 	 */
3943 	if (inode->i_nlink == 0) {
3944 		if ((inode->i_mode == 0 ||
3945 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3946 		    ino != EXT4_BOOT_LOADER_INO) {
3947 			/* this inode is deleted */
3948 			ret = -ESTALE;
3949 			goto bad_inode;
3950 		}
3951 		/* The only unlinked inodes we let through here have
3952 		 * valid i_mode and are being read by the orphan
3953 		 * recovery code: that's fine, we're about to complete
3954 		 * the process of deleting those.
3955 		 * OR it is the EXT4_BOOT_LOADER_INO which is
3956 		 * not initialized on a new filesystem. */
3957 	}
3958 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3959 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3960 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3961 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3962 		ei->i_file_acl |=
3963 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3964 	inode->i_size = ext4_isize(raw_inode);
3965 	ei->i_disksize = inode->i_size;
3966 #ifdef CONFIG_QUOTA
3967 	ei->i_reserved_quota = 0;
3968 #endif
3969 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3970 	ei->i_block_group = iloc.block_group;
3971 	ei->i_last_alloc_group = ~0;
3972 	/*
3973 	 * NOTE! The in-memory inode i_data array is in little-endian order
3974 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3975 	 */
3976 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3977 		ei->i_data[block] = raw_inode->i_block[block];
3978 	INIT_LIST_HEAD(&ei->i_orphan);
3979 
3980 	/*
3981 	 * Set transaction id's of transactions that have to be committed
3982 	 * to finish f[data]sync. We set them to currently running transaction
3983 	 * as we cannot be sure that the inode or some of its metadata isn't
3984 	 * part of the transaction - the inode could have been reclaimed and
3985 	 * now it is reread from disk.
3986 	 */
3987 	if (journal) {
3988 		transaction_t *transaction;
3989 		tid_t tid;
3990 
3991 		read_lock(&journal->j_state_lock);
3992 		if (journal->j_running_transaction)
3993 			transaction = journal->j_running_transaction;
3994 		else
3995 			transaction = journal->j_committing_transaction;
3996 		if (transaction)
3997 			tid = transaction->t_tid;
3998 		else
3999 			tid = journal->j_commit_sequence;
4000 		read_unlock(&journal->j_state_lock);
4001 		ei->i_sync_tid = tid;
4002 		ei->i_datasync_tid = tid;
4003 	}
4004 
4005 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006 		if (ei->i_extra_isize == 0) {
4007 			/* The extra space is currently unused. Use it. */
4008 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4009 					    EXT4_GOOD_OLD_INODE_SIZE;
4010 		} else {
4011 			ext4_iget_extra_inode(inode, raw_inode, ei);
4012 		}
4013 	}
4014 
4015 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4016 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4017 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4018 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4019 
4020 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4021 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4022 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4023 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4024 				inode->i_version |=
4025 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4026 		}
4027 	}
4028 
4029 	ret = 0;
4030 	if (ei->i_file_acl &&
4031 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4032 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4033 				 ei->i_file_acl);
4034 		ret = -EIO;
4035 		goto bad_inode;
4036 	} else if (!ext4_has_inline_data(inode)) {
4037 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4038 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4039 			    (S_ISLNK(inode->i_mode) &&
4040 			     !ext4_inode_is_fast_symlink(inode))))
4041 				/* Validate extent which is part of inode */
4042 				ret = ext4_ext_check_inode(inode);
4043 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4044 			   (S_ISLNK(inode->i_mode) &&
4045 			    !ext4_inode_is_fast_symlink(inode))) {
4046 			/* Validate block references which are part of inode */
4047 			ret = ext4_ind_check_inode(inode);
4048 		}
4049 	}
4050 	if (ret)
4051 		goto bad_inode;
4052 
4053 	if (S_ISREG(inode->i_mode)) {
4054 		inode->i_op = &ext4_file_inode_operations;
4055 		inode->i_fop = &ext4_file_operations;
4056 		ext4_set_aops(inode);
4057 	} else if (S_ISDIR(inode->i_mode)) {
4058 		inode->i_op = &ext4_dir_inode_operations;
4059 		inode->i_fop = &ext4_dir_operations;
4060 	} else if (S_ISLNK(inode->i_mode)) {
4061 		if (ext4_inode_is_fast_symlink(inode)) {
4062 			inode->i_op = &ext4_fast_symlink_inode_operations;
4063 			nd_terminate_link(ei->i_data, inode->i_size,
4064 				sizeof(ei->i_data) - 1);
4065 		} else {
4066 			inode->i_op = &ext4_symlink_inode_operations;
4067 			ext4_set_aops(inode);
4068 		}
4069 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4070 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4071 		inode->i_op = &ext4_special_inode_operations;
4072 		if (raw_inode->i_block[0])
4073 			init_special_inode(inode, inode->i_mode,
4074 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4075 		else
4076 			init_special_inode(inode, inode->i_mode,
4077 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4078 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4079 		make_bad_inode(inode);
4080 	} else {
4081 		ret = -EIO;
4082 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4083 		goto bad_inode;
4084 	}
4085 	brelse(iloc.bh);
4086 	ext4_set_inode_flags(inode);
4087 	unlock_new_inode(inode);
4088 	return inode;
4089 
4090 bad_inode:
4091 	brelse(iloc.bh);
4092 	iget_failed(inode);
4093 	return ERR_PTR(ret);
4094 }
4095 
4096 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4097 {
4098 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4099 		return ERR_PTR(-EIO);
4100 	return ext4_iget(sb, ino);
4101 }
4102 
4103 static int ext4_inode_blocks_set(handle_t *handle,
4104 				struct ext4_inode *raw_inode,
4105 				struct ext4_inode_info *ei)
4106 {
4107 	struct inode *inode = &(ei->vfs_inode);
4108 	u64 i_blocks = inode->i_blocks;
4109 	struct super_block *sb = inode->i_sb;
4110 
4111 	if (i_blocks <= ~0U) {
4112 		/*
4113 		 * i_blocks can be represented in a 32 bit variable
4114 		 * as multiple of 512 bytes
4115 		 */
4116 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4117 		raw_inode->i_blocks_high = 0;
4118 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4119 		return 0;
4120 	}
4121 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4122 		return -EFBIG;
4123 
4124 	if (i_blocks <= 0xffffffffffffULL) {
4125 		/*
4126 		 * i_blocks can be represented in a 48 bit variable
4127 		 * as multiple of 512 bytes
4128 		 */
4129 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4130 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4131 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132 	} else {
4133 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134 		/* i_block is stored in file system block size */
4135 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4136 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4137 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4138 	}
4139 	return 0;
4140 }
4141 
4142 /*
4143  * Post the struct inode info into an on-disk inode location in the
4144  * buffer-cache.  This gobbles the caller's reference to the
4145  * buffer_head in the inode location struct.
4146  *
4147  * The caller must have write access to iloc->bh.
4148  */
4149 static int ext4_do_update_inode(handle_t *handle,
4150 				struct inode *inode,
4151 				struct ext4_iloc *iloc)
4152 {
4153 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4154 	struct ext4_inode_info *ei = EXT4_I(inode);
4155 	struct buffer_head *bh = iloc->bh;
4156 	struct super_block *sb = inode->i_sb;
4157 	int err = 0, rc, block;
4158 	int need_datasync = 0, set_large_file = 0;
4159 	uid_t i_uid;
4160 	gid_t i_gid;
4161 
4162 	spin_lock(&ei->i_raw_lock);
4163 
4164 	/* For fields not tracked in the in-memory inode,
4165 	 * initialise them to zero for new inodes. */
4166 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4167 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4168 
4169 	ext4_get_inode_flags(ei);
4170 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4171 	i_uid = i_uid_read(inode);
4172 	i_gid = i_gid_read(inode);
4173 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4174 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4175 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4176 /*
4177  * Fix up interoperability with old kernels. Otherwise, old inodes get
4178  * re-used with the upper 16 bits of the uid/gid intact
4179  */
4180 		if (!ei->i_dtime) {
4181 			raw_inode->i_uid_high =
4182 				cpu_to_le16(high_16_bits(i_uid));
4183 			raw_inode->i_gid_high =
4184 				cpu_to_le16(high_16_bits(i_gid));
4185 		} else {
4186 			raw_inode->i_uid_high = 0;
4187 			raw_inode->i_gid_high = 0;
4188 		}
4189 	} else {
4190 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4191 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4192 		raw_inode->i_uid_high = 0;
4193 		raw_inode->i_gid_high = 0;
4194 	}
4195 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4196 
4197 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4198 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4199 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4200 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4201 
4202 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4203 	if (err) {
4204 		spin_unlock(&ei->i_raw_lock);
4205 		goto out_brelse;
4206 	}
4207 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4208 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4209 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4210 		raw_inode->i_file_acl_high =
4211 			cpu_to_le16(ei->i_file_acl >> 32);
4212 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4213 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4214 		ext4_isize_set(raw_inode, ei->i_disksize);
4215 		need_datasync = 1;
4216 	}
4217 	if (ei->i_disksize > 0x7fffffffULL) {
4218 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4219 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4220 				EXT4_SB(sb)->s_es->s_rev_level ==
4221 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4222 			set_large_file = 1;
4223 	}
4224 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4225 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4226 		if (old_valid_dev(inode->i_rdev)) {
4227 			raw_inode->i_block[0] =
4228 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4229 			raw_inode->i_block[1] = 0;
4230 		} else {
4231 			raw_inode->i_block[0] = 0;
4232 			raw_inode->i_block[1] =
4233 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4234 			raw_inode->i_block[2] = 0;
4235 		}
4236 	} else if (!ext4_has_inline_data(inode)) {
4237 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4238 			raw_inode->i_block[block] = ei->i_data[block];
4239 	}
4240 
4241 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4242 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4243 		if (ei->i_extra_isize) {
4244 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4245 				raw_inode->i_version_hi =
4246 					cpu_to_le32(inode->i_version >> 32);
4247 			raw_inode->i_extra_isize =
4248 				cpu_to_le16(ei->i_extra_isize);
4249 		}
4250 	}
4251 
4252 	ext4_inode_csum_set(inode, raw_inode, ei);
4253 
4254 	spin_unlock(&ei->i_raw_lock);
4255 
4256 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4257 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4258 	if (!err)
4259 		err = rc;
4260 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4261 	if (set_large_file) {
4262 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4263 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4264 		if (err)
4265 			goto out_brelse;
4266 		ext4_update_dynamic_rev(sb);
4267 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4268 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4269 		ext4_handle_sync(handle);
4270 		err = ext4_handle_dirty_super(handle, sb);
4271 	}
4272 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4273 out_brelse:
4274 	brelse(bh);
4275 	ext4_std_error(inode->i_sb, err);
4276 	return err;
4277 }
4278 
4279 /*
4280  * ext4_write_inode()
4281  *
4282  * We are called from a few places:
4283  *
4284  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4285  *   Here, there will be no transaction running. We wait for any running
4286  *   transaction to commit.
4287  *
4288  * - Within flush work (sys_sync(), kupdate and such).
4289  *   We wait on commit, if told to.
4290  *
4291  * - Within iput_final() -> write_inode_now()
4292  *   We wait on commit, if told to.
4293  *
4294  * In all cases it is actually safe for us to return without doing anything,
4295  * because the inode has been copied into a raw inode buffer in
4296  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4297  * writeback.
4298  *
4299  * Note that we are absolutely dependent upon all inode dirtiers doing the
4300  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4301  * which we are interested.
4302  *
4303  * It would be a bug for them to not do this.  The code:
4304  *
4305  *	mark_inode_dirty(inode)
4306  *	stuff();
4307  *	inode->i_size = expr;
4308  *
4309  * is in error because write_inode() could occur while `stuff()' is running,
4310  * and the new i_size will be lost.  Plus the inode will no longer be on the
4311  * superblock's dirty inode list.
4312  */
4313 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4314 {
4315 	int err;
4316 
4317 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4318 		return 0;
4319 
4320 	if (EXT4_SB(inode->i_sb)->s_journal) {
4321 		if (ext4_journal_current_handle()) {
4322 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4323 			dump_stack();
4324 			return -EIO;
4325 		}
4326 
4327 		/*
4328 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4329 		 * ext4_sync_fs() will force the commit after everything is
4330 		 * written.
4331 		 */
4332 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4333 			return 0;
4334 
4335 		err = ext4_force_commit(inode->i_sb);
4336 	} else {
4337 		struct ext4_iloc iloc;
4338 
4339 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4340 		if (err)
4341 			return err;
4342 		/*
4343 		 * sync(2) will flush the whole buffer cache. No need to do
4344 		 * it here separately for each inode.
4345 		 */
4346 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4347 			sync_dirty_buffer(iloc.bh);
4348 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4349 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4350 					 "IO error syncing inode");
4351 			err = -EIO;
4352 		}
4353 		brelse(iloc.bh);
4354 	}
4355 	return err;
4356 }
4357 
4358 /*
4359  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4360  * buffers that are attached to a page stradding i_size and are undergoing
4361  * commit. In that case we have to wait for commit to finish and try again.
4362  */
4363 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4364 {
4365 	struct page *page;
4366 	unsigned offset;
4367 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4368 	tid_t commit_tid = 0;
4369 	int ret;
4370 
4371 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4372 	/*
4373 	 * All buffers in the last page remain valid? Then there's nothing to
4374 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4375 	 * blocksize case
4376 	 */
4377 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4378 		return;
4379 	while (1) {
4380 		page = find_lock_page(inode->i_mapping,
4381 				      inode->i_size >> PAGE_CACHE_SHIFT);
4382 		if (!page)
4383 			return;
4384 		ret = __ext4_journalled_invalidatepage(page, offset,
4385 						PAGE_CACHE_SIZE - offset);
4386 		unlock_page(page);
4387 		page_cache_release(page);
4388 		if (ret != -EBUSY)
4389 			return;
4390 		commit_tid = 0;
4391 		read_lock(&journal->j_state_lock);
4392 		if (journal->j_committing_transaction)
4393 			commit_tid = journal->j_committing_transaction->t_tid;
4394 		read_unlock(&journal->j_state_lock);
4395 		if (commit_tid)
4396 			jbd2_log_wait_commit(journal, commit_tid);
4397 	}
4398 }
4399 
4400 /*
4401  * ext4_setattr()
4402  *
4403  * Called from notify_change.
4404  *
4405  * We want to trap VFS attempts to truncate the file as soon as
4406  * possible.  In particular, we want to make sure that when the VFS
4407  * shrinks i_size, we put the inode on the orphan list and modify
4408  * i_disksize immediately, so that during the subsequent flushing of
4409  * dirty pages and freeing of disk blocks, we can guarantee that any
4410  * commit will leave the blocks being flushed in an unused state on
4411  * disk.  (On recovery, the inode will get truncated and the blocks will
4412  * be freed, so we have a strong guarantee that no future commit will
4413  * leave these blocks visible to the user.)
4414  *
4415  * Another thing we have to assure is that if we are in ordered mode
4416  * and inode is still attached to the committing transaction, we must
4417  * we start writeout of all the dirty pages which are being truncated.
4418  * This way we are sure that all the data written in the previous
4419  * transaction are already on disk (truncate waits for pages under
4420  * writeback).
4421  *
4422  * Called with inode->i_mutex down.
4423  */
4424 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4425 {
4426 	struct inode *inode = dentry->d_inode;
4427 	int error, rc = 0;
4428 	int orphan = 0;
4429 	const unsigned int ia_valid = attr->ia_valid;
4430 
4431 	error = inode_change_ok(inode, attr);
4432 	if (error)
4433 		return error;
4434 
4435 	if (is_quota_modification(inode, attr))
4436 		dquot_initialize(inode);
4437 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4438 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4439 		handle_t *handle;
4440 
4441 		/* (user+group)*(old+new) structure, inode write (sb,
4442 		 * inode block, ? - but truncate inode update has it) */
4443 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4444 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4445 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4446 		if (IS_ERR(handle)) {
4447 			error = PTR_ERR(handle);
4448 			goto err_out;
4449 		}
4450 		error = dquot_transfer(inode, attr);
4451 		if (error) {
4452 			ext4_journal_stop(handle);
4453 			return error;
4454 		}
4455 		/* Update corresponding info in inode so that everything is in
4456 		 * one transaction */
4457 		if (attr->ia_valid & ATTR_UID)
4458 			inode->i_uid = attr->ia_uid;
4459 		if (attr->ia_valid & ATTR_GID)
4460 			inode->i_gid = attr->ia_gid;
4461 		error = ext4_mark_inode_dirty(handle, inode);
4462 		ext4_journal_stop(handle);
4463 	}
4464 
4465 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4466 		handle_t *handle;
4467 
4468 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4469 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4470 
4471 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4472 				return -EFBIG;
4473 		}
4474 
4475 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4476 			inode_inc_iversion(inode);
4477 
4478 		if (S_ISREG(inode->i_mode) &&
4479 		    (attr->ia_size < inode->i_size)) {
4480 			if (ext4_should_order_data(inode)) {
4481 				error = ext4_begin_ordered_truncate(inode,
4482 							    attr->ia_size);
4483 				if (error)
4484 					goto err_out;
4485 			}
4486 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4487 			if (IS_ERR(handle)) {
4488 				error = PTR_ERR(handle);
4489 				goto err_out;
4490 			}
4491 			if (ext4_handle_valid(handle)) {
4492 				error = ext4_orphan_add(handle, inode);
4493 				orphan = 1;
4494 			}
4495 			down_write(&EXT4_I(inode)->i_data_sem);
4496 			EXT4_I(inode)->i_disksize = attr->ia_size;
4497 			rc = ext4_mark_inode_dirty(handle, inode);
4498 			if (!error)
4499 				error = rc;
4500 			/*
4501 			 * We have to update i_size under i_data_sem together
4502 			 * with i_disksize to avoid races with writeback code
4503 			 * running ext4_wb_update_i_disksize().
4504 			 */
4505 			if (!error)
4506 				i_size_write(inode, attr->ia_size);
4507 			up_write(&EXT4_I(inode)->i_data_sem);
4508 			ext4_journal_stop(handle);
4509 			if (error) {
4510 				ext4_orphan_del(NULL, inode);
4511 				goto err_out;
4512 			}
4513 		} else {
4514 			loff_t oldsize = inode->i_size;
4515 
4516 			i_size_write(inode, attr->ia_size);
4517 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4518 		}
4519 
4520 		/*
4521 		 * Blocks are going to be removed from the inode. Wait
4522 		 * for dio in flight.  Temporarily disable
4523 		 * dioread_nolock to prevent livelock.
4524 		 */
4525 		if (orphan) {
4526 			if (!ext4_should_journal_data(inode)) {
4527 				ext4_inode_block_unlocked_dio(inode);
4528 				inode_dio_wait(inode);
4529 				ext4_inode_resume_unlocked_dio(inode);
4530 			} else
4531 				ext4_wait_for_tail_page_commit(inode);
4532 		}
4533 		/*
4534 		 * Truncate pagecache after we've waited for commit
4535 		 * in data=journal mode to make pages freeable.
4536 		 */
4537 			truncate_pagecache(inode, inode->i_size);
4538 	}
4539 	/*
4540 	 * We want to call ext4_truncate() even if attr->ia_size ==
4541 	 * inode->i_size for cases like truncation of fallocated space
4542 	 */
4543 	if (attr->ia_valid & ATTR_SIZE)
4544 		ext4_truncate(inode);
4545 
4546 	if (!rc) {
4547 		setattr_copy(inode, attr);
4548 		mark_inode_dirty(inode);
4549 	}
4550 
4551 	/*
4552 	 * If the call to ext4_truncate failed to get a transaction handle at
4553 	 * all, we need to clean up the in-core orphan list manually.
4554 	 */
4555 	if (orphan && inode->i_nlink)
4556 		ext4_orphan_del(NULL, inode);
4557 
4558 	if (!rc && (ia_valid & ATTR_MODE))
4559 		rc = posix_acl_chmod(inode, inode->i_mode);
4560 
4561 err_out:
4562 	ext4_std_error(inode->i_sb, error);
4563 	if (!error)
4564 		error = rc;
4565 	return error;
4566 }
4567 
4568 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4569 		 struct kstat *stat)
4570 {
4571 	struct inode *inode;
4572 	unsigned long long delalloc_blocks;
4573 
4574 	inode = dentry->d_inode;
4575 	generic_fillattr(inode, stat);
4576 
4577 	/*
4578 	 * If there is inline data in the inode, the inode will normally not
4579 	 * have data blocks allocated (it may have an external xattr block).
4580 	 * Report at least one sector for such files, so tools like tar, rsync,
4581 	 * others doen't incorrectly think the file is completely sparse.
4582 	 */
4583 	if (unlikely(ext4_has_inline_data(inode)))
4584 		stat->blocks += (stat->size + 511) >> 9;
4585 
4586 	/*
4587 	 * We can't update i_blocks if the block allocation is delayed
4588 	 * otherwise in the case of system crash before the real block
4589 	 * allocation is done, we will have i_blocks inconsistent with
4590 	 * on-disk file blocks.
4591 	 * We always keep i_blocks updated together with real
4592 	 * allocation. But to not confuse with user, stat
4593 	 * will return the blocks that include the delayed allocation
4594 	 * blocks for this file.
4595 	 */
4596 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4597 				   EXT4_I(inode)->i_reserved_data_blocks);
4598 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4599 	return 0;
4600 }
4601 
4602 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4603 				   int pextents)
4604 {
4605 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4606 		return ext4_ind_trans_blocks(inode, lblocks);
4607 	return ext4_ext_index_trans_blocks(inode, pextents);
4608 }
4609 
4610 /*
4611  * Account for index blocks, block groups bitmaps and block group
4612  * descriptor blocks if modify datablocks and index blocks
4613  * worse case, the indexs blocks spread over different block groups
4614  *
4615  * If datablocks are discontiguous, they are possible to spread over
4616  * different block groups too. If they are contiguous, with flexbg,
4617  * they could still across block group boundary.
4618  *
4619  * Also account for superblock, inode, quota and xattr blocks
4620  */
4621 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4622 				  int pextents)
4623 {
4624 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4625 	int gdpblocks;
4626 	int idxblocks;
4627 	int ret = 0;
4628 
4629 	/*
4630 	 * How many index blocks need to touch to map @lblocks logical blocks
4631 	 * to @pextents physical extents?
4632 	 */
4633 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4634 
4635 	ret = idxblocks;
4636 
4637 	/*
4638 	 * Now let's see how many group bitmaps and group descriptors need
4639 	 * to account
4640 	 */
4641 	groups = idxblocks + pextents;
4642 	gdpblocks = groups;
4643 	if (groups > ngroups)
4644 		groups = ngroups;
4645 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4646 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4647 
4648 	/* bitmaps and block group descriptor blocks */
4649 	ret += groups + gdpblocks;
4650 
4651 	/* Blocks for super block, inode, quota and xattr blocks */
4652 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4653 
4654 	return ret;
4655 }
4656 
4657 /*
4658  * Calculate the total number of credits to reserve to fit
4659  * the modification of a single pages into a single transaction,
4660  * which may include multiple chunks of block allocations.
4661  *
4662  * This could be called via ext4_write_begin()
4663  *
4664  * We need to consider the worse case, when
4665  * one new block per extent.
4666  */
4667 int ext4_writepage_trans_blocks(struct inode *inode)
4668 {
4669 	int bpp = ext4_journal_blocks_per_page(inode);
4670 	int ret;
4671 
4672 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4673 
4674 	/* Account for data blocks for journalled mode */
4675 	if (ext4_should_journal_data(inode))
4676 		ret += bpp;
4677 	return ret;
4678 }
4679 
4680 /*
4681  * Calculate the journal credits for a chunk of data modification.
4682  *
4683  * This is called from DIO, fallocate or whoever calling
4684  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4685  *
4686  * journal buffers for data blocks are not included here, as DIO
4687  * and fallocate do no need to journal data buffers.
4688  */
4689 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4690 {
4691 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4692 }
4693 
4694 /*
4695  * The caller must have previously called ext4_reserve_inode_write().
4696  * Give this, we know that the caller already has write access to iloc->bh.
4697  */
4698 int ext4_mark_iloc_dirty(handle_t *handle,
4699 			 struct inode *inode, struct ext4_iloc *iloc)
4700 {
4701 	int err = 0;
4702 
4703 	if (IS_I_VERSION(inode))
4704 		inode_inc_iversion(inode);
4705 
4706 	/* the do_update_inode consumes one bh->b_count */
4707 	get_bh(iloc->bh);
4708 
4709 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4710 	err = ext4_do_update_inode(handle, inode, iloc);
4711 	put_bh(iloc->bh);
4712 	return err;
4713 }
4714 
4715 /*
4716  * On success, We end up with an outstanding reference count against
4717  * iloc->bh.  This _must_ be cleaned up later.
4718  */
4719 
4720 int
4721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4722 			 struct ext4_iloc *iloc)
4723 {
4724 	int err;
4725 
4726 	err = ext4_get_inode_loc(inode, iloc);
4727 	if (!err) {
4728 		BUFFER_TRACE(iloc->bh, "get_write_access");
4729 		err = ext4_journal_get_write_access(handle, iloc->bh);
4730 		if (err) {
4731 			brelse(iloc->bh);
4732 			iloc->bh = NULL;
4733 		}
4734 	}
4735 	ext4_std_error(inode->i_sb, err);
4736 	return err;
4737 }
4738 
4739 /*
4740  * Expand an inode by new_extra_isize bytes.
4741  * Returns 0 on success or negative error number on failure.
4742  */
4743 static int ext4_expand_extra_isize(struct inode *inode,
4744 				   unsigned int new_extra_isize,
4745 				   struct ext4_iloc iloc,
4746 				   handle_t *handle)
4747 {
4748 	struct ext4_inode *raw_inode;
4749 	struct ext4_xattr_ibody_header *header;
4750 
4751 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4752 		return 0;
4753 
4754 	raw_inode = ext4_raw_inode(&iloc);
4755 
4756 	header = IHDR(inode, raw_inode);
4757 
4758 	/* No extended attributes present */
4759 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4760 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4761 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4762 			new_extra_isize);
4763 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4764 		return 0;
4765 	}
4766 
4767 	/* try to expand with EAs present */
4768 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4769 					  raw_inode, handle);
4770 }
4771 
4772 /*
4773  * What we do here is to mark the in-core inode as clean with respect to inode
4774  * dirtiness (it may still be data-dirty).
4775  * This means that the in-core inode may be reaped by prune_icache
4776  * without having to perform any I/O.  This is a very good thing,
4777  * because *any* task may call prune_icache - even ones which
4778  * have a transaction open against a different journal.
4779  *
4780  * Is this cheating?  Not really.  Sure, we haven't written the
4781  * inode out, but prune_icache isn't a user-visible syncing function.
4782  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4783  * we start and wait on commits.
4784  */
4785 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786 {
4787 	struct ext4_iloc iloc;
4788 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789 	static unsigned int mnt_count;
4790 	int err, ret;
4791 
4792 	might_sleep();
4793 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4794 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4795 	if (ext4_handle_valid(handle) &&
4796 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4797 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4798 		/*
4799 		 * We need extra buffer credits since we may write into EA block
4800 		 * with this same handle. If journal_extend fails, then it will
4801 		 * only result in a minor loss of functionality for that inode.
4802 		 * If this is felt to be critical, then e2fsck should be run to
4803 		 * force a large enough s_min_extra_isize.
4804 		 */
4805 		if ((jbd2_journal_extend(handle,
4806 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4807 			ret = ext4_expand_extra_isize(inode,
4808 						      sbi->s_want_extra_isize,
4809 						      iloc, handle);
4810 			if (ret) {
4811 				ext4_set_inode_state(inode,
4812 						     EXT4_STATE_NO_EXPAND);
4813 				if (mnt_count !=
4814 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4815 					ext4_warning(inode->i_sb,
4816 					"Unable to expand inode %lu. Delete"
4817 					" some EAs or run e2fsck.",
4818 					inode->i_ino);
4819 					mnt_count =
4820 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4821 				}
4822 			}
4823 		}
4824 	}
4825 	if (!err)
4826 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4827 	return err;
4828 }
4829 
4830 /*
4831  * ext4_dirty_inode() is called from __mark_inode_dirty()
4832  *
4833  * We're really interested in the case where a file is being extended.
4834  * i_size has been changed by generic_commit_write() and we thus need
4835  * to include the updated inode in the current transaction.
4836  *
4837  * Also, dquot_alloc_block() will always dirty the inode when blocks
4838  * are allocated to the file.
4839  *
4840  * If the inode is marked synchronous, we don't honour that here - doing
4841  * so would cause a commit on atime updates, which we don't bother doing.
4842  * We handle synchronous inodes at the highest possible level.
4843  */
4844 void ext4_dirty_inode(struct inode *inode, int flags)
4845 {
4846 	handle_t *handle;
4847 
4848 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4849 	if (IS_ERR(handle))
4850 		goto out;
4851 
4852 	ext4_mark_inode_dirty(handle, inode);
4853 
4854 	ext4_journal_stop(handle);
4855 out:
4856 	return;
4857 }
4858 
4859 #if 0
4860 /*
4861  * Bind an inode's backing buffer_head into this transaction, to prevent
4862  * it from being flushed to disk early.  Unlike
4863  * ext4_reserve_inode_write, this leaves behind no bh reference and
4864  * returns no iloc structure, so the caller needs to repeat the iloc
4865  * lookup to mark the inode dirty later.
4866  */
4867 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4868 {
4869 	struct ext4_iloc iloc;
4870 
4871 	int err = 0;
4872 	if (handle) {
4873 		err = ext4_get_inode_loc(inode, &iloc);
4874 		if (!err) {
4875 			BUFFER_TRACE(iloc.bh, "get_write_access");
4876 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4877 			if (!err)
4878 				err = ext4_handle_dirty_metadata(handle,
4879 								 NULL,
4880 								 iloc.bh);
4881 			brelse(iloc.bh);
4882 		}
4883 	}
4884 	ext4_std_error(inode->i_sb, err);
4885 	return err;
4886 }
4887 #endif
4888 
4889 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4890 {
4891 	journal_t *journal;
4892 	handle_t *handle;
4893 	int err;
4894 
4895 	/*
4896 	 * We have to be very careful here: changing a data block's
4897 	 * journaling status dynamically is dangerous.  If we write a
4898 	 * data block to the journal, change the status and then delete
4899 	 * that block, we risk forgetting to revoke the old log record
4900 	 * from the journal and so a subsequent replay can corrupt data.
4901 	 * So, first we make sure that the journal is empty and that
4902 	 * nobody is changing anything.
4903 	 */
4904 
4905 	journal = EXT4_JOURNAL(inode);
4906 	if (!journal)
4907 		return 0;
4908 	if (is_journal_aborted(journal))
4909 		return -EROFS;
4910 	/* We have to allocate physical blocks for delalloc blocks
4911 	 * before flushing journal. otherwise delalloc blocks can not
4912 	 * be allocated any more. even more truncate on delalloc blocks
4913 	 * could trigger BUG by flushing delalloc blocks in journal.
4914 	 * There is no delalloc block in non-journal data mode.
4915 	 */
4916 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4917 		err = ext4_alloc_da_blocks(inode);
4918 		if (err < 0)
4919 			return err;
4920 	}
4921 
4922 	/* Wait for all existing dio workers */
4923 	ext4_inode_block_unlocked_dio(inode);
4924 	inode_dio_wait(inode);
4925 
4926 	jbd2_journal_lock_updates(journal);
4927 
4928 	/*
4929 	 * OK, there are no updates running now, and all cached data is
4930 	 * synced to disk.  We are now in a completely consistent state
4931 	 * which doesn't have anything in the journal, and we know that
4932 	 * no filesystem updates are running, so it is safe to modify
4933 	 * the inode's in-core data-journaling state flag now.
4934 	 */
4935 
4936 	if (val)
4937 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4938 	else {
4939 		err = jbd2_journal_flush(journal);
4940 		if (err < 0) {
4941 			jbd2_journal_unlock_updates(journal);
4942 			ext4_inode_resume_unlocked_dio(inode);
4943 			return err;
4944 		}
4945 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4946 	}
4947 	ext4_set_aops(inode);
4948 
4949 	jbd2_journal_unlock_updates(journal);
4950 	ext4_inode_resume_unlocked_dio(inode);
4951 
4952 	/* Finally we can mark the inode as dirty. */
4953 
4954 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4955 	if (IS_ERR(handle))
4956 		return PTR_ERR(handle);
4957 
4958 	err = ext4_mark_inode_dirty(handle, inode);
4959 	ext4_handle_sync(handle);
4960 	ext4_journal_stop(handle);
4961 	ext4_std_error(inode->i_sb, err);
4962 
4963 	return err;
4964 }
4965 
4966 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4967 {
4968 	return !buffer_mapped(bh);
4969 }
4970 
4971 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4972 {
4973 	struct page *page = vmf->page;
4974 	loff_t size;
4975 	unsigned long len;
4976 	int ret;
4977 	struct file *file = vma->vm_file;
4978 	struct inode *inode = file_inode(file);
4979 	struct address_space *mapping = inode->i_mapping;
4980 	handle_t *handle;
4981 	get_block_t *get_block;
4982 	int retries = 0;
4983 
4984 	sb_start_pagefault(inode->i_sb);
4985 	file_update_time(vma->vm_file);
4986 	/* Delalloc case is easy... */
4987 	if (test_opt(inode->i_sb, DELALLOC) &&
4988 	    !ext4_should_journal_data(inode) &&
4989 	    !ext4_nonda_switch(inode->i_sb)) {
4990 		do {
4991 			ret = __block_page_mkwrite(vma, vmf,
4992 						   ext4_da_get_block_prep);
4993 		} while (ret == -ENOSPC &&
4994 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4995 		goto out_ret;
4996 	}
4997 
4998 	lock_page(page);
4999 	size = i_size_read(inode);
5000 	/* Page got truncated from under us? */
5001 	if (page->mapping != mapping || page_offset(page) > size) {
5002 		unlock_page(page);
5003 		ret = VM_FAULT_NOPAGE;
5004 		goto out;
5005 	}
5006 
5007 	if (page->index == size >> PAGE_CACHE_SHIFT)
5008 		len = size & ~PAGE_CACHE_MASK;
5009 	else
5010 		len = PAGE_CACHE_SIZE;
5011 	/*
5012 	 * Return if we have all the buffers mapped. This avoids the need to do
5013 	 * journal_start/journal_stop which can block and take a long time
5014 	 */
5015 	if (page_has_buffers(page)) {
5016 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5017 					    0, len, NULL,
5018 					    ext4_bh_unmapped)) {
5019 			/* Wait so that we don't change page under IO */
5020 			wait_for_stable_page(page);
5021 			ret = VM_FAULT_LOCKED;
5022 			goto out;
5023 		}
5024 	}
5025 	unlock_page(page);
5026 	/* OK, we need to fill the hole... */
5027 	if (ext4_should_dioread_nolock(inode))
5028 		get_block = ext4_get_block_write;
5029 	else
5030 		get_block = ext4_get_block;
5031 retry_alloc:
5032 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5033 				    ext4_writepage_trans_blocks(inode));
5034 	if (IS_ERR(handle)) {
5035 		ret = VM_FAULT_SIGBUS;
5036 		goto out;
5037 	}
5038 	ret = __block_page_mkwrite(vma, vmf, get_block);
5039 	if (!ret && ext4_should_journal_data(inode)) {
5040 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5041 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5042 			unlock_page(page);
5043 			ret = VM_FAULT_SIGBUS;
5044 			ext4_journal_stop(handle);
5045 			goto out;
5046 		}
5047 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5048 	}
5049 	ext4_journal_stop(handle);
5050 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5051 		goto retry_alloc;
5052 out_ret:
5053 	ret = block_page_mkwrite_return(ret);
5054 out:
5055 	sb_end_pagefault(inode->i_sb);
5056 	return ret;
5057 }
5058